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ABSTRACT

Recruitment of marine fish is influenced by abiotic and biotic processes operating
at many spatial and temporal scales. Recruitment level was thought to be set during the
larval stages but recent evidence suggests that year-class strength can be modified during
the early juvenile stages. Annual recruitment has received much attention but variation at
finer temporal scales may affect biological processes that influence year-class success. I
tested the hypothesis that timing of recruitment of fish from the plankton to nearshore
benthic areas is determined by water mass movements. I also tested whether seasonal
recruitment of fish to near shore bottom habitats was associated with prey availability and
growth rates of post-recruited fish. Seining was conducted daily at one location during
2002 and biweekly at 12 sites during 1998-2002 to monitor fish densities and arrival
times nearshore. I found that daily recruitment of Atlantic cod (Gadus morhua),
Greenland cod (Gadus ogac) and hake (Urophycis tenuis) to sites on the northeast coast
of Newfoundland was associated with onshore winds following upwelling. Results were
consistent with larval transport onshore during downwelling. Recruitment of Atlantic cod,
Greenland cod and hake to the nearshore was not associated with tidal stage. The
phenology of Atlantic cod recruitment to near shore benthic habitats appears simple but
seasonal growth rates are more complex. During July to November of 2000 to 2002, the
monthly pattern of abundance of newly-recruited Atlantic cod near shore was similar to
seasonal patterns of zooplankton abundance that I observed near shore. Seasonal

zooplankton abundances near shore were similar to those previously reported offshore.



Newly-recruited Atlantic cod were relatively abundant during September and October of
2000-2002. During these months, growth rates of post-recruited fish were also relatively
high. However, I found growth rates of post-recruitment fish were comparatively high
twice annually with highest growth occurring during June and October. During both of
these months water temperatures were near optimum for growth and the ratio of Atlantic
cod abundance to zooplankton abundance near shore was similar. Abundance of newly-
recruited Atlantic cod near shore was relatively high during May of 2002 when growth
rates of fish were low, contrary to prediction. Monthly abundance of newly-recruited
Atlantic cod near shore was more closely associated with the amount of zooplankton that
fish could utilize at observed water temperatures rather than total abundance of
zooplankton. At daily scales, recruitment of Atlantic cod near shore was found to be
determined by physical processes but both abiotic and biotic processes were important at

seasonal scales.
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Chapter 1. Introduction

Recruitment to marine fish populations is often estimated annually and at large
geographic scales encompassing entire stocks. However, variation in fish recruitment at
smaller spatial and temporal scales influences many biological processes that can
moderate year-class strength. In this thesis, recruitment is defined as the period at the end
of the larval phase when mortality drops substantially and juveniles are considered to
have recruited into the population. Along the northeast coast of Newfoundland,
recruitment of Atlantic cod occurs in discrete pulses during summer and autumn
(Methven and Bajdik 1994, Pinsent and Methven 1997, Grant and Brown 1998a). This
was first demonstrated at a sheltered site in Trinity Bay during 1982-1983 and 1989-1991
by Methven and Bajdik (1994). In their sampling (every two weeks), the smallest juvenile
Atlantic cod were collected during two periods, late August-early September and mid to
late October, each year. Methven (1993, 1994) showed that recruitment pulses of Atlantic
cod occurred at sites from the southern Avalon to western Notre Dame Bay. Three or four
pulses of recruitment in Atlantic cod were evident in data collected subsequently from the
northeast coast of Newfoundland at time scales of two weeks or less (Pinsent and
Methven 1997; Grant and Brown, 1998, Gregory et al., 1999). Although these recruitment
pulses were described over a decade ago, the processes generating them have not been
determined. This thesis will compile and evaluate theories on the origin of Atlantic cod
recruitment pulses in Newfoundland coastal waters using available data augmented by

directed investigations.



The basic theory guiding most of the research into recruitment by marine fish
during the past century originated with Hjort (1914). He presented two hypotheses: (1)
level of recruitment is determined by prey availability to larvae during the period
following initiation of exogenous feeding and (2) level of recruitment may be determined
by the influence of advective processes on the distributions of larvae. Hypothesis (1) was
developed into the match / mismatch hypothesis in a series of reports (Cushing 1969,
1974, 1990). The match / mismatch hypothesis has two components (a) spawning time 1s
fixed among years to correspond to the mean time of production and (b) the degree of
overlap between larvae (up to metamorphosis) and their prey determines recruitment
success. Cushing (1990) compiled some empirical support for increased recruitment of
fish during years with overlap between peak spawning time and periods of high
production. Hypothesis (2) from Hjort (1914) influenced development of the “migration
triangle” (Harden Jones, 1968); this concept was reviewed by Secor (2002). The central
principle of the “migration triangle” is populations are closed (philopatry) with spawning
occuring at localized areas but juveniles and adults are widely distributed, requiring
seasonal and ontogenetic migrations for fish to return to natal spawning grounds (Harden
Jones, 1968; Cushing 1974). The “migration triangle” is difficult to test rigorously
because it has complex assumptions (Secor, 2002). Positive correlations between
recruitment of fish and transport onshore to suitable nursery areas (e.g. Nelson et al. 1977,
Bailey, 1981) has been considered to be consistent with a circuit between spawning

location and widespread distributions of juvenile fish. Other prominent theories (e.g.



Lasker events (Lasker, 1975; 1978) and member / vagrant (Sinclair, 1988) are similarly
related to one of the hypotheses of Hjort (1914).

On the Northeast Newfoundland Shelf, Atlantic cod form a stock component
thought to be distinct from the Grand Banks and other areas (Templeman, 1962). The
Northeast Newfoundland Shelf extends 150-400 km offshore and includes a series of
relatively flat banks divided by deep (< 500 m) channels. Most of the northeast coast of
Newfoundland is comprised of large and deep (> 200 m) bays. Areas approximately 25
kilometers off the coast plus the bays have been termed collectively the inshore and the
remaining shelf areas are offshore. Oceanography of both the inshore and offshore 1s
dominated by the Labrador Current which begins at the northern tip of Labrador and
flows southward. The main branch of the Labrador Current flows along the continental
slope with temperatures of 3 to 4 °C. An inshore branch flows along the coast of the
island of Newfoundland with temperatures of -1 to 2 °C. A warm water layer develops at
the surface during spring (Templeman, 1948). Episodic upwelling occurs along the
northeast coast of Newfoundland associated with strong southwest wind events (Sleggs,
1933; Templeman, 1948; Schneider and Methven, 1988). In this area, winds from the
west and southwest prevail from June to September. During upwelling events, the
seasonal thermocline rises and cold water can be detected at the coast (Leggett et al.
1984). Distributions of Atlantic cod were predicted to be influenced by upwelling
(Templeman, 1966); this theory is supported by studies on catches using passive fishing

gear (Rose and Leggett, 1988; Ings ef al. 1997). Along the northeast coast of



Newfoundland episodic upwelling influences the density of marine organisms ranging
from zooplankton (Frank and Leggett, 1982, 1985) to capelin (Schneider, 1994) and
whales (Whitehead and Carscadden, 1985).

The seasonal cycle of production on the Northeast Newfoundland Shelf has been
investigated at relatively large spatial scales. Analysis of Continuous Plankton Recorder
Data (CPR) for the period 1961-1971 by Robinson et al. (1973) showed that
phytoplankton were most abundant during spring in the northwest Atlantic. The standing
crop of phytoplankton on the Grand Banks was observed to peak in May (spring bloom)
during 1980; biomass-normalized production was maximum in August-September
(Prasad, 1993). Timing of peak abundance of copepodite stages of Calanus finmarchicus,
considered to be the primary prey of first-feeding larval Atlantic cod, varied between May
and June during 1961 to 1971 (Robinson et al. 1973). Analysis of CPR Data collected
during 1959-1992 led Myers ef al. (1994) to conclude that seasonal trends in zooplankton
abundance were quite variable. Multi-year studies are not available from the inshore, but
Davis (1982) found zooplankton abundance in Conception Bay during 1977-78 to be
highest from May to July, low during August and variable between September and
December.

Historical data suggests that Atlantic cod spawn over broad areas of the
continental shelf, but mostly over the slopes, particularly off Hamilton Bank (Templeman,
1981) or in deep areas near shore (Hutchings et al., 1993). Spawning time differs among

offshore areas. Myers et al. (1993) found mean spawning time on Hamilton Bank was 7



April while spawning in NAFO Division 3L (Fig. 1) was 9 June. Spawning on the Grand
Banks falls within this period but it occurs earlier on southern Grand Bank than on
northern Grand Bank (Hutchings and Myers, 1994). Cod spawning occurs later inshore
than offshore (Templeman, 1979). Data from inshore areas suggest that spawning occurs
primarily between May and July (Thompson, 1943; Anderson et al. 1995; Smedbol and
Wroblewski, 1997) but can extend into August and September (Thompson,1943; Pinsent
and Methven,1997). Water temperature is thought to influence initiation of spawning
(Templeman, 1962) but this relationship may be modified by local oceanographic
conditions (Hutchings and Myers, 1994). Oocyte development as a function of water
temperature may explain later initiation of spawning inshore relative to offshore (Smedbol
and Wroblewski, 1997).

Atlantic cod are broadcast spawners releasing eggs in multiple batches (Scott and
Scott, 1988). Healthy eggs rise in the water column during development (Anderson and de
Young, 1995) and drift passively near the surface (Page and Frank, 1989). Development
rates of eggs increase with temperatures (Pepin et al. 1997), hence eggs spawned in colder
waters (e.g. during March to May off Labrador) may experience longer periods of drift
than those spawned in warmer waters (e.g. during April to July in inshore 3K).
Distributions of Atlantic cod eggs have been collected along the coast of Newfoundland
(Scott, 1935) and Labrador (Serebryakov, 1968). From sampling on transects across the
Northeast Newfoundland shelf during 1991-1992, Pepin and Helbig (1997) found stage I

eggs near the shelf-slope break, stage Il and III eggs were broadly distributed over the



shelf south of Funk Island Bank; only a small number of stage IV eggs were collected but
they were near the northeast coast of Newfoundland.

Cod larvae were considered to drift passively from spawning areas on the
Northeast Newfoundland Shelf into bays along the northeast coast of Newfoundland
where they settle as juveniles into demersal habitats (Lear and Green, 1984). This view
was challenged by simulations of particle drift on the continental shelf that suggested
appropriate wind forcing would be required for larvae to be transported to coastal areas
from the offshore (Helbig ef al. 1992; Anderson ef al. 1995; Davidson and de Young,
1995). Modelling also suggested that only a small percentage of the larvae transported
inshore are retained there (Pepin and Helbig, 1997). Nevertheless, in the 1990s high
numbers of demersal juvenile cod were collected inshore relative to offshore (Dalley and
Anderson, 1997). Juvenile cod were observed to recruit to coastal sites in pulses during
summer and autumn (Methven and Bajdik, 1994; Grant and Brown, 1998; Gregory et al.,
2002) where they settle to the bottom at lengths of 40 to 100 mm (Lomond et al. 1998).
Genetic analysis of post-settlement cod showed that roughly half of the fish collected
inshore during a recruitment period in August were spawned offshore while half
originated inshore; more fish collected during October originated inshore (70%) than
offshore (30%) (Beacham et al. 2000). Conclusions based on particle drift modelling to
date are inconsistent with observations on juvenile cod recruitment at coastal sites.

A number of theories have been proposed to explain recruitment pulses of Atlantic

cod at coastal sites. Geographic separation of spawning was the basis for two hypotheses.



Temporal separation of spawning between the inshore and offshore (Templeman, 1979)
led to the hypothesis (e.g. Methven, 1993) that fish in certain pulses originated offshore
while those in other pulses were primarily of inshore origin. Similarly, Beacham et al.
(2000) investigated whether juvenile cod from different pulses were similar genetically to
adults sampled at locations inshore or offshore (banks). Other theories were based on
physical oceanography. Tidal stage was postulated to influence arrival or settlement of
larvae at coastal sites as movement of tidal fronts has been found to influence the
distributions of larval fish, especially near estuaries (Boehlert and Mundy, 1987,
Kingsford and Suthers, 1996). There is evidence that upwelling events can interrupt
spawning by fish (Kruse and Tyler, 1983) such as Atlantic cod that release eggs over
prolonged periods (Scott and Scott, 1988). In this thesis I propose that downwelling
determines recruitment timing of cod at coastal sites. This hypothesis was borrowed from
the invertebrate literature; Roughgarden ef al. (1991) proposed that larval barnacles
accumulate in an upwelling front off California and are transported to the coast when the
front moves shoreward under downwelling conditions. See Chapter 2 for further details.
This thesis 1s organized into five chapters. In Chapter 2, I document the history of
research on juvenile Atlantic cod that has established and focussed on recruitment pulses
of fish in Newfoundland coastal waters. Chapter 3 tests whether recruitment pulses are
associated with movement of water masses at temporal scales of the tidal amplitude or the
upwelling/downwelling cycle. Chapter 4 tests whether seasonal recruitment of juvenile

Atlantic cod to Newfoundland coastal waters matches zooplankton abundance nearshore.



Chapter 5 presents conclusions.
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Chapter 2 Recruitment pulses of Atlantic cod in Newfoundland coastal waters
2.1 Background

Pulses of recruitment of juvenile Atlantic cod to benthic habitats were first
reported by Methven and Bajdik (1994). Their analysis of data from biweekly seining at
one site in Trinity Bay during 1982-1983 and 1989-1990 revealed that the smallest
Atlantic cod were collected during two distinct periods, late August-early September and
mid to late October, of 1982 and 1989. Also, they noted that the small fish were
transparent (similar to pelagic juveniles) and lacked parasites (Cryptocotyle lingua) that
are typical of fish residing in the nearshore. These findings showed that small Atlantic cod
recruited to the nearshore as distinct pulses.

The earliest study on recruitment of juvenile Atlantic cod to nearshore
Newfoundland locations (Lear et al., 1980) did not mention these pulses. Based on
surveys along the coast of Norway initiated in the late 1800s (e.g. Fromentin et al., 2001),
the Fisheries Research Board of Canada developed a beach seine survey for juvenile cod
along the northeast coast of Newfoundland. This project was led by the late Alistair
Fleming (hereafter referred to as the Fleming Survey) and sampled sites from Placentia
Bay in the south to western Notre Dame Bay in the north. During 1958, Fleming and his
crew travelled the coast scouting for sample sites and talking to fishermen about their
observations on the time and locations of juvenile cod sightings. The Fleming survey
began in the autumn of 1959 with 13 sites (Methven, 1993; Schneider et al. 1997).

Approximately 35-45 sites were sampled in subsequent years until 1964 when the

13



Fleming survey was discontinued. Results of this work were published by Lear ef al.
(1980) who reported no recruitment signal in the Fleming data. Original field notes
obtained from the Department of Fisheries and Oceans make no mention of pulsed
recruitment.

The phenomenon reported by Methven and Bajdik (1994) was found to occur all
along the northeast coast of Newfoundland. Analysis of data from biweekly seining at
sites including Cape Broyle on the southern Avalon Peninsula, Little Mosquito Cove and
Trinity, Trinity Bay and Cottlesville and La Scie in Notre Dame Bay showed that Atlantic
cod recruited to nearshore sites in distinct pulses over a coast-wide scale (Methven, 1994).
While sampling with seines in Trinity Bay during autumn, Grant and Brown (1998)
collected newly recruited cod in late-November in addition to those collected during two
earlier periods. Newly recruited fish were found during early August and late September-
early October 1998 and 1999 in Newman Sound, Bonavista Bay (Gregory et al., 1999;
Gregory et al., 2001). However, during 2000 as many as four pulses were detected at the
same sites (Gregory ef al., 2002).

The number of fish recruiting during the October 1995 pulse was monitored to
determine possible enhancement due to the discovery of 10,000 + tonnes of spawning cod
in Smith Sound, Trinity Bay (Schneider et al., 1997). However, whether a spawning
aggregation occurred there in previous years could not be determined due to lack of data.
The Fleming survey, which had been reinitiated by researchers at Memorial University in

1992 (e.g. Schneider et al., 1997), sampled for juvenile cod during autumn. At sites
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down-current of Smith Sound and at coarser scales, catches of juvenile cod were not
higher in 1995 than previous years; offshore drift and dilution of eggs and larvae were
thought to explain this negative result (Schneider ef al., 1997; Smedbol et al., 1998).
Formal studies on identification of Atlantic cod (G. morhua) and Greenland cod
(G . ogac) were required for investigations on recruitment pulses in Atlantic cod. Both
gadids co-occur as juveniles in coastal Newfoundland habitats and are difficult to
distinguish at sizes less than 65 mm. Systematic studies distinguishing between adult
Greenland cod and Atlantic cod were available during the early 1990s but did not apply to
juveniles (Jensen, 1948). Based largely on known differences between adult fish, field
techniques for distinguishing between juvenile Greenland cod and Atlantic cod were
refined over time (Methven and Bajdik, 1994) and misidentification was thought to be
quite low (< 5%) (Methven, 1993). However, lack of formal identification studies plagued
researchers. Therefore, two studies on identification of juvenile Greenland cod and
Atlantic cod were conducted. Methven and McGowan (1998) found that Greenland cod
had a smaller eye diameter, deeper body and greater weight at age than Atlantic cod. Also,
they observed that body coloration and shape of the lateral line (more arched for
Greenland cod) were useful. Grant (unpublished data) raised egg and larvae of known
adult fish in the laboratory and found that Greenland cod had dark pigmentation on the
first eight rays of the dorsal fin whereas these rays on juvenile Atlantic cod lacked
coloration. These characteristics were then confirmed to apply to field caught specimens

(see Appendix 5.1 in Methven, 1997). Improved identification techniques led to research
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on processes that potentially influence recruitment pulses of Atlantic cod.

2.2 Theories for pulses
2.2.1. Geographic separation of spawning

Variability in spawning time between areas was the basis for early theories on
pulse origins. Northern cod have been described as a stock complex (Lear, 1984) with
spawning known to vary temporally between inshore and offshore locations and between
offshore banks (Templeman, 1979; Myers et al., 1993; Hutchings and Myers,1994). A
conceptual diagram (Figure 26 in Methven, 1993) illustrated early views on the origin of
pulses. Small Atlantic cod collected in May were thought to be progeny from offshore
spawning as winter spawning was not known to occur nearshore (Methven, 1993). Inshore
spawning was believed to produce most of the fish recruiting in August-September as an
August arrival time for pelagic juveniles was consistent with spawning times (May-June)
that Hutchings e al. (1993) observed for Trinity Bay. The October pulse was thought to
originate from both inshore and offshore spawning (Methven, 1993). Backcalculations
using otoliths from juveniles collected nearshore produced estimated spawning dates that
varied by as much as a month between years (Pinsent, 1994). Estimated hatch dates and
spawning times ranged over longer periods (12 weeks) than were documented previously
(Pinsent and Methven, 1997). These results suggested offshore spawning had produced
fish collected in May. The relatively high variability in annual spawning time was

inconsistent with the view that pulses were due to spawning pulses separated in time or
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space.

Genetic analysis showed that both inshore and offshore spawning produced fish in
the August-September and October pulses. Beacham et al. (2000) tested whether juvenile
Atlantic cod collected in Newman Sound, Bonavista Bay were similar genetically to
adults caught at four offshore and five inshore locations. They found that cod from the
August pulse were genetically similar to adults collected either in Bonavista Bay or on
Funk Island Bank with approximately 50 % of the fish originating from each location.
Approximately 30 % of the October pulse was similar to cod sampled offshore (Funk
Island Bank and northern Grand Bank) and 70 % was similar to adults from inshore areas
including Notre Dame Bay and Conception Bay in addition to Bonavista Bay. A
substantial contribution of offshore spawning to the August pulse did not match the
Methven (1993) conceptual diagram with most fish in August produced by inshore
spawning. Geographic separation in spawning was eliminated as an explanation for the

occurrence of recruitment pulses.

2.2.2 Tidal stage influence

The theory that tidal stage influenced settlement of juveniles nearshore emerged
when evidence of multiple pulses during autumn were detected in data from biweekly
sampling in Bonavista Bay (Gregory ef al., 2001). Tidal processes were known to
influence the movement (Boehlert and Mundy, 1987) and distributions (Kingsford and

Suthers, 1996) of many larval fish. Tidal stage has also been shown to affect settlement of
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fish on coral reefs (e.g. Sponaugle and Cowen, 1997). Recruitment of juvenile Pelates
sexlineatus, for example, occurs during six pulses annually coinciding with full moons /

high tides (Smith and Suthers, 2000). I found no evidence that tidal stage influenced fish

recruitment to nearshore Newfoundland waters (Chapter Three).

2.2.3. Additional theories from the literature

A literature search for processes known to produce recruitment pulses in marine
organisms uncovered two theories in addition to those described previously. The theories
were:

1.) Upwelling interrupts spawning. Kruse and Tyler (1983) linked interruptions in
spawning of English Sole Parophrys vetulus with upwelling related changes in water
temperature. Atlantic cod were known to spawn for protracted periods (Myers et al.,
1993) similar to English Sole. Water temperature was thought to influence spawning time
of Atlantic cod as well (Scott and Scott, 1988). However, actively spawning Atlantic cod
in aquaria at the Ocean Sciences Centre with flowthrough seawater were not observed to
cease spawning periodically during early summer (JA Brown, pers. comm.) when
episodic upwelling occurs (Sleggs, 1933; Templeman, 1948; Schneider and Methven,
1988). I concluded the theory of upwelling interrupted spawning by Atlantic cod was not
supported by observations of actively spawning cod from Newfoundland. Therefore, 1
have not pursued it further in this thesis.

2.) Recruitment occurs during downwelling. Settlement of barnacles, sea urchins and crab
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in nearshore habitats on the coast of the United States have been linked to downwelling
events (Farrell et al., 1991; Roughgarden et al., 1991; Wing et al., 1995; Miller and
Emlet, 1997). Schneider and Methven (pers. comm.) considered, then discarded this
hypothesis because upwelling events occur more frequently (Schneider and Methven,
1988) than the 2-4 pulses reported for juvenile cod each year. The hypothesis that Atlantic
cod recruit to the nearshore during downwelling events was revisited because other

explanations failed (Chapter Three).

2.3 Conclusion

Recruitment pulses of Atlantic cod were first discovered at one site in Trinity Bay
during the 1980s-early 1990s. Since then, pulses have been observed consistently at
nearshore sites all along the northeast coast of Newfoundland. Results from early studies
suggested two or three pulses at approximately the same time annually, but more recent
studies provided evidence of multiple pulses through autumn. Theories on pulse origins
have evolved over time. Original hypotheses were based on spatial and temporal
separation of spawning; spawning by Atlantic cod was known to vary temporally between
offshore banks and it occurred later inshore than offshore. The geographic separation
hypothesis was not supported by annual variability in spawning time or by genetic
differentiation of juveniles between recruitment pulses. Observations on actively
spawning Atlantic cod held in aquaria did not support the hypothesis that upwelling

interrupts spawning. Formal evaluation of two hypotheses may be useful; tidal stage
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influences pulsed recruitment and downwelling events influence pulsed recruitment.
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Chapter 3 Physical processes determine daily recruitment of Atlantic cod, Greenland cod

and hake to Newfoundland coastal waters

3.1 Abstract

Recruitment in marine fish is influenced by abiotic and biotic processes operating
at many spatial and temporal scales. Annual recruitment has received considerable
attention but variation at finer temporal scales can influence biological processes that
modify year-class success. I tested the hypothesis that recruitment of marine fish to
nearshore areas at a fine temporal scale is determined by downwelling associated with
onshore winds. Also, I tested whether fish arrival nearshore was related to tidal stage.
During summer and autumn 1998 to 2001 and late spring to autumn 2002, recruitment of
Atlantic cod (Gadus morhua), Greenland cod (Gadus ogac) and hake (Urophycis tenuis)
to 12 sites in Newman Sound, Newfoundland was monitored every two weeks using
seines. Seining was conducted daily at an additional site nearby for approximately two
months during 2002. There were sufficient data to identify four to six recruitment pulses
of Atlantic cod annually during 1999 to 2002. Greenland cod and hake were found to
recruit once annually during 1998 to 2002. Winds were mostly offshore during the periods
studied. However, recruitment of Atlantic cod (19 events), Greenland cod (five events)
and hake (five events) was estimated to begin on days with onshore winds or following
onshore winds (two day lag maximum). Results were consistent with larval transport
onshore during downwelling. Recruitment of Atlantic cod, Greenland cod and hake to the

nearshore was not associated with tidal stage. Collapse of episodic upwelling fronts may
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affect the timing of recruitment of other invertebrate and fish species in the coastal zone

of Newfoundland.
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3.2 Introduction

Recruitment of marine fish is influenced by abiotic and biotic processes operating
at a number of spatial and temporal scales. Hjort (1914) postulated, and it is generally
accepted, that level of recruitment is set during the first year of life. Recruitment may be
defined as the period at the beginning of a defined stage; in this thesis, recruitment refers
to the period at the beginning of the juvenile phase when mortality drops substantially and
juvenile fish are considered to have recruited into the population. Biological processes
affecting recruitment success in the first year have been studied at relatively fine scales;
the focus has been on linking first-feeding larvae with their prey either temporally
(Cushing, 1969) or spatially (Lasker, 1975, 1978). In contrast, oceanographic studies on
egg and larval drift have tended to consider relatively large spatial scales. High levels of
recruitment are thought to occur when eggs or larvae are transported to suitable nursery
areas inshore (Nelson ef al., 1977, Bailey, 1981) or are retained on banks offshore (Isles
and Sinclair, 1982; Sinclair, 1988). Generally, these studies have been conducted
relatively far from shore during research cruises of no more than a few weeks duration.
However, fine resolution sampling of the nearshore for extended periods was conducted
over a century ago (Hjort and Dahl, 1900). Based on results from approximately daily
sampling for juvenile fish along the coast of Norway during 1898-99, Hjort and Dahl
(1900) postulated that wind induced movements of water masses in autumn determined
fish recruitment at the coast.

Off the northeast coast of Newfoundland, Atlantic cod historically ranged over
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most of the continental shelf from waters near shore to the continental slope. The
northeast Newfoundland Shelf extends 150-400 km offshore and encompasses a number
of banks including Hamilton, Belle Isle, and Funk Island Banks and the Grand Banks
along with St. Pierre Bank off the south coast. Relatively large and deep (> 200 m) bays
constitute most of the northeast coast of Newfoundland. The dominant oceanographic
feature in this area is the Labrador Current. It begins at the northern tip of Labrador and
flows southward with an inshore and an offshore branch. The main branch follows the
continental slope with temperatures of 3 to 4 °C while the colder (-1 to 2 °C) inshore
branch flows over the shelf (Lazier, 1982). During spring, a warm water layer develops
over the core of the Labrador Current, both inshore (Templeman, 1948) and offshore
(Helbig et al., 1992).

Episodic upwelling occurs along the northeast coast of Newfoundland in response
to prevailing winds from the west and southwest (Sleggs, 1933; Templeman, 1948;
Schneider and Methven, 1988). From June to September, strong southwest winds
associated with passing storms induce upwelling of cold water (Leggett et al., 1984) and
the seasonal thermocline is raised (Templeman, 1948). Consequently, upwelling and
downwelling periods in this system can be identified by vertical movements of the
thermocline over a few days or less (Schneider and Methven, 1988). For bays wider than
the Rossby radius (circa 5 km), longshore winds establish upwelling (Yao, 1987). In small
bays and coves (< 5 km wide) where dynamics are irrotational, upwelling is associated

with cross-shore wind stress (Taggart and Frank, 1987). Models incorporating wind
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stress can predict rise of the thermocline (Schneider and Methven, 1988), but upwelling
may alsooccur in the absence of local wind events due to propagating internal waves (de
Young et al.,1993).

The timing of spawning by Atlantic cod differs among locations. Data from
research trawling suggests that spawning occurs over most of the continental shelf, but is
concentrated over the slopes, particularly off Hamilton Bank (Templeman, 1981) or in
areas near shore (Hutchings et al., 1993). Using trawl data, Myers et al. (1993)
calculated mean peak spawning times that ranged from 7 April for Hamilton Bank to 9
June for NAFO Division 3L. Spawning times are earlier on southern Grand Bank (mid-
May) than on northern Grand Bank (early June) (Hutchings and Myers, 1994). Cod on
the Flemish Cap are thought to spawn in February (Thompson, 1943). During annual
shoreward migrations in May and June, cod continue spawning (Templeman, 1979; Rose,
1993) but finish spawning before reaching the inshore (Rose, 1993). Nevertheless, cod in
spawning condition are known to occur inshore (Harvey, 1891; Smedbol and Wroblewski,
1997). Thompson (1943) assumed cod collected during May to June and August to
September in Trinity Bay were in spawning condition. Smedbol and Wroblewski (1997)
monitored reproductive condition of wild cod from ripening to spawning and spent in
Trinity Bay. They estimated peak spawning from mid-June to mid-July. Inshore spawning
times have also been estimated indirectly from data on juvenile cod. Anderson et al.
(1995) estimated peak spawning was during May-June based on back-calculated ages

(from otoliths) of pelagic juveniles sampled in Trinity Bay. From post-settled cod
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collected by beach seine between late May and January (five separate collections), Pinsent
and Methven (1997) estimated spawning occurred during mid-January to late-February,
late-April to late-May and between mid-August to early-September. However, findings by
Gregory et al. (1998) suggest that fish collected in May may have been spawned earlier
than January. The spawning locations of post-settled fish in these studies are unknown.
There are no data on spawning times of Atlantic cod from other areas on the northeast
coast.

Numerical simulations using fine scale data suggest that Atlantic cod eggs and
larvae are sometimes transported from the northeast Newfoundland Shelf to coastal
waters. Particle transport from the shelf into northern bays and from NAFO divisions
3NO into Trinity and Conception Bays was simulated by Helbig ef al. (1992) when storm
passage (10 day frequency) was included in modelling. Davidson and deYoung (1995)
added hourly wind data to simulations of vertically averaged flow. They concluded that
wind and diffusion can sometimes influence drift of eggs and larvae into bays on the
northeast coast of Newfoundland. Using surface currents estimated from drogued
satellite-tracked drifters and data on the spatial distribution of eggs and larvae,
simulation_s\ by Pepin and Helbig (1997) suggested that up to 10 percent of particles
seeded on the Hamilton Banks reached bays on the northeast coast of Newfoundland.
Only some of these were retained near shore but nearshore processes were not included in
models.

Hjort and Dahl (1900) postulated that the arrival time of juvenile cod at the coast
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of Norway was associated with water mass movements induced by storm events. This
hypothesis is supported over 80 years later by evidence that movements of coastal water
masses and associated fronts transport fish and invertebrate larvae toward the coast. Peaks
in recruitment of English sole (Prophrys vetulus) to the coast of Oregon were associated
with onshore Ekman transport (Boehlert and Mundy, 1987). Arrival of King George
whiting at the coast of Australia was correlated with onshore winds (Jenkins et al., 1997).
Settlement of intertidal barnacles (Farrell ef al., 1991; Roughgarden ef al.; 1991), sea
urchins and crab (Wing et al., 1995a, b) on the California coast and sea urchins off
Oregon (Miller and Emlet, 1997) occurred during periods of increasing water
temperatures attributed to downwelling. Aggregations of larval Dungeness crab (Shenker,
1988) and blue crab (Shanks et al., 2000) have been observed in convergent fronts (slicks)
associated with shoreward moving internal waves. Accumulations of shrimp, polychaetes
and pre-settlement fish have been found in similar convergences (Kingsfort and Choat,
1986; Shanks, 1998; Shanks ef al., 2000). Accumulations of larval cod have been
observed at relatively stationary fronts on Western Bank off Nova Scotia (Lochmann e?
al., 1997, McLaren et al., 1997) and in the North Sea (Munk et al., 1995) where the
pattern was recurrent during four consecutive years (Munk et al., 1999). Fish and
invertebrate larvae may accumulate at fronts that provide a transport mechanism to the
nearshore.

Tidal forcing may also influence the distributions of invertebrates and fish. Pineda

(1991) found biweekly periodicity in water temperature data from the coast of California
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and argued that settlement of barnacle and cyphonautes (bryozoan) larvae was associated
with tidal bores rather than wind induced events. Outside Botany Bay, Australia,
Kingsford and Suthers (1996) found ichthyoplankton were more abundant in an estuarine
front at low tide than during other tidal stages. Eggleston et al. (1998) observed drifters to
accumulate at a front where Dungeness crab megalopae were concentrated, and move
with winds into the Grays Harbor estuary, Washington. Larval English sole (Prophrys
vetulus) were observed to recruit to estuaries on the coast of Oregon during flood tides
(Boehlert and Mundy, 1987).

Atlantic cod recruit to sites on the northeast coast of Newfoundland during
multiple events annually (Methven and Bajdik, 1994; Grant and Brown, 1998). During
late-August to early-September and October of 1982-1983 and 1989-1991, Methven and
Bajdik (1994) observed newly recruited Atlantic cod in biweekly seine collections at a
coastal site in Trinity Bay. Pinsent and Methven (1997) describe two recruitment pulses
during spring-summer at another location in Trinity Bay. However, small fish can be
noted in their plot of standard length and date (Figure 2, page 22) from mid-October
onward suggesting that at least three events occurred during 1993. Grant and Brown
(1998) conducted seining weekly during autumn of 1994-95 in the same cove where
Pinsent and Methven (1997) sampled. Grant and Brown (1998) suggested there were three
recruitment events during autumn. Further from shore, Anderson et al. (1995) observed
multiple peaks in length frequency data for pelagic juveniles collected in Conception Bay

during September. Atlantic cod may also recruit to other nearshore areas of
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Newfoundland in multiple pulses as Robichaud and Rose (1999) observed small Atlantic
cod (40-45 mm) during two periods, September-October and December of 1997 and 1998

in Placentia Bay seine data.

I investigated whether recruitment of Atlantic cod, Greenland cod and hake to the
coast of Newfoundland was determined by episodic upwelling. Although the life histories
of these three fish species differ (Scott and Scott, 1988), all have pelagic larvae (Scott and

Scott, 1988) that may respond similarly to wind-induced events or tidal forcing.

Greenland cod spawn mostly in shallow waters near shore (Scott and Scott, 1988). This
pattern contrasts with widespread spawning by Atlantic cod (Hutchings et al., 1993).
Little is known about the spawning time and locations for hake collected off the northeast
coast of Newfoundland. Regardless of spawning location, juvenile Atlantic cod,
Greenland cod and hake have been collected by seines in shallow water habitats during
summer and autumn (Methven et al., 2001). During this study, data from daily beach
seining conducted at one location from mid-July to early-September 2002 were used to
determine both arrival time of fish and fish size at recruitment. Arrival time is indicated
by the first occurrence of small fish in seine collections as tagging studies by Sheppard
(2005) showed that juvenile Atlantic cod and Greenland cod remain localized following
settlement at sites in Newman Sound. Estimates of fish size at recruitment were used to
determine arrival time of fish at 12 sites in Newman Sound, Bonavista Bay sampled
biweekly during 1998 to 2002. Water mass movements, as illustrated in Fig 3.1., were

estimated by two methods. Water temperature data collected at sites in Newman Sound
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were analysed to determine movements of the thermocline, hence vertical displacement of
the pycnocline (Schneider and Methven, 1988). Also, data on wind speed and direction
measured at Gander Airport located approximately 70 km away were used to model
onshore and offshore windstress acting on the surface waters near shore. Tidal stage was
determined from tables of tidal height produced by the Canadian Hydrographic Service.

I tested two hypotheses. I investigated whether Atlantic cod recruited to the
northeast coast of Newfoundland during wind-induced events as hypothesized by Hjort
and Dahl (1900) for the coast of Norway. The patterns in recruitment of Atlantic cod,
Greenland cod and hake were evaluated relative to influences of onshore winds that
produce downwelling. Also, I tested whether fish arrival was associated with tidal forcing
as described by Pineda (1991) for invertebrate larvae on the coast of California. Estimated
recruitment dates for fish sampled in 1998-2002 were tested against downwelling periods

and tidal phases.

3.3 Methods
3.3.1 Biweekly sampling 1998-2002

From 1998-2002, 12 sites in Newman Sound, Bonavista Bay (Fig. 3.2) were
sampled by beach seine between mid-July (1998-2001) or late May (2002) to mid-
November. Each site was sampled biweekly (once every second week) within two hours

of low tide. A 25 m beach seine with 19 mm stretch mesh in the wings and belly and 9
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mm stretch mesh in the codend was used to sample 880 m* (16 m along shore, 55 m
offshore) (Schneider et al., 1997). The seine sampled the bottom two metres of the water
column. From SCUBA observations on seine retrieval, Gotceitas et al. (1997) estimated
that less than five percent of fish escaped. All fish collected were identified to species;
juvenile Atlantic cod were distinguished from Greenland cod using pigment and
morphometric characteristics (Methven and McGowan, 1998; Grant and Brown, 1998).
Fish were measured (mm Standard Length) and released alive at site of capture. A small
number of gadids were subsampled from the catch during each collection period and

preserved in 95% ethanol for verification of identifications later.

3.3.2 Daily sampling 2002

To determine arrival times of fish and size at recruitment, beach seines were
pulled daily from 11 July to 6 September of 2002 and subsequently two to four times per
week until 23 October at one location in Newman Sound (Fig. 3.2). A previous study
(Hancock, 2000) had located 10 sites (Fig. 3.2) suitable for sampling with beach seines at
this location. Also, the bottom type and depth profile were similar among all ten sites. I

sampled two sites per day (e.g.,1 and 6, 2 and 7 etc.) within two hours of low tide.

3.3.3. Estimation of size at arrival
Size at arrival of all three fish species was estimated from linear regressions of

daily modal length of fish against Julian date at Bermuda Beach. Modal lengths were
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determined visually from plots of length frequencies (3 mm bins for Atlantic cod and
Greenland cod, 5 mm bins for hake) constructed for each sample day. The range of data
used in regressions was one day post arrival to the end of linear increase in length
(determined visually) or to the end of daily sampling (23 Oct.). Size at arrival was

backcalculated from the relationships between modal length and date.

3.3.4. Estimation of arrival time in biweekly data

Arrival times of fish (1998-2002) were also estimated from regressions of modal
length of fish and Julian date. Daily plots were constructed to distinguish between
recruitment pulses of Atlantic cod. For Greenland cod and hake biweekly plots were used
as only one pulse was detected annually. Lengths of each species were binned as above
(Section 3.3.3). Recruitment events were identified in length frequency plots by the
appearance of small fish on one or two sample days. On subsequent days, a mode in each
length frequency plot (when discernable) was assigned to this recruitment pulse based on
tracking fish growth visually over time. Assignment of modes to pulses was first
conducted forward, beginning with the recruitment event and continuing through all daily
plots. Pulse 1dentification was verified by tracking modes backward through time
beginning with modes on the later days of sampling and working to recruitment events.
Daily modal lengths were averaged when bins were of equal size. When distributions
from two pulses overlapped, modal length was adjusted downward and upward for the

most recent and earlier pulse respectively. Daily modal length was regressed against

38



Julian date for the linear portion of the time series. Arrival times (Julian date) were
backcalculated by inserting the estimated length of fish at arrival (Section 3.3.3) into the
equations obtained from regression of daily modal length of fish and Julian date.
3.3.5. Water temperature data

Water temperatures were monitored at four locations within Newman Sound (Fig.
3.2) by Seamon thermographs placed on the bottom at approximately 3 m depth. Water
temperatures were recorded every four hours (1998-2001) or hourly (2002) and averaged
over two days (for presentation). Water temperatures varied little between sites; therefore,
data from Buckleys Cove were analyzed as this site was monitored during all five years

and was near the location seined daily.

3.3.6. Calculation of wind energy

Hourly wind speed and direction data collected during 1998-2002 at Gander
airport (Fig. 3.2), located 70 kilometres northwest of Newman Sound, was supplied by
Environment Canada. There are no large topographical features near Newman Sound and
Gander that would greatly influence local wind patterns. Wind stress relative to the

northeast coast of Newfoundland was calculated using equation 5b in Schneider and

Methven (1988);

W, = W(-W cos (A - 50))

(1)
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where;

W, is the wind stress component in the offshore direction for one day intervals
W is the observed wind speed (m s™') averaged over one day

A is the angle from which wind is blowing relative to north (degrees)

The coast is angled 50° east of north

Only the cross-shore component of wind stress was used as Newman Sound is an

irrotational bay (< 5 km wide).

3.3.7. Assignment of tidal stage
Influence of tidal stage on fish recruitment was tested using the three days with highest
and lowest tidal heights every two weeks to identify spring and neap tides respectively. In

all statistical testing, tolerance of type I error was set at «=0.05. Analysis were performed

in SAS (1988).

3.4 Results
3.4.1. Daily sampling
3.4.1.1. Daily collections of Atlantic cod

A total of 401 Atlantic cod were collected in 127 seine hauls between 12 July and
23 October 2002 at Bermuda Beach (Fig. 3.3). The smallest Atlantic cod in the samples
were 39 mm SL (n=3). These fish were semi-transparent and lacked external parasites.

They were collected on three sample dates; 30 July, 5 August and 4 September (Fig. 3.3).
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On 5 August two small Atlantic cod were collected with an average length of 40 mm SL.
After 5 August, fish length increased with time until 4 September when a 39 mm fish was
sampled. I concluded that during the period of daily sampling at Bermuda Beach in 2002,
Atlantic cod recruited to benthic habitats in late July- early August and again in early
September.
3.4.1.2 Length of Atlantic cod at recruitment

Daily modal lengths of Atlantic cod was regressed against Julian date (F}, ,,= 5.33,
p=0.2601; Table 3.1) to estimate the length of cod at recruitment to the nearshore. Using
the equation from this regression, I calculated the length of cod at recruitment as 43 mm.
This estimate was considered too high because the largest cod collected on the first day of
recruitment, for both pulses identified at Bermuda Beach, was only 41 mm. Visual
identification of distinct modes in many of the daily length frequency plots was prevented
by the relatively small number of Atlantic cod recruiting to Bermuda Beach in 2002 (Fig.
3.3). This may have contributed to the weak relationship between daily modal length of
Atlantic cod and Julian date.

I chose 39 mm as the representative length of Atlantic cod at recruitment. For both

pulses 1dentified at Bermuda Beach during 2002, only fish measuring 39 mm were

collected on the first day of recruitment. This estimate also approximates the size of the
smallest newly recruited Atlantic cod (38 mm SL) reported by Grant and Brown (1998).
Overall, the pulses I observed at Bermuda beach during 2002 were represented by a small

number of fish (Fig. 3.3). I assumed that a relatively small number of cod collected on a
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particular day closely approximated the modal length of the population on that day.

3.4.1.3. Daily collections of Greenland cod.

A total of 4436 Greenland cod were collected at Bermuda Beach during 2002 (Fig.
3.4). The smallest Greenland cod measured 30 mm SL and was collected on 17 July, the
first day Greenland cod recruited to Bermuda Beach during 2002 (Fig. 3.4). The four
Greenland cod collected on this day had an average length of 34.25 mm SL. Fish
measuring 31-32 mm SL were collected on the following five days; 18-22 July. Length of
fish increased with time (Fig 3.4). I concluded there was one recruitment event for
Greenland cod at Bermuda Beach during 2002; it began on 17 July.

To determine the length of Greenland cod on the first day of recruitment (Julian
date 198), I regressed daily modal length of fish and date for Julian date199 onward
(Table 3.1). Modal length of Greenland cod increased with time (F, 5, = 3548.94,
p<0.0001) according to the equation SL= 0.7884 (Julian date) - 123.72 (Table 3.1). Using
this equation, I backcalculated the modal length of Greenland cod on the first day of

recruitment (Julian date 198) as 33 mm.

3.4.1.4. Daily collections of hake
I collected a total of 945 hake at Bermuda Beach during 2002 (Fig 3.5). Hake were

first collected on 18 July when the smallest fish was 55 mm SL and the average length of
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hake was 61.75 mm SL. Smaller hake were collected after this date with the smallest hake
measuring 46 mm SL on 1 August 2002. Daily ranges in length appeared to be broader for
hake (Fig. 3.5) than for Greenland cod (Fig. 3.4). However, modal length of hake
increased with time (Fig 3.5). I concluded there was one recruitment event for hake at
Bermuda Beach during 2002. Note that three small hake were collected earlier (one
measuring 65 mm on 10 July and 69 mm and 75 mm hake on 11 July) at other locations
during biweekly sampling (see Fig. 3.8).

To determine the length of hake on the first day of recruitment at Bermuda Beach
(Day 199), I regressed daily modal length of fish and date for Julian dates from 200
onward (Table 3.1). Modal length of hake increased with time (F, ,,;,= 384.17, p<0.0001)
according to the equation SL= 0.70 (Julian date) - 83.86 (Table 3.1). Using this equation,
I backcalculated the modal length of hake on the first day of recruitment (Day 199) as 55

min.

3.4.2. Biweekly sampling 1998-2002
3.4.2.1 Arrival time estimates

Average catch rates of Atlantic cod sampled during 1999 to 2002 ranged from
9.89 fish per haul in 1999 to 27.09 fish per haul in 1998 (Table 3.2). The average number
of Greenland cod per haul ranged from 9.13 in 1998 to 34.88 in 2000 (Table 3.2). Data on
Atlantic cod collected during 1998 were not included in analyses because only a small

proportion of these fish were sub-sampled and measured. The average number of hake per
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haul sampled annually between 1998 and 2002 ranged from 7.44 in 1998 to 21.56 in 2000
(Table 3.2).

Size frequencies of Atlantic cod sampled during 1999-2002 and Greenland cod
and hake sampled during 1998-2002 were plotted (Appendix 1) to determine recruitment
events. Modal lengths of fish in daily size frequency plots were determined visually and
regressed against date to track pulses of recruitment through time (e.g. Table 3.3;
Appendix 1). All but one regression for Atlantic cod were significant (p-values ranged
from < 0.0001 to 0.0661). An event late in 2002 was included although the regression of
modal length and Julian date was not significant at the five percent level (F;, ;,= 13.65, p
=(0.0661). The small sample size (n=four) was thought to contribute to a high possibility
of type II error. However, explained variance was high (R* =0.87; Table 4.3) and the four
data records were easily distinguished in daily length frequency plots (Appendix 1).
Additional data would not likely change the estimate of recruitment date. Four or five
recruitment events for Atlantic cod were identified each year during 1999 to 2001. During
these years, recruitment was estimated to begin on dates ranging from 19 July in 2001 to
21 October 1999. During 2002 when sampling began earlier than in previous years, six
recruitment pulses were identified; the first event was estimated to begin on 21 May and
the last on 20 October (Table 3.3). However, recruitment of the first pulse may have
occurred before 21 May during 2002 as modal length of Atlantic cod did not change
between Julian dates 144 and 162. There are no seine data prior to 21 May during 2002 to

determine whether this pulse originated earlier. All regressions of daily modal length of
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Greenland cod and date were significant for 1998 to 2002 (p-values ranged from <0.0001
to 0.0004; Table 3.4). The dates when Greenland cod were estimated to begin recruitment
in Newman Sound each year ranged from 5 July (Day 186) in 2000 to 17 July (Day 198)
in 2001 and 2002 (Table 3.4). Daily modal length of hake was related to date each year
during 1998 to 2002 (p-values ranged from <0.0001 to 0.0006). Hake were estimated to
recruit to Newman Sound annually on dates ranging from 22 June (Day 174) in 2000 to

15 July (Day 197) in 2002 (Table 3.5).

3.4.2.2. Summary of physical variables 1998-2002

Winds were mostly offshore during the periods studied (Fig 3.6). From 20 May to
6 December of 1998 to 2002, there were 737 days with offshore winds compared to 268
days with onshore winds. The maximum offshore wind stress in a single day was 2044
km? hr? (mean wind speed was 50 km hr') calculated for 15 October 1999. Onshore wind
stress was never higher than 1130 km* hr* (mean wind speed was 34 km hr), calculated
for 29 October 2000. Daily water temperatures were highly variable, but the seasonal
cycle was apparent each year; waters temperatures increased from approximately 3-4 °C in
May to 16-17 °C in August and then decreased to 3-4 °C by late November (Fig. 3.6). The
plot of water temperature and date for 1999 was distinct from other years because a large
decrease in water temperature (from 17.8 °C to 9.2 °C) occurred in early August and
temperatures slowly increased through August and most of September, never attaining the

levels prior to the decrease. Upwelling occurred episodically in all years. This was
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indicated by water temperature decreases of 4-5 °C over four to eight days and a

subsequent return to predecline levels.

3.4.2.3. Test for wind stress influence on arrival times

I identified 19 recruitment events for Atlantic cod in Newman Sound from 1999
through 2002 (Fig. 3.6). Most (15 of 19) recruitment events were estimated to have begun
either on days with onshore winds or one day following onshore winds (Fig. 3.6). For the
periods ranging from 29 June (last day with onshore winds prior to the first recruitment
event in 1999 to 2001) or 20 May 2002 (first day of sampling in 2002) to the last day of
sampling each year, there were 468 days with offshore winds and 159 days with onshore
winds. Expected odds of an occurrence during onshore winds was p/1-p = (159/627)/
(468/627) = 0.34:1; for offshore winds the odds were p/1-p = (15/19)/(4/19) = 3.75:1. The
observed odds for recruitment of Atlantic cod relative to the odds of onshore winds on the
same day or the following day was 11.04:1. Estimated recruitment dates occur an
improbably high number of times immediately after upwelling ceases (G=25.10,
p<0.0001) (Fig. 3.6; Appendix 2). All 19 recruitment events were estimated to have
begun on days with onshore winds or within two days following onshore winds. All
recruitment events for Atlantic cod were associated with onshore wind events following
upwelling (Fig. 3.6).

Similar to Atlantic cod, estimated recruitment dates of Greenland cod and hake

occurred after cessation of offshore winds. During four of five years, estimated
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recruitment dates of Greenland cod to sites in Newman Sound occurred on days with
onshore winds (Fig. 3.7). During 2000, estimated Greenland cod recruitment began two
days after a period of onshore winds (Fig. 3.7). In three (1998, 1999, 2002) of five years,
estimated dates of hake recruitment occurred on days with onshore winds (Fig. 3.8).
During 2000 and 2001, estimated hake recruitment occurred two days and one day,

respectively, following the onset of onshore winds (Fig. 3.8).

3.4.2.4. Influence of tidal stage on arrival times

The three days each month with the highest and lowest tides were 1dentified to test
whether recruitment of Atlantic cod, Greenland cod and hake to sites in Newman Sound
was associated with tidal stage (Fig 3.9). During the study periods, there were 126 days
with highest tides and 126 days with lowest tides. The expected odds of recruitment on a
day with highest or lowest tides was p/1-p=(126/627)/(501/627) = 0.20:1. Three of 19
events were estimated to have begun on days with the highest tides and three were
estimated to have begun on days with lowest tides. The odds for three positives in 19
events 1s 1.053:1. The dates when recruitment was estimated to have begun were not
significantly associated with highest (G= 0.234, p=0.6285; Appendix 2) or lowest tides
(G=0.234, p=0.6285; Appendix 2). On 375 days, tides were intermediate between high
and low. The expected odds of recruitment on days with intermediate tides was p/1-p =
(375/627)/(252/627)= 0.60:1. There were 13 of 19 events estimated to have begun on days

with intermediate tides. The observed odds ratio was 0.786:1 which was not significant

47



(G=0.622, p=0.4303; Appendix 2). Greenland cod were estimated to recruit to my sites on
spring tides only during 1998 and on a neap tide only during 2002 (Fig 3.9). Recruitment
of hake to my sites on spring tides was estimated to occur only once, during 1998 (Fig.
3.9). Other recruitment events for Greenland cod and hake were estimated to begin
between tidal extremes. Based on Figure 3.9, it is clear that fish recruitment was not
associated with tidal phase, even in a general way. I concluded daily recruitment of
Atlantic cod, Greenland cod and hake to nearshore Newfoundland waters was not related

to the tidal cycle (spring and neap).

3.5 Discussion

Recruitment of Atlantic cod, Greenland cod and hake to sites in Newman Sound
occurred an improbably high number of times during onshore winds, supporting the
theory that fish recruitment nearshore 1s associated with cessation of upwelling (Hjort and
Dahl, 1900). However, fish did not recruit to the near shore following every onshore wind
event. Greenland cod and hake recruited during only one event annually. This may be
linked to limited spawning periods and locations, as discussed below. Atlantic cod
recruited episodically during the sampling periods which extended from May to
November in 2002 and July to November during 1999 to 2001. This pattern is consistent
with larval transport during downwelling. I suggest that transport of fish larvae to the
coast is a two step process. First, larvae accumulate at an upwelling front (Munk et al.

1995; Lochmann et al. 1997; McLaren ef al.1997). Then, following an upwelling event
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the front moves to the coast (downwelling) and deposits larvae (Farrell ez al. 1991,
Roughgarden ef al. 1991), which then settle into bottom habitats and take up a juvenile
existence. During the next onshore wind event, the front moves toward the coast but does
not contain larvae. Concurrent with this downwelling event, larvae that are relatively far
from the coast drift shoreward but do not reach the coast. These larvae resupply the next
upwelling front that develops and the cycle begins again. There are a number of
observations to support this scenario. Recruitment of Atlantic cod to my sites never
occurred during two consecutive onshore wind events rather, recruitment was often
associated with alternate periods of onshore winds. Upwelling fronts are known to exist
off the northeast coast of Newfoundland (Schneider and Methven, 1988). Laprise and
Pepin (1995) observed eggs and larvae of a number of species including Atlantic cod were
most abundant on the eastern side of Conception Bay when winds were westerly but
during a southerly wind event, highest abundance was on the western side, associated
with the warmest waters. Episodic recruitment of Atlantic cod occurs simultaneously all
along the northeast coast of Newfoundland (Methven, 1996) suggesting that the process
generating the pattern operates at large spatial scales. Identifying large scale influences on
the recruitment success of Atlantic cod is particularly important now, as stocks off
Newfoundland have been reduced to less than two percent of historic levels (Lilly et al.,
2003) and have been declared endangered by the Committee On the Status of Endangered
Wildlife in Canada (COSEWIC, 2003).

Previous studies conducted near shore identified two to four recruitment events for
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Atlantic cod annually whereas I observed at least five events during 2002. Recruitment
pulses were thought to originate during late-August to early-September and October
(Methven and Bajdik, 1994), May and mid-August (Pinsent and Methven, 1997) and
during three or four autumn periods (Grant and Brown, 1998; Gregory et al. 2002). There
are two potential explanations for variation in the number of annual recruitment events
recorded during sampling near shore. First, frequency of onshore wind events during the
spawning period may vary among years. During certain years (1998, 2001 and 2002) there
were periods of two to three weeks without onshore winds during July or August.
Onshore winds were more frequent during the summers of 1999 and 2000. Second,
spawning time and duration differs between areas both offshore (Myers et al., 1993;
Hutchings and Myers, 1994) and inshore (Thompson, 1943; Smedbol and Wroblewski,
1997). The number of annual recruitment pulses of Atlantic cod on the northeast coast of
Newfoundland varies with the timing and number of downwelling events.

Early physical models of egg and larval drift showed offshore movement with
prevailing winds, which are from the southwest during summer and west or northwest in
autumn and winter. Winds blow from the east during short periods, associated with
passing storms. Therefore, models that incorporated storm passage (Helbig et al., 1992)
suggested that Atlantic cod recruitment to the coast is small and only occurs after
sustained onshore winds, which are rare. Later baroclinic models (Pepin and Helbig,
1997) suggested that more larvae reached coastal areas, but retention was still only 10 %.

Nevertheless, roughly half of the small cod Beacham ez al. (2000) sampled from Newman
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Sound during August 1999 were genetically most similar to adults caught on Funk Island
Bank; in their October sample, 30 percent of the fish were most similar to offshore cod
(Funk Island Bank and northern Grand Bank) while 70 percent originated inshore.
Therefore, Atlantic cod larvae may not drift passively. Larvae that maintain their vertical
position in the water column (depth-keeping), will collect at an upwelling front, which 1s
convergent at the surface. Accumulations of Atlantic cod larvae have been found at
relatively stationary fronts (Lochmann et al., 1997; McLaren et al., 1997; Munk et al.
1999). Larvae that accumulate at upwelling fronts near the coast are transported
shoreward when upwelling favorable winds subside and the front collapses quickly
(Farrell et al.,1991; Roughgarden et al.,1991).

On a relatively coarse temporal scale, initiation of recruitment by Greenland cod
to the nearshore may be determined by the location and timing of spawning and
development rates of eggs and larvae. Greenland cod recruited to Newman Sound once in
each of the five years, 1998 to 2002. This species spawns during February and March
primarily in shallow waters (Scott and Scott, 1988). Greenland cod eggs are demersal
(Cohen et al., 1990) which prevents loss from offshore drift. Generally, both adult and
juvenile Greenland cod inhabit coastal areas. Only low numbers have been collected
further from shore (Nielsen and Andersen, 2001). With winds offshore on most days prior
to settlement, a relatively high proportion of Greenland cod larvae may be lost from
waters nearshore 1n the absence of a retention mechanism. Larvae that drift away from the

coast may be retained in an upwelling front if they have a behavioural response (to light,
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temperature, or salinity) that results in maintaining position in the water column.
Greenland cod recruited to Newman Sound after the seasonal thermocline was established
and I found that arrival times near shore were associated with onshore winds. During the
period from late-July to mid-August, onshore wind events are sometimes rare (€.g.1998,
when mean catch was lowest of the five years studied). Therefore, delayed development
of eggs or larvae may result in poor recruitment at the coast. Annual recruitment of
Greenland cod to the northeast coast of Newfoundland may be influenced by
environmental (wind and water temperature) conditions during early summer.

Little 1s known about hake reproduction in Newfoundland waters. Hake are
thought to spawn during winter or early spring (Scott and Scott, 1988), but the locations
are not known. Local fishers in Bonavista Bay report catching hake during winter in
shallow water habitats similar to those where Greenland cod spawn. Populations of hake
have been documented on the southern Grand Banks (Kulka and Simpson, 2002), but not
closer to my sites. Hake have pelagic eggs (Scott and Scott, 1988), which are subject to
drift, unlike demersal eggs of Greenland cod. Hake recruited to Newman Sound in early
summer, similar to Greenland cod and the arrival times were also associated with onshore
winds. Although there were a number of similarities between recruitment of hake and
Greenland cod, which mostly originate near shore, my data do not indicate whether the
hake I collected originated from spawning offshore or near shore.

Recruitment of Atlantic cod, Greenland cod and hake was not associated with tidal

stage. In contrast, settlement of invertebrate spat and cyprids in the California Bight
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occurred during periods of increasing water temperatures associated with internal tidal
bores (Pineda, 1991). Perhaps tidal forcing influences larval recruitment to estuarine areas
rather than to more open areas of the coast. Larval English sole recruit to Oregon estuaries
on the highest tides every two weeks but arrival at coastal sites is associated with onshore
winds (Boehlert and Mundy, 1987). Similarly, recruitment of Rhabdosargus sarba and
Pelates sexlineatus to Australian estuaries depends on tidal stage but wind induced
advection may be required for transport to the coast (Smith and Suthers, 2000). I can not
rule out the possibility that tidal forcing influences movement of fish larvae into estuaries
on the northeast coast of Newfoundland. However, for the three species of fish that I
investigated, there was no association of recruitment events in Newman Sound with tidal
stage.

Fine scale data were required to detect associations between fish recruitment at the
coast and wind stress. Using daily catch data for Atlantic cod permitted tracking of
multiple length frequency modes through time. My results showed that daily recruitment
of Atlantic cod, Greenland cod and hake is associated with onshore winds. Typically,
winds were onshore for no more than two or three consecutive days. Previous studies on
the influence of wind on larval transport were conducted at coarser resolutions. Results of
these studies were inconsistent. Modelling of particle drift using a resolution of no more
than ten days (captures storm tracks) simulated particle drift from offshore banks to the
near shore only during prolonged onshore winds, which are rare (Helbig et al. 1992;

Davidson and deYoung ). Simulations using data at the monthly scale (Anderson et

53



al.,1995) predicted particles drift to the coast only occasionally. The average movement of
larvae is offshore, but onshore movement occurs occasionally.

In conclusion, recruitment of Atlantic cod, Greenland cod and hake to near shore
bottom habitats was associated with onshore wind events following upwelling. I observed
Atlantic cod recruited to near shore sites during multiple (four to six) events annually
during 1999 to 2002. Recruitment events occurred episodically during the summer and
autumn periods studied. Greenland cod and hake recruited to my sites only once annually,
during June or July. During daily seining at one location in Newman Sound during 2002,
Greenland cod and hake were first collected during a period of increasing water
temperatures and onshore winds as predicted. Analysis of data collected biweekly at 12
sites during 1998 to 2002 verified that the annual recruitment events for Greenland cod
and hake were associated with onshore winds. Similarly, 19 of 19 estimated recruitment
events for Atlantic cod during 1999 to 2002 occurred within one day following onshore
winds. Results were consistent with larval transport to my sites during onshore
movements of convergent fronts following upwelling. Retention at an upwelling front
depends on behavioural responses of larvae, which was beyond the scope of my study.
Upwelling fronts may play an important role in retention and recruitment of a number of

fish and invertebrate species in Newfoundland coastal waters.
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