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Abstract 

Background: Colorectal cancer is a significant medical burden worldwide and in 

Newfoundland and Labrador. Examining the relationships of SNP interactions with 

survival outcomes can help identify new prognostic markers for this disease. 

Objectives: To examine associations between colorectal cancer survival outcomes and 

interactions of SNPs from MMP family and VEGF interactome genes using data-

reduction methods. 

Methods: Two data-reduction software programs, Cox-MDR and GMDR 0.9, were 

applied to the data of patients from the Newfoundland Familial Colorectal Cancer 

Registry. Eight datasets were investigated: one for the MMP gene SNPs (201 SNPs), and 

seven for the VEGF interaction networks (total 1,517 SNPs). Significance of interaction 

models was assessed using permutation testing. Associations between significant 

interaction models and clinical outcomes were confirmed using multivariable regression 

methods.  

Results: For the MMP dataset two multi-SNP models and one single-SNP model were 

identified, while fifteen novel multi-SNP models and thirteen single-SNP models were 

identified for the VEGF interaction network datasets. All but one of these models were 

able to distinguish patients based on their outcome risk in multivariable regression 

models (p-value range: 0.03 – 2.2E-9).  

Conclusion: This research demonstrated that novel genetic interactions associated with 

outcome risk in colorectal cancer can be found using data-reduction methods. This proves 

the utility of these methods in prognostic research.   
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General summary 

 As a common disease, colorectal cancer impacts individuals, populations, and 

healthcare systems. Despite its importance, however, little research has been done which 

examines the combined effects of genetic features in patient survival outcomes. This field 

is under-studied due to technological and statistical limitations. The computational 

Multifactor Dimensionality Reduction (MDR) methods were developed specifically to 

address these issues.  

 I studied and compared two MDR-based computer programs. Using these 

programs, I examined approximately 90 million possible combinations of genetic features 

in a colorectal cancer patient set. 

My research found that the MDR programs I used produced different results. My 

research also identified several previously unknown combinations of genetic features. 

These are novel potential prognostic markers in colorectal cancer. This is the largest 

study ever conducted of this type in colorectal cancer. Further studies and progress in this 

exciting research field should be encouraged.  
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Chapter 1: Introduction 

1.1 Colorectal cancer 

1.1.1 Incidence and mortality rates of colorectal cancer 

Colorectal cancer (cancer of the colon or rectum) presents a great burden globally, 

nationally, and provincially. Globally, colorectal cancer accounts for 10.0% of all cancer 

cases and 9.2% of all cancer deaths1. In Canada, for both men and women, colorectal 

cancer is responsible for the third-highest number of new cancer cases2 (13,700 new 

cases among Canadian men, and 11,100 new cases among Canadian women were 

projected for 20212). Additionally, approximately 5,300 (11.9%) of male Canadian 

cancer deaths and 4,300 (10.8%) of female Canadian cancer deaths were expected to be 

due to colorectal cancer in 20212. Among all Canadian provinces, Newfoundland and 

Labrador (NL) has both the highest incidence (with an estimated 370 new male cases and 

300 new female cases for 2021) and the highest mortality rate (an age-standardized 

mortality rate of 42.8 for men an 27.9 for women projected for 2021)2. Research, as well 

as new health policies are therefore needed to improve prevention, early diagnosis, 

treatment, and survivorship care for colorectal cancer in order to help alleviate this 

disease’s negative consequences on individuals and populations. The discovery of new 

risk factors and prognostic markers is vital to this aim. 

 

1.1.2 Risk factors for colorectal cancer 

 There are a number of known epidemiological, demographic, and clinical risk 

factors for colorectal cancer. These include age (chances of cancer development increases 
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with age), sex (males have higher incidence of colorectal cancer), and diet (e.g., 

consumption of alcohol, red meat, and processed meat increases risk), in addition to 

smoking, a sedentary lifestyle, and comorbidities such as obesity, inflammatory bowel 

disease, and diabetes3–5. Ethnicity may also affect the risk for developing colorectal 

cancer. For example people with African American or Ashkenazi Jewish ancestry have a 

higher risk of developing colorectal cancer4,5. Additionally, those with a history of having 

colorectal polyps are at a higher risk for developing colorectal cancer4, as are people who 

have been exposed to ionizing radiation, such as those who were previously treated with 

radiotherapy for cancer5.  

In addition to these epidemiological, demographic, and clinical risk factors, 

genetic factors, including hereditary mutations and germline variations, are known to 

contribute to colorectal cancer development and increased susceptibility. These genetic 

factors are discussed in more detail, starting in the next section. 

 

1.1.3 Hereditary and sporadic colorectal cancers 

There are several known hereditary colorectal cancer conditions. The well-studied 

examples are Lynch Syndrome, Familial Adenomatous Polyposis (FAP), MUTYH 

Associated Polyposis (MAP), Hamartomatous Polyposis Syndrome (HPS), and Serrated 

Polyposis Syndrome (SPS)6.  

Lynch Syndrome is caused by numerous variants affecting the DNA Mismatch 

Repair (MMR) genes, predominantly MLH1 and MSH27, which repair DNA errors and 

damage. Lynch Syndrome patients are at risk of several types of cancer in addition to 
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colorectal cancer, such as endometrial cancer in women who carry Lynch Syndrome 

mutations8. Approximately 3% of colorectal cancers are caused by Lynch Syndrome7. 

The next most frequent hereditary colorectal cancer after Lynch Syndrome, constituting 

roughly 1% of colorectal cancers, is FAP, which is caused by mutations that inactivate 

the APC gene9,10. Most FAP cases are due to truncating APC mutations. FAP is typified 

by the presence of many (perhaps thousands) of colorectal polyps, and almost always 

leads to colorectal cancer if untreated (i.e., high penetrant APC mutations)10. MAP affects 

less than 1% of colorectal cancer patients9. It is similar to FAP, but it is caused by 

inherited mutations in the MUTYH gene11. HPS has multiple rare sub-syndromes and may 

involve mutations in SMAD4, BMPR1A, PTEN, and/or SKT11 genes6. Finally, SPS is 

characterized by serrated polyps12. Several genes have been identified which are 

associated with SPS (particularly RNF4312), but known germline mutations explain a 

very low percentage of cases12. These hereditary syndromes have variable degrees of 

penetrance, but are characterised by early age of onset (and often a positive family 

history). Since the causative genes are known in these hereditary syndromes, molecular 

diagnosis and genetic testing are possible6. 

While a small portion of colorectal cancers are caused by known inherited 

germline mutations, the majority of colorectal cancers are sporadic (~75%13), occurring 

in individuals without an apparent or significant familial history. Intense research to 

identify the genetic contributors of sporadic colorectal cancers is ongoing14–16. In most 

cases, it is assumed that the sporadic cases are caused by the combined effects of low-

penetrant susceptibility alleles and life-style factors17–19. Since the causative genes are not 
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known or have low-penetrance, sporadic cancer patients and their families cannot yet be 

offered molecular diagnoses or genetic testing, but future studies and clinical applications 

using polygenic scores may change this18. 

 

1.1.4 Biological mechanisms involved in initiation, development, and progression of 

colorectal tumors  

In addition to the genes that are responsible for the hereditary cancers, many 

genes are known to function in the initiation, development, or progression of colorectal 

tumors20. For example, in The Cancer Genome Atlas (TCGA21) colon cancer (COAD) 

and rectal cancer (READ) datasets, APC, TP53, KRAS, MUC16, PIK3CA, FAT4, LRP1B, 

CSMD3, FAT3, and FBXW7 constitute the most frequently mutated genes in primary 

tumors (Figure 1.1). Many of these and other mutated genes (including epigenetic 

mutations) drive colorectal tumorigenesis, leading to the development of carcinomas 

from adenomas. Depending on the molecular alterations, colorectal cancer is divided into 

multiple molecular subtypes, including CIN (chromosomal instability pathway), MSI 

(microsatellite instability pathway), and CIMP (CpG island methylator phenotype)22. 

Molecular subtypes have implications for patient outcomes. For example, colorectal 

cancer patients with MSI-High (MSI-H) tumors often have better prognosis, even though 

they do not respond to the primary chemotherapeutic agent (5-fluorouracil)23. 
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Figure 1.1: The top 20 genes that are mutated in COAD and READ tumors in the TCGA dataset. 

Generated using the GDC data portal24 https://portal.gdc.cancer.gov/ (as of August 2, 2022); 

Parameters used while creating the figure were: Primary site-colon + rectum + rectosigmoid 

junction; Program-TCGA; Project-TCGA-COAD + TCGA-READ; Disease Type-adenomas and 

adenocarcinomas + cystic, mucinous and serous neoplasms + complex epithelial neoplasms + 

epithelial neoplasms, nos; Sample Type-primary tumor.  
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1.1.5 Progression and clinical staging of colorectal tumors 

A colorectal tumor initiates from one malignant cell that has the ability to undergo 

unregulated growth and division. Usually, if left unattended, tumors grow over time. As 

colorectal cancer progresses, tumor cells may invade surrounding, non-tumor tissue, 

recruit blood vessels, and eventually spread, or “metastasize”, to distant locations within 

the body. This progression is described clinically using the concept of disease stage. 

Stage information is important clinically as it is one of the strongest indicators of 

colorectal cancer prognosis. 

There are multiple staging systems for colorectal cancer. The most prominently 

used staging system, the TNM (Tumor, Node, Metastasis) system, gives the following 

breakdown (see Figure 1.2): in Stage I, a colorectal cancer tumor initiates and begins to 

develop and continues to develop through Stage II, growing in size and perhaps 

becoming increasingly vascularized and/or forming contacts with nearby lymph and 

blood vessels. In Stage III, cancer cells spread to and invade nearby lymph nodes, and 

Stage IV is typified by the presence of metastasis, or spread of the cancer to distant 

organs and tissues25,26.  

The expected survival of patients decreases in each subsequent stage, but once 

Stage IV has been reached and metastasis has occurred, the chances of successful 

treatment substantially decreases, and patient survival rates sharply decrease 27. This 

dramatic change in survival expectations is a primary motivation for early diagnosis and 

screening programs, to detect colorectal tumors at early stages of development in order to 

improve patient survival and disease outcomes.  
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Figure 1.2: Stages of colorectal cancer development. Reproduced with permission from Terese 

Winslow LLC, https://www.teresewinslow.com/digestion/g5dv4jyf3xcajnghh5xr9lyrm9ghzy. © 

2006 Terese Winslow LLC, U.S. Govt. has certain rights. 

  

https://www.teresewinslow.com/digestion/g5dv4jyf3xcajnghh5xr9lyrm9ghzy
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There are a number of biological pathways involved in tumor growth, progression, 

and metastasis. Three of these include angiogenesis (growth of new blood vessels), 

lymphangiogenesis (growth of new lymph vessels), and tissue remodeling. Among the 

protein families that function in these pathways are the Vascular Endothelial Growth 

Factor (VEGF) ligands, VEGF receptors (VEGFRs), and Matrix Metalloproteinases 

(MMPs)28–31. As tumor cells can metastasize using blood and lymph vessels as conduits, 

and tumors need a blood supply to grow, VEGF family genes may be involved in lowered 

colorectal cancer survival28,30,31. MMP genes are involved in the remodelling of the 

extracellular matrix that holds tumors together, as well as keeps them in place, and thus 

may also be involved in tumor spread29. The established roles of some of these proteins in 

disease progression has also led to drug development (for example, bevacizumab is an 

anti-VEGFA molecule used in treatment of several cancers, including metastatic 

colorectal cancers3,32). Since they directly influence disease progression, genes 

functioning in these pathways are excellent candidate genes in prognostic research. This 

is a primary motivation for the focus on the VEGF and MMP families of genes in my 

research, in addition to my lab’s prior work with some of these genes33 which allowed me 

to compare the results of my methodology to the previously used methods. 

 

1.1.6 Screening and diagnosis of colorectal tumors 

 Clinical screening programs have critical roles in early detection of human 

cancers. Screening tests for colorectal cancer include faecal occult blood tests, 

immunochemical tests, stool DNA tests and endoscopy procedures, such as 
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colonoscopy3,4. The most effective screening method currently is colonoscopy, which has 

the added benefit of allowing the removal of tissue (e.g. biopsy material, potentially 

cancerous polyps) at the time of screening4. Colonoscopy can be followed up with 

flexible sigmoidoscopy, to screen for cancer in the sigmoidal colon, which has been 

shown to further reduce mortality4. Tests such as stool blood and DNA tests, and CT 

scans benefit from being less invasive than endoscopic methods, but suffer from a 

propensity to miss tumors4.  

Screening is particularly important to be offered to patients who have previously 

had colorectal polyps, colorectal cancer, a family history of colorectal cancer or 

hereditary colorectal cancer, or other relevant comorbidities4. Ultimately diagnosis is 

performed through biopsy and pathologic examination of suspected cancerous tissue3. 

Since screening methods can help with early diagnosis/detection of colorectal cancer, 

they allow treatment to begin at an earlier stage of tumor development, and thus 

dramatically improve the survival of colorectal cancer patients34. In Newfoundland and 

Labrador, eligible residents who are 50 years of age or older can get a FIT kit as part of 

the Colon Cancer Screening program offered to the population35.  

 

1.1.7 Treatment of colorectal cancer 

Once pathological diagnosis of colon or rectal cancer is made, the next important 

step is to identify the treatment option that is best for the patient. There are a number of 

factors which influence clinical treatment decisions in colorectal cancer. These include 
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disease stage, age of the patient, tumor molecular characteristics, and the affected 

tissue/tumor location (i.e., colon or rectum).  

Treatment for colorectal cancer typically consists of surgery, as well as 

chemotherapy and/or radiotherapy if needed. Before surgery on the tissue affected by 

colorectal cancer, neoadjuvant chemotherapy and/or radiotherapy may be performed to 

reduce the tumor burden. For rectal cancer, typically surgery is performed to remove the 

entire rectum and much of the surrounding tissue to remove potential lymph node 

metastasis sites, and this procedure is similar for colon cancer, with sections of the colon 

being removed3. Depending on the disease stage and other indicators (e.g. positive tumor 

margin), adjuvant chemotherapy may be administered to reduce the chances of 

recurrence3.  

Common chemotherapy agents include 5-fluorouracil and oxaliplatin. In recent 

years, targeted therapy, including molecular agents specifically targeting tumor proteins 

involved in cell growth, division, or metastasis have been approved for use clinically. An 

example is bevacizumab, an antibody targeting the VEGFA protein3,32, which is involved 

in angiogenesis, lymphangiogenesis, and metastasis36. Additionally, in recent years 

immunotherapy has become an effective choice for some patients, particularly those 

patients who have MSI-high tumors which are not responsive to 5-fluorouracil37. As 

knowledge of the underlying tumor characteristics influences the treatment 

recommendations made by clinicians, bevacizumab is also considered an agent of 

precision medicine, where patients are treated based on their individual disease 

characteristics. These findings emphasize the importance of genetic and genomic 
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research in cancer and the utility of the molecular information in both drug development 

and prognosis. Current and future precision medicine-based research, as well as clinical, 

trials are expected to further increase the number of effective treatment options globally, 

as well as access to these options, and thus are expected to improve patient survival 

times. This is particularly important, considering the fact that worldwide cancer incidence 

rates are expected to increase substantially in the coming decades38. 

 

1.1.8 Follow up and clinically important survival outcomes in colorectal cancer 

Patients diagnosed with colorectal cancer are often followed up for potential 

disease outcomes by their oncologists or physicians. Usually, the follow up duration is 5-

years post-diagnosis39. Follow-up examinations and tests (such as blood tests, imaging) 

are important, as they help monitor disease progression and treatment response/tumor 

burden, and can detect new recurrences and potential metastases. Generally, recurrence 

rates for rectal cancer are higher than for colon cancers. Additionally, recurrence and 

metastasis risks increase with the disease stage at diagnosis40,41. 

As in many cancers from many other anatomical sites, the most commonly 

analyzed outcome measure in colorectal cancer is Overall Survival (OS), where the 

outcome event is death from any cause. Other important outcome measures include 

Disease-Specific Survival (DSS, in which the endpoint is death from colorectal cancer), 

Recurrence-Free Survival (RFS, in which the endpoint is new tumor recurrence), and 

Metastasis-Free Survival (MFS, in which the endpoint is new tumor metastasis). By 

examining the data on end-points and time to patients experiencing the endpoints in a 
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patient cohort, together with other variables of interest, researchers can examine the 

relationship and association of variables with the outcomes (i.e., they can identify 

prognostic markers). There are a number of well-established prognostic markers that are 

used in the clinic for prognostication. There is also intense research to identify additional 

markers to refine prognosis and increase prognostic certainty. These are briefly discussed 

below. 

 

1.1.9 Prognostic markers for colorectal cancer 

Prognostic markers are variables which correlate with, and hence can be used to 

predict, patient outcomes (such as recurrence or death from colorectal cancer). These 

markers can be demographic characteristics (e.g., age), disease characteristics (e.g., 

disease stage), tumor characteristics (e.g., MSI), and tumor mutations (e.g., mutations in 

the TP53, PIK3CA, KRAS, and/or BRAF genes)42.  

As mentioned earlier, the disease stage is an important indicator of patient 

outcomes in colorectal cancer because as the disease stage increases the patients’ survival 

chances decrease40. For example, in the United States of America, the 5-year survival 

rates for stage I, II, and IV patients are 91%, 82%, and 12%, respectively27. Survival 

probabilities also differ among different countries. Overall, in North America, around 60-

65% of colorectal cancer patients are alive at the end of their first 5 years post-diagnosis. 

This number drops drastically in developing countries, however. For example, the 5-year 

survival rate of colorectal cancer patients in India is around 30%43.  
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Age is also an important prognostic marker; as age increases OS chances 

decrease44, and biological sex can also affect prognosis – there is a higher mortality rate 

for men than women45. Additionally, patients with MSI-H tumors have better survival 

times than those with MSS or MSI-L tumors23. Finally, mutations in certain genes can 

predict poorer outcomes as well, sometimes through affecting response to treatment. For 

example, KRAS mutations can be an indicator of chemotherapy response42 (specifically 

for cetuximab and panitumumab), which can influence patient survival. BRAF mutations 

can affect immunotherapy response leading to worse prognosis42. These examples (that 

is, the role of tumor MSI-H, KRAS and BRAF mutation status) once again highlight the 

importance of biological knowledge in disease management, and its utility in treatment 

response and prognosis. There is a possibility, however, that our non-tumor DNA 

harbours additional prognostic markers, such as germline variants. 

Similar to tumor somatic mutations, germline genetic variations are exciting 

candidates in predictive and prognostic research, as they can directly affect the biology of 

the disease, response to treatment, and/or disease progression. While in many cancers this 

research area has not yet identified clinically utilized prognostic markers, it is quite 

promising; several germline variants have been found which influence the effectiveness 

of colorectal cancer treatment, or predict treatment-induced toxicity, disease progression, 

or survival. In the next section, I will discuss genetic variations in more detail, 

particularly Single Nucleotide Polymorphisms (SNPs), which were the focus of my thesis 

research. 
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1.2 Human genome and genetic variations 

The human genome has been explored for many decades, but it was not until the 

completion of the International Human Genome Project in 2003 that a comprehensive 

sequence of the human genome was available46. While the International Human Genome 

Project was the first project to sequence the human genome, the project only sequenced 

the genomes of five individuals, and thus was poorly representative of global genetic 

diversity. In addition, it suffered from limitations in the sequencing of repetitive regions 

in the genome, which led to a complete reference human genome becoming available 

only recently in 202247.  

Projects subsequent to the Human Genome Project, such as the 1000 Genomes 

project, sequenced the genomes of far more people (contrary to its name, the 1000 

Genomes Project eventually sequenced 2,504 individual genomes48) from a broader range 

of human diversity (26 different populations were included in the 1000 Genomes project, 

with samples from Africa, East Asia, Europe, South Asia, and the Americas48) than did 

the Human Genome Project. Similar to the Human Genome Project, the research output 

of the 1000 Genomes project is publicly available, making it a powerful example of open 

science and the value it can offer. There are several other large-scale projects that 

sequence human genomes and make the variation information available for public access. 

For example, the ExAC database includes data from over 60,000 individuals 49,50. These 

projects, as well as others, immensely contribute to the understanding of the structure and 

function of the human genome, genetic features, and the extent of both rare and common 
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genetic variations, population-based variation differences, and to the conduct of better, 

more informed genetic research to address health-related problems. 

Genome projects have also produced important biological information regarding 

DNA/RNA coding regions, and non-coding and regulatory regions. Despite the large size 

of the human genome (approximately 3 billion base-pairs51), only approximately 20,000 

to 25,000 genes are thought to be protein coding52. The typical size of the individual 

coding regions of a human gene is approximately 1,340 base pairs, but much larger genes 

exist, the largest being the TITIN gene, with a coding region of 80,780 base pairs46. While 

the number of genes is relatively small, many human genes produce multiple proteins 

through the process of alternative splicing of RNA transcripts, contributing to high 

biological complexity in Homo sapiens46.  

While the total protein coding part of the human genome is small, a significant part 

of the human genome is transcribed into RNAs. RNAs have important roles in normal 

development and functioning46. They include transfer RNAs which serve in protein 

translation, ribosomal RNAs which comprise a portion of ribosomes (cellular protein 

production machinery), small nucleolar RNAs located in the nucleolus (a smaller area 

within the nucleus of the cell, where the DNA is stored), small nuclear RNAs which are 

involved in the removal of introns (non-coding segments) from RNA transcripts, 

microRNAs that are involved in regulation of gene expression, and more46,53. RNA 

species are attracting more and more attention by the scientific community, as interesting 

new biological and diverse roles emerge for RNAs by the aid of technology and large-

scale analysis methods. 
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While first and foremost, exploration of the protein coding (and, subsequently, the 

RNA coding) genes was of the highest interest in genetics and biological sciences, 

recently investigators have also started to realize the importance of the non-coding 

regions in the genome, such as intergenic and intronic regions51,54,55. These regions are 

known to include regulatory regions and signals and have roles in chromatin structure 

and accessibility, and hence in regulation of gene expression48,56. Overall, the portion of 

the human genome that has a function is estimated  to be up to 80-99%, including 

regulatory RNA sequences51,57. Large scale projects, such as ENCODE51, have provided 

invaluable knowledge about the DNA sequences with a regulatory and biological 

function. This information greatly helps in the interpretation of results obtained by 

genetic studies and is widely utilized by researchers. Notably, many of the associated 

signals are located in the non-coding regions of the human genome, suggesting that the 

low penetrant alleles contribute to human phenotype through alterations of regulatory 

functions58,59. 

 

1.2.1 SNPs and other genetic variations 

The Human Genome Project and other projects have identified a large number of 

genetic variations in the human genome. The main types of genetic variants are the 

Single Nucleotide Polymorphisms (SNPs), Copy Number Variations (CNVs), and short 

insertions or deletions (indels)48. These variations are important for health research – 

including for susceptibility, treatment response/toxicity, and prognostic studies – as well 

as in other fields, such as evolutionary biology and population genetics60.  
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SNPs are the substitution of a single nucleotide for another. There are more than 84 

million SNPs in the human genome48, making SNPs the most common type of genetic 

variation in humans. SNPs – as it will be discussed in detail in the next section – have 

been utilized in health research to find answers to diverse questions, including those of 

disease susceptibility, treatment response, and prognosis in colorectal cancer.  

 While SNPs affect a single base-pair, structural variants, on the other hand, are 

variants which affect segments of DNA larger than a single nucleotide. There are more 

than 60,000 structural variants in the human genome48, with a typical individual having 

over 2,100 structural variants48. Examples of structural variations include CNVs, which 

are differences in the number of copies of a region of DNA between individuals, small 

insertions/deletions of sequential DNA (indels), and inversions and translocations of 

DNA regions (segments of DNA which have had their sequences reversed, and segments 

of DNA which have moved from one genomic location to another, respectively).  

Since structural variants include large DNA segments, they are more likely to affect 

or disrupt genes, and hence may have drastic biological consequences. Examples of such 

biologically significant structural variants include CNVs that are associated with 

neurodevelopmental diseases61,62. While the vast majority of the studies in cancer 

examine tumor CNV profiles (e.g., mostly somatic gains or losses of chromosomal 

regions), a handful of studies have also examined the associations of germline 

CNVs/indels with prognostic features in colorectal cancer63–65. Overall though, SNPs are 

by far the most studied genetic variation in cancer and other human conditions. 
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While the number of variants in the human genome is high, relatively few 

(approximately 500,00048) are believed to have functional significance. Some of these are 

known to alter protein sequence (10,000+ variation sites48), but, potentially, most affect 

gene regulation with no effect on protein coding sequences48. This knowledge is one of 

the reasons why the attention of researchers has recently shifted from protein coding 

regions to the rest of the genome, particularly to regulatory regions. As mentioned earlier, 

large-scale collaborative projects, such as ENCODE51, were instrumental in identifying 

the regulatory sequences, motifs, and regions along the human genome that are now 

widely utilized in human health research51,66.  

Finally, it is worth noting that prevalence of specific variants varies from 

population to population. The most genetically diverse continent is Africa, reflecting the 

history of human migration48, but despite differences between populations, most variants 

show little frequency difference between people of different populations48. The difference 

between two individual genomes is, on average, approximately 1,000 bases67, and 90 

percent of variations are thought to be common (i.e. frequent in the populations or shared 

by populations)67. In health research examining statistical associations, mostly common 

variants are utilized, as statistical inference examining rare variants individually is quite 

challenging and requires special approaches68. 
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1.2.2 SNPs as susceptibility, treatment response, or prognostic markers in colorectal 

cancer 

As the most common genetic variations, SNPs have been widely investigated to 

address a variety of research questions in studies related to colorectal cancer. These 

include susceptibility studies (i.e., examining whether SNPs are associated with or confer 

risk to the development of colorectal cancer), treatment response and toxicity studies (i.e., 

examining if SNPs can predict whether a particular treatment is effective in a patient 

cohort, or examining whether SNPs can predict toxicity induced by treatment), and 

prognostic studies (i.e., examining whether SNPs can predict a particular patient 

outcome, such as recurrence). These studies have used candidate variant/candidate gene, 

candidate pathway, and lately, genome-wide approaches to identify the genetic variations 

that are associated with colorectal cancer related phenotypes15,64,69–75. These studies have 

created exciting knowledge and have opened new ways to investigate and identify 

biomarkers. 

As an example, there are cases of individual SNPs being associated with the risk of 

developing colorectal cancer. SNPs at chromosome location 8q24 (most commonly 

rs6983267), 10p14 (such as, rs10795668), and other loci (e.g. 11q24 and 18q21: 

rs4939827 and rs7014346, respectively) have been significantly and repeatedly 

associated with colorectal cancer risk, though the biological mechanisms by which these 

SNPs associate with colorectal cancer risk is unclear76. SNPs in several genes have also 

been associated with prognosis in colorectal cancer. For example, in genes encoding 

microRNAs, there have been several SNPs associated with factors related to colorectal 
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cancer survival, such as metastasis or tumor location77. Some research has indicated that 

SNPs in the TP53 gene may influence colorectal cancer survival (most prominently, 

rs1042522)78, and SNPs in many other genes (e.g. MTHFR, KDR, VEGFA, SMAD7) and 

non-coding regions have been associated with colorectal cancer clinical survival 

outcomes as well79. For a comprehensive list of studies and their findings, please review 

the dbCPCO database, a database that catalogues studies examining the associations of 

genetic variants with treatment response, toxicity, and patient outcomes69. In some cases, 

reported associations have been replicated, increasing the confidence in their potential 

prognostic value. For example, Negandhi et al. demonstrated that the MTHFR Glu429Ala 

polymorphism was associated with OS and the ERCC5 His46His polymorphism was 

associated with disease-free survival two colorectal cancer patient cohorts71. 

Additionally, there is some evidence that the same variants may affect both risk and 

prognosis. For example, rs4939827 from the SMAD7 gene, a SNP previously found to be 

a risk factor for colorectal cancer, was subsequently found to also associate with DSS80. 

Similarly, risk associated variants rs4779584 and rs10795668 were found to correlate 

with disease outcomes (death and recurrence)79. Association of rs4779584 was replicated 

in several populations81 and rs10795668 was subsequently associated with OS for 

colorectal cancer in a different cohort of patients82. Since variants that contribute to risk 

of developing cancer - in at least some cases - can also affect the tumor features, and 

thus, cancer progression, variants of this type are exciting candidates in prognostic 

research.  
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While some studies study a small number of variants, Genome-Wide Association 

Studies (GWASs) are considered the gold standard in SNP association studies. Published 

GWAS studies in colorectal cancer survival outcomes are currently limited in number, 

but GWASs are increasingly being utilized to examine the genome-wide association 

patterns of SNPs64,72,73,75,83–86. In almost all of the published GWASs in colorectal cancer, 

different sets of variants were identified as being associated with patient outcomes. This 

may be due to differences in patient cohorts (e.g., disease stage, treatment regimens, 

ethnicities, or the examination of different outcome measures), or due to the fact that their 

findings are spurious (i.e. are false-positives) or cohort-specific. To my knowledge, only 

one recent GWAS has reported association of a genomic region with a disease outcome 

in two independent patient cohorts64. Further studies on this region can reveal its 

biological relation to disease progression in colorectal cancer, and hence, may open new 

ways to control this disease. 

In summary, investigating genetic variations as susceptibility, treatment 

response/toxicity, and prognostic markers is quite promising. However, it is important to 

note that the vast majority of the studies are limited in the sense that they examine the 

relationship of individual variants with outcome one at a time. Importantly, there also 

exists the potential for interactions between SNPs to serve as prognostic markers for 

colorectal cancer. This potential exists as the complexity of the biology underlying 

colorectal cancer may possibly result in multiple variants affecting survival in a non-

additive manner. To date, very little research has been done in the area of interactions 

between SNPs serving as prognostic indicators, mostly due to the difficulties associated 
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with interaction analysis. My thesis research has focused on this challenging but also 

exciting area of SNP interactions that can predict clinical outcomes in colorectal cancer.  

 

1.3 SNP interactions 

 Single SNP association studies suffer from an obvious limitation: if some variants 

have a different effect on an outcome when, and only when, in the presence of one or 

more other variations, this information cannot be ascertained by studying the effects of 

individual SNPs in isolation (i.e., by examining each SNP’s relation to outcome 

individually), as is done in most of the published studies.  

In contrast, SNP interaction studies examine the associations between a response 

variable of interest (e.g., an outcome variable, like OS) and the genotypes of a single SNP 

or multiple SNPs simultaneously. Interactions involving the genotypes of a single SNP 

are referred to as 1-way interactions; interactions between two SNPs are referred to as 2-

way interactions, interactions involving three SNPs are referred to as 3-way interactions, 

and so on. Note that since 1-way analysis includes only one SNP, it is the interactions 

among SNP’s different genotypes that are examined. The associations of interactions to 

response variables are non-additive (i.e., the effect of an interaction is different from the 

sum of the effects of each SNP individually), differentiating SNP interactions from the 

cumulative effect of multiple SNPs.  

Biological interactions occur in nature and are sometimes referred to as 

epistasis87,88. Epistasis has roles in evolution of genes89 and functional compensation90. In 

genetic and health research, epistasis/interactions are also considered to represent the 
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“missing heritability”91–93, which is to say that they explain a portion of the genetic basis 

of a trait which, so far, has not been explained. 

SNP interactions are an under-studied area of research, particularly in colorectal 

cancer. This is due to several challenges, which are inherent to the analysis of interactions 

(these challenges are discussed in the next section). While there has been little work done 

studying germline SNP interactions and cancer prognosis94–98, given the complexity of 

cancer, it is likely that germline variants, such as SNPs, may interact to influence cancer 

outcomes, including for colorectal cancer. There are published examples supporting this. 

For example, Afzal et al. found interactions of polymorphisms in the DPYD and TYMS 

genes to be associated with DSS in two cohorts of colorectal cancer patients94. The 

authors caution against biological interpretation of their statistical result94. In a follow-up 

study, Sarac et al. further determined that interaction profiles identified in Afzal et al., for 

polymorphisms in the DPYD gene and TYMS gene, were associated with time to death, 

time-to-relapse and adverse drug reactions in colorectal cancer, based on a comparison of 

two cohorts96. In another study, Pander et al. found an interaction in a dataset of TYMS 

enhancer region and VEGFA gene polymorphisms for progression free survival for 

colorectal cancer patients95. This interaction was identified specifically for metastatic 

patients treated with the drug CAPOX-B95. The authors indicated no definitive 

underlying mechanism for the interaction identified95.  Hence, an interesting piece of the 

puzzle, which is the underlying biological basis for the observed interactions, awaits 

discovery. 
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There have also been interactions found which associate with colorectal cancer 

risk. Research by Jung et al. demonstrated an up to 17 times greater risk for colorectal 

cancer, when stratified by use of oral contraceptives, when individuals had particular 

variants at both rs1800961 and rs4092465, but not either variant individually98. The 

authors speculate on the biology implicated in their findings; while no mechanism is 

known, both SNPs are in genes related to colorectal cancer and/or sex hormones (such as 

estrogen levels, influenced by oral contraceptives). These SNPs are located, respectively, 

in the ONECUT2 gene, a known tumor promoter, and the HNF4A gene, whose protein 

product is known to inhibit cell proliferation in colorectal cancer and associated with sex 

hormone-binding globulin under certain circumstances98. This information provides 

important clues to help further dissect the relationship between interactions and the 

biology behind their associations with phenotypes. Generally speaking, biological 

interpretation of interactions is challenging due to the fact that biological information that 

considers interactions is largely non-existent. Functional studies examining interactions 

are therefore required in order to further elaborate on disease mechanisms and to develop 

disease control measures (e.g., new drugs) based on interactions. 

In summary, while there are challenges associated with interactions in terms of 

understanding their biology, identifying them is also a very promising area in health 

research. Some of these serious challenges associated with interactions are technical in 

nature and are discussed in the following sections. 
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1.3.1 Sparse data problem 

The sparse data problem is a problem inherent to interaction analysis99–101. As the 

number of variables (e.g., SNPs) being included in an interaction analysis increases, the 

number of possible combinations of genotypes also increases (for example, if an analysis 

has one SNP (1-way analysis), there are 3 possible genotypes; if an analysis has two 

SNPs (2-way analysis), each with 3 possible genotypes, there are 9 possible genotype 

combinations; and if an analysis has three such SNPs (3-way analysis), there are 27 

possible genotype combinations; see Figure 1.3. 

As the number of possible genotype combinations increases, fewer combination 

contingency table cells will have sufficient samples available in the dataset to represent 

that combination. The data, thus, becomes, “sparse”: that is, data becomes distributed 

among a larger number of combined genotype cells, leading to reduced statistical 

significance and interpretability of the analysis. See Figure 1.4 for a demonstration of this 

concept. 
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Figure 1.3: Demonstration of all possible genotype combinations of 1, 2, or 3 SNPs in 

interactions. Each SNP having three possible genotypes (e.g. AA, Aa, or, aa, where A represents 

the major allele, and a represents the minor allele) 
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Figure 1.4: Graph demonstrating the increasing sparseness of data as samples become 

increasingly spread out over an increasingly large number of contingency cells. As the number of 

variables (e.g. SNPs) increases, an increasing number of possible variable states (e.g. SNP 

genotype combinations) inevitably have insufficient data. If this analogy is applied to genetic 

variants, the “Shape”, “Shade”, and “Pattern” variables can represent different SNPs, and each 

attribute (e.g., star, gray, striped, etc.) can represent the genotypes of the respective SNP. 
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1.3.2 Computational complexity 

Another challenge in interaction analyses is that as the number of variables (e.g., 

SNPs) examined in a dataset increases, the number of possible combinations of these 

variables also increases non-linearly.  

As an example, for a dataset with 100 variables/SNPs, the number of 2-way 

combinations of these variables/SNPs is 4,950, and the number of 3-way combinations is 

161,700. If we instead have 200 variables/SNPs, the number of 2-way combinations 

increases to 19,900, and the number of 3-way combinations increases to 1,313,400. 

Hence, computationally it can become quite a demanding process to examine interactions 

in such datasets. Depending on the algorithm being applied, examining large datasets thus 

may require a large amount of time and/or memory to process. See Figure 1.5 for a 

visual demonstration of this growth of complexity. 
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Figure 1.5: Demonstration of the growth in complexity of the combination formula . r is the 

number of variables constituting a single interaction, n is the number of variables (e.g., SNPs) 

being studied in total. The number at the top of the bar , and the height of the bar, indicates the 

number of combinations of size r among the total number of variables n. This number grows non-

linearly on both the r and n. 
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There are several ways to alleviate these problems. The issue of time complexity 

(the amount of time required to complete the analysis on increasingly large datasets) can 

often be reduced by the use of multi-processing102–104, that is, some problems can be 

solved concurrently in many small, independent pieces before combining these partial 

results into the final result. Multiple interactions may be examined simultaneously, 

reducing the time it takes to complete the overall analysis. GMDR 0.9101, one of the 

methods I have used in my thesis research, uses multiple parallel-processing threads for 

this purpose. Space usage may sometimes be reduced by combining partial results into 

aggregate results, if the details are not needed. I used this approach in my extension of the 

Cox-MDR105 code in order to limit the amount of Random Access Memory (RAM) being 

used, storing only the highest scoring model at a time instead of storing data for all 

models and picking the best scoring model from them. Some methods also select SNPs, 

from the total pool of SNPs, to limit the size of the input data to be processed. As I will 

discuss in the next section, many of these solutions require either strong computational 

knowledge and resources, or advanced approaches. 

 

1.3.3 Methods for SNP interaction analysis 

Traditionally interactions have been explored in longitudinal survival data by the 

use of methods such as the Cox regression method, and the addition of an interaction 

term for the variables of interest. While useful for examining one or a few interactions in 

the same model, this approach is impractical when applied to big data. Therefore, while 

interaction terms in statistical models can be a useful approach to examine a small 
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number of interactions, for larger datasets bioinformatics algorithms have been developed 

to examine interactions while working with or around the limitations of such traditional 

methods. These algorithms may exhaustively examine all possible interactions, or they 

may explore a portion of interaction space. 

Bioinformatics is a broad research area which encompasses research that utilizes 

knowledge from both biology and computer science. Bioinformatics research includes a 

diverse range of topics, and can be used in the discovery of biomarkers, such as 

prognostic markers. Bioinformatics approaches may also incorporate machine learning, 

which utilizes computational methods inspired by human learning that find associations 

in data 106.  

Machine learning methods use various procedures to fit models to data such that 

these models can predict associations in data which is independent from that on which the 

model was constructed. In a basic form, this can refer to regression methods such as 

linear regression, but machine learning is often used to model complex data which may 

not behave in a linear fashion106. Machine learning methods are "trained" on data, that is 

they construct models based on a dataset, and then they are tested, i.e., it is determined 

whether or not they are capable of predicting an independent dataset106. Machine learning 

methods are often used for feature selection. 

Feature selection refers to the process of selecting "features" from a dataset which 

are of interest107. For example, one may want to select a set of SNPs from a dataset which 

are of interest to cancer prognosis, or one may wish to select a subset of features from a 
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dataset to reduce the number of features to a specific problem domain or to lower 

computation burden107.  

Feature selection algorithms may be univariate or multivariate, and may be filter, 

wrapper, or embedded methods107. Filter methods rank computed models, producing a list 

of the best models as determined by the algorithm, whereas wrapper and embedded 

methods are more complex at the cost of greater computing resource use107. The 

Multifactor Dimensionality Reduction (MDR) procedure used in my work can be seen as 

a multivariate filter method107; it produces a ranked list of models (returning the "best" 

one) and operates on multiple features (i.e. multiple SNPs).  

In cancer genetics research, several feature selection machine learning algorithms 

have been employed for biomarker discovery. For example, Chen and Dhahbi were able 

to find five novel biomarkers which could distinguish gene expression patterns between 

lung adenocarcinoma and lung squamous cell carcinoma using five feature selection 

algorithms108; Feng et al. applied feature selection to transcriptomic, clinical, and 

molecular data from colorectal cancer patients to predict survival and progression109; and 

Al-Rajab et al. compared several feature selection methods on the task of colorectal 

cancer diagnosis from gene expression data110. 

Exhaustive search methods, such as MDR and FastANOVA99,111,112 work by 

looking at all possible combinations of variables in a dataset. If every possible interaction 

in the dataset is to be considered for its potential to have a significant statistical effect, an 

exhaustive search of the interaction space is required. These methods have a clear 

downside, though, if all combinations are to be considered, then the computational 
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burden of the problem will be high, as some amount of work must be done for each 

possible combination. While MDR, for example, reduces computational resource 

requirements somewhat by reducing the combination of genotypes, for each combination 

of SNPs, to a single dimension, aiding in model comparison, the software must still 

perform computation for every possible combination. As such, there are other methods 

which, while potentially less robust, have been developed to find interactions without 

exhaustively searching all possible combinations of variables. Some of these methods are 

described in the remainder of this section. 

The random forests method works by using random subsampling of patients and by 

constructing trees for many of these subsamples based on using SNPs as classifiers, with 

these SNPs being selected from a random subset of the total dataset113. These collections 

of trees, or “forests” are then used to determine likely interactions113,114. While the 

random forests method cannot detect interactions which only contain SNPs which do not 

have main effects111, they have also been used to screen SNPs, to reduce the total number 

of SNPs before performing other statistical interaction analyses113,115. 

Use of Artificial Neural Networks, inspired by biological neural networks, is 

another method to examine interactions without resorting to a brute-force approach. 

These networks are trained using known associations and that training is applied to 

finding novel associations111,116. Various Artificial Neural Network methods have been 

applied to the problem of interactions with mixed success114.  

Ant Colony Optimization, like Artificial Neural Networks, is a biology inspired 

algorithm, finding SNP interaction associations in a dataset in a way that is similar to 
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how biological ant colonies find shortest paths to food sources117. This method offers 

high power and a low false positive rate, but suffers from the same issue of scaling with 

interaction order as regression methods do111. 

As discussed earlier, regression models may be used to study interactions by 

incorporating interaction representation into traditional statistical models111, yet they 

suffer from a need for large samples and model-dependency114. In addition to frequentist 

approaches, interactions can be incorporated into Bayesian statistics as well. Multiple 

Bayesian-based methods exist, such as BEAM118, FEPI-MB119, and bNEAT120 but, 

similar to the random forests method, interactions found using these methods must also 

contain main effects, limiting these methods from finding interactions between variants 

which do not have individual effect111.  

The methods listed above, and other methods, show that there are many methods 

which have been developed to examine the interactions, each with its own limitations and 

strengths. I chose to work with Multifactor Dimensionality Reduction (MDR)-based 

methods for my work for this thesis. 

 

1.4 Multifactor Dimensionality Reduction (MDR) method 

1.4.1 The MDR algorithm 

MDR is a data reduction method first developed by Ritchie et al.99 to study 

interaction effects while mitigating the sparse data problem. It accomplishes this by 

pooling available data into two categories, high-risk and low-risk, for a particular 

measure. This measure may be susceptibility to a disease, as the term “risk” often implies 
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in genetics research, but may also be a survival outcome measure, where high-risk and 

low-risk refer to the “risk” of poor survival outcomes. MDR takes the relatively high-

dimensional data inherent to combinations of SNP genotypes (e.g., genotypes of multiple 

loci) and reduces it to a single dimension—high risk genotypes vs. low risk genotypes 

and an associated score. MDR is designed to do this for every possible combination of 

explanatory variables in a dataset for a given order (or up to and including that order) of 

an interaction (e.g., each 1, 2, and 3-variable combination in the dataset). MDR 

accomplishes this data reduction via a scoring system, which rates a particular 

combination of SNPs, and its associated genotype values, for its ability to distinguish 

patients who are at high-risk for a particular disease outcome from patients who are at 

low-risk. MDR is an example of a machine learning algorithm, as it “learns” by training a 

model on a dataset, and then uses this model to predict associations in independent 

datasets. 

For the MDR algorithm, a cross-validation approach is implemented in order to 

evaluate the models constructed by the algorithm. In cross-validation, data samples are 

split into a number of partitions. All but one of these partitions will be designated as a 

training set, and the remaining partition will be designated the testing set. Subsequent 

steps are repeated as many times as there are partitions, using a different partition as the 

testing set each time. The rationale behind cross-validation is that by testing each model 

on an independent set of testing data (i.e., which was not part of the training data used in 

the model’s construction), one can determine whether the model is likely to be a true 
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model, as a true model should be able to be replicable in datasets other than the one used 

to develop the model99. 

While examining SNP interactions, using the data from the training set, a model is 

constructed for a particular combination of SNPs via a simple ratio of the number of case 

samples (i.e., high-risk group) with a particular genotype combination to the number of 

control samples (i.e., low risk group) with the remaining genotype combination (see 

Figure 1.6). This procedure is repeated for every combination of SNPs in the dataset 

(thus exhaustively searching the interaction space). Upon generation of MDR models, 

models are then evaluated on their ability to distinguish the high-risk from low-risk 

patients in the testing set. Thus, a high-scoring model is one which can distinguish 

patients independently of the data that was used to generate it. This is achieved by 

calculating the prediction error for the model. 
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Figure 1.6: This figure demonstrates the selection of “high risk” genotype combinations by 

comparing ratios of cases to controls for a particular response (i.e., if there are more cases than 

controls, for a given response variable, with a particular genotype combination, that combination 

is deemed “high risk”, otherwise it is “low-risk”). Figure reproduced from Li et al. (2016)87. 

Reproduced with permission of the publisher, Oxford University Press. 

  



38 

 

In the cross-validation procedure, the construction and scoring of models is 

repeated such that each of the data partitions constitutes the testing set exactly once99. At 

the end of the cross-validation procedure, there is number of results equal to the number 

of cross-validation folds chosen for the procedure. Then, a best model must be chosen 

from these cross-validation results.  

There are two ways of choosing this best model: one can choose Cross-Validation 

Consistency (CVC) or the lowest prediction error among the cross-validation models. 

CVC is the number of times the same model is chosen (based on lowest prediction error 

among all models) out of all rounds of cross-validation. The rationale for this is that if the 

model can indeed distinguish high-risk and low-risk patients, then it is likely to be found 

in a random subset of the data, similarly to how it would be expected to be found in 

separate, independent datasets. An issue arises when CVC is low, though (e.g., 1/5 or 

2/5); multiple best cross-validation models may score the same, leading to ambiguity. 

Some MDR software will default to the first SNP which appears in the input dataset as a 

tiebreaker, potentially introducing systematic error bias into a study – as I show in my 

work described in Chapter 2. The other option is to choose the highest testing score, 

which represents the model most capable of distinguishing high-risk and low-risk patients 

in the independent testing set. This method has the advantage of having a much larger 

distribution of possible scores, and therefore it being unlikely that two or more scores 

will tie as the best choice. While there is still a potential for a result chosen by selecting 

the top scoring model to be spurious, regardless of the method used, this can be mitigated 

using a permutation testing procedure (see Section 1.4.3.). 
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1.4.2 Variations of MDR 

As MDR was initially limited to certain study designs, as well as to univariate 

modelling, it has been expanded upon and modified by several groups to make it 

applicable for a variety of study designs and research questions. These methods vary in 

terms of implementation, methodology, and in the types of studies and data to which they 

are applicable. The work for this thesis focused on two MDR variations: GMDR 

(specifically the GMDR 0.9 implementation) and Cox-MDR. 

 

1.4.2.1 GMDR 

A notable extension of MDR is Generalized Multifactor Dimensionality 

Reduction (GMDR101). While the original MDR algorithm is limited to a small number of 

study designs (e.g., balanced case-control studies and discordant sib-pair studies), GMDR 

was designed to use generalized linear models (e.g., linear regression or logistic 

regression), greatly expanding the versatility of the software. As one can adjust for 

covariates in these models, multivariate GMDR analyses thus also became possible with 

this addition.  

GMDR implements generalized linear models by utilizing a different scoring 

scheme for models than that of MDR. Instead of the case-control ratios of MDR, GMDR 

utilizes a score based on the generalized linear model (e.g., the logit score from a logistic 

regression model101). As in MDR, this score, integrated for all samples for each 

combination of possible genotypes for each combination of SNPs, is then used to 

determine whether this combination of SNP genotypes is high risk or low risk regarding 
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the response variable. GMDR also uses Balanced Accuracy (BA), in place of MDR’s 

prediction error calculation. BA is calculated as the average of the sensitivity and the 

specificity of the model for its ability to predict response variable121. 

GMDR has previously been applied to cancer genetics to study SNP interactions. 

These studies, however, have predominantly studied susceptibility and risk, but have not 

been survival studies. For example, Wang et. al. applied GMDR to Wnt/β-Catenin genes 

to study cervical cancer susceptibility122, Yu et al. applied GMDR to inflammation-

related gene SNPs to study colorectal cancer risk123, and Fu et al. applied GMDR to 

VEGF genes to study bladder cancer risk, finding several SNP-environment 

interactions124. Neither of these three papers identified any multi-loci models, however. 

On the other hand, Yadav et al. found a significant association between rs11954856 in the 

APC gene and rs4791171 in the AXIN2 gene and increased susceptibility for gallbladder 

cancer125. Another study found several significant 4-5 loci models associated with 

colorectal cancer risk using GMDR, collectively involving SNPs from all three genes 

studied, TACR1, TAC1, and TACR2126. For treatment response, the interaction of 

polymorphisms CYP3A5*3, NQO1 609C>T, and ABCB1 1236C>T was found to be 

significantly associated with response to neoadjuvant chemotherapy in breast cancer 

patients, and interactions were also identified for association with anemia, leucopenia, 

and dosage delay/reduction due to development of fever127. These and other results 

published in the literature demonstrate the utility of GMDR in helping to resolve the 

missing heritability problem. 
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1.4.2.2 Cox-MDR 

Cox-MDR is the 2nd MDR algorithm that I have used in my thesis research. While 

the GMDR algorithm was designed to work with any generalized linear model, 

practically, only specific distributions were implemented (e.g., linear regression, logistic 

regression). As such, other research groups developed methods derived from GMDR, 

utilizing different models, under different names. Cox-MDR is one such specification.  

Cox-MDR employs the use of the Cox regression statistical method105. Martingale 

residuals from the Cox model are used as a means of scoring survival of samples and the 

sum of these residuals is used to determine whether a combination of variables is high-

risk or low risk for poor survival. In survival studies, the utilization of the Cox regression 

method has a clear advantage over the use of linear regression or logistic regression: Cox 

regression is a method developed specifically for survival analysis, and thus Cox-MDR is 

able to utilize a full distribution of survival-time data and account for censored data. 

Therefore, Cox-MDR can be very valuable in examining SNP interactions in datasets 

where longitudinal survival times are utilized. Prior to my study, Cox-MDR had been 

successfully applied to other cancers to examine the prognostic associations of SNP 

interactions105. 

 

1.4.3 Permutation testing 

MDR can identify interaction models. However, even with cross-validation being 

employed, there is still the possibility of spurious MDR results: the initial partitioning of 

the data into cross-validation folds may be responsible for a false-positive result and it is 
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possible that a result chosen based on a best prediction score was found by chance. As 

such, a permutation testing procedure is performed to ensure that the result found is not 

likely to have been found spuriously. For the Monte Carlo-type permutation testing 

procedure like that was used in my research, the data is shuffled such that the genetic data 

entries for each patient no longer correspond to the correct patient survival information. 

Effectively, this simulates a new dataset, based on the original data, for which the link 

between genetics and disease outcome is randomized. It is expected that there are no true 

correlations to be found in this simulated data and thus the highest scoring model in this 

dataset will be much worse at stratifying patients than a true model found with the correct 

associations intact. The permutation process is repeated multiple (e.g., 1,000) times and 

on each of these simulated datasets the MDR procedure is performed for the top model 

SNPs found in the original procedure. This permutation testing procedure results in a 

distribution of prediction scores, one for each permutation of the dataset.  

A permutation testing p-value is determined by the proportion of prediction scores 

as great, or greater than, the p-value selected as the best model. If the original model 

represents an actual statistical effect, and not one found via multiple testing, it is expected 

to score highly in this distribution—the permutation p-value will be low. Considering the 

importance of permutation testing in reducing false-positive findings, I applied this 

approach to my results. The MDR models that are significant by permutation testing then 

can be examined by inference methods, such as Cox regression and logistic regression 

methods, to further assess how well the model can differentiate patients based on their 

outcome risk, as I have also done in my research. 
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In summary, despite the many challenges associated with examining and 

interpreting SNP interactions, identifying interactions can also be helpful in 

understanding and predicting the variable basis of clinical outcomes among patients. This 

was the main motivation to conduct this exciting research for my thesis. 

 

1.5 Rationale and objectives 

Colorectal cancer is a common disease with moderate survival rates. Identifying 

prognostic markers - including genetic markers - can increase the prognostic certainty, 

and, hence survival outcomes of patients. While there have been extensive studies, 

including GWASs, performed to examine the relationships of SNPs with survival times 

in colorectal cancer patients, these studies examine the relationship between single SNPs 

and survival outcomes individually. Hence, they miss the potential SNP interactions that 

may be associated with the outcome measures.  

In this thesis research, I aimed to assess and apply MDR-based methods to examine 

associations of 1 to 3 way SNP interactions with survival outcomes in colorectal cancer. 

These SNPs were chosen from genes that are biologically relevant to disease progression: 

specifically, the MMP genes and genes of the VEGF pathway along with genes whose 

protein products are known to interact with them28–31.  

To do so, my specific objectives were to:  

1) Compare the functionality and feasibility of two MDR-based methods, Cox-MDR 

and GMDR 0.9. This was achieved through the application of these methods to 

the data of a cohort of colorectal cancer patients, to examine the interactions 
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between MMP gene SNPs in relation to patient overall survival times 

2) Apply these methods to seven datasets of SNPs from the VEGF ligand and 

receptor interaction networks to examine interactions between SNPs for disease 

specific survival times in a similar cohort of colorectal cancer patients to that of 

objective 1 

 

I am excited to say that by a wide margin, my work is the largest SNP interaction 

study in colorectal cancer survival to date, exploring several orders of magnitude more 

interactions than had previously been studied. My results thus contribute to the scientific 

literature on biomarker identification, colorectal cancer, and SNP interactions 

significantly. 
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Chapter 2: Manuscript: Examining SNP-SNP interactions and 

risk of clinical outcomes in colorectal cancer using 

Multifactor Dimensionality Reduction based methods 

 

A version of this chapter was published in Frontiers in Genetics, Cancer Genetics and 

Oncogenomics section (2022). https://doi.org/10.3389/fgene.2022.902217128. 

Supplementary information for this chapter is located in Appendix 1. 

 

For a list of author contributions, place see the Co-authorship Statement on page xvii. 
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2.2 Abstract 

Background: SNP interactions may explain the variable outcome risk among colorectal 

cancer patients. Examining SNP interactions is challenging, especially with large 

datasets. Multifactor Dimensionality Reduction (MDR)-based programs may address this 

problem. 

Objectives: 1) To compare two MDR-based programs for their utility; and 2) to apply 

these programs to sets of MMP and VEGF-family gene SNPs in order to examine their 

interactions in relation to colorectal cancer survival outcomes.  

Methods: This study applied two data reduction methods, Cox-MDR and GMDR 0.9, to 

study one to three way SNP interactions. Both programs were run using a 5-fold cross 

validation step and the top models were verified by permutation testing. Prognostic 

associations of the SNP interactions were verified using multivariable regression 

methods. Eight datasets, including SNPs from MMP family genes (n=201) and seven sets 

of VEGF-family interaction networks (n=1,517 SNPs) were examined. 

Results: ~90 million potential interactions were examined. Analyses in the MMP and 

VEGF gene family datasets found several novel 1- to 3-way SNP interactions. These 

interactions were able to distinguish between the patients with different outcome risks 

(regression p-values 0.03–2.2E-09). The strongest association was detected for a 3-way 

interaction including CHRM3.rs665159_EPN1.rs6509955_PTGER3.rs1327460 variants. 
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Conclusion: Our work demonstrates the utility of data reduction methods while 

identifying potential prognostic markers in colorectal cancer. 

2.3 Background 

Colorectal cancer is a common disease accounting for ~10% of the global cancer 

cases1. The first years following diagnosis are critical and associated with a higher risk of 

negative disease outcomes44. Select disease, tumor, and patient characteristics129–131 are 

helpful while estimating prognosis and making treatment recommendations. Sadly, the 

survival rates vary across different countries and a significant portion of the patients are 

lost to this disease (5-year survival rate ~<60%)132–134. In the current era of Personalized 

Medicine, one of the main aims is to identify additional prognostic markers that can help 

with better risk classification and improve patient outcomes.  

Genetic variants, such as Single Nucleotide Polymorphisms (SNPs), are widely 

studied in prognostic research in oncology70,83,135. A common goal of this research area is 

to assess whether genetic variants are associated with, and hence, can be a marker of 

patient outcome risk. Survival studies examining genetic variants in colorectal cancer, 

including large-scale association studies64,73,75,83–85 have mostly focused on analysis of 

SNPs one by one, assuming their individual effects and/or associations with the 

outcomes. This approach, while quite valuable, has also an obvious limitation: it misses 

detection of potential interactions among the variants.  

It is possible that genetic variations jointly, but not alone, affect patient survival 

outcomes (i.e. interactions). That means that the effects of variants/genotypes are only 

detectable when they exist together in the patient genomes and are examined using 
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specific approaches. While it is possible to examine interactions using statistical methods, 

these analyses may suffer from several well-known complexities (e.g. sparse data, need 

for computational resources), especially as the number of variables examined 

increases100. As an example of this complexity, the number of possible combinations of 

three SNPs, or “3-way interactions”, in a dataset of 100 SNPs is 161700, a large number 

of variables to study. Because of such methodological restrictions and the fact that there 

are large numbers of genetic variations in the human genome, it is necessary to apply 

other approaches, such as data reduction methods, for comprehensive SNP interaction 

analyses. Multifactor Dimensionality Reduction (MDR) is a data reduction method 

designed for use in studies examining the interactions among variables while accounting 

for difficulties inherent in interaction analysis99. Initially created to support a small 

number of study designs, MDR has since been adapted for other types of studies. 

Generalized MDR (GMDR)101 is an extension of MDR to support generalized linear 

models (e.g. logistic regression). Cox-MDR105 is a type of GMDR which is designed 

specifically for survival/time-to-event studies and utilizes the Cox-regression method. 

Studies that have so far considered the interactions of genetic variants in colorectal 

cancer outcomes using MDR are quite limited94–98,136. As a result, potential SNP 

interactions that may be associated with patient outcomes largely remain unknown. In 

this study, we aimed to explore the potential roles of SNP interactions in outcome risk of 

colorectal cancer patients using MDR-based methods. For this purpose, we utilized the 

genotype and outcome data of a cohort of colorectal cancer patients from Newfoundland 

and Labrador. We explored and compared the functionality of two MDR-based software 
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– Cox-MDR105 and GMDR 0.9101, and applied these software to examine the interactions 

among SNPs from the Matrix Metalloproteinase (MMP) family of genes and Vascular 

Endothelial Growth Factor (VEGF)-family interaction network genes. Our results show 

that there are unique limitations and strengths of Cox-MDR and GMDR 0.9, which 

should be considered in future studies. More importantly, our results identified novel 

SNP interactions that can help distinguish between colorectal cancer patients with 

significantly different outcome risks. 

 

2.4 Data and Methods 

 

2.4.1 Ethics approval 

 This study was conducted with ethics approval by the Health Research Ethics 

Authority of Newfoundland and Labrador (HREB #2018.051; #2009.106). This study 

was a secondary use of data study, hence, HREB waived the requirement for patient 

consent. 

 

Part 1: Exploration of Cox-MDR and GMDR 0.9 programs and analysis of 

interactions between the SNPs from the MMP family of genes 

2.4.2 Patient cohort, genes selected, outcome measures, covariates, and data 

considerations  

This is a cohort study. The baseline characteristics of the patient cohort included 

in this part of the study (n=439) are shown in Appendix 1-Table S1. Patients were 
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recruited by the Newfoundland Familial Colorectal Cancer Registry (NFCCR)137,138. 

They were under the age of 76 at the time of diagnosis and were diagnosed with 

colorectal cancer between 1999 and 2003. Pathological/clinical and follow-up data were 

collected from resources such as clinical reports, the Newfoundland Cancer Treatment 

and Research Foundation database, and follow-up questionnaires44,71,137,138. The date of 

last follow up was 2010. Genetic data was previously obtained from blood samples via 

the Illumina Omni1-Quad human SNP genotyping platform (reactions were outsourced to 

Centrillion Biosciences, United States), and sample quality control (QC) measures were 

implemented83. As a result, all patients included into the analyses were of Caucasian 

ancestry and unrelated to each other (i.e., not first, second, or third degree relatives83).  

Since one of our aims in Part 1 was to examine and compare the performance and 

functionality of the two MDR-based programs, we opted for a set of genes and SNPs that 

were previously examined in our lab (Appendix 1 – Table S2). Specifically, the best 

suited genetic model for SNPs from the MMP genes and their one-by-one associations 

with patient outcomes were previously examined33. This previous knowledge enabled us 

to assess the results of the 1-way interaction analyses obtained using the MDR methods 

during the current study, by comparing them to the results obtained in the previous study. 

We kept the covariates and outcome measure examined in Part 1 the same as in that 

previous study. The covariates included age at diagnosis, disease stage, MSI 

(microsatellite instability)-status, and tumor location (rectum, colon). The outcome of 

interest was death from any cause (Overall Survival; OS).  
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Since Cox-MDR and GMDR 0.9 make their calculations, classify the patient 

genotypes as high-risk or low-risk, and select best models based on different scoring 

methods (i.e. martingale residuals obtained by Cox regression in Cox-MDR and logit 

score obtained by logistic regression in GMDR 0.9), Cox-MDR and GMDR 0.9 differ in 

data requirements. For example, as GMDR 0.9 utilizes logistic regression method, the 5-

year-survival outcome measure was used. In Cox-MDR analysis, survival status and time 

to death (or the last date of alive contact) were used. Considering these and additional 

input data requirements for each program, a number of measures were taken while 

preparing the data files for analysis (see Appendix 1 for details). Since we aimed to 

compare their performance in this first part of the study, we also examined the same set 

of patients in the Cox-MDR and GMDR 0.9 analyses. 

 

2.4.3 Single Nucleotide Polymorphism genotype data and quality control measures 

SNPs from the MMP family genes were extracted from the genome-wide SNP 

genotype data files using the gene genomic location information and the PLINK 

software139,140 (version 1.07), with the following quality control parameters being 

implemented: minor allele frequency (MAF) >= 0.05, Hardy-Weinberg Equilibrium 

(HWE) p > 0.0001, and missing genotype rate = 0. Pairwise squared correlation 

coefficient (r2) values and MAFs were calculated using PLINK. When there were 

multiple SNPs with r2 = 1 (i.e. those which would score identically using the MDR 

procedure), SNPs were removed such that only one of these SNPs was present in the final 
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dataset. As a result, 201 SNPs from 21 MMP genes were included into the analysis 

(Appendix 1 - Table S2). 

 

2.4.4 Cox-MDR and GMDR 0.9 analyses 

The work-flow is summarized in Figure 2.1. 

We focused on 1-way, 2-way, and 3-way (k=1-3) interactions. 1-way interaction 

analysis examines whether the genotype groups of a single SNP may be categorized as 

high-risk and low-risk genotypes, and associated with an outcome/response variable. 2-

way and 3-way interaction analyses examine whether combinations of genotype groups 

of two or three SNPs may be categorized as high-risk and low-risk genotypes, and 

associated with an outcome/response variable, respectively. Cox-MDR uses martingale 

residuals of Cox-regression models105 and GMDR 0.9101 uses logit scores to categorize 

patient genotypes as high-risk and low-risk genotypes. 

Cox-MDR code105 was requested and received from the developer, Dr. 

Seungyeoun Lee (Sejong University, South Korea). We extended the code in order to add 

additional functionality and return the output that would be needed for our study using 

R141 (Appendix 1). GMDR 0.9 code was downloaded from the UAB Department of 

Biostatistics Section on Statistical Genetics website (GMDR) on December 11, 2018. 

Command line arguments to set the random seeds were added to the permutation testing 

Perl script included with GMDR 0.9 (Appendix 1). Once we verified that Cox-MDR  
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Figure 2.1: Overall workflow diagram for MDR analysis protocol. This figure demonstrates the 

overall workflow of the analyses performed. Multivariate Cox-regression and univariate Kaplan-

Meier analyses were used to verify the Cox-MDR results and assess the associations of the 

identified genotype groups with clinical outcomes, whereas multivariate logistic regression was 

used to verify the GMDR 0.9 results and the association of the identified genotype groups with 

clinical outcomes. 
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worked as expected, it was run with the dataset (including both the clinical [i.e. 

covariates and OS time and status] and the genotype data of the SNPs from the MMP 

genes).  

All interaction analyses were performed using a 5-fold cross-validation procedure. 

5-fold cross validation is appropriate when the sample size is modest, like ours, while still 

providing adequate power142. 4/5 of these folds served as a training set for the MDR 

procedure and the final 1/5 was an independent testing set from which the final model 

score was derived. The code was run 20 times, each run yielding a “best Cox-MDR 

model”, with different random seeds to ensure different partitioning of the dataset into 

each of the 5 cross-validation folds (i.e. to reduce the influence of any specific 

partitioning of the data). Given the 5-fold cross-validation procedure, this resulted in each 

SNP or SNP combination being examined in potentially a total of 100 patient datasets. 

Among the best Cox-MDR models returned by each of the 20 runs, we prioritized the 

most frequently detected best Cox-MDR model (with consistent SNP ID(s) and high-risk 

and low risk genotype information) with the highest testing balance accuracy (TBA) 

score. We refer to these models as the “top” Cox-MDR models throughout this 

manuscript.  

GMDR 0.9 was applied to the same dataset as used in Cox-MDR, with the only 

exception of using the 5-year survival status as the response variable. In contrast to Cox-

MDR, GMDR 0.9 can only select the best models based on the cross-validation 

consistency (CVC); that is, the model with the highest CVC among cross-validation folds 

is selected. After running the GMDR 0.9 analysis 20 times, we selected the top model as 
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in Cox-MDR and based on the highest average TBA value among cross validation folds 

(GMDR 0.9’s analogue to Cox-MDR’s highest TBA). In cases when there were multiple 

models satisfying the best MDR model criteria in a dataset, we used the TBA, and if still 

needed, the CVC information, as the tie breaker. 

 

2.4.5 Permutation testing  

Once the top Cox-MDR or GMDR 0.9 model was identified, the significance of 

the model was assessed using permutation testing. For GMDR 0.9, permutation testing 

was performed using the included Perl script, which was extended to allow setting of 

random seeds. For Cox-MDR permutation testing, an R function was written. The 

permutation procedure was performed using 1,000 permutations of the data (Appendix 

1). 

Permutation testing was performed for all top models selected from k-way runs 

(1-3-ways). As noted by others99,105,142–146, it is possible that a single SNP with a strong 

main effect (that can be identified as the top MDR-model in 1-way analysis), may impact 

higher order interaction analysis when using MDR-based methods, and hence, needs to 

be removed from the 2-way and 3-way interaction analyses. Therefore, we first 

performed the permutation testing for the top MDR model identified in the 1-way 

analysis and, if it turned out to be a significant MDR model, then we assessed whether 

the high-risk and low-risk genotype groups of this top model were associated with 

survival outcomes in the patient cohort using statistical methods (see below). In the case 

where a significant association was detected, we then performed subsequent runs by 
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excluding this SNP and any other SNP in the dataset that was in high linkage 

disequilibrium (LD) with it (r2 ≥ 0.8). This SNP removal procedure was repeated until all 

SNPs with strong main effects in 1-way analyses were removed from the dataset (Figure 

2.1). We then proceeded to 2-way and 3-way analyses on the final dataset with all SNPs 

with strong main effects removed.  

 

2.4.6 Kaplan-Meier curves and multivariable regression analyses 

Following identification of a significant top MDR model by permutation testing, 

we assessed whether the high-risk and low-risk genotype groups of the model were 

associated with survival outcomes in the patient cohort. For this purpose, we applied 

multivariable Cox regression analysis (for the models identified by Cox-MDR) and 

logistic regression analysis (for the models identified by GMDR 0.9) using the same 

clinical covariates for adjustment that were used in the Cox-MDR and GMDR 0.9 runs. 

When needed, Kaplan-Meier curves were constructed to visualize the survival times of 

the patient groups with the high-risk and low-risk genotype groups over time. These 

analyses were performed using IBM SPSS Statistics software (versions 25 and 26, 

Armong, NY)147 or R. A p-value of < 0.05 was considered significant.  

 

Part 2: Interactions among the SNPs of the VEGF interaction networks 

Data resources and methods for Part 2 of this study were similar to Part 1, except 

for the differences outlined in this section. Four hundred patients (Appendix 1 - Table 

S3) met the data requirements. All 400 of these patients were used in the Cox-MDR 
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analysis. For Cox-MDR analysis, Disease Specific Survival (DSS) was used as an 

outcome measure, where the endpoint was death from colorectal cancer. For GMDR 0.9 

analysis 5-year DSS time was used as the outcome measure. Using this outcome measure, 

five patients, who were censored prior to 5 years were excluded from analysis, as the 

survival status of these patients at 5 years was unknown. This left 395 patients for 

analysis with the GMDR 0.9 algorithm. An updated outcome data (with the last follow-

up date of 201844) was used in this part of the study. Clinical variables that were 

previously identified as prognostic markers for DSS44 were used as covariates in Cox-

MDR, GMDR 0.9, and Cox regression and logistic regression analyses (tumor location, 

stage, MSI status, adjuvant chemotherapy and radiotherapy status). 

For this part of the study, we focused on the VEGF family members and 

examined SNP interactions in their protein-protein interaction networks. Four ligands 

(VEGFA, VEGFB, VEGFC, and PIGF) and three receptors (VEGFR1, VEGFR2, and 

VEGFR3) were selected. Since association studies using the sex chromosome genetic 

variations face additional complexities, the fifth ligand, VEGFD, which is located on the 

X chromosome, was not included.  

 

2.4.7 Identification of interaction partners of the VEGF family proteins 

Each of the seven VEGF proteins were searched in the BioGRID 3.5 database148–

150 to find proteins that interact with them (i.e. protein-protein interaction networks; 

BioGRID accessed on October 22, 2019). Genomic locations for all interactors were 

obtained from the Ensembl database151,152(GRCh37 assembly) using the legacy archive 
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Biomart153. PLINK was used for genotype extraction from the genome-wide SNP 

genotype data files, followed by LD-based pruning. Interactors located on the X 

chromosome (FIGF, IKBKG, and VSIG4) and genes with no SNPs after quality control 

and pruning steps (BCS1L, CTGF, LRFN3, NUDT16L1, SCH1, TXNIP, and UBIAD1) 

were excluded. In 7 VEGF networks, there was a total of 1,517 unique SNPs (number of 

SNPs in each set: VEGFA=401; VEGFB=174; VEGFC=38; PIGF=102; VEGFR1=222; 

VEGFR2=747; VEGFR3=328) in a total of 131 unique genes (number of genes in each 

set: VEGFA=43; VEGFB=14; VEGFC=3; PIGF=5; VEGFR1=15; VEGFR2=68; 

VEGFR3=23). Please see Appendix 1 Figure S1 and Appendix 1 Tables S4-S5 for the 

interaction networks, proteins in each interactome, and the IDs of SNPs retrieved and 

analyzed in this part of the study. 

 

2.4.8 Bioinformatics analyses 

In order to explore the links between the SNPs of interest and clinical outcomes, we 

utilized literature reports (from PUBMED), and dbANGIO154 and dbCPCO69 databases. 

We also searched RegulomeDB155,156 (accessed on September 20, 2019, November 5, 

2020) and GTEx databases157 (accessed on November 15, 2020) to identify eQTLs that 

are associated with expression levels of genes (Note that GTEx has no data for rectal 

tissues, so only transverse and sigmoid colon tissue information was available). 

Information on the type of variation (e.g. intronic) were retrieved from dbSNP158. 
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2.5 Results 

Part 1: Examination of the interactions between the MMP gene family SNPs using 

Cox-MDR and GMDR 0.9 

Interactions among 201 SNPs from 21 MMP genes were examined as a set (a total 

of 1,353,601 potential interactions). As a result, 1-way Cox-MDR interaction analysis 

identified MMP27-rs11225388 (MAF = 0.27; an intronic SNP) and classified its 

genotypes as high-risk (AA) and low-risk (AG and GG) in the top MDR model. 

Permutation testing was also significant (p = 0.011). It is interesting that the best MDR-

models identified by each of the 20 individual runs identified this SNP and its genotype 

categories consistently (Appendix 1 – Table S6). Multivariable Cox regression analysis, 

adjusting the rs11225388 genotypes (low risk genotypes versus high risk) for clinical 

covariates, showed that this SNP genotype model was independently associated with OS 

(Table 2.1). Therefore, Cox-MDR successfully identified a significant 1-way interaction. 

These results also meant that the rs11225388 SNP had a significant main effect, which 

necessitated it (as well as two other SNPs with high LD with it: rs11225389 and 

rs12365082) being removed from the dataset prior to future analyses. Upon re-running 

Cox-MDR 1-way analysis and applying permutation testing to the top model, we did not 

identify a significant 1-way MDR model. We, therefore, proceeded with 2-way and 3-

way analysis. These runs did not identify any significant multi-loci Cox-MDR models in 

this dataset. 
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Table 2.1: Multivariable Cox regression analysis result for the significant 1-way Cox-

MDR model in the MMP dataset (overall survival). 

 

Top Model SNP High risk genotypes p-value HR 95% CI (lower-upper) 

rs11225388_GA AA 0.002 0.591 0.425-0.821 

 

CI: confidence interval; HR: hazards ratio; SNP: single nucleotide polymorphism. HR calculated 

for low risk genotypes (GG+GA) versus high-risk genotype (AA).  
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In contrast, in the 1-way analysis, GMDR 0.9 selection procedure did not identify 

a significant model following permutation testing. However, 2-way analysis identified a 

two-loci MDR model including the MMP16.rs7817382 and MMP24.rs2254207 variants 

(permutation testing p=0.001; Table 2.2). Multivariable logistic regression analysis 

verified that this model had a significant association with 5-year survival of patients 

when adjusted for other prognostic covariates (high risk genotypes versus low risk 

genotypes; OR: 3.27; p=4E-6). Both of these SNPs are non-coding region SNPs and were 

common in the patient cohort (MAFs = 0.25 and 0.26, respectively). Additionally, in the 

3-way analysis, a GMDR 0.9 model including genotypes of MMP16.rs2664369, 

MMP20.rs11225332, and MMP2.rs11639960 variants were identified in the top model 

(permutation testing p < 0.001). Multivariable logistic regression analysis showed that 

this model distinguished patients based on their 5-year survival status independent of 

other covariates and this association was quite strong (p=1.3E-8; OR: 4.5; Table 2.2). 

Kaplan Meier curves for the identified high-risk and low-risk genotypes are shown in 

Appendix 1 – Figure S2. Rs2664369 is a 3’-untranslated region variant, and rs11225332 

and rs11639960 are both intronic variants. These SNPs were common in the patient 

cohort (MAF = 0.43, 0.40, and 0.35, respectively). 
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Table 2.2: Multivariable logistic regression analysis results for the significant 2-way and 3-way GMDR 0.9 models in the 

MMP dataset (overall survival). 

Top Model SNPs High risk genotypes p-value OR 95% CI 

(lower-upper) 

rs7817382_GA and 

rs2254207_CA 

(0AA,1CA),(0AA,2CC),(1GA,0AA),(1GA,2C

C),(2GG,1CA) 

4.4194E-06 3.266 1.971-5.414 

rs2664369_GT, 

rs11225332_CT and 

rs11639960_GA 

(0TT,0TT,2GG),(0TT,1CT,1GA),(0TT,1CT,2G

G),(0TT,2CC,1GA),(1GT,0TT,0AA),(1GT,0TT

,1GA),(1GT,1CT,2GG),(1GT,2CC,2GG),(2GG,

0TT,0AA),(2GG,1CT,2GG),(2GG,2CC,0AA),(

2GG,2CC,2GG) 

1.2929E-08 4.503 2.681-7.563 

 

CI: confidence interval; OR: odds ratio; SNP: single nucleotide polymorphism. 
Alleles are given in the order major allele minor allele. 0,1,2, refer to additive coding, i.e. dosage of the minor allele. (0 = 0 copies of the 

minor allele, 1 = 1 copies of the minor allele, 2 = 2 copies of the minor allele).
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Part 2: Examination of the interactions in the VEGF interaction network datasets 

using Cox-MDR and GMDR 0.9 

In this part of the study, we investigated SNP interactions separately for seven 

sets of VEGF family protein interaction networks (Appendix 1 - Tables S4-S5). 

Altogether, these analyses examined 88,989,448 potential interactions. 

Cox-MDR identified four significant MDR models, three of which were also 

confirmed by multivariable Cox regression analysis (Table 2.3). In the 1-way analysis of 

the PIGF network, we identified one SNP associated with DSS (RNF123.rs11130216). 

Additionally, both 2-way and 3-way interactions were detected and they were both 

identified during the VEGFR3 network analysis. These multi-loci interactions include 

SNPs from CHRM3, PTGER3, or EPN1 genes. The strongest association with disease-

specific survival was detected in the 3-way analysis with a very strong p-value of 2.21E-

09 (CHRM3.rs665159_EPN1.rs6509955_PTGER3.rs1327460; HR: 5.0). As also 

demonstrated by the Kaplan Meier curve (Fig. 2.2), this model’s genotype classification 

was able to clearly separate patients based on their outcome risks. 
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Table 2.3: Permutation testing and multivariable Cox-regression analysis results for the top Cox-MDR models in the VEGF 

interaction network set analyses (disease specific survival). 

 

Interactor 

Set 

Top model SNP(s) High risk genotypes Permutation 

p-value 

Cox 

regression 

p-value 

HR 95% CI 

(lower-

upper) 

1-way 

Iteration 1 

VEGFA FN1.rs2289200[TG] 1(TG),2(TT) 0.273 -- -- -- 

VEGFB VEGFA.rs833070[GA] 1(GA) 0.201 -- -- -- 

VEGFC VEGFC.rs1485766[CA] 1(CA) 0.346 -- -- -- 

VEGFR1 PIK3R1.rs4122269[CT] 0(TT) 0.07 -- -- -- 

VEGFR2 PTPN12.rs1024723[TC] 0(CC),2(TT) 0.181 -- -- -- 

VEGFR3 LRRK1.rs930847[CA] 1(CA),2(CC) 0.098 -- -- -- 

PIGF RNF123.rs11130216[AC] 1(AC),2(AA) 0.032 0.003 1.977 1.265-

3.089 

Iteration 2 

PIGF VEGFA.rs833070[GA] 1(GA) 0.045 0.298 1.256 0.818-

1.928 

2-way 

VEGFA CLU.rs7982[TC], 

FLT1.rs7332329[GA] 

(0[CC],0[AA]),(1[TC],1[GA])(0[CC],2[GG])(

2[TT],2[GG]) 

0.392 -- -- -- 

VEGFB FAT1.rs10155467[TC], 

VEGFA.rs3025010[CT] 

(1[TC],0[TT])(0[CC],1[CT])(2[TT],1[CT])(0[

CC],2[CC])(2[TT],2[CC]) 

0.225 -- -- -- 
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VEGFC KDR.rs17709898[GA], 

VEGFC.rs3775195[AC] 

(0[AA],0[CC])(2[GG],0[CC])(1[GA],1[AC])(

0[AA],2[AA])(1[GA],2[AA]) 

0.146 -- -- -- 

VEGFR1 FLT1.rs9551462[TC], 

PIK3R1.rs1823023[AG] 

(1[TC],0[GG])(2[TT],0[GG])(0[CC],1[AG])(

0[CC],2[AA])(1[TC],2[AA]) 

0.128 -- -- -- 

VEGFR2 APP.rs2096488[CA], 

DNM2.rs7246673[TG] 

(2[CC],0[GG])(0[AA],1[TG])(1[CA],2[TT])(

2[CC],2[TT]) 

0.389 -- -- -- 

VEGFR3 CHRM3.rs665159[TC], 

PTGER3.rs1327460[AG] 

(0[CC],0[GG])(1[TC],0[GG])(0[CC],1[AG])(

1[TC],2[AA]) 

0.004 2.03E-06 3.147 1.961-

5.050 

PIGF NRP1.rs2474723[GA], 

RNF123.kgp9864706[AG] 

(0[AA],0[GG])(1[GA],2[AA]) 0.527 -- -- -- 

3-way 

VEGFA FOS.rs7101[CT], 

NRP2.rs861079[TC], 

TFAP2A.rs303055[CT] 

(0[TT],0[CC],0[TT])(1[CT],0[CC],0[TT])(0[T

T],1[TC],0[TT])(0[TT],2[TT],0[TT])(0[TT],0

[CC],1[CT])(1[CT],1[TC],1[CT])(2[CC],1[TC

],1[CT])(0[TT],2[TT],1[CT])(1[CT],2[TT],1[

CT])(2[CC],2[TT],1[CT])(0[TT],0[CC],2[CC]

)(2[CC],0[CC],2[CC])(1[CT],2[TT],2[CC]) 

0.058 -- -- -- 

VEGFB ALOXE3.rs3809882[CA], 

COL6A2.rs7280485[AG], 

NRP1.rs6481844[CT] 

(1[CA],0[GG],0[TT])(0[AA],1[AG],0[TT])(2[

CC],1[AG],0[TT])(1[CA],2[AA],0[TT])(0[A

A],0[GG],1[CT])(2[CC],0[GG],1[CT])(0[AA]

,1[AG],1[CT])(1[CA],2[AA],1[CT])(2[CC],2[

AA],1[CT])(1[CA],1[AG],2[CC])(2[CC],2[A

A],2[CC]) 

0.217 -- -- -- 
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VEGFC FLT4.rs2242217[CT], 

FLT4.rs11748431[AG], 

VEGFC.rs1485762[TC] 

(2[CC],0[GG],0[CC])(0[TT],1[AG],0[CC])(2[

CC],1[AG],0[CC])(1[CT],2[AA],0[CC])(1[C

T],0[GG],1[TC])(2[CC],0[GG],1[TC])(1[CT],

1[AG],1[TC])(2[CC],1[AG],1[TC])(1[CT],2[

AA],1[TC])(0[TT],0[GG],2[TT])(2[CC],0[GG

],2[TT])(1[CT],1[AG],2[TT]) 

0.229 -- -- -- 

VEGFR1 FLT1.rs12429309[CT], 

FLT1.rs9551462[TC], 

PIK3R1.rs1823023[AG] 

(1[CT],0[CC],0[GG])(1[CT],1[TC],0[GG])(2[

CC],1[TC],0[GG])(0[TT],2[TT],0[GG])(0[TT

],0[CC],1[AG])(0[TT],0[CC],2[AA])(2[CC],0

[CC],2[AA])(0[TT],1[TC],2[AA])(1[CT],1[T

C],2[AA]) 

0.097 -- -- -- 

VEGFR2 COL18A1.rs4819101[AG], 

NCOA4.rs10761581[GT], 

PALLD.rs10004025[TC] 

(0[GG],0[TT],0[CC])(1[AG],0[TT],0[CC])(2[

AA],0[TT],0[CC])(0[GG],1[GT],0[CC])(2[A

A],0[TT],1[TC])(0[GG],1[GT],1[TC])(0[GG],

2[GG],1[TC])(1[AG],2[GG],1[TC])(1[AG],0[

TT],2[TT])(2[AA],0[TT],2[TT])(1[AG],2[GG

],2[TT])(2[AA],2[GG],2[TT]) 

0.12 -- -- -- 

VEGFR3 CHRM3.rs665159[TC], 

EPN1.rs6509955[AG], 

PTGER3.rs1327460[AG] 

(1[TC],0[GG],0[GG])(0[CC],1[AG],0[GG])(1

[TC],1[AG],0[GG])(0[CC],2[AA],0[GG])(0[C

C],0[GG],1[AG])(0[CC],1[AG],1[AG])(0[CC

],2[AA],1[AG])(1[TC],2[AA],1[AG])(1[TC],

0[GG],2[AA])(2[TT],0[GG],2[AA])(1[TC],1[

AG],2[AA])(0[CC],2[AA],2[AA])(2[TT],2[A

A],2[AA]) 

0.007 2.21E-09 5.004 2.952-

8.481 
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PIGF FLT1.rs17086609[GA], 

FLT1.rs1853581[CA], 

NRP1.rs2506141[CT] 

(1[GA],0[AA],0[TT])(0[AA],1[CA],0[TT])(0[

AA],2[CC],0[TT])(2[GG],2[CC],0[TT])(1[G

A],0[AA],1[CT])(0[AA],1[CA],1[CT])(2[GG]

,1[CA],1[CT])(0[AA],0[AA],2[CC])(2[GG],0

[AA],2[CC])(2[GG],1[CA],2[CC]) 

0.253 -- -- -- 

 

CI: confidence interval; HR: hazards ratio; SNP: single nucleotide polymorphism. 

0, 1, and 2 in the High Risk Genotype column refer to additive coding, where the number refers to the number of minor alleles in the 

genotype.  

Square brackets in the Top Model SNPs column indicate major and minor alleles for each SNP; which the first letter represents the minor 

allele and the second letter represents the major allele. In the high risk genotypes column, the three items enclosed in parentheses signify 

the genotypes of the combination of SNPs which was found to be high risk by Cox-MDR. Commas separate the genotypes for each SNP 

in the order in which they appear in the corresponding Top Model SNPs entry. Whenever a SNP with a main effect was identified in 1-

way analysis, the analysis was repeated with that SNP removed from the dataset (i.e. successive iterations). FLT1 is also known as 

VEGFR1; KDR is also known as VEGFR2; FLT4 is also known as VEGFR3; and PGF is also known as PIGF. 
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Figure 2.2: Kaplan-Meier curve for 3-way Cox-MDR analysis, VEGFR3 dataset. Log-rank p = 

1.02619688760668E-12. Red: high risk genotype combinations: (TC,GG,GG), (CC,AG,GG), 

(TC,AG,GG), (CC,AA,GG), (CC,GG,AG), (CC,AG,AG), (CC,AA,AG), (TC,AA,AG), (TC,GG,AA), 

(TT,GG,AA), (TC,AG,AA), (CC,AA,AA), (TT,AA,AA). Blue: all other genotype combinations. The 

vertical lines on the curves denote the censored patients (e.g. patients alive at the last follow up 

time). X and Y axis show the follow-up time (in years; rounded) and cumulative survival, 

respectively. 
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Similar to Cox-MDR, GMDR 0.9 also identified interactions that were able to 

distinguish between patients with different outcome risk (the multivariable logistic 

regression p-values 0.032 – 2.4E-09; Table 2.4). GMDR 0.9 identified a larger number 

significant interactions than Cox-MDR (11, six, and seven 1-way, 2-way, and 3-way 

interactions, respectively). The strongest association with DSS (p=2.4E-09) was detected 

for the 3-way ADRB2.rs1042711_NRP1.rs17296436_VEGFB.rs11603042 interaction in 

the VEGFB network analysis (HR: 10, 95% CI: 4.691-21.276; Kaplan Meier curves for 

the high-risk and low-risk genotypes are shown in Figure 2.3). Overall, the significant 

associations, particularly for multi-loci interactions, were quite encouraging. Generally, 

the significance levels of interactions increased with the order of interactions (i.e. from 1-

way to 3-way). Of note, 3-way analysis identified significant interactions in all seven 

VEGF interaction networks examined. Rarely, interaction models included both the 

VEGF ligand and receptor (FLT4.rs307823_KDR.rs6828477_KDR.rs12502008) or two 

SNPs from the same gene (FLT4.rs11739750_FLT4.rs307814; Table 2.4), both detected 

in the VEGFC interaction network. For interested readers, the Kaplan Meier curves for 

the GMDR 0.9 identified interactions are shown in Appendix 1 – Figure S3. 
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Table 2.4: Multivariable logistic regression analysis results for the top GMDR 0.9 models in the VEGF interaction network set 

analyses (disease-specific survival). 

 
1-way 

Iteration 1 

Interaction Set Top model SNP(s) High risk genotypes Permutation 

p-value 

Logistic 

regression 

p-value 

OR 95% CI 

(lower-upper) 

VEGFA NRP2.rs3771003[TG] 0[GG],2[TT] 0.014 0.010 2.399 1.230-4.679 

VEGFB COL6A2.rs9978018[GA] 0[AA],2[GG] 0.02 0.032 2.015 1.062-3.822 

VEGFC FLT4.rs3797102[CT] 1[CT],2[CC] 0.358 -- --  

VEGFR1 MICAL2.rs11022250[GT] 0[TT] <0.001 0.002 2.941 1.468-5.891 

VEGFR2 PTPN12.rs1024723[TC] 0[CC],2[TT] <0.001 1.442E-04 3.662 1.875-7.152 

VEGFR3 CHRM3.rs12037424[CT] 0[TT] 0.005 0.004 2.616 1.369-4.997 

PIGF RNF123.rs11130216[AC] 1[AC],2[AA] 0.045 0.011 2.359 1.222-4.554 

Iteration 2 

VEGFA HNRNPL.rs10403012[GA] 0[AA] 0.022 0.012 1.984 0.673-5.847 

VEGFB VEGFB.rs11603042[TG] 1[TG],2[TT] 0.067 -- --  

VEGFR1 MICAL2.rs988189[TC] 1[TC],2[TT] 0.116 -- --  

VEGFR2 MAPK1.rs2298432[AC] 0[CC] 0.001 3.425E-04 3.467 1.756-6.848 

VEGFR3 CHRM3.rs2278642[TG] 1[TG],2[TT] 0.007 0.006 2.924 1.362-6.278 

PIGF FLT1.rs3936415[AG] 0[GG] 0.069 -- --  

Iteration 3 

VEGFA HNRNPL.rs2278012[CT] 0[TT] 0.051 -- --  

VEGFR2 DNM2.rs7246673[TG] 1[TG],2[TT] 0.079 -- --  
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VEGFR3 LRRK1.rs12595297[GT] 1[GT] 0.007 0.011 2.243 1.207-4.169 

Iteration 4 

VEGFR3 LRRK1.rs17161155[AG] 0[GG] 0.043 0.009 2.317 1.235-4.346 

Iteration 5 

VEGFR3 CHRM3.rs6692711[TC] 1[TC] 0.225 -- --  

2-way 

VEGFA ELAVL1.rs3786619[AG] 

FLT1.rs3936415[AG] 

(0[GG],2[AA])(1[AG],0[GG])(

2[AA],0[GG])(2[AA],1[AG]) 

<0.001 3.180E-05 4.387 2.186-8.805 

VEGFB ADRB2.rs1042711[CT] 

HAL.rs3213737[CT] 

(0[TT],1[CT])(1[CT],0[TT])(2[

CC],1[CT]) 

0.018 7.082E-05 3.696 1.940-7.044 

VEGFC FLT4.rs11739750[TC] 

FLT4.rs307814[TC] 

(0[CC],1[TC])(1[TC],0[CC])(1

[TC],2[TT])(2[TT],1[TC]) 

0.002 1.335E-04 3.827 1.922-7.620 

VEGFR1 FLT1.rs3794397[TC] 

MICAL2.rs7946327[CA] 

(0[CC],0[AA])(1[TC],1[CA])(2

[TT],1[CA]) 

0.003 1.852E-04 3.361 1.780-6.346 

VEGFR2 COL18A1.rs7278425[TC] 

PTPRR.rs4760847[GA] 

(0[CC],1[GA])(1[TC],0[AA]) <0.001 1.213E-05 4.542 2.306-8.947 

VEGFR3 CHRM3.rs1782357[TC] 

TMEM52B.rs10505752[TC] 

(0[CC],0[CC])(1[TC],1[TC])(1

[TC],2[TT])(2[TT],2[TT]) 

<0.001 3.872E-05 3.892 2.037-7.433 

PIGF FLT1.rs2387632[TC] 

NRP1.rs12762312[TC] 

(0[CC],1[TC])(1[TC],0[CC])(1

[TC],2[TT])(2[TT],0[CC]) 

0.055 -- --  

3-way 

VEGFA CLU.rs9331888[CG] 

ELAVL1.rs3786619[AG] 

NRP2.rs861079[TC] 

(0[GG],0[GG],1[TC])(0[GG],0[

GG],2[TT])(0[GG],1[AG],1[T

C])(0[GG],2[AA],0[CC])(0[GG

0.001 2.146E-07 9.322 4.010-21.672 



72 

 

],2[AA],2[TT])(1[CG],1[AG],0

[CC])(1[CG],1[AG],2[TT])(1[

CG],2[AA],0[CC])(2[CC],0[G

G],1[TC])(2[CC],0[GG],2[TT])

(2[CC],1[AG],2[TT])(2[CC],2[

AA],2[TT]) 

VEGFB ADRB2.rs1042711[CT] 

NRP1.rs17296436[GA] 

VEGFB.rs11603042[TG] 

(0[TT],0[AA],1[TG])(0[TT],0[

AA],2[TT])(0[TT],1[GA],2[TT

])(0[TT],2[GG],1[TG])(1[CT],0

[AA],2[TT])(1[CT],1[GA],0[G

G])(1[CT],2[GG],0[GG])(1[CT

],2[GG],1[TG])(2[CC],1[GA],0

[GG])(2[CC],1[GA],1[TG])(2[

CC],1[GA],2[TT]) 

0.007 2.404E-09 9.991 4.691-21.276 

VEGFC FLT4.rs307823[GA] 

KDR.rs6828477[CT] 

KDR.rs12502008[TG] 

(0[AA],0[TT],1[TG])(0[AA],1[

CT],0[GG])(0[AA],2[CC],0[G

G])(0[AA],2[CC],1[TG])(1[GA

],0[TT],0[GG])(1[GA],1[CT],1

[TG])(1[GA],2[CC],2[TT])(2[

GG],0[TT],1[TG])(2[GG],1[CT

],1[TG])(2[GG],1[CT],2[TT]) 

0.038 4.028E-06 5.418 2.642-11.114 

VEGFR1 MICAL2.rs1564947[AG] 

MICAL2.rs954428[GA] 

NEDD4.rs12232351[AT] 

(0[GG],0[AA],0[TT])(0[GG],0[

AA],2[AA])(0[GG],1[GA],0[T

T])(0[GG],1[GA],1[AT])(0[GG

<0.001 3.505E-08 14.855 5.693-38.761 
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],2[GG],0[TT])(1[AG],0[AA],0

[TT])(1[AG],1[GA],1[AT])(2[

AA],2[GG],0[TT])(2[AA],2[G

G],2[AA]) 

VEGFR2 DNM2.rs7246673[TG] 

NRP1.rs10827227[TC] 

SCUBE2.rs7106593[GT] 

(1[TG],0[CC],1[GT])(1[TG],1[

TC],0[TT])(1[TG],1[TC],2[GG

])(1[TG],2[TT],0[TT])(1[TG],2

[TT],1[GT])(1[TG],2[TT],2[G

G])(2[TT],0[CC],2[GG])(2[TT]

,1[TC],1[GT])(2[TT],1[TC],2[

GG])(2[TT],2[TT],1[GT]) 

<0.001 7.062E-09 8.712 4.186-18.129 

VEGFR3 CHRM3.rs1782357[TC] 

CHRM3.rs685960[CT] 

TMEM52B.rs10505752[TC] 

(0[CC],0[TT],0[CC])(0[CC],1[

CT],0[CC])(1[TC],0[TT],1[TC]

)(1[TC],0[TT],2[TT])(1[TC],1[

CT],0[CC])(2[TT],0[TT],2[TT]

)(2[TT],1[CT],0[CC])(2[TT],1[

CT],2[TT]) 

<0.001 5.721E-08 8.030 3.784-17.038 

PIGF FLT1.rs3936415[AG] 

FLT1.rs11149523[AG] 

NRP1.rs2073320[TC] 

(0[GG],0[GG],0[CC])(0[GG],0

[GG],1[TC])(0[GG],1[AG],0[C

C])(0[GG],1[AG],2[TT])(0[GG

],2[AA],0[CC])(0[GG],2[AA],2

[TT])(1[AG],0[GG],2[TT])(1[

AG],1[AG],1[TC])(1[AG],2[A

A],1[TC])(1[AG],2[AA],2[TT])

<0.001 4.218E-07 12.996 4.812-35.103 
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(2[AA],0[GG],0[CC])(2[AA],2

[AA],0[CC]) 

 

CI: confidence interval; OR: odds ratio; SNP: single nucleotide polymorphism. 
0, 1, and 2 in the High Risk Genotype column refer to additive coding, where the number refers to the number of minor alleles in the 

genotype.  
Square brackets in the Top Model SNPs column indicate major and minor alleles for each SNP; in which the first letter represents the 

minor allele and the second letter represents the major allele. The High risk genotypes column lists genotypes which were found by 

GMDR 0.9 to be high risk for poor survival. High-risk genotypes have the following format: the items between each pair of parentheses 

specify a genotype which is high risk for poor survival according to the GMDR output, presented in the order of the SNPs listed in the Top 

model SNP column. e.g. for top model SNPs FLT1.rs3936415[AG]_FLT1.rs11149523[AG]_NRP1.rs2073320[TC], genotypes 

(0[GG],0[GG],0[CC]), rs3936415 = GG, rs11149523 = GG, and rs2073320 = CC were classified as high risk by the GMDR 0.9 

procedure. Whenever a SNP with a main effect was identified in 1-way analysis, the analysis was repeated with that SNP removed from 

the dataset (i.e. successive iterations). FLT1 is also known as VEGFR1; KDR is also known as VEGFR2; FLT4 is also known as VEGFR3; 

and PGF is also known as PIGF.
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Figure 2.3: Kaplan-Meier curve for 3-way GMDR analysis, VEGFB dataset. Log-rank p = 

6.61897020900234E-07. Red: High risk genotypes: (TT,AA,TG), (TT,AA,TT), (TT,GA,TT), 

(TT,GG,TG), (CT,AA,TT), (CT,GA,GG), (CT,GG,GG), (CT,GG,TG), (CC,GA,GG), (CC,GA,TG), 

(CC,GA,TT). Blue: All others except (CT,GG,TT) and (CC,GG,TT). The vertical lines on the 

curves denote the censored patients (e.g. patients alive at the last follow up time). X and Y axis 

show the follow-up time (in years; rounded) and cumulative survival, respectively.  
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2.5.1 Comparison of Cox-MDR and GMDR 0.9 results 

Both Cox-MDR and GMDR 0.9 identified RNF123.rs11130216 SNP in the 1-way 

analysis of the PIGF network. In both cases, the same genotypes were identified as high-

risk and were associated with DSS in multivariable models. All other significant 

interactions were identified by either of the programs. Our results, hence, showed that 

there was little overlap between the results provided by Cox-MDR and GMDR 0.9. This 

may be initially attributed to the use of different scoring systems and response variables 

by these programs. However, Cox-MDR was the software which identified the 

MMP27.rs11225388 variant, as well as the high-risk/low-genotype classification, that 

was previously identified to be associated with OS in a highly similar patient cohort33. Of 

note, this SNP had the strongest association in that dataset, so it is being identified by 

Cox-MDR and in all of the 20 1-way runs as the best SNP is quite striking (Appendix 1-

Table S6). This SNP, however, was missed by GMDR 0.9. In addition, in GMDR 0.9, it 

was observed that there was no obvious way in which ties between “best models” (i.e. 

multiple “best models” with equal CVC values when selecting the best model) were 

being resolved. To test the effect of SNP order in the input data file, MMP27.rs11225388, 

a SNP with a known statistical association (see above), was moved to the beginning of 

the data file. This change resulted in significantly different GMDR 0.9 results (making 

rs11225388 the top SNP identified for this analysis) and thus, showed that input SNP 

order can affect results when the CVC is 1 or 2, out of a possible 5 (when multiple best 

models have the same CVC). Further observation confirmed that the earliest SNP in the 

dataset is chosen by GMDR 0.9 in the event of a CVC tie. Therefore, this not only 
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explains why GMDR 0.9 missed this SNP, but also an important limitation of this and 

any other MDR software that uses CVC to pick the best model. Despite its limitation, it is 

worth noting that GMDR 0.9 also identified a number of models that were missed by 

Cox-MDR and distinguished patients based on their significantly different outcome risks 

(Table 2.2; Table 2.4). 

2.6 Discussion 

In this study, we explored the functionality and feasibility of two MDR-based 

programs, Cox-MDR105 and GMDR 0.9101 and applied them to examine single-locus and 

multi-loci interactions in MMP family and VEGF interaction network genes in relation to 

survival outcome risks in colorectal cancer. Our results identified novel and statistically 

significant interactions that predicted the survival outcomes in colorectal cancer. Our 

results also showed that these two programs generally yielded different top MDR models 

and interactions, hence, they can be considered complementary while examining SNP 

interactions. To our knowledge, this is the first large-scale MDR analysis study that 

examined SNP interactions in relation to colorectal cancer outcomes. 

Interactions among variables are understudied in cancer research. It is possible that 

the interactions among genetic variables, such as SNPs, play a role in survival outcomes 

biologically. Hence, limiting a study to associations of individual SNPs and survival 

outcomes has the potential to miss not only genetic relationships but also important 

biological information. In this regard, there has been little work done on studying multi-

loci interactions in colorectal cancer with respect to survival outcomes, especially using a 

large number of variants. For example, limited MDR-based interaction analyses were 
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conducted94–97,136,159, investigating the interactions among a small number of 

polymorphisms (n=5–17). These studies identified interacting polymorphisms that are 

associated with treatment response and/or survival outcomes. Therefore, while there has 

been little research on multi-loci interactions in colorectal cancer with respect to survival 

outcomes, there is also great potential in this area of research – this was our motivation to 

conduct this study. Additionally, in this study, we prioritized biologically relevant genes 

with well-known roles in disease progression in cancer: MMP family of genes and genes 

whose protein products were members of the protein interaction networks of seven 

separate VEGF-family proteins. Protein products of MMP family genes are involved in 

tissue remodeling, some of them have abnormalities associated with tumor invasion, 

tumor microenvironment, or metastasis29. VEGF family of proteins are also involved in 

important cellular processes, and include VEGF ligands and receptors with roles in 

angiogenesis or lymphangiogenesis – two cellular mechanisms involved in tumor growth, 

invasion, and metastasis28,30,31. Therefore, the results of this study have the potential to 

provide new insights into the relationship of these genes, molecular pathways, and 

processes with the outcome risk in colorectal cancer. 

In this study, we first verified whether the MDR-based methods are indeed useful 

in distinguishing genotypes as high-risk and low risk. In the analysis of the interactions 

among the MMP family gene SNPs, 1-way Cox-MDR analysis was in fact able to 

identify a SNP in the dataset which has a known main effect, i.e. associated with the OS 

in the patient cohort under dominant genetic model (MMP27.rs11225388). This SNP was 

previously examined in our lab using a similar patient cohort and using Cox regression 
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method and it had the strongest association in the SNP set33. This previous study had also 

shown the dominant genetic model as the best model explaining the relationship of the 

genotypes of this SNP with patient overall survival times. In the current study, 

association of MMP27.rs11225388 under the dominant genetic model with the OS times 

in the study cohort was also confirmed by Cox-MDR, classifying the high-risk and low 

risk genotypes correctly (Table 2.1). Therefore, Cox-MDR was able to identify a SNP 

significantly associated with the outcome measure and its genetic model correctly, which 

increased our confidence in Cox-MDR results, though Cox-MDR did not identify any 

multi-loci interactions in this data set.  

In contrast, GMDR 0.9 identified two novel multi-loci interactions in the MMP 

dataset; MMP16.rs7817382_MMP24.rs2254207 and 

MMP16.rs2664369_MMP20.rs11225332_MMP2.rs11639960 (Table 2.2). Interestingly, 

both of the variants identified in 2-way analysis (MMP16.rs7817382 and 

MMP24.rs2254207) are also eQTLs and associated with the expression levels of MMP16 

and MMP24-AS1 genes, respectively (Appendix 1-Table S7). Protein products of 

MMP16 and MMP24 are known to interact physically with pro-MMP2 and activate it by 

means of proteolytic cleavage160,161. MMP2 has been linked to several human cancers, 

including colorectal cancer previously162–167. Therefore, it is possible that the role of both 

MMP16 and MMP24 in affecting the action of MMP2 could explain the biology 

underlying the interaction identified by 2-way GMDR analysis. Additionally, one of the 

SNPs identified in the 3-way GMDR 0.9 analysis, MMP2.rs11639960, is an eQTL, 

affecting the expression levels of the gene called LPCAT2. LPCAT2 is known to affect 
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response to chemotherapy in colorectal cancer patients through an association with lipid 

droplet formation168. This SNP was also associated with prostate169, and ovarian cancer 

risks170, as well as overall survival in colorectal cancer171. Two of the genes identified in 

3-way GMDR analysis are known to be associated with colorectal cancer. As mentioned 

above, MMP2 has been shown to be overexpressed in colorectal cancer tumors compared 

to normal tissues163,166, and is associated with metastatic tumor phenotype163,166 and 

shorter survival times in colorectal cancer163. MMP16 has a similar relationship to 

colorectal tumors172. MMP20, on the other hand, is a much less investigated member of 

the MMP family, but was found to be expressed in colorectal tumors in a study with 

small number of samples173. This 3-way interaction 

(MMP16.rs2664369_MMP20.rs11225332_MMP2.rs11639960) had a low p-value (1.3E-

08) in the multivariable regression analysis and is, therefore, a particularly interesting 

example of both the potential biological roles of MMP gene variants in disease outcomes 

and the potential utility multi-loci interactions to help classifying patients based on their 

different outcome risks. 

In the analyses of the seven VEGF interaction networks (VEGFA, VEGFB, 

VEGFC, PIGF, VEGFR1, VEGFR2, VEGFR3 networks), similar to MMP gene analyses, 

MDR programs identified generally different results (e.g. interactions and SNPs). There 

is not any report linking the 1-way SNP identified by both programs with colorectal or 

other cancers (RFN123.rs11130216). However, both programs were again able to identify 

previously unknown and significant interactions. For example, the most significant 

interaction associated with disease-specific survival was detected in the 3-way Cox-MDR 
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analysis including the CHRM3.rs665159_EPN1.rs509955_PTGER3.rs1327460 variants 

(VEGFR3 network; p=2.21E-09; Table 2.3). All of these genes were previously linked to 

cancer or tumor invasion. For example, high CHRM3 levels are linked to invasion and 

metastasis in colon cancers174,175; loss of EPN1 was linked to elevated VEGFR2 

degradation and disorganized angiogenesis176; and elevated PTGER3 levels was linked to 

shorter survival times in cervical cancers177. On the other hand, the most significant 

GMDR 0.9 3-way model included variants from the ADRB2, NRP1, and VEGFB genes 

(logistic regression p-value=2.4E-09; Table 2.4). All three genes have been shown to be 

associated with colorectal cancer progression178–180. Also, while none of the variants 

identified in this study were missense or non-sense variants, according to GTEx157 and 

RegulomeDB155,156 a number of the SNPs identified were eQTLs (Appendix 1 – Table 

S7). Together with our results in the MMP gene analysis, the fact that the identified genes 

and/or interacting SNPs have been previously linked to colorectal cancer and/or tumor 

aggression, and in some cases, are associated with gene expression levels, make these 

multi-loci interactions highly promising candidates for future research.  

We must also comment about the MDR-based programs that we utilized in this 

study. Cox-MDR and GMDR 0.9, while both have proven capable of finding significant 

models within the datasets (albeit often different models), they vary significantly in their 

functionality, operation, and resource usage. Cox-MDR was provided to us by the authors 

as a small collection of R functions, and as such did not have the full functionality we 

needed for our analyses, and therefore required further efforts to run. Many of these 

functions/features, on the other hand, were available in GMDR 0.9, such as returning 
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detailed outputs (including the output of high risk/low risk genotype information), the 

ability to set random seeds, and permutation testing. GMDR 0.9 is also readily available 

for download online. In contrast, an important feature possessed by Cox-MDR and 

missing from GMDR 0.9 is the ability to use testing balanced accuracy (TBA) score, as 

an alternative to CVC, to pick a best model from the cross-validation folds.  GMDR 0.9 

has a limitation that if two models tie for the best model among the cross-validation folds, 

then the model starting with the first SNP in the input dataset is chosen. This obviously 

has the potential to miss significant models as equally high-scoring models will be 

silently ignored by the software. This is an issue when using CVC to pick a best model 

more so than TBA (an option available in Cox-MDR), as when CVC is low it is quite 

likely that two or more models will tie for best model (used in GMDR 0.9; as we discuss 

earlier, GMDR 0.9 has missed identifying MMP27-rs11225388 in its 1-way analysis 

because of how it selects the top models (i.e. CVC and the order of data in the input 

files). This is rarely an issue while using TBA (that can be used in Cox-MDR) for the 

same purpose because as a floating point number with much higher variability than CVC, 

a tie is unlikely. Therefore, Cox-MDR using the TBA option overall gives results with 

less random model selection than GMDR 0.9, and this is an important strength of Cox-

MDR. Despite its limitations, GMDR 0.9 also identified interactions that were missed by 

Cox-MDR.  

Additionally, both Cox-MDR and GMDR 0.9 proved to have different resource 

usage difficulties and requirements. The Cox-MDR software cannot examine interactions 

in parallel, and thus, is significantly slower than GMDR 0.9. Our VEGFR2 3-way 
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analysis of 747 SNPs took approximately 18 days to complete on the local computing 

cluster whereas on a similar dataset GMDR 0.9 took only 12 hours. GMDR 0.9, on the 

other hand, has extremely large memory requirements. For the largest of our 

aforementioned analyses, GMDR 0.9 required a massive 220 gigabytes of RAM to 

complete successfully, which at the time of writing is a very large amount for a 

researcher to be able to obtain even on a computing cluster. In comparison, Cox-MDR 

only required 15 gigabytes of RAM, practically obtainable on consumer hardware. An 

additional resource usage issue for GMDR 0.9 is that the permutation testing procedure is 

performed using a Perl script external to the Java binary which contains the main 

program. This script uses the user's hard drive as memory, greatly slowing down the 

permutation testing procedure. For a very high number of permutations this may become 

a significant issue. Overall, while MDR-based data reduction methods allow researchers 

to examine large number of interactions, in our experience, both programs have unique 

strengths, limitations, and feasibility concerns while examining large datasets. Therefore, 

while they can be considered complementary while examining SNP interactions, 

application of these programs widely will likely be dependent on further development. 

One limitation of this study is that the patients included are all of Caucasian 

ancestry. We also limited our work to common SNPs and genes from autosomal 

chromosomes, therefore, the potential interactions among rare SNPs and MMP/VEGF-

interactor genes located in X or Y chromosomes remain unexamined. Our results are 

exploratory, therefore replication studies are needed to confirm whether these 

SNPs/interactions have prognostic value in the clinic. The genes were limited to select 
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genes related to cancer and progression, therefore further studies are needed to examine 

the potential interactions in other genes/interaction networks. Our study also has several 

strengths. This is one of the first studies that applied MDR-based approaches while 

examining survival outcomes in colorectal cancer, and the first one, in our knowledge, 

that examined such relatively large number of interactions (~90 million). We explored 

and applied two different MDR-based programs, one using the survival times (Cox-

MDR) and the other 5-year survival status (GMDR 0.9) with a slightly different 

methodology that allowed us to comprehensively examine the interactions and compare 

the programs’ utility. The patient cohort is a well annotated cohort. Additionally, the use 

of cross-validation and permutation testing, as well as the repeating the Cox-

MDR/GMDR 0.9 runs (20 times) to identify the most consistent best models (called top 

models in this study) were critical and helped reduce the false-positive findings. More 

importantly, our results demonstrated that MDR can be powerful in detecting interactions 

among genetic variants in prognostic studies and the novel 2-way and 3-way SNP 

interactions identified in this study bring a new depth to colorectal cancer and prognostic 

research.  

In conclusion, we performed a two-part study applying two MDR-based programs 

to examine the SNP interactions in relation to patient outcomes in colorectal cancer. Our 

work indicates that MDR-based programs can be quite useful in examining the 

interactions among the genotypes/SNPs while examining the novel prognostic markers in 

colorectal cancer. Our results also suggest the presence of novel SNPs and interactions in 
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MMP and VEGF family genes that are associated with the patient outcomes in colorectal 

cancer. These SNPs are excellent candidates for further biomarker studies. 
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Chapter 3: Discussion and conclusions 

 Colorectal cancer affects many people worldwide and in Canada. The highest 

incidence and mortality for this disease, among all Canadian provinces, is in 

Newfoundland and Labrador2, making colorectal cancer both important and interesting to 

study in this province. My research described in this thesis aimed to identify new 

prognostic markers in colorectal cancer using the clinical and genetic data of a colorectal 

cancer cohort from Newfoundland and Labrador. 

 Identifying prognostic markers, including genetic markers, can support clinic 

management and survival outcomes of patients. While valuable research has been 

performed in colorectal cancer – including GWASs examining the association of genetic 

variants with clinical outcomes – these studies often look at only the associations of 

individual SNPs, neglecting potential SNP interactions64,72,73,75,83–86.  

 To help fill this knowledge gap, my research included two specific aims. First, I 

compared two MDR-based programs, GMDR 0.9 and Cox-MDR using a patient dataset. 

GMDR 0.9 is a generalized version of the MDR algorithm, which can use a generalized 

linear model to evaluate patient risk101. This expands the number of possible study 

designs to which MDR can be applied and also allows for the inclusion of covariates in 

analysis. Cox-MDR105 is a specification of GMDR, which utilizes the Cox regression 

method, and thus was able to more appropriately take advantage of the longitudinal 

survival data that was available to me. I applied both of these programs to data obtained 

from patients recruited to the Newfoundland Familial Colorectal Cancer Registry 

(NFCCR)138, examining the relationship between MMP SNP interactions and overall 
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survival. My results demonstrated that neither of the algorithms was better than the other 

(i.e., they produced largely different models and hence complementary results). 

Therefore, I decided to continue with using both programs in my second aim. In the 2nd 

part of my study, I examined the relationship of a larger-scale SNP interaction set with 

disease specific survival by focusing on seven datasets (the protein-protein interaction 

networks of seven VEGF ligands and receptors) using both GMDR 0.9 and Cox-MDR. 

During these analyses, I chose to work on the MMP and VEGF gene family members, 

considering their established and interesting biological roles in tumor progression, 

metastasis, and patient outcomes28–31.  

 Through my analyses, I found a set of significant and previously unknown 

interactions that separate patients based on their outcome risks. In the first part of my 

study, while studying SNP interactions in the MMP genes, I found three significant 

models. Cox-MDR found a significant 1-way model consisting of rs11225388, a SNP 

that was previously found to be associated with colorectal cancer survival in our lab33. 

Cox-MDR, however, did not find any significant multi-SNP models. Interestingly, 

GMDR 0.9 initially missed rs11225388, but identified significant 2-way and 3-way 

models that were completely missed by Cox-MDR. I later identified that GMDR 0.9 

initially missed rs11225388 due to the use of CVC in selecting best models – by default 

this software selects the first SNP with the highest CVC in the dataset. As discussed in 

Chapter 2, this finding has important implications for researchers using CVC in selecting 

MDR models. 
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In the VEGF interactome part of my study, Cox-MDR identified a total of three 

significant models: a 1-way interaction in the PIGF interactome data set (which was also 

identified by GMDR 0.9. This interaction was the only one identified by both programs 

in this study), as well as significant 2-way and 3-way interactions in the VEGFR3 data 

set. GMDR 0.9, on the other hand, found far more interactions (eleven 1-way 

interactions, six 2-way interactions, and seven 3-way interactions in the VEGF 

interactome data sets). These are novel interaction models that can predict prognosis in 

colorectal cancer. Overall, GMDR 0.9 identified a higher number of interaction models 

than Cox-MDR. In addition, except for a single model, all identified interaction models 

distinguished between patients with low and high outcome risk in multivariable 

regression models (i.e. associations of the high-risk/low-risk genotype categories 

identified by the MDR models with disease outcomes were verified by multivariable 

logistic regression, in the case of GMDR 0.9 models, or Cox regression models in the 

case of Cox-MDR models, when adjusted for clinical prognostic markers). 

 The literature shows that all 2- and 3-way, and vast majority of the 1-way 

interactions that I identified are novel. With the exception of rs11225388, none of the 

variants that I identified in my work were previously found to be associated with cancer 

outcomes, although several of the genes had been previously implicated. For example, 

CHRM3, EPN1, and PTGER3 from a 3-way interaction found in my VEGFR3 Cox-MDR 

interactome analysis were found to be related to metastasis in colorectal cancer174, 

abnormal angiogenesis176, and shorter survival times in cervical cancers177, respectively. 

Similarly, ADRB2, NRP1, and VEGFB from my 3-way VEGFB interactome analysis had 



91 

 

previously been associated with colorectal cancer progression178–180. All of the variants 

that I found were in non-coding regions, and thus their functions are likely to be 

regulatory in nature. As also discussed in Chapter 2, our bioinformatics analyses revealed 

that several of the SNPs were known to be eQTL loci, which associate with gene 

expression regulation. For example, rs11639960 of the MMP2 gene was an eQTL known 

to correlate with expression levels of LPCAT2, a gene that had been previously associated 

with chemotherapy response for colorectal cancer181. This may be a clue to understanding 

the biology underlying the statistical effect which I observed. While replication of my 

results in other patient cohorts is needed prior to any clinic usage, further studies on these 

variants and interactions may generate new biological knowledge on colorectal cancer 

prognosis, and as such, have the potential to be of great value.  

 Overall, my comparison between the results by GMDR 0.9 and Cox-MDR 

revealed that both programs gave different and complementary results. Both programs 

were also found to have different computer memory and time requirements and suffered 

from inefficiencies in resource usage, in both computer memory and time for GMDR 0.9 

and Cox-MDR, respectively. This may be in part due to the additions I made to the 

software (e.g., to obtain intermediary results for models, or saving analysis files for 

potential future use). The largest single data set that I analyzed had a total of 747 SNPs. 

Since the complexity of combinatorial problems grows very quickly as the number of 

SNPs in a data set increases, this data set constitutes approximately 70,000,000 

combinations that had to be explored in a single MDR analysis. This dataset took 

approximately 220GB of Random Access Memory (RAM) to analyze, per 3-way run, 
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using GMDR 0.9. In contrast, 17 days were required to run 3-way analyses with Cox-

MDR for this data set. Cox-MDR’s RAM usage, and GMDR 0.9’s run-time, on the other 

hand, were very reasonable (15GB of RAM and 12 hours, respectively). This exposes 

clear limits on the utility of these two programs and the size of the analyses that they can 

currently perform. For example, consider an analysis of larger datasets in the future, 

which is one of our lab’s goals. A modest genome-wide analysis on 50,000 SNPs would 

result in a space of 2.08 x 1013 3-way combinations to explore. This is a factor of nearly 

300,000 times larger than my largest analysis on the VEGF interactome datasets and 

would be clearly impractical using the software that I used. An MDR-based program that 

was written to be both memory and time efficient would allow significantly larger 

analyses to be performed, but even without the inefficiencies of the software I used, there 

are limits on the capabilities of MDR algorithms, which exhaustively explore all possible 

combinations of SNPs. As such, my conclusion is that somewhat larger data sets will 

require MDR-based methods different from the those which I  used, and to examine 

much larger datasets (e.g., genome-wide), algorithms that exhaustively search all possible 

combinations may need to be replaced with other methods, such as those that narrow-

down the number of SNPs to be examined. There are several examples of software that 

was designed to do just that, for example, one method which filters out SNPs before 

interaction analysis via a “group-sampling” method182 and SNPHarvester183 which filters 

SNPs via their relationship to the disease of interest before searching the interaction 

space. 
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The total number of possible interactions examined in my study is around 90 

million. This is the largest interaction analysis ever conducted in colorectal cancer 

prognosis. Before my work, the largest study published in colorectal cancer examining 

interactions in relation to prognosis only looked at 17 SNPs, as compared to 1,517 SNPs, 

which I examined in the VEGF part of my study. My research is therefore currently the 

most comprehensive SNP interaction analysis in colorectal cancer prognosis. I am also 

glad that I have found novel candidate interactions associated with colorectal cancer 

outcomes and that I have published these and many interesting results in my 

manuscript128. These achievements were very rewarding. I am confident that my work not 

only contributes to the field of colorectal cancer research, but that also to biomarker 

discovery and interactions. I hope that my efforts, work, and findings will also inspire 

others to explore SNP interactions in colorectal cancer and other human diseases, an area 

of human genetics research that is both under-studied and full of potential. 
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Appendices 

Appendix 1: Supplementary material for Chapter 2 

 

This Appendix contains the Supplementary Material published together with the 

manuscript described in Chapter 2 (Curtis et al. Frontiers in Genetics 2022 Aug 

3;13:902217. doi: 10.3389/fgene.2022.902217).  

It can be found online here: 

https://www.frontiersin.org/articles/10.3389/fgene.2022.902217/full#supplementary-

material  

 

Methods 

 

Part 1. Analysis of MMP gene SNPs 

Patient cohort 

 

Table S1: Baseline characteristics of the 439 patients who are included in the Part 1 of 

the study. 

MMP Project 

Variable N % 

https://www.frontiersin.org/articles/10.3389/fgene.2022.902217/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.902217/full#supplementary-material
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Age at 

Diagnosis 

Median: 62; Range: 21 – 75 years 

Disease Stage 

I 72 16.40 

II 174 39.64 

III 146 33.26 

IV 47 10.71 

MSI Status 

Stable/MSI-low 389 88.61 

MSI-high 50 11.39 

Tumor Location 

Colon 298 67.88 

Rectum 141 32.12 

 

#OS Time Median: 7; Range: 0 – 11 years 

#OS Status 

Alive  279 63.55 

Dead 160 36.45 

##5-Year OS Status 

Alive at 5 years 324 73.80 

Dead at 5 years 115 26.20 
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MSI: Microsatellite instability; OS: Overall survival. #Used in Cox-MDR, Kaplan-

Meier, and Cox regression analyses. ##Used in GMDR 0.9 and logistic regression 

analyses 

 

Genes Selected for Part 1 

Genomic locations for MMP genes (n=23) were identified using the UCSC genome 

browser184. When needed, alternate gene symbols were found using the HUGO gene 

nomenclature (HGNC) database185. Of the results returned upon searching for each MMP 

gene in the UCSC genome browser, the earliest start location among the UCSC gene 

locations listed was selected as the beginning of the genomic range and the latest end 

location among locations listed was chosen as the end of the genomic range (Table S2). 

 

Table S2: MMP genes, their genomic locations, and the numbers of SNPs per gene that 

are included in Part 1 of this study 

Gene Chromosome 

Genomic 

Range 

(bp) 

Number 

of SNPs 

SNPs 

MMP1 11 

102660641 

- 

102668966 

7 

rs2239008_A rs470558_A 

rs10488_A rs470215_G 

rs1938901_T rs7125062_C 

rs3213460_A 
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MMP2 16 

555113081 

- 55540586 

16 

rs2287074_A rs11639960_G 

rs1477017_G rs865094_G 

rs17301608_T rs1132896_C 

rs1053605_T rs866770_G 

rs9302671_T rs243845_T 

rs243843_G rs243842_C 

rs183112_A rs2287076_C 

rs243835_T rs10775332_T 

MMP3 11 

102706528 

- 

102714342 

3 rs3025066_G rs3020919_T 

rs679620_A 

MMP7 11 

102391239 

- 

102401478 

4 rs17886371_G rs14983_T 

rs2156528_A rs1996352_C 

MMP8 11 

102582526 

- 

102595685 

8 

kgp5394892_G rs1940475_C 

rs12365082_A rs7934972_A 

rs3740938_A rs2012390_C 

rs12803000_G rs2155052_C 

MMP9 20 

44637547 - 

44645200 

4 

rs2274755_T rs17576_G 

rs2274756_A rs20544_C 
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MMP10 11 

102641233 

- 

102651359 

8 

rs470168_A rs12290253_C 

rs547561_G rs12272341_A 

rs4431992_C rs2276108_G 

rs17860950_C rs486055_T 

MMP11 22 

24115036 - 

24126503 

3 

rs738791_T rs2267029_A 

rs738792_C 

MMP12 11 

102733464 

- 

102745764 

2 

rs17368582_C rs11225442_A 

MMP13 11 

102813721 

- 

102826463 

3 rs10502009_G rs3819089_A 

rs640198_A 

MMP14 14 

23305793 - 

23316803 

8 

rs1042703_C rs762052_A 

rs8006914_T rs2236302_G 

rs1042704_A rs2236307_C 

rs743257_T rs17882342_D 

MMP15 16 

58059282 - 

58080804 

0 

 

MMP16 8 

89049460 - 

89339717 

56 

rs10504847_T rs2664369_G 

rs2664370_C rs17719609_C 

rs16877270_G rs1477908_C 

rs10103111_T rs2616493_C 
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rs10098052_A rs2664346_C 

rs2616488_C rs6469206_G 

rs7826929_G rs2616506_C 

rs17663841_C rs977231_G 

rs2664352_C rs11782395_A 

rs1477916_T rs17664125_C 

rs13277637_T rs4961076_C 

rs9297422_C rs1382105_T 

rs1477917_G rs2664361_C 

rs16878818_T rs10099888_C 

rs7819728_A rs1996637_C 

rs1519938_G rs6981717_C 

rs2176771_C rs1519942_G 

rs12546847_C rs4961080_C 

rs13261974_A rs6469298_T 

rs17666351_G rs13261169_T 

rs1401861_A rs1879201_G 

rs17666490_T rs16880099_A 

rs7826477_T rs6994019_T 

rs16880416_T rs2222294_T 

rs7817382_G rs7834743_A 

rs7816934_C rs7000030_T 
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rs3851539_G rs10504846_A 

rs10094702_C rs7835845_T 

MMP17 12 

132312941 

- 

132336316 

11 

rs3087864_G rs4964924_T 

rs4964927_T rs11246838_G 

rs6598163_A rs34515698_T 

rs7300198_C rs12099648_A 

rs9634312_A rs11613757_T 

rs11835665_A 

MMP19 12 

56229214 - 

56236767 

3 

rs2242295_A rs2291267_A 

rs2291268_G 

MMP20 11 

102447566 

- 

102496063 

17 

rs2292730_A rs11225332_C 

rs1711399_C rs1711433_G 

rs10895322_G rs1711430_T 

rs1711427_C rs1784425_G 

rs1784424_A rs3781787_C 

rs3781788_T rs17098913_A 

rs10502005_A rs2280211_C 

rs11225344_A rs1962082_T 

rs2245803_A 

MMP21 10 

127455027 

- 

127464390 

3 rs7922546_A rs10901424_T 

rs12775804_A 
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MMP23

B 

1 

1567560 - 

1570030 

0 

 

MMP24 20 

33814539 - 

33864804 

21 

kgp4728036_A kgp4471741_A 

kgp6966600_G kgp481229_T 

kgp2046320_G kgp7289875_G 

kgp5576338_T 

kgp10149373_G 

kgp7633769_A kgp9807173_C 

kgp1472099_T rs12479765_A 

rs2425022_C rs6088776_C 

rs2247828_G rs2425024_C 

rs2254207_C rs11696548_T 

rs6060341_G rs7280_G 

rs2425032_C 

MMP25 16 

3096682 - 

3110724 

7 

rs2247226_T rs10431961_T 

rs7199221_A rs1064875_T 

rs1064948_A rs11864930_A 

rs10438593_T 

MMP26 11 

5009424 - 

5013659 

1 

rs2499958_A 
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MMP27 11 

102562415 

- 

102576468 

15 

rs12099177_A rs2509010_T 

rs11607205_A rs1276289_A 

rs1276286_T rs2846723_C 

rs2846701_G rs2846703_G 

rs3809018_A rs17099425_G 

rs11225386_G rs11225388_G 

rs2846707_A rs1939015_G 

rs11225389_A 

MMP28 17 

34083269 

– 

34122640 

1 

rs3826404_G 

bp: base pair; SNP: Single Nucleotide Polymorphism.   
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Data Considerations 

We have taken a number of measures while preparing the data files for analysis. For 

example, Cox-MDR automatically rounds numbers to the nearest integer; hence, we 

rounded the continuous variables (age, overall survival (OS) time). Note that the rounded 

OS time was used to determine the 5-year survival status that was used in the GMDR 0.9 

analysis. Additionally, at least Cox-MDR requires a complete dataset (i.e. no missing 

data). To address this data requirement, we only included the patients with complete 

clinical data (n=439) and SNPs/polymorphisms with zero missing genotype rate. 

 

Code Extension and Runs 

We added to the Cox-MDR code the ability to retrieve genotype and training balanced 

accuracy values for each Cox-MDR model, perform multiple runs at once, utilize random 

seed setting/loading (e.g. required for permutation testing purposes), and conduct 

permutation testing for any selected model. After these extensions, Cox-MDR code was 

tested to examine its features and to ensure that it worked correctly and produced the 

correct output.  

As part of this study, the permutation testing Perl script included with GMDR 0.9 was 

extended. Specifically, lines 160 and 213 were edited to allow the setting of random 

seeds, adding the parameter “-seed=<long>” as specified by the GMDR-0.9 --help 

command-line argument output. 
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Cox-MDR and GMDR 0.9 programs were run in R141,186 (R versions 3.5.0, 3.5.1, 3.6.2; 

Microsoft R Open version 3.5.1) and Java respectively. Cox-MDR and GMDR 0.9 

analyses on large interaction datasets were performed in parallel to reduce computational 

time using the hardware and software systems at the Center for Health Informatics and 

Analytics (CHIA), Memorial University of Newfoundland. For Cox-MDR analyses in 

CHIA, we used manually set seeds (generated in R) in order to ensure parallel runs had 

different cross-validation partitioning despite starting at roughly the same time, as by 

default the random number generation of R sets a random seed based on system time.  

 

Permutation Testing 

For Cox-MDR permutation testing, an R function was written and run through R-

Studio187. This function randomly shuffles specified columns of the input data and can be 

called multiple times to produce different shuffles of the dataset. This function was 

designed so that, similar to GMDR 0.9’s permutation testing procedure, elements in 

shuffled columns still remained together in the same row, but the relationship between 

these elements and all remaining elements (i.e. SNP genotypes) was randomized. For the 

permutation testing procedure, the Cox-MDR or GMDR 0.9 method was applied to 1000 

random shuffles of the data. The permutation testing procedure ran the Cox-MDR or 

GMDR 0.9 program using the same random seed as the run (i.e. the run that identified the 

top MDR model) being tested to ensure the same patients were in the same cross-

validation folds between runs. After 1000 runs, the p-value was determined to be the 
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number of testing balanced accuracy (TBA) values for Cox-MDR, or average (among 

cross-validation folds) TBA values for GMDR 0.9, which were as high as or higher than 

the observed TBA value for the “top model” divided by the number of permutations 

(n=1000); if this value was <= 5%, then the top MDR model was deemed to be 

significant99 (i.e. not likely to be detected by chance). The permutation testing procedure 

for GMDR 0.9 functions identically to that of Cox-MDR, except that GMDR 0.9 

software uses the average TBA value among the 5 cross validation folds instead of the 

highest TBA value. 

For larger datasets using GMDR 0.9 performing the permutation testing procedure on a 

desktop computer exceeded hardware resources. For these sets, permutation testing was 

performed on the CHIA computing cluster. 

 

Part 2: Interactions among the SNPs of VEGF interaction network genes 

 

Table S3: Baseline characteristics for the 400 patients included in the VEGF interactome 

study 

VEGF Project 

Variable N % 

Age At Diagnosis Median: 61; Range 21- 75 

years 

Disease Stage 
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I 77 19.25 

II 165 41.25 

III 126 31.50 

IV 32 8.00 

MSI Status 

Stable/MSI-low 350 87.5 

MSI-high 50 12.5 

Tumor Location 

Colon 264 66.00 

Rectum 136 34.00 

Baseline Radiation 

Adjuvant 100 25.00 

Others 300 75.00 

Baseline 

Chemotherapy 

  

Adjuvant 223 55.75 

Others 177 44.25 

 

DSS Time Median: 14; Range: 0 -19 

years 

#DSS Status 



130 

 

Alive 309 77.25 

Dead 91 22.75 

##5-Year DSS Status 

Alive at 5 years 337 84.25 

Dead at 5 years 63 15.75 

MSI: Microsatellite instability; DSS: Disease Specific Survival. #Used in Cox-MDR, 

Kaplan-Meier and Cox regression analyses. ##Used in GMDR 0.9 and logistic regression 

analyses. Note that this table includes the 5 patients, who were removed from GMDR 0.9 

analysis 

 

Identification of Interaction Partners of the VEGF Family Genes 

For the BioGRID148–150 (; BioGRID | Database of protein, chemical, and genetic 

interactions) searches, species was set to “Homo sapiens”. Interactions were downloaded 

in BioGRID TAB 2.0 format. Note that BioGRID uses these aliases for the following 

VEGF family proteins in their records: FLT1 for VEGFR1, KDR for VEGFR2, FLT4 for 

VEGFR3, and PGF for PIGF. Chemical interactions were filtered out of results of 

BioGRID searches before producing BioGRID TAB files and network diagrams (Figure 

S1). Non-human interactors were removed from the interactor datasets. A set of 

interactors for each VEGF family gene was produced by combining the columns 

“Official Symbol Interactor A” and “Official Symbol Interactor B” for the BIOGRID 

TAB files and removing duplicate gene symbols. The number of interactors of each 

VEGF gene are given in Table S4A. 
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In cases where multiple gene symbols had the same genomic location, we kept only the 

symbol which was found in our BioGRID search. 

While using legacy Biomart section to obtain genomic locations for interactors, genes 

that were located on the X chromosome were excluded from further analysis (Table 

S4A). Additionally, entries with “PATCH” annotations were removed from analysis, as 

were entries with unusual annotations, opting for locations from the UCSC under the 

“Comprehensive Gene Annotation Set from GENCODE Version 19” heading. It was 

confirmed that the same gene in different interaction sets had the same genomic location.  
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Figure S1: Interaction networks for VEGFA, VEGFB, VEGFC, VEGFR1, VEGFR2, 

VEGFR3, and PIGF taken from Biogrid. 

Figure S1 A: VEGFA interaction network.  
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Figure S1 B: VEGFB interaction network. 
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Figure S1 C: VEGFC interaction network. 
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Figure S1 D: VEGFR1/FLT1 interaction network. 
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Figure S1 E: VEGFR2/KDR interaction network. 
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Figure S1 F: VEGFR3/FLT4 interaction network. 
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Figure S1 G: PIGF/PGF interaction network. 
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Network diagrams generated using BioGRID149,150. Line size represents the number of 

unique interactions in the BioGRID database for a given pair of interactors. Yellow lines 

represent physical interactions, green lines represent genetic interactions, and purple lines 

represent evidence of both physical and genetic interactions. Yellow nodes represent non-

human genes which were subsequently removed from analysis. Aliases: FLT1, KDR, 

FLT4, and PGF refer to VEGFR1, VEGFR3, VEGFR3, and PIGF respectively. 
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Table S4 A: Number of VEGF interactors in each network. 

VEGF family member 

protein 

Number of genes in the 

interaction network 

Number of genes in the 

interaction network* 

VEGFA 43 43 

VEGFB 14 14 

VEGFC 3 3 

PIGF 5 5 

VEGFR1 15 15 

VEGFR2 69 68 

VEGFR3 26 23 

TOTAL 175 171 

*After the genes on the X chromosome are excluded. 
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Table S4 B: Final list of genes included in study of VEGF family interactome networks 

VEGF family member protein Final list of genes included in study 

VEGFA ACTBL2 ADAMTS1 ARNT BRCA1 

CHEK1 CLU CRYAB ELAVL1 

FLT1(VEGFR1) FN1 FOS GPC1 HGS 

HIF1A HNRNPD HNRNPL HSP90AA1 

HSPA4 IGFBP7 ILF3 KDR(VEGFR2) 

LYVE1 MDM2 NRP1 NRP2 PGF(PIGF) 

PRRG4 PTPRB PTPRZ1 SP1 SP3 

SPARC STAT3 TFAP2A U2AF1 USF2 

VEGFA VEGFB VHL VPS35 VTN 

VEGFB ADAM21 ADRB2 ALOXE3 COL6A2 

FAT1 FLT1 HAL KLHL12 NRP1 

TRIM68 VEGFA VEGFB 

VEGFC FLT4(VEGFR3) KDR(VEGFR2) VEGFC 

VEGFR1 CBL FLT1(VEGFR1) KDR(VEGFR2) 

MICAL2 NEDD4 PGF(PIGF) PIK3R1 

PLCG1 PTPN11 SCGB2A2 SHC2 

SRPK1 VEGFA VEGFB 

VEGFR2 AAR2 ACP1 AIMP2 ANXA5 APP BTRC 

CARKD CAV1 CBL CCDC88A CDH5 

COL18A1 CSF2RB CSNK1D CUL1 

DNM2 DUSP19 EPN1 FBXO25 

FBXW11 FLT1(VEGFR1) GABARAP 

GATC GRB2 GRB10 HSP90AA1 ILKAP 

IQGAP1 ITGA5 ITGB1 ITGB3 

KDR(VEGFR2) MAPK1 MYO1C NCK1 

NCOA4 NPM1 NRP1 PALLD PDCL3 

PLCG1 PLXNA1 PPM1A PPM1B PTPN6 

PTPN11 PTPN12 PTPRR RAB5A 

RASA1 SCUBE2 SERPINF1 SH2D2A 

SHB SHC2 SRC STYX TNFRSF25 TP53 

UBC VCL VEGFA VEGFC YWHAG 

ZCCHC6 ZSCAN21 

VEGFR3 CHRM3 DUSP19 EEF1A2 EPN1 ERBB2 

FLT4(VEGFR2) GRB2 HSP90AA1 

ITGB1 LGALS3 LGALS8 LIPH LRRK1 

MAS1 NEDD4 NPY2R PCDHGB1 

PLVAP PTGER3 TMEM52B TNF 

VEGFC 

PIGF FLT1 NRP1 PGF(PIGF) RNF123 VEGFA 

Parentheses indicate alternate gene symbols used in this document 
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Table S5: All genes and SNPs included in VEGF interactor study 

Gene Number 

of SNPs 

SNPs 

AAR2 3 rs2425193 rs2104007 rs2425202 

ACP1 1 rs7584915 

ACTBL2 1 rs13159014 

ADAM21 3 rs11622815 rs2000352 rs4143920 

ADAMTS1 4 rs9636786 rs13615 kgp10200667 rs370850 

ADRB2 3 rs1042711 rs1042713 rs1042717 

AIMP2 6 rs1860461 rs1860460 rs6979676 rs7803611 rs7781199 

rs4560 

ALOXE3 10 rs3809882 rs4792214 rs6503080 rs9894356 rs2289587 

rs7215658 rs3027209 rs4414548 rs4792239 rs3027229 

ANXA5 7 rs11098637 rs12511956 rs10518391 rs6534309 rs6857766 

rs13145977 rs2306416 

APP 45 rs214486 rs3787620 rs2829973 rs1876064 rs454017 

rs1787438 rs17001492 rs1783016 rs214488 rs2829984 

rs2234983 rs216779 rs367489 rs440666 rs2014146 rs216762 

rs1701000 rs9305268 rs128647 rs2096488 rs8132200 

rs12626960 rs7278838 rs2830008 rs7281216 rs768040 

rs2070655 rs2830028 rs2830034 rs2830038 rs1041420 

rs7283136 rs2830044 rs2070654 rs2830051 rs2830052 

rs11702267 rs2830067 rs2830071 rs2830088 rs17588612 

rs455465 rs458848 rs4817090 rs2830101 

ARNT 5 rs10847 rs10305710 rs2228099 rs2134688 rs11204737 

BRCA1 5 rs8176305 rs3737559 rs1799950 rs799923 rs799912 

BTRC 9 rs7090670 rs10786634 rs7901883 rs4451650 rs9419913 

rs9420839 rs17767748 rs4151060 rs11595968 

CARKD 2 rs330550 rs179356 

CAV1 10 rs926198 rs10256914 rs3807986 rs959173 rs3807989 

rs3815412 rs1022436 rs9920 rs1049334 rs1049337 

CBL 5 rs6589722 rs1893032 rs2511844 rs11217234 rs1052121 

CCDC88A 9 rs2576692 rs1047948 rs1545121 rs4484068 rs3099084 

rs10496042 rs11684805 rs6721972 rs6545492 

CDH5 11 rs10852432 rs1077318 rs1076019 rs2344564 rs7499886 

rs2344565 rs1130844 rs11640843 rs1073584 rs16956504 

rs1972839 

CHEK1 6 rs3731395 rs10893405 rs521102 rs2282535 rs11220181 

rs11220182 

CHRM3 94 rs4130463 rs10925877 rs12123857 rs6678395 rs12137225 

rs10802767 rs6676664 rs6687984 rs17645304 rs12086449 
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rs10925888 rs16838380 rs1782349 rs1782357 rs12041334 

rs10925907 rs16838444 rs17646815 rs7525710 rs11804608 

rs6670728 rs12135445 rs13376565 rs6429140 rs12119540 

rs6429144 rs12120382 rs17594385 rs6685121 rs6688669 

rs6690612 rs2355230 rs726168 rs12088787 rs12037424 

rs6691263 rs10925941 rs12090480 rs10802789 rs1867266 

rs1867265 rs6692711 rs12406493 rs4145784 rs2278642 

rs1431718 rs12124903 rs10925971 rs685475 rs685550 

rs685960 rs843030 rs6703930 rs7533134 rs17657156 

rs2841037 rs481036 rs4266870 rs483411 rs693948 rs665159 

rs1111249 rs12059546 rs558438 rs6690809 rs7543259 

rs6429157 rs1578180 rs1934349 rs7536133 rs6698105 

rs589962 rs685548 rs602117 rs1125489 rs1594513 

rs10925994 rs682355 rs536477 rs2217533 rs10802812 

rs16839034 rs16839045 rs10926008 rs16839051 rs10926009 

rs7527677 rs10399860 rs12036109 rs7520974 rs6701181 

rs6682184 rs4431831 rs4659554 

CLU 4 rs9331947 rs7812347 rs7982 rs9331888 

COL18A1 31 rs879330 rs8128168 rs2026886 rs4819099 rs4819101 

rs2838916 rs2838917 rs2838920 rs2838923 rs8126757 

rs11702782 rs7275991 rs9980531 rs4819115 rs2236451 

rs11702494 rs2230688 rs2236459 rs2838942 rs2246749 

rs11702425 kgp9623698 kgp383228 rs2236475 rs7279445 

rs3753019 rs2236483 rs12483553 rs7278425 rs17004785 

rs7867 

COL6A2 10 rs9978018 rs2839108 rs17357592 rs2839112 rs2839113 

rs7280485 rs2839116 rs3088026 rs1044598 rs2839117 

CRYAB 3 rs4252588 rs11214040 rs11214043 

CSF2RB 9 rs2075726 rs5756407 rs6000488 rs11089810 rs909486 

rs1534882 rs11705394 rs131840 rs131842 

CSNK1D 2 rs11653735 rs4789846 

CUL1 13 rs243551 rs243538 rs243524 rs243523 rs11760399 rs243492 

rs243482 rs243477 rs1014095 rs3823635 rs10271133 

rs7779159 rs2007404 

DNM2 10 rs12974306 rs4334414 rs714307 rs892086 rs12232826 

rs4804524 rs7246673 rs2278444 rs2287029 rs12461992 

DUSP19 7 rs16823976 rs3748880 rs12463411 rs11883456 rs2705730 

rs17704934 rs2944346 

EEF1A2 5 rs2274860 rs2750395 rs310619 rs8126435 rs910948 

ELAVL1 8 rs2042920 rs12983784 rs4804244 rs759817 rs10401186 

rs3786619 rs7251814 rs1204494 

EPN1 7 rs8104242 rs3786642 rs10408454 rs10410404 rs6509955 

rs7255531 rs2287831 
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ERBB2 6 kgp11187652 kgp8452497 kgp8195839 rs4252612 

rs1801200 rs4252667 

FAT1 31 rs3775309 rs1280092 rs2637777 rs1280103 rs28647489 

rs2249916 rs2249917 rs3733406 rs11931107 rs189031 

rs7663350 rs328432 rs328431 rs1388297 rs7672047 

rs162062 rs167853 rs2130910 rs10155467 rs2130909 

rs2375889 rs162182 rs4862723 rs327080 rs455600 rs907986 

rs455219 rs13123522 rs3733414 rs1491248 rs327102 

FBXO25 15 rs13279681 rs17812876 rs17665364 rs17064974 rs13340594 

rs1530662 rs3735925 rs10092971 rs2278765 rs13253643 

rs10088894 rs12546599 rs10503146 rs10109251 rs17665621 

FBXW11 3 rs9313563 rs9313564 rs9313565 

FLT1 36 rs9554314 rs12429309 rs9513070 rs12877323 rs3794397 

rs3794399 rs2296188 rs2296189 rs7987291 rs7987649 

rs3794400 rs2387632 rs3936415 rs17086609 rs1853581 

rs7989623 rs7995976 rs9551462 rs3751395 rs17086617 

rs17537350 rs7332329 rs9508021 rs9513099 rs11149523 

rs9508034 rs9513112 rs9554330 rs3794405 rs9513113 

rs10507386 rs585421 rs622227 rs655024 rs679791 rs598945 

FLT4 16 rs307822 rs2279622 rs11739750 rs2242217 rs400330 

rs3797104 rs307823 rs3797102 rs3736061 kgp53910 

rs2290983 rs10085025 rs4700745 rs10072977 rs11748431 

rs307814 

FN1 18 rs1263 rs11651 kgp9543736 rs2289200 rs6707530 rs7608342 

rs13652 rs1250201 rs7588661 rs11883812 rs1561302 

rs7596677 rs17516906 rs724617 rs1437799 rs16854041 

rs7609476 rs1250246 

FOS 2 rs7101 rs1063169 

GABARAP 2 rs11656323 rs222843 

GATC 4 rs17431446 rs2235217 rs7957424 rs3847971 

GPC1 13 rs7577243 rs13424854 rs7589322 rs3828334 rs3828336 

rs2292832 rs881029 rs12695020 rs2228327 rs1126920 

rs13013933 rs3792215 rs1042823 

GRB10 32 rs4245556 rs4947406 rs4947709 rs2715129 rs11770199 

rs17544225 rs2250152 rs2299150 rs980716 rs6948959 

rs2715117 rs17544971 rs2237444 rs6593077 rs2237447 

rs17133917 rs2237456 rs1800504 rs2237477 rs2237482 

rs10248619 rs2282930 rs2299155 rs17152102 rs2108349 

rs6968827 rs1024532 rs6979369 rs7805310 rs6976572 

rs7791286 rs6593185 

GRB2 3 rs16967789 rs959260 rs4789182 
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HAL 14 rs1059845 rs2230885 rs11108358 rs7297245 rs10492228 

rs3213737 rs12319274 rs12307364 rs10745747 rs17676826 

rs10859997 rs10492227 rs2302629 rs2302628 

HGS 3 kgp785391 rs6565620 rs34384005 

HIF1A 5 rs2301106 rs10129270 rs4899056 rs12434438 rs2057482 

HNRNPD 3 rs2288338 rs1820577 rs1365872 

HNRNPL 3 rs10403012 rs2278012 rs862456 

HSP90AA1 5 rs7155973 rs3736807 rs11621560 rs10873531 rs1190603 

HSPA4 3 rs13161158 rs11749966 rs14355 

IGFBP7 35 rs1277308 rs11573128 rs2271808 rs1277311 rs11133472 

rs1718885 rs7687211 rs6852762 rs3821996 rs6554404 

rs881382 rs1713973 rs1401189 rs1713963 rs11573086 

rs1713959 rs7656865 rs1277293 rs7356193 rs17761305 

rs1718856 rs4865174 rs10516163 rs11934877 rs1714014 

rs1718848 rs1714011 rs1718845 rs11936912 rs10019698 

rs1718858 rs1718861 rs6851308 rs4865181 rs10004910 

ILF3 2 rs2569507 rs13465 

ILKAP 6 rs2278737 rs2880132 rs2880131 rs6431588 rs2305171 

rs3795903 

IQGAP1 7 rs17176602 rs6496674 rs12912995 rs16974212 rs11853271 

rs9944285 rs3539 

ITGA5 3 rs7306692 rs1270919 kgp6380544 

ITGB1 16 rs2153875 rs2488320 rs2230396 rs3780873 rs10763902 

rs10827163 rs10827164 rs1009002 rs11009157 rs1187078 

rs2457705 rs1187095 rs2475193 rs10827167 rs1187086 

rs11591508 

ITGB3 12 rs10514919 rs7209700 rs11868894 rs2292867 rs8073229 

rs5918 rs2292699 rs12603582 rs3809863 rs7225700 

rs12948299 rs11867160 

KDR 14 rs12642307 rs2125489 rs1531289 rs17709898 rs6838752 

rs6828477 rs11732292 rs17085326 rs2034965 rs17711073 

rs2305948 rs7692791 rs6837735 rs12502008 

KLHL12 3 rs12089566 rs4950887 rs2275734 

LGALS3 2 rs7160523 kgp43854 

LGALS8 15 rs17753447 rs1266381 rs10802546 rs4659682 rs10925157 

rs1266384 rs12041958 rs2799426 rs10925158 rs3754245 

rs2472126 rs11807205 kgp6759139 rs2298096 rs2298098 

LIPH 3 rs6788865 rs9790230 rs4626118 

LRRK1 38 rs12148466 rs11630691 rs11858394 rs4075387 rs7170683 

rs12441903 rs4965738 rs4965741 rs721906 rs8038607 

rs12915954 rs7176253 rs2412000 rs12914811 rs12439038 

rs966293 rs11857262 rs6598411 rs1993375 rs12595297 
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rs878274 rs6598412 rs1078513 rs2034809 rs963333 

rs930847 rs11633278 rs11247253 rs4427776 rs12594881 

rs12592409 rs4965778 rs4965780 rs11857803 rs17161155 

rs17744500 rs2925202 rs1048327 

LYVE1 12 rs17403620 rs17318858 rs17318955 rs17403977 rs16907989 

rs7111477 rs11042883 rs11042889 rs11042892 rs16927077 

rs10840444 rs1017275 

MAPK1 8 rs2276008 rs9340 rs17821423 rs2298432 rs2006893 

rs9607272 rs17759796 rs8141815 

MAS1 1 rs220721 

MDM2 3 rs937283 rs2279744 rs1470383 

MICAL2 94 rs11022172 rs7111481 rs7130896 rs12803936 rs2015963 

rs3763820 rs2307072 rs4756772 rs10765923 rs12577615 

rs7932017 rs7942252 rs12795108 rs12790969 rs10741566 

rs10765924 rs12577704 rs11022188 rs7940840 rs977244 

rs2171150 rs9971381 rs901284 rs11022193 rs988189 

rs4757237 rs4756775 rs11022209 rs10831742 rs7102041 

rs9804570 rs1564946 rs1564947 rs923167 rs7131034 

rs901302 rs2010463 rs11022214 rs10831744 rs4471395 

rs7950540 rs7121956 rs7130607 rs7949360 rs6485561 

rs11022242 rs10831758 rs1032151 rs17477991 rs2013262 

rs3763822 rs10430830 rs12283453 rs871703 rs2279390 

rs12787479 rs954428 rs11022250 rs2012580 rs2306729 

rs11827638 rs12294182 rs7101833 rs10831769 rs6485587 

rs7103040 rs2706643 rs2641941 rs2706645 rs1609930 

rs11022257 rs2010576 rs2246778 rs3794083 rs2706637 

rs4757276 rs11022262 rs2641938 rs11604904 rs2279613 

rs2270511 rs12574429 rs2706627 rs1973386 rs7946327 

rs1493959 rs1826608 rs11022264 rs17480838 rs7116182 

rs2270513 rs3794075 rs2279616 rs8808 

MYO1C 7 rs2302459 rs2302458 rs2286870 rs2302456 rs2286873 

rs2286876 rs7218128 

NCK1 4 rs9845460 rs1347209 rs3772388 rs1048145 

NCOA4 5 rs10761581 rs10740051 rs17720205 rs41306524 rs11548236 

NEDD4 15 rs11550869 rs2899593 rs17238468 rs12898589 rs8031043 

rs12232351 rs2414448 rs8027843 rs10518827 rs12593446 

rs12591210 rs7174459 rs12592220 rs9920283 rs16976661 

NPM1 1 rs11134696 

NPY2R 3 rs17376826 rs1574175 rs1047214 

NRP1 53 rs1044268 rs1044210 rs2506141 rs2506143 rs2506145 

rs2228638 rs2383984 rs734186 rs2474723 rs11009281 

rs2474712 rs2254826 rs2269096 rs1331317 rs11009311 

rs927099 rs11009313 rs12765284 rs2269091 rs12762312 
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rs17413155 rs17413169 rs10490939 rs1888688 rs11009323 

rs2383987 rs1319013 rs11593943 rs3780869 rs10490938 

rs16934292 rs11598845 rs2073320 rs4934584 rs17296436 

rs17296443 rs10827227 rs10827228 rs869636 rs7079372 

rs2776928 rs1331326 rs6481844 rs7910405 rs2776930 

rs2776932 rs2065364 rs2804492 rs2804493 rs2776937 

rs4934597 rs1360457 rs2804498 

NRP2 37 rs10090 rs698909 rs849530 rs950219 rs849556 rs3771051 

rs3771048 rs3771044 rs849542 rs3771038 rs861079 

rs3771033 rs849523 rs849582 rs849575 rs849570 rs3771021 

rs849565 rs849563 rs1996412 rs12472412 rs13026243 

rs849560 rs2241155 rs3771016 rs872943 rs3771004 

rs16837637 rs3771003 rs16837641 rs2241153 rs3732088 

rs2160328 rs3771000 rs3770996 rs3755232 rs1990708 

PALLD 104 rs11132268 rs2712135 rs2712149 rs13150330 rs2002727 

rs4692943 rs10517996 rs1962363 rs10517999 rs6552861 

rs10518001 rs6857497 rs7673220 rs17054290 rs11735275 

rs11132283 rs9312333 rs13145788 rs1986369 rs6836618 

rs6857016 rs11132322 rs17541413 rs10518011 rs10022002 

rs10004025 rs1962022 rs7668720 rs17650886 rs6815330 

rs17650892 rs2874112 rs17707379 rs2319909 rs4144994 

rs4371580 rs4389538 rs12647503 rs2710850 rs17707568 

rs2723687 rs2710851 rs2723688 rs3109799 rs2723696 

rs2723698 rs12643131 rs2710828 rs2723704 rs17614077 

rs10010321 rs12642267 rs17054449 rs4314247 rs12649186 

rs2723705 rs13137200 rs6832582 rs17054460 rs4260495 

rs4280700 rs12649675 rs4635780 rs9884230 rs4599370 

rs7697688 rs11132434 rs17542430 rs1500800 rs6852874 

rs12510359 rs17542654 rs17708307 rs4692948 rs7679564 

rs2247733 rs999958 rs7688994 rs17614733 rs11733873 

rs1875297 rs1875296 rs7681510 rs13129779 rs6854137 

rs1566499 rs6854037 rs2133911 rs867901 rs973990 

rs12643033 rs1318822 rs4692552 rs7688533 rs4692553 

rs13114906 rs6852229 rs2062589 rs7682426 rs867632 

rs12643097 rs2047633 rs6819031 rs1500795 

PCDHGB1 22 rs17097231 rs13171859 rs4151698 rs11575956 rs3806832 

rs4151699 rs6867460 rs3749770 rs4912750 rs11575963 

rs11958830 rs1423148 rs3805695 rs11748256 rs13361997 

rs1002519 rs11952292 rs2237079 rs11744379 rs4912762 

rs17286954 rs970069 

PDCL3 4 rs6747613 rs2946589 rs12469806 rs2970997 

PGF 2 rs8185 rs12411 
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PIK3R1 24 rs171648 rs7701498 rs831227 rs706713 rs13173003 

rs7709243 rs12652661 rs173704 rs173702 rs4122269 

rs1823023 rs173703 rs6893676 rs34303 rs863818 rs34309 

rs2302975 rs3730082 rs6876003 rs3815701 rs34306 

rs1550805 rs831125 rs3730089 

PLCG1 4 rs2866370 rs753381 rs6072299 rs4297946 

PLVAP 4 rs4808078 rs7252581 rs16981755 rs10417806 

PLXNA1 7 rs6764158 rs732737 rs747967 rs9289290 rs4679325 

rs9851451 rs3749395 

PPM1A 3 rs7155841 rs10142834 rs12434739 

PPM1B 4 rs1453863 rs17039151 rs4952703 rs2053456 

PRRG4 7 kgp11715177 rs33962176 rs11605633 rs7944652 rs11032017 

kgp8085505 rs7933966 

PTGER3 49 rs959 rs1327460 rs6656853 rs6672081 rs7530738 rs7533733 

rs6685546 rs6685646 rs17481440 rs1536537 rs1536261 

rs1576055 rs4649932 rs35702222 rs1409166 rs1409165 

rs1327464 rs1409162 rs4420040 rs7530658 rs2182325 

rs11209714 rs875727 rs17541722 rs7539384 rs17542063 

rs6424410 rs7538034 rs6670616 rs12067140 rs510414 

rs475468 rs1409984 rs1071020 rs571705 rs977214 

rs2072947 rs479934 rs2206343 rs2268055 rs2300168 rs5693 

rs5691 rs1022528 rs8179390 rs2300179 rs10889906 

rs2050065 rs2817867 

PTPN11 4 rs11066301 rs17822304 rs12423190 rs11066323 

PTPN12 8 rs9886084 rs10808113 rs2286894 rs1024723 rs7776973 

rs17381884 rs17467232 kgp4610958 

PTPN6 5 rs2301262 rs10774452 rs2110071 rs2071079 rs759052 

PTPRB 42 rs431716 rs630608 rs17226367 rs2278346 rs17226374 

rs2567142 rs919594 rs2567140 rs11178281 rs3782377 

rs2567137 rs2584026 rs2567133 rs2116209 rs12314266 

rs4761222 rs2303963 rs2717440 rs7954837 rs991833 

rs2116211 rs2034011 rs2304821 rs2717418 rs2584011 

rs2165627 rs11178317 rs2465811 rs11178321 rs2717430 

rs2583999 rs751363 rs2439732 rs2465810 rs10506598 

rs7298147 rs2717425 rs11178333 rs17814416 rs17108441 

rs1442205 rs2717417 

PTPRR 47 rs2717445 rs10879175 rs7298378 rs7314925 rs11178364 

rs12580224 rs2089975 rs1398602 rs6581958 rs1156461 

rs11178376 rs12813125 rs972769 rs1398599 rs11178388 

rs3803036 rs7974346 rs4760933 rs6581964 rs1513098 

rs7968934 rs7297717 rs7306190 rs4760744 rs4760810 

rs10879198 rs1022242 rs17814482 rs2048607 rs7956670 

rs2203232 rs17108861 rs10784870 rs12229663 rs4294640 
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rs12305560 rs12297391 rs10879213 rs17108998 rs3923909 

rs10879214 rs11178478 rs4760847 rs3924187 rs6581971 

rs7965899 rs4595639 

PTPRZ1 22 rs740965 rs1007784 rs12669706 rs1019221 rs960930 

rs6466808 rs6970897 rs2690271 rs1196510 rs13246377 

rs1209633 rs3817483 rs1196505 rs2693657 rs1196473 

kgp11436861 rs1147504 rs1147498 rs1147492 rs1147491 

rs1147489 rs1147487 

RAB5A 9 rs11128928 rs4858660 rs17181547 rs4241539 rs2127956 

rs4398451 rs9835991 rs13085694 rs8682 

RASA1 5 rs6452750 rs35148638 rs10045850 rs2923742 rs10057748 

RNF123 4 rs11130216 rs1491985 kgp9864706 rs11130218 

SCGB2A2 1 rs17709552 

SCUBE2 31 rs1136966 rs1367 rs2056902 rs3751057 rs7109896 

rs3794149 rs1883100 rs10743098 rs1883099 rs10840164 

rs6486112 rs3751055 rs10769988 rs7106593 rs3751051 

rs3763904 rs7112378 rs7130913 rs6486125 rs2003906 

rs4910431 rs7107892 rs11606516 rs7929797 rs2647528 

rs1121629 rs11042182 rs3898554 rs4910443 rs10769990 

rs10769992 

SERPINF1 5 rs11658342 rs1136287 rs12603825 rs8074840 rs6828 

SH2D2A 2 rs926103 rs2150906 

SHB 12 rs776023 rs776022 rs776015 rs735740 rs3827519 rs3802414 

rs10973635 rs12345885 rs7047051 rs7856790 rs943936 

rs4878743 

SHC2 11 rs8902 rs1046822 rs16990450 rs10426188 rs12981152 

rs10408164 rs8112380 kgp471423 rs10409912 rs4919871 

rs740871 

SP1 2 rs3741651 rs17695156 

SP3 3 rs6711060 rs4508563 rs10190140 

SPARC 8 rs707156 rs3210714 rs729853 rs725937 rs2881558 

rs17718347 rs11745387 rs17112187 

SRC 13 rs7275012 rs16986606 rs6017996 rs6018027 rs6063022 

rs6018088 rs6090575 rs12329503 rs6090585 rs754625 

rs6018257 rs1570209 rs17785475 

SRPK1 3 rs17704843 rs3761981 rs11968721 

STAT3 6 rs1053005 rs1053004 rs8069645 rs6503695 rs744166 

rs4796791 

STYX 3 rs10483617 rs11625099 rs10873061 

TFAP2A 6 rs537112 rs533558 rs303050 rs3798696 rs1675414 rs303055 

TMEM52B 8 kgp11971666 rs7315498 rs7305138 rs10505752 rs12313003 

rs17808107 rs4764306 rs4764308 
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TNF 1 rs3093662 

TNFRSF25 1 rs11800462 

TP53 7 rs8073498 rs12949853 rs1614984 rs1625895 rs1042522 

rs8079544 rs11652704 

TRIM68 2 rs3750992 rs931811 

U2AF1 3 rs3788054 rs4920039 rs1789956 

UBC 2 rs41276688 rs13624 

USF2 3 rs2515622 kgp22836814 rs10405246 

VCL 10 rs12250729 rs4746166 rs10458640 rs10458657 rs11000851 

rs11000864 rs11000869 rs767809 rs2279648 rs3793921 

VEGFA 7 rs25648 rs833068 rs833070 rs3024994 rs3025010 rs3025039 

rs3025053 

VEGFB 2 rs11603042 rs4930152 

VEGFC 8 rs2877961 rs17697359 rs1485762 rs1485766 rs11947611 

rs3775195 rs2171083 rs4557213 

VHL 1 rs1642742 

VPS35 1 rs700582 

VTN 3 rs2277667 kgp4183944 rs2071379 

YWHAG 2 rs2908191 rs917424 

ZCCHC6 4 rs7035034 rs4587414 rs10115526 rs700759 

ZSCAN21 2 rs11558475 rs12705070 

Genes and SNPs used in the Part 2 (VEGF interaction network) analyses. Genes are listed 

in alphabetical order. 

 

 

LD pruning: PLINK was used for genotype extraction, followed by LD-based pruning 

(using the PLINK the command indep-pairwise with a window of 50 SNPs, a step size of 

5 SNPs188,189 and a threshold of 0.8 (LD > 0.8 removed) was used.  
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RESULTS 

Table S6: Results of the 1-way Cox-MDR runs (n=20) examining the MMP gene SNPs 

(n=201).  

Run 

# 

CVC  

Testing 

Balance 

Accuracy 

Best SNP 

Genotype Risk 

Categorization 

(High Risk Shown) 

10 2 0.512963 rs11225388 0:230  

12 4 0.590351 rs11225388 0:230  

17 4 0.595105 rs11225388 0:230  

6 3 0.595118 rs11225388 0:230  

5 5 0.596491 rs11225388 0:230  

13 3 0.597114 rs11225388 0:230  

4 4 0.598295 rs11225388 0:230  

3 3 0.610472 rs11225388 0:230  

1 3 0.613158 rs11225388 0:230  

7 4 0.616848 rs11225388 0:230  

16 4 0.617092 rs11225388 0:230  

19 4 0.62069 rs11225388 0:230  

11 4 0.62193 rs11225388 0:230  

20 5 0.630688 rs11225388 0:230  

8 4 0.642281 rs11225388 0:230  
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2 4 0.643003 rs11225388 0:230  

9 4 0.64537 rs11225388 0:230  

15 4 0.648148 rs11225388 0:230  

18 4 0.649482 rs11225388 0:230  

14 5 0.656477 rs11225388 0:230  

CVC: Cross-Validation Consistency. Using our selection procedure, rs11225388, with 

AA genotype being the high risk genotype, AG and GG genotypes being the low risk 

genotypes, was found to be the most frequent (and top) MDR model. Genotype risk 

classification format: SNP Genotype: Number of patients in genotype risk category. 

Genotypes are presented with additive coding (0=major allele homozygous genotype; 

1=heterozygous genotype, 2=minor allele homozygous). The top model is bolded. Data 

in this table is sorted by TBA and genotype risk categorization. 
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Figure S2. Kaplan Meier curves of the models identified by GMDR 0.9 in MMP SNP 

interaction analysis 

A. 2-way model: 

 

Log-rank p= 0.0152154116604927 

Red: (AA,CA),(AA,CC),(GA,AA),(GA,CC),(GG,CA)  

Blue: All other genotype combinations 
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B. 3-way model: 

 

Log-rank p = 0.0000209959191927817 

Red: (0TT,0TT,2GG), (0TT,1CT,1GA), (0TT,1CT,2GG), (0TT,2CC,1GA), (1GT,0TT,0AA), 

(1GT,0TT,1GA), (1GT,1CT,2GG), (1GT,2CC,2GG), (2GG,0TT,0AA), (2GG,1CT,2GG), 

(2GG,2CC,0AA), (2GG,2CC,2GG) 

Blue: All other genotype combinations 
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Figure S3. Kaplan-Meier curves for models identified in the VEGF interaction network 

analysis by GMDR 0.9.  

Red: high risk genotypes, blue: low risk genotypes 

 

VEGFA 

1-way model, iteration 1: 

 

 

Log-rank p = 0.1064349793977 

Red: GG and TT 

Blue: TG 
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1-way model, iteration 2: 

 

Log-rank p = 0.0749006184227615 

Red: AA 

Blue: GA, GG 
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2-way model: 

 

Log-rank p = 0.00393290069799821 

Red: (GG,AA), (AG,GG), (AA,GG), (AA,AG) 

Blue: All other genotype combinations 
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3-way model: 

 

Log-rank p = 0.000238697896697943 

Red: (GG,GG,TC), (GG,GG,TT), (GG,AG,TC), (GG,AA,CC), (GG,AA,TT), (CG,AG,CC), 

(CG,AG,TT), (CG,AA,CC), (CC,GG,TC), (CC,GG,TT), (CC,AG,TT), (CC,AA,TT) 

Blue: All other genotype combinations 
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VEGFB 

1-way model: 

 

Log-rank p = 0.133385031290691 

Red: AA and GG 

Blue: GA 
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2-way model: 

 

Log-rank p = 0.0309353056998482 

Red: (TT,CT), (CT,TT), (CC,CT) 

Blue: All other genotype combinations 
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VEGFC 

2-way model: 

 

Log-rank p = 0.0126227526320323 

Red: (CC,TC), (TC,CC), (TC,TT), (TT,TC) 

Blue: All other genotypes except (TT, TT) 
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3-way model: 

 

Log-rank p = 5.89522330356229E-06 

Red: (AA,TT,TG), (AA,CT,GG), (AA,CC,GG), (AA,CC,TG), (GA,TT,GG), (GA,CT,TG), 

(GA,CC,TT), (GG,TT,TG), (GG,CT,TG), (GG,CT,TT) 

Blue: All other genotype combinations except (GG,CC,TG) and (GG,CC,TT) 
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VEGFR1 

1-way model: 

 

Log-rank p = 0.00694530789778492 

Red: TT 

Blue: GT, GG 
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2-way model: 

 

 

Log-rank p = 0.00244383578765834 

Red: (CC,AA), (TC,CA), (TT,CA) 

Blue: All other genotype combinations 
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3-way model: 

 

Log-rank p = 1.50474809470499E-09 

Red: (GG,AA,TT), (GG,AA,AA), (GG,GA,TT), (GG,GA,AT), (GG,GG,TT), (AG,AA,TT), 

(AG,GA,AT), (AA,GG,TT), (AA,GG,AA) 

Blue: All other genotype combinations except (AA,AA,TT) and (AA,AA,AA) 
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VEGFR2 

1-way model, iteration 1: 

 

Log-rank p = 0.00325375804427782 

Red:  TT and CC 

Blue: TC 
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1-way model, iteration 2: 

 

Log-rank p = 0.0440341835682624 

Red: CC 

Blue: AC, AA 
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2-way model: 

 

Log-rank p = 0.000128426652769784 

Red: (CC,GA), (TC,AA) 

Blue: All other genotype combinations 
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3-way model: 

 

Log-rank p = 3.03572318253623E-07 

Red: (TG,CC,GT), (TG,TC,TT), (TG,TC,GG), (TG,TT,TT), (TG,TT,GT), (TG,TT,GG), 

(TT,CC,GG), (TT,TC,GT), (TT,TC,GG), (TT,TT,GT) 

Blue: All other genotype combinations 
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VEGFR3 

1-way model, iteration 1: 

 

Log-rank p = 0.109869998601945 

Red: TT 

Blue: CT, CC 
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1-way model, iteration 2: 

 

Log-rank p = 0.0443756555088326 

Red: TG, TT 

Blue: GG 
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1-way model, iteration 3: 

 

 

Log-rank p = 0.105405395808711 

Red: GT 

Blue: TT, GG 
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1-way model, iteration 4: 

 

Log-rank p = 0.0190727872695036 

Red: GG 

Blue: AG, AA 
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2-way model: 

 

Log-rank p = 0.000050799778711075 

Red: (CC,CC), (TC,TC), (TC,TT), (TT,TT) 

Blue: All other genotype combinations 
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3-way model:  

 

Log-rank p = 0.0000018569215896555 

Red: (CC,TT,CC), (CC,CT,CC), (TC,TT,TC), (TC,TT,TT), (TC,CT,CC), (TT,TT,TT), 

(TT,CT,CC), (TT,CT,TT) 

Blue: All other genotypes except (CC,CC,CC), (CC,CC,TC), (CC,CC,TT), (TC,CC,CC), 

(TC,CC,TC), (TC,CC,TT), (TT,CC,CC), and (TT,CC,TT) 
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PIGF 

1-way model: 

 

Log-rank p = 0.00581230466407173 

Red: AC, AA 

Blue: CC 
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3-way model: 

 

Log-rank p = 6.66585629309672E-06 

Red: (GG,GG,CC), (GG,GG,TC), (GG,AG,CC), (GG,AG,TT), (GG,AA,CC), (GG,AA,TT), 

(AG,GG,TT), (AG,AG,TC), (AG,AA,TC), (AG,AA,TT), (AA,GG,CC), (AA,AA,CC) 

Blue: All other genotype combinations 
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Table S7. SNPs annotated as eQTLs and identified by either Cox-MDR or GMDR 0.9 in this study. 

 Interactor 

set 

SNP Gene MAF 

Regulome

DB 

rank/score 

RegulomeDB 

if eQTL - 

which tissue? 

RegulomeDB 

if eQTL - 

which gene? 

GTEx (if 

eQTL?)  in 

transverse 

colon 

GTEx if 

eQTL in 

transverse 

colon - 

which gene? 

GTEx (if 

eQTL?)  

in 

sigmoid 

colon 

GTEx (if 

eQTL?) in 

sigmoid 

colon - 

which 

gene? 

 

PART 1 (MMP 

family genes) 

         

  2-way GMDR 0.9                   

  
rs7817382 and 

rs2254207 

                  

  rs7817382 MMP16 0.2506 6 No results NA cis-eQTL 

MMP16  

(minor allele 

G - lower 

expression) 

No results NA 

  rs2254207 MMP24 0.2585 4 No results NA No results NA cis-eQTL 

MMP24-

AS1 (minor 

allele C - 

lower 

expression) 
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  3-way GMDR 0.9                   

  

rs2664369, 

rs11225332 and 

rs11639960 

                  

  rs11639960 MMP2 0.3497 1f 

monocyte 

(cis-eQTL) 

AYTL1 (also 

named 

LPCAT2, 

(based 

on:(Zeller et 

al., 2010) 

minor allele G 

- lower 

expression) 

No results NA No results NA 

                      

  

PART 2 (VEGF 

family networks) 

                  

  1-way Cox-MDR                   
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PIGF [also 

identified 

by GMDR 

0.9 

GMDR] 

rs11130216 RNF123 0.3125 4 No results NA cis-eQTL 

RBM6 

(minor allele 

A -lower 

expression),  

 

UBA7 

(minor allele 

A -lower 

expression),  

 

GPX1 

(minor allele 

A -lower 

expression),  

 

AMT (minor 

allele A -

higher 

expression)  

cis-eQTL 

RBM6 

(minor 

allele A - 

lower 

expression)

, 

 

 AMT 

(minor 

allele A - 

higher 

expression)

, 

 

 CCDC36 

(minor 

allele A - 

higher 

expression)

, 

 

 MST1R 

(minor 
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allele A - 

higher 

expression)

, 

 

 CDHR4 

(minor 

allele A - 

higher 

expression) 

  1-way GMDR 0.9                   

VEGFR2 

(iteration 1) 

rs1024723 PTPN12 0.41 5 No results NA cis-eQTL 

APTR 

(minor allele 

T - higher 

expression) 

cis-eQTL 

APTR 

(minor 

allele T - 

higher 

expression) 
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PIGF 

rs11130216 (iteration 

1) 
RNF123 0.3125 4 No results NA cis-eQTL 

RBM6 

(minor 

alleles A - 

lower 

expression),  

 

UBA7 

(minor 

alleles A - 

lower 

expression),  

 

GPX1 

(minor 

alleles A - 

lower 

expression),  

 

AMT (minor 

alleles A - 

higher 

expression) 

cis-eQTL 

RBM6 

(minor 

allele A - 

lower 

expression)

,  

 

AMT 

(minor 

allele A - 

higher 

expression)

, 

 

 CCDC36 

(minor 

allele A - 

higher 

expression)

, 

 

 MST1R 

(minor 
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allele A - 

higher 

expression)

, 

 

 CDHR4 

(minor 

allele A - 

higher 

expression) 

VEGFR2 

rs2298432 (iteration 

2) 

MAPK1 0.3663 3a No results NA cis-eQTL 

LL22NC03-

86G7.1 

(minor allele 

A - higher 

expression),  

 

TOP3BP1 

(minor allele 

A - lower 

expression)  

cis-eQTL 

LL22NC03

-86G7.1 

(minor 

allele A - 

higher 

expression)

,  

 

TOP3BP1 

(minor 
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allele A - 

lower 

expression)

, 

 

 PPIL2  

(minor 

allele A - 

higher 

expression) 

VEGFR3 
rs17161155 (iteration 

4) 

LRRK1 0.3887 1f 
monocyte 

(cis-eQTL) 

LRRK1 

(based on 

(Zeller et al., 

2010), minor 

allele A - 

lower 

expression) 

No results NA No results NA 

                      

  2-way GMDR 0.9                   

VEGFA 

ELAVL1.rs3786619

FLT1.rs3936415 
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  rs3786619 ELAVL1 0.47 4 No results NA cis-eQTL 

CTD-

3193O13.8 

(minor allele 

A - lower 

expression) 

cis-eQTL 

CTD-

3193O13.8 

(minor 

allele A - 

lower 

expression)

, 

 

 CTD-

2325M2.1 

(minor 

allele A - 

higher 

expression) 

VEGFB 

ADRB2.rs1042711 

HAL.rs3213737 

                  

  rs3213737 HAL 0.4088 5 No results NA cis-eQTL 

AMDHD1 

(minor allele 

A - lower 

expression) 

cis-eQTL 

AMDHD1 

(minor 

allele A - 

lower 

expression) 
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VEGFC 

FLT4.rs11739750 

FLT4.rs307814 
                  

  rs11739750 FLT4 0.2175 1f 

monocyte 

(cis-eQTL) 

SCGB3A1 

(based 

on(Zeller et 

al., 2010): 

minor allele T 

- higher 

expression) 

No results NA No results NA 

                      

  3-way GMDR 0.9                   

VEGFA 

CLU.rs9331888 

ELAVL1.rs3786619 

NRP2.rs861079 

                  

  rs3786619 ELAVL1 0.47 4 No results NA cis-eQTL 

CTD-

3193O13.8 

(minor allele 

A - lower 

expression) 

cis-eQTL 

CTD-

3193O13.8 

(minor 

allele A - 

lower 

expression)

, 
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 CTD-

2325M2.1 

(minor 

allele A - 

higher 

expression) 

VEGFB 

ADRB2.rs1042711 

NRP1.rs17296436 

VEGFB.rs11603042 

                  

  rs11603042 VEGFB 0.36 5 No results NA cis-eQTL 

TRPT1 

(minor allele 

T - higher 

expression), 

 

 FKBP2 

(minor allele 

T - higher 

expression)  

cis-eQTL 

TRPT1 

(minor 

allele T - 

higher 

expression)

, 

 

 FKBP2 

(minor 

allele T - 

higher 

expression) 
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VEGFC 

FLT4.rs307823 

KDR.rs6828477 

KDR.rs12502008 

                  

  rs12502008 KDR 0.3613 4 No results NA No results NA cis-eQTL 

SRD5A3 

(minor 

allele T - 

higher 

expression) 

VEGFR1 

MICAL2.rs1564947 

MICAL2.rs954428 

NEDD4.rs12232351 

                  

  rs12232351 NEDD4 0.335 6 No results NA cis-eQTL 

NEDD4 

(minor allele 

A - higher 

expression) 

No results NA 

VEGFR2 

DNM2.rs7246673 

NRP1.rs10827227 

SCUBE2.rs7106593 

                  



189 

 

  rs7106593 SCUBE2 0.425 7 No results NA No results NA cis-eQTL 

TRIM66 

(minor 

allele G - 

lower 

expression)

, 

 

 SCUBE2 

(minor 

allele G - 

higher 

expression) 

Only the variants that are annotated as an eQTL are shown in this table. eQTL: expression quantitative trait locus; MAF: 

Minor Allele Frequency; NA: not applicable 
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Appendix 2: Ethics approval 

Researcher Portal File #: 20182055  

 

Dear Mr. Aaron Curtis:  

 

This e-mail serves as notification that your ethics renewal for study HREB # 2018.051 – 

Examining interactions among different variables that can explain the prognostic 

variability in colorectal cancer – has been approved. Please log in to the Researcher 

Portal to view the approved event.  

 

Ethics approval for this project has been granted for a period of twelve months effective 

from July 17, 2022 to July 17, 2023.  

 

Please note, it is the responsibility of the Principal Investigator (PI) to ensure that the 

Ethics Renewal form is submitted prior to the renewal date each year. Though the 

Research Ethics Office makes every effort to remind the PI of this responsibility, the PI 

may not receive a reminder. The Ethics Renewal form can be found on the Researcher 

Portal as an “Event”.  

 

The ethics renewal [will be reported] to the Health Research Ethics Board at their 

meeting dated August 25, 2022.  

 

Thank you,  

 

Research Ethics Office  

 

(e) info@hrea.ca 

(t) 709-777-6974 

(f) 709-777-8776 

(w) www.hrea.ca 

Office Hours: 8:30 a.m. – 4:30 p.m. (NL TIME) Monday-Friday 

 
This email is intended as a private communication for the sole use of the primary addressee and those 

individuals copied in the original message. If you are not an intended recipient of this message you are 

hereby notified that copying, forwarding or other dissemination or distribution of this communication by 

any means is prohibited. If you believe that you have received this message in error please notify the 

original sender immediately.  
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