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Abstract 

 

This study was conducted to explore the possibility of predicting soil moisture content (SMC) in 

podzolic soils in western Newfoundland using multi-coil (MC) and multi-frequency (MF) 

electromagnetic induction (EMI) sensors. Two studies were conducted to assess the effectiveness of 

apparent electrical conductivity (ECa) from both MC and MF EMI sensors in characterizing SMC. 

The first study focused on employing MF-EMI in characterizing SMC under three different land uses 

in western Newfoundland’s podzolic soils. The second study assessed effectiveness of ECa obtained 

from the MC and MF-EMI sensors to maximize the representation of SMC taking into consideration 

organic matter, bulk density and texture using a statistical and geostatistical analysis. Geostatistical 

analysis from the first study revealed that cokriging of SMC with densely collected ECa provided an 

improved characterization accuracy of soil moisture variability across the different land use 

conditions. The second study found that multiple linear regression (MLR) models were effective in 

representing SMC variations. Additionally, MC-EMI sensors provided better predictions of SMC 

than MF-EMI sensors. The findings from this study demonstrate that EMI has the potential to provide 

an accurate and robust technique for predicting soil moisture in boreal podzolic soils. Furthermore, 

it is worth noting that the surveys were performed during the wet period, given that MF–EMI is more 

reliable for ECa variability in wet soils than in dry soils. 
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General summary 

 

This study examined the spatial variability of geo-referenced electrical conductivity of the soil (ECa) 

measurements, as a potential tool for characterizing soil properties under different land use 

conditions. MC and MF EMI sensors were used to analyze podzolic soils, and two kriging 

interpolation techniques were employed to estimate the accuracy of ECa as an auxiliary variable in 

predicting SMC under different land use conditions. The results showed that the ECa and SMC were 

significantly distinct between the natural forest and managed agricultural lands. MC-EMI sensors 

were more precise than MF-EMI sensors for SMC prediction, and cokriging with ECa as the covariate 

outperformed ordinary kriging in representing the spatial variation of SMC. This study demonstrates 

the applicability of georeferenced EMI in accurately representing SMC in boreal podzolic soils in an 

eco-friendly manner. It also reinforces the ongoing effort of converting natural forests into managed 

agricultural lands for increasing agricultural production. 
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CHAPTER ONE: Introduction 

1.1 Background and rationale  

Agriculture in the Boreal region is perceived as low intensity, marginal, and insufficient to satisfy 

the local community's needs. However, this region possesses an unexploited ability to contribute 

to the global food system by increasing the local food supply (Unc et al. 2021). Considering this, 

the provincial government of Newfoundland and Labrador (NL) has outlined plans to convert 

substantial areas of boreal forests into agricultural land as part of the “The Way Forward on 

Agriculture Initiative” to increase food production (Government of NL 2017).  

 

Converting natural forests to agricultural lands in NL requires intensive long-term soil management 

practices due to the poor inherent fertility of the predominant coarse to medium textured podzols 

that limits the food production in the province. Podzols cover approximately 55% of the landmass 

in NL (Sanborn et al. 2011). They are acidic and have low nutrient status (Enakiev et al. 2018), 

however, their quality can be improved through practices including, but not limited to, the addition 

of organic matter and the use of fertilizers. 

 

Soil properties, such as apparent electrical conductivity (ECa) (Badewa et al. 2018), soil organic 

matter (SOM) content (Atwell and Wuddivira 2019), and water holding capacity (Adejuwon 1988) 

naturally vary with land use (Wilson et al. 2011), prevailing temperature and precipitation, (Dale 

1987;) and soil type (Wilson et al. 2008). The conversion of natural forest land to agricultural fields 

also introduces spatial and temporal variability in these soil properties (Atwell and Wuddivira 



 

 

2 

 

2019; Niu et al. 2015), which if not monitored, could affect crop planning, and reduce crop yields 

and return. Furthermore, such conversion induces environmentally damaging effects such as 

erosion, degradation in air and water quality and a reduction in carbon sequestration. 

 

Quantifying soil properties involves monitoring and understanding the spatial distribution of soil 

properties, which is crucial in controlling a land’s hydrological and ecological function. In the past, 

landscape mapping of soil properties to monitor and understand the spatial distribution of soil 

properties was executed employing techniques from the conventional National Cooperative Soil 

Survey yet these maps lacked adequate detail and precision (Batte 2000; Brevik et al. 2000). 

Conversely, grid mapping was regarded as an accurate method to map the spatial distribution of 

surface soil properties across a landscape; however, this technique also proved to be time-

consuming and expensive (Burrough et al. 1971).  Conventional methods used for mapping surface 

soil properties have demonstrated  their limitations in current research, primarily because they are 

insufficient when it comes to cover larger areas and exploring deeper soils depths.  As a result, 

these methods are time-consuming and failed to provide a complete overvies of  soil composition 

across large areas. In order to attain a more precise comprehension of soil composition, it is 

imperative to adopt more comprehensive sampling procedures. Geophysical techniques have 

emerged as the favoured method of soil mapping due to their ability penetrate deeper into the soil 

and collect samples over larger area in a less destructive way.  

These techniques include ground penetrating radar (GPR), capacitance probes (CPs), active 

microwaves (AM), passive microwaves (PM), neutron thermalization, nuclear magnetic resonance 
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(NMR), gamma-ray attenuation, near-surface seismic reflection, aerial photography, self-potential, 

time domain reflectometry (TDR), and electromagnetic induction (EMI) (Corwin 2008). These 

techniques employ different operating principles, perform at various scales, and can differentiate 

individual soil series with high accuracy (Brevik et al. 2006; Binley et al. 2015; Romero‐Ruiz et 

al. 2018).  

 

Geophysical techniques that utilize electromagnetic waves at different frequencies (GPR and EMI) 

have the added advantage of collecting real-time, high-resolution soil data, non-invasively (Corwin 

and Lesch 2003). Thus, these techniques can be used to monitor the impacts of conversion of 

natural forests into managed agricultural lands in regions where the soil is less fertile, such as 

Newfoundland and the world at large. EMI is favored over GPR due to its speed of data collection 

(no contact with the ground), relatively low destructive nature, and its ability to collect data in 

rough terrains, such as wooded areas (Allred et al. 2008; Doolittle and Brevik 2014; Triantafilis 

and Santos 2013). Apparent electrical conductivity (ECa) and apparent magnetic susceptibility 

(MSa) maps generated from the EMI technique is another option for displaying a high-resolution 

soil information which is quantitative and can improve understanding of soil distributions (Corwin 

and Lesch 2003; Geonics 2005). This technique is sensitive in detecting changes in soil properties 

that are influenced by electrical conductivity (McNeill 1980; Von Hebel et al. 2019; Wang et al. 

2021). Lastly, most EMI sensors are lightweight compared to the GPR devices. This has given rise 

to the production of several commercial EMI sensors. These sensors include but are not limited to 

the DUALEM-1 and DUALEM-2 meters (Dualem Inc., Milton, Ontario), the profiler EMP-400 
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(Geophysical Survey Systems Inc., Salem, New Hampshire) and the EM31, EM38, EM38-DD, and 

EM38-MK2 meters (Geonics Limited, Mississauga, Ontario). The introduction of the multi-coil 

and multi-frequency EMI sensors as elaborated in Section 1.4 has also proved well suited for soil 

studies (Doolittle and Brevik 2014;  Badewa 2018; Sadatcharam 2019; Altdorf 2020). 

 

The EMI technique has some limitations, such as its inability to work efficiently in all soil 

environments (Doolittle and Collins 1998) due to the heterogenic nature of soils. The heterogenic 

nature of soils results in weak relationships between ECa derived from EMI and the targeted soil 

properties (Doolittle et al. 2000).  The sensitivity of EMI to interferences from close-by features 

like temperature (Allred et al. 2008), power lines and pumps also affects its use in soil 

characterization (Schumann and Zaman 2003). Although, the theoretical values of the depth of 

explorations based on the inter-coil spacing in the EMI technique has been established by McNeill 

(1980), there are always deviations in the penetration associated with specific land use (Mansourian 

2020).  

 

In soil studies, EMI sensors measure the ECa (Altdorff and Dietrich 2014). ECa is the depth 

weighted average of the bulk soil electrical conductivity within a soil volume (Greenhouse and 

Slaine, 1983; McNeill, 1980) and is influenced by other soil information directly related to crop 

production, plant growth and the general health of the soil (Kaffka et al. 2005). ECa is considered 

a proxy of soil properties (McNeill 1980; Greenhouse and Slaine, 1983), including soil moisture, 

soil salinity, soil texture, bulk density (BD), SOM and porosity (Niu et al. 2015; Badewa 2018; 
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Atwell and Wuddivira 2019; Sadatcharam 2019; Altdorf 2020). Recent technological 

advancements have created accurate field-scale geo-referenced ECa maps obtained from the 

combination EMI sensors and global positioning systems (Corwin and Lesch 2019). Geostatistics 

can be used to analyze soil data and create a raster map to improve soil mapping (Tarr et al. 2005; 

Medhioub et al. 2019; Dakak et al. 2023). Geostatistical models characterize and interpret the 

spatial relations of the measured soil property from the sampled data to predict the values of 

variables at unsampled locations (Goovaerts 1999).  

 

Geostatistics is a branch of statistics that is concerned with the spatial analysis of data. It is 

employed to analyze and model spatial data, for instance soil properties, in order to gain a better 

comprehension of the spatial patterns of the data. Tobler's Laws of Geography, which describe the 

spatial relationships between geographical features, can be utilized in soil studies to comprehend 

the spatial patterns of soil properties, such as soil texture, organic matter content, and nutrient 

availability. By understanding the spatial patterns of soil properties, soil scientists can more 

effectively comprehend how soil properties vary across a landscape and how they may be 

influenced by environmental factors. This knowledge can then be utilized to inform soil 

management decisions and to enhance soil fertility and productivity. 

 

Soil properties, such as ECa and soil moisture, which display continuous spatial variability, are a 

suitable fit for geostatistical analysis methods since observations that are close to each other are 

more similar than those that are further apart (Goovaerts 1997). Tarr et al. (2005), Buta et al. (2019), 
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Kostić et al. (2021) among others have incorporated collecting georeferenced EMI data and 

interpolating these data using geostatistical techniques such as kriging, cokriging and inverse 

distance to power method to exhibit good overall fit to the soil surveys. The SURFER® software 

(Golden, CO, the USA.) is a tool that can be used to implement geostatical techniques (Brevik 

2001; Afrizal et al. 2013; Ganjegunte et al. 2014). 

 

Since variations in ECa measurements are a proxy for several soil properties that are influenced by 

changes in land use conditions, this study investigates the spatial variability of geo-referenced ECa 

data as an effective means to characterize soil properties under different land use conditions. 

Furthermore, the study investigates two interpolation techniques (ordinary kriging and cokriging) 

to assess the effectiveness of ECa as an auxiliary variable in predicting soil moisture variations 

under different land use conditions. This goal supports the ongoing effort to convert the natural 

forests into managed agricultural lands for increasing agricultural production.  

1.2 Thesis objectives and hypotheses 

The utilization of EMI sensors in soil studies remains a relatively unexplored area of research, 

particularly as it relates to boreal podzolic soils. To date, much of the research has been limited to 

examining the relationship between soil parameters and ECa measurements from the MC or MF 

EMI sensors under a single land use condition. Furthermore, the overall accuracy and efficacy of 

utilizing integrated ECa measurements to detect changes in soil moisture, SOM, BD and texture 

over time has yet to be fully determined. As such, further research is needed to identify the optimal 
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combination of EMI sensors for accurately measuring soil properties and to bridge the existing 

knowledge gaps.  

In order to address this issue, a unique approach involving the use of ECa measurements from MC 

and MF EMI sensors as well as kriging approaches is proposed. This research is expected to 

provide valuable insights on the accuracy of the MC and MF EMI methods in estimating SMC 

response to land use changes thus serving as an effective tool in conservation and environmental 

protection. Ultimately, continued research into EMI for soil studies is essential to fully understand 

the scope of its applications. 

The key objectives of the study were to:  

i. utilize multi-frequency EMI in characterizing soil moisture under different land uses in 

western Newfoundland’s podzolic soils.  

ii. use multi-frequency and multi-coil electromagnetic induction sensors to improve soil moisture 

prediction accuracy in different land use. 

 

The hypothesis proposed in this study was that ECa could vary with changes in soil properties such 

as soil moisture, SOM, BD, and texture that are affected by a change in land use conditions and 

can be used as a proxy for these properties based on the relation between ECa and these targeted 

soil properties. If these variations can be measured and mapped rapidly and non-destructively 

employing integrated EMI methods, it will allow for the development of site-specific management 

practices. 
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1.3 Thesis organization  

The thesis is structured in a manuscript style and divided into four chapters. The thesis has a general 

introduction chapter, two stand-alone chapters (manuscript format) and the last chapter (chapter 

four) as a general discussion and conclusion.  

Chapter one: This is the general introduction chapter of the thesis. It provides the overview with 

background information, rationale, objectives and hypothesis of the thesis.  

Chapter two: This is the literature review. It encompasses review of relevant literature on basic 

electromagnetic induction theory, time-domain reflectometry and the soil properties being 

investigated in the thesis using EMI.  

Chapter three (study one): "Multi-frequency electromagnetic induction soil moisture 

characterization under different land uses in western Newfoundland”. ECa employed in this 

study were obtained from the multi-frequency EMI device. The chapter evaluates the field scale 

accuracy of the TDR meter by comparing it with the oven drying method and generates site-specific 

ECa - soil moisture regression models. This chapter has been accepted for publication in the 

Canadian Journal of Soil Science. 

Chapter four (study two): "Using multi-frequency and multi-coil electromagnetic induction 

sensors to improve soil moisture prediction accuracy in different land use”. This study 

investigates the effectiveness of ECa obtained from the multi-coil (CMD Mini-explorer) and multi-

frequency (GEM-2) EMI sensors to maximize the representation of soil moisture taking into 

consideration SOM, BD and soil texture using a statistical and geostatistical methods. The study 

also confirms the efficiency of ECa as a surrogate for the soil properties. 
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Chapter five: The chapter presents an overall discussion about study findings, conclusion and 

provides recommendations for further studies. 
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CHAPTER TWO: Literature review 

2.1 Electromagnetic induction 

EMI has been used successfully to estimate soil water variability at field and landscape scales 

(Corwin 2008; Toushmalani 2010; Calamita et al. 2015; Shanahan et al. 2015; Martini et al. 2017). 

Michael Faraday first introduced the principle of EMI in the early 19th century. This principle is 

embedded into a wide range of sensors for soil mapping. The EMI sensor sends an alternating 

current at set frequency(ies), generating a primary magnetic field via its transmitter coil. This 

primary magnetic field propagates through the soil and induces an eddy current loop in the soil 

with the magnitude of these loops directly proportional to the electrical conductivity (EC) in the 

locality of the loop. The induced eddy current on the conductors now radiates a secondary 

electromagnetic field proportional to the current flowing within the loop. The eddy current radiates 

the secondary electromagnetic field by combining the inter-coil space covered by the magnetic 

field, the frequency of the applied current and the ability of the soil around the sensor to conduct 

electricity (Gebbers et al. 2007; Hendrickx and Kachanoski 2002). The mode of operation of the 

EMI (Figure 2.1). The ratio of the primary and secondary magnetic fields measured at the receiver 

coil (McNeill 1980) is the ECₐ (Corwin 2008) (Equation 2.1).  
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Figure 2.1: Schematic view of EMI operating principles. Tx is the transmitter coil and Rx is the 

receiver coil (Visconti et al. 2016). 

 

ECa = 
4

𝜔µ𝑜 𝑆2(
𝐻𝑠 (𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑢𝑟𝑒)

𝐻𝑝
)                                                  Equation 2.1 

Where (𝐻𝑠/𝐻𝑝 ) is the ratio of the out-of-phase secondary to primary magnetic fields.  

Hs = Secondary magnetic field at the receiver coil   

Hp = Primary magnetic field at the receiver coil  

ECa = Apparent electrical conductivity  

ω = 2πf – angular frequency  

f = Frequency (30 kHz for CMD-miniexplorer; 2.8, 18.8, 38.3, 80 kHz for GEM-2) 

µo = Permeability of free space  

S= Inter-coil spacing (m)  
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Understanding the integrated response of the measurement of EMI involves if the current loops 

generated below the ground are not affected (McNeill 1980). This assumption results in Equations 

2.2 and 2.3 for horizontal and vertical dipole configurations respectively: 

𝜑 𝐻(𝑧) = 2 − 
4𝑧

(4𝑧2+1)0.5
                                                                                Equation 2.2 

 

𝜑 V (𝑧) =  
4𝑧

(4𝑧2+1)1.5
                                                                                  Equation 2.3 

where 𝜑 𝐻(𝑧) and 𝜑 V (𝑧) are the sensitivity function of the EMI sensor (vertical coplanar (VCP) 

and horizontal coplanar (HCP) modes, respectively) with depth and z is the depth (cm) from the 

soil surface. 

2.1.1 Electromagnetic induction sensors 

The CMD Mini-explorer and GEM-2 are commercially available EMI sensors that can measure 

ECa reading at depth intervals (Badewa et al. 2018; Sadatcharam et al. 2019; Altdorff et al. 2020).  

 

2.1.1.1 CMD Mini-explorer 

The CMD Mini-explorer is a multi-coil EM sensor that operates at 30 kHz frequency and consists 

of a probe and a handheld control unit. The control unit communicates with the probe through 

Bluetooth. This EMI sensor has a single transmitter coil and three receiver coils. The inter-coil 

spacing between the transmitter and receiver coils are 32 cm, 71 cm, and 118 cm. The coils can be 

oriented in low or high depth range under the VCP or HCP coil configuration (Figure 2.2). In the 

VCP mode, the sensor can simultaneously sense up to 25, 50 and 90 cm integral depths. In the HCP 
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mode, the sensor can simultaneously sense up to 50, 100, and 180 cm integral depths (Altdorff et 

al. 2016). The sensor has a temperature stability of ±1 mS/m per 10℃ change in temperature and 

is suited to outside temperatures between -10℃ and +50℃ (GF-Instruments 2011). 

 

 

Figure 2.2: The schematic diagram of CMD Mini-explorer at low (VCP) and high (HCP) coil 

orientations showing the positions of the transmitter coil (Tx), receiver coils (Rx), coil geometry, 

spacing and orientation (modified from Bonsall et al. 2013). 

 

2.1.1.2 GEM-2 

The GEM-2 is a lightweight, digital multi-frequency EM sensor with a single transmitter and 

receiver coil (Tang et al. 2018; Won et al. 1996). The sensor consists of a ski that encloses all 

sensing elements, an electronics enclosure that plugs onto the ski, a detachable windows-based 

display assistant known as IPaq and an external GPS connector. The sensor operates within a 

frequency range of 0.3 kHz to 90 kHz (Sadatcharam 2019). The sensor has a factory set frequency 

(b) 
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file that can be modified to a set of desired frequencies (Geophex Ltd. 2004). The inter-coil spacing 

between the transmitter and receiver coil is 166 cm. The MF sensor has a bucking coil located at 

approximately 1 m from the transmitter coil. The bucking coil cuts off the primary field from the 

receiver sensor (Minsley et al. 2012; Simon et al. 2015). Although the MF sensor allows the user 

to select multiple frequencies, selecting too many frequencies lowers the resolution (Sadatcharam 

et al. 2019; Altdorff et al. 2020). The magnitude of the selected operating frequency is inversely 

proportional to the depth of investigation (DOI); thus; the higher the selected operating frequency, 

the shallower the DOI. A higher frequency, however, gives a high resolution of the mapped area. 

The GEM-2 sensor can operate in both HCP and VCP coil configurations (Figure 2.3).  

Comparatively, the MF sensor can operate at low frequencies hence possesses a higher DOI, 

whiles, the MC sensor has also been seen to be better suited for detecting small metallic objects in 

the shallow surface soil (Sadatcharam 2019).  

 

 

Figure 2.3: The schematic diagram of GEM-2 at low (VCP) and high (HCP) coil orientations 

(Bonsall et al. 2013). 
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2.2 Time-domain reflectometry (FieldScout TDR 350) 

The underlying principle of TDR involves measuring the travel time of an electromagnetic wave 

along a waveguide (Figure 2.4). The speed of transmitted wave depends on the soil matrix's bulk 

dielectric permittivity (Roberto and Guida 2006). TDR measures a soil matrix's volumetric soil 

moisture content (θv). This θv measured by TDR is an average over the length of the waveguide. 

Electronics in the FieldScout TDR 350 generate and sense the two-way travel of a high-energy 

signal through soil, along the instrument's waveguides. The high energy signal information is then 

converted to θv.  

 

 

Figure 2.4: The schematic diagram of FieldScout TDR 350 (IMKO 2016). 

 

2.3 Relation between apparent electrical conductivity and desired soil properties 

2.3.1 Apparent electrical conductivity 

The theoretical foundation relating ECa and soil properties was developed by Rhoades et al. (1989). 

The main soil properties that determine ECa measurements are soil moisture, soil salinity, the 
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amount of clay in a soil (texture), cation exchange capacity (CEC) and temperature (McNeil 1980; 

Friedman 2005). Other soil properties associated with ECₐ are BD, SOM, soil nutrients and the 

concentration of ions in a solution (Friedman 2005). 

 

Although, studies have shown soil moisture, soil texture, SOM and soil BD to correlate with ECa 

measurements within and across field(s) (Corwin and Lesch 2005), the correlation between ECa 

and soil properties is site-specific dependent and is affected by different agronomic practices such 

as irrigation, tillage, manure application and compaction (Altdorff et al. 2017). ECa is also affected 

by porosity, saturation, pore water electrical conductivity. Based on this, Archie (1942) developed 

an equation used to express the impact of partial saturation on bulk electrical conductivity (σ) 

(Equation 2.4). 

 

σ = φmSn
wσw                                                                   Equation 2.4 

 

where φ is the porosity, S is the saturation and σ is the pore water electrical conductivity. The 

exponents m and n account for the contribution related to the soil structural form. However, this 

equation ignores surface conductivity (Revil et al. 2017). Hence, site-specific calibration of ECa is 

needed when using ECa to accurately characterize soil properties (Reedy and Scanlon 2003). An 

overview of the desired soil properties is given in the next section. 
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2.3.2 Soil moisture content 

Electric current flow within a soil mainly depends on water content, making soil moisture the most 

crucial soil property influencing ECa (Brevik and Fenton 2002; Huth and Poulton 2007). Doolittle 

et al. (1994) indicate that the flow of water down the soil produces pathways for the flow of electric 

current due to charge displacement from the water molecules. In wet soils, increased chemical 

reactions and current flow results in a high ECa values and more contributions from other soil 

properties (Brevik et al. 2006). On the other hand, chemical reactions and current flow tend to seize 

in arid soils and influence ECa (Johnson et al. 2001). Soil moisture varies spatially and temporally 

in a field and when it is mapped repeatedly on the field, there would be locations that consistently 

record higher or lower soil moisture values relative to the average soil moisture of the study area 

(Starr 2005; Guber et al. 2008). This is known as temporal stability in the spatial patterns of the 

soil moisture (Tallon and Si 2004) and has been correlated to with other soil properties such as soil 

particle distribution (Starr 2005). The temporal stability in the spatial patterns of soil moisture is 

crucial in delineating management zones when converting from natural land to managed 

agricultural land (Starr 2005). A compilation of additional relevant literature measuring soil 

moisture with ECa  are shown in Table 2.1. 
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Table 2.1 Compilation of additional relevant literature measuring soil moisture with apparent 

electrical conductivity 

List of additional relevant literature measuring soil moisture with apparent electrical conductivity 

De Benedetto et al. (2013); Guo et al. (2016); Pognant et al. (2013); Wunderlich et al. (2013); Chrétien 

et al. (2014); Gooley et al. (2014); Liao et al. (2014); Misra and Padhi (2014); Fortes et al. (2015); 

Shanahan et al. (2015); Stadler et al. (2015); Walter et al. (2015); Cho et al. (2016); Neely et al. (2016); 

Pedrera-Parrilla et al. (2016); Altdorff et al. (2018); Lu et al. (2017); Moghadas et al. (2017); Al Rashid 

et al. (2018); Rallo et al. (2018); Nocco et al. (2019) 

 

2.3.3 Soil texture 

Soil texture represents the relative proportion of clay, sand, and silt in soil (Wang et al. 2010). Clay 

particles possess a higher ability to retain soil moisture and dissolved solids due to a larger surface 

area. Hence, they generally have a high EC relative to sand and silt particles (Grisso et al. 2005). 

In a study by Brevik et al. (2006), the authors indicated wet conditions as the optimal environment 

for ECa to distinguish soil types. However, Sudduth et al. (2003) cited that a different result could 

be expected due to the complex nature of clay-rich soils, highlighting the importance of testing ECa 

in wet and dry soils. Soil texture can be determined in the laboratory or in the field. In the 

laboratory, the hydrometer and pipette methods are the ways to meaure soil texture, the pipette 

method is more complicated yet precise relative to the hydrometer methods (Wang et al. 2010). On 

the field, soil texture is determined by hand texturing techniques (Wang et al. 2010). However, 

both methods are time-consuming and require skilled labor (Wang et al. 2010). ECa has been used 
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as a rapid way to determine soil texture variations (Brevik 2006). Soil texture mainly contributes 

to EC in non-saline soil (Lund 1999; Corwin and Lesch 2005). Soil texture has also been seen to 

change over time (Kelley 2017). Agricultural practices such as tillage and fertilization due to a 

change in land use conditions can hasten these changes to be significant over short timeframes 

(Kelley 2017). A compilation of additional relevant literature measuring soil texture with ECa  are 

shown in Table 2.2. 

Table 2.2 Compilation of additional relevant literature measuring soil texture with apparent 

electrical conductivity 

List of relevant literature measuring soil texture with apparent electrical conductivity 

Heil and Schmidhalter (2012); Islam et al. (2012); Mahmood et al. (2012); Nearing et al. (2013); Piikki 

et al. (2013); Pan et al. (2014); Ciampalini et al. (2015); Pozdnyakov et al. (2015); Rodríguez et al. 

(2015); Rodrigues Jr. et al. (2015); Stadler et al. (2015); Stepień et al. (2015); Moghadas et al. (2016); 

Filho et al. (2017); Ganjegunte et al. (2017); García-Tomillo et al. (2017); de Lima et al. (2017); Grubbs 

et al. (2019); Brogi et al. (2019) 

 

2.3.4 Soil organic matter 

SOM is an indicator of the overall health of the soil. Generally, SOM comprises of primary plant 

remains and decomposed organic compounds that have been combined into more complex 

molecules (humus) (Morris 2004). Some of the benefits of SOM include providing nutrients and 

habitat to soil organisms, and binding soil particles into aggregates which improves the water 

holding capacity of a soil (Polyakov and Lal 2004). Due to the complex structure and composition 
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of SOM with compounds containing various carbon functional groups (Shi et al. 2006), soil organic 

carbon is closely related to SOM and is used as an indicator of SOM. In the laboratory, SOM can 

be determined via the loss-on-ignition method, the Walkley-Black method, automated dry 

combustion, and humic matter methods. The loss-on-ignition method involves the thermal 

decomposition of SOM in a muffled furnace (Roper et al. 2019). The Walkley-Black method, 

Automated dry combustion and Humic matter methods are other techniques used to determine 

SOM (Roper et al. 2019).  

Soils with high SOM tend to have high cation exchange capacity due to having a larger amount of 

exchange sites. Negatively charged surface attact cations removing them from the soil solution 

hence ECa is lower since the cations are bound soil colloid surfaces instead of being free in the soil 

solution. Additionally, SOM can increase the porosity of soil, which can also reduce ECa. Finally, 

SOM can also act as a buffer, which can reduce the fluctuations in ECa due to changes in soil 

moisture (Tipping 2002). Since SOM has been found to significantly influence ECa (Martinez et 

al. 2009), ECa can be used as a surrogate for SOM variations. Farming activities such as no-till 

systems, cover cropping and N fertilization due to land use conversion have also been seen to 

change the SOM significantly (Morris 2004; Sapkota et al. 2012). Past studies have revealed gaps 

in understanding the mechanisms of how SOM affects ECa, the effects of different soil types on 

ECa, and the effects of different management practices on ECa. Additionally, there is a lack of data 

on the effects of SOM on ECa in different climates and soil types. A compilation of additional 

relevant literature measuring SOM with ECa  are shown in Table 2.3. 
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Table 2.3 Compilation of additional relevant literature measuring soil organic matter with apparent 

electrical conductivity 

List of relevant literature measuring soil organic matter with apparent electrical conductivity 

Ekwue and Bartholomew (2011); Kweon et al. (2013); Koszinski et al. (2015); Peralta et al. (2015); 

Pozdnyakov et al. (2015); Altdorff et al. (2016); Huang et al. (2017); Grubbs et al. (2019); 

Uribeetxebarria et al. (2018); Nocco et al. (2019) 

 

2.3.5 Bulk density 

BD is a measure of the mass of soil per unit volume. It is an important factor in determining the 

ECa of a soil because it affects the amount of water and air that can be held in the soil. Soils with 

higher BDs have lower porosities which reduces the ability of ions to move through the soil and 

decreases the ECa. Conversely, soils with lower BDs have higher porosities, which increases the 

ability of ions to move through the soil and increases the ECa. Changes in soil BD has been found 

to affect ECa significantly (Brevik and Fenton 2002). When the BD of soil increases, more finer 

particles are packed into a unit volume of soil, increasing the contact between soil particles 

(Rhoades and Corwin 1990; Malicki et al. 1989). The hydraulic properties of a soil have been seen 

to vary due to changes in BD. Due to smaller pore spaces in compacted soil, little water is required 

to saturate a compacted soil compared to an uncompacted soil (Brevik and Fenton 2002). 

Differences in land-use management following land use conversion can alter the BD within a field 

or between fields that contain otherwise similar soils (Battikhi and Suleiman 1999). A compilation 

of additional relevant literature measuring BD with ECa  are shown in Table 2.4. 
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Table 2.4 Compilation of additional relevant literature measuring bulk density with apparent 

electrical conductivity 

List of relevant literature measuring bulk density with apparent electrical conductivity 

Ekwue and Bartholomew (2011); Kweon et al. (2013); Koszinski et al. (2015); Peralta et al. (2015); 

André et al. (2012); Naderi-Boldaji et al. (2014); Rossi et al. (2013); Al-Asadi and Mouazen (2014); 

Islam et al. (2014); Cho et al. (2016); Filho et al. (2017); Rashid et al. (2018) 

 

Based on the above reviews, I hypothesize that ECa can be used as a surrogate for the targeted soil 

properties under different land use conditions and have concluded to investigate the ability to 

employ an integrated EMI technique (combined MC and MF EMI sensors) to characterize the 

spatial variability of soil moisture, BD, SOM, and soil texture across three different land use 

conditions. 
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CHAPTER THREE: Study one 

Multi-frequency electromagnetic induction soil moisture characterization under different 

land uses in western Newfoundland 

Clinton Mensah 1, Yeukai Katanda1, Mano Krishnapillai 1, Mumtaz Cheema 1, Lakshman 

Galagedara 1* 

 
1 School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, 

NL, A2H 5G4, Canada 

* Corresponding author: lgalagedara@grenfell.mun.ca 

 

Abstract  

Identifying and characterizing the spatial patterns in soil moisture variability under different land 

use conditions is crucial for agriculture, forestry, civil and environmental engineering. Yet, 

employing multi-frequency electromagnetic induction (EMI) techniques to carry out this task is 

under-represented in boreal podzolic soils. This study: (i) compared four frequencies (2.8 ~ 80 

kHz) for shallow mapping of soil moisture measured with a time-domain reflectometry at 0 – 20 

cm soil depth under three different land-use conditions (agricultural land, field road, and a recently 

cleared natural forest); (ii) developed a relationship between apparent electrical conductivity (ECa) 

measured using multi-frequency EMI (GEM-2) and soil moisture; and (iii) assessed the 

effectiveness of ECa as an auxiliary variable in predicting soil moisture variations under different 

land use conditions. The means of ECa measurements were calculated for the exact sampling 

location (ground truth data) in each land use condition at a research site, Pasadena, Newfoundland. 

Soil moisture–ECa linear regression models for the three land-use conditions were only statistically 

significant for 38.3 kHz frequency and were further analyzed. Further statistical analysis revealed 

that ECa was primarily controlled by soil moisture for the three land-use conditions, with the natural 
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forest possessing the highest mean ECa and soil moisture. Geostatistical analysis revealed that 

cokriging ECa with less densely collected soil moisture improved the characterization accuracy of 

soil moisture variability across the different land use conditions. These results reveal the 

effectiveness of the georeferenced MF-EMI technique to rapidly assess intra-field soil moisture 

variability under different land uses.  

 

Keywords: Apparent electrical conductivity, land uses, electromagnetic induction, multi-

frequency, volumetric soil moisture content 

  

3.1 Introduction 

 

Agricultural production in Newfoundland and Labrador (NL) is limited by the poor inherent 

fertility of the predominantly coarse to medium textured podzols. These soils are acidic and have 

low nutrient status (Enakiev et al. 2018). In 2017, the provincial government outlined plans to 

convert substantial areas of boreal forests into agricultural land as part of the ‘The Way Forward 

on Agriculture Initiative’ to increase food production (Government of Newfoundland and 

Labrador, 2017). The conversion of natural forest land to agricultural fields can introduce spatial 

and temporal variability in soil properties (Atwell and Wuddivira 2019; Niu et al. 2015). Soil 

properties naturally vary with land use (Guo et al. 2023), temperature and precipitation as well as 

soil type (Wu et al. 2023). Properties, such as electrical conductivity (EC) (Tiwari et al. 2019), soil 

organic matter (Atwell and Wuddivira 2019), and water holding capacity (Bai et al. 2019) have 

been reported to respond to land use changes. Monitoring such changes is critical for efficient 
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management, particularly in regions with low inherent production capacity such as those in 

Newfoundland.  

Soil moisture is a vital parameter for optimizing site-specific management and 

ecosystem sustainability (Yu et al. 2018). Understanding spatial variability in soil moisture is key 

for effective management of hydrology and water resources (Guo et al. 2020), agriculture and 

irrigation (Funes et al. 2019), and rock and soil mechanics (Susha et al. 2014). Additionally, EC is 

important for monitoring the fertility and the chemical status of soils. Conventional methods of 

sampling and analyzing soil moisture or EC (such as gravimetric sampling, neutron probes, and 

gypsum blocks) can be destructive, labour-intensive, time-consuming, and provide point 

information (Calamita et al. 2015; Badewa et al. 2018). Alternatively, geophysical methods, such 

as electromagnetic induction (EMI) and time-domain reflectometry (TDR) can be used to 

characterize soil EC or soil moisture variability more rapidly, non-invasively and less laboriously 

(Altdroff et al. 2018; Badewa et al. 2018; Sadatcharam 2019). EMI and TDR employ 

electromagnetic waves to measure apparent electrical conductivity (ECa) and dielectric 

permittivity, respectively. ECa is defined as the depth weighted average of the bulk soil EC within 

a soil volume and is considered a proxy of soil properties including soil moisture (Badewa 2018; 

Altdorff 2020). Geophysical techniques present an expeditious way for monitoring the 

spatiotemporal variability of soil moisture.  

 

EMI sensors operate by inducing an alternating current (EM waves in kHz) within the soil via the 

primary electromagnetic field generated from the transmitting coil and measuring the resultant 
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secondary field via the receiving coil (Von Hebel et al. 2019). The amplitude, phase differences, 

and inter-coil spacing between the primary and resultant fields are then used to determine an 

"apparent" value for soil EC (Simon et al. 2020).  There are two types of EMI sensors that are 

commercially available, multi-coil (MC) and multi-frequency (MF) EMI sensors. The MC sensor 

operates at a fixed frequency and has multiple coil separations (Altdorff et al. 2020). The depth of 

investigation for this type of sensor depends on the coil separation; thus, the higher the inter-coil 

spacing between the transmitter and receiver coils, the higher the depth of investigation (Deidda et 

al. 2020; Sadatcharam et al. 2020). The bucking coil cuts off the primary influence at the receiver 

coil (Calamita et al. 2015). The MF−EMI instruments with slingram geometry (dipole-dipole) can 

be used for conventional soil characterization (Lück et al. 2022) as well as simultaneous mapping 

of soil ECa and magnetic susceptibility (Sadatcharam et al. 2020). Altdorff et al. (2020) compared 

the performance of MF and MC EMI sensors in shallow podzols and concluded superior 

performance from the MF sensor. Similarly, Sadatcharam (2019) found the MF–EMI sensor to be 

more reliable for ECa variability in wet soils than in dry soils.   

  

Over the years, geostatistical techniques have been used as interpolation tools to effectively 

estimate and provide unbiased predictions at unsampled locations (Srivastava et al. 2019). Kriging 

and cokriging are widely used interpolation techniques (Belkhiri et al. 2020); the former is used 

when a variable displays spatial dependence whiles the latter is employed when other properties 

have been densely sampled in comparison to the target variable (Rostami et al. 2020). The 

extensively sampled variable (covariate) is usually measured more cheaply, and quickly than the 
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target variable. ECa measured using EMI sensors can be used as a covariate for mapping of soil 

moisture (Tarr et al. 2005; Naimi et al. 2021). Spatial variability in soil moisture can be predicted 

by ordinary kriging from the limited soil samples and by cokriging when a strong statistically 

significant relationship exists between soil moisture and an easily measured auxiliary variable. 

Previous studies suggest superior prediction accuracy of cokriging compared to ordinary kriging 

(Belkhiri et al. 2020).  Altdorff et al. (2017) used ordinary kriging with ECa data to investigate the 

performance of EMI sensors in forest ecosystems and reported strong similarities between spatial 

ECa and soil moisture patterns. Similarly, Atwell and Wuddivira (2019) reported variable 

effectiveness of ECa data from EMI sensors for characterizing soil moisture in forests, agricultural 

land, grasslands, quarries, and residential areas. Lastly, Carrière et al (2020) reported a stronger 

relationship between ECa and estimated soil depth in forest systems compared to managed systems 

(cedar plantation). 

 

The use of EMI and the comparison of co-kriging and ordinary kriging under different land uses is 

a novel dimension to soil studies in NL because it allows for a more comprehensive understanding 

of the soil properties in the region. By comparing the results of co-kriging and ordinary kriging 

under different land uses, researchers can gain a better understanding of how soil properties vary 

both spatially and temporally across different land uses in the study area. This information can then 

be used to delineate mangament zones based on the variability of the soil porperties and inform 

land management decisions, such as which land uses are best suited for certain soil types. Overall, 

the use of EMI and the comparison of co-kriging and ordinary kriging under different land uses 



 

 

62 

 

provides a novel dimension to soil studies in Newfoundland, allowing for a more comprehensive 

understanding of the soil properties and their variability in the study area. 

Converted lands for agricultural purposes usually combine varying agronomic practices, which 

tends to significantly affect the ECa − soil moisture relation making it necessary to have an accurate 

site-specific soil moisture prediction. This research aims to apply an MF–EMI sensor to map soil 

moisture variability under natural forests and managed agricultural land in Western Newfoundland. 

The GEM-2 MF sensor employed in this study produces sensitive and thermally stable 

measurements (Briggs et al. 2019). Specifically, this work seeks to: (i) compare the different 

frequencies in the 2.8 – 80 kHz range for shallow mapping of volumetric soil moisture under the 

different land use conditions; (ii) evaluate the relationship between ECa measured using MF–EMI 

and soil moisture; and (iii) assess the effectiveness of ECa as an auxiliary variable to predict soil 

moisture variations under different land use conditions. Although previous studies using EMI 

techniques to characterize soil moisture  have been done in agricultural land in Newfoundland 

(Altdorff et al. 2018; Badewa et al. 2018; Sadatcharam et al. 2020; Altdorff et al. 2020), no study 

has investigated the use of EMI sensors under different land use types concurrently. It is worthwhile 

to test the technique under different conditions to assess its usefulness to support various academic, 

industrial, and government projects being carried out in the province and other sub-regions. Also, 

the use of ECa as a covariate in cokriging is yet to be done in the province.  To our knowledge, 

very few studies have used geostatistical techniques with geophysical data as covariates for 

predicting soil moisture.  
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3.2 Materials and methods 

 

3.2.1 Study area 

 

This study was conducted on three different land use conditions: an agricultural field, a recently 

cleared natural forest and a field road at the Western Agriculture Center and Research Station, 

Pasadena (49.0130° N, 57.5894° W), Newfoundland (Figure 3.1). The study site is managed by the 

Department of Fisheries, Forestry and Agriculture, Government of Newfoundland, Canada. The 

soil in the study site is generally classified as a reddish-brown to brown Podzol developed on a 

gravelly sandy fluvial deposit with >100 cm depth to bedrock and a 2% – 5% slope (Croquet 2016). 

The area of the agricultural land was 924 m2 and included a rotation of corn, canola, faba bean, 

wheat, and oats/peas. The field road was adjacent to the agricultural land and was 240 m2 in area, 

serving as access for equipment, vehicles, and people to the other parts of the field. A 50 m2 area 

was selected from a recently cleared natural forest to compare its ECa and soil moisture data with 

the other land use conditions of interest (agricultural land and field road) (Figure 3.1). Before the 

commencement of ECa and soil moisture measurements, soil texture, soil BD and SOM for the 

different land uses were determined by collecting soils sample from each land use.  

 

To assess a range of soil properties, several analytical methods were employed. For soil moisture, 

the gravimetric method was used; for soil texture, the hydrometer method; for BD, the oven-drying 

method; and for SOM, the loss-on-ignition method (Table 3.1). Each of these methods offer an 

accurate and reliable way of measuring the respective soil characteristics and provide a 

comprehensive overview of the soil. Through the use of these analytical techniques, the soil can be 
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thoroughly investigated and the underlying properties can be accurately and reliably determined. 

Based on three month data (1 Sep. – 30 Nov. 2021) from the nearby Deer Lake weather station A 

(http://climate.weather.gc.ca), the area received a total rainfall of 409 mm and had an average mean 

temperature of 8.18 °C (Figure 3.2) 

 

Table 3.1 Basic soil properties of agricultural land, natural forest and field road obtained from 

ground truthing and laboratory analysis (n = 9) 

Basic soil properties Agricultural land Natural forest Field road  

Sand (%) 68.2 ± 2.04 65.2 ± 1.98 70.4 ± 3.41  

Silt (%) 18.7 ± 2.31 17.3 ± 2.01 19.2 ± 2.98 

Clay (%) 14.1 ± 1.92 18.5 ± 2.46 11.4 ± 3.17 

Soil Texture Sandy loam Sandy loam Sandy loam 

Bulk density (g cm-3) 1.26 ± 0.21 0.90 ± 0.29 1.29 ± 0.14 

Soil organic matter (% dry weight) 3.87 ± 1.08 9.37 ± 2.30 2.08 ± 0.44 

http://climate.weather.gc.ca/
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Figure 3.1: The location of the different land use conditions in Western Agriculture Center and 

Research Station, Pasadena, Newfoundland, Canada (49.0130° N, 57.5894° W).  

 

Figure 3.2: Daily total rainfall, minimun, maximum, and mean temperature from Aug. 2021 to 

Nov. 2021 for the study area from Deer Lake weather station A. 
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Maps Data: Google, ©2022 CNES / Airbus, Maxar technologies Maps Data: Google, ©2022 CNES / Airbus, Maxar technologies 
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3.2.2 Electromagnetic induction (EMI) survey 

 

ECa data were recorded from the three land use conditions: Agricultural land, field road, and natural 

forest using EMI surveys. For each land use condition, a GEM-2 MF–EMI sensor (Geophex, Ltd., 

Raleigh, NC, USA) was used to simultaneously collect ECa data at four different frequencies (2.8, 

18.3, 38.3, and 80.0 kHz). The selected frequencies were chosen due to their suitability for shallow 

podzolic soil investigations (Won et al. 1996). During each survey, a 1 m line spacing was 

maintained. A global positioning system (GPS) was attached to the EMI sensor to enable the 

production of georeferenced maps. Before each survey, the EMI sensor was warmed up for at least 

30 minutes to prevent data drift and ensure high-quality data as proposed by Robinson et al (2004).  

 

During each survey, the MF–EMI sensor was positioned such that the transmitter coil was always 

ahead of the receiver coil and was carried with the supplied shoulder strap at an average height of 

about 1 m above the ground. Both the vertical coplanar (VCP) and horizontal coplanar (HCP) coil 

orientation modes were used when collecting data on agricultural land, field road, and natural forest 

as done by previous researchers in the same area (Altdorff et al. 2018; Badewa et al. 2018; 

Sadatcharam et al. 2020). The MF surveys were carried out in a bi-directional order over the three 

land use conditions.  

 

Soil temperature was measured at 0 – 20 cm depth for all three land use conditions using a soil 

temperature probe. Among the several models suggested for the correction of the temperature effect 

on the mobility of dissolved ions, the 'corrected Sheets and Hendrickx model' was adopted in this 
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study as displayed in Equation 3.1. According to Ma et al (2011), this model was adopted because 

it performs better in most situations and for a wide range of temperatures. 

EC25 = ECt × (0.4470 + 1.4034 e−t/26.815)       Equation 3.1 

ECt is the ECa data collected at measured soil temperature, t (°C) and EC25 is the temperature 

corrected ECa. Negative values were considered noise and subsequently eliminated. 

The surveys were carried out during a wet period (20 Oct. and 8 Nov. 2021; Figure 3.2) based on 

the total rainfall data available by the nearby Deer Lake weather station A 

(http://climate.weather.gc.ca). The surveys were carried out in the wet period because MF–EMI is 

more reliable for ECa variability in wet soils than in dry soils (Sadatcharam 2019). 

 

3.2.3 Soil moisture content data recording and time-domain calibration 

  

Soil moisture was measured at nine (9) sampling points at 0 – 20 cm depth in the agricultural land, 

field road and natural forest volumetrically using a hand-held TDR (FieldScout TDR 350, 

Spectrum Technologies, Aurora, IL, USA) with a probe length of 20 cm and gravimetrically via 

oven drying on 20 Oct. and 8 Nov. 2021.  The 0 – 20 cm depth was considered because it is an 

active interface between the soil, vegetation, atmosphere, and human activities mostly affected by 

precipitation, infiltration, and canopy cover (Choi et al. 2007). Soil moisture data measured 

gravimetrically were converted to volumetric soil moisture (Carter and Gregorich 2007) and 

correlated with the TDR data measured using Lin’s Concordance Correlation Coefficient (LCCC) 

and Root mean square error (RMSE) performance criteria to obtain the field scale accuracy of the 

TDR meter. Lin’s Concordance Correlation Coefficient prediction matrix measures the accuracy 

http://climate.weather.gc.ca/
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of the prediction along a 1:1 line to evaluate the agreement between paired readings (Lawrence and 

Lin 1989) and is of the form:  

(2𝑠xy)/(sx
2 + sy

2 + (x* – y*)2)       Equation 3.2 

where sx
2 = 

1

𝑁
∑ (𝑥𝑖 −  𝑥 ∗)2 

𝑛

𝑖=1
, sy

2 =  
1

𝑁
∑ (𝑦𝑖 −  𝑦 ∗)2,

𝑛

𝑖=1
 sxy = 

1

𝑁
∑ (𝑥𝑖 −  𝑥 ∗)(𝑦𝑖 − 𝑦 ∗) 

𝑛

𝑖=1
 

x* and y* are sample means for populations X and Y, and xi and yi are paired ith values from 

populations X and Y. The value of the index is scaled between −1 and 1, with a value of 1 

representing complete agreement between all paired sites.  

3.2.4 Descriptive statistics 

 

Descriptive statistics (boxplot and coefficient of variation − CV) were conducted to evaluate the 

variability of ECa and soil moisture data on both survey dates. Across all the study sites, the 

relationship between ECa and soil moisture was not statistically significant (p > 0.05) for 2.85, 

18.33 and 80.01 kHz frequencies in both HCP and VCP modes; hence were not further analyzed. 

However, the relationships were significant (p < 0.05) for the soil ECa measured with a frequency 

of 38.31 kHz in HCP mode across all study sites on both survey days; thus, only the 38.31 kHz in 

HCP mode was considered for further analysis. A similar result was seen by Altdorff et al (2018), 

Badewa et al (2018) and Sadatcharam et al (2020) on a nearby field at the Western Agriculture 

Center and Research Station. Kolmogorov-Smirnov frequency distribution analysis revealed that 

all soil properties investigated in this study were normally distributed on both survey days.  
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3.2.5 Analysis of variance 

 

One-way analysis of variance (ANOVA) was used to examine the differences in soil ECa and soil 

moisture across the different land use conditions. The normality of residuals was assessed using 

Kolmogorov-Smirnov test, and least square means were compared using the Fisher LSD test at 5% 

significance. 

 

3.2.6 Correlation and regression 

 

The strength of the relationships between ECa and soil moisture for each land use were assessed 

using Pearson correlation analysis. A strong relationship between the auxiliary variable and target 

variable has been seen as an efficacy of cokriging (Tarr et al. 2005). Linear regression was used to 

characterize the relationship between soil moisture and ECa and to generate predictive models of 

soil moisture under each land use using ECa from the first survey day. The models were validated 

by fitting them to the ECa data from the second sampling day to predict soil moisture for the second 

sampling day. The model performances were evaluated using the level of agreement (accuracy) 

between the predicted and measured soil moisture for the second day using LCCC prediction matrix 

and RMSE. All statistical analyses were performed with Minitab 17 (Minitab 17 Statistical 

Software 2010). 

 

 

3.2.7 Geostatistical analysis 

 

Ordinary kriging was used to prepare interpolated maps of ECa. The spatial prediction of the 

unmeasured points was given by the line sum of observed values (Equation 3.3). 
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Z∗(xo)= ∑n i=1 =1λiZ(xi)            Equation 3.3 

where Z∗(xo) is the predicted value at the unmeasured position xo, Z(xi) is the measured value at 

position xi, λi is the weighting coefficient from the measured position to xo and n is the number of 

positions within the neighborhood searching.  

 

A total of 4202, 1303, and 1062 ECa data were collected (observed values) from the agricultural 

land, field road and natural forest, respectively. Soil moisture was less sampled (9 data points) 

compared to ECa in this study, hence, in addition to ordinary kriging, cokriging was used for soil 

moisture mapping. Cokriging is the multivariate equivalent of ordinary kriging. The main 

difference is that cokriging has a secondary variable (covariate) (Equation 3.4). 

∑n
vl=1 ∑

n
i=1 λil λlvγ(xi,xj)- μv = γuv(xi,xp) where j = 1, ..., n and u = 1, ..., v 

∑nl
i=1 λil = 

1 1 = 𝑢
0 1 ≠ 𝑢

              Equation 3.4 

where u and v are the target and covariate variables, respectively. The two variates u and v are 

cross-correlated, and the covariate contributes to the estimation of the target variate. 

 

The ECa data collected on the agricultural land, field road and natural forest, respectively were 

used as covariates for soil moisture predictions with cokriging. To assess the effectiveness of ECa 

as an auxiliary variable for improving soil moisture mapping predictions, ordinary kriging was 

compared to cokriging.  
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Several variogram models (linear, exponential, circular, gaussian, spherical and power model) were 

considered for creating ECa and soil moisture maps using ordinary kriging or cokriging. The 

variogram models with the lowest RMSE based on the cross-validation results were selected 

(Sówka et al. 2020). Cross-validation works by singly removing each point in the sampling scheme 

and predicting its value based on kriging the remaining data. All variograms were assumed to be 

isotropic. The ordinary kriging and cokriging under each land use were compared using Surfer 24 

(Golden Software Inc. 2022). Interpolated maps were then created using Surfer 24 (Golden 

Software Inc. 2022). 

 

3.3 Results and discussion 

 

The development of policies in recent times to maintain water resources require evidence-based 

information on the spatial distribution of soil moisture under different land uses (Gebrehiwot et al. 

2021). This approach to measuring soil moisture in different land use conditions has the potential 

to improve land-unit mapping, agricultural planning, and afforestation activities (Stavi et al. 2019).  

 

3.3.1 Calibration of TDR 

 

There was a significant strong positive correlation (LCCC = 0.9) between measured volumetric 

moisture content with the TDR and the calculated volumetric moisture content using the 

gravimetric analysis and bulk density for 0-20 cm depth  with a low RMSE (1.09 %) as seen in 

Figure 3.3. This result is similar to that is reported by Topp et al. (1980) and Badewa et al. (2018).  
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Figure 3.3: Relationship between the measured volumetric moisture content  with the TDR and the 

calculated volumetric moisture content using the gravimetric analysis and bulk density for 0-20 cm 

depth. 

 

3.3.2 Descriptive statistics 

 

Several factors including but not limited to land use can influence the variation in soil properties 

(Atwell and Wuddivira 2019). All other factors besides land use were kept constant during soil 

data collection, therefore the variations in soil ECa and soil moisture were used as a measure of 

sensitivity to land use. The coefficient of variation (CV) of the soil ECa and soil moisture within 

land uses was used as a reflection of the spatial sensitivity of ECa and soil moisture. According to 

the classification of Warrick (1998), the CV of ECa for agricultural land and field road were 

moderate (15% < CV < 35%) while that of the natural forest was low (CV < 15%) for the first 
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survey day (Figure 3.4). For the second survey day (Figure 3.4), the CVs for ECa for the three 

different land use conditions were low based on the classification of Warrick (1998). The 

agricultural land had the highest CV in ECa among the three land use conditions indicating this 

land use was most sensitive to ECa changes. This was primarily attributed to fertilizer inputs in this 

land use as discussed in Atwell and Wuddivira (2019). The CV for the soil moisture was low for 

all three land use conditions for both survey days (CV < 15%) (Figure 3.5). Natural forest showed 

the lowest CV in soil moisture indicating a more stable spatial pattern in the soil moisture. 

Agricultural land and field road showed a higher CV in soil moisture, indicating that factors such 

as human disturbance can increase the spatial heterogeneity of soil moisture as also discussed in 

Guo et al (2020).  

 

The range of ECa was most extensive in the natural forest relative to the agricultural land, and field 

road for both survey days. The higher ECa range may be ascribed to higher soil organic matter 

found in the natural forest relative to the other land use conditions. This result is similar to the 

observation by Atwell and Wuddivira (2019). The range of ECa values in the agricultural land was 

greater than that in the field road, and this may be due to fertilizer application which potentially 

leads to increased soil ionization (Kaufmann et al. 2020).  
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Figure 3.4: Spatial variability of apparent electrical conductivity (ECa) data ranges by box and 

whisker plots (* - outlier value) with coefficient of variation for the different land use conditions 

on two survey days.  

 

Figure 3.5: Spatial variability of soil moisture data ranges by box and whisker plots (* - outlier 

value) with coefficient of variation for the different land use conditions on two survey days. 
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3.3.3 Analysis of variance 

 

The mean ECa for the natural forest was higher than agricultural land and field road for the first 

survey day (20 Oct. 2021) and for the second survey day (8 Nov. 2021) (Table 3.2). Generally, 

soils with high clay contents possess continuous moisture-filled pores that easily conduct electricity 

relative to sandy soils (Rhoades et al. 1989). Natural forest had a higher clay and soil organic matter 

content relative to the other land use conditions as shown in Table 3.1 leading to a higher water 

holding capacity (Atwell and Wuddivira 2019). The lowest ECa mean was recorded in the 

agricultural land. This was related to the fact that ECa surveys on agricultural land were carried out 

during the harvesting period hence the crops on this land could have utilized most of the applied 

fertilizer leading to low ECa readings. The frequent use of the field road as an access route could 

have increased the soils compaction hence leading to a relatively higher ECa than in the agricultural 

land (Machado et al. 2014).  

 

The soil moisture mean values were higher on the first survey day than on the second survey day 

(Table 3.2) which potentially could be due to a higher total rainfall (mm) on the first survey day 

(84.2 mm) relative to the second survey day (19.3 mm) as seen in Figure 3.2. The total rainfalls 

were calculated for ten days before each survey date. The mean soil moisture values were higher 

in the natural forest relative to the agricultural land and field road (Table 3.2). This was ascribed 

to the deep litter layer (relatively high soil organic matter) found in this land use. The deep litter 

can potentially reduce surface evaporation and can improve vertical infiltration effectively by 

preventing rainfall splashing as well as surface runoff. By improving vertical infiltration, the 
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presence of the litter facilitates the formation of an aerobic environment that accelerates the 

decomposition of root systems and improves soil porosity by providing a network of continuous 

root channels. This finding agrees with that of Morris (2004). The availability of high soil organic 

matter in coarser textured soils such as podzolic soils also tends to expand the volume of soil pores 

that retain water against gravitational drainage, increasing the water holding capacity in the natural 

forest as observed by Morris (2004). The low soil moisture in agricultural land and field road was 

ascribed to the higher rate of evaporation that existed in the surface horizon of the agricultural land 

and field road than on the natural forest due to factors such as ploughing, which reduces soil water 

evaporation by creating a capillary barrier at the surface horizon (Gao et al. 2011). In addition, the 

agricultural land and field road had relatively higher surface runoff due to surface crusting and 

compaction, causing them to have a lower infiltration than in the natural forest.  

 

One-way analysis of variances (ANOVA) revealed that ECa data were not significantly different 

between the agricultural land and field road, possibly due to the proximity and similar soil 

characteristics between these land use conditions; however, ECa in natural land was significantly 

different from agricultural land and field road as seen in Table 3.2. In contrast, soil moisture was 

found to be significantly different among the three land use conditions (p < 0.005) for both survey 

days as shown in Table 3.2. These statistics proved that soil ECa and soil moisture differences 

existed between the land use conditions as indicated by Xu et al (2021) and Gao et al (2011). 

Although soil ECa is dynamic, the results indicate that soil moisture is more sensitive to land use 
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conditions relative to soil ECa in this study area. In the Aripo savannas, soil moisture has also been 

seen to be more sensitive to land use conditions relative to soil ECa (Atwell and Wuddivira 2019). 

 

Table 3.2 Analysis of variance of apparent electrical conductivity (ECa) and soil moisture content 

measurement between agricultural land, natural forest, and the field road at 95% confidence  

Effects N ECa (dS m-1) Soil moisture (%) 

Land use  Survey Day 1 Survey Day 2 Survey Day 1 Survey Day 2 

    

Natural forest 9 0.25 a ***  0.23 a ***  42.98 a ***  38.23 a ***  

Field road 9 0.08 b **    0.07 b **    38.01 b **    32.67 b **    

Agricultural land 9 0.06 b **    0.05 b **    33.71 c **    25.98 c **    

Standard Error  0.0063 0.0147 1.30 2.47 

Means that do not share a common letter are significantly different according to Fisher’s Least 

Significant Difference Test. Significance is reported at 0.05 (**) 

 

3.3.4 Pearson correlation analysis 

 

There were significant positive correlations between ECa and soil moisture for all three land use 

conditions (Figure 3.6). There was a strong relationship between ECa and soil moisture in the field 

road and the natural forest whiles the agricultural land showed a relatively weaker relationship 

between ECa and soil moisture on both survey days as shown in Figure 3.6. The correlation results 

show that ECa values in the study area increase with water content and potentially ions retained in 
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soil solution. The positive correlation between ECa and soil moisture corroborates with previous 

studies (Tang et al. 2020; Wang et al. 2020) in agricultural lands in other sub-regions.  

 

3.3.5 Regression analysis 

 

Regression analysis showed ECa explained more than 70% of the variation in soil moisture in the 

field road and the natural forest. On the other hand, ECa explained relatively lower (59%) variation 

in soil moisture in the agricultural land (Figure 3.6). A possible explanation of the lower R2 in the 

agricultural land could be because the agricultural land is a managed ecosystem with the presence 

of fertilizer resulting in an increase in the concentration of dissolved ions and, consequently, in the 

pore water electrical conductivity (ECw) contributing to a higher variability in ECa. Also, due to 

heavy compaction and shallow water depth in some areas of the agricultural land it resulted in poor 

drainage in certain zones of the field. These factors could have affected ECa − soil moisture relation 

(Archie 1942; Corwin and Lesch 2005; Altdorff et al. 2018). The regression results for each land 

use conditions on both survey days indicate that ECa is primarily controlled by soil moisture for 

these study sites.  

 

Validation of the generated regression models using LCCC and RMSE obtained by comparing the 

predicted volumetric soil moisture using ECa data with linear regression models to the measured 

volumetric soil moisture with TDR revealed that predictions of soil moisture from site specific 

linear regression models exhibited much certainty on the land use conditions with higher soil 

moisture (natural forest) compared to the land uses with lower soil moisture (agricultural land and 
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field road) as seen in Figure 3.7. No significant differences existed between the regressions for 

agricultural land and field road. The fitted linear regression developed between ECa and soil 

moisture in the natural forest (LCCC = 0.7, RMSE = 3.87 %) provided the highest prediction 

accuracy relative to the other land use conditions. These findings indicate that moist soils are more 

favourable for ECa surveys, as also suggested by Brevik et al (2006) and Sadatcharam et al (2020). 

Although several regression models were developed to predict soil moisture during data 

processing, the site-specific models produced the most accurate soil moisture predictions as seen 

by Drummond et al (2003) and Altdorff et al (2018).  

 

Systematic deviations in soil moisture (Figure 3.7) have been reported by Bogena et al. (2007) to 

be magnified in soils with lower ECa (∼0.06 dS m-1). These ECa values reported by Bogena et al. 

(2007) are similar to those recorded in the agricultural land and field road in our study (Table 3.2).  

A further explanation for the under-estimation and over-estimation is the disparity of sampling 

depths between TDR and EMI sensor (Altdorff et al. 2017; Calamita et al. 2015). TDR probes were 

installed vertically at 0-20 cm depth and the EMI sensors have an effective integral depth of 0-250 

cm. Another factor could be the effect of soil temperature on the sensor’s electronics as also 

mentioned by Bogena et al. (2007). However, the effect of temperature on the instrument and 

therefore measured ECa of the soil in our study area has not yet been studied, and its influence on 

the results of the experiment is beyond the scope of this paper. 
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Figure 3.6: The site-specific relationship between ECa and volumetric soil moisture with Pearson 

correlation coefficient (r) and coefficients of determination (R2) under each land use. 

      

Figure 3.7: Relationship between predicted soil moisture from linear regression models and TDR 

measured soil moisture under agricultural land (a), field road (b) and natural forest (c) with Lin’s 

concordance correlation coefficient and root mean square error. 

 

3.3.6 Interpolated maps 

 

Visual differences generally existed between the maps of soil moisture obtained from kriging and 

those from cokriging. The maps obtained from cokriging were less smooth and showed more local 

detail in their representation of the soil moisture variability. However, the trends in variability of 

soil moisture in both methods were similar. These findings agree with that of Tarr et al. (2005). 
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The parameters used in fitting the variograms for each interpolated map are displayed in Table 3.3. 

The various variograms are displayed in Appendix A1-A6. 

 

3.3.6.1 Agricultural land  

 

The interpolated spatial maps for ECa (38.3 kHz) for the agricultural land for the two survey dates 

are displayed in Figures 3.8a and 3.9a. ECa values for this land use ranged from 0.05 – 0.2 dS m-1. 

In this land use, spherical (Figure. A1 (a)) and Gaussian models (Figure. A2 (a)) displayed the best 

fitting models for the spatio-temporal representation of ECa in ordinary kriging for the first and 

second day respectively. The variograms provided a clear insight of ECa spatial structure of both 

sampling days. Positive nugget values were found for the ECa variograms on both survey days 

(Table 3.3). This could be due to the variation in ECa associated with short-range variability of soil 

properties such as soil moisture content, ionic composition, and topography (Narjary et al. 2019). 

The lower range (3 m) on the second day compared to the first day (19.2 m) (Table 3.3) suggests 

that the spatial autocorrelation of ECa increased on the second day (Liu et al. 2017). The increase 

in RMSE between the first day (RMSE = 0.05 dS m-1) and second day (RMSE = 0.09 dS m-1) 

obtained from cross-validation (Table 3.3) indicates a reduction in prediction accuracy possibly 

due to an increase in spatial heterogeneity of ECa as displayed in the interpolated map (Figure 3.9a). 

The nugget:sill ratio was used to classify the spatial dependence of ECa. Ratio values lower than 

25% and higher than 75% corresponded to strong and weak spatial dependence, respectively, while 

the ratio values between 25% and 75% corresponded to moderate spatial dependence (Chang et al. 

1998). ECa in the agricultural land use exhibited a strong spatial dependence on the first day and a 

moderate spatial dependence on the second day (Table 3.3). 



 

 

80 

 

This land use generally had low ECa scattered across the map with the highest ECa region in the 

agricultural land observed on the lower left region of the map for the first survey day. The 

interpolated ECa maps for the second survey date generally revealed lower ECa values relative to 

the first survey date which is consistent with the trend of the measured ECa data.  

 

The spherical variogram model was the best fit for the spatio-temporal representation of soil 

moisture in both cokriging Figure A3 (a) and A4 (a)) and ordinary kriging (Figure A6 (a) and A6 

(a)) for both survey days. The presence of nugget effect in the ordinary kriged soil moisture maps 

could be attributed to measurement errors (Kathuria et al. 2019). The maps obtained from cokriging 

(Figure 3.10a and 3.12a) revealed less smoothness in their depiction of soil moisture variation 

compared to the ordinary kriged maps (Figure 3.11a and 3.13a). The range values varied slightly 

between both interpolation techniques on both survey days indicating a slight variation in the 

spatial autocorrelation of soil moisture (Table 3.3).  

 

The land use was generally dry with the highest soil moisture observed as a small pocket on the 

northern section of the map. The land use exhibited a strong spatial dependence on the first day 

and a moderate spatial dependence on the second day. The accuracies of the soil moisture map 

obtained from cross-validation were higher with cokriging  (RMSE = 0.45 % and 0.47 % for day 

1 and day 2 respectively) relative to ordinary kriging prediction (RMSE = 0.62 % and 1.72 % for 

day 1 and day 2 respectively) revealing the effectiveness of using ECa as a covariate in creating 

more accurate soil moisture maps relative to ordinary kriging in this land use. 
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3.3.6.2 Field Road 

 

The interpolated spatial maps of ECa for the field road ranged between 0.05 – 0.2 dS m-1for the two 

survey dates (Figures 3.8b and 3.9b). In this land use, spherical models produced the best fit for 

the spatio-temporal representation of ECa in ordinary kriging for both days (Figure A1 (b) and A2 

(b)). The model had a nugget effect of 0.2 and a range of 12 m on both survey days (Table 3.3). 

The lower nugget value on this land use compared to the agricultural land could be attributed to 

the local scale decrease in ECa variation in the field road (Narjary et al. 2019). The RMSE obtained 

from cross-validation did not change between the first and second day (RMSE = 0.04 dS m-1) 

(Table 3.3). The land use exhibited a strong spatial dependence on both survey days (nugget:sill = 

8%) (Table 3.3). The field road generally had low ECa scattered across the map with the highest 

ECa found in the upper region of the map on both days (Figures 3.8b and 3.9b). This interpolated 

ECa maps for the second survey date generally revealed lower ECa values relative to the first survey 

date. A similar pattern was observed in the agricultural land as described above. 

 

For soil moisture, the spherical variogram model presented the best fit in both cokriging (Figure 

A3 (b) and A4 (b)) and ordinary kriging (Figure A5 (b) and A6 (b)) for the first and second survey 

days. There were no nugget effects in both approaches (Table 3.3). Maps obtained from cokriging 

(Figures 3.10b and 3.12b) displayed less smoothness in their depiction of soil moisture variation 

compared to maps from ordinary kriging (Figures 3.11b and 3.13b). The ranges in soil moisture 

values obtained from both interpolation techniques did not differ between the two survey days (2 

m) (Table 3.3). This suggests that the spatial autocorrelation of soil moisture was not significantly 
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affected by either interpolation technique or time. The accuracies of the soil moisture map obtained 

from cross-validation was higher in the cokriging prediction relative to  ordinary kriging prediction 

for the first and second survey days (RMSE = 0.03 % and 0.45 % vs. RMSE = 0.49 % and 0.82 %, 

respectively) (Table 3.3). This revealed the effectiveness of using ECa as a covariate in creating 

more accurate soil moisture maps relative to ordinary kriging in this land use. This result 

corroborates findings from Tarr et al. (2005) who reported superior effectiveness of cokriging 

relative to ordinary kriging for soil properties such as soil moisture and organic matter.  

 

3.3.6.3 Natural Forest  

 

The power variogram model (Figure A1 (c) and A2 (c)) displayed the best fit for the spatial 

representation of ECa in ordinary kriging for the two survey days (Figures 3.8c and 3.9c). The 

variogram parameters did not change between survey days in this land use (Table 3.3). The model 

had a nugget effect of 0.2 and a range of 1 m in this land use (Table 3.3), suggesting the presence 

of spatial autocorrelation possibly due measurement errors when collecting ECa measurements 

(Haining 2009; Liu et al. 2017). The land use exhibited moderate spatial dependence on both survey 

days (nugget:sill = 40%) (Table 3.3). The RMSE obtained from cross validation was lower on the 

first day (RMSE = 0.14 dS m-1) compared to the second day (RMSE = 0.24 dS m-1) (Table 3.3) 

indicating a reduction in prediction accuracy. This was possibly due to the higher soil moisture 

content on the first survey day relative to the second survey day (Table 3.2). Prediction accuracy 

of ECa is expected to increase with soil moisture (Sadatcharam et al. 2020).  The natural forest 

generally had the highest ECa readings compared to the other land use conditions. This is consistent 
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with the higher soil organic matter in the natural forest compared to the other land use types. Soil 

organic matter improves nutrient retention (Lal 2020), cation exchange capacity (Wulanningtyas 

et al. 2021), moisture retention (Chalise et al. 2019) and electrical conductivity (Pouladi et al. 

2019). Similar to the agricultural land and field road, the interpolated ECa maps for the second 

survey date showed lower ECa values than those for the first survey date.  

 

For the first survey day, the spherical model produced the best fit for the spatial representation of 

soil moisture in cokriging (Figure A3 (c)) and ordinary kriging (Figure A5 (c)). On the other hand, 

the Gaussian model was the best fitting model for the ordinary and cokriging (Figure A4 (c)) for 

the second day. There were no nugget effects in both interpolation methods (Table 3.3). This could 

mean there were minimal errors associated with data collection (Lui et al. 2017). The maps 

obtained from cokriging (Figures 3.10c and 3.12c) revealed less smoothness and more local detail 

in its depiction of soil moisture variation compared to the ordinary kriged maps (Figures 3.11c and 

3.13c). This is consistent with what was observed in the other land uses. The range values did not 

change (2 m) between interpolation methods on the first day (Table 3.3). A similar finding was 

seen on the second day (2.5 m)  indicating that the spatial autocorrelation of soil moisture did not 

vary with interpolation technique but varied with time. This land use was wetter compared to the 

other land use conditions. The accuracies of the soil moisture map obtained from cross-validation 

was higher in the cokriging prediction (RMSE = 0.02 % and 0.18 % for day 1 and day 2 

respectively) than in the ordinary kriging prediction (RMSE = 0.13 % and 0.25 % for day 1 and 
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day 2 respectively) (Table 3.3) revealing the effectiveness of using ECa as a covariate in creating 

more accurate soil moisture maps relative to ordinary kriging in this land use. 
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Table 3.3 Geostatistical parameters for ordinary kriging and cokriging analysis and cross validation results (root mean square error) of 

apparent conductivity and soil moisture content for 20 Oct and 8 Nov. 2021 survey 

Variables First survey day Second survey day 

Interpolation  

technique 

Model Nugget Sill Range RMSE Interpolation  

technique 

Model Nugget Sill Range RMSE 

ECa 

Agricultural 

land 

 

Ordinary 

kriging 

Spherical 0.3  1.5 19.2  0.05  

Ordinary 

kriging 

Gaussian 2.3 4.8 3.0 0.09 

Field road Spherical 0.2 2.5 12.0 0.04 Spherical 0.2 2.5 12.0 0.04 

Natural 

forest 

Power 0.2 0.5 1.0 0.14 Power 0.2 0.5 1.0 0.24 

Soil moisture 

Agricultural 

land 

 

Ordinary 

kriging 

Spherical 6.2 10.2 8.0 0.13  

Ordinary 

kriging 

Spherical 6.2 10.2 8.0 0.25 

Field road Spherical 0.0 7.7 2.0 0.49 Spherical 0.0 7.0 2.0 1.72 

Natural 

forest 

Spherical 0.0 6.0 2.0 0.62 Gaussian 0.0 10.0 2.5 0.82 

Agricultural 

land 

 

Cokriging 

Spherical 0.0 1.0 9.0 0.02  

Cokriging 

Spherical  11.0 13.0 9.0 0.18 

Field road Spherical 0.0 7.0 2.0 0.03 Spherical 0.0 9.4 8.0 0.45 

Natural 

forest 

Spherical 0.0 7.4 2.0 0.45 Gaussian 0.0 10.0 2.5 0.47 
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   (a)       (b)  (c) 

Figure 3.8: Spatial variability maps of apparent electrical conductivity (ECa) (a) Agricultural land; 

(b) Field road; (c) Natural forest obtained from ordinary kriging for first survey day. 

  (a)       (b)     (c) 

Figure 3.9: Spatial variability maps of apparent electrical conductivity (ECa) (a) Agricultural land; 

(b) Field road; (c) Natural forest obtained from ordinary kriging for second survey day. 

(a)  (b)  (c)  

Figure 3.10: Spatial variability maps of soil moisture content (a) Agricultural land; (b) Field road; 

(c) Natural forest obtained from cokriging for first survey day with apparent electrical conductivity 

(ECa) as covariate. 
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 (a)   (b)      (c) 

Figure 3.11: Spatial variability maps of soil moisture content (a) Agricultural land; (b) Field road; 

(c) Natural forest obtained from ordinary kriging for first survey day. 

 (a)   (b)      (c) 

Figure 3.12: Spatial variability maps of soil moisture content (a) Agricultural land; (b) Field road; 

(c) Natural forest obtained from cokriging for second survey day with apparent electrical 

conductivity (ECa) as covariate. 

 

 (a)  (b)     (c)  

Figure 3.13: Spatial variability maps of soil moisture content (a) Agricultural land; (b) Field road; 

(c) Natural forest obtained from ordinary kriging for second survey day. 
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3.4 Conclusion 

 

This study demonstrates that proximal surveys of ECa using GEM-2 could be a helpful surrogate 

for assessing intra-field variability of soil moisture. This was achieved by analyzing the 

relationships between ECa and soil moisture measurements from three different land use conditions 

(agricultural land, recently cleared natural forest and field road) on a boreal podzolic soil. The 

strong influence of soil moisture on ECa under the different land use conditions from the generated 

linear regression was indicative that soil moisture was a major driver of ECa in the study area. 

Mapping of soil moisture using cokriging with ECa as a covariate produced more local detail than 

maps produced using ordinary kriging. There were improvements in the prediction accuracies of 

soil moisture maps when the cokriging technique was applied compared to the ordinary kriging. 

This suggests that ECa obtained using EMI has the potential as a robust auxiliary variable for 

accurately predicting soil moisture in boreal podzolic soils. The best prediction was found in the 

natural forest, the land use type that had the strongest correlation between soil moisture and ECa. 

These results suggest that cokriging of soil moisture with densely sampled ECa as covariates 

improves the characterization accuracy of soil moisture variability in the study area. This study 

reveals the effectiveness of the georeferenced MF-EMI technique to rapidly assess intra-field 

variability under different land uses. Such surveys may rapidly map the spatial variability of intra-

field soil moisture under different land use conditions. It is recommended that more studies should 

be carried out on other subregions for further validation. 
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Appendix 1 

(a) (b)  (c) 

Figure A1: Variogram models of apparent electrical conductivity obtained from ordinary kriging 

for agricultural land (a), field road (b) and natural forest (c) for first survey day. 

(a) (b)  (c)  

Figure A2: Variogram models of apparent electrical conductivity obtained from ordinary kriging 

for agricultural land (a), field road (b) and natural forest (c) for second survey day. 
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(a) (b)  (c) 

Figure A3: Variogram models of soil moisture obtained from cokriging for agricultural land (a), 

field road (b) and natural forest (c) for first survey day. 

(a)  (b) (c) 

Figure A4: Variogram models of soil moisture obtained from cokriging for agricultural land (a), 

field road (b) and natural forest (c) for second survey day. 

(a)  (b)  (c)  

Figure A5: Variogram models of soil moisture obtained from ordinary kriging for agricultural land 

(a), field road (b) and natural forest (c) for first survey day. 

(a)  (b)   (c)    

Figure A6: Variogram models of soil moisture obtained from ordinary kriging for agricultural land 

(a), field road (b) and natural forest (c) for second survey day. 
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Abstract 

Investigating the shallow depth of podzolic soils is challenging due to its complex nature. Near-

surface geophysical techniques, such as electromagnetic induction (EMI), can significantly help 

investigate podzolic soils. Multi-coil (MC-EMI) and multi-frequency (MF-EMI) sensors were 

selected to maximize soil moisture (SMC) prediction in this study. The objectives of this study 

were (i) comparing apparent electrical conductivity (ECa) measurements from the MC and MF-

EMI sensors under different land use conditions. (ii) investigating the spatial variation of apparent 

electrical conductivity (ECa), soil moisture content (SMC), texture, soil organic matter (SOM), 

and bulk density (BD) under different land use conditions (iii) using statistical and geostatistical 

analysis to evaluate the effectiveness of ECa measurements in characterizing SMC under different 

land use conditions, taking into consideration the texture, SOM, and BD contents in each land use. 

The results of the study showed that MC-EMI sensors had more coil orientations showing 

statistically significant relations (p-value  0.05) with SMC relative to the MF-EMI sensor. 

Multiple linear regression (MLR) models were also shown to be more effective in representing 

SMC variations (higher coefficient of determination and lower root mean square error) than simple 
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linear regression models. MC-EMI sensors provided better predictions of SMC than the MF-EMI 

sensor, likely because the differences in sampling depths between the TDR measured SMC and 

MF-EMI sensor were much greater than those between TDR measured SMC and MC-EMI sensor. 

Lastly, cokriging of measured SMC offered more accurate maps than cokriging of predicted SMC 

obtained from MLR across different land use conditions. This study shows that EMI has the 

potential as a robust technique for accurately predicting soil moisture in boreal podzolic soils. 

Keywords: apparent electrical conductivity, electromagnetic induction, multi-frequency, multi-

coil. 

 

4.1 Introduction 

Soil properties vary at diverse spatial scales mainly due to factors such as soil management (Kilic 

et al. 2012), and land use (Saglam and Dengiz, 2012). Understanding how soil properties respond 

to different agricultural management practices is crucial in optimizing agricultural operations and 

inputs. Understanding spatial variations can be achieved by applying a suite of advanced 

information, data analysis, and communication technologies such as remote sensing (geophysical 

techniques), geographic information systems (GIS), global positioning systems (GPS), and 

artificial intelligence (Sishodia et al. 2020). Conventional methods of sampling and analyzing soil 

properties such as moisture content (SMC), texture, organic matter (SOM), and bulk density (BD) 

to understand spatial variability tend to be destructive, time consuming and expensive. 

Consequently, these methods can hinder timely decision-making due to the sparse representation 

of the desired soil property’s spatial variation (Allred et al. 2008). New geophysical techniques, 



 

 

98 

 

such as electromagnetic induction (EMI) provides a rapid, reliable, and non-destructive 

assessment of surface soil properties pertinent to crop growth at small and large scales (Farzamian 

et al. 2019; Narjary et al. 2019). This led to use of a wide range of portable EMI sensors including 

the EM-31, EM-34, EM-61, CMD-mini-explorer, and the GEM-2 (Buta et al. 2019). 

 

EMI technique operates by inducing an alternating current (EM waves in kHz) via the primary 

electromagnetic field generated from the transmitting coil of the EMI sensor and measuring the 

resultant secondary field from the receiving coil on the sensor (Von Hebel et al. 2019). The 

amplitude, phase differences, and inter-coil spacing between the primary and resultant fields are 

then used to determine an “apparent” value for soil electrical conductivity (ECa) (McNeill 1980). 

ECa is a robust and easily measurable soil parameter that is correlated with other key soil 

parameters such as SMC (Nocco et al. 2019), texture (Grubbs et al. 2019), SOM (Grubbs et al. 

2019), and BD (Al Rashid et al. 2018) and can be used to improve the estimation of these soil 

properties when a spatial correlation is developed. However, developing relationships between 

ECa and soil properties are a complex task due to multicollinearity between several predictor soil 

properties. Multicollinearity is a phenomenon that can lead to unreliable results when conducting 

statistical analyses, such as soil studies in which soil properties such as BD, SOM, and soil texture 

are measured. This can occur when soil properties are measured in different locations or at different 

times, thus presenting the issue of multicollinearity that can affect the quality of results. To reduce 

the effects of multicollinearity, methods such as principal component analysis, partial least squares 

regression, and ridge regression are employed. Furthermore, multiple linear regression (MLR) 

models with interaction terms can be used to identify multicollinearity between predictor variables. 

Additionally, multivariate statistical and geostatistical methods such as MLR and cokriging can be 



 

 

99 

 

utilized to improve estimates of soil properties by integrating ECa measured with EMI sensors as 

a covariate. Hence, due to its potential to produce unreliable results, multicollinearity must be 

addressed to ensure accurate analyses. 

 

EMI sensors, specifically the MF sensors have one coil separation and multiple operating 

frequencies, whereas MC sensors have a fixed frequency and multiple coil separations (Altdorff 

et al. 2020). In the MF sensor the magnitude of the selected operating frequency is inversely 

proportional to the depth of investigation (DOI) (Badewa et al. 2018; Sadatcharam et al. 2019). 

Thus, a higher operating frequency results in shallower DOI and higher data resolution of the 

mapped area. For the MC sensor, the DOI is dependent on the coil separation thus, the higher the 

inter-coil spacing between the transmitter and receiver coils, the higher the depth of investigation 

and vice versa. Due to lower operating frequencies, MF sensors can operate at higher DOIs 

compared to MC sensors (Sadatcharam et al. 2019). Both sensors can be configured to operate in 

two coil orientations, horizontal or vertical dipole mode. The DOI for the vertical dipole mode is 

approximately twice of that in the horizontal dipole mode (McNeill 1980). The choice of a sensor 

is dependent on several factors such as the depth resolution of the integral signals and its adaptation 

to outside temperatures (Sadatcharam 2019), and both EMI sensors employed in this study have 

shown to satisfy these criteria. EMI sensors could be a useful tool when delineating soil properties 

in the growing agricultural industry in Newfoundland and Labrador (NL), Canada.   

 

The NL provincial government is bolstering the growth of local food production by committing 

substantial areas of the boreal forests into agricultural fields (Government of Newfoundland and 

Labrador 2017). Using rapid and non-destructive tools such as EMI sensors to characterize the 
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spatial variability of vital soil properties can support the timely decision making and development 

of recommendations for site-specific management practices. This study investigates the role of 

EMI sensors for mapping ECa under different land use conditions and agricultural management 

practices. Specifically, this work aims to (i) compare ECa data generated from multi-coil (MC) and 

multi-frequency (MF) EMI data, (ii) inspect the spatial variation of ECa, SMC, texture, SOM, and 

BD under different land use and management practices, and (iii) evaluate the effectiveness of ECa 

measurement to characterize SMC under agricultural land, field road and natural forest by 

considering the texture, SOM, and BD contents in each land use in Western NL, Canada. This 

work is important for supporting researchers, policy makers, and land managers with valuable 

information that can facilitate land use planning, site specific management and developing 

agricultural management recommendations to enhance food production in the province. 

 

4.2 Materials and methods 

4.2.1 Study area 

This study was conducted on three land use conditions: an agricultural field, a natural forest, and 

a field road at the Western Agriculture Center and Research Station, Pasadena (49.0130° N, 

57.5894° W), NL, Canada (Figure 4.1). The Department of Fisheries, Forestry, and Agriculture, 

Government of NL manages the study site. The soil at the study site was classified as a reddish-

brown to brown Podzol developed on a gravelly sandy fluvial deposit with >100 cm depth to 

bedrock and a 2% – 5% slope (Croquet 2016). The area of the agricultural land considered was 

924 m2 and included three oats/peas. The field road was adjacent to the agricultural land and 240 

m2 in area, serving as access year crop rotation of corn, with canola, faba bean, wheat, and for 



 

 

101 

 

equipment, vehicles, and people to the other parts of the field. A 50 m2 area was selected from a 

recently cleared natural forest to compare its investigated soil properties data with the other land 

use conditions of interest (agricultural land and field road) (Figure 4.1). The area received a total 

rainfall of 409 mm and had an average mean temperature of 8.18 °C (Figure 4.2) based on three-

month data (1 Sep. – 30 Nov. 2021) from the nearby Deer Lake weather station A. 

(http://climate.weather.gc.ca.). The daily total precipitation and temperature (minimum, maximum 

and mean) data obtained from Deer Lake weather station A were used to calculate the daily PET. 

Potential evapotranspiration (PET) was calculated using the modified Hargreaves-Samani 

equation (Equation 4.1) for the Deer Lake weather station A (Perera, 2021).   

PET = 0.0018 
𝑅𝑎

λ
 (Tmax – Tmin)

0.5411 (Tmean + 19.6605)     Equation 4.1 

where Tmax is the daily maximum temperature, Tmin is the daily minimum temperature, Tmean is the 

daily mean temperature, Ra is the extraterrestrial radiation (MJ/m2/day), and  λ is the latent heat 

of vaporization = 2.45 (MJ/kg). 

 

 

 

 

http://climate.weather.gc.ca/
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Figure 4.1: The location of the different land use conditions in Western Agriculture Center and 

Research Station, Pasadena, Newfoundland and Labrador, Canada (49.0130° N, 57.5894° W). 

 

*Max Temp – Maximum Temperature, Min Temp – Minimum Temperature, PET – Potential 

Evapotranspiration, Mean Temp – Mean Temperature 

 

Figure 4.2: Daily total rainfall, potential evapotranspiration (PET) and mean temperature from 

Aug. 2021 to Nov. 2021 for the study area from Deer Lake weather station A. 

Maps Data: Google, ©2022 CNES / Airbus, 

Maxar technologies 
Maps Data: Google, ©2022 CNES / Airbus, 

Maxar technologies 

Maps Data: Google, ©2022 CNES / Airbus, Maxar technologies 
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4.2.2 Soil sampling and analysis 

Soil samples were collected at a depth of 0 – 20 cm (Figure 4.3) and analysed for a variety of 

properties, including texture (by hydrometer method), SOM (by loss on ignition), SMC and BD 

for the different land uses using protocols from Carter and Gregorich (2007). SMC was measured 

using time domain reflectometry (TDR) by vertically installing a 20 cm probe at each sampling 

time. For each sampling location, TDR data were collected at 9 different points, and the average 

value was used.  

 

 

 

                               

 

 

 

 

 

Figure 4.3: The sampling points of the different land use conditions in Western Agriculture Center 

and Research Station, Passadena, Newfoundland and Labrador, Canada. 
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4.2.3 Electromagnetic induction survey 

We used CMD-mini-explorer (multi-coil (MC)) and the GEM-2 (multi-frequency (MF)) EMI 

sensors to map soil spatial and temporal variability of ECa. EMI surveys were conducted using 

both sensors across the different land use conditions on 20 Oct., 11 Nov. 2021. Both sensors were 

operated in the horizontal and vertical coplanar coil orientations as done by previous researchers 

in the same area (Altdorff et al. 2018; Badewa et al. 2018; Sadatcharam et al. 2020). All three coils 

were simultaneously used when employing the CMD mini-explorer while four different 

frequencies (2.8, 18.3, 38.3, and 80.0 kHz) were manually set to simultaneously measure soil ECa 

when using the GEM-2 MF–EMI sensor. The theoretical depth of investigation (DOI) for the CMD 

mini-explorer at three coils spacing (0.32, 0.71, and 1.18 m) was 25, 50, and 90 cm and 50, 100, 

and 180 cm for VCP and HCP coil orientations, respectively (GF instruments, Brno, Czech 

Republic). In the GEM-2 sensor, the DOI for the GEM-2 sensor at coil separation 1.66m are 125 

and 250 cm for VCP and HCP coil orientations, respectively (Geophex, Ltd., Raleigh, USA). The 

selected frequencies have been reported to be suitable for shallow surface soil investigations (Won 

et al. 1996). The EMI surveys were carried out in a bi-directional order over the three land use 

conditions while maintaining a 1 m line spacing. A global positioning system (GPS) was attached 

to the EMI sensors to enable the collection of georeferenced data, thus the production of 

georeferenced maps. Before each survey, the instrument was warmed up for at least 30 min for 

temperature adaptation to prevent data drift and ensure high-quality data, as protocols developed 

by Robinson et al. (2004). 
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Soil temperature was measured at the 0 – 20 cm depth for all three land use conditions using a soil 

temperature probe. The “Sheets and Hendrickx temperature correction model” adopted from 

Sheets and Hendrickx (1995) was used to correct soil temperature (Equation 4.2). 

EC25 = ECt × (0.4470 + 1.4034 e−t/26.815)      Equation 4.2 

where ECt is the ECa data collected at measured soil temperature (°C), EC25 is the temperature 

corrected ECa at 25C, and t is the soil temperature. Negative values observations were considered 

noise and subsequently eliminated. 

4.2.4 Statistical analysis 

Descriptive statistics and analysis of variance (ANOVA) of measured ECa, BD, SMC, SOM, and 

texture were carried out under different land use and management practices using Minitab (Minitab 

17 Statistical Software 2010). The residuals for all parameters were tested for normality using the 

Kolmogorov-Smirnov normality test. Pearson’s correlation analysis was performed to determine 

the strength of the correlation between ECa and the other soil properties under different land use 

conditions. The study area in question was characterized by a low clay content and a rocky nature, 

which impeded the correlation between the electrical conductivity of the soil (ECa) and its other 

properties. It is common knowledge that soil properties are often related, but the unique geological 

conditions of this particular research site complicated the attempts to make such a connection. 

Furthermore, the implications of this finding are significant as it can potentially provide insight 

into the soil conditions of the region and their impact on overall soil quality; hence, a 90% 

confidence interval was used to assess the precision of estimated statistics in this study. A 90% 

confidence interval has also been used been used by Badewa et al. (2018) to examine the strength 
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of the ECa – SMC relationship. To determine the attributes, which were the most influencing 

predictors of ECa, MLR was performed using backward elimination of least important variables. 

The MLR equations obtained from the first survey day data were used to predict SMC for the 

second survey day under each land use. The measured SMC using TDR on the second day and the 

predicted SMC by employing MLR models were compared using a 1:1 plot and root mean square 

error (RMSE). The slope and the intercept of the prediction lines of measured and predicted SMC 

under each land use were compared statistically with those of the 1:1 line.  

Pseudoreplication is a common problem in soil studies, as it occurs when a single sample is used 

to represent multiple plots or treatments. This can lead to inaccurate results, as the sample may not 

be representative of the entire area. To avoid pseudoreplication, multiple samples were taken from 

each plot and analyzed separately. Pseudo-replication was not an issue, and no statistical 

assumptions were violated. To further explore the potential of ECa, the MLR equation was 

rearranged to make ECa the response variable while the other variables remained temporally 

unchanged. Despite being a predictor variable, it was used to assess its potential as a response 

variable. To further explore the effect of properties such as texture, BD and SOM on SMC is 

outside the scope of this study. 

 

The variance inflation factor (VIF) obtained from each regression model was used to identify if 

multi-collinearity existed in the models. The VIF measures the amount of variance of the estimated 

regression coefficient that is magnified if the independent variables are correlated. VIF is 

calculated as 

1

1− 𝑅2      Equation 4.3 
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 A VIF =1 indicates that multi-collinearity does not exist between predictors, whereas VIFs 

ranging between 1 and 5 indicate moderately correlated variables. On the other hand, VIF greater 

than 5 indicate multi-collinearity among the predictors (Shrestha et al. 2020). If multicollinearity 

exists, further analyses, such as principal component analysis, partial least squares regression, and 

ridge regression can be employed to reduce the effects of the multicollinearity and gain more 

accurate results. All statistical analyses were performed with Minitab 17 (Minitab 17 Statistical 

Software 2010). 

 

4.2.5 Geostatistical analysis 

Cokriging with ECa as a covariate was performed on the measured SMC and ECa as a covariate 

on predicted SMC data from the most accurate generated regression models. Cokriging uses 

multiple datasets to investigate graphs of cross-correlation and autocorrelation (Equation 4.4).  

∑n
vl=1 ∑

n
i=1 λil λlvγ(xi,xj) – μv = γuv(xi,xp) where j = 1, …, n and u = 1, ..., v 

∑nl
i=1 λil = 

1 1 = u
0 1 ≠ u

              Equation 4.4 

where u and v are the target and covariate variables, respectively. The two variates u and v are 

cross-correlated, and the covariate contributes to the estimation of the target variate. 

 

Variograms describing the spatial dependence of a spatially random field were used to analyze the 

spatial structure of SMC. Several variogram models (linear, exponential, circular, gaussian, 

spherical, and power model) were considered when performing cokriging for creating SMC maps. 

Each variogram was characterized by three parameters: range, sill, and nugget. The nugget/sill 

ratios were used to characterize the spatial dependence of observations. Spatial dependence was 



 

 

108 

 

characterized as strong (below 25%), moderate (25% and 75%), or weak (above 75%). The 

variogram model with the lowest RMSE based on the cross-validation (jackknifing) results were 

selected (Sówka et al. 2020). The leave-one-out cross-validation works by singly removing each 

point in the sampling scheme and predicting its value based on kriging the remaining data. All 

variograms were assumed to be isotropic. Interpolated maps were then created using Surfer 24 

(Golden Software Inc. 2022).
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Figure 4.4: The workflow of methodology used in the study. 

Ground-truthing 

MC-EMI and MF-EMI field 

calibration, survey and data 

processing 

Descriptive statistical analysis of ECa, texture, BD, 

SMC, SOM for the different land uses 

Variography and kriging interpolated surface of 

SMC with ECa as a covariate for each land use 

Spatial variability maps of measured  and predicted 

SMC maps with ECa as covariate 

Assessing the influence of soil properties on ECa 

through correlation and multiple linear regression 

analysis 

Spatial comparison of SMC maps across land use 

condition 

TDR field calibration and 

measurement 

Soil surface of 

different land use 

conditions 

Comparison of soil  properties between land uses 

and survey days 

Statistical comparison of measured SMC with TDR 

against predicted SMC using selected models from 

MLR for the different land use 
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4.3 Results and discussion 

4.3.1 Descriptive statistics and analysis of variance  

4.3.1.1 Soil texture 

The conversion of forests into managed agricultural land is known to cause a deterioration of soil 

physical properties, leaving the land more susceptible to erosion. Soil erosion has a profound effect 

on the soil, as it can reduce soil depth, altering the texture and leading to the loss of essential 

nutrients and organic matter. This can have profound impacts on both the soil and the local 

ecosystem (Lobe et al. 2001). Therefore, it is imperative that strong steps are taken to mitigate soil 

erosion, to protect the environment and preserve the land for future generations. 

 

Soil texture class was a sandy loam for all three land use conditions (Table 4.1). Sand and silt 

content did not change under the different land use conditions whereas clay content increased 

significantly from the converted lands to the natural forest. It has been suggested that vegetation-

covered land increases the clay content of sandy loam soil relative to bare lands. Root growth, 

litter decomposition and the formation of humus predominant in the natural forest are thought to 

influence the fixation of fine soil particles and SOM (Xia et al. 2020).  It is evident that the 

difference in clay content between natural forest and converted lands reflects the impacts of land 

use on the soil erosion process. This is because erosion is a selective process with respect to particle 

size distribution (Rhoton et al. 1979).  
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ANOVA provides evidence that land use impacts resulting from soil erosion are reflected to some 

degree in the soil texture. Thus, it is important to consider the implications of land use on erosion 

when assessing the soil texture. The soil texture attributes (sand and clay) of the sandy loam soil 

in the study area exhibited low sensitivity (CV < 15%). It is well-known that soil texture is an 

intrinsic soil property that reflects the parent material rather than the environmental conditions, 

thus it was reasonable to assume that texture would exhibit low sensitivity to land use. However, 

the results of ANOVA indicated that the texture (clay content) was significantly different between 

natural forest and the converted land.  

 

4.3.1.2 Bulk density  

Soil BD is an important indicator of soil compaction and health. According to Kakaire et al. (2015), 

a higher soil bulk density implies less water held by the soil at field capacity, while a lower density 

indicates soils which are less compacted and have greater water retention. This finding is 

corroborated by the work of Ravina (2012), who determined that soil bulk density was lower in a 

native forest relative to a converted land. 

 

BD was determined at 0-10 cm and 10-20 cm soil depth intervals. Land use conversions from 

natural forests to managed lands affects the compaction, porosity, and BD in soil (Kar et al. 2022). 

Generally, BD was in the order of agricultural land > field road > natural forest (Table 4.1 and 

Table 4.2). The lower BD in the natural forest compared to the other land use types could be due 

to a favorable soil structure under forest vegetation and a steady soil environment devoid of 

anthropogenic activities over long periods. BD is significantly higher in the converted lands, likely 
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due to direct influences such as compaction caused by agricultural field practices, as well as 

indirect influences such as the effects of use on SOM (Franzluebbers et al. 2000; Murty et al. 

2002). Converting natural forests to agricultural land significantly increases BD (Ayoubi et al. 

2014) possibly due to soil compaction and loss of soil organic carbon that occur because of soil 

plowing and manipulation (Nieto et al. 2010). BD increased with depth under the different land 

use conditions.  

 

These results could be attributed to the dynamism of organic carbon and the dissipation of organic 

components, which are present in greater concentrations at shallower depths, are likely to have a 

diluting effect, thereby reducing the BD (Bronick and Lal  2005; Nwite et al. 2018). The CV of 

BD within each land use was generally low (CV< 15%). Variations in BD among different land 

use conditions were found to be minimal at deeper layers (10-20cm) when compared to the surface 

soil layer (0-10cm) (Table 4.1 and 4.2) thus indicating that various land use practices have a greater 

impact on soil BD at shallower depth compared to deeper depths. 

 

4.3.1.3 Soil organic matter  

It is well established that cultivated soils generally have a lower organic matter content compared 

to native ecosystems, due to the increased aeration of soil which accelerates the decomposition of 

soil organic matter (Kizilkaya and Dengiz 2010). Soil organic matter (SOM) is critical for 

improving the physical properties of soil, increasing cation exchange capacity and water-holding 

capacity, and for increasing soil structural stability by binding particles into aggregates (Leeper 

and Uren 1993). Anthropogenic activities such as tillage (hoeing, plowing), biomass burning, 
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residual removal, overgrazing, and drainage are thought to be responsible for the decreased SOM 

content observed under different land use at various elevations (Roose and Barthes 2001). SOM 

plays an important role in soil health, as it prevents nutrient leaching, makes nutrients accessible 

to plants, and acts as a buffer to resist strong changes in pH (Leu 2007). Carbon content is also 

known to be an essential element of an overall healthy soil (Yerima and Van Ranst 2005). 

 

The amount of SOM was highest in the natural forest and lowest in the field road. This could be 

attributed to the higher clay content found in the natural forest. Soils with relatively high clay 

contents such as the natural forest tend to stabilize and maintain more SOM than those with low 

clay contents (Paz-Gonzalez et al. 2000). The lesser amount of litter input in the field road 

compared to the agricultural land and natural forest could have resulted in the low SOM in the 

field road (Morris 2004). Furthermore, when natural forest is converted into managed agricultural 

lands, SOM decomposes rapidly due to changes in temperature, aeration, and water content 

(Ashagrie et al. 2007). The decrease in SOM associated with land use conversion indicates the 

necessity of sustainable cropping systems, such as the addition of SOM, crop residues, crop 

rotation, and agroforestry using fast-growing leguminous trees, to mitigate the negative effects of 

cultivation. Fallowing a land have been found to not only improve soil fertility, but also reduce 

soil variability, which is beneficial for both practical and experimental agriculture.  

 

The CV of SOM under the three land uses were generally low (CV < 15% ; Table 4.1 and 4.2) and 

varied in the order natural forest < field road < agricultural land. The lower CV in the natural forest 

indicates a more stable spatial pattern (Atwell and Wuddivira 2019).  
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4.3.1.4 Soil moisture content  

Research has shown that land use exerts a significant influence on SMC levels (Xiao et al. 2011; 

Fu et al. 2003). This primarily occurs due to the differences in water consumption characteristics 

of vegetation and their impact on the root distribution of the soil. Changes in land use can cause 

SMC levels to increase, decrease, or fluctuate. Studies have revealed that the effect of trees and 

shrubs on soil moisture levels is significant and can be observed in the entire soil profile (0–100 

cm) after land conversions have taken place (Fu et al. 2003). These changes are attributed to the 

differences in water uptake, as the variability in root distribution affects soil moisture levels in 

accordance with land use practices. 

 

The mean SMC values were higher on the first survey day than on the second survey day, which 

could be attributed to the higher total rainfall (84.2 mm) on the first survey day compared  to the 

second survey day (19.3 mm) (Figure 4.2). Furthermore, the mean SMC values were higher in the 

natural forest than in the agricultural land and field road. This could be ascribed to the deep litter 

layer (high SOM) found in the natural forest, which reduces surface evaporation and improves 

water retention capabilities. This finding agrees with that of Morris (2004), who noted the 

expansion of fine soil pores that retain water against gravitational drainage in coarser textured soils 

such as podzolic soils. Conversely, the low SMC in agricultural land and field road is likely due 

to the higher rate of evaporation that exists in the surface horizon of the agricultural land and field 

road, caused by factors such as ploughing as well as the higher surface runoff due to surface 

crusting and compaction. The SMC was significantly higher on field roads relative to the 

agricultural land. This could be explained by the mechanical disruption of pore arrangements by 
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practices such as tillage that lowers SMC in cultivated soils such as agricultural land (Celik 2005). 

SMC differed significantly under each land use (Table 4.1 and 4.2) indicating that SMC is sensitive 

to land use changes. 

 

The spatial variability of SMC across land uses was generally low (CV< 15%) (Warrick 1998). 

Agricultural land and field road displayed a higher CV of SMC compared to the natural forest 

(Table 4.1 and Table 4.2), suggesting the influence of management practices such as tillage, 

compaction influence the heterogeneity of SMC (Atwell and Wuddivira 2019).  

 

4.3.1.5 Apparent electrical conductivity  

In the study area, ECa values recorded at shallower depths (VCP C1, i.e., DOI of 0 – 0.25 m) were 

generally higher than at deeper depths (VCP C2, DOI = 0 – 0.5 m and HCP C1, DOI = 0 – 0.5 m) 

across the land use (Table 4.1 and Table 4.2) indicating that conductivity decreases with depth in 

the study area. The MC-EMI sensor’s VCP C3, HCP 2, and HCP 3 provided more than 50 % 

negative values and hence could not be analyzed. Aside from the 38 kHz frequency (HCP) from 

the MF-EMI sensor, all other frequencies registered negative values (more than 50% of the data); 

hence, their measurements could not be analyzed. This is indicative that the use of MF-EMI is of 

limited usefulness in shallow soil investigations (Calamita et al. 2015). However, its ability to 

characterize wood areas and acquire more data is an added value in the exchange of information 

between hydrology and geophysics (Calamita et al. 2015).  
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ECa had medium sensitivity (15% < CV < 35%) to land use in agricultural land and field road 

while low sensitivity was observed in natural forests due to low anthropogenic activities (Atwell 

and Wuddivira 2019). Interestingly, CV for ECa generally increased with coil depth of exploration 

which deviated from expectations since deeper depths are not typically exposed to climate or 

anthropogenic disturbances. One-way ANOVA revealed low ECa readings across different land 

uses with significant differences between natural forests and other land uses on both survey days; 

this difference could be attributed to high SOM, SMC, and clay content in natural forests (Jonard 

et al. 2013). 
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Table 4.1 Analysis of variance showing the effects of agricultural land, field road, and natural forest on soil properties for the first survey day  

†ECa = apparent electrical conductivity; VCP = vertical coplanar mode; HCP = horizontal coplanar mode C1 = Coil 1; C2 = Coil 2; SMC = soil moisture content; SOM = soil 

organic matter; BD-1 = bulk density at 0-10cm depth; BD-2 = bulk density at 10-20cm depth; Average BD = average of BD-1 and BD-2; SE – Standard Error; LSME – Least 

square mean estimate; CV = Coefficient of variability; Min = Minimum; Max = Maximum 

‡Significance is reported at 0.1 (*) and 0.05 (**)  
⁋ Means that do not share a common letter are significantly different according to Fisher’s Least Significant Difference Test  

Survey  

Day 1 

Agricultural land    Field road Natural forest 

Variable LSME  CV Min Max LSME  CV Min Max LSME  CV Min Max      SE 

Soil Properties 

Sand 68.20a  2.99 64.8 68.8 70.40a 4.84 64.20 76.12 65.20a 3.04 62.91 68.00   2.66 

Silt 18.70a 7.00 16.20 20.4 19.20a 10.31 15.10 23.22 17.30a 5.84 13.44 21.25   2.47 

Clay 13.10b  7.23 12.05 16.08 11.4b 10.26 6.60 17.51 18.50a 6.27 14.47 22.14   1.24 

SMC 33.71c**‡ 8.35 30.00 37.84 38.01b** 8.31 33.42 42.57 42.98a*** 6.08 40.00 47.25   1.45 

SOM 3.87b⁋** 7.75 3.06 5.02 2.08c** 4.80 1.43 3.28 8.37a** 4.78 7.96 10.02   1.08 

BD (depth 1) 1.17a* 8.70 0.98 1.30 1.20a* 8.3 1.10 1.32 0.90b* 11.1 0.85 1.0     0.24 

BD (depth 2) 1.22a* 7.81 1.20 1.34 1.24a* 8.1 1.12 1.29 0.94b* 10.6 0.87 1.1     0.22 

Average BD 1.20a* 8.33 0.98 1.34 1.22a* 8.20 1.10 1.32 0.92b* 10.87 0.85 1.1     0.24 

MC EMI 

ECa VCP C1† 0.08b** 13.5 0.05 0.10 0.07b** 14.29 0.04 0.06 0.18a***  5.56 0.14 0.22   0.04 

ECa VCP C2 0.06b** 16.7 0.05 0.10 0.04b** 25.00 0.03 0.05 0.13a** 7.69 0.10 0.20   0.03 

ECa HCP C1 0.05b** 20.0 0.04 0.11 0.05b** 20.00 0.03 0.07 0.15a** 6.69 0.13 0.19   0.03 

MF EMI 

HCP-38kHz 0.06b** 31.15 0.05 0.07 0.08b** 25.10 0.08 0.10 0.25a** 8.01 0.20 0.28   0.006 
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Table 4.2 Analysis of variance showing the effects of agricultural land, field road, and natural forest on soil properties for the second survey day 

†ECa = apparent electrical conductivity; VCP = vertical coplanar mode; HCP = horizontal coplanar mode C1 = Coil 1; C2 = Coil 2; SMC = soil moisture content; SOM = soil 

organic matter; BD-1 = bulk density at 0-10cm depth; BD-2 = bulk density at 10-20cm depth; Average BD = average of BD-1 and BD-2; SE – Standard Error; LSME – Least 

square mean estimate; CV = Coefficient of variability; Min = Minimum; Max = Maximum 

‡Significance is reported at 0.1 (*) and 0.05 (**)  
⁋ Means that do not share a common letter are significantly different according to Fisher’s Least Significant Difference Test  
 

Survey  

Day 2 

Agricultural land    Field road Natural forest  

Variable LSME CV Min Max LSME CV Min Max LSME CV Min Max   SE 

Soil Properties  

Sand 68.2a  2.99 64.8 68.8 70.40a 4.84 64.20 76.12 65.20a 3.04 62.91 68.00 2.66 

Silt 18.7a 7.00 16.20 20.4 19.20a 10.31 15.10 23.22 17.30a 5.84 13.44 21.25 2.47 

Clay 13.10b  7.23 12.05 16.08 10.4b 10.26 6.60 17.51 17.50a 6.27 14.47 22.14 2.74 

SMC 26.0c** 11.40 20.00 30.03 32.67b** 8.48 27.65 38.07 38.23a*** 7.70 30.94 52.13 3.56 

SOM 3.67b** 10.89 3.00 5.02 2.01c** 7.46 1.43 3.28 9.37a** 7.43 7.96 10.02 1.36 

BD (depth 1) 1.19a* 8.40 1.10 1.30 1.24a* 8.06 1.17 1.30 0.90b* 11.1 0.85 1.0      0.20 

BD (depth 2) 1.22a* 8.20 1.20 1.34 1.25a* 8.0 1.19 1.29 0.94b* 10.6 0.87 1.1      0.20 

Average BD 1.21a* 8.26 1.10 1.34 1.25a* 8.0 1.17 1.30 0.92b* 10.87 0.85 1.1      0.20 

MC EMI  

ECa VCP C1† 0.06b**‡ 16.7 0.04 0.08 0.05b** 20.0 0.04 0.06 0.15a***   13.3 0.11 0.19 0.08 

ECa VCP C2 0.04b⁋** 25.0 0.04 0.09 0.04b** 25.0 0.03 0.07 0.10a** 20.0 0.08 0.18 0.05 

ECa HCP C1 0.05b** 20.0 0.04 0.07 0.04b** 25.0 0.03 0.06 0.12a** 16.7 0.09 0.19 0.05 

ECa MF-EMI  

ECa HCP-38kHz 0.05b** 26.87 0.04 0.07 0.07b** 28.56 0.06 0.08 0.23a** 17.39 0.19 0.26 0.05 
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Table 4.3 Analysis of variance showing the effects of agricultural land, field road, and natural forest on soil properties between survey days 

†ECa = apparent electrical conductivity; VCP = vertical coplanar mode; HCP = horizontal coplanar mode C1 = Coil 1; C2 = Coil 2; SMC = soil moisture content; SOM = soil 

organic matter; BD-1 = bulk density at 0-10cm depth; BD-2 = bulk density at 10-20cm depth; Average BD = average of BD-1 and BD-2; SE – Standard Error; LSME – Least 

square mean estimate 

‡Significance is reported at 0.1 (*) and 0.05 (**)  
⁋ Means that do not share a common letter are significantly different according to Fisher’s Least Significant Difference Test

Land use 

Condition 

Agricultural Land Field Road Natural Forest 

Soil properties Survey Day 1 

(LSME) 

Survey Day 2 

(LSME) 

SE Survey Day 1 

(LSME) 

Survey Day 2 

(LSME) 

SE Survey Day 1 

(LSME) 

Survey Day 2 

(LSME) 

SE 

SOM 3.87a**‡ 3.67a** 1.22 2.08a** 2.01a**     1.25 8.37a** 9.37a** 1.25 

SMC 33.7a⁋** 26.0b** 1.74 38.0a** 32.7b** 1.89 43.0a*** 38.2b*** 1.33 

BD (Depth 1) 1.17a* 1.19a* 0.1 1.20a* 1.30a*     0.1 0.90a* 0.90a* 0.1 

BD (Depth 2) 1.22a* 1.22a* 0.1 1.24 1.25a* 0.1 0.94a* 0.94a* 0.1 

Average BD 1.20a* 1.21a* 0.1 1.22 1.25a* 0.1 0.92a* 0.92a* 0.1 

ECa VCP C1† 0.05a** 0.05b** 0.001 0.05a** 0.05b** 0.001 0.15a*** 0.14b*** 0.004 

ECa VCP C2 0.08a** 0.06b** 0.002 0.08a** 0.05b** 0.002 0.17a** 0.17b** 0.004 

ECa HCP C1 0.07a** 0.06b** 0.002 0.07a** 0.03b** 0.002 0.19a** 0.18b** 0.004 

ECa HCP-

38kHz 

0.06a** 0.05b** 0.01 0.08a** 0.07b** 0.01 0.25a** 0.23b** 0.02 
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4.3.2 Correlation analysis 

ECa was positively correlated with silt and clay content across different land uses (Tables 4.4, 4.5, 

and 4.6). Although several studies have demonstrated that ECa is significantly affected by clay 

contents due to the physical contact between soil particles which typically increases soil ECa by 

increasing the electrical conductivity of the soil solid particles (Brogi et al. 2019; Grubbs et al. 

2019), the low clay content in the study area could have accounted for the non-significant 

connection between ECa and clay content across different land uses. Negative significant 

correlations were observed between sand contents and mainly ECa from the MC-EMI sensor across 

various land use conditions (Tables 4.4, 4.5, and 4.6), this result suggests that as the sand content 

increases, the ECa measured by the MC-EMI sensor decreases. This result implies that the MC-

EMI is better suited to represent the variations in sand and silt contents of the soil in the study area, 

when compared to the MF-EMI sensor.This result was expected as an increase in sand content 

which typically decreases ECa due to its non-conductive nature (Carroll and Oliver 2005).  

 

The strong significant correlation was noticed between ECa and SMC for all three land uses (Tables 

4.4, 4.5, and 4.6), indicating that SMC is the major driver of ECa in this study site. An increase in 

SMC has been reported to increase ECa due to the contribution from the solutes present in the soil 

solution, the clustering of conductive particles as well as a decrease in air thicknesses (Knight and 

Endres 1990). Wet soils contain more moisture and hence higher ECa than dry soil (Nocco et al. 

2019) which explains why the relationship between ECa and SMC under natural forest was 

stronger than that of agricultural land or field road shown in Tables 4.4 and 4.5. Although ECa may 
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be a proxy of SMC (Badewa et al. 2018), its relationship with ECa is affected by other factors such 

as compaction which could be amplified in managed ecosystems like agricultural land or field road 

resulting in lower correlations between ECa and SMC than those found in natural forest shown in 

Table 4.6. The correlation results suggest that ECa values are higher when SMC increases along 

with retained ions present in soil solution.  

 

The relationship between ECa and SOM was much stronger under natural forest than agricultural 

or field road conditions; however, it was not significant in field road possibly due to lower levels 

of SOM present there. The most significant influence of SOM was observed on CMD VCP C1 

probably because of its lower DOI of 0 – 25 cm and within sampling depth according to 

Sadatcharam (2019). This could be attributed to practices such as application of fertilizers or 

compaction resulting into change of concentration of dissolved ions and variability of ECa thus 

reducing strength of correlations between ECa and SOM for field road and agricultural land when 

compared with natural forest (Table 4.6), as natural forests provide better niche for these 

investigations than converted forest lands into managed lands like agricultural lands.  

 

Surprisingly, both sensors showed a general negative correlation with BD across different land use 

conditions, similar to the result found by Sadatcharam (2019) using same instruments on a nearby 

field. However, it was expected that as BD increased, ECa increase due to reduced pore spaces, 

which resulted in more solid contacts and ions for conducting electricity through the water phase 

connected within the soil solution. This was in accordance with the findings of Corwin and 

Scudiero (2016).  
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These results indicated that the electromagnetic induction (EMI) may not be a reliable method for 

representing BD variations at the study site. Results, as displayed in Tables 4.4, 4.5 and 4.6, 

indicated that, aside from two depth intervals of BD, the relation among the independent variables 

was not significant across different land uses, suggesting the absence of multicollinearity among 

these variables at the study site.  
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Table 4.4 Correlation matrix of soil properties under agricultural land for first survey day  

Soil Properties ECa VCP 

C1† 

ECa VCP 

C2 

ECa HCP 

C1 

ECa HCP 

38 kHz 

SMC SOM Sand Silt Clay BD - 1 BD - 2 Average 

BD 

ECa VCP C1  ***‡ *** ** *** ** * ** NS * * * 

ECa VCP C2 0.80⁋  *** ** * NS NS * NS NS NS NS 

ECa HCP C1 0.81  0.95   * * * * * NS ** * * 

ECa HCP 38kHz 0.53 0.26 0.45  ** * NS * NS * * NS 

SMC  0.83 0.72 0.75 0.77  NS NS NS NS NS NS NS 

SOM  0.75 0.47 0.53 0.30 0.36  NS NS NS NS NS NS 

Sand -0.23 -0.29 -0.31 -0.68 -0.18 -0.12  NS NS NS NS NS 

Silt 0.49 0.40 0.37 0.43 0.36 0.31 -0.26  NS NS NS NS 

Clay 0.13 0.20 0.22 0.12 0.17 0.25 -0.18 0.30  NS NS NS 

BD - 1 -0.41 -0.28 -0.38 -0.63 -0.38 -0.40 0.10 -0.25 -0.26  ** * 

BD - 2 -0.25 -0.34 -0.40 -0.44 -0.20 -0.35 0.13 -0.19 -0.40 0.95  * 

Average BD -0.32 -0.40 -0.44 -0.17 -0.09 -0.17 0.06 -0.15 -0.57 0.87 0.89  

 

Correlation Coefficient (r) 

†ECa = apparent electrical conductivity; VCP = vertical coplanar mode; HCP = horizontal coplanar mode C1 = Coil 1; C2 = Coil 2; SMC = soil moisture content; SOM 

= soil organic matter; BD-1 = bulk density at 0-10cm depth; BD-2 = bulk density at 10-20cm depth; Average BD = average of BD-1 and BD-2 

‡Significance is reported at 0.1 (*), 0.05 (**) and 0.001 (***), NS (non-significant correlations)  
⁋Correlation coefficient (r) is reported in coloured boxes 
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Table 4.5 Correlation matrix of soil properties under field road for first survey day 

Soil Properties ECa  

VCP C1† 

ECa VCP 

C2 

ECa  

HCP C1 

ECa HCP 

38 kHz 

SMC  SOM  Sand Silt Clay BD-1 BD - 2 Average 

BD 

ECa VCP C1  NS‡ NS *** ** NS * * NS NS NS NS 

ECa VCP C2 0.43⁋   *** NS ** NS NS * NS NS NS NS 

ECa HCP C1 0.36  0.91   NS * NS * * NS NS NS NS 

ECa HCP 38 kHz 0.82  0.48  0.40   *** NS NS * NS NS NS NS 

SMC  0.78  0.43  0.49  0.78   NS NS NS NS NS NS NS 

SOM  0.30  0.19  0.18  0.31  0.43   NS NS NS NS NS NS 

Sand -0.50  -0.23  -0.22  -0.51  -0.33  -0.14   NS NS NS NS NS 

Silt 0.58  0.34  0.30  0.45  0.27  0.22  -0.96   NS NS NS NS 

Clay 0.29  0.21  0.10  0.38  0.31  0.24  -0.45  0.18   NS NS NS 

BD - 1 -0.21  -0.37  -0.32  -0.35  -0.20  -0.27  0.25  -0.22  -0.37   ** ** 

BD - 2 -0.20 -0.31 -0.36 -0.20 -0.25 -0.30 0.14 -0.15 -0.40 0.93  ** 

Average BD -0.22 -0.40 -0.44 -0.17 -0.09 -0.17 0.06 -0.15 -0.57 0.87 0.89  

 

Correlation Coefficient (r) 

 †ECa = apparent electrical conductivity; VCP = vertical coplanar mode; HCP = horizontal coplanar mode C1 = Coil 1; C2 = Coil 2; SMC = soil moisture content; SOM 

= soil organic matter; BD-1 = bulk density at 0-10cm depth; BD-2 = bulk density at 10-20cm depth; Average BD = average of BD-1 and BD-2 

‡Significance is reported at 0.1 (*), 0.05 (**) and 0.001 (***), NS (non-significant correlations)  
⁋Correlation coefficient (r) is reported in coloured boxes 
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Table 4.6 Correlation matrix of soil properties under natural forest for first survey day 

Soil Properties ECa 

VCP C1† 

ECa VCP 

C2 

ECa HCP 

C1 

ECa HCP  

38 kHz 

SMC SOM Sand Silt Clay BD - 1 BD - 2 Average 

BD 

ECa VCP C1  NS‡ NS *** *** *** *  *  NS * NS * 

ECa VCP C2 0.10⁋   ** NS ** NS NS * NS NS NS NS 

ECa HCP C1 0.55  0.95   NS  ** * NS * NS NS NS NS 

ECa HCP 38 kHz 0.94  0.23  0.41   *** *** NS ** NS * * * 

SMC  0.88  0.35  0.40  0.82   NS NS NS NS NS NS NS 

SOM  0.80  0.27  0.29  0.78  0.57   NS NS NS NS NS NS 

Sand -0.11  -0.13  -0.11  -0.16  -0.37  -0.77   NS NS NS NS NS 

Silt 0.47  0.34  0.21  0.29  0.24  0.43  -0.77   NS NS NS NS 

Clay 0.22  0.12  0.09  0.21  0.29  0.53  -0.61  -0.04   NS NS NS 

BD - 1 -0.36  -0.18  -0.12  -0.35  -0.27  -0.57  0.66  -0.83  0.12   ** ** 

 

BD - 2 -0.29 -0.18 -0.14 -0.40 -0.22 -0.55 0.60 -0.80 0.14 0.96  ** 

Average BD -0.40 -0.19 -0.20 -0.38 -0.27 -0.60 0.64 -0.78 0.15 0.90 0.90  

 

Correlation Coefficient (r) 

†ECa = apparent electrical conductivity; VCP = vertical coplanar mode; HCP = horizontal coplanar mode C1 = Coil 1; C2 = Coil 2; SMC = soil moisture content; SOM 

= soil organic matter; BD-1 = bulk density at 0-10cm depth; BD-2 = bulk density at 10-20cm depth; Average BD = average of BD-1 and BD-2 

‡Significance is reported at 0.1 (*), 0.05 (**) and 0.001 (***), NS (non-significant correlations)  
⁋Correlation coefficient (r) is reported in coloured boxes 

0 -1 1 
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4.3.3 Regression analysis 

 

The use of multiple regression is a valuable tool for evaluating the relationships between SMC and  

ECa when considering the texture, SOM, and BD contents of a soil. This is due to the presence of 

multiple predictors, which allows for a comprehensive exploration of the relationship between soil 

parameters. Multiple regression analysis can identify how each predictor influences the soil 

moisture, as well as whether the combination of predictors is sufficient to accurately estimate the 

soil moisture. Such an analysis provides valuable insights into the soil’s hydrological properties, 

and can help optimize agricultural practices, such as irrigation and fertilization, to promote the 

growth of crops. Regardless, MLR predictions were compared to simple linear regression 

predictions during data processing, and it was found that MLR predictions were more accurate 

relative to simple linear regression predictions based on a higher R2 and lower RMSE values. The 

VIF obtained from the MLR ranged from 1.00 – 1.51 (Table 4.7) across different land use 

conditions, indicating the absence of multi-collinearity in the developed regression models 

(Shrestha 2020). The accuracy of prediction improved significantly with increasing SMC, which 

is in line with findings of other researchers, demonstrating high sensitivity of both sensors to 

measure SMC with increasing SMC level (Fernández-Gálvez 2008).  The generated MLR models 

generally over-predicted SMC across different land use conditions. 

 

The best model for agricultural land was obtained using coil 1 of the MC-EMI sensor in the VCP 

mode (Table 4.7). This was possibly due to the similar depth of exploration (DOE) between ECa 

(DOE = 25cm), and the soil samples taken at 20 cm depth. ECa from this coil orientation 

significantly explained approximately 92.11% of the variations in SMC, SOM, and silt collectively 
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at approximately 0-25 cm depth range. ECa did not explain variations in sand and clay in this land 

use regardless of the EMI sensor used and were subsequently removed from all generated models 

for this land use (Table 4.7). ECa readings from the MC-EMI sensor in coil orientations VCP C2 

and HCP C1 could only explain significant variations in SMC (68.06% and 82.95%, respectively). 

SMC and BD were the dominant significant factors being explained by the variation in ECa 

recorded from the MF-EMI sensor (Table 4.7). The high depth of investigation coupled with the 

highly sensitive nature of the MF sensor (Won et al. 1996) could have resulted in low R2 values 

relative to VCP C1 and HCP 1 due to significant influence of external features and other shallow 

soil properties (Farooque et al. 2012).  

 

Generally, ECa was able to explain more variations in soil properties in the natural forest compared 

to the field road, where it was only seen to be able to explain variations related to SMC. This is 

likely due to external factors such as soil-to-sensor distance variation, plant roots, and residues 

which affect EMI measurement accuracy (Mouazen et al. 2006). Additionally, moist soils are more 

favorable for ECa surveys than dry soils (Brevik et al. 2006) which can also account for higher 

predictive accuracy found in natural forest relative to other land uses such as agricultural land and 

field roads (Sadatcharam 2019). Measurement errors associated with measuring BD via core 

sampling, transportation and drying may account for some limitations when predicting soil 

properties such as BD as well as errors associated with core drying method when measuring SMC 

(Mouazen and Al-Asadi 2018).  

 

In conclusion, both sensors used can be successfully employed for predicting near-surface soil 

properties based on ECa readings; however, results suggest that MC-EMI sensor was better suited 
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for predicting these properties relative to MF-EMI sensor particularly in managed agricultural 

lands such as field roads where measurement errors associated with core drying method can be 

minimized by keeping samples sealed until drying test is conducted (Mouazen and Al-Asadi 2018). 

 

Table 4.7 Multiple regression using backward elimination of predictors between soil moisture 

content (SMC) and investigated soil properties at 90% confidence 

†ECa = apparent electrical conductivity; VCP = vertical coplanar mode; HCP = horizontal coplanar mode C1 = Coil 

1; C2 = Coil 2; SMC = soil moisture content; SOM = soil organic matter; BD = bulk density at 0-20cm depth; RMSE 

= root mean square error; R2 = coefficient of determination 

 

Land use 

condition 

Multiple Linear Regression 

equation (Backward elimination 

method) 

R
2

 Validated R
2

 RMSE Variance Inflation 

Factor (VIF) 

  % % %  

 

 

Agricultural 

land 

ECa VCP C1† = -0.09 + 0.003 SMC 

+ 0.02 SOM  + 0.28 Silt  

92.1 88.6 3.05 SMC= 1.25 

Silt = 1.20 

SOM = 1.20 

ECa VCP C2 = -0.11 + 0.005 SMC  68.1 57.8 5.31 SMC = 1.00 

ECa  HCP C1 = -0.09 + 0.004 SMC  82.9 63.2 3.64 SMC = 1.00 

ECa  HCP 38 kHz = 0.06 + 0.002 

SMC – 0.04 BD  

77.8 62.4 3.91 SMC = 1.02 

BD = 1.02 

 

Field road 

ECa VCP C1 = 0.04 + 0.002 SMC 78.9 71.5 4.41 SMC = 1.0 

ECa VCP C2 = 0.01 + 0.002 SMC 57.7 47.6 6.67 SMC = 1.0 

ECa HCP C1 = 0.02 + 0.001 SMC 78.9 71.1 4.92 SMC = 1.0 

ECa HCP 38 kHz = 0.04 + 0.001 

SMC 

78.3 70.4 5.18 SMC = 1.0 

 

 

Natural 

forest 

ECa  VCP C1 = -1.95 + 0.006 

SMC+ 0.012 SOM  + 3.77 Silt – 

0.32 BD  

95.1 84.9 1.30 SMC = 1.51 

SOM = 1.29 

Silt = 1.18 

BD = 1.03 

ECa VCP C2 = -0.73 + 0.008 SMC 

+ 6.48 Silt  

65.6 54.6 3.25 SMC = 1.32 

Silt = 1.30 

ECa  HCP C1 = 0.04 + 0.003 SMC 

+ 0.004 SOM  + 0.001 Silt 

91.1 81.5 2.44 SMC = 1.51 

SOM= 1.27 

Silt = 1.20 

ECa  HCP 38 kHz = 0.03 + 0.004 

SMC - 0.059 BD  

88.2 80.9 2.65 SOM= 1.01 

BD = 1.01 
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Figure 4.5: Relationship between measured and predicted soil moisture content (SMC) measurements obtained from MLR in (A) MC-EMI VCP C1, 

(B) MC-EMI VCP C2 (C) MC-EMI HCP C1 and (D)MF-EMI HCP 38kHz under the agricultural land. 

 

  
Figure 4.6: Relationship between measured and predicted soil moisture content (SMC)  measurements obtained from MLR in (A) MC-EMI VCP 

C1, (B) MC-EMI VCP C2 (C) MC-EMI HCP C1 and (D)MF-EMI HCP 38kHz under the field road. 

Figure 4.7: Relationship between TDR-measured and model predicted soil moisture content (SMC) measurements obtained from MLR in (A) MC-

EMI VCP C1, (B) MC-EMI VCP C2 (C) MC-EMI HCP C1 and (D)MF-EMI HCP 38kHz under the natural forest. 
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4.3.4 Statistical comparison of measured soil moisture content with Time Domain 

Reflectometer against predicted soil moisture content using selected models under the 

different land use. 

 

Comparison of the measured SMC from TDR against the predicted SMC from VCP C1 MLR from 

1:1 line at  = 0.1 revealed that no significant difference (slope = 1 and intercept = 0) for 

agricultural land (Table 4.8). This result indicates that the MLR model was able to accurately 

predict SMC using ECa VCP C1 (Figure 4.5a) and was possibly attributable to the similarity in 

exploration depths between ECa VCP C1 and the TDR. However, significant differences were 

observed between the prediction lines obtained using ECa VCP C2, ECa HCP C1 and ECa HCP 38 

kHz and their respective 1:1 lines at  = 0.1 in the agricultural land (slope  1 and intercept = 0) 

(Table 4.8). The error of prediction of SMC was generally higher when ECa VCP C2, ECa HCP 

C1 and ECa HCP 38 kHz coil orientations were used, with the predictions being underestimated 

from the 1:1 line (Figure 4.5b, 4.5c and 4.5d, respectively). The higher error of prediction of SMC 

in ECa VCP C2, ECa HCP C1 and ECa HCP 38 kHz coil orientations could be due to the disparity 

in sampling depths between the TDR and these coil orientations since the sampling depths of these 

EMI coil orientations are deeper (> 20cm) than those of the TDR sampling depths (measured SMC) 

taken 0-20cm depth (Altdorff et al. 2017; Calamita et al. 2015).  

 

The analysis also revealed that there were no significant differences between the prediction line 

obtained from ECa HCP 38 kHz and the 1:1 line at  = 0.1 in the field road (slope = 1 and intercept 

= 0) (Table 4.8). However, t-test revealed that significant differences existed between the 1:1 line 

and  prediction lines obtained using ECa VCP C1 (slope  1 and intercept = 0), ECa VCP C2 (slope 
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 1 and intercept  0), and ECa HCP C1 (slope  1 and intercept  0)  at  = 0.1 in the field road 

(Table 4.8; Figure 4.6a, 4.6b and 4.6c, respectively). The insignificant difference between the 

prediction line and the 1:1 line when using the MF-EMI sensor could be attributed to GEM-2’s 

capacity to produce thermally stable measurements in dry soils such as those found in the field 

road (Won et al. 1996). 

 

Lastly, the results of the comparison between the TDR-measured SMC and the predicted SMCs 

obtained from ECa VCP C1, ECa HCP C1, and ECa HCP 38 kHz from their respective 1:1 lines 

revealed that there was no significant difference in the natural forest (Table 4.7; Figure 4.7a, 4.7c 

and 4.7d, respectively). The slope of the regression line between the measured and predicted SMCs 

was equal to 1 and the intercept was 0, indicating that the predicted SMCs closely correlated with 

the measured values. These findings suggest that more EMI coil orientations could be used to 

reliably estimate soil moisture content in the natural forest relative to the other land use conditions. 

 

There were significant differences between the prediction line obtained from ECa VCP C2 and its 

1:1 line in the natural forest (slope  1 and intercept = 0) (Figure 4.7b). While the MLR techniques 

may be able to accurately predict SMC in a natural forest, more research is needed to better 

understand using ECa VCP C2. 



 

 

132 

 

Table 4.8 Summary of statistical comparison of measured soil moisture against predicted soil 

moisture obtained from MLR under the different land use (α = 0.1) 

t.90 = 1.4, df = 8, NS (Non-significant), S (Significant) 

Land use 

condition 

Coil 

Orientation 

t-calculated Analysis from 1:1 Deviation from 1:1 Line 

Intercept Slope Intercept Slope  

 

 

Agricultural 

land 

ECa VCP C1 0.1 0.2 NS NS NO 

ECa VCP C2 0.2 -1.5 NS S YES 

ECa  HCP C1 0.9 -1.4 NS S YES 

ECa  HCP 38 

kHz 

-0.5 1.7 NS S YES 

 

Field road 

ECa VCP C1 1.0 -1.4 NS S YES 

ECa VCP C2 -1.5 2.2 S S YES 

ECa  HCP C1 13.8 -15.2 S S YES 

ECa  HCP 38 

kHz 

-1.0 -0.14 NS NS NO 

 

 

Natural forest 

ECa VCP C1 1.2 -1.2 NS 

 

NS NO 

ECa VCP C2 0.5 -1.4 NS S YES 

ECa  HCP C1 0.1 0.2 NS 

 

NS NO 

ECa  HCP 38 

kHz 

0.1 0.4 NS NS NO 
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4.3.5 Variography and kriging interpolated surface of soil moisture content 

Interpolation methods are increasingly being used as a tool to improve the prediction of SMC 

spatial distribution due to limited access to accurate observation data (Xie et al. 2020). 4002, 1142, 

and 1037 ECa data were collected from agricultural land, field roads, and natural forest, 

respectively using the MC-EMI VCP C1. In comparison, SMC was sampled fewer times, only 9 

data points. Generally, visual differences were present between maps of measured SMC obtained 

from cokriging with ECa as covariate, and maps of predicted SMC from cokriging with ECa as 

covariate across different land use conditions. However, the trends in the variability of both the 

measured and predicted SMC were similar. Various variograms are shown in Appendix B for 

further reference. 

 

4.3.5.1 Agricultural land  

The interpolated spatial maps for measured SMC for the agricultural land are displayed in Figure 

4.8a, for which a spherical variogram model was the best fit for the spatiotemporal representation 

in the cokriging interpolation. The nugget effect of 5 indicated that additional sampling of SMC at 

smaller distances might be needed to detect spatial dependence and create an accurate map. The 

range value of 8 m indicated that SMC values influenced neighboring SMC values over higher 

distances compared to other land use conditions, and the spatial dependence was judged to be 

medium (nugget/sill = 0.3), based on the classification of Cambardella et al. (1994). The most 

accurate SMC prediction in this land use was obtained from the MLR model with the MC-EMI 

VCP C1, and cokriging with measured ECa as a covariate was used to generate the spatial maps 

(Figure 4.9a). The predicted SMC maps depicted low SMC content similar to the measured SMC 
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maps, and an experimental variogram with a range of 8m, nugget effect of 0, and a partial sill of 

20 showed strong spatial dependence (nugget/sill = 0). The accuracy of the measured SMC map 

was approximately 50% higher (RMSE = 0.09 %) relative to the predicted SMC map (RMSE = 

0.18 %) possibly due to the influence of other soil properties such as SOM and silt, as seen in the 

MLR model, and numerical instability from the predicted models. 

 

4.3.5.2 Field road 

The interpolated spatial maps for measured SMC for the field road are displayed in Figure 4.8b, 

using a spherical variogram model as the best fit for the spatiotemporal representation of the 

measured SMC in the cokriging interpolation. The measured SMC maps in field road generally 

depicted higher SMC content (35-40 %) relative to the agricultural land (25-35 %), as indicated 

by the results from the ANOVA (Table 4.3). The small range (4m) of SMC values in this land use 

was indicative that SMC values influenced neighbouring SMC values over shorter distances 

relative to agricultural land. This was reflected in the partial sill of 10 and the high nugget value 

(10), which suggest that additional sampling of SMC at smaller distances might be needed to detect 

spatial dependence and create a more accurate map. Further, the spatial dependence was judged to 

be medium (nugget:sill = 0.5). It was found that the most accurate SMC prediction in this land use 

was obtained from the MLR generated with the MC-EMI VCP C1. Consequently, interpolated 

spatial maps of the predicted SMC from this regression model were generated with cokriging using 

measured ECa as a covariate (Figure 4.9b). The accuracy of the measured SMC map obtained from 

cross-validation was increased by approximately 60% (RMSE = 0.12 %) relative to the predicted 

SMC map (RMSE = 0.20 %). 
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4.3.5.3 Natural forest 

The interpolated spatial maps of the measured SMC in the natural forest, displayed in Figure 4.8c, 

were generated using cokriging with a spherical variogram model as the best-fit representation of 

its spatiotemporal variation. The measured SMC maps generally showed a high SMC content of 

40-50 %, with range values at 2m, nugget values of 1, and partial sill values of 5.5. The small 

nugget value indicated that further sampling of SMC at shorter distances may not be necessary to 

demonstrate spatial dependence. Compared to other land use conditions, the range values were 

lower for wet soils (natural forest) and increased with decreasing SMC (field road and agricultural 

land). This result is consistent with Lakhankar et al. (2010). The land use also exhibited a high 

spatial dependence (nugget/sill = 0.15), and the moistest land use (natural forest) recorded the 

strongest spatial dependence. This is due to SMC patterns being at their strongest prior to the dry-

down phase, which tends to weaken the spatial patterns as each value converges to lower levels. 

The most accurate SMC maps in this land use were obtained from the MLR model generated with 

the MC-EMI VCP C1, and the corresponding interpolated spatial maps of the predicted SMC were 

generated with cokriging using measured ECa as a covariate (Figure 4.9c). The variogram of the 

predicted SMC maps had a range of 3.4 m, nugget of 0, and partial sill of 20, and showed a strong 

spatial dependence (nugget/sill = 0). The accuracy of the measured SMC map obtained from cross-

validation was higher (RMSE = 0.05 %) compared to the predicted SMC map (RMSE = 0.15 %), 

this is likely due to the significant influence of other soil properties such as SOM, BD, and silt as 

seen in the MLR model. 
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 (a)  (b)  (c) 

Figure 4.8: Spatial variability maps of measured soil moisture content (a) Agricultural land; (b) 

Field road; (c) Natural forest obtained from cokriging with apparent electrical conductivity (ECa) 

as a covariate.  

(a) (b)  (c) 

Figure 4.9: Spatial variability maps of predicted soil moisture content (a) Agricultural land; (b) 

Field road; (c) Natural forest obtained from cokriging with apparent electrical conductivity (ECa) 

as a covariate. 

 

 

4.4 Conclusion 

Measuring ECa using MC-EMI and MF-EMI sensors provided important information for 

maximizing the accuracy of SMC prediction in different land by giving a workable relationship 

between ECa and the other investigated soil properties sampled at 20 cm across the different land 

use conditions. Generally, ECa was found to be significantly correlated to SMC and SOM, with 

SMC exhibiting the strongest relation with ECa across the different land use conditions in this 

study site. The correlation results between ECa and SMC were the strongest in moist soils.  

 

N 
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N 

Soil moisture (%) 
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Measuring ECa using the MC-EMI (C1- VCP) provided the best predictions across the different 

land use conditions relative to the other EMI coils employed in this study. Cokriging of measured 

SMC with ECa as covariate revealed more accurate maps relative to cokriging predicted SMC with 

ECa as a covariate. The comparison of both sensors revealed that although MF-EMI used 8 integral 

depths from 4 different frequencies in 2 coil orientations, only the ECa 38 kHz in HCP coil 

orientation revealed significant interactions with the other soil properties. On the other hand, the 

MC-EMI showed 6 integral depths to displayed significant interactions with the other soil 

properties. The results of this study demonstrate that the MC-EMI sensor is the more appropriate 

choice for the characterizing SMC in the study area, as it offers a higher degree of accuracy and 

precision. This is especially beneficial in land use applications, where precise and reliable data is 

crucial. Additionally, the findings suggest that georeferenced mobile soil ECa measurements, 

carried out with either an MF-EMI or MC-EMI, can be used to rapidly assess the spatial variability. 

Moreover, ECa serves as a valuable indicator of soil quality in relation to productivity, and its 

incorporation can facilitate the implementation of site-specific agronomic management. This is an 

important consideration in land use conversion.  

 

Further studies are needed to investigate inverse modeling to obtain 3D maps of SMC, as well as 

considering other environmental factors such as temperature and vegetation cover, in order to 

create more comprehensive understanding of soil spatial variability and formulate more accurate 

prediction models. Additionally, more extensive field measurements should be conducted to 

enhance the robustness and reliability of the prediction models by including additional covariates 

such as temperature, which could help improve accuracy in predicting SMC across different land 

use conditions. 
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Appendix B 

 (a)  (b)  (c) 

Figure B1. Variogram models of TDR-measured soil moisture content obtained from cokriging 

for agricultural land (a), field road (b), and natural forest (c).  

 

 (a)  (b)  (c)  

Figure B2. Variogram models of predicted soil moisture content from MLR models obtained from 

cokriging for agricultural land (a), field road (b) and natural forest (c).
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CHAPTER FIVE: General conclusion and recommendations 

5.1 General discussion and conclusion  

This thesis assessed the application of multi-coil (MC) and multi-frequency (MF) electromagnetic 

induction (EMI) sensors in characterizing the variability of a range of soil properties in three 

different land uses. The surveys were conducted during the wet period, as MF–EMI is more 

effective in detecting ECa variability in wet soils than in dry soils. The thesis is comprised of two 

studies conducted on Boreal podzolic soil, specifically in the Western Agriculture Center and 

Research Station, managed by the Department of Fisheries, Forestry and Agriculture, Government 

of Newfoundland, Canada. 

 

The first study (Chapter 3) presents evidence that proximal surveys of apparent electrical 

conductivity (ECa) using GEM-2 (MF–EMI) could serve as a valuable surrogate for evaluating 

intra-field spatial variability of soil moisture content (SMC). The impact of soil moisture on ECa 

was analyzed under three distinct land use conditions (agricultural land, recently cleared natural 

forest, and field road) on a boreal podzolic soil. Results from the linear regression analysis 

indicated that soil moisture was a major factor contributing to ECa in the study area. The 

application of cokriging with ECa as a covariate raised the sensitivity level of  spatial variability 

prediction of SMC than maps produced using ordinary kriging, with additional improvements in 

the prediction accuracies of soil moisture maps. It was found that ECa obtained using EMI has the 

potential to be a reliable auxiliary variable for accurately predicting soil moisture in boreal 

podzolic soils, with the best prediction and strongest correlation observed in the natural forest. 

Analysis of ECa - SMC correlations revealed weaker correlations for agricultural land and field 
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road. This can be attributed to the presence of fertilizer on the agricultural land, which increases 

the concentration of dissolved ions in the pore water and thus its pore water electrical conductivity 

(ECw), as well as heavy compaction and shallow water depths in parts of the field road that cause 

poor drainage. These two factors are responsible for the higher ECa variability in the agricultural 

land and field road, which in turn has a direct effect on the ECa-SMC relation in these land uses. 

These findings indicate that cokriging of SMC with a densely sampled ECa as covariates may 

provide an improved characterization of soil moisture variability within the study area. 

Specifically, the number of ECa data points taken across all land uses in this study were greater 

than one thousand (1000) data points. This suggests that the cokriging of SMC with densely 

sampled ECa may be a reliable tool for accurately assessing soil moisture variability in the study 

area. Consequently, this study confirms the efficacy of the georeferenced MF–EMI technique to 

rapidly assess intra-field variability under different land uses.  

 

The second study (Chapter 4) revealed that measuring ECa using MC–EMI and MF–EMI sensors 

provided significant information for maximizing the accuracy of SMC prediction under different 

land use conditions. ECa had a significant positive correlation to both SMC and soil organic matter 

(SOM), with SMC exhibiting the strongest correlation. The correlation results between ECa and 

SMC were found to be the strongest in moist soils. This is because ECa has been reported to 

increase with water content and potentially ions retained in soil solution. Coil 1 in vertical coplanar 

mode MC-EMI sensor was the most accurate method for predicting land use conditions, compared 

to other EMI coils orientations, according to multiple linear regression analysis. SMC was the 

primary driving ECa parameter in the study area, however, the other variables such as SOM, silt 

content, and bulk density were also had a significant impact on ECa. These findings demonstrate 
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the importance of considering several soil parameters such as clay content, bulk density, and 

organic matter when analyzing soil-related variables like ECa since ECa is affected by these 

parameters. Cokriging of TDR-measured SMC with ECa as a covariate revealed more accurate 

maps than cokriging predicted SMC with ECa as a covariate. Additionally, findings from the 

comparison of both sensors indicate that MC–EMI sensors are more suitable for SMC 

characterization in the study area than MF–EMI sensors, as they provide a higher level of accuracy 

and precision. These results illustrate that georeferenced mobile soil ECa measurements with 

statistical and geostatsical techniques can aid in characterizing soil spatial variability of SMC 

rapidly and serve as a soil quality indicator for soil productivity.  

5.2 Recommendations for future work 

It is recommended that: 

1. Further studies should be conducted to compare the prediction accuracy of several 

interpolation techniques such as inverse distance weighting for the soil properties under 

different land uses in the study area. 

2. More studies should be carried out on other subregions for further validation and assess the 

gradual variability (gradient) of soil properties between natural and managed lands.  

3. More extensive field measurements should be conducted to enhance the reliability of the 

prediction models through intensive calibration and validation with ground truth data at 

both vertical and horizontal scales. 

4. Ground-truthing of soil parameters should be conducted at deeper depths to ascertain the 

variability of ECa associated with soil parameters in those levels. The use of MC and MF-

EMI sensors permits a greater depth of investigation than was used in this study, which 
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only extended to a depth of 0-20 cm. A deeper look into the soil profile will provide a 

greater understanding of the variability of ECa throughout the soil profile. 

5. A spatial smoothing filter should be applied to reduce the noises due to the EMI sensor 

positioning (height and tilting) and the difference in the investigated soil volume of the 

EMI sensors and TDR. 

6. Further studies should be conducted to apply inverse modeling to obtain 3D maps of SMC, 

while considering other environmental factors such as temperature, land slope, water level 

and vegetation cover, to create more comprehensive understanding of soil spatial 

variability. 

7. Investigation is undertaken on whether magnetic susceptibility could be used as an 

auxiliary variable to improve the accuracy of maps of the targeted soil properties in this 

study. 

8. ECa readings obtained from other frequencies of the MF-EMI sensor should be investigated 

to determine if significant relationships can be identified between these readings and soil 

parameters. Such an analysis could provide valuable information that may be utilized to 

better understand the characteristics and behavior of the soil within an area of interest.  
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