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Abstnet

A wave pulse can propagate with a negative group velocity when it travels

through a medium with anomalous dispersion, that is, when the

derivative ofthe dispersion cwve is negative. Here we report on the experimental

observltion of negative group velocities for pulses of ultrasound propagating

ballistically through WIler containing gas bubbles. For frequencies

near the resonant frequency of the bubbles. the absorption increases

strongly and the group velocity becomes negative. Our experimental results

are in good agreement with • theoretical model sound propagation in bubbly

liquids if we assume a Gaussian distribution of bubble sizes.
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1 Introduction

On any given day, our pc:rception ofand interactton with the world is made possible

due to energy transmitted in the fonn of waves. Waves come in many differem fonns:

for example, and sound in the form ofacoustic waves. and radio and light in the form of

electromagnetic waves [I]. Using classical wave theory, we can characterize waves by

their dispersion curves (the angular frequency (j) as a function ofthe wavenumber k),

which give us information about the frequency (or wavelength) and propagation speed of

the waves. The frequency of light determines its color. whereas the frequency ofsound

determines the pitch or tone oCttle sound one hears. When we change the length ofa

musical device, a penny whistle for example, we are changing the wavelength oCtile

sound produced. The change in wavelength changes the frequency, and therefore the

pitch that we bear from the instrument. However. this example is rather trivial••nd the

relationship between frequency and wavelength is not always so simple. tflhe speed is

independent of frequency then the dispersion curve is linear. so wa:kor f <X Vl.

However. ifthe speed is not constant as a function of frequency. then a change in

wavelength does not always lead to a proponional change in frequency. and vice versa.

Depending on the substance through which. wave is propagating, the dispersion relltion

can be very complicated and inleresting.

This thesis is focused on measurements ofthe propagation ofuhrasound through a

bubbly liquid, but the physics behind it shares a commonality with that of many other



systems, involving many types ofw es. In particular we mainly look at ballistic

propagation, in which the sound wa e is either unscattercd or forward·sc:attercd as it

propagates lhrough the medium.

The quantities measured are attenuation. extinction length, phase ...elocity, and group

velocity. A pulse is sent through a sample (in this case bubbles in liquid) and the ballistic

properties can be determined by examining the wave pulse after it leaves the sample, The

auenuation tells us how much the wa...e has decayed in intensity due 10 its interaction

with the sample. The extinction length. the inverse ofthe auenuation. tells us how far the

wave has tra...eled before being either scattered or absorbed. n.e phase ...elocity is the

velocity ofa sinusoictal'carrier' wa...e, defined in terms ofthe dispersion curve as

V,=OJ/k.

The amplitude of a wave pulse varies in time. This amplitude variation is necessuy if

we wish to con...ey information from one place to another. There are several ways of

defining the velocities of. wave packet. These include group, signal and energy velocity

[21. Group velocity is defined as the propagation speed of the peak ofa wave packet.

Stated anolher way, the group velocity is the distance traveled by the peak ofthe wave

packet divided by the time it takes to travel that distance. We can find the group velocity

from lhe dispersion curve by taking its derivative (or slope), V, =iJm/iJc. In some cases,

when the medium is anomalously dispersive the group velocity can become negative.

Signal velocity is measured using the infinitesimal onset ofche packet rather than the

peak. This has obvious impracticalities since the detection of the first sign ofthe wave



packet is limited experimencaJly and would differ depending on sensitivity, pulse width.

amplitude etc. Brillouin himself eJq)«!Sscs some concerns: "In genrnl the signal velocity

measured depends on the sensirivity ofthe detecting apparatus used. With a very

sensitive detector, even the forerunners. or certain pans of them, might be detected .. But

iflhe sensitivity of the detector is restricted ro a quarter or balfthe final signal intensity,

then an unambiguous definition of the signal velocity can. in general be given" PI. The

energy velocily is defined as the ratio between the energy flux and the energy density.

Measurement ofthe energy velocity does not suffer from the shoncomings oftho!:~p

and signal velocities, which also measure the speed ofinfonnation transpon.

1.1 History

Although the origin of wave theory is hard to determine accurately, the last few

centuries have seen many contributions to what we would call modern wave mechanics.

Isaac Newton provided the mathematical vigor for Brook Taylor's earlier work on

matching his vibrating string theory to that of experimental observations. This in tum

allowed the derivation ofthe general wave equation by the French scientist Jean I.e

Rond. later Jean-Baptiste-Joseph Fourier created the theory ofdividing the complex

periodic wave into its speetRl components, today known as the Fourier transform. The

mark ofmodem acoustics was thought to come with the publication oftile 1heory of

SalImin 18n by Lord Rayleigh. AJthough scientists such as LeConte, Tyndal~ and the



Curie brothers initiated the SIUdy ofUkruonics in the 19th century, detailed analysis

coukl not be achieved until the early 20th century.

Sommerfeld and Brillouin showed that ifa wave packet travels through a medium

that is highly absorptive. a phenomenon known u anomalous dispersion could occur.

Brillouin scates, ..... but ifabsorption also occurs, Q [the wave vector] becomes complex

or imaginary and the group veloc:ity ceases to have a clear physical meanins"'31. This

was further confirmed by J. D. Jackson in his well-respected book Ckusical

FJectrodynamics '41. Also, Landau and Lifshitz write, "When considerable absorption

occurs, the group velocity cannot be used, since in absorbins medium wave packets are

not propagated but rapidly ironed out",SI.

1.2 Background

The theoretical model used in this thesis comes from the wcrl ofProspereni [61. The

model describes the response ofa gas bubble when subjected to the changes of pressure

due to an incident ulu'asonic wave. The behavior of the bubble is that ora damped

harmonic oscillator.

There has not been much experimental work on the ballistic propagation ofwaves

through water containinS bubbles since the work done in the 19505 by FOll et a1(7! who



took ballistic measurements ofair bubbles. This work did not focus on the phenomenon

ofanomalous dispersion thIt can be found in bubbly liquids. The present work is the first

detailed study of negative group velocities using ultrasonic waves in liquid medii. Other

work, mostly on light waves, bas found that in anomalous dispersive smwions

superluminal and negative group velocity does occur II, 91. Other forms ofwaves have

also shown negative group velocities under certain conditionsilOJ. Often these works

compare group velocity with other methods ofinformation transfer, using energy or

signal velocities [III. The energy and signal velocity measurements do not break

causality. Although the negative group velocities would indicate super-luminal

velocities. this effect is caused by pulse reshaping due to the anomalous dispersion and

causality is never violated. This thereby reassures us that no information can travel faster

than the speed of light.

In our experiment we generated bubbles with a measured size distribution within a

liquid and sent in ukrasonic pulses with frequencies at and near the resonant frequency of

the bubbles. By looking at the coherent component oftile output pulses, we were able 10

obtain very accurale ballistic measurements. Of particular interest was the group

velocity. We measured the group velocity as. function of frequency and found that for

large: enough bubble concentrations. the group velocity becomes negative II resonance.



-
1.3 Thais Oudi••

The remainder ofthisthesi. is orpnized as follows. ChlpterTwo deals with the

theory. We explain the raonanoe and dampins rwureofan indivKiuaJ bubble in an

acoustic 6eJd, expressed in anaIosY to a driven damped harmonic oscillator. We then

find the attenuation and signa) velocity by determining the complex: wavenumber for a

given concentration and size distribution ofbubbles. The theoreticaJ group velocity is

ealculated directly from the phase velocity. In Chapter Three we describe the

experimental set-up. ChafKer Four briefly describes the bubble generation and image

techniques and the way in which the bubble size distribution is determined

experimeruJly. A results chapter {onaws in wfUch the details ofthe data analysis are

given aJong with the ex:perimenraJ resulu. The experimental results are c:ompared with

the tbeomical model. The muhs are then discussed in the final chapler.



2 Theory

2.1 Introduction

The theoretical background for our experiments will be formulated in this chapter.

We begin with a derivation ofthc resonant frequency and damping coefficients ofa single

bubble in Sec. 2.2. We describe the cross-sections for acoustic scattering and absorption in

Sec. 2.3 to better understand the attenuation in our medium as a function offrcquency. In

Sec. 2.4 we give a formulation of the complex wave vector for the bubbly medium. From

the wave vector we can find lhe phase velocity and attenuation as a function of&equency

In Sec. 2.5, we derive the theoretical group velocity from the phase velocity.



2.2 Resount Frequency and Damping

A sound wave propapting throop a medium consisting ofbubbles in a liquid

will excite oscillations oftbe bubbles. We start by examining. single bubble in

equilibrium. We then consider • bubble oscillating harmonically in response to being

driven at some frequency. This will lead to expressions for the resonant frequency ofttle

bubble as a fi.mction of bubble radius. and for the damping ofthl: oscillations due to

viscous. thermal and radiative processes. Our analysis is based on that in Rerf121.

We first identify the contributions to the pressure inside and outside the bubble.

lnsidethe bubble we have the pressure aCthe gas, P" and the pressure due to water

vapor.p•. The pressure outside the bubble is the sum ofthe surface tension pressure. P.'

and the pressure OrlM surrounding fluid just outside the bubble, p. In equilibrium, the

pressure outside the bubble baJances the pressure inside. Thus the pressure inside the

bubble, P•• can be expressed as

Pi =P, +P. =PL +P." (2.1)



When the bubble is driven by sound at an ansu1ar frequency 41, the bubble radius

can change. Neglecting the viscosity oCthe gas, the external pressure then incll.Jdes I

viscous drag term, so Eq. (2.1) becomes

(2.2)

where "is the liquid viscosity, R is the radius of1he bubble., and the dot indicates the

time derivative. The first two terms on the right-hand side ofEq.(2.2) are given by

(2.3)

Pt:: Po +~e" + P", (r = Ro), (2.4)

where a is the surface tension and 14 is the equilibrium bubble radius. The hydrostatic

pressure Po is defined IS

(2.5)

where P_is the atmospheric pressure, h is the distance from the sumce oCUte liquid, g is

the acceleration due to gravity, and Po is the equilibrium fluid density. The term ~eiolfis

the pressure contribution due tattle incident sound Wive. The final term in Eq. (2.4) is

the acoustic pressure field radiated away by the bubble. evaluated It the equilibrium

position oCthe bubble wall. Prosperetti [6/ finds Pili from the velocity potential Car the

fluid around a pulsating bubble:

(2.6)
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as given by Landau and Lifshitz 11]1 for the case when "';SCOUI terms are nesligib~.

Here, c is the speed ofSOUDd in the pure liquid. and , is the radial coordirwe measured

from the center ofthc bubble. Eq. (2.6) is substituted into the general cquIlion for the

ocousIic JR"'U",

(2.7)

and evaluated It r =Ro. When the result is substituted into Eq. (2.4). we arrive It

(2.8)

For small amplitude: oscillations, we can write R = Ro +R., where R. c Ro. Such

oscillations will produce small amplitude perturbations P. from the equilibrium imemaJ

bubbJe pressure P.~. This is expressed as

P,"'P'.I+P.(I).

Substituting Eqs. (2.1) and (2.9) iNa Eq. (2.2) we arrive at the equation

(2.9)

p,,,,+pAt)::po+P,.e-+ ~RoR +~+ 4'l1l. (2.10)
I +IWR" Ie R R

Regrouping the above equation and using the fact that Pi.. is equal to the hydrostatic

pressure Po. we get



The fonn of p.1w been derived by Prosperetti (61. Details ofthc derivation can be found

in Ref (I] (p.37I). Themult is

where K is the polytropic index: I
, and '1", is an additional thermal contribution to the

effective viscosity. Substituting Eq. (2.12) into Eq. (2.11), we arrive at

(PR,)[ii.J+(PR,)(4q+~'+W~l[Ji·J
p~ I + (41RgJe)

~pR,)(3CP' .• _~+W'(WR,IC)')IR )=-1\'-'
pR; p~ I +(41Rg Je)Z •

(2.12)

(2.13)

which is the equation for a damped harmonic oscillator. The effective "spring constant",

or stiffness ofthe system is

The ratio ofthis to the effective mass m = pRg, gives

which is the square of the resonant frequency.

(2.14)

(2.15)

l1bcpolyuopicindexislbcClCpOllCJlf~lbcfluDilyofQln-espV'" =CODSWll Tbcseall'Veli

dcseribeS)'Sle.sthatan:ndlberperfectlyisolbcnnal,DOI"perfectlyadiablDc.



"
Ifwe look 11 the damping term in Eq. (2.1l) we can identify contributions to the

dissipation due 10 thermal. radiation. and viscous damping. The corresponding damping

...... are

b _ 4'7...
"'-~.

b _ ("11,,1')
... -(pmRo) 1+(ld~/c)l •

b =~
- 11,,'

respectively. The total damping is simply the sum of these,

We can non-dimensionalize these 10 get the dimensionless damping terms

(2.16)

(2.17)

(2.18)

(2.19)

and

d = 0Jb... =~~(3I(P'$ _~+ Di«(j}RoIC):)-' (2.22)
- • II" pn. P~ pR; 1+(.,11,,1,)'

The total dimensionless damping is sum of these.
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(2.23)

The dimensionless damping terms are plotted u. function offrequency for. particular

bubble radius in Fig. 2.1. At low frequencies. the damping is moscly due to the thermal

c;ontribution. As frequency inc:reases, the radiative damping constant becomes dominant.
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2.3 Tbe Absorption and Scanering Cross-seetions

The loss ofenersY from an incidcnI wave can be chIncterized by assigning an

extinction aoss-section iT_(0 the bubble. The cross-scclioll is deftned as the ratio of the

time .vengc:d powa- subtracted from the sound wave as I rauh of the presence of the

bubble, to the intensity oCtile beam. The extinction cross-seaion is the sum of

contributions from bolh (he sattering CT, and .bsorption tT. CfOSSo-sections,

(2.24)

TIle time-.verage rate aI which energy from the plane wave is rc-radiated by the

scattering bubble is

(2.2S)

where A is the amplitude of the oscilJation. TheplaDewaveinlensity

1=1'] 1(2pc) (2.26)

is the square of IOOUStic pressure ampitude., p~. divided by two times the impedance pc.

Leighton [121(p.296) has shown Eq. (2.27) to be equal to

"'=("'I")'-I)'+[~
w41tRo P

(2.27)

(2.28)



"

The abstxpIion c:ros,s..section will include damping from both viscous and thennaI

contributions. We can find this value by dividing out the radiltive clampina from Eq.

(2.27) and multiplying by the sum oftbe viscous and thermaJ damping. We then have

(2.29)

These cross--sec:tions are frequency and bubble-size dependant, and 11 resonance can be

hundreds to many thousands the size ofthe bubble's geometric cross-seaion depending

on the amount ofdamping in the medium. We can see how the cross-seaions depend on

frequency in Fig. 2.2 where they are plotted for a bubble size of 16.5 microns. Fig. 2.2

shows that 8l resonance the attenuation is mainly due to absorption. The cross-sections

cross over at about 0.39 MHz,. wttm: the scattering cross-section becomes greater. The

geometric cross-section for a 16.5 micron bubble is -0.0009 mm:, approximately

IO-ltimes the acoustic cross-sections.
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2.4 PIuue velocity a.d altt.aOO••

'1'heR have been •~ oftbeomical caJadatioDs of the phase vdoc:ity of

sound in dispersive media [7. 141. The dift'eralt caIc:u1ations aa:m: quite well with 0ftC

another. Here we follow the calculation given by Uighlon [121. The speed of

sound,c,,(whet'e the subscript c indiQles the mixed psIIiquid medium), is defined u

C,' IK,VA
whefe Bc and p" are the bulk modulus and the density ofthc medium respectively.

(2.30)

Since the density does not vary dranwK:ally, (he bulk modulus is responsible for mosI of

the vuiation in the speed of sound in the medium. The bulk modulus is defined u

(2.31)

where V is the volume and p the pressure.

In our medium, the 1Ot&I bulk modulus is relatecf to thIII for the bubbles plus that fur the

liquid:

B. is simply given by

I I I-=-+-.
B, B. Bw

(2.32)

(2.33)
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whae c. istbespeed ofsound in~md PO' istbcdcnsityofwater.

then sum over all bubbles. Consider. population of '\ identical bubbles per unit voMne,

each bubble having volume J';(l). When lhcentire population is affected by. presan

change, the resulting bulk modulus is

Ifthe radius of the bubble is pcrtWbed as in the previous section., then

I'(/)=4"R(/)' =~("!!..)·'I'(I'~)
, 3~R,'R,

(2.34)

for small amplitude linear oscillations (R~ < Ito). Here ~ is the volume ofthe bubble in

equilibrium. Letting A~(l) be the perturbation 10 the volume. we have

4Y,(/)'JV,R,.
R,

Substituting this iDio Eq. (D4), we find the bulk modulus due 10 the bubbles to be

(2.35)

(2.36)

~lldlouIdbeDOlCd_iaLeiJbton{jl.l99)""lhekllalbulkmodulusis&MalSlbe-.

B~ "'llw +8._ Tbilrditmiliac:orm:::l:lllduspouitllyCClafiacdMtbtberelaliml kc =.1_ +k••
wbelekildlccompalibilify_isdebecl • .l = JIB.
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The pertUrbed radius is found by solving the general damped harmonic osciliitor relation,

using

(2.37)

where p=b... /2m. Fo = -~4...R;. and P,. is lhe acoustic pressure amplitu6e.

The result is

Noting that Ap = -PAe- •and substituting Eq. (U8) imo Eq. (2.36) we arrive al

Bw. - R;Pw«~ -tt1
1
)+i2/ktJ).

In_Vo

(2.38)

(2.39)

Note that Bw. is complex. so our final sound speed will also be complex. The complex

wavenumber of the sound wave is

(2.40)

Assuming that the total volume fraction ofthe bubbles is small, so that p~ ... P.' we can

rearrange Eq. (2.40) to get

(2.41)
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Using s... from Eq. (2.39) withVo=4Jr~ (] gives

/t-,.,.!!!- 1+ 4Jr""c~ .
C c,. «Q}; oi)+i2fJt»)

(2.42)

From the real pan of the wavenumber, we can determine the phase velo<:ity aCthe

propagaIing wave:

(2.43)

Fig 2.3 shows the calculated phase velocity in a bubbly medium containing 17 millkln

bubbles per cubic meter. The bubbles had a radius of 15 microns.

While from the imaginary pan of the wavenumber, we caa determine the attenuation,

a=-2Im(*:-). (2.44)

Because in Eq. (2.44) we are calculating the intensity attenuation, we include a factor of

two. A theoretical plot of1M attenuation, for the same medium used for the phase

velocity, is given in Fig. 2.4.
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2.5 Group velocity

The group velocity was determined from the theoretical phase velocity in the following

way. First from the definitions of V, and V, we have.,

(2.45)

We can then say,

(2.46)

By 6ndingk from the phase velocity, we could then numerically solve for the group

velocity. An e:umple for this is given in Fig. 2.S for a medium conlaining 17 million

bubbles per cubic metereac:h having a bubble radius ofl5 microns.
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3 Experimental Setup and Apparatus.

3.1 Setvp

"

The ballistic measurements were designed to detect the unscattered or forward·

scattered components ofan ultrasonic pulse that has traveled through the sample.

A block diagram ofthe experimental apparatus for the ballistic mcasumnents is

given in Fig 3.1. All measurements were done in a 42S·liter gIass tank (1.2 m x 0.6 m x

0.6 m) filled with water. The water provided a convenient coupling medium forthe

ultrasonic waves. Without it. high impedance mismatches wou'd lead to energy loss from

reflections and make tbe experiments impossible. This tank contained the sample cell,

which was placed in the far field of the generating and receiving transducers. The walls

and floor oCthe tank were lined with 2.5-cm-thick Styrofoam insulation to reduce

reflections. Additional parallel strips ofStyrofoam ribbing placed 10 em apart along the

walls further reduced reflections. Surrounding the tank was. steel frame that supported

mounts for the sample and transducers.

Motorized translation stages were used to simply and accurately set the position

of the sample and transcfuc;ers. The stepper-motor translation stages were UnislideTlol

positioning systems manufactured by Vehnex, Inc. (East Bloomfield. NY). They could

move in increments of3.175 I1Jll, over a JOan range. Tbcse stages were mounted on a

supporting cradic that allowed for three dimensional position adjustments.



Two different sisnaJ senemors were used. The finI and most reliable was a

Fluke model 60608 synthesised RF signal generator (John Fluke Mfg. Co., Evercn,

Washington). This device was operJted • 13 dBm. When this generator wlS

unavailable, it WIS replaced by a GW model GFG-SOI6G (Good Will Instrument Co.

Ltd, Malaysia). The continuous sine wave signal from the generator WIS mixed (i.e.,

mukiplied) with a rectangular pulse, by triple cascading MiniCircuiu model 15542 ZAY-
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3 mixers. The result was. sine wave 'pulse' controlled by the pulse generator••

Stanford Research Systems Inc. (Sunnyvale, CAl model DG53S digital delay/pulse

genemorthal: provided very p«cise time delay. Pulse widths of21o SO p.s were used,

depending on the signal frequency and the measurement being perfonned. The pulse

repetition period ranged from 5 to 30 ms. The resulting low power rectangular RF pulse

was then fed through. Tdonic Altair model 814304. SO ohm attenualor. and then into a

model2SOL Amplifier Research (Souderton. PAl power amplifier, which had a peak

output power of 250 watts.

The plane wave transducers thai were used were Accuscan-V series immersion

transducers from Panametrics, Inc. (Wahham, MA). Transducers with ""lraJ

frequencies of0.1, 0.25, 0.5, 1.0,2.25 MHz were used so that a large range of

27

frequencies could be studied. The 0.1 MHz and 0.25 MHz transducers had a diameter of

3.81 em, slightly larger than the 2.54 em. diameter ofbigher frequency transdu<:ers. To

obtain a plane wave signal at the sample, the transducer was used in the far field. The

distance from the generating transducer to the sample t, had to be greater that : /' given

by

(3.1)

This distance %/ defines the transition between the near and far field. or Frcsncland

Fraunhofer zones. Here Ris the radius oCtile transG.acer and 1 the wavelength

generated.
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The signal received by the delcetor was fed through a second atlenualor and into.

pre-amp system. either a model2S3 Mace<: broadband pre-amp providing 20 dB ofgain,

or I model 252 Matec double tuned pre-amp providing approximately 30 dB ofgain. The

signal was then fed into. model 60S Mltec (Hopkinton, MA) broadband receiver. This

system not only amplified the very weak signal but could also filter the pulse shape and

cenlraI frequency (for the tuned case only).

A Tektronix model TDS S44A (Beaverton, OR) oscilloscope was used to acquire

digitized signals of both reference and sample pulses. The sample rate was generally set

at 10 MSls. For ballistic measurements lhe oscilloscope would average 10 000 readings.

effectively averaging out the scattered component ofthe signal, Digitized data were sent

to. personal computer via an IEEE bus.
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4 The Scattering Medium

4.1 Introduction

An important part arlhis work was the design ofthe cdl and the bubble generating

process. The idea was to create bubbles with a narrow size distribution that move

randomly with respect CO one another. We wanted to generate mher small bubbles (-IS

microns in radius) to gd the resonant frequencies in the desired range (-200 kHz). The

bubble distribution also had to be reproducible from day to day. The geometry of the

cell was arranged to produce a region where the mean flow was small. leading to an area

with random bubble motion. The bubbles were generated by hydrolysis of. solution of

1% Na2So., and J% Sodium dodc:cyl sulfate (50S) by weight in distilled water. The

electrodes were made of platinum, and electrolysis currents ranging from 10mA to

SOmA were used. The bubble concentrations and size distributions were determined by

taking pictures aftbe medium with. video miaoscope, then analyzing the pictures

using imaging software.
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4.2 Cell Design

Figure 4.1 is. diagram ofthe cell. It was rectangular in shape and had internal

structures consistill8 oftwo guiding barriers to direct the flow ofthe bubbles and two

electrodes. The celt had a height of21.6 em, a width of22.2 em, and a lhickneu of

4.5 mm. Nearly the entire cell including the frame. barriers. and walls oftbe cell were

made ofPlexiglas and other versions ofPMMA (polymethyl methacrylate). Ideally,

the cell materials should have. small effect on the propl8lCing wave. However,

reflections within and belween the cell walls were found to have. visible effect on our

data as described in Chap.5.

Bubbles were generated using hydrolysis. The cathode generated hydrOScn bubbles

and the anode produced oxygen bubbles. The hydrogen bubbles were used in the

experiments because they wert smaller than the O)eygeR bubbles. In additktn. the overall

hydrogen production rate was twice the oxygen production rate, so we could achieve

higher bubble concentrations at lower electrical CUlTents using the hydrogen bubbles.

The internal construction of the cell separated the different gu bubbles. The oxygen

bubbles were guided up the side of the wall then vented, while the hydrogen bubbles

were led into the sample area. To achieve a narrow distribution ofbubblc sizes we used

the ideas ofStokcs' velocity law [l2}, which states that the velocity ofthe rising bubble

is proponional to the square of its radius. The larger bubbles quickly rose to the surface.



"

.....

....~.'-,.•,~Ie. '\', ~

:'1 ...........~~.
i-J··O·~
:.: ... : .

"'rr.U

SdlcmIlicfltbcc:elluxd. ThccdJ~bubbk:sorlbedesircdsizc

_sizecldlribuUoalritUlbclDllylilll'Cldlowa.



32

creating an intemal cumnt thai trapped the smaller bubbles and circulated them around

the cell. Near the analysis area the small bubbles have almost zero mean vdocity since

the downward flow oCtile current essentially balances the opposing Stokes' velocity.

creating. slowly moving random motion between the bubbles.

The geometry and arrangement ofthe eJectrodcs was also an isaJe. A number of

different cathode shapes were evaluated in an effort to achieve a narrow bubble size

distribution, but our measurements did not show a large difference in size distribution

for different electrode geometries. For simplicity ofconsttuceion and cleaning, we used

a simple cathode made from 0.25 mm platinum wire wound into. horizontal loop about

ISmm in length and 3mm in width. The anode was made ora 7 an length orlhe same

platinum wire, positioned vertically. Due 10 blackening that developed over long

periods of time, the electrodes had to be periodically cleaned. This was done by rubbinS

the electrode with. very fine emory cloth then soaking it in a solution of 10-10 Nitric

acid for 20 minutes. The electrodes were then rinsed in nano-pure reverse osmosis

water for 30 minutes.

The cell wu filled with II solution of 1% Na2S04 and 1% sodium dodccyl sulfate

(5DS), by weight, in nano-purc: reverse osmosis water. Extreme care was taken with

regards to cleanliness and the purity ofevery nwcriat used in the cell. Despite this, we

found that our eIeclrodes (mainly lhe cathode) would blacken. The hUe soon:e(s) oCtile

blackening was not identified but it is believed to be due to stray metal ions from solder

joints depositing on the electrodes. The solder joints were later moved outside ofttle

cell, isolated from the solution. After this modification, thorough cleaning, and
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improvements in the purity oCtile materials used, the blackening: was kept to.

minimum.

4.3 Bubble Sample Area

The bubble size distribution varied over mher smaillengtb sules in the area of

the cell sampled by the ultmonic pulse (-Icm). Therefore reproducibility in the

positioning ofctlc receiving transducer was very important. To insure reproducibility

we carefully marit:ed the position oftbe transducer on the cell wall and realigned it to

this posjtton before each experimental run. We wanted the bubbles in the sample area

to have random motion and 00 large temporal tluetUations in concentration or size

distribution. The area chosen for analysis was initially determined empirically through

visual inspection, by looking for an area where lhe bubbles had small, random motion.

We refined the choice aCme analysis area by looking at our ultruonic data. Wechose

an area that gave reproducible results by averaging and comparing many ultrasonic

pulses. For every concencration used the analysis area was video!aped for several

minutes using. video microscope. Independent frames where then captured from the

VCR with a frame grabber carel. These individual frames wheR then analyud using

commercial imaging analysis sol\ware (UJ to determine the bubble size distribution

and concentration.



4.4 Results

4.4.1 Bubble Size distribution

Bubble sizes were determined from the video data. A frame containing a reference

object ofa Icnown size was recorded. We could then mellsute the size orany object in

other frames. Each frame was digitally smoothed and thresho'ded. so thai bubbles

appeared black and baclcground, white. The threshold intensity was an important

panmeter since it directly affected the mean bubble size. Using the image analysis

software we then determined die lengths orthc mljor and minor axes oreach bubble.

Since the major axis could be anomalously large if two bubbles were superimposed in

the image. we only considered the minor axis. These values were then biMcd and the

data displayed in histograms. We then fit functions to these distributions for use in the

theoretical calculations. Fig. 4.2 shows histograms aflhc bubble size distribution for

different electrical currents. Also displayed on the graphs are polynomial fils, which

were used in the calculation ofattenuation, phase and group velocity, using the theory

described in Chap. 2. The coefficients for the polynomial fits are given in Table4.•.

However, as described in Chap. S. when the polynomial functions were used in the

thcoretteal model, the fits to the experimental data were quite poor. This sugpsts that

the size distributions found through imaging tedmiqucs may have been inacaJtate due

to dust or other impurities. Particles that were not bubbles would have affected the

ultrasonic pulses much differently. For a better fit oflhetbeory to our data we used a



"
Gaussian distribution for the bubble sizes with the mean and standard deviation cbosen

to give. good fit. This is discussed in Chap. 5.

Forlhe ballistK: meaau-ements we used. thin sample cell (4.5 mm)and relatively

small currenu of 10. IS, 20 and 2S rnA. These currents produced the lower

concentrltion of bubbles that wu necessary for the ballistic analysis. Surprisingly, the

mean bubble size stayed relatively constant at the different currents UKd. Our mean

bubble size was in agreement with other experimental findings (average bubble radius,

11·18 1JfI'I) using the same method ofbubble generation (161.
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4.4.2 Bubble Concentrations

In order to calculate the bubble conc:entraltol1, or void fractton, of the sample

medium we used a different image analysis technique. 1JnIses were taken at.

larger field of view (-10 mm1
, about 3mm across). TheJarge field of view

"

allows for better statistics. and also to brings imo focus all the bubbles within the

sample thickness. The images were again smoothed and threshokled. Then the

projected area ofall the bubbles in the image was summed. We refer to the total

area ofall the bubbles within the image as A,.,. We can solve for the number of

bubbles N. by dividing the total area of the bubbles by the area ofa single

average bubble area, ....... We have

N=~• A,...

To find the total void fraction, , we multiply the number ofbubbles by the

(4.1)

volume ofone average bubble. V.. , then divide by the Iotal volume in the image,

(4.2)

The calculated void fractions are recxM'"ded in Table 4.2. Using this robust

calc:ulatian, we found values thai: were on the same order of magnitude as the

values used to compare the tbeoryto data in Sec. 5.5.
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5 Results

S.llntrodu.tion

In this chapter, the experimental rcsuhs are presented and compared to theoretical

prediccions. We first describe how the measurements were performed. We then present

quantitative measurements ofthe attenuation for different bubble concentrations and

compare the dala to theoretical calculltions (Sec. 5.3). The attenultion is closely related

to tbeextil1Clion length, as described in Sec. 5.3.1. We also measured the phase.nd

group velocities for different conoentrations. The methods wed to determine the phase

and group velocities are discussed in Sec. 5.4. t and 5.4.2 respo:tively. The data are then

presented and compared to the theoretical expectations.
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5.2 Ballistic ..e..urements

In. medium with strong scanering, the total transmitted signal is composed oftwo

components. The component in which we are iruerested is the ballistic component,

whK:h propagates coherently straight through the sample without scattering away from

the incident direction. In addition, there is an incoherent scattered component that varies

in both amplitude and phase across the output face aCthe sample. The characteristics of

waves propagating ballistically through the sample were determined by comparing the

coherent component of a pulse that traveJs through the sample with • reference pulse.

These contributions either travel through the medium withoot scattering or are scattered

in the forward direction, and are coherent with the original pulse (18, 191. The scattered

component is made up ofwaves that have traveled a Large number ofpossibJe paths

through the sample. As the sample thiclcness, or the concentration ofthe bubbles within

the sample increases. the number ofscaneringfabsorption sites and so the number of

possible paths for a pulse to take increases. The wave pulses' incoherent portion then

becomes more prominent, and the coherent ponion less obvious. As the pulse scatters

from one aCme bubbles., the spectrum ofboth its frequencies and wave vectors can be

affected. In addition. the scattering can cause the pulse to arrive later in time due to its

taking a longer path. The energy can also be absorbed and then released later in time.

These combined effects changing the lemporal and spatial phase properties ofthe

scattered pulse, and when Ihe scatterers are moving cause the scattered sample pulse 10

vary a great deal from one pulse to the next. Thus. we find the coherent component of
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the pulle by averaging many pulses tosethcr. An eumpIc is shown in Fig. 5.1. The

pulses shown in the figure _e I MHz pulses with an incident pulse width of7 I.lS thIt

have mvded tt.ough the sample. AJ this frequency, the effects ofscarralaa.e~e

pronounced. Fig. S.l (a) displays tbtcc c:oosecutive pulses tlken 0.5 seconds IpIft. FI8.

(b) shows lIlavaage over 10,000 pulses under the same conditions. The signal It kMlstt

times, which is due 10 that portion of the pulse which is multiply sc:attered and .so takes a

longer time to reach me detector disapptan on aVUlging, IeavinS the coherent ballisaic

signal. This coherent ballistic pulse can now be comp.red to the reference pulse to obtain

data for the Ittelluation, the group velocity and the phase velocity. The specific

tcchniques used to extract these dIta. are explained in the sections 10 follow.
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5.3 Altenualion

The attenuation coefficient describes the decay of. Wive with discance traveled. A

wave with intensity 10 at position Zo decays to

l(z) = lo(f--(Z-'o)

al position:, whereais the attenuation coefficient and, at a given frequency, is a

characteristic ofthe medium. Setting the distance traveled equal 10 the cell thickness L.

we have

(S.I)

where I is the intensityofthc wave leaving the cell.

We measure the attenuation coefficient by taking ratio orlhe FFr (fast Fourier

transfonn) ofthe sample pulse to that oCthe reference pulse. The reference pulse is

recorded with the cell in place but without any bubbles in the liquid. We take the

intensity afiRe reference pulse, I... , as 10 , What is measured is the pressure due to the

sound pulse. so the amplitude ofthe FFT is proponional to the pressure. Since the sound

intensity is proponionallo the square ofthe pressure, we have

(S.2)

Here P_and P,.- are the measured sample and refcl'ence pressuresrespea.ively.
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In our meuurements attcnuaton were used to avoid high power signals dw would

"

satwate the inputs oftbe Cltperimental equipment., so die meuurcd FFT amplitudes must

be corrected for this. The equation

('.J)

gives the ratio oftbe intensities in dimensionless units known IS decibels. These are the

same units used by the attenuators. The unattenuated pressure signal, p... is the sum of

our measured signal in decibels, p. plus the amount of IUCIlUItton a.. insened by the

aaenuators. Therefore,

P.. =P.+a",. ('.4)

The difference between the reference and the sample pressure signals (in db) is then be

('.')

where the subscript 0 defines unancnuated values. Using Eq. (5.3), we can write Eq.(5.5)

Reamngjng Eq. (5.6) we bave

('.7)
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We identify the anenuation comction factor as

Inserting this factor ioto Eq. (S.2) we have

corrected for the ancnu.ators used. We can now solve for the anenuation coefficient,

(5.8)

(5.9)

a=_ln(FFT,..corr )3-
FFT..., L

(5.10)

Fig. 5.2 shows the measured attenuation coefficient It various bubble conc:entrations

corresponding to currents from 10ro 2S rnA The most obvious feature is that at the

resorw1ce frequency me attenuation is at a maximum. The attenuation is made up of

contributions from both scattering and absorption. These contributions can be separated

using the acoustic cross-sections that were introduced in Cbap.2. We can write a in

terms of the absorption and scattering cross sections as

(5.11)

where n.is the number density, being the total number ofbubblcs in a cubic meter. CT. is

the absorption cross-section and a. the scattering cross-section. Values of O'".. andO".
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2.0

Frequency (11Hz)

10mA
o 15mA
, 20mA
, 25mA

47
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ThellltlSlI.IItim coefficieJll IS I functioo of&equcncyaa YIrious ~cntions.

cakuIated from Eqs. (2.27 aDd 2.28) are shown in Fig_ 2.2. Ahbougb both the scancring

and absorption are at a maximum at fCSOlIIlDCC, we can see that the absorption dwarfs the

scattering cross-scction there. The importance ofthis feature ofOUl' medium wiD be clear

la1crintbiscbaptCT.
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The attenUation data in Fig. 5.2 show. second, weaker peak at about 0.33 MHz,

especially at small currents (low bubble concentrltions). We beltcVC this is due 10

multiple reflections between the two cdl walls aI resonance. These reflections are moA

prominent in the reference pulses. which were taken with the cell in place and with •

bubble free liquid, since when bubbles are present the bubble solution quickly attenuates

any reflections. Ifwc we the equation for the wavelength A"ofa standing wave,

(S.12)

where n" I, 2, 3 .. When we substitute the cell thiclcness, L-4.Smm. the first few

standing wave lengths are

'" =9mm,
1,=4.Smm•

.I,=3mm.

Knowing the wave speed in a bubble free liquid is 1500 mis, we can determine the

corresponding resonant frequency hannonics 10 be;

.h =O.167MHz,

h =O.JJMHz,

.h =O.5MHz.

Because these harmonics are present in our reference data. their effects can be seen in the

ballistic data at the corresponding frequencies. The first harmonic:. although visible, is

not 15 pronounced u the second at 0.33 MHz. This could be due to the effects ofthe first
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harmonic frequency being overwhelmed by the bubble resonance. The small effects of

the higher harmonics are simply due to the weakness ofthe signal after multiple

reflections.

5.3.1 EXtiDCtiOD LeDgtb

••

tbe extinction length I.. is a measure oCtile distance traveled by the wave before it is

scatleml or absorbed. It is simply the inverse ofrhe anenuation coefficient.

(5.13)

Substituting this into Eq. (5.1) we have,

(5.14)

where L is the thickness of the sample. '.. is the distance over which the intensity ofthe

incident pulse decays by. faetorof ~-1, due 10 a combination ofabsorption and

scattering. If I. is the absorption length and /$ is the scattering length, then I.. is given by,

1 1 1
-=-+-.
I"", J. I.

(5.15)

This measurement gives us a better understanding aCthe spatial propenies ofttle medium.

Near resonance the attenuation is nearly entirely absorptive. therefore the extinction



1eDgth, ncar f'CIODI.QCe is approximately equal to I.. I. is shown as a ftmction of

hquency forconccutnrioDS of IS, 20, and. 25 mA in Fig. S.3.

c 15mA
o 20mA
• 25mA

0.'0.3

Fllquency (MHz)

0.2
O'-_~_..L.._~_..L.._~_..L..---J

0.1

Fipft; 5.J

The minaion Ien&dt IS • I\lncl:ion of hquency at VIf1OU1 bubble eoncentntions.

Fipre S.3 shows data for the higher cooceatrataon! of IS, 20, and 25 mA with the

shortest extinctaoD lengths. The klwerconcentnltionof 10 mA bad a larger minimum

extinction length than the thickness of the <:eU so the data was not shown. In cverycase.
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the extinction length is smallest at resonance. where inversely the .nerwtion is the

greatest. Forthe IS mA dIta we <:an see anotberdip in I.at approximately 0.33 MHz,

due to the multiple reOections menttoned above. This observm:ion further confirms thlt

this is an effect of standing waves between the two walls., where the bubbly liquid is

contained, since at higher concentBtions these reflections are attenuated and damped out.

5.4 Pba.. and Group Veloeitie.

The phase and group velocities were measured using the same data u was used for

the attenuation measurements. In the vdoc:ity measurements we are not concerned with

the amplitudes ofthc wave pulses so the attenuation correction discussed above wu not

needed. We did have to worry about tlte time relation between the reference (bubble free

liquid) and sample (bubbly liquid) pulses. In order to calculalc the time it takes for the

carrier wave (phase velocity) or packet (group velocity) to traverse the sample we had to

correct the liming by 'zeroing' the reference time. This is done by subtracting the time it

takes for the pulse to travel through the medium without bubbles. Fig_ 5.4 shows the pith

traveled by the reference and sample pulses. The generating and receiving transducers

are at a fixed distance &om each other. The time taken for the reference pulse to travel

across the cell is
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where L is the thickness of the cell and v_is the speed ofsound in water. Ifwe

subtract the time scale ofthe reference data by this amount, we aredfectively removing

the cell from the path of tile reference pulse. Since the cell walls are common to both the

reference and sample pulses. they were not considered in the time correction. Once this

time corTCCIion has been applied, the difference in time between the reference and sample

data 41, is the time it takes for the pulse to travel through the bubbly medium.
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The phase velocity is the speed ofthe sinusoidal carrier wave. We can find the phase

velocity by measuring the propaption speed ofa particular cresc, for ewnplc. The

distance that the crest propagates, for. sample ofthiclcness L. divided by the time to do

SO, 1_, gives us the simple equation

V'=t~' (5.16)

We actually determined the phase velocity by measuring the phase difference between

the Fouriercomponenu oCme reference and sample pulses. The phase difference !J.~ is

directly related to the wave propagation time within the medium at a given frequency,

A;=lJJt_. (5.17)

Here ads the angular frequency ofttle Fourier component Substituting Eq. (5.17) into

Eq. (5.16) we have

(5.18)

where lis frequency. The FFf phase angles for typical reference and sample data are

plotted in Fig.5.5.
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Often Eq. (5.18) is incomplete. as the phase diffcreoce can only by determined to

within ±2Jrn, wbcrc n is an iDtejer. We coqmcd the oscillations with the greatest

~Iitude (having the lim definition) to get a rough idea as to the value oftbc phase

velocity. We will call this .....ue V,.... We then compare: adjacent crests that have a

diffcrerx:e ofODe period in time with the oriainal phase velocity value. We verified our

"



"
measucements by finding the phase vek>city at • high frequency (>IMHz). The phase

velocity through the medium at high frequencies has very little dispersion. and if is near

the velocity in the bubble free liquid. We then follow the phue velocity for lower

frequencies. and keep it consistent with high frequency measurements by adding or

subtractinS an inccger number of periods. Dropping the wave subscript. the correc:tcd

time for the wave travel time is,

t_=I~±nT. ('.19)

where T =1/f is the period of the travelling wave. and 1-"/ = LtV,.. is the uncorrected

propagation time. Substituting this iRio Eq. (5.16), we aniveat

<'.20)

We can see the effects ofadding and subtracting periods in Fig. 5.6, where we have

planed the 20 rnA phase velocity data along with velocities obtained by adding and

subtracting one or two periods.

A plot of the phase velocity data for currents ranging from 10 mA to 20 rnA is shown

in Fig. 5.7.
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In. non-dispmive medium, the phue velocity is~ to the group vek>city and does

not charwe with frequency. In FiS- S.7, we call sec bow the phase vdocity cban8a due

to the dispenioD ofour medium. The phase velocity is. !\maim of frequeDcy. The

bubble-free solution bas. phase vdocityoflbout lSOO mil. lfwe look. the 20 mA

dac&, we see thIl V, is less than thM in the bubble free soIutm bdow the resonant

"

fi"cqueocy!o(fo.O.2MHt). Y,increasesufapproldla fo. Atfreque:nciesjustabc:m

the resonance, we can see the wave speed is higher than lhat in the bubble free liquid. As

we go hig~ in frequency, and further above the resonance. the phase speed decreases

again towards ISOO mls. This is due to the medium being leu dispersive away from

resonance. As the concentrltion becomes greater. this effect on the phase velocity

around resonance is more pronounced.

A second incrax in phase veJocity can be seen at..O.JS MHz. We belteve this

is due to rooltiple rdlections bctweeo the two cell walls u diJCUSSCd in Sect. S.3.

5.4.2 Group Velocity

The group velocity V, was measured in a very different way. V, is the spc:c:d oflhe

peak ofa wave pICket. TofiDd V, ,we need to find the time M,.-illakes forthe peak

ofa wave packet to tnIvel through the sample. The group velocity is then given by



V,=_L_.

"'-

"

(5.21)

The reference aDd sample wave p.dses were corrvolved with. Gaassian envelope ofa

specific bandwidth andteIUI'~. The COGYOIucion was done u. multiplication

in Fourier spKe, followed by an inverse FFT to coovcrt the diu. bK:k wo the time

domain. The resuk is • GaIssian wave pKkd containing a narrow band of frequencies .

By repeating this process for many different center frequenctei we divide the original

sound pulse into many wave packets, each correspondina to. different Fourier fR:quency

component. (n Fig. 5.8 we show an example oflhi, filtering process. The mClSured

reference pulse is shown in Fig. 5.8 (a). The succeeding plots show the pulse after it has

been gaussian tittered It. centerfi'equency of(b) 0,] and (c) 0.4 MHz. In both cues the:

filter bandwidth wuO.02 Wh. The Gaussian envelope ofthe fittered wave peckel is

also shown. The Sltp size between center frequeocies was chosen to gi\'e adequate

frequency resolution in our group vdocity measurements. The frequency range in which

we could obtain reliable data was taken when both the rd"ereoce and sample: signal

intensities were well above the noise level.

In Fig. 5.9, we c:ompat't the rd'amce and sample pulses for • typical dIta set and the

envelopes oftbc fiheml wave PKkets at several frequencies. The bandwidth used for

each ofthe Gaussian fiken is 0.02 MHz. Once the envelopcs orlhe wave packets were

generated. we fit the peaks to. quadratic using. least squares fit program. We then

subtract the time ofttle peak ofthc reference envelope. '..,. from lhe time aCtbe peak of
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Eq.(5.21).

r-:F ":j'j
i 0 W ~ ro ~ ~ ~

H~"'ja ~ ~ 0 ~ ~ ~ ~ m
~ 0.02 pIAoo_II0.4MHz (t)

0.00r--_0'WJIIl
-0.02

~ ~ ~ ~ '00
line ()IS)

Fipft:!.I

Adcpicl:ion oClhepuJsellMlrwofiltered Wive 1*ket5
ccnteraIlII OJ Iftd 0." MHz rapcdively. The bIM'dwidIh IoIMld wu 0.02 MJU.
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WecanailOKe &om Fe. 5.9th1tthetimeofthepakofthc pulse cnvdope c:an

cbuae quite SJbstantiaJly with &equency. This is due CO diJpcnion. especWly new

l'CSOaaDCe. lfwe kd; It the envelope .. 0.23 MHz, we can see that the pak «the

sample pulse in Fig. 5.9 (d)oa:urs III: anearlia' time than the peak in the corraponlIiaa

reference pulse, shown in F'8- 5.9 (e). T1U means It 0.23 MHz.lht peak oftbc pulse tau

left the cell befin the pool< of the __puIse(1l the ...... fiequency)'" ""mol the

cell. This is. cue ofneptive group velocity. The 0.23 MHz. sample pulse is smaUcr in

amplitude than the 0.23 MHz reCerence pulse. indicating the high absorption thIt occurs

at this frequency. The combination ofdispersion and absorption leads to distonion of the

toW pulse which can be seen by comparing Fig. 5.9 (a) and (b). This is certainly one of

the most interesting resuhs of this research. The effect of negative group veJoc:ity is

shown more clearly in the filtered pulses in Fig. 5.10.

The bandwidth oftbc GIussi&n fihes- bid to be carefully chosen. A very narrow

bandwidth oom:sponds to. wide time pulse and leads to. loss ofac:curacy in the

detc:nnination of the peak time. A large bandwidth often)cads to. distorted non­

Gaussian time pulse, without an easily distinguisMble center peak.

The measured group vdocitics for differenl concentnbons neat the resonanI

frequency are shown in Fig. 5.11. The 10 utA sample is lower" in bubble concentrItion

and shows a positive group vek>city. While al higher concentrations (IS and 20 mAl the

absorption is much hisJter leading to anomalous dispenion. The group velocity around

the bubble resonance becomes negative.



......

-_.0 ...··· __.0 ...

6'

Ilme(Jaa)

__*0.22 ......

----__O..a2_

Ume(l-la)

t'iprr.5.I.

AftcxamplcoClleplhtegroupvdodry(nepliveti_l:lc:twcadlepeaksoflhcwavc~).I-Ois

cbolcrllOcorrespondlOtbcpelkoflbcliltcnldrefemx:epallc,thowaasasolidJine. TbedottcdliDcsare

Ihcsamplcdatafium Ibcbubbly medium. Thcmcaswenat.0.38 MHz&iVCSa positmJl'Ollllvelocily.

AlO.22MHzikpelkofthtsunplcpulscisdclcclodbefotelbepelkintberd'crenocpube.prodgciJtga

nepliveyoupvdocily.



..

__10rllA

-'-15"'"
..... 20mA

15 •
~

II10 \.. ',.l I, I~.

>
1. 01111:: oaoroo::: :)·I'.·~····"····l

I~· ". i.. .·r.. Ii

S·5 '·\1 1
·10

.151:....L.........JJu.....--'.........J..L_-'-~.......~........,:j
0.18 0.18 0.20 022 02' 0.28 028

FIIqlIOl1<y(MHz)

fIpn: Soli

Group¥docilyasa fta'lcrian alhqucnc:y f« .... difrerellICllmlllS

~IheRlOlllftCthqUCftC)'. ThelfO'lPveIodlyisncpliveforcurraacfI51nd20mA.



"

In this section we COmpII'C lbc expc:ri.mcnr.aI diu. with the theory deriwd in CbBp. 2

using; the bubble distribulion measured in Chap. 4. We fiDd that the~nI is not that

good. Bener agrmncm is obtained with a Gaussian bubble distribution with parameters

that were empirically chosen.
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In Fig. 5.12, we show theexperirnetUl data forthe 20 mA sample. Also shown in the

figure is. thcoreticalline calculated for the polynomial fit to the measured distribution.

This curve does not match our experimema.l data very well. We found abetter fit using a

Glussian distribution with variables that were empirically chosen. The distribution that

fils the data is narrower than the measured distribution. In addition, the mean bubble

radius of the measured distribution is 18~ is slightly larger than the 14.4 j.Un mean

radius oCtile Gaussian distribution. We compare the narrow Gaussian distribution with

the histogram determined from the image analysis in Fig. 5.13. The meall, standard

deviation, and the height ofthe Gaussian were chosen by hand to give I good fit to the

phase velocity data for a given current. We then used the same parameters to calculate

the group velocity and auenuation.

Roughly speaking, adjusting the mean bubble size shifts the resonanl frequency,

which is approximately where the phase velocity changes from less than 10 greater then

the velocity in the bubble free liquid. The width of the distribution changes how abruptly

the phase velocity increases with frequency. A narrow distribution gives I steep change

in phase vek>cily with frequency. Finally, the bubble concentration (proportional to the

height of the Gaussian) was adjusted to give a good fit 10001 experimental data. A small

bubble concentration leads to small variations in velocity.s. function oflTequency.

Conversely, a large concentration results in very large changes in lhe velocity. The

resulting fils tothe phase velocity data for IS and 20 mA currents are shown in FiB. S.14.
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The agreement between theory and experiment is quite sood when using the Gaussian

distributions, especially Mar resonance. However, we see somedi~ at higher

frequencies, again near 0.33 MHz. This again is believed to be the result of multiple

reflections between the cell walls. Our dIta for the 20 mA sample also has another

fluctultion at 0.27 MHz. We believe that this was the result of some ringing that OCQ.lred

in the transducer during the experiment. Unfortunately, this cannot be confirmed

without further experimental work. The Gaussian parameters used are gi"en in Table 5.1.

The experimental group velocity data is compared with the theoretical model in Fig.

S. I S. Both the theoretical curve and the experimental data show negative group velocity

near resonance. As with the phlse velocity. the group velocity curve has a typical shape

as a function of frequency, due to the effects ofdispersion. There are sharp changes in

the group vdoc:ity on either side ofthe resonant frequency where the V, becomes infinite

then negative. There are some disagreements in the data. These occur at the same places

as was found in the phase velocity data and are likely oCthe same cause.

In Fig. 5.16, the attenuation data at currents of IS and 20 mA are compared to the

attenuation calculated using Eq. (2.44). Again. the same parameters for the Gaussian

bubble size distributions are used. The comparison between the measured and the

calculated attenuation coefficient is quite good for the IS mA sample. aside from the

discussed increase in auenuation at -{),33 MHz. At a higher void fraction (current .. 20

mAl the theoreticalattcnuation is significantly smaller than the measured auenuation.
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Since the Gaussian distribution gives very good ISfCGI'CJ'l with the phase: and group

velocity data, these results $OUest there is some additional atterwation at higher void

fractions that is not accounted for in the calculations.

It is obvious that there is sorne disasreemenl between the bubble size distribution

determined from image analysis., and that which gives good agreement with the data. The

bubble distribution changed slightly from day 10 day. However, the changes recorded

from day to day can not acrount for the very large difference between the two bubble

distributions. Iftbe theory is correct, we have made some error in determining the bubble

distribution using image analysis. On the other band. the disasrcemem with theory may

be due 10 problems with the thcorctical model itself. AI: this time it seems most likely

that the error is in the measured bubble distribution. The theory is well established. and

some questions arose during the image analysis. The very small bubbles that were

detected may not actually be bubbles, but rather small pieces ofdust or other foreign

debris. The threshokling oCtile images may lead to a systematic increase in apparent

bubble size that would affect the resulu that were obtained. These two facton could have

broadened our measured distribution. Unfortunately, we have no way ofchecking this

without redoing the experimenu.
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6 Summary

III this thesis., we studied bow the JX'OIIIPion ofan uhruonic pulse is affected by •

bubbly medium. By 8djuscing the dcctric QItI'all supplied to our sample cell, we could

change the bubble c:oocenr:nIion.. We SNdicd the aucnution, phase velocity, and group

velocity over • range of&equencies. The measurements were then compared with a

theoretical model [121. The bubble size distribution was determined from image analysis.

However. the measured distribution did not give good agreement with the theory

implying some difficulties with our image analysis. The images used covered • much

smaller region lhan dial used for the uJtrasonic measurements. As. result we sec our

image data aside and UJCd • Glussian distribution, with parameters that~ anpirically

found, for the theorecicaJ Q1Q.1lations. In this chapler. we summarize the work done in

this thesis, and suggest possible future wort that could -...gment our current

...............
We followed Prosperetti's mo6d (6, 12] based on the damped harmorticoscilll1or.

which assumes smalilineac oscillationsoftbe pulsating bubble. Usi.. this model, we

could calcuJ.c the thermal, viscous. and Twbltivc damping, as well as the resonant

frequency ofthe bubble. The damping lams coukl be used to pin an understanding of

the scattering and absorption in the bubbly medium via the ac:ousticcross-sections 1121.

The complex wave vector for propl8llion in the bubbly medium was also calculated. The

imaginary part yielded the attenuation, and the real put pvc us the phase velocity in the

medium. From this we could calculate the group velocity.
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The KattcrinS medium, u mentioned. wu rMde up ofsmall bubbles in a liquid. The

bubbles were generated using hydrolysis; the olt)'gerJ bubbles were SUided away and the

hydrogen bubbles guided towards the anaJysis area. The hydrogen bubbles were on

average smaller in diameter and were produced at double the rate ofttle oxygen bubbles.

We also found using out theoretical model that the hydrogen gave a high absorption to

scattering ratio. We used image analysis software [IS) to measure the bubble size

distribution and bubble concentntions (or void fractions). Although approximately !OOO

bubbles were counled 11 each concentration we found that using a Gaussian bubble

distribution with empirically detmnined parameters gave. closer match between

experiment and theory. At this time. we do not believe there is a problem with the

theoretical model wed, but rather, a problem with the measured bubble size distribution.

We make this conclusion based on two strong amsiderations: a well established

theoretical model and some possible problems with the il!188c analysis n:cognized in

retrospect. It is possible that the pictures taken also colUined dirt and other very small

contaminants (<4 microns in radius). These tiny panicles would have very different

effects on the ultrasonic pulses than bubbles would have. Therefore, the apparent bubble

size distribution found in the image analysis would be different from what the ultrasonic

pulses measured.

The highly absorptive nature of the medium It resonance led to anomalous

dispersion. A great deal of_«ention has been paid to this phenomenon 1201. Because of

pulse distortion, anomalously dispersive media have negative or superluminal group

velocities. We emphasize that this is not a violation ofcausality: information cannot
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travel faster than light. Under such conditions, information (or energy) does noc travel It

the group velocity, and we must use OIher forms ofvelocity (11,211 to measure

information transfer speed in this regime [2, ..,51. Until recently, there has not been good

experimental dIta on negative or superiuminal group velocities. In the Iasl few years

negative group velocities have been experimentally measured using optical

(electromagnetic) waves ,I. 9, 231. We belitWC this is the first detailed observation of

negative group velocity usinS ultruonic (acoustic) waves in fluid media.

In the future. we would like to measure lhe energy velocity for the same medium.

The energy velocity can be obtained from measurements ofdiffusive wave propagation in

strongly scattering medii. The diffusion constant is defined as

D="£3 • (6.1)

where v. is the energy velocity and ris the transpon mean free path. The quantity rcan

be obtained from continuous wave elq)eriments [241. The diffusion coefficient can be

measured wing pulsed wave experiments. Knowing these quantities, the energy velocity

can be determined. We would like to compare these measurements to for the group

velocity, and measurements on light waves. Furthermore, we would like to understand

better how to efficiently send and measure information within an anomalous dispersive

regime.
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