Homology of covering spaces of symmetric products of a Riemann surface

by

© Asitha Pitawala
Supervisor: Dr. Thomas Baird

Abstract

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science.

Department of Mathematics and Statistics
Memorial University

November 2022

St. John's, Newfoundland and Labrador, Canada

Abstract

Homology and cohomology are considered valuable algebraic tools for studying topological spaces. Homology groups of the symmetric product of a Riemann surface were determined by I.G.Macdonald [9] in 1962. The main object of this project is finding the cohomology and homology groups of certain covering spaces of these spaces.

Lay summary

Abstract

Algebraic topology uses algebraic tools such as homology and cohomology to study topological spaces. The n-th symmetric product of a compact Riemann space of genus g is a $2 n$-dimensional orientable manifold. This thesis deals with the problem of calculating homology and cohomology groups of certain covering spaces of symmetric products of a Riemann surface.

We introduce the covering space as a pullback via the Abel-Jacobi map and use the Euler characteristic to determine the Betti numbers of the covering space. As a summary of results, apart from finding the homology and cohomology, we determine the Poincaré polynomial, Euler characteristic and zeta function for the symmetric product space and its covering space.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Dr. Thomas Baird, who accepted me as an M.Sc. student. Dr. Baird always encouraged me to be the best version of myself and steered me in the right direction whenever he felt I needed it. Although there have been many frustrating moments in my research, he has always encouraged and helped me to get through those hard times. It has been a great blessing for me to have him as my supervisor.

I would not have accomplished the goal of my study without the financial support from the Department of Mathematics and Statistics, and the School of Graduate Studies, Memorial University.

I owe a debt of gratitude to all the teachers who taught me, from kindergarten to the university level. As a person who comes from a low-income family, I am forever grateful to the free education system of Sri Lanka which brought me to this road of success.

Furthermore, I wish to express my very profound gratitude to my parents, family and friends, especially Shivam, for their continuous encouragement and support. Last but not least, I would like to thank my lovely wife Lakshika; without your unconditional love and years of understanding, I would not have been able to complete my M.Sc.

Table of contents

Title page i
Abstract ii
Lay summary iii
Acknowledgements iv
Table of contents v
List of tables ix
List of figures x
1 Introduction 1
1.0.1 Outline 3
2 Background 4
2.1 Topological background 4
2.1.1 Review of Topological Spaces 5
2.1.2 Connectedness and Path-Connectedness 6
2.1.3 Covers and Compactness 7
2.1.4 Homotopy and Fundamental groups 7
2.1.5 Homotopy Groups 8
2.2 Algebraic background 9
2.3 Manifolds 10
2.3.1 Topological manifolds 10
2.3.2 Smooth manifolds 11
2.3.3 Tangent map 11
2.3.4 Transversality 12
3 Homology and Cohomology 13
3.1 Singular Homology 13
3.1.1 Simplices 13
3.1.2 Chains, Cycles, and Boundaries 14
3.1.3 Homology as a functor 17
3.2 Chain Complexes 17
3.3 Relative Homology 19
3.4 Reduced Homology 21
3.5 Cellular Homology 22
3.5.1 Cell Complexes 22
3.5.2 Examples for homology 24
3.6 Cohomology Groups 26
3.6.1 The cup product 28
3.6.2 The cap product and Poincaré Duality 29
3.7 The Künneth Formula 30
4 Betti Numbers and Poincaré Polynomials 32
4.1 Betti Numbers 32
4.1.1 Fundamental theorem of finitely generated abelian groups 32
4.1.2 Betti Numbers 33
4.2 Poincaré Series 34
5 The Symmetric Product Space and The Infinite Symmetric Product Space 36
5.1 The symmetric product space $S P^{n}\left(\Sigma_{g}\right)$ 36
5.2 The infinite symmetric product space $S P^{\infty}(X)$ 37
5.2.1 Eilenberg-Maclane Space 38
5.2.2 Dold-Thom Theorem 38
5.2.3 Proof of Theorem 5.2.1 39
5.3 The Betti numbers and Homology of $S P^{\infty}\left(\Sigma_{g}\right)$ 39
5.4 The relationship between $S P^{n}\left(\Sigma_{g}\right)$ and $S P^{\infty}\left(\Sigma_{g}\right)$ 41
5.4.1 The Homology and Betti numbers of $S P^{n}\left(\Sigma_{g}\right)$ 41
6 Fiber Bundles and Covering Spaces 43
6.1 Fiber Bundles 43
6.1.1 Sections 45
6.1.2 Pullback Bundle 45
6.1.3 Covering Spaces 46
6.1.4 Vector Bundles 47
6.1.5 Projective Bundles 48
7 The Abel-Jacobi Map 50
7.1 The Jacobian 50
7.1.1 The Abel-Jacobi Map 51
7.2 Abel-Jacobi map as a fiber bundle 52
8 The Relationship Between $\int \widetilde{P^{n}\left(\Sigma_{g}\right)}$ and $\widetilde{S P^{\infty}\left(\Sigma_{g}\right)}$ 54
8.1 Covering space of $S P^{n}\left(\Sigma_{g}\right)$ as a pullback 54
8.2 Homology groups of the covering space $S P^{\infty}\left(\Sigma_{g}\right)$ 55
8.3 Euler Characteristics 57
8.3.1 The n-th Betti number of $S \widetilde{P^{n}\left(\Sigma_{g}\right)}$ 59
9 Results 61
Bibliography 63

List of tables

$5.1 i$ and l values for b_{4} 39
5.2 Classification of Betti numbers of $S P^{\infty}\left(\Sigma_{g}\right)$. 40

List of figures

1.1 Genus g surfaces 1
3.1 Simplices 14
7.1 Genus- g Riemann surface with closed loops $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 g}$ 50

Chapter 1

Introduction

The n-th symmetric product of a topological space X is defined as the quotient space $S P^{n}(X):=X^{n} / S_{n}$, where X^{n} is the $n-$ fold product space and the symmetric group on n-letters S_{n} acts on X^{n} by permutating factors. If M is a 2 -dimensional manifold, then $S P^{n}(M)$ is a $2 n$-manifold. These manifolds were studied in [2],[10],[9] and they appear in many other papers in different contexts.

A Riemann surface of genus g, Σ_{g} is a 2 -dimensional manifold with the cell complex structure of one 0 -cell, $2 g 1$-cells and one $2-$ cell.

genus 0

genus 1

genus 2

Figure 1.1: Genus g surfaces

The $2 n$-dimensional manifold $S P^{n}\left(\Sigma_{g}\right)$ is the domain of the classical Abel-Jacobi map [1], [6].

$$
A J: S P^{n}\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)
$$

where $J\left(\Sigma_{g}\right)$ is the Jacobian of Σ_{g}.
The main objective of this thesis is to calculate the homology and cohomology of certain covering spaces of $S P^{n}\left(\Sigma_{g}\right)$ constructed as pullbacks of covering spaces over $J\left(\Sigma_{g}\right)$. A study of $S P^{n}(M)$ for closed, even-dimensional manifolds was published by

Hirzebruch [8] and $S P^{n}\left(\Sigma_{g}\right)$ was studied by Macdonald [9] in 1962.
In the $19^{\text {th }}$ century, homological algebra had its origin through the work of Riemann(1857) and Betti(1871) on homology numbers and then Poincaré in 1895. Emmy Noether's introduction of the homology groups of a space in the first half of the $20^{\text {th }}$ century sparked mathematicians' interest in this approach. From 1940 to 1955, these topologically modified procedures for computing the homology groups were extended to define cohomology. Since then, homology and cohomology have become fundamental tools in algebraic topology.

Given a base point in Σ_{g}, there is a natural inclusion of $S P^{n}\left(\Sigma_{g}\right)$ into $S P^{n+1}\left(\Sigma_{g}\right)$. The infinite symmetric space $S P^{\infty}\left(\Sigma_{g}\right)$ is the colimit of the $S P^{n}\left(\Sigma_{g}\right)$ under this natural inclusion.

A space X with one nontrivial homotopy group $\pi_{n}(X) \simeq G$ is called an EilenbergMacLane space $K(G, n)$, where G is a group, and for $n \geq 2$ is abelian. In particular, the $K(\mathbb{Z}, n)$ has a natural geometric realization as $S P^{\infty}\left(S^{n}\right)$. Moreover, $K(G, n)$ plays a main role in Dold and Thom [5], [11] who introduced homotopical decomposition for connected CW-complexes of the infinite symmetric product,

$$
S P^{\infty}(X) \simeq \prod_{n=1}^{\infty} K\left(H_{n}(X, \mathbb{Z}), n\right)
$$

The Σ_{g} satisfies the conditions of the Dold-Thom theorem and opens the possibility to introduce the homology of infinite symmetric space. Note that $S P^{\infty}\left(\Sigma_{g}\right)$ has a cell complex structure such that every cell of dimension $k \leq n$ lies in $S P^{n}\left(\Sigma_{g}\right)$. This argument implies that the homology of $S P^{n}\left(\Sigma_{g}\right)$ and $S P^{\infty}\left(\Sigma_{g}\right)$ are the same up to degree n; this result was introduced by MacDonald in 1962 [9]. The remaining homology groups given are by the Poincaré Duality Theorem. We present the answer using Poincaré polynomials, which are generating functions for the Betti numbers.

The pullback of a covering space along a continuous function is a covering space. We use this fact to introduce that covering space of $S P^{\infty}\left(\Sigma_{g}\right)$ as a pullback space, and it has the same homology as $S P^{\infty}\left(\Sigma_{g}\right)$.

Next we introduce a relation between the covering spaces of $S P^{n}\left(\Sigma_{g}\right)$ and $S P^{\infty}\left(\Sigma_{g}\right)$ respectively. Let $\pi: \tilde{Y} \rightarrow Y$ be a covering map and Y_{n} be the n-th skeleton of the space Y; then, $\pi^{-1}\left(Y_{n}\right)=\tilde{Y}_{n}$ is the $n-$ th skeleton of the covering space \tilde{Y}. This
implies that the inclusion of $S \widetilde{P^{n}\left(\Sigma_{g}\right)}$ into $S \widetilde{P^{\infty}\left(\Sigma_{g}\right)}$ is a homeomorphism up to the n-skeleton and hence, their homology groups are isomorphic up to $n-1$. It remains to calculate the n-th homology; we use the Euler characteristic and its properties for covering spaces to find it.

The rest of the homology groups and cohomology groups up to $2 n$ are determined by using the Poincaré Duality Theorem. Since the Betti numbers are independent of the field, this also determines the homology over the integer coefficients.

1.0.1 Outline

This thesis presents the homology and cohomology groups of certain covering spaces of the n-th symmetric product of a genus g Riemann surface. In particular, we establish the answers over the integer coefficients \mathbb{Z}. This section is a synopsis of the subsequent chapters.

Chapter 2 will discuss the algebraic and topological background required for readers who have minimal knowledge of algebraic topology. Then we will describe homology and cohomology in chapter 3.

Chapter 4 will deal with Betti numbers and Poincaré polynomials, which are used to calculate homology and cohomology groups.

The homology, and cohomology of $S P^{n}\left(\Sigma_{g}\right)$ are presented in chapter 5 . We show all the answers are independent of the field and hence, define the results over integers.

We introduce the Abel-Jacobi map in chapter 6. Subsequently, we will discuss the covering spaces and pullback in chapter 7 . Then in chapter 8 , we will prove our main result.

In chapter 9 , we summarize our results.

Chapter 2

Background

2.1 Topological background

Definition 2.1.1. A topological space (X, τ) is a set X and a collection of open sets τ of X, satisfying the following conditions:

1. \emptyset and X are open,
2. An arbitrary union of open sets is open,
3. Any finite intersection of open sets is open.

Usually, we denote the topological space (X, τ) simply by X. A collection of open sets \mathfrak{B} in a topological space X is called a basis if every other open set in X is a union of sets in \mathfrak{B}.

Definition 2.1.2. A continuous map $f: X \rightarrow Y$ between topological spaces is a map of sets for which pre-images of open sets are open. i.e,

If $U \subseteq Y \quad$ is open, then $f^{-1}(U):=\{x \in X \mid f(x) \in U\} \subseteq X \quad$ is open.
Definition 2.1.3. A homeomorphism is a continuous bijection $f: X \rightarrow Y$ such that the inverse f^{-1} is also continuous. This is the notion of isomorphism for topological spaces.

Proposition 2.1.1. Let X, Y and Z be topological spaces.

1. The identity map $I d_{X}: X \rightarrow X$ is continuous.
2. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, then the composition $g \circ f: X \rightarrow Z$ is continuous.
3. Any constant map $f: X \rightarrow Y$ is continuous.

2.1.1 Review of Topological Spaces

Definition 2.1.4. Let X be a topological space and $A \subseteq X$ a subset. The subspace topology on A is the topology for which $V \subset A$ is open if and only if $V=A \cap U$ for some open set U in X.

The inclusion map $i: A \hookrightarrow X$ is continuous with respect to the subspace topology. We have the following special property: a map $f: Y \rightarrow A$ is continuous if and only if the composition $i \circ f: Y \rightarrow X$ is continuous.

Definition 2.1.5. The product space $X \times Y$ of two spaces X and Y is the Cartesian product of sets $X \times Y$, with a basis of open sets of the form $U \times V$ where $U \subset X$ and $V \subset Y$ are both open.

Definition 2.1.6. Let $\left\{X_{\alpha}\right\}$ be an infinite collection of spaces indexed by α. The coproduct space is the disjoint union of the sets X_{α} with $U \subseteq \coprod_{\alpha} X_{\alpha}$ and is open if and only if $U \cap X_{\alpha}$ is open for all α.

The inclusions $i_{\alpha_{0}}: X_{\alpha_{0}} \hookrightarrow \coprod_{\alpha} X_{\alpha}$ are all continuous. A map $F: \coprod_{\alpha} X_{\alpha} \rightarrow Y$ is continuous if and only if the composition $F \circ i_{\alpha}: X_{\alpha} \rightarrow Y$ is continuous for all α.

Definition 2.1.7. An equivalence relation on a set X is a relation \sim, satisfying for all $x, y \in X$,

1. $x \sim x$
2. $x \sim y$ implies $y \sim x$
3. $x \sim y$ and $y \sim z$ implies $x \sim z$.

Given any relation R on X, we can generate the 'smallest' equivalence relation \sim_{R} such that $x R y$ implies $x \sim_{R} y$. Explicitly, we define $x \sim_{R} y$ if and only if there exists a finite sequence $\left\{x_{i} \in X\right\}_{i=0}^{n}$ for $n \geq 0$ satisfying,

1. $x_{0}=x$
2. $x_{n}=y$, and
3. $x_{i} R x_{i-1}$ or $x_{i-1} R x_{i}$ for all $i=1, \ldots, n$.

Given $x \in X$, the equivalence class of x is

$$
[x]:=\{y \in X \mid x \sim y\}
$$

The equivalence classes determine a partition of X into disjoint non-empty sets. Notice that $[x]=[y]$ if and only if $x \sim y$. Let $E=X / \sim:=\{[x] \mid x \in X\}$; then, there is a canonical map

$$
Q: X \rightarrow E, \quad x \rightarrow[x]
$$

called the quotient map.
Definition 2.1.8. Let X be a topological space and let \sim be an equivalence relation on the underlying set X. The quotient topology on E is the topology for which $U \subset E$ is open if and only if $Q^{-1}(U)$ is open in X.

2.1.2 Connectedness and Path-Connectedness

A topological space can be 'separated' if it can break up into at least two open sets; otherwise, we can say that the space is connected.

Definition 2.1.9. Let X be a topological space. A separation of X is a pair U, V of disjoint non-empty open subsets of X for which the union is X. The space X is said to be connected if there does not exist a separation of X.

In other words, a space X is connected if there is no proper subset $A \subset X$ which is both open and closed.

Observe that if $A \subset X$ is both open and closed, then the complement A^{c} is also both open and closed. There is a natural isomorphism $A \amalg A^{c} \cong X$. Thus, spaces
that are not connected can be decomposed into a disconnected union of non-empty spaces.

Definition 2.1.10. Let I denote the unit interval $[0,1] \subset \mathbb{R}$ with the Euclidean topology. A space X is called path-connected if for any two points $p, q \in X$ there exists a continuous map $\gamma: I \rightarrow X$ such that $\gamma(0)=p$ and $\gamma(1)=q$.

Every path-connected space is connected, but the converse is not true in general. Connectedness and path-connectedness are preserved under the following operations:

1. A product of (path-)connected spaces is (path-)connected.
2. The continuous image of a (path-)connected space is (path-)connected.
3. Let $\left\{U_{\alpha}\right\}$ be a covering of X such that each U_{α} is (path-)connected and the intersection $\cap_{\alpha} U_{\alpha}$ is non-empty. Then X is (path-)connected.

2.1.3 Covers and Compactness

Definition 2.1.11. An open (closed) cover of a topological space X is a collection of open (closed) sets $\left\{U_{\alpha}\right\}$ such that the union $\cup_{\alpha} U_{\alpha}=X$.

Definition 2.1.12. A space X is called compact if every open cover $\left\{U_{\alpha}\right\}$ of X contains a finite subcover. That is there exists a finite collection $\left\{U_{1}, \ldots, U_{n}\right\} \subseteq\left\{U_{\alpha}\right\}$ such that $\cup_{i=1}^{n} U_{i}=X$.

2.1.4 Homotopy and Fundamental groups

Two continuous functions from one topological space to another are called homotopic if one can be continuously deformed into the other when two functions are connected in such a deformation, called homotopy.

Definition 2.1.13. Let X and Y be two topological spaces. A homotopy between two continuous functions $f, g: X \rightarrow Y$ is a continuous function $H: X \times[0,1] \rightarrow Y$ defined by $H(x, 0)=f(x)$ and $H(x, 1)=g(x)$ for all $x \in X$. The notation for this homotopy is $f \simeq g$.

Note that homotopy between two continuous functions is an equivalence relation.
Definition 2.1.14. A homotopy equivalence between two topological spaces X and Y is a pair of continuous functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$ such that $f \circ g \simeq I d_{Y}$ and $g \circ f \simeq I d_{X}$.

2.1.5 Homotopy Groups

Let I^{n} be the n-dimensional unit cube that is the product of n-many intervals $I=[0,1]$. The boundary ∂I^{n} of I^{n} is the subspace consisting of at least one coordinate equal to 0 or 1 . Let X be a set with a base point $\star \in X$ and consider the set

$$
\Omega^{n}(X)=\left\{f: I^{n} \rightarrow X \mid f\left(\partial I^{n}\right)=\star\right\} .
$$

We can define the homotopy of two functions in $\Omega^{n}(X)$ by following definition 2.1.13. Two functions $f_{0}, f_{1}:\left(I^{n}, \partial I^{n}\right) \rightarrow(X, \star)$ in $\Omega^{n}(X)$ are homotopic if there exists a continuous function $H:\left(I^{n+1}, \partial I^{n} \times I\right) \rightarrow(X, \star)$ such that

$$
f_{0}\left(x_{1}, \ldots, x_{n}\right)=H\left(x_{1}, \ldots, x_{n}, 0\right)
$$

and

$$
f_{1}\left(x_{1}, \ldots, x_{n}\right)=H\left(x_{1}, \ldots, x_{n}, 1\right)
$$

Note that $H\left(\partial I^{n} \times I\right)=\star$.
Definition 2.1.15. For a space X with a base point \star, define the $n-$ th fundamental group $\pi_{n}(X, \star)$ to be the set of homotopy classes of maps in $\Omega^{n}(X)$. In other words,

$$
\pi_{n}(X, \star)=\Omega^{n}(X) / \simeq
$$

Note that $\pi_{n}(X, \star)$ is a group if $n \geq 1$ and abelian if $n \geq 2$.

Theorem 2.1.2. Whitehead Theorem

Let $f: X \rightarrow Y$ be a continuous map between connected cell complexes. Then f is a homotopy equivalence if and only if $f_{*}: \pi_{k}(X) \rightarrow \pi_{k}(Y)$ is an isomorphism for all $k \geq 1$, where $\pi_{k}(X)$ and $\pi_{k}(Y)$ are $k-$ th homotopy groups of X and Y for $k \geq 1$, respectively.

2.2 Algebraic background

Definition 2.2.1. A group is a set G which is closed under an operation ०, satisfies the following conditions, is denoted as (G, \circ) :

1. Identity: there exists $e \in G$ such that $e \circ x=x \circ e=x$ for all $x \in G$
2. Inverse: for every $x \in G$, there exists $i \in G$ such that $x \circ i=i \circ x=e$
3. Associativity: $x \circ(y \circ z)=(x \circ y) \circ z$ for every $x, y, z \in G$

In addition, if $x \circ y=y \circ x$ for all $x, y \in G$, then we say that G is an abelian group.
Definition 2.2.2. A ring is a set R, which is closed under two operations + and . such that the $(R,+)$ is an abelian group, the operation • is associative, and satisfies the distributive properties.

Definition 2.2.3. A field is a set \mathbb{F} which is closed under two operations + and - such that \mathbb{F} is an abelian group under addition $(\mathbb{F},+)$, and the set without the additive identity is an abelian group under multiplication $(\mathbb{F} \backslash\{0\}, \cdot)$, and satisfies the distributive property of multiplication over addition.

Definition 2.2.4. Module:

Let R be a ring and 1 be the multiplicative identity. A left R-module ${ }_{R} M$ is an abelian group $(M,+)$ with an operation $\cdot: R \times M \rightarrow M$ such that, for all $r, s \in R$ and $x, y \in M$ satisfies:

1. $r \cdot(x+y)=r \cdot x+r \cdot y$
2. $(r+s) \cdot x=r \cdot x+s \cdot x$
3. $(r \cdot s) \cdot x=r \cdot(s \cdot x)$
4. $1 \cdot x=x$

The operation - is called the scalar multiplication and is usually written by juxtaposition, i.e. $r \cdot x=r x$ for $r \in \mathrm{R}$ and $x \in M$. The right R -module M_{R} is defined similarly, except that the ring acts on the right.

Left group actions: An action of a group G on a non-empty set X is a function, $\alpha: G \times X \rightarrow X$, that satisfies the axioms:

1. Identity: $\alpha(e, x)=x$
2. Compatibility: $\alpha(h, \alpha(g, x))=\alpha(h g, x)$
for all $g, h \in G$ and all $x \in X$, where $e \in G$ is the identity. We often shortened $\alpha(x, g)$ to $x \cdot g$ or $x g$,
3. Identity: $e \cdot x=x$
4. Compatibility: $\quad h \cdot(g \cdot x)=(h g) \cdot x$

Suppose that G acts on X; then, we can define a relation \sim on X by setting $x \sim y$ for $x, y \in X$, iff there exists an element $g \in G$ such that $g \cdot x=y$. Then \sim is an equivalence relation and it gives mutually disjoint equivalence classes called orbits of group action. The orbit of an element $x \in X$ is the set of elements in X to which x can be moved by the elements of G and is defined as:

$$
G \cdot x=\{g \cdot x \mid g \in G\} .
$$

2.3 Manifolds

2.3.1 Topological manifolds

A second countable space is a topological space, the topology of which has a countable base. A Hausdorff space is a topological space where for any two distinct points, there exist neighbourhoods of each which are disjoint from each other.

An n-dimensional manifold is a topological space that locally looks like \mathbb{R}^{n}. Formally, a topological n-manifold is a second countable Hausdorff space in which each point has an open neighbourhood homeomorphic to \mathbb{R}^{n}. A compact manifold is a manifold that is compact as a topological space.

Examples:

- \mathbb{R}^{n} is an n-manifold.
- Any discrete space is a 0 -dimensional manifold.
- The n-dimensional sphere S^{n} is a compact n-manifold.
- The n-dimensional torus T^{n} is a compact n-manifold.
- Real projective space $\mathbb{R} P^{n}$ is a n-dimensional manifold.
- Complex projective space $\mathbb{C} P^{n}$ is an $2 n$-dimensional manifold.

2.3.2 Smooth manifolds

Let M be a topological manifold. A chart on M is a pair (U, φ), where U is an open subset of M and $\varphi: U \rightarrow \tilde{U}$ is a homeomorphism from U to an open subset, $\tilde{U}=\varphi(U) \subseteq \mathbb{R}^{n}$.

If (U, φ) and (V, ψ) are two charts such that $U \cap V \neq \emptyset$, then the composite map $\psi \circ \varphi^{-1}: \varphi(U \cap V) \rightarrow \psi(U \cap V)$ is called the transition map from φ to ψ. Two charts are said to be smoothly compatible if either $U \cap V=\emptyset$ or the transition map $\psi \circ \varphi^{-1}$ is a diffeomorphism.

An atlas \mathcal{A} for M is a collection of charts the domains for which cover M. An atlas is called a smooth atlas if any two charts in \mathcal{A} are smoothly compatible with each other. A smooth atlas \mathcal{A} on M is maximal if it is not properly contained in any larger smooth atlas. A smooth structure on M is a maximal smooth atlas.

A smooth manifold M is a pair (M, \mathcal{A}), where M is a topological manifold and \mathcal{A} is a smooth structure on M. A differentiable manifold is a topological manifold M, together with a maximal differentiable atlas on M.

2.3.3 Tangent map

Let M be a differentiable manifold of dimension n and pick a chart (U, φ) on M. For any $x \in M$, suppose that two curves $\gamma_{1}, \gamma_{2}:(-1,1) \rightarrow M$ with $\gamma_{1}(0)=x=\gamma_{2}(0)$ are given such that both $\varphi \circ \gamma_{1}, \varphi \circ \gamma_{2}:(-1,1) \rightarrow \mathbb{R}^{n}$ are differentiable. Then γ_{1} and γ_{2} are said to equivalent if

$$
\left(\varphi \circ \gamma_{1}\right)^{\prime}(0)=\left(\varphi \circ \gamma_{2}\right)^{\prime}(0) .
$$

This defines an equivalence relation, and equivalence classes of such curves are known as the tangent vectors of M at x. The tangent space of M at x is the set of
all tangent vectors of M at x and denoted by $T_{x} M$. The equivalence class of a curve γ is denoted by $\gamma^{\prime}(0)$.

We can define a bijection $D_{x} \varphi: T_{x} M \rightarrow \mathbb{R}^{n}$ by

$$
D_{x} \varphi\left(\gamma^{\prime}(0)\right)=\frac{d}{d t}[(\varphi \circ \gamma)(t)]_{t=0}
$$

where $\gamma \in \gamma^{\prime}(0)$. We make $T_{x} M$ into a vector space by declaring $D_{x} \varphi$ to be an isomorphism of vector spaces.

2.3.4 Transversality

Definition 2.3.1. Let M, X, Y be differentiable manifolds and let $f: X \rightarrow M$ and $g: Y \rightarrow M$ be smooth maps. We say that f and g are transverse, if, whenever $f(x)=g(y)=m$,

$$
D_{x} f\left(T_{x} X\right)+D_{y} g\left(T_{y} Y\right)=T_{m} M
$$

where $D_{x} f$ is the derivative of f and $T_{x} X$ is the tangent space at $x \in X$.

Observe that if $\operatorname{dim}(X)+\operatorname{dim}(Y)<\operatorname{dim}(M)$, and f, g are transverse, then $f(X) \cap$ $g(Y)=\emptyset$.

Chapter 3

Homology and Cohomology

The homology groups $H_{0}(X), H_{1}(X), H_{2}(X), \ldots$ of a topological space X are a set of topological invariants of X represented by its homology groups, where the $k^{\text {th }}$ homology group $H_{k}(X)$ describes, informally, the number of k-dimensional holes in X. For instance $H_{0}(X)$ describes the path-connected components of X.

Most of the theorems and proofs in this chapter can be found in the Allen Hatcher's Algebraic Topology book [7].

3.1 Singular Homology

3.1.1 Simplices

Given $n+1$ points $v_{0}, \ldots, v_{n} \in \mathbb{R}^{n}$ that do not lie in a hyperplane, the simplex $\left[v_{0}, \ldots, v_{n}\right]$ is the smallest convex set, where points v_{i} are the vertices of the simplex.

The standard n - simplex Δ^{n} is the simplex spanned by the zero vector e_{0} and the standard basis vectors e_{1}, \ldots, e_{n} in \mathbb{R}^{n}. Thus,

$$
\Delta^{n}:=\left\{\left(t_{0}, \ldots, t_{n}\right) \in \mathbb{R}^{n+1} \mid \sum_{i} t_{i}=1 \quad \text { and } \quad t_{i} \geq 0 \quad \text { for all } \quad i\right\}
$$

A singular $n-$ simplex in a topological space X is a continuous map,

$$
\sigma: \Delta^{n} \rightarrow X
$$

A singular 0 - simplex in X is simply a point in X, and a singular $1-\operatorname{simplex}$ is a continuous path in X, etc..

Figure 3.1: Simplices

There is a canonical linear homeomorphism from the standard $n-$ simplex Δ^{n} onto any other $n-$ simplex $\left[v_{0}, \ldots, v_{n}\right]$, preserving the order of vertices, such that $\left(t_{0}, \ldots, t_{n}\right) \rightarrow \sum_{i} t_{i} v_{i}$. The coefficients t_{i} are the barycentric coordinates of the point $\sum_{i} t_{i} v_{i}$ in $\left[v_{0}, \ldots, v_{n}\right]$.

A face of a simplex is the subsimplex and it can be any nonempty subset of the vertices. We define the face maps for $0 \leq i \leq n$, such that

$$
F_{n}^{i}: \Delta^{n-1} \rightarrow \Delta^{n}
$$

by $F_{n}^{i}=\left[e_{0}, \ldots, \hat{e_{i}}, \ldots, e_{n}\right]$, where the $\hat{e_{i}}$ means omit e_{i}.
The $i-t h$ face of a singular n - simplex $\sigma: \Delta^{n} \rightarrow X$ is the $(n-1)-$ simplex

$$
\sigma^{(i)}: \Delta^{n-1} \rightarrow X
$$

defined by composition with the face map:

$$
\sigma^{(i)}=\sigma \circ F_{n}^{i} .
$$

3.1.2 Chains, Cycles, and Boundaries

Define $S_{n}(X)$ to be the free abelian group generated by singular $n-$ simplices. The elements of $S_{n}(X)$ are called singular chains and are formal linear combinations of
the form

$$
\sum_{\sigma} a_{\sigma} \sigma
$$

where the coefficients $a_{\sigma} \in \mathbb{Z}$ and the sum is over a finite number of singular n simplices σ.

The boundary map $\partial_{n}: S_{n}(X) \rightarrow S_{n-1}(X)$ is a homomorphism, defined on singular simplices by

$$
\partial_{n}(\sigma)=\sum_{i=0}^{n}(-1)^{i} \sigma^{i}
$$

and extended linearly to all of $S_{n}(X)$ by the rule:

$$
\partial_{n}\left(\sum_{\sigma} a_{\sigma} \sigma\right)=\sum_{\sigma} a_{\sigma} \partial_{n}(\sigma)
$$

We will often drop the subscript and write $\partial=\partial_{n}$ when it is unlikely to cause confusion.

Proposition 3.1.1. The composition $\partial_{n-1} \circ \partial_{n}: S_{n}(X) \rightarrow S_{n-2}(X)$ is the zero map, i.e. dropping subscripts, we write this

$$
\partial^{2}=0
$$

Proof. Since $S_{n}(X)$ is generated by simplices, it suffices to check that $\partial_{n-1} \circ \partial_{n}=0$ for all n-simplices σ. It is easily checked that if $0 \leq j<i \leq n$, the free maps satisfy

$$
F_{n}^{i} \circ F_{n-1}^{j}=F_{n}^{j} \circ F_{n-1}^{i-1} .
$$

$$
\begin{aligned}
\partial_{n-1} \circ \partial_{n}(\sigma) & =\partial_{n-1}\left(\sum_{i=0}^{n}(-1)^{i} \sigma^{i}\right) \\
& =\sum_{i=0}^{n}(-1)^{i} \partial_{n-1}\left(\sigma \circ F_{n}^{i}\right) \\
& =\sum_{i=0}^{n}(-1)^{i} \sum_{j=0}^{n-1}(-1)^{j}\left(\sigma \circ F_{n}^{i} \circ F_{n-1}^{j}\right) \\
& =\sum_{i=0}^{n} \sum_{j=0}^{n-1}(-1)^{i+j}\left(\sigma \circ F_{n}^{i} \circ F_{n-1}^{j}\right) \\
& =\sum_{0 \leq i \leq j \leq n-1}(-1)^{i+j}\left(\sigma \circ F_{n}^{i} \circ F_{n-1}^{j}\right)+\sum_{0 \leq j \leq i \leq n-1}(-1)^{i+j}\left(\sigma \circ F_{n}^{i} \circ F_{n-1}^{j}\right) \\
& =\sum_{0 \leq i \leq j \leq n-1}(-1)^{i+j}\left(\sigma \circ F_{n}^{i} \circ F_{n-1}^{j}\right)-\sum_{0 \leq j \leq i-1 \leq n-1}^{i-1+j}\left(\sigma \circ F_{n}^{j} \circ F_{n-1}^{i-1}\right) \\
& =0
\end{aligned}
$$

The group of n-cycles $Z_{n}(X)$ is the kernel of ∂_{n} :

$$
Z_{n}(X):=\left\{\alpha \in S_{n}(X) \mid \partial(\alpha)=0\right\}
$$

and the group of n-boundaries $B_{n}(X)$ is the image of ∂_{n+1} :

$$
B_{n}(X):=\left\{\partial(\beta) \mid \beta \in S_{n+1}(X)\right\}
$$

By the Proposition 3.1.1, $B_{n}(X)$ is a normal subgroup of $Z_{n}(X)$. The $n-t h$ degree singular homology of X is the quotient group:

$$
H_{n}:=Z_{n}(X) / B_{n}(X)
$$

Note that homology is a homotopy invariant, meaning that if $f, g: X \rightarrow Y$ are homotopic, then the corresponding induced maps $f_{*}, g_{*}: H_{*}(X) \rightarrow H_{*}(Y)$ are equal.

3.1.3 Homology as a functor

Let $f: X \rightarrow Y$ be a continuous map. If σ is an $n-$ simplex for X, then the composition $f \circ \sigma$ is an $n-$ simplex for Y. This defines a homomorphism:

$$
\begin{gathered}
S_{n}(f): S_{n}(X) \rightarrow S_{n}(Y), \quad \text { such that } \\
S_{n}(\sigma)=f \circ \sigma,
\end{gathered}
$$

and linearity on S_{n} implies that,

$$
S_{n}\left(\sum_{\sigma} a_{\sigma} \sigma\right)=\sum_{\sigma} a_{\sigma} f \circ \sigma
$$

Clearly, $S_{n}\left(I d_{X}\right)=I d_{S_{n}(X)}$ and $S_{n}(f \circ g)=S_{n}(f) \circ S_{n}(g)$ for composable continuous maps f and g. Thus S_{n} is a functor from topological spaces to abelian groups.

It is clear that $S_{n}(f)$ sends $Z_{n}(X)$ to $Z_{n}(Y)$ and $B_{n}(X)$ to $B_{n}(Y)$, and thus induces a homomorphism between the quotient groups:

$$
H_{n}(f): H_{n}(X) \rightarrow H_{n}(Y)
$$

3.2 Chain Complexes

A chain complex of abelian groups $C:=\left(C_{n}, \partial_{n}\right)_{n \in \mathbb{Z}}$ is a sequence of abelian groups $\left(C_{n}\right)_{n \in \mathbb{Z}}$ and homomorphisms $\partial_{n}: C_{n} \rightarrow C_{n-1}$ such that $\partial_{n} \circ \partial_{n+1}=0$ for all $n \in \mathbb{Z}$. We usually write a chain complex as:

$$
\ldots C_{n+1} \xrightarrow{\partial_{n+1}} C_{n} \xrightarrow{\partial_{n}} C_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{1}} C_{0} \xrightarrow{\partial_{0}} 0 .
$$

Typically $C_{n}=0$ for all $n<0$ and where 0 denotes the trivial group.
Let $\operatorname{im}\left(\partial_{n+1}\right)$ be the image of the boundary map ∂_{n+1} and $\operatorname{ker}\left(\partial_{n}\right)$ be the kernel of the boundary map ∂_{n}. We define the $n-$ chains $Z_{n}(C)=\operatorname{ker}\left(\partial_{n}\right)$ and the $n-$ boundaries $B_{n}(C)=\operatorname{im}\left(\partial_{n+1}\right)$ and hence, the $n-t h$ homology group of the chain complex $H_{n}(C)=Z_{n}(C) / B_{n}(C)$. For $z \in Z_{n}(C)$, the coset represented by z is denoted by $[z] \in H_{n}(C)$.

A morphism of chain complexes $f: C \rightarrow C^{\prime}$ is a sequence of homomorphisms $\left(f_{n}: C_{n} \rightarrow C_{n}^{\prime}\right)_{n \in \mathbb{Z}}$ that commutes with the boundary maps: $f_{n-1} \circ \partial_{n}=\partial_{n}^{\prime} \circ f_{n}$ for all n. In other words, the following diagram commutes:

A chain map $h: C \rightarrow D$ induces homomorphisms in homology $H_{q}(h): H(C) \rightarrow$ $H(D)$ for all $q \in \mathbb{Z}$ by the rule

$$
H_{q}(h)([z])=\left[h_{q}(z)\right] .
$$

Lemma 3.2.1. Let $h: C \rightarrow D$ be a morphism of chain complexes such that $p_{i}: C_{i} \rightarrow$ D_{i} is an isomorphism for $i \leq n$.

Then,

$$
H_{i}(C) \cong H_{i}(D) \quad \text { for } \quad i \leq n-1
$$

Proof. 1. First we prove that $p_{i}\left(\operatorname{ker}\left(\partial_{i}\right)\right)=\operatorname{ker}\left(\delta_{i}\right)$.
Take any $x \in \operatorname{ker}\left(\partial_{i}\right)$. Since p_{i-1} is an isomorphism $p_{i-1} \circ \partial_{i}(x)=0$ and since the diagram is commutative, $\delta_{i} \circ p_{i}(x)=0$. Hence $p_{i}(x) \in \operatorname{ker}\left(\delta_{i}\right)$.

However, for any $y \in \operatorname{ker}\left(\delta_{i}\right)$, by the isomorphism and the commutative diagram, given that $\partial_{i} \circ p_{i}^{-1}(y)=p_{i-1}^{-1} \circ \delta_{i}(y)=0$. Therefore, $y \in p_{i}\left(\operatorname{ker}\left(\partial_{i}\right)\right)$.
2. Next we prove that $p_{i-1}\left(\operatorname{im}\left(\partial_{i}\right)\right)=\operatorname{im}\left(\delta_{i}\right)$.

Take any $y \in \operatorname{im}\left(\partial_{i}\right)$; then, there exists $x \in C_{i}$ such that $\partial_{i}(x)=y$. By the commutative diagram $p_{i-1}(y)=\delta_{i} \circ p_{i}(x)$, and by the isomorphism, there exists $z=p_{i}(x) \in D_{i}$ such that $p_{i-1}(x)=\delta_{i}(z)$. Thus, $p_{i-1}(y) \in \operatorname{im}\left(\delta_{i}\right)$.
However, for any $y \in \operatorname{im}\left(\delta_{i}\right)$, there exists $x \in D_{i}$ such that $y=\delta_{i}(x)$. By the
diagram, $p_{i-1}^{-1}(y)=\partial_{i} \circ p_{i}^{-1}(x)$ and by the isomorphism, there exists $z \in C_{i}$ such that $p_{i}^{-1}(x)=z$. So, $p_{i}^{-1}(y) \in \operatorname{im}\left(\partial_{i}\right)$ and hence $y \in p_{i-1}\left(\operatorname{im}\left(\partial_{i}\right)\right)$.

By Case 1 and Case 2, the p_{i} is restricted to isomorphisms $\operatorname{ker}\left(\partial_{i}\right) \cong \operatorname{ker}\left(\delta_{i}\right)$ and $\operatorname{im}\left(\partial_{i}\right) \cong \operatorname{im}\left(\delta_{i}\right)$.

Now, by the definition of homology, we have

$$
H_{i}(C, R)=\frac{\operatorname{ker}\left(\partial_{i}\right)}{\operatorname{im}\left(\partial_{i+1}\right)} \cong \frac{\operatorname{ker}\left(\delta_{i}\right)}{\operatorname{im}\left(\delta_{i+1}\right)}=H_{i}(D, R) \quad \text { for } \quad i \leq n-1
$$

The following theorem often reduces the problem of calculating homology groups of \mathbb{Z} to calculating homology groups over fields. It is a consequence of the Universal Coefficient Theorem [7].

Theorem 3.2.2. Let X be a finite cell complex. If for any field \mathbb{F} and all $i \geq 0$ the dimension of $H_{i}(X, \mathbb{F})$ is independent of \mathbb{F}, then $H_{i}(X, \mathbb{Z})$ is a free abelian group of the same rank as the Betti number 4.1.2.

3.3 Relative Homology

Let X be a topological space and A be a subset of X. A pair (X, A) gives rise to an inclusion of chain groups $S_{n}(A) \leq S_{n}(X)$. Define the relative chain group of the pair to be the quotient group:

$$
S_{n}(X, A):=S_{n}(X) / S_{n}(A)
$$

The relative chain groups combine to form the relative chain complex:

$$
\ldots S_{n+1}(X, A) \xrightarrow{\bar{\delta}_{n+1}} S_{n}(X, A) \xrightarrow{\bar{\delta}_{n}} S_{n-1}(X, A) \xrightarrow{\bar{\delta}_{n-1}} \ldots \xrightarrow{\bar{\partial}_{1}} S_{0}(X, A) \xrightarrow{\bar{\delta}_{0}} 0
$$

where the boundary map is defined by the following commutative diagram:

where the vertical arrows are quotient maps. Note that $\bar{\partial}_{n}$ is well defined because ∂_{n} sends $S_{n}(A)$ to $S_{n-1}(A)$ and that $\bar{\partial}_{n}^{2}=0$ because $\partial_{n}^{2}=0$. It follows that we can define relative cycles and relative boundaries, $Z_{n}(X, A)$ and $B_{n}(X, A)$, respectively. Thus, relative homology can be defined as:

$$
H_{n}(X, A)=Z_{n}(X, A) / B_{n}(X, A)
$$

The quotient morphisms $S_{n}(X) \rightarrow S_{n}(X, A)$ fit together into a morphism of chain complexes, $j: C(X) \rightarrow C(X, A)$ combined with inclusion chain morphism $i: C(A) \rightarrow$ $C(X)$. Then we get a commutative diagram:

By functoriality, these chain morphisms give rise to homology homomorphisms $H_{n}(A) \rightarrow H_{n}(X) \rightarrow H_{n}(X, A)$ for all $n \geq 0$. The most important property of relative homology is the existence of a connecting homomorphism:

$$
\partial: H_{n}(X, A) \rightarrow H_{n-1}(A), \quad \text { such that } \quad \partial([z])=[\partial(z)] .
$$

Definition 3.3.2. A sequence of abelian groups and homomorphisms

$$
A \xrightarrow{f} B \xrightarrow{g} C
$$

is called exact at B if $\operatorname{ker}(g)=\operatorname{im}(f)$.

Theorem 3.3.1. The long sequence of homomorphisms

$$
\ldots \longrightarrow H_{n+1}(X, A) \xrightarrow{\partial} H_{n}(A) \xrightarrow{H_{n}(i)} H_{n}(X) \xrightarrow{H_{n}(j)} H_{n}(X, A) \xrightarrow{\partial} H_{n-1}(A) \longrightarrow \ldots \longrightarrow
$$

is exact (i.e. exact at all groups in the sequence) and is called the long exact homology sequence associated to the pair (X, A).

Let us state the following lemma for later use.

Lemma 3.3.2. The Five-Lemma

In a commutative diagram of abelian groups as follows:

If the two rows are exact and α, β, δ and ϵ are isomorphisms, then γ is also an isomorphism.

Proof. A proof can be found in Hatcher 2.1 [7].

3.4 Reduced Homology

The reduced homology is a modified version of singular homology. Let X be a space; then there exists a unique map to a point $\epsilon: X \rightarrow\{p t\}$. Define the reduced homology as:

$$
\tilde{H}_{n}(X):=\operatorname{ker} H_{n}(\epsilon)
$$

For a non-empty subset A of X, we define the reduced homology as:

$$
\tilde{H}_{n}(X, A)=H_{n}(X, A) .
$$

3.5 Cellular Homology

3.5.1 Cell Complexes

Let

$$
D^{n}:=\left\{x \in \mathbb{R}^{n}| | x \mid \leq 1\right\}
$$

be the unit disk or closed n-cell with the boundary

$$
S^{n-1}=\partial D^{n}:=\left\{x \in \mathbb{R}^{n}| | x \mid=1\right\}
$$

For a topological space X and a continuous map $f: S^{n-1} \rightarrow X$, we can construct a new quotient space

$$
Y:=\left(X \sqcup D^{n}\right) / \sim
$$

by the equivalence relation generated by $p \sim f(p)$ for all $p \in S^{n-1}$. We say that Y is obtained from X by attaching an n-cell and the map f is called the attaching map. More generally, if we have a collection of maps $f_{\alpha}: S^{n-1} \rightarrow X$, then

$$
Y=\left(X \sqcup\left(\sqcup_{\alpha} D_{\alpha}^{n}\right)\right) / \sim
$$

where $p \sim f_{\alpha}(p)$ for all $p \in S_{\alpha}^{n-1}$ and α.
A cell complex (CW-complex) is a space obtained by iteratively attaching n-cells. That is to say, a 0 -dimensional cell complex is a discrete space, and an n-dimensional cell complex X_{n} is a space obtained by attaching n-cells to ($n-1$)-dimensional cell complex X_{n-1}. An infinite dimensional cell complex is defined as a colimit.

A subspace $A \subseteq X$ is called a subcomplex if it is a closed union of cells. For a given subcomplex $A \subseteq X$, the quotient space X / A defined by identifying all points in A with each other is naturally a cell complex, called a quotient complex of X.

The subcomplex $X_{n} \subseteq X$, consisting of all cells of dimension $\leq n$, is called the n-skeleton of X.

Proposition 3.5.1. If $A \subseteq X$ is a subcomplex, then $H_{n}(X, A) \cong \tilde{H}_{n}(X / A)$ and we have a long exact sequence in homology
$\ldots \longrightarrow \tilde{H}_{n+1}(X / A) \longrightarrow H_{n}(A) \longrightarrow H_{n}(X) \longrightarrow \tilde{H}_{n}(X / A) \longrightarrow H_{n-1}(A) \longrightarrow \ldots \longrightarrow 0$.

Lemma 3.5.2. Let X be a cell complex and $C \subset X$ a compact subspace. Then C is contained within the union of finitely many cells of X.

Lemma 3.5.3. If X is a cell complex, then:

1. $H_{k}\left(X_{n}, X_{n-1}\right)$ is zero if $k \neq n$ and is a free abelian group with generators corresponding to the n-cells when $k=n$.
2. $H_{k}\left(X_{n}\right)=0$ for $k>n$. Thus $H_{k}(X)=0$ for $k>\operatorname{dim}(X)$.
3. The inclusion $i: X_{n} \hookrightarrow X$ induces an isomorphism $H_{k}(i): H_{k}\left(X_{n}\right) \rightarrow H_{k}(X)$ for $k<n$.

Proof. By Proposition 1.2, we have an isomorphism $H_{k}\left(X_{n}, X_{n-1}\right)=\tilde{H}_{k}\left(X_{n} / X_{n-1}\right)$ and X_{n} / X_{n-1} is a wedge of spheres indexed by the $n-$ cell of X. Property 1 follows.

Property 2 is proven by induction, and is clearly true for $n=0$. Now suppose it has been proven for $n-1$. The long exact sequence of the pair contains

$$
\ldots \longrightarrow H_{k}\left(X_{n-1}\right) \longrightarrow H_{k}\left(X_{n}\right) \longrightarrow H_{k}\left(X_{n}, X_{n-1}\right) \longrightarrow \ldots
$$

where both $H_{k}\left(X_{n-1}\right)=H_{k}\left(X_{n}, X_{n-1}\right)=0$ for $k>n$ by induction and property 1 . Thus $H_{k}\left(X_{n}\right)=0$ as well.

To prove property 3 , consider the exact sequence

$$
H_{k+1}\left(X_{n+1}, X_{n}\right) \longrightarrow H_{k}\left(X_{n}\right) \longrightarrow H_{k}\left(X_{n+1}\right) \longrightarrow H_{k}\left(X_{n+1}, X_{n}\right) .
$$

By property 1 , the groups on the end vanish for $k<n$ so $H_{k}\left(X_{n}\right) \cong H_{k}\left(X_{n+1}\right)$. Repeating this argument, we get

$$
H_{k}\left(X_{n}\right) \cong H_{k}\left(X_{n+1}\right) \cong H_{k}\left(X_{n+2}\right) \cong \ldots
$$

which suffices if X is finite dimensional. For the infinite dimensional case, observe that Lemma 1.1 implies that every chain $S_{k}(X)$ must be in the image of $S_{k}\left(X_{n}\right)$ for some n (since the union of images of simplices occurring in the chain is a compact subset of X). Thus every cycle $Z_{k}(X)$ arises as the image of a cycle in $Z_{k}\left(X_{n}\right)$ for some n, and every boundary $B_{k}(X)$ arises as the image of a boundary in $B_{k}\left(X_{n}\right)$ for some n. Thus, the result follows.

Let X be a CW complex. Using Lemma 3.5.3, we can define a homomorphism $d_{n}: H_{n}\left(X_{n+1}, X_{n}\right) \rightarrow H_{n-1}\left(X_{n-1}, X_{n-2}\right)$ by the commutative diagram

where d_{n+1} and d_{n} are defined as the compositions $j_{n} \circ \partial_{n+1}$ and $j_{n-1} \circ \partial_{n}$. Note that the diagonal maps occur in the long exact sequences of pairs and hence, the composition $d_{n} \circ d_{n+1}=0$. Thus $\left(H_{n}\left(X_{n}, X_{n-1}\right), d_{n}\right)_{N \in \mathbb{Z}}$ forms a chain complex, called the cellular chain complex. The homology of the cellular chain complex is called the cellular homology.

Theorem 3.5.4. The cellular homology groups are naturally isomorphic to the singular homology groups.

Proof. From the diagram above, we may identify $H_{n}(X) \cong H_{n}\left(X_{n}\right) / \operatorname{im}\left(\partial_{n+1}\right)$. Since j_{n} is injective, it maps $\operatorname{im}\left(\partial_{n+1}\right)$ isomorphically onto $\operatorname{im}\left(j_{n} \partial_{n+1}\right)=\operatorname{im}\left(d_{n+1}\right)$ and by exactness, $H_{n}\left(X_{n}\right)$ isomorphically onto $\operatorname{im}\left(j_{n}\right)=\operatorname{ker}\left(\partial_{n}\right)$. Finally, j_{n-1} is injective, $\operatorname{ker}\left(\partial_{n}\right)=\operatorname{ker}\left(d_{n}\right)$ and hence $H_{n}(X) \cong \operatorname{ker}\left(d_{n}\right) / \operatorname{im}\left(d_{n+1}\right)$.

3.5.2 Examples for homology

Example 3.5.2. Genus g Riemann surface Σ_{g} is constructed by attaching a 2-cell to a wedge of $2 g$ circles using an attaching map $\prod_{i=1}^{g}\left[a_{i}, b_{i}\right]$. The cellular chain complex
is

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{d_{2}} \mathbb{Z}^{2 g} \xrightarrow{d_{1}} \mathbb{Z} \quad \text { with both } \quad d_{1}=d_{2}=0
$$

and it follows that the result is:

$$
H_{k}\left(\Sigma_{g}, \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & \text { if } k=0,2 \\ \mathbb{Z}^{2 g} & \text { if } k=1 \\ 0 & \text { otherwise }\end{cases}
$$

Example 3.5.3. n-dim sphere is defined by attaching an n-cell to a 0 -cell, and

$$
H_{k}\left(S^{n}, \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & \text { if } k=0, n \\ 0 & \text { otherwise }\end{cases}
$$

Example 3.5.4. The infinite complex projective plane is a cell complex with one cell in each even degree

$$
H_{k}\left(\mathbb{C} P^{\infty}, \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & \text { if } k=0, \text { even } \\ 0 & \text { if } k=\text { odd }\end{cases}
$$

Example 3.5.5. The real projective plane has a cell complex structure with one cell in each dimension. However, the homology groups are dependent on the field.

$$
\begin{gathered}
H_{k}\left(\mathbb{R} P^{n}, \mathbb{Z}_{2}\right) \cong \begin{cases}\mathbb{Z}_{2} & \text { if } 0 \leq k \leq n, \\
0 & \text { otherwise. }\end{cases} \\
H_{k}\left(\mathbb{R} P^{n}, \mathbb{Q}\right) \cong \begin{cases}\mathbb{Q} & \text { if } k=0, \text { and } k=n \text { if } n \text { is odd, } \\
0 & \text { otherwise. }\end{cases} \\
H_{k}\left(\mathbb{R} P^{n}, \mathbb{Z}\right) \cong \begin{cases}\mathbb{Z} & \text { if } k=0, \text { and } k=n \text { odd }, \\
\mathbb{Z} / 2 \mathbb{Z} & \text { if } 0<k<n, \text { and } k \text { odd }, \\
0 & \text { otherwise. } .\end{cases}
\end{gathered}
$$

3.6 Cohomology Groups

Homology groups $H_{n}(X)$ are the result of forming a chain complex $\ldots \rightarrow C_{n} \xrightarrow{\partial}$ $C_{n-1} \rightarrow \ldots$ of singular, simplicial, or cellular chains, and then take the homology groups of this chain complex, Z_{n} / B_{n}, as we defined. To obtain the cohomology groups $H^{n}(X)$, we dualize this chain complex as follows:

Let R be a commutative ring and consider a usual chain complex C of free abelian groups,

$$
\ldots \rightarrow C_{n+1} \xrightarrow{\partial} C_{n} \xrightarrow{\partial} C_{n-1} \dot{\rightarrow} . .
$$

To dualize this complex we replace each chain group C_{n} by its dual cochain group $C_{n}^{*}=\operatorname{Hom}\left(C_{n}, R\right)$, the group of homomorphisms $C_{n} \rightarrow R$, and we replace each boundary map $\partial: C_{n} \rightarrow C_{n-1}$ by its dual coboundary map $\delta=\partial^{*}: C_{n-1}^{*} \rightarrow C_{n}^{*}$.

The reason why δ goes in the opposite direction, increasing rather than decreasing dimension, is purely formal: For a homomorphism $\alpha: A \rightarrow B$, the dual homomorphism $\alpha^{*}: \operatorname{Hom}(B, R) \rightarrow \operatorname{Hom}(A, R)$ is defined by $\alpha^{*}(\varphi)=\varphi \alpha$, so α^{*} sends $B \xrightarrow{\varphi} R$ to the composition $A \xrightarrow{\alpha} B \xrightarrow{\varphi} R$.

That is

The dual homomorphisms obviously satisfy $(\alpha \beta)^{*}=\beta^{*} \alpha^{*}, \mathbb{I}^{*}=\mathbb{I}$, and $0^{*}=0$. In particular, since $\partial \partial=0$, it follows that $\delta \delta=0$, according to the following cochain complex

$$
\ldots \leftarrow C_{n+1}^{*} \stackrel{\delta}{\leftarrow} C_{n}^{*} \stackrel{\delta}{\leftarrow} C_{n-1}^{*} \leftarrow \ldots
$$

and the cohomology group $H^{n}(X ; R)$ can be defined as the homology group. We can now define cochains $Z^{n}:=\operatorname{ker} \delta_{n+1}$, coboundaries $B^{n}:=\operatorname{im} \delta_{n}$, and cohomology

$$
H^{n}:=Z^{n} / B^{n} .
$$

Definition 3.6.1. Let R be a commutative ring. The singular cohomology of a pair of spaces (X, A), denoted by $H^{n}(X, A ; R)$ for $n \geq 0$, is the cohomology of the singular
cochain complex

$$
\ldots \longrightarrow S^{n-1}(X, A ; R) \longrightarrow S^{n}(X, A ; R) \longrightarrow S^{n+1}(X, A ; R) \longrightarrow \ldots
$$

obtained by dualizing the singular chain complex of X.
Theorem 3.6.1. Let X have a finite cell complex. Then, for any field \mathbb{F},

$$
H_{k}(X, \mathbb{F}) \cong H^{k}(X, \mathbb{F}) \quad \text { for } \quad k \in \mathbb{N} .
$$

Proof. Let us consider the cellular chain and cochain complexes of X :

$$
\begin{aligned}
& \ldots \rightarrow C_{i+1} \stackrel{\partial_{i+1}}{\longleftrightarrow} C_{i} \xrightarrow{\partial_{i}} C_{i-1} \xrightarrow{\partial_{i-1}} \ldots \\
& \ldots \leftarrow C_{i+1}^{*} \ldots \stackrel{\delta_{i+1}}{\leftarrow} C_{i}^{*} \stackrel{\delta_{i}}{\leftarrow} C_{i-1}^{*} \stackrel{\delta_{i-1}}{\leftarrow} \ldots
\end{aligned}
$$

with $C_{i}=H_{i}\left(X_{i}, X_{i-1}\right) \cong \mathbb{F}^{N_{i}}$, where N_{i} is the number of $i-$ cells and $C_{i}^{*}=$ $\operatorname{Hom}\left(C_{i} ; \mathbb{F}\right)=\operatorname{Hom}\left(\mathbb{F}^{N_{i}} ; \mathbb{F}\right) \cong \mathbb{F}^{N_{i}}$ have the same dimension. Also, since $\delta_{i}=\partial_{i}^{T}$, we have $\operatorname{rank}\left(\partial_{i}\right)=\operatorname{rank}\left(\delta_{i}\right)$. In other words, the dimensions of the image of ∂_{i} and δ_{i} are the same.

By the definition of homology, we have $H_{i}(X, \mathbb{F})=\operatorname{ker}\left(\partial_{i}\right) / \operatorname{im}\left(\partial_{i+1}\right)$ and hence,

$$
\operatorname{dim}\left(H_{i}(X, \mathbb{F})\right)=\operatorname{dim}\left(\operatorname{ker}\left(\partial_{i}\right)\right)-\operatorname{dim}\left(\operatorname{im}\left(\partial_{i+1}\right)\right)
$$

Now, by using the Rank-Nullity Theorem,

$$
\operatorname{dim}\left(H_{i}(X, \mathbb{F})\right)=\operatorname{dim}\left(C_{i}\right)-\operatorname{rank}\left(\partial_{i}\right)-\operatorname{rank}\left(\partial_{i+1}\right)
$$

Similarly, by the definition of cohomology, we have

$$
\operatorname{dim}\left(H^{i}(X, \mathbb{F})\right)=\operatorname{dim}\left(C_{i}^{*}\right)-\operatorname{rank}\left(\delta^{i}\right)-\operatorname{rank}\left(\delta^{i+1}\right)
$$

and hence $\operatorname{dim}\left(H_{i}(X, \mathbb{F})\right)=\operatorname{dim}\left(H^{i}(X, \mathbb{F})\right)$.
This result leads us to complete the proof.

3.6.1 The cup product

A graded R-algebra A^{*} is a direct sum of R-modules

$$
A^{*}=\bigoplus_{i \in \mathbb{Z}} A^{i}
$$

equipped with a multiplication $A^{i} \times A^{j} \rightarrow A^{i+j}$ which is distributive with respect to addition. The elements of $A^{i} \subseteq A^{*}$ are called homogeneous of degree i. We say A^{*} is a graded commutative if the multiplication satisfies

$$
m \cdot n=(-1)^{i+j} n \cdot m
$$

for homogeneous elements $m \in A^{i}$ and $n \in A^{j}$.
Theorem 3.6.2. There is a multiplication called the cup product that makes the direct sum

$$
H^{*}(X ; R):=\bigoplus_{i=0}^{\infty} H^{i}(X ; R)
$$

into a graded commutative, associative R-algebra for which $H^{i}(X ; R)$ has degree i.
We begin by defining the cup product at the level of cochains,

$$
S^{p}(X, A ; R) \times S^{q}(X, A ; R) \rightarrow S^{p+q}(X, A ; R), \quad(\varphi, \psi) \rightarrow \varphi \cup \psi
$$

defined on a $(p+q)$-simplex σ by

$$
(\varphi \cup \psi)(\sigma)=\varphi\left(\sigma \circ\left[e_{0}, \ldots, e_{p}\right]\right) \psi\left(\sigma \circ\left[e_{p}, \ldots, e_{p+q}\right]\right)
$$

where $\left[e_{0}, \ldots, e_{p}\right]: \Delta^{p} \rightarrow \Delta^{p+q}$ and $\left[e_{p}, \ldots, e_{p+q}\right]: \Delta^{q} \rightarrow \Delta^{p+q}$ are affine simplices. The cup product is both associative and distributive with respect to addition.

Lemma 3.6.3. The cup product satisfies the Leibniz rule

$$
\delta(\varphi \cup \psi)=\delta \varphi \cup \psi+(-1)^{p} \varphi \cup \delta \psi
$$

for $\varphi \in S^{p}(X)$ and $\psi \in S^{p}(X)$.
Consequently, it implies that the product of two cocycles is a cocycle. Also, if the
product of a cocycle with a coboundary is a coboundary, because

$$
\varphi \cup \delta \psi= \pm \delta(\varphi \cup \psi) \pm \delta \varphi \cup \psi= \pm \delta(\varphi \cup \psi) \quad \text { if } \quad \delta \varphi=0
$$

and

$$
\delta \varphi \cup \psi=\delta(\varphi \cup \psi) \pm \varphi \cup \delta \psi=\delta(\varphi \cup \psi) \quad \text { if } \quad \delta \psi=0
$$

It follows that the cup product descends a map

$$
\cup: H^{p}(X ; R) \times H^{q}(X ; R) \rightarrow H^{p+q}(X ; R)
$$

which is both associative and bilinear with respect to the R-module structure. Thus the cup product makes the direct sum

$$
H^{*}(X ; R):=\bigoplus_{i=0}^{\infty} H^{i}(X ; R)
$$

into a graded, associative R-algebra. There is a multiplicative identity, denoted by 1 , which is represented by the 0 -cocycle that sends every $0-$ simplex to 1 .

3.6.2 The cap product and Poincaré Duality

The cap product is a bilinear map that takes as input a singular n-chain and singular k-cochain, and outputs an $(n-k)$-chain for $n \geq k$:

$$
\cap: S_{n}(X ; R) \times S^{k}(X ; R) \rightarrow S_{n-k}(X ; R)
$$

Given an n-simplex $\sigma: \Delta^{n} \rightarrow X$ and a cochain $\psi \in S^{k}(X ; R)$, the cap product is dual to the cup product in the sense that if $\varphi \in S^{n-k}(X ; R)$ is a cochain, then

$$
\varphi(\sigma \cap \psi)=(\psi \cup \varphi)(\sigma)
$$

so that the homomorphism

$$
\psi \cup(): S^{n-k}(X ; R) \rightarrow S^{n}(X ; R)
$$

is the transpose of the linear map

$$
() \cap \psi: S_{n}(X ; R) \rightarrow S_{n-k}(X ; R) .
$$

Theorem 3.6.4. The cap product determines a bilinear map,

$$
\cap: H_{n}(X ; R) \times H^{k}(X ; R) \rightarrow H_{n-k}(X ; R)
$$

by the rule

$$
[\alpha] \cap[\psi]=[\alpha \cap \psi] .
$$

Lemma 3.6.5. If $\alpha \in S_{n}(X)$ and $\psi \in S^{k}(X)$ then

$$
\partial(\alpha \cap \psi)=(-1)^{k}(\partial \alpha \cap \psi-\alpha \cap \delta \psi) .
$$

Theorem 3.6.6. Poincaré Duality Theorem: Let M be a closed, R-oriented $n-$ manifold with fundamental class $[M] \in H_{n}(M ; R)$. The cap product with respect to [M] defines an isomorphism

$$
[M] \cap(): H^{k}(M ; R) \xrightarrow{\cong} H_{n-k}(M ; R) .
$$

3.7 The Künneth Formula

For two given spaces, we may form the product space $X \times Y$, which comes equipped with projection maps $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$. These can be used to define the cross product:

$$
H^{p}(X ; R) \times H^{q}(Y ; R) \rightarrow H^{p+q}(X \times Y ; R)
$$

given by $a \times b=\pi_{1}^{\star}(a) \cup \pi_{2}^{\star}(b)$.
The cross product is bilinear, so it determines a homomorphism

$$
\begin{equation*}
H^{p}(X ; R) \otimes H^{q}(Y ; R) \rightarrow H^{p+q}(X \times Y ; R), \quad a \otimes b \mapsto a \times b \tag{3.7.1}
\end{equation*}
$$

Theorem 3.7.1. If both $H^{p}(X ; R)$ and $H^{q}(Y ; R)$ are free R-modules for all degrees of p and q respectively, then there is an isomorphism:

$$
H^{n}(X \times Y ; R) \cong \bigoplus_{p+q=n} H^{p}(X ; R) \otimes_{R} H^{q}(Y ; R)
$$

defined by adding up the natural homomorphism 3.7.1.

A proof in the case when X and Y are cell complexes can be found in the Hatcher, section 3.2 [7].

Chapter 4

Betti Numbers and Poincaré Polynomials

4.1 Betti Numbers

4.1.1 Fundamental theorem of finitely generated abelian groups

Let G be a finitely generated abelian group. Then it decomposes as follows:

$$
G \cong \mathbb{Z}^{r} \times \mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \ldots \times \mathbb{Z}_{n_{s}} \quad \text { for some integers } \quad r, n_{1}, n_{2}, \ldots, n_{s}
$$

and uniquely satisfying the following conditions:

1. $r \geq 0$ and $n_{i} \geq 2$ for all i,
2. $n_{i+1} \mid n_{i}$ for $1 \leq i \leq s-1$.

Then,

1. the integer r in the decomposition is called the free rank of G,
2. $n_{1}, n_{2}, \ldots, n_{s}$ are called invariant factors of G,
3. the decomposition is called the invariant factor decomposition of G.

Definition 4.1.1. We say that a group G is finitely generated if there exists a finite set $S \subseteq G$ such that every element of G can be written as a product of finitely many elements of S and the inverses of such elements.

Definition 4.1.2. For each positive integer r, let $\mathbb{Z}^{r}=\mathbb{Z} \times \mathbb{Z} \times \ldots \times \mathbb{Z}$ be the direct product of r copies of \mathbb{Z}. Then \mathbb{Z}^{r} is called the free abelian group of order r.

Definition 4.1.3. For each positive integer n, we call $\mathbb{Z}_{n}=\frac{\mathbb{Z}}{n \mathbb{Z}}$ the cyclic group of order n.

4.1.2 Betti Numbers

Definition 4.1.4. Let X be a topological space and the abelian group $H_{k}(X)$ be the $n^{\text {th }}$ homology group of X. Then for a non-negative integer k, the $k^{t h}$ Betti number $b_{k}(X)$ of X is the dimension of $H_{k}(X)$, i.e.,

$$
\begin{equation*}
H_{k}(X, \mathbb{F})=\mathbb{F}^{b_{k}} \quad \text { for a field } \mathbb{F} . \tag{4.1.5}
\end{equation*}
$$

The Betti numbers depends on the field \mathcal{F} and only through the characteristic of \mathcal{F}. If the homology groups are torsion-free, then the Betti numbers are independent of the filed.

Example 4.1.6. n - dim sphere.
Consider

$$
H_{k}\left(S^{n}, \mathbb{F}\right)= \begin{cases}\mathbb{F} & \text { if } k=0, n \\ 0 & \text { otherwise }\end{cases}
$$

Therefore $b_{0}\left(S^{n}\right)=b_{n}\left(S^{n}\right)=1$ and all the other Betti numbers are 0 .
Example 4.1.7. Genus g Riemann surface.
Consider

$$
H_{k}\left(\Sigma_{g}, \mathbb{F}\right)= \begin{cases}\mathbb{F} & \text { if } k=0,2 \\ \mathbb{F}^{2 g} & \text { if } k=1 \\ 0 & \text { otherwise }\end{cases}
$$

Therefore $b_{0}\left(\Sigma_{g}\right)=b_{2}\left(\Sigma_{g}\right)=1, \quad b_{1}\left(\Sigma_{g}\right)=2 g$ and all the other Betti numbers are 0 .

Example 4.1.8. The infinite complex projective plane.
Consider

$$
H_{k}\left(\mathbb{C} P^{\infty}, \mathbb{F}\right)= \begin{cases}\mathbb{F} & \text { if } k=0, \text { even } \\ 0 & \text { if } k=\text { odd }\end{cases}
$$

Therefore $b_{n}\left(\mathbb{C} P^{\infty}\right)= \begin{cases}1 & \text { if } k=0, \text { even }, \\ 0 & \text { if } k=\text { odd. }\end{cases}$
Example 4.1.9. The real projective plane.

$$
\begin{gathered}
H_{k}\left(\mathbb{R} P^{n}, \mathbb{Z}_{2}\right) \cong \begin{cases}\mathbb{Z}_{2} & \text { if } 0 \leq k \leq n, \\
0 & \text { otherwise }\end{cases} \\
H_{k}\left(\mathbb{R} P^{n}, \mathbb{Q}\right) \cong \begin{cases}\mathbb{Q} & \text { if } k=0 \text { and, } k=n, \text { odd } \\
0 & \text { otherwise } .\end{cases}
\end{gathered}
$$

Therefore, over the field $\mathbb{Z}_{2}, b_{n}\left(\mathbb{R} P^{n}\right)= \begin{cases}1 & \text { if } 0 \leq k \leq n, \\ 0 & \text { otherwise },\end{cases}$ and over $\mathbb{Q}, b_{n}\left(\mathbb{R} P^{n}\right)= \begin{cases}1 & \text { if } k=0, \text { and } k=n \text { odd, } \\ 0 & \text { otherwise } .\end{cases}$

4.2 Poincaré Series

Definition 4.2.1. For a fixed coefficient field \mathbb{F}, define the Poincaré polynomial $P_{X}(t)$ of a topological space X to be the generating power series of its Betti numbers.

$$
\text { i.e. } \quad P_{X}(t)=\sum_{i} b_{i} t^{i}
$$

where b_{i} is the dimension of $H_{i}(X, \mathbb{F})$ as a vector space of \mathbb{F} (or the $i^{t h}$ Betti number of X).

Example 4.2.2. n - dim sphere.
By Example 4.1.6, the Betti numbers are $b_{0}\left(S^{n}\right)=b_{n}\left(S^{n}\right)=1$ and all the other Betti numbers are 0 . Therefore $P_{S^{n}}(t)=1+t^{n}$.

Example 4.2.3. Genus g Riemann surface.
By Example 4.1.7, the Betti numbers are $b_{0}\left(\Sigma_{g}\right)=b_{2}\left(\Sigma_{g}\right)=1, \quad b_{1}\left(\Sigma_{g}\right)=2 g$ and all the other Betti numbers are 0 . Therefore $P_{\Sigma_{g}}(t)=1+2 g t+t^{2}$.

Example 4.2.4. The infinite complex projective plane.
By Example 4.1.8, the Betti numbers are $b_{k}\left(\mathbb{C} P^{\infty}\right)=\left\{\begin{array}{ll}1 & \text { if } k=0, \text { even, } \\ 0 & \text { if } k=\text { odd } .\end{array}\right.$.
Therefore $P_{\mathbb{C} P^{\infty}}(t)=1+t^{2}+t^{4}+t^{6}+\ldots$
Theorem 4.2.1. Let X and Y be two topological spaces. Then the Poincaré polynomial of the tensor product $X \times Y$ can be written as:

$$
P_{X \times Y}(t)=P_{X}(t) P_{Y}(t)
$$

This theorem follows from the Künneth Theorem for fields.

Example 4.2.5.

$$
P_{S^{1} \times S^{1}}(t)=P_{S^{1}}(t) P_{S^{1}}(t)=(1+t)(1+t)=1+2 t+t^{2}
$$

Example 4.2.6.

$$
P_{\left(S^{1}\right)^{2 g}}(t)=P_{S^{1} \times S^{1} \times \ldots \times S^{1}}(t)=P_{S_{1}}(t) P_{S_{1}}(t) \ldots P_{S_{1}}(t)=(1+t)^{2 g} .
$$

Example 4.2.7.

$$
\begin{aligned}
P_{\mathbb{C} P^{\infty} \times\left(S^{1}\right)^{2 g}}(t) & =P_{\mathbb{C} P^{\infty}}(t) P_{\left(S^{1}\right)^{2 g}}(t) \\
& =\left(1+t^{2}+t^{4}+t^{6}+\ldots\right)(1+t)^{2 g} \\
& =\left(1+t^{2}+t^{4}+t^{6}+\ldots\right) \sum_{l=0}^{2 g}\binom{2 g}{l} t^{l} \\
& =\sum_{l=0}^{\infty} \sum_{i=0}^{2 g}\binom{2 g}{i} t^{i+2 l} .
\end{aligned}
$$

Chapter 5

The Symmetric Product Space and The Infinite Symmetric Product Space

5.1 The symmetric product space $S P^{n}\left(\Sigma_{g}\right)$

The symmetric product of a topological space X can be thought of as a set of finite unordered n-tuples drawn from space X. Key to this construction is that the symmetric group S_{n} acts naturally on the product space X^{n} by permuting elements, namely,

$$
\sigma\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right) \text { for all } \sigma \in S_{n} \text { and }\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X^{n}
$$

Definition 5.1.1. Let X be a topological space. For any natural number n, the $n^{t h}$ symmetric product of X is the orbit space:

$$
S P^{n}(X)=X^{n} / S_{n}
$$

of the natural permutation action described above, where $X^{n}=X \times X \times \ldots \times X$ is the product space.

In case $X=\Sigma_{g}$, then $S P^{n}\left(\Sigma_{g}\right)$ may be interpreted as the space of all effective divisors of order n. In addition to that, $S P^{n}\left(\Sigma_{g}\right)$ serves as the domain of the classical

Abel-Jacobi map:

$$
A J_{n}: S P^{n}\left(\Sigma_{g}\right) \rightarrow \operatorname{Jac}\left(\Sigma_{g}\right)
$$

which we will explain in Chapter 7. In this case $S P^{n}\left(\Sigma_{g}\right)$ is a complex manifold of dimension n (a real manifold of dimension $2 n$).

5.2 The infinite symmetric product space $S P^{\infty}(X)$

Let X be a topological space and $* \in X$ be a given base point. Then, there is an embedding

$$
S P^{n}(X) \hookrightarrow S P^{n+1}(X)
$$

given by

$$
j\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}, *\right)
$$

Thus $S P^{n}(X)$ can naturally considered as a subset of $S P^{n+1}(X)$ and this is given a sequence

$$
\begin{equation*}
S P^{1}(X) \subset S P^{2}(X) \subset \ldots \subset S P^{n}(X) \subset S P^{n+1}(X) \subset \ldots \tag{5.2.1}
\end{equation*}
$$

that allows defining an infinite symmetric space.
Let $X_{1} \hookrightarrow X_{2} \hookrightarrow \ldots$ be a sequence of inclusions. Consider the union $X=\cup X_{n}$ and define the topology of X by the rule that $U \subseteq X$ is open if $U \cap X_{n}$ is open for all n. If the X_{n} are a sequence of cell complexes, that is, X_{n} is a subcell complex of X_{n+1}, then X is also a cell complex. We call X the colimit of the sequence.

Definition 5.2.2. Let X be a topological space. The infinite symmetric product of X is the colimit

$$
S P^{\infty}(X) \simeq \operatorname{colim} S P^{n}(X)
$$

according to this sequence.
Theorem 5.2.1. Let Σ_{g} be a compact Riemann surface of genus g. Then there is a homotopy equivalence such that

$$
\begin{equation*}
S P^{\infty}\left(\Sigma_{g}\right) \cong \mathbb{C} P^{\infty} \times\left(S^{1}\right)^{2 g} \tag{5.2.3}
\end{equation*}
$$

Theorem 5.2.1 is a consequence of the Dold-Thom Theorem 5.2.2, which we now
explain.

5.2.1 Eilenberg-Maclane Space

Given a positive integer n and a group G (necessarily abelian if $n \geq 2$) then a connected topological space X is called an Eilenberg-Maclane space of the type $K(G, n)$, if it has $n^{\text {th }}$ homotopy group

$$
\pi_{n}(X) \simeq G
$$

and

$$
\pi_{i}(X)=0 \quad \text { for } \quad i \neq n
$$

The homotopy type of a CW complex $K(G, n)$ is uniquely determined by G and n. Moreover, $K(G, n)$ is a cell complex structure and it is unique up to homotopy equivalence.

Example 5.2.4. The unit circle S^{1} with $G=\mathbb{Z}$:

$$
K(\mathbb{Z}, 1) \simeq S^{1}
$$

Example 5.2.5. The infinite dimensional real projective space $\mathbb{R} P^{\infty}$ with $G=\mathbb{Z}_{2}$:

$$
K\left(\mathbb{Z}_{2}, 1\right) \simeq \mathbb{R} P^{\infty}
$$

Example 5.2.6. The infinite dimensional complex projective space $\mathbb{C} P^{\infty}$ with $G=$ \mathbb{Z} :

$$
K(\mathbb{Z}, 2) \simeq \mathbb{C} P^{\infty}
$$

5.2.2 Dold-Thom Theorem

Theorem 5.2.2. Let X be a connected cell complex. Then, there is a homotopy equivalence

$$
\begin{equation*}
S P^{\infty}(X) \simeq \prod_{n=1}^{\infty} K\left(H_{n}(X, \mathbb{Z}), n\right) \tag{5.2.7}
\end{equation*}
$$

5.2.3 Proof of Theorem 5.2.1

Note that Σ_{g} is a connected cell complex and
Remark 5.2.3. $H_{n}\left(\Sigma_{g}, \mathbb{Z}\right)= \begin{cases}\mathbb{Z} & \text { if } n=0,2 \\ \mathbb{Z}^{2 g} & \text { if } n=1 \\ 0 & \text { otherwise. }\end{cases}$
Now the Dold-Thom theorem implies:

$$
\begin{align*}
S P^{\infty}\left(\Sigma_{g}\right) & \simeq \prod_{n=1}^{\infty} K\left(H_{n}\left(\Sigma_{g}, \mathbb{Z}\right), n\right) \\
& =K\left(H_{1}\left(\Sigma_{g}, \mathbb{Z}\right), 1\right) \times K\left(H_{2}\left(\Sigma_{g}, \mathbb{Z}\right), 2\right) \\
& =K\left(\mathbb{Z}^{2 g}, 1\right) \times K(\mathbb{Z}, 2) \\
& =\left(S^{1}\right)^{2 g} \times \mathbb{C} P^{\infty} \tag{byEx.5.2.4andEx.5.2.6}
\end{align*}
$$

5.3 The Betti numbers and Homology of $S P^{\infty}\left(\Sigma_{g}\right)$

By Theorem 5.2.1 and Theorem 4.2.1, we have the Poincaré polynomial for $S P^{\infty}\left(\Sigma_{g}\right)$ as:

$$
\begin{aligned}
P_{S P^{\infty}\left(\Sigma_{g}\right)}(t) & =P_{\mathbb{C} P^{\infty} \times\left(S^{1}\right)^{2 g}}(t) \\
& =(1+t)^{2 g}\left(\frac{1}{1-t^{2}}\right) \\
& =\sum_{l=0}^{\infty} \sum_{i=0}^{2 g}\binom{2 g}{i} t^{i+2 l} .
\end{aligned}
$$

Note that the $k-t h$ Betti number b_{k} of a space is the coefficient of t^{k} of its own Poincaré polynomial. For example, consider b_{4}, has the following combinations to be $i+2 l=4$,

i	0	2	4
j	2	1	0

Table 5.1: i and l values for b_{4}
and hence, $b_{4}=\binom{2 g}{0}+\binom{2 g}{2}+\binom{2 g}{4}$. So,

k	b_{k}
0	$b_{0}=\binom{2 g}{0}$
1	$b_{1}=\binom{2 g}{1}$
2	$b_{2}=\binom{2 g}{0}+\binom{2 g}{2}$
3	$b_{3}=\binom{2 g}{1}+\binom{2 g}{3}$
4	$b_{4}=\binom{2 g}{0}+\binom{2 g}{2}+\binom{2 g}{4}$
5	$b_{5}=\binom{2 g}{1}+\binom{2 g}{3}+\binom{2 g}{5}$
6	$b_{6}=\binom{2 g}{0}+\binom{2 g}{2}+\binom{2 g}{4}+\binom{2 g}{6}$
7	$b_{7}=\binom{2 g}{1}+\binom{2 g}{3}+\binom{(2 g}{5}+\binom{2 g}{7}$
\vdots	\vdots

Table 5.2: Classification of Betti numbers of $S P^{\infty}\left(\Sigma_{g}\right)$.

In general,

$$
b_{k}\left(S P^{\infty}\left(\Sigma_{g}\right)\right)= \begin{cases}\sum_{i=0}^{k / 2}\binom{2 g}{2 i} & \text { if } k=0, \text { even } \tag{5.3.1}\\ \sum_{i=0}^{(k-1) / 2}\binom{2 g}{2 i+1} & \text { if } k=\text { odd }\end{cases}
$$

Recall that the homology of a space X,

$$
H_{k}(X, \mathbb{F})=\mathbb{F}^{b_{k}} \quad \text { for a field } \mathbb{F}
$$

and hence, as a conclusion, we have:

$$
H_{k}\left(S P^{\infty}\left(\Sigma_{g}\right), \mathbb{F}\right)= \begin{cases}\mathbb{F}^{\sum_{i=0}^{k / 2}\binom{2 g}{2 i}} & \text { if } k=0, \text { even } \tag{5.3.2}\\ \mathbb{F}^{\sum_{i=0}^{(k-1) / 2}\binom{2 g}{2 i+1}} & \text { if } k=o d d\end{cases}
$$

5.4 The relationship between $S P^{n}\left(\Sigma_{g}\right)$ and $S P^{\infty}\left(\Sigma_{g}\right)$

As we described in subsection $5.2, S P^{\infty}\left(\Sigma_{g}\right)$ is the colimit of $S P^{n}\left(\Sigma_{g}\right) . S P^{\infty}\left(\Sigma_{g}\right)$ has a cell complex structure [9] for which the $S P^{n}\left(\Sigma_{g}\right)$ are subcomplexes such that the natural inclusion $i: S P^{n}\left(\Sigma_{g}\right) \hookrightarrow S P^{\infty}\left(\Sigma_{g}\right)$ is an isomorphism up to the n-skeletons:

$$
\left(S P^{n}\left(\Sigma_{g}\right)\right)_{n} \cong\left(S P^{\infty}\left(\Sigma_{g}\right)\right)_{n}
$$

This inclusion determines an isomorphism between cellular chain complexes p_{i} : $C_{i}\left(S P^{n}\left(\Sigma_{g}\right)\right) \rightarrow C_{i}\left(S P^{\infty}\left(\Sigma_{g}\right)\right)$ for $i \leq n$.

Theorem 5.4.1. Let Σ_{g} be a compact Riemann surface of genus g with an $n^{\text {th }}$ symmetric product space $S P^{n}\left(\Sigma_{g}\right)$ and infinite symmetric product space $S P^{\infty}\left(\Sigma_{g}\right)$. Then,

$$
\begin{equation*}
H_{k}\left(S P^{n}\left(\Sigma_{g}\right), \mathbb{F}\right) \cong H_{k}\left(S P^{\infty}\left(\Sigma_{g}\right), \mathbb{F}\right) \quad \text { for } \quad k=0,1, . ., n-1 \tag{5.4.1}
\end{equation*}
$$

Proof. The proof follows directly by Lemma 3.2.1.
In fact, I.G MacDonald [9] proved that 5.4.1 is also an isomorphism for $k=n$.

5.4.1 The Homology and Betti numbers of $S P^{n}\left(\Sigma_{g}\right)$

Theorem 5.4.1 allows us to find homology groups of $S P^{n}\left(\Sigma_{g}\right)$ and Equation 5.3.2 implies that

$$
H_{k}\left(S P^{n}\left(\Sigma_{g}\right), \mathbb{F}\right)= \begin{cases}\mathbb{F}^{\sum_{i=0}^{k / 2}\binom{2 g}{2 i}} & \text { if } k=\text { even }, \tag{5.4.2}\\ \mathbb{F}^{\sum_{i=0}^{(k-1) / 2}\binom{2 g}{2 i+1}} & \text { if } k=\text { odd }\end{cases}
$$

for $k=0,1,2, \ldots, n$.
To calculate the rest, from $n+1, \ldots, 2 n$ of the homology groups, we need to use Theorem 3.6.1 and the Poincaré duality.

Since $S P^{n}\left(\Sigma_{g}\right)$ has a finite cell complex structure, by Theorem 3.6.1:

$$
H_{k}\left(S P^{n}\left(\Sigma_{g}\right), \mathbb{F}\right) \cong H^{k}\left(S P^{n}\left(\Sigma_{g}\right), \mathbb{F}\right) \quad \text { for } \quad k \in \mathbb{N} .
$$

Recall that the $n-t h$ symmetric product space $S P^{n}\left(\Sigma_{g}\right)$ of a compact Riemann surface Σ_{g} of genus g is a closed R-orientable $2 n$-dimensional manifold and satisfies the Poincaré duality theorem. Thus we have

$$
H^{k}\left(S P^{n}\left(\Sigma_{g}\right), \mathbb{F}\right) \cong H_{2 n-k}\left(S P^{n}\left(\Sigma_{g}\right), \mathbb{F}\right)
$$

Therefore, the conclusion is:

$$
H_{k} \cong H^{k} \cong H_{2 n-k} \cong H^{2 n-k} .
$$

As results:

- Poincaré polynomial

$$
\begin{equation*}
P_{t}\left(S P^{n}\left(\Sigma_{g}\right)\right)=\sum_{i+k \leq n}\binom{2 g}{i} t^{i+2 k} \tag{5.4.3}
\end{equation*}
$$

- Euler characteristic

$$
\begin{equation*}
\chi\left(S P^{n}\left(\Sigma_{g}\right)\right)=(-1)^{n}\binom{2 g-2}{n} \tag{5.4.4}
\end{equation*}
$$

- In addition to these results, we introduce the zeta function [9], $\zeta(u, t)$, which is the power series of Poincaré polynomials of each symmetric product:

$$
\begin{equation*}
\zeta(u, t)=\sum_{n=0}^{\infty} P_{t}\left(S P^{n}\left(\Sigma_{g}\right)\right) u^{n}=\frac{(1+u t)^{2 g}}{(1-u)\left(1-t^{2} u\right)} \tag{5.4.5}
\end{equation*}
$$

Moreover, all the Betti numbers are independent of the field, $S P^{n}\left(\Sigma_{g}\right)$ satisfies all the conditions of Theorem 3.2.2, and hence, we can introduce all the homology and cohomology groups of $S P^{n}\left(\Sigma_{g}\right)$ over \mathbb{Z}.

Chapter 6

Fiber Bundles and Covering Spaces

6.1 Fiber Bundles

Definition 6.1.1. Let E, B and F be topological spaces, called total space, base space and fiber respectively. A fiber bundle is a structure (E, B, q, F) with continuous surjection $q: E \rightarrow B$ satisfying the following conditions:

1. For any $b \in B$ the pre-image $q^{-1}(b)$ is homeomorphic to F and is called the fiber over b.
2. For every $b \in B$ there is an open neighbourhood $U \subseteq B$ of b such that there is a homeomorphism $\varphi: q^{-1}(U): \rightarrow U \times F$ with subspace topology and the following diagram commutes:

where proj_{1} is the natural projection onto the first coordinate. The set of all $\left\{U_{i}, \varphi_{i}\right\}$ is called a local trivialization of the bundle.

Since projections are open maps, every fiber bundle $q: E \rightarrow B$ is an open map and hence, B has the quotient topology determined by the map q. The fiber bundle
structure is determined by the projection map q, but we sometimes write a fiber bundle as a short exact sequence to indicate which space is the fiber, total space, and base space.

$$
F \longrightarrow E \xrightarrow{q} B
$$

Note that when the fiber is a vector space, the bundle is called a vector bundle.
Example 6.1.2. A fiber bundle with fiber a discrete space is a covering space. Conversely, a covering space with fibers which all have the same cardinality, such as a covering space over a connected base space, is a fiber bundle with a discrete fiber.

Example 6.1.3. Trivial Bundle.
Let $E=B \times F$ and let $q: E \rightarrow B$ be the projection onto the first coordinate. Then E is a fiber bundle over B and is called a trivial bundle.

Example 6.1.4. The n-dimensional real projective space $\mathbb{R} P^{n}$ defined by:

$$
\mathbb{R} P^{n}:=S^{n} / \sim
$$

where $x \sim-x$ for $x \in S^{n} \subset \mathbb{R}^{n+1}$. Let $q: S^{n} \rightarrow \mathbb{R} P^{n}$ be the projection map, then this is a fiber bundle with fiber in the two point set and it is also a covering map.

Example 6.1.5. The n-dimensional complex projective space $\mathbb{C} P^{n}$ defined by:

$$
\mathbb{C} P^{n}:=S^{2 n+1} / \sim
$$

where $x \sim u x$ for $x \in S^{2 n+1} \subset \mathbb{C}^{n}$ and $u \in S^{1}$. Then $q: S^{2 n+1} \rightarrow \mathbb{C} P^{n}$ is a fiber bundle with fiber S^{1}.

Example 6.1.6. One of the simplest examples of a nontrivial bundle E is the Möbius band, which is a bundle over S^{1} with fiber an interval.

Theorem 6.1.1. Given a fiber bundle (E, B, q, F) and choosing a base point $e_{0} \in E$; then, there is a long exact sequence of homotopy groups

$$
\ldots \longrightarrow \pi_{2}\left(F, e_{0}\right) \longrightarrow \pi_{2}\left(E, e_{0}\right) \longrightarrow \pi_{2}\left(B, q\left(e_{0}\right)\right) \longrightarrow \pi_{1}\left(F, e_{0}\right) \longrightarrow \pi_{1}\left(E, e_{0}\right) \longrightarrow \pi_{1}\left(B, q\left(e_{0}\right)\right) .
$$

6.1.1 Sections

Let $q: E \rightarrow M$ be a fiber bundle with the fiber $E_{m}=q^{-1}(m)$ for $m \in M$. A section is a continuous map $s: M \rightarrow E$ such that $q \circ s=i d_{M}$, i.e.,

$$
s(m) \in E_{m} \quad \text { for all } \quad m \in M
$$

If $E \rightarrow M$ is a vector bundle, then every fiber E_{m} of E is a vector space and thus has a distinguished element, the zero-vector in E_{m}, denoted by 0_{m}. It follows that every vector bundle admits the zero-section:

$$
s_{0}(m)=\left(m, 0_{m}\right) \in E_{m} .
$$

6.1.2 Pullback Bundle

Definition 6.1.7. Let $q: E \rightarrow B$ be a fiber bundle with the fiber F and let $f: B^{\prime} \rightarrow$ B be a continuous map. Define the pullback bundle by

$$
f^{*} E=\left\{\left(b^{\prime}, e\right) \in B^{\prime} \times E \mid f\left(b^{\prime}\right)=q(e)\right\} \subseteq B^{\prime} \times E
$$

and the projection map $q^{\prime}: f^{*} E \rightarrow B^{\prime}$, given by the projection onto the first coordinate and $g: f^{*} E \rightarrow E$, given the projection onto the second coordinate, such that the following diagram commutes:

If (U, φ) is a local trivialization of E, then $\left(f^{-1}(U), \psi\right)$ is a local trivialization of $f^{*} E$, where $\psi\left(b^{\prime}, e\right)=\left(b^{\prime}, \operatorname{proj}_{2}(\varphi(e))\right)$. It then follows that $f^{*} E$ is a fiber bundle over B^{\prime} with fiber F and the bundle is called the pullback of E by f.

Proposition 6.1.2. Let (E, B, q, F) be a trivial fiber bundle and $f: C \rightarrow B$ be a continuous map. Then the pullback of the fiber bundle along f is also a trivial fiber bundle on C with the same fiber F.

Proof. Considering the pullback of the commutative diagram:

we have

$$
\begin{aligned}
q^{*} C & =\{((b, d), c) \in B \times F \times C \mid q(b, d)=b=f(c)\} \\
& =\{(b, c) \in B \times C \mid f(c)=b\} \times F \\
& =\{(f(c), c) \mid c \in C\} \times F \\
& \cong C \times F
\end{aligned}
$$

6.1.3 Covering Spaces

Definition 6.1.9. A covering space of a space X is a space \tilde{X} together with a map $p: \tilde{X} \rightarrow X$ satisfying the following condition: every point $x \in X$ has an open neighbourhood $U_{x} \subseteq X$, such that $p^{-1}\left(U_{x}\right)$ is a disjoint union of open sets, each of which is mapped by p homeomorphically onto U_{x}.

Example 6.1.10. The map $p: \mathbb{R} \rightarrow S^{1}$ given by $p(t)=e^{i t}$ is a covering map, wrapping the real line round and round the circle. The pre-image of a little open arc in the circle is a collection of open intervals in the real line, offset by multiples of 2π.

Example 6.1.11. Another cover of the circle is the map $p: S^{1} \rightarrow S^{1}$ given by $p\left(e^{i t}\right)=e^{i n t}$, where n is a positive integer. This wraps the circle around itself n times.

Example 6.1.12. The map $p:\left(S^{1}\right)^{2 g} \rightarrow\left(S^{1}\right)^{2 g}$ given by $p\left(e^{i t_{1}}, e^{i t_{2}}, \ldots, e^{i t_{2 g}}\right)=$ $\left(e^{2 i t_{1}}, e^{2 i t_{2}}, \ldots, e^{2 i t_{2 g}}\right)$ is a covering map, wrapping each component two times, which makes $2^{2 g}$ cover.

Theorem 6.1.3. If X is a cell complex with the $n-$ skeleton X_{n} and \tilde{X} is a covering space with the covering map p, then \tilde{X} is a cell complex with the $n-$ skeleton $p^{-1}\left(X_{n}\right)=$ \tilde{X}_{n} 。

Proof. The proof and the explanation can be found in Hatcher [7].
Corollary 6.1.4. Let $p: \tilde{Y} \rightarrow Y$ be a covering map and $f: X \rightarrow Y$ be a continuous map. Pullback f_{p}^{*} of the covering map p along f is a covering map.

Proof. Take any $x \in X$ and let $f(x)=y$ in Y. Since p is a covering map, there exists an open neighbourhood $U_{y} \subset Y$ such that $p^{-1}\left(U_{y}\right)=\bigcup_{i \in I} V_{i}$, where each V_{i} is open in \tilde{Y} for $i \in I$ and maps homeomorphically to U_{y} by p. Now, since f is continuous, $f^{-1}\left(U_{y}\right)$ is an open set, and let $U_{x}=f^{-1}\left(U_{y}\right)$ be the open neighbourhood of x.

Claim: U_{x} is covered by f_{p}^{*}. That is $\left(f_{p}^{*}\right)^{-1}\left(U_{x}\right)=\left(f_{p}^{*}\right)^{-1}\left(f^{-1}\left(U_{y}\right)\right)=\tilde{f}^{-1}\left(p^{-1}\left(U_{y}\right)\right)=$ $\tilde{f}^{-1}\left(\bigcup_{i \in I} V_{i}\right)=\bigcup_{i \in I} \tilde{f}^{-1}\left(V_{i}\right)$.

So we need to check that each $\tilde{f}^{-1}\left(V_{i}\right)$ is mapped homeomorphically onto U_{x} by f_{p}^{*}. By Corollary 6.1 .5 we have \tilde{f} as a homeomorphism and hence we have the result.

Corollary 6.1.5. Let $p: \tilde{Y} \rightarrow Y$ be a covering map and $f: X \rightarrow Y$ be a homeomorphism. If the pullback of p along f is \tilde{X}, and the covering map $f_{p}^{*}: \tilde{X} \rightarrow X$, then the function $\tilde{f}: \tilde{X} \rightarrow \tilde{Y}$ is a homeomorphism.

6.1.4 Vector Bundles

An n-dimensional vector bundle is a structural (E, M, q) fiber bundle, such that the fibers are vector spaces isomorphic to \mathbb{R}^{n}.

Every point $m \in M$ has an open neighbourhood U along with a homeomorphism
$h: q^{-1}(U) \rightarrow U \times \mathbb{R}^{n}$ which takes fibers $q^{-1}(m) \rightarrow\{m\} \times \mathbb{R}^{n}$ so that the following diagram commutes:

A smooth vector bundle is a vector bundle (E, M, q), where E and M are smooth manifolds and $q: E \rightarrow M$ is a surjective submersion.

Theorem 6.1.6. Let $E \rightarrow M$ be a smooth vector bundle with fibers $E_{m} \cong \mathbb{C}^{n}$ and $g: X \rightarrow E$ be a smooth map on a smooth manifold X. Then, there exists a smooth section $s: M \rightarrow E$, such that g is transverse to s.

Proof. Theorem 15.3, Chapter 02 [4]
Corollary 6.1.7. Let $E \rightarrow M$ be a smooth vector bundle with fibers E_{m} for $m \in M$. If the dimension of E is greater than twice the dimension of M, then there exists a non-vanishing section.

Proof. Let $s_{0}: M \rightarrow E$ be the zero-section, which is a smooth map on M. Now, by Theorem 6.1.6, there is a smooth section s such that s_{0} is transverse to s. In fact, since the dimension of $T_{x} M$ for $x \in M$ is equal to the dimension of M, whenever the dimension of E is greater than twice the dimension of M, then transversality 2.3.1 implies that there is no intersection, which is for all $m \in M, s_{m} \neq 0_{m}$ and hence, there exists a non-vanishing section.

6.1.5 Projective Bundles

Let V be a topological vector space over \mathbb{C}. The set of all 1 - dim vector subspaces of V is called the projective space $P(V)$. Topologically, it is the quotient space endowed with the quotient topology, the set of equivalence classes of $V \backslash\{0\}$ under the equivalence relation \sim defined by $x \sim y$ if there is a nonzero element λ of the field such that $x=\lambda y$. If V is a finite dimension (say $n-\operatorname{dim}$), then the dimension of $P(V)$ is $n-1$.

Definition 6.1.15. Let $q: E \rightarrow X$ be a topological vector bundle over \mathbb{C} with the base of topological space X. Then its projective bundle is the fiber bundle $P(q)$: $P(E) \rightarrow X$, the total space of which is a bundle of projective spaces, and the bundle projection is

$$
\begin{aligned}
P(E) & \longrightarrow X \\
\quad[v] & \longmapsto q(v) .
\end{aligned}
$$

Proposition 6.1.8. Suppose that M is a manifold and $E \rightarrow M$ is a smooth vector bundle of rank greater than $\operatorname{dim}(M)$. Then the associated projective bundle $P(E)$ admits a section.

Proof. Let $E \rightarrow M$ be a topological vector bundle with total space E and fibers E_{m}. By Corollary 6.1.7, there exists a non-vanishing section $s_{1}: M \rightarrow E$.

For the associated projective bundle $P(E) \rightarrow M$ with fiber $P\left(E_{m}\right)=P\left(\mathbb{C}^{n}\right) \cong$ $\mathbb{C} P^{n-1}$, we can define a section

$$
\begin{equation*}
s_{2}: J(M) \rightarrow P(E) \quad \text { by } \quad s_{2}(m)=\left[s_{1}(m)\right] . \tag{6.1.16}
\end{equation*}
$$

This implies that every non-zero section of E gives a section of $P(E)$.

Chapter 7

The Abel-Jacobi Map

7.1 The Jacobian

Let Σ_{g} be a compact Riemann space of genus g. The first step is to introduce the Jacobian of Σ_{g}, which we will define to be the compact quotient of \mathbb{C}^{g} by a certain lattice.

Choose smooth closed loops $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 g}$ representing a basis $\left[\gamma_{1}\right],\left[\gamma_{2}\right], \ldots,\left[\gamma_{2 g}\right]$ for the homology group $H_{1}\left(\Sigma_{g} ; \mathbb{Z}\right) \cong \mathbb{Z}^{2 g}$.

Figure 7.1: Genus- g Riemann surface with closed loops $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{2 g}$

Let $H^{0}\left(\Sigma_{g} ; \Omega^{1,0}\right)$ be the vector space of holomorphic 1-forms on Σ_{g}. Let $\omega_{1}, \omega_{2}, . ., \omega_{g}$ be a basis for $H^{0}\left(\Sigma_{g} ; \Omega^{1,0}\right) \cong \mathbb{C}^{g}$.

Now define a $2 g$-dimensional lattice $\Lambda=\left\{\sum_{i=1}^{2 g} n_{i} v_{i} \mid n_{i} \in \mathbb{Z}\right\} \leq \mathbb{C}^{g}$, generated by the basis of $v_{1}, \ldots, v_{2 g} \in \Lambda$ such that integrating each of $\omega_{i} 1$-forms over γ_{i},

$$
v_{i}=\left(\int_{\gamma_{i}} \omega_{1}, \ldots, \int_{\gamma_{i}} \omega_{g}\right) .
$$

Alternatively, we can define

$$
\Lambda=\left\{\left(\int_{\gamma} \omega_{1}, \ldots, \int_{\gamma} \omega_{g}\right) \mid[\gamma] \in H_{1}(X ; \mathbb{Z})\right\} .
$$

The Jacobian of the Riemann surface Σ_{g}, denoted by $J\left(\Sigma_{g}\right)$ is the compact quotient space,

$$
J\left(\Sigma_{g}\right)=\mathbb{C}^{g} / \Lambda \cong \mathbb{R}^{2 g} / \Lambda
$$

Since Λ is a discrete subgroup in \mathbb{C}^{g} of maximal rank, \mathbb{C}^{g} / Λ is a $(2 g)$-dimensional torus which is homeomorphic to $\left(S^{1}\right)^{2 g}$ as a topological space.

7.1.1 The Abel-Jacobi Map

Fix a point $p_{0} \in \Sigma_{g}$. The Abel-Jacobi map is a map $A J: \Sigma_{g} \rightarrow J\left(\Sigma_{g}\right)$. For every point $p \in \Sigma_{g}$, choose a curve γ from p_{0} to p and define the map $A J$ as follows:

$$
A J(p)=\left(\int_{p_{0}}^{p} \omega_{1}, \int_{p_{0}}^{p} \omega_{2}, \ldots, \int_{p_{0}}^{p} \omega_{g}\right)+\Lambda
$$

Although $\int_{p_{0}}^{p} \omega_{i}$ seemingly depends on the path from p_{0} to p, its image in $J\left(\Sigma_{g}\right)$ depends only on the point p. Moreover, any two different paths γ_{1}, γ_{2} from p_{0} to p define a loop with the path concatenation in Σ_{g}; therefore, it become an element in $H_{1}(X ; \mathbb{Z})$, so integration over it gives an element of Λ. That means the difference is erased to the quotient by Λ. Hence $A J(p)$ is well-defined as a function of p and independent for choice of curve (It does however depend on the choice of the base point p_{0}).

In the case of general curve Σ_{g}, the map $A J$ is far from being an isomorphism unless $g=1$. Since $J\left(\Sigma_{g}\right)$ is an abelian group, the Abel-Jacobi map $A J$ can be extended to a symmetric product,

$$
A J_{n}: S P^{n}\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)
$$

defined by

$$
A J_{n}(P):=A J\left(x_{1}\right)+\ldots+A J\left(x_{n}\right)
$$

where $P=\left(x_{1}, \ldots, x_{n}\right) \in S P^{n}\left(\Sigma_{g}\right)$.

7.2 Abel-Jacobi map as a fiber bundle

Theorem 7.2.1. For $n>2 g-2$ the Abel-Jacobi map $A J_{n}: S P^{n}\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)$ is a fiber bundle with fiber $\mathbb{C} P^{n-g}$, where $\mathbb{C} P^{n-g}$ is a complex projective space of dimension $n-g$. Moreover, $S P^{n}\left(\Sigma_{g}\right)$ is isomorphic to the associated projective bundle $P(E)$ for a vector bundle $E \rightarrow J\left(\Sigma_{g}\right)$.

Proof. The proof for the first statement is Theorem 2.4 of [3] and the proof of the second part directly follows Chapter VII, Prop: 2.1 of [1]

Since there is a natural inclusion, $S P^{n}\left(\Sigma_{g}\right) \hookrightarrow S P^{n+1}\left(\Sigma_{g}\right)$, and a sequence of subspaces, 5.2.1, we have a sequence of fiber bundles as follows:

Hence, taking the direct limit, we can observe that the result of a fiber bundle is

$$
\begin{equation*}
\mathbb{C} P^{\infty} \longrightarrow S P^{\infty}\left(\Sigma_{g}\right) \xrightarrow{A J_{\infty}} J\left(\Sigma_{g}\right) \tag{7.2.1}
\end{equation*}
$$

with fiber $\mathbb{C} P^{\infty}$. Hence, for the identity element $* \in J\left(\Sigma_{g}\right)$ by the definition of the fiber bundle, there is a homeomorphism

$$
\begin{equation*}
f: \mathbb{C} P^{\infty} \rightarrow A J_{\infty}^{-1}(*) \tag{7.2.2}
\end{equation*}
$$

Lemma 7.2.2. If $n \geq 2 g$ or $n=\infty$, then the Abel-Jacobi map $A J_{n}: S P^{n}\left(\Sigma_{g}\right) \rightarrow$ $J\left(\Sigma_{g}\right)$ admits a section.

Proof. Now, by Theorem 7.2.1, we have an isomorphism h, and since $n \geq 2 g$, by Proposition 6.1.8 there is a section s_{2}, such that

So, we can define the section $s: J\left(\Sigma_{g}\right) \rightarrow S P^{n}\left(\Sigma_{g}\right)$ by $s=h \circ s_{2}$.

Define the map $\varphi: \mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \rightarrow S P^{\infty}\left(\Sigma_{g}\right)$ by $\varphi(x, y)=f(x)+s(y)$. Observe that $\left(A J_{\infty} \circ \varphi\right)(x, y)=y$.

Lemma 7.2.3. The function $\varphi: \mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \rightarrow S P^{\infty}\left(\Sigma_{g}\right)$ is a homotopy equivalence.

Proof. Consider the trivial fiber bundle $\mathbb{C} P^{\infty} \xrightarrow{i} \mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \xrightarrow{\text { proj }_{2}} J\left(\Sigma_{g}\right)$ which gives the first row of the following diagram, and since $A J_{\infty}: S P^{\infty}\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)$ is a fiber bundle, the second row according to the Theorem 6.1.1. Recall that f is a homeomorphism 7.2.2.

Since all the homotopy groups here are abelian groups, by the Five-Lemma 3.3.2, the map φ_{*} is an isomorphism and hence, by Theorem 2.1.2, $\varphi: \mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \rightarrow$ $S P^{\infty}\left(\Sigma_{g}\right)$ is a homotopy equivalence.

Chapter 8

The Relationship Between $S P^{n}\left(\Sigma_{g}\right)$ and $S P^{\infty}\left(\Sigma_{g}\right)$

8.1 Covering space of $S P^{n}\left(\Sigma_{g}\right)$ as a pullback

We will construct a homomorphism $J\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)$ which is also a covering map. As described in Chapter 7, the Jacobian is the compact quotient space $J\left(\Sigma_{g}\right)=\mathbb{R}^{2 g} / \Lambda$. Let $\left\{v_{1}, \ldots, v_{2 g}\right\} \in \mathbb{R}^{2 g}$ be a basis for Λ and $C=\left[v_{1}, \ldots, v_{i}, \ldots, v_{2 g}\right]$ be the column matrix for the basis. Let A be a $2 g \times 2 g$ matrix with integer entries such that $\operatorname{det}(A) \neq 0$. Then, $C A C^{-1}=B$ is a surjective linear map $\mathbb{R}^{2 g} \rightarrow \mathbb{R}^{2 g}$ that sends Λ to Λ. This is determined to be a surjective homomorphism $p: J\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)$ by $p([x])=[B x]$ for $x \in \mathbb{R}^{2 g}$.

Then p determines a covering map $J\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)$ with the number of sheets equal to $|\operatorname{det}(A)|$. Now we shall consider the pullback diagram of p along the Abel-Jacobi map:

By Corollary 6.1.4, the pullback f_{p}^{*} of the covering map p is also a covering map with $|\operatorname{det}(A)|$ number of sheets.

8.2 Homology groups of the covering space $S \widetilde{P^{\infty}\left(\Sigma_{g}\right)}$

In this section, we will prove that a covering space of $S P^{\infty}\left(\Sigma_{g}\right)$ has the same homology as $S P^{\infty}\left(\Sigma_{g}\right)$. To begin, let us start with the following commutative diagram of continuous functions and topological spaces:

Then we have, two respective pullback spaces $Z^{\prime} \times_{X^{\prime}} Y^{\prime}$ and $Z \times_{X} Y$ to the diagrams $Z^{\prime} \rightarrow X^{\prime} \leftarrow Y^{\prime}$ and $Z \rightarrow X \leftarrow Y$ such that
$Z^{\prime} \times_{X^{\prime}} Y^{\prime}=\left\{\left(z^{\prime}, y^{\prime}\right) \in Z^{\prime} \times Y^{\prime} \mid f^{\prime}\left(z^{\prime}\right)=g^{\prime}\left(y^{\prime}\right)\right\} \quad$ and $\quad Z \times{ }_{X} Y=\{(z, y) \in Z \times Y \mid f(z)=g(y)\}$.

Hence, we can define a function

$$
\begin{equation*}
\psi: Z^{\prime} \times_{X^{\prime}} Y^{\prime} \rightarrow Z \times_{X} Y \tag{8.2.1}
\end{equation*}
$$

such that $\psi\left(z^{\prime}, y^{\prime}\right)=\left(\varphi_{z}\left(z^{\prime}\right), \varphi_{y}\left(y^{\prime}\right)\right)$.
We can define the pullback space for the diagram $\mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \xrightarrow{\text { proj }_{2}} J\left(\Sigma_{g}\right) \stackrel{p}{\leftarrow}$ $J\left(\Sigma_{g}\right)$, as a covering space $\mathbb{C} P^{\infty \times J}\left(\Sigma_{g}\right)$ of $\mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right)$. Similarly, the pullback space for the diagram $S P^{\infty}\left(\Sigma_{g}\right) \xrightarrow{A J_{\infty}} J\left(\Sigma_{g}\right) \stackrel{p}{\leftarrow} J\left(\Sigma_{g}\right)$ is $S \widetilde{P^{\infty}\left(\Sigma_{g}\right)}$.

Following 8.2.1, this determines the function $\psi: S \widetilde{P^{\infty}\left(\Sigma_{g}\right)} \rightarrow \mathbb{C} P^{\infty \times J}\left(\Sigma_{g}\right)$.
Note that the pullback of a trivial fiber bundle is a trivial fiber bundle with the same fiber. Thus $\mathbb{C} P^{\infty \times J}\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)$ is a trivial bundle. Moreover, since we consider the pullback as the covering space, by Proposition 6.1.2,

$$
\begin{equation*}
\widetilde{C} P^{\infty \times J}\left(\Sigma_{g}\right) \cong \mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \tag{8.2.2}
\end{equation*}
$$

Lemma 8.2.1. $\psi: S \widetilde{P^{\infty}\left(\Sigma_{g}\right)} \rightarrow \mathbb{C} P^{\infty \times J}\left(\Sigma_{g}\right)$ is a homotopy equivalence.

Proof. Since we have pullback diagrams of a trivial fiber bundle and fiber bundle, we can say that $\mathbb{C} P^{\infty} \rightarrow \mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \rightarrow J\left(\Sigma_{g}\right)$ is a trivial bundle and $\mathbb{C} P^{\infty} \rightarrow$ $S \widehat{P^{\infty}\left(\Sigma_{g}\right)} \rightarrow J\left(\Sigma_{g}\right)$ is a fiber bundle. Now, by Theorem 6.1.1, we have long exact sequence of homotopy groups, which make the following commutative diagram:

Since all the homotopy groups here are abelian, by the Five-Lemma 3.3.2 the map, ψ_{*} is an isomorphism. Hence, by Theorem, 2.1.2, ψ is a homotopy equivalence.

Corollary 8.2.2. Let Σ_{g} be a genus g compact Riemannian space and \mathbb{F} be a field. Then

$$
H_{k}\left(S \widetilde{P^{\infty}\left(\Sigma_{g}\right)}, \mathbb{F}\right)=H_{k}\left(S P^{\infty}\left(\Sigma_{g}\right), \mathbb{F}\right)
$$

Proof. By Lemma 8.2.1, we have the homotopy equivalences,

$$
\begin{aligned}
\widetilde{\left.P_{P^{\infty}\left(\Sigma_{g}\right)}\right)} & \cong \mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \\
& \cong \mathbb{C} P^{\infty} \times J\left(\Sigma_{g}\right) \\
& \cong S P^{\infty}\left(\Sigma_{g}\right)
\end{aligned}
$$

As a consequence of Corollary 8.2.2 we have

$$
H_{k}\left(S \widetilde{P^{\infty}\left(\Sigma_{g}\right)}, \mathbb{F}\right)= \begin{cases}\mathbb{F}^{\sum_{i=0}^{k / 2}(2 g)} & \text { if } k=0, \text { even } \tag{8.2.3}\\ \mathbb{F}^{\sum_{i=0}^{(k-1) / 2}(2 g)}(2 i+1) & \text { if } k=\text { odd }\end{cases}
$$

Now let us consider the relationship between the covering spaces. Let $p: \tilde{X} \rightarrow X$ be a covering map and let X be a cell-complex with the $n-$ skeleton X_{n}. Then \tilde{X} is a cell-complex with $\tilde{X}_{n}=p^{-1}\left(X_{n}\right)$ representing the n-skeleton of \tilde{X}.

Proposition 8.2.3. Let Σ_{g} be a compact Riemann surface of genus g. Then,

$$
\begin{equation*}
H_{k}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}, \mathbb{F}\right) \cong H_{k}\left(\widetilde{S P^{\infty}\left(\Sigma_{g}\right)}, \mathbb{F}\right) \quad \text { for } \quad k=0,1, . ., n-1 \tag{8.2.4}
\end{equation*}
$$

Proof. Consider the following pullback diagram:

Recall that we have a homeomorphism of n-skeletons $S P^{n}\left(\Sigma_{g}\right)_{n} \cong S P^{\infty}\left(\Sigma_{g}\right)_{n}$ for up to the $n-t h$ skeleton, and by Corollary 6.1.5, we have $\widehat{S P^{n}\left(\Sigma_{g}\right)_{n}} \cong S \widehat{P^{\infty}\left(\Sigma_{g}\right)_{n}}$ for up to the $n-t h$ skeleton. Now Lemma 3.2.1 gives the proof.

Thus, as a result

$$
\left.H_{k}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right.}\right), \mathbb{F}\right)= \begin{cases}\mathbb{F}^{\sum_{i=0}^{k / 2}\binom{2 g}{2 i}} & \text { if } k=\text { even }, \tag{8.2.5}\\ \mathbb{F}^{\sum_{i=0}^{(k-1) / 2}\binom{2 g}{2 i+1}} & \text { if } k=\text { odd }\end{cases}
$$

for $k=0,1,2, \ldots, n-1$.
Since $S P^{n}\left(\Sigma_{g}\right)$ is a closed manifold, its covering space is also a closed manifold. By the Poincaré duality theorem

$$
\begin{equation*}
H_{2 n-k}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}, \mathbb{F}\right)=H_{k}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}, \mathbb{F}\right) \tag{8.2.6}
\end{equation*}
$$

for $k=1,2, \ldots, n-1$ and it remains to determine the $n-t h$ Betti number of the covering space.

8.3 Euler Characteristics

The Euler characteristic $\chi(X)$ can be defined purely in terms of homology and hence depends only on the homotopy type of X. In particular, $\chi(X)$ is independent of the choice of the cell complex structure on X.

Definition 8.3.1. Euler characteristic.
Let X be a finite cell complex, and c_{i} be the number of $i-$ cells of X. Then, the Euler characteristic $\chi(X)$ is defined as:

$$
\chi(X)=\sum_{i}(-1)^{i} c_{i} .
$$

There is an alternative definition for the Euler characteristics connected with the Betti numbers. We are going to use that definition for the calculations.

Proposition 8.3.1. For a finite cell complex the Euler characteristic is equal to the alternating sum of Betti numbers:

$$
\chi(X)=\sum_{i}(-1)^{i} b_{i} .
$$

Theorem 8.3.2. Let X be a finite cell complex and $p: \tilde{X} \rightarrow X$ be an m-fold covering map for the covering space X. Then,

$$
\chi(\tilde{X})=m \chi(X)
$$

Proof. Since p is an m-fold covering map, we have the number of $i-$ cells of \tilde{X},

$$
c_{i}(\tilde{X})=m c_{i}(X)
$$

Now, by the Definition 8.3.1,

$$
\begin{aligned}
\chi(\tilde{X}) & =\sum_{i}(-1)^{i} c_{i}(\tilde{X}) \\
& =\sum_{i}(-1)^{i} m c_{i}(X) \\
& =m \chi(X) .
\end{aligned}
$$

8.3.1 The n-th Betti number of $S \widetilde{S P^{n}\left(\Sigma_{g}\right)}$

Let b_{i} and \tilde{b}_{i} be the $i-t h$ Betti number of $S P^{n}\left(\Sigma_{g}\right)$ and its covering space, respectively. Then we have $b_{i}=\tilde{b}_{i}$ for all i except $i=n$, and from section 8.1 we have the covering $\operatorname{map} f_{p}^{\star}: \widetilde{S P^{n}\left(\Sigma_{g}\right)} \rightarrow S P^{n}\left(\Sigma_{g}\right)$ with $|\operatorname{det}(A)|$ number of sheets.

For $m=|\operatorname{det}(A)|$, by Theorem 8.3.2 and (5.4.4) we have:

$$
\begin{align*}
\tilde{b}_{n} & =b_{n}+(m-1) \chi\left(S P^{n}\left(\Sigma_{g}\right)\right) \tag{8.3.2}\\
& =b_{n}+(m-1)(-1)^{n}\binom{2 g-2}{n}, \tag{8.3.3}
\end{align*}
$$

where

$$
b_{n}= \begin{cases}\sum_{k=0}^{n / 2}\binom{2 g}{2 k} & \text { if } n=0, \text { even } \\ \sum_{k=0}^{(n-1) / 2}\binom{2 g}{2 k+1} & \text { if } n=\text { odd }\end{cases}
$$

So the results are:

- Euler characteristic by using (5.4.4):

$$
\begin{equation*}
\chi\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}\right)=m \chi\left(S P^{n}\left(\Sigma_{g}\right)\right)=m(-1)^{n}\binom{2 g-2}{n} \tag{8.3.4}
\end{equation*}
$$

- The Poincaré polynomial

$$
\begin{equation*}
P_{t}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}\right)=P_{t}\left(S P^{n}\left(\Sigma_{g}\right)\right)+(m-1)\binom{2 g-2}{n} t^{n} \tag{8.3.5}
\end{equation*}
$$

- Zeta function

$$
\begin{equation*}
\left.\widetilde{\zeta(u, t)}=\sum_{n=0}^{\infty} P_{t}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right.}\right)\right) u^{n}=\frac{(1+u t)^{2 g}}{(1-u)\left(1-t^{2} u\right)}+(m-1)(1+t u)^{2 g-2} \tag{8.3.6}
\end{equation*}
$$

Finally, note that the Betti numbers are independent of the characteristic of \mathbb{F}. It follows by Theorem 3.2.2 that

$$
\begin{equation*}
H_{n}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}, \mathbb{Z}\right)=\mathbb{Z}^{\tilde{b}_{n}} \tag{8.3.7}
\end{equation*}
$$

where \tilde{b}_{n} is given by the equation 8.3.2.

Chapter 9

Results

1. Homology and Cohomology of $S P^{\infty}\left(\Sigma_{g}\right)$:

$$
H_{k}\left(S P^{\infty}\left(\Sigma_{g}\right), \mathbb{Z}\right)=H^{k}\left(S P^{\infty}\left(\Sigma_{g}\right), \mathbb{Z}\right)= \begin{cases}\mathbb{Z}^{\sum_{i=0}^{k / 2}(2 g)}\left(\begin{array}{l}
2 g \\
2 i
\end{array}\right. & \text { if } k=0, \text { even } \\
\mathbb{Z}^{\sum_{i=0}^{(k-1) / 2}\binom{2 g}{2 i+1}} & \text { if } k=\text { odd }\end{cases}
$$

2. Homology and Cohomology of $S \widetilde{P^{\infty}\left(\Sigma_{g}\right)}$:

$$
H_{k}\left(\widetilde{S P^{\infty}\left(\Sigma_{g}\right)}, \mathbb{Z}\right)=H^{k}\left(\widetilde{S P^{\infty}\left(\Sigma_{g}\right)}, \mathbb{Z}\right)= \begin{cases}\mathbb{Z}^{\sum_{i=0}^{k / 2}\binom{2 g}{2 i}} & \text { if } k=0, \text { even } \\ \mathbb{Z}^{\sum_{i=0}^{(k-1) / 2}\binom{2 g}{2 i+1}} & \text { if } k=\text { odd }\end{cases}
$$

3. Homology and Cohomology of $S P^{n}\left(\Sigma_{g}\right)$:

$$
H_{k}\left(S P^{n}\left(\Sigma_{g}\right), \mathbb{Z}\right)=H^{k}\left(S P^{n}\left(\Sigma_{g}\right), \mathbb{Z}\right)= \begin{cases}\mathbb{Z}^{\sum_{i=0}^{k / 2}\binom{2 g}{2 i}} & \text { if } k=0, \text { even } \\ \mathbb{Z}^{\sum_{i=0}^{(k-1) / 2}\binom{2 g}{2 i+1}} & \text { if } k=\text { odd }\end{cases}
$$

for $k=0,1,2, \ldots, n$ and $H_{k} \cong H^{k} \cong H_{2 n-k} \cong H^{2 n-k}$.
4. If the zeta function is $\zeta(u, t)=\sum_{n=0}^{\infty} P_{t}\left(S P^{n}\left(\Sigma_{g}\right)\right) u^{n}$, then

$$
\zeta(u, t)=\frac{(1+u t)^{2 g}}{(1-u)\left(1-t^{2} u\right)}
$$

5. Homology and cohomology of $\widetilde{S P^{n}\left(\Sigma_{g}\right)}$:

$$
\left.H_{k}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right.}\right), \mathbb{Z}\right)=H^{k}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}, \mathbb{Z}\right)= \begin{cases}\mathbb{Z}^{\sum_{i=0}^{k / 2}\binom{2 g}{2 i}} & \text { if } k=0, \text { even } \\ \mathbb{Z}^{\sum_{i=0}^{(k-1) / 2}\binom{2 g}{2 i+1}} & \text { if } k=\text { odd }\end{cases}
$$

for $k=0,1, \ldots, n-1$ and $H_{k} \cong H^{k} \cong H_{2 n-k} \cong H^{2 n-k}$ for all k except n.

For $k=n$,

$$
\left.H_{n}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right.}\right), \mathbb{Z}\right)=H^{n}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}, \mathbb{Z}\right)=\mathbb{Z}^{\tilde{b}_{n}}
$$

where

$$
\tilde{b}_{n}=b_{n}+(m-1)(-1)^{n}\binom{2 g-2}{n}
$$

and

$$
b_{n}= \begin{cases}\sum_{k=0}^{n / 2}\binom{2 g}{2 k} & \text { if } n=0, \text { even } \\ \sum_{k=0}^{(n-1) / 2}\binom{2 g}{2 k+1} & \text { if } n=\text { odd }\end{cases}
$$

6. If $\widetilde{\zeta(u, t)}=\sum_{n=0}^{\infty} P_{t}\left(\widetilde{S P^{n}\left(\Sigma_{g}\right)}\right) u^{n}$, then

$$
\widetilde{\zeta(u, t)}=\frac{(1+u t)^{2 g}}{(1-u)\left(1-t^{2} u\right)}+(m-1)(1+t u)^{2 g-2} .
$$

Bibliography

[1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris. Geometry of algebraic curves. Vol. I, volume 267 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1985.
[2] V. Arnold. Topological content of the Maxwell theorem on multipole representation of spherical functions. Topol. Methods Nonlinear Anal., 7(2):205-217, 1996.
[3] P. Blagojević, V. Grujić, and R. Živaljević. Symmetric products of surfaces and the cycle index. Israel J. Math., 138:61-72, 2003.
[4] G. E. Bredon. Topology and geometry, volume 139 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1997. Corrected third printing of the 1993 original.
[5] A. Dold and R. Thom. Quasifaserungen und unendliche symmetrische Produkte. Ann. of Math. (2), 67:239-281, 1958.
[6] P. Griffiths and J. Harris. Principles of algebraic geometry. Wiley Classics Library. John Wiley \& Sons, Inc., New York, 1994. Reprint of the 1978 original.
[7] A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.
[8] F. Hirzebruch and T. Höfer. On the Euler number of an orbifold. Math. Ann., 286(1-3):255-260, 1990.
[9] I. G. Macdonald. Symmetric products of an algebraic curve. Topology, 1:319-343, 1962.
[10] A. Mattuck. Picard bundles. Illinois J. Math., 5:550-564, 1961.
[11] R. J. Milgram. The homology of symmetric products. Trans. Amer. Math. Soc., 138:251-265, 1969.

