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Abstract 

 

Eels are well-known for being high in dietary lipids, although it is unclear how nutritional 

quality varies with eel size and ecological location. The nutritional quality of 

Newfoundland freshwater American eels (Anguilla rostrata) was defined and examined in 

this study to determine the potential of undersized eels in the manufacture of high-value 

secondary food products. The findings show that only the habitat location influenced the 

dietary fatty acid level and undersized eels from Gander, Robinson, and Flat Bay sites had 

exceptional fatty acid content. These findings suggest that habitat, rather than eel size, is a 

significant driver in the generation of high-quality dietary lipids in freshwater eels. Highly 

unsaturated fatty acids are vulnerable to oxidation and generation of toxic compounds when 

exposed to high temperatures. The use of sous-vide cooking before grilling eel reduced the 

formation of harmful HCAs, MRCs, and VOCs in Kabayaki. Sous-vide before grilling 

preserved nutritional value, improved quality and safety, and raised customer appeal. Berry 

Infused and Regular Kabayaki prepared using the optimized method can be marketed as a 

ready-to-eat functional food product that offers high overall lipid content and essential fatty 

acids, reduced toxic MRC, VOCs, and no HCAs, and a wide range of consumer acceptance. 
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General Summary 
 

 
Eels are well-known for being high in dietary lipids, although it is unclear how nutritional 

quality varies with size and ecological location. The nutritional quality of Newfoundland 

freshwater American eels (Anguilla rostrata) was defined and examined in this study to 

determine the potential of undersized eels in the manufacture of high-value secondary food 

products. The findings show that the difference in size and colour between the larger and 

smaller eel population did not affect the dietary fatty acid level. These findings suggest that 

habitat, rather than eel size, is a significant driver in the generation of high-quality dietary 

lipids in freshwater eels. Incorporating sous-vide before grilling eel maintained the nutrition 

and reduced the formation of harmful compounds in Kabayaki. Infusing Newfoundland 

cranberries into the Kabayaki marinade also introduces more beneficial compounds. 

Kabayaki and Berry Infused Kabayaki products can be marketed as a ready- to-eat high-

quality functional food product. 
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1. Introduction and overview 

 
1.1. Introduction 

 

Eels are highly nutrient-dense and contain a variety of minerals, vitamins (A, B12, 

B1, B2, D, E, and K), amino acids, and fatty acids. (Harlioǧlu & Yilmaz, 2011; Islam et al., 

2020). Eels are particularly high in omega-3 fatty acids and have a balanced amount of 

omega-6 fatty acids (Kontostathi et al., 2021; Kusharto et al., 2014). Freshwater 

American eels are in high demand at almost every life stage from East Asian, North 

American, and European markets (MacGregor et al., 2009). Undersized American 'yellow' 

eels, on the other hand, are severely underutilized and are primarily sold as bait for striped 

bass and other larger fish (Atlantic States Marine Fisheries Commission, 2017). There is 

not much information available concerning the nutritional value of American eels and the 

impact of morphological changes and environmental factors affect the lipid composition of 

subpopulations. The following literature review evaluates the potential of undersized 

freshwater American eels to be developed as high-quality functional food. 

 
Eels are high in omega-3 fatty acids eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), which aid in immune regulation and inflammation (Patterson 

et al., 2012). The western diet includes a disproportionate number of foods richer in omega-

6s than omega-3s (approximately 15:1) which have been correlated with a higher 

rate of inflammatory or disease conditions (Patterson et al., 2012; Kris-Etherton et al., 

2000). Several studies concluded that an increase in omega-3s coupled with a decrease in 

omega- 6s reduces inflammation and vasospasm, vasoconstriction, blood viscosity, and 

related conditions (Patterson et al., 2012; Delavar M et al., 2009; Ruidavets et al., 2007). 

Therefore, a good strategy to increase omega-3s intake would be to increase the 

consumption of fatty fish and omega-3-rich functional foods (Broadhurst et al., 2002; Din 

https://www.liebertpub.com/doi/10.1089/jmf.2020.0114
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et at., 2004). Regular consumption of eel and other oily fish also raises high-density 

lipoproteins (HDLs) and lowers the overall risk of cardiovascular disease (Rimm e al., 

2018). True freshwater and saltwater eels (order: Anguilliformes, family: Anguillidae) 

provide similar nutritional value; however, freshwater eels have greater economic value 

and consumer acceptance mainly for their flavour and high flesh yield. 

American eels are facultatively catadromous; hence, adults migrate from 

freshwater systems to the Sargasso Sea between February and April, where they breed 

and die (Jessop et al., 2009). Eggs drift for 1-2 days before hatching into Leptocephalus 

larvae. As the newly developed leptocephali migrate back to freshwater, they feed on 

plankton and, after 8–12 months, undergo metamorphoses to become glass eels. At the 

mouths of North American estuaries, eels become deeply pigmented elvers and begin 

feeding aquatic insects, small crustaceans, and small fish. After several years of feeding 

on worms, clams, frogs, fish, and animal carcasses, eels grow to become yellow eels 

(Jessop et al., 2006). This stage lasts an average of 12 years among Newfoundland 

populations, depending on food availability and weather. Undersized "yellow" eels 

return to their respective intercontinental water systems, where they continue to mature 

into larger migratory "silver" eels until it is time for spawning (Cairns et al., 2013). 

Currently, Newfoundland and Labrador (NL), Canada has an American eel 

exportation industry for large adult American eels (Jessop et al., 2009). The American eel 

population, like its counterparts, has been declining, possibly due to anthropogenic 

interferences (Jessop et al., 2009; William et al., 2014). The Committee on the Status of 

Endangered Wildlife in Canada reassessed and designated the American eel from a species 

of ‘special concern’ to ‘threatened’ (COSEWIC 2012). As a result, the government of 

Newfoundland and Labrador implemented sustainable fishing practices, shortened the 
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fishing season, and limitation on license distribution for commercial, recreational, and 

aboriginal fisheries of juvenile and adult eels (Chaput et al., 2014). Despite the sustainable 

harvest of ‘yellow’ eels (length: >10 cm) (Kaifu et al., 2019), fishers have encountered the 

issue of utilizing these undersized freshwater eels. Currently, ‘Yellow’ eels are primarily 

sold as bait for striped bass and other larger fish (Atlantic States Marine Fisheries 

Commission, 2017). They have a lower market value in the live eel market compared to 

large eels and elvers (Magnusson & Dekker, 2020). however, there is an expanding market 

for freshwater eel secondary products. 

The eel product market is expanding as consumers become more aware of the high 

nutrient content of eel. About 30 to 45% of the world's eel consumption comes from Japan 

alone (Shiraishi & Crook, 2015). Japanese people have a long-standing history of eating 

freshwater eels “unagi” in the summer months because they believe it can strengthen the 

body and provide functional benefits. Today, eel is a delicacy eaten year-round in the form 

of Kabayaki. Kabayaki is a popular Japanese method of grilling butterflied fillets of eel 

marinated in a sweet soy sauce base. Kabayaki has gained consumer acceptance across the 

world as sushi or served with rice “unadon” (Kaifu et al., 2019). The average price of 

Kabayaki was USD$ 26 per kg in 2011 and by 2013 it had reached USD $ 36 per kg. In 

2018, the Japanese market declined; however, the demand was compensated for by the 

growing market mainly in China and to a lesser extent Taiwan, South Korea, Europe, and 

the west (Shiraishi & Crook, 2015; Kaifu et al., 2019). The Kabayaki market is expanding, 

but the products are mostly limited to frozen, traditional-style grilled fillets. As a result, 

there is room for product quality innovation and improvement. 

 
To the best of my knowledge, there is not much information available concerning 

the lipid profile of American eels and the impact of morphological changes on fatty acid 
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composition are topics that receive very little research attention. It is also unclear how 

environmental factors, food, and other site-specific external factors affect the lipid 

composition of subpopulations. In this study, I investigated the influence of the colour, 

different habitat locations, and size on the nutritional value of undersized ‘yellow’ and large 

‘silver’ freshwater American eels sourced from Gander, Robinson, and Flat Bay locations 

in Newfoundland. I compared the nutritional values of undersized and large eel samples 

and determine the potential of undersized eels for use as a functional secondary food 

product. Furthermore, I optimized the Kabayaki preparation and processing technique to 

develop four high-quality functional food products with improved nutritional quality, 

safety, and sensory perception. 
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1.2. Hypotheses 

 
 

a) Size, colour, and growth habitat should affect the nutritional quality and potential 

of undersized freshwater American eels sourced from Newfoundland and their 

possible utility in the production of high-value eel-based secondary food products. 

 
 

b) Nutritional quality, safety, and sensory perception of undersized freshwater 

American eel that has been marinated and then cooked at reduced heat and oxygen 

exposure should have less formation of toxic lipid oxidation and Maillard reaction 

compounds and carcinogens generated in eel during grilling. Incorporating 

Newfoundland cranberries, rich in antioxidants including polyphenols, in marinade 

should delay or inhibit lipid oxidation and the formation of toxic compounds, as 

well as increase the safety, sensory, and nutritional quality of Kabayaki. 

 
1.3. Purpose of the thesis and objectives 

 
 

The purpose of this project was ultimately to develop high-quality, ready-to-eat Kabayaki 

as functional food products using underutilized, locally harvested freshwater American eel. 

 
 

The following objectives were investigated to test the proposed hypotheses: 
 

i. To investigate the influence of the colour, different habitat locations, and size on 

the nutritional value of Freshwater American eels sourced from Newfoundland. 

ii. To determine the potential of undersize juvenile eels to be used in the production 

of high-value eel-based secondary food products. 

iii. To develop a high-quality Kabayaki eel product utilizing undersized Newfoundland 

freshwater American eel. 
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iv. To investigate the utility of sous- vide cooking technique as an innovative approach 

to maintaining the nutritional quality and enhancing the safety and sensory appeal 

of Kabayaki. 

v. To develop Kabayaki as a functional food product by incorporating polyphenol-rich 

Newfoundland Cranberries. 

 
1.4. Thesis organization 

 
 

This thesis contains four chapters: 
 

Chapter 1 provided an overview of the literature and concepts used to formulate the 

hypothesis and overall design of the experiment 

Chapter 2 detailed the evaluation of the fatty acid and intact lipid content of freshwater 

American eels from three different locations and compared the undersized and larger eel 

populations from each to determine if the underutilized undersized population offered the 

same nutritional quality. 

Chapter 3 described the utilization of undersized freshwater American eel in the 

development of Kabayaki eel by initially optimizing the cooking techniques required to 

maintain the nutritional quality and improve the sensory appeal and safety of the finished 

products. Furthermore, this chapter demonstrated the application of locally produced 

Newfoundland Cranberries infused into the Kabayaki marinade to develop a variant of 

Kabayaki with improved functional properties, while simultaneously maintaining the 

safety, nutritional, and sensory quality. 
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Chapter 4 includes a general discussion of the study findings, conclusions, and 

recommendations for future studies. 

 
Chapter 5 includes pictures demonstrating achievements during product development 

 
 

1.5. Definitions 

 

All the possible definitions are given below (Augspurger et al., 2018; Shiraishi & Crook, 

2015; Bogen & Keating, 2002; Hasler, 2002; Zamora and Hidalgo, 2005; Kim et al., 2019; 

Mozuraityte et al., 2016; Rod-In et al., 2020; Turkish & Sturley, 2009; Chew & Nyam, 

2020) 

 
a) Catadromous- describes the migratory behaviour of marine larvae to travel from 

marine to freshwater environments, where most of the growth phase occurs before 

adults migrate back to the marine environment to reproduce. 

b) Free Fatty Acids- are the fatty acid tails formed from triacylglycerol via ester bond 

cleavage. 

c) Functional Foods- describes fortified, enriched, or enhanced foods that provide 

health benefits beyond nutrition and energy 

d) Heterocyclic Amines (HCA)- are potent mutagens generated during the thermal 

processing of muscle meats at high temperatures 

e) Kabayaki- grilling filleted eels marinated in sweet soy sauce 

 
f) Lipid oxidation- describes reactions between fatty acids and oxygen that result in 

the oxidative degradation of lipids  
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g) Malliard Reaction- describes a series of reactions that occur when the carbonyl 

moiety of reducing sugars and the free amino groups on the food's surface combine 

to produce volatile flavour and aroma compounds, as well as the brown colour 

(melanoidins pigment) seen in grilled foods.; non-enzymatic browning of food. 

h) Neutral lipids- are energy reserves that result from the dehydration synthesis of fatty 

acid(s) with an alcohol 

i) Polar lipids- are the main structural components of the cell membrane consisting of 

a hydrophilic head and hydrophobic tail 

j) Sous-vide- cooking technique involves cooking food in a vacuum sealing bag by 

suspending it in a water bath at a controlled, low temperature for a prolonged time 
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2. Assessment of the Nutritional Quality of Newfoundland Freshwater Eels (Anguilla 

rostrata) as Influenced by Size and Growth Habitats: 

Implications in the Production of High-Quality Value Eel-Based Food Products 
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2.1 Abstract 

 

Eels are excellent sources of dietary lipids, but how the nutritional quality varies with eel 

size, color, and habitat location is unknown. Eels were obtained from three locations in 

Newfoundland: Robinson, Gander, and Flat Bay and separated based on size (large and 

small in length and mass) to subgroups for dietary lipid analysis. Advanced lipidomics was 

done applying both high resolution accurate mass tandem mass spectrometry (HRAM-

MS/MS) and FAME analysis using Gas chromatography coupled with tandem mass 

spectrometry and flame ionization detection (GC-MS/MS-FID) to assess the lipidome of 

the eels as differentiated by habitat location and size. The results demonstrate the difference 

in size and colour between the larger "silver" eel and the smaller "yellow" eel population 

did not influence the fatty acid content. The difference in ecology and overall nutrient 

availability in Robinson, Gander, and Flat Bay sites impacted the respective American eel 

populations' lipidome and dietary fatty acid content. Eels from Flat Bay was a superior 

source of PUFA, particularly C18:2n6 and EPA, while eels from Robinson were superior 

sources of omega- 3 fatty acids (DHA and LN). MUFA-enriched eel products could be 

produced from samples obtained from either Gander or Robinson. Furthermore, MUFA 

enriched PE molecular species were higher in samples from Flat Bay, while samples from 

Robinson were a superior source of ARA and DHA enriched PE. Similarly, samples 

from Gander and Robinson would be suitable for eel-based products enriched with TG 

molecular species containing C18 PUFA and MUFA. Flat Bay, on the other hand, would be 

a superior source of freshwater eels containing TG molecular species enriched with DHA, 

ARA, EPA, and DPA as well as oleic acids. These results demonstrated habitat location 

significantly influenced the dietary lipid composition of NL freshwater eels, but the size 
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and color was unremarkable. The possibility exists that unique eel based products with 

superior functional or dietary lipids could be sourced from NL freshwater eels as influenced 

by the habitat location. 

 

Keywords: Freshwater American eel, free fatty acids, polar lipids, neutral lipids, Flat Bay, 

Gander Bay, Robinson Bay 

 

2.2 Introduction 

 

The American eel, Anguilla rostrata (Lesueur, 1817), is a native fish species to 

Newfoundland and Labrador (NL) that can be found in various freshwater ecosystems 

across the province including the southern part of Labrador from which they are known to 

migrate as far as South America (Department of Fisheries and Oceans Canada (DFO), 2010; 

COSEWIC, 2012). Wild American eels are a source of nutrition to local indigenous 

communities and were once prevalent in traditional Newfoundland cuisine (Atkinson, 

2020; COSEWIC, 2012). According to the U.S. Department of Agriculture (2018), eels 

serve as a good source of essential fatty acids, proteins, minerals, and vitamins A, B12, and 

D. However, very little is known about the lipid and fatty acid composition of American 

eel and the effect morphological changes, in terms of color and size, and growth habitat 

have on the their lipid profile. This information will aid in determining the nutritional 

quality of Newfoundland freshwater American eels and the potential for “yellow” 

undersized eels to be utilized as a functional food product. 

Anguilla rostrata is a catadromous species (fish that migrate from freshwater to the ocean 

to spawn) (U.S. Fish and Wildlife Service, 2015; COSEWIC, 2012). In the spring, eel 
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larvae, known as leptocephalus, are transported passively via the Gulf Stream from 

saltwater in the Atlantic to freshwater along the coast of North and South America where 

they develop as glass eels (COSEWIC, 2012). Anguilla species enter continental, 

freshwater bodies as transparent ‘glass’ eels (McCleave, 2001) and metamorphose into 

elvers as they travel further inland. At this stage, elvers start to gain pigment (COSEWIC, 

2012) and become darker (typically ranging between brown, olive, and yellow on the colour 

gradient) and eventually yellow juveniles (COSEWIC, 2012; McCleave, 2001). American 

eels spend up to 25 years or more as ‘yellow’ eels (COSEWIC, 2012) that mainly live in 

benthic environments and feed on aquatic insects, small crustaceans, fish, etc. (McCleave, 

2001). 

 

After reaching over 20% of fat in muscle tissues, ‘yellow’ eels undergo drastic 

morphological changes to equip themselves for migration back to their spawning site 

(Greene et al., 2009). This process is described as ‘silvering’ which denotes the obvious 

change in colour of the eel. Silvering also indicates sexual maturation and involves changes 

such as the enlargement of eyes to adjust to seeing in the deep ocean, inflation of the swim 

bladder, lightening of the underside, and increase in skin thickness (Greene et al., 2009; 

COSEWIC, 2012; McCleave, 2001). In late summer/autumn, these eels no longer feed. 

Rather, the digestive tract of the adult eel degenerates and the percentage of somatic lipids 

increases to supply energy for migrating to the Sargasso Sea where adult eels spawn and 

then die (Greene et al., 2009; COSEWIC, 2012; McCleave, 2001). 

 

According to the literature, American eel tissue contains 19% lipids (Wills and Hapkirk, 

1976). There has been little recent research dedicated to the nutritional value of American 

eels, and little is known about the identity of these lipids and their fatty acid components. 
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Human health relies on lipids as its primary source of energy; however, lipids also function 

as structural support, a signalling molecule, and as a fundamental part of the development 

and function of the central nervous system (Shahidi, 2005). Certain dietary fatty acid 

constituents cannot be produced by the body due to the unavailability of the enzyme 

required for its biosynthesis; nevertheless, they are crucial for normal body function and 

survival. These fatty acids are recognized as ‘essential’ and tend to have bioactive 

functions, as well as act as a substrate to produce other important dietary fatty acids 

(Shahidi, 2005). 

 

Saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids are 

distinguished by their chain length and degree of saturation. Polyunsaturated Fatty Acids 

(PUFAs) have more than one double bond and are particularly important because it includes 

the essential fatty acids. Linoleic acid (LA) - an omega-6 fatty acid and alpha-linolenic acid 

(ALA) - an omega-3 fatty acid are essential fatty acids that function as vital components of 

cell membranes and are precursors to compounds that regulate blood pressure and 

inflammatory responses (Sokoła-Wysoczańska et al., 2018; Shahidi, 2005). 

Monounsaturated Fatty Acids (MUFAs) only contain a single double bond along their 

hydrocarbon chain (Lunn and Theobald, 2006). The American Heart Association (2015) 

recommends incorporating foods containing copious amounts of MUFA, such as oil, 

avocado, nuts and seeds, and fatty fish, to aid in decreasing low-density lipoprotein (LDL; 

‘bad cholesterol), and in turn, lower the risk of atherosclerosis which can lead to 

cardiovascular diseases. Conversely, trans fatty acids and saturated fatty acids (SFAs), lack 

double bonds and increase LDL while decreasing high-density lipoproteins (HDL; ‘good 

cholesterol) thus increasing the risk of cardiovascular diseases (American Heart 

Association, 2015). 
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The human body is inefficient in converting ALA to other essential omega-3 fatty acids 

such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) which are necessary 

for fetal development and cardiovascular health (Ebm et al. 2021; Burdge and Calder, 2005; 

Sokoła-Wysoczańska et al., 2018). As a result, humans rely on dietary sources of EPA and 

DHA to function. 

 

Many fish are rich in EPA and DHA because of direct or indirect (through bioaccumulation) 

consumption of microalgae, such as diatoms and dinoflagellates (phytoplankton) (Maltsev 

& Maltseva, 2021; Barkia et al. 2019; Sathasivam et al. 2019; Chalima et al. 2019, 2020). 

Microalgae are unicellular eukaryotic organisms that play several vital roles in the 

ecosystem; however, in the marine food web, photosynthetic microalgae serve as the 

primary producers (Chauton et al., 2015). Microalgae are efficient producers of omega-3s 

with certain species producing mainly EPA or DHA or both (Chauton et al., 2015; Adarme-

Vega et al., 2012; Guedes et al., 2011). Sufficient consumption of DHA and EPA allows 

for efficient desaturation and chain elongation required for proper body function. (Kaur et 

al., 2014). 

 

Fish lipid and fatty acid content can differ between species and among members of the 

same species because fat content is heavily influenced by environmental factors (Zhang et 

al., 2014). Fish obtain neutral lipids from diet and alter polar lipids composition during 

evolutionary development (Sushchik et al., 2020). Identification of polar and neutral lipid 

content helps characterize the molecular species composition of specific lipid classes and 

determine the nutritional value of fish (Mika et al., 2016). Neutral lipids, such as 

triacylglycerol (TG), and diacylglycerol (DG), consist of fatty acids (tri- indicates 3, di- 

indicates 2 fatty acids) esterified to a glycerol backbone (Rod-In et al., 2020). In humans 



 
48 

neutral lipids are the primary energy reserve of the body (Rod-In et al., 2020); however, in 

excess, they can accumulate around vital organs and become detrimental to health. Polar 

lipids include phospholipids, such as phosphatidylethanolamine (PE) and 

phosphatidylcholine (PC), and sphingolipids. Phospholipids consist of a glycerol backbone 

(refer to as glycerophospholipid) or alcohol esterified to two fatty acids tails in the sn-1 and 

sn-2 positions, and a phosphate group attached to a polar head group at the sn-3 position 

(Blanco & Blanco, 2017). Phospholipids facilitate the formation of the lipid bilayer which 

maintains the structure of the cell membrane (Cooper, 2000). Food high in phospholipids 

supply essential LC-PUFA required for the proper development and function of the human 

body and have cardiovascular benefits (Abedi and Sahari, 2014). Sphingomyelins consist 

of sphingoid backbone connected to a fatty acid, an alcohol attached by an amide bond and 

a head group. Sphingomyelin is the second most lipid in cell membrane that is found mainly 

in brain and nerve tissue. 

 

The western diet includes a disproportionate amount of foods that are richer in omega-6s 

than omega-3s (approximately 15:1). The imbalance of omega-6:omega-3 in diet has been 

correlated with a higher rate of inflammatory or disease conditions (Patterson et al., 2012). 

Furthermore, dietary fatty acids alter the lipid profile of the liver and subsequent fatty acids 

produced by the body (Ranković et al., 2017). Ranković et al., (2017) observed that female 

rats exclusively fed fish had greater levels of essential fatty acids EPA, DHA, and DPA 

(docosapentaenoic acid) and lower levels of AA (arachidonic acid). Research has also 

shown that reducing dietary linoleic acid (LA), an omega-6 fatty acid, in the plasma of 

patients suffering from chronic headaches increased the bioavailability of EPA and DHA 

(Taha et al., 2014). 
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Consumers are seeking ready-to-eat and healthy products. Functional food products 

maximize the health benefits provided by foods as they contain bioactive compounds which 

provide health benefits in addition to basic nutrition (Hasler, 2002). Eels have an immense 

potential to develop high-quality-value functional products because of their significant lipid 

content. The health benefits associated with the regular consumption of bioactive lipids 

include the prevention, delay, or treatment of chronic and acute diseases including cancer, 

cardiovascular disease (CVD), and inflammatory conditions (Patterson et al., 2012; Delavar 

M et al., 2009; Ruidavets et al., 2007). There is a growing interest among consumers in the 

impact of diet on improving overall health. As a result, more consumers are seeking 

functional food products that will provide nutrition as well as aid in reducing their disease 

risks. 

 

This research will investigate the influence of colour, different habitat locations, and size 

on the nutritional value of local freshwater American eels. We hypothesize that size, colour, 

and growth habitat should affect the nutritional quality and potential of undersized 

freshwater American eels sourced from Newfoundland and their possible utility in the 

production of high-value eel-based secondary food products.
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2.3 Materials and Methods  

 

Chemicals 

Ammonium acetate, LC-grade chloroform, acetonitrile, methanol, formic acid, and acetic acid 

were sourced from Fisher Scientific (Ontario, Canada). Phospholipid standards were purchased 

from Avanti Polar Lipids Inc. (Alabaster, AL, USA). Deionized water from PURELAB 

Purification System, ELGA Labwater (Ontario, Canada) was used to prepare solutions for this 

study. Lipid standards were purchased from Avanti Polar Lipids (Alabama, USA) and used for 

the lipid class analyses. The prepared standard mixture was to develop external standard curves 

(1− 10μg/mL for the low concentration range and 10− 100 μg/mL for the high concentration 

range) for the quantification of the lipids in the samples. 

 

Experimental Design 

Small and large sized American eels (Anguilla rostrata) were obtained from local 

fishermen and industry producers for the use of this study. The samples were obtained from 

the following three local sites in Newfoundland: Gander Bay (Lat:49.2681827, Long: -

54.5086546), Robinson Bay (Lat: 48.2551935, Long: -58.7951296), and Flat Bay (Lat: 

48.4227555, Long: -58.5535431) (Figure 1. A). Flat Bay has a peculiar geographical feature 

in which it is partially enclosed by the former peninsula, Sandy Beach, and runs out into 

the Gulf of St. Lawrence where the barrier ends. Robinson and Flat Bay sites are relatively 

close (approximately 43.9km apart) along the west coast of Newfoundland. 

Robinson Bay, unlike Flat Bay, is fed by Robinson River; however, both bodies of water 

flow directly into the Gulf of St. Lawrence. Gander Bay in central Newfoundland is fed 
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by the Gander River, which connects a series of ponds and Gander Lake to the bay, 

which runs directly into the Labrador Sea. Both large and undersized samples were 

collected from Robinsons and Flat Bay locations. Only large eels were harvested from 

Gander Bay. 
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Colour Analysis 

 

The CR-400 Chroma Meter (Konica Minolta Sensing Americas Inc., NJ, USA) was used to 

measure the skin colour of the eels harvested. The distance between two colours is known 

as the Delta-E (ΔE* = Total colour difference), which is the industry standard that is 

overseen by the International Commission on Illumination. The colorimetric analysis was 

conducted to quantify and differentiate the colour of each sample to determine the influence 

of the size and location. Readings were based on colour-opponent theory which dictates that 

two colours cannot simultaneously be red and green or yellow and blue. L* indicates 

lightness, a* is the red/green coordinate, and b* is the yellow/blue coordinate each of which 

can have a positive (+) or negative (-) delta. The equation ΔEab = [(ΔL*)2 + (Δa*)2 + 

(Δb*)2]1/2 was used to measure the total colour change (ΔE)( Ly et al., 2020). A standard 

white plate was used as a reference. 

 

Lipid Analysis: 

 

Lipid extraction 

 

The modified Bligh and Dyer method was used to extract the total lipids from each sample 

(Bligh and Dyer, 1959; Pham et al., 2019a, b). Four replications of each treatment was 

conducted. A vial containing 100 mg of homogenised eel sample was filled with 1 mL of 1 

methanol containing 0.01 percent butylated hydroxytoluene and 1 mL of chloroform. After 

the mixture was homogenised, 0.8 g of water was added, and the mixture was centrifuged at 

5000 x g for 15 minutes. The aqueous top layer of was removed, leaving behind the organic 
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bottom layer. The organic layer was then transferred to a pre-weighed 2 mL vial with a 

PTFE coated top (VWR), where it was dried under a constant flow of nitrogen. To 

determine the amount of recovered lipid, the vial was reweighed. After that, dried lipid 

samples were reconstituted in 1 mL of a 1:1 v/v solution of chloroform and methanol. The 

extracted eel samples were then analyzed using either gas chromatography-mass 

spectrometry/flame ionization detection (GC-FID/MS),  ultra-high performance liquid 

chromatography coupled to heated electrospray ionization tandem high resolution mass 

spectrometry (UHPLC-HESI-HRMS/MS), and Fourier-transform infrared spectroscopy 

(FTIR). 

 

Lipids analysis by Fourier Transform Infrared Spectroscopy (FTIR) 

 

Fourier Transform Infrared Spectroscopy (FTIR) was performed on extracted eel oil 

without derivatization. This analysis was used to obtain the infrared spectrum of absorption, 

emission, and photoconductivity of eel samples to detect different functional groups of 

intact lipids. FTIR spectrum was recorded between 4000 and 400 cm−1 in the absorbance 

mode with a resolution of 2 cm−1. The spectrum of eel lipids showed peaks that correspond to 

specific rotations around carbon atoms revealing functional group and degree of 

unsaturation. 

 

Conversion of lipid extract to Fatty Acid Methyl Esters (FAMEs) 

To assess the amount of free fatty acids present, the eel lipid extracts were converted into 

fatty acid methyl esters (FAMEs). 100 microlitres of the extracted lipids were mixed with 

100 microlitres of internal standards (C19:0 FA: 1 mg/mL in chloroform: methanol (2:1 
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v/v)), and the samples were then dried under nitrogen. By adding 400 microliters of 

methanolic-HCl 3 N (Sigma-Aldrich, ON, Canada), vortexing, and incubating (80 °C) for 

30 minutes, the fatty acids in the samples were methylated. Following incubation, 0.8 mL 

of distilled water was added to the samples, and 0.5 mL of hexane aliquots were used to 

extract the FAMEs (x3). After being combined, the fractions were mixed, dried under 

nitrogen gas, and then redissolved in 0.5 mL of hexane. GC/MS and GC/FID were used to 

evaluate the FAMES in each sample. 

 

Analysis of fatty acids by GC-MS 

FAMEs in the eel samples were analyzed using a Gas Chromatography coupled with mass 

spectrometry in accordance with our previous publications (Pham et al., 2019a, b; Vidal et 

al., 2018). Helium was used as the carrier gas at a flow rate of 1 mL/min to separate 

methylated fatty acids using a DB23 high-resolution column (60 m × 0.25 mm × 0.2 µm; 

Agilent Technology, Mississauga, ON, Canada). A Tri-plus auto-sampler was used to apply 

one microliter (1µL) of each sample using the injection system in split mode (20:1) 

(Thermo Scientific, Burlington, ON, Canada). The oven temperature of 80 ◦C was set to 

raise by 4Celsius per minute to 220C, where it was held for 5 minutes. It was then 

increased by 4 degrees Celsius per minute to 240 degrees, where it was held for 10 minutes. 

The methylated fatty acids were determined based on a comparison of the retention times 

and mass spectra obtained from commercial standards (Supelco 37 component mix, 

Supelco PUFA No. 3, Supelco FAME mix C8-C24, C16 DMA, and C10 DMA; Sigma 

Aldrich, Oakville, ON, Canada) and the NIST database (Thermo Scientific, Burlington, 

ON, Canada). Values were provided as nmol percent, and the quantities of distinct fatty 

acids were determined using standard curves created from the standard mixtures. 
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Analysis of fatty acids by GC-FID 

FAMEs in the eel samples were analyzed using a combination of Gas Chromatography 

coupled to a Flame Ionization Detector (Thermo Fisher Scientific, Waltham, MA, USA) in 

accordance with our previous publications (Pham et al., 2019a, b; Vidal et al., 2018). Four 

replications of each treatment was conducted. Helium was used as the carrier gas at a flow 

rate of 1 mL/min to separate methylated fatty acids using a DB23 high-resolution column 

(30 m × 0.25 mm × 0.25 µm; Agilent Technology, Mississauga, ON, Canada). A Tri-plus 

auto-sampler was used to apply one microliter (1µL) of each sample using the injection 

system in splitless mode (Thermo Scientific, Burlington, ON, Canada). The oven 

temperature of 50 ◦C was set to raise by 20 degrees Celsius per minute to 175 degrees, 

where it was held for 1 minute. It was then increased by 4 degrees Celsius per minute to 

230 degrees, where it was held for 5 minutes. The methylated fatty acids were determined 

based on a comparison of the retention times and mass spectra obtained from commercial 

standards (Supelco 37 component mix, Supelco PUFA No. 3, Supelco FAME mix C8-C24, 

C16 DMA, and C10 DMA; Sigma Aldrich, Oakville, ON, Canada) and the NIST database 

(Thermo Scientific, Burlington, ON, Canada). Values were provided as nmol percent, and 

the quantities of distinct fatty acids were determined using standard curves created from 

the standard mixtures. 

 

Analysis of lipids by UHPLC- HESI-HRAM-MS/MS 

The complex lipids in the eel samples were determined using ultra-high-performance liquid 

chromatography (LC) coupled with heated electrospray ionization high-resolution accurate 

mass tandem mass spectrometry (UHPLC- HESI-HRAM-MS/MS) according to our 
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previous publication (Pham et al., 2019a, b). The lipids extracted from undersized and large 

eel samples were separated using both hydrophilic interaction liquid chromatography 

(HILIC) using a Luna 3μm, particle size: 3 µm, pore diameter: 200 Å, 100 × 2 mm diameter 

column (Phenomenex, Torrance, CA, USA) and reverse phase chromatography using an 

Accucore C30 column [150 × 2 mm I.D., particle size: 2.6 μm, pore diameter:150 Å] 

(Fisher Scientific, ON, Canada). HILIC separation was conducted using a solvent system 

of acetonitrile and water (97:3v/v) containing 10 mM ammonium acetate buffer (solvent A) 

and 10 mM ammonium acetate in pure water (solvent B). The mobile phase system gradient 

was as follows: 100% solvent A for 2 min; solvent B increased to 10% for 23 min, then 

increased from 10–15% for 10 min, and finally kept at 15% for 5 min. The column was re-

equilibrated to starting conditions (100% solvent A) for 10 minutes prior to each new 

injection. Column temperature during HILIC separation was maintained at 25 °C and the 

flow rate at 0.2 mL/min. Ten microliters of the lipid extract was suspended in chloroform: 

methanol (1:1 v/v) and then injected into the machine. 

 

Separation using C30 reverse-phase liquid chromatography (C30RPLC) was conducted 

with a gradient mixture of solvent B consisting of isopropanol: acetonitrile: water at 

90:10:1v/v/v containing 10 mM ammonium formate in formic acid (0.1%). Solvent A 

consisted of acetonitrile: water at 60:40 v/v with 10 mM ammonium formate and 0.1% 

formic acid. The gradient system used was as follows: 30% solvent B for 3 min; increased 

solvent B to 43% over 5 min, then to 50% B in 1 min, then to 90% B for 9 min, then to 99% 

B for 8 min and concluded at 99% B for 4 min. The column was re-equilibrated to starting 

conditions (70% solvent A) for 5 min prior to each new injection. Column temperature 

during C30 reverse phase chromatography was maintained at 30°C with a flow rate of 
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0.2mL/min, and a 10µL sample was injected into the machine. 

 

Data analysis (UHPLC-C30RP-HESI-HRMS/MS) 

All lipid analysis was done using a high-resolution accurate mass tandem mass 

spectrometer (Q-Exactive Orbitrap) coupled to an automated Dionex ultimate 3000 

UHPLC system (ThermoScientific, MO, USA) operated with the Chromeleon software. 

The mass spectrometer was operated in both positive and negative ion modes using the 

following parameters: sheath gas: 40, auxiliary gas: 2, ion spray voltage: 3.5 kV, capillary 

temperature: 300 ◦C; S-lens RF: 35 V; mass range: 200–2000 m/z; full scan mode at a 

resolution of 70,000 m/z; top-20 data-dependent MS/MS at a resolution of 35,000 m/z and 

step collision energy of 35 and 40 (arbitrary unit); injection time 50 min; isolation window: 

1m/z; automatic gain control target: 1e5 with dynamic exclusion setting of 5.0 s. The 

instrument was externally calibrated to 1ppm using ESI negative and positive calibration 

solutions. 

 

Statistical Analysis 

Four replicates were made for each experiment. A supervised multivariate analysis 

approach using XLSTAT (Addinsoft, New York, USA) was applied to the eel fatty acids, 

complex lipid classes and molecular species identified using the Lipid Search version 4.1 

(Mitsui Knowledge Industry, Tokyo, Japan) and manually confirmed with XCalibur 4.0 

software (ThermoScientific, MO, USA). Principal component analysis (PCA) was used to 

ordinate the samples based on similarity, and analysis of variance (ANOVA) was applied 

to determine the differences in lipid composition and content as influenced by morphology 

and habitat locations. Fisher’s least significant difference (LSD) was used to separate the 
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means whenever significant effects were observed at α= 0.05. Figures were created using 

a combination of the XLSTATs premium version (Addinsoft, Long Island, NY, USA) and 

Sigma plot 13.0 (Systat Software Inc., San Jose, CA). 
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2.4 Results 

Changes in colour as influenced by the size and habitat location 

Colorimetric analyses were conducted on all the samples across locations to confirm 

and quantify the difference in colour among samples and to determine if this factor was 

associated with the size of the fish and/ or the location from which it was harvested. 

Principal component analysis (PCA) explaining 91.35% of the total variance in the data (F1 

80.51% and F2 10.84%) showed the eel samples cluster according to size (Figure 2.2B). The 

smaller eel samples almost exclusively clustered in quadrants 1 and 2 while the larger 

samplers cluster in quadrants 3 and 4 regardless of harvesting site. The adjacent biplot 

showed vectors L* (white colour) and b* (yellow colour) farthest from the origin with a 

large angle between the two suggesting that these colours have more influence on grouping 

the samples according to size compared to ΔE* (total colour difference) and a* (redness). 

Further analysis showed that smaller eel samples had significantly higher b* values (yellow 

colour) compared to the larger samples across locations (Figure. 2.2C). 
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Assessment of Lipid content using FTIR 

The Fourier Transform Infrared (FTIR) was used to determine the lipid content of American 

eel samples using the association of absorbance peaks to bonds present in eel sample. On 

the high-frequency end of the spectrum (above 1,500cm-1) the bond absorption at 3011cm-1 

is associated with C-H stretching of cis double bonds, the peak at 2854cm-1 is associated 

with methylene C-H symmetrical stretching, the peak at 2925 cm-1 is associated with 

methylene C-H asymmetrical stretching (Figure. 2.3A). On the low-frequency end of the 

spectrum (below 1,500cm-1), the peak at 1160 cm-1 is associated with methyl C-H 

symmetrical bending and the peak at 721 cm-1 is associated with C-H rocking (Forfang et 

al., 2017). 

 

A PCA was conducted to investigate the association between the habitat location and the 

absorbance peaks corresponding to the fatty acids present in eel sample Figure. 2.3B). The 

PCA explained 79.57% of the total variance in the data (F1 48.91% and F2 30.66%). The 

biplot suggested an association between samples from Flat Bay and the absorption band 

=CH stretch at 3011cm-1. Samples from Gander Bay and Robinsons were more associated 

with peaks C-H stretch at 2854cm-1 and 2925 cm-1, and C-H bend (mono) at 721 cm-1. A 

follow-up PCA was conducted to determine the potential of a correlation between habitat 

location and the fatty acids identified in the previous section (see Figure. 2.3C). There was 

no obvious clustering of sample points according to location. 
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Influence of Size on eel lipid composition 

In the present study, undersized freshwater eels were assessed for their potential use as raw 

materials for the development of functional food products. The characteristics and 

nutritional value of both large and undersized freshwater eels were assessed and compared 

to determine whether undersized eels could offer the same nutritional value as their larger 

counterpart based on the quality and content of important dietary lipids. 

 

FAMEs analysis using GC-FID showed the presence of essential fatty acids including EPA 

(eicosapentaenoic acid) and DHA (docosahexaenoic acid) at retention times of 11.93 and 

13.77 (Figure 2.4C). The abundance of each fatty acid identified from the GC-FID output 

was used to calculate to the percent total fatty acid for each sample. The large and small 

showed significant difference according to fatty acid class (Figure 2.4B). Larger eels 

contained significantly higher saturated fatty acids (SFA) and polyunsaturated fatty acids 

(PUFA). Amongst PUFA species, larger eels possessed significant greater omega-6s as 

well as omega-3s. There was no difference in MUFA content between sizes. was used PCA, 

we observed no clear separation of the lipids in the samples across locations regardless of 

size (Figure 2.4E). A follow-up PCA accounting for 86.18% of the total variance in the 

data (F1 56.66% and F2 29.52%) was conducted to determine the association between eel 

size and fatty acid classes (see Figure. 2.3C). The output showed that smaller eels were 

associated with MUFA while larger eels were associated with SFA and PUFA, omega-6s 

and omega-3s. 
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Influence of location on eel lipid composition 

Evaluating the influence of the growing habitat is important for determining the nutritional 

quality of American eel subpopulations. The distribution of fatty acid class content across 

location were as follows: A) Robinson: PUFA: 25±0.2%, MUFA: 47±0.2%, SFA: 

28±0.2%, B) Flat Bay: PUFA: 26±0.4%, MUFA: 44±0.3%, SFA: 30±0.1%, and C) Gander 

Bay: PUFA: 21±0.5%, MUFA: 51±0.8%, SFA: 28±0.5%, NL (see Figure 2.5a). Analysis 

of variance distinguished the difference between fatty acid content of eel samples according 

to location. In terms of SFA, palmitic acid (C16) was the greatest in abundance. Flat Bay 

eels had significantly higher C16 content. Robinson and Gander populations also had very 

high levels as well. Notable percentages of stearic acid (C18) and myristic acid (C14) were 

also found during analysis. Flat Bay eels had more C18 content followed by the Gander 

population (see Figure 2.5b A). The MUFA content was highest in eels obtained from 

Robinson Bay followed by Gander. Oleic acid C18:1 (n-9) predominated with significantly 

higher levels in samples from Gander Bay, followed by Robinson Bay (Gander Bay 

>Robinson Bay >Flat Bay) (Figure. 2.5b B). Although significantly lower abundance, the 

fatty acid content of cis-Vaccenic acid (C18:1n7) was the second highest of the MUFAs with 

elevated levels in samples from Robinsons and Gander Bay (Figure. 2.5b B). Flat Bay eel 

population had the highest PUFA content. Flat Bay samples had the highest DPA 

(C22:5n3), DHA (C22:6n3), EPA (C20:5n3), stearidonic acid (SA, C18:4n3), 

heneicosapentaenoic acid (HPA, C21:5n3) levels. Robinson had the highest linoleic acid 

(C18:2n6cis), α-linolenic (C18:3n3), 11,14,17-eicosatrienoic acid C20:3n3cis) content, 

while Gander Bay had the highest arachidonic acid (C20:4n6) content (see Figure 2.5b C). 

Figure 2.5b D) showed the percentages of each fatty acid class as well as omega-3 and 6 

fatty acids content and its ratio. Flat Bay eel population had the greatest percentage of 
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PUFA and SFA followed by Robinson and Gander Bay. MUFA content was the high across 

sample with Gander Bay eel population having the greatest percentage followed by 

Robinson. Robinson had significantly higher omega 6 content that Flat Bay; however, Flat 

Bay samples contained significantly more omega-3s than both Gander and Robinson. 

Omega-6: omega-3 ratio percent was low across sampling locations; however, Robinson 

and Gander had significantly higher abundances than Flat Bay (see Figure 2.5b D). 
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Analysis of polar lipid content 
 

The polar lipids were determined in the samples following analysis by UHPLC-HESI- 

HRAM/MS-MS. We observed the PL present in samples from each location were as 

follows: Robinsons Bay: 12% LPC, 3% LPE, 21% PC, 30% PE, 1% PG, 3% PI, 2% PS, 

28% SM. Gander Bay: 21% LPC, 5% LPE, 20% PC, 26% PE, 2% PI, 1% PS, 25% SM. 
 

Flat Bay: 16% LPC, 1% LPE, 35% PC, 9% PE, 2% PI, 36% SM. Robinsons Bay had the 

largest percentage of PE as well as PG, PI, and PS (present in small amounts across 

locations), and the lowest LPC. Gander Bay had the largest percentage of LPC and LPE 

and the lowest SM and PC. Flat Bay had the largest percentage of SM and PC and the 

lowest LPE, PE, and PS (see Figure 2.6a). 
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The study of the molecular species in the different polar lipids determined the lipid 

composition of eels from Robinson, Gander, and Flat Bay (see Figure 2.6b A). The PCA 

explained 54.61% of the total variation in the data (F1 36.45% and F2 18.15%) and showed 

the distribution of PC molecular species clearly segregated the eel samples by location. 

There was a clear separation of MUFA enriched PC in eel samples from Flat Bay in 

quadrants 1 (Q1) and 2 (Q2). PUFA enriched PC were associated with samples from 

Robinsons and Gander Bay clustered in quadrants 3 (Q3) and 4 (Q4). Flat Bay had a 

significantly higher levels of PC16:0_16:1, PC17:1_16:0, PC16:0e_18:1, PC16:0_20:5 and 

PC16:1e_18:1 than Robinsons and Gander Bay. In Q3 and Q4, PUFA molecular species 

were higher in samples from Robinsons Bay and Gander Bay compared to Flat Bay. 

Particularly, ether linked PC molecular species (PC16:0e_20:4 and PC16:0e_22:5) were 

elevated in samples from Gander Bay. 

 

PE had more diversity in molecular species distribution compared to PC and provided clear 

groupings of the eel samples based on habitat locations (Figure. 6C). Samples from Flat 

Bay almost exclusively clustered in Q1, while those from Gander clustered in Q3 and those 

from Robinsons Bay in both Q3 and Q4. Samples grouped in Q1 and Q2 showed Flat Bay 

had significantly higher levels of MUFA enriched PE molecular species especially 

16:1e_20:5, 16:1e_18:1, 16:1e_17:1, and 16:1e_16:1. In contrast, eel samples from 

Robinson Bay clustered in Q3 and 4 had elevated levels of C20:4 enriched PE molecular 

species (Figure 2.6b B). Another interesting observation was that eel PE had high levels of 

ether linked molecular species regardless of the geography of habitat location. 
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Intact Lipid Analysis: Neutral lipids 

As anticipated, triacylglycerides (TG) predominated (97-98%) the neutral lipid 

composition with diacylglycerides (DG) occurring as minor (2-3%) components in eel 

samples regardless of geography of habitat location (Figure. 2.7a). To discern the molecular 

species (> 220 molecular species) that best differentiated the samples based on habitat 

location, partial least squares-discriminant analysis (PLS-DA) was conducted (see Figure 

2.7b). Triacylglycerides (TG) clustered the samples according to location with Flat Bay 

ordinated in Q3 & Q4, Robinson Bay mainly in Q2, and Gander Bay in Q1. The Cumulative 

Q2 quality index was Flat Bay- Comp1 0.0858, Comp2 0.880; Gander Bay- Comp1 0.090, 

Comp2 0.651; Robinsons Bay- Comp1 0.259, 0.615; Total Comp1 0.402, 0.721. TG 

molecular species with VIP scores >1 from the PLS-DA model were selected for further 

analysis using a heatmap (Figure 7). Output from the heat map showed that PUFA [22:5, 

22:6, 20:4, 22:4] and MUFA [C18:1] enriched TG molecular species were higher in eel 

samples from Flat Bay (Figure 7B). Conversely, samples from Robinson and Gander Bay 

had higher levels of TG molecular species enriched with C8:2 and C18:3 fatty acids (see 

Figure 2.7b A). Similar analysis of DG showed that MUFA [18:1] & PUFA [20:5, 22:5, 

22:6] enriched molecular species were higher in eels collected from Flat Bay and PUFA 

molecular species containing 18 carbons [18:2, 18:3] were higher in samples obtained from 

Gander and Robinson Bay (Figure 2.7b B). 
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2.5 Discussion 

The evaluation of American eel lipid content undertaken in this study provides insight into 

the nutritional value of undersize, yellow and large silver eels as well as identifies the 

factors that contribute to their degree of enrichment. The ability of undersized freshwater 

American eels from Newfoundland to be utilised in the development of high-value eel- 

based functional food products is highly dependent on the existence of essential fatty acid 

species and those with related bioactive qualities. This investigation revealed that the entire 

sample population of large eels were light/silver in colour, and therefore were in the 

migratory stage. The juvenile/sedentary phase of undersized eels were more yellow in 

colour (see Figure 2.2C). Additionally, migratory American eels have a greater amount of 

fatty acids than juvenile yellow eels (see Figure 2.4D). In addition to size, habitat also 

affects lipid content, with Flat Bay eels possessing the highest levels of PUFA, omega 3, 

and SFA, and Gander Bay eels possessing the highest levels of MUFA. In this 

investigation, all American eel samples contained elevated levels of MUFAs (see Figure 

2.5a-b). The examination of polar and neutral lipids gave additional support for the 

observation that the total lipid classes of American eels are considerably influenced by the 

growing habitat (see Figure 2.6a-b, Figure2.7a-b). Despite having a somewhat lower lipid 

content, undersized American eel are nutrient-dense, high-quality ingredients for the 

production of secondary functional food products. 

 

Influence of Size and Habitat Location on American Eel Color Analysis 

A comprehensive examination of the association between the colour of the samples, size, and habitat 

location revealed that the colour difference amongst eels was correlated with their size (see Figure 

2.2). Smaller eels showed higher b* values, indicating that they possessed a greater proportion of 



76 
 

yellow colours than their larger counterparts, and that the colour difference between the sizes was 

substantial. These findings are consistent with studies conducted on the life phases of the American 

eel, which characterise juvenile American eels as becoming darker and more yellow as they mature 

physically, and lighter/silver as they reach sexual maturity (Greene et al., 2009; COSEWIC, 2012; 

McCleave, 2001). 

 

Evaluation of Lipid content utilising FTIR. 

There has been minimal, if any, research on the lipid composition of American eels and the 

effect of morphological changess on the content. In this investigation, lipid signals 

confirmed the presence of unsaturated fatty acids in samples of American eel (Figure 2.3A). 

Therefore, it is expected that the sample should contain a variety of MUFA and PUFA 

species including essential omega-3s. Eels from the Flat Bay site were associated with -

C=C- and methyl single bonds, respectively (Figure 2.3B). The presence of unsaturated 

fatty acids indicates nutritional and bioactive qualities that have the potential to promote 

human health (Marchioli et al., 2002). 

 

Analysis of the lipids of eels of various sizes. 

Further investigation revealed that American eels contain EPA and DHA, both of which are 

necessary fatty acids (see Figure 2.4A). In this study, lipid analysis revealed that as 

American eels progress from juvenile to adult size, their fatty acid concentration increases. 

This alteration is a result of juvenile American eels transitioning to silver after accumulating 

enough lipid storage in preparation for migration (COSEWIC, 2012). 

Larger silver eels were associated with SFA, PUFA, omega-6s, and omega-3s, while 

smaller eels were associated with MUFA. Additional study revealed that smaller eels 

contained a somewhat lower proportion of the fatty acids seen in larger eels (see Figure 2.4 
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D-E). This result is consistent with the findings of Van Ginneken et al. (2007), who 

investigated the fatty acid content of European eels (near relatives of American eels) and 

found that the blood lipid content and body fat were lower in small yellow eels and higher 

in larger silvering eels. During its yellow pre-migratory phase, the European eel 

accumulated lipids in its muscle and liver in preparation for its transition to the migratory 

phase (Parzanini et al., 2021; Palstra & van den Thillart, 2010; Greene et al., 2009; 

COSEWIC, 2012; McCleave, 2001). These findings imply that yellow American eels 

utilise similar migration preparation strategies. 

 

Analysis of eel lipids according to their habitat of growth. 

In a recent study, Parzanini et al. (2021) found that eel lipid content can fluctuate 

significantly in response to changes in habit-specific environmental variables. This 

experiment proved the existence of interspecific variation in growth environments. Flat 

Bay eels exhibited the largest concentrations of PUFA, including DPA (C22:5n3), DHA 

(C22:6n3), EPA (C20:5n3), stearidonic acid (SA, C18:4n3), and heneicosapentaenoic 

acid (HPA, C21:5n3) (see Figure 2.5a), and SFA, which contained C18 and C16 (see 

Figure 2.5b). The EPA and DHA content of Flat Bay eels has the potential to regulate 

inflammatory cytokines, vasodilation and vasoconstriction, and many other important 

processes in the body (Wall et al., 2010), whereas the DHA content can function to reduce 

LDL and subsequent risks of coronary heart disease (Hu et al., 2002; Burdge and Calder, 

2005; and Sokoa-Wysoczańska et al., 2018). The availability and abundance of essential 

fatty acids in Flat Bay eels indicate that the site is conducive for the nuturing of eels rich 

in polyunsaturated fatty acids (PUFA). Flat Bay may have a healthy population of 

microalgae to supply its much greater omega-3s content (see Figure 2b D) and total food 
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availability (Maltsev & Maltseva, 2021; Barkia et al. 2019; Sathasivam et al. 2019; 

Chalima et al. 2019, 2020). Gander eels had the largest proportion of MUFA (see Figure 

2.5a), which was mostly composed of oleic acid C18:1 (n-9) followed by cis-vaccenic acid 

(C18:1n7) and arachidonic acid (PUFA) (C20:4n6). Robinson eels were supplemented 

with important -linolenic (C18:3n3) and linoleic (C18:2n6cis) acids, as well as 11,14,17-

eicosatrienoic (C20:3n3cis) and C18:1n7 acids (see Figure 2.5b). It is believed that site-

specific nutrition influenced the variation in fatty acids within a species (Dalsgaard et al., 

2003). Osmoregulatory (salinity) and acclimation (temperature) may possibly have an 

impact on lipid content; however, measurements of these parameters are required to 

determine their contribution, if any (Parzanini et al., 2021). Despite variations in quantity 

and molecular species, the fatty acid composition of eel from each region includes 

bioactive fatty acids. 

 

Polar and neutral lipid content analysis of American eels. 

Long-chain polyunsaturated fatty acids (LC-PUFA) accumulate in polar lipids found in 

muscle tissue (Sushchik et al., 2020). This examination of polar lipids revealed that 

Robinson eels have the highest levels of PC (35%) and SM (36%) of any species (Figure 

2.6a). Including rich sources of PC and SM which may positively affect or reduce the onset 

of degenerative diseases asssociated with the decline of theses phospholipids (Cooper, 

2000; Abedi and Sahari, 2014). Gander Bay delivered eels with the greatest amount of 

LPC (16%). Flat Bay was the greatest source (30%) of PE. PC and PE molecular species 

enriched with MUFA were more abundant in Flat Bay samples, while PUFA-enriched 

molecular species were more abundant in Robinson and Gander Bay samples (Figures 2.6 

B and C). Differences in lipid content can be accounted for by variations that exist between 
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locations. Polar lipids that are ether-linked are prevalent in American eels (see Figure 2.6b). 

This study discovered several PC and PE ether connections in American eels, with PE being 

the most prevalent. Regarding membrane fluidity and fusion, the presence of ether lipids 

has biological significance in humans (Dean & Lodh, 2018). In addition to regulating cell 

differentiation and signalling, ether-linked polar lipids also affect cell differentiation and 

signalling. These lipids are also capable of acting as antioxidants (Guang &Tong, 2010). 

Ether lipid shortage is linked to neurological illnesses, cancer, and metabolic conditions 

(Eisinger et al., 2014; Chen et al., 2016; Tessier et al., 2016; Alshehry et al., 2016; Dean & 

Lodh, 2018). Incorporating dietary sources of ether bonds is therefore essential for general 

human health. To my knowledge, this is the first demonstration of high ether linked polar 

lipids in eels found in the scientific literature. 

 

The location of the habitat has a substantial effect on the molecular species of TG neutral 

lipids as well with Flat Bay eels contained more TG containing PUFA [22:5, 22:6, 20:4, 

22:4] and MUFA [C18:1] molecular species (Figure 2.7B). The bioactivity associated 

with PUFAs from Flat Bay includes the function of Docosapentaenoic acid (DPA, C22:5 

ω-6 or ω-3), which is very similar in structure to EPA, derivative in the regulation of 

immune phagocyte response (Gutiérrez et al., 2019). Docosahexaenoic acid (DHA, C22:6) 

is essential for normal brain, ocular, and skin function (Hashimoto and Hossain, 2018; 

Burdge and Calder, 2005; Sokoa-Wysoczaska et al., 2018). Arachidonic acid (AA, 20:4) is 

better recognised for its inflammatory response as it is converted to prostaglandins and 

leukotrienes; yet, it is essential for membrane fluidity and flexibility in all body cells due 

to its four cis double bonds (Fitzgerald, 2001). DHA and AA make up 20% of brain lipid 

(Weiser, Butt, & Hasan Mohajeri, 2016; Tallim & El Ridi, 2018); hence, it is plentiful in 
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breast milk as TG and phospholipids (Wijendran et al., 2002). 

 

PUFA molecular species with 18 carbons [C18:2, C18:3] were more prevalent in eels 

from Robinson and Gander Bays (Figure 7B). The two most elementary necessary fatty 

acids are linoleic acid (LA, C18:2n-6) and -linolenic acid (ALA, C18:3n-3). ALA 

regulates the rhythm and pumping of the heart, as well as the influence or onset of 

cardiovascular disorders. LA is the principal omega-6 fatty acid that is converted to 

gamma-linoleic acid (GLA), which is effective in preventing various diseases (Sokoła- 

Wysoczańska et al., 2018). This study of the neutral lipids by HPLC-HESI-MS/MS is in 

accordance with the total fatty acid molecular species composition detected by GC- 

FID. According to Figure 2.7C, DG: MUFA & PUFA molecular species [18:1, 20:4, 22:5, 

22:6] were more in eels from Flat Bay, while PUFA molecular species [18:2, 18:3] were 

greater in samples from Gander. Each place can serve as a source of health- promoting 

bioactive lipids and fatty acid species. Eels from Flat Bay are rich in polyunsaturated fatty 

acids, particularly C18:2n6 and EPA, while eels from Robinson are rich in omega-3 fatty 

acids (DHA and LN). MUFA- enriched anadromous fish products could be manufactured 

from either Gander or Robinson samples. Similar findings can be made about polar and 

neutral lipids. Flat Bay eels appear to be superior sources of PC and SM, whereas Robinson 

samples are superior producers of PE. 

 

In addition, MUFA-enriched PE molecular species are more abundant in Flat Bay samples, 

whereas ARA- and DHA-enriched PE is more abundant in Robinson samples. Similarly, 

samples from gander and Robinson would be a suitable for eel-based products enriched 

with TG molecular species containing C18 PUFA and MUFA. Flat Bay would be a superior 



81 
 

supply of freshwater eels with TG molecular species enriched with DHA, ARA, EPA, and 

DPA in addition to oleic acid. The findings from this paper suggest undersized eels could 

be a good source of dietary or functional lipids which geography of the habitat location 

providing superior sources of different classes of fatty acids, polar and neutral lipids that 

could influence nutritional and functional qualities of the product. 

 

2.6 Conclusion 

 

Extensive investigation of freshwater American eels revealed that the smaller population 

shares a similar lipid profile as the bigger population. Nonetheless, the percent total fatty 

acid content was significantly different based on the eel's size and growth location. The 

overall PUFA content of the lipids of the eels was significantly different. Flat bay eels are 

rich in long-chain fatty acids with a high number of double bonds and -C=C carbons [C20:5, 

C22:3, C22:6]. Gander Bay's total MUFA content was high [C18:1]. The overall SFA 

content could not distinguish samples from various regions. Flat bay eels have larger 

concentrations of C16. The growth environment has a substantial effect on the total polar 

lipid classes of the eels. Total PC was greater in Robinson Bay-collected eels. Total PE was 

greater in Flat Bay-collected eels and a large number PE as well as a few PC had ether 

linkage, which is unique to this study. The examination of the molecular species in the 

various polar lipid classes revealed that Flat Bay samples included more MUFA molecular 

species and the concentration of PUFA molecular species was greater in samples from 

Robinson and Gander Bays. The growing environment greatly impacted the molecular 

species of the neutral lipids. Flat Bay eels had a greater concentration of PUFA molecular 

species [C20:5, C22:4, and C22:6] and MUFA [C18:1]. The PUFA molecular species 
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[C18:2, C18:3] are higher in eels from Robinson and Gander Bays. This investigation of 

neutral lipids by HPLC-HESI-MS/MS is consistent with the total fatty acid composition 

found by GC-FID. This study demonstrates that undersized freshwater American eels are 

great candidates for the production of secondary products; however, the nutritional benefits 

vary depending on growth area. Utilizing a combination of primary products from each site would 

increase the nutritional content of the secondary product through diversification. 
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3. Sensory Perception and Development of Kabayaki as a Functional Food using 

undersized Newfoundland Freshwater Eels (Anguilla rostrata) 
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3.1 Abstract 

 

Eel is a superior source of high-quality functional lipids that has potential for development 

as high-quality functional food products. Undersized eels are underutilized for the 

production of eel products. This study aimed to develop high-quality Kabayaki products 

utilizing undersized Newfoundland American eel. In this study, we hypothesize that eel 

marinated and then cooked at reduced temperature (250C) and oxygen exposure should 

have less formation of toxic lipid oxidation, harmful Maillard reaction products, and 

potentially carcinogenic HCAs typically generated during grilling. Furthermore, the 

nutritional quality of Kabayaki should improve with the incorporation of polyphenol-rich 

local Newfoundland cranberries. The results demonstrate that the cooking conditions did 

not significantly alter the eel fatty acid profile. Incorporating sous-vide cooking technique 

before grilling reduced the production of toxic HCAs, MRCs and VOCs in Kabayaki. Sous-

vide before grilling maintained the nutritional value, increased the quality and safety of 

Kabayaki, and appealed more to consumers. Infusing fresh, unsweetened cranberry juice in 

Kabayaki marinade introduced more volatile compounds, including beneficial terpene D-

limonene. Consumers preferred specific attributes of each product but were accepting of 

both 'Regular' and berry infused Kabayaki. Kabayaki, berry infused Kabayaki, and their 

corresponding marinades can serve as a ready-to-eat, frozen functional food product on the 

global market. 

Key words: Kabayaki, sous-vide, grilling, Maillard reaction, Lipid Oxidation (LO), 

Heterocyclic Amines (HCAs), Fatty acid methyl esters (FAMEs), Newfoundland 

cranberries 

3.2 Introduction 
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Kabayaki describes the Japanese method of grilling butterflied fillets of meat or fish 

marinated in a sweet soy-based sauce. Freshwater eel "unagi" is a popular protein of choice 

because the Japanese believe that eel can improve stamina and heal sickness/ fatigue caused 

by seasonal heat (Bestor 2004). Research shows that eel is rich in nutrients that can improve 

bodily function upon consumption. Eel contains vitamin E, A, D, K, essential amino acids, 

and fatty acids including essential unsaturated EPA (C22:6 n-3) and DHA (C20:5 n-3) 

(Harlioǧlu & Yilmaz, 2011; Islam et al., 2020). These nutrients play vital roles in skin and 

gastrointestinal health, dental development, skeletal growth, DNA formation and 

replication (Balami et al., 2019; Kaźmierczak-Barańska et al., 2020). Kabayaki method of 

grilling is an excellent means of preparing freshwater eel as it has gained consumer 

acceptance across the world in the form of sushi. However, preserving the nutrients in eels 

can be challenging because many are susceptible to degradation and formation of toxic 

compounds upon exposure to oxygen and high heat. Unlike many other fish species, eel 

blood is poisonous; therefore, it cannot be eaten raw and must undergo some form of 

thermal processing (Yoshida et al., 2008). As a result, it is necessary to optimize preparation 

and cooking methods to preserve eel nutritional quality, reduce the generation 

of toxins to ensure safety, as well as appeal to the sensory perception of consumers during 

the preparation of eel as a traditional or Kabayaki functional food product (Momenzadeh 

et al., 2017). 

 

 

Thermal processing of raw freshwater eel eliminates pathogens and toxins while 

developing sought-after colour, taste, and aroma (Broncano et al., 2009). In the case of 
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Kabayaki, grilling over an open flame at high heat while continuously basting the eel with 

marinade generates a dark, crispy exterior while retaining a moist, chewy, succulent 

interior. Research shows that grilling changes the physicochemical properties of fish; 

however, the grilling technique and conditions control the extent of change. An increase in 

processing temperature and time and poor storage conditions encourages damage to essential 

fatty acids and overall nutritional quality which generates toxic compounds with profound 

health implications (Saldanha & Bragagnolo, 2010). A study conducted by Hangesti Emi 

Widyasari et al., (2014) characterized the fatty acid profile of fresh Indonesian eel 

compared to when prepared by roasting. It revealed a 0.45% and 3.87% reduction in EPA 

(C22:6 n-3) and DHA (C20:5 n-3) content, respectively, after roasting and steaming, 

followed by a second roasting. The effect of grilling (Kabayaki preparation) on American 

eel is unknown. However, the literature recognizes the link between extreme grilling 

conditions and the damage of heat-sensitive nutritional compounds, as well as the 

development of potential carcinogens heterocyclic amines (HCAs) and undesirable 

organoleptic attributes such as off-colour, off-flavour, etc. (Matsuda et al., 2013). 

 

Maillard reaction (MR) and lipid oxidation (LO) are the main processes responsible for the 

changes in food nutritional value, safety, and sensory attributes during grilling. These 

processes occur almost simultaneously, and each pathway produces an array of volatile 

products that interact to promote or discourage the other reaction (Zamora and Hidalgo, 

2005). Grilling conditions influence the extent to which MR and LO affect nutritional 

quality, safety, and sensory attributes of grill foods. Therefore, it is important to understand 

these pathways and interactions and to devise strategies to optimize the grilling technique 

or conditions to improve the safety, nutritional and sensory quality of the final product. 
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Maillard reaction is responsible for the characteristic colour, flavour, and texture that food 

develops during grilling (Nooshkam et al., 2019; Martin et al., 2000; Wang et al., 2011; & 

Peng et al., 2011). MR describes a cascade of reactions that occur whenever the carbonyl 

moiety of reducing sugars and the free amino groups on the surface of the food combine to 

produce volatile flavour and aroma compounds, and the brown colour (melanoidins 

pigment) observed in grilled foods. MR influences substantial functional and structural 

alterations that produce both pleasing and undesirable organoleptic qualities during 

cooking. LO products can also interact with intermediate MR products to create new 

compounds with distinct attributes (Zamora and Hidalgo, 2005). The extent of change 

depends on the composition of reactants and conditions, i.e., temperature and cooking time 

(Lund & Ray, 2017). High temperatures and prolonged cooking times drive the Maillard 

reaction pathway to convert desirable MR products (MRP) to prooxidants, carcinogens, and 

mutagens. This change is obvious during the Strecker degradation stage of MR where 

aldehydes, a significant contributor to flavour, accumulate and result in off-flavours 

(Jayasena et al., 2013). These compounds can harm human health, as well as decrease the 

nutritional value, sensory appeal, and shelf life of the product. The characteristic grill marks 

on Kabayaki are a good indicator of MR; however, the extent of MR and its effect on the 

nutritional quality, safety, and sensory perception of Kabayaki require identification and 

quantification of volatile MRPs. 

 

Conversely, lipid oxidation occurs whenever high heat inactivates antioxidant enzymes 

releasing pro-oxidant nonheme iron, which denatures muscle fibres and ruptures membranes 

to expose phospholipids to molecular oxygen (Li & Liu, 2012; Morais De Lima Junior et 

https://www.sciencedirect.com/science/article/pii/S0308814618316546#!
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al., 2013; Amaral et al., 2018). Reactive oxygen species (ROS) act as free radicals and react 

with unsaturated fatty acids to form primary products (hydroperoxides) that can decompose 

to secondary products (hydrocarbons) (Tatiana & Bragagnolo, 2010). MR products can also 

affect LO as they can function as either pro-oxidants or antioxidants (Zamora and Hidalgo, 

2005). At this stage, volatile organic compounds (VOCs), including alkanes, alkenes, acids, 

ketones, esters, and aldehydes (key contributors) begin to produce undesirable flavours and 

odours (Grebenteuch et al., 2021). Advanced lipid oxidation can cause further decline in 

sensory qualities (discolouration, texture modifications, rancidity, and off-flavour) which 

decreases consumer acceptance of the product (Purriños et al., 2011). An increase in 

processing temperature and time and poor storage conditions can degrade essential fatty 

acids contributing to the generation of toxic compounds with profound health implications 

(Saldanha & Bragagnolo, 2010). Freshwater American eels may be especially vulnerable 

to lipid oxidation because it is rich in highly unsaturated lipids, particularly omega-3 fatty 

acid (EPA) (Hamilton et al., 2022). However, identification and quantification of lipid 

oxidation products is important to determine the extent to which these products negatively 

impact the nutritional quality, safety, and sensory perception of Kabayaki. 

 

Maillard reaction generates HCAs when muscle tissue becomes exposed to high 

temperatures (>100 degrees Celsius) (Gibis, 2016, Skog et al., 1998). HCAs are the 

reactionary products of sugars, amino acids, and creatinine. The generation of HCAs is 

heavily influenced by the presence of its precursors in combination with physical factors 

such as the nature of the muscle tissue, grilling temperature, time, and technique (Hur et 

al., 2019). High heat is the main contributor to the formation of HCAs during grilling, 

followed by the grilling time. HCAs then generate ROS which promotes oxidative stress 
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inside the body and heightens the risk of chronic diseases, such as pancreatic and colorectal 

cancers (Carvalho et al., 2015; Anderson et al., 2005; Sinha et al., 2005). Nevertheless, 

consumption of well-done muscle tissue is the leading source of HCA intake for humans, 

superseding that of tobacco (Matsumoto et al., 1981). 

 

Cooked foods mainly contain thermic HCAs some of which can be categorized as probable 

human carcinogen and include: 2-amino-3-methyl-imidazo [4,5-f]quinoline (IQ), 2-amino-

3-methylimidazo [4,5-f]quinoxaline (IQx) and reasonably anticipated to be a human 

carcinogen: 2-amino-3,4-dimethylimidazo [4,5-f]quinoline (MeIQ), 2-amino-3,8- 

dimethylimidazo [4,5-f]quinoxaline and (MeIQx), DiMeIQx (2-amino-3,4,8-trimethyl- 

imidazo [4,5-f]quinoxaline), and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine 

(PhIP) (International Agency for Research on Cancer, 1993). As a result, it is important to 

identify, quantify, and reduce HCA presence in grilled foods such as Kabayaki to ensure 

consumer safety.  

 

Kabayaki has great potential as a functional food; however, it requires preliminary 

evaluation of the nutritional quality and safety and subsequent reduction of toxic 

compounds, maintenance of nutritional quality, and assurance of sensory appeal. Research 

shows that regulating cooking time/temperature and incorporating sources of antioxidants 

can inhibit the formation of HCAs and toxic MRPs (Nooshkam et al., 2019; Cropotova et 

al., 2019; Platt et al., 2010). Furthermore, reducing oxygen exposure can also combat lipid 

oxidation (Cropotova et al., 2019). 

 

Traditional cooking methods for fish usually require high heat in aerobic conditions. The 
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sous-vide cooking method is an alternative that cooks food to a precise temperature 

throughout and eliminates free oxygen molecules by vacuum sealing the food product. This 

cooking technique involves packing food in a heat-stable, food-grade vacuum sealing bag 

and suspending it in a water bath at a controlled, low temperature (50°C–65°C) for a 

prolonged period (4–6 hours) (Kim et al., 2019). While cooking, the warm water circulates 

the package to cook the food evenly without it being in contact with direct heat. Sous-vide 

food can be consumed after reaching the recommended internal temperature or kept in the 

package for longer shelf life (6–42 days) which restrict the growth of microbial organisms. 

Sous-vide meat/fish regained popularity and wide consumer acceptability in the early 2000s 

because the final product tends to be more tender, flavorful, and succulent. The sous-vide 

technique also effectively retains heat-sensitive vitamins, antioxidants, and unsaturated 

fatty acids due to the low cooking temperature (250°F) (Ortuño et al., 2021; Vaudagna et 

al., 2002) thus increasing the nutritional quality of the finished product. Admittedly, sous- 

vide food can appear dull after cooking, so searing on the grill for a short time can 

helpgenerate colour. Incorporating the sous-vide technique in the preparation of Kabayaki 

may assist in preserving nutritional quality as well as improving the safety and sensory 

quality. Sous-vide vacuum packaging is ideal for marinated food as it retains all the 

seasonings and juices during cooking. Marination is an easy method for infusing flavour, 

antioxidants, and other functional compounds into food before cooking. Marinades often 

have a liquid base seasoned with herbs and spices to add flavour, aroma, colour, and 

functional properties. In the case of Kabayaki, soy sauce, mirin, sake, and sugar impart 

an umami flavour.  Soy  sauce  alone  promotes  digestion,  antioxidant,  antimicrobial  

activity, antihypertensive, and anticarcinogenic properties. 
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Antioxidant supplements can effectively disrupt the formation of free radicals via 

quenching and scavenging HCAs during MR (Vitaglione & Fogliano, 2004). These 

compounds donate extra electrons to neutralize free radicals; however, not all antioxidants 

have the same capacity or bioactivity. Butylated hydroxyanisole (BHA), butylated 

hydroxytoluene (BHT), and tertiary butyl hydroquinone (TBHQ) are common synthetic 

antioxidants used in food production. These antioxidants are cheap, effective means of 

reducing oxidation compared to natural antioxidants; however, they require safety 

assessments because of potential side effects (Fasseas et al., 2007). Conversely, natural 

antioxidants, such as vitamin C (ascorbic acid) and vitamin E (α-tocopherol), are more 

expensive, but have a higher antioxidant capacity, consumer acceptance, and lower safety 

risks because antioxidants from plants or natural sources tend to be safer. Phenolic 

compounds have one of the most considerable antioxidant capacities among 

phytochemicals. These antioxidants arrest the formation of and scavenge ROS and 

prooxidants (Kumar et al., 2015). Nooshkam et al. (2019) reported that certain natural 

antioxidants could target toxic MRPs without disturbing the formation of desirable MRPs 

and color pigments. Natural antioxidants are ideal for functional food development because 

they contribute additional flavor and color, and some even soften the texture of the muscle 

tissue. Incorporating a good source of antioxidants in Kabayaki could potentially improve 

the nutritional or sensory quality of the product and offer protective effects against the 

formation of harmful oxidative compounds during grilling. 

 

American cranberries (Vaccinium macrocarpon) have great potential as a functional 

ingredient because of their rich polyphenol, anthocyanins, proanthocyanidins (type A), 

vitamins, and phenol content (Côté et al., 2010; Odjo et al., 2022). Cranberry phenolics 
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have anticarcinogenic, anti-inflammatory, antioxidant, antiviral, antibacterial, anti- 

adhesion, antimutagenic and antiangiogenic properties (Caldas et al., 2018). Moore et al. 

(2019) determined that polyphenols and volatile extracts from cranberry inhibit NO 

formation before and after inflammation. Specifically, volatile monoterpenes, such as α- 

terpineol, play a significant role in reducing oxidation, thus cranberries are recognized in 

the scientific literature to be an effective source of natural antioxidants (Caldas et al., 2018). 

However, fresh cranberries have a sour/ tart taste that can become overwhelming; as a 

result, consumers typically repurposed them into juice, jams, etc. Cranberry juice is rich in 

terpenes, aliphatic alcohols, aliphatic aldehydes, and acids (Croteau & Fagerson, 1968). 

Incorporating cranberry juice into Kabayaki sauce formulation could improve the 

nutritional quality, safety, and sensory perception of the product. 

  

To the best of our knowledge, this is the first study to incorporate sous-vide coupled with 

grilling to prepare Kabayaki. In this study, we hypothesize that eel marinated and then 

cooked at reduced heat and oxygen exposure should have reduced formation of toxic lipid 

oxidation and Maillard Reaction Products as well as potentially carcinogenic HCAs 

typically generated during grilling. Furthermore, the nutritional quality of Kabayaki should 

improve with the incorporation of polyphenol-rich local Newfoundland cranberries. The 

aim is to develop a high-quality Kabayaki product utilizing undersized Newfoundland 

freshwater American eel as a functional food. Thus, the objective of this study was to use 

sous vide along with grilling as a preparation technique to maintain the nutritional and 

sensory quality, as well as improve the safety of Kabayaki. Secondly, to develop Kabayaki 

as a functional food product by incorporating polyphenol rich Newfoundland cranberries. 
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3.3 Methods and Materials Preparation of Sample 

 

Eel fillets were received from local fishermen and industry partners from Robinsons Bay, 

Flat Bay, and Gander Bay, in the province of Newfoundland and Labrador. The eels were 

separated into three pairs: (i) cleaned, (ii) skinned, and (iii) butterflied fillets and replicated 

four times. One of each pair was reserved for baseline analysis, and the other was used for 

marination. The samples were weighed in grams to determine the amount of marinade 

required for the experiment. Using the total weight of the fillets for marination, four times 

the volume of the marinade was initially prepared using mirin, soy sauce, sake, and 

granulated sugar in a 1:2:1:5-part ratio, respectively. This formulation was modified based 

on the traditional Japanese Kabayaki sauce. A new formulation was made using a 

2:2:1:1 ratio and white was replaced with brown sugar. Each experiment was denoted with 

the letter ‘K’ + the number of the experiment - ‘M’ + marination time. For example, K1- 

M3 represents the Kabayaki sample from experiment one- marinated for 3 hours. 

 

'Berry Infused' or 'BI' Kabayaki samples were made using two parts of the regular sauce to 

one part of Newfoundland cranberry juice. After 45 minutes of constant stirring and 

cooking, the berry-infused sauce was reduced to half the starting volume. Once the sauce 

had cooled, the eels were marinated in a 2:1 ratio of sauce to eel. Half of the samples were 

marinated for 3 hours, vacuum packed, then sous-vide for 15 minutes at 158 ⁰F before 

grilling at minimum heat for 3-minutes (flipped twice). 

 

Extraction of the volatile components by solid-phase microextraction coupled to gas 

chromatography/ mass spectrometry (SPME/GC-MS) 
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A 1-gram ground sample from each replicate was placed in a 10 mL headspace vial. After 

equilibrating the sample at 50 ° C for 5 minutes, a fibre coated with divinylbenzene/ 

carboxyne / polydimethylsiloxane (DVB / CAR / PDMS) of the following dimensions: 

length 1 cm, film thickness 50/30 μm (Supelco, SigmaAldrich, St. Louis, MO, USA) was 

inserted into the headspace of the sample vial and held there for 60 minutes after which the 

sample was desorbed in a TSQ 8000 triple quadrupole mass spectrometer [GC/MS) 

(ThermoScientific,  Brampton,  Ontario,  Canada)  coupled  to  a  Trace  1300 

gas chromatograph for analysis. The extracted volatile compounds were purified using a 

non-polar stationary phase ZB5MS column (30 m x 0.25 mm i.d., 0.25 μm film 

thickness, Phenomenex, CA, USA) at a flow rate of 1 ml/min with Helium as the carrier. 
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After the extraction period, the fibres were desorbed at the injection port for 10 minutes. 

Operating conditions of the device with a purge time of 5 minutes: splitless mode was used 

for infusion with a flash time of 5 minutes. The oven temperature was initially set to 50 ° C 

(held for 5 minutes) and then increased to 290 ° C (held for 2 minutes) at 4 ° C / min. The 

ion source temperatures and the quadrupole mass spectrometer were set to 230 ° C and 150 

° C, respectively. The injector and detector temperatures were maintained at 250 ° C and 

290 ° C. The mass spectrum was recorded with ionization energy of 70 eV, and the data 

acquisition was performed in scan mode. After desorption of each sample, the fibre was 

washed in a conditioning station at 250 ° C for 10 minutes. NIST / EPA / NIH (version 2.2, 

ThermoScientific) was used to identify volatiles present in the samples (Goicoechea and 

Guillen, 2014; Vidal et al., 2016; Vidal et al., 2020). 

 

Extraction and Analysis of Heterocyclic Amines (HCAs) 

Samples were prepared for accelerated solvent extraction (Dionex ASE 350, Thermo 

Scientific, MO, USA) as follows: One gram of ground Kabayaki sample was spiked with 

50 uL of 250 ppb TriMeIQx (2 –amino-3, 4,7, 8- tetramethylimidazo [4,5-f] quinoxaline) 

as an Internal Standard solution and then mixed thoroughly with 2.5 mL of 0.5 M NaOH 

in MeOH/Water (70:30 v/v) for one hour until completely homogenous. The ASE (10 mL 

stainless steel) cell was preloaded with 1 g of neutral aluminum oxide (Al2O3). The mixture 

was then combined with diatomaceous earth (1:2 w/w) then loaded into the cell. The 

corresponding collecting batch of each cell was preloaded with 2.5 grams of 

sodium sulphate (Na2SO4) to absorb any remaining moisture. Dichloromethane/acetonitrile 

(CH2Cl2:CN 1:1, v/v) was used to extract the sample. The cells were loaded onto the rack 
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of the ASE 350 (Dionex ASE 350, Thermo Scientific, MO, USA) and programmed to run 

according to the following conditions: Static time: 10 minutes, Temperature: 80 C, Heat: 5 

minutes, Static cycle: 1, Rinse volume: 20%, Purge time for 60 s, Pressure: 1500 psi. After 

extraction 10mL of the solution (extract) was collected from each sample and used for 

quantitative HCA analyses (Ouyang, Li, Tang, Jin, & Li, 2015). The extracts were dried 

using the rotating evaporator, resuspended in methanol, filtered using Mini-UniPrepTM G2 

syringeless filter (0.2 m, Whatman, Buckinghamshire, UK), then analyzed with ultrahigh 

performance liquid chromatography coupled with high resolution tandem mass 

spectrometry (UHPLC-HRMS/MS). 

 

Heterocyclic amines (HCAs) were analyzed following methods in Manful et al. (2019), 

except using Kabayaki samples. Briefly, prepared stock HCA standard solution (amine 2- 

amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,8-dimethylimidazo[4,5- 

f]quinoxaline (MeIQx), 2-Amino-3,4-dimethylimidazo[4,5-f]quinolone (MeIQ), 2-amino- 

3,4,7,8-tetramethylimidazo[4,5-f]quinoxaline (TriMeIQx), 2-amino-1-methyl-6- 

phenylimidazo[4,5-b]pyridine (PhIP), 1-Methyl-9-H-pyrido[3,4-b]indole (Harman) and 

19H-pyrido[4,3-b]indole (Nor-Harman) ) was serially diluted using acetonitrile:water 

(10:90 v/v) and internal standard 0.05 g/mL TriMeIQx to form six calibration standard 

solutions (0-100 g/L). 

 

The analytes were ran on an automated Dionex UltiMate 3000 UHPLC system under 

Chromeleon software on an LTQ Orbitrap XL mass spectrometer (Thermo Scientific, MO, 

USA) in positive ESI mode. Orbitrap was optimized to run under the follow conditions: 

sheath gas: 8, auxiliary gas: 2, ion spray voltage: 4.50 kV, capillary temperature: 320 °C; 
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S-lens RF: 100 V; capillary voltage: 30 V, mass range: 100–1000 m/z; full scan mode at a 

resolution of 60,000 m/z; top-3 data dependent MS/MS at a resolution of 30,000 m/z and 

collision energy of 35 (arbitrary unit); injection time 15 min; isolation window: 1.5 m/z; 

automatic gain control target: 2 e5 with dynamic exclusion setting of 30 s. Separation was 

conducted on the Luna C18 column (100 2.0 mm I.D., particle size: 3 m, pore diameter: 

100; Phenomenex, California, USA) using the following solvent system: solvent A: pure 

acetonitrile; solvent B: H2O; and solvent C: 30 mM ammonium formate (pH 3.2) and in 

accordance with the following gradient: 0–1 min 10% B, 1–3 min 10–20% B, 3–6 min 20– 

30% B, 6–9 min 30–40% B, 9–12 min 40% B, 12–13 min 40–50% B, and re-equilibrated 

at 90% A for 2 min. Ten liters of the sample was put into the apparatus, and 

chromatographic separation was performed at 20 °C with a flow rate of 0.2 mL/min. 

 

Fatty Acid Extraction, Methylation, and Analysis 

Lipids were extracted from the eel samples using the modified Bligh and Dyer method 

(Bligh and Dyer, 1959) as follows: To 100 mg of eel sample, 1.5 mL of methanol and 1.5 

mL of chloroform were added and the sample homogenized for 2 minutes. A total of 3.8 

mL of distilled water was added to the mixture after which it was then centrifuged. The 

resulting mixture was separated into two parts, an aqueous top layer and an organic bottom 

layer. 

 

The organic layer was carefully removed and transferred into a pre-weighed vial to which 

100 μL of 2,2-Dimethoxypropane (DMP,a water scavenger) was added. The mixture was 

dried under nitrogen until there was no sign of water. The vial was then reweighed to 

acquire the total lipid content recovered. Next, 1mL of 1 mg/mL CHCl3:MeOH (1:1v/v) 
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was added to redissolve the extract from which 100 μL from the organic phase to a new 

2mL vial. Next, 100 μL of internal standard (C18 ALK 0.1 mg/mL) was added to the 

organic phase and dried under nitrogen. Aliquot (400 μL) of freshly made methanolic- HCl 

1.5N (Sigma-Aldrich, ON, Canada), was added, vortexed, and then heated at 80 °C for 1 

hr in the drying oven. Next, 0.8mL of distilled water was added to the extract until it became 

cloudy, to which 0.5 mL of n-hexane was added and vortexed until clear separation was 

achieved. The upper layer was added to a new GC vial. This step was repeated in 0.5mL 

increments until 1.5mL of n-hexane was used for lipid recovery. DMP was then added to 

the mixture, then dried under nitrogen gas. The residue was then resuspended in 100 μL of 

hexane and ran on GC MS/FID. Fatty acid methyl esters (FAMEs) in the samples were 

determined using authentic standards (Supelco PUFA No. 3 mix, Supelco 37 component 

mix, Supelco FAME mix C8–C24; Sigma Aldrich, ON,Canada) and by comparison with 

the NIST database. 

FAMEs analysis was performed using the Trace 1300 gas chromatography coupled to a 

Flame Ionization Detector (Thermo Fisher Scientific, Waltham, MA, USA). One microliter 

of FAMEs samples was injected by the Tri-plus auto-sampler in splitless mode. Analytes 

were carried through the column using He gas at 1 ml/min in the mobile phase and then 

effectively separated using DB-23 column (30 m × 0.25 mm × 0.25 μm; Agilent 

Technologies, Santa Clara, CA, USA) in the stationary phase. Oven temperature was set at 

50 °C and maintained for 1 minute, after which it was raised to 20 °C/min, 175 °C and 

maintained for 1 minute, and finally 230 °C at 4 °C/min and maintained for 5 minutes. 

Values are reported as nmole percent and were calculated using standard curves to 

determine the concentration of each fatty acid (Vidal et al., 2018). 
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Sensory Analysis 

One and eight participants from Grenfell University and the wider Corner Brook 

community in Newfoundland and Labrador participated in an affective (consumer) test for 

a 15-minute survey. The survey was aimed at determining consumer perception of the 

sensory attributes and overall liking of the Kabayaki product. A follow up survey of 80 

participants was also conducted to investigate consumer perception of the Berry Infused and 

Regular Kabayaki samples, and sauce recipes and packaging configurations. The 

participants agreed to a consent form and were made aware of potential allergens before 

starting. The Grenfell Campus Research Ethics Board at Memorial University of 

Newfoundland (MUN) approved the procedures for using human subjects in sensory panel 

evaluations. The products were evaluated using a 7-point hedonic scale (1: Extremely 

dislike to 7: Like very much). The samples were prepared as described above and then 

frozen. The samples were thawed at 30% power for 2 minutes in a temperature, time and 

power control microwave. Samples were reheated at the time of serving at 50% power for 

30 seconds. The eels and sauce samples were assigned three-digit codes according to the 

respective treatment, and each was served in a quadrant of a white paper plate. The survey 

was conducted in the Functional Foods Sensory Lab at Grenfell Campus, equipped with 

individual booths where each participant completed the questionnaire. The survey was 

created, executed, and analyzed using SIMS 2000 sensory survey software (Sensory 

Computer Systems, NJ, USA).  

 

Statistical Analysis 

Four replicates were made for each treatment and the experiments repeated twice. A 

supervised multivariate analysis approach using XLSTAT (Addinsoft, New York, USA) 
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was applied to the eel fatty acids, volatiles, antioxidants, complex lipid classes and 

molecular species. The lipid classes and molecular species were identified using the Lipid 

Search version 4.1 (Mitsui Knowledge Industry, Tokyo, Japan) and manually confirmed 

with XCalibur 4.0 software (ThermoScientific, MO, USA). Principal component analysis 

(PCA) was used to ordinate the samples based on similarity and Analysis of variance 

(ANOVA) applied to determine the significant differences between treatments ordinated in 

different quadrants of the PCA biplot. Fisher's least significant difference (LSD) was used 

to separate the means whenever significant effects were observed at α = 0.05. Figures were 

created using the XLSTATs premium version (Addinsoft, Long Island, NY, USA) and 

Sigma plot 13.0 (Systat Software Inc., San Jose, CA). 
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3.4 Results 

 

Analysis of fatty acid content in Regular and BI Kabayaki samples 

Kabayaki fatty acid content analysis 

The fatty acid profile of Kabayaki is essential in determining the effect of grilling 

on eel nutritional quality. Eel fatty acid content (SFA, MUFA, PUFA, omega 3 and 6) was 

not affected by grilling at high heat after 1.5 and 3 hours of marination (see Figure 3.1). 

 

 

 



112 
 

Analysis of fatty acid content in BI samples 
 

Even though cranberries do not contain many fatty acids, their effect on maintaining 

the fatty acid content of grilled eel is unknown. Figure 3.2. showed that there were a few 

changes in fatty acids among samples. The most abundant MUFAs were C18:1n9cis, 

C16:1, and C18:1n9cis in BI samples, followed by C24:1n9. The other identified MUFAs 

were in negligible amounts. BI and regular Kabayaki had significantly higher than K1-M3 

in C16:1, C18:1n9cis, and C24:1n9. BI samples had a significantly higher C18-1n9trans 

fatty acids than regular and K1-M3 samples. The most abundant PUFA species included 

C22:5n3, C20:5n3C20:3n3 (in K1-M3), followed by C22:5n3. BI samples were 

significantly higher in C22:6n3 and C20:5n3 than in regular (non-berry infused) Kabayaki 

samples. K1-M3 samples were significantly higher in C20:3n3 and C22:6n3. Notably, 

Regular samples had significantly more C20:4n6, while the K1-M3 samples had more 

C18:2n6cis. The most abundant SFAs were C16, C11, and C18, followed by C14. 

Compared to BI and Regular samples, K1-M3 had significantly higher levels of C14. 

Analysis of the total FAs showed that the MUFA content was significantly greater in 

Regular Kabayaki and BI samples. BI and K1-M3 had higher omega-3 content compared 

to Regular Kabayaki samples. Omega-6 content was significantly greater in Regular 

Kabayaki samples compared to K1-M3 samples. SFAs content was not significantly 

different across samples.
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Analysis of Heterocyclic Amine (HCA) content in Kabayaki 

Heterocyclic Amines (HCAs) are a grilling by-product of concern due to their carcinogenic 

properties. To identify and quantify the HCAs generated from Kabayaki, extraction from 

samples after varying marination times and grilling temperatures were analyzed using 

Liquid Chromatography-Mass Spectrometry (LC-MS). IQ, MelQ, MelQx, and NorHarman 

were present in all samples; but was in low in abundance (<100 µg/L). The samples 

marinated in the original sauce formulation for 3 hours and grilled at a temperature of 450°F 

for 3 minutes on each side (K1-M3) had the highest quantity of HCA (see Figure 3.3A). In 

addition, these samples had significant charring on their surface. There were significantly 

lower abundances of total HCAs in samples cooked using the same parameters but marinated 

for 1.5 hours (Figure 3.3B). HCAs were also in low abundances in subsequent experiments 

where samples were marinated for 1.5 and 3 hours in the original sauce formulation and 

grilled at a temperature of 350°F for 1.5 minutes on each side (K2- M1.5 and M3, 

respectively). However, samples sous-vided (158°F) and grilled at a temperature of 350°F 

for 1.5 minutes on each side (K3-M1.5 and M3) had the most significant reduction in total 

HCAs for both marination times (Figure 3.3B). 
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Principal component analysis (PCA) was conducted to discern how the treatments clustered 

together (Figure 3.3C-D) based on HCA formation. The output of the PCA observation and 

biplots accounted for 63.21% of the total variation (F1 41.71% and F2 21.50%) in the HCA 

data set. Data Points representing K1-M3 samples clustered in quadrant 2 with Phlp, while 

the samples in treatment K2M1.5 clustered in quadrant 1 with MeIQ; while MeIQx 

clustered with treatments K2M3 and K3M3 in quadrant 4 (see Figure 3.3C). The 

corresponding biplot indicates that there may exist a potential relationship between 

Harman, NorHarman, and Phlp and samples marinated in the original sauce for three hours 

and grilled at a temperature of 450°F for three minutes on each side (K1-M3). 

Subsequent experiments (K4-K7) modified the conditions even further to improve 

safety. The results of the change in the formulation of the traditional marinade recipe of 

1:2:1:5 to 2:2:1:1 (mirin, soy sauce, salted sake, and granulated sugar) showed a 200x 

reduction in the intensity of the HCA peaks, indicating a decrease in abundance of HCAs 

generated after grilling and application of sous-vide prior to grilling (K4 and K5 

respectively) (see Figure 3.4C and D). Subsequent experiments incorporated the new sauce 

formulation and reduced the temperature to the lowest heat for each cooking method. Figure 

3.4A through G shows a consistent reduction in the intensity of HCA peaks as the 

temperature decreases and incorporates the sous-vide cooking technique. At minimum 

grilling temperature (250°F), the chromatograph showed no distinct peaks indicating the 

generation of HCAs were restricted in experiments utilizing the grilling and sous-vide 

before grilling at minimum temperature (K6 and K7, respectively) (Figure 3.4F and G). 
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Analysis of Volatile Compounds in Regular Kabayaki samples 

 

The analysis of volatile compounds provides insight into the changes happening in food 

during processing. In this experiment, the GC-MS detected varying abundances of volatiles 

including volatile oxidative compounds, Maillard reaction compounds, and terpenes 

depending on sample preparation and processing. The chromatograph in Figure 

3.5 showed the effect of cooking temperature on the number and abundance of volatile 

compounds. Kabayaki samples marinated in the original sauce formulation and then grilled 

at maximum temperature (450°F) for 3 minutes on each side (K1-M3) showed the greatest 

abundance of volatile oxidation compounds. The number of peaks in grilled samples (K2- 

M3 and K3-M3) appeared to decrease with the decrease in temperature and cooking 

technique. Sous-vide samples (K3-M3 and K7-M3) had even fewer volatile compounds 

compared to samples grilled at medium and low temperatures (250°F) (Figure 3.5). The 

lowest abundance of volatile oxidation products was observed in samples marinated in the 

new sauce formulation and sous-vide (158°F) and then grilled at minimum temperature 

(250°F) for three minutes on each side (K7-M3). 
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Evaluation of volatile content in berry-infused samples 

An analysis of the volatile compounds in regular and BI samples determined if cranberries 

enhanced the product's quality and safety. Figure 3.6 compared chromatographs of VOCs 

generated from regular and berry infused Kabayaki samples. There was an observable 

difference in abundance of VOC in each experiment. Regular Kabayaki samples had a 

greater abundance of VOCs at retention time (RT) 1.22 min, but lower levels at 3.06 min 

and 12.33 min than BI samples. Conversely, BI samples had a lower abundance of VOCs 

at RT 1.58, and greater abundances at RTs 3.57, 11.53 and 12.26 min respectively. 
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Volatile Oxidation Compounds in Kabayaki 

An analysis of each peak identified and quantified for the volatile compounds produced 

during cooking is presented in Figure 3.7. Results from the GC-MS showed that all the 

Kabayaki samples contained VOCs; however, the type and abundance varied according to 

cooking conditions and technique (Figure 3.7). Samples marinated for three hours at high 

temperature had a higher abundance of oxidation products. Figure 3.7A-B showed that in 

experiments K1-K3, benzeneacetaldehyde was the most abundant. It was significantly 

greater in samples marinated in the original sauce formulation and grilled at maximum 

temperature (450°F) for 3 minutes on each side (K1-M3). Lower abundances were observed 

in samples prepared at 1.5 hours marination time than those marinated for 3-hour and 

cooked using the same parameters. This decrease was present in benzeneacetaldehyde 

(Figure 3.7A). Figures 3.7A- B) showed aldehydes reducing in abundance in experiments 

where there was a decrease in cooking temperature and marination time. However, the most 

significant reduction was in samples marinated for 1.5 hours, sous-vided (158°F), and 

finished off on the grill at minimum grilling temperatures (250°F). 

 

Maillard Reaction Compounds 

Figures 3.7C- D) showed volatile compounds coming from Maillard reactions. The 

abundance of furans generated were relatively low except for furfural and 

furancarboxaldeyde-5-methyl. These two remained in notable amounts but reduced 

significantly in samples marinated in the new sauce formulation, sous-vided (158°F), and 

then grilled at a minimum temperature (250°F) for 3 minutes on each side (K7-M3). 
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Volatile Oxidation Compounds in berry infused Kabayaki 

Figure 10 identified and quantified the volatile oxidation products and MRCs present in 

regular, and berry-infused samples cooked at high temperatures (K1-M3). Of the VOCs in 

Figure 3.8A), benzeneactaldehyde was significantly reduced in regular and BI samples. 

Significantly higher hexanal, heptanal, octanal, and nonanal levels were present in regular 

Kabayaki samples; however, these occurred at low abundances. These levels were lower in 

K1-M3 and BI samples. The MRCs in Figure 3.8B) were significantly reduced in regular 

and BI Kabayaki samples. Furfural was, however, significantly higher in BI compared to 

regular Kabayaki samples. 
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PCA of Volatile Oxidation Compounds in Kabayaki 

A follow-up PCA highlighted underlying correlations that may exist between sample 

cooking conditions and the volatiles generated (Figure 3.9). This observation accounted for 

61.80 % of the total variance (F1- 51.18% and F2- 10.61= 61.80 %) in the data. The y-axis 

separated samples cooked at low (250°F) and medium (350°F) temperatures; as a result, 

samples cooked at low temperature clustered in quadrants 1 and 2 (Q1 & Q2), while 

samples cooked at medium temperature clustered in quadrants 3 and 4 (Q3 & Q4). 

Conversely, the x-axis separated grilled samples and samples sous-vide before grilling. As 

a result, most grilled samples clustered in Q2 and Q3, while sous-vide samples clustered in 

Q1 and Q4. Minimum temperature and samples sous-vided prior to grilling were distinctly 

grouped as clusters in the negative quadrant (Q1). Based on the corresponding biplot, little 

to no VOCs were likely associated with K7-M1.5 and K7-M3 samples. 
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PCA of Volatile Oxidation Compounds in berry infused Kabayaki 

The PCA in Figure 3.10A-B demonstrated the potential relationship between the volatiles 

present in the sample and the treatment. The observation plot showed the clear separation 

of the samples based on oxidation products and nitrogenous compounds present in the 

Kabayaki samples with and without berry infusion, and this clustering accounted for 

51.92% of the total variation present in the data (Figure 3.10A). 

 

Samples associated with certain terpenes may have more functional properties because of 

their bioactivity (see Table 2.1). In Figure 3.10C-D, there was a clear separation in the 

clustering of BI and the regular Kabayaki samples. The BI samples were spread across Q1 

and Q2, while Reg samples clustered in Q3 and Q4 (Figure 3.10C) and showed the terpenes 

identified following GC-MS analysis. The resulting PCA accounted for 94.42% of the total 

variation in both the observation and biplots (F1 75.58% and F2 18.85%). Regular samples 

almost exclusively cluster in Q1, while BI in Q3. Terpenes were mainly in Q3 and Q4 of 

the corresponding biplot near BI samples. 
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Sensory Analysis of Kabayaki samples 

The first sensory analysis provided insight into consumer perception of the different cooking 

and reheating techniques used to prepare the optimized Kabayaki samples (K6- M1.5 and 

K7-M1.5). The PCA representing 99.66 % of the total variance (F1- 77.43% and F2- 22.23) 

showed that sous-vide samples seem to be associated with the overall liking attributes 

clustered in the 3rd and 4th quadrants (Q3 & Q4) of the biplot (Figure 3.12A). Samples 

prepared by sous-vide prior to grilling followed by reheating in the microwave before 

serving scored the highest among samples for attribute scored on an 8-point hedonic scale. 
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The second sensory analysis evaluated consumer perception of BI samples while 

comparing consumer preference for BI versus non berry infused (regular) Kabayaki 

samples. One-way ANOVA of participant scores (Figure 3.13 A) showed a significant 

difference between the participant scores for hardness (texture), oiliness, aroma liking, 

sweetness, sauce flavour, sauce flavour liking, and overall flavour. There were no 

significant differences between the overall product liking and purchase questions 

(consumer motivation to buy product) for BI and Regular Kabayaki. The spider plot showed 

the participant's rank of each attribute according to an 8-point hedonic scale (Figure 3.13 B). 

BI samples scored highest in terms of hardness, oiliness, sweetness, and soy sauce flavour 

among the significant attributes. Regular samples scored highest in aroma liking, soy sauce 

flavour liking, and overall taste. 
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3.5 Discussion 

 

Undersized American eels are rich in highly unsaturated fatty acid and are ideal for the 

development of high-value function Kabayaki products. PUFA are susceptible to 

deterioration after prolonged exposure to the high temperatures used to grill Kabayaki. 

This study developed four functional food Kabayaki product with an emphasis on the 

nutritional value, sensory quality, and food safety. The outcome of this study determined 

that grilling Kabayaki at high temperature for a short time does not cause significant 

change in fatty acid content. Incorporating sous vide cooking technique before grilling at 

low temperature (250°F) can effectively reduce the production of toxic HCAs, MRCs, 

lipid oxidation products in Kabayaki. This study also improved the functional properties 

of Kabayaki by introducing cranberry as source of bioactive monoterpenes. The high 

participant ratings of the Kabayaki products developed in this study indicate that this 

product has the potential to be successful in the global market. 

 

This study was primarily concerned with optimising the Kabayaki cooking method  while 

continuing to maintain the initial fatty acid content. The rich fatty acid content of American 

eels was not affected by the high grilling temperature traditionally used in making 

Kabayaki (Figure 3.1). In a similar study, Kusharto et al., (2014) reported a decrease from 

28.29% to 2.39% of fat in Indonesian eels after it was used to prepare Kabayaki. Further 

investigation showed that the unsaturated fatty acid classes were mainly affected by the 

thermal processing. In this experiment, it is likely that the short grilling time of 3 minutes 

per side may have prevented/ limited the fatty acid depletion, 

unlike the comparative study that roasted, steamed, re-roasted and then added then the 
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Kabayaki sauce (Kusharto et al., 2014). 

 

The use of sous-vide cooking prior to grilling at low-temperature was effective in 

maintaining omega-3 content and preventing the loss of EPA and DHA content in both 

berry infused and regular Kabayaki (Figure 3.2B). Kusharto et al., (2014) reported an 

increase in fatty acid class content after preparation of Kabayaki using Indonesian eel and 

explained that percentage of body fat appeared to increase because the loss of moisture 

during grilling. Similarly, an ‘increase’ in mass was apparent in this study as well (see 

Figue 3.2B). There was no significant difference in total MUFA between regular and berry 

infused Kabayaki, indicating sous-vide (low temperature-long time) approach had the 

greatest influence on MUFA retention in Kabayaki (Figure 3.2B). Sous-vide also 

prevented the loss of total omega-6s which can also be attributed to the low temperature 

used during this process. These results demonstrated that sous vide followed by grilling at 

low temperature, as well as the infusion of cranberry juices into the Kabayaki sauce was 

very effective in maintaining the dietary lipids and nutritional quality of Kabayaki. 

 

This investigation supports the hypothesis that eel marinated and then cooked at reduced 

temperature and oxygen exposure should have reduced formation of toxic lipid oxidation 

and MRCs as well as potentially carcinogenic HCAs typically generated during grilling. 

All the samples from experiments conducted at high (450°F) and medium (250°F) 

temperatures contained HCAs (K1-K3) (Figure 3.3A- B). These results are consistent with 

findings in the literature suggesting that temperature, duration, cooking technique are 

important contributors to the generation of HCA (Jahurul et al., 2010; Sinha & 

Snyderwine, 2001; Oz & Kaya, 2011a). After optimization, there was a significant 

reduction of HCAs in samples sous-vided before grilling at medium temperature for 1.5 
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minutes on each side (Figure 3.3B). The sous vide technique used indirect heating to cook 

the samples in an airtight package, which reduced the effects of the Maillard reaction and 

inhibited HCA formation. Vacuum sealing technology deters HCA formation by reducing 

lipid oxidation and free radical production (Adeyeye 2020; Zamora et al. 2013; Oz et al., 

2010; Rönner et al., 2000). Oz and Zikirov (2015) reported as well that sous-vide meat 

generates low concentration of HCAs compared to the recommended daily intake. This 

study demonstrates that sous vide combined with grilling at low temperature (250°F) is an 

effective approach for preparing Kabayaki with undetectable levels of HCAs, and it could 

be a suitable cooking technique to improve the safety quality of grilled fish. 

 

Another means of ensuring safety involved adjusting the marinade formulation to reduce 

the production of HCAs. The presence of white granulated sugar and soy sauce in the 

marinade were ingredients of concern because both promote the formation of HCAs (Lan 

and Chen; 2002). Evidence of an increase in HCA content appear in samples marinated in 

the traditional formulation (1 mirin: 1soy sauce: 2 sake: 5 granulated sugar) for 3 hours 

and then cooked at high temperature (450 F) (K1-M3 and K1-M1.5 respectively) (see 

Figure 3.3A). Research shows that sugars react differently depending on their source; for 

example, brown sugar generates fewer HCAs than white, and honey even offers protective 

properties to reduce HCAs formed during grilling (Hasnol et al., 2014 & Shamsudin et al., 

2020). The replacement of white sugar in the marinade with brown sugar in lesser amounts 

and shorten marination time resulted in a decrease in HCA content (see Figure 3.3B). In 

subsequent experiments using the new formulation, the HCA content decreased, and the 

length of marination time had no effect on the amount of HCA generated; thus, this study 

confirmed that large amounts of granulate sugar can increase HCA production during 
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grilling (see Figure 3.3 B and Figure 3.4 J-K). Therefore, reducing the sugar content in 

marinades in addition to incorporating sous-vide, prior to grilling at low temperature 

(250°F) was shown to be the most effective in reducing HCA concentrations to 

undetectable levels in Kabayaki (Figures 3.4 G-F). 

 

Evaluation of volatile constituents in food is an important aspect of food production as it 

communicates knowledge about the relationship between food quality and sensory 

attributes (Starowicz, 2021). Cooking techniques have a strong influence on lipid 

oxidation, which can contribute to flavour, decrease in the shelf-life, and reflect loss of 

lipid content (Rasinska et al., 2019; Grebenteuch et al., 2021; Purriños et al., 2011; 

Saldanha & Bragagnolo, 2010). Dominguez-Hernandez et al., (2018) reported that the low 

temperature and long cooking time associated with sous vide reduced volatile compounds 

arising from lipid oxidation such as aldehydes. This is illustrated in Figure 3.9, with 

volatiles associated with higher grilling temperatures. On the other hand, high 

temperatures and long cooking times further increase volatile compounds from the 

Strecker degradations of amino acids and thermal degradation of thiamine (Roldán et 

al.,2015). Results of this study confirmed that volatile compounds reduced with 

temperature and the incorporation of sous-vide method. Kabayaki sous-vide prior to 

grilling at a low temperature (250°F) produced the fewest volatile peaks with the lowest 

intensities (see Figure 3.5). 

Further identification and quantification of volatiles produced during the grilling of 

Kabayaki confirmed that a higher oxidation level exists in samples grilled at high 

temperature but were significantly lower in in abundance sous-vide samples (see Figure 

3.7 A). For example, benzeneacetaldehyde decrease significantly as the experiment 
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progressed (see Figure 3.7A). The many aldehydes in the Kabayaki were the result of lipid 

peroxidation, which increases with temperature, unlikely ketones and alcohols, which 

decrease with temperature (see Figure 3.7A-B) (Roldán et al.,2015). In Figure 3.7 C-D, 

mainly furans were generated from Maillard reaction. Furans are derived from Maillard 

reaction at high heat and from the oxidation of unsaturated lipids at milder temperatures 

(Roldán et al.,2015; Pérez-Palacios, Petisca, Melo, & Ferreira, 2012; Elmore et al., 1999). 

The findings of this study agreed that lower temperature and long cooking time generated 

less MRPs (Maillard Reaction Products) (Figure 3.7C-D). Many of the aroma compounds 

(primarily aldehydes and ketones) generated in grilled foods can be attributed to the 

Maillard reaction in conjunction with lipid oxidation, whereas Strecker degradation of 

amino acids and thermal decomposition of thiamine generate flavour (Resconi, Escudero, 

& Campo, 2013). Maillard reaction and lipid oxidation appeared to be reduced in Kabayaki 

(K7-M3) experiment mostly likely because it was prepared using optimized method of 

sous-vide prior to grilling at low temperature (see Figure 3.7). This observation was made 

in berry infused and regular Kabayaki as well since they were made under the same 

optimized conditions (see Figure 3.8). The antioxidant properties of cranberries may have 

assisted in combating lipid oxidation in addition to low oxygen environment of the sous 

vide vacuum seal bag as well (Caldas et al., 2018). However, further tests will be required 

to evaluate the extent of the role of cranberry as antioxidant during the preparation of 

kabayaki. Roldán et al., 2015 suggested searing sous-vide meat at high temperature (130–

150 °C) for a short time to intensify the flavor profile. However, it is unknown how sous-

vide prior to grilling at high temperature will affect the nutrition and safety of the product. 

 

Berry infused Kabayaki had improved the sensory, nutritional, and functional qualities 
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compared to regular Kabayaki. Cranberries are high in flavonoids (classes: anthocyanins, 

flavonols, flavan-3-ols, and proanthocyanidins), as well as phenolic acids, benzoates, 

hydroxycinnamic acids, terpenes, and organic acids. (Odjo et al., 2022; Bariexca et al., 

2019). Cranberries also introduced new volatile peaks into the product (reference Figure 

3.6). This is reflective of the abundance of volatile compounds associated with berry 

infused Kabayaki (see Figure 3.10), some of which has their own characteristic taste and 

aroma. MRPs such as furfural may have given Kabayaki cooked at high temperature (K-

M3) a grainy, biscuity, or almond-like flavor, while Furancarboxyaldehyde-5-methyl 

introduced a burnt sugar, and caramel flavor (see Figure 3.8). Similarly, terpenes alpha-

terpineol, D-limonene, and alpha and beta pinene identified in berry infused samples have 

notes of lilac, citrus, and pine (see Table 3.1). 

 

Moore et al., (2019) identified volatile compounds esters, alcohols, monoterpenes, acids, 

sesquiterpenes, C13 isoprenoids, and others in cranberry extracts as the source of aroma. 

This study confirmed the presence of functional terpenes alpha-terpineol, D-limonene, and 

alpha and beta pinene in berry infused Kabayaki (see Figure 3.10C-D). Held et al. (2007) 

identified alpha-terpineol as the major volatile responsible for anti-inflammatory 

properties. Alpha terpineol possess anticancer, anticonvulsant, antiulcer, and 

antihypertensive properties (Khaleel et al., 2018; Sales et al., 2020). The abundance of D- 

limonene in berry infused samples is evidence of the high abundance of the compound in 

cranberry (see Figure 3.11). This terpene is common in citrus and has proven to be 

effective in dissolving cholesterol-containing gallstones, relieving heartburn and 

gastroesophageal reflux (GERD) (Sun, 2018). Alpha pinene, which was present in a lesser 

amount and is recognized for its antibiotic resistance modulation, anticoagulant, 
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antitumor, antimicrobial, antimalarial, antioxidant, and anti-inflammatory properties 

(Salehi et al., 2019) (Table 3.1). The presence of these functional compounds in berry 

infused Kabayaki increase the nutritional value of the product. Further tests will be 

required to determine the bioavailability of the functional compounds in cranberry after 

consumption. 

 

Consumer assessment of organoleptic properties indicated that participants preferred 

Kabayaki samples that were sous-vide prior to grilling at low temperature in addition to 

being reheated in the microwave (see Figure 3.12). Cooking at a low temperature for an 

extended period of time improves flavour and aroma, tenderness and texture, colour and 

visual appeal. (Zavadlav et al., 2020). The vacuum sealed bags prevent water loss, 

facilitates eel to cook in its natural juices, and allow for deeper penetration of the marinade 

(Głuchowski et al., 2020; Baldwin, 2012). Participants liked and were willing the purchase 

both berry infused and regular kabayaki and preferred certain attributes of each product 

(see Figure 3.13). Infusion of fresh cranberry juice in Kabayaki marinade) introduced a 

large array of new compounds that can interact with the properties of the primary 

marinade. Cranberries are rich in anthocyanins which created a visibly reddish hue to the 

initially brown marinade and explained the perceived difference in color intensity 

(Bariexca et al., 2019) as well as volatile flavour or aroma compounds that can alter the 

sensory profile of Kabayaki. For example, the presence of terpenes alpha- terpineol, D-

limonene, and alpha and beta pinene can contribute floral/lilac, citrus, and pine aroma 

respectively to the berry infused product (Table.3.1) (Zhu et al., 2016; Bourgou et al 2012; 

Vespermann et al., 2017). Cranberries also contain naturally occurring sugars, such as 

sucrose, glucose, and fructose which may contribute to the increase in sweetness (Pappas 
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& Schaich, 2009). 

 

3.6 Conclusion 

 

This study determined that sous-vide prior to grilling at a temperature of 250°F produced 

Kabayaki samples with the best safety, nutritional quality, and consumer acceptability. The 

fatty acid profile did not change dramatically in terms of nutritional quality. However, sous- 

vide had the greatest protective effect on protecting Fatty acids (MUFAs) that were affected 

by high grilling temperatures. Incorporating the sous vide cooking technique before grilling 

can effectively reduce the production of toxic MRCs and VOCs in Kabayaki. Sous-vide 

before grilling maintains the nutrition and increases the quality and safety of Kabayaki. 

Sous-vide before grilling treatment appealed more to consumers. Infusing cranberry juice 

in Kabayaki marinade does not make a significant contribution to the formation of lipid 

oxidation products nor MRCs. Heterocycle amines compounds (HCA) were present in all 
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the samples. However, the concentration of total HCAs was lower in sous-vided samples. 

Fresh cranberry juice in the marinade introduced more volatile compounds, including 

beneficial monoterpenes. Consumers preferred specific attributes of each product but were 

equally accepting of both regular and Berry Infused Kabayaki. BI Kabayaki increased the 

nutritional value of Kabayaki; however, additional tests are needed determine if the 

bioactive properties of cranberry induced functional compounds present in the BI infused 

Kabayaki conferred any health promotive benefits to consumers after consumption. 
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Chapter 4 

 

 

 

 

 

 

 

 

 

 

4.1. Summary of results and conclusion 
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The studies conducted in this thesis had the following objectives: 

 

i. Investigate the influence of the colour, different habitat locations, and size on the 

nutritional value of Freshwater American eels sourced from Newfoundland. 

ii. Determine the potential of undersize juvenile eels to be used in the production of 

high-value eel-based secondary food products 

iii. Develop a high-quality Kabayaki eel product utilizing undersized Newfoundland 

freshwater American eel. 

iv. Maintain nutritional quality and ensure safety and sensory appeal by adjusting 

cooking temperature/ time and using the sous-vide cooking technique. 

v. Develop Kabayaki as a functional food product by incorporating polyphenol-rich 

Newfoundland Cranberries. 

 

This thesis delves into the aforementioned objectives in two main chapters: Chapter two 

described the Assessment of the Nutritional Quality of Newfoundland Freshwater Eels 

(Anguilla rostrata) as Influenced by Size and Growth Habitats: Implications in the 

Production of High-Quality Value Eel-Based Food Products. Chapter 3 explored the 

Sensory Perception and Development of Kabayaki as a Functional Food using undersized 

Newfoundland American Eels (Anguilla rostrata). 

 

The evaluation of American eel lipid content undertaken in this study provides insight into 

the nutritional value of small yellow and large silver eels as well as identifies the elements 

that contribute to their degree of enrichment. The ability of undersized freshwater American 

eels from Newfoundland to be utilised in the development of high-value eel-based 
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functional food products is highly dependent on the existence of necessary lipids species 

and fatty acid species with related bioactive qualities. In this study, large migratory 

American eels have a greater amount of fatty acids than the smaller sedentary yellow eels. 

The American eel samples in this study all had high MUFA levels. Despite having a slightly 

lower lipid content, undersized American eels are nutrient-dense, high-quality ingredients 

for the production of secondary functional food. Undersized American eels are abundant in 

highly unsaturated fatty acids and are therefore suited for the creation of high-value 

function Kabayaki products. This study determined that grilling Kabayaki at high 

temperatures for a brief period of time does not result in a significant change in fatty acid 

content and demonstrates the efficacy of sous-vide cooking technique combined with low 

temperature grilling to ensure safety by reducing toxic HCA and certain harmful Maillard 

reaction compounds and to ensure consumer acceptability. Incorporating polyphenol-rich 

American Cranberries into Kabayaki marinade resulted in the addition of many bioactive 

components, resulting in a Kabayaki product with additional functional constituents. 

 

Eels are highly sought after because they contain high levels of important dietary lipids. 

Little, if any, research has been conducted on the lipid composition of American eels. This 

study confirmed that smaller eels have a more of a yellow hue than their larger counterparts, 

and that the colour difference between the sizes is substantial. These results are consistent 

with studies on the life stages of the American eel, which characterise immature eels as 

becoming darker and more yellow as they mature (Greene et al., 2009; COSEWIC, 2012; 

McCleave, 2001). 

 

The presence of unsaturated fatty acids indicates nutritional and bioactive qualities that 
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have the potential to promote human health (Marchioli et al., 2002). Larger silver eels were 

connected with SFA, PUFA, omega-6s, and omega-3s, while smaller eels were associated 

with MUFA. This result is consistent with Van Ginneken et al., (2007)'s analysis of the 

fatty acid composition of European eels. Flat Bay eels contained the highest levels of 

polyunsaturated fatty acids, including DPA, EPA, DHA, and stearidonic acid (see Figure 

2.5a). The presence of EPA and DHA may regulate inflammatory cytokines, vasodilation, 

and vasoconstriction. The availability and abundance of essential fatty acids in Flat Bay 

eels indicate that the area is conducive to the creation of eel-based goods rich in 

polyunsaturated fatty acids (PUFA). Flat Bay may have a healthy population of microalgae 

to supply its much greater omega-3s content (see Figure 2b D) and total food availability 

(Maltsev & Maltseva, 2021; Barkia et al. 2019; Sathasivam et al. 2019; Chalima et al. 2019, 

2020). Gander had the greatest percentage of MUFA. Robinson eels were fortified with 

important -Linolenic acid (C18:3n3) and linoleic acid (C18:2n6cis), along with 11,14,17- 

Eicosatrienoic acid (C20:3n3cis) and C18:1n7. Each location's eel's fatty acid profile 

contains bioactive fatty acids. It is likely that the variation in fatty acids among individuals 

of the same species is influenced by their food. 

 

Long-chain polyunsaturated fatty acids (LC-PUFA) concentrate in muscle tissue's polar  

lipids. Figure 2.6a demonstrates that Robinson eels are a source of PC (35%) and SM 

(36%). Flat Bay is the best source of PE (30%), whereas Gander Bay supplies the most 

LPC (16%). Additionally, freshwater eels are an important source of ether-linked polar 

lipids. Docosapentaenoic acid (DPA, C22:5) and arachidonic acid are responsible for the 

bioactivity linked with PUFAs from Flat Bay (AA, 20:4). DPA and AA contribute for 10- 

16% and 5-13%, respectively, of brain lipid. The neutral lipids identified by HPLC-HESI- 
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MS/MS correspond to the total fatty acid molecular species found by GC-FID. Each place 

can serve as a source of health-promoting bioactive lipids and fatty acid species. 

 

Flat Bay eels appear to be superior suppliers of PUFA, specifically C18:2n6 and EPA. 

Robinson eels would be excellent suppliers of omega-3 fatty acids (DHA and LN). It is 

possible to manufacture MUFA-enriched anadromous eel products from Gander or 

Robinson samples. 

 

The substantial fatty acid content of American eels was unaffected by the customarily high 

grilling temperature required to prepare Kabayaki (Figure 3.1). In a similar study, Kusharto 

et al. (2014) found that the fat content of Indonesian eels decreased from 28.29% to 2.39 

% after preparation into Kabayaaki. Sous vide prior to low-temperature grilling proved 

successful at preserving omega-3 content and preventing the loss of EPA and DHA content 

in both berry-infused and traditional Kabayaki. This was observable in the fatty acid classes 

C16:1 (palmitoleic acid), C18:1n9cis (oleic acids), and C18:1n9trans (Elaidic acid). These 

results revealed that sous vide followed by low-temperature grilling, as well as the addition 

of cranberry juice to the Kabayaki sauce, were extremely successful at preserving the 

dietary lipids and nutritional value of Kabayaki. 

 

Oz and Zikirov (2015) observed that sous-vide meat produces a low HCA concentration 

compared to the recommended daily allowance. The sous vide approach utilised indirect 

heating to cook the samples in an airtight packaging, which decreased the impacts of the 

Maillard reaction and prevented the development of HCA. Searing Kabayaki for a brief 

duration at a low temperature (250°F) did not contribute to the formation of HCA. Both 
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white granulated sugar and soy sauce contribute to the development of HCAs in marinades, 

which is cause for concern (Lan and Chen; 2002). The substitution of brown sugar for white 

sugar in smaller quantities and a reduction in marination time reduced the HCA 

concentration. Prior to grilling at a low temperature (250°F), sous vide Kabayaki produced 

the fewest volatile peaks with the lowest intensities (Roldán et al.,2015; Dominguez- 

Hernán et al.,2018). Many of the fragrance molecules (mainly aldehydes and ketones) 

produced in grilled foods are the result of the Maillard reaction and lipid oxidation. Roldán 

et al. (2015) proposed sous-vide cooking at a high temperature for a brief period of time to 

increase the flavour profile. 

 

Berry-infused Kabayaki enhanced the flavour, nutritional value, and functionality. 

Flavonoids, phenolic acids, benzoates, hydroxycinnamic acids, terpenes, and organic acids 

are abundant in cranberries (Odjo et al., 2022; Bariexca et al., 2019). Cranberries added 

new volatile peaks to the product as well (reference Figure 3.7). This reflects the quantity 

of volatile chemicals found in Kabayaki flavoured with berries. This research revealed the 

existence of the functional terpenes alpha-terpineol, D-limonene, and alpha and beta pinene 

in Kabayaki infused with berries. Alpha terpineol is anticancer, anticonvulsant, antiulcer, 

and antihypertensive. To establish the bioavailability of the bioactive components in 

cranberry after eating, additional experiments will be required. 

 

Consumer evaluation of organoleptic qualities revealed that participants preferred 

Kabayaki samples that were sous-vide before to low-temperature grilling over those that 

had been reheated in the microwave. Cooking at a low temperature for an extended time 

period enhances flavour and aroma, softness and texture, colour and appearance (Zavadlav 
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et al., 2020). Infusion of fresh cranberry juice in Kabayaki marinade) offered a vast number 

of additional compounds that may have interacted with the qualities of the primary 

marinade to account for some difference in the ranking of attributes by consumers; 

however, consumers did not favour one product over the other. 

 

The experiment yields new information regarding the nutritional value of Newfoundland's 

freshwater American eels. The results of this study indicate that undersized eels could be a 

good source of dietary or functional lipids, with the geography of their habitat providing 

superior sources of different classes of fatty acids, polar (especially those with ether- 

linkages) and neutral lipids, which could influence the nutritional and functional qualities 

of potential products. To successfully prevent the generation of hazardous MRCs and lipid 

oxidation products in Kabayaki, sous-vide undersized eel before grilling at a low 

temperature. Cranberry juice added volatile components, including beneficial 

monoterpenes, to the marinade. Total HCA concentration was decreased in sous-vide 

samples. These findings enabled the manufacture of four functional food products: 

kabayaki, kabayaki sauce, berry infused kabayaki and berry infusion Kabayaki sauce. This 

project was completed in conjunction with North Atlantic Aquaponics, with whom my 

supervisor, Dr. Raymond Thomas, co-supervisor, Natalia Prieto-Vidal, and I created the 

Kabayaki products from conception until impending commercialization. Our role in 

process development is that of the academic and research sector. Our responsibilities in 

Stage 1 included collaborating with our industry partner to solve the problem of 

underutilized American eel, conducting research and identifying the knowledge gap 

regarding the nutritional qualities of the species, and conducting chemical analysis to 

determine the nutritional values and the possibility of undersized eels being used as a 
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secondary functional food product. In addition to applying for a license from the Canadian 

Food Inspection Agency (CFIA) (see Appendices) to import, export, produce, and handle 

food legally. Together with an industry partner, we formulated the four Kabayaki products 

in two phases (two eel products and their respective sauces). We did a market and sensory 

analysis at the Functional Foods Sensory Laboratory at Grenfell Campus, Memorial 

University. This project also funded the construction of a cooking facility in Black Duck 

Siding, Newfoundland, where the third round of testing was undertaken. In the near future, 

Black Duck Siding Facility will commence large-scale production, and the Kabayaki 

products produced for this project will be available to the global market. 
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4.2. Future Studies 
 
 

The composition and molecular species of neutral and polar lipids linked with large and 

small American eels can be investigated further. In addition, taking measurements of 

significant environmental parameters at each location can provide additional insight into 

the external influences that influence lipid composition. Temperature readings, 

phytoplankton composition and density, eel diet, and ecosystem health measurements will 

shed more light on the site-specific variation in eel lipid content. It would have 

been interesting investigate the digestive contents of the eels from different locations to 

confirm that it was indeed dietary factors that caused the differences in the fatty acid 

contents and not something environmental. This study's product development section 

could be enhanced by addressing the processing impacts to the bioavailability of beneficial 

compounds, biological, allergy, and microbiological aspects of food safety. The functional 

features of the Kabayaki products developed in this investigation must also be validated 

using cell and/or animal studies. 
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5.Appendices: Pictures demonstrating achievements during product development are as 

follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure: 5.1. Samples of Kabayaki marinades and packaged Kabayaki produced for the 
commercial market. 
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Figure: 5.2. Sample of CFIA certification that the research assisted in obtaining for the production of Kabayaki at the industry 
partner production site in Black Duck Siding, NL. The research assisted in the development of a CFIA certified facility for the 
production of Kabayaki working in collaboration with the industry partner (North Atlantic Aquaponics) 
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Kabayaki Kabayaki Sauce 
 

Figure: 5.3. Food labels showing the nutritional facts for the Kabayaki and Kabayaki sauces developed for commercialization 

Berry Infused Kabayaki Berry Infused Kabayaki Sauce 
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Figure: 5.4. Coverage of the research study in Memorial university Gazette news site 
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Figure: 5.5. Coverage of the research study by SaltWire Network 
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https://www.mun.ca/presidentsreport/2019/features/sowing-seeds/ 

 
 

Figure: 5.6. Coverage of the research study in 2019 Presidents Report 

http://www.mun.ca/presidentsreport/2019/features/sowing-seeds/
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