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Abstract

We present a series of parameterizable modifications to heuristic evaluation of actions in

the A* algorithm, designed to create human achievable and dexterity-robust paths through

games in the 2 dimensional platformer style. We attempt to create paths designed for various

levels of player skill by imposing constraints onto the timing and duration of actions in such

a way as to mimic human reaction times and ability. We show that these modifications result

in the A* search algorithm producing smoother paths, taking safer routes to avoid danger,

and requiring fewer actions to be performed in a given amount of game time.
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Chapter 1

Introduction

2-Dimensional platforming video games (platformers) have been a popular genre of video

game for many decades, with the most popular example being the Super Mario Bros. fran-

chise of games launched in the early 1980s by Nintendo. In these games, players control an

animated character that can run and jump throughout an environment and do battle with

enemies in order to reach the end of a given level. Platformers typically vary in difficulty of

play, with harder games strategically placing level geometry such that running and jumping

require very specific input timings around dangerous obstacles such as enemies or pitfalls.

Modern pathfinding algorithms have been shown to be able to produce paths through

levels in these games, with some particularly popular examples being the Infinite Mario AI

and MarIO neural network, which have garnered millions of views online. These videos

are popular not only for the impressiveness of the technical challenge, but also because

the resulting play is beyond the skill level that is possible by human players. The paths

created by these systems are visually impressive — flying through levels, making frame-

perfect jumps, and narrowly avoiding danger by mere pixels. Impressive as they are, they

are only made possible by the perfect input precision of a computer AI player, and if a

human player attempted to follow the same paths, any minor mistake would lead them to

certain doom. In the video game speedrunning community this type of computer aided play
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is called a Tool-Assisted Speedrun or TAS1, and paths that are only possible via superhuman

input precision are called “TAS-only” strategies — while technically possible, they are to

implement for a human trying to learn to play the game.

With the introduction of New Super Mario Bros Wii in 2009, Nintendo unveiled their

Super Guide feature, intended to help struggling players. This mode restarts the current level

and hands control of the player over to a pre-recorded instance of another human playing

the level. This system is intended to serve as a tutorial for new players, reducing frustration

by giving tips on how to accomplish goals within the game. While this feature is indeed

helpful, the recording of human completions of a level require a significant time and budget

cost to the game developers, and would have to be re-recorded whenever a change to the

level is made. It would be advantageous to game developers offering these helpful features

if the paths could be produced automatically by AI systems, rather than relying on human

authorship.

1.1 Motivation

Existing AI pathfinding systems typically produce super-human paths that would be im-

possible to implement by humans, especially those just learning to play the game. These

techniques use pathfinding whose action evaluations optimize paths for either distance or

speed, with no care for the relative difficulty of emulating the resultant actions, owing to the

fact that artificially controlled players have perfect input precision. We attempt to address

these concerns by imposing a number of constraints onto the action evaluation function of the

A* search algorithm. By paramaterizing these evaluations, we allow for a number of paths

to be generated, with the goal being to generate helpful paths for players of differing skill

levels. These paths are generated with consideration for the reaction time and dexterity of a

human player, as well as the overall complexity of the path involved. This is accomplished by

by limiting the frequency and number of actions a player would be expected to perform. In

1https://tasvideos.org/
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addition to creating paths that are more human-viable, we examine the robustness of these

paths to noise by perturbing the time at which the predetermined inputs are entered. By

analyzing the success of these perturbed instances, we can determine how likely a theoretical

path is to stand up to human re-creation, and even attempt to quantify a level of safety

based on how likely these perturbed paths are to reach failure states.

1.2 Thesis Outline

Chapter 2 introduces definitions for the type of videogames we will be working with through-

out the thesis, as well as a brief explanation of pathfinding algorithms as they apply to

videogames generally. We will also discuss in depth several previous attempts at recreating

human-like play in the field, as well as presenting a justification for our own original research.

Chapter 3 introduces our proposed modifications to the pathfinding algorithm we will

be using to test our hypothesis, as well as the evaluation metrics we will be using to judge

its ability to meet our requirements. A brief technical discussion of the programs, data

structures, and datasets we have created and used is given as well.

Before discussing our experiments, we provide some visual analysis of our modifications

in Chapter 4 with the intent both of providing the reader with a visual intuition, as well as

demonstrating the method by which we selected a specific range of parameters to test.

Chapter 5 begins with a discussion of our experimental method before presenting the

findings of our two large scale experiments. The first was conducted in order to find the

best performing values for our modifications, which were then compared against eachother

in a second experiment. The evaluation metrics discussed in Chapter 3 are presented for

the data collected throughout, and discussed in terms of how they relate to our overall goal

of human achievable path generation. Some additional metrics we chose to examine are

included therein as well for completeness.

Finally we summarize our process and present an overall conclusion of our results in

Chapter 6. We conclude with several proposed avenues for continued research in this field.
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Chapter 2

Background and Related Work

Here we provide a definition for what we define as a platformer game, followed by an overview

of pathfinding techniques for videogames. The A* algorithm will be discussed in detail, in-

cluding how it is applied to real-time video games. We will overview how human performance

and pathfinding have intersected in the past and examine how human-like play has been eval-

uated and benchmarked.

2.1 Platformers

The genre of videogames known as “Platformers” has a robust history, dating back nearly

as far as the medium itself and still remaining popular today. “Despite all the improvements

in graphics, hardware, and game design, platforming remains timeless”, writes game critic

Joshua Bycer in 2019 [2].

More accurately, this style of video game can be called a “Side scrolling 2 dimensional

platformer”. The verbosity of such a term means not all of these designations are included

when discussing games in this genre; however it would serve us well to examine all these

terms.

2 Dimensional: The game is played soley along two axes. The earliest videogames existed

in two dimensions out of necessity, with early consoles like the NES only able to display a
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maximum of 64 sprites (two dimensional images), each consisting of 8x8 pixels [5].

Now the term is usually used to contrast the game to games played in 3d. A 3d game

allows the player 3 axes of movement; however, many games in the modern age still elect to

constrict their play to two dimensions of movement, even in cases where the game itself is

constructed from an engine that allows for 3 dimensional rendering. Fighting games such as

Street Fighter or Super Smash Brothers play this way, with the game visually being rendered

using modern 3d techniques to incorporate depth and lighting, whereas the player experience

is constrained to 2 dimensions, ie. the players can only move left, right, up and down.

Side Scrolling: In a side scrolling game the player is viewed from a side profile and the

game world scrolls past them as the player moves as opposed to having a fixed or cinematic

camera[27]. This is usually used as a contrast to “top down” games in which the player is

seen from above. The perspective offered from a side scrolling game means the player is

able to control their movement left and right, as well as up and down. Side scrolling games

incorporation of verticality often means that some form of gravity is implemented allowing

the player to run and jump.

Platformer: This term describes gameplay. Platformer games place an emphasis on con-

trolling jumps around obstacles and onto platforms, often simply called “platforming”. Ene-

mies may be present, but the challenge of the game usually lies in mastering the character’s

movement rather than strategy or combat.

In order to further test the skill of players, many platformers emphasize reaction time

through speed. This would become a cornerstone of the marketing for the Sega Genesis in

particular their game Sonic The Hedgehog, considered a “Rival Franchise” to Super Mario,

which was marketed explicitly as being faster, and implicitly, more fun than Mario [14].

“The definite impression of Sonic the Hedgehog is speed. Sonic moves so quickly that it

is not always possible to perceive the environment” writes Jonathan Skyes in his essay “A

player-centered approach to digital game design ”[23].
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2.2 Pathfinding in Video Games

Here we will review some of the more popular pathfinding techniques used in videogames

and discuss their different strengths and implementations, before discussing the A* algorithm

specifically, and how it is applied to realtime videogames.

2.2.1 Methods

Steering Behaviours

Steering behaviors use compounding combinations of rules to determine the locomotion of

autonomous agents and were pioneered by Craig Reynolds in the late 1990s [19]. These

behaviours model agents as vehicles. These idealized vehicles have forward acceleration as

well as a steering force able to change their rotation in much the same way as a real life

vehicle. By interacting with the observable area around each agent, they use a series of

predefined rules to determine which direction they should face, and how quickly they should

move.

A basic example of steering can be seen in the “Seek” behavior. This attempts to steer the

agent towards a specific location, continually aligning the agent’s velocity vector such that

it is aligned with the target. This simplistic behaviour can be improved to intercept moving

targets by considering the targets respective velocity and predicting its future position. This

behaviour, called “pursuit”, may be simplistic, but is still used for basic projectile behaviour

in some games to create “Homing” projectiles. An opposing behaviour called “flee” uses the

same techniques but attempts to align the velocity away from a point, rather than toward

it.

More complex behaviour emerges when these basic rules are combined. One such tech-

nique, obstacle avoidance, uses a combination of seek and flee behaviours. Through a com-

bination of seeking a target and fleeing from boundaries labeled as obstacles, the resultant

path can mimic seemingly complex behaviour.
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Algorithm 1: Evaluating cost of cells c to destination D

Data: C = {c1, c1, . . . cn}, D = c ∈ C

begin

foreach c ∈ C do
c.cost =∞

D.cost = 0

uneval = {c1, c1, . . . cn}

current = D

while uneval ̸= ∅ do

foreach Neighbor n of curr /∈ uneval do

newcost = cost(c, n)

n.cost = min(newcost, n.cost)
uneval = uneval − current

current = min(uneval)

Field Approaches

Rather than act directly on the game itself, these techniques create a grid based abstraction

of the game space in order to derive their paths. In its most basic form the game space is

abstracted into tiles, marked as walkable or not. A destination is selected, and the pathing

information is computed for the entire grid, creating a 2 dimensional representation, a field,

that can be used to guide agents to the goal.

Flow Fields also known as vector fields, are one such instance of this technique. Once the

abstract grid has been created, Dijkstra’s algorithm is used to calculate the total path cost

for every node on the grid to reach. Once every cell’s distance is calculated, a second pass

is performed over the grid whereby every cell is assigned a direction vector pointing at its

lowest cost neighbour. Once the grid is populated, the goal can be reached from any other

point in the grid by simply following the direction vectors [6].

The flow field can be extended with additional information acting on the direction of the

vectors. Such “influence maps” can represent abstract concepts such as enemy vision ranges,
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G

Figure 2.1: An example flow field. Following the arrows at any point will lead to the goal.

or points of interest. Several different such layers can be combined before the final vector

field is calculated, leading to complex emergent behaviour.

Flow Fields excel at multi-agent pathfinding scenarios. Once the field has been computed

for an area, multiple agents can path towards the goal with very little additional computation

required. The upfront cost of computing the entire flow field however, often makes such

approaches less than ideal for single agent pathfinding.

2.2.2 The A* Algorithm

A* is a popular and industry-wide algorithm for path finding in general cases [17]. Similar

to Djkstra’s algorithm seen in Algorithm 1, it successively calculates the path cost of cells

between the start and goal points. Unlike Dijkstra’s algorithm, however, it is designed to

facilitate finding a single path between two specific points. This limitation is leveraged to
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improve the algorithm in ways that make it more suitable than Dijkstra’s for the task of

single-agent pathfinding.

Heuristic Function

Instead of simply calculating the cost required to reach all cells from the destination point,

A* includes the addition of a heuristic function to estimate the cost from each cell to the

end point. At each step of the iterative process, the cell that is selected to be evaluated is

based on the sum of both it’s cost as well as an estimated cost, calculated by a heuristic

function. The final cost is then evaluated using the formula

f(n) = g(n) + h(n) (2.1)

where g(n) is the cumulative cost of reaching the cell, and h(n) is the evaluation of the

heuristic. The final cost f(n) then becomes an estimation of total path length. By always

evaluating the cell with the lowest estimated path length, A* shows remarkable efficiency in

practical pathfinding scenarios.

Graphs

A* (and Djkstras algorithm) do not operate simply on grid-based searches. Rather they

operate more abstractly on graphs. Any grid based representation of cells as a pathable

space can be expressed instead as a graph with nodes and edges, as seen in Figure 2.2. In

the cases of abstract graphs, g(n) and h(n) must still be available and calculable. That is,

we still require a way to calculate the cost between two nodes, as well as estimate the cost

from a node to the destination. Cost does not always have to be distance. A* can be used,

for example, to find a series of bus routes that minimize time to the destination, or minimize

the literal cost of a series of plane trips.

Priority Queues

Because the selection process requires constant access to the node with the lowest f score,

the implementation of how the nodes are stored is of particular importance, and a data

9



structure known as a priority queue is typically used. A priority queue is an abstract data

structure that operates on a set of elements, and can be implemented in many ways [4].

These implementations all share several key operations1

� Insert(x, k): Inserts element x into the queue with associated key value k.

� Min(): Returns the element with the lowest key value.

� Extract-Min(): Removes and returns the element with the lowest key value.

� Decrease-Key(x, k): Decreases the key value of element x to the value of k.

2.2.3 A* for Real-time Games

So long as methods exist to translate gameplay into a graph structure and calculate f(n), we

can turn a realtime game into a pathfinding problem we can solve with A*. In many modern

implementations of real-time pathfinding, the level geometry is abstracted not to a grid, but

to a series of differently sized nodes, known as a navmesh [10]. Navmeshes have proven

very effective for 3d environments as well as for multi-agent pathfinding [29]. However the

drawback is that they are themselves often difficult to compute, typically created along with

the level environment, under the assumption that this environment remains static.

As an alternative to this approach, a graph can be directly created from the game’s state

and actions. In this approach the nodes are states, and the actions that can be taken at that

point are the edges between them.

Game States are a representation of the entire game at a moment in time. This includes

information about every entity on screen, their positions, velocities, and any additional in-

formation needed to recreate their behaviour. For the search algorithm to function correctly,

the representation must be lossless. That is, whichever form of representation you use for

a game state must be capable of perfectly recreating the game up to that point. As an

example, consider algebraic notation in chess: the string of characters

1The Min-priority queue implementation is given as an example here.
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is capable of perfectly recreating the board state of a game, despite not listing the posi-

tions of every single piece on the board at the time.

Actions are the inputs through which an agent may interact with a system. For guiding an

agent through a platformer, this would typically correspond to actions such as “Move Right”

or “Jump” though they can also represent autonomous agents in the world with other such

actions, such as “Shoot at player”. For emulating human play there is often an advantage in

that player inputs are themselves already perfectly discretized into actions: button presses.

As such, the answer to the question “What actions can the player perform in this state?” is

usually simply the buttons they can press.

Move Left

Jump

Move Right
Game 
Start
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new 
state

new 
state

new 
state

new 
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Move Left Jump Move Right

new 
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state

new 
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new 
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new 
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Figure 2.3: A graph created from a game where states are nodes and actions are edges.

To create this graph, the game needs to be simulated between all nodes. That is, once

an action is selected, the game needs to advance to the following state obeying all the rules

of the game as it would as if it were being played. The game also needs to be deterministic.

If taking the same action from the same state does not always result in the same child state,
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then the A* algorithm will be unable to evaluate nodes properly.

With this in place, we can see the algorithm behind using A* in realtime games given in

Algorithm 2. In this implementation A* can be used to optimize any definable goal, such as

achieving a high score or staying alive as long as possible. However for consistency we will

assume the goal is pathing the player to a point within the game world. g(n) and h(n) will

therefore be based on distance as previously discussed. Instead of providing the algorithm

with a grid based representation of the world, it is provided with the initial game state, a

list of actions, and a destination condition. In our case, the destination condition will be

that the player’s position be within a certain distance of our goal point. This information

must be retrievable from the game’s state.

This algorithm produces a series of actions which, when performed sequentially in order

from the initial game state, will provide the shortest path to the destination.

2.3 Realistic Platforming Agents

Human imitation has long been a goal in many aspects of computing [28], and video game

AI is no exception. Attempts to mimic human play span nearly every genre, platform style

games included. Here we will examine some of the most notable instances that apply to our

research, as well as a brief discussion of how we add value to this space through our research.

In 2009 the Mario AI Competition was created [26] where several different implementa-

tions of Mario pathfinding AI were tested on procedurally generated platform levels in the

style of Super Mario. In the first few years, A*-based controllers dominated the competition.

No regard for realism or human ability was considered initially, however in the competition’s

final year of 2012, the Turing Test track was introduced [21]. As the name implies, con-

testants were given the goal of emulating human play, and were judged subjectively by a

panel of observers. By this time no bots competing used any form of heuristic search, most

preferring neural networks. The best performing bot in the Turing Track achieved a score

of 25%, convincing less than half those surveyed that it was a human player.
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The next year saw the release of a paper which researched the exact same concept:

creating human-like play in Mario [12]. In this paper Ortega et al. compared several agents,

including ones based on the Mario AI Turing Track. Every agent evaluated was either based

on a neural network, reinforcement learning, or hard coded rules. At that time, it seems

heuristic search algorithms were deemed insufficiently complex to emulate human play.

In 2016 Frydenberg et al. sought to use Monte Carlo Tree Search to emulate human

behaviour, noting “in many cases, it is harder to create a human-like game-playing agent

than to create a high-performing agent that wins many games or achieves superhuman scores”

[7]. MCTS is a tree-search algorithm not unlike A*, but it bypasses the need for a heuristic

function by using randomized playouts to determine the relative strength of a state. Their

approach featured hard coded behaviors in order to facilitate branch pruning of “ineffective

actions”, and gave priority to certain higher level concepts such as a “Map Exploration

Bonus”. Unlike the previous examples, this was not focused on Mario, or even platform

games in particular, instead using a subset of games from the General Video Game AI

framework [13].

Fujii et al. sought to create what they called “Biological Agents” in 2013 [9]. They created

two agents, one using Q-learning and one using A*, to play in the infinite Mario engine with

a series of biological constraints. These include a perceptual delay, where the algorithm is

given the character’s coordinates with a slight delay in order to simulate human perception,

as well as modeling physical fatigue. This resulted in an agent that would jump earlier than

a typical A* implementation, as well as take short breaks, increasing its playtime by 128%.

Analysis was done subjectively, through a survey of 20 participants, who were asked which

seemed most skillful and which seemed most human-like.

2.4 Established Evaluation Metrics

Evaluating what makes something more human-like in many ways is the key difficulty behind

emulating human behaviour via an algorithm. Human analysis through survey, as in the
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Turing Test, is likely the best method despite its subjectivity. However without a clear set

of rules or observations to be formalized it becomes rather difficult to implement into an

algorithm in the first place.

A survey by Temsiririrkkul et al in 2017 attempted to create a classification system of

AI behaviour by splitting all actions into four categories: inside the game, outside the game,

related to the objective, and not directly related to the objective [25]. While interesting for

generating novel play, it would not benefit the generation of paths to incorporate outside

information such as empathy, or attempt to deviate from the main objective in our case.

Nevertheless, human comments on the subject prove to be an excellent starting point.

Ortega et al. solicited comments as part of their Turing Test style evaluation, the top results

of which were illuminating; in order, they were Jitteriness, Useless moves, No long term

planning, Too fast reaction time, and Overconfidence

The 2013 Mario specific paper used a fitness score based on the traces of actual human

playthroughs and applied this fitness as a heuristic to existing agents. While novel, it offers

little utility in attempting to parameterize realistic pathing.

Phuc et. al used a similar approach in 2017 in their paper “Learning human-like behaviors

using neuroevolution with statistical penalties” [16]. In this paper, they trained an agent

based on the NEAT algorithm [3], a neural network that is capable of changing its structure

through evolutionary methods over time. Similar to the previous method, they used a

statistical sampling of real human data to inform a number of criteria, such as how often a

player moves, how much time they spend in the air and how often they move left. Agents were

penalized for failing to emulate play with similar statistical breakdowns of these features.

Ortega et al. included a number of evaluation criteria in their 2016 agent that were in-

formative: Action Length, Nil-Action Length, and Action to New Action Change Frequency,

paraphrased below:

� Action Length: How often a button is repeated, analogous to humans holding down

buttons for more than one frame as opposed to agents who make single-frame actions.

� Nil-Action Length: How long the agent spends doing nothing, as humans often wait.
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� Action to New Action Change Frequency: How often a player switches from one action

to another.

The first and second metrics do not directly apply to creating paths as directly as the third,

but all three were shown to influence the perception of believability of agents, and as such

demonstrated that applying concepts of reaction time to rules-based systems is promising.

Evaluation metrics such as these represent a step towards being able to systematize believ-

ability into objective functions, which can be incorporated into algorithms for generating

believable agents.

2.5 Conclusions and Shortcomings

Heuristic search algorithms for videogames remain popular as a form of pathfinding in the

modern era, and still represent a large field of research. While A* sees much use in the general

case of shortest-path single-agent pathfinding, it has been much less closely associated with

the small but growing field of human-like pathfinding. However, we believe none of the

techniques surveyed are fully appropriate towards achieving our goal.

Our stated purpose is to create human-informed, parameterizable paths motivated by

the idea that current autonomous pathfinding techniques produce paths that are generally

unsuitable or downright impossible for humans to imitate. With this goal in mind, there are

3 significant shortcomings we have identified.

Intentional Flaws

Most work towards developing human-like autonomous agents focuses on emulating imperfect

human play. These agents are designed to make mistakes, hesitate, and other such actions,

typically with the intention of fooling jurors into believing they are human. While we share

many of the same goals as these agents, such as reducing jitteryness and superhuman reaction

times, the techniques employed, such as training agents based on real life play or purposefully

rewarding mistakes do not lead themselves toward the goal of generating practically useful
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paths.

Parameterization

Parameterization of most of the methods surveyed is impractical or impossible. Neural

network based agents would have to be re-trained to change any aspect of their play, a

process known to be expensive in terms of computing time. Several of the agents involved

were trained using datasets of real life human play. As such, new datasets would have to be

acquired, and again the agent would have to be re-trained. Furthermore, any biases inherent

to the training sets could potentially be introduced.

Human Benchmarks

While many of the agents focus on believability, very few reported on reaction time statistics

or other such human benchmarks. It is possible that the paths they created may in fact

involve subtle but unapparent movements making them more difficult to achieve than it

appears. Additionally, little information is reported on the established metrics introduced in

section 2.4. It would be useful to know to what extent a believable agent can reduce jitter,

action length, action change frequency, etc.
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(a) Possible paths from cells 1 to 9 (grey cells un-

pathable)
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2 4

9

8 76

(b) The same grid expressed as a graph

Figure 2.2: Pathfinding over grids can be considered a graph problem
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Algorithm 2: A* for realtime games

Input: Game State S, Destination Condition D(S), Actions A = [a1, a2, . . . an],

Cost Function g(S), Heuristic Function h(S)

Given: Node class N() which, when constructed from states creates new Node, NS

begin

Open = [N ] // Priority Queue

Closed = []

while Open is not empty do

current = Open.Extract-Min()

if D(current) then

Return list of parent actions of current

Add current to Closed

foreach Action a in A do

Sa = current.simulate(a) // Create child state from action

if Sa in Closed then

Continue

Sa.g = g(Sa)

Sa.h = h(Sa)

Sa.h = Sa.g + Sa.h

Add N(Sa) to Open

Return Fail // No path exists
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Chapter 3

Methodology

This section discusses our approach to implementing our proposed system. It begins with

a discussion of the custom implemented 2 dimensional game engine, as well as the data

structures we use to represent searches and paths. We continue with a discussion of the

specific modifications we have made to the A* algorithm, called Action Value Modifiers

(AVMs) as well as the metrics we have decided to use to evaluate the performance of said

modifications.

3.1 The Environment

To best suit our needs we are working in a custom game engine designed specifically to

create arbitrary 2d games. This game engine uses an Entity Component System (ECS)

architecture, and is written entirely in C++ from scratch. The only external libraries used

are the Simple Fast Multimedia Library (SFML) 1 which allows for the rendering of textures

and handling of user input, as well as an external JSON parser to allow for easy real-time

configuring of variables. The engine has several features that facilitate our research goals:

� It is completely deterministic

� It is capable of generating and reading replays to recreate play

1https://www.sfml-dev.org
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� It is capable of quickly and easily copying game states to allow for easy integration

into heuristic search algorithms

� At all times, the engine knows the actions available to the player, and these can be

queried from outside functions.

� The rendering system can be disabled (headless) for maximum speed, achieving several

thousand frames per second of simulation.

As stated above, the engine can be configured to run in a headless mode, wherein it takes a

list of parameters from a configuration file and is capable of directly comparing an arbitrary

number of searches in random locations across a corpus of levels. Levels themselves are

loaded from text files, and conform to the format specified for the Video Game Level Corpus

[22]. This can be seen in Figure 3.1 which some may recognize as the well known 1-1 level

of the original Super Mario Brothers. For simplicity and ease of rendering, objects without

collision are omitted.

The greatest advantage of using a custom system is that our game engine logic / data

and search algorithm code retain a large degree of separation and modularity. The search

algorithm receives all actions as well as positional data from the game engine, and explores

by selecting an action, after which the simulation is run and the resulting state given back

to the algorithm for evaluation. Many similar systems use hard coded values for their goals

and heuristics: for example many Super Mario AIs have precomputed information about

potential jump arcs, or use the player’s x position as the goal, as the end goal of Mario is

ultimately to run as far to the right as possible. These modified heuristics are based on

assumptions about the game: for example the physics never changing, and the goal always

being the furthest right point of the level. These assumptions can allow for a large degree

of discretization for their specific task, but by not using any such assumptions our system

retains more generalizability. For example, in our engine it is possible that mid-way through

a search, gravity could be completely removed and the input methods changed to resemble

a top-down game. Because the search only knows the list of possible legal actions and the
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Figure 3.1: A screenshot of our engine. The player character is at the bottom left.

resultant position, reusing the system can easily be achieved on arbitrary games created

within the engine.

3.2 Searches as Data

Central to our methodology are the concepts of Searches and Replays, the former being a

class of functions which perform a search instance within a game state which generate the

latter, which itself is simply a data class representing the actions performed by the search.

We define a Replay R as an ordered sequence of actions, A1, A2 ... An, with each

action Ai consisting of two elements: at (the time at which the action occurred, measured in

game frames), and an (the name of the action being performed, such as JUMP, MOVE, or

SHOOT ). Given that our engine is completely deterministic, this means that a sequence of

play can be perfectly replicated from a replay, assuming the starting conditions of the game

state are the same. Replays and states can be stored as text files for ease of debugging and
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replay.txt

0 START-RIGHT

18 START-JUMP

30 END-JUMP

48 END-RIGHT

Figure 3.2: A sample replay file from our engine.

visualization. If at any time step in the game the AI system issues no inputs, it does this

via a NO-OP action; however, we elect not to store the NO-OP action in replays as it can

be assumed by default, and its inclusion would produce needlessly large replay files. Figure

3.2 gives a simple example of the contents of a replay file.

Action names are defined in the game engine as part of the logic of the game being

simulated. Their meaning, while useful to humans, carries no semantic information to the

algorithm. The performing of any complete action in our engine is broken down into two

distinct steps: the start and end of that action. The start of an action such as running to the

right: (START-RIGHT ) would be analogous to a player pressing down on the button that

moves the player to the right, while the END-RIGHT action would be the player releasing

that button. This format was chosen to minimize the number of actions required in the

replay file, as well as to allow the replay files to be human-readable.

A search represents a single instance of our A* search algorithm, where all of the action

value modifiers are defined. An important aspect of the algorithm is the concept of frame

skipping. Frame skipping is one of the standard techniques for game state exploration and

pathfinding and has a documented history [1]. Rather than expand a new game state every

frame, once an action has been decided, the search continues the simulation of the game for

a number of additional frames before expanding to the next frame. Practically, this imposes

a limit on how often the search can take actions, as once an action is taken it will continue

uninterrupted for the next n frames. While Deepmind’s Atari DQN network used a frame

skip value of 4 [11], after experimental testing we opted to use a more lenient 6 frames
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initially. Given that our game engine runs at a consistent 60 frames per second (FPS) this

also gives us a round value of 10 actions per second. This is an upper bound on the frequency

of actions, and we have observed that the vast majority of replay files contain far fewer than

10 actions per second on average.

3.3 Action Value Modifiers

One of the core ideas of our research is that of the Action Value Modifiers (AVM), which act

as modifiers on the heuristic cost function of nodes in our search algorithm by examining the

timing and quality of actions. By modifying the A* search algorithm’s heuristic evaluation

we are effectively imposing constraints on the behaviour of the resulting paths. The result

of these modifications is to attempting to prioritize the exploration of more human-friendly

paths by imposing penalties on the cost of performing actions that we deem to be super-

human, such as performing too many actions in a short duration of time. A description of

each of these modifiers is as follows.

3.3.1 No-Op Modifier (NOM)

No-Op refers to the search choosing to take no action on the given frame. It is the most

common decision, and does not correspond to taking an action by our definitions. Because

stopping an action is itself an action, the No-OP action will leave the search actor performing

whatever action(s) it was previously performing. It can be helpful to think of No-Op as

“changing nothing” as opposed to simply “doing nothing”. Continuing, any references to

taking an action are assumed not to include No-Ops.

This modifier multiplies the value of the no-op action, and as such setting it to < 1.0

(incentivizing) causes the algorithm to favor paths with fewer actions. Because this action

is by far the most common in normal human play of most video games, we theorize that

setting the NOM to lower values will result in more human-like behaviour.
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3.3.2 Action Change Modifier (ACM)

Essentially the inverse of the previous modifier, when set to a value higher than 1 it imposes

a multiplicative penalty for every instance of taking an action. Penalizing these actions will

attempt to find paths with fewer action changes, which results in smoother paths that, if

performed by a human, would require fewer button presses. Intuitively one would think

this modification would perform identically to the previous NOM; however we have included

both for experimental purposes.

3.3.3 Consecutive Action Modifier (CAM)

The consecutive action modifier is a variation of the action change modifier that considers

the time between the current action and the previous action. It is therefore defined by two

parameters as opposed to previous modifications: the first being the number of frames since

the last action (the window), the second being the multiplier. It uses a simple binary check,

imposing the penalty on consecutive actions until the threshold has been passed at which

point it no longer applies. This results in penalizing multiple actions in quick succession,

which we believe leads to more human-like play.

3.3.4 Progressive Consecutive Action Modifier (PCAM)

The progressive consecutive action modifier is the same as the consecutive action penalty:

however, instead of being a binary threshold, the value of the multiplier is calculated as a

linear interpolation over the window’s duration. Given a multiplier M , a frame window F ,

and considering the number of frames since the last action was performed as Fl we find our

interpolated value Mi as follows:

Mi = M −
(
Fl

F
×M

)
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3.3.5 AVM Integration With the A* Algorithm

Our implementation of the A* algorithm uses the standard formula for node selection from

the priority queue based on f(n) = g(n) + h(n), with the next node n to be expanded by

the search being the one with the lowest value of f(n). The value of g(n) denotes the sum of

the action costs so far to node n in the search (the total path cost), with the A* algorithm

attempting to find the path that minimizes g(n). As mentioned previously, due to the nature

of the real-time environment we do not use distance as a path cost function, but instead we

use game time measured in frames (how much time did it take us to get to the goal, not how

far did we travel). This means that the value of g(n) at any time in the search is the current

frame count of the game state.

Each of our AVMs act as multipliers on the value calculated by h(n), effectively priori-

tizing which actions we should select next in the search expansion. Intuitively this modifies

the outcome of the search in a way that is similar to Weighted A* Search, where we are

willing to reduce the time-optimality of the final path cost as a trade-off for the human-like

behavior that we desire. We can also combine the effect of any number of AVMs by simply

multiplying them together. For example if we had ACM=0.7 and CAM=1.3, if both applied

then our A* search instance would use f(n) = g(n) + h(n) ∗ 0.7 ∗ 1.3. The final form of

our modifications as they apply to the A* h(n) function are presented in Algorithm 3. Note

that if all modifiers are given as 1.0 then the final value of value will remain unchanged from

default behaviour.

3.4 Evaluation Metrics

Our evaluation metrics center around the frequency and delay of time required to take

actions, which attempts to mimic the action of a human being pressing a button or key.

Once an action is selected, such as “move right”, the act of continuing this action continues

until the stop action is taken, as a human being holding the button to move right requires no
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Algorithm 3: Our final modified heuristic function

Input: Nc: Child Node, Np: Parent node, A action

Output: g ∈ R : g value for A* algorithm

Given:

Nm : No op multiplier ∈ R

Am : ACM multiplier ∈ R

Cw : CAM window length ∈ Z

Cm : CAM multiplier value ∈ R

P : Use progressive modifier ∈ B

begin

cost = Nc.currentFrame - Np.currentFrame

T = Nc.framesSinceLastAction

if A = “No-Op” then

cost ∗ = Nm

else

cost ∗ = Am

if T ≤ Cw & A ̸= “No-Op” then

if P then

cost ∗ = Cm + T ∗ 1−Cm

Cw

else

cost ∗ = Cm
return cost

further input to continue the action. As previously described, the start and end of actions

are analagous to humans pressing and releasing buttons on an input device.

Once a path has been calculated through a search instance, we examine the series of

actions taken, and our selected metrics are then aggregated to produce a final value rep-

resenting the model’s general performance. In the following subsections, we present the

following metrics and their rationales.
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3.4.1 Timing Frequency Metrics

Total Actions Performed (TA)

Calculated by summing the number of all actions performed during a search. This is a value

we want to minimize and is analogous to how many buttons a human would have to press

or release to follow a path created by the search.

Actions per Second (APS)

This metric is calculated by taking the total actions performed and dividing it by the total

time spent in engine once the final path has been calculated. The time is calculated in frames,

but we present the values in seconds for ease of readability and understanding. Though

similar to the previous metric, not all paths are guaranteed to have the same duration. A

path may have more actions, but if it is significantly longer, they will occur over a longer

period, and may have more time between then. It is analogous to how often, on average, a

person would have to press or release a button in order to follow a path created by a search.

Time Between Shortest Actions (TBSA)

While the previous metrics consider all actions taken, this metric uses only the shortest

duration between any two actions for a search instance. The shortest required action is of

interest because it represents the peak of difficulty for that path. For example: a path might

have many long stretches of inactivity followed by a jump that requires two buttons to be

pressed within a 5 frame window. The average of such a path would be high, but that would

mislead how difficult the path truly is. It is analogous to how fast you have to be able to

press two buttons sequentially to be able to a path created by a search.

Given that paths produced by the default A* implementation are often considered su-

perhuman, reducing the average number of actions and increasing the time between any two

of them can be considered analogous to creating more human-like pathing.
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3.4.2 Robustness and Sensitivity Metrics

Robustness refers to a paths ability to be resilient to the noise which will inevitably be

generated by human error in attempting to follow the path. We measure robustness using a

form of sensitivity analysis. Once a replay is generated, we perturb the timing of all action

changes by shifting them forward or backward by a number of frames. This would correspond

to the imperfections in timing that would be observed by a human player. This can also be

considered as adding regular noise to the timings of actions required to recreate the path.

As an example, humans usually do not wait until the very last frame possible to perform a

jump, as being one frame late on their input would cause them to fall through a gap. As

such we would say such a path is not as robust as one that would account for more leniency

in player input.

A brief overview of our perturbation algorithm can be seen in Algorithm 4. Each search

being considered by our experiment generates a replay R which we will use to create a

number of perturbed replays, as described above, given as Rn. After the path has been

perturbed a number of times, we re-simulate the newly created perturbed replays from the

same beginning state, tracking two metrics:

Mean Perturbed Search Displacement Distance (PDD)

Mean perturbed search displacement distance sums up the final position of all instances of

the perturbed paths, averaging the distance by which all differ from the original path. It

is a measure of the variance of the perturbed paths. A low value indicates that most of

the perturbed paths ended up very close to the original endpoint. If, on the other hand, a

path gets stuck behind a wall or overshoots a tricky jump it could end up very far from the

original endpoint, increasing the mean displacement distance. A lower value means that the

path is less sensitive to noise in the input and therefore, we argue, more robust.

28



Algorithm 4: Perturbing Replays

Data: R

Result: RP = [R1, R2, ...Rn]

begin

RP ← []

for i ∈ [−20, 20]; i ∈ Z do

foreach A in R do

Ri ← R ; /* copy replay */

foreach AP in Ri do

if APt >= At then

APt+ = i
RP.insert(Ri)

Mean Perturbed Deaths per Failstate (PDF)

Mean perturbed deaths per failstate tracks the absolute number of perturbed instances

that reach a failure state. This metric is only tracked when any instance of a perturbed

replay reaches a failstate, and is ignored otherwise. Because our experiments only include

falling into pits as a fail condition, we use “deaths” as a shorthand to avoid the more

cumbersome “perturbed failstates per failstate”; however the possibility exists for future

non-death failstates to occur for future development. As before, it is a measure of variance,

but for the specific case of failure. Failure is particularly important to the perception of

players, and repeated failure usually results in frustration especially as many games use

a system of lives, or a punishment of time as a consequence of failure. We propose that

paths with a lower number of deaths per failstate are more robust, as with PDD, whereas

perturbed paths with very high numbers of deaths potentially represent a path that could

be frustrating for players to attempt to follow with human reaction times.

These metrics are of particular importance to us, because they objectively test the intuition

behind our modifiers. While our modifiers focus on reducing the timing of actions, robustness
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of a path is not directly targeted for optimization. As such, if any correlation is found it will

not be a result of directly targeting this metric, but rather emergent behaviour. Put simply,

it would show that paths that require more human-like inputs would generally be safer for

humans to attempt to follow.

30



Chapter 4

Preliminary Analysis

This section provides an more in depth overview of the rationale behind selecting the various

AVMs, as well as some screenshots from our engine in order to provide an intuitive sense

of the various modifiers. In particular, in order to test real valued parameters we need to

decide on a useful subset of discrete values. To accomplish this we would have to quickly test

many possible values in order to determine a rough approximation of their lower and upper

bounds. A test suite was constructed using our engine with the ability to debug information

both with data and visual analysis.

4.1 Realtime Analysis

Within the engine we have the ability to select a destination point and initiate two different

searches. The most useful case for this is to test various parameters of our AVMs as compared

to default behaviour of A*; however, any two arbitrary searches can be compared using this

method. As stated previously, the searches act within the engine in realtime, using only

time as a heuristic. Once the searches are performed the two paths are drawn on the screen.

Though arbitrary colors may be selected, for the sake of clarity, the first search will be

presented in black and will be given as unmodified A* search behaviour. The second path,

incorporating AVMs, will be presented in white. An example is presented in Figure 4.1
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Figure 4.1: An example of how we visually compare differing paths. Default behaviour in

black, modified in white.
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Default: Black

Last Frame: 156

Distance: 1669

Displacement: 785

Action Changes: 7

Shortest Time Between Actions: 12

Longest Time Between Actions: 36

Mean Action Change Time: 22.2857

Search Nodes Expanded: 363

Time Elapsed: 165ms

End Status: completed

Survival Rate: 0.543333

Position Deviation: 185

Modified: White

Last Frame: 156

Distance: 1495

Displacement: 785

Action Changes: 4

Shortest Time Between Actions: 18

Longest Time Between Actions: 54

Mean Action Change Time: 39

Search Nodes Expanded: 63

Time Elapsed: 37ms

End Status: completed

Survival Rate: 0.659091

Position Deviation: 157

Figure 4.2: Sample data output from comparing searches in realtime

In addition to visual analysis, we are given an immediate data analysis of the two paths

using our previously discussed evaluation metrics. Having this information available in re-

altime proved extremely useful in preliminary testing, and in combination with the visual

output allows for a simple way to quickly attain an intuition of our various AVMs strengths

and weaknesses. A verbatim example of our engine’s console output is presented in Figure

4.2.

4.2 Analyzing Parameters of Individual AVMs

What follows is a brief description of the behaviours observed through investigating param-

eters of AVMs. Screenshots of notable behaviour will be provided but as the AVMs will be

directly compared through experimentation, detailed analysis may be omitted.
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Figure 4.3: The results of using a high number of skip frames, shown in the white path.

4.2.1 Skip Frames

We found that high values of skip frames provided no benefit to making paths safer, simpler,

or more humanlike. The obvious pitfall of such a method is the high level of discretization

of movement. By advancing the player by such a large degree every simulation step, the

algorithm runs into situations where they are unable to reach the range where action is

properly required to make a jump. In such cases we have observed the search making odd

or nonsensical movements in order to “realign” itself. As an example, in Figure 4.3 we set

the white path to use 16 skip frames. At our games framerate of 60 frames per second

this corresponds to approximately 260 milliseconds, which is generally understood to be

an average human reaction time. The results were unoptimal enough to disregard further

experimentation on parameterizing skip frames. A value of 6 was used for the remainder of

the experiments.
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4.2.2 No-Op Modifier (NOM)

We hypothesized that incentivizing taking no action would result in more human-like be-

haviour, and visually our suspicious were confirmed, as the NOM provides a noticeably

distinct difference from default behaviour. The paths are generally longer, jumps are held

for longer, and overall jitter seems to be reduced. Differences become notable at values as

low as 0.9, thanks mostly to the default algorithms indifference to jumping frequently (as

in our engine jumping does not change the players horizontal speed). This has the benefit

of immediately reducing the total number of action changes. This behaviour continues into

lower values; however, at values less than 0.1 it became clear we were reaching the limit

of the NOMs practical use, as it began to create more and more circuitous paths, valuing

sheer length of uninterrupted time more than reaching the goal sensibly (see Figure 4.4).

We elected to select values 0.75, 0.5, 0.25 and 0.1 for testing.

Of particular note is how well the NOM performs as an optimization for time. By

essentially acting as a greedy search, this parameter, even at modest values, can decrease

the number of nodes expanded by the A* search and consequently the calculation time by

an order of magnitude. It should also be noted that as NOP acts as an incentive to a lack

of action as opposed to a penalty to taking one, it is the only one of our values whose

multiplicative range is effectively [0, 1].

4.2.3 Action Change Modifier (ACM)

The ACM, being essentially the inverse of the NOP in concept, performs similarly well at

values ranging from 2 to 16. It exhibits the same reduction of jittery movement, backed

up in data by its ability to reduce the total number of action changes. At higher values it

exhibits a better quality of visual performance compared to the NOP as well. However at

extreme values because it is penalized so strongly for taking an action, it will often wait until

the last possible moment before performing required actions. This can lead it into situations

where it avoids danger even less than default behaviour, and indeed values above 16 show a
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marked decrease in our survival rate metric compared to default, as can be seen in Figure

4.5. Additionally, though it is not our goal to optimize for performance, high values of ACM

perform much more poorly than default behaviour. We elected to choose values of 2, 4, 8

and 16 for our experiment.

4.2.4 Consecutive Action Modifiers

The CAM and the similar PCAM both have two variables to select from, and as such

provide a much larger space to optimize. However, the frame window within which actions

are penalized is not only an integer value, but only has an affect on multiples of the frame

skip parameter. As we have selected a frame skip of 6, this made testing somewhat simpler.

At frame windows ranging from 6 to 42 they created similarly smooth paths to the previous

modifiers, and we found the multiplier can be pushed much higher than the ACM without

much degradation in performance in terms of number of actions reduced and sensitivity

performance. As can be seen in Figure 4.6, CAM can be pushed to excess, introducing some

of the path lengthening we observed with NOP. We elected to test frame windows at values

of 6, 12, 18, 24, 30 and 36. Realtime testing revealed no significant difference between the

two, and as such would have to be determined through large scale experimentation.
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(a) NOM creates longer, smoother paths parameterized at 0.5

(b) NOM can create excessively long and redundant paths parameterized at 0.1

Figure 4.4: The NOM creates excessively long paths at extreme values
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(a) ACM performing well parameterized at 4.0

(b) ACM’s delaying actions leads it closer to danger parameterized at 32.0

Figure 4.5: The ACM takes riskier behaviour when set too high
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(a) PCAM generates smooth paths parameterized with a frame window of 48 and a multiplier of 8

(b) CAM has the potential for excessive length, seen here with a window of 48 and a multiplier of 32

Figure 4.6: Both CAMs demonstrate strong performance even at large multiplier values

39



Chapter 5

Experiments

This section details the process we used to evaluate a search using our engine, as well as how

we tested many instances of searches, modified or unmodified, against each other. Given

that each of our AVMs are parameterizable within a range of real numbers, we first sought

to find a suitable choice of parameters for each individual AVM in order for it to best

represent its optimal performance. Once this was determined, the best performing versions

of each modification were tested against each other, as well as a combined search using all

best-performing parameters.

5.1 Experiment Process

Our engine uses configuration files loaded at runtime which allows for quick comparisons of

many types of searches without the need for recompilation. Each search is defined through

variables, the format of which is roughly given in Figure 5.1 (syntax simplified for clarity).

With an arbitrary number of searches defined, we then run a series of experiments. An

experiment is simply defined as a collection of searches, as well as some metadata such as the

number of iterations to perform, the maximum time allowed for a search, and which search

is defined as the baseline (later used to visualize comparisons).

With the experiment defined and loaded by our engine, it proceeds as follows:
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search params.txt

Name: default

Skip Frames: 6

NOM: 1.0

ACM: 1.0

CAM Window: 32

CAM Multiplier: 1.0

Use PCAM: False

Figure 5.1: Example configuration of a search to be used for our experiments.

1. Define several custom search instances through various parameters of our modifiers.

2. Randomly select a level from our level collection

3. Randomly select two walkable tiles a sufficient distance from each other, designating

one as the start point and one as the goal point

4. Place the player character at the start point and create a copy of the game state at

this point for each instance of search

5. Run each instance of the predefined searches, generating a replay for each

6. Run analysis on each replay file, including the perturbation analysis, saving the data

7. Repeat steps 2-6 for the defined number of iterations

8. Write the data to disk for further analysis

By running each path with every chosen instance of the algorithm, we can be sure that

any deviation between the searches is not the result of random selection. Once all iterations

are finished, every data point for each individual search is written to a .csv file which is

parsed and visualized using python with its packages Pandas1 and Matplotlib2.

1https://pypi.org/project/pandas/
2https://matplotlib.org/
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One issue is that of failure. In cases where the chosen path is impossible, all instances

of search will timeout and can be ignored. However in instances where one search fails and

others succeed we have elected to disregard all searches for that chosen path, as tracking data

for different numbers of searches could potentially influence the usefulness of other values.

The success rate of searches is still a metric we track, and will be examined later.

Additionally, we found numerous paths existed with only a single action for the entire

duration. This is likely an occurrence where the randomly selected start and end points

occur on an uninterrupted plane, and as such every search immediately found the best path

by holding the corresponding direction button. For the sake of better comparing the unique

behaviour of the AVMs, these results were removed from the dataset before any analysis and

visualization.

5.2 Selecting Best Performing Parameters

Having decided on a range of acceptable parameters through visual analysis, we ran an

experiment in which all the chosen parameters of an individual AVMs were compared against

default behaviour. Since multiple metrics were being tracked per instance, we needed to

assign some kind of evaluation metric to determine the best performing parameter. Our

approach was to take all of the metrics defined in Section 3.4 and evaluate each based on

a normalized score, where all values were normalized to a range of [0, 1] within the column,

then summed to give a normalized sum which was then divided by the number of metrics

to give us a normalized score. In this system a score of 1 means the search gave the worst

performance in every category, whereas a 0 would mean the search had the best performance

by every single metric.

The Time Between Shortest Actions (TBSA) metric is unique in that we want it to

increase, and so to conform to the other metrics all values were made negative before nor-

malization.

For visualization in the following figures, all values are given as their ratio relative to
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default, as the specific values such as total number of actions is arbitrary and dependent on

the randomized search points as well as the number of iterations chosen for the experiment.

As previously mentioned, the TBSA metric is intended to increase above default, and as such

values in excess of 1.0 are to be expected, the higher the better, as they represent a relative

lengthening of the shortest actions performed by the search. For the CAM and PCAM

searches, 18 different parameterizations were selected and for brevity only the top 5 values

will be displayed. For the CAM and PCAM, values will be displayed in a hyphenated format

where the first value represents the window and the second value the multiplier. Therefore

“PCAM 24-6” will mean a window of 24 frames with a multiplier of 6.0 to the path cost.

5.2.1 NOM Parameter Evaluation

The No-Op Modifier showed a general trend downwards (see Figure 5.2). Surprisingly how-

ever, a parameterization of 0.75 scored better than 0.5, thanks entirely to the TBSA and

PDF being unusually low compared to both 0.5 and 0.25. The value of 0.1 scored the highest

in our tests, which was somewhat surprising after visual inspection, as it was selected to be

the lower end of what was thought feasible. The best performing metric in this category was

the APS score for the 0.25 parameter, which performed at 88.6% of default; however most

values seem to be performing in the mid 90% range.

5.2.2 ACM Parameter Evaluation

The Action Change Multiplier performed much more in line with our initial analysis (see

Figure 5.3. The value of 16 was selected as what we believed to be the upper end of viability,

and indeed it performed worse than the next lowest value of 8. Once again however we noted

that the lowest parameter of 2 scored slightly better than 4, thanks entirely to having the

lowest PDD score. When un-normalized however, the results were less impressive with a

score of only 95.8% compared to the the next best performing search in that metric scoring

94.8%. Despite this, the value of 8 remained a clear winner, and was selected as the best
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TA APS TBSA PDD PDF normScore
NOP_0.5 0.92 0.909 1.1 0.934 0.971 0.308
NOP_0.75 0.919 0.912 1.183 0.95 0.95 0.21
NOP_0.25 0.908 0.886 1.153 0.905 0.977 0.195
NOP_0.1 0.901 0.872 1.189 0.887 0.967 0.07

0.0

0.2

0.4

0.6

0.8

1.0

1.2 NOP_0.5
NOP_0.75
NOP_0.25
NOP_0.1

Figure 5.2: NOM performance relative to default

performing parameter value. On average the NOM seems to perform better than the NOP

with some scores in the low 80% range.

5.2.3 CAM Parameter Evaluation

The Consecutive Action Modifier was able to achieve more favorable ratios relative to default

than the previous AVMs (see Figure 5.4). There was a strong general trend towards the

higher values being scored lower, with an even clearer bias toward higher multipliers when

compared to large window values. Of particular note is the PDF score of higher values,

which was able to achieve a low of 41% relative to normal, as well as the CAP 36-8 achieving

a PDD score of 72% relative to normal.

44



TA APS TBSA PDD PDF normScore
ACM_4 0.835 0.821 1.128 0.97 0.84 0.153
ACM_2 0.847 0.832 1.23 0.958 0.836 0.1
ACM_16 0.822 0.812 1.153 0.967 0.819 0.044
ACM_8 0.822 0.812 1.153 0.966 0.816 0.038

0.0

0.2

0.4

0.6

0.8

1.0

1.2 ACM_4
ACM_2
ACM_16
ACM_8

Figure 5.3: ACM performance relative to default

5.2.4 PCAM Parameter Evaluation

Like the CAM, the Progressive Consecutive Action Modifier achieved better ratios over

default than the AVMs that did not consider time between actions (see Figure 5.5). As

before, there was a general trend towards the higher values performing better, though not

in a strict ordering. For example, the 24-4 parameter though not being the highest value

for either windowing or multiplier, was among the top 5 performing searches. The best

performing, however, was indeed the modifier with the highest value in both categories: a 42

frame window with a multiplier of 8. It performed extremely well in all categories, generally

outperforming the best CAM model in every metric except PDF where it scored a 43.4%

compared to the 41.3% achieved by the CAM. High scoring searches in the CAM category

are achieving 70% of default scores on average.
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TA APS TBSA PDD PDF normScore
CAP_36_4 0.82 0.82 1.487 0.808 0.705 0.38
CAP_30_4 0.82 0.815 1.502 0.803 0.666 0.357
CAP_24_8 0.863 0.851 1.975 0.788 0.544 0.307
CAP_36_8 0.759 0.747 2.315 0.72 0.43 0.009
CAP_30_8 0.759 0.752 2.339 0.72 0.413 0.004

0.0

0.5

1.0

1.5

2.0

CAP_36_4
CAP_30_4
CAP_24_8
CAP_36_8
CAP_30_8

Figure 5.4: CAM performance relative to default
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TA APS TBSA PDD PDF normScore
PCAP_36_4 0.821 0.825 1.48 0.871 0.625 0.437
PCAP_42_4 0.816 0.819 1.48 0.854 0.612 0.412
PCAP_30_8 0.828 0.827 2.133 0.815 0.582 0.315
PCAP_36_8 0.725 0.727 2.484 0.712 0.44 0.007
PCAP_42_8 0.725 0.726 2.512 0.719 0.434 0.005

0.0

0.5

1.0

1.5

2.0

2.5 PCAP_36_4
PCAP_42_4
PCAP_30_8
PCAP_36_8
PCAP_42_8

Figure 5.5: PCAM performance relative to default

5.2.5 Linearity of Normalized Scoring

Given that some of the results presented may seem unintuitive in terms of ranking the models,

we have constructed a visualization of the search performance ranked by our normalization

score in order to show the trends. Figure 5.6 shows all such parameterizations, displayed in

order of our normalization score. Each is given in its normalized form, where 1 represents

the worst performing model and 0 represents the best. A downward trend from left to right

across all metrics is evident.
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Figure 5.6: Visualizing the parameters in order of our normalized scoring system.
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5.3 Comparing Best Performing Parameters

With our input space significantly reduced, we elected to select several of the best performing

AVMs and compare them directly against each other. The experiment would be performed

as before; however instead of comparing each AVM against itself, they would all be directly

compared on the same large number of randomized searches. With many fewer searches

in this experiment, we elected to run 2000 iterations to further reduce noise and variance.

Additionally we elected to run some combinations of the best performing parameters, to see

if using multiple AVMs in combination would give better results than the searches being

run on their own. As all the AVMs are multiplicative, their values can be combined freely

without regard for order.

We have selected the two best performing parameters from each search as well as several

combined values: NOM values of 0.25 and 0.1, ACM values of 16 and 8, CAM values of 36-8

and 30-8, PCAM values of 36-8 and 42-8, and finally two combination searches. Combination

search 1 (COMB1) combines all the best performing parameters. It uses PCAM with a

window of 42 and a multiplier of 8, an ACM of 8 and a NOM of 0.1. Combination search 2

(COMB2) uses CAM 36-8, ACM of 4 and a NOM of 0.5 in an effort to reduce the influence

of the less impactful parameters.

5.3.1 Overview of Results

Our choice of metrics as they apply to this experiment are given in Figure 5.7. Unsurprisingly,

the NOM and ACM searches fared the worst. Though all improved upon default search

behaviour, none managed to best any of our CAP or PCAP searches in any metric. Of these

simpler metrics, the best performing, ACM 16, scored 0.644 using our normalized scoring

system, losing to the worst performing consecutive action based model, the PCAM 36-8,

with a score of 0.194.

What did come as a surprise on the other hand, was the performance of the CAM

compared to its linear cousin the PCAM. The standard CAM performed better in all regards,
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TA APS TBSA PDD PDF normScore
Default 1.0 1.0 1.0 1.0 1.0 1.0
NOM 0.25 0.899 0.866 1.157 0.843 0.866 0.755
NOM 0.1 0.88 0.844 1.25 0.804 0.83 0.697
ACM 8 0.778 0.755 1.493 0.953 0.697 0.619
ACM 16 0.775 0.752 1.491 0.951 0.697 0.616
PCAM 36-8 0.655 0.658 2.266 0.636 0.395 0.199
PCAM 42-8 0.645 0.651 2.357 0.636 0.386 0.181
CAM 36-8 0.624 0.623 2.562 0.61 0.361 0.12
CAM 30-8 0.624 0.622 2.572 0.601 0.356 0.113
COMB 1 0.609 0.574 3.478 0.623 0.494 0.066
COMB 2 0.599 0.57 3.54 0.609 0.453 0.034

0.10

1.00

Default
NOM 0.25
NOM 0.1
ACM 8 
ACM 16
PCAM 36-8
PCAM 42-8
CAM 36-8
CAM 30-8
COMB 1
COMB 2

Figure 5.7: The results of comparing all AVMs using our selected metrics. Values are

presented relative to default, and graphed on a logarithmic scale.
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perhaps suggesting that higher multiplier values would fare better for the PCAM, or simply

that a tighter falloff for the penalty time window used in the CAM is better at reaching our

targeted metrics.

Interestingly, the two combination searches performed the best in nearly every metric.

The overall winner was COMB 2, which used the standard CAM as opposed to the progressive

version, and uses less intense values of the other AVMs compared to COMB 1. Whether the

stronger showing is related to the performance of CAM vs PCAM or the lessened value of

the other AVMs was unclear.

5.3.2 Action Frequency Metrics

The Total Action metric is the metric most strongly correlated with our normalized score, and

as such when sorted by this metric we see a strictly linear relation. Stronger parameterization

of NOM and ACM increase the value, and the PCAM with the larger window reduces the

total number of actions as well. The CAM performs better than the PCAM, as noted earlier;

however, both the 36 and 30 frame window performed the exact same number of actions,

perhaps indicating we have reached the upper bound of usefulness for a window at 30 frames.

The best performing searches in this category were the two combined AVM searches, with

the strongest, COMB 2 managing to achieve 59.9% of the number of actions made by the

default algorithm.

TA APS TBSA Score

TA 1.000 0.993 0.901 0.984

APS 0.993 1.000 0.915 0.977

TBSA 0.901 0.915 1.000 0.932

Score 0.984 0.977 0.932 1.000

Figure 5.8: Correlation matrix of action frequency metrics and our normalized score
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Actions per Second is a strongly associated metric with Total Actions. The only instance

in which they should differ significantly is in cases where the total time spent playing differs

significantly. An excessive discrepancy could be associated with excessively long paths, as

observed in Chapter 4. Fortunately, total travel time was a metric we recorded in our

searches, given in Table 5.1. It was not included as a key metric as even preliminary testing

showed very little variation in time with appropriate values. The worst performing search

in terms of travel time in our test, COMB 1, showed less than a 2% increase in total path

time. Achieving 57.4% of the actions per second with such a small increase in total time is,

we argue, a relatively clear indication of optimization of movement as opposed to a simple

lengthening of the path.

Search Total Time (s) Ratio Relative to Default

Default 1677.9 1

NOM 0.25 1691.4 1.008

NOM 0.1 1695.8 1.011

ACM 16 1671.9 0.996

ACM 8 1672.1 0.997

CAM 36-8 1678.7 1.000

CAM 30-8 1679.3 1.001

PCAM 36-8 1676.7 0.999

COMB 1 1707.3 1.018

COMB 2 1695.5 1.010

Table 5.1: The total time in seconds taken by all paths of all searches when performed in-

engine.

The final metric concerning action frequency is the mean time between shortest actions

(TBSA). This is where our AVMs showed the largest improvements over the default algo-

rithm. The NOM and ACM searches performed better than default, improving between
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15 and 50 percent; however, every search with a consecutive action multiplier was able to

increase the value of this metric by over 200%. The strongest search in this category, again

COMB 2, was able to outperform the default by 354%. This was behaviour that we explicitly

programmed for, nevertheless; a similar explicit punishment of performing any actions was

implied by both the ACM and NOM, which fared much worse.

Explicit Timing

While relative values for timing are useful in assessing relative performance, the absolute

values can be useful in comparing against known human benchmarks. Recall that minimum

human reaction time is often given as 250ms, corresponding to approximately 16 frames.

With our chosen values for the CAM and PCAM windows, the average shortest action

required for a path was increased from 10.5 frames at default, considered superhuman, to

a more reasonable range of 23-37 depending on the search. This indicates that on average,

paths generated with our search technique are indeed human achievable. Interestingly, the

16 frame benchmark of average human reaction time perfectly divides the default, NOM and

ACM searches from those using a form of consecutive action penalty.

With these explicit values in mind, we decided to further examine the TBSA metric. An

overall average was useful in showing an increase in the minimum required action timing,

but we specifically sought to find how many of those actions were considered superhuman. A

binning approach was used, where all values of the TBSA for all searches were sorted into 4

bins based roughly on how difficult it would be for a human to accurately time such actions:

� 0-12 frames (0-200ms): Very difficult to perform accurately

� 13-24 frames (200ms-400ms): Difficult but achievable

� 25-60 frames 400ms-1 second: Not difficult

� 60+frames (>1 second): Trivially achievable

The results of this decomposition are given in Figure 5.9. Within each bin the bars are plotted

using our normalized scoring system, with default at the left, and the searches continuing
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Figure 5.9: TBSA values per search, sorted into bins

0-12 13-24 24-60 60+
Default 303 38 7 6
NOM 0.25 296 37 11 10
NOM 0.1 291 32 22 9
ACM 8 267 49 20 18
ACM 16 268 48 20 18
PCAM 36-8 212 31 75 36
PCAM 42-8 205 32 78 39
CAM 36-8 189 33 87 45
CAM 30-8 189 32 88 45
COMB 1 133 47 101 73
COMB 2 128 44 105 77

101

102

Default
NOM 0.25
NOM 0.1
ACM 8 
ACM 16
PCAM 36-8
PCAM 42-8
CAM 36-8
CAM 30-8
COMB 1
COMB 2

right in order. A clear progression can be seen. In the category deemed superhuman there is

a downward slope as the searches progress in scored order, whereas in the higher values this

trend is reversed. This indicates that the average did not simply increase for example as a

slight increase from 6 frame actions to 12 frame actions, but rather that an overall lengthening

occurred across the entire range of action times. In the 60 frame plus bin equating to one

second between actions, the default search only performed 6 such actions across the entire

experiment whereas COMB 2 (the highest performing search) performed 77.
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One final point on absolute timing is the extremely similar performance between the

CAM searches parameterized at 30 and 36. As 30 frames corresponds exactly to half a

second, this may indicate that our level corpus (Super Mario Bros) does not expect reaction

times faster this reaction window. As it is roughly twice the time of what is considered

normal human reaction time, this could perhaps be in line with the designers intentions.

5.3.3 Robustness Metrics

Whereas the results of the action based metrics are indeed promising, the robustness metrics

represent behaviour not explicitly programmed into our AVMs. By perturbing, ie. adding

noise to our generated paths, we sought to generate data on how likely a human player

would be to either diverge from the intended route through imperfection, or worse still,

find themselves in danger through a simple mistiming. Perturbations ranged from +-20

frames for each action in a search replay, which slightly exceeds the previously established

average reaction time. In doing so, we propose to emulate a wide range of human ability in

attempting to follow the paths generated by our searches.

PDD PDF Score

PDD 1.000 0.878 0.930

PDF 0.878 1.000 0.958

Score 0.930 0.958 1.000

Figure 5.10: Correlation matrix of robustness metrics and our normalized score

Mean Perturbed Displacement Distance (PDD) sums the final position of all paths and

calculates the distance of the final position in pixels. For reference, a single “block” in

our engine is 64x64 pixels. The default search algorithm had a PDD of 133.8 pixels across

the entire experiment. While this equates to an average of more than two blocks, visual

analysis of the algorithm shows this metric to have an extreme amount of variance. Failing
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to surmount an obstacle will often leave a perturbed path stuck, unable to continue, which

greatly adds to the mean distance. Fail states similarly add to the displacement distance, as

their position is set at the point of failure.

Once again, every chosen metric reduced the value of the perturbed displacement dis-

tance. Of the ACM and NOM values, despite the ACM performing better overall, the

NOM showed a marked improvement in perturbed displacement distance, with both NOM

searches outperforming both ACM searches. Recall from our preliminary analysis that the

NOM tended to extend the path length at high values, whereas the ACM did not exhibit

such behaviour.

All of the remaining searches performed very similarly, with less than a 3% difference

between the sixth best performing search and the first. A slight difference nevertheless exists

between all of the CAM and PCAM based searches, with every search incorporating CAM

once again performing better than every PCAM search, including the combined searches.

Our initial impressions were that the Perturbed Deaths per Failstate (PDF) would simply

be a subset of displacement distance, where a sufficiently displaced path over a jump would

be one sufficient for failure. However our expectations were subverted, as the two share

some of the weakest correlations of the major metrics. This is most plainly evidenced by the

ACM and NOM searches again. Whereas the NOM performed better in terms of perturbed

displacement distance, the ACM performs remarkably better in terms of avoiding failstates.

All subsequent searches, however, faired much better on the PDF metric, to the point

where it represents the largest percent reduction compared to default of all metrics. There

is a marked jump between ACM 16 and PCAM 36-8. Despite being subsequent in terms of

our normalized score, the PCAM search has 56% fewer deaths on average. Once again the

standard CAM slightly outperformed the PCAM in this metric, as well. Interestingly this is

one instance where the two combined searches fared markedly worse than the single CAM

or PCAM searches. Indeed, the robustness metrics are the only metrics in which COMB 2

did not perform the best.
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(a) Perturbed routes of the default path (black) show large variance in end points

(b) Paths created using the best performing AVMs (white) avoid danger and create less perturbed variance

Figure 5.11: A demonstration of robustness. Perturbed player endpoints are shown as

transparent figures. The figures at the base of the pits have reached fail states.
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5.3.4 Search Instance Calculation Time

Efficiency of calculation was not an intended goal of our algorithmic modifications to the

A* algorithm. Nevertheless, we tracked two metrics related to efficiency: the total runtime

of each search instance, as well as the total number of nodes expanded in the search tree.

These two metrics combined allow us not only to determine the efficiency of the algorithm

in a general sense of how long path calculation takes, but by tracking the total number of

nodes expanded, we can demonstrate efficiency in terms of how likely the algorithm is to

greedily select the best nodes to meet its own goals. Even with two identical paths, if one

algorithm expanded fewer nodes on the way to finding the path, it can be said to be a more

efficient heuristic. Our efficiency findings are presented visually in Figure 5.12.

The number of nodes expanded per search is given in Figure 5.12a and indicates the

aforementioned greedy-like efficiency of the search. Unsurprisingly default A* fared the

worst in this regard, expanding an average of 128.8 nodes per search. The no-op modifiers

performed the best, with each expanding approximately 47 nodes per search. The combined

searches, likely as a result of their inclusion of no-op modifiers also performed well. Because

this metric has the most practical impact on the searches in terms than sheer runtime, all

graphs in Figure 5.12 are sorted from worst to best in terms of their nodes expanded.

The mean calculation time of all searches is given in Figure 5.12b. This value does not

account for the number of nodes expanded, and as such was not guaranteed to follow a similar

trend. The ACM modifier is the standout here, with ACM 16 nearly matching the default,

and ACM 8 performing worse than its position in the nodes expanded hierarchy. It would

seem that any performance gains from the node selection behaviour of the ACM modifier

are offset entirely by the additional time spend calculating the new heuristic values. Once

again the NOM performed the best in this category, taking approximately 20ms per search

as opposed to the default 58. Both cases equate to an approximate 70% reduction compared

to default behaviour, and so unlike the ACM, this reduction in time is likely strictly related

to the reduction in nodes expanded.

The final metric tracked is the nodes per milisecond expanded by each search, given
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in Figure 5.12c. As this value has been normalized per node expanded, it indicates the

amount of processing time added by our modifications. Though there is variance it seems

randomized and far less significant than the differences between the previous two metrics.

Statistically, nodes per milisecond is not strongly correlated with either processing time or

nodes expanded. It should be noted as well that noise is likely to be added to these values

from the operating system and inconsistent nature of CPUs, and as such we do not believe

much can be inferred from this metric apart from the fact that none of our AVMs significantly

affect the processing time required per node of the A* algorithm. Any efficiency gains or

losses are likely the result of node selection imparted by the modified heuristic.

5.3.5 Additional Metrics

While our selected metrics were deemed most significant in terms of generating human

achievable paths, several other metrics were tracked throughout the experiment for the sake

of interest. What follows is a brief discussion of these metrics.

Jumps

The core of most platforming games is jumping, and as such we specifically tracked the

number of jumps performed by our searches. This metric was excluded from the core set in

the interest of generality, but is nevertheless interesting. Figure 5.13 shows the frequency of

jumps per search, along with the average jumps throughout the entire experiment. The table

is sorted by mean jumps, highest to lowest. Immediately apparent is the surprising result of

the ACM, an under-performing AVM in other respects, having the fewest average jumps per

search, narrowly besting the combined searches. The NOM on the other hand, was the worst

performing. Recalling that the ACM performs markedly worse in terms of overall actions

and actions per second than the consecutive metrics, it stands to reason that its relative

lack of jumping has to be countered by a propensity for faster, more frequent movement

adjustments. None of the searching using consecutive action based AVMs recorded more

than 2 jumps at any point in the experiment.
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Completion Rate

Not every randomly selected start and end point is possible in our dataset. The original levels

for the game assumed consistent left to right movement, and as such there are instances where

the player is unable to return to the left, such as a large staircase the player can drop down

but not jump back up to. Additionally, some levels feature ceilings, which can enclose spaces

and make pathing strictly impossible. When such paths are selected, the algorithm reaches

a predefined timeout point (5 seconds of calculation time in our experiment) and reports a

failed search. Such paths are indistinguishable from timeouts caused by complex paths, or

by our algorithm’s complexity potentially being increased by our modifications. However in

such cases, there will be a discrepancy between the searches in that some will complete a

path while others will fail. Recall that in order to ensure fair comparisons, any path selected

which was not completed by all searches was discarded, but we were interested in seeing how

much of a discrepancy there was between default and modified behaviour.

In theory the default search should have the highest completion rate, because it is uncon-

strained relative to all of our AVMs and only selects the fastest path without regard for any

human impositions. Additionally every AVM is a multiplier on top of the default behaviour,

meaning for equal paths expanded would require more CPU cycles to complete. However as

previously noted, we have observed greedy-like behaviour from some of our metrics in pre-

liminary analysis, and by theoretically limiting the actions selected to those that are human

achievable, and reducing the potential number of nodes as observed, we may in fact increase

the completion rate of modified searches, as the levels themselves are obviously designed to

be played by humans.

The completion rate of all searches is presented in Figure 5.14. The default search was

able to complete approximately 45% of all searches. Recall that this accounts for both

impossible paths as well as timeouts due to complexity. The ACM searches performed worse

than default, with all other searches performing better. The NOM searches performed the

strongest in this search.

We noted that the trend of the AVM performing poorly and the NOM performing well
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Table 5.2: Correlation between completion rate and efficiency metrics

Completion Rate

Calculation Time -0.81

Nodes per ms 0.78

Nodes Expanded -0.65

was very similar to the results of the calculation times. Examining further we computed the

correlation and found a strong correlation between calculation time and completion rate,

presented in table 5.2. It follows that any discrepancies in the completion rate are simply a

result of the relative difference in performance between algorithms and likely not a result of

our efforts to create human achievable paths specifically.
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Figure 5.12: Efficiency Parameter Graphs
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Figure 5.13: Number of jumps performed per-search across all searches

0 1 2 3 4 5 Mean
Default 32.0 269.0 37.0 13.0 2.0 1.0 1.116
NOM 0.25 40.0 269.0 43.0 2.0 0.0 0.0 1.02
NOM 0.1 40.0 271.0 41.0 2.0 0.0 0.0 1.014
CAM 36-8 36.0 308.0 10.0 0.0 0.0 0.0 0.927
PCAM 36-8 35.0 310.0 9.0 0.0 0.0 0.0 0.927
PCAM 42-8 35.0 311.0 8.0 0.0 0.0 0.0 0.924
CAM 30-8 36.0 311.0 7.0 0.0 0.0 0.0 0.918
COMB 2 35.0 317.0 2.0 0.0 0.0 0.0 0.907
COMB 1 38.0 314.0 2.0 0.0 0.0 0.0 0.898
ACM 16 40.0 312.0 2.0 0.0 0.0 0.0 0.893
ACM 8 40.0 312.0 2.0 0.0 0.0 0.0 0.893
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Figure 5.14: Completion rate of all searches
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Chapter 6

Conclusion

Here we present an overview of the methodology and experiments, draw high level conclusions

from our data, and propose further avenues for study.

6.1 Summary

From our analysis of previous pathfinding efforts in platform style games, we learned that

the paths presented through AI pathfinding agents frequently play at a superhuman level.

Attempting to use these paths as guidelines for players, especially ones of a lower skill level,

would undoubtedly be difficult as they play at an unachievable level of skill.

Surveys on the subject as well as examination of the data from previous efforts identi-

fied three key areas in which using artificial pathfinding agent for guidance would generate

impractical, unrealistic, and unplayable paths:

� Superhuman reaction times generate paths that are unplayable

� Jittery movement generates unrealistic looking play, and creates paths that are im-

practical to use as guides for players

� Lack of any danger avoidance creates paths that, were a human to attempt them,

would frequently result in failure states
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In order to create human achievable pathing through a videogame level, all three of these

issues ought to be addressed.

To attempt to mitigate these issues, we have made several modifications to the A* algo-

rithm. We elected to use a heuristic search based approach as one of our stated goals both

for research and practical purposes was to be able to parameterize our results, such that

various levels of skill and multiple versions of paths could be generated.

Our modifications to the A* algorithm are called Action Value Modifiers (AVMs) and

we proposed four. These AVMs work by modifying the percieved path cost of the heuristic

function through a series of real number valued multipliers. This approach allows the AVMs

to be applied at various levels of intensity, as well as freely combined. The AVMs were

designed with human skill in mind, taking approaches such as encouraging the algorithm to

prioritize taking no actions, or increasing the perceived length of paths that make multiple

actions in a short amount of time.

In order to evaluate the paths generated with regards to our goals, we selected 5 key

metrics. Three of these metrics were designed to track the frequency of actions performed

by the search, analogous the reaction time and physical speed that would be required for

a human being to recreate the path. The other two of these metrics test what we call

Robustness, in which attempts to follow the original path are reproduced but with the timing

of actions shifted slightly, emulating noise introduced by a human player attempting to follow

the path. We tracked the amount by which these perturbed paths deviate from the original,

as well as the frequency at which they reach failure states. Producing a path that requires

fewer actions, and is more robust to noise will address the issues we identified in analysis and

will, we argue, generate paths more appropriate for use in guiding human players through a

level.

Using our own videogame engine, we imported level data from the original Super Mario

Brothers to act as a benchmark, and through visual analysis selected a range for each AVM

that we believe best represents its ability to achieve our goals. With these parameter ranges

selected we ran two sets of experiments. The first was run on a range of parameters for each
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individual AVM, comparing various intensities of our modifiers against default A* search

behaviour. Selecting the two best performing values from each, we ran a second experiment,

wherein thousands of randomly selected start and end points were chosen from within our

level corpus. A search was performed on each path using all of our selected AVMs, including

two searches using a combination of all the best performing parameters. These results were

once again compared to the default A* search algorithm.

6.2 Conclusions

The best performing AVMs in our experiment performed well by every metric we had estab-

lished for them. In particular, we found the AVMs in which consecutive actions performed

within a short time frame were punished to far outperform the others, though the searches

performed using a combination of all of the metrics had the strongest general showing.

Our best performing AVMs were able to decrease the total number of actions (analogous

to button presses) required in total by 60%, decrease the actions per second by over 60%, and

drastically reduce the amount of “superhuman” actions required by increasing the shortest

amount of time between consecutive actions by over 350% on average.

In terms of robustness we were able to show a reduction in the variance of the perturbed

paths final endpoint by 60%, and found that our best performing AVMs only reached failure

states 30% of the time that the default search algorithm did when the paths were subjected

to noise.

Looking at the absolute values of our timing improvements, the minimum amount of time

between two button presses was increased from 10.5 frames to 37, or 167ms to 616ms. As

the average human reaction time is considered to be 250ms, we believe this change clearly

demonstrates the extent to which our AVMs have modified our paths to be more useful to

guide human players.

None of our searches significantly increased the amount of time required to follow their

paths, with the longest AVM only increasing time taken by less than 2%, which clearly
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demonstrates our new paths not to simply be longer and slower, but rather optimized to

perform with human reproduction in mind, something that pathfinding algorithms do not

generally take into account.

Additionally, the computational increase generated by our modifications was negligible, it

seems that by incorporating human informed timing information into the A* node selection

process, every one of our metrics was able to outperform the default algorithm in terms of

runtime efficiency.

6.3 Future Work

The most promising area of follow-up research would be to apply the same AVM princi-

ples to pathfinding in other styles of videogame. Pathfinding is ubiquitous in many genres

of videogames, and none of our proposed modifications to the algorithm have to do with

platforming specifically. Indeed, this approach should work equally well in a 3 dimensional

environment, though work would likely have to be done to incorporate the modern use of

navigation meshes.

Another area that warrants investigation is in the selection of the parameterizations of the

AVMs. Our selection process was performed initially through realtime human investigation

of the parameterizations, and as such more optimal values may have eluded us. Because the

AVMs are simply a series of real values numbers, they can be thought of as N-dimensional

vector spaces. Optimization algorithms such as gradient descent could theoretically be used

to find the highest performing values far better than our approach of grid searching through

a stepped series of parameters.

Our tests were all performed within the level corpus of Super Mario Brothers, and it is

entirely possible that while our parameter selection produces excellent results therein, it may

be that different levels require differently valued AVMs to achieve similar performance, even

if the physics and other mechanics of the game do not change.

Finally we are excited at the prospect that our parameterizable AVMs may be used to
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autonomously judge the difficulty of a video game level. By aggressively parameterizing

AVMs and recording their performance or ability to complete a level, it may be possible to

assign an objective numeric value to the difficulty required for a human being to complete

the level. This would have obvious use in industry as automated QA testing becomes more

commonplace.
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