
Development of Deep Learning Modules for
Autonomous Navigation in Marine and Aerial Robotic

Applications

by

©Narmada M. Balasooriya

A Thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

M.Eng

Faculty of Engineering and Applied Science

Memorial University of Newfoundland
February 2023

St. John’s Newfoundland

Abstract

This thesis develops two studies on deep learning-based autonomous navigation systems for
marine and aerial field robotic applications.

The first study involves developing a sea ice detection module to support the autonomous
navigation of icebreakers using image semantic segmentation. This module aims to dis-
tinguish sea ice from water, sky, and the ship’s body when images captured onboard an
icebreaker are received from a shipborne camera. The study compares the performance of
the previous work on sea ice detection by the PSPNet model with a new-state-of-the art im-
age semantic segmentation model called DeepLabv3. To evaluate the DeepLabv3 model, it
is transfer-learned on the same image data used for the PSPNet model. The performance of
both models is tested on a navigation module equipped with a Jetson AGX Xavier developer
kit using standard evaluation metrics.

The second study contains the development of a landing zone detection pipeline using Lidar
semantic segmentation to support the vertical take-off and landing vehicle autonomy. The
study evaluates different point cloud semantic segmentation approaches for their compati-
bility with the landing zone detection task. The main objective of this study is to use only
the Lidar data to detect safe landable zones using deep learning-based architectures and
to achieve an accuracy-runtime trade-off for real-time operations. The performance of the
neural network models for point cloud semantic segmentation is evaluated using standard
metrics and different variations of aerial Lidar data. The study also assesses the feasibility
of integrating the landing zone detection module into a visual Lidar odometry and mapping
pipeline for faster inference by the neural network models.

ii

Acknowledgements

I sincerely thank my supervisor, Dr. Oscar de Silva, for consistently guiding and tolerating
all my mistakes and setbacks.

I wholeheartedly appreciate the support from the co-supervisors, Dr. George Mann and Dr.
Awantha Jayasiri, for their advice which proved monumental towards the success of my study.

The physical and technical support from the Faculty of Engineering and Applied Science of
the Memorial University of Newfoundland is immeasurable. Without their help, this thesis
would not have been a reality.

I would acknowledge the constant love and appreciation from my parents, sister, and fiancée
for holding onto me during hard times.

I wish to appreciate the support and motivation from my colleagues and friends, who stood
by my side when I was in need. I would like to acknowledge Ms. Sachithra Athapattu for
her contribution to the landing zones labeling algorithm.

Finally, I would like to appreciate the support of my colleague Mr. Kusal Tennakoon, in
accomplishing the most complicated challenges encountered.

Your assistance and moral support during my study are highly recognized.

iii

Table of Contents

Abstract ii

Acknowledgments iii

Table of Contents vi

List of Tables vii

List of Figures ix

Nomenclature x

Abbreviations xi

1 Introduction 1
1.1 Sea-ice detection using image semantic segmentation 3

1.1.1 Motivation . 3
1.1.2 Problem Definition . 3
1.1.3 Objectives & Contributions . 4

1.2 LZ detection using point cloud semantic segmentation 4
1.2.1 Motivation . 4
1.2.2 Problem Definition . 5
1.2.3 Objectives and Contributions . 6

1.3 Organization of the Thesis . 6
1.4 Statement of Co-authorship . 7

2 Background 9
2.1 Image Semantic Segmentation . 9

2.1.1 Traditional Algorithms . 10
2.1.2 State-of-the-art Convolutional Neural Network (CNN) methods . . . 11

2.2 Point Cloud Semantic Segmentation . 13
2.2.1 Classical Methods using Geometric Features 14
2.2.2 Projection-based Semantic Segmentation 15
2.2.3 Point-based Semantic Segmentation 16
2.2.4 Discussion on point cloud semantic segmentation methods 18

2.3 Performance Metrics . 18

iv

2.3.1 Intersection over Union . 19
2.3.2 Accuracy . 19
2.3.3 Average runtime . 19
2.3.4 Throughput . 20

3 Sea-ice detection using Deeplab 21
3.1 Background . 21

3.1.1 Pyramid Scene Parsing Network (PSPNet101) 21
3.1.2 Deeplabv3 . 22

3.2 Methodology . 23
3.2.1 Dataset . 23
3.2.2 Transfer Learning process . 24
3.2.3 Hardware Selection . 25

3.2.3.1 Nvidia Jetson AGX Xavier 26
3.2.3.2 Hand-held Device . 27

3.3 Experimental Results . 27
3.3.1 Evaluation using metrics . 27
3.3.2 Inference speed . 28
3.3.3 Sample predictions . 28

3.4 Discussion . 31

4 Evaluation of projection-based point cloud segmentation methods for VLP-
16 Lidars 33
4.1 Background . 34

4.1.1 RangeNet++ . 34
4.1.2 SalsaNext . 35

4.2 Method . 36
4.2.1 KITTI Velodyne dataset . 36
4.2.2 Custom MUN VLP-16 dataset . 37

4.3 Qualitative result evaluation . 38
4.3.1 Quantitative Performance Evaluation 38

4.3.1.1 Qualitative Performance Evaluation 40
4.4 Discussion . 41

5 LZ detection using point-based methods 43
5.1 Model Selection . 44

5.1.1 ConvPoint Model . 44
5.2 Methodology . 45

5.2.1 Datasets . 45
5.2.1.1 Semantic3D Benchmark . 46
5.2.1.2 Experimental data from DJI M600 - MUN dataset 1 47
5.2.1.3 Post-processed experimental MUN dataset 1 48

5.2.2 Labeling of Training Data . 50
5.2.3 Transfer Learning . 51

5.3 Point cloud processing module . 52

v

5.3.1 Datasets generated using VILOAM architecture 54
5.3.1.1 Pipeline data - MUN dataset 2 54
5.3.1.2 Pipeline data - MUN dataset 3 54

5.3.2 Labeling pipeline data . 56
5.4 Experimental Results . 58

5.4.1 Results: Holyrood-Paradise dataset 59
5.4.2 Results: Post-processed Holyrood dataset 60

5.4.2.1 Qualitative Evaluation . 60
5.4.2.2 Quantitative Evaluation . 61
5.4.2.3 Graphical Evaluation . 63

5.4.3 Implementing the LZ detection module on Lighthouse dataset 65
5.5 Discussion . 67

6 Conclusion 69
6.1 Summary of findings . 69
6.2 Research Contributions . 72
6.3 Future Work . 72

Bibliography xi

vi

List of Tables

1.1 Contributions towards original papers . 8

3.1 Sea-Ice Imagery Dataset split . 24
3.2 Technical Specifications of Nvidia Jetson AGX Xavier (JAX) Developer Kit

used in our work . 26
3.3 Technical Specifications of the Google Nexus 6 27
3.4 Performance of Deeplabv3 vs PSPNet([13]) on test set 28

4.1 Performance of selected models on the KITTI Velodyne Sequence 08 (64 chan-
nels) . 39

4.2 Average runtime(in seconds) of selected models on the KITTI Velodyne Se-
quence 08 (downsampled - 16 channels) . 39

4.3 Average runtime(in seconds) of selected models on MUN VLP-16 dataset . . 40

5.1 Number of points in the originally captured dataset vs. downsampled dataset 48
5.2 Number of points in sub-point clouds . 49
5.3 Performance on Holyrood-Paradise dataset 60
5.4 Performance of ConvPoint model on the post-processed experimental dataset

for the sampling sizes 3000, 6000 and 9000 62

vii

List of Figures

2.1 Sample categorization of traditional algorithms 10
2.2 IoU calculation visualization. Source: Wikipedia 19

3.1 Overview of the PSPNet architecture. [78] 22
3.2 Overview of the Deeplabv3 architecture. 23
3.3 Example of a sea-ice image with the semantic labels with the four classes:

ship:red, ocean:blue, ice:grey, sky:yellow ([13]) 25
3.4 Evaluation of transfer-learning performance on validation set 25
3.5 Comparison of prediction time for PSPNet (3.5(a)) and DeepLabv3 (3.5(b))

on the Nvidia Jetson AGX Xavier. 29
3.6 Sample predictions of the Deeplabv3 transfer-learned model. 30
3.7 Example predictions of the Deeplabv3 model on mobile app 31

4.1 Rangenet++ model architecture . 35
4.2 SalsaNext model architecture . 36
4.3 Image capture of a sample KITTI Velodyne dataset 37
4.4 GPS trace of a dataset captured around the university. credits: Didula Dis-

sanayaka . 38
4.5 Visualization of the predictions for the down-sampled KITTI sequence 08. . 41
4.6 Visualization of the predictions for the MUN VLP-16 data. 41

5.1 Sample illustration of ConvPoint semantic segmentation model 45
5.2 Data Collection setup by ISL . 46
5.3 Semantic3D datasets . 47
5.4 Intelligent Systems Lab (ISL) of the Memorial University of Newfoundland

collected dataset 1 . 48
5.5 Segmentation of Holyrood test set into sub-point clouds 49
5.6 Process flow of the geometric labeling . 50
5.7 Original Holyrood dataset and the colored Landing Zones (LZs) generated by

geometric labeling . 51
5.8 Transfer learning graphs . 51
5.9 Overview of the total architecture and the proposed LZ identification module

in this paper (highlighted) . 53
5.10 Intelligent Systems Lab (ISL) of the Memorial University of Newfoundland

collected dataset 2 . 54
5.11 Bell-412 helicopter setup with the payload 55

viii

5.12 Flight path of Bell-412 . 55
5.13 Sample Lidar data from the payload onboard Bell-412 56
5.14 Process flow of the labeling of pipeline data 57
5.15 Dataset 1 of VLOAM pipeline data captured by Bell-412 58
5.16 Dataset 6 of VLOAM pipeline data captured by Bell-412 58
5.17 Visualization of Landing zone detection for Paradise dataset 59
5.18 Visualization of Landing zone detection for Holyrood test dataset 60
5.19 Visualization of Landing zone detection for post-processed Holyrood merged

point cloud . 61
5.20 Inference time vs. batch size and sampling size for each partitioned dataset . 63
5.21 Throughput vs. batch size and sampling size for each partitioned dataset . . 64
5.22 Accuracy vs. batch size and sampling size for each partitioned dataset 64
5.23 Accuracy vs. batch size and sampling size for each partitioned set containing

water bodies . 65
5.24 Visualization of landing zone detection on several Lighthouse dataset point

cloud maps by the ConvPoint model . 67

ix

Abbreviations

ABS American Bureau of Shipping

AI4L Artificial Intelligence for Logistics

API Application Programming Interface

CNN Convolutional Neural Network

COCO Common Objects in COntext

DoF Degrees of Freedom

FCN Fully Convolutional Network

FOV Field of view

GPS Global positioning system

GPU Graphical Processing Unit

HETC Harsh Environment Technology Centre

IMU Inertial measurement unit

IoU Intersection over Union

ISL Intelligent Systems Lab

JAX Kit Nvidia Jetson AGX Xavier

kNN k-Nearest Neighbour

KPConv Kernel Point Convolution

Lidar Light Detection And Ranging

LZ Landing Zone

MAV Micro-aerial vehicle

mIoU Mean Intersection over Union

x

MLP Multi-Layer Perceptron

MUN Memorial University of Newfoundland

NN Neural Network

NRC National Research Council

PCA Principal Component Analysis

PCL Point Cloud Library

PROSAC Progressive Sample Consensus

PSPNet101 Pyramid Scene Parsing Network

R-CNN Region-based Convolutional Neural Network

RANSAC Random Sample And Consensus

RGB Red Green Blue

RNN Recurrent Neural Network

ROS Robot Operating System

SAR Synthetic Aperture Radar

SLAM Simultaneous Localization And Mapping

VILOAM Visual Inertial Lidar Odometry and Mapping

VINS Visual Inertial Navigation System

VLOAM Visual Lidar Odometry and Mapping

VTOL Vertical Take-Off and Landing Vehicle

xi

Chapter 1

Introduction

Deep Learning is a subset of machine learning where the learning algorithms are inspired
by the human brain’s structure and functions and attempt to mimic the neural processing
method of the brain [1]. Deep learning differs from machine learning in the context of the
data complexity, feature detection algorithm, and performance. The backbone of deep learn-
ing is made of neural networks, and most deep learning algorithms have more than three
layers in their neural networks [1], [2].

One of the main features of deep learning is its building structure, where these models can
learn how simple parts form a complex entity. The hierarchical nature of the layer com-
position and the supervised learning approach achieves learning from small compositions to
complex objects. Adding more layers into the network and more units within a layer enables
a deep network to represent functions with higher complexity. When sufficiently large train-
ing data and models are given, deep learning methods can achieve human-like accuracy in
mapping an input vector to an output vector. This mapping between input and output is
accomplished by parametric function approximation, which is the primary building block of
deep learning algorithms. This function approximation is computed by the deep feedforward
networks [1], where the model learns the value of the parameters in a mapping function. For
the model to get an accurate function approximation, it requires ample data with training
labels [1].

Autonomous navigation helps a vehicle or a robotic system plan and execute its path based on
the perceptions of the environment acquired through various sensor data. For better scene un-
derstanding, autonomous systems must perceive obstacles, objects, traffic signs, passengers,
and animals. With the advances in end-to-end learning in deep neural networks, perception
using images and Lidar sensors allows autonomous systems to navigate accurately [3]. With

1

the availability of faster Graphical Processing Units (GPUs) and large-scale labeled datasets
[4], deep neural networks can understand different objects and scenarios in the environment
without overfitting to the training data.

The intelligent systems lab at the Memorial University of Newfoundland conducts applied
research to study vessels and offshore structures operating in harsh environments by collabo-
rating with the American Bureau of Shipping (ABS) and the Harsh Environment Technology
Center (HETC) at Memorial University. Under these projects, different deep learning mod-
ules are investigated for developing autonomous marine and aerial perception and navigation
systems.

Online sea-ice detection is one of the projects that the intelligent systems lab collaborates
with ABS HTEC. With the increasing number of shipping vessels operating in polar regions
where sea-ice are abundant, accurate detection of them is essential for safe navigation. The
sea-ice detection project focuses on what deep learning models can be deployed on the re-
quired hardware platforms requested by the navigators. The main reasons to consider deep
learning models are their object detection, segmentation capability, and performance accu-
racy to support informed decision-making and the future marine autonomy of the platforms.

The intelligent systems lab is conducting industrial collaborations with the flight research
lab of the National Research Council (NRC) on integrating artificial intelligence systems
into flight planning. One of the modules under the artificial intelligence for flight control
project of the intelligent systems lab and the NRC is detecting safe landable zones for verti-
cal take-off and landing vehicles. Accurate detection of a safe landing zone is crucial when
an aerial vehicle has to maneuver an unplanned landing. Automating the landing-zone de-
tection will help the pilot’s visuals and support the aircraft’s autonomous landing capabilities.

The main objective of this thesis is to evaluate the performance of deep learning algorithms
for the two independent applications discussed above, which have varying environmental con-
ditions. In this chapter, the motivations, problem definitions, objectives, and contributions
for each study are presented, followed by the organization of the thesis.

2

1.1 Sea-ice detection using image semantic segmenta-
tion

1.1.1 Motivation

When seawater is frozen and floats on the ocean surface, that is commonly known as sea
ice. Sea ice plays a major role in polar ecosystems, global climate, and ship navigation [5].
This study focuses on sea ice detection for the purpose of navigation support for vessels
operating in polar waters. One of the important principles in ice navigation is maintaining
the freedom of maneuver to avoid the risk of vessels being trapped and trailing behind the
ice [6]. According to [6], it is stated that non-ice-strengthened ships moving at a speed of 12
knots can be compromised when engaging heavy concentrations of light sea ice conditions.
Therefore, accurate sea ice detection is crucial when assessing and adhering to operational
limits. There is an emerging need for onboard ice navigation decision support systems as the
number of commercial vessels in polar seas grows faster than the availability of icebreakers
and ice specialists.

Sea ice information is mostly made available in ice charts by combining the data acquired
from satellites, aerial, shipboard observations, and in-situ sensors. Earth observation sensors
such as Synthetic Aperture Radar (SAR), imaging radiometers (visible-infrared sensor and
microwave sensor), scatterometers, and altimeters are used [7] for remote detection of sea ice.
Many researchers [8]–[10] use data obtained via such sensors to develop models and algorithms
for ice detection and analysis. Although these data provide critical information for the safe
planning of marine operations, on-site tactical navigation decisions in ice-covered waters
highly rely on visual information to assess the operational risk posed by ice conditions in the
field of view. Computer vision and image processing are fields of study where mathematical
techniques are developed for computers to understand images and videos [11]. Over the years,
these techniques have evolved such that objects in an image can be detected and classified
(identifying the class of objects, e.g., vehicles, humans, etc.).

1.1.2 Problem Definition

Traditional computer vision techniques for real-time object detection are inefficient when
small environmental changes are inevitable. This is a significant concern considering the
challenging environment in polar seas, as there can be varying lighting conditions, glare on
ice and water caused by the sun, and different ice forms. Compared to traditional algorithms,
the deep learning approach in computer vision facilitates end-to-end learning that dismisses

3

the manual feature definition, extraction, and matching. With the increased popularity of
deep learning, many neural network-based semantic segmentation algorithms have been in-
troduced over the years, outperforming traditional algorithms in accuracy, robustness, and
efficiency [12]. The closest work on sea-ice detection can be found in [13]. The main issues
with the implementation for sea-ice detection in [13] are the high inference time and the
inability to run on edge devices used in the field (e.g., embedded deep learning hardware,
smartphones). Therefore, in addition to selecting accurate deep learning models for sea-ice
detection, the ability to export into an edge device-compatible version of the model and a
proper hardware selection is essential for real-time computation.

1.1.3 Objectives & Contributions

The study is sorted into the following tasks to achieve the sea-ice detection objective using
deep learning methods.

Task 1: Select and train a state-of-the-art NN semantic segmentation model for sea
ice detection, which can be deployed to meet the accuracy-speed trade-offs of
edge computing devices.

Task 2: Comparative performance evaluation of the proposed NN model with state of
art sea ice detection neural networks and datasets [13].

Task 3: Accuracy-speed evaluation of the proposed NN model on Linux-Jetson and
Android-smartphone edge computing devices.

1.2 LZ detection using point cloud semantic segmenta-
tion

1.2.1 Motivation

Unmanned aerial vehicles (UAVs) have become popular in several application domains, es-
pecially in the case of multi-rotor Vertical Take-Off and Landing Vehicle (VTOL) vehicles
with their capability to operate in constrained and unstructured environments. VTOL au-
tonomous capabilities are particularly useful in hazardous and hard-to-reach environments
[14], where the technology can enhance partial and full authority cases with informative pilot
displays for safe and accurate operation. During critical operations, UAVs should be able to

4

land safely without compromising the safety of the personnel involved and the surrounding
infrastructure. Although the existing commercial drones have the functionality to take off
and land without the operator’s command, choosing a terrain to land is primarily a deci-
sion made by the operator [14]. Equipping these vehicles with the capability to identify safe
Landing Zones (LZs) will enable VTOLs to operate autonomously in unknown environments,
ensuring the autonomous navigation system’s overall safety and reducing the pilot’s workload.

Autonomous identification of safe landing zones by a VTOL is a challenging task. Differ-
ent approaches were introduced over the years to tackle this challenge using various sensor
data. A safe landing zone is considered a low gradient, obstacle-free, open support surface
with sufficient area for the VTOL vehicles [14]. Due to the rule-based nature of classical
mathematical modeling, they lack the ability to learn and fine-tune new data that becomes
available for LZ detection purposes. Neural network-based landing zone detection is a recent
development that offers several advantages over classical methods. Neural Networks (NNs)
can learn complex patterns related to LZ identification using labeled training data, provided
sufficient quantity and diversity in training data representative of operational conditions.
Additionally, NN-based methods have the ability to incorporate several different sources of
data, such as Lidar and images, to extract other critical information needed for LZ evalu-
ation. Furthermore, NN architectures allow fast execution through GPU acceleration using
new machine learning libraries such as TensorFlow and PyTorch.

1.2.2 Problem Definition

Computer vision-based Convolutional Neural Network (CNN) algorithms were developed for
image segmentation, object detection, and tracking to detect the possible safe landing zones.
Although CNN-based object detection and classification are well-established, vision data do
not have the reliable depth information required to detect LZ accurately. Also, the inability
to register data in poor lighting conditions, irregular sensor sensitivity, and limited Field of
view (FOV) make the metric reconstruction of the environment difficult. Globally registered
Light Detection And Ranging (Lidar) point clouds can be used for landing sites to determine
the probability of the safety prediction for each LZs. With the wide availability of aerial Lidar
data and development in artificial neural networks, recent research studies have focused on
using CNNs-based point cloud semantic segmentation to classify terrains and identify suitable
LZs [15]. Additionally, NN methods are advantageous due to their adaptability to different
data sources, ability to train as a general model applicable for many datasets, and not re-
quiring parameter tuning to different scenarios in data. This study evaluates state-of-the-art

5

NN models for LZs detection using Lidar data and the feasibility of efficiently incorporating
the NN model into a Visual Lidar Odometry and Mapping (VLOAM) pipeline. VLOAM is a
real-time point cloud map generation method that can be used as a supporting module when
implementing landing zone evaluation in real-time.

1.2.3 Objectives and Contributions

The study considers the following tasks as the objectives of the problem of LZs detection
using point cloud semantic segmentation and the expected contributions.

Task 1: Comparative evaluation of point-based and projection-based NN models for
the capability of handling different Lidar data sources and generating accurate
predictions compared to classical rule-based LZ selection algorithms.

Task 2: Develop an efficient architecture and hyperparameters to integrate NN LZ
evaluation in VLOAM map generation modules.

Task 3: Performance testing of the proposed LZ detection method for accuracy and
speed on onboard hardware suitable for field deployment.

1.3 Organization of the Thesis

This section outlines how the thesis is organized.

Chapter 1: Introduction presents an overview of the two studies on deep learning for
field robotic applications. The overviews elaborate on each study’s motivation,
problem definition, and objectives.

Chapter 2: Background presents a literature review of similar or related work on sea-ice
detection and LZs detection.

Chapter 3: Sea-ice detection using DeepLab discusses the performance of the state-
of-the-art DeepLabv3 for sea-ice detection compared with a base model and
deployment feasibility on navigation modules and edge-device applications.

Chapter 4: LZ detection using projection-based methods presents the evaluation of
projection-based point cloud semantic segmentation models for their perfor-
mance in the accuracy-runtime trade-off.

6

Chapter 5: LZ detection using point-based methods introduces how point-based point
cloud semantic segmentation models can be utilized for LZ detection for VTOLs.
The chapter will show how a point-based method can be tuned to achieve an
accuracy-runtime trade-off for online LZ detection in a Robot Operating System
(ROS)-based VLOAM pipeline.

Chapter 6: Conclusion presents the conclusions from the conducted studies, identified
future improvements, and the contributions made by the author.

1.4 Statement of Co-authorship

I hereby declare that this thesis incorporates material from joint research, as mentioned in
the following paragraphs.

Chapter 3 of the thesis includes the outcome of the publication at the OCEANS 2021 con-
ference, co-authored with Benjamin Dowden and Jesse Chen and supervised by Dr. Oscar
De Silva and Dr. Weimin Huang. In all cases, only my primary contributions towards this
publication are included in this thesis, and the contributions of co-authors: Benjamin Dow-
den with his work in [13] and Jesse Chen through his contribution to the development of a
mobile application with deep learning inference for sea-ice detection.

Chapter 4 incorporates research findings published at NECEC 2021 conference supervised
by Dr. Oscar De Silva and Dr. Awantha Jayasiri. In all cases, the key ideas, primary contri-
butions, experimental designs, data analysis, interpretation, and writing were performed by
myself.

Chapter 5 of the thesis includes published material co-authored with Sachithra Atapattu
and supervised by Dr. Oscar De Silva, Dr. Awantha Jayasiri, Dr. George Mann, and Dr.
Raymond Gosine. In all cases, only my primary contributions towards this publication are
included in this thesis, and the contributions of co-author, Sachithra Atapattu was related to
the classical geometric method development for point cloud segmentation for LZ detection.
This chapter also incorporates unpublished research work where the primary contribution
and experimental results were performed by myself. I certify that I have properly acknowl-
edged the contribution of other researchers to my thesis and have obtained permission from
each co-author(s) to include the above material(s) in my thesis.

7

This thesis includes 4 original papers that have been previously published/submitted to
conferences and journals for publication, as shown in Table 1.1.

Table 1.1: Contributions towards original papers

Thesis Chapter Publication Title/ Full Citation Publication Status
Chapter 3 Balasooriya, N., Dowden, B., Chen, J., De Silva,

O. and Huang, W., 2021, September. “In-situ Sea
Ice Detection using DeepLabv3 Semantic
Segmentation.” In OCEANS 2021: San
Diego–Porto (pp. 1-7). IEEE.

Published

Chapter 4 Balasooriya, N., De Silva, O., Jayasiri, A., 2021.
“Comparison of point cloud semantic
segmentation models for SLAM” NECEC 2021

Published

Chapter 5
Atapattu, S., Balasooriya, N.M., De Silva, O.,
Jayasiri, A., Mann, G. and Gosine, R., 2020.
“Landing Zone Identification Using a
Hardware-accelerated Deep Learning Module.”
77th Annual Forum & Technology Display. The
Vertical Flight Society.

Published

Balasooriya, N.M., De Silva, O., Jayasiri, A.,
Mann, G., 2022. “AI-based Landing Zone
Detection for Vertical Takeoff and Land LiDAR
Localization and Mapping Pipelines.” Drone
Systems and Applications, Canadian Science
Publishing.

Under reviews

8

Chapter 2

Background

This chapter will introduce a literature review on sea-ice detection using image semantic
segmentation, LZ detection using point cloud semantic segmentation, and an introduction to
transfer learning and the performance metrics used to evaluate the models discussed.

2.1 Image Semantic Segmentation

Computer vision and image processing are fields of study where mathematical techniques are
developed for computers to understand images and videos [11]. Over the years, these tech-
niques have evolved such that objects in an image can be detected and classified (identifying
the class of objects, e.g., vehicles, humans, etc.).

Image segmentation is where an image is sectioned into regions and structures like lines,
curves, circles, shapes, edges, etc. But these outputs do not give meaningful information
regarding what is rendered in images. In semantic segmentation, the objects and scenarios
in images are understood at a pixel level, where each pixel is given a label belonging to
an object class. Image semantic segmentation can also be defined as an extension of image
classification where the model pinpoints the location of a corresponding object by outlining
its boundary. The outlining of the edge of an object in an image is called masking. Most se-
mantic segmentation algorithms are an encoder-decoder network where the encoder encodes
a latent space representation of the image, and the decoder decodes it to form segment maps
outlining object location.

However, most traditional methods cannot distinguish different objects in an image. The
following sub-sections will briefly overview both conventional algorithms and the CNN-based

9

methods and their advantages and limitations.

2.1.1 Traditional Algorithms

Before the introduction of CNNs, traditional image processing algorithms were used to un-
derstand the images at a pixel level. These traditional methods can be defined into several
categories based on the techniques used to understand the images, as illustrated in Fig 2.1.

Figure 2.1: Sample categorization of traditional algorithms

For thresholding, the input image should be grayscale or converted to grayscale for process-
ing. In simple thresholding, the images are processed into segments, where each pixel is
divided into two classes based on a defined threshold value. In this scenario, a global single
threshold value is used, which is not advantageous in changing light conditions. Adaptive
thresholding determines the threshold for a pixel based on a small region around it, giving
different thresholds for different regions of the same image. Otsu’s Threshold method [16]
processes the image histogram of a grayscale image, segmenting the objects by minimization
of the variance on each of the classes and determining the optimal threshold based on this

10

histogram.

Edge-based segmentation is also called edge detection, where it classifies which pixels in the
image are edge pixels and labels them in a separate class. The gradient is the change in the
gray level of an image with direction, which can be calculated by taking the difference in
the value of neighboring pixels. Vertical edges can be detected using a horizontal gradient
operator, while a vertical gradient detector can identify horizontal edges [17]. Canny edge
detection [18] is a multi-stage algorithm. The first step is the noise reduction in images
using a Gaussian filter, followed by the calculation of the intensity gradient of the image
as the second step. In the third step, non-maximum suppression removes unwanted pixels.
Finally, using two threshold values, hysteresis thresholding is applied to detect the real edges.

Compared to threshold-based and edge-based image segmentation methods, clustering per-
forms better in generating promising segments in an image. The k-means clustering algorithm
is a widely used unsupervised algorithm that uses all the pixels and clusters them based on
common attributes.

Though traditional computer vision techniques like gradient vector flow snake algorithm and
support vector machines classifiers are used in [19]–[21] to classify and detect sea-ice and
ice floes, the works are based on satellite images. In [22]–[24], traditional computer vision
algorithms such as thresholding, k-means clustering, and spatial filtering are used on imagery
captured by shipborne cameras to detect ice types and concentration. Traditional computer
vision techniques for real-time object detection have proven inefficient when inevitable envi-
ronmental changes occur. This is a significant concern considering the extreme environment
in polar seas, as there can be varying lighting conditions, glare on ice and water caused by
the sun, reflections on water, and the different forms of ice.

2.1.2 State-of-the-art CNN methods

Compared to traditional algorithms, deep learning methods in computer vision facilitate
end-to-end learning, which circumvents the process of manual feature definition, extraction,
and matching. With the increased popularity of deep learning, many neural network-based
semantic segmentation algorithms were introduced over the years, which have outperformed
traditional algorithms in accuracy, robustness, and efficiency [12]. This section will briefly
overview the state-of-the-art methods for image semantic segmentation and work related to

11

sea-ice detection using deep learning-based networks.

Several image semantic segmentation challenges were introduced over the years to evaluate
different NN-based models developed to detect target object classes. PASCAL VOC 2012
challenge [25] is one of the earliest challenges developed for object detection and segmenta-
tion. The dataset contains more than 11,000 images in train and validation sets, while 10,000
images are set for testing. The Common Objects in COntext (COCO) dataset challenge [26]
for object segmentation contains more than 200,000 images with over 500,000 object instances
in 80 categories. The Cityscapes dataset [27] was released in 2016, containing complex seg-
mentations of urban scenes from 50 cities. The images are fully segmented into 29 object
classes within eight super-categories: flat, human, vehicle, construction, object, nature, sky,
and void.

Fully Convolutional Network (FCN) [28] is the one of the first fully convolution-based NN
model end-to-end trained for image semantic segmentation. The FCN takes an image with
an arbitrary size as input and outputs a segmented image with the same size while replacing
fully connected layers with convolutional layers. The authors of [28] recorded a 62.2% mIoU
score on the PASCAL VOC 2012 segmentation challenge. U-Net [29] is an extension of the
FCN architecture developed for microscopic biological images. The U-Net model has two
parts: the contracting part computes features, and the expanding part uses deconvolution to
reduce the number of feature maps and spatially localize patterns in the image. The most
notable characteristic of the U-Net model is it does not use any fully-connected layer. U-Net
architecture is extended in the PSPNet and Deeplabv3 models, which will be described in
later chapters. Mask-Region-based Convolutional Neural Network (R-CNN) is introduced as
a state-of-the-art model for semantic segmentation on the COCO challenges.

Though a large body of work is done using deep learning algorithms for sea-ice detection,
most of them are based on satellite imagery [30]–[32]. Using satellite imagery has several
limitations due to remoteness, year-round operational restrictions due to weather conditions
in polar regions, low reliability of satellite communication at higher latitudes, and operation
costs. As a result, this study focuses on using visual data images captured by a shipborne
camera for real-time ice detection.

Closely related to the work in this study includes [33] where authors proposed a CNN-based
semantic segmentation model for river-ice detection from the drone footage of the yellow
river in China. Other related works include [34], [35], where authors have utilized images

12

captured on board a cruise for sea-ice object classification. Their work focused on classifying
sea ice images into nine ice categories. In [36], the authors have utilized a modified U-Net [29]
model for the segmentation of ice objects where the encoder is pre-trained on the ImageNet
dataset [37]. The methods [34]–[36] manually exclude the vessels’ bows from the image data
by defining the region of interest for the segmentation task. The report does not describe
the comparative performance of their selected model on any standard evaluation metrics.
Additionally, the manual selection of regions of interest to extract the ice-containing segments
from the images in [36] limits the application of their solution to real-time sea-ice detection
and implementation on different hardware configurations. [38] can be considered a promising
development of deep learning-based sea-ice detection using shipborne camera imagery. In
their work, the authors disclosed the development of a custom 3D camera system on board a
vessel for continuous monitoring of ice and water and experiments carried out to verify their
camera system. The developed system focuses on a patch of ice on the vessel’s port side for
continuous 3D topography reconstruction and uses an image processing scheme for sea ice
detection. However, this method is only applicable for downward view angles from the side,
which is not considered in this thesis.

2.2 Point Cloud Semantic Segmentation

A point cloud is a set of data points representing objects or space in the X, Y, and Z geo-
metric coordinate system. Point clouds can be generated by photogrammetry software using
camera images, 3D laser scanners, Synthetic Aperture Radar (SAR) systems, and Lidar. This
study uses point clouds generated by Lidar sensors; thus will only review the related research.
Based on the Lidar sensor type and the platform, the point density can vary from 10 points
per square meter (pts/m2) (sparse point cloud) to thousands of pts/m2 (dense point cloud)
[39].

Point cloud segmentation and point cloud semantic segmentation have different meanings.
Point cloud segmentation methods group points with similar geometric or spectral charac-
teristics, while point cloud semantic segmentation associates each point in the point cloud
with a semantic label. This section will brief both point cloud segmentation and point cloud
semantic segmentation methods introduced over the years and work related to landing zone
detection using each approach.

13

2.2.1 Classical Methods using Geometric Features

In this study, point cloud segmentation using geometric features will be called classical meth-
ods. These classical methods process point clouds by grouping raw 3D points into non-
overlapping regions corresponding to a specific structure or object. This grouping of points
is done mainly using handcrafted features generated from geometric constraints and statisti-
cal rules.

Edge-based classical methods use an approach similar to edge detection in 2D images. As the
shapes of the objects can be distinguished using their edges, point clouds can be segmented
based on the points close to edge regions. A rapid change in intensity in the data can be
used to locate such points [40]. Work in [41]–[43] uses different edge-based algorithms for
point cloud segmentation. The region-growing method combines features from two points
or two regions to measure similarities among 3D points or 3D voxels and merges if they
meet the spatial distance constraint or similar surface properties. Three main factors should
be considered when developing a region-growing algorithm: similarity measurement, growth
unit, and seed point selection [44]. The similarity measurement can be done using euclidean
distance or normal vectors. Popularly used methods for growth unit factors are the k-d tree,
voxel-based region growing [45], and adaptive octree [46].

The base concept of model fitting is to match the point cloud to different primitive geomet-
ric shapes. Most model-fitting algorithms are developed on Hough Transform, and Random
Sample And Consensus (RANSAC) [47]. RANSAC is widely used in plane segmentation
methods as it does not require complex optimization or ample memory resources and effi-
ciency in detecting more objects [48].

Early work on using simulated Lidar for landing zone detection is proposed in [49], which uses
a relatively simple geometric analysis of the terrain roughness and slope. In [50], the authors
use digital elevation maps from NASA data explorer and apply a modified quadtree algorithm
to find potential landing sites. In [51], [52], landing site detection algorithms using Principal
Component Analysis (PCA) are proposed based on the terrain information retrieved using
Lidar data. Authors of [53] devised an algorithm for safe landing zone detection using PCA
and a variation of RANSAC called Progressive Sample Consensus (PROSAC) algorithm.
One of the state-of-the-art approaches using LiDAR point clouds is a coarse evaluation of
LZs based on slope and roughness, as presented in [14], which is also similar to work in [49].
Authors of [14] have conducted experiments for safely landing a helicopter on identified zones
and mentioned that this method can take data at a rate of 17 ms per 100,000 points and

14

compute coarse evaluation at a rate of 699 ms per 100 000 cells on an Intel core 2 processor.

Even though these classical methods generated reasonable results on their chosen test data,
due to the rule-based nature of the algorithms, they lack the ability to learn and fine-tune
new data that becomes available for LZ detection purposes. Neural network-based landing
zone detection is a recent development that offers several advantages over classical methods.
NNs can learn complex patterns related to LZ identification using labeled training data,
provided sufficient quantity and diversity in training data representative of operational con-
ditions. Additionally, NN-based methods have the ability to incorporate several different
sources of data, such as Lidar and images, to extract other critical information needed for
LZ evaluation. Furthermore, NN architectures allow fast execution through a graphics pro-
cessing unit (GPU) acceleration using new machine learning libraries such as TensorFlow
and PyTorch. In [54]–[56], computer vision-based convolutional neural network(CNN) algo-
rithms for image segmentation, object detection, and tracking were developed to detect the
possible safe landing zones. Although CNN-based object detection and classification using
images is well-established, vision data do not have the reliable depth information required to
accurately detect LZs. Also, the inability to register data in poor lighting conditions, irreg-
ular sensor sensitivity, and limited FOV make the metric reconstruction of the environment
difficult. Two mainstream NN-based approaches are used for point cloud semantic segmen-
tation: projection-based and point-based architectures. The next two sections will brief both
approaches and their use in landing zone detection.

2.2.2 Projection-based Semantic Segmentation

Projection-based semantic segmentation methods transform the 3D point cloud by projecting
it onto a 2D image using different intermediate representations. Work in [57] projected a 3D
point cloud onto 2D planes using multiple virtual camera views and applied multi-stream
FCN to predict pixel-wise scores. In [58], the authors generated Red Green Blue (RGB)
and depth snapshots of a point cloud using multiple camera positions and applied 3D seg-
mentation for predicting pixel-wise labels. Assuming that point clouds are sampled from
Euclidean surfaces, authors in [59] projected the local surface geometry around each point
to a virtual tangent plane. Tangent convolution is then applied to this surface geometry.
But, these multi-view semantic segmentation methods are sensitive to viewpoint selection
and occlusions and were not fully explored due to information loss during projection.

Work in [60], one of the leading articles in point cloud classification, has proposed a CNN-

15

based pipeline, “SqueezeSeg.” Their approach transfers the LiDAR point cloud data into
dense, 2D grid representation using spherical projection and fed into a 2D CNN. Further
improvements to the SqueezeSeg network were proposed in [61], [62] to enable a runtime
faster than the sensor rate, i.e., 10Hz. Though this was an added benefit for real-time pro-
cessing, the SqueezeSeg framework only uses the frontal 90 degrees of the scan, which does
not capture the full Lidar scan. Benefiting from the introduction of spherical projection in
[60], RangeNet++ [63] was introduced, which uses a DarkNet backbone to process a range-
image generated by the projection of a point cloud. The semantic labels generated by the
RangeNet++ model are first transferred to a 3D point cloud, and GPU-enabled k-nearest
neighbor search is applied to retrieve labels for all points in the cloud. This diffuses the
problem of discretization errors and blurry inference outputs. Work in [64] uses the similar
spherical projection of point cloud data into a 2D range-view image and applies an encoder-
decoder-like network for point-wise classification score generation.

These methods delivered a lower accuracy than point-based methods but were significantly
faster in processing. The candidate models for the projection-based point cloud semantic
segmentation are selected based on their performance on SemanticKITTI [65] benchmark
leaderboard for single scan evaluation and the reproducibility of the code and the results.
Although speed improvement is possible with the projection-based network, the accuracy
of these methods is still questionable, especially for safety-critical decisions like detecting
landing zones. Projection-based methods are designed to run on raw data, and point-based
methods are developed to run on aggregated point cloud data, i.e., generated maps. However,
for low-resolution Lidar like the VLP-16 sensor, the projection-based techniques also require
a method of point cloud aggregation before range image generation for reasonable results.
In safety-critical applications, high accuracy and precision in identifying safe LZs are more
pertinent than the detection speed.

2.2.3 Point-based Semantic Segmentation

Point-based semantic segmentation methods directly work on irregular, unstructured point
clouds. Voxelization represents each point in the point cloud as 3D voxels, which is another
method used in point cloud processing [60], [66]. In [66], a 3D CNN architecture called
“Voxnet” based on volumetric occupancy grid representation of point clouds is described.
The 3D convolution layers in their work are applied to these voxel grids. They have im-
plemented the Voxnet for various configurations, and for the slowest configuration, it has
taken 6ms for classification using a Tesla K40 GPU. However, voxelization of point clouds

16

introduces additional computational overhead, and fine details of the original data can be
lost in the process [67].

Work in [68] proposes an approach termed “PointNet,” which feeds unordered point clouds
directly as the input to the algorithm. The per-point features are extracted using shared
Multi-Layer Perceptrons (MLPs), and global features are learned using symmetrical pooling
functions. PointNet architecture has achieved improved performance for semantic segmen-
tation of point clouds over the traditional methods proposed in [66] and [69]. A point-wise
pyramid pooling module for semantic segmentation of point clouds is discussed in [67], which
uses two-direction hierarchical Recurrent Neural Networks (RNNs) to incorporate long-range
spatial context. This approach outperforms the baseline PointNet method in [68].

Improvements to PointNet were suggested in PointNet++ [70], where the model clusters the
points hierarchically and progressively learns from large local regions. The multi-scale and
multi-resolution grouping was introduced to overcome the varying density of point clouds.
PointNet and PointNet++ successfully delivered higher overall accuracy but were too slow
in processing large-scale point clouds. Additionally, the performance of the above two mod-
els in detecting vegetation, buildings, and vehicles was not up to the expected level for our
problem. RandLA-Net [71] used a downsampling method to remove features at random and
then a feature aggregation module to increase the receptive field for each 3D point where
geometric details are preserved. Kernel Point Convolution (KPConv) [72] introduced a novel
kernel point convolution method to process point clouds directly without intermediate com-
putations. Though these two methods delivered a promising performance, their architectures
were not developed for a continuous input of point cloud data. Authors of [73] have pro-
posed an approach termed “ConvPoint” to process the unstructured point cloud data using a
continuous convolution formulation. Through this continuous convolution formulation, they
have designed neural networks similar to 2D CNNs to process the point cloud data as 3D
data. Their results proved the flexibility of this approach for different architectures. More-
over, at the time of writing this thesis, the ConvPoint model has the highest accuracy and
fast execution for semantic3d point cloud segmentation benchmark [74], which involves eight
classes and supports both Lidar and color data of the point cloud. According to the Conv-
Point paper, [73], the suggested model has achieved an overall accuracy of 93.8% and a mIoU
of 75.0% on the Semantic3D dataset.

17

2.2.4 Discussion on point cloud semantic segmentation methods

Due to the direct processing of point cloud data in point-based semantic segmentation meth-
ods, they are at a disadvantage of memory overflow and lower runtime speed in real-time
applications. But, compared to projection-based methods, point-based methods can deliver
a highly accurate and precise performance, which is a critical requirement for autonomous
landing zone detection problems. This requirement overpowers projection-based networks
and demands a runtime optimization for point-based networks. Both methods were found
to not carry sufficient color information for accurate use of texture in the semantic decision,
as a colored point cloud is an order of a magnitude lower in resolution when compared with
a camera image of the same viewpoint. From our investigations thus far, a neural network
applied to the image would be more suitable for using color information and fusing with the
point cloud segmentation.

Therefore, a novel landing zone detection architecture will be proposed in this thesis to
address the mentioned issues. In this architecture, a point-based point cloud semantic seg-
mentation model with a better runtime-accuracy trade-off will be used for generating LZ
labels, while image segmentation and object detection will be employed as an additional
component to project the resulting pixel labels on a point cloud. This thesis focuses on
integrating a deep neural network-based LZ detection module into a Lidar mapping pipeline
and investigating how point cloud aggregation or sub-mapping can be utilized to deliver an
accuracy-runtime trade-off for online LZ detection. Applying deep NN for LZ detection has
the advantages of incremental and adaptive learning ability from new data, faster runtime,
and a graphical processing unit for computations that can free the central processing unit
(CPU) for other tasks. It can also ease fusing different NN networks and code optimization
capability compared to classical methods. The top-performing point-based semantic segmen-
tation model in the Semantic3D leaderboard will be evaluated for its performance on three
variations of point cloud data to achieve this objective.

2.3 Performance Metrics

Mean Intersection over Union (mIoU), accuracy, average runtime, and throughput are used
as the metrics to evaluate the performance of different NN models. This section will briefly
overview each metric.

18

2.3.1 Intersection over Union

Intersection over Union (IoU), commonly abbreviated as IoU, is another widely used metric
in evaluating deep learning models for semantic segmentation. IoU can be defined as the area
of overlap between the predicted segmentation and the ground truth divided by the area of
union between the predicted segmentation and the ground truth. Figure 2.2 shows a generic
visualization of IoU while Eq. (2.1) is the mathematical computation of IoU. The mIoU is
the calculation of the IoU of each class and averaging the values.

IoU = |A ∩ B|
|A ∪ B|

(2.1)

Figure 2.2: IoU calculation visualization. Source: Wikipedia

2.3.2 Accuracy

Informally, accuracy is the fraction of correct predictions over the total number of predictions
assessed by a model. Equation 2.2 is the formal expression of the metric. Though accuracy
can give an overview of how a model would perform, it should not be the only metric to be
used when evaluating the performance of a model. When a model delivers high accuracy, it
does not imply that the model has outperformed. The reason is that most data has a class
imbalance, where some object classes can dominate the point cloud while others make only
a smaller portion. This issue cannot be ignored in a real-world navigation setting.

Accuracy = Number of correct predictions
Total number of predictions (2.2)

2.3.3 Average runtime

The average runtime speed is the average measure of time taken for the model to compute
inference over a set of point cloud scans. The average runtime speed is calculated as shown
in Eq. (2.3)

19

Average runtime =

k∑
n=1

tn

k
(2.3)

where, k = total number of scans and tn = inference time of nth scan.

2.3.4 Throughput

As our objective is to find the most suitable real-time semantic segmentation model for point
clouds, it is essential to identify how many points can be processed in a given time. The
number of points processed during a unit time of seconds is calculated, known as throughput.
This is computed using the Eq. (2.4),

Throughput of nth scan = Total number of points in nth scan
inference time of nth scan , (2.4)

and averaged over the total throughput values.

Mean-IoU, accuracy, and inference time metrics will be used to evaluate the performance
of the NN model for sea-ice detection. While mIoU, accuracy, average runtime, and aver-
age throughput are used to assess the point cloud semantic segmentation models for LZs
detection.

20

Chapter 3

Sea-ice detection using Deeplab

This chapter will describe the extended study on previous work [13] by evaluating the per-
formance of the Deeplabv3 [75] model for sea-ice semantic segmentation with the benchmark
model Pyramid Scene Parsing Network (PSPNet101) from [13], and assess the compatibility
of deploying the system on embedded and mobile hardware platforms for real-time computa-
tion. This study focuses on evaluating the inference speed of the Deeplabv3 model compared
with PSPNet101 using both Nvidia Jetson AGX Xavier and Android mobile computing
platforms and validates Deeplabv3 as a more compatible and enhanced architecture for the
purpose.

The sections in this chapter will briefly introduce the benchmark PSPNet101 model and
Deeplabv3 model, the methodology, experimental results on different hardware platforms,
and a discussion of the results obtained.

3.1 Background

To achieve the objectives of this study, the proposed benchmark model in [13], PSPNet101 is
selected as the state-of-the-art model for sea-ice semantic segmentation; and comparatively
evaluated with Deeplabv3, which outperformed PSPNet101 [75] on PASCAL VOC 2012
benchmark [76] and performed equally on Cityscapes benchmarks [27].

3.1.1 PSPNet101

PSPNet101 was introduced for semantic segmentation as a competitor in ImageNet Scene
Parsing Challenge 2016. The PSPNet101 architecture captures the global context of the
whole image when predicting the objects at a pixel level. The encoder of the PSPNet101 has

21

dilated convolutions [77] at the last layers of the CNN backbone, which deliver rich features
to the pyramid pooling module. The pyramid pooling module in part (c) of Fig. 3.1 fuses
these rich features in four levels of pyramid scales to cover the different sizes of portions of the
image, and each is passed through a convolutional layer. The output is then up-sampled to
the same size as the feature map and concatenated with the features from the CNN backbone
to be passed into the decoder to form the final feature representation. The decoder takes
the concatenated features that contain local and global scene-level information and gets the
per-pixel predictions by passing them through convolutional layers. A simplified graphical
overview of the PSPNet101 architecture can be visualized as in Fig. 3.1.

Figure 3.1: Overview of the PSPNet architecture. [78]

According to [78], it has a recorded performance of mIoU of 85.4 on PASCAL VOC 2012
benchmark [76] and an accuracy of 80.2% on Cityscapes benchmarks [27]. For the purpose
of this study, the Keras implementation of PSPNet fine-tuned on the Cityscapes dataset [13]
is used.

3.1.2 Deeplabv3

Deeplabv3 is an enhanced version of its predecessor, Deeplab [79], in which the architec-
ture is augmented to capture longer-range information. Deeplabv3 network adopts several
neural network architectures to extract features from the input image, which are referred
to as backbones. The performance of the semantic segmentation model highly relies on the
features extracted by these backbone architectures [80]. To achieve the goal of computa-
tional efficiency, Tensorflow implementation of Deeplabv3 with Mobilenetv2 [81] backbone
was used as it reports a performance similar to that of other backbone architectures while
having faster inference and compatibility with mobile applications. Figure 3.2 illustrates
the Deeplabv3 architecture. In general Deep Convolutional Neural Networks (DCNNs), the
spatial resolution of feature maps is reduced by the max-pooling layers in convolution. To

22

recover the spatial resolution, DCNNs use deconvolutional layers with consecutive striding,
which can result in information loss. Instead, the Deeplabv3 model uses atrous convolution
to control the feature map resolution and keep the stride constant. Like the PSPNet101
pyramid pooling method, Deeplabv3 uses atrous spatial pyramid pooling [79] with different
rates to capture multi-scale contextual information. The resulting concatenated features are
then parsed through a convolutional layer and upsampled to keep the ground-truth values
intact. With the encoder-decoder architecture, the location/spatial information is retrieved.

Figure 3.2: Overview of the Deeplabv3 architecture.

3.2 Methodology

This section will discuss the methodology used to train and evaluate the Deeplabv3 network
for sea-ice semantic segmentation and detail the two hardware platforms used for inference
testing.

3.2.1 Dataset

Data plays a major role in deep learning methods. This study’s deep learning-based semantic
segmentation models use supervised learning algorithms for end-to-end learning. Supervised

23

learning algorithms are designed to learn by example. Those examples are called training
data, consisting of inputs paired with the correct output. During training, the deep learn-
ing models will learn the patterns between the input and the corresponding desired output.
When the model learns those connections, it will then be tested on unseen inputs and predict
the output. This training process requires a substantial amount of data for the model to learn
the patterns more precisely and accurately.

The lack of abundant data on sea-ice imagery obtained on board an icebreaker was a challenge
in training the deep learning models. To address this issue, in the previous work [13], a sea-ice
detection dataset was created using imagery from a Go-Pro camera on board the Nathaniel
B. Palmer icebreaker on its two months expedition through the Ross Sea, Antarctica. The
finalized dataset contains 431 images captured on four unique days of the journey, which were
labeled into four semantic classes: Ice, Ship, Ocean, and Sky. This labeling was carried out
using the freely available semantic labeling tool called PixelAnnotationTool [82], where each
pixel of the captured image is given one of the four semantic classes in numeric format. For
the purpose of training, evaluation, and performance comparison, the dataset is divided into
training, validation, and testing sets, as shown in Table 3.1. The training set is used to teach
the model the connections between the input and the desired output, while the validation set
is used to check the accuracy of the learned model during the training process. The test set
is a separate set of inputs that will be used to establish the performance of the final model.
Figure 3.3 shows a sample labeled image.

Table 3.1: Sea-Ice Imagery Dataset split

Split Training Validation Testing Total
No.of images 382 23 26 431

3.2.2 Transfer Learning process

For this study, the Deeplabv3 model (in section 3.1.2) pre-trained on the Cityscapes dataset
was transfer-learned for the sea-ice dataset described in section 3.2.1. This approach uses a
similar set of semantic labels (sky, vegetation, vehicle, etc.) with a sizable amount of training
data available in the cityscapes dataset.

The transfer-learning of the Deeplabv3 model for sea-ice detection was carried out on the
Google Colaboratory platform utilizing its GPU resources. Though transfer learning of

24

Figure 3.3: Example of a sea-ice image with the semantic labels with the four classes: ship:red,
ocean:blue, ice:grey, sky:yellow ([13])

Deeplabv3 took approximately 21 minutes on Google Colaboratory, it is irrelevant for opera-
tion since the focus is inference implementation rather than transfer learning on the selected
hardware platforms.

The accuracy computed on the validation set during the transfer learning process is shown
in Fig. 3.4(a). The intention of teaching a neural network model is to learn from given data
to minimize errors when tested on unseen data. Figure 3.4(b) interprets the prediction error
over the validation set during transfer learning.

(a) Accuracy (b) Loss

Figure 3.4: Evaluation of transfer-learning performance on validation set

3.2.3 Hardware Selection

Proper hardware selection is important to deliver in-situ sea-ice detection using a ship-borne
camera. Considering factors such as computational speed, availability of graphics processing

25

units (GPUs), and data storage capacity, an Nvidia Jetson AGX Xavier-powered navigation
box was selected. Additionally, this work evaluates the capability of sea-ice detection and
operational risk assessment on a hand-held device (mobile phone).

3.2.3.1 Nvidia Jetson AGX Xavier

Nvidia Jetson AGX Xavier (JAX Kit) is a state-of-the-art hardware platform for end-to-end
artificial intelligence (AI) applications. The JAX kit’s operational and technical specifications
(as listed in Table 3.2) attest that it is the appropriate hardware for developing a navigation
box. In 2021, Nvidia developers introduced an industrial version of the JAX kit, which is
more compatible with an industrial environment. Here a prior generic version of JAX kit is
used to validate the proposed architecture.

Table 3.2: Technical Specifications of Nvidia Jetson AGX Xavier (JAX) Developer Kit used
in our work

Component

CPU 8-core NVIDIA Carmel Armv8.2 64-bit
8MB L2 + 4MB L3 cache

GPU NVIDIA Volta architecture
512 NVIDIA CUDA cores, 64 Tensor Cores

Memory 32GB 256-bit LPDDR41

Storage 32GB eMMC25.1

AI Performance 32 TOPS3

DL Accelerator 2 NVDLA4engines

Vision Accelerator 2 7-way VLIW5Vision Processor

No.of cameras Up to 6 cameras

Power 10W | 15W | 30W
1 LPDDR: Low-Power Double Data Rate
2 eMMC: embedded MultiMediaCard - internal storage attached to the device
3 TOPS: Tensor Operations Per Second
4 NVDLA: NVIDIA Deep Learning Accelerator
5 VLIW: Very Long Instruction Word

26

3.2.3.2 Hand-held Device

To evaluate the performance of the Deeplabv3 mobile-compatible model, it is integrated into
an emulated environment of Google Nexus 6 smart mobile using Android Studio software.
The hardware specifications of the emulated mobile platform are tabulated in Table 3.3.
Additionally, this was tested on mobile platforms for inference performance, i.e., Samsung
Galaxy S8, Samsung Galaxy Note 8, and Samsung Galaxy S21.

Table 3.3: Technical Specifications of the Google Nexus 6

CPU 2.7GHz quad-core Snapdragon 805

GPU Adreno 420

Memory 3GB LPDDR3

Storage 32GB | 64GB

Camera Sony Exmor CMOS 13 MegaPixels

3.3 Experimental Results

This section will assess and compare the performance of the transfer-learned Deeplabv3
model, and PSPNet101 model in [13] for the test set on the suggested navigation box (de-
scribed in section 3.2.3). For the performance evaluation, two approaches were considered,
i.e., evaluation using metrics and evaluation based on sea-ice detection time.

3.3.1 Evaluation using metrics

Table 3.4 compares the mIOU for each class and average accuracy over the test set in the
sea-ice dataset. According to table 3.4, Deeplabv3 reported higher mIOU for the semantic
classes Ice, Sky, and Ocean than PSPNet101. This suggests that Deeplabv3 performs well in
distinguishing between the ice and the ocean. Additionally, the results show that PSPNet101
has outperformed Deeplabv3 in detecting the semantic class ship. This can be due to lens
artifacts in several test images that Deeplabv3 was not trained to ignore. The lens artifacts
have also affected the average accuracy of Deeplabv3. This issue can be resolved by including
similar noisy data in the training set, which will be addressed in future work.

27

Table 3.4: Performance of Deeplabv3 vs PSPNet([13]) on test set

Network
IOU (%) Avg.acc(%)

mIOU Ice Sky Ocean Ship

Deeplabv31 90.21 95.27 98.27 91.25 81.49 95.46

PSPNet1012 90.1 94.7 95.7 80.8 89.3 97.8

1 According to the results, it can be seen that Deeplabv3 has higher mIOU and IOU for
semantic classes Ice, Sky and Ocean compared to PSPNet101.

2 PSPNet101 has shown a higher IOU for detecting semantic label Ship and delivered a
higher average accuracy over the whole test set.

3.3.2 Inference speed

Figure 3.5 illustrates the prediction time for PSPNet101 and Deeplabv3 models for the test
set on the JAX Kit. The inference on the mobile platform recorded an average prediction
time of 12s. Unlike in the JAX Kit, the model is loaded during the startup of the mobile
application, which was an advantage when inferring the first image.

Comparing the mIoU results listed in table 3.4, PSPNet performs similarly to Deeplabv3
regarding sea ice detection accuracy. Due to the time taken to initialize the required libraries
on the nav-box platform, a relatively long processing time is expected for the first image in-
put into the inference model (Fig. 3.5). However, when considering the inference time taken
by both models on a nav-box platform, Deeplabv3 is more than 20 times faster than PSP-
Net101. Additionally, Deeplabv3 has mobile platform compatibility, which was successfully
implemented with a mobile inference time of 12s per image (Fig. 3.7). PSPNet101 did not
successfully extend to mobile device computation in the experiments. These results validate
Deeplabv3 as the state-of-the-art semantic segmentation model for sea-ice detection.

3.3.3 Sample predictions

Figures 3.6 and 3.7 show example predictions of the transfer-learned Deeplabv3 model on test
images when executed on both the navigation box and the mobile application. The images
used to generate the sample predictions in Fig. 3.6 were taken at the same location on the

28

(a) (b)

Figure 3.5: Comparison of prediction time for PSPNet (3.5(a)) and DeepLabv3 (3.5(b)) on
the Nvidia Jetson AGX Xavier. The excessive time for the first image includes the time
required for loading the Nvidia CUDA libraries for inference purposes. But in the mobile
implementation, this issue did not occur.

vessel as the training images. The results can drastically differ from the expected output
when the model is tested on images taken from different areas of the ship. Such situations
can be managed by including pictures from other locations and angles in the training set.

29

(a)

(b)

(c)

(d)

Figure 3.6: Sample predictions of the Deeplabv3 transfer-learned model. In the sample
predictions, the segmentation map:nav-box is the expected output from the JAX kit, which
will be used to develop the navigation box. The segmentation map-mobile is the expected
prediction from the Deeplabv3 lite model, which will be implemented on a mobile device.

30

(a) (b) (c)

Figure 3.7: Example predictions of the Deeplabv3 model on mobile app

3.4 Discussion

This study proposes Deeplabv3 for in-situ sea-ice semantic segmentation and compares its
performance with the state-of-the-art model PSPNet101. The Deeplabv3 model is transfer-
learned on a sea-ice dataset and is tested and compared for its performance using the metrics
per class mIOU and average accuracy. According to the conferred results, Deeplabv3 out-
performed PSPNet101 in sea-ice detection with an overall mIOU of 90.21. Additionally, this
report proposes the development of an onboard nav box using Nvidia Jetson AGX Xavier and
a mobile application for in-situ sea-ice detection. The study compares the inference speed of
both Deeplabv3 and PSPNet101 on the nav box and explores the feasibility of implementing
both models on a mobile platform. Deeplabv3 required less computation time for inference
on test images on the nav-box platform compared to the benchmark model, PSPNet101.
Moreover, the selected backbone architecture of Deeplabv3 and its ability to be converted
into a Tensorflow Lite model have accommodated the implementation of sea-ice detection on
a mobile platform. However, the attempt to integrate PSPNet101 into a mobile application
failed due to its lack of support for mobile platforms.

Deeplabv3 is proposed as the new state-of-the-art model for in-situ sea-ice detection, given its
performance, real-time operation capability using a navigation box, and compatibility across

31

a mobile platform. Future developments of this work include improving the performance
of the Deeplabv3 model, functionality of the model for operational risk assessment, and
detection of different ice categories.

32

Chapter 4

Evaluation of projection-based point
cloud segmentation methods for
VLP-16 Lidars

As introduced in chapter 1, the ISLab of the Memorial University of Newfoundland collab-
orates with the NRC in developing an Artificial Intelligence for Logistics (AI4L) system for
VTOL vehicles. This project, AI4L-112, aims to develop an AI-powered Visual Inertial Lidar
Odometry and Mapping (VILOAM) navigation system, which can be integrated into VTOL
vehicles to improve its real-time autonomy support capabilities and reduce pilot workload.
VILOAM is a methodology that allows platforms to localize in an environment while simul-
taneously creating a reference point cloud of the surrounding using a camera, Light Detection
and Ranging (LiDAR), and Inertial Measurement Unit (IMU) data. This method improves
the autonomy of platforms and enables operation in unknown environments without the re-
liance on external positioning aids like GPS while producing informative maps. The project
develops a VILOAM-capable hardware flight module with a Velodyne VLP-16 Lidar sensor.

One of the modules of this project is to develop a landing zone detection system for VTOL
vehicles. A safe landing zone is considered as a low gradient, obstacle-free open surface with
sufficient space to land a VTOL vehicle without compromising the safety of the personnel
involved and the surrounding infrastructure [14]. These characteristics of a LZ can be evalu-
ated using Lidar point clouds by utilizing the depth information in the 3D point clouds [53].
Chapter 2 shows that Neural networks can learn complex rules related to LZ identification
using labeled training data provided that there is sufficient quantity and diversity in train-
ing data representative of operational conditions. There are two main architectures used in

33

point cloud semantic segmentation, namely, point-based and project-based. As mentioned
in chapter 2, a high throughput rate in point cloud semantic segmentation is possible with
project-based methods [64].

The main limitation of the available benchmark studies on project-based methods is the point
clouds used in the evaluation were generated using a Velodyne 64 Lidar sensor. Therefore,
it was essential to evaluate projection-based semantic segmentation methods for the point
clouds generated by a VLP-16 Lidar sensor and get a sense of speeds achievable by the on-
board computed used by the AI4L-112 project. Therefore, an accuracy and speed evaluation
of projection-based methods are needed for VLP-16 Lidars on JAX Kit platforms as a part
of the development of NN-based LZ detection method.

This chapter briefly evaluates two state-of-the-art point cloud semantic segmentation models
for their performance and inference speed on two hardware platforms. The primary objective
is to form the basis for the main development that happens in the next chapter.

4.1 Background

The candidate models for projection-based LZ detection were selected based on their per-
formance on the SemanticKITTI benchmark leaderboard of single scan evaluation and the
reproducibility of the code and the results.

4.1.1 RangeNet++

RangeNet++ [63] is one of the methods where 2D projections of LiDAR data are used for
point cloud semantic segmentation. The point clouds are converted into a range represen-
tation by converting each point to spherical coordinates and then to 2D image coordinates.
The projection is computed using Eq. (4.1).

u

v

 =
 1

2 [1 − arctan(y, x)π−1]W
[1 − (arcsin(zr−1) + fup)f−1]H

 , (4.1)

where x, y, z = point coordinates, u, v = image coordinates, H, W = height, width of the
desired range image, f = fup + fdown = vertical FOV of the sensor, and r = range of each
point. In this projection, an image of HxWx5 dimensions is generated where the 5 channels
are 3D point coordinates (x, y, z), intensity (i) value, and the range index (r).

34

The semantic segmentation on this range image is carried out by a modified version of
Darknet53 [83] backbone architecture as shown in Fig. 4.1. The model also utilizes a faster
version of the k-Nearest Neighbour (kNN) algorithm to predict semantic labels for the whole
point cloud. The authors claim that RangeNet++ can run in its totality online using a single
GPU. The advantage of RangeNet++ is its integration into SUMA++ [84] architecture which
was developed for semantic-based point cloud registration.

Figure 4.1: Rangenet++ model architecture

4.1.2 SalsaNext

SalsaNext [64] adopts a 2D projection-based architecture similar to RangeNet++, a modi-
fied version of its predecessor SalsaNet’s [85] encoder-decoder architecture. The 2D spherical
projection of the Lidar point cloud is computed using the same equation in Eq. (4.1). The
encoder contains a set of ResNet blocks [86] and the decoder applies transpose convolutions
and fuses the upsampled features with the residual blocks from the encoder. Figure 4.2 illus-
trates the SalsaNext architecture, and further in-depth details are available in [64]. According
to [85], SalsaNext records a faster runtime than RangeNet++ when evaluated on the same
GPU hardware.

35

Figure 4.2: SalsaNext model architecture

4.2 Method

Transfer learning was not applied as the main objective of evaluating projection-based se-
mantic segmentation methods is to assess their accuracy-speed compatibility with VLP-16
Lidar sensors. One main characteristic of the projection-based methods is that they directly
work on raw Lidar scans rather than point cloud maps. Therefore, the selected two models
mentioned in section 4.1 were evaluated on the validation sequence 08 of the KITTI Velodyne
dataset [87] and a custom dataset captured using the VILOAM payload.

4.2.1 KITTI Velodyne dataset

The KITTI Velodyne dataset is a benchmark dataset developed by the Karlsruhe Institute
of Technology and the Toyota Technological Institute in Chicago to provide new real-world
challenges in autonomous navigation systems development. The dataset was captured using a
car-mounted multi-sensor system, including four high-resolution video cameras, a Velodyne-
64 laser scanner, and a GPS localization system by driving around the city of Karlsruhe.
The validation set of the Velodyne laser data of the KITTI dataset was used to evaluate
the projection-based semantic segmentation methods. As both RangeNet++ and SalsaNext
models were trained on the KITTI Velodyne training set, which contains 64 Lidar channels,

36

the validation set was downsampled to test for 16 channels. The reason for downsampling
the KITTI Velodyne data to 16 channels was to compare the performance of the selected
models with the MUN VLP-16 dataset, which also has 16 Lidar channels. Figure 4.3 shows
a sample image captured from an instance of the KITTI Velodyne dataset with the semantic
labels from the SemanticKITTI benchmark [65].

Figure 4.3: Image capture of a sample KITTI Velodyne dataset

4.2.2 Custom MUN VLP-16 dataset

Several datasets were captured using a car-mounted sensors module while driving around the
Memorial University of Newfoundland, Canada. The datasets include RGB camera images
and laser point clouds captured using a Velodyne VLP-16 rotating 3D laser scanner at 10Hz,
GPS measurements, and Inertial measurement unit (IMU) data. For the objective of this
project, only point cloud data was used. A sample of the GPS traces of one of the datasets
is shown in Fig. 4.4.

37

Figure 4.4: GPS trace of a dataset captured around the university. credits: Didula Dis-
sanayaka

4.3 Qualitative result evaluation

This section provides the quantitative performance evaluation of the projection-based net-
works on the KITTI Velodyne sequence 08 and the qualitative visual evaluation of the selected
MUN VLP-16 data. Since there aren’t any ground-truth labels for the MUN VLP-16 data,
it is only evaluated for the inference speed using the average runtime and throughput. Pre-
dictions are visualized to understand whether the models have performed well by mapping
each object class to a color value.

4.3.1 Quantitative Performance Evaluation

Table 4.1 tabulates the performance of the KITTI Velodyne sequence 08 on both selected
models. Tables 4.2 and 4.3 show the average runtime of the selected models on each point
cloud of the down-sampled (16 channels) KITTI Velodyne sequence 08 and MUN VLP-16
data, respectively.

38

Table 4.1: Performance of selected models on the KITTI Velodyne Sequence 08 (64 channels)

Model

mIoU(%) Laptop[1] Jetson AGX Xavier[2]

Recorded[3] Tested[4] Avg. runtime(s) Avg. throughput(pts/s)
Avg. runtime(s) Avg. throughput(pts/s)[5]

15.00 W MAXN 15.00 W MAXN

RangeNet ++ 52.20 50.30 2.19 55,977.96 1.26 0.66 97,072.09 186,362.37

SalsaNext 59.50 55.80 0.96 127,825.44 0.30 0.16 413,789.41 763,449.39

[1]Laptop with Nvidia Geforce 940MX 4GB GPU
[2]The Jetson AGX module has several power modes in which it can be operated. These power modes
differentiate the use of GPU resources. While 15W is the default power mode, MAXN mode utilizes all the
available resources.
[3]As noted in the respective research articles
[4]As tested on the Laptop and Jetson AGX Xavier
[5]pts/s is points(pts) per second(s)

Table 4.2: Average runtime(in seconds) of selected models on the KITTI Velodyne Sequence
08 (downsampled - 16 channels)

Model Laptop
Jetson AGX Xavier

15 W MAXN

RangeNet ++ 0.425 0.381 0.284

SalsaNext 0.087 0.051 0.034

39

Table 4.3: Average runtime(in seconds) of selected models on MUN VLP-16 dataset

Model Laptop
Jetson AGX Xavier

15 W MAXN

RangeNet ++ 0.353 0.224 0.145

SalsaNext 0.202 0.052 0.033

4.3.1.1 Qualitative Performance Evaluation

Figures 4.5 and 4.6 show the visualization of the semantic labels predicted by the models
on both the down-sampled KITTI Velodyne dataset and MUN VLP-16 data. The semantic
predictions for MUN VLP-16 data delivered a low qualitative accuracy, as shown in Fig. 4.6.
The poor performance can result from the low point density of VLP-16 Lidars in the MUN
VLP-16 data and the difference in the point distribution for each semantic class between
the KITTI dataset and the MUN VLP-16 data. This issue can be addressed using a voxel
map generated by point cloud accumulation to increase the resolution of the input data.
However, literature prefers point-based methods when such map generation is involved, as
the generated maps do not have uniform density and have unordered points in the point
cloud.

40

(a) (b)

(c) (d)

Figure 4.5: Visualization of the predictions of the down-sampled KITTI sequence 08 (of each
screenshot, left image: colormap of the point cloud, right image: semantic segmentation of
the point cloud with Color codes:- pink: road, blue: vehicles, green: vegetation)

(a) (b)

Figure 4.6: Visualization of the predictions of the MUN payload data (of each screenshot,
left image: colormap of the point cloud, right image: semantic segmentation of the point
cloud).

4.4 Discussion

According to the table 4.1, RangeNet++ and SalsaNext models generated mIoU values far
less than 80% for the KITTI Velodyne Sequence 08 though they delivered faster runtime.

41

This is an inadequate performance from a NN model for real-time safety-critical applica-
tions. Additionally, the visual outputs generated by the models for low-resolution Lidar
and downsampled Lidar data show that projection-based methods require transfer learning
when different Lidar sensors are used. The main reason is that the spherical projection of
the point cloud is generated based on the sensor parameters like resolution, the number of
Lidar channels, and FOV. This chapter performed a qualitative evaluation of state-of-the-art
projection-based methods when applied on VLP-16 Lidars and JAX computing hardware
used by the AI4L-112 project. The results highlight the high throughput rate that is possible
with the projection-based methods at the expense of considerable degradation in segmen-
tation accuracy due to the lower resolution of raw Lidar scans. Although increasing the
resolution is possible through accumulating point clouds to form maps, this does not guar-
antee the generation of ordered point clouds with uniform density which is a prerequisite for
project-based methods. The preparatory evaluation conducted in this chapter assisted with
the design decision of moving to point-based methods, which can better handle point cloud
maps generated using Lidars such as VLP-16. The next steps in the development process,
which use point cloud maps and point-based segmentation methods, are presented in Chapter
5. These circumstances suggest runtime optimization for point-based point cloud semantic
segmentation methods as they can deliver higher performance and are independent of sensor
parameters.

42

Chapter 5

LZ detection using point-based
methods

As discussed in Chapter 4, although speed improvement is possible with the projection-based
network, the accuracy of projection-based methods is still questionable, especially for safety-
critical decisions like detecting landing zones. Additionally, these projection-based methods
are designed to run on raw data, and point-based methods are developed on aggregated
point cloud data, i.e., generated maps. However, for low-resolution Lidar like the VLP-16
sensor, the projection-based methods also require a method of point cloud aggregation before
range image generation for reasonable results. Also, this won’t guarantee the generation of
ordered point clouds with the uniform distribution required for projection-based methods,
which can result in inaccurate LZ detection. In safety-critical applications, high accuracy
and precision in identifying safe LZs are more pertinent than the detection speed. Therefore,
this chapter investigates point-based methods for point cloud segmentation and landing zone
detection. It will also evaluate the feasibility of integrating a deep neural network-based LZ
detection module into a Lidar mapping pipeline and investigate how point cloud aggregation
or sub-mapping (which will be described in the section 5.2.1.3) can be utilized to deliver an
accuracy-runtime trade-off for online LZ detection.

The first section will describe the selected point-based model and the reason for the selection.
The second section will overview the methodology, including the datasets used in transfer
learning and testing. The third section will present the point cloud processing module,
which is designed to be compatible with the overall architecture and evaluates the capability
of the system to provide landing zone proposals in a mapping pipeline. The fourth section
of this chapter will illustrate the experimental results and the performance evaluation of

43

the developed model for the LZ detection method and show how the proposed method can
achieve the target accuracy-runtime trade-off when three variations of aerial Lidar datasets
are presented. The fourth section will also illustrate sample visualizations of how the NN
model achieves the objective of LZ detection in a VILOAM navigation pipeline of a VTOL
aircraft. The last section of this chapter will discuss the results, issues related to the proposed
method, and the next steps that can be done as future work.

5.1 Model Selection

Application of deep NN for LZ detection has advantages of incremental and adaptive learn-
ing from new data, faster runtime, use of graphical processing unit for computations which
can free the central processing unit (CPU) for other tasks, ease in fusing different NN net-
works, and code optimization capability compared to classical methods. The top-performing
point-based semantic segmentation model in the Semantic3D leaderboard is evaluated for its
performance on three variations of point cloud data to achieve this objective.

5.1.1 ConvPoint Model

As described in the chapter 2, the initial work of point-based point cloud semantic segmen-
tation can be found in [88] and [70]. Due to the ineffectiveness of those two models in terms
of runtime-accuracy trade-off and detecting several object classes, the ConvPoint model [73]
was selected based on the Semantic3D leaderboard and the online operational requirement.
In the ConvPoint model, a continuous convolutional layer was designed by adopting the
discrete convolution used for images. As shown in Fig. 5.1, the segmentation network has
an encoder-decoder structure, where the encoder is a stack of convolutions that reduces the
cardinality of the point cloud, while the decoder contains a stack of convolutions with skip
connections and a total of twelve convolutional layers. The last layer is a point-wise linear
layer used to generate an output dimension corresponding to the number of classes. At train-
ing time, the model randomly selects points in the considered point cloud and extracts all the
points in an infinite 8 meters wide vertical column centered on this selected point. During
testing, the model computes a 2D occupancy pixel map with a "pixel" size of 0.5 meters for
outdoor scenes by projecting vertically on the horizontal plane. Then, the model considers
each occupied cell as a center for a column (the same size as for training). For each column,
it randomly selects a given number of points (i.e.sampling size) which are fed as input to the
network. Finally, the output scores are aggregated at the point level, and points not seen by
the network will be given the label of their nearest neighbor.

44

Figure 5.1: Sample illustration of ConvPoint semantic segmentation model

5.2 Methodology

This section will discuss the datasets used for transfer learning and testing for LZ detection,
labeling Lidar point clouds for landable and non-landable zones, the transfer learning process,
and the point cloud processing module.

5.2.1 Datasets

For this study, several representative datasets should be selected for deep learning module
training and testing purposes. Datasets that are freely available online were selected using
the following selection criterion. Since this work focuses on determining the LZs of a VTOL,
the point clouds should include areas with both landable and non-landable zones for a VTOL
drone or a helicopter. As there is a limited number of datasets available to suit the VTOL
landing zone application, which captures operational scenarios of VTOL vehicles, e.g., water
bodies, infrastructure, parking lots, flat but unlandable surfaces, etc.; in addition to the
online datasets, experimental datasets were also captured using a DJI M600 drone (Fig. 5.2)

45

to support this work. A description of the datasets used for transfer learning is described in
this section.

(a) Data collection using MJI M600
quadcopter

(b) LiDAR-drone
setup

Figure 5.2: Data Collection setup by ISL

5.2.1.1 Semantic3D Benchmark

As the online dataset, the semantic3D benchmark [74] was selected. This benchmark has 30
point clouds captured using a survey LiDAR on the ground, which are already categorized
into eight classes, (1) man-made terrain, (2) natural terrain, (3) high vegetation, (4) low
vegetation, (5) buildings, (6) hard scape, (7) scanning artifacts, (8) cars, and an additional
label, (0) unlabeled points for data points without ground truth. Each data point consists of
x, y, and z coordinates, intensity, and image RGB (Red, Green, and Blue intensity) values.
Five datasets, namely Cathedral1, sg27-station1, sg27-station9, sg28-station5, and Castle1,
were selected from the semantic3D benchmark, as shown in Fig. 5.3. The dataset is a good
reference to assist with the transfer learning process. For ease in distinguishing between
different datasets, this dataset will be called the Semantic3D dataset hereafter in the text.

46

(a) Cathedral1 (b) sg27-station1 (c) sg28-station5

(d) sg27-station9 (e) Castle1

Figure 5.3: Semantic3D datasets

5.2.1.2 Experimental data from DJI M600 - MUN dataset 1

Experimental dataset 1 was captured by a Velodyne Lidar sensor attached to a DJI M600
drone over two selected areas, Paradise and Holyrood, in Newfoundland, Canada. The data
collected in Paradise, which includes a football ground surrounded by vegetation, is defined
as the Paradise dataset. The data captured in Holyrood, which consists of a marine base
parking lot, is defined as the Holyrood dataset. Unlike the benchmark dataset classes, we
are interested in two classes, i.e., landable and non-landable, where non-landable regions can
include flat surfaces like water bodies, frozen lakes, marshlands, unstable ground, etc. Table
5.1 shows the number of points in each dataset and the number of points in the downsampled
sets used to test the transfer learned neural network (NN) model. The objective of using the
downsampled set in testing is to experiment with whether the NN model can perform at a
reasonable speed with a VLOAM pipeline. For ease of reference, this dataset will be called
the Holyrood-Paradise dataset.

47

(a) Paradise (b) Holyrood

Figure 5.4: Intelligent Systems Lab (ISL) of the Memorial University of Newfoundland col-
lected dataset 1

Table 5.1: Number of points in the originally captured dataset vs. downsampled dataset

Dataset No.of points in original set No.of points in downsampled set[1]

Paradise 105 005 239 228 673

Holyrood 37 948 660 450 850

[1]The original large point cloud was downsampled using a voxelization method. This
approach allows the point clouds to be processed by the selected models within the given
memory constraints.

5.2.1.3 Post-processed experimental MUN dataset 1

The proposed architecture described in the section 5.3 can generate a local map with ap-
proximately 10,000 points at a time. To test the runtime-accuracy trade-off of the selected
models, the downsampled Holyrood test set is divided into several sub-point clouds with
varying points. Figure 5.5 shows that the entire point cloud is segmented into 11 sub-clouds
using CloudCompare software. Table 5.2 shows the number of points in each segmented
point cloud. For ease of reference, this post-processed dataset will be addressed as the post-
processed Holyrood dataset.

48

Figure 5.5: Segmentation of Holyrood test set into sub-point clouds

Table 5.2: Number of points in sub-point clouds

Sub cloud No.of points Batch sizes[1] Sampling Sizes[2]

Sub point cloud 1 9065

8, 16, 32, 64
3000, 4000, 5000,..,
9000

Sub point cloud 2 15 793

Sub point cloud 3 11 632

Sub point cloud 4 9937

Sub point cloud 5 8978

Sub point cloud 6 15 965

Sub point cloud 7 20 436

Sub point cloud 8 15 365

Sub point cloud 9 15 319

Sub point cloud 10 15 187

Sub point cloud 11 13 600

[1]The batch size parameter is changed to evaluate the runtime-accuracy tradeoff for each
sub-point cloud.
[2]The sampling size is the number of points taken from the sub-point cloud in each batch
processing.

The above datasets are generated by combining Lidar scans in a map using point cloud
registration software with an offline post-processing workflow. However, these point cloud

49

maps should be generated during runtime for real-time Landing zone detection. As a result,
a suitable Lidar mapping method should be in place. This work uses a VLOAM mapping
pipeline developed for the AI4L-112 project for this purpose. The overview of this pipeline
and integration of the Landing zone determination module in that pipeline is discussed in
the next section 5.3.

5.2.2 Labeling of Training Data

The flow diagram of the LZs labeling process of the dataset is shown in Fig. 5.6. The method
used is from [14], which uses a patch-based processing pipeline using xyz data of a point
cloud. Since the classical method is carried out on structured point clouds, the point clouds
are ordered depending on the x and y positions of each point. The point cloud is divided into
3m×3m patches, considering the dimensions of the DJIM600 quadcopter and ±1m navigation
accuracy. Then, planes are fitted to all patches. LZs are identified as the patches having
the standard deviation of the z-axis less than 0.5m and maximum z-deviation less than 6m.
Besides, the number of points per patch should exceed 15 points to be considered an LZ,
ensuring an average point density of 1 point at every 20cm×20cm region for a 3m×3m patch
[14]. A patch is chosen as landable if its slope is below 5◦. These parameters are adjusted to
suit each dataset so that representative landing zones are produced as part of the labeling
process.

Figure 5.6: Process flow of the geometric labeling

The algorithm in Fig. 5.6 could not detect water bodies, and it wrongly classified water areas
as landable zones, as shown in Fig. 5.7. This was resolved using a semantic labeling app by
manually selecting water areas and naming the point label as non-landable.

50

(a) RGB colored Holyrood dataset without
outliers

(b) Colored LZs in the Holy-
rood dataset (Green:landable,
Red:non-landable)

Figure 5.7: Original Holyrood dataset and the colored LZs generated by geometric labeling

5.2.3 Transfer Learning

For transfer learning of the ConvPoint model for landing zone identification, the source code
was modified to output two object classes (i.e., landable and non-landable) and used the pre-
trained weights (pretrained on semantic3D dataset) as the initial checkpoint. As the training
set of the transfer learning of ConvPoint, the down-sampled semantic3d dataset and a part of
the Holyrood dataset containing points of the water bodies was used. The inputs contained
3D point data, original RGB data, and landable/non-landable labels. The remaining subset
of the Holyrood and paradise datasets were used as the testing data. To analyze the effect
of RGB values, fine-tuning is done with and without the RGB data input. Figures 5.8(a)
and 5.8(b) illustrate the transfer learning accuracy and loss, respectively, which indicates that
having the low-resolution color data in the point cloud provides only insignificant performance
gains. Therefore a separate NN model dealing with high-resolution color data is preferable
to utilize color information.

(a) Transfer learning accuracy (b) Transfer learning loss

Figure 5.8: Transfer learning graphs

51

5.3 Point cloud processing module

VLOAM [89] is an odometry and mapping method that combines visual and Lidar sensor
data to create an accurate and reliable localization and mapping solution with a six Degrees
of Freedom (DoF) ego-motion estimation and a spatial representation of the environment.
When visual sensors are used independently, they face challenges such as scale uncertainty
with monocular cameras, sufficient lighting requirement, frame-to-frame lighting consistency,
the need for static scenes, etc. The common challenges of Lidar odometry are low data rate,
the requirement of Lidar pose information, and motion distortion due to scan rates. VLOAM
architecture bridges over the weaknesses of both visual and Lidar sensors allowing accurate
estimation, mapping, and localization. This online odometry and mapping method simul-
taneously creates a point cloud map of the environment while estimating the motion of the
sensors system. In the VLOAM architecture, the visual odometry component accounts for
motion estimation between two image frames, while the Lidar odometry is responsible for
transformation estimation and map construction from the registered scans.

In the proposed architecture, the point cloud semantic segmentation module is embedded into
a VLOAM subsystem as shown in Fig. 5.9. In the VLOAM subsystem, there are three main
sensor systems, i.e., Camera, IMU, and Lidar. Feature points tracked from the camera input
and the IMU odometry computed by the IMU pre-integration are fed into the visual update
unit, which computes the visual-inertial odometry solution. This visual-inertial odometry,
combined with the extracted Lidar features, is then input into the Lidar odometry update
unit to generate visual inertial Lidar odometry. This output is then utilized to create a vi-
sual Lidar mapping combined with the point cloud generated by the Lidar unit. The place
matches from the place recognition subsystem will also be used as an additional input into
the visual Lidar mapping to make it further accurate and robust.

The LZ detection subsystem has a few components that will use the sensor units and the
local point cloud map generated by the visual Lidar mapping. The image segmentation and
object detection modules are additional components that will assist in the LZ detection task
by using texture-based features of the images. Both point cloud LZ labels and image pixel
labels will be fused with object tracking to generate combined labels with bounding boxes
for identified zones and objects.

52

Figure 5.9: Overview of the total architecture and the proposed LZ identification module in
this paper (highlighted)

As shown in the above Fig. 5.9, the VLOAM subsystem will generate a local point cloud map
with the desired number of points which will then be published into the point cloud semantic
segmentation module to generate the landing zone labels. This chapter of the thesis focuses
on the LZ labels generated by the point cloud semantic segmentation module and will detail
the experiments on the module and the corresponding contribution to the whole system. The
main objective of these experiments is to learn the best hyperparameter combination that
can generate LZ labels from a neural network model at a rate that can compete with the
local point cloud map generation speed. A 1 Hz specified target is used for this study which
allows to incrementally color of the generated point cloud by the VILOAM subsystem for LZ
detection purposes.

53

5.3.1 Datasets generated using VILOAM architecture

This sub-section will overview the aerial Lidar datasets captured using the VLOAM subsys-
tem in Fig. 5.9.

5.3.1.1 Pipeline data - MUN dataset 2

The pipeline data are the local maps generated by the VLOAM module of the proposed
system. Figure 5.10(a) shows the point cloud map generated by the VLOAM subsystem,
which was implemented on the Intelligent Systems Lab (ISL) drone in Fig. 5.10(c), and Fig.
5.10(b) shows one of the images captured by the monocular camera mounted onto the same
drone. For reference purposes, this dataset will be called the Lighthouse dataset throughout
the thesis.

(a) Sample point cloud
from the MUN dataset 2

(b) An aerial image of the location

(c) Payload on MUN drone

Figure 5.10: ISL of the Memorial University of Newfoundland collected dataset 2

5.3.1.2 Pipeline data - MUN dataset 3

This third dataset was captured using the payload mounted to a Bell-412 helicopter. The
payload design is shown in Fi.g 5.11(a), and the Bell-412 helicopter used for taking the data
is shown in Fig. 5.11(b). For reference, this dataset will be termed the Bell-412 dataset.

54

(a) Payload structure (b) Bell-412 helicopter

Figure 5.11: Bell-412 helicopter setup with the payload

Figure 5.12 illustrates the path of the Bell-412 helicopter on a Google Satellite map based on
the GPS data taken by the payload setup. Figure 5.13 is a sample visualization of the map
generated by the VLOAM system onboard the payload.

Figure 5.12: Flight path of Bell-412

55

Figure 5.13: Sample Lidar data from the payload onboard Bell-412

5.3.2 Labeling pipeline data

Since there aren’t ground truth labels available for the pipeline data, it is required to label
the data for landable and non-landable zones. The labeling process in Fig. 5.6 cannot be used
for the pipeline data as it works on generated maps and is written in Python, which can take
a long time to generate labels. Therefore, an efficient VLOAM-compatible algorithm should
be designed using C++ programming, with the capability of integrating into the VLOAM
subsystem. The flow diagram in Fig. 5.14 shows the algorithm developed to achieve this
objective. This method can render the LZ labels for each point cloud while generating the
point cloud map and coloring the map accordingly.

56

Figure 5.14: Process flow of the labeling of pipeline data

Figures 5.15 and 5.16 show the LZs generated by the algorithm in Fig. 5.14 for two datasets
captured by the payload on Bell-412. Further work planned on using this pipeline data on
the ConvPoint model will be discussed in section 6.3.

57

Figure 5.15: Dataset 1 of VLOAM pipeline data captured by Bell-412

Figure 5.16: Dataset 6 of VLOAM pipeline data captured by Bell-412

5.4 Experimental Results

This section provides the main results of the point-based network evaluated on the Holyrood-
Paradise dataset, the post-processed Holyrood dataset, the Lighthouse dataset, and the Bell-
412 dataset. First, the results of the test data from the Holyrood-Paradise dataset are
presented, and then the results on the post-processed Holyrood data will be presented, and

58

eventually, the results on the Lighthouse dataset will be described.

Nvidia Jetson AGX Xavier (Jetson AGX) developer kit was used to perform a comparative
performance evaluation in the accuracy-runtime trade-off of the ConvPoint model for LZs
detection for the different forms of the datasets. The Nvidia Jetson AGX is developed espe-
cially for autonomous machines, where it accelerates compute density and energy efficiency.
Artificial Intelligence (AI) inference capabilities in intelligent machines like robots, factory
systems, and UAVs can use this computing hardware given the 105mm×105mm×65mm form
factor, 630g weight, and max 35 Watt power consumption.

5.4.1 Results: Holyrood-Paradise dataset

The Figs. 5.17,5.18, and Table 5.3 report the quantitative and qualitative performance of the
ConvPoint model for LZ detection on the original down-sampled experimental datasets. It
is shown that the fine-tuned ConvPoint model delivered comparable performance, especially
in identifying the water regions, i.e., the Holyrood dataset. The fine-tuned ConvPoint model
is evaluated on the Jetson AGX for prediction accuracy and inference time when two power
modes are available. As summarized in Table 5.3, the use of maximum power mode has taken
lesser inference time and generated higher throughput. However, the inference time of the
ConvPoint model is comparatively long though it has scored a higher accuracy which is a
reasonable drawback for real-time point cloud semantic segmentation.

(a) Paradise dataset (b) Predictions on Google Co-
lab

(c) Predictions on Jetson AGX

Figure 5.17: Visualization of Landing zone detection for Paradise dataset. LZs are in yellow
color, and non-LZs are in red color

59

(a) Holyrood test set (b) Predictions on Google Co-
lab

(c) Predictions on Jetson AGX

Figure 5.18: Visualization of Landing zone detection for Holyrood test dataset. LZs are in
yellow color, and non-LZs are in red color

Table 5.3: Performance on Holyrood-Paradise dataset

Dataset

Google Colab[1] Jetson AGX Xavier[2]

Inference time (s) Accuracy (%) Throughput (pts/s)
Inference time (s) throughput (pts/s)

accuracy (%)

15 W MAXN 15 W MAXN

Paradise 57.83 89.72 3,940.15 31.25 18.92 7,291.11 12,044.84 89.60

Holyrood 41.63 92.13 3,633.85 29.16 14.78 5,187.30 10,238.37 91.68

[1]Google Colaboratory space equipped with Tesla T4 GPU
[2]The Jetson AGX module has several power modes in which it can be operated. These
power modes differentiate the use of GPU resources. While 15W is the default power mode,
MAXN mode utilizes all the available resources.

5.4.2 Results: Post-processed Holyrood dataset

This section will illustrate the performance of the ConvPoint model on the sectioned Holyrood
dataset in the methods of qualitative, quantitative, and graphical evaluations.

5.4.2.1 Qualitative Evaluation

Figure 5.19 visualizes the LZs predictions computed by the ConvPoint model on the sectioned
experimental dataset for different sampling sizes and a defined batch size of 24. In the

60

visualization, the predictions on each sub-point cloud are displayed in a merged point cloud
to demonstrate the qualitative accuracy of the output. Figure 5.19(a) is the original Holyrood
test set with the actual color values, while Fig. 5.19(b) contains the color-coded LZs for the
original dataset. Figures 5.19(c), 5.19(d), 5.19(e), 5.19(f), 5.19(g), 5.19(h) and 5.19(i) show
how the predictions change when the sampling size changes with a given batch size, i.e. 24.

(a) Original Holyrood
dataset with actual color
values

(b) Original Holyrood
dataset with ground-truth
labels

(c) Sampling size: 3000

(d) Sampling size: 4000 (e) Sampling size: 5000 (f) Sampling size: 6000

(g) Sampling size: 7000 (h) Sampling size: 8000 (i) Sampling size: 9000

Figure 5.19: Visualization of Landing zone detection for post-processed Holyrood merged
point cloud. LZs are in yellow color, and non-LZs are in red color

5.4.2.2 Quantitative Evaluation

Table 5.4 tabulates the quantitative performance of the ConvPoint model for the partitioned
Holyrood test set for three different sampling sizes (i.e., 3000, 6000, 9000) with a fixed batch
size of 24 on Jetson AGX Xavier when Max power mode was set.

61

Table 5.4: Performance of ConvPoint model on the post-processed experimental dataset for
the sampling sizes 3000, 6000 and 9000

Sub point
cloud

Inference times(s) Throughput(pts/s) Accuracy (%)

3000 6000 9000 3000 6000 9000 3000 6000 9000

sub cloud 1 1.09 1.87 3.01 8,318.40 4,859.32 3,016.23 22.23 94.42 88.94

sub cloud 2 1.10 1.66 2.21 14,392.31 9,532.94 7,135.31 52.88 95.85 92.13

sub cloud 3 0.87 1.33 1.80 13,294.26 8,767.27 6,453.84 44.46 94.11 97.98

sub cloud 4 0.83 1.31 1.78 12,034.65 7,585.73 5,581.70 8.98 72.12 91.94

sub cloud 5 0.72 1.09 1.46 12,513.06 8,223.87 6,167.99 0.70 69.57 99.99

sub cloud 6 0.88 1.34 1.87 18,104.54 11,908.23 8,540.46 88.99 89.68 89.00

sub cloud 7 1.08 1.60 2.43 18,892.94 12,759.38 8,394.01 93.02 92.10 91.91

sub cloud 8 1.12 1.87 2.83 13,761.73 8,228.74 5,420.82 88.21 87.95 83.79

sub cloud 9 0.87 1.34 1.83 17,641.84 11,390.12 8,392.60 94.24 93.67 86.62

sub cloud 10 0.92 1.42 2.02 16,581.09 10,704.60 7,533.99 92.20 94.85 93.30

sub cloud 11 0.89 1.48 2.09 15,323.76 9,210.53 6,506.59 70.65 93.40 95.18

62

5.4.2.3 Graphical Evaluation

Figures 5.20, 5.21, 5.22 and 5.23 illustrate how the ConvPoint model performed when different
combinations of batch sizes and sampling sizes are defined. Figure 5.23 shows how the
accuracy would fluctuate for different batch sizes and sampling sizes on the partitioned sets
containing water bodies.

Figure 5.20: Inference time vs. batch size and sampling size for each partitioned dataset

63

Figure 5.21: Throughput vs. batch size and sampling size for each partitioned dataset

Figure 5.22: Accuracy vs. batch size and sampling size for each partitioned dataset

64

Figure 5.23: Accuracy vs. batch size and sampling size for each partitioned set containing
water bodies

Illustrations in sections 5.4.2.1, 5.4.2.2 and 5.4.2.3 present how the performance of the Con-
vPoint model on the partitioned Holyrood test set would transform when different hyper-
parameters (i.e.batch size, sampling size) are selected. From the Figs. 5.21 and 5.22 it can
be perceived that a lower sampling size can generate high throughput. Although smaller
sampling sizes have trouble with water bodies detection, it is not the concern of our task as
the image segmentation module will handle it. Therefore, a comparatively smaller sampling
size with larger batch size and an inference time of 1Hz is a suitable hyperparameter setting
to gain a better trade-off for the VLOAM pipeline data rate.

5.4.3 Implementing the LZ detection module on Lighthouse dataset

Figure 5.24 shows LZs predictions generated by the ConvPoint model on a few point cloud
maps generated by the VLOAM subsystem. Figure 5.24(a) visualizes the original point cloud
maps merged together and the helipad in a green bounded box and Figs. 5.24(b), 5.24(c)
and 5.24(d) show how the ConvPoint model detected the helipad as a LZ. From the visual
illustrations of the results generated by both the classical method and the ConvPoint NN
model, it can be seen that the ConvPoint model has outperformed the classical method in

65

correctly identifying the helipad region as the LZ. The predicted LZ area for the helipad in
Fig. 5.24 is smaller than the original helipad shown in the bounding box. The anticipated
reason can be the block size value of the infinite column of points used in the transfer learning
process of the ConvPoint model or the block size used in the testing process. The runtime
for the ConvPoint model to make predictions and the issue with the area of the predicted
LZs validate the requirement of further optimization and transfer learning of the NN model.

(a) Merged point cloud maps where the heli-
pad is shown by the green square. A helipad
is considered a LZ.

(b) Point cloud map 1

66

(c) Point cloud map 2 (d) Point cloud map 3

Figure 5.24: Visualization of landing zone detection on several Lighthouse dataset point
cloud maps by the ConvPoint model. LZs are in yellow color, and non-LZs are in red color

5.5 Discussion

This report proposes a novel landing zone detection architecture for VTOL vehicles. The
developed module can coexist with a VLOAM pipeline of the vehicle and provides a collab-
orative advantage for the system. Performance evaluation results of a selected point-based
semantic segmentation model for landing zone detection are presented on three variations
of aerial datasets. When writing this article, the proposed architecture is the best perform-
ing approach in safe LZs detection in different landscapes for VTOL vehicles using neural
network models compared to the literature discussed in the Introduction section. Based on
the Semantic3D benchmark leaderboard, ConvPoint architecture was selected as the target
model for the task. The findings showed that the model performs contrastingly for different
combinations of hyperparameters, i.e., batch size and sampling size, in terms of the perfor-
mance metrics, i.e., inference time, throughput, and accuracy. Finding the most suitable
hyperparameter combination is essential to derive a better accuracy-runtime trade-off for
online LZs detection. Additionally, detecting water bodies, marshlands, and low vegetation
as non-landable is crucial for VTOL operations. From the results described in this chapter, it
is evident that a larger sampling size should be set to get a comparatively accurate detection

67

of water areas in the given dataset, which also can lead to lower throughput (higher inference
time). This bottleneck can be resolved by fusing the semantic labels generated by the point
cloud segmentation with the pixel labels generated by the color image semantic segmenta-
tion of the same region. The next step of the proposed architecture is the fusion of point
cloud labels, pixel labels, and object tracks to deliver combined labels with bounding boxes.
Additional transfer learning on more data is also required to detect the full region of LZs
like helipads and will be achieved in the next steps of this task. Future work on the LZ de-
tection using point cloud semantic segmentation to reach the Lidar update rate will include
TensorRT optimizations, further simplification of the NN model, and C++ programming
optimization on GPU utilization.

68

Chapter 6

Conclusion

The main objective of this thesis was to evaluate the performance of deep learning algorithms
for intense environment applications. Two studies were discussed in this thesis; sea-ice de-
tection using Deeplab and LZ detection using point cloud semantic segmentation.

6.1 Summary of findings

The objectives of the first study, sea-ice detection, were divided into five deliverable tasks.
The first objective was to research and select a state-of-the-art semantic feature-based ob-
ject detection NN model that can be compared to the baseline NN architecture. Several
constraints should be satisfied in selecting such a model, such as object detection using se-
mantic segmentation, transfer-learning ability, the similarity between object classes, and the
feasibility of exporting the model into a mobile-compatible format. The PSPNet model was
selected as the baseline architecture due to previous work in the same sea-ice detection do-
main. Based on the criteria, Deeplabv3 was selected for the task of sea-ice detection.

The second and third objectives of the sea-ice detection study were to acquire relevant im-
age data, data preprocessing into the compatible input format, transfer-learn on pretrained
weights of Deeplabv3, and validate the performance. Transfer-learning loss and accuracy
were calculated for the validation set and then tested for the performance on test data. As
the fourth objective, the fine-tuned model was evaluated for its runtime performance and
mIoU on a navigation module, and the results were compared with the baseline model. The
Deeplabv3 model recorded an IoU of 95.27% for ice class, 98.27% for sky detection, and
91.25% for ocean class. This significantly improved compared to the PSPNet outputs of

69

94.7%, 95.7%, and 80.8% for the same class labels, respectively. Deeplabv3 took an average
of 0.08s per image to generate the semantic labels, which substantially improved inference
time compared to 1.91s of the PSPNet model.

The final objective of this study was to export the transfer-learned model into an inference
graph that can be deployed on a navigation box and into a lite version for embedding into
a mobile application. The exported lite version of the Deeplabv3 was integrated into an
application that recorded an inference time of 12s per image.

The challenging component of this study was addressing the lens artifacts that can obstruct
the features of the images. This study’s future work will consider this issue when generating
the training images and labeling the ground truth object classes. Additional future work will
include improving the performance of the Deeplabv3 model, the functionality of the model
for operational risk assessment, and the detection of different ice categories.

The second study in this thesis is LZ detection using point cloud semantic segmentation.
This study is also divided into five objectives based on the problem of LZ detection and
expected contributions. The first objective was to research state-of-the-art point cloud se-
mantic segmentation models in projection-based and point-based architectures. Here also,
model selection was based on several criteria, including transfer learning capability and sim-
ilarity between original object classes and new LZ labels.

This study’s second and third objectives were to acquire relevant Lidar data for LZ detection,
label the datasets into two classes as landable and non-landable using geometric features and
manual corrections, transfer-learn the selected models, and validate the performance. The
fourth objective was to evaluate the performance of the selected models for the test data and
finally test for the accuracy-runtime tradeoff and the feasibility of integrating it in a VLOAM
pipeline.

First, projection-based point cloud semantic segmentation methods were evaluated to achieve
the LZ detection study’s objectives. For this task, RangeNet++ and SalsaNext models were
evaluated on the KITTI Velodyne test sequence 08 for their inference runtime and perfor-
mance in detecting objections. RangeNet++ model delivered a mIoU of 50.30%, an average
throughput of 186,362pts/s, and an average runtime of 0.66s, while the SalsaNext model
resulted in a mIoU of 55.80%, average throughput of 763,450pts/s and an average runtime
of 0.16s for the KITTI Velodyne sequence 08. Though these two models generated a faster

70

runtime, their mIoU performance was below the expected level for real-time safety-critical
applications. Moreover, projection-based networks are designed to run on raw point cloud
data, which require point cloud aggregation applied to a low-resolution Lidar, like a VLP-
16 sensor, before generating the range image. These complications overruled project-based
semantic segmentation methods and demanded a runtime optimization for point-based net-
works

This study proposed a novel landing zone detection architecture where a point-based point
cloud semantic segmentation model will be used with a better runtime-accuracy tradeoff to
generate LZ labels and an image-based object detection model to project pixel-based labels
onto the point cloud map. The thesis focused on integrating the ConvPoint NN model into
the VLOAM pipeline and investigated how point cloud aggregation or sub-mapping can de-
liver an accuracy-runtime tradeoff for online LZ detection. The ConvPoint model was tested
on four variations of aerial Lidar datasets for their performance in terms of mIoU, inference
time, and throughput. In the context where ground truth labels were unavailable for the test
sets, the LZ predictions of the models were evaluated based on visual outputs.

Finding the optimal hyperparameters set of the ConvPoint model for the inference on Lidar
point clouds was the most challenging task. The model was required to predict LZ labels for
input point clouds with a rate of 1-10Hz. This was a difficult task as the ConvPoint model is
a point-based network and requires more memory and processing time when the point cloud
size grew. To address this complication, sub-mapping was attempted, and hyperparameters
were tuned accordingly. The thesis graphed the variation of inference time and throughput
when different hyperparameter values were set.

Another challenge encountered was the programming language-based optimization. Since
the ConvPoint model was coded in Python and PyTorch, there was limited feasibility in
converting it into a C++ program. Due to this, publishing the sub-maps generated by the
C++ program into a new ROS topic was required, and the Python-based ConvPoint model
applied the inference on the sub-maps by subscribing to this topic. The C++-based sub-map
generation program could compute at the same speed as the input point cloud maps, but the
ConvPoint model could not make the inference work at the same rate. This is a major issue
that should be addressed in future work.

71

6.2 Research Contributions

The contributions of each study can be listed as follows.

• The research findings of the first study: sea-ice detection described in Chapter 3, were
published at the OCEANS conference in 2021.

• The results of the initial performance comparison between the classical geometric
method and the ConvPoint model for LZ detection on the Holyrood-Paradise dataset
were presented at the 77th Annual Forum of the Vertical Flight Society in 2021. The
results contained the runtime performance of the ConvPoint model on the Holyrood-
Paradise dataset when deployed on the JAX Kit.

• The comparison of projection-based point cloud segmentation methods for VLOAM-
based systems was presented at the NECEC 2021 conference.

• The findings and experimental results of integrating the ConvPoint NN model into
the VLOAM pipeline and comparing it with the geometric method are in writing for
manuscript submission to the Journal of Drone Systems and Applications of Canadian
Science Publishing.

6.3 Future Work

The future work of the sea-ice detection component of the thesis will include the classification
and detection of different ice types, fine-tuning the NN model for different types of images
taken at different locations of the ship, addition of “unclassified" object class to segment
entities not belonging to any classes, and fine-tuning the NN model to ignore lens artifacts.
The latest development of the Deeplabv3 model, Deeplabv3+, can be evaluated for its per-
formance in sea-ice detection as a part of future work.

The future work of the LZ detection project will consist of further optimizing the NN model
for integrating into a VLOAM pipeline using C++ programming, fine-tuning the NN model
for different aerial Lidar scenarios, comparing the accuracy-runtime performance between
the NN model and the geometric algorithm, and developing the complete LZ detection ar-
chitecture which can be easily integrated into any VLOAM pipeline. In future work, transfer
learning of the ConvPoint model will be carried out using the pipeline data described in
section 5.3.2. The findings of the next steps of the LZ detection project will be published at
a top-tier conference/ journal.

72

Bibliography

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.
[2] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,

pp. 436–444, 2015.
[3] D. A. Pomerleau, “Efficient training of artificial neural networks for autonomous navi-

gation,” Neural computation, vol. 3, no. 1, pp. 88–97, 1991.
[4] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti

vision benchmark suite,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[5] Michon Scott and Kathryn Hansen, Sea Ice. [Online]. Available: https://earthobservatory.
nasa.gov/features/SeaIce (visited on 11/10/2020).

[6] Canadian Coast Guard, “Ice Navigation in Canadian Waters,” Tech. Rep., Jul. 2012.
[Online]. Available: https://www.ccg- gcc.gc.ca/publications/icebreaking-
deglacage/ice-navigation-glaces/page05-eng.html?wbdisable=true.

[7] The International Ice Charting Working Group (IICWG), “Ice Information Services:
Socio-Economic Benefits and Earth Observation Requirements 2007 Update,” The
Group on Earth Observation (GEO), Global Monitoring for Environment, and Security
(GMES), Tech. Rep., Sep. 2004.

[8] H. Gao, D. Yang, W. Li, Q. Wang, F. Wang, and C. Yin, “Detection of sea ice based on
BeiDou-reflected signals,” in International Geoscience and Remote Sensing Symposium
(IGARSS), vol. 2016-Novem, Beijing, China: Institute of Electrical and Electronics
Engineers Inc., Nov. 2016, pp. 4872–4875, isbn: 9781509033324. doi: 10.1109/IGARSS.
2016.7730271.

[9] I. Otosaka, M. B. Rivas, and A. Stoffelen, “Bayesian sea ice detection with the ERS
scatterometer and sea ice backscatter model at C-band,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 56, no. 4, pp. 2248–2254, Apr. 2018, issn: 15580644.
doi: 10.1109/TGRS.2017.2777670.

[10] M. R. Keller, C. M. Gifford, N. S. Winstead, W. C. Walton, and J. E. Dietz, “Ac-
tive/Passive Multiple Polarization Sea Ice Detection During Initial Freeze-Up,” IEEE
Transactions on Geoscience and Remote Sensing, pp. 1–15, Aug. 2020, issn: 0196-2892.
doi: 10.1109/tgrs.2020.3013512.

[11] R. Szeliski, Computer Vision, ser. Texts in Computer Science. London: Springer Lon-
don, 2011, isbn: 978-1-84882-934-3. doi: 10.1007/978-1-84882-935-0.

xi

https://earthobservatory.nasa.gov/features/SeaIce
https://earthobservatory.nasa.gov/features/SeaIce
https://www.ccg-gcc.gc.ca/publications/icebreaking-deglacage/ice-navigation-glaces/page05-eng.html?wbdisable=true
https://www.ccg-gcc.gc.ca/publications/icebreaking-deglacage/ice-navigation-glaces/page05-eng.html?wbdisable=true
https://doi.org/10.1109/IGARSS.2016.7730271
https://doi.org/10.1109/IGARSS.2016.7730271
https://doi.org/10.1109/TGRS.2017.2777670
https://doi.org/10.1109/tgrs.2020.3013512
https://doi.org/10.1007/978-1-84882-935-0

[12] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, P. Martinez-Gonzalez,
and J. Garcia-Rodriguez, “A survey on deep learning techniques for image and video
semantic segmentation,” Applied Soft Computing Journal, vol. 70, pp. 41–65, 2018,
issn: 15684946. doi: 10.1016/j.asoc.2018.05.018.

[13] B. Dowden, O. De Silva, W. Huang, and D. Oldford, “Sea ice classification via deep neu-
ral network semantic segmentation,” IEEE Sensors Journal, vol. 21, no. 10, pp. 11 879–
11 888, 2020.

[14] S. Scherer, L. Chamberlain, and S. Singh, “Autonomous landing at unprepared sites by
a full-scale helicopter,” Robotics and Autonomous Systems, vol. 60, no. 12, pp. 1545–
1562, 2012.

[15] D. Maturana and S. Scherer, “3d convolutional neural networks for landing zone de-
tection from lidar,” in 2015 IEEE international conference on robotics and automation
(ICRA), IEEE, 2015, pp. 3471–3478.

[16] N. Otsu, “A threshold selection method from gray level histograms,” IEEE Transactions
on Systems, Man, and Cybernetics, vol. 9, pp. 62–66, 1979.

[17] R. Maini and H. Aggarwal, “Study and comparison of various image edge detection
techniques,” International journal of image processing (IJIP), vol. 3, no. 1, pp. 1–11,
2009.

[18] J. Canny, “A computational approach to edge detection,” IEEE Transactions on pat-
tern analysis and machine intelligence, no. 6, pp. 679–698, 1986.

[19] Q. Zhang and R. Skjetne, “Image processing for identification of sea-ice floes and the
floe size distributions,” IEEE Transactions on Geoscience and Remote Sensing, vol. 53,
no. 5, pp. 2913–2924, May 2015, issn: 01962892. doi: 10.1109/TGRS.2014.2366640.

[20] Q. Zhang, R. Skjetne, I. Metrikin, and S. Løset, “Image processing for ice floe analyses
in broken-ice model testing,” Cold Regions Science and Technology, vol. 111, pp. 27–38,
Mar. 2015, issn: 0165-232X. doi: 10.1016/J.COLDREGIONS.2014.12.004.

[21] H. Su, B. Ji, and Y. Wang, “Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3
OLCI Data,” Remote Sensing 2019, Vol. 11, Page 2436, vol. 11, no. 20, p. 2436, Oct.
2019. doi: 10.3390/RS11202436.

[22] B. Weissling, S. Ackley, P. Wagner, and H. Xie, “EISCAM — Digital image acquisition
and processing for sea ice parameters from ships,” Cold Regions Science and Technology,
vol. 57, no. 1, pp. 49–60, Jun. 2009, issn: 0165-232X. doi: 10.1016/J.COLDREGIONS.
2009.01.001.

[23] H.-M. Heyn, M. Knoche, Q. Zhang, and R. Skjetne, “A System for Automated Vision-
Based Sea-Ice Concentration Detection and Floe-Size Distribution Indication From an
Icebreaker,” Proceedings of the International Conference on Offshore Mechanics and
Arctic Engineering - OMAE, vol. 8, Sep. 2017. doi: 10.1115/OMAE2017-61822.

[24] A. Sandru, H. Hyyti, A. Visala, and P. Kujala, “A Complete Process For Shipborne
Sea-Ice Field Analysis Using Machine Vision,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 14 539–14 545, Jan. 2020, issn: 2405-8963. doi: 10.1016/J.IFACOL.2020.12.1458.

xii

https://doi.org/10.1016/j.asoc.2018.05.018
https://doi.org/10.1109/TGRS.2014.2366640
https://doi.org/10.1016/J.COLDREGIONS.2014.12.004
https://doi.org/10.3390/RS11202436
https://doi.org/10.1016/J.COLDREGIONS.2009.01.001
https://doi.org/10.1016/J.COLDREGIONS.2009.01.001
https://doi.org/10.1115/OMAE2017-61822
https://doi.org/10.1016/J.IFACOL.2020.12.1458

[25] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman, “The pascal visual object classes challenge: A retrospective,” International
Journal of Computer Vision, vol. 111, no. 1, pp. 98–136, Jan. 2015.

[26] T.-Y. Lin, M. Maire, S. Belongie, et al., Microsoft coco: Common objects in context,
2014. doi: 10.48550/ARXIV.1405.0312. [Online]. Available: https://arxiv.org/
abs/1405.0312.

[27] M. Cordts, M. Omran, S. Ramos, et al., “The cityscapes dataset for semantic urban
scene understanding,” in Proc. of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016.

[28] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[29] O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in Medical Image Computing and Computer-Assisted Intervention
(MICCAI), ser. LNCS, (available on arXiv:1505.04597 [cs.CV]), vol. 9351, Springer,
2015, pp. 234–241.

[30] A. S. Nagi, M. S. Minhas, L. Xu, and K. A. Scott, “A Multi-Scale Technique to Detect
Marginal Ice Zones Using Convolutional Neural Networks,” International Geoscience
and Remote Sensing Symposium (IGARSS), pp. 3035–3038, Sep. 2020. doi: 10.1109/
IGARSS39084.2020.9324172.

[31] A. S. Nagi, D. Kumar, D. Sola, and K. A. Scott, “RUF: Effective Sea Ice Floe Segmen-
tation Using End-to-End RES-UNET-CRF with Dual Loss,” Remote Sensing 2021,
Vol. 13, Page 2460, vol. 13, no. 13, p. 2460, Jun. 2021. doi: 10.3390/RS13132460.

[32] Y. Han, Y. Liu, Z. Hong, Y. Zhang, S. Yang, and J. Wang, “Sea Ice Image Classification
Based on Heterogeneous Data Fusion and Deep Learning,” Remote Sensing 2021, Vol.
13, Page 592, vol. 13, no. 4, p. 592, Feb. 2021. doi: 10.3390/RS13040592.

[33] X. Zhang, J. Jin, Z. Lan, et al., “Icenet: A semantic segmentation deep network for river
ice by fusing positional and channel-wise attentive features,” Remote Sensing, vol. 12,
no. 2, 2020, issn: 2072-4292. doi: 10.3390/rs12020221.

[34] E. Kim, G. S. Dahiya, S. Løset, and R. Skjetne, “Can a computer see what an ice
expert sees? Multilabel ice objects classification with convolutional neural networks,”
Results in Engineering, vol. 4, p. 100 036, Dec. 2019, issn: 25901230. doi: 10.1016/j.
rineng.2019.100036.

[35] O.-M. Pedersen and E. Kim, “Arctic Vision: Using Neural Networks for Ice Object Clas-
sification, and Controlling How They Fail,” Journal of Marine Science and Engineering
2020, Vol. 8, Page 770, vol. 8, no. 10, p. 770, Sep. 2020. doi: 10.3390/JMSE8100770.

[36] E. Kim, N. Panchi, and G. S. Dahiya, “Towards automated identification of ice fea-
tures for surface vessels using deep learning,” Journal of Physics: Conference Series,
vol. 1357, no. 1, p. 012 042, Oct. 2019, issn: 1742-6596. doi: 10.1088/1742-6596/
1357/1/012042.

xiii

https://doi.org/10.48550/ARXIV.1405.0312
https://arxiv.org/abs/1405.0312
https://arxiv.org/abs/1405.0312
https://doi.org/10.1109/IGARSS39084.2020.9324172
https://doi.org/10.1109/IGARSS39084.2020.9324172
https://doi.org/10.3390/RS13132460
https://doi.org/10.3390/RS13040592
https://doi.org/10.3390/rs12020221
https://doi.org/10.1016/j.rineng.2019.100036
https://doi.org/10.1016/j.rineng.2019.100036
https://doi.org/10.3390/JMSE8100770
https://doi.org/10.1088/1742-6596/1357/1/012042
https://doi.org/10.1088/1742-6596/1357/1/012042

[37] O. Russakovsky, J. Deng, H. Su, et al., “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–
252, 2015. doi: 10.1007/s11263-015-0816-y.

[38] S. Sorensen, V. Veerendraveer, W. Treible, A. R. Mahoney, and C. Kambhamettu,
“The polar sea ice topography reconstruction system,” Annals of Glaciology, vol. 61,
no. 82, pp. 127–138, Sep. 2020, issn: 0260-3055. doi: 10.1017/AOG.2020.21.

[39] R. Qin, J. Tian, and P. Reinartz, “3d change detection–approaches and applications,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 122, pp. 41–56, 2016.

[40] A. Nguyen and B. Le, “3d point cloud segmentation: A survey,” in 2013 6th IEEE
conference on robotics, automation and mechatronics (RAM), IEEE, 2013, pp. 225–
230.

[41] T. Rabbani, F. Van Den Heuvel, and G. Vosselmann, “Segmentation of point clouds us-
ing smoothness constraint,” International archives of photogrammetry, remote sensing
and spatial information sciences, vol. 36, no. 5, pp. 248–253, 2006.

[42] B. Bhanu, S. Lee, C.-C. Ho, and T. Henderson, “Range data processing: Representation
of surfaces by edges,” in Proceedings of the eighth international conference on pattern
recognition, IEEE Computer Society Press, 1986, pp. 236–238.

[43] X. Y. Jiang, U. Meier, and H. Bunke, “Fast range image segmentation using high-
level segmentation primitives,” in Proceedings Third IEEE Workshop on Applications
of Computer Vision. WACV’96, IEEE, 1996, pp. 83–88.

[44] Y. Xie, J. Tian, and X. X. Zhu, “Linking points with labels in 3d: A review of point
cloud semantic segmentation,” IEEE Geoscience and Remote Sensing Magazine, vol. 8,
no. 4, pp. 38–59, 2020.

[45] J.-E. Deschaud and F. Goulette, “A fast and accurate plane detection algorithm for
large noisy point clouds using filtered normals and voxel growing,” in 3DPVT, Hal
Archives-Ouvertes Paris, France, 2010.

[46] A.-V. Vo, L. Truong-Hong, D. F. Laefer, and M. Bertolotto, “Octree-based region
growing for point cloud segmentation,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 104, pp. 88–100, 2015.

[47] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fit-
ting with applications to image analysis and automated cartography,” Communications
of the ACM, vol. 24, no. 6, pp. 381–395, 1981.

[48] F. Tarsha-Kurdi, T. Landes, and P. Grussenmeyer, “Hough-transform and extended
ransac algorithms for automatic detection of 3d building roof planes from lidar data,”
in ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007, vol. 36, 2007, pp. 407–
412.

[49] A. E. Johnson, A. R. Klumpp, J. B. Collier, and A. A. Wolf, “Lidar-based hazard
avoidance for safe landing on mars,” Journal of guidance, control, and dynamics, vol. 25,
no. 6, pp. 1091–1099, 2002.

xiv

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1017/AOG.2020.21

[50] M. Garg, A. Kumar, and P. B. Sujit, “Terrain-based landing site selection and path
planning for fixed-wing UAVs,” 2015 International Conference on Unmanned Aircraft
Systems, ICUAS 2015, pp. 246–251, Jul. 2015. doi: 10.1109/ICUAS.2015.7152297.

[51] O. G. Lorenzo, J. Martínez, D. L. Vilariño, T. F. Pena, J. C. Cabaleiro, and F. F.
Rivera, “Landing sites detection using LiDAR data on manycore systems,” The Journal
of Supercomputing 2016 73:1, vol. 73, no. 1, pp. 557–575, Nov. 2016, issn: 1573-0484.
doi: 10.1007/S11227-016-1912-7. [Online]. Available: https://link.springer.
com/article/10.1007/s11227-016-1912-7.

[52] G. Loureiro, A. Dias, A. Martins, and J. Almeida, “Emergency landing spot detection
algorithm for unmanned aerial vehicles,” Remote Sensing, vol. 13, no. 10, p. 1930, 2021.

[53] L. Yan, J. Qi, M. Wang, C. Wu, and J. Xin, “A safe landing site selection method of
uavs based on lidar point clouds,” in 2020 39th Chinese Control Conference (CCC),
IEEE, 2020, pp. 6497–6502.

[54] M. F. R. Lee, A. Nugroho, T. T. Le, Bahrudin, and S. N. Bastida, “Landing area
recognition using deep learning for unmanned aerial vehicles,” International Conference
on Advanced Robotics and Intelligent Systems, ARIS, vol. 2020-Augus, Aug. 2020, issn:
25726919. doi: 10.1109/ARIS50834.2020.9205793.

[55] R. Polvara, S. Sharma, J. Wan, A. Manning, and R. Sutton, “Autonomous Vehicular
Landings on the Deck of an Unmanned Surface Vehicle using Deep Reinforcement
Learning,” Robotica, vol. 37, no. 11, pp. 1867–1882, Nov. 2019, issn: 0263-5747. doi:
10.1017/S0263574719000316. [Online]. Available: https://www.cambridge.org/
core/journals/robotica/article/abs/autonomous-vehicular-landings- on-
the - deck - of - an - unmanned - surface - vehicle - using - deep - reinforcement -
learning/6B87C450D4D431EC163DBEA45FD60C73.

[56] S. Lee and Y. Kwon, “Safe landing of drone using ai-based obstacle avoidance,” In-
ternational Journal of Mechanical Engineering and Robotics Research, vol. 9, no. 11,
2020.

[57] F. J. Lawin, M. Danelljan, P. Tosteberg, G. Bhat, F. S. Khan, and M. Felsberg, “Deep
projective 3d semantic segmentation,” in International Conference on Computer Anal-
ysis of Images and Patterns, Springer, 2017, pp. 95–107.

[58] A. Boulch, B. Le Saux, and N. Audebert, “Unstructured point cloud semantic labeling
using deep segmentation networks.,” 3dor@ eurographics, vol. 3, pp. 1–8, 2017.

[59] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent convolutions for dense
prediction in 3d,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2018, pp. 3887–3896.

[60] B. Wu, A. Wan, X. Yue, and K. Keutzer, “Squeezeseg: Convolutional neural nets with
recurrent crf for real-time road-object segmentation from 3d lidar point cloud,” in
2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2018,
pp. 1887–1893.

xv

https://doi.org/10.1109/ICUAS.2015.7152297
https://doi.org/10.1007/S11227-016-1912-7
https://link.springer.com/article/10.1007/s11227-016-1912-7
https://link.springer.com/article/10.1007/s11227-016-1912-7
https://doi.org/10.1109/ARIS50834.2020.9205793
https://doi.org/10.1017/S0263574719000316
https://www.cambridge.org/core/journals/robotica/article/abs/autonomous-vehicular-landings-on-the-deck-of-an-unmanned-surface-vehicle-using-deep-reinforcement-learning/6B87C450D4D431EC163DBEA45FD60C73
https://www.cambridge.org/core/journals/robotica/article/abs/autonomous-vehicular-landings-on-the-deck-of-an-unmanned-surface-vehicle-using-deep-reinforcement-learning/6B87C450D4D431EC163DBEA45FD60C73
https://www.cambridge.org/core/journals/robotica/article/abs/autonomous-vehicular-landings-on-the-deck-of-an-unmanned-surface-vehicle-using-deep-reinforcement-learning/6B87C450D4D431EC163DBEA45FD60C73
https://www.cambridge.org/core/journals/robotica/article/abs/autonomous-vehicular-landings-on-the-deck-of-an-unmanned-surface-vehicle-using-deep-reinforcement-learning/6B87C450D4D431EC163DBEA45FD60C73

[61] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “Squeezesegv2: Improved model
structure and unsupervised domain adaptation for road-object segmentation from a li-
dar point cloud,” in 2019 International Conference on Robotics and Automation (ICRA),
IEEE, 2019, pp. 4376–4382.

[62] C. Xu, B. Wu, Z. Wang, et al., “Squeezesegv3: Spatially-adaptive convolution for effi-
cient point-cloud segmentation,” in European Conference on Computer Vision, Springer,
2020, pp. 1–19.

[63] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “RangeNet++: Fast and Accurate
LiDAR Semantic Segmentation,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2019.

[64] T. Cortinhal, G. Tzelepis, and E. E. Aksoy, Salsanext: Fast, uncertainty-aware semantic
segmentation of lidar point clouds for autonomous driving, 2020. arXiv: 2003.03653
[cs.CV].

[65] J. Behley, M. Garbade, A. Milioto, et al., “SemanticKITTI: A Dataset for Semantic
Scene Understanding of LiDAR Sequences,” in Proc. of the IEEE/CVF International
Conf. on Computer Vision (ICCV), 2019.

[66] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for real-time
object recognition,” in 2015 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2015, pp. 922–928.

[67] X. Ye, J. Li, H. Huang, L. Du, and X. Zhang, “3d recurrent neural networks with
context fusion for point cloud semantic segmentation,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 403–417.

[68] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 652–660.

[69] Z. Wu, S. Song, A. Khosla, et al., “3d shapenets: A deep representation for volumet-
ric shapes,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1912–1920.

[70] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature
learning on point sets in a metric space,” CoRR, vol. abs/1706.02413, 2017. arXiv:
1706.02413. [Online]. Available: http://arxiv.org/abs/1706.02413.

[71] Q. Hu, B. Yang, L. Xie, et al., “Learning semantic segmentation of large-scale point
clouds with random sampling,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 01, pp. 1–1, May 2021, issn: 1939-3539. doi: 10.1109/TPAMI.2021.
3083288.

[72] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas,
“Kpconv: Flexible and deformable convolution for point clouds,” Proceedings of the
IEEE International Conference on Computer Vision, 2019.

[73] A. Boulch, “Convpoint: Continuous convolutions for point cloud processing,” Comput-
ers & Graphics, vol. 88, pp. 24–34, 2020.

xvi

https://arxiv.org/abs/2003.03653
https://arxiv.org/abs/2003.03653
https://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
https://doi.org/10.1109/TPAMI.2021.3083288
https://doi.org/10.1109/TPAMI.2021.3083288

[74] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler, and M. Pollefeys,
“SEMANTIC3D.NET: A new large-scale point cloud classification benchmark,” in IS-
PRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
vol. IV-1-W1, 2017, pp. 91–98.

[75] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous Convolution
for Semantic Image Segmentation,” Jun. 2017. arXiv: 1706.05587.

[76] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, The PAS-
CAL Visual Object Classes Challenge 2012 (VOC2012) Results, http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[77] F. Yu, V. Koltun, and T. Funkhouser, Dilated residual networks, 2017. doi: 10.48550/
ARXIV.1705.09914. [Online]. Available: https://arxiv.org/abs/1705.09914.

[78] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 2881–2890.

[79] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Se-
mantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and
Fully Connected CRFs,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 40, no. 4, pp. 834–848, Apr. 2018, issn: 01628828. doi: 10.1109/TPAMI.
2017.2699184. arXiv: 1606.00915.

[80] Y. Chen, T. Yang, X. Zhang, G. Meng, X. Xiao, and J. Sun, “Detnas: Backbone search
for object detection,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[81] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “MobileNetV2: In-
verted Residuals and Linear Bottlenecks,” in Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2018, pp. 4510–4520, isbn:
9781538664209. doi: 10.1109/CVPR.2018.00474. arXiv: 1801.04381.

[82] A. Bréhéret, Pixel Annotation Tool, 2017. [Online]. Available: https://github.com/
abreheret/PixelAnnotationTool.

[83] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, Yolov4: Optimal speed and accuracy
of object detection, 2020. arXiv: 2004.10934 [cs.CV].

[84] X. Chen, A. Milioto, E. Palazzolo, P. Giguère, J. Behley, and C. Stachniss, “SuMa++:
Efficient LiDAR-based Semantic SLAM,” in Proceedings of the IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), 2019.

[85] E. E. Aksoy, S. Baci, and S. Cavdar, “Salsanet: Fast road and vehicle segmentation in
lidar point clouds for autonomous driving,” in IEEE Intelligent Vehicles Symposium
(IV2020), 2020.

[86] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, vol. 2016-Decem, IEEE Computer Society, Dec. 2016, pp. 770–
778, isbn: 9781467388504. doi: 10.1109/CVPR.2016.90. arXiv: 1512.03385.

xvii

https://arxiv.org/abs/1706.05587
https://doi.org/10.48550/ARXIV.1705.09914
https://doi.org/10.48550/ARXIV.1705.09914
https://arxiv.org/abs/1705.09914
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
https://arxiv.org/abs/1606.00915
https://doi.org/10.1109/CVPR.2018.00474
https://arxiv.org/abs/1801.04381
https://github.com/abreheret/PixelAnnotationTool
https://github.com/abreheret/PixelAnnotationTool
https://arxiv.org/abs/2004.10934
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1512.03385

[87] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti
vision benchmark suite,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2012.

[88] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3d
classification and segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 652–660.

[89] J. Zhang and S. Singh, “Visual-lidar odometry and mapping: Low-drift, robust, and
fast,” in 2015 IEEE International Conference on Robotics and Automation (ICRA),
IEEE, 2015, pp. 2174–2181.

xviii

	Abstract
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	Abbreviations
	Introduction
	Sea-ice detection using image semantic segmentation
	Motivation
	Problem Definition
	Objectives & Contributions

	LZ detection using point cloud semantic segmentation
	Motivation
	Problem Definition
	Objectives and Contributions

	Organization of the Thesis
	Statement of Co-authorship

	Background
	Image Semantic Segmentation
	Traditional Algorithms
	State-of-the-art CNN methods

	Point Cloud Semantic Segmentation
	Classical Methods using Geometric Features
	Projection-based Semantic Segmentation
	Point-based Semantic Segmentation
	Discussion on point cloud semantic segmentation methods

	Performance Metrics
	Intersection over Union
	Accuracy
	Average runtime
	Throughput

	Sea-ice detection using Deeplab
	Background
	PSPNet101
	Deeplabv3

	Methodology
	Dataset
	Transfer Learning process
	Hardware Selection
	Nvidia Jetson AGX Xavier
	Hand-held Device

	Experimental Results
	Evaluation using metrics
	Inference speed
	Sample predictions

	Discussion

	Evaluation of projection-based point cloud segmentation methods for VLP-16 Lidars
	Background
	RangeNet++
	SalsaNext

	Method
	KITTI Velodyne dataset
	Custom MUN VLP-16 dataset

	Qualitative result evaluation
	Quantitative Performance Evaluation
	Qualitative Performance Evaluation

	Discussion

	LZ detection using point-based methods
	Model Selection
	ConvPoint Model

	Methodology
	Datasets
	Semantic3D Benchmark
	Experimental data from DJI M600 - MUN dataset 1
	Post-processed experimental MUN dataset 1

	Labeling of Training Data
	Transfer Learning

	Point cloud processing module
	Datasets generated using VILOAM architecture
	Pipeline data - MUN dataset 2
	Pipeline data - MUN dataset 3

	Labeling pipeline data

	Experimental Results
	Results: Holyrood-Paradise dataset
	Results: Post-processed Holyrood dataset
	Qualitative Evaluation
	Quantitative Evaluation
	Graphical Evaluation

	Implementing the LZ detection module on Lighthouse dataset

	Discussion

	Conclusion
	Summary of findings
	Research Contributions
	Future Work

	Bibliography

