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Abstract 

Portable electronic applications are typically powered by batteries, which have limited 

lifespan and size constraints. Energy harvesting from parasitic vibrations using 

piezoelectricity is a demanding solution to improving the power supply efficiency of low-

power portable devices and autonomous sensor networks. Vibrational energy harvesters 

with high operating frequency are not desirable considering the low-frequency 

characteristics of ambient vibrations (e.g., wind). The operation frequency range (known 

as bandwidth) is a key feature that should be improved under an unpredictable or 

uncontrollable condition of ambient vibrations. In this thesis, several piezoelectric MEMS 

energy harvesters have been developed to tackle these challenges. 

In order to facilitate the design process and determine the optimum physical 

dimensions, an artificial neural network is used to model the designs. In the first step, a 

sample dataset is created by numerical modeling to train a deep neural network. The 

validation results indicate that the trained DNN model can achieve around 90% estimation 

accuracy of device features, such as resonant frequency and harvested voltage. Next, this 

trained model is integrated with genetic algorithm as a performance estimator to optimize 

the geometry of the harvester to lower the resonant frequencies and improve the harvested 

voltage.  
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With the intention of improving the accuracy of deep neural network, the transfer 

learning method is used for modeling another design. In this method, the DNN is firstly 

trained with a dataset created by the lump-parameter model; then, the trained network is 

transferred to a new deep model for another round of training with highly accurate FEM 

data samples to further reduce prediction error. It was shown that the new model can 

estimate the device features with more than 94% accuracy, which is 4% higher than the 

regular DNN. Finally, in the last design, our proposed AI-based methodology is utilized to 

estimate the mode shapes to enlarge the operational bandwidth specifically. The optimized 

energy harvesters have been fabricated through a standard micromachining process. Our 

measurement results confirm that the proposed AI-based methods can help reach the 

balanced summit of higher power density, lower resonant frequency, and larger bandwidth 

among the published works. 
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Chapter 1    Introduction 

 

 

Energy harvesting from renewable energy sources such as wind, solar, hydro, 

geothermal, and biomass energy has been significantly improved during the past years. 

However, up to now fossil fuels are still producing more than 80% of the total global energy 

[1], which somehow exhibits a likely long journey for the alternative energy resources 

especially renewable energy to go in order to meet the future demand and completely 

resolve the environmental concerns. There is no doubt that more clean energy sources are 

being explored, and this research is also an effort in the same direction. Other clean energy 

sources include hydrogen, nuclear fusion energy with no hazardous waste, offshore wind, 

and even next-generation space power technologies, all of which are currently developing 

[2]. Many efforts have been made to reduce or eliminate the adverse impacts of natural 

energy sources on the surrounding environment. Besides natural energy sources, energy 

harvesting is another solution to providing sustainable power supplies without lifetime 

concerns.  
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If low-power low-voltage small electronic devices such as wireless sensor networks for 

environmental monitoring are located in remote inaccessible regions, providing sustainable 

power supplies is highly demanded. Energy harvesting can also provide a solution to harsh 

environmental conditions where using batteries is impractical. The batteries, which operate 

by using the chemical energy stored inside, must be sufficiently robust to survive 

anticipated environmental conditions. There should be minimal electrolyte leakage, which 

may take place during severe short-circuit environments. Particulate ingress, extreme 

temperature, physical impact, electrostatic discharge (ESD), electromagnetic interference 

(EMI), and extreme vibration may form the harsh environmental conditions, which, if 

unchecked in advance, will readily destroy batteries over time. Moreover, batteries are very 

polluting environmentally considering the heavy metals like lead and cadmium used inside. 

Hence, cleaner alternatives are being actively pursued.  

Capturing energy from ubiquitous parasitic vibrations has become more appealing for 

small-scale applications among various renewable energy sources such as solar or thermal 

energy [3]. Unused vibration may be produced by human activities, vehicles, wind, or other 

environmental movements [4]. For converting vibration energy to electricity, the 

techniques based on electrostatic, electromagnetic, triboelectric, and piezoelectricity are 

among the most feasible ones. Many aspects of these techniques have been intensively 

studied in the literature for MEMS scale design. For example, in electromagnetic 

converters, a bulky magnet is usually required to achieve high efficiency [5]. Therefore, 

this approach would not fit into small scale (i.e., less than ~0.5cm3) applications, and the 

portability feature may not be easily achieved. Compared to others, energy conversion 
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based on piezoelectricity features higher power density and better compatibility with 

micromachining fabrication process.  

Micro-Electro-Mechanical Systems (MEMS) is a miniaturized combination of 

mechanical and electronic parts, typically with dimensions less than one millimeter, which 

are made by using specific microfabrication techniques. MEMS technology was first 

introduced in the 1960s [6], and it has significantly changed the way of designing sensors 

and actuators. The advantages of MEMS devices include low power consumption, 

flexibility, compatibility, fast integration, transportability, and low thermal constant. 

MEMS devices are widely used for either sensing or actuation. In this thesis, we will 

explore the concept of producing energy from vibrations in MEMS devices, which involves 

piezoelectric materials for energy conversion, as one of the most energy-dense sources 

among alternatives. 

In this thesis, we have developed three piezoelectric MEMS vibration energy harvesters. 

Moreover, a design automation methodology based on deep artificial neural network and 

genetic algorithm has been proposed to obtain optimal geometry of energy harvesters. The 

first design presents a serpentine-shaped structure with a low resonant frequency, which is 

optimized by our proposed optimization method to improve the power capturing efficiency 

and reduce the operation frequency. As for the second energy harvester, a new transfer 

learning technique is used to enhance the performance of our optimization method for a bi-

stable structure. Finally, in the last work, a new multimode structure is designed to further 

improve the efficiency of the harvester in terms of operational bandwidth. 
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The rest of the thesis is structured as follows. Chapter 2 reviews the basics and previous 

works in vibration-based energy harvesting. In Chapter 3, a piezoelectric MEMS energy 

harvester with the capability of operating at a low resonant frequency (i.e., less than 200 

Hz) is proposed. Chapter 4 presents a transfer-learning-based optimization methodology to 

enhance the performance of an M-shaped energy harvester. A new structure with wideband 

operation is discussed in Chapter 5. In Chapter 6 we draw a conclusion and point out future 

works for this research. 
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Chapter 2    Fundamentals and Literature Review  

 

 

2.1. Piezoelectric Energy Harvesting 

The piezoelectric material is able to convert mechanical stress into an electrical charge, 

which is termed a direct piezoelectric effect. The piezoelectric material can also transform 

electrical charge into mechanical stress, called the converse piezoelectric effect. The 

combination of the actuation strain caused by the applied electric voltage and mechanical 

strain from mechanical stress forms the total strain. Fig. 1 shows the principle working of 

piezoelectric material, and the well-known constitutive equation describing the 

characteristics of a piezoelectric material can be given by [7]:  

 

Fig. 1. Piezoelectric transducer 
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𝑆1 = 𝑠11
𝐸 𝑇1 + 𝑑31𝐸3 ,                                                        ( 1 ) 

𝐷3 = 𝑑31𝑇1 + 𝜀33
𝑇 𝐸3 ,                                                 ( 2 ) 

where 𝑆1  is the strain, 𝑇1  is the stress, 𝐷3 is the charge density, 𝐸3  is the electric field, 

𝑑31 is the piezoelectric constant, 𝑠11
𝐸  is the mechanical compliance at constant electric field, 

and 𝜀33
𝑇  is the permittivity at constant stress. The index numbers represent the directions 

relative to the polar axis. Two common coupling modes for piezoelectric transducers are 

displayed in Fig. 2. In 𝑑33 mode, the direction of applied stress is parallel to the polar axis, 

while in 𝑑31 mode, they are perpendicular to each other. 

 

𝒅𝟑𝟑               𝒅𝟑𝟏 

Fig. 2. Two modes of piezoelectric material [8] 

 

The conventional MEMS energy harvesters typically use a single straight cantilever 

clamped at one end and a proof mass at the tip free part of the other end to collect ambient 

vibrations. The piezoelectric materials can be deposited either on one side of the cantilever, 

called unimorph configuration, or on both sides, called bimorph configuration [9]. This 
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commonly used structure can be modeled as a single degree of freedom lumped spring-

mass system [10]. So, the equation of motion can be expressed as: 

𝑚𝑧̈(𝑡) + 𝑏𝑧̇(𝑡) + 𝑘𝑧(𝑡) =  −𝑚𝑎(𝑡) .                                    ( 3 ) 

By using Laplace transform, the transfer function of the system could be obtained as: 

𝑧(𝑠)

𝑎(𝑠)
=

1

𝑠2+
𝑏

𝑚
𝑠+

𝑘

𝑚

 =   
1

𝑠2+𝜔𝑛𝑄𝑠+𝜔𝑛
2  ,                              ( 4 )  

where 𝜔𝑛  is the natural frequency of the system, and 𝑄 is the quality factor. Thus, the 

resonant frequency of the system can be written as:  

𝑓𝑛 = 
1

2𝜋
√

𝑘

𝑚
  ,                                         ( 5 ) 

where k is the bending stiffness and m is the effective mass. The maximum deflection and 

energy conversion occurs when the applied vibration is close to the resonance frequency. 

A few deviations from resonance frequency results in a significant power loss. Although 

these types of harvesters are easy to model and build, they usually have high natural 

frequency and narrow bandwidth, which may not be desirable for a real environment with 

vibrations normally in a low-frequency range. Recently several approaches have been 

proposed to improve the frequency features of energy harvesters. 
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2.2. Previous Works 

One common way to reduce the operational frequency is to add large proof masses 

into the cantilever [11]. Another feasible solution is to increase the effective surface area 

of cantilever by using a spiral structure. Song et al. [12] showed that the natural frequency 

of spiral energy harvesters could be reduced by increasing the number of spiral turns. 

However, in this design the power efficiency gradually decreases after five turns due to 

torsion, which becomes dominant in the first mode of vibration, and voltage cancellation 

occurs as a result. The output peak voltage of this harvester is shown in Fig. 3 

 

Fig. 3. Frequency response of spiral designs with various number of turns 

Apo et al. [13] developed several arc-based harvesters without any additional masses 

in the zigzag or simple straight structure, which are displayed in Fig. 4. The cantilevers are 

formed by a series of S-shaped segments dominating the bending mode as the first natural 

frequency of the devices. The experimental results confirm that the arc-based harvesters 

can resonate at significantly lower frequencies than their linear counterparts and exhibit 



9 

 

less torsion than the spiral designs. Sharpes et al. [14] also investigated the performance of 

the zigzag-shaped structure in comparison to flex and elephant structures in terms of low-

frequency feature and electromechanical coupling. They have shown that the elephant-

shaped harvester can hold more power density than the other two devices, due to 

elimination of the torsional effect. Nevertheless, the amount of the reported harvested 

power is relatively small especially considering the fact that the design is not exactly fitted 

into the regular MEMS scale. 

    

Fig. 4. Arc-based energy harvesters 

Another well-known approach to reduce the operational frequency range is based on 

magnet or impact method (called frequency up-conversion technique) by using stoppers. 

For instance, Dechant et al. [15] placed two stoppers as impact members at both sides of 

the disc-shaped energy harvester with a proof mass in the middle. Under the shock 

excitation, the stoppers make contact with the diaphragm and limit the device oscillation . 

As a result, the system undergoes an impulse reaction and starts to vibrate at its own 

resonant frequency. In such a setting, the oscillation is transferred to a high frequency (i.e., 

340 Hz), although energy dissipation and even damage may occur due to impact. 
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In order to expand the bandwidth of energy harvesters, researchers have proposed 

distinct techniques, including integration of multiple cantilever beams or irregular 

geometries with different mode shapes, frequency tuning, and nonlinear method 

[16][17][18][19]. For the first technique, multiple resonant frequencies are generated by 

adding degrees-of-freedom [20][21] or applying generator arrays to broaden the harvesting 

bandwidth [22]. As for the frequency tuning technique, magnets may be used as a non-

contact mechanism to change the axial tension of the beam. For example, a two degrees of 

freedom energy harvester was introduced by Wang and Tang in [23] with magnetic 

coupling. In this work, a parasitic oscillator is attached to the main beam to get the second 

resonant mode, and the magnet is used to impose nonlinear force at the tip part. Although 

their results indicate an increase in bandwidth by 10 Hz, the magnetic force requires high-

level excitation for this type of harvesters to operate effectively. Moreover, a magnetic-

based setting makes the device fabrication complicated for the MEMS micromachining 

process. In [20][19], Nabavi and Zhang developed a piezoelectric MEMS harvester by 

using the nonlinear method. Although the boosted bandwidth is considerable, the 

operational frequencies are relatively higher and the magnitude of the harvested voltage is 

fairly limited. 

2.3. Power Management Circuit 

Efficient power transfer from the piezoelectric device to the load is another area to be 

studied in energy harvesting. Since energy harvesters usually have low output power, it is 

essential to use a power management circuit to provide efficient AC-DC conversion and 
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voltage regulation. The first stage of AC-DC conversion is full-wave rectification; however, 

the conventional full-bridge rectifier could not be effective enough due to the voltage drop 

across the diodes. One way to overcome this issue is to use a gate cross-coupled or fully 

cross-coupled configuration with an ultra-low threshold voltage (i.e., zero-threshold 

voltage) MOSFETs [24]. Another approach to reducing the voltage drop barrier is to use 

active rectification. Fig. 5 displays the schematic of an active diode based on comparator, 

which is equivalent to an ideal diode. This configuration almost performs with no forward 

voltage drop and perfectly block the reverse current. 

 

Fig. 5. Circuit schematic of active diode [25]. 

The impedance of the piezoelectric transducer should be matched to an external load in 

order to deliver sufficient power. Therefore, an impedance matching circuit is required to 

be interfaced between the piezoelectric harvester and external load. The following equation 

expresses the input impedance of the piezoelectric harvester:  

𝑍 =  
1

2𝜋𝜔∙𝐶𝑝
  ,                                                    ( 6 )  
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where 𝐶𝑝 is the electrical capacitance of the piezoelectric element, and 𝜔 is the resonant 

frequency of the harvester. The maximum power is extracted when the load impedance is 

the complex conjugate of the source impedance. Since the piezoelectric material has a high 

electrical capacitance, a matching circuit requires a bulky inductor to cancel its capacitive 

effect. Moreover, the value of the inductor should be variable depending on the resonant 

frequency, which is not feasible through the conventional passive inductor. Several 

solutions have been investigated in the literature to address this inductor emulation. 

If the load impedance has only the resistance term, the optimum value should be  

𝑅𝐿 = √𝑅𝑠
2 + 𝑋𝑠

2 , in order to deliver maximum power. It can be seen that the optimum 

resistance is also dependent on the resonant frequency; however, making a variable 

resistive load is more practical than complex conjugate matching. For example, Wang et 

al. [26] propose a circuit based on maximum power point tracking (MPPT) method to 

achieve variable resistive load. A couple of switching techniques called as synchronized 

switch harvesting on Inductor (SSHI) [27], and synchronous electric charge extraction 

(SECE) [28], have been studied in the literature to accomplish complex conjugate matching. 

In the SSHI method, an inductor is placed across the output of harvester with a switch. At 

the start of each cycle, the switch closed for a short period to cancel the opposite charge of 

internal capacitance. In the SECE circuit, the switch closed at the peak voltage of each 

cycle to form an LC circuit. Then the charge of internal capacitor is completely transferred 

to the inductor to be used at the load part. Some of these power managing techniques will 

be used in our measurements in the following chapters.  
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Chapter 3     

Deep-Learning-Based Optimization for a Low-

Frequency Piezoelectric MEMS Vibration 

Energy Harvester 

 

 

3.1. Introduction 

In this study, we are motivated to design a new low-frequency MEMS piezoelectric 

vibration energy harvester with enhanced energy conversion efficiency. In this regard, a 

doubly clamped cantilever with a serpentine pattern associated with several proof masses 

is proposed to reduce the resonant frequency and to improve the overall efficiency. The 

proposed structure features multi-degrees of freedom, which can also offer the potential of 

operating at multiple mode shapes in order to expand the device bandwidth. To derive an 

optimal dimension considering our fabrication constraints, an optimization approach is 

required to accelerate the design process. The conventional optimization techniques 

including variant-mesh analysis and correlation matrix need massive human intervention 

to reach satisfactory results [29]. Thus, an automated design methodology with minimum 



14 

 

human effort based on genetic algorithm (GA) [30] has been adopted in this research to 

achieve the optimal performance for our proposed energy harvester. 

While GA proves to be valuable for solving many hard problems, finding an effective 

fitness function to guide its evolution may be challenging due to either complex nonlinear 

modeling or high computation cost of application-specific simulation. For reduction of 

computation cost in optimizing problems whose design configuration space is highly 

complex or exact model is not readily available, e.g., large degrees of freedom associated, 

artificial intelligence (AI) has become very helpful for estimating system functionalities. 

An artificial neural network specifically with multiple layers between input and output, 

which is also known as deep neural network, is a powerful tool to model complex nonlinear 

relationship based on learning from the prepared data samples. 

As an example of using deep learning for fault diagnosis of direct online induction 

motors, Zaman et al. [31] studied three graph-based semi-supervised learning methods. 

Based on the lab test data of a 0.25 HP induction motor under healthy, single- and multi-

fault conditions, features for machine learning are extracted from the raw experimental 

stator current and vibration data with the discrete wavelet transform. This research 

concludes that the greedy-gradient max cut method is able to derive better classification 

results over the other alternatives. In another work, Zhao and Zhang [32] proposed an 

automated trial-and-error approach that combines reinforcement learning with deep 

learning for analog circuit sizing. Through the self-improvement learning way, the 

proposed method behaves like a designer, who learns from trials and derives experience, 
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evolving itself to finally discover the sizes that satisfy the performance specification based 

on simulation results.  

In this chapter, we have proposed to train a deep neural network to model and predict 

the behavior of our newly devised MEMS harvester instead of using time-consuming FEM 

simulations or deriving complex analytical models for device geometry optimization. 

Eventually, our trained model was integrated with the genetic algorithm to optimize 

physical attributes of the harvester for the best performance. Our main contributions of this 

chapter are summarized as follows: 

• We propose a serpentine-shaped piezoelectric MEMS energy harvester to lower 

operational frequency and enhance power efficiency in the first two vibration 

modes. 

• To improve the performance of the proposed design, we have trained a deep 

artificial neural network with high accuracy. Our experimental results show that the 

trained model can predict device characteristics, such as resonant frequency and 

harvested voltage, with 90% accuracy. 

• An automated design method combining GA and deep learning is developed to 

optimize the energy harvester in terms of operational frequency and harvested 

voltage. 

• To demonstrate its manufacturability and validate its operation, we have prototyped 

the optimized harvester by using a micro-fabrication process. Our measurement 



16 

 

shows its superiority in terms of normalized power density and operational 

frequency compared to other studies. 

The rest of the chapter is structured as follows. The design and modeling of the 

serpentine-shaped structure are described in Section 3.2. The deep artificial neural network 

is trained and tested as our model in Section 3.3. In Section 3.4, AI-based optimization is 

presented. The fabrication process is explained in Section 3.5. The simulation and 

measurement results are discussed in Section 3.6, followed by Section 3.7 as conclusion. 

3.2. Design and Modeling 

The structural diagram of the proposed low-frequency MEMS harvester is depicted in 

Fig. 6. This energy harvester is anchored on two sides, enclosing eight cantilever beams 

with deposition of thin piezoelectric material on their surface. The beams are linked 

together through seven proof masses, which make the device heavy enough for operating 

at low frequencies. The structure can be overall viewed as a doubly clamped serpentine 

cantilever with the capability of multi-degrees of freedom, including bending and torsional 

modes. The uniform distribution of masses over the device offers lower mechanical 

stiffness and larger deflection in comparison with regular piezoelectric cantilevers. All the 

beams are covered by a piezoelectric film, which are electrically unconnected from one 

another. Separate terminal pads are located on the unmovable substrate base to make an 

electrical connection with the corresponding electrodes on the piezoelectric layer. In this 

way, the whole surface of the device can become active areas for collecting electric charges. 
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(a) (b) 

Fig. 6. Schematic of the proposed low-resonant-frequency piezoelectric MEMS energy 

harvester: (a) side view, (b) top view 

 

To investigate the functionality of the proposed energy harvester in different 

operational modes, the COMSOL Multiphysics software package (Version 5.4) was used 

for FEM simulations. For this purpose, we modeled the energy harvester in 3D space by 

using isotropic materials for the cantilever and piezoelectric layer. The Silicon (Si) material 

with the density of 2329 kg/m3 and Young’s modulus of 170 GPa was defined to form 

beams. A piezoelectric layer was made of Aluminium nitride (AIN) with the density of 

2700 kg/m3 and Young’s modulus of 70 GPa. The simulation results for the first two modes 

are illustrated in Fig. 7. Obviously, involving a greater number of natural frequencies offers 

an opportunity to gain larger bandwidth. As the torsional effect does not heavily dominate 

the very first few modes of this structure, the rest of our optimization in this work strives 

to closely locate such frequencies (especially the first-mode resonant frequency) below or 

around 200 Hz to meet the requirement of low resonant-frequency operation. 



18 

 

According to Fig. 7, four masses on the opposite side of the two clamped parts (i.e., 

Mass1, Mass3, Mass5, Mass7) have maximum upward and downward vibration in the first 

mode, while the other three masses on the same side of the clamped parts (i.e., Mass2, 

Mass4, Mass6) vibrate with smaller amplitude in the identical phase but opposite to their 

counterparts. In the second mode, the anchor side masses (i.e., Mass2, Mass4, Mass6) 

maximally oscillate in the same phase, while the opposite side masses (i.e., Mass1, Mass3, 

Mass5, Mass7) have a smaller amount of oscillation with different phases. Such results 

reflect different directions and rates of curvature for each beam, which cause distinct 

charge polarity and power density in each mode. Thus, using a single connected 

piezoelectric layer for all the cantilevers may not be a good solution due to voltage 

cancellation. In such a situation, splitting the piezoelectric layer into discrete zones and 

applying proper circuitry are essential for improving the harvesting efficiency. 

  

(a) (b) 

Fig. 7. FEM simulations of the propsoed piezoelectric MEMS energy harvester: (a) the 

1st mode shape at 125 Hz, and  (b) the 2nd mode shape at 223 Hz. 
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The equivalent lumped parameter model of the proposed harvester is illustrated in Fig. 

8 [33]. The equivalent stiffness and damping ratio of the ith beam is denoted by 𝑘𝑖 and 𝑐𝑖 

respectively, and 𝑚𝑖 refers to the equivalent ith mass. Since the size of the lateral beams 

(i.e., Beam 1 and Beam 8) are identical, the stiffness values of 𝑘1 and 𝑘8 can be considered 

equal and marked as 𝑘𝑙, and the stiffness values of the middle beams (i.e., 𝑘2, 𝑘3, … , 𝑘7) 

can be assumed identical as 𝑘𝑚 for the same reason. Thus, the mass and stiffness matrixes 

of the system can be written as: 

 

[𝑀] =  [

𝑚1 0 … 0
0 𝑚2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑚7

]  ,                                                   ( 7 )                                       

 
 

[𝐾] =

[
 
 
 
 
 
 
𝑘𝑙 + 𝑘𝑚 −𝑘𝑚 0 0 0 0 0
−𝑘𝑚 2𝑘𝑚 −𝑘𝑚 0 0 0 0

0 −𝑘𝑚 2𝑘𝑚 −𝑘𝑚 0 0 0
0 0 −𝑘𝑚 2𝑘𝑚 −𝑘𝑚 0 0
0 0 0 −𝑘𝑚 2𝑘𝑚 −𝑘𝑚 0
0 0 0 0 −𝑘𝑚 2𝑘𝑚 −𝑘𝑚

0 0 0 0 0 −𝑘𝑚 𝑘𝑙 + 𝑘𝑚]
 
 
 
 
 
 

 .                      ( 8 ) 
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Fig. 8. The equivalent lumped parameter model of the proposed piezoelectric MEMS 

energy harvester. 

With the mass and stiffness matrix, we can derive the eigenvalues and eigenvectors, 

which can help us obtain the natural frequencies and mode shapes of the system, 

respectively. By considering the Newton’s 2nd law for the beams and Kirchhoff’s loop law 

for the circuit, the electromechanically coupled equations of the piezoelectric energy 

harvester can be obtained [34] as follows, 

𝑚𝑖𝑋̈𝑖  + 𝑐𝑖(𝑋̇𝑖 − 𝑋̇𝑖−1) + 𝑘𝑖(𝑋𝑖 − 𝑋𝑖−1) +  𝛼𝑖𝑉𝑖  = 

𝑐𝑖+1(𝑋̇𝑖+1 − 𝑋̇𝑖) +  𝑘𝑖+1(𝑋𝑖+1 − 𝑋𝑖) + 𝛼𝑖+1𝑉𝑖+1                                                                       ( 9 ) 

 

𝛼𝑖(𝑋̇𝑖 − 𝑋̇𝑖−1) − 𝐶𝑝𝑖𝑉̇𝑖 = 𝑉𝑖 𝑅⁄  ,        𝑖 = 1, 2, … , 7                                                                  ( 10 )                                             

 

where 𝑋𝑖 and 𝑋̈𝑖 denote the displacement and acceleration of the ith mass, respectively. It 

is worth mentioning that 𝑋0  and 𝑋8  refer to the substrate base displacement along the 

excitation direction. The constitutive voltage from the ith beam to the load resistance R can 

also be denoted by  𝑉𝑖 , while the electromechanical coupling coefficient 𝛼𝑖  and the 

electrical capacitance 𝐶𝑝𝑖 define the characteristics of piezoelectric elements that can be 

obtained from equations (1) and (2) presented in the previous chapter.  
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As an illustration, Fig. 9 depicts the maximum deflection of Mass 1 in the frequency 

domain obtained by FEM simulation and our proposed lumped parameter model above in 

the first mode. Although the proposed lumped model is able to qualitatively predict the 

dynamics of the devised harvester, it is still not able to precisely describe the exact 

characteristics of the mechanical system due to approximate modeling. Therefore, in the 

next section we will study how to utilize deep artificial neural network as an alternative to 

the analytical modeling in order to gain high accuracy without compromising 

computational efficiency for our specific optimization purpose. 

 

Fig. 9. Maximum deflection in the first mode obtained by the FEM simulation and the 

lumped parameter model. 

 

3.3. Deep Learning Modeling 

The artificial neural network (ANN) is a computing method which can learn from 

given samples to make decision or prediction. Their working principle is inspired by the 
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human brain to recognize complicated patterns between the inputs and outputs, like fault 

classification or machine translation [35]. The ANN is made up of smaller units known as 

neurons, which are connected through layers. Each neuron is composed of weights, which 

can map the inputs through an activation function to calculate the outputs. An artificial 

neural network with multiple hidden layers between the input and output layers is called a 

deep neural network (DNN). The learning rule of DNNs is based on a backpropagation 

algorithm to use gradient methods for reducing the loss function. In this algorithm, a 

prediction is made at each training step, and the output error is measured, then the algorithm 

goes back through each layer reversely to compute the error contribution of each neuron. 

Finally, the weights are updated in order to minimize the error at each step. 

DNNs are able to map the inputs to outputs with a complex relationship. As a 

supervised machine learning algorithm, DNNs can be used for function approximation or 

nonlinear modeling by enough training with data samples generated by the actual system 

functions or simulations [36][37]. In this work, deep learning is used to replace highly 

accurate yet time-consuming FEM simulation or highly efficient yet coarse analytical 

modeling for our proposed serpentine structure to achieve the best trade-off between 

computation accuracy and efficiency in our harvester geometry optimization process. 

According to Fig. 10, four-dimension variables Lb, Wb, Lm, and Wm are considered as inputs 

to our DNN to obtain/output resonant frequency and harvested voltage. Obviously, these 

dimension variables are determining factors for the mass sizes and beam stiffness. Other 

design parameters like the thickness of beams or masses are supposed to be fixed values as 

per the fabrication process design rules or constraints. 
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Fig. 10. Structure of the proposed piezoelectric MEMS energy harvester with its specified 

physical parameters. 

Hyperparameter tuning is largely required to improve the generalization ability and 

computational time of DNNs, which are highly dependent on the fast and effective 

optimizer. A gradient-based optimization algorithm may easily be trapped into local 

minimums [38][39], which prevent training from convergence. Therefore, selecting an 

appropriate combination of activation functions and weight initialization methods is critical 

for efficient training. Finding a proper learning rate and batching size can also help gain 

faster training and prevent divergence. Number of hidden layers and number of neurons 

per layer are some other parameters that should be considered. Moreover, some 

regularization techniques such as the dropout method may become useful to avoid 

overfitting in DNNs [36]. 
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Fig. 11. Illustration of the utilized DNN for estimating the performance of the devised 

energy harvester. 

The DNN shown in Fig. 11. is implemented for this study to improve the estimation 

accuracy and reduce the computation time in the optimization process. The four 

optimizable variables (i.e., Lb, Wb, Lm, and Wm) are fed into the network from the input 

layer. The network is comprised of seven hidden layers with 60, 55, 45, 30, 20, 10, and 5 

neurons of sigmoid function at each layer, respectively. The output layer is formed by 

multiple neurons for obtaining the resonant frequency (f) and harvested voltage (V). A 

parametric sweep study over mentioned sizing variables is performed by COMSOL 

software to generate a dataset including 108 FEM simulation results for the training stage 

and 16 FEM data for testing. In the training stage, the Mean Square Error function and 

Gradient Descent with the learning rate of 0.01 are used as the loss function and the 

optimizer, respectively. The network is trained for 100 epochs with a batch size of 10. As 
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demonstrated in Fig. 12, the training and testing results indicate that the proposed DNN 

model can reach over 95 percent accuracy on the training data and 89 percent accuracy on 

the testing data. In the next section, the trained model is integrated with the evolutionary 

algorithm to optimize the dimension parameters of the proposed harvester. 

 

(a) 

 

(b) 

Fig. 12. (a) Training and testing accuracy over iteration. (b) Training and testing loss 

over iteration. 
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3.4. AI-Based Optimization 

The GA is an evolutionary optimization method, which can be used for the 

optimization of complex problems by searching through constrained or unconstrained 

conditions [40]. The mechanism of GA is based on generating random values for multiple 

variables in a certain way to escape from local optima and approach the global optima [41]. 

The flowchart of the GA operation is depicted in Fig. 13. The algorithm starts by 

initializing a random population of n individuals. These variables are represented as fixed-

length binary strings called chromosomes. Large population size can promote the GA's 

performance at the cost of more computational time.  

After the initialization step, all individuals are evaluated by a fitness function and their 

superiority is ranked based on the fitness score that they received. The next step in GA is 

the selection phase, where two chromosomes with the highest fitness scores in the ranking 

are selected. In the crossover step, certain parts of strings are exchanged between the 

selected chromosomes. As a result of this combination, which is the most important step 

in the evolutionary algorithm, new pairs (called offspring) are produced. Eventually, in the 

mutation step, some bits of new offspring are changed from 1 to 0 or vice versa to ensure 

that the algorithm is not trapped into local optima. 
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Fig. 13. Flowchart of the genetic algorithm. 

After those three main operators of GA are performed, a new population is created by 

including new offspring. In the next cycle, the initial population is evolved to a new 

generation. If the termination criterion is met at this stage, the algorithm reports the best 

results and the procedure is stopped. If the loop does not terminate, the fitness evaluation 

is performed, and the algorithm is repeated for another round of evolutionary process. The 

parameter g, which increments at each iteration, indicates the total number of generations. 

The genetic algorithm is normally used in two forms of problems (i.e., single-objective 

and multi-objective) depending on how many objectives are aimed at throughout the 
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evolution. For the multi-objective problems, which the real world challenges usually fall 

into, good trade-offs have to be made to achieve optimum objectives while still satisfying 

various constraints. In this study, our trained deep learning model described in Section 3.3 

is used in the fitness function of the multi-objective GA to optimize frequency attribute 

and harvested voltage of the proposed energy harvester. Our AI-based GA optimization 

can be formulated as: 

Minimize: {f} 

Maximize: {V}                                                                                                               ( 11 ) 

Minimize: {Silicon area}     

Subject to: design rules of the optimizable variables 

 

where f is the natural frequency related objective(s), and V is the harvested voltage related 

objective(s). The algorithm strives to satisfy the defined objectives by optimizing the 

values of input parameters. In this regard, four dimension parameters, including beams 

length Lb, beams width Wb, mass length Lm, and mass width Wm, are considered as 

optimizable variables. The GA method then determines a set of optimal sizes for those 

physical dimensions of the harvester by using the trained DNN model to estimate f and V 

in (11). The upper and lower bounds of those optimizable variables are defined according 

to the fabrication technology design rules. For the same reason, the rest of the design 

properties listed in Table 1 are assumed to be constant. 

We have implemented the proposed optimization process by using MATLAB genetic 

algorithm toolbox. A specific connection to the FEM simulations with COMSOL software 
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can be established through the Live-Link module to directly perform numerical analysis 

for the optimization toolbox. However, this has proved to be extremely inefficient since 

the computation time significantly increases due to large population size at each generation 

cycle. In contrast, the established DNN model can largely shrink such overhead incurred 

by the FEM simulations. Moreover, the training of the DNN model is just a one-time job, 

while the number of the training dataset is much smaller than that of the required FEM 

simulations within the plain GA-Live-Link optimization. The performance of the proposed 

AI-based optimization method in terms of reducing natural frequency and increasing 

voltage magnitude will further discussed in the following sections. 

Table 1. Constant physical aspects of the serpentine-shaped energy harvester 

 
Parameter 

 
Description 

 

 
Size 

tb Thickness of the beams 

 

10 μm 

tp Thickness of the piezoelectric film 

 

0.5 μm 

hm Thickness of the proof masses 

 

400 μm 

Yb Young’s modulus of the beams 

 

70 GPa 

ρb Beam density 

 

2700 Kg/m3 

Yp Young’s modulus of piezoelectric material 

 

50 GPa 

ρp Piezoelectric material density 

 

7600 Kg/m3 

g31 Piezoelectric material coefficient 

 

-9.5e-V*m/N 
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3.5. Micro-Fabrication Process 

To validate the performance of the proposed serpentine-shaped low-frequency 

piezoelectric MEMS vibration energy harvester, a prototype was fabricated by using the 

commercial PiezoMUMPs process from MEMSCAP Inc. This fabrication process consists 

of bulk and surface micromachining steps, as briefly described with the aid of  

Fig. 14 (a)  –  Fig. 14 (e). At the start of the process, a phosphosilicate glass (PSG) layer is 

deposited on the surface of 150 mm n-type silicon-on-insulator (SOI) wafer, which is then 

annealed up to 1050 °C for one hour in argon gas, as depicted in Fig. 14 (a). After that, the 

PSG layer is removed by using wet chemical etching, and then a 0.5 μm aluminum nitride 

(AlN) is deposited on the wafer as a piezoelectric film using the reactive sputtering 

technique. Afterwards, the wafer is coated with photoresist, and the piezoelectric film is 

lithographically patterned and wet etched as depicted in Fig. 14 (b). In the next step, a metal 

composite, consisting of 20 nm chrome and 1000 nm aluminum, is deposited on the 

piezoelectric layer as the top electrode through a liftoff process. After a lithographical 

patterning process, the deep reactive ion etch (DRIE) technique is used to etch down the 

silicon layer to the oxide layer, as shown in Fig. 14 (c). 

    On the front side of the wafer, the protection material is applied, as depicted in Fig. 

14 (d). Then the RIE method is used to etch the substrate on the bottom side, as shown in 

Fig. 14 (e). Therefore, the silicon beams are formed due to the etched area of the substrate 

layer beneath the silicon layer, while the proof masses are released by the un-etched area 

of the substrate layer. 
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Fig. 14. Micro-fabrication process flow. 

 

3.6. Experimental Results and Discussion 

To improve the performance of the device, our proposed optimization method was 

performed with the population size of 20 and the generation number of 50 in our GA setup. 

Selecting proper values for these user-defined parameters is essential for reaching the best 

results. An un-optimized structure, named Un-OPT, is defined to demonstrate the 

effectiveness of the proposed AI-based optimization method for improving the frequency 
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attribute and the harvested voltage of the energy harvester. The optimizable variables (Lb, 

Wb, Lm, and Wm) were chosen to be the median values as per their allowed ranges in this 

un-optimized case. Additionally, for the comparison purpose, the lumped model and the 

COMSOL Live-Link module are also used as fitness evaluators for optimizing the 

dimensions in our experiments (called LM-OPT and COM-OPT, respectively). 

Table 2. Performance evaluation of the un-optimized and optimized low-resonant 

frequency piezoelectric MEMS harvesters by using the lumped parameter model, FEM 

simulation, and DNN model. 

Parameter Lb [μm] Wb[μm] Lm [μm] Wm [μm] 
Freq. 

[Hz] 

(Lumped) 

Freq. 

[Hz] 

(FEM) 

Freq. 

[Hz] 

(DNN) 

Voltage 

[mV] 

(Lumped) 

Voltage 

[mV] 

(FEM) 

Voltage 

[mV] 

(DNN) 

Run 

Time 

[min.] 

Range [1550,3050] [150,250] [500,1000] [600,615] - - - - - - - 

Un-OPT 2300 200 750 607 137 169 162 634 539 590 - 

LM-OPT 2849 224 915 610 112 136 120 806 683 758 44 

COM-OPT 2966 214 916 610 102 123 112 915 791 874 784 

AI-OPT 2945 216 907 609 103 125 114 898 762 855 130 

 

The obtained results for the un-optimized and optimized energy harvesting devices are 

summarized in Table 2. In this table, the allowed ranges for the optimizable parameters, 

which are specified by their design rule constraints, are listed in the second row. The 

computed natural frequencies by the lumped parameter model, FEM simulation, and DNN 

model for the un-optimized and optimized structures are listed in the 6th, 7th, and 8th 

columns. The calculated harvested voltages by the lumped parameter model, FEM 
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simulation, and DNN model under the excitation level of 0.1g at the resonant frequency, 

are presented in the 9th, 10th, and 11th columns, respectively. 

As listed in Table 2, the un-optimized harvester, named Un-OPT, can only operate at 

higher frequencies with less harvested voltage. The optimized device using the lumped 

model, named LM-OPT, has lower frequencies with higher voltage in comparison with the 

un-optimized one. However, one can observe that the accuracy of the lumped model in 

estimating the resonant frequency and harvested voltage is not high enough (only around 

80 percent) in reference to the FEM simulations. Thus, a sound result may not be readily 

achieved by using this optimization method even with a large population size. The 

optimized device by using the COMSOL Live-Link module is also included in Table 2 as 

COM-OPT. Although this device can achieve better performance than that of LM-OPT due 

to the dedicated FEM-based optimization process, the computation time is too long (i.e., 

784 minutes), which makes it hardly attainable. 

Furthermore, the optimized device using the AI-based GA optimization method as 

discussed in Section 3.3 is labeled as AI-OPT in the Table. It can be observed that by 

performing this method with the population size of 20, the first natural frequency can be 

reduced by 25%, and the harvested voltage can be enhanced by 40%, in comparison to the 

un-optimized harvester. Its performance is also considerably better than that of the LM-

OPT device. Although it takes 85 minutes more computational time for the FEM dataset 

generation (in the DNN model training process), this effort can be easily justified 

considering the fact that the DNN modeling method is more general than the specialism-
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demanded analytical modeling. In addition, the DNN model training is just a one-time job 

for a certain mechanical structure. According to our experiments, the DNN can estimate 

both resonant frequency and harvested voltage with 90% accuracy in reference to the FEM 

simulations. Therefore, by utilizing the DNN as a performance evaluator in the fitness 

function, the computation time spent for FEM simulations can be significantly reduced. In 

this regard, the optimization runtime of AI-OPT can be shortened by 6 times compared to 

that of COM-OPT. Accordingly, a larger population size can be applied to enhance GA 

optimization effectiveness yet still maintaining sound algorithmic efficiency. Compared 

with the other alternatives, the optimized device AI-OPT is deemed as the best candidate 

considering the elegant trade-off between speedy optimization efficiency and superior 

MEMS energy harvesting performance thanks to its ultra-low operational frequency as well 

as high generated voltage.  

To verify the performance of the proposed energy harvester experimentally, the 

optimized device AI-OPT was fabricated by using the described micro-machining process 

in Section 3.5. The experimental setup is shown in Fig. 10. In our measurement setting, a 

mechanical shaker (Type 4809 manufactured by Bruel & Kjær) was used to excite the 

prototyped energy harvester. The vibration frequency and magnitude were controlled by a 

function generator (Agilent 3250) and amplified by a high-power amplifier (manufactured 

by Bruel & Kjær). The shaker acceleration amplitude was monitored by an accelerometer 

(DXL 3350 manufactured by Analog Devices), which was attached to the shaker platform. 

Laser displacement sensors (LK-H022 manufactured by Keyence) were mounted on a 

support system on the top of the harvester to measure the deflection and the velocity of the 
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proof masses along the Z-axis over the time when the prototyped energy harvester was 

excited. 

 

Fig. 15. Utilized experimental setup for measurement of the harvested voltages and 

operational resonant frequencies. 

The frequency spectra of the prototyped structure derived by performing both FEM 

simulation and experimental measurements are depicted in Fig. 16. The velocity of each 

proof mass, i.e., Masses 1-7, is acquired by the laser displacement sensor while sweeping 

the operational frequency of the shaker in the range of 100 Hz - 250 Hz. Then the Fast 

Fourier Transforms (FFTs) of the recorded data (in time domain) is computed to obtain the 

frequency response. The two peak locations were observed at 121.7 Hz, and 216.6 Hz, 

representing the first and the second mode of the device, respectively. In Fig. 16 (a) and 

(c), one can observe that the Mass 3 and Mass 5 have maximum deflection in the first mode 

and have minimum deflection in the second mode. Similarly, Mass 1 and Mass 7 have 

larger velocity in the first mode, while their oscillation is less high in the second mode. In 
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Fig. 16 (b) and (d), it can be shown that Mass 4 maximally oscillates in the second mode 

compared to Mass 2 and Mass 6, while all of them experience considerable deflection in 

the first mode. For better comparison, Fig. 16 (e) and (f) also display both FEM simulated 

and measured velocity in the same plot for Mass 1 and Mass 2, respectively. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Fig. 16. Frequency spectra obtained by performing (a)(b) FEM simulations, (c)(d) 

experimental measurements, (e) simulation and measurement for Mass 1, (f) simulation 

and measurement for Mass 4. 

 

The stress distribution across the serpentine structure, which operates at the first and 

second mode resonant frequencies, is graphically displayed in Fig. 17. The Frequency 

Domain Study simulation is performed within COMSOL to obtain these numerical results. 

The structure was excited harmonically by applying the Body Load type acceleration of 

0.1g at each mode shape. Our FEM simulations were conducted with a quality factor of 50, 

while the external force was applied in the Z-axis direction. According to Fig. 17 (a), when 

the energy harvester AI-OPT is oscillating in the first mode of vibration, the lateral beams 

are involved with a high level of stress, which gradually decreases when moving into the 

middle part beams. In Fig. 17 (b), it is shown that once the energy harvester AI-OPT is 

operating at the second resonant frequency, the second beam (i.e., Beam 2) and the second 

last beam (i.e., Beam 7) contribute the most to the generated stress, while a considerable 

amount of stress is also observed from the middle beams (i.e., Beams 3-6). Moreover, the 
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first and last beams (i.e., Beams 1 and 8) experience both tensile and compressive 

mechanical stress, which may result in electric charge cancellation in this mode. 

   
(a) (b)  

Fig. 17. Von-Mises stress distribution on the cantilever surface of the proposed low-

frequency harvester in the: (a) first and (b) second modes. 

 

The longitudinal strains along the first and second beams are illustrated in Fig. 18. The 

strain analysis provides essential information that has to be considered for electrical 

connections. For example, the second beam has a negative strain in the first mode 

indicating its polarity opposite from the first beam, which means a reverse operation is 

needed during the electrical connection. In the second mode, the first beam has a positive 

strain on the anchor side, which gradually decreases to zero in the middle part and finally 

reaches a negative amount in the mass part. This nonlinear behavior also indicates that the 

bending direction is reversed along the beam. In such a situation, split electrodes are 

recommended in order to effectively capture electric charges. 
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(a) (b) 

Fig. 18. Strain distribution magnitude in (a) Beam 1 (or 8), and (b) Beam 2 (or 7) 

According to this analysis, in order to collect the electric charges more effectively, we 

divide the entire device into three separate regions, as shown in Fig. 19. In this regard, the 

first and third regions are considered as the most active part in the first mode of vibration, 

while the second region is considered as the dominant active part in the second mode. The 

electrodes of individual regions are connected in parallel so that their electric currents can 

be aggregated. The electrical connections are also managed based on polarity changes in 

order to avoid voltage cancellation. 
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Fig. 19. Active regions at each mode shape. 

The analysis of stress distribution confirms that at different mode shapes, almost the 

entire body of the device can harness the stress. In our proposed structure, unlike the 

conventional straight cantilever-based energy harvesters [42], the stress distribution keeps 

the active area of the device large enough, which can even collect energy from the regions 

far away from the clamped locations. In other words, all the segments of our proposed 

device participate in energy harvesting, which leads to higher power density for our energy 

harvester. 

To further validate the capability of our prototyped energy harvester, the harvested 

voltage was measured by using a digital oscilloscope (DSA 7040 manufactured by 

Tektronix) through a high impedance probe. Fig. 20 illustrates the frequency response of 

the generated voltage in both vibration modes when the device is excited under the 

sinusoidal acceleration with the amplitude of 0.1g. It can be seen that the peak harvested 
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voltage, which is collected from Regions 1 and 3, can reach up to 643 mV in the first mode. 

Additionally, the peak collected voltage from Region 2 can be measured as 520 mV in the 

second vibration mode. Such results show that the measured voltage was a bit lower than 

the FEM simulation amount reported in Table 2, due to lower source impedance of the 

fabricated device [43].  

  

(a) (b) 

  

(c) (d) 

Fig. 20. Experimental measurement of (a) and (b): harvested voltage, and (c) and (d): harvested 

power, under sinusoidal acceleration of 0.1g. 
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To obtain the power density delivered to a load by our fabricated energy harvester, a 

proper impedance matching should be made by applying a resistive load equal to the source 

impedance of the prototype [44]. In this regard, the optimal load resistance of  

72 KΩ and 67 KΩ, which are related to the first and second modes respectively, were 

measured experimentally. For the pure resistive loads, the average output power can be 

obtained by: 

𝑃𝑎𝑣𝑔 = 
𝑉𝑝𝑘

2

2 𝑅𝐿
                                              ( 12 ) 

where  𝑅𝐿 is the optimal load resistance and 𝑉𝑝𝑘 denotes the peak voltage measured across 

the load. Fig. 20 shows that, when our prototyped MEMS device is excited by an input 

sinusoidal acceleration with the magnitude of 0.1g, it is able to generate 0.73 μW and 0.57 

μW in the first and second modes, respectively. 

To provide a comparison among the performance of different MEMS energy harvesters, 

the normalized power density (NPD), which is the amount of harvested power per occupied 

volume of the device times acceleration squared (μW ∙ cm−3 ∙ m−2 ∙ s4), is widely used as a 

metric in the literature for determining the energy harvesting efficiency [45]. In this regard, 

a comparison of several attributes including NPD and operational frequency among our 

fabricated device and other energy harvesters reported in the literature is conducted as 

listed in Table 3. Comparison of the properties among the recently published piezoelectric 

MEMS vibration energy harvesters in the literature and our proposed harvester. Since the 

PZT is a highly efficient piezoelectric material, it can be seen that the energy harvesters 
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with PZT material normally have higher NPD in comparison with energy harvester with 

other piezoelectric materials. References [48] and [49] have low operational frequency 

below 100 Hz, but their NPD is pretty low. Although References [46], [50] and [54] have 

higher NPD than our proposed device, our device can resonate at a significantly lower 

frequency compared to them. In summary, our proposed energy harvester features both 

higher power density and lower operational frequency among the other AIN piezoelectric 

MEMS energy harvesters. 

Table 3. Comparison of the properties among the recently published piezoelectric MEMS 

vibration energy harvesters in the literature and our proposed harvester. 

Ref. Material 
Volume 

[mm3] 

Accel. 

[ms-2] 

Freq. 

[Hz] 

Power 

[μW] 

NPD [μW 

.cm−3∙m−2s4] 

[12] PZT 0.11 2.45 68 23E-3 34.84 

[47] AIN 9.9E-2 49 2710 2.5 10.52 

[48] PZT 9.6 14.7 38.8 258 124.37 

[46] AIN 5 0.6 210 1.78 990 

[50] AIN 15 2 599 69 1150 

[49] AIN 18 1.96 84.5 0.13 1.97 

[51] PZT 4 5 126 5.3 53 

[52] AIN 1.63 10 857 0.18 1.1 

[53] PZT 17 1 143 1.74 102 

[54] PZT 0.02 39.2 1300 22 715 

This 

work 
AIN 1.5 1 121 0.73 486 
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3.7. Conclusion 

In this chapter, we presented a low-frequency piezoelectric MEMS energy harvester 

that can operate in two bending modes. The proposed structure comprises a set of 

cantilevers with a serpentine pattern clamped at both ends. To provide the uniform mass 

distribution, seven proof masses are located at the junctions. A deep artificial neural 

network was trained to model the device performance in terms of physical aspects. It was 

shown that the trained model can estimate the device performance with an accuracy of 

90%, which is a lot higher than the lumped parameter analytical model. Then this trained 

DNN model was used as a performance evaluator in the fitness function within a genetic 

algorithm in order to optimize the geometry of the device. The optimization result was 

validated through FEM-based simulations and prototype measurement. Our measurement 

results showed the proposed AI-based optimization method could reduce the device 

operating frequency to 121.7 Hz and improve the harvested power to 0.73 μW. 
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Chapter 4     

Design and Optimization of a Bistable Energy 

Harvester Using Transfer Learning 

 

 

4.1. Introduction 

Capturing energy from the ambient parasitic vibrations is a perfect alternative to 

conventional batteries among the other renewable energy sources such as solar or thermal 

energy [3]. Unused vibration may be produced by ocean waves, wind flow, vehicles, or 

other environmental movements [56]. The kinetic energy of vibrations can be converted to 

electricity by using the techniques based on electrostatic, electromagnetic, triboelectric, 

and piezoelectricity. Many aspects of those techniques have been intensively studied in the 

literature for MEMS scale design. For tiny and portable applications, energy conversion 

based on piezoelectricity features higher power density and better compatibility with 

MEMS micromachining process in comparison to other techniques. 
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Energy harvesters with high operating frequency are not desirable considering the low-

frequency characteristics of ambient vibrations. The operational frequency range (known 

as bandwidth) is another important characteristic that should be considered under an 

unpredictable or uncontrollable condition of ambient vibrations. The conventional 

piezoelectric energy harvesters typically use a single 1D cantilever with piezoelectric 

materials deposited on one side or both sides of the cantilever [57]. This simple structure 

basically has a high natural frequency, which needs to be matched with the low frequency 

and random vibration of external sources. The following methods have been explored in 

the literature to address the frequency tuning issues of vibration-based energy harvesters. 

In general, reducing the cantilever stiffness can lower the resonant frequency, but it 

may reduce the effective mass and structure durability at the same time. Using large and 

connected proof masses is another way to lower the resonant frequency, but it may also 

affect the effective surface area in MEMS fabrication [58]. Several studies have proposed 

2D cantilevers by using spiral, zigzag, and arc circular geometries to reduce the operational 

frequency [12][13] . In these designs, the effective surface area is increased, which helps 

to hold more power and lower resonant frequency. However, voltage cancellation may 

appear due to the emerging domination of torsional modes. Another solution to solving this 

problem is the frequency up-conversion technique by using impact or magnet-based 

methods [59][60]. For example, in the impact method [59], the stoppers are used to contact 

the beams and induce impulse response so that the low frequency oscillation of input from 

the ambient could be transferred to high frequency range suitable for the beams due to the 
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free vibration. The major issue with such settings is that the stoppers prevent this design 

from fitting into the MEMS scale. 

A nonlinear method has been adopted by Xu and Kim [61] to both reduce the resonant 

frequency and expand the bandwidth. This design has a bistable buckled beam setup on the 

MEMS scale with doubly clamped boundary conditions and a large proof mass at the center 

of the beam. The analytical lumped model determines the softening and stiffening response 

of the system, while the experimental results exhibit higher power efficiency in softening 

response at lower frequencies than a mono-stable configuration. The nonlinear behavior of 

this design obviously makes the structure modeling more complicated in comparison with 

any linear forms. Besides that, the characteristics of the device become quite dependent on 

the level of input acceleration. 

In this work, we are motivated to develop a new bistable MEMS piezoelectric energy 

harvester with the capability of operating at lower frequency range and larger bandwidth. 

For this purpose, an M-shape doubly clamped structure with a couple of proof masses is 

proposed to enhance the operational frequency features. The two-degree of freedom nature 

of the device also helps to gain larger bandwidth. In order to meet the best performance 

within the microfabrication constraints, a design methodology is required to attain the 

optimum geometry dimensions. Hence, a modified genetic algorithm (GA) is utilized in 

our work to accelerate the design process as it does not need a lot of human effort compared 

with other optimization methods [62]. 
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Most of the stochastic approaches, including the genetic algorithm, require a fitness 

function for evaluating the performance during the optimization/evolution process. In the 

cases where the systems modeling is highly nonlinear and complex, the simulation tools 

can be used as a fitness function at the cost of high computation effort. Alternatively, the 

artificial intelligence, which is based on learning from data samples, can be used to 

overcome the computational overhead of simulations or the complexity of deriving the 

exact analytical model. For instance, by using artificial neural networks for image 

processing, the image can be directly inputted to the trained network for automatic pattern 

recognition without any complex feature edition/design. Zhang et al. [63] proposed a deep 

convolutional neural network (CNN) comprised of an encoder and a decoder for topology 

optimization. It is shown that their CNN model can solve the problem with less runtime 

despite minor performance drop compared to the conventional topology optimization 

approaches, e.g., SIMP (Solid Isotropic Material with Penalization) method. 

As an example of using deep learning for reducing computation cost in topology 

optimization, Sasaki and Igarashi [64] trained a deep CNN to obtain torque properties of 

an interior permanent magnet (IPM) motor. In the learning phase, CNN is trained by the 

interior cross-sectional images of the motor in the red-green-blue (RGB) format. This 

trained model is further used as an approximate evaluation of most individuals in the 

stochastic optimization stage.  The numerical finite element modeling (FEM) results 

indicate that the quality of optimization can reach a significantly high level if using the 

trained CNN model.  
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In the design of piezoelectric energy harvesters, analytical modeling is typically used 

along with FEM simulations to validate the design output. The device sizing optimization 

is to seek an optimal solution to the user-defined geometry features, such as beam length, 

beam width, mass size, and so on. Since the approximate lumped-parameter modeling for 

energy harvesters always shows a certain deviation from the exact analytical modeling, 

some correction factors may be needed to improve its accuracy. In this work, we propose 

a fast lumped-parameter model for our devised M-shaped harvester. We combine this 

lumped-parameter model with FEM simulation to form a deep neural network (DNN) 

through transfer learning, which can estimate the device behavior with higher accuracy. 

Then this trained DNN model is integrated with the genetic algorithm (GA) to optimize the 

geometry dimensions of the harvester and enhance its performance in terms of operating 

frequency and harvested voltage. The contributions of this chapter are highlighted as 

follows: 

• We propose an M-shaped piezoelectric MEMS energy harvester with dual stable modes 

to operate in wider range at lower frequency; 

• A deep artificial neural network is trained initially to emulate the lumped-parameter 

model of the harvester for estimating resonant frequencies and generated voltages;  

• A pre-trained network is transferred to a new DNN model for another round of training 

with highly accurate FEM data samples to further reduce estimation error;  

• An automated design method based on GA and deep learning is developed to optimize 

the geometry dimensions of the proposed energy harvester; 
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• The optimized harvester is prototyped by using a micro-fabrication process to 

demonstrate its manufacturability and validate its high performance. 

The rest of this chapter is organized as follows. The design and modeling of the M-

shaped harvester is described in Section 4.2. The AI-based optimization approach is 

discussed in Section 4.3. In Section 4.4, the fabrication process is presented. The simulation 

and measurement results are explained in Section 4.5. Section 4.6 concludes the paper. 

4.2. Design and Modeling 

The schematic of the proposed bistable MEMS energy harvester is depicted in Fig. 21. 

It is comprised of two main beams, which are clamped on both sides and connected to a 

large primary proof mass at the tip parts. A third auxiliary beam located parallel in the 

center along with a smaller tip proof mass on one end is also connected to the middle of 

the primary mass on the other end. The entire structure can be viewed as an M-shaped 

doubly anchored cantilever with dual bending mode. The surface of each beam is covered 

by a separate piezoelectric material, while the surface of each piezoelectric layer is covered 

by a metal layer electrically connected to its corresponding electrode terminal. The 

electrodes of the lateral beams are simply expanded to their terminal pads on the 

unmovable substrate, while the electrode of the middle beam is routed out to its associated 

pad by occupying a negligible area beside the adjacent beams. 
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Fig. 21. Schematic of the proposed bistable piezoelectric MEMS energy harvester 

 

The FEM simulation with the same setting as the one used in the previous chapter was 

performed in COMSOL Multiphysics to analyze the functionality of the proposed energy 

harvester. Fig. 22 displays the deflection and stress analysis of the device at both mode 

shapes. As shown in this figure, both proof masses have large deflection in the first 

vibration mode; however, most of the mechanical stress is imposed on the lateral beams 

while the middle beam has a low amount of stress. In the second mode, the primary mass 

has slight deflection whereas the auxiliary mass maximally oscillates. Furthermore, most 

of the stress is incurred on the middle beam, unlike the first vibration mode. According to 

this analysis, the electrical charges are supposed to be collected from the lateral beams in 

the first mode, and from the middle beam in the second mode, respectively. The rest of this 

work strives to locate these two mode shapes as close as possible to each other in the range 

of 100-200 Hz to reach both sufficient bandwidth and low operating frequencies at the 

same time. 
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1st mode 2nd mode  

 

(a) 

 

(b) 
 

 

(c) 

 

(d) 

 

Fig. 22. FEM simulation results for mode shape ((a) and (b)) and stress analysis ((c) and 

(d)) for the first two modes. 

 

Fig. 23 illustrates the equivalent lumped-parameter model of our proposed M-shaped 

harvester, where 𝑘𝑙 denotes the equivalent stiffness of each lateral beam, 𝑘𝑚 represents the 

equivalent stiffness of the middle beam, and 𝑚1 and 𝑚2  refer to the primary and auxiliary 

proof masses, respectively [65]. By considering the electromechanically coupled equations 
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of a piezoelectric energy harvester, the governing motion equation of the vibrating base is 

obtained [66]: 

 

Fig. 23. The equivalent lumped-parameter model of the proposed M-shaped energy 

harvester. 

 

𝑚1𝑋̈1 + 2𝑏𝑙(𝑋̇1 − 𝑋̇0) + 2𝑘𝑙(𝑋1 − 𝑋0) + 𝛼1𝑉1 = 

 𝑘𝑚 (𝑋2 − 𝑋1) + 𝑏𝑚(𝑋̇2 − 𝑋̇1) + 𝛼2𝑉2                                                                   ( 13 ) 

𝑚2𝑋̈2 + 𝑘𝑚(𝑋2 − 𝑋1) + 𝛼2𝑉2 = 0                                                                              ( 14 ) 

𝛼1(𝑋̇1 − 𝑋̇0) − 𝐶𝑝1𝑉̇1 =
𝑉1

𝑅
                                                                                              ( 15 ) 

𝛼2(𝑋̇2 − 𝑋̇1) − 𝐶𝑝2𝑉̇2 =
𝑉2

𝑅
                                                                                               ( 16 ) 

 

where the displacement and acceleration of the primary mass are defined as 𝑋1 and 𝑋̈1, and 

those of the auxiliary mass as 𝑋2 and 𝑋̈2. The displacement of the substrate base along the 

excitation direction is denoted by 𝑋0. The voltage of the load resistance 𝑅 is denoted by 
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 𝑉, while the electromechanical coupling coefficient 𝛼 and the electrical capacitance 𝐶𝑝 

defining the characteristics of the piezoelectric elements can be derived from the 

piezoelectric constitutive equation mentioned in chapter 2. According to (13)-(16) above, 

the mass and stiffness matrices can be expressed as: 

[𝑀] = [
𝑚1 0
0 𝑚2

] ,                                                      ( 17 ) 

[K] = [
2𝑘𝑙 + 𝑘𝑚 −𝑘𝑚

−𝑘𝑚 𝑘𝑚
]                                           ( 18 ) 

 

By calculating the stiffness matrix, the special values and the special vectors, which 

relate to the natural frequencies and mode shapes of the system respectively, can be 

obtained. The proposed lumped model may need certain correction factors to describe the 

dynamics of the system with high accuracy. In the next section, this model is used along 

with FEM simulation data to train a deep artificial neural network through transfer learning 

to model the system more accurately for high-caliber optimization purpose. 

4.3. Transfer-Learning-based Design Optimization 

4.3.1. Transfer Learning Modeling 

Deep neural network (DNN) is an artificial neural network with multiple hidden layers 

that can learn complex nonlinear relationships between multiple inputs and outputs under 

different operating conditions [67]. The DNN can be used as a function approximation after 

being trained with data samples created upon the actual system functionality [68]. The 
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learning rule is based on the gradient optimization algorithms to minimize the loss function. 

Thus, hyperparameter tuning is essential to achieve fast convergence to the global 

minimum [69]. Activation function, number of neurons and hidden layers, weight 

initialization method, and learning rate are some hyperparameters that should be selected 

properly. In this study, a DNN is utilized as an alternative to expensive FEM analysis or 

complex analytical modeling for estimating the natural frequencies and harvested voltages 

by taking five sizing variables Lb, Lm, Wm1, Wm2, and Wb, as shown in Fig. 24. 

 

Fig. 24. Proposed M-shaped energy harvester with the specified physical parameters for 

geometry dimensions. 

Training a deep neural network from scratch is not always the best idea. If we are 

tackling a supervised-learning task, but we do not have enough labeled training data, one 

solution is to find an auxiliary neural network with lots of labeled data, which can perform 

a similar task. Thus, we can reuse its lower layers for the main task of the original job. This 
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method is called transfer learning, making it possible to train a complex model faster but 

only with a few training data. In this regard, the original neural network does not have to 

learn all the low-level detailed features since it just reuses the feature detectors (i.e., in the 

lower layers) learned by the auxiliary neural network. 

Kaur and Gandhi [70] proposed a deep convolutional neural network for brain magnetic 

resonance image (MRI) classification by using transfer learning. Several well-known pre-

trained models, including Resnet50, GoogLeNet, Alexnet, Resnet101, VGG-16 were tested 

in this work to reach the best results. The validation shows that the transferred Alexnet 

model with an accuracy of more than 94% has the best performance compared to the other 

pre-trained models. In another work, Le et al. [71] proposed a framework with a 

combination of transfer learning and long short-term memory (LSTM) for energy 

consumption estimation in smart building research without much historical dataset. The 

results reveal that by transferring a pre-trained LSTM model to the proposed framework, 

the performance  significantly increases with much less computational overhead in 

comparison with the other methods for energy consumption estimation. 

In this study, the DNN shown in Fig. 25 is implemented for reducing FEM 

computational overhead during the optimization process. The network takes five 

optimizable parameters (i.e., Lb, Lm, Wm1, Wm2, and Wb) at the input layer and then goes 

through five hidden layers with 10, 20, 30, 20, and 10 sigmoid neurons at each layer, 

respectively. The last layer consists of four neurons that output both resonant frequencies 

and harvested voltages in the first two modes. Given that generating the whole dataset 
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using FEM simulations is too time-consuming, 768 data samples are created by the 

lumped-parameter model as described in the previous section. At the first step, the network 

is trained with 100 epochs using Adam optimizer with the learning rate of 0.1. After the 

first-step training, the first three layers of the trained DNN model are transferred to the new 

DNN, whose last two layers would be further trained. 

 

Fig. 25. Illustration of the proposed transfer learning method. 
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At the next step, 216 highly accurate FEM simulation results are created by using 

COMSOL parametric sweep study over the optimizable variables. Then the new DNN is 

trained for another round by using the newly available FEM simulation dataset. As the 

transferred layers have partially learned the behavior of the harvester, the weights of the 

first three layers remain frozen during the training while the weights of the last two layer 

stay trainable. Since the number of the parameters to be determined in the new DNN is 

significantly decreased, the last two layers would be much easier to be trained compared 

to the situation running from scratch.  

For the testing phase, 32 more FEM simulation results are generated as the testing 

dataset. According to Fig. 26, the first DNN can only reach up to 86% accuracy on the test 

data, which is mainly due to the low accuracy of the lumped-parameter model dataset. 

However, the final DNN model can achieve over 94% accuracy thanks to the contribution 

from transfer learning. It is worth mentioning that before the second round of training, the 

new DNN model has the accuracy of 66% since it has partially trained. Fig. 26 (c) also 

exhibits the results for the DNN solely trained by the same number of the pure FEM 

simulation data without any pre-training. This model can only reach 90% accuracy on the 

test data after the same number of epochs. In order to increase the accuracy of this model, 

a larger dataset (i.e., much more than 216) is required, which means we need to additionally 

spend a significant amount of time on data collection (via FEM simulations) and more 

complex training process. In summary, we have leveraged the transfer learning technique 

to help improve modeling accuracy (around 4% higher) with the same dataset.  
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(a) 

 

(b) 

 
(c) 

Fig. 26. Training and testing accuracy over iteration in (a) pre-trained DNN model, (b) 

final DNN model via transfer learning, (c) DNN model without pre-training (solely 

trained by FEM simulation data). 
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4.3.2. AI-Based Optimization 

Genetic algorithm (GA) is a heuristic search-based evolutionary method that can be 

used for solving multi-objective optimization problems [72]. The GA requires a fitness 

function to evaluate the individuals at each generation cycle. In this work, the trained DNN 

model is utilized as a fitness function of GA to optimize the performance of the proposed 

M-shaped energy harvester. In this regard, the following objectives are defined to be 

optimized: 

Minimize:  mean (f1, f2) 

Minimize:  f2 – f1                                                                                                                                                                   ( 19 ) 

Maximize: mean (V1, V2) 

Minimize: {Silicon area} 

Subject to: design rule constraints 

where f1 and f2 are the first and second resonant frequencies, and V1 and V2 are the 

corresponding voltages at the first and second resonant frequencies. This algorithm strives 

to minimize the average operating frequency and their frequency range while maximizing 

the average of the harvested voltages. The beams length Lb, masses length Lm, mass1 width 

Wm1, mass2 width Wm2, and beams width Wb, are considered as the optimizable parameters 

in this optimization problem. The permitted bounds of these parameters and other constant 

properties are determined according to the manufacturing design rule constraints, as listed 

in Table 4. 
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Table 4. Sizes of the harvester physical aspects 

 

Parameters 

 

Description Size 

 

Lb 

 

Length of the beam 2000 μm - 4000 μm 

 

Lm 

 

Length of the masses 500 μm - 1000 μm 

 

Wm1 

 

Width of the mass1 2000 μm - 3000 μm 

 

Wm2 

 

Width of the mass2 500 μm - 1500 um 

 

Wb 

 

Width of the beams 200 μm - 300 μm 

tb Thickness of the beams 10 μm 

tp Thickness of piezoelectric film 0.5 μm 

hm Thickness of the proof masses 400 μm 

Yb Young’s modulus of the beams 70 Gpa 

ρb Beam density 2700 Kg/m3 

Yp 

 

Young’s modulus of piezoelectric 

material 

 

50 Gpa 

ρp 

 

Piezoelectric material density 

 

7600 Kg/m3 

g31 Piezoelectric material coefficient -9.5e-3 V*m/N 
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Since the DNN model presented in Section 4.3.1 is integrated with the GA as a fitness 

function to optimize our proposed M-shaped energy harvester, we can finally derive the 

optimum geometry dimensions to reach the best performance while persevering the defined 

constraints. Although the COMSOL FEM simulation can also be used directly as a fitness 

evaluator through the Live-Link module, this solution seems too inefficient to be tolerated 

since the computational time may significantly increase due to the large number of 

evaluations. On the other hand, the DNN via transfer learning can largely release such 

computation overhead related to the FEM analysis so that a relatively smaller FEM 

simulation dataset can even perform a fine training.  

4.4. Micro-Fabrication Process 

The simplified micro-fabrication process flow, which was used to prototype the 

proposed piezoelectric MEMS device, is illustrated in Fig. 27. The process consists of five 

masks. First of all, the phosphosilicate glass (PSG) layer is deposited on the surface of 

Silicon-On-Insulator (SOI) wafer. Then, the PSG layer is removed by using wet chemical 

etching and the piezoelectric material, which is 0.5 m of Aluminum Nitride (AlN), is 

deposited by using the reactive sputtering method. In the next step, a metal composite 

consisting of 20 nm chrome and 1000 nm is deposited as a top electrode through a liftoff 

process. Afterward, the silicon layer is lithographically patterned and etched down to the 

oxide layer by using the DRIE technique. Then the protection material is applied on the 

front side of the wafer, and the substrate layer on the bottom side is subsequently etched 
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into the oxide layer by using the RIE technique. Eventually the unimorph piezoelectric 

microcantilever containing the proof masses is released after completing these steps. 

 

Fig. 27. The simplified micro-fabrication process to create piezoelectric MEMS cantilever 

with the integration of proof masses. 

 

4.5. Experimental Results and Discussion 

An un-optimized design (called NO-OPT) with median size in the allowed range for 

each optimizable parameter was chosen to serve as a reference design for comparison with 

the others in order to show the superiority of our proposed AI-based design and 

optimization methodology. The GA with generation number of 50 and population size of 

20 was performed to optimize the device. The lumped-parameter model and the COMSOL 

software were also selected as fitness estimators for exhibiting fair comparison. The 

optimized devices using the analytical lumped-parameter model, COMSOL FEM 

simulation, and transfer-learning-based DNN are called ANA-OPT, FEM-OPT, and DNN-

OPT, respectively. The design and performance results of those un-optimized and 

Anchor

Doped silicon

400 m

1 m

10 m

0.5 m

1.02 m

Proof 

mass

AlN piezoelectric layer

Al top electrode

Insolation 

oxide layer

Silicon 

substrate
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optimized energy harvesters are listed in Table 5. The first and second operating 

frequencies, the frequency interval (i.e., bandwidth), and the mean harvested voltage under 

0.2g input excitation reported by using FEM simulation for the various devices are 

presented in the 3rd, 4th, 5th, and 6th columns.  

Table 5. Performance evaluation of the optimized and un-optimized proposed bi-stable 

piezoelectric MEMS harvester by using FEM simulations. 

Parameter 
Lb, Lm, Wm1, Wm2, Wb 

[µm] 

f1 

[Hz] 

f2 

[Hz] 

Frequency 

interval 

[Hz] 

Mean 

harvested 

voltage 

[V] 

Run 

time 

[min.] 

NO-OPT 2800, 700, 2400, 1000, 250 176 297 121 1.2 - 

ANA-OPT 3486, 520, 2643, 1121, 268 132 188 56 1.6 40 

FEM-OPT 3596, 549, 2722, 1082, 274 121 180 59 1.9 1140 

DNN-OPT 3543, 539, 2630, 1108, 276 126.4 178.4 52 1.7 210 

 

As shown in Table 5, the optimized design using the COMSOL live-link (FEM-OPT) 

can offer better performance than the other designs in terms of reducing the first natural 

frequency and harvested voltage. However, its computation time is extremely long (i.e., 

1140 minutes) due to the large amount of FEM numerical simulations. Additionally, this 

module-based optimization usually experiences lots of unexpected glitches or even 

terminations during the execution process, which makes it hardly attainable in practice. On 

the other hand, the optimized design using the transfer-learning-based deep learning 

method (DNN-OPT) can deliver the best bandwidth among all the designs (note that 



65 

 

minimization of f2 - f1 is deemed as one of the objectives in (19) for GA optimization). 

Moreover, DNN-OPT requires significantly less runtime compared to FEM-OPT, which is 

mostly contributed by applying the transfer-learning-based DNN model as the fitness 

estimator in the GA optimization. It is worth mentioning that running a DNN model to 

generate output is much faster than invoking a FEM simulation. In addition, by using the 

transfer learning technique, we can improve the accuracy of the DNN model to 94% with 

reference to the accurate FEM analysis. Therefore, one can observe that the DNN-OPT 

device can reduce the first resonant frequency by 5.6 Hz and the bandwidth by 4 Hz in 

comparison with the ANA-OPT design. In summary, the optimized device DNN-OPT is 

considered as a qualified MEMS energy harvester for fabrication, thanks to its superior 

performance and robust reliability. 

To experimentally validate the performance of our optimized design, the DNN-OPT 

energy harvester was fabricated through the PiezoMUMPS micro-machining process, 

which is described in the previous section. The scanning electron microscope (SEM) image 

of the prototyped device is shown in Fig. 28. 
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Fig. 28. SEM image of the fabricated M-shaped piezoelectric MEMS device. 

 

Fig. 29 illustrates the frequency responses of the prototyped DNN-OPT device obtained 

by running FEM frequency analysis and experimental measurements. The mechanical 

shaker was set up to sweep the excitation frequency between 100 Hz and 200 Hz, and then 

the velocity of the primary and auxiliary masses was measured by the laser sensor. The 

frequency spectrum was obtained by computing the fast Fourier transforms (FFTs) of the 

acquired chirp signal. The first and second natural frequencies of the device were observed 

to be 123.8 Hz and 175.7 Hz, respectively. Since the prototyped device was tested in the 

air medium, the actual damping ratio may cause a deviation between the measured and 

simulated resonant frequencies. In addition, it can be observed from Fig. 29 that both 

masses have a considerable amount of deflection in the first mode. In the second mode, the 

auxiliary mass has the maximum deflection, while the primary mass slightly oscillates. 
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(a) (b) 

Fig. 29. Frequency response obtained by performing FEM simulations and experimental 

measurements on (a) Mass1, and (b) Mass2. 

 

To verify the energy capturing capability of the prototyped device, the generated 

voltage was measured through a high impedance probe of a digital oscilloscope. The 

frequency spectra of the harvested voltages in both resonant modes, at 0.2g input excitation, 

were depicted inFig. 30. In the first mode, one can observe that the peak generated voltage 

coming from the lateral beams can be measured as high as 1.3 V. Moreover, the peak 

collected voltage from the middle beam can reach up to 1.6 V in the second mode. Since 

the measurements were performed in the air medium, the damping ratio may have caused 

certain voltage drop compared to the simulation results reported in Table 5. 
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(a) (b) 

Fig. 30. Experimental measurement results of the harvested voltages under sinusoidal 

acceleration of 0.2g, (a) in the first mode and (b) in the second mode. 

 

In order to obtain the optimal load, the source impedance of the prototyped energy 

harvester was measured by Keysight Agilent E4990A impedance analyzer [73]. At the first 

and second resonant frequency, the source impedance was measured as 121 KΩ and 144 

KΩ, respectively. A resistive load equivalent to the source impedance was applied to gain 

maximum power and impedance matching in each mode. According to equation  

Pavg = (Vpeak)2 / 2RL , it can be found that the peak harvested power is 2.83 μW in the first 

mode and 2.3 μW in the second mode at 0.2g sinusoidal input excitation.  

In the literature, the normalized power density (NPD), which is the amount of harvested 

power per occupied volume of the device times acceleration squared (μW ∙ cm−3 ∙ m−2 ∙ s4), 

is used to compare the performance of MEMS energy harvesters. As listed in Table 6, 

references [54][46][54] have slightly higher NDP than our proposed device; however, our 

device resonates at a much lower frequency compared to them (i.e., 1300 Hz and 210 Hz 
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versus our 123 Hz). References [61][12] have also superior operation frequencies, but their 

NDP is pretty low. Our prototyped energy harvester, featuring the first resonant frequency 

of 123 Hz, dual operational mode below 200 Hz, and NPD of 693 μW ∙ cm−3 ∙ m−2 ∙ s4, 

offers a summit of superior efficiency and desirable spectrum compared to the other 

previously published studies. Moreover, considering only the first two operational modes, 

this harvester has 1.53 times higher NPD in comparison to our serpentine-shaped energy 

harvester proposed in the previous chapter. In the next chapter, a new structure with an 

ultra wideband operation will be discussed. 

Table 6. Comparison of the properties among the recently published piezoelectric MEMS 

vibration energy harvesters in the literature versus our proposed harvester. 

Ref. Material 
Volume 

[mm3] 

Accel. 

[ms-2] 

Freq. 

[Hz] 

Power 

[μW] 

NPD [μW 

∙cm−3∙m−2∙s4] 

[48] PZT 9.6 14.7 38.8 258 124.37 

[53] PZT 17 1 143 1.74 102 

[54] PZT 0.02 39.2 1300 22 715 

[46] AIN 5 0.6 210 1.78 990 

[47] AIN 9.9E-2 49 2710 2.5 10.52 

[20] AIN 4.1 0.5 261 0.61 595.12 

[12] PZT 0.11 2.45 68 23E-3 34.84 

[61] PZT 22 2 20-80 0.08 9 

This 

work 
AIN 1.02 2 123 2.83 693 
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4.6. Conclusion 

In this chapter, we presented a bistable MEMS energy harvester to provide a wider 

operation range at lower frequencies. The proposed design has an M-shaped cantilever with 

two proof masses and clamped at two sides. A deep artificial neural network is used along 

with analytical modeling to model the behavior of the harvester. Moreover, a transfer 

learning technique is employed to further improve the performance of the DNN modeling. 

In this regard, a fast lumped-parameter model is combined with FEM simulation to train a 

deep neural network that can estimate the system behavior with higher accuracy than the 

regular DNN. Finally, this trained model was integrated with a genetic algorithm to 

improve the performance of device and obtain optimum physical aspects. The experimental 

measurements confirm that the final optimized prototype has two bending modes at 123.8 

Hz and 175.7 Hz with maximum harvested power of 2.83 μW, which reaches the submit 

among the recently published works. 
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Chapter 5     

Design of Multimode Wideband Piezoelectric 

MEMS Energy Harvesters 

 

 

5.1. Introduction 

Energy harvesting from parasitic vibrations of ambient resources like human activity, 

wind flow, etc., has become a demanding solution to provide a sustainable power supply 

to low-power electronic devices [74]. The kinetic energy can be converted to electricity 

based on electromagnetic, electrostatic, triboelectric, and piezoelectric techniques [75]. In 

the MEMS scale applications, piezoelectric energy harvesting shows higher power 

capturing efficiency and more compatibility with the fabrications process [76]. Most 

piezoelectric MEMS harvesters are comprised of one end clamped single cantilever with 

deposited piezoelectric material on top of that. This simple structure has a quite narrow 

operating range that may not be practical for random natural vibrations. Thus, many studies 

have been conducted to address this issue. 
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In order to enlarge the bandwidth of energy harvesters, multiple cantilever beams (e.g. 

generator arrays) can be used to increase the degree of freedom and generate multiple mode 

shapes [77][22]. Other works studied frequency tuning and nonlinear techniques to 

increase the bandwidth. For instance, Wang and Tang [23] proposed magnetically coupled 

energy harvester with parasitic beam attached to the main body. The magnets can impose 

force to the beams and achieve two resonant peaks with highly nonlinear response. In these 

types of energy harvesters, the magnetic setup makes the fabrication incompatible with the 

MEMS micromachining process. In another work, Nabavi and Zhang [20] developed a tri-

mode wideband energy harvester based on geometry with nonlinear behavior at the second 

mode shape. The amount of harvested power is limited in this device, although the large 

bandwidth could be achieved. 

This chapter is organized as follows. A short discussion on wideband piezoelectric 

MEMS energy harvesters is introduced in this section. In the next section, the structure of 

our wideband energy harvester is proposed. In Section 5.3, the AI-based optimization 

methodology is discussed. Then the results and discussion are described in Section 5.4. 

5.2. Multimode MEMS Piezoelectric Harvester 

The structure of the proposed multimode energy harvester is presented in Fig. 31. This 

energy harvester has a symmetric flex-shaped configuration with a major middle cantilever 

beam anchored at one side. The other free side of the middle beam is split into two identical 

cantilevers increasing the degree of freedom of the system. Each of these cantilevers 

contains two more beams with proof masses to reduce operating frequency and improve 
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efficiency. Separate piezoelectric materials cover the beams with an electrode on top of 

them. These electrodes are routed out to corresponding terminal pads to make the electrical 

connections for charge collections.   

 

Fig. 31. Structural diagram of the proposed multimode MEMS energy harvester 

 

5.3. AI-Based Optimization Methodology 

In this study, the genetic algorithm, which is an evolutionary method for global 

optimization is used alongside deep artificial neural network as a fitness function to achieve 

optimal dimensions. The objectives of the optimization problem are set to minimize the 

operating frequencies and range. In this regard, the DNN shown in Fig. 32 was 

implemented as an alternative to complex nonlinear modeling or high computational cost 

simulation. This network is fed by five optimizable variables, i.e., Lb, Lm, Wm1, Wm2, and 
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Wb, at the input layer and outputs the first three natural frequencies. Five other hidden 

layers also consist of 20, 30, 40, 30, and 20 sigmoid neurons at each layer, respectively. 

 

Fig. 32. Utilized DNN for estimating the resonant frequencies of the proposed multimode 

energy harvester 

 

At the first stage, the network was trained with 245 FEM simulations data obtained by 

commercial COMSOL Multiphysics simulator with isotropic materials. The performance 

of the network was confirmed after reaching over 90% accuracy on the validation dataset. 

Afterward, this trained model was integrated with the genetic algorithm to obtain optimal 

aspects. At each cycle of GA, the individual samples are generated randomly to be 

evaluated by our implemented DNN in terms of operating frequencies. Eventually, the 

dimensions, which can provide lower resonant frequency and range, are selected by GA as 

the optimal solution. 
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5.4. Results and Discussion 

The GA with the generation number of 50 and the population size of 20 was set up to 

perform the optimization process. An un-optimized design with median values of 

optimizable parameters is also defined to demonstrate the superiority of our AI-based 

method. The details of the optimized (OPT) and un-optimized (Un-OPT) harvester devices 

are shown in Table 1. The ranges for the dimension parameters, which are listed in the 

second row was determined by the fabrication design rule constraints. The primary three 

resonant frequencies and their mean intervals for both devices computed by FEM 

simulations are also listed in the 7th, 8th, 9th, and 10th column, respectively.  

Table 7. Simulated resonant frequencies for the optimized and un-optimized design 

Parameter Lb [µm] Lm [µm] Wb [µm] Wm1 [µm] Wm2 [µm] 

f1 

[Hz] 

f2 

[Hz] 

f3 

[Hz] 

Frequency 

Interval  

Sum 

[Hz] 

Range (2000, 3000) (400, 600) (160, 180) (400, 700) (200, 400) - - - - 

Un-OPT 2500 500 170 550 300 179 236 270 91 

OPT 2773 589 164 654 357 132.7 174.6 194.4 61 

 

According to the results summarized in Table 7, it could be observed that the proposed 

optimization method can reduce the first, second and third resonant mode by 25%, 26%, 
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28%, respectively. Moreover, the mean interval can also be reduced by 32% in comparison 

to un-optimized design. The frequency spectrum of the optimized device with the shape of 

our wideband harvester at each mode is illustrated in Fig. 33. The device exhibits a specific 

shape at each mode, which drives the device at multiple modes to attain the wideband 

feature. Furthermore, the harvested voltage of the optimized device was studied 

numerically under 0.25g input sinusoidal vibration. The generated peak voltage can be 

obtained as 1824 mV, 115 mV, and 1616 mV at the first, second, and third modes, 

respectively, which are also higher than the harvested voltage by the un-optimized design. 

 

Fig. 33. Frequency spectra and mode shapes of the optimized wideband piezoelectric 

energy harvester. 

 

In summary, the optimized energy harvester can have all the mode shapes coupled 

together at lower frequencies. Furthermore, by taking the advantage of DNN as a 
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performance estimator, we can reduce the computational time incurred by FEM analysis, 

so that larger number of individual variables can be evaluated during the optimization 

process.  
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Chapter 6    Conclusion and Future Work 

 

 

In this thesis, we presented several newly devised piezoelectric MEMS energy 

harvesters with the capability of operating at low resonant frequencies (i.e., less than 200 

Hz). The first structure has a symmetric serpentine structure with a doubly clamped 

configuration comprising several proof masses at the junctions. A deep artificial neural 

network was trained to model the device performance in terms of physical aspects. It was 

shown that the trained model can estimate the device performance with an accuracy of 90%, 

which is a lot higher than the lumped parameter analytical model. Then this trained DNN 

model was used as a performance evaluator in the fitness function within a genetic 

algorithm in order to optimize the geometry of the device. The optimization result was 

validated through FEM-based simulations and prototype measurement. Our measurement 

results showed the proposed AI-based optimization method could reduce the device 

operating frequency to 121.7 Hz and improve the harvested power to 0.73 μW. 

In the second design, we presented an M-shaped energy harvester that can operate in 

two bending modes. In this work, a transfer learning technique is used to further improve 
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the performance of the DNN modeling. In this regard, a fast lump-mass model is combined 

with FEM simulation to form a deep neural network that can estimate the system behavior 

with higher accuracy than the regular DNN. The final optimized prototype also has larger 

bandwidth and 53% higher normalized power density compared to the previous serpentine-

shaped design. Finally, in the last work, a flex-shaped multimode structure was proposed 

to satisfy the wideband feature. Once again, the AI-based optimization method is utilized 

to specifically lower the operating frequencies and enlarge the bandwidth in this design. 

The results indicated that the optimized device could locate three mode shapes sufficiently 

close to each other while vibrating at lower frequencies compared to the un-optimized 

device. 

In all of the above-mentioned works, the deep-learning-based modeling helps to 

significantly reduce the computational overhead caused by the FEM simulations during the 

optimization process. As the future work, we intend to enhance our proposed AI-based 

optimization tool to deal with enlarging the operational bandwidth more efficiently. For 

this purpose, a more advanced function is required to be utilized as a performance estimator. 

Running intensive FEM simulation for either performance estimation or making more data 

samples may significantly increase the computational time. One feasible solution is to 

further improve the performance of our transfer learning method by using dropout 

regularization during the training phase or even using correction factors for the lumped-

parameter model. The mechanical quality factor (Q) is another parameter that can 

considerably impact the operation of energy harvesters. The quality factor is defined as the 

resonant frequency over the 3 dB bandwidth. It is strongly dependent on the cantilever 
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geometry as well as the medium in which the device operates. The quality factor could also 

be added as an objective into our optimization methodology in future designs in order to 

further improve the performance of the energy harvesters.  
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