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Abstract

Active brain-computer interfaces are a novel communication/interaction pathway that

relies on the performance of imagery tasks. The patterns of brain activity associated

with these tasks are detected and decoded as commands for operating an external

device. This study focuses on augmenting the practicality of such systems by inves-

tigating the mental task of singing imagery. Singing imagery is the simple act of

imagining singing a song in your head. Despite its straightforward nature, the poten-

tial of singing imagery as an alternative task for active BCIs or for increasing their

number of commands has yet to be thoroughly investigated.

The research described in this thesis comprises two phases. In the first study,

singing imagery is combined with the commonly used imagery tasks in BCI research

(i.e., 4- and 5-class combinations consisting of the imagined movement of the left hand,

right hand, feet, and tongue, as well as a “rest” state). Filter bank common spatial

patterns algorithm and the random forest classifier are utilized to incorporate a singing

imagery task in the 2-, 3-, 4-, and 5-class combinations. These analyses resulted in

comparable classification accuracies to conventional motor imagery tasks. Hence,

based on the survey results, singing imagery could be considered as a potentially

more intuitive alternative mental task. Furthermore, singing imagery may also be a

practical approach for increasing the number of commands to six, where accuracies

as high as 60.7% were achieved.

The second study investigated the potential of using “dual imagery” tasks (i.e., the

simultaneous performance of two single tasks, in this case, singing imagery and one

of the conventional motor imagery tasks) as additional BCI control tasks. Here, the

3- and 4-class analyses of the dual tasks and their constituent single tasks (alongside

a “rest” state for the 4-class) were carried out to verify the possibility of differenti-

ating them. Using an extended version of filter bank common spatial patterns and
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regularized linear discriminant analysis classifiers, average accuracies as high as 64.1%

and 63% were achieved for the 3, and 4-class scenarios, respectively. Next, the dual

imagery tasks were combined with conventional single motor imagery tasks to inves-

tigate increasing the number of commands to seven or eight. As a result, for the 7-

and 8-class scenarios, accuracies as high as 55.4%, and 50.5%, which are well above

the corresponding chance levels of 14.3% and 12.5%, were obtained.

Increasing the number of commands a BCI can recognize is important as it can

significantly impact the user’s experience with the device. Specifically, a BCI with

a more intuitive list of commands can help the user avoid a high mental workload.

Moreover, a higher number of commands can be helpful by allowing users to com-

municate with a higher information transfer rate. Based on the results of this thesis

research, singing imagery appears to be a potentially viable solution for improving

active BCIs.
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Chapter 1

Introduction

Portions of this chapter have been submitted as part of the following manuscripts:

• “Investigating Singing Imagery as a Potential Control Task for Motor Imagery

BCI”, which is currently under review at IEEE Transactions on Biomedical

Engineering (Manuscript ID: TBME-00207-2023).

• “Investigating Dual Imagery Tasks for BCI Control”, which is currently under

review at Journal of Neural Engineering (Manuscript ID: JNE-106478).

• “Investigating the addition of singing imagery as a control task in motor imagery

BCI”, which is a conference proceeding presented at IEEE SMC 2022 conference

in Prague, Czech Republic. [43]
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1.1 Brain-Computer Interfaces

Brain-computer interfaces (BCI) are a recent technology that allows for direct commu-

nication between the brain and external devices. A BCI is defined as “A system that

measures central nervous system (CNS) activity and converts it into artificial output

that replaces, restores, enhances, supplements, or improves natural CNS output and

thereby changes the ongoing interactions between the CNS and its external or internal

environment.” [67] In particular, “active BCIs”, which are the focus of this work,

provide users with a movement-free pathway to communicate and interact with their

surroundings. The user controls the BCI by intentionally generating a predefined set

of brain activity patterns which are detected and translated into commands for an

external device (e.g., a computer). This is in contrast to “passive BCIs”, which are

not consciously controlled by the user but rather derive explicit information about

the user’s state (e.g., fatigue, attention) and use it to enhance some human-computer

interaction.

1.2 Mental tasks in active BCIs

For an accurate and efficient active BCI design, the generated EEG signal patterns

should be clear, distinct, and reproducible. Often, various mental tasks are used to

help the user generate these patterns, with each task being associated with a different

command.

Currently, the most common type of mental task used for active BCIs is the

kinesthetic motor imagery (MI) of body parts. Kinesthetic motor imagery refers

to mentally simulating a movement by recalling the sensations associated with the

actual execution of the movement [48] (this is different from visual motor imagery,

which refers to visualizing a movement without recalling the associated sensations).

Interestingly, this mental simulation of movement generates similar patterns of brain

activity, with the same cortical areas involved in both [45, 24, 68]. The most commonly

used tasks in EEG-based MI-BCI research are the imagined movement of large body

parts like the hands, feet, and tongue. However, some users may find these tasks

difficult to perform, and or struggle with generating clear patterns of neural activity

that can be detected by the BCI algorithm. This may be particularly true for users
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with severe motor disabilities who may not have actually executed the associated

movements in a long time (or, possibly, ever).

Alternatively, some users may find non-motor tasks more suitable. Although such

tasks are not as well-studied as MI tasks, some non-motor tasks such as mental calcu-

lation/counting [46, 3, 10, 57, 12, 18, 55, 9, 16, 15, 47], word generation/association

[46, 3, 10, 57, 12, 18, 55, 9, 16, 47], spatial navigation [3, 18, 55, 19, 16, 15, 7, 17],

mental object rotation [3, 10, 12, 18, 55, 9], and facial imagery [18, 55] have been

explored in the BCI literature. Unfortunately, however, some users may find them

difficult to perform. Even if high classification accuracies could be achieved with

these tasks in a research setting with healthy participants, they may not result in

practical, user-friendly BCI solutions for frequent and long-term use by the target

population of users. Thus, a thorough investigation of alternative, intuitive

non-motor tasks for designing practical active BCIs is needed. This inves-

tigation should evaluate the alternative task both in terms of performance and also

perceived difficulty.

1.3 Increasing the number of commands

As mentioned, in active BCI systems mental tasks are often used to help the user

generate distinct patterns of brain activity that can then be associated with differ-

ent output commands. Therefore, increasing the number of mental tasks that the

BCI can detect would result in increasing the number of possible commands, thereby

augmenting the functionality and practicality of the system. Indeed, increasing the

number of supported commands has been noted as a key issue in the field of active

BCI [69]. In current EEG-based BCI research, up to four motor tasks/commands are

typically investigated, specifically motor imagery of the left hand, right hand, both

feet, and tongue. In terms of non-motor tasks, a majority of studies have focused

only on binary classification between pairs of tasks [46, 3, 10, 57, 12, 18, 55, 7], while

a few have explored classification of 4-classes [9, 19, 15, 47].

A relatively small number of MI-BCI studies have investigated the classification

of more than four tasks. Christensen et al. [6] explored the possibility of controlling

a drone using a 5-class MI-BCI where a rest state was added to the conventional

tasks of R, L, F, and T motor imagery. This 5-class paradigm resulted in an average
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classification accuracy of 41.8% in an online study with 10 participants. One study

investigated the possibility of a 5-class BCI based on the four common MI tasks (i.e.,

L, R, F, and T) and a mental calculation task [47]. This combination of five tasks

yielded a mean accuracy of 53% across three participants. Moving away slightly from

the conventional tasks, Faiz et al. [11] proposed using different imagined movements

of a single hand (i.e., open, close, pronate, and supinate) along with a rest state to

develop a 5-class system. They reported a high classification accuracy of 97.5% with

a single participant; however, it is not clear whether such levels of performance would

be maintained for a larger sample size.

Very few studies have looked beyond a 5-class MI-BCI system, and those that

have did not use additional MI tasks but rather proposed paradigms in which a lower

number of MI tasks were used in sequence to achieve multiple commands [69, 30,

66]. Focusing on the conventional tasks of L, R, and REST, Jiang, et al. [30] used

pairwise combinations of these three tasks, performed in sequence, to produce a total

of six different commands (i.e., L-R, L-REST, R-L, R-REST, L-L, and R-R). Using

this paradigm, an average accuracy of 89.4% was obtained across four participants.

Unfortunately, though, even if these commands can be distinguished with high ac-

curacy, the difficulty of performing sequential tasks, along with the low information

transfer rate inherent in such multi-step command paradigms, may potentially cause

user frustration and abandonment of the device.

Increasing the number of commands should not undermine the intuitiveness of

BCI control from the perspective of the user. As mentioned earlier, the target users

of active BCI systems are often individuals with severe physical disabilities, and these

individuals may find it difficult to go through long and demanding training sessions

to learn how to control the BCI. Therefore, the defined tasks ought to be relatively

easy to perform, and also reasonably different from each other to avoid confusion. For

example, the intrinsic similarities among the four single-hand tasks proposed in [11]

(i.e., open, close, pronate, and supinate) may lead to difficulties for users with severe

motor disabilities who may not have performed such precise movements in a very long

time. Hence, exploring potentially effective and user-friendly approaches for

increasing the number of commands in active BCIs is justified.
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1.4 Singing Imagery (SI) as a potential control task

Singing imagery (SI) is an intuitive task that, despite its potential advantages, is yet

to be thoroughly examined for use in active BCIs. Performing singing imagery is as

simple as imagining singing a song in your head, an experience that is very common

to most people. Because of the familiar and intuitive nature of the task, SI has the

potential to simplify BCI control from the perspective of the user. Along with issuing

discrete commands, SI may be particularly advantageous for applications in which

a desired action must be maintained continuously for an unspecified period of time;

for example, when scrolling through content on a computer screen or moving a video

game avatar forward. Performing most of the other mental tasks mentioned above

(both motor and non-motor) for more than a few seconds at a time would be quite

difficult. On the other hand, it would be relatively easy for a user to simply start and

then continue performing singing imagery to scroll up or down on a computer screen

until they reach their desired content or to move a video game avatar forward until

they wish it to stop.

A few EEG-BCI studies have included singing imagery as one of a longer list of

investigated mental tasks, but it was only considered in binary classification scenarios,

and the accuracies reported were generally low in comparison to other tasks [46, 3].

However, these low accuracies may have been due to how the singing task was defined

in these studies, where participants were instructed to simply “sing a song of their

choice in their heads” [46], or to “imagine singing a song that they chose beforehand,

if possible with lyrics, while focusing on the emotional response it elicits” [3].

It is reasonable to think that the brain activation associated with singing imagery

will be most clear and distinct if it is treated as 1) a special case of mental speech

(in which cortical activation is said to be due to articulation preparation, including

motor planning, as well as auditory cortex activation caused by efference copies [49])

and/or 2) a motor imagery task itself (i.e., imagined movement of the tongue, lips, and

jaw). Therefore, it is likely that having the user focus on the imagery of articulating

the lyrics of the song while performing singing imagery will be critical to generating

brain activity patterns that can be reliably detected. However, none of the previous

studies that considered singing imagery as a BCI control task explicitly instructed the

participants to do this.
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It is worth noting that although in [3], singing imagery had relatively poor clas-

sification performance, it was also rated lowest of all seven mental tasks investigated

in terms of mental demand, effort, and frustration. Thus, given its potential advan-

tages, a thorough investigation of the potential of singing imagery as a BCI

control task - in both binary and multi-class scenarios and with a focus

on the speech/motor aspects of the task - is warranted. This was the aim of

Study 1 of this thesis research.

1.5 Dual imagery (DI) as potential control tasks

A mental task involving the simultaneous performance of two usually distinct mental

tasks can be termed a “dual imagery (DI)” task. For instance, motor imagery of

the left hand and the right hand, which are differentiable from one another by EEG,

could be performed simultaneously to produce a third task. Although there is some

disagreement as to the effects of multitasking on the brain [1, 28], most agree that

combining several low-level, simplified tasks has an additive effect [25]. Therefore, it

is reasonable to suggest that combining two individual tasks would produce a third

DI task with a distinct pattern of brain activity, such that all three tasks would be

differentiable from one another. If so, using such DI tasks along with single tasks

could be a novel approach to increasing the number of classes a BCI can detect and,

thus, the number of BCI commands. Detecting such dual tasks could be particularly

useful in applications like wheelchair/cursor control where the single tasks could be

translated into movement in the four cardinal directions (i.e., north, east, south, and

west), and their dual task could translate into movement in the corresponding ordinal

direction (i.e., northeast, southeast, southwest, and northwest) [33].

Very few previous BCI studies have investigated DI tasks. One study attempted

to classify DI tasks in a 4-class scenario consisting of “no motor imagery”, “imagery

of left hand”, “imagery of right hand”, and “imagery of both hands” [21]. Based

on a limited sample size of participants (n=3), promising results were reported for

this paradigm, with a maximum accuracy of 75.8% across the participants. However,

the potential of DI for increasing the number of commands beyond four was not

investigated.

The possibility of using DI tasks to increase the number of commands from four
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to five was explored in Reshmi et al. [54], where the simultaneous performance of

R and L replaced the T imagery task. Moreover, Kim et al. [33] also combined two

motor imagery tasks to create a separate command; specifically, the simultaneous

performance of R + F and L + F were used with the single tasks of R, L, and

F to build a five-class system. Nevertheless, neither of these two studies reported

performance evaluation metrics that can be used to gauge the potential functionality

of the proposed protocols.

Another study on DI tasks investigated the eight tasks that could be achieved by

combining motor imagery of the left and right arms and both feet [62]. However, de-

spite recording EEG data from 18 participants, they reported classification results for

only three of them who had distinguishable patterns (based on the BCI algorithm used

in their study). Accuracies as high as 50% were reported for the 8-class classification

across the three participants.

The investigated DI tasks, generated by two MI tasks, tend to be tiring and de-

manding for the brain. Moreover, it can be argued that due to the inherent similarities

of different MI tasks and their corresponding patterns, their corresponding dual task

may not provide desirable levels of performance. Alternatively, the act of singing a

song and tapping your hand or foot along to the rhythm is a very common expe-

rience for most people, so this could produce a relatively more intuitive and easier

DI task combination. Furthermore, the patterns associated with SI and MI may be

more differentiable in comparison to two MI tasks. Hence, an investigation of DI

tasks created by the simultaneous performance of motor imagery of limbs

and singing imagery is justified. Here, based on the findings of Study 1, which

investigated the potential of singing imagery as a BCI control task and verified the

differentiability of SI and MI tasks, Study 2 investigated DI tasks composed of a

conventional motor imagery task performed simultaneously with singing imagery.

1.6 Research objectives

The overall objective of this study was to examine the potential of the novel mental

task of singing imagery to enhance the current state-of-the-art active BCI systems.

In particular, the main goal was to investigate the potential of using singing imagery

as an alternative to the traditional four tasks - motor imagery of the left hand (L),
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right hand (R), feet (F), and tongue (T) - as well as in combination with these tasks

to increase the number of possible BCI commands above four. Thus, the specific

research objectives of this thesis were as follows.

1. Considering the following set of mental tasks (SI, L, R, F, T, REST):

(a) Investigate the accuracy with which all 2-, 3-, 4-, and 5-class combinations

can be classified via EEG, and compare the combinations including SI with

those including only conventional MI tasks.

(b) Determine the accuracy with which all six tasks can be classified via EEG.

(c) Compare SI to the conventional MI tasks in terms of participants’ subjec-

tive preferences and perception of task difficulty.

2. Considering the following set of mental tasks (L, R, F, SI, LSI, RSI, FSI, REST),

where LSI, RSI, and FSI are dual imagery tasks:

(a) Investigate the accuracy with which all 3-class combinations consisting of

a dual imagery task and its two constituent single tasks (e.g., LSI, L, and

SI) can be classified via EEG.

(b) Investigate the accuracy with which all 4-class combinations consisting of

a dual imagery task, its two constituent single tasks (e.g., LSI, L, and SI),

and REST can be classified via EEG.

(c) Investigate the accuracy with which all 7-class combinations can be classi-

fied via EEG.

(d) Investigate the accuracy with which all eight tasks can be classified via

EEG.

(e) Compare DI tasks to single tasks in terms of participants’ subjective pref-

erences and perception of task difficulty.

1.7 Thesis organization

The rest of this thesis is organized as follows:

Chapter 2 provides a thorough review of the literature relevant to the current

thesis, including a discussion of active BCIs and their design. The main components
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of active BCIs are described, and the specific machine learning and signal processing

algorithms and techniques used in this research are discussed in detail.

Chapter 3 presents the first study conducted as a part of this thesis in which

the potential of using singing imagery as a control task in active BCIs was explored.

The study design, methodology, results, discussions, and conclusion of this study are

presented. This chapter addresses research objective #1 in section 1.6

Chapter 4 presents the second study conducted as a part of this thesis in which the

potential of using dual imagery (DI) tasks (comprising singing imagery and traditional

motor imagery tasks) as control tasks in active BCIs was investigated. The study

design, methodology, results, discussions, and conclusion of this study are presented.

This chapter addresses research objective #2 in section 1.6

Chapter 5 summarizes the original contributions of this thesis research, briefly

discusses the limitations of the work, and recommends future work to be explored.



Chapter 2

Literature review
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2.1 Brain-computer interface

Any sort of mental activity leads to an alteration in neurophysiological signals. In

brain-computer interfaces (BCI), such changes in brain activity are measured, de-

tected, and translated into commands/information to be sent to an external device.

BCIs have led to the development of a novel communication and control pathway that

could be used to enhance the human experience with technology or even the quality

of a user’s life.

Physical movements, speech, and gestures are some of the common ways that

people communicate and interact with the world around them. However, for some

individuals with severe physical disabilities, such as those arising due to neurological

disorders like amyotrophic lateral sclerosis (ALS), these common pathways may not

be efficient or effective. BCIs offer these individuals an alternative, movement-free

means of communication and environmental control, which is based on intentionally-

generated brain activity alone. The goal is to allow users to control an external device,

for example, a robotic arm [37], a wheelchair [69], or a computer application [42]. The

type of BCI that requires such a direct intention and effort from the user is referred

to as “active BCI”.

2.2 BCI algorithm

In active BCI systems, the user initiates commands by intentionally generating a

particular mental state, often through performing different mental tasks. The BCI

uses information contained in the user’s neurophysiological signals to decode which

mental state the user generated, and thus their intended command, and then out-

puts the command to a connected external device. To accomplish this, a typical

active BCI algorithm comprises the following main stages (see Figure 2.1): 1) neural

data acquisition, 2) signal pre-processing, 3) feature extraction, 4) feature selection,

5) classification and 6) control and feedback. The specific methods and techniques

used in each stage can vary and will depend on the specific design requirements in a

given scenario. These major BCI algorithm components are described in detail in the

following sections.
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Figure 2.1: Main stages of the typical active BCI algorithm

Note that BCI design generally consists of calibration and online/use phases. Op-

timizing the feature selection and classification algorithms are typically conducted in

the calibration phase, and the selected features and the generated model are then

used in the online phase. However, some BCIs utilize adaptive algorithms where the

selected features and/or the classification model are periodically updated during the

online phase. This can be helpful in addressing changes that occur in the signal char-

acteristics due to factors like fatigue. Also, the feedback only occurs in the online/use

phase.

2.2.1 Data acquisition

The first step is to use sensors to record the users’ neural signals as they interact with

the BCI. This can be done invasively (i.e., sensors are implanted on/in the brain tissue)

or non-invasively (sensors are placed on the surface of the scalp). Various recording

modalities have been investigated for use in BCIs. These have included non-invasive

methods like electroencephalography (EEG), magnetoencephalography (MEG), func-

tional magnetic resonance imaging (fMRI), and functional near-infrared spectroscopy

(fNIRS) [23], as well as invasive methods like electrocorticography (ECoG) and in-

tracranial electrode arrays. Each of these approaches offers advantages while being

limited in some other aspects (see Table 2.1). Therefore, it is important to fully

consider the application and choose the recording modality appropriately.

Of the non-invasive technologies, EEG is the one most often used in BCI research.

BCI systems must be able to detect rapid changes in neural activity, they must be able

to be used in everyday scenarios and settings, and they must be affordable for users,

so EEG, with its high temporal resolution [36], portability (the required equipment
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Table 2.1: Commonly used recording methods in active BCI systems

Recording Method Temporal Resolution Spatial Resolution Cost Portable Invasive

EEG High Low Low Yes No
MEG High Relatively High High No No
fMRI Low High High No No
fNIRS Low Relatively High Low Yes No
ECoG High High High Yes Yes

is quite small, and there are wireless options available), and relatively low cost is the

most promising option to date.

Electroencephalography (EEG)

• Electrophysiological phenomena

EEG is a non-invasive neuroimaging technique capable of measuring the firing patterns

of billions of neurons [58]. Specifically, the synchronized activity of cerebral neurons,

primarily the pyramidal neurons [5], leads to the generation of electrical activities

that can be measured via a set of EEG electrodes placed on the scalp.

The electrical fields generated by the neurons which are not aligned in the same

direction tend to be very dispersed and, on average, cancel out each other. However,

pyramidal cells are oriented perpendicularly to the cortical surface [13] and oscillate

at the same frequency. This means that their electrical field is additive and projected

toward the scalp and can be captured via the EEG sensors.

Still, it should be noted that due to the poor spatial resolution of EEG signals,

even with a highly dense grid of EEG electrodes, it is not possible to detect individual

sources of brain activity. This is because the neural activity from different brain

regions may be mixed together and measured by different adjacent electrodes, making

it impractical to localize the detected activity.

On the other hand, the high temporal resolution of EEG and its inherent spectral

properties have proved to be useful in BCI design. Specifically, EEG data is typically

broken down into the delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), mu (8–12 Hz),

beta (13–25 Hz), and gamma (>25 Hz) components, and each of these bands has been

reported to represent different types of neural activation (e.g., relaxation, intellectual

activity and focus, and perception and consciousness) [38].
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Moreover, in MI-BCI, the imagined movement of body parts leads to a set of

patterns known as event-related desynchronization (ERD) and event-related synchro-

nization (ERS) in the EEG data. These patterns are characterized as a decrease or

increase of signal power in the brain’s somatosensory rhythms, respectively [52], and

are typically observed at the sensorimotor area of the brain in the 7 - 30 Hz frequency

range [41].

• EEG recording

EEG recording systems consist of various components that work together to detect

the neural activity, amplify the detected signals, convert the inherently continuous

signals to digital format, and transmit and store them on an external device such

as a computer. The major components of an EEG system are the electrodes and

the amplifier unit, which are connected via cables or wirelessly. The EEG recording

setup used in the present work, incorporating the discussed components, is displayed

in Figure 2.2.

Figure 2.2: EEG recording setup used in the present study

To achieve a high signal-to-noise ratio, a conductive electrolyte gel is typically

applied to each electrode to reduce the impedance between the tip of the electrode
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and the scalp. However, the recent development of practical and comfortable “dry

electrodes” could potentially eliminate the need for this in the future [64], which would

be a significant advantage for BCI applications. Since the EEG signals detected at

the scalp are usually extremely small - in the microvolt range - it is necessary to

amplify and enhance these signals for accurate digitization. For the A/D converter,

it is important that a sufficiently high sampling rate is chosen so that no information

is lost in the conversion from the analog to the digital signal. In MI-BCI studies,

sampling rates in the 128 - 512 Hz range are commonly used [63, 51].

EEG recording electrodes can be characterized as active or passive (this is unre-

lated to the categorization of BCIs as active or passive). Passive electrodes typically

have a poorer signal-to-noise ratio than active electrodes. In these electrodes, the

signal that is detected at the electrode is transmitted to the amplifier via a wired con-

nection. The signal can pick up noise during transmission, and because the measured

EEG signals are extremely small, this can result in a very poor signal-to-noise ratio

once the signals are eventually amplified. To mitigate this issue, active electrodes con-

tain circuitry for pre-amplifying the signal immediately as they are detected at the

scalp. This minimizes the effect of noise acquired during transmission to the amplifier

unit. Therefore, for a practical and portable EEG-based BCI design, active electrodes

are a better choice [35].

Another important consideration prior to EEG recording is the placement of elec-

trodes on the scalp. Typically, the standard 10-20 or 10-10 systems adopted by the

International Federation of Clinical Neurophysiology are followed [27]. The 10 and 20

in the name refer to the percentage of the total front–back or right–left distance of

the skull, which specify the distance between two neighboring electrodes. Figure 2.2

depicts the standard 10-10 electrode placement system for 64 electrodes.

Because EEG is the most widely-used non-invasive recording technology used in

active BCIs, and it is the technology used in this thesis research, the following sections

will discuss the BCI algorithm with a focus on EEG-based BCI.

2.2.2 Data pre-processing

Once the EEG data is acquired, the first step is to remove noise and artifacts contam-

inating the signals, as it could affect the performance of the BCI. For that purpose,
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Figure 2.3: The standard 10-10 electrode placement system

the recorded data has to go through a pre-processing pipeline. Some of the typical

elements of this pipeline are discussed in the following sections.

FIR filters

Finite impulse response (FIR) filters are a commonly used type of digital filter that

manipulate the signals’ frequency components in a way that only certain frequencies

are allowed to pass, and the rest are attenuated. This behavior of the filter is called

the frequency response of the filter. By adjusting the filter’s frequency response, one

could use it for various purposes, such as noise reduction and extraction of frequency-

specific information.

The impulse response of these filters, as the name suggests, is non-zero only for a

limited duration after an impulse input. This response is basically a set of coefficients

calculated in the filter design process that determine the behavior of the filter. A

linear phase response (i.e., the phase delay remains constant across the frequency
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band), stability (i.e., the output would not grow indefinitely), and ease of design and

implementation are some crucial advantages that FIR filters offer.

Due to these qualities, FIR filters are widely used in a variety of applications,

like bio-signal processing, image processing, and audio/speech processing. In EEG

signal processing, FIR filters are commonly used for removing the DC components of

the signal and avoiding the noise-sensitive high-frequency components by bandpass

filtering the data in the 1-100 Hz frequency range.

Common average re-referencing

Whilst recording, neural activity is inferred by calculating the relative difference in

voltage measured at individual electrodes to the reference point (typically one of the

electrodes). Re-referencing is the technique of changing this reference point for the

recorded EEG signal. It should be noted that re-referencing can affect the interpre-

tation of EEG data and should be carried out with care.

Common average re-referencing (CAR) is a common approach in EEG signal pro-

cessing. In this approach, the average of all the electrodes is calculated and then

subtracted from the readings of all the electrodes. This can lead to improvements

such as the attenuation of common noise sources and the enhancement of spatial

resolution.

Epoch extraction

In active BCI design, an epoch is defined as a window of time that the system considers

for predicting the mental task that is being performed. In cued systems, epochs are

extracted around the period of task execution with a predefined margin before and/or

after that period.

It should be noted that parameters such as the window’s length, offset before and

after the event, and criteria for rejection of epochs should be carefully determined as

they can significantly impact the analysis. The chosen parameters should preserve

the relevant neural activity and minimize the effect of artifacts in the EEG data.
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Baseline correction

Removing the EEG data’s DC offset is a commonly used technique in EEG signal pre-

processing. The electrode-scalp interface, electrode-cable interface, and amplifier’s

input offset are some of the sources that can generate a constant bias in the EEG

signals. This can negatively impact the signal’s interpretation as it could lead to

meaningless variations in the data. Removing the baseline and centering the data

around zero can also be helpful in enhancing the performance of signal processing

techniques that are commonly used in frequency analysis.

It should be noted that applying baseline correction incorrectly can introduce

errors in the data. Therefore, an appropriate method should be applied on a valid time

window to effectively calculate and remove the DC component without introducing

undesired effects.

2.2.3 Feature extraction

At the classification stage of the BCI algorithm, information from the pre-processed

EEG signals is used to predict which mental task the user is performing. Typically,

the raw signals are not used in this classification, but rather “features” are first de-

rived/extracted from the signals, which contain the salient information needed to

differentiate the mental tasks of interest. Features capturing temporal and/or spatial

and/or spectral characteristics of the signal are typically useful. Typical time-domain

features include signal mean, variance, and standard deviation, while in the frequency

domain, the power spectral density of the signal and the band power (i.e., average

power over a specific frequency band) are commonly used. To extract spectral fea-

tures that may vary while performing a specific task, time-frequency methods such as

wavelet transform and short-time Fourier transform can be used.

Common spatial pattern (CSP) filters [70, 22] are a type of spatial filter

used for extracting relevant information from multi-channel EEG signals. They are

the most commonly used feature extraction method in identifying patterns of activity

for motor imagery tasks. This approach aims to determine a set of spatial filters that

could maximize the separation between two populations of EEG signals (i.e., two

mental tasks such as left and right hand motor imagery). In doing so, the variance is

maximized for one EEG population and minimized for the other.
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Filter bank common spatial pattern (FBCSP) is an extension of the CSP

algorithm in which CSP filters are optimized for multiple frequency bands rather than

just one [2]. Typically, a bank of FIR filters is used to extract signals in the different

frequency ranges of interest. Then, each filter’s output is input to the CSP filter

optimization algorithm, and the associated features are calculated. FBCSP results in

a larger set of features containing more specific spectral-spatial information that is

often more useful in differentiating the mental tasks of interest.

2.2.4 Feature selection

The number of extracted features can be quite high in some scenarios, and appropri-

ate feature selection approaches should be deployed to lower this number as it can

significantly impact the performance of the system. In particular, a high number of

redundant features that do not provide any value may even compromise the system’s

performance and/or processing time. Moreover, reducing the size of the feature set

is also helpful in avoiding the “curse of dimensionality” phenomenon [4], which refers

to the exponential increase in the number of training samples required to accurately

fit the classifier as the number of input features increases.

There are feature selection algorithms that can automate this process. Feature

selection methods can be categorized as wrapper methods, filter methods, and em-

bedded methods. Wrapper methods compare different subsets of features, one at a

time, based on their performance with the particular classification algorithm to be

used. This solution has a high computation cost and a tendency toward overfitting in

cases with lower numbers of training samples. In filter methods, on the other hand, no

model is estimated, and the different features are instead evaluated and ranked based

on statistical metrics such as variance, correlation, mutual information, etc. Although

this approach addresses the issues of wrapper methods, it fails to capture correlations

between different features and therefore does not select the optimal feature subsets.

Embedded methods aim to find a balance between the two approaches by combining

the feature selection approach with the machine learning algorithm. This results in a

faster solution that also considers the correlation between different features.

Minimum Redundancy Maximum Relevance (mRMR) [8] algorithm is

a filter method that, as the name suggests, aims to identify the features that are

most relevant to different classes while avoiding any redundant features. To identify
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such features, this algorithm computes the relevance of each feature by estimating

the mutual information between that specific feature and the class label. However,

to avoid redundancy, a feature is only included in the final dataset if the shared

information between that feature and the others is minimal. Eventually, a set of

features that are highly relevant to the output and are minimally redundant is selected.

Due to its potential for improving the performance of classification and regression

models, the mRMR algorithm is a popular choice in a variety of applications, such as

bioinformatics, text classification, and image recognition.

2.2.5 Classification

In BCIs, machine learning-based classification algorithms are trained to differentiate

the various mental intentions/states based on the selected features. Classification is

a type of machine learning problem that aims to predict the class membership (i.e.,

label) of any given unseen input data based on a model trained on data with known

labels (i.e., training data). A “decision rule” is specified based on this training data

and is used to predict the class of unseen data samples.

Deep learning algorithms are a type of machine learning algorithm in which the

features and the classifier are learned from raw data. In other words, these algo-

rithms provide an end-to-end modality that does not require any type of engineered

features or representations of data. Several motor imagery studies have investigated

the potential of these algorithms [61, 60, 56, 39]. However, despite their capabilities

in simplifying and improving BCI design, a very large number of training samples

is required for calibrating them. Typically BCIs at the research stage are designed

and developed using a small number of samples which are recorded during a lim-

ited number of recording sessions. Moreover, the high computational complexity of

deep learning algorithms in the training and testing stages requires the usage of high-

performing computing tools.

The choice of the classification model is very important and should be carefully

considered based on the input data. K-nearest neighbors (KNN), support vector

machine (SVM), neural networks, random forest, and linear discriminant analysis

(LDA) are common classification algorithms used in BCI research. The latter two

algorithms, which were used in this work, will be described in the following sections.
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Linear discriminant analysis (LDA)

Linear discriminant analysis (LDA) is a supervised machine learning algorithm. This

algorithm aims to identify a linear combination of features in the training data that can

be used to categorize the data by maximizing the inter-class variance and minimizing

the intra-class variance [20]. This is carried out by projecting the data onto a lower-

dimensional space, and the projection is referred to as “linear discriminant”. Some of

the main features of the LDA algorithm include:

1. It is computationally low-cost and fast, making it a good choice for applications

with a large amount of data

2. The simplicity and linear nature of this model allow for higher interpretability.

However, this linearity of the LDA algorithm also means that it is not capable

of capturing non-linear relationships between features and classes.

3. Using this algorithm comes with an assumption that the data is normally dis-

tributed and that the classes share equal covariance matrices, which may be a

flawed assumption [29].

4. This algorithm is highly sensitive to outliers.

5. Availability of a large number of features can lead to overfitting of the LDA

model.

Regularization is a set of techniques that are used in machine learning to prevent

a model’s overfitting and underfitting. By incorporating regularization into the LDA

algorithm, it is possible to increase the model’s bias and reduce the risk of overfitting.

For that purpose, a regularization hyperparameter needs to be specified to determine

the amount of bias added to the model. This approach is referred to as regularized

linear discriminant analysis (RLDA) [14] and aims to improve the generalizability of

the model while maintaining a successful fitting of training data.

All these qualities have turned LDA into one of the most popular choices for use

in the classification of EEG signals [59, 44, 31, 32].
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Random forest

Random Forest, first proposed by Ho [26], is a powerful machine-learning algorithm

capable of handling both classification and regression problems. This method is an

ensemble method meaning that multiple decision trees come together to generate an

output, and the output is not based on just one model. Decision trees are basic

classifiers that repeatedly split the data based on certain metrics and criteria with the

goal of characterizing different data points as being members of different classes. In

the random forest algorithm, a large number of such decision trees vote on the final

output, and in doing so, each tree is trained and optimized based on a different subset

of features. This randomness improves the performance of the algorithm by reducing

the correlation between the trees. For classification problems, the final output is the

majority vote of the predictions made by the trees [59, 53].

Some of the main features of the random forest algorithm include:

1. It is a good choice for more complex problems as it is capable of detecting

underlying relationships between complex and non-linear features.

2. It can handle large amounts of data and can be run in parallel for faster pro-

cessing; however, memory usage is high, especially with larger datasets.

3. It can handle missing data (i.e., when some feature values from some samples

are missing).

4. It ranks the importance of different features, which can be used for feature

selection and simplifying the model.

5. A high number of trees in the forest may lead to overfitting, so the number of

trees should be tuned.

6. It is computationally expensive, and the prediction time can be quite long in

comparison to algorithms such as LDA.

2.2.6 Feedback / Control

After a prediction is made regarding which mental task the user is performing, the

command associated with that task is issued to the external device. The resulting
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action - whether or not it was the one they intended - serves as feedback to the user

regarding how successfully they are controlling the BCI. This may result in the user

modifying their performance of the tasks and learning to perform them such that they

are more accurately detected. The feedback, of course, also contributes to the user’s

decision regarding their next command.

2.2.7 BCI performance evaluation

In real-world applications, the BCI’s performance can be evaluated simply by deter-

mining the accuracy with which the user’s intended commands are decoded by the

system in real-time. However, in the preliminary stages of research, it is often more

practical to collect and store a complete dataset that can be analyzed “offline” (i.e.,

not in real-time). This approach allows, for example, the comparison of different anal-

ysis methods. To evaluate the performance of the BCI algorithm when performing

offline analysis, the data must be divided into training and test sets. The classifier

is optimized based on the training set only, and its performance is evaluated on the

unseen test set.

A single division into one training and one test set is a valid approach, and there

are cases where it may even be necessary, for example, when it is important to preserve

the order in which the data was collected. However, to reduce the variance resulting

from the random division into data subsets and produce a more generalizable estimate

of the classifier’s performance, a cross-fold validation approach is typically followed.

K-fold cross-validation is a performance evaluation approach through which the

training data is randomly divided into k distinct subsets (e.g., k=5 for an 80%/20%

train/test split). A K-1 of these subsets/folds is then used to train the model, and the

performance of the model is investigated using the remaining subset. This process is

repeated until each subset is used as the test set once. The classifier performance is

then estimated as the average of the classification accuracy obtained in each “fold” of

the cross-validation algorithm. As a result, a more accurate estimation of the model’s

generalization is achieved. K-fold cross-validation is also often used in tuning classifier

hyperparameters.



Chapter 3

Study 1: Investigating singing

imagery as a potential control task

for active BCI

A version of this chapter has been submitted as part of a manuscript titled “Investi-

gating Singing Imagery as a Potential Control Task for Motor Imagery BCI”, which is

currently under review at IEEE Transactions on Biomedical Engineering (Manuscript

ID: TBME-00207-2023).

In this chapter, we investigated the potential effectiveness of singing imagery as

a control task for active EEG-based BCI systems, being careful to emphasize the

speech and motor imagery aspects of the task. Considering the MI tasks that are

most commonly used in EEG-BCI research (i.e., R, L, F, T, rest), we incorporated

singing imagery into various binary and multi-class scenarios. The objective was

to investigate the potential of singing imagery to 1) provide an alternative to the

conventional motor imagery tasks in 2- to 5-class paradigms, and 2) to extend the

number of possible commands from five (i.e., L, R, F, T, rest) to six (i.e., L, R, F, T,

rest, SI).



25

3.1 Methods

3.1.1 Participants

15 healthy participants (mean age: 25±5.8; 12 right-handed; 10 Female) were re-

cruited for this study. Participants were included if they had normal or corrected-to-

normal vision and hearing, no cognitive impairment, and no history of neurological

disease, disorder, or injury. Data recorded from one participant who reported a lack

of engagement and was visibly drowsy during the experiment was excluded from anal-

yses. Participants were asked to avoid exercising and consuming alcohol or caffeine

for at least four hours before the experiment. All participants provided written in-

formed consent prior to completing the experiment. The experimental protocol was

approved by the Interdisciplinary Committee for Ethics in Human Research (ICEHR)

at Memorial University of Newfoundland.

3.1.2 Data acquisition

For this experiment, EEG data was recorded via a 64-channel actiCHamp system with

active electrodes (Brain Products, GmbH), sampling at 500 Hz. The impedance for all

electrodes was kept below 10 KOhm throughout the experimental session. Electrodes

were placed according to the international 10-10 system.

3.1.3 Experimental protocol

Each participant completed a single experimental session. The experimental protocol,

summarized in Figure 3.1, is described in detail below.

The participants first completed the short version of the Kinesthetic and Visual

Imagery Questionnaire (KVIQ-10) [40]. This is a standardized set of tasks that is

commonly used in motor imagery BCI studies to subjectively evaluate the ability of

participants to visualize and sense imagined movements. The KVIQ-10 ratings were

collected to aid in interpreting individual participants’ classification results.

Participants were seated comfortably in front of a standard computer monitor
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Figure 3.1: Experimental protocol illustrating the different steps of the single record-
ing session. All of the blocks had a similar structure to block #1.

throughout the remainder of the experiment. Following the setup of the EEG elec-

trodes, two one-minute baseline trials were recorded, one with eyes open and the other

with eyes closed (these baseline trials were repeated at the end of the experiment as

well). Before starting the motor imagery tasks, a description of the experimental

protocol and imagery tasks was presented.

Next, participants completed the mental task trials. Seven different mental tasks

(including rest) were performed. These tasks are described in detail below in section

3.1.3 (i.e., “Mental Tasks” section). Participants completed 70 trials per task (490

trials in total), which were completed in seven blocks of 70 trials (10 trials per task

per block). Participants rested for a minimum of 3 minutes between blocks.

Figure 3.2: Timing of the individual trial.

Figure 3.2 illustrates the timing for each task trial. Each trial was 5.5-6.5 seconds

in duration. At the start of each trial, the task to be performed in that trial was

indicated on the screen. The participant began the timed portion of the trial when

they felt ready to do so by pressing any key on the keyboard. Once a key was pressed,

a blank screen appeared (0.5 – 1.5 seconds), followed by a “Ready!” (0.5 seconds)

and then a “GO!” (0.5 seconds) screen, followed then by a dark screen with only a
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“+” sign which indicated the period during which the participant was to perform the

indicated mental task (4 seconds). The last step in each trial was the verification step.

The primary purpose of the verification step was to record the participant’s per-

spective on the quality of their performance during the trial. Specifically, they chose

one of the following three options to indicate their feeling about their performance

of the task: 1) I performed it correctly, 2) I did not perform it correctly, and 3) I

performed it correctly but not very well. Participants were instructed to choose “2) I

did not perform it correctly” if they either did not perform the task at all, performed

the wrong task, or moved during the task period. They were instructed to choose “3)

I performed it correctly but not very well” if they performed the correct task but felt

they did not perform it effectively (e.g., they were not well-focused or engaged in the

task).

Mental tasks

Along with the conventional motor imagery tasks of the right hand (R), left hand (L),

feet (F), and tongue (T), a rest state (REST) and two different singing imagery tasks

(SIKin and SInoKin) were included. These tasks were defined as follows:

• Right hand motor imagery (R): Participants imagined tapping their right

hand, bending at the wrist, at a steady pace of approximately one tap per

second.

• Left hand motor imagery (L): Participants imagined tapping their left hand,

bending at the wrist, at a steady pace of approximately one tap per second.

• Feet motor imagery (F): Participants imagined tapping both feet together,

bending at the ankle, at a steady pace of approximately one tap per second.

• Tongue motor imagery (T): Participants imagined protruding their tongue

out of their mouth and retracting it at a steady pace of approximately once per

second.

• Kinesthetic singing imagery (SIKin): Participants imagined singing a song

(with lyrics) in their heads, without vocalization or movement. In doing so,

participants were instructed to focus on the kinesthetic sensation of moving

their jaw, tongue, and lips as they imagined articulating the lyrics.
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• Non-Kinesthetic singing imagery (SInoKin): Participants imagined singing

a song (with lyrics) in their heads, without vocalization or movement, and with-

out focusing on the kinesthetic sensations in the jaw, tongue and lips.

• Rest (REST): Participants were instructed that they do not need to do any-

thing specific for this task. They were asked to keep their eyes open and focused

on the screen (they could blink normally) and not perform any of the other six

tasks in this experiment.

As previously mentioned, we view singing imagery as being either a special case

of speech imagery or just a more intuitive and natural motor imagery task involving

the jaw, tongue, and lips (or a combination of both). This is why we included two

different singing imagery tasks, to emphasize these aspects of singing imagery and

investigate if either version is more promising as a BCI control task. For both singing

imagery tasks, participants selected the songs to imagine from a list of widely known

English songs (e.g., Jingle Bells, Happy Birthday To You, The Alphabet Song). A

different song was chosen for each block of trials.

Subjective evaluation of tasks

To better understand the participants’ opinions on the different tasks, we asked them

to rate the difficulty of each task after completing blocks 1, 4, and 7. They rated the

tasks on a scale of one to five, one being not difficult at all and five being extremely

difficult.

Furthermore, at the end of the session, they answered three multiple-choice ques-

tions about their task preferences. These questions were as follows:

1. Which four tasks would you pick to use on a daily basis to work with a computer?

(a) R

(b) L

(c) F

(d) T

(e) SIKin

(f) SInoKin
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2. Which task would you prefer to use in a BCI on a daily basis?

(a) T

(b) SI (Kin or noKin)

3. Which singing task did you find more intuitive and easier to perform?

(a) SInoKin

(b) SIKin

3.1.4 EEG pre-processing

Preprocessing was conducted using the EEGLAB toolbox in MATLAB. This step

consisted of down-sampling the data to 250 Hz, re-referencing to the average of all

channels, epoch extraction, and baseline correction (i.e., removal of the mean for each

epoch). Epochs were extracted for the period of −500ms until 4000ms from the onset

of the timed portion of the trial.

3.1.5 Feature extraction

The Filter Bank Common Spatial Patterns (FBCSP) algorithm is one of the most

efficient algorithms to extract spatio-spectral features from EEG signals. This algo-

rithm has remained one of the most common and useful feature extraction techniques

in MI-BCI studies since it was proposed [2]. In this study, we applied the FBCSP

algorithm as described below:

Following epoch extraction, nine symmetric linear-phase FIR bandpass filters were

used to filter the preprocessed EEG signals into bands of width 4 Hz, ranging from 4

Hz to 40 Hz (i.e., nine frequency bands in total). Next, for each frequency band, the

Common Spatial Pattern (CSP) algorithm was used to fit optimal spatial filters to

the EEG trial data such that the power of the resulting spatially filtered signals was

maximally discriminant between the different populations (i.e., the different mental

tasks being classified). In this study, using MNE library in python, 10 CSP filters
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(5 pairs) were optimized for each of the nine frequency bands, yielding a total of 90

features.

For all classification problems considered, the Maximum Relevance Minimum Re-

dundancy (mRMR) feature selection algorithm [50] was used to reduce the feature

set dimensionality to 25. This value was selected based on preliminary analysis of the

6-class classification problems, where feature sets of size 6, 12, 20, 25, 45, 70, and 90

were investigated, and gains in accuracy appeared to plateau after about 25 features

(see Fig 3.3).

Figure 3.3: Effect of increasing number of selected features on the mean and standard
deviation of accuracies for the 6-class scenarios.

3.1.6 Task classification via EEG

The objective of this work was to investigate the potential of singing imagery to pro-

vide an alternative to the conventional motor imagery tasks in 2- to 5-class paradigms

and also to extend the number of possible commands from five (i.e., L, R, F, T, REST)

to six (i.e., L, R, F, T, REST, SI). To do so, all possible combinations of the seven

tasks (i.e., L, R, F, T, REST, SInoKin, SIKin) were investigated for the 2-, 3-, 4-. 5- and

6-class scenarios (note that beyond the 2-class scenarios, combinations including both

SInoKin and SIKin were excluded). For each classification problem investigated, the av-

erage of five runs of 10-fold cross-validation was calculated to estimate the classifier’s
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performance. A random forest classifier served as the learning algorithm as it is a

powerful classification algorithm that has demonstrated its robustness in differentiat-

ing EEG signal populations [43]. In each fold of the cross-validation algorithm, no test

data was involved in feature extraction, feature selection, or classifier optimization.

3.1.7 Self-evaluation data

Effect of discarding potentially “bad” data on classification accuracy

We thought that the self-evaluation conducted by the participants at the end of each

trial could potentially indicate “bad” data that can/should be discarded. Based on

the responses to the verification step of each trial, the 6-class problems were repeated

under two scenarios:

1) With all trials for which the participants responded “I did not perform it cor-

rectly” or “I performed it correctly but not very well” removed.

2) With all trials for which the participants responded “I did not perform it cor-

rectly” removed.

The results in each of these conditions were compared to the results obtained when

equivalent numbers of trials were randomly removed from the dataset (to ensure that

the size of the training sets are comparable).

Correlation analyses

• Self-evaluation and Classification Accuracy

The correlation between the results of participants’ self-evaluation and the classi-

fication accuracies achieved in the 6-class scenarios (with no trials discarded) was

investigated. Specifically, the correlation was calculated between the 6-class classifi-

cation accuracy and the percentage of trials for which the participants responded 1) “I

performed it correctly”, and 2) “I performed it correctly” or “I performed it correctly

but not very well”.

• KVIQ-10 Scores and Task Differentiability
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The correlation between the participants’ ability to perform motor imagery, as de-

termined by their KVIQ-10 scores, and the classification accuracies achieved in the

6-class scenarios (with no trials discarded) was investigated. Specifically, the correla-

tion was calculated between the 6-class classification accuracy and the participants’

1) visual imagery, 2) kinesthetic imagery, 3) overall KVIQ-10 scores.

• Self-evaluation and KVIQ-10 Scores

An investigation of a potential relationship between the participants’ KVIQ-10 scores

and their subjective task performance verification was conducted. Specifically, the

correlation was calculated between the KVIQ-10 scores and the percentage of trials

for which the participants responded 1) “I performed it correctly”, and 2) “I performed

it correctly” or “I performed it correctly but not very well”.
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3.2 Results

3.2.1 Participant’s tasks preferences and difficulty ratings

Figure 3.4. summarizes the participants’ responses to the question “Which four tasks

would you pick to use on a daily basis to work with a computer? For each task, the

number of participants who included it as one of their top 4 choices is indicated. In re-

sponse to the other two questions regarding task preferences, 13 out of 14 participants

indicated that they preferred the singing imagery tasks to the tongue motor imagery

task, and 8 out of 14 participants indicated that they preferred SIKin to SInoKin.

Figure 3.4: Participant responses to the task preference questions. The “SI” bar in
question 1’s chart indicates the number of participants who included either one of the
two SI tasks as one of their top 4 choices.
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Participants were asked to rate the difficulty of each task on a five point scale

three times during the experiment - after completing Blocks 1, 4 and 7. The average

difficulty ratings (across participants) are reported in Table 3.1.

Table 3.1: Task difficulty ratings

Recording after

Block 1 Block 4 Block 7
Task Average

L 2.1 (1.0) 1.9 (0.7) 1.9 (0.9) 2.0 (0.8)
R 2.2 (0.8) 2.0 (0.8) 1.9 (0.9) 2.1 (0.7)
F 1.9 (0.8) 2.0 (1.2) 1.9 (1.1) 2.0 (1.0)
T 2.9 (1.4) 2.2 (1.1) 2.2 (1.2) 2.4 (1.1)
SIKin 2.6 (1.5) 2.4 (1.2) 2.4 (1.4) 2.5 (1.3)
SInoKin 2.2 (1.3) 1.9 (0.8) 1.8 (0.8) 2.0 (1.0)
REST 1.6 (1.0) 1.4 (0.7) 1.2 (0.4) 1.4 (0.9)

Block Average 2.2 (0.6) 2.0 (0.6) 1.9 (0.6)

Block average is the average perceived difficulty of all the tasks after that block

and task average is the average perceived difficulty of that specific task recorded at

three different points during the experiment.

3.2.2 EEG classification

The results for the different classification scenarios (i.e., binary, 3-class, 4-class, 5-

class, and 6-class) are reported in Tables 3.2, 3.3, 3.4, 3.5, and 3.6, respectively.

The reported values are the grand average classification accuracies and the calculated

standard deviation (in parenthesis) across all the participants. For each scenario,

results for all combinations of the seven tasks are included (except those combinations

that include both types of SI, which is only reported for the binary scenario). Also, in

the 2-class scenarios, the accuracy of classifying SIKin against SInoKin was not included

in the calculation of average accuracy for these tasks.

Furthermore, the per participant classification accuracies for the 6-class scenarios

are shown in Figure 3.5. The 6-class analysis was repeated with randomized class

labels to produce a distribution for each participant representing “chance” level clas-

sification; paired t-tests revealed that the 6-class accuracies displayed in Figure 3.5
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Table 3.2: Classification accuracies for the 2-class scenarios (%)

2-Class scenarios (chance = 50%)

Conventional Motor Tasks Singing Imagery

R F T SIKin SInoKin
REST Average

L 81.7 (15.0) 86.7 (13.7) 89.9 (9.5) 90.0 (9.0) 90.5 (8.3) 87.5 (10.4) 87.7 (3.3)
R - 87.2 (13.3) 89.2 (9.5) 88.7 (10.2) 88.2 (9.3) 85.6 (10.9) 86.8 (2.8)
F - - 82.6 (14.2) 84.5 (12.7) 85.9 (11.3) 83.6 (12.1) 85.1 (1.9)
T - - - 71.8 (12.8) 78.9 (13.5) 82.7 (11.2) 82.5 (6.7)
SIKin - - - - 67.6 (14.2) 83.1 (12.9) 83.5 (7.2)
SInoKin - - - - - 74.1 (12.1) 83.6 (6.8)
REST - - - - - - 82.8 (4.6)

Table 3.3: Classification accuracies for the 3-class scenarios (%)

3-Class scenarios (chance = 33.3%)

Conventional Motor Tasks Singing Imagery

F T SIKin SInoKin
REST

L + R 78.3 (18.0) 80.9 (14.0) 80.2 (15.9) 79.3 (16.4) 78.5 (15.9)
L + F - 76.4 (16.5) 79.3 (15.8) 79.1 (15.8) 77.9 (16.1)
R + F - 78.2 (15.9) 78.8 (15.6) 78.2 (15.4) 77.1 (16.1)
L + T - - 73.0 (13.3) 77.9 (13.8) 77.6 (14.7)
R + T - - 72.5 (13.0) 76.7 (14.4) 77.7 (13.7)
T + F - - 66.7 (16.1) 70.8 (17.1) 71.4 (17.2)
L + REST - - 78.0 (14.4) 74.1 (11.2) -
R + REST - - 77.5 (14.0) 72.5 (11.9) -
F + REST - - 73.6 (16.8) 69.9 (13.8) -
T + REST - - 65.6 (15.2) 65.8 (13.4) -
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Table 3.4: Classification accuracies for the 4-class scenarios (%)

4-Class scenarios (chance = 25%)

L + R + F + T 72.8 (18.3)

Singing Imagery

SIKin SInoKin
REST

L + R + F 73.7 (18.4) 73.7 (19.0) 72.6 (19.0)
R + F + T 67.6 (17.1) 70.0 (18.0) 70.0 (17.7)
L + F + T 66.6 (16.8) 70.2 (18.1) 69.5 (19.0)
R + L + T 69.0 (16.5) 73.3 (17.0) 72.5 (17.8)
F + T + REST 62.0 (17.3) 63.1 (15.8) -
R + T + REST 66.0 (15.4) 67.5 (14.1) -
R + F + REST 70.6 (18.0) 68.3 (15.5) -
L + T + REST 67.0 (15.5) 68.0 (14.6) -
L + F + REST 71.4 (17.9) 68.1 (15.4) -
R + L + REST 71.9 (18.0) 69.8 (15.6) -

Table 3.5: Classification accuracies for the 5-class scenarios (%)

5-class scenarios (chance = 20%)

L + R + F + T + REST 66.5 (20.1)

Singing Imagery

SIKin SInoKin

L + R + F + T 63.8 (18.8) 67.1 (19.8)
L + F + T + REST 62.1 (18.3) 62.1 (18.0)
R + F + T + REST 62.9 (17.6) 62.1 (18.0)
L + R + T + REST 63.6 (17.7) 64.6 (17.7)
L + R + F + REST 66.9 (20.3) 65.5 (18.0)

Table 3.6: Classification accuracies for the 6-class scenarios (%)

6-Class scenarios (chance = 16.7%)

Singing Imagery

SIKin SInoKin

L + R + F + T + REST 59.7 (19.7) 60.7 (19.2)
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are significantly greater than chance for all participants (t>9.27; p<0.001). It should

be noted that one of the participants (P8) finished only four blocks of mental tasks.

To indicate how well each class is being predicted in the 6-class scenario, Figure

3.7 shows the average confusion matrices for the two possible 6-class combinations

(i.e., five conventional tasks + SIKin , and five conventional tasks + SInoKin).

Figure 3.5: 6-class classification accuracies achieved for all the participants in this
study.

Figure 3.6: Results of self-evaluation for all of the participants.
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Figure 3.7: Confusion matrices for the two 6-class scenarios. a) Combination with
SIKin b) Combination with SInoKin. Results of P8, which only had 4 blocks of data
(and, as a result, a different total number of trials), were excluded in the average
confusion matrices.

Table 3.7 shows the average of precision, recall, and F1 metrics for the two 6-class

combinations. These metrics are defined in equations 3.1, 3.2, and 3.3.

Precision =
TP

TP + FP
(3.1)

Recall =
TP

TP + FN
(3.2)

F1score =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
(3.3)

where

TP: Number of times a task was correctly labeled as being a member of a specific

class

FP: Number of times a task was incorrectly labeled as being a member of a specific

class

FN: Number of times a member of a specific class was wrongly labeled as being a

member of another class.
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Table 3.7: Precision, Recall, and F1 metrics calculated for different tasks in the 6-class
scenarios (%).

Performance evaluation of tasks in 6-class scenarios

Tasks

SI type Metric L R F T SI REST

Precision 67.2 (26.3) 66.4 (23.4) 58.6 (25.6) 51.8 (17.7) 52.0 (17.2) 60.0 (20.9)
Recall 69.6 (25.1) 68.7 (24.7) 59.3 (28.8) 50.9 (18.0) 50.8 (17.9) 59.0 (21.1)SIKin

F1 68.3 (25.7) 67.4 (24.0) 58.7 (27.2) 51.3 (17.8) 51.3 (17.5) 59.3 (20.9)

Precision 68.9 (24.1) 68.3 (21.4) 59.0 (24.8) 58.3 (22.9) 53.6 (17.2) 54.1 (15.8)
Recall 71.8 (22.5) 69.7 (22.7) 59.3 (27.0) 56.4 (23.3) 53.8 (19.2) 52.9 (15.2)SInoKin

F1 70.3 (23.3) 68.9 (21.9) 58.9 (25.8) 57.3 (23.1) 53.5 (18.1) 53.4 (15.5)

3.2.3 Self-evaluation data

The results of self-evaluation for each participant are summarized in Fig 3.6. For each

participant, the percentage of trials which they indicated were performed “correctly”,

“incorrectly” or “correctly but not very well” are reported.

Effect of discarding potentially “bad” data on classification accuracy

Table 3.8 shows the results of the 6-class classification analysis when potentially “bad”

trials, as indicated by the participants at the verification step of each trial, were re-

moved. Accuracies reported are grand average balanced accuracies across all partici-

pants. Removing the trials for which participants responded either “I did not perform

it correctly” or “I performed it correctly but not very well” did result in slight, but

not significant, enhancement of classification accuracy (around 1.2%).

Table 3.8: Discarding potentially “bad” data in the 6-class scenarios (%)
6-Class scenarios with discarding potentially “bad” data

Scenario #1 Scenario #2

SI Type
All “Incorrectly” and

“Correctly but not very well”
trials discarded

Same number of trials
randomly discarded

All “Incorrectly”
trials discarded

Same number of trials
randomly discarded

SIKin 60.3 (20.1) 59.3 (20.1) 60.9 (19.8) 59.7 (20.0)
SInoKin 60.8 (19.7) 59.6 (19.9) 61.5 (19.3) 60.3 (19.7)
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Correlation analyses

• Self-evaluation and Classification Accuracy

The results did not reveal any significant correlation between how the participants

judged their performance and the ability of the classifier to differentiate the tasks

(p>0.05).

• KVIQ-10 Scores and Task Differentiability

The KVIQ-10 ratings also appear to have no significant correlation with the achieved

accuracies (p>0.05).

• Self-evaluation and KVIQ-10 Scores

The results of self-evaluation do not demonstrate any significant correlation with the

KVIQ-10 ratings (p>0.05).

3.3 Discussions

3.3.1 Task preferences and difficulty ratings

The difficulty of the tasks used to control a BCI can significantly impact its prac-

ticality and user-friendliness. For an optimal design, one should consider not only

how accurately the task can be detected by the classifier but also how easy it is to

perform the task from the user’s perspective. Given that the target users of active

BCI systems are typically individuals with severe physical disabilities, the importance

of incorporating tasks that feel natural and do not require long training sessions is

even greater.

Evaluating the results of the survey which asked the participants about their top

four preferred tasks, the majority of participants seemed to prefer motor imagery of

hands and feet, while the motor imagery of tongue and the individual SI tasks were

chosen by fewer participants. However, it should be noted that in the case of SI tasks,

13 out 14 participants included either one of the two SI tasks as one of their top four
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preferred tasks. Moreover, based on the results of question 2, 13 out of 14 participants

found the singing imagery tasks preferable to tongue imagery. In terms of the two

singing imagery tasks, there seemed to be a relatively even split between participants

who preferred SIKin (8) and SInoKin (6). The difficulty ratings, for the most part,

paint a similar picture of the participants’ perception of the tasks. Unsurprisingly

participants found the REST task the easiest task in the list. Following that, motor

imagery of R, L, F, and SInoKin all had similar difficulty ratings (i.e., around 2 out

of 5), while motor imagery of T and SIKin were more challenging for the participants

(i.e., around 2.5 out of 5). One apparent contradiction in the results is that despite

SIKin being rated as more difficult than SInoKin on average, more participants indicated

that they preferred it.

At first look, the recorded task difficulty ratings suggest that participants did

not find performing the singing imagery straightforward. However, based on informal

feedback we received from the participants, distinguishing the instructions for the two

types of singing imagery may have increased their perceived difficulty. Specifically,

some of the participants reported that they rated one or both of the singing imagery

tasks as difficult just because they struggled to follow the specific instructions of

focusing on the kinesthetic feeling of movement in one case and avoiding that for the

other scenario. Therefore, it can be assumed that this difficulty would be significantly

relieved in a final design where only one clear instruction for the SI tasks is included.

3.3.2 EEG classification results

2-Class scenarios

• Task vs. REST Classification

To reach a practical design, any new task should be differentiable from the rest state.

In this study, R and L yielded the highest classification accuracy against the rest

state (85.6% and 87.5%, respectively). Encouragingly, accuracy for SIKin vs. REST

(83.1%) proved to be comparable to F vs. REST and T vs. REST (83.6% and 82.7%,

respectively). However, the classification accuracy obtained for SInoKin vs. REST

was considerably lower (74.1%). This may indicate that focusing on the kinesthetic

feeling of the movement in the jaw, tongue, and lips during singing imagery generates
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stronger and/or more distinct patterns of brain activity and, therefore, may be a more

effective version of the task for BCI control.

• Task vs. Task Classification

Before including the SI tasks in multi-class scenarios and to investigate their po-

tential utility in binary systems, it is important to see how differentiable they are

from the other tasks.

Based on the results obtained here, both SI tasks appear to be equally useful in

classifying against the conventional motor imagery tasks. The only notable difference

between the two SI tasks appears to be in classifying against the tongue imagery task

where SInoKin outperformed SIKin by 7% (78.9% as compared to 71.8%). Because for

the SIKin task, participants were explicitly asked to focus on the sensations involved

with moving the jaws, lips, and tongue, it makes sense that similar brain areas would

be activated as in the tongue imagery task, and the task differentiability would be

reduced. Unsurprisingly, the classification of SInoKin vs SIKin yielded the lowest clas-

sification accuracy among all binary problems, with an average accuracy of 67.6%.

Overall, the classification accuracies for the remaining task vs. task problems were

more or less comparable and fell in the 80-90% range. The highest accuracies were

for the R or L vs. either T, SInoKin or SIKin (these accuracies all ranged between 88.2-

90.5%). The lowest accuracies were obtained for L vs. R (81.7%) and F vs. T (82.6%).

In comparison to T, SIKin and SInoKin both provide slightly higher classification (2-3%)

accuracies against F.

3 , 4, and 5-Class scenarios

The results for the multi-class scenarios verify the potential of singing imagery as an

alternative for different motor tasks. Specifically, by incorporating singing imagery,

accuracies as high as 80.2%, 73.7%, and 67.1% were achieved for 3, 4, and 5-class com-

binations, respectively. The conventional combinations for the 4, and 5-class problems

(i.e., R + L + F + T and R + L + F + T + REST, respectively) resulted in average

accuracies of 72.8% and 66.5%. Therefore, based on these results, it is feasible to use

singing imagery for developing 3, 4, and 5-class paradigms that provide accuracies

that are comparable to combinations of conventional tasks and are potentially more

user-friendly.
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Based on our finding from the 2-class scenarios, some pairs of tasks appeared to

generate similar patterns of activity and were, therefore, harder to distinguish for

the classifier (e.g., T and SIKin). Multi-class scenarios appear to follow similar trends

where including both such tasks in the combination results in a decline of performance

in comparison to combinations that only use one of them. (F + T), (T + SIKin), and

(REST + SInoKin) are pairs of tasks that, when used together in multi-class scenarios,

lead to accuracies as low as 65.6%, 62.0%, and 62.1% for the 3, 4, and 5-class scenarios,

respectively. Interestingly, the minimum accuracy for 4 and 5 class combinations are

comparable.

Having the BCI be able to recognize a “No-control” or “Rest” state is crucial for a

more practical and user-friendly design as it means that users would not be required

to perform a task during all control periods. All the multi-class scenarios involving the

SI and REST task achieved accuracies well above the chance level. For the 3, 4, and

5-class scenarios, accuracies for such combinations were in the ranges of 65.6-78.0%,

62.0-71.9%, and 62.1-66.9%, respectively.

6-class problems

The potential of increasing the number of possible commands in MI-BCI through

incorporating singing imagery is supported through the results of the 6-class analysis.

Average accuracies of around 60% were obtained, which is more than three times

the chance level (i.e., 16.7%). While the results did not, on average, reach 70% (the

accuracy often cited as being necessary for effective communication [34]), they are not

far off, and may be obtainable with further optimized pre-processing and classification

techniques or potentially with training/practice by the users. Still, it is encouraging

that accuracies exceeding 70% were achieved for 6 out of 14 participants, and all

participants’ accuracies were significantly higher than chance. Both of the singing

imagery tasks yielded comparable results, with neither significantly outperforming

the other.

The confusion matrices obtained from 6-class scenarios further support the idea

mentioned above that the motor imagery of tongue and singing imagery (especially

SIKin) generate similar patterns of brain activity. The most common error for the

classifier on the combination that involves SIKin is in labeling T as SIKin or SIKin as T.

On the other hand, for the combination that involved SInoKin, differentiating REST
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and SInoKin proved to be challenging for the classifier. Furthermore, as the previous

results also suggest, the motor imagery of F seems to be more distinct from singing

imagery than it is from the motor imagery of T. Thus again, these results appear to

be aligned with the results of binary classification.

3.3.3 Self-evaluation data

The results of the 6-class classification when potentially “bad” trials were removed,

along with the lack of correlation between the classification accuracy and the verifi-

cation responses, suggests that the participants’ perception of how good or bad they

performed the tasks may be unreliable. Similarly, KVIQ-10 scores –visual, kinesthetic,

and total- did not demonstrate any significant correlation with the 6-class classifica-

tion accuracies. This is in contradiction with the findings of Vuckovic et al. [65], where

KVIQ-10 scores were reported to be capable of predicting BCI illiteracy of partici-

pants. Moreover, since the participants themselves are reporting both the KVIQ-10

ratings and the task verification responses (i.e., correctly, incorrectly, or correctly but

not very well), one may assume that there may be a correlation between how they

perceive their performance throughout the trials and how they felt about each of the

KVIQ-10 tasks. However, our findings do not support this idea, and these recordings

were not correlated. Thus, none of the subjective feedback recordings had a significant

correlation with the 6-class classification accuracies or with each other. This could

potentially indicate that the subjective information is not a reliable predictor for the

capabilities of a participant in performing imagery tasks.

3.4 Conclusion

Our investigations indicate that singing imagery could provide a robust and poten-

tially more intuitive alternative for conventional motor tasks in designing active BCIs.

Moreover, the results suggest that it may feasible to use singing imagery for increasing

the number of distinguishable commands to six and achieve average accuracies around

60%. An increase in the number of commands would lead to an enhancement in the

practicality and functionality of conventional active BCI systems.



Chapter 4

Study 2: Investigating dual

imagery of singing and motor

imagery as potential control task

for active BCI

A version of this chapter has been submitted as part of a manuscript titled “Investi-

gating Dual Imagery Tasks for BCI Control”, which is currently under review at the

Journal of Neural Engineering (Manuscript ID: JNE-106478).

In this study, the potential effectiveness of DI tasks as control tasks for active

EEG-based BCI systems was investigated. Considering the MI tasks that are most

commonly used in EEG-BCI research (i.e., R, L, F), we combined each of them with

singing imagery to create a novel set of mental tasks. Similar to Study 1, described

in Chapter 3, one of the main objectives was to investigate the potential of DI tasks

for increasing the number of commands for active BCIs.
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4.1 Methods

4.1.1 Participants

14 healthy participants (mean age: 25.1±11.6; all right-handed; seven male) were

recruited for this study. Participants were included if they had normal or corrected-

to-normal vision and hearing, no cognitive impairment, and no history of neurological

disease, disorder, or injury. Two of the participants did not finish the entire ex-

perimental protocol and performed only two blocks of mental tasks. Hence, these

participants were excluded from the analyses and the reported results. Participants

were asked to avoid exercising and consuming alcohol or caffeine for at least four hours

before the experiment. All participants provided written informed consent prior to

completing the experiment. The experimental protocol was approved by the Interdis-

ciplinary Committee for Ethics in Human Research (ICEHR) at Memorial University

of Newfoundland.

4.1.2 Data acquisition

For this experiment, EEG data was recorded via a 64-channel actiCHamp system with

active electrodes (Brain Products, GmbH), sampling at 500 Hz. The impedance for all

electrodes was kept below 10 KOhm throughout the experimental session. Electrodes

were placed according to the international 10-10 system.

4.1.3 Experimental protocol

Each participant completed a single experimental session during which they completed

trials of each of the MI tasks of interest. The procedure of the experiment, which is

summarized in Figure 4.1, is explained thoroughly in the following section.

The participants started by completing the Kinesthetic and Visual Imagery Ques-

tionnaire (KVIQ-10) [40]. This questionnaire is a standard set of tasks that are

frequently used in BCI studies to subjectively assess the participants’ ability to vi-

sualize and feel the sensations associated with kinesthetic imagined movements. The

KVIQ-10 scores could potentially be helpful in interpreting the results of the MI trial

data.
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Figure 4.1: Experimental protocol illustrating the different steps of the single record-
ing session. All of the blocks had similar structure to block #1.

The participant was seated facing a computer screen for the duration of the ex-

periment. The chair and monitor’s height were adjusted to the participant’s comfort

level. After the EEG electrodes were set up, two one-minute baseline trials, one with

eyes open and the other with eyes closed, were recorded. These two baseline trials

were repeated at the end of the experiment as well. Prior to beginning the motor

imagery tasks, a brief tutorial explaining the experimental process and the imagery

tasks was provided to the participant.

The participant then started performing the mental task trials. They were asked

to perform eight different tasks, including rest. A detailed description of these tasks

is given in section 4.1.3 (i.e., “Mental Tasks” section). Each task was performed 60

times for a total of 480 trials. Trials were completed in 6 blocks of 80 trials each (10

trials per task per block). The task order was random in each block. The participants

were instructed to take a break of at least 3 minutes between blocks.

The timeline for each trial is also shown in Figure 4.1. At the beginning of each

trial, the task to be performed was displayed on the screen. Participants were able

to initiate the timed portion of the trial, which lasted between 5.5-6.5 seconds, by

pressing any key on the keyboard. The screen then turned blank for a brief period

(0.5 – 1.5 seconds), followed by the message “Ready!” (0.5 seconds), then “GO!” (0.5

seconds). After this, a dark screen with only a “+” sign appeared, signaling the time

for the participant to perform the mental task (4 seconds). The final step of each trial

was the performance rating step.
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The performance rating step, repeated at the end of each trial, was an effort

to try and capture the participant’s perception of how well they performed the task.

Specifically, they chose one of the following four options to indicate their feeling about

their performance of the task: 1) Strong performance, 2) Moderate performance, 3)

Weak performance, and 4) Wrong performance. Participants were asked to rate their

performance based on factors such as the intensity of the sensations in their muscles,

their focus during the task imagination period, and their general feeling about that

trial. They were told to choose the option “4) Wrong performance” if they either

didn’t perform the task, did the wrong task, or moved during the imagery period.

Mental tasks

For this experiment, a singing imagery (SI) task, three single conventional motor

imagery (MI) tasks, and three dual imagery (DI) tasks (i.e., the simultaneous perfor-

mance of one of the MI tasks and SI) were included. A “rest” state was also included.

The instructions for SI were based on Study 1, where a focus on the kinesthetic feeling

of movement in the jaw and tongue appeared to be helpful in generating more distinct

patterns of activity. These tasks were defined as follows:

• Rest (REST): Participants were instructed that they do not need to do any-

thing specific for this task but were asked not to perform any of the other seven

tasks in the experiment. They were asked to keep their eyes open and focused

on the screen throughout the trial (they could blink normally).

• Singing imagery (SI): Participants imagined singing a song (with lyrics) in

their heads, without vocalization or movement. In doing so, participants were

instructed to focus on the kinesthetic sensation of moving their jaw, tongue, and

lips as they imagined articulating the lyrics.

• Left hand motor imagery (L): Participants imagined tapping their left hand,

bending at the wrist, at a steady pace of approximately one tap per second.

• Right hand motor imagery (R): Participants imagined tapping their right

hand, bending at the wrist, at a steady pace of approximately one tap per

second.
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• Feet motor imagery (F): Participants imagined tapping both feet together,

bending at the ankle, at a steady pace of approximately one tap per second.

• Dual left hand imagery (LSI): Participants imagined performing both the

left hand and singing imagery tasks simultaneously. Specifically, participants

were instructed to imagine singing the lyrics of the song and tapping their left

hand to the rhythm of the song.

• Dual right hand imagery (RSI): Participants imagined performing both the

right hand and singing imagery tasks simultaneously. Specifically, participants

were instructed to imagine singing the lyrics of the song and tapping their right

hand to the rhythm of the song.

• Dual feet imagery (FSI): Participants imagined performing both the feet and

singing imagery tasks simultaneously. Specifically, participants were instructed

to imagine singing the lyrics of the song and tapping their feet to the rhythm

of the song.

For the DI tasks, participants were instructed to focus on feeling the kinesthetic

sensations of movements for both tasks (i.e., to imagine the feeling of moving their

jaw, tongue, and lips while singing, and their hand or feet while tapping). Similar

to Study 1, for the singing imagery and DI tasks, participants selected the songs to

imagine from a list of widely known English songs (e.g., Jingle Bells, Happy Birthday

To You, The Alphabet Song). A different song was chosen for each block of trials.

Subjective evaluation of tasks

The participants were asked to express their opinion about the difficulty of each task

after completing blocks 1, 4, and 6. The rating was based on a scale of 1 to 5, where

1 represented “not difficult at all” and 5 represented “extremely difficult.”

Additionally, after finishing all the imagery trials, the participants were asked

questions to help determine their task preferences. They were asked the question:

“If you were to choose one of the tasks below to do on a daily basis to use a computer,

which one would you pick?”
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They were presented with the following three scenarios and asked to select one of

the two options for each:

1) a) Single tasks, b) Dual tasks

2) a) Hand imagery + Singing imagery, b) Feet imagery + Singing imagery

3) a) Right hand + Singing imagery, b) Left hand + Singing imagery

4.1.4 EEG pre-processing

The EEGLAB toolbox in MATLAB was used for pre-processing the data. The pre-

processing pipeline involved several steps aimed at preparing the data for further

analysis: removing the DC component, re-referencing the data to the average of all

channels, applying an anti-aliasing filter, down-sampling the data to 250 Hz, extract-

ing the epochs, and baseline correction (i.e., by removing the epoch’s mean) were

performed. The epochs were extracted for the time period ranging from −500ms to

4000ms, starting from the onset of the timed portion of each trial.

4.1.5 Feature extraction

The FBCSP algorithm was utilized to extract spatio-spectral features from the EEG

signals. FBCSP is one of the most effective algorithms for this purpose and has

been widely used in motor imagery BCI studies since its introduction [2]. Also, this

algorithm successfully captured the features related to the singing imagery task in

Study 1.

Because of the inherent similarities of the tasks in this study (i.e., the single tasks

and the dual tasks), to fully capture their corresponding patterns, an extended version

of this algorithm (as compared to that used in Study 1) was applied that extracted

more detailed spectral information.

Following pre-processing, a set of symmetric linear-phase FIR bandpass filters were

used to filter the pre-processed EEG signals into bands of width 4, 8, 12, and 16 Hz

ranging from 0 Hz to 96 Hz. There was no frequency overlap for the 4 Hz filters, but

for the rest of the filters, an overlap equal to half the filter’s bandwidth was used.

This resulted in a total of 73 frequency bands. Next, for each frequency band, the
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Common Spatial Pattern (CSP) algorithm was used to transform the EEG data. The

CSP implementation available on the MNE library was used to optimize 10 CSP filters

(5 pairs) for each of the frequency bands, yielding a total of 730 features.

4.1.6 Task classification via EEG

The main objective is to evaluate the possibility of using DI tasks to increase the

number of commands for active BCIs. The first step was to determine if it is possible to

differentiate the DI tasks and each of the constituent single tasks. Thus the following

3-class scenarios were investigated: 1) R vs. SI vs. RSI, 2) L vs. SI vs. LSI, and 3)

F vs. SI vs. FSI.

Next, incorporating the rest state into these problems, the following 4-class sce-

narios were investigated: 1) R vs. SI vs. RSI vs. REST, 2) L vs. SI vs. LSI vs. REST,

and 3) F vs. SI vs. FSI vs. REST.

Finally, the possibilities of increasing the number of commands were investigated

through 7- and 8-class classification of the single and dual tasks. The 8-class scenario

covered all the tasks performed in this experiment, and the 7-class combinations were

obtained by removing the tasks, one at a time, from the 8-class combination.

A regularized LDA classifier, which shrinks the feature set and avoids overfitting

or underfitting, was used for classification. The large size of the feature set could be

partially addressed by using the linear discriminant analysis algorithm, as it is a fairly

straightforward and computationally efficient algorithm. The classifier performance

was calculated through five runs of 10-fold cross-validation. No test data was used in

optimizing the CSP filters or the classifier.

4.1.7 Correlation between classification accuracy and self-

rating data

For each subject, the Pearson correlation coefficient between the 8-class classification

accuracy and the percentage of trials where participants reported a strong, moderate,

weak, or wrong performance is calculated.
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4.2 Results

4.2.1 Participant’s tasks preferences and difficulty ratings

Figure 4.2. illustrates the participants’ responses to the question of “If you were to

choose one of the tasks below to do on a daily basis to use a computer, which one

would you pick?”when given the three different sets of options. For each scenario, the

number of participants who chose each option as their favorite is indicated.

Figure 4.2: Participant responses to the task preference question.

Table 4.1: Task difficulty ratings

Task difficulty ratings

Recording after

Block 1 Block 4 Block 6
Task Average

REST 1.2 (0.4) 1.3 (0.5) 1.3 (0.5) 1.2 (0.3)
R 2.2 (1.1) 2.1 (0.9) 1.8 (1.1) 2.0 (0.9)
L 2.3 (0.8) 2.2 (0.9) 1.9 (1.0) 2.1 (0.8)
F 1.9 (0.9) 2.0 (1.1) 1.8 (1.1) 1.9 (1.0)
SI 2.4 (1.2) 2.0 (0.9) 1.9 (0.7) 2.1 (0.9)
RSI 3.3 (1.4) 2.8 (1.0) 2.4 (1.0) 2.8 (1.0)
LSI 3.4 (1.1) 2.8 (0.9) 2.5 (0.9) 2.9 (0.9)
FSI 2.8 (1.3) 2.6 (1.2) 2.3 (1.1) 2.6 (1.2)

Block Average 2.5 (1.0) 2.2 (0.9) 2.0 (0.9)
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Also, participants rated the difficulty of each task on a five-point scale after com-

pleting Blocks 1, 4, and 6. The average difficulty ratings (across participants) and the

calculated standard deviation (in parenthesis) are reported in Table 4.1. In this table,

block average is the average perceived difficulty of all the tasks after that block, and

task average is the average perceived difficulty of that specific task recorded at three

different points during the experiment.

4.2.2 EEG classification

The results of the investigated 3- and 4-class scenarios are available in Tables 4.2. The

precision,recall, and F1-score metrics reported in these tables are defined in equations

4.1, 4.2 and 4.3, respectively. Figure 4.3 shows the corresponding confusion matrices.

All results are averaged across the twelve participants.

Precision =
TP

TP + FP
(4.1)

Recall =
TP

TP + FN
(4.2)

F1− score =
2 ∗ (Precision ∗Recall)

(Precision+Recall)
(4.3)

where

TP: Number of times a task was correctly labeled as being a member of a specific

class,

FP: Number of times a task was incorrectly labeled as being a member of a specific

class,

FN: Number of times a member of a specific class was incorrectly labeled as being

a member of another class.

The results of the 7-class combinations where the tasks, one at a time, were re-

moved from the dataset are reported in Table 4.3. The reported value is the average

accuracy when that particular task was not included in the classification.
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Figure 4.3: Confusion matrices for a) 3-class scenarios. b) 4-class scenarios.
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Table 4.2: Performance evaluation of 3 and 4-class scenarios (%)

3-Class scenarios (chance = 33.3 %) 4-Class scenarios (chance = 25.0%)

L + SI + LSI L + SI + LSI + REST

Overall Accuracy 64.1 (13.9) 63.0 (14.9)

Task Precision Recall F1-score Precision Recall F1-score

L 58.5 (14.4) 56.1 (14.0) 57.1 (14.1) 56.2 (14.4) 56.4 (15.5) 56.2 (15.0)
SI 82.8 (19.1) 80.3 (17.8) 81.4 (18.3) 69.4 (17.4) 69.8 (17.3) 69.5 (17.2)
LSI 53.6 (13.2) 57.0 (14.7) 55.1 (13.7) 53.6 (15.3) 55.0 (15.1) 54.2 (15.1)
REST - - - 74.3 (16.4) 70.8 (15.5) 72.4 (15.8)

R + SI + RSI R + SI + RSI + REST

Overall Accuracy 62.0 (11.3) 61.8 (12.6)

Task Precision Recall F1-score Precision Recall F1-score

R 55.8 (15.4) 53.4 (16.4) 54.4 (15.8) 55.6 (14.2) 56.1 (15.4) 55.7 (14.6)
SI 82.1 (14.7) 80.0 (15.1) 80.9 (14.8) 68.8 (14.8) 66.7 (15.9) 67.5 (15.1)
RSI 49.5 (10.2) 52.8 (10.2) 51.0 (10.0) 49.5 (10.6) 52.0 (11.3) 50.6 (10.9)
REST - - - 75.5 (16.5) 72.5 (14.9) 73.9 (15.5)

F + SI + FSI F + SI + FSI + REST

Overall Accuracy 59.3 (14.5) 58.1 (15.4)

Task Precision Recall F1-score Precision Recall F1-score

F 57.5 (11.6) 55.1 (11.3) 56.1 (11.3) 54.2 (14.0) 53.3 (15.5) 53.5 (14.4)
SI 73.5 (18.5) 68.4 (18.3) 70.7 (18.3) 60.7 (21.1) 61.3 (21.0) 60.9 (20.9)
FSI 47.5 (13.3) 52.4 (13.3) 49.7 (13.2) 46.7 (15.9) 48.7 (14.3) 47.6 (15.0)
REST - - - 73.8 (17.1) 69.2 (16.4) 71.3 (16.6)

Table 4.3: Classification accuracies for the 7-class scenarios (%)
7-Class scenarios (chance = 14.3%)

MI DI

L R F
SI

LSI RSI FSI
REST

Accuracy 53.8 (16.7) 52.8 (16.7) 52.2 (15.1) 51.6 (16.4) 54.2 (16.4) 55.4 (16.1) 55.1 (15.3) 49.9 (15.3)
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Figure 4.5: Confusion matrix for the 8-class scenario.

For the 8-class scenario, which includes all of the tasks considered in this study,

an average accuracy of 50.5 ± 15.5% was achieved. Moreover, Table 4.4 provides

the average performance evaluation metrics (precision, recall, and F1-score) for each

of the eight tasks. The individual participant accuracies for the 8-class scenario are

shown in Fig 4.4.

Figure 4.5 shows the average confusion matrix for the 8-class scenario and demon-

strates the trends of common mistakes and errors for the classifier.

4.2.3 Correlation between classification accuracy and self-

rating data

Fig 4.6 is a summary of the results of self-rating for each participant, reporting the

percentage of trials for which they indicated their performance was “strong”, “mod-

erate”, “weak”, or “wrong”.

None of the performance ratings demonstrated a significant correlation with the



58

8-class classification accuracy (p>0.23).

Figure 4.6: Results of self-rating for all of the participants.

4.3 Discussion

4.3.1 Task preferences and difficulty ratings

The importance of how participants perceive different tasks and their impact on their

experience in using the active BCI has been discussed in previous chapters. In this

experiment, we asked the participants to perform DI tasks which were expected to be

more complex than single MI or SI tasks. Therefore, it is no surprise that 10 out of

12 participants found MI tasks preferable to DI tasks. Also, it was quite expected for

participants to rate DI tasks as more difficult than MI and SI.

Encouragingly, however, a downward trend in participant difficulty ratings across

the session was observed for all tasks (except REST), with the decrease in difficulty

rating being larger for the DI tasks than for the single tasks. Specifically, while the

average difficulty rating for the single tasks reduced from around 2.2 after block 1

to about 1.9 (=0.3) by the end of the session, the average DI task difficulty ratings

changed from about 3.2 to 2.4 over the same period (=0.8). Therefore, it appears that

the initial difficulty of performing DI tasks was considerably relieved as participants

spent more time performing the tasks and gained more familiarity with them, and
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the difficulty ratings of DI ended up being relatively close to that of the single MI

and SI tasks. Presumably, with additional practice/training, the perceived difficulty

of performing the DI tasks could reduce even further.

All of the participants in this study were right-handed, and 9 out of 12 individuals

preferred performing DI with their dominant hand (i.e., right) vs. their non-dominant

hand. Moreover, the difficulty ratings appear to corroborate the responses to the task

preference questions, which indicated that participants generally preferred the FSI

task to the RSI and LSI tasks - FSI had a lower average difficulty rating (1.9/5) in

comparison to the other two tasks (2.0/5 and 2.1/5, respectively). Overall, it seems

that participants found FSI to be a relatively more intuitive option.

4.3.2 EEG classification results

Dual vs. Single task classification

The first concern in using DI tasks for increasing the number of commands is the

feasibility of differentiating the DI tasks and each of the constituent single tasks (e.g.,

L vs. SI vs. LSI). The results of the 3 and 4-class scenarios demonstrate that it

is possible to design a classifier capable of differentiating an MI task, SI, and their

corresponding dual task, with accuracies well above the chance level (i.e., 33.3 % and

25% for 3 and 4-class problems, respectively). This was true for all task combinations

that were investigated. In all cases, the precision and recall metrics of the individual

tasks were also all well above chance.

The results suggest that the DI and MI tasks are more often mistaken for each other

than are the DI and SI tasks. This may indicate that the MI tends to generate stronger

and clearer patterns of activity and could potentially overpower the SI component in

the recorded neural signals of the DI tasks. Also, it is interesting to note that as the

number of classes is increased, the classifier appears to improve at distinguishing the

DI and single tasks (the single MI tasks are less often mislabelled as the corresponding

DI task).

On the other hand, the SI component appears to be stronger in the generated brain

activity for the FSI task as compared to RSI and LSI since FSI is more often incorrectly

predicted as SI than are the other two DI tasks. As a result, the 3 and 4-class
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combinations that were based on F, SI, and FSI appear to be slightly outperformed

by the other two combinations in terms of accuracy.

It should also be noted that informal feedback received from the participants

indicated that some individuals found it difficult to “turn on” the imagination of

singing the song for the DI tasks and then “turn it off” for the single tasks. This

could have negatively impacted the classification results by increasing the similarities

of different tasks and their associated brain patterns. This could be something that,

with training and practice, could become easier for participants.

The value of incorporating REST, or a “no control” state, into an active BCI has

been discussed in previous chapters. In short, having the BCI be able to recognize

an idle state would mean that the user would not be required to perform a specific

task during every control period (they could, for example, just do nothing if they do

not wish to send a command). The 4-, 7-, and 8-class analyses suggest that all of the

single tasks and their dual versions are distinguishable from REST with accuracies

well above chance, with the MI and DI tasks appearing to be more differentiable from

REST than is SI (i.e., the SI task is more often mislabelled as REST than are MI and

DI).

Increasing the number of commands

In Study 1, the possibilities of designing a 6-class active BCI that incorporated the

SI into MI-BCI were investigated. Here, we explored the possibility of increasing the

number of commands beyond that number. Specifically, 7 and 8-class scenarios were

explored to evaluate the potential utility of DI tasks in multi-class active BCI. For the

8-class scenario, a very encouraging average accuracy of 50.5%, which is more than

four times the level of chance, was achieved.

In addition, all possible 7-class combinations (obtained by excluding one of the

eight tasks in each case) were considered. The highest 7-class accuracy yielded a

4.9% improvement as compared to the 8-class scenario, at the expense of one less

command. This accuracy was obtained by excluding the RSI task, which was not

surprising given that the confusion matrix for the 8-class scenario indicates that the

most common error was misclassifying R as RSI or vice versa. Also, RSI and FSI were

most frequently misclassified. Consequently, 7-class scenarios in which one of these
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two tasks was removed led to higher classification accuracies.

While the results obtained here are very promising and show the potential of using

DI tasks in active BCI, the accuracies obtained for all of the 7- and 8-class combina-

tions explored were below the 70% threshold, which is often said to be required for

efficient BCI communication [34]. Nevertheless, it may be reasonable to assume that

as participants get more familiar and comfortable with the DI tasks, the classification

accuracy will be enhanced. Also, an improvement in feature extraction, selection, or

classification algorithm could further enhance the performance of these paradigms.

4.3.3 Self-rating data

The observed lack of correlation between the participant’s performance ratings and

their 8-class classification accuracies further supports the idea that subjective data is

not a reliable source of information for estimating the classifier performance.

4.4 Conclusion

The results of Study 2 indicate that DI tasks could be an effective approach for

increasing the number of distinguishable commands in an active BCI to seven or

eight. Specifically, an average accuracy of around 50% was achieved for the 8-class

scenario, which is more than four times the corresponding chance level of 12.5%. An

increase in the number of BCI commands would lead to increasing the information

transfer rate of BCI. This can significantly augment the practicality and functionality

of the system and, as a result, the quality of life for users.



Chapter 5

Conclusions
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5.1 Contributions

The results of this study demonstrated an encouraging potential for using SI and

DI tasks for enhancing MI-BCI design. Specifically, the following major points were

determined from each of the studies:

• In Study 1, considering the following set of mental tasks (SI, L, R, F, T, REST):

1. Maximum accuracies of 90.5%, 80.2%, 73.7%, and 67.1% were achieved

for the 2, 3, 4, and 5-class combinations that incorporated SI, respectively.

These values were comparable to those achieved for the combinations with-

out SI.

2. Maximum accuracies of 60.7% were achieved for 6-class combinations of

tasks that incorporated SI, supporting the possibility of increasing the

number commands for active BCIs.

• In Study 2, considering the following set of mental tasks (L, R, F, SI, LSI, RSI,

FSI, REST), where LSI, RSI, and FSI are dual imagery tasks:

1. 3-class combinations consisting of dual imagery tasks and their constituent

single tasks were classified with accuracies higher than chance (i.e., 64.1%,

62.0%, 59.3% for the R, L, and F tasks, respectively).

2. 4-class combinations consisting of dual imagery tasks, their constituent

single tasks, and REST were classified with accuracies higher than chance

(i.e., 63.0%, 61.8%, 58.1% for the R, L, and F tasks, respectively).

3. 7- and 8-class scenarios consisting of various dual and single imagery task

combinations were classified with accuracies as high as 55.4% and 50.5%,

respectively. These results support the possibility of increasing the number

of commands for active BCIs.
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5.2 Limitations and future work

While the results of this study are encouraging, there are some limitations worth

noting when interpreting the outcomes:

1. Since this study only involved healthy participants, unintended muscle activity

artifacts could have impacted the classifier performance. Also, it is not known

if the brain activity patterns generated by healthy participants are indicative of

the patterns that would be generated by the target population of users. Hence,

future work may address these limitations by recruiting participants from the

target population of users and/or using EMG sensors to monitor unintended

muscle activities.

2. Due to the limited sample size and the offline nature of the study, it is unclear

how these results would translate to online scenarios. Future work may focus

on utilizing the discussed tasks and scenarios in a real-time setting.

3. To better understand and evaluate the differences between the two types of SI

tasks considered in Study 1, two groups of participants should be recruited,

where each group would only perform one kind of SI. This would help avoid the

possibility of “crosstalk” between the two SI tasks and alleviate the difficulty

participants reported in differentiating the two sets of instructions.

4. This study was conducted under controlled research conditions. Therefore, it

is not clear how the results would translate to everyday, real-world scenarios in

which BCIs would actually be used. An online study involving the discussed

mental tasks and scenarios could provide further information regarding their

efficiency and practicality.

Furthermore, building on what was covered in this thesis, future work should

focus on examining the possibilities of improvement through more optimized and

even customized classification algorithms. These algorithms should be implemented

in an online BCI to verify that the offline results translate.

Moreover, a further assessment of participants’ perception of the introduced tasks

should be carried out in multiple sessions to better evaluate the long-term suitability

of the proposed novel paradigms. An investigation of how user training affects both

classification accuracy and perception of the tasks should be conducted.
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Crucially, the BCI design process must include individuals from the target popu-

lation of users.
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