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Abstract

A wave pulse can propagate with a negative group velocity when it travels
through a medium with anomalous dispersion, that is, when the

derivative of the dispersion curve is negative. Here we report on the experimental
observation of negative group velocities for pulses of ultrasound propagating
ballistically through water containing gas bubbles. For frequencies

near the resonant frequency of the bubbles, the absorption increases

strongly and the group velocity becomes negative. Our experimental results

are in good witha ical model sound ion in bubbly

liquids if we assume a Gaussian distribution of bubble sizes.
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1 Introduction

On any given day, our perception of and interaction with the world is made possible
due to energy transmitted in the form of waves. Waves come in many different forms:
for example, and sound in the form of acoustic waves, and radio and light in the form of
electromagnetic waves [!]. Using classical wave theory, we can characterize waves by
their dispersion curves (the angular frequency © as a function of the wavenumber k),
which give us information about the frequency (or wavelength) and propagation speed of
the waves. The frequency of light determines its color, whereas the frequency of sound
determines the pitch or tone of the sound one hears. When we change the length of a
musical device, a penny whistle for example, we are changing the wavelength of the
sound produced. The change in wavelength changes the frequency, and therefore the
pitch that we hear from the instrument. However, this example is rather trivial, and the

relationship between frequency and wavelength is not always so simple. If the speed is

of frequency then the dispersion curve is linear, so @ kor f < /4.
However, if the speed is not constant as a function of frequency, then a change in
wavelength does not always lead to a proportional change in frequency, and vice versa.
Depending on the substance through which a wave is propagating, the dispersion relation
can be very complicated and interesting.

This thesis is focused on of the ion of ult through a

bubbly liquid, but the physics behind it shares a commonality with that of many other



systems, involving many types of waves. In particular we mainly look at ballistic
propagation, in which the sound wave is either unscattered or forward-scattered as it
propagates through the medium.

The ities measured are i inction length, phase velocity, and group

velocity. A pulse is sent through a sample (in this case bubbles in liquid) and the ballistic

canbe ined by ining the wave pulse after it leaves the sample. The

attenuation tells us how much the wave has decayed in intensity due to its interaction
with the sample. The extinction length, the inverse of the attenuation, tells us how far the
wave has traveled before being either scattered or absorbed. The phase velocity is the
velocity of a sinusoidal ‘carrier’ wave, defined in terms of the dispersion curve as

V,=ofk.

The amplitude of a wave pulse varies in time. This amplitude variation is necessary if
‘we wish to convey information from one place to another. There are several ways of
defining the velocities of a wave packet. These include group, signal and energy velocity
1. Group velocity is defined as the propagation speed of the peak of a wave packet.
Stated another way, the group velocity is the distance traveled by the peak of the wave
packet divided by the time it takes to travel that distance. We can find the group velocity
from the dispersion curve by taking its derivative (or slope), ¥, = dw/dk . In some cases,
when the medium is anomalously dispersive the group velocity can become negative.
Signal velocity is measured using the infinitesimal onset of the packet rather than the
peak. This has obvious impracticalities since the detection of the first sign of the wave



packet is limited experimentally and would differ depending on sensitivity, pulse width,
amplitude etc. Brillouin himself expresses some concerns: “In general the signal velocity

depends on the itivity of the detecting used. With a very

sensitive detector, even the forerunners, or certain parts of them, might be detected... But
if the sensitivity of the detector is restricted to a quarter or half the final signal intensity,
then an unambiguous definition of the signal velocity can, in general be given” (2l The
energy velocity is defined as the ratio between the energy flux and the energy density.
Measurement of the energy velocity does not suffer from the shortcomings of the group

and signal velocities, which also measure the speed of information transport.

1.1 History

Although the origin of wave theory is hard to determine accurately, the last few
centuries have seen many contributions to what we would call modern wave mechanics.
Isaac Newton provided the mathematical vigor for Brook Taylor's earlier work on
matching his vibrating string theory to that of experimental observations. This in turn
allowed the derivation of the general wave equation by the French scientist Jean Le
Rond. Later Jean-Baptiste-Joseph Fourier created the theory of dividing the complex
periodic wave into its spectral components, today known as the Fourier transform. The
mark of modern acoustics was thought to come with the publication of the Theory of

Sound in 1877 by Lord Rayleigh. Although scientists such as LeConte, Tyndall, and the



Curie brothers initiated the study of Ultrasonics in the 19th century, detailed analysis
could not be achieved until the early 20th century.

Sommerfeld and Brillouin showed that if a wave packet travels through a medium

that is highly ive, 8 known as i ion could occur.

Brillouin states, “... but if absorption also occurs, a [the wave vector] becomes complex
or imaginary and the group velocity ceases to have a clear physical meaning”[3]. This
‘was further confirmed by J. D. Jackson in his well-respected book Classical
Electrodynamics 1. Also, Landau and Lifshitz write, “When considerable absorption
occurs, the group velocity cannot be used, since in absorbing medium wave packets are

not propagated but rapidly ironed out” [1.

1.2 Background

‘The theoretical model used in this thesis comes from the work of Prosperetti [6]. The
model describes the response of a gas bubble when subjected to the changes of pressure
due to an incident ultrasonic wave. The behavior of the bubble is that of a damped

harmonic oscillator.

There has not been much experimental work on the ballistic propagation of waves

through water containing bubbles since the work done in the 1950s by Fox et all”] who



took ballistic measurements of air bubbles. This work did not focus on the phenomenon
of anomalous dispersion that can be found in bubbly liquids. The present work is the first
detailed study of negative group velocities using ultrasonic waves in liquid media. Other
work, mostly on light waves, has found that in anomalous dispersive situations
superluminal and negative group velocity does occur [8.91. Other forms of waves have
also shown negative group velocities under certain conditions!{!). Often these works
compare group velocity with other methods of information transfer, using energy or
signal velocities [!']. The energy and signal velocity measurements do not break
causality. Although the negative group velocities would indicate super-luminal
velocities, this effect is caused by pulse reshaping due to the anomalous dispersion and
causality is never violated. This thereby reassures us that no information can travel faster
than the speed of light.

In our experiment we generated bubbles with a measured size distribution within a
liquid and sent in ultrasonic pulses with frequencies at and near the resonant frequency of
the bubbles. By looking at the coherent component of the output pulses, we were able to
obtain very accurate ballistic measurements. Of particular interest was the group
velocity. We measured the group velocity as a function of frequency and found that for

large enough bubble concentrations, the group velocity becomes negative at resonance.



1.3 Thesis Outline

‘The remainder of this thesis is organized as follows. Chapter Two deals with the
theory. We explain the resonance and damping nature of an individual bubble in an
acoustic field, expressed in analogy to a driven damped harmonic oscillator. We then
find the attenuation and signal velocity by determining the complex wavenumber for a
given concentration and size distribution of bubbles. The theoretical group velocity is
calculated directly from the phase velocity. In Chapter Three we describe the
experimental set-up. Chapter Four briefly describes the bubble generation and image
techniques and the way in which the bubble size distribution is determined
experimentally. A results chapter follows in which the details of the data analysis are
given along with the experi results. The experi results are compared with

the theoretical model. The results are then discussed in the final chapter.



2 Theory

2.1 Introduction

The ical b for our i will be in this chapter.

We begin with a derivation of the resonant frequency and damping coefficients of a single

bubble in Sec. 2.2. We describe the ions for acoustic ing and ion in
Sec. 2.3 to better understand the attenuation in our medium as a function of frequency. In
Sec. 2.4 we give a formulation of the complex wave vector for the bubbly medium. From
the wave vector we can find the phase velocity and attenuation as a function of frequency.

In Sec. 2.5, we derive the theoretical group velocity from the phase velocity.



2.2 Resonant Frequency and Damping

A sound wave propagating through a medium consisting of bubbles in a liquid
will excite oscillations of the bubbles. We start by examining a single bubble in
equilibrium. We then consider a bubble oscillating harmonically in response to being
driven at some frequency. This will lead to expressions for the resonant frequency of the
bubble as a function of bubble radius, and for the damping of the oscillations due to
viscous, thermal, and radiative processes. Our analysis is based on that in Ref [12],

We first identify the contributions to the pressure inside and outside the bubble.

Inside the bubble we have the pressure of the gas, p, , and the pressure due to water
vapor, p, . The pressure outside the bubble is the sum of the surface tension pressure, p,,
and the pressure of the surrounding fluid just outside the bubble, P, In equilibrium, the
pressure outside the bubble balances the pressure inside. Thus the pressure inside the

bubble, p,, can be expressed as

Pi=ptP. =Pt Py @



When the bubble is driven by sound at an angular frequency @, the bubble radius
can change. Neglecting the viscosity of the gas, the external pressure then includes a

viscous drag term, so Eq. (2.1) becomes

4nR
Pi=p+Ps *%. 22

where nis the liquid viscosity, R is the radius of the bubble, and the dot indicates the

time derivative. The first two terms on the right-hand side of Eq.(2.2) are given by

P @3)

P.=pot P +R(r=R), @24
where o is the surface tension and R, is the equilibrium bubble radius. The hydrostatic
pressure p, is defined as

Po=Pon+hgp, @.5)
where P, is the atmospheric pressure, / is the distance from the surface of the liquid, g is
the acceleration due to gravity, and p, is the equilibrium fluid density. The term P,e™is
the pressure contribution due to the incident sound wave. The final term in Eq. (2.4) is
the acoustic pressure field radiated away by the bubble, evaluated at the equilibrium
position of the bubble wall. Prosperetti (6] finds B, from the velocity potential for the
fluid around a pulsating bubble:

RIR ) @6)

P
o= r(1+ioR, /c)’



as given by Landau and Lifshitz [13] for the case when viscous terms are negligible.
Here, c is the speed of sound in the pure liquid, and  is the radial coordinate measured
from the center of the bubble. Eq. (2.6) is substituted into the general equation for the
acoustic pressure,

B=—p®, @7

and evaluated at r = R,. When the result is substituted into Eq. (2.4), we arrive at

o PRR
= — 2.8
P=po+Pe *TrioRTc @38
For small amplitude oscillations, we can write R = R, + R,, where R, < R,. Such
oscillations will produce small amplitude perturbations p, from the equilibrium internal
bubble pressure p,, . This is expressed as

P =Pt PO 29)

Substituting Egs. (2.8) and (2.9) into Eq. (2.2) we arrive at the equation
R 20 4nR
P.. *p,(')=pn+l’,¢'+—|+‘i’f&/c e 210
Regrouping the above equation and using the fact that p, , is equal to the hydrostatic

pressure p,, we get



PR [R R| 22(R|_, _
T AT e

The form of p, has been derived by Prosperetti [6]. Details of the derivation can be found

in Ref. (1] (p.371). The result is

p=3xp, [—ﬂ -, [,%]. e

where «is the polytropic index', and 7, is an additional thermal contribution to the
effective viscosity. Substituting Eq. (2.12) into Eq. (2.11), we arrive at

414 @R, /c
(p&)[R‘]-*(pRu)[ o Mm,ch[]

«p&)[—”‘"’ A LA ][R‘]=—P4e“.

(2.13)
PR, R 1+(@R/c)
which is the equation for a damped harmonic oscillator. The effective “spring constant”,

or stiffness of the system is

_ 3xp,. _20 0 (wR,/c)’
/‘—(PI(.)[ R PR l+(mR.,/c)‘J @14)

The ratio of this to the effective mass m = pR, , gives

Lk _(%p. 20 S@RIcY
* '( R plc*n(m:(,/cy} 1)

which is the square of the resonant frequency.

: h ibis family of curves pV’* = constant. These curves
mmw:mmmymwp@ﬂym




If we look at the damping term in Eq. (2.13) we can identify contributions to the
dissipation due to thermal, radiation, and viscous damping. The corresponding damping

terms are
5, =%. 2.16)
b =(m&)[l—;%). @
and
B =2—7. @.18)

respectively. The total damping is simply the sum of these,

by =by+b+b,,. @19

We can non-dimensionalize these to get the dimensionless damping terms

ob* 4, o (kp. 20  o'@R /) (220
kR pR\ pR PR 1+(aR,/c) ’

T_:ml{ R, /¢ J[pr,_, 20 a)’(a)&,lc)z)-l‘ @21

1+(@R, /) \ pR} PR} 1+(wR,/c)
and
b, 47 o (p, 20 m*(mx,/c)’]"
d, =—=— | —_—— 2.22]
¥ &p&[ﬂ&’ o’ T (@R, foF &2

The total dimensionless damping is sum of these,



d, =d, +d+d,, 223)
The dimensionless damping terms are plotted as a function of frequency for a particular
bubble radius in Fig. 2.1. At low frequencies, the damping is mostly due to the thermal

contribution. As frequency increases, the radiative damping constant becomes dominant.
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Figure: 2.1

‘The dimensionless damping duc to thermal, viscous, and radiative
damping as a function of frequency for a bubble of radius of 16.5 microns.
The total damping constant is also shown.



2.3 The Absorption and Scattering Cross-sections

The loss of energy from an incident wave can be characterized by assigning an
extinction cross-section o, to the bubble. The cross-section is defined as the ratio of the
time averaged power subtracted from the sound wave as a result of the presence of the

bubble, to the intensity of the beam. The extinction cross-section is the sum of

from both the ing o, and ion o,

0, =0,+0, 229)
The time-average rate at which energy from the plane wave is re-radiated by the
scattering bubble is

|4 5,12, @29
where 4 is the amplitude of the oscillation. The plane wave intensity

1=P; 12pc) (2.26)
is the square of acoustic pressure amplitude, P,, divided by two times the impedance pc .
Therefore, the scattering cross-section can be written as

;
o= bt 5

Leighton [12](p.296) has shown Eq. (2.27) to be equal to
47Ro’

(@) o e

w4rxRo’ p

(2.28)




The absorption cross-section will include damping from both viscous and thermal
contributions. We can find this value by dividing out the radiative damping from Eq.

(2.27) and multiplying by the sum of the viscous and thermal damping. We then have

(229

These cross-sections are frequency and bubble-size dependant, and at resonance can be
hundreds to many thousands the size of the bubble’s geometric cross-section depending
on the amount of damping in the medium. We can see how the cross-sections depend on
frequency in Fig. 2.2 where they are plotted for a bubble size of 16.5 microns. Fig. 2.2
shows that at resonance the attenuation is mainly due to absorption. The cross-sections
cross over at about 0.39 MHz, where the scattering cross-section becomes greater. The
geometric cross-section for a 16.5 micron bubble is ~0.0009 mm?, approximately

107 times the acoustic cross-sections.
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Figure: 22

fora ius of 16.5 microns. At resonance, the
is much greater than th iy ion. The inset shows that above

resonance, scattering becomes greater than absorption.



2.4 Phase velocity and attenuation.

There have been a number of theoretical calculations of the phase velocity of
sound in dispersive media (7. 14]. The different calculations agree quite well with one
another. Here we follow the calculation given by Leighton [12]. The speed of

sound, c, (where the subscript ¢ indicates the mixed gas/liquid medium), is defined as

cieifPe: (2.30)
2.

where B, and p, are the bulk modulus and the density of the medium respectively.

Since the density does not vary dramatically, the bulk modulus is responsible for most of

the variation in the speed of sound in the medium. The bulk modulus is defined as
B=—V(%), @31)

where V is the volume and p the pressure.

In our medium, the total bulk modulus is related” to that for the bubbles plus that for the

liquid:

232)

1 1 1
——
B. B, B,

B, is simply given by

B,=clp.. (2.33)



where c_ is the speed of sound in water and p, is the density of water.
To calculate B, , we start by considering how one bubble responds to a pressure change,
then sum over all bubbles. Consider a population of n, identical bubbles per unit volume,
each bubble having volume ¥,(¢). When the entire population is affected by a pressure

change, the resulting bulk modulus is

1
B. --mw. @34)

If the radius of the bubble is perturbed as in the previous section, then

e

for small amplitude linear oscillations (R, < R,). Here ¥, is the volume of the bubble in

equilibrium. Letting AV, () be the perturbation to the volume, we have

V() =V, +aV,() =V,
0= 0~ +2 Ro

Al’,(l)-%‘ (235)

Substituting this into Eq. (2.34), we find the bulk modulus due to the bubbles to be

_Rap
Bu=-3, e (2.36)

'Ilmumhmuﬂmwl”)hlhwhﬁmhsswaﬂhm
B,=B,,+B,. Thi confused with the relation k, = k,,, +£,

where k is the ilit is defin ““=VB-




The perturbed radius is found by solving the general damped harmonic oscillator relation,
using

o 5t it B

R+2pR +alR =20 @3

where f=b,,/2m, F,=-P,4zR}, and P, is the acoustic pressure amplitude.

The result is
Pe~ 1
) R S — (2.38)
Rp, (@ -0) +i2 )
Noting that Ap =—P,e"™ , and substituting Eq. (2.38) into Eq. (2.36) we arrive at
2 IO
B = M (2.39)

s

Note that B,,, is complex, so our final sound speed will also be complex. The complex

wavenumber of the sound wave is

(2.40)

Assuming that the total volume fraction of the bubbles is small, so that p_ = p,, we can
rearrange Eq. (2.40) to get

Il .41)
c.




Using B,,, from Eq. 2.39) with¥;, = 47R; /3 gives

242)

From the real part of the wavenumber, we can determine the phase velocity of the
propagating wave:

@
A ; 2.43
* Re(k™) 24y

Fig 2.3 shows the calculated phase velocity in a bubbly medium containing 17 million

bubbles per cubic meter. The bubbles had a radius of 15 microns.

While from the imaginary part of the we can d ine the

a@=-2Im(k>). (2.44)
Because in Eq. (2.44) we are calculating the intensity attenuation, we include a factor of
two. A theoretical plot of the attenuation, for the same medium used for the phase

velocity, is given in Fig. 2.4.
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‘The theoretical phase velocity for a bubbly liquid containing a single bubble radius of 15 microns. The

concentration is 17

million bubbles per cubic meter, which is typical for our experiments. The speed in
pure water is 1500 meters per second.
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2.5 Group velocity

The group velocity was determined from the theoretical phase velocity in the following

way. First from the definitions of ¥, and ¥, we have,

(2.45)

‘We can then say,

V,= . (2.46)

By finding & from the phase velocity, we could then numerically solve for the group
velocity. An example for this is given in Fig. 2.5 for a medium containing 17 million

bubbles per cubic meter each having a bubble radius of 15 microns.
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The theoretical group velocity for a bubbly liquid with a concentration of 17 million bubbles per cubic
meter, consisting of bubbles having a single bubble radius of 15 microns. The doted line shows the speed
of sound in pure bubble frec water.



Experimental Setup and Apparatus

3 Experimental Setup and Apparatus.

3.1 Setup

The ballistic measurements were designed to detect the unscattered or forward-
scattered components of an ultrasonic pulse that has traveled through the sample.

A block diagram of the experimental apparatus for the ballistic measurements is
given in Fig 3.1. All measurements were done in a 425-liter glass tank (1.2 mx 0.6 m x
0.6 m) filled with water. The water provided a convenient coupling medium for the
ultrasonic waves. Without it, high impedance mismatches would lead to energy loss from

flections and make the i i ible. This tank ined the sample cell,

which was placed in the far field of the generating and receiving transducers. The walls
and floor of the tank were lined with 2.5-cm-thick Styrofoam insulation to reduce

Additional parallel strips of ribbing placed 10 cm apart along the

walls further reduced reflections. Surrounding the tank was a steel frame that supported
‘mounts for the sample and transducers.

Motorized translation stages were used to simply and accurately set the position
of the sample and transducers. The stepper-motor translation stages were Unislide™
positioning systems manufactured by Velmex, Inc. (East Bloomfield, NY). They could

move in increments of 3.175 um, over a 30 cm range. These stages were mounted on a

supporting cradle that allowed for three di ional position
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Figure: 3.1

Block diagram of the ballistic setup.

Two different signal generators were used. The first and most reliable was a
Fluke model 6060B synthesised RF signal generator (John Fluke Mfg. Co., Everett,
Washington). This device was operated at 13 dBm. When this generator was
unavailable, it was replaced by a GW model GFG-8016G (Good Will Instrument Co.
Ltd, Malaysia). The continuous sine wave signal from the generator was mixed (i.e.,

multiplied) with a rectangular pulse, by triple cascading MiniCircuits model 15542 ZAY-
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3 mixers. The result was a sine wave ‘pulse’ controlled by the pulse generator, a
Stanford Research Systems Inc. (Sunnyvale, CA) model DGS35 digital delay/pulse
generator that provided very precise time delay. Pulse widths of 2 to 50 us were used,
depending on the signal frequency and the measurement being performed. The pulse
repetition period ranged from 5 to 30 ms. The resulting low power rectangular RF pulse
was then fed through a Telonic Altair model 8143A, 50 ohm attenuator, and then into a
model 250L Amplifier Research (Souderton, PA) power amplifier, which had a peak

output power of 250 watts.

The plane wave that ed were A 'V series i
transducers from Panametrics, Inc. (Waltham, MA). Transducers with central
frequencies of 0.1, 0.25, 0.5, 1.0, 2.25 MHz were used so that a large range of
frequencies could be studied. The 0.1 MHz and 0.25 MHz transducers had a diameter of
3.81 cm, slightly larger than the 2.54 cm. diameter of higher frequency transducers. To
obtain a plane wave signal at the sample, the transducer was used in the far field. The

distance from the generating transducer to the sample z, had to be greater that z/, given
by

= @.1)
This distance z, defines the transition between the near and far field, or Fresnel and

Fraunhofer zones. Here Ris the radius of the transducer and A the wavelength

generated.
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‘The signal received by the detector was fed through a second attenuator and into a
pre-amp system, either a model 253 Matec broadband pre-amp providing 20 dB of gain,
or a model 252 Matec double tuned pre-amp providing approximately 30 dB of gain. The
signal was then fed into a model 605 Matec (Hopkinton, MA) broadband receiver. This
system not only amplified the very weak signal but could also filter the pulse shape and
central frequency (for the tuned case only).

A Tektronix model TDS 544A (Beaverton, OR) oscilloscope was used to acquire
digitized signals of both reference and sample pulses. The sample rate was generally set

at 10 MS/s. For ballistic measurements the oscilloscope would average 10 000 readings,

out the scattered of the signal. Digitized data were sent

to a personal computer via an [EEE bus.
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4 The Scattering Medium

4.1 Introduction

An important part of this work was the design of the cell and the bubble generating
process. The idea was to create bubbles with a narrow size distribution that move
randomly with respect to one another. We wanted to generate rather small bubbles (~15
microns in radius) to get the resonant frequencies in the desired range (~200 kHz). The
bubble distribution also had to be ible from day to day. The geometry of the

cell was arranged to produce a region where the mean flow was small, leading to an area
with random bubble motion. The bubbles were generated by hydrolysis of a solution of
1% Na,SO,4 and 1% Sodium dodecyl sulfate (SDS) by weight in distilled water. The
electrodes were made of platinum, and electrolysis currents ranging from 10mA to

50mA were used. The bubble ions and size distributions were ined by

taking pictures of the medium with a video microscope, then analyzing the pictures

using imaging software.



4.2 Cell Design

Figure 4.1 is a diagram of the cell. It was rectangular in shape and had internal
structures consisting of two guiding barriers to direct the flow of the bubbles and two
electrodes. The cell had a height of 21.6 cm, a width of 22.2 cm, and a thickness of
4.5 mm. Nearly the entire cell including the frame, barriers, and walls of the cell were
made of Plexiglas and other versions of PMMA (polymethyl methacrylate). Ideally,
the cell materials should have a small effect on the propagating wave. However,
reflections within and between the cell walls were found to have a visible effect on our
data as described in Chap.5.

Bubbles were d using is. The cathode d hydrogen bubbles

and the anode produced oxygen bubbles. The hydrogen bubbles were used in the
experiments because they were smaller than the oxygen bubbles. In addition, the overall
hydrogen production rate was twice the oxygen production rate, so we could achieve
higher bubble concentrations at lower electrical currents using the hydrogen bubbles.
The internal construction of the cell separated the different gas bubbles. The oxygen
bubbles were guided up the side of the wall then vented, while the hydrogen bubbles
were led into the sample area. To achieve a narrow distribution of bubble sizes we used
the ideas of Stokes’ velocity law [12], which states that the velocity of the rising bubble

is proportional to the square of its radius. The larger bubbles quickly rose to the surface,



Figure: 4.1
Schematic of the cell used. The cell gencrated bubbles of the desired size
and size distribution within the analysis area shown.



creating an interal current that trapped the smaller bubbles and circulated them around
the cell. Near the analysis area the small bubbles have almost zero mean velocity since
the downward flow of the current essentially balances the opposing Stokes’ velocity,
creating a slowly moving random motion between the bubbles.

The geometry and arrangement of the electrodes was also an issue. A number of
different cathode shapes were evaluated in an effort to achieve a narrow bubble size
distribution, but our measurements did not show a large difference in size distribution

for different electrode ies. For simplicity of ion and cleaning, we used

a simple cathode made from 0.25 mm platinum wire wound into a horizontal loop about
15mm in length and 3mm in width. The anode was made of a 7 cm length of the same
platinum wire, positioned vertically. Due to blackening that developed over long
periods of time, the electrodes had to be periodically cleaned. This was done by rubbing
the electrode with a very fine emory cloth then soaking it in a solution of 10% Nitric
acid for 20 minutes. The electrodes were then rinsed in nano-pure reverse osmosis
water for 30 minutes.

The cell was filled with a solution of 1% Na;SO4 and 1% sodium dodecyl sulfate
(SDS), by weight, in nano-pure reverse osmosis water. Extreme care was taken with
regards to cleanliness and the purity of every material used in the cell. Despite this, we
found that our electrodes (mainly the cathode) would blacken. The true source(s) of the
blackening was not identified but it is believed to be due to stray metal ions from solder
joints depositing on the electrodes. The solder joints were later moved outside of the

cell, isolated from the solution. After this modification, thorough cleaning, and
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improvements in the purity of the materials used, the blackening was kept to a

minimum.

4.3 Bubble Sample Area

The bubble size distribution varied over rather small length scales in the area of

the cell sampled by the ultrasonic pulse (~1cm). Therefore reproducibility in the

positioning of the receiving was very i To insure

we carefully marked the position of the transducer on the cell wall and realigned it to
this position before each experimental run. We wanted the bubbles in the sample area
to have random motion and no large temporal fluctuations in concentration or size
distribution. The area chosen for analysis was initially determined empirically through
visual inspection, by looking for an area where the bubbles had small, random motion.

We refined the choice of the analysis area by looking at our ultrasonic data. We chose

an area that gave ible results by ing and ing many

pulses. For every concentration used the analysis area was videotaped for several
minutes using a video microscope. Independent frames where then captured from the
'VCR with a frame grabber card. These individual frames where then analyzed using
commercial imaging analysis software [15] to determine the bubble size distribution

and concentration.



4.4 Results

4.4.1 Bubble Size distribution

Bubble sizes were determined from the video data. A frame containing a reference
object of a known size was recorded. We could then measure the size of any object in
other frames. Each frame was digitally smoothed and thresholded, so that bubbles
appeared black and background, white. The threshold intensity was an important
parameter since it directly affected the mean bubble size. Using the image analysis
software we then determined the lengths of the major and minor axes of each bubble.
Since the major axis could be anomalously large if two bubbles were superimposed in
the image, we only considered the minor axis. These values were then binned and the

data displayed in histograms. We then fit functions to these distributions for use in the

Fig. 4.2 shows hi of the bubble size distribution for
different electrical currents. Also displayed on the graphs are polynomial fits, which

were used in the calculation of attenuation, phase and group velocity, using the theory

described in Chap. 2. The ients for the ial fits are given in Table 4.1.
However, as described in Chap. 5, when the polynomial functions were used in the
theoretical model, the fits to the experimental data were quite poor. This suggests that
the size distributions found through imaging techniques may have been inaccurate due
to dust or other impurities. Particles that were not bubbles would have affected the

ultrasonic pulses much differently. For a better fit of the theory to our data we used a
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Gaussian distribution for the bubble sizes with the mean and standard deviation chosen
to give a good fit. This is discussed in Chap. 5.

For the ballistic measurements we used a thin sample cell (4.5 mm) and relatively
small currents of 10, 15, 20 and 25 mA. These currents produced the lower
concentration of bubbles that was necessary for the ballistic analysis. Surprisingly, the
mean bubble size stayed relatively constant at the different currents used. Our mean
bubble size was in agreement with other experimental findings (average bubble radius,

11-18 pm) using the same method of bubble generation [16],
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Figure: 42
Histograms showing the number of bubbles as a function of size.
Histograms are shown for currents of (a) 10mA, (b) 15mA, (¢) 20mA, and (d) 25mA.

The li lynomial fits ol &
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4.4.2 Bubble Concentrations

In order to calculate the bubble concentration, or void fraction, of the sample
medium we used a different image analysis technique. Images were taken at a
larger field of view (~10 mm?, about 3mm across). The large field of view
allows for better statistics, and also to brings into focus all the bubbles within the
sample thickness. The images were again smoothed and thresholded. Then the
projected area of all the bubbles in the image was summed. We refer to the total
area of all the bubbles within the image as 4,,. We can solve for the number of
bubbles N, by dividing the total area of the bubbles by the area of a single

average bubble area, 4, . We have

A
N, =2 ;
™ “h

To find the total void fraction, ¢ we multiply the number of bubbles by the
volume of one average bubble, ¥,,,, then divide by the total volume in the image,

V.

“@2)

The calculated void fractions are recorded in Table 4.2. Using this robust
calculation, we found values that were on the same order of magnitude as the

values used to compare the theory to data in Sec. 5.5.
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Current Average radius from images Void fraction from images

(mA) (microns) (parts per million)
10 11.85 37
15 16.5 234
20 18.1 268
25 16.1 316
30 not calculated 50.7
40 not calculated 88.1
50 not caiculated 119.8

Table: 4.2

A tabulated comparison of the void fractions and average
radius found in the image analysis.



S Results

5.1 Introduction

In this chapter, the i results are and to
predictions. We first describe how the measurements were performed. We then present

of the ion for different bubble concentrations and

compare the data t ical ions (Sec. 5.3). The ion is closely related

to the extinction length, as described in Sec. 5.3.1. We also measured the phase and
group velocities for different concentrations. The methods used to determine the phase
and group velocities are discussed in Sec. 5.4.1 and 5.4.2 respectively. The data are then

presented and comp to the th
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5.2 Ballistic measurements

In a medium with strong ing, the total jtted signal is d of two
components. The component in which we are interested is the ballistic component,
which propagates coherently straight through the sample without scattering away from
the incident direction. In addition, there is an incoherent scattered component that varies
in both amplitude and phase across the output face of the sample. The characteristics of
waves propagating ballistically through the sample were determined by comparing the
coherent component of a pulse that travels through the sample with a reference pulse.
These contributions either travel through the medium without scattering or are scattered
in the forward direction, and are coherent with the original pulse [!8. 191, The scattered
component is made up of waves that have traveled a large number of possible paths
through the sample. As the sample thickness, or the concentration of the bubbles within
the sample increases, the number of scattering/absorption sites and so the number of
possible paths for a pulse to take increases. The wave pulses’ incoherent portion then
becomes more prominent, and the coherent portion less obvious. As the pulse scatters
from one of the bubbles, the spectrum of both its frequencies and wave vectors can be
affected. In addition, the scattering can cause the pulse to arrive later in time due toits
taking a longer path. The energy can also be absorbed and then released later in time.
These combined effects changing the temporal and spatial phase properties of the
scattered pulse, and when the scatterers are moving cause the scattered sample pulse to

vary a great deal from one pulse to the next. Thus, we find the coherent component of



the pulse by averaging many pulses together. An example is shown in Fig. 5.1. The
pulses shown in the figure are | MHz pulses with an incident pulse width of 7 s that
have traveled through the sample. At this frequency, the effects of scattering are quite
pronounced. Fig 5.1 (a) displays three consecutive pulses taken 0.5 seconds apart. Fig.
(b) shows an average over 10,000 pulses under the same conditions. The signal at longer
times, which is due to that portion of the pulse which is multiply scattered and so takes a
longer time to reach the detector disappears on averaging, leaving the coherent ballistic
signal. This coherent ballistic pulse can now be compared to the reference pulse to obtain
data for the attenuation, the group velocity and the phase velocity. The specific

techniques used to extract these data are explained in the sections to follow.



—— averaged puse (10,000 pss)

fime (s)

Figure: 5.1
The coherent pulse (b) was found by averaging 10 000 individual
pulses (a) under the same experimental conditions.
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5.3 Attenuation

The attenuation coefficient describes the decay of a wave with distance traveled. A
wave with intensity /, at position z,decays to
I(z)=[,e™

at position z, wh is the i ient and, at a given isa

characteristic of the medium. Setting the distance traveled equal to the cell thickness L,
we have

I=Ie™, 5.1
where / is the intensity of the wave leaving the cell.

‘We measure the attenuation coefficient by taking ratio of the FFT (fast Fourier
transform) of the sample pulse to that of the reference pulse. The reference pulse is
recorded with the cell in place but without any bubbles in the liquid. We take the
intensity of the reference pulse, /,,, as /,. What is measured is the pressure due to the
sound pulse, so the amplitude of the FFT is proportional to the pressure. Since the sound

intensity is proportional to the square of the pressure, we have

. :
s (P _(FFL
T ‘(Pﬂ] [Fﬂq]' e

Here P, and £, are the measured sample and reference pressures respectively.



In our measurements attenuators were used to avoid high power signals that would
saturate the inputs of the experimental equipment, so the measured FFT amplitudes must

be corrected for this. The equation
1 P
= 2= L) 53
db lOIog[lu] 20[08[’73) (53)

gives the ratio of the intensities in dimensionless units known as decibels. These are the
same units used by the attenuators. The unattenuated pressure signal, Py, is the sum of
our measured signal in decibels, F,, plus the amount of attenuation a,, inserted by the
attenuators. Therefore,
Py, =Pytay, (5.4)
The difference between the reference and the sample pressure signals (in db) is then be
B - =Py e +(af -aTT), 65)
where the subscript 0 defines unattenuated values. Using Eq. (5.3), we can write Eq.(5.5)
as
P -P= 20103[%] = ZOlog[;] +(af -az). (5.6)

Rearranging Eq. (5.6) we have

B b 5
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We identify the attenuation correction factor as

o
corr=10" ® . (538)

Inserting this factor into Eq. (5.2) we have

sam o G-\ ( FFT. -4 )
Eraip e it N T 59
I P FFT e

corrected for the attenuators used. We can now solve for the attenuation coefficient,

FFTcorr |2
= 2amC7 |2 5.10
a ln( ] (5.10)

Fig. 5.2 shows the measured attenuation coefficient at various bubble concentrations

corresponding to currents from 10 to 25 mA. The most obvious feature is that at the

equency the ion is at a maxi The ion is made up of
contributions from both scattering and absorption. These contributions can be separated
using the acoustic cross-sections that were introduced in Chap.2. We can write & in
terms of the absorption and scattering cross sections as.
a=n,(c,+0,) .11

where 7, is the number density, being the total number of bubbles in a cubic meter. g, is

the i ection and o, the scatteri ion. Values of o,anda,
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Figure: 52
The attenuation coefficient as a function of frequency at various coneentrations.

calculated from Egs. (2.27 and 2.28) are shown in Fig. 2.2. Although both the scattering

and jon are at a maxil at we can see that the absorption dwarfs the

ection there. The i of this feature of our medium will be clear
later in this chapter.



The attenuation data in Fig. 5.2 show a second, weaker peak at about 0.33 MHz,
especially at small currents (low bubble concentrations). We believe this is due to
multiple reflections between the two cell walls at resonance. These reflections are most
prominent in the reference pulses, which were taken with the cell in place and with a
bubble free liquid, since when bubbles are present the bubble solution quickly attenuates
any reflections. If we use the equation for the wavelength 4, of a standing wave,

#=2L, 5.12)
n

where n=1, 2, 3... When we substitute the cell thickness, L=4.5mm, the first few
standing wave lengths are

A =9mm,
A4, =4.5mm,
and

4, =3mm.
Knowing the wave speed in a bubble free liquid is 1500 m/s, we can determine the
corresponding resonant frequency harmonics to be;

/, =0.16TMHz,
£, =033MHz,

f,=0.5MHz.

Because these harmonics are present in our reference data, their effects can be seen in the
ballistic data at the corresponding frequencies. The first harmonic, although visible, is

not as pronounced as the second at 0.33 MHz. This could be due to the effects of the first
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harmonic frequency being overwhelmed by the bubble resonance. The small effects of
the higher harmonics are simply due to the weakness of the signal after multiple

reflections.

5.3.1 Extinction Length

The extinction length /_, is a measure of the distance traveled by the wave before it is
scattered or absorbed. It is simply the inverse of the attenuation coefficient,

- 5.13)

L

R|=

Substituting this into Eq. (5.1) we have,

L
I=Ie'=. (5.149)
where L is the thickness of the sample. /_,is the distance over which the intensity of the
incident pulse decays by a factor of e™', due to a combination of absorption and
scattering. If /, is the absorption length and /,is the scattering length, then /_,is given by,

(5.15)

This gives us a better ing of the spatial ies of the medium.

Near resonance the attenuation is nearly entirely absorptive, therefore the extinction



length, near resonance is approximately equal to /,. I, is shown as a function of

frequency for concentrations of 15, 20, and 25 mA in Fig. 5.3.
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Figure: 5.3

The extinction length as a finction of frequency at various bubble concentrations.

Figure 5.3 shows data for the higher concentrations of 15, 20, and 25 mA with the
shortest extinction lengths. The lower concentration of 10 mA had a larger minimum

extinction length than the thickness of the cell so the data was not shown. In every case,



the extinction length is smallest at resonance, where inversely the attenuation is the
greatest. For the 15 mA data we can see another dip in /_, at approximately 0.33 MHz,

due to the multiple i i above. Thi ion further confirms that

this is an effect of standing waves between the two walls, where the bubbly liquid is
d, since at higher ions these ions are d and damped out.

5.4 Phase and Group Velocities

The phase and group velocities were measured using the same data as was used for
the attenuation measurements. In the velocity measurements we are not concerned with
the amplitudes of the wave pulses so the attenuation correction discussed above was not
needed. We did have to worry about the time relation between the reference (bubble free
liquid) and sample (bubbly liquid) pulses. In order to calculate the time it takes for the
carrier wave (phase velocity) or packet (group velocity) to traverse the sample we had to
correct the timing by ‘zeroing’ the reference time. This is done by subtracting the time it
takes for the pulse to travel through the medium without bubbles. Fig. 5.4 shows the path
traveled by the reference and sample pulses. The generating and receiving transducers
are at a fixed distance from each other. The time taken for the reference pulse to travel

across the cell is
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Figure: 5.4
and sample pul 1 paths. In pulse
travels through a medium containing a bubble free liquid. In the sample measurements (b) the medium
contains bubbles.

where L is the thickness of the cell and v,,,. is the speed of sound in water. If we
subtract the time scale of the reference data by this amount, we are effectively removing
the cell from the path of the reference pulse. Since the cell walls are common to both the
reference and sample pulses, they were not considered in the time correction. Once this
time correction has been applied, the difference in time between the reference and sample

data Az, is the time it takes for the pulse to travel through the bubbly medium.



5.4.1 Phase Velocity

The phase velocity is the speed of the sinusoidal carrier wave. We can find the phase
velocity by measuring the propagation speed of a particular crest, for example. The
distance that the crest propagates, for a sample of thickness L, divided by the time to do

50, £, , gives us the simple equation

(5.16)

We actually determined the phase velocity by measuring the phase difference between
the Fourier components of the reference and sample pulses. The phase difference A¢ is

directly related to the wave propagation time within the medium at a given frequency,

Ap=or,,,. .17
Here wis the angular of the Fourier ituting Eq. (5.17) into
Eq. (5.16) we have
ol _ 21/l
=== " 5.18)
=2 -] (5.18)

where fis frequency. The FFT phase angles for typical reference and sample data are

plotted in Fig.5.5.
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Figure: 5.5
Typical plot of th angle of both d sample data.
Often Eq. (5.18) is incomplete, as the phase difference can only by determined to

within +27n, where n is an integer. We compared the oscillations with the greatest
amplitude (having the best definition) to get a rough idea as to the value of the phase
velocity. We will call this value ¥, . We then compare adjacent crests that have a

difference of one period in time with the original phase velocity value. We verified our



measurements by finding the phase velocity at a high frequency (>1MHz). The phase
velocity through the medium at high frequencies has very little dispersion, and it is near
the velocity in the bubble free liquid. We then follow the phase velocity for lower
frequencies, and keep it consistent with high frequency measurements by adding or
subtracting an integer number of periods. Dropping the wave subscript, the corrected
time for the wave travel time is,

t,=t,tnT, (5.19)
where T =1/f is the period of the travelling wave, and 7, = L1V, is the uncorrected

propagation time. Substituting this into Eq. (5.16), we arrive at

oV
nv, / :

-
£,

We can see the effects of adding and subtracting periods in Fig. 5.6, where we have

v, (520

plotted the 20 mA phase velocity data along with velocities obtained by adding and
subtracting one or two periods.
A plot of the phase velocity data for currents ranging from 10 mA to 20 mA is shown

inFig. 5.7.
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Figure: 56
‘The phase velocity for the 20 mA sample compared with the velocity
calculated using period shifts of n=+1, +2, and -1.
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Figure: 5.7
The phase velocity as a function of frequency near resonance.
‘The resonant frequency is about 0.2 MHz.



In a non-dispersive medium, the phase velocity is equal o the group velocity and does
not change with frequency. In Fig. 5.7, we can see how the phase velocity changes due
to the dispersion of our medium. The phase velocity is a function of frequency. The
bubble-free solution has a phase velocity of about 1500 m/s. If we look at the 20 mA
data, we see that ¥/, is less than that in the bubble free solution below the resonant
frequency £,(f, 0.2 MHz). V, increases as fapproaches f,. At frequencies just above
the resonance, we can see the wave speed is higher than that in the bubble free liquid. As
we go higher in frequency, and further above the resonance, the phase speed decreases
again towards 1500 m/s. This is due to the medium being less dispersive away from
resonance. As the concentration becomes greater, this effect on the phase velocity
around resonance is more pronounced.

A second increase in phase velocity can be seen at about 0.35 MHz. We believe this
is due to muitiple reflections between the two cell walls as discussed in Sect. 5.3.

5.4.2 Group Velocity

‘The group velocity ¥, was measured in a very different way. ¥, is the speed of the
peak of a wave packet. To find ¥, ,we need to find the time Al 4 it takes for the peak

of a wave packet to travel through the sample. The group velocity is then given by
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‘The reference and sample wave pulses were convolved with a Gaussian envelope of a
specific bandwidth and center frequency. The ion was done as a i
in Fourier space, followed by an inverse FFT to convert the data back into the time

domain. The result is a Gaussian wave packet containing a narrow band of frequencies .
By repeating this process for many different center frequencies we divide the original
sound pulse into many wave packets, each corresponding to a different Fourier frequency
component. In Fig. 5.8 we show an example of this filtering process. The measured
reference pulse is shown in Fig. 5.8 (2). The succeeding plots show the pulse after it has
been gaussian filtered at a center frequency of (b) 0.3 and (c) 0.4 MHz. In both cases the
filter bandwidth was 0.02 MHz. The Gaussian envelope of the filtered wave packet is
also shown. The step size between center frequencies was chosen to give adequate
frequency resolution in our group velocity measurements. The frequency range in which
we could obtain reliable data was taken when both the reference and sample signal

In Fig. 5.9, we compare the reference and sample pulses for a typical data set and the
envelopes of the filtered wave packets at several frequencies. The bandwidth used for
each of the Gaussian filters is 0.02 MHz. Once the envelopes of the wave packets were
generated, we fit the peaks to a quadratic using a least squares fit program. We then

subtract the time of the peak of the reference envelope, /,,,, from the time of the peak of



the sample envelope, 7., giving us the time it takes a pulse at the appropriate frequency
to traverse the bubbly medium. We can now evaluate the group velocity using

Eq.(521).
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Figure: 5.8
A depiction of the pulse and two filtered wave packets
centered at 0.3 and 0.4 MHz respectively. The bandwidth used was 0.02 MHz.



61

Results
[ e, L) -
’ 2
g 1
& "
g )
g i 2
3
L] " x - 0 L 2 » “ o«
- a 2 LR ) 2 L} a “ L]
Tie () Tive )
Figare 5.9
Typical P d (d) show the Gaussian envelopes of the filtered wave
packets at the freq indicated. i time of the peak of op




We can also see from Fig. 5.9 that the time of the peak of the pulse envelope can
change quite substantially with frequency. This is due to dispersion, especially near
resonance. If we look at the envelope at 0.23 MHz, we can see that the peak of the
sample pulse in Fig. 5.9 (d) occurs at an earlier time than the peak in the corresponding
reference pulse, shown in Fig. 5.9 (c). This means at 0.23 MHz, the peak of the pulse has
left the cell before the peak of the reference puise (at the same frequency) has entered the
cell. This is a case of negative group velocity. The 0.23 MHz sample pulse is smaller in
amplitude than the 0.23 MHz reference pulse, indicating the high absorption that occurs
at this The ination of di ion and ion leads to distortion of the

total pulse which can be seen by comparing Fig. 5.9 (a) and (b). This is certainly one of
the most interesting results of this research. The effect of negative group velocity is
shown more clearly in the filtered pulses in Fig. 5.10.

The bandwidth of the Gaussian filter had to be carefully chosen. A very narrow
bandwidth corresponds to a wide time pulse and leads to a loss of accuracy in the
determination of the peak time. A large bandwidth often leads to a distorted non-
Gaussian time pulse, without an easily distinguishable center peak.
frequency are shown in Fig. 5.11. The 10 mA sample is lower in bubble concentration
and shows a positive group velocity. While at higher concentrations (15 and 20 mA) the
absorption is much higher leading to anomalous dispersion. The group velocity around

the bubble resonance becomes negative.
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Figure: 5.10

An example of negative group velocity (negative time between the peaks of the wave packets). (=0 is

chosen to cotrespond to the peak of the filtered referenice pulse, shown as a solid line. The dotted lines arc:
the sample data from the bubbly medium. The measurement at 0,38 MHz gives a positive group velocity.
A1 0.22 MHz the peak of the sample pulsc is detected before the peak in the reference pulse, producing a

negative group velocity.
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Group velocity as a function of frequency for three different currents
near the resonance frequency. The group velocity is negative for currents of 15 and 20 mA.



5.5 Comparison with theory

In this section we compare the experimental data with the theory derived in Chap. 2
using the bubble distribution measured in Chap. 4. We find that the agreement is not that
good. Better agreement is obtained with a Gaussian bubble distribution with parameters
that were empirically chosen.
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Figure: .12

The phase velocity data compared with theory using two different
bubble size distribution fimctions.



In Fig. 5.12, we show the experimental data for the 20 mA sample. Also shown in the

figure is a th ical line for the jial fit to the measured distribution.

This curve does not match our experimental data very well. We found a better fit using a

Gaussian distribution with variables that pirically chosen. The distribution that
fits the data is narrower than the measured distribution. In addition, the mean bubble
radius of the measured distribution is 18 um, is slightly larger than the 14.4 ym mean
radius of the Gaussian distribution. We compare the narrow Gaussian distribution with
the histogram determined from the image analysis in Fig. 5.13. The mean, standard
deviation, and the height of the Gaussian were chosen by hand to give a good fit to the
phase velocity data for a given current. We then used the same parameters to calculate
the group velocity and attenuation.

Roughly speaking, adjusting the mean bubble size shifts the resonant frequency,
which is approximately where the phase velocity changes from less than to greater then
the velocity in the bubble free liquid. The width of the distribution changes how abruptly
the phase velocity increases with frequency. A narrow distribution gives a steep change
in phase velocity with frequency. Finally, the bubble concentration (proportional to the
height of the Gaussian) was adjusted to give a good fit to our experimental data. A small
bubble concentration leads to small variations in velocity as a function of frequency.
Conversely, a large concentration results in very large changes in the velocity. The

resulting fits to the phase velocity data for 15 and 20 mA currents are shown in Fig. 5.14.
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Figure: 5.14
The experimental phase velocities for 15 and 20 mA compared to theory using the Gaussian size
distribution discussed in the text.
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The agreement between theory and experiment is quite good when using the Gaussian

near However, we see some disagreement at higher

frequencies, again near 0.33 MHz. This again is believed to be the result of multiple
reflections between the cell walls. Our data for the 20 mA sample also has another
fluctuation at 0.27 MHz. We believe that this was the result of some ringing that occured

in the during the i C this cannot be confirmed

without further experimental work. The Gaussian parameters used are given in Table 5.1.

The experimental group velocity data is compared with the theoretical model in Fig.
5.15. Both the theoretical curve and the experimental data show negative group velocity
near resonance. As with the phase velocity, the group velocity curve has a typical shape
as a function of frequency, due to the effects of dispersion. There are sharp changes in
the group velocity on either side of the resonant frequency where the ¥V, becomes infinite
then negative. There are some disagreements in the data. These occur at the same places
as was found in the phase velocity data and are likely of the same cause.

In Fig. 5.16, the attenuation data at currents of 15 and 20 mA are compared to the
attenuation calculated using Eq. (2.44). Again, the same parameters for the Gaussian
bubble size distributions are used. The ison between the measured and the

calculated attenuation coefficient is quite good for the 15 mA sample, aside from the
discussed increase in attenuation at ~0.33 MHz. At a higher void fraction (current = 20

mA) the theoretical attenuation is significantly smaller than the measured attenuation.
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The group velocity data fit to the theoretical model used for void fractions of 15 and 20 mA.
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Since the Gaussian distribution gives very good agreement with the phase and group
velocity data, these results suggest there is some additional attenuation at higher void
fractions that is not accounted for in the calculations.

It is obvious that there is some disagreement between the bubble size distribution
determined from image analysis, and that which gives good agreement with the data. The
bubble distribution changed slightly from day to day. However, the changes recorded
from day to day can not account for the very large difference between the two bubble
distributions. If the theory is correct, we have made some error in determining the bubble
distribution using image analysis. On the other hand, the disagreement with theory may
be due to problems with the theoretical model itself. At this time it seems most likely
that the error is in the measured bubble distribution. The theory is well established, and
some questions arose during the image analysis. The very small bubbles that were
detected may not actually be bubbles, but rather small pieces of dust or other foreign
debris. The thresholding of the images may lead to a systematic increase in apparent
bubble size that would affect the results that were obtained. These two factors could have

d our measured distribution. we have no way of checking this

without redoing the experiments.



B

Current Gaussian fit to bubble distribution Void fraction used
(mA) 2(r-r.)
(mA) Geammi m,,[_z%,ﬂ]
w (microns) re (microns) # (parts per million)
10 3 15 22
15 3 152 86
20 24 144 12

The parameters ian bubbl
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6 Summary

In this thesis, we studied how the propagation of an ultrasonic pulse is affected by a
bubbly medium. By adjusting the electric current supplied to our sample cell, we could
change the bubble ion. We studied the ion, phase velocity, and group
wvelocity over a range of frequencies. The measurements were then compared with a
theoretical model [12]. The bubble size distribution was determined from image analysis.

However, the measured distribution did not give good agreement with the theory
implying some difficulties with our image analysis. The images used covered a much
smaller region than that used for the ultrasonic measurements. As a result we set our
image data aside and used a Gaussian distribution, with that v

found, for the theoretical calculations. In this chapter, we summarize the work done in
this thesis, and suggest possible future work that could augment our current
measurements.

We followed Prosperetti’s model 6. 12] based on the damped harmonic oscillator,
which assumes small linear oscillations of the pulsating bubble. Using this model, we
could calculate the thermal, viscous, and radiative damping, as well as the resonant
frequency of the bubble. The damping terms could be used to gain an understanding of
the scattering and absorption in the bubbly medium via the acoustic cross-sections [12].

The complex wave vector for propagation in the bubbly medium was also calculated. The

imaginary part yielded the ion, and the real part gave us the phase velocity in the
medium. From this we could calculate the group velocity.



The scattering medium, as mentioned, was made up of smail bubbles in a liquid. The
bubbles were generated using hydrolysis; the oxygen bubbles were guided away and the
hydrogen bubbles guided towards the analysis area. The hydrogen bubbles were on
average smaller in diameter and were produced at double the rate of the oxygen bubbles.
We also found using our theoretical model that the hydrogen gave a high absorption to
scattering ratio. We used image analysis software [1°] to measure the bubble size

and bubble ions (or void fractions). Although approximately 1000

bubbles were counted at each concentration we found that using a Gaussian bubble

with empiri i gave a closer match between

experiment and theory. At this time, we do not believe there is a problem with the
theoretical model used, but rather, a problem with the measured bubble size distribution.
We make this conclusion based on two strong considerations: a well established
theoretical model and some possible problems with the image analysis recognized in
retrospect. It is possible that the pictures taken also contained dirt and other very small
contaminants (<4 microns in radius). These tiny particles would have very different
effects on the ultrasonic pulses than bubbles would have. Therefore, the apparent bubble
size distribution found in the image analysis would be different from what the ultrasonic
pulses measured.

The highly absorptive nature of the medium at resonance led to anomalous
dispersion. A great deal of attention has been paid to this phenomenon [20]. Because of
pulse distortion, anomalously dispersive media have negative or superluminal group

velocities. We emphasize that this is not a violation of causality: information cannot



travel faster than light. Under such conditions, information (or energy) does not travel at
the group velocity, and we must use other forms of velocity [!!-21] to measure
information transfer speed in this regime [2.4.5]. Until recently, there has not been good
experimental data on negative or superluminal group velocities. In the last few years
negative group velocities have been experimentally measured using optical
(electromagnetic) waves (8. 9. 231. We believe this is the first detailed observation of
negative group velocity using ultrasonic (acoustic) waves in fluid media.

In the future, we would like to measure the energy velocity for the same medium.
The energy velocity can be obtained from measurements of diffusive wave propagation in

strongly scattering media. The diffusion constant is defined as

s
b=, ©1n

where v, is the energy velocity and I°is the transport mean free path. The quantity /*can
be obtained from continuous wave experiments (24]. The diffusion coefficient can be
measured using pulsed wave experiments. Knowing these quantities, the energy velocity
can be determined. We would like to compare these measurements to for the group

velocity, and measurements on light waves. Furthermore, we would like to understand

better how to efficiently send and measure i ion within an isp

regime.
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