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Abstract

This thesis aims to investigate the entanglement properties of the one-dimensional

Heisenberg spin chain, with a focus on the entanglement between pairs of spins.

Specifically, we explore how entanglement depends on temperature and coupling con-

stants without an external magnetic field and then consider the effect of an external

magnetic field on entanglement.

To model the system, we utilize the Hamiltonian of the 1D Heisenberg spin chain

and calculate the density matrix. We use the concurrence as a measure of entangle-

ment, which is applicable to mixed state densities.

Our main findings demonstrate that the entanglement between pairs of spins in

the Heisenberg spin chain increases as temperature decreases or coupling constants

increase. We also identify a critical range of magnetic fields in which the entanglement

between spin pairs undergoes significant changes. Finally, we examine the relationship

between entanglement and the number of lattice sites separating given pairs of spins.

Our results reveal that as the number of lattice sites between pairs of spins increases,

the entanglement between them decreases.

Overall, this study provides insights into the entanglement properties of the one-

dimensional Heisenberg spin chain and sheds light on the factors that influence entan-

glement in quantum systems. These findings potentially have important implications

for the design and development of quantum information processing devices.
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Chapter 1

Introduction

1.1 Quantum Entanglement

Entanglement is a quantum phenomenon in which the measurement of the quantum

state of one part of a system depends on the results of measurements performed on

the other parts, no matter how far apart they are in space [1] [2] [3]. As a result,

observation of one of the entangled parts will automatically provide information about

the state of the other parts, irrespective of the distance between them. Furthermore,

any action to one of these parts will invariably impact the others in the entangled

system [4]. Entanglement is a quantum mechanical feature, which is impossible to

describe in classical physics [5].

Entanglement has been found to play a critical role in quantum information pro-

cessing and quantum computing. In quantum computing, entanglement is the key

resource that enables exponential speedup in certain computational tasks, such as

factorization and searching algorithms [5]. Moreover, entanglement is also essential

for error correction and fault-tolerance in quantum computing architectures. Another

important application of entanglement is quantum teleportation, which is the transfer

of quantum information from one location to another without physically moving the

information carrier. Entanglement is used to “teleport” the quantum state of one

particle onto another, allowing for the transfer of information with perfect fidelity [1].

In addition to its applications in quantum information processing and quantum

computing, quantum entanglement plays a critical role in condensed matter physics,
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where it is used to describe materials with strong correlations between particles. In

particular, the detection and classification of topological phases of matter can be

achieved through the use of entanglement-based measures, such as the entanglement

entropy, which provide a powerful tool for characterizing the quantum properties of

these materials. The connection between entanglement and topological phases of

matter was first established by Levin and Wen in their seminal paper on detecting

topological order in ground state wave functions [6]. Since then, entanglement has

become a crucial tool for understanding and characterizing the properties of a wide

variety of topological materials, including topological insulators [7] and topological

superconductors [8], materials which have the potential for new technological appli-

cations, such as topological quantum computing.

An example of entanglement in quantum systems can involve the spin of two

electrons. Electrons have a fundamental property called spin, which is a quantum

mechanical angular momentum. Unlike classical angular momentum, the spin of an

electron can only take on certain discrete values, typically referred to as “up” and

“down”. However, because of the principles of quantum mechanics, the spin of elec-

trons is inherently uncertain, meaning that prior to measurement, we do not know

with certainty which of the possible spin states an electron is in. It is through this in-

herent uncertainty that the phenomenon of entanglement arises between two or more

quantum systems. If the electrons are entangled, then those two spins are correlated

such that if one of the electrons is measured to be spin up, then the other must

have spin down. This power of prediction of quantum mechanics refers to quantum

entanglement.

In 1935, Albert Einstein raised concerns about the predictions of quantum me-

chanics regarding the behavior of entangled particles [9]. The prediction of quantum

mechanics refers to the ability of quantum mechanics to make probabilistic predic-

tions about the behavior of quantum systems. For example, one such prediction is the

expected correlation between measurements made on two separated entangled parti-

cles. Suppose we send two entangled photons to two separate observers, Alice and

Bob, on different sides of the world. As Niels Bohr said, while these two entangled

photons are going outward, they do not have a fixed orientation of their spins [10].

All we know about them is that they are entangled. As a result, if Alice measures

her electron with spin up, then Bob will have spin down. However, the electron’s

spin sent to Bob was not determined until Alice measured it. This situation is where
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Einstein felt there was a problem with quantum entanglement because it seemed to

indicate that the act of Alice measuring her electron spin affected the spin of Bob’s

electron. If Alice measures her electron spin up, then immediately, there will be some

influence on Bob’s electron spin to ensure his electron spin is down, even if they are

light-years apart.

Einstein described this problem in quantum entanglement as “spooky action at

a distance.” In 1935, Albert Einstein and his colleagues Boris Podolsky and Nathan

Rosen suggested that there has to be an alternative to this problem because spooky

action at a distance should not be allowed in physics [9]. Einstein showed that no

signal or information could be transmitted faster than light. Therefore, there has to

be some time for a signal to span the distance, and we cannot have this instantaneous

action at a distance [9]. This problem is also known as the Einstein–Podolsky–Rosen

paradox (EPR paradox). Einstein suggested that there must be some property that

we could not measure. He indicated that these two electrons had some property that

somehow fixed their spins in advance. He called this property a “hidden variable” [9].

In 1964, John Stewart Bell [11] proved that quantum mechanics is incompatible

with local hidden-variable theories. He showed that “If [a hidden-variable theory] is

local it will not agree with quantum mechanics, and if it agrees with quantum me-

chanics it will not be local.” [12] Bell’s theorem provides a way to test the predictions

of quantum mechanics against the classical physics. It is based on the concept of

Bell inequalities, which are certain mathematical inequalities that are satisfied by any

theory that assumes “local realism.” Local realism is the idea that physical properties

of objects exist independently of measurements, and that these properties are not in-

fluenced by the measurement of other distant objects. However, quantum mechanics

predicts that certain measurements on entangled particles violate Bell inequalities,

indicating that local realism is not a valid assumption. This violation is known as

Bell’s inequality violation, and it provides strong evidence for the non-local nature of

entanglement [5]. For a more detailed discussion on the mathematical description of

Bell’s inequality, please refer to Appendix A.
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1.2 Quantum Spin Systems

A quantum spin system is a set of interacting spins, for example, a spin chain consist-

ing of N spins [13][14]. On each site of the spin chain, we consider a spin 1
2

particle,

such as an electron. In the quantum spin chain, every electron can be in a spin up

or spin down state, and they are the basis of a two-dimensional Hilbert state for each

electron in the chain [13].

As an example of a spin system, consider the maximally entangled state for the

two-electron spin system:

|ψs⟩ =
1√
2

(| + −⟩ − | − +⟩)

Where ψs is the singlet state. The electrons in this state are maximally entangled. In

other words, the spin directions of two electrons are guaranteed to be opposite when

measured. If the spin of one electron is up, the other one must be down.

1.3 Quantifying Entanglement

Quantifying entanglement refers to any scheme that assigns a quantitative value for

entanglement in a two-part system, such that unentangled states have a value of zero

and the entanglement of pure states monotonically increases to a maximum value for a

singlet or similar state. Quantifying the amount of entanglement between particles is

important for developing applications such as quantum computing and cryptography

[1][15][16].

In this section, we briefly describe a scheme to quantify entanglement for pure

states. We can start with a general pure state for two spins like:

|ψ⟩ = C++| + +⟩ + C+−| + −⟩ + C−+| − +⟩ + C−−| − −⟩, (1.1)

with

|C++|2 + |C+−|2 + |C−+|2 + |C−−|2 = 1. (1.2)

If a state can be expressed in a factorizable format, then it is not considered to be



5

entangled. This is because measurements performed on one subsystem have no effect

on measurements performed on the other subsystem, indicating a lack of entangle-

ment between the subsystems. In contrast, entangled states cannot be written in a

factorizable format. A general unentangled state takes the form

(a1|+⟩ + a2|−⟩) ⊗ (b1|+⟩ + b2|−⟩), (1.3)

where |a1|2+|a2|2 = |b1|2+|b2|2 = 1. Therefore, if the state in Eq. 1.1 is not entangled,

we have:

C++ = a1b1 , C+− = a1b2 , C−+ = a2b1 , C−− = a2b2.

If we solve the equation for a1, we can write:

a1 =
C++

b1
=
C++a2
C−+

=
C++C−−

C−+b2
=
C++C−−

C−+C+−
a1. (1.4)

We find that C++C−−
C−+C+−

= 1, in other words C++C−− − C−+C+− = 0 for an unentagled

state. However, for the singlet state, we have C++C−− − C−+C+− = 1
2

which is a

maximum for this quantity subject to the constraint (1.2). Therefore, we can take

|C++C−− − C−+C+−| as a measure of the entanglement of pure states. If this value

is zero, the state is not entangled. If this value is non-zero, the state is entangled,

and for 1
2
, the state is maximally entangled. The coefficient measure only works for

quantifying the entanglement of pure states, and it is not possible to use this measure

for mixed states.

1.4 Entanglement in Spin Systems

Entanglement is an important concept in the study of quantum spin systems, as it

provides a way to understand the collective behavior of a large number of interacting

spins. In particular, the entanglement properties of spin systems have been shown to

have important implications for quantum phase transitions, where the system under-

goes a change in its ground state as a parameter, such as a magnetic field, is varied

[17][18]. One example of a spin system that has been extensively studied for its entan-

glement properties is the one-dimensional Heisenberg spin chain, which describes a
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line of interacting spin 1
2

particles. In this thesis, we study entanglement between each

pair of spins for the one-dimensional Heisenberg spin chain in thermal equilibrium.

Previous studies have shown that the entanglement of a pair of spins in a one-

dimensional Heisenberg spin chain depends on the temperature and the coupling

constants, but these studies have typically focused on small spin chains or specific

scenarios. Refs. [19][20] studied the entanglement of two spins in the Heisenberg

spin chain versus the magnetic field and temperature, while Ref. [21] investigated the

entanglement of three spins in a chain with an external magnetic field and different

coupling constants. Moreover, Ref. [22] studied the entanglement of four spins in

the Heisenberg spin chain. However, there has been relatively little research on how

the entanglement of a pair of spins depends on the number of lattice sites separating

given pairs of spins or how it changes for larger spin chains.

Our research addresses these gaps in the existing literature by studying the en-

tanglement of a pair of spins in one-dimensional Heisenberg spin chains with up to 10

spins for various scenarios. Specifically, we investigate how the entanglement depends

on the temperature and coupling constants with and without an external magnetic

field and how it changes for the different number of lattice sites separating given pairs.

In conclusion, our research builds upon the existing literature by studying the en-

tanglement of a pair of spins in one-dimensional Heisenberg spin chains with up to 10

spins for various scenarios. Our study fills an important gap in the existing literature

and provides new insights into the behavior of entanglement in these systems. Fur-

thermore, our results have potential applications in quantum information processing

and quantum computing.

1.5 Outline

The remainder of the thesis is organized as follows. Chapter Two describes the

mathematical tools for calculating entanglement, including the square root, natural

logarithm, and exponential of a matrix, as well as measurements such as concur-

rence, entanglement entropy, entanglement of formation, and logarithmic negativity

for quantifying entanglement in both pure and mixed states. In Chapter Three, the

one-dimensional Heisenberg spin chain model is introduced and two entanglement

measurements, concurrence and logarithmic negativity, are compared to determine
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the most suitable method for this study. Chapter Four investigates the dependence

of entanglement on coupling constants and temperature in the Heisenberg spin chain

without a magnetic field, and then incorporates an external magnetic field for fixed

values of these parameters. Additionally, the entanglement is calculated for different

pairs of spins on the chain, such as nearest neighbors and next-nearest neighbors.

Chapter Five provides an overview of the research findings, the significance of the re-

sults, and potential future research directions and applications. Finally, the Appendix

includes computational codes used in the research and examples of mathematical tools

employed in the calculations.



Chapter 2

Mathematical and Computational

Tools

2.1 Introduction

This chapter serves as an introduction to the mathematical, quantum information, and

computational tools that are utilized throughout this thesis. The goal is to provide the

reader with a comprehensive understanding of these tools and how they are applied in

studying the entanglement properties of the one-dimensional Heisenberg spin chain.

The chapter is organized as follows: In Section 2.2, we provide an overview of

the basic mathematical tools necessary to describe the entanglement in spin systems,

including the calculation of the density matrix from the Hamiltonian matrix. Section

2.3 provides a brief introduction to the quantum information tools used to quantify

entanglement for both pure and mixed states, while Section 2.4 describes the com-

putational tools utilized to compute entanglement in this thesis. By the end of this

chapter, the reader will have a thorough understanding of the mathematical, quantum

information, and computational tools utilized in this study.

2.2 Mathematical Tools

This section introduces the mathematical concepts and tools that are utilized in this

thesis to study the entanglement properties of the one-dimensional Heisenberg spin
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chain. We will cover important topics such as the Hamiltonian matrix, density matrix,

natural logarithm of a matrix, exponential of a matrix, and the square root of a matrix.

These mathematical tools are essential for understanding the behavior of spin

chains and for calculating the density matrix, which plays a crucial role in quantify-

ing the entanglement between pairs of spins. By the end of this section, the reader will

have a clear understanding of the mathematical tools utilized in this study and their

significance in studying the entanglement properties of the one-dimensional Heisen-

berg spin chain.

2.2.1 Natural logarithm, Exponential, and Square root of a

Matrix

This section explores some mathematical tools for matrices, such as the natural log-

arithm of a matrix, the exponential of a matrix, and the square root of a matrix, as

we need these tools to calculate the concurrence.

For a diagonalizable matrix A, the natural logarithm of A is defined as follows

[23]:

logA = V (logA
′
)V −1. (2.1)

Where V is a matrix of eigenvectors of A such that each of the elements in a column

of V is the component of an eigenvector of A, and V −1 is the inverse matrix of V.

A
′

is a diagonal matrix whose elements are the eigenvalues of A. By replacing the

natural logarithm of each element of A
′
, we can find the natural logarithm of matrix

A
′

as it is a diagonal matrix and use equation (2.1) to find the natural logarithm of

the matrix A.

The method to find the exponential of a matrix is very similar to the natural

logarithm of a matrix, but we need to replace the exponential of each element of A
′

[24],

expA = V (expA
′
)V −1. (2.2)

It is worth noting that these formulas apply specifically to the natural logarithm and

exponential functions, i.e., those with base e. This is because the eigenvectors and
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eigenvalues of a matrix are typically complex, and the natural logarithm and expo-

nential functions are well-defined for complex numbers. However, other logarithmic

or exponential functions with different bases may not be well-defined for complex

numbers, and therefore the above formulas may not apply in those cases.

2.2.2 Hamiltonian Matrix

The Hamiltonian matrix is a Hermitian matrix whose elements and dimensionality

depend on the physics that governs the system [25]. For instance, the Hamiltonian of

the Heisenberg spin chain has a dimension of 2N where N is the number of spins. We

can write the Hamiltonian of the 1D Heisenberg model as below [26][27][28][29]:

H =
N−1∑︂
i=1

JxS
i
xS

i+1
x + JyS

i
yS

i+1
y + JzS

i
zS

i+1
z −

N∑︂
i=1

BSi
z, (2.3)

where Ji is the coupling constant at site i, Si is the spin operator at site i, B is the

external magnetic field, and N is the number of spins in the chain. For example, for

a chain with three spins without the external magnetic field, the Hamiltonian matrix

is:

H =
2∑︂

i=1

JxS
i
xS

i+1
x + JyS

i
yS

i+1
y + JzS

i
zS

i+1
z , (2.4)

which is an eight-by-eight square matrix where Sx, Sy, and Sz are the spin 1
2

operators

with matrices S = h̄
2
σ

σx =

(︄
0 1

1 0

)︄
, σy =

(︄
0 −i
i 0

)︄
, σz =

(︄
1 0

0 −1

)︄
.

These three matrices are known as Pauli matrices. Written explicitly as the tensor

products of matrices, the Hamiltonian matrix is:



11

H =
h̄2

4
[Jx(σ1

x ⊗ σ2
x ⊗ I) + Jy(σ

1
y ⊗ σ2

y ⊗ I) + Jz(σ
1
z ⊗ σ2

z ⊗ I)

+Jx(I⊗ σ2
x ⊗ σ3

x) + Jy(I⊗ σ2
y ⊗ σ3

y) + Jz(I⊗ σ2
z ⊗ σ3

z)].

Where I is the two by two identity matrix,

I =

(︄
1 0

0 1

)︄
.

Thus the Hamiltonian matrix with three spins on the chain is

H =
h̄2

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2Jz 0 0 Jx − Jy 0 0 Jx − Jy 0

0 0 Jx + Jy 0 0 0 0 Jx − Jy

0 Jx + Jy −2Jz 0 Jx + Jy 0 0 0

Jx − Jy 0 0 0 0 Jx + Jy 0 0

0 0 Jx + Jy 0 0 0 0 Jx − Jy

0 0 0 Jx + Jy 0 −2Jz Jx + Jy 0

Jx − Jy 0 0 0 0 Jx + Jy 0 0

0 Jx − Jy 0 0 Jx − Jy 0 0 2Jz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

2.2.3 Density Matrix

In quantum mechanics, a density matrix describes the quantum state of a physical

system. This section outlines some methods to find the density matrix for pure and

mixed states [30]. To quantify entanglement, it is important to find the density matrix

because it allows us to calculate the reduced density matrix, which describes the state

of a subsystem of a larger quantum system. By analyzing the properties of the reduced

density matrix, we can determine the degree of entanglement between the subsystems.

Pure States

A pure quantum state is a state that can be expressed as a singlet ket, which may

be a linear combination of other kets [31]. For example, consider the pure state
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|ψ⟩ = 1√
2
(| + −⟩ + | − +⟩), where the kets |+⟩ and |−⟩ are represented as column

vectors and the states | + −⟩ and | − +⟩ are their tensor products.

|+⟩ =

(︄
1

0

)︄
, |−⟩ =

(︄
0

1

)︄
,

| + −⟩ =

(︄
1

0

)︄
⊗

(︄
0

1

)︄
=

⎛⎜⎜⎜⎜⎝
0

1

0

0

⎞⎟⎟⎟⎟⎠ , | − +⟩ =

(︄
0

1

)︄
⊗

(︄
1

0

)︄
=

⎛⎜⎜⎜⎜⎝
0

0

1

0

⎞⎟⎟⎟⎟⎠ .

The density matrix for a pure state |ψ⟩ can be defined as [30].

ρ = |ψ⟩⟨ψ|, (2.5)

where ⟨ψ| denotes the adjoint of the state vector |ψ⟩. The density matrix operator is

positive, semi-definite, Hermitian, and has trace one. The density matrix for the pure

state |ψ⟩ can be expressed as

ρ =
1√
2

(| + −⟩ + | − +⟩) ∗ 1√
2

(⟨+ − | + ⟨− + |)

=
1

2
(| + −⟩⟨+ − | + | + −⟩⟨− + | + | − +⟩⟨+ − | + | − +⟩⟨− + |).

Finally, the matrix form of the density matrix is

ρ =
1√
2

⎛⎜⎜⎜⎜⎝
0

1

1

0

⎞⎟⎟⎟⎟⎠⊗ 1√
2

(︂
0 1 1 0

)︂
=

1

2

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ .

The density matrix of a pure state needs to satisfy some conditions. Firstly, it satisfies

ρ = ρ2:

ρ2 = |ψ⟩⟨ψ|ψ⟩⟨ψ| = ρ. (2.6)

Then the next condition is Tr[ρ2] = Tr[ρ] = 1 for a pure state. The density matrix

for the above pure state satisfies all the necessary conditions.
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Mixed States and Hamiltonian

In the previous section, we discussed the calculation of the density matrix for a pure

state. However, in many physical situations, we deal with mixed states. Therefore, it

is essential to understand how to calculate the density matrix for a mixed state. In

this section of the thesis, we will focus on the calculation of the density matrix for a

mixed state. The density matrix for a mixed state is [5]:

ρ =
∑︂
j

pj|ψj⟩⟨ψj|, (2.7)

where |ψj⟩ is a pure state with the probability pj.

For a system in thermal equilibrium, the density matrix is given by [29]:

ρ =
exp( −H

kBT
)

Z
, (2.8)

where kB is the Boltzmann constant and Z = Tr[exp −H
kBT

] is the partition function.

If the eigenstates of H are ψi with eigenvalues λi, H|ψi⟩ = λi then

Z =
∑︂
i

exp
−λi
kBT

(2.9)

and

ρ =
1

Z

∑︂
i

exp
−λi
kBT

|ψi⟩⟨ψi|. (2.10)

For example, in the chain of three spins for B = 0 Jx = Jy = Jz = 1, the eigenvalues

and eigenvectors of the Hamiltonian matrix are

λ1 = λ2 = −4, λ3 = λ4 = 0, λ5 = λ6 = λ7 = λ8 = 2

V1 = | + ++⟩, V2 = | − −−⟩,

V3 =
1√
2

(| + +−⟩ − | − ++⟩),

V4 =
1√
2

(| − +−⟩ − | + −−⟩),
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V5 =
1√
3

(| − −+⟩ + | + −−⟩ + | − +−⟩),

V6 = − 1√
3

(| + +−⟩ + | + −+⟩ + | − ++⟩),

V7 =
1√
6

(2| − +−⟩ − | − −+⟩ − | + −−⟩),

V8 =
1√
6

(2| + −+⟩ − | + +−⟩ − | − ++⟩).

Now, we can utilize equation (2.8) to obtain the density matrix. As described in

section 2.2.1, we can compute the exponential of a matrix using equation (2.2). By

substituting the eigenvectors and eigenvalues of the Hamiltonian for kBT = 1 in

equation (2.2), we can determine the density matrix.

ρ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0012 0 0 0 0 0 0 0

0 0.086 −0.16 0 0.077 0 0 0

0 −0.16 0.33 0 −0.16 0 0 0

0 0 0 0.086 0 −0.16 0.077 0

0 0.077 −0.16 0 0.086 0 0 0

0 0 0 −0.16 0 0.33 −0.16 0

0 0 0 0.077 −0.16 0.086 0

0 0 0 0 0 0 0 0.0012

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

2.2.4 Reduced Density Matrix

In order to quantify entanglement for a pair of spins in a one-dimensional Heisenberg

spin chain, we need to calculate the reduced density matrix for that pair. The reduced

density matrix captures the information about the entangled state of the pair, while

ignoring the state of the other spins in the chain. This is necessary because the density

matrix that we calculate based on the Hamiltonian matrix represents the entire chain

of spins with an arbitrary number of spins in the chain, and it is not sufficient to

determine the entanglement between a pair of spins.

The reduced density matrix was first introduced by Paul Dirac in 1930, and it

is a fundamental tool in quantum mechanics for analyzing subsystems of a larger

quantum system. By reducing the density matrix to the subsystem of interest, we

can calculate entanglement measures such as the concurrence or negativity, which
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quantify the degree of entanglement between pairs of spins in the chain [32].

Therefore, the introduction of the reduced density matrix is crucial for our analysis

of entanglement in the one-dimensional Heisenberg spin chain, as it allows us to focus

specifically on the entanglement between pairs of spins.

2.2.5 Partial Trace

To obtain the reduced density matrix of a pair of spins in the Heisenberg chain, we

need to take the partial trace over all other spins in the chain. This process involves

finding the trace of the density matrix over the degrees of freedom associated with

the unwanted spins. For example, in the case of a three-spin Heisenberg chain, to

calculate the reduced density matrix for spins one and two, we take the trace over the

third spin. The resulting matrix is the reduced density matrix for spins one and two.

The same procedure is repeated to find the reduced density matrix for other pairs of

spins.

ρ1,2 =
∑︂
α=+−

⟨3 : α|ρ|3 : α⟩. (2.11)

Using our example for ρ above, we can find the reduced density matrix for spin pairs

one and two, two and three, and one and three as below:

ρ1−2 =

⎛⎜⎜⎜⎜⎝
0.088 0 0 0

0 0.41 −0.33 0

0 −0.33 0.41 0

0 0 0 0.088

⎞⎟⎟⎟⎟⎠ ,

ρ2−3 =

⎛⎜⎜⎜⎜⎝
0.088 0 0 0

0 0.41 −0.33 0

0 −0.33 0.41 0

0 0 0 0.088

⎞⎟⎟⎟⎟⎠ ,
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ρ1−3 =

⎛⎜⎜⎜⎜⎝
0.33 0 0 0

0 0.17 0.15 0

0 0.15 0.17 0

0 0 0 0.33

⎞⎟⎟⎟⎟⎠ .

As spins(1,2) and spins(2,3) are located on the edge of the spin chain, they have the

same reduced density matrices. In the next chapter, we will use the reduced density

matrix to calculate concurrence, which is a measure to quantify entanglement.

2.3 Quantum Information Tools

Entanglement is a fundamental concept in the field of quantum information, playing

a vital role in various quantum applications such as quantum cryptography, quantum

teleportation, and quantum computing. It arises from the non-local correlations be-

tween the components of a quantum system, and it is widely recognized as one of

the defining features of quantum mechanics. Specifically, entanglement enables the

implementation of powerful quantum protocols that can outperform classical systems

in terms of computational power and communication security. Therefore, a thor-

ough understanding of entanglement and the tools required to measure it is essential

for investigating the behavior of quantum systems and designing practical quantum

technologies. In this section, we aim to provide a detailed explanation of the most

important entanglement measurements for pure and mixed states in the context of

the 1D Heisenberg spin chain, which is a fundamental model system for studying

many-body quantum mechanics.

2.3.1 Measure of Entanglement

This section provides an overview of entanglement measures for pure and mixed states.

There are several measurements for entanglement based on whether the system is in

a pure or mixed state. We first describe bipartite and multipartite pure states and

introduce entanglement measures for them. After quantifying the entanglement in a

pure state, we discuss how to calculate the level of entanglement in mixed states.
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2.3.2 Coefficient Measurement for Pure States

The most well-known method to quantify entanglement for pure states is the entropy

of entanglement. In addition to the entanglement entropy, we will discuss another

measurement, the coefficient measure, for pure states, which is simpler than the en-

tropy method, but the result is similar. In Chapter One, we found the quantity

|C++C−−−C−+C+−| as an entanglement metric for a pure state. If this value is zero,

the state is separable. If this value is non-zero, the state is entangled, and when it

equals 1
2
, the state is maximally entangled. We can generalize this to a system with

more than two parts. For example, consider a state with 5 parts:

|ψ⟩ =
| + −⟩ − i| − +⟩√

2
⊗ | + +−⟩ − i| + ++⟩ − 2| − −−⟩√

6
.

The coefficients of this state are:

C+−++− =
1√
12
,

C+−+++ =
−i√
12
,

C+−−−− =
−2√

12
,

C−+++− =
−i√
12
,

C−++++ =
−1√

12
,

C−+−−− =
2i√
12
.

For the entanglement between particles 1 and 2, the coefficients |Cαβ|2 =
∑︁

cde |Cαβcde|2,
which gives:

C++ = 0 , C+− =
1√
2
, C−+ =

1√
2
, C−− = 0

C++C−− − C−+C+− =
1

2
.
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This means that particles 1 and 2 are maximally entangled. Now, we find the entan-

glement for particles 4 and 5.

C++ =
1√
6
, C+− =

1√
6
, C−+ = 0 , C−− =

√
2√
3

C++C−− − C−+C+− =
1

3
.

This shows that particles 4 and 5 are entangled but less than particles 1 and 2. Now,

we find the entanglement for particles 3 and 4.

C++ =
1√
3
, C+− = 0 , C−+ = 0 , C−− =

√
2√
3

C++C−− − C−+C+− =

√
2

3
.

These two particles are entangled. Now, we study a case where two particles are not

entangled, particles 1 and 5.

C++ =
1√
12

, C+− =

√
5√
12

, C−+ =
1√
12

, C−− =

√
5√
12

C++C−− − C−+C+− = 0.

This demonstrates that particles 1 and 5 are not entangled and are separable.

2.3.3 Entropy of Entanglement

The entanglement entropy or entropy of entanglement is a measurement to find the

degree of entanglement between two subsystems of a quantum system [33][34]. For a

pure bipartite state, first, we need to find the density matrix for the bipartite pure

state and then calculate the reduced density matrix for each subsystem to calculate

the entanglement entropy as below:

S(ρA) = −Tr[ρA log ρA] = −Tr[ρB log ρB] = S(ρB). (2.12)

Where S(ρA) is the bipartite entanglement entropy for subsystem A, and S(ρB) is the

bipartite entanglement entropy for subsystem B. ρA and ρA are the reduced density
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matrix for each part of the system.

2.3.4 Peres–Horodecki criterion

The Peres-Horodecki criterion, also known as the PPT criterion, serves as a necessary

condition to determine whether a density matrix for a two-quantum system is sep-

arable or entangled. It functions as a witness of entanglement, meaning that it can

identify whether a state is entangled or separable. It is important to note that while

the PPT criterion is a witness of entanglement, it is not a measure of entanglement, as

it only determines whether a state is entangled or separable, rather than quantifying

the degree of entanglement [35].

Suppose we have a bipartite quantum state that acts on the Hilbert space HA⊗HB

where HA and HB are two-dimensional. We represent this state by the density matrix

ρ which can be written as:

ρ =
∑︂
i,j,k,l

pijkl|i⟩⟨j| ⊗ |k⟩⟨l|, (2.13)

where pijkl are complex coefficients, and |i⟩ and |k⟩ are orthonormal bases for HA and

HB respectively. Note that ρ is a 4× 4 matrix in the tensor product space HA ⊗HB.

Now, let’s take the partial transpose of ρ with respect to the subsystem HB. This

is denoted by ρTB and can be obtained by transposing the second subsystem while

leaving the first subsystem untouched. Mathematically, we can express this as:

ρTB = (IA ⊗ TB)(ρ),

where IA is the identity operator acting on HA, and TB is the transpose operator

acting on HB. Explicitly, we have:

ρTB =
∑︂
i,j,k,l

pijkl|i⟩⟨j| ⊗ |l⟩⟨k|. (2.14)

Note that ρTB is also a 4 × 4 matrix, but its entries are obtained by transposing the

second subsystem in ρ. The Peres-Horodecki criterion tells us that if ρ is separable

(i.e., can be written as a convex combination of product states), then all the eigen-

values of ρTB are non-negative. In other words, if there exists a negative eigenvalue
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of ρTB , then ρ must be entangled.

In summary, the Peres-Horodecki criterion provides a necessary condition for en-

tanglement based on the partial transpose of the bipartite density matrix. If the

partial transpose has a negative eigenvalue, then the state is entangled.

2.3.5 Mixed States

This section aims to present various measurements used to quantify entanglement for

mixed states [36]. Entropy and coefficient measurements are not adequate for mea-

suring entanglement in mixed states since they are designed for pure states. Instead,

we explore measurements such as concurrence, entanglement of formation, and loga-

rithmic negativity. We begin by describing what concurrence is and how to calculate

concurrence. We then delve into the entanglement of formation and how to find it.

Lastly, we examine logarithmic negativity, another measure of entanglement for mixed

states [35].

2.3.6 Concurrence

Concurrence is a measure of entanglement between two qubits in a quantum system,

particularly in the context of spin systems like the Heisenberg spin chain [37][38]. It

was first introduced by Wootters in 1998 as a measure of entanglement [39]. A qubit

is a quantum system with two levels, and can be used to represent a spin-1/2 particle,

the polarization of a photon, or any other two-level quantum system. The concurrence

takes values between 0 for a separable (non-entangled) state and 1 for a maximally

entangled state, with higher values indicating greater entanglement between the two

qubits. It provides a quantitative measure of the degree of entanglement between the

two quantum systems with two levels and can be used to compare the entanglement

of different states. The formula to calculate the concurrence is as below,

C(ρ) ≡ max(0, λ1 − λ2 − λ3 − λ4), (2.15)
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where λ1, λ2, λ3, λ4 are the eigenvalues of R matrix, which is defined based on the

density matrix, in decreasing order [40].

R =
√︂√

ρρ̃
√
ρ. (2.16)

In the equation for the R matrix, we need to define ρ̃, which is the spin-flipped state

of ρ,

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy), (2.17)

where σy is one of the three Pauli spin matrices, and ρ∗ is the complex conjugate of

the density matrix. For multipartite mixed states, we need to take a partial trace and

find the reduced density matrix to find the concurrence for each subsystem.

For instance, we calculated the density matrix for three spins in the Heisenberg

chain in section 2.2. Now, in the present section, we can find the concurrence for each

pair of spins:

ρ12 = ρ23 =

⎛⎜⎜⎜⎜⎝
0.088 0 0 0

0 0.41 −0.33 0

0 −0.33 0.41 0

0 0 0 0.088

⎞⎟⎟⎟⎟⎠ ,

ρ13 =

⎛⎜⎜⎜⎜⎝
0.33 0 0 0

0 0.17 0.16 0

0 0.16 0.17 0

0 0 0 0.33

⎞⎟⎟⎟⎟⎠ ,

where ρ12, ρ23, ρ13 are the reduced density matrices between each pair of spins. The

reduced density matrix for the nearest neighbors on the edge is the same,

R12 = R23 =

⎛⎜⎜⎜⎜⎝
0.088 0 0 0

0 0.41 −0.33 0

0 −0.33 0.41 0

0 0 0 0.088

⎞⎟⎟⎟⎟⎠ ,
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R13 =

⎛⎜⎜⎜⎜⎝
0.33 0 0 0

0 0.17 0.16 0

0 0.16 0.17 0

0 0 0 0.33

⎞⎟⎟⎟⎟⎠ .

In this example, the reduced density and R matrix for each pair of spins are the same.

The eigenvalues for each matrix are as below:

λi = [0.088, 0.088, 0.088, 0.74],

λj = [0.018, 0.33, 0.33, 0.33].

Where λi belongs to the nearest neighbors and λj belongs to the next nearest neigh-

bors. Now, We can easily find the concurrence for each pair of spins:

C12 = C23 = 0.48, C13 = 0.

We can conclude that the nearest neighbors are entangled, and the next nearest

neighbors are not entangled in this case without a magnetic field, fixed values of J =

1, and fixed kBT = 1.

2.3.7 Entanglement of Formation

Entanglement of formation is another measure used to quantify entanglement in a

quantum system, and it is based on concurrence. The formula for calculating the en-

tanglement of formation is straightforward once the concurrence has been determined.

Both of these measures are valuable tools for assessing the degree of entanglement

present in a quantum system [37]. The entanglement of formation can be expressed

using the following formula:

Ef = −(
1 +

√
1 − C2

2
) log2 (

1 +
√

1 − C2

2
) − (

1 −
√

1 − C2

2
) log2 (

1 −
√

1 − C2

2
).

(2.18)

This equation allows for the entanglement of formation to be easily calculated once

the concurrence has been determined for a given pair of spins.

As an example, the reduced density matrices obtained in the previous section can
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be used to determine the entanglement of formation for each pair of spins:

Ef12 = −(
1 +

√
1 − 0.23

2
) log2 (

1 +
√

1 − 0.23

2
)−

(
1 −

√
1 − 0.23

2
) log2 (

1 −
√

1 − 0.23

2
) = 0.324,

Ef23 = −(
1 +

√
1 − 0.23

2
) log2 (

1 +
√

1 − 0.23

2
)−

(
1 −

√
1 − 0.23

2
) log2 (

1 −
√

1 − 0.23

2
) = 0.324,

Ef13 = −(
1 +

√
1 − 0

2
) log2 (

1 +
√

1 − 0

2
) − (

1 −
√

1 − 0

2
) log2 (

1 −
√

1 − 0

2
) = 0.

While entanglement of formation and concurrence are different measures of entangle-

ment, they are related such that the entanglement of formation can be expressed as

a function of the concurrence for two-qubit states.

2.3.8 Negativity

Another measure to quantify entanglement that is introduced in this chapter is the

logarithmic negativity [41]. The negativity of subsystem A can be defined in terms of

the density matrix as below:

N(ρ) ≡ ||ρTA||1 − 1

2
. (2.19)

Where ρTA is the partial transpose of ρ for subsystem A. The trace norm operator of

ρ , ||ρ||1 is defined as:

||X||1 = Tr|X| = Tr
√

X†X. (2.20)

While the formula mentioned above is used to calculate the negativity of a subsystem,

negativity is not necessarily a measure of entanglement. To obtain a quantitative

measure of entanglement, we can instead compute the logarithmic negativity. The

logarithmic negativity is closely related to negativity and can be derived from it.
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Specifically, the logarithmic negativity can be obtained by taking the logarithm of the

negativity of a given subsystem.

EN(ρ) ≡ log2 ||ρTA||1 = EN(ρ) ≡ log2 (2N + 1). (2.21)

The logarithmic negativity can still be zero for certain entangled states, such as those

that satisfy the positive partial transpose (PPT) criterion. Furthermore, unlike most

other entanglement measures, the logarithmic negativity does not reduce to the en-

tropy of entanglement on pure states. It is also important to note that the logarithmic

negativity can take on values greater than one for maximally entangled states [41]. In

Section 3.2, we compare the entanglement detection power of logarithmic negativity

and concurrence. Both measures yield similar qualitative results, meaning they can

detect the presence or absence of entanglement. However, they differ quantitatively

in terms of their sensitivity to different types of entanglement.

2.4 Computational Tools

The computational analysis in this thesis relied on various tools to compute important

quantities, such as the Hamiltonian and density matrices, as well as measures of

entanglement. This section provides a description of the computational tools that

were utilized to conduct the research presented in this thesis. By outlining the specific

software packages used, this section aims to provide a comprehensive overview of the

methods and techniques employed in this study.

2.4.1 Python

Python was the primary programming language used in this work. Python is a pro-

gramming language widely used in scientific computing, data analysis, and machine

learning. One of the main advantages of using Python in this work is the availability

of several libraries specifically designed for mathematical computations, making it a

useful tool for performing complex calculations and simulations. In the next section,

we will provide a brief description of each Python library that was utilized in this

study, highlighting their respective roles and functionalities in our analysis.
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2.4.2 Python Libraries

Numpy [42], Matplotlib [43], and QuTiP [44][45] are the three python libraries that

were used in this thesis to carry out the required computational tasks. Numpy was pri-

marily used to perform various mathematical calculations, including the construction

and manipulation of multi-dimensional arrays and matrices. For data visualization

and plotting, Matplotlib was employed to generate 2D, scatter, and other types of

plots. Additionally, QuTiP, an open-source computational library in python, specifi-

cally designed for quantum information physics, was utilized to model the quantum

entanglement measurements. QuTiP has several advantages, including its compati-

bility with other widely used python libraries such as Numpy and Matplotlib, and its

use of C and C++ extensions, which help reduce the computational time and cost.

Further details and codes related to the implementation of these libraries are available

in Appendix B.



Chapter 3

Model and Method

3.1 1D Heisenberg Model

The model that we use in this work is the one-dimensional Heisenberg spin chain.

Werner Karl Heisenberg, a German theoretical physicist, introduced the quantum

Heisenberg model, which is a statistical mechanical model for studying critical points

and phase transitions of magnetic systems in which the spins of the magnetic sys-

tems are treated quantum mechanically. We can write the Hamiltonian of the one-

dimensional Heisenberg spin chain as,

H =
N−1∑︂
i=1

JxS
i
xS

i+1
x + JyS

i
yS

i+1
y + JzS

i
zS

i+1
z −

N∑︂
i=1

BSi
z, (3.1)

where B is the external magnetic field, Jx, Jy, and Jz are coupling constants, and

Sx, Sy, and Sz are spin 1/2 operators for the ith spin. There are several types of the

Heisenberg model depending on the values of Jx, Jy, and Jz. The first case is where

Jx = Jy = Jz; the model is called the XXX-model [21][29]. As all coupling constants

are equal, in this case, the physics of the system only depends on the sign of the J .

The second case is the XXZ-model [29]. In this case, J = Jx = Jy ̸= Jz. In the

final case, if all components of the coupling constants are different, Jx ̸= Jy ̸= Jz, the

model is called the XYZ-model [29].
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3.2 Entanglement measure selection

In this section, we compare the concurrence and logarithmic negativity for quantify-

ing entanglement for a chain of spins on the one-dimensional XXX Heisenberg model.

Both the concurrence and logarithmic negativity measures of entanglement provide

similar results and are useful measures for quantifying entanglement in the 1D Heisen-

berg spin chain. While the general trends in entanglement are qualitatively similar for

different pairs of spins, there are quantitative differences in the values obtained for the

concurrence and logarithmic negativity measures. In Fig. 3.1, both measures show

that the nearest neighbor spins on the edges are entangled without a magnetic field,

and entanglement is present between all spin pairs in the critical magnetic field range

in which significant changes in entanglement occur. Similarly, in the high-temperature

case shown in Fig. 3.2, both measures show that the general trends for the presence

of entanglement are the same, but there are differences in the entanglement values

obtained for certain spin pairs. It is important to mention that the differences in the

entanglement values are expected due to the different mathematical properties of the

measures. Our findings indicate that the concurrence measure exhibits higher values

compared to the logarithmic negativity.

(a) (b)

Figure 3.1: Low temperature nearest neighbors entanglement in the XXX Heisenberg
model with 4 spins measured by (a) concurrence, (b) logarithmic negativity, for kBT =
0.1, J = 1, N = 4.

In this work, our focus is on quantifying entanglement in the 1D Heisenberg spin

chain, specifically for two spins in the chain with varying chain lengths. To achieve

this, we will be using the concurrence measure of entanglement. The concurrence is
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well-suited for bipartite systems such as our case, where we are interested in quanti-

fying the entanglement between two spins in the chain. Several previous studies have

also used the concurrence measure to quantify entanglement in spin systems, includ-

ing the 1D Heisenberg spin chain [46][47][48][49]. Therefore, we believe that using the

concurrence measure will provide us with more useful results than the other measure.

(a) (b)

Figure 3.2: High temperature nearest neighbors entanglement in the XXX Heisenberg
model with 4 spins measured by (a) concurrence, (b) logarithmic negativity, for kBT =
1, J = 1, N = 4.



Chapter 4

Results and Discussion

4.1 Entanglement without magnetic field

4.1.1 Entanglement as a function of coupling constants

In this section, we investigate the entanglement of the Heisenberg model without

any external magnetic field, equation (2.3) for B = 0, for different numbers of spins

between the nearest neighbors located at the edge of the chain. Firstly, we fix the

temperature and change the coupling constants to find the impact of the coupling on

the entanglement in the absence of the magnetic field.

(a) (b)

Figure 4.1: Concurrence vs. coupling constants for B = 0, J = [−10, 10], nearest
neighbors spins (1,2), (a): kBT = 2, (b): kBT = 0.1.

In Fig. 4.1, all coupling constants are equal and varied from J = −10 to J = 10
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(a) (b)

Figure 4.2: Concurrence vs. coupling constants for B = 0, Jx = Jy = [−10, 10], Jz =
1, nearest neighbors spins (1,2), (a): kBT = 2, (b): kBT = 0.1.

without an external magnetic field. The concurrence is zero for the ferromagnetic

case, J < 0, and it starts to increase for the antiferromagnetic case, J > 0. Fig.

4.1(a) shows the high-temperature result, kBT = 2, while Fig. 4.1(b) is for lower

temperature case, kBT = 0.1. In both cases, the concurrence converges to a maximum

value that depends on the number of spins in the chain. The convergence is faster at

lower temperatures.

In Fig. 4.2, the value of Jz is set to 1, and Jx and Jy vary between -10 to 10. Fig.

4.2(a) represents the high-temperature limit, kBT = 2, but Fig. 4.2 (b) is for low

temperature, kBT = 0.1. The concurrence is zero for J = 0, and it rapidly increases

for |J | > 0. The graphs are symmetric about J = 0. For |J | > 0, the concurrence

converges to different values depending on the number of spins in the chain, N, with

faster convergence at low temperatures. The curves show a small peak for J ≈ 1 at

low temperatures for more than two spins in the chain.

In Fig. 4.3, Jz = 1, Jx = 0, and Jy varies from -10 to 10. Fig. 4.3(a) represents the

high-temperature limit of kBT = 2, while Fig. 4.3(b) shows the lower temperature

limit of kBT = 0.1. Fig. 4.3 illustrates the dependence of concurrence on the coupling

strength Jy, where it is zero at zero coupling and increases with increasing Jy. When

the system is composed of more than two spins, a maximum concurrence is observed

at around Jy ≈ 3 for the high-temperature limit, as shown in Fig. 4.3(a). However, as

the temperature decreases, the maximum value of concurrence shifts to smaller values

of Jy, approximately Jy ≈ 2. Interestingly, for large values of Jy, the concurrence

approaches very small values.
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Figs. 4.1, 4.2, and 4.3 demonstrate that the concurrence is dependent on the

number of spins in the chain. The graphs reveal that the largest concurrence occurs

when N = 2, while the smallest is observed when N = 3. Interestingly, the behavior

of the concurrence with respect to N differs for odd and even values. Specifically, the

concurrence decreases with increasing N when N is even, but increases when N is

odd.

(a) (b)

Figure 4.3: Concurrence vs. coupling constants for B = 0, Jx = 0, Jy = [−10, 10], Jz =
1, nearest neighbors spins (1,2), (a): kBT = 2, (b): kBT = 0.1.

4.1.2 Entanglement as a function of temperature

In the present section, we examine the relationship between temperature and concur-

rence.

(a) (b)

Figure 4.4: Concurrence vs. temperature for B = 0, nearest neighbors, spins (1,2),
(a)J = 1.5, (b) J = 0.5.
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In Fig. 4.4(a), we depict the behavior of concurrence as a function of temperature

for fixed values of the coupling constants Jx = Jy = Jz = 1.5, without an external

magnetic field (B = 0). The results show that the concurrence exhibits a maximum at

very low temperatures and decreases to zero as the temperature increases. Moreover,

the concurrence vanishes between kBT = 5 and kBT = 6 for all system sizes, as

illustrated in Fig. 4.4(a). Conversely, when the coupling constants are weakened to

Jx = Jy = Jz = 0.5, the concurrence decreases more rapidly, as seen in Fig. 4.4(b),

and disappears at around kBT = 1.8. Generally, in the antiferromagnetic case with

all positive coupling constants, the concurrence increases with increasing coupling

constants, while it decreases with increasing temperature.

4.1.3 Entanglement without magnetic field: Discussion

The fact that the concurrence for the Heisenberg ferromagnetic case is zero at all

temperatures can be explained by the absence of entanglement in ferromagnetic sys-

tems. This is because, in the ferromagnetic case without an external magnetic field,

the ground state of the 1D Heisenberg spin chain is a product state in which all spins

are aligned in the same direction. This means that the spins are not entangled with

each other.

The peak in concurrence with respect to coupling strength and subsequent decrease

in the cases in which coupling constants are a combination of positive and negative

values can be explained by the competition between the strength of coupling and

the thermal effects. At small coupling strengths, the thermal effects dominate, and

entanglement is low. As the coupling strength increases, the entanglement increases

due to the dominance of the interaction term. However, as the coupling strength

becomes too strong, the competition between the strength of coupling and thermal

effects is not the only factor influencing the behavior of entanglement in this system.

Other factors, such as the specific values and combinations of coupling constants, can

also play a significant role.

The decrease in concurrence with increasing temperature can be attributed to

the fact that as the temperature increases, the system becomes more disordered and

the thermal fluctuations increase. This makes it more difficult for the spins to be

entangled, leading to a decrease in entanglement. This behavior is expected in many

physical systems where entanglement is lost at high temperatures.
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The increase in concurrence with increasing coupling constants in the antifer-

romagnetic case suggests that entanglement can be tuned by varying the coupling

strength. This has potential applications in quantum information processing, where

the control of entanglement is crucial. The convergence of concurrence to a different

value depending on the number of spins suggests that the even and odd numbers of

spins behave differently (because of the Kramers’ theorem), which can be important

in the design of quantum devices based on spin systems.

4.2 Entanglement in the presence of a magnetic

field

This section aims to investigate the effect of an external magnetic field on the concur-

rence in the 1D Heisenberg spin chain. Additionally, we aim to examine the entangle-

ment of different pairs of spins in the chain and check the results with the eigenvalues

of the Hamiltonian and R-matrix.

In the subsequent section, we explore the concurrence in the 1D Heisenberg spin

chain with varying numbers of spins, including two, three, four, and five spins.

The concurrence is plotted against the magnetic field for three different tempera-

ture ranges: high (kBT = 2), medium (kBT = 1), and low (kBT = 0.1). The coupling

constants in all three temperature ranges are set to J = 1, which corresponds to the

antiferromagnetic case.

4.2.1 Two spins

In this particular section, our focus is on analyzing the concurrence in the 1D Heisen-

berg spin chain consisting of only two spins. This simplified scenario enables us to

study the entanglement exclusively between the nearest neighbors in the chain.

As shown in Fig. 4.5, the concurrence decreases with increasing magnetic field.

The concurrence peaks when the magnetic field is zero. For kBT = 2, Fig. 4.5(a), we

see that the maximum of the concurrence is C ≈ 0.42 and vanishes at B ≈ 7.5. In Fig.

4.5(b), we plot the concurrence versus magnetic field for kBT = 1. In this case, the

maximum concurrence is almost 0.85, and the concurrence vanishes at around B = 4.
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(a) (b)

(c)

Figure 4.5: Concurrence vs. magnetic field for two spins, Jx = Jy = Jz = 1, (a):
kBT = 2; (b): kBT = 1; (c): kBT = 0.1 .

In Fig. 4.5(c), we plot the concurrence versus magnetic field for the low-temperature,

kBT = 0.1. The concurrence is maximum from B = 0 to B = 2.5, then it significantly

decreases and vanishes.

Generally, we can say that the maximum for the concurrence increases by decreas-

ing temperature, but the width of the maximum decreases. Another result is that the

concurrence vanishes more quickly for lower temperatures.

In Fig. 4.6, we plot the eigenvalues of the Hamiltonian of the Heisenberg spin

chain with two spins versus magnetic field. For zero external magnetic field, there are

a triplet and a singlet. After applying an external magnetic field, the degeneracy of

the triplet is lifted, and the triplet and singlet states mix together.

In Figures 4.7(a) and 4.7(b), we depict the eigenvalues of the R-matrix utilized

for calculating the concurrence at both high and low temperatures. We observe that,

in both temperature regimes, the triplet state of the Hamiltonian corresponds to
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Figure 4.6: Eigenvalues of Hamiltonian vs. magnetic field for N = 2.

triply degenerate zero eigenvalues, while the singlet state is solely responsible for the

entanglement. In Figure 4.7, an increase in the magnetic field leads to a decrease in

the magnitude of the eigenvalue for the non-degenerate state, signifying a reduction in

the concurrence within this range. The maximum slope of Figure 4.7 occurs at B ≈ 2,

where there is a level crossing in the eigenvalues of the Hamiltonian, as demonstrated

in Figure 4.6. At high values of B, the spins align with the direction of B, resulting

in the vanishing of the concurrence.

4.2.2 Three spins

This section of the thesis focuses on investigating the concurrence of the spin chain

that comprises three spins. The inclusion of the third spin allows us to extend our

analysis beyond the concurrence between the nearest neighbors on the edge of the

chain, i.e., spins (1,2) and (2,3), to also examine the concurrence between the next-

nearest neighbors, spins (1,3). Such an investigation holds critical significance in the

context of my thesis.

In Figure 4.8, we observe that for a spin chain, the concurrence between nearest
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(a) (b)

Figure 4.7: Eigenvalues of the R-matrix vs. magnetic field for N = 2, (a): kBT = 1;
(b): kBT = 0.1.

neighbor spins (1,2) and (2,3) is equal since both sets are located at the edge of

the chain. However, the concurrence between the next-nearest neighbor spins (1,3)

is lower than that of the nearest neighbors. At high temperature, where kBT = 2,

the concurrence between nearest neighbors on the edge decreases as the magnetic

field increases, as depicted in Figure 4.8(a). A slight dip in concurrence is observed

at B = 0. On the other hand, the concurrence between next-nearest neighbors is

zero for all magnetic field values. At a lower temperature of kBT = 1, as shown in

Figure 4.8(b), the maximum concurrence between nearest neighbors increases from

0.28 to 0.55, and the concurrence vanishes at approximately B = 5, compared to

B = 7.5 in the kBT = 2 case. For the next-nearest neighbors, concurrence is zero

when the magnetic field is zero, but there is a non-zero concurrence for the critical

range of magnetic field values, B = 2 to B = 5, where the concurrence changes

significantly, and it goes to zero for B > 5. In Figure 4.8(c), the concurrence is

plotted for the low-temperature case, kBT = 0.1. In this case, the maximum value

for concurrence between nearest neighbors is 0.65, the highest value compared to the

higher temperature cases, kBT = 2 and kBT = 1. The concurrence has a maximum

value from B = 0 to B = 3 and then goes to zero. The trend of concurrence for

next-nearest neighbor spins is similar to that of nearest neighbors, but with a lower

level of concurrence.

Generally, for three spins in the chain, we can mention the maximum value of

the concurrence increases as temperature decreases, but the range for the magnetic

field that the system is entangled decreases. Like two spins system, the rate at which
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(a) (b)

(c)

Figure 4.8: Concurrence vs. magnetic field for N = 3, Jx = Jy = Jz = 1, (a):
kBT = 2; (b): kBT = 1; (c): kBT = 0.1.

the concurrence vanishes for the lower temperature case is more than the higher

temperature. Finally, the last result of this section is that the concurrence for the

nearest neighbors is more than the next-nearest neighbors.

In Fig. 4.9, we plot the eigenvalues of the Hamiltonian of the Heisenberg spin chain

with three spins as a function of magnetic field. When the external magnetic field is

zero, there are two doublets and one quartet. Upon applying an external magnetic

field, the degeneracy lifts, and there are some level crossings between the eigenvalues

of the Hamiltonian from B = 0 to almost B = 5. This is the range of the magnetic

field for which we find a non-zero concurrence.

Figure 4.10 examines the eigenvalues of the R-matrix for the nearest and next-

nearest neighbors to check the concurrence outcome. At B = 0, two degenerate

eigenvalues are present in both cases. Specifically, for the nearest neighbors, the

concurrence is determined by a single, sizeable eigenvalue of the R-matrix. On the
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Figure 4.9: Eigenvalues of Hamiltonian vs. magnetic field for N = 3.

other hand, for next-nearest neighbors, the largest eigenvalue of the R-matrix is doubly

degenerate at B = 0, resulting in the concurrence vanishing at this point.

(a) (b)

Figure 4.10: Eigenvalues of the R-Matrix vs. magnetic field for N = 3, kBT = 1, (a):
spins (1,2); (b): spins(1,3).
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4.2.3 Four Spins

This section of the thesis focuses on exploring the concurrence in the 1D Heisenberg

spin chain that consists of four spins. This scenario bears similarity to the previous

case with three spins, with the added complexity of considering the entanglement

between the nearest neighbors in the middle of the chain, i.e., spins (2,3). Moreover,

we examine the concurrence between the next-nearest neighbors, spins (1,3) and (2,4),

and introduce a new scenario involving the next-next-nearest neighbors, i.e., spins

(1,4), the spins in the first and last places of the chain.

(a) (b)

(c) (d)

Figure 4.11: Concurrence vs. Magnetic field for Jx = Jy = Jz = 1, N = 4, (a):
kBT = 2; (b): kBT = 1; (c): kBT = 0.1; (d): zoom range for kBT = 1

In Fig. 4.11, the concurrence between the nearest neighbor spins on the edges of

the chain, spins (1,2) and (3,4), is identical due to the symmetry of the system. The

maximum concurrence for the nearest neighbor spins in the middle of the chain, spins

(2,3), is found to be less than those at the edges, while the concurrence between the

next-nearest neighbor spins, spins (1,3) and (2,4), is identical due to symmetry but less
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than the concurrence between the nearest neighbors. Additionally, the concurrence

between the first and last spins in the chain, spins (1,4), is the lowest.

In Fig. 4.11(a), it is observed that the concurrence for the nearest neighbor spins at

the edges has a maximum value at zero magnetic field, which decreases with increasing

magnetic field and disappears at around B = 8. A dip in the concurrence is observed

for spins (2,3), the nearest neighbors in the middle of the chain, at B = 0. The

concurrence then decreases and approaches zero at a magnetic field value that is

almost the same as that of the spins at the edges of the chain. The concurrence

for the next-nearest and next-next-nearest neighbor spins at kBT = 2 is zero for all

magnetic field values.

By considering a lower temperature of kBT = 1 in Fig. 4.11(b), it is observed that

the maximum concurrence for the nearest neighbor spins increases, and the concur-

rence vanishes at around B = 6, compared to B = 8 for the higher-temperature case.

A small level of concurrence is also observed for the next-nearest neighbor spins in

the critical range of the magnetic field, B = 2 to B = 5. In Fig. 4.11(d), a low level of

concurrence is observed within the critical range of the magnetic field for spins (1,4).

In the lowest temperature case of kBT = 0.1 shown in Fig. 4.11(c), the maximum

value of the concurrence for all pairs of spins is larger than the high-temperature

cases. The concurrence dramatically changes within the magnetic field range from

B = 1.8 to B = 3.8. Before and after this range, the concurrence rapidly decreases.

The concurrence for the next-nearest neighbor spins is zero just below this range

and suddenly goes to a maximum, which remains until the end of the range of the

magnetic field, and then rapidly disappears at the end of this range. Notably, there

is a noticeable level of concurrence for spins (1,4) within the range of the magnetic

field in the low-temperature limit of kBT = 0.1.

To summarize, in the case of four spins in the Heisenberg spin chain, we can

conclude that the maximum value of the concurrence increases as the temperature

decreases, but the range of the magnetic field in which the system is entangled de-

creases. Like the two and three-spin systems, the concurrence vanishes faster for the

lower temperature case compared to the higher temperature values. Finally, the last

result of this section is that the concurrence decreases as the number of lattice sites

between given spins in the chain increases.

In Fig. 4.12, we plot the eigenvalues of the Hamiltonian with four spins versus
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(a) (b)

Figure 4.12: Eigenvalues of Hamiltonian vs. magnetic field for N = 4.

magnetic field. In the absence of an external magnetic field, there is one five-fold

degeneracy, three three-fold degeneracy, and two singlets. After applying an external

magnetic field, the degeneracies lift. We can see some level crossings of eigenvalues

from B = 0 to almost B = 4, which is the range of the magnetic field for which we

find some fluctuations in the concurrence.

Figure 4.13 displays the eigenvalues of the R-matrix for four spins, considering

nearest and next-nearest neighbors, respectively. For nearest neighbors, as illustrated

in Figure 4.13(a), the non-degenerate largest eigenvalue at B = 0 and the triply

degenerate smallest eigenvalue results in a considerable concurrence at low magnetic

fields. In the case of next-nearest neighbors, depicted in Figure 4.13(b), the doubly-

degenerate largest eigenvalue at B = 0 leads to a concurrence of zero at low magnetic

field strengths. However, in the range of magnetic fields from B ≈ 1 to B ≈ 4,

the disparity between these two large eigenvalues intensifies, resulting in a non-zero

concurrence.

4.2.4 Five Spins

The objective of this particular section is to investigate the concurrence of the spin

chain with five spins. This situation introduces a novel scenario, as we explore the

entanglement between all spin pairs for four spins in the chain, in addition to exam-

ining the concurrence between the first and last spin of the chain, i.e., spins (1,5),

which are separated by a large number of lattice sites.
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(a) (b)

Figure 4.13: Eigenvalues of R-Matrix vs. magnetic field for N = 4, (a): spins (1,2);
(b): spins(1,3).

In Fig. 4.14(a), it is observed that at kBT = 2, the concurrence between next-

nearest neighbors is negligible. The concurrence is only noticeable for the nearest

neighbors, both at the middle and edges of the chain. However, Fig. 4.14(b) illustrates

that by reducing the temperature from kBT = 2 to kBT = 1, the concurrence for next-

nearest neighbors, such as spins (1,3), spins (3,5), and spins (2,4), becomes non-zero.

As expected, the level of concurrence decreases with an increase in the number of

lattice sites between the given pairs. The concurrence remains negligible for the first

and last spins on the chain and for the next-next-nearest neighbors, spins (1,4) and

spins (2,5). In Fig. 4.14(c), the concurrence for five spins in the low-temperature

regime, kBT = 0.1, is depicted. There is a magnetic field range between B = 2 to

B = 4 where some pairs of spins exhibit a maximum level of concurrence, except for

the nearest neighbors at the edges. In this low-temperature case, even the first and

last spins on the chain display entanglement within this range of the magnetic field.

In Fig. 4.15, we plot the eigenvalues of the Hamiltonian for five spins. Without

an external magnetic field, there are one six-fold degeneracy, four four-fold degen-

eracies, and five double-degeneracies. After applying an external magnetic field, the

degeneracies lift, and there are some level crossings of the eigenvalues from B = 0

to almost B = 6; this is the critical range of the magnetic field where concurrence

changes significantly. In Figure 4.16(a), the largest eigenvalue of the R matrix for

nearest neighbors is non-degenerate at B = 0, while the smallest eigenvalue is triply

degenerate, resulting in a non-zero concurrence at low magnetic fields. Conversely,

for next-nearest neighbors, as shown in Figure 4.16(b), the largest eigenvalue of the
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(a) (b)

(c)

Figure 4.14: Concurrence vs. magnetic field for Jx = Jy = Jz = 1, N = 5, (a):
kBT = 2; (b): kBT = 1; (c): kBT = 0.1.

(a) (b)

Figure 4.15: Eigenvalues of Hamiltonian vs. magnetic field for N = 5.

R matrix is doubly degenerate at B = 0, leading to a vanishing concurrence at low

magnetic field strengths. However, the disparity between these two large eigenvalues

increases in the magnetic field range from B ≈ 2 to B ≈ 4, resulting in a non-zero

concurrence.



44

(a) (b)

Figure 4.16: Eigenvalues of the R-Matrix vs. magnetic field for N = 5, a: spins (1,2);
(b): spins(1,3).

4.2.5 Ten Spins

This section of the thesis aims to investigate the concurrence of the 1D Heisenberg

spin chain with a larger number of spins, specifically ten spins on the chain, across

high and low temperatures.

In Fig. 4.17, the concurrence for the high-temperature case with kBT = 1 is

presented. Consistent with expectations, the concurrence between nearest neighbors

is higher than that between next-nearest neighbors. In the absence of a magnetic

field, nearest neighbor spins exhibit non-zero concurrence, with the maximum values

found at the edges of the chain, i.e., between spins (1,2) and spins (9,10). Conversely,

next-nearest neighbors are not entangled. Upon application of a magnetic field, the

concurrence between spins (1,2) and spins (9,10) decreases and reaches very small

values for B ≥ 6, while the concurrence between other nearest neighbors on the chain

shows peaks and dips before eventually decreasing to values close to zero. Only two

pairs of next-nearest neighbor spins, i.e., spins (1,3) and spins (8,10), exhibit non-zero

concurrence in the range of non-zero magnetic field.

In Fig. 4.18, we present the concurrence plot for a chain of ten spins at the

lower temperature of kBT = 0.1 as a function of magnetic field. Consistent with

the high-temperature case shown in Fig. 4.17 for kBT = 1, the nearest neighbor

spins exhibit non-zero concurrence, with the maximum values found at the edges of

the chain between spins (1,2) and spins (9,10) at zero magnetic field. However, all

next-nearest neighbor spins are separable and exhibit zero concurrence in the absence
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Figure 4.17: Concurrence vs. magnetic field for N = 10, kBT = 1, J = 1.

Figure 4.18: Concurrence vs. magnetic field for N = 10, kBT = 0.1, J = 1.
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of a magnetic field. After applying an external magnetic field, the concurrence for

nearest neighbors displays maxima and minima before vanishing at around B ≈ 4. In

contrast, the concurrence for next-nearest neighbors is non-zero in the magnetic field

range from B ≈ 1.8 to B ≈ 4 and vanishes after B ≈ 4.

In Fig. 4.19, we examine the magnetic field range of B ≈ 1.8 to B ≈ 4, where

the concurrence exhibits significant changes for low temperature, kBT = 0.1. It is

evident from the figure that the concurrence between the first and last spins on the

chain, spins (1,10), is minimal and increases with decreasing the number of lattice sites

separating the given pairs. Additionally, there are three critical magnetic field ranges

in which the concurrence changes notably. In the first two magnetic field ranges,

1.8 < B < 3 and 3 < B < 3.5, the concurrence for nearest and next-nearest neighbors

displays peaks and dips. However, in the final magnetic field range, 3.5 < B < 4,

the concurrence for pairs of spins with larger numbers of lattice sites between them is

non-zero, and a peak in the concurrence for those pairs is observed. Beyond B ≈ 4,

the concurrence for all pairs of spins becomes negligible.

The crossover fields where the concurrence changes significantly correspond to

critical points where the entanglement properties of the system undergo a qualitative

change. These critical points are determined by the interplay between the strength of

the magnetic field and the interactions between the spins. The behavior of the system

at these points is physically significant and is related to the existence of quantum

phase transitions. Specifically, in our system, the crossover fields mark the boundary

between different quantum phases that have distinct entanglement properties. The

crossover fields depend on the specific parameters of the system, such as the coupling

constants and the temperature, and they may change as one varies these parame-

ters. Similarly, as one changes the number of spins in the system, the entanglement

properties of the system may change, leading to different crossover fields.

4.2.6 Entanglement in the Presence of Magnetic Field: Dis-

cussion

From our results, it is evident that the symmetry of concurrence for B → −B and

for the antiferromagnetic case Jx = Jy = Jz = J = 1 is consistent with Fig. 3(b)

in Ref. [19], where the two external magnetic fields are equal. Additionally, in Fig.
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Figure 4.19: Concurrence vs. magnetic field for N = 10, kBT = 0.1, J = 1. This is a
closeup of Fig. 4.18 for 1.8 < B < 4.5.

4(b) of the Ref. [19], it is shown that by increasing the temperature from kBT = 0.9

to kBT = 1.5, the concurrence vanishes. Our findings are in agreement with this

previous work.

Our findings demonstrate that the maximum concurrence between nearest neigh-

bors is larger than the maximum concurrence between next-nearest neighbors in the

1D Heisenberg spin chain. This observation is consistent with the results presented in

Fig. 2 of Ref. [18], which specifically examines the case of a six-spin chain for nearest

neighbors, next-nearest neighbors, and next-next-nearest neighbors. Our work builds

upon these previous findings and provides further insights into the behavior of entan-

glement in the Heisenberg spin chain. We have extended this analysis to numerous

other cases to investigate in more detail the impact of the magnetic field and the

number of lattice sites separating given pairs on entanglement. This is an interesting

observation that can have important physical consequences in a variety of contexts.

For example, in spintronics and quantum computing, the strength of entanglement

between neighboring spins can determine the efficiency of quantum gates and the

robustness of the quantum state against decoherence.
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Furthermore, Refs. [18] confirms the existence of critical ranges of the magnetic

field where the concurrence changes significantly, which is in agreement with our

results. The critical magnetic field range where the concurrence changes dramatically

suggests that there is a phase transition in the system. The exact nature of this phase

transition would depend on the specific details of the system, such as the strength

of the coupling J and the temperature. Such phase transitions can potentially be

important in many-body quantum systems and may have applications in quantum

information processing and condensed matter physics.

Furthermore, the lifting of degeneracies by applying an external magnetic field has

significant implications for the behavior of the system, including changes in magnetic

properties, transport properties, and the emergence of magnetic ordering.

Taken together, these results provide valuable insights into the nature of entan-

glement in 1D spin systems, and how it is affected by external magnetic fields. In

particular, our findings suggest that the entanglement can be used as a sensitive probe

of the critical behavior of such systems, and that it can provide valuable information

about the underlying symmetries and phase transitions.



Chapter 5

Conclusion and Future works

5.1 Conclusion

Throughout this study, we have investigated the entanglement properties of the one-

dimensional Heisenberg spin chain in various scenarios. By utilizing the Hamiltonian

of the spin chain, including coupling constants, spin operators, and an external mag-

netic field in the z-direction, we have derived the density matrix as a function of

temperature. Our primary objective was to examine the entanglement between pairs

of spins on the chain and explore how it varies with temperature, coupling constants,

magnetic field, number of spins, and the number of lattice sites separating given

pairs of spins. To accomplish this, we have utilized the concurrence as a measure of

entanglement, and the reduced density matrix technique to compute it.

The main results are as follows.

• In general, the behavior of the concurrence with respect to increasing coupling

strength depends on the specific values of the coupling constants and the tem-

perature of the system. In the antiferromagnetic case with all positive coupling

constants, the concurrence generally increases with increasing coupling strength.

However, in other cases, such as in the presence of a magnetic field or in the pres-

ence of different signs or magnitudes of coupling constants, the concurrence can

exhibit more complex behavior, such as non-monotonic behavior or decreasing

behavior with increasing coupling strength.
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• The entanglement decreases as temperature increases and converges to small

values or vanishes in the high-temperature limit. The high-temperature limit

refers to the limit at which the thermal energy is much greater than the energy

scale of the interactions between the spins. In this limit, the entanglement

between the spins is greatly reduced. The high-temperature limit depends on

the other parameters of the problem, such as the number of spins and the

coupling constants, which can affect the energy scale of the interactions and the

stability of the magnetic ordering in the system. Therefore, the specific values

of the high-temperature limit can vary for different parameter values.

• The relation between entanglement and an external magnetic field in the z-

direction is not as straightforward as the relation between entanglement and

temperature or coupling constants. The critical range of the magnetic field

in the z-direction significantly affects the entanglement in the system, and its

specific values depend on factors such as the number of spins, temperature, and

coupling constants. This range can indicate the presence of a phase transition

and can exhibit non-monotonic or oscillatory behavior in the concurrence.

• Another exciting result of this work is the entanglement of a pair of spins versus

the number of lattice sites separating given pairs(i.e., pairs of spins for which

we are studying the entanglement). Generally, the entanglement decreases as

the number of lattice sites separating given pairs increases.

Furthermore, our research has potential applications in quantum information pro-

cessing and quantum computing. Entanglement is a key resource in quantum commu-

nication and computing, and our study provides a better understanding of how it can

be generated and manipulated in one-dimensional Heisenberg spin chains. Addition-

ally, our results can be used to design more efficient and accurate quantum algorithms

and simulations that rely on entanglement in spin chains.

5.2 Future works

Some possible extensions of this research are as follows.

• For future investigations, it would be valuable to determine the extent of entan-

glement for a large number of spins, beyond the ten spins on the chain considered
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in this study, to comprehend how the entanglement varies for different pairs of

spins. However, this endeavor is highly challenging and computationally ex-

pensive due to the dimension of the Hamiltonian and density matrix, which is

2N ∗2N for N spins on the chain. To perform such calculations, it is necessary to

utilize compiler languages such as C++ and Fortran, which are not as straight-

forward as Python for modeling entanglement. This future work is essential to

gain a better understanding of the nature of entanglement in many-body sys-

tems, and it could have significant implications for the development of quantum

computing and other quantum technologies.

• Another promising avenue for future work is to explore the effects of anisotropic

external magnetic fields on the entanglement properties of spin systems. By

applying spatially varying magnetic fields in different directions, we can study

how the entanglement changes between different pairs of spins and gain insights

into the anisotropic nature of entanglement in these systems. Such investigations

could have significant implications for the development of spin-based quantum

devices and technologies, making this an exciting area for future research.

• For future work, it is also interesting to perform a more thorough study of

the entanglement in spin chains under the combined effect of magnetic fields,

coupling constants, and temperature. To achieve this, it is necessary to plot

3D graphs of the concurrence and study their relationship with these variables.

Such an analysis can provide new insights into the behavior of entanglement

in spin systems and its dependence on different physical parameters, leading to

potential applications in quantum technologies.



Appendix A

Mathematical operations for

quantifying entanglement

This appendix includes illustrative examples of fundamental mathematical tools used

in the context of quantum information, such as natural logarithms, exponentials,

square roots, and the partial transpose of matrices. Additionally, an example of the

Peres-Horodecki criterion is provided in the following section. Finally, the mathemat-

ical description of the Bell Inequality is presented for reference. First, we consider a

matrix like this:

A =

(︄
6 −4

3 −1

)︄
.

The eigenvalues and eigenvectors of this matrix are:

λ1 = 3, λ2 = 2, V1 = (4, 3), V2 = (1, 1).

Now, we can generate the matrix and the inverse matrix based on the eigenvectors

and the eigenvalues of matrix A.

By utilizing equation (2.1), we are able to calculate the natural logarithm of matrix

A.

logA =

(︄
4 1

3 1

)︄(︄
ln 3 0

0 ln 2

)︄(︄
1 −1

−3 4

)︄
,

logA =

(︄
ln (81

8
) 4 ln (2

3
)

3 ln (3
2
) ln (16

9
)

)︄
.
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The method to find the square root and the exponential of a matrix is the same,

the only difference is that we have to replace the square root and the exponential of

the eigenvalues of matrix A on the main diagonal elements. Equation (2.2) enables

us to determine the exponential of matrix A.

expA =

(︄
4 1

3 1

)︄(︄
exp 3 0

0 exp 2

)︄(︄
1 −1

−3 4

)︄
,

expA =

(︄
58.2 −50.8

38.1 −30.7

)︄
.

And finally, for the square root of the matrix A, we have:

√
A =

(︄
4 1

3 1

)︄(︄√
3 0

0
√

2

)︄(︄
1 −1

−3 4

)︄
,

√
A =

(︄
2.7 −1.3

0.9 0.5

)︄
.

This method to find the natural logarithm, square root, and exponential of a

matrix works for any dimensionality of a diagonalizable square matrix, provided the

eigenvalues are greater than or equal to zero.

In this section, we study an example of the Peres–Horodecki criterion. As an

example, we consider the density for the two-qubit Werner’s states,

ρ = p|ψ−⟩⟨ψ−| + (1 − p)
I

4
.

Where 0 ≤ p ≤ 1, I is the identity matrix , and |ψ− >= 1√
2
(| + −⟩ − | − +⟩). Now,

we can write the density matrix:

|ψ−⟩⟨ψ−| =
1

2
(| + −⟩⟨+ − | − | + −⟩⟨− + | + | − +⟩⟨− + | − | − +⟩⟨+ − |).
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Can be written as the matrix:

=
1

4

⎛⎜⎜⎜⎜⎝
0 0 0 0

0 2 −2 0

0 −2 2 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

and

I

4
=

1

4

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ ,

this gives us

ρ =
1

4

⎛⎜⎜⎜⎜⎝
1 − p 0 0 0

0 p+ 1 −2p 0

0 −2p p+ 1 0

0 0 0 1 − p

⎞⎟⎟⎟⎟⎠ .

From section 2.3.4, we know that the positive partial transpose of a matrix can be

calculated from equation (2.14). We can find the partial transpose of the density

matrix as ρT :

ρT =
1

4

⎛⎜⎜⎜⎜⎝
1 − p 0 0 −2p

0 p+ 1 0p 0

0 0 p+ 1 0

−2p 0 0 1 − p

⎞⎟⎟⎟⎟⎠ .

In our analysis, we utilized the Peres-Horodecki criterion, which establishes that if all

eigenvalues of the positive partial transpose of the density matrix are positive, the

system is separable. Conversely, if at least one eigenvalue is negative, the system is

entangled. In our example, the eigenvalues were calculated to be λ1,2,3 = 1+p
4

and

λ4 = 1−3p
4

. Our calculations showed that the eigenvalue λ4 is negative for the range

1 ≥ p > 1
3
, indicating that the state is entangled within this range. This finding

highlights the significance of the Peres-Horodecki criterion as a tool for identifying

entangled states.

In this section, I follow the derivation given in Ref. [5]. Let us consider two spins 1
2

particles, labeled as A and B, which are entangled and in a singlet state. The singlet



55

state is given by:

|ψ⟩ =
1√
2

(| ↑A⟩ ⊗ | ↓B⟩ − | ↓A⟩ ⊗ | ↑B⟩), (A.1)

where | ↑A⟩ and | ↓A⟩ are the spin-up and spin-down states of particle A, respectively,

and | ↑B⟩ and | ↓B⟩ are the spin-up and spin-down states of particle B, respectively.

Now, let us define two observables for each particle, labeled as A0 and A1 for particle

A, and B0 and B1 for particle B. Each observable has two possible outcomes, +1

or -1, corresponding to the spin-up or spin-down state. If we consider the following

combination, if they are hidden variables

⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ + ⟨A1B1⟩ = (A.2)

a0b0 + a0b1 + a1b0 − a1b1 = (a0 + a1)b0 + (a0 − a1)b1 ≤ 2,

where a0 and a1 correspond to the possible values that can be obtained when measur-

ing the properties represented by A0 and A1, respectively, and b0 and b1 correspond to

the possible values that can be obtained when measuring the properties represented

by B0 and B1, respectively. Since a0 and a1 can only take the values of +1 or −1,

it follows that a0 = a1 or a0 = −a1. When a0 and a1 have the same value, the

term (a0 − a1)b1 becomes zero, while when a0 and a1 have opposite values, the term

(a0 + a1)b0 becomes zero. Therefore, one of the terms on the right-hand side of the

Bell inequality expression will vanish, and the other will either equal +2 or −2.

In the example we are considering, A0 and A1 represent measurements of spin in

the z and x directions, respectively, and B0 and B1 represent measurements of spin in

the directions of −(x̂+ ẑ)/
√

2 and (x̂− ẑ)/
√

2, respectively, with multipied by 2
h̄
. We

will now utilize the singlet state given in equation A.1 and evaluate the combination

given in equation A.2 to analyze the Bell inequality.

⟨ψ|A0B0|ψ⟩ =
4

h̄2
1

2

[︃
(⟨↑↓ | − ⟨↓↑ |)(S1z)

(−S2z − S2x)√
2

(| ↑↓⟩ + | ↓↑⟩)
]︃

=
4

h̄2
h̄2

4

1

2
√

2
(⟨↑↓ | ↑↓⟩ + ⟨↓↑ | ↓↑⟩) =

1√
2
,

⟨ψ|A0B1|ψ⟩ =
4

h̄2
1

2

[︃
(⟨↑↓ | − ⟨↓↑ |)(S1z)

(S2x − S2z)√
2

(| ↑↓⟩ + | ↓↑⟩)
]︃

=
1√
2
,
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⟨ψ|A1B0|ψ⟩ =
4

h̄2
1

2

[︃
(⟨↑↓ | − ⟨↓↑ |)(S1x)

(−S2x − S2z)√
2

(| ↑↓⟩ + | ↓↑⟩)
]︃

=
1√
2
,

⟨ψ|A1B1|ψ⟩ =
4

h̄2
1

2

[︃
(⟨↑↓ | − ⟨↓↑ |)(S1x)

(S2x − S2z)√
2

(| ↑↓⟩ + | ↓↑⟩)
]︃

= − 1√
2
,

then, we can write:

⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ = 2
√

2.

The violation of the inequality ⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2, which was

derived from the assumption of local hidden variables, indicates the failure of local

realism and confirms the success of the Bell inequality.



Appendix B

Python codes

This section outlines the key functions used to calculate the Hamiltonian, density

matrix, and concurrence in our work. Specifically, the following Python function is

employed to obtain the Hamiltonian of the 1D Heisenberg spin chain.

def ham(N, J, B):

sx_ls = []

sy_ls = []

sz_ls = []

sz_ls2 = []

for i in range(N):

if(i < 2):

sx_ls.append(sigmax())

sy_ls.append(sigmay())

sz_ls.append(sigmaz())

else:

sx_ls.append(identity(2))

sy_ls.append(identity(2))

sz_ls.append(identity(2))

for i in range(N):

if(i < 1):
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sz_ls2.append(sigmaz())

else:

sz_ls2.append(identity(2))

summ = 0

for k in range(N-1):

summ = summ

+ J[0] * tensor(make_obj(np.roll(sx_ls, k, axis=0)))

+ J[1] * tensor( make_obj( np.roll(sy_ls, k, axis=0)))

+ J[2] * tensor(make_obj( np.roll(sz_ls, k, axis=0)))

for k in range(N):

summ = summ - B * tensor(make_obj( np.roll(sz_ls2, k, axis=0)))

return summ

The Python function used to compute the Hamiltonian of the 1D Heisenberg spin

chain takes three inputs: N for the number of spins, J for the list of three values

for the coupling constants, and B for the magnetic field. The np.roll function in

NumPy is used to shift the spin operators and identity matrices in the Hamiltonian

function. The first for loop generates the spin operators, which are Pauli matrices

in the normalized case, and the two-by-two identity matrices. The second for loop

generates the z component of the Pauli matrices for the external magnetic field part

in the Hamiltonian. Once we obtain the Hamiltonian matrix, we require another

function to compute the density matrix.

def density_maker(H, T):

Exp_H = (-H/T).expm()

P_func = Exp_H.tr()

Density_Matrix = (Exp_H)/(P_func)
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return Density_Matrix

In our code, the function to find the density matrix takes two inputs, the Hamiltonian

matrix H and the temperature T . To obtain the reduced density matrix for each pair

of spins, we utilize the ptrace function available in QuTiP. Finally, we have a function

to compute the concurrence between each pair of spins, completing the necessary steps

to analyze the entanglement in the Heisenberg spin chain.

def concurrence(rho):

sysy = tensor(sigmay(), sigmay())

rho_tilde = (sysy * rho.conj()) * sysy

R_Matrix = (rho.sqrtm() * rho_tilde) * rho.sqrtm()

R_Matrix2 = R_Matrix.sqrtm()

evals = R_Matrix2.eigenenergies()

evals = np.sort(np.real(evals))

lsum = (evals[3]) - (evals[2]) - (evals[1]) - (evals[0])

return max(0, lsum)

This function takes the reduced density matrix of each pair of spins as input. The R-

matrix and its eigenvalues are calculated inside this function to obtain the concurrence.
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