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Abstract

Aim Spectral Domain-Optical Coherence Tomography (SD-OCT) has become an

essential tool to assess the health of ocular tissues in live subjects. The processing

of SD-OCT images, in particular from non-mammalian species, is a labour-intensive

manual process due to the lack of access to analytical programs. The work presented

herein describes the development and implementation of a novel computer algorithm

for quantitative analysis of SD-OCT images of live teleost eyes. We hypothesized that

this algorithm, in comparison to manual segmentation of SD-OCT images, will allow

more precise measurement, with significantly higher throughput capacity, of retinal

architecture in live teleost ocular tissue.

Methods Automated segmentation processing of SD-OCT images of the retinal

layers was developed using a novel algorithm based on thresholding, which operates

on the pixel values contained in an image. The algorithm measured the thickness

characteristic of the retina present in the input dataset to provide increased accuracy

and repeatability of SD-OCT analysis over manual measurements. The program was

also designed to allow adjustments of the thresholding variables to suit any specific

image set. A heat map software was created alongside the algorithm to plot the

SD-OCT image measurements as a colour gradient.
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Results Automated segmentation analysis of the retinal layers from SD-OCT im-

ages enabled analysis of a large volume of imaging data of teleost ocular structures

in a short time. The algorithm was just as accurate when compared to manual mea-

surements and provided repeatability as measurements could be quickly reassessed to

confirm previously determined results. This is the case as the algorithm can generate

hundreds of retinal thickness measurements per image for a large number of images

for a given dataset. This algorithm can be deemed as repeatable as each input will

always produce the same output due to the thresholding methods used. This is the

case as thresholding is a finite mathematical process to determine a range of values.

The measurements produced from this assessment were represented by a heat map

software that directly converted the measurements taken from each processed image

to represent the changes in thickness across the whole retinal scan.

Conclusions Our work addresses the need for accurate and high-throughput SD-

OCT data analysis for the retinal tissues of teleosts where previously no such program

existed. Our heat mapping software enables the visualization of the retinal thickness

across the whole retinal scans facilitating the comparison of specimens and localization

of areas of interest. Our novel algorithm provides the first tools to analyze SD-OCT

scans of non-mammalian species at a faster rate than manual analysis, increasing the

potential of future research output. The adaptability of our programs makes them

potentially suitable for the analysis of SD-OCT scans from other non-mammalian

species.
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Chapter 1

Introduction

1.1 Overview of the project

Spectral Domain Optical Coherence Tomography (SD-OCT) has become an essential

tool to assess the health of ocular tissues in live subjects. The processing of SD-

OCT images, in particular from non-mammalian species, is a labor-intensive manual

process due to the lack of access to analytical programs. The work presented herein

describes the development and implementation of a novel computer algorithm for

quantitative analysis of SD-OCT images of live teleost eyes. We hypothesized that

the algorithm, in comparison to manual segmentation of SD-OCT images, will allow

more precise measurement, with significantly higher throughput capacity, of retinal

architecture in live teleost ocular tissue.
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1.2 Overview of the visual system

The visual system plays an important role in general health assessment and, because

of its unique interface with the field of optics, serves as the basis of several disciplines

including science and medicine (Whatham et al., 2014 [2]). In order to ethically

experiment on the visual system, model organisms are used as the retinas of these

model organisms closely resemble their human counterparts. Some common examples

of this are the use of rodent retina and, most commonly, mouse retina (Glickfeld et

al., 2014 [3]). However, the visual systems of some non-mammalian vertebrate species

are relatively understudied at the multi-dimensional imaging level. Spectral domain-

optical coherence tomography (SD-OCT) has become an essential methodological

approach to study the ocular tissues in live mammalian subjects (Bianco et al., 2019

[4]; Dysli et al., 2015 [5]; Srinivasan et al., 2014 [6]). In the last several years, the

use of SD-OCT to study ocular structures of teleosts such as zebrafish (Bell et al.,

2016) [7] and more recently lumpfish (Ahmad et al., 2019) [8] has emerged. The use

of automated medical imaging technologies to replace manual analytical procedures

has become more prevalent in the field of biomedical research (Wu et al., 2017 [9];

Linderman et al., 2017 [10]). Segmentation analysis of SD-OCT images, one of the

automated analytical tools currently available for SD-OCT of mammals, allows precise

measurement of the different anatomical layers of the retina and is now needed for

non-mammalian species as a measurement tool for assessing retinal development,

health and disease. Without automated retinal segmentation analysis, the process

2



of SD-OCT image analysis from non-mammalian species is a labor intensive, manual

process (Toms et al., 2017 [11]). In human retinal SD-OCT can be used to identify

ocular pathology with neurodegenerative diseases (Chhablani et al., 2018 [12]) such as

Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s Disease (HD) and

Multiple Sclerosis (MS) (Doustar et al., 2017 [13]; Vuong et al., 2017 [14]). This is

especially relevant given the possibility of combining retinal markers with automated

SD-OCT systems and software which could be capable of diagnosing and monitoring

ocular pathology and diseases associated with it.

1.3 Importance of retinal OCT

Lumpfish (Cyclopterus lumpus) are North Atlantic teleost fish that are becoming

an important cleaner fish species in salmon aquaculture (Bolton-Warberg, 2018 [15];

Brooker et al., 2018 [16]; Powell et al., 2018 [17]). The visual system of lumpfish

is important for both their survival in the wild and for farmed salmon lice removal.

Lumpfish have recently been declared threatened in the wild (Lorance et al., 2015 [18];

Committee on the Status of Endangered Wildlife in Canada (COSEWIC), Govern-

ment of Canada [19]). Therefore, new knowledge on the physiological systems lump-

fish rely on for sensing their environment could be important for better understanding

this species. Until recently, the visual system of lumpfish was not characterized. A

recent study described that cultured lumpfish harbour several features in their eyes

that set them apart from other teleosts and mammals (Ahmad et al., 2019 [8]; Paradis
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et al., 2019 [20]). Most surprisingly, the study found that lumpfish possess unique

retinal anatomical partitioning patterns. The study has also presented the first SD-

OCT imaging data from lumpfish retina (Ahmad et al., 2019 [8]). However, the data

analysis and the retinal segmentation software accompanying SD-OCT instrumenta-

tion is specific to mammalian retina and cannot be used to analyse retinal tissues

from teleosts such as lumpfish or cunner(Tautogolabrus adspersus) (a western North

Atlantic wrasse). In addition, Zebrafish (Danio rerio) is a fresh water teleost species

that is recognized for its utility as a model organism, fully defined genome and ease of

culture (Ribas et al., 2014 [21]). Similarly to lumpfish, the visual system of zebrafish

is important for both their survival in the wild and in culture. SD-OCT systems have

been applied to zebrafish (Collery et al., 2014 [22]), but retinal segmentation software

built specifically for this or other teleost species is currently not available.

1.4 Importance of retinal segmentation

The segmentation of the retina is a non-invasive assessment of retinal structure per-

formed on live subjects to allow researchers to make a quick assessment of the overall

health and integrity of both the retina and related anatomical visual system compo-

nents. This procedure is impactful in research as the representation of perturbations

in the different layers of the retina could be indicative of retinal diseases or disor-

ders. In this case, the application of retinal segmentation is important to create new

knowledge of the visual systems of teleosts and how these systems relate to previous
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research in retinal biology [20].

1.5 Challenges associated with OCT imaging and

segmentation

The default proprietary segmentation algorithms provided with commercially avail-

able OCT imaging devices are not suited to the task of scanning and interpreting

non-mammalian retina. This is the case as most retinal segmentation algorithms dis-

play a lack of robustness (Tian et al., 2015 [23]) and are highly sensitive to speckle

noise and poor image contrast. These factors combined with the differences between

species exemplify the difficulties of creating a universal segmentation algorithm. To

overcome the problems of speckle noise and low contrast images, image pre-processing

must be used to ensure the accurate detection of retinal boundaries within the im-

age. Pre-processing methods take the form of filtering and smoothing the image to

remove as much speckle noise as possible before thresholding. Where tresholding can

defined as a binary cutoff value to create a split in image features and can be used

to increase image contrast. These techniques serve to add robustness and aide in

increased accuracy and reliability of retinal OCT segmentation algorithms.
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1.6 Potential approaches to retinal segmentation

In the study of computer vision there are two schools of thought, traditional static

heuristic methods and new adaptive artificial intelligence methods. Heuristics, in this

case, is defined as fixed mathematical procedures for evaluating the retinal layers. In

comparison, the artificial intelligence approach is determined by defining the indi-

vidual feature characteristics of the retina through rapid evaluation and change over

large data sets. After evaluating a number of these procedures, I decided that to

solve the problem of applicability, a straightforward approach which made use of the

common logic of manual measurements could be created. I determined this to be the

best option as it had adaptability of heuristics algorithm and needed much smaller

data sets when compared to a machine learning approach. Therefore, thresholding

was chosen to build a replacement of manual measurements performed by an expert

investigator while keeping the mathematical basis of the solution simple through the

column-wise application of replicated manual measurements.

1.7 Aim of the thesis

To address the lack of automated segmentation analysis of SD-OCT imaging data

from teleosts including lumpfish and zebrafish, I describe herein the development

and implementation of a novel computer algorithm for quantitative analysis of large

volume ocular SD-OCT imaging data. This tool differs from other retinal segmenta-
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tion algorithms in that it was created for the purpose of segmenting non-mammalian

species. This algorithm uses thresholding instead of the traditional use of graph

theory or neural network-based methods. This method was designed to interpret in-

dividual images and provide the user a new perspective of retinal segmentation. I

hypothesized that such algorithms will allow more precise measurements, with signifi-

cantly higher throughput capacity, of retinal architecture in live teleost ocular tissues.

This novel program would create a new research tool to study the ocular tissues of

teleosts.

1.8 Organization of the thesis

Chapter 1: Introduces us to the process of retinal segmentation analysis and its core

concepts which covers both the challenges and opportunities associated with retinal

OCT image segmentation.

Chapter 2: Describes the background of the study of retinal disease and the different

approaches that have been implemented towards the segmentation of retinal OCT

images with subsections describing different approaches including graph theory and

machine learning.

Chapter 3: Describes the methodology used in the automated segmentation analysis

of teleost retinal OCT images. It discusses the dataset which was prepared for use

in this study, the segmentation algorithm’s procedures and its implementation. It

also describes error prevention measures that were used to ensure the accuracy of the

7



produced results.

Chapter 4: Introduces the methodology in which the algorithm is compared against,

what is considered the gold standard, manual segmentation performed by an industry

expert.

Chapter 5: Concludes the thesis with a review of the algorithms significance and

proposes future possible directions of investigation.

Chapter 6: Contains supplementary material which includes a representative spread-

sheet output as well as user manuals for the software.
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Chapter 2

Literature Review

2.1 Comparison of retinal architecture

To facilitate experimentation on the visual system, model organisms are used as the

retinae of some species closely resemble their human counterparts. This common

practice can be seen in the popular use of mouse retina (Glickfeld et al., 2014 [3]),

in this case we will be using lumpish retina (Ahmad et al., 2019 [8]). To compare

the structure of human and lumpfish retina histological sections of retina of each

species was presented in Fig 2.1. The histological sections presented were stained

with hematoxylin and eosin. The human specimen was sourced from High Resolution

Imaging in Microscopy and Ophthalmology [24]. The lumpfish retina images were

produced by Dr. Paradis and Dr. Gendron. The images shown in Figure 2.1 displays

the similarities between these two retinae in their structural resemblance through the
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Figure 2.1: Representative histological sections of lumpfish (a) [24] and human (b)

retina with labeled retinal layers. This includes the nerve fiber layer (NFL), the ganglion cell

layer (GCL), the inner plexiform layer (IPL), the inner nuclear layer (INL), the outer plexiform

layer (OPL), the outer nuclear layer (ONL), the inner photoreceptor segments (IS), and the outer

photoreceptor segments (OS), Pigment (PM) lumpfish only and the retinal pigment epithelium

(RPE). The scale bars in both images representing 50 micrometers.

identification of each of the present retinal layers.

In this analysis we can see some great similarities between the human and lumpfish

retinae with subtle differences in specific segments. The retinae of both species are

very similar for the layers of neural retina (NFL to OS) with the greatest difference

occurring in the (RPE to Choroid) section. One example of this was the blood

vessels contained in the GLC of the human retina present in the lumpfish retina. In

addition to this, the lumpfish contains a pigment layer between the OS and RPE
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that was not present in the human retina. This side by side comparison was useful in

suggesting a direct structural similarity between both retinae for the purpose of retinal

segmentation. In this case similar layers offer us the chance to properly measure and

evaluate how the retina was affected by disease and other environmental factors.

2.2 Overview of retinal disease.

Diseases affecting the retina have many different causes and diagnostic procedures

designed to asses them are diverse. In this review, the diagnosis of disease was deter-

mined as a direct result of the monitoring of thickening or thinning (degeneration) of

specific retinal layers. The following overview presents the use of SD-OCT imaging in

the evaluation in the development and progression of specific retinal conditions. This

knowledge was useful as it shows the potential use of automated SD-OCT software

for better understanding the tissue structural changes underlying retinal diseases.

In [13], Doustar (2017) proposed that neurodegenerative diseases such as Alzheimer’s

and Parkinson’s disease can be evaluated through the use of SD-OCT analysis of the

retina. This technique was devised to take advantage of the fact that both the retina

and the brain were pathologically affected. This paper shows examples of hallmark

pathology in the retina for Alzheimer’s and Parkinson’s as well as Huntingtons Dis-

ease (HD) and Multiple Sclerosis (MS). These features manifested themselves in the

thickening and thinning of certain areas of the retina which reflects the physiological

changes associated with these diseases. While the authors noted that the relationship
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between the pathology of the retina and brain was strongest with AD, where the

nerve fiber layer (NFL) was thinning. This review shows the potential application

of SD-OCT technology in assessing risk and disease progression of neurodegenerative

diseases in patients. This paper proposed that this solution could be a cost effec-

tive method as it does not require the use of brain amyloid imaging suggesting this

solution has the potential to have a great impact.

In [14], Vuong (2017) proposed the correlation between retinal OCT measure-

ments of the ganglion cell complex with visual field defects from optic chiasm impres-

sive lesions. The authors proposed that considerable visual recovery was possible in

patients affected by optic chiasm impressive lesions whose treatment was monitored

with retinal OCT. The authors also suggest that despite this possibility for recovery

the residual damage to the retinal may be more extensive than previously reported.

The authors also suggested that ganglion cell complex preservation was associated

with better postsurgical outcomes and recovery of the visual field. This paper was an

excellent example of new measurement technologies providing new opportunities for

the continued development of medical treatment plans. The widespread documen-

tation of an examination of OCT data in the future could create more mainstream

retinal evaluations and clinical diagnostic approaches. In the future, more research of

this type is critical in the introduction of OCT as a mainstream diagnostic method.

In [12], Chhablani (2018) proposed that interior retinal degeneration could be

the earliest sign of neurological diseases. This paper reviews a varying spectrum
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of systemic diseases including neurological diseases, hematological diseases, cancer

related retinopathies and systemic drug toxicity. The authors found that in the

reviewed cases the OCT imaging findings were useful to predict the probability of

disease, early diagnosis and to differentiate between healthy and unhealthy tissue

and to monitor the effect of therapeutic intervention in many diseases. This paper

improved on previous knowledge as they evaluated the viability of retinal therapies

in conjunction with OCT technology. However, the authors noted that there remain

some challenges in the extrapolation of quantitative data for direct use in clinical

intervention. This paper shows that the potential of the retina as an evaluation of

health that can be useful for a number of diseases when used with OCT imaging.

In [25], Cassles (2018) reviewed the use of microperimetry in assessing the visual

function in age-related macular degeneration (AMD). The authors reviewed 52 articles

in which the quality of the analysis was varied to better understand the utility of the

technique. The review shows that this method was, at the moment, inconsistent

and the authors further suggest its use alongside OCT to enhance the quality of the

evaluation procedure. In future studies, this combined procedure could possibility

provide a better evaluation approach than traditional methods. This inconsistency

originates from the observational design of most of the studies where the risk of

selection bias, information bias, or confounding bias may be present. Future studies

combining quantitative OCT might entail the ability to process and measure larger

amounts of data at a faster rate. This would provide scientists with the opportunity
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to perform larger studies with reduced bias as well as document the quality of the

assessment technique.

In [26], Costello (2018) proposed that OCT imaging of the retina can be used to

measure axonal damage and neuronal loss in Multiple sclerosis (MD) patients. The

authors further suggested that OCT detected decrements in retinal nerve fiber layer,

ganglion-cell layer and the inner plexiform layer thickness which represent markers of

axonal damage and neuronal injury was correlated with worse visual outcomes and

increased clinical disability. This paper proposed that with advancements in technol-

ogy of the differentiation of individual layers through the use of retinal segmentation

will allow researchers to quantify the acute and chronic effects of central nervous sys-

tem lesions. This suggests that future research into neurodegenerative diseases could

benefit from the quantifiable measurement that OCT provides to give researchers a

better picture of the role of retinal health in disease evaluation.

In [27], Chung (2019) reviewed the role of inflammation in diabetic macular edema

(DME) through OCT macular analysis. The authors suggest that inflammation has

an important role in the pathogenesis of DME and determined that future research

was needed to determine its sub-types. The authors determined that inflammation

had an important role but the results were quite different among the different DME

phenotypes. This paper describes the potential use of OCT based technology in the

research of retinal disease as a method of quantitative evaluation. The review of

OCT based treatments was recommended by the authors for the evaluation of future
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testing programs.

In [28], Huang (2021) presented a systematic review and meta-analysis on the

pattern of peripapillar nerve fiber layer (pNFL) thinning in Parkinson’s disease (PD)

patients. This review contained the results of thirty-two studies and thirty-three sets

of data which involved 2126 PD eyes and 2318 healthy control eyes. This review

identified an OCT based biomarker that can be used for differential diagnosis of

Parkinsons based on specific patterns of retinal thickness. The authors have identified

that certain quadrants of the pNFL were affected differently with the greatest amount

of thinning taking place in the inferotemporal segment. This new biomarker can be

combined with OCT imaging in the future to create a novel testing environment to

potential monitor diagnosis and disease progression.

In [29], Waisberg (2021) reviewed the non-glaucomatous causes of optic nerve cup-

ping or enlargement of the cup-to-disk ration which was a widely recognized feature

of glaucoma. In this paper, the authors proposed that the OCT measurement of the

retinal nerve fiber layer, ganglion cell layer and inner plexiform layer could be helpful

in localizing the disease. The authors describe cupping as consisting of two main

components: prelaminar and laminar thinning. Prelaminar thinning was shown to be

related to the loss of retinal ganglion cells whereas laminar thinning involved damage

to the lamina cribrosa and peripapillary scleral connective tissue. This diagnostical

and evaluation procedure serves as a basis for future research into the OCT evaluation

of retinal cupping and optic nerve disorders.
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In [30] Lee (2022) proposes that progressive parafoveal thinning and fovea avas-

cular zone remodelling, as measured by OCT, could provide a useful biomarker for

early diagnosis and prognostication in Parkinsons disease (PD). The authors found

that inner retinal changes can be found in the early stages of PD with the macula and

peripapillary nerve fibre layers being affected at later stages. With the later being as-

sociated with visual hallucinations and cogitative impairment. This paper improves

on previous results as a further connection was made between the degeneration of

the retina and pathology in the brain. The future widespread mainstream adop-

tion of OCT retinal evaluation could provide high quality information for integrated

treatment and monitoring programs.

2.3 Overview of SD-OCT image segmentation.

The process of SD-OCT image segmentation was the task of identifying and measuring

each retinal layer in an input dataset and recoding these measurements for later

interpretation in research or clinical use. To perform this task several techniques

have been developed, some relying on heuristics while others on machine learning

technology. With each of these techniques being developed for a specific type of SD-

OCT dataset which may include the species and the number of layers to be processed.

The general segmentation process consists of image loading, pre-processing for both

images and for settings, processing each image in the dataset and returning and

formatting the results to be compared. Two main styles of segmentation emerged,
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2D segmentation which only considers one image at a time and 3D segmentation

which tries to interpret many images as a section of the viewing volume.

Over time, there have been several automated segmentation algorithms, which

have been developed to meet the challenge of distinguishing the retinal features needed

for a given study. Algorithms are based on kernel optimization (Mishra et al., 2009

[31]), active contour approach (Yazdanpanah et al., 2009 [32]), and graph theory

(Yang et al., 2010 [33]), among non-machine learning solutions. In the field of ma-

chine learning neural networks (Ronneberger et al., 2015 [34]) have been used in

combination with graph search and classification algorithms (Fang et al., 2017 [35]).

The main difference between traditional graph-based algorithm and machine learn-

ing was the comparison between a constant interpretation and a potential learned

response.

2.4 Introduction to graph theory-based retinal seg-

mentation algorithms.

In computer science, graph theory was defined as the study and use of graphs which

was a mathematical structure to study the pair relation between objects in a group

or collection (Riaz et al., 2011 [36]). In the context of computer science this would

refer to the connection of nodes or vertices and edges that connect pairs of nodes.

In the case of image segmentation, we will be dealing with the concept of undirected
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graphs which are sets of vertices that do not have an order or a given direction. In

weighted undirected graphs each edge can be represented by a real number to define

its connection with its associated edges.

In the case of image segmentation (Dufor et al., 2012 [37]), we would consider the

input image to be an undirected weighted graph, where each pixel value would be

represented by an individual graph point which would correspond to an interconnected

network of corresponding weighted edges. The process of image segmentation operates

on the separation of the graph into two distinct sets. This operation was performed

based on the given weighted edges which serve to represent the similarity between a

given pixel and its neighbors. Other nodes are often used to represent different types

of possible image features or characteristics in addition to the nodes representative

of the original image. In retinal segmentation algorithms, additional nodes are added

to aide in the differentiating and measuring of retinal architecture.

2.5 Review of graph theory-based retinal segmen-

tation algorithms.

In [38], Garvin (2008) proposed a 3D graph search algorithm to segment five in-

traretinal layers of the human retina with no other species being mentioned. This

process was proposed as one of the first attempts at a 3D segmentation of the total

retina. This technique was devised to take advantage of contextual information when
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compared to previous attempts. This was achieved using three separate procedures

which consist of a scan alignment, composite image creation and intralayer segmenta-

tion. The scan alignment and composite image creation combine multiple successive

frames into one composite image to include the 3D context of the retinal in a 2D

image representation. The intralayer segmentation procedure makes use of points

of interest to identify potential retinal boundaries. These potential boundaries are

then processed by a cost function to determine their precise location. The algorithms

results were then verified with the comparison to manual measurements verified by

human experts. This experiment showed the potential of the 3D approach to retinal

segmentation but also demonstrated the limitation of the 3D context as it relies on

image representation to be properly interpreted.

In [31], Mishra (2009) proposed an adaptive kernel-based algorithm to segment

the intra-retinal layers in rodent. This process was proposed as attempts to achieve

accurate segmentation under low image contrast and in the presence of irregular

features. This technique was used to process both healthy and diseased rodent retinas.

This was achieved through sparse dynamic programming where the retinal layers are

located, first using estimators to locate their approximate location and then a series of

optimization procedures are used to determine the location of the retina boundaries.

Where the estimators are used to calculate the potential of a given pixel pertaining

to a retinal boundary before the second uses these points to determine the precise

location of each boundary. This twostep process was used to avoid the impact of
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speckle noise and image artifacts. These algorithms results were then verified with

the comparison to manual measurements which shows its potential application to

other SD-OCT problems.

In [32], Yazdanpanah (2009) proposed an active contour approach to detect four

intraretinal layers in OCT images acquired from rodent models of retinal degenera-

tion. This procedure serves to adapt ChanVeses energy-minimizing active contours

without edges [38] for OCT images. This procedure attempts to overcome the issue

of low contrast and noise corruption found in ChanVeses procedure. This was done

by adopting a cyclical multi-phase framework prior to segmentation to estimate the

shape parameters using Least Squares. The Least Squares procedures was used to

provide a contextual schema and to balance the weighting of each of the terms in

the energy sequence. This was accomplished using both a region based and shape

energy term followed by a regionalization energy term to take the average results

of the shown 2D context. This procedure shows the potential of image frameworks

which combine the use of multiple separate procedures to reduce the possibility of

error. The results from various synthetic experiments and segmentation results on 20

OCT images from four rats were presented and compared to manual measurements.

In [33], Yang (2010) proposed an edge detection algorithm based on gradient

information and a shortest path search. This was proposed to avoid the possible errors

caused by local absolute intensity values, which can be avoided if the layers remain

distinct. The gradient information was obtained from the local canny edge result and
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the global axial intensity gradient. This was used to determine nine retinal boundaries

sequentially so that previous information can be used. This was accomplished by

building and modifying a graph generated with the canny edge detector using the

axial intensity gradient to provide additional information, then the shortest path was

used to determine the boundary location. This algorithm was used to process human

retinal imaging data consisting of glaucoma and control patients and were compared

with manual segmentation. In the future, more work will be needed to evaluate the

approach of retinas affected by different physiological change associated with retinal

disease.

In [37], Dufour (2013) proposed an edge detection algorithm based on gradient

information and a shortest path search. This was proposed to avoid the possible errors

caused by local absolute intensity values, which can be avoided if the layers remain

distinct. The gradient information was obtained from the local canny edge result and

the global axial intensity gradient. This was used to determine nine retinal boundaries

sequentially so that previous information can be used. This was accomplished by

building and modifying a graph generated with the canny edge detector using the

axial intensity gradient to provide additional information, then the shortest path was

used to determine the boundary location. This algorithm was used to process human

retinal imaging data consisting of glaucoma and control patients and were compared

with manual segmentation. The authors stated that, more work will be needed to

evaluate the approach of retinas affected by different physiological change associated
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with retinal disease.

In [39], Duan (2018) proposed an automatic graph-based multi-surface segmenta-

tion algorithm that internally uses soft constraints to add prior information from a

learned model. This method was proposed to improve the accuracy of graph-based

segmentation through increasing its robustness to noise. This method also attempts

to reduce the size of the graph being considered by applying a segmentation scheme.

This was accomplished through the building of a prior information model to enhance

a graph-based segmentation model. In this case the information model was a statistic

on the distance between surfaces in relation to the fovea position which was composed

of multiple mean models. This model was then used to shape the segmentation in-

put to reduce the total graph size. The method was verified on twenty human OCT

datasets of healthy eyes. These scans were then compared to manual measurement

and reviewed by human observers. This procedure shows the importance of graph

size reduction [33] in retinal segmentation.

In [40], Bekalo (2019) proposed an algorithm to both segment the layers of the

retina and the sub-retinal fluid often associated with neurosensory retinal detachment

(NRD). This algorithm was based on the use of graph search and graph cut methods to

segment the input viewing volume as a 3D fully automated procedure. This algorithm

contains three main parts, a prior information model, a fluid segmentation and a

layer segmentation. To reduce the computational cost of graph-based optimization, a

“divide and merge” approach was used. The prior information model used both soft
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and hard smoothness constraints to add prior information from a learned model, which

was used to increase its robustness to image noise. Finally, the layer segmentation

takes the form of stratified sampling which used Adaboost in conjunction with multi-

scale graph search and shape-constraint graph cut methods. This algorithm was

tested on human SD-OCT cubes diagnosed with NRD, and the results were compared

with the manual segmentation results from experts. This algorithm suffers from its

high complexity but showed its potential application to other SD-OCT problems.

In [41], Lou (2020) proposed a graph-based wave algorithm to segment the layers

of the human retina. This algorithm was comprising of an OCT enhancement method

based on averaging sequences of images followed by an edge detection method based

on custom wave algorithms. These two separate images are then fused together

using an image fusion sigmoid energy conservation equation to generate the final

enhanced image which displays the retinal layers. This solution was proposed to

overcome the problem of speckle noise and low contrast images. In this example down-

sampling and filtering was used to remove speckle noise from the image and a fluid

potential energy equation was used to segment the retina. This program was tested

against similar methods running their test dataset of human retinal OCT images.

This algorithm provides an example of interchanging demonising and segmentation

methods to account for image quality.

In [42], Ma (2021) proposed structure interpolation and lateral mean filtering (SI-

LMF) algorithm to improve the signal-to-noise ratio based single image processing.
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This process consists of one-dimensional lateral mean filtering to remove noise, struc-

ture interpolation to eliminate thickness fluctuations and a boundary growth method.

This algorithm was based on human retina and attempts to identify the boundaries

of ten physiological layers. This proposed method does not rely on the processing of

multiple images at a time and lowers the computational cost of the algorithm. The

algorithm was tested on human OCT images and was compared to manual segmenta-

tion analysis. The algorithm provides an example of the future potential of a hybrid

approach to solve problems in SD-OCT image processing involving the use of both

traditional methods and machine learning.

2.6 Strengths and weaknesses of graph theory reti-

nal segmentation

The strengths of graph-theory-based segmentation are its reproducibility and adapt-

ability. As the math underlying these segmentation methods was in the form of

heuristics, it can be reproduced and verified according to mathematical logic. This

logical evaluation aids for adaptability as the underlying solution can be both applied

to newer forms of technology and expanded with new adaptions for specific problem

sets. This technology was especially relevant as there are many problems in retinal

segmentation where little data exists. In these situations the applicability of a current

method would be the optimal solution. As the goal of graph theory-based segmenta-
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tion was to identify the retinal layers through the identification of connected paths

where, it can often prevent the correct retinal layers being identified due to harsher

image artifacts, sparkle noise or other features. Another weakness of these algorithms

its there tendency to round the solution has the path is being drawn meaning that

earlier mistakes in these paths can through off the segmentation procedure.

2.7 Introduction to machine learning based retinal

segmentation algorithms.

In computer science, machine learning would refer to the creation of algorithms and

data processing techniques that would be able to improve the result of a given task

as more input data was processed. In the example of image segmentation these pro-

cesses are used to identify and measure the corresponding retinal layers using neural

networks. A neural network was a circuit used to represent the biology of the human

brain and consists of several connected layers. The given weights associated with

the given connections and their associated node activation functions determine the

potential output of the system. Hence, the adjustment of the weight and biases from

processing data adjust the system to suit its input dataset. In retinal segmentation,

the whole image was input into the neural network system which will attempt to

determine the location of the individual retinal layers. Different types of neural net-

work structure and activation functions can be used to adjust the algorithm settings
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in order to understand different problem types.

2.8 Review of machine learning based retinal seg-

mentation algorithms.

In this section we will be summarizing some of the different machine learning based

SD-OCT image segmentation algorithms.

In [43], Lang (2013) proposed the use of an automated approach to approximate

nine individual retinal boundaries through the use of a random forest classifier. This

classifier operated on macular cube images reconstructed from retinal OCT data and

used this information to construct a probability map for each boundary. The random

forest classifier learns the boundary pixels between retinal layers and produces a

probability map for each boundary which was processing into the final boundaries.

The images are pre-possessed with an intensity normalization procedure before being

processed by the boundary classifier. This algorithm was tested on both healthy and

multiple sclerosis subjects and was compared to manual measurements. In future

modifications of the process, it will be necessary to handle other ocular pathologies

such as microcysts, drusen, and geographic atrophy (GA). This algorithm showed the

potential of the use of image classifiers to identify the retinal layers of human retina

without the use of deterministic segmentation.

In [34], Ronneberger (2015) proposed a system of convolutional networks for
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biomedical image segmentation (U-Net). This method presented network training

strategies that rely on data augmentation to use annotated samples more effectively.

This procedure was devised to overcome the limitation of sparsely trained neural net-

works. The network uses a system of both a contractive and expansive path. This

system presented the possibility to make better use of small datasets when training,

but with that comes that possibility of training bias. This method has been adapted

for use in retinal segmentation and was used as the starting point for many machine

learning based algorithms. The use of the network architecture when combined with

an extensive framework could possibly, in the future, produce a valuable opportu-

nity for experimentation. However, its real-world application could be limited by

the available amount of annotated data. The cost of specific training hardware for

the development and use of the software can be resource intensive. Therefore, the

application of the algorithm could provide future opportunity for expansion but its

implementation would come at a high data cost.

In [35], Fang (2017) proposed a framework based on combining convolutional neu-

ral networks (CNN) and graph search methods. This combined procedure first used a

CNN to extract features of specific retail layer boundaries and train a corresponding

classifier to delineate a pilot estimate of the eight layers of human retina. The first

step consists of an image pre-processing routine followed by a CNN method to extract

features and label them according to the retinal layers being interpreted. This was

followed using graph search methods to determine the location of each of the retinal
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layers. This algorithm attempts to avoid specular noise and image artifacts by adding

an additional label to the CNN which was trained to classify pixels that are deemed

outside the retinal boundary. This process was validated on sixty OCT image volumes

(2915 image B-scans) from twenty specimens with non-exudative age-related macular

degeneration (AMD). These procedures show the use of CNN for the elimination of

image noise and artifacts from OCT images for use in segmentation.

In [44], Roy (2017) proposed a fully convolutional neural network which uses

contractional paths of convolutional blocks (encoders/decoders) to learn a hierarchy

of contextual features. The process attempts to both segment the retinal layers

and the fluid masses contained in OCT scans. The process the algorithm takes is

to construct custom pooling procedures to identify and segment five retinal layers,

before reporting the total loss and retuning the results. The algorithm was tested

on Duke SD-OCT publicly available dataset for human DME patients and compared

with manual measurements. This algorithm was proposed to show the importance

of skip connections and joint loss function in the field of neural networks. However,

very large amounts of data are needed to properly train the neural network and its

computation would consume a large amount of computing power which would be time

consuming.

In [45], Montuoro (2017) proposed a retinal layer and fluid segmentation OCT

algorithm to process human retinal data with severe macular edema. This was a fully

automated 3D process which combines the use of both machine learning and graph
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theory methods. An unsupervised feature representation was used to determine the

location of the retinal features present in the input dataset. Followed by the use of

special context methods and graph theory to perform a surface segmentation analysis.

This procedure first determines the context of a given pixel then calculates the retinal

boundaries based on their relative position. This procedure was built to overcome

the difficulties of fluid accumulation in OCT imaging. This method was tested on

manually annotated segmentation analysis of image scans of ten human patients with

severe macular edema.

In [46], Wang (2017) proposed an algorithm which uses the Markov random field

and Level-set method to segment the choroidal layer of the human retina This method

works by first using 3D nonlinear anisotropic diffusion filter to remove speckle noise

and increase image contrast. The level set method was then used to apply distance

regulation to avoid local irregularities and to have a clear separation between the

choroid and sclera. Markov random field was then used to determine the single pixel

likelihood with neighborhood information to compensate for image texture and to

avoid errors along the edge of the boundary. This method was then compared with

a dataset with manually labelled ground truth. This method shows the potential of

3D filtering in retinal segmentation analysis and the use of field equations in specific

retinal segmentation. In the future, more work can be done to combine specific

segmentation algorithms into a larger segmentation framework.

In [47], Shah (2018) proposed a convolutional neural network (CNN) based frame-
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work to segment multiple surfaces simultaneously. This proposed method uses a single

CNN to segment three retinal surfaces. The algorithm was trained to process both

normal retinas and retinas affected by intermediate age-related macular degeneration

(AMD). The algorithm was designed to overcome the large computing costs of graph

based optimal surface segmentation and a ”U” structured convolutional networks

system for biomedical imaging systems (U-Net) [34] based methods. This method

was validated on fifty human retinal OCT volumes (3000 B-scans) including twenty-

five normal and twenty-five intermediate AMD subjects. The algorithm was then

compared to be an improvement over the optimal surface segmentation method with

convex priors (OSCS) [48] and two deep learning based U-Net methods for both data

types. The proposed method shows the potential to be extended to higher dimensions

so it can attempt to segment more retinal architecture.

In [49], Borkovkina (2020) proposed an algorithm to segment eight retinal layers

of the human retinal using a compressed, low-latency neural network. This procedure

attempts to achieve real time segmentation through its use of three different levels of

optimization. These optimization procedures consist of a neural network structure, a

neural network compression scheme and specialized graphics processing unit (GPU)

hardware. This method generated a neural network representation then compresses

it before using specialized hardware to process and extract the location of the retinal

boundaries. This was then compared with a test dataset consisting of human retinal

to the U-Net [34] where it showed an improvement in the speed of the segmentation
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procedure. This method shows that the use of specialized hardware can improve the

use of neural networks by greatly reducing their latency. The use of this software

on conventional hardware could be limited due to its lack of tensor cores, which this

method uses to increase in neural network performance.

In [50], Yow (2020) proposed a retinal nerve fiber layer segmentation for use in

high-resolution swept-source human OCT. This method uses a deep leaning algorithm

which operates using the U-Net architecture [33] which has been modified to suit a

nerve fiber layer (NFL) segmentation. In this procedure cross-sectional micropapillary

images are extracted and then combined in sets and to be processed as one cumulative

image. The results of the algorithm were then compared against expert human manual

segmentation on a dataset consisting of both healthy and glaucomatous subjects. This

algorithm shows that neural networks can be used for specific segmentation tasks

when enough data can be made available and that algorithms can serve as platforms

for future experimentation. Moreover, there was scope for further work on reducing

the amount of information needed to train and process these specific segmentation

networks in the future.
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2.9 Strengths and weaknesses of machine learning

retinal segmentation

The strengths of machine learning retinal segmentation based algorithms are its ro-

bustness to image defects such as speckle noise and image artifacts. The underlying

nature of machine learning allows the solutions to process large amounts of data which

can in turn allow it to avoid image irregularity when used on large datasets. This

gives machine learning algorithms the ability to gain accuracy with the scale of its

data input. As a result, machine learning solutions would have to be retrained with

a different dataset and internal setting to adaptive itself to a new machine learning

task. This necessity of large large data requirements and the difficulty involved in

adapting a current working solution to suite other models [51]. As machine learning

methods are data heavy solutions this can often prevent their applicability to small

datasets and specific problems. The costly nature of both large datasets and the

necessary computing power to process them could restrict the overall impact of ma-

chine learning based solutions. This can be seen in (Yanagihara et al., 2020 [52]) who

looked into the consequence of a lack of large datasets in retinal machine learning.

2.10 Conclusions

We have seen that, over time, researchers have developed various algorithms to ad-

dress the problem of automatic SD-OCT image segmentation. These techniques all

32



attempt to better interpret and process retinal imaging of healthy and unhealthy spec-

imens to aide in both diagnostics and research. It was not known if these algorithms

can be applied to other species especially non-mammalian species as most retinal seg-

mentation algorithms are primarily designed for mammalian retina. The thresholds

method featured in this thesis was chosen to build on the strengths of heuristic al-

gorithms by having a simpler mathematical base making the algorithm approachable

to modify to properly suite the retinal characteristics of other species. As the appli-

cability of the algorithm was the goal a machine learning based approach would not

be appropriate as each species would require the collection and pre-evaluation of a

large amount of data. It was important in the future that algorithms produce reliable

results to ensure their continued use in the research setting. We have also seen the

various types of diseases that could be monitored using retinal thickness monitoring

techniques and how this process was a novel concept in the field of biomedicine. I

hope, in the future, algorithms and automated systems can fully replace the need for

manual measurements in the retinal segmentation process in all forms of research and

evaluation.
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Chapter 3

Methodology

3.1 Animals and SD-OCT image acquisition

The data provided for this study was collected by Dr. Paradis and Dr. Gendron us-

ing cultured lumpfish from the Department of Ocean Sciences, Memorial University

under the approval of the Institutional Animal Care Committee (protocols 17-03-RG;

17-01-RG). Retinae from lumpfish were imaged noninvasively by SD-OCT essentially

as described previously (Ahmad et al., 2019 [8]). Lumpfish were randomly selected

from three holding tanks of 150 specimens each. Fish were transported from the Dr.

Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences to

the SD-OCT imaging laboratory (Faculty of Medicine) in a cooler box with fresh

oxygenated tank water, acclimated for 30 minutes then lightly sedated with 40 to

80 mg/L tricaine methanesulfonate (Sigma, Oakville, ON) in tank water. Tear Gel
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(Alcon, Mississauga, ON) was applied to keep the eyes moist. The fish gill areas were

wrapped in gauze soaked with tank water and placed in a silicone cradle, with the

imaged eye facing toward the SD-OCT bore lens (90-BORE-G4-M G4 Mouse lens).

“En face” SD-OCT images were acquired from the live anesthetized animals using

a Leica Envisu R2210 SD-OCT instrument (Bioptigen, Durham, NC). Scans were

acquired in rectangular volume, 1 X 1000 X 100, 1.8mm X 1.8mm mode. Scans were

completed for both the oculus dexter (OD) and oculus sinister (OS) eyes of each

animal. Zebrafish SD-OCT scans (rectangular volume, 1 X 1000 X 100 mode were

kindly provided by Dr. J. Vance (The Spective Group, Raleigh-Durham, NC). The

human dataset was composed by the University of Waterloo Theoretical and Exper-

imental Epistemology Lab (TEEL) [53] which contains 500 high resolution images

categorized into different pathological conditions. The image classes include Normal

(NO), Macular Hole (MH), Age-related Macular Degeneration (AMD), Central Serous

Retinopathy (CSR), and Diabetic Retinopathy (DR). The images were obtained from

a raster scan protocol with a 2mm scan length and 512x1024 pixel resolution.

3.2 Manual Image Analysis

Manual SD-OCT image analyses of the retinal thickness was captured using OpenLab

[54] software ruler tool on each selected B-scan image. In each of the manually

measured images ten relatively evenly spaced measurements were selected to represent

the overall thickness of the retina as individual measurements. These measurements
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were then saved as separate spreadsheet files corresponding to each specimen. These

manual measurements were overseen by Dr. Paradis who is an experienced scientist

in the field of retinal research. Dr. Lilly3 performed the lumpfish segmentation and

I performed the zebrafish segmentation.

3.3 Software Availability

The software developed alongside this thesis to demonstrate the mathematical prin-

ciples of the algorithm will be made available for testing and personal use on all

platforms and hosted on a dedicated GitHub page. This software and any future

updates will be made available for testing and personal use on the GitHub platform

[55] at the following link, https://github.com/krbarter/SD-OCT-Points-Based.

3.4 Program design and implementation

This program was designed through the use of three-tier architecture which consists of

input, application and data as three separate layers Fig. 3.1 in conjunction with object

oriented program design (OOP) [55]. This program was implemented in the python

programming language and made use of packages such as matplotlib, numpy, opencv-

python, Pillow, XlsxWriter, xlwt and wxPython. The program’s design revolved

around a single user interface for input of data and settings into the program, an

application layer which performed the algorithm’s computations followed by data
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processing and output. Both the program’s design and implementation were built

with simplicity and user oriented design in mind with the goal of creating a program

that is easy to follow, maintain and update. Our novel algorithm can be illustrated

in terms of a waterfall model Fig. 3.2.
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Function: Pre − processing;

Load Images from directory ← Images;

for Each Image do

Non − local Means Denoising;

Gaussian Blur;

Median Blur;

Truncated thresholding;

end

Function: Processing;

for Each Image do

for Each Column do

Use input thresholding values to determine the outer

retina;

Record each measurement;

end

end

Function: Results;

for Each Set of Images do

Output and display 2D Heatmap;

Output and display 3D Heatmap;

Output results spreadsheet;

end

Algorithm 1: Algorithm Pseudo-code.39



3.5 Retinal Architecture

In the case of retinal segmentation, the measurement of the thickness of specific

retinal layers for use in scientific research is of great importance. This was achieved

through segmentation analysis of the nerve fiber layer (NFL), the ganglion cell layer

(GCL), the inner plexiform layer (IPL), the inner nuclear layer (INL), the outer plex-

iform layer (OPL), the outer nuclear layer (ONL), the inner photoreceptor segments

(IS), and the outer photoreceptor segments (OS) and the retinal pigment epithelium

(RPE) followed by data display. In this algorithm we will be identifying several dis-

tinct retinal layers of both the lumpfish and zebrafish as shown in Fig. 3.3. The

first of these measurements will be the total retinal thickness, with the second be-

ing NFL/GCL, thirdly IPL/INL/OPL/ONL/IS in the case of the lumpfish or the

IPL/INL and OPL/ONL/IS/OS/RPE as two distinct segments in the case of the Ze-

brafish ending with the OS/RPE for the lumpfish. These layers have been identified

as both important to the study of the retina and applicable to the teleost species

included in this solution with several retinal layers remaining unsegmented by this

approach.
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3.6 Program

An image segmentation program was built using OpenCV (Open Source Computer

Vision, 2020 [56]) to analyse and interpret SD-OCT B-scan images to determine the

thickness characteristics of the different layers of the retina of lumpfish. The images

from a given set of specimens, to be compared to one another, were loaded and

processed together (Fig. 3.1). The images were processed by the following three

phases, with the result of the previous phase being the input to the next phase.

First, images were loaded and refined by excluding image artifacts and eliminating

as much noise from the image as possible using Non-local Means Denoising followed

by a Gaussian Blur, followed by a Median Blur and Truncated Thresholding. These

processes aid to reduce possible error in the identification of the retina and refine the

image so that the program can correctly identify the different layers of the lumpfish

retina. Second, the refined images were processed using a novel algorithm to find the

retina located in the input image. Third, the data was analyzed and output. The

overview of this algorithm’s procedures can be seen in and (Fig. 3.1 - 3.3) respectively.

The program’s image processing algorithm has been based on thresholding, which

operates on the pixel values contained in an image where the threshold values are

given as user input. Thresholding was accomplished by taking any value that meets

a certain requirement and rejecting all others. Three main variables were used to

determine the location of the retina and its layers. The first variable represents the

minimum acceptable pixel value of white while the second variable corresponds to
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the minimum gap between two white pixels and the final variable is the maximum

allowed gap between two white pixels. The algorithm functioned by viewing each

column of pixels and storing the location of white values that pass the thresholding

function. Where white values are defined as values approaching the white side of the

gray-scale range. The first and last threshold values of a column of pixels were marked

by a blue highlight and delineated the total thickness of the retina (Fig 3.3). The

program was designed to then identify a large gap between two white pixels based

on the second and third thresholding variables. The last value before the gap and

the first value after the gap were marked by a green highlight. The middle of these

two points, deemed the smoothing line, was marked by a red highlight and saved as

a separate output. This optional smoothing line provided an additional evaluation

tool revealing the retinal curvature. The thickness calculations were taken directly

from the thickness measurements, which measured and interpreted the data seen in

the highlighted columns of pixels on each image. It should be noted that only the

highlighted values in each image were measured and excludes all other sections failing

to meet one or more thresholding values used in the algorithm. The program can be

adjusted by the modification of one or more of the thresholding variables to suit the

input image set. The number of measurements made by the algorithm is determined

by the number of columns of pixels found by the thresholding algorithm, containing

the retina, with the maximum number being the width of the image in pixels. Once all

measurements are made the image is then saved, storing the position of all measured
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points. In addition to adjustable thresholding variables, to prevent possible error,

the program was designed to complete a functional analysis that determines if the

retina is missing from the image or if the image contains a large amount of noise

or artifacts. This is performed by determining if the image contains the correct

number of pixels with a certain intensity above a threshold. In these situations, these

images contain too many artifacts and will be rejected and will not be processed

by the image processing algorithm. Another feature to prevent false measurements

is a minimum measurement thresholding variable, to exclude measurements created

when the program chooses the same point or two separate points too close together

to represent any retinal structure. As these points are most likely clumps of noise or

image defects that are remaining in the pre-processed image.

The program’s data analysis component was designed to process the stored image

data set into a finished data output. Data output reported the program’s internal

settings to aide in analytical reproducibility. For each SD-OCT B-scan, the image

sequence numbers (referred to as B-scan number) were recorded in the beginning of

each data entry. Data output consisted of the mean retinal thickness for each image

with the number of points measured for each retinal layer (Appendix 6.1). From these

measurements, the thickness of the specific retinal layers of each SD-OCT scan were

reported as a percentage of the whole retina thickness (Fig. 3.2 (F)).

The SD-OCT data produced by the image segmentation program was interpreted

by a heatmap program designed to represent the relative thickness of the whole reti-
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nal SD-OCT scan. This was done by analysing all thickness values produced from

a complete set of B-scan images containing scanned specimens. The difference from

the minimum value were then colour assigned by the difference in comparison to the

minimum value according to a colour scale. The minimum thickness values were

represented by blue colour and gradually increase in thickness represented by green,

yellow, orange and finally red representing the maximum thickness (Fig. 4.5). Each

colour ranged from a grade of one to eleven in intensity to create a colour gradient

representing how the program processes of the whole dataset of measurements taken

from the total retina thickness for each SD-OCT B-scan. The program plots each

measurement as one pixel in width and ten pixels in height assigning it to the ap-

propriate colour setting before saving the produced data as an image, to correctly

represent the width of the retina. To avoid error, any value outside the range of

the colour gradient was assigned to the bounds of the range. Any value above the

gradient was assigned the highest value and any value below the gradient assigned

the lowest value.

In addition to the 2D heatmap, a 3D representation of the heatmap data was

constructed using a 3D surface map which used the same data and colour range as

the original 2D representation. The 3D surface was constructed using a triangular

surface mesh which displays the outer surface of the retina which gives the user a

better perspective on both the surface of the retina and the shape of the retina in the

vicinity of the optic nerve head.
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3.7 Statistical analysis

Two-tailed student T-tests were used to analyze the statistical significance of the dif-

ference between the measurements of retinal thickness from B-scans assessed manually

versus those assessed by algorithm processing. The measurements were considered

statistically different if the P values were equal or less than 0.05.
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Chapter 4

Results and Discussion

The use of SD-OCT instrumentation in combination with native manufacturer soft-

ware to analyze teleost retinal parameters such as retinal radius or retinal layers has

been reported [16][18]. However, the work herein is the first description of a custom

algorithm designed to automate analysis of SD-OCT data to measure retinal archi-

tecture in teleosts fish, including marine teleosts. I designed an image segmentation

program to scan and interpret SD-OCT retinal B-scan images to determine the over-

all thickness of the retina and thicknesses of the different sub layers of the retina of

teleost. This program enables SD-OCT image analysis to be processed rapidly to

provide reproducible SD-OCT data (Fig 4.1, 4.2 (b) and (c)). This clear segmenta-

tion of retinal architecture was also provided with a smoothing line to facilitate the

visualization of the curvature of the retina (Fig 4.1 (d)).
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Figure 4.1: Representative SD-OCT retinal B-scan analysis from a cultured lumpfish.

The original B-scan image (a) was segmented through our algorithm (c). This segmen-

tation is shown as an overlay of the original image (b) over the original image (a) and as processed

segmented image (c) which is labeled with the program’s produced average measurements. The

segmentation of the lumpfish retinal layers includes the nerve fiber layer (NFL) / ganglion cell layer

(GCL); the inner plexiform layer (IPL) with the inner nuclear layer (INL), the outer plexiform layer

(OPL) and the outer nuclear layer (ONL) / inner segment (IS); and the outer segment (OS) / retinal

pigment epithelium (RPE). This image is followed by the smoothing line output of the segmentation

of (a) which is represented by a red line generated by the program segmentation delimitating the

middle point of the retinal layers as shown in (d). This is followed by a representative image of a

manual segmentation analysis which showed ten manual measurements (e).
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Figure 4.2: Representative SD-OCT retinal B-scan analysis from a zebrafish. The

original B-scan image (a) was segmented through our algorithm (c). This segmentation

is shown as an overlay of the original image (b) over the original image (a) and as processed image

(c) which is labeled with the program’s produced average measurements. This segmentation of the

zebrafish retinal layers includes the nerve fiber layer (NFL) / ganglion cell layer (GCL), the inner

plexiform layer (IPL) with the inner nuclear layer (INL), the outer plexiform layer (OPL) with

the outer nuclear layer (ONL) / inner segment (IS) and the outer segment (OS) / retinal pigment

epithelium (RPE).

I have designed the program to output the retinal layers thicknesses of each SD-

OCT B-scan in the form of a data file in the Excel (XLSX or XLS) or Comma-

separated values (csv) format. An example of such data file for lumpfish is repre-

sented in Appendix, 6.1 Table. This data file contains the retinal layer thickness

measurements, the number of measurements or readings per B-scan and internal set-

tings associated with the processing of a dataset. The program output also included

the thickness of the segmented retinal layers of each SD-OCT scan as percentage of

the whole retina thickness. The retinal thickness measurement analysis of the rep-
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resentative juvenile lumpfish eye presented in Appendix, 6.1 Table revealed that the

NFL/GCL represents 14.9% of the volume of the retina, while the inner layers with

the outer layers and IS volume percentage was 61.9%, and the OS/RPE represented

23.2% of the volume of the retina. The program includes error prevention measures,

to ensure data accuracy, and thresholding variables to allow the program to be adapt-

able to any SD-OCT dataset. Since thresholding is used, any input produced the same

output when all settings remained the same. This algorithm is novel as it is the first

of its kind to be developed specifically to study teleost. As with any scientific process

the elimination of errors is important. The program has several features to avoid pos-

sible errors in the interpretation of the retina. These features include the adjustable

thresholding methods which can exclude information from being detected and placed

into the data. The error prevention techniques including thresholding variables and

functional analysis, can eliminate the occurrence of most error from appearing in the

dataset. As the program is making hundreds of measurements per B-scan, there can

be an acceptable amount of error that would not affect the results. Unlike when

manual analysis is used (Fig. 4.1. (e)), using ten measurements per scan, a single

error can greatly affect the results. Our program was designed as a replacement for

manual analysis of SD-OCT B-scan data of teleosts. This algorithm proved to be a

capable replacement for manual segmentation analysis as depicted in the comparison

and accuracy analysis performed in lumpfish (Fig. 4.3).
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Figure 4.3: Comparison between manual measurements and the algorithm’s segmen-

tation analysis of lumpfish retinal thickness. Three B-scans per specimen were selected and

average retinal thickness evaluated manually using 10 manual measurements or using the algorithm

with as many measurements as possible up to the width of the image. Error bars represent the

standard error of the mean. No significant differences were observed between the manual versus the

algorithm measurements (T-test, P > 0.05).
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Figure 4.4: Comparison between manual measurements and the algorithm’s segmen-

tation analysis of zebrafish retinal thickness. Five B-scan images were selected and average

retinal thickness analyzed manually with 10 manual measurement and using the algorithm with as

many measurements as possible up to the width of the image in this case 2515 total measurements.

Error bars represent the standard error of the mean. No significant difference was observed between

the manual versus the algorithm measurements (T-test, P > 0.05).

Similarly, the results of manual analysis were compared to the algorithm which

showed an equivalence to manual measurements in the corresponding zebrafish B-

scans images (Fig. 4.4). Because the algorithm processes information at a faster rate,

more specimens can be included in an individual study than using the manual analysis.

Having the capacity to be able to process more data and take more measurements per

image combined with data analysis the algorithm increases the amount of repeatable

SD-OCT data produced from a given set of B-scan images over the manual analysis.

Moreover, the turn around time between the production of data and results is greatly

reduced with the algorithm.

Additional features of our program include the generation of a heat map repre-

senting the relative thickness of the retina throughout the whole SD-OCT retinal
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scan from individual B-scans. A representative heat map of the whole SD-OCT reti-

nal scan of a juvenile cultured lumpfish aged 100 days post hatch is shown in (Fig.

4.5). The heat map included the specific specimen identifier, the number of B-scans

processed and the colour gradient display corresponding to the different levels of reti-

nal thickness. This heat map is particularly useful to visually and rapidly identify

areas of the retina displaying different thicknesses. The heat map is also useful in

identifying retinal architecture and the position of the optic nerve, which can be

seen in the top of the heat map (Fig. 4.5). This was confirmed through analysis of

the individual B-scans as seen in (Fig. 4.2). The overlay of the heat map with the

volume intensity projection (“en face” image) generated by the SD-OCT instrument

demonstrated how the shape of the retina, displayed by the heat map, corresponds

to the volume presented in the intensity projection. This demonstrates the relevance

of the heat maps in representing the shape of the retina through visualization of its

thickness characteristics corresponding to the anatomy seen in the “en face” image.
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Figure 4.5: Heat map of a SD-OCT scan of a lumpfish retina. A representative 2D heat

map displaying the relative thickness of the whole retina from a complete SD-OCT scan

of a 100 days post hath (dph) juvenile cultured lumpfish (a). The heat map includes the

specific specimen identifier, the number of B-scans (frame) processed and the color scale representing

the relative thickness in micrometers. The position surrounding the optic nerve can be seen in the

heat map as the thinner blue area at the top of the image this was confirmed through analysis of the

individual B-scans as seen in (Fig. 4.2. (c)) An overlay of the heat map with the volume intensity

projection (“en face” image (b)) of the SD-OCT scan of the same specimen is shown on the right

panel.
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Figure 4.6: A representative 3D heat map displaying the relative thickness of the

whole retina from a complete SD-OCT scan of a 100 dph juvenile cultured lumpfish

(a) compared to its 2D representation showed in (b).
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Figure 4.7: Representative 3D heat map displaying the relative thickness of the whole

retina from a zebrafish (a) compared to its 2D representation showed in (b).

The ”en face” view of the image shown in Fig. 4.5 was enhanced with the use

of a 3D heatmap to replicate the results of the 2D heatmap (Fig. 4.6), with the

before mentioned zebrafish data being shown similarly in (Fig. 4.7). This additional

visualization tool gives the user a new perspective on the surface of the retina and a

better interpretation of the 3D volume of the SD-OCT retinal scan. The 3D heatmap

is particularly useful for both its ability to display the optic nerve as shown in the 2D

heatmap and confirmed through analysis of the individual b-scans as seen in (Fig. 4.2

and 4.3) and to represent the relative thickness of the retina. The heatmaps featured

in this program are also available according to the viridis colour schemes [57] via a

selectable option Fig. 4.8.
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Figure 4.8: Representative viridis 3D heat map displaying the relative thickness of the

whole retina from a zebrafish (a) compared to its 2D representation showed in (b).

4.1 Human Retina Test

My goal in producing this algorithm was to analyse species analogous to the human

retina to give scientists studying the retina a better tool to conduct their research. We

have currently seen the application of the algorithm to the task of non-mammalian

teleost species. In this section, I will be describing how I tested the algorithm on

sources of human retina to test the direct application on both mammalian species

and to demonstrate the potential of its future development. The dataset that I

used for this human segmentation test was generated by the University of Waterloo’s

Theoretical and Experimental Epistemology Lab (TEEL) [53]. I have compared the

results of this test to the results of our previous retinal segmentation as seen in (Fig.
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Figure 4.9: Representative retinal layer identification of both the human (Image 102

[53]), cultured lumpfish and zebrafish. Consisting of a representative SD-OCT retinal B-scan

analysis of each species followed by their analysis using the algorithm with the respective retinal

layers identified. Human: original: (a), segmented: (b). Lumpfish original: (c), segmented: (d).

Zebrafish original: (e), segmented: (f).

4.9). In this case the algorithm was capable of properly segmenting the NFL/GCL

but was not capable of differentiating the choroid layer from the RPE thus could not

perform a complete segmentation.

4.2 Discussion

The algorithm has proven robustness in segmenting different retinal features and

in its ability to properly delineate the fovea which is a unique feature of human

retinal segmentation when compared to the previous species. While it was capable of

properly identifying the NFC-GLC region similar to the other species, the OS-RPE

layer and the presence of inter-layer blood vessels proved to be more difficult. This
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shows that the algorithm is capable of partially completing a human segmentation but

would need to be updated in order to fully complete this task. A potential method of

solving this problem would be the use of multiple types of algorithms in a combined

hybrid solution.

4.3 Future Development

A potential future retinal segmentation algorithm could use a graph theory or ma-

chine learning based segmentation method in a combination with novel thresholding

to differentiate the RPE from the choroid in (Fig. 4.9). This solution could be

then combined with our heat-mapping software to provide a better human SD-OCT

assessment tool.
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Chapter 5

Conclusions

Our analyses demonstrate that the algorithm can correctly process lumpfish and ze-

brafish images identifying the thickness of several retinal layers important to the field

of vision science. This approach is especially relevant where manual SD-OCT analysis

was previously the only method of processing, organising and interpreting SD-OCT

data. This program will allow researchers to rapidly and accurately maximize data

interpretation in SD-OCT analyses of the retina for a number of teleosts including

lumpfish and zebrafish. This obtained data is then combined with a 2D and 3D

heatmap program that provides scientists with a new prospective of the whole reti-

nal surface which would be far more difficult through manual measurements alone.

The creation of this tool will allow for new knowledge on the physiological systems

of both the lumpfish and the zebrafish which is important for better understanding

these species.
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In the future, a hybrid solution featuring the core technology of this algorithm

along with potential additions based on graph-theory and machine learning segmenta-

tion could be used to better understand and interpret even more retinal architecture.

With this system, clinicians would have the opportunity to quickly assess the retinal

health of a patient through retinal analysis and to track this over time similar to how

x-rays are used today. This future solution could serve as the basis of a diagnostic

system in which neurodegenerative diseases (Doustar et al., 2017 [13]) can be properly

accessed and monitored. This solution would be more cost effective and applicable

than traditional solutions which cannot be used at scale due to the resource intensive

nature of these methods. As this is the case, the potential of a solution that combines

research, technology and newly created algorithms has the opportunity to advance

the field of medicine in the future.
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Chapter 6

Appendix

6.1 Representative data table of a cultured lump-

fish segmentation output
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1

B-scan Number Retinal Thickness (um) Number of Readings NFL/GLC (um) Number of Readings IPL/INL/OPL/ONL/IS (um) Number of Readings OS/RPE (um) Number of Readings

005 147.6 37 10.6 34 85.9 37 51.8 37

006 168.9 125 26 121 103.3 125 40.4 125

007 181.8 199 31.4 195 108.3 199 42.7 199

008 188.5 260 41.2 254 105.9 260 42.4 259

009 192 357 42 348 109.6 357 41.5 356

010 197.5 381 46.5 371 111.1 381 41.2 380

011 199.2 457 42.3 454 114.7 457 42.5 457

012 201.8 486 44.1 483 114.6 486 43.5 485

013 203.2 541 41.3 537 118.6 541 43.6 540

014 204.1 568 40.7 568 122.8 568 40.5 568

015 205.3 606 40.3 605 126 606 39.1 605

016 207.5 629 42.1 628 128.4 629 37.2 628

017 208.2 645 44 645 130.4 645 33.9 645

018 209.3 667 45.3 664 132 667 32.2 666

019 211.1 697 45.5 696 133.5 697 32.3 692

020 212.7 708 46.2 707 133.8 708 32.9 707

021 215 722 47.7 721 133.2 722 34.2 722

022 215.8 737 49.3 737 132.1 737 34.7 731

023 217.1 753 49.4 752 132.3 753 35.6 752

024 217.9 761 47.9 761 132.9 761 37.3 759

025 217.9 787 46.5 786 133.7 787 37.7 787

026 217.1 801 44.8 801 135.1 801 37.3 799

027 218.3 812 44.5 812 135.5 812 38.3 812

028 218.5 826 43.7 825 136.1 826 38.8 825

029 218.8 831 42.4 831 136.5 831 39.9 830

030 218.4 830 41 829 136.8 830 40.6 830

031 216.4 850 38.6 849 137.9 850 40.1 845

032 217.4 847 38.5 845 137.9 847 41 847

033 217.4 853 37.7 851 138 853 41.7 853

034 216.4 857 37.1 855 138.1 857 41.3 857

035 215.4 862 35.9 860 137.9 862 41.6 862

036 215.6 880 35.3 880 138.3 880 42.1 880

037 214.9 888 34.5 888 137.9 888 42.4 887

038 215.4 894 34.6 892 137.6 894 43.3 894

039 214.5 891 34 890 137.4 891 43.2 890

040 213.1 897 33.1 896 137.2 897 42.8 897

041 213.8 892 33.4 891 136 892 44.5 892

042 213.1 893 33.1 892 136 893 44 893

043 214.2 899 33.2 898 135.5 899 45.5 899

044 212.2 899 32.9 898 134.8 899 44.5 899

045 211.7 909 32.2 907 134.7 909 44.9 909

046 211.2 898 31.4 897 133.9 898 46 898

047 209.4 896 31.1 892 133.8 896 44.6 896

048 208.6 886 30.4 882 132.8 886 45.4 886

049 208.2 897 29.6 896 132.3 897 46.3 897

050 209.2 871 30 870 131.2 871 48 871

051 207.1 898 28.7 897 130.8 898 47.6 898

052 206.2 894 28.2 889 130.7 894 47.3 894

053 205.9 882 28 880 129.6 882 48.3 882

054 204.9 883 27.1 881 129.3 883 48.6 883

055 205 882 27 880 128.5 882 49.5 882

056 204.9 880 25.9 879 128.6 880 50.4 880

057 202.9 892 25.5 891 127.7 892 49.8 892

058 203.4 857 25.7 856 126.4 857 51.4 857

059 202.3 873 25.1 868 126.4 873 50.9 873

060 201.3 871 24 861 126.6 871 50.9 871

061 201.8 863 24.1 862 125.8 863 51.9 863

062 202 818 24 804 124.2 818 54.1 818

063 202.5 791 24.6 775 123.3 791 55.1 791

064 202.3 815 24.7 809 123.3 815 54.5 815

065 200.9 795 23.4 793 123.1 795 54.5 795

066 200.5 779 23.2 771 122.3 779 55.3 779

067 201.2 739 24 723 120.9 739 56.8 739

068 201.3 704 24 696 119.6 704 57.9 704

069 200.9 704 25.7 697 117.9 704 57.5 704

070 202.3 657 27 650 116.6 657 58.9 657

071 201 655 24 652 119 655 58.1 655

072 200.3 674 23.9 672 118.9 674 57.6 674

073 199.8 677 23.7 676 118.3 677 57.8 677

074 198.6 642 22.4 635 117.8 642 58.5 642

075 197.7 577 22.4 563 117.1 577 58.7 577

076 197.4 574 20.1 566 119.1 574 58.4 574

077 196 605 19.6 598 118.5 605 58.2 605

078 197.9 506 20.9 493 116.9 506 60.5 506

079 196 506 20.2 503 116.7 506 59.2 506

080 195.1 477 20.4 462 115.8 477 59.4 477

081 195.8 437 19.6 429 116.9 437 59.6 437

082 194.6 457 20.3 452 116.4 457 58.1 457

083 192.2 437 17.7 424 118.1 437 56.9 437

084 191.7 400 17.9 397 117.1 400 56.8 400

085 189.1 323 14.8 315 118.4 323 56.2 323

086 187.9 272 13.4 264 119.8 272 55 272

087 184.3 171 11.2 155 119.5 171 54.5 171

088 182.4 200 11.3 185 120.6 200 51.2 200

089 181.7 120 8.5 100 120 120 54.2 120

090 173.3 21 4.9 10 127.4 21 42.2 21

091 173.9 8 4.9 4 128.8 8 41.3 8

092 0 0 0 0 0 0 0 0

093 0 0 0 0 0 0 0 0

094 0 0 0 0 0 0 0 0

149_OD_V_2x2_0_0000006_Structure_0096 2022-08-31 19-37-20.xls



Specimen: 149ODV 2x200000006; NFL/GCL volume percentage: 14.9; Inner and

Outer layers/IS volume percentage: 61.9; OS/RPE: 23.2 volume percentage; Settings:

White threshold: 102; Minimum gap threshold: -35; Maximum gap threshold: -135;

Minimum thickness: 3. Starting Height: 250; Ending Height: 500; Starting Width:

0; Ending Width: 1000.

6.2 Installation Manual

Required Hardware Any 64-bit Modern operating system including

Windows, MacOS, Linux.

Required Software:

1. Python 3.6.3

2. matplotlib 3.1.0

3. numpy 1.17.0

4. opencv-python 3.4.4.19

5. Pillow 6.1.0

6. XlsxWriter 1.1.8
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7. xlwt 1.3.0

8. wxPython 4.0.7.post2

Setup: Install all required software and place the files in a directory

which containing both a “Data” and an “Images” folder with the in-

cluded settings.txt file for manual use without the user interface. A

requirements file has been included which can be used to install all re-

quired software using the “pip install -r requirements.txt” command in

the terminal. The requirement file is used with pip, which is a terminal

application to install dependencies for the program. The program is

then run from the terminal using the command “python ImagePoints-

Based.py.” The terminal command “pip install -r requirements.txt”

while you are in the same directory as the requirements file would then

install all the required software. If you have both python 2 and 3 in-

stalled, you will need to use the command pip3 and python3 instead of

pip and python in the following commands.

1. Navigate to the program directory (folder location) in the terminal

2. run the command “pip install -r requirements.txt”
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3. run the command “python ImagePointsBased.py”

For example, if the folder is on your desktop you would have to run the

following commands in the terminal:

1. cd Desktop/Foldername

2. pip install -r requirements.txt or For Mac: pip install -U require-

ments.txt

3. python ImagePointsBased.py

6.3 User Manual

Operation with user interface Open up the program by selecting

the “Program.py” file a shortcut to this file can be made and placed

on the desktop for better ease of use. The programs user interface will

then be presented to the user where the programs settings can be then

entered before running the program in a test or full scan mode. The

full scan mode will automatically computer the 2D and 3D heatmaps

unlike the test mode only processes one image and does not compute
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the heatmaps. The images and retuned data will be stored in a marked

folder in the projects main folder for all generated scans.

Operation with terminal interface

1. Starting image number

2. Ending image number

3. Image set number (starts at zero)

4. White value threshold

5. Minimum gap value (negative)

6. Maximum gap value (negative)

7. Minimum pixel gap value

8. Storage type (1 = xls, 2 = xlsx, 3 = csv)

9. Heatmap setting (A for automatic else provide a number to com-

pare sets of heatmaps)

10. Smoothing line (S = smoothing line, N = turn off smoothing line)
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To run the terminal program, place the data folder into the data di-

rectory, adjust all necessary setting then call “python ImagePoints-

Based.py” or “python ZPointsBased.py” in your terminal. When the

program has finished running it will automatically save its results, im-

ages and heatmap within their respective directories. Images will be

saved in the “Images” folder, with the results and heatmap saved in

the working directory. Similarly, when the smoothing line feature is

activated, it will save the images in the “SmoothingLine” folder.
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