
Development of a Mobile Robotics Platform for Three
Dimensional Mapping

Matthew King and Oscar De Silva
Faculty of Engineering and Applied Science

Memorial University of Newfoundland
mpik32@mun.ca oscar.desilva@mun.ca

Abstract— This paper presents the design, implementation, and
realization of a mobile robotics platform for the purpose of 3D
mapping and also to enable other research work. The system
described is composed of two major components. The first is the
Seekur Jr unmanned ground vehicle (UGV). Second is the tilt-
laser unit which is used to generate a 3D pointcloud. The system is
integrated into a cohesive unit using the Robot Operating System
(ROS). System validation was carried out through a series of
trials on the first floor of the MUN engineering building. Results
include 3D maps produced both from the Seekur Jr. and from
a stationary platform. The custom control system used for the
Seekur Jr. is distinct from available ROS packages because its
architecture requires little to no modifications to be made on
the robot’s integrated computer. The package is available online
through github.

Index Terms— Robotics, 3D Mapping, Lidar, ROS.

I. INTRODUCTION

The production of quality three dimensional maps of ar-
bitrary environments is an active field a research with many
potential applications such as autonomous vehicles, mining,
search-and-rescue, architectural inspection, and augmented re-
ality. Significant results have been achieved using stereo vision
systems [1], structured light systems similar to the Microsoft
Kinect [2], and expensive 3D Lidar systems [3]. Instead, this
paper presents an approach where a much more affordable
Lidar unit is mounted on a tilting servo which allows the
scans to be projected into three dimensional space. This,
in combination with a robust and stable localization system
provided by the Seekur Jr. mobile robot, allows scans to be
combined together into a map. Seekur Jr. Robot localization is
still very much an active area of research and so the search for
accurate localization is of equal importance to the operation
of the laser unit itself.

System integration is implemented though the Robot Op-
erating System (ROS). ROS is a middleware which han-
dles communications, synchronization, and provides a unified
development ecosystem with a wide range of open-sourced
software packages available for use.

II. ROBOT OPERATING SYSTEM

The robot operating system, henceforth referred to as ROS,
is an extensive open-source package which enables the de-
velopment of software for robotics systems [4]. It is not a

Fig. 1. Lidar is a key technology for autonomous vehicles.

true operating system but instead a ’middleware’ that creates a
structured communication layer which supports data exchange
through asynchronous processes while providing centralized
organization [4]. Each process must register with the ROS
master process upon startup as a ’node’.

Thanks to its flexible architecture and continued develop-
ment, a significant open-source ROS community has formed.
This leads into another major advantage of ROS which is the
widespread existence of so many freely available hardware
drivers, packages, and libraries which may be easily integrated
into one’s own robotics system with unmatched ease. ROS
also boasts an extensive wiki with a wealth of documentation
that adds significant value while further increasing ease of
development.

A. Topics and Messages

After a node has registered with the ROS master, it may
proceed to notify the master of its intent to publish or subscribe
to a certain ’topic’. When two processes register themselves
to the same topic - one publishing to the topic and the other
subscribing to the topic - then the master will put these two
nodes into direct contact and allow them to begin transferring
data. Multiple nodes may publish to or subscribe from the
same topic.



Each topic has a predefined message type. Such formats
could be simple primitive types such as integers or complex
as a detailed data structure for describing laser scan data,
odometry, GPS data, and many more. Many message formats
are provided by existing packages and it is easy to define
custom ROS message types. All message are serialized and
transferred over a TCP/IP protocol known as TCPROS.

B. tf: The Transform Library

In robotics applications it is often necessary to keep track
of multiple coordinate frames. This is such a common issue
that the tf library has become a core component of the ROS
ecosystem [5]. Using tf, the set of all current coordinate frames
are tracked in a tree structure, providing the means to calculate
transforms between any two connected frames. The transform
between any two connected frames may be quickly found and
applied where necessary, and adding new frames is as easy
as instantiating a new publisher. Almost all of the standard
ROS message types must have some associated frame which
represents the coordinate system from which they have been
sampled. This allows data to be easily transformed between
coordinate frames with relative ease.

III. TILT-LASER UNIT

At the core of this system is the scanning laser rangefinder
itself. The tilt-laser unit core components consists of a Hokuyo
UST-20LX scanning laser rangefinder, a Dynamixel AX-18A
servo actuator, an Ordoid-XU4 single board computer, a power
distribution board, and chassis. Further accessories include
a SMPS2Dynamixel Adapter and a Dynamixel TTL USB
adapter.

The servo is mounted to the main chassis and fitted with
a custom mount upon which the UST-20LX is secured. By
maintaing precise control of the servo positition, the incoming
2D scan data is projected into 3D pointclouds relative to the
axis of rotation. See Figure 2 for an image of the unit.

A. Hardware Components

1) Hokuyo UST-20LX: A scanning laser rangefinder is a
common mid-range Lidar unit for academic and industrial
applications. The device is classified as a Type 1 laser product
and as such is safe for use without eye protection. It has up to
a twenty meter range, two-hundred and seventy degree field of
view (FOV) with a quarter-degree angular resolution [6]. The
sensor uses time-of-flight technology to determine distance to
target and also reports the intensity of return which can be
useful for surface detection.

Internally, there exists a small mirror which rotates about a
central axis. This mirror completes its trajectory through the
sensor’s FOV at a rate of 40Hz or equivalently 2400 RPM.
The laser beam is bounced off this mirror and it is through
said mechanism that the distance readings are obtained.

Repeated readings can differ by small amounts. Extensive
calibration has shown the standard deviation of repeated
measurements statically sampled from a four meter distance to

Fig. 2. Side view of the assembled unit

be 4.7 millimeters [7]. This error may be expected to increase
as a function of the true distance to the target reading; however
it may decrease as a percentage of the total distance. Objects
smaller than 1.5 degrees in horizontal size may not be detected
unless repeated sampling is used. Additionally, the device is
not sensitive to local lighting conditions and thus is suitable
for both indoor and outdoor environments.

The UST-20LX communicates via an ethernet cable using
the SCIP protocol. Once connected to a computer the device
creates a LAN with a pre-defined IP. From the computer it
is then possible to reconfigure the device if desired before
beginning receiving scan data.

2) Dynamixel AX-18A: This device is a lightweight smart
servo with a built-in microcontroller that allows it to commu-
nicate over a bus. The AX-18A takes advantage of its rapid
digital communication to receive goal position commands
while also providing feedback on variables such as current
position, torque, and more. Especially, the current angular
position data is of significant importance for this application.
This position has a resolution of 0.29 degree angular resolution
[8] and can be obtained at sufficiently high frequency so as
to outpace the rate at which scans are produced by the UST-
20LX.

3) Odroid-XU4: This single board computer boasts signif-
icant power in an efficient form factor. With an Octa-core
CPU and 2GB RAM, the XU4 is more than fast enough
to process laser data, interface with the Servo network, and
produce pointcloud data without any slowdowns.

B. Software

The software being used to control this system is a mix-
ture of open-source pre-existing nodes in addition to custom
written applications. The requirements are as follows.



1) Receive Scan Data: To accomplish this task, the pre-
existing URG node was deployed. After providing the UST-
20LX’s IP address the node automatically connects to the
device and begins publishing laserscan messages on the scan
topic at a rate of 40Hz.

2) Dynamixel Servo Controller: A new ROS node was
developed which leveraged the Dynamixel C++ SDK to handle
certain details such as the specific communication protocol.
Even though controller software already exists, none published
angular position data at a rate which could match the Lidar
data.

Accurately knowledge of the angular position is crucial
in order to generate the transform between incoming scan
data and the frame where all scans are accumulated into
pointclouds.

3) Computing the Transform: It is necessary to define two
frames in order to describe the relation between the servo
and the laser scanner. The first frame, ”/laser” describes the
center point of the laser scans and is coincident with the point
at which the mirror internally rotates inside the UST-20LX.
All incoming laser scans are said to be in the ”/laser” frame.
The second frame, ”/laser link” is the reference point which
is concentric to the servo’s axis of rotation and centered with
the Lidar.

These frames are shown in Figure 3 at a relative angle
of zero degrees. As the servo rotates the laser, the Z axis of
the ”/laser” frame remains radial relative to the Y axis of the
”/laser link” frame. Their radial offset is approximately 2.54
centimeters. The position of the origin of the ”/laser” frame
in reference to the ”/laser link” is computed as:

P (θ) =

∣∣∣∣∣∣
x
y
z

∣∣∣∣∣∣ =
∣∣∣∣∣∣
r ∗ cos θ

0
r ∗ sin θ

∣∣∣∣∣∣ (1)

4) Filtering: Several scan filters are run on the raw data
before it is further processed. Filters are derived from the ROS
laser filters package. Here, a shadow removal filter is applied
to remove bad scans which are the result of a scan falling
directly on the edge of an object such that the scan splits
and is interpreted to be halfway between the foreground edge
and whatever background surfaces are behind. The readings
are then passed through a second filter which replaces these
bad filters with linear interpolations based on nearby ’good’
readings.

5) Conversion to Pointcloud: Now given the incoming
filtered scan data, as well as the transform between the laser
scanner at that time and the reference frame, it is now possible
to convert from laser scans, which are of the form:∣∣∣∣ r0 r1 r2 ... rn

θ0 θ1 θ2 ... θn

∣∣∣∣ (2)

to the more generalized pointcloud format, which is of the
form: ∣∣∣∣∣∣

X0 X1 X2 ... Xn
Y 0 Y 1 Y 2 ... Y n
Z0 Z1 Z2 ... Zn

∣∣∣∣∣∣ (3)

Fig. 3. Laser frames at zero angle (X axis in red. Y axis in green. Z axis
in blue)

In order to enact this conversion, the laser geometry pack-
age was used. The c++ implementation of laser geometry
provides a pair of methods for converting laser scans into
pointclouds; one method is faster but less accurate and the
other is slower but is more accurate. Both methods requires
the scan message and additionally requires an available tf for
the beginning of each scan based on the message timestamp.
The second and more accurate method also requires there to
exist a second transform at the end of the scan period, which it
determines based on the scan message’s time increment. The
method linearly interpolates between the two transforms so
that each point on the scan, having been captured at slightly
different times, is transformed with respect that time difference
[9]. The more accurate of the two methods was chosen to be
the best option for mapping applications. This becomes more
evident as the servo’s speed is increased and the skew starts
to become more noticeable within a single scan. This function
is being called within a new custom node which subscribes to
the scans being published by the URG node and utilizes the
transforms published by the custom Dynamixel controller in
order to perform this operation.

IV. SEEKUR JR.

Stationary results are useful but are not sufficient for full
mapping of an environment. As such, it is useful to combine
the tilt-laser unit with a mobile robotics platform. For this
purpose, the Seekur Jr. robot was chosen.

A. Description

The Seekur Jr. is a four wheeled skid-steer robot. It can
come equipped with a wide range of sensors including stereo
camera, ultrasonic range finders, IR bumpers, and even it’s
own foward mounted scanning laser range finder. Other acces-
sories include Wifi router, robotic arm, and more. The robot



is 1.1 meters long, 0.8 meters wide, and weighs 77 kilograms
[10].

B. Software Architecture

Seekur Jr. is part of a larger family of robots originally
developed by the Mobile Robots company. These robots came
shipped with an extensive software platform by the name
ARIA which enabled the control of the robots and was
extendable for further research and development. However,
the product line is no longer supported and is not directly
compatible with ROS.

1) ROS Integration: Therefore, it was deemed desirable for
a new set of software to be developed which could interface
the original software stack into the ROS ecosystem. Towards
this purpose, the AriaClientDriver was developed.

ARIA is designed as a client-server model. The server
runs on the robot itself and communicates with the client via
internet connection. The client then provides commands to and
requests data from the server.

In order to integrate this system into ROS, it was decided
to implement the client-side functionality into a ROS node.
This has the advantage that one need not install ROS onto the
Seekur Jr. itself, as it can be very difficult to install on older
systems and may cause hard to repair issues in case of a failed
installation.

This ROS node provides wheel odometry data, laser scans,
GPS data, and more. The node also provided scan filtering
and allows one to steer the robot directly from the terminal
window.

2) Localization: In order for the Seekur Jr. to be utlized as a
mobile platform for integration with the Tilt-Laser unit it must
be able to accurately localize itself within its environment.
Localization allows the robot to know its approximate location
relative to where it has been before. An extension of the
localization problem is known as simultaneous localization
and mapping (SLAM). An existing SLAM node known as
GMapping was selected for use. This node merges sensory
data from the wheel odometry and the (2D) laser scanner in
order to produce an estimate of its location. The internal im-
plementation involves a particle filter which takes into account
both recent movements and observations [11]. Simultaneously,
the program produces a 2D occupancy map based on laser
data. See Figure 4 for a map of the Engineering building first
floor produced using Gmapping and the Seekur Jr.

V. RESULTS

A. Stationary Results

The pointcloud data presented in Figure. 5 was collected
with the scanner kept stationary at a single position. The scan-
ner was allowed to complete one sweep of the environment.
The intensity data, which is preserved throughout the filtering
and conversion process, clearly shows the different intensity
returns of a black and white checkerboard pattern. A window
is visible in the far corner and the outline of a tripod is also

Fig. 4. Map of the MUN Engineering building first floor. Only main hallways
included in addition to EN-1037.

visible by the shadow cast onto the wall. The position of the
scanner is indicated by a small coordinate marker.

Fig. 5. Sample of results of the pointclouds collected over a single sweep.
Here, the tilt-laser unit is kept stationary on a desk.

B. Mobile Results

The next sample represents the ultimate amalgamation of
the work that has been described up to this point. Here,
the tilt-laser unit has been mounted on the Seekur Jr. The
tilt-laser unit has been configured as a ROS slave, which
means that it is no longer running its own ROS core but
instead is subservient to another computer. The pointclouds



are being published through the local Wifi network to a remote
computer which is also in control of the Seekur and running
the AriaClientDriver. The incoming pointclouds are being
transformed into the global map frame using the localization
being produced by Gmapping. Overall map quality is accept-
able but sudden jumps in Gmapping’s estimated position cause
some discontinuities. Please refer to Figure 6 for more details.
Additionally, please see Figure 7 for another map where some
post-processing has been performed.

Fig. 6. MUN Engineering First floor. 3D map raw pointclouds overlaid onto
2D map.

Fig. 7. MUN Engineering first floor. Pointcloud after post-processing to
remove statistical outliers.

VI. CONCLUSIONS

The project was successful and accomplished the initial
goal of mapping an indoor environment. Three dimensional
mapping is an ongoing research topic and tilting a 2D Lidar is
a valid approach to this task. The advantages of this approach
include lower cost and higher customizability when compared
to full 3D Lidar. Disadvantages include higher complexity and,
in some cases, lower points-per-second.

Additionally, the integration of systems using the ROS
ecosystem was found to be significantly advantageous espe-
cially when compared to building an entirely custom system.
Using ROS allows for rapid prototyping, faster troubleshoot-
ing, and provides a wide range of open-source nodes.

Overall, the largest issue that was encountered in this project
was the localization which was used to merge the pointclouds
into a singular map. The localization produced by Gmapping

was often inaccurate and would make sudden jumps or would
not update at a sufficiently high rate. This led to discontinuities
in the map and caused strange behaviour. These sudden jumps
are investigated as a follow up project using Lidar odometry
methods which allows to jointly solve the robot localization
and point cloud registration problems [12].

Another issue which could use more work is that when
a pointcloud based 3D map reaches a certain size the total
number of points starts to become so large that loading and
visualizing the map starts to become an issue. One way
to solve this issue might be to integrate the data into a
more efficient data structure for representing 3D space. This
could be accomplished using an octotree structure [13] which
represents space in variable-size cubes using a probabilistic
model to insert laser scans into the map. This method would be
significantly more memory efficient at the cost of potentially
slower runtime. This might also prove useful as an aspect of
the aforementioned localization process.

ACKNOWLEDGMENT

The authors would like to thank NSERC for providing
funding for the work documented here.

REFERENCES

[1] J. M. Saez and F. Escolano, “A global 3d map-building approach
using stereo vision,” in IEEE International Conference on Robotics and
Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 2, pp. 1197–1202
Vol.2, April 2004.

[2] F. Endres, J. Hess, J. Sturm, D. Cremers, and W. Burgard, “3-d mapping
with an rgb-d camera,” IEEE Transactions on Robotics, vol. 30, pp. 177–
187, Feb 2014.

[3] M. Pierzchaa, P. Gigure, and R. Astrup, “Mapping forests using an
unmanned ground vehicle with 3d lidar and graph-slam,” Computers
and Electronics in Agriculture, vol. 145, pp. 217 – 225, 2018.

[4] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[5] T. Foote, “tf: The transform library,” in Technologies for Practical Robot
Applications (TePRA), 2013 IEEE International Conference on, Open-
Source Software workshop, pp. 1–6, April 2013.

[6] Hokyuo, Hokuyo UST-20LX Scanning Laser Rangefinder, 2016. Avail-
able online at: https://www.hokuyo-aut.jp/search/single.php?serial=167.

[7] M. Cooper, J. F Raquet, and R. Patton, “Range information characteri-
zation of the hokuyo ust-20lx lidar sensor,” vol. 5, 05 2018.

[8] Robotis, Dynamixel AX-18A e-manual, 2018. Available online at:
http://emanual.robotis.com/docs/en/dxl/ax/ax-18a/.

[9] T. Foote and R. B. Rusu, “Laser geometry api documentation.”
[10] “Seekur jr. overview.” Available online at:

http://www.mobilerobots.com/Libraries/Downloads/SeekurJr-SKRJ-
RevA.sflb.ashx.

[11] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” Trans. Rob., vol. 23,
pp. 34–46, Feb. 2007.

[12] J. Zhang and S. Singh, “Loam: Lidar odometry and mapping in real-
time,” in Proceedings of Robotics: Science and Systems, (Berkeley,
USA), July 2014.

[13] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013. Software available at
octomap.github.com.


