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Probiotic supplement as a
promising strategy in early tau
pathology prevention: Focusing
on GSK-3β?
Cassandra M. Flynn* and Qi Yuan*

Faculty of Medicine, Biomedical Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada

Neurofibrillary tangles (NFT) is one of the hallmarks of Alzheimer’s disease (AD).

Recent research suggests that pretangle tau, the soluble precursor of NFT, is an

initiator for AD pathogenesis, thus targeting pretangle tau pathology may be a

promising early intervention focus. The bidirectional communications between

the gut and the brain play a crucial role in health. The compromised gut-brain

axis is involved in various neurodegenerative diseases including AD. However,

most research on the relationship between gut microbiome and AD have focused

on amyloid-β. In this mini review, we propose to target preclinical pretangle

tau stages with gut microbiota interventions such as probiotic supplementation.

We discuss the importance of targeting pretangle tau that starts decades before

the onset of clinical symptoms, and potential intervention focusing on probiotic

regulation of tau hyperphosphorylation. A particular focus is on GSK-3β, a

protein kinase that is at the interface between tau phosphorylation, AD and

diabetes mellitus.
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1. Introduction

More than 55 million people worldwide are living with dementia, the number will
nearly triple by 2050 (World Health Organization). Alzheimer’s disease (AD), the most
common type of dementia, is characterized by two hallmarks: amyloid β (Aβ) plaques
and neurofibrillary tangles (NFT) (Scheltens et al., 2016). To date, therapeutic approaches
focusing on clearing Aβ has largely failed (Holmes et al., 2008; Tayeb et al., 2013; Mullane
and Williams, 2020). Therapeutics that are successful in removing Aβ plaques have failed in
improving cognitive function (Holmes et al., 2008; Tayeb et al., 2013). Antibody therapies
focusing on soluble oligomers of Aβ, such as Aducanumab and Lecanemab, appear to have
shown more promising effects in clinical trials (Ferrero et al., 2016; Panza et al., 2019; Shi
et al., 2022). However, Aβ are often prevalent in aged brains without AD (Delaere et al.,
1993). Targeting tau pathology seems to be a more promising approach, as tau pathology
is highly correlated with cognitive dysfunction in AD patients (Spires-Jones and Hyman,
2014; Mullane and Williams, 2020). In this mini review, we discuss the importance of
targeting pretangle soluble tau that starts decades before the onset of clinical symptoms,
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the link between tau hyperphosphorylation and aberrant GSK-
3β activation, and potential prevention focusing on probiotic
regulation of tau hyperphosphorylation via GSK-3β.

2. Why targeting pretangle tau

Seminal studies by Braak and Braak (1991) and Braak et al.
(2011) have described the stereotypical patterns of tau pathology
and progression in AD. These patterns were developed into a
neurofibrillary tangle (NFT) staging (I-VI) system, and more
recently, a pretangle tau staging system (a, b, c, Ia, and Ib)
(Braak et al., 2011). Abnormally phosphorylated pretangle tau
originates in the brain stem locus coeruleus (LC), spreads to
other neuromodulatory nuclei before affecting the transentorhinal
cortex. NFT is first formed in the entorhinal cortex (NFT stage
I) and spreads to the limbic system including the hippocampus
(stage II), affecting associative sensory cortices (stages III/IV), and
eventually primary and secondary sensory cortices (stages V/VI)
(Braak et al., 2011; Braak and Del Tredici, 2015). Abnormally
phosphorylated pretangle tau appears to be the earliest sign of
AD, preceding NFT (Braak et al., 2011). Thus preventing tau
hyperphosphorylation could be ground zero for AD therapeutic
strategies.

Neurofibrillary tangles has been considered a culprit of AD
pathology. Cross-sectional studies of AD brains demonstrated a
correlation of tangle accumulation with neuronal loss and dementia
(Braak and Braak, 1997; Congdon and Duff, 2008). However, recent
research suggests that soluble pretangle tau, including oligomers,
are more toxic (Brunden et al., 2008; Congdon and Duff, 2008;
Spires-Jones and Hyman, 2014). Key evidence supports this notion.
Using computation modeling, Morsch et al. (1999) reported that
in the CA1, tangle-bearing neurons survived for decades, thus
NFT may not be the cause of cell death. In both higher order
association cortex (Gomez-Isla et al., 1997) and hippocampus (Kril
et al., 2002), the amount of NFT is correlated with disease duration
but does not explain the degree of neuronal loss. Kril et al. (2002)
examined the appearance of extracellular ghost tangles as an index
of neuronal death post-NFT formation. Although marked neuronal
loss (∼60%) was identified in AD brains, NFTs only accounted for
2–17% of total cell loss. A large proportion of neuronal death may
occur prior to the formation of NFT.

Findings from animal tau models support the idea that NFT
does not cause cognitive decline or neuronal death, and in some
cases, may even be neuroprotective (Brunden et al., 2008; d’Orange
et al., 2018). Synaptic loss and dysfunction preceded tangles in
a P301s tau model (Yoshiyama et al., 2007). Using a mouse line
expressing a repressible human tau, Santacruz et al. (2005) reported
that suppression of transgenic tau following NFT formation
successfully reversed neuronal loss and memory deficiency, while
NFT continued to accumulate. In another study, the induction
of a human wild-type tau (hTauWT) in rat brain resulted in
tau hyperphosphorylation and neurotoxicity without aggregation.
Surprisingly, co-expression of the hTauWT with a pro-aggregation
tau peptide led to the formation of NFT but preserved neuronal
survival (d’Orange et al., 2018). The reduction of soluble tau and Aβ

was sufficient to ameliorate cognitive and behavioral deficits found
in 3×Tg-AD mice, despite of the presence of NFTs and amyloid
plagues (Oddo et al., 2006).

Recently, our laboratory has developed a pretangle tau model in
rats that recapitulates some of the key features of Braak’s pretangle
stages and preclinical pathology (Ghosh et al., 2019; Omoluabi
et al., 2022). We seeded human tau pseudophosphorylated at 14
sites mostly in proline-rich regions (hTauE14) in the rat LC. The LC
neurons expressing hTauE14 exhibited somatodendritic expression
of the human tau, and hTauE14 spread to other neuromodulatory
nuclei in the brain stem and the entorhinal cortex (Ghosh et al.,
2019; Omoluabi et al., 2022). In the absence of NFT, hTauE14
rats showed impairment in olfactory associative discrimination,
similar to olfactory dysfunction in pre-clinical AD (Conti et al.,
2013; Devanand et al., 2015). LC fiber degeneration and neuronal
loss were also observed and correlated with the severity of
behavior deficiency, paralleling human observations (Gulyas et al.,
2010; Theofilas et al., 2017). However, hTauWT seeding without
pseudophosphorylation in the rat LC in another study showed
negligible effects of neuronal toxicity (Kelberman et al., 2022).
Together, the degree of abnormal tau phosphorylation appears to
be a decisive factor in tau pathology.

3. Probiotic therapy reducing tau
hyperphosphorylation via the
GSK-3β pathway

As pretangle tau appears to be a crucial initiator in
AD pathogenesis, strategies focusing on reducing tau
hyperphosphorylation could be critical. A key feature in tau
hyperphosphorylation is glycogen synthase kinase-3 (GSK-3),
a proline-rich serine/threonine kinase (Sayas and Avila, 2021).
GSK-3 is physiologically present in two isoforms GSK-3α and
GSK-3β. The field has largely focused on the role of GSK-3β in
tau pathology. Excessively activated GSK-3β contributes to the
abnormal phosphorylation of tau, leading to the destabilization
of microtubules, as seen in AD pathogenesis (Morris et al., 2011;
Sayas and Avila, 2021). In addition to this, GSK-3 is a downstream
regulator of other tau kinases and phosphatases, such as cyclin-
dependent kinase 5 and protein phosphatase 1 and 2A (Bennecib
et al., 2000; Plattner et al., 2006).

GSK-3β expression is up-regulated in the hippocampus of AD
patients (Pei et al., 1999; Blalock et al., 2004). The active GSK-
3β is initially found in pretangle neurons in the entorhinal cortex
and extends to other brain regions in the same spatial sequence
as tau pathology (Pei et al., 1999). Overexpression of GSK-3β in
mice results in tau hyperphosphorylation, prevents induction of
LTP (Hooper et al., 2007) and impairs spatial learning (Hernandez
et al., 2002). Normalizing GSK-3β restores normal phosphorylated
tau levels, reduces neuronal loss and cognitive deficit (Hernandez
et al., 2002). Interestingly, GSK-3β overexpression is associated
with tau hyperphosphorylation but not tangles in the hippocampus
(Hernandez et al., 2002). Lithium, an inhibitor of GSK-3β,
effectively reduces tau hyperphosphorylation (Munoz-Montano
et al., 1997).

The bidirectional connections between the gut microbiota and
the brain, termed the Microbiota-Gut-Brain axis, is a growing
topic of interest in the pathogenesis of neurodegenerative diseases
such as AD. Gut dysbiosis resulting from alterations in the
composition and decreased biodiversity of the microbiome are
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observed in AD patients (Vogt et al., 2017; Sochocka et al.,
2019) and AD rodent models (Nimgampalle and Kuna, 2017;
Lee et al., 2019; Li et al., 2020). Changes in gut microbiota
makeup as seen in AD can lead to increased intestinal barrier
permeability and systemic inflammation (Stadlbauer et al., 2020).
Combined with increased blood-brain barrier permeability in
AD, this results in a pathway from the gut to the brain for
neuroinflammatory cytokines, lipopolysaccharides (LPS), and toxic
amyloid proteins to pass through (Lin et al., 2018; Pellegrini
et al., 2018; Kowalski and Mulak, 2019). LPS, a cell wall
component from gram-negative bacteria, is found in higher levels
in AD patients, resulting in elevated pro-inflammatory mediators
and further compromised blood-brain barrier, exacerbating
neuroinflammation (Kim et al., 2021).

Dietary treatments, such as probiotics, present a therapeutic
potential to gut dysbiosis and can provide a shift toward a healthier
gut microbiome makeup (Gibson and Roberfroid, 1995; Krumbeck
et al., 2016). Probiotics are defined as live microorganisms
which confer a health benefit on the host by the World Health
Organization. They have been shown to improve homeostasis of
the internal microbiota, and maintain human intestinal health
(Sanders, 2011; Sanders et al., 2011, 2018). When the number
of beneficial bacteria rise, they compete for receptor sites with
harmful bacteria and create a balance between harmful and
beneficial bacterial species, thus providing a shift toward gut
eubiosis (Sanders, 2011).

Probiotic therapy, which has been developed to reverse gut
dysbiosis associated with AD (Vogt et al., 2017; Lin et al.,
2018), has the potential of correcting tau hyperphosphorylation
through GSK-3β suppression (Hooper et al., 2008; Lin R. et al.,
2020; Figure 1). L. plantarum DP189 (Song et al., 2022) and
B. Breve (Abdelhamid et al., 2022) strains of probiotics inhibits
tau hyperphosphorylation in mouse models of AD. At mechanistic
level, probiotic supplementation could exert its effect on GSK-
3β and tau phosphorylation through PI3K/Akt signaling. Short-
chain fatty acids (SCFAs) such as butyrate, produced by gut
bacteria and subsequently released in the bloodstream, enhances
gut barrier function and free fatty acid receptor FFA2/GPR43-
mediated PI3K/Akt signaling in muscle cells (Tang et al., 2022).
Probiotics or SCFAs can also act on PI3K/Akt signaling via other
receptors such as insulin-like growth factor 1 receptor (IGF-
1R) or Toll-like receptors (TLR) (Larraufie et al., 2017; Dang
et al., 2018; Mohseni et al., 2021; Paveljsek et al., 2021). In the
brain, L. plantarum gut administration results in an increase
in Akt phosphorylation at S473, causing an elevated level of
phosphorylated GSK-3β at S9 and subsequent inactivation of GSK-
3β (Song et al., 2022). The inactivation of GSK-3β decreases
tau phosphorylation at numerous proline-rich and non-proline
sites (Hanger et al., 2009; Sayas and Avila, 2021). The precise
route and mechanism of how gut probiotic supplement influences
PI3K/Akt/GSK-3β signaling in the brain is not clear. However,
L. plantarum has been shown to increase the abundance of
butyrate-producing bacteria Anaerotruncus and Faecalibacterium
(Wang et al., 2018). Therefore, it could mediate the brain effect
through SCFAs circulating in the blood and binding to GPR43
receptors (Brown et al., 2003; Barki et al., 2022; Tang et al., 2022),
TLR (Dang et al., 2018; Mohseni et al., 2021; Paveljsek et al., 2021),
or IGF-1R via elevated serum IGF-1 (Endo et al., 2013; Yan et al.,
2016; Mohseni et al., 2021). IGF-1R is widely expressed in the brain

such as the hippocampus (Lin J. Y. et al., 2020). TLR is abundantly
expressed in microglia, and to a lesser degree, neurons (Tang
et al., 2007; Fiebich et al., 2018). GPR43 receptors are expressed
in multiple tissues including neurons (Kimura et al., 2020; Barki
et al., 2022). In another study, two strains of L. Acidophilus
treatment in mice down-regulates GSK-3β gene expression (Yan
et al., 2019). These studies suggest that probiotics can directly
act on GSK-3β pathway and alleviate tau hyperphosphorylation.
Furthermore, probiotic has been proven effective in treating
gastric infection caused by H. Pylori (Aiba et al., 2015), which
induces tau hyperphosphorylation in mouse hippocampal tissue
(Wang et al., 2014; Uberti et al., 2022), via the GSK-3β pathway
(Wang et al., 2014). Dysregulation of gut microbiota via gut-
brain axis is associated with AD and probiotic supplement has
the potential of correcting tau hyperphosphorylation through
GSK-3β suppression. More extensive future research is in need
to characterize the relationship between gut microbiota and tau
hyperphosphorylation, especially in suitable animal models with
GSK-3β induced tau hyperphosphorylation as a key feature.

4. The link between AD and diabetes
via GSK-3β

Diabetes mellitus (DM), caused by lack of insulin, insulin
resistance, or both, is considered a risk factor for AD (Zhang
et al., 2018; Sun et al., 2020). AD has been referred to as “Type-3
diabetes” by researchers (de la Monte and Wands, 2008; Kroner,
2009) and the presence of DM nearly doubles an individual’s risk
of developing AD (Leibson et al., 1997; Xu et al., 2004). Over 80%
AD patients have type II DM or abnormal blood glucose level (Zhao
and Townsend, 2009), suggesting a strong association between AD
and DM.

Insulin has been recognized for its role in regulating Aβ protein
and the generation of NFTs (Razay and Wilcock, 1994; Kroner,
2009). There is a feed-forward loop between insulin resistance and
AD progression, resulting in higher levels of neuroinflammatory
cytokines, reactive oxygen species, intracellular Ca2+, Aβ, GSK-
3β activation, and tau hyperphosphorylation (Wei et al., 2021). It
is also known that Aβ-facilitated tau phosphorylation by GSK-3
pathways can be mediated through the interference with insulin or
wnt pathways (Townsend et al., 2007; Magdesian et al., 2008).

Dementia in the DM population shows significantly more tau
accumulation than Aβ. A study by Hanyu and colleagues, showed
81% of patients with DM-related dementia showed an increase
in tau protein, while only 39% showed Aβ accumulation through
positron emission tomography imaging (Takenoshita et al., 2018).
Impairment of insulin signaling is directly associated with tau
phosphorylation. Hyperphosphorylated tau is found to be co-
localized with increased insulin oligomers in both the hippocampus
and the temporal cortex (Rodriguez-Rodriguez et al., 2017). The
intraneuronal accumulation of insulin, increased insulin resistance
and decreased levels of insulin receptors, are dependent on tau
hyperphosphorylation and follow the progression of tau pathology
(Rodriguez-Rodriguez et al., 2017). An siRNA mediated GSK-
3β knockdown model showed a reduction of AD pathology
through the restoration of the insulin signaling AMPK and Mapk3
pathways, resulting in improved cellular energy homeostasis,
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FIGURE 1

Probiotic therapy in early tau pathology prevention and treatment. Alzheimer’s disease is associated with dysbiosis in the gut, which in turn, can
exacerbate tau pathology leading to tau hyperphosphorylation via GSK-3β pathway (1). Probiotic supplement restores gut microbiome (2),
stimulates the release and transport of short-chain fatty acids (SCFAs) into the brain via enteric nerves and blood stream (3). SCFAs stimulate
PI3K/Akt pathway and down-regulates GSK-3β, thus preventing tau hyperphosphorylation. NFT, neurofibrillary tangle; TLR, Toll-like receptor;
IGF-1R, insulin-like growth factor 1 receptor. Created with BioRender.com.

neuronal health, with reduced Aβ and tau formation in the cortex
and hippocampus (Gupta et al., 2022).

Tau pathology, via GSK-3β over-activation, could be the
specific link between diabetic patients and AD. Targeting the GSK-
3β pathway through probiotics may provide a promising strategy
to lower tau pathology and subsequently treat both AD and DM. In
line with what has been shown in AD animal models, strengthening
the gut-brain barrier through probiotic supplementation in a
diabetes mouse model down-regulated GSK-3β levels compared
to the diseased group without probiotic supplementation
(Yan et al., 2019).

5. Conclusion and outlook

The findings reviewed here support the idea that soluble
pretangle tau is a key player of tau pathology and highlight the need
to target pretangle tau in AD prevention. Probiotic supplement
could be a promising, natural, and non-invasive intervention to
prevent pretangle tau formation. We highlight the roles of GSK-3β

in mediating tau hyperphosphorylation and the effects of probiotic
supplementation. We propose to further test probiotic treatments
in pretangle tau models, as early intervention at preclinical stages
may be a more feasible and fruitful approach for AD prevention.

Direct targeting of GSK-3β has its own limits. Concerns
regarding GSK-3β as a ubiquitously expressed kinase, involved in

several key cellular biological processes have been raised (Congdon
and Sigurdsson, 2018). Two GSK-3β inhibitors AZD2558 and
AZD1080 were brought to clinical trials, but were deemed not
suitable for chronic AD treatment due to significant adverse side
effects (Bhat et al., 2018). Tideglusib is the only GSK-3β inhibitor
that has made to phase II clinical trials. Despite being associated
with cognitive improvements and a reduction of cerebrospinal
fluid levels of β-secretase in a subgroup of patients with mild AD,
the clinical improvement was not significant (del Ser et al., 2013;
Lovestone et al., 2015). While it remains challenging to bypass
the widespread GSK-3β inhibition with pharmaceutical strategies,
probiotic treatment has various additional beneficial effects (Vogt
et al., 2017; Lin et al., 2018), thus providing a more holistic
approach.

Future study could focus more on the sex difference of the
GSK-3β signing. Sex differences in human AD (Podcasy and
Epperson, 2016; Grimm and Eckert, 2017; Mosconi et al., 2017a,b;
Laws et al., 2018; Yanguas-Casás et al., 2018) may also relate
to hormone-mediated GSK-3β signaling. Perimenopause is the
stage at which women show AD vulnerability (Brinton et al.,
2015; Mosconi et al., 2017a; Neu et al., 2017; Pike, 2017). The
neuroprotection role of 17β-estradiol has been linked to GSK-
3β in animal models. A significant decrease in Aβ accumulation
and hyperphosphorylated tau levels through the activation of
17β-estradiol has been associated with the inactivation of the
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GSK-3β pathway (Goodenough et al., 2005). It was also found
that 17β-estradiol prevented GSK-3β induced neuronal apoptosis
in hippocampal slice culture (Goodenough et al., 2005). This
work adds additional support that estrogen can lower GSK-3β

initiated tau phosphorylation. Keeping GSK-3β in check following
menopause may be particularly important for women in AD
prevention, and probiotic supplementation may provide some of
the protections in this regard.
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