NUMERICAL INTEGRATION OF THI
ELECTRON DEN

CENTRE FOR NEWFOUNDLA!

AL OF 10 PAGES ONLY
MAY BE XER!

(Without Author’s Permission)

AISHA

-SHERBINY

National Library
of Canada

Acquisitions and
Bibliographic Services

Bibliothéque nationale
du Canada

Acquisisitons et
services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Yourfile Votre référence
ISBN: 0-612-84000-X
Ourfile Notre référence
ISBN: 0-612-84000-X

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

NUMERICAL INTEGRATION OF THE ELECTRON DENSITY

by

© Aisha El-Sherbiny
B.Sc. (Ain Shams University), M.Sc. (University of Cairo)

A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the

requirements for the degree of

Master of Science.

Department of Chemistry

M ial University of Ne: 11

February, 2002

ST. JOHN'S NEWFOUNDLAND

To my father’s soul and my mother.

Abstract

In quantum chemistry three-dimensional integrals of the type
Fis / F(r)dr,

are common. In general, the integrand F(r) extends over all the molecular space.
Sometimes, as occurs in density functional theory, the integrals can not be solved
analytically and numerical approximations must be used. In molecules, the integrand
F(r) is dominated by cusps at atomic nuclei. A popular solution to this multicenter
integration problem is the nuclear weight function scheme proposed by A. D. Becke.
Two algorithms based on Becke’s approach were developed by P. M. W. Gill et al. and
by Becke. The latter was slightly modified by O. Treutler and R. Ahlrichs. These two
different algorithms were written in Fortran 90 and incorporated in MUNgauss. This
work investigates in detail Becke’s scheme and the application of the previous two

algorithms to integrate the charge density of a set of test molecules.

iii

Acknowledgements

There are several individuals I would like to thank for their guidance and support
while this work was being completed. First, I would like to thank my supervisor Ray-

mond Poirier for his advice and assi: which was invaluable in the ion of

this work. Also, T would like to thank the Departments of Chemistry and Physics
for the use of their facilities and resources and my colleagues Tammy Gosse, and

Darryl Reid for their inued support and Thanks to the School of

Graduate Studies, the Computational Science committee, the National Sciences and
Engineering Research Council of Canada, and Memorial University of Newfoundland
for financial support and giving me the opportunity to complete my Masters pro-
gramme here.

I would like to extend a special thanks to my family and friends, especially my
wouderful mother. Their continued support and encouragement throughout the com-

pletion of this project will always be greatly appreciated.

Contents

Abstract iii

Acknowledgements iv

List of Tables viii

List of Figures %

1 Introduction &

1.1 The need for numerical integration 1

1.2 Density Functional Theory Y3

1.3 Molecular orbital charge density 4

1.4 Electron density for large molecules 5

1.5 Historical background T R T OF R Ea 7

167 SOWHIE: w s n s e s moesn g ¢ F Y IV E R P S F BR R E B 8

2 Numerical integration 9

2.1 One dimensional integration 9

2.2 From di ional to multi-di ional i i v ek o 15
2.3 n-dimensional formulation of the numerical

AteErationProbIem. o .« o sowse 0 0w 5 8 s e n o K B s o g 16

El

£y

3.1 Atoms in molecules

3.2 Molecular integration using discrete polyhedra
3.3 Nuclear weight function methods:

Becke’s method

3.4 Atomicintegration

Two ical integration

4.1 The standard grid SG-1 .

4.2 Treutler-ARltCHS IS ' oivisr o o 5 nomsmialin = s 5 e &0 wes s

Why Fortran 907

5.1 Drawbacks of FORTRAN 7T .« w s © v wvein & o 5 & & wnie s % oo o
5.2 Fortran 90: New features
521 Artay operations
522 Derived types
5.23 Pointers
GOH Modules s 5 55 5 v 58 55 DeAn HF b o 5 fmmd e nx e
525 Interface Dlocks ii ..
5.3 Numerical Integration Code

Performance of the numerical integration code: Numerical results

6.1 Introduction

6.2 Total number of electrons

6.3 Atomic charge density

vi

31
36

38
39
41

-

64 Efficiency: CPU timing

Conclusions and future work

7.1 Conclusions

7.2 Future Work

List of Tables

2

3.

4.

4.2
4.3

=

6.2

6.3
6.4

Examples of Gaussian quadrature rules
Electron population, using Kénig algorithm (Ref. 25) . . .

Atomic radii R, in bohr, used in the SG-1 grid (Ref. 29)
Partitioning parameters used in the SG-1 grid (Ref. 29) . . .

The radial ings and the cor ding Jacobians

Total number of electrons using SG-1 and TA integration grids for
molecules containing only C and H atoms.
Total number of electrons using SG-1 and TA integration grids for

molecules containing atoms of the first and second rows of the periodic

Atomic charge densities using SG-1 and TA grids

Total CPU time using SG-1 and TA (seconds)

viii

14

29

40
41
43

69

List of Figures

21
2.2

23
24

3.

32

6.2

Numerical integration of a simple function ¥ = 6(z)

Numerical i ion of a function by 2 imation with pol !

of degrees: () m=1, (b) m=2
One of the eight faces of the octahedron

Nodes of quadrature of order 33, from Ref. 18

Two nuclei i, j in the molecular space, where r is a grid point, r; and
r; are the distances to the nuclei i and j, and Ry; is the internuclear
distance.
The step function for iterations 1 to 5, the 3 iteration case is given by

Eq.3.19 ..

The SG-1 Partitioning of the molecular space.

Major building blocks of Fortran 90

Diagram for the numerical integration of the charge density

The error in the calculated total number of electrons versus the exact
total number of electrons for molecules containing C and H atoms.
The error in the calculated total number of electrons versus the exact
total number of electrons (He to CioHyoCla)

35

42

47
64

6.3 The symmetry problem illustrated in H,O molecule . .

Glossary of terms and symbols

K: number of basis functions.

m: degree of the quadrature formulae.

M: number of nuclei.

n: number of dimensions of the space under consideration.

N: number of nodes in the integration interval.

N,: number of atoms in a molecule.

N: number of electrons.

p: charge density.

R : atomic radius.

Q: domain of integration.

P: density matrix.

6 basis function, or a general function in Numerical Integration.
w;: weight factor.

7;: radial point.

NT: number of radial points.

N®: number of angular points.

TA grid: O. Treutler and R. Ahlrich numerical integration grid.
SG-1 grid:

tandard grid for numerical integration, P. M . W. Gill et al.

xi

Chapter 1

Introduction

1.1 The need for numerical integration

Mauy problems of a scientific nature, in particular those arising in applied mathe-

matics, theoretical physics, theoretical chemistry or astronomy may be formulated in

terms of derivatives, the solutions of which may involve the evaluation of integrals.
In practice, for most integrals, it is impossible to derive analytical solutions, and in

b of numerical integration. This

order to evaluate them, one must apply
is the case in density functional theory, DFT, which is used to calculate molecular
properties. Integrating the charge density obtained in ab initio calculations is another
area of interest. The rest of this chapter represents the role of numerical integration

in these areas. A brief historical background is introduced as well.

1.2 Density Functional Theory
For a molecular system of N,-electrons and M-nuclei, the Schrodinger equation is
HU = E¥ (1.1)

I s the total energy of the system, H is the Hamiltonian operator, and ¥ is the wave
function describing the system. The electronic Hamiltonian operator for molecular
systems may be written, in atomic units, within the Born Oppenheimer approxima-

tion, as

B = T+V+V. (1.2)
1 Ne Ne M Z1
= =3 Vvi- =4+ — (1.3)

The first term represents the kinetic energy of the clectrons, while the second term
is the potential energy due to the electrostatic attraction between the electrons and
the nuclei bearing nuclear charges Z,. The last term represents the potential energy
due to clectron-electron repulsion.

Hohenberg ~ Kohn [1] showed that there exists a unique functional of the electron
density p that yields the exact ground state energy of the system. Kohn and Sham
[2] connected the exact functional with a reference state consisting of a set of non-
interacting one-particle orbitals. The set of one-particle Schridinger equations which

determine the reference orbitals are called the Kohn-Sham (KS) equations [3]

(-%v? +Vh) i =i (14)

where Vi, is a local one-body potential defined such that the total density p of the

non-interacting system is the same as the real system, where

Ne
ple) =3 | (1.5)

e+ Bet + Te (1.6)

where 7 is the electron-electron repulsion Coulomb potential of the electrons. . is as
before, and 0., is the exchange-correlation (XC) potential, which contains everything

else. The exact energy of the fully interacting system is expressed as
- 1
E= Ek+/p(r)",,gdr+ 5 // 20 e oo, 4 g, wn
& T2

where Ej is the kinetic energy of the non-interacting reference system, the second
term represents the attraction energy between the electrons and the nuclei, the third
term is the Coulomb repulsion energy between electrons, and the remaining term is
the exchange-correlation energy related to the exchange—correlation potential by

B

7 (1.8)

The exact exchange-correlation functional is unknown and E., maybe approximated
by

Epe /F(p, Vp,..)dr (19)

where F is a function of the electron density p(r). The function F is too complicated
to be integrated analytically. Recently, a new theorem by P. G. Mezey[d], stronger
than the Hohenberg-Kohn theorem, has proven that all molecular information is also
present in any nonzero volume part of the electron density. This theorem is known
as the Holographic Electron Density Theorem. In chapter 3 some of the techniques
to evaluate integrals like the ones in Eqs. 1.7 and 1.9 will be presented. In particular,
Becke’s scheme [5] for calculating numerical integration of functions F(r),r € RY,

associated with molecular properties such as the charge density.

1.3 Molecular orbital charge density

The charge density for a closed shell molecule is given by [6]
Nej2
pr) =23 ¢alr)¥i(r) (1.10)

where 1, is the a™ molecular orbital and N, is the total number of electrons. #, can

be expanded in terms of the basis functions ¢y(r), i = 1,..., K in the form

K
=3 Cudi (111)
b=t

Substituting Eq. 111 in Eq. 110 we get

Nef2

or) = ?Z Zcmox(t Z(,a 4;(r) (1.12)

= SRsO4 (L13)

o

where,
N2

P;=23CuCj, (1.14)
O

is the density matrix. The charge density p(r) can be integrated to give the total
number of electrons belonging to each atom in a molecule. However, an integration

of the form

[owdr =P, [o) 65w dr =N, (1.15)
%
can not be, generally, carried out analytically.

1.4 Electron density for large molecules

P. Duane Walker and Paul G. Mezey [7,8] developed a new technique, Molecular
Electron Density Lego Assembler (MELDA), to construct the electron density distri-

bution of large by bining distributions of small fragments present in the

molecule. The method assumes that the contribution to the total molecular electron
density of a molecular fragment on different molecules or different locations of the
same molecule is quite similar provided that the molecular environments are similar.
First, a database of ab initio electron densities of various molecules is generated where
the fragments are obtained from smaller molecules for which ab initio computations
are cconomic. The large molecule whose density distribution is being constructed is
partitioned into fragments which appear in the database. From Bq. 1.13, the electron

density is given by

plr) =3 Py 6i(x) 45(x)- (1.16)

The density matrix for a molecule can be partitioned into NxN fragment density

matrices (P') where,

Pl = P, if both ¢;(r) and ¢;(r) are atomic basis functions centered
on nuclei of the fragment

1
= 3P if ¢;(r) or ¢;(r) is centered on a nucleus of the fragment

= 0 otherwise

For every partitioning of a molecule into My, molecular fragments there will be
Mjraq fragment density matrices P!l = 1,---, Mj,y. The total density matrix P is

the sum of the Mj,,, fragment density matrices,

Myrey
Py= B (1.17)
=1
The electron density p'(r) of a given molecular fragment is
K K
Pr) =X Ploir) ¢5(r) (1.18)
=i

and the total electron density of a molecule is the sum of the densities for the frag-
ments,

(1.19)

In this way Walker-Mezey were able to calculate the charge density for large molecules
with more than 1000 atoms. Yet, this is another area where numerical integration
is a valuable tool to integrate the charge density and obtain the number of electrons

belonging to each atom, and for energy calculations using DFT, as well. The fact

that numerical integration algorithms are very suitable for parallelizing makes it even

more valuable in ab initio calculations for very large molecules, such as proteins.

1.5 Historical background

According to the Oxford English Dictionary, cubature is the determination of the
cubic contents of a solid, that is, the computation of a volume. Thus cubature
formulae are formulae which estimate volumes [9].

Ancient Egyptians and Babylonians were the first to try to derive cubature formu-
lae. They had precise and accurate rules for finding the areas of triangles, trapezoids,
circle, and the volumes of parallelpipeds, pyramids, and cylinders (for the Babylonians
7 equalled 3 for the Egyptians 235/81) [10]

Around 450 B.C., one of Pythagoras’ pupils, Bryson, is thought to have been
a major contributor to the method of exhaustion which effectively covers the area
between a curve and an inscribed polygon by successively increasing the number of
sides of the polygon. Around 430 B.C., Antiphon considered the area of a circle
using the same approach. About 60 years later, Eudoxus used the method to find the
volumes of the cone and the cylinder. By 225 B.C. Archimedes had used the method
of exhaustion for finding the area of a segment of a parabola and the volume of a
sphere.

The start of the modern study of volume computation is usually linked to Kepler
(1615). Kepler computed the volume of the cask by discretizing the volume into a
series of shallow cylinders. The first cubature formula was constructed by Maxwell
(1877). The MonteCarlo method, developed in 1945, is another way to integrate a

function. Other quasi-MontCarlo methods have evolved since then.

1.6 Outline

Chapter 2 presents a background for numerical integration in one- and multi-
dimensions. Tn chapter 3 an overview of numerical integration schemes designed es-
pecially for polyatomic systems will be presented. Tn particular Becke’s method will
be veviewed in some detail. Chapter 4 introduces the standard grid SG-1 proposed
by Peter M.W.Gill et al. along with a description of the three-dimensional grids de-
veloped by O. Treutler and R. Ahlrichs. Chapter 5 is an overview of the new features
added to FORTRAN 77, namely Fortran 90. Chapter 6 investigates the application
of SG-1 on a variety of molecules. Chapter 7 is the conclusion of this work along with

some ideas for future work

Chapter 2

Numerical integration

2.1 One dimensional integration

Given a function Y = ¢(z) defined on the interval [a,b], the general procedure to
integrate this function numerically is to consider the integral as the area under the
curve Y = ¢(x), Figure 2.1. If we divide the range of integration [a, b] into N —1 equal

intervals (z;, 7:41) of length h and height ¢(z;), i = 1,2,..,N with #; = a and zy =

n be written as

b, then the integral of ¢(z) as N — oo,

b N
I :/ lz)dz = lim 3 ho(z) (2.1)

this summation is known as a quadrature. In general the intervals do not need to be

equal. A more general approximation can be given by:

b N
Iy= /a B(z)dz =Y wi 6(z). (22)

The weight factors, w;, are proportional to the interval widths between the nodes z;.

Figure 2.1: Numerical integration of a simple function ¥ = ¢(z)

The points z; are also called abscissae. Numerical integration [10,11,12,13,14,15]
methods differ in the way they select the abscissae. Some methods choose the base
points for convenience, e.g., to correspond to discrete data points. Other methods
are developed to give a ‘best’ approximation to the integral and the abscissae are
positioned to achieve the highest accuracy. Both methods approximate the function
#(z) by interpolating polynomial Pr,(z) of degree m. A polynomial is chosen such
that it intersects ¢(z) at the abscissae ie.,

Pu(z) =¢(z) i=1,2,..,.N (2.3)

Two simple polynomials of degree one and two are shown in Figure 2.2.

10

v y=p
Y@
x b =
B b
@
y y=px)
¥=#x)
5% 5 x
a b
®

Figure 2.2: Numerical integration of a function by approximation with polynomials

of degrees: (a) m=1, (b)) m=2

11

Eq. 2.2 can also be written as

Tg= /:w(:c) e i{c,f(@) (2.4)
2
whises
$(z) = w(z) f(z)
and camreeralghtstagtors.
This Blmction 1(s) isrelled therweight fumetion. Tt s past of the integrand that
could ariserso freuently thatlit ibmsusl to wilteitss & separatesontiy-within the
{nbegrand [13], Tt could bean awhward part Hke'n singularity: ‘The weight function
does nok-explicitly appeer-in thi: resilling qiadvature cile: “This/implies:that the
weights and the abscissac of any resulting quadrature rule will depend on w(z). For
e

(2.5)

in the case of Gauss-Chebyshev formula of the first kind (see Eq. 2.13 below). When
w(z) = 1 and the abscissae are equally spaced, the quadrature formulae are known
as Newton-Cotes type quadrature formulae. Examples of these quadratures are the
Trapezoidal rule and Simpson’s rule. The Trapezoidal rule is obtained when the
integrand f(z) is fitted by the straight line through the end points (a, f(a)) and
(b, £(b)) [10]. That is

[e = [(oot = 5D 100 + 1) (26)

where
f0) - f(a)

b—a @7

and
_ bf(a) —af(b)
e (2.8)
Simpson’s rule is generated by fitting a quadratic to f(z) at the three points
(a, f(a)), (b, (b)) and (c, f(c)) with ¢ = (a +b)/2 . This process yields:
b b 9 . h
/ﬂ F(2)dz :/ﬂ ua? + v + w)dz = Z(f(a) +4£(0) + F(1) (29)
where
_ (e=b)f(a) + (2~)f(b) + (b~ a)f(c)
= === (&10)
_ (B =) f(a) + (¢~ a®) () + (a® —) f(c)
= (] T 1) 210
e be (¢ — b)f(a) + ac(a —) f(b) + ab (b — a)f(c) (212)

(c—a)(b-)a—b)

and A is the distance between two nodes. Trapezoidal formula has degree one, Simp-
son’s rule has degree three although it was designed to integrate a quadratic.

When the abscissae are not equally spaced, the quadrature formulae are said to

be of Gaussian type. Examples of Gaussian quadrature rules are given in Table 2.1,

The Gauss-Chebyshev rules stand out from the other rules in that their weights

and abscissac can be expressed in closed analytic form, rather than as tables of high

precision real numbers. The Gauss-Chebyshev formula of the first kind is given by [13],

I | gk
Lﬁmm = p I fE) (213)

Table 2.1: Examples of Gaussian quadrature rules

w(z) interval of integration quadrature rule

1 [1,-1) Gauss-Legendre
(1—g%)2 1,-1] Gauss-Chebyshev
exp(—z?) (00, 00) Gauss-Hermit
exp(—a) [0, 00] Gauss-Laguerre

The weights are all equal, /N, for all i and the abscissae z; the zeros of the Chebyshev

polynomial

Ty(z) = cos(N arccos(z)) (2.14)

are given by

(2.15)
The Gauss-Chebyshev formula of the second kind is
; N
[VTR @ = 3 e f@) (2.16)
=
where
(2.17)
and
= cos(i). (2.18)

N+1

15

2.2 From one-dimensional to multi-dimensional
integration

The problem to be addressed with multi-dimensional integrals is to evaluate [10,12]

I;/---/nlb(xr.,z;,”..a:,,)drndxz...dw,. (2.19)

where € is a region in the n-dimensional space, dzdz, ---dz, is the n-dimensional
volume element. The usual approach is to treat Eq. 2.19 as a recursive set of one-
dimensional integrals to yield a product rule of the form

Ny

T 30 e 30 Wy Wi o Wiy Oy By e i) (2.20)

[)

where the weights w;; and the abscissae z;; are chosen to be appropriate for the

specific dimension to which they are applied, Ny, Na, ..., N, are the number of ab-

s li

to several di

sae in the n-dimensions. In passing from
a number of new difficulties arise by comparison with the one-dimensional case. In
one-dimension we can restrict ourselves to three different types of integration: the
finite interval, the singly infinite interval, and the doubly infinite interval. Whereas
in several dimensions, there are potentially an infinite number of different types of
regions. Another difficulty is that the behavior of functions of several variables can
be considerably more complicated than that of functions of one variable. It is also ap-
parent that each dimension will require some minimum number of integration points
for suitable accuracy, therefore, even for quite small n,-a large number of function
evaluations can be expected. Non-product rules may exist which have an equivalent

degree m to a given product rule but with fewer points. In two dimensions, some

16

formulae have been published for the regular polygons, the square. the triangle, the
circle, and the surface of a unit sphere [11]. In three and more dimensions, a few for-
mulae are known for special regions like the n-cube and the n-sphere (n-dimensional
space). In practice, the more expensive product rule yields far greater accuracy than
the non-product alternative.

Not all regions of integration are feasible for the use of a product rule, but more
complicated regions can often be handled by breaking them up into subregions and

applying a product rule to each subregion.

2.3 n-dimensional formulation of the numerical
integration problem

Assume that 6(x) is a function continous in some domain 0 in " (n-dimensional
space) and integrable over a bounded subdomain Q with Q € Q. The main problem

of jcal i ion consists in imating the integral [15]

I(¢) = /no(X)dx (2:21)

where x is an n—dimensional coordinate vector. The integral over Q of ¢(x) can be

replaced by a linear combination of the values of ¢(x) at the N points of the set

xW,x@, . xM} c T (2.22)

namely

.
In(0) =Y aox?), xDek (2.23)
=

This gives the approximate equality

1(¢) = In(¢)- (2.24)

As in the case of one-dimension, the numbers ¢; € R are called the weights, and the
points x(V € R" are called the nodes. The nodes of K that lie outside Q are not
excluded. However, it is preferable that the nodes to be inside the region Q because
it is not always known in advance whether it is possible to evaluate the integrand in a
point outside 2. The weights ¢; are positive. If n = 1 then Iy is called a quadrature
formula. If n > 2 then Iy is called a cubature formula. The choice of the nodes
x® and the weights c¢; is independent of the function ¢. They are chosen so that
the formula gives a good approximation for some class of functions. The error of the

cubature formula is given by

e=1(¢) — In(6)

The cubature formula for ¢(x) is exact when the error is zero. It is natural to consider
sequences of cubature formulae with errors e¥) as the number of nodes N increases.
In this case we speak of a cubature process. A cubature process converges if for every
function in €2 and integrable over §2 , the quantity Iy(¢) converges to I(¢) as N — oc.
Convergence of the error to zero may be strong or weak. The cubature formula 2.23

is exact for a given set of functions

O, @,y 00

the error is zero, if it is exact for each member ¢;.

The problem of determining

the weights ¢; of an exact formula is dual to the interpolation problem of finding a

18
linear combination of the functions given in Eq. 2.26, e.g.,

C=a1$1+ 0262+ ... +andu, (2.27)

taking preassigned values at the points given by Eq. 2.22. The case in which the
functions 2.26 consist of polynomials is the most common. 1 m is the highest degree
of these polynomials, the interpolation problem is to find a polynomial p(x) of degree

at most m agreeing with ¢(x) at the given points,

p(x®) = ¢(x®), k=1,2,...,N. (2.28)

Thus the problem of imate i ion reduces to construction of cubature
formulae exact for polynomials of degree m. The cubature formulae arising iu this
way are often called formulae of interpolatory type.

Let P" be the vector space of all polynomials in r variables, and P2, be a subspace
of P with all polynomials of degree at most m. A cubature formula Iy for an integral
1 has degree m if [14]

In(p)=1(p), VpeF;, (2:29)
and

3¢ € P, such that Iy(g) # I(g) (2.30)

i.e. the integer m is the order of a cubature formula 2.23 if it is exact for a polynomial
of degree m and not exact for a polynomial of degree m + 1. Because P is a vector

space , the conditions 2.29 and 2.30 are equivalent to

In) =I(p;), j=12,..., dim P} (2.31)

19

where p; form a basis for PJ; . If the basis and the number of nodes N are fixed, then

conditions 2.31 form a system of nonlinear equations
N
Seap(xP) =I@;), j=1,2,..., dim P5. (2.32)
i=1

Each equation in 2.32 is a polynomial equation. Each node introduces n+1 unknowns:
the weight and the n coordinates of the node. A cubature formula of degree m with N

nodes is determined by a system of dim P2 nonlinear equations in N (n+1) unknowns.

2.4 Rotation invariant cubature formulae

If the integration domain admits a sufficiently simple finite group of transformations
to itself, the calculation of the nodes and weights of a cubature formula invariant

under this transformation group maybe very economical [15]

Definition 2.1 Let G be a rotation group in R" consisting of the clements
G1, 92,9y where g is the order of G. All points of the shape gix™™), x*¥) € R* |

make a G—orbil of the point x(*).

Definition 2.2 A set Q € R" is said to be invariant with respect to a group G if

9(Q) = Q for all g € G. An invariant pol L of G is a polynomial p which is left

unchanged by every transformation in G. The vector space of all invariant polynomials
0f G is denoted by P.(G) and the subspace of P, (G) with only the polynomials of degree

< m is denoted by P2(G) .

Definition 2.3 A cubature formula is said to be invariant with respect to a group G,

or simply G—invariant, if the integration domain Q is invariant under G and the set.

20

of nodes x®) is the union of G—orbits, and the nodes of the sume orbit have the same

weight.

Sobolev’s theorem

Let the cubature formula Iy be G-invariant, then Ly has degree m if
1) = In(p) ,¥p € Pr(G)

and

Sg€ P, such that I(g) # In(g)

Sobolev’s theorem suggests that we look for invariant cubature formulae, that is,

solutions of the equations

In(p;

=Ip), §=1,2,..., dim PA(@) (2.33)

where p; form a basis for P7(G). Thus the number of linearly independent polyno-
mials for which the cubature formula must be exact cquals dim P7(G) which is less
than dim P7. In this way the problem of determining the nodes and weights of the
formula becomes much simpler.

It is convenient to view a rotation group as a group of transformations of the unit

sphere S, of R™ into itself [15]. For n > 3 there are finite rotation groups of regular

polyhedra. The group that corresponds to an n-dimensional N-hedron is denoted
by GY. For n = 3 we have the following nonequivalent finite rotation groups of the

sphere S; which keep invariant some regular polyhedron: the tetrahedral group G4,

21

the octahedral group G§ and the icosahedra group G2. From now, the subscript 3
will be dropped. The group G* can be generated from the group G by adding the
reflection transformations to the group G. The reflection transformation assigns to a

point of the unit sphere with coordinates 0, ¢ the point 6;, ¢y with
fi=n-0 and g =m1+0

Lemma
Each polynomial p(z) invariant under the octahedral group with reflection (G2°)*

is uniquely representable as a polynomial in oy,0y,...,0, where 01,03,...,0, are

symmetric functions given by [15]

. (2.34)

2_ 2,2
On” = T1" T2

(235)

2.5 Rotation invariant cubature formula on the
sphere in R?

This section describes, briefly, Lebedev's scheme [16,17,18] for the integration over
the surface of a sphere. Let S be a unit sphere of R* , § = {(z,y,2) : 2%+¢*+2% = 1}.

‘We can construct a cubature formula

1) = [f@0,2)d5 = In(s) (2.36)

so that it is G®"-invariant. Let H be the octahedron inscribed in the sphere and whose

rotations generate G®°. Let its vertices be on the coordinate axes and given by:

(2.37)

in the spherical coordinates (6, ¢). A sought cubature formula takes the form

o 1 s
N = AY f@)+ 4y f@®) + 45y f(a)
b=t = =
Ny 24 Ny 24 Ny 48
+ 3B Y f6P) + S O Y f@®) + Y. DY f(d®) (2.38)
Pt == il =

which exactly integrates all linear combinations of spherical harmonics up to and
including order m. The number of points N;, i = 1,2,3 is chosen so that the total
number of unknowns in the system obtained is equal to the number of equations. The
projections of the points a;(), 0%, a;®, 5,¥) and ¢;*) onto H are at the vertices,
the mid-points of the edges, the centers of the faces, and on the bisectors and edges
of the faces of #, respectively. The points d,*) are nodes of general position. A face

of # is illustrated in Fig. 2.3
The nodes a,), 5%, ;®, &%) € § have the following coordinates:
o™ 1 (0,0, £1),(0, +1, 0), (£1, 0, 0)
G & Y 0 0)) R, 02 (0,072, g
a,('“ . (i:’fuz’ 13"/2: +3 1/2)

B (il i,), (el g,), (g £,)

w

Figure 2.3: One of the eight faces of the octahedron

a® o (i, %ar, 0), (Epk, 0, £a4), (0, %Pk £ax), (£as, 0, £p2)

d® (&g, ug,), (e, g, 2uy), (Fug, £y, 2wy),

(ux, Fwp, £r), (Fwn, Fug, 2ri), (Fw, £re, Fug)
22 +ml=1 (2.39)
nl+al=1 (2.40)
According to Sobolev’s theorem it is sufficient to require the quadrature be exact only

for polynomials invariant with respect to G®°, and using the fact that all polynomials
invariant with respect to G®* may be expressed on S as a polynomial in

m =2y +222+9y?? and o3 =7%PP (2.41)
where

a=2+yP+2=1 (2.42)

Lebedev was able to find cubature formulae up to the order 53 [18]. Figure 2.4 shows
the nodes of the quadrature of order 53.

Figure 2.4: Nodes of quadrature of order 53, from Ref. 18
The quality of the quadrature is given by,

2
n= ("‘—;I'vl)- (2.43)

25

where (m + 1)* is the total number of integrable spherical harmonics up to and in-
cluding order m, and N is the number of nodes in the quadrature with non-zero

weights. For quadratures with a minimum number of nodes, — 1 as m — oo

Chapter 3

Molecular numerical integration

Three-dimensional integrals of the type
I /F(r) ar (31)

where the integrand F(r) extends over the molecular space, occur frequently in the
caleulations of the electronic structure of molecules. The presence of a cusp sin-
gularity at each nucleus makes the problem of numerical integration quite difficult.
Two different approaches were developed to deal with this problem. The first one
[19,20,21] divides the molecular space into discrete Voronoi polyhedra, while the sec-
ond [5,22,23] uses nuclear weight functions. In both cases the integral is approximated
by a weighted sum of the values of the integrand at a set of Ngi4 abscissae r. The
set of the Ng,iq abscissae with their associated integration weights constitute a three-

dimensional grid. Another innovative way to deal with this problem is the work of

Bader and co-workers [24,25,26]. Bader has defined atomic fragments in molecular
systems on the basis of the topology of the total electron density. An ingenious
numerical technique has been devised for integration within these fragments [25]

Section 3.1 follows closely the work of F. Kénig and co-workers. Section 3.2 presents

26

27

a brief review of the basic ideas of the numerical integration over discrete Voronoi
polyhedra. Section 3.3 introduces a review of the popular Becke method which adopts

the weight function method.

3.1 Atoms in molecules

Bader proposed a theory of molecular structure called quantum topology [24]. Ac-
cording to this theorem the definition of an atom is based on a partitioning of real
space where an open region of the three-dimensional space can be assigned to a sub-
system. A subsystem is defined in terms of a property of the charge distribution .

For a given nuclear configuration (Ry, Ra,. .., Ra) where (Rq, Ra, ..., Rar) are the
coordinates of the M nuclei, the topological properties of p are mapped onto the
associated gradient field V. This vector field is exhibited via its trajectories in real
space, which are called the gradient paths. A gradient path g(r,,) through a given

point rp, € R¥ is thus defined by

o(em) = {x(s) € B : "fi—(:) —Vple(s), X), s € R K(0) =1} (32)

and is orthogonal to a contour of p(r, X) at any of its points. p(r, X) describes the
probability density of finding any electron at the point r and the nuclei in the config-
uration X. An attractor of a vector field V over R® is, by definition, a closed subset
G € I®, which:

(1) is invariant with respect to the flow of V; i.e., any trajectory of V that contains
a point of G is wholly contained in G;

(2) contains all trajectories originating in G;

(3) is contained in some open subset B € K%, such that any trajectory originating in

28

B has its terminus in G. The maximal neighborhood Byg, of G satisfying require-

ment(3

called the basin of the attractor. The only closed subsets of R® exhibiting

the previous properties with respect to Vp are the singletons determined by the local
maxima in the charge distribution. Thus the nuclei act as the attractors of the gradi-
ent vector field derived from the charge distribution. A result of this identification is
that the space of the molecular charge distribution is partitioned into disjoint regions,
the basins, each of which contains one point attractor or nucleus. An atom, free or
bound, is defined as the union of an attractor and its associated basin.

Another way of defining an atom is to define it in terms of its boundary. The
regions encompassing the atoms are delimited by surfaces S that satisfy the zero-flux

condition:

vres (33)

where n is the unit vector normal to the surface at r. According to Bader [24], any
atomic property I is the average over the atomic basin of an effective single-particle

density f(r). Thus the value of the property F for an atom i is

Fi)= [fyds (3.4)

where (), is the volume of the atom i. The integration in the last equation is extremely
complicated due to the fact that the atomic surface which bounds the region € does

not in general have a local definition. The i ion method developed by F. Konig

et al. [23] avoids the direct determination of the atomic surface by implementing the
definition of an atom as the union of an attractor and its basin. By integrating along
the trajectories of Vp(r) which terminate at a given mucleus, the basin of an atom is

necessa

ily covered and because of the zero-flux surface condition it is impossible to

29

cross an interatomic surface into the basin of a neighbouring atom. As an illustration
of his method, Kénig calculated the electron population of an atom i by integrating

the density over the volume Q;

(3.5)

for the molecules LiF, CO, BeH, BeH,, Table 3.1. The primary applications of
Bader’s formalism are theoretical. However, the numerical integration technique can

be adopted for general purpose integration.

Table 3.1: Electron population, using Kénig algorithm (Ref, 25)

Molecule Atom N(Q)
LiF Li 2.0630
2 9.9370
Total 12.0000
exact 12,0000
co C 4.6544
() 9.3459
Total 14.0003
exact 14.0000
BeH H 1.8677
Be 3.1321
Total 4.9998

exact 5.0000

30
3.2 Molecular integration using discrete polyhedra

The Voronoi polyhedron around a nucleus maybe defined as the minimum volume
bounded by the planes that orthogonally bisect the line segment joining the nucleus
with all other nuclei [21]. It contains all points closer to that nucleus than to any other
one. Voronoi polyhedra of different atoms are non-overlapping and the conjunction of
them fills all the space exactly. For a particular polyhedron, the origin of the (local)

coordinate system is chosen at the atom and an atomic sphere is introduced inside the

poly . Thus the i ion is 1 into one over the sphere and one over
the remaining part of the polyhedron. The latter is split into a sum of (truncated)
pyramids, each having its top at the atom and its base is one of the faces of the

polyhedron [19]:

NI L Ry >" LR

The integration over the atomic sphere is carried by separating the variables and

using the product form

/spm Flr)dr = /;Ry(r') dr @7

sl /upmmn surface Eg)dn @8

The spherical surface maybe treated with a product formula, therefore reducing it to

the one-dimensional case

[F@a0= []‘ deost [" F (6, 6) do. (3.9)

31

It proves to be advantageous to use the special formulae of Lebedev for the integration
over the sphere [16,17,18]. The radial integral can be evaluated by one of the Gaussian
quadratures, such as the Legendre scheme. For the pyramids a threefold product
formula is used. The pyramid base is a polygon and may have any number of vertices.

Product formulac of quadrangles and triangles are well known. So a polygon with

any number of vertices can be repeatedly split into until a
or a triangle remains. A final further splitting in subregions is performed, writing the
pyramid as a sum of pyramids with each a quadrangular (or triangular) base. In a
very sophisticated way G.te Velde and Bacrends were able to perform the integration

over the pyramids.

3.3 Nuclear weight function methods:
Becke’s method

In this class of methods, the molecular integration is broken down into atomic

on-
tributions by means of a set of N, weight functions w;(r), i = 1,2,..., N,, also called
partition functions, where N, is the number of atoms in the molecule. That is the
partition functions w; decompose the three-dimensional integral into a series of atomic
like integrals, which are much easier to handle. There is a variety of molecular parti-
tion schemes in the literature [5,22,23]. The following is an outline of the molecular
partition scheme proposed by Becke [5]

The molecular function F(r), r € R, which has to be numerically integrated, is

partitioned into atomic contributions Fj(r),

(3.10)

32

where, the summation is over the number of atoms, N,. The atomic contributions

F(r) at each grid point r are defined by the normalized atomic weight functions w(r)

Fr) = w(r) F(x) (3.11)
The molecular integral
= / F(r)dr (3.12)
can be written as
e »
I:Z/E(r)drr Sk (3.13)
= =

which is a sum over the atomic integrals ;. The molecule is partitioned based on the
definition of the atomic weight function which depends only on the atomic coordinates.

The partition function w;(r) is required to fullfill:
o wi(r) >0
o ¥ w,(r) =1 at any point r in the space.

o Every w;(r) is zero or almost zero in the vicinity of all the nuclei of the molecule,

except in the vicinity of the i* nuclens, where it should be almost unity.

The regions in which the partition function is close to zero should be large enough to
extinguish the big values of the density at nuclear positions.

To generate w;, Becke started by partitioning the molecular space into the conven-
tional Voronoi polyhedra such that each nucleus is enclosed in one of these polyhedra.
At every grid point, r, confocal elliptical coordinates between all pairs of atoms, see

Figure 3.1, are defined as

pig=(ri—rj)/Byj —1<p; <1 (3.14)

i %

Figure 3.1: Two nuclei i, j in the molecular space, where r is a grid point, r; and r;
are the distances to the nuclei i and j, and Rj; is the internuclear distance.

and Becke defined the Voronoi polyhedron on nucleus i by the product

wi(r) =T s(us) (3.15)
#
w(r) is called a ‘cell function’ and has value unity if r lies inside the cell, and zero if

r lies outside. s(u;) is a step function given by

1 -1<m;<0
() =
0 O<py<+l
Then Becke ‘softened’ the discontinuity at x; = 0, the mid-point between atoms
i and j such that the w;(r) are now fuzzy, il
cells. A cubic polynomial,

and analytically

34

3 i
hipg) = 505 =5 (3.16)
is designed with the property that
h1)=1, h(-1)=-1, (3.17)
K(1)=0, K(-1)=0 (3.18)

where A’ is the first derivative of h. This polynomial varies smoothly between the end

points —1 and +1, but it is not sharp enough. Thus, h(u;) is iterated three times,
glpis) = h{h A} (3.19)
s(pig) is defined in terms of g(ju;;) as

(3.20)

Becke has reported that the cell function becomes too "step function like”, when
employing more than three iterations and leads to numerical instabilities. With one
or two iterations the cell function becomes too soft and does not properly extinguish
the nuclear cusp nearby the nuclei, Figure 3.2. Other authors have also recommended

only three iterations.

The normalized weight functions entering the actual quadrature is given by

wi(r)

Wi(r) = (3.21)

1.0
2
08
0.6
s
04
02
0.0
-1.0 06 02 02 0.6 1.0 °
g

Figure 3.2: The step function for iterations 1 to 5, the 3 iteration case is given by
Eq. 3.19
where the ion over j in the dt i includes all nuclei in the system.

In the scheme given so far, the space is divided equally between two atoms. Becke

recognized that it is important to have regions of different sizes around each atom.
Therefore, Becke introduced a change of variable

v = i+ aig (1= i) (3:22)
...
A=A (3.23)
i G
= x+1 (329

= (3.25)

36

where 1, denotes the Bragg-Slater radius of atom number i . The partitioning of
molecular integrals into atomic contributions solves the problem of near singularities
at nuclear locations which are in general at arbitrary positions in space. But the price
to be paid is appreciable. Since the partition function w; must switch rather rapidly
from 1 t0 0 in (or near) the middle of the bond, the atomic contributions F, F; = u;F'

(F is the function to be 1), show iderably more ced variations

in these areas of space than the density itself.

3.4 Atomic integration

While the partition scheme proposed by Becke is general and is used by most of

the scientific community, the single center integrals can be carried out in different

ways, hoping to achieve the best efficiency possible. Becke [5] used the following
algorithm. Each single-center integral ; in equation 3.13 can be written in spherical

polar coordinates as
% i
/ﬂ /; /G Fy(r,0,8)r” sinfdr d dé. (3.26)

It is easy to rearrange the above triple integral into successive one- and two-
dimensional integrals. In general, the integration of a one-dimensional function [;(z)

can be numerically approximated by

[ﬂ (z)dz = zu' Iz;) (3.27)

There are many radial quadrature schemes proposed in the literature to integrate

TI;(x) numerically. Becke prefers the transformed Gauss-Chebyshev quadrature (GC)

37

sac and

of the second kind [L1]. This quadrature has the advantage that the absci
the weights are simple closed form expressions. Following [27,28] the abscissae 2; and

the weights w; are defined by

V4+1—2j
N+1

6

1
5= s o

3.29
+1) (329
This quadrature rule generates a sot of abscissac in the interval [1,1]. Thus the
abscissae have to be mapped into 0 < r; < co. Becke [5] suggested the transformation

T4

T‘:R14y

(3.30)

where I is a parameter corresponding to the midpoint of the integration interval at
& = 0. R was chosen as half of the Bragg-Slater radius of the respective atom, except
for hydrogen where the factor 1/2 was not applied. For ligand atoms or atoms in
linear coordination, Becke assigned 20 radial points for the hydrogen atom and an
additional five points for each additional atomic shell. For central atoms in polyatomic
molecules, an extra 10 radial points are added. For each radial shell an angular grid

has to be established. The octahedra grids developed by Lebedev [16,17,18] are known

to be more efficient than angular product grids.

Chapter 4

Two molecular numerical

integration schemes

Many of the codes developed to deal with molecular integration are based on the Becke
scheme [29,30,31,32,33]. The Becke scheme is easier to use than Velde’s scheme[19]
and much easier than the Bader theory [24,25], although Bader theory provides addi-
tional information about the atomic properties. While these codes agree on the way
to divide the three dimensional molecular space, they choose different quadrature
formulae to evaluate the one- and two-dimensional integrals over the atomic centers.
Lebedev grids is a popular choice for the integration over the atomic surface. Less at-
tractive is the product formula. For the one-dimensional integral, Gauss-Chebyshev
and Euler Maclaurin quadratures are quite competitive. This chapter presents in
some detail two popular Becke-based schemes for molecular numerical integration.
The first is the standard grid, SG-1 grid, proposed by Peter M.W. Gill [20] et al.
and has been incorporated into the Q-chem program. The second was introduced by
Becke in his original paper [5] and later modified by O. Treutler and R. Ahlrichs [31].

These two algorithms have been incorporated into the ab-initio package MUNgauss

38

39

[34]. A variety of molecules of different sizes was used to evaluate the numerical inte-
gration scheme. The results, including the integration of the charge density and CPU

time required are discussed in chapter 6

4.1 The standard grid SG-1

The integral,
(41)

N
- A /0 /0 F(r,0,6) rdr sin0d do (42)

is evaluated by first separating the radial and angular integrations by employing

product quadrature formulac (see Eq. 2.20),

W
I~ Y wl YWl F(ry,0;,6;) (43)
= A

N s the number of the radial points and N is the number of the angular points. w]
and wf? are the radial and angular weights, respectively. The inner sam corresponds
to quadrature on the surface of a sphere. Gill [29] used Lebedev grids of degree
m = 3,9,15,23 which have N = 6,38,86, 194. The remaining problem is to select

w! and r; values, i.e. a quadrature formula of the form

[Frawar ~ S g Gy (4.4)
/ =

is sought, where

G = /:" F(r.0,6) sinfdd d» (5)

Table 4.1: Atomic radii R, in bohr, used in the SG-1 grid (Ref. 29)
atom H He Li Be B (¢]
radius 1.000 0.5882 3.0769 2.0569 1.5385 1.2308

atom N ¢} F Ne Na Mg
radius 1.0256 0.8791 0.7692 0.6838 4.0909 3.1579
atom Al Si P S Cl Ar
radius 2.5714 21687 1.8750 1.6514 1.4754 1.3333

N
G(r:) :Zjlwf F(r;,0;,05). (4.6)

G is assumed to be bounded for r = 0 and to decay at least exponentially for large

7. Gill adopted the Euler Maclaurin scheme [32], where

f = 2RM(NTH BN +1-0)7 4.7)

ro= RANT+1-4)7* (4.8)

and N7 = 50. R is called the atomic radius and corresponds to the maximum of
the radial probability function 477%¢(r)[? of the valence atomic orbital ¢(r) given by
Slater’s rules[35]. The atomic radii R which follow from this definition are given in
Table 4.1 for the atoms H to Ar.

Gill et al. utilized the fact that as a nucleus is approached from the valence region in
a molecule, the electron density becomes more spherically symmetrical and therefore
can be treated by progressively less sophisticated angular grids. In this way N? is
dependent on i, and different Lebedey grids are used on different concentric spheres.

Few angular points are used in the core region and relatively many angular points

Table 4.2: Partitioning parameters used in the SG-1 grid (Ref. 29)

Atom ap g oz

4
H-He 0.2500 0.5000 1.0000 4.5000
Li-Ne 0.1667 0.5000 0.9000 3.5000
Na-Ar 0.1000 0.4000 0.8000 2.5000

are used in the valence region. Given four mumbers {0y, az, s, a5} and an atomic
radins R, the four spheres of radii {ay R, au R, a3R, oy R} partition an atom into five
regions where the fifth region is that between the sphere ayR and the sphere on the
50t radial point, see Figure 4.1. Lebedev grids with 6,38,86,194,86 points were
employed in the five regions respectively. The o values for the atoms from H to Ar
are given in Table 4.2, therefore, the specification of the SG-1 grid for the atoms H

to Ar is complete. SG-1 does not adopt the ‘atomic size adjustments’ proposed by
Becke.

4.2 Treutler—Ahlrichs grids

0. Treutler and R. Ahlrichs [31] developed new grids for three-dimensional molecul

numerical integration. They used the partition functions proposed by Becke, but with
slight modification in the atomic size adjustments. Treutler and Ahlrichs replaced the

parameter x in Eq. 3.25 by

(4.9)

42

sphere number 50

nucleus

It region

Sth region

Figure 4.1: The SG-1 Partitioning of the molecular space.

They recorded that the new definition of y has led to a better performance than
Beckes adjustment. For the radial part of the integration they used Gauss-Chebyshev
quadratures of the first kind (T1) and of the second kind (T2). To map the integration

interval [~1, 1] onto the interval [0, oc] they used four mappings. Table 4.3 gives these

M, and the cor ling Jacobi
M2 is equivalent to Becke’s proposal, Eq. 3.30, where £ replaced R. The scaling
parameter & has first been optimized in isolated atom calculations and the resulting

values have then been checked in molecular calculati The four ings are

normalized to map the center of the « interval onto r = & M1 shows the highest

density of grid points near r = £ and low density near 7 = 0. In M2 (Becke), the grid

43

Table 4.3: The radial ings and the cor ling Jacob
M dar
N e
M2 =gl dr=¢pipds
M3 & dr = 402 gy

- o _ & (laxo)” a-1
M4 r=a+a) i dr 1;.2(T tale+)

points are concentrated near r = 0 and are extended to much larger values than for
ML. Thus it does not project enough points into the chemical bonding region around
7 = & which means a waste of mesh points. M3 combines the advantages of both
mappings M1, M2, i.e. a good representation of the regions r = ¢ and r = 0. M4
is an extension of M3, where an increase of a shifts grid points toward r = 0 and
7 = 00. The best performance is that of the quadrature T2 with the mapping M4 for
= 0.6. For the angular part of the integration Treutler-Ahlrichs used Lebedev grids
of degree m = 5,11,17, 23, 29, 35 which correspond to 14, 50, 110, 194, 302, 434 angular

points respectively. Thus five three-di ional grids with the number of radial points

ranging from 20 to 45 were built and tested. Treutler and Ahlrichs ‘pruned’ their grids
which means using small Lebedev grids in regions near the nucleus. They divided the

molecular space into three regions and used

N, b, A (4.10)

N N
NP=50, form, <i il (4.11)

N el

44

where N is the number of the angular points, N” is the number of the radial points,

and r; are the radial points. For the third region they used:
o N =50, N7 = 20 for grid 1
o N =110, N" = 25 for grid 2
o N% =194, N = 30 for grid 3

o N =302,

= 35 for grid 4

o N =434, N™ = 45 for grid 5
Treutler and Ahlrichs performed numerous calculations using the five grids and reached
the conclusion that grids larger than grid 3 do not lead to improvements in the re-

sults. Therefore, a grid corresponding to N® = 194 and N” = 30 was built along

with SG-1. Chapter 6 presents the results obtained on implementing these two grids.

Chapter 5

Why Fortran 907

Fortran 90 provides superior facilities for dealing with numerical data, and it is the

best Janguage for most appli that are d 1 by mathematical, engineering,

or scientific analysis. Fortran 90’s array-handling capabilities are outstanding. Also,
Fortran 90 provides excellent mechanisms for partitioning large codes into smaller,
more manageable pieces. Furthermore, it supports features that facilitate data hiding

and data abstraction [36].

5.1 Drawbacks of FORTRAN 77

By today’s standards FORTRAN 77 is outmoded. Many other languages have been
developed which allow greater expressiveness and ease of programming. The main

drawbacks have been identified as {37):

e FORTRAN 77 awkward ‘fixed form’ source format. Each line can only be 72
characters long, any text in column 73 is ignored, the first 5 columns are reserved
for line numbers, the 6th column can only be used to indicate a continuation

line, only upper case letters are allowed anywhere in the program, variable

45

46

names can only be 6 characters, no in-line comments are allowed, comments

must be on a line of their own.

Lack of inherent parallelism. FORTRAN 77 has no in-built way of expressing

parallelism.

Lack of dynamic storage. Temporary short-lived arrays can not be created on
the fly. All FORTRAN 77 programs must declare arrays ‘big enough’ for any
future problem size which is very unattractive restriction abscent in the current

popular high-level languages.

® Lack of numeric portability. Problems arise with precision when porting FOR-
TRAN 77 code from one machine to another, this means that the code is un-

portable.

e Lack of user-defined structures. In. FORTRAN 77 user-defined data are not

available as'they are in ADA, C, C++, etc...

o Reliance on unsafe storage and sequence association features. In FORTRAN 77,
global data is only accessible via the open-to-abuse common blocks. The rules

which applied to common blocks are very lax and can lead to terrible mistakes

5.2 Fortran 90: New features

FORTRAN 77 is an essential part of Fortran 90, thus any program that compiles
with the older standard also compiles with the new standard. Roughly speaking,
FORTRAN 77 constitutes two-thirds of Fortran 90 [36]. Thus the main data types
are still integer, real, logical, and character. If and DO statements remain the

basis of most control structures. As indicated by Figure 5.1, some of the new features

of Fortran 90 are simple extensions to FORTRAN 77.

Interface Blocks

‘ Array Operations

[Simple extensions to FORTRAN 77]

FORTRAN 77

Figure 5.1: Major building blocks of Fortran 90

An example is the free source code form which permits:

e Any part of a statement to appear anywhere on a line.

Up to 132 columns per line.

More than one statement per line.

In-line comments are allowed.

Upper and lower case letters are allowed.

longer and more descriptive object names up to 31 characters.

8
o Names can be punctuated by underscores making them more readable.

Also, a new form of type declarations, characterized by the presence of a double
colon (::), makes it possible to specify all attributes of a variable in a single statement.
Fortran 90 supports control structures that make it possible to code lengthy and
complicated programs without using labels, and therefore it is never necessary to use
any form of a go to statement. implicit none statement has been made standard
in Fortran 90. The end do is a widely available extension that becomes standard in

Fortran 90.

5.2.1 Array operations

In Fortran 90 new array operations were introduced which can perform simple array

Some including, +, —, and *, may be used with a pair of

arrays. Also, many Fortran 90 intrinsic functions, such as sqrt. abs. sin. etc... may
be used with an array argument, in which case the function is applied independently
to each element of the array and returns an array result [36]. In Fortran 90 we can
deal with sections of array like A(m,n.k). This section of array runs from m to n in
steps of k, where m, n, and k can take positive or negative values. Another very im-
portant feature of Fortran 90 is the introduction of dynamic storage allocation, which
means storage can be allocated and freed during program execution. An allocatable

array can be declared and allocated as in the following piece of code:

* x-coordinate of the Angular grid points.
double precision, dimension(:), allocatable :: Apointx

integer :: NRpoint ! Number of radial points.

allocate (Apointx(NRpoint*38))

deallocate(Apointx)

First, the keyword allocatable appears in the attribute list of Apointx. The colon
inside the parenthesis following the keyword dimension indicates that Apointx is a
one-dimensional array. The number of colons represents the number of dimensions
of the allocatable array. When the allocate statement is executed, a storage for
NRpoint*38 double precision values will be allocated, and the Apointx subscript
will have been declared to have a lower bound of 1 and an upper bound value of
NRpoint*38. More than one allocatable array maybe allocated with a single allocate

statement like

allocate(Apointx(NRpoint*38), Apointy(NRpoint*38),
Apointz(NRpoint*38))

When storage is no longer needed for an all ble array, ion of

statement will free this storage which is a good programming practice.

5.2.2 Derived types

Derived types and pointers support much more sophisticated data structures than

have traditionally been available in Fortran. A major new feature in Fortran 90 is

its support for data aggregates made up of individual pieces of data that maybe of
different data types. Derived type enables the programmer to group a collection of

related pieces of data under a single name [37). The programmer can refer either to

individual c of the or the as a whole. The programmer
defines the composition of such an aggregate, and in standard Fortran 90, each such
definition is considered as creating a new data type. The components of any of the
programmer-defined data types are of type integer, real, character, and so forth. So
the programmer-defined data types are known as ‘derived types’ while the data types

built into the language are called ‘intrinsic types’. An example of a derived type is:

type :: grid_point

double precision :: x ! x-coordinate of grid_point
double precision :: y ! y-coordinate of grid point
double precision :: z ! z-coordinate of grid_point

end type grid_point

type(grid_point) :: a_point

type(grid_point), dimension(6) :: pointAl
type(grid_point), dimension(24) :: pointB1

pointA1%x = (/0.0D0,0.0D0,0.0D0,0.0D0,Radius,-Radius/)
pointA1%y = (/0.0D0,0.0D0,Radius,-Radius,0.0D0,0.0D0/)
pointA1%z = (/Radius,-Radius,0.0D0,0.0D0,0.0D0,0.0D0/)

The series of statements beginning with type :: grid_point and ending with the
end type statement defines a derived type. The statement grid_point :: a_point
declares a_point to be a variable of type grid_point. Thus, a_point is a compos-

ite object made up of three one ding to the di

another corresponding to the y-coordinate, and a third to the z-coordinate. It is
also possible to declare an array. each of its elements is a derived type. The state-
ment type(grid point), dimension(6) :: pointA1l declares pointAl to be a one-
dimensional array, each of its elements is a derived type grid_point, the next statement
defines the array pointB1 to be an array of the same type. To refer to individual com-
ponents of the derived type, the variable name, pointAl, is followed by the percent
sign (%), followed by the component name x, y , or z. Radius is a variable that is

declared and initiated earlier in the code

5.2.3 Pointers

Conceptually, an ordinary variable contains data, while a pointer rather than contain
data. points to a storage area that does [36]. In Fortran 90, a pointer usually points
to an array of values or to a derived type. A limitation of an ordinary, nonpointer
variable is that it has a fixed association with a specific data object. This limitation
is not shared by a pointer variable. A programmer can dynamically change the as-
sociation of a pointer during the execution so that at one time it is associated with
one data object and later it is associated with another. The following is an example

of pointer declaration:

double precision, dimension(:), pointer ::

double precision, dimension(n), target :: Y

allocate(X (Npoint))

The keyword pointer must always be attribute to the variable which is declared
as a pointer. The presence of the keyword double precision in the declaration of the
pointer X means that it is capable of pointing to any rank one array of type double
precision. Fortran 90 standard requires that in order to be pointed to, a variable
must be given the target attribute. The target must have the same type and rank
as the pointer variable. The n-dimensional array Y is a target that is pointed at by
the pointer X. The statement X => Y associates X to Y. Later in the example. the
association between X and Y is broken and the allocate statement allocates a storage
for a nameless array of Npoint elements. A description of the array is placed in X

and X is associated with, points to, the array.

5.2.4 Modules

Modules are new to Fortran. A module is a program unit whose functionality can
be exploited by another program unit which attaches it via the use statement [37].

Modules eleminate the need for common blocks. A module can contain the following:

o Global object declarations. If global data is required, then objects declared in a

module can be made visible wherever desired by simply attaching the module.

53

o Procedures arations. Proced can be into a module which

will make them visible to any program unit which uses the module.

o Controlled object accessibility. Variables and procedures declarations can have
their visibility controlled by access statements within the module. It is possible

for specified objects to be visible only inside the module.

Modules have a very wide range of applications. They permit separately compiled
program units to share data in a manner that is less error-prone than that provided
by the common blocks. Tn addition, because the module can contain subprograms
as well as data specifications, it thus becomes the basis for important new ways to
partition large programs. Modules can be nsed for global definitions, and to provide
functionality whose internal details are hidden from the user (data hiding). The gen-

eral form of a module program unit is given in the following example.

module type_basis set
« modules needed:

USE molecul D i i

USE constants ! Global constants

implicit none

Data in this module:

integer :: Natoms !The number of atoms in the molecule
type basis_primitives

double precision EXP ! The gaussian exponents

double precision CONTRC ! The contraction coefficients

end type basis_primitives

type basis_set

;;pe(basis,primitives), dimension(:), pointer :: gaussian
;:d type basis_set

;-ONTAINS ! Functions go here

Subroutine NORMALIZE BASIS

end Subroutine NORMALIZE BASIS
+ other subprograms could be defined here.

end Module type_basis_set

The first statement in a module consists of the keyword module followed by the
module name. As a module maybe used by a main program, subroutine subprogram,
and function subprogram, it could be also used by another module. The first part
of the module given in the example is reserved to use the other modules that are
needed by this one. The next part declares the variables of the modules including the

derived types basis_primitives and basis_set. The type.basisset declares a pointer to

the type basis_primitives.

o
&

The source code for all module subprograms is placed between a contains state-
ment and the module’s end statement. The part of the module that remains when
any subprograms it contains and the contains statement is removed is called the
specification part. By default, a module user has access to the names in the speci-
fication part and the names of the subprograms contained in the module. To block
this access, the keyword private can be employed which minimizes the likelihood of

name clashes.

5.2.5 Interface blocks

The interface block permits interfac

s between an external subprogram and its caller

to be more complex than in previous versions of Fortran. Fortran 90 permits an array
argument to carry the number of subscripts allowed for each dimension along with the
beginning address of the array, a function to return an array of values, and subpro-
gram arguments and function results to be pointers [36,38]. These advanced features

represent no particular problems for module and intérnal

But when these feature:

e used with external subprograms, a new mechanism known
as the "interface body” must be employed. An interface body permits the program-
mer explicitly to specify every detail of the interface with an external procedure. For
example, whether it is involved as a subroutine or a function; the number, order and
data types of its arguments; and if it is invoked as a function, the data type of the
result returned. Another important use of the interface block is when there is a need
to define a generic procedure. A generic procedure refers to a set of different proce-

dures with different specific names that all have the same (generic) name [38]. This is

the case when the purpose of a set of procedures is virtually identical. It is diserable

to refer to each of them with the same generic name. The type of the argument is

56

sufficient to identify which of the specific procedures is involved in a given reference.
An interface body is always placed inside an interface block which is a collection of
code starting with the keyword interface and ending with the keyword end inter-
face. An example for a module defining an interface block used in the menu part of

the code is,

module menu_gets

implicit none

interface GET_value

module procedure GET _integer
module procedure GET _integer8
module procedure GET real
module procedure GET logical
module procedure GET string
module procedure GET _title
module procedure GET Ilist
module procedure GET Rlist

end interface

contains

subroutine GET _integer

subroutine GET string

o
S

end MODULE menu.gets

GET _value is the generic name for a generic procedure which returns different data
types integer, real, ...etc, depending on the data type of the argument as specified by
the caller. GET.integer, GET real, ...etc, are the specific names of the procedures
which do the actual work when the generic procedure is called. Their definitions are

contained in the module.

5.3 Numerical Integration Code

To evaluate the numerical integration of the charge density over a molecule, see Fig-

ure 5.2, we need to:
1- Determine the coordinates of the radial points, and consequently the

positions of the spherical grids, and their radial weights.

In the case of the SG-1 grid, Euler-Maclaurin scheme was used:

w{ = 2RN"+ 1PN +1-4)" (5.1)

d

ro = RAN +1-

w s the weight of the point r, R is the atomic radius (as given in Table 4.1), and N
is the number of the radial points. In the case of the grid developed by O. Treutler

and R. Ahlrich, it will be refered as TA grid, Gauss-Chebyshev scheme was applied:

g 12 2
UE TR

-)sm(%.l) (5.3)

(.4)

The points {z;} defined on the interval [~1,1] were mapped onto the interval [0, 0]
using, Md,
£ o 2
r =g lata) e (5.5)
where £, and o are parameters defined in section 4.2.
2- To calculate the coordinates of the points on the concentric spherical
shells and their weights
These points constitute the angular grids and are given by Lebedev’s grids. The
integration of the charge density over the surface of a sphere of radius unity is given

by Eq. 2.38
o o s
() = A Y p(aV)+ 4 Y plai®) + A3 S pla™)
= = =
Ny 24 Ny 24 N3 48
B o) + 3Gy o) + 3D o). (5.6)
== == o
The definitions of the points a;®), b;*), ¢;® and &;* are given in section 2.5. The

subroutine NIM_Gill calls the subroutines Angular_grid1, Angular_grid2, An-
gular_grid3, and Angular_grid4 to build 50 spherical shells around each atom.

59

The subroutine NIM_TA calls the subroutines Angular grid5, Angular grid6,

and Angular_grid4 to build 30 angular grids around each atom of the molecule.

3- To calculate the charge density at each grid point.

From Eq. 1.13 the charge density is given by
p(r) = 3 P; 6i(x) ¢5(x) (5.7)
7

where P; is a density matrix element. ¢;(r) and ¢;(r) are basis functions. Both of

NIM._Gill and NIM_TA use the subroutine get_density to calculate p(r).

4- To obtain the nuclear weight functions w;(r).
The subroutine Beckew implements the algorithm given in section 3.3 to calculate

these functions.

The least number of grid points for a given atom is 3300. Thus, calling the subroutines
get_density and Beckew for each grid point would be expensive. To make the code
more efficient, get_density and Beckew were called only once for the whole set of
grid points of each atom. The following piece of code, from NIM_Gill demonstrates

how this can be achieved:

integer :: tot_Napoint ! Total number of angualr points.
integer = NRpointl | The number of radial points in the first region.
integer 1 JApoint, IApoint ! Any angularpoints, I and J.

integer = jbegn ! The first angular point in any of the five subregions.

integer :: Tend ! The last angular point in any of the subregions.

* The radial points of the first region.

double precision, dimension(:), allocatable :: Radl

+ The radial points of the five regions.

double precision, dimension(:), allocatable :: Rad

+ Three allocatable arrays to hold the x, y, and z coordinates

+ of the angular points in one of the five regions

double precision, dimension(:), allocatable :: ApointX, ApointY, ApointZ

«Angular weight of the points of one of the five regions
double precision, dimension(:), allocatable :: Aweight
+ Three allocatable arrays to hold the x. v, and 7 coordinates

of all of the angular points of the whole atom.

double precision, dimension(:), allocatable :: NApointX, NApointY,

NApointZ
The weight of all of the grid points according to Becke’s definition
double precision, dimension(:), allocatable :: weight

« The charge density of all of the grid points.

double precision, dimension(:), al :: charge
« The angular weight of all of the angular points.

double precision, dimension(:), allocatable :: tot_Aweight

allocate (NApointX (tot NApoint), NApointY (tot NApoint),
NApointZ(tot_NApoint), tot_Aweight(tot_ NApoint))
allocate (ApointX(NRpoint1*6), ApointY (NRpoint1*6),
ApointZ(NRpoint1*6))

allocate (Aweight(NRpoint1*6), Rad1(NRpoint1))

Rad1(1:NRpoint1) = Rad(1:NRpoint1)

call Angular grid1(Rad1, NRpoint1, ApointX, ApointY,

ApointZ, Aweight)

JApoint = 0

jbegn =1

Iend = NRpoint1*6

do TApoint = jbegn,lend

JApoint = JApoint + 1

NApointx(IApoint) = ApointX(JApoint) + CARTESIANS%X (Iatom)
NApointY (TApoint) = ApointY(JApoint) + CARTESIANS%Y (Iatom)
NApointZ(IApoint) = ApointZ(JApoint) + CARTESIANS%Z(Iatom)

tot_Aweight(TApoint) = Aweight(JApoint)

end do

deallocate (ApointX, ApointY, ApointZ, Aweight, Radl)

Both subroutines, NIM_Gill and NIM_TA divide the atomic space into subregions.
Five subregions in the case of SG-1 grid and three subregions in the case of TA grid. In
the above example, which presents the first region from NIM_Gill, the total number
of angular points of any subregion is not known at the beginning of the compiling, and
thus the total number of angular points of the whole of the atom under consideration
is not known. Once the number of angular points for each subregion is calculated,
the arrays ApointX, ApointY, and ApointZ are dynamically allocated to hold the x,
y and 7 coordinates of the angular points of that region. Also, the arrays NApointX,
NApointY and NApointZ are dynamically allocated to hold the x, y, and z coordi-

nates of the total number of angular points for the whole atom. Then NIM_Gill

62

calls the subroutine Angular_grid1 which takes as input the radial points stored
in the array Radl, and Radl’s dimension stored in NRpointl. Angular_grid1 re-
turns the angular points and their angular weight in the arrays ApointX, ApointY,
ApointZ, and Aweight. Angular_gridl assumes that the atom is at the origin of
the coordinate system. To obtain the actual x, y, and z coordinates of the angular

points according to the real spacial position of the atom, the statements:

NApointx(IApoint) = ApointX(JApoint) + CARTESIANSY%X (Iatom)
NApointY (IApoint) = ApointY (JApoint) + CARTESIANS%Y (Iatom)
NApointZ(IApoint) = ApointZ(JApoint) + CARTESIANS%Z(Iatom)

“are executed, where CARTESIANS is a derived type. The x, y, and z coordinates
of an atom are components of this derived type. Also, these three statements store
the angular points of the first subregion in the arrays NApointX, NApointY, and
NApointZ. The last statement in the above example deallocates the arrays ApointX,
ApointY, ApointZ, Aweight, and Radl. The same process is repeated for each one of
the subregions and later the arrays NApointX, NApointY, and NApointZ will hold
all x, v, and z coordinates of all of the angular points of the atom under consideration.

The statements :

allocate (charge(tot_NApoint), weight(tot_ NApoint))

call get_density (NApointX, NApointY, NApointZ, tot NApoint, charge)
call Beckew (NApointX, NApointY, NApointZ, tot_ NApoint, latom,
B_sltr, weight)

allocate the arrays charge, weight dynamically with the size of the total number of

63

angualr points "tot NApoint”, and call the subroutines get_density and Beckew
with the whole set of angular points only once. The variable latom stands for the
atom number I, while B_sltr is an array containing the Bragg-Slater radii of the atoms

Hto Ar.

foop over atoms

‘Total number of
electrons

‘Total number of
clectrons

Figure 5.2: Diagram for the numerical integration of the charge density

loop over atoms

64

Chapter 6

Performance of the numerical

integration code: Numerical results

6.1 Introduction

A set of atoms and molecules ranging in size from He to CjoHyCly was used to test
the performance of the two subroutines NIM_Gill and NIM_TA. The atoms and
molecules were chosen carefully so that they cover a fairly large range of electrons,
from He (2 electrons) to CygHoCl; (104 electrons). Some of the molecules are tran-
sition state structures, while the others are ground state structures. The input file to
integrate the electron density of a molecule, say CCly, is as follows:

molecule ! command for defining a molecule

title="CCl,”

Z-matrix ! command for defining the Z-matrix

CLz C CCL CL1 CLCCL

65

CL3 C CCL CL1 CLCCL CL2 120
CL4 (¢} CCL CL1 CLCCL CL2 -120
end ! Z-matrix

define

CCL = 1.711

CLCCL = tetra

end ! define

end ! molecule

basis name= 6-31G* end

OEP

method = Gill

end

output object=CHARGE_DENSITY:ATOMIC NUMERICAL
end

stop

The input file starts by defining the Z-matrix of CCly. The command OEP informs
the code which grid will be used for numerical integration. In the above example, the

keyword Gill stands for SG-1 grid, the standard grid introduced by P. M. W. Gill

et al. [29]. If the required integration grid is TA grid suggested by O. Treutler and
R Ahlrichs [31], the keyword TA should be used. The result of running the above

input file is an output file which contains the following:

to - D version (May 23, 2001)
Free format Z-Matrix for: CCl4

(¢}
CL1
CL1 CLCCL

Q
™
)
a a Q
Q
Q
ol

CCL CL1 CLCCL CL2 120
Cl4 C CCL CL1 CLCCL CL2 -120
VARIABLES:

CCL = 1.71100000 CLCCL = 109.47122

Atomic electron densities:

atom electron density

1 7.01893437731397

2 16.7761444015232

3 16.7517451354538

4 16.7220571437624

5 16.7244282733172
Total electron density: 73.9933093313705
CPUtime (seconds): 154.4049

In addition, the output file contains information related to the geometry of the
molecule and its energy. The electron density of each atom is printed according
fo its order in the Z-matrix. Total electron density is the total number of electrons
for the molecule, while CPUtime is the total calculation time in seconds.

The rest of this chapter discusses the performance of both SG-1 and TA integration

68

grids in integrating the electron dersity of the test atoms and molecules in terms of
both the accuracy and the efficiency. Accuracy is defined in terms of the error of
the calculated total number of electrons of a molecule against the exact total number
of electrons of that molecule. Another measure of accuracy is the capability of the
integration grid to assign equal atomic electron densities of symmetric atoms. The

efficiency of the integration method is given by the CPU time.

6.2 Total number of electrons

The total number of electrons for a set of molecules containing only hydrogen and
carbon atoms was calculated. These molecules are CHy, CoHg, CoHy, Colls, Cyllyg,
CgHys, CrHig, CyHao, CioHay, CiiHag, CoHug(TS), and CyoHi6(TS), where TS stands
for transition state structure. The rest of the molecules are ground state structure.
Table 6.1 gives the exact number of electrons and the calculated number of electrons
using SG-1 integration grid and TA integration grid for the molecules under consid-
eration. Table 6.1 shows that both grids overestimate the total number of electrons
in ground state structures, except for TA grid in the case of CHy, and underestimate
the total number of electrons in transition state structures.

Figure 6.1 shows the relationship between the exact number of electrons and the error
in the calculated number of electrons for both grids. Both integration grids perform
quite similarly except for the molecules CgHag, CigHao , and Cy3Hay, where TA grid
overestimates the number of electrons more than SG-1 grid. While the error for all of
the molecules is less than 0.1, the error for the molecules in their transition state is
underestimated by as much as 0.5511 (CoHya(TS) (SG-1 grid)), much larger than that
of the molecules in the ground state. This should not be surprising since transition

state structures generally have bond lengths which are longer than in ground state

69

structures. Thus, the electronic charge is distributed over a larger space, and as the
nuclear weight functions decay to zero away from the nuclei, a portion of the electron
density is not accounted for.

Table 6.1: Total number of electrons using SG-1 and TA integration grids for

lecul utaining only C and H atoms

molecule exact SG-1 grid TA grid
CH, 10 10.0007 9.9961

C,H, 14 14.0106 14.0121
CoH 16 16.0087 16.0109
C,Hg 18 18.0062 18.0020
CyHio 34 34.0057 34.0047
CeHyy 50 50.0051 50.0161
CrHyg 58 58.0050 58.0316
CyHyu(TS) 68 67.4489 67.4552
CyHy 74 74.0048 74.0565
Gyl 82 82.0048 82.066

Ci2Hio(TS) 88 87.5130 87.4990
CryHay 20 90.0044 90.0670

Table 6.2 presents the exact number of electrons and the error in the calculated num-
ber of electrons for atoms and molecules containing atoms from the first and second
rows of the periodic table. Figure 6.2, shows the error as a function of the mumber
of the electrons for all molecules from He to CioHiyCly including those containing C
and H atoms only. It shows trends similar to those in Figure 6.1: transition state

structures have larger errors than ground state structures, SG-1 and TA integration

0.1

70

grids have almost the same accuracy but for the molecules CgHag, C1oHas, and Cy; Hyy,
SG-1 grid is more accurate than TA grid.

0.0 4

02

-0.3 A

e

a %0n a]

e o e 56

‘Exact number of electrons

Figure 6.1: The error in the calculated total number of electrons versus the exact
total number of electrons for molecules containing C and H atoms.

7

Table 6.2: Total number of electrons using SG-1 and TA integration grids for

atoms of the first and second rows of the periodic table

molecule exact SG-1 grid TA grid
He 2 2.0000 2.0000

C 6 5.9999 6.0005

Ne 10 9.9990 10.0010
H,0 10 10.0007 9.9995

NHj 10 10.0011 9.9993

Mg 12 12.0000 11.9955
HCN 14 14.0114 14.0088
COH, 16 16.0147 16.0113
CH,NH 16 16.0129 16.0163
Ar 18 18.0000 18.0060
CH;F 18 18.0011 18.0014
CH3NH, 18 18.0068 17.9994
CH;OH 18 18.0079 18.0122
CH;ClL 26 26.0066 26.0071
Cly 34 34.0070 34.0136
CHF3 34 33.9628 33.9603

FCIO, 42 42.0040 42.0070

continued

molecule
CIH,Fy

FCIO;

CIHF,

PF;

SiHC,

ccly
CrHysSin(TS)
CrHyN;0,(TS)
CyoHyoFy

CioHi10Cly

SG-1 grid
46.0313
50.0542
54.0425
60.0174
65.9339
73.9933
83.5428
85.5110
87.6468
103.8275

TA grid
46.0295
50.0520
54.0317
60.0242
65.9258
74.0076
83.5060

87.6506
103.8165

0.1

a a TA
. a !A‘
0.0 4 com®® o 8 o & o e e SGI
e
2
-0.1
-0.2 1 £
-0.3
e
04
%%
05 4 oty
e
-06 T T T T T
0 20 40 60 100
Exact number of electrons

Figure 6.2: The error in the calculated total number of electrons versus the exact

total number of electrons (He to CioH1oCl2)

120

6.3 Atomic electron density

Although, $G-1 and TA integration grids calculate the total mumber of electrons to
a reasonable accuracy, Table 6.3 shows that they fail to calculate reasonable electron
densities belonging to each atom in a molecule. For instance, in a molecule like CHF3,
one would expect the hydrogen atom to be positively charged while the three fluorine
atoms to be negatively charged. However, both SG-1 grid and TA grid predict the
hydrogen atom to be negatively charged, 1.4336 in case of SG-1 grid and 1.0095 in
case of TA grid. SG-1 grid predicts the fluorine atoms to be only "slightly” negatively
charged, 9.1644, 9.1587, 9.1624, while TA grid predicts two of them to be positively
charged, 8.9967, 8.9996. The same analysis applies to the rest of the molecules in

Table 6.3. The failure of TA and SG-1 in assigning sensible electron densities to in-

dividual atoms is a result of the fact that Becke’s scheme divides the molecular space
into fuzzy overlapping Voronoi polyhedra cells. Therefore the boundary of each atom
is not defined and consequently, the number of electrons belonging to each atom is
not accurate. It is interesting that aithough of dividing the molecular space in this
fuzzy way, the electron densities of atoms still add up to the right number of the total

electrons.

Also, since CHF3 has Cs, symmetry, the fluorine atoms should have the same elec-
tron density. Both of the grids violate the symmetry of the molecule, and the fluorine
atoms have different electron densities. Angular grids around symmetric atoms do
not preserve this symmetry. This is illustrated in Figure 6.3. The points ry and ry
in the water molecule are equivalent by symmetry and thus p(ri) = p(rz). But, in
terms of angular grids, point r; corresponds to the point 3, not ry, which may have

different, value for the electron density.

Table 6.3: Atomic electron densities using SG-1 and TA grids

molecule SG-1 TA

Cly

cl 17.0048 17.0080
e 17.0022 17.0055
CH,Cl

@ 4.8474 5.7239
cl 16.7020 17.1599
H1 14857 1.0410
H2 1.4844 1.0396
H3 1.4872 1.0427
CHF,

(o] 5.0438 59512
H 1.4336 1.0095
F1 9.1644 9.0038
F2 9.1587 8.9967
F3 9.1624 8.9996
CIHF,

a 145714 16.4788
HL 1.5874 0.8526
F1 94710 9.1751
F2 94707 9.1747
F3 94714 9.1755

F4 9.4706 9.1749

molecule
FClO3
Cl

F

o1

02

03

SiHCl;
Si

H

Clt
C12
C13

SG-1

14.7507
9.3905
8.6427
8.6327
8.6376

12.6694
9.5055
9.4502
9.5111
9.4404
9.4408

12.9652
1.7401

17.0818
17.0688
17.0779

TA

16.3111
8.9709
8.9709
82513

8.2551

14.5453
9.1419
9.0700
9.1427
9.0600
9.0603

13.6454
1.0783

17.0737
17.0596
17.0687

ClHyF3
Cl
H1
F1
H2
2
F3
C7H;N30,
C1
C5
H1
H5
C2
C4
H2
H4
c3
H3
H6
N7
N8
C6
Cc9
06
09

14.3676
1.5295
9.6704
1.7467
9.3583
9.3589

5.1768
5.4196
1.3307
1.5216
5.3688
5.3489
1.5091
1.4574
5.0778
1.4634
1.5083
7.1763
7.1525
5.6137
5.6408
8.3381
8.3449

16.2919
0.8111
9.4454
0.9409
9.2699
9.2701

5.5964
5.8980
0.9247
1.0514
5.8753
5.8400
1.0148
0.9816
5.8499
1.0041
1.0058
7.1507
7.1266
5.8731
5.9010
8.2531
8.2605

Ni10
H9
H6
N7
N8
C6
Cc9
06
09
N10

Cialis
C1
Cc2
C3
C4
Cs
Cc6

7.0010
0.9174
1.0058
7.1507
7.1266
5.8731
5.9010
8.2531
8.2605
7.0010
0.9174
8.2605
7.0010
0.9174

5.6218
5.9359
6.0723
5.9682
5.8558
5.7653

78

H1
H2
H3
H4
H5A
H5B
H6A
H6B
[org
cs8
c9
C10
Cc1
C12
H7
H8
H9
H10
HIIA
H11B
HI2A
HI13B

1.5176
1.4571
1.4749
1.4804
1.4532
1.4933
5.4555
5.4740
5.5102
5.4800
5.0607
5.0773
1.5214
1.5139
1.4973
1.5084
1.4776
1.4869
1.4836
14778

1.0713
0.9810
1.0406
1.0033
1.0492
1.0501
1.0445
1.0611
5.9564
5.9540
5.9867
5.9862
5.8588
5.8749
1.0416
1.0256
1.0389
1.0583
1.0573
1.0398
1.0567
1.0434

79

CroHioFa
Ct
Cc2
C3
C4
C5
C6
cT
c8
c9
C10

H2
H3
H4l

F42

H6
F71

H8
H9
H10

5.2696
5.4599
5.5228
5.3319
5.4836
5.4891
5.3692
5.4391
5.5261
5.4896
1.4584
1.4550
1.4743
14714
9.2916
1.4669
1.4720
9.2853
1.4718
1.4898
1.4648
1.4645

5.7062
5.9226
6.0003
5.9229
5.9435
5.9643
5.9742

5.9063

5.9663
1.0086
1.0089
1.0216
1.0222
9.1242
1.0110
1.0024
9.1114
1.0119
1.0229
1.0061
0.9971

80

molecule
C7Hy4Siy
C1
Cc2
H1
H2
Cc3
C4
H3
H4
H5
H6

c6
cr
H7
H8
Si1
Si2
H9
H10
Hi11l
H12
H13

SG-1

5.1959
5.4801
1.4927
1.4007
4.9979
5.0962
1.4558
1.4969
1.5011
1.4626
5.4773
5.5148
6.5791
1.5305
1.5222
11.7603
11.7626
1.6338
1.6195
1.6300
1.6323

1.6439

TA

6.3126
1.0327
1.0254
13.4858
13.4703
1.1398
1.1389
1.1357
1.1208

1.1265

CyHyy(TS)

HoC
HID
H10B
H10C
H10D

5.1780
5.4611
1.3793
1.5557
4.9880
4.9954
1.4608
1.4594
1.4961
1.5001
5.4951
5.4817
5.8779
1.4801
1.5132
4.7060
4.6890
1.4592
1.4666
1.4464
1.4564
1.4599

1.4427

5.6313
5.9724
0.9707
1.0836
5.8066
5.8174
1.0411
1.0392
1.0273
1.0300
6.0018
5.9968
6.1081
1.0060
1.0321
5.7666
5.7646
1.0659
1.0601
1.0570
1.0569
1.0659
1.0529

83

Figure 6.3: The symmetry problem illustrated in H,O molecule
6.4 Efficiency: CPU timing

In this section CPU time is used as a criterion to compare the efficiency of both the
SG-1 and TA integration grids. The following piece of code calculates the CPU time:

call CPU_time(tbegin)

call CPU._time(tend)
tcpu = tend - thegin

The function CPU._time (Fortran 95 intrinsic function) was called at the beginning
of both grids and the initial time of execution was stored in the variable tbegin. At
the end of both grids the CPU time function was called again and the final time was
stored in the variable tend. The variable tcpu contains the time of execution of
the individual grid which also includes the time required to perform the SCF (self
consistent field). The CPU time calculated in this way is still reliable in comparing
the efficiency of both grids, since SCF time is independent of the integration grid for

84

the same molecule. Table 6.4 presents the CPU time for both grids for all the test
molecules. From Table 6.4, it is clear that the CPU time for TA is always smaller than
CPU time for SG-1 except for C4Hlg, and PFy, where, the CPU time is almost, the
same. Thus, TA integration grid is, in general, more efficient than SG-1 integration

grid,

Table 6.4: Total CPU time using SG-1 and TA (seconds)

molecule
CH3CL
CHF3
CIH2F3
CIHF4
FCI03
CyHyp
SiHCI3
PFs
CeHig
C7Hyg
CoHag
C7H;N30,
CroHa
CoHyy
CoHyy
CroHgFy
C7Hy4Sip
CiiHay
CioHyg

SG-1
44.0
63.1
82.8
107.4
113.1
119.1
128.1
156.3
351.3
541.2
1098.6
1469.4

TA
373
33.6
704
90.3
94.6
121.8
108.0
1573
307.2
464.4
947.7
1243.9
1321.4
1336.7
1341.4
1706.3
1669.3
1748.8
2612.8

Chapter 7

Conclusions and future work

7.1 Conclusions

The two three-dimensional integration grids SG-1 and TA have almost the same
accuracy except for the molecules CiHas and CyiHyy where SG-1 grid is superior to
TA grid. However, TA grid is more efficient than the SG-1 grid in terms of CPU

time for almost all of the molecules. For transition state structures, the error in the

integration of the electron density is, in general, much larger than in ground state
structure which could lead to a serious error if these integration techniques are used
in DFT energy calculations. Any numerical integration algorithm based on Becke’s
scheme to calculate the electron densities of individual atoms is seriously inaccurate.

So far, Bader’s theory is is still the only reliable method for caleulating meaningful

atomic electron densities.

86

87
7.2 Future Work

One of the interesting problems that could be pursued is to solve the symmetry
problem. A possible solution to this problem could be to associate a coordinate
system with each atom instead of a single coordinate system for the whole molecule.
The atomic coordinate system would have to reflect the environment the atom is in
In this way, atoms equivalent by symmetry would have the same local coordinates
and thercfore the same integration grid.

Another interesting problem is to use this code to calculate the energy using DFT

and investigate the effect of the quality of the numerical integration technique on the

energy calculations espicially the ones in ground state structures versus transition

state structures.

Bibliography

[1] P. Hohenberg and W. Kohn, Phys.Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham. Phys.Rev., 140, A1133 (1965).

[3] B. G. Johnson. in Modern Density Functional Theory: A Tool for Chemastry,
edited by J. M. Seminario and P. Politzer p. 169 (ELSEVIER, 1995)

{4] P. G. Mezey. Mol. Phys., 96, 169-78 (1999)
[5] A. D. Becke. J. Chem. Phys., 88, 2547 (1988)

[6] Modern Quantum Chemistry: Introduction to advanced Electronic structure

Theory, A. Szabo and N. S. Ostlund (McGraw-Hill, 1989)

[7] P. D. Walker and P. G. Mezey. J. Am. Chem. Soc., Vol. 115, No. 26 (1993)
p- 12423-12430

[8] P. D. Walker and P. G. Mezey. J. Am. Chem. Soc., Vol. 116, No. 26 (1994)
p. 12022-12032

[9] R. Cools. Acta Numerica, Vol. 6 1997 p. 1
[10] G. Evans. Practical Numerical Integration , Wiley, (1993)

88

BIBLIOGRAPHY 89

[11] A. H. Stroud. Approsimate Caleulation of Multiple Integrals, Prentice-Hall,
(1971).

[12] P. J. Davis and Philip Rabinowitz. Methods of Numerical ion, Academic
Press, (1984).

[13] H. V. Smith. Numerical Methods of Integration, Chartwell-Bratt, (1993)

[14] R. Cools. Numerical Integration Recent Devel Software and Applica-
tions, edited by Terje O. Espelid and Alan Genz. NATO ASI Series, Vol. 357,
1-24 (1991).

[15] S. L. Sobolev and V. L. Vaskevich. The Theory of Cubature Formulae, Kluwer
Academic Publishers, (1997).

[16] V. 1. Lebedev. Zh. Vychisl. Mat Mat. Fiz., 15, 1, 48-54 (1975).
[17] V. 1. Lebedev. Zh. Vychisl. Mat Mat. Fiz., 16, 2, 293-306 (1976).

[18] V. I Lebedev and A. L. Skorokhodov. Russ. Acad. Sci. Dokl. Math., Vol. 45,
No.3, 587 (1992).

[19) G. te Velde and E. J. Bacrends. J. Comput. Phys. , 99, 84 (1992)

[20] M. R. Pederson and Koblar A. Jackson. Phys. Rev. B, Vol. 41, No. 11, 7453
(1990).

[21] F. W. Averill and G. S. Painter. Phys. Rev. B, Vol. 39, No. 12, 8115 (1989).

[22] R. Eric Stratmann, Gustavo E. Scuseria, Michael J. Frisch, Chem. Phys. Lett.,
257, 213-223 (1996).

[23] B. Delley, J. Chem. Phys., 92(1), 508 (1990).

BIBLIOGRAPHY 90
[24] R. F. Bader and Nguyen-Dang, T. T., Adv. Quantum Chem., 14, 63, (1981).

[25] F. W. Biegler-Koening, Nguyen-Dang, T. T., Y. Tal, R. F. Bader, and A. J.
Duke, J. Phys. B 14, 2739 (1981).

[26] R. F. Bader, in Encyclopedia of Computational Chemistry, Vol. 1, 64, (1996)

[27] J. M. Pérez-Jordd, E. San-Fabidn and F. Moscardé Comput. Phys. Comm., 70,

271-284 (1992).

(28] J. M. Pérez-Jorda, A. D. Becke, E. San-Fabidn. J. Chem. Phys., 100(9), 6520
(1994).

[29] P. M. w. Gill, B. G. Johnson, J. A. Pople. Chem. Phys. Let.. Vol. 209, No. 5,
506 (1993).

[30] M. Krack and M. Koester. J. Chem. Phys., Vol. 108, No. 8. 3226 (1998).
[31] O. Treutler and R. Ahlrichs. J. Chem. Phys., Vol. 102, No. 1, 346 (1995).

[32] C. W. Murray, N. C. Handy, and G. J. Laming. Mol. Phys., Vol. 78, No. 4, 997
(1993).

[33] M. E. Mura and P. J. Knowles. J. Chem. Phys., Vol. 104, No. 24, 9848 (1996).

[34] R. A. Poirier, MUNganss 1.0 (Fortran 90 version). Chemistry Dept., Memorial
University of Newfoundland, St. John’s, NF, 2001. with contributions from
S. Bungay , A. El-Sherbiny, T. Gosse, D. Keefe, C. C. Pye, D. Reid,
M. Shaw, Y. Wang, and J. Xidos.

[35] J. C. Slater. Phys. Rev., Vol. 36, No. 57, (1930).

[36] C. Redwine. Upgrading to Fortran 90, Springer-Verlag (1995).

BIBLIOGRAPHY 91

[37] A. C. Marshall. HPF Programming Course Notes, University of Liverpool
(1997).

[38] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener.
FORTRAN 95 HANDBOOK Complete ISO/ANSI reference, MIT press (1997).

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0005_Blank Page
	0006_Copyright Information
	0008_Title Page
	0009_Dedication
	0010_Abstract
	0011_Acknowledgements
	0012_Table of Contents
	0013_Table of Contents vi
	0014_Table of Contents vii
	0015_List of Tables
	0016_List of Figures
	0017_List of Figures x
	0018_Glossary of Terms and Symbols
	0019_Chapter 1 - Page 1
	0020_Page 2
	0021_Page 3
	0022_Page 4
	0023_Page 5
	0024_Page 6
	0025_Page 7
	0026_Page 8
	0027_Chapter 2 - Page 9
	0028_Page 10
	0029_Page 11
	0030_Page 12
	0031_Page 13
	0032_Page 14
	0033_Page 15
	0034_Page 16
	0035_Page 17
	0036_Page 18
	0037_Page 19
	0038_Page 20
	0039_Page 21
	0040_Page 22
	0041_Page 23
	0042_Page 24
	0043_Page 25
	0044_Chapter 3 - Page 26
	0045_Page 27
	0046_Page 28
	0047_Page 29
	0048_Page 30
	0049_Page 31
	0050_Page 32
	0051_Page 33
	0052_Page 34
	0053_Page 35
	0054_Page 36
	0055_Page 37
	0056_Chapter 4 - Page 38
	0057_Page 39
	0058_Page 40
	0059_Page 41
	0060_Page 42
	0061_Page 43
	0062_Page 44
	0063_Chapter 5 - Page 45
	0064_Page 46
	0065_Page 47
	0066_Page 48
	0067_Page 49
	0068_Page 50
	0069_Page 51
	0070_Page 52
	0071_Page 53
	0072_Page 54
	0073_Page 55
	0074_Page 56
	0075_Page 57
	0076_Page 58
	0077_Page 59
	0078_Page 60
	0079_Page 61
	0080_Page 62
	0081_Page 63
	0082_Page 64
	0083_Chapter 6 - Page 65
	0084_Page 66
	0085_Page 67
	0086_Page 68
	0087_Page 69
	0088_Page 70
	0089_Page 71
	0090_Page 72
	0091_Page 73
	0092_Page 74
	0093_Page 75
	0094_Page 76
	0095_Page 77
	0096_Page 78
	0097_Page 79
	0098_Page 80
	0099_Page 81
	0100_Page 82
	0101_Page 83
	0102_Page 84
	0103_Page 85
	0104_Chapter 7 - Page 86
	0105_Page 87
	0106_Bibliography
	0107_Page 89
	0108_Page 90
	0109_Page 91
	0110_Blank Page
	0111_Inside Back Cover
	0112_Back Cover

