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Abstract

Among various types of crabs, the porcupine crab is recognized as a highly poten-

tial crab meat resource near the off-shore northwest Atlantic ocean. However, their

long, sharp spines make it difficult to be manually handled. Despite the fact that

automation technology is widely employed in the commercial seafood processing in-

dustry, manual processing methods still dominate in today’s crab processing, which

causes low production rates and high manufacturing costs.

This thesis proposes a novel robot-based porcupine crab spine removal method.

Based on the 2D image and 3D point cloud data captured by the Microsoft Azure

Kinect 3D RGB-D camera, the crab’s 3D point cloud model can be reconstructed

by using the proposed point cloud processing method. After that, the novel point

cloud slicing method and the 2D image and 3D point cloud combination methods are

proposed to generate the robot spine removal trajectory.

The 3D model of the crab with the actual dimension, robot working cell, and end-

effector are well established in Solidworks [1] and imported into the Robot Operating

System (ROS) [2] simulation environment for methodology validation and design op-

timization. The simulation results show that both the point cloud slicing method and

the 2D and 3D combination methods can generate a smooth and feasible trajectory.

Moreover, compared with the point cloud slicing method, the 2D and 3D combination

method is more precise and efficient, which has been validated in the real experiment

environment.

The automated experiment platform, featuring a 3D-printed end-effector and crab

model, has been successfully set up. Results from the experiments indicate that the
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crab model can be accurately reconstructed, and the central line equations of each

spine were calculated to generate a spine removal trajectory. Upon execution with

a real robot arm, all spines were removed successfully. This thesis demonstrates the

proposed method’s capability to achieve expected results and its potential for appli-

cation in various manufacturing processes such as painting, polishing, and deburring

for parts of different shapes and materials.

Key Words: robotic manufacturing, trajectory planning, point cloud segmenta-

tion, ROS
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Chapter 1

Introduction

With the ongoing development trend of Industry 4.0 [3], nearly every major tradi-

tional manufacturing industry is proceeding automation improvement and introducing

robot-based systems into their production process to improve productivity, quality

and profitability. Compared with human workers, robots can adapt to different op-

erating environments and fulfill various production requirements. Therefore, robots

might become the main labour force in the future and replace human workers to

proceed with tedious, repetitive and dangerous work.

Porcupine crab is chosen as this thesis’s research object since it has high poten-

tial commercial value and is challenging to process. This thesis is concerned with

establishing a robot-based system to identify, locate and remove the spines on the

crab’s body. It is envisaged that this system could be used in future porcupine crab

production and could also potentially be extended to many other seafood production

processes. The research on this topic can provide a case for the automation upgrade

of the seafood processing industry. Additionally, the project is a great platform for
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enhancing my ability to design complete computer vision and robot automation sys-

tems, and for gaining valuable experience that can serve as a foundation for future

work and research.

Individual crabs differ in body sizes and spine growing locations, which requires

the robot-based spine removal system to be highly adaptable and flexible. A 3D RGB-

D camera is used in this thesis to capture 2D image and 3D point cloud data that are

processed using a 3D reconstruction algorithm to establish a 3D mesh model for each

crab. Due to the limited resolution of low-cost cameras, it is difficult to accurately

establish spine features. This thesis presents a novel method that combines 2D images

and 3D point clouds to effectively identify and locate spines.

After acquiring all the coordinates of spines, a novel point cloud slicing method

and a cubic curve-based trajectory planning method are introduced, the trajectory

of the robot end-effector along with its associated poses thus being generated. The

robot trajectory smoothly remove all the spines without interfering with other parts

of the crab body, exceeding the operating range and payload limitation of the robot

arm.

Before building a real robot experimental system, it is an ideal way to build the

same platform inside a simulation environment with the same parameters as in the real

world. Use of simulation allows one to verify the design of robots, sensors and other

accessories before focusing on hardware development and incurring the associated

cost. Also, it allows one to test the whole algorithm rapidly. This thesis selects the

Robot Operating System (ROS) as the simulation platform, based on which the entire

robotic system was built. The simulation results have verified the feasibility of the

whole capturing and spine removal processes.
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During the simulation process, the design is continuously iterated and optimized.

Afterwards, the robot-based spine removal system was built in terms of the optimiza-

tion results. The experimental test results showcase the feasibility of the proposed

methodology.

1.1 Thesis Overview

This section shows the thesis structure in order to provide the reader with an insight

into the main content of each chapter.

Chapter 1 gives an overview of the thesis, background and road map. It intro-

duces the porcupine crab species and reviews the current state-of-art seafood crab

processing methods, robot-based deburring applications, robot simulation environ-

ment and 3D reconstruction methods.

Chapter 2 describes the detailed design steps of the robot-based spine removal

system, including the design philosophy, mechanical design of the robot working sta-

tion and end-effector, electric and control design of the system, as well as the simu-

lation and software environment setup.

Chapter 3 describes the proposed methodology, including the point cloud pro-

cessing method, robot trajectory, and tool pose planning method. This chapter

describes how to process the input 2D image and 3D point cloud data to acquire

information about the spines and how to generate the robot spine removal trajectory.

Chapter 4 and Chapter 5 present the simulation and real-world experimental

results. Both the simulation and experimental results validate the design objectives.

Chapter 6 draws the conclusions of the thesis and discusses the possible future
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directions to pursue and the follow-up research work.

1.2 Literature Review

1.2.1 Porcupine Crab Overview and Analysis

According to the latest research progress in the deep-sea fisheries field, the porcupine

crab(Neolithodes grimaldii) is a sub-species of the king crab family, that is defined

as a high incidental by-catch in offshore Greenland and the Northwest Atlantic ar-

eas [4], the map of the species distribution being shown in Fig. 1.1. It is noteworthy

that marketable crab meat products can be produced from the porcupine crab, which

is attractive in future fisheries [5]. As shown in Fig. 1.2, as a distinctive appear-

ance among the king crab family, the red long sharp spines of the porcupine carb

cause tremendous difficulty in processing and thus being harmful to human workers.

Therefore, removing the spines prior to processing becomes an urgent need.

For male and female crabs, no obvious differences exist in the size, weight, spine

length, spine distribution and other characteristics, thus the same method for spine

removal are applied for both [4]. The mean weight of the porcupine crab is about

2.28 kg, and the mean size is around 122.7mm (CL) × 105.2mm (CW) 1 [4], making

it suitable to be processed by a robot with a light payload.

According to the on-site measurement results, the spines are evenly distributed

at the surface of the crab’s shell. As shown in Fig. 1.3, the length of the spines is

between 15mm to 45 mm, with a gradual decrease in length from the center to the

1The unit of carapace length(CL) and carapace width(CW) are used to describe the dimension

of crab shell.
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Figure 1.1: Distribution map of the porcupine Crab (Neolithodes grimaldii) [4]

Figure 1.2: Images of the porcupine Crab (Neolithodes grimaldii)

edge of the shell. The diameter of the spine root is about 5mm, with a smooth edge

between the spine and the crab shell. Furthermore, the growing direction of each

spine is perpendicular to the crab shell.

Chen and Lin demonstrated a puncture, tensile and compression test method for
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testing the hardness of king crab shells [6]. The crab shell hardness is approximately

60 D2, which will be used for the cutting tool selection.

Figure 1.3: porcupine crab spine on-site measurement

1.2.2 Overview of Sea Food Automatic Processing Systems

In recent years, more and more automatic equipment has been used for massive

production in seafood processing factories. As shown in Fig. 1.4, with the help of

the latest technologies of computer vision, robotics and automation, the automatic

salmon fish processing equipment [7, 8] has the ability to automatically identify and

scale each salmon fish, calculate the best parameters to clean, slice the raw fish into

saleable Sashimi.

As shown in Fig. 1.5, an interesting case of snow crab automatic butchering equip-

ment is built by RYCO. Inc and BAADER. Inc [9, 10]. Raw snow crab can be au-

tomatically fastened, butchered and cleaned into saleable clusters. The usages of

2Shore Hardness is a standardized hardness test method. The hardness value is determined by

the penetration of the durometer indenter foot into the sample.
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automation, hydraulic and pneumatic technologies empower the equipment to pro-

cess more than 42 crabs per minute, significantly reducing labour requirements and

increasing productivity.

Figure 1.4: Salmon fish automatic processing equipment [8]

Although the systems mentioned above can process fish and crabs on a large

scale, they still have several shortcomings. For example, they can only process one

species and requires an enormous installation space. As shown in Fig. 1.6, a sensor-

guided robot automated crustaceans processing system was developed by King and

Hearn [11, 12]. This system can be used to process the snow crab, lobster and many

other crustaceans with less installation space. It has the ability to intelligently identify

the input categories of crustaceans and acquire the physical characteristics of each

crustacean with the sensors installed. Based on the sensor data, one five-axis delta
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Figure 1.5: Snow crab automatic processing equipment [9]

robot picking the crustacean and placing it into a holding system with the optimal

fixed position. Two six-axis robots cut the crustacean to produce optimal crustacean

portions.

Figure 1.6: Sensor-guided robot automated crustaceans processing system [11]

In addition to the equipment mentioned earlier, other types of automated equip-

ment are also commonly used in the seafood industry. However, a drawback of this

equipment is that it can only process species with minimal differences in size and

characteristics among individuals. Despite this, manual labor is still heavily relied

upon for processing king crab. As depicted in Fig. 1.7, manual processing of king
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crab [13, 14] involves holding the crab’s shoulders and striking it against a stationary

anvil-like device on a butchering table. However, the spines on porcupine crab make

it difficult to process and can cause injury to workers. Therefore, spine removal is a

crucial step before further processing.

Figure 1.7: King crab manually processing method [13]

1.2.3 Overview of Robot-based Deburring Systems and Tra-

jectory Planning Methods

1.2.3.1 Robot-based Deburring Systems

The robot-based spine removal system uses a similar process to the robot deburring

system, making the latter a valuable reference point. The deburring is a widely used

mechanical processing applications. It can be used for treating not only the metallic

and non-metallic materials, but also for the other difficult-to-process materials such

as polymers and composite materials. There are three main deburring methods in

today’s machining industry, including manual deburring, CNC deburring and robot

deburring [15]. As shown in Fig. 1.8, manual deburring is most commonly used but

may suffer from the disadvantages of low-efficiency and laborious. Also, the working
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environment is full of dust and noise, seriously affecting the workers’ health [16]. In

addition, it is hard to control manual operations’ product consistency and quality.

CNC and robot deburring methods are two other commonly used methods, which

have been applied in many industrial sectors. CNC deburring machines have the

advantages of high stiffness, production efficiency, accuracy and reliability but are

also expensive and can only deburr workpieces on small scales (up to 600mm [17]).

(a) Manual deburring method (b) CNC deburring method

Figure 1.8: Manual and CNC deburring method [16]

Compared with other deburring methods, the robot deburring method exhibits

many advantages. One of the advantages is the low cost, the price of the robot

arms is 60% - 80% lower than that of the CNC machines [18]. Besides, the six-axis

robot arms have a larger working range (up to 3500 mm) compared with the CNC

machines (up to 1500 mm), which allows the workpieces be in a larger scale. Also

the serial mechanism of the robot arm gives it the ability to change the position

and pose flexibly to ensure a better relative position between the deburring tool and

part, which can improve the deburring accuracy [19, 20]. With the development

of censoring and measuring devices [21], robots can be easily integrated with many
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intelligent sensors and cameras, such as 3D measurement cameras [22], force-torque

sensors [23], to intelligently adjust the deburring parameters in real time.

As shown in Fig. 1.9 [24, 25], current state-of-art robot-based deburring systems

can be divided into two types. The first one is to install the deburring tool onto the

robot flange as the end-effector, the robot then carries the deburring tool to deburr

the external fixed workpiece. This method is usually used when the robot payload is

low, or when the workpiece is difficult to clamp, such as the car bodies [26], aircraft

fuselage [27], and the porcupine crab in this thesis also belong to this situation.

Another one is that the robot grips the workpiece with a gripper and performs the

deburring operations on an external belt sander. This method is usually used when

the part is on a small scale, such as the water faucets [28] and motorcycle helmets.

etc.

(a) Robot fuselage deburring system (b) Robot faucet deburring system

Figure 1.9: Robot fuselage and faucet deburring systems [24, 25]
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1.2.3.2 Robot Deburring Trajectory Planning Methods

Existing robot-based deburring systems are commonly used for deburring objects with

regular or consistent shapes and features. Moreover, the robot trajectories are mainly

generated by manual teaching [29], in which a robot operator manually moves the

robot and records the robot path with a teach pendant or other similar devices. In case

the deburring trajectory comprises a large number of curves, it is a common practice

to approximate it in terms of a series of straight line segments, giving rise to the

increase of number of way-points to be programmed. This method may lead to time-

consuming and unsatisfactory effects, and also the robot operator must be experienced

to manually teach way-points with a proper point density and step length [30].

Another widely used trajectory planning method for robot deburring relies on

the accurate modelling of the object shape, which is pre-established inside a 2D

or 3D structure design software. Some commercial software packages such as Mas-

terCAM [31], Delmia [32], ABB RobotStudio [33] and others provide the function

of robot deburring trajectory planning to follow the shape of the object’s 3D model.

The robot deburring trajectory can be planned, simulated and visualized in the afore-

mentioned software. However, this feature highly relies on the identical object shape

of the pre-defined model.

In order to meet the growing demands form the industry to scan and deburr parts

with irregular shapes, the point cloud based robot deburring trajectory planning

method has become a hot research direction in recent years [34, 35]. Using the point

cloud data acquired with the 3D camera or the laser scanner, researchers proposed a

method to generate B-spline curve tool path for three-axis milling machine, which was
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verified in Matlab [36]. The point cloud segmentation method for robot deburring

trajectory planning also has a significant potential in manufacturing process. For

example, with the combination of the point cloud slicing and smoothing method,

an optimization approach based on point cloud was developed to ensure that the

grinding tool and the work piece are in the maximum contact rate [37]. In order to

increase the efficiency for grinding trajectory planning, the point cloud data can be

projected onto a 2D plane to plan the tool path, then the tool path is projected back

to the 3D shape [38]. In spite of substantial studies on the robot-based deburring

trajectory planning, current state-of-the-art research mainly focuses on objects either

with regular shapes or rigid parts, which eases the modeling process prior to deburring.

Unfortunately, there is no common way to generate a robot deburring trajectory to

process soft objects and objects with varied shapes, the seafood processing being a

typical challenge.

1.2.4 Overview of Robot and Robot Operating System (ROS)

1.2.4.1 Robot Background Analysis

Robot is a highly-integrated system, an interdisciplinary branch of materials science,

mechanical engineering, electrical engineering and control technology. International

standardization organization (ISO) defines the robot as an actuated mechanism pro-

grammable in more than two axes with a degree of autonomy, moving in a designed en-

vironment, and performing the desired tasks [39]. Current state-of-art robot systems

are designed to help and replace humans doing tedious, high-intensity and dangerous

tasks with a high accuracy [40].
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Robots can be categorized in terms of different criteria. Here we take the kinematic

structure as an example, according to which, robots are classified into the parallel

robot and serial robot [41], with some typical examples shown in Fig. 1.10. The

parallel robot consists of several computer-controlled serial links connected at the

coincident point of a single platform. Compared with the serial robot, each link of

the parallel robot is simple, short and rigid, only supporting the fraction weight of

the total load weight, which gives the parallel robot a heavy payload. Parallel robots

are mostly used for pick-and-place processes, as well as the flight and ship simulators.

The serial robot consists of a series of links connected by motor-actuated joints

that extend from the robot base to the robot flange (end-effector). The six-axis serial

robot is the most popular model because having six degrees of freedom (DOFs), allows

it to reach nearly every point in its working range with multiple poses. The most

popular application for serial robots in today’s industry includes welding, deburring,

painting, pick-and-place.

As shown in Fig. 1.11, a six-axis collaborative robot3 is used in this thesis. Ac-

cording to the EN/ISO 10218 (robot and robotic devices – safety requirements for

industrial robots), traditional industrial robots are required to be installed far away

from human operators in a separate working space because fast-running heavy-load

robots can cause severe injury or even death for workers [46]. On the other hand,

the cobot is designed and developed to have the ability to work with human workers

shoulder-by-shoulder [47], whose safety relies on the usage of lightweight materials,

smooth surfaces with round edges, speed and force limitations as well as software and

sensors that make the cobot safe to human [46, 48], collaborative robots are ideal for

3Collaborative robot is a robot that is used for direct human-robot interaction in a shared space.

14



(a) ABB FlexPicker (Parallel) (b) CAE Flight Simulator (Parallel)

(c) KUKA Robot (Serial) (d) UR Robot (Serial)

Figure 1.10: Examples of parallel and serial robots [42, 43, 44, 45]

use in the seafood processing industry and in laboratory environments.

1.2.4.2 Robot Operating System (ROS)

The robot control and simulation technologies are constantly updated to meet the

changing requirement in today’s industrial and academic environments. Due to the

rapid iteration of the electronic and control technologies, it becomes increasingly ur-

gent to have a unified robot development platform on which robotics researchers can

quickly develop and verify their research work and collaborate with other researchers

worldwide. As shown in Fig. 1.12, the problem has been solved by the emergence of

the open-source Robot Operating System (ROS) [49], as a highly extensible and pop-

15



Figure 1.11: Xarm6 collaborative robot

ular distributed robotic development platform, ROS supports multiple development

languages, including C++, Python, Java, Lisp. Many state-of-art function packages

have been developed on this platform which significantly help the developer to improve

their development efficiency and decrease the development difficulties. As a result,

ROS is becoming more and more popular among international robotics researchers.

As an open-source robot control and simulation platform, ROS allows researchers

to make personalized changes to the source codes as their needs and upload their code

to the ROS community and various platforms, such as ROS Wiki [2], Github [51] and

DockerHub [52]. Currently, ROS includes a lot of useful libraries for controlling robots

as an operating system, researchers can search for the software development results

from different researchers from all over the world, which provides convenience for

robotics research.

Many commonly used hardware and software function packages have been en-
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Figure 1.12: The architecture of the robot operating system (ROS) [50]

capsulated on the ROS platform, such as sensor drivers, robot trajectory planning

packages and robot motion control packages. These packages contain ROS libraries,

data sets, configuration files, source code, definition files, CMake build files, start-

ing up files, parameter value sets, document files and other ROS-related files. ROS

has also integrated many useful third-parties tools and libraries to help users and

developers quickly build, test and commission their robot applications.

ROS RViz (ROS visualization) [53] is a powerful 3D visualization tool for robots,

sensors and algorithms. It enables users to visualize the robot’s state, trajectory,

sensor data, and gives users an intuitive way to see the system operating status in

real-time. Figure 1.13 [53] shows the typical functions of ROS RViz.

As shwon in Fig. 1.14 [54], ROS Gazebo [54] is a 3D dynamic simulator capable of
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accurately and efficiently simulating indoor and outdoor environments with gravity,

friction and lighting parameters. Like the game developing engines, ROS Gazebo

provides high-fidelity visual and physical simulations with a full set of sensor models

and user-friendly interactive functions.

(a) Robot model display (b) Robot links & joints display

(c) Visualization markers (d) 2D Image & 3D Point cloud display

Figure 1.13: ROS RViz typical functions [53]

Many robots were developed based on the ROS system, the first and most famous

is the PR2 robot, which was developed byWillow Garage [55]. The PR2 robot consists

of an omnidirectional base, two force-controlled arms, and two parallel jaw grippers

with force sensors installed on the fingertips of each arm. Many well-known ROS

packages, such as Moveit [56], Gazebo, and RViz, were first developed and tested on

18



Figure 1.14: ROS Gazebo simulation environment [54]

the PR2 robot platform. Even though the PR2 robot has been discontinued, it is still

a milestone of the ROS history and being used in worldwide research institutes and

laboratories. Figure 1.15 shows the PR2 robot performing various tasks.

Figure 1.15: PR2 robot performing various tasks [57]

In addition to the traditional robot arms, ROS supports the development of multi-

axis unmanned aerial vehicles(UAV) [58], underwater unmanned vehicles(UUV) [59],

among others [60, 61, 62]. Many useful applications and functions including motion

planning, controller interface, simulation platforms, autonomous navigation functions,

machine vision functions can be found in the ROS function libraries. The software

resources and open communication protocol promote the development work of re-
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searchers.

1.2.5 Overview of Point Cloud Technology

The point cloud data is a set of points in 3D space, each of which has its set of

Cartesian coordinates (X, Y, Z). As shown in Fig. 1.16, point cloud data is usually

captured by a 3D scanner or generated by 3D structure design software that represents

the external surface information of objects around them [63]. Point cloud data is cur-

rently used in various fields, including reconstructing the 3D model of manufactured

parts for surface quality inspection, indoor and outdoor mapping, human-computer

interaction, virtual reality, autonomous driving and many other fields. When the

point cloud technology was first introduced, the high cost of point cloud acquiring

equipment severely hindered the development of point cloud technology.

(a) Point cloud of a bunny (b) Point cloud of an office

Figure 1.16: Point cloud example [64, 65]

As shown in Fig. 1.17, since 2010, Microsoft Kinect [66], Intel Realsense [67],

Asus Xtion [68] and many consumer-grade low-cost point cloud acquisition devices
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(RGB-D camera) have appeared on the market, whose prices are only 10% - 20% of

those of the high-end laser scanners (Approx.10,000 - 30,000USD) [69]. In addition to

the hardware like camera, the software and algorithm for point cloud data processing

are also being developed. The most famous cross-platform open source libraries are

PCL [70] and Open3D [71], which encapsulate common data structure classes and

many general algorithms. Including point cloud data acquisition, visualization, fil-

tering, denoising, segmentation, refinement, feature extraction and other algorithms.

With the development of machine learning(ML) and reinforcement learning(RL), ar-

ray of new applications will emerge in the future.

(a) Microsoft Kinect v1 (b) Microsoft Kinect v2

(c) Intel Realsense D435 (d) Asus Xtion

Figure 1.17: Consumer-grade RGB-D cameras [66, 67, 68]

In order to meet the increasing demands from industry to scan and deburr irreg-

ular and varied shapes, the robot deburring trajectory planning methods based on

point cloud become a research focus in recent years [34], [35]. There are two main
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approaches for deburring trajectory planning based on point cloud data:

1. Directly using the point cloud data to generate robot deburring trajectory.

2. Using the point cloud data to reconstruct the 3D model of the object, and gener-

ating deburring trajectory based on the reconstructed 3D model.

For the first approach, researchers proposed a method to generate B-spline curves

tool path using the raw point cloud data for three axis-milling machine, which was

verified in Matlab [36]. The point cloud segmentation for robot deburring trajectory

planning also has significant potential in manufacturing. For example, by combining

the point cloud slicing and smoothing method, an optimization approach based on

point cloud was developed to ensure that the grinding tool and work piece are in

maximum contact rate [37]. In order to increase the efficiency for deburring tool path

to capture a 3D shape, the point cloud data can be projected onto a 2D plane to plan

the tool path, then the tool path is projected back to the 3D shape [38].

For the second approach. Based on the point cloud data captured with a high-

resolution camera, researchers proposed a method to reconstruct the 3D model of

parts, comparing the reconstructed 3D model with the reference CAD model in a

computer to extract the area to be processed, and generating the manufacturing

trajectory [72]. Another group of researchers migrated the method into a robot

system to scan and generate the 3D model of steel parts and plan the robot surfacing

trajectory [73].

Despite substantial studies on robot-based deburring trajectory planning, current

state-of-the-art research mainly focuses on rigid objects with regular shapes, which

eases the modelling process before deburring. Unfortunately, there is no common

way to generate a robot deburring trajectory to process soft objects and objects
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with varied shapes, seafood processing being a typical challenge. In this paper, the

Microsoft Azure Kinect RGB-D camera [66] is used to capture the 2D image and

3D point cloud data of the porcupine crab. Since the resolution of point cloud is

limited, detailed features of the thin crab spines cannot be reconstructed well. Two

novel methods are proposed to generate the robot trajectory for spine removal of the

porcupine crab. The first one is based on the novel point cloud slicing and the nearest

points searching method, the generated tool path covers the whole surface area of the

crab shell and can remove all the spines [74]. It is found in the experiment that the

accuracy and efficiency of the first method are relatively low. Hence, second method

is proposed, combining the 2D image and the 3D point cloud data. Firstly, using the

image processing method to locate the position of all the spines in the 2D image, and

then using the ArUco code [75] as a bridge to establish the relation between the 2D

image and 3D point cloud data. After that, the equation of the central lines of each

spine can be calculated and used as input for spine removal tool path generation.

1.3 Contributions of the Thesis

The main objective of this research is to design, develop, simulate and test the robot-

based porcupine crab spine removal system.

(1) The primary contribution of this thesis is developing a robot-based porcupine

crab spine removal working station, including proposal design, mechanical and elec-

trical parts selection, diagram design and drawing, programming and simulation, part

purchasing, system installation and commissioning, testing and modification.

(2) Using the data from the 3D RGB-D camera, the thesis demonstrates two
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novel crab spine identification and processing approaches, providing a novel solution

to accomplish high accuracy recognition using a less accurate camera.

(3) This thesis also validates the method in a simulation environment and real

world with a real robot arm and a 3D-printed porcupine crab model. The result

shows that the thesis achieved all expected results.

1.4 Summary

This chapter has presented the overview introduction and the overall structure of

this thesis, and provided a review of the porcupine crab, the state-of-art seafood

processing systems, robot-based deburring systems, the robots and robot operating

system (ROS), and the point cloud technologies. The reviewed works provides some

information about the cutting-edge research and also gives inspiration for the thesis.
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Chapter 2

Overall System Desgin

2.1 Introduction

In this chapter, the overall design of the robot-based porcupine crab spine removal

system is introduced. Firstly, the design principles and requirements of the whole sys-

tem are presented. In addition, the selection principle and the final selection results

for all major components of the system, including the robot arm, the controller, the

working platform and the camera, are provided. Afterward, the overall electrical and

control system design and the network connection layout design are proposed. More-

over, the detailed design of the mechanical system, electrical system and simulation

environment are also discussed in this chapter.

2.2 Design Philosophy

As introduced in Chapter 1, the robot-based porcupine crab spine removal system

will be used to identify the crab and remove all the spines automatically. Design
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philosophy for the system are summarized below:

1. Safety. There are two main safety requirements that must be considered

carefully. The first one is the robot’s safety for humans, not only in the laboratory

environment but also in the potential production environment where the equipment

will be used in the future, the robot system will share the working space with human

workers and operators. According to the EN/ISO 10218 (robots and robotic devices:

safety requirements for industrial robots) [46], robotic systems are required to be

safe for humans in the vicinity during operation and be stopped immediately when

something abnormal happens. Secondly, the robot system also needs specific safety

requirements, including preventing the robot from colliding with other parts and

stopping the system when some key parameters exceed the allowed limit.

2. Flexibility. The design of the system needs to be highly flexible and customiz-

able. The system design may constantly be revised and changed during the project

development process according to the experimental results. At the same time, the

robot system may be used for the development of different projects in parallel, which

requires the whole system to be flexible for rapid modification.

3. Low-cost. The development of new technology often faces much uncertainty

and requires constant experiment and optimization, making the cost a major con-

sideration. Due to the high cost and the long manufacturing cycle of the traditional

machining method, the 3D printing technology is mainly used to produce the exper-

imental prototype. Meanwhile, for the crab data acquisition, a low-cost 3D RGB-D

camera is used in this project, the innovative algorithm enables the low-cost camera

to achieve high-precision recognition result.
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2.3 Overall System Design

The robot-based spine removal application is complex and can be affected by many

factors. Crabs differ from body sizes and spines locations, which places high demands

on the system design. As shown in Fig. 2.1, this system consists of a robot with

its control box, an end-effector that integrates with a 3D RGB-D camera and a

spine removal cutting tool, a central control workstation and an aluminum extrusion

working platform. More information about each part of the system will be introduced

in the following sections.

Figure 2.1: Structure of the Robot-based spine removal system

2.3.1 Robot System Selection

As the core equipment of the robot-based spine removal system, the robot will be

used to carry the camera for crab 2D image and 3D point cloud data acquisition and

also carry the cutting tool for removing the crab’s spines. Therefore, the selection of

the robot is one crucial step for building the whole system. The main parameters to
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be considered include the robot type, load capacity, working range, safety, expand-

ability. Since the spine removal operation requires the robot to constantly change its

posture, according to Section 1.2.4.1, the parallel robot has limited ability to perform

continuous complex movements, and have low degrees of freedom. A serial robot is

selected instead of its parallel counterpart.

Currently, there are two main types of serial robots, the traditional industrial

and collaborative robots(Cobot), the main difference of which lying in the parameter

values, as compared in Table 2.1.

Table 2.1: Industrial robot and collaborative robot comparison

Industrial Robot Collaborative Robot Project requirement

Payload Up to 2300 kg Up to 35 kg 5 kg

Repeatability (+/−) 0.02–0.1 mm (+/−) 0.1–0.2 mm (+/−) 0.2 mm

Working range Up to 4900 mm Up to 1900 mm With in 1000 mm

Power supply 200-575V AC 110 -240 V AC 120V AC

Body volume Big batches Low-volume Low volume

Deployment Complex Fast and Easy Fast

Safety Not safe Collaborative and safe Safe

Investment High Low Low

The power supply in the laboratory is 120V AC. Based on the size of the crab, the

robot’s working range should exceed 0.6 m, the total weight of the end-effector with

the 3D RGB-D camera and cutting tool is 2.6 kg, the estimated cutting force obtained

from manual spine removal experiments is about 20N, which requires the payload of
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the robot to be higher than 5 kg. The robot needs to have a safety function and

be able to stop running immediately to prevent causing injury to humans and other

equipment when a collision occurs. Also, the robot control system must be extensible,

such as supporting the multiple digital and analog signal input and output, different

communication protocols, etc.

Based on the selection principles, the xArm6 collaborative robot and its controller

are selected in this thesis. The xArm6 robot shown in Fig. 2.2 has a payload of 5 kg, a

working range of 700 mm, and a repeatability of +/− 0.1 mm, the robot also supports

Modbus and Ethernet communication protocols and is also equipped with a safety

function. The overall parameters of the robot can meet the requirement of this thesis.

Figure 2.2: xArm6 robot and its control box

2.3.2 3D RGB-D Camera Selection

As mentioned in Section 1.2.5, Microsoft Azure Kinect camera [66], the most famous

low-cost camera, is used in this thesis, the main applications including 3D scene
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reconstruction, human body tracking, autonomous driving, virtual reality and aug-

mented reality applications. As shown in Fig. 2.3, it contains a high-resolution 2D

RGB sensor, a 3D depth sensor (TOF)1, a microphone array and a motion sensor

(IMU), which enables the camera to capture the 2D RGB images, 3D depth images,

camera posture and surrounding sound in the environment.

In this project, the camera is used to capture the 2D image and 3D depth infor-

mation. The output resolution of the 2D camera is 3840 × 2160 (5-30 FPS), with

various image formats such as RGBA, YUV, YUY2, and NV12. The 3D depth sensor

has a resolution of 1024 × 1024 (5-30 FPS), with a measurement range of 0.25 –

3.86 m, each pixel in the depth image indicates the XY Z coordinates of the spatial

point. The internal firmware of the camera can convert the 3D depth image into the

.PCD and .PLY format of the point cloud data. This camera can be connected to the

workstation via USB-C cable, and Microsoft provides the Python and C++ APIs for

easy integration and development.

2.3.3 Workstation Selection

In this thesis, the 2D image and 3D point cloud data are needed to be processed in

parallel with the robot control in real-time. Meanwhile, the entire experiment needs

to be visualized, which places a high requirement on the computer hardware.

To meet the requirements of the experiment, a high-performance workstation is

chosen as the central control unit. As shown in Fig. 2.4, the model is Dell-XPS-

1TOF: A time-of-flight camera (ToF camera) is a ranging imaging camera system that uses time-

of-flight technology to resolve the distance between the camera and the subject at each point in the

image by measuring the round-trip time of an artificial light signal provided by a laser or LED.
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Figure 2.3: Microsoft Azure Kinect Camera Structure [66]

8940 [76] with a 3.8GHz Intel Core i7 10700K CPU with 8 cores and 16 threads,

each thread can be assigned to process different tasks parallelly, increasing the multi-

task processing performance. 32GB DDR4 RAM is used in the workstation, allowing

the robot control system, image processing system and visualization system to run

simultaneously. Nvidia RTX 3070 graphic processing unit is used, the 8G memory

and 5888 CUDA cores2 can significantly accelerate the processing speed of point cloud

data.

Regarding the overall performance of the control system, the camera and robot re-

quire high accuracy for computational solutions, which calls for a system with a high

data transmission speed in addition to the basic requirements. Ubuntu 18.04 LTS, a

Linux-based operating system with high system throughput and time-sharing charac-

teristics, is chosen based on which the ROS system is built for real-time parameters

acquisition and control of the system.

2CUDA cores: Nvidia GPUs host hundreds or thousands of cuda cores. These cores are respon-

sible for processing all the input to and output data of the GPU, performing calculations.
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Figure 2.4: Dell XPS 8940 Workstation [76]

2.3.4 Cutting Tool Selection

The cutting tool is mounted on the robot, which is carried by the robot to cut

the spines on the surface of crab’s body. When making the selection, the following

requirements are taken into consideration. Firstly, the size and weight of the cutting

tool need to be as small as possible to optimize the robot’s load capacity and ensure

that the robot’s working range is not affected. Secondly, the blades of the cutting tools

need to be interchangeable, so that they can be easily replaced during the experiment.

Furthermore, the price of the cutting tool also needs to be considered.

As shown in Fig. 2.5, the Dremel 3000 rotary tool [77] with reinforced fibreglass

cutting disc is chosen as the cutting tool. This tool is widely used in wood carving,

metal polishing, among others. The weight is 0.62 kg and a speed range of 5,000

– 32,000 rpm. It has a removable threaded cap that can easily and preciously be

installed into the end-effector with high rigidity and precision.
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Figure 2.5: Dremel 3000 rotary tool [77]

2.4 Mechanical Design

2.4.1 Robot Working Platform Design

In this thesis, aluminum extrusion part is selected to build the robot’s working plat-

form. In comparison to steel, aluminum extrusion is a lightweight, high-strength,

and customizable material that is widely utilized in automation production lines and

research laboratories. The following requirements are mainly considered during the

design phase:

1. The robot should have enough working range on the platform.

2. Although the robot has a collision-safe function, some swarf may splash out

during the cutting process, so the working platform needs to be isolated.

3. Experiment objects should be easily installed and exchanged on the platform.
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4. The platform needs to be highly expandable to perform various experiments

with a few modifications.

2.4.1.1 Robot Working Range Analysis

The robot working space represents the set of points in space that the end of the

robot arm can reach. Researchers have proposed graphical and analytical methods

to calculate the robot working range [78, 79]. The graphical method is by manually

dragging the end effector of the robot in a simulation environment to find the robot

working range, which is relatively simple but has low precision. The analytical method

is by iterating through the angles of the robot’s axes and calculating all possible robot

poses using forward kinematic algorithm. Although this method has high precision

but less of efficient. This thesis proposes a numerical method to solve the problem,

the Monte Carlo method [80], which mainly uses random input parameters to predict

the probability of various outcomes. This method can calculate and visualize the

robot’s working range intuitively and quickly, thus being suitable for any articulated

robot.

The Monte Carlo-based robot working range calculation method is as follows:

generating a series of random joint angles of the robot and calculating the robot

endpoint coordinate in the reference system using the forward kinematic method [81].

Figure 2.6 shows the flow chart of the Monte Carlo-based robot working range cal-

culation method, the first step is to load the robot Denavit-Hartenberg (DH) model3.

3Denavit-Hartenberg(DH): DH parameters [81] were introduced by Jacques Denavit and Richard

S.Hartenberg. It is used in the robotics research field to describe the structure and properties of

robot arms, including joint axis orientations, link length and other parameters.
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Figure 2.6: Flow chart of Monte Carlo-based robot working range calculation method

The standard DH parameters of the robot are shown in Fig. 2.7 and Table 2.2. Four

parameters are used to describe the structure of the robot. θi is called the joint angle,

which represents the rotation angle about the Zi−1 axis, from Xi−1 to Xi by angle θi.

di is called the link offset distance, which represents the offset distance di along Zi−1

to the common normal. a is called the link length, which represents the length of the

common normal. αi is called the link twist angle, which represents the rotation angle

from Zi−1 axis to the Zi axis. Offset is the offset joint angle from the mathematical

zero position to the mechanical zero position as shown in Fig. 2.7.

After loading the robot DH model, the next step is to calculate the robot end point
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Figure 2.7: xArm6 robot DH parameters

Table 2.2: xArm6 robot DH parameters

Kinematics θ(rad) d(mm) α(rad) a(mm)

Joint 1 θ1 267 −π/2 0

Joint 2 θ2 0 0 289.49

Joint 3 θ3 0 −π/2 77.5

Joint 4 θ4 342.5 π/2 0

Joint 5 θ5 0 −π/2 76

Joint 6 θ6 97 0 0

coordinates based on each joint angle. In this thesis, the Forward Kinematics (FK)

method is used, eq. (2.1) shows the general form of the homogeneous transformation

matrix(HTM) to calculate the relation of each coordinate frame to the next one in

the robot, where Ri−1
i is the rotation matrix from the frame i to frame i − 1, pi−1

i

being the vector pointing from the origin of frame i to that of frame i− 1.
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Ti−1
i =


Ri−1

i pi−1
i

0 0 0 1


=



cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1


(2.1)

As shown in eq. (2.2), the xArm6 robot end point position can be calculated by

multiplying all the HTMs of the robot together, starting from the first joint to the

last one. Substituting the DH parameters into eq. (2.2), all the HTMs of the robot are

obtained, as demonstrated from eq. (2.3) to eq. (2.5), where Si = sin θi, Ci = cos θi,

θi is the joint angle, i means the joint number of the robot.

T0
6 =

 R0
6 p0

6

0 0 0 1

 = [T0
1T

1
2T

2
3T

3
4T

4
5T

5
6] (2.2)

T0
1 =



C1 0 −S1 0

S1 0 C1 0

0 −1 0 267

0 0 0 1


,T1

2 =



C2 −S2 0 289.49C2

S2 C2 0 289.49S2

0 0 1 0

0 0 0 1


(2.3)

T2
3 =



C3 0 −S3 77.5C3

S3 0 C3 77.5S3

0 −1 0 0

0 0 0 1


,T3

4 =



C4 0 S4 0

S4 0 −C4 0

0 1 0 342.5

0 0 0 1


(2.4)
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T4
5 =



C5 0 −S5 76C5

S5 0 C5 76S5

0 −1 0 0

0 0 0 1


,T5

6 =



C6 −S6 0 0

S6 C6 0 0

0 0 1 97

0 0 0 1


(2.5)

As the position of the robot end point in space is the only factor in calculating

the robot working range, the kinematics equation of the robot end point are shown

in eqs. (2.6) – (2.9).

T0
6 =


px

py

pz

 (2.6)

px = −78C1S3S2 + 76S5 (−C1C2S3 − C3C1S2) + 342.5 (−C1C2S3 − C3C1S2)

+ 76C5 (C4 (C3C1C2 − C1S3S2) + S4S1) + 97 (C5 (−C1C2S3 − C3C1S2)

− S5 (C4 (C3C1C2 − C1S3S2) + S4S1) + 78C3C1C2 + 289C1C2

(2.7)

py = 78C3C2S1 + 289C2S1 + 76S5 (−C2S3S1 − C3S2S1) + 342.5 (−C2S3S1 − C3S2S1)

+ 76C5 (C4 (C3C2S1 − S3S1S2)− C1S4) + 97 (C5 (−C2S3S1 − C3S2S1)

− S5 (C4 (C3C2S1 − S3S1S2)− C2S4)− 78S3S2S1

(2.8)

pz = −78C2S3 − 78C3S2 + 76C4C5 (−C2S3 − C3S2) + 76S5 (S3S2 − C3C2)

+ 342.5 (S3S2 − C3C2) + 97 (C5 (S3S2 − C3C2)− C4S5 (−C2S3 − C3S2))− 289S2 + 267

(2.9)
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As shown in eq. (2.10), each joint angle is randomly generated within its lower

and upper limits using the uniformly distributed random numbers. The θmin
i and

θmax
i denote the working range of joint i, RAND() being a function for generating

uniformly distributed random numbers [82].

θi =
(
θmax
i − θmin

i

)
× RAND() (2.10)

30,000 sets of robot joint angles have been generated using the iteration method.

By substituting these random data into eq. (2.6), a set of robot end point coordinates

in the robot working space can be calculated. Fig. 2.8 shows the simulation results

of the robot working range in Matlab, including the projections of the workspace

on XOY , XOZ and Y OZ planes, respectively. It can be seen that these endpoints

are uniformly distributed, which can straightforwardly describe the robot’s working

range, namely, X ∈ [−0.757 m, 0.758 m], Y ∈ [−0.661 m, 0.664 m] and Z ∈ [0 m,

1.029 m].

2.4.1.2 Robot Working Platform Structure Design

The robot working platform structure is designed according to the design require-

ment and the calculated robot working range in the previous sections. As shown in

Fig. 2.9(a), the main structure of the platform is made of aluminum extrusion, which

has the advantages of high strength and being customizable. This platform is divided

into two layers – the lower and upper layers. The robot control box, network switch

and power strip are placed on the lower layer while the robot arm and the aluminum

optical breadboard that is used to fix the research object, are installed on the up-

per layer. To ensure safety during the experiment, the upper layer is isolated using
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(a) Robot working range (b) Robot working range in the XOY projection

(c) Robot working range in the XOZ projection (d) Robot working range in the YOZ projection

Figure 2.8: xArm6 robot working range analysis based on Monte Carlo method

transparent acrylic panels and the structure is also grounded. A pair of doors is set

in front of the robot to facilitate workpiece installation and equipment maintenance.

Figure 2.9(b) shows the top view of the robot workstation, in which the blue curve
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(a) (b)

Figure 2.9: Robot working platform: (a) Isometric view (b) Top view

represents the robot working range. In order to extend the robot operating range and

let the robot be able to perform different experiments at the same, three working areas

(Areas 1, 2, and 3) have been set up. An aluminum optical breadboard made of solid

aluminum alloy with a series of threaded holes is installed in Area 1 to fasten the crab

model and perform the experiment for spine removal, which is convenient for fixing

equipment and parts on the top of the board. Support structures are also provided

in Areas 2 and 3, where other experimental equipment can be installed. Also, this

robot working platform is capable of meeting the requirement of the EN/ISO 10218

safety standard [46].

2.4.2 Robot End-effector Design

To increase the integration level of the system and let the robot perform various tasks

without disassembling the end-effector, this thesis proposes a method to integrate

the cutting tool and the 3D camera into the end-effector. After acquisition of the
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2D image and 3D point cloud data, the robot can instantly start the spine removal

operation. Also, the relative locations of the robot flange, the camera and the end-

effector are fixed, which makes the system only need to be calibrated once. Figure 2.10

shows the first and second versions of the end-effector design. In the first version,

the cutting tool is mounted along the Y -axis, and the camera is mounted along the

Z-axis of the robot flange coordinate system. This design is compact, but during the

simulation, it is found that the robot would reach the wrist singularity points [83]

during the spine removal process, which will stop the motion of the robot or cause

a discontinuous trajectory. Then, the second design was proposed, in which the

mounting direction of the cutting tool and that of the camera are swapped. Thus the

singularity problem is solved and verified in the simulation environment.

(a) First version (b) Second version

Figure 2.10: Robot end-effector design

Figure 2.11 shows the detailed design of the robot end-effector, which is consisted

the cutting tool, the 3D camera and the 3D printed installation structure. In order to

reduce the calibration difficulty of the camera and the cutting tool, and also decrease
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the calculation difficulty of the robot trajectory, the distance between the camera lens

and the endpoint of the cutting tool with the center of the robot flange is designed

to be an integer. The main structure of the end-effector is 3D–printed with PETG

material [84] which has high tenacity and strength. Parts are connected via bolts and

nuts to ensure a high connection strength and precision.

(a) Isometric view (b) Exploded view

(c) Front view (d) Side view

Figure 2.11: Robot end-effector design
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2.4.3 Porcupine Crab 3D Model Design

Limited by the quantities and the storage difficulty of the crab, it is not feasible to

use real crabs to do the experiment. In this thesis, based on the size and feature

information of the real porcupine crab, an accurate 3D model of the crab is designed

in the 3D modelling software and printed by a 3D printer.

In order to validate the effectiveness of the proposed method, the model dimension,

the growth location and direction of the spines, the shape and size of the crab and

other characteristics need to be consistent with the real porcupine crab as much as

possible. Multiple crab models, which are easily manufactured and replaced at a

low cost, are needed for repeated tests, Fig. 2.12 shows the 3D model design of the

porcupine crab.

The complex shape and spine features of the crab make it nearly impossible to

draw a complete and accurate model by hand, for the same reason, existing 3D

scanners in the university could not be used to well-scan and reconstruct the crab’s

3D model. Hence, there is no existing high-resolution 3D model of the porcupine

crab. According to the previous chapters, the porcupine crab is a member of the king

crab species with almost the same dimensions, surface and leg features as the current

mainstream king crab species.

In order to keep the features of the crab as accurate as possible, the design of

the porcupine crab model in this thesis is based on a high-resolution 3D model of

a real king crab. Based on the measurement result of the real porcupine crab, the

dimensions are adjusted, and the features of the porcupine crab’s spines are added

to the king crab model. Using the mean size of the porcupine crab as a reference [4],

44



Fig. 2.13 shows the designed porcupine crab model with dimensions.

(a) Top view (b) Side view

(c) Isometric view (d) Rear view

Figure 2.12: Porcupine crab 3D model design

Figure 2.13: Porcupine crab 3D model
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As shown in Fig. 2.14, in natural environment, the porcupine crab is able to move

forward and backward with the movement of its body joints (JB1-JB3 ). Also, the

crab’s legs are able to rotate along its leg joints(JL1-JL4 ), giving the crab the ability

to move diagonally [5].

(b) Moving forward and backward (c) Moving diagonally

Figure 2.14: Porcupine crab movement

The crab model is designed to have similar motion characteristics as the real crab.

Using the joint of the real porcupine crab as a reference, this thesis proposes a design

of a ball joint with a special structure. As shown in Fig. 2.15, the ball joint consists

of two parts and has two rotational degrees of freedom, which can well-simulate the

motion of the crab’s joint, and it is also suitable to be built by a 3D printer. The
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main research object of the thesis is the crab shell.

Figure 2.15: Ball joint structure

Multiple 3D printed crab models need to be prepared as experimental objects for

iterative optimization and adjustment of the algorithm. In order to minimize the

preparation time between experiments and reduce the waste of 3D printing materials

(time and cost optimization), inspired by the charging plug of electric cars, this thesis

proposes a novel design of crab spine part with a replaceable and detachable structure,

the bottom end of the spine part is designed as a pin connector, which has a small

bevel structure that makes it easier to insert and less likely to break. Multiple slots

are set on the corresponding positions of the crab body, where the spine parts can be

easily, securely and accurately fixed. Figure 2.16 shows the assembly of the porcupine

crab model.

According to the characteristic of the real porcupine crab, spines are evenly dis-

tributed on the shell surface of the crab. They are growing in the direction perpen-

dicular to the crab shell surface where the root of the spine is located. The shape

of the spines is conical, and the spines in the middle region of the shell are longer in

length and thicker in diameter than the spines near the edge [4]. The spine parts in

this thesis are designed to mimic the location and dimensional characteristics of the
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Figure 2.16: Assembly of the porcupine crab model

real porcupine crab, as shown in Fig. 2.17.

In this thesis, the crab model is manufactured by a 3D printer with the PETG [84]

3D printing material. The Shore hardness of the PETG material is 71.4D [85], similar

that of the real porcupine crab shell, which makes it suitable to be used as the

experiment material. The 3D–printed porcupine crab model is shown in Fig. 2.18.

2.5 Electrical System Design

Figure 2.19 shows the power supply and control system diagram of the robot-based

spine removal system. In this system, the workstation is the central control unit,

connected to the robot control box through a network switch via Ethernet TCP/IP

protocol. The Microsoft Azure Kinect camera is connected to the workstation through

a USB-C cable for transmitting images and point cloud data. The xArm6 robot arm

is connected to the robot control box via a cable that can simultaneously transfer

the control signal and provide the power supply. Two sets of power supply power the

system: the workstation, robot control box and cutting tool are powered by 120 volts
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(a) Crab shell part (b) Crab spine parts

(c) Spine part dimension 1 (d) Spine part dimension 2

Figure 2.17: Shell and spine parts of the porcupine crab model

AC, the network switch and the Microsoft Azure Kinect camera are powered by 12

volts DC. In order to ensure safety during the experiment and reduce the interference

signal that is generated by the cutting tool when operating at a high rotation speed,

all parts of the systems are well-grounded.

Redundancy design theory has been used in the system’s development phase, leav-

ing room for upgrading and optimization of the system. The system power supply has

about 40% redundancy, 16 digital and 8 analog input and output ports are reserved
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Figure 2.18: 3D-printed porcupine crab model

Figure 2.19: Robot-based spine removal system control and power diagram

that can be used to connect to relays, valves and other actuators, as well as digital

and analog sensors for data acquisition.
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2.6 Simulation System Setup

The thesis uses ROS as the simulation platform in which the simulated robot working

station can be set as the real one in the real world. The 3D RGB-D camera and the

robot with the same specifications as its real counterparts can be simulated, and the

3D model of the porcupine crab and robot end-effector can also be loaded into it.

The result of image and point cloud acquisition, processing, and robot trajectory

generation can be verified. The experiment parameters and other information can

be visualized inside ROS simulation, which is helpful for algorithm modification and

verification.

In order to visualize, simulate and control the motion of the xArm6 robot, it is

necessary to build a robot-specific model in the ROS system. The format of the robot

model in the ROS system is named URDF(Unified Robot Description Format), an

XML-based robot description format that abstracts the robot model into a markup

text file. This format can accurately describe the size, colour, mass and moment of

inertia of the robot links, as well as the position and rotation angles of the robot

joints.

Figure 2.20 (a) and (b) show the selected section of the URDF model of the xArm6

robot, and Fig. 2.20 (c) and (d) visualize the contents of the URDF model.

The <link> element describes the name, frame location, mass and inertia, visual

features, and collision properties of the robot linkage. The <link> element contains

multiple tags, whose functions are described below:

-<visual>: This tag specifies the shape of the link, which contains the file path

of the 3D STL model of each link, when ROS loads the URDF file, the 3D model of
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(a) URDF Link description (b) URDF Joint description

(c) URDF Link image (d) URDF Joint image

Figure 2.20: URDF Robot description format

the links will be automatically loaded and visualized.

-<collision>: The content of this tag is usually the same as the <visual> tag, but

with another function for calculating the collision parameters of the robot. Its origin

is the reference frame of the collision element.

-<inertial>: This tag is required when the robot model is loaded and simulated

in a physic simulator (ROS Gazebo), the origin of this tag is the inertial reference

frame, which is required to be at the center of the gravity of the link.

The <joint> element describes the relative relationship and connection method

between two links, including the joint name, joint origin, joint limitation and other
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properties. The type of joint can be revolute, prismatic or planar. The <joint>

element also contains multiple tags, whose functions are shown below:

-<origin>: The origin of the joint is located at the origin of the child link, which

is the relative position of the child frame to the parent frame.

-<limit>: The joint’s limit defines the joint’s rotation and speed limitations.

From the above description, the URDF model mainly contains the position and

rotation relationship between each link and joint of the robot. By using the D-H pa-

rameter of the xArm6 robot given in Table 2.2, the URDF model of the xArm6 robot

can be established. Full text of the URDF model can be checked in the Appendix.

As shown in Fig. 2.21(a), the URDF model of the robot is visualized in the ROS

Rviz system. The TF package [86] in the ROS system can also be used to verify the

URDF model, as shown in Fig. 2.21(b), the TF package displays the tree structure

of the robot in which the relationship between links and joints is visualized and can

be checked easily. After comparing with the DH parameters, the URDF model of the

robot is correctly established.

(a) xArm6 robot visulization in Rviz (b) xArm6 robot TF figure

Figure 2.21: xArm6 robot URDF model
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Beside the robot model, the OpenNI package [87] is uesd to create the simulated

3D camera in the ROS simulation environment with the same function as its real

counterpart. This simulated camera is aligned onto the robot model by adding the

camera description into the URDF model of the robot, including the resolution, in-

stallation position, reference coordinate frames, and other relevant parameters of the

Microsoft Azure Kinect camera. Figure 2.22 shows the result of the simulated cam-

era that can accurately collect the point cloud data of the object in the simulation

environment.

Figure 2.22: Simulated camera in ROS system

The final step is to load the crab model mentioned in Section 2.4.3 into the simu-

lation environment, as shown in Fig. 2.23, the complete simulation environment has

thus been built.
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Figure 2.23: Complete simulation environment

2.7 Robot Control System Setup

Once the proposed method that is verified in the ROS simulation system, the ROS

control system can send the control commands over the network to the robot control

box to control the real robot arm in the laboratory. It can also collect the real-time

status of the robot system while the real robot arm is executing the trajectory so that

the operator can monitor all parameters of the experiment.

As shown in Fig. 2.24, the MoveIt [88] and the ros control [89] packages are used

to control the real robot. This thesis generates the robot spine removal path from

the 2D image and 3D point cloud data, which will be imported into MoveIt package

to calculate the joint parameters corresponding to all points on the robot tool path.

The output joint parameters will be transmitted to the ros control package to control

the real robot to execute the trajectory.

The ros control package contains a series of controller, actuator and hardware in-

terfaces to control the real robot actuators. It uses a closed-loop feedback mechanism,
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Figure 2.24: Robot control system diagram

typically the PID controller that sends the appropriate commands to robot actuators

and receives real-time status from the robot joints’ encoders for feedback control.

The MoveIt and the ros control packages will be described in detail in the following

sections.

2.7.1 MoveIt Package

In this thesis, the robot’s basic motion planning is implemented using the ROS MoveIt

package, which has collision checking, motion planning, and inverse kinematics(IK)

functions. The control structure diagram of the MoveIt package is shown in Fig. 2.25.

The move group node is the core of the MoveIt package, as this node acts as an

integrator of the various components of the ROS system and the robot controllers.

From the structure diagram, it can be seen that the move group node loads the

robot kinematics data such as the robot description file (URDF), the semantic robot
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Figure 2.25: MoveIt package control structure diagram

description file (SRDF)4 and other configuration files from the ROS parameter server,

which will be used for motion planning and simulation by the MoveIt package. After

the robot trajectory is generated, the trajectory will be sent from the move group

node to the ros control package for execution. This node also collects the robot

controller status, robot joints status and other datas from the real robot.

MoveIt package provides several sets of inverse kinematic(IK) solvers that can be

used to solve the rotational angle of each joint of the robot when the end-effector

pose is known. The default IK solver is the KDL IK solver distributed by the Orocos

4The SRDF complement the URDF and specifies joint groups, default robot configurations, ad-

ditional collision checking information, and additional transforms that may be needed to completely

specify the robot’s pose.
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Project [90], which is a numerical IK solver, MoveIt also provides the TRAC-IK op-

timized numerical solver [91] and the IK-FAST analytical solver [92], and can import

the user-defined IK solver as well.

There are some stopping mechanism in the robot operational space to prevent the

robot from colliding with itself and obstacles in the environment while moving. The

MoveIt package provides the FCL(Flexible Collision Library)-based collision detec-

tion function [93], which is an open-source function that implements various collision

detection and avoidance algorithms.

MoveIt package can communicate with multiple motion planners through a plugin

interface using the ROS Action and Service communication protocol (offered by the

move group node). The primary function of the motion planner is to move the robot

end-effector from one pose to a new pose with position, orientation, visibility, and

joint constraints. The OMPL [94] is used as the default motion planner, which will

be described in detail in the following sections.

Based on the above description, the MoveIt package has all the basic functions

for robot motion planning. In this thesis, the calculated waypoints for spine removal

are imported to the MoveIt package to plan the robot motion.

Figure 2.26 shows the general process of motion planning using the MoveIt pack-

age. Before using the MoveIt package for motion planning, the start pose and the end

pose5 of the robot end-effector need to be determined. Using the inverse kinematic

(IK) solver, the rotational angle of each joint of the robot at the start and end poses

can be calculated and imported into the motion planer. The goal of motion planning

5Pose: the pose contains the xyz coordinate of the tool center point (TCP point) in the global

frame B and the rotational angles of the tool frame T with respect to the global frame B
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is to obtain a series of joint trajectories, velocities, accelerations, and other parame-

ters from the start pose to the end pose while ensuring that the robot does not collide

with itself or other obstacles. The result of motion planning will be sent back to the

move group node, which then is transferred to the ros control package for execution.

Figure 2.26: Motion planning using MoveIt package

2.7.1.1 MoveIt Setup Assistant Configuration

The previous section describes the main function of the MoveIt package. To use the

MoveIt package control the robot, the robot model needs to be configured using the

ROS-based MoveIt Setup Assistant plugin, a graphical user interface. The Unified

Robotics Description Format(URDF) model of the robot is imported to this plugin.

The Semantic Robot Description Format(SRDF) description file and other necessary

configuration files will be generated, which will be used in the MoveIt package to

simulate and visualize the robot’s motion and can also be used to control the real
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robot arm.

The configuration process of the MoveIt setup assistant plugin is shown in Fig. 2.27,

in which the left side of the interface shows the main contents that need to be config-

ured. After the URDF model of the robot is loaded into the MoveIt setup assistant

plugin, the next step is to configure the robot’s self-collision detection matrix. The

kinematic planning group also needs to be set up. In this thesis, the kinematic plan-

ning group is set as “xArm6”, which contains six rotational joints. After that, the

robot’s start pose is set so that it can quickly return to the start pose at any time dur-

ing its motion. After the above process is completed, a complete robot configuration

package can be generated.

Figure 2.27: MoveIt setup assistant configuration process
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In order to verify the accuracy of the generated configuration package, the ROS

RViz visualization tool is used to load the configuration packages generated by the

MoveIt setup assistant plugin. As shown in Fig. 2.28, the 3D model of the xArm6

robot and the frame location for every link are correctly displayed in the RViz tool,

which indicates that the configuration package is ready to use.

Figure 2.28: MoveIt setup assistant configuration result

2.7.1.2 Inverse Kinematic(IK) Solvers

The inverse kinematic (IK) is the mathematical process of calculating the joint pa-

rameters needed to let the robot end-effector be in a given orientation and position

related to the global coordinate system.

The Kinematics and Dynamics Library(KDL) solver [90] is the default IK solver

in the MoveIt package, which is encapsulated in the MoveIt kdl parser package that

provides both the forward kinematic (FK) and the IK functions for robot motion
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planning. The KDL IK solver is developed based on the Newton-Raphson iteration

method [95], which has the advantage of fast convergence speed and self-correcting

capability.

The main idea of the Newton-Raphson method is to establish a relationship be-

tween the robot velocities in joint space with the robot end-effector velocities in the

task space. As shown in eq. (2.11), the generalized velocities of the robot end-effector

in task space consists of the velocity v and angular velocity w, a six-dimensional

vector. It can be calculated by using eq. (2.11), where D = [d⃗τ , δτ ] consists of instan-

taneous linear velocity d⃗ and angular velocity δ, which can be calculated from the

derivative of the generalized velocity with respect to time t.

 v

w

 = lim
∆t→0

1

∆t

 d

σ

 = lim
∆t→0

1

∆t
D (2.11)

The generalized velocity of the six-degree-of-freedom robot in the task space and

the velocity in joint space can be inter-converted by a 6 × 6 Jacobian matrix J,

substituting J into eq. (2.11) leads to eq. (2.12).

 v

w

 = J(θ)
dθ

dt
= lim

∆t→0

1

∆t
D (2.12)

Equation(2.12) can be re-written as Jdθ = D, where J is the Jacobian matrix

of the xArm6 robot which is a function of joint angles θ = [θ1, θ2, θ3, θ4, θ5, θ6]. If

the Jacobian matrix J is of full rank, the equation will have infinite sets of solutions.

However, there will be no solution when the Jacobian matrix J is singular [95]. There-

fore, to avoid that, the Moore-–Penrose pseudoinverse [96] of the Jacobian matrix is
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calculated. Using the Householder Transformation and the singular value decompo-

sition(SVD) method to decompose J (eq. (2.13)). The pseudoinverse of J is shown in

eq. (2.14). Equation (2.12) can be re-written as eq. (2.15).

J = U
∑

V ∗ (2.13)

J+ = V
+∑

U∗ (2.14)

dθ = J+D (2.15)

Assume that the current robot pose is Tcur, ∆ can be obtained from the instanta-

neous velocity matrix of the robot, which is shown in eq. (2.16) and eq. (2.17), where

I is a 4-by-4 identity matrix. D in eq. (2.15) can be obtained by ∆ post-multiply

Tcur.

∆ = Trans(dx, dy, dz)× Rot(k, dθ)− I (2.16)

∆ =



1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1





1 −δx δy 0

δz 1 δz 0

−δy δx 1 0

0 0 0 1


−



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


=



0 −δx δy dx

δz 0 δz dy

−δy δx 0 dz

0 0 0 0


(2.17)

Set Tend as the target pose, and Tcur as the current pose of the robot, the corre-

lation between the Tcur and Tend is shown in eq. (2.18).
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Tend = Tcur(∆ + I) (2.18)

∆ = T−1
curTend − I (2.19)

Combining (2.17) and (2.19), the value of D = [d⃗τ , δτ ] can be calculated. In

summary, the main steps for solving the IK of a general 6-DOF robot using the

Newton-Raphson method are described below:

(1) Based on the current joint angles, calculate the current pose of the robot

end-effector Tcur using the FK.

(2) Set Tend as the target pose of the robot end-effector, and calculate the instan-

taneous velocity matrix by using eq. (2.19). Then calculate the instantaneous velocity

vector D of the robot.

(3) Calculate the Jacobian matrix J of the robot by taking the derivative of each

joint angle, and then establish the equation of the Newton-Raphson method Jdθ = D.

(4) Use the SVD decomposition method to decomposite the Jacobian matrix J

and get the pseudoinverse J+, Calculate the value of dθ with the equation dθ = J+D.

(5) Calculate the value of ||dθ||, and set a value of motion planning accuracy ϵ.

If ||dθ|| ≤ eps, exit the loop and output the current pose of the end-effector as Tcur.

If the iteration count is larger than the limitation count N , exit the loop and output

the failure message. Otherwise, set θcur = θcur + dθ, and calculate the value of Tcur,

repeat steps 1 to 5, until the loop exit condition is met. θ will be the final solution

of the inverse kinematic(IK) calculation.

TRAC-IK [97] is similar to the KDL inverse kinematic solver, which is also a nu-
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merical solver with many improvements. It concurrently calculates the robot IK with

sequential quadratic programming(SQP) IK algorithm and the improved Newton-

Raphson iteration IK algorithm, with the optimum trajectory result returned. The

TRAC-IK solver is about twice as fast as the KDL solver, and the success rate in-

creases from 70% to 98% [97]. The xArm6 robot is a six degree-of-freedom robot arm,

which requires high stability for the inverse kinematic calculation, so the TRAC-IK

solver is chosen in this thesis.

2.7.1.3 Collision Detection

Collision detection is also an important part of robot trajectory planning with the

MoveIt package, a criterion for verifying the generated robot trajectory. Traditional

collision detection algorithms are computationally complex and time consuming [98].

The MoveIt package has a built-in collision detection library based on the Flexible

Collision Library(FCL) [93], which can detect collisions between basic shapes (such

as sphere, cubes, cylinders, etc.) and has a high efficiency. It is ideal for collision

detection during robot trajectory planning. When using the FCL method for collision

detection, multiple sampling points need to be checked during the trajectory planning

process to determine whether the joint angle exceeds the limit and whether the robot

has collision with itself or with other obstacles in the environment.

In the MoveIt package, the Aixe Align Bounding Box method (AABB method)

is adopted, which uses a rectangular parallelepiped with each face perpendicular to

one of the basis vectors in the global coordinate frame. The fumula of the AABB

method is shown in eq. (2.20), where the lmin,mmin, nmin are the minimum coordinate
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and lmax,mmax, nmax are the maximum coordinate of the AABB box.

X = {(x, y, z) | lmin < x < lmax,mmin < y < mmax, nmin < z < nmax} (2.20)

Then the Separating Axis Theorem [99] is used to determine whether two objects

intersect. The process is as follow: the ranges of the projection of the object A and

B along X-axis in the Cartesian coordinate system are set as (minAx ,maxAx) and

(minBx ,maxBx). If these two ranges intersect, object A and object B may intersect

along the X-axis. The same process can be performed along Y -axis and Z-axis. Only

when the intersection occurs in all these three directions, it can be confirmed that

object A and object B collide with each other.

When using the MoveIt package to detect the collision of the robot, the detection

process mainly inculdes the self-collision detection and the collision detection with

the external obstacles in the nearby environment.

A. Self collision detection

The robot self-collision detection matrix has been configured in Section 2.7.1.1,

the effect of self-collision detection is shown in Fig. 2.29, where the part marked in red

indicates the location of the collision. The pseudocode of the self-collision detection

is shown in Algorithm 1.
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Figure 2.29: Robot self-collision detection

B. Collision with external obstacles detection

As shown in Fig. 2.30, a rectangular box object is added next to the robot to

verify the effectiveness of the collision detection between the robot and the external

obstacles, a simulation environment is created using the ROS RViz package. Then,

while manually dragging the robot arm in the simulation environment for the collision

detection test, the interfering parts will turn red when the robot arm interferes with

the box object, showing that the collision is detected.

As shown in Fig. 2.31, to test the collision detection and avoidance trajectory

planning function in the MoveIt package, two poses of the robot arm are set in the

ROS Rviz simulation environment as Pose1 and Pose2.

We set Pose1 as the robot start pose and Pose2 as the robot target pose, and use

the TRAC-IK inverse kinematic solver in the MoveIt package for trajectory planning.

When there is no obstacle in the robot trajectory, the planned trajectory of the robot

is shown in Fig. 2.32(a). Then, a cubic object is added to the simulation environment
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Algorithm 1: Robot self collision detection

1 Forward Kinematic(x);

2 for k ← 1 to 6 do

3 Ck ← FCL CUBE CREATE(x,k);

4 if CUBE CREATE(x,k) then

5 Return Trapped

6 end

7 Return Advanced

8 end

Figure 2.30: Robot external collision detection

as an obstacle to the robot’s motion. The robot trajectory is planned from Pose1 to

Pose2. The updated robot trajectory is shown in Fig. 2.32(b), it can be seen that

the robot trajectory successfully avoids the obstacle. The effectiveness of the collision

detection and obstacle avoidance algorithm can be verified.
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Figure 2.31: Two poses of the robot in RViz simulation environment

(a) Without obstacle (b) With obstacle

Figure 2.32: Trajectory planning result with and without obstacle

2.7.2 ROS Control Package

The ros control package is the connection layer between the ROS system in the central

control PC and the real robot controller. It contains a series of controller interfaces,

actuator interfaces, hardware interfaces and multiple practical toolboxes and can

help researchers quickly develop their projects and improve development efficiency,
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simplify the coding and commissioning workload. The ros control package contains

many modules, such as the classical PID control modules. In this thesis, ros control is

used to connect the ROS system to the xArm6 robot controller and control the xArm6

robot arm’s trajectory. The control system diagram of the ros control package to the

real robot controller is shown in Fig. 2.33.

Figure 2.33: ROS control diagram in this thesis

2.7.2.1 ROS Control Controller

The controller in the ros control package receives the expected trajetory of each joint

of the robot and uses this trajectory info to control the real robot arm. The joint tra-

jectory data can be either manually inputted or generated from the function packages

in ROS, such as the MoveIt package. In this thesis, the joint trajectory controller is

used as the main controller of the robot.

The joint trajectory controller is a controller in the ros control package for execut-

ing a trajectory of a set of joint values in the robot joint space, where the trajectory

is a set of path points consisting of position, velocity, acceleration and time stamp
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values. By default, the controller internally provides a B spline [100] interpolation

algorithm and can also be integrated with various kinematic planners.

For the xArm6 robot arm to be controlled by the ros control package, the control

description file needs to be configured in the ROS environment, including the robot

type, joint parameters, network communication rate and other parameters of the

xArm6 robot. The ros control package will load this configuration file, allocate the

necessary system resources, check for conflicts, and configure the associated resource

related to robot control. The control description file of the xArm6 robot is shown in

Fig. 2.34.

Figure 2.34: xArm6 robot ros control configuration file

2.7.2.2 Data Transmission Setting

ROS generally provides bi-directional data transmission through the Publisher/Subscriber

and Service/Client protocols [101]. However, when a stable and high-speed connec-
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tion needs to be established between the ROS system and the real robot controller,

the first two data transmission protocols cannot meet the requirements [101]. There-

fore, this thesis uses the more advanced Action/Client data transfer protocol, which

creates a system-level communication service with high privileges and can occupy

the system resource to ensure stable data transfer between the ROS system with the

real robot controller. The diagram of the ROS Action/client protocol is shown in

Fig. 2.35.

Figure 2.35: ROS Action/Client Protocol

2.8 Summary

This chapter described the overall design of the robot-based porcupine crab spine

removal system. Firstly, the system design philosophy and requirements are intro-

duced and analyzed, based on which the selection of each major part is determined.

Next, the mechanical design of the robot working platform, the crab model and the

robot end-effector are introduced in detail, and the system’s overall electrical design

is also elaborated. After that, the simulation platform is built in the ROS simulation

environment, which is consistent with its real counterpart. Finally, the algorithm
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of robot trajectory planning with the IK and collision recognition are introduced.

The real-time control requirement of the system is analyzed, and the robot control

framework based on the ros control package is built.
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Chapter 3

Methodology

3.1 Introduction

1In this chapter, the core methodologies developed within our research are intro-

duced in details, which are organized as follows. In Section 3.2, the point cloud

pre-processing method is introduced, including the filtering and denoising, smooth-

ing and normal finding, point cloud registration and reconstruction methods. Section

3.3 provides two trajectory planning methods for the porcupine spine removal appli-

cation. The first method uses the point cloud data of the crab as the only data source

and generates a robot spine removal trajectory covering the entire outer surface of

the crab shell through a novel point cloud slicing method. This method has been vali-

1The method presented in this section is published in the conference paper [74], Haodong Wu and

Dr.Ting Zou devised the project, worked out almost all of the technical details, and performed the

simulation and experiment, and also wrote the paper with input from all authors. Heather Burke

and Stephen King provided the background information and assisted with the on-site measurement

of the research object. Brian Burke provided advice from the perspective of a fisheries expert.
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dated in a simulation environment, but the cutting efficiency is relatively low because

the trajectory contains many non-cutting waypoints. One the other hand, the second

method combines the 2D image and 3D point cloud data to generate the trajectory.

Aruco code, acting as a medium, is used to establish the relationship between a 2D

image and a 3D point cloud data, so that the 3D coordinate of all the spines is able to

be extracted. Moreover, the trajectory can be generated and optimized by adopting

the cubic curve interpolation method.

3.2 Point Cloud Data Pre-processing

As introduced in Chapter 1, the Microsoft Azure Kinect RGB-D camera is used in

this thesis as the point cloud data acquisition device. This camera is based on time-of-

flight technology to measure the depth information of objects relative to the camera

coordinate system. The camera emits laser with a specific frequency to the target

area, and the object’s depth information can be obtained by calculating the time from

the emission to the return of the laser. The built-in algorithm can convert the depth

information into the point cloud data used in this thesis. Due to the environment

and other internal and external factors, such as the ambient light and vibrations,

the raw point cloud data may include outliers, noises and other unavoidable errors.

Therefore, the point cloud data pre-processing is significant to filter out the irrelevant

information and ensure that the point cloud data only include the relevant points and

information of the crab object.
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3.2.1 Filtering and Denoising

Due to the wide field of view of the Microsoft Azure Kinect camera, the redundant

information contained in raw point cloud data contains should be removed. A three-

dimensional low pass filter is applied, which can remove point cloud data outside a

given boundary along x, y, and z coordinates. In this thesis, the boundary is chosen

as the edge of the platform where the crab model is placed, all point cloud data

outside the platform is removed. Afterward, a statistical outlier removal algorithm

based on Gaussian distribution(d ∼ N (µ, σ2)) is used to search and remove outliers

as eq. (3.1).

µ =
1

nm

n∑
i=1

m∑
j=1

dnm, σ =

√√√√ 1

nm

n∑
i=1

m∑
j=1

(dnm − µ)2 (3.1)

where m and n are the column and row sequential numbers of each point, µ and

σ are the mean and the standard deviation of the average distance from the point to

its neighboring point inside the selected area [102]. As per the three-sigma rule of the

Gaussian distribution2, if the average distance from a point to its neighbouring points

is outside the range between µ − 3σ and µ + 3σ, this point will be considered as an

outlier and needs to be removed. This approach can not only filter out the noises and

outliers, but also have promising effects in removing the spines of the porcupine crabs

in our study. By taking the distance of each point on the shell to its neighbouring

points, those points on the spines that are far from the points on the shell are filtered

2The three-sigma rule denotes that, in probability theory and mathematical statistics, an event

is considered to be practically impossible if it lies in the region of values of the normal distribution

of a random variable at a distance from its mathematical expectation of more than three times the

standard deviation.
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out, thereby only point cloud data of points on the crab shell are retained. Figure 3.1

shows the point cloud comparisons before and after filtering and denoising.

(a) Raw point cloud data (b) Point cloud data after low pass fil-

ter

Figure 3.1: A comparison on the point cloud data before and after filtering and

denoising

3.2.2 Smoothing and Calculating Surface Normal

The measurement and alignment errors of the camera, though minor, can lead to

noises in the point cloud data that are difficult to be removed by using the statistical

filtering and denoising method. Also, high-frequency point data may cause the change

rate of the surface curvature significantly high. Moreover, since the spine data is

removed in the filtering and denoising, holes are left on the surface of the crab shell.

A least squares regression method [103] is adopted to smooth the point cloud data

and fill the holes on the shell surface. Figure 3.2(a) illustrates the comparison of

the curvature change rate of each tiny plane being composed of a center point and

its neighboring points in the point cloud data before and after smoothing. It reveals
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that the curvature change rate significantly decreases after smoothing. The curvature

rate is calculated by means of solving the eigenvalues of eq. (3.2)[104]. Figure 3.2(b)

and (c) show the point cloud data of the crab base shell before and after smoothing,

respectively. It is apparent that, after smoothing, the holes on the shell are smoothly

filled.

(a)

(b) (c)

Figure 3.2: (a) The rate of change in curvature of the crab shell base before and

after smoothing; (b) and (c): the point cloud data of the crab shell before and after

smoothing.
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During the spine removal process, the robot tool direction should be collinear to

the normal vector of the surface point, aiming to improve the deburring efficiency

without causing any damage to other parts of the crab shell. In this thesis, the prin-

cipal component analysis (PCA)-based method [105] is used to calculate the normal

vector of each surface point in the point cloud data. This method generates a tiny

plane containing each point and its neighbouring points, the normal vector of the

surface point thus being approximated as that of the tiny plane. The normal vector

of the central point Pi can be estimated from solving the eigenvalues and the cor-

responding eigenvectors from the 3 × 3 neighborhood covariance matrix C, defined

as

C =
1

N

N∑
i=1

(pi − p) (pi − p)T (3.2)

where pi is the position vector of point Pi, N being the number of points neigh-

bouring to Pi, p being the position vector of the centroid point. The corresponding

eigenvector of the minimum eigenvalue of matrix C, defined as ni = [nxi
, nyi , nzi ]

T , is

taken as the normal vector of Pi. Hence, following this approach, the normal vector

of each point on the crab shell can be obtained, as shown in Fig. 3.3. Those normal

vectors, along with the shell point coordinate, are used to calculate the robot tool

path.
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Figure 3.3: Normal vectors of surface points on the porcupine crab shell

3.2.3 Point Cloud Registration and 3D Reconstruction

Due to the principle of point cloud acquisition, one captured point cloud file only

contains a set of points of the crab object surface in the line of sight of the camera.

By using the KinectFusion [106] method, this thesis acquires multiple sets of point

cloud files around the crab body for registration to find the relationship among each

point cloud file, and then reconstructs a whole point cloud file containing all the

information around the crab shell.

The 3D reconstruction method consists of several steps: the instantaneous cam-

era poses of the point cloud files processed in former sections can be calculated by

using the Iterative closest point(ICP) [107] algorithm. The truncated signed distance

function(TSDF) that representing each point cloud file is then calculated. After that,

using the camera pose information with the TSDF representation, the point cloud files

under camera coordinate system C are converted to the global coordinate system B

for registration and 3D reconstruction. The overall working flow of the KinectFusion
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method is shown in Fig. 3.4.

Figure 3.4: KinectFusion method working flow

3.2.3.1 SDF and TSDF

The Signed Distance Function (SDF) [108] represents the weighted signed distance

value of each point in the grid along the direction of the camera’s line of sight to the

object surface. The absolute value of the SDF for each point indicates the perpendic-

ular distance between this point to the object surface. The points within the surface

can be set as negative SDF values. Accordingly, positive SDF values will be given

for the points allocated outside the surface. To extract the surface of the object, all

points with zero SDF value should be identified and connected. As shown in Fig. 3.5,

the curve represents all the points with zero SDF value, which are called Zero-crossing

points.

For each point, its three-dimensional coordinates (Xw, Yw, Zw) in the global frame

are first obtained, and the point projection coordinates (u, v) onto the image plane are

calculated according to the pinhole camera model theory [109]. As shown in eq. (3.3),

the difference between the calculated depth value of the projected point and the depth

information captured by the camera is defined as the directed distance d, where z
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Figure 3.5: SDF surface representation

is the z-axis component of the three-dimensional coordinates of the point, and Id is

the depth image (point cloud) acquired by the camera. As shown in Fig. 3.6(a), the

length d of the red line represents the SDF value of the point X. If d is negative, the

point is in front of the surface; otherwise, it is behind the surface.

d = z − Id(u, v) (3.3)

(a) Point-to-Point distance (b) Point-to-Plane distance

Figure 3.6: Illustration of the SDF calculation [106]

However, the high change rate of the surface curvature may adversely affect the

accuracy of the SDF calculation by point-to-point distance method [108]. The tangent

distance from the point to the object surface should be chosen for SDF calculation as
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this method will create a more accurate and robust result. As shown in Fig. 3.6(b),

the vector n (green line) represents the surface normal vector, and d (red line) is

defined as the distance from the point X to the tangent surface. Let (u, v) be the

coordinates of point X in the camera coordinate system, and n(u, v) as the surface

normal vector. The distance from the point to the tangent plane is selected as the

optimized SDF value and calculated by eq. (3.4), in which x is the vector from the

camera to point X and y is the vector from the camera to the surface point Y along

the camera optical axis.

d = (y − x)Tn(u, v) (3.4)

The method described in the previous section is a simple and efficient way for

SDF calculation. Nevertheless, if the point is far away from the object surface, the

accuracy of SDF value is not ideal. Fortunately, during the 3D reconstruction of the

object, only the points near the object’s surface will be factored. In contrast, the

points far away from the object’s surface are considered as outliers and will impose

no effect on the 3D reconstruction process. Therefore, to avoid significant errors and

reduce the computational load, the SDF values of these points need to be truncated.

The SDF values within |d| ≤ δ are named as the Truncated Signed Distance Function

representation (TSDF) [110], as shown in eq. (3.5).

dtrunc =



−δ, if d < −δ

d, if |d| ≤ δ

δ, if d > δ

(3.5)
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3.2.3.2 Camera Pose Estimation and Point Cloud Reconstruction

As shown in Fig. 3.7. The ICP [107] is a classical point cloud registration algorithm.

It calculates the transformation matrix to map one set of point cloud data to another

one. The corresponding points in these two sets of point cloud data can match onto

the other. The sampling frequency of the Azure Kinect camera is 60 Hz, and there is

only a small movement between the continuously collected point cloud data, ensuring

the ICP algorithm’s convergence and accuracy.

Figure 3.7: Point cloud registration using ICP algorithm [107]

The core algorithm of the ICP method is to use the energy minimization [107] to

find the transform matrix between the camera coordinate system and the world/global

coordinate system at the K-th frame. The ICP method is encapsulated in the open

sourced point cloud library (PCL) [111], which can be easily integrated into the whole

project.

After the camera poses are calculated for each set of point cloud data, the newly

acquired point cloud data need to be transformed into the global coordinate frame

and fused into the existing point cloud model. For example, let the coordinate of
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a point in the point cloud data that acquired in the k − 1 frame be Fk−1(p), and

the corresponding point in the point cloud data in frame k be FRk
(p). If these two

corresponding points are located in the same voxel, the coordinates of these two points

are fused by using the weighted fusion method in eq. (3.6), where Wk−1 and WRk
are

the accumulated weight of points in frame k−1 and k. Then the weight of each point

is updated using eq. (3.7), where Wη is the maximum weight.

Fk(p) =
Fk−1(p)Wk−1(p) + FRk

(p)WRk
(p)

Wk−1(p) +WRk
(p)

(3.6)

Wk(p) =

 Wk−1(p) +WRk
(p), Wk(p) < Wη

Wη, Wk(p) ≥ Wη

(3.7)

3.2.3.3 Result of Registration and Reconstruction

The point cloud processing method is programmed using the C++ programming

language. To verify the effectiveness of the point cloud registration and reconstruction

method described in the former section. This thesis experimented with the process

of point cloud acquisition, filtering, denoising, registration and reconstruction in the

ROS simulation environment. Figure 3.8(a) shows the simulation environment built

in the ROS Gazebo environment. Figure 3.8(b) shows that the camera collected a

series of point cloud data around the crab model, which is used as the program’s

input. Figure 3.8(c) shows the reconstruction result of the crab model. The result

meets the expected requirements, and the method and program are validated.

After being validated in the simulation environment, the method is applied to the

real experiment environment. As shown in Fig. 3.9(a), the point cloud data of the
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(a) Gazebo simulation setup (b) Point cloud in RViz (c) Simulation result

Figure 3.8: Point cloud processing method validation in ROS simulation environment

crab were captured using a real Azure Kinect camera, and the point cloud data were

processed, registered and reconstructed using the same procedure as in the simulation

environment.

The spine’s shape on the crab shell is a conical shape with small diameters. Due to

limitations in the camera’s parameters and the principles of depth image acquisition,

only a limited number of laser points can be projected onto the spines. Meanwhile,

the surface of the spines irregularly reflects the laser light emitted from the camera

to other parts of the space. For the above reasons, the laser acquisition sensor on the

camera cannot acquire sufficient information about the crab spines. As a result, the

features of crab spines could not be well reconstructed. This thesis also tested the

latest point cloud processing techniques, such as the BundleFusion [112] and Elastic-

Fusion [113], which are all developed based on KinectFusion with the same principle

but slight differences. All of them provide almost the same output performance. As

shown in Fig. 3.9(b), in addition to the spines’ characteristics, the features of the

crab shell surface are well reconstructed in the real experiment environment, and this

point cloud data is used as the research object to generate the trajectory of robot
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spine removal.

(a) Experiment setup (b) Experiment result

Figure 3.9: Point cloud processing method validation in real experiment environment

3.3 Robot Spine Removal Trajectory Planning

3.3.1 Coordinate System Setup

As shown in Fig. 3.10, four Cartesian coordinate frames are defined: the global frame

B whose origin Ob is fixed at the robot base, a flange coordinate frame F , with its

origin Of fixed at the robot flange, a camera coordinate frame C, whose origin Oc is

located at the focal point of the camera, and a robot tool frame T , with its origin Ot.

The origin of the robot tool frame is also called the TCP point (tool center point),

which is fixed at the tip of the robot end effector.

In this thesis, the robot trajectory for spine removal comprises a set of trajectory

points of the TCP point in the global frame B. The pose of each trajectory point can

be defined w.r.t. the global frame B.
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After processing, the point cloud data will be used as the input to calculate

the robot spine removal trajectory. Since the coordinate of the robot trajectory

is represented in the global frame B, in order to generate the trajectory, which can

be more applicable to the robot, from the point cloud data, the data needs to be

transformed into the global frame as well.

Each point in the point cloud data has a unique coordinate, in either the global

frame or the moving frame attached to the acquisition device. In this thesis, the

crab’s point cloud data is obtained by using the high-resolution 3D RGB-D camera,

which is installed at the robot end-effector. The raw data is composed of the position

information of each point Pi, with coordinate pC
i = [xi, yi, zi]

T expressed in the camera

frame C. Generating the robot trajectory in the global frame, which is a common

practice, involves two coordinate transformations of each point cloud data from the

camera frame C to B.

Figure 3.10: Coordinate frame definition on the 6-DOF xArm6 robot
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Two coordinate transformations TF
C and TB

F are involved to express the point

cloud data in the robot base frame B, in which TF
C transforms the data from C to

F , also known as the hand-eye calibration3, while TB
F further transforms the data

from F to B. Within the framework of the DH parameters [83], TB
F can be calcu-

lated by means of combining the transformation matrix between two adjacent frames

Oi−1Xi−1Yi−1Zi−1 and OiXiYiZi, which is expressed in eq. (3.8).

Ti−1
i =



c(θi) −s(θi) 0 ai−1

s(θi)c(αi−1) c(θi)c(αi−1) −s(αi−1) −dis(αi−1)

s(θi)s(αi−1) c(θi)s(αi−1) c(αi−1) dic(αi−1)

0 0 0 1


(3.8)

in which c(·) and s(·) stand for cos(·) and sin(·), respectively. As per the modified DH

parameters adopted in [83], frame OiXiYiZi is attached to link i, where i = 1, · · · , 6.

In eq. (3.8), di is the offset of Xi−1 to Xi along Zi-axis, θi being the angle from Xi−1

to Xi about Zi-axis, ai being the length of the common normal of the Zi axis and

Zi+1 axis, and αi denotes the angle from Zi to Zi+1 about the common normal.

By using the DH parameters in Section 2.4, the transformation matrix TB
F from

frame F to B can be expressed as

TB
F = T0

1T
1
2T

2
3T

3
4T

4
5T

5
6 (3.9)

Thus, any point cloud data, saved in the form of a position vector pC
i = [xi, yi, zi],

3Hand-eye (eye-in-hand) calibration is a method to determine the transformation between the

robot flange coordinate frame (hand) and the camera coordinate frame (eye) that is mounted on the

robot end-effector by using a calibration pattern [114].
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is described in the global frame B, namely,

pB
i = TB

FT
F
C p

C
i (3.10)

3.3.2 Point Cloud Slicing-based Robot Tool Path Planning

Method

The main idea of the point cloud slicing method is to create a set of planes E according

to a particular requirement as shown in Fig. 3.11(a). These planes intersect with the

point cloud data, therefore, a set of cross-section points can be obtained. In addition,

The number of the planes, n, can be calculated as

n = (yf − yl)/d (3.11)

where yf and yl are the coordinate of the first and the last point along the slicing di-

rection, i.e., along Y -axis, of the pre-processed point cloud data, d being the deburring

tool’s diameter.

Since the point cloud density is limited, the number of points on the slicing plane

Ei may not be sufficient to generate a smooth tool path. In order to address this issue,

a common nearest points searching and pairing method should be adopted [115]. As

shown in Fig. 3.11(b), two planes Eil and Eir, paralleling to the slicing plane Ei,

are generated, one on either side, with the same offset distance of δ = d/2 from

Ei. The point cloud data sets within the region from Eil to Ei, and from Eir to Ei,

are defined as Kl and Kr respectively. These data sets are stored by using a 3 × n

matrix, with each column representing the position vector of the ith data point P l
i

as pl
i = [xl

i, y
l
i, z

l
i] or P r

i as pr
i = [xr

i , y
r
i , z

r
i ], i = 0, 1, . . . , n. By using the iteration
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method, all the nearest point pairs P l
i and P r

i in the data set of Kl and Kr can be

identified. Assuming the slicing direction is along Y -axis, the intersection point of

the line formed by the nearest point pairs P l
i , P

r
i and the plane Ei can be calculated

as


xe
i = (xl

i − xr
i )t+ xr

i

yei = ymin + (0.5 + j)δ

zei = (zli − zri )t+ zri

(3.12)

where ymin is the minimum y coordinate over all point cloud data points, j representing

the sequence number of the slicing plane, and t being defined as

t =
xe
i − xr

i

xl
i − xr

i

=
yei − yri
yli − yri

=
zei − zri
zli − zri

(3.13)

Using the PCA method, the intersection point P e
i is then added into whole point

cloud data to calculate the normal vector nei of point P
e
i .

The pre-processed point cloud data contains 32,980 points, which is reasonable to

achieve an acceptable computational speed for the nearest point pairs searching at

this stage. If a camera with higher resolution is used in the future, an octree-based

searching algorithm is recommended to be used to obtain the point pairs data in a

more efficient way.

After generating the discrete waypoints P e
i on each slicing plane Ei, they are

connected into a whole tool waypoints path Pwp,i = (xwp,i, ywp,i, zwp,i). Since the

slicing direction of each plane is along Y -axis, the path point searching starts from

the first intersection point on the first slicing plane. Then, each slicing point along

X-axis in this plane will be iterated and connected until there are no more points on
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(a) (b)

Figure 3.11: Point cloud slicing and nearest point-pair searching

that plane. Following this approach, the search in the inverse direction in continued

on the next slicing plane until reaching the end point. Figure 3.12 illustrates the

robot tool path generated by searching all points on the selected interaction plane.

Figure 3.12: The generated robot tool path using point cloud slicing method
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3.3.3 Robot Tool Path Planning Method Based on a Com-

bination of 2D Image and 3D Point Cloud

In order to improve the efficiency and accuracy of the point cloud slicing based robot

tool path planning method. This section proposes an innovative method incorporat-

ing 2D RGB image, 3D depth image and 3D point cloud data to optimize the robot

trajectory planning for high accuracy. This method not only allows for the collec-

tion of high-resolution images using low-resolution cameras, but also provides more

detailed information. The main process of this method is shown in Fig. 3.13.

Figure 3.13: Robot Tool Path Planning Method based on a Combination of 2D Image

and 3D Point Cloud
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• Multi-view 2D RGB Images and 3D Depth Images Capturing

The Microsoft Azure Kinect camera used in this thesis can capture both 2D RGB

and 3D depth images. The robot carries the camera around the crab shell and collects

a series of 2D RGB images and 3D depth images, as shown in Fig. 3.14.

Figure 3.14: Multi-view 2D RGB and 3D depth images capturing

•Spine Detection and Verification

This thesis proposes a method to combine the 2D RGB image and 3D depth image

to extract information about the crab spines in the 2D RGB image. By processing the

2D RGB image, the edge information of all spines should be extracted first, and then

the coordinate of the intersection point of the extracted edge lines can be calculated
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and used as the potential spines’ points. After that, the corresponding points of the

potential points in the 3D depth image can be identified and verified on whether the

potential point is a point or not. All verified points will be saved for the following

process.

Due to environmental interference and other reasons, the 2D image captured by

the camera contains noisy information, the most common of which are salt and pepper

noise and Gaussian noise [116]. Therefore, this thesis first uses the Gaussian filtering

method to remove the noise from the raw image, which is a necessary step for edge

detection.

Equation (3.14) represents the two-dimensional Gaussian function [117], where x, y

are the pixel coordinates in the Gaussian convolution kernel, and δ is the standard

deviation of the Gaussian distribution. In this thesis, a 3 × 3 Gaussian convolution

kernel with a standard deviation of δ = 1.5 is used to process images. This choice was

made because the 3× 3 kernel size is efficient and provides good results, while larger

kernel sizes like 5 × 5 can cause over-blurring and introduce unwanted side effects.

The standard deviation of δ = 1.5 was determined to be the optimal value through

experimentation and comparison with other values. Figure 3.15(a) shows the original

binary image and Fig. 3.15(b) shows the Gaussian filtered image.

G(x) =
1√
2πσ2

e−
x2

2σ2 (3.14)

For the next step, the intensity gradient of the filtered image will be calculated

by the Sobel [118] edge detection operator. This operator consists of two sets of 3×3

matrices, which are used to convolute with the image to obtain the grayscale values in
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(a) Original image (b) Gaussian filtered image

Figure 3.15: Gaussian 3× 3 convolution kernel

the horizontal and vertical directions. As shown in eq. (3.15), A represents the filtered

image, and Gx, Gy represent the derivative approximations of the filtered image in

horizontal and vertical edge detection. Then, the gradient magnitude of each pixel

in the filtered image can be calculated using eq. (3.16). As shown in Fig. 3.16, if

the gradient magnitude G is higher than the threshold, the pixel will be defined as

the edge point. After connecting all the edge points, the edge lines in the filtered

image can be extracted, and all the intersection points between edge lines can also

be calculated.

Gx =


−1 0 +1

−2 0 +2

−1 0 +1

A,Gy =


+1 +2 +1

0 0 0

−1 −2 −1

A (3.15)

G =
√

G2
x +G2

y (3.16)
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Figure 3.16: Edge and intersection points detection

The coordinate of the intersection points in the 2D image are set as pi,rgb(n) =

(xi,rgb(n), yi,rgb(n)), where i is the number of the 2D image, and n is the number

of intersection point in the 2D image. As shown in eq. (3.17), the transformation

matrix used to aligned the 2D image and 3D depth image can be acquired from the

camera’s API, where Rr2d and Tr2d are the rotation matrix and translation matrix

from the 2D RGB image coordinate system to the 3D depth image coordinate system.

pi,depth(n) = (xi,depth(n), yi,depth(n), zi,depth(n)) represents the calculated corresponding

point of pi,rgb(n) in the 3D depth image coordinate system. Figure 3.17 shows the

corresponding point pairs in the 2D RGB and 3D depth image.

pi,depth(n) = Rr2dpi,rgb(n) +Tr2d (3.17)

After calculating the corresponding point pi,depth(n) in the 3D depth image, the

next step is to determine whether these points are the point of the crab spines or not.

97



(a) Image with edge and intersection points (b) Depth image with corresponding points

Figure 3.17: Corresponding point pairs in the 2D and 3D image

As shown in eq. (3.18), this thesis proposes a method of calculating the depth mean

value z̄ of the t nearest points around point pi,depth(n). As shown in Fig. 3.18, if the

depth mean value is between the threshold of z0 and z1, the point is considered as the

point of the crab spine, and the corresponding point back in the 2D image is stored

into another array for further processing.

z̄ =

∑t
i=1 zi
t

(3.18)

•Spine Points Transformation Using ArUco Marker

In the previous section, the coordinates of points of crab spines in the 2D image at

the different shooting angles have been extracted. The next step is to convert these

coordinates to the XY plane in the global coordinate system using the ArUco marker.

The ArUco marker [75] is a binary square marker that can be used for camera pose

estimation, which consists of a wide black boundary and an internal binary matrix
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(a) Processed spine points in 3D image (b) Processed spine points in 2D image

Figure 3.18: Processed spine points in 2D and 3D images

pattern. The binary matrix pattern contains the ID information of the marker, and

the black boundary can be used to extract the boundary and corner point information

accurately. The projection relationship between the ArUco marker and the camera

can be calculated by combining the matrix pattern with the boundary information.

As shown in Fig. 3.19, four ArUco markers are pasted around the crab model. The

boundary, marker number, and marker coordinate are identified and displayed.

This thesis uses ArUco maker to identify the projection relationship of the images

from a tilted view and a XY plane within the global coordinate system. Equa-

tion (3.19) shows the perspective transformation matrix that is read from the ArUco

API. As shown in Fig. 3.19, using this matrix, the spine points in the tilted image

can be transformed into the XY plane within the global coordinate system, where

pi,h(xh, yh) is the spine point coordinate in the XY plane of the global coordinate

system in the number i image.
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Figure 3.19: ArUco markers setting up and identification

Mh
t =


M11 M12 M13

M21 M22 M23

M31 M32 M33

 (3.19)

pi,h(xh, yh) = pi,rgb,c(xt, yt)M
h
t = [

M11xt +M12yt +M13

M31xt +M32yt +M33

,
M21xt +M22yt +M23

M31xt +M32yt +M33

]T

(3.20)

•Image Integration and Spine Coordinate Calculation

After the coordinates of the spine points in the 2D RGB image of all shooting

perspectives have been converted to the XY plane within the global coordinate system,

all the converted spine points will be aggregated into an array as shown below, where

s is the number of the spine point:

pd(s) = {p1,h(n),p2,h(n),p3,h(n), . . . ,pi,h(n)} (3.21)
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(a) Before restored image (b) After restored image

Figure 3.20: Restored image with spine points by using ArUco code

All the spine points on the crab shell in pd(s) are shown in Fig. 3.21, the results

show that each spine corresponds to a series of discrete points in the X-Y plane due to

the random error during the image restoration method in the former section. The k-

means clustering method [119] is chosen to classify all the discrete points into several

groups to extract the spine point coordinate. Equation (3.22) shows the equation of

k-means clustering method, where pd(i) is the converted spine points in the former

section, k is the maximum number of clusters, s is the total number of discrete points,

and cspine,2d(j) = (xspine,2d(j), yspine,2d(j)) is the centroid coordinate of the group j. As

shown in Fig. 3.22, when the points in different groups are at the minimum distance

from the centroid, the categorizing method is complete. The centroid cspine,2d(j) of

each point group can be used as the projection point of the crab spines on the X-Y

plane within the global frame B.

E =
k∑

j=1

s∑
i=1

∥pd(i)− cspine,2d(j)∥2 (3.22)

So far, the spine points of the crab have been extracted in the 2D image. In

Fig. 3.21, center points of four ArUco markers cAru,2d(1), cAru,2d(2), cAru,2d(3), cAru,2d(4)

in the X-Y plane within the global coordinate frame B are read from the OpenCV
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Figure 3.21: Discrete spine points on the X-Y plane in global coordinate frame.

Figure 3.22: Discrete spine points categorizing using k-means clustering method.

ArUco API. The following sections will introduce the processing method of the 3D

point cloud data of the crab.

•Spines feature calculation in 3D point cloud model
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An ArUco marker based method is developed in this section to find the correlation

between the 2D image in the XY plane and the 3D point cloud data in the global

coordinate system that is reconstructed in Section 3.2.3.3. The format of the recon-

structed point cloud model in Section 3.2.3.3 is XYZRGB, where XYZ represents the

position coordinates and RGB represents the color of each point.

As shown in Fig. 3.23(a) and (b), the coordinates of the center points of the four

ArUco markers cAru,2d(1), cAru,2d(2), cAru,2d(3), cAru,2d(4) in the top view of the 2D

RGB image and cAru,3d(1), cAru,3d(2), cAru,3d(3), cAru,3d(4) in the ArUco marker plane

in the 3D point cloud data have been calculated in the previous sections. Then by

using ArUco markers as a medium, the relationship between 2D image and 3D point

cloud data can be established, and the corresponding spine projection points on the

ArUco marker plane in the 3D point cloud data can be calculated.

The corresponding spine projection points cspine,3d(j) = (xspine,3d(j), yspine,3d(j), zspine,3d(j))

on the Aruco marker plane in the 3D point cloud data with the point cspine,2d(j) in the

2D RGB image can be calculated by using eq. (3.23), where kx and ky are the scale

factors of the 2D image to the ArUco marker plane in the 3D point cloud data, A, B,

C and D are the coefficients of the ArUco marker plane. As shown in Fig. 3.23(c),

red dots represent the calculated corresponding spine projection points on the ArUco

marker plane in the point cloud data.
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cspine,3d(j) =


xspine,3d(j)

yspine,3d(j)

zspine,3d(j)



=


xaru,3d(2)− kx(xaru,2d(2)− xspine,2d(j))

yaru,3d(1)− ky(yaru,2d(1)− yspine,2d(j))

−(Axspine,3d(j) +Byspine,3d(j) +D)/C


kx =

xaru,3d(2)− xaru,3d(4)

xaru,2d(2)− xaru,2d(4)

ky =
yaru,3d(1)− yaru,3d(3)

yaru,2d(1)− yaru,2d(3)

(3.23)

In order to restore the spine’s features, the spine projection points on the ArUco

marker plane need to be projected back to the crab shell surface. The equations of the

line L(j) passing through each projection point cspine,3d(j) and being perpendicular

to the ArUco marker plane can be calculated by eq. (3.24), where [A,B,C]T are the

normal vector coordinates to the plane, t is the line’s scalar parameter.

L(j)←



x = xspine,3d(j) + At

y = yspine,3d(j) +Bt

z = zspine,3d(j) + Ct

, (−∞ < t < +∞) (3.24)

By using the nearest point searching method, the distance between each point pi

in the point cloud data to the line L(j) can be calculated by eq. (3.25). The point with

the minimum distance for each line is defined as the spine root point prt(j)(xrt(j),

yrt(j),zrt(j)) on the crab shell, which are shown by the green dots in Fig. 3.23(d).

104



di =
√

∆x+∆y +∆z

∆x = (xi − xspine,3d(j)− Ati
′)2

∆y = (yi − yspine,3d(j)−Bti
′)2

∆z = (zi − Zspine,3d(j)− Cti
′)2

ti
′ =

A(xi − xspine,3d(j)) +B(yi − yspine,3d(j)) + C(zi − zspine,3d(j))

A2 +B2 + C2

(3.25)

The last step is to calculate the equation of the spine lines, which are passing

through the spine root point prt(j) and perpendicular to the crab’s outer surface.

The normal vector of the spine root point on the crab shell can be calculated as

n(j) = [nx(j), ny(j), nz(j)]
T . Therefore, the spine lines equation can be calculated by

eq. (3.26). As shown in Fig. 3.23(e), all the spine lines are calculated and visualized

as the yellow lines.

x− xrt(j)

nx(j)
=

y − yrt(j)

ny(j)
=

z − zrt(j)

nz(j)
(3.26)
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(a) (b) (c)

(d) (e)

Figure 3.23: 2D image and 3D point cloud correspondence and spines calculation: (a)

ArUco markers center points in the 3D point cloud data; (b) ArUco markers center

points in the 2D image; (c) Spine projection points on the ArUco marker plane; (d)

Spine root points on the crab shell; (e) Spine lines on the crab shell.

•Spine removal tool path for single spine

A disc-shaped fibreglass-reinforced cut-off wheel is chosen as the cutting tool. To

prevent the cutting tool from cutting into the crab shell and to ensure the efficiency,

the cutting tool path must remain perpendicular to the spines while cutting each

spine and the cutting path of the spine is offset by a certain distance relative to the

spine root point prt(j) in the spine growth direction.

As shown in Fig. 3.24, the equation of plane α(j) passing through the spine root
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point prt(j) on the crab outer surface and perpendicular to the spine growth direction

can be calculated by eq. (3.27), where nx(j), ny(j), nz(j) are the values of the normal

vector on the spine root point, Aα, Bα, Cα, Dα are the coefficients of the plane α(j).

Figure 3.24: Cutting tool path calculation.

Aαx+Bαy + Cαz +Dα = 0

nx(j)x+ ny(j)y + nz(j)z +Dα = 0

Dα = (−1)[nx(j)xrt(j) + ny(j)yrt(j) + nz(j)zrt(j)]

(3.27)

The point P1 and P2 lie on the plane α(j), and the line l12 formed by P1 and P2

passes through the spine root point prt(j) and perpendicular to the spine line. P1 and

P2 are 5 mm away from the point prt(j) along the positive and negative direction of

the X-axis, respectively. The coordinates of the points P1 and P2 can be calculated

by eqs. (3.28) and (3.29), as follows
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p1 =


x1

y1

z1

 =


xrt(j) + 0.005

yrt(j)

(−1)[Dα + nx(j)x1 + ny(j)y1]/nz(j)

 (3.28)

p2 =


x2

y2

z2

 =


xrt(j)− 0.005

yrt(j)

(−1)[Dα + nx(j)x2 + ny(j)y2]/nz(j)

 (3.29)

The line l34, consisting of point P3 and P4, is parallel to the line l12 and with an

offset distance, H = 5 mm along the spine growth direction. The coordinate of point

P3 and P4 can be calculated by eqs. (3.30)–(3.32). The line l34 is defined by eq. (3.33).

The line segment between P3 to P4 will be used as the cutting tool path for the spine.

p3 =


x3

y3

z3

 =


x2 + nx(j)k

y2 + ny(j)k

z2 + nz(j)k

 (3.30)

p4 =


x4

y4

z4

 =


x1 + nx(j)k

y1 + ny(j)k

z1 + nz(j)k

 (3.31)

H =
√

(x4 − x1)2 + (y4 − y1)2 + (z4 − z1)2

H = k
√
nx(j)2 + ny(j)2 + nz(j)2

k =
H√

nx(j)2 + ny(j)2 + nz(j)2

(3.32)

l34 :
x− x3

x4 − x3

=
y − y3
y4 − y3

=
z − z3
z4 − z3

(3.33)
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3.3.4 Robot Tool Pose Calculation

In this section, the method of estimating the pose of the robot tool along each way-

point on the robot tool path is explained.

As shown in Fig. 3.3, the normal vector ni = [nxi
, nyi , nzi ] of the ith waypoint

is expressed in the robot base frame B. Robot pose in ROS is represented by using

quaternion. Quaternion, an elegant, straightforward and computationally robust tool

for pose reprentation, provides a compact description without the drawbacks in terms

of other representations, e.g., the gimbal lock brought by Euler angles. Quaternion

consists of four parameters, namely, one scalar and one three-dimensional vector [120].

In this thesis, the normal vector of the waypoint is transformed into the Euler angles

with extrinsic rotational sequence along the fixed axes. The Euler angle representation

is then transformed into quaternion.

Assuming that α, β and γ are the rotation angles of the robot end effector around

x-, y- and z-axis, respectively. They are calcuated from the normal vector of the ith

waypoint, ni, as


α = −atan2(nyi , nzi)− π

β = atan2(nxi
, nzi)

γ = 0

(3.34)

Note that in terms of rotating the tool direction around x- and y-axis by a certain

angle, it can always be colinear with ni, i.e., γ can be set to 0 without rotating around

z-axis. The quaternion ηwp,i of the tool pose at the ith waypoint can be calculated

as follows
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ηwp,i =



qwwp,i

qxwp,i

qywp,i

qzwp,i


=



c(α/2)c(β/2)c(γ/2) + s(α/2)s(β/2)s(γ/2)

s(α/2)c(β/2)c(γ/2)− c(α/2)s(β/2)s(γ/2)

c(α/2)s(β/2)c(γ/2) + s(α/2)c(β/2)s(γ/2)

c(α/2)c(β/2)s(γ/2)− s(α/2)s(β/2)c(γ/2)


(3.35)

Figure 3.25: Simulation of robot tool pose

Figure 3.25 shows the simulation results of the pose of the robot end-effector, and

the red, green and blue bars indicate the x-, y- and z-axis of the local coordinate

system attached to the robot tool, in which x-axis is parallel to the camera optical

axis, and z-axis is parallel to the normal vector of the waypoint.
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3.3.5 Complete Spine Removal Tool Path Generation and

Optimization

After the spine removal tool path for each spine has been calculated, the next step is

to merge them into a complete spine removal tool path for the whole crab shell. As

shown in Fig. 3.26(a), directly connecting the spine removal tool path using straight

line segments method would lead to unexpected results, such as discontinuous speed

and acceleration of the robot, which will impose negative impact on the cutting

performance and efficiency. Therefore, the cubic spline interpolation method [121] is

chosen to generate a smooth and optimized robot tool path.

The start point coordinate of the current path segment is pk. The start time and

start velocity are set to be tk and vk. The endpoint coordinate of the current path

segment is denoted by pk+1. The end time and the end velocity are set to be tk+1 and

vk+1, respectively, which are assumed known. The cubic spline interpolation method

is described by eq. (3.36). Substituting pk, vk, pk+1 and vk+1 into eq. (3.36) leads

to eq. (3.37), in which Tk = tk+1 − tk is the execution time of the path segment. The

coefficients a0, a1, a2 and a3 can be calculated by using eq. (3.38). The equation

of the cubic spline curve can be obtained by substituting the optimal cutting speed

verified by the manual experiment into eqs. (3.36) and (3.38). The xyz coordinate of

the point on the cubic spline curve can be thus calculated, which will be used as the

smoothed tool path for the robot.

pk(t) = a0 + a1 (t− tk) + a2 (t− tk)
2 + a3 (t− tk)

3 (3.36)

111





pk (tk) = a0 = pk

ṗk (tk) = a1 = vk

pk (tk+1) = a0 + a1Tk + a2T
2
k + a3T

3
k = pk+1

ṗk (tk+1) = a1 + 2a2Tk + 3a3T
2
k = vk+1

(3.37)



a0 = pk

a1 = vk

a2 =
1

Tk

[
3 (pk+1 − pk)

Tk

− 2vk − vk+1

]
a3 =

1

T 2
k

[
2 (pk − pk+1)

Tk

+ vk + vk+1

]
(3.38)

In additional to calculating the position of the point on the smoothed tool path,

the pose of the robot at each point also needs to be calculated. The spherical linear

interpolation(SLERP) method [122] is used for calculation. As shown in eq. (3.39),

where ηm is the interpolated quaternion, ηa and ηb are the two quaternions to be

interpolated, t is a scalar between 0 (at ηa) and 1 (at ηb), θ is the angle between ηa

and ηb, and tθ is the angle between ηm and ηb. The tool path after optimizing and

smoothing is shown in Fig. 3.26(b), which shows the robot tool path after optimization

is much smoother.

ηm = Slerp (ηa, ηb, t) =
sin[(1− t)θ]ηa + sin(tθ)ηb

sin θ
(3.39)
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(a) (b)

Figure 3.26: Tool path generation and optimization (a) Before optimization (b) After

optimization.

3.4 Summary

This chapter described the core methodology. Firstly, point cloud filtering, de-noising

and surface normal calculation methods are introduced. Moreover, the TSDF-based

point cloud registration and reconstruction methods are discussed in detail. After

that, the novel point cloud slicing-based tool path planning method following with

the combination of 2D Image and 3D point cloud robot tool path planning methods

are introduced.

Furthermore, the robot pose calculation method at each point on the robot tool

path is proposed, and a cubic spline interpolation method combined with the spherical

linear interpolation method is used to optimize the robot tool path.
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Chapter 4

Simulation of the Robot Spine

Removal System

This section builds an experiment system in the ROS RViz simulation environment to

verify the proposed porcupine crab spines removal method. The 3D model of the real

xArm6 six-axis robot and the end-effector are loaded into the simulation environment.

The porcupine crab’s 2D image and 3D point cloud data are acquired using the

Microsoft Azure Kinect RGB-D camera and then processed by the algorithm. The

results of the point cloud processing and the robot tool path generation are visualized

and verified in the simulation environment.

4.1 ROS-based Simulation Environment Setup

In order to achieve an expected simulation performance, the robot, the end–effector

and accessories are loaded into the ROS RViz simulation environment with the same

dimensions and mounting positions as their counterparts in the real world. Figure 4.1
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shows the robot platform. The model of the cutting tool is Dremel 3000 rotatry tool

with a maximum rotational speed of 35,000 rpm. A disc-shaped fiberglass cutoff wheel

is installed into the cutting tool. The model of the camera is Microsoft Azure Kinect.

The coordinate system is established in the simulation environment as described in

Section 3.3.1.

Figure 4.1: Robot platform in ROS RViz simulation environment

4.2 Simulation Result

4.2.1 Point Cloud Slicing-based Robot Tool Path Planning

Method Simulation Result

A simulation software package within the framework of ROS RViz is developed using

C++, to validate the proposed method. The 3D point cloud data of the crab model

is captured using the Microsoft Azure kinect RGB-D camera, which is further saved
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as a file with the PCD format. As shown in Fig. 4.2, the raw point cloud data is

noise-contaminated and also contain other unnecessary feature points. After filtering

and denoising, the point cloud data that contains essential information of the crab

shell is well extracted. The normal vector of each surface point need to be generated

as well, of which directions are highlighted with green arrows.

Figure 4.2: Point cloud data processing and surface normal calculation

Figure 4.3 shows the result of the point cloud slicing and tool path generation

method in ROS RViz. The green curves represent the robot tool path, the origin of

the robot tool frame being fixed at the tip of the robot tool. It is noteworthy that the

z-axis of the tool frame is collinear with the normal vector of the tool path. By using

the TRAC-IK inverse kinematic solver, robot joint parameters corresponding to all

points on the robot tool path can be calculated within 15 seconds, which indicates

that the robot system has a good reachability. The results reveal that the tool path

generation method is effective and efficient to process complex shapes such as crab
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shells, and the design of the robot end effector is appropriate.

Figure 4.3: Simulation result of the first tool path planning method

4.2.2 Result of the Robot Tool Path Planning Method Based

on a Combination of 2D Image and 3D Point Cloud

The simulation of this method is performed in the same testing environment as the

previous method. Around the crab body, a series of 2D RGB images and 3D point

cloud data are captured by using a real Microsoft Azure Kinect RGB-D camera and

processed as described in Section 3.3.3. As shown in Fig. 4.4(a), coloured point cloud

data that contains features of the whole crab body is reconstructed. As shown in

Fig. 4.4(b), the spines in the multi-angle images are identified and extracted, and the

pixel coordinate of each spine root point is marked. As shown in Fig. 4.4(c), using

the ArUco code as a medium, the relationship between the 2D image and 3D point

cloud data can be established, and the position and growth direction of the spines

on the crab shell in the point cloud data can be calculated. Figure 4.4(d) shows the
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result of the 2D image and 3D point cloud data combination robot tool path planning

method. The green curves represent the robot tool path, and the z-axis of the tool

frame is collinear with the normal vector of the tool path. The results show that the

robot tool path generated by this method can enhance the smoothness of the path,

and the total length of the tool path is shorter than the previous method, which can

improve the efficiency of the spines removal process.

(a) Reconstructed point cloud model (b) Spine identification in 2D image

(c) Processed spines in 3D point cloud data (d) Generated robot tool path

Figure 4.4: Simulation result of the 2D image and 3D point cloud method
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4.2.3 Summary

This section establishes the simulation platform as its real counterpart in the ROS

simulation environment. Two tool path planning methods are tested and visualized

based on the 2D image and 3D point cloud data collected by the real camera. The

simulation results show that both methods can meet the tool path planning require-

ments and generate a complete and feasible robot tool path without any unreachable

points. Meanwhile, the robot’s poses along the tool path are well adapted to the

surface curvature and can be compliant to the surface curvature changes of the crab

shell. Collision detection is performed during the simulation, and no collision error

has been observed. The feasibility of the path planning algorithm can be verified by

the simulation results. By comparing with the previous method, the tool path gener-

ated by the 2D image and 3D point cloud combination method is more effective and

efficient, and will be adapted for experimental verification in the following section.
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Chapter 5

Experiment of the Robot Spine

Removal System

In this section, the experiment platform in the real environment is built to conduct

the whole process of robot spine removal. Firstly, the robot tool frame is calibrated to

determine the relationship between the tool frame to the global/world frame. Then

the 2D RGB image camera and the 3D depth camera, i.e., the Microsoft Azure Kinect

camera, are calibrated as well to determine the relationship between the camera and

the global/world frames by using the hand-eye calibration method. Moreover, the

intrinsic matrix and the distortion parameters should be calculated to improve the

camera’s overall accuracy. After that, the real robot spine removal experiment, using

the 2D image and 3D point cloud combination method, is introduced.
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5.1 Robot Experiment Platform Setup

According to the descriptions in Section 4.1, the real experiment platform setup

is kept consistent with the simulation platform. The whole system consists of an

xArm6 six-axis robot arm, the end-effector with the cutting tool and Microsoft Azure

Kinect RGB-D camera, a central control computer and a 3D-printed crab shell object.

Figure 5.1 shows the robot experimental platform in the laboratory.

Figure 5.1: Robot experimental platform in laboratory

5.2 Robot Tool Frame Calibration

Section 3.3.1 describes the setting of the robot coordinate system. Some position

errors may occur during the machining and assembly process of the end-effector in

the real environment. In order to ensure that the planned trajectory can be executed

accurately, the robot tool frame needs to be calibrated. In this thesis, the four-point

calibration method is used [123]. Firstly, he robot calibration tool is fixed on the
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working platform, and the robot’s tool center point(TCP) is attached to the center

point of the disc-shaped cutting tool. Then we manually control the robot arm to

make the TCP point reach the tip point of the calibration tool in four different poses.

Using the four-point calibration method, the relationship between the robot tool

frame T and the flange frame F can be determined, the result is shown in eq. (5.1),

in which RF
T and pF

T = [DX,DY,DZ]T are the rotational matrix and transnational

vectors from the robot tool frame T to the flange frame F . The forward kinematic

method can calculate the relationship between the tool frame T and the global frame

B. Figure 5.2 shows the process of the four-point calibration method.

TF
T =

 RF
T pF

T

0 1

 =



1 0 0 DX

0 1 0 DY

0 0 1 DZ

0 0 0 1


(5.1)

5.3 Camera Calibration

In this section, the 2D RGB and 3D depth cameras are calibrated to get the camera’s

intrinsic and distortion parameters to improve the accuracy of the captured image.

After that, to obtain the pixel correspondence between the 2D RGB and 3D depth

image, the transformation matrix for the correspondence between the 2D RGB and

depth camera is calculated. Then, the coordinate relationship between the camera

frame C and the robot flange frame F is determined by using the Hand-eye calibra-

tion method. The data captured by the camera can be transformed into the global

coordinate frame for robot tool path planning.
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Figure 5.2: Robot tool frame calibration

5.3.1 2D RGB and 3D Depth Camera Calibration

Due to the unavoidable imperfection on the camera lens from manufacturing process,

various forms of distortion are presented on the image. To remove the effect of

distortion, the camera’s distortion parameter needs to be calibrated.

This thesis uses Zhang’s method [124] to calibrate the 2D RGB and 3D depth cam-

eras. Firstly, the camera takes photos of the checkerboard from different angles, which

are then imported into the C++ program for processing. This program applies the

camera calibration function in the OpenCV API to identify the corner points of the

checkerboard grid in the photos and calculate the camera intrinsic and distortion pa-

rameters. Figure 5.3 shows the captured image of the checkerboard. Equation((5.2))
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and (5.3) shows the intrinsic H and distortion D parameters of the 2D RGB camera

and 3D depth camera, which are written into the camera’s firmware. The parameters

can be automatically loaded by the camera during the image capturing to adjust the

image accuracy itself.

Figure 5.3: Camera calibration using checkerboard

Hrgb =


612.654 0 612.709

0 635.7 368.03

0 0 1


Drgb = [0.0121, 0.0625, 0.00313,−0.00524]

(5.2)

Hir =


376.238 0 224.136

0 314.330 264.011

0 0 1


Dir = [0.0623,−0.120, 0.00210,−0.00410]

(5.3)
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5.3.2 Hand-eye Calibration

In order for the robot to utilize the data collected by the camera, it is necessary

to determine the transformation matrix between the camera frame C and the global

frame B.

This thesis uses the Hand-eye calibration method [125] to solve the transformation

matrix between the camera frame C and the robot flange frame F . An ArUco code is

installed in a fixed position on the platform, and the camera can recognize the ArUco

code to obtain the relationship between the ArUco code and the camera coordinate

frame. The relationship between the robot flange frame F and global frame B is

known. X is defined as the coordinate transformation matrix from the camera frame

C to the robot flange frame F . X can be solved efficiently by the Lie theory [126],

which is encapsulated in the ROS package.

The hand-eye calibration for the Micorsoft Azure Kinect camera is shown in

Fig. 5.4, the calibration result being shown in eq. (5.4).

Figure 5.4: Robot hand-eye calibration
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X =



0.0007963 −1.0000 −0.0007963 −0.02495

0 0.0007963 −1 −0.08686

1 0.0007963 0 0.07227

0 0 0 1


(5.4)

5.4 Robot Spine Removal Experiment

•Robot spine removal experiment method

As mentioned in Section 4, the 2D image and 3D point cloud data are acquired

by the Microsoft Azure Kinect camera. Using the 2D image and 3D point cloud

combination method, the coordinates of the spines are identified, and the robot tool

path is generated and smoothed. The robot’s pose on the robot tool path is also

calculated. In this section, the ROS control system is used to load the generated

robot tool path and control the robot to execute this tool path to perform a spine

removal experiment on a real 3D-printed crab shell. The correctness and validity of

the robot spine removal method in this thesis are verified by analyzing the robot tool

path execution and the quality of the crab model.

•Experimental result and analysis

Figure 5.5 shows the generated robot tool path using the 2D image and 3D point

cloud combination method. Figure 5.6 shows the comparison between the robot tool

path execution in the real experiment and the simulation environment. The results

imply that the spine removal tool path is successfully planned and executed. The

operating speed of the cutting tool is set to 35,000 rpm. The robot executes the spine

removal tool path without shacking or collision, and all the spines on the crab shell
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can be cut off, which proves that the tool path is well adapted to the crab surface.

The result demonstrates the accuracy of the robot tool path generation method.

Figure 5.7 compares the crab shell before and after the spine removal process. The

spine lengths before cutting are from 15 mm to 25 mm, and after the cutting, the

lengths of all spines decrease to around 5mm with a smooth cross-section. Therefore,

the risk of workers getting injured from processing the crab shell can be mitigated by

this method.

Figure 5.5: Generated robot spine removal tool path
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Figure 5.6: Comparison of the robot tool path in the simulation and real environment

Figure 5.7: Crab model before and after spine removal process

5.5 Summary

This section introduces the experimental validation of the robot spine removal method.

Firstly, the robot tool frame is calibrated to determine the relationship between the

tool frame and the global frame. The camera intrinsic and distortion parameters

are calibrated to minimize the data acquisition error. Furthermore, hand-eye cali-
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bration method is used to determine the relationship between the camera frame and

the global frame. After completing the calibration of all parameters, the robot spine

removal experiment is conducted, and the effectiveness and correctness of the thesis

are verified.
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Chapter 6

Conclusions and Future Work

6.1 Result Analysis

This thesis proposed a novel robot-based spine removal method to solve the difficulty

in processing porcupine crabs, which is caused by the irregular spines on the crab

body, and to assist in the commercialization of the crabs. Based on the 2D image and

3D point cloud data, this thesis proposed two novel methods to process the captured

2D and 3D data and plan the robot spine removal trajectory. The methodology has

been simulated and verified in the ROS simulation environment and has been tested

with the real robot arm in the real experiment environment. The main findings of

this thesis are shown as follow:

(1) This thesis proposed a point cloud pre-processing method. The Microsoft

Azure Kinect RGB-D camera obtains the crab body’s actual 3D point cloud data.

The point cloud data is processed by filtering, de-noising, surface normal calculation,

registration and reconstruction. The complete 3D point cloud model of the porcupine
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crab is well extracted and reconstructed from the redundant point cloud data.

(2) The first approach for robot spine removal tool path planning is a novel point

cloud slicing and nearest points pair search method. This approach generates a robot

tool path covering the whole area of the crab surface to remove all the spines. Al-

though by using the first approach, all the spines can be removed, the accuracy and

efficiency of this approach are lower than the second approach.

(3) The second approach for robot spine removal tool path planning is the 2D

image and 3D point cloud combination method. Due to the parameters of the camera,

the information of crab spines cannot be accurately captured. This approach firstly

uses the 2D RGB image and 3D depth image to extract the features of spines in the

2D image. By using the ArUco code, the relationship between the 2D image and 3D

point cloud data can be established. The spine features in the 2D image are then

projected into the 3D point cloud model to calculate the spine root coordinate in the

3D point cloud model. The normal vector on the spine root coordinate need to be

calculated, which will be used as the spine growth direction and to generate the robot

tool path.

(4) After the robot tool path is planned, it is smoothed and optimized by using the

cubic interpolation method. In order to verify the feasibility of the robot tool path,

the simulation platform, as its real counterpart, is built inside the ROS simulation

environment. The robot spine removal tool path generated from these two methods

has been verified.

(5) A real experimental platform is built in the real laboratory environment. The

spines on the 3D-printed crab model are successfully extracted and removed by the

real robot system, which can verify the effectiveness of the proposed method. This
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method can also be adopted to improve the automation level of the seafood production

industry and many other industries.

6.2 Future Work

This thesis proposed and established a porcupine crab robot spine removal system

and completed the experimental verification. There are still some improvements in

space that can be further optimized.

(1) The spine removal parameters can be further optimized, including the op-

timization of cutting tool material, cutting speed, rotational tool speed and other

parameters to enhance the quality of the product.

(2) The 2D and 3D vision-based spine extraction method has the potential to

combine with the Machine Learning algorithm to improve the robustness of algorithm

and recognition accuracy.

(3) The method presented in this thesis and the robot experiment platform are

highly flexible. Future work can be focused on commercializing the platform and

expanding the system application into various industries.
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Appendix A

Thesis code

Due to a large amount of code, the code of this thesis has been uploaded to GitHub

for review.

(Link:https://github.com/WuRobotics/Novel-Point-Cloud-Based-Porcupine-Crab-Spine-

Removal-Project).
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