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Abstract

Multigrid methods are often the most e�cient approaches for solving the very

large linear systems that arise from discretized PDEs and other problems. Algebraic

multigrid (AMG) methods are used when the discretization lacks the structure needed

to enable more e�cient geometric multigrid techniques. AMG methods rely in part

on heuristic graph algorithms to achieve their performance. Reduction-based AMG

(AMGr) algorithms attempt to formalize these heuristics.

The main focus of this thesis is to develop e↵ective algebraic multigrid methods.

A key step in all AMG approaches is the choice of the coarse/fine partitioning, aiming

to balance the convergence of the iteration with its cost. In past work (MacLachlan

and Saad, A greedy strategy for coarse-grid selection, SISC 2007), a constrained

combinatorial optimization problem was used to define the “best” coarse grid within

the setting of two-level reduction-based AMG and was shown to be NP-complete. In

the first part of the thesis, a new coarsening algorithm based on simulated annealing

has been developed to solve this problem. The new coarsening algorithm gives better

results than the greedy algorithm developed previously.

The goal of the second part of the thesis is to improve the classical AMGr method.

Convergence factor bounds do not hold when AMGr algorithms are applied to ma-

trices that are not diagonally dominant. In this part of our research, we present

modifications to the classical AMGr algorithm that improve its performance on such

matrices. For non-diagonally dominant matrices, we find that strength of connec-

tion plays a vital role in the performance of AMGr. To generalize the diagonal

approximations of AFF used in classical AMGr, we use a sparse approximate inverse
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(SPAI) method, with nonzero pattern determined by strong connections, to define

the AMGr-style interpolation operator, coupled with rescaling based on relaxed vec-

tors. We present numerical results demonstrating the robustness of this approach for

non-diagonally dominant systems.

In the third part of this research, we have developed an improved deterministic

coarsening algorithm that generalizes an existing technique known as Lloyd’s algo-

rithm. The improved algorithm provides better control of the number of clusters than

classical approaches and attempts to provide more “compact” groupings.
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General Summary

Numerical methods are essential to approximate the solutions of mathematical

models that describe real-world phenomena. The main goal of my thesis is to develop

numerical methods. The di↵erent parts of the thesis are about understanding and

solving di↵erent problems essential for the improvement of certain numerical methods.

Imagine a network of people where a person is connected to at most four other

persons. An interesting question to ask is how many people must be removed from

the network to ensure that each person left in the network loses at least one connec-

tion? The question can be generalized asking to find the minimum number of people

that should be removed from a network, where each person is connected to at most

� people, so that each person present in the network loses at least  connections.

Though there is nothing to do with people in my thesis, the first part of the thesis

solves a similar combinatorial optimization problem in the process of improving a

numerical method.

The second part of this research generalizes an existing numerical method and

extends its applicability to a wider class of problems. Here we try to understand the

reasons that impede a particular numerical method to approximate better solutions

for many di↵erent problems and improve the method to make it applicable to a larger

class of problems.

The third part of the thesis is about clustering or aggregation of nodes in a network

graph. If the nodes in the graph represent people, it would be a network of people.

Our goal is to make the clusters better rounded, well-centered, and uniform. We

improve an existing algorithm to form balanced clusters of nodes in a network graph.
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The new algorithm provides control over the number of clusters and leads to uniform

and well-centered partitions of the graph.
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FF
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FF
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Chapter 1

Introduction

Scientific simulation has become indispensable for studying many real or hypothet-

ical systems. In this process, the physical or hypothetical system is mimicked by a

mathematical model and it is hoped that this model will closely approximate the dy-

namic behaviour of the actual system. Computer simulation is important as there are

many complicated physical processes that are very di�cult to study directly and also

di�cult to simulate in laboratories. Starting from meteorology and nuclear physics,

computer simulations are now being used in a vast array of disciplines and can be

expected to be used in almost every scientific and engineering discipline in future.

1.1 Mathematical and discretized models

Generally, a physical or hypothetical system is first represented by a set of mathemat-

ical equations called the mathematical model of the system. Mathematical models

are useful tools to understand and study the properties of the original system. Very

often these mathematical models consist of systems of di↵erential equations (DEs),

especially partial di↵erential equations (PDEs).

As an example, a very common family of di↵erential equations in mathematical

models take the form

�r ·K(x, y)rV (x, y) = ↵
@V (x, y)

@t
, (1.1)

which can be used to model heat flow, fluid flow in porous media, or displacement

in a hanging bar, with ↵ and K representing physical parameters. Here, (x, y) 2

R ⇥ R represents coordinates, and V (x, y) : R ⇥ R 7�! R is a function of (x, y).
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Also, K(x, y) = QHQT with Q =

"
cos(✓) � sin(✓)

sin(✓) cos(✓)

#
being a plane rotation and

H =

"
� 0

0 1

#
. Furthermore, ✓ and � represent direction and strength of anisotropy,

respectively.

The physical meanings of the di↵erent terms of Equation (1.1) is tabulated in

Table 1.1 for three di↵erent physical systems that can be modeled by this equation.

The mathematical model is derived using conservation principles and equations of

state. The equation beautifully expresses the relationship between the temperature

gradient and temperature change with time, or the pressure gradient and pressure

change with time, or the change in time of strain and displacement. In principle,

we can use this equation to compute the distribution of temperature, pressure, or

displacement at di↵erent points in space and time.

Table 1.1: Physical meaning of the terms in Equation (1.1)

Terms Physical Meaning

Heat flow Fluid flow Hanging bar

V temperature pressure displacement

rV temperature pressure strain

gradient gradient

KrV heat flux volumetric flux or stress

Darcy velocity

�r ·KrV heat accumulation
volume/time

volume accumulation
volume/time

force
volume

@V

@t

temperature change
time

pressure change
time

displacement change
time

In many cases these mathematical models cannot be solved analytically. Hence,

the PDEs are transformed into a related algebraic system of equations using some

discretization method. Spatial discretization, required for the left hand side of Equa-

tion (1.1), can be made using the finite di↵erence (FD), finite element (FE), or finite

volume (FV) methods. In a finite di↵erence discretization, Taylor’s theorem is used

to transform a PDE into an algebraic system of equations, by approximating the

derivatives of a function at a set of points in the function domain.

To explain better, we will work through an example for the two-dimensional Pois-
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son equation

�Vxx � Vyy = 2(x� x2 + y � y2), 0 < x, y < 1,

V (x, 0) = V (x, 1) = V (0, y) = V (1, y) = 0, 0  x  1, 0  y  1.
(1.2)

This equation can, of course, be solved analytically. However, we use this as a moti-

vating example for numerical solution techniques. Among the finite-di↵erence (FD),

finite-element (FE) and finite-volume (FV) methods that can be employed to numer-

ically solve the equation, we consider the finite-di↵erence method for its simplicity.

The domain of the problem {(x, y) : 0  x  1, 0  y  1} is partitioned into p

subintervals in the x-direction and q subintervals in the y-direction. The grid points

here are introduced as (xi, yj) = (ihx, jhy), where hx = 1
p
and hy = 1

q
. The grid

points are the points where we intend to compute approximations to the values of V .

Hence, the grid can also be considered as a set of unknowns. We denote this two-

dimensional grid by ⌦, and note that it has a total of n interior grid points, where

n = (p�1)(q�1). The grid ⌦ here is our “fine grid” and the grid points are fine-grid

points. Replacing the di↵erential equation (1.2) at each of the n interior grid points

by a second-order finite di↵erence approximation gives the following system of linear

equations

�vi�1,j + 2vi,j � vi+1,j

h2
x

+
�vi,j�1 + 2vi,j � vi,j+1

h2
y

= 2(xi � x2
i
+ yj � y2

j
),

vi,0 = vi,q = v0,j = vp,j = 0, 1  i  p� 1, 1  j  q � 1.

(1.3)

where the vector v represents the approximate solution of Eq. (1.2). Here, vi,j is an

approximation to the exact solution V (xi, yj). However, v is the exact solution of the

system of linear equations represented by Eq. (1.3). Considering the lexicographic

ordering of the n = (p � 1)(q � 1) unknowns by lines of constant i and collecting

the unknowns of the i-th column of the grid in the vector vi = (vi,1, ..., vi,q�1)T for

1  i  p� 1, the system of equations (1.3) can be written in block matrix form as

2

6666664

Y �aI

�aI Y �aI
. . . . . . . . .

�aI

�aI Y

3

7777775

2

6666664

v1

v2
...

vp�2

vp�1

3

7777775
=

2

6666664

f1

f2
...

fp�2

fp�1

3

7777775
, (1.4)
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where

Y =

2

66666664

2
h2

x
+ 2

h2
y

�
1
h2

y

�
1
h2

y

2
h2

x
+ 2

h2
y
�

1
h2

y

. . . . . . . . .

�
1
h2

y

�
1
h2

y

2
h2

x
+ 2

h2
y

3

77777775

is a (q � 1)⇥ (q � 1) tridiagonal matrix, a = 1
h2

x
, and I is a (q � 1)⇥ (q � 1) identity

matrix. The matrix in this equation is symmetric, block-tridiagonal, sparse, and has

a block dimension (p� 1)⇥ (p� 1). Eq. (1.4) can be written as

Av = f , (1.5)

where A 2 Rn⇥n.

1.2 Direct methods for solving linear systems

Gaussian elimination is a direct method that comes naturally to mind when solving

a system of linear equations. The algorithm can solve a system of linear equations of

the form Av = f for any nonsingular matrix A. Here, two triangular matrices L and

U are computed so that A = LU . The factorization of the matrix A into L and U can

be done in di↵erent ways. Algorithm 1.1 describes the ikj version of the “in-place”

LU factorization. In the row reduction process, starting from the second row, each

element Ai,k prior to the diagonal element in row i is eliminated using a factor that

is computed using Ai,k and Ak,k. The element Ai,k is overwritten by the factor and

each element following Ai,k is updated using the factor, and the element in the same

column of the k-th row. Hence, the triangular part below the diagonal of the output

matrix from Algorithm 1.1 contains the factors used to transform the system Av = f

into Uv = z where z is the solution of Lz = f . L is the strictly lower triangular

part of the output matrix from Algorithm 1.1 and U is the upper triangular part

of this output matrix. Algorithm 1.2 solves the system Lz = f and Algorithm 1.3

solves the system Uv = z. The solution process in Algorithm 1.3 starts solving for

vn from the last equation and subsequently substitutes the known values to compute

the unknown values.

Gaussian elimination is a general-purpose algorithm. The downside of the Gaus-

sian elimination is that it is computationally expensive. Algorithm 1.1 shows that
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Algorithm 1.1 LU factorization of the matrix A

1: function lu-factorization(A)

2: for i 2, . . . , n do

3: for k  1, . . . , i� 1 do

4: Ai,k = Ai,k/Ak,k

5: for j  k + 1, . . . , n do

6: Ai,j = Ai,j � Ai,kAk,j

7: return (A)

Algorithm 1.2 Solution of Lz = f

1: function forward-substitution-solve(L, f)

2: n length of f

3: zi  0 for all i = 1, . . . , n

4: z1  f1/L1,1

5: for i 2, . . . , n do

6: for j  1, . . . , i� 1 do

7: fi = fi � Li,jzj

8: zi = fi/Li,i

9: return z

Algorithm 1.3 Solution of Uv = z

1: function backward-substitution-solve(U, z)

2: n length of z

3: vi  0 for all i = 1, . . . , n

4: vn  zn/Un,n

5: for i n� 1, . . . , 1 do

6: for j  i+ 1, . . . , n do

7: zi = zi � Ui,jvj

8: vi = zi/Ui,i

9: return v

there are two floating point operations (flops) in the third for loop and one flop in

the second for loop. The total number of floating point operations can be expressed
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as
nX

i=2

i�1X

k=1

 
1 +

nX

j=k+1

2

!
,

which sums to 2
3n

3
�

1
2n

2
�

1
6n. Therefore, the dense implementation of Gaussian

elimination requires O(n3) arithmetic operations to solve a system of equations where

n is the number of degrees of freedom (DoFs).

However, the linear systems that come from a discretization process are typically

sparse, hence, the sparsity can be exploited to reduce the computational cost. A

sparse matrix can be banded meaning that the nonzero entries are confined in a band

around the main diagonal. For a sparse matrix, A, if Ai,j = 0 for |i� j| > B, where

B < n, then the smallest such B is called the bandwidth of A. For a banded sparse

matrix, the LU factorization does not need to overwrite the zero elements outside

the band in the strictly lower triangular part. Hence, the computation of the factors

corresponding to these zero elements and the corresponding updates to the elements

in the upper triangular parts are not required. Thus, the zero elements outside the

band in upper triangular part need never be updated. Algorithm 1.1 can be modified

into Algorithm 1.4 for banded sparse matrices. The total number of flops in the

modified algorithm can be computed as

nX

i=2

i�1X

k=max(1,i�B)

0

@1 +
min(k+B,n)X

j=k+1

2

1

A  (2B2 +B)n.

Hence, the number of arithmetic operations for the banded factorization is reduced

to O(B2n), which is significantly less than O(n3) if B ⌧ n.

Algorithm 1.4 LU factorization of the banded sparse matrix A

1: function lu-factorization-banded-sparse(A)

2: for i 2, . . . , n do

3: for k  max(1, i� B), . . . , i� 1 do

4: Ai,k = Ai,k/Ak,k

5: for j  k + 1, . . . ,min(k +B, n) do

6: Ai,j = Ai,j � Ai,kAk,j

7: return (A)

The number of arithmetic operations can be further reduced by reordering the

rows and columns of the matrix. Such reordering can decrease the bandwidth and
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required computational cost. However, Ho↵man, Martin, and Rose (1973) proved

that the number of arithmetic operations cannot be less than O(n3/2) when A comes

from discretization on an
p
n⇥
p
n mesh. This best possible complexity is obtained in

the Nested dissection algorithm due to George (1973) [6]. Solvers with greater than

linear complexity are impractical for large n.

1.3 Iterative methods and preconditioning for solv-

ing linear systems

Classical direct methods work well for smaller systems; however, they are not feasible

for large systems due to their high computational cost. Consequently, we introduce

iterative methods to reduce the computational complexity. The goal of iterative meth-

ods is to solve for n DoFs in O(n) cost. Part of the price that we pay to accomplish

this is that the linear system cannot be solved exactly in this cost. However, we do

not need to solve the linear system with a higher accuracy than the discretization

error that the linear system contains in the approximation of a discretized PDE.

To have a basic concept about iterative methods, consider v(m) to be the m-th

guess to the exact solution v of the linear system Av = f . If we wanted to have the

exact solution in the (m+ 1)-th guess, we would write,

v(m+1) = v = v(m) + (v � v(m)) = v(m) + e(m),

where e(m) is the error in v(m). At this point, we do not know e(m) as we do not

know v. However, we can represent e(m) with the residual, r(m), computing A�1r(m)

because

r(m) = f � Av(m) = Av � Av(m) = Ae(m).

To avoid the computation of the inverse of A, as this would lead to direct methods

again, the inverse of A can be approximated by some matrix M leading to

v(m+1) = v(m) +M(f � Av(m)). (1.6)

The relationship between v(m+1) and v(m) can be made more general, writing,

v(m+1) = v(m) + !mM(f � Av(m)),

where !m is a scalar parameter. The approximation, M , can be constructed in a

myriad of ways. One approach to construct M is “matrix splitting”.
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Let’s consider that A is split into A = D�L�U , where D is a diagonal matrix, L

is a strictly lower-triangular matrix and U is a strictly upper triangular matrix. With

this splitting, di↵erent choices of M lead to di↵erent iterative methods. Choosing

M = D in Equation (1.6) gives the Jacobi iteration method, and M = 1
!
D, where

! is a scalar parameter, leads to the weighted Jacobi iteration. For the Gauss-Seidel

(GS) iteration, M in Equation (1.6) is chosen as D�L. In successive over-relaxation

(SOR), M = 1
!
D � L.

Let’s go back to our example problem (Equation (1.2)) and solve Equation (1.5)

using Gauss-Seidel iterations to show the performance of standard iterative methods.

It can be shown that the eigenvectors of A can be written as u(k,l) = sin(k⇡x) sin(l⇡y).

u(k,l) can be written in vector form as

u(k,l) =

2

666666666666666666666666666666664

...

sin
⇣
(i� 1)k⇡

p

⌘
sin
⇣
(j � 1) l⇡

q

⌘

sin
⇣
(i� 1)k⇡

p

⌘
sin
⇣
j l⇡

q

⌘

sin
⇣
(i� 1)k⇡

p

⌘
sin
⇣
(j + 1) l⇡

q

⌘

...

sin
⇣
ik⇡

p

⌘
sin
⇣
(j � 1) l⇡

q

⌘

sin
⇣
ik⇡

p

⌘
sin
⇣
j l⇡

q

⌘

sin
⇣
ik⇡

p

⌘
sin
⇣
(j + 1) l⇡

q

⌘

...

sin
⇣
(i+ 1)k⇡

p

⌘
sin
⇣
(j � 1) l⇡

q

⌘

sin
⇣
(i+ 1)k⇡

p

⌘
sin
⇣
j l⇡

q

⌘

sin
⇣
(i+ 1)k⇡

p

⌘
sin
⇣
(j + 1) l⇡

q

⌘

...

3

777777777777777777777777777777775

,

where 1  i, k  p � 1, and 1  j, l  q � 1. Here, k and l are the wavenumbers or

frequency numbers that represent the number of half sine waves represented along the

x and y directions, respectively, to constitute the eigenvectors. Smaller k or l values

give long, smooth waves in a direction and larger k or l values give highly oscillatory

waves. If 1  k < p

2 and 1  l < q

2 , we say that the mode u(k,l) is smooth, and if
p

2  k  p � 1 or q

2  l  q � 1, we call the mode oscillatory. We consider solving

Av = f using u(k,l) as our initial approximation.

Writing u to denote an approximation to the exact solution generated by the
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iterative method, the error in the approximation is given by v � u. Note that the

error we are talking about is the numerical error in the solution of (1.5), and not the

discretization error, V �v or the total error, V �u, where V is the exact solution of

(1.2). Following [16], we have the relationship between the error in the m-th iteration,

e(m) and the error in the initial approximation, e(0):

e(m) = [(D � L)�1U ]me(0) = Rme(0). (1.7)

Though the eigenvectors of the iteration matrix, Rm, are not the Fourier modes, we

consider the initial error consisting of Fourier modes that are also the eigenvectors of

the discretization matrix, A. We start with the initial approximations u(1,1), u(5,5),

u(10,10), and u(28,28) and apply the Gauss-Seidel iteration 100 times to Eq. (1.5) on a

32⇥ 32 mesh.

We plot the log of the maximum norm of the error against the iteration number

for k = l = 1, 5, 10, and 28 in Figure 1.1. We see an initial linear decrease in the

log of the error norm for all k and l and that the decrease for k = l = 28 is faster

than that for k = l = 1, 5, or 10, indicating that the iterative method applied here

is more e↵ective for oscillatory waves. To confirm this, we now consider the initial

approximation vector

u =
1

4
(u(1,1) + u(5,5) + u(10,10) + u(28,28))

and apply the Gauss-Seidel iteration on 32 ⇥ 32, 64 ⇥ 64, and 128 ⇥ 128 meshes.

Again, we plot the maximum norm of the error against the number of iterations in

Figure 1.2. We see that initially the rate of decrease is faster; however, as the number

of iterations increases, the rate of decrease becomes slower. Also, the decrease in

error gets worse as the mesh size becomes larger. This is because, at the beginning,

there are both smooth and oscillatory modes of the error and the oscillatory modes

are eliminated quickly. Note, the rate for u(1,1) defines asymptotic rate in Figure 1.1.

After the elimination of the oscillatory modes, the smooth modes are left. As stan-

dard iterative methods are not e↵ective at eliminating the low frequency modes, the

decrease in error becomes slower as the iteration continues. This property of quickly

eliminating the oscillatory error modes and leaving the smooth modes is called a

smoothing property that is possessed by many conventional relaxation methods. It

is also obvious that the iterative method Jacobi, weighted Jacobi, Gauss-Seidel, and

successive over-relaxation are not e�cient for ill-conditioned problems. Hence, solving

ill-conditioned large systems to higher accuracy in numerical models requires more

9



e�cient approaches. One e�cient approach is to use multigrid (MG) or domain de-

composition (DD) methods to solve the systems and to employ the standard iterative

methods as preconditioners. The most e�cient approach probably is to use the MG

or DD methods as preconditioners for Krylov methods.

0 20 40 60 80 100

Iterations

0.0

�0.4

�0.8

�1.2

�1.6

lo
g 1

0
||e

|| � u(1,1)

u(5,5)

u(10,10)

u(28,28)

Figure 1.1: Change in log10 ||e||1 with the number of iterations for the Gauss-Seidel

iteration applied to Eq. (1.5) on a 32 ⇥ 32 mesh for 100 iterations. u(1,1), u(5,5),

u(10,10), and u(28,28) are taken as the initial guesses.

0 20 40 60 80 100

Iterations

0

�2

lo
g 1

0
||e

|| �

GS iteration (32�32 mesh)

GS iteration (64�64 mesh)

GS iteration (128�128 mesh)

Figure 1.2: Change in log ||e||1 with the number of iterations for the Gauss-Seidel

iteration applied to Eq. (1.5) on 32⇥ 32, 64⇥ 64, and 128⇥ 128 mesh and an initial

guess 1
4(u

(1,1) + u(5,5) + u(10,10) + u(28,28)) for 100 iterations.

Geometric multigrid methods were developed and applied to the linear systems

arising from discretization of elliptic PDEs on structured grids. For the problems

10



on unstructured grids or with discontinuous coe�cients, geometric multigrid is not

suitable; algebraic multigrid method (AMG) was developed to handle these cases.

Further development of algebraic multigrid methods is the main focus of this thesis.

1.4 Literature review

Multigrid methods were first studied by Fedorenko [24, 25] and then by Bakhvalov [2].

However, Brandt [10, 11] first recognized the true strength and potential e�ciency

of multigrid methods. Initially unaware of this work, Hackbusch also developed fun-

damental elements of multigrid methods [28]. These original developments were for

geometric multigrid methods, which depend on detailed knowledge of the PDE to be

solved and the grid on which it is discretized. To remove these limitations, classical

AMG was first introduced by Brandt et al. [8, 9] and the method is now widely used.

AMG is also implemented in di↵erent libraries like hypre [23], PETSc [3, 4], Trilinos

[26, 30], and PyAMG [38].

There are many variants of the AMG methodology. The common features among

all the variants are the construction of the coarse grid from the given fine-grid dis-

cretization matrix, and the algebraic interpolation operator. However, the construc-

tion of the coarse grid is di↵erent in di↵erent variants. Coarsening in AMG can

be classified as classical coarsening, aggregation-based coarsening, and coarsening in

AMGr.

1.4.1 Classical coarsening

Classical coarsening approach in AMG, also called Ruge-Stüben (RS) coarsening, was

developed by Brandt, McCormick, and Ruge [8, 9] and later by Ruge and Stüben [41].

In classical AMG [9, 41], the coarse grid is a subset of the fine-grid degrees of freedom

(points) and they are selected based on the idea of strength of connection in the graph

of the matrix representing connections between the fine-level variables. To form the

coarse-grid set, a maximal independent set is first constructed from the graph of strong

connections between the fine-grid degrees of freedom and then the coarse-grid set is

augmented to ensure the construction of suitable interpolation from the final coarse

grid. This can be accomplished using a greedy algorithm. The classical coarsening

algorithm is sequential, however, there are many alternative strategies to overcome

the inherent sequential nature of the algorithm [1, 20, 21, 22, 29]. Also, di↵erent
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approaches have been developed for coarsening, for example, based on redefining the

notion of strength of connection [12, 17, 19, 39] or use of compatible relaxation prin-

ciples [14, 32]. Once the coarse grid has been constructed, an interpolation operator

is determined based on the given matrix entries in A and the principle that errors

after relaxation vary smoothly between strongly connected points. Figure 1.3 shows

the coarse-grid and fine-grid points for the bilinear finite-element discretization of an

isotropic (left) and an anisotropic (right) problem on a uniform 32 ⇥ 32 mesh from

classical coarsening.

0 10 20 30
�
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20

30

�

0 10 20 30
�

0

10

20

30

�

Figure 1.3: Splitting of C- and F - points for uniform 32 ⇥ 32 meshes from clas-

sical Ruge-Stüben (RS) coarsening. At left, coarsening for the FE discretization

of isotropic-di↵usion. At right, coarsening for the FE discretization of anisotropic-

di↵usion with strength of anisotropy 10�6 and direction of anisotropy ⇡/3. Fine-grid

DoFs are denoted by filled grey dots; those that are in C are marked with black

circles.

1.4.2 Aggregation-based coarsening

In aggregation-based approaches, coarse grids are defined by clustering fine-grid points

into aggregates. The DoFs, {i}Nnode
i=1 , that are also the fine nodes in the first level,

are partitioned and grouped into disjoint aggregates, {Ca}
Ncluster
a=1 . Aggregates can be

formed using an aggregation method, i.e., greedy aggregation [36], MIS(2) aggrega-
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tion [5], or Metis aggregation [31]. As examples, Figure 1.4 shows greedy coarsening

for the bilinear finite-element discretization of an isotropic (left) and an anisotropic

(right) problem on a uniform 32⇥ 32 mesh. Each aggregate represents a node in the

coarse grid. In this setting, the coarse nodes don’t need to have any geometric mean-

ing. In the aggregation setting, interpolation is determined by using the aggregates

to define a partition of unity that is applied to a number of vectors that represent so-

called algebraically smooth error. Smoothed aggregation approaches [15, 44, 45, 46]

then postprocess this “tentative interpolation” operator by applying a local relax-

ation scheme column-wise, to yield improved interpolation of slow-to-converge modes.

Aggregation-based methods have been studied for a number of years [7, 18, 36], but

are not as widely used because they may not yield methods that are as e�cient as

the point-based coarsening in classical AMG in some settings [42, 47].

Figure 1.4: Example of greedy aggregation for uniform 32 ⇥ 32 meshes. At left,

aggregation for the FE discretization of isotropic-di↵usion. At right, aggregation for

the FE discretization of anisotropic-di↵usion with strength of anisotropy 10�6 and

direction of anisotropy ⇡/3.

1.4.3 AMGr

Classical AMG heuristics generally fail to provide robust solvers for di�cult classes

of problems, such as the Helmholtz equation, convection-dominated flows, or coupled
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systems of PDEs. One approach to try to generalize AMG for broader classes of

problems is to abandon the heuristics and to tie the algorithms to multigrid conver-

gence theory. In this approach, there is one class of method that couples pairwise

aggregation with suitable relaxation and provides convergence guarantees for sym-

metric, diagonally dominant M-matrices [13, 37]. The second class of methods in

this approach are reduction-based AMG methods [27, 33, 34, 35]. Ries et al. [40] first

proposed the reduction-based multigrid method as a generalization of cyclic reduction

[43]. The idea of reduction-based multigrid methods comes from the recognition that

cyclic reduction can be interpreted as a two-level multigrid method. The focus of

this class of algorithm is, then, a direct connection between properties of the fine-grid

submatrix and the guaranteed convergence rate of the scheme [27, 33, 34, 35]. AMGr,

a reduction-based multigrid method, was proposed in [34]. AMGr gives a theoretical

framework to analyse convergence based on diagonal dominance of the fine-grid sub-

matrix (in contrast to the fine-grid submatrix being diagonal in the classical setting

of cyclic reduction). In particular, given a partitioning of the DoFs into F and C

subsets, AMGr defines interpolation based on approximating the so-called “ideal”

interpolation operator using a diagonal (or some other easily inverted) approxima-

tion to the fine-grid submatrix, and a corresponding F -relaxation scheme. The key

challenge in determining such a partitioning was studied in [35], and discussed in

detail later in this thesis. The method was extended to Chebyshev-style relaxation

schemes in [27]. In [33, 35], this approach was used to guide construction of a family

of greedy coarsening algorithms that aim to maximize the size of the fine-grid set

subject to maintaining a fixed level of diagonal dominance in the fine-grid submatrix

(and, consequently, the resulting convergence bound on the AMG method).

1.5 Contributions of this Thesis

Coarse grids for AMGr can be determined from the solution of the NP-complete inte-

ger linear programming problem formulated by MacLachlan and Saad [33, 35]. Their

formulation aims to minimize the size of the coarse grid while maintaining a mini-

mum level of diagonal dominance in the fine-grid submatrix and consequently to make

the resulting method more e�cient. MacLachlan and Saad [35] proposed a greedy

algorithm to solve the problem. In this thesis, we revisit the coarsening process in

classical AMGr and develop a new coarsening algorithm based on simulated anneal-

ing (SA) following the theory and framework for AMGr [34, 35]. This SA approach
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to coarsening is shown to improve on the greedy coarsening, yielding smaller coarse

grids without sacrificing convergence guarantees. The smaller coarse-grid problem

yields moderately more e�cient (two-level) algorithms.

The AMGr methodology is important to consider because this method can pro-

vide guarantees on convergence rates, even when applied to problems that are not

diagonally dominant. However, classical AMGr using the greedy or SA coarsening

approaches, does not provide a guaranteed convergence rate if the coe�cient matrix

is not diagonally dominant. In the second part of this thesis, we take the challenge

to generalize and improve the classical AMGr approach and to make the new method

better applicable to problems that are not diagonally dominant. We improve classi-

cal AMGr by using SPAI to build better relaxation and interpolation operators. We

truncate the less-important elements from the interpolation operator to reduce the

computational cost while retaining the interpolation accuracy. The accuracy and ef-

ficiency of the interpolation operator is further improved by employing an “improved

iteration” technique. Finally, we include “C-relaxation” to get better convergence

factors. The new SPAI-based algorithm can be applied to problems that are diago-

nally dominant or not and this new method is more e�cient compared to the classical

AMGr method. Numerical results are presented to show the operator complexities

and convergence factors for the new method.

Clustering or aggregation is an essential task in aggregation based multigrid meth-

ods. While using existing aggregation methods, we observed that the aggregates or

clusters formed are often either not uniform, well-rounded, well-shaped, and well-

centered or the number of clusters cannot be e↵ectively controlled. This observation

also raises the question if the quality of the aggregates has any e↵ect on the resulting

AMG convergence factor. To answer this question, we address the shortcomings in

aggregation-based multigrid methods by introducing improvements to Lloyd aggre-

gation and studying their e↵ectiveness. The new algorithm yields aggregates that are

seen to be more uniform in size, well-rounded, well-shaped, and well-centered. The

number of clusters can also be directly controlled. The new algorithm exceeds the ex-

isting algorithms in performance. We also observe that the quality of the aggregates

influence the performance of the aggregation-based AMG methods. We present the-

oretical results to establish linear complexity of the clustering algorithm and provide

numerical results to show the performance of the improved clustering.
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1.6 Outline

The remainder of the thesis is organized as follows:

Chapter 2 reviews the fundamental components of multigrid, algebraic multigrid,

and reduction-based algebraic multigrid methods.

Chapter 3 presents a new coarsening algorithm to use in reduction-based multigrid.

Here, a constrained combinatorial optimization problem is solved using simulated

annealing to develop the algorithm. We show that the new coarsening algorithm

performs better than the existing greedy coarsening algorithm. Numerical results are

presented to show the performance of the new coarsening algorithm.

Chapter 4 describes the improved classical AMGr method. We generalize the clas-

sical AMGr method to improve its performance on matrices that are not diagonally

dominant. A sparse approximate inverse method has been employed to form better

relaxation and interpolation operators. We present numerical results showing the

robustness of the new method for non-diagonally dominant systems.

Chapter 5 introduces a new algorithm to form balanced aggregates for the graph of

a sparse matrix by introducing improvements to Lloyd aggregation. Here, we provide

theoretical results to establish linear complexity. Numerical results in the context of

algebraic multigrid are presented to show the performance of the improved clustering.
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Chapter 2

Background

The following chapters of this thesis detail the development of new tools for selection

of coarse grids in AMG methods (Chapter 3 and 5) and interpolation and relaxation

operators in AMGr (Chapter 4). Here, we present background material needed for

this later work. In particular, we follow [10] and introduce the standard geometric

multigrid algorithm for the two-dimensional Poisson problem, highlighting some of

the basic principles of the multigrid methodology. With these, we introduce spe-

cific material on aggregation methods used in AMG (Section 2.3) and give a brief

description of the classical AMGr method (Section 2.4).

2.1 (Geometric) multigrid

Multigrid methods are well-known to be e↵ective algorithms for the solution of large

linear systems of equations arising in many areas of computational science and en-

gineering [10, 24]. They can perform as stand-alone solvers for many problems, but

are also e↵ective as preconditioners for Krylov methods. Multigrid methods originate

with the observation that the error in an approximation to the solution of a system

of equations can be decomposed into its high-frequency and low-frequency modes.

Multigrid methods arise from the observation that standard iterative methods, such

as the (weighted) Jacobi and Gauss-Seidel iterations, can e↵ectively eliminate high-

frequency or oscillatory components of the error. These methods cannot, however,

e↵ectively eliminate the low-frequency or smooth components. Instead, the smooth

components can be corrected from a “coarse-grid” representation of the problem.

The complementarity between relaxation methods, such as Jacobi and Gauss-Seidel,
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and this coarse-grid correction process leads to a very e↵ective approach to damp all

modes in the system.

In a multigrid method, relaxation is first done on Av = f on the fine grid ⌦h

to obtain an approximation, uh. In the simplest case, of one-dimensional and two-

dimensional (rectangular) grids, we consider a fine grid that is a uniform mesh with

distance h spacing between two grid-points and a coarse-grid that has distance 2h

spacing. Hence, the superscripts h and 2h are used to represent the fine and coarse

grids, respectively. We assume that we know an interpolation matrix, P , that maps

vectors from the coarse grid to the fine grid. In many cases, this is easily determined

geometrically, as (for example) piecewise linear or bilinear interpolation, or the natural

interpolation operator determined by a finite-element discretization. When relaxation

begins to stall, the approximation, uh, from the relaxation method is dominated by

the smooth portion of the initial error that came from the initial guess. We then

form the residual, rh = f �Auh, to help find the smooth error in the approximation.

The residual, rh, is transferred to the coarse grid, ⌦2h, using an intergrid transfer

operator called the restriction operator. Among several possible choices, we focus on

the variational setting common in algebraic multigrid, where the restriction operator

is given as P T , and r2h = P Trh. The discretization matrix on the coarse grid can

be defined via the Galerkin condition as A2h = P TAP . An iterative method can be

applied again to the residual equation A2he2h = r2h on ⌦2h or this equation can be

solved directly to obtain an approximation to the error e2h. The approximation for

the error on the coarse grid is then used to represent the smooth error. Now this

approximation for the error, e2h, found on the coarse grid is transferred to the fine

grid to approximate eh using an interpolation operator, P . The approximation uh

obtained on ⌦h is finally corrected by adding the error estimate eh. This two-grid

correction scheme makes the solution on the finer grid more accurate. This scheme

can be represented in terms of the following operations

uh
 R⌫uh + C(f) + P (A2h)�1P T (fh

� Ah(R⌫uh + C(f))), (2.1)

where ⌫ is the number of pre-relaxation steps and C(f) represents a series of operation

on f . As the solution vh should be unchanged by the two-grid correction scheme, we

can write

vh
 R⌫vh + C(f) + P (A2h)�1P T (fh

� Ah(R⌫vh + C(f))). (2.2)

Subtracting Eq. (2.1) from Eq. (2.2) we get the following relationship between the
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error before and after the two-grid correction scheme,

eh
 [I � P (P TAP )�1P TA]R⌫eh

⌘ CLC ·R⌫eh, (2.3)

where I is the identity matrix and CLC is the coarse level correction operator. Re-

cursion of the two grid scheme results in a multigrid method.

To show the e↵ectiveness of the multigrid method, we revisit the two-dimensional

Poisson problem, Equation (1.2), and apply the method with the same initial ap-

proximation vector. The results are plotted in Figure 2.1. We see that the multigrid

method eliminates both the smooth and oscillatory modes with a small number of

iterations, and that the increase in problem size does not deteriorate the performance

of the multigrid method.
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GS iteration (32�32 mesh)

2-level MG (32�32 mesh)

GS iteration (64�64 mesh)

2-level MG (64�64 mesh)

GS iteration (128�128 mesh)

2-level MG (128�128 mesh)

Figure 2.1: Change in log ||e||1 with the number of iterations for the Gauss-Seidel

iteration and two-level multigrid applied to Eq. (1.5) on 32⇥32, 64⇥64, and 128⇥128

mesh and an initial guess 1
4(u

(1,1) + u(5,5) + u(10,10) + u(28,28)) for 100 iterations.

The key idea in geometric multigrid is that the smooth components of an error

on a finer grid become oscillatory on a coarser grid, showing a way to solve the issue

arising with convergence of conventional iterative methods. As a simple example,

consider a one-dimensional grid, and let the even-numbered grid points of the fine

grid define the coarse grid. In this case, the number of grid-points on the coarser grid

is roughly half of that on the finer grid. If a wave on the fine grid is projected to

the coarse grid, its wavenumber remains the same. As the wavenumbers on both of

the fine and coarse grids are the same, but the coarse grid has fewer grid points, a

smooth wave on the fine grid looks more oscillatory on the coarse grid. This allows

relaxation on the coarse grid to e↵ectively resolve some error modes that are poorly
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reduced by fine-grid relaxation.

There are two broad classes of multigrid methods- geometric and algebraic. As

described above, in geometric multigrid, coarse grids are chosen based on regular ge-

ometric patterns, and polynomial interpolation is used. Another class, called Black

Box Multigrid (BoxMG), lies between geometric and algebraic multigrid using struc-

tured grids but not polynomial interpolation. Unlike geometric multigrid, BoxMG

uses an operator-induced interpolation procedure, providing a “black box” where the

user needs to provide only the fine-grid discretization, right-hand side, and an initial

guess for the solution. For classical algebraic multigrid, we generalize the choice of

geometric grids, requiring only the structure that there is a disjoint splitting of the

fine grid: ⌦ = F [ C, where C is the set of the grid points on the coarse grid and

F is its complement belonging only on the fine level. We thus have ⌦2h = C but the

same cycling structure as described above. The number of grid points on the coarser

grid is kept su�ciently small to reduce the cost of solving the residual problem.

Geometric multigrid can be applied when the grid locations are known and are

structured or regular. In this case, all of the elements of multigrid methods come

naturally. Grid points on the coarser grid are generally chosen so that the grid spacing

is twice that on the next finer grid. The choice of the grid-transfer operators depends

on the details of the discretization. For finite-di↵erence discretizations, piecewise

linear interpolation is often used to interpolate the error from the coarse grid to the

fine grid. Error from a fine grid can be restricted to a coarser grid using injection,

where the coarse-grid vector simply takes its value directly from the corresponding

fine-grid point. There is an alternate restriction operator, called full weighting, where

the coarse-grid vector values are given by weighted averages of values at neighboring

fine-grid points. Smooth error in geometric multigrid is the component of the error

that has low frequency. The coarse-grid correction scheme in geometric multigrid is

very e↵ective in eliminating smooth errors.

2.2 Algebraic multigrid

Geometric multigrid methods are di�cult or impossible to apply when the domain

of the problem is complex enough that any sensible discretization is too fine to serve

as the coarsest grid. It becomes di�cult to apply geometric multigrid when the dis-

cretization on the finest grid does not allow uniform coarsening, or when it is di�cult

to find a relaxation process that smoothes the error su�ciently to admit a good
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coarse-grid correction using geometric interpolation. Also, for many purely discrete

problems, where the problem has no geometric background, geometric multigrid is not

applicable [23]. AMG methods were developed using the usual principles of multigrid

methods, but intended to use only the information contained in a given discretization

matrix. AMG was invented by Brandt, McCormick, and Ruge in the early 1980’s [4],

and Ruge and Stüben [23] were among the first to recognize it as an interesting

algorithm.

In AMG, the grid points are identified with the indices of the unknown quantities,

and the connections within the grid are determined by the undirected adjacency graph

of the discretization matrix. Unlike geometric multigrid methods, where relaxation

is often adapted to suit the problem at hand, a relaxation method is fixed in AMG.

The components of the error that cannot be reduced by the relaxation method are

defined to be algebraically smooth error. However, algebraically smooth errors are

not necessarily geometrically smooth as in the case of anisotropic di↵usion operators,

or problems with highly variable coe�cients. Selection of the coarse-grid points and

defining the interpolation operator are done in a way so that the error not e�ciently

reduced by relaxation is well approximated by the interpolation operator.

Classical AMG makes use of the notion of strong connections in the graph corre-

sponding to matrix A to define the coarse-fine partitioning. In the original algorithm,

point i is said to be strongly connected to point j if �Aij � �maxk 6=i(�Aik) for some

� 2 (0, 1] (where the negative signs reflect the expectation that A be an M-matrix, or

one where positive o↵-diagonal entries are not substantial). Many other definitions

of strong connections have been considered in the literature, including the symmetric

strength measure commonly used in smoothed aggregation AMG, where the connec-

tion between i and j is said to be strong if |Aij| � �
p

AiiAjj. Local approximations of

the inverse of A and algebraically smooth error have also been used to define strong

connections [7, 21], as has the concept of algebraic distances [6]. In all cases, the

strength measure is used to “filter” the entries in A, and then the set C is defined

by choosing a maximal independent set over the graph of strong connections. This

can be characterized, for example, by the properties that each point in F is strongly

dependent on at least one C-point, but no two C-points can be strongly dependent

on one-another.

The standard interpolation operator in classical AMG is formulated based on the

assumption that algebraically smooth errors have small residuals after relaxation.

Hence, the residual equation after relaxation can be written as Ae ⇡ 0. For the i-th
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degree of freedom, i 2 F , this gives

Aiiei ⇡ �

X

k2Ci

Aikek �

X

j2F
s
i

Aijej �

X

`2F
w
i

Ai`e`, (2.4)

where Ci, F s

i
, and Fw

i
are the C-neighbours, strongly connected F -neighbours, and

weakly connected F -neighbours of the i-th point, respectively. The standard inter-

polation operator is then derived by assuming that e` ⇡ ei for weakly-connected

neighbours, while

ej ⇡

P
k2Ci

AjkekP
m2Ci

Ajm

,

for points j 2 F s

i
. Substituting these into (2.4) and solving for ei yields the interpo-

lation formula

ei =
X

k2Ci

�Aik �
P

j2F
s
i

AijAjkP
m2Ci

Ajm

Aii +
P

`2F
w
i
Ai`

ek. (2.5)

This defines the interpolation formula for all points i 2 F ⇢ ⌦, assuming that ek

is known for all k 2 Ci. For points k 2 C, we use direct injection of values from

coarse-grid points to their fine-grid counterparts in ⌦.

Another viewpoint is to consider the decomposition of the error. In this view,

we partition the error in an approximation into two pieces. One component lies in

the range of interpolation and the other component lies in the A-orthogonal space to

the range of the interpolation. In geometric MG, the range of interpolation mostly

contains the smooth error and the A-orthogonal space mostly contains the oscillatory

error. The two-grid correction operator is an orthogonal projection that has a column

space orthogonal to the range of the interpolation. Hence, any error component in

the range of interpolation is diminished by the two-grid correction scheme. However,

the other component that mostly lies in the column space of the two-grid correction

operator cannot be removed by the coarse grid. AMG methods aim to determine

interpolation operators so that this component is quickly attenuated by relaxation.

In contrast to geometric multigrid, AMG requires a setup phase in which the

components of the multigrid hierarchy are explicitly built. This phase uses the form

of a recursion where, starting from the finest level, a coarse grid is chosen, and

interpolation operator mapping from the coarse grid to the fine grid is computed,

and the coarse-grid operator is determined. There are several approaches to building

coarse grids for AMG. In classical AMG as described above, a subset of the fine

level variables are selected to be the coarse level variables [5, 10, 24], whereas in
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aggregation-based AMG, several fine-level variables are combined into a single coarse-

level variable [3, 9, 26].

2.3 Smoothed aggregation AMG

Smoothed Aggregation AMG method is an improvement to the aggregation multigrid

method. Hence, we will first discuss the aggregation multigrid method followed by the

extension to the smoothed aggregation method. In an aggregation multigrid method,

the DoFs, {i}Nnode
i=1 , that are also the fine nodes in the first level, are partitioned and

grouped into disjoint aggregates, {Ca}
Ncluster
a=1 . Aggregates can be formed using an

aggregation method, e.g., greedy aggregation, MIS(2) aggregation, or Metis aggre-

gation. Each aggregate represents a node in the coarse grid. The coarse nodes here

don’t need to have any geometric meaning. The restriction operator, R, is defined

for row a as

Ra,i =

8
<

:
1 if i 2 Ca,

0 otherwise.
(2.6)

For a symmetric coe�cient matrix, A, the interpolation operator and the coarse-

grid matrix is defined as, P = RT and Ac = RAP , respectively. The two-level

multigrid process is convergent for these operators [20]. The range of P contains the

exact null space of the di↵erential operator that we are considering here. However,

since only the piecewise constant vectors are included in the range of P , it can’t

capture all modes of algebraically smooth error.

Algebraically smooth error is error that can’t be reduced anymore using classical

relaxation methods. This is a vector in the near null space of A. In a multigrid

method, the range of the interpolation operator should capture the near null space

in order to eradicate the error left after relaxation. To do that, Vaněk improved the

interpolation operator from non-smoothed aggregation by smoothing the columns of

the tentative interpolation operator, P , by the weighted Jacobi operator [28]. The

“smoothed” aspect of smoothed aggregation comes from this smoothing of the ten-

tative interpolation operator. The improvement of the interpolation operator sig-

nificantly improves the performance over the non-smoothed aggregation multigrid

method.

Vaněk et al. [26, 27] extended the smoothed aggregation method to apply it to

systems of PDEs and to higher-order problems. In this extension, the vectors that
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span the near null space, also referred to as candidate vectors, are split into smaller

vectors over each aggregate. Each of these local distributions are normalized via the

QR factorization. The tentative interpolation operator, P , is then formed by redis-

tributing the normalized vectors to the global operator. The tentative interpolation

operator is improved by smoothing its columns by weighted Jacobi method, giving

the interpolation operator. Restriction and the coarse-grid matrix are then formed

using the variational conditions.

A multilevel method can be constructed extending the smoothed aggregation

method using the smoothed aggregation method again to solve the coarse-grid prob-

lem. Coarse-level nodes are aggregated again and the interpolation operator for this

level is formed using the near null space representation of the coarse-grid matrix. A

key factor in the success of aggregation-based multigrid methods is how the aggregates

are formed. We next review the most common algorithms.

2.3.1 Greedy aggregation

A relatively large edge weight,Wi,j in a fine matrix graph is deemed by SA to represent

a strong connection between two nodes i and j. Hence, a natural approach is to

consider a connection between the nodes i and j to be strong if |Ai,j| � ✓
p

|Ai,i · Aj,j|,

where ✓ is a threshold parameter. Use of ✓ = 0 or ✓ = 0.25 is common in practice. A

matrix of strong connections, W is formed where Wi,j = 1 if the connection between

the nodes i and j is strong, otherwise Wi,j = 0. Construction of W is presented in

Algorithm 2.1. The matrix W is used in the greedy aggregation algorithm meaning

that only the strongly connected nodes are reckoned as neighbours in the aggregation

process.

Algorithm 2.1 Strength of Connection Matrix

1: function strength-of-connection(A, ✓)

2: Wi,j  0 for all i = 1, . . . , Nnode and j = 1, . . . , Nnode

3: for i, j such that Ai,j 6= 0 do

4: if |Ai,j| � ✓
p

|Ai,i · Aj,j| then . find strong connections

5: Wi,j  1

6: return W

Greedy aggregation (also known as “greedy clustering” or “standard aggregation”)
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was first introduced by Mı́ka and Vaněk [20]. The set of DoFs (nodes), U = {i}Nnode
i=1 ,

are partitioned to construct the system of aggregation classes, {Ca}
Ncluster
a=1 , based on

the following properties:

1. 8i 2 U, 9a such that i 2 Ca.

2. If Ca \ Cx 6= ;, then Ca = Cx.

3. If k, l 2 Ca, then 9i 2 U such that k, l 2 {k | Ai,k 6= 0}.

The aggregation process that we present here is a close variant of the aggregation

process presented in [20]. The greedy aggregation process consists of two passes.

In the first pass, each node is visited to check if the node and all of its neighbours

are unaggregated. If so, the node becomes a root node and the root node with its

neighbours form a new aggregate. The second pass goes through the remaining nodes

that are not aggregated yet. If an unaggregated node is adjacent to an aggregate,

meaning that the unaggregated node has a neighbour that is already aggregated, the

unaggregated node is incorporated into that aggregate. If such a neighbouring node

is not found, the unaggregated node is considered a root node and the node with its

neighbours that are also unaggregated form an aggregate. When an unaggregated

node is adjacent to more than one aggregate, the aggregate can be chosen in di↵erent

ways. It can be chosen arbitrarily, or based on the size of the aggregates. The

aggregate can also be selected based on the largest/smallest index of the aggregate or

the largest/smallest index of the aggregated neighbour of the unaggregated node. The

process continues until each node belongs to an aggregate. The greedy aggregation

process is shown in Algorithm 2.2.

2.3.2 Maximal independent set based aggregation

The greedy algorithm is inherently serial, yet there are two immediate observations.

First, any two center nodes of two (distinct) aggregates must be more than two edges

apart. Second, if an unaggregated node is more than two edges from any existing

center, then the node is eligible to be a center of a new aggregate. Hence, the center

nodes from the greedy algorithm represent a distance-2 maximal independent set

or MIS(2). This leads to the MIS(2) aggregation algorithm, where an MIS(2) over

the nodes is first constructed, followed by construction of the aggregation using the

MIS(2) center nodes. This has been shown to exhibit a high degree of parallelism [1];

see [1, Algorithm 5] for details.
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Algorithm 2.2 Greedy aggregation. See Table 5.2 for variable definitions.

1: function greedy-aggregation(W )

2: mi  0 for all i = 1, . . . , Nnode . initially all nodes are unaggregated

3: a 0 . first aggregate index

4: for i 1, . . . , Nnode do . first pass

5: if mi = 0 and mj = 0 for all j s.t. Wi,j 6= 0 then . unaggregated

6: mi  a . add i and neighbors to aggregate a

7: mj  a, for all j s.t. Wi,j 6= 0

8: ca  i . mark aggregate center

9: a a+ 1 . increment aggregate index

10: for i 1, . . . , Nnode do . second pass

11: if mi = 0 then . unaggregated

12: if 9 j s.t. Wi,j 6= 0 and mj > 0 then . aggregated neighbor

13: j  argmax
j : mj>0

Wi,j . neighbor with largest weight

14: mi  mj

15: else . form new aggregate

16: mi  a

17: for j such that Wi,j 6= 0 and mj = 0 do

18: mj  a

19: a a+ 1 . increment aggregate index

20: return m, c

Given a distance-2 maximal independent set, the aggregation process is straight-

forward. In the first step, the index of the aggregate representing the center is prop-

agated to its neighbors. This continues in the second step, where the index of the

aggregate is propagated to the second layer of neighbors; if there are multiple aggre-

gates adjacent to an unaggregated node, the choice is made arbitrarily (or by index).

The algorithm is shown in Algorithm 2.3.

With an appropriate ordering, the first pass of MIS-based and greedy aggregation

can yield identical clusters. With only minor di↵erences in the second pass, we expect

the aggregation patterns to be similar. Indeed, the convergence factors of AMG based

on these two aggregation strategies are shown to be close in practice [1, Appendix].
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Algorithm 2.3 MIS(2) aggregation. See Table 5.2 for variable definitions.

1: function mis(2)-aggregation(W )

2: c mis(W , 2) . distance-2 independent set

3: mi  0 for i = 1, . . . , Nnode

4: Ncluster  |c|

5: for a = 1, . . . , Ncluster do . pass 1: distance-1

6: i ca . index of center for aggregate a

7: mi  a . set aggregate number for center

8: for j s.t. Wi,j 6= 0 do

9: mj  a . set aggregate number for neighbors

10: for i s.t. mi > 0 do . pass 2: distance-2

11: for j s.t. Wi,j 6= 0 and mj = 0 do

12: mj  mi . set aggregate number for neighbors

13: return m, c

2.3.3 Standard Lloyd aggregation

A shortcoming of the previous two aggregation strategies is the inability to control the

coarsening rate: the number of aggregates or clusters is an outcome of the algorithm,

rather than an input. In contrast, Lloyd aggregation, introduced in [2], is based on

an initial seeding of centers (of any length). Lloyd aggregation can be viewed as an

extension of Lloyd’s algorithm [14] applied to graphs, where an initial random seeding

of centers yields Voronoi cells (or a set of nodes closest to each center), followed by a

recentering of center locations.

A full algorithm is given in Algorithm 2.4, where a subset of Ncluster nodes are ran-

domly selected as the initial centers, input as c. A standard Bellman-Ford algorithm

(see Algorithm 2.5 and [11, Section 8.7]) is used to find the distance and index of the

closest center; the set of points closest to each center form the initial clustering. Next,

the border nodes of each cluster are selected and a modified form of the Bellman-Ford

algorithm then identifies the (new) center — see Algorithm 2.6 — by selecting the

node of maximum distance to the cluster boundary (with ties selected arbitrarily).

The steps are repeated until the algorithm has converged or a maximum number of

iterations (given as Tmax) is reached.
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Algorithm 2.4 Lloyd aggregation algorithm. See Table 5.2 for variable definitions.

1: function lloyd-aggregation(W, c, Tmax)

2: t = 0

3: repeat

4: m, d bellman-ford(W, c) . find closest centers

5: c most-interior-nodes(W,m) . recenter

6: t = t+ 1

7: until t = Tmax or no change in c and m

8: return m, c

Algorithm 2.5 Bellman-Ford algorithm to compute distance and index of closest

center. See Table 5.2 for variable definitions.
1: function bellman-ford(W, c)

2: di  1 for all i = 1, . . . , Nnode . initial distance

3: mi  0 for all i = 1, . . . , Nnode . initial membership undefined

4: for a 1, . . . , Ncluster do

5: i ca . cluster a has center node i

6: di  0 . distance of a center node to itself is zero

7: mi  a . center node i belongs to its own cluster

8: repeat

9: done true

10: for i, j such that Wi,j > 0 do . all pairs of adjacent nodes

11: if dj +Wi,j < di then . found a shorter distance to node j’s center

12: mj  mi . switch node j to the same cluster as i

13: dj  di +Wi,j . use the shorter distance via node i

14: done false . change was made; do not terminate

15: until done

16: return m, d

2.4 Classical AMGr

Cyclic reduction [25] was originally proposed as a direct solver for certain linear

systems that arose from finite-di↵erence discretization of simple PDEs. Assuming

that the degrees of freedom are already partitioned into coarse and fine nodes, the

linear system Av = f is reordered to have F degrees of freedom followed by C degrees
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Algorithm 2.6 Find the most-interior node (furthest from boundary) for each clus-

ter. See Table 5.2 for variable definitions.
1: function most-interior-nodes(W,m)

2: B  {} . border nodes

3: for i, j such that Wi,j > 0 do . all pairs of adjacent nodes

4: if mi 6= mj then . are nodes i and j in di↵erent clusters?

5: B  B [ {i, j} . if so, add both of them to the border set

6: ·, d bellman-ford(W,B) . d is distance from cluster borders

7: for i 1, . . . , Nnode do

8: a mi . a is the cluster index for node i

9: ca  i . assign the highest-index node as cluster center

10: for i 1, . . . , Nnode do

11: a mi . a is the cluster index for node i

12: j  ca . j is the current cluster center

13: if di > dj then . is node i further from the border than j?

14: ca  i . if so, node i is the new cluster center

15: return c

of freedom, writing

A =

"
AFF �AFC

�ACF ACC

#
v =

"
vF

vC

#
f =

"
f

F

f
C

#
. (2.7)

An exact algorithm for the solution of Av = f in this partitioned form is given by

1. y
F
= A�1

FF
f

F
,

2. Solve
�
ACC � ACFA

�1
FF

AFC

�
vC = f

C
+ ACFyF

,

3. vF = y
F
+ A�1

FF
AFCvC .

This can be turned into an iterative method for solving Av = f in the usual way,

replacing the right-hand side vector, f , by the evolving residual, and solving for an

error correction, leading to reduction-based multigrid [22]. In this form, we compute

updates to the current approximation, v(k), as

1. v(k+1/2)
F

= v(k)
F

+ A�1
FF

⇣
f

F
� AFFv

(k)
F

+ AFCv
(k)
C

⌘
,

2. Solve
�
ACC � ACFA

�1
FF

AFC

�
y

C
= f

C
+ ACFv

(k+1/2)
F

� ACCv
(k)
C
,
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3. v(k+1)
C

= v(k)
C

+ y
C
,

4. v(k+1)
F

= v(k+1/2)
F

+ A�1
FF

AFCyC
.

We note that, as given above, this is still an exact algorithm, as v(1) = v = A�1f for

any initial guess, v(0). To make an iterative method from this skeleton, we introduce

approximations of A�1
FF

in three places in the above algorithm, namely

Ã�1
FF
⇡ A�1

FF
ÃC ⇡ ACC � ACFA

�1
FF

AFC WFC ⇡ A�1
FF

AFC , (2.8)

leading to the iteration:

1. v(k+1/2)
F

= v(k)
F

+ Ã�1
FF

⇣
f

F
� AFFv

(k)
F

+ AFCv
(k)
C

⌘
,

2. Solve ÃCyC
= f

C
+ ACFv

(k+1/2)
F

� ACCv
(k)
C
,

3. v(k+1)
C

= v(k)
C

+ y
C
,

4. v(k+1)
F

= v(k+1/2)
F

+WFCyC
.

Viewing this as a two-grid algorithm, we recognize the first step as special form

of relaxation, known as F -relaxation, where the approximation to A�1
FF

is accom-

plished via a standard weighted Jacobi or Gauss-Seidel iteration. The second step

then represents a coarse-grid solve, where the residual is restricted to the coarse-grid

by injection, and the correction, y
C
, is computed using an approximation, ÃC , of the

true Schur complement, ACC�ACFA
�1
FF

AFC . The final two steps represent the inter-

polation of the correction, writing the interpolation operator P =
⇥

WFC
I

⇤
. This can be

viewed as an approximation of the ideal interpolation operator [12], WFC ⇡ A�1
FF

AFC .

Notably, this algorithm di↵ers from standard multigrid cycling in several ways, in-

cluding the fixed use of injection for the restriction of the residual to the coarse grid,

and the lack of post-relaxation sweeps.

As written above, there is little guidance in how to choose the three approxi-

mations in (2.8). MacLachlan et al. [15] address this in their development of the

reduction-based AMG (AMGr) algorithm, connecting convergence of the two-grid

scheme with properties of AFF . In particular, it is assumed that AFF can be approx-

imated by known matrix DFF for which computing the action of D�1
FF

on a vector

is computationally feasible. From this, Theorem 2.1 holds, using the notation that

matrices A ⌫ B when vTAv � vTBv for all vectors v.
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Theorem 2.1. [15] Consider the symmetric and positive-definite matrix A =
h

AFF �AFC

�A
T
FC ACC

i

such that AFF = DFF + E , with DFF symmetric, 0 � E � ✏DFF for some ✏ �

0, and
h

DFF �AFC

�A
T
FC ACC

i
⌫ 0. Define relaxation with error-propagation operator R =

⇣
I � �

h
D

�1
FF 0
0 0

i
A
⌘
for � = 2/(2 + ✏), interpolation P =

h
D

�1
FF AFC

I

i
, and coarse-level

correction with error-propagation operator T = I�P (P TAP )�1P TA. Then the multi-

grid cycle with ⌫ pre-relaxation sweeps, coarse-level correction, and ⌫ post-relaxation

sweeps has error propagation operator MG2 = R⌫
· T ·R⌫ which satisfies

||MG2||A 

✓
✏

1 + ✏

✓
1 +

✓
✏2⌫�1

(2 + ✏)2⌫

◆◆◆1/2

< 1. (2.9)

Several generalizations of both the theory and practice of reduction-based multi-

grid methods have since been developed. A generalization to non-symmetric M-

matrices was proposed and analyzed by Mense and Nabben [19], using the tools of

weak regular splitting [29]. For symmetric and positive definite problems, Brannick

et al. [8] study the introduction of more general relaxation schemes, as well as the

use of di↵erent approximations of AFF for interpolation and relaxation. Gossler and

Nabben [13] examine generalization of AMGr to the use of Chebyshev polynomial ac-

celeration of multiple relaxation sweeps. For strongly non-symmetric systems, Man-

teu↵el et al. [17, 18] have proposed similar approaches using so-called approximate

ideal restriction (AIR) techniques, that o↵er excellent performance for advection-

dominated problems. None of the above schemes, however, address the poor per-

formance observed in AMGr-type methods for anisotropic problems, which is the

motivation for the present work.

2.4.1 Coarsening in AMGr

Theorem 2.1 establishes existence of an interpolation operator, P , provided that the

matrix, A, can be partitioned into
h

AFF �AFC

�A
T
FC ACC

i
and an approximation, DFF , of AFF

can be made that satisfies the assumptions in the theorem. While this is insightful, it

does not address the fundamental question of how to generate a partitioning for which

the assumptions hold with small parameter ✏. To answer this question, MacLachlan

and Saad [16] propose to partition the rows and columns of A in order to ensure

the diagonal dominance of AFF , allowing DFF to be chosen as a diagonal matrix.

In particular, for each row, i, the diagonal dominance of row i over the F points is
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quantified by

⌘i =
|Aii|P

j2F
|Aij|

,

Then, AFF is said to be ⌘-diagonally dominant if ⌘i � ⌘ for all i 2 F , for some

⌘ > 1/2 that measures the diagonal dominance of AFF . If AFF is ⌘-diagonally

dominant, then the diagonal matrix, DFF , with (DFF )ii = (2 � 1
⌘
)Aii for all i 2 F

yields 0 � E �
2�2⌘

2⌘�1DFF , giving an ⌘-dependent convergence bound if the other

assumptions of 2.1 are satisfied. Furthermore, if A is symmetric, positive-definite,

and diagonally dominant, then this condition guarantees that all conditions of 2.1 are

satisfied.

In addition to establishing this connection between the diagonal dominance pa-

rameter ⌘ and the convergence parameter, ✏, MacLachlan and Saad [16] pose the

partitioning algorithm as an optimization problem: for a given ⌘ > 1/2, find the

largest F -set such that ⌘i � ⌘ for every i 2 F . This can be written as

max
F⇢⌦

|F |,

subject to |Aii| � ⌘
X

j2F

|Aij|, 8i 2 F.
(2.10)

MacLachlan and Saad [16] show that finding the optimal solution to (2.10) is NP-

complete and, consequently, propose a greedy algorithm to approximately solve the

optimization problem. The greedy algorithm acts iteratively, adding points to the C-

set one at a time, and moving any points that are guaranteed to satisfy the inequality

constraint in (2.10) into the F -set, until a full partition is computed.
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Chapter 3

Coarse-Grid Selection Using

Simulated Annealing

Abstract

1 Multilevel techniques are e�cient approaches for solving the large linear systems

that arise from discretized partial di↵erential equations and other problems. While

geometric multigrid requires detailed knowledge about the underlying problem and its

discretization, algebraic multigrid aims to be less intrusive, requiring less knowledge

about the origin of the linear system. A key step in algebraic multigrid is the choice of

the coarse/fine partitioning, aiming to balance the convergence of the iteration with

its cost. In work by MacLachlan and Saad [29], a constrained combinatorial optimiza-

tion problem is used to define the “best” coarse grid within the setting of a two-level

reduction-based algebraic multigrid method and is shown to be NP-complete. Here,

we develop a new coarsening algorithm based on simulated annealing to approximate

solutions to this problem, which yields improved results over the greedy algorithm

developed previously. We present numerical results for test problems on both struc-

tured and unstructured meshes, demonstrating the ability to exploit knowledge about

the underlying grid structure if it is available.

Keyword: Algebraic Multigrid, Coarse-Grid Selection, Simulated Annealing,

1
This work is under revision as ”Coarse-Grid Selection Using Simulated Annealing”, by T. U.

Zaman, S. P. MacLachlan, L. N. Olson, and M. West, for Journal of Computational and Applied

Mathematics, 2023.
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Combinatorial Optimization.

3.1 Introduction

Multigrid and other multilevel methods are well-established algorithms for the solu-

tion of large linear systems of equations that arise in many areas of computational

science and engineering. Multigrid methods arise from the observation that basic

iterative methods, such as the (weighted) Jacobi and Gauss-Seidel iterations, e↵ec-

tively eliminate only part of the error in an approximation to the solution of the

problem, and that the complementary space of errors can be corrected from a coarse

representation of the problem. While geometric multigrid has been shown to be

highly e↵ective for problems where a hierarchy of discrete models can be built di-

rectly, many problems benefit from the use of algebraic multigrid (AMG) techniques,

where graph-based algorithms and other heuristics are used to define the multigrid

hierarchy directly from the matrix of the finest-grid problem.

First introduced in the early 1980’s [5, 6], AMG is now widely used and avail-

able in standard libraries, such as hypre [16, 21], PETSc [2, 3], Trilinos [18, 22], and

PyAMG [32]. While there are many variants of AMG (as discussed below), the com-

mon features of AMG algorithms are the use of graph-based algorithms to construct

a coarse grid from the given fine-grid discretization matrix (possibly with some addi-

tional information, such as geometric locations of the degrees of freedom for elasticity

problems [40]) followed by construction of an algebraic interpolation operator from

the coarse grid to the fine grid. Both of these components have received significant

attention in the literature, with an abundance of schemes for creating the coarse

grid and for determining the entries in interpolation. In this paper, we focus on the

coarse-grid correction process, adopting a combinatorial optimization viewpoint on

the selection of coarse-grid points in the classical AMG setting.

One of the primary di↵erences between so-called classical (Ruge-Stüben) AMG

and (smoothed) aggregation approaches is in how the coarse grid itself is defined [37].

In aggregation-based approaches, coarse grids are defined by clustering fine-grid points

into aggregates (or subdomains), while, in classical AMG, a subset of the fine-grid

degrees of freedom (points) is selected in order to form the coarse grid. In the orig-

inal method [6, 35], this was accomplished using a greedy algorithm to construct a

maximal independent set over the fine-grid degrees of freedom as a “first pass” at

forming the coarse-grid set, which is then augmented by a “second pass” algorithm
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that ensures suitable interpolation can be defined from the final coarse grid. Many

alternative strategies to forming the coarse grid have been proposed over the years,

particularly for the parallel case, to overcome the inherent sequentiality of the origi-

nal algorithm [1, 12, 13, 14, 21]. Other approaches, for example based on redefining

the notion of strength of connection [7, 10, 11, 33] or use of compatible relaxation

principles [9, 24], have also been proposed.

Much of this work has been motivated by the failure of the classical AMG heuristics

to yield robust solvers for di�cult classes of problems, such as the Helmholtz equa-

tion, convection-dominated flows, or coupled systems of PDEs. While much research

has tried to generalize these heuristics to give sensible algorithms for broader classes

of problems, another approach is to consider methods that abandon these heuristics

in favour of algorithms that are directly tied to rigorous multigrid convergence theory.

In recent years, two main classes of AMG algorithms have arisen in this direction.

One class of methods arises in the aggregation setting, where well-chosen pairwise

aggregation algorithms coupled with suitable relaxation can yield convergence guar-

antees for symmetric, diagonally dominant M-matrices [8, 31]. The second class of

methods are those based on reduction-based AMG principles, where there is a direct

connection between properties of the fine-grid submatrix and the guaranteed conver-

gence rate of the scheme [19, 27, 28, 29]. Reduction-based multigrid methods [34] are

a generalization of cyclic reduction [38], in which conditions on the coarse/fine parti-

tioning are relaxed so that while the exact Schur complement may not be sparse, it

can be accurately approximated by a sparse matrix. This notion is made rigorous by

MacLachlan et al. [28], who propose a theoretical framework to analyze convergence

based on diagonal dominance of the fine-grid submatrix (in contrast to the fine-grid

submatrix being diagonal in the classical setting of cyclic reduction), and extended to

Chebyshev-style relaxation schemes by Gossler and Nabben [19]. While the theoret-

ical guarantees o↵ered by such methods are attractive, these approaches su↵er from

two key limitations. First, the classes of problems for which convergence rates are

guaranteed are limited (requiring diagonal dominance and/or M-matrix structure).

Second, the guaranteed convergence rates of stationary iterations are generally poor

in comparison to methods based on classical heuristics. An active area of research

(disjoint from the goals of this paper) is addressing the first limitation [30], while

the second can be ameliorated by the use of Krylov subspace methods to accelerate

stationary convergence. We note that there are other families of theoretical analysis

of AMG algorithms [26], including theory tailored to heuristic approaches, such as
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compatible relaxation [9]. Much of this theory, however, is of a confirmational and

not a predictive nature, i.e., the convergence bounds rely on properties of the output

of heuristics for choosing coarse grids and interpolation operators, and not on the

inputs to these processes, such as the system matrix and algorithmic parameters.

Thus, while it provides guidance in the development of heuristic methods, it does not

provide the concrete convergence bounds o↵ered by pairwise-aggregation or AMGr

methods.

While the pairwise aggregation methodology [8, 31] provides practical algorithms

to generate coarse grids that satisfy their convergence guarantees, this is a notable

omission in the work of MacLachlan et al. [28] and much of the work on AMGr.

MacLachlan and Saad [27, 29] identify that the choice of optimal coarse grids for

AMGr can be quantified as the solution of an NP-complete integer linear program-

ming problem. They use this formulation to guide construction of a family of greedy

coarsening algorithms that aim to maximize the size of the fine-grid set subject to

maintaining a fixed level of diagonal dominance in the fine-grid submatrix (and, con-

sequently, the resulting convergence bound on the AMG method). While the greedy

algorithm was tested on a range of problems in [29], these problems were limited

primarily to bilinear finite-element discretization on structured grids, with only a

few matrices outside this class. When we assessed its performance on a broader

class of problems, we exposed some simple test cases where it dramatically fails to

perform well, such as standard five-point finite di↵erence discretization, motivating

further work in this area. In this paper, we follow the theory and framework for

AMGr [28, 29], but aim to overcome some limitations of the underlying greedy coars-

ening algorithm. In particular, we develop a new coarsening algorithm based on

simulated annealing to partition the coarse and fine points. Numerical results show

that this algorithm achieves smaller coarse grids (than the greedy approach) that

satisfy the same diagonal-dominance criterion. Hence, these grids lead to moderately

more e�cient (two-level) algorithms, by reducing the size of the coarse-grid problem

without changing the convergence bound guaranteed by the theory. We emphasize

that this work is presented more as a proof-of-concept than as a practical coarsening

algorithm, due to the high cost of simulated annealing. In related work, we have

shown that the “online” cost of the approach proposed here can be traded for a

significant “o✏ine” cost using a reinforcement learning approach [39]. However, a

necessary next step in the work proposed here is in investigating more cost-e↵ective

alternatives to these methods.
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This paper is arranged as follows. In Section 3.2, AMG coarsening and the existing

greedy coarsening algorithm for AMGr are discussed. The new coarsening algorithm

based on simulated annealing is outlined in Section 3.3. Numerical experiments are

given in Section 3.4, demonstrating performance of this approach on both isotropic

and anisotropic problems, discretized on both structured and unstructured meshes.

Concluding remarks and potential future research are discussed in Section 3.5.

3.2 AMG coarsening

Geometric multigrid is known to be highly e↵ective for many problems discretized

on structured meshes. However, it is naturally more di�cult to make e↵ective coarse

grids (and e↵ective coarse-grid operators) for problems discretized on unstructured

meshes. AMG was developed specifically to address this, automating the formation

of coarse-grid matrices without any direct mesh information. The first coarsening ap-

proach in AMG, often called classical or Ruge-Stüben (RS) coarsening, was developed

by Brandt, McCormick, and Ruge [5, 6] and later by Ruge and Stüben [35]. We sum-

marize this approach below, primarily to allow comparison with the reduction-based

AMG method [28, 34] and the greedy coarsening approach proposed by MacLachlan

and Saad [29] that is the starting point for the research reported herein.

AMG algorithms make use of a two-stage approach, where a setup phase precedes

the cycling in the solve phase. Common steps in AMG setup phase include recursively

choosing a coarse grid and defining intergrid transfer operators. The details of these

processes depend on the specifics of the AMG algorithm under consideration, with

both point-based and aggregation-based approaches to determining the coarse grid,

and a variety of interpolation schemes possible for both of these.

3.2.1 Classical coarsening

As in geometric multigrid, the coarse grid in AMG is selected so that errors not re-

duced by relaxation can be accurately approximated on coarse grids. In an e↵ective

scheme, these errors are interpolated accurately from coarse grids that have substan-

tially fewer degrees of freedom than the next finer grid, thus significantly reducing

the cost of solving the coarse-grid residual problem.

In classical AMG, for an n⇥n matrix A, the index set ⌦ = {1, . . . , n} is split into

sets C and F , with ⌦ = C[F and C\F = ;. Each degree of freedom (DoF) or point
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i 2 C is denoted a C-point and a point j 2 F is denoted an F -point. This splitting

is constructed by considering the so-called strong connections in the graph of matrix

between the fine-level variables. Given a threshold value, 0 < ✓  1, the variable uj

is said to strongly influence ui if �Aij � ✓max
k 6=i

{�Aik}, where Aij is the coe�cient

of uj in the ith equation. The set of points that strongly influence i, denoted by Si,

is defined as the set of points on which point i strongly depends. The set of points

that are strongly influenced by i is denoted by ST

i
. Two heuristics are followed in RS

coarsening to select a coarse grid:

H1 : For every F -point, i, every point j 2 Si should either be a coarse-grid point or

should strongly depend on at least one point in C that also strongly influences

i.

H2 : The set of C-points should be a maximal subset of all points, where no C-point

strongly depends on another C-point.

In practice, strong enforcement of both of H1 and H2 is not always possible; the

classical interpolation formula relies on H1 being strongly enforced, while H2 is used

only to encourage the selection of small, sparse coarse grids.

3.2.2 Greedy coarsening and underlying optimization

While the classical coarsening algorithm has proven e↵ective for many problems when

coupled with suitable construction of the interpolation operator [35], the process

provides few guarantees in practice. Indeed, there is an inherent disconnect between

the selection of any single coarse-grid point and the impact on the quality of the

resulting interpolation operator. This has motivated coupled approaches to selecting

coarse grids and defining interpolation, including reduction-based AMG, or AMGr.

Reduction-based multigrid was proposed by Ries et al. [34], building on earlier

work aiming to improve multigrid convergence for the standard finite-di↵erence (FD)

Poisson problem. The fundamental idea of reduction-based multigrid lies in defining

the multigrid components to approximate those of cyclic-reduction algorithms [38].

In particular, one way to interpret cyclic reduction is as a two-level multigrid method

with idealized relaxation, interpolation, and restriction operators. Suppose that the

coarse/fine partitioning is already determined, and consider the reordering of the
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linear system Ax = b according to the partition, writing

A =

"
AFF �AFC

�ACF ACC

#
x =

"
xF

xC

#
b =

"
bF

bC

#
.

An exact algorithm for the solution of Ax = b in this partitioned form is given by

1. y
F
= A�1

FF
bF ,

2. Solve
�
ACC � ACFA

�1
FF

AFC

�
xC = bC + ACFyF

,

3. xF = y
F
+ A�1

FF
AFCxC .

This can be turned into an iterative method for solving Ax = b in the usual way,

by replacing the right-hand side vector, b, by the evolving residual, and computing

updates to a current approximation, x(k), giving

1. x(k+1/2)
F

= x(k)
F

+ A�1
FF

⇣
bF � AFFx

(k)
F

+ AFCx
(k)
C

⌘
,

2. Solve
�
ACC � ACFA

�1
FF

AFC

�
y

C
= bC + ACFx

(k+1/2)
F

� ACCx
(k)
C
,

3. x(k+1)
C

= x(k)
C

+ y
C
,

4. x(k+1)
F

= x(k+1/2)
F

+ A�1
FF

AFCyC
.

In this form, this remains an exact algorithm: given any initial guess, x(0), we have

the solution x = x(1). A truly iterative method results from approximating the three

instances of A�1
FF

in the above algorithm, namely

Â�1
FF
⇡ A�1

FF
ÂC ⇡ ACC � ACFA

�1
FF

AFC WFC ⇡ A�1
FF

AFC , (3.1)

leading to the following iteration:

1. x(k+1/2)
F

= x(k)
F

+ Â�1
FF

⇣
bF � AFFx

(k)
F

+ AFCx
(k)
C

⌘
,

2. Solve ÂCyC
= bC + ACFx

(k+1/2)
F

� ACCx
(k)
C
,

3. x(k+1)
C

= x(k)
C

+ y
C
,

4. x(k+1)
F

= x(k+1/2)
F

+WFCyC
.
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In multigrid terminology, the first step can be seen as a so-called F -relaxation step,

where we approximate A�1
FF

using some simple approximation, such as with weighted

Jacobi or Gauss-Seidel. The second step is a coarse-grid correction step, where the

residual after F -relaxation is restricted by injection, and the coarse-grid correction,

y
C
, is computed by solving a linear system with an approximation, ÂC , of the true

Schur complement, ACC �ACFA
�1
FF

AFC . The final two steps correspond to an inter-

polation of the coarse-grid correction, writing the interpolation operator P =
⇥

WFC
I

⇤
,

for some approximation of the ideal interpolation operator, WFC ⇡ A�1
FF

AFC . If the

approximation in the first step is su�ciently poor that a significant residual is ex-

pected to remain at the F -points after relaxation, it is also reasonable to augment

the restriction in the second step, using either the transpose of interpolation or some

better approximation to an ideal restriction operator than just injection.

As written above, the algebraic form of reduction-based multigrid retains the key

disadvantage of classical AMG — there is little connection between the algorithmic

choices (of the coarse/fine partitioning, and the approximations of AFF , of the Schur

complement, and of the idealized interpolation and restriction operators) with the

resulting convergence of the algorithm. To address these limitations, MacLachlan

et al. [28] proposed a reduction-based AMG algorithm (AMGr) that attempts to

connect convergence with properties of AFF . In particular, they presented a two-

level convergence theory with a convergence rate quantified by the approximation of

AFF ⇡ DFF , with the expectation that application of D�1
FF

to both a vector and to

AFC is computationally feasible. In what follows, we use the standard notation that

matrices A ⌫ B when xTAx ⌫ xTBx for all vectors x.

Theorem 3.1. [28] Consider the symmetric and positive-definite matrix A =
⇥

AFF �AFC

�A
T
FC ACC

⇤

such that AFF = DFF +E , with DFF symmetric, 0 � E � ✏DFF , and
⇥

DFF �AFC

�A
T
FC ACC

⇤
⌫

0, for some ✏ � 0. Define relaxation with error-propagation operator R =
�
I �

�
�

D
�1
FF 0
0 0

�
A
�
for � = 2/(2 + ✏), interpolation P =

⇥
D

�1
FF AFC

I

⇤
, and coarse-level cor-

rection with error-propagation operator T = I � P (P TAP )�1P TA. Then the multi-

grid cycle with ⌫ pre-relaxation sweeps, coarse-level correction, and ⌫ post-relaxation

sweeps has error propagation operator MG2 = R⌫
· T ·R⌫ which satisfies

||MG2||A 

✓
✏

1 + ✏

✓
1 +

✓
✏2⌫�1

(2 + ✏)2⌫

◆◆◆1/2

< 1. (3.2)

If a partitioning and approximation, DFF , of AFF are found that satisfy the as-

sumptions given above, then this theorem establishes existence of an interpolation
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operator, P , giving multigrid convergence with a direct tie to the approximation pa-

rameter, ✏. In this theory, tight spectral equivalence betweenDFF and AFF is required

to ensure good performance of the solver. This leads to the goal of constructing the

fine-grid set so that there is a guarantee of tight spectral equivalence between DFF

and AFF .

To meet that goal, MacLachlan and Saad [29] proposed to partition the rows and

columns of the matrix A in order to ensure the diagonal dominance of AFF , so that

DFF could be chosen as a diagonal matrix. In particular, a diagonal dominance factor

is introduced for each row i, defined as

✓i =
|Aii|P

j2F
|Aij|

,

With this, AFF is said to be ✓-diagonally dominant if ✓i � ✓ for all i 2 F , where

✓ > 1/2 measures the diagonal dominance of AFF . If AFF is ✓-diagonally dominant,

then it is shown that the diagonal matrix, DFF , with (DFF )ii = (2 � 1
✓
)aii for all

i 2 F leads to 0 � E �
2�2✓

2✓�1DFF , giving a ✓-dependent convergence bound if the other

assumptions of Theorem 3.1 are satisfied. Furthermore, if A is symmetric, positive-

definite, and diagonally dominant, then this prescription for DFF guarantees that all

conditions of Theorem 3.1 are satisfied, so long as AFF is ✓-diagonally dominant.

In addition to establishing this connection between the diagonal dominance pa-

rameter ✓ and the convergence parameter, ✏, MacLachlan and Saad [29] posed the

partitioning algorithm as an optimization problem for given ✓ > 1/2, asking for the

largest F-set such that ✓i � ✓ for every i 2 F . Such a ✓-dominant AFF guarantees

good equivalence between a diagonal matrix, DFF , and AFF , and the largest such

F -set would make the coarse-grid problem smallest. This leads to an optimization

problem of the form

max
F⇢⌦

|F |,

subject to |Aii| � ✓
X

j2F

|Aij|, 8i 2 F.
(3.3)

The greedy algorithm [29] for (3.3) selects rows and columns of the matrix A

for AFF in a greedy manner to ensure the diagonal dominance of AFF , as described

in Algorithm 3.1. Here, the set U contains all the DoFs that are unpartitioned

(not yet assigned to be coarse or fine points). Initially, all degrees of freedom are

assigned to U , while the F and C sets are empty. The rows that directly satisfy the

diagonal dominance criterion are initially added to the F -set (and removed from U).
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If there are no diagonally dominant DoFs in the U set, then the point having the

least diagonal dominance is made a C-point. This selection may make some other

points in U diagonally dominant, whereupon these DoFs are added to the F -set and

removed from U , and the process is repeated until the set U becomes empty.

Algorithm 3.1 Greedy coarsening algorithm

1: function greedy-coarsening(A, ✓)

2: U  {1, 2, . . . , n}, F  ;, C  ;

3: for i 1, . . . , n do

4: ✓̂i  
|Aii|P

j2F[U |Aij |

5: if ✓̂i � ✓ then

6: F  F [ {i}, U  U \ {i}

7: while U 6= ; do

8: j  argmin
i2U

{✓̂i}

9: U  U \ {j}, C  C [ {j}

10: for i 2 U \ Adj(j) do . Adj(j) = {k : Ajk 6= 0}

11: ✓̂i  
|Aii|P

k2F[U |Aik|

12: if ✓̂i � ✓ then

13: F  F [ {i}, U  U \ {i}

14: Return F , C

We note that there is a slightly counter-intuitive connection between the quality

of solution to (3.3) and the convergence of the multigrid method. “Bad” solutions to

(3.3), meaning those with satisfied constraints but that are far from optimality, have

much bigger C-sets than “good” solutions do and, consequently, the resulting two-

level convergence can be much better than that guaranteed by the theoretical bounds.

Extreme examples of this occur when the set F is an independent set, so that AFF

is a diagonal matrix, and the resulting two-grid method is exact. While such cases

can be treated by the analysis in [29], they rely on a posteriori measurement of the

largest ✓ for which the constraints in (3.3) hold, rather than the a priori bound that

is given by the initial choice of the value of ✓ for which we try to solve (3.3). Thus,

our goal in optimizing (3.3) is to improve complexities of the resulting algorithm (by

making the F -set larger), subject to the same two-level convergence bound fixed a

priori by our choice of ✓. We note that this is further complicated by the complex
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relationship between two-level and multilevel convergence and complexities. In par-

ticular, when coarsening rates are slow (corresponding to “bad” solutions of (3.3)),

two-level convergence is generally a bad predictor of multilevel convergence (since

good two-level convergence relies on an assumption of exact solution of large coarse-

grid matrices). We present the supporting numerical results to explore this connection

in Section 3.4.2, but note that the work proposed here seeks specifically to improve

the quality of solution to (3.3), by finding larger F -sets that satisfy the constraints

for a specified value of ✓.

While the convergence bound for AMGr is attractive, it has several shortcomings.

First and foremost is the strict assumption on diagonal dominance needed for the

convergence guarantee to be valid — we explore cases where this is not the case below

in Sections 3.4.3 and 3.4.4, and see that these problems are, indeed, more di�cult to

handle in this framework. Second, we emphasize that while the convergence bound

obtained in Theorem 3.1 depends only on ✏ (and, thus, is independent of mesh size

if the coarse grid is generated by Algorithm 3.1 or the techniques introduced below

with constant ✓). These bounds are generally worse than the observed convergence

for standard AMG approaches. Using ✓ = 0.56, as we do for all examples below,

gives ✏ = 22/3, and the convergence bound for ⌫ = 1 in (3.2) is 0.977. While this can

be improved by using either more relaxation per cycle or by accelerating convergence

with a Krylov method, we consider only stationary cycles here, accepting poorer

convergence factors in exchange for a direct relationship to the convergence theory

summarized above. We note that this is also similar to the stationary convergence

bound for the method in Napov and Notay [31], which is 0.93 for problems that satisfy

the assumptions therein.

3.3 Simulated annealing

The optimization problem in (3.3) is a combinatorial optimization problem. Because

such problems arise in many areas of computational science and engineering, signif-

icant research e↵ort has been devoted to developing algorithms for their solution,

both of general-purpose type (e.g., branch and bound techniques) and for specific

problems (e.g., the travelling salesman problem) [23]. For many problems, the size of

the solution space makes exhaustive brute-force algorithms infeasible; for some such

problems, branch and bound techniques may be successful in paring down the solu-

tion space to a more manageable size. In many cases, however, there are no feasible
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exact algorithms, and stochastic search algorithms, such as simulated annealing (SA),

genetic algorithms, or tabu search methods, can be employed [36]. In this work, we

apply SA algorithms to approximate the global minimum of the optimization problem

in (3.3).

Simulated annealing (SA) is a probabilistic method used to find global optima of

cost functions that might have a large number of local optima. The SA algorithm

randomly generates a state at each iteration and the cost function is computed for

that state. The value of the cost function for a state determines whether the state is

an improvement. If the current state improves the value of the objective function, it

is accepted to exploit the improved result. The current state might also be accepted,

with some probability less than one, even if it is worse than the previous state,

however the probability of accepting a bad state decreases exponentially with the

“badness” of the state. The purpose of (sometimes) accepting inferior states, known as

“exploration”, is to avoid being trapped in local optima, and the inferior intermediate

states are considered in order to give a pathway to a globally better solution. The

total number of iterations of SA depends on an initial “temperature” and the rate

of decrease of that temperature. The temperature also a↵ects the probability of

accepting a bad state, with the exploration phase of the algorithm becoming less

probable as the temperature decreases, to ensure convergence to a global optimum.

3.3.1 Idea and generic algorithm

Consider the set F of fine points to be the current state. To find F that maximizes

a fitness function z(F ), such as z(F ) = |F | in (3.3), simulated annealing proceeds

as shown in Algorithm 3.2. The temperature T starts at an initial value and decays

by a factor ↵ 2 (0, 1) at each iteration (the “cooling schedule”). A key choice when

using simulated annealing is a method for choosing a neighbor state eF that is close

to the current state F . In the case of optimizing the choice of a subset F ⇢ ⌦, a

straightforward choice is to choose eF by randomly adding or removing an element

from F . Finally, the function P (z, z̃, T ) is the probability of accepting a move from a

current state with fitness z to the new state with fitness z̃. The standard acceptance

function is

P (z, z̃, T ) =

8
<

:
1 if z̃ > z,

exp
�
� (z � z̃)/T

�
otherwise.

(3.4)
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This probability function always accepts transitions that raise the fitness, and some-

times accepts transitions that decrease the fitness. Occasionally accepting fitness-

decreasing transitions is essential to escape local maxima in the energy landscape,

with the chance of such transitions being controlled by the current temperature. By

analogy with the physical annealing of metals, at high temperatures we will accept

almost all fitness-decreasing transitions, allowing exploration of the fitness landscape,

but as the temperature cools we will accept fewer of these transitions, until we even-

tually become trapped near a fitness maximum.

Algorithm 3.2 Generic simulated annealing (SA) algorithm

1: Initialize F to a random state and T to an initial temperature

2: for nsteps iterations do

3: Randomly pick a neighbor state eF of F

4: if rand(0, 1) < P (z(F ), z( eF ), T ) then

5: F  eF
6: T  ↵T

7: Return F

Much work has been devoted to the design of optimal transition probability func-

tions [17] and cooling schedules [15] in simulated annealing algorithms. While it can

be shown that simulated annealing converges to the global maximum with probability

one as the cooling time approaches infinity [20], in practice the performance depends

significantly on the selection of the neighbors eF of the current state F . A common

heuristic for choosing neighbors is to select states with similar fitness, which is more

e�cient because we are less likely to reject such transitions, although this is in tension

with the desire to escape from steep local maxima.

There are also di↵erent algorithmic possibilities for the handling of constraints

on the state F . Given a constraint subset of allowable states, one common method

of enforcing the constraint is to pick only neighbor states eF that are in the con-

straint subset. This method is appropriate if the constraint subset is connected and

constraint-satisfying neighbors can always be found, and it is easy to see that this

algorithm inherits all theoretical properties of the unconstrained version. An alter-

native method, which we will use in Section 3.3.2, is to allow constraint-violating

neighbors to be selected but keep a record of the highest-fitness constraint-satisfying

state visited. This method is advantageous when constraint-violating paths in state
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space allow rapid transitions between (possibly disconnected) areas in the constraint

subset. This algorithm also preserves the global guarantees of convergence under the

condition that the global maximum is constraint satisfying.

3.3.2 Adaptation to coarse/fine partitioning

While it is possible to apply SA directly to the optimization problem in (3.3), pre-

liminary experiments show that this is ine�cient, due to the global coupling of the

degrees of freedom in the optimization problem. To overcome this, we consider a

domain decomposition approach to solving the optimization problem, where we first

divide the discrete set of degrees of freedom into (non-overlapping) subdomains (the

construction of which is considered in detail in the following subsection) and apply

SA to the subdomain problems. These subdomain problems are not independent,

therefore information is exchanged about the tentative partitioning on adjacent sub-

domains; this is accomplished in either an additive (Jacobi-like) or multiplicative

(Gauss-Seidel-like) manner. For su�ciently small subdomains, however, SA can e�-

ciently find near-optimal solutions to localized versions of the optimization in (3.3),

and we focus on this process below.

SA is run on each subdomain to partition its DoFs into (local) C- and F -sets. As

the suitability of this partitioning in a global sense naturally depends on decisions

being made on adjacent subdomains, we must be careful to consider what happens to

DoFs in the global mesh adjacent to those in the subdomain. If these subdomains al-

ready have their own tentative C/F partitions computed (as is expected to be the case

on all but the first sweep through the domain), then this partitioning is considered

fixed, and used to guide decisions on the current subdomain. If no tentative parti-

tioning has yet been computed on a neighbouring subdomain, then the points in the

neighbouring subdomain that are connected to some DoFs of the current subdomain

are considered to be F -points, while all other DoFs in the neighbouring subdomain

are considered to be C-points. These assumptions are used only for the purposes of

computing the partitioning on the current subdomain, to apply hard constraints on

the partitioning.

Specifically, if ⌦ = {1, 2, . . . , n} is the global set of degrees of freedom, partitioned

into s disjoint subdomains as ⌦ = [s

k=1⌦k, then the optimization problem to be
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solved on subdomain k is given as

max
Fk⇢⌦k

|Fk|,

subject to |Aii| � ✓
X

j2F

|Aij|, 8i 2 F̄k,

where information from other subdomains enters in the constraint, both as additional

points for which the constraint must be satisfied and in the right-hand side of the

constraint where we sum over j 2 F (and not j 2 Fk). Here, Fk is the current

set of points in ⌦k that are in the F -set, and we define Ck = ⌦k \ Fk to be the

complementary C-set. Further, we use F̄k and F to denote the sets of tentative F -

points in ⌦k and ⌦, respectively, where the standard “closure” notation, ⌦k, denotes

the set of points j, such that either j 2 ⌦k or Aij 6= 0 for some i 2 ⌦k. In the

localized optimization problem above, the set F̄k contains both the points in Fk and

any point j 2 ⌦k \⌦k such that either j is in the F`-set in a neighbouring subdomain,

⌦`, that has a tentative partition or j 2 ⌦` for a neighbouring subdomain, ⌦`, that

does not yet have a tentative partition. We note that a key part of this localization is

that we make choices to optimize the partitioning on the local set, ⌦k, but consider

the impacts of these choices on the global F -set, not only on the local set, Fk. Thus,

when we localize to subdomain ⌦k, we consider the constraints on F̄k, including all

points in ⌦ where the choice of Fk could possibly lead to a constraint violation.

Within an annealing step on a given subdomain, ⌦k, we take the current tentative

set Fk as the initial guess for the partitioning, with the exception of the first step,

where we take Fk = ; for all i 2 ⌦k (to ensure we start from a configuration that

satisfies the constraint). As a benchmark for the annealing process, we initialize n(k)
F

as the largest size of a constraint-satisfying F -set seen so far on ⌦k (taken to be zero

on the first iteration), and zk to be the number of constraint-satisfying F -points in

the current set F̄k. At each annealing step on ⌦k, we swap points in and out of

Fk, either increasing, decreasing, or maintaining its size, with equal probability. The

basic algorithm for these swaps is given in Algorithm 3.3, where we take the sets Fk

and Ck as input, along with values nF and nC giving the numbers of points to swap

from Ck to Fk and vice-versa. We note that there are two possible ways to do this

swap, either selecting the elements from Fk and Ck independently and then moving

the elements, or first moving the selected elements from Fk and, then, selecting the

elements from the updated set Ck to move. We follow the first way as preliminary

experiments suggested that it gives slightly better results.
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Algorithm 3.3 swapFC(Fk, Ck, nF , nC)

1: eFk  Fk

2: eCk  Ck

3: Randomly select nC points from Fk, remove the points from eFk, and add the

points to eCk

4: Randomly select nF points from Ck, remove the points from eCk, and add the

points to eFk

5: Return eFk, eCk

Algorithm 3.4 shows the complete annealing algorithm, with inputs given by the

matrix, A, its decomposition into s subdomains, {⌦k}
s

k=1, the initial temperature, T ,

and its decay rate, ↵, as well as the number of SA steps to run for each degree of

freedom in A, nper DoF and for each degree of freedom in each cycle, nper DoF per cycle.

In each cycle, annealing is run on every subdomain, with an ordering determined as

discussed below. The main annealing step on ⌦k, as given in Algorithm 3.5, then

takes the form of selecting whether to increase, decrease, or maintain the size of Fk,

checking if the selected action is possible, and performing it if it is. To increase the

size of Fk, we first check that Ck has su�cient entries to move. If so, we increase the

size of Fk by selecting x+ y entries of Ck to move to Fk and y entries of Fk to move

to Ck, for pre-determined values of x and y (typically x = 1, y = 0, although these

values could also be drawn from a suitable distribution). If the decision is made to

swap points, we check that both Fk and Ck have su�cient points to swap, then swap

x points from each set into the other (typically x = 1). Finally, if the decision is made

to decrease the size of Fk, we check that it has points to remove, then move x + y

points from Fk to Ck and y points from Ck to Fk (ensuring x+y > 0; typically x = 1,

y = 0). Finally, we measure the fitness of the resulting tentative F -set and decide

whether or not to accept it before decrementing the temperature by the relative factor

↵ and the number of further annealing steps to take by one.

The fitness score of a given (tentative) partition over ⌦k is directly calculated

as the number of points in the set that satisfy the diagonal dominance criterion, as

outlined in Algorithm 3.6. In the acceptance step of the algorithm, given as Algo-

rithm 3.7, we compute the fitness score for the tentative F̄k and compare it to that

of the current (last accepted) set F̄k. If the fitness score increases or remains same,

then we automatically accept the step and update Fk, Ck, and z. In this case, we

additionally check if all points in the current F̄k-set are constraint satisfying and if
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Algorithm 3.4 annealing-on-⌦(A, {⌦k}
s

k=1, T,↵, nper DoF, nper DoF per cycle)

1: F  ;, Fk  ; for all k = 1, . . . , s

2: Ck  ⌦k for all k = 1, . . . , s

3: n(k)
F
 0, zk  0 for all k = 1, . . . , s

4: ncycle  nper DoF/nper DoF per cycle

5: for i 1, . . . , ncycle do

6: for k  1, . . . , s do

7: nsteps  nper DoF per cycle ⇥ |⌦k|

8: Fk, Ck, n
(k)
F
, zk, F, T  annealing-on-⌦k(Fk, Ck, n

(k)
F
, zk, F, T,↵, nsteps)

9: C  ⌦ \ F

10: Return F , C

Algorithm 3.5 annealing-on-⌦k(Fk, Ck, n
(k)
F
, zk, F, T,↵, nsteps)

1: for nsteps iterations do

2: Randomly generate r 2 {0, 1, 2} with equal probability

3: if r = 0 & |Ck| � x+ y then

4: eFk, eCk  swapFC(Fk, Ck, x+ y, y)

5: if r = 1 & min(|Fk| , |Ck|) > x then

6: eFk, eCk  swapFC(Fk, Ck, x, x)

7: if r = 2 & |Fk| � x+ y then

8: eFk, eCk  swapFC(Fk, Ck, y, x+ y)

9: Construct tentative F̄k, C̄k from eFk, eCk, and F

10: Fk, Ck, n
(k)
F
, z, F  accept(⌦k, eFk, eCk, F̄k, n

(k)
F
, z, T, F )

11: T  ↵T

12: Return Fk, Ck, n
(k)
F
, zk, F , T

this set increases the value of n(k)
F
. If so, we update the value of n(k)

F
(and update the

global F -set). If z̃ < z, then the step is accepted with a probability that decreases

with temperature and z � z̃, but the additional check need not be done.

3.3.3 Localization and Gauss-Seidel variants

In Section 3.4, we consider both structured-grid and unstructured-grid problems;

consequently, we consider both geometric and algebraic decompositions of ⌦ into
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Algorithm 3.6 fitness(F̄k)

1: Calculate diagonal dominance for each DoF in the set F̄k

2: z̃  the number of points that meet the diagonal dominance criterion

3: Return z̃

Algorithm 3.7 accept(⌦k, eFk, eCk, F̄k, n
(k)
F
, z, T, F )

1: z̃  fitness(F̄k)

2: if z̃ � z then

3: z  z̃, Fk  
eFk, Ck  

eCk

4: if z̃ =
��F̄k

�� & z̃ � n(k)
F

then

5: n(k)
F
 z̃

6: F  (F \ ⌦k) [ eFk

7: else

8: Randomly generate x 2 [0, 1]

9: if x < e(�(z�z̃)/T ) then

10: z  z̃, Fk  
eFk, Ck  

eCk

11: Return Fk, Ck, n
(k)
F
, z, F

{⌦k}
s

k=1. An important advantage of algebraic partitioning, however, is that it can

be used to generate deeper multigrid hierarchies, since geometric partitioning can

only be used to generate a single coarse level (which has unstructured DoF locations

and, thus, does not naturally lead to further geometric partitioning). Here, we outline

both strategies.

For structured grids, we can consider geometric decomposition of the fine grid

into subdomains. For problems with (eliminated) Dirichlet boundary conditions, we

typically satisfy the diagonal dominance criterion already at all points adjacent to a

Dirichlet boundary, so these points are taken as F -points from the beginning and not

included in the decomposition into subdomains. A natural strategy is to subdivide

the remaining points into square or rectangular subdomains of equal size (modulo

boundary/corner cases). We consider this in Section 3.4 for both finite-di↵erence

(FD) and bilinear finite-element (FE) discretizations on uniform meshes. When the

number of points (in one dimension) to be decomposed is not evenly divided by the

given subdomain size (in one dimension), the right-most and bottom-most subdo-

mains on the mesh are of smaller size, given by the remainder in that division. On
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structured grids, we can consider either a lexicographical Gauss-Seidel iteration over

the subdomains or a four-colored Gauss-Seidel iteration. In preliminary experiments,

the four-colored Gauss-Seidel iteration outperformed the lexicographical strategy by

a small margin, so we use this. While the nature of the cycling is not explicitly en-

coded in the loop over subdomains in Algorithm 3.4, we assume that the subdomain

indexing in {⌦k} is consistent with the cycling strategies discussed here.

On both structured and unstructured grids, we also consider algebraic decomposi-

tion using Lloyd aggregation to define the subdomains. Lloyd aggregation, proposed

by Bell [4] and given in Algorithm 3.8, is a natural application of Lloyd’s algorithm [25]

to subdivide the DoFs of a matrix into well-shaped subdomains. Given a desired num-

ber of subdomains (or average size per subdomain), the unit-distance graph of the

matrix is constructed and one “center” point for each subdomain is randomly selected.

Each (tentative) subdomain is then selected as the set of points that are closer to the

subdomain center point than to any other subdomain center, using a modified form of

the Bellman-Ford algorithm (Algorithm 3.9). Then, for each subdomain, the center

point is reselected (again using a modified form of the Bellman-Ford algorithm), as

the current centroid of the subdomain (a DoF having maximum distance from the

subdomain boundary, breaking ties arbitrarily). This process is repeated (reforming

subdomains around the new centers, then reassigning centers) until the assignment

to subdomains (denoted by the “membership vector”, m) has converged.

Algorithm 3.8 lloyd-aggregation(A, Vc)

1: repeat

2: d,m modified-bellman-ford(A, Vc)

3: B  ;

4: for i, j such that |Ai,j| > 0 do

5: if mi 6= mj then

6: B  B [ {i, j}

7: d,x modified-bellman-ford(A,B)

8: Vc  {i 2 ⌦ : di > dj 8mi = mj}

9: until no change in Vc and m

10: Return m

In the algebraic case, a multicoloured Gauss-Seidel iteration strategy is slightly

more complicated, since we would need to compute a colouring of the subdomains;
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Algorithm 3.9 modified-bellman-ford(A, Vc)

1: di =1 for all i = 1, . . . , |⌦| . shortest-path distance from node i to nearest

center

2: mi = �1 for all i = 1, . . . , |⌦| . cluster index (membership) containing node i

3: for c 2 Vc do

4: dc  0

5: mc  c

6: while True do

7: done  True

8: for i, j such that |Ai,j| > 0 do

9: if di + dij < dj then

10: dj  di + dij

11: mj  mi

12: done  False

13: if done then

14: Return d,m

hence, we simply use lexicographical Gauss-Seidel to iterate between subdomains,

noting that the advantage of the four-color iteration in the structured case is quite

small. While the results in this paper are generated using a serial implementation

and lexicographical Gauss-Seidel, the algorithm could easily be parallelized using a

multicoloured Gauss-Seidel iteration.

3.3.4 Benchmark results

A natural comparison is with that of the greedy strategy [29], which we provide in

the following numerical results. For the structured-grid discretizations, we have also

explored optimization “by hand”, meaning pencil-and-paper analysis of strategies

that try and maximize the size of the global F-set while satisfying the constraint.

For the five-point finite-di↵erence stencil of the Laplacian on a uniform 2D mesh,

for any value 1
2 < ✓ < 4

7 , the diagonal dominance criterion will be satisfied if every

F -point has at least one C-neighbour. An optimal strategy [39] for this case arises by

dividing the fine mesh into “X-pentominos”, sets of five grid points with one center

point and its four cardinal neighbours, plus edge/corner cases where only a subset of

an X-pentomino is needed. Then, the C-set can be selected as the center points of
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each X-pentomino (or subset of one), with the remaining points assigned to the F -

set. In an ideal case (e.g., with periodic boundary conditions, or minimal edge cases),

this leads to an F -set with size equal to 4/5 of the size of ⌦. Such a coarsening is

shown in the left panel of Figure 3.1. Note that some points adjacent to Dirichlet BCs

are naturally chosen as coarse points in this strategy, despite their inherent diagonal

dominance, because they are center points of an X-pentomino that includes just one

point in the region away from the boundary. These could be equally well treated by

making the interior point in these X-pentominos a C-point and leaving the center

point on the boundary as an F -point, but there is no advantage to doing so.

For the nine-point bilinear finite-element discretization of the Laplacian on a uni-

form 2D mesh, for any value of ✓ less than 4/7, the diagonal dominance criterion will

be satisfied if every F -point has at least two C-neighbours. Here, we partition the

points (again except those adjacent to a Dirichlet boundary) into square subdomains

of size 3 ⇥ 3, and select two points consistently in each subdomain as C-points. In

an ideal case, where we can fill the domain with 3 ⇥ 3 “bricks”, this leads to an

F -set with 7/9 of the size of ⌦. Such a coarsening is shown in the right panel of Fig-

ure 3.1. When the domain cannot be filled perfectly with 3⇥ 3 bricks, the remaining

square/rectangular regions still require one or two C points to be selected, reducing

the optimal size of the resulting F set.
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Figure 3.1: Splitting of C- and F - points for 11 ⇥ 11 meshes from optimization “by

hand”. At left, X-pentomino coarsening for five-point FD scheme. At right, 3 ⇥ 3

brick coarsening for nine-point FE scheme. At left, we color by the X-pentominos and

at right, we color by the 3⇥ 3 bricks. C-points are represented by the black circles.
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3.4 Results

In the results below, unless stated otherwise, we set the initial (global) temperature

at T = 1, and compute the reduction rate, ↵, so that ↵nts = 0.1, where nts is the

total number of annealing steps to be attempted. Thus, these experiments end when

the global temperature reaches 0.1. In addition, for each problem, we determine nts

by fixing a total number of steps per DoF in the system, and report results based on

the allotted number of steps per DoF, nper DoF. This work is further subdivided into

Gauss-Seidel sweeps by fixing values of the number of annealing steps per DoF per

sweep, nper DoF per cycle, with the number of sweeps determined as the ratio of total

steps per DoF to steps per DoF per sweep, as on Line 4 of Algorithm 3.4.

We first consider structured-grid experiments for both the finite-di↵erence (five-

point) and bilinear finite element (nine-point) discretizations of the Laplacian, using

a 32⇥ 32 mesh to explore how much work is needed to determine near-optimal par-

titions using both geometric and algebraic divisions into subdomains. Using these

experiments to identify “best practices”, we then explore how the coarsening algo-

rithm performs as we change the problem size, move from structured to unstructured

finite-element meshes, and isotropic to anisotropic operators.

3.4.1 Structured-grid discretizations with geometrically struc-

tured subdomains

We start by considering the five-point finite-di↵erence stencil on a fixed (uniform)

32⇥ 32 mesh, and consider the e↵ects of changing both the size of the Gauss-Seidel

subdomains and the distribution of work in the algorithm. As a measure of quality of

the results, we consider the maximum of the ratio |F |/|⌦| over all constraint-satisfying

F -sets generated in a single run of the annealing algorithm. As a comparison, for this

problem, the best optimization “by hand” of the size of the F -set yields |F |/|⌦| =

0.8047, as depicted by the black lines in Figure 3.2, while the greedy algorithm [29]

yields |F |/|⌦| = 0.561 (not depicted because it is far from the data shown here). We

vary three algorithmic parameters in Figure 3.2, the total number of SA steps per

DoF, with values ranging from 5000 to 2 000 000, the number of SA steps per DoF

in a single sweep of Gauss-Seidel on each subdomain, and the size of the subdomains

used in the Gauss-Seidel sweeps.

We can draw three conclusions from the data presented in Figure 3.2. First, we

note that if the subdomains are “too small”, then there is little benefit in investing
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Figure 3.2: Maximum value of |F |/|⌦| with number of annealing steps per DoF per

GS sweep for di↵erent numbers of annealing steps per DoF for the 32⇥ 32 uniform-

grid five-point finite-di↵erence discretization. Each panel shows a di↵erent size of

geometrically chosen subdomain: 2 ⇥ 2 (top-left), 3 ⇥ 3 (top-right), 4 ⇥ 4 (bottom-

left), 6⇥ 6 (bottom-right).

substantial work in the SA process, as shown in the top row for 2 ⇥ 2 and 3 ⇥ 3

subdomains. Here, while there is clearly a small benefit to increasing the number of

SA steps per DoF per sweep from 1 to about 10, there is little improvement beyond

those results, and little correlation between the quality of partitioning generated and

the total amount of work invested. This occurs consistently in the numerical results

throughout this paper: for small subdomain sizes, each subdomain seems to have

too little freedom to make adjustments into better global configurations while still

satisfying local constraints. Secondly, when we consider larger subdomains (as in the

bottom row), we see that doing more work overall does, indeed, pay o↵, particularly

for the largest subdomains (6⇥6, at bottom right). This is also consistently observed;

in particular, that for larger subdomains we see both better overall configurations (if
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su�cient work is performed) and improvements with larger work budgets. Finally,

for the largest subdomains, we see a clear benefit to doing relatively few SA steps per

DoF per cycle. Thus, in further results, we generally fix the number of SA steps per

DoF per cycle to be relatively small, either 1 or 5.

A key question is how to balance the parameters in the SA algorithm to achieve

reasonable performance at an acceptable cost. To examine this, we fix the total

number of annealing steps per DoF and consider the best partitioning achieved by

varying the subdomain size in the left panel of Figure 3.3. Here, we run for a number

of di↵erent values of the number of SA steps per DoF per Gauss-Seidel sweep, and

take the best partitioning observed over these grids for each subdomain size (noting

that the optimal choice varies with subdomain size, typically being larger for small

subdomain sizes and smaller for large subdomain sizes, see Table 3.10 in Appendix

A for full details). When using 200 000 SA steps per DoF, there is a clear maximum

in the graph for 4 ⇥ 4 subdomains, although the relative di↵erence in quality in

not substantial; however, when using 2 000 000 SA steps per DoF, we see continued

improvement in the quality of the partitioning up to the 6 ⇥ 6 subdomain case. In

the right panel of Figure 3.3, we look more closely at the convergence of the results

with increasing numbers of SA steps per DoF for the case of 6⇥ 6 subdomains, again

taking the best results obtained for di↵erent values of the number of SA steps per

DoF per Gauss-Seidel sweep, see Table 3.11 in Appendix A for full details. Here,

we see a clear improvement in the results up to O(105) SA steps per DoF, and

continued improvement up to 2 000 000 SA steps per DoF. We recall that we fix

the SA temperature reduction rate, ↵, so that ↵ ! 1 as the number of SA steps

increases, yielding the same total reduction in T for each experiment. Thus, the

results in Figure 3.3 are consistent with the expected behaviour of SA, that we can

achieve results arbitrarily close to the global maximizer of our functional but only

if we take many steps and slowly “cool” the SA iteration. For a more practical

algorithm, we emphasize the behaviour at lower numbers of SA steps / DoF, noting

that we achieve results within 5% of the best-known solution already with only 3000

steps / DoF, and within 2% at around 50 000 steps / DoF.

A natural question that arises from the right-hand panel of Figure 3.3 is whether

the best meshes obtained occur early or late in the annealing process. That is, while

we clearly see benefit from slow “cooling” of the annealing process (many SA steps

per DoF), it is important to identify when the optimal results are obtained during the

annealing process. Figure 3.4 shows the annealing history for a sample run, on the
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Figure 3.3: Left: Change in |F |/|⌦| with subdomain size for the 32 ⇥ 32 uniform-

grid five-point finite-di↵erence discretization, using geometric subdomains, with 5000,

200 000, and 2 000 000 total SA steps per DoF. Right: Change in maximum number

of F -points with number of total SA steps per DoF for this problem using 6 ⇥ 6

subdomains.

32 ⇥ 32 uniform grid five-point finite-di↵erence stencil, with 2 000 000 SA steps per

DoF (for a total of almost 2⇥ 109 annealing steps). At right, we see the temperature

decay, following an exponential curve from T = 1.0 at the first step to T = 0.1 at the

final step. At left, we plot the changes in the ratio |F |/|⌦| compared to the optimized

by hand mesh for this grid (also shown). For comparison, the ratio from the greedy

algorithm is also shown. We see that after an initial rapid improvement in the value

of the ratio, there is a secondary period where performance improves notably but

steadily, up to between 5⇥108 and 109 total annealing steps. This demonstrates that

many annealing steps are, indeed, needed to reach the best partitioning seen here,

although a good partitioning is still found after many fewer steps.

Thus far, we have only considered the choice of ↵ prescribed at the beginning of

this section, with the decay rate chosen to yield a fixed temperature decay by a factor

of 10 over the total number of SA steps given. In contrast, Figure 3.5 considers fixing

the decay rate to be that used for 200 000 SA steps per DoF, ↵ = 0.1(1.0/(200000⇥32⇥32)),

but then running between 4 times fewer and 2.5 times more total SA steps, with one

SA step per DoF per cycle, yielding final temperature values between 0.5623 and

0.0032. At left of Figure 3.5, we observe little correlation between the total number

of SA steps per DoF and the resulting value of |F |/|⌦|, with all values between 0.79

and 0.80, comparable to those seen for similar SA budgets in Figure 3.3. While this

appears to o↵er an opportunity for saving some cost in the SA algorithm (by using
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Figure 3.4: Change in |F |/|⌦| (left) and temperature (right) with number of annealing

steps for the 32⇥ 32 uniform-grid finite-di↵erence discretization of the Laplacian. At

left, the case of SA with five SA steps per DoF per GS sweep using 6⇥ 6 subdomain

size is shown, along with greedy as a baseline. Note that the vertical axis on the left

plot uses a mixed log-linear scale for clarity, with a break at �10�2.

fewer Gauss-Seidel sweeps to get comparable results), we note that using 50 000 SA

steps per DoF is already prohibitively expensive for an “online cost” for this algorithm,

requiring more than 30 minutes to compute the partitioning for this relatively small

problem.
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Figure 3.5: Change in |F |/|⌦| with SA steps per DoF for a fixed temperature de-

cay rate (left) and temperature (right) for the 32 ⇥ 32 uniform-grid finite-di↵erence

discretization of the Laplacian. Here, one SA step per DoF per sweep is used, and

the temperature decay rate is fixed, with ↵ = 0.1(1.0/(200000⇥32⇥32)). The circles in the

right figure show the stopping temperatures for the annotated SA steps per DoF.
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We next address the nature of the grids generated by annealing, and whether they

resemble grids that could be selected geometrically for this problem. Figure 3.6 shows

two of the grids generated, along with the subdomains used in their generation. These

represent the “best” grids found by the annealing procedure, with ratios of |F |/|⌦|

of around 0.795. While these grids yield competitive ratios, there is no clear global

geometric pattern, nor obvious relationship to the best optimized by hand grid shown

in Figure 3.1. Furthermore, there are no clear improvements of these grids that could

be readily made, such as single coarse points that could be omitted without leading

to constraint violations. This suggests that the energy landscape for this problem is

likely dominated by locally optimal configurations that are separated by states with

constraint violations and/or sharp changes in energy.
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Figure 3.6: Grid partitioning for 32⇥32 uniform grid with five-point FD stencil using

two million SA steps per DoF. At left, the partitioning is generated using primarily

4⇥ 4 subdomains, with 25 SA steps per DoF per cycle. At right, the partitioning is

generated using 6 ⇥ 6 subdomains, with 5 SA steps per DoF per cycle. The grid at

left has 814 F -points, while that at right has 816.

Figure 3.7 shows how the performance of the annealing algorithm scales with

problem size, for both the geometric choice of subdomains for the finite-di↵erence

discretization discussed so far, and for the finite-element discretization. In addition,

an algebraic selection (discussed below) is added for comparison. All methods (includ-
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ing the optimization by hand) perform relatively well for small meshes, but degrade

as the mesh size increases. The amount of work needed to achieve these results with

the annealing algorithm also increases with grid size. For the 8⇥ 8 mesh, using a sin-

gle (global) subdomain, equally-good partitions to the optimization by hand can be

found with just 2000 annealing steps per DoF (and fewer when more subdomains are

used). For the 16⇥16 mesh, more work and larger subdomains are needed to achieve

such performance. As noted above, with small subdomains even using 200 000 anneal-

ing steps per DoF does not achieve performance equal to the by-hand partitioning

on the 16⇥ 16 mesh. For larger subdomains, the algorithm does equal the results of

the by-hand partitioning, but with increasing work as subdomain size increases: for

4⇥ 4 subdomains, 10 000 annealing steps per DoF are needed, while 50 000 annealing

steps per DoF are needed for 5 ⇥ 5 subdomains. For 6 ⇥ 6 subdomains, even using

200 000 annealing steps per DoF, we could not recover results matching the by-hand

partitioning, although we speculate that this would have occurred with even more

work invested. For larger domain sizes, the results shown in Figure 3.7 represent the

best results found for a given grid over all runs with varying subdomain sizes, total

SA steps per DoF, and SA steps per DoF per GS sweep. While these best results are,

in general, achieved with the largest allocations of SA steps per DoF tried in our ex-

periments, the marginal benefit of considering such large amounts of work to generate

the coarsenings are quite low. Here, in all cases where we invested the computational

e↵ort to explore the question, we found less than a 1% improvement in |F |/|⌦| when

increasing beyond O(105) SA steps per DoF (and, in many cases, the improvement

was only by one or two F -points).
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Figure 3.7: Change in |F |/|⌦| with mesh size for FD (left) and FE (right) discretiza-

tions.
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For the nine-point finite-element stencil, we see similar results to those reported

above and, consequently, do not include figures detailing the individual experiments

in as much detail. Most notably, the best partitioning that we achieve by hand is a

slightly worse in this case (as detailed in Section 3.3.4), and the partitioning using

the greedy algorithm is better than in the FD case, yielding |F |/|⌦| = 0.752. At

left of Figure 3.8, we show an analogous figure to Figure 3.2 for the case of 5 ⇥ 5

subdomains. Here, we observe the same stratification. However, we are able to

recover the same quality of partitioning as the best by-hand partitioning using 5⇥ 5

subdomains and 2 000 000 SA steps per DoF. Also note that we see the same mild

dependence on the number of SA steps per DoF per sweep as we did in the FD case.

The right panel of Figure 3.8 shows how the quality of partitioning changes with

subdomain size and total work budget, with SA steps per DoF per sweep reported

in Table 3.14 in Appendix A. Similarly to the FD case, there is an improvement in

performance with additional work for larger subdomain sizes, but that improvement

stagnates with additional work for smaller subdomain sizes. Sample grids generated

for the finite-element case, including colouring to indicate subdomain choice, are

shown in Figure 3.9.
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Figure 3.8: Quality of coarsening for the 32⇥32 uniform-grid nine-point finite-element

discretization, using geometric subdomains. Left: Maximum value of |F |/|⌦| with

number of annealing steps per DoF per GS sweep for di↵erent numbers of annealing

steps per DoF using 5 ⇥ 5 geometric subdomains. Right: Change in |F |/|⌦| with

subdomain size and total number of SA steps per DoF.

Finally, we verify that the result two-level AMGr algorithms are at least as ef-

fective as predicted in theory, by measuring asymptotic convergence factors (⇢), grid
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Figure 3.9: Grid partitioning for 32 ⇥ 32 uniform grid with nine-point FE stencil

using two million SA steps per DoF. At left, the partitioning is generated using

5 ⇥ 5 subdomains, with one SA step per DoF per cycle. At right, the partitioning

is generated using 6⇥ 6 subdomains, also with one SA step per DoF per cycle. The

grid at left has 814 F -points, while that at right has 811.

complexities (Cgrid, equal to the ratio of sum of the number of DoFs on each level of

the hierarchy to that on the finest level), and operator complexities (Cop, equal to

the ratio of the sum of the number of nonzero entries in the system matrix on each

level of the hierarchy to that on the finest level). We approximate ⇢ by running the

cycle with a random initial guess, x(0), and zero right-hand side, and then compute���x(k)
�� /
��x(0)

���1/k

, where x(k) is the approximation (to the true solution, which is

the zero vector) after k cycles. Because the convergence factors of AMGr are some-

what larger than those for classical AMG, we take k = 800 to ensure that we sample

the asymptotic behaviour suitably. Table 3.1 reports this data for two-level cycles

for both the FD and FE discretizations, for both the geometric subdomain choice

considered here and the algebraic subdomain choice discussed next. Considering the

geometric subdomain choice, we see grid-independent convergence factors of about

0.9 for the FD case and 0.7 for the FE case. While these are notably worse than

are observed for typical multigrid methods for these problems, they are consistent

with the existing results for AMGr and, in particular, conform with the convergence

rate bound from Theorem 3.1 of 0.977 for ✓ = 0.56 and ⌫ = 1. Notably, neither the

convergence factor nor the measured complexities degrade substantially with problem
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size. We note that, in subsequent work, we have improved convergence of AMGr for

these and other model problems [41].

Table 3.1: Performance of two-level AMGr on test matrices from discretizations of

the 2D Laplacian.

Geometric Subdomains Algebraic Subdomains

Scheme Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop

8⇥ 8 0.85 1.16 1.12 0.85 1.16 1.12

16⇥ 16 0.86 1.19 1.18 0.86 1.19 1.18

FD 32⇥ 32 0.88 1.20 1.20 0.88 1.21 1.20

64⇥ 64 0.89 1.22 1.22 0.88 1.22 1.22

128⇥ 128 0.89 1.22 1.23 0.88 1.22 1.23

8⇥ 8 0.70 1.16 1.15 0.70 1.16 1.15

16⇥ 16 0.63 1.20 1.22 0.63 1.20 1.22

FE 32⇥ 32 0.67 1.21 1.23 0.69 1.21 1.25

64⇥ 64 0.71 1.21 1.25 0.72 1.22 1.27

128⇥ 128 0.71 1.22 1.27 0.71 1.22 1.27

3.4.2 Structured-grid discretizations with algebraically cho-

sen subdomains

We next consider partitioning the structured-grid problems using an algebraic choice

of the subdomains based on Lloyd aggregation. Figure 3.10 shows the change in

the maximum number of F -points (scaled by the total number of DoFs) with the

change of the subdomain size for both the FD and FE discretizations (left and right,

respectively). Similarly to the case of geometric partitioning, we see relatively poor

performance for small subdomain sizes, regardless of the work allocated to the SA

process. For larger subdomain sizes, we see improving results with number of SA

steps per DoF, as seen above. Also as seen above, the optimal subdomain size varies

with total work allocation, increasing as we increase the amount of work per DoF,

but even with 2 000 000 SA steps per DoF, we do not see the best performance with

largest subdomains for the FE discretization. Considering variation in problem size,
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Figure 3.7 shows that, as in the geometric subdomain case, we see some decrease in

performance as problem size grows, but that this decrease seems to (mostly) plateau

at larger problem sizes. In comparison with the geometric subdomain choice, we

see some small degradation in performance with algebraically chosen subdomains,

particularly in the FD case, but it is small in comparison with the optimality gap

between the optimization by hand solutions and those generated by SA.
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Figure 3.10: Change in maximum number of F -points with subdomain size for alge-

braic subdomain selection on 32⇥32 meshes. Left and right figures are for FD and FE

schemes, respectively, showing the largest value of |F |/|⌦| attained over experiments

with fixed subdomain size and varying the total number of SA steps per DoF and SA

steps per sweep, as in the geometric subdomain case.

Performance of the resulting two-grid cycles is tabulated in Table 3.1, where we

see very comparable convergence factors, as well as grid and operator complexities,

as in the geometric subdomain case. Table 3.2 tabulates convergence factors for

three-level V- and W-cycles (denoted ⇢V and ⇢W , respectively), along with three-

level grid and operator complexities. For the FD case, we see some degradation in

convergence when using V-cycles, while W-cycles give convergence factors similar to

those in the two-level case. For the FE problem, there is less degradation for V-

cycles, but still W-cycles are required to get convergence factors comparable to the

two-level case. As we have increased the depth of the multigrid hierarchy, the grid and

operator complexities in Table 3.2 are naturally larger than those in Table 3.1, but the

growth in these complexity measures is consistent with optimally scaling multigrid

methods. Performance of multilevel V- and W-cycles is also shown in Table 3.2, where

coarsening is continued until the number of nodes falls below 100, yielding a four-level
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cycle for the 32⇥32 grid, five-level cycle for 64⇥64, and six-level cycle for 128⇥128.

The resulting convergence factors for both FD and FE cases remain similar to those

for three-level cycles, while complexity measures grow consistently with the number

of levels.

Table 3.2: Performance of three-level and multilevel AMGr on test matrices from

discretizations of the 2D Laplacian.

Three-level cycles Multilevel cycles

Scheme Grid size ⇢V ⇢W Cgrid Cop ⇢V ⇢W Cgrid Cop

32⇥ 32 0.92 0.90 1.25 1.26 0.93 0.90 1.26 1.27

FD 64⇥ 64 0.93 0.91 1.27 1.28 0.94 0.91 1.28 1.31

128⇥ 128 0.94 0.91 1.28 1.30 0.95 0.92 1.30 1.35

32⇥ 32 0.76 0.72 1.25 1.31 0.76 0.72 1.26 1.31

FE 64⇥ 64 0.76 0.73 1.27 1.35 0.77 0.73 1.28 1.37

128⇥ 128 0.79 0.75 1.28 1.37 0.79 0.75 1.29 1.41

For the multilevel results in Table 3.2, we use 200 000 SA steps per DoF in all cases,

except on the finest meshes for the 32⇥32 and 64⇥64 grids, where 2 000 000 SA steps

per DoF were used. (Similar results are also seen without these “extra” steps on these

problems, however.) For the 64⇥64 mesh, using 200 000 SA steps per DoF on all levels

takes about 18 hours of “o✏ine” time to compute the coarse meshes, in comparison

to “online” solution times of only 0.003 seconds for a V-cycle and 0.011 seconds for a

W-cycle. Table 3.3 presents results for the same experiment, but using only 200 and

2000 SA steps per DoF, to investigate how performance is changed when using “bad”

solutions to the optimization problem in (3.3). Here, we see slight improvements

in convergence factors in comparison to those in Table 3.2; however, using fewer

annealing steps leads to much larger grid and operator complexities than observed

above. We note here that using fewer annealing steps also leads to results that are

more heavily influenced by the random nature of the SA process; here, we report

complexities from runs used to generate W-cycle convergence factors, which vary

slightly from those of an independent run to generate V-cycle convergence factors,

but by no more than 0.01 in Cgrid and 0.05 in Cop.

For our final isotropic, structured-grid test problem, we consider the FE discretiza-
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Table 3.3: Performance of multilevel AMGr on test matrices from discretizations of

the 2D Laplacian using 200 and 2000 SA steps per DoF.

200 SA steps per DoF 2000 SA steps per DoF

Scheme Grid size ⇢V ⇢W Cgrid Cop ⇢V ⇢W Cgrid Cop

32⇥ 32 0.89 0.86 1.42 1.62 0.91 0.88 1.33 1.44

FD 64⇥ 64 0.89 0.88 1.46 1.86 0.92 0.88 1.37 1.51

128⇥ 128 0.91 0.88 1.48 2.08 0.93 0.89 1.38 1.58

32⇥ 32 0.72 0.68 1.34 1.52 0.73 0.71 1.29 1.40

FE 64⇥ 64 0.74 0.70 1.37 1.65 0.76 0.70 1.32 1.49

128⇥ 128 0.77 0.70 1.38 1.76 0.76 0.72 1.33 1.56

tion of the two-dimensional isotropic di↵usion problem, �r · K(x, y)ru(x, y) =

f(x, y), in the domain [0, 1] ⇥ [0, 1] with Dirichlet boundary conditions and piece-

wise constant (“jumping”) coe�cient, K(x, y). To determine K(x, y), we select 20%

of the elements at random, and set K(x, y) = 10�8 in these elements, with value 1 in

the remaining 80% of the elements, matching one of the test problems from [29]. We

partition the nodes using 200 000 SA steps per DoF, and show the first coarse mesh

chosen using 1 SA step per DoF per sweep for the 31⇥31 grid in Figure 3.11. Conver-

gence factors and grid and operator complexities for multilevel V- and W-cycles are

shown in Table 3.4. We note, in particular, that these results are quite comparable

to those shown in Table 3.2 for the case of K(x, y) = 1 everywhere. In comparison

to the results presented in [29], we see larger convergence factors here (0.78 for the

127 ⇥ 127 grid, in comparison to 0.59 reported there), but with lower complexities

(Cop = 1.42 here, compared to 1.75 there).

Table 3.4: Performance of multilevel AMGr on test matrices from discretizations of

the 2D Laplacian with jumping coe�cients.

Scheme Grid size ⇢V ⇢W Cgrid Cop

31⇥ 31 0.73 0.71 1.27 1.33

FE 63⇥ 63 0.76 0.73 1.29 1.38

127⇥ 127 0.78 0.76 1.29 1.42
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Figure 3.11: Partitioning for the isotropic problem on a 31 ⇥ 31 uniform grid with

jumping coe�cients, generated using 200 000 SA steps per DoF, 1 SA step per DoF

per GS sweep, and subdomains with an average of 36 points per subdomain. C-points

are represented by the black circles.

3.4.3 Anisotropic problems on structured grids

Next, we consider the two-dimensional anisotropic di↵usion problem, �r·K(x, y)ru(x, y) =

f(x, y), in the domain [0, 1] ⇥ [0, 1] with Dirichlet boundary conditions. We choose

the tensor coe�cient K(x, y) = QMQT , where Q =

"
cos(✓) � sin(✓)

sin(✓) cos(✓)

#
, and M =

"
� 0

0 1

#
. The parameters 0 < �  1 and ✓ specify the strength and direction of

anisotropy in the problem, respectively, with ✓ = 0 giving the anisotropic problem

��uxx�uyy = f and ✓ = ⇡/2 giving �uxx��uyy = f . For 0 < ✓ < ⇡/2, the axis of the

small di↵usion coe�cient in the problem rotates clockwise from being in the positive

x-direction for small ✓ to the positive y-direction for ✓ ⇡ ⇡/2. Anisotropic problems

cause di�culty for the greedy coarsening algorithm [29], where large grid and oper-

ator complexities and poor algorithmic performance were overcome by augmenting

the coarse grids with the second pass of the Ruge-Stüben coarsening algorithm and

using classical AMG interpolation in place of the AMGr interpolation operator. We
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emphasize that both the FD and FE discretizations of this problem result in non-

diagonally dominant system matrices and, consequently, the convergence guarantee

from Theorem 3.1 does not apply in this setting. We include these problems, nonethe-

less, both to stress-test our approach and highlight the need for further research in

this direction.

As an example of a problem in this class, we fix � = 10�6 and ✓ = ⇡/3. Figure 3.12

shows the coarse-grid points selected for the bilinear finite-element discretization of

the problem on a uniform 32⇥ 32 mesh. At left, we see that the partitioning gener-

ated by the SA algorithm correctly detects that this is an anisotropic problem with

strong coupling primarily in the x-direction and weak coupling primarily in the y-

direction, producing grids that are consistent with semi-coarsening, with some regions

of coarsening along diagonals. Unfortunately, however, this grid leads to poor con-

vergence using AMGr interpolation. As in the original experiments by MacLachlan

and Saad [29], each fine-grid point has multiple coarse-grid neighbours (leading to

an increase in operator complexity, due to the nonzero structure of D�1
FF

AFC), but

since A is no longer diagonally dominant in the anisotropic case, the assumption that"
DFF �AFC

�AT

FC
ACC

#
is positive semi-definite is violated, and the resulting performance

is poor. To overcome this failure, we augment the coarse-grid set using the second-

pass algorithm from Ruge-Stüben AMG, using the classical strength of connection

parameter of 0.30 to determine strong connections in the graph. At right of Fig-

ure 3.12, we show the resulting graph, which now satisfies the requirement that every

pair of strongly connected F -points has a common C-neighbour (which is clearly not

satisfied in the partitioning at left). Unfortunately, this comes at a heavy cost, as

the grid at right now has many more C-points than we would like. Below, we verify

that these grids lead to e↵ective multigrid hierarchies, when coupled with classical

AMG interpolation, but note the increased grid and operator complexities in these

hierarchies. A key question for future work (addressed in [41]) is whether we can

determine algebraic interpolation operators for grids such as those at left that lead

to e↵ective AMGr performance.

Tables 3.5 and 3.6 present convergence factors and grid and operator complexi-

ties for two- and three-level cycles, respectively. For geometric partitioning, we use

200 000 SA steps per DoF with one or two SA steps per DoF per cycle and 5 ⇥ 5

or 6⇥ 6 subdomains (depending on what worked best for a given problem, reported

in Table 3.16 in Appendix A). Similar choices are made using algebraic partitioning,
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Figure 3.12: Grid partitioning for an anisotropic di↵usion problem with � = 10�6

and ✓ = ⇡/3, discretized on a 32⇥ 32 mesh using the bilinear FE stencil. The initial

partitioning, at left, is generated using algebraic subdomains averaging 20 points

per subdomain, using 2 000 000 SA steps per DoF and 1 SA step per DoF per GS

sweep, and has 664 F -points and 360 C-points. At right is the grid augmented using

the second pass of the classical AMG algorithm, resulting in 343 F -points and 681

C-points.

although we see slight improvements using 2 000 000 SA steps per DoF for some prob-

lems. For the three-level tests, we uniformly use 200 000 SA steps per DoF, with 1 SA

step per DoF per GS sweep, and algebraic subdomains with average size of 36 points.

In Table 3.5, we again see that there is relatively little di↵erence in results generated

using geometric and algebraic choices of the Gauss-Seidel subdomains. Notably, both

choices lead to e↵ective cycles for both the finite-di↵erence and finite-element dis-

cretizations, albeit at the cost of increased grid and operator complexities. Table 3.6

again shows degradation in performance moving from two-grid to three-grid V-cycles,

but that three-grid W-cycles mostly recover comparable convergence to the two-level

case, with some notable degradation for the finite-element operator.

3.4.4 Discretizations on unstructured grids

We next consider two di↵usion problems with homogeneous Dirichlet boundary condi-

tions on unstructured triangulations of square domains, discretized using linear finite

elements. First, we consider an isotropic di↵usion operator (�r ·ru = f) on [�1, 1]2,
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Table 3.5: Performance of two-level AMGr for the anisotropic di↵usion problem with

� = 10�6 and ✓ = ⇡/3 on structured meshes.

Geometric Partitioning Algebraic Partitioning

Scheme Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop

32⇥ 32 0.58 1.70 2.09 0.57 1.70 2.09

FD 64⇥ 64 0.58 1.71 2.11 0.58 1.71 2.11

128⇥ 128 0.60 1.72 2.12 0.63 1.72 2.12

32⇥ 32 0.62 1.65 2.02 0.61 1.67 2.00

FE 64⇥ 64 0.61 1.67 2.09 0.62 1.67 2.08

128⇥ 128 0.61 1.67 2.11 0.61 1.67 2.12

Table 3.6: Performance of three-level AMGr for the anisotropic di↵usion problem

with � = 10�6 and ✓ = ⇡/3 on structured meshes.

Scheme Grid size ⇢V ⇢W Cgrid Cop

32⇥ 32 0.72 0.57 2.16 3.13

FD 64⇥ 64 0.76 0.60 2.16 3.20

128⇥ 128 0.80 0.66 2.18 3.26

32⇥ 32 0.74 0.61 2.06 2.86

FE 64⇥ 64 0.81 0.69 2.07 3.05

128⇥ 128 0.89 0.82 2.05 3.10

generated by taking an initially unstructured mesh, refining it a set number of times

and, then, smoothing the resulting mesh. We consider three levels of refinement for

this example, resulting in meshes with 1433, 5617, and 22 241 DoFs. The SA-based

partitioning scheme appears to perform similarly well in this setting, with a splitting

found for the smallest mesh shown in Figure 3.13. While we no longer have hand-

generated estimates of the optimal coarsening factors, we note that the SA-based

partitioning scheme outperforms the greedy algorithm, generating F -sets with 1106,

4241, and 16 604 points, for these three grids, respectively, in comparison to F -sets

of 1024, 3916, and 15 079 points. As above, this improvement comes at a cost: the

o✏ine time to partition the 5617 DoF problem using 200 000 SA steps per DoF is

over 12 hours for the two-level scheme. Two- and three-level convergence factors, as
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well as grid and operator complexities for these systems are given in Table 3.7. Here,

we observe that these results are quite similar to those seen for the structured-grid

discretizations above, with some degradation in convergence seen for the three-level

V-cycle results, but not in the W-cycle results. Here, the three-level results are com-

puted using 200 000 SA steps per DoF, with 1 SA step per DoF per GS sweep, on

subdomains with an average of 36 points per subdomain. Slight modifications to

these parameters yield small improvements in two-level results; as a result, we use

these choices in the table and report them in Table 3.17 in Appendix A.

�1.0 �0.5 0.0 0.5 1.0
�

�1.0

�0.5

0.0

0.5
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�

Figure 3.13: Partitioning for the isotropic problem on the unstructured mesh with

1433 points, generated using 1 000 000 SA steps per DoF, 5 SA steps per DoF per GS

sweep, and subdomains with an average of 20 points per subdomain.

We next consider the anisotropic di↵usion operator (again with Dirichlet bound-

ary conditions) considered above, with � = 0.01 and ✓ = ⇡/3, on an unstructured
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Table 3.7: Performance of two- and three-level AMGr for isotropic problem on un-

structured meshes.

Two-level cycle Three-level cycles

#DoF ⇢ Cgrid Cop ⇢V ⇢W Cgrid Cop

1433 0.66 1.23 1.31 0.78 0.65 1.28 1.39

5617 0.71 1.25 1.32 0.79 0.70 1.30 1.42

22241 0.75 1.25 1.33 0.84 0.75 1.32 1.45

triangulation of the unit square taken from Brannick and Falgout [9], matching the

problem labelled 2D-M2-RLap in that paper. As in Brannick and Falgout [9], we

consider three levels of refinement of the mesh, with 798, 3109, and 12 273 DoFs,

respectively. Figure 3.14 shows two di↵erent partitions for this mesh. At left, we give

the partitioning generated using the SA-based partitioning algorithm proposed here,

and at right we give the splitting after a second pass of the Ruge-Stüben coarsening

algorithm where strength of connection is computed using the classical strength pa-

rameter of 0.55. As with the structured-grid case above, we found the second pass

is needed to achieve good convergence factors for the anisotropic problem, but that

it does so at the expense of coarsening at a much slower rate. Convergence factors,

grid complexities, and operator complexities for these problems are reported in Ta-

ble 3.8. As above, the complexities are higher for the anisotropic operators than the

isotropic (due to the use of the second pass). Here, we observe degradation in conver-

gence with grid refinement, although again with less degradation for W-cycles than

V-cycles. The three-level results are computed with the same parameters as for the

isotropic problem above, with more SA steps per DoF used for the two-level results,

as this yielded slight improvements. While the performance reported in Table 3.8

is far from optimal, we note that the convergence factors for the larger two meshes

are better than those reported for compatible relaxation [9], while the operator com-

plexities are comparable to those reported therein for BoomerAMG [21]. We again

emphasize that these anisotropic di↵usion problems do not satisfy the convergence

bounds stated above and, consequently, are included to stress-test the framework

presented here; improved results for this problem are presented in [41].
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Figure 3.14: Partitioning for the anisotropic problem on an unstructured mesh con-

taining 798 points. The partitioning at left was generated using 500 000 SA steps per

DoF, with 1 SA step per DoF per GS sweep, on subdomains with an average size

of 36 points per subdomain, yielding 524 F -points and 274 C-points. At right, this

partitioning is augmented by the second pass of classical AMG coarsening, resulting

in 263 F -points and 535 C-points.

Table 3.8: Performance of two-level and three-level AMGr for anisotropic problem on

unstructured meshes.

Two-level cycle Three-level cycles

#DoF ⇢ Cgrid Cop ⇢V ⇢W Cgrid Cop

798 0.69 1.67 1.82 0.84 0.71 2.11 2.41

3109 0.75 1.67 1.87 0.84 0.75 2.09 2.52

12273 0.82 1.67 1.89 0.90 0.83 2.08 2.56

3.4.5 Convection-di↵usion problems on structured grids

For our final tests, we consider the upwind finite-di↵erence discretization of two sin-

gularly perturbed convection-di↵usion equations. While these problems lead to non-

symmetric discretization matrices (and, as such, Theorem 3.1 no longer applies), they

represent a plausible set of test problems for reduction-based methods due to their

“nearly triangular” M-matrix structure [30]. In particular, we consider the solution
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of the convection-di↵usion equation,

�"�u+ b ·ru = f,

with homogeneous Dirichlet boundary conditions, for two choices of the convection

direction:

grid-aligned convection b =

"
1

0

#
,

non-grid-aligned convection b =

"
2

3

#
.

We discretize these problems on uniform N ⇥ N meshes with the standard 5-point

finite-di↵erence for the di↵usion term, and a first-order upwind finite-di↵erence dis-

cretization for the convection terms. In all experiments, we use 200 000 SA steps

per DoF to generate the partitioning, and generate the AMGr interpolation oper-

ator by computing

"
D�1

FF
AFC

I

#
. We construct the restriction operator by taking

h
ACFD

�1
FF

I
i
. Table 3.9 reports measured asymptotic convergence factors, along

with grid and operator complexities for these problems, showing insensitivity to both

problem size and the singular perturbation parameter, ". Figure 3.15 shows two

sample partitioning, one for each convection direction, illustrated at " = 10�5 for

N = 32.

3.5 Conclusions and future work

While existing heuristics for coarse-grid selection within AMG o↵er reliable perfor-

mance for a wide class of problems, there remains much interest in both improv-

ing our understanding of AMG convergence and developing new approaches that

o↵er guarantees of convergence for even wider classes of problems. We believe a

promising, yet under-explored, area of research is in the extension of reduction-based

AMG approaches, that have been shown to be e↵ective for both isotropic di↵usion

problems [28, 29] and more interesting classes of problems, such as some hyperbolic

PDEs [30]. In this paper, we propose a new coarsening algorithm for AMGr, based on

applying simulated annealing to the optimization problem first posed by MacLachlan

and Saad [29]. We choose SA as it is a widely used optimization technique that can be
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Table 3.9: Performance of two-level AMGr for convection-di↵usion problems on struc-

tured meshes.

Grid-Aligned Non-Grid-Aligned

" N ⇢ Cgrid Cop ⇢ Cgrid Cop

16 0.617 1.50 1.93 0.617 1.34 1.65

10�3 32 0.617 1.50 2.01 0.617 1.36 1.71

64 0.617 1.51 2.02 0.617 1.36 1.74

16 0.617 1.50 1.93 0.617 1.34 1.63

10�4 32 0.617 1.50 1.97 0.617 1.36 1.71

64 0.617 1.51 2.03 0.617 1.36 1.74

16 0.617 1.50 1.92 0.617 1.33 1.63

10�5 32 0.617 1.51 2.00 0.617 1.36 1.71

64 0.617 1.51 2.03 0.617 1.36 1.73
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Figure 3.15: Partitioning for convection-di↵usion problems on uniform grids, for the

grid-aligned case, at left, and the non-grid-aligned case, at right. In both cases, we

depict the partitioning for " = 10�5 and N = 32, generated using 200 000 SA steps

per DoF.

applied to combinatorial optimization problems. Other techniques are certainly possi-

ble (e.g., genetic algorithms or particle swarm optimization), and it may be that those
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techniques lead to improved performance. For isotropic problems on both structured

and unstructured meshes, we find that the SA-based partitioning approach outper-

forms the original greedy algorithm, sometimes dramatically, while sharing some of

the existing limitations of the AMGr framework, particularly for anisotropic prob-

lems. We believe that the performance di↵erence between the greedy and SA-based

algorithm is, simply, due to the complex nature of the optimization problem at hand.

The greedy algorithm makes the best “local” choice at each stage, but those local

choices force poor global configurations. In particular, the greedy approach has no

opportunity to undo a choice already made, while the SA approach allows that to

happen. Nonetheless, we see this as an important proof-of-concept, showing that ran-

domized search and other derivative-free optimization algorithms can be successfully

applied to the combinatorial optimization problems in AMG coarsening.

The main drawback of this approach is the high computational cost of simulated

annealing. For example, computing a single coarse grid for a 32⇥32 mesh with 200 000

SA steps per DoF required around 2.5 hours on a modern workstation, primarily for

evaluating the fitness functional in the optimization, with expected scaling in problem

size and number of SA steps per DoF. Two key questions that this raises are whether

the fitness functional can be approximated in a more e�cient manner (e.g., using a

value neural network) and whether other optimization techniques that rely on fewer

samplings of the fitness functional can be applied. Both of these are topics of our

current research.

This research also exposes a known weakness of the AMGr methodology (and,

to our knowledge, one of all AMG-like algorithms with guarantees on convergence

rates) when applied to problems that are not diagonally dominant (such as finite-

element discretization of anisotropic di↵usion equations). Another current research

direction is identifying whether the diagonal choice of DFF can be generalized to

yield better convergence (while retaining a guaranteed convergence rate), and whether

such changes can be accommodated within the optimization problems solved here.

Preliminary results in this direction are presented in Chapter 4.
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Appendix A: Additional Data

In this section, we provide some additional tables to provide more complete data on

the experiments reported above.

SA steps / DoF 2⇥ 2 3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6

5000 50 20 100 2 1

200 000 10 1 25 5 2

2 000 000 – – 25 20 5

Table 3.10: Number of SA steps per DoF per sweep used for numerical results in

left-hand panel of Figure 3.3.

SA steps / DoF: 3000 5000 7500 10 000 50 000 100 000 200 000 500 000 2 000 000

SA steps / DoF / cycle: 1 1 1 2 1 2 2 2 5

Table 3.11: Number of SA steps per DoF per sweep used for numerical results in

right-hand panel of Figure 3.3.
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Partitioning FD Discretization

8⇥ 8 16⇥ 16 32⇥ 32 64⇥ 64 128⇥ 128 256⇥ 256

SA steps per DoF 1000 10 000 2 000 000 2 000 000 200 000 200 000

Geometric SA steps per DoF per cycle 1 100 5 1 1 1

Subdomain size 2⇥ 2 4⇥ 4 6⇥ 6 6⇥ 6 6⇥ 6 6⇥ 6

SA steps per DoF – – 2 000 000 2 000 000 200 000 –

Algebraic SA steps per DoF per cycle – – 2 1 1 –

Subdomain size – – 36 36 36 –

Table 3.12: Number of SA steps and SA steps per DoF per sweep used for numerical

results in left-hand panel of Figure 3.7.

Partitioning FE Discretization

8⇥ 8 16⇥ 16 32⇥ 32 64⇥ 64 128⇥ 128 256⇥ 256

SA steps per DoF 1000 200 000 2 000 000 1 000 000 200 000 200 000

Geometric SA steps per DoF per cycle 25 25 50 100 1 1

Subdomain size 2⇥ 2 3⇥ 3 4⇥ 4 3⇥ 3 5⇥ 5 5⇥ 5

SA steps per DoF – – 2 000 000 200 000 2 000 000 –

Algebraic SA steps per DoF per cycle – – 1 1 1 –

Subdomain size – – 25 25 25 –

Table 3.13: Number of SA steps and SA steps per DoF per sweep used for numerical

results in right-hand panel of Figure 3.7.

SA steps / DoF 2⇥ 2 3⇥ 3 4⇥ 4 5⇥ 5 6⇥ 6

5000 20 10 5 1 1

200 000 10 2 50 20 2

2 000 000 – – 50 1 1

Table 3.14: Number of SA steps per DoF per sweep used for numerical results in

right-hand panel of Figure 3.8.
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# of nodes per aggregate 2 5 8 11 14 16 25 36

FD:

SA steps per DoF 200 000 7500 100 000 200 000 200 000 1 000 000 500 000 2 000 000

SA steps per DoF per cycle 10 10 20 5 50 25 1 2

FE:

SA steps per DoF 7500 200 000 2 000 000 200 000 200 000 200 000 2 000 000 2 000 000

SA steps per DoF per cycle 5 100 20 50 1 1 1 1

Table 3.15: Number of SA steps and SA steps per DoF per sweep used for numerical

results in Figure 3.10.

Partitioning FD Discretization FE Discretization

32⇥ 32 64⇥ 64 128⇥ 128 32⇥ 32 64⇥ 64 128⇥ 128

SA steps per DoF 200 000 200 000 200 000 200 000 200 000 200 000

Geometric SA steps per DoF per cycle 1 1 1 2 1 1

Subdomain size 6⇥ 6 6⇥ 6 6⇥ 6 5⇥ 5 5⇥ 5 5⇥ 5

SA steps per DoF 200 000 200 000 200 000 2 000 000 200 000 2 000 000

Algebraic SA steps per DoF per cycle 1 1 1 1 1 2

Subdomain size 16 36 36 20 36 36

Table 3.16: Number of SA steps per DoF and SA steps per DoF per sweep and

subdomain sizes used for two-level numerical results in Table 3.5.

Table 3.7 Table 3.8

1433 5617 22241 798 3109 12273

SA steps per DoF 1 000 000 2 000 000 200 000 500 000 2 000 000 200 000

SA steps per DoF per cycle 5 2 1 1 2 1

Subdomain size 20 36 36 36 36 36

Table 3.17: Number of SA steps per DoF and SA steps per DoF per sweep and

subdomain sizes used for two-level numerical results in Tables 3.7 and 3.8.
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Chapter 4

Generalizing Reduction-Based

Algebraic Multigrid

Abstract

1 Algebraic Multigrid (AMG) methods are often robust and e↵ective solvers for solving

the large and sparse linear systems that arise from discretized PDEs and other prob-

lems, relying on heuristic graph algorithms to achieve their performance. Reduction-

based AMG (AMGr) algorithms attempt to formalize these heuristics by providing

two-level convergence bounds that depend concretely on properties of the partitioning

of the given matrix into its fine- and coarse-grid degrees of freedom. MacLachlan and

Saad (SISC 2007) proved that the AMGr method yields provably robust two-level

convergence for symmetric and positive-definite matrices that are diagonally domi-

nant, with a convergence factor bounded as a function of a coarsening parameter.

However, when applying AMGr algorithms to matrices that are not diagonally domi-

nant, not only do the convergence factor bounds not hold, but measured performance

is notably degraded. Here, we present modifications to the classical AMGr algorithm

that improve its performance on matrices that are not diagonally dominant, making

use of strength of connection, sparse approximate inverse (SPAI) techniques, and in-

terpolation truncation and rescaling, to improve robustness while maintaining control

of the algorithmic costs. We present numerical results demonstrating the robustness

1
This work is submitted as “Generalizing Reduction-Based Algebraic Multigrid” by Tareq Zaman,

Nicolas Nytko, Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West, to Numerical

Linear Algebra with Applications, 2022.
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of this approach for both classical isotropic di↵usion problems and for non-diagonally

dominant systems coming from anisotropic di↵usion.

Keyword: Algebraic Multigrid, Reduction-based Multigrid, Sparse Approximate

Inverse.

4.1 Introduction

Partial di↵erential equations (PDEs) arise naturally as mathematical models of phys-

ical systems in many fields of science and engineering. As analytical techniques for

their solution are limited to simple equations and geometries, numerical approxima-

tion of solutions via discretization techniques is ubiquitous. Standard discretizations

necessitate the solution of large linear and nonlinear systems of equations which, in

turn, requires fast and e�cient algorithms. Among the techniques most commonly

used for discretized elliptic equations are multigrid (MG) methods, known for their

e�cient and robust solution of a wide range of problems. Geometric multigrid (GMG)

methods are often most e�cient, but require detailed knowledge of the problem to be

solved, its discretization, and regular structure of the underlying mesh hierarchy. In

contrast, algebraic multigrid (AMG) methods can be e↵ectively applied to problems

on unstructured grids, or with highly variable (or discontinuous) coe�cients. While

the idea of AMG was first proposed over 40 years ago [12, 13, 52, 54], understanding

and improving the convergence of AMG remains an active area of research.

Classical (Ruge-Stüben) AMG has become a workhorse algorithm in scientific

computing, particularly due to high-quality implementations available in standard

packages [2, 28, 36]. While it provides an e�cient and robust solution algorithm for a

wide class of di↵usion problems, its reliance on heuristics and algorithmic parameters

(that can be di�cult to tune) is often seen as a di�cult hurdle to overcome, partic-

ularly for critical applications. As a result, significant e↵ort has been invested in re-

cent years in the development of AMG approaches with rigorous convergence bounds.

Within this area are several approaches based on the pairwise aggregation method-

ology [15, 18, 47, 48, 49] that o↵ers guaranteed convergence for problems such as the

graph Laplacian. An alternative approach builds on the reduction-based multigrid

methodology first proposed by Ries, Trottenberg, and Winter [51]. The reduction-

based algebraic multigrid (AMGr) methodology introduced by MacLachlan et al. [40]

uses algebraic properties of the linear system to determine reduction-like grid-transfer
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operators and relaxation that again leads to guaranteed convergence rates.

The basic principle of reduction-based multigrid follows from classical cyclic re-

duction algorithms [55] that reduce the cost of the direct solution of linear systems,

Ax = b, by partitioning the degrees of freedom into two sets that we denote by F

and C (in typical multigrid notation). The key feature of cyclic reduction is that

this partitioning should be done in a way so that the submatrix of A over the set

F , denoted AFF , is a diagonal matrix. (Equivalently, the set F is an independent

set in the graph associated with the sparse matrix, A.) Multigrid reduction [51] and

AMGr [40] generalize this by allowing AFF to be non-diagonal (F is not required to

be an independent set), but only spectrally equivalent to a diagonal matrix. A key

question left unanswered in this work is how to generate such partitions. MacLachlan

and Saad [39] show that the task of generating the largest possible F set is an integer

linear programming problem and, consequently, proposed a greedy algorithm for the

partitioning with linear complexity. Notably, they proved that if A is symmetric, pos-

itive definite, and diagonally dominant, then there is a two-grid AMGr method with

a guaranteed convergence bound. Several theoretical and practical improvements to

the theory and algorithms of MacLachlan and Saad [39] have been proposed, with

improved AMGr algorithms and convergence bounds [17, 32] and improved coarsen-

ing algorithms [56, 60]. Nonsymmetric variants have also been considered [38, 41, 42].

Further research into multigrid reduction (but not AMGr) has also been common-

place in recent years, with the emergence of multigrid-reduction-in-time [29] (MGRIT)

methodologies for the solution of time-dependent PDEs.

Despite these developments, attaining e↵ective AMGr convergence has remained

essentially limited to systems with matrices that are either close to diagonally dom-

inant or can be reordered to be close to lower triangular. Unfortunately, these lim-

itations are significant, and preclude applying AMGr to many important and inter-

esting classes of problems, including common AMG test cases, such as anisotropic

di↵usion equations, or problems discretized on anisotropic meshes. Poor performance

on anisotropic problems, in particular, is reported in existing AMGr results [39, 60]

that has only been overcome with expensive and impractical fixes, such as moving

substantial numbers of points from F to C, in order to construct suitably improved

interpolation operators within the AMGr framework. In this paper, we revisit the

basic AMGr framework, with the goal of overcoming the barriers to achieving ac-

ceptable convergence for anisotropic problems. To do this, we look for more practical

algorithmic choices within an AMGr-style algorithm. Specifically, we consider four

94



ingredients for improving AMGr performance:

1. C-relaxation; while original AMGr focused on F -relaxation, we show that using

C-relaxation (as considered in other settings [17, 29]) can be particularly helpful

for these problems;

2. Sparse Approximate Inverses (SPAI); while the original AMGr papers focused

on approximating A�1
FF

by a diagonal matrix, we consider using the SPAI algo-

rithm [7, 34, 37] to o↵er better approximation of A�1
FF

while still maintaining

sparsity;

3. Strength of Connection; while the original AMGr algorithms do not rely on

the classical AMG [13, 52] notion of “strong connections” to filter small entries

from the matrix, we find that such filtering is critical to success for anisotropic

problems, where large “wrong-sign” o↵-diagonal entries appear, but cannot be

productively used in the relaxation or coarse-grid correction processes; and

4. Interpolation truncation; the combination of techniques described above leads

to e↵ective AMGr-style solvers for a wider range of problems, but with higher

algorithmic complexity than is needed; thus, we use the technique of interpola-

tion truncation [25, 26, 53] to control these costs.

Numerical results demonstrate that these techniques can be used in combination

to improve the performance of AMGr for both isotropic and anisotropic di↵usion

problems.

Sparse approximate inverses are one of a class of algorithms that define precondi-

tioners for Ax = b by prescribing a form for matrixM , then minimizing some norm of

I�MA (or I�AM). Originally proposed and investigated by Benson and Frederick-

son [3, 5, 31], recent investigations include factorized sparse approximate inverses [37]

(FSAI), which aim to compute a sparse approximation to the Cholesky factorization

of SPD matrix A, and SPAI techniques [7, 24, 34] that directly compute sparse ap-

proximations to A�1. The use of SPAI techniques in multigrid methods dates back

almost to their initial introduction [4, 31], primarily to replace the use of standard

relaxation schemes, such as the weighted Jacobi and Gauss-Seidel iterations. The use

of SPAI techniques for relaxation within both geometric and algebraic multigrid has

been considered more recently in several ways [10, 21, 22, 23, 30, 33, 59]. Similar ideas

have been used in other contexts, to build interpolation operators [46, 58] or improve

coarse-grid operators [11]. The work in this paper is closest to the ideas presented
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by Bollhöfer [9], where SPAI was used to determine both the relaxation scheme and

the interpolation operator, although the remaining details of the scheme are quite

di↵erent. We also note similarity to the work of Meurant [44, 45], where entries from

the AINV [8] preconditioner were directly used to determine interpolation alongside

AINV for relaxation.

The remainder of this paper is organized as follows. In Section 4.2, we give

an introduction to algebraic multigrid, with a particular focus on reduction-based

AMG (AMGr). We highlight, in Section 4.2.3, that AMGr as it exists has significant

di�culties for anisotropic di↵usion equations, motivating the work that follows. A

key component of the algorithms considered here is the Sparse Approximate Inverse

methodology of Grote and Huckle [34], we review this as well in Section 4.3. The main

contribution of this paper is the generalized AMGr algorithm developed in Section 4.4.

Supporting numerical results are presented in Section 4.5, followed by conclusions

in Section 4.6.

4.2 Algebraic multigrid

Multigrid methods are based on the principle of complementarity, using fine-grid re-

laxation and coarse-grid correction to e�ciently damp all errors in the approximation

of solutions to linear systems Ax = b. Geometric multigrid methods (GMG) fix a

multigrid hierarchy by directly discretizing the PDE on a series of meshes defined

by the problem geometry, and by adapting the relaxation scheme to complement the

coarse-grid correction process defined in this way. Algebraic multigrid methods, in

contrast, do not rely on explicit knowledge of the geometry nor the PDE, instead de-

termining the coarse levels of the multigrid hierarchy in a setup phase that precedes

the solution phase of the multigrid algorithm. In the setup, the set of degrees of free-

dom (or points) on the finest grid, ⌦, is partitioned into disjoint sets, ⌦ = C[F (with

C \ F = ;). The degrees of freedom in the set C constitute the points on the second

level. Along with this partitioning, an interpolation operator, P , is constructed to

map vectors from C onto ⌦; similarly a restriction operator is defined, R = P T (in

the symmetric case, as considered here), to map vectors from ⌦ onto C. With this,

the Galerkin coarse-grid operator, AC = P TAP , is formed and the process continues

recursively on AC and C. The hierarchy is constructed until the number of nodes on

a coarse grid is su�ciently small that direct factorization of AC is feasible. The algo-

rithm for a two-level setup phase is shown in Algorithm 4.1. Once the setup phase is

96



Algorithm 4.1 AMG Setup Phase

1: function amg-two-level-setup(A)

2: C, F  split the degrees of freedom into coarse and fine nodes

3: P  form interpolation operator

4: Ac  P TAP

5: return (P,Ac)

Algorithm 4.2 AMG Solution Phase

1: function amg-two-level-v-cycle(A, b,x, P )

2: for j  1, . . . , ⌫1 do . Run ⌫1 sweeps of pre-relaxation

3: x relax on x

4: rC  P T (b� Ax)

5: eC  solution of ACeC = rC . Solve the coarse-level problem

6: x x+ PeC

7: for j  1, . . . , ⌫2 do . Run ⌫2 sweeps of post-relaxation

8: x relax on x

9: return x

completed, the solution phase solves the original system of equations using a standard

multigrid cycling algorithm. A two-level algorithm is shown in Algorithm 4.2. Mul-

tilevel generalizations come from recursively solving ACeC = rC using the two-grid

methodology, either once per level (leading to a V-cycle) or multiple two-grid sweeps

per level (leading, for example, to the W-cycle). AMG methods are generally distin-

guished by how they define C from ⌦, and how they define P from C and A. Below,

we review the classical AMG algorithm, as presented by Ruge and Stüben [52], and

the reduction-based AMG algorithm of MacLachlan et al. [40].

4.2.1 Classical (Ruge-Stüben) AMG

Classical AMG makes use of the notion of strong connections in the graph corre-

sponding to matrix A to define the coarse-fine partitioning. In the original algorithm,

point i is said to be strongly connected to point j if �Aij � �maxk 6=i(�Aik) for some

� 2 (0, 1] (where the negative signs reflect the expectation that A be an M-matrix, or

one where positive o↵-diagonal entries are not substantial). Many other definitions

of strong connections have been considered in the literature, including the symmetric
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strength measure commonly used in smoothed aggregation AMG, where the connec-

tion between i and j is said to be strong if |Aij| � �
p

AiiAjj. Local approximations

of the inverse of A and algebraically smooth error have also been used to define strong

connections [16, 50], as has the concept of algebraic distances [14]. In all cases, the

strength measure is used to “filter” the entries in A, and then the set C is defined

by choosing a maximal independent set over the graph of strong connections. This

can be characterized, for example, by the properties that each point in F is strongly

dependent on at least one C-point, but no two C-points can be strongly dependent

on one another.

The standard interpolation operator in classical AMG is formulated based on the

assumption that algebraically smooth errors have small residuals after relaxation.

Hence, the residual equation after relaxation can be written as Ae ⇡ 0. For the i-th

degree of freedom, i 2 F , this gives

Aiiei ⇡ �

X

k2Ci

Aikek �

X

j2F
s
i

Aijej �

X

`2F
w
i

Ai`e`, (4.1)

where Ci, F s

i
, and Fw

i
are the C-neighbors, strongly connected F -neighbors, and

weakly connected F -neighbors of the i-th point, respectively. The standard inter-

polation operator is then derived by assuming that e` ⇡ ei for weakly-connected

neighbors, while

ej ⇡

P
k2Ci

AjkekP
m2Ci

Ajm

,

for points j 2 F s

i
. Substituting these into (4.1) and solving for ei yields the interpo-

lation formula

ei =
X

k2Ci

�Aik �
P

j2F
s
i

AijAjkP
m2Ci

Ajm

Aii +
P

`2F
w
i
Ai`

ek. (4.2)

This defines the interpolation formula for all points i 2 F ⇢ ⌦, assuming that ek

is known for all k 2 Ci. For points k 2 C, we use direct injection of values from

coarse-grid points to their fine-grid counterparts in ⌦.

4.2.2 Reduction-based algebraic multigrid (AMGr)

Cyclic reduction [55] was originally proposed as a direct solver for certain linear

systems that arose from finite-di↵erence discretization of simple PDEs. Assuming

that the degrees of freedom are already partitioned into coarse and fine nodes, the
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linear system Ax = b is reordered to have F degrees of freedom followed by C degrees

of freedom, writing

A =

"
AFF �AFC

�ACF ACC

#
x =

"
xF

xC

#
b =

"
bF

bC

#
. (4.3)

An exact algorithm for the solution of Ax = b in this partitioned form is given by

1. y
F
= A�1

FF
bF ,

2. Solve
�
ACC � ACFA

�1
FF

AFC

�
xC = bC + ACFyF

,

3. xF = y
F
+ A�1

FF
AFCxC .

This can be turned into an iterative method for solving Ax = b in the usual way,

replacing the right-hand side vector, b, by the evolving residual, leading to reduction-

based multigrid [51]. In this form, we compute updates to the current approximation,

x(k), as

1. x(k+1/2)
F

= x(k)
F

+ A�1
FF

⇣
bF � AFFx

(k)
F

+ AFCx
(k)
C

⌘
,

2. Solve
�
ACC � ACFA

�1
FF

AFC

�
y

C
= bC + ACFx

(k+1/2)
F

� ACCx
(k)
C
,

3. x(k+1)
C

= x(k)
C

+ y
C
,

4. x(k+1)
F

= x(k+1/2)
F

+ A�1
FF

AFCyC
.

We note that, as given above, this is still an exact algorithm, as x(1) = x = A�1b for

any initial guess, x(0). To make an iterative method from this skeleton, we introduce

approximations of A�1
FF

in three places in the above algorithm, namely

Ã�1
FF
⇡ A�1

FF
ÃC ⇡ ACC � ACFA

�1
FF

AFC WFC ⇡ A�1
FF

AFC , (4.4)

leading to the iteration:

1. x(k+1/2)
F

= x(k)
F

+ Ã�1
FF

⇣
bF � AFFx

(k)
F

+ AFCx
(k)
C

⌘
,

2. Solve ÃCyC
= bC + ACFx

(k+1/2)
F

� ACCx
(k)
C
,

3. x(k+1)
C

= x(k)
C

+ y
C
,

4. x(k+1)
F

= x(k+1/2)
F

+WFCyC
.
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Viewing this as a two-grid algorithm, we recognize the first step as special form

of relaxation, known as F -relaxation, where the approximation to A�1
FF

is accom-

plished via a standard weighted Jacobi or Gauss-Seidel iteration. The second step

then represents a coarse-grid solve, where the residual is restricted to the coarse-grid

by injection, and the correction, y
C
, is computed using an approximation, ÃC , of the

true Schur complement, ACC�ACFA
�1
FF

AFC . The final two steps represent the inter-

polation of the correction, writing the interpolation operator P =
⇥

WFC
I

⇤
. This can be

viewed as an approximation of the ideal interpolation operator [27], WFC ⇡ A�1
FF

AFC .

Notably, this algorithm di↵ers from standard multigrid cycling in several ways, in-

cluding the fixed use of injection for the restriction of the residual to the coarse grid,

and the lack of post-relaxation sweeps.

As written above, there is little guidance in how to choose the three approxi-

mations in (4.4). MacLachlan et al. [40] address this in their development of the

reduction-based AMG (AMGr) algorithm, connecting convergence of the two-grid

scheme with properties of AFF . In particular, it is assumed that AFF can be approx-

imated by known matrix DFF for which computing the action of D�1
FF

on a vector

is computationally feasible. From this, Theorem 4.1 holds, using the notation that

matrices A ⌫ B when xTAx � xTBx for all vectors x.

Theorem 4.1. [40] Consider the symmetric and positive-definite matrix A =
h

AFF �AFC

�A
T
FC ACC

i

such that AFF = DFF + E , with DFF symmetric, 0 � E � ✏DFF for some ✏ �

0, and
h

DFF �AFC

�A
T
FC ACC

i
⌫ 0. Define relaxation with error-propagation operator R =

⇣
I � �

h
D

�1
FF 0
0 0

i
A
⌘
for � = 2/(2 + ✏), interpolation P =

h
D

�1
FF AFC

I

i
, and coarse-level

correction with error-propagation operator T = I�P (P TAP )�1P TA. Then the multi-

grid cycle with ⌫ pre-relaxation sweeps, coarse-level correction, and ⌫ post-relaxation

sweeps has error propagation operator MG2 = R⌫
· T ·R⌫ which satisfies

||MG2||A 

✓
✏

1 + ✏

✓
1 +

✓
✏2⌫�1

(2 + ✏)2⌫

◆◆◆1/2

< 1. (4.5)

Several generalizations of both the theory and practice of reduction-based multi-

grid methods have since been developed. A generalization to non-symmetric M-

matrices was proposed and analyzed by Mense and Nabben [43], using the tools of

weak regular splitting [57]. For symmetric and positive definite problems, Brannick

et al. [17] study the introduction of more general relaxation schemes, as well as the

use of di↵erent approximations of AFF for interpolation and relaxation. Gossler and
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Nabben [32] examine generalization of AMGr to the use of Chebyshev polynomial ac-

celeration of multiple relaxation sweeps. For strongly non-symmetric systems, Man-

teu↵el et al. [41, 42] have proposed similar approaches using so-called approximate

ideal restriction (AIR) techniques, that o↵er excellent performance for advection-

dominated problems. None of the above schemes, however, address the poor per-

formance observed in AMGr-type methods for anisotropic problems, which is the

motivation for the present work.

4.2.2.1 Coarsening in AMGr

Theorem 4.1 establishes existence of an interpolation operator, P , provided that the

matrix A can be partitioned into
h

AFF �AFC

�A
T
FC ACC

i
and an approximation, DFF , of AFF

can be made that satisfies the assumptions in the theorem. While this is insightful, it

does not address the fundamental question of how to generate a partitioning for which

the assumptions hold with small parameter ✏. To answer this question, MacLachlan

and Saad [39] propose to partition the rows and columns of A in order to ensure

the diagonal dominance of AFF , allowing DFF to be chosen as a diagonal matrix.

In particular, for each row, i, the diagonal dominance of row i over the F points is

quantified by

⌘i =
|Aii|P

j2F
|Aij|

.

Then, AFF is said to be ⌘-diagonally dominant if ⌘i � ⌘ for all i 2 F , for some

⌘ > 1/2 that measures the diagonal dominance of AFF . If AFF is ⌘-diagonally

dominant, then the diagonal matrix, DFF , with (DFF )ii = (2 � 1
⌘
)Aii for all i 2 F

yields 0 � E �
2�2⌘

2⌘�1DFF , giving an ⌘-dependent convergence bound if the other

assumptions of Theorem 4.1 are satisfied. Furthermore, if A is symmetric, positive-

definite, and diagonally dominant, then this condition guarantees that all conditions

of Theorem 4.1 are satisfied.

In addition to establishing this connection between the diagonal dominance pa-

rameter ⌘ and the convergence parameter, ✏, MacLachlan and Saad [39] pose the

partitioning algorithm as an optimization problem: for a given ⌘ > 1/2, find the

largest F -set such that ⌘i � ⌘ for every i 2 F . This can be written as

max
F⇢⌦

|F |,

subject to |Aii| � ⌘
X

j2F

|Aij|, 8i 2 F.
(4.6)
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MacLachlan and Saad [39] show that finding the optimal solution to (4.6) is NP-

complete and, consequently, propose a greedy algorithm to approximately solve the

optimization problem. The greedy algorithm acts iteratively, adding points to the C-

set one at a time, and moving any points that are guaranteed to satisfy the inequality

constraint in (4.6) into the F -set, until a full partition is computed.

While the greedy coarsening algorithm was demonstrated to be e↵ective in some

settings, Zaman et al. [60] demonstrate that there are also cases where the resulting

optimality gap can be significant. To address this, they propose to apply simulated

annealing to the optimization problem in (4.6). In this approach, the set of points,

⌦, is first partitioned into non-overlapping subdomains, and a local partitioning is

computed on each subdomain, starting from the assumption that all points are to be

made C points. Using a Gauss-Seidel-like approach, the subdomains are processed

successively, running a number of annealing steps on points within the subdomain,

randomly swapping some C points to be F points or vice-versa, and accepting the

move (with some probability) if it improves the overall fitness (quantified by the num-

ber of F points that satisfy the constraint in (4.6)). Zaman et al. [60] show that this

approach can produce substantially better partitionings than the greedy approach,

albeit at the greatly increased cost of many simulated annealing steps. Similar work

by Taghibakhshi et al. [56] uses reinforcement learning to solve the same problem

at a lower cost. In both of these papers, while “good” solutions are found to the

optimization problem in (4.6), poor performance is observed for anisotropic di↵usion

problems, as these problems do not satisfy the diagonal dominance condition required

by the theory of MacLachlan and Saad [39] in the assumptions of Theorem 4.1.

4.2.3 Failure of AMGr for anisotropic di↵usion

To demonstrate the convergence problems, we consider applying AMGr (following

the prescription of MacLachlan and Saad [39]) to the solution of the two-dimensional

anisotropic di↵usion problem,

�r ·K(x, y)ru(x, y) = b(x, y) (4.7)

in the domain [0, 1]⇥ [0, 1] with Dirichlet boundary conditions. We choose the tensor

coe�cient K(x, y) = QHQT , where

Q =

"
cos(✓) � sin(✓)

sin(✓) cos(✓)

#
, H =

"
10�6 0

0 1

#
, (4.8)
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Table 4.1: Performance of two-level AMGr for the anisotropic di↵usion problem.

✓ Discretization
Eigenvalues of D�1

FF
AFF

h
DFF �AFC

�A
T
FC ACC

i
Convergence factor Complexities

min max ⇢ Cgrid Cop

0
FD 1.00 3.00 positive definite 0.75 1.33 1.49

FE 1.00 6.83 indefinite 0.98 1.49 2.14

⇡/6
FD 1.04 5.59 indefinite 0.96 1.42 1.87

FE 1.00 7.09 indefinite 0.97 1.36 1.72

⇡/4
FD 1.21 6.73 indefinite 0.96 1.39 1.79

FE 1.12 5.80 indefinite 0.96 1.33 1.59

and ✓ specifies the direction of anisotropy in the problem. For ✓ = 0 this gives

the grid-aligned anisotropic equation �10�6uxx � uyy = b, while 0 < ✓ < ⇡/2 gives

a non-grid-aligned di↵usion tensor. Table 4.1 presents convergence results for the

standard finite-di↵erence and bilinear finite element discretizations of this problem,

with ✓ = 0, ⇡/6, and ⇡/4. For simplicity, we present results for a uniform 32 ⇥ 32

grid, although similar results are observed for larger meshes. Here, and in all results

that follow, we measure convergence by solving the homogeneous problem, Ax = 0,

with a randomly chosen initial guess for x. Writing e(k) as the error in the kth ap-

proximation to x = 0, we estimate the asymptotic convergence factor by running 50

(stationary) multigrid iterations, then estimating ⇢ ⇡
�
ke(50)

kA/ke(10)
kA

�1/40
, averag-

ing convergence over the final 40 iterations. We note that, in all cases, the coarsening

algorithm (simulated annealing, in this case) generates a partitioning such that the

matrix AFF is well-approximated by a diagonal matrix, DFF ; however, only in the

case of the finite-di↵erence discretization of the grid-aligned di↵usion equation (when

the discretization matrix, A, is diagonally dominant), does the required semidefi-

niteness of
h

DFF �AFC

�A
T
FC ACC

i
hold. This correlates strongly with the resulting measured

asymptotic convergence factor for the method. Both MacLachlan and Saad [39] and

Zaman et al. [60] consider remedies for this behavior, such as augmenting the C set

in a style similar to classical AMG; while this improves the overall convergence of the

method, it also leads to greatly increased grid and operator complexities, making it

an unsatisfactory solution.

Here, and in all tables that follow, we use color-coding to indicate quality of the

results shown. For measured convergence factors, we denote a “good” convergence

factor to be below 0.4 (indicated in green), while a “bad” convergence factor, above
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0.8, is shown in red (with values in between, 0.4 < ⇢ < 0.8, shown in black text).

For two-grid operator complexity, we highlight results in green if the complexity is

below 1.5, in red if it is above 2.5, and in orange for values between 2.0 and 2.5. As

operator complexity, in particular, is expected to grow with the number of levels in

the hierarchy, we use similar highlighting with di↵erent thresholds for three-grid and

multigrid operator complexity, showing results in green if it is below 2.0, red if it is

above 3.0, and orange for values between 2.5 and 3.0. As the results that follow show

relatively little variation in AMG grid complexity, we choose not to highlight values

for this measure. Definitions of these complexities are found below, in Section 4.4.1.

4.3 Sparse Approximate Inverse (SPAI) methods

While originally proposed in the 1970’s by Benson and Frederickson [3, 31], SPAI

techniques were more systematically developed and studied in the 1990’s (and subse-

quently) by a number of authors [6, 7, 24, 34, 37]. The general idea of SPAI techniques

is to compute a matrix, M , to minimize some norm of I �MA or I �AM , with con-

straints on the sparsity of M . These constraints may be fixed (e.g., some fixed set of

elements of M is allowed to be nonzero), or may be adaptively determined by trying

to best minimize the chosen norm within some limitations on either the total number

of nonzero entries in M or the row/column-wise number of nonzero elements. Here,

we focus on the variant of the SPAI algorithm proposed by Hawkins and Chen [35], in

which the Frobenius norm of B�AM is minimized for a given matrix, B, over a fixed

nonzero pattern for each column. If B = I, then this reduces to a simplified version

of the SPAI algorithm of Grote and Huckle [34], omitting their adaptive calculation

for increasing the nonzero pattern for each column.

Algorithm 4.3 presents the SPAI algorithm, where the inputs are given by matrices

A and B, and a nonzero sparsity pattern, S, for the sparse approximate inverse M .

The algorithm loops independently over each column, j, in M . In the initialization

stage of the algorithm (Lines 3 through 7), the rows, J , in the initial sparsity pattern

of S for column j are extracted, as is the set of rows, I, of A for which matrix A has a

nonzero entry in a column in J , defining a submatrix, Ā, of A that is used to initialize

column j of M . Two auxiliary vectors are also formed, corresponding to the full jth

column of B, denoted b, and its restriction to the rows of Ā, denoted b̄. Column j

of M then comes from using the QR decomposition of Ā to solve the unconstrained

minimization problem of minimizing
��b̄� Ām̄

��
2
, noting that Ā is expected, by its
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construction, to have more rows than columns, so that this is not expected to yield

a zero residual. The computed solution, m̄, is injected into a full vector, m, which

becomes the jth column of M .

Algorithm 4.3 SPAI algorithm

1: function spai(A,B,S)

2: for j  1, . . . , ncol do . ncol is number of columns in A

3: J  {i | (i, j) 2 S}

4: I  set of indices of nonzero rows of A(:,J )

5: b B(:, j)

6: Ā A(I,J )

7: b̄ B(I, j)

8: Compute QR decomposition of Ā

9: m̄ argminm̄

��b̄� Ām̄
��

2
. Unconstrained least-squares via QR

10: m m̄ with inserted zeros

11: M(:, j) m

12: return M

Sparse approximate inverse algorithms similar to Algorithm 4.3 have been inves-

tigated for use in both relaxation and interpolation in several settings in the past.

However, this usage has generally been in defining approximations to the inverse of

A in its entirety, while we look at the possible use of SPAI techniques through the

lens of the AMGr methodology. In what follows, we will make use of SPAI in three

ways:

1. In F -relaxation where, given a proxy matrix, ÂFF , for AFF (possibly equal to

AFF ), and B = IFF , Dinv
FF

is constructed as the SPAI approximation to Â�1
FF

with a fixed sparsity pattern equal to that of ÂFF ;

2. In C-relaxation where, given a proxy matrix, ÂCC , for ACC (possibly equal to

ACC), and B = ICC , Dinv
CC

is constructed as the SPAI approximation to Â�1
CC

with a fixed sparsity pattern equal to that of ÂCC ; and

3. In interpolation, where we use the Hawkins and Chen modification [35], to solve

minW kÂFC � ÂFFWkF for sparse approximate columns of W = Â�1
FF

ÂFC for

proxy matrices, ÂFF and ÂFC , for AFF and AFC , respectively, with a fixed
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nonzero pattern equal to that of ÂFC + ÂFF ÂFC .

The first two of these can be viewed as generalizations of the use of SPAI on all of A

as relaxation [21, 22] to the F - and C-relaxations typically used in reduction-based

AMG. The third bears similarity to Meurant’s Algorithm I3 [44], where SPAI on A

(either in its original ordering or reordered according to the F -C partitioning) is used

to generate an approximate inverse matrix, M , from which MFF is extracted to form

an interpolation operator
⇥

MFF AFC
I

⇤
. We note that this is akin to approximating ideal

interpolation,
h

A
�1
FF AFC

I

i
by using an approximation to (A�1)

FF
rather than (AFF )

�1.

As discussed below, direct use of SPAI to approximate A�1
FF

, A�1
CC

, and A�1
FF

AFC in

these contexts does not directly lead to e↵ective performance, so we consider addi-

tional tools from standard AMG development to both improve convergence and lower

cost.

4.4 Generalizing AMGr

Baseline results: From the results in Table 4.1 and those documented in other

works [39, 56, 60], the coarse-grid correction process emerges as a primary source for

the poor performance of AMGr on anisotropic problems. Using D�1
FF

AFC with diago-

nal DFF for the C-to-F interpolation matrix is more restrictive than the interpolation

operators used in classical multigrid, as interpolation to an F point is only allowed

from directly connected C points (corresponding to the nonzero entries in AFC). To

test this theory, we first use SPAI to determine an interpolation operator of the form

P = [W

I
], where the sparsity pattern of W is fixed to match that of AFC +AFFAFC ,

allowing for interpolation to a fine-grid point from both directly connected C points

and C points that are directly connected to an adjacent F point. At the same time,

we replace relaxation based on a diagonal stencil with relaxation using the SPAI

approximation to A�1
FF

with the sparsity pattern of AFF .

To test the e↵ects of these modifications, we again consider the anisotropic di↵u-

sion equation given in (4.7), for three angles, ✓ = 0, ⇡/6, and ⇡/4, with convergence

factors shown in Table 4.2. To decouple the impact of these choices from that of

the coarsening, we use a geometric coarse grid chosen as semi-coarsening by a factor

of three in the y-direction (the direction of strong connections in these cases). We

observe significant improvement in convergence in both the ✓ = 0 and ✓ = ⇡/6 cases,

in comparison to the results in Table 4.1, although performance for ✓ = ⇡/4 is much
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Table 4.2: Two-level AMGr convergence factors for anisotropic FE discretization

using semi-coarsening in the y direction by a factor of three. Interpolation of F -

nodes uses the SPAI approximation to A�1
FF

AFC and the SPAI approximation to A�1
FF

is used for relaxation.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

16⇥ 16 0.021 1.31 1.90 0.006 1.31 1.90 0.213 1.31 1.90

32⇥ 32 0.023 1.31 2.02 0.019 1.31 2.02 0.518 1.31 2.02

64⇥ 64 0.023 1.33 2.14 0.065 1.33 2.14 0.808 1.33 2.14

128⇥ 128 0.024 1.33 2.17 0.210 1.33 2.17 0.921 1.33 2.17

worse. Yet, we also note that the complexity of these cycles is high, with two-grid

operator complexities above 2.0 due to many small nonzero entries in the resulting

interpolation operators that lead to large numbers of nonzero entries in the Galerkin

coarse-grid operator, P TAP .

Strong connections: To address the high cost encountered in the baseline, we

introduce strong connections into the algorithm. A typical row in the matrix for an

anisotropic di↵usion operator contains both small entries and large but “wrong-sign”

entries, where there are positive contributions in directions other than the strong

direction of di↵usion in the PDE. In response, we introduce a filtering stage, where

we compute a proxy matrix, Â, for the given system matrix, A. We first compute

strong connections using the classical Ruge-Stüben definition of strength of connec-

tion, defining point i to be strongly connected to point j if

�Aij �
1

2
max
k 6=i

�Aik, (4.9)

where a strength parameter of 1/2 is selected as is typical for anisotropic PDEs

and where only negative o↵-diagonal entries are allowed as strong connections (also

common practice).

For anisotropic di↵usion equations discretized by bilinear finite elements on uni-

form grids, (4.9) results in two strong connections for each interior node, aligned

vertically (north and south), for ✓ = 0, two strong connections in the north-east and

south-west directions for ✓ = ⇡/4, but four strong connections for ✓ = ⇡/6, including

north, south, north-east, and south-west points. To preserve the row-sum that is

typically needed for best AMG performance, we define Â to have o↵-diagonal entries
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Table 4.3: Two-level AMGr convergence factors for anisotropic FE discretization

using semi-coarsening in the y direction by a factor of three. Interpolation of F -

nodes is based on a SPAI approximation to Â�1
FF

ÂFC and relaxation uses a SPAI

approximation to Â�1
FF

, where Â is the “lumped” matrix of strong connections

computed from A.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

16⇥ 16 0.351 1.31 1.28 0.289 1.31 1.60 0.696 1.31 1.42

32⇥ 32 0.359 1.31 1.30 0.487 1.31 1.66 0.718 1.31 1.47

64⇥ 64 0.359 1.33 1.32 0.745 1.33 1.73 0.716 1.33 1.52

128⇥ 128 0.359 1.33 1.32 0.906 1.33 1.75 0.716 1.33 1.53

matching those of A for strong connections, and diagonal entries adjusted by sub-

tracting any weak connections in each row of A from its diagonal value (so-called

“lumping” of the weak connections to the diagonal, as in (4.2)).

Next, we repeat the experiments above, but define interpolation as the SPAI

approximation to Â�1
FF

ÂFC and use F -relaxation based on the SPAI approximation

to Â�1
FF

, with results presented in Table 4.3. For ✓ = 0 and ✓ = ⇡/4, each F -

point has a single strongly-connected C neighbor and a single strongly-connected F

neighbor, while each F -point for ✓ = ⇡/6 has two of each. Using semi-coarsening in

the y-direction by a factor of three, this results in interpolation to each F -point from

two C-points for ✓ = 0 and ⇡/4 and from five C-points for ✓ = ⇡/6 (where the two

strongly connected F neighbors of an F -point have a total of three strongly connected

C neighbors). From the table, we see that using this definition of strength results in

improved and grid-independent convergence for the case of ✓ = ⇡/4, and degraded

(but still grid-independent) convergence for ✓ = 0. However, significant degradation in

convergence occurs for the case of ✓ = ⇡/6. Nonetheless, the use of strong connections

has greatly improved the two-grid operator complexities, particularly for the ✓ = 0

case, where it now matches that of geometric multigrid.

Interpolation Scaling: Tables 4.2 and 4.3 underscore the potential of SPAI-

based AMGr for anisotropic di↵usion equations, but also highlight that acceptable

and scalable convergence is not robust. From the poor convergence for ✓ = ⇡/6

in Table 4.3, we found that even if the “lumped” matrix, Â, used to form interpolation

retains the property that rows away from boundary conditions have zero row sum
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Table 4.4: Two-level AMGr convergence factors for anisotropic FE discretization us-

ing semi-coarsening in the y direction by a factor of 3. Here, F -nodes are interpolated

using the SPAI approximation to Â�1
FF

ÂFC , postprocessed to exactly interpolate

the constant vector, and the SPAI approximation to Â�1
FF

is used for relaxation,

where Â is the “lumped” matrix of strong connections computed from A.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

16⇥ 16 0.751 1.31 1.28 0.641 1.31 1.60 0.765 1.31 1.42

32⇥ 32 0.776 1.31 1.30 0.640 1.31 1.66 0.751 1.31 1.47

64⇥ 64 0.772 1.33 1.32 0.649 1.33 1.73 0.744 1.33 1.52

128⇥ 128 0.772 1.33 1.32 0.656 1.33 1.75 0.741 1.33 1.53

(and that Â is an M-matrix), the interpolation operator determined by SPAI does

not accurately interpolate the coarse-grid constant function onto the fine-grid. This

is not surprising, since SPAI computes the interpolation operator column-wise, yet

interpolation to any fixed fine-grid vector is a row-wise property of matrix P .

To address the lack of constant interpolation, we post-process the interpolation

generated by SPAI, using left diagonal scaling of W ⇡ Â�1
FF

ÂFC so that 1F = SW1C .

This is accomplished by computing s = W1C , followed by defining diagonal matrix S

with entries 1/si on its diagonal. This yields the convergence factors in Table 4.4. The

results o↵er concrete improvement over Tables 4.2 and 4.3, in that they o↵er scalable

convergence for all three problems (without increasing grid or operator complexities).

Even so, the overall convergence factors between 0.65 and 0.8 are insu�cient to be

considered an e↵ective AMG solver.

One possible cause of the degraded convergence is poor interpolation near Dirichlet

boundaries, where the constant vector is not an accurate indicator of the slowest-to-

converge modes of relaxation. As a remedy, we use a similar scaling of interpolation,

that we refer to as “improved iteration” scaling, running a set number of sweeps of

(full grid) weighted Jacobi relaxation on the homogeneous problem with the constant

vector as an initial guess, to produce a relaxed vector, z, and followed by a similar

diagonal scaling computed to ensure that zF = SWzC . With this modification and

five sweeps of relaxation, Table 4.5 shows notable improvement in performance for

both the case of ✓ = 0 and ✓ = ⇡/6, but still disappointing (albeit grid-independent)

convergence for ✓ = ⇡/4.
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Table 4.5: Two-level AMGr convergence factors for anisotropic FE discretization us-

ing semi-coarsening in the y direction by a factor of 3. Here, F -nodes are interpolated

using the SPAI approximation to Â�1
FF

ÂFC , postprocessed to exactly interpolate

a relaxed vector, and the SPAI approximation to Â�1
FF

is used for relaxation, where

Â is the “lumped” matrix of strong connections computed from A.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

16⇥ 16 0.379 1.31 1.28 0.177 1.31 1.60 0.720 1.31 1.42

32⇥ 32 0.382 1.31 1.30 0.197 1.31 1.66 0.719 1.31 1.47

64⇥ 64 0.379 1.33 1.32 0.256 1.33 1.73 0.717 1.33 1.52

128⇥ 128 0.377 1.33 1.32 0.284 1.33 1.75 0.717 1.33 1.53

C-relaxation: As a final modification we employ the use of C-relaxation alongside

F -relaxation. As has been considered in MGRIT [29] and other contexts, replacing

simple F -relaxation with sweeps of FCF -relaxation (that is, relaxation over the F -

points, followed by relaxation over the C-points, then again over the F -points, with

updated residual values between each sweep) is known to greatly improve multigrid

performance in some settings. Results using FCF -relaxation are shown in Table 4.6,

where C-relaxation is again computed with SPAI on ÂCC . We see that including

C-relaxation results in a dramatic e↵ect for ✓ = ⇡/4, reducing the convergence factor

to nearly 0.1, and a notable e↵ect for ✓ = 0. For ✓ = ⇡/6, adding C-relaxation has

little influence on convergence, noting it does not harm performance.

4.4.1 Algebraic Coarsening

Given the satisfactory results in Table 4.6, we next focus on extending these re-

sults to fully algebraic coarsening using the simulated annealing coarsening described

in Section 4.2.2.1. We note that this coarsening is computationally quite expen-

sive [60], but that it provides the best known complexities for AMGr-style methods.

In Section 4.5.4, we experiment with the more feasible greedy coarsening algorithm

of MacLachlan and Saad [39]. An important consideration in assessing the quality

of algebraic coarsening is the resulting complexity of the multigrid algorithm, as this

is no longer determined a priori from the fixed geometric coarsening. We use two

common measures: grid and operator complexity. The AMG grid complexity, Cgrid,
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Table 4.6: Two-level AMGr convergence factors for anisotropic FE discretization

using semi-coarsening in the y direction by a factor of 3. Here, F -nodes are interpo-

lated using the SPAI approximation to Â�1
FF

ÂFC , postprocessed to exactly interpolate

a relaxed vector, and the SPAI approximations to Â�1
FF

and Â�1
CC

are used for FCF -

relaxation, where Â is the “lumped” matrix of strong connections computed from

A.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

16⇥ 16 0.233 1.31 1.28 0.107 1.31 1.60 0.110 1.31 1.42

32⇥ 32 0.238 1.31 1.30 0.186 1.31 1.66 0.111 1.31 1.47

64⇥ 64 0.240 1.33 1.32 0.249 1.33 1.73 0.115 1.33 1.52

128⇥ 128 0.239 1.33 1.32 0.279 1.33 1.75 0.114 1.33 1.53

is the ratio of the sum of the number of DoFs on each level of multigrid hierarchy

(including the finest) to that on the finest level. Similarly, the operator complexity,

Cop, is the ratio of the sum of the number of nonzeros in the system matrices on each

level of hierarchy (including the finest) to that on the finest level.

Algebraic coarsening: Tables 4.7 and 4.8 show the convergence factors and

corresponding grid and operator complexities for two-grid cycles using two values

of the diagonal dominance parameter in (4.6). From preliminary experiments (not

reported here), we noted substantial improvement when computing the fine-coarse

partitioning using Â (compared with A); hence, we use Â in all subsequent results.

Table 4.7 uses ⌘ = 0.65, resulting in two-level grid complexities, Cgrid ⇡ 4/3,

matching that of the geometric semi-coarsening by three used above. Using a larger

parameter, ⌘ = 0.75, in Table 4.8, results in Cgrid ⇡ 3/2, consistent with geometric

semi-coarsening by a factor of two. The coarsening is visualized in Figure 4.1 for both

cases and ✓ = 0, demonstrating that, while the coarsening is still algebraic, it retains

much of the geometric character of semi-coarsening. As expected, using a larger value

of ⌘ leads to an improvement in convergence factors (since the coarse-grid correction

is over a larger space), but also higher complexities. In particular, for the case of

✓ = 0, we maintain complexities similar to those of geometric multigrid for these

problems, with Cop ⇡ Cgrid, but we also see the typical increase in AMG operator

complexity faster than grid complexity for ✓ = ⇡/6 and ⇡/4, indicating increased

density in the coarse-grid operators. While the e↵ective convergence factors, defined
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Table 4.7: Two-level AMGr convergence factors and corresponding complexities

for anisotropic FE discretization using simulated annealing coarsening with

⌘ = 0.65. F -nodes are interpolated using the SPAI approximation to Â�1
FF

ÂFC , post-

processed to exactly interpolate a relaxed vector, and the SPAI approximations to

Â�1
FF

and Â�1
CC

are used for FCF -relaxation, where Â is the “lumped” matrix of strong

connections computed from A.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

16⇥ 16 0.219 1.32 1.32 0.110 1.35 1.69 0.116 1.30 1.40

32⇥ 32 0.235 1.32 1.33 0.189 1.35 1.78 0.114 1.32 1.49

64⇥ 64 0.234 1.34 1.37 0.342 1.36 1.91 0.121 1.33 1.54

128⇥ 128 0.231 1.34 1.39 0.400 1.36 1.96 0.133 1.34 1.57

as ⇢1/Cop , are lower for ⌘ = 0.75 than ⌘ = 0.65, we emphasize that these are only

two-grid complexities, and denser coarse-grid matrices lead to even higher three-grid

complexities in the results to follow. Thus, we focus on the choice of ⌘ = 0.65 in the

results below.

Interpolation truncation: To attenuate the higher complexities observed in Ta-

bles 4.7 and 4.8, we employ interpolation truncation, which is used successfully in

several AMG settings [25, 26, 53]. In our approach, we first use SPAI (with a sparsity

pattern of ÂFC + ÂFF ÂFC) to compute W ⇡ Â�1
FF

ÂFC . Then, we sweep row-wise

through W , dropping entries that are less than a factor of ⇣ of the largest entry (by

absolute value) in the row, to yieldcW . As a final step, we compute matrix S to match

interpolation to the relaxed vector, z, so that zF = ScWzC . Table 4.9 shows results

using ⇣ = 0.2. For the cases of ✓ = 0 and ⇡/4, we see that this truncation has no

real e↵ect in comparison with results in Table 4.7. This is easily understood from the

nature of strong connections in these matrices, with only two strong connections per

row, so there are only two interpolation weights in a typical row, and these weights

are roughly equal in size. In such cases, no e↵ects of this truncation are expected.

For ✓ = ⇡/6, we see that this truncation leads to slight improvements in operator

complexities, with small e↵ects on convergence factors. While the savings here may

be minimal, we show below that interpolation truncation is an important tool in

other cases, such as the isotropic Poisson problem in Section 4.5.1. We also note that

further increasing the truncation parameter to ⇣ = 0.25 starts to show significantly
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Table 4.8: Two-level AMGr convergence factors and corresponding complexities

for anisotropic FE discretization using simulated annealing coarsening with

⌘ = 0.75. F -nodes are interpolated using the SPAI approximation to Â�1
FF

ÂFC , post-

processed to exactly interpolate a relaxed vector, and the SPAI approximations to

Â�1
FF

and Â�1
CC

are used for FCF -relaxation, where Â is the “lumped” matrix of strong

connections computed from A.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

16⇥ 16 0.168 1.50 1.51 0.106 1.48 1.97 0.062 1.47 1.63

32⇥ 32 0.174 1.50 1.53 0.176 1.50 2.04 0.069 1.49 1.72

64⇥ 64 0.182 1.50 1.55 0.227 1.50 2.09 0.075 1.51 1.75

128⇥ 128 0.189 1.51 1.56 0.260 1.51 2.14 0.075 1.51 1.77
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Figure 4.1: Algebraic coarse-fine partitionings for the FE discretization of anisotropic-

di↵usion with ✓ = 0 on uniform 32⇥ 32 grid. At left, partitioning with ⌘ = 0.65. At

right, partitioning with ⌘ = 0.75. Fine-grid DoFs (points in ⌦) are denoted by filled

grey dots; those that are in C are marked with black circles.
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Table 4.9: Two-level AMGr convergence factors and corresponding complexities for

anisotropic FE discretization using simulated annealing coarsening with ⌘ = 0.65. F -

nodes are interpolated using the SPAI approximation to Â�1
FF

ÂFC , postprocessed to

exactly interpolate a relaxed vector, and the SPAI approximations to Â�1
FF

and Â�1
CC

are used for FCF -relaxation, where Â is the “lumped” matrix of strong connections

computed from A. Interpolation truncation with ⇣ = 0.2 is used.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

16⇥ 16 0.219 1.32 1.32 0.107 1.35 1.68 0.116 1.30 1.40

32⇥ 32 0.235 1.32 1.33 0.194 1.35 1.77 0.114 1.32 1.49

64⇥ 64 0.234 1.34 1.37 0.364 1.36 1.88 0.121 1.33 1.54

128⇥ 128 0.231 1.34 1.39 0.408 1.36 1.93 0.133 1.34 1.57

degraded performance for ✓ = ⇡/6, when “too many” connections in interpolation

are truncated.

Tables 4.10 and 4.11 compare no-interpolation truncation, equivalent to ⇣ = 0, to

that of truncation with ⇣ = 0.2 for three-level cycles for these problems. As expected,

adding more levels to the hierarchy increases the grid and operator complexities.

Using two-level geometric semi-coarsening-by-threes as a reference, we expect to see

Cgrid ⇡ 1 + 1
3 + 1

9 ⇡ 1.44, which we do in all cases (with a slight increase for ✓ =

⇡/6, undoubtedly due to increased density of the coarse-grid operators). We note

that convergence does degrade going from two-grid to three-grid cycles, particularly

for V-cycles (with convergence factors denoted by ⇢V ), but also for W-cycles (with

convergence factors denoted by ⇢W ). Again, the e↵ects of truncation are minimal for

✓ = 0 and ⇡/4, with some noticeable, but small, changes for ⇡/6.

4.4.2 The Generalized AMGr algorithm

Before presenting more extensive numerical results, we summarize the outcome of

the experiments above in algorithmic form. Algorithm 4.4 presents the AMGr setup

algorithm: we compute the lumped matrix, Â, after finding strong connections, con-

struct the F -C partitioning based on Â, then form interpolation and the Galerkin

coarse-grid operator. In addition, we compute SPAI approximations to the inverses

of ÂFF and ÂCC , for use in relaxation, using S(A) to denote the sparsity pattern of
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Table 4.10: Three-level AMGr convergence factors and corresponding complexities

for anisotropic FE discretization using simulated annealing coarsening with ⌘ = 0.65.

F -nodes are interpolated using the SPAI approximation to Â�1
FF

ÂFC , postprocessed to

exactly interpolate a relaxed vector, and the SPAI approximations to Â�1
FF

and Â�1
CC

are used for FCF -relaxation, where Â is the “lumped” matrix of strong connections

computed from A.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢V ⇢W Cgrid Cop ⇢V ⇢W Cgrid Cop ⇢V ⇢W Cgrid Cop

16⇥ 16 0.238 0.221 1.40 1.36 0.169 0.116 1.46 1.92 0.158 0.116 1.41 1.57

32⇥ 32 0.240 0.235 1.42 1.41 0.393 0.248 1.47 2.18 0.320 0.114 1.43 1.70

64⇥ 64 0.243 0.234 1.45 1.49 0.537 0.394 1.49 2.36 0.448 0.224 1.45 1.79

128⇥ 128 0.267 0.231 1.46 1.52 0.656 0.502 1.50 2.44 0.541 0.310 1.47 1.88

Table 4.11: Three-level AMGr convergence factors and corresponding complexities

for anisotropic FE discretization using simulated annealing coarsening with ⌘ = 0.65.

F -nodes are interpolated using the SPAI approximation to Â�1
FF

ÂFC , postprocessed to

exactly interpolate a relaxed vector, and the SPAI approximations to Â�1
FF

and Â�1
CC

are used for FCF -relaxation, where Â is the “lumped” matrix of strong connections

computed from A. Interpolation truncation with ⇣ = 0.2 is employed.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢V ⇢W Cgrid Cop ⇢V ⇢W Cgrid Cop ⇢V ⇢W Cgrid Cop

16⇥ 16 0.238 0.220 1.40 1.36 0.175 0.113 1.46 1.85 0.153 0.116 1.41 1.57

32⇥ 32 0.248 0.235 1.42 1.41 0.359 0.231 1.47 2.06 0.323 0.114 1.44 1.70

64⇥ 64 0.243 0.234 1.45 1.49 0.556 0.411 1.49 2.24 0.437 0.215 1.46 1.79

128⇥ 128 0.262 0.231 1.46 1.52 0.670 0.542 1.50 2.31 0.534 0.298 1.47 1.87

matrix A. As in the original AMGr paper, we use weighted relaxation, with optimal

weights for single-step relaxation on the F and C subproblems, computed based on

eigenvalue estimates for the “preconditioned” matrices, Dinv
FF

AFF and Dinv
CC

ACC . For

the coarse-grid problem, the computed eigenvalues are very close to one in all cases,

and replacing the weighted relaxation with unweighted relaxation (approximating

�C = 1) has little e↵ect on convergence. For the fine-grid relaxation, we find more

variation in �min and �max; we explore more practical alternatives to determining re-
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Algorithm 4.4 Generalized AMGr Setup Phase

1: function gen-amgr-setup(A, b)

2: Â lumped approximation to A after removing weak connections

3: C, F  partitioning based on Â

4: ÂFF , ÂFC , ÂCC  extract submatrices of Â based on F and C

5: P  interpolation(Â, ÂFF , ÂFC , F, C)

6: AC  P TAP

7: Dinv
FF
 spai(ÂFF , IFF ,S

⇣
ÂFF

⌘
)

8: �min,�max  minimum and maximum eigenvalues of Dinv
FF

AFF

9: �F  2/(�min + �max)

10: Dinv
CC
 spai(ÂCC , ICC ,S

⇣
ÂCC

⌘
)

11: �min,�max  minimum and maximum eigenvalues of Dinv
CC

ACC

12: �C  2/(�min + �max)

13: return F,C, P,AC , Dinv
FF

, �F , Dinv
CC

, �C

laxation weights in Section 4.5.4, although note that it may also be possible to choose

better weights row-wise (e.g., by using weighting similar to the `1-Jacobi relaxation

method [1] or the matrix S determined for interpolation).

The interpolation operator is computed following Algorithm 4.5. First, the nonzero

pattern is determined for interpolation, followed by a SPAI approximation to Â�1
FF

ÂFC

for this pattern. Small entries may be truncated in W at this stage in order to reduce

complexity of the resulting cycle. After truncation, we rescale interpolation row-wise,

either using constant scaling, as in Algorithm 4.6, or the improved iteration scaling,

as in Algorithm 4.7.

Finally, we present the two-level AMGr solution phase in Algorithm 4.8. This

includes either F - or FCF -relaxation both before and after the coarse-grid correction

phase, as well as a standard Galerkin coarse-grid correction. While we present the

algorithm without implementation details, we note that the algorithms here can be

implemented in either the “natural” ordering of matrix A, or in the “permuted”

ordering given in (4.3). In many ways, it is simpler to implement the algorithm after

permuting A into its F -C ordering.

116



Algorithm 4.5 Interpolation Operator

1: function interpolation(Â, ÂFF , ÂFC , F , C)

2: Z  S

⇣
ÂFC + ÂFF ÂFC

⌘

3: W  spai(ÂFF , ÂFC ,Z)

4: W  W after truncating small entries

5: if improved iteration scaling to be used then

6: W  improved-iteration-scaling(Â,W, F, C)

7: else

8: W  constant-scaling(W,F,C)

9: P  

"
W

I

#

10: return P

Algorithm 4.6 Constant Scaling

1: function constant-scaling(W,F,C)

2: s 1F/(W1C) . Componentwise division

3: S  matrix with s on diagonal and elsewhere 0

4: W  SW

5: return W

4.5 Results

While the algorithms given above were derived by focusing on performance for finite-

element discretizations of anisotropic di↵usion equations on uniform grids, we empha-

size in this section that this methodology appears to have much wider applicability.

Here, we first evaluate the approach on isotropic di↵usion equations, on both struc-

tured and unstructured grids. Furthermore, we consider results for a classic “four-

quadrant” problem, with piecewise constant di↵usion and reaction coe�cients on a

uniform grid, and for constant-coe�cient anisotropic di↵usion on an unstructured

grid. In all results before Section 4.5.4, we use the simulated annealing coarsening

algorithm described above with ⌘ = 0.65.
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Algorithm 4.7 Improved Iteration Scaling

1: function improved-iteration-scaling(Â,W, F, C)

2: nwj  5, !  2/3, D  diagonal of Â

3: z  1

4: for i 1, . . . , nwj do

5: z  (I � !D�1Â)z

6: s zF/(WzC) . Componentwise division

7: S  matrix with s on diagonal and elsewhere 0

8: W  SW

9: return W

4.5.1 Isotropic Poisson problem

In this section, we consider the isotropic di↵usion equation ��u = f , with Dirich-

let boundary conditions, first on uniform meshes of the unit square domain. As a

benchmark, the first block column in Table 4.12 presents convergence for the classical

AMGr algorithm using a diagonal approximation, DFF , to AFF in both relaxation

and interpolation with only F -relaxation. We note that using ⌘ = 0.65 already yields

a positive e↵ect on convergence; using ⌘ = 0.56 (as considered in past work) leads to

convergence factors around 0.7, instead of 0.37. In either case, while the convergence

factors are bounded away from unity independently of grid size, the convergence is

suboptimal for AMG on the model Poisson equation on a uniform grid. The remain-

ing columns of Table 4.12 present results for the algorithm of Section 4.4.2, demon-

strating substantial improvement in two-grid convergence and reasonable three-level

convergence. We also note that the two-level generalized AMGr algorithm using F -

relaxation in place of FCF -relaxation also o↵ers reasonable convergence factors of

about 0.1. Here, we see that while the grid complexities for these cycles are relatively

reasonable, the operator complexities are high, above 3.0 for most of the three-level

cycles.

To reduce the computational complexities, we truncate the smaller elements in the

interpolation operator as discussed above. A critical question in using interpolation

truncation is the choice of the value of parameter ⇣. The left plot of Figure 4.2 shows

the e↵ects of varying this parameter for the 32 ⇥ 32 uniform grid. For small values

of ⇣, we observe large complexities, but also excellent two-level convergence factors.

As ⇣ increases past 0.2, so do the convergence factors, yet the complexity continues
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Algorithm 4.8 Generalized AMGr Solution Phase

1: function two-level(A, b,u, F, C, P,AC , Dinv
FF

, �F , Dinv
CC

, �C)

2: u F -relaxation on Au = b

3: if C-relaxation to be used then

4: u C-relaxation on Au = b

5: u F -relaxation on Au = b

6: rC  P T (b� Au)

7: eC  solution of ACeC = rC

8: u u+ PeC

9: u F -relaxation on Au = b

10: if C-relaxation to be used then

11: u C-relaxation on Au = b

12: u F -relaxation on Au = b

13: return u

drop. If we were solely concerned with convergence, we might conclude that this is

the optimal value of ⇣, since it yields the lowest complexity while retaining the best-

possible convergence factor. However, to better balance cost vs. complexity, we prefer

to take ⇣ = 0.25, where we approximately minimize the two-level complexity, while

still retaining an acceptable convergence factor. Table 4.13 shows two- and three-grid

performance as we vary grid size with ⇣ = 0.25. We see substantial improvements in

complexity, with two-level complexities now similar to those of the classical AMGr

algorithm in Table 4.12, and three-level grid complexities now about 2.2, instead of

over 3.0. At the same time, excellent two-level convergence factors are maintained,

and there is only a slight impact on three-level convergence factors.

An important consideration for algebraic multigrid methods is whether or not

they retain their performance as we transition from structured to unstructured grids.

Hence, our next problem considers the same isotropic di↵usion operator, but dis-

cretized using piecewise linear finite elements on unstructured triangulations of the

square domain, [�1, 1]2. We construct grids by starting from an unstructured grid,

performing several steps of uniform refinement, then smoothing the resulting grids.

Here, we consider three levels of refinement, generating meshes with 1433, 5617, and

22 241 DoFs. We again study the e↵ects of varying the truncation parameter, ⇣, at

right of Figure 4.2, and conclude that taking ⇣ = 0.25 again gives a good trade-o↵ be-

tween convergence and complexity. Table 4.14 shows the resulting two- and three-grid
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Table 4.12: AMGr convergence factors and complexities for isotropic FE dis-

cretization on structured grids. Results for classical (diagonal DFF ) AMGr

appear in the first block column, followed by those for the two-level and three-level

SPAI-based algorithm in Section 4.4.2 in following block columns, using ⇣ = 0.

Classical Two-level cycle Two-level cycle Three-level cycles

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢V ⇢W Cgrid Cop

16⇥ 16 0.365 1.36 1.71 0.041 1.36 2.22 0.097 0.044 1.49 2.46

32⇥ 32 0.375 1.38 1.80 0.041 1.38 2.64 0.094 0.042 1.53 3.07

64⇥ 64 0.373 1.40 1.86 0.039 1.40 2.86 0.102 0.042 1.55 3.37

128⇥ 128 0.367 1.41 1.90 0.040 1.41 2.97 0.120 0.042 1.57 3.54
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Figure 4.2: Trade-o↵ between two-level convergence factor and operator complexities

as a function of ⇣, for isotropic Poisson on a uniform 32⇥ 32 grid (at left) and on the

unstructured triangulation with 1433 DoFs (at right).

Table 4.13: AMGr convergence factors and complexities for isotropic FE discretiza-

tion on structured grids, using the two-level and three-level SPAI-based algorithm

in Section 4.4.2, with ⇣ = 0.25.

Two-level cycle Three-level cycles

Grid size ⇢ Cgrid Cop ⇢V ⇢W Cgrid Cop

16⇥ 16 0.053 1.36 1.73 0.099 0.058 1.49 1.90

32⇥ 32 0.061 1.38 1.84 0.140 0.071 1.52 2.07

64⇥ 64 0.065 1.40 1.91 0.151 0.074 1.55 2.20

128⇥ 128 0.069 1.41 1.95 0.157 0.079 1.56 2.26
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Table 4.14: AMGr convergence factors and complexities for isotropic FE discretization

on unstructured grids, using the two-level and three-level SPAI-based algorithm

in Section 4.4.2. Results in the left-most block column show two-level results with

no interpolation truncation (⇣ = 0), while the other block columns show results with

⇣ = 0.25.

without truncation with interpolation truncation

Two-level cycle Two-level cycle Three-level cycles

#DoF ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢V ⇢W Cgrid Cop

1433 0.046 1.36 2.56 0.063 1.36 1.80 0.155 0.064 1.50 2.17

5617 0.135 1.36 2.53 0.132 1.36 1.75 0.167 0.127 1.50 2.17

22241 0.167 1.37 2.49 0.167 1.37 1.78 0.322 0.186 1.52 2.22

convergence factors and operator complexities for the new AMGr algorithm applied

to these problems. While the convergence factors are somewhat larger than those for

the uniform-grid discretization, they remain acceptable for AMG convergence for an

isotropic di↵usion operator. Furthermore, we see the e�cacy of interpolation trunca-

tion in reducing the operator complexity while maintaining acceptable convergence

factors.

4.5.2 Four-quadrant problems

Next, we consider a family of two-dimensional anisotropic di↵usion problems by

adding a reaction term to Equation (4.7), giving

�r ·K(x, y)ru(x, y) + c(x, y)u(x, y) = b(x, y) (4.10)

in the domain [0, 1]⇥ [0, 1] with Dirichlet boundary conditions. The tensor coe�cient

is chosen as K(x, y) = QHQT , where Q =

"
cos(✓) � sin(✓)

sin(✓) cos(✓)

#
, and H =

"
1 0

0 �

#
,

where ✓ specifies the direction of anisotropy in the problem and � specifies its strength.

We note that the convention for H used here is di↵erent than that in Equation (4.8),

to make the problems consistent with those used in other works. We partition the

domain [0, 1]⇥[0, 1] into four equal quadrants and consider constant values of ✓, � and c

within each quadrant, but with di↵erent values in di↵erent quadrants of the domain.

The four-quadrant problem is common in AMG literature, and we consider three
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di↵erent problems within this class, with coe�cient values shown below in Figure 4.3.

Problem 1 is similar to the problem in Chapter 8 in the book by Briggs, Henson, and

McCormick [20], with no reaction term, large contrasts in the anisotropy strength, and

non-grid-aligned di↵usion in just one quadrant. Problem 2 is the 2D-4Reg problem

from Brannick and Falgout [19], with a large reaction coe�cient in one quadrant,

but a small contrast in anisotropy strength and only grid-aligned anisotropy. Finally,

Problem 3 is constructed to provide a more significant challenge, including a large

reaction coe�cient in one quadrant, a large contrast in anisotropy strength, and

anisotropy directions in two quadrants that are neither aligned with the grid nor with

the grid diagonal.
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Figure 4.3: Visualization of the strong connections for the four-quadrant problems;

Problem 1 (left), Problem 2 (middle), and Problem 3 (right).

Two-level and three-level AMGr performance for these problems is shown in Ta-

bles 4.15 and 4.16, respectively. We note that the two-level performance for Problems

1 and 2 is generally good, both in terms of convergence factor and complexity, while

Problem 3 is clearly a harder problem. Indeed, both V- and W-cycle convergence

continues to perform well for Problem 2 in the three-level results in Table 4.16, with

convergence outperforming that reported for the 65⇥65 grid in Table 4.2 in Brannick

and Falgout [19], with comparable grid and operator complexities to the compatible

relaxation AMG solver proposed there, and much better complexities than those re-

ported there for BoomerAMG [36]. Problem 3 is clearly more taxing for AMG, yet

the proposed generalized AMGr approach o↵ers acceptable convergence in all cases.

Whether further improvement to these results is possible (or the performance degra-

dation with grid size can be attenuated using Krylov acceleration) is left for future
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Table 4.15: Two-level AMGr convergence factors and complexities for the four-

quadrant problem using the SPAI-based algorithm in Section 4.4.2, with ⇣ = 0.25.

Problem 1 Problem 2 Problem 3

Grid size ⇢ Cgrid Cop ⇢ Cgrid Cop ⇢ Cgrid Cop

17⇥ 17 0.388 1.35 1.49 0.602 1.26 1.32 0.062 1.25 1.38

33⇥ 33 0.433 1.34 1.51 0.581 1.26 1.37 0.266 1.33 1.62

65⇥ 65 0.413 1.36 1.56 0.595 1.27 1.41 0.491 1.39 1.78

129⇥ 129 0.420 1.36 1.57 0.599 1.36 1.60 0.692 1.39 1.80

Table 4.16: Three-level AMGr convergence factors and complexities for the four-

quadrant problem using the SPAI-based algorithm in Section 4.4.2, with ⇣ = 0.25.

Problem 1 Problem 2 Problem 3

Grid size ⇢V ⇢W Cgrid Cop ⇢V ⇢W Cgrid Cop ⇢V ⇢W Cgrid Cop

17⇥ 17 0.404 0.390 1.48 1.65 0.608 0.602 1.34 1.39 0.095 0.064 1.32 1.44

33⇥ 33 0.474 0.440 1.46 1.68 0.584 0.581 1.35 1.48 0.314 0.273 1.43 1.78

65⇥ 65 0.523 0.422 1.49 1.77 0.598 0.595 1.36 1.54 0.539 0.499 1.52 2.05

129⇥ 129 0.599 0.433 1.49 1.80 0.604 0.600 1.46 1.75 0.740 0.702 1.54 2.12

work.

4.5.3 Unstructured anisotropic di↵usion

Next, we consider the anisotropic di↵usion problem in (4.10) with Dirichlet boundary

conditions, c = 0, ✓ = ⇡/3, and � = 0.01, on an unstructured triangulation of the

unit square taken from Brannick and Falgout [19], where the problem is labeled as

2D-M2-RLap. As in Table 4.2 from Brannick and Falgout [19], we consider three

refinements of the unstructured mesh for this problem, yielding discretized problems

with 798, 3109, and 12 273 DoFs, respectively. The mesh containing 798 DoFs (and

its coarsening using ⌘ = 0.65) is shown in Figure 4.4. Table 4.17 presents two- and

three-level convergence results for the generalized AMGr algorithm applied to this

problem. For comparison, we note that Table 4.2 of Brannick and Falgout [19] reports

higher convergence factors (up to 0.95 on the finest grid) for CR-AMG applied to this

problem, but at lower grid and operator complexities. Compared to the BoomerAMG

results presented in the same table, we see comparable convergence (0.57 for the finest
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Figure 4.4: Unstructured triangulation containing 798 points from Brannick and

Falgout [19], and its partitioning using ⌘ = 0.65. Fine-grid DoFs (points in ⌦)

are denoted by filled grey dots; those that are in C (282 points) are marked with

black circles.

grid) at lower complexity (2.6 at the finest grid, albeit for a multilevel cycle, not a

three-level cycle). Compared to classical AMGr applied to this problem, as given in

Table 6 of Zaman et al. [60], we see substantial improvement in convergence factors

(compared to values of 0.8–0.9 on the finest grid) and lower complexities in these

results.

4.5.4 Multilevel Results

Two major obstacles remain in Algorithm 4.4 for transitioning from the two- and

three-level cycles studied above to standard multilevel cycles. First of all, we have

(until now) focused on the use of simulated annealing for determining the partitioning

of A and Â into the F and C sets. While this is very e↵ective, it is also very costly,

as many SA steps are required to generate near-optimal partitionings using this algo-

rithm. Thus, we switch here to using the greedy coarsening algorithm of MacLachlan

and Saad [39], which is much more e�cient, but generates poorer-quality partitions.

To compensate, we investigate the e↵ect of the diagonal dominance parameter, ⌘, on

the complexities and convergence of the resulting multilevel hierarchies, in order to
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Table 4.17: Two- and three-level AMGr convergence factors and complexities for the

anisotropic di↵usion problem on unstructured meshes using the SPAI-based

algorithm in Section 4.4.2, with ⇣ = 0.25.

Two-level cycle Three-level cycles

#DoF ⇢ Cgrid Cop ⇢V ⇢W Cgrid Cop

798 0.516 1.35 1.64 0.586 0.534 1.49 1.95

3109 0.607 1.37 1.64 0.676 0.621 1.51 1.99

12273 0.601 1.37 1.65 0.707 0.639 1.51 2.01

attenuate some of the complexity growth that we observe in the initial results.

The second major obstacle is the calculation of extremal eigenvalues in Lines 8

and 11 of Algorithm 4.4, which has additional heavy computational cost. To elimi-

nate this, we replace the optimal calculation of �F and �C with a common heuristic

estimate of the optimal regularization parameter. Knowing that AFF and ACC are

both positive-definite matrices, we expect that Dinv
FF

and Dinv
CC

are as well. If this is the

case, the spectra of Dinv
FF

AFF and Dinv
CC

ACC are guaranteed to be contained in the in-

tervals from 0 to their largest eigenvalues, which can be estimated by their maximum

absolute row sums (using Geršgorin’s theorem). While the F -relaxation originally

used in AMGr targets an optimal reduction over all modes by estimating both ends

of the spectrum of Dinv
FF

AFF , we propose a simpler heuristic of choosing �F and �C to

be 3/2 divided by the maximum absolute row sum of Dinv
FF

AFF and Dinv
CC

ACC , respec-

tively. The choice of weight 3/2 in this heuristic reflects the expectation that these

matrices are well-conditioned, so we need not use a weight as large as 2 (which would

be optimal if we estimate the smallest eigenvalues as 0), but that they are far from

perfectly conditioned, so the weight should be larger than 1. Numerical tests confirm

that using weight 3/2 is a good compromise — in some cases, some improvements are

possible with larger weights, but this leads to greatly degraded performance in some

cases as well.

As a comparison with the final three-level results in Table 4.11. Table 4.18 shows

convergence factors, complexities, and number of levels in the multigrid hierarchies

(nl) for the multilevel algorithm. These results show notable degradation in both

operator and grid complexities, due to the use of greedy coarsening with ⌘ = 0.65

in contrast with the simulated annealing coarsening used in the previous results.

Nonetheless, we observe excellent W-cycle convergence factors in all cases (outper-
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Table 4.18: Multi-level AMGr convergence factors and corresponding complexities

for anisotropic FE discretization using greedy coarsening with ⌘ = 0.65. F -nodes

are interpolated using the SPAI approximation to Â�1
FF

ÂFC , postprocessed to exactly

interpolate a relaxed vector, and the SPAI approximations to Â�1
FF

and Â�1
CC

are used

for FCF -relaxation, where Â is the “lumped” matrix of strong connections computed

from A. Interpolation truncation with ⇣ = 0.2 is employed. Estimates of the

eigenvalues are used in relaxation.

✓ = 0 ✓ = ⇡/6 ✓ = ⇡/4

Grid size ⇢V ⇢W Cgrid Cop nl ⇢V ⇢W Cgrid Cop nl ⇢V ⇢W Cgrid Cop nl

32⇥ 32 0.205 0.186 1.78 1.73 4 0.312 0.136 1.76 2.24 4 0.383 0.170 1.74 2.11 4

64⇥ 64 0.230 0.187 1.84 1.81 6 0.515 0.139 1.88 2.50 6 0.460 0.149 1.87 2.45 6

128⇥ 128 0.232 0.188 1.91 1.88 7 0.641 0.163 1.93 2.64 8 0.668 0.285 1.92 2.61 8

256⇥ 256 0.242 0.186 1.95 1.93 8 0.722 0.180 1.96 2.7210 0.740 0.346 1.96 2.7210

forming the earlier results for ✓ = 0 and ✓ = ⇡/6), and consistent V-cycle convergence

factors. In experiments not reported here, we compared convergence to the case of

using exact eigenvalues and found little di↵erence in convergence overall. Notably,

when using the multigrid cycles as preconditioners for conjugate gradient, using the

heuristic choice incurs at most 3 additional iterations over using cycles based on the

exact eigenvalue computation.

Similar results are shown in Table 4.19 for the four-quadrant problems from Sec-

tion 4.5.2, for comparison with Table 4.16. Again, we note that the complexities are

much higher than those reported earlier using the simulated annealing coarsening al-

gorithm, but that this added complexity pays o↵ in improved multilevel convergence.

For Problem 2, we again compare to the results presented in Table 4.2 by Brannick

and Falgout [19], and see that this coarsening achieves comparable complexities to

those reported there for 33 ⇥ 33 and 65 ⇥ 65 grids, but much better convergence.

Overall, we again see grid-independent W-cycle convergence for each problem, but

growth in V-cycle convergence factors. When run as preconditioners for CG, we

find that W-cycles lead to convergence in 5–10 iterations (more for Problem 1, fewer

for Problems 2 and 3), and V-cycle convergence in up to 14 iterations (again, with

Problem 1 requiring most, and Problem 3 requiring fewest).

Finally, we present results for the anisotropic di↵usion problem on unstructured

meshes considered in Section 4.5.3 and Table 4.17. Here, to explore the connection
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Table 4.19: Multi-level AMGr convergence factors and complexities for the four-

quadrant problem using the SPAI-based algorithm in Section 4.4.2, with ⇣ = 0.25.

Greedy coarsening and the heuristic eigenvalue estimates are used.

Problem 1 Problem 2 Problem 3

Grid size ⇢V ⇢W Cgrid Cop nl ⇢V ⇢W Cgrid Cop nl ⇢V ⇢W Cgrid Cop nl

33⇥ 33 0.541 0.412 1.77 2.08 4 0.429 0.334 1.55 1.73 4 0.202 0.097 1.66 2.17 4

65⇥ 65 0.602 0.419 1.87 2.30 6 0.435 0.263 1.65 1.92 6 0.414 0.128 1.84 2.59 6

129⇥ 129 0.698 0.421 1.93 2.43 8 0.323 0.256 1.83 2.34 8 0.621 0.151 1.92 2.82 8

257⇥ 257 0.783 0.420 1.97 2.4911 0.367 0.258 1.95 2.6311 0.769 0.210 1.96 2.9510

Table 4.20: Multi-level AMGr convergence factors and complexities for anisotropic

di↵usion problem on unstructured meshes using the SPAI-based algorithm

in Section 4.4.2, with ⇣ = 0.25. Greedy coarsening, for three values of ⌘,

and the heuristic eigenvalue estimates are used.

⌘ = 0.56 ⌘ = 0.60 ⌘ = 0.65

#DoF ⇢V ⇢W Cgrid Cop nl ⇢V ⇢W Cgrid Cop nl ⇢V ⇢W Cgrid Cop nl

798 0.612 0.560 1.54 2.06 4 0.601 0.529 1.66 2.37 4 0.537 0.467 1.76 2.56 4

3109 0.732 0.665 1.66 2.36 5 0.712 0.591 1.77 2.66 6 0.686 0.577 1.90 2.98 6

12273 0.777 0.653 1.71 2.51 7 0.762 0.630 1.83 2.87 8 0.742 0.576 1.98 3.33 9

between the diagonal dominance parameter, ⌘, and the resulting complexities and

convergence factors, we consider ⌘ = 0.65 as before, along with ⌘ = 0.60 and ⌘ =

0.56. Table 4.20 shows that, as expected, complexities decrease and convergence

factors generally increase as ⌘ gets smaller, but that significant improvements in

complexity are possible by using smaller ⌘ without sacrificing substantial convergence.

In particular, comparing results for ⌘ = 0.56, we observe modest increases in grid

complexity in comparison with those in Table 4.17, possibly attributed to the increase

from three-level to multi-level cycles. Comparing these results to that presented in

Table 4.2 by Brannick and Falgout [19], we observe complexities better than those

reported for BoomerAMG for these problems, albeit with slightly worse convergence,

and slightly worse than those reported for compatible relaxation, but with better

convergence.
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4.6 Conclusions and future work

Reduction-based AMG methods have been proposed and studied in many settings

over the past 15 years, building e↵ective solvers that can be more closely related

to AMG convergence theory than many other heuristic methods. In this paper, we

aim to improve the practical performance of AMGr approaches by targeting tools

that can greatly improve performance for anisotropic di↵usion equations. Through

extensive numerical results, we show that the combination of using SPAI [34, 35] to

approximate A�1
FF

along with tools to control sparsity leads to e↵ective solvers for

both anisotropic and isotropic di↵usion operators on structured and unstructured

grids. In our view, this work points to weaknesses in the existing theory for AMGr-

type methods, where approximations to A�1
FF

AFC have not been considered (to our

knowledge) in any context, providing an opportunity for future work. This may

also provide new insights into desirable properties of SPAI-like approximations in

this context. Additionally, further experiments are needed to see how to adapt the

methodology proposed here to an even broader set of challenging problems, including

the indefinite Helmholtz equation and convection-dominated flows.
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[10] Matthias Bollhöfer and Volker Mehrmann. Algebraic multilevel methods and

sparse approximate inverses. SIAM Journal on Matrix Analysis and Applications,

24(1):191–218, 2002. ISSN 0895-4798. doi: 10.1137/S0895479899364441.

[11] Matthias Bolten, Thomas K Huckle, and Christos D Kravvaritis. Sparse matrix

approximations for multigrid methods. Linear Algebra and its Applications, 502:

58–76, 2016.

[12] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for

automatic multigrid solution with application to geodetic computations. Insti-

tute for Computational Studies, Colorado State University, 1982.

[13] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for

sparse matrix equations. In D. J. Evans, editor, Sparsity and Its Applications,

pages 257–284. Cambridge University Press, Cambridge, 1984.

129



[14] Achi Brandt, James Brannick, Karsten Kahl, and Ira Livshits. An algebraic dis-

tances measure of amg strength of connection. arXiv preprint arXiv:1106.5990,

2011.

[15] J. Brannick, Y. Chen, J. Kraus, and L. Zikatanov. Algebraic multilevel pre-

conditioners for the graph Laplacian based on matching in graphs. SIAM

Journal on Numerical Analysis, 51(3):1805–1827, 2013. ISSN 0036-1429. doi:

10.1137/120876083. URL https://doi.org/10.1137/120876083.

[16] James Brannick, Marian Brezina, S MacLachlan, T Manteu↵el, S McCormick,

and J Ruge. An energy-based amg coarsening strategy. Numerical Linear Algebra

with Applications, 13(2-3):133–148, 2006.

[17] James Brannick, A Frommer, Karsten Kahl, Scott MacLachlan, and Ludmil

Zikatanov. Adaptive reduction-based multigrid for nearly singular and highly

disordered physical systems. Electronic Transactions on Numerical Analysis, 37:

276–295, 2010.

[18] James Brannick, Yao Chen, Johannes Kraus, and Ludmil Zikatanov. An

algebraic multigrid method based on matching in graphs. In Domain

Decomposition Methods in Science and Engineering XX, volume 91 of

Lecture Notes in Computational Science and Engineering, pages 143–150.

Springer, Heidelberg, 2013. doi: 10.1007/978-3-642-35275-1 15. URL

https://doi.org/10.1007/978-3-642-35275-1 15.

[19] James J. Brannick and Robert D. Falgout. Compatible relaxation and coarsening

in algebraic multigrid. SIAM Journal on Scientific Computing, 32(3):1393–1416,

2010.

[20] William L Briggs, Van Emden Henson, and Steve F McCormick. A multigrid

tutorial. SIAM, 2000.
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Chapter 5

Generalizing Lloyd’s Algorithm for

Graph Clustering

Abstract

1 Clustering is a commonplace problem in many areas of data science, with applica-

tions in biology and bioinformatics, understanding chemical structure, image segmen-

tation, building recommender systems, and many more fields. While there are many

di↵erent clustering variants (based on given distance or graph structure, probabil-

ity distributions, or data density), we consider here the problem of clustering nodes

in a graph, motivated by the problem of aggregating discrete degrees of freedom

in multigrid and domain decomposition methods for solving sparse linear systems.

Specifically, we consider the challenge of forming balanced clusters in the graph of

a sparse matrix for use in algebraic multigrid, although the algorithm has general

applicability. Based on an extension of the Bellman-Ford algorithm, we generalize

Lloyd’s algorithm for partitioning subsets of Rn to balance the number of nodes in

each cluster; this is accompanied by a rebalancing algorithm that reduces the overall

energy in the system. The algorithm provides control over the number of clusters and

leads to “well centered” partitions of the graph. Theoretical results are provided to

establish linear complexity and numerical results in the context of algebraic multigrid

highlight the benefits of improved clustering.

1
This work is submitted as “Generalizing Lloyd’s Algorithm for Graph Clustering” by Tareq

Zaman, Nicolas Nytko, Ali Taghibakhshi, Scott MacLachlan, Luke Olson, and Matthew West.
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Figure 5.1: Example clusterings.

Keyword: Clustering, Aggregation, Multigrid, Graph Partitioning.

5.1 Introduction

Consider a directed graph G(V,E,W ) where V is a set of nodes (or vertices), V =

{1, . . . , Nnode}, and where E is a list of edges given by E = {(i, j) | Wi,j 6= 0} for some

weight matrix W . The (sparse) weight matrix W is assumed to have non-negative

o↵-diagonal entries and zero diagonal entries. The goal of this work is to define a

set of clusters that minimizes a given energy functional with linear complexity in the

number of nodes. In Section 5.3.1, the maximum cluster diameter is used to define

the energy.

There are an array of challenges in clustering; the focus here is twofold: (1)

developing e�cient algorithms where the number of clusters Ncluster can be specified;

and (2) generating clusterings that are considered “well balanced”. As a motivating

example, we consider a graph generated from a finite-element discretization on a

unit disk with 528 vertices2. Figure 5.1 illustrates the clustering of nodes using four

di↵erent methods that underscore these two challenges. Nearest-neighbor (or Greedy)

clustering [25] yields 63 clusters in this case. While this simple algorithm lacks control

of the number of clusters, the clustering o↵ers a clear balance in the number of nodes

per cluster and total diameter of each cluster. In contrast, with Ncluster = 52 the

spectral-based partitioner METIS [10] yields long clusters (and large diameters).

In this work, we focus on shortest-path based clustering algorithms. Lloyd clus-

tering (also known as Lloyd aggregation) [4], for example, uses Bellman-Ford [8] to

construct Ncluster = 52 clusters based on an initial seeding. Overall clustering qual-

2
This example is studied in detail in Section 5.4
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ity depends highly on the initial seeding; often even costly O(N3
node) algorithms for

seeding, such as k-means++ [1], do not dramatically improve the final clustering in

this case. Lastly, we highlight clustering based on an algorithm introduced here:

a balanced form of Lloyd clustering with rebalancing to minimize diameter. While

standard Lloyd clustering results in both large and small clusters, the cluster shapes

with balanced Lloyd clustering and rebalancing are more consistent.

While there is a long history of aggregation-based multigrid methods (cf. [15,

17, 25, 26]), surprisingly little attention has been paid to the influence of cluster

quality on the performance of the resulting algorithm. The greedy clustering algorithm

originally proposed in [15] has become a standard approach that is used in many

codes. Some variants on this approach have been introduced for massively parallel

settings; most notably, approaches based on distance-two maximal independent sets

in the graph [2, 11, 24]. Both of these approaches make minimal use of the weight

matrix, W , aside from using its nonzero pattern to infer binary connectivity data in

the graph. In contrast, in [4], Lloyd’s algorithm [12] was extended from computing

Voronoi diagrams in Rn to computing clusters in graphs, using the values in W to

define graph distances. It is this approach that we extend here.

In this paper, we introduce a general clustering method for use in graph parti-

tioning and algebraic multigrid that provides control of the number of clusters, yields

“centered” clusters, and can be implemented with o↵-the-shelf codes for Bellman-

Ford and Floyd-Warshall algorithms [8]. All algorithms are implemented in and are

available through the open source package PyAMG [3]. In Section 5.2, we review

aggregation-based algebraic multigrid (AMG) and survey the greedy, maximal inde-

pendent set, and Lloyd clustering algorithms. Section 5.3 introduces balanced Lloyd

clustering and a rebalance algorithm, along with theoretical evidence of convergence

and complexity. Finally, Section 5.4 provides numerical evidence in support, expand-

ing the example in Figure 5.1 and others.

Note: throughout the paper and embedded in the algorithms, we make use of the

notation listed in Table 5.2.

5.2 Clustering in algebraic multigrid

Algebraic multigrid methods are a family of iterative methods for the solution of

sparse linear systems of the form Au = f , where A is an Nnode ⇥ Nnode matrix and

u and f are vectors of dimension Nnode. Like all multigrid methods, they achieve
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their e�ciency through the use of two complementary processes, known as relaxation

and coarse-grid correction. For algebraic multigrid methods, we typically consider

a fixed relaxation scheme (such as a stationary weighted Jacobi or Gauss-Seidel it-

eration on the linear system) and seek to compute a coarse-grid correction process

that adequately complements relaxation to lead to an e�cient solution algorithm. In

aggregation-based methods, the coarse-grid correction process takes the form of first

computing a clustering of the fine-grid degrees of freedom (nodes in the graph of the

sparse matrix, A), and then computing an interpolation operator from the clustered

degrees of freedom to those on the fine grid. Rootnode-based aggregation methods

additionally make use of a center that is identified for each cluster [14]. For a more

thorough review of algebraic multigrid methods, see Appendix A or [7, 23].

Figure 5.1 illustrates the wide range of clusters that can arise for a single problem.

We next detail three common approaches to clustering (used in the context of AMG),

before introducing a balanced method in the next section. First, however, we define

a clustering or aggregation of G(V,E,W ), as in Definition 5.1. We note that the

clustering is a non-overlapping covering.

Definition 5.1. A clustering or aggregation of the connected graph G(V,E,W ) is a

pair (m, c), where mi is the cluster membership of vertex i and ca is the global index

of the center for cluster a. Then m and c have the following properties:

1. For each i 2 {1, . . . , Nnode}, there exists a unique a with 1  a  Ncluster such

that mi = a;

2. For each a 2 {1, . . . , Ncluster}, for every (i, j) with mi = mj = a, there exists a

sequence k1, . . . , kp where mk = a for k 2 {k1, . . . , kp} and with (i, k1), (kq, kq+1), (kp, j) 2

E for q 2 {1, . . . , p� 1}; and

3. For each a 2 {1, . . . , Ncluster}, we have 1  ca  Nnode and mca = a.

The first point ensures that the clustering is a non-overlapping covering, the second

requires that the subgraph over the cluster remains connected, and the third confirms

that an element of each cluster is identified as the center for that cluster.

5.2.1 Greedy clustering

Greedy clustering (also known as “greedy aggregation” or “standard aggregation”)

was first introduced by Mı́ka and Vaněk [15]; we use a close variant. Greedy clustering
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consists of two passes over the set of nodes of the graph. In the first pass, for each

node, if all neighbors in the graph remain unclustered, then the node becomes a

center, forming a cluster from the node and its neighborhood. In the second pass,

each unclustered node is included in a neighboring cluster, if possible. If a neighboring

cluster is not found, then the unclustered node is considered a center node and the

node with its unclustered neighbors form a new cluster. In the case of multiple

neighboring clusters, there are several options: arbitrary selection, index, size, or

magnitude of the weight can each be used to determine cluster membership. The full

greedy algorithm is given in Algorithm 5.1.

Algorithm 5.1 Greedy clustering. See Table 5.2 for variable definitions.

1: function greedy-clustering(W )

2: mi  0 for all i = 1, . . . , Nnode . initially all nodes are unclustered

3: a 0 . first cluster index

4: for i 1, . . . , Nnode do . first pass

5: if mi = 0 and mj = 0 for all j s.t. Wi,j 6= 0 then . unclustered

6: mi  a . add i and neighbors to cluster a

7: mj  a, for all j s.t. Wi,j 6= 0

8: ca  i . mark cluster center

9: a a+ 1 . increment cluster index

10: for i 1, . . . , Nnode do . second pass

11: if mi = 0 then . unclustered

12: if 9 j s.t. Wi,j 6= 0 and mj > 0 then . clustered neighbor

13: j  argmax
j : mj>0

Wi,j . neighbor with largest weight

14: mi  mj

15: else . form new cluster

16: mi  a

17: for j such that Wi,j 6= 0 and mj = 0 do

18: mj  a

19: a a+ 1 . increment cluster index

20: return m, c
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5.2.2 Maximal independent set based clustering

The greedy algorithm is inherently serial, yet there are two immediate observations.

First, any two center nodes of two (distinct) clusters must be more than two edges

apart. Second, if an unclustered node is more than two edges from any existing

center, then the node is eligible to be a center of a new cluster. Hence, the center

nodes from the greedy algorithm represent a distance-2 maximal independent set or

MIS(2). This leads to the MIS(2) clustering algorithm, where an MIS(2) over the

nodes is first constructed, followed by construction of the clustering using the MIS(2)

center nodes. This has been shown to exhibit a high degree of parallelism [2]; see [2,

Algorithm 5] for details.

Given a distance-2 maximal independent set, the clustering process is straightfor-

ward. In the first step, the index of the cluster representing the center is propagated

to its neighbors. This continues in the second step, where the index of the cluster is

propagated to the second layer of neighbors; if there are multiple clusters adjacent to

an unclustered node, the choice is made arbitrarily (or by index). The algorithm is

shown in Algorithm 5.2.

Algorithm 5.2 MIS(2) clustering. See Table 5.2 for variable definitions.

1: function mis(2)-clustering(W )

2: c mis(W , 2) . distance-2 independent set

3: mi  0 for i = 1, . . . , Nnode

4: Ncluster  |c|

5: for a = 1, . . . , Ncluster do . pass 1: distance-1

6: i ca . index of center for cluster a

7: mi  a . set cluster number for center

8: for j s.t. Wi,j 6= 0 do

9: mj  a . set cluster number for neighbors

10: for i s.t. mi > 0 do . pass 2: distance-2

11: for j s.t. Wi,j 6= 0 and mj = 0 do

12: mj  mi . set cluster number for neighbors

13: return m, c

With an appropriate ordering, the first pass of MIS-based and greedy clustering

can yield identical clusters. With only minor di↵erences in the second pass, we expect
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the clustering patterns to be similar. Indeed, the convergence factors of AMG based

on these two clustering strategies are shown to be close in practice [2, Appendix].

5.2.3 Standard Lloyd clustering

A shortcoming of the previous two clustering strategies is the inability to control the

coarsening rate: the number of clusters is an outcome of the algorithm, rather than an

input. In contrast, Lloyd clustering, introduced in [4], is based on an initial seeding

of centers (of any length). Lloyd clustering can be viewed as an extension of Lloyd’s

algorithm [12] applied to graphs, where an initial random seeding of centers yields

Voronoi cells (or a set of nodes closest to each center), followed by a recentering of

center locations.

A full algorithm is given in Algorithm 5.3, where a subset of Ncluster nodes are ran-

domly selected as the initial centers, input as c. A standard Bellman-Ford algorithm

(see Algorithm 5.4 and [8, Section 8.7]) is used to find the distance and index of the

closest center; the set of points closest to each center form the initial clustering. Next,

the border nodes of each cluster are selected and a modified form of the Bellman-Ford

algorithm then identifies the (new) center — see Algorithm 5.5 — by selecting the

node of maximum distance to the cluster boundary (with ties selected arbitrarily).

The steps are repeated until the algorithm has converged or a maximum number of

iterations (given as Tmax) is reached.

Algorithm 5.3 Lloyd clustering algorithm. See Table 5.2 for variable definitions.

1: function lloyd-clustering(W, c, Tmax)

2: t = 0

3: repeat

4: m, d bellman-ford(W, c) . find closest centers

5: c most-interior-nodes(W,m) . recenter

6: t = t+ 1

7: until t = Tmax or no change in c and m

8: return m, c
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Algorithm 5.4 Bellman-Ford algorithm to compute distance and index of closest

center. See Table 5.2 for variable definitions.
1: function bellman-ford(W, c)

2: di  1 for all i = 1, . . . , Nnode . initial distance

3: mi  0 for all i = 1, . . . , Nnode . initial membership undefined

4: for a 1, . . . , Ncluster do

5: i ca . cluster a has center node i

6: di  0 . distance of a center node to itself is zero

7: mi  a . center node i belongs to its own cluster

8: repeat

9: done true

10: for i, j such that Wi,j > 0 do . all pairs of adjacent nodes

11: if dj +Wi,j < di then . found a shorter distance to node j’s center

12: mj  mi . switch node j to the same cluster as i

13: dj  di +Wi,j . use the shorter distance via node i

14: done false . change was made; do not terminate

15: until done

16: return m, d

5.2.3.1 Theoretical observations

A significant advantage of standard Lloyd clustering, as in Algorithm 5.3, is the

dependence on o↵-the-shelf algorithms such as Bellman-Ford. This allows us to

establish key properties that will carry over to more advanced algorithms in the next

section.

To begin, we note that standard Bellman-Ford terminates (in Theorem 5.1), an

important property to maintain as we seek more balanced clusters.

Theorem 5.1. Algorithm 5.4 terminates.

Proof. This is a standard result [8, Section 8.7].

Likewise, while we assume the initial graph is connected, Definition 5.1 requires

each of the clusters to be connected. Bellman-Ford provides this, as summarized

in Theorem 5.2.

Theorem 5.2. The clusters returned by Algorithm 5.4 are connected.
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Algorithm 5.5 Find the most-interior node (furthest from boundary) for each clus-

ter. See Table 5.2 for variable definitions.
1: function most-interior-nodes(W,m)

2: B  {} . border nodes

3: for i, j such that Wi,j > 0 do . all pairs of adjacent nodes

4: if mi 6= mj then . are nodes i and j in di↵erent clusters?

5: B  B [ {i, j} . if so, add both of them to the border set

6: ·, d bellman-ford(W,B) . d is distance from cluster borders

7: for i 1, . . . , Nnode do

8: a mi . a is the cluster index for node i

9: ca  i . assign the highest-index node as cluster center

10: for i 1, . . . , Nnode do

11: a mi . a is the cluster index for node i

12: j  ca . j is the current cluster center

13: if di > dj then . is node i further from the border than j?

14: ca  i . if so, node i is the new cluster center

15: return c

Proof. This follows from the proof of Theorem 5.3, using only the first case in the

proof corresponding to Line 9 in Algorithm 5.9.

5.3 Balanced Lloyd clustering

Lloyd clustering in Section 5.2.3 enables the construction of a variable number of

clusters, based on the initial seeding. Yet, the method can result in poor quality

clusters (cf. Figure 5.1). As an example, consider a nearest-neighbor weight matrix

W based on distance and on a 6 ⇥ 6 structured mesh. Figure 5.2 illustrates two

common scenarios in standard Lloyd clustering. The first is the emergence of long,

narrow clusters. This is, in part, due to the method of finding boundaries in most-

interior-nodes; in this case, the entire cluster (left figure) is comprised of boundary

nodes, leaving no opportunity to re-center. The second artifact of standard Lloyd is

that of disparate cluster sizes. Here, we observe both large clusters and clusters of a

single point (right figure). An immediate goal in the algorithms of this section is to

address these two points.
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Figure 5.2: Two example clusterings from Lloyd clustering on a 6⇥ 6 mesh.

The Bellman-Ford algorithm is the central component of standard Lloyd, finding

the shortest path for each seed and to find distal points for each boundary node in a

cluster. In the following, we introduce a new method for centering nodes (see Algo-

rithm 5.10), where we seek to minimize the total energy defined by

H =
NnodeX

i=1

d2
i
, (5.1)

where di is defined to be the distance from node i to the center of the cluster for

node i, namely ca where cluster a satisfies a = mi. This requires the computation

of the shortest path for each pair of nodes in the cluster, a.k.a. the all-pairs shortest

path problem. For this we turn to a per-cluster use of Floyd-Warshall [8] as detailed

in Algorithm 5.6.

For cluster a, we note that the calculation of shortest paths in Algorithm 5.6 is

O(s3
a
), where sa = |{i | mi = a}| is the size of cluster a. In the following section, we

establish linear complexity in the number of nodes, Nnode, with assumptions on the

maximum cluster size.

The introduction of energy as a target (see (5.1)) provides an opportunity to re-

balance the clustering to account for small or large clusters. For this, we introduce

a rebalancing algorithm that calculates the energy increase in splitting clusters and

the energy decrease in eliminating clusters. The overall process relies on the dis-

tances from Floyd-Warshall. In Section 5.3.1, a balanced version of Bellman-Ford

is introduced, leading to a balanced form of Lloyd clustering. The rebalancing al-

gorithm is constructed in Section 5.3.2 followed by theoretical observations. The

rebalanced Lloyd algorithm requires several components and we summarize the de-

pendence in Figure 5.3.
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Algorithm 5.6 Floyd-Warshall algorithm [8, Section 9.8] to find inter-node distances

within each cluster. See Table 5.2 for variable definitions.
1: function clustered-floyd-warshall(W,m)

2: Va  {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a

3: for a 1, . . . , Ncluster do

4: for i, j 2 Va do

5: Di,j  1 . initial distance i! j

6: Pi,j  0 . initial predecessor node for i! j

7: if Wi,j > 0 then

8: Di,j  Wi,j . adjacent nodes have the adjacency distance

9: Pi,j  i . the predecessor is the tail node for adjacent pairs

10: if i = j then

11: Di,i  0 . nodes are distance zero from themselves

12: Pi,i  i . nodes are their own predecessors to themselves

13: for k 2 Va do . potential intermediate node on the path i! j

14: for i, j 2 Va do . all other node pairs within the cluster

15: if Di,k +Dk,j < Di,j then . i! k ! j shorter than i! j

16: Di,j  Di,k +Dk,j . switch to the shorter distance

17: Pi,j  Pk,j . take the predecessor from k ! j

18: return D,P

5.3.1 Balanced algorithms

One disadvantage of Lloyd clustering is that the clusters are not guaranteed (nor

expected) to be uniformly sized. In many practical settings, a node is likely to have

nearly the same distance to multiple centers. In this case, Lloyd clustering randomly

assigns the node to a cluster; in contrast, balanced Lloyd clustering targets uniformly

sized clusters, as described in Algorithm 5.7. In the balanced approach, if a node has

the same distance to di↵erent centers, the node is assigned to a smaller cluster, leading

to increased uniformity across clusters. Specifically, Floyd-Warshall (Algorithm 5.6)

replaces balanced Bellman-Ford (see Algorithm 5.9) to compute the centroid of each

cluster. A node of a cluster having the minimum sum of squared distance to other

cluster nodes is taken as centroid of that region (Algorithm 5.10). Consequently, long,

narrow clusters as in Figure 5.2 will expose centers near the true center, whereas the

boundary-distances used in standard Lloyd clustering leave any boundary centers
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Figure 5.3: Algorithm dependence. Rebalancing components are highlighted in red.

unchanged.

Algorithm 5.7 Balanced version of Lloyd clustering. See Table 5.2 for variable

definitions.
1: function balanced-lloyd-clustering(W, c, Tmax, TBFmax)

2: m, d, p, n, s balanced-initialization(c,Nnode)

3: t = 0

4: repeat

5: m, d, p, n, s balanced-bellman-ford(W,m, c, d, p, n, s, TBFmax)

6: D,P  clustered-floyd-warshall(W,m)

7: c, d, p, n center-nodes(W,m, c, d, p, n,D, P )

8: t = t+ 1

9: until t = Tmax or no change in any of m, c, d, p, n, s

10: return m, c, d, p, n, s,D, P

Note that on Line 11 of Algorithm 5.9, the condition di + Wi,j = dj should be

implemented using an approximate comparison if floating point arithmetic is being

used.
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Algorithm 5.8 Initialization for balanced algorithms. See Table 5.2 for variable

definitions.
1: function balanced-initialization(c,Nnode)

2: mi  0 for all i = 1, . . . , Nnode . cluster membership for node i

3: di  1 for all i = 1, . . . , Nnode . distance to node i from its cluster center

4: pi  0 for all i = 1, . . . , Nnode . predecessor node for node i

5: ni  0 for all i = 1, . . . , Nnode . number of predecessor nodes for node i

6: sa  1 for all a = 1, . . . , Ncluster . size of cluster a

7: for a 1, . . . , Ncluster do

8: i ca . i is the center node index for cluster a

9: di  0 . distance of center to node i from itself is zero

10: mi  a . center node i belongs to its own cluster

11: pi  i . centers are their own predecessors

12: ni  1 . centers have one predecessor

13: return m, d, p, n, s

5.3.2 Rebalancing clustering

Balanced Lloyd clustering improves the uniformity and roundness of the clusters in

the Lloyd clustering. Yet there there is no guarantee that the energy is minimized

across clusters, due to the initial seeding. In this section, we develop a rebalancing

algorithm that reduces the overall energy in the clustering by splitting clusters into

two and reducing energy, and by eliminating clusters leading to an increase in energy.

The trade-o↵ maintains a constant number of clusters, but reduces the total energy

in the clustering. The rebalanced Lloyd algorithm is given in Algorithm 5.11 and the

rebalancing algorithm itself is given in Algorithm 5.12.

The algorithm relies on two calculations, the first being in Algorithm 5.13, which

iterates through each cluster and calculates the energy penalty (increase) resulting

from eliminating a cluster and merging each node with its nearest cluster. The nearest

cluster of a node is defined based on the distance of the centre of the cluster from the

node. Similarly, Algorithm 5.14 computes the energy improvement (decrease) from

optimally splitting each cluster into two clusters. Here, we determine the splitting

(of each cluster) that results in the lowest energy by considering all possible pairs of

new centers within the cluster.

With measures on the penalties and improvements in energy, the rebalancing
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Algorithm 5.9 Balanced version of Bellman-Ford. See Table 5.2 for variable defini-

tions.
1: function balanced-bellman-ford(W,m, c, d, p, n, s, TBFmax)

2: t 0; z(t)
 z for all variables z . only for use in proofs

3: repeat

4: done true

5: for i, j such that Wi,j > 0 do . all pairs of adjacent nodes

6: si  smi if mi > 0, else 0 . size of cluster containing node i

7: sj  smj if mj > 0, else 0 . size of cluster containing node j

8: switch false

9: if di +Wi,j < dj then . j is closer to i’s center than its own

10: switch true

11: if di +Wi,j = dj then . distance to j is similar from i’s center

12: if si + 1 < sj then . node i’s cluster is smaller (by 2 or more)

13: if nj = 0 then . node j is free to switch (not a predecessor)

14: switch true

15: if switch then

16: smi  si + 1, smj  sj � 1 . update cluster sizes

17: mj  mi . switch node j to the same cluster as i

18: dj  di +Wi,j . use the distance via node i

19: ni  ni + 1, npj  npj � 1 . update predecessor counts

20: pj  i . predecessor of node j is now i

21: done false . change was made; do not terminate

22: t t+ 1; z(t)
 z for all variables z . only for use in proofs

23: until t = TBFmax or done

24: T  t . only for use in proofs

25: return m, d, p, n, s

algorithm proceeds by eliminating and splitting clusters in pairs, thereby reducing the

total energy while keeping the number of clusters constant. At first, it eliminates the

cluster with the smallest elimination penalty and splits the cluster with the largest

split improvement, if these are distinct clusters. It then proceeds to eliminate the

cluster with the second-smallest penalty and split the one with the second-largest

improvement, again assuming they are distinct. This process continues until the

energy will no longer be decreased (i.e., the next elimination penalty would be greater
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Algorithm 5.10 Update center nodes to be the cluster centroids. See Table 5.2 for

variable definitions.
1: function center-nodes(W,m, c, d, p, n,D, P )

2: Va  {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a

3: for a = 1, . . . , Ncluster do . treat each cluster a separately

4: for i 2 Va do

5: qi  
P

j2Va
(Di,j)2 . sum of squared distances to other cluster nodes

6: i ca . current cluster center

7: for j 2 Va do . test node j as a new cluster center

8: if qj < qi then . does node j have a strictly better metric?

9: i j . j will be the new cluster center

10: if i 6= ca then . have we found a new center?

11: ca  i

12: nj  0 for all j 2 Va . reset predecessor counts

13: for j 2 Va do . update data for all nodes in the cluster

14: dj  Di,j

15: pj  Pi,j

16: npj  npj + 1

17: return c, d, p, n

Algorithm 5.11 Rebalanced version of Lloyd clustering. See Table 5.2 for variable

definitions.
1: function rebalanced-lloyd-clustering(W, c, Tmax, TBFmax)

2: t = 0

3: repeat

4: m, c, d, p, n, s,D, P  balanced-lloyd-clustering(W, c, Tmax, TBFmax)

5: c rebalance(W,m, c, d, p,D)

6: t = t+ 1

7: until t = Tmax or no change in c

8: return m, c, d, p, n, s,D, P

than or equal to the next split improvement), at which point rebalancing terminates.

To access the clusters in sorted order we use an argsort(L) function that returns

the array of indexes [i1, i2, . . .] so that Li1 , Li2 , . . . will be in sorted order.
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During rebalancing, we assume that the elimination penalties and split improve-

ments of the clusters do not change as we are actually eliminating and splitting other

clusters. However, the penalty and improvement of cluster a depend on its neighbor-

ing clusters. For this reason, when we eliminate or split a cluster, we mark all of its

neighbors as unavailable for being eliminated or split themselves. This ensures that

the penalties and improvement values remain correct for all clusters that are under

consideration for elimination or splitting at each step.

Algorithm 5.12 Rebalance clusters by eliminating low-energy clusters and splitting

the same number of high-energy clusters in two. See Table 5.2 for variable definitions.

1: function rebalance(W,m, c, d, p,D)

2: Va  {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a

3: L elimination-penalty(W,m, d,D)

4: (S, c1, c2) split-improvement(m, d,D)

5: Ma  true for all a 1, . . . , Ncluster . all clusters are modifiable

6: Lsort
 argsort(L)

7: Ssort
 argsort(S)

8: iL  1 . sorted index of cluster to eliminate

9: iS  Ncluster . sorted index of cluster to split

10: while iL  Ncluster and iS � 1 do

11: aL  Lsort
iL

. cluster to eliminate

12: aS  Ssort
iS

. cluster to split

13: if not MaL or aL = aS then . is cluster aL modifiable and distinct?

14: iL  iL + 1

15: continue

16: if not MaS then . is cluster aS modifiable?

17: iS  iS � 1

18: continue

19: if LaL � SaS then . will the energy not decrease?

20: break

21: mark-unavailable(aL,M,W, VaL)

22: mark-unavailable(aS,M,W, VaS)

23: caL  c1
aS

. eliminate cluster aL

24: caS  c2
aS

. split cluster aS

25: return c
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Algorithm 5.13 Calculate the energy increase that would result from eliminating

each cluster. See Table 5.2 for variable definitions.
1: function elimination-penalty(W,m, d,D)

2: Va  {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a

3: for a = 1, . . . , Ncluster do

4: La  0 . energy penalty for eliminating cluster a

5: for i 2 Va do

6: dmin  1 . minimum distance to a di↵erent cluster center

7: for j 2 Va do . look for connectivity via j

8: for k such that Wk,j > 0 do . all neighbors of j

9: if mk 6= mj then . is k in a di↵erent cluster to j?

10: if dk +Wk,j +Dj,i < dmin then . is k’s center closer?

11: dmin  dk +Wk,j +Dj,i

12: La  La + (dmin)2 . add the new energy for i

13: La  La �
P

i2Va
(di)2 . subtract the current energy metric

14: return L

5.3.3 Theoretical observations

We have formulated the balanced Bellman-Ford algorithm with a cap on the maxi-

mum number of iterations, which will be necessary for proving linear complexity in

Theorem 5.6. In practice TBFmax can be chosen to be the maximum expected clus-

ter radius and implementations should warn if Algorithm 5.9 reaches this limit, as

this may indicate that the clusters are not connected. This observation relies on the

following result.

Theorem 5.3. The clusters returned by Algorithm 5.9 are connected if it terminates

before the maximum number of iterations.

Proof. The proof relies on understanding the state of the variables within Algo-

rithm 5.9 as the algorithm iterates. We denote this by using a superscript, z(t) to

indicate the state of variable z at a given “time”, t, in the algorithm, with time T

denoting completion.

We wish to show that, for each j, m(T )
j

= m(T )
i

where i = p(T )
j

, which ensures that

the predecessor-paths to cluster centers are contained within each cluster. Suppose
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Algorithm 5.14 Calculate the energy decrease that would result from optimally

splitting each cluster in two. See Table 5.2 for variable definitions.

1: function split-improvement(m, d,D)

2: Va  {i | mi = a} for all a = 1, . . . , Ncluster . nodes in cluster a

3: for a = 1, . . . , Ncluster do

4: Sa  1 . energy improvement for splitting cluster a

5: for i 2 Va do . first possible new center

6: for j 2 Va do . second possible new center

7: Snew  0 . energy with centers i and j

8: for k 2 Va do . compute cost for node k

9: if Di,k < Dj,k then . is k closer to center i or j?

10: Snew  Snew + (Di,k)2

11: else

12: Snew  Snew + (Dj,k)2

13: if Snew < Sa then . is this a better split?

14: Sa  Snew . store the new energy

15: c1
a
 i . store the new centers i and j

16: c2
a
 j

17: Sa  
P

i2Va
(di)2 � Sa . improvement from current cluster energy

18: return S, c1, c2

Algorithm 5.15 Mark a cluster and all of its neighbors as unavailable. See Table 5.2

for variable definitions.
1: function mark-unavailable(a,M,W, Va)

2: Ma  False . cluster a is unavailable

3: for i 2 Va do

4: for j such that Wi,j > 0 do . all neighboring nodes of cluster a

5: Mmj  False . cluster of node j is unavailable

not and let t be the last iteration when mj and pj were updated by Lines 17 and 20.

Taking i = p(t)
j

we have m(t)
i

= m(t)
j

= m(T )
j
6= m(T )

i
so there must be a later t0 > t

at which mi was updated for the last time. At this later time, we must have at least

one of the following cases.

Case 1: condition on Line 9 is true. Then d(t0)
i

< d(t)
i
, and so d(t0)

i
+ Wi,j <
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d(t)
i
+Wi,j = d(t)

j
= d(T )

j
. This is a contradiction because we cannot have dj > di+Wi,j

when the algorithm terminates.

Case 2: conditions on Lines 11 and 13 are true. Then n(t0)
i

= 0, which is impossible

since p(t0)
j

= p(t)
j

= i.

To understand the behavior of the balanced algorithms, we consider a modified

energy that includes a second term for the cluster sizes. Define

H� =
NnodeX

i=1

(di)
2 + �

NclusterX

a=1

(sa)
2, (5.2)

where di is the distance from node i to its cluster center, sa = |{i | mi = a}| is the

size (number of nodes) of cluster a, and

� =

✓
�min

Nnode

◆2

(5.3)

is chosen based on the minimum di↵erence, �min, between distinct values of Wi,j (or

an arbitrarily small positive number if there are no distinct values of Wi,j). The first

term in (5.2) is the sum of squared distances from nodes to their cluster centers, while

the second term is the sum of squared cluster sizes. Note that � is chosen so that the

second term in (5.2) is always less than the minimum possible increment in the first

term.

Lemma 5.1. Algorithm 5.9 results in a decrease of the energy (5.2), or preserves the

energy if no change is made to the clustering.

Proof. We will show that all steps in the algorithm that change dj or sa result in a

strict decrease of H�.

Case 1: updates by Lines 16 and 18 with dj strictly decreasing. Then the reduction

in the first term in H� is at least (�min)2 and any increase in the second term in H�

is less than (Nnode)2, so the definition of � means the decrease strictly dominates.

Case 2: updates by Lines 16 and 18 with dj constant and sj > si + 1. Then the

first term in H� is constant and smi  si + 1 and smj  sj � 1 results in a strict

decrease of (smi)
2 + (smj)

2.

Lemma 5.2. Algorithm 5.10 results in a decrease of the energy (5.2), or preserves

the energy if no change is made to the clustering.
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Proof. Only updates by Line 14 will change dj. Because the change is caused by the

use of j as the new center, and qj < qi, the first term in H� strictly decreases and the

second term is unchanged.

Theorem 5.4. Algorithm 5.7 terminates, even if Tmax =1.

Proof. From Lemmas 5.1 and 5.2, all steps in the algorithms that change di or sa result

in a strict decrease of H�. Because H� is positive and can only take a finite number

of values, and we terminate when no changes are made, this ensures termination.

Theorem 5.5. Algorithm 5.12 results in a decrease or preservation of the energy

(5.2).

Proof. Because of Line 19, each elimination/split pairing explicitly results in a de-

crease of the first term in (5.2) and thus also a decrease in the overall value of H� due

to the choice of �.

To give bounds on the computational complexity of the algorithms we require the

following assumptions on the graph structure.

Assumption 5.3.1. Assume that the number of edges in G incident on each vertex

in the graph is bounded independently of Nnode, and that the initial centers, c, are

such that clusters found by Algorithm 5.9 have size bounded independently of Nnode.

Theorem 5.6. Under Assumption 5.3.1, if Tmax and TBFmax are both bounded inde-

pendently of Nnode, then the total cost of Algorithm 5.7 is O(Nnode).

Proof. This follows from cost estimates for each of the components of Algorithm 5.7.

The inner loop of Algorithm 5.9 has complexity equal to the number of edges in

G, which is O(Nnode) by Assumption 5.3.1. If TBFmax = O(1), then Algorithm 5.9

has complexity O(Nnode). The cost of Floyd-Warshall on each cluster is cubic in the

cluster size, which we assume (as a function of the initial centers and clusters) to be

O(1), giving a total cost of O(Ncluster) = O(Nnode). Algorithm 5.10 also has linear

complexity. Since Tmax in Algorithm 5.7 is also O(1), the total complexity is, then,

O(Nnode).

Theorem 5.7. Under Assumption 5.3.1, Algorithm 5.12 terminates with cost at most

O(Nnode logNnode) and, if Tmax is bounded independently of Nnode, then Algorithm 5.11

also has O(Nnode logNnode) total cost.
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Proof. From Theorem 5.6, the cost of Algorithm 5.7 isO(Nnode). Both Algorithm 5.13

and Algorithm 5.14 iterate over all clusters and perform bounded work per clus-

ter (using the bound on cluster size from Assumption 5.3.1), so they have cost

O(Ncluster) = O(Nnode). Similarly, Algorithm 5.15 has cost independent of Nnode

because it only iterates over nodes within a single cluster. The cost of Algorithm 5.12

is thus O(Nnode logNnode) because Lines 6 and 7 are O(Ncluster logNcluster) and all

other loops and subroutines are O(Nnode). Finally, assuming Tmax = O(1), we have

the same cost for Algorithm 5.11.

Remark 5.1. The algorithmic complexity of Algorithm 5.12 and, hence, that of Al-

gorithm 5.11, can be reduced to O(Nnode) by changing the algorithm to separately

treat fixed-size sets of clusters. That is, rather than considering all clusters at once,

partition the set of clusters into subsets and run Algorithm 5.12 separately on each

subset. This will avoid the O(Nnode logNnode) sorts in Lines 6 and 7, leaving the cost

as linear in Nnode. We expect this would lead to some slight reduction in the quality of

the rebalance, because eliminate/split pairings will only be considered within a subset

but, for large subsets, we would not expect this to make a significant di↵erence. This

subset approach is also the natural way to parallelize Algorithm 5.12, with one subset

per processor.

Remark 5.2. Parallelization of Algorithms 5.7 and 5.11 relies on parallelization of

the other underlying algorithms. Both Algorithms 5.6 and 5.10 operate independently

on each cluster and are, thus, naturally parallelizable. Algorithm 5.9 could be naturally

parallelized by applying it independently to the set of nodes owned by each processor

in a parallel decomposition.

5.4 Numerical Results

In this section, we highlight the value of balanced Lloyd clustering with rebalancing for

smoothed aggregation multigrid. All computations are performed with PyAMG [3].

Unless stated otherwise, all results below consider a standard Poisson problem of form

�r ·rU = F in ⌦, (5.4a)

n ·rU = 0 on @⌦, (5.4b)

155



where Neumann boundary conditions are used to highlight clustering near the bound-

ary.3 (5.4) is discretized using either standard P 1 linear finite elements on a triangu-

lation of the domain, ⌦, or Q1 bilinear finite elements on a quadrilateral mesh of ⌦,

yielding a matrix problem of the form

Au = f. (5.5)

In the following convergence tests, f is set to zero and a random approximation to u

is used to initialize the AMG cycling.

We consider three main cases of clustering in the context of AMG: standard Lloyd

clustering (Algorithm 5.3), balanced Lloyd clustering (Algorithm 5.7), and balanced

Lloyd clustering with rebalancing (Algorithm 5.12). For each of these, we require a

definition of the weight matrix, W , and the number of clusters, Ncluster. In each case,

we bound the number of inner iterations of Lloyd clustering at five and the number of

rebalance sweeps at four; in practice, this is a conservative bound and the iterations

complete much earlier (due to no change in the clustering state).

To form the weight matrix, W , we consider the so-called evolution measure [18]

which associates a value of strength for each edge in the graph of A in (5.5) based on

smoothing properties. This leads to an initial non-negative weight matrix, cW , where

a large edge value cWi,j indicates that nodes i and j should be clustered together.

The algorithms above make use of an assumption that the graph associated with W

is connected, but this is not guaranteed to be the case for that of cWi,j. Thus, we

augment cW with a small padding for each edge in A, defining fW as

fWi,j  
cWi,j + 0.1 if Ai,j 6= 0 (5.6)

The Lloyd-based clustering presented here is based on shortest distances in the graph

of W . As a result, we consider the inverse strength as a proxy for distance. This

results in defining W so that

Wi,j =
1
fWi,j

if fWi,j 6= 0, (5.7)

so that strong edges refer to shorter distances. With this inversion, the additional

padding added above indicates a long distance in the weight matrix.

3
With Dirichlet conditions, we would observe “singleton” clusters for the isolated points. This

does not impact the method, only visualization.
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5.4.1 Varying cluster numbers

While Greedy and MIS-based clustering have been used successfully in many settings,

they do not provide a mechanism to control the number of resulting clusters. Here,

we explore the ability of Lloyd clustering to target specific numbers of clusters. As

motivation, consider the model problem on an unstructured triangulation of the unit

disk with 10 245 vertices and 20 158 elements. We construct multigrid hierarchies us-

ing rebalanced Lloyd clustering, setting the target number of points in each cluster at

each level to a fixed value between 3 and 20. We estimate the asymptotic convergence

factor by the geometric mean of the last five residual norms at convergence, say k

iterations:

⇢ =

✓
kr(k)
k

kr(k�5)k

◆ 1
4

, (5.8)

where r(k) = f � Au(k) is the residual vector after k iterations. Combined with a

model for the cost of each multigrid cycle, given by the total number of non-zeros in

the sparse-matrix operations in the cycle (i.e., the cycle complexity, �), this leads to

a measure of the work per digit of accuracy (WPD) for the method:

WPD =
�

� log10(⇢)
. (5.9)

Figure 5.4 shows that the e�ciency (and e↵ectiveness) of an AMG method can vary

depending on the (average) number of points per cluster; in this case, we observe

that very small clusters lead to rapid convergence (small ⇢), yet due to the slower

coarsening, the total complexity of the multigrid cycle is higher.

In the end, balanced Lloyd clustering with rebalancing leads to well-formed clus-

ters and the ability to use a vast range of cluster sizes. Figure 5.5 illustrates a range of

cases for a smaller mesh of the same domain, from five (large) clusters at one extreme

to 250 small clusters including singleton and many pairwise clusters. True pairwise

clustering [5, 16] is not represented; however, it remains an open question whether a

Lloyd-type algorithm could render nearly pairwise clustering using modified criteria

for tiebreaking and rebalancing.

5.4.2 Tiebreaking

Algorithm 5.9 introduces “tiebreaking” on Line 12. If a node in the graph is equidis-

tant from multiple centers, then the node becomes a member of the neighboring

cluster if the neighboring cluster is smaller by two in size than the current cluster of
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Figure 5.4: Work per digit (WPD) of accuracy and convergence ⇢ for clustering sizes

ranging from 3–19 points per cluster (on average) using rebalanced Lloyd clustering.

The average over 100 runs is marked � and a trendline from a smoothed cubic spline

is given for the mean (solid).
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Figure 5.5: Example clustering patterns with the number of clusters ranging from 5

to 250 using rebalanced Lloyd clustering.
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the node. Tiebreaking in the balanced Bellman-Ford algorithm impacts the unifor-

mity of the sizes of the clusters. To quantify uniformity, we consider discretizing (5.4)

on a uniform 64 ⇥ 64 quadrilateral mesh. We cluster the nodes using the balanced

Bellman-Ford algorithm with and without tiebreaking, requesting the number of clus-

ters be equal to 10% of the fine-grid number of nodes (rounded down when this is not

an integer). We randomly distribute the initial seeding 1000 times and, in each case,

compute the following metrics: the number of zero diameter clusters (i.e., singleton

clusters), the standard deviation in the number of nodes per cluster, and the energy

for each clustering (defined by (5.1)).

Figure 5.6 shows the number of clusters having zero diameter with and without

tiebreaking, highlighting that tiebreaking substantially decreases the number of clus-

terings with zero diameter clusters, from over one-third of clusterings to about one

percent. Likewise, Figure 5.7 (left) shows the e↵ect of tiebreaking on the distribution

of the standard deviation in the number of nodes. Here, tiebreaking leads to a de-

crease yielding clusters more uniform in size. Tiebreaking also contributes to clusters

that are more round — this is supported by Figure 5.7 (right), where we see that

tiebreaking decreases the energy of the system. We emphasize that tiebreaking is an

inexpensive strategy that clearly improves performance of the clustering.
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Figure 5.6: Distribution of the number of clusters having zero diameter for balanced

Lloyd clustering with or without tiebreaking for a 64⇥ 64 mesh.

5.4.3 Rebalancing

To quantify the improvements in cluster quality as we move from standard to bal-

anced, and then to rebalanced Lloyd clustering, we again consider a 64⇥ 64 quadri-

lateral mesh. Nodes in this mesh are clustered using the three methods, again using
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Figure 5.7: Distribution of the standard deviation in the number of nodes and dis-

tribution of energy for balanced Lloyd clustering with or without tiebreaking on a

64⇥ 64 mesh.

10% of Nnode to determine Ncluster. In each case, the clustering is repeated 1000 times,

yielding a standard deviation of cluster diameter, standard deviation of number of

nodes in clusters, and energy for each test. The results are averaged and the same

experiment is performed for 16⇥ 16, 32⇥ 32, and 128⇥ 128 meshes.

Figure 5.8 shows the distributions for each method in the case of a 64⇥ 64 mesh.

Lower standard deviation of diameter and standard deviation of number of nodes

suggest that the clusters that result from rebalanced Lloyd are more uniform in shape

and size compared to the other methods. This is also reflected by the lower energy for

rebalanced Lloyd clustering. The figure also highlights that variation in the metrics

is lower for rebalanced Lloyd, pointing to the consistency in the method over multiple

runs.

Figure 5.9 shows the di↵erence between the maximum and minimum diameters

and the energy, averaged over 1000 samples, for each of the clustering methods as we

vary problem size. The figures underscore that rebalanced Lloyd yields more uniform,

rounded clusters having less energy than the other two clustering methods as the mesh

size grows.

5.4.4 Algebraic multigrid convergence

In the application of clustering to algebraic multigrid, cluster quality plays an impor-

tant role in overall convergence of the method, but one that is not yet quantified by
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Figure 5.9: (Left) Di↵erence between maximum and minimum diameters of clusters

averaged over 1000 samples; (Right) Energy per node averaged over 1000 samples.

The shaded regions mark one standard deviation from the mean.

existing sharp measures. While we can easily confirm improvement (or degradation)

in the measured convergence factor after making a change to a clustering, it is di�cult

to directly assess if an individual cluster is the cause of poor convergence.

One way to localize a bound on AMG convergence is to consider the classical bound

based on smoothing and approximation properties [13, 20]. This theory considers the

convergence of a two-grid cycle with post-relaxation given by u  u + M(f � Au)

and coarse-grid correction given by u u+P (P TAP )�1P T (f �Au). We write G =

I�MA and T = I�P (P TAP )�1P TA as the error-propagation operators of relaxation

and coarse-grid correction, respectively, with the error-propagation operator of the

two-grid scheme given by GT . The diagonal of SPD matrix A is denoted by D. In
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what follows, we assume that A is SPD, P is of full rank, and kGkA < 1. Theorem 4

of [13] shows that if there exist constants ↵, � > 0 such that

kGek2
A
 kek2

A
� ↵kek2

AD�1A
for all e,

and kTek2
A
 �kTek2

AD�1A
for all e,

then kGTkA  (1 � ↵/�)1/2. The first of these is known as the smoothing property,

since it concerns the action of relaxation, G, on errors, e. The second is referred to as

the approximation property, since it quantifies the action of the coarse-grid correction

process. Equations (19) and (20) of [13] show that this approximation property is

guaranteed by the existence of a constant � > 0 such that infec ke� Peck
2
D
 �kek2

A

for all e. Choosing ec = (P TDP )�1P TDe and defining TD = I � P (P TDP )�1P TD

then allows us to quantify such a � as

� = sup
e 6=0

eTT T

D
DTDe

eTAe
. (5.10)

We find this � by solving for the largest eigenvalue of the generalized eigenvalue

problem T T

D
DTDe = �Ae, and let e be the associated eigenvector. To localize the

measure over a single cluster, we decompose the inner product in the numerator into

a sum over clusters, writing � =
P

Ncluster
i=1 �i, where

�i =

⇣P
j2⌦i

(DTDe)j(TDe)j
⌘

eTAe
(5.11)

This comes from writing the numerator of (5.10) as the inner product of DTDe with

TDe, and then localizing the summation in that inner product over each cluster.

We again consider the Poisson problem on a triangulation of the unit disk with 528

unknowns, and compute (5.11) for each cluster generated by each method. Figure 5.10

shows that the extreme values of �i are reduced through rebalancing. Indeed, this

is reflected in the convergence shown in Figure 5.11, where we observe a dramatic

reduction in the number of iterations for solvers with these clusters. It is, of course,

important to note that not every clustering generated by standard Lloyd exhibits

similarly poor performance. The quality of the initial clustering used to seed the

algorithm plays an important role in determining the multigrid performance. Results

seen here are for a representative, randomly generated, initial seeding.
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Figure 5.11: Example convergence for two-level AMG with di↵erent clusterings.

5.4.5 Additional problems in Algebraic Multigrid

As additional evidence of the e↵ectiveness of rebalanced Lloyd clustering, we consider

several examples in both 2D and 3D.

3D restricted channel: The 3D domain ⌦ is defined by a spline on the points

[(0, 4,�8), (0, 4,�6), (0, 1, 0), (0, 4, 6), (0, 4, 8)] ,

rotated about the z-axis, (see Table 5.1). A 3D tetrahedral mesh with 16 921 ele-

ments is generated with Gmsh [9] through pygmsh [21]. We use Firedrake [19] to

discretize (5.4) with linear finite elements on tetrahedra, and select an average of 25

points per cluster.

2D restricted channel: The 2D domain ⌦ is defined by [�2, 2] ⇥ [�1, 1] \ C

with C = C+
[C�, for C± representing discs of radius 0.8 at (0,±1) (see Table 5.1).

As for the 3D restricted channel, we use Gmsh to generate a graded, triangular mesh

with 5832 elements, with a characteristic length of 0.012 at the center and growing

to 0.12 at the left/right edges. This forces tighter clustering toward the center, as
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shown in Table 5.1. The discretization matrix for (5.4) is constructed with linear

finite elements, and we target clusters of size 8.

2D anisotropic di↵usion: The 2D domain is defined by the unit square, and

we consider the problem �r · Kru = f with pure Dirchlet conditions. We define

the anisotropic di↵usion tensor as K =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#"
1

"

#"
cos ✓ � sin ✓

sin ✓ cos ✓

#T

, for

" = 0.1 and ✓ = ⇡/3. We discretize this on a 42 ⇥ 42 uniform mesh (with 1681

elements) and Q1 bilinear elements, and specify a target cluster size of 12.

P2 elements: The 2D domain is a unit disc, on which we consider (5.4). A

triangular mesh is constructed with 982 elements and P2 quadratic finite elements

are used to generate the discretization matrix. We specify 5 nodes per cluster.

In each of the examples of Table 5.1, a zero right-hand side is used to assess conver-

gence of the smoothed aggregation multigrid solver. From the convergence histories,

we see that rebalanced Lloyd clustering improves solver convergence, even for these

relatively benign problems. For the restricted channel problems, the resulting cluster-

ing resembles the expected isotropic behavior with well rounded clusters. Likewise,

in the case of anisotropy, we see that the clustering mimics the di↵usion direction,

while maintaining balance across clusters. Finally, the P2 case reveals the benefit of

specifying the coarsening ratio: in this case, the coarsening ratio of 1/5 outperforms

greedy coarsening (which yields a ratio of around 1/10).

As a final example, Table 5.1 highlights a parallel partitioning of an arc heated

combustion channel at the University of Illinois Urbana-Champaign4. In this case,

rebalanced Lloyd e↵ectively partitions the ⇠100k mesh elements, keeping refined

features such as the injector local to a cluster.

5.5 Conclusions and extensions

In this paper, we study and extend the use of Lloyd’s algorithm for determining clus-

ters in graphs. Our proposed balanced and rebalanced Lloyd clustering algorithms

are linear in time, guarantee connected clusters, and are consistent with minimiz-

ing a quadratic energy functional. In addition, the algorithms are implemented in

Python/C++ and are available through the open source project PyAMG [3]. One

major topic for future work is the choice of that energy functional; while the steps in

the algorithms above are consistent with an `2-distance style energy, they can easily

4
https://tonghun.mechse.illinois.edu/research/hypersonics-act-ii/, https://ceesd.illinois.edu/
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di↵usion 0 20 40

Iterations

10�9

10�6

10�3

100

�r
�

Standard Lloyd

Rebalanced Lloyd

P2

elements
0 20 40 60

Iterations * cost

10�9

10�6

10�3

100

�r
�

Greedy

Standard Lloyd

Rebalanced Lloyd

ACTII mesh

Table 5.1: Additional examples. ACTII mesh credit : Mike Anderson at UIUC.
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be extended to other energy functionals in a consistent way. Theoretical guidance is

clearly needed to determine the proper choice of such a functional. We also note that

we consider only serial algorithms in this paper; properly extending these approaches

to their parallel counterparts is also an important subject for future research.
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Appendix A: Review of algebraic multigrid methods

Algebraic multigrid methods seek to approximate solutions to sparse linear systems

of the form

Au = f (5.12)

for A 2 RNnode⇥Nnode , and u, f 2 RNnode . Here, we outline aggregation-based AMG

methods for use as an application in the development of Lloyd-style clustering. The

set of indices, {1, . . . , Nnode}, enumerate the degrees of freedom (DoFs) and represent

the fine level in the multilevel grid hierarchy. This set is partitioned and grouped into

disjoint clusters, see Definition 5.1.

Each cluster represents a node in the coarse grid and, collectively, the cluster

mapping defines a tentative restriction operator, R̂, as

R̂a,i =

8
<

:
1 if vertex i is in cluster a,

0 otherwise.
(5.13)

An example with 12 fine nodes and 3 coarse nodes (clusters) is given in Figure 5.12;

the pattern for (the transpose of) R̂ is also illustrated.

The restriction pattern defines the tentative interpolation pattern through Ẑ =

R̂T . Smoothed aggregation (SA) AMG proceeds by using the nonzero pattern of Ẑ as

a partition of unity to localize a given global set of vectors, C, defining the near-null

space of matrix A and, then, smoothing each column of the resulting matrix, Z, with

(for example) weighted Jacobi. This defines the smoothed interpolation operator, Z,

from which a coarse-level operator is defined over cluster DoFs as Ac = ZTAZ.

The complete algorithm for constructing SA AMG is given in Algorithm 5.16,

where we note the omission of several details (and optional parameters, denoted

by [opt]) since the focus of this work is primarily on Line 4. We refer the reader

to [6, 22, 25] for a more complete description and analysis of aggregation-based AMG

methods. Here, we note that Line 3 is critically important to the convergence of the

method; in practice, unit weights or algebraic distances can be used, yet generalized

measures such as the evolution measure [18] (used in Section 5.4) have proven robust

in practice.

With a multigrid hierarchy of coarse operators and interpolation, multigrid (MG)

iterates via the familiar V-cycle as in Algorithm 5.17. In Section 5.4, we have con-

sidered both two-level (Nlevel = 2) and multilevel results, underscoring improved
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Figure 5.12: Example clustering and restriction matrix.

Algorithm 5.16 Smoothed aggregation — setup

1: function sa-setup(A0, Nlevel, C)

2: for ` 0, . . . , Nlevel � 1 do

3: W  edge-weights(A`, [opt]) . determine strong edges in graph of A

4: m, c cluster(W, [opt]) . cluster membership and centers

5: Z`  interpolation(m,C, [opt]) . form interpolation

6: A`+1 = ZT

`
A`Z` . construct coarse-level operator

7: return {A`}
Nlevel
0 , {Z`}

Nlevel�1
0

convergence by improving the clustering, while leaving the other multigrid parame-

ters untouched. As we use a subscript within these algorithms to denote the level

within the multigrid hierarchy, we use a superscript to indicate the multigrid iteration

number, with u(k+1) =MG-V-CYCLE(A0, . . . , ANlevel
,Z0, . . . , ZNlevel�1, u(k), f).

Algorithm 5.17 MG cycle

1: function mg-v-cycle(A0, . . . , ANlevel
,Z0, . . . , ZNlevel�1, u0, f0)

2: for ` = 0, . . . , Nlevel � 1 do

3: u`  relax(A`, u`, f`) . fixed number of relaxation sweeps

4: f`+1  ZT

`
(f` � A`u`) . compute restricted residual

5: uNlevel
 A�1

Nlevel
fNlevel

. solve coarsest level problem

6: for ` = Nlevel � 1, . . . , 0 do

7: u`  u` + Z`u` . interpolate and correct

8: u`  relax(A`, u`, f`) . fixed number of relaxation sweeps

9: return u0
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Appendix B: Notation

Table 5.2 summarizes the notation.

Symbol Definition Domain

A left hand side operator in the linear system Au = f RNnode⇥Nnode

a cluster index {1, . . . , Ncluster}
B set of border nodes between clusters; B ✓ V P(V )

ca center node index for cluster a V

c
1
a, c

2
a new cluster centers if cluster a is split; see Algorithm 5.14 V

� second-term energy scaling coe�cient, see (5.3) R
di shortest-path distance to node i from nearest center; di = 1

if node i is not in a cluster

R�0

Di,j shortest-path distance from node i to j within a single cluster;

Di,j = 1 if there is no such path i ! j

R�0

�min minimum di↵erence between distinct values of Wi,j R
E set of edges in the graph G P(V ⇥ V )

f right hand side of the linear system Au = f RNnode

G graph with nodes V , edges E, and weights W

H shortest-path energy function, see (5.1) R
H� energy function minimized by clustering, see (5.2) R
i, j, k node indices V

La energy increase if cluster a is eliminated; see Algorithm 5.13 R
Ma whether cluster a is modifiable during rebalancing {True, False}
mi cluster index (membership) containing node i {1, . . . , Ncluster}
Nnode number of nodes N1

Ncluster number of clusters N1

ni number of nodes with i as predecessor N0

Pi,j predecessor index for node j on the shortest path i ! j within

a cluster; Pi,j = 0 if there is no path i ! j

V [ {0}

pi predecessor index for node i on the shortest path from its clus-

ter center; pi = 0 if node i is not in a cluster

V [ {0}

qi sum of squared distances from node i to all other nodes in the

same cluster

R�0

Sa energy decrease if cluster a is split; see Algorithm 5.14 R
sa size (number of nodes) of cluster a N1

si size (number of nodes) of the cluster containing node i; si = 0

if node i is not in a cluster

N0

T total number of time/iteration steps taken by an algorithm

(Tmax and TBFmax denote the maximum)

N0

t time/iteration index N0

u solution vector in the linear system Au = f RNnode

V set of nodes in the graph; V = {1, . . . , Nnode} P(N1)

Va set of nodes in cluster a; Va ✓ V P(V )

Wi,j weighted adjacency matrix of the graph where Wi,j is the edge

weight i ! j

R

z generic variable placeholder —

Table 5.2: List of symbols. Here P() denotes the power set and R is the extended

reals.
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Chapter 6

Conclusions and Future Work

Few AMG methods o↵er convergence guarantees. Reduction-based AMG, AMGr, is

one of them. A key element of the AMGr methodology is the partitioning of the

DoFs into coarse and fine nodes. In this thesis, we develop a coarsening algorithm

based on simulated annealing. The achievement of this part of the thesis is to show

the successful application of randomized search and other derivative-free optimization

algorithms to combinatorial optimization problems in AMG coarsening. Also the new

algorithm improves the coarsening over the existing greedy algorithm. Subsequent

work, by Taghibakhshi et al. [1], successfully apply machine learning tools to solve

the same problem.

Classical AMGr yields poor convergence factors for the problems that are not

diagonally dominant. In the second part of this thesis, we develop a new method

using AMG heuristics to generalize classical AMGr. We apply the new method to

di↵erent problems where the coe�cient matrices are not diagonally dominant. The

new method works comparatively well for a number of problems where classical AMGr

works poorly.

Aggregation plays an important role in many di↵erent fields including multigrid

methods for solving sparse linear systems. In the third part of the thesis, we introduce

an algorithm that forms balanced aggregates over the graph of sparse matrix. The

algorithm provides uniform, more rounded and better centered partitions of the graph.

We establish linear complexity of the algorithm and also provide numerical results

to show better partitioning of the nodes into aggregates and its e↵ect on multigrid

convergence.

Each part of the thesis elicits some questions to be studied and ideas for further

studies. A few future research directions are:
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• The main drawback of the coarsening algorithm presented in Chapter 3 is the

high computational cost of simulated annealing. Finding a more e�cient man-

ner to approximate the functional would substantially reduce the computational

cost. The research work shows that this combinatorial optimization problem

can be solved using randomized search and other derivative-free optimization

algorithms. Hence, the obvious next study in this direction would be to try

other derivative-free optimization methodologies or machine learning strategies

to develop coarsening algorithms with improved speed.

• Chapter 4 introduces a new class of AMGr methods. However, these methods

are not covered by existing theoretical results for AMGr. Development of the-

ory for the new class of methods would be an exciting research direction. Such

theory could help us understand how the SPAI method helps to improve con-

vergence and if this approach can be improved further. Some questions arise.

How do we quantify approximations made by SPAI in a way that is productive

for theory? Is it possible to generalize the existing AMGr theory to the new

class of methods?

• Another research direction would be to try the new algorithm on a broader class

of problems, including the Helmholtz equation, highly advective flows, etc. An

important next step would be to make the method work for systems of PDEs.

• In our study of generalizing Lloyd’s algorithm for graph clustering, we defined

an energy functional and developed an algorithm to minimize the functional.

However, it is quite possible that minimizing or maximizing a di↵erent energy

functional would lead to a better aggregation method. Hence, developing new

functionals to improve the aggregation method might be a good idea for a future

research. Also, it is worth studying the e↵ects of initial seeding on the overall

computational cost of the aggregation to see if a good initial seeding helps to get

better aggregates faster. It may also be worthwhile to employ machine learning

techniques for the aggregation.
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