
Task Offloading and Proactive Resource
Allocation in Vehicular Edge Computing

via Reinforcement Learning

by

© Elham Karimi

A thesis submitted to the School of Graduate Stud-

ies in partial fulfillment of the requirements for the

degree of Doctor of Philosophy.

Department of Computer Science

Memorial University

August 2022

St. John’s, Newfoundland and Labrador, Canada

Abstract

Given the rapid increase of various applications in vehicular networks, it is crucial

to consider a flexible architecture to improve the Quality-of-Service (QoS). Utilizing

Multi-access Edge Computing (MEC) as a distributed paradigm with computation

capabilities closer to the vehicles can be a promising solution to reduce response time

in such a network. However, MEC nodes are deprived of processing all tasks offloaded

by the vehicles and suffer from limited resources compared with the central cloud. The

offloaded tasks usually have different priorities for processing and various resource

demands, and they even are dropped when the response time for task processing

expires. Due to the workload dynamics at MEC nodes and the randomness of task

arrivals, it is challenging to determine proper MEC servers for task offloading and

how to manage resources for the application’s demands.

This dissertation proposes cooperation between MEC and central cloud decisions

for different vehicular application offloading. First, we formulate a new NP-hard re-

source allocation problem to guarantee the required response time. We transform the

environment into a finite Markov decision process that only depends on the current

state and action space. We utilize deep reinforcement learning, a proper computa-

tional model, to automatically learn the dynamics of the network state and rapidly

capture an optimal solution based on the current state and action space. In this dis-

sertation, we develop an intelligent workload prediction of each MEC node utilizing

Multivariate Long Short-Term Memory (LSTM) to propose a proactive resource allo-

cation algorithm for various tasks in a dynamic vehicular network. In our algorithm,

we classify tasks based on their priorities and migrate the tasks with lower priority

to provide service for those with higher priority. Moreover, we apply distributed deep

reinforcement learning to solve our problem to increase the efficiency and accuracy of

the proactive resource allocation algorithm. Extensive numerical analysis and results

ii

illustrate how our proposed algorithms can increase the ratio of accepted high-priority

tasks and reduce response time.

iii

To my lovely parents

iv

Acknowledgements

As this chapter of my life comes to an end, it is a great pleasure to acknowledge

several individuals who have contributed to who I am today.

First and foremost, I would like to express my gratitude to my advisor, Prof.

Yuanzhu Chen, for his excellent guidance throughout my Ph.D. journey. I would

not have come this far without his continuous support and inspiration. Thank you

for teaching me to think clearly and independently and present concisely. Also, I

acknowledge the financial support provided by Prof. Yuanzhu Chen, the Natural

Science and Engineering Research Council (NSERC), and the Dean’s Doctoral Award

as a top graduate entrance scholarship.

I am deeply indebted to Dr. Behzad Akbari, the best supervisor I have ever

known in my entire life, whose expertise, understanding, willingness to help, and

tremendous patience made this difficult journey more manageable and more produc-

tive. His enthusiasm, support, and belief in me guided me during tough times and

added considerably to my graduate experience during my M.Sc. and Ph.D. research.

I am also very grateful to my co-supervisor, Dr. Xianta Jiang, for his kind helps,

care, patience, and collaboration. I am also thankful to the chair of the computer

science department, Dr. Oscar Meruvia-Pastor, for all his support in making my

requests run smoothly.

I thank Wireless Networking and Mobile Computing Laboratory (WineMocol)

group members for fruitful discussions and invaluable advice during my research. I

also acknowledge Hossein Hassani for his valuable helps in reinforcement learning. My

thank also goes to Alzahra group members who provided online religious gatherings

to help me overcome my life challenges and be my best companion to make targeted

moments in St. John’s.

v

I would like to acknowledge the financial support the School of Graduate Studies

provided. My thank also goes to my supervisor, Prof. Yuanzhu Chen, again for giving

me a powerful iMac, an excellent PC.

A significant part of my education was in Iran, where my foundations were laid. I

wish to offer my sincere thanks to all my teachers at “HojrebneAdi” elementary school,

“AmirAlMomenin” middle school, and “Ayandeh Sazan” high school in Karaj, and

Qazvin Islamic Azad University in Qazvin. I am also very grateful to all my colleagues

at Ghiaseddin Jamshid Kashani University for their collaboration. In particular, very

thankful to Prof. Bahman Mehri for his kind help and the many lessons I learned

from him.

Last but not least, I am deeply grateful for the support and love I received from

my parents, AliHossein Karimi and Soghra Sarlak, and my two brothers, Vahid and

Saeed. Thank God for having my cute niece Chamaan Karimi two years old; watching

videos of her my family sent to me was the only entertainment that ignited my hope

during my research.

Elham Karimi

St. John’s, June 2022

vi

Statement of contribution

I, Elham Karimi, hold a principal author status for all the manuscript chapters (Chap-

ter 2 - 5) in this dissertation. However, each manuscript is co-authored by my su-

pervisors, Dr. Yuanzhu Chen, Dr. Behzad Akbari, and Dr. Xianta Jiang, whose

contributions have expedited the progress of developing the ideas and their formula-

tion, conducting computational experiments, and refinement of the presentation. The

contributions for each chapter are mentioned in the followings:

• Chapter 3:

E. Karimi, Y. Chen, and B. Akbari, “Task offloading in vehicular edge com-

puting networks via deep reinforcement learning,” Computer Communications,

2022.

• Chapter 4:

(Women in Engineering (WIE) Best Paper Award) E. Karimi, Y. Chen,

and B. Akbari, X. Jiang, “An Intelligent Resource Allocation and Scheduling

in Vehicular Edge Computing,” IEEE Newfoundland Electrical and Computer

Engineering Conference (NECEC), 2021.

• Chapter 5:

E. Karimi, Y. Chen, and B. Akbari, X. Jiang, “An Intelligent, Decentralized

and Proactive Resource Allocation Algorithm in Vehicular Edge Computing

Networks,” Submitted to journal, 2022.

Elham Karimi

vii

Table of contents

Title page i

Abstract ii

Acknowledgements v

Statement of contribution vii

Table of contents viii

List of tables xii

List of figures xiii

List of symbols xvi

List of symbols xvii

List of abbreviations xviii

1 Introduction 1

1.1 Background . 1

1.1.1 Vehicular edge computing . 2

1.1.2 Computation/storage allocation in VEC and its benefits . . . 4

viii

1.2 Research motivation and challenges 4

1.2.1 Limited resources in MEC compared with central cloud 4

1.2.2 Acceptance of crucial applications 6

1.2.3 Efficient resource allocation and task offloading 6

1.2.4 Distributed and machine learning approach 7

1.3 Research contributions . 8

1.4 Thesis outline . 9

2 Related work 11

2.1 Computation/storage resource allocation 11

2.2 Optimization tools for resource allocation 13

2.3 Task offloading . 15

2.3.1 Edge-based offloading . 15

2.3.2 Cooperation of edge and cloud 17

2.4 Task migration . 18

2.5 Deep reinforcement learning in vehicular edge computing 19

2.5.1 Central deep reinforcement learning in VEC 20

2.5.2 Distributed deep reinforcement learning in VEC 22

2.6 Workload prediction and resource provisioning 23

2.7 Summary . 24

3 Efficient task offloading via deep reinforcement learning 26

3.1 System model . 28

3.1.1 System architecture . 28

3.1.2 System’s operation . 29

3.2 Learning solution . 35

3.2.1 Reinforcement learning implementation 37

ix

3.2.2 Deep reinforcement learning solution 39

3.3 Performance evaluation and results 41

3.3.1 Experimental setting and baseline 42

3.3.2 Experimental result and discussion 43

3.4 Summary . 50

4 Computation re-allocation and dynamic distribution of arriving tasks 51

4.1 System model and problem formulation 53

4.2 Re-allocation and dynamic rate of arriving tasks 56

4.2.1 Resource allocation and offloading based on DRL 56

4.2.2 Re-allocation strategy . 58

4.2.3 Dynamic distribution and rate of arriving tasks 60

4.3 Performance evaluation . 61

4.4 Summary . 65

5 Decentralized and proactive resource allocation algorithm 67

5.1 System model and assumptions . 69

5.1.1 Task characteristics . 70

5.1.2 Architecture components in each MEC 72

5.1.3 Problem formulation . 74

5.2 Intelligent and proactive resource allocation algorithm 76

5.2.1 Decentralized multi-agent DRL and workload prediction . . . 78

5.2.2 Intelligent task offloading and proactive resource allocation so-

lution . 81

5.3 Performance evaluation and results 86

5.3.1 Experimental setting and baseline 86

5.3.2 Experimental results and discussion 89

x

5.4 Summary . 92

6 Conclusion and future work 93

6.1 Conclusion . 93

6.2 Future work . 96

Bibliography 97

xi

List of tables

2.1 Comparison of DRL algorithms in VEC 21

2.2 Overview of the related work in the literature 25

3.1 Main notations used in this chapter 31

3.2 Dataset content . 42

3.3 Parameters used in this chapter . 43

4.1 Main notations used in this chapter 53

4.2 Servers resource ability for Fig. 4.8 64

5.1 Network parameters and notations used in this chapter 71

5.2 Parameters used in this chapter . 87

5.3 Deep learning settings . 88

xii

List of figures

1.1 System model of vehicle-assisted MEC network. 3

1.2 Application scenarios of vehicular edge computing. 5

2.1 Reinforcement learning . 14

2.2 System model of edge-based task offloading. 16

3.1 An illustration of vehicular edge computing network model 30

3.2 An illustration of task offloading algorithm 36

3.3 Proposed deep reinforcement learning 39

3.4 (a) Normalized reward, (b) Average normalized reward per episode in

DRL, RL, Greedy, and Random solution for one central server and 3

MECs. 44

3.5 (a) Normalized reward, (b) Average normalized reward per episode in

DRL, Greedy, and Random solution for one central server and 9 MECs. 45

3.6 (a) Acceptance ratio, (b) Average acceptance ratio per episode in DRL,

RL, Greedy, and Random solutions for one central server and 3 MEC

servers. 46

3.7 (a) Acceptance ratio, (b) Average acceptance ratio per episode in DRL,

Greedy, and Random solutions for one central server and 9 MEC servers 47

3.8 (a) Normalized reward, (b) Average normalized reward per episode in

DRL solution for one central server and various number of MECs . . 48

xiii

3.9 (a) Acceptance rate, (b) Average acceptance rate per episode in DRL

solution for one central server and various number of MECs. 49

3.10 (a) Task distribution based on available resources in DRL solution. (b)

Task distribution based on available resources in Greedy solution. (c)

Task distribution based on available resources in Random solution. . 49

4.1 A vehicular edge computing network with various tasks 56

4.2 A simple illustration of re-allocation policy 60

4.3 LRTF scheduling . 61

4.4 Visualized arriving CAs and HPAs. 61

4.5 Normalized reward per episode in Scheduling-DRL, DRL, Greedy, and

Random solution. 62

4.6 Rejection ratio per episode in Scheduling-DRL, DRL, Greedy, and Ran-

dom solutions. 63

4.7 Response time per episode in Scheduling-DRL, DRL, Greedy, and Ran-

dom solution. 64

4.8 The number of allocated tasks to the MEC (0 to 5) and central servers

(6) in Scheduling-DRL, DRL, Greedy, and Random methods. 65

5.1 An illustration of vehicular edge computing network. 70

5.2 MEC node architecture. 74

5.3 A simple illustration of task offloading in proactive resource allocation. 78

5.4 Proactive resource allocation and task offloading process 79

5.5 An illustration of input/output of multivariate LSTM network. 81

5.6 Proposed proactive deep reinforcement learning. 84

5.7 Visualized incoming applications and prediction in multivariate LSTM 89

5.8 Normalized reward per episode in Proactive-DRL, Predictive-DRL, DRL,

Greedy, and Random solution. 90

xiv

5.9 Acceptance ratio of crucial tasks per episode in Proactive-DRL, Predictive-

DRL, DRL, Greedy, and Random solution. 91

5.10 Total response time of crucial tasks per episode in Proactive-DRL,

Predictive-DRL, DRL, Greedy, and Random solution. 91

5.11 Number of accepted tasks in Proactive-DRL, DRL, Greedy, and Ran-

dom solution. 92

xv

List of symbols

Latin

A Crucial application category
Acc Accepted rate
a(t) Action space
Bacc Bandwidth of access link
Bni Bandwidth of network link

Ĉ(t) Running tasks in each servers at time slot t
dm Data size of request m
J/j Number of tasks/index
K Number of episodes

M/M/m Set/number/index of vehicles
N /N/n Set/number/index of MEC servers

P̂b(t) Predicted workload of server b
Ri Vector of resource capacity of server i

Rcomp
i Computation capacity of server i
Rstor

i Store capacity of server i
rm(t) Reward for task m

Rej Rejected rate
RTTacc Round trip time between vehicle and MEC
RTTni Round trip time between base MEC n and execution node i
S(t) State space
V/i Set of all MEC servers plus central server v/index

Ŵ (t) Application waiting in the buffer of each server in time slot t

xvi

List of symbols

Greek

α Learning rate
βi
m Indicator if task m is in the buffer of server i
γ Discount factor
ε0 First value of ε in ε− greedy

εmin Min value of ε
λ(t) Rate of Poisson process
ξim Indicator if application from vehicle m is executed on server i

τ accessm Access latency of application m
τ estm Estimated response time of application m
τmig
m Migration latency of application m

τprocm Processing latency of application m
τqueuem Queuing latency of application m

φ̂ Application information
φm Vector of application resource demand of vehicle m

φcomp
m Application computation demand of vehicle m
φstor
m Application storage demand of vehicle m
φres
m Request’s tolerable response time of vehicle m
ψm Indicator the accepted request m by the network
Ψm Indicator the rejected request m by the network

xvii

List of abbreviations

ARIMA Auto-Regressive Integrated Moving Average
CA Crucial Application

CPU Central Processing Unit
DRL Deep Reinforcement Learning

DDPG Deep Deterministic Policy Gradient
DQL Deep Q-Learning

DSRC Dedicated Short Range Communications
FMDP Finite Markov Decision Process

GPS Global Positioning System
HPA High Priority Application
LPA Low Priority Application

LRTF Least Response Time First
LSTM Long Short-Term Memory
LTE-V Long-Term Evolution-Vehicle

MDP Markov Decision Process
MEC Multi-access Edge Computing

NP Nondeterministic Polynomial time
QoS Quality of Service
RL Reinforcement Learning

RSU Road-Side-Unit
RTT Round Trip Time

TD Temporal Difference
UAV Unmanned Aerial Vehicle
V2I Vehicle-to-Infrastructure

V2V Vehicle-to-Vehicle
VEC Vehicular Edge Computing

xviii

Chapter 1

Introduction

1.1 Background

Intelligent transportation systems are designed to provide innovative applications and

services for vehicles, drivers, and passengers, as well as to facilitate access to infor-

mation for other systems and users [3]. A significant component of future intelligent

transportation systems is the vehicular networks. Vehicular networks have emerged

due to advancements in wireless technologies, ad-hoc networking, and the automo-

bile industry. These networks are formed among moving vehicles, Road-Side-Units

(RSUs), and pedestrians that carry communication devices. Vehicular networks can

be deployed in rural, urban, and highway environments [2]. Vehicular networks are

popular as they provide safety, ease of driving, convenience, and greater efficiency.

Vehicular networks have several characteristics, such as highly dynamic traffic,

local decision making, execution of ultra low latency applications, lack of previous

network knowledge, and the need for real-time decision making. A large number

of applications are rapidly growing in vehicular networks. Application scenarios in

vehicular networks could include traffic control, path navigation, ultra-low latency

service, and entertainment. These applications have specific requirements on compu-

tation resources and task processing latency [34, 43, 48, 59, 80]. The emerging vehic-

ular applications with various demands have naturally increased the essential needs

of communication, computation, and storage resources while providing the required

Quality-of-Service (QoS).

A new computing paradigm, Vehicular Edge Computing (VEC), has been intro-

duced to the vehicular network to grow its computing capacity. However, the vehicles’

high mobility and dynamic topology make utilizing computing capacity a challenge.

As a result, computation and storage allocation in VEC is a vital issue that should

be addressed.

1.1.1 Vehicular edge computing

To better describe Vehicular Edge Computing (VEC), we first introduce vehicu-

lar cloud computing and then illustrate the Multi-access Edge Computing (MEC)

paradigm.

Cloud computing provides centralized computation and storage services using ei-

ther a cloud server or many remote servers. Cloud computing benefits the users with

virtual servers that allow remote storage capacity and computational facilities [63].

Vehicular cloud computing is a technology that takes advantage of cloud comput-

ing to provide several computation services at low cost to the vehicle drivers; The

cloud computing paradigm has enabled the exploitation of excess computing power.

One critical question arises while dealing with cloud computing, about the delay that

takes place while transferring data from vehicles to the cloud server and retrieving

the information after being stored and processed.

MEC technology aims at extending cloud computing capabilities. A significant

feature of MEC is to drive mobile computing and storage to the network edges closer to

the users, which provides low latency [61]. Driven by the benefits of MEC, many efforts

have been devoted to integrating vehicular networks with MEC, thereby forming a

novel paradigm named VEC [43]. Fig. 1.1 presents a system model of vehicle-assisted

MEC Network. VEC has a great potential to enhance traffic safety and improve travel

comport by integrating MEC into vehicular networks. VEC literature has seen several

works mainly on computation offloading [16,20,62].

Vehicles can offload their computation-intensive and latency-sensitive tasks to the

edge servers, which can considerably reduce the response time [43]. Road-Side-Units

(RSUs) are often equipped with edge servers distributed along the road in a city. For

instance, ultra-low latency service must execute immediately in the MEC server, and

2

Figure 1.1: System model of vehicle-assisted MEC network.

drivers should be aware of traffic accidents and perform more efficient and effective op-

erations. Furthermore, entertainment applications will benefit from rich computation

and storage resources that should migrate to the central cloud for execution.

In vehicular networks, MEC servers are often deployed near RSUs. The computing

ability of MEC will also be reduced to a certain degree. Another important property

is heterogeneity. Because of the different network environments and communication

technologies, MEC should support various hardware and software devices to satisfy

the safety demand. In addition, MEC’s transmission management and server selection

must adapt to the vehicle’s mobility to achieve low latency in high-speed mobile

environments [47].

MEC facilitates vehicles to offload their tasks to the nearest edge cloud for pro-

cessing to reduce the response time and increase the ratio of accepted tasks. However,

the MEC’s restricted computation and storage capacities are considered a barrier that

cannot quickly satisfy the increasing resource demands of the vehicles [61]. Despite the

development of MEC in vehicular edge computing, there are still two main challenges

related to task offloading and resource management. The first challenge is whether an

edge cloud, which received a task, should execute it or migrate it to the other MEC

to find a proper place to execute it. The second challenge is if an edge cloud decides

to relocate the task to the other MEC for processing, which MEC should be chosen.

3

1.1.2 Computation/storage allocation in VEC and its bene-

fits

VEC networks support an array of applications, which include three main categories:

1) road safety applications (e.g., lowering the risk of accidents); 2) traffic efficiency ap-

plications (e.g., reducing travel time and alleviating traffic congestion; 3) value-added

applications (e.g., providing infotainment, path planning and Internet access) [43].

The rapid development of vehicular networks will facilitate wide use of smart vehi-

cles, which enables a large number of various types of applications [91, 92]. Fig. 1.2

shows application scenarios of VEC. In vehicular edge computing, the number of

tasks that are simultaneously offloaded to the MEC servers may change quickly over

time. Therefore, investigating the computation/storage allocation in such a network

is significant to guarantee low latency application. In addition, compared to cloud

computing, the resources of VEC in terms of computation and storage are limited. If

all the vehicles offload their tasks to the same edge server, it will likely be overloaded

and degrade network performance. Thus, how to manage these resources is vital.

Given dynamic resource demands, diverse application characteristics, and complex

traffic environments, optimizing resource allocation is a challenging task [43].

The main focus of MEC is an efficient resource management algorithm to optimize

the utilization of edge server resources by considering the distinction of task priorities.

In addition, several existing works [12, 18, 79] consider cloud resource provisioning in

edge cloud. This dissertation focuses on computation/storage resource allocation and

task offloading in VEC.

1.2 Research motivation and challenges

1.2.1 Limited resources in MEC compared with central cloud

A large number of applications are rapidly growing in vehicular networks. The emerg-

ing vehicular applications with various demands have naturally increased the essential

needs of communication, computation, and storage resources while providing the re-

quired QoS.

Compared with central cloud, one of the barriers is the limited computation and

4

Figure 1.2: Application scenarios of vehicular edge computing.

storage capacities in the MECs, which cannot quickly satisfy the increasing resource

demands of such applications, especially those with intensive computation and rigid

delay requirements. To tackle these issues, using central cloud computing is widely

regarded as a promising solution [13]. Central services are deployed in the remote

clouds, and they can get the uploaded information from edge servers. Compared with

edge servers, central clouds have large capacities in terms of computation and storage

and cover a much broader area. The central cloud paradigm can provide global level

management and centralized control, which helps make optimal decisions. Despite the

advantages of a central cloud, high data transmission latency is a consequence that

is not tolerated in variant types of new emerging applications. Limited capacities in

the edge networks and low latency requirements of some applications need efficient

allocation of edge resources and leveraging the resources in the central clouds. How-

ever, most existing works did not have efficient cooperation between MEC and central

servers with optimized task migration.

Motivated by the issues and challenges in limited resources in edge computing,

we present a cooperation framework between MEC and central clouds. The offloaded

5

tasks to the edge servers are migrated between edge and central clouds according to

the tasks requirements and the available resources in the edge clouds.

1.2.2 Acceptance of crucial applications

Vehicle applications can be classified into different levels according to their charac-

teristics. Crucial applications are core vehicle system applications or safety-related

applications. Because of their importance to the vehicle and the passengers, crucial

applications have the highest priority and must be executed immediately. However,

there is no distinguishing difference among tasks in the resource allocation policies in

existing work.

The number of concurrent tasks offloaded to the MEC servers may change quickly

over time in vehicular edge computing. Thus, investigating the workload in resource

allocation and task offloading for crucial applications in such a network is important.

Moreover, designing a distributed algorithm is challenging because there is no prior

knowledge about workloads at MECs [67]. Furthermore, it is significant to proac-

tively manage and allocate resources concerning workload dynamics to satisfy user

expectations, especially for crucial tasks. This leads to the demand for a mechanism

that is capable of predicting workload variations in MEC servers [52].

To increase the acceptance rate of crucial tasks in high dynamic networks, we

propose two approaches in this dissertation. The first approach is the reallocation and

scheduling strategy, which classifies vehicular tasks based on their tolerable response

time and prioritizes the crucial tasks for resource allocation. The second approach is

to present intelligent workload prediction and proactive resource allocation.

1.2.3 Efficient resource allocation and task offloading

Another critical problem in vehicular edge computing is how to decide which MEC

servers should accept the offloaded application tasks. Service migration schemes in-

troduced in several studies [19,80] to support reliable computing services. Most of the

studies in edge computing suffer a lack of real high dynamic network consideration.

The authors did not consider the high volume of task migration and limited resources

in MEC for a considerable number of arriving application task offloading requests

6

and mostly ignored the increased mobility of the vehicles. Several studies [21, 84, 89]

considered cooperation among local clouds and remote clouds. However, these works

do not address the problem of migration in application tasks.

In dynamic vehicular edge networks, some difficulties arise when resource alloca-

tion is defined as an optimization problem. The optimization problem is an NP-hard

problem, and achieving the optimal or sub-optimal solutions usually requires expo-

nential time complexity. Moreover, the optimization procedure must be executed at

each time slot due to the diversity of request requirements, the number of requests,

and resource availability in the MEC server, which are time-varying and highly dy-

namic. Therefore, the conventional optimization methods using relaxation iteration

algorithms incur high computational complexity due to high iterations, and their so-

lutions are often sub-optimal. They would not scale well [64], usually converge slowly,

and have prohibitive complexity for real-time implementations [74]. We believe a

machine learning-based approach is an effective and attractive solution to tackle this

problem.

1.2.4 Distributed and machine learning approach

Resource allocation and task offloading problems as NP-hard problems are difficult to

solve via conventional mathematical techniques near-real-time [74, 75]. Moreover, in

a dynamic vehicular edge computing network, task requirements and resource capa-

bilities’ MEC servers are time-varying; most of the existing approaches need to solve

such a problem very frequently to obtain the optimal or suboptimal offloading strat-

egy. However, this introduces significant computational overhead to vehicular edge

computing, and it can hardly get the optimal offloading solution in real-time [74].

Due to the time-varying of task requirements and resource capabilities in MEC

servers in the dynamic nature of vehicular networks, in this dissertation, we formu-

late dynamic offloading and resource allocation as Finite Markov Decision Process

(FMDP) involving state and action spaces and only depending on the current state

and action. FMDP is a prominent part of deep reinforcement learning. Therefore,

optimum task offloading using Deep Reinforcement Learning (DRL) could ensure the

system performance measured by latency and acceptance rate [75].

One significant characteristic of vehicular systems is local decision-making and

7

distributed task offloading, and a resource allocation strategy would be an essential

need. In most existing works [22,24,38,46,58,86], deep learning algorithms for MEC

systems have been proposed, while the authors focused on centralized resource alloca-

tion and offloading algorithms, and there is no workload consideration in that works.

In this dissertation, we develop a resource allocation and task offloading utilizing a

distributed DRL where each MEC server learns and acts as an independent agent.

1.3 Research contributions

This dissertation presents the following novel contributions to the resource allocation

in vehicular edge computing networks

• We apply an efficient collaboration among MEC, and the central cloud for task

offloading and resource allocation. We design a task migration scheme among

local and remote servers based on resource restrictions and vehicles’ QoS re-

quirements while respecting the tolerable response time of each application.

• We adopt a machine-learning approach, which utilizes a model-free method to

find the optimal offloading task scheme and maximize the vehicular application

task’s acceptance rate. In other words, we develop a central Deep Reinforcement

Learning (DRL) deployed in the central cloud.

• We classify three different application tasks with different characteristics and

priorities and propose reallocation and scheduling policies based on three cat-

egories of vehicle applications. The proposed scheduling policy minimizes the

rejection rate of applications. Moreover, to model the dynamic nature of the

vehicular network, we generate arriving tasks of each category based on inho-

mogeneous Poisson distribution.

• We propose an efficient, proactive resource allocation in a highly dynamic ve-

hicular system by developing a decentralized DRL-based task offloading and

resource allocation algorithm, enabling each MEC server to find the optimal

solution for proactive resource allocation problems. Furthermore, we propose

a Multivariate-LSTM approach to predict near-future workload in each MEC

server. The prediction workload is based on different application tasks priority.

8

The workload prediction results provide the opportunity for lower priority tasks

migration to release free resources for crucial applications that have the highest

priority.

1.4 Thesis outline

The rest of this dissertation is organized as follows. Chapter 2 provides a review

of studies on vehicular edge computing. We categorized the studies in five topics

as cooperation local/central cloud, cloud resource provisioning, task offloading, task

migration, deep learning in VEC, workload prediction. By comparing existing studies

on the subject, we lay the groundwork for further research in the next chapters.

In Chapter 3, we propose task offloading with a resource allocation strategy as an

optimization problem. The system model includes a cooperation framework between

MEC and central clouds. The offloaded tasks to the edge servers are migrated between

edge and central clouds according to the tasks requirements and the available resources

in the edge clouds. Our strategy respects each application’s acceptable response time

and maximizes the acceptance rate of applications. We jointly optimize the task

offloading decision and computational resource allocation using deep reinforcement

learning for a highly dynamic vehicular edge computing environment. After evaluation

and getting the results, we propose a complementary algorithm in Chapter 4. The

complementary algorithm can reallocate resources for new and previous tasks based

on tasks’ priorities. In this context, different applications have different requirements,

especially response time. We classify vehicle applications into three levels according

to their characteristics and apply reallocation and scheduling strategies.

In Chapter 5, we extend our work from Chapter 3. We focus on proactive resource

allocation and task offloading in vehicular edge computing. The primary motivation

of our proactive resource allocation algorithm is to gain high QoS and to provide a

high acceptance rate of crucial vehicular tasks. We develop a distributed deep learning

scheme following two objectives. The first is resource allocation and task offloading

utilizing a distributed DRL where each MEC server learns and acts as an independent

agent. The second is distributed workload prediction based on the Multivariate LSTM

method to proactively manage the MEC servers’ multi-dimensional resources.

Finally in Chapter 6, we conclude and summarize the contributions presented in

9

this dissertation, and discuss several potential extensions to our research.

10

Chapter 2

Related work

Many studies have been conducted on resource allocation and task offloading in ve-

hicular edge computing networks in recent years. There are many optimization tools

and methodologies to solve resource allocations. However, in VEC, because of its

highly dynamic nature, many challenges arise. Many experimental studies have fo-

cused on intelligent resource allocation in this network, mainly on computation and

Vehicle-to-Vehicle (V2V)/ Vehicle-to-Infrastructure (V2I) communications. A famous

and influential method conducted in research is utilizing deep reinforcement learning.

This chapter overviews the various existing works for task offloading and resource

allocation in vehicular edge computing networks. The overview is classified based

on key concepts related to this dissertation. We describe related work to capture

more about resource allocation, task offloading and migration, central/distributed

deep reinforcement learning, and workload prediction. Furthermore, we summarize

the related works in the last subsection of this chapter.

2.1 Computation/storage resource allocation

During rush hours, the demands of vehicular applications can constitute a network

with strong computing resources that proper resource allocation strategies bring lots

of benefits. Many research studies on VEC networks considered applying MEC re-

sources to complete application requests from vehicles on roads and focused on allo-

cating limited resources to achieve multiple purposes for road safety. For instance,

the work in [80] proposed a game-theoretical approach for the system. Furthermore,

there is a great challenge in gathering, storing, and processing all the data of these ve-

hicular tasks, and then the management of the resources is yet another task. An edge

server must have sufficient resources to execute all application tasks. In reality, an

edge node has an inadequate collection of resources and therefore, these can become

overloaded when many vehicular requests arrive at once; for instance, at the time

of peak traffic, it results in degraded performance. If all the vehicles offload their

tasks to the same edge server, it is likely to be overloaded, degrading the network

performance. The author of [37] targeted the management strategies in each edge

node, channeling resource management in FeRANs. The QoS is improved, focusing

on real-time vehicular services, and two schemes were introduced, named fog resource

reservation and fog resource reallocation.

The main focus of MEC is an efficient resource management algorithm to optimize

the utilization of edge server resources by considering the distinction of task priori-

ties, and several existing works [12, 18, 79] consider cloud resource provisioning. The

authors of [12] investigated resource allocation by jointly considering load balancing

and offloading in a multi-user, multi-server vehicular environment. This proposed

solution allows vehicles to select their preferable edge servers based on their require-

ments and accounts for the mobility of cars. The work in [79] were considered both

the local and remote resource sharing with the collaboration across different data

centers. A coalition game was formulated and solved by a game-theoretic algorithm

with stability and convergence guarantees to realize resource sharing and cooperation

among other servers. Moreover, the work in [18] proposed a new server cooperation

scheme where edge servers exploit both the computational and storage resources by

proactively caching computation results to minimize the computation latency. The

corresponding task distribution problem was formulated as a matching game and

solved by an efficient algorithm based on a proposed deferred-acceptance algorithm.

The authors of [87] present a regional cooperative fog computing to provide various

services. A localized coordinator supports interoperability and cooperative operation

among local fog servers. A hierarchical resource management model is developed to

optimize the network performance in the fog computing network. The problem of how

to efficiently orchestrate combined edge-cloud applications is, however, incompletely

understood, and a wide range of techniques for resource and application management

are currently in use [17].

12

2.2 Optimization tools for resource allocation

A resource allocation problem can be defined as an optimization problem to maxi-

mize or minimize some QoS parameters in the network. Several optimization tools

are highlighted, including convex optimization, stochastic optimization, game theory,

graph theory, and reinforcement learning. We briefly consider them as follows [26]

while describing their properties for resource allocation in VEC:

• Convex optimization: Convex optimization is a subfield of mathematical opti-

mization that involves the problem of minimizing convex functions over convex

sets. Convex optimization technology has been applied to various fields, includ-

ing communications and networks, signal processing, automatic control, data

analysis, modeling, etc. A convex optimization problem is in standard form if it

is written as in [6]. Many RA problems are non-convex in VECs, which are hard

to solve. Moreover, the complexity of RA is high to find the optimal solution for

many vehicles. It is hard to solve dynamic, time-varying optimization problems.

• Stochastic optimization: Whereas deterministic optimization problems are for-

mulated with known parameters, vehicular ad hoc network-based resource prob-

lems almost invariably include some unknown parameters. Stochastic optimiza-

tion methods are optimization methods that generate and use random variables.

Some stochastic optimization methods use random iterates to solve stochastic

problems. The main disadvantage of Stochastic optimization methods is that

there is no guarantee for a global optimal solution.

• Game theory: Game theory is the study of mathematical models of strategic

interaction among rational decision-makers, which has applications in various

fields, including logic, system science, and computer science. The assumption

that players have the knowledge about their own pay-offs and pay-offs of others

is not practical. In a vehicular network, complete information to select a strategy

or action may not be available to a vehicular node or MEC server.

• Graph theory: Graph theory is the study of graphs, which are mathematical

structures used to model pairwise relations between objects. Adjacency matrices

consume a massive amount of memory for storing big graphs.

13

• Reinforcement learning: Reinforcement learning (RL) is an area of machine

learning concerned with how software agents ought to take actions in an en-

vironment to maximize some notion of cumulative reward. Fig. 2.1 presents

the architecture of RL. The general RL problem is formalized as a discrete-

time stochastic control process, such as MDP. In general, there are two main

types of RL methods, including value-based and policy-based. The value-based

RL method tries to find or approximate the optimal value function, which is

a mapping between an action and a value, and the most famous algorithm

is Q-learning. The policy-based RL method tries to find the optimal policy di-

rectly without the Q-value as a middleman. Deep reinforcement learning (DRL)

uses deep learning and reinforcement learning principles to create efficient algo-

rithms, and previously some unsolvable problems could be solved by using the

powerful DRL model [40]. Taking advantage of the general-purpose framework

in decision-making, reinforcement learning is widely used in solving resource

allocation problems in VEC networks [66].

Figure 2.1: Reinforcement learning

The performance metrics, including delay, energy, bandwidth, reliability, etc., are

main indicators of the network performance, which guides optimizing the network

performance [43]. The authors of [87] present a regional cooperative fog computing

to provide various services. A hierarchical resource management model is developed

to optimize the network performance in the fog computing network. Two scheduling

schemes based on response time and queue length are presented to schedule data

14

for adapting to the changing network and enhancing data dissemination efficiency,

respectively. The work in [28] tries to optimize the utilization of fog computing

resource, to fulfill the delay requirement of tasks by assigning each task with the best

fog server with the assistance of Software-Defined-Network.

2.3 Task offloading

A critical challenge in VEC is how to find a proper location for task execution. In

other words, deciding which cloud, either edge or central, is appropriate for running

the tasks. Many vehicular application tasks have stringent requirements in terms of

computation and delay. Despite abundant resources, the cloud is unfeasible to support

delay-sensitive applications because of the long distance from vehicles. By contrast,

VEC is envisioned as a promising solution. Vehicular tasks can be transferred to the

MEC nodes with some computation and storage resources, significantly shortening

the delay and alleviating the network load [43]. Although making a good decision

for task offloading is challenging because of the highly dynamic nature of vehicular

networks, much research has been done to investigate task offloading in VEC. Task

offloading was considered in [12, 14, 16, 45, 81, 82], where tasks could be offloaded in

different domains to improve resource utilization, including servers in RSUs and the

central cloud. We classify task offloading models into two models. The first model is

edge-based, and the second model is the cooperation of edge and central cloud, which

are considered as the following subsections.

2.3.1 Edge-based offloading

Edge servers can reduce transmission costs and generate a fast response in the offload-

ing services because of the closeness to the vehicular users. Despite the rapid response

rate, the edge servers usually face the limitation of the resources as compared to the

conventional cloud servers, which have a significant computational capacity. The edge

servers take a certain time to perform the computation tasks. This is especially true

for the edge servers located at the road segments, which have a high density of vehi-

cles in comparison to others [63]. Fig. 2.2 presents a system mode of edge-based task

offloading.

15

Figure 2.2: System model of edge-based task offloading.

A computation offloading framework that allows a mobile device to offload tasks

to multiple MEC servers was proposed in [14], and semidefinite relaxation-based al-

gorithms were also proposed to determine the task allocation decisions and CPU

frequency scaling. By considering the requirements of computation tasks and the

mobility of vehicles, a predictive-model transmission strategy was introduced in [82]

for task offloading, improving the transmission efficiency, and satisfying the required

delay. Besides, an optimal offloading scheme based on prediction was designed for

accomplishing diverse types of computation tasks. The authors of [12] investigated

resource allocation by jointly considering load balancing and offloading. The work

in [45] investigated the problem of multiple-user computation offloading on an edge

server to reduce communication overhead. The coupling of offloading decisions from

vehicles, game theory was used to make optimal offloading decisions and suitable

channel selections for vehicles. When determining the offloading strategy, the authors

of [16] took into account the profits of both vehicle and edge server simultaneously.

There, a dual-side optimization was formulated to minimize their costs. On the side

of vehicles, the offloading decisions and local CPU frequencies were jointly optimized;

radio resource allocation and service provisioning were both considered on the side

of the edge servers. Authors in [81] presented task offloading in vehicular networks.

However, they did not consider resource restrictions in MEC.

In [83], a computational offloading infrastructure was analyzed, which stresses

the computational effectiveness of the transfer frameworks of V2I and V2V modes

of communication. Moreover, an efficient predictive combination-mode relegation

scheme while taking into account the time consumption of the execution of the tasks

and the mobility of the vehicles was also proposed. In this model, the tasks are

16

offloaded to the MEC servers over direct uploading and predictive relay transmissions.

The work in [45] investigates the problem of multiple-user computation offloading

on an edge server to reduce communication overhead. The computation offloading of

each vehicle refers to channel selection for uploading its task to the edge server. Dif-

ferent from the studies in [45] with a focus of single edge server, multi-server scenario

is considered in [68], where high reliability and low latency Vehicle-to-Infrastructure

(V2I) communication architecture is proposed by jointly optimizing Autonomous Ve-

hicle (AV)-to-Small Base Station (SBS) association and wireless resource manage-

ment.

2.3.2 Cooperation of edge and cloud

A generic VEC architecture includes cooperation between local and central clouds,

and several related works used this architecture [21, 84, 89]. Collaboration between

MEC and central cloud leverages both the low communication latency due to the

proximity of the MEC server and the low computation latency arising from abun-

dant computational resources at the central-cloud servers. In [89], the server selection

problem was studied for a multi-user system comprising a single edge server and a

single central cloud. A heuristic scheduling algorithm has been proposed to maximize

the total success of offloading probability. The authors designed a threshold-based

policy to improve the QoS by cooperation of the local cloud and Internet cloud re-

sources, which simultaneously takes advantage of the local cloud’s low latency and

abundant computational resources of the Internet clouds. It does not consider the

network dynamics, and there is no resource management. In addition, the authors

in [21] explored the problem of server selection over multiple MEC servers. The major

challenge arises from the correlation between the amounts of the offloaded computa-

tion and selected edge servers for various users. To cope with this issue, formulating

and solving a congestion game was proposed to minimize the energy consumption of

mobile users and edge servers. Furthermore, the Stackelberg game was used in [84]

to design an optimal multilevel offloading scheme to maximize the utilities of vehicles

and edge servers. A backup server in the vicinity is utilized to supplement insufficient

edge server resources. If edge servers are located on dense roads, their constrained

capacities may negatively impact the QoS of vehicular users.

17

2.4 Task migration

Due to the constrained capacity, it is needed for vehicular users to offload computation-

intensive and delay-sensitive tasks to edge servers. Considering the dynamic environ-

ment and frequently changing topology, optimizing task migration decisions is cru-

cial [43]. For smooth service migration in MEC, an efficient edge server selection

algorithm is needed to select the optimal target edge server. In general, two factors

should be taken into account: users’ trajectory and QoS utility [72]. On the one hand,

existing research works rarely explore users’ trajectory data and the prediction of their

movement and adopts a random mobility model instead [88]. However, users’ mobility

pattern (e.g., direction and velocity) has a significant influence on the construction of

the candidate edge server set, and the users’ trajectory data can be used to predict

users’ movement. On the other hand, existing literature pays less attention to the

effect of QoS utility on the selection of edge servers in service migration and therefore

hardly select the edge server with the highest QoS utility [29]. Without considering

users’ trajectory data and QoS utility, the accuracy of edge server selection and the

efficiency of service migration decrease. The mobility of mobile users and the limited

coverage of edge servers can result in significant network performance degradation,

dramatic drop in QoS, and even interruption of ongoing edge services; therefore, it

is difficult to ensure service continuity. Service migration has great potential to ad-

dress the issues which decide when or where these services are migrated following user

mobility and the changes in demand.

Task migration among different edge servers has gained increasing attention in

existing literature [7, 19, 42, 69, 71]. Multiple edge servers may be considered for one

task offloading. The computation migration problem was formulated as an MDP

problem based on a random-walk mobility model in [71]. It was shown that the op-

timal policy has a threshold-based structure, i.e., select the migration only when two

thresholds bind the distance of two servers. This work was further extended in [69]

where the workload scheduling in edge servers was integrated with the service mi-

gration to minimize the average overall transmission and reconfiguration costs using

Lyapunov optimization techniques. Another computation migration framework has

been presented in [7], where the MEC server can either process offloaded computation

tasks locally or migrate them to the central cloud servers. An optimization problem

18

was formulated to minimize the sum of mobile-energy consumption and computa-

tion latency. This problem was solved by a heuristic two-stage algorithm, which first

determines the offloading decision for each user by semi-definite relaxation and ran-

domization techniques and then performs resource allocation optimization for all the

users. Tao et al. [42] have investigated the mobile edge service performance optimiza-

tion problem and considered the cost of frequent migration. They used Lyapunov

optimization to decompose long-term optimization problems into a series of real-time

issues, while they did not require prior knowledge, such as user mobility.

As a mobile user moves from one area to another, we can 1) either continue to

run the service on the current edge server, and exchange data with a mobile user

through the core network or other edge servers, 2) or migrate the service to another

edge server that covers the new area. In both two cases, the cost can be incurred [72].

When a user moves through several adjacent or overlapped geographical areas, service

migration, should deal with: 1) whether the ongoing service should be migrated out

of the current edge server that hosts this service; 2) if the the answer is yes, then

which edge server the service should be migrated to; 3) how the service migration

process should be carried out, considering the overhead and QoS requirements. The

mathematical models, such as MDP, are applied to make efficient service migration

decisions. Recently, artificial intelligence technology represented by deep learning

and reinforcement learning is developing very fast and can help solve this complex

problem [72].

2.5 Deep reinforcement learning in vehicular edge

computing

Recently, artificial intelligence-based methods, especially deep learning provides new

solutions to solve the resource allocation problems with low-complexity [40, 77]. In

VEC networks, some essential features, including vehicular application requirements,

network conditions, resource utilization, can be predicted and modeled conveniently

by using deep learning methods. Moreover, the extracted features can be adopted to

make resource optimization decisions. Therefore, how to efficiently predict and model

the resource allocation problem to maximize the revenue is an open issue [26]. In ad-

dition, when each MEC can make decisions individually, the distributed deep learning

19

approaches can be exploited to optimize resources efficiently. In vehicular networks,

data are naturally generated and stored across different units in the network, e.g.,

vehicles, roadside units, and remote clouds. This brings challenges to the applica-

bility of most existing machine-learning algorithms that have been developed under

the assumption that data are centrally controlled and easily accessible. As a result,

distributed learning methods are desired in vehicular networks that act on partially

observed data and have the ability to exploit information obtained from other entities

in the network [77].

In order to tackle the resource allocation challenge in vehicular networks, a promis-

ing method is for the intelligent agents to leverage the techniques in the field of ar-

tificial intelligence, especially reinforcement learning (RL) and deep reinforcement

learning (DRL), for decision making. RL has been successfully applied to a variety

of domains, it confronts the main challenge when tackling problems with real-world

complexity, i.e., the agents must efficiently represent the state of the environment from

high-dimensional data, and use this information to learn optimal policies. Therefore,

DRL, in which RL is assisted with deep learning (DL), has been developed to over-

come the challenge [35]. There are two common DRL algorithms: Deep Q-Learning

(DQL) and Deep Deterministic Policy Gradient (DDPG). DQL is a powerful tool for

obtaining the optimal policy with a high dimension in the state space. Besides an

online neural network (evaluation network) to learn the Q-value, a frozen network

(target network) and the experience replay techniques are applied to stabilize the

learning process. However, the method does not work in the network with contin-

uous action space. A summary of classification of central and distributed DRL is

provided in Table 2.1. In addition, we classify some existing literature for central and

distributed DRL in VEC as the following subsections.

2.5.1 Central deep reinforcement learning in VEC

There have been several works to apply central DRL to task offloading and resource

allocation in VEC [11, 22, 24, 44, 86]. A two-level approach to managing the resource

allocation of resources in a cloud environment is detailed in [44], with reinforcement

learning employing an autoencoder neural network at the global scale, along with a

Long Short Term Memory (LSTM) neural network at the local level for workload

prediction. In [22], the vehicle’s request for video-concerned contents was in the base

20

Table 2.1: Comparison of DRL algorithms in VEC

Reference
Action
type Central Distributed

DRL
algorithm

Agent
location

[22] discrete X - DQL
mobile virtual

network operator
[44] discrete X - DQL a server cluster
[24] discrete X - DQL a base station
[11] continuous X - DDPG a base station
[86] discrete X - DQL a base station
[46] discrete X - DQL VEC operator
[39] discrete - X DQL V2V agent
[10] discrete - X DQL UAVs
[38] discrete X - DDPG a global controller
[58] continuous X - DDPG a controller

[67] discrete - X
double-DQN
dueling-DQL mobile devices

[57] continuous - X DDPG MECs

station’s cache, or it was retrieved from the Internet. A resource allocation strategy

for connected cars using joint networking, caching, and computing was formulated as

an optimization problem. However, the mutual consideration of these three factors

increases the complexity of the problem. Thus, a deep reinforcement learning method

was introduced to solve the optimization problem. In [24], the mutual communication,

computation, and caching issues were studied. The resource scheduling was designed

by taking into account the mobility of vehicles, and the communication models were

vehicle-to-vehicle and vehicle-to-RSU. The authors have proposed a coded caching

scheme; each content is encoded into multiple segments, which can be cached in the

local vehicle storage or the RSU storage. The deep learning algorithm was utilized to

solve the resource allocation problem. In addition, in [24], the vehicle’s mobility was

modeled by discrete random jumps, and the numbers of contacts between vehicles and

RSU follow the Poisson distribution. In [11], by using the Deep Deterministic Policy

Gradient (DDPG) algorithm, the authors dealt with joint edge computing and caching

resource allocation problems. One of the components that constitute the functioning

of this algorithm is replay memory which stores the network experiences. The authors

of [86] designed a deep Q-learning approach to make optimal offloading decisions by

taking into account the selection of target servers and the determination of data

transmission strategies simultaneously in the LTE-V network. The authors used the

21

vehicle-to-base station, vehicle-to-vehicle, and vehicle-to-RSU communication modes.

In [38], the authors proposed a collaborative edge computing framework developed

to reduce the computing service latency and improve service reliability for vehicular

networks. They adopted DDPG to find the optimal solution in a complex urban

transportation network. In their problem, many zones lead to the high dimension in

both state and action spaces. Although the action space is discrete, DDPG tackles

the problem with a high action dimension by the policy gradient technique.

2.5.2 Distributed deep reinforcement learning in VEC

The distributed approach is more sensible than the centralized approach for resource

allocation and task offloading in VEC. Because of the nature of the vehicular network,

it is needed to make a local decision immediately. For example, if an accident happens

on the road, the vehicle around that area needs to be announced to avoid traffic

jams or other alternative accidents. When the single agent of DRL is deployed in a

central cloud, it needs to make a global decision with high complexity, processing too

much other information coming from the network. However, in the cases that every

MEC has its own agent that can make an immediate decision independently with low

complexity. With the distributed-based approach, each node can make the decision

individually, and the optimization problem can be divided into some subproblems [26].

Designing a distributed algorithm is challenging because there is no prior knowl-

edge about workloads at MECs [67]. To address this challenge, Peng et al. [57] have

studied multi-dimensional resource management in the MEC- and UAV-assisted ve-

hicular networks utilizing multi-agent RL. Liang et al. [39] developed a distributed

resource sharing scheme based on multi-agent RL for vehicular networks with multiple

V2V links reusing the spectrum of V2I links. Cui et al. [10] proposed a stochastic game

formulation for the dynamic resource allocation problem of the considered multi-UAV

networks for maximizing the expected rewards, where each UAV becomes a learning

agent, and each resource allocation solution corresponds to an action taken by the

UAVs. The works [57], [39], [10] distributed algorithms were proposed while there

was no workload prediction in edge servers.

22

2.6 Workload prediction and resource provisioning

In vehicular edge computing, the number of concurrent tasks offloaded to the MEC

servers may change quickly. Thus, investigating the workload in resource allocation

and task offloading algorithms in such a network is crucial. The workload of vehicular

applications in VEC changes continuously based on the vehicle requests, and insuffi-

cient resource allocation to the application leads to the QoS dropping, loss of safety,

and maybe cases of danger. On the other side, allocating unnecessary resources to the

application can lead to wastage of cost and energy to maintain the resources. This

issue can be solved with the prediction methods, which can predict the future work-

load of VEC applications in terms of needed resources and allocate those resources in

advance, and release the resources when they are not required.

It is significant to proactively manage and allocate resources concerning workload

dynamics to satisfy user expectations, especially for crucial tasks. This leads to the

demand for a mechanism that is capable of predicting workload variations in MEC

servers [52]. Zhang et al. [82] introduced a predictive-model transmission strategy

for task offloading, improving the transmission efficiency, and satisfying the required

delay. Neto et al. [51] proposed an estimation-based method, where each device

makes its offloading decision based on the estimated processing and transmission

capacities. By considering the requirements of computation tasks and the mobility

of vehicles, a predictive-model transmission strategy is introduced in [82] for task

offloading, improving the transmission efficiency and satisfying the required delay.

Besides, an optimal offloading scheme based on prediction is designed for serving

diverse types of computation tasks. Workload analysis and prediction have recently

become an important research topic, as testified by the significant body of literature

and by the presence of a few surveys covering aspects of this field. As outlined

in [53], reliable resource provisioning for edge-cloud applications is a complex problem,

especially when it is examined in a multi-tenant edge-cloud environment where the

infrastructure is utilized to host numerous applications/services owned by different

service providers. Each application typically has its own set of requirements, and

there is a high possibility that controlling operations or tuning the performance of

one application will have some impact on the others.

The newest proposed approaches are based on machine learning techniques. The

23

machine learning-based methods predict the application behavior in different dimen-

sions. Neural Networks are known to perform well on nonlinear tasks. Because of

its versatility due to the large dimension of parameters, and the use of nonlinear

activation functions in each layer, the model can adapt to nonlinear trends in the

data [54]. Neural network models, e.g., Long Short-Term Memory (LSTM), provide

more accurate predictions on average than classical regressive models [17]. LSTM is

a special kind of recurrent neural network which makes use of sequential observations

and learns from the prior stages to figure future patterns with additional features to

memorize the sequence of information [15].

D. Janardhanan et al. introduces a hybrid model, LSTM and Auto-Regressive In-

tegrated Moving Average (ARIMA) model [25] for CPU workload prediction. In [31],

the authors indicate that the LSTM model could solve the issues faced by cloud sys-

tems, as it is fragile and costly in the event of problems such as dynamic scaling of

resources and energy consumption. The authors state that if it is possible to deter-

mine the precise future workload of a server, resources can be adjusted according to

demand and thus maintain both qualities of service and reduce energy consumption.

An LSTM network is adopted to predict the moving direction of vehicles [90]. Then,

based on Markov decision processes, the optimal caching resource allocation problem

is formulated to maximize the reward. Finally, a deep Q-learning-based algorithm is

used to solve this problem.

Mainly two methods are used for time series forecasting, univariate and multi-

variate. In univariate time-series forecasting, there are only two variables: time and

the forecasted parameter, depending on time. Multivariate time-series forecasting

contains multiple variables, which are time and various parameters that influence the

forecasted parameter [8]. In some papers, such as Liang et al. [41]; Yang et al. [76], the

application workload is equivalent to the number of application requests. In this case,

the future number of application requests is the output of the prediction methods.

2.7 Summary

Table 2.2 presents an overview of all studies discussed in this chapter. As explained

in this chapter, there have been a number of studies on resource allocation and man-

agement [12, 17, 18, 37, 79, 80, 87]. Most of this research did not utilize intelligent

24

techniques, which are decisive for highly dynamic and complex networks. Moreover,

various optimization tools were proposed to solve resource allocation, and DRL was

more proper to solve resource allocation in the VEC network. As mentioned in this

chapter, we can summarize that in the works [12,14,16,45,63,68,81–83], the dynamic

of the network with an unknown load (i.e., the number of arriving tasks) is still chal-

lenging. There was no cooperation with the central cloud to satisfy the functions with

high resource demands.

In addition, in the works [11, 22, 24, 38, 44, 46, 58, 86], DRL algorithms for MEC

systems have been proposed. At the same time, the authors focused on centralized

resource allocation and offloading algorithms, and there is no workload considera-

tion in those works. In addition, for learning methodology in the works [10,39,57,67],

distributed algorithms were proposed while there was no prior knowledge about work-

load in edge servers. Furthermore, in works [25, 31, 41, 51, 52, 54, 76, 82, 90] prediction

and resource provisioning were considered; however, most of them are not beneficial

for real-world VEC. Therefore, more realistic methodologies are needed to improve

resource allocation and offloading.

Table 2.2: Overview of the related work in the literature

Topic Reference
Resource allocation [12,17,18,37,79,80,87]
Optimization tools [6, 26, 40,66]
Edge-based offloading [12,14,16,45,63,68,81–83]
Edge and cloud offloading [21,84,89]
Task migration [7, 19, 29,42,69,71,72,88]
DL in VEC [40,77]
Central DRL in VEC [11,22,24,38,44,46,58,86]
Distributed DRL in VEC [10,39,57,67]
Workload prediction [25,31,41,51,52,54,76,82,90]

25

Chapter 3

Efficient task offloading via deep

reinforcement learning

Computation and storage capacities in vehicular edge computing networks are sig-

nificant factor to satisfy vehicular applications demands. One of the barriers is the

limited computation and storage capacities in the MECs which cannot quickly satisfy

the increasing resource demands of such applications. Another considerable prob-

lem in vehicular edge computing is deciding which MEC servers should accept the

offloaded application tasks and process them. Service migration schemes have been

introduced in several studies [19,80] to support reliable computing services. However,

they did not consider a high dynamic network, the high volume of task migration, and

limited resources in MEC for a considerable number of arriving application tasks. Sev-

eral studies [21,84,89] considered cooperation among local clouds and remote clouds.

However, these works do not address the problem of migration in application tasks.

In this chapter, we present a cooperation framework between MEC and central

clouds, shown in Fig. 3.1. The offloaded task to the edge servers are migrated be-

tween edge and central clouds according to the tasks requirements and the available

resources in the edge clouds. Vehicles, including traditional manually driven cars

and autonomous vehicles, can access the resources at the MEC server through ei-

ther cellular or Dedicated Short Range Communications (DSRC) technologies. MEC

servers are connected to the central cloud in a wired manner. Our offloading problem

is formulated as an optimization problem, an NP-hard problem [70]. Such NP-hard

problems are difficult to solve via conventional mathematical techniques near-real-time

and within a polynomial time. [74], [75]. Moreover, in our vehicular edge computing

network, task requirements and resource capabilities’ MEC servers are time-varying;

most of the existing approaches need to solve such a problem very frequently to

obtain the optimal or suboptimal offloading strategy. However, this introduces signif-

icant computational overhead to vehicular edge computing, and it can hardly get the

optimal offloading solution in real-time [74].

Due to the time-varying of task requirements and resource capabilities in MEC

servers in the dynamic nature of vehicular networks, we formulate dynamic offload-

ing and resource allocation as finite Markov Decision Process (MDP) involving state

and action spaces and only depending on the current state and action. MDP is a

prominent part of deep reinforcement learning, and both depend on current state

space and action. In particular, deep reinforcement learning is deployed at the cen-

tral cloud to indicate the optimal offloading decision of the vehicles’ applications and

the computation resource allocation with high accuracy in near-real-time [75]. In

this vein, optimum task offloading using deep reinforcement learning could ensure the

system performance measured by latency and acceptance rate. In addition, as one of

the powerful decision-making algorithms in the artificial intelligence field, deep rein-

forcement learning can achieve excellent performance and effectiveness in tackling the

optimization under dynamic environments [36].

Here, task resource requirements, access delay, queuing delay, migration delay, and

delays resulting from execution are considered, which are neglected in most previous

works. To the best of our knowledge, this is the first attempt to jointly optimize the

task offloading decision and computational resource allocation using deep reinforce-

ment learning for a highly dynamic vehicular edge computing environment. Although

offloading in edge computing is well studied and reinforcement learning is well known,

our novelty is to propose a feasible solution for the dynamic nature of vehicular net-

works. We apply deep reinforcement learning to solve dynamic, and time-varying task

offloading and resource allocation optimization problems to gain high QoS and a high

acceptance rate of application tasks. The main contributions of this chapter are as

follows:

• We propose an efficient collaboration among MEC and central cloud for task

offloading and task migration in vehicular networks to provide a high acceptance

rate and efficient resource management.

27

• We design a task migration among local and remote servers based on resource

restrictions and vehicles’ QoS requirements. Our strategy respects the accept-

able response time of each application according to a proper server selection and

task placement strategy.

• We adopt a machine-learning approach, which utilizes a model-free method

to find the optimal offloading task scheme and maximize vehicular application

task’s acceptance rate. We also develop a deep reinforcement learning process

to deal with large network state space, real-time network state transitions, and

massive amounts of arriving applications.

3.1 System model

In this section, we first describe the system architecture of vehicular edge computing

in different domains and the cooperation of the domains, then explain the system’s

operation, including cooperation of the request and infrastructure, latency model, and

the objective function.

3.1.1 System architecture

Fig. 3.1 illustrates the architecture of vehicular edge computing network in the fol-

lowing domains:

• Vehicle domain: Let M(t) = {1, . . . ,M} be the set of total vehicles in the

network at time slot t indexed by m. The total number of vehicles at each time

slot can change. Each vehicle can request one task (application) at each time

slot. Notably, the types of vehicular tasks are different.

• MEC domain: Let N = {1, . . . , N} be the set of total MEC servers in the

network indexed by n. Each MEC server is located beside one RSU on the road.

These edge computing servers suffer from limited resources, such as computing,

storage, and buffer but satisfy communications quality because they are close

to the vehicles.

28

• Central domain: Let v stand for the central cloud, which is remotely located.

Central cloud has sufficient cloud resources but a considerable end-to-end com-

munications delay. Some of the tasks can be executed on the central cloud

according to priority and QoS requirements of vehicles’ applications and the

lack of sufficient resources in MECs1.

Based on these domains, we consider a graph G = (V , E), where V is the set of

MEC servers plus the central server v. Furthermore, E is the set of links between

MECs and central cloud. Each node i ∈ V has own resource capacity as Ri = [Rcomp
i

Rstor
i] where Rcomp

i and Rstor
i shows the computational and storage capacity of node i,

respectively and every server is capable of running one or more tasks, simultaneously.

Furthermore, cooperation of vehicle, MEC, and central server are as follows:

• Cooperation of Vehicle and MEC: Vehicles can access the MEC servers through

the wireless link. Thus, vehicles can offload their application tasks to the nearest

RSUs. Application tasks can be hosted in the MEC server next to the corre-

sponding RSU through cellular or DSRC technologies. Our system does not

consider physical layer characteristics such as signal transmission and radio fre-

quency. However, we investigate bandwidth and latency in the network layer.

We assume there is sufficient bandwidth for the cooperation of vehicles and the

relative MEC server.

• Cooperation of MEC and Central Cloud: To overcome the challenges caused

by the limited resources in MEC servers and reduce response time for each

vehicle, we apply the MEC servers connected in a wired manner. Our policy

cooperatively schedules the resources in the MEC and central cloud. Thus, each

MEC server directly connects to the central server in a wired link. Furthermore,

the bandwidth deficiency in wired connections is neglected in this thesis.

3.1.2 System’s operation

Various vehicles’ densities in the city or out of the city can be considered in our policy.

The vehicles’ direction, speed, and acceleration are not considered in this work. Being

1Mobility management and session functionality are done in the central cloud.

29

Figure 3.1: An illustration of vehicular edge computing network model

in a coverage area of one MEC server during offloading the requests and downloading

the results is a significant factor in our system’s vehicles. Our policy delivers the

result of the application task to the exact vehicle. We assume a vehicle travels just

in the coverage area of one MEC during uploading the request and downloading the

result.

We assume that each vehicle can request one application task offloading during

each time slot, and the vehicle will receive the result. Each application consists

of a request’s tolerable response time depicted by φres
m . Moreover, each task has

requested resources of computing and storage; it can be denoted by: φm = [φcomp
m

φstor
m], respectively. Vehicles can offload their application tasks to the nearest RSUs.

Application tasks can be hosted in the MEC server next to the corresponding RSU.

The task can be migrated to another MEC or central cloud to find the best trade-off

between the response time and resource requirements. The considered parameters of

this chapter are stated in Table 3.1. In the rest of this subsection, we describe handling

requests by the infrastructure, latency model, and objective function. Below, we start

with the first.

30

Table 3.1: Main notations used in this chapter

Notation Definition
M/M/m Set/number/index of vehicles
N /N/n Set/number/index of MEC servers
V/i Set of all MEC servers plus central server v/index
Ri Vector of resource capacity of server i
Rcomp

i Computation capacity of server i
Rstor

i Store capacity of server i
φm Vector of application resource demand of vehicle m
φcomp
m Application computation demand of vehicle m
φstor
m Application storage demand of vehicle m
φres
m Request’s tolerable response time of vehicle m
τ accessm Access latency of application m
τmig
m Migration latency of application m
τprocm Processing latency of application m
τqueuem Queuing latency of application m
Acc Accepted rate
ξim Indicator if application from vehicle m

is executed on server i
ψm Indicator the accepted request m by the network

Cooperation of the request and infrastructure

The requests are handled by infrastructure through the operation of the central man-

agement. To achieve high usage of resource capacities, we assume that a central

orchestrator dynamically makes MEC/central cloud decisions for all the vehicular ap-

plications in a centralized manner. The system, which is located in the central cloud,

follows the steps below:

• Monitoring: In the monitoring step, the orchestrator monitors network situ-

ations in central, MEC, and vehicular domains and provides resource usage

information to the network. The central orchestrator knows how many server

resources are available, how much bandwidth exists in these three domains, how

many application tasks are received by MEC servers, and where the vehicle’s

location aid is in the monitoring phase.

• Acceptance/Rejection Decision: When the offloading of the task is complete,

the central orchestrator has various options to allocate the request to a proper

server by considering the network’s condition and the resource requirements of

31

the task. Thus, the orchestrator determines migration of the task to other MEC

or the central cloud or executes in the exact MEC received the task. If there

is not a proper server selection to satisfy the resource and QoS demands of the

task, then the request will be rejected.

• Allocation: The optimal server selection occurs in the allocation phase, where a

proper server, among central and MEC servers, is selected for every application

task. The significant phase we work on in this chapter is the allocation phase.

We utilize a central learning vision for optimal server selection for all application

tasks. The machine learning method we adopt is deep reinforcement learning

which will be considered later in this chapter.

• Result Delivery: After finishing the task computation, the result should migrate

to the MEC next to the RSU, which covers the communication range of the

vehicle. Based on our assumption, a car does not travel out of the coverage area

of a MEC during task execution. In addition, the result should be delivered to

the vehicle through the MEC.

Latency model

The total service latency for each application is significant to consider as an end-to-

end QoS provision. Here, we are investigating migration, queuing, execution, and

access delays during task completion. To clarify, we define two servers: base MEC n,

the MEC server receiving requests directly from the vehicle and delivering the results

directly to the car, and execution node i, where the task is executed. It is worth

noting that these two servers could be the same based on optimization decisions.

• Access Latency: The time which is passed through the offloading application

from the vehicle to the nearest RSU and downloading the result to the exact

vehicle is τ accessm . We assume that to send the request and deliver the result,

each vehicle has to be in the coverage area of at least one RSU, and each

RSU is located next to one MEC server. Access latency is mainly composed

of transmission delay and round trip time (propagation delay). We consider

transmission delay as the size of data dm over the bandwidth of access link Bacc

32

allocated to the vehicle. To this end, access latency is as follows:

τ accessm =
dm
Bacc

+RTTacc (3.1)

where RTTacc is round trip time between vehicle and MEC.

• Migration Latency: Migration latency depends on the result of the optimization

problem, as denoted by τmig
m . Each task hosted at base MEC is not necessarily

executed on that MEC; it can also be migrated to the other proper node for

processing and performance. Hence, migration latency would be equal to the

sum of transmission delay and the round trip time delay between base MEC n

and execution node i. Then, we can formulate migration delays as seen below

τmig
m =

dm
Bni

+RTTni (3.2)

where RTTni is round trip time between base MEC n and execution node i. In

addition, Bni is the bandwidth of network link.

• Processing Latency: The elapsed time of running each task on an execution

node is considered as processing latency denoted by τprocm . We assume that each

task needs a specific number of CPU cycles, φcomp
m , to run on the assigned node.

From the physical resource perspective, we assume that each node can provide

at most Rcomp
i CPU cycles. Hence, without loss of generality, processing latency

is obtained as follows [48]:

τprocm =
φcomp
m

Rcomp
i

,∀m ∈M(t),∀i ∈ V (3.3)

• Queuing Latency: Queuing latency denoted as τqueuem is equal to the number

of time slots for each task waiting in the queue of the execution node before

starting the execution phase. After the task is offloaded to the dedicated server,

it enters its queue. When the execution of other previous tasks in the same

queue is completed, the waiting task can leave the queue and be processed.

Binary variable βi
m′ indicates if application task m′ is in the buffer of server i

prior the task m. Thus, queuing latency is the total time slots consumed for

processing all prior tasks in front of task m in the queue. To this end, without

33

loss of generality, we can formulate queuing latency such as below

τqueuem =
∑

m′∈M(t)

φcomp
m′

Rcomp
i

· βi
m′ ,∀i ∈ V (3.4)

Objective function

It would be significant to find a proper server node to execute the application task to

reduce the vehicle-perceived latency in vehicular edge computing networks. In other

words, task placement in such a network requires considering the limited resources

of MEC servers, which is different from central servers with large resource capacities.

In this regard, our proposed resource management method provides short required

response time applications to execute at the MEC. The applications with high resource

demands and safe response time will be placed in the central cloud. In our model,

each task is performed entirely using only one server based on (3.5). We define the

binary decision variable ξim which is set to 1 if the application task from vehicle m is

executed at server i; otherwise, it is 0. Therefore, we have the following constraint:∑
i∈V

ξim ≤ 1,∀m ∈M(t) (3.5)

Moreover, to ensure that the sum of allocated resources to all vehicles in each server

i, do not exceed its resource capabilities Ri, we have the following constraint:∑
m∈M(t)

ξim · φm ≤ Ri,∀i ∈ V (3.6)

In general, response time for a task from vehicle m and getting the result to the exact

vehicle is the sum of the access, migration, queuing, and processing latency. This

sum should satisfy an application’s tolerable response time φres
m , so we consider the

following constraint for that purpose

τ accessm + τmig
m + τqueuem + τprocm ≤ φres

m (3.7)

Furthermore, we define ψm as a decision variable which is set to 1 if the applica-

tion task from vehicle m is accepted; otherwise, it is 0. Thus, the total accepted

applications divided into all arriving applications is considered the accepted rate Acc.

34

We aim to maximize the acceptance rate respecting response time constraints and

resource restrictions. Hence, an optimization problem for resource management can

be written as

max Acc =

∑
m∈M(t),i∈V ξ

i
m · ψm

M(t)

s.t. C1 :
∑
i∈V

ξim ≤ 1,∀m ∈M(t),

C2 :
∑

m∈M(t)

ξim · φm ≤ Ri,∀i ∈ V ,

C3 : τ accessm + τmig
m + τqueuem + τprocm ≤ φres

m ,

C4 : ξim ∈ {0, 1},∀m, i,

C5 : ψm ∈ {0, 1},∀m,

(3.8)

The proposed algorithm for the cooperation of MEC and central servers, including

offloading, server selection, processing, and receiving, is presented in Algorithm 1.

Based on the algorithm, when request m is offloaded by base MEC n, the resource

demand of request m is compared with the available resource capability of base MEC

n. If the application resource demand is less than the available resource capability of

the server n, then the request m is executed there, and the execution node would be

the same base MEC n. Otherwise, if the base MEC server does not have free resources

to allocate the request m, server i will be selected based on the resource allocation

strategy. The application will migrate there to execute. On line 10, if the execution

node is not base n, the result migrates to the base, and from there, the result will be

delivered to the vehicle m. Fig. 3.2 illustrates our task offloading operation.

3.2 Learning solution

Problem (3.8) is a mixed-integer linear optimization problem, and such problems

are usually considered NP-hard problems [55, 70, 75]. Therefore, we utilize reinforce-

ment learning to solve the formulated optimization problem. In this section, we first

describe the implementation of reinforcement learning and then consider the deep

reinforcement learning solution.

35

Algorithm 1 Task offloading algorithm

1: Vehicle m sends its request to the nearest RSU, during τ accessm

2: Request m is offloaded by base MEC n
3: if φm < Rn(t) then
4: execution node = n
5: else
6: Select server i based on resource allocation optimization
7: Migrate m to i, during τmig

m

8: execution node = i
9: Execute task on execution node, during τqueuem + τprocm

10: if execution node is not n then
11: Migrate the result to n, during τmig

m

12: Deliver the result to vehicle m, during τ accessm

13: else
14: Deliver the result to vehicle m, during τ accessm

Figure 3.2: An illustration of task offloading algorithm

36

3.2.1 Reinforcement learning implementation

We use a finite MDP model to capture the dynamic of network state transitions. An

MDP can be defined by the set of system states, set of actions, and the set of real-

value reward functions [38]. In our problem, the state space S(t), action space a(t),

and reward model r(t) in an finite MDP are summarized as follows:

• State Space: In our learning solution, each state S(t) ∈ S is associated with

S(t) = {φ̂, Ŵ (t), Ĉ(t)} as following vectors

– φ̂: Application information including its resource demands (computational

and storage), tolerable response time, and the location of the vehicle.

φ̂ =
[
φcomp
m φstor

m φres
m φloc

m

]
(3.9)

– Ŵ (t): Application tasks waiting in the buffer of each server at time slot t

with their resource demands including computation and storage (i ∈ V).

Ŵ (t) =

[
W comp

1 (t) W comp
2 (t) . . . W comp

i (t)

W stor
1 (t) W stor

2 (t) . . . W stor
i (t)

]
(3.10)

– Ĉ(t): Running tasks in each servers at time slot t with all resource demands

including computation and storage.

Ĉ(t) =

[
Ccomp

1 (t) Ccomp
2 (t) . . . Ccomp

i (t)

Cstor
1 (t) Cstor

2 (t) . . . Cstor
i (t)

]
(3.11)

• Action Space: The action of the deep reinforcement learning agent is defined

as a server selection for each application to be run on the selected server, and

it is indexed by the number of MECs and central cloud. The current action is

defined as am(t) = {a1m(t), a2m(t), . . . , aim(t)} where aim(t) is a decision variable

which is set to 1 if requested application from vehicle m is placed on server i

to be executed, otherwise, is 0 at time slot t. It is noting that
∑

i∈V a
i
m(t) = 1

which means each request can perform and execute only in one server. The

vector of action space for all application tasks to be assigned to a proper server

37

can be depicted as follows

a(t) =


a11(t) a21(t) . . . ai1(t)

a12(t) a22(t) . . . ai2(t)
...

...
...

a1m(t) a2m(t) . . . aim(t)

 (3.12)

• Action Selection: The agent gets the state information from the environment.

The action with the highest value determines the next state. In other words,

to select the next state as a proper server for the execution of an application,

our algorithm rescans all Q(S(t), a(t)) values. It captures them as the outcome

of a deep Q-network to gain the maximum value. Moreover, the algorithm

adopts the epsilon-greedy action selection method [50] to balance exploration

and exploitation by choosing between them randomly.

• Reward Definition: Once the agent takes action based on the observed envi-

ronment state, the environment will return an immediate reward to the agent.

Then in the learning stage, the agent updates the resource allocation policy

based on the received reward until the algorithm converges [58]. Indicated by

Equation (3.13), the estimated response time τ estm (t) (the sum of the access, queu-

ing, migration and execution latencies) is compared with tolerable response time

φres
m . If the estimated response time is a less than tolerable response time for

each vehicle’s request, then the reward would be −τ estm (t) otherwise, the reward

would be −w · τ estm (t). Here, −w is a large negative integer. Thus, to maximize

the number of offloaded tasks that are completed with satisfying response time

by the MEC server at time slot t, we define the following reward element for

offloaded task m

rm(t) =


−τ estm (t), if τ estm (t) ≤ φres

m

−w · τ estm (t), otherwise.

(3.13)

38

Figure 3.3: Proposed deep reinforcement learning

3.2.2 Deep reinforcement learning solution

Due to the limited knowledge on transition probability between the states and the

sizeable state-action space in the network, the traditional dynamic programming can-

not find the optimal policy efficiently. Therefore, we adopt DRL to solve the proposed

server selection problem [38]. We adopt deep Q-learning as a value-based approach

for various reasons. Firstly, the system has a discrete time and is considered every

time slot. Secondly, all resources, such as computation capabilities, would be modeled

on discrete values and divided into discrete levels. Thirdly, our learning solution has

to choose only one server for each time slot as an outcome of deep learning. Fourthly,

one of the purposes of using a deep Q-network is to maximize the normalized reward

on the episodes. By taking advantage of a deep Q-network, the central orchestra-

tor can manage the system in an effective and efficient way. Fig. 3.3 presents the

proposed architecture of deep reinforcement learning. Here, Q-learning updates its

Q-value by temporal difference. Temporal difference captures the difference between

the current estimate and previous ones and approximates the estimation by comparing

them at two consecutive episodes [50]. In a neural network, we use the Multi-Layer

Perceptron algorithm as a function approximator for Q(S(t), a(t)). We also inject

randomness into the approximation model by adding drop-out to the hidden layers

of the Multi-Layer Perceptron network. This property increases the robustness and

generalized capability of the network besides powering the exploration provided by

39

this randomness.

Algorithm 2 Deep Q-Learning (Temporal Difference method)

1: Initialize α, γ, ε0, εmin ∈ (0, 1)
2: for episode← 1, K do
3: ε← max(εmin, ε0 − episode/K)
4: request← Generate M requests from the dataset
5: Calculate S(0) based on the first request
6: for t← 1,M do
7: Calculate S(t) based on the request(t)
8: Predict Q(S(t), a(t)) from S(t)
9: Sample p ∼ U(0, 1)
10: if p < ε then
11: Sample a(t) ∼ U{0, V}
12: else
13: a(t)← arg maxaQ(S(t), a(t))

14: S(t+ 1), r(t)← emulator (a(t), request(t+ 1))
15: if t < M then
16: target← r(t) + γ.maxQ(S(t+ 1), a(t))

17: if t = M then
18: target← r(t)

19: Optimize Q-Network based on TD error (target− S(t))2

20: S(t)← S(t+ 1)

Our deep learning solution, depicted in Algorithm 2, repeats the procedure based

on the number of episodes until the reward converges. In the first place, initialization

occurs for α, γ, ε0, εmin which represent learning rate, discount factor, the first value

of ε in epsilon-greedy, and a minimum value of the ε, respectively. Then, for each

episode, M number of requests is generated from a real-world dataset, and the first

state S(0) is calculated based on the first request. Furthermore, the epsilon value is

updated in each episode, which is used for the epsilon-greedy method. On line 6, the

time slot t increases based on the number of requests, and the rest of the instructions

occur in each time slot. On line 7, the state of the network is built according to

the relevant time slot and the request. Then, Q(S(t), a(t)) is predicted based on

the neural network and the function approximator. The state S(t) is the input of

the neural network. After that, the epsilon-greedy algorithm needs to sample the

value of p in a continuous uniform distribution; if p is less than the epsilon, action

selection occurs based on the discrete uniform distribution among all MEC servers and

40

the central server. Otherwise, the selected action is the action that has the highest

value. On line 14, the action and subsequent request will be sent to the emulator

where there is no decision process, then there is the reward, and the next state will

be calculated. Finally, Q-learning updates its Q-value by temporal difference. The

temporal difference method needs to find the target, calculated based on the equation

on line 16. It is noted that if the request is the last one, then the target equals the

reward.

The optimization problem is a mixed-integer linear programming problem, and

achieving the optimal or sub-optimal solutions usually requires exponential time com-

plexity. Moreover, the optimization procedure must be executed at each time slot due

to the diversity of request requirements, the number of requests, and resource avail-

ability in the MEC server, which are time-varying and highly dynamic. Therefore,

the conventional optimization methods using relaxation iteration algorithms incur

high computational complexity due to numerical iterations, and their solutions are

often sub-optimal. They would not scale well [64], usually converge slowly, and have

prohibitive complexity for real-time implementations [74]. A machine learning-based

approach is an effective and attractive solution to tackle this problem. Furthermore,

Since the deep neural network of this chapter employs the full-connection networks,

the computational complexity of each training step is O(
∑J

j=1 Lj−1Lj), where Lj rep-

resents the neural size of the j-th layer among J layers [32, 36], and the complexity

of Q-learning algorithm is O(T), where T is the total number of training steps [27].

As a result, the total complexity of the deep Q-network algorithm in this chapter is

O(2T
∑J

j=1 Lj−1Lj).

3.3 Performance evaluation and results

This section presents the experimental settings by adopting a real-world dataset and

introduces baselines for comparison. Then, we demonstrate the experimental results

and discussions.

41

3.3.1 Experimental setting and baseline

We use real vehicle traffic flow to evaluate the performance of the proposed edge/central

decision resource management approach in a vehicular network. Thus, we utilize a

realistic vehicular dataset using mobility traces of taxi cabs in Rome, Italy [4]. It

contains GPS coordinates of approximately 320 taxis collected over 30 days, from

February 1st to March 2nd, 2014. Traces present the spatial positions of drivers and

are collected every 7 seconds. The details of the dataset’s content are explained in

Table 3.2. The locations of the taxi traces vary from latitude 39.36 to latitude 51.45

and from longitude −0.14 to longitude 41.89.

Moreover, since MEC servers are located on the road close to vehicles, we divide

the distance of a maximum and minimum range of vehicles’ locations to the number of

MEC servers to find the place of each MEC. Based on our policy, each cab’s source and

destination locations should be in the coverage area of one MEC. Thus, we randomly

take a snapshot of each taxi’s trajectory during a day using the dataset. In addition,

to allocate a geographical location for the central server, we add a high value to the

maximum value of latitude and longitude of taxis’ locations.

Table 3.2: Dataset content

Parameter Value
Type of vehicle Taxi
Number of vehicles 320
Duration 30 Days
Year 2014 (Winter)
Location City (Rome)
Driver ID An integer number
Time Stamp Date and Time
Vehicle position Latitude, Longitude

Furthermore, to make the optimal presentation of our algorithm and comparison,

we utilize three models as baselines. The first one, the tabular reinforcement learning,

called RL, allocates tasks to a proper server. In the RL method, a large table is

implemented to keep all state conditions, and we apply the quantization method to

reduce the aspect of the state. The second baseline method is the Greedy method to

allocate each task to a server. In the Greedy solution, tasks are assigned to servers with

higher resource capabilities. Another baseline for comparison, called Random, means

42

that all arriving requests are assigned to each node randomly, and its distribution for

task offloading and server selection is uniform.

We use TensorFlow [1,58] to implement our proposed deep reinforcement learning.

Moreover, we have used four layers of a fully-connected neural network with hidden

layers of size 128; ReLU capacity [73] is an activation function added to related

layers. This introduces non-linear features to the neural network and improves the

deep neural network. Some of the parameters for the proposed resource management

strategy and learning process are in Table 3.3. Some of the values are uniformly

picked from intervals to show our model works with diverse values. Although our

model works for various intervals, the selected intervals could properly determine our

model’s quality, validity, and capability.

Table 3.3: Parameters used in this chapter

Parameter Value Description
N 1, 3, 6, 9 Number of MEC servers
Rcomp

n [1, 9] CPU cycles per second
Rstor

n [15, 70] Storage of MEC (Mbits)
Rbuf

n [500, 1500] Buffer of MEC
Ru

n [2, 10] Number of cores in MEC
Rcomp

v 100 CPU cycles per second of central cloud
Rstor

v 100 Storage of central cloud (Mbits)
Ru

v 100 Number of cores in central cloud
φcomp
m [100, 260] CPU cycles’ task demand
φstor
m [3,10] Storage’s task demand

K 300 Number of episodes
εmin 0.05 Min value of ε
ε0 0.9 First value of ε in ε− greedy
α 0.0001 Learning rate
γ 0.98 Discount factor

3.3.2 Experimental result and discussion

Implementation results are presented in this subsection to demonstrate the per-

formance of the proposed deep reinforcement learning-based resource management

schemes for the vehicular scenarios with MEC and central servers. It is noted that

most of the results are captured through 300 episodes. In other words, there are many

43

(a) (b)

Figure 3.4: (a) Normalized reward, (b) Average normalized reward per episode in
DRL, RL, Greedy, and Random solution for one central server and 3 MECs.

numbers to be presented in one figure. Thus, to improve illustration, we also show

the results in the average scope.

Fig. 3.4 shows the convergence performance of the deep reinforcement learning

algorithm and other baselines. From a vehicle perspective, satisfying delays and QoS

requirements are critical. As we can see from Fig. 3.4, in DRL and RL methods,

among the 300 episodes during the learning stage, the total rewards per episode

fluctuate sharply and are relatively small in the first 150 episodes and then tend to

meet a relatively stable and high value. The learning process starts by updating the

parameters of the deep Q-learning. Thus, the total rewards per episode fluctuate

sharply at the beginning of the learning process and then increase as the parameters

gradually optimize. Moreover, the reward for each task offloading is achieved by

Equation (3.13). Fig. 3.4 presents convergence reward for one central server and three

MECs. To apply the RL method, we cannot add more MEC servers because tabular

RL solution suffers from lack of scalability and it does not work for large settings.

Fig. 3.4 demonstrates the reward convergence of the Greedy model for task allocation.

Each task is allocated to a server with high resource capacity in the Greedy solution.

Like the Random model, Greedy does not follow any learning policy, so there is no

improvement about normalized reward values by increasing the number of episodes.

However, Greedy presents high reward values as a near-optimal method. Moreover,

there is no learning policy to support the convergence of reward in Random strategy;

the rewards fluctuate after the total episode. As we can see, this uniformly distributed

random model suffers from a small value of rewards, which means it cannot support

44

(a) (b)

Figure 3.5: (a) Normalized reward, (b) Average normalized reward per episode in
DRL, Greedy, and Random solution for one central server and 9 MECs.

the tolerable delays requested by each task.

Fig. 3.5 demonstrates the convergence performance of DRL, Greedy, and Random

solutions for large settings. As we can see, in the DRL method, among the 300

episodes during the learning stage, the total rewards per episode fluctuate sharply and

are relatively small in the first 150 episodes and then tend to meet a relatively stable

and high value. While Greedy and Random methods do not follow any learning policy,

there is no improvement about normalized reward values by increasing the number of

episodes. We can observe from Fig. 3.5 that normalized rewards of DRL, Random,

and greedy are about -18, -38, and -50, respectively. By following this picture, we

can find that the normalized reward of the proposed strategy converges at different

episodes. Specifically, reward roughly increases from -42 to -18, converging after the

150th episode. The rewards of Greedy and Random algorithms have no convergence,

and they are around -38 and -50, respectively, from the first to 300th episodes. By

analyzing this picture, we can obtain a result that the proposed solution based on

deep reinforcement learning for vehicular application tasks is efficient and flexible and

can converge to a higher value.

Fig. 3.6 represents the acceptance rate and the average acceptance rate of vehic-

ular applications per episode. From the central orchestrator perspective, an efficient

resource management scheme should accept as many tasks as possible with the given

available resources. As we can see in this figure, the acceptance ratio increases in DRL

and RL strategies at the beginning of the learning process. However, after around

150 episodes, the acceptance rate gains a stable value and a higher acceptance rate

45

(a) (b)

Figure 3.6: (a) Acceptance ratio, (b) Average acceptance ratio per episode in DRL,
RL, Greedy, and Random solutions for one central server and 3 MEC servers.

compared to other baselines. We can find from Fig. 3.6 that our proposed learning

and RL solutions are learning how to allocate tasks to proper servers based on avail-

able resources while satisfying the task’s delay demands. It is worth noting that for

a small setting such as three MEC servers RL method is as well as the DRL method.

Fig. 3.6 demonstrates that in the Random strategy, there is no improvement even by

time passing and increasing the number of episodes. Moreover, the Greedy method

has no stable pattern among the first steps of simulation and its last steps. It is worth

mentioning that the Greedy model does better than the Random strategy mainly be-

cause it makes a difference between servers and gives high priority to servers with

high resource abilities.

Fig. 3.7 shows the acceptance rate and the average acceptance rate of vehicular

applications per episode for large settings. The RL method does not work in large

environments, and the DRL strategy can be a good solution. A large table is imple-

mented in the RL method to keep all state conditions. Tabular RL solution suffers

from a lack of scalability, and it does not work for large settings. However, imple-

mented neural networks in DRL can address an abundant space. We can observe

from Fig. 3.7 that as the number of episodes increases, the average acceptance rate

increases accordingly. This is because increasing episodes can help the DRL algorithm

learn effectively. Moreover, the achieved average acceptance rate of both Greedy and

Random algorithms is lower than the proposed strategy. In addition, the average ac-

ceptance rate of Greedy is the lowest at different values of the episode, followed by the

Random methodology, while the proposed strategy is the highest. For example, when

46

(a) (b)

Figure 3.7: (a) Acceptance ratio, (b) Average acceptance ratio per episode in DRL,
Greedy, and Random solutions for one central server and 9 MEC servers

the number of episodes = 50, the DRL is about 2% higher than the Random method

is about 5% higher than greedy. When the number of episodes = 300, the DRL is

about 10% higher than the Random method is about 13% higher than greedy. This is

because the proposed deep Q-Network strategy can determine the optimum resource

allocation to achieve the highest acceptance rate. These results further verify that

the proposed approach can find a suitable offloading strategy with a shorter response

time. Thus, the vehicular networks can provide a flexible way of measuring latency

and acceptance rate. The proposed approach can adapt to various dynamic situations

and give an optimal solution for resource allocation strategy.

Fig. 3.8 demonstrates the convergence performance of the deep reinforcement

learning algorithm for three different settings. The number of MEC servers plays

a crucial role in vehicular edge computing networks. As the number of MEC servers

increases, QoS satisfaction increases. As it is apparent in Fig. 3.8, DRL represents a

higher convergence performance with 9 MEC servers. However, the normalized reward

value is small during small settings. We can observe from Fig. 3.8 that normalized

rewards of the proposed solution in one MEC, 3 MEC, and 9 MEC servers are about

−60, −38, and −20 after the 200th episode. By following this figure, we can see during

the first episode to the 20th episode, the value of normalized reward has started from

−500, −150, and −58 for one MEC, 3 MEC, and 9 MEC servers scales, respectively.

By analyzing this picture, we can obtain the result that the proposed solution based

on deep reinforcement learning for vehicular edge networks works more efficiently and

flexibly in a large-scale environment.

47

(a) (b)

Figure 3.8: (a) Normalized reward, (b) Average normalized reward per episode in
DRL solution for one central server and various number of MECs

Fig. 3.9 illustrates the acceptance rate of vehicular applications per episode for

various settings. The number of MEC servers significantly affects QoS and resource

allocation strategy in the vehicular edge computing network. An efficient resource

management scheme should accept as many tasks as possible with available resources.

As we can see in this figure, in the large settings (9 MEC servers), the acceptance

rate of vehicular application is around 70 to 80 percent. At the same time, this value

decreases with a small number of MEC servers in the vehicular system model. We

can observe from Fig. 3.9 that during the first episode to the 20th episode, the value

of the acceptance rate has started from 32%, 58%, and 71% for one MEC, 3 MEC,

and 9 MEC servers scales, respectively. By following this figure, we can see that the

proposed solution converges by increasing the number of episodes. The acceptance

rate of the proposed solution in one MEC, 3 MEC, and 9 MEC servers is about 59%,

69%, and 78%, respectively, after the 150th episode. As a whole, we can obtain that

the proposed deep reinforcement learning solution for task offloading and resource

allocation gain better performance in large-scale settings.

Fig. 3.10 demonstrates task distribution based on server resources. Each number

on top of every bar chart reveals the resource ability of the relevant server. The

resources are computational capacity and the CPU cycle per second, storage (Mbits) in

each server, and the number of cores a server has, which denotes how many tasks each

server can execute simultaneously. The main point is depicted using green bars in this

figure. The value of each green bar is the sum of the actions, which shows the number

of application tasks assigned to each server. As demonstrated in Fig. 3.10 (a), the sum

48

(a) (b)

Figure 3.9: (a) Acceptance rate, (b) Average acceptance rate per episode in DRL
solution for one central server and various number of MECs.

of application tasks assigned to servers is based on the result of our proposed learning

resource management solution, which considers total response time and the resource

demands of tasks. Moreover, based on the figure, the resource availability of servers

is investigated for action selection. Furthermore, as Fig. 3.10 (b) shows, the central

server with significant resource ability receives more tasks using the Greedy strategy.

Nevertheless, as Fig. 3.10 (c) illustrates, the tasks are distributed uniformly among

servers, and the Random method does not investigate QoS demands. Our proposed

DRL solution plays well considering its resource capabilities and QoS demands as a

final discussion point. Furthermore, two other strategies work as acceptable strategies.

(a) DRL (b) Greedy (c) Random

Figure 3.10: (a) Task distribution based on available resources in DRL solution. (b)
Task distribution based on available resources in Greedy solution. (c) Task distribu-
tion based on available resources in Random solution.

49

3.4 Summary

In this chapter, we have considered multi-access edge computing in vehicular networks.

We have proposed a task offloading with a resource allocation strategy based on task

migration among MEC and central cloud servers. Simulation results showed our

proposed approach could provide an efficient and high-reward task offloading with

high acceptance rates for arriving requests from vehicles, considering their locations,

response times, resource demands, and the current resource utilization. With the help

of deep reinforcement learning, we could efficiently handle a large number of real-time

arriving requests, especially in a large and dynamic transferred network state space

based on a realistic vehicle dataset. Moreover, we could specify QoS constraints in

deep reinforcement learning and solve an NP-hard problem instead of mathematical

approaches that lead to a non-polynomial time solution.

50

Chapter 4

Computation re-allocation and

dynamic distribution of arriving

tasks

Finding an online and optimal resource allocation in vehicular edge networks with

high dynamic conditions and users’ mobility is challenging. Furthermore, the optimal

resource allocation might change over time by entering new applications with dynamic

distribution and rate of arriving with different demands to the network. Hence, both

allocation and reallocation policies are urgently needed, along with the dynamicity of

the network. Each task can be assigned to any server for the execution process. Task

migration can address the user’s mobility issue, i.e., transferring tasks from one MEC

to another to find a proper server [60]. This scenario is challenging because it should

be executed immediately when a new time-sensitive task arrives at a MEC server.

What is the solution if there is an insufficient resource there? As a result, reallocation

policies need to apply to the system architecture of the management, and primary

tasks can be migrated to other proper servers.

Dai et al. [12] investigated resource allocation by considering the combined effect

of load balancing and offloading in a multi-user, multi-server vehicular environment.

Nevertheless, there was no cooperation with the central cloud to satisfy the tasks

with high resource demands in this work. Yu et al. [79] considered both the local

and remote resource sharing with the collaboration across different data centers and

a coalition game was formulated and solved by a game-theoretic algorithm. However,

the authors did not consider the dynamic and unpredictable load of the environment.

Zhang et al. [86] studied task offloading in a heterogeneous vehicular network with

multiple MEC servers in a deep Q-learning approach. Most of the existing works, such

as [12], [79], [86] did not investigate various types of application tasks to formulation

their problems, and there were no reallocation and scheduling policies.

In this chapter, motivated by the above issues and challenges, we consider different

application tasks and design a complementary algorithm from Chapter 3 for resource

allocation optimization. We extend our proposed task offloading algorithm in Chap-

ter 3 where there was an efficient collaboration scheme among MEC and central cloud

for task offloading to use the high resource capacity of the central cloud and short

delay of MEC simultaneously. The complementary algorithm can reallocate resources

for new and previous tasks based on tasks’ priorities. In this context, different ap-

plications have different requirements, especially response time. We classify vehicle

applications into three levels according to their characteristics: Crucial Applications

(CA), High-Priority Applications (HPA), and Low-Priority Applications (LPA) [20].

CAs are safety-related applications with a short tolerable response time. CAs

have the highest priority and must be immediately executed in the initial MEC server,

which is uploaded. HPAs are important, but failures and delays are allowed. HPAs are

optional safety-enhancing applications, e.g., routing, navigation, parking navigation.

LPAs are of lesser importance to drivers and passengers and the tolerable response

time is relatively soft. Cloud-based video games and multimedia applications are some

examples of LPAs. The main contributions of this chapter are as follows:

• We formulate a new resource allocation problem concerning required vehicles’

QoS and MEC’s limited resources to provide a low rejection rate and efficient

resource management.

• We propose reallocation and scheduling policies based on three categories of ve-

hicle applications giving the highest priority to crucial applications. In addition,

we investigate the dynamic distribution and rate of arriving tasks.

• We adopt a deep reinforcement learning process to find the optimal task offload-

ing scheme and minimize the rejected rate of vehicular application tasks.

52

4.1 System model and problem formulation

The system model of complementary algorithm and scheduling follows the system

model in Chapter 3. The difference with the previous chapter is the number of tasks

each vehicles requests in every time slot, which is not restricted to one task and

adding dynamic distribution of arriving tasks which will be defined in Section 4.2.3.

The architecture of the vehicular edge computing network, as Fig. 4.1 illustrates, has

three domains named Vehicle, MEC, and Central domains. In our model each vehicle

can request any number of application tasks at each time slot and the vehicle will

receive the results. Each vehicle m has the set of application tasks {1,. . . , J} indexed

by j.

Each application consists of a tolerable response time depicted by φres
m,j. Moreover,

each task has requested resources of computing and storage; it can be denoted by:

φm,j = [φcomp
m,j φstor

m,j], respectively. Vehicles can offload their application tasks to the

nearest RSUs. Application tasks can be hosted in the MEC server next to the cor-

responding RSU. The task can be migrated to another MEC or central cloud to find

the best trade-off between the response time and resource requirements. Some of the

considered parameters in this chapter are stated in Table 4.1.

Table 4.1: Main notations used in this chapter

Notation Definition
M/M/m Set/number/index of vehicles
N /N/n Set/number/index of MEC servers
V/i Set of all MEC servers plus central server v/index
J/j Number of tasks/index
φm,j Vector of application resource demand of task j from vehicle m
φcomp
m,j Application computation demand of task j from vehicle m

φstor
m,j Application storage demand of task j from vehicle m

φres
m,j Request’s tolerable response time of task j from vehicle m

τ accessm,j Access latency of application j from vehicle m

τmig
m,j Migration latency of application j from vehicle m

τprocm,j Processing latency of application j from vehicle m

τqueuem,j Queuing latency of application j from vehicle m

Rej Rejection rate
ξim,j Indicator if application j from vehicle m

is executed on server i
Ψj

m Indicator the rejected request j from vehicle m by the network

53

We focus on computational tasks of vehicles, where each task is non-divisible such

that it can either be processed in a MEC server or remotely in the central cloud based

on (4.1). We define the binary decision variable ξim,j which is set to 1 if application

task j from vehicle m is executed at server i, otherwise, it is 0. Therefore, we have

the following constraint

∑
i∈V

ξim,j ≤ 1,∀m ∈M(t), j ∈ m (4.1)

As before, MEC servers suffer from limited computational and storage resources

but satisfy communications quality. In contrast, the central cloud has sufficient cloud

resources but a considerable end-to-end communications delay. The central cloud can

execute some vehicles’ applications based on their priority and QoS requirements, and

it can compensate for the lack of sufficient resources in MECs.

It would be significant to find a proper server node to execute the application

task to reduce the vehicle-perceived latency in vehicular edge computing networks. In

other words, task placement in such a network requires consideration of the limited

resources of MEC servers, which is different from central servers with large resource

capacities. Furthermore, it should be essential to apply the highest priority to CAs

applications to execute in the initial MEC immediately without any migration. In

this regard, our proposed intelligent reallocation protocol provides a short required

response time, especially for the applications with the kind of CAs. Hence, we define

the following restrictions:

• Each task is performed using only one server, according to (4.1).

• The sum of allocated resources to all vehicles in each server does not exceed its

resource capabilities. Thus, we have the following constraint:

∑
m∈M(t),j∈m

ξim,j · φm,j ≤ Ri,∀i ∈ V (4.2)

• Response time for a task j from vehicle m and getting the result to the same

vehicle is the sum of the access τ accessm,j , migration τmig
m,j , queuing τqueuem,j , and pro-

cessing latency τprocm,j . This sum should satisfy an application’s tolerable response

time φres
m,j. Hence, we consider the following constraint for that purpose

54

τ accessm,j + τmig
m,j + τqueuem,j + τprocm,j ≤ φres

m,j (4.3)

• We define Ψj
m as a decision variable which is set to 1 if the application task j

from vehicle m is a rejected task; otherwise, it is 0.

Furthermore, the total rejected applications divided by the total arriving applica-

tions is the rejected rate Rej. We aim to minimize the rate of rejection with respect

to response time constraints and resource restrictions. Thus, an optimization problem

for resource management can be written as

min Rej =

∑
m∈M(t)

∑
j∈m Ψj

m∑
m∈M(t)

∑
j∈m 1

s.t. C1 :
∑
i∈V

ξim,j ≤ 1,∀m ∈M(t), j ∈ m,

C2 :
∑

m∈M(t),j∈m

ξim,j · φm,j ≤ Ri, ∀i ∈ V ,

C3 : τ accessm,j + τmig
m,j + τqueuem,j + τprocm,j ≤ φres

m,j,

C4 : ξim,j ∈ {0, 1},∀m, i, j,

C5 : Ψj
m ∈ {0, 1},∀m, j ∈ m

(4.4)

Based on the proposed algorithm, at first, a request is offloaded to the nearest

MEC. Then, the resource demand of the request is compared with the available re-

source capability of the MEC; if the application resource demand is less than the

available resource capability of the server, then the request is processed there. Sup-

pose the MEC server does not have free resources to allocate the request and the task

belongs CAs. In that case, the previous tasks that belong either to HAs or LAs must

be migrated to the other servers to provide free resources for the task with the highest

priority.

Moreover, if a MEC offloads new tasks belonging to either HAs or LAs, and the

MEC does not have free resources to allocate the request; another server will be

selected based on the resource allocation strategy, and the application will migrate

there to execute.

55

Figure 4.1: A vehicular edge computing network with various tasks

4.2 Re-allocation and dynamic rate of arriving tasks

4.2.1 Resource allocation and offloading based on DRL

Equation (4.4), which has several number of restrictions, as mentioned in 4.1, is a

mixed-integer linear optimization problem, and such problems are usually considered

NP-hard problems [55, 70]. Therefore, we utilize reinforcement learning to transform

the formulated optimization problem and solve it by leveraging deep Q-learning. Our

deep reinforcement learning (DRL) characteristics are the same as defined in Sec-

tion 3.2.1 and are summarized as follows [30]:

State space

In our learning solution, each state S(t) ∈ S is associated with S(t) = {φ̂, Ŵ (t), Ĉ(t)}
as following vectors

• φ̂: Application information including resource demands (e.g. computational and

storage), tolerable response time, and the location of the vehicle.

φ̂ =
[
φcomp
m,j φstor

m,j φres
m,j φloc

m,j

]
(4.5)

56

• Ŵ (t): Application tasks waiting in the buffer of each server at time slot t with

their resource demands including computation and storage.

• Ĉ(t): Running tasks in each server at time slot t and all their resource demands

including computation and storage.

Action space

The current action is defined as am,j(t) = {a1m,j(t), a
2
m,j(t), . . . , a

i
m,j(t)} where aim,j(t) is

a decision variable which is set to 1 if requested application j from vehicle m is placed

on server i to be executed, otherwise, is 0 at time slot t. Note that
∑

i∈V a
i
m,j(t) = 1

which means each request can perform and execute only in one server. The action

of the deep reinforcement learning agent is defined as a server selection for each

application to be run on the selected server and it is indexed by the number of MECs

and central cloud.

Reward definition

Once the agent takes action based on the observed environment state, the environment

will return an immediate reward to the agent. Then in the learning stage, the agent

updates the resource allocation policy based on the received reward until the algorithm

converges [58]. Indicated by (4.6), the estimated response time for task j from vehicle

m, τ estm,j(t), (the sum of the access, queuing, migration and execution latencies) is

compared with tolerable response time of task j from vehicle m, indicated by φresm,j.

If the estimated response time is a less than the tolerable response time for request

j from vehicle m, then the reward would be −τ estm,j(t), otherwise, the reward would

be −w.τ estm,j(t). Thus, to minimize the number of dropped tasks that do not complete

before tolerable response time, we follow reward element for offloaded task j from

vehicle m that are corresponding (4.6).

rm,j(t) =


−τ estm,j(t), if τ estm,j(t) ≤ φres

m,j

−w · τ estm,j(t), otherwise.

(4.6)

57

Deep Q-learning solution

We adopt central deep Q-learning as a value-based approach [38] as mentioned in

Section 3.2.2. The agent gets the state information from the environment. The action

with the highest value determines the next state. In other words, to select the next

state as a proper server for the execution of an application, our algorithm rescans

all Q(S(t), a(t)) values. It captures them as the outcome of a deep Q-network to

gain the maximum value. Moreover, the algorithm adopts the epsilon-greedy action

selection method [50] to balance exploration and exploitation by choosing between

them randomly.

As mentioned in Section 3.2.2, Q-learning updates its Q-value by temporal differ-

ence. Temporal difference captures the difference between the current estimate and

previous ones and approximates the estimation by comparing them at two consecutive

episodes [50]. In a neural network, we use the Multi-Layer Perceptron algorithm as a

function approximator for Q(S(t), a(t)).

4.2.2 Re-allocation strategy

Reallocation protocol reallocates resources for new and previous tasks based on tasks

priorities when new application tasks arrive. In this context, different applications

can have different requirements, especially in terms of response time. Due to the

importance of CAs, CAs get the highest priority. The objective of the reallocation

strategy is to satisfy all requirements of CAs and reduce response time as much

as possible. Thus, when a CA arrives in a MEC, if there is no available resource

there, reallocation strategy will provide sufficient resources in the initial MEC for the

new incoming CA by migrating previous tasks (HPA or LPA) to the other proper

MECs. Consequently, to improve the performance of our system model, we propose

reallocation and least-response-time-first (LRTF) scheduling policies described in this

section.

Re-allocation scheduling

When an initial MEC server offloads a CA task, it should execute the task there.

Hence, after comparing the resource demand of CA, depicted by φjA , with the available

58

resource capability of the initial MEC b, indicated by Rb, if the CA resource demand

is less than the available resource capability of the server, then the CA is executed

there. Otherwise, if the initial MEC server does not have free resources to allocate

the CA, another proper server will be selected for LPA, existing in the initial MEC,

based on deep Q-Learning algorithm presented in Chapter 3. Finally, the LPA will

migrate to a new chosen server. As a consequence, free resources will be provided in

the initial MEC to allocate the CA. On some occasions that there is no LPA in the

initial MEC to migrate, an HPA will migrate to a fitting selected server. This process

will continue until the free resource capacity is available to the CA in the initial MEC.

Our Re-allocation policy is presented in Algorithm 3. In addition, Fig. 4.2 illustrates

a simple illustration of the re-allocation policy.

Algorithm 3 Re-allocation Policy

1: while CAs are offloaded by MEC b do
2: if Rb < φjA then
3: if LPA ∈MECb then
4: Find a new execution node for LPA based on Algorithm 2
5: Migrate LPA to the new execution node
6: Go to the line (2)
7: else if HPA ∈MECb then
8: Find a new execution node for HPA based on Algorithm 2
9: Migrate HPA to the new execution node
10: Go to the line (2)

LRTF scheduling

After the task offloading process and choosing a proper MEC server for the tasks,

they are waiting in the server’s buffer for the execution. They will serve in order

of their priorities. In essence, our LRTF scheduling says CAs should exit the queue

and start the execution phase first until no more CA is in the buffer. Then, HPAs

and LPAs will begin to be scheduled for execution in the server, respectively (see

Fig. 4.3). The required response times for high-priority tasks will be guaranteed by

utilizing reallocation scheduling.

59

Figure 4.2: A simple illustration of re-allocation policy

4.2.3 Dynamic distribution and rate of arriving tasks

Analyzing and defining a good model for incoming requests would be greatly impor-

tant in considering the distribution of service requests. To make dynamicity of our

model and investigate the dynamic distribution and rate of arriving tasks, we gener-

ate tasks based on a Poisson distribution, which is mainly used to model the system

better. The time between coming tasks is independent and identically distributed for

the Poisson process with λ rate. Moreover, we will adopt inhomogeneous Poisson to

consider various loads from vehicles during a 24-hour day. Thus, parameters of λ(t)

can change over time. We defined λA(t), λB(t), and λC(t) to guarantee the dynamic

distribution of arriving CA, HPA, and LPA tasks respectively. Furthermore, λA(t),

λB(t), and λC(t) are defined by different functions separately. The functions are time-

dependent and continuous (e.g., sin(t), etc.). A visual sample for distributed arriving

CAs and HPAs is presented in Fig. 4.4.

60

Figure 4.3: LRTF scheduling

Figure 4.4: Visualized arriving CAs and HPAs.

4.3 Performance evaluation

Implementation results are presented in this subsection to illustrate the performance of

the proposed reallocation and scheduling task offloading based on deep reinforcement

learning for the vehicular scenarios with MEC and central servers. It is noted that to

improve illustration, the results are shown in the average scope.

The dataset, setting, and baselines for this chapter are the same as those in Sec-

tion 3.3.1. Thus, we utilize a realistic vehicular dataset using mobility traces of taxi

cabs in Rome, Italy [4] to evaluate the performance of our proposed algorithm. We

randomly take a snapshot of each taxi’s trajectory during a day using the dataset. In

addition, as mentioned in Section 4.2.3, we generate tasks based on inhomogeneous

Poisson distribution to create dynamic distribution and rate of arriving tasks.

Furthermore, we utilize three models as baselines to present the comparison and

performance for our algorithm named Scheduling-DRL. The first one is the deep

61

reinforcement learning (DRL) method which is a part of our algorithm without real-

location and LRTF scheduling [30]. The DRL method was proposed in the previous

chapter. Our DRL algorithm allocates tasks to a proper server based on task require-

ments and server capacity. The second baseline method is the Greedy method which

assigns tasks to servers with higher resource capabilities. The last baseline for com-

parison, called Random, means that all arriving requests are assigned to each node

randomly.

Fig. 4.5 demonstrates the convergence performance of our Scheduling-DRL algo-

rithm and other baselines. The reward convergence for each task offloading is achieved

by Equation (4.6). The learning process starts by updating the parameters of the deep

Q-learning. Thus, the total rewards per episode fluctuate sharply at the beginning

of the learning process and then increase as the parameters gradually optimize. As

we can see from Fig. 4.5, in Scheduling-DRL and DRL methods, among the episodes

during the learning stage, the total rewards per episode fluctuate sharply and are

relatively small in the first 150 episodes and then tend to meet a relatively stable and

high value. In addition, our scheduling algorithm has the highest reward. The Ran-

dom and Greedy models do not follow any learning policy, so there is no improvement

in stability in normalized reward values by increasing the number of episodes there.

(a) Normalized reward (b) Average normalized reward

Figure 4.5: Normalized reward per episode in Scheduling-DRL, DRL, Greedy, and
Random solution.

Fig. 4.6 represents the rejection rate and the average rejection rate of vehicular ap-

plications per episode. From the central orchestrator perspective, an efficient resource

management scheme should accept as many tasks as possible with the given available

resources. The proposed algorithm achieves a lower ratio of dropped tasks than the

other methods. After around 150 episodes, the rejection rate gains a stable value and

62

a lower rejection rate compared to other baselines. According to our Scheduling-DRL

algorithm, we can guarantee that crucial applications with the highest priority in ve-

hicular networks will be immediately processed. There are no reallocation policies

and the LRTF scheduling, and it works based on a first-come-first-served policy in

which requests are served in the order of their arrival in other base lines. It is worth

mentioning that the Greedy model does better than the Random strategy mainly

because it makes a difference between servers and gives high priority to servers with

high resource abilities.

(a) Rejection rate (b) Average rejection rate

Figure 4.6: Rejection ratio per episode in Scheduling-DRL, DRL, Greedy, and Ran-
dom solutions.

As shown in Fig. 4.7, the proposed algorithm consistently achieves a lower total

response time than the other methods. From a vehicle perspective, satisfying delays

and QoS requirements are critical. When the number of episodes increases, the average

response time decreases accordingly. This is because increasing episodes can help the

DRL and scheduling algorithms learn effectively. These results further verify that the

proposed scheduling approach can find a suitable offloading strategy with a shorter

response time. Thus, the vehicular networks can provide a flexible way of measuring

latency and rejection rate. The proposed approach can adapt to various dynamic

situations and give an optimal solution for resource allocation strategy. Random

and Greedy models do not follow any learning policy, so there is no improvement in

normalized reward, rejection rate, and response time values by increasing the number

of episodes.

Fig. 4.8 demonstrates task distribution based on server resources. We randomly

choose episode 297 to consider task distribution. Servers 0 to 5 represent MEC 0

to MEC 5, and server 6 shows the central cloud. The resource of servers includes

63

(a) Total response time (b) Average response time

Figure 4.7: Response time per episode in Scheduling-DRL, DRL, Greedy, and Random
solution.

computational capacity and the CPU cycle per second, storage (Mbits) in each server,

and the number of cores a server has, which denotes how many tasks each server can

execute simultaneously. The resource ability of each MEC and central server is listed

in Table 4.2.

Table 4.2: Servers resource ability for Fig. 4.8

Server Computation Storage # Core
MEC 0 1 30 2
MEC 1 4 55 4
MEC 2 4 36 9
MEC 3 5 67 9
MEC 4 3 58 9
MEC 5 3 18 2
Central 6 100 100 100

Fig. 4.8a shows the number of actions allocated to the servers based on Scheduling-

DRL. It is based on the number of tasks waiting in the queue of a server that can

satisfy tasks requirement. According to Table 4.2, MEC 3 has more computation and

storage compared with other edge clouds; thus, it can process tasks much quicker

than others. As a result, our Scheduling-DRL method allocates more tasks to the

MEC 3 to satisfy both tolerable delay and computation demands of applications. As

demonstrated in Fig. 4.8b, the sum of application tasks assigned to servers is based

on the result of our proposed learning resource management solution, which considers

total response time and the resource demands of tasks. Moreover, based on the figure,

the resource availability of servers is investigated for action selection. Furthermore,

64

(a) Scheduling-DRL (b) DRL

(c) Greedy (d) Random

Figure 4.8: The number of allocated tasks to the MEC (0 to 5) and central servers
(6) in Scheduling-DRL, DRL, Greedy, and Random methods.

as Fig. 4.8c shows, the central server with significant resource ability receives more

tasks using the Greedy strategy. Nevertheless, as Fig. 4.8d illustrates, the tasks are

distributed uniformly among servers, and the Random method does not investigate

QoS demands. Our proposed scheduling plays well considering its resource capabilities

and QoS demands as a final discussion point.

4.4 Summary

In this chapter, we have studied resource allocation and application task offloading in

a highly dynamic of vehicular edge computing. We proposed reallocation and LRTF

scheduling policies to ensure that crucial applications with the highest priority in

vehicular networks are immediately processed. In addition, we utilized inhomogeneous

Poisson distribution to investigate the dynamic distribution and rate of arriving tasks.

Moreover, we proposed deep reinforcement learning to solve an NP-hard problem

65

considering QoS constraints and resource restrict capacity. Simulation results showed

that our proposed algorithm could reduce the ratio of dropped tasks and response

time compared with other methods.

66

Chapter 5

Decentralized and proactive

resource allocation algorithm

This chapter focuses on proactive resource allocation and task offloading in vehicular

edge computing. Different from existing works, we aim to propose a distributed DRL

algorithm to provide various benefits such as local decision making. Our DRL-based

distributed algorithm presents an accurate workload prediction. We classify vehicu-

lar tasks based on their priorities into three categories, Crucial Applications (CAs),

High-Priority Applications (HPAs), and Low-Priority Applications (LPAs) [20], and

migrate the application tasks with lower priority to provide service for CAs. CAs are

core vehicle system applications or safety-related applications. Because of their im-

portance to the vehicle and the passengers, CAs have the highest priority and must be

executed immediately. The primary motivation of our proactive resource allocation al-

gorithm is to gain high QoS and to provide a high acceptance rate of crucial vehicular

tasks. The task offloading as a part of the algorithm is usually considered an NP-hard

optimization problem [70], and it is complicated to find an optimal global solution by

traditional approaches. We develop a distributed deep learning scheme following two

objectives. The first is resource allocation and task offloading utilizing a distributed

DRL where each MEC server learns and acts as an independent agent. The second is

distributed workload prediction based on the Multivariate LSTM method.

Due to the time-varying of task requirements and resource capabilities in MEC

servers in the dynamic nature of vehicular networks, we formulate dynamic offloading

and resource allocation as Finite Markov Decision Process (FMDP) involving state

and action spaces and only depending on the current state and action. One promising

approach is to apply deep learning to solve this optimization problem by training a

deep learning model to learn the mapping between the problem input parameters and

the optimal solution [75]. In particular, the agents of distributed DRL are deployed at

the MEC server to indicate the optimal offloading decision of the vehicles’ applications

and the computation resource allocation with high accuracy in near-real-time [75]. In

this vein, optimum task offloading using decentralized DRL could ensure the system

performance measured by latency and acceptance rate. In addition, as one of the

powerful decision-making algorithms in the artificial intelligence field, DRL performs

dynamic programming to achieve excellent performance and effectiveness in tackling

the optimization under dynamic environments [36].

In the distributed DRL, we propose a model-free distributed Q-learning algorithm

for cooperative multi-agent-decision processes. The set of all possible actions is dis-

crete and finite, and the action space in each agent is the same. In addition, the reward

function in each agent is the same; in this situation, distributed Q-learning algorithm

can find the optimal policy and converge [33, 85]. The authors in [33] advocate a

distributed Q-learning algorithm that converges for deterministic finite multi-agent

Markov decision process where each agent maintains local action and successively

takes maximization over the joint action. There is no need for each agent to ac-

quire other agents’ actions and histories. Moreover, the convergence of the optimal

Q-function for cooperative multi-agent RL settings involving homogeneous agents has

been established in [85]. In our case, each MEC server has its learning agent who runs

a standard Q-learning procedure independently based on a multi-agent reinforcement

learning algorithm, and all agents conduct a decision algorithm independently and

simultaneously determine an optimal strategy for the FMDP [9, 49, 85]. The main

contributions of this chapter are as follows:

• Proactive resource allocation in a highly dynamic environment : We propose an

efficient, proactive resource allocation and task offloading in a highly dynamic

vehicular system. We utilize machine learning methods to find an efficient re-

source allocation and workload prediction to maximize the acceptance rate of

the tasks. This way, a task migration among local and remote servers is allowed

based on the vehicles application’s priority and QoS requirements.

68

• Decentralised DRL-based task offloading algorithm: In a highly dynamic envi-

ronment, we propose a model-free decentralized DRL-based task offloading and

resource allocation algorithm. Our decentralized learning enables each MEC

server to find the optimal solution for proactive resource allocation problems.

The problem is to maximize the acceptance rate of the vehicular tasks, partic-

ularly crucial application tasks.

• Migration based on workload prediction: In our proactive resource allocation

algorithm, we propose Multivariate-LSTM to predict near-future workload in

each MEC server. The workload prediction is based on different application

tasks priority. According to the result of the workload prediction, migration

occurs to release free resources for crucial applications that have the highest

priority.

5.1 System model and assumptions

The system architecture in this chapter is the same as the system architecture of Chap-

ter 4. The number of tasks each vehicle requests in every time slot is not restricted to

one task. We consider three different domains in vehicular edge computing networks

(see Fig. 5.1). The first domain is the central domain consists of a central cloud v. The

second domain is the MEC domain includes a set of MEC servers N = {1, . . . , N}.
Each MEC server belongs to at least one cluster in the MEC domain, and each MEC

is located beside one RSU in the road. The third domain is the vehicle domain con-

sisting of a set of vehicles M(t) = {1, . . . ,M} in the network at time slot t indexed

by m. In addition, Fig. 5.1 illustrates vehicles access the MEC servers through the

wireless link, and the MEC servers are connected through a backhaul network. In

the system, during MEC servers’ deployment, a backhaul network is made, and MEC

servers that are in close distance are clustered. Furthermore, each MEC server di-

rectly connects to the central server in a wired manner. The only difference between

this chapter and the two previous chapters is system management. In other words,

in Chapter 3 and 4, the central management is assumed to be deployed in the central

cloud; however, in this chapter, system management is distributed, which is deployed

in each MEC server.

Like previous chapters in this thesis, we consider a graph G = (V , E), where V

69

Figure 5.1: An illustration of vehicular edge computing network.

is the set of MEC servers plus the central server v and E is the set of links between

MECs and central cloud. Each node i ∈ V has own resource capacity as Ri =

[Rcomp
i Rstor

i] where Rcomp
i and Rstor

i shows the computational and storage capacity of

node i, respectively and every MEC server is capable of running one or more tasks,

simultaneously. The considered parameters of this chapter are stated in Table 5.1.

We present task characteristics, architecture components in each MEC, and problem

formulation in the following subsections.

5.1.1 Task characteristics

In our model each vehicle can request any number of application tasks at each time

slot. Let m = {1, . . . , J} be the set of application tasks vehicle m requests indexed by

j. We focus on computational tasks of vehicles, where each task is non-divisible such

that it can either be processed in a MEC server or remotely in the central cloud based

on (5.1). We define the binary decision variable ξim,j which is set to 1 if application

task j from vehicle m is executed at server i, otherwise, it is 0. Therefore, we have

following constraint:

∑
i∈V

ξim,j ≤ 1,∀m ∈M(t), j ∈ m (5.1)

70

Table 5.1: Network parameters and notations used in this chapter

Notation Definition
M/M/m Set/number/index of vehicles
N /N/n Set/number/index of MEC servers
V/i Set of all MEC servers plus central server v/index
J/j Number of tasks/index
Ri Vector of resource capacity of server i
Rcomp

i Computation capacity of server i
Rstor

i Store capacity of server i
φm,j Vector of application resource demand of task j from vehicle m
φcomp
m Application computation demand of task j from vehicle m
φstor
m,j Application storage demand of task j from vehicle m

φres
m,j Request’s tolerable response time of task j from vehicle m

τ accessm,j Access latency of application j from vehicle m

τmig
m,j Migration latency of application j from vehicle m

τprocm,j Processing latency of application j from vehicle m

τqueuem,j Queuing latency of application j from vehicle m

Acc Accepted rate of crucial applications
A Crucial applications category
ξim,j Indicator if application j from vehicle m

is executed on server i
ψj
m Indicator the accepted request j from vehicle m by the network

In the first place, each task can offload its requests to the nearest MEC where the

vehicle is in the coverage area through a wireless link, and then it can migrate to a

proper server for processing through a wired connection. Like Chapter 4, we classify

vehicle applications into three levels according to their characteristics: Crucial Ap-

plications (CAs), High-Priority Applications (HPAs), and Low-Priority Applications

(LPAs) [20]. In this context, different tasks can have different importance based on

their tolerable response time. CAs have the highest priority due to the importance

of CAs, which have the shortest tolerable response time. Tolerable response time (in

time slots) of task j from vehicle m is denoted by φres
m,j. Moreover, task j from vehicle

m has requested resources; it can be denoted by: φm,j = [φcomp
m,j φstor

m,j], where φcomp
m,j and

φstor
m,j shows the requested computational and storage resources of task j from vehicle

m. The cooperation of the task and Infrastructure is considered as follows:

• Task between vehicle and MEC domains: In our system model, vehicles are

allowed to access the MEC servers through the wireless link. Each car can

71

generate more than one task simultaneously for offloading to its nearest MEC

in each time slot and receiving the results through the maybe other MEC in the

other time slots. This communication between vehicle and MEC server imposes

access latency for task j from vehicle m depicted by τ accessm,j which is composed of

transmission delay and round trip time. We have two assumptions here: first,

a vehicle can travel through the coverage area of more than one MEC while

uploading the tasks and downloading the results. Second, there is sufficient

bandwidth for the cooperation of cars and the relative MEC servers.

• Task between MEC and central domains: To overcome the challenges caused by

the limited resources in MEC servers and to achieve high resource capacities

usage, the task may migrate to another MEC or central cloud. The MEC,

which received the application, determines whether it is executed or migrated

to the other MEC or the central cloud. If there is not a proper server selection

to satisfy the resource and QoS demands of the task, then the task will be

dropped. We utilize a distributed learning vision in each MEC server for optimal

server selection for all application tasks. The machine learning method we adopt

is a combination of DRL and LSTM, which will be considered later in this

chapter. During task migration, offloading, and processing, the total service

latency for each application is significant to consider as an end-to-end QoS

provision. Based on the latency model in Chapter 3, we investigate migration

latency τmig
m,j , processing latency τprocm,j , and queuing latency τqueuem,j for task j from

vehicle m in this work, as well.

5.1.2 Architecture components in each MEC

Fig. 5.2 illustrates the architecture components of each MEC server which are defined

as following modules:

• Clustering Agent: During deployment of MEC servers and making backhaul

network, the MEC servers in the close physical distance are clustered with each

other. Moreover, at the beginning of each time slot, the clustering agent broad-

casts its necessary information, such as its available computation and storage

resources, to the other MEC servers in the same cluster.

72

• Monitoring: In the beginning of each time slot, the MEC’s Monitoring module

receives information from the environment such as the characteristics of arriving

tasks and information from other MEC servers which are in the same cluster.

• Receiving Request: In each time slot, the Receiving module of MEC server

receives all requests from vehicles that are in the coverage area of the MEC.

• Learning Agent: Every MEC server has its own learning agent independent of

other MECs or central cloud. Intuitively, each MEC adopts information from

other MEC servers in the same cluster for efficient learning. Efficient learning

provides an optimum solution for resource allocation problem in a highly dy-

namic vehicular environment. The sub-components of each learning agent are

as follows:

– Workload Prediction: The learning agent of an MEC server predicts its

own workload of the next time step. In other words, the learning agent

predicts how many CA, HPA, and LPA will arrive in next time slot. For

this purpose, the learning agent utilizes the history of its own workload

and the workload history of other MECs in the same cluster.

– Migration: There are three types of migrations in migration modules. The

first one is Migration based on Prediction. The workload prediction results

provide MEC server the ability to manage resources for the next time

slot. Intuitively, suppose there are insufficient computation and storage

resources for new arriving CAs with the highest importance of application

tasks. The MEC can free resources by migrating lower priority tasks (LPA

and HPA) to the central cloud or other MEC servers. The second one is

Request Migration. If there is not enough resource capacity in the MEC

that receives the request, the request has to be migrated to a proper server

for execution. The third one is Result Migration. After finishing the exe-

cution process, if the vehicle is not in the coverage area of the MEC that

executed the task, the result has to be migrated to MEC, which is very

close to the car. As the new location of vehicles is updated continuously,

it would be easy to capture the new place of the car and the destination

MEC.

– Acceptance Decision: When new application tasks arrive to a MEC, the

MEC considers available resources of its own and neighbors and tasks’

73

Figure 5.2: MEC node architecture.

demands then decides whether to accept the tasks or reject them.

– Allocation: If an arriving task is not rejected at the arriving time, the Allo-

cation module in the MEC server finds a proper location for task execution

utilizing learning methodology.

• Result Delivery: After accomplishing task execution, the result must be deliv-

ered to the same vehicle that sent the request request. The Result Delivery

module delivers the result to the vehicle.

5.1.3 Problem formulation

Finding a proper server node to execute the application task would significantly re-

duce the vehicle-perceived latency in vehicular edge computing networks. In other

words, task offloading in such a network requires considering the limited resources of

MEC servers, which is different from central servers with large resource capacities.

Furthermore, knowing the incoming workload of each MEC in the near future, it is

essential to reserve resources for the task with the highest priority and migrate tasks

74

with low priority to the other MEC servers. In this regard, our proposed proactive

resource allocation algorithm provides a short required response time, especially for

the applications with the kind of CAs to execute at the MEC. In contrast, applications

with high resource demands and more extended response time will be placed in the

central cloud. To ensure the sum of allocated resources to all vehicles in each server

i, does not exceed its resource capabilities Ri, we have the following constraint

∑
m∈M(t),j∈m

ξim,j · φm,j ≤ Ri, ∀i ∈ V (5.2)

In general, the response time for a task j from vehicle m and the time required to

get the result to the same vehicle is the sum of the times for access, migration, queu-

ing, and processing latency. This sum time should satisfy an application’s tolerable

response time φres
m,j, so we consider the following constraint for that purpose

τ accessm,j + τmig
m,j + τqueuem,j + τprocm,j ≤ φres

m,j (5.3)

Furthermore, we define ψj
m as a decision variable which is set to 1 if the application

task j from vehicle m which belongs to CA categories is accepted; otherwise, it is 0.

Thus, the total accepted applications of CA categories divided by the total arriving

CA applications, which we indicate with A, is considered the accepted rate of crucial

tasks Acc. We aim to maximize the rate of CAs acceptance respecting response time

constraints and resource restrictions. Hence, an optimization problem for resource

management would be as

max Acc =

∑
m∈M(t),i∈V

∑
j∈m∩A ξ

i
m,j · ψj

m∑
m∈M(t)

∑
j∈m∩A 1

s.t. C1 :
∑
i∈V

ξim,j ≤ 1,∀m ∈M(t), j ∈ m,

C2 :
∑

m∈M(t),j∈m

ξim,j · φm,j ≤ Ri,∀i ∈ V ,

C3 : τ accessm,j + τmig
m,j + τqueuem,j + τprocm,j ≤ φres

m,j,

C4 : ξim,j ∈ {0, 1},∀m, i, j,

C5 : ψj
m ∈ {0, 1},∀m, j ∈ m ∩ A

(5.4)

75

Fig. 5.3 is a simple illustration of the task offloading management in our proactive

resource allocation. In addition, the proposed proactive resource allocation and task

offloading process is presented in Fig. 5.4, in which green boxes show the parts per-

forming machine learning. Each MEC server has its own learning agent, which can

predict arriving workload during the next time slot. Because the CA has the highest

priority compared to other vehicular applications, it would be considered if there is

sufficient resource capacity in the base MEC b for execution CA or not. Base MEC

b is the server that receives tasks directly from the vehicles. If there are insufficient

resources in MEC b to satisfy CA’s resource demand, then MEC b can free resources.

MEC b migrates lowest priority tasks LPA to the central cloud or other MEC servers

utilizing the DRL algorithm, which will be explained later in this paper. If there is no

LPA in the MEC, HPA will be migrated to another server. The workload prediction

policy can guarantee the CAs to be immediately executed once being received by

MEC b. The proactive resource allocation is presented in Algorithm 4.

In general, based on the algorithm, once task j from vehicle m is received by the

base MEC b, it will be executed there if the task resource demand is less than the

available resource capability of the server b. Therefore, the execution node would be

the same MEC b. If there are insufficient resources to be allocated to the request

j in MEC b, the DRL-based optimization algorithm will find the proper server for

request j and request j migrates to the relative server named execution node i. After

finishing the execution, j should be delivered to vehicle m. If the execution node i

is not the same destination MEC, task j has to migrate from execution node i to

destination MEC to deliver to vehicle m. The task offloading algorithm is presented

in Algorithm 5.

5.2 Intelligent and proactive resource allocation al-

gorithm

The formulated problem (5.4) is a mixed-integer linear optimization problem, and such

problems are usually considered as NP-hard problems [55, 70]. We use a finite MDP

model to capture the dynamic of network state transitions. An MDP can be defined

by the set of current system states, set of actions, and the set of real-value reward

functions [38]. Therefore, we utilize distributed DRL to transform the formulated

76

Algorithm 4 Proactive resource allocation

1: A← Find coming CAs based on workload prediction
2: for all jA ∈ A do
3: if φjA < Rb then
4: Go to the next time slot
5: else if LPA ∈MECb then
6: Find a new execution node for LPA based on Algorithm 6
7: Migrate LPA to the new execution node
8: Go to the line (3)
9: else if HPA ∈MECb then
10: Find a new execution node for HPA based on Algorithm 6
11: Migrate HPA to the new execution node
12: Go to the line (3)

Algorithm 5 Task offloading algorithm

1: Task j from vehicle m is offloaded by base MECb

2: if φm,j < Rb(t) then
3: execution node = b
4: else
5: Select server i based on Algorithm 6
6: Migrate task j to node i
7: execution node = node i
8: Execute task on execution node
9: if execution node is not destination node then
10: Migrate the result to destination node
11: Deliver the result to vehicle m
12: else
13: Deliver the result to vehicle m

77

Figure 5.3: A simple illustration of task offloading in proactive resource allocation.

optimization problem. In addition, to maximize the crucial vehicular application

acceptance rate, we implement a proactive resource strategy by adopting workload

prediction methodology.

5.2.1 Decentralized multi-agent DRL and workload predic-

tion

In the system model, MEC servers located at close physical distances create a cluster

and broadcast their state information in the cluster through the overlay network in

every time slot. Each cluster runs multi-agent DRL and solves it by leveraging deep

Q-learning. Furthermore, predicting its variation workload is crucial for developing

a proactive resource allocation algorithm. In each MEC, a learning mechanism is

performed that efficiently decides how much and when to allocate tasks and where to

place and migrate tasks. Thus, we utilize a Multivariate Long Short-Term Memory

(LSTM) to perform workload prediction in each MEC.

Decentralized multi-agent DRL

The distributed DRL algorithm is designed to perform an effective proactive resource

allocation algorithm eradicating difficulties in modeling and computation that can

78

Figure 5.4: Proactive resource allocation and task offloading process

be handled in distributed manners [10]. In our distributed learning method, every

MEC server learns and acts as an agent in each cluster and independently conducts

a decision algorithm. We propose a model-free distributed Q-learning algorithm for

cooperative multi-agent-decision processes. The set of all possible actions is discrete

and finite. Space action is common among all agents, and the reward function is

the same in each agent; in this situation, distributed Q-learning algorithm can find

the optimal policy and converge [33, 85]. Note that each MEC runs the Q-learning

procedure independently based on multi-agent reinforcement learning algorithm [9,

49]. All agents behave individually and are governed by the deep Q-network policy,

and have the same objective. However, other agents’ actions result in a new state,

which is considered as the environment for formulating the agent’s policy. Each agent

has access only to local information, which in turn is affected by the decisions of other

agents [56, 78]. This independent learner approach brings the benefit that the size of

the state-action space is linear with the number of agents [49].

Workload prediction based on Multivariate LSTM

It is crucial to predict variation workload in MEC that the Multivariate LSTM method

is applied to develop a proactive resource allocation algorithm. In essence, the LSTM

79

network learns the temporal dependence of sequential observations and predicts the

future time series [67]. As vehicles move across a geographical area, workload changes

at MEC at a close physical distance may introduce correlations between MECs’ work-

loads. Investigating this correlation can be utilized to improve the prediction perfor-

mance [52]. Intuitively, the historical workload information of MECs in close physical

distance to anticipate the workload for each MEC is needed. Moreover, the workload

information is categorized into three types of vehicular tasks. Thus, a Multivariate

LSTM is considered for workload prediction.

In essence, the LSTM network will output the information for various application

tasks that indicate the future workload dynamics. The outputs will pass to the state

of the DRL for further learning.

We assume workload is a numeric value abstracting the number of different appli-

cation tasks that come from vehicles and are offloaded by the MEC server. Hence, at

every time slot t, the total workload in a particular MEC corresponds to three num-

bers, A, B, and C, which present the number of CA, HPA, and LPA tasks coming

to it. Given a vehicular edge network topology with geographical distributed MECs,

let Ĥ(t− 1) be a (n+ 1)× 3 dimensional time series vector. Ĥ(t− 1) is constructed

by 3(n + 1) time series record the historical workload. This historical workload is

related to the predicted MEC b and its n neighbors at each time interval (i.e. 3 is the

number of task types and n+ 1 is the predicted MEC b and its n neighbors). Assume

HA
i (t− 1), HB

i (t− 1), HC
i (t− 1) are the time series containing the observed historical

workload of MEC i up to time t for CA, HPA, and LPA tasks respectively. Each data

point in Ĥ(t − 1) is sampled with a specific time window (e.g., 100 milliseconds, 15

seconds, etc). The goal is to estimate workload of MEC b at the near future.

To develop a real-time prediction, one step ahead prediction is considered for a

quick response and preventing the error accumulation as occurring in multi-step ahead

prediction. Specifically, the Multivariate LSTM network takes the matrix Ĥ(t− 1) as

input for learning the workload dynamics (Fig. 5.5). The Multivariate LSTM network

will output three numbers pAb (t), pBb (t), pCb (t) indicating the estimated number of CA,

HPA, and LPA tasks respectively in MEC b at time t. Output vector Pb(t) as the

predicted workload of MEC b is as follows:

Pb(t) =
[
pAb (t) pBb (t) pCb (t)

]
(5.5)

80

Figure 5.5: An illustration of input/output of multivariate LSTM network.

In the Multivariate LSTM-based workload prediction method and the data prepa-

ration stage, the vector of the dataset is divided into train and test sets [5]. Note that

in LSTM, the number feature defines the different measures observed at the time of

observation. Here, for three application tasks in the network and n neighbor MECs,

the number feature equals 3× (n+ 1).

5.2.2 Intelligent task offloading and proactive resource allo-

cation solution

Task offloading is a part of our proactive resource allocation algorithm. As afore-

mentioned, the distributed DRL algorithm is designed to enable each MEC server to

act as an agent and make the decision based on local observations, some information

broadcasting from other agents in their close vicinity, and the output of Multivariate

LSTM at the beginning of time slot t. Each MEC server has its own state space S(t),

action space a(t), and reward model r(t) in a finite Markov decision process [38],

81

which are summarized as follows for MEC b:

• State Space: Each state Sb(t) ∈ S is associated with Sb(t) = {φ̂b, P̂b(t), Ŵb(t), Ĉb(t)}
as following vectors

– φ̂b: Task information including its resource demands (computational and

storage), tolerable response time φres
m,j, and the location of the vehicle φloc

m,j.

This task information is observed by MEC b.

φ̂b =
[
φcomp
m,j φstor

m,j φres
m,j φloc

m,j

]
(5.6)

– P̂b(t): Predicted workload of each MEC server at time slot t including the

estimated number of applications of type A (CA), type B (HPL), and type

C (LPA) in the near future as the output of Multivariate LSTM network.

Notably, CA applications have the highest priority among vehicular tasks;

thus, we consider A (CA) application to the DRL state as an input. In this

way, each MEC server has a predicted workload plus a predicted workload

of n number of other MEC servers located in its close physical distance.

P̂b(t) =
[
PA
1 (t) PA

2 (t) . . . PA
n+1(t)

]
(5.7)

– Ŵb(t): Application tasks waiting in the buffer of the MEC server and

other MEC servers located in the close physical distance at time slot t

with their resource demands, including computation and storage. Here n

is the number of MEC servers located in the close physical distance of MEC

b doing learning.

Ŵb(t) =

[
W comp

1 (t) W comp
2 (t) . . . W comp

n+1 (t)

W stor
1 (t) W stor

2 (t) . . . W stor
n+1(t)

]
(5.8)

– Ĉb(t): Running tasks in the MEC server and other MEC server located in

close physical distance at time slot t with all resource demands including

computation and storage.

Ĉb(t) =

[
Ccomp

1 (t) Ccomp
2 (t) . . . Ccomp

n+1 (t)

Cstor
1 (t) Cstor

2 (t) . . . Cstor
n+1(t)

]
(5.9)

82

• Action Space: The action is defined as server selection for each task to be run

on the selected server, and it is indexed by the number of MECs located in

their close distance plus the central cloud. The current action for task j from

vehicle m is defined as am,j(t) = {a1m,j(t), a
2
m,j(t), . . . , a

n+1
m,j (t)} where aim,j(t) is

a decision variable which is set to 1 if requested application j from vehicle m

is placed on server i to be executed, otherwise, is 0 at time slot t. Note that∑n+1
i=1 a

i
m,j(t) = 1 which means each request can perform and execute only in

one server. The vector of action space for all application tasks to be assigned

to a proper server can be depicted as follows

ab(t) =


a11,1(t) a21,1(t) . . . an+1

1,1 (t)

a11,2(t) a21,2(t) . . . an+1
1,2 (t)

...
...

...

a1m,j(t) a2m,j(t) . . . an+1
m,j (t)

 (5.10)

• Action Selection: The agent gets the state information from the environment.

The action with the highest value determines the next state. In other words, to

select the next state as a proper server for the execution of an application, our

algorithm rescans all Qb(S(t), ab(t)) values. It captures them as the outcome

of a deep Q-network to gain the maximum value. Moreover, the algorithm

adopts the epsilon-greedy action selection method [50] to balance exploration

and exploitation by choosing between them randomly.

• Reward Definition: Once the agent takes action based on the observed environ-

ment state, the environment will return an immediate reward to the agent. Then

in the learning stage, the agent updates the resource allocation policy based on

the received reward until the algorithm converges [58]. Indicated by (5.11), the

estimated response time τ estm,j(t) (the sum of the access, queuing, migration and

execution latencies) is compared with the tolerable response time φres
m,j. If the

estimated response time is less than tolerable response time for each vehicle’s

request, then the reward would be −τ estm,j(t) otherwise, the reward would be

−w · τ estm,j(t). Here, −w is a large negative integer. Thus, to maximize the num-

ber of offloaded tasks that are completed with satisfying response time by the

MEC server at time slot t, we define the following reward element for offloaded

task j from vehicle m Equation (5.11).

83

Figure 5.6: Proposed proactive deep reinforcement learning.

rbm,j(t) =


−τ estm,j(t), if τ estm,j(t) ≤ φres

m,j

−w · τ estm,j(t), otherwise.

(5.11)

Fig. 5.6 presents the proposed architecture of proactive deep reinforcement learn-

ing. Here, Q-learning updates its Q-value by temporal difference. Temporal difference

captures the difference between the current estimate and previous ones and approxi-

mates the estimation by comparing them at two consecutive episodes [50]. In a neural

network, we use the Multi-Layer Perceptron algorithm as a function approximator for

Q(Sb(t), ab(t)). We also inject randomness into the approximation model by adding

drop-out to the hidden layers of the Multi-Layer Perceptron network. This property

increases the robustness and generalized capability of the network besides powering

the exploration provided by this randomness.

Our distributed deep learning solution can be summarized in Algorithm 6 which

repeats the procedure based on the number of episodes until the reward converges.

The algorithm is executed in each MEC server while using the other MEC neighbors

to calculate the state space. As mentioned in the above section, the workloads arriving

at the MEC in the next time slot are considered in the state space. Moreover, every

vehicle can send more than one request at each time slot. Indicated by Algorithm 6, in

the first place, we have initialization for learning rate, discount factor γ, the epsilon

first value ε0 in epsilon-greedy, and minimum epsilon value εmin. Then, for each

episode, requests from vehicles arrive, and the total number of requests is counted

in variable len, and the first state Sb(0) is computed according to the first request.

84

Furthermore, for the epsilon-greedy method, the epsilon value needs to be updated

in each episode (line 3). In addition, a deep Q-learning procedure is called in each

episode. The Q-learning procedure repeats according to the number of requests.

In other words, the time slot t grows based on the number of requests; On line

10, the state of MEC b is computed according to local observation and the relevant

information from other MECs in close physical distance. Then, Q(Sb(t), ab(t)), the

output of our neural network, is estimated based on the state. During lines 12 to 16,

the action selection process occurs in cooperation with the epsilon-greedy algorithm.

Line 16 reveals the selected action is the action that has the highest Q-value. On

line 17, the reward and the next state are calculated. Finally, TD method is used to

optimize Q-Network.

Algorithm 6 DRL algorithm at MEC server b

1: Initialize learning rate, discount factor γ, the epsilon first value ε0 in epsilon-
greedy, and minimum epsilon value εmin

2: for episode← 1, K do
3: Calculate new value for ε by max(εmin, ε0 − episode/K)
4: request← Arriving requests from the vehicles
5: len← Length of request
6: Compute Sb(0) according to the first arriving request
7: Sb(t)← Q-Learning(request, len, Sb(0))

8: procedure Q-Learning(request, len, Sb(0))
9: for t← 1, len do
10: Compute Sb(t) according to the request(t)
11: Estimate Q(Sb(t), ab(t)) based on Sb(t)
12: Sample continuous uniform p ∼ U(0, 1)
13: if p < ε then
14: Sample discrete uniform ab(t) ∼ U{0, n+ 1}
15: else
16: ab(t)← argmaxaQ(Sb(t), ab(t))

17: Sb(t+ 1), rb(t)← emulator (ab(t), request(t+ 1))
18: if t < len then
19: target← rb(t) + γ.maxQ(Sb(t+ 1), ab(t))

20: if t = len then
21: target← rb(t)

22: Optimize Q-Network based on TD error (target− Sb(t))
2

23: Sb(t)← Sb(t+ 1)

24: return Sb(t+ 1)

85

The optimization problem is a mixed-integer linear programming problem, and

achieving the optimal or sub-optimal solutions usually requires exponential time com-

plexity. Moreover, the optimization procedure must be executed at each time slot due

to the diversity of request requirements, the number of requests, and resource avail-

ability in the MEC server, which are time-varying and highly dynamic. Therefore,

the conventional optimization methods using relaxation iteration algorithms incur

high computational complexity due to numerical iterations, and their solutions are

often sub-optimal. They would not scale well [64], usually converge slowly, and have

prohibitive complexity for real-time implementations [74]. A machine learning-based

approach is an effective and attractive solution to tackle this problem. Furthermore,

Since the deep neural network of Q-learning employs the full-connection networks, the

computational complexity of each training step is O(
∑F

f=1 Lf−1Lf), where Lf repre-

sents the neural size of the f -th layer among F layers [32, 36], and the complexity

of Q-learning algorithm is O(T), where T is the total number of training steps [27].

The complexity of the multi-agent deep Q-network algorithm in this chapter for each

cluster is O(2NT
∑F

f=1 Lf−1Lf), where N is the number of agents in each cluster. In

addition, LSTM is local in space and time, which means that the input length does

not affect the storage requirements of the network and for each time step, the time

complexity per weight is O(1). Therefore, the overall complexity of an LSTM per time

step is equal to O(X), where X is the number of weights [23, 65]. As a result, the

total complexity of the proactive resource algorithm in this chapter for each cluster

is O(2NT
∑F

f=1 Lf−1Lf +NX).

5.3 Performance evaluation and results

This section presents the experimental setting, baselines, results, and discussion to

validate the proposed intelligent and proactive resource allocation algorithm.

5.3.1 Experimental setting and baseline

We consider a scenario with 7 MEC servers located at a close physical distance and

one central server. Some of the parameter settings are in Table 5.2. Although our

model works for various intervals, the selected intervals could properly determine the

quality, validity, and capability of our model [30].

86

Table 5.2: Parameters used in this chapter

Parameter Value Description
N 7 Number of MEC servers
Rcomp

i [3, 11] CPU cycles per second
Rstor

i [15, 70] Storage of MEC (Mbits)
Rbuf

i [500, 1500] Buffer of MEC
Ru

i [2, 10] Number of cores in MEC
Rcomp

v 100 CPU cycles per second of central cloud
Rstor

v 100 Storage of central cloud (Mbits)
Ru

v 100 Number of cores in central cloud
φcomp
m,j [100, 260] CPU cycles’ task demand

φstor
m,j [3,10] Storage’s task demand

Analyzing and defining a good model for incoming requests would be greatly im-

portant to consider the distribution of service requests. We generate tasks based on

Poisson distribution, mainly used to model the system better. The time between ar-

riving tasks is independent and identically distributed for the Poisson process with λ

rate. Moreover, we will adopt inhomogeneous Poisson to consider various loads from

vehicles during a 24-hour day. Thus, parameters of λ(t) can change over time. We

defined λA(t), λB(t), and λC(t) to guarantee the dynamic distribution of arriving CA,

HPA, and LPA tasks respectively. Furthermore, λA(t), λB(t), and λC(t) are defined

with different functions separately. The functions are time-dependent and continuous

(e.g., sin(t), etc.), mainly because of a better illustration of workload prediction using

Multivariate LSTM.

We use real vehicle mobility and assign the various application tasks to the vehicles.

Thus, like previous chapters, we utilize a realistic vehicular dataset using mobility

traces of taxi cabs in Rome, Italy [4]. As mentioned in Section 3.3.1, we randomly take

a snapshot of each taxi’s trajectory during a day using the dataset. Furthermore, two

separate neural networks are applied for our proactive resource allocation algorithm;

one is for DRL, a feedforward neural network with 4 fully connected layers. The

other is for workload prediction, which is a recurrent neural network and LSTM.

Deep learning settings are given in Table 5.3. Additionally, ReLU capacity [73] is

an activation function added to hidden layers in DRL, which introduces non-linear

features to the neural network and improves the deep neural network. Moreover, in the

data preparation stage of the Multivariate LSTM method, the vector of the dataset is

divided into train and test sets with the 90% and 10% ratio, respectively. Meanwhile,

87

we use TensorFlow [1, 58] to implement our proposed DRL and Multivariate LSTM

schemes.

Table 5.3: Deep learning settings

DRL
Notation Value Description

K 400 Number of episodes
εmin 0.05 Min value of ε
ε0 0.9 First value of ε in ε− greedy
γ 0.98 Discount factor
- 0.0001 Learning rate
- 128 Hidden layer size
- Temporal Difference Error (TD) Loss function
- Adam Optimizer

Multivariate LSTM
- 0.005 Learning rate
- 80 Hidden layer size
- 3×number of servers Number of features
- Mean Square Error Loss function
- Adam Optimizer

We illustrate our proposal model in two parts Proactive-DRL and Predictive-DRL.

Proactive-DRL is the whole work we proposed in this chapter according to Fig 5.4. In-

deed, Proactive-DRL is the combination of the scheduling policy that we presented in

Chapter 4 and workload prediction as a state-space of DRL. However, the Predictive-

DRL algorithm consists of workload prediction as one part of state space in the DRL

algorithm. As a result, we compare our proposed proactive and intelligent algorithm,

named Proactive-DRL, with several benchmark methods, including Predictive-DRL,

DRL, Greedy, and Random methods. DRL method is what we did in Chapter 3 which

is an intelligent method for task offloading [30]. In other words, the DRL algorithm

finds the best server based on the resource capability of servers and the task’s re-

source requirements concerning the QoS, and there is no prediction policy in it. In

the Greedy solution, tasks are assigned to servers with higher resource capabilities.

In the Random method, arriving tasks are assigned to each node randomly, and its

distribution for task offloading and server selection is uniform.

88

5.3.2 Experimental results and discussion

The experimental results are presented in this subsection to demonstrate the perfor-

mance of the proposed proactive resource allocation in vehicular edge networks. In the

proposed Multivariate LSTM, every MEC has three features showing the number of

application tasks (CA, HPA, and LPA) as its workload plus three features of n MEC

neighbors. Fig. 5.7 (a) presents a visual demonstration of the dataset for feature 0

(number of CA tasks) and feature 1 (number of HPA tasks) and their output. The

output of prediction using LSTM determines the number of different applications. To

better illustrate of prediction process, we use the λ(t) as output. Fig. 5.7 (b) presents

a visualized prediction as to the result of the LSTM scheme. Although one run pre-

diction function will result in prediction in one time, we run the prediction function

128 times to draw the prediction results.

(a) Visualized incoming applications (b) Prediction in multivariate LSTM

Figure 5.7: Visualized incoming applications and prediction in multivariate LSTM

Fig. 5.8 shows the convergence of the proposed algorithm Proactive-DRL with

other policies. As we can see from Fig. 5.8, Proactive-DRL and Predictive-DRL work

well with a good reward convergence. In all three learning methods, Proactive-DRL,

Predictive-DRL, and DRL methods, among the 400 episodes during the learning stage,

the total rewards per episode fluctuate sharply and are relatively small in the first 150

episodes and then tend to meet a relatively stable and high value. The Proactive-DRL

and Predictive-DRL algorithm reach a higher value than the DRL algorithm. The

learning process starts by updating the parameters of the deep Q-learning. Thus, the

total rewards per episode fluctuate sharply at the beginning of the learning process and

then increase as the parameters gradually optimize. Furthermore, Fig. 5.8 shows in

the Greedy solution that each task is allocated to a server with high resource capacity.

89

Like the Random model, Greedy does not follow any learning policy, so there is no

improvement in stability about normalized reward values by increasing the number of

episodes. Moreover, there is no learning policy to support the convergence of rewards;

the rewards fluctuate after the total episode. As we can see, this uniformly distributed

random model suffers from a small value of rewards, which means it cannot support

the tolerable response time requested by each task.

(a) Normalized reward (b) Average normalized reward

Figure 5.8: Normalized reward per episode in Proactive-DRL, Predictive-DRL, DRL,
Greedy, and Random solution.

Moreover, we consider two performance metrics: the ratio of accepted tasks (i.e.,

the percentage of the number of accepted tasks to the number of total task arrivals)

and the response time (i.e., the average response time of the tasks which have been

processed). Fig. 5.9 represents the acceptance rate and the average acceptance rate of

tasks per episode. An efficient resource management scheme should accept as many

tasks as possible with the given available resources. As we can see in this figure, the

acceptance ratio increases in Proactive-DRL, Predictive-DRL, and DRL strategies

at the beginning of the learning process. However, after around 200 episodes, the

acceptance rate gains a stable value and a higher acceptance rate than other baselines.

Based on Fig. 5.9, our proposed learning solution gets the highest acceptance rate in

comparison with other methods. Proactive-DRL is learning how to allocate tasks to

proper servers based on available resources and utilizing prediction of the workload

and scheduling in the near future. Proactive-DRL gets a higher acceptance rate than

Predictive-DRL mainly because Proactive-DRL has both workload prediction and

scheduling, but Predictive-DRL has just workload prediction as one part of state-

space. In the Random strategy, as observable in this figure, there is no improvement,

even after passing the time and increasing the number of episodes. The acceptance

90

rate is around 1%, which is very low. Moreover, the Greedy method has no stable

pattern between the first steps of simulation and its last steps. In the Greedy policy,

the acceptance rate of crucial applications is near zero. This method allocates tasks

to a server with a higher resource capacity in the central cloud and does not consider

the tolerable response time of crucial tasks.

(a) Acceptance ratio of CA (b) Average acceptance ratio of CA

Figure 5.9: Acceptance ratio of crucial tasks per episode in Proactive-DRL, Predictive-
DRL, DRL, Greedy, and Random solution.

Fig. 5.10 demonstrates the total response time per episode in each algorithm. In

vehicular networks, satisfying tolerable response time and QoS demand of tasks are

critical. As Fig. 5.10 represents, Proactive-DRL reduces response time more than

other baselines.

(a) Response time of CA (b) Average response time of CA

Figure 5.10: Total response time of crucial tasks per episode in Proactive-DRL,
Predictive-DRL, DRL, Greedy, and Random solution.

The number of accepted tasks is presented in Fig. 5.11. We calculate the mean and

variance of the number of accepted applications in the last four episodes. Fig. 5.11 (a)

91

demonstrates the number of crucial applications which are satisfied and accepted. The

proactive-DRL algorithm has a higher acceptance number. As Fig. 5.11 (b) represents,

Proactive-DRL and DRL are equivalent in the number of accepted tasks. However,

this result is just for the last four episodes. In addition, the Greedy algorithm is the

worse strategy in terms of acceptance number.

(a) Number of accepted crucial tasks in last
episodes

(b) Number of accepted any type of tasks in
last episodes

Figure 5.11: Number of accepted tasks in Proactive-DRL, DRL, Greedy, and Random
solution.

5.4 Summary

In this chapter, we considered resource allocation and task offloading in vehicular

edge computing networks. We proposed an intelligent and proactive resource alloca-

tion algorithm for various types of tasks in vehicular edge computing networks. We

designed a distributed DRL algorithm for our resource allocation and task offloading

problem that enables MEC servers to decentralize their offloading decisions, respect-

ing tasks’ demands. Furthermore, each MEC could learn how to predict its workload

quickly utilizing Multivariate LSTM. Simulation results showed that our proposed

algorithm could increase the ratio of accepted tasks and reduce the average response

time compared with several benchmark methods.

92

Chapter 6

Conclusion and future work

In this final chapter, we summarize the contributions presented in this dissertation

and discuss several potential extensions to our work.

6.1 Conclusion

Resource allocation and task offloading in vehicular edge computing networks to in-

crease QoS and maximize the acceptance rate of vehicular tasks is restricted by several

challenges. Much research is tackling these challenges in the MEC network; however,

some reasonable solutions were not proposed for the VEC network. It is mainly be-

cause of the dynamic nature of vehicular networks and the limited resource capacity

in edge servers. We proposed resource allocation and proactive resource allocation

considering vehicular edge computing restrictions. We classified applications based

on their requirements, and our proposed solutions work based on different categories

of applications. To find the optimum resource allocation solution, we utilized ma-

chine learning methods and presented proactive resource allocation using intelligent

predictions. In addition, we adopt a distribution model to generate vehicular requests

to make a dynamic environment. The following conclusions can be drawn from this

dissertation:

• We have considered multi-access edge computing in vehicular networks. We

have proposed a task offloading with a resource allocation strategy based on task

migration among MEC and central cloud servers. In other words, we consider

cooperation between MEC and the central cloud. We can benefit from a central

cloud with sufficient resource capacity for vehicular tasks and MEC servers close

to the vehicles providing a short response time. The central server is proper for

tasks with plenty of resource demands and tasks that are not significantly delay-

sensitive, and MEC servers are suitable for tasks with rigid delay requirements.

• With the help of deep reinforcement learning, we could efficiently handle a large

number of real-time arriving requests, especially in a large and dynamic trans-

ferred network state space based on a realistic vehicle dataset. Furthermore, we

model our network based on FMDP, which depends on the current and previous

state and works based on deep reinforcement learning.

• We could specify QoS constraints in deep reinforcement learning and solve

an NP-hard problem instead of mathematical approaches that lead to a non-

polynomial time solution. In other words, we defined the reward function in

deep reinforcement learning according to the tolerable response time of applica-

tion tasks. Moreover, limited resources in MEC server is considered providing

that the resource capacity of MEC servers should satisfy the computation and

storage resource demand of application tasks.

• Simulation results showed that our proposed approach could provide an efficient

and high-reward task offloading with high acceptance rates for arriving requests

from vehicles, considering their locations, response times, resource demands,

and the current resource utilization. Furthermore, we could reduce the total

response time and minimize the rejection rate. We could gain a proper task

distribution among servers to find an optimal task offloading.

• We proposed an intelligent and proactive resource allocation algorithm for var-

ious types of tasks in vehicular edge computing networks. Task offloading de-

cisions with a central learning policy requires interaction between all vehicles,

MEC servers, and the central cloud. Central learning can lead to time compli-

cations and an increase in some expenses. Therefore, we designed a distributed

DRL algorithm for our resource allocation and task offloading problem that en-

ables MEC servers to decentralize their offloading decisions, respecting tasks’

demands.

• In our proactive resource allocation algorithm, each MEC could learn how to

94

predict its workload quickly utilizing Multivariate LSTM. In the intelligent work-

load prediction method, the correlation between MEC servers in their close phys-

ical distance was considered. Each MEC server can predict how many crucial

tasks, high priority tasks, and low priority tasks will arrive at the next time slot.

According to this prediction, the learning agent in the MEC server can make a

proper resource allocation for crucial applications and find the optimum crucial

task offloading. In this vein, the acceptance rate of crucial applications is guar-

anteed. Simulation results showed that our proposed algorithm could increase

the ratio of accepted tasks and reduce the average response time compared with

several benchmark methods.

• We proposed reallocation and LRTF scheduling policies to ensure that crucial

applications with the highest priority in vehicular networks are immediately pro-

cessed. For instance, if a time-sensitive application task arrives at a MEC server,

it should run immediately, but what is the solution if there is an insufficient re-

source there? Our reallocation policies applied to the system architecture of the

management, and primary tasks migrate to other proper servers to address this

issue. Simulation results showed that our proposed algorithm could reduce the

ratio of dropped tasks and response time compared with other methods.

• We classified vehicle applications into three levels according to their charac-

teristics: crucial, high-priority, and low-priority. Different applications have

different requirements, especially response time. Hence, proactive resource allo-

cation works based on these three types of vehicular tasks. In addition, to make

more real-work dynamic nature of the vehicular network, we generate arriving

requests based on inhomogeneous Poisson distribution. Furthermore, to find the

mobility of vehicles and their actual trajectory, we utilized a real-world dataset

of taxi trajectories from Rome, Italy.

• We ran simulations in Python. We used both Spyder and Jupyter, which are

running on Anaconda-Navigator. In addition, we used TensorFlow for imple-

menting the deep neural network part of the machine learning solution. All

coding ran in the iMac with the 3.5 GHz Intel Core i5 for the processor and

8 GB 1600 MHz DDR3 for the memory.

95

6.2 Future work

The research on resources allocation and task offloading in VEC is still in the early

stage. Many issues remain to be solved well. There are several directions to extend

this dissertation, which can be briefly outlined as follows:

• One of the elements affecting the transmission latency is the available bandwidth

allocated to the vehicle; we considered a constant value of the bandwidth. In

practice, the bandwidth of the access link assigned to the vehicle is not fixed

due to the changeable vehicles’ density during time slots. Thus, the bandwidth

allocation ratio should be considered as an optimization parameter in the fu-

ture. Energy efficiency, power consumption, and throughput are the other QoS

parameters that should be investigated well in resource allocation.

• To enhance the performance of the proposed algorithm finding the new loca-

tions of the vehicles to deliver the result is a significant issue. One way to get

the new vehicle’s location is that the vehicle’s speed and direction information

are constantly monitored. Alternatively, mobility predictions utilizing machine

learning techniques would be a promising solution. Adding intelligent mobility

prediction to our proposed models can allow the learning agent to make a better

decision for task offloading.

• We can extend our work for task offloading management and resource allocation

by applying other machine learning methods such as federated learning. Utiliz-

ing federated learning in VEC is still in the early stages and is mainly used in

radio frequency parts. However, we can apply federated learning as a central

orchestrator to manage task offloading in the central and edge clouds. In other

words, federated learning can be used in the same architecture of our work with

different vehicular applications in a highly dynamic network. In addition, we

can apply reinforcement learning in federated learning.

96

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] E. Ahmed and H. Gharavi. Cooperative vehicular networking: A survey. IEEE
Transactions on Intelligent Transportation Systems, 19(3):996–1014, 2018.

[3] A. Boukerche and E. Robson. Vehicular cloud computing: Architectures, appli-
cations, and mobility. Computer networks, 135:171–189, 2018.

[4] L. Bracciale, M. Bonola, P. Loreti, G. Bianchi, R. Amici, and A. Rabuffi. CRAW-
DAD dataset roma/taxi. https://crawdad.org/roma/taxi/20140717, 2014.

[5] J. Brownlee. Deep learning for time series forecasting: predict the future with
MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018.

[6] S. Bubeck et al. Convex optimization: Algorithms and complexity. Foundations
and Trends® in Machine Learning, 8(3-4):231–357, 2015.

[7] M.-H. Chen, M. Dong, and B. Liang. Joint offloading decision and resource
allocation for mobile cloud with computing access point. In 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
3516–3520. IEEE, 2016.

[8] R. Chuentawat and Y. Kan-ngan. The comparison of PM2. 5 forecasting methods
in the form of multivariate and univariate time series based on support vector
machine and genetic algorithm. In 2018 15th International Conference on Elec-
trical Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), pages 572–575. IEEE, 2018.

[9] J. Cui, Y. Liu, and A. Nallanathan. The application of multi-agent reinforce-
ment learning in UAV networks. In 2019 IEEE International Conference on
Communications Workshops (ICC Workshops), pages 1–6. IEEE, 2019.

[10] J. Cui, Y. Liu, and A. Nallanathan. Multi-agent reinforcement learning-based
resource allocation for UAV networks. IEEE Transactions on Wireless Commu-
nications, 19(2):729–743, 2019.

[11] Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang. Artificial intelligence
empowered edge computing and caching for internet of vehicles. IEEE Wireless
Communications, 26(3):12–18, 2019.

[12] Y. Dai, D. Xu, S. Maharjan, and Y. Zhang. Joint load balancing and offloading
in vehicular edge computing and networks. IEEE Internet of Things Journal,
6(3):4377–4387, 2018.

[13] H. T. Dinh, C. Lee, D. Niyato, and P. Wang. A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless communications and mobile
computing, 13(18):1587–1611, 2013.

[14] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek. Offloading in mobile edge com-
puting: Task allocation and computational frequency scaling. IEEE Transactions
on Communications, 65(8):3571–3584, 2017.

[15] B. Dissanayake, O. Hemachandra, N. Lakshitha, D. Haputhanthri, and A. Wi-
jayasiri. A comparison of arimax, var and lstm on multivariate short-term traffic
volume forecasting. In Conference of Open Innovations Association, FRUCT,
number 28, pages 564–570. FRUCT Oy, 2021.

[16] J. Du, F. R. Yu, X. Chu, J. Feng, and G. Lu. Computation offloading and
resource allocation in vehicular networks based on dual-side cost minimization.
IEEE Transactions on Vehicular Technology, 68(2):1079–1092, 2018.

[17] T. L. Duc, R. G. Leiva, P. Casari, and P.-O. Östberg. Machine learning meth-
ods for reliable resource provisioning in edge-cloud computing: A survey. ACM
Computing Surveys (CSUR), 52(5):1–39, 2019.

[18] M. S. Elbamby, M. Bennis, and W. Saad. Proactive edge computing in latency-
constrained fog networks. In 2017 European conference on networks and commu-
nications (EuCNC), pages 1–6. IEEE, 2017.

[19] P. Fang, Y. Zhao, Z. Liu, J. Gao, and Z. Chen. Resource allocation strat-
egy for MEC system based on VM migration and RF energy harvesting. In
2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pages 1–
6. IEEE, 2020.

[20] J. Feng, Z. Liu, C. Wu, and Y. Ji. AVE: Autonomous vehicular edge comput-
ing framework with ACO-based scheduling. IEEE Transactions on Vehicular
Technology, 66(12):10660–10675, 2017.

[21] Y. Ge, Y. Zhang, Q. Qiu, and Y.-H. Lu. A game theoretic resource allocation for
overall energy minimization in mobile cloud computing system. In Proceedings
of the 2012 ACM/IEEE international symposium on Low power electronics and
design, pages 279–284, 2012.

98

[22] Y. He, N. Zhao, and H. Yin. Integrated networking, caching, and computing for
connected vehicles: A deep reinforcement learning approach. IEEE Transactions
on Vehicular Technology, 67(1):44–55, 2017.

[23] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[24] R. Q. Hu et al. Mobility-aware edge caching and computing in vehicle networks:
A deep reinforcement learning. IEEE Transactions on Vehicular Technology,
67(11):10190–10203, 2018.

[25] D. Janardhanan and E. Barrett. CPU workload forecasting of machines in data
centers using LSTM recurrent neural networks and ARIMA models. In 2017
12th international conference for internet technology and secured transactions
(ICITST), pages 55–60. IEEE, 2017.

[26] X. Jiang, F. R. Yu, T. Song, and V. C. Leung. Resource allocation of video
streaming over vehicular networks: a survey, some research issues and challenges.
IEEE Transactions on Intelligent Transportation Systems, 2021.

[27] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is Q-learning provably effi-
cient? Advances in neural information processing systems, 31, 2018.

[28] A. J. Kadhim and S. A. H. Seno. Maximizing the utilization of fog computing
in internet of vehicle using sdn. IEEE Communications Letters, 23(1):140–143,
2018.

[29] C. A. Kamienski, F. F. Borelli, G. O. Biondi, I. Pinheiro, I. D. Zyrianoff, and
M. Jentsch. Context design and tracking for iot-based energy management in
smart cities. IEEE Internet of Things Journal, 5(2):687–695, 2017.

[30] E. Karimi, Y. Chen, and B. Akbari. Task offloading in vehicular edge computing
networks via deep reinforcement learning. Computer Communications, 2022.

[31] J. Kumar, R. Goomer, and A. K. Singh. Long short term memory recurrent
neural network (LSTM-RNN) based workload forecasting model for cloud data-
centers. Procedia Computer Science, 125:676–682, 2018.

[32] S. Lai, R. Zhao, S. Tang, J. Xia, F. Zhou, and L. Fan. Intelligent secure mo-
bile edge computing for beyond 5G wireless networks. Physical Communication,
45:101283, 2021.

[33] M. Lauer and M. Riedmiller. An algorithm for distributed reinforcement learn-
ing in cooperative multi-agent systems. In In Proceedings of the Seventeenth
International Conference on Machine Learning. Citeseer, 2000.

99

[34] M.-A. Lèbre, F. L. Mouël, E. Ménard, J. Dillschneider, and R. Denis. Vanet
applications: Hot use cases. arXiv preprint arXiv:1407.4088, 2014.

[35] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and X. Shen. Deep reinforcement
learning for autonomous internet of things: Model, applications and challenges.
IEEE Communications Surveys & Tutorials, 22(3):1722–1760, 2020.

[36] C. Li, J. Xia, F. Liu, D. Li, L. Fan, G. K. Karagiannidis, and A. Nallanathan. Dy-
namic offloading for multiuser muti-CAP MEC networks: A deep reinforcement
learning approach. IEEE Transactions on Vehicular Technology, 70(3):2922–
2927, 2021.

[37] J. Li, C. Natalino, D. P. Van, L. Wosinska, and J. Chen. Resource management
in fog-enhanced radio access network to support real-time vehicular services. In
2017 IEEE 1st International Conference on Fog and Edge Computing (ICFEC),
pages 68–74. IEEE, 2017.

[38] M. Li, J. Gao, L. Zhao, and X. Shen. Deep reinforcement learning for collabo-
rative edge computing in vehicular networks. IEEE Transactions on Cognitive
Communications and Networking, 6(4):1122–1135, 2020.

[39] L. Liang, H. Ye, and G. Y. Li. Spectrum sharing in vehicular networks based on
multi-agent reinforcement learning. IEEE Journal on Selected Areas in Commu-
nications, 37(10):2282–2292, 2019.

[40] L. Liang, H. Ye, G. Yu, and G. Y. Li. Deep-learning-based wireless resource
allocation with application to vehicular networks. Proceedings of the IEEE,
108(2):341–356, 2019.

[41] Q. Liang, J. Zhang, Y.-h. Zhang, and J.-m. Liang. The placement method of
resources and applications based on request prediction in cloud data center. In-
formation Sciences, 279:735–745, 2014.

[42] G. Liu, J. Wang, Y. Tian, Z. Yang, and Z. Wu. Mobility-aware dynamic service
placement for edge computing. EAI Endorsed Transactions on Internet of Things,
5(19), 2019.

[43] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang. Vehicular edge computing
and networking: A survey. Mobile networks and applications, 26(3):1145–1168,
2021.

[44] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, and Y. Wang. A hierarchical
framework of cloud resource allocation and power management using deep rein-
forcement learning. In 2017 IEEE 37th international conference on distributed
computing systems (ICDCS), pages 372–382. IEEE, 2017.

100

[45] Y. Liu, S. Wang, J. Huang, and F. Yang. A computation offloading algorithm
based on game theory for vehicular edge networks. In 2018 IEEE International
Conference on Communications (ICC), pages 1–6. IEEE, 2018.

[46] Y. Liu, H. Yu, S. Xie, and Y. Zhang. Deep reinforcement learning for offloading
and resource allocation in vehicle edge computing and networks. IEEE Transac-
tions on Vehicular Technology, 68(11):11158–11168, 2019.

[47] X. Ma, J. Zhao, Y. Gong, and Y. Wang. Key technologies of mec towards
5g-enabled vehicular networks. In International Conference on Heterogeneous
Networking for Quality, Reliability, Security and Robustness, pages 153–159.
Springer, 2017.

[48] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. A survey on mobile edge
computing: The communication perspective. IEEE Communications Surveys &
Tutorials, 19(4):2322–2358, 2017.

[49] L. Matignon, G. J. Laurent, and N. Le Fort-Piat. Independent reinforcement
learners in cooperative Markov games: a survey regarding coordination problems.
The Knowledge Engineering Review, 27(1):1–31, 2012.

[50] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[51] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar, and S. Secci.
Uloof: A user level online offloading framework for mobile edge computing. IEEE
Transactions on Mobile Computing, 17(11):2660–2674, 2018.

[52] C. Nguyen, C. Klein, and E. Elmroth. Multivariate LSTM-based location-aware
workload prediction for edge data centers. In 2019 19th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 341–350.
IEEE, 2019.

[53] P.-O. Östberg, J. Byrne, P. Casari, P. Eardley, A. F. Anta, J. Forsman,
J. Kennedy, T. Le Duc, M. N. Marino, R. Loomba, et al. Reliable capacity
provisioning for distributed cloud/edge/fog computing applications. In 2017 Eu-
ropean conference on networks and communications (EuCNC), pages 1–6. IEEE,
2017.

[54] S. Ouhame and Y. Hadi. Multivariate workload prediction using vector autore-
gressive and stacked LSTM models. In Proceedings of the New Challenges in Data
Sciences: Acts of the Second Conference of the Moroccan Classification Society,
pages 1–7, 2019.

[55] C. H. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms
and complexity. Courier Corporation, 1998.

101

[56] B. Peng, G. Seco-Granados, E. Steinmetz, M. Fröhle, and H. Wymeersch. Decen-
tralized scheduling for cooperative localization with deep reinforcement learning.
IEEE Transactions on Vehicular Technology, 68(5):4295–4305, 2019.

[57] H. Peng and X. Shen. Multi-agent reinforcement learning based resource manage-
ment in MEC-and UAV-assisted vehicular networks. IEEE Journal on Selected
Areas in Communications, 39(1):131–141, 2020.

[58] H. Peng and X. S. Shen. Deep reinforcement learning based resource management
for multi-access edge computing in vehicular networks. IEEE Transactions on
Network Science and Engineering, 7(4):2416 – 2428, 2020.

[59] H. Peng, Q. Ye, and X. S. Shen. SDN-based resource management for autonomous
vehicular networks: A multi-access edge computing approach. IEEE Wireless
Communications, 26(4):156–162, 2019.

[60] J. Plachy, Z. Becvar, and E. C. Strinati. Dynamic resource allocation exploiting
mobility prediction in mobile edge computing. In 27th annual international sym-
posium on personal, indoor, and mobile radio communications (PIMRC), pages
1–6. IEEE, 2016.

[61] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb. Survey on
multi-access edge computing for internet of things realization. IEEE Communi-
cations Surveys & Tutorials, 20(4):2961–2991, 2018.

[62] G. Qiao, S. Leng, K. Zhang, and Y. He. Collaborative task offloading in vehicular
edge multi-access networks. IEEE Communications Magazine, 56(8):48–54, 2018.

[63] S. Raza, S. Wang, M. Ahmed, and M. R. Anwar. A survey on vehicular edge
computing: architecture, applications, technical issues, and future directions.
Wireless Communications and Mobile Computing, 2019, 2019.

[64] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato. Machine learn-
ing meets computation and communication control in evolving edge and cloud:
Challenges and future perspective. IEEE Communications Surveys & Tutorials,
22(1):38–67, 2019.

[65] H. Sak, A. Senior, and F. Beaufays. Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition. arXiv
preprint arXiv:1402.1128, 2014.

[66] M. A. Salahuddin, A. Al-Fuqaha, and M. Guizani. Reinforcement learning for
resource provisioning in the vehicular cloud. IEEE Wireless Communications,
23(4):128–135, 2016.

[67] M. Tang and V. W. Wong. Deep reinforcement learning for task offloading in
mobile edge computing systems. IEEE Transactions on Mobile Computing, 2020.

102

[68] M. M. K. Tareq, O. Semiari, M. A. Salehi, and W. Saad. Ultra reliable, low
latency vehicle-to-infrastructure wireless communications with edge computing.
In 2018 IEEE Global Communications Conference (GLOBECOM), pages 1–7.
IEEE, 2018.

[69] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. Chan, and K. K. Leung. Dynamic
service migration and workload scheduling in edge-clouds. Performance Evalua-
tion, 91:205–228, 2015.

[70] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang. Computation offloading
and resource allocation in wireless cellular networks with mobile edge computing.
IEEE Transactions on Wireless Communications, 16(8):4924–4938, 2017.

[71] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. K. Leung. Mobility-
induced service migration in mobile micro-clouds. In 2014 IEEE military com-
munications conference, pages 835–840. IEEE, 2014.

[72] S. Wang, J. Xu, N. Zhang, and Y. Liu. A survey on service migration in mobile
edge computing. IEEE Access, 6:23511–23528, 2018.

[73] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang. NFVdeep:
Adaptive online service function chain deployment with deep reinforcement learn-
ing. In Proceedings of the International Symposium on Quality of Service, pages
1–10, 2019.

[74] B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian. Computation offloading in multi-
access edge computing: A multi-task learning approach. IEEE transactions on
mobile computing, 20(9):2745–2762, 2020.

[75] B. Yang, X. Cao, K. Xiong, C. Yuen, Y. L. Guan, S. Leng, L. Qian, and Z. Han.
Edge intelligence for autonomous driving in 6G wireless system: Design chal-
lenges and solutions. IEEE Wireless Communications, 28(2):40–47, 2021.

[76] J. Yang, C. Liu, Y. Shang, B. Cheng, Z. Mao, C. Liu, L. Niu, and J. Chen. A
cost-aware auto-scaling approach using the workload prediction in service clouds.
Information Systems Frontiers, 16(1):7–18, 2014.

[77] H. Ye, L. Liang, G. Y. Li, J. Kim, L. Lu, and M. Wu. Machine learning for
vehicular networks: Recent advances and application examples. ieee vehicular
technology magazine, 13(2):94–101, 2018.

[78] B. Yongacoglu, G. Arslan, and S. Yüksel. Learning team-optimality for decen-
tralized stochastic control and dynamic games. arXiv preprint arXiv:1903.05812,
2019.

103

[79] R. Yu, J. Ding, S. Maharjan, S. Gjessing, Y. Zhang, and D. H. Tsang. Decentral-
ized and optimal resource cooperation in geo-distributed mobile cloud computing.
IEEE Transactions on Emerging Topics in Computing, 6(1):72–84, 2015.

[80] R. Yu, Y. Zhang, S. Gjessing, W. Xia, and K. Yang. Toward cloud-based vehicular
networks with efficient resource management. IEEE Network, 27(5):48–55, 2013.

[81] J. Zhang, H. Guo, and J. Liu. Adaptive task offloading in vehicular edge com-
puting networks: a reinforcement learning based scheme. Mobile Networks and
Applications, 25(5):1736–1745, 2020.

[82] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang. Mobile-edge computing for
vehicular networks: A promising network paradigm with predictive off-loading.
IEEE Vehicular Technology Magazine, 12(2):36–44, 2017.

[83] K. Zhang, Y. Mao, S. Leng, Y. He, and Y. Zhang. Predictive offloading in cloud-
driven vehicles: using mobile-edge computing for a promising network paradigm.
IEEE Vehicular Technology Magazine, 12(2), 2017.

[84] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang. Optimal delay con-
strained offloading for vehicular edge computing networks. In 2017 IEEE Inter-
national Conference on Communications (ICC), pages 1–6. IEEE, 2017.

[85] K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and
Control, pages 321–384, 2021.

[86] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang. Deep learning
empowered task offloading for mobile edge computing in urban informatics. IEEE
Internet of Things Journal, 6(5):7635–7647, 2019.

[87] W. Zhang, Z. Zhang, and H.-C. Chao. Cooperative fog computing for dealing
with big data in the internet of vehicles: Architecture and hierarchical resource
management. IEEE Communications Magazine, 55(12):60–67, 2017.

[88] Y. Zhang, D. Niyato, and P. Wang. Offloading in mobile cloudlet systems with in-
termittent connectivity. IEEE Transactions on Mobile Computing, 14(12):2516–
2529, 2015.

[89] T. Zhao, S. Zhou, X. Guo, Y. Zhao, and Z. Niu. A cooperative scheduling scheme
of local cloud and internet cloud for delay-aware mobile cloud computing. In 2015
IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2015.

[90] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu. LSTM network: a deep learn-
ing approach for short-term traffic forecast. IET Intelligent Transport Systems,
11(2):68–75, 2017.

104

[91] Z. Zhou, C. Gao, C. Xu, Y. Zhang, S. Mumtaz, and J. Rodriguez. Social big-
data-based content dissemination in internet of vehicles. IEEE Transactions on
Industrial Informatics, 14(2):768–777, 2017.

[92] Z. Zhou, H. Yu, C. Xu, Y. Zhang, S. Mumtaz, and J. Rodriguez. Dependable
content distribution in d2d-based cooperative vehicular networks: A big data-
integrated coalition game approach. IEEE Transactions on Intelligent Trans-
portation Systems, 19(3):953–964, 2018.

105

