
Pyami: A Python Wrapper For The Libami
Library

by

c©Michael Burke

A thesis submitted to the Department of Physics and

Physical Oceanography in partial fulfillment of the

requirements for the degree of Bachelor of Science.

Department of Physics and Physical Oceanography

Memorial University

April 2023

St. John’s, Newfoundland and Labrador, Canada

Abstract

We present pyami, a Python library to evaluate the frequency integrals encountered

in the evaluation of Feynman diagrams. pyami is code bindings for the C++ library

libami, which implements the Algorithmic Matsubara Integration technique that has

been proposed in recent years. By implementing this library into Python, the plethora

of mathematical Python libraries are now at one’s disposal to evaluate the remain-

ing spatial momentum integrals after the algorithmic Matsubara integration process.

Once provided the topologies of the Feynman diagrams of interest, the values can

be computed within an interactive Python environment such as a Jupyter Notebook.

We then show example calculations using the Python importance sampling package,

VEGAS, to evaluate self-energy diagrams on the real frequency axis by a renormalized

perturbation theory scheme described in our recent work.

ii

Acknowledgements

Firstly, like to thank my supervisor Dr. James P.F. LeBlanc with whom I held a

NSERC USRA position in the spring 2022 semester prior to beginning this Honour’s

project, giving me all the relevant experience in this subject area of Many-body per-

turbation theory and lead to my first publication. He also provided me with the

opportunity to travel and present my research at the American Physical Society’s

2023 March Meeting which helped further my interest in a career in academia. His

support has been instrumental in the creation of this thesis.

I would also like to thank Brad McNiven for his help on providing examples of

how to format this thesis document.

I also thank Dr. Mykhaylo Evstigneev, honours coordinator, for his guidance and

understanding during this irregular semester.

Lastly, I would like my parents for their support and encouragement all throughout

my degree.

iii

Table of contents

Title page i

Abstract ii

Acknowledgements iii

Table of contents iv

List of tables vii

List of figures viii

1 Introduction 1

2 Theory 3

2.1 Second Quantization . 3

2.1.1 N-body Wave Function . 4

2.1.2 Creation and Annihilation Operators 6

2.1.3 Occupation Numbers . 7

2.2 Zero Temperature Green’s Functions 9

2.2.1 Representations of Quantum Mechanics 10

2.2.2 S-Matrix . 14

iv

2.2.3 Green’s Functions . 16

2.2.4 Wick’s Theorem . 20

2.2.5 Feynman Diagrams . 25

2.2.6 Vacuum Polarization Graphs . 27

2.3 Non-zero Temperature Green’s Functions 30

2.3.1 Matsubara Green’s Functions 34

2.3.2 Retarded and Advanced Green’s Functions 37

2.4 The Hubbard Model . 43

2.5 Dyson’s Equation . 45

2.6 Diagrammatic Techniques . 47

2.7 Algorithmic Matsubara Integration . 55

2.7.1 The libami library . 57

2.8 Renormalized Perturbation Theory . 59

3 Methods 65

3.1 Writing pyami . 65

3.1.1 Pybind11 . 65

3.1.2 Using pyami . 66

3.2 Testing . 69

3.3 Scaling . 69

3.4 Renormalized Perturbation Theory . 71

3.4.1 Modifications to Diagram’s Topologies 71

3.4.2 Example Calculations . 73

4 Results 75

4.1 Scaling Tests . 75

4.2 Renormalized Perturbation Theory Calculations 77

v

5 Conclusion 81

5.1 Discussion . 81

5.2 Future work . 82

A pyami Code Excerpts 83

A.1 Binding codes with pybind11 . 83

B Sample Vegas implementation with pyami 89

B.1 pyami integrand class . 89

B.2 pyami-VEGAS integration function . 92

Bibliography 95

vi

List of tables

2.1 Dictionary of the relevant diagrammatic components in the two dimen-

sional Hubbard model using the Matsubara formalism. 48

4.1 pyami results for the average time in microseconds to change external

parameters and evaluate the integrand of 2nd, 4th and 6th order self-

energy integrands . 75

4.2 libami (C++) results for the average time in microseconds to change

external parameters and evaluate the integrand of 2nd, 4th and 6th order

self-energy integrands . 76

4.3 Time to evaluate fourth order self-energy diagram as a function of

Monte Carlo samples. 79

vii

List of figures

2.1 First order diagrams which arise from electron phonon interaction at

zero temperature. 26

2.2 Vacuum polarization graphs from the n = 4 term of Eq. (2.86). 29

2.3 Partition of the infinite series in Eq. (2.77) where a connected diagram

is multiplied by all possible disconnected diagrams. 30

2.4 Two dimensional square lattice depicting hopping energy t from a lat-

tice site to a neighbouring site and the onsite interaction U for filled

sites as modelled in the two dimensional Hubbard model. 43

2.5 Examples of self-energy parts. 45

2.6 Examples of proper self-energy parts. 46

2.7 Second order self-energy Feynman diagram. Labeling is specified to

match the indices in Eq. 2.166. 49

2.8 Complex plane of ω showing poles in the Residue process of evaluating

Matsubara sums. 51

2.9 Counter term self-energy diagrams with s = 0, 1, 2 insertions at second

order and fourth order which arise in the renormalized perturbation

theory scheme. 62

2.10 Schematic representation of the effect on sharp peaks in the AMI inte-

grand due to the introduced numerical regulator α in the renormalized

perturbation theory scheme. 64

viii

3.1 Second order self-energy diagram from the renormalized perturbation

theory scheme with one insertion . 72

4.1 Imaginary part of the fourth order self-energy diagram as a function of

the number of Monte Carlo samples using various Monte Carlo methods 77

ix

Chapter 1

Introduction

Many-body perturbation theory is a tool for computing observables of interacting

systems and gives rise to Feynman diagrams. Each Feynman diagram depicts a certain

sequence of interactions in the many-body system [1]. In these Feynman diagrams,

every possible value of internal momentum and frequency must be accounted for,

leading to high dimensional integrals. In the last couple of decades, there have been

many numerical approaches to evaluating these integrals [2].

Algorithmic Matsubara Integration (AMI) is a method for evaluating the frequency

integrals that arise in the evaluation of Feynman diagrams [3]. Once the AMI proce-

dure is applied, the remaining integrals over the spatial frequency degrees of freedom

are left to be performed by some numerical approach, typically a Monte Carlo scheme.

There is currently a C++ library called libami [4] which implements the AMI pro-

cess. So once given the topology of a Feynman diagram and external parameters of the

simulation, the frequency integrals are computed analytically, leaving the integrand

for the internal momentum degrees of freedom. This library, once paired with an inte-

gration tool for the momentum integrals, produces promising results for applications

2

in condensed matter physics as described in [5].

However, since libami is written in C++, it has a number of limited to external

libraries to perform the remaining momentum integrals. By implementing the AMI

process into Python, the plethora of Python math libraries will be accessible to per-

form these remaining integrals and give the user access to interactive environments

to preform calculations and view plots such as Jupyter Notebooks.

We present pyami, code bindings for the libami library, so that the power of the

AMI is now available in Python. pyami is a complete Python module, so that once

provided a Feynman diagram’s topology, by using AMI, the momentum integrand is

formed and the remaining integrals may be performed by external integration libraries

such as the VEGAS importance sampling Python library.

This thesis consists of a full introduction to Feynman diagrams and Algorithmic

Matsubara integration, discussion about the original C++ library and Python bind-

ings to create pyami and lastly an application where pyami is used in conjunction with

our resent work [6] for the fast evaluation of Feynman diagrams on the real frequency

axis.

Chapter 2

Theory

2.1 Second Quantization

Typically, quantum mechanics is introduced via the concept of a wave-function to

describe a particle’s probability density and its response to an external potential.

This is known as the first quantization, where as a result, the particles and energy

of the system are quantized. When we allow the fields that create a potential to

be influenced by the particles this is known as the second quantization. Now we

essentially quantize the fields as well as the particles, this leads into Quantum field

theory [7].

The study of second quantization is important in many-body systems [8]. It allows

us to express operators in terms of creation and annihilation operators. This leads to

models where we work in the grand canonical ensemble to take statistical mechanics

approaches to solve problems in many-body systems. We will follow the discussion

provided by Radi Jishi in Ref. [7] to introduce the key ideas in this theory.

4

2.1.1 N-body Wave Function

We start by looking at a N -body wave-function in a Hilbert space V from first quan-

tization, expressed in an orthonormal and complete basis |φν〉. We have

〈φα|φβ〉 = δαβ (orthonormality)
∑
ν

|φν〉 〈φν | = 1 (complete basis). (2.1)

Here each state, |φν〉, has a index ν which is a N vector with each element containing

a particle’s quantum numbers. Since each particle will have its own sub-space, Vj

with a corresponding orthonormal basis, |φνj〉j where only the quantum numbers of

the jth particle may vary, we can decompose the states of each particle into a direct

product of these spaces. That is, V =
⊗

j Vj. So the state vector of the many-body

system |Ψ〉 may be expressed as

|Ψ〉 =
∑

ν1,...,νN

Cν1ν2...νN
⊗
i

|φνi〉i . (2.2)

The one issue with this decomposition of the wave-functions is that we lose information

about the symmetry of the state |Ψ〉. This information was originally in the product

of kets - depending on whether or not the original wave-function is symmetric or

antisymmetric under exchange of labels. But now, that information is inside the

constant Cν1ν2ν3...νN . Meaning whether or not the system is fermionic or bosonic is

not as clear. We correct this by symmetrizing or antisymmetrizing the states after we

decompose the wave-functions.

For bosons, we sum over the N ! permutations 1, 2, 3, ..., N ; so that the basis states

5

are given by

ΦB
ν1ν2...νN

(1, 2, ..., N) =
1∏

µ

√
nµ!N !

∑
P

φν1 [P (1)]φν2 [P (2)]...φνN [P (N)], (2.3)

where P (i) is a permutation of 1, 2, 3, ..., N and nµ is the number of times the in-

dex µ appears in the product. The prefactor guarantees that ΦB
ν1ν2...νN

(1, 2, ..., N) is

normalized.

For fermions, we have a similar formulation but now nµ ∈ {0, 1} so the factorial

is always 1 and we demand that the wave-function vanishes if there is a repeated

state. This corresponds to an extra sign prefactor depending on the parity of the

permutation P ,

ΦF
ν1ν2...νN

(1, 2, ..., N) =
1√
N !

∑
P

(−1)Pφν1 [P (1)]φν2 [P (2)]...φνN [P (N)]. (2.4)

This expression is the summation notation for a determinant as shown in Eq. (2.5)

known as the Slater determinant,

ΦF
ν1ν2...νN

(1, 2, ..., N) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φv1(1) φv1(2) . . . φv1(N)

φv2(1) φv2(2) . . . φv2(N)

...
...

...

φvN (1) φvN (2) . . . φvN (N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.5)

Here it is clear that the properties of fermions hold when recalling properties of the

determinant. If any state is repeated, this corresponds to repeated row in the determi-

nant and, therefore, vanishes. Also, if we exchange the labels on two of the states, this

corresponds to swapping two rows, which in terms of the determinant, has the affect

of adding an extra minus sign to the prefactor, which is precisely the antisymmetric

6

property that we expect when exchanging labels.

2.1.2 Creation and Annihilation Operators

To avoid using determinants and sums over permutations of products, we define op-

erators to deal with the number of particles rather than the explicit wave-functions.

We first deal with fermions, where the number of particles whose state is |φν〉 is either

0 or 1 and obey the Pauli exclusion principle. We define a creation operator, c†ν , so

that once acting upon a state, the number of particles of state |φν〉 increases by 1

c†ν |φν1 ...φνN 〉 = |φνφν1 ...φνN 〉 . (2.6)

So for the state |φνφν1 ...φνN 〉, the Slater determinant then gains an extra row and

column for the extra particle. The Slater determinant then enforces the Pauli exclusion

principle so that if the new state was already occupied, the determinant will have a

repeated row and, therefore, vanish.

Next, we define the annihilation operator cν , so that once acting upon a state, the

number of particles of state ν decreases by 1

cν |φνφν1 ...φνN 〉 = |φν1 ...φνN 〉 . (2.7)

There is a subtlety here that the state that is being annihilated must be in the left-most

position in the ket. Since the fermionic states are antisymmetric, we can rearrange

the ket so that the state of interest is in the left-most position, while keeping track of

the number of rearrangements by minus signs

cν′ |φν1φν′ ...φνN 〉 = cν′(− |φν′φν1 ...φνN 〉) = − |φν1 ...φνN 〉 . (2.8)

7

We further define the annihilation operator for the case that the state ν /∈ {ν1, ν2, ..., νN}

to evaluate to zero.

It is not a coincidence that the notation being used for cν and c†ν is similar to

the usual convention of an operator A and its hermitian conjugate A†, cν and c†ν are

indeed hermitian conjugates. To see this, let |Ψ〉 = |φνφν1 ...〉 = c†ν |φν1 ...〉 then

1 = 〈Ψ|Ψ〉 = (c†ν |φν1 ...〉)†c†ν |φν1 ...〉

= 〈φν1 ...| (c†ν)†c†ν |φν1 ...〉

= 〈φν1 ...| ((c†ν)† |φνφν1 ...〉)

(2.9)

which the last statement will only hold if the kets, |φν1 ...〉 and ((c†ν)
† |φνφν1 ...〉) are

equal. Meaning that (c†ν)
† = cν , that is, the creation and annihilation operators are

hermitian conjugates.

Lastly, other useful relations are cν and c†ν ’s anti-commutation identities:

{cν , c†ν′} = δν,ν′ {cν , cν′} = {c†ν , c†ν′} = 0. (2.10)

2.1.3 Occupation Numbers

During the manipulation of the the kets with creation and annihilation operators, we

see that they do not act on specific wave-functions in the product, but rather they

modify the collection wave-functions present in the product. Meaning that we can

reduce our representation to solely the number of particles in a each state j. For

example,

|φν1φν3〉 = |1 0 1〉 . (2.11)

8

This allows us to form Hilbert spaces as follows. Let V 0 be the space that only contains

the vacuum state, |0 0 0 . . .〉, V 1 be the space containing single wave-functions, e.g.

|1 0 0 ...〉, |0 1 0 ...〉 , . . ., V 2 be the space containing the quantum states of a 2 body

problem e.g. |1 1 0 ...〉, |1 0 1 . . .〉 , . . . and so on. Together these spaces, V (N), in a

direct sum, will represent the space in which the creation and annihilation operators

act. This space is called the Fock space

F =
⊕
i

V (i). (2.12)

So that for some state |Ψ〉 ∈ V k, then cν |Ψ〉 ∈ V k−1 and c†ν |Ψ〉 ∈ V k+1. We then see

that the creation and annihilation operators provide a means of jumping between the

sub-spaces.

In this formalism, we can express the operators in a more convenient way

c†ν |n1...nν ...〉 = (−1)n1+n2+...+nv−1
√

1− nν |n1 . . . nν + 1 . . .〉 (2.13)

cν |n1...nν ...〉 = (−1)n1+n2+...+nv−1
√
nν |n1...nν − 1...〉 . (2.14)

Very briefly, we can do the same work for bosons. Now we are able to have

occupation numbers, ni ∈ Z≥0 as there is no Pauli exclusion principle. We define the

analogous creation and annihilation operators a†ν and aν as the following

a†ν |n1...nν ...〉 =
√
nν + 1 |n1...nν + 1...〉 (2.15)

aν |n1...nν ...〉 =
√
nν |n1...nν − 1...〉 . (2.16)

So we can see the similar behaviour as the fermionic case. That is, if the state has no

particles in a state |ν〉, then the annihilation operator, Eq. (2.16) evaluates to zero.

9

The last comment to make is that the creation and annihilation operators are

typically used in conjunction to determine the number of particles in state |φν〉, nν ,

belonging to a overall state |Ψ〉, as follows

n̂ν |Ψ〉 = c†νcν |Ψ〉 = nν |Ψ〉 (2.17)

n̂ν |Ψ〉 = a†νaν |Ψ〉 = nν |Ψ〉 . (2.18)

This will allow us to express operators in terms of the creation and anhilation operators

later on.

2.2 Zero Temperature Green’s Functions

Many-body calculations can be formulated for ground state T = 0 systems [8]. Al-

though experimental work is never done at these temperatures, most observables that

we are interested in are not sensitive to temperatures. For this reason, we work with

zero temperature since it can be thought of as the ground state of the many-body

system and serves as a jumping off point to acquire non-zero temperature observables.

For this section, we will follow Gerald Mahan’s discussion in Ref. [8] while using the

notation from the previous section.

We start with a Hamiltonian that may be written as

H = H0 + V. (2.19)

Here H0 is a Hamiltonian with a known solution and V is a small modification. This

is known as a perturbation method where the goal is to expand the solution of H in

terms of H0’s known solutions with corrections given by V in an infinite series. This

10

is the standard approach to many-body systems where Green’s functions are used to

acquire solutions. First, we need to define the mathematical machinery required to

formally introduce zero temperature Green’s functions.

2.2.1 Representations of Quantum Mechanics

First, we must note that there are various representations of quantum mechanics. Of

course, these representations must all predict the same values of physical observables

and, therefore, be equivalent. However, a clever choice of representation can greatly

simplify the math required to acquire the result.

The most common representation is Schrödinger’s representation where the wave-

function is a function of time governed by the Schrödinger equation (note: we are

using ~ = 1)

i
∂ψ

∂t
= Hψ =⇒ ψ(t) = e−iHtψ(0) (2.20)

and may be probed via operators which are static.

Werner Heisenberg provided an alternative point of view where the wave-function

is static and the operators are permitted to evolve in time governed by the Hamiltonian

i~
∂

∂t
O(t) = [O(t), H] =⇒ O(t) = eiHtOe−iHt. (2.21)

Quite frequently, we are interested in matrix elements of various operators. As an

example of these two representations returning the same result, we can compute the

matrix element of an operator, O. In the Schrödinger representation, we can take the

static operators to be evaluated at time zero, that is, O = O(0) so we have

〈ψ†m(t)O(0)ψn(t)〉 = 〈ψ†m(0)eiHtO(0)e−iHtψn(0)〉. (2.22)

11

Similarly, for the Heisenberg representation, we can take ψ = ψ(0) and we find

〈ψ†m(0)O(t)ψn(0)〉 = 〈ψ†m(0)eiHtO(0)e−iHtψn(0)〉. (2.23)

Another way of looking at our quantum system is under the interaction represen-

tation. Here we take both the wave-function and operators to be time dependent.

We break the Hamiltonian into H0 and V as in Eq. (2.19). This allows us to form a

perturbation approach where H0 is the exactly solvable unperturbed part and V is the

interaction. Note that here we will use the hat notation (̂) to denote the time depen-

dence in this representation compared to the previously introduced representations.

In this representation, the operators and wave-functions have time dependence

Ô(t) = eiH0tOe−iH0t, (2.24)

ψ̂(t) = eiH0te−iHtψ(0). (2.25)

We can then check the matrix elements of the operator, O, as before to again acquire

the same result

〈ψ̂†m(t)Ô(t)ψ̂n(t)†〉 = 〈ψ†m(0)eiHte−iH0t(eiH0tOe−iH0t)eiH0te−iHtψn(0)〉

= 〈ψ†m(0)eiHtO(0)e−iHtψn(0)〉.
(2.26)

Next, we can derive the time evolution of the wave-functions as

∂

∂t
ψ̂(t) = ieiH0t(H0 −H)e−iHtψ(0)

= −ieiH0tV e−iHtψ(0)

= −ieiH0tV e−iH0t[eiH0te−iHtψ(0)]

= −iV̂ (t)ψ̂(t).

(2.27)

12

Moving forward with this representation, it is easier to define a time evolution operator

U(t) = eiH0te−iHt. (2.28)

U(t) acts as a mapping from the Schrödinger representation to the interaction repre-

sentation as

ψ̂(t) = U(t)ψ(0). (2.29)

Which has the property

∂

∂t
U(t) = −iV̂ (t)U(t). (2.30)

Iterating the integral of Eq. (2.30) and using U(0) = 1 we obtain the series

U(t) = 1− i
∫ t

0

dt1V̂ (t1)U(t1)

= 1− i
∫ t

0

dt1 V̂ (t1) + (−i)2

∫ t

0

dt1

∫ t1

0

dt2 V̂ (t1)V̂ (t2) + . . .

=
∞∑
n=0

(−i)n
∫ t

0

dt1

∫ t1

0

dt2 . . .

∫ tn−1

0

dtn V̂ (t1)V̂ (t2) . . . V̂ (tn).

(2.31)

Next, we introduce the time ordering operator, T . When T acts on a group of time

dependent operators, it will rearrange the operators from earliest to latest from right

to left. For example,

T [V̂ (t1)V̂ (t2)V̂ (t3)] = V̂ (t2)V̂ (t3)V̂ (t1) (2.32)

for the case that t2 > t3 > t1. Another way of looking at the time ordering operator

13

is by using the Heaviside step function

T [V̂ (t1)V̂ (t2)] = Θ(t1 − t2)V̂ (t1)V̂ (t2) + Θ(t2 − t1)V̂ (t2)V̂ (t1). (2.33)

The reason for introducing the time ordering operator becomes more clear with its

integral properties, which for the n operator case, looks similar to the integrals in

Eq. (2.31)

1

2!

∫ t

0

dt1

∫ t

0

dt2 T [V̂ (t1)V̂ (t2)]

=
1

2!

∫ t

0

dt1

∫ t1

0

dt2 V̂ (t1)V̂ (t2) +
1

2!

∫ t

0

dt1

∫ t

0

dt2 V̂ (t2)V̂ (t1).

(2.34)

We see by swapping the integration variables, t1 → t2 and t2 → t1 in each term

1

2!

∫ t

0

dt1

∫ t

0

dt2 T [V̂ (t1)V̂ (t2)] =

∫ t

0

dt1

∫ t1

0

dt2 V̂ (t1)V̂ (t2). (2.35)

Similarly for the n = 3 term in the expansion in Eq. (2.31)

1

3!

∫ t

0

dt1

∫ t

0

dt2

∫ t

0

dt3 T [V̂ (t1)V̂ (t2)V̂ (t3)] =

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 V̂ (t1)V̂ (t2)V̂ (t3).

(2.36)

Inductively, this will hold for all n ∈ Z and so we can write Eq. (2.31) as

U(t) = 1 +
∞∑
n=1

(−i)n
n!

∫ t

0

dt1

∫ t

0

dt2 . . .

∫ t

0

dtn T [V̂ (t1)V̂ (t2) . . . V̂ (tn)]

= T exp

(
−i
∫ t

0

dt1 V̂ (t1)

)
.

(2.37)

Now having developed the tools for the interaction representation of Quantum me-

chanics, we are ready to look into the evolution of the wave-function.

14

2.2.2 S-Matrix

Recall we had the time evolution of the wave-function given by

ψ̂(t) = U(t)ψ̂(0). (2.38)

Let us define an operator S(t, t′) so that the wave-function at time t′ is mapped to

time t

ψ̂(t) = S(t, t′)ψ̂(t′). (2.39)

Comparing Eqs. (2.38, 2.39) we can conclude that

S(t, t′) = U(t)U(t′)†. (2.40)

One property of the S-matrix is that the identity may be expressed as S(t′, t)S(t, t′)

ψ̂(t) = S(t, t′)ψ̂(t′) =⇒ ψ̂(t′) = S(t′, t)S(t, t′)ψ̂(t′) =⇒ S(t′, t)S(t, t′) = 1. (2.41)

Another important property of the S-Matrix is that it can be expressed as a time-

ordered operator

∂

∂t
S(t, t′) =

∂

∂t
U(t)U(t′)† = −iV̂ (t)U(t)U(t′)† = −iV̂ (t)S(t, t′)

⇐⇒ S(t, t′) = T exp

(
−i
∫ t

t′
dt1 V̂ (t1)

)
.

(2.42)

Here the exponential is short hand for its Taylor series expansion like in Eq. (2.37).

Recall that we split the Hamiltonian into H0 and V where the solution to H0

is known. The goal of the work at zero temperature is to find the ground state

wave-function, ψ(0). One method would be to use Green’s functions to acquire a

15

perturbative approximation to the Hamiltonian H. Unfortunately, to do this, we

need an exact solution to the ground state ψ(0) to expand about. To escape this

circular solution, we need some extra information. Luckily, we know the eigenvalues

and eigenvectors of H0. Let φ0 be the ground state of H0. Gell-Mann and Low in [9]

were the first to relate the ground state of a non-interacting state φ0 and the vacuum

state of the interacting system ψ(0) by adiabatically turning the interactions on and

off to find that

ψ(0) = S(0,−∞)φ0. (2.43)

A hand-wavy reasoning is that since S(0, t)S(t, 0) = 1 we have

ψ̂(t) = S(t, 0)ψ(0) =⇒ ψ(0) = S(0, t)ψ̂(t). (2.44)

Then taking t → −∞ and making the assumption that at the dawn of time, the

interacting system was not interacting, that is ψ(−∞) = φ0, we find

ψ(0) = S(0,−∞)ψ(−∞) = S(0,−∞)φ0. (2.45)

The interpretation of S(0,−∞) is that it brings the wave-function through time adi-

abatically so that it has no knowledge of the perturbation, V , and only the original

Hamiltonian H0.

One last result before jumping into Green’s functions is in the t→∞ limit,

ψ̂(∞) = S(∞, 0)ψ(0). (2.46)

Using a similar reasoning as above, we can argue that ψ̂(∞) is related to φ0 as well.

16

Namely, they differ by a phase factor, L

φ0e
iL = ψ̂(∞) = S(∞, 0)ψ(0) = S(∞,∞)φ0

eiL = 〈φ0| |S(∞,∞)| |φ0〉 .
(2.47)

Now we are ready to define the Green’s functions to proceed in a perturbative fashion

to try to find the eigenvalues and eigenvectors of the full Hamiltonian, H, at zero

temperature.

2.2.3 Green’s Functions

The following procedure has analogs for three types of particles: electrons, phonons

and photons. We will follow the case of electrons or fermions in general.

At zero temperature, the fermionic Green’s function is defined as

G(ν, t− t′) = −i 〈|Tcν(t)c†ν(t′) |〉 , (2.48)

where c†ν(t) and cν(t) are the Heisenberg representations of the fermionic creation and

annihilation operators defined in Eqs. (2.13 and 2.14)

c†ν(t) = eiHtc†νe
−iHt

cν(t) = eiHtcνe
−iHt.

(2.49)

Since we are working with zero temperature, only the ground state of H, denoted by

the empty ket, |〉, will be accessible. Here the states ν are the known eigen-states of

the unperturbed Hamiltonian H0, where ν contains the momentum, p, and spin, σ,

of the state, ν = (p, σ).

17

At the moment, we do not know any states of H and we will use the Green’s

function to solve them. The Green’s function is defined so that it describes two

situations as follows. First, look at the case t > t′ so the time ordering operator is

unity

G(ν, t > t′) = −i 〈| cν(t)c†ν(t′) |〉 . (2.50)

At time t′, an excited particle in state ν is created. Then, at a later time t, this same

particle is destroyed. Now, if ν was an eigen-state of H, meaning Hc†ν(t
′) |〉 = εν |〉

and H |〉 = ε0 |〉, the propagator could be written as

G(ν, t > t′) = −i exp (−i(t− t′)(εν − ε0)). (2.51)

But for the general state, ν, this will not be the case. As a result, the particle in state

ν will be scattered, shifted in energy during the time period t − t′. Then when we

remove the particle, we can see how much energy remains in the state ν.

Alternatively, we can look at the case t′ > t

G(ν, t′ > t) = +i 〈| c†ν(t′)cν(t) |〉 . (2.52)

Meaning we destroy a particle in the ground state with momenta and spin (p, σ) at

time t. Of course, this is only possible if such a particle exists in the ground state

of H at zero temperature. This process usually appears within the terminology of

particles and holes in a metal to depict an absence in the Fermi sea. Just like in the

t > t′ case, the hole will interact and scatter in the system until it is filled in at time

t′. This measurement allows us to get information about the hole excitation.

Next, we will take the Green’s function in the Heisenberg representation and con-

vert it into the interaction representation. Note the ground state |〉 is mapped as

18

follows originally described by [9]

|〉 = S(0,−∞) |〉0 , (2.53)

where |〉0 is the ket of the ground state of H0 in the interaction representation. So we

have

cν(t) = eiHte−iH0tĉν(t)e
iH0te−iHt = U †(t)ĉν(t)U(t)

=S(0, t)ĉν(t)S(t, 0)

G(ν, t− t′) = − iΘ(t− t′)0 〈|S(−∞, 0)S(0, t)ĉν(t)S(t, 0)S(0, t′)

× ĉ†ν(t′)S(t′, 0)S(0,−∞) |〉0

+ iΘ(t′ − t)0 〈|S(−∞, 0)S(0, t′)ĉ†ν(t
′)S(t′, 0)S(0, t)

× ĉ†ν(t)S(t, 0)S(0,−∞) |〉0 .

(2.54)

Recall the phase difference in the non-interacting ground state from Eq. (2.47), so we

have

0 〈|S(−∞, 0) = eiL0 〈|S(∞,−∞)S(−∞, 0) =
0 〈|S(∞, 0)

0 〈|S(∞,−∞) |〉0
. (2.55)

So the Green’s function may be written as

G(ν, t− t′) =− i

0 〈|S(∞,−∞) |〉0
[Θ(t− t′)0 〈|S(∞, t)ĉν(t)

× S(t, t′)ĉ†ν(t
′)S(t′,−∞) |〉0

−Θ(t′ − t)0 〈|S(∞, t′)ĉ†ν(t′)S(t′, t)ĉ†ν(t)S(t,−∞) |〉0].

(2.56)

The first term can be further simplified using the time ordering operator to put all

19

the parts of S under S(−∞,∞)

Θ(t− t′)0 〈|S(∞, t)ĉν(t)S(t, t′)ĉ†ν(t
′)S(t′,−∞) |〉0

= Θ(t− t′)0 〈|T ĉν(t)ĉ†ν(t′)S(∞,−∞) |〉0 .
(2.57)

So finally, we arrive at the expression for the total Green’s function

G(ν, t− t′) = −i0 〈|T ĉν(t)ĉ†ν(t′)S(∞,−∞) |〉0
0 〈|TS(∞,−∞) |〉0

. (2.58)

We can also define the non-interacting Green’s function G(0)(ν, t− t′) for the case that

V = 0 and the S-matrix is unity

G(0) = −i 0 〈|T ĉν(t)ĉ†ν(t′) |〉0 . (2.59)

This is also known as the unperturbed Green’s function or the free propagator.

Later, we will show examples of how Feynman diagrams arise in calculations using

a specific electron-phonon interaction. So here, we show the basic results of the phonon

Green’s functions. Although until now, we have focused on the fermionic case, we can

also do similar work for phonons to find the Green’s function

D(q, λ, t− t′) = −i 〈|TAqλ(t)A−qλ(t
′) |〉 (2.60)

Aqλ = aqλ + a†−qλ. (2.61)

Here q is the wave-vector and λ refers to the polarization of the phonons. We will

assume one type of phonon to drop the λ subscripts. In the interaction representation

we find

D(q, t− t′) = −i0 〈|TÂq(t)Â−q(t′)S(∞,−∞) |〉0
0 〈|TS(∞,−∞) |〉0

. (2.62)

20

At zero temperature, no phonons exist. The ground states, |〉0 and |〉 are as previ-

ously defined. Note that in a electron-phonon system the notation |〉0 refers to the

combination of ground states of electrons and phonons. The phonons will have the

ground state as its vacuum state so any of the electron’s ground states can be used

for |〉0.

The unperturbed phonon Green’s function is defined as

D(0)(q, t− t′) = −i 0 〈|TÂq(t)Â−q(t′) |〉0

= −i 0 〈|T (aqe
−iωqt + a†−qe

iωqt)(a−qe
−iωqt′ + a†qe

iωqt′) |〉0 .
(2.63)

At zero temperature we find

0 〈| aqa†q |〉0 = 1

0 〈| a†qaq |〉0 = 0

D(0)(q, t− t′) = −i[Θ(t− t′)e−iωq(t−t′) + Θ(t′ − t)eiωq(t−t′)].

(2.64)

2.2.4 Wick’s Theorem

Next, we will like to evaluate these Green’s functions. This will be done using the

series expansion of S(∞,−∞) as described in Eq. (2.42)

G(ν, t− t′) =
∞∑
n=0

(−i)n+1

n!

∫ ∞
−∞

dt1 . . .

∫ ∞
−∞

dtn

× 0 〈|T ĉν(t)V̂ (t1)V̂ (t2) . . . V̂ (tn)ĉ†ν(t
′) |〉0

0 〈|S(∞,−∞) |〉0
.

(2.65)

21

For now, we will ignore the constant 0 〈|S(∞,−∞) |〉0
−1 and figure out how to deal

with the time-ordered brackets

0 〈|T ĉν(t)V̂ (t1)V̂ (t2) . . . V̂ (tn)ĉ†ν(t
′)) |〉0 . (2.66)

Recall that the second quantization formulation allows us to expand the operators

V̂ (ti) in terms of creation and annihilation operators so we will have expressions

which look like

0 〈|T ĉ1(t)ĉ†1′(t1) . . . ĉn(tn)ĉ†n′(t
′) |〉0 . (2.67)

Inserting the expressions for each V̂ (ti) and then summing of all possible time order-

ings would be rather cumbersome and so we look for an alternative approach.

First, let us get a general idea of how we evaluate these expressions. By the

orthonormality of the kets |〉0, the value of Eq. (2.67) will be zero unless the result of

all the operators acting on the state is proportional to the state we started with, that

is

T ĉ1(t)ĉ†1′(t1) . . . ĉn(tn)ĉ†n′(t
′) |〉0 ∝ |〉0 . (2.68)

Or by breaking the operators into pairs, for any particle created in state νi at time

ti there must be an annihilation of the particle in state νi at some time ti′ > ti and

similarly for annihilation first. This means we can expand the state in pairs as

0 〈|T ĉα(t)ĉ†β(t′) |〉0 (2.69)

which vanishes unless α = β, while

0 〈|T ĉα(t)ĉ†β(t1)ĉγ(t2)ĉ†δ(t
′) |〉0 (2.70)

22

vanishes unless α = β, γ = δ or unless α = δ, β = γ. The number of these ar-

rangements leads into a simple combinatorics problem but only a limited number of

these cases are physically relevant. We would like to sort the cases to simplify our

expression. One of the sorting procedures is known as Wick’s theorem [8].

Wick’s Theorem states that in making all the possible pairings between creation

and annihilation operators, each pairing should be time-ordered. The time ordering

of each pair gives the proper time ordering to the entire result. For example,

0 〈|T ĉα(t)ĉ†β(t1)ĉγ(t2)ĉ†δ(t
′) |〉0

= 0 〈|T ĉα(t)ĉ†β(t1) |〉0 0 〈|T ĉγ(t2)ĉ†δ(t
′) |〉0

− 0 〈|T ĉα(t)ĉ†δ(t
′) |〉0 0 〈|T ĉγ(t2)ĉ†β(t1) |〉0

= δαβδγδ 0 〈|T ĉα(t)ĉ†α(t1) |〉0 0 〈|T ĉγ(t2)ĉ†γ(t
′) |〉0

− δαδδβγ 0 〈|T ĉα(t)ĉ†α(t′) |〉0 0 〈|T ĉγ(t2)ĉ†γ(t1) |〉0 .

(2.71)

Note that for each pairing of operators, 0 〈|T ĉα(t)ĉ†β(t1) |〉0 the T operator is present

so it contains 2 cases. Generally, the expectation value with n time ordered pairs will

correspond to n! cases.

In practice, the operators V̂ (t) will also contain bosonic creation and annihilation

operators. But there is no need to panic since these operators commute with the

fermionic ones. This means that it does not matter what order they are written in

the time ordering expansion and they can be immediately factored out.

In the case that a particle is created and destroyed at the same time, such as

0 〈|T ĉ†α(t)ĉβ(t) |〉0 . (2.72)

23

conventionally, the annihilation operator always goes to the right so

0 〈|T ĉ†α(t)ĉβ(t) |〉0 = δαβ 0 〈| ĉ†α(t)ĉα(t) |〉0 = δαβnF (εα). (2.73)

Here nF (εα) is the occupation number for the energy of eigen-state α at time t. This

convention follows suit with the convention when Hamiltonians are constructed, that

is, the creation operators are always to the left of the annihilation operators.

When two fermionic operators have different time arguments in a pairing, it is

conventional to put the creation operator on the right.

0 〈|T ĉ†α(t1)ĉβ(t2) |〉0 = −δαβ 0 〈|T ĉα(t2)ĉ†β(t1) |〉0 . (2.74)

This equation above may be recognized as the non-interacting propagator from Eq. (2.59).

We may conclude from this that all parings that arise from Wick’s theorem may be

replaced by non-interacting propagators. For example, Eq. (2.71) may be written as

(−i)2
0 〈|T ĉα(t)ĉ†β(t1)ĉγ(t2)ĉ†δ(t

′) |〉0

= δαβδγδ G
(0)(α, t− t1) ·G(0)(γ, t2 − t′)

− δαδδβγ G(0)(α, t− t′) ·G(0)(γ, t2 − t1).

(2.75)

In summary, Wick’s theorem allows us to expand a time ordered bracket into all of

its possible pairings. Each pairing will be either a non-interacting propagator or a

number operator and by doing the expansion we get the correct time ordering for each

pairing.

Now let us return to the expansion in Eq. (2.65) and focus on the case of the

24

electron-phonon interaction:

V =
∑
q,k,s

MqAqc
†
k+q,scks. (2.76)

Later in this thesis, we will look at the Hubbard model, but this will serve as an exam-

ple of how the perturbation expansion is resolved. For the n = 0 term in Eq. (2.65),

we see that this is the non-interacting propagator, G(0)(p, t− t′). For the n = 1 case,

we see that there is only one Aq operator present and will lead to a zero expectation

value. In fact, this will happen for all of the odd values of n as there will be an odd

number of Aq. The n = 2 case looks like

G(p, t− t′) =G(0)(p, t− t′) +
(−i)3

2!

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

×
∑
q1,q2

Mq1Mq20 〈|TÂq1(t1)Âq2(t2) |〉0
∑

k1,k2ss′
0 〈|T ĉpσ(t)ĉ†k1+q1s

(t1)ĉk1s(t1)

× ĉ†k2+q2,s′
(t2)ĉk2s′(t2)ĉ†pσ(t′) |〉0 .

(2.77)

The phonon term evaluates as a single phonon Green’s function

0 〈|TÂq1(t1)Âq2(t2) |〉0 = iδq1+q2D
(0)(q1, t1 − t2). (2.78)

Unfortunately, the electron term is not so simple with six possible pairings using

25

Wick’s theorem. These are simplified using that q1 = −q2

0 〈|T ĉpσ(t)ĉ†k1+q1,s
(t1)ĉk1s(t1)ĉ†k2+q2,s′

(t2)ĉk2s′(t2)ĉ†pσ(t′) |〉0

=0 〈|T ĉpσ(t)ĉ†k1+q1,s
(t1) |〉0 0 〈|T ĉk1s(t1)ĉ†k2+q2,s′

(t2) |〉0 0 〈|T ĉk2s′(t2)ĉ†pσ(t′) |〉0

+ 0 〈|T ĉpσ(t)ĉ†k2+q2,s′
(t2) |〉0 0 〈|T ĉk1s(t1)ĉ†pσ(t′) |〉0 0 〈|T ĉk2s′(t2)ĉ†k1+q1,s

(t1) |〉0

+ 0 〈|T ĉpσ(t)ĉ†k1+q1,s
(t1) |〉0 0 〈|T ĉk1s(t1)ĉ†pσ(t′) |〉0 0 〈|T ĉk2+q2,s′(t2)ĉ†k2s′

(t2) |〉0

+ 0 〈|T ĉpσ(t)ĉ†k2+q2,s′
(t2) |〉0 0 〈|T ĉk2s′(t2)ĉ†pσ(t′) |〉0 0 〈|T ĉk1+q1,s(t1)ĉ†k1s

(t1) |〉0

+ 0 〈|T ĉpσ(t)ĉ†pσ(t′) |〉0 0 〈|T ĉ†k1+q1,s
(t1)ĉk1s(t1) |〉0 0 〈|T ĉ†k2+q2,s′

(t2)ĉk2s′(t2) |〉0

− 0 〈|T ĉpσ(t)ĉ†pσ(t′) |〉0 0 〈|T ĉk1s(t1)ĉ†k2+q2,s′
(t2) |〉0 0 〈|T ĉk2s′(t2)ĉ†k1+q1,s

(t1) |〉0 .

(2.79)

Then as derived, we can then simplify Eq. (2.79) by inserting non-interacting propa-

gators and number operators

i3δp=k2=k1+q1δs=s′=σG
(0)(p, t− t1)G(0)(p− q1, t1 − t2)G(0)(p, t2 − t′)

+ i2δp=k1=k2−q1δs=s′=σG
(0)(p, t− t2)G(0)(p + q1, t2 − t1)G(0)(p, t1 − t′)

+ i2δq1=0δp=k1δs=σnF (εk2)G(0)(p, t− t1)G(0)(p, t1 − t′)

+ i2δq1=0δp=k2δs′=σnF (εk1)G(0)(p, t− t2)G(0)(p, t2 − t′)

+ iδq1=0δq2=0nF (εk1)nF (εk2)G(0)(p, t− t′)

− i3δk1=k2−q1δs=s′G
(0)(p, t− t′)G(0)(k1, t1 − t2)G(0)(k1 + q1, t2 − t1).

(2.80)

2.2.5 Feynman Diagrams

Richard Feynman introduced the idea of putting the terms of Eq. (2.80) into draw-

ings [8]. The drawings provide a physical interpretation of each term as a particu-

lar situation of the particles interacting. The non-interacting fermionic propagator

26

(a) (b) (c)

(d) (e) (f)

Figure 2.1: First order Feynman diagrams which arise from electron phonon interaction at
zero temperature. Each diagram corresponds to a term in Eq. (2.80).

G(0)(p, t − t′) is represented by a solid line with an arrow to denote the time going

from t′ to t. A phonon’s Green’s function is represented by a dotted line and does not

have an arrow since

D(0)(q, t− t′) = D(0)(q, t′ − t), (2.81)

so they can be viewed as going in either direction in time. The factor

0 〈| c†ps(t)cps(t) |〉0 = nF (εp) (2.82)

is represented by a fermionic propagator that loops back into itself.

By using these rules, we can convert the six terms from Eq. (2.80) into Feynman

diagrams as shown in subfigures (a) to (f) in Fig. 2.1. The terms in Figs. (2.1c, 2.1d,

2.1e) are zero since they require the phonon to have q = 0 which implies that the

phonon is either a translation of a crystal or strain, but this is not incorporated in

our Hamiltonian so we set these to zero. The terms in Figs. (2.1a, 2.1b) are non-zero,

27

but look very similar. Recall that these terms correspond to

1

2!

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2
∑
q

|Mq|2D(0)(q, t1 − t2)

× [G(0)(p, t− t1)G(0)(p− q, t1 − t2)G(0)(p, t2 − t′)

+G(0)(p, t− t2)G(0)(p + q, t2 − t1)G(0)(p, t1 − t′)].

(2.83)

We see that these 2 terms are identical under a change of labels. So we may remove

the factor of 1
2!

and use one of the labelling. The term in Fig. 2.1f is also interesting.

Here the components of the diagram are topologically disconnected. This leads to the

integrals being separable and so the Feynman diagram is evaluated as the product of

the disconnected topologies. So it may be written as

G(0)(p, t− t′)F1, (2.84)

where we define F1 as

F1 = − i
2

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2
∑
kq

|Mq|2D(0)(q, t1 − t2)G(0)(k, t1 − t2)

×G(0)(k + q, t2 − t1).

(2.85)

2.2.6 Vacuum Polarization Graphs

Before wrapping up this overview of zero-temperature many-body perturbation the-

ory, we still never dealt with the factor of 0 〈|S(∞,−∞) |〉0 in the evaluation of the

Green’s functions

0 〈|S(∞,−∞) |〉0 =
∞∑
n=0

(−i)n
n!

∫ ∞
−∞

dt1 . . .

∫ ∞
−∞

dtn

× 0 〈|T V̂ (t1)V̂ (t2) . . . V̂ (tn) |〉0 .
(2.86)

28

We will take a term by term approach like before. Note that the n = 1 term vanishes

like in the Green’s function expansion. The n = 2 term becomes

0 〈|S(∞,−∞) |〉0 =1 +
(−i)2

2!

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

×
∑
q1,q2

Mq1Mq20 〈|TÂq1(t1)Âq2(t2) |〉0
∑

k1,k2ss′
0 〈|T ĉ†k1+q1s

(t1)ĉk1s(t1)

× ĉ†k2+q2,s′
(t2)ĉk2s′(t2) |〉0 .

(2.87)

Proceeding with Wick’s theorem,

0 〈|TÂq1(t1)Âq2(t2) |〉0 = iδq1+q2D
(0)(q1, t1 − t2) (2.88)

0 〈|T ĉ†k1+q1,s
(t1)ĉk1s(t1)ĉ†k2−q1,s′

(t2)ĉk2s′(t2) |〉0

= δq1nF (εk1)nF (εk2) + δk1=k2−q1G
(0)(k1, t1 − t2)G(0)(k1 + q1, t2 − t1).

(2.89)

We have seen the Feynman diagram of Eq. (2.88) before. It is the barbell shape in

Fig. 2.1e but now it demands that q1 + q2 = 0 which again, is not possible, so this

term vanishes. We have also seen the Feynman diagram of Eq. (2.89) before, it is

the disconnected bubble part in Fig. 2.1f, which in Eq. (2.85), we denoted as F1.

Here we see that F1 appears whenever the closed bubble occurs, regardless of whether

the term arises in the disconnected diagrams of G(p, t − t′) or in the expansion of

0 〈|S(∞,−∞) |〉0.

The terms in the series for 0 〈|S(∞,−∞) |〉0 are called vacuum polarization terms.

Some diagrams for the n = 4 case are shown in Fig. 2.2. Here we see that there is a

family of similar topologies to F1 which we will call Fj (take F0 = 1) so that

29

(a) (b) (c)

Figure 2.2: Vacuum polarization graphs from the n = 4 term of Eq. (2.86).

0 〈|S(∞,−∞) |〉0 =
∞∑
j=0

Fj. (2.90)

But there is an alternative approach rather than brute forcing this series. The next

result is quite useful and will also help simplify the current state of the summation for

the Green’s functions. The theorem is that the vacuum polarization diagrams exactly

cancel the disconnected diagrams in the expansion for G(p, t−t′). This means that we

only need to concern ourselves with the calculation of connected Feynman diagrams

in all our expansions. This corresponds to

0 〈|T ĉp(t)ĉ†p(t′)S(∞,−∞) |〉0 = Gc(p, t− t′)0 〈|S(∞,−∞) |〉0 , (2.91)

where Gc(p, t− t′) is the summation of all connected diagrams.

A quick explanation of the theorem is as follows. In the expansion of the S-

Matrix, each connected diagram will have high-order terms consisting of all possi-

ble disconnected diagrams tagged onto the original connected diagram as shown in

Fig. 2.3. In this partition of the series, the connected diagram can be factored from

the disconnected parts of the diagrams leaving precisely
∑∞

j=0 Fj = 0 〈|S(∞,−∞) |〉0
by Eq. (2.90). Doing this for all connected topologies, Gc(p, t − t′), we arrive at

Eq. (2.91). This means that in the summation for the Green’s functions, we are only

30

Figure 2.3: Partition of the infinite series in Eq. (2.77) where a connected diagram is
multiplied by all possible disconnected diagrams.

concerned with the connected Feynman diagrams

G(p, t− t′) =− i
∞∑
n=0

(−i)n
n!

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 . . .

∫ ∞
−∞

dtn

× 0 〈|T ĉp(t1)ĉ†p(t′)V̂ (t1) . . . V̂ (tn) |〉0 (connected).

(2.92)

Lastly, since there will be n! identical diagrams which differ by their unique la-

belling and produce the same answer, we can take any specific labeling and remove

the factor of 1
n!

. So we finally arrive at the Green’s function at zero temperature given

by

G(p, t− t′) =− i
∞∑
n=0

(−i)n
∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 . . .

∫ ∞
−∞

dtn0 〈|T ĉp(t1)ĉ†p(t′)

× V̂ (t1) . . . V̂ (tn) |〉0 (different connected).

(2.93)

2.3 Non-zero Temperature Green’s Functions

Now we will turn to the nonzero temperature case, which luckily is quite similar

to the zero temperature case. Now the system will consist of a interacting bath

of particles with a non-zero average energy. Due to the sheer number of particles,

31

the exact configuration of the particles is unknown and, therefore, the exact energy

will also be unknown. The best we can do is focus on the average energy which is

obtainable since we know the temperature of the system. We will take a Statistical

Mechanics approach to average over all possible configurations of the system in a

grand canonical ensemble to obtain the non-zero temperature Green’s function. We

will continue following Gerald Mahan’s discussion in Ref. [8].

Recall in the zero temperature case, we only had one state so the Green’s function

was simply the expectation value of the ground state, Eq. (2.48). Here we will take a

grand canonical ensemble average of the system at a inverse temperature β = kBT
−1

Tr e−βHcpσ(t)c†pσ(t′)

Tr e−βH
(2.94)

cpσ(t) = eitHcpσe
−itH . (2.95)

Here Tr denotes the trace of an operator or summation over some complete set of

states:

Tr =
∑
n

〈n| . . . |n〉 . (2.96)

The issue with Eq. (2.94) is that the Hamiltonian shows up in several places. As

before, it shows up in exp (±iHt) but now it also shows up in exp (−βH). So using

this definition in its current state would cause a headache with 2 expansions at the

same time.

One noteworthy thing about this formula is that the Hamiltonian only appears

in exponential factors. Therefore, by interpreting the inverse temperature, β, as a

complex time, we see that the two Hamiltonian terms may be replaced with one ex-

ponential factor with a complex multiplicative factor on the Hamiltonian. Matsubara

[10] took a similar approach but he took time to be a complex temperature so that

32

t and β are the real and imaginary parts of the complex multiplicative factor on the

Hamiltonian. This leaves the Hamiltonian only showing up once in the same fashion

as the zero temperature case.

Another motivation for Matsubara’s method is using the thermal occupation num-

bers given by Bose and Fermi-Dirac statistics,

nB(ωq) =
1

eβωq − 1
(2.97)

nF (εp − µ) =
1

eβ(εp−µ) + 1
. (2.98)

Using a theorem from complex analysis, we may write the meromorphic functions for

these occupation numbers as a summation over their residues evaluated at their poles.

Noting that the fermionic case has poles at εp−µ = i(2n+1)π
β

and the bosonic has poles

at ωq = 2niπ
β

for all n ∈ Z

nF (εp − µ) =
1

eβ(εp−µ) + 1
=

1

2
+

1

β

∞∑
n=−∞

1

(2n+ 1)iπ/β − εp − µ
(2.99)

nB(ωq) =
1

eβ(εp−µ) − 1
= −1

2
+

1

β

∞∑
n=−∞

1

(2n)iπ/β − ωq

. (2.100)

By letting the poles of each function be iωn, the series’ have the form

∑
n

1

iωn − ωq

and
∑
n

1

iωn − (εp − µ)
. (2.101)

We will see that these are the non-interacting Green’s function in the Matsubara

method.

Before jumping into Matsubara’s complex time approach, we first must recall some

useful mathematical relations. We define τ = it and restrict the Green’s functions to

33

the domain

− β ≤ τ ≤ β. (2.102)

From Fourier transform theory, if f(τ) is defined on −β ≤ τ ≤ β, its Fourier series

expansion is

f(τ) =
1

2
a0 +

∞∑
n=1

[
an cos(

nπτ

β
) + bn sin(

nπτ

β
)

]
(2.103)

an =
1

β

∫ β

−β
dτ f(τ) cos(

nπτ

β
)

bn =
1

β

∫ β

−β
dτ f(τ) sin(

nπτ

β
).

(2.104)

We may also define

f(iωn) =
1

2
β(an + ibn) (2.105)

and hence

f(τ) =
1

β

∞∑
n=−∞

e−iπnτ/β f(iωn) (2.106)

f(iωn) =
1

2

∫ β

−β
dτ eiπnτ/β f(τ). (2.107)

To further simplify we can use the fact that the bosonic Green’s functions have the

property

bosons: f(τ) = f(τ + β) for − β < τ < 0 (and 0 < τ + β < β). (2.108)

So then we may rearrange the integral, noting that f(iωn) = 0 for odd n, to find for

bosons

f(iωn) =

∫ β

0

dτeiωnτf(τ) (2.109)

f(τ) =
1

β

∑
n

e−iωnτf(iωn) (2.110)

34

ωn = 2nπkBT. (2.111)

Similarly, for fermions we have

fermions: f(τ) = −f(τ + β) for − β < τ < 0. (2.112)

Then f(iωn) = 0 for even n and rearranging the integral gives

f(iωn) =

∫ β

0

dτeiωnτf(τ) (2.113)

f(τ) =
1

β

∑
n

e−iωnτf(iωn) (2.114)

ωn = (2n+ 1)πkBT. (2.115)

So the two cases are identical except for the permitted parity of integers in the for-

mulae. Bosons only have even integers while fermions have odd values.

2.3.1 Matsubara Green’s Functions

The fermionic Matsubara Green’s function is defined as

G(p, τ − τ ′) = −〈Tτcpσ(τ)c†pσ(τ ′)〉 (2.116)

G(p, τ − τ ′) =− Tr[e−β(H−µN−Ω)Tτe
τ(H−µN)cpσe

−(τ−τ ′)(H−µN)

× c†pσe−τ
′(H−µN)]

(2.117)

e−βΩ = Tr(e−β(H−µN)). (2.118)

Here 〈. . .〉 is the grand canonical ensemble average. We denote Ω as the thermody-

namic potential used in the average. Now the Hamiltonian is replaced by K = H−µN ,

35

where µ is the chemical potential and N is the number operator. Since we are working

in complex time, the creation and annihilation operators are replaced with analogous

Heisenberg representations with t replaced with t = τ/i and the time ordering oper-

ator is now τ ordered, Tτ .

Apart from working with the grand canonical ensemble average, the workings are

mainly the same as the zero temperature case. We find the Green’s function’s temporal

dependence to be solely on the difference τ−τ ′. So we may write the Green’s function

only in terms of τ

G(p, τ) = −〈Tτcpσ(τ)c†pσ(0)〉

= −Tr
[
e−β(K−Ω)Tτ (e

τKcpσe
−τKc†pσ)

]
.

(2.119)

Next, we confirm the fermionic property in Eq. (2.112)

τ < 0 : G(p, τ) = Tr
[
e−β(K−Ω)c†pσe

τKcpσe
−τK]. (2.120)

Using the cyclic property of the trace and noting that eβΩ is a scalar, we can group

terms from the time ordering to find

τ < 0 : G(p, τ) = Tr
[
e−β(K−Ω)e(τ+β)Kcpσe

−(τ+β)Kc†pσ)
]
. (2.121)

We see the term on the right is −G(p, τ + β) when 0 < τ + β < β which implies

− β < τ < 0 : G(p, τ) = −G(p, τ + β). (2.122)

As noted earlier, this property then allows us to expand G(p, τ) in a Fourier series as

36

in Eq. (2.114). So we may write

G(p, iωn) =

∫ β

0

dτ eiωnτG(p, τ) (2.123)

G(p, τ) =
1

β

∑
n

e−iωnτG(p, iωn). (2.124)

The non-interacting Green’s function is obtained using the Hamiltonian

H = H0 =
∑
pσ

εpc
†
pσcpσ (2.125)

K = K0 =
∑
pσ

ξpc
†
pσcpσ, (2.126)

where ξp = εp − µ. We find the τ evolution of the operators

cpσ(τ) = eτK0cpσe
−τK0 = e−ξpτcpσ (2.127)

c†pσ(τ) = eτK0c†pσe
−τK0 = eξpτc†pσ. (2.128)

Here we used the Baker-Hausdorff theorem

eACe−A = C + [A,C] +
1

2!
[A, [A,C]] +

1

3!
[A, [A, [A,C]]] + (2.129)

This leads to the non-interacting Green’s function

G(0)(p, τ) = −Θ(τ)e−ξpτ 〈cpσc†pσ〉+ Θ(−τ)e−ξpτ 〈c†pσcpσ〉

= −e−ξpτ [Θ(τ)(1− nF (ξp))−Θ(−τ)nF (ξp)]

= −e−ξpτ [Θ(τ)− nF (ξp)].

(2.130)

Using the fact that in the grand canonical ensemble, the expectation value of the

37

number operator is the Fermi distribution function

〈c†pσcpσ〉 = nF (ξp) =
1

eβξp + 1
. (2.131)

Integrating Eq. (2.123), we obtain

G(0)(p, iωn) = −(1− nF (ξp))(eβ(iωn−ξp) − 1)

iωn − ξp
. (2.132)

Then recalling the fermionic frequencies property,

iβωn = i(2n+ 1)π =⇒ eiβωn = −1 (2.133)

so we find

G(0)(p, iωn) =
1

iωn − ξp
=

1

iωn − εp + µ
. (2.134)

Which was the predicted formula obtained using the residue composition of the Fermi

distribution in Eq. (2.101).

2.3.2 Retarded and Advanced Green’s Functions

Up to now, we have looked at Green’s functions G(p, t − t′) that are applicable for

both cases of time, t > t′ and t < t′. Since each Green’s function is like a response

function, it is not physical to allow the latter case. To deal with this, in all physical

applications, we break the Green’s functions into two parts called the retarded and

advanced Green’s functions. These are defined to be the regular Green’s functions

but with a Heaviside step function multiplied to enforce that the retarded Green’s

function applies to t > t′ and the advanced Green’s function applies to the case

t < t′. They come into play as all measurable quantities, such as susceptibilities and

38

conductivities, are related to retarded Green’s functions. There are several ways to

go about obtaining these Green’s functions, one is using real time Green’s functions

at non-zero temperature but it is much more efficient to work in the Matsubara

formalism and convert back after. It turns out that this process is very simple, we

take the Matsubara Green’s function and replace iωn by ω+i0+ in a procedure known

as analytic continuation.

The retarded Green’s function may be defined for all temperatures as

Gret(p, t− t′) = −iΘ(t− t′)〈[cpσ(t)c†pσ(t′) + c†pσ(t′)cpσ(t)]〉

= −iΘ(t− t′) Tr {e−β(K−Ω)[cpσ(t)c†pσ(t′) + c†pσ(t′)cpσ(t)]}.
(2.135)

Here we see the Heaviside factor of the retarded Green’s function in action. That is,

it is only active for t > t′, which makes it causal. This is analogous to a signal started

at time t′ and it being measured at t > t′. Which is of course the physically correct

order of events.

The majority of the operators that we look at in this thesis are from the Hubbard

model in Sec. 2.4. We will see that the Hamiltonian consists of terms which look like

U =
∑
ij

MijC
†
iCj. (2.136)

The operator U is bilinear in the operators Ci and Mij is just some matrix element.

This operator is regarded as having bosonic properties, regardless of being built of

fermionic or bosonic operators, C (as long as they are both are the same). U is said to

be bosonic since it acts as a composite particle. We define a retarded Green’s function

for this particle

Ūret(t− t′) = −iΘ(t− t′)〈[U(t)U †(t′)− U †(t′)U(t)]〉. (2.137)

39

This Green’s function looks similar to the fermionic retarded Green’s function in

Eq. (2.135) except for the minus sign, which is the case for all bosonic retarded

Green’s functions. Also, the Fourier transforms are given by

Gret(p, E) =

∫ ∞
−∞

dt eiE(t−t′)Gret(p, t− t′) (2.138)

Ūret(ω) =

∫ ∞
−∞

dt eiωtŪret(t). (2.139)

The advanced Green’s functions are defined similarly to the retarded ones

Gadv(p, t− t′) = iΘ(t′ − t)〈[cpσ(t)c†pσ(t′) + c†pσ(t′)cpσ(t)]〉 (2.140)

Ūadv(t− t′) = iΘ(t′ − t)〈[U(t)U †(t′)− U †(t′)U(t)]〉. (2.141)

From these definitions, we can show that the advanced functions turn out to be

the complex conjugate of the corresponding retarded functions. First, the advanced

function’s Hermitian conjugate can be seen to be the retarded function

Ūadv(t′ − t)† = −iΘ(t− t′)〈[U(t)U †(t′)− U †(t′)U(t)]〉 = Ūret(t− t′). (2.142)

Then comparing Fourier transforms

Ūret(ω) =

∫ ∞
−∞

dt eiω(t−t′)Ūadv(t′ − t)† =

∫ ∞
−∞

dt1 e
−iωt1Ūadv(t1)†, (2.143)

and changing the integration variables from t1 = t′ − t leads us to conclude

Ūret(ω) = Ū∗adv(ω). (2.144)

40

This result holds for all retarded and advanced Green’s function pair, meaning once

one function is obtained, the other is revealed via a complex conjugation.

Now to see how these retarded Green’s functions are expressed in the Matsubara

formalism, we take a Statistical Mechanics type of argument for a general representa-

tion of the system. Here we assume there exists a complete set of states, |m〉, which

are exact eigen-states of K = H − µN . We do not need specifics of the states, only

that they exist with corresponding eigenvalues Em

K |m〉 = Em |m〉 . (2.145)

This complete set of states will allow us to evaluate the thermodynamic average as in

Eq. (2.96).

Ūret(t− t′) = −iΘ(t− t′)eβΩ
∑
n

〈n| e−βK [U(t)U †(t′)− U †(t′)U(t)] |n〉 . (2.146)

Inserting unity between the U operators

Ūret(t− t′) = −iΘ(t− t′)eβΩ
∑
m,n

e−βEn [〈n|U(t) |m〉 〈m|U †(t′) |n〉

− 〈n|U †(t′) |m〉 〈m|U(t) |n〉].
(2.147)

Evaluating the terms like

〈n|U(t) |m〉 = 〈n| eiKtUe−iKt |m〉 = 〈n|U |m〉 eit(En−Em). (2.148)

41

We get the following by rearranging the dummy variables

Ūret(t− t′) = −iΘ(t− t′)eβΩ
∑
m,n

e−βEn [ei(t−t
′)(En−Em)| 〈n|U(t) |m〉 |2

− e−i(t−t′)(En−Em)| 〈m|U(t′) |n〉 |2]

= −iΘ(t− t′)eβΩ
∑
m,n

| 〈n|U |m〉 |2ei(t−t′)(En−Em)[e−βEn − e−βEm].

(2.149)

Taking the Fourier transform to get the frequency function,

Ūret(ω) = −i
∫ ∞

0

eit(ω+iΓ)dt eβΩ
∑
m,n

| 〈n|U |m〉 |2eit(En−Em)[e−βEn − e−βEm]

= eβΩ
∑
m,n

| 〈n|U |m〉 |2 e−βEn − e−βEm

ω + En − Em + iΓ
.

(2.150)

Here iΓ is added to the frequency to ensure convergence at large times (Γ→ 0+).

Now we take equivalent Matsubara function for the operator U defined as U

U(τ) = −〈TτU(τ)U †(0)〉 (2.151)

U(iωn) =

∫ β

0

dτeiωnτU(τ). (2.152)

Using the |n〉 representation for τ > 0 we have

τ > 0 : U(τ) = −eβΩ
∑
n,m

〈n| e−βKU(τ) |m〉 〈m|U †(0) |n〉

U(τ) = −eβΩ
∑
n,m

| 〈n|U |m〉 |2e−βEneτ(En−Em).

(2.153)

42

Then taking the frequency transform

U(iωn) = −eβΩ
∑
n,m

| 〈n|U |m〉 |2e−βEn

∫ β

0

dτ eiωnτeτ(En−Em)

= eβΩ
∑
n,m

| 〈n|U |m〉 |2 e
−βEn − e−βEm

iω + En − Em
.

(2.154)

Here again, exp(βiωn) = 1 for bosons. Now comparing Eqs. (2.150, 2.154), we see

that they only differ by the frequencies in the denominator of the integrands as the

Matsubara method has iωn and the retarded function has ω + iΓ. So the Matsubara

function can be changed to a retarded one with the alteration:

U(iωn → ω + iΓ) = Ūret(ω). (2.155)

This alteration is called an analytic continuation, the same process can be done for

the other Green’s functions

G(p, iωn → ω + iΓ) = Gret(p, ω). (2.156)

This very simple relation is what makes the Matsubara formalism so useful. All the

physical quantities that are found through the retarded Green’s functions now may

be obtained by analytically continuing the Matsubara Green’s function.

Also note that the advanced Green’s functions may also be obtained by an analytic

continuation iωn → ω − iΓ and Γ → 0+ as before. Note that this is expected since

the retarded and advanced Green’s functions are complex conjugates (Eq. (2.144)).

Now having introduced the Green’s functions, we will now describe the 2D Hub-

bard model, where we will perform sample calculations in this thesis.

43

<latexit sha1_base64="vOzMu3M0YAhHuheb2DFFusXaGZI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kon4dSx68diCaQttKJvtpF272YTdjVBKf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXpoJr47rfzsrq2vrGZmGruL2zu7dfOjhs6CRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTf3mEyrNE/lgRikGMe1LHnFGjZXqfrdUdivuDGSZeDkpQ45at/TV6SUsi1EaJqjWbc9NTTCmynAmcFLsZBpTyoa0j21LJY1RB+PZoRNyapUeiRJlSxoyU39PjGms9SgObWdMzUAvelPxP6+dmegmGHOZZgYlmy+KMkFMQqZfkx5XyIwYWUKZ4vZWwgZUUWZsNkUbgrf48jJpnFe8q8pl/aJcvc3jKMAxnMAZeHANVbiHGvjAAOEZXuHNeXRenHfnY9664uQzR/AHzucPtG2M4w==</latexit>

U<latexit sha1_base64="k3vUvEQZ32PYP2AFK32vWJHRyCA=">AAAB73icbVDJSgNBEK1xjXGLevTSGARPYUbcjkEvHiOYBZIh9HR6kiY93WMvShjyE148KOLV3/Hm39hJ5qCJDwoe71VRVS9KOdPG97+9peWV1bX1wkZxc2t7Z7e0t9/Q0ipC60RyqVoR1pQzQeuGGU5bqaI4iThtRsObid98pEozKe7NKKVhgvuCxYxg46RWx6ZYKfnULZX9ij8FWiRBTsqQo9YtfXV6ktiECkM41rod+KkJM6wMI5yOix2raYrJEPdp21GBE6rDbHrvGB07pYdiqVwJg6bq74kMJ1qPksh1JtgM9Lw3Ef/z2tbEV2HGRGoNFWS2KLYcGYkmz6MeU5QYPnIEE8XcrYgMsMLEuIiKLoRg/uVF0jitBBeV87uzcvU6j6MAh3AEJxDAJVThFmpQBwIcnuEV3rwH78V79z5mrUtePnMAf+B9/gBxqJBA</latexit>"<latexit sha1_base64="vexeIZD+GPGL15j2sa6/hEBtfvM=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9oHtUDJppg3NJEOSsZShf+HGhSJu/Rt3/o3pdBbaeiBwOOcecu8JYs60cd1vp7Cyura+UdwsbW3v7O6V9w+aWiaK0AaRXKp2gDXlTNCGYYbTdqwojgJOW8Hodua3nqjSTIoHM4mpH+GBYCEj2FjpsduXY4GVkuNeueJW3QxomXg5qUCOeq/8ZcMkiagwhGOtO54bGz/FyjDC6bTUTTSNMRnhAe1YKnBEtZ9mG0/RiVX6KJTKPmFQpv5OpDjSehIFdjLCZqgXvZn4n9dJTHjtp0zEiaGCzD8KE46MRLPzUZ8pSgyfWIKJYnZXRIZYYWJsSSVbgrd48jJpnlW9y+rF/XmldpPXUYQjOIZT8OAKanAHdWgAAQHP8ApvjnZenHfnYz5acPLMIfyB8/kDAluRJw==</latexit>#

<latexit sha1_base64="k3vUvEQZ32PYP2AFK32vWJHRyCA=">AAAB73icbVDJSgNBEK1xjXGLevTSGARPYUbcjkEvHiOYBZIh9HR6kiY93WMvShjyE148KOLV3/Hm39hJ5qCJDwoe71VRVS9KOdPG97+9peWV1bX1wkZxc2t7Z7e0t9/Q0ipC60RyqVoR1pQzQeuGGU5bqaI4iThtRsObid98pEozKe7NKKVhgvuCxYxg46RWx6ZYKfnULZX9ij8FWiRBTsqQo9YtfXV6ktiECkM41rod+KkJM6wMI5yOix2raYrJEPdp21GBE6rDbHrvGB07pYdiqVwJg6bq74kMJ1qPksh1JtgM9Lw3Ef/z2tbEV2HGRGoNFWS2KLYcGYkmz6MeU5QYPnIEE8XcrYgMsMLEuIiKLoRg/uVF0jitBBeV87uzcvU6j6MAh3AEJxDAJVThFmpQBwIcnuEV3rwH78V79z5mrUtePnMAf+B9/gBxqJBA</latexit>"

<latexit sha1_base64="2TyYox69prPZKG28G7NCoWz8v3M=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNnJbDJmdnaZ6RXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LR3dRvPXFtRKwecJxwP6IDJULBKFqpjr1S2a24M5Bl4uWkDDlqvdJXtx+zNOIKmaTGdDw3QT+jGgWTfFLspoYnlI3ogHcsVTTixs9mh07IqVX6JIy1LYVkpv6eyGhkzDgKbGdEcWgWvan4n9dJMbzxM6GSFLli80VhKgnGZPo16QvNGcqxJZRpYW8lbEg1ZWizKdoQvMWXl0nzvOJdVS7rF+XqbR5HAY7hBM7Ag2uowj3UoAEMODzDK7w5j86L8+58zFtXnHzmCP7A+fwB42mNAg==</latexit>

t

Figure 2.4: Two dimensional square lattice depicting hopping energy t from a lattice
site to a neighbouring site and the onsite interaction U for filled sites as modelled in
the two dimensional Hubbard model.

2.4 The Hubbard Model

The Hubbard model [11] is a simplistic model of a correlated electron system. It

was formulated by Hubbard in 1963, originally created to approximate properties of

transition and rare earth metals with their partially filled conduction bands [11]. This

model has often been referred to as a cornerstone of condensed matter physics [12]

as it has since been used in all sorts of applications where a similar band filling to

the transition and rare earth metals occurs. While this model has only been solved

in one and infinite dimensions, this model has been of great interest in numerical

approaches to acquire approximate solutions [2, 12]. In this model, shown in Fig. 2.4,

the electrons are confined to a lattice where they are permitted to hop to neighbouring

sites with energy t and have an onsite interaction U when a lattice site is occupied by

both an up and down spin. Specifically to this thesis, calculations will be done using

the single band Hubbard model on a two dimensional square lattice with Hamiltonian

H =
∑
ijσ

tij(c
†
iσcjσ + c†jσciσ)︸ ︷︷ ︸
H0

+U
∑
i

ni↑ni↓︸ ︷︷ ︸
Hv

. (2.157)

44

Here, only nearest neighbour hopping is permitted and each direction has the same

energy, tij = t. As before, c†i,σ (ci,σ) are the creation (annihilation) operators at lattice

site i and the spin, σ ∈ {↑, ↓} and niσ is the number operator.

In this work, we use this model strictly as a testing case for numerical approaches

to evaluating Feynman diagrams. Further to this, we will work in units of hopping

energy t = 1 and consider the half filled problem, µ = 0, which is most computationally

challenging with perturbative methods.

From the Hubbard Hamiltonian Eq. (2.157), we see that the parts are labeled

H0 =
∑
ijσ

tij(c
†
iσcjσ + c†jσciσ) (2.158)

Hv = U
∑
i

ni↑ni↓. (2.159)

As described in section 2.2.3 this is the Hamiltonian split into a known Hamiltonian,

H0, and an interaction or perturbation, Hv. The known Hamiltonian leads to the

general non-interacting Matsubara Green’s functions

G−1
0 (k, iωn) = iωn − εk + µ. (2.160)

Here εk is the dispersion of the 2D tight-binding model given by

εk = −2t(cos(kx) + cos(ky)). (2.161)

This dispersion can be derived by finding the eigenvalues of H0 as in [13]. Hv de-

termines the details of the Feynman diagrams that are summed in the expansion of

the S-matrix. Recall from Sec. 2.3.2, Hv is composed of an even number of fermionic

operators and so it is regarded as having bosonic properties. For this reason, the

45

(a) (b) (c) (d) (e)

Figure 2.5: Examples of self-energy parts. Note the stumps on each component of a
Feynman diagrams showing where they would be attached to external propagators.

Feynman diagrams in the 2D Hubbard model will have interactions that are depicted

by wavy bosonic lines, see Fig. 2.5. Further in this model, each bosonic line will cor-

respond to a constant interaction U in the integral representation of each Feynman

diagram.

2.5 Dyson’s Equation

One question that can be made about all the diagrams shown so far is “What stops

each propagator from interacting with itself while in transit to another interaction?”.

The answer is nothing. In fact, all Feynman diagrams will have a corresponding infi-

nite series of Feynman diagrams where itself is repeated on the internal propagators.

These diagrams are contained in the full perturbation expansion of the S-Matrix and

should be summed. This is exploited in what is known as the Dyson’s equation [1].

Like the vacuum polarization diagrams, we will look at diagrams that are con-

structed from simpler diagrams. First, let us define a few components of the topology

of Feynman diagrams.

We define the self-energy part of a diagram to be a diagram without external (i.e.,

incoming and outgoing) lines, which can be inserted into a propagator. Some examples

are shown in Fig. 2.5, note we are using wavy lines for the bosonic interactions as in

the Hubbard model. We define the proper self-energy part or irreducible self-energy

46

part to be a self-energy part that cannot be broken into two unconnected self-energy

parts by removing a propagator. Some examples are shown in Fig. 2.6.

(a) (b) (c) (d)

Figure 2.6: Examples of proper self-energy parts. Note the stumps on each part,
showing where they would be attached to external propagators.

So we see that the self-energy parts in Figs. 2.5c, 2.5e are non-Proper self-energy

parts since we can break one propagator and recover two self-energy parts.

Returning to the observation that any propagator could interact with itself while

in transit to the next interaction, this would be possible for every self-energy part.

But as seen in Figs. 2.5c and 2.5e we can construct the self-energy parts with the

irreducible self-energy parts. We define Σ to be the sum of all proper self-energy

parts. One can then convince themselves that every possible Feynman diagram, G,

will be obtained in the series

G = G0 +G0ΣG0 +G0ΣG0ΣG0 + (2.162)

That is, all possible Feynman diagrams can be generated by combinations of proper

self-energy parts connected by non-interacting Green’s functions. This is known as

Dyson’s equation. Factoring this expression we find

G = G0 +G0Σ(G0 +G0ΣG0 + . . .)

= G0 +G0ΣG.

(2.163)

Note that there is an implied integration on all of these terms, and so the factoring

process is much more complicated than it is written here. The factoring process is

47

similar to the vacuum polarization diagrams earlier. But now we may need to swap

integration variables in order separate integrals to factor. This has been proved that

is this possible [8]. Eq. (2.163) has a solution

G(k, iωn) =
G0

1−G0Σ
=

1

G−1
0 − Σ

=
1

iωn − εk + µ− Σ
. (2.164)

So we can express G by evaluating Σ. But of course, this is no better than before since

there is still an infinite set of diagrams that need to be evaluated. In the Hubbard

model, with onsite interaction U , we find

Σ(k, iωn) =
∞∑
`=0

a` U
`, (2.165)

where ` denotes the order of proper self-energy part, a` denotes all Feynman diagrams

of order ` and the weight U ` is the interaction described in Sec. 2.4.

Note that G has an expression that is the same as G0 but with a shifted energy by

Σ. This is why it is called the self-energy, Σ is essentially a shift in energy to account

for all interactions.

At this point, we take approximate values for Σ. Typically, one only needs a few

orders of diagrams for a good approximation [14]. Using this as motivation, in this

thesis, we will focus on calculating self-energy diagrams.

2.6 Diagrammatic Techniques

Now having introduced Feynman diagrams at all temperatures and shown the powerful

Matsubara formalism, let us quickly recap how we will evaluate Feynman diagrams.

As seen in the terms of Eq. (2.77), in the evaluation of Feynman diagrams we

48

must integrate over all the internal degrees of freedom. As described in Sec. 2.3.2

the physically relevant retarded Green’s functions are most easily obtained by using

the Matsubara formalism. Because of this, we will use this formalism to evaluate

Feynman diagrams and, therefore, we will need a method to evaluate the summation

over all Matsubara frequencies.

As mentioned before, in this thesis, we will work with the Matsubara formalism

with the two dimensional Hubbard model. To solidify the comments made in Sec. 2.4

regarding Feynman diagrams in the two dimensional Hubbard model, we provide

a short dictionary of the relevant components of a Feynman diagram to translate

between the pictorial and mathematical representations in Table 2.1.

Diagram Component Mathematical Representation Name

G(0)(k, iωn) =
1

iωn − εk + µ

Non-interacting
Green’s function

U Bosonic interaction

(−1) Fermionic loop

(k, iωn)
∑
k

≡
∫

d2k

(2π)2
,

1

β

∞∑
n=−∞

Independent label

Table 2.1: Dictionary of the relevant diagrammatic components in the two dimensional
Hubbard model using the Matsubara formalism. This table is similar to dictionaries
found in Mattuck [1].

As an example of how we evaluate the frequency summations in the Matsubara

formalism, we will evaluate the labeled second order self-energy diagram shown in

Fig. 2.7. This will serve two purposes: we will see how this summation is evaluated

and it will provide an analytical expression to test our code against later on. First, we

49

Figure 2.7: Second order self-energy Feynman diagram. Labeling is specified to match
the indices in Eq. 2.166.

assign momentum and frequency conserving labels to all fermionic lines in the diagram

as labeled in Fig. 2.7. It is important to note that this labeling is not unique, there

are multiple ways to label the Green’s functions in the diagram. However, after all

the integrals are completed, the value determined will be the same. Once labeled, we

can form the expression for the self-energy diagram using the Dictionary in Table 2.1.

Σ(2)(k, iν) =
−U2

β2

∑
{ki}

∑
{iνn}

1

iν1 − εk1
1

iν2 − εk2
1

iν + iν2 − iν1 − εk+k2−k1
. (2.166)

As an illustration, we will walk through the process of building this expression. Here

we have two independent internal labels, (k1, iν1) and (k2, iν2) leading to the double

summation written in the short hand notation

1

β2

∑
{ki}

∑
{iνn}

. (2.167)

Next, we write the product of the non-interacting Green’s functions for each fermionic

50

line with their respective momenta and frequency

1

iν1 − εk1
1

iν2 − εk2
1

iν + iν2 − iν1 − εk+k2−k1
. (2.168)

Lastly, we denote the two bosonic lines with each giving a factor of U and the fermionic

loop giving a factor of −1 to arrive at Eq. (2.166).

Next, we will evaluate the frequency summations in this expression. First, we will

look at

1

β

∑
iν1

1

iν1 − εk1
1

iν2 − εk2
1

iν + iν2 − iν1 − εk+k2−k1
≡ 1

β

∑
iν1

H(iν1). (2.169)

A key observation is that this summation over the fermionic Matsubara frequen-

cies is the sum of H evaluated at the poles of of the Fermi-Dirac distribution f(ω)

(Eq. (2.98)). Recall that the poles of f(ω) are when

eβω = −1 =⇒ ω =
(2n+ 1)πi

β
= iωn. (2.170)

These have corresponding residues

Res(f ; iωn) = lim
ω→iωn

(ω − iωn)
1

eβω + 1
H
= lim

ω→iωn

1

βeβω
=
−1

β
. (2.171)

Since H(ω) is analytic on the imaginary ω axis, we can say that the evaluation of

H(ω) at the poles is the residue of H(ω) at the poles. Further, since it is analytic, we

may write

1

β
H(iν1 = iωn) =

1

β
Res(H; iωn) = −Res(H; iωn)Res(f ; iωn) = −Res(H(ω)f(ω); iωn).

(2.172)

51

Re()

Im()

c

c'

i n

Other Poles

Figure 2.8: Complex plane of ω including poles of the frequency integrand and pro-
posed contours C in black and C ′ in blue. Also shown are the fermionic Matsubara
poles in red crosses and the remaining poles from the product of Propagators in green
stars. Note that this figure is truncated. The Matsubara poles are in one to one
correspondence with Z and, therefore, the contours are also infinite in length.

Putting this into Eq. (2.169), we see that Matsubara summation is the sum of residues

for the product of f(ω)H(ω) evaluated at the poles of f . Of course, the sum of the

residues is the result of the residue theorem to evaluate the contour integral which

encloses the fermionic Matsubara frequencies on the imaginary axis

1

β

∑
iν1

H(iν1) = −2πi
∞∑

n=−∞

Res

(
H(ω)f(ω)

2πi
; iωn

)
= − 1

2πi

∮
C

dω f(ω)H(ω). (2.173)

Here C is a contour which only encloses the imaginary axis of the complex ω plane

seen in Fig. 2.8. Also shown in Fig. 2.8, we consider another contour C ′ which encloses

52

both the imaginary ω axis and the other poles from the product of Green’s functions.

We denote the set of extra poles {ωp}

{ωp} = Poles(H) = {εk1 , iν + iν2 − εk+k2−k1}. (2.174)

Using the new contour we may write

− 1

2πi

∮
C′
dωH(ω)f(ω) = − 1

2πi

∮
C

dωH(ω)f(ω)−
∑

ω′∈{ωp}

Res(H(ω)f(ω);ω′).

(2.175)

Since the contour C ′ encloses all of the fermionic Matsubara frequencies, it must be

infinite in length. To deal with this, we further define C ′ to be a circular contour of

radius R and then take R → ∞. Now we are in a position to use Jordan’s lemma

from complex analysis where we take ω = Reiθ so

∮
C′
dωH(ω)f(ω) = lim

R→∞

∫
d(Reiθ)H(Reiθ)f(Reiθ). (2.176)

Noting that the non-interacting Green’s functions have the form

1

ω − εk1
∼ 1

Reiθ
, (2.177)

we find

∮
C′
dω f(ω)H(ω) ∼ lim

R→∞

∫
d(Reiθ)

1

Reiθ
−1

Reiθ
∼ lim

R→∞

1

R
= 0, (2.178)

which implies that Eq. (2.175) becomes

1

β

∑
iν1

H(iν1) =
−1

2πi

∮
C

dωH(ω)f(ω) =
∑

ω′∈{ωp}

Res(H(ω)f(ω);ω′). (2.179)

53

This means that we can evaluate the Matsubara sums as the residues of the product

of Green’s functions and Fermi function at the poles of the Green’s functions. So

going back to our toy example in Eq. (2.169), we see that there are 2 simple poles

(Eq. (2.172)) with residues

R1 = lim
ω→εk1

(ω − εk1)
f(ω)

(ω − εk1)(iν2 − εk2)(iν + iν2 − ω − εk+k2−k1)

=
f(εk1)

(iν2 − εk2)(iν + iν2 − εk1 − εk+k2−k1)
,

(2.180)

R2 = lim
ω→iν+iν2−εk+k2−k1

(ω − iν + iν2 − εk+k2−k1)f(ω)

(ω − εk1)(iν2 − εk2)(iν + iν2 − ω − εk+k2−k1)

=
−f(iν + iν2 − εk+k2−k1)

(iν + iν2 − εk+k2−k1 − εk1)(iν2 − εk2)
.

(2.181)

Next, we note that terms like f(iν + iν2 − εk+k2−k1) may be simplified as

f(iν + iν2 − εk+k2−k1) = f(−εk+k2−k1) (2.182)

by noting that the sum of fermionic frequencies is equivalent to an even bosonic

frequency whose exponential is 1. Putting the residues together we find

1

β

∑
iν1

1

iν1 − εk1
1

iν2 − εk2
1

iν + iν2 − iν1 − εk+k2−k1
=

f(εk1)− f(−εk+k2−k1)

(iν + iν2 − εk+k2−k1 − εk1)(iν2 − εk2)
.

(2.183)

Proceeding with the next summation over iν2,

1

β

∑
iν2

f(εk1)− f(−εk+k2−k1)

(iν + iν2 − εk+k2−k1 − εk1)(iν2 − εk2)
, (2.184)

we follow the same process noting the two simple poles are iν2 ∈ {εk2 , εk+k2−k1 + εk1 −

iν}

R1 =
f(εk2)(f(εk1)− f(−εk+k2−k1))

iν + εk2 − εk+k2−k1 − εk1
, (2.185)

54

R2 =
f(εk1 + εk+k2−k1 − iν)(f(εk1)− f(−εk+k2−k1))

(εk+k2−k1 + εk1 − iν − εk2)
. (2.186)

Similarly to the trick in Eq. (2.182), we can simplify by

f(εk1 + εk+k2−k1 − iν) = −nB(εk1 + εk+k2−k1) ≡ −n(εk1 + εk+k2−k1). (2.187)

So we get an analytic solution to the summation over the Matsubara frequencies

1

β2

∑
{iνn}

1

iν1 − εk1
1

iν2 − εk2
1

iν + iν2 − iν1 − εk+k2−k1

=
(f(εk1) + n(εk1 + εk+k2−k1)(f(εk1)− f(−εk+k2−k1))

iν + εk2 − εk+k2−k1 − εk1
.

(2.188)

Meaning the expression for the second order self-energy diagram depicted in Fig. 2.7

becomes

Σ(2)(k, iν) =
∑
{ki}

−U2(f(εk1) + n(εk1 + εk+k2−k1)(f(εk1)− f(−εk+k2−k1))

iν + εk2 − εk+k2−k1 − εk1
. (2.189)

All that remains is to complete the integration over the internal momenta. This is

typically done by a Monte Carlo method since in higher order diagrams, the dimen-

sionality of the integral becomes quite high.

This process allows us to analytically evaluate the summation over the fermionic

Matsubara frequencies and returns an expression in which we can perform the ana-

lytical continuation iν → ω + iΓ to acquire the retarded Green’s function on the real

frequency axis for physical applications.

We will see in the next section how this method can be automated for a gen-

eral topology of a Feynman Diagram in a process known as Algorithmic Matsubara

Integration.

55

2.7 Algorithmic Matsubara Integration

The process in Sec. 2.6 used to evaluate the summations over Matsubara frequencies

can be generalized for the topology of any diagram as shown in [3]. This process is

known as Algorithmic Matsubara Integration (AMI). Without making assumptions

about the topology of a Feynman diagram, it will have an expression like

Unv

βn

∑
{kn}

∑
{νn}

N∏
j=1

Gj(εj, Xj) = Unv
∑
{kn}

I(n), (2.190)

I(n) =
1

βn

∑
{νn}

Gj(εj, Xj), (2.191)

where nv is the number of vertices or order of the diagram, n is the number of sum-

mations over Matsubara frequencies {vn} and internal momenta {kn} and N is the

number of internal non-interacting Green’s functions G(ε,X). We use the notation

for the jth Green’s function

Gj(εj, Xj) =
1

Xj − εj , (2.192)

where Xj is the frequency and εj = εj(kj) is the free particle dispersion. Enforcing

conservation of momenta and frequency at all N vertices, allows us to express Xj and

kj as linear combinations of the internal {vn, kn} and external {vγ, kγ} frequencies

and momenta.

kj =
m∑
`=1

αj`k`, (2.193)

Xj =
m∑
`=1

iαj`v`, (2.194)

56

where γ = m−n is the number of unconstrained external frequencies. The coefficients

αj` are only allowed to take on the values −1, 0, 1 to show each label’s presence in the

Green’s function. We then take the representation of each Green’s function to be an

array of these coefficients in the linear combinations

Gj(Xj)→ [εj, ~αj], (2.195)

where εj is used to keep track of unique labeling of the Green’s function’s dispersion

and ~αj = (αj1, . . . α
j
m). We can then automate the residue process as in Sec. 2.6 for this

representation of the Green’s functions. For each Matsubara summation, the poles

are found and the residues are evaluated. The result of this process is an integrand

that remains to be integrated over all the possible spatial degrees of freedom just like

Eq. (2.189).

Returning to the second order self-energy from Fig. 2.7, with a slight notation

change, we define the label 3 to be the label of the top propagator

k3 ≡ k + k2 − k1

iν3 ≡ iν + iν2 − iν1.

(2.196)

As described in this section, we may translate each Green’s function from this topology

into ε and α arrays

α1 = {1, 0, 0}, ε1 = {1, 0, 0} ⇐⇒ k1

α2 = {0, 1, 0}, ε2 = {0, 1, 0} ⇐⇒ k2

α1 = {−1, 1, 1}, ε3 = {0, 0, 1} ⇐⇒ k3 = k + k2 − k1.

(2.197)

Note that we use the convention that the last element is the external label. So

57

then the diagram may be represented as the collection of these ~ε = {ε1, ε2, ε3} and

~α = {α1, α2, α3}, meaning we establish the isomorphism

Σ(2)(k, iν) ∼= {~ε, ~α}. (2.198)

2.7.1 The libami library

The algorithmic Matsubara integration (AMI) process has been implemented into a

C++ library called libami [4]. Since we will be writing bindings for this library, the

basic elements of the code are defined here and code snippets are shown to see how

it is used in practice.

As described in the previous section, the topology of any Feynman diagram may be

translated into an array of integers called ~α and ~ε for each Green’s function. These are

defined as std::vector<int> objects under the AmiBase class called AmiBase::alpha t

and AmiBase::epsilon t. Then, each Green’s function is represented by a AmiBase::g struct

object, which is a vector of a AmiBase::alpha t and AmiBase::epsilon t. Finally,

a vector of AmiBase::g struct denoted as a AmiBase::g prod is the complete Feyn-

man diagram. We may define the second order self-energy diagram as follows

AmiBase::alpha_t alpha_1={1,0,0};

AmiBase::alpha_t alpha_2={0,1,0};

AmiBase::alpha_t alpha_3={-1,1,1};

AmiBase::epsilon_t epsilon_1={1,0,0};

AmiBase::epsilon_t epsilon_2={0,1,0};

AmiBase::epsilon_t epsilon_3={0,0,1};

58

AmiBase::g_struct g1(epsilon_1,alpha_1);

AmiBase::g_struct g2(epsilon_2,alpha_2);

AmiBase::g_struct g3(epsilon_3,alpha_3);

AmiBase::g_prod_t R0={g1,g2,g3};

Once the topology of the diagram is inserted, as in the original AMI paper [3] we

define 3 arrays called Sign, Pole and Residue array. As the names might suggest,

these are used in the residue process described in Sec. 2.6. These structures are also

under the AmiBase class, AmiBase::S t, AmiBase::P t, AmiBase::R t. From here we

insert the parameters of the problem, such as β, the dispersion of the propagators in

the integrand. The classes AmiBase::energy t and AmiBase::frequency t are used

to put all the external parameters into an object called AmiBase::ami vars.

AmiBase ami;

AmiBase::S_t S_array;

AmiBase::P_t P_array;

AmiBase::R_t R_array;

double E_REG=0; // Numerical regulator for small energies.

int N_INT=2; // Number of integrations

AmiBase::energy_t energy={-4,0.1,-1}; // values of momentum’s dispersion

AmiBase::frequency_t frequency;

for(int i=0;i<2;i++){ frequency.push_back(std::complex<double>(0,0));} //

internal placeholder

frequency.push_back(std::complex<double>(0,M_PI/5)); // external frequency

59

double BETA=5.0;

AmiBase::ami_vars external(energy, frequency,BETA);

Finally, we construct the integrand with ami.construct() and evaluate the integrand

at it’s current external parameters with ami.evaluate()

ami.construct(test_amiparms, R0, R_array, P_array, S_array);

std::complex<double> calc_result=ami.evaluate(test_amiparms,R_array,

P_array, S_array, avars); // Evaluate integrand for parameters in

’avars’

We provided this example here to develop the terminology used when we discuss the

Python bindings for this library as well as to contrast with the Python analog to this

code snippet.

2.8 Renormalized Perturbation Theory

In our recent work [6], we proposed a new method for a faster evaluation of Feynman

diagrams on the real frequency axis. As described in Sec. 2.3.2, this is when we perform

an analytic continuation iωn → ω + i0+ to return from the Matsubara formalism to

the real frequency retarded Green’s function. This works well with AMI since we can

symbolically replace iωn with ω + iΓ (Γ → 0+) because we analytically evaluate the

Matsubara sums.

What has yet to be discussed is the issue when evaluating the remaining spatial

integrals after this analytic continuation. Recall, Γ is only introduced as a numerical

regulator when converting from Matsubara formalism to the retarded Green’s function

60

(Eq. (2.156)). If we take Γ too small, we lose the numerical regulation provided

by Γ and the peaks from the AMI integrand become very sharp leading to large

uncertainty in a Monte Carlo method evaluating the remaining integrals. But, the

physical properties of the retarded Green’s functions are approximated unless we take

Γ→ 0+.

In [6], we show if a large Γ is used, features of plots are lost which may be physically

relevant to a specific application. However, while physical correctness is the number

one priority, we cannot take Γ to be too small since the integral will be intractable

to evaluate. We propose a new renormalized perturbation scheme to help avoid this

issue. We will introduce this scheme as it will be used to see pyami in action in the

Results section of this thesis.

We stick to the 2D tight binding Hubbard model as described in Sec. 2.4 with

Hamiltonian as in Eq. (2.157). But we introduce a single particle term

δ = z
∑
iσ

n̂iσ, (2.199)

where z is an arbitrary complex constant for now. Note that z is essentially a global

chemical potential shift. We then write the Hamiltonian as

H = H0 +Hν + δ − δ

= (H0 − δ) + (Hν + δ)

= H ′0 +H ′ν .

(2.200)

Since we have made no change to the Hamiltonian, we are free to expand around the

known solution of H ′0. As mentioned, z plays the role of a chemical potential shift

61

and so we can write the non-interacting Green’s function as

G−1
0 (k, iωn) = iωn − εk + µ+ z. (2.201)

Then we look at H ′ν and see that there is now an extra term

H ′ν = U
∑
i

ni↑ni↓ + δ. (2.202)

Recalling the discussion about the S-matrix expansion, the interaction H ′ν will give

rise to the Feynman diagrams that must be summed. So when we have powers of

H ′ν in contrast to powers of Hν in the expansion, we can think of this as a binomial

theorem kind of perturbation where we will end up with extra cross terms of all the

possible places to insert the extra δ in the terms of the original expansion of Hν . Also,

recall the discussion about the electron-phonon interaction, where we found that the

number operator, δ, (Eq. (2.73)) has a diagrammatic component that resembles a

tadpole seen in Fig. (2.1c). Although this was for a different interaction, it has the

same effect in the 2D Hubbard model. Putting these two concepts together, any

diagram that we originally had from Hν will now have an infinite set of diagrams

consisting of all the possible ways to place tadpoles on the propagators in the original

diagram. We use the terminology of self-energy insertions instead of tadpoles in this

scheme. In diagrams, the self-energy insertions are denoted by a circle with a cross

in it as seen in Fig. 2.9. It is also worth noting that these insertions will have no

extra effect on the mathematical expressions for the diagrams built using Table 2.1

except that each insertion will break the propagator that it sits on into two identical

propagators in the expression. In terms of the AMI process, this will cause higher

order poles in the residue theorem process.

62

+

Root
s=0 s=1 s=2

S
ec

on
d

O
rd

er
F

ou
rt

h
O

rd
er Graph 'A'

6 total

7 total 28 total

Figure 2.9: Counter term self-energy diagrams with s = 0, 1, 2 insertions at second
order and fourth order which arise in the renormalized perturbation theory scheme.
Figure taken from [6].

As an example of using this scheme, we compute the self-energy diagrams that

one would need for Dyson’s equation Eq. (2.165). But now we must consider the

whole expansion including counter term diagrams with self-energy insertions as seen

in Fig. 2.9

Σk(iωn) =
∞∑
`=0

∞∑
s=0

a`,s(z)U `(z)s. (2.203)

Here ` is the order of the self-energy diagram, s is the number of self-energy insertions

on the diagram and al,s is the sum of all diagrams of order `, containing s insertions.

We denote the truncation to order m diagrams with c insertions as

Σk(iωn) =
m∑
`=0

c∑
s=0

a`,s(z)U `(z)s. (2.204)

This is the notation used in Fig. 2.9. Now we return to the value of z. By choosing a

63

purely imaginary value

z = iα. (2.205)

We see that the analytically continued-perturbed Green’s functions become

G−1
0 (k, ω) = ω − εk + µ+ i(α + Γ), (2.206)

in contrast to the original analytically-continued Green’s functions

G−1
0 (k, ω) = ω − εk + µ+ iΓ. (2.207)

That is, Γ is replaced with Γ + α. Meaning that α will act as a new numerical

regulator in the remaining spatial integrals whose effect to the self-energy may be

systematically removed by summing enough counter term diagrams. Seen in Fig. 2.10

is a schematic showing the role of the numerical regulator as the term Γ in Eq. (2.207)

and Eq. (2.206). Originally (Fig. 2.10 : left figure), Γ plays the role of the widths of

sharp peaks in the AMI integrand and goes to zero in the physical limit (Γ→ 0+). But

after this scheme (Fig. 2.10 : right figure), the widths of the peaks go as α+ Γ→ α+

and do not vanish.

This is the main reason this scheme works, by introducing this new regulator α,

we may take the physically correct Γ → 0+ limit and still be able to evaluate the

spatial integrals since they have peaks of non-zero width. Of course, the consequence

of the new regulator is that we now have to sum an infinite number of extra diagrams.

But as seen in the expansion of the self-energy, Eq. (2.204), each diagram with s

insertions is weighted by a factor of zs. Meaning, for a small in magnitude z while

still being significantly larger than Γ, the series will be well approximated by a low

order truncation. Here we see the balancing act on the magnitude of z, for a precisely

64

<latexit sha1_base64="wXgTWlzmdcdWcwEl6xXFoyEkRwk=">AAACEXicbVDLSgMxFM34rPVVdekmWIRKocyIr2XRhS4r2Ad0armTpm1oMhOSjFCG/oIbf8WNC0XcunPn35i2s9DWA4HDOfdyc04gOdPGdb+dhcWl5ZXVzFp2fWNzazu3s1vTUawIrZKIR6oRgKachbRqmOG0IRUFEXBaDwZXY7/+QJVmUXhnhpK2BPRC1mUEjJXauYIvVSRNhAv+NQgBuIh94LIPR9i36pTfJ8VRO5d3S+4EeJ54KcmjFJV27svvRCQWNDSEg9ZNz5WmlYAyjHA6yvqxphLIAHq0aWkIgupWMkk0wodW6eBupOwLDZ6ovzcSEFoPRWAnBZi+nvXG4n9eMzbdi1bCQhkbGpLpoW7Msc06rgd3mKLE8KElQBSzf8WkDwqIsSVmbQnebOR5UjsueWel09uTfPkyrSOD9tEBKiAPnaMyukEVVEUEPaJn9IrenCfnxXl3PqajC066s4f+wPn8AWgNnCQ=</latexit>

/ (� + ↵) ! ↵+
<latexit sha1_base64="h8O3QHASfKpZrebC8WtuZSshVz0=">AAACAHicbVDJSgNBFOyJW4zbqAcPXgaDIAhhRtyOQQ96jGAWyIyhp9OTNOmN7h4hDHPxV7x4UMSrn+HNv7GzHDSxoKGoeo/XVbGkRBvf/3YKC4tLyyvF1dLa+sbmlru909AiVQjXkaBCtWKoMSUc1w0xFLekwpDFFDfjwfXIbz5ipYng92YoccRgj5OEIGis1HH3QqmENMILbyBjMLTMf8iO845b9iv+GN48CaakDKaoddyvsCtQyjA3iEKt24EvTZRBZQiiOC+FqcYSogHs4balHDKso2wcIPcOrdL1EqHs48Ybq783Msi0HrLYTjJo+nrWG4n/ee3UJJdRRrhMDeZocihJqWdjjtrwukRhZOjQEogUsX/1UB8qiIztrGRLCGYjz5PGSSU4r5zdnZarV9M6imAfHIAjEIALUAW3oAbqAIEcPINX8OY8OS/Ou/MxGS04051d8AfO5w8DUpYK</latexit>

/ � ! 0+

Figure 2.10: Schematic representation of the effect on the sharp peaks of the AMI
integrand as a result of the introduced numerical regulator α in the renormalized
perturbation theory scheme. Left curve is a original Lorentzian function with width
proportional to Γ. Right curve is the renormalized perturbation theory Lorentzian
with width proportional to (Γ + α). The limit as Γ → 0+ is also depicted to show
the resulting peaks of non-vanishing width in the renormalized perturbation theory
scheme.

chosen α, this method has a potentially massive payoff: a limited number of extra

diagrams and each having easier-to-evaluate broadened peaks.

This paper continues to show that indeed the correct results are acquired by this

process and we are able to work with values of Γ that would have taken significantly

more time to evaluate if we never used this scheme.

Chapter 3

Methods

3.1 Writing pyami

Initially there were three candidates to write the binding code to implement libami

into Python: Cython, Pybind11 and SWIG. However, it seemed that Pybind11 was

most focused on C++ to Python bindings where others were more focused on bindings

for all types of scripting languages and not only Python. Pybind11 [15] also came with

the added bonus that it was built for the C++11 version of C++, which happened

to be the language in which libami is written.

3.1.1 Pybind11

Pybind11 [15] is a lightweight header-only library that exposes the C++ types and

libami class objects into Python without alterations to the C++ source code. This

made things especially nice to convert into Python as the pyami code can follow

exactly the same structure as the pre-existing C++ code.

66

The implementation of pyami is essentially all the outermost parts of libami that

were introduced in Sec. 2.7.1. This is why Pybind11 is so useful, all the C++ code

under the hood is left untouched and we only bind the code that is part of a application

programming interface (API) of the library.

This included typecasting Python classes to play the equivalent role as C++’s

vector<T> objects to store the topology of the Feynman diagrams as described in

[16] and making an equivalent Python class to play the role of AmiBase where all the

calculations take place as described in [4].

All of the binding code for the pyami is provided in Sec.(A.1). It is rather tedious

to explain so we will point those interested to the documentation in [15]. The notable

changes to using pyami compared to libami are pointed out in the next section.

3.1.2 Using pyami

We will walk through the pyami analog to the code snippet in Sec. 2.7.1, again looking

at the toy second order self-energy diagram in Fig. 2.7 and we will comment on the

differences. We first define the topology using α and ε.

import pyami

alpha1 = pyami.VectorInt([1, 0, 0])

alpha2 = pyami.VectorInt([0, 1, 0])

alpha3 = pyami.VectorInt([-1, 1, 1])

epsilon1 = pyami.VectorInt([1, 0, 0])

epsilon2 = pyami.VectorInt([0, 1, 0])

epsilon3 = pyami.VectorInt([0, 0, 1])

67

g1 = pyami.AmiBase.g_struct(epsilon1, alpha1)

g2 = pyami.AmiBase.g_struct(epsilon2, alpha2)

g3 = pyami.AmiBase.g_struct(epsilon3, alpha3)

R0 = pyami.g_prod_t([g1, g2, g3])

One difference here is that pybind11 only permits one mapping to Python lists which

contain the same type. So although there are several C++ instances of classes that

only contain std::vector<int>, like AmiBase::alpha t and AmiBase::epsilon t,

they are mapped to one Python class pyami.VectorInt(). This was the case for

any C++ AmiBase classes that apart from a different name, had the same under-

lying structure, e.g. std::vector<std::complex> are all mapped to the Python

class pyami.VectorComplex() which is used to store both the energy and external

frequency.

Next, we define the S, P,R arrays and external parameters. Then construct the

AMI integrand and evaluate for the given parameters.

S_array = pyami.S_t()

P_array = pyami.P_t()

R_array = pyami.R_t()

E_REG = 0 # numberical regulator for small energies. If inf/nan results

try E_REG=1e-8

N_INT = 2 # number of matsubara sums to perform

test_amiparms = pyami.AmiBase.ami_parms(N_INT, E_REG)

68

energy = pyami.VectorComplex([-4, 0.1, -1])

frequency = pyami.VectorComplex()

for i in range(2):

frequency.append(0+0j)

frequency.append(0+math.pi*1j)

beta = 1.0

external = pyami.AmiBase.ami_vars(energy, frequency, beta)

ami.construct(test_amiparms, R0, R_array, P_array, S_array)

calc_result = ami.evaluate(test_amiparms, R_array, P_array, S_array, avars)

Other than the multiple std::vector<T> types being put under the same Python

class, this code snippet is identical to the libami example in Sec. 2.7.1.

From here, we can then put a Monte Carlo integration code around this integrand

process to evaluate the complete expressions of Feynman diagrams like Eq. (2.189). Of

course, pyami has the added bonus of being in Python and, therefore, has much more

options to perform the remaining integrals compared to libami. For the example

calculations later on, we use the Monte Carlo importance sampling library, VEGAS

[17], to see the benefit of having AMI available in Python.

To see how these libraries are integrated together, a Python class was written to

hold all of the pyami objects and make the process of updating the internal param-

eters as a function of momenta easier in Sec. B.1. Then, to evaluate the diagram

as a function of external parameters, we show an example integration function using

VEGAS in Sec. B.2.

69

3.2 Testing

As alluded to earlier, the expression for the second order self-energy diagram in Fig. 2.7

was analytically derived both as an example of the residue method in AMI and to pro-

vide a check to ensure the values returned by pyami indeed agreed with the expression

worked out by hand. Further testing between libami and pyami was also performed

for higher order diagrams in the scaling tests as another verification process.

3.3 Scaling

libami [4] is currently a 5-year-old project which has had several updates and im-

provements along the way. There are two main methods that the libami library has

used over the years to evaluate the analytic integrand.

One method, called SPR uses 3 arrays called S, P, R that are described in [3] to

represent the unique signs, poles and residues in the analytical integral. This is the

method that we have seen in the code snippets in the previous sections. The other

method, called terms, stores the expression in a more intuitive way similar to how it

would be written out by hand.

Since in a general diagram, there may be repeated poles, the SPR method ends up

always being faster to evaluate since it only stores the unique poles whereas the terms

method will evaluate the same pole multiple times [4]. However, if we were curious

about the specific terms in the numerator of the analytic integrand, we would not be

able to use the SPR method. As a result of the highly abstract method of storing the

information, the numerator is in a factorized form so that each term cannot be looked

at individually. These two methods also differ in overhead costs to evaluate - we see

70

a trade-off in efficiency with the order of the diagram being evaluated. The terms

method being the most simple, is the most efficient for lower order diagrams. Whereas

SPR takes more work to initially setup, but benefits with higher order diagrams where

terms struggles.

There are two versions of each method giving a total of four methods to evalu-

ate the integrands which we will call SPR, Optimized SPR, terms and Optimized

terms. These are the product of small improvements during the 5 years of libami’s

development. All four methods have been written into the binding codes in Sec. A.1.

This leads to the Optimized SPR (OPT. SPR) method being the method of choice

in libami for a general diagram. Of course, the optimizations made to C++ library

lead to faster evaluations, however, it was not clear if the OPT. SPR method would

still be the best method Python. This is due to how Python and C++ differ in

their data management, namely, how each moves lists or arrays. While this may

sound like something that one could look up online, due to our uncertainty in how

pybind11 writes the C++ code into Python, the fastest and most certain way to find

the optimized method in pyami would be to race all four of the methods for various

order diagrams.

There was also the question of whether this binding code would create a bottleneck

when changing the parameters in the integrand, as one would do in a Monte Carlo

routine.

These two questions were answered by completing scaling tests. These tests in-

cluded performing Monte Carlo simulations in both libami and pyami codes and

comparing the average time to evaluate the integrand. To make these tests as fair

as possible and narrow down on potential bottlenecks, 50,000 random numbers were

generated to an exterior file and the numbers were loaded into RAM prior to timing

71

the loop to complete each Monte Carlo routine. This essentially found the average

time to change the values being integrated over and to evaluate the integrand for all

four methods methods initially developed for libami.

3.4 Renormalized Perturbation Theory

As described in Sec. 2.8, we will look at diagrams with self-energy insertions and

propagators with added numerical regulators as chemical potential shifts. The goal of

this result is to show the benefit of having AMI available in Python. To do this, we will

use the VEGAS importance sampling library in conjunction with our renormalized

perturbation theory approach. The idea is that with the newly regulated integrand

seen in Fig. 2.10, it will be even easier to evaluate than a plain Monte Carlo method.

3.4.1 Modifications to Diagram’s Topologies

Recall that the self-energy insertion diagrams are treated with the same rules as in

Table 2.1, with the exception that the propagators which contain insertions are broken

into two and, therefore, appear twice in the product. Hence, we will need to modify

the topologies that we input into our pyami codes.

As an example, consider the second order self-energy diagram with one insertion

in Fig. 3.1. Using Table 2.1, we are able to form an expression for this diagram, noting

that the top propagator is repeated

−U2

β2

∑
{ki}

∑
{iνn}

1

iν1 − εk1
1

iν2 − εk2

(
1

iν3 − εk3

)2

. (3.1)

So when we go to use this with pyami we need to create an extra propagator that

72

<latexit sha1_base64="Sbk1IoKBgxu/cVtLDBNjotgqI6g=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgQkoivpZFNy4r2AekIUymk3boZCbMTIQS+hluXCji1q9x5984bbPQ1gMXDufcy733RCln2rjut1NaWV1b3yhvVra2d3b3qvsHbS0zRWiLSC5VN8KaciZoyzDDaTdVFCcRp51odDf1O09UaSbFoxmnNEjwQLCYEWys5I9C7wyxnshCL6zW3Lo7A1omXkFqUKAZVr96fUmyhApDONba99zUBDlWhhFOJ5VepmmKyQgPqG+pwAnVQT47eYJOrNJHsVS2hEEz9fdEjhOtx0lkOxNshnrRm4r/eX5m4psgZyLNDBVkvijOODISTf9HfaYoMXxsCSaK2VsRGWKFibEpVWwI3uLLy6R9Xveu6pcPF7XGbRFHGY7gGE7Bg2towD00oQUEJDzDK7w5xnlx3p2PeWvJKWYO4Q+czx8C0ZBx</latexit>

k1, i⌫1

<latexit sha1_base64="fhZeuxxhDE5GbCNSmx7kB4UqER8=">AAAB8nicbVDLSsNAFL3xWeur6tLNYBFcSEmKr2XRjcsK9gFpCJPppB06mQkzE6GEfoYbF4q49Wvc+TdO2yy09cCFwzn3cu89UcqZNq777aysrq1vbJa2yts7u3v7lYPDtpaZIrRFJJeqG2FNORO0ZZjhtJsqipOI0040upv6nSeqNJPi0YxTGiR4IFjMCDZW8kdh/RyxnsjCelipujV3BrRMvIJUoUAzrHz1+pJkCRWGcKy177mpCXKsDCOcTsq9TNMUkxEeUN9SgROqg3x28gSdWqWPYqlsCYNm6u+JHCdaj5PIdibYDPWiNxX/8/zMxDdBzkSaGSrIfFGccWQkmv6P+kxRYvjYEkwUs7ciMsQKE2NTKtsQvMWXl0m7XvOuapcPF9XGbRFHCY7hBM7Ag2towD00oQUEJDzDK7w5xnlx3p2PeeuKU8wcwR84nz8F4ZBz</latexit>

k2, i⌫2

<latexit sha1_base64="jo8MnFsSFvNN3hp3+/x+WW4Se38=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKu8XUMevEYwTxgsyyzk0kyZHZmmekVwpLP8OJBEa9+jTf/xkmyB00saCiquunuihLBDbjut1NYWV1b3yhulra2d3b3yvsHLaNSTVmTKqF0JyKGCS5ZEzgI1kk0I3EkWDsa3U399hPThiv5COOEBTEZSN7nlICV/FFYO8O8K9OwFpYrbtWdAS8TLycVlKMRlr+6PUXTmEmgghjje24CQUY0cCrYpNRNDUsIHZEB8y2VJGYmyGYnT/CJVXq4r7QtCXim/p7ISGzMOI5sZ0xgaBa9qfif56fQvwkyLpMUmKTzRf1UYFB4+j/ucc0oiLElhGpub8V0SDShYFMq2RC8xZeXSeu86l1VLx8uKvXbPI4iOkLH6BR56BrV0T1qoCaiSKFn9IreHHBenHfnY95acPKZQ/QHzucPCPGQdQ==</latexit>

k3, i⌫3

<latexit sha1_base64="gv8LOrqbLhtBVrbF9J4v1q+wyW4=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcKu+DoGvXiMYB6QLGF2MpsMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7gkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupv6rSeujYjVI44T7kd0oEQoGEUrtUZnRHRV2itX3Ko7A1kmXk4qkKPeK391+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx27oScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwxs/EypJkSs2XxSmkmBMpr+TvtCcoRxbQpkW9lbChlRThjahkg3BW3x5mTTPq95V9fLholK7zeMowhEcwyl4cA01uIc6NIDBCJ7hFd6cxHlx3p2PeWvByWcO4Q+czx+vho8p</latexit>

k, i⌫
<latexit sha1_base64="gv8LOrqbLhtBVrbF9J4v1q+wyW4=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgQcKu+DoGvXiMYB6QLGF2MpsMmZ1dZnqFsOQjvHhQxKvf482/cZLsQRMLGoqqbrq7gkQKg6777RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupv6rSeujYjVI44T7kd0oEQoGEUrtUZnRHRV2itX3Ko7A1kmXk4qkKPeK391+zFLI66QSWpMx3MT9DOqUTDJJ6VuanhC2YgOeMdSRSNu/Gx27oScWKVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwxs/EypJkSs2XxSmkmBMpr+TvtCcoRxbQpkW9lbChlRThjahkg3BW3x5mTTPq95V9fLholK7zeMowhEcwyl4cA01uIc6NIDBCJ7hFd6cxHlx3p2PeWvByWcO4Q+czx+vho8p</latexit>

k, i⌫

<latexit sha1_base64="jo8MnFsSFvNN3hp3+/x+WW4Se38=">AAAB8nicbVDLSgNBEJyNrxhfUY9eBoPgQcKu8XUMevEYwTxgsyyzk0kyZHZmmekVwpLP8OJBEa9+jTf/xkmyB00saCiquunuihLBDbjut1NYWV1b3yhulra2d3b3yvsHLaNSTVmTKqF0JyKGCS5ZEzgI1kk0I3EkWDsa3U399hPThiv5COOEBTEZSN7nlICV/FFYO8O8K9OwFpYrbtWdAS8TLycVlKMRlr+6PUXTmEmgghjje24CQUY0cCrYpNRNDUsIHZEB8y2VJGYmyGYnT/CJVXq4r7QtCXim/p7ISGzMOI5sZ0xgaBa9qfif56fQvwkyLpMUmKTzRf1UYFB4+j/ucc0oiLElhGpub8V0SDShYFMq2RC8xZeXSeu86l1VLx8uKvXbPI4iOkLH6BR56BrV0T1qoCaiSKFn9IreHHBenHfnY95acPKZQ/QHzucPCPGQdQ==</latexit>

k3, i⌫3

Figure 3.1: Labeled second order self-energy diagram from the renormalized pertur-
bation theory scheme with one insertion on the top propagator labeled (k, iν3)

is identical to the propagator with the insertion.

import pyami

alpha1 = pyami.VectorInt([1, 0, 0])

alpha2 = pyami.VectorInt([0, 1, 0])

alpha3 = pyami.VectorInt([-1, 1, 1])

alpha4 = pyami.VectorInt([-1, 1, 1])

epsilon1 = pyami.VectorInt([1, 0, 0])

epsilon2 = pyami.VectorInt([0, 1, 0])

epsilon3 = pyami.VectorInt([0, 0, 1])

epsilon4 = pyami.VectorInt([0, 0, 1])

g1 = pyami.AmiBase.g_struct(epsilon1, alpha1)

g2 = pyami.AmiBase.g_struct(epsilon2, alpha2)

g3 = pyami.AmiBase.g_struct(epsilon3, alpha3)

g4 = pyami.AmiBase.g_struct(epsilon4, alpha4)

R0 = pyami.g_prod_t([g1, g2, g3, g4])

73

Along with having to sum the new diagrams, the other detail when using this renor-

malized perturbation scheme is the chemical potential shift, z. As seen in Sec. (B.1),

there is a complex class variable called mu so that the propagators are modified ac-

cording to Eq. (2.201) (note we take µ = 0 for this work, so we can use mu as z).

Then, we can use the integrate function in Sec. (B.2) as usual.

3.4.2 Example Calculations

Rather than reproduce figures from [6], we would like to display the utility of now

having AMI available in Python. To do this, we will perform a calculation which

would arise while performing this scheme and use the VEGAS importance sampling

library.

The reason this specific library was chosen for this scheme is to take advantage of

the new numerical regulator z = iα. As shown in Fig. 2.10, introducing this regulator

will broaden the sharp peaks in the AMI integrand to make it easier to sample. But if

we used VEGAS’s importance sampling routine, it would be able to find these newly

broadened peaks faster than the flat Monte Carlo methods used in the original work

[6]. In principle, this should lead to a even faster evaluation, meaning less Monte

Carlo samples will be required to get a result within a desired uncertainty.

To test this hypothesis, we will evaluate only one diagram that arises in the Renor-

malized Perturbation self-energy series in Eq. (2.204). We will use a fourth order

self-energy diagram, which is labeled “Graph A” shown in Fig. 2.9. Although this is

not one of the new counter-term diagrams, it will still have a numerical broadening

by the chemical potential shift of z = iα and will act as a proof-of-concept calculation

to show that this will be the case for all of the diagrams in the series Eq. (2.204).

74

In this example, we use the values Γ = 0.0002, z = 0.2i to evaluate the fourth

order self-energy diagram with the external momenta k = (π, 0) and real frequency

ω = 0.3. In order to see the benefit of using VEGAS as an external library, we will

evaluate the diagram both with VEGAS and a uniform or flat Monte Carlo sampling

method as a function of Monte Carlo samples to gauge the convergence to the correct

answer.

The other metric that may be of importance is the CPU time per Monte Carlo step

with these methods. For example, if VEGAS was able to get to the desired uncertainty

with 10% of the number of Monte Carlo samples that the flat distribution needed, but

it took 100 times longer per step, this would not provide a time improvement. Since

VEGAS employs a importance sampling algorithm, we expect it to take a longer time

to decide where to sample the parameter space. Therefore, we will also keep track of

the CPU time to achieve the number of Monte Carlo samples to see if this is an issue.

By doing this calculation, we hope to see a reduced uncertainty in the VEGAS

Monte Carlo method compared to the flat Monte Carlo method for similar compu-

tational times. This will showcase the utility of now having AMI in Python. Not

only will this show the benefit of using VEGAS, but we can think of VEGAS as a

placeholder for one of the many math Python libraries, which could lead to a faster

evaluation of the remaining spatial integrals. Ultimately, this calculation will display

the potential of the pyami library.

Chapter 4

Results

4.1 Scaling Tests

Scaling tests were performed with all 4 methods: SPR, Optimized SPR (OPT. SPR),

terms, Optimized terms (OPT. terms) from the libami library via pyami to see

what method was the best and to see how these methods scaled with more complex

diagrams. These scaling tests were performed with the pyami Python code and libami

C++ code and the results are posted in Tables 4.1 and 4.2 respectively.

Order SPR Opt. SPR terms Opt. terms

2 9.14262 8.51610 6.77916 6.40774
4 203.336 142.855 272.305 228.400
6 7887.82 4044.12 14195.2 11856.8

Table 4.1: pyami results for the average time in microseconds to change external pa-
rameters and evaluate the integrand of 2nd, 4th and 6th order self-energy integrands for
50000 pre-generated random numbers using different methods of storing the analytic
expression of a Feynman diagram after algorithmic Matsubara integration.

From Tables 4.1 and 4.2, we can see how the different versions of storing the

analytic expression change the time to evaluate the integrand for increasingly complex

76

Order SPR Opt.SPR Terms Opt.Terms

2 7.74534 6.56688 5.5832 4.89694
4 203.791 135.860 269.803 230.332
6 7863.04 3862.21 14203.7 11831.3

Table 4.2: libami (C++) results for the average time in microseconds to change
external parameters and evaluate the integrand of 2nd, 4th and 6th order self-energy
integrands for 50000 pre-generated random numbers using different methods of storing
the analytic expression of a Feynman diagram after algorithmic Matsubara integra-
tion.

diagrams. More specifically, how the optimized SPR method is best for higher order

diagrams while the optimized terms method is the winner for low order as explained

in [4]. Now comparing libami and pyami library’s average times we see a nearly

perfect scaling. Almost all the average evaluations are just slightly slower in Python

and do not appear to be affected by the order of the diagram. Of course, there are

exceptions, namely, the 4th order SPR and optimized Terms and 6th order Terms

methods in pyami actually had a faster average evaluation than libami. This also

points to a nearly perfect scaling but we do expect Python to be slower in general,

although particular cases may vary. Our best guess as to why this is happening is

that Python is using an optimization so that when evaluating a function whose inputs

only slightly change in each call, a shortcut is made where the state is saved so that

it jumps to the saved state each call after and, therefore, saves time. In contrast to

C++, such an optimization probably does not exist. This would also explain why

these methods are so close in general and not only the case for when Python is faster.

Although this result is unexpected, this is ideal for the future of this library and

further applications. We conclude from Table 4.1 that just like in libami, we can

continue to use the optimized SPR method in pyami given its ability to evaluate high

order diagrams efficiently.

77

103 104 105 106 107

Number of Monte Carlo Samples

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008
Im

A
(k

=
(

,0
),

=
0.

3)

103 104 105 106 107

MCS

10 5

10 4

 Im

Benchmark
VEGAS
Flat MC

Figure 4.1: Imaginary part of the fourth order self-energy diagram using a renormal-
ized perturbation scheme with z = 0.2i and Γ = 0.0002 as a function of the number
of Monte Carlo samples using various Monte Carlo methods. The magnitude of the
uncertainty is plotted in the inset. Here VEGAS is plotted in blue and a flat Monte
Carlo sampling method is in blue. The parameters of the model are U = 1, β = 5,
k = (π, 0) and ω = 0.3. The benchmark value was obtained by the Flat Monte Carlo
sampling ran with 109 Monte Carlo samples.

4.2 Renormalized Perturbation Theory Calculations

We evaluated a fourth order self-energy diagram with no self-energy insertions that

would arise in the renormalized perturbation scheme proposed in [6] by using the

VEGAS importance sampling library. The value of the diagram was recorded as a

function of Monte Carlo samples to compare its convergence to flat distribution Monte

Carlo sampling. The results are in Fig. 4.1. Here we see that the two external methods

to evaluate the remaining integrals indeed converge to the correct benchmark value.

The most interesting part of this figure is the magnitude of uncertainty in the Monte

78

Carlo methods plotted on a log scale in the inset. For a flat Monte Carlo method, the

uncertainty, δ ImΣ, is supposed to scale as δ ImΣ ∼ 1√
N

, which on a log scale as in

the inset of Fig. 4.1, will correspond to a line of slope −0.5. So when we look at the

efficiency of the methods, ideally we will have a slope from linear regression, m < −0.5.

The flat Monte Carlo method has a slope of mFlat MC = −0.454. This is close, but

worse than the expected value. Comparing this to VEGAS’s linear regression’s slope

which is mVEGAS = −0.507, we see that this is a slight improvement over the expected

value. But looking closer at the log inset of line of Fig. 4.1, we see that the blue

VEGAS line has a kink in it and becomes significantly steeper after 105 Monte Carlo

samples. Doing a linear regression for the latter half of VEGAS’s uncertainty, we find

a slope of mVEGAS, N≥105 = −0.668. This is where we see the benefit of the VEGAS

importance sampling library. Once it is ran long enough, (105 samples in this case) the

algorithm will know which parts of the parameter space give the most variance and it

will sample these regions more frequently to lower the uncertainty in the result [17]. In

this renormalized perturbation theory case, recalling Fig. 2.10, we have an integrand

containing peaks with exaggerated widths that otherwise would be vanishingly small

(Here, Γ = 0.0002 << 0.2 = α). So VEGAS’ importance sampling has an even higher

likelihood of finding these peaks to acquire the correct result if we were to sum the

series in Eq. (2.204).

Lastly, we address the comment made in Sec. 3.4.2 about the time per Monte

Carlo sample for the two libraries. Of course, this is an important metric to get a

better idea of the time required rather than just number of samples. In Table 4.3, we

show the time to complete each data point in Fig. 4.1 as well as the difference and

relative difference in the times for the two integration methods. Of course, since the

VEGAS importance sampling library has extra components to its algorithm, where

it decides what regions of the parameter space are most efficient to sample rather

79

MCS tVEGAS tFlat MC ∆t % Diff

103 0.96549 0.942336 0.023154 2.45709
104 9.53672 9.05231 0.484414 5.35128
105 98.2184 97.8152 0.403202 0.412208
106 964.366 972.804 -8.43762 -0.867351
107 9895.75 9809.99 85.7516 0.874125

Table 4.3: Time to evaluate integration of a fourth order self-energy diagram with a in-
creasing number of Monte Carlo samples using the VEGAS importance sampling and
a Flat Monte Carlo sampling. Also shown is the time difference ∆t = tVEGAS − tFlat MC

and relative difference of the times ∆t/tFlat MC.

than always taking random numbers, we expect the VEGAS integration to be slower.

From Table 4.3, we see that this is mostly the case with the exception being when 106

Monte Carlo samples are used. Here the VEGAS algorithm is faster, although this is

unexpected, by looking at the relative differences, we see that for all number of Monte

Carlo samples, N ≥ 105, the relevant difference is very close to zero and in this case,

VEGAS just happened to be slightly faster. This sharp drop in relative difference can

be once again explained by VEGAS’ importance sampling being most effective when

it is ran long enough so that it knows where it has to sample in the parameter space

to be most efficient. Once N exceeds this threshold, VEGAS does not have to sample

neighbourhoods and essentially performs a flat Monte Carlo sampling on the regions

that it has already deemed as important, therefore, having nearly no difference in the

time required to evaluate the integrals.

Returning to the the comment made in Sec. 3.4.2, for the VEGAS library, we see

the time per Monte Carlo step are nearly equal to the flat Monte Carlo sampling. So

the decrease in numerical uncertainty per number of Monte Carlo samples described

in Fig. 4.1 also indicates an improved time to evaluate the integrals to a desired level

of uncertainty.

80

Although we only compute one Feynman diagram that would arise in the renor-

malized perturbation theory scheme, these results act as a proof of concept calculation

so that all diagrams in the expansion in Eq. (2.204) would have an improvement by

using the VEGAS library. This is due to the exaggerated broadening of the other-

wise, vanishing-in-width peaks that are found and sufficiently sampled by the VEGAS

integration library resulting in a reduction of uncertainty in the integration.

Chapter 5

Conclusion

5.1 Discussion

In this thesis, we derived how Feynman diagrams arise in Many-body perturbation

theory when computing observables of an interacting system. We provided examples

of how the parts of the mathematical expressions of diagrams may be resolved and

automated in a process known as algorithmic Matsubara integration [3].

We provided an idea of how this process has been implemented into C++ in a

library known as libami [4]. Although libami has been used for years with success [5],

it is limited to the external libraries written in C++ to evaluate the remaining spatial

integrals that are not handled by AMI. This served as motivation to implement AMI

into a more user friendly language with plenty of readily available external packages

such as Python.

In this project, we wrote Python bindings by using pybind11 [15] to implement

libami into a Python library called pyami. Exactly like libami, pyami is a complete

Python module so that once provided with a Feynman diagram’s topology, by using

82

AMI, the momentum integrand is formed. But now, the remaining integrals can be

handled by the plethora of math Python libraries that are now at one’s disposal. In

this thesis, we implemented the VEGAS importance sampling library in conjunction

with our recent work [6] for an improvement in the time required to evaluate of

Feynman diagrams on the real frequency axis.

5.2 Future work

Future work involving the pyami library will include examples of pairing pyami with

other Python libraries to evaluate the remaining spatial integrals. Specifically, since

Python is the home of modern machine learning codes, there are several ideas to use

machine learning to evaluate the remaining integrals after the AMI process.

One example could be training a neural network to learn the positions of the peaks

in Fig. 2.10 as a function of the external parameters used. As an alternative, we could

use the renormalized perturbation theory scheme to exaggerate the peaks to better

learn the positions and, therefore, have a better chance of predicting the locations

that must be sampled more heavily compared to flat areas of the integration space.

Another idea is to learn our AMI integrand with what are called Tensor Trains

which have been used in the past for quantum dot calculations [18]. Once the in-

tegrand is learned, the multidimensional integrand is decomposed into a product of

functions, each dependent on one variable. Then, the multidimensional integral can be

written as the product of individual integrals that presumably are easier to evaluate.

These are only a couple of examples, but there are plenty of future applications of

this Python library.

Appendix A

pyami Code Excerpts

Most Codes are available to the public on this project’s Github page [19]. However,

we provide larger relevant codes here.

A.1 Binding codes with pybind11

#include "../src/ami_base.hpp"

#include <pybind11/stl.h>

#include <pybind11/stl_bind.h>

#include <pybind11/complex.h>

#include <pybind11/pybind11.h>

PYBIND11_MAKE_OPAQUE(std::vector<int>);

PYBIND11_MAKE_OPAQUE(std::vector<double>);

PYBIND11_MAKE_OPAQUE(std::vector<std::vector<std::vector<AmiBase::pole_struct>>>);

// for mutability of P_t

84

PYBIND11_MAKE_OPAQUE(std::vector<std::vector<std::vector<double>>>); //

for mutability of S_t

PYBIND11_MAKE_OPAQUE(std::vector<std::vector<std::vector<AmiBase::g_struct>>>);

// for mutability of R_t

PYBIND11_MAKE_OPAQUE(std::vector<std::complex<double>>);

PYBIND11_MAKE_OPAQUE(std::vector<AmiBase::g_struct>);

PYBIND11_MAKE_OPAQUE(std::vector<std::vector<AmiBase::ref_t>>);

PYBIND11_MAKE_OPAQUE(std::vector<AmiBase::pole_struct>);

PYBIND11_MAKE_OPAQUE(std::vector<AmiBase::term>);

namespace py = pybind11;

void init_pyami_wrapper(py::module &m) {

py::bind_vector<std::vector<int>>(m, "VectorInt");

py::bind_vector<std::vector<double>>(m, "VectorDouble");

py::bind_vector<std::vector<std::vector<std::vector<AmiBase::pole_struct>>>>(m,

"P_t");

py::bind_vector<std::vector<std::vector<std::vector<double>>>>(m, "S_t");

py::bind_vector<std::vector<std::vector<std::vector<AmiBase::g_struct>>>>(m,

"R_t");

py::bind_vector<std::vector<std::complex<double>>>(m, "VectorComplex");

py::bind_vector<std::vector<AmiBase::g_struct>>(m, "g_prod_t");

py::bind_vector<std::vector<std::vector<AmiBase::ref_t>>>(m, "R_ref_t");

py::bind_vector<std::vector<AmiBase::pole_struct>>(m, "pole_array_t");

py::bind_vector<std::vector<AmiBase::term>>(m, "terms");

85

py::class_<AmiBase> AmiBase(m, "AmiBase");

AmiBase.def(py::init<>());

AmiBase.def(py::init<AmiBase::ami_parms &>());

py::class_<AmiBase::ami_vars> (AmiBase, "ami_vars")

.def(py::init<>())

.def(py::init<AmiBase::energy_t, AmiBase::frequency_t>())

.def(py::init<AmiBase::energy_t, AmiBase::frequency_t, double>())

.def(py::init<AmiBase::energy_t, AmiBase::frequency_t, double,

double>())

.def_readwrite("energy_", &AmiBase::ami_vars::energy_)

.def_readwrite("frequency_", &AmiBase::ami_vars::frequency_)

.def_readwrite("prefactor", &AmiBase::ami_vars::prefactor)

.def_readwrite("BETA_", &AmiBase::ami_vars::BETA_)

.def_readwrite("gamma_", &AmiBase::ami_vars::gamma_);

py::class_<AmiBase::ami_parms> (AmiBase, "ami_parms")

.def(py::init<>())

.def(py::init<int, double>())

.def(py::init<int, double, AmiBase::graph_type>())

.def(py::init<int, double, AmiBase::graph_type, AmiBase::int_type,

AmiBase::disp_type>())

.def_readwrite("N_INT_", &AmiBase::ami_parms::N_INT_)

.def_readwrite("N_EXT_", &AmiBase::ami_parms::N_EXT_)

.def_readwrite("E_REG_", &AmiBase::ami_parms::E_REG_)

.def_readwrite("tol_", &AmiBase::ami_parms::tol_)

.def_readwrite("TYPE_", &AmiBase::ami_parms::TYPE_)

86

.def_readwrite("int_type_", &AmiBase::ami_parms::int_type_)

.def_readwrite("dispersion_", &AmiBase::ami_parms::dispersion_);

py::class_<AmiBase::g_struct> (AmiBase, "g_struct")

.def(py::init<AmiBase::epsilon_t, AmiBase::alpha_t,

AmiBase::stat_type>())

.def(py::init<AmiBase::epsilon_t, AmiBase::alpha_t>())

.def(py::init<>())

.def_readwrite("eps_", &AmiBase::g_struct::eps_)

.def_readwrite("alpha_", &AmiBase::g_struct::alpha_)

.def_readwrite("stat_", &AmiBase::g_struct::stat_)

.def_readwrite("species_", &AmiBase::g_struct::species_)

.def_readwrite("eff_stat_", &AmiBase::g_struct::eff_stat_)

.def_readwrite("pp", &AmiBase::g_struct::pp);

py::class_<AmiBase::pole_struct> (AmiBase, "pole_struct")

.def(py::init<>())

.def(py::init<AmiBase::epsilon_t, AmiBase::alpha_t>())

.def_readwrite("eps_", &AmiBase::pole_struct::eps_)

.def_readwrite("alpha_", &AmiBase::pole_struct::alpha_)

.def_readwrite("index_", &AmiBase::pole_struct::index_)

.def_readwrite("multiplicity_", &AmiBase::pole_struct::multiplicity_)

.def_readwrite("der_", &AmiBase::pole_struct::der_)

.def_readwrite("which_g_", &AmiBase::pole_struct::which_g_)

.def_readwrite("x_alpha_", &AmiBase::pole_struct::x_alpha_);

87

py::class_<AmiBase::term> (AmiBase, "term")

.def(py::init<>())

.def(py::init<double, AmiBase::pole_array_t, AmiBase::g_prod_t>())

.def_readwrite("sign", &AmiBase::term::sign)

.def_readwrite("p_list", &AmiBase::term::p_list)

.def_readwrite("g_list", &AmiBase::term::g_list);

AmiBase.def("construct", py::overload_cast<AmiBase::ami_parms &,

AmiBase::g_prod_t, AmiBase::R_t &, AmiBase::P_t &, AmiBase::S_t

&>(&AmiBase::construct), "Construction function for term-by-term

construction.");

AmiBase.def("evaluate", py::overload_cast<AmiBase::ami_parms &,

AmiBase::R_t &, AmiBase::P_t &, AmiBase::S_t &, AmiBase::ami_vars

&>(&AmiBase::evaluate), "This is the primary evaluation which takes

again ‘ami_parms‘, the outputs from ‘construct‘ as well as the

‘ami_vars‘ external values that enter into the expression");

AmiBase.def("factorize_Rn", &AmiBase::factorize_Rn, "Optimize function

for SPR notation.");

88

AmiBase.def("evaluate", py::overload_cast<AmiBase::ami_parms &,

AmiBase::R_t &, AmiBase::P_t &, AmiBase::S_t &, AmiBase::ami_vars &,

AmiBase::g_prod_t &, AmiBase::R_ref_t &, AmiBase::ref_eval_t

&>(&AmiBase::evaluate), "This is an optimized version of the evaluate

function. For simplicity if the additional arguments are empty the

evaluate function is called directly.");

AmiBase.def("construct", py::overload_cast<int, AmiBase::g_prod_t,

AmiBase::terms &>(&AmiBase::construct), "Construction function for

term-by-term construction.");

AmiBase.def("evaluate", py::overload_cast<AmiBase::ami_parms &,

AmiBase::terms &, AmiBase::ami_vars &>(&AmiBase::evaluate), "Evaluate

Terms.");

AmiBase.def("factorize_terms", &AmiBase::factorize_terms, "Optimize

factorize function for terms notation.");

AmiBase.def("evaluate", py::overload_cast<AmiBase::ami_parms &,

AmiBase::terms &, AmiBase::ami_vars &, AmiBase::g_prod_t &,

AmiBase::R_ref_t &, AmiBase::ref_eval_t &>(&AmiBase::evaluate),

"Optimized evaluate function for terms notation.");

}

Appendix B

Sample Vegas implementation with

pyami

Here we show how the pyami class can be wrapped up into a integrand to be paired

with an external Python library. We also show an example of a integrate function

that takes a file of external parameters.

B.1 pyami integrand class

This class was written to collect all the pyami objects into one so that we could

easily modify the internal degrees of freedom to evaluate the integrand via a Python’s

call method.

import numpy as np

import vegas

class pyami_integrand_Hubbard:

90

def __init__(self, ami, parms, R, P, S, avars, unique, rref, eval_list,

q_ext, part, epsilon, mu, R0, order):

self.ami = ami

self.parms = parms

self.R = R

self.P = P

self.S = S

self.avars = avars

self.unique = unique

self.rref = rref

self.eval_list = eval_list

self.q_ext = q_ext

self.part = part

self.epsilon = epsilon # Python lambda for particle’s dispersion as

a function of momenta

self.mu = mu # chemical potential shift used in renormalzed PT

schemes

self.R0 = R0 # keep topology with integrand to get correct energy

linear combinations

self.alphas = np.array([self.R0[i].alpha_ for i in

range(len(self.R0))])

self.order = order # order of diagram - needs to be inputed bc

len(R0) changes with counterterms

def __call__(self, x):

#update interal dispersions as a function of momenta x

91

self.update_integrand(x)

evaluate

if self.part == ’real’:

return self.ami.evaluate(self.parms, self.R, self.P, self.S,

self.avars, self.unique, self.rref, self.eval_list).real

else:

return self.ami.evaluate(self.parms, self.R, self.P, self.S,

self.avars, self.unique, self.rref, self.eval_list).imag

def update_integrand(self, k):

use alphas to get correct linear comb of each k for all

propagators

k_x = np.append(k[0::2], self.q_ext[0])

k_y = np.append(k[1::2], self.q_ext[1])

K_eff = np.vstack((np.matmul(self.alphas, k_x),

np.matmul(self.alphas, k_y)))

extra negative on energies!

self.avars.energy_ = py.VectorComplex([self.mu -

self.epsilon(K_eff[:, i]) for i in range(len(self.alphas))])

return self

def update_external(self, b_new, qx_new, qy_new, Rew_new, Imw_new):

self.avars.BETA_ = b_new

92

self.q_ext = [qx_new, qy_new]

self.avars.frequency_[len(self.avars.frequency_) - 1] = Rew_new +

1j*Imw_new

def get_q_ext(self): return self.q_ext

def get_w_ext(self): return

self.avars.frequency_[len(self.avars.frequency_) - 1]

def get_beta(self): return self.avars.BETA_

B.2 pyami-VEGAS integration function

Sample integration function with the pyami integrand class which uses VEGAS. Here

the integrand object is passed in along with a file name containing external parameters

to evaluate along with parameters for the VEGAS integration and returns numpy array

of the results.

def vegas_pyami_2dHubbard(integrand, ext_vars, nitn, neval, alpha=0.5,

beta=0.75, neval_frac=0.75, frac_prime=0.1, adapt=True):

ans = []

f = open(ext_vars, ’r’)

lines = f.readlines()

for i in range(len(lines)):

93

print % complete

if (i!=0 and (10*i)%len(lines) == 0):

print(f"{i/len(lines) * 100}% complete")

update external variables that are beta, q_x, q_y, re(w), im(w),

w_c

l = lines[i]

beta_, q_x, q_y, re_w, im_w, w_c = map(float, l.split(" "))

integrand.update_external(b_new = beta_, qx_new = q_x, qy_new =

q_y, Rew_new=re_w, Imw_new = im_w)

R = 2 * integrand.order * [[0, 2*np.pi]]

MC loop

integ = vegas.Integrator(R)

try:

integ(integrand, nitn=nitn, neval=frac_prime*neval, nproc=1,

alpha=alpha, beta=beta, neval_frac=neval_frac, adapt=adapt)

prime integrand

result = integ(integrand, nitn=nitn, neval=neval, nproc=1,

alpha=alpha, beta=beta, neval_frac=neval_frac, adapt=adapt)

ans.append(result/(2*np.pi)**(2*integrand.order)) # divide by

(2pi)^dim

except ValueError:

print(f"VALUE ERROR ENCOUNTERED AT {integrand.get_q_ext()},

{integrand.get_w_ext()}, {integrand.get_beta()}")

94

ans.append(np.nan+1j*np.nan)

return np.array(ans)

Bibliography

[1] R.D. Mattuck. A Guide to Feynman Diagrams in the Many-body Problem. Dover
Books on Physics Series. Dover Publications, 1992.

[2] J. P. F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz W. Bulik, Gar-
net Kin-Lic Chan, Chia-Min Chung, Youjin Deng, Michel Ferrero, Thomas M.
Henderson, Carlos A. Jiménez-Hoyos, E. Kozik, Xuan-Wen Liu, Andrew J. Mil-
lis, N. V. Prokof’ev, Mingpu Qin, Gustavo E. Scuseria, Hao Shi, B. V. Svis-
tunov, Luca F. Tocchio, I. S. Tupitsyn, Steven R. White, Shiwei Zhang, Bo-Xiao
Zheng, Zhenyue Zhu, and Emanuel Gull. Solutions of the two-dimensional hub-
bard model: Benchmarks and results from a wide range of numerical algorithms.
Phys. Rev. X, 5:041041, Dec 2015.

[3] Amir Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc. Algorithmic matsubara
integration for hubbard-like models. Phys. Rev. B, 99:035120, Jan 2019.

[4] Hossam Elazab, B.D.E. McNiven, and J.P.F. LeBlanc. Libami: Implementa-
tion of algorithmic matsubara integration. Computer Physics Communications,
280:108469, 2022.

[5] James P. F. LeBlanc, Kun Chen, Kristjan Haule, Nikolay V. Prokof’ev, and
Igor S. Tupitsyn. Dynamic response of an electron gas: Towards the exact
exchange-correlation kernel. Phys. Rev. Lett., 129:246401, Dec 2022.

[6] M. D. Burke, Maxence Grandadam, and J. P. F. LeBlanc. Renormalized pertur-
bation theory for fast evaluation of feynman diagrams on the real frequency axis.
Phys. Rev. B, 107:115151, Mar 2023.

[7] Radi A. Jishi. Feynman Diagram Techniques in Condensed Matter Physics. Cam-
bridge University Press, 2013.

[8] G.D. Mahan. Many-Particle Physics. Physics of Solids and Liquids. Springer
US, 1990.

[9] Murray Gell-Mann and Francis Low. Bound states in quantum field theory. Phys.
Rev., 84:350–354, Oct 1951.

96

[10] Takeo Matsubara. A New Approach to Quantum-Statistical Mechanics. Progress
of Theoretical Physics, 14(4):351–378, 10 1955.

[11] J. Hubbard. Electron correlations in narrow energy bands. Proceedings of
the Royal Society of London. Series A, Mathematical and physical sciences,
276(1365):238–257, 1963.

[12] André-Marie S. Tremblay. Two-particle-self-consistent approach for the hubbard
model. In Strongly Correlated Systems, Springer Series in Solid-State Sciences,
pages 409–453. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[13] Mervyn Roy. The tight binding method, May 2015.

[14] Michael V. Sadovskii. Diagrammatics: lectures on selected problems in condensed
matter theory. World Scientific Publishing Co. Pte. Ltd, 2006.

[15] Wenzel Jakob. Pybind11. https://github.com/pybind/pybind11, 2016.

[16] Amir Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc. Algorithmic approach
to diagrammatic expansions for real-frequency evaluation of susceptibility func-
tions. Phys. Rev. B, 102:045115, Jul 2020.

[17] G P Lepage. VEGAS - an adaptive multi-dimensional integration program. Tech-
nical report, Cornell Univ. Lab. Nucl. Stud., Ithaca, NY, 1980.

[18] Yuriel Núñez Fernández, Matthieu Jeannin, Philipp T. Dumitrescu, Thomas
Kloss, Jason Kaye, Olivier Parcollet, and Xavier Waintal. Learning feynman
diagrams with tensor trains. Phys. Rev. X, 12:041018, Nov 2022.

[19] James P.F LeBlanc. libami. https://github.com/jpfleblanc/libami, 2022.

	Title page
	Abstract
	Acknowledgements
	Table of contents
	List of tables
	List of figures
	Introduction
	Theory
	Second Quantization
	N-body Wave Function
	Creation and Annihilation Operators
	Occupation Numbers

	Zero Temperature Green's Functions
	Representations of Quantum Mechanics
	S-Matrix
	Green's Functions
	Wick's Theorem
	Feynman Diagrams
	Vacuum Polarization Graphs

	Non-zero Temperature Green's Functions
	Matsubara Green's Functions
	Retarded and Advanced Green's Functions

	The Hubbard Model
	Dyson's Equation
	Diagrammatic Techniques
	Algorithmic Matsubara Integration
	The libami library

	Renormalized Perturbation Theory

	Methods
	Writing pyami
	Pybind11
	Using pyami

	Testing
	Scaling
	Renormalized Perturbation Theory
	Modifications to Diagram's Topologies
	Example Calculations

	Results
	Scaling Tests
	Renormalized Perturbation Theory Calculations

	Conclusion
	Discussion
	Future work

	pyami Code Excerpts
	Binding codes with pybind11

	Sample Vegas implementation with pyami
	pyami integrand class
	pyami-VEGAS integration function

	Bibliography

