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Abstract

Sequential designs of Randomized Clinical Trials (RCT) allow repeated significance

testing based on cumulative data over time. The sequential testing method enables

early termination of the study using a pre-defined stopping rule when preliminary

results show a clear superiority of one treatment over the other. Over the decades, re-

searchers have presented several techniques for determining the stopping rule, mainly

for continuous data. However, clinical trial data are not necessarily continuous. In

certain cases, data can be dichotomous, containing only two distinct values. Some re-

searchers have proposed special sequential testing procedures to analyze binary data

considering individual data points at each stage. With the influence of those ap-

proaches, we are more focused on a method which can be used to analyse groups of

binary data.

The thesis considers the implementation of three main approaches, namely, Pocock

[32, 34], O’Brien and Fleming [29] and Haybittle-Peto [31, 15] methods for computing

the critical values required for controlling the size and power of tests at various stages

of sequential analysis. Critical values are obtained using an iterative Markov chain

approach to satisfy the alpha spending at each stage. Considering the discrete nature

of the data, a likelihood ratio test statistic is used for testing the proportions. Ex-

amples of two-stage and three-stage analysis were used to illustrate the computation

of the critical values, size and power of tests of proportions, and then the outcomes

based on Pocock, O’Brien & Fleming and Haybittle-Peto methods are compared.
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Lay summary

Clinical research includes searching for possible medical treatments, comparing the

benefits of different treatments, and finding out which combinations of treatments

work best. Sequential designs of Randomized Clinical Trials (RCT) are a useful

strategy to find a way to stop the study early if the initial results show that one

treatment is clearly better than the other; so that researchers can save time as well as

the costs of the study. In this method, data is evaluated as collected, and sampling is

discontinued using a predefined stopping rule as soon as the study finds it statistically

significant.

The existing methods that developed various stopping rules are based on the as-

sumption that the data are continuous. However, clinical data may be categorical,

where the counts within each category need to be considered. Sometimes, data might

be binary, such as medical test results (negative or positive), survival status (alive

or dead), and family medical history (yes or no). Thus, only a particular sequential

testing procedure can be compatible with binary data. Therefore, this study proposes

an appropriate test statistic for testing proportions considering the discrete nature of

binary data. The study also proposes techniques to calculate the decision boundary,

the corresponding error rate and power to determine whether the test leads to the

correct decision in a very large proportion of the time. Various approaches are uti-

lized to define the decision rule, and these approaches are compared. Furthermore,

generalized equations are provided, allowing the suggested technique to be used for

any number of stages.
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Chapter 1

Introduction

1.1 Randomized clinical trials

Clinical research involves examining potential medical treatments, comparing the ben-

efits of competing treatments, and determining the best treatment combinations. Ran-

domized clinical trials (RCT) are often regarded as the most reliable clinical research

strategy (Hardon et al. 1996 [13], Altman et al. 2001 [3], Sverdlov et al. 2013 [39]). In

RCTs, the participants are randomly assigned to one or more treatments to measure

and compare the effect and value of the treatment against a control. The experimen-

tal approach of ‘randomization’ has widespread application in biological experiments.

Randomization is the foundation of clinical trial designs and is utilised to ensure that

statistical inference at the end of the study is legitimate (Friedman et al. 2004 [41]).

The outcomes of clinical trials will be biased if the treatment groups are systemat-

ically different. This systematic bias can be eliminated by generating random groups

that differ in both known and unknown prognostic factors. Randomization can also

assist in decreasing certain experimental biases such as ascertainment bias, selection

bias, and accidental bias (Sverdlov et al. 2013 [39]). Subjects or participants in clin-

ical trials as well as investigators and others should have no prior knowledge of the

treatments that have been allocated. The knowledge of treatment assignment can

introduce ascertainment bias to the experiment. For example, if a patient knows they

are assigned to a placebo, they are more likely to drop out of the trial or not comply
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with the treatment plan; and researchers or analysts may be biased in their evalu-

ations of patient outcomes based on their expectations of treatment effects. Proper

randomization can eliminate this ascertainment bias. According to Schul et al. (2002)

[36], the studies that do not employ appropriate or clear randomization tend to over-

state treatment effects by up to 40% when compared to studies that use adequate

randomization.

Furthermore, a balance of important known and unknown covariates across treat-

ments is required for meaningful treatment comparison. In the analysis of clinical

trials, it is common practice to make corrections for covariate imbalance by employ-

ing statistical methods such as analysis of covariance (ANCOVA). However, inter-

preting this post-adjustment technique can be problematic (Frane 1998 [11]) because

covariate imbalance commonly leads to unforeseen interaction effects, such as uneven

slopes among subgroups of variables. Therefore, the best strategy to balance covari-

ates among groups is to use proper randomization during the design stage of a clinical

study rather than after data collection. In clinical trials, there are various ways to

assign individuals to treatment groups randomly. The most often used randomization

methods are simple randomization, block randomization, stratified randomization,

and adaptive randomization.

Simple randomization relies solely on a single set of random assignments. In the

case of two treatments, the simplest technique of random allocation provides each

patient with an equal chance of receiving either treatment, which is performed by

flipping a coin (heads - control, tails - treatment) or rolling a dice (even-control,

odd-treatment). However, computer-based random number generators and random

number tables in statistical books are the most common methods used in practice.

Simple randomization is straightforward and easy to implement. However, it may

result in an uneven number of participants between groups, particularly in clinical

trials with small sample sizes (Altman et al. 1999 [2]). Therefore, block randomization

is used as an alternative.

Block randomization involves small and well-balanced blocks with specified group

assignments that are used to ensure the same number of participants are included in

each group (Frane 1998 [11], Altman et al. 1999 [2]). The block size is pre-determined

and is a multiple of the number of treatment groups. Following the determination

of block size, all balanced possibilities of assignments inside the block are computed.
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Randomization is then carried out by assigning random permutations of treatments

within each block. Despite the fact that block randomization allows for balanced

sample sizes, groups that are rarely comparable in terms of certain covariates may

be formed. These unbalanced covariates can significantly impact the interpretation

of the results if they are not controlled (Pocock et al. 1975 [34]). Furthermore, the

statistical analysis might be biased by the imbalance, which would lower the statistical

power of the test. Therefore, stratified randomization is used to adjust and balance

the influence of covariates.

In stratified randomization, a separate block is formed for each combination of

covariates that impact the dependent variable, and subjects can be allocated to the

appropriate block. The block size is recommended to be relatively small to keep the

equilibrium in smaller strata. Increasing the number of stratification factors or the

number of levels within strata results in a fewer number of patients per stratum. In

stratified randomization, the baseline measurements are taken before randomization.

However, in clinical trials, patients are often enrolled one at a time on a continuous

basis, making this strategy ineffective. Therefore, stratified randomization is prob-

lematic if all participants’ baseline attributes are unknown (Lachin et al. 1988 [25])

and an alternative method is necessary.

Covariate adaptive randomization is a reliable replacement for conventional ran-

domization approaches in clinical research (Zalene 1990) [51]. Covariate adaptive

randomization assigns participants to treatments by examining the allocation of com-

parable patients who have previously been randomised and then allocating them to

achieve the best possible balance among the treatment groups with regard to all

stratification variables (Kalish et al. 1985) [20].

The best technique to ensure that the findings of a clinical trial are not influenced

by how participants are assigned to each treatment is to use the appropriate method

of randomization. The objective of RCT is to obtain an accurate comparison of the

effects of an experimental treatment in the target patient population. A common

approach for comparing treatments is to fix the sample size/duration in advance and,

upon completion of the study, conduct the analysis using a formal test of significance

based on a calculated test statistic. However, in clinical trials with sequential patient

entrance, fixed sample size or fixed duration designs are unethical (Pocock 1977,1982)

[32, 33]. Even if the trial was initially established as a fixed sample size/duration
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design, the study must be terminated for ethical grounds when intermediate data

assessment suggests that continuation is unsuitable. One real-world example is the

Beta-Blocker Heart Attack Trial (BHAT), reported in 1981. The duration of the trial,

which was originally intended to be fixed, was shortened after it was shown that the

group of patients who were given propranolol had a much lower mortality rate from all

causes than the control group (Lai 1984) [26]. Moreover, medical trials are concerned

about the possibility of early termination of the study if preliminary results show a

clear superiority of one treatment over the other. One solution to this concern is group

sequential designs. This makes it possible to decide whether or not to terminate the

trial based on the results of repeated significance tests performed on the accumulated

data after each treatment has been evaluated.

1.2 Group sequential designs of randomized clini-

cal trials

Group sequential designs of RCTs perform multiple tests based on cumulative data

over time. This approach is well known as sequential analysis or sequential hypothesis

testing. The key feature of this approach is that the sample size is not specified in

advance. Instead, data are assessed as obtained, and sampling is terminated with

a pre-defined stopping rule as soon as statistically significant findings are revealed,

eliminating the need for additional sampling.

The core concept of group sequential designs is repeated significance testing, with

one test after each set of collected observations. Therefore, the plan of group se-

quential sampling systems generally includes collecting data as groups of observations

and determining the maximum number of stages. Given the maximum number of

inspections, K, a group sequential design will have a (K − 1) number of ‘interim

analyses/stages’ and one final stage (Armitage 1991) [5]. Interim analysis refers

to an assessment of the present data from a trial in progress, which addresses the

core research issue, and which has the potential to change the way the study is

conducted (Whitehead et al. 2001) [47]. The idea of group sequential testing is

illustrated in Figure 1.1 comparing a non-sequential design with a group sequential

design with two stages and three stages (Weigl et al. 2020) [44] (Retrieved from

https://meth.psychopen.eu/index.php/meth/article/view/2811/2811.pdf).

https://meth.psychopen.eu/index.php/meth/article/view/2811/2811.pdf
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Figure 1.1: Non-sequential design and group sequential designs with two and three
stages

The conventional fixed sample design trial has a predetermined sample size. Re-

gardless of whether the true treatment impact is considerably positive, marginal, or

truly adverse compared to the control, this design employs the same (fixed) number

of participants. The statistical analysis is performed at the end of the study (See the

left panel of Figure 1.1). In contrast, the number of participants is not specified in

advance in the group sequential design. The interim analyses in sequential designs

provide early termination when preliminary results reveal efficacy or ineffectiveness.

The middle set of graphs in Figure 1.1 shows a two-stage group sequential design,

which consists of one interim analysis and a final analysis. Similarly, the right panel

of Figure 1.1 depicts a three-staged group sequential design with two interim analyses

and one final analysis. A decision must be made at each interim analysis to continue

the study or to stop and reject the null hypothesis. These graphs for group sequential

designs clearly demonstrate that sample sizes are growing with time. When compared

to typical fixed-sample designs, group sequential approaches allow more flexibility by

incorporating interim analyses.

Nevertheless, this interim analysis may have hidden consequences. If the results

of the analysis indicate that the trial can be terminated early, then the trial will be

stopped, and there won’t be any further analysis. However, if the analysis does not

reveal that the trial can be stopped early, the fact that the analysis was carried out

could potentially undermine the power of the test and increase the type I error rate.

That is, every time we have interim looks at the data considering the termination
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of the trial, we increase or compound the probability of falsely rejecting the null

hypothesis (Kumar et al. 2016) [24].

Consider a statistical test with a significance level of 0.05. For a fixed sample de-

sign, the data is analysed at the end of the trial; therefore there’s no interim analysis.

Then there’s a 5% chance of incorrectly rejecting the null hypothesis (See Figure 1.2:

Retrieved from https://www.quantics.co.uk/blog/hidden-consequences-of-interim-a

nalyses-and-adaptive-trial-options/).

Figure 1.2: Probability of correct and incorrect decisions for a fixed sample size design.

In contrast, if we examine the data multiple times with several interim looks and

consider the significant level to be 0.05, we have a 5% chance of stopping each time

which increase the probability of incorrectly rejecting the null hypothesis at every

interim analysis (Figure 1.3 : retrieved from https://www.quantics.co.uk/blog/hidd

en-consequences-of-interim-analyses-and-adaptive-trial-options/).

Figure 1.3: Probabilities of correct and incorrect decisions for a design with one

interim analysis.

https://www.quantics.co.uk/blog/hidden-consequences-of-interim-analyses-and-adaptive-trial-options/
https://www.quantics.co.uk/blog/hidden-consequences-of-interim-analyses-and-adaptive-trial-options/
https://www.quantics.co.uk/blog/hidden-consequences-of-interim-analyses-and-adaptive-trial-options/
https://www.quantics.co.uk/blog/hidden-consequences-of-interim-analyses-and-adaptive-trial-options/


7

The overall type I error rate of the fixed sample size design in Figure 1.2 is 5%, and

the overall type I error rate of the design with an interim analysis (Figure 1.3) is 5% +

4.75% = 9.75%. Moreover, the probability of correct decision for the fixed sample de-

sign is 95%, and it has also decreased to 90.25% in the design with an interim analysis.

However, sequential design has resolved the issue of accommodating the interim

analysis. The overall study must have a maximum of 5% likelihood of rejecting null-

hypothesis incorrectly, however this 5% can be split between the intermediate analysis

(or analyses) and the final analysis. There are different ways to split the type I

error rate between the stages and researchers have proposed different functions. This

approach is known as ‘Alpha spending’ and it allows for sequential testing while while

maintaining the overall type I error rate. More details on alpha spending functions

are explained in Section 1.2.3.

When it comes to the benefits, a group sequential design (two or three stages)

with a slight increase in sample size relative to the fixed sample test can lower the

expected sample size by approximately 30% (Harington 2001, [14] ), while maintaining

the statistical power and controlling the type I error rate of the study. Therefore, the

main advantage of the group sequential designs over traditional fixed-sample testing

is that it enables early conclusions while maintaining accurate decisions. This quicker

decision-making is beneficial in terms of conserving cost, resources, and time.

The statistical concept underlying sequential testing is based on a specific numeri-

cal recursive integration formula developed by Armitage et al.(1969) [6] and McPher-

son et al.(1971) [28], which addresses the independent increment structure of the

underlying data accumulation process. Pocock (1977, 1982) [32, 33] and O’Brien &

Fleming (1979) [29] provided the primary motivation for the creation of group se-

quential test techniques, which are currently frequently utilised in clinical research.

Their application in quality control may be traced all the way back to the research

conducted by Dodge & Romig (1929) [9] and Shewhart (1931) [37]. Jennison & Turn-

bull (2000) [19] and Todd (2007) [40] provided historical reviews of the early work on

group sequential designs.

The choice of the probability model for each specific problem is a key point when

designing these sequential clinical trials. Most of the models use Normal probability

distribution (Pocock 1977) [32] while some studies have used Bernoulli (Kulldrof et
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al.,2011) [23], Binomial (Hoel et al.,1976) [17], and Poisson data (Abt,1998) [1]. Prior

to the start of the trial, the “stopping rule” is specified and stated. The stopping rule

specifies when and why the trial should be stopped. For example, a favourable trial

outcomes indicate that the study should be continued. Negative trial outcomes (any

unfavourable consequences) indicate that the experiment should be stopped.

Sequential testing often involves comparing the value of a test statistic with a

critical value at each stage. This technique is used by Wald (1945) [42] in his classical

sequential probability ratio test (SPRT), and other researchers in their frequentist

methods. Unfortunately, when applied to clinical studies, Wald’s test had two major

flaws. First, the test is for two simple hypotheses. In clinical studies, the null hypoth-

esis of no treatment difference is typically accompanied with a two-sided alternative

hypothesis of treatment difference. Second, there is no upper limit set on the total

number of participants in the trial which makes the SPRT an open design. ‘The

boundaries approach’ is the result of a series of improvements that were made to fix

either one of these issues or both. The ‘triangular test’ is an adjustment, first sug-

gested by Anderson (1960) [4], then examined further by Lai (1973) [27], and finally

detailed by Whitehead et al. (1983) [46]. In ‘Triangular plans’, the stopping zone is

defined by two straight lines that intersect at the conclusion of the trial. This can

be recognized as the most common design for the boundaries approach. Whitehead

(1997) [45] provided a detailed description on the triangular test and other methods

based on straight line stopping boundaries.

For a test that is continually monitored, the total type I error rate can be main-

tained using the critical values calculated using the boundaries technique. However,

the type I error rate calculated is lower than the intended level, α (Todd 2007, [40] ).

In order to accommodate the discretely monitored sample route, Whitehead (1997)

[45] proposed a modification to the continuous boundaries. The modification, known

as the ’Christmas tree correction’, pulls critical values in by an amount proportional

to the predicted overshoot of the discrete sample path.

Another common approach to construct the decision rule is to use an alpha spend-

ing function. The idea behind this approach is to control the type I error rate at each

stage of the multiple tests using a non-decreasing function. (See Section 1.2.3) This

technique provides more flexibility in the form of the stopping boundaries. The ap-

proach allows for the development of a test that maintains the type I error rate when
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inspections depart from their planned route (Todd 2007) [40]. Alpha spending func-

tions proposed by Lan and DeMets (1983) [12] lead to designs that are comparable

to those proposed by Pocock, and O’Brien & Fleming. Kim and DeMets (1987) [22]

proposed a family of alpha spending functions, that are compatible with the designs

created using the boundaries technique. However, the above-mentioned frequentist

methods, such as Pocock’s method and O’Brien & Fleming’s method, have intrinsic

alpha spending functions behind them (Silva et al. 2020) [38].

1.2.1 Basic concepts

In group sequential designs, a statistical significance test generates decision regions for

rejecting and not rejecting the null hypothesis H0. A test statistic is calculated after

collecting observations and is compared with a critical value. The boundary of the

rejection region is defined by the critical value and H0 is rejected if the test statistic

falls in the rejection region. The probability of rejecting H0 when it is true (Type I

error rate) is bounded by the significance level(α) of the test. In order to provide a

clear idea of the methodology used in this study, all of the fundamental concepts on

group sequential designs, as well as statistical terms, are explained below.

a) Test statistic

A hypothesis test is often stated in terms of a test statistic T (X1, X2, ..., Xn) =

T (X), which is a function of the sample [7]. For instance, a test might state that the

null hypothesis (H0) must be rejected if the sample mean (x̄) is larger than 5. Here,

T (X) = x̄ is the test statistic and therefore the rejection region can be defined as,

{(x1, x2, ...., xn) : x̄ > 5}. Test statistic provides you with information on how likely

it is that the results obtained from the sample data are under the assumption that

the null hypothesis is true. The null hypothesis is rejected in favour of an alternate

hypothesis as the results become less likely under this assumption. The more likely

your results are, the more difficult it is to reject the null hypothesis.

In the group sequential set-up, testing is done after groups of observations have

been collected or measured. Let the maximum number of stages be K, and then

the sizes of the samples introduced to the existing data at each stage are given by
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n1, . . . , nK ; making the maximum sample size of the test procedure N =
K∑
k=1

nk.

At stage k, an appropriate test statistic(T ∗k ) for testing the null hypothesis (H0) is

determined. The test statistic summarizes the information up to stage k. Then, H0

is rejected at stage k if the test statistic T ∗k falls in the rejection region (R∗) of kth

stage;

T ∗k ∈ R∗k

This indicates that the test statistic of stage one to (k−1)th stage has fallen in the

continuation region. T ∗i ∈ C∗i for i = 1, 2, .., (k − 1)

b) Critical values

A critical value is a point on the distribution of the test statistic under the null

hypothesis that defines a boundary between non-significant and significant results in

a hypothesis test. Armitage et al.(1969)[6] first proposed altering the critical values in

order to control the type I error rate at a specific level using an inverse interpolation

method. Critical values create the boundaries which separate the acceptance, con-

tinuation and rejection regions. However, in this study, the acceptance region is not

considered; therefore, the critical values calculated in this study define the boundary

between the rejection and the continuation regions.

Let cvk be the critical value for the kth stage. Then, the stopping rule is (consid-

ering two sided alternative hypothesis), reject the null hypothesis (H0) if |Tk| ≥cvk or

else continue the test to next stage; where Tk is the test statistic for the kth stage.

c) Log likelihood ratio test

Sequential testing is traditionally done by comparing a test statistic against a

critical value. Wald (1945) [42], Pocock (1977) [32], O’Brien & Fleming(1979)[29] em-

ployed this approach in their methods for testing group sequential data. Wald (1945)

[42] introduced the first classical likelihood method called the ‘sequential probability

ratio test’ (SPRT) for continuous testing. This is a very general method and can be

used with many different probability distributions. The critical value of this SPRT is

given in the scale of likelihood ratio statistic.
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A likelihood function L(θ|X) is created using a probability distribution that relates

to the outcome measurements of the study. To decide whether θ0 or θ1 is the more

acceptable value of θ, the likelihood ratio (LR) can be used to examine the evidence.

The likelihood ratio for comparing θ0 and θ1 can be denoted as,

LR =
L(θ0|X)

L(θ1|X)
. (1.1)

According to Wald’s SPRT, reject H0 if LR ≥ 1−β
α

and do not reject H0 if

LR ≤ β
1−α where α is the type I error rate and β is the type II error rate of the

test. However, the outcome of Wald’s classical SPRT is highly dependent on the rela-

tive risk used in specifying the alternative hypothesis. To overcome this, Kudroff et al.

(2011)[23] proposed a modification to Wald’s SPRT method, which is called the ‘max-

imized sequential probability ratio test’ (MaxSPRT). The key feature of MaxSPRT

is that it allows for a composite, one-sided alternative hypothesis, and it introduces

an upper stopping boundary. This study follows the idea of MaxSPRT, and the log-

likelihood ratio has been chosen as the test statistic.

d) Type I error rate

In hypothesis testing, type I error rate (α) is the probability of rejecting a null

hypothesis when it is true; that means,

α = Pr(Reject H0|H0 is true). (1.2)

In group sequential testing, the overall type I error rate is computed by adding

the error rates of each stage. However, controlling the study-wide overall type I error

rate is a major concern in group sequential analysis as it should not exceed the overall

significance level of the test. It is necessary to make statistical adjustments to control

the total type I error rate. Type I error rate control approaches introduced by Pocock

(1977) [32], O’Brien & Fleming (1979) [29] and Haybittle (1971) [15] & Peto (1976)

[31] are examples of such adjustments. Moreover, alpha spending functions(see Sub-

section 1.2.3), provide a more flexible way to control the overall type I error rate.
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e) Power

It is important to conduct high-quality hypothesis tests in order to be confident

in results. An essential aspect of determining the overall quality of a hypothesis test

is to ensure it is “powerful”.

The power of a hypothesis test is the probability of rejecting the null hypothesis

H0 when it is false. That is the probability of making the correct decision when the

alternative hypothesis Ha is true, and it is denoted as,

(1− β) = Pr(Reject H0|Ha is true). (1.3)

Here, β is the probability of failing to reject the null hypothesis when it is false.

In group sequential testing, the overall power is computed by adding the partial prob-

abilities of each stage.

f) The recursive integration

Recursive integration is widely applied to evaluate high-dimensional integral ex-

pressions. This is used in many areas of statistical inference where high-dimensional

integral evaluations are required for probability calculations and critical point assess-

ments (Hayter 2006) [16]. Recursive integration enables the evaluation of an integral

expression in one dimension by a series of calculations in a smaller dimension. As a

result, the computation time is much decreased. Recursive approaches for sequential

analysis were demonstrated by Armitage et al.(1969) [6] and Jennison & Turnbull

(1991) [18]. The recursive integration approach is commonly used to calculate the

critical values of Pocock’s method and O’Brien & Fleming’s method.
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1.2.2 Frequentist methods

Assume a group sequential plan with K stages. Let T1, T2, . . . , TK be the test statistics

and cv1, cv2, . . . , cvK be the critical values for each stage. Considering a two sided

alternative hypothesis, the sequential test is terminated at the kth interim analysis

due to the rejection of the null hypothesis, if

|Tk| ≥ cvk for k = 1, 2, . . . , K

The critical values are selected in such a way that the total significance level

does not exceed the intended α level. Different approaches have been developed for

determining these stopping boundaries. This study focuses mainly on three main

designs.

a) Pocock method

Pocock (1977) [32] proposed a stopping boundary for testing two-sided alternative

hypotheses in group sequential analysis. This approach has same critical value (cv∗)

at each interim analysis and at the final analysis ensuring,

PH0(|T ∗1 | ≥ cv∗ or ... or |T ∗K | ≥ cv∗) = α, (1.4)

where the critical values(cv∗) depend on K and α, and can be denoted by cP (K,α).

The constant cP (K,α) is calculated numerically using the recursive integration. Table

1.1 provides the critical values cv∗ = cP (K,α) together with the expected alpha

spending that were computed for α = 0.05 and K = 2, 3, 4, and 5 respectively.

Though the exact boundaries were obtained for a trial with two treatments and

a response from a Normally distributed population with known variance, Pocock jus-

tified that group sequential methods could also be adapted to many other types of

response variables, such as responses from a Normally distributed population with

unknown variance, Binomial, or Exponential. The Pocock boundary is simple, as the

critical values are the same for each interim analysis. This approach is more likely to

result in the trial being terminated early, resulting in a smaller expected sample size.

Early termination, however, depends on several other factors, such as the sample size

and the power. In Pocock’s method, the number of interim analyses must be fixed at

the beginning, and this creates a disadvantage as the method is not able to incorpo-

rate additional analysis after a trial has already begun.
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b) O’Brien & Fleming method

O’Brien and Fleming (1979) [29] proposed monotonically decreasing critical values

fulfilling the condition,

PH0(|T ∗1 | ≥ cv∗1 or ... or |T ∗K | ≥ cv∗K) = α, (1.5)

where cv∗1 > cv∗2 > . . . > cv∗K .

The critical values defined by cv∗k depend on α, K and the current stage k. This

can be expressed as cv∗k = cOBF (K,α)/
√
k where cOBF (K,α) is a constant and it is

computed numerically by recursive integration. Critical values (cv∗k) for α = 0.05 and

K = 2, 3, 4, and 5 are provided in Table 1.1.

These boundary values are inversely proportional to the square root of informa-

tion levels on the standardized Z scale. The boundary is conservative, with large

critical values in the early stages; therefore, the O’Brien-Fleming (OBF) design is less

likely to reject the null hypothesis in the early stages compared to the Pocock design.

However, the final critical value is close to the critical value for the fixed-sample design.

c) Haybittle-Peto method

Haybittle (1971) [15], and Peto (1976) [31] suggested a simple approach of using

a very large critical value for the interim analysis and adjusting the final analyses to

achieve the desired type-I error rate. The same critical value is used in every interim

analysis with a threshold p-value of 0.001. However, the final analysis is still assessed

at the expected level of significance, making the final critical value close to the critical

value for the fixed-sample test.

The condition for the Haybittle-Peto method is,

PH0(|T ∗1 | ≥ cv1 or ... or |T ∗K | ≥ cvK) = α, (1.6)

where cv1 = cv2 = ... = cvK−1 ≈ 3 and cvK = Zα/2.
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However, the main drawback of this method is that it is very conservative, and the

chance of terminating the test in the early stages is less likely. The critical values of all

three methods discussed are in Table 1.1 to facilitate straightforward implementation

without requiring further computation. The critical values (cv) and the expected

alpha spending (α′) have been computed for the significance level α = 0.05 and

K = 2, 3, 4, and 5, respectively.

Table 1.1: Critical values (cv) and expected alpha spending (α′) for each stage of a

group sequential analysis for Pocock, OBF and Haybittle-Peto methods.(Retrieved

from https://online.stat.psu.edu/stat509/lesson/9/9.5)

K Stage
Pocock O’Brien - Fleming Haybittle-Peto

cv α′ cv α′ cv α′

2
1 2.178 0.0294 2.782 0.0054 3 0.002

2 2.178 0.0294 1.967 0.0492 1.96 0.05

3

1 2.289 0.0221 3.438 0.0006 3.291 0.001

2 2.289 0.0221 2.431 0.0151 3.291 0.001

3 2.289 0.0221 1.985 0.0471 1.96 0.05

4

1 2.361 0.0182 4.084 0.00005 3.291 0.001

2 2.361 0.0182 2.888 0.0039 3.291 0.001

3 2.361 0.0182 2.358 0.0184 3.291 0.001

4 2.361 0.0182 2.042 0.0412 1.96 0.05

5

1 2.413 0.0158 4.555 0.000005 3.291 0.001

2 2.413 0.0158 3.221 0.0013 3.291 0.001

3 2.413 0.0158 2.63 0.0085 3.291 0.001

4 2.413 0.0158 2.277 0.0228 3.291 0.001

5 2.413 0.0158 2.037 0.417 1.96 0.05

From Table 1.1, we can see that the critical value and alpha spending are the

same for each stage for a chosen K value in Pocock’s method. It is clearly noticeable

that the O’Brien & Fleming method has monotonically decreasing critical values. In

contrast, the expected alpha spending is monotonically increasing, resulting in very

low values for the first stage. In all interim analyses, the Haybittle-Peto approach has

higher critical values. The final stage, on the other hand, has a critical value of 1.96.

As shown, the expected alpha spending at each interim analysis of the Haybittle-Peto

method is very small (0.001), resulting in 0.05 for the final stage.

https://online.stat.psu.edu/stat509/lesson/9/9.5
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1.2.3 Alpha spending function approach

Repeated statistical data analysis needs modifications to maintain the type I error rate

at a specified level. Three strategies for constructing discrete sequential boundaries

for clinical trials were discussed in Subsection 1.2.2. The total number of interim looks

must be stated in advance for these strategies to work. To overcome this drawback,

Lan and DeMets (1983) [12] proposed a more flexible method for constructing discrete

sequential boundaries named as alpha spending function approach. This method is

based on the selection of α∗(t), a function that describes the rate at which the signif-

icance level α is spent. In other words, every time an interim analysis is performed, a

portion of the overall alpha is “spent”. The decision boundary is determined by past

and current decision times, but it does not depend on the number of observations at

the kth analysis or the maximum number of analyses, K, as well as the future decision

times. The function α∗(t) is monotonically increasing in t, with α∗(0) = 0 and α∗(1)

= α, where α is the expected overall type I error rate.

Let T ∗1 be the test statistic for the first analysis. Then the critical value, cv1 for

the two-sided case is defined by,

PH0(|T ∗1 | ≥ cv1) = α∗(t1), (1.7)

where α∗(t1) is the type I error rate spent at the first analysis.

The condition for the critical value for the second stage(cv2) is,

PH0(|T ∗1 | < cv1, |T ∗2 | ≥ cv2) = α∗(t2)− α∗(t1). (1.8)

Here, α∗(t2) is the type I error rate spent up to the second stage and (α∗(t2)− α∗(t1)
) represents the type I error rate spent only at the second stage of the analysis. A

similar criterion can be used to calculate the critical values of the remaining stages.

The general condition to find the critical value for kth stage is,

PH0(
k−1⋂
i=1

{|T ∗i | < cvi}, |T ∗k | ≥ cvk) = α∗(tk)− α∗(tk−1), (1.9)

which can be solved using a recursive integration formula.
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Over the years, researchers have proposed different forms of alpha spending func-

tions. Some of the functions approximate the group sequential boundaries discussed

in Subsection 1.2.2. This research makes use of three alternative alpha spending func-

tions that are based on the ideas represented by Pocock, O’Brien & Fleming, and

Haybittle-Peto.

1.2.4 Markov chain methods for sequential designs of clinical

trials

The stochastic model known as Markov chains, named after Andrey Markov, is a

series of potential events where predictions or probabilities for the subsequent state

are only based on the prior event state, not the states before. In other words, the

probability of (n+1)th step will depend solely on the nth step and not the entire series

of steps before nth step. This quality is often referred to as ‘memorylessness’ or the

Markov property.

Markov chains have numerous applications as statistical models for analysing se-

quential data. Kemperman (1961) [21] describes sequential testing using an analytic

approach to Markov processes. Choi (1968) [8] developed a novel sort of closed se-

quential design for clinical trials based on a fundamental equation of Markov chains.

Choi’s designs are simple to implement and can be used for a variety of sequential

clinical studies.

Woodall and Reynolds (1983) [49] introduced the Markov chain approach to ap-

proximate the Sequential Probability Ratio Test (SPRT) using test statistic values

of SPRT. Tests that can precisely be represented by discrete Markov chains with ab-

sorbing barriers have been used to simulate the properties of the SPRT. The method

is applicable to both discrete and continuous test statistics. Examples of the grouped

rank test for sequential data of two-sample design proposed by Wilcoxon et al. (1963)

[48] are used to demonstrate that the Markov chain approach produces extremely

good approximations.

Douke (1994) [10] presented a sequential design based on Markov chains for iden-

tifying the better of two medical treatments in clinical trials by using delayed obser-

vations with a reaction time lag. The goal of his study was to find the best sequential

design based on the minimum expected loss, for which an iterative Markov chain
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formula based on the trinomial random walk on a lattice diagram was used.

Pulford (2003) [35] presented a technique for analysing the sequential probability

ratio test for automatic track maintenance. The approach uses finite state Markov

chain analysis to calculate the probabilities of track confirmation events and their

anticipated timings. Yi (2013) [50] used the Markov chain method to compute the

statistical power for response adaptive designs. Paxinou et al.(2021) [30] recently con-

ducted research on using Markov chain models to analyse sequence data in scientific

experiments. The ability of students to conduct a science experiment is estimated by

sequential analysis using a Markov chain model.

1.3 Motivation of the study

Group sequential analysis plays an important role in clinical trials because of its

advantages over fixed sample designs. The advantages include the fact that data

can be assessed as they are obtained. It also promotes faster decisions. Over the

years, many researchers worked on different concepts to analyse data sequentially.

Most of the well-known methods are proposed for numerical data, especially normally

distributed.

However, the data collected from clinical trials are not always continuous. Some-

times, the data may be qualitative/categorical, necessitating consideration of the

counts within each category. In certain cases, data can be dichotomous, such as

medical test findings (negative or positive), survival status (alive or dead), readmis-

sion (yes or no), family medical history (yes or no), smoking status (yes or no), and

so on. Therefore, analysts have to chose specific sequential testing methods that can

work with this dichotomous data.

Researchers have been interested in finding a method that works well with binary

data for several decades. Kulldroff et al. (2011)[23] proposed a Maximized Sequential

Probability Ratio Test(MaxSPRT) for binary data comparing individuals exposed to

a drug or vaccine with matched unexposed individuals. A list of critical values was

produced for various sample sizes and matching ratios (unexposed individuals per

exposed).



19

Silva et al. (2020) [38] provided an excellent explanation of the theory underlying

the computations of MaxSPRT and a proposal for optimal alpha spending for sequen-

tial analysis with binary data. However, the approaches employ Bernoulli trials, in

which individuals are added one at a time in each stage of the analysis. Therefore, we

are more focused on a method which can be used to analyse groups of binary data.

With the influence of the research works mentioned above, this study finds criti-

cal values considering groups of binary data at each stage using three different alpha

spending functions based on Pocock, O’Brien & Fleming(OBF) and Haybittle-Peto

methods. That is, the alpha spending functions used in this study are modified with

the idea of the Pocock, OBF, Haybittle-Peto methods. For example, the alpha spend-

ing function influenced by Pocock’s method does not use the same alpha spending

values proposed by Pocock, but it follows the idea of spending the same alpha at

each stage. Therefore, the modified alpha spending function spends the same portion

of alpha (α/K, where K is the maximum number of stages) at each stage in order

to obtain the specified significance level (α). Similarly, the alpha spending function

influenced by OBF method does not use the same alpha spending values proposed

by O’Brien and Fleming, but it follows the idea of monotonically increasing alpha

spending at each stage. Moreover, the alpha spending function impacted by Peto’s

method has extremely tiny alpha spending at each interim analysis and the remainder

goes to the final stage to determine the overall significance level.

1.3.1 Outline of the thesis

This thesis focuses on developing a group sequential analysis with binary responses

and calculating the critical values, type I error rate and power. The critical values are

obtained using an iterative Markov chain approach to satisfy the alpha spending at

each stage. Chapter 2 provides a brief overview of the Markov chain technique, as well

as an explanation of how we used the Markov chain approach to binomial data in a

single sample scenario. The construction of Log Likelihood Ratio (LLR), type I error

rate and power computation are explained stage-wise, particularly for the first stage,

which is unconditional, and then the second and kth stages, which are conditional on

the preceding stage. The critical values, type I error rate and power for the three-stage

design have been calculated, and results are presented for different sample sizes. The

convergence of critical values with increasing sample size was depicted using graphs.
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In Chapter 3, the proposed group sequential analysis is extended to compare two

binomial proportions. Similar to the single sample scenario, the critical value, type

I error rate, and power calculations are described stage-wise: first interim analysis

as unconditional case and the second interim analysis for the conditional case. Then

the kth analysis/stage is explained with a general technique that may be applied to

any conditional stage (k > 1). The alpha spending functions are constructed based

on Pocock, O’Brien & Fleming, Haybittle-Peto methods, and the results obtained

from the three methods are compared. In Chapter 4, the findings of the study are

examined, and a summary is provided along with some suggestions for future research

work.



Chapter 2

Markov chain method to determine

critical values

2.1 Iterative Markov chain method for one sample

case

A Markov chain is a stochastic model describing a sequence of events where the

probability of an event depends only on the previous event. In other words, given the

present, the future is independent of the past.

Let X1, X2, . . . , Xn be a sequence of random variables with the Markov property.

Then the probability of the (n+ 1)th event is,

Pr(Xn+1 = x|X1 = x1, X2 = x2, . . . Xn = xn) = Pr(Xn+1 = x|Xn = xn), (2.1)

Markov chains have a wide range of applications as statistical models for real-

life processes in different fields. Kulldorff et al. (2011) [23] have used an iterative

Markov chain approach to calculate critical values for Bernoulli data in drug and

vaccine safety surveillance. The methodology that they employed, had an impact

on this study. The idea of utilizing the log-likelihood ratio as the test statistic and

the approach of employing an iterative Markov chain to determine critical values are

influenced by Kulldorff’s research. Therefore, before commencing the methodology of

my study, let’s examine Kulldorff’s approach.
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Kulldorff et al. (2011) [23] suggested a maximized sequential probability ratio test

(MaxSPRT) based on a composite alternative hypothesis as it is effective across a wide

variety of relative risk levels in the context of drug and vaccine safety surveillance.

Since accurate estimates of the anticipated number of incidents are not available be-

fore starting the drug and vaccine safety surveillance, they have considered different

designs to collect more information. Collecting data on potential detrimental effects

from the times when the subject was exposed to the drug/vaccine and when they

were not exposed is one possible design. In a self-controlled design, for instance, an

exposed time period after vaccination can be compared to an unexposed time period

before vaccination for the same individual or to an unexposed time period long after

vaccination. Alternately, the individuals exposed to the drug/vaccine can be com-

pared with matching individuals who are not exposed. As stated in their study, the

Poisson model can only be utilized if the unexposed time period is significantly longer

than the exposed period. Otherwise, a binomial probability model should be used

to derive the log-likelihood function and the critical values. The concept of using a

binomial model in this study is similar to a series of coin flips (adverse events) that

may result in heads or tails (exposed or unexposed). When the exposed and unex-

posed time periods have the same duration, it is referred as 1:1 matching ratio or

z=1 where z is the ratio of the length of the matched unexposed time period and

the length of the exposed time period. Then the probability of a head under the

null hypothesis is p = 0.5. Similarly, if the matching ratio is 1:3 then p=0.25. In

their study, the ”increased relative risk due to the drug/vaccine” (RR) [23] is the

unknown parameter. If RR=1, then the parameters of binomial distribution is n and

p=[1/(1+1)]=0.5 when matching ratio is 1:1 (z=1). On the other hand, if z=2, then

the parameters of the binomial distribution are n and p=[1/(1+2)]=0.67 under RR=1.

Therefore, this probability can be computed as,

p =
1

1 + z/RR
. (2.2)
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Even though their derivations are applicable for any pair of hypotheses, Kulldorff

et al. (2011) [23] mainly focused on the standard form of non-excess versus elevated

risk given as,

H0 : RR = 1 vs H1 : RR > 1. (2.3)

Let, n represents the number of adverse events recorded so far during the sequential

data collection, and cn represents the number of adverse events that have occurred

within the exposed time periods among those n events (cn < n), and z is the ratio of

the length of the matched unexposed time period and the length of the exposed time

period. Then, the log-likelihood ratio is the test statistic for Binomial distribution

and can be written as,

LLRn = cn ln
(cn
n

)
+ (n− cn) ln

(n− cn
n

)
− cn ln

( 1

z + 1

)
− (n− cn) ln

( z

z + 1

)
.(2.4)

when zcn
n−cn > 1 and 0 otherwise.

2.1.1 Modelling Binomial data

Let’s consider a group sequential analysis for a single sample with binomial data. A

null hypothesis with the probability of success equal to a given value, p0, is tested

against a two-sided alternative hypothesis as,

H0 : p = p0 vs Ha : p 6= p0. (2.5)

Kulldorff et al. (2011) [23] considered the sequential entries of individuals in their

study. That is, the analysis is carried out by considering a single entry at a time until

N individuals have been analysed. On the other hand, our research is based on the

sequential entries of a group of participants at each interim analysis. At each stage

of sequential testing, a test statistic is compared to a critical value which is an upper

signalling threshold. The test statistic for this study is the log-likelihood ratio (LLR),

defined as,

LLR = 2ln

[
L(p̂|Ha)

(L(p0|H0)

]
= 2[ln(L(p̂|Ha))− ln(L(p0|H0))], (2.6)

where p̂ is the maximum likelihood estimator (MLE) for the parameter p.
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Prior to starting the analysis, the maximum number of stages, ’K’, must be de-

termined. The trial may be terminated due to the rejection of the null hypothesis

at any interim analysis, or it may proceed to the next stage. As there is no further

continuation, the final stage (Kth stage) can result in acceptance or rejection of the

null hypothesis.

The first stage of group sequential analysis is always unconditional. If the trial

is to be continued after the first interim analysis, the second stage is conditional on

the first stage. Similarly, all subsequent stages are dependent on the preceding stage.

Consequently, the methodology is broken down into stages.

First stage (Unconditional stage)

At the beginning of the procedure, n1 participants comprise a single sample, and

s1 is the number of successes. We denote the number of failures, which is equal to

(n1−s1), as f1. Therefore, the log-likelihood ratio for the first stage (LLR1) is defined

as follows.

Assuming a binomial distribution, the log-likelihood under the null hypothesis, H0

(given in 2.5) is,

[l(p0|H0)] = ln

(
n1

s1

)
+ s1ln(p0) + (n1 − s1)ln(1− p0). (2.7)

The log-likelihood under the alternative hypothesis is,

[l(p̂|Ha)] = ln

(
n1

s1

)
+ s1ln(p̂) + (n1 − s1)ln(1− p̂), (2.8)

where

p̂ =
s1
n1

. (2.9)

Therefore, the test statistic for the first stage(LLR1) is,

LLR1 = 2{[l(p̂|Ha)]− [l(p0|H0)]}, (2.10)

Considering that s1 can have any value between zero and n1, inclusive, the calculation

of LLR1 can be simplified as,

LLR1 = 2[s1ln(s1) + f1ln(f1)− n1ln(n1)− s1ln(p0)− f1ln(1− p0)], (2.11)
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where

f1 = n1 − s1. (2.12)

For a given sample size(n1) and the probability of success under the null hypothesis

(p0), the test statistic LLR1 only depends on the number of successes at the given

stage. As a result of the discrete nature of data, the test statistic can have only a

finite number of values.

Given that s1 may take on any value between zero and n1, there are (n1 + 1)

distinct values for s1. Consequently, there are (n1 + 1) possible test statistic values at

the first stage (T 1st). That is,.

T 1st ∈ (T 1st
1 , T 1st

2 , . . . , T 1st
n1+1).

Therefore, the jth test statistic value of the first stage, T 1st
j is,

T 1st
j = LLR1(S1 = j − 1); j = 1, 2, ..., (n1 + 1) (2.13)

In this study, the log-likelihood ratio (LLR) is not a monotonically increasing or

decreasing function with the number of successes. Since it is a non-linear function with

a minimum, the calculated LLR values are ordered in ascending order and denoted

as, T 1st
(1) , T

1st
(2) , . . . , T

1st
(n1+1).

Since sample size, n1 and the probability of success under null hypothesis (p0) is

fixed (or given), the log-likelihood ratio for stage 1 (LLR1) depends only on s1 (see

equation (2.11)). Therefore, the probability of LLR1 depends only on the probability

of successes at first stage, s1 (given n1 and p0),

Pr[LLR(S1 = s1|n1, p0)] = Pr(s1|n1, p0) =

(
n1

s1

)
(p0)

s1(1− p0)(n1−s1), (2.14)

where s1 = 0, 1, . . . , n1.

After computing all possible LLR values and their probabilities, we can determine



26

the critical value of the first stage (cv1). Therefore, let us define,

c1 = min{j ∈ N : Pr(T 1st ≥ T 1st
(j) |p = p0) ≤ α1}, (2.15)

where α1 is the amount of alpha spending for the first stage.

Note that, for a group sequential design with a given maximum number of stages

K, a sequence of signalling thresholds cv1, cv2, ..., cvK is obtained to satisfy the overall

level of significance α ∈ (0, 1).

Using a searching algorithm, we can determine the critical value. When all possible

LLR values are ordered along with their probabilities, we choose the middle LLR value

and determine the probability of type I error rate associated with that. If the type

I error rate is greater than the expected alpha spending of the stage, we limit the

next search to LLR values greater than the selected(middle) one. If the computed

probability is less than the expected alpha spending of the stage, then in the next

search, we only evaluate LLR values less than the selected one. In a similar manner,

we only use half of the data in the subsequent search. From that half, chose the

middle value and conduct the searching process. This iteration continues until we

find two consecutive LLR values, one with type I error rate higher than the expected

alpha spending and the other one with type I error rate lower than the expected alpha

spending. Then we determined the critical value of the stage to be the LLR with a

type I error rate that is nearly equal to the expected alpha spending but does not

exceed it.

According to equation (2.15), T 1st
(c1)

becomes the critical value of the first stage.

cv1 = T 1st
(c1)
, (2.16)

such that,
{
Pr
(
T 1st
(c1)

)
+ Pr

(
T 1st
(c1+1)

)
+ ...+ Pr

(
T 1st
(n1+1)

)}
≤ α1.

Type I error occurs when we reject the null hypothesis and incorrectly assert that

the study discovered significant differences when there were, in fact, none. This can

be identified as a false positive and should be controlled in each stage of the sequential

analysis. Hypothesis tests at each step guarantee that the chance of a false positive

test result does not exceed a certain level α, resulting in just a small fraction of truly

unsuccessful treatments being used in the long run (Wassmer & Brannath 2016) [43].
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After determining all possible test statistic values, we can calculate the probability

of error associated with each test statistic value. For a given value of T ∗, this error

rate can be explained as the probability (under the null hypothesis) of all the test

statistics which is greater than or equal to this given value, that is,

error(T ∗) = Pr(T ≥ T ∗). (2.17)

For a particular test statistic value, if this error rate is almost equivalent to the amount

of alpha that is supposed to be spent during the specified stage, we select that test

statistic as the critical value.

For example, consider a trial with sample size 19 and p0 = 0.4. There are 20

different LLR values for s1 = 0, 1, ..., 19. We may arrange all LLR values in ascending

order and calculate the type I error rate associated with each LLR value.

Figure 2.1: Type I error rate of 20 distinct test statistic values.

Figure 2.1 presents twenty distinct test statistic values, along with their respective

error rates. The alpha spending value is equal to 0.025, which is represented by the

red line. At the intersection of the graph and the red line, we can find the critical
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value. Once the critical value for the first stage (cv1) is identified, the type I error rate

is computed using the probabilities associated with each test statistic value. Define

e∗1 as the type I error rate of the first stage; then,

e∗1 = Pr(T 1st ≥ cv1) = Pr(T 1st ≥ T 1st
(c1)

) =

n1∑
i=c1

Pr(T 1st
(i) ). (2.18)

Since cv1 defines the boundary of the rejection region of the first stage; Pr(T 1st ≥
cv1) refers to the probability of all test statistic values in the rejection region. As

the sample size (n1) and the probability of success under the null hypothesis (p0) are

pre-determined, the probability of the test statistic values that fall in the rejection

region is computed using the s1 values that were rejected in the first stage. Therefore,

the type I error rate for the first stage is expressed as a sum of partial probabilities,

e∗1 =
∑
s1∈sR1

(
n1

s1

)
(p0)

s1(1− p0)n1−s1 . (2.19)

where SR1 refers to the set of s1 values in the rejection region / absorbing state for

Stage 1.

Second stage

The trial will continue to the second stage only if the null hypothesis is not rejected

in the first stage. When the critical value of stage one is defined, it creates a boundary

for the rejection region. Some values in the S1 vector (S1 = SR1
⋃
SC1 ) fall in the

rejection region while the rest fall in the continuation region. All the s1 values which

are rejected in the first stage are referred to as the “absorbing state”. The rest of

the s1 values in the “non-absorbing state” will be considered in the second stage. We

denote by SC1 , the set of s1 values in continuation region / non- absorbing state for

Stage 1.

After the first interim analysis, the data in the continuation region is combined

with a sample of size n2 with s2 number of successes. Therefore, all possible values of

s2 are added to each s1 value in the continuation region, resulting in a set containing

the possible total number of successes at the second stage (ST2 ) as,

ST2 = s1 + s2 | s1 ∈ SC1 ,∀s2. (2.20)
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The statistical test is conducted by considering the combined sample; therefore,

the combined sample size at stage two will be N2 = n1 + n2. Then, the test statistic

for the second stage is,

LLR2 = 2 [ST2 ln(ST2 ) + F T
2 ln(F T

2 )−N2ln(N2)− ST2 ln(p0)− F T
2 ln(1− p0)], (2.21)

where F T
2 is the total number of failures in the combined sample at the second stage,

which can be calculated as,

F T
2 = N2 − ST2 . (2.22)

The second stage consists of performing the same procedures as the first stage;

all possible test statistic (LLR) values are calculated and ordered in ascending order

with their corresponding probabilities. The probabilities of LLR for the second stage

are conditional on the first stage.Note that, there are several possible combinations

of s1(∈ SC1 ) and s2 that result in a given value in ST2 . Therefore, the conditional

probabilities are calculated as,

Pr[LLR(ST2 = s1 + s2|s1 ∈ SC1 ,∀s2)]

=
∑

s1∈SC
1 ,∀s2

{(n1

s1

)
(p0)

s1(1− p0)(n1−s1) ∗
(
N2

s2

)
(p0)

s2(1− p0)(N2−s2)
}
.

(2.23)

Let,

c2 = min{j ∈ N : Pr(T 2nd ≥ T 2nd
(j) |p = p0) ≤ α2}, (2.24)

where α2 is the amount of alpha spending for the second stage. Therefore, T 2nd
(c2)

becomes the critical value of the second stage.

cv2 = T 2nd
(c2)

. (2.25)

Once the critical value (cv2) is identified, the type I error rate of the second stage

e∗2 is computed using the conditional probabilities associated with each test statistic

value as,

e∗2 = Pr(T 2nd ≥ cv2) = Pr(T 2nd ≥ T 2nd
c2

) =
∑
∀i≥c2

Pr(T 2nd
(i) ). (2.26)
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Since cv2 defines the rejection region of second stage, Pr(T 2nd ≥ cv2) is the prob-

ability of all test statistic values in the rejection region of the second stage. As the

combined sample size at the second stage (N2 = n1 + n2) and probability of success

under the null hypothesis (p0) are known, the probability of test statistic values falling

in the rejection region can be derived using ST2 values rejected at the end of the second

stage.

Thus, the type I error rate for the second stage is computed as,

e∗2 =
∑
sT2 ∈SR

2

Pr[LLR(ST2 = s1 + s2|s1 ∈ SC1 ,∀s2)]

=
∑

s1∈SC
1 ,(s1+s2)∈SR

2

{(n1

s1

)
(p0)

s1(1− p0)(n1−s1) ∗
(
N2

s2

)
(p0)

s2(1− p0)(N2−s2)
}
.

(2.27)

kth stage (any k > 1)

The above-discussed procedure can be generalized to use for any stage after the first

interim analysis. If we have reached the kth stage of the sequential design, it signifies

that there was insufficient evidence to reject the null hypothesis at the (k−1)th stage.

Thus the kth stage is conditional on (k − 1)th stage.

Let’s define the following sets in order to construct the log-likelihood ratio and the

associated probabilities of kth stage.

SRk−1 - set of possible number of success values in rejection region of stage (k-1) /

absorbing state for stage (k-1).

SCk−1 - set of possible number of success values in continuation region of stage(k-1)/

non- absorbing state for stage (k-1).

At the beginning of kth stage (any k > 1) of the sequential test design, a new

sample of size nk is combined with the data that is in the continuation region of

(k − 1)th stage. Assume there’s sk number of successes out of these nk. Therefore,

the possible total number of successes at the kth stage (STk ) can be defined as follows.

The values in STk , is formed by combining each of the STk−1 values in the continuation

region of the previous stage (SC(k−1)) with all the sk values of stage k; so that,
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STk = STk−1 + sk| STk−1 ∈ SCk−1,∀sk. (2.28)

where sk represents all possible number of success values at stage k. Thus sk can take

any value between zero and the size of the sample introduced at stage k (nk).

sk = (0, 1, 2, ..., nk). (2.29)

As the test is conducted for the cumulative data, the combined sample size at

stage k can be defined as Nk where,

Nk = n1 + n2 + ...+ nk. (2.30)

Therefore, the LLRk at the kth stage is,

LLRk = 2
[
STk ln(STk ) + F T

k ln(F T
k )−Nkln(Nk)− STk ln(p0)− F T

k ln(1− p0)
]
, (2.31)

where F T
k is the total number of failures in the combined sample at the kth stage

which can be calculated as,

F T
k = Nk − STk . (2.32)

After calculating all possible LLR values, corresponding probabilities must be

calculated. There can be several possible combinations of s(k−1)(∈ SCk−1) and all

sk ∈ Sk that result in a given value in STk . Therefore, for given Nk−1, Nk, p0 values

and any k > 1,

Pr[LLR(STk )] =
∑

sTk−1∈S
C
k−1,∀sk

{(Nk−1

sTk−1

)
(p0)

sTk−1(1− p0)(Nk−1−sTk−1)

∗
(
Nk

sk

)
(p0)

sk(1− p0)(Nk−sk)
}
.

(2.33)

When all possible test statistic values (LLR) for the kth stage have been obtained,

they are arranged in ascending order along with their probability. Let’s assume there

are ‘Mk’ number of possible STk values at kth stage, then ‘Mk’ number of possible test

statistic values (LLR) can be obtained. Therefore, all possible LLR values for kth

stage are, T kth1 , T kth2 , ..., T kthMk
and its ordered version is, T kth(1) , T

kth
(2) , ..., T

kth
(Mk)

.
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Define,

ck = min{j ∈ N : Pr(T kth ≥ T kth(j) |p = p0) ≤ αk}, (2.34)

where αk is the amount of alpha sending for the kth stage.

Therefore, T kth(ck)
becomes the critical value of the kth stage.

cvk = T kth(ck)
, (2.35)

which makes
{
Pr
(
T kth(ck)

)
+ Pr

(
T kth(ck+1)

)
+ ...+ Pr

(
T kth(Mk)

)}
≤ αk.

Then, the type I error rate of the kthstage e∗k can be defined as,

e∗k = Pr(T kth ≥ cvk) = Pr(T kth ≥ T kthck
) =

∑
∀i≥ck

Pr(T kth(i) ). (2.36)

This refers to the probability of all test statistic values of kth stage that falls in the

rejection region. For a known sample size (Nk) and probability of success under the

null hypothesis (p0), the above-mentioned probability only depends on the STk values,

which are rejected at the end of the kth stage. Thus, the type I error rate for the kth

stage can be computed as,

e∗k =
∑

sTk−1∈S
C
k−1,(s

T
k−1+sk)∈S

R
k

{(Nk−1

sTk−1

)
(p0)

sTk−1(1− p0)(Nk−1−sTk−1)

∗
(
Nk

sk

)
(p0)

sk(1− p0)(Nk−sk)
}
.

(2.37)
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Overall type I error rate calculation

If the trial consists of a total of K number of stages, the overall error rate (eT ) is

the summation of error rates at each stage.

eT = PH0(T
1st ∈ R1) + PH0(T

1st ∈ C1, T
2nd ∈ R2) + ...+

PH0(T
1st ∈ C1, ..., T

(K−1)th ∈ CK−1, TKth ∈ RK),
(2.38)

where Rk, Ck denotes the rejection region and continuation region of kth stage, respec-

tively.

Thus, the overall type I error rate is computed as follows,

eT = e∗1 + e∗2 + ...+ e∗K ,

= Pr
(
T 1st ≥ cv1

)
+ Pr

(
T 2nd ≥ cv2

)
+ ...+ Pr

(
TKth ≥ cvK

)
,

= Pr
(
T 1st ≥ T 1st

(c1)

)
+ Pr

(
T 2nd ≥ T 2nd

(c2)

)
+ ...+ Pr

(
TKth ≥ TKth(cK)

)
,

=

n1∑
i=c1

Pr
(
T 1st
(i)

)
+
∑
∀i≥c2

Pr
(
T 2nd
(i)

)
+ ...+

∑
∀i≥cK

Pr
(
TKth(i)

)
.

(2.39)

The sequence of critical values cv1, cv2, ..., cvK (where K is the maximum number

of stages) is obtained to satisfy the overall level of significance α ∈ (0, 1). Each critical

value is obtained to satisfy the alpha spending at the corresponding stage. Different

methods are used to construct the alpha spending functions that attain the given

overall significance level.

In Section 2.2 we discuss three different alpha spending functions based on the

methods introduced by Pocock, O’Brien & Fleming and Haybittle-Peto. The first set

of analyses was done using the same alpha spending at each stage, as introduced in

the Pocock method. If α denotes the overall significance, then the portion of type

I error rate spent in each stage is α/K for a sequential test which has a total of K

number of analyses. The second set of analyses was done by calculating monotonically

decreasing critical values using the idea of the O’Brien & Fleming method. The

percentage of alpha spending at each stage is calculated to approximate the values of

O’Brien & Fleming method. The third set of analyses followed the Haybittle-Peto’s

method, which uses the same threshold p-value of 0.001 for all interim analyses and

the expected significance level (α) for the final analysis. All the tests were constructed
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for different sample sizes, considering equally sized samples. Critical values, type I

error rate and power have been calculated, and the results were discussed.

2.1.2 Power calculation

Power (1 − β) of a test is defined as the probability of rejecting null hypothesis

when the alternative hypothesis is true. For a given specific alternative hypothesis

(Ha : p = p1), the power is given by,

(1− β) = PH1(T
1st ∈ R1) + PH1(T

1st ∈ C1, T
2nd ∈ R2) + ...+

PH1(T
1st ∈ C1, ..., T

(K−1)th ∈ CK−1, TKth ∈ RK).
(2.40)

For a given critical value (cvk), the probability of all LLR values which are in rejection

region (of kth stage) when Ha is true, can be computed as,

(1− β)k = Pr(LLR ≥ cvk|p = p1) =

Mk∑
i=ck

Pr(T kth(i) |p = p1). (2.41)

where Mk is the number of possible test statistic (LLR) values at the kth stage.

(1− β)k =
∑

sTk−1∈S
C
k−1,s

T
k ∈S

R
k

{(Nk−1

sTk−1

)
(p1)

sTk−1(1− p1)(Nk−1−sTk−1)

∗
(
Nk

sk

)
(p1)

sk(1− p1)(Nk−sk)
}
.

(2.42)

The power of the test can be expressed as a sum of partial probabilities.

(1− β) =
K∑
k=1

(1− β)k =
K∑
k=1

{MK∑
i=ck

Pr(T kth(i) |p = p1)
}
. (2.43)
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2.2 Critical value calculation for two-stage and three-

stage designs

2.2.1 Two-stage design

Consider a two-stage RCT with alpha spending functions based on Pocock, O’Brien &

Fleming, and Haybittle-Peto methods. To obtain a 0.05 confidence level (α = 0.05),

the following alpha spending values were used as the predicted type I error rate of

each stage.

Table 2.1: Expected alpha values for each stage of two-stage design

Stage1 Stage2

Pocock 0.025 0.025

OBF 0.010 0.040

Peto 0.001 0.049

The alpha spending under the Pocock design is calculated by dividing the overall

significance level by the number of stages to get the same amount of alpha spending

at each stage. OBF alpha spending values are monotonically increasing, spending a

very small amount of alpha at the first stage. In Haybittle-Peto’s method, the alpha

spent at each stage prior to the final stage is 0.001, and the remainder is spent on the

final stage.

Using the alpha spending values above, critical values and type I error rates have

been calculated for each stage of a two-stage RCT along with the overall type I error

rate for various sample sizes considering the hypotheses as,

H0 : p = 0.4 vs Ha : p 6= 0.4 (2.44)

Tables 2.2, 2.3 and 2.4 shows the critical values (cv1, cv2) and the associated type

I error rate at each stage (e1, e2) along with the overall type I error rate for various

sample sizes with the same sample size(n) increment at each stage.
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Table 2.2: Critical values and type I error rates for a two-stage analysis based on

Pocock’s method.

n cv1 cv2 e1 e2 Total error rate

5 9.1629 6.6959 0.010240000 0.015090586 0.025330586

10 6.6959 5.9575 0.018341171 0.017708755 0.036049926

15 6.8475 5.4910 0.014519696 0.020906184 0.035425879

20 5.9575 5.5113 0.022427038 0.017319979 0.039747017

25 5.8453 5.1956 0.022639904 0.021857018 0.044496923

30 6.6277 5.4831 0.01396038 0.01939634 0.03335672

35 5.6765 5.0688 0.02342428 0.02105284 0.04447712

40 5.5113 5.0877 0.02391439 0.02196849 0.04588288

45 5.7686 4.8251 0.02136447 0.02431841 0.04568288

50 5.7057 4.9331 0.02086795 0.02435597 0.04522392

55 5.9768 5.3377 0.01844729 0.01884275 0.03729004

60 5.4831 4.8986 0.02423177 0.02353796 0.04776972

65 5.4874 4.7690 0.02269001 0.02398646 0.04667648

70 5.8052 4.9327 0.01977414 0.02368098 0.04345512

75 5.4226 4.8389 0.02445622 0.02249362 0.04694984

80 5.4656 5.0097 0.02247818 0.02177770 0.04425587

85 5.7915 4.9427 0.01952433 0.02191344 0.04143777

90 5.4737 5.1152 0.02330531 0.01985612 0.04316143

95 5.5436 4.8494 0.02121975 0.02414796 0.04536771

100 5.2518 4.8083 0.02478046 0.02238170 0.04716216

110 5.3377 4.7701 0.02474090 0.02427956 0.04902045

120 5.7429 4.9379 0.01945160 0.02272354 0.04217514

130 5.3069 4.7327 0.02483451 0.02329804 0.04813255

140 5.1984 4.7506 0.02494327 0.02423258 0.04917585

150 5.3390 4.9411 0.02410969 0.02136066 0.04547035

160 5.2631 4.7923 0.02388265 0.02235908 0.04624172

170 5.4120 4.835 0.02290973 0.02301809 0.04592781

180 5.3610 4.7133 0.02247962 0.02375154 0.04623116

190 5.5129 4.7727 0.02145596 0.02417348 0.04562944

200 5.4820 4.6716 0.02091034 0.02468673 0.04559707
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Table 2.3: Critical values and type I error rates for a two-stage analysis based on

O’Brien & Fleming’s method.

n cv1 cv2 e1 e2 Total error rate

5 9.1629 6.6959 0.010240000 0.015090586 0.025330586

10 10.2165 5.0773 0.007724339 0.033619681 0.04134402

15 8.7878 4.8656 0.007099804 0.035034729 0.042134533

20 9.0516 4.9691 0.005222997 0.031881205 0.037104202

25 7.9836 5.1956 0.006693157 0.026167547 0.032860704

30 7.6705 4.6841 0.008512679 0.031286717 0.039799396

35 7.4184 4.7081 0.008662804 0.033029320 0.041692125

40 7.3213 4.3998 0.009415491 0.035659930 0.045075421

45 7.2984 4.5294 0.008922285 0.035793119 0.044715403

50 7.3120 4.3202 0.009048068 0.036929099 0.045977167

55 7.3738 4.4904 0.008322680 0.036184056 0.044506736

60 7.4594 4.3400 0.008130040 0.036430161 0.044560201

65 7.5528 4.5267 0.007372329 0.035221423 0.042593752

70 7.0175 4.4158 0.009901840 0.033922136 0.043823976

75 7.1364 4.6081 0.009310046 0.032420737 0.041730782

80 7.3108 4.3238 0.008268719 0.038913724 0.047182443

85 7.4710 4.2514 0.007691930 0.037919775 0.045611706

90 7.0262 4.4599 0.009650250 0.034947334 0.044597584

95 7.2326 4.4067 0.008501543 0.034091535 0.042593077

100 7.4085 4.1802 0.007798368 0.039276610 0.047074978

110 7.2506 4.3593 0.008307757 0.034940107 0.043247865

120 7.1120 4.3773 0.008955023 0.036351489 0.045306511

130 7.0518 4.1861 0.009172055 0.038245144 0.047417199

140 6.9661 4.2403 0.009550067 0.039008936 0.048559003

150 6.9609 4.4375 0.009554073 0.034280292 0.043834365

160 6.9123 4.2961 0.009727508 0.035249204 0.044976711

170 6.9397 4.366 0.009585790 0.035604074 0.045189864

180 6.9190 4.2494 0.009611121 0.036201922 0.045813043

190 6.9663 4.3313 0.009375077 0.036267736 0.045642813

200 6.9677 4.2334 0.009297009 0.036581260 0.045878269
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Table 2.4: Critical values and type I error rates for a two-stage analysis based on

Haybittle-Peto’s method.

n cv1 cv2 e1 e2 Total error rate

5 9.1629 6.6959 0.010240000 0.015090586 0.025330586

10 18.3258 5.0773 0.000104858 0.036902774 0.037007632

15 14.0866 4.8656 0.000749089 0.037914604 0.038663694

20 13.3033 4.9691 0.000841080 0.033921365 0.034762445

25 13.2247 4.3190 0.000710013 0.043491765 0.044201777

30 13.5773 4.3380 0.000535595 0.046696026 0.047231621

35 11.646 4.7081 0.000807917 0.036688629 0.037496546

40 11.9149 4.3998 0.000997217 0.039632535 0.040629752

45 12.7505 4.5294 0.000641500 0.039819478 0.040460978

50 11.6905 4.3202 0.000749824 0.040993380 0.041743204

55 12.1448 4.4904 0.000800537 0.039879055 0.040679593

60 11.4228 4.3400 0.000852171 0.040024099 0.040876271

65 11.8971 3.9940 0.000861862 0.048597607 0.049459469

70 11.353 4.2075 0.000872350 0.046168945 0.047041295

75 11.8478 4.1115 0.000852625 0.045110637 0.045963262

80 11.4049 4.3238 0.000837578 0.042675063 0.043512641

85 11.9204 4.2514 0.000799906 0.041417010 0.042216915

90 11.5371 4.0084 0.000771083 0.047586420 0.048357503

95 12.0737 4.2281 0.000724311 0.044719869 0.04544418

100 11.4115 4.1802 0.000999172 0.042741113 0.043740286

110 11.6738 4.1958 0.000861009 0.045064448 0.045925457

120 11.9656 3.9873 0.000732360 0.047712003 0.048444363

130 11.2817 4.0444 0.000865837 0.048835726 0.049701563

140 11.3378 4.2403 0.000982373 0.043193565 0.044175939

150 11.7103 4.0881 0.000804851 0.044634815 0.045439666

160 11.2116 4.1632 0.000889424 0.044970044 0.045859468

170 11.3342 4.0385 0.000958722 0.045689950 0.046648672

180 11.7405 4.126 0.000773244 0.045795357 0.046568601

190 11.3368 4.0217 0.000823008 0.046112724 0.046935732

200 11.5077 4.1169 0.000859932 0.045758776 0.046618708
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From Tables 2.2, 2.3 and 2.4 we see that as the sample size increases, the critical

value of each stage converges. Note that due to the discrete nature of data, only a few

specific values can serve as critical values. Consequently, the critical value for small

sample sizes (especially n ≤ 20) is slightly greater than the critical value for large

sample sizes.

Similarly, when we examine the values of type I error rate and total error rate, we

can observe that these values converge as the sample size grows. When the sample

size increases, it is evident that e1 and e2 values rise to achieve the expected alpha

spending at each stage. Accordingly, the total error rate may increase to achieve the

expected level of statistical significance (α).

Once the critical value and type I error rate for a particular value of p0 have been

identified, the power can be calculated for various alternative hypotheses (p1). Tables

2.5, 2.6 and 2.7 present the statistical power for two different alternative hypotheses;

p1 = 0.2 and p1 = 0.7 for a two-stage design with p0 = 0.4.

From Tables 2.5, 2.6 and 2.7, we see that the overall power increases as the sample

size grows. Additionally, when the value of p1 is far from p0, the overall power for a

given sample size is greater than when p1 is close to p0. For example, consider a RCT

with a sample size of 30 (total sample size =60) with p0 = 0.4 based on Pocock’s

method (Table 2.5). The overall power is 0.8753 when p1 = 0.2, and it is 0.9956

when p1 = 0.7. Examining the pattern from Tables 2.5, 2.6 and 2.7, we see that the

overall power converges as the sample size increases. It converges rapidly when p1 is

considerably away from p0. In addition, it is evident that when the power > 90%, a

greater proportion of total power is achieved in the first stage, leaving just a small

portion for the second stage.
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Table 2.5: Power for a two-stage design based on Pocock’s method where Ha : p1 = 0.2

and Ha : p1 = 0.7 when H0 : p0 = 0.4.

p1 = 0.2 p1 = 0.7

n Power1 Power2 Overall Power Power1 Power2 Overall Power

5 0.00032 0.107433574 0.107753574 0.16807 0.242127547 0.410197547

10 0.107452109 0.317054642 0.424506751 0.382788691 0.266342628 0.649131319

15 0.167138229 0.448534966 0.615673195 0.515491576 0.339068283 0.854559859

20 0.411450707 0.343137776 0.754588483 0.608010355 0.333068674 0.941079029

25 0.420676373 0.404784936 0.825461309 0.810564011 0.178348672 0.988912682

30 0.427512722 0.447814966 0.875327688 0.840678208 0.154904199 0.995582407

35 0.599332979 0.349613422 0.9489464 0.926931047 0.071448731 0.998379778

40 0.73177715 0.233927178 0.965704328 0.936687125 0.063006989 0.999694114

45 0.720470736 0.264891633 0.985362369 0.971654895 0.028230361 0.999885256

50 0.813943011 0.175963005 0.989906015 0.974912958 0.025066432 0.999979391

55 0.803195324 0.189289588 0.992484913 0.9889189 0.011073208 0.999992108

60 0.869379323 0.127680822 0.997060144 0.995227305 0.004771404 0.999998709

65 0.914954768 0.083918606 0.998873374 0.995637343 0.004362122 0.999999465

70 0.907461037 0.091686865 0.999147902 0.998127592 0.001872322 0.999999914

75 0.939664563 0.060010871 0.999675434 0.999209415 0.000790552 0.999999966

80 0.961180651 0.038587701 0.999768352 0.999260176 0.000739818 0.999999994

85 0.956897384 0.043009146 0.999906529 0.99968765 0.000312348 0.999999998

90 0.972192596 0.027739785 0.999932381 0.999869666 0.000130334 1

95 0.982238438 0.017736041 0.99997448 0.999875876 0.000124124 1

100 0.988751021 0.011239433 0.999990454 0.999948141 5.1859e-05 1

110 0.991846371 0.008150858 0.999997228 0.999991178 8.822e-06 1

120 0.994071557 0.005927639 0.999999196 0.999996459 3.541e-06 1

130 0.997634567 0.002365322 0.99999989 0.99999941 5.9e-07 1

140 0.99907541 0.00092456 0.99999997 0.999999761 2.39e-07 1

150 0.999317022 0.000682969 0.999999991 0.999999961 3.9e-08 1

160 0.999735479 0.00026452 0.999999999 0.999999984 1.6e-08 1

170 0.999803189 0.00019681 1 0.999999997 3e-09 1

180 0.999924278 7.5722e-05 1 0.999999999 1e-09 1

190 0.999943318 5.6682e-05 1 1 0 1

200 0.9999783 2.17e-05 1 1 0 1
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Table 2.6: Power for a two-stage design based on O’Brien & Fleming’s method where

Ha : p1 = 0.2 and Ha : p1 = 0.7 when H0 : p0 = 0.4.

p1 = 0.2 p1 = 0.7

n Power1 Power2 Overall Power Power1 Power2 Overall Power

5 0.00032000 0.107433574 0.107753574 0.16807000 0.242127547 0.410197547

10 0.107378381 0.317068049 0.424446429 0.149314251 0.624291142 0.773605393

15 0.167126779 0.448536525 0.615663304 0.296868444 0.619347496 0.91621594

20 0.206084899 0.530698552 0.736783452 0.416370867 0.551943931 0.968314798

25 0.233993526 0.582734124 0.81672765 0.676928128 0.311183511 0.988111639

30 0.427512476 0.497375795 0.924888271 0.730370389 0.264977648 0.995348037

35 0.432841714 0.513743365 0.946585079 0.864953155 0.134238745 0.999191900

40 0.593127136 0.385859518 0.978986654 0.88485335 0.11482653 0.99967988

45 0.587955517 0.396817537 0.984773054 0.94505064 0.054895957 0.999946597

50 0.710667606 0.283454731 0.994122336 0.952236165 0.047742401 0.999978565

55 0.702062628 0.293617678 0.995680306 0.977829638 0.022166861 0.999996499

60 0.793458179 0.204891702 0.998349881 0.980425714 0.019572865 0.99999858

65 0.784586458 0.214187887 0.998774345 0.991073801 0.00892597 0.999999771

70 0.851917329 0.147617461 0.999534791 0.996031943 0.003967966 0.999999909

75 0.900277319 0.099382858 0.999660177 0.996405 0.003594985 0.999999985

80 0.893395586 0.106472747 0.999868333 0.998413834 0.001586164 0.999999998

85 0.928408122 0.071542656 0.999950779 0.998550271 0.001449728 0.999999999

90 0.952624034 0.047339432 0.999963466 0.99936391 0.00063609 1

95 0.948376494 0.051609546 0.999986039 0.999725017 0.000274983 1

100 0.96584837 0.034146458 0.999994828 0.999744167 0.000255833 1

110 0.975286484 0.024712044 0.999998528 0.999952953 4.7047e-05 1

120 0.989500075 0.010499513 0.999999588 0.99998108 1.892e-05 1

130 0.992360406 0.007639537 0.999999943 0.999996653 3.347e-06 1

140 0.996841955 0.003158029 0.999999984 0.999998649 1.351e-06 1

150 0.99768782 0.002312175 0.999999995 0.999999767 2.33e-07 1

160 0.999062038 0.000937961 0.999999999 0.999999906 9.4e-08 1

170 0.999309079 0.000690921 1 0.999999984 1.6e-08 1

180 0.999723515 0.000276484 1 0.999999993 7e-09 1

190 0.999795195 0.000204805 1 0.999999999 1e-09 1

200 0.99991888 8.112e-05 1 1 0 1
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Table 2.7: Power for a two-stage design based on Haybittle-Peto’s method where

Ha : p1 = 0.2 and Ha : p1 = 0.7 when H0 : p0 = 0.4.

p1 = 0.2 p1 = 0.7

n Power1 Power2 Overall Power Power1 Power2 Overall Power

5 0.00032000 0.107433574 0.107753574 0.16807000 0.242127547 0.410197547

10 1.02e-07 0.411463992 0.411464094 0.028247525 0.74406974 0.772317265

15 0.035184429 0.572422768 0.607607197 0.126827729 0.788766635 0.915594364

20 0.069175304 0.663207353 0.732382657 0.237507781 0.730578237 0.968086018

25 0.098225225 0.791306383 0.889531609 0.340654904 0.647085516 0.987740421

30 0.122710807 0.800129684 0.922840491 0.431517906 0.566331222 0.997849128

35 0.14349171 0.802022869 0.945514579 0.651555411 0.347608833 0.999164244

40 0.28589137 0.692487390 0.978378760 0.703249067 0.296422381 0.999671448

45 0.297456736 0.686992689 0.984449425 0.746215267 0.253729381 0.999944648

50 0.307331628 0.686613415 0.993945043 0.859440124 0.140537891 0.999978014

55 0.446344441 0.549246716 0.995591157 0.879215047 0.120781332 0.999996379

60 0.448617474 0.54968581 0.998303284 0.93676187 0.063236675 0.999998545

65 0.573501222 0.425857848 0.999359071 0.945199298 0.054800466 0.999999764

70 0.570876965 0.428645826 0.999522791 0.972377193 0.027622769 0.999999962

75 0.675854105 0.323966356 0.999820462 0.975846329 0.024153656 0.999999985

80 0.670750726 0.329114548 0.999865274 0.988150034 0.011849963 0.999999998

85 0.755674148 0.244275304 0.999949452 0.989549243 0.010450756 0.999999999

90 0.749712206 0.250268968 0.999981174 0.994974921 0.005025079 1

95 0.816796804 0.183188903 0.999985707 0.995533554 0.004466446 1

100 0.868646783 0.131347907 0.99999469 0.997885383 0.002114617 1

110 0.902637096 0.097361398 0.999998494 0.999114797 0.000885203 1

120 0.927877901 0.072121894 0.999999795 0.999630795 0.000369205 1

130 0.946588062 0.053411879 0.999999942 0.999924233 7.5767e-05 1

140 0.974601457 0.025398526 0.999999983 0.999968841 3.1159e-05 1

150 0.981303166 0.018696832 0.999999998 0.999987187 1.2813e-05 1

160 0.986222402 0.013777598 0.999999999 0.999997526 2.474e-06 1

170 0.993747312 0.006252688 1 0.999998988 1.012e-06 1

180 0.995397389 0.004602611 1 0.999999585 4.15e-07 1

190 0.996608113 0.003391887 1 0.999999923 7.7e-08 1

200 0.998506447 0.001493553 1 0.999999968 3.2e-08 1
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2.2.2 Three-stage design

Consider three-stage RCT with alpha spending functions based on Pocock, O’Brien &

Fleming, and Haybittle-Peto methods. To obtain a 0.05 confidence level (α = 0.05),

the following alpha spending values are used as the predicted type I error rate of each

stage.

Table 2.8: Expected alpha spending values for each stage of Pocock, O’Brien & Flem-
ing, and Haybittle-Peto designs.

α = 0.05
Stage 1 Stage 2 Stage 3

Pocock α1 = 0.0167 α2 = 0.0167 α3 = 0.0167
OBF α1 = 0.004 α2 = 0.014 α3 = 0.032
Peto α1 = 0.001 α2 = 0.001 α3 = 0.048

Using the alpha spending values shown in Table 2.8, critical values and type I

error rates have been calculated for each stage of a three-stage RCT along with the

overall type I error rate for various sample sizes considering the following hypotheses.

H0 : p = 0.4 vs Ha : p 6= 0.4 (2.45)

A R software programme for a three-stage group sequential design was developed

to calculate the critical values (cv1, cv2, cv3) and the associated type I error rate at

each stage (e1, e2, e3) along with the overall type I error rate. The results are given in

Tables 2.9 , 2.10 and 2.11 for various sample sizes with same sample size (n) increment

at each stage with p0 = 0.4 and α = 0.05.
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Table 2.9: Critical values and type I error rates for 3-stage design with equally spent

alpha (Pocock method).

n cv1 cv2 cv3 e1 e2 e3 Total Error rate

5 9.1629 6.6959 6.8475 0.0102400 0.01509059 0.00763724 0.03296782

10 10.2165 7.3515 6.6277 0.0077243 0.00842396 0.00920424 0.02535254

15 6.8475 6.6277 5.7686 0.0145197 0.01035335 0.01374960 0.03862264

20 7.3515 6.4874 5.4831 0.0100774 0.01150513 0.01624512 0.0378276

25 6.8015 5.7057 5.4226 0.0137972 0.01645368 0.01476799 0.04501889

30 6.6277 5.9828 5.4737 0.0139604 0.01374479 0.01448306 0.04218823

35 6.4061 5.8052 5.5884 0.0154286 0.01533145 0.01243456 0.04319457

40 6.4874 6.1490 5.1842 0.0144064 0.01211054 0.01661025 0.04312720

45 6.4101 5.8703 5.3992 0.0146728 0.01365699 0.01355314 0.04188297

50 6.5703 5.8641 5.3390 0.0133051 0.01441341 0.01483982 0.04255834

55 6.5792 5.6794 5.0978 0.0130092 0.01538607 0.01616845 0.04456376

60 6.7629 5.7429 5.3610 0.0116486 0.01565124 0.01355657 0.04085639

65 6.2470 5.6162 5.3734 0.0154850 0.01536876 0.01372802 0.04458181

70 6.3057 5.7151 5.2128 0.0145402 0.01519428 0.01465372 0.04438816

75 6.5542 5.6282 5.2628 0.0127904 0.01561678 0.01494942 0.04335657

80 6.1490 5.7456 5.1381 0.0160085 0.01438035 0.01541771 0.04580657

85 6.2384 5.6882 5.2105 0.0147480 0.01446906 0.01550095 0.04471799

90 6.5071 5.8150 5.8150 0.0128980 0.01420011 0.01602344 0.04312154

95 6.1687 5.5129 5.1980 0.0155631 0.01658967 0.01475747 0.04691019

100 6.2805 5.4820 5.1195 0.0141932 0.01639444 0.01499385 0.04558147

110 6.2578 5.6197 5.1515 0.0145972 0.01495085 0.01496034 0.04450842

120 6.1078 5.5319 5.0349 0.0153359 0.01621753 0.01655778 0.04811116

130 6.1486 5.6914 5.1026 0.0153223 0.01451355 0.01615155 0.04598744

140 6.0482 5.4948 5.1804 0.0156579 0.01569825 0.01488036 0.04623653

150 6.1233 5.4716 4.9786 0.0153762 0.01657262 0.01620150 0.04815032

160 6.0583 5.6565 5.0801 0.0154338 0.01467831 0.01552507 0.04563716

170 6.0583 5.6565 5.0801 0.0154338 0.01467831 0.01467831 0.04563716

180 6.1141 5.5229 5.1557 0.0148622 0.01600635 0.01491946 0.04578803

190 6.2185 5.7193 5.0129 0.0143286 0.01413455 0.01650553 0.04496869

200 6.2017 5.6141 5.1345 0.0140818 0.01465133 0.01495221 0.04368536
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Table 2.10: Critical values and type I error rates for 3-stage design based on O’Brien

& Fleming’ method.

n cv1 cv2 cv3 e1 e2 e3 Total Error rate

5 NA 10.2165 5.1664 NA 0.006833050 0.030110763 0.036943813

10 11.0132 7.3515 4.8656 0.001677722 0.009435496 0.031423609 0.042536827

15 10.0439 6.6277 4.8411 0.002397954 0.012956156 0.02559735 0.04095146

20 10.1036 6.4874 4.6841 0.002135574 0.013464699 0.026920946 0.042521219

25 9.6278 6.5703 4.7104 0.003572209 0.012030635 0.025981442 0.041584287

30 10.3328 6.7629 4.8251 0.002366466 0.010755227 0.024469587 0.03759128

35 9.4053 6.3057 4.7013 0.002821010 0.013425370 0.027028106 0.043274487

40 9.4444 6.6567 4.8986 0.003274851 0.010691123 0.024273157 0.038239132

45 9.0134 6.5071 4.5856 0.003386938 0.011608433 0.027025193 0.042020563

50 9.1516 6.2805 4.6081 0.003570906 0.012798045 0.027899293 0.044268244

55 8.9202 6.2578 4.3844 0.003478354 0.013199718 0.029711826 0.046389897

60 9.1224 6.1078 4.4599 0.003483537 0.013911137 0.029927489 0.047322163

65 8.9841 6.1486 4.2904 0.003292699 0.013948038 0.031065185 0.048305922

70 9.2343 6.5546 4.5728 0.003196654 0.010910469 0.026891983 0.040999105

75 9.1409 6.4803 4.6654 0.002971623 0.011211225 0.026752271 0.040935119

80 9.4308 6.5315 4.5439 0.002826403 0.011047608 0.027269333 0.041143344

85 8.8262 6.1523 4.2702 0.003812472 0.013494571 0.031168909 0.048475952

90 8.842 6.1141 4.3955 0.003453891 0.013485678 0.030546050 0.047485619

95 9.1297 6.2185 4.3081 0.003209505 0.013036195 0.030609972 0.046855672

100 9.1385 6.2017 4.4375 0.002899928 0.012900127 0.029874981 0.045675036

110 8.9969 6.3122 4.4969 0.003369227 0.011884929 0.028853997 0.044108154

120 8.6761 6.1594 4.2494 0.00370211 0.013140161 0.031417519 0.048259789

130 9.0432 6.3022 4.344 0.002998137 0.012200854 0.030000466 0.045199458

140 9.0097 6.097 4.3227 0.00325276 0.01332333 0.031423792 0.047999881

150 8.7962 6.2703 4.4289 0.003408039 0.011981373 0.029655675 0.045045088

160 8.7996 6.2046 4.2624 0.003580038 0.01262802 0.031142052 0.04735011

170 8.6557 6.0595 4.3835 0.003656739 0.013389787 0.028250724 0.04529725

180 8.6865 6.0332 4.3964 0.00375733 0.013861392 0.029094227 0.046712949

190 8.5882 6.2244 4.2661 0.003772122 0.012306499 0.031036117 0.047114739

200 8.6403 6.1186 4.2959 0.003815046 0.012791879 0.031563348 0.048170273
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Table 2.11: Critical values and type I error rates of 3-stage design based on Haybittle-

Peto method.

n cv1 cv2 cv3 e1 e2 e3 Total Error rate

5 NA 11.0132 5.1664 NA 0.000786432 0.034237942 0.035024374

10 18.3258 13.3033 4.8656 0.000104858 0.000823649 0.037633234 0.038561741

15 14.0866 13.5773 4.4210 0.000749089 0.000463364 0.045810833 0.047023287

20 13.3033 11.9149 4.3380 0.000841080 0.000880006 0.045886345 0.047607431

25 13.2247 11.6905 4.3981 0.000710013 0.000663250 0.043356220 0.044729482

30 13.5773 11.4228 4.5294 0.000535595 0.000772349 0.039311010 0.040618954

35 11.646 11.3530 4.1057 0.000807917 0.000757834 0.045642398 0.047208149

40 11.9149 11.4049 4.3400 0.000997217 0.000718131 0.039501117 0.041216465

45 12.7505 11.5371 4.3612 0.000641500 0.000683658 0.041938339 0.043263497

50 11.6905 11.4115 4.1115 0.000749824 0.000888336 0.044548430 0.046186590

55 12.1448 11.6738 4.1944 0.000800537 0.000750218 0.045509243 0.047059998

60 11.4228 10.9662 4.0084 0.000852171 0.000904485 0.046896347 0.048653004

65 11.8971 11.2817 4.1210 0.000861862 0.000751079 0.046982443 0.048595385

70 11.353 11.3378 3.9759 0.000872350 0.000858681 0.047553604 0.049284635

75 11.8478 10.8451 4.1037 0.000852625 0.000960937 0.046858743 0.048672305

80 11.4049 11.2116 3.9873 0.000837578 0.000770340 0.047121313 0.048729231

85 11.9204 11.3342 4.1228 0.000799906 0.000839402 0.046110629 0.047749937

90 11.5371 10.9474 4.0276 0.000771083 0.000899811 0.045760622 0.047431515

95 12.0737 11.0872 4.1667 0.000724311 0.000953702 0.044558397 0.046236411

100 11.4115 10.7772 4.0881 0.000999172 0.000968746 0.043848450 0.045816368

110 11.6738 11.3588 4.0383 0.000861009 0.000796101 0.047857349 0.049514460

120 11.9656 11.2720 4.1260 0.000732360 0.000838604 0.045217255 0.046788219

130 11.2817 11.2324 4.2213 0.000865837 0.000838858 0.042466789 0.044171485

140 11.3378 11.2298 4.0284 0.000982373 0.000821697 0.045180074 0.046984144

150 11.7103 11.2564 4.0373 0.000804851 0.000819712 0.047200679 0.048825242

160 11.2116 10.7428 4.1548 0.000889424 0.000975090 0.043670212 0.045534726

170 11.3342 10.824 4.0079 0.000958722 0.000923261 0.045470798 0.047352781

180 11.7405 10.9191 4.0393 0.000773244 0.000888723 0.046742942 0.048404909

190 11.3368 11.0258 4.1671 0.000823008 0.000827699 0.043205688 0.044856395

200 11.5077 10.964 4.0498 0.000859932 0.000933609 0.044243317 0.046036857
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From Tables 2.9, 2.10 and 2.11 we see that as the sample size increases, the critical

value of each stage converges. Similarly, when we examine the values of type I error

rate and total error rate, we can observe that these values converge as the sample size

grows. When the sample size increases, it is evident that e1, e2, and e3 values rise to

achieve the expected alpha spending at each stage. Accordingly, the total error rate

may increase to achieve the expected level of statistical significance (α).

Let us consider the output related to three-stage design based on Pocock’s method

as an example. Considering the convergence of data, we may conclude that cv1 ≈ 6.1,

cv2 ≈ 5.7 and cv3 ≈ 5.0 for large samples. These outcomes are evident in convergence

plots given in Figures 2.2, 2.3 and 2.4.

All three stages converge to an approximate type I error rate of 0.015. Since these

observed error rate values are selected to be less than the alpha spending at each

stage (0.05/3 =0.0167), the total error rate is always less than the expected signifi-

cance level (α = 0.05). These outcomes are clearly visible in convergence plots given

in Figures 2.5, 2.6, 2.7 and 2.8.

Figure 2.2: Convergence of the critical value of stage 1 for various sample sizes (Pocock
method).
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Figure 2.3: Convergence of the critical value of stage 2 for various sample sizes (Pocock
method).

Figure 2.4: Convergence of the critical value of stage 3 for various sample sizes (Pocock

method).
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Figure 2.5: Observed type I error rate of stage 1 for various sample sizes(Pocock
method).

Figure 2.6: Observed type I error rate of stage 2 for various sample sizes(Pocock

method).
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Figure 2.7: Observed type I error rate of stage 3 for various sample sizes(Pocock

method).

Figure 2.8: Observed Overall type I error rate for various sample sizes(Pocock

method).



51

Once the critical value and type I error rate for a particular value of p0 have

been identified, the power can be calculated for various alternative hypotheses (p1).

Tables 2.12, 2.13 and 2.14 present the statistical power for two different alternative

hypotheses; p1 = 0.2 and p1 = 0.7 for a three-stage design with p0 = 0.4.

Table 2.12: Power when Ha : p1 = 0.2 and Ha : p1 = 0.7 where H0 : p0 = 0.4 based

on Pocock’s method

p1=0.2 p1=0.7

n Power1 Power2 Power3 Overall Power Power 1 Power 2 Power 3 Overall Power

5 0.00032 0.1074336 0.08796749 0.195721090 0.16807 0.2421275 0.1620324 0.5722299

10 0.1073784 0.1333082 0.22142950 0.462116100 0.1493143 0.4647328 0.2390519 0.8530990

15 0.1671382 0.2842042 0.28873810 0.740080500 0.5154916 0.3390683 0.1206092 0.9751690

20 0.2060866 0.4008794 0.27143070 0.878396700 0.6080098 0.3330687 0.05468934 0.9957679

25 0.4206746 0.4047849 0.12428120 0.949740700 0.6769282 0.2993568 0.02300551 0.9992904

30 0.4275127 0.447815 0.10088990 0.976217600 0.8406782 0.1504924 0.008714996 0.9998856

35 0.5993328 0.3169737 0.07289585 0.989202350 0.8649532 0.1332823 0.001746757 0.9999822

40 0.5931272 0.3455385 0.05840378 0.997069480 0.9366871 0.06265049 0.000659469 0.9999971

45 0.7204707 0.2541576 0.02412292 0.998751220 0.9450506 0.05467939 0.00026947 0.9999995

50 0.7106676 0.2706346 0.01810646 0.999408660 0.974913 0.02504006 4.70E-05 1

55 0.8031953 0.1892896 0.007376292 0.999861192 0.9778296 0.02215117 1.92E-05 1

60 0.7934582 0.2009679 0.005508123 0.999934223 0.9900391 0.009957637 0.009957637 1

65 0.8603561 0.1374424 0.002173129 0.999971629 0.9956373 0.004361408 1.25E-06 1

70 0.907461 0.09098629 0.001545675 0.999992965 0.9960319 0.003967836 2.21E-07 1

75 0.9002773 0.0990814 0.000638148 0.999996848 0.9982721 0.001727844 8.63E-08 1

80 0.9339744 0.06556674 0.000458100 0.999999240 0.9992602 0.00073981 1.41E-08 1

85 0.9568974 0.04292534 0.000176936 0.999999676 0.9993122 0.000687843 5.90E-09 1

90 0.952624 0.0472411 0.000134781 0.999999881 0.999706 0.000293994 9.57E-10 1

95 0.969038 0.03091017 5.18E-05 0.999999947 0.9998759 0.000124124 1.53E-10 1

100 0.9799798 0.02000051 1.97E-05 0.999999996 0.9998826 0.000117378 6.46E-11 1

110 0.9855264 0.01446786 5.73E-06 1 0.9999793 2.07E-05 4.12E-12 1

120 0.9940716 0.005926857 1.59E-06 1 0.9999917 8.32E-06 1.09E-13 1

130 0.995678 0.004321512 4.64E-07 1 0.9999986 1.43E-06 6.94E-15 1

140 0.9982647 0.001735187 6.48E-08 1 0.9999994 5.76E-07 4.66E-16 1

150 0.9987251 0.001274883 1.89E-08 1 0.9999999 9.68E-08 1.13E-17 1

160 0.9994951 0.000504875 5.26E-09 1 1 3.93E-08 7.58E-19 1

170 0.9996265 0.000373492 7.56E-10 1 1 6.52E-09 4.85E-20 1

180 0.9998536 0.000146445 2.11E-10 1 1 2.66E-09 1.21E-21 1

190 0.999891 0.000108984 6.20E-11 1 1 4.37E-10 7.78E-23 1

200 0.9999576 4.24E-05 8.38E-12 1 1 1.79E-10 5.23E-24 1
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Table 2.13: Power when Ha : p1 = 0.2 and Ha : p1 = 0.7 where H0 : p0 = 0.4 based

on O’Brien & Fleming’s method

p1=0.2 p1=0.7

n Power1 Power2 Power3 Overall Power Power 1 Power 2 Power 3 Overall Power

5 0.00032 0.10737623 0.296878025 0.404574255 0.16807 0.060536315 0.31401713 0.542623445

10 4.198e-06 0.206086417 0.405753635 0.61184425 0.149308346 0.464732811 0.304288686 0.918329843

15 0.035185383 0.394476385 0.400191218 0.829852986 0.296867942 0.546757499 0.130573346 0.974198788

20 0.069175471 0.525919853 0.329816038 0.924911362 0.416370831 0.521422041 0.057864968 0.99565784

25 0.233993288 0.484389488 0.24836118 0.966743957 0.511848547 0.463446873 0.023982489 0.999277909

30 0.255233259 0.542478533 0.187260501 0.984972293 0.588808685 0.401358475 0.009713139 0.999880299

35 0.272091699 0.636214857 0.085138631 0.993445187 0.772925378 0.223241156 0.003824957 0.999991491

40 0.437145899 0.498492543 0.061369528 0.99700797 0.807448245 0.191008047 0.001542316 0.999998609

45 0.440716407 0.512803141 0.045737826 0.999257374 0.901367112 0.098349206 0.000283466 0.999999783

50 0.583559419 0.396947008 0.019166565 0.999672991 0.915197401 0.084688453 0.000114131 0.999999985

55 0.579762625 0.406049959 0.014108569 0.999921153 0.95842343 0.041556548 2.002e-05 0.999999998

60 0.694430604 0.299793135 0.005741206 0.999964945 0.963762481 0.036229426 8.093e-06 1

65 0.68760135 0.308160665 0.004229688 0.999991702 0.982727862 0.017270757 1.38e-06 1

70 0.776461726 0.22049076 0.003043656 0.999996142 0.984764398 0.015235041 5.61e-07 1

75 0.768986505 0.229762133 0.001249608 0.999998246 0.992878313 0.007121464 2.23e-07 1

80 0.836585246 0.162506661 0.000907685 0.999999592 0.993653369 0.006346593 3.8e-08 1

85 0.886804757 0.112835544 0.000359608 0.999999909 0.99707514 0.002924853 6e-09 1

90 0.880492068 0.119364478 0.000143413 0.999999958 0.998679719 0.001320279 3e-09 1

95 0.91767937 0.082215231 0.000105389 0.99999999 0.998801205 0.001198795 0 1

100 0.912524615 0.087433756 4.1625e-05 0.999999996 0.999462985 0.000537015 0 1

110 0.959414593 0.040573533 1.1874e-05 1 0.999781434 0.000218566 0 1

120 0.970424737 0.029571813 3.45e-06 1 0.999958303 4.1697e-05 0 1

130 0.978400758 0.021598239 1.002e-06 1 0.999983112 1.6888e-05 0 1

140 0.99046784 0.009532016 1.44e-07 1 0.999993147 6.853e-06 0 1

150 0.993029126 0.006970832 4.2e-08 1 0.99999875 1.25e-06 0 1

160 0.997016402 0.002983587 1.2e-08 1 0.999999493 5.07e-07 0 1

170 0.997811029 0.00218897 2e-09 1 0.99999991 9e-08 0 1

180 0.999083606 0.000916394 0 1 0.999999963 3.7e-08 0 1

190 0.999325042 0.000674957 0 1 0.999999994 6e-09 0 1

200 0.999722092 0.000277908 0 1 0.999999997 3e-09 0 1

From Tables 2.12, 2.13 and 2.14, we see that the overall power increases as the

sample size grows. When the value of p1 is far from p0, the overall power for a given

sample size is greater than when p1 is close to p0. Also, it is clearly noticeable that

the overall power converges as the sample size increases. It converges rapidly when

p1 is considerably away from p0.
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Table 2.14: Power when Ha : p1 = 0.2 and Ha : p1 = 0.7 where H0 : p0 = 0.4 based

on Haybittle-Peto’s method

p1=0.2 p1=0.7

n Power1 Power2 Power3 Overall Power Power 1 Power 2 Power 3 Overall Power

5 0.00032 2.048e-06 0.398033095 0.398355143 0.16807 0.06053041 0.314018093 0.542618503

10 1.02e-07 0.069175303 0.538173595 0.607349001 0.028247525 0.213504964 0.673831905 0.915584394

15 0.035184429 0.09990563 0.691182367 0.826272426 0.126827729 0.31829637 0.54137043 0.986494529

20 0.069175304 0.229002229 0.624836078 0.923013611 0.237507781 0.473376188 0.286967779 0.997851749

25 0.098225225 0.227441009 0.63987044 0.965536675 0.340654904 0.522087206 0.136914393 0.999656504

30 0.122710807 0.338315412 0.523431331 0.98445755 0.431517906 0.506519614 0.061907199 0.999944719

35 0.14349171 0.435242272 0.417524498 0.99625848 0.651555411 0.322195672 0.026239993 0.999991076

40 0.28589137 0.400556429 0.311859562 0.998307361 0.703249067 0.285370003 0.011379477 0.999998547

45 0.297456736 0.461404205 0.240366048 0.999226989 0.746215267 0.248917789 0.004866849 0.999999906

50 0.307331628 0.563719642 0.12876922 0.999820489 0.859440124 0.138570258 0.001989603 0.999999985

55 0.446344441 0.460021072 0.093552024 0.999917536 0.879215047 0.119941215 0.000843737 0.999999999

60 0.448617474 0.481366252 0.069997467 0.999981192 0.93676187 0.063064158 0.000173972 1

65 0.573501222 0.37589867 0.050591398 0.99999129 0.945199298 0.054728275 7.2428e-05 1

70 0.570876965 0.404447717 0.024673357 0.999998038 0.972377193 0.027593831 2.8975e-05 1

75 0.675854105 0.30635805 0.01778693 0.999999085 0.975846329 0.024147866 5.805e-06 1

80 0.670750726 0.315991048 0.013258021 0.999999795 0.988150034 0.011847648 2.318e-06 1

85 0.755674148 0.238348997 0.005976759 0.999999904 0.989549243 0.010449796 9.61e-07 1

90 0.749712206 0.24584357 0.004444203 0.999999979 0.994974921 0.005024901 1.78e-07 1

95 0.816796804 0.181256423 0.001946762 0.99999999 0.995533554 0.004466372 7.4e-08 1

100 0.868646783 0.129948638 0.001404577 0.999999998 0.997885383 0.002114604 1.3e-08 1

110 0.902637096 0.096913178 0.000449725 1 0.999114797 0.000885201 2e-09 1

120 0.927877901 0.071980432 0.000141667 1 0.999630795 0.000369205 0 1

130 0.946588062 0.053367864 4.4074e-05 1 0.999924233 7.5767e-05 0 1

140 0.974601457 0.02538532 1.3223e-05 1 0.999968841 3.1159e-05 0 1

150 0.981303166 0.018692777 4.058e-06 1 0.999987187 1.2813e-05 0 1

160 0.986222402 0.013776361 1.237e-06 1 0.999997526 2.474e-06 0 1

170 0.993747312 0.006252323 3.65e-07 1 0.999998988 1.012e-06 0 1

180 0.995397389 0.004602501 1.11e-07 1 0.999999585 4.15e-07 0 1

190 0.996608113 0.003391853 3.3e-08 1 0.999999923 7.7e-08 0 1

200 0.998506447 0.001493547 5e-09 1 0.999999968 3.2e-08 0 1

In addition, it is evident that when the power > 85%, a greater proportion of total

power is achieved in the first stage, and a substantial component of the remainder is

achieved in the second stage, leaving just a small portion for the third stage.



Chapter 3

Sequential designs of randomized

clinical trials to compare two

groups proportions

3.1 Markov chain modelling for two populations

In Chapter 2 we considered the group sequential analysis for testing the proportion

for one sample case. In this chapter we focus on sequential designs of RCT to compare

proportions for two samples case. The methodology for the Markov chain approach

in Chapter 2 is extended for two groups case.

Consider a testing of hypothesis for comparing two proportions. A null hypothesis

with equal probabilities of success is tested against a two-sided alternative hypothesis.

H0 : pA = pB, vs Ha : pA 6= pB. (3.1)

Let,

nA be the sample size of group A

nB be the sample size of group B

sA be the number of successes in group A and

sB be the number of successes in group B
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For testing the null hypothesis, we construct the log-likelihood ratio as,

LLR = 2ln

[
L(p̂|Ha)

(L(p0|H0)

]
= 2[ln(L(p̂|Ha))− ln(L(p0|H0))]. (3.2)

Under the null hypothesis (H0), the probability of success of two groups are equal,

so an estimate of p0 is given by,

p̂0 =
sA + sB
nA + nB

. (3.3)

Under the alternative hypothesis pA 6= pB, the estimated values of pA and pB are,

p̂A =
sA
nA
, and p̂B =

sB
nB

. (3.4)

Group sequential analysis starts with an unconditional initial stage. The process

moves to the second stage if the test is not terminated at the first interim analysis.

The second stage is conditional on the first stage. Since the testing procedure at any

stage depends on the previous stage, the procedure is explained stage-wise.

First Stage

The first stage of the analysis starts with nA1 participants in group A and nB1

participants in group B. Assume that there are sA1 number of successes out of nA1

and sB1 number of successes out of nB1.

The data the likelihood under the null hypothesis is,

L(p0|H0) =

(
nA1
sA1

)
ˆ(p0)

sA1

(1− p̂0)(nA1−sA1) ∗
(
nB1

sB1

)
ˆ(p0)

sB1

(1− p̂0)(nB1−sB1). (3.5)

and the likelihood under the alternative hypothesis is,

L(pA, pB|Ha) =

(
nA1
sA1

)
(p̂A)sA1(1−p̂A)(nA1−sA1)∗

(
nB1

sB1

)
(p̂B)sB1(1−p̂B)(nB1−sB1). (3.6)
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The log-likelihood ratio statistic for testing the null hypothesis is,

LLR1 = 2

{
sA1ln(sA1) + sB1ln(sB1) + fA1ln(fA1)+fB1ln(fB1)− nA1ln(nA1)

−nB1ln(nB1)− (sA1 + sB1)ln(sA1 + sB1)− (fA1 + fB1)ln(fA1 + fB1)

+(nA1 + nB1)ln(nA1 + nB1)

}
,

(3.7)

where fA1 and fB1 denotes the number of failures in group A and group B, respectively

as,

fA1 = nA1 − sA1, and fB1 = nB1 − sB1. (3.8)

For fixed nA1 and nB1, the value of log-likelihood ratio depends on sA1 and sB1.

In order to determine all possible LLR values, we consider all possible combinations

of sA1 and sB1. For given nA1 and nB1 values; sA1 can have any value from zero to

nA1 and sB1 can have any value from zero to nB1.

sA1 = 0, 1, 2, . . . , nA1, and sB1 = 0, 1, 2, . . . , nB1. (3.9)

Considering all possible combinations of sA1 and sB1, we can have (nA1+1)(nB1+1)

number of LLR values. Let M1 be the maximum number of possible LLR values at

the first stage. As the first stage is unconditional, we know that

M1 = (nA1 + 1)(nB1 + 1). (3.10)

Therefore, all possible test statistics values of the first stage are as follows,

LLR1 = T 1st = (T 1st
1 , T 1st

2 , . . . , T 1st
M1

). (3.11)

and the ordered LLR values are denoted as,

T 1st
(1) , T

1st
(2) , . . . , T

1st
(M1)

.

The probability of getting each LLR value depends on the probability of getting

sA1 number of successes in group A and sB1 number of successes in group B, given the
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probability of success under H0 as p0. Thus, for a specific pair of success probability

values (sA1, sB1), the probability of the corresponding LLR value can be calculated as

follows.

Pr[LLR(sA1, sB1|nA, nB, p0)] = Pr(sA1|nA, p0) ∗ Pr(sB1|nB, p0)

=

(
nA1
sA1

)
(p0)

sA1(1− p0)(nA1−sA1) ∗
(
nB1

sB1

)
(p0)

sB1(1− p0)(nB1−sB1).

(3.12)

After computing all possible LLR values and their probabilities, we can determine

the critical value of the first stage (cv1).

Let,

c1 = min{j ∈ N : Pr(T 1st ≥ T 1st
(j) |pA = pB) ≤ α1}, (3.13)

where α1 is the amount of alpha spending for the first stage. Then, T 1st
(c1)

becomes the

critical value of the first stage.

cv1 = T 1st
(c1)
. (3.14)

Second Stage

Failure to reject the null hypothesis at the first stage, will tend to drawing a new

sample of the same size from each group and the analysis will move on to the second

stage of the process.

Let nA2 and nB2 be the size of the samples added to the existing sample at stage

2 from group A and group B, respectively. Then,

NA2-Total number of data points (size of the combined sample) of group A at stage 2

NA2 = nA1 + nA2. (3.15)

NB2-Total number of data points (size of the combined sample) of group B at stage 2

NB2 = nB1 + nB2. (3.16)
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All possible (sA1, sB1) pairs, which are not in the rejection region of the first stage,

are considered in the second stage of the analysis.

In the second stage, sA2 and sB2 can take the following values.

sA2 = 0, 1, 2, . . . , nA2, and sB2 = 0, 1, 2, . . . , nB2. (3.17)

Any given pair of sA1 and sB1 values which is in the continuation region of the first

stage, say (s∗A1, s
∗
B1), can create (nA2 + 1)(nB2 + 1) number of combinations uniting

with the data in second stage.

Table 3.1: Creating combinations of stage 2 using one pair (s∗A1, s
∗
B1) from stage 1.

sA1 + sA2 sB1 + sB2 Combinations of stage2
s∗A1 + 0 s∗B1 + 0 ( s∗A1 + 0, s∗B1 + 0)

s∗B1 + 1 ( s∗A1 + 0, s∗B1 + 1)
. .
. .
s∗B1 + nB2 ( s∗A1 + 0, s∗B1 + nB2)

s∗A1 + 1 s∗B1 + 0 ( s∗A1 + 1, s∗B1 + 0)
s∗B1 + 1 ( s∗A1 + 1, s∗B1 + 1)
. .
. .
s∗B1 + nB2 ( s∗A1 + 1, s∗B1 + nB2)
. .
. .
. .

s∗A1 + nA2 s∗B1 + 0 ( s∗A1 + nA2, s
∗
B1 + 0)

s∗B1 + 1 ( s∗A1 + nA2, s
∗
B1 + 1)

. .

. .
s∗B1 + nB2 ( s∗A1 + nA2, s

∗
B1 + nB2)

Table 3.1 shows the combinations of the second stage using one pair from the

continuation region of stage one. The number of pairs for stage two will depend on

the number of pairs in the continuation region of stage one. If there’s ‘m1’ number

of pairs in the continuation region, then m1 ∗ (nA2 + 1)(nB2 + 1) number of pairs

will be created using the above procedure. For each pair in the second stage, a log-

likelihood ratio and its probability are computed with the help of the probabilities of
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the previous stage using the Markov chain approach.

For a given pair from stage two, say (s̃A2, s̃B2) which was formed by the pair

(s∗A1, s
∗
B1) from the continuation region of stage one,

Pr[LLR(s̃A2, s̃B2|s∗A1, s∗B1, p0)] = Pr[LLR(s∗A1, s
∗
B1)] ∗ Pr(s̃A2|nA2, p0) ∗ Pr(s̃B2|nB2, p0)

= Pr[LLR(s∗A1, s
∗
B1)] ∗

(
nA2
s̃A2

)
(p0)

s̃A2(1− p0)(nA2−s̃A2)

∗
(
nB2

s̃B2

)
(p0)

s̃B2(1− p0)(nB2−s̃B2).

(3.18)

The identical pair for the second stage is created using various combinations of

pairs from the continuation region of the previous stage. For example, consider the

resulting pair at the second stage as (1,2). This pair (1,2) can be created using six

combinations of first stage and second stage as shown below.

Table 3.2: Examples of different combinations which create the same pair (1,2).

Combinations from stage 1 (sA2, sB2) Resulting pair (s̃A2,s̃B2)
(0,0) (1,2) (0+1, 0+2) = (1,2)
(0,1) (1,1) (0+1, 1+1) = (1,2)
(0,2) (1,0) (0+1, 2+0) = (1,2)
(1,0) (0,2) (1+0, 0+2) = (1,2)
(1,1) (0,1) (1+0, 1+1) = (1,2)
(1,2) (0,0) (1+0,2+0) = (1,2)

The probability associated with each unique pair is computed by adding the prob-

abilities of all possible combinations that result in the given unique pair. That is, for

example, the probability associated with the pair (1,2) can be computed by adding

the probabilities associated with the six different combinations shown in Table 3.2.

Using all possible LLR values and associated probabilities that are known, the

critical values for the second stage are computed using the same approach explained

for stage one.
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kth Stage (k > 1)

The above-described methodology is generalized for any conditional stage (k > 1)

as follows. Let nAk and nBk be the size of the samples added to the existing sample

at stage k from group A and group B, respectively. Then,

NAk-Total number of data points (size of the combined sample) of group A at stage k

NAk = nA1 + nA2 + ...+ nAk. (3.19)

NBk-Total number of data points (size of the combined sample) of group B at stage k

NBk = nB1 + nB2 + ...+ nBk. (3.20)

Let sAk is the number of successes out of nAk and sBk is the number of successes

out of nBk. At kth stage, sAk can have any value from zero to nAk and sBk can have

any value from zero to nBk.

sAk = 0, 1, 2, . . . , nAk, and sBk = 0, 1, 2, . . . , nBk. (3.21)

All the (sA(k−1), sB(k−1)) pairs, which are not in the rejection region of (k − 1)th

stage, are considered in the kth stage of the analysis. For a given pair which is

in the continuation region of the (k − 1)th stage, say (s∗A(k−1), s
∗
B(k−1)), can create

(nAk + 1)(nBk + 1) number of combinations uniting with the data in kth stage. If

there’s ‘m(k−1)’ number of pairs in continuation region of (k−1)th stage, then m(k−1) ∗
(nAk + 1)(nBk + 1) number of pairs will be created using the above procedure.

For each pair in the kth stage, we compute a log-likelihood ratio using the Markov

chain approach, as detailed earlier. For any single pair from stage k (s̃Ak, s̃Bk) which

was formed by the pair (s∗A(k−1), s
∗
B(k−1)) from the continuation region of the previous

stage,
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Pr[LLR(s̃Ak, s̃Bk|s∗A(k−1), s∗B(k−1), p0)]

= Pr[LLR(s∗A(k−1), s
∗
B(k−1)|p0)] ∗ Pr(s̃Ak|nAk, p0) ∗ Pr(s̃Bk|nBk, p0)

= Pr[LLR(s∗A(k−1), s
∗
B(k−1)|p0)] ∗

(
nAk
s̃Ak

)
(p0)

s̃Ak(1− p0)(nAk−s̃Ak)

∗
(
nBk
s̃Bk

)
(p0)

s̃Bk(1− p0)(nBk−s̃Bk).

(3.22)

Let’s assume there are ‘Mk’ number of distinct LLR values at kth stage. Therefore,

all possible test statistic values for kth stage are, T kth1 , T kth2 , . . . , T kthMk
and the ordered

values are,

T kth(1) , T
kth
(2) , . . . , T

kth
(Mk)

An algorithm resembling the bisection method is used to search for a specific LLR

value that has an error rate extremely close to the expected alpha spending at a given

stage. The search starts from the center of an ordered list of LLR values and proceeds

to higher or lower test statistic/LLR values until the desired LLR value is found. Once

the LLR value is identified, it is selected as the critical value.

Let,

ck = min{j ∈ N : Pr(T kth ≥ T kth(j) |pA = pB) ≤ αk}, (3.23)

where αk is the amount of alpha sending for the kth stage. Thus, T kth(ck)
becomes the

critical value of the kth stage.

cvk = T kth(ck)
, (3.24)

which makes,
{
Pr
(
T kth(ck)

)
+ Pr

(
T kth(ck+1)

)
+ ...+ Pr

(
T kth(Mk)

)}
≤ αk.
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3.2 Type I error rate and power

Type I error rate and power can be calculated using the same methods described in

Chapter 2. For a given stage, the probability of rejecting the null hypothesis when it is

true can be expressed as a sum of partial probabilities. Let’s discuss the unconditional

(first) stage.

Once the critical value for the first stage (cv1) has been identified, the type I error

rate can be computed using the probabilities associated with each test statistic value.

Let,

e∗1 = Pr(T 1st ≥ cv1) = Pr(T 1st ≥ T 1st
(c1)

) =

n1∑
i=c1

Pr(T 1st
(i) ). (3.25)

The probability of the test statistic value that falls in the rejection region is com-

puted using the pairs of (sA1, sB1) that were rejected in the first stage, as,

e∗1 =
∑

(sA1,sB1)∈sR1

{(nA1
sA1

)
(p0)

sA1(1−p0)nA1−sA1 ∗
(
nB1

sB1

)
(p0)

sB1(1−p0)nB1−sB1

}
. (3.26)

As the second stage or any subsequent stage, is conditional on the previous stage,

the type I error rate calculation is generalized as for any kth stage (k > 1) as follows.

Let,

e∗k = Pr(T kth ≥ cvk) = Pr(T kth ≥ T kth(ck)
) =

∑
∀i≥ck

Pr(T kth(i) ). (3.27)

This refers to the probability of all test statistic values of kth stage that falls in

the rejection region. For a known sample sizes (NAk, NBk) and probability of success

under null hypothesis (p0), the above-mentioned probability only depends on all pairs

of (s̃Ak, s̃Bk) which were rejected at the kth stage.

Thus, the type I error rate for the kth stage is computed as,

e∗k =
∑

(s∗
A(k−1)

,s∗
B(k−1)

)∈sC
(k−1)

,(s̃Ak,s̃Bk)∈sRk

{
Pr[LLR(s∗A(k−1), s

∗
B(k−1)|p0)]

∗
(
nAk
s̃Ak

)
(p0)

s̃Ak(1− p0)(nAk−s̃Ak) ∗
(
nBk
s̃Bk

)
(p0)

s̃Bk(1− p0)(nBk−s̃Bk)
}
.

(3.28)
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If the analysis consists of a total of K stages, the overall type I error rate (eT ) is

the summation of error rates at each stage.

eT = e∗1 + e∗2 + ...+ e∗K ,

= Pr
(
T 1st ≥ cv1

)
+ Pr

(
T 2nd ≥ cv2

)
+ ...+ Pr

(
TKth ≥ cvK

)
,

= Pr
(
T 1st ≥ T 1st

(c1)

)
+ Pr

(
T 2nd ≥ T 2nd

(c2)

)
+ ...+ Pr

(
TKth ≥ TKth(cK)

)
,

=
∑
∀i≥c1

Pr
(
T 1st
(i)

)
+
∑
∀i≥c2

Pr
(
T 2nd
(i)

)
+ ...+

∑
∀i≥cK

Pr
(
TKth(i)

)
.

(3.29)

Under a specific alternative hypothesis Ha, the power of the test (1− β) is the prob-

ability of rejecting the null hypothesis when the alternative hypothesis is true. That

is the probability of having an LLR that is larger than the specified critical value.

(1− β) = PH1(T
1st ∈ R1) + PH1(T

1st ∈ C1, T
2nd ∈ R2) + ...+

PH1(T
1st ∈ C1, ..., T

(K−1)th ∈ CK−1, TKth ∈ RK).
(3.30)

In order to compute power, the hypotheses for comparing two proportions are,

H0 : pA = pB = p0, vs Ha : pA 6= pB,

Ha : pA = p0, and pB = p1.
(3.31)

For a given critical value (cvk), the probability of all LLR values which are in

rejection region (of kth stage) when Ha is true, is computed as,

(1−β)k = Pr(LLR ≥ cvk|pA = p0, pB = p1) =

Mk∑
i=ck

Pr(T kth(i) |pA = p0, pB = p1), (3.32)

where Mk is the number of possible test statistic (LLR) values at the kth stage.

Therefore, the power of the test at kth stage is,

(1− β)k =
∑

(s∗
A(k−1)

,s∗
B(k−1)

)∈sC
(k−1)

,(s̃Ak,s̃Bk)∈sRk

{
Pr[LLR(s∗A(k−1), s

∗
B(k−1)|pA = p0, pB = p1)]

∗
(
nAk
s̃Ak

)
(p0)

s̃Ak(1− p0)(nAk−s̃Ak) ∗
(
nBk
s̃Bk

)
(p1)

s̃Bk(1− p1)(nBk−s̃Bk)
}
.

(3.33)
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Then, the overall power of the test can be expressed as the sum of partial proba-

bilities given by,

(1− β) =
K∑
k=1

(1− β)k =
K∑
k=1

{MK∑
i=ck

Pr(T kth(i) |pA = p0, pB = p1)
}
. (3.34)

3.3 Comparison of alpha spending functions

3.3.1 Critical values and type-I error rate

Consider a RCT with alpha spending functions based on Pocock, O’Brien & Fleming,

and Haybittle-Peto methods. Tables 3.3 -3.8 present the critical values and type I

error rates for each stage along with the overall type I error rate for various sample

sizes for two-stage and three-stage RCT where p0 = 0.4.

Pocock Design

Table 3.3: Critical values and type I error rate for a two-stage analysis based on

Pocock’s method.

n cv1 cv2 error1 error2 Overall error rate

5 8.45621 5.93597 0.018844876 0.020286117 0.039130994

10 6.55586 5.13450 0.015698283 0.024377983 0.040076267

15 5.68292 4.90216 0.021472697 0.021640569 0.043113267

20 5.38341 4.59392 0.023777523 0.024974426 0.048751950

25 5.30886 4.54035 0.023368385 0.024931787 0.048300173

30 5.49067 4.64352 0.024736939 0.024351758 0.049088697

35 5.12608 4.54556 0.024681524 0.024069818 0.048751343

40 5.18861 4.55816 0.023707343 0.024455248 0.048162591

The critical values and error rates were obtained for groups of the same size (nAk =

nBk). Additionally, at each stage, a sample of the same size is combined with the

existing sample. Therefore, ’n’ in Table 3.3 represents the initial sample size of each

group as well as the size of the sample introduced at each stage.
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In Table 3.3, cv1 and cv2 refer to the critical values of stage one and stage two,

respectively. For example, when n = 10, if the calculated test statistic for a given data

is greater than 6.55586 at the first stage, the null hypothesis is rejected. The trial will

continue to the second stage if the calculated test statistic is less than 6.55586. Then,

at the end of the second stage, reject the null hypothesis if the calculated test statistic

is greater than 5.13450. Furthermore, the observed type I error rates of stages one

and stage two are represented by error1 and error2, accordingly. The observed overall

type I error rate is the summation of error1 and error2.

From Table 3.3, we see that as the sample size increases, the critical value of each

stage converges. Note that due to the discrete nature of data, only a few specific

values can serve as critical values. Consequently, the critical value for small sample

sizes (especially n = 5) is slightly greater than the critical value for large sample sizes.

Similarly, we observe that the observed type I error rates converge as the sample size

grows. The error rate values rise to achieve the expected alpha spending at each stage

when the sample size increases. Accordingly, the total error rate increases to achieve

the expected α. Moreover, we see that all two stages converge to an approximate

type I error rate of 0.024. Since these observed error rates are selected to be less

than the alpha spending at each stage, the total type I error rate is always less than

the expected significance level (α = 0.05). Thus, the overall error rate seems to be

converged to 0.048.

Table 3.4: Critical values and type I error rate for a three-stage analysis based on

Pocock’s method.

N cv1 cv2 cv3 error 1 error2 error3 Overall error rate

5 13.86294 6.55586 5.68292 0.001592525 0.01509269 0.01488195 0.03156716

10 6.55586 5.81223 5.02296 0.01569828 0.01461591 0.01629138 0.04660557

15 6.16301 5.64865 5.05254 0.01620210 0.01591045 0.01525180 0.04736435

20 5.99054 5.36311 5.01293 0.01581980 0.01642942 0.01575049 0.04799970

25 5.89344 5.30258 4.88654 0.01580713 0.01608464 0.01645130 0.04834307

30 5.83114 5.34004 5.02913 0.01490047 0.01591968 0.01664155 0.04746169

35 6.00666 5.27015 4.99932 0.01568328 0.01625600 0.01658618 0.04852545

40 5.83197 5.28233 4.98509 0.01654489 0.01596070 0.01619842 0.04870401

From Table 3.4, we see that as the sample size increases, the critical value and the

error rate of each stage converges. However, considering the convergence of data, we
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see that cv1 ≈ 5.9, cv2 ≈ 5.3 and cv3 ≈ 5.0 for large samples. Also it is noticeable that

all three stages converge to an approximate type I error rate of 0.016 and the overall

error rate seems to be converged to 0.049.

O’Brien and Fleming Design

Table 3.5: Critical values and type I error rate for a two-stage analysis based on

O’Brien & Fleming’s method.

n cv1 cv2 error1 error2 Overall error rate

5 13.86294 5.30022 0.001592524 0.039314396 0.040906920

10 8.63046 4.40239 0.005973725 0.037163302 0.043137028

15 7.45888 4.40205 0.008813241 0.038158973 0.046972214

20 7.36182 4.22001 0.008275853 0.039915118 0.048190971

25 7.08980 4.17060 0.009104756 0.038479678 0.047584434

30 7.11113 4.16780 0.008889434 0.038612362 0.047501797

35 7.05801 4.19081 0.009892919 0.039939426 0.049832346

40 6.76542 4.00595 0.009395277 0.039724777 0.049120055

The critical values and type I error rate for various sample sizes for a two-stage

RCT using O’Brien and Fleming’s approach are shown in Table 3.5. It is noticable

that as the sample size increases, the critical value and the error rate of each stage

converges.

The critical values and type I error rates for various sample sizes for a three-stage

RCT using O’Brien and Fleming’s approach are shown in Table 3.6. It is clearly

noticeable that the critical values are monotonically decreasing. Consider n = 15.

The critical value is 9.50504 for the first stage, 5.83114 for the second stage and

4.20760 for the final stage. Furthermore, we see that the critical value of each stage

converges as the sample size grows. It is noticeable that the critical values for n = 5

and n = 10 are slightly greater than the critical value for large sample sizes. However,

considering the convergence of data, we see that cv1 ≈ 8.6, cv2 ≈ 5.9 and cv3 ≈ 4.1

for large samples.
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Table 3.6: Critical values and type I error rate for a three-stage analysis based on
O’Brien & Fleming’s method

N cv1 cv2 cv3 error 1 error2 error3 Overall error rate

5 13.86294 7.70979 5.05812 0.001592525 0.01203605 0.02470096 0.03832954
10 10.97434 6.58263 4.43483 0.003505039 0.0133913 0.02880882 0.04570516
15 9.50504 5.83114 4.20760 0.003369754 0.01362822 0.03160567 0.04860364
20 9.09623 6.23276 4.23581 0.003448242 0.0133202 0.03097545 0.04774389
25 8.97213 5.98982 4.13729 0.003277688 0.01364946 0.03063392 0.04756106
30 8.59352 5.91863 4.10696 0.003564179 0.01389037 0.03149775 0.04895229
35 8.60081 5.90597 4.16238 0.003519533 0.01371822 0.03183764 0.04907539
40 8.65892 5.89788 4.12003 0.00399697 0.01385637 0.03158019 0.04943354

In a similar manner, we notice that the error rates converge as the sample size

increases. Thus, the approximate error rates can be noted as 0.004, 0.014 and 0.032

for stages 1, 2 and 3, respectively. It is clear that as the sample size grows, stage-wise

error rates increase to obtain the anticipated alpha spending at each stage. To reach

the desired level of statistical significance (α), the overall error rate may therefore

grow. Therefore, the overall error rate seems to be converged to 0.049.

Haybittle-Peto Design

Table 3.7: Critical values and type I error rate for a two-stage analysis based on

Haybittle-Peto’s method.

n cv1 cv2 error1 error2 Overall error rate

5 NA 4.69108 NA 0.042919960 0.042919960

10 13.68058 4.05375 0.000867957 0.047604472 0.048472429

15 12.98614 3.89145 0.000655116 0.048380587 0.049035703

20 11.20025 4.15227 0.000977691 0.046912610 0.04789030

25 10.84868 4.08804 0.000989207 0.048016429 0.049005636

30 11.66421 4.06670 0.000906538 0.048857664 0.049764202

35 11.22909 3.82504 0.000987286 0.047791324 0.048778610

40 11.22740 3.85974 0.000909966 0.048543445 0.049453412
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In Table 3.7, the expected alpha spending at stage one is relatively small (0.001)

compared to the alpha spending at stage 2 (0.049). When n=5, the computer pro-

gram has failed to produce a critical value for the first stage. This indicates that the

error rate associated with all potential test statistic values exceeds the expected alpha

spending for the initial stage. Having a very small alpha spending at the first stage

makes the test to be continued to the second stage when n=5. Then the calculated

test statistic for the second stage can be compared with 4.69108, and the null hypoth-

esis can be rejected if the test statistic exceeds this cv2.

Table 3.8: Critical values and type I error rates for a three-stage analysis based on

Haybittle-Peto’s method.

N cv1 cv2 cv3 error 1 error2 error3 Overall error rate

5 NA 13.68058 4.14392 NA 0.000867957 0.04794403 0.04881198

10 13.68058 11.20025 3.89145 0.000867957 0.000867957 0.04765534 0.04939700

15 12.98614 11.36583 3.91293 0.000655116 0.000927798 0.04741874 0.04900165

20 11.20025 10.79097 4.08543 0.000977691 0.000906737 0.04744912 0.04933354

25 10.84868 10.81085 3.96245 0.000989207 0.000961602 0.04775777 0.04970858

30 11.66421 10.75651 3.92100 0.000906539 0.000979851 0.04666388 0.04855027

35 11.22909 10.75109 3.92176 0.000987286 0.000945166 0.0463897 0.04832216

40 11.22740 10.72623 3.90766 0.000909966 0.000931972 0.04683233 0.04867426

Table 3.8 shows the critical values and type I error rate for various sample sizes for

a three-stage RCT using Haybittle-Peto’s approach. We can see that having a very

small alpha spending at the first stage makes the test to be continued to the second

stage when n=5. Then the calculated test statistic for the second stage is compared

with 13.68058, and the null hypothesis is rejected if the test statistic exceeds 13.68058.

If the trial continues to the third stage, the null hypothesis is rejected if the calculated

test statistic exceeds 4.14392.

The critical values and observed type I error rate for each stage converge as the

sample size increases. We can observe that cv1 ≈ 11.2, cv2 ≈ 10.8 and cv3 ≈ 3.9 for

large samples. Also, the approximate error rate values can be noted as 0.0009, 0.0009

and 0.047 for stages 1, 2 and 3, respectively. Additionally, the overall error rate seems

to be converged to 0.049.
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From Tables 3.3 to 3.8, there is one more noticeable outcome that needs to be

addressed. In the first stage of any design, we conduct a general likelihood ratio test,

so the critical value should follow a chi-squared distribution with the degree of freedom

equal to one. When we consider the convergence of the critical values of the above

methods, we can see that at each stage, the converged value is approximately equal

to the chi-squared value under the expected significance level. However, the critical

values of the second stage and subsequent stages deviate from this chi-squared value

as those stages are conditional on the previous stage.

The alpha spending functions of the above-discussed approaches are designed to

achieve the overall significance level of the test. Let’s consider the three-stage RCT.

As we can see from Tables 3.4, 3.6 and 3.8, the overall error rate seems to converge

to 0.049 for all three designs. Therefore, let’s compare the convergence speed of these

three approaches.

sample size
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Figure 3.1: Observed Overall type I error rate for various sample sizes (three-stage

design based on Pocock, O’Brien & Fleming, Haybittle-Peto methods with confidence

level =0.05)

Figure 3.1 compares the observed overall type I error rate for Pocock, OBF and

Haybittle-Peto designs. It is noticeable that Haybittle-Peto’s design has less deviated

values and achieves the expected significance level even for small sample sizes. Pocock
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and OBF method have more deviated values for sample sizes less than 20. However,

all the methods converge to a value approximately equal to 0.049 when the sample

size increases.

3.3.2 Power

The following tables show the power (1 − β) for each stage along with the overall

power for a two-stage design, where

H0 : pA = pB = 0.4, vs Ha : pA = 0.4, pB = 0.2, and

Ha : pA = 0.4, pB = 0.5, and

Ha : pA = 0.4, pB = 0.7.

(3.35)

Table 3.9: Power for a two-stage design based on Pocock’s method

p1 = 0.2 p1 = 0.5 p1 = 0.7

n power1 power2
Overall
Power

power1 power2
Overall
Power

power1 power2
Overall
Power

5 0.03332106 0.0960127 0.1293338 0.027 0.02643861 0.05343861 0.08513994 0.1122081 0.1973481
10 0.08586644 0.142454 0.2283204 0.02335223 0.04934045 0.07269268 0.1265415 0.2799866 0.4065281
15 0.1434708 0.213306 0.3567767 0.03855402 0.05794425 0.09649828 0.2455363 0.3413866 0.5869229
20 0.1926369 0.2819507 0.4745876 0.04879363 0.08015245 0.1289461 0.3474889 0.3951685 0.7426574
25 0.2499045 0.3114267 0.5613312 0.0546873 0.09901775 0.153705 0.4305695 0.4087034 0.8392729
30 0.2746106 0.3597293 0.63434 0.07621129 0.1064223 0.1826336 0.5595594 0.3427688 0.9023282
35 0.3510623 0.357879 0.7089414 0.07695307 0.1219779 0.198931 0.6122212 0.3267708 0.938992
40 0.3875469 0.3804764 0.7680233 0.07953149 0.1351 0.2146315 0.6635039 0.2986361 0.96214

Table 3.9 presents the statistical power of three different alternative hypotheses;

pB = 0.2, pB = 0.5 and pB = 0.7 for a two-stage RCT with pA = p0 = 0.4 and

equal alpha spending at each stage (Pocock’s design). The results were obtained for

various sample sizes(n) for groups A and B, assuming that equal-sized samples were

introduced at each stage. Since this study has two stages, ‘power1’ and ‘power2’ refer

to the statistical power at stages one and stage two, respectively. ‘Overall power’ of

the analysis has been obtained by adding the power of the two stages.

From Table 3.9, we see that the power of stage one increases when the sample size

increases for any given pB. Similarly, the overall power increases as the sample size

grows. Additionally, when the value of pB is far from p0 value, the overall power for a

given sample size is greater than that of when p1 is close to p0. Consider n = 25 as an
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example. As pB = 0.5 is the nearest value to 0.4 and pB = 0.7 is the farthest among

these three pB values given. Note that the overall power is 0.1537 when p1 = 0.5, it

is 0.5613 when p1 = 0.2 and 0.8393 when p1 = 0.7. In addition, Table 3.9 shows that

when the power is > 80%, a higher proportion of total power is achieved in the first

stage, leaving the remainder for the second stage.

Tables 3.10 and 3.11 present the statistical power using O’Brien & Fleming design

and Haybittle-Peto design for a two-stage test with pA = p0 = 0.4 and three different

alternative hypotheses; pB = 0.2, pB = 0.5 and pB = 0.7.

Table 3.10: Power for a two-stage design based on O’Brien & Fleming’s method

p1 = 0.2 p1 = 0.5 p1 = 0.7

n power1 power2
Overall

Power
power1 power2

Overall

Power
power1 power2

Overall

Power

5 0.00338 0.128337 0.1317177 0.00275 0.06025394 0.06300393 0.01309401 0.2358144 0.2489084

10 0.043437 0.229691 0.2731284 0.008533438 0.07440134 0.08293477 0.05809485 0.3925739 0.4506688

15 0.080459 0.295713 0.3761722 0.01769037 0.08940288 0.1070932 0.1513178 0.4722911 0.6236089

20 0.110255 0.373963 0.484218 0.02077368 0.1083667 0.1291404 0.220262 0.5337677 0.7540297

25 0.147525 0.437367 0.5848914 0.02624519 0.1239889 0.1502341 0.3041631 0.5387831 0.8429462

30 0.176537 0.476192 0.6527288 0.02998943 0.1431633 0.1731527 0.378025 0.5255427 0.9035676

35 0.215926 0.509293 0.7252191 0.0421287 0.1648648 0.2069934 0.4918917 0.4541692 0.9460608

40 0.272505 0.523851 0.7963559 0.04505358 0.1993241 0.2443777 0.5541985 0.4177051 0.9719036

Table 3.11: Power for a two-stage design based on Haybittle-Peto’s method.

p1 = 0.2 p1 = 0.5 p1 = 0.7

n power1 power2
Overall
Power

power1 power2
Overall
Power

power1 power2
Overall
Power

5 NA 0.155527 0.155527 NA 0.063182 0.063182 NA 0.24895 0.2489498
10 0.006389 0.285172 0.291561 0.001887 0.085741 0.087628 0.019437 0.444118 0.4635551
15 0.012487 0.386814 0.399301 0.001764 0.121754 0.123518 0.031243 0.632068 0.6633117
20 0.032235 0.446986 0.479221 0.003249 0.130764 0.134013 0.070857 0.693614 0.7644705
25 0.038275 0.541985 0.58026 0.004697 0.155176 0.159873 0.119695 0.735309 0.855004
30 0.047798 0.611114 0.658911 0.005944 0.191313 0.197257 0.171411 0.748575 0.919986
35 0.070561 0.676868 0.747429 0.007303 0.215696 0.222999 0.228421 0.725154 0.9535751
40 0.083017 0.718746 0.801764 0.008253 0.231267 0.23952 0.281649 0.690004 0.9716529

From Tables 3.10 and 3.11 pwe can make similar conclusions as we did based on

Table 3.9. The primary observation is that the overall power increases as the sample
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size grows. The following graphs can be used to compare these three approaches.
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Figure 3.2: Observed Overall Power for various sample sizes when pA = 0.4 and
pB = 0.2 (Two stage design based on Pocock, O’Brien & Fleming, Haybittle-Peto
methods with confidence level =0.05)

The Figure 3.2 compares the overall power between Pocock, OBF and Haybittle-

Peto designs. The results were obtained for various sample sizes and pB = 0.2. The

blue line denotes the power values obtained using Pocock’s approach, the green line is

for OBF, and the red line is for the Haybittle-Peto approach. The three lines do not

appear to be significantly different from one another. Therefore, we can conclude that

the power of the test for a given sample size is almost the same for all three designs

when pB = 0.2.

Figure 3.3: Observed Overall Power for various sample sizes when pA = 0.4 and
pB = 0.5 (Two stage design based on Pocock, O’Brien & Fleming, Haybittle-Peto
methods with confidence level =0.05) )
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Figure 3.4: Observed Overall Power for various sample sizes when pA = 0.4 and
pB = 0.7 (Two stage design based on Pocock, O’Brien & Fleming, Haybittle-Peto
methods with confidence level =0.05)

Figures 3.3 and 3.4 illustrate that the overall power of the test increases as the

sample size increases for all three approaches. Also, we see that the power of the

test is almost equal for all three designs for any given sample size. Most of the

time, the Haybittle-Peto design achieves a Power greater than the other two designs.

Additionally, by comparing the three lines in Figures 3.3 and 3.4, we can conclude

that when the value under a specific alternative hypothesis (pB) is far away from the

value under the null hypothesis (p0), higher power can be achieved for large sample

sizes.



Chapter 4

Summary and future work

4.1 Summary

Randomized clinical trials (RCT) are widely regarded as the most reliable clinical

research strategy for comparing treatments. In RCT, the participants are randomly

assigned to treatments to compare the effect of a treatment against a control. Ran-

domization is used to ensure that statistical inference at the end of the study is

reliable as it assists in reducing systematic bias, ascertainment bias, selection bias

and accidental bias. There are several methods for randomly assigning individuals to

treatment groups in clinical trials. Simple randomization, block randomization, strat-

ified randomization, and adaptive randomization are the most used randomization

methods.

The group sequential designs of RCT enables termination of the study early if

preliminary results favour one treatment over the other. The key feature of the group

sequential designs of RCT is that the sample size is not specified in advance. The

approach performs multiple tests based on cumulative data, and sampling is termi-

nated with a predefined stopping rule as soon as statistically significant findings are

revealed. Given the maximum number of inspections, K, a group sequential design

will have (K−1) number of ‘interim analyses/stages’ and a final stage. However, this

interim analysis may have hidden consequences. If the analysis does not reveal that

the trial can be stopped early, the fact that the interim analysis was carried out could

potentially undermine the power of the test. Alpha spending functions approach can
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be used as a solution to the concerns of accommodating interim analysis. Different

functions were proposed to split the type I error rate between interim analyses and

the final stage.

The group sequential designs enable early conclusions while maintaining statistical

power and controlling the type I error rate of the study. For a group sequential RCT,

the total type I error rate is maintained using the critical values that were calculated

using the boundaries technique. Pocock (1977, 1982) [32, 33] and O’Brien and Fleming

(1979) [29] proposed group sequential test techniques, which are frequently used in

clinical research.

The objective of this study is to compute the critical values, type I error rate,

and power of group sequential analysis with binary responses. Critical values create

the boundaries which separate the acceptance, continuation, and rejection regions.

However, in this study, the acceptance region is not considered; therefore, the critical

values computed in the study define the boundary between the rejection and the

continuation regions. As we consider groups of binary responses, we use the Binomial

probability model and log-likelihood ratio as the test statistic in this study. The

alpha spending functions used in this study are modified with the idea of the methods

proposed by Pocock (1977,1982) [32, 33], O’Brien & Fleming (1979) [29] and Haybittle-

Peto (1971,1976) [15, 31] . An iterative Markov chain technique is used to compute

critical values that fulfil the alpha spending at each stage of the procedure.

First, the Markov chain technique is briefly explained with the help of a single

sample scenario. The equations were developed to determine the test statistic, type

I error rate, and power for a three-stage design with binary data. The generalised

equations were then proposed, which can be used for any number of stages. A com-

puter programme is created for two-stage and three-stage group sequential designs to

calculate the critical values and the associated type I error rates at each stage along

with the overall type I error rate. The results were obtained for various sample sizes

with the same sample size at each stage. Graphs were created to illustrate the con-

vergence of critical values, type I error rate of each stage, as well as the overall type

I error rate as sample size increases. Another R function is written to calculate the

power for any given alternative hypothesis and the results were presented for various

sample sizes with graphs to demonstrate how the power of the test changes with the

sample sizes.
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The iterative Markov chain approach was extended to compare two proportions.

The technique was well explained for two groups scenario while constructing three

different alpha spending functions with the influence of Pocock’s design, O’Brien &

Fleming’s design and Haybittle-Peto’s design. Critical values, type I error rate and

power for two-stage and three-stage designs have been calculated and results were

presented for different sample sizes. The convergence of critical values, type I error

rate and Power with increasing sample size was depicted using graphs. Finally, the

outcomes of these three designs were analysed in order to compare the effectiveness

in sequential designs of clinical trials with binary data.

When all the results are compared, it is clear that the critical values and type I

error rate converge as the sample size increases. However, the overall type I error

rate obtained by Haybittle-Peto’s design converges quickly and with lesser deviations

than the values obtained by the other two designs. Additionally, we could observe

that when the sample size grows, the power of the test grows as well under different

alternative hypotheses. However, the power values obtained under Pocock, O’Brien

& Fleming and Haybittle-Peto approaches do not appear to be significantly different

from one another for any given alternative hypothesis.

4.2 Future work

While our research is focused on computing critical values, type I error rate and

power using an iterative Markov chain for one sample case as well as comparing two

treatments, these results can be generalized to more than two treatments. Therefore,

in the future, we aim to utilize the Markov chain process, which can be used to

compare more than two treatments. Additionally, this study used equal sample sizes

at every stage and also for each group when comparing two treatments. However, the

proposed method can be generalized for unequal sample sizes at each stage as well as

for each group.

Furthermore, this study focused only on three approaches proposed by Pocock

(1977,1982) [32, 33], O’Brien Fleming (1979) [29] and Haybittle-Peto (1971,1976)

[15, 31]. In Future, new stopping rules can also be proposed based on other popular

alpha spending functions.
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