## Modeling of Asphalt Pavement Performance Indices in Different Climate Regions Using

## **Soft Computing Techniques**

By

Abdualmtalab Abdualaziz Yeklef Ali

A thesis presented to Memorial University in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Civil Engineering

October (2022)

St. John's

Newfoundland and Labrador

Canada

## **AUTHOR'S DECLARATION**

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

#### ABSTRACT

Pavement Management Systems (PMS) enhance pavement performance over the pavements' predicted lifespan by maximizing pavement life. PMS have become an essential aspect of construction and maintenance in the road domain, providing significant cost and energy emission reductions. In addition, using pavement performance prediction models have become an important part of PMS as a technically method for road engineers and various transportation agencies during the past several decades. The Pavement Condition Index (PCI) and International Roughness Index (IRI) are generally accepted methods for gauging ride quality and pavement distress, environment, and traffic volume. Hence, studying these variables while developing prediction models is a vital step that can help develop asphalt pavement performance indices.

This research aimed to introduce an effective method for developing asphalt pavement performance indices in different climate regions. This research provided a methodology to develop performance models using three soft computing techniques, namely the fuzzy inference system (FIS), multiple linear regression (MLR), and artificial neural networks (ANNs). Two sources were used for the extracted dataset: the long-term pavement performance (LTPP) data set for four climate regions in the U.S. and Canada and filed survey data of section roads of St. John's, Newfoundland, Canada.

First, for the classification section, the research presented in this study provided a FIS that uses appropriate membership functions for computing PCI and IRI values. A fuzzy input was calculated by considering the degree of distress from nine density types of pavement distress coefficients (rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, patching, potholes, bleeding, and ravelling), which were considered as fuzzy input variables. Results presented that the rutting and transverse cracking had the most significant influence on the PCI model, while rutting and patching had the most significant impact on the IRI model.

Second, the MLR and ANNs techniques were used for predicting and developing models for the PCI and IRI of flexible pavements. The LTPP database was used to obtain three fundamental variables (pavement distress, environmental, and traffic volume) as input variables for four climate regions.

Finally, for the case study, the research developed a second set of pavement distress models based on a field survey of St. John's city's input variables for predicting PCI and IRI models. A high determination coefficient ( $R^2$ ), low root mean square error (RMSE) and mean absolute error (MAE)indicated good accuracy for the prediction models. The results showed that the ANNs have more precision than the MLR techniques. However, the results showed that both methods perform well.

#### ACKNOWLEDGEMENTS

I would like to first and foremost thank Allah for granting me good health, a good state of mind, and a way to finish this thesis. All praise and thanks to Allah, without his help, it won't be easy to complete this degree.

The author would like to express deep gratitude to my supervisor, Professor Amgad Hussein, for his guidance, encouragement, for this research, as well as my co-supervisor, Professor Usama Heneash, for his help and support throughout the study. I would also like to thank my committee members, Professor Samer Nakhla for his support.

I would dedicate my thesis to my mother's and father's soul; may Allah bless them.

I owe a debt of gratitude to my wife and my kids for their patience and help. Big thanks go to my brothers for their encouragement and kindness.

I greatly appreciate the support of the Azzaytuna University-Tarhuna and the Ministry of Higher Education in Libya, which sponsored the research and funded my study period.

| ABSTRACT                                                                                                                         | III                        |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| List of Contents                                                                                                                 | VI                         |
| List of Figures                                                                                                                  | X                          |
| List of Tables                                                                                                                   | XIII                       |
| Chapter1: Introduction                                                                                                           | 1                          |
| <ul> <li>1.1 Introduction</li> <li>1.2 Problem Statement</li> <li>1.3 Research Objectives</li> <li>1.4 Research Scope</li> </ul> | 1<br>1<br>3<br>3           |
| 1.5 Dissertation Structure                                                                                                       | 5                          |
| Chapter2: Literature Review                                                                                                      | 7                          |
| <ul><li>2.1 Pavement Management System</li><li>2.1 History of Test Roads in North America (US and Canada)</li></ul>              | 7<br>7                     |
| 2.2 Pavement Management Systems                                                                                                  | 9                          |
| 2.3 Parameters Affecting Pavement Performance                                                                                    |                            |
| <ul> <li>2.4 Pavement Deterioration</li></ul>                                                                                    | 24<br>24<br>26<br>27<br>28 |
| <ul> <li>2.5 Pavement Performance Measures</li></ul>                                                                             |                            |
| 2.6 Finding Connections Between PCI, IRI, and PSR                                                                                | 41                         |
| 2.7 Modelling Pavement Deterioration                                                                                             |                            |
| 2.8 Summary of Reviewed                                                                                                          | 47                         |
| Chapter3: Research Methodology                                                                                                   |                            |
| <ul><li>3.1 Soft Computing Techniques</li><li>3.2 Multiple Linear Regression</li><li>3.3 Fuzzy logic</li></ul>                   |                            |
| 3.4 Fuzzy inference system (FIS)                                                                                                 |                            |

## List of Contents

| 3.4.1 Membership Functions Generation                                                                    |          |
|----------------------------------------------------------------------------------------------------------|----------|
| 3.5 Artificial Neural Networks (ANNs)                                                                    | 55       |
| 3.6 Applying ANNs and FIS to Pavement Studies                                                            |          |
| 3.7 Research Plan                                                                                        |          |
| 3.8 Data Aggregation of Study                                                                            | 66       |
| 3.9 Modeling Asphalt Pavement Performance Indices                                                        | 67       |
| 3.10 Modeling Asphalt Pavement Performance Indices Using (FIS)                                           | 67       |
| 3.11 Modeling Asphalt Pavement Performance Indices Using (MLR)                                           | 67       |
| 3.12 Modeling Asphalt Pavement Performance Indices Using (ANNs)                                          | 69       |
| 3.13 Comparison and validation between (MLR) and (ANNs) models                                           | 71       |
| 3.14 Case study                                                                                          | 71       |
| Chapter4: Modeling of Asphalt Pavement Performance Indices Using (FIS)                                   | 72       |
| 4.1 Introduction                                                                                         | 72       |
| 4.2 Methodology and Data Collection                                                                      | 72       |
| <ul><li>4.3 Fuzzy Inference System</li><li>4.3.1 Model Formulation and Fuzzy Rule-Based System</li></ul> | 74<br>74 |
| <ul> <li>4.4 Constructing the Fuzzy Logic Model</li></ul>                                                |          |
| <ul> <li>4.5 The Results of Pavement Section Classification</li></ul>                                    |          |
| 4.6 Summary                                                                                              |          |
| Chapter5: Modeling the Relationship Between Asphalt Pavement Performance Indices                         | 90       |
| 5.1 Introduction                                                                                         | 90       |
| 5.2 Pavement Condition Index Calculation                                                                 | 90       |
| 5.3 Modeling the Relationship Between Asphalt Pavement Indices (PCI and IRI) Using Mathe<br>Methods      | ematical |
| 5.4 Comparison and validation of the mathematical models                                                 | 97       |
| 5.5 Modeling Artificial Neural Network (ANNs)                                                            |          |
| 5.6 Comparison and validation of the models                                                              |          |
| 5.7 Summary                                                                                              |          |

Chapter6: Modeling of Asphalt Pavement Performance Indices Using (MLR) and (ANNs) Techniques

| 6.1 Introduction                                                              |     |
|-------------------------------------------------------------------------------|-----|
| 6.2 Effect of Pavement Distress on Indices Values                             | 106 |
| 6.2.1 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique  |     |
| 6.2.1.1 Validation of MLR Models.                                             |     |
| 6.2.1.2 MLR Model Sensitivity Analysis for PCI and IRI                        | 117 |
| 6.2.2 Modeling of Asphalt Pavement Performance Indices Using (ANNs) Technique | 121 |
| 6.2.2.1 Modeling of Asphalt Pavement Performance Index (PCI)                  | 123 |
| 6.2.2.2 Modeling of Asphalt Pavement Performance Indices (IRI)                |     |
| 6.2.3 Validation of ANN Models                                                |     |
| 6.2.4 Comparison of the Models                                                |     |
| 6.2.4.1 Comparison of MLR and ANNS Models for PCI                             | 128 |
| 6.2.4.2 Comparison of AININS and MLR Models for IRI                           | 131 |
| 0.2.5 Summary                                                                 | 134 |
| 6.3 Effect of Environmental Parameters on IRI and PCI Values                  |     |
| 6.3.1 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique  |     |
| 6.3.1.1 Validation of MLR Models.                                             | 141 |
| 6.3.2 Modeling of Asphalt Devement Performance Indices Using (ANNs) Technique | 140 |
| 6.3.2 Modeling of Asphalt Pavement Performance Index (PCI)                    | 130 |
| 6 3 2 2 Modeling of Asphalt Pavement Performance Index (IRI)                  | 152 |
| 6.3.3 Validation of ANNs Models                                               |     |
| 6.3.4 Comparison of the Models                                                | 156 |
| 6.3.4.1 Comparison of ANNs and MLR Models for PCI                             | 156 |
| 6.3.4.2 Comparison of ANNs and MLR Models for IRI                             | 159 |
| 6.3.5 Summary                                                                 | 162 |
| 6.4 Effect of Traffic Volume Parameters on IRI and PCI Values                 |     |
| 6.4.1 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique  | 164 |
| 6.4.1.1 Validation of MLR Models                                              |     |
| 6.4.1.2 MLR Model Sensitivity Analysis for PCI and IRI                        | 172 |
| 6.4.2 Modeling of Asphalt Pavement Performance Indices Using (ANNs) Technique | 175 |
| 6.4.2.1 Modeling of Asphalt Pavement Performance Index (PCI)                  |     |
| 6.4.2.2 Modeling of Asphalt Pavement Performance Index (IRI)                  | 178 |
| 6.4.3 Validation of ANNs Models                                               | 180 |
| 6.4.4 Comparison of ANNs and MLP Models for PCI                               |     |
| 6 4 4 2 Comparison of ANNs and MLR Models for IRI                             |     |
| 6.4.5 Summary                                                                 |     |
| Chapter7: Field Survey (Case Study)                                           |     |
| 7.1 Field Survey (Case Study)                                                 |     |
| 7.2 Climate and Weather                                                       | 100 |
|                                                                               |     |

| 7.3 Smartphone Data Collection and Field Studies                                       | 190    |
|----------------------------------------------------------------------------------------|--------|
| 7.4 Study Area Location and Data Preparation                                           | 191    |
| 7.5 Compilation and Analysis of Data                                                   |        |
| 7.5.1 Pavement Condition Index (PCI)                                                   | 195    |
| 7.5.2 123                                                                              | 196    |
| 7.5.3 International Roughness Index (IRI)                                              | 196    |
| 7.5.4 Present Serviceability Rating (PSR)                                              | 197    |
| 7.6 Modeling of Asphalt Pavement Performance Indices using (FIS)                       | 198    |
| 7.6.1 Methodology Fuzzy Inference System                                               | 199    |
| 7.6.1.1 Data Pre-processing and Feature Selection                                      | 199    |
| 7.6.1.2 Membership Functions                                                           |        |
| 7.6.1.3 Fuzzy Rule Generation:                                                         |        |
| 7.6.1.4 The Results of Pavement Section Classification                                 |        |
| 7.7 Modeling the Relationship Between Indices PCI, IRI, and PSR Using Mathematical and |        |
| (ANNs)Techniques                                                                       |        |
| 7.7.1 Modeling the Relationship Between Indices PCI, IRI, and PSR Using Mathematical M | ethods |
|                                                                                        |        |
| 7.7.2 Comparison and Validation of the Models                                          |        |
| 7.7.4 Comparison and Validation of the Models                                          |        |
|                                                                                        |        |
| 7.8 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique             |        |
| 7.8.1 Validation for PCI and IRI Models                                                |        |
| /.8.2 Cronbach s alpha                                                                 |        |
| 7.9 Modeling of Asphalt Pavement Performance Indices Using (ANNs) Technique            |        |
| 7.9.1 Comparison and Validation of the Models                                          |        |
| 7.9.2 Comparison and Validation of MLR, FIS, and ANNs Models for PCI                   |        |
| 7.9.3 Comparison and Validation of MLR, FIS, and ANNs Models for IRI                   |        |
| 7.9.5 MLR Model sensitivity analysis for PCL IPL and PSR                               |        |
|                                                                                        |        |
| 7.10 Summary                                                                           |        |
| Chapter8: Conclusions and Recommendations                                              |        |
| 8.1 Conclusions                                                                        | 237    |
| 8.2 Contribution to Knowledge                                                          | 241    |
| 8.2 Decommon dations                                                                   | 242    |
| 8.5 Recommendations                                                                    |        |
| Publications                                                                           |        |
| References                                                                             |        |
| Appendices                                                                             | 1      |

| Figure 2-1: The AASHO road test configuration (1962).                                            | 8   |
|--------------------------------------------------------------------------------------------------|-----|
| Figure 2-2: Parameters affecting pavement performance.                                           | 14  |
| Figure 2-3: Delamination in asphalt pavement.                                                    | 23  |
| Figure 2-4: The quarter car comprising a sprung mass                                             | 32  |
| Figure 3-1: Representation of a crisp (classical) set.                                           | 51  |
| Figure 3-2: Representation of a fuzzy set.                                                       | 51  |
| Figure 3-3: Schematic diagram of a fuzzy inference system.                                       | 53  |
| Figure 3-4: Typical structure of ANN                                                             | 56  |
| Figure 3-5: Schematic diagram of research methodology                                            | 65  |
| Figure 4-1: Structure of fuzzy logic approach of PCI and IRI.                                    | 73  |
| Figure 4-2: Fuzzy inference system for PCI (120 sections)                                        | 80  |
| Figure 4-3: Fuzzy inference system for PCI (150 sections)                                        | 81  |
| Figure 4-4: Fuzzy inference system for FIRI (120 sections).                                      | 83  |
| Figure 4-5: Fuzzy inference system for FIRI (150 sections).                                      | 84  |
| Figure 4-6: Sensitivity analysis of input variables on prediction for FPCI                       | 87  |
| Figure 4-7: Sensitivity analysis of input variables on prediction for FIRI                       | 87  |
| Figure 5-1: Research methodology of the examining and Modeling the relationship between asphalt  |     |
| pavement performance indices.                                                                    | 91  |
| Figure 5-2: PCI versus IRI plot for dry freeze.                                                  | 93  |
| Figure 5-3: PCI versus IRI plot for dry no freeze.                                               | 94  |
| Figure 5-4:PCI versus IRI plot for wet freeze                                                    | 95  |
| Figure 5-5: PCI versus IRI plot for wet no freeze                                                | 97  |
| Figure 5-6: Architecture of ANN model for PCI.                                                   | 100 |
| Figure 5-7: Performance of the ANNs for predicting PCI models for four climate regions           | 101 |
| Figure 6-1: The research methodology of the Modeling asphalt pavement performance indices        | 105 |
| Figure 6-2: MLR model for the dry freeze and dry no freeze regions based on pavement distress    | 114 |
| Figure 6-3: MLR model for the wet freeze and wet no freeze regions based on pavement distress    | 114 |
| Figure 6-4: MLR model for the dry freeze and dry no freeze regions based on pavement distress    | 116 |
| Figure 6-5: MLR model for the wet freeze and wet no freeze regions based on pavement distress    | 116 |
| Figure 6-6: Sensitivity analysis of MLR for PCI based on pavement distress.                      | 119 |
| Figure 6-7: Sensitivity analysis of MLR for IRI based on pavement distress                       | 121 |
| Figure 6-8: Architecture of ANN model based on pavement distress.                                | 122 |
| Figure 6-9: ANNs model goodness-of-fit results for PCI values based on pavement distress         | 124 |
| Figure 6-10: ANNs model goodness-of-fit results for IRI values based on pavement distress        | 126 |
| Figure 6-11: Fitness of MLR and ANNs models to PCI prediction based on pavement distress data fi | rom |
| two climate regions: (left) dry freeze; (right) dry no freeze.                                   | 130 |
| Figure 6-12: Fitness of MLR and ANNs models to PCI prediction based on pavement distress data fi | rom |
| two climate regions: (left) wet freeze; (right) wet no freeze                                    | 130 |
| Figure 6-13: Fitness of MLR and ANNs models to IRI prediction based on pavement distress data fr | om  |
| two climate regions: (left) dry freeze; (right) dry no freeze                                    | 133 |
| Figure 6-14: Fitness of MLR and ANNs models to IRI prediction based on pavement distress data fr | om  |
| two climate regions: (left) wet freeze; (right) wet no freeze                                    | 133 |
| Figure 6-15: MLR model for the dry freeze and the dry no freeze region based on environmental    | 143 |
| Figure 6-16: MLR model for the wet freeze and the wet no freeze region based on environmental    | 143 |
| Figure 6-17: MLR model for the dry freeze and the dry no freeze region based on environmental    | 145 |
| Figure 6-18 : MLR model for the wet freeze and the wet no freeze region based on environmental   | 145 |
| Figure 6-19: Sensitivity analysis of MLR for PCI based on environmental parameters.              | 147 |
| Figure 6-20: Sensitivity analysis of MLR for IRI based on environmental parameters.              | 149 |
|                                                                                                  |     |

# List of Figures

| Figure 6-21: Architecture of ANN model for PCI and IRI based on environmental parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 150                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Figure 6-22: ANNs model goodness-of-fit results for PCI values based on environmental parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 153                 |
| Figure 6-23: ANNs model goodness-of-fit results for IRI values based on environmental parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 154                 |
| Figure 6-24: Fitness of MLR and ANNs models to PCI prediction based on environmental data from tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wo                  |
| climate regions: (left) dry freeze; (right)dry no freeze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 158                 |
| Figure 6-25: Fitness of MLR and ANNs models to PCI prediction based on environmental data from tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wo                  |
| climate regions: (left) wet freeze; (right)wet no freeze.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 158                 |
| Figure 6-26: Fitness of MLR and ANNs models to IRI prediction based on environmental data from tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vo                  |
| climate regions: (left) dry freeze; (right)dry no freeze.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 161                 |
| Figure 6-27: Fitness of MLR and ANNs models to IRI prediction based on environmental data from tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vo                  |
| climate regions: (left) wet freeze; (right)wet no freeze.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 161                 |
| Figure 6-28: MLR model for the dry freeze and the dry no freeze region based on traffic volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 169                 |
| Figure 6-29: MLR model for the wet freeze and the wet no freeze region based on traffic volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 169                 |
| Figure 6-30: MLR model for the dry freeze and the dry no freeze region based on traffic volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 171                 |
| Figure 6-31: MLR model for the wet freeze and the wet no freeze region based on traffic volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 171                 |
| Figure 6-32: Sensitivity analysis of MLR for PCI based on traffic volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173                 |
| Figure 6-33: Sensitivity analysis of MLR for IRI based on traffic volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 175                 |
| Figure 6-34: Architecture of ANN model for PCI and IRI based on traffic volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 176                 |
| Figure 6-35: ANNs model goodness-of-fit results for IRI values based on traffic volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 177                 |
| Figure 6-36: ANNs model goodness-of-fit results for IRI values based on traffic volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 179                 |
| Figure 6-37: Fitness of MLR and ANNs models to PCI prediction based on traffic volume data from ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO                  |
| climate regions: (left) dry freeze: (right)dry no freeze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 183                 |
| Figure 6-38: Fitness of MLR and ANNs models to PCI prediction based on traffic volume data from ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO                  |
| climate regions: (left) wet freeze: (right)wet no freeze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 183                 |
| Figure 6-39: Fitness of MIR and ANNs models to IRI prediction based on traffic volume data from tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105                 |
| climate regions: (left) dry freeze: (right)dry no freeze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 185                 |
| Figure 6-40: Fitness of MIR and ANNs models to IRI prediction based on traffic volume data from tw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 105                 |
| climate regions: (left) wet freeze: (right) wet no freeze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 185                 |
| Figure 7-1: Outline of the case study of research methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 189                 |
| Figure 7-7: Man of the road network of the of St. John's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102                 |
| Figure 7-3: Representative photo showing different distress types in payement sections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 194                 |
| Figure 7-4: Diagram of a navement classification on FIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                 |
| Figure 7-5: Fuzzy inference system for PCI(2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 204                 |
| Figure 7-6: Fuzzy inference system for PCI (2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 204                 |
| Figure 7-7: Fuzzy inference system for IRI(2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 203                 |
| Figure 7-7. Fuzzy inference system for IRI (2016).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 207                 |
| Figure 7-6. 1 uzzy interence system for tra (2021).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200                 |
| Figure 7-9. 1 CI versus INI plot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210                 |
| Figure 7-10. I CI Versus I SK plot.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 211                 |
| Figure 7-11: INI VEISUS I SIX PIOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 212                 |
| Figure 7-12. Performance of the ANNs for predicting PCI model from DSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 214                 |
| Figure 7-13. Fertormance of the ANNIs for predicting FCI model from DSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 213<br>215          |
| Figure 7-14. Ferroritative of the prediction DCL values based on surface neuroment distances 1-6 (2019) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 213<br>4            |
| Figure 7-15: Accuracy of the prediction PCI values based on surface pavement distress: left (2018), and wight (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>221            |
| light (2021).<br>Figure 7 16: A course of the prediction IDI values based on surface revenuent distances 1-6 (2018) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 771<br>4            |
| Figure 7-10. Accuracy of the prediction IKI values based on surface pavement distress: left (2018), and wight (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>221            |
| $\begin{array}{l} \text{Figure 7.17},  ANNs model and descent of fit multiplication for DOI == 1 and the second state of the second state o$ | 221                 |
| rigure 7-17. Aimins model goodness-of-fit results for PCI values based on pavement distress: left (201)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 <i>)</i> ,<br>⊃⊇4 |
| and right (2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 224                 |

| Figure 7-18: ANNs model goodness-of-fit results for IR values based on pavement distress: left (2018) and right (2021). | ),<br>225 |
|-------------------------------------------------------------------------------------------------------------------------|-----------|
| Figure 7-19: ANNs model goodness-of-fit results for PSR values based on pavement distress (2018)                        | 225       |
| Figure 7-20: Fitness of MLR, FIS, and ANNs models to PCI prediction based on pavement distress da                       | ta        |
| (2018 and 2021)                                                                                                         | 228       |
| Figure 7-21: Fitness of MLR and ANNs models to PCI prediction based on pavement distress data (20                       | 18        |
| and 2021)                                                                                                               | 228       |
| Figure 7-22: Fitness of MLR, FIS, and ANNs models to IRI prediction based on pavement distress dat                      | a         |
| (2018 and 2021).                                                                                                        | 230       |
| Figure 7-23: Fitness of MLR and ANNs models to IRI prediction based on pavement distress data                           |           |
| (20182021)                                                                                                              | 231       |
| Figure 7-24: Fitness of MLR and ANNs models to PSR prediction based on pavement distress data                           |           |
| (2018)                                                                                                                  | 232       |
| Figure 7-25: Sensitivity analysis of MLR for PCI, IRI, and PSR (2018).                                                  | 234       |
| Figure 7-26: Sensitivity analysis of MLR for PCI and IRI (2021).                                                        | 235       |

## List of Tables

| Table 2-1: Ages of highways and roads in all provinces of Canada                                | 12    |
|-------------------------------------------------------------------------------------------------|-------|
| Table 2-2: Flexible pavement distress types.                                                    | 25    |
| Table 2-3: Pavement ride quality based on roughness                                             | 31    |
| Table 2-4: IRI limit specifications for reconstructed roads.                                    | 36    |
| Table 2-5: Pavement condition index (PCI).                                                      | 39    |
| Table 2-6: Present serviceability rating.                                                       | 41    |
| Table 4-1: Descriptive statistics for 120 and 150 sections of the measured deterioration        | 73    |
| Table 4-2: Distress types and number of membership functions to evaluate PCI and IRI.           | 75    |
| Table 4-3: Fuzzy rules for PCI.                                                                 | 77    |
| Table 4-4: Fuzzy rules for IRI.                                                                 | 78    |
| Table 4-5: Assessment various fuzzy inference systems' configurations for FPCI                  | 79    |
| Table 4-6: Assessment various fuzzy inference systems' configurations for FIRI                  | 82    |
| Table 4-7: Sensitivity analysis of prediction models for FPCI and FIRI.                         | 86    |
| Table 5-1: Gathered pavement distress data for four climate regions                             | 90    |
| Table 5-2: Summary of correlation between IRI & PCI.                                            | 97    |
| Table 5-3: Performance of PCI models by using ANNs technique based on IRI values                | . 100 |
| Table 5-4: Comparison of the cubic models to the ANNs models.                                   | . 102 |
| Table 6-1: Gathered pavement distress data from four climate regions.                           | . 107 |
| Table 6-2: PCI models summary based on pavement distress.                                       | . 108 |
| Table 6-3: IRI models summary based on pavement distress                                        | . 109 |
| Table 6-4: Validation of PCI models based on pavement distress                                  | .113  |
| Table 6-5: Validation of IRI models based on pavement distress                                  | .115  |
| Table 6-6: Sensitivity analysis of prediction models for PCI based on pavement distress         | . 118 |
| Table 6-7: Sensitivity analysis of prediction models for IRI for pavement distress.             | . 120 |
| Table 6-8: Performance of PCI models by using ANNs technique based on pavement distress         | . 123 |
| Table 6-9:Performance of IRI models by using ANNs technique based on pavement distress          | . 125 |
| Table 6-10: Validation of PCI models based on pavement distress.                                | . 127 |
| Table 6-11: Validation of IRI models based on pavement distress.                                | . 128 |
| Table 6-12: Comparison of the MLR and ANNs models for PCI based on pavement distress            | . 129 |
| Table 6-13: Comparison of the MLR and ANNs models for IRI based on pavement distress            | . 131 |
| Table 6-14: Gathered environmental data from four climate regions.                              | . 136 |
| Table 6-15: PCI models summary based on environmental parameters.                               | . 137 |
| Table 6-16: IRI models summary based on environmental parameters                                | . 137 |
| Table 6-17: Validation of PCI models based on environmental parameters                          | . 142 |
| Table 6-18: Validation of PCI models based on environmental parameters                          | . 144 |
| Table 6-19: Sensitivity analysis of prediction models for PCI based on environmental parameters | . 146 |
| Table 6-20: Sensitivity analysis of prediction models for IRI based on environmental parameters | . 148 |
| Table 6-21: Performance of PCI models by using ANNs technique based on environmental parameters | s.    |
|                                                                                                 | .151  |
| Table 6-22: Performance of IRI models by using ANNs technique based on environmental parameters | 5.    |
|                                                                                                 | .152  |
| Table 6-23: Validation of PCI models based on environmental parameters                          | . 155 |
| Table 6-24: Validation of IRI models based on environmental parameters.                         | . 156 |
| Table 6-25: Comparison of the MLR and ANNs models for PCI based on environmental parameters.    | .157  |
| Table 6-26: Comparison of the MLR and ANNs models for IRI based on environmental parameters     | . 159 |
| Table 6-27: Gathered traffic volume data from four climatic regions.                            | . 163 |
|                                                                                                 |       |

| Table 6-28: PCI models summary based on traffic volume                                | . 164 |
|---------------------------------------------------------------------------------------|-------|
| Table 6-29: IRI models summary based on traffic volume                                | . 165 |
| Table 6-30: Validation of PCI models based on traffic volume.                         | . 168 |
| Table 6-31: Validation of IRI models based on traffic volume                          | . 170 |
| Table 6-32: Sensitivity analysis of prediction models for PCI based on traffic volume | . 172 |
| Table 6-33: Sensitivity analysis of prediction models for IRI based on traffic volume | . 174 |
| Table 6-34: Performance of PCI models by using ANNs technique based on traffic volume | . 176 |
| Table 6-35: Performance of IRI models by using ANNs technique based on traffic volume | .178  |
| Table 6-36 : Validation of PCI models based on traffic volume parameters              | . 180 |
| Table 6-37 : Validation of IRI models based on traffic volume parameters              | . 181 |
| Table 6-38: Comparison of the MLR and ANNs models for PCI based on traffic volume     | . 182 |
| Table 6-39: Comparison of the MLR and ANNs models for IRI based on traffic volume     | .184  |
| Table 7-1: Weather conditions in the St. John's Newfoundland, Canada                  | . 190 |
| Table 7-2: Details of study section.                                                  | . 193 |
| Table 7-3: PCI determination from pavement distresses.                                | . 196 |
| Table 7-4: IRI, PSR, and PCI values of the road sections.                             | . 198 |
| Table 7-5: Distress types and number of membership functions to evaluate PCI and IRI. | . 200 |
| Table 7-6: Fuzzy rules for PCI by 19 road sections.                                   | . 201 |
| Table 7-7: Fuzzy rules for IRI by 19 road sections                                    | . 202 |
| Table 7-8: Assessment various fuzzy inference systems' configurations for PCI         | . 203 |
| Table 7-9: Assessment various fuzzy inference systems' configurations for IRI.        | . 206 |
| Table 7-10: Correlation between IRI, PCI & PSR.                                       | .212  |
| Table 7-11: Performance of PCI models                                                 | .214  |
| Table 7-12: Comparison of the Cubic models to ANNs models.                            | .216  |
| Table 7-13: PCI, IRI, and PSR models based on field survey.                           | .217  |
| Table 7-14: Validation of PCI models based on pavement distress.                      | . 220 |
| Table 7-15: Reliability statistics.                                                   | . 222 |
| Table 7-16: Summary item statistics.                                                  | . 223 |
| Table 7-17: Summary of PCI, IRI, and PSR models of ANNs developed.                    | . 224 |
| Table 7-18: Comparison among MLR, FIS, and ANNs models for PCI.                       | . 226 |
| Table 7-19: Comparison among MLR, FIS, and ANNs models for IRI.                       | . 229 |
| Table 7-20: Comparison of the MLR models to the ANNs models.                          | .231  |
| Table 7-21: Sensitivity analysis of prediction models for PCI, IRI, and PSR.          | .233  |

## List of Abbreviations

| FHWA                  | Federal Highway Administration                     |
|-----------------------|----------------------------------------------------|
| AASHTO                | American Association of State Highway Officials    |
| PMS                   | Pavement Management System                         |
| SHRP                  | Strategic Highway Research Program                 |
| M&R                   | Maintenance and Rehabilitation                     |
| LTPP                  | Long-Term Pavement Performance                     |
| AC                    | Asphalt Concrete                                   |
| GPS                   | General Pavement Studies                           |
| GPS-1                 | GPS for Asphalt Concrete Pavement on Granular Base |
| SPS                   | Specific Pavement Studies                          |
| PCI                   | Pavement Condition Index                           |
| IRI                   | International Roughness Index                      |
| FIS                   | Fuzzy Inference Systems                            |
| ANNs                  | Artificial neural networks                         |
| C.N                   | Construction Number                                |
| ESAL                  | Cumulative Equivalent Single Axle Load             |
| AADTT                 | Annual Average Daily Truck Traffic                 |
| AADT                  | Annual Average Daily Traffic                       |
| SPSS                  | Statistical Package for the Social Sciences        |
| MLR                   | Multiple Linear Regressions                        |
| <i>R</i> <sup>2</sup> | Coefficient of Determination                       |
| RMSE                  | Root Mean Square Error                             |
| MAE                   | Mean Absolute Error                                |
| Tem Avg               | Temperature average                                |
| Wind average.         | Wind average                                       |
| Total ann precip      | Total average annual precipitation                 |
|                       |                                                    |

## **Chapter1: Introduction**

#### **1.1 Introduction**

Around 93% of the world's paved roads are surfaced with asphalt. These pavements, better known as flexible pavements, consist of several layers of asphalt materials placed over granular material layers or treated subgrade. Each layer plays a role in supporting traffic loads. The layers also limit the impact of the environment (e.g., freezing and thawing) on the road. However, the life cycle of pavement is influenced by numerous distresses. These include rutting, fatigue cracking, block cracking, transverse cracking, potholes, patching, and thermal cracking.

In the first few years of a road's usage, distresses initially form as micro-sized fissures. After the pavement has been exposed to traffic, distresses form and the process continues, resulting in a series of cracks. The functional condition is mainly concerned with the surface texture or quality of the ride. In contrast, the structural condition is concerned with the pavement's structural ability and capability to maintain certain traffic volume, as determined by deflection, layer thickness, and material characteristics. Technically, road damage means that roads cannot deliver the best possible service to users and passengers and require maintenance work. Many factors influence the service life of road, such as (1) structure and material parameters, (2) volumetric properties of the mixture, (3) environmental conditions, and (4) traffic volume (AASHTO R30, 2002). These pavement distress forms have continually been a challenge for pavement engineers aiming to build roads with long life and good performance.

#### **1.2 Problem Statement**

Highways is a major contributor to national and local economic and social well-being. In the U.S, Canada, and other countries worldwide, government transportation departments spend a

significant portion of their annual budgets on road repair. Therefore, major efforts have been made in recent decades to improve prediction models by understanding the mechanisms underlying the variables that influence pavement performance. Deterioration of pavements is caused by the increasing volume of traffic, repeated loads, asphalt concrete layer properties, coupled with weather conditions.

The active pavement management system assures that pavement sections are maintained at high levels of service, structurally sound conditions, and with a minimum budget and resources.

Predicting pavement performance and enhancing the realism and accuracy of performance prediction models continues to be challenging for the following reasons:

- Pavement predictions concerning various distresses are achieved through mathematical approaches. Nevertheless, pavement performance assessment is still challenging, as these approaches can only be applied effectively under similar conditions and often entail continuous calibration.
- Precisely predicting the distresses of asphalt pavement, such as fatigue cracking, permanent deformation (rutting), patching, potholes, transverse cracking, ravelling, and longitudinal cracking, may be problematic due to the highly complicated behaviour of asphalt pavement material under different environmental conditions.
- Predicting pavement performance is linked to the evaluation of road conditions and the level of serviceability, along with factors such as operation function, location, traffic volume, type of soil, and economic conditions.

### **1.3 Research Objectives**

The primary motivation of the research was the Modeling asphalt pavement performance indices in four climate regions, introducing performance prediction models that can accurately predict pavement conditions and service life based on the effect of internal and external parameters on pavement performance. Research Specific objectives can be summarized as follows:

- Modeling the relationship between asphalt pavement performance indices.
- To study and define parameters that significantly impact pavement indices by conducting a comprehensive investigation of the effects of three fundamental parameters and relevant performance models.
- Modeling of asphalt pavement performance indices using conventional techniques in four climate regions.
- Modeling of asphalt pavement performance indices using soft computing techniques in four climate regions.

## **1.4 Research Scope**

To fulfil all the research objectives, the scope of the study was divided into six phases, as follows:

## Phase A: Modeling of Asphalt Pavement Performance Indices Using (FIS)

This research proposes using a fuzzy inference system (FIS) to estimate pavement indices (PCI and IRI), taking the severity and level of the other pavement distress as input parameters. It should be noted that FIS is one of the most common techniques used for classification problems.

#### Phase B: Modeling the Relationship Between Asphalt Pavement Performance Indices

This research work modeling the relationship between two asphalt pavement performance indicators (PCI and IRI) for climate regions in the U.S. and Canada.

#### Phase C: Modeling of Asphalt Pavement Performance Indices Using (MLR)

The multiple linear regression (MLR)method was used to modeling asphalt pavement performance indices (PCI & IRI).

#### Phase D: Modeling of Asphalt Pavement Performance Indices Using (ANN)

The fourth phase proposed modeling asphalt pavement performance indices using (ANN). The ANNs method effectively investigates and analyzes the data. This technique could recognize data patterns that are not easily detected by traditional statistical.

### <u>Phase E:</u> Comparison and validation between (MLR) and (ANNs) models

The performance of the MLR models was compared with the performance of the ANNs models to evaluate the accuracy of the models in predicting pavement performance based on pavement distress parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models.

#### Phase F: Case Study

The case study focuses on studying the effect of pavement distress on determining pavement condition. St. John's, the capital of Newfoundland and Labrador-Canada is the case study's site. These include the determination of PCI, IRI, and PSR of flexible pavement and developing reliable prediction models for St. John's roads using soft computing techniques.

### **Research Scope Limited**

The research focused on only flexible asphalt pavement data with no maintenance or rehabilitation.

#### Method Analysis:

The study relies on three different techniques to achieve its objectives, as follows:

- 1- Machine learning (FIS) technique using MATLAB software.
- 2- Multiple linear regression (MLR) method using statistical product and service solutions (IBM SPSS software).
- 3- Machine learning (ANNs) technique using MATLAB software.

## **1.5 Dissertation Structure**

This thesis is comprised of eight chapters as follow:

#### **Chapter 1: Introduction**

This chapter introduced the concept of pavement management and asset management. Also included are the research objective, scope of the study.

#### **Chapter 2: Literature Review**

This chapter presented a review of the pavement management system. The chapter also presented a review of pavement condition evaluation, previous studies on pavement performance modelling, and types of distress. Finally, the chapter reviewed all parameters that influence pavement performance.

### **Chapter 3: Research Methodology**

This chapter presented the research methodology for Modeling of Asphalt Pavement Performance Indices. The chapter also briefly explained the principle of the three soft computing techniques used in later chapters.

### **Chapter 4: Modeling of Asphalt Pavement Performance Indices Using FIS**

This chapter presented the modeling of asphalt pavement performance indices using a fuzzy inference system (FIS).

## **Chapter 5: Modeling the Relationship Between Asphalt Pavement Performance Indices**

## (PCI&IRI)

This chapter focused on studying the correlation between PCI and IRI using different mathematical methods.

## Chapter 6: Modeling of Asphalt pavement performance Indices Using (MLR) and (ANNs)

## Techniques

This chapter discussed different pavement performance prediction models and the significant factors affecting PCI and IRI models. This chapter also discussed the asphalt pavement performance indices modeling using different techniques.

## Chapter 7: A Case Study

This chapter described a simple case study for 37 road sections in St. John's, Newfoundland,

Canada. It summarized of significant findings of the study.

## **Chapter 8: Conclusions and Recommendations**

This chapter considered with summarizes the conclusions and suggestions for future work.

### **Chapter2:** Literature Review

## 2.1 Pavement Management System

Pavement performance can be generally defined as the change in their condition or function concerning age. It can also indicate the ability of pavement to carry the intended traffic and satisfy the environment during the design life, both functionally and structurally. The United States and Canada face a broad range of challenges due to their harsh climates, road safety issues, environmental concerns, and vast land size. These challenges increase the government's responsibility for maintaining an effective road transport system to sustain both countries' competitiveness in the global economy. Economic and financial conditions are driving governments to explore new and creative ways to finance transportation projects.

The prediction model is an essential method for implementing efficient maintenance strategies. Pavement network management agencies need to consider such a strategy to realize cost-efficient management of pavements for long-term service life.

This chapter summarises the methods, main observations, and knowledge gaps in using these pavement performance methods and prediction models. The chapter also reviews previous studies conducted concerning the objectives of the present work. A systematic literature review also highlights studies that use the PMS, PCI, and IRI when studying flexible pavement.

## 2.1 History of Test Roads in North America (US and Canada)

In the early 1920s, the American Association of State Highway Officials (AASHO) began conducting a significant series of road tests, with the last important experiment performed in the late 1950s (AASHTO, 1972). These comprehensive studies were intended to determine the extent to which load traffic leads to the deterioration of the pavement. Canadian transportation agencies

noticed the empirical studies being carried out in the United States and decided to use local materials and conditions to perform similar experiments.

Early in 1965, the Ministry of Transportation Ontario (MTO) started to collect data on 36 newly designed pavement test sections in the province of Ontario. These test parts were located near Brampton, on Highway 10. The key objectives of the experiments were to: compare the results of the AASHO Road Test with the materials and conditions of Ontario; measure the performance of standard pavement designs; and record the performance of different base materials (Kamel et al., 1973). An empirical study was the primary feature of the AASHO Road Test, in which a specific vehicle type and weight were used to repeat the loading of each road segment. A total of six 2-lane test loops were constructed. Loops 2 to 6 were exposed to different truck traffic combinations. It should be noted that loop 1 was used as a section of control to test environmental impact, so it was not part of the loading tests. The main drawback of this empirical study is that such approaches can only be applied effectively under local conditions and often entail continuous calibration.



Figure 2-1: The AASHO road test configuration (1962).

One of the most significant drawbacks of empirical studies is related to the limitations of the Road Test experiment. The data obtained from this experiment are highly related to the constraints associated with the experiment's location. Data were collected on one type of subgrade soil and road construction material under specific environmental and traffic conditions (NCHRP, 2004). C-SHRP initiated additional research in the late 1980s to study the effects of climate conditions on roadway efficiency. The main objectives of that study were to record paving practices in Canada; and better understand asphalt concrete (AC) properties that affect the efficiency of low temperatures (Gavin et al., 2003). In three separate locations across Canada – Lamont, Alberta; Hearst, Ontario; and Sherbrooke, Quebec – three C-SHRP test sites were built. However, only one test site was a full-study experiment (the one near Lamont), whereas the other two sites were used as smaller-scale satellite experiments (Gavin et al., 2003).

#### **2.2 Pavement Management Systems**

A Pavement Management System (PMS) for pavement rehabilitation can be defined as "a system that will produce a multi-layer program for pavement rehabilitation to utilize available finds most cost-effectively" (Hudson et al., 1979). PMSs are becoming essential resources in the decision-making process to maintain and preserve pavement networks. The PMS program is ideal for keeping all paved road sections under satisfactory structural conditions and serviceability. Nevertheless, it should not have any significant adverse effects on the environment, traffic, or social and community activities(Fwa et al, 2000).

Numerous PMSs, ranging from the complex to the simplistic, have been established. However, many of these systems suffer from mismanagement. Dewan (2004) reported on the main issues confronting pavement management efforts, with the author highlighting the components that are crucial for the inclusion of ineffective management strategies.

Several different management systems have been developed, applied, and studied across the U.S. In Pennsylvania, Kilareski and Churilla (1983) built a PMS that was suitable for a highly industrialised state and large highway network. Their PMS was then implemented in a few other states and monitored using two modules: a distress progression survey, and a network serviceability inventory. The distress progression survey was intended to gather data related to repair decision optimization and prioritizing, as well as budget estimations (Kilareski & Churilla, 1983). In a similar project, Sachs and Suede (1996) looked at modifications in a PMS implemented in Washington. The authors developed a procedure that identified five kinds of distresses, then applied it to a look-up Table charting three severity levels for alligator cracking across various percentage ranges (Sachs & Suede, 1996). In other related work, several different types of PMSs have been applied at the project and network levels. Gharaibeh et al. (1999) presented a management system in Illinois that integrated data, analytical procedures, geographical information system (GIS), and presentation methods. The developed system was used in five highway infrastructure components (i.e., intersections, bridges, culverts, traffic signs, and pavement). The authors employed an integrated network-level system to carry out a trade-off analysis on feasible maintenance options for the five components mentioned above. The analysis aimed to prioritize the minimizing of traffic disruptions (Gharaibeh et al, 1999).

Sebaaly et al. (1996), in similar work, also proposed developing a PMS in Nevada at the project and network levels. Their developed system integrated performance models that considered lifecycle cost analysis (LCCA) and traffic and environmental impacts. Another key consideration in their study was network optimisation methods that dealt with maintenance and rehabilitation prioritisation. At the project level, the authors performed pavement evaluations using nondestructive deflection testing (sebaaly et al., 1996). A few years later, Rasdorf et al. (2000) developed a PMS to implement in the North Carolina Department of Transportation (NCDOT). This system was intended to highlight the needs and challenges of developing a comprehensive information management system. The PMS enabled an environment that permitted data format standardisation and data sharing and reduced the need for training. The key contribution of the developed database was the application of geographic information system (GIS) and the linear reference method (LRM) (Rasdorf et al., 2000).

In Portugal, Golabi and Pereira (2003) investigated how the Portuguese pavement management system (PPMS) was being developed and implemented. The authors noted that the main modules in the system were GIS, a database, a model that evaluated pavement quality, and pavement rehabilitation and strategic improvement model (PRISM). The authors also reported that the Mov modelling method, which applied probabilistic prediction models for assigning state transition probabilities using knowledge and experience, was being employed to further develop optimisation models with predictive capabilities (Golabi & Pereira, 2003). The average age of the highways and roads in Canada is 15.4 years (Gagnon et al., 2008), with a high percentage of the network length being more than 10 years old and requiring regular maintenance and rehabilitation. Table (2-1) presents the ages of highways and roads across Canada.

In-service overlay performance investigation and assessment over the years significantly supports the potential decisions of provincial transportation ministries regarding design variables such as type of pavement, asphalt mixture, pavement structure and construction parameters. In fact, in both the U.S. and Canada, a large portion of the transportation departments' annual budgets are allocated to road repair and maintenance. Alberta Transportation, for instance, spends around 50% of its annual budget repairing and maintaining the highway network in Alberta(Government of Alberta, 2011).

| Canada/Province           | Age of Highway and roads(year) |
|---------------------------|--------------------------------|
| Newfoundland and Labrador | 14.9                           |
| Prince Edward Island      | 16.4                           |
| Nova Scotia               | 13.9                           |
| New Brunswick             | 16.3                           |
| Newfoundland and Labrador | 15.2                           |
| Quebec                    | 15.2                           |
| Ontario                   | 13.9                           |
| Manitoba                  | 17.1                           |
| Saskatchewan              | 16.7                           |
| Alberta                   | 14.4                           |
| British Columbia          | 15.8                           |

Table 2-1: Ages of highways and roads in all provinces of Canada.

Road maintenance programs have developed rapidly over the past 30 years. One study from the late 1900s reports on road work done in western Canada. In May 1990, the SPS-5 sections in Alberta joined the LTPP programme, and the overlay building was completed in September 1990 (although the control section did not receive an overlay). After completing the overlay building, each of the eight sections underwent different maintenance, depending on their circumstances. Crack sealing and pothole patching were the most common treatments applied. The researchers report that two of the sections (502 and 509) came to an end in 2006, after only 16 years of service life (Norouzi et al., 2014).

In another study that looked at all SPS-5 sections across North America, Hall et al. (2003) applied the newly revised IRI measurements. The researchers found no noticeable difference between recycled asphalt pavement (RAP) and virgin long-term IRI or between milled and non-milled overlays. The influence of pre-overlay IRI, overlay age and average annual temperature on longterm IRI was significant (Kathleen T. Hall et al., 2003).

Rajagopal and George (1991) conducted parametric studies to estimate appropriate maintenance timing and select the most suitable level for three treatments (surface treatment and thin and thick overlays). The researchers found that the underlying structural condition directly impacted the immediate effect of maintenance work and that early maintenance treatment decreased future costs (Rajagopal & George, 1991).

Several studies were conducted on SPS 5 sections across sixteen states in the U.S. and two provinces in Canada to evaluate the influence of various overlay strategies on pavement performance. West et al. (2011) used the latest reported data to compare the statistical distress found for the nine sections. The authors concluded in their analysis that both mixture type and milling before overlay construction would significantly affect pavement output in terms of fatigue cracking, transverse cracking, and longitudinal cracking. Their research also showed no significant impact of overlay thickness on longitudinal cracking (West et al., 2011).

## **2.3 Parameters Affecting Pavement Performance**

Predicting pavement performance is considered a difficult task since several variables affect the pavement's performance. A number of different parameters have identified the research as affecting pavement performance. Janno and Shepherd (2000) investigated how seasonal variations impact pavement material properties. They found that moisture and temperature have the most

significant impacts overall, but that long-term performance is highly dependent on pavement layer properties and the subgrade soil. There is a need to determine and investigate the different potential parameters that influence pavement performance. As presented in Figure (2-2), the most crucial factors are materials and construction, Traffic volume, climate, and performance.

These factors were especially influential in regions where wide seasonal fluctuations were the norm (Janno and Shepherd 2000). Even so, given the changes in climate across different regions, including closely neighbouring ones developing accurate prediction models based on a "one-size-fits-all" approach is very challenging.



**Pavement Deteriorates** 

Materials



Despite the inherent difficulties in creating such a model, there is widespread consensus that such a model is needed for predicting various aspects of planning and budgeting in, for instance, transportation departments. The hope is that accurately predicting the impact of local and regional environments might enhance pavement performance and lead to decreased maintenance costs. A broad range of environmental factors has been reported to impact pavement performance (Mrawira and Wile 2000) strongly. The most critical are temperature, the freeze/thaw cycle, overall moisture content, and the Ground Water Table (GWT). At the same time, seasonal weather variations contribute to changes in pavement material properties, thus affecting performance through secondary effects resulting from the factors mentioned above.

#### **2.4 Pavement Deterioration**

The extent and types of distress need to be identified and the reasons underlying the deterioration before a proper repair strategy is chosen to remedy the distressed pavement. Common causes of deterioration include harsh climate, heavy traffic loading, low-quality materials, deficient drainage, and construction flaws. The most typical causes of pavement distresses are ageing and traffic repetition, but distress may also be compounded simply through time, when, for instance, a crack can permit the intrusion of water to the pavement and eventually results in a pothole or stripping. Therefore, timely maintenance is critically essential. Deteriorates can be classified into several types as follow:

#### Cracking

Cracks are fractures that occur on the pavement surface in various ways forms. The causes of cracks are many, including fatigue, shrinkage, deformation, and climate impact (temperature, snow, wind..., etc.). Table (2-2) shows the most common crack types in flexible pavement. Four fundamental types of cracking have been described as mentioned in this section.

## Fatigue Cracking (Alligator Cracking)

Fatigue cracking is one of the main modes of distress in flexible pavements along with rutting and thermal cracking. Fatigue cracking includes a single crack and series of interconnected multi cracks leading to create small, nonuniform zones on the pavement, fatigue cracking due to

primarily dependent on 3 main reasons, repeated traffic loads, vehicle speed, and temperature of the pavement (Langlois et al., 1999).

The linear distance in square metres of the impacted wheel path or fatigue cracking area is measured. Each area is categorized based on the severity level. If there are two distress in the same place, such as fatigue cracking and rutting, each distress must be dealt with separately (Miller & Bellinger, 2003) (FHWA 2009).



(a)Low Severity

(b) Medium Severity



(c) High Severity

Figure 2-3: Severity levels for fatigue cracking in asphalt pavement.

#### **Block cracking**

Block cracking may be defined as the development of interconnected cracks across areas that have not been subjected to heavy traffic load. These cracks demarcate rectangular shaped blocks on the pavement. The size of the blocks typically ranges between 30 x 30 cm and 300 x 300 cm (ACRP, 2016; DOT, 2010; Federal Highway Administration 2009). This form of distress develops across the width of the pavement (i.e., including wheel paths). However, on hot-mix asphalt (HMA) surfaces, they tend to extend a short distance only. An example of block cracking is given in Figure (2-4).



Figure 2-4: Block cracking in asphalt pavement.

The main causes of block cracking are hardening, shrinking, and inadequate compaction of the mix (FHWA 2009, FDOT 2015). Options include low, medium, and high. At low (L) severity levels, the cracks are tight and feature little spalling. The average width of these cracks is up to 6 mm (Hall et al. 1993). At medium (M) severity levels, crack widths measure greater than 6 mm but less than 12 mm. At high (H) severity levels, the cracks have an average width 12 mm or greater, and there is severe spalling as well as either moderate or severe parallel cracking occurring

near the crack intersections. Note that this cracking is typically randomized (Hall et al. 1993). The best approach is to measure the area(s) affected either by square meters or by the entire pavement length. Block cracking of low severity can be remedied by constructing a thin wearing course, while block cracking that is medium or high may require recycling or overlays, and base problems may need pavement reconstruction or reclamation (Adlinge & Gupta, 2013).

#### Longitudinal cracking

Longitudinal cracking may be defined as the presence of long cracks parallel with the centerline. Cracking at the exact lane center is referred to as center-of-lane cracking. This form of cracking may occur from the centre line to the wheel path's outer edge, as depicted in Figure 2-5 (a, b). Note that the positioning of these cracks (i.e., wheel path/non-wheel path) in large part determines their severity.



Figure 2-5: Longitudinal cracking in asphalt pavement.

The main causes of longitudinal cracks are construction-related failures, i.e., poor technique or low compaction, as well as heavy loads and frost heaving occurring between lanes. Additional causes are sub-surface crack development and low temperatures that lead to surface shrinkage (Scott et al., 2012). Options include low, medium, and high. Low (L) severity levels of longitudinal cracking involve issues such as cracks that are not on the wheel path and which have only minor spalling. At L severity, the crack width measures a maximum of 6 mm (FHWA 2009). Medium (M) severity levels in longitudinal cracking are indicated by moderate spalling that features filled cracks less than 6 mm wide and non-filled cracks between 6 mm and 19 mm (Miller et al., 2003). High (H) severity levels of longitudinal cracking are indicated by crack widths 19 mm or greater.

For each severity level (L, M and H), the affected areas are measured linearly in meters. Longitudinal cracking may be repaired using spray patching or other similar applied treatment.

#### **Transverse cracking**

Transverse cracking may be defined as cracks which develop perpendicular to a road's centerline. This form of cracking is typically regularly spaced and begins as hairline (narrow) cracks that grow wider over time (Miller et al., 2003). Transverse cracking may form at any surface location and grow deeper over time. The main causes of transverse asphalt cracking are low temperatures that lead to surface shrinkage. This form of cracking may also be caused by a paving lane joint being poorly constructed, or by reflective cracks that have been induced by sub-surface cracking (Hall et al., 1993). Options include low, medium, and high. In low (L) severity levels of transverse cracking, tight cracks appear with widths measuring around 6 mm, accompanied by slight spalling. In medium (M) severity levels of transverse cracking, the cracks measure between 6 mm and 19 mm and are randomly placed (FHWA 2009). In high (H) levels of severity for this form of cracking, the cracks are greater than 19 mm, with severe spalling around the cracks (Miller et al. 2003). Examples of transverse cracking are shown in Figure 2-6 (a, b).For each severity level (L, M and H), the measurement of transverse cracks includes length and number of cracks. If the

severity level of the distress for this form of cracking is rated L or M, sealing of cracks is the best option. However, for transverse cracking rated as H, an overlay should be applied.



(a) (b)

Figure 2-6: Transverse cracking in asphalt pavement.

## Rutting

Rutting may be defined as vertical deformations in pavements that cause surface depressions in the direction of the wheel path. Depressions may develop across wide expanses, mostly in the direction of the wheel path. Figure 2-7(a, b) illustrates abrasive and structural rutting in St. John's, Newfoundland, Canada. Rutting represents a critically important form of distress that occurs in flexible pavements. Shearing may then form as a result of the rutting, damaging the road's top surface and thus significantly impacting the ride quality of motorists (Kandhal et al., 2003; Miljkovic et al., 2011).

Options include low, medium, and high. In the low (L) degree, the rut depth measures between 6 and 12 mm. In the medium (M) severity degree, the rut depth is greater than 3 mm but less than 25 mm, while a high (h) degree of severity measures above 26 mm (ODOT 2010).





(a) Abrasive rutting

(b) Structural rutting



To measure the depth of ruts, recording implements such as a straightedge or a profilometer may be used. Another option is using a data collection vehicle (DCV) (ODOT 2010).

If a surface rut is categorized as minor, it likely can be filled. However, ruts with a deeper profile need to be treated with an overlay on top of the affected surface. In cases of unstable asphalt, recycling is an option, whereas in cases where inconsistencies are found in the sub-grade, the best approach is either reconstruction or reclamation, both of which require extensive work (Adlinge et al., 2009).

#### Potholes

Potholes may be defined as localized distress that form as bowl-shaped holes that range in size. The primary location of potholes is an area of poor drainage that is characterized as having heavy slow-moving traffic. Classic examples of water-filled potholes are given in Figure 2-8 (a, b). The formation of potholes occurs when pavement depressions deteriorate over time as the result of inadequate strength in the pavement layer. Potholes may also be caused by fatigue cracking. In either of these cases, tiny pavement fragments are incrementally removed, leading to progressive distress that eventually propagates within the pavement's lower layers.


(b)

Figure 2-8: Potholes in asphalt pavement.

Options include low, medium, and high. Pothole that are considered to be low (L) severity have a depth of 25 mm or less, while those considered to have medium (M) severity range in depth between (25-&50) mm. High (H) severity potholes feature depths of 50 mm or more. For each severity level (L, M and H), the potholes are counted, and the pothole area is measured in square meters. Pothole repair options include excavation, patching and/or rebuilding. The most common approach is to patch the hole on a regular basis (i.e., seasonally). Patching must be done correctly, however, or the unevenness of the road may cause further driver discomfort.

#### Delamination

Delamination may be defined as the removal of a portion of the asphalt surface as the result of the surface's improper bonding to the layer underneath. Delamination distress decreases the pavement's serviceability due to peeling and slipping of the layers as well as cracking in the wheel paths. Delamination primarily occurs along the shoulder or wheel path, as illustrated in Figure 2-9 (a, b, c, d). The main causes of delamination are heavy traffic loads, water percolation, and inadequate interfacial bonding of the layers. This form of pavement distress has no severity degree measurement, as any delamination that extends to depths below the top two layers leads to surface distress in high traffic. Moreover, delamination may vary in size from a few square centimetres to dozens of square meters. Surface or sub-surface delamination is primarily measured using non-destructive test strategies, including strain gages or Ground Penetrating Radar.

Delamination is usually repaired either by placing a thin overlay of asphalt on top of the affected area, milling off the affected surface layers, or replacing the wearing course (Celaya et al., 2011).





(b)





Figure 2-3: Delamination in asphalt pavement.

For flexible pavements, Hicks (1999) provided a logical approach to determine the most effective preventive maintenance treatment for distress as shown in Table (2-2) (Miller & Bellinger, 2003) (Miller & Bellinger, 2003). Moreover, materials play a significant role in determining the life of pavements. Change of structure, chemical composition, and surface tension properties of asphalt varies with the ageing of asphalt, making the asphalt cement stiffer and more vulnerable to moisture damage. Moreover, some other significant binding characteristics include temperature susceptibility, adhesion cohesion and hardening & ageing (Miller & Bellinger, 2003).

Based on the information published by Gupta et al. (2011), IRI is typically influenced by four factors, namely: The California Bearing Ratio (CBR) of the subgrade soil, the thickness of the pavement, the traffic volume on the road, and the age of the pavement. Researchers used ANNs and MLR to develop deterioration models and observed that prediction accuracy with the regression equation was less than that with an ANNs model(Gupta et al., 2011).

#### 2.4.1 Materials and Constructions Parameters

The material parameters needed for the design phase are divided into three fundamental classes, pavement model material inputs, material-related criteria for pavement distress, and other properties of materials. The following independent variables are considered to develop the IRI performance deterioration prediction equations:

- Age, the age is selected since it reflects the impacts of the season and the environment.
- structural number (SN) is an important Independent Variable (input variable). It represents
  the overall structure constructed to ensure load road carrying capacity to the frequent traffic
  loads over the service life. The SN considers structural parameters of layer, layer thickness
  and drainage parameters of the base and the sub-base.,

• Equivalent Single Axle Load.

| Table 2-2: Flexible | pavement distress types. |
|---------------------|--------------------------|
|---------------------|--------------------------|

| Distress Categorised | Unit   | Potential causes                                                                                            | Severity Level                                 |            |      |
|----------------------|--------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|------|
|                      |        |                                                                                                             | L                                              | М          | Н    |
| Fatigue Crack(W*P)   | $mm^2$ | Repeated traffic loading.                                                                                   | W≤6                                            | 6≤W ≤19    | W≥19 |
|                      |        |                                                                                                             | P≤32.8                                         | 32.8≤P≤150 |      |
| Block Crack          | $mm^2$ | 1-Asphalt concrete shrinkage.                                                                               | W≤6                                            | 6≤W ≤12    | W≥12 |
|                      |        | 2-Daily temperature cycling.                                                                                |                                                |            |      |
| Longitudinal         | mm     | 1-Asphalt concrete surface shrinkage.                                                                       | W≤6                                            | 6≤W ≤12    |      |
| &                    |        | 2-A poor joint between pavement lanes.                                                                      |                                                |            |      |
| Transverse Crack     |        | 3-The reflection of the joint in the                                                                        |                                                |            |      |
|                      |        | underlying layer.                                                                                           |                                                |            |      |
| Edge Crack           | mm     | 1-Repeated traffic loading.                                                                                 |                                                |            |      |
|                      |        | 2-Frost-weakened base.                                                                                      |                                                |            |      |
| Rutting (rut depth)  | $mm^2$ | 1-The inadequate thickness of the surface                                                                   | (6-12)                                         | (13-25)    | ≥26  |
|                      |        | of the pavement.                                                                                            |                                                |            |      |
|                      |        | 2-Rise moisture content.                                                                                    |                                                |            |      |
|                      |        | 3-Poor compaction.                                                                                          |                                                |            |      |
| Patching             | $mm^2$ | Lack of serviceability structural capacity                                                                  |                                                |            |      |
|                      |        | in the surface pavement.                                                                                    |                                                |            |      |
| Potholes             | $mm^2$ | $\frac{2}{2}$ 1-From a surface loss. $25$ $25-50$                                                           |                                                |            |      |
|                      |        | 2-Base layer material is weak due to water                                                                  |                                                |            |      |
|                      |        | leaking the pavement layer through cracks.                                                                  |                                                |            |      |
| Ravelling            | $mm^2$ | Loss of asphalt and aggregate particles                                                                     |                                                | L          |      |
|                      |        | dislodging.                                                                                                 |                                                |            |      |
| Bleeding             | $mm^2$ | Excess bituminous material.                                                                                 |                                                |            |      |
| Delamination         | mm     | <ol> <li>Water leaks and heavy loads.</li> <li>Poor interfacial bonding between various courses.</li> </ol> | 30 square centimeters to tens of square meters |            |      |

**\*W** is width of crack. **\*\*P** is cracks forming a complete pattern.

Some sections of some years the data are not available the cumulative equivalent single axle load (ESAL) for in the LTPP database. The ESAL values for the missing data are estimated using following Equation:

$$ESALs_{v} = ESALs_{v-1} - X(1 + AARG)$$
2-1

Where, Y is the year of the measured or interpolated IRI and PCI, the latest ESAL value depends on calculate the ESAL of the previous year multiplied by the Average Annual Rate of Growth (AARG).

#### 2.4.2 Environmental Parameters

The environmental effect is one of the important parameters contributing to pavement deterioration. This includes temperature, precipitation quantities and freeze-thaw cycles, temperatures in all asphalt layers, Pavement's structural performance can be gauged through observation and measurement of pavement deflection, and it has been shown that stiff asphalt layers are sometimes too brittle for winter conditions like Canada. Asphalt layers should be stiff enough to limit the permanent deformation in the summertime, but it should be flexible enough in the wintertime to the long-term performance of pavement structure was showed to strongly depend on the properties of the pavement layer(s) and the subgrade soil. There influences were especially strong in regions where there were seasonal weather fluctuations (Janno & Shepherd, 2000). Such regional changes in climatic conditions, along with variations within those regions, can make the development of prediction models extremely difficult, particularly when the models need to have a "one-size-fits-all" solution. Therefore, developing a model that is able to predict regional environmental impacts while also incorporating seasonal variabilities in pavement materials will

contribute immensely to the improvement of pavement performance. It will also reduce costs related to maintenance.

Various environmental factors have been reported in the literature as having substantial impacts on pavement performance and strength (Mrawira & Wile, 2000).

A pavement's structural performance is usually measured by pavement deflection as well as by observation. For flexible pavement, layer moduli and surface deflection can be significantly impacted by asphalt concrete temperature, along with asphalt concrete layer stiffness. The latter factor has a strong effect on the structural capacity of the pavements. Increases in temperature cause the asphalt to decrease in stiffness, leaving it vulnerable to heavy loads. Furthermore, as the asphalt concrete stiffness decreases, higher stress levels are being transmitted both to the base and the subgrade layers.

#### 2.4.3 Traffic Volume Parameters

Traffic loading-induced fatigue is a key parameter that leads to significantly shortened pavement life. This type of fatigue results in compression that occurs at the top layer and tension on the bottom. When these stress states persist over a long period of time, the usually result in the formation of surface cracks that permit moisture to enter the pavement sub-layers (i.e., the base and sub-grade layers). Repeated traffic loading with the presence of these stresses and deteriorating conditions cause furthermore serious cracking and ultimately pavement failure. Common traffic-induced stresses are traffic volume, truck type, load application time, tire pressure, and ESAL (specifically, the number of equivalent single axle loads).

Additionally, material pavement layers employed in roadway construction are critical factors toward the future performance of the pavement. Asphalt mixes need to have appropriate blending

27

properties suitable for the environment to resist cracking. The aggregate used in the base and subbase should have sufficient stiffness to avoid deformation caused by repeated traffic. These properties are obtainable when properly performed compaction processes are applied.

A crucial parameter for describing the strength of pavement is the sub-grade resilient modulus, given that the since the sub-grade forms the foundation. Hence, the use of sub-grade materials appropriate to the environmental and load conditions will likely yield pavement that is strong and enjoys a lengthy operational life. Several studies (Tarefder et al., 2008) demonstrate the connection between a suitable sub-grade and longer pavement life.

## 2.4.4 Additional Parameters

Additional parameters include construction quality (e.g., construction joints and roughness level); construction and design factors (e.g., surface and maintenance properties); and geometric features (e.g., drainage facilities provision, longitudinal and cross slope, and horizontal /vertical alignment, etc.). All of these parameters are well-known to affect the performance of the pavement. However, because they typically have only a slight or indirect effect, they will not be heavily weighted in the models' classification and development process.

#### **2.5 Pavement Performance Measures**

Pavement performance is defined as the ability of pavement to serve traffic over time satisfactorily serve traffic over time (AASHTO, 2003). Pavement performance measures are ratings for a pavement section representing the pavement condition and are used to help manage a pavement network.

A pavement condition index can help provide paving rehabilitation alternatives, estimate maintenance and rehabilitation costs, and track different pavement types of performance. There

28

are various popular types of performance systems. Still, the most popular ones and will be described in more detail are Pavement Condition Index (PCI), the International Roughness Index (IRI), and the Present Serviceability Index (PSI). The adopted condition rating generally numerically scales based on good or poor pavement results (Pavement Interactive, 2007).

#### 2.5.1 International Roughness Index (IRI)

One of the key factors determining pavement serviceability is roughness. American society for testing and materials (ASTM E867-06) defines pavement roughness as a "deviation of a surface from the true planar surface with characteristic dimensions that affect vehicle dimensions and ride quality" (ASTM International 2012). The roughness of a pavement can be determined using the International Roughness Index (IRI), which is a measurement devised in 1982 by the International Road Roughness Experiment (IRRE) in Brazil, with sponsorship from the World Bank. The aim of the IRRE in developing the IRI was to create a stable standard that was globally recognized (Sayers 1995).

Road roughness needs to be properly measured in order to apply suitable repair and maintenance procedures. Its measurement is also important for improving traffic safety, decreasing dynamic loads on pavement structures, and enhancing ride comfort levels. As mentioned, the IRI represents a consensus model for a standard parameter which describes a vehicle's vertical movement along a road characterized as 'non-smooth'. The idea of an IRI was initially presented in a report (National Cooperative Highway Research Program), after which the World Bank solicited for researchers to devise the index on a universal scale (Gillespie et al., 1980). Today, the IRI is used the world over as a standard measurement of road roughness.

The IRI uses simulations to determine roughness responses in vehicles moving 80 km/hr. It is represented as the ratio of a quarter car model's accumulated suspension motion to the travelled distance and typically ranges in value between 1 to 5 m/km for a paved stretch of highway, with low values of IRI denoting a smooth surface. In current usage, the U.S. Federal Highway Administration classifies high-speed pavements that have IRI values exceeding 2.7 m/km as being in "poor" condition (U.S. Department of Transportation 2010). Table (2-3) presents five main pavement ride quality categories, based on the IRI's measured values as standards.

In recent research, pavement roughness has been found to be synonymous with pavement serviceability. Kavianipour et al., (2015) reported in their findings that pavement roughness significantly impacted traffic safety. The relationship between pavement distress and the IRI was also investigated in earlier studies (Perera & Kohn, 2006; Prozzi and Madanat, 2004). The findings generally show that because the IRI provides such an accurate reflection of pavement performance, changes in a pavement's life cycle essentially mirror changes in IRI levels.

Numerous factors may determine the degree of a pavement's roughness. These include climatic conditions, material properties, rehabilitation and design parameters, and traffic loading. The distress's extent and severity are also a contributing factor. Perera and Kohn (2001), when measuring roughness traits in a road's test areas, noted strong associations between environmental conditions and pavement performance. More specifically, the authors noted patterns in roughness progression occurring between distinct environmental areas that were characterized by, for instance, dry Freeze/dry no-freeze, or by wet-freeze/wet no-freeze. The patterns appeared dependent on pavement thickness in total, which included the base, sub-base and sum of the surface, as well as freezing indices, number of fines in base layers, number of wet days, and annual precipitation (Perera & Kohn, 2006).

30

In both Canada and the U.S., nearly all monitoring of roughness at the network level is conducted with accelerometer sensors, along with infrared, acoustic, and/or laser sensors (Ong et al., 2010). Smartphones integrate a number of sensors, such as accelerometers and Global Positioning System (GPS). Accelerometers measure accumulative vertical displacement caused by pavement roughness, while GPS sensors determine distance travelled (Zang et al., 2018). Both of these values are used in formulating the IRI. In the present study, the smartphone-based application TotalPave is employed for determining the IRI (TotalPave Inc. 2018). TotalPave streams unprocessed sensor data from the smartphone to the cloud for IRI conversion. According to the U.S. Department of Transportation, pavement ride quality based on IRI can be categorized into five groups, as shown in Table (2-3) (Islam et al., 2014).

The IRI can also be used as a statistic index for summarizing surface deviations of a single wheel track by using the quarter car system to create a profile. Figure (2-10) illustrates a quarter car comprising a sprung mass (i.e., the portion of the vehicle body with the user) and an unsprung mass (i.e., wheels and suspension). The sprung mass connects with the unsprung mass via suspension, as simulated using a spring and a damper. Another spring is used to bring the sprung mass and the real pavement into contact with each other (Arellano et al., 2006).

| Category  | IRI Ratin<br>by Highv | Interstate and<br>Noninterstate Ride Quality |                            |
|-----------|-----------------------|----------------------------------------------|----------------------------|
|           | Interstate            | Noninterstate                                |                            |
| Very good | <1                    | <1.0                                         | Acceptable 0–2.0           |
| Good      | 1.0-1.5               | 1.0-1.50                                     |                            |
| Fair      | 1.5-1.90              | 1.50-2.70                                    |                            |
| Poor      | 1.9-2.70              | 2.70-3.50                                    | -                          |
| Very poor | >2.70                 | >3.5                                         | Less than acceptable >2.70 |

Table 2-3: Pavement ride quality based on roughness.

The quarter car system moves through the longitudinal pavement profile at 80 km/hr (~50 mph) in the simulation. As the car moves through the simulated pavement roughness, dynamic excitation occurs in the system. These create varying vertical speeds (Z\_S) and accelerations (Z\_U) in the sprung/unsprung masses, thus producing relative movement between the simulated vehicle's axle and chasses. The following equation can be used to calculate a given section length's IRI value (Arellano 2006):

$$IRI = \frac{1}{L} \int_{0}^{\frac{X}{V}} |Z_{S} - Z_{U}| dt$$
 2-2

where:

IRI= International Roughness Index (mm/m or m/km), L= length of section (m)

X= longitudinal distance (m),V= speed of the quarter-car model (m/s),  $\frac{x}{v}$  = time it takes the model to run a certain distance x , dt= time increment ,  $Z_S$ = vertical speed of the sprung mass

 $Z_U$  = vertical speed of the unsprung mass.



Figure 2-4: The quarter car comprising a sprung mass.

In 2002, the U.S. Federal Highway Administration (FHWA) deemed roads with an IRI of maximum 170 inches/mile to be categorized as "acceptable" with regard to roads in the national highway system (NHS) (Shahin, 1994).

A few years later, FHWA defined roads with an IRI of 95 inches/mile or less to be "good". Nowadays, specifications to obtain an IRI are being set by ASTM International (2008) in accordance with 15 ASTM Standard E1926-08. So, for instance, the IRI of a right wheel track right international roughness index (RIRI) denotes the roughness measurement of a road surface as specified by the FHWA and in accordance with the administration's highway performance monitoring system (HPMS).

Various researchers have investigated roughness trends over the past few decades. (Khazanovich et al. (1998) analyzed JPC (i.e., GPS-3) sections by classifying them as "good", "normal" and "poor" according to IRI vs. time performance. In the study, a pavement section was deemed "good" under the following IRI conditions:

$$IRI < 0.631 + 0.0631 \times age$$
 2-3

Where IRI is denoted in m/km, and age represents the age of the pavement (in years). Similarly, a pavement section was deemed "normal" under the following IRI conditions:

$$IRI > 1.263 + 0.0947 \times age$$
 2-4

Where IRI is referenced in m/km, and age indicates the age of the pavement (in years). Note that pavement sections were categorized as "normal" if their performance fell between "good" and the cut-off limit for "poor."

It is worth mentioning that 71% of the sections deemed "poor" Khazanovich et al.'s (1998) study were situated along wet-freeze zones, while only 24% were located in dry-freeze areas, 6% in wet

no-freeze zones and 0% were found in dry no-freeze locations. The authors also found that higher IRI values were correlated with higher numbers of freeze-thaw cycles, higher numbers of annual days below 0 °C, and higher freeze index values. They also reported that increased moisture levels that persisted over time (as determined by the annual average number of wet days) resulted in higher roughness levels. Accordingly, pavements located in more moderate climates generally showed lower IRI values.

Another important correlation reported by Khazanovich et al. (1998) was the no relationship existing between the type of sub-grade and the pavement performance. For example, around 70% of road sections that were built over sub-grade that was fine-grained gave "poor" performance measurements on the IRI. In contrast, only 33% of road sections constructed over coarse-grained soils showed poor performance. Interestingly, the authors found no trend between IRI and traffic loadings (Khazanovich et al. 1998).

Meanwhile, sections of the studied roadways that had stabilized bases (18%) showed lower levels of IRI in comparison to road sections that had granular bases (82%). In fact, the road sections that had asphalt-stabilized bases showed an IRI that was lower than every other base. In their study, Khazanovich et al. (1998) applied linear regression strategies in order to estimate the initial roughness (i.e., at the time of construction) as a means to find the rate of increase for roughness. Their calculations determined that the poorest performing road sections demonstrated higher average rates of increasing roughness compared to all other types, whereas those sections whose performance was deemed "good" demonstrated much lower rates. At the same time, poorly performing road sections consistently showed back-casted initial roughness that was much higher in comparison to sections whose performance was considered either "good" or "normal" (Khazanovich et al. 1998).

In a study done by Perera et al. (1998), the authors discovered that jointed reinforced concrete pavements (JRCP) (i.e., GPS-4) pavements with high values of IRI shared similar features, such as thicker slabs, longer joint spacing, higher portland cement concrete (PCC) modulus values, higher sub-grade moisture content, and lower water/cement ratios.

Khazanovich et al. (1998) investigated jointed reinforced concrete pavements (JRCP) sections by applying a method similar to their general pavement studies (GPS-3) section analysis approach. The authors found that JRCP built over coarse-grained soil generally gave better performance compared to JRCP built over sub-grade characterized as fine-grained (Khazanovich et al. 1998). The IRI boundary for new and rebuilt roads in Canadian provinces and several countries is presented in Table (2-4), with many national guidelines identifying different thresholds to approve new and rebuilt roads. IRI frontier values are primarily a function of:

- Functional classification of the road such as principal roads, minor roads, and highways,
- surface type (flexible pavement, rigid pavements),
- speed design of the road,
- road section length, and
- average annual daily traffic (AADT).

Generally, 4 out of 10 reported countries (Belarus, Slovakia, Spain, and Australia) represented IRI specifications as a road functional classification function. For example, Australia classified practical road levels into "highways and principal roads" based on vehicle speed (Gaspard, 2014; Múčka, 2017; Puppala & Chittoori, 2012).

| Country                   | Road type                                                                                                                                                                                                                                                         | Evaluation<br>length (m) | IRI (mm/m)                 |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|
| Belarus                   | AC/PCC – new roads (highways and first-class roads)                                                                                                                                                                                                               |                          | 1.5                        |
|                           | AC/PCC – reconstructed (highways and first-class roads)<br>AC/PCC – Second- and third-class roads                                                                                                                                                                 | N/A                      | 2                          |
|                           | Third class roads - cold AC and crushed stone - reconstruction                                                                                                                                                                                                    |                          | 2                          |
|                           | Fourth and fifth class roads – cold AC and crushed stone – reconstruction                                                                                                                                                                                         |                          | 2.5                        |
|                           | AC/PCC – highways and expressways – acceptance                                                                                                                                                                                                                    | 20                       | 1.9                        |
|                           | AC/PCC - primary and secondary roads - acceptance                                                                                                                                                                                                                 | -                        | 1.9                        |
| Slovakia                  | AC/PCC - third class roads and local roads -acceptance                                                                                                                                                                                                            | -                        | 3.3                        |
|                           | Highways and expressways – during the warranty period (1–5 years)                                                                                                                                                                                                 | -                        | 2.2 -3                     |
|                           | AC – highways (50,80, and 100) %                                                                                                                                                                                                                                  | 100                      | 1.5, 1.8, and 2            |
|                           | AC – other roads (50,80, and 100) %                                                                                                                                                                                                                               | 100                      | 1.5, 2, and 2.5            |
|                           | AC – highways – after rehabilitation (>10 cm) (50,80, and 100) %                                                                                                                                                                                                  | 100                      | 1.5, 1.8, and 2            |
| Spain                     | AC – highways – after rehabilitation (<10 cm) (50,80, and 100) $\%$                                                                                                                                                                                               | 100                      | 1.5 ,2 and 2.5             |
| Span                      | AC – other roads – after rehabilitation (>10 cm) (50,80, and 100) $\%$                                                                                                                                                                                            | 100                      | 1.5 ,2 and 2.5             |
|                           | AC – other roads – after rehabilitation (<10 cm) (50,80, and 100) $\%$                                                                                                                                                                                            | 10                       | 1.5 ,2 and 2.5             |
|                           | Note: IRI limits are defined as three perc                                                                                                                                                                                                                        | entiles                  |                            |
|                           | AC/PCC – freeways                                                                                                                                                                                                                                                 |                          | 1.6                        |
| Australia                 | AC/PCC-highways and main roads (<80 km/h)                                                                                                                                                                                                                         | 500                      | 1.9                        |
|                           | AC/PCC-highways and main roads (100 km/h)                                                                                                                                                                                                                         |                          | 1.9                        |
| Bosnia and<br>Herzegovina | AC/PCC – new road – acceptance<br>(AADT > 2000 and medium or heavy traffic loading (>80<br>equivalent standard axle loads (ESALs) of 82 KN/day))<br>(AADT < 2000 and lighter traffic<br>loading (up to 80 ESALs of 82 KN/day))<br>*Limit value, **threshold value | 20                       | 2.0*, 2.6**<br>4.0*, 4.6** |
|                           | AC/PCC – new road – acceptance<br>(AADT > 2000, ESAL > 80)<br>(AADT < 2000, ESAL < 80)<br>*Limit value, **threshold value                                                                                                                                         | 100                      | 1.2*, 1.8**<br>3.8*, 4.6** |
|                           | AC/PCC – new road – the end of the warranty period<br>(Five years from construction)<br>(AADT > 2000, ESAL > 80)<br>(AADT < 2000, ESAL < 80)                                                                                                                      | 100                      | 1.8*, 2.5**<br>4.5*, 4.6** |

Table 2-4: IRI limit specifications for reconstructed roads.

| Country                     | Road type                                            | Evaluation<br>length (m) | IRI (mm/m)                                     |
|-----------------------------|------------------------------------------------------|--------------------------|------------------------------------------------|
| Canada – Alberta            | AC – Schedules I, II and III, acceptance (full pay)  | 100                      | (0.71–1.04),<br>(0.81–1.20) and<br>(0.81–1.54) |
|                             | AC – Schedules I, II and III, corrective work        | 100                      | 1.55, 1.55 and 1.85                            |
|                             | AC – localised roughness                             | 7.62                     | 2.8                                            |
| Canada – Quebec             | AC – acceptance (full pay)<br>(70%), and (100%)      | 100/1000                 | (1.2–1.3) and <1.4                             |
|                             | AC – rejection, remedial action is specified.        |                          | 1.8                                            |
|                             | AC – acceptance (full pay)                           | 100                      | 1.1–1.2                                        |
| Canada – British<br>Columbi | AC – corrective work                                 | 100                      | 1.8                                            |
|                             | AC – acceptance (full pay)                           | 100                      | 0.65-1                                         |
| Canada – Ontario            | AC – rejection (corrective work)                     | 100                      | 1.25                                           |
|                             | AC – localised roughness                             | 7.62                     | 3.4                                            |
|                             | AC – Categories A, B and C, acceptance (full pay)    | 100                      | (0.8, 1) and 1.1                               |
| Canada – Nova<br>Scotia     | AC – Categories A, B and C, optional corrective work | 100                      | (1.8–3), (2.3–3)<br>and (2.4–3)                |
|                             | AC – Categories A, B and C, acceptance               | 10                       | (1.1, 1.4) and 1.5                             |
|                             | AC – Categories A, B and C, corrective work          | 10                       | 3                                              |

## 2.5.2 Pavement Condition Index (PCI)

The PCI was developed in the 1980s to estimate a road's general condition. This index determines the condition by counting and weighing various distress types of distress based on either imagery or physical inspection data. The PCI was initially created by the U.S. Army's Engineering Corps as a means to gauge the condition of airfield pavement. Today, several transportation agencies rely solely on PCI data to make decisions around the construction, repair, and maintenance of airfields, roads and parking lots around the world. Arhin et al. (2015) investigated the similarities and differences between IRI and PCI by studying data from the U.S. and Canada.

PCI uses visual survey results (whether through imagery or field site inspections) to identify the quantity, type, and severity of the pavement distress. The field inspection method has consistently shown that PCI is good at determining the condition and integrity of the structure under study. It has also been shown to be a reliable index for gauging both current and future performance solely by considering traffic conditions, without the need for testing structural capacity, skid resistance, or roughness (Al-Suleiman & Shiyab, 2003; Shahin & Walther, 1990). In fact, PCI is currently in use globally by public and private highway agencies. In comparison to other indexes, the PCI takes into consideration every kind of distress, including quantity and severity, while also providing a good indication of a network's functional and structural conditions. For these reasons, PCI is the strategy chosen for the present work.

The program "TotalPave" was used for gathering and extracting IRI and PCI data. Test site locations comprised sections of roads from a variety of climatic regions in Canada and the United States. In Canada, the test sites were located in the provinces of Ontario, Quebec, and Prince Edward Island, while in the U.S., the sites were situated in New York, New Jersey, Virginia, Vermont, and Maryland. A simplistic model was developed for the study in order to relate the IRI method with the PCI. The formula is given in Equation (2-5) below:

## Log(PCI) = 2 - 0.4361log(IRI)

2-5

Optimization strategies are typically used for developing correlations. Some of these techniques include genetic programming (GP) and Artificial neural networks(ANNs), both of which may be used for evaluating PCI data in relation to other pavement indexes (except for IRI), according to the various forms of distress and their severity (Shahnazari et al. 2012). Utilizing PCI data derived from a total of 1,250 km of roadway, Shahnazari et al. (2012) devised a regression-based model that employed an ANNs framework. Then, in order to evaluate the PCI, the authors used a GP-

based root-mean-square error (RMSE) fitness function. They discovered that the field-investigated PCI values were highly similar to those generated by the GP and ANNs approaches. More specifically, in the GP-based model, RMSE and R-squared showed 1.79, 2.63 and 0.98, respectively, while in the ANNs-based models, RMSE and R-squared showed 0.99, and 0.996, respectively.

A model that was developed for use with IRI as a PCI function was employed as a way to evaluate pavement management system user benefits. In the model, the R-squared value is 0.53 with a 28% coefficient of variation. Real and predicted IRI rates are then graphically correlated in order to illustrate the data dispersion and validate the model. Equation (2-6) expressed the model (note that the IRI appears as m/km) (Arhin et al. 2015):

$$IRI = 0.017(153 - PCI)$$
 2-6

PCI is a pavement condition number rating of 0 to 100, the worst-case rating is 0, and the bestcase condition is 100, as shown in Table (2-5). (Morova et al., 2012; Salama et al., 2006).

| PCI    | 0-10   | 10-25     | 25-40 | 40-55 | 55-70 | 70-85     | 85-100    |
|--------|--------|-----------|-------|-------|-------|-----------|-----------|
| Rating | Failed | Very poor | Poor  | Fair  | Good  | Very good | Excellent |

Table 2-5: Pavement condition index (PCI).

The method of calculation for the flexible paving PCI- system (Fwa, 2006) is as follows:

**Phase 1:** Assess the intensity and extent of each type of distress. The level of severity is represented by three clusters: low, medium and high. Whereas the extent is quantified by linear or square metres is measured according to the form of distress.

Phase 2: Calculate the density of pavement distress by.

Phase 2-a: Obtain distress extent is measured following equation

$$Density = \frac{Distress area (m^2)}{Section area(m^2)} \times 100$$
2-7

Phase 2-b: Calculate distress extent is measured by linear metres

$$Density = \frac{Distress\ amount\ in\ the\ linear\ (m^2)}{Sample\ unit\ area\ in\ (m^2)} \times \ 100$$
2-8

Phase 2-c: Calculate distress extent is measured by number of potholes

$$Density = \frac{Number of potholes}{Sample unit area in (m^2)} \times 100$$
 2-9

Phase 3: Determine deduct points (DP) from standard deduct value curves for each distress type.

Phase 4: Calculate total deduct value (TDV) for all distress of each section.

Phase 5: Adjust total deduct value (TDV) by calculating corrected deduct value (CDV).

Phase 6: Compute (PCI) for each part by subtracting (CDV) from 100.

#### 2.5.3 Present Serviceability Rating (PSR)

After the 1950s, measuring indicators such as roughness, skew and slip resistance began to appear, which could be used to measure road performance. The current level of service (PSR) is based on personal observation after creating the AASHO Road Test (AASHO 1962).

In the AASHO road test, a useful tool was devised for characterizing road surface conditions according to the driver's comfort level, namely the Pavement Serviceability Rating (PSR). To use the PSR, drivers submit their opinions based on a scale (0 to 5), with 0 indicating poor pavement conditions and 5 indicating excellent conditions. It explains the road's roughness because the PSR relies on the rider's interpretation of the ride quality. Table (2-6) presents a typical PSR rating form obtained from the AASHO road test protocol (US DOT 2000). The need for a non-board-based

system is that the PSR is a level of ride quality that requires a certain number of monitors, which

is unrealistic for large networks.

| PSR     | Rating    | Description                                                               |
|---------|-----------|---------------------------------------------------------------------------|
| 4.0-5.0 | Excellent | Only new (or nearly new) pavements that are smooth enough and             |
|         |           | distress free. Constructed/resurfaced during the data year.               |
| 3.0-4.0 | Good      | Not quite as smooth but provide a first-class ride and few visible        |
|         |           | distresses (initial signs of rutting and fine random cracks).             |
| 2.0-3.0 | Fair      | Riding quality is noticeably inferior and barely tolerable for high-speed |
|         |           | traffic. Rutting, map cracking and heavy patching is seen.                |
| 1.0-2.0 | Poor      | Heavily damaged to affect speed of free-flow traffic. Large potholes,     |
|         |           | raveling, cracking, rutting on 50% or more of the surface.                |
| 0.0-1.0 | Very poor | Extremely deteriorated condition. Pavements are passable only at          |
|         |           | reduced speed and considerable ride discomfort. Large potholes and        |
|         |           | deep cracks exist. Distresses over 75% or more of the surface.            |

Table 2-6: Present serviceability rating.

## 2.6 Finding Connections Between PCI, IRI, and PSR

Several studies have investigated the possibility that specific relationships may exist between different pavement condition indexes. Initial efforts investigated connections between IRI and PSR, since both parameters provide an indication of pavement surface roughness as it potentially relates to ratings such as rideability (Al-Omari and Darter 1994). In other work, Loprencipe et al. (2017) created a regression model based on IRI and PCI. Their aim was to calculate Vehicle Operating Costs (VOC) by employing technically advanced distress evaluation strategies for airports and highways, and visual surveys for urban roadways. The researchers found that PCI correlated to other indexes that applied automated surveys in their calculations. A few of the highway agencies' jurisdictions also utilized PCI and/or IRI models, as pavement distress (PCI) had an impact on pavement smoothness (IRI). A firm correlation between IRI and PCI was found in Arhin et al.'s (2015) study conducted in urban areas. These authors used the least squares

method to predict PCI from IRI, which led to the development of statistically notable regression models.

Another group of researchers who investigated IRI and PCI as predictor variables were Park et al. (2007). These authors created a power regression model that showed a disappointing 59% efficiency. From their results, they conceded that IRI is unfeasible as a unique predictor for pavement condition ratings, A few years later, Shah et al. (2013) worked on devising the Overall Pavement Condition Index (OPCI), which included distress factors such as longitudinal cracking, transverse cracking, and alligator cracking, as well as skid resistance, structural capacity, and roughness. The latter factor was determined through ride quality rating (RQR) and IRI.

Overall, reasonably extensive research has been carried out with the goal of determining the extent of the relationship (if any) between and among various pavement performance indexes. Most of the studies, however, have been conducted in areas characterized by moderate climates. In contrast, the present work attempts to find the interrelationships of performance indexes in regions characterized by cold and harsh climatic conditions.

# Finding connections between PCI and IRI

Several studies have investigated the possibility that specific relationships may exist between different pavement condition indices. Initial efforts explored connections between IRI and PCI, since both parameters indicate pavement surface roughness and pavement condition.

Dewan and Smith (2002) later found the relationship between PCI and IRI. Their proposed model resulted in the formulation:

$$PCI = 153 - (58.48 \times IRI)$$
 2-10

The  $R^2$  value of this model was determined to be **28%**.

Another group of researchers, Park et al. (2007), investigated IRI and PCI as predictor variables. The model they proposed gave the following equation:

$$log_{PCI} = -0.115(log_{IRI}) + 2.13$$
2-11

The  $R^2$  value here was determined to be **59%**.

Furthermore, a strong correlation between IRI and PCI was found in a study by Arhin et al. (2015), which was conducted in urban areas. These authors used linear scheduling method (LSM) to predict PCI from IRI, which led to the development of statistically notable regression models. Three models proposed by the researchers led to the following equations:

1- Model proposed for Asphalt:

$$PCI = -0.224 \times IRI + 120.02$$
 2-12

The  $R^2$  value of this model was determined to be **82%**.

2- Model proposed for Composite:

$$PCI = -0.203 \times IRI + 113.73$$
 2-13

The  $R^2$  value of this model was determined to be **75%**.

3- Model proposed for Concrete:

# $PCI = -0.172 \times IRI + 111.01$ 2-14

The  $R^2$  value of this model was determined to be 72%.

In another study, developed IRI regression models considering pavement age as the input parameter where describing the relationship between IRI and pavement age by deriving an exponential relationship(Psalmen Hasibuan & Sejahtera Surbakti, 2019). Equation (2-15) below presents their proposed model:

$$IRI = 16.07 \times exp^{(-0.269 \times PCI)}$$
2-15

The  $R^2$  value of this model was determined to be **59%**.

In related work, Elhadidy et al. (2019) found that PCI correlated to other indices that applied automated surveys in their calculations. A few of the highway agencies' jurisdictions also utilized PCI and or IRI models, as pavement distress (PCI) had an impact on pavement smoothness (IRI). Their proposed model is presented in Equation (2-16) below:

$$PCI = \frac{1}{0.048} \times ln \left( \frac{79.933}{IRI} - 14.061 \right)$$
 2-16

The  $R^2$  value of this model was determined to be 93%.

Piryonesi et al. (2019) found a low correlation between IRI and PCI values despite having a larger sample size. Their proposed model is shown in Equation (2-17) below:

$$IRI = -0.012PCI + 2.064 2-17$$

The  $R^2$  value of this model was determined to be **30.2%**.

# 2.7 Modelling Pavement Deterioration

Effective pavement management, whether at the network or project level, requires the development of a deterioration model that is sufficiently accurate to minimize prediction errors. Thus, reducing overall costs related to maintenance. Ideally, an optimal deterioration model would incorporate contributions from variables like traffic, pavement structure, and the effects of climate and weathering on the deterioration process. At the network level, predicting deterioration of pavements enables appropriate resource allocation as well as plan prioritization, while at the project level, good prediction enables the relevant authorities overseeing the project to be informed of the best maintenance actions to take well in advance (Lytton, 1987; Prozzi and Madanat, 2004).

Considering the importance of the above, highway authorities around the world have been involved in the development of several pavement deterioration models which they apply to their respective pavement management systems. These models are invaluable because they can forecast various distress types and range from being quite simplistic and project-specific to being quite comprehensive and applicable to numerous situations across multiple projects (Lytton, 1987). Al-Omari and Darter. (1994) developed a linear regression model between IRI and pavement rut depth. The model proposed in work led to the following equation:

$$IRI = 57.56 \times rut \, depth - 334.28$$
 2-17

The  $R^2$  value of the model was determined to be 93%.

Farias and Souza. (2002) also examined a linear regression model between IRI and Root Mean Square of the vertical acceleration values were determined for 1 and 3.5-meter base lengths. Their work proposed a model resulting in the equation 2-19.

$$IRI = 0.04 + 0.45 \times RMSVA1.0 + 1.66 \times RMSVA3.5$$
 2-18

Where RMSVA: Root Mean Square of the vertical acceleration.

The  $R^2$  value of the model was determined to be **95.8%**.

In another researchers, Adams and Bahia. (2004) applied a model between IRI and asphalt concrete properties. Their a model presents in the equation 2-20.

$$IRI = 4.08 - 0.616 \times SN - 4.51 \times AC + 7.79x P200 \times AC - 3.78 \times P200 + 0.709 \times ESAL - 0.489 \times Thick$$
 2-20

where AC, Asphalt Concrete, P200, the percent passing no. 200 seize,

The  $R^2$  value of the model was determined to be 71.4%.

Garber et al. (2011) studied relationship among PCI and various parameters. Age, ADT, and Structure Number. The model shows in the equation 2-21.

## $PCI = 98.87 - 2.18 \times age + 0.02 \times ADT + 0.28 \times Structure Number 2-21$

where ADT, average daily traffic in 1000 Vah/day.

The  $R^2$  value of the model was determined to be **97.3%** 

Mahmood (2015) studied the relationship among PCI and various parameters. Cracking area,

Maintenance effect Longitudinal, and ESAL. The model shows in the equation 2-22.

 $PCI = 98.86 - 0.407 \times age - 0.24 \times Cracking area - 0.065 \times Longitudinal +$ 

$$3.404 \times Maintenance \, effect - 0.003 \times ESAL$$
 2-22

The  $R^2$  value of the model was determined to be **79%**.

Castelló et al. (2020) studied relationship among PCI and the influence of traffic load. Their a model presents in Equation 2-23.

$$PCI = 121.96 - 5.80 \times age - 0.0296 \times ESAL$$
 2-23

The  $R^2$  value of the model was determined to be 55%.

In the same study, Castelló et al. (2020) studied the influence of the pavement structure. Their proposed model is presented in Equation (2-24) below:

# $PCI = 99.44 - 5.54 \times age + 1.27 \times Structure Number 2-24$

The  $R^2$  value of the model was determined to be **49%**.

Zeiada et al. (2020) investigated the impact of pavement design factors on pavement performance in hot climates. Their proposed model is presented in Equation (2-25) below:

# IRI=0.4406× Initial IRI+0.0003× E- 0.0015× P- 0.0024 × MAT + 0.0037 × ARH+ 0.0446 × MAWV + 1.0688 × ALD- 0.1555 × SSH + 0.5318 × AE - 0.1274 × SCI 2-25

where E is the evaporation, P is the precipitation, MAT is the mean annual temperature, ARH is the annual relative humidity, MAWV is the mean annual wind velocity, ALD is the average albedo, SSH is the sunshine percentage, AE is the average emissivity, and SCI is the Structural Capacity Index.

The  $R^2$  value of the model was determined to be **38%**.

## 2.8 Summary of Reviewed

This chapter has reviewed the literature related to PMS characterization and performance assessment using predicted-based approaches and numerical modelling. The literature review showed some of the MPS' difficulties and challenges in planning and building modern pavement. Furthermore, the standard prediction methods available are insufficient to fully understand the study of all influence variables on pavement performance networks. Developing an approach to PMS can provide an enhanced prediction modelling of pavement performance to combat one distress but ignore other distresses. Therefore, the motivation for this study was to provide different enhanced modelling approaches that help predict pavement performance in different climate conditions while working on how to determine and minimize any adverse impact on pavement performance.

## **Chapter3: Research Methodology**

# 3.1 Soft Computing Techniques

In pavement engineering, the application of soft computing techniques has been growing in popularity due to the efficiency of the data storage and management, as well as the fast data processing speeds and impressive learning/adaptability of the systems. In real life, engineering decisions must be made in highly dynamic, ever-changing environments, which means that the tools used by engineers must be likewise readily adaptable to change and suitable for various levels of expertise.

In general terms, soft computing strategies are logic-based information processing tools used to solve complex problems related to performance evaluation and prediction (Chattopadhyay, 2006). The two most common soft computing approaches are Artificial Neural Networks (ANNs) and - Fuzzy Inference Systems (FIS). The present chapter provides a short overview of the main features of ANNs and FIS, showing how these techniques are beneficial to pavement engineering in relation to planning, scheduling, condition monitoring, forecasting, classification, and trend analysis.

## 3.2 Multiple Linear Regression

Multiple Linear Regression (MLR) is typically used to research the relationship between independent and dependent variables. The conventional regression method is a powerful and comprehensive means for evaluating relationships between independent and dependent parameters. Some regression assumptions must be considered in developing regression models. For example, Sousa et al. (2007) reported that error values are assumed to be independent across observations since collinearity between variables can lead to incorrect predictions.

Developing regression models requires some consideration of regression assumptions. According to(Sousa et al., 2007), have been reported that predictions are inaccurate if the error values are not independent across observations due to the possibility of collinearity between variables causing incorrect predictions. A study by(Smith, 1999) found the error term distribution to be a normal distribution N ( $o,\sigma^2$ ) and the relationship between the response variable ( $Y_i$ ) and the explanatory variables to be linear. As one of the commonest and oldest of all statistical techniques, linear regression has been used extensively in research (Guisan et al., 2000). The classical linear regression model is formulated as follows:

$$Y = \alpha + X^T \beta + \varepsilon$$
 3-1

where Y stands for the dependent variable,  $\alpha$  indicates a constant called the intercept,  $X = (x_1, x_2, ..., x_n)$  denotes an explanatory variable vector,  $\beta = \{\beta_1, ..., \beta_n\}$  expresses a regression coefficient vector (i.e., one for every explanatory variable), and  $\varepsilon$  is random measured errors and all other variations that are not explained using the linear model. Note that in calibrating regression models, the aim is minimizing unexplained variations through the use of estimation strategies like the least squares algorithm (Guisan et al. 2000). In the present work, the statistical software SPSS is employed for developing MLR models.

The  $R^2$  value is a method used to estimate the accuracy of a model by calculating correlation between observed and predicted values.  $R^2$  values range between 0 and 1, where the closer to (1) represents that the observed and predicted values are the stronger the relationship, and 0 indicates no relationship between them. RMSE and MAE values represent used to measure the differences between observed and predicted values. Good prediction models should have a high  $R^2$  and a low RMSE and MAE.  $R^2$ , RMSE, and MAE values were determined using Equations (3-2) to (3-4), respectively.

$$R^{2} = 1 - \frac{\sum_{i}(t_{i} - o_{i})^{2}}{\sum_{i}(o_{i})^{2}}$$
3-2

$$RMSE = \sqrt{\frac{\sum_{i}(t_i - o_i)^2}{n}}$$
3-3

$$MAE = \frac{1}{n} \sum_{i}^{n} |t_i - o_i|$$
 3-4

 $o_i$  = actual value observation i;

 $t_i$  = predicted value of observation i

and n = number of observations.

# 3.3 Fuzzy logic

Zadeh (1965) proposed the fuzzy set theory in 1965. The main reason it was developed was to serve as a tool that could provide efficient solutions to complicated problems. When used in a model, fuzzy logic incorporates linguistic (qualitative) and numerical (quantitative) data. Since its introduction, fuzzy set theory has been applied to a broad range of fields, including design, scheduling, planning, decision-making, structural damage assessment, and automatic control, for disciplines as diverse as transportation, anthropology, and real estate. Figures (3-1) and (3-2) representation of a crisp of a fuzzy set.

Zadeh (1965), in developing fuzzy set theory, defined a fuzzy set as an extension of a crisp (classical) set that permits either full membership or no membership only as elements.



Figure 3-1: Representation of a crisp (classical) set.

Fuzzy set theory is a further extension of this concept by permitting the inclusion of partial membership in a set. Hence, according to Selvi (2009), fuzzy set A in a discourse universe U may be characterized as having a membership  $\mu_A(x)$  which assumes values at an interval [0, 1]



Figure 3-2: Representation of a fuzzy set.

In classical fuzzy logic theory, a challenge arises in that any object belonging in a single set may get rejected. The latter approach proposes partial belonging of an object in a variety of subsets within a universal set (Tayfur et al. 2003).

## **3.4 Fuzzy inference system (FIS)**

The FIS considers all fuzzy rules belonging to a specified rule base and then learns to transform an input set into corresponding outputs. This process involved five distinct sub-processes, as listed below:

- 1. Fuzzification layer: containing the input variables.
- 2. Product (Rule layer): This layer composed of several fuzzy If-Then rules.
- Normalization: In this step, control rules are combined with membership functions (MFs) to derive outputs.
- 4. Defuzzification: Finally, every aggregated fuzzy output set is converted to single values.
- 5. Overall Output layer: This layer representative the dependents variables.

Overall, fuzzification consists of two processes: the creation of MFs as input/output data, and their representation in the form of linguistic labels. Note that fuzzy sets generally provide simplistic linguistic labels (e.g., poor-good-excellent, low-medium-high, etc.). Further, fuzzy rules present as an IF-THEN sequence format as input parameters, which then proceeds to algorithms that define the output label (e.g., low-medium-high). Figure (3-3) illustrated the flowchart of the methodology used to develop a model built for pavement classification utilizing a fuzzy inference system.

#### 3.4.1 Membership Functions Generation

In conventional mathematics, a single numerical rating might be assigned to each descriptive term. This number might represent the mean value, for example, when some range of values might all be classified with that same number in reality. Fuzzy sets can be used to describe this uncertainty (Elton & Juang, 1988).

Tigdemir et al. three following guidelines were considered really useful in developing any fuzzy logic system (Tigdemir et al., 2002).

1. The fuzzy system operates effectively when it is possible to define the rules connecting outputs to inputs precisely.



Figure 3-3: Schematic diagram of a fuzzy inference system.

2. Sets of rules can be obtained via the fuzzy inference method from operating data, but these weren't quite as strong as those extracted from specific results. Even so, they can be strengthened by providing greater weight to inputs with larger membership functions and integrating from relevant specifically from experience.

3. The system is Table. Certain rules may be left out or may contain errors without significantly sacrificing performance. When collecting pavement condition data and the international roughness index data, two forms of uncertainty are inherent in each distress's magnitude, density, and weighting factors. The level of preparation and accuracy between evaluators (Tighe et al., 2008)

affects the magnitude and density of distress data. However, can be dealt with by these complexities and contradictions associated with the subjectively evaluated. Functions are added to denote a value that would be a member of the set with a number between [0 1], reflecting its actual membership degree. Therefore, a degree of (0) indicates that the related value is not in the set, while a value of (1) is wholly representative of the set value. (Golroo & Tighe, 2009).

The simplest and sufficient function to represent severity, density, and weighting factors is Triangular Fuzzy Numbers (TFN). Equation. (3-5) to (3-9) Explain the concept of TFN:

$$\mu(x) = \mathbf{0}; x < \mathbf{l}$$

$$\mu(x) = \frac{x-l}{m-l}; l < x < m \tag{3-6}$$

$$\mu(x) = 1; x = 1$$
 3-7

$$\mu(x) = \frac{u-x}{u-m}; m < x < u$$
3-8

$$\mu(x) = 0; x > u \tag{3-9}$$

where:  $\mu(x)$ =Membership function, l and u =lower and upper domains, respectively., m =value which its corresponding membership measure is equal to 1.

The fuzzy method provides convenient tools to combine subjective analysis and uncertainty in international roughness index, pavement condition index, and maintenance-needs evaluation. The two most common types of fuzzy rules are Takagi-Sugeno and Mamdani (Mehran 2008). Also known as "Sugeno", the Takagi-Sugeno type of fuzzy rules is more widely used than the other type, as it clearly defines output in the rules as being a function of all the input variables. The Takagi-Sugeno fuzzy rules may be formulated as:

If  $x_1$  is  $M_1$  and  $x_2$  is  $M_2$  and  $x_3$  is  $M_3$  THEN  $u_1 = f(x_1, x_2, x_3), u_{12} = g(x_1, x_2, x_3)$ where:  $x_1, x_2, x_3$ : input parameters,  $u_1, u_2$ : Outputs,  $M_1, M_2, M_3$ : fuzzy sets; f(x) and g(x)indicated any type of function.

#### **3.5** Artificial Neural Networks (ANNs)

Artificial neural networks have demonstrated their usefulness in solving complex problems quickly and efficiently. Below is a short summary of ANNs models, with information mostly obtained from the work of Gershenson (2003). Viewed from their most basic aspect, ANNs comprise inputs multiplied by weights that are representations of the relevant input's strength. Using a mathematical function, these inputs are processed to calculate a neuron's activation. An additional computational function is needed to find the artificial neuron's output(s), with the ANNs then combining the artificial neurons as a means to process information.

In this network process, weights play a pivotal role in describing the input, such that a higher weight for an artificial network indicates a more influential input. Furthermore, because weights have an integral impact on neuron computation, the weights in an ANN require adjusting to obtain the desired output. This process is relatively straight-forward with only a few neurons, but more neurons added to the mix means greater complexity in weight adjustment. To remedy this situation, algorithms are used in a process known as "training" (or "learning"). Backpropagation is frequently used for training neuron weights (Mcclelland and Rumelhart 1986). In an ANN network that is organised by layers, the process of backpropagation sends a forwarding signal, after which the error gets propagated backwards. Neurons in the input layers supply the network with inputs, while neurons in the output layers supply the ANN with outputs. Note that there is one (or more) hidden layer located between the output and input and layers.



Figure 3-4: Typical structure of ANN.

Additionally, backpropagation functions through supervised learning, where the network obtains from the user examples of inputs/outputs the network should determine. Based on these provided examples, the error can be computed, i.e., the difference between predicted and real results. The whole point of backpropagation is minimizing this error while the ANN learns the training data. The process of training an ANN typically begins using random weight values, which are later these adjusted and the error subsequently reduced. In other words, ANNs are created in such a way as to learn based on supplied information (Ceylan et al. 2009; Zaman et al. 2010).

# 3.6 Applying ANNs and FIS to Pavement Studies

Roberts and Attoh-Okine (1998) conducted a comparison of two different ANNs models for their efficacy in predicting roughness according to traffic load and pavement condition. Their study employed 105 data points that were characterized as different kinds of variables (e.g., block

cracking, transverse cracking, fatigue cracking, rutting, equivalent axle loads, etc.). In this approach, the IRI was used as a target variable to the problem, while the rest were used as input counterparts. In total, 75 examples were extracted from the dataset for the training process and 30 were used for validation purposes.

In many transportation departments worldwide, the pavement distress evaluation method has significant problems due to subjectivity and inconsistency in pavement distress manifestations. Develop an expert system to organize pavement distress manifestations to provide consistency to the process and minimize subjectivity (Tsao et al. 1994; Abaza et al. 2001; Labi and Shiha 2005). The expert system, which can process information in qualitative grades, e.g., minimal, moderate, etc., can be developed using fuzzy logic (Pedersen 1989; Li et al. 2005). Expert systems help nonexperts of engineers to solve or diagnose problems and learn about situations (Zimmermann., 1991).

According to Slatter (1987); Zimmermann (1991), expert systems are soft computing techniques that depend more on the heuristics of experts rather than logical problem-solving procedures and can eliminate inconsistency, reduce subjectivity, and deal with uncertainty in any decision process. Tigdemir et al. (2002) utilized fuzzy set theory to categorize pavement distress into minimal, moderate, and severe levels under uncertainty and fuzzy logic. A fuzzy logic approach can be used to define the classifiers, which are symbolic representations of distress. Mahmood (2015) applied fuzzy logic theory for PCI models for 180 and 291 sections of the measured deterioration.

A BP-based 10-5-1 multilayer perceptron (MLP) is another proposed neural net whose comparison model comprises a quadratic function ANNs. This tool utilizes both supervised and unsupervised (i.e., self-organized) learning and has feedforward functioning in its generalized adaptive architecture. Moreover, it employs an evolutionary mechanism for problem-fitting and does not

57
need a certain layer or node number to be specified by the modeller. The researchers demonstrated that the latter model ( $R^2 = 0.74$ ) easily out performed a conventional MLP network ( $R^2 = 0.57$ ) (Roberts and Attoh-Okine, 1998). A study carried out by Ghanizadeh and Fakhri (2014) presented an ANN model that aimed to predict transverse and longitudinal stresses under an asphalt layer. The data for their work came from the analysis of 5,000 flexible pavement sections; the analysis was conducted by employing the layered elastic theory, which stipulates 3,000 for training, 500 for cross-validation, and 1,500 for testing (Ghanizadeh and Fakhri 2014). The authors' levenberg–marquardt (LM) -based 7-15-4 MLP network model was then demonstrated in the study as being highly accurate ( $R^2$ =0.999) (Ghanizadeh and Fakhri 2014).

In an earlier work, Choi et al. (2004) utilized a BP-based 6-10-1 MLP network to develop an ANN that could predict IRI values. The researchers designed a series of nets in order to determine whether or not the network topology would give acceptable performance. The nets employed hidden nodes that increased 1 by 1, starting at 1 and going to 15. For the learning portion, 92 data points were used, with 25 of these being set aside to test validation. The results showed that the authors' proposed network was effective when used for purposes of predicating pavement performance (Choi et al. 2004). Within the same research field, Solhmirzaei et al. (2012) designed a model that was highly accurate in predicting pavement profiles. The authors used a BP-based x-15-4 Wavelet Neural Network (WNN) in their study, with inputs comprising vehicle acceleration on a road and outputs comprising vertical displacement profiles for the moving wheels.

In a recent study, Tigdemir (2014) presented two BP-based 7-20-1 MLP NNs with the same input variables. The author's goals were, firstly, to predict AASHTO-based design life, and secondly, to predict correlations (if any) between AASHTO-based design and real-life design, with regard to lifespan of pavement using ESAL. The study used 234 road sections overall, while the training

dataset used 164 random sections from this sample. The rest were equally divided for testing and validation. Tigdemir (2014) found that although the first model performed excellently ( $R^2$ =0.999), the second model gave only accepTable results in the training and testing datasets ( $R^2 > 0.90$ ). Even worse, significant errors occurred during validation. In the same line of research, Tigdemir (2014) presented a BP-based 7-20-2 MLP net integrating the previously mentioned output variables and retaining the same inputs. The author reported good correlations in each output variable of  $R^2$  was 97%, and 94%. Fathi et al. (2019) predicted the alligator deterioration index (ADI) index using a hybrid car training method that combined random forests (RF) and ANN methods. Nitsche et al. (2014) attempted to predict weighted longitudinal profile (WLP) indices. Researchers were primarily interested in evaluating the effectiveness of these techniques for predicting range and standard deviation.

In another study, some researchers employed image processing techniques to characterize laboratory-made asphalt concrete samples (Nejad et al.,2015). The same research used an ANN technique to characterize laboratory-made samples asphalt concrete samples (Nejad et al.,2015). Fujita et al. (2017) applied the Support Vector Machine (SVM) technique to detect asphalt pavement cracks.

Hoang et al. (2019) investigated and identified pavement cracks using various machine learning (ML) techniques in several studies, such as support vector machine (SVM), artificial neural network (ANN), random forests (RF) mm, radial basis function neural network (RBFNN), naive Bayesian classifier (NBC), and classification tree (CT), as well as image processing techniques. According to Karballaeezadeh et al. (2020) three techniques were used for determining structural capacity in Coatings flexible pavements: Gaussian process regression (GPR), tree and random forest. Some researchers applied ANN and SVM methods to model acoustic longevity where

maximum aggregate size, binder content, air void content, vehicle speed, and thickness were input variables (Cao et al.,2020).

Zeiada et al. (2019) applied four ML techniques (GPR, SVM, Ensemble, ANN) to simulate pavement performance in warm climates. Inkoom et al. (2019) attempted to predict highway pavement conditions using ML methodologies. They used methods such as bootstrap forest, gradient boosted trees, K nearest neighbours, Nave Bayes, and multivariable linear regression. Nabipour et al. (2019) predicted the remaining service life (RSL) of pavement using SVM and genetic expression programming (GEP) methods.

In a more recent study conducted by Leiva-Villacorta et al. (2017), ANN models were developed that were able to accurately predict pavement layer moduli. The authors generated a database by utilizing layered-elastic analysis of a multi-layered (3 layers in this case) flexible pavement structure. In all, 100,000 data points per ANN were generated. The authors then applied these results to developing a BP-based 13-20-20-3 MLP network that was subsequently demonstrated to give estimations that were highly correlated ( $R^2 \ge 0.99$ ) (Leiva-Villacorta et al., 2017).

In related work, Ziari et al. (2015) proposed developing an ANN that could predict IRI values for flexible pavements both over the long and short terms. The authors employed sensitivity analysis utilizing a range of LM-based MLP networks and parameterizing the hidden layer number (1 - 3) and nodes (3-100) as a means to determine the optimal model for their purposes. The learning databank had 205 data points; of these, 154 were used for training, 41 for validation, and 10 for testing. Based on their findings, the authors were satisfied that the ANN models could predict future pavement conditions with satisfactory accuracy both for the short and long terms. The best short-term performance was yielded in the topology 9-80-50-30-1, while for structure, the topology 9-3-1 gave the best performance. For long-term performance, the 9-8-1 layout resulted

in the best performance, while for the testing sets, the layouts 9-5-1, 9-7-1, 9-20-1 and 950-1 yielded mean absolute percentage error (MAPE) < 10% and  $R^2 > 0.9$  (Ziari et al., 2015).

Meanwhile, Zofka and Yut (2012) considered whether it would be feasible to use three ANNs in predicting the compliance of hot mix asphalt creep in relation to the compliance of binder creep, and vice-versa. The network dataset for the three ANNs had 594, 594, and 600 points each. These were randomly separated into subsets designated for training (60%), validation (20%) and testing (20%). The authors' proposed nets comprised BP-based 11-20-6, 15-20-6 and 12-20-6 MLPs. According to the study results, extremely high correlation (~98%) was shown in comparison to the targeted counterpart (Zofka and Yut., 2012).

Yousefzadeh et al. (2010) proposed an LM-based X-6-64 RNN (input node number unclear) to predict pavement profiles for four vehicle wheels, i.e., four outputs. Both the profiles themselves and the vehicle acceleration were used as inputs for network feedback. The results indicated reasonably good estimation of pavement profiles by the ANNs (Yousefzadeh et al., 2010). A similar study (Ngwangwa et al., 2014) also investigated ANNs-based predictions for road profiles. The authors created an LM-based 3-50-50-2 MLP network that was trained using around 4,000 data points, with validation conducted utilizing measured data. The authors' results indicated correlations they described as very good, including for discrete obstacles (Ngwangwa et al. 2014). In a study conducted by Singh et al. (2013), the authors used an ANN to predict asphalt mixture dynamic modulus according to aggregate parameter shape. An automated aggregate image measurement system was employed to determine the shape parameters (e.g., sphericity, texture, angularity, etc.) of the fine and coarse aggregates. A 4-layer feedforward neural network was for model construction and a backpropagation algorithm was employed for data training. The input variables for the shape parameters were air voids, asphalt viscosity, and loading frequency (Singh

et al., 2013). Mirzahosseini et al. (2013) looked at the feasibility of applying ANNs models for predicting rutting performance in dense asphalt mixtures. Six input parameters were used by the authors in the proposed network, namely filler, air voids, bitumen, viscosity modifying admixture (VMA), coarse aggregate percentage, and Marshall Quotient. Additionally, statistical measures were employed as a means for evaluating the predictive tool's efficiency. The authors reported that the ANN-based model gave excellent performance in predicting asphalt mixture flow number, which is defined as a measure for repeated load deformation (Mirzahosseini et al., 2013).

ANN was also used in a study by Shafabakhsh et al. (2015) to predict deformation in asphalt concrete mixtures that had been modified using nano-additives, giving good results (Shafabakhsh et al., 2015). Other researchers investigated the predictive quality of ANN in Marshall tests on dense bituminous mixtures that were polypropylene-modified (Tapkin et al., 2010).

#### 3.7 Research Plan

Based on this research's literature review and objectives, there is a clear need to analyze an extensive data set and a series of tasks designed for various road sections in the U.S. and Canada. The present study considers three different key parameters, as follows:

- Pavement distresses (performance parameters).
- Environmental parameters.
- Traffic volume parameters.

The primary purpose of this research was to introduce a practical approach for the Modeling asphalt pavement performance indices (PCI and IRI) under different climate regions and different parameters. In this study were used three different techniques were (FIS), (MLR), and (ANNs). The research methodology is illustrated in Figure (3-5). The research plan includes seven principal areas as follows:

- Data aggregation of study,
- Modeling of asphalt pavement performance indices using (FIS),
- Modeling the relationship between asphalt pavement performance indices (PCI&IRI),
- Modeling of asphalt pavement performance indices using (MLR),
- Modeling of pavement performance indices using (ANNs),
- Comparison and validation between (MLR) and (ANNs) models, and
- Case study.



Figure 3-5: Schematic diagram of research methodology.

# 3.8 Data Aggregation of Study

Data are the basis for establishing stable predictive models, so obtaining correct and high-quality data is important. Two data resources were used for this study as follows:

- The Long-Term Pavement Performance (LTPP) dataset.
- The Field Survey of the city St. John's -Newfoundland- Canada.

The Long-Term Pavement Performance (LTPP) program is a significant resource for data collection about pavement conditions. The data include four climatic zones in the U.S. and Canada. The study considers three key parameters: pavement distress, environmental, and traffic volume parameters. The preprocessing of data is essential to provide homogeneity to the data, improve the networks' output, and improve the predictive models. Figure 3-6 shows the LTPP climatic regions (FHWA2014).



Figure3-6: LTPP climatic regions.

# **3.9 Modeling of Asphalt Pavement Performance Indices**

This study utilized three techniques to achieve its primary goals: Multiple Linear Regression (MLR), Fuzzy Inference System (FIS), and Artificial Neural Networks (ANNs). These techniques were used to build models of asphalt pavement to predict the asphalt pavement performance and evaluate the level of their applicability to the performance models available.

# 3.10 Modeling of Asphalt Pavement Performance Indices Using (FIS)

The LTPP was selected as the data source for constructing a fuzzy rule-based system for pavement section classification. Nine distress types were input parameters (Rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, patching, potholes, bleeding, and ravelling). Each distress type was represented by three triangular membership functions representing its severity level (Minimal, Moderate, and Severe), creating seven membership functions of output PCI and five triangular membership functions of output IRI.

## 3.11 Modeling of Asphalt Pavement Performance Indices Using (MLR)

This study used the statistical computer software SPSS 27 to regression analysis to predict the value of pavement performance from data collected from the LTPP data. Equations (3-10) to (3-12) showed basic formulations equations of the prediction models to find the correlation between PCI and IRI. Equations (3-13) to (3-18) presented the prediction models' basic formulations to discover the influence of pavement distress, environmental data, and traffic parameters on PCI and IRI values.

$$PCI = C + a_1 \times (IRI)$$
 3-10

$$PCI = C + a_1 \times (IRI) + a_2 \times (IRI)^2$$
3-11

$$PCI = C + a_1 \times (IRI) + a_2 \times (IRI)^2 + a_3 \times (IRI)^3$$
 3-12

$$PCI = C + a_1 X_{age} + a_2 X_1 + a_3 X_2 + a_4 X_3 + a_5 X_4 + a_6 X_5 + a_7 X_6 + a_8 X_7 + a_9 X_8 + a_{10} X_9 + a_{11} X_{10}$$
3-13

$$IRI = C + a_1 X_{age} + a_2 X_1 + a_3 X_2 + a_4 X_3 + a_5 X_4 + a_6 X_5 + a_7 X_6 + a_8 X_7 + a_9 X_8 + a_{10} X_9 + a_{11} X_{10}$$
3-14

$$PCI = C + a_1 X_{age} + a_2 \mathcal{W}_1 + a_3 \mathcal{W}_2 + a_4 \mathcal{W}_3 + a_5 \mathcal{W}_4 + a_6 \mathcal{W}_5 + a_7 \mathcal{W}_6 + a_8 \mathcal{W}_7$$
 3-15

$$IRI = C + a_1 X_{age} + a_2 W_1 + a_3 W_2 + a_4 W_3 + a_5 W_4 + a_6 W_5 + a_7 W_6 + a_8 W_7$$
 3-16

$$PCI = C + a_1 X_{age} + a_2 X_{ESAL} + a_3 X_{AADTT} + a_4 X_{ADTT}$$

$$3-17$$

$$IRI = C + a_1 X_{age} + a_2 X_{ESAL} + a_3 X_{AADTT} + a_4 X_{ADTT}$$
 3-18

where PCI = Pavement Condition Index, IRI = International Roughness Index, C= Constant,  $\mathbf{X}_{age}$  = Age of pavement,  $\mathbf{X}_1$  =Rutting,  $\mathbf{X}_2$  = Fatigue Cracking,  $\mathbf{X}_3$  = Block Cracking,  $\mathbf{X}_4$  = Longitudinal Cracking,  $\mathbf{X}_5$  = Transverse Cracking,  $\mathbf{X}_6$  = Patching,  $\mathbf{X}_7$  = Potholes,  $\mathbf{X}_8$  = Bleeding,  $\mathbf{X}_9$  = Ravelling,  $\mathbf{X}_{10}$  = Delamination,  $\mathbf{X}_{ESAL}$  = Annual ESAL,  $\mathbf{X}_{AADTT}$  = Annual average daily truck traffic Trucks,  $\mathbf{X}_{AADT}$  = Annual average truck traffic,  $\mathbf{W}_1$  = Temperature average,  $\mathbf{W}_2$  = Freeze index year,  $\mathbf{W}_3$  = Number of freeze days,  $\mathbf{W}_4$  = Total precip,  $\mathbf{W}_5$  = Total snowfall year,  $\mathbf{W}_6$  = Wind average,  $\mathbf{W}_7$  = Humidity,  $a_1, a_2, a_3 \dots \dots m a_{11}$  = Coefficients.

#### **3.12 Modeling of Asphalt Pavement Performance Indices Using (ANNs)**

Artificial neural networks were applied to train and test data to create models in various fields. In the present thesis, ANNs have been used to address regression modelling limitations. This study's techniques to predict pavement performance were based on ANNs methods. These numerical analysis provide a possible explanation for the underlying correlation between the independent and dependent parameters identified as relevant for evaluating pavement performance. Moreover, ANNs work to demonstrate each variable's influence on pavement performance and the influence of interactions of the variables.

The backpropagation method is a well-known supervised learning algorithm used for training and adjusting the artificial network by reducing the error between the network's performance and that of the target output. The network training process begins with a random number of weights and biases, after which inputs are introduced to the system. The error is then measured as the difference between the network output and output values propagated backwards over the artificial neural network. The weights of each layer are adjusted to reduce errors during the next round. This operation continues until a minimum error is reached. The present study divides the data into three phases, giving 70% of the data for training, 15% for testing, and 15% for validation.

The network outputs PCI and IRI can be calculated using Equations (3-19) and (3-20). A hyperbolic tangent sigmoid transfer function (tansig) is applied as a transfer function for the hidden and output layers. This method is one of the best ways to simulate an ANNs. Figure (3-7) presented an architecture of an ANNs processing of the backpropagation algorithm (Svozil et al. 1997).

$$IRI=PCI=f_{\circ}\{O_{0} + \sum_{i=1}^{n} W_{i}f_{h}[H_{l} + \sum_{k=1}^{z} W_{kl}f_{h}][H_{k} + \sum_{j=1}^{s} W_{jk}f_{h}(H_{j} + \sum_{i=1}^{\nu} W_{ij}I_{i})]\} 3-19$$

$$f_{o,h}(T) = \frac{2}{1 + e^{-2T}} - 1$$
3-20

where ,  $O_0$  = bias for the output layer, l= subscript for hidden layer 3, k = subscript for hidden layer 2,

j = subscript for hidden layer 1, i = subscript for the input layer, n = number of nodes in hidden layer 3, z = number of nodes in hidden layer 2, s = number of nodes in hidden layer 1,

v = number of nodes in the input layer,  $W_l$  = weight factors for the output layer (size: 1 × z),

 $W_{kl}$  = weight factors for hidden layer 3 (size: n × z),  $W_{jk}$  = weight factors for hidden layer 2 (size: k ×j),  $W_{ij}$  = weight factors for hidden layer 1 (size: j ×i),  $H_l$  = bias for hidden layer 3 (size: n × 1),  $H_k$  = bias for hidden layer 2 (size: z × 1),  $H_j$  = bias for hidden layer 1 (size: s × 1),  $f_\circ$  = transfer function for the output layer,  $f_h$  = transfer function for the hidden layers.



Figure 3-7: Architecture of (ANN) processing of backpropagation algorithm.

# 3.13 Comparison and validation between (MLR) and (ANNs) models

The performance of the MLR models was compared with the performance of the ANNs models to evaluate the accuracy of the models in predicting pavement performance based on pavement distress parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models.

# 3.14 Case study

The case study focuses on studying the effect of pavement distress on determining pavement conditions. St. John's, the capital of Newfoundland and Labrador-Canada, is the case study's site. This study includes the determination of PCI, IRI, and PSR of flexible pavement and developing reliable prediction models for St. John's roads.

#### **Chapter4: Modeling of Asphalt Pavement Performance Indices Using (FIS)**

#### **4.1 Introduction**

This chapter's main objectives are to present a classification for flexible pavement based on severity and density distress. The research study presented two indices for predictions of the distress values: The Fuzzy Pavement Condition Index (FPCI) and the Fuzzy International Roughness Index (FIRI). These two measurements offer quantitative indicators for the entire pavement network to assess pavement segment degradation. Mahmood (2015) utilized fuzzy logic theory for PCI models for 180 and 291 sections of the measured deterioration.

#### 4.2 Methodology and Data Collection

This study selected (120) and (150) test sections from the LTPP dataset to create the fuzzy rules. These sections have nine distress types (rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, patching, potholes, bleeding, and ravelling). Each severity level (Minimal, Moderate, and Severe) was extracted and calculated. Table (4-1) presents the descriptive statistics for 120 and 150 sections of the measured deterioration.

The system was evaluated for two datasets sections (120) and (150). This technique creates membership functions and rules by measuring fuzzy pavement classification efficiency. The coefficients of determination ( $R^2$ ), (RMSE), and (MAE) were used as the performance indicator metrics in the evaluation of the performance (FPCI &IRI) of analytical models and the comparison among four methods, Centroid, Bisector, Som, and Lom. Figure (4-1) showed that Structure of fuzzy logic approach of PCI and IRI.

| Parameters       | Min       | Maxi      | Mean      | Mean       | Std       |
|------------------|-----------|-----------|-----------|------------|-----------|
|                  | Statistic | Statistic | Statistic | Std. Error | Statistic |
| PCI              | 5.00      | 100.00    | 59.07     | 2.78       | 32.34     |
| IRI              | 0.74      | 4.04      | 1.54      | 0.06       | 0.72      |
| Age              | 4.00      | 23.00     | 13.01     | 0.40       | 4.60      |
| Rutting          | 0.0       | 135.9     | 23.6      | 3.1        | 37.7      |
| Fatigue Cracking | 0.00      | 377.90    | 38.59     | 6.58       | 76.48     |
| Block Cracking   | 0.00      | 557.60    | 5.80      | 4.30       | 50.01     |
| Longitudinal     | 0.00      | 325.60    | 66.88     | 7.77       | 90.29     |
| Transverse       | 0.00      | 192.30    | 30.63     | 3.74       | 43.50     |
| Patching         | 0.00      | 45.80     | 1.52      | 0.67       | 7.73      |
| Potholes         | 0.00      | 0.00      | 0.00      | 0.00       | 0.00      |
| Bleeding         | 0.00      | 350.80    | 18.95     | 6.12       | 70.32     |
| Ravelling        | 0.00      | 564.30    | 44.98     | 10.62      | 122.05    |

Table 4-1: Descriptive statistics for 120 and 150 sections of the measured deterioration.



Figure 4-1: Structure of fuzzy logic approach of PCI and IRI.

## 4.3 Fuzzy Inference System

#### 4.3.1 Model Formulation and Fuzzy Rule-Based System

The research study presents two models estimating the Fuzzy Pavement Condition Index (FPCI) and Fuzzy International Roughness Index (FIRI). A pavement classification system was built by considering the density of Rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, patching, potholes, bleeding, and ravelling as inputs. These models were created using MATLAB 2020b.

# 4.4 Constructing the Fuzzy Logic Model 4.4.1 Data Pre-Processing and Feature Selection

The fuzzy model used nine independent variables as inputs and one dependent variable as output (FPCI or FIRI). After extracting and revising data from the LTPP data set, the fuzzy model was prepared with nine independent parameters of distress types. Triangular membership function (time) was selected to fuzzy the crisp values of inputs variables, and various numbers of memberships functions (MF) were specified for each input and output variable. Distress types and the number of membership functions to evaluate PCI and IRI are described in Table (4-2).

#### **4.4.2 Membership Function**

In evaluating the pavement distress performance using fuzzy logic, the membership functions for input variables of distress severity levels were classified into three classes: minimal, moderate, and severe. The output variables have seven PCI membership functions classified as: Failed, Very Poor, Poor, Fair, Good, Very Good, and Excellent. Similarly, the output variables have five IRI membership functions classified as: Poor, Mediocre, Fair, Good. and Very Good (ASTM International D6433-18). In this technique, for each input and output (FPCI and FIRI).

| Distress of type      | Category | Number of MF | Description          |
|-----------------------|----------|--------------|----------------------|
| Rutting               | Input    | 3            | Extremely important  |
| Fatigue Cracking      | Input    | 3            | Relatively important |
| Block Cracking        | Input    | 3            | Relatively important |
| Longitudinal Cracking | Input    | 3            | Important            |
| Transverse Cracking   | Input    | 3            | Important            |
| Patching              | Input    | 3            | Moderately important |
| Potholes              | Input    | 3            | Moderately important |
| Ravelling             | Input    | 3            | Relatively important |
| Bleeding              | Input    | 3            | Relatively important |
| PCI                   | Output   | 7            | Extremely important  |
| IRI                   | Output   | 5            | Extremely important  |

Table 4-2: Distress types and number of membership functions to evaluate PCI and IRI.

# 4.4.3 Fuzzy Rule Generation

Generating the rules is the second phase of this approach. Tables (4-3) and (4-4) present rules generation FIS for FPCI and FIRI, respectively.

## 4.4.4 Defuzzification methods

This study used four deduzzification methods :

## 1- Centroid method

Sugeno (1985) developed this widely used technique. A centroid defuzzification method can be expressed as follows:

$$Z_{C} = \frac{\int \mu_{A}(Z) Z dx}{\int \mu_{A}(Z) dx}$$

$$4-1$$

Where  $Z_c$  is the crisp output,  $\mu_A(Z)$  is the aggregated membership function and z is the output variable.

#### 2- Bisector Method

Essentially, a bisector is a vertical line dividing an area into two equal zone subregions. Sometimes it coincides with the centroid line, but not always. A bisector defuzzification method can be expressed as follows:

$$Z_B = \int_{Z_B}^{\beta} \mu_A(Z) dx$$
 4-2

where  $Z_B$  is the crisp output.

# 3- Largest of Maximum

Largest of maximum takes the largest amongst all z that belong to  $[Z_1, Z_2]$  as the crisp value called  $Z_{Lom}$ .

## 4- Smallest of Maximum

This selects the smallest output with the maximum membership function as the crisp value  $Z_{Som}$ . In other words, in Smallest of Maximum chooses the smallest among all z that belong to  $[Z_1, Z_2]$ .

| Table 4-3: | Fuzzy rules | for PCI. |
|------------|-------------|----------|
|------------|-------------|----------|

|      | Distress type (Input) |          |          |              |            |          |          |          |           |           |
|------|-----------------------|----------|----------|--------------|------------|----------|----------|----------|-----------|-----------|
| Rule | Rutting               | Fatigue  | Block    | Longitudinal | Transverse | Patching | Potholes | Bleeding | Ravelling | FPCI      |
| No   |                       | Cracking | Cracking | Cracking     | Cracking   |          |          |          |           | (Output)  |
|      |                       |          |          |              |            |          |          |          |           |           |
| 1    | Minimal               | Minimal  | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal  | Minimal   | Excellent |
| 2    | Minimal               | Minimal  | Minimal  | Moderate     | Minimal    | Minimal  | Minimal  | Minimal  | Minimal   | Excellent |
| 3    | Minimal               | Minimal  | Minimal  | Severe       | Minimal    | Minimal  | Minimal  | Minimal  | Moderate  | Very Good |
| 4    | Minimal               | Minimal  | Minimal  | Minimal      | Severe     | Minimal  | Minimal  | Minimal  | Minimal   | Good      |
| 5    | Minimal               | Severe   | Minimal  | Moderate     | Minimal    | Minimal  | Minimal  | Minimal  | Minimal   | Good      |
| 6    | Minimal               | Moderate | Minimal  | Minimal      | Severe     | Minimal  | Minimal  | Minimal  | Minimal   | Good      |
| 7    | Minimal               | Moderate | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal  | Minimal   | Good      |
| 8    | Minimal               | Minimal  | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal  | Moderate  | Good      |
| 9    | Minimal               | Moderate | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Moderate | Minimal   | Good      |
| 10   | Minimal               | Moderate | Minimal  | Moderate     | Minimal    | Minimal  | Minimal  | Minimal  | Severe    | Fair      |
| 11   | Minimal               | Minimal  | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Minimal  | Minimal   | Fair      |
| 12   | Moderate              | Severe   | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Moderate | Minimal   | Fair      |
| 13   | Moderate              | Minimal  | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal  | Severe    | Poor      |
| 14   | Minimal               | Severe   | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Minimal  | Minimal   | Poor      |
| 15   | Moderate              | Moderate | Minimal  | Minimal      | Minimal    | Moderate | Minimal  | Minimal  | Minimal   | Poor      |
| 16   | Minimal               | Minimal  | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Minimal  | Minimal   | Poor      |
| 17   | Minimal               | Minimal  | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Minimal  | Minimal   | Very Poor |
| 18   | Moderate              | Moderate | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Moderate | Minimal   | Very Poor |
| 19   | Moderate              | Moderate | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Moderate | Moderate  | Very Poor |
| 20   | Minimal               | Minimal  | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Minimal  | Severe    | Very Poor |
| 21   | Minimal               | Severe   | Minimal  | Severe       | Severe     | Minimal  | Minimal  | Moderate | Minimal   | Very Poor |
| 22   | Moderate              | Moderate | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Minimal  | Moderate  | Very Poor |
| 23   | Minimal               | Minimal  | Minimal  | Severe       | Severe     | Minimal  | Minimal  | Minimal  | Minimal   | Very Poor |
| 24   | Minimal               | Moderate | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Minimal  | Minimal   | Failed    |
| 25   | Moderate              | Severe   | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Minimal  | Minimal   | Failed    |
| 26   | Severe                | Moderate | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Minimal  | Minimal   | Failed    |
| 27   | Severe                | Severe   | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Moderate | Minimal   | Failed    |

| Rule | e Distress type (Input) |                     |                   |                          |                        |          |          |          |           |                  |
|------|-------------------------|---------------------|-------------------|--------------------------|------------------------|----------|----------|----------|-----------|------------------|
| No   | Rutting                 | Fatigue<br>Cracking | Block<br>Cracking | Longitudinal<br>Cracking | Transverse<br>Cracking | Patching | Potholes | Bleeding | Ravelling | FIRI<br>(Output) |
| 1    | Minimal                 | Minimal             | Minimal           | Minimal                  | Minimal                | Minimal  | Minimal  | Minimal  | Minimal   | Very Good        |
| 2    | Minimal                 | Minimal             | Minimal           | Minimal                  | Severe                 | Minimal  | Minimal  | Minimal  | Minimal   | Very Good        |
| 3    | Minimal                 | Minimal             | Minimal           | Minimal                  | Moderate               | Minimal  | Minimal  | Minimal  | Minimal   | Very Good        |
| 4    | Moderate                | Moderate            | Minimal           | Minimal                  | Minimal                | Minimal  | Minimal  | Minimal  | Minimal   | Good             |
| 5    | Minimal                 | Minimal             | Minimal           | Minimal                  | Moderate               | Minimal  | Minimal  | Moderate | Minimal   | Good             |
| 6    | Moderate                | Moderate            | Minimal           | Moderate                 | Minimal                | Minimal  | Minimal  | Minimal  | Moderate  | Fair             |
| 7    | Minimal                 | Moderate            | Minimal           | Moderate                 | Minimal                | Minimal  | Minimal  | Minimal  | Severe    | Fair             |
| 8    | Minimal                 | Minimal             | Minimal           | Severe                   | Moderate               | Minimal  | Minimal  | Minimal  | Minimal   | Fair             |
| 9    | Moderate                | Moderate            | Minimal           | Moderate                 | Moderate               | Minimal  | Minimal  | Minimal  | Minimal   | Mediocre         |
| 10   | Minimal                 | Minimal             | Minimal           | Severe                   | Minimal                | Minimal  | Minimal  | Minimal  | Moderate  | Mediocre         |
| 11   | Minimal                 | Minimal             | Minimal           | Severe                   | Minimal                | Minimal  | Minimal  | Minimal  | Minimal   | Mediocre         |
| 12   | Severe                  | Severe              | Minimal           | Minimal                  | Moderate               | Minimal  | Minimal  | Minimal  | Minimal   | Poor             |
| 13   | Severe                  | Moderate            | Minimal           | Severe                   | Moderate               | Minimal  | Minimal  | Moderate | Minimal   | Poor             |
| 14   | Severe                  | Severe              | Minimal           | Severe                   | Severe                 | Minimal  | Minimal  | Moderate | Minimal   | Poor             |
| 15   | Severe                  | Severe              | Minimal           | Severe                   | Severe                 | Minimal  | Minimal  | Moderate | Minimal   | Poor             |

Table 4-4: Fuzzy rules for IRI.

# 4.5 The Results of Pavement Section Classification 4.5.1 Fuzzy Pavement Condition Index (PCI)

Table (4-5) displays the level of agreement of the (FPCI) values for 120 and 150 sections, respectively. The performance was evaluated by the  $(R^2)$  (RMSE) and (MAE) for FPCI. Comparison of the goodness of fit statistics of the 120 sections versus the 150 sections in Table (4-5) provides the following conclusions:

• **Centroid method**: The results indicated that the  $R^2$ , RMSE, and MAE values were Improvements; the improvement values were 1.03%, 6.12%, and 8.10%, respectively. • **Bisector method**: The results indicated that the *R*<sup>2</sup>, RMSE, and MAE values were improvements; the Improvement values were 0.62%, 7.01%, and 0.372%, respectively

| Inference    | Number   | Defuzzification | Statisti              | Statistical Error Measures |        |                       | Improvement (%) |        |  |
|--------------|----------|-----------------|-----------------------|----------------------------|--------|-----------------------|-----------------|--------|--|
|              | of       |                 |                       | (PCI)                      |        |                       |                 |        |  |
|              | sections |                 | <b>R</b> <sup>2</sup> | RMSE                       | MAE    | <b>R</b> <sup>2</sup> | RMSE            | MAE    |  |
|              |          | Centroid        | 97.3*                 | 5.28*                      | 4.617* | -                     | -               | -      |  |
|              | 120      | Bisector        | 96.3                  | 5.916                      | 5.367  | -                     | -               | -      |  |
|              |          | Lom             | 95.4                  | 8.096                      | 6.185  | -                     | -               | -      |  |
| Mamdani      |          | Som             | 95.8                  | 6.696                      | 5.567  | -                     | -               | -      |  |
| (Triangular) | 150      | Centroid        | 98.3*                 | 4.957*                     | 4.243* | +1.03                 | +6.12           | +8.10  |  |
|              |          | Bisector        | 96.9                  | 5.499                      | 5.347  | +0.62                 | +7.01           | +0.372 |  |
|              |          | Lom             | 98.2                  | 5.042                      | 4.487  | +2.85                 | +37.72          | +27.45 |  |
|              |          | Som             | 97.6                  | 5.465                      | 4.92   | +1.84                 | +18.38          | +11.6  |  |

Table 4-5: Assessment various fuzzy inference systems' configurations for FPCI.

\*Indicates the best results for each fuzzy system in the column.

• Lom method: The results indicated that the  $R^2$ , RMSE, and MAE values were

Improvements; the improvement values were 2.85%, 37.72%, and 27.45%, respectively.

• Som method: The results indicated that the  $R^2$ , RMSE, and MAE values were

Improvements; the improvement values were 1.84%, 18.38%, and 11.6%, respectively.

The results illustrated the centroid method yields a more accurate result ( $R^2$ = 98.3%, RMSE =4.957%, and MAE=4.243%) compared to other methods. The Lom method has the most significant Improvement among methods ( $R^2$ = 2.85%, RMSE =37.72% and MAE=27.45%). This means that the accuracy of models was enhanced by increasing the number of sections.



Figure 4-2: Fuzzy inference system for PCI (120 sections).



Figure 4-3: Fuzzy inference system for PCI (150 sections).

Although the Improvement was relatively slight, it still showed that the accuracy level improved with an increase in the number of sections. Figures (4-2) and (4-3) show the relation between the observed PCI and fuzzified FPCI and use four methods of analysis for 120 and 150 sections, respectively.

#### 4.5.2 Fuzzy International Roughness Index (IRI)

Table (4-6) presents the level of agreement of the (FIRI) values for 120 and 150 sections, respectively.

| Inference    | Number   | Defuzzification | <b>Statistical Error Measures</b> |        |        | Improvement (%)       |        |        |
|--------------|----------|-----------------|-----------------------------------|--------|--------|-----------------------|--------|--------|
|              | of       |                 |                                   | (IRI)  |        |                       |        |        |
|              | sections |                 | $R^2$                             | RMSE   | MAE    | <b>R</b> <sup>2</sup> | RMSE   | MAE    |
|              |          | Centroid        | 90.3*                             | 0.318* | 0.26*  | -                     | -      | -      |
|              | 120      | Bisector        | 89.9                              | 0.319  | 0.261  | -                     | -      | -      |
|              |          | Lom             | 89.3                              | 0.412  | 0.314  | -                     | -      | -      |
| Mamdani      |          | Som             | 88.3                              | 0.345  | 0.278  | -                     | -      | -      |
| (Triangular) | 150      | Centroid        | 92.9*                             | 0.285* | 0.227* | +2.78                 | +10.37 | +12.70 |
|              |          | Bisector        | 92.7                              | 0.286  | 0.233  | +3.02                 | +10.34 | +10.73 |
|              |          | Lom             | 91.9                              | 0.33   | 0.249  | +2.83                 | +19.90 | +20.7  |
|              |          | Som             | 91.5                              | 0.345  | 0.277  | +3.5                  | 0      | +0.36  |

Table 4-6: Assessment various fuzzy inference systems' configurations for FIRI

\*Indicates the best results for each fuzzy system in the column.

The performance was evaluated by the  $R^2$ , RMSE, and MAE for FIRI. Comparison of the goodness of fit statistics of the 120 sections versus the 150 sections in Table (4-6) provides the following conclusions:

- Centroid method: The results indicated that the  $R^2$ , RMSE, and MAE values were Improvements; the improvement values were 2.78%, 10.37%, and 12.70%, respectively.
- **Bisector method:** The results indicated that the  $R^2$ , RMSE, and MAE values were Improvements; the Improvement values were 3.02%, 10.34%, and 10.73%, respectively.
- Lom method: The results indicated that the  $R^2$ , RMSE, and MAE values were Improvements; the improvement values were 2.83%,19.90%, and 20.70%, respectively.



• Som method: The results indicated that the  $R^2$ , RMSE, and MAE values were Improvements; the improvement values were 3.5%,0%, and 0.36%, respectively.

Figure 4-4: Fuzzy inference system for FIRI (120 sections).

The results illustrated the centroid method yields a more accurate result ( $R^2$ = 92.9%, RMSE =0.285%, and MAE=0.227%) than other methods. The Lom method has the most significant

Improvement among methods ( $R^2$ = 2.83%, RMSE =19.90% and MAE=20.70%). This means that the accuracy of models was enhanced by increasing the number of sections.



Figure 4-5: Fuzzy inference system for FIRI (150 sections).

Although the improvement was relatively slight, but it was indicated that accuracy improved as the number of sections increased. Figures (4-4) and (4-5) show the relation between the observed IRI and fuzzified FIRI and use four methods of analysis for 120 and 150 sections, respectively.

#### 4.5.2.1 Sensitivity of Pavement Distress Types Using the FIS

The FPCI and FIRI models were created through several steps. The first step was the fuzzy partition generation for inputs and outputs for the 120 and 150 sections of pavement. The second step was the generation of fuzzy rules from numerical data. The third step was the FPCI and FIRI model development of a pavement classification model, which used nine variables as FIS inputs: rutting, fatigue cracking, block cracking, longitudinal and transverse cracking, patching and potholes, bleeding, and ravelling.

The effect of input parameters on the efficiency of the fuzzy pavement categorization system in the computation of output parameters (FPCI and FIRI) was investigated using a sensitivity analysis. The sensitivity analysis was carried out by creating the FIS model and analysing the influence of each input on output.

Table (4-7) summarizes a sensitivity analysis to determine the effects of input variables on the efficacy of PCI and IRI evaluation models. This analysis generated empirical models by considering the individual independent input impact (one by one) and neglecting the other independent input impacts.  $R^2$  was used as the index to evaluate the correlation strength between independent and dependent input variables.

Figure (4-6) presents the sensitivity analysis for FPCI. Compared to other variables, the analysis showed that rutting has the most significant impact on FPCI fuzzified classification, and transverse, fatigue, and longitudinal cracking have some effects on FPCI. In contrast, block cracking, and patching slightly influence the classification model.

Figure (4-7) shows the sensitivity analysis for FIRI. Compared to other variables, this analysis showed that rutting has the most significant impact on FIRI fuzzified classification and patching

and fatigue cracking have some effects on FIRI fuzzified classification. Other variables have minor effect on FIRI fuzzified classification.

| Independent           | R <sup>2</sup> |      |      |      |  |  |  |
|-----------------------|----------------|------|------|------|--|--|--|
| Variable              | F              | PCI  | IRI  |      |  |  |  |
|                       | 120            | 150  | 120  | 150  |  |  |  |
| Rutting               | 45.1           | 46.5 | 12.4 | 14.2 |  |  |  |
| Fatigue               | 27.9           | 28.4 | 58   | 63   |  |  |  |
| Block Cracking        | 0.1            | 0. 2 | 0.1  | -    |  |  |  |
| Longitudinal Cracking | 26.6           | 26.6 | 0.1  | 1.4  |  |  |  |
| Transverse Cracking   | 35.5           | 39.9 | 1.7  | 1.6  |  |  |  |
| Patching              | 5.1            | 0.6  | 9.6  | 0.1  |  |  |  |
| Potholes              | -              | -    | -    | 0.1  |  |  |  |
| Bleeding              | 9.6            | 7.2  | 12   | 0.6  |  |  |  |
| Ravelling             | 6.5            | 7.1  | 0.1  | 0.2  |  |  |  |

Table 4-7: Sensitivity analysis of prediction models for FPCI and FIRI.



Figure 4-6: Sensitivity analysis of input variables on prediction for FPCI.



Figure 4-7: Sensitivity analysis of input variables on prediction for FIRI.

## 4.6 Summary

This study used two sets of pavement distress data extracted from the LTPP database. Data sets were used to develop a PCI and IRI prediction model using the fuzzy inference algorithm. The membership function parameter was determined by a set of input and output data defined via a hybrid optimization algorithm. Drafting the structure of the FIS model by trial and error was a method adopted for constructing the optimal FIS. The nine density types of pavement distress coefficients (rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, patching, potholes, bleeding, and ravelling) were input variables. And IRI and PCI were considered as the target parameters. Two data sets were collected from the LTPP data set for FIS modelling, with (120) and (150) sections.

Several important advantages were drawn from FIS technique, as follows:

- Although the FIS technique does not provide an equation for the prediction of PCI and IRI, the model can correlate with pavement distress. Based on the  $R^2$  values, it was evident that the four methods have good accuracy, as their  $R^2$  values exceed 89%.
- Based on the sensitivity analysis, it is concluded that the rutting has most influence on the FPCI calculation, and transverse cracking, longitudinal cracking, and fatigue cracking have some influence on the FPCI calculation, while patching, bleeding, and ravelling have minor effects on the FPCI calculation.
- Based on the sensitivity analysis, it is concluded that the rutting has most influence on the FIRI calculation patching and fatigue cracking have some influence on the FIRI, while transverse cracking, longitudinal cracking, bleeding, and ravelling have only minor effects on the FIRI.

- Incorporating additional sections with different distresses and various severities improves the model results, which helps the programme to learn and develop additional rules.
- Results indicated that the performance of developed models was enhanced by increasing the number of sections.

## **Chapter5: Modeling the Relationship Between Asphalt**

# **Pavement Performance Indices (PCI and IRI)**

#### 5.1 Introduction

The IRI and the PCI are widely used pavement performance indicators in many countries. These indicators are important in determining the effectiveness of pavement rehabilitation and treatment programs. This chapter sought to clarify the relationship between these two performance indicators using the LTPP data for four climate regions in the U.S. and Canada. Figure (5-1) shows the research methodology of examining and developing the relationship between asphalt pavement performance indices.

#### **5.2 Pavement Condition Index Calculation**

After collecting the pavement distress data and IRI values from the LTPP database for four climate regions in the U.S. and Canada, PCI values were calculated for 53 road sections with 408 observations using the ASTM D6433-18 standard. Based on these data, three mathematical methods (linear, quadratic, and cubic) and ANNs techniques were developed for prediction models. Table (5-1) presents a brief description of the specification of the IRI and PCI dataset.

Table 5-1: Gathered pavement distress data for four climate regions.

|            |        | Climate Regions |           |           |           |  |  |  |
|------------|--------|-----------------|-----------|-----------|-----------|--|--|--|
| Parameters | Unit   | Dry             | Dry no    | Wet       | Wet no    |  |  |  |
|            |        | Freeze          | Freeze    | Freeze    | Freeze    |  |  |  |
| PCI        | %      | 52-80           | 50-100    | 8-100     | 8-100     |  |  |  |
| IRI        | (m/km) | 0.89-1.69       | 0.68-2.66 | 0.72-4.04 | 0.62-3.76 |  |  |  |



Figure 5-1: Research methodology of the examining and Modeling the relationship between asphalt pavement performance indices.

# 5.3 Modeling the Relationship Between Asphalt Pavement Indices (PCI and IRI) Using Mathematical Methods

Three mathematical methods (linear, quadratic, and cubic) were used to develop a correlation between the two indicators PCI and IRI. Analysis was carried out by the SPSS programme to determine the correlation between the PCI and IRI. The correlation between the PCI and IRI was conducted based on the LTPP dataset, and the correlation was assessed using  $R^2$  values, RMSE, and MAE. Equations from (5-1) to (5-12) summarised the regression models and presented the relation between (PCI& IRI) for four climate regions as follows:

#### **1-Dry Freeze:**

Regression analysis was carried out to determine the correlation between the PCI and IRI. Equations (5-1), (5-2), and (5-3) represent the correlation between the PCI and IRI and used the linear, quadratic, and cubic methods, respectively.

$$PCI = 97.363 - 27.92(IRI)$$
 5-1

The correlation coefficient  $(R^2)$  of this relationship is **87.7%**.

$$PCI = 143.83 - 108.270(IRI) + 31.88(IRI)^2$$
 5-2

The correlation coefficient  $(R^2)$  of this relationship is **92.3%**.

$$PCI = 143.83 - 108.270(IRI) + 31.88(IRI)^2$$
5-3

The correlation coefficient  $(R^2)$  of this relationship is **92.3%**.



Figure 5-2: PCI versus IRI plot for dry freeze.

The previous three equations showed that the dependant variable PCI was negatively correlated with the independent variable (IRI), which was to be expected, since the roughness of roads causes PCI values to decrease. Figure (5-2) presented the relationship between PCI and IRI for the dry freeze region, and the Figure showed the relationship between PCI and IRI by three mathematical methods, linear, quadratic, and cubic.

#### **2-Dry no Freeze:**

Regression analysis was carried out to determine the correlation between the PCI and IRI. Equations (5-4), (5-5), and (5-6) represent the correlation between the PCI and IRI and used the linear, quadratic, and cubic methods, respectively.

$$PCI = 115.012 - 29.72(IRI)$$
 5-4

The correlation coefficient  $(R^2)$  of this relationship is **89%**.

$$PCI = 128.7 - 57.3(IRI) + 11.44(IRI)^2$$
5-5

The correlation coefficient  $(R^2)$  of this relationship is **92%**.

$$PCI = 128.7 - 57.3(IRI) + 11.44(IRI)^2$$
5-6

The correlation coefficient  $(R^2)$  of this relationship is 92%.

As observed in equation (5-4), the regression analysis (linear method) showed that the PCI variable was negatively correlated with IRI.  $R^2$  for equation (5-4) was 86 %. While  $R^2$  for equations (5-5) and (5-6) were 92 % for the quadratic and cubic methods, respectively. Figure (5-3) presents the relationship between PCI and IRI for the dry no freeze region using three mathematical methods: linear, quadratic, and cubic.



Figure 5-3: PCI versus IRI plot for dry no freeze.
#### **<u>3-Wet Freeze:</u>**

Three regression models were developed to predict PCI from IRI data. Equations (5-7), (5-8), and (5-9) represents the correlation between the PCI and IRI, using the linear, quadratic, and cubic methods, respectively.

$$PCI = 115.012 - 29.72(IRI)$$
 5-7

The correlation coefficient  $(R^2)$  of this relationship is **82.1%**.

$$PCI = 121.6 - 38.23(IRI) + 2.11(IRI)^2$$
5-8

The correlation coefficient  $(R^2)$  of this relationship is **82.5%**.

$$PCI = 97.97 + 8.11(IRI) - 24.36(IRI)^2 + 4.31(IRI)^3$$
5-9

The correlation coefficient  $(R^2)$  of this relationship is 83.5 %.



Figure 5-4:PCI versus IRI plot for wet freeze.

As observed in equations (5-7), (5-8), and (5-9),  $R^2$  values were 82.1 %, and 82.5 %, and 83.5%, respectively. This indicates that using the IRI data in a wet freeze climate model it challenging to predict PCI value. Figure (5-4) presents the relationship between PCI and IRI for the wet freeze region using three mathematical methods: linear, quadratic, and cubic.

#### 4-Wet no Freeze:

Three regression models were developed to predict PCI from IRI data. Equations (5-10), (5-11), and (5-12) represented the correlation between the PCI and IRI, and used the linear, quadratic, and cubic methods, respectively.

The correlation coefficient  $(R^2)$  of this relationship is **92.7%**.

$$PCI=161.51-79(IRI)+9.23(IRI)^2$$
5-11

The correlation coefficient  $(R^2)$  of this relationship is **94.4%**.

$$PCI = 133.465 - 27.21(IRI) - 18.71(IRI)^{2} + 4.60(IRI)^{3}$$
 5-12

The correlation coefficient  $(R^2)$  of this relationship is **94.8%**.

Equations (5-10), (5-11) and (5-12) showed that the R<sup>2</sup> were 92.7 %, 94.4 % and 94.8 %, respectively. Based on this, IRI data in the wet no freeze climate can easily predict PCI value. Figure (5-5) presents the relationship between PCI and IRI for the wet no freeze region using three mathematical methods: linear, quadratic, and cubic.



Figure 5-05: PCI versus IRI plot for wet no freeze.

## 5.4 Comparison and validation of the mathematical models

The  $R^2$ , RMSE, and MAE three statistical error measures were used for validating the developed regression model for the three mathematical methods mentioned above. Results showed that the  $R^2$ was good, while the RMSE and the MAE values in all cases were low, as shown in Table (5-2). Table 5-2: Summary of correlation between IRI & PCI.

|               |        | Statistical Error Measures |       |        |           |       |        |           |       |  |
|---------------|--------|----------------------------|-------|--------|-----------|-------|--------|-----------|-------|--|
| Climate       |        | <i>R</i> <sup>2</sup>      |       |        | RMSE      |       |        | MAE       |       |  |
| Regions       | Linear | Quadratic                  | Cubic | Linear | Quadratic | Cubic | Linear | Quadratic | Cubic |  |
| Dry Freeze    | 87.7   | 92.3                       | 92.3  | 2.704  | 2.132     | 2.132 | 1.764  | 1.563     | 1.563 |  |
| Dry no Freeze | 86     | 92                         | 92    | 5.274  | 3.999     | 3.999 | 4.401  | 2.974     | 2.974 |  |
| Wet Freeze    | 82.1   | 82.5                       | 83.5  | 8.387  | 8.301     | 8.055 | 4.708  | 4.09      | 4.045 |  |
| Wet no Freeze | 92.7   | 94.4                       | 94.8  | 8.173  | 7.137     | 6.940 | 6.354  | 5.763     | 5.348 |  |

According to Table (5-2), several conclusions can be drawn:

- **Dry Freeze:** The results indicated that the *R*<sup>2</sup>, RMSE, and MAE values of the cubic models improved by 4.9%, 21.15%, and 11.39% compared to the linear models.
- <u>**Dry no Freeze:**</u> The results indicated that the  $R^2$ , RMSE, and MAE values of the cubic models improved by 6.52%, 24.17%, and 32.42% compared to the linear models.
- Wet Freeze: The results indicated that the R<sup>2</sup>, RMSE, and MAE values of the cubic models improved by 1.68%, 1.20%, 3.96%, 2.96%, 14.08%, and 1.10% compared to the linear models and quadratic model, respectively.
- <u>Wet no Freeze:</u> The results indicated that the *R*<sup>2</sup>, RMSE, and MAE values of the cubic models improved by 2.22%, 15.09%, 15.83%, 0.42%, 2.76%, 7.20% compared to the linear models and quadratic model, respectively.

The results obtained from the regression analysis showed that the cubic regression models could be used for estimating the PCI values from the IRI. Cubic model results provided the best fit in all cases, with less error between the observed and predicted values compared to linear and quadratic methods. This result is consistent with some previous research. For example, Park et al. (2007) conducted a regression model and reported  $R^2$ =59%. AASHTO (2008a) used the M-E model to predict IRI values, the  $R^2$  was 56%, by Arhin et al. (2015),  $R^2$  = 82%, Psalmen Hasibuan & Sejahtera Surbakti, 2019),  $R^2$  = 59%, Elhadidy et al. (2019),  $R^2$  = 93%, and Timm (2015),  $R^2$  = 63%. Despite following the ASTM standard, there remains a certain amount of uncertainty related to the correlation between PCI and IRI of flexible pavements owing to factors such as:

- the survey team estimates (human errors),
- the data collection devices, and
- the maintenance record of the road.

Table (5-1) shows PCI and IRI values for four climate regions. For example, PCI values for the dry no freeze region ranged between 52 and 100; these values were classified as fair to excellent. In contrast, IRI values were rated as very good to poor, and ranged between 0.68 and 2.66 (m/km). The results demonstrated that the same section of the road could have a good PCI but a poor IRI, even though IRI and PCI were strongly correlated. To understand these differences, the impact of pavement distress type was investigated with two road performance indicators. Some pavement distress, like potholes and bleeding, substantially reduce the PCI values but insignificantly influences the IRI values. However, the patching significantly affects the IRI values but insignificantly influences the PCI values.

## 5.5 Modeling the Relationship Between Asphalt Pavement Indices (PCI and IRI) Using Artificial Neural Network (ANNs) Technique

Artificial neural networks have been used to develop effective and accurate models. These models aim to predict the relationship between the PCI and IRI obtained from the LTPP datasets for four climate regions in the U.S. and Canada. The architecture of the designed network consists of one input layer with one variable, three hidden layers, and an output layer. 53 flexible pavement sections with 408 observations have been chosen within the four climatic regions. Figure (5-6) displays the architecture of the ANNs. The model's performance was assessed using the three common methods of  $R^2$  value, RMSE, and MAE. Figure (5-7) presents the ANN prediction results for PCI models for four climate regions. According to Table (5-3), several conclusions can be drawn:

Dry Freeze: The R<sup>2</sup> value was 99.7%, while the RMSE and MAE values were 0.89% and 0.89%.

• <u>Dry no Freeze:</u> The R<sup>2</sup> value was 98.5%, while the RMSE and MAE values were 0.39% and 0.336%.

|                 | Statistical Error Measures(%) |       |       |  |  |  |  |
|-----------------|-------------------------------|-------|-------|--|--|--|--|
| Climate Regions | <i>R</i> <sup>2</sup>         | RMSE  | MAE   |  |  |  |  |
| Dry Freeze      | 99.7                          | 0.89  | 0.89  |  |  |  |  |
| Dry no Freeze   | 98.5                          | 0.39  | 0.336 |  |  |  |  |
| Wet Freeze      | 99.8                          | 0.661 | 0.484 |  |  |  |  |
| Wet no Freeze   | 99.8                          | 0.827 | 0.601 |  |  |  |  |

Table 5-3: Performance of PCI models by using ANNs technique based on IRI values.

- <u>Wet Freeze:</u> The  $R^2$  value was 99.8%, while the RMSE and MAE values were 0.661% and 0.484%.
- Wet no Freeze: The  $R^2$  value was 99.8%, while the RMSE and MAE values were 0.827% and 0.601%.



Figure 5-6: Architecture of ANN model for PCI.



Figure 5-7: Performance of the ANNs for predicting PCI models for four climate regions.

## 5.6 Comparison and validation of the models

To validate the prediction models developed in this chapter, the  $R^2$ , RMSE, and MAE methods were adopted to validate the cubic and ANNs techniques. The  $R^2$  was used to evaluate the relationship strength between the input and output variables. The RMSE and MAE were used to determine whether if there were any significant differences between observed and prediction errors' values. In all cases, the calculated  $R^2$  were strong, and RMSE and MAE values were found to be low, as shown in Table (5-4). Figures (5-8) and (5-9) present the comparison between the cubic method and the ANNs technique. Table (5-4) provided a promising approach to compare the cubic models to ANNs models. A summary of the findings is as follows:

This study presented good models for accurate PCI prediction for flexible pavement for four climate regions. The model's input variables were evaluated and assessed to produce an accurate and strong model.

|                |                       | Statistical Error Measures |       |                       |       |       |                       |        |        |  |
|----------------|-----------------------|----------------------------|-------|-----------------------|-------|-------|-----------------------|--------|--------|--|
| Climate Region | Cubic Generated       |                            |       | ANNs Generated        |       |       | Improvement (%)       |        |        |  |
|                | <b>R</b> <sup>2</sup> | RMSE                       | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |  |
| Dry Freeze     | 92.3                  | 2.132                      | 1.563 | 99.7                  | 0.89  | 0.89  | +7.42                 | +58.26 | +43.06 |  |
| Dry no Freeze  | 92                    | 3.999                      | 2.974 | 98.5                  | 0.39  | 0.336 | +6.60                 | +90.25 | +88.70 |  |
| Wet Freeze     | 83.5                  | 8.055                      | 4.045 | 99.8                  | 0.661 | 0.484 | +16.33                | +91.79 | +88.03 |  |
| Wet no Freeze  | 94.8                  | 6.940                      | 5.348 | 99.8                  | 0.827 | 0.601 | +5.01                 | +88.08 | +88.76 |  |

Table 5-04: Comparison of the cubic models to the ANNs models.

- The results indicated that the R<sup>2</sup> of the ANNs models improved by 7.42%, 6.60%, 16.33 %, and 5.01%, compared to the cubic models, for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The results indicated the RMSE value of the ANNs models was reduced by 58.26%, 90.25%, 91.79%, and 88.08% compared to the cubic models, for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.

- The results indicated the MAE value of the ANNs models was reduced by 43.06%, 88.70%, 88.03%, and 88.76%, compared to the cubic models, for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- According to the results, the cubic models could estimate the PCI values from the IRI with reasonable accuracy. Results showed that the ANNs technique has the best fit and high accuracy in all cases with less error between observed and predicted values than the cubic method.

## 5.7 Summary

Several important conclusions can be drawn from this chapter, as follow:

- The LTPP data were used in this study to determine correlations between the PCI and IRI of flexible pavement. The results indicate that all methods were able to predict models by using IRI data.
- The results indicated that the most accurate models were the cubic models, compared to linear and quadratic models, in all cases.
- The results indicated that the ANNs models were more accurate than cubic models in all cases.
- Finally, when comparing the MLR and the ANN data, it was observed that the ANNs models showed more strong correlations between the PCI and IRI.

## **Chapter6: Modeling of Asphalt Pavement Performance Indices Using**

## (MLR) and (ANNs) Techniques

#### **6.1 Introduction**

The pavement performance prediction models are essential for pavement management and effectively prioritize allocating resources, where pavement redesign and maintenance costing are conducted with these models. This section provides the research methodology used to model performance prediction indices (PCI and IRI) and investigates the potential impact of various fundamental parameters on pavement performance. This is critical to understanding potential relationship types and calculating correlations between input and output variables. The methodology for this chapter is based on the several following steps:

- 1. Collecting data from the LTPP dataset for four climate regions.
- 2. Modeling of asphalt pavement performance indices using (MLR) technique.
- 3. Modeling of asphalt pavement performance indices using (ANNs) technique.
- 4. Comparison and validation of the MLR and ANNs models.
- 5. Specifically, the following three parameters are analyzed to determine study their effect on asphalt pavement performance indices (PCI &IRI) prediction models:
  - Effect of pavement distress (performance parameters),
  - effect of environmental parameters, and
  - effect of traffic parameters.

Figure 6-1 presents the research methodology of the Modeling asphalt pavement performance indices.



Figure 6-1: The research methodology of the modeling asphalt pavement performance indices.

## 6.2 Effect of Pavement Distress on Indices Values

This section focused on modeling asphalt pavement performance indices (PCI and IRI) based on pavement distress variables and studying the effect of these variables on asphalt pavement performance indices for four climate regions in the U.S. and Canada. The relevant data were collected on the pavement distress parameters of 53 road sections with 408 observations from the LTPP dataset, and distributed to four climate regions (dry freeze, dry no freeze, wet freeze, wet no freeze). The present study was divided into three phases as follows:

- Modeling of asphalt pavement performance indices using (MLR) technique.
- Modeling of asphalt pavement performance indices using (ANNs) technique.
- Comparison and validation of the MLR and ANNs models.

Ten pavement distress variables were assessed and used to predict the PCI and IRI for each climate region, including age, rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, potholes, patching, bleeding, and ravelling.

Note that both the surface type of asphalt concrete pavement (ACP) and type of subgrade (coarsegrained) are constant for all data regions. Table (6-1) briefly describes the selected dataset of pavement distress specification.

|                        |         |             | Climate F | Regions   |           |
|------------------------|---------|-------------|-----------|-----------|-----------|
| Parameters             | Unit    | Dry         | Dry no    | Wet       | Wet no    |
|                        |         | Freeze      | Freeze    | Freeze    | Freeze    |
| PCI                    | %       | 52-80       | 50-100    | 8-91      | 8-100     |
| IRI                    | (m/km)  | 0.89-1.69   | 0.68-2.66 | 0.79-4.04 | 0.75-3.76 |
| Number of data samples | Number  | 14          | 61        | 144       | 189       |
| Age                    | Year    | 6-18        | 3-34      | 3-33      | 1-31      |
| Rutting                | Mm      | 0-10        | 0-16      | 0-29      | 0-22      |
| Fatigue Cracking       | $m^2$   | 0-170       | 0-304.8   | 0-218.7   | 0-377.90  |
| Block Cracking         | $m^2$   | 0           | 0         | 0         | 0         |
| Longitudinal Cracking  | М       | 128.9-378.5 | 0-306     | 0-319     | 0-377.1   |
| Transverse Cracking    | М       | 22-65       | 0-140     | 0-293     | 0-193     |
| Patching               | $m^2$   | 0           | 0-1.5     | 0         | 0-46      |
| Potholes               | (Count) | 0           | 0         | 0         | 0         |
| Bleeding               | $m^2$   | 0           | 0         | 0-350.80  | 0-275     |
| Ravelling              | $m^2$   | 0           | 0-76.3    | 0-564.3   | 0-564     |

Table 6-1: Gathered pavement distress data from four climate regions.

## 6.2.1 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique

Research in this part focuses on using pavement distress variables to model asphalt pavement performance indices (PCI and IRI). Pavement distress parameters were input variables, and pavement performance indices (PCI and IRI ) were output parameters. Eight prediction models were developed using (MLR) technique from the collected data. The PCI and IRI regression models are shown in Tables (6-2) and (6-3).

The PCI regression analysis results illustrated in Table (6-2) indicate that the  $R^2$  values were 77%, 91.6%, 86.6%, and 89.3% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.

Based on the  $R^2$  values, it was evident that all models have good accuracy, as their  $R^2$  values exceed 77%.

|                       |               |                  | PCI           |                  |
|-----------------------|---------------|------------------|---------------|------------------|
| Model                 | Dry<br>Freeze | Dry no<br>Freeze | Wet<br>Freeze | Wet no<br>Freeze |
| <i>R</i> <sup>2</sup> | 77            | 91.6             | 86.8          | 89.4             |
| Constant              | 82.2          | 104.94           | 116.52        | 113.33           |
| Age                   | 0.067         | -0.492           | -2.74         | -3.087           |
| Rutting               | 0.232         | 0.048            | 0.178         | 0.205            |
| Fatigue Cracking      | -0.095        | 0.04             | -0.018        | 0.007            |
| Block Cracking        | -             | -                | -             | -                |
| Longitudinal Cracking | -0.096        | -0.011           | 0.001         | -0.004           |
| Transverse Cracking   | 0.054         | 0.104            | 0.024         | -0.045           |
| Patching              | -             | -2.793           | -             | 0.021            |
| Potholes              | -             | -                | -             | -                |
| Bleeding              | -             | -                | 0.01          | 0.005            |
| Ravelling             | -             | -0.053           | 0.008         | -0.004           |

Table 6-2: PCI models summary based on pavement distress.

The IRI regression analysis results illustrated in Table (6-3) indicate that the  $R^2$  values were 70.7%, 90.3%, 77.7%, and 89.4% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively. Based on the  $R^2$  values, all models had a good correlation, as their  $R^2$  values exceed 70%.

|                       |               |                  | IRI           |                  |
|-----------------------|---------------|------------------|---------------|------------------|
| Model                 | Dry<br>Freeze | Dry no<br>Freeze | Wet<br>Freeze | Wet no<br>Freeze |
| $R^2$                 | 70.7          | 90.6             | 77.7          | 89.3             |
| Constant              | 2.273         | 0.063            | 0.155         | 0.365            |
| Age                   | -0.126        | 0.088            | 0.081         | 0.074            |
| Rutting               | 0.083         | 0.011            | -0.007        | -0.004           |
| Fatigue Cracking      | -0.003        | -0.002           | 0.001         | -0.0001          |
| Block Cracking        | -             | -                | -             | -                |
| Longitudinal Cracking | -0.007        | -                | -             | -0.0001          |
| Transverse Cracking   | 0.035         | -                | -0.001        | -0.001           |
| Patching              | -             | 0.043            | -             | -                |
| Potholes              | -             | -                | -             | -                |
| Bleeding              | -             | -                | -             | -                |
| Ravelling             | -             | -0.002           | -             | -                |

Table 6-3: IRI models summary based on pavement distress.

Equations from (6-1) to (6-8) summarised the regression models for four climate regions as follows:

#### 1- Dry Freeze

Table (6-2) presents the regression analysis result for PCI for the dry freeze area. The PCI model was negatively correlated with fatigue and longitudinal cracking, and positively correlated with age, rutting, and transverse cracking. Equation (6-1) described the relationship between the PCI and pavement distress as follows:

$$PCI = 82.2 + 0.067X_{age} + 0.232X_1 - 0.095X_2 - 0.096X_4 + 0.054X_5$$
 6-1

The correlation coefficient  $(R^2)$  of this relationship is 77%.

Table (6-3) presents the regression analysis result of the IRI for the dry freeze area. The IRI model had a positive relationship with rutting and transverse cracking. The IRI model had a negative relationship with age, fatigue cracking, and longitudinal cracking, Equation (6-2) described the relationship between the IRI and pavement distress as follows:

$$IRI = 2.273 - 0.126X_{age} + 0.083X_1 - 0.003X_2 - 0.007X_4 + 0.035X_5$$
 6-2

The correlation coefficient  $(R^2)$  of this relationship is 70.7 %.

#### 2- Dry no Freeze

The regression analysis result of the PCI model for the dry no freeze area is shown in Table (6-2). The PCI model was positively correlated with fatigue and transverse cracking. The PCI model was negatively correlated with age, rutting, fatigue cracking, longitudinal cracking, patching, and ravelling. Equation (6-3) described the relationship between the PCI and pavement distress as follows:

$$PCI = 104.94 - 0.492X_{age} + 0.048X_1 + 0.04X_1 - 0.011X_4 + 0.104X_5 - 2.793X_6 - 0.053X_9$$
6-3

The correlation coefficient  $(R^2)$  of this relationship is **91.6 %**.

The regression analysis result of the IRI model for the dry no freeze area is presented in Table (6-3). The IRI model was negatively correlated with fatigue cracking and ravelling. The IRI model had a positive relationship correlated with age, rutting, and patching. Equation (6-4) described the relationship between the IRI and pavement distress as follows:

 $IRI = 0.063 + 0.088X_{age} + 0.011 X_1 - 0.002 X_2 + 0.043X_6 - 0.002 X_9$  6-4

The correlation coefficient  $(R^2)$  of this relationship is **90.6%**.

#### 3- Wet Freeze

Table (6-2) presents the regression analysis results for the PCI model for the wet freeze area. The PCI model was negatively correlated with age and fatigue cracking. The PCI model was positively correlated with rutting, longitudinal cracking, transverse cracking, bleeding, and ravelling. Equation (6-5) described the relationship between the PCI and pavement distress as follows:

$$PCI = 116.52 - 2.74X_{age} + 0.178X_1 - 0.018X_2 + 0.001X_4 + 0.024X_5 + 0.010X_8 + 0.008X_9$$

$$-6.5$$

The correlation coefficient  $(R^2)$  of this relationship is **86.8%**.

Table (6-3) presents the regression analysis results for the IRI model for the wet freeze area. The IRI model was negatively correlated with rutting and transverse cracking. The IRI model was positively correlated with age, and fatigue cracking. Equation (6-6) described the relationship between the IRI and pavement distress as follows:

$$IRI = 0.155 + 0.081X_{age} - 0.007X_1 + 0.001X_2 - 0.001X_5$$
 6-6

The correlation coefficient  $(R^2)$  of this relationship is 77.7%.

#### 4- Wet no Freeze

The regression analysis result of the PCI model for the wet no freeze area is presented in Table (6-2). The PCI model was negatively correlated with age, transverse cracking, longitudinal cracking, and ravelling. The PCI model was positively correlated with rutting, fatigue cracking, patching, and bleeding. Equation (6-7) describes the relationship between the PCI, and pavement distress as follows:

# $PCI = 113.33 - 3.078X_{age} + 0.205X_1 + 0.007X_2 - 0.004X_4 - 0.045X_5 + 0.021X_6 + 0.005X_8 - 0.004X_5$ 6-7

The correlation coefficient  $(R^2)$  of this relationship is **89.3%**.

The regression analysis result of the IRI model for the wet no freeze area is presented in Table (6-3). The IRI model was negatively correlated with rutting, fatigue cracking, longitudinal cracking, and transverse cracking. Equation (6-8) described the relationship between the IRI and pavement distress as follows:

$$IRI = 0.365 + 0.074X_{aae} - 0.004X_1 - 0.0001X_2 - 0.0001X_4 - 0.001X_5$$
 6-8

The correlation coefficient  $(R^2)$  of this relationship is **89.4 %**.

#### 6.2.1.1 Validation of MLR Models

Models Validation was applied to determine how accurately the PCI and IRI models can forecast. In this study used cross validation method to evaluating models performance. 80 % of the data samples for each category were randomly selected to construct deterioration models. The remaining 20 % of the data samples were used to test the empirical models' accuracy(Field. 2009; Mahmood. 2014). Figures (6-2) to (6-5) show the linear relations in each climate area for PCI and IRI. Tables (6-4) and (6-5) illustrate the reduction in  $R^2$ , RMSE, and MAE values for all sections in the four climate regions.

#### • Models Validation of PCI Models

After the validation test, Table (6-4) illustrates the reduction in  $R^2$ , RMSE, and MAE values for all sections in the four climate regions.

|               | Statistical Error Measures (PCI) |       |       |                       |       |       |                       |         |         |
|---------------|----------------------------------|-------|-------|-----------------------|-------|-------|-----------------------|---------|---------|
| Climate       | e MLR                            |       |       | Validation            |       |       | Reduction % (±)       |         |         |
| Regions       | <b>R</b> <sup>2</sup>            | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE    | MAE     |
| Dry Freeze    | 77.0                             | 5.468 | 4.361 | 75.4                  | 3.816 | 2.777 | -2.078                | -30.212 | -36.322 |
| Dry no Freeze | 91.6                             | 4.247 | 3.2   | 89.4                  | 4.583 | 3.537 | -2.402                | +7.331  | +9.528  |
| Wet Freeze    | 86.8                             | 7.195 | 5.616 | 77.4                  | 7.495 | 6.001 | -10.83                | +4.003  | +6.416  |
| Wet no Freeze | 89.3                             | 7.324 | 5.79  | 92.6                  | 8.909 | 6.16  | +3.5                  | +17.791 | +6.006  |

Table 6-4: Validation of PCI models based on pavement distress.

Based on Table (6-4), Figures (6-2), and (6-3), the following conclusions can be drawn:

- Dry Freeze: The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 2.078 %, 30.212 %, and 36.322 %, respectively. Thus, the MLR method's ability to predict PCI models of pavement distress was accurate.
- <u>Drv no Freeze:</u> The results indicated that the reduction in  $R^2$ , RMSE, and MAE values was insignificant; the accuracy reductions were 2.402 %, 7.331 %, and 9.528%, respectively. Thus, the MLR method's ability to predict PCI models of pavement distress was accurate.
- Wet Freeze: The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 10.83%, 4.003%, and 6.416%, respectively. Thus, the MLR method's ability to predict PCI models of the pavement distress was good.
- Wet no Freeze: The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 3.5%, 17.791%, and 6.006%, respectively. Thus, the MLR method's ability to predict PCI models of the pavement distress was good.



Figure 6-2: MLR model for the dry freeze and dry no freeze regions based on pavement distress.



Figure 6-3: MLR model for the wet freeze and wet no freeze regions based on pavement distress.

## • Models Validation of IRI

After the validation test, Table (6-5) illustrates the reduction in  $R^2$ , RMSE, and MAE values for all sections in the four climate regions.

|               | Statistical Error Measures (IRI) |                            |       |                       |        |       |                       |         |         |
|---------------|----------------------------------|----------------------------|-------|-----------------------|--------|-------|-----------------------|---------|---------|
| Climate       |                                  | MLR Validation Reduction 9 |       |                       |        |       |                       |         | (±)     |
| Regions       | <b>R</b> <sup>2</sup>            | RMSE                       | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE   | <b>R</b> <sup>2</sup> | RMSE    | MAE     |
| Dry Freeze    | 70.7                             | 0.144                      | 0.099 | 60.6                  | 0.178  | 0.113 | -14.29                | -19.10  | -12.39  |
| Dry no Freeze | 90.6                             | 0.213                      | 0.164 | 89.1                  | 0.221  | 0.173 | -1.656                | +3.182  | +5.202  |
| Wet Freeze    | 77.7                             | 0.286                      | 0.204 | 76.0                  | 0.297  | 0.212 | -2.19                 | +3.704  | +3.774  |
| Wet no Freeze | 89.4                             | 0.178                      | 0.092 | 88.4                  | 0. 295 | 0.113 | -1.12                 | +39.661 | +18.584 |

Table 6-5: Validation of IRI models based on pavement distress.

Based on Table (6-5), Figures (6-4), and (6-5), the following conclusions can be drawn:

- **Dry Freeze:** The results indicated that the reduction of  $R^2$  was insignificant, while RMSE and MAE values was insignificant; the accuracy reductions were 14.29%, 19.10%, and 12.39 %, respectively. Thus, the MLR method's ability to predict IRI models of pavement distress was accurate.
- <u>**Dry no Freeze:**</u> The results indicated that the reduction in  $R^2$ , RMSE, and MAE values was insignificant; the accuracy reductions were 1.656%, 3.182%, and 5.202%, respectively. Thus, the MLR method's ability to predict IRI models of pavement distress was accurate.



Figure 6-4: MLR model for the dry freeze and dry no freeze regions based on pavement distress.



Figure 6-5: MLR model for the wet freeze and wet no freeze regions based on pavement distress.

• <u>Wet Freeze:</u> The results indicated that the reduction in *R*<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 2.19%, 3.704%, and 3.774%, respectively. Thus, the MLR method's ability to predict IRI models of pavement distress was reasonable.

• <u>Wet no Freeze:</u> The results indicated that the reduction in  $R^2$ , RMSE, and MAE values was insignificant; the accuracy reductions were 1.12%, 39.661%, and 18.584%, respectively. Thus, the MLR method's ability to predict IRI models of pavement distress was acceptable.

#### 6.2.1.2 MLR Model Sensitivity Analysis for PCI and IRI

The PCI and IRI evaluations include a sensitivity analysis to determine the effect of input variables on the statistical prediction models' effectiveness. A multiple regression was performed, the Backward elimination approach to determine the predictor's type (pavement distress) that has significant effects on the dependent variables (PCI& IRI). The model starts with all dependent variables included, and the least important variables are eliminated. The operation ends when there are no significant variables in the model.

#### MLR Model Sensitivity Analysis for PCI

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of the prediction models (PCI). The results of the sensitivity analysis for PCI were presented in Table (6-6) and Figure (6-6).

Based on Table (6-6) and Figure (6-6), the following conclusions can be drawn:

**Dry Freeze**: Compared with other variables, longitudinal cracking is the most significant factor affecting the prediction model. Age, fatigue cracking, and transverse cracking have some impacts on the prediction model. While rutting has a minor impact on the prediction model. Other parameters have no influence on the prediction model.

| Independent Variable  | $R^2$         |                  |               |                  |  |  |
|-----------------------|---------------|------------------|---------------|------------------|--|--|
|                       | Dry<br>Freeze | Dry no<br>Freeze | Wet<br>Freeze | Wet no<br>Freeze |  |  |
| Age                   | 7.9           | 85.9             | 85.9          | 89               |  |  |
| Rutting               | 1.6           | 8.5              | 2.3           | -                |  |  |
| Fatigue Cracking      | 10.3          | 6.3              | 15.5          | 0.8              |  |  |
| Block Cracking        | -             | -                | -             | -                |  |  |
| Longitudinal Cracking | 49.1          | 8.0              | 0.3           | 4                |  |  |
| Transverse Cracking   | 16.2          | 2.0              | 7.9           | 6.6              |  |  |
| Patching              | -             | -                |               | -                |  |  |
| Potholes              | -             | -                | -             | -                |  |  |
| Bleeding              | -             | -                | -             | -                |  |  |
| Ravelling             | -             | -                | -             | -                |  |  |

Table 6-6: Sensitivity analysis of prediction models for PCI based on pavement distress.

**Dry no Freeze**: Compared with other variables, age is the most significant factor affecting the prediction model. Rutting, fatigue cracking, longitudinal cracking, and transverse cracking have some and minor impacts on the prediction model. Other parameters have no influence on the prediction model.

<u>Wet Freeze</u>: Compared with other variables, age is the most significant impact variable on the prediction model. Fatigue has some impact on the prediction model. While rutting, longitudinal, and transverse cracking have minor impacts on the prediction model. Other parameters have no influence on the prediction model.

<u>Wet no Freeze</u>: Compared with other variables, age is the most significant factors affecting the prediction model. Fatigue cracking, longitudinal and transverse cracking have some minor effects on the prediction model. Other parameters have no influence on the prediction model.



Figure 6-6: Sensitivity analysis of MLR for PCI based on pavement distress.

#### • MLR Model Sensitivity Analysis for IRI

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of prediction models (IRI). The results of the sensitivity analysis for IRI are presented in Table (6-7) and Figure (6-7).

Table (6-7) and Figure (6-7) showed the following conclusions:

**Dry Freeze**: Compared with other variables, age is the most significant factor affecting the prediction pavement performance model. Fatigue cracking, transverse cracking, and rutting have some impacts on the prediction model. While Longitudinal cracking has a minor effect on the prediction model. Conversely, block cracking, patching, potholes, bleeding, and ravelling do not have a statistical significance influence on pavement condition.

|                       |               | <i>R</i> <sup>2</sup> |               |                  |
|-----------------------|---------------|-----------------------|---------------|------------------|
| Independent Variable  | Dry<br>Freeze | Dry no<br>Freeze      | Wet<br>Freeze | Wet no<br>Freeze |
| Age                   | 79.8          | 88.2                  | 76            | 89.3             |
| Rutting               | 18.9          | 10.1                  | 17            | 0.2              |
| Fatigue Cracking      | 59            | 7.1                   | 13.2          | 1.1              |
| Block Cracking        | -             | -                     | -             | -                |
| Longitudinal Cracking | 1.3           | 1.6                   | 3.0           | 4.1              |
| Transverse Cracking   | 50.7          | 1.2                   | 5.4           | 7.7              |
| Patching              | -             | 0.1                   | -             | -                |
| Potholes              | -             | -                     | -             | -                |
| Bleeding              | -             | -                     | -             | -                |
| Ravelling             | -             | -                     | -             | -                |

Table 6-7: Sensitivity analysis of prediction models for IRI for pavement distress.

**Dry no Freeze**: Compared with other variables, age is the significant impact variable on the prediction model. Rutting has some impact on the prediction model. While fatigue cracking, longitudinal cracking, transverse cracking, and patching have minor impacts on the model. Conversely, block cracking, potholes, bleeding, and ravelling do not have a statistical significance influence on pavement condition.

<u>Wet Freeze</u>: Compared with other variables, age is the significant impact variable on the prediction model. Rutting and fatigue cracking have some effects on the prediction model, while longitudinal and transverse cracking have minor effects on the model. Conversely, block cracking, patching, potholes, bleeding, and ravelling do not have a statistical significance influence on pavement condition.

<u>Wet no Freeze</u>: Compared with other variables, age is the significant impact variable on the prediction model. Fatigue cracking, rutting, Longitudinal and transverse cracking have minor effects on the prediction model. Conversely, block cracking, patching, potholes, bleeding, and ravelling do not have a statistical significance influence on pavement condition.



Figure 6-7: Sensitivity analysis of MLR for IRI based on pavement distress.

#### 6.2.2 Modeling of Asphalt Pavement Performance Indices Using (ANNs) Technique

The artificial neural network has been used to train the data presented in Table (6-1). The ANNs technique aimed to model asphalt pavement performance indices (PCI and IRI) based on the age and nine pavement distress parameters as input variables for four climate regions. The inputs used were rutting, fatigue cracking, block cracking, longitudinal, transverse, patching, potholes, bleeding, and ravelling. The architecture of the designed network consists of one input layer with ten parameters, three hidden layers, and an output layer. Figure (6-8) illustrates the architecture of





Figure 6-8: Architecture of ANN model based on pavement distress.

## 6.2.2.1 Modeling of Asphalt Pavement Performance Index (PCI)

 Table (6-8) illustrates a summary of the PCI models by using ANNs technique based on pavement

 distress for four climate regions.

| Table 6-8: Performance of PC | I models by using | ANNs technique bas | sed on pavement distress |
|------------------------------|-------------------|--------------------|--------------------------|
|                              |                   |                    |                          |

| Climate Regions | Statistical Error Measures (PCI) |       |       |  |  |  |  |
|-----------------|----------------------------------|-------|-------|--|--|--|--|
|                 | <b>R</b> <sup>2</sup>            | RMSE  | MAE   |  |  |  |  |
| Dry Freeze      | 99.1                             | 1.425 | 1.417 |  |  |  |  |
| Dry no Freeze   | 99.2                             | 0.585 | 0.499 |  |  |  |  |
| Wet Freeze      | 99.8                             | 0.44  | 0.44  |  |  |  |  |
| Wet no Freeze   | 98.3                             | 1.413 | 1.022 |  |  |  |  |

Table (6-8) and Figure (6-9) showed the following conclusions:

- **Dry Freeze:** The *R*<sup>2</sup> value was 99.1%, while the RMSE and MAE values were 1.425% and 1.417%.
- **Dry no Freeze:** The *R*<sup>2</sup>value was 99.2%, while the RMSE and MAE values were 0.585% and 0.499%.
- <u>Wet Freeze:</u> The *R*<sup>2</sup>value was 99.8%, while the RMSE and MAE values were 0.44% and 0.44%.
- <u>Wet no Freeze:</u> The *R*<sup>2</sup> value was 98.3% while the RMSE and MAE values were 1.413% and 1.022%.



Figure 6-9: ANNs model goodness-of-fit results for PCI values based on pavement distress.

## 6.2.2.2 Modeling of Asphalt Pavement Performance Indices (IRI)

Table (6-9) illustrates a summary of the IRI models by using ANNs technique, based on pavement distress for four climate regions.

| Table 6-9:Performance | of IRI models by | y using ANNs | technique based or | pavement distress. |
|-----------------------|------------------|--------------|--------------------|--------------------|
|                       |                  |              | 1                  | 1                  |

| Climate Regions | Statistical Error Measures (IRI) |       |       |  |  |
|-----------------|----------------------------------|-------|-------|--|--|
|                 | <b>R</b> <sup>2</sup>            | RMSE  | MAE   |  |  |
| Dry Freeze      | 99.8                             | 0.008 | 0.007 |  |  |
| Dry no Freeze   | 99.5                             | 0.006 | 0.005 |  |  |
| Wet Freeze      | 99.1                             | 0.021 | 0.021 |  |  |
| Wet no Freeze   | 97.5                             | 0.028 | 0.023 |  |  |

Based on Tables (6-9), and Figure (6-10), the following conclusions can be drawn:

- **Dry Freeze:** The *R*<sup>2</sup>value was 99.8%, while the RMSE and MAE values were 0.008% and 0.007%.
- **Dry no Freeze:** The *R*<sup>2</sup> value was 99.5%, while the RMSE and MAE values were 0.006% and 0.005%.
- <u>Wet Freeze:</u> The *R*<sup>2</sup>value was 99.1%, while the RMSE and MAE values were 0.021% and 0.021%.
- <u>Wet no Freeze:</u> The *R*<sup>2</sup> value was 97.5%, while the RMSE and MAE values were 0.028% and 0.023%.

Larger values of  $R^2$  and lower values of RMSE and MAE suggest that a strong correlation exists between the predicted and the measured IRI values.



Figure 6-10: ANNs model goodness-of-fit results for IRI values based on pavement distress.

#### 6.2.3 Validation of ANN Models

A total of 408 observations have been chosen from the LTPP dataset for four climate regions investigations were used in ANNs modeling, where 70% of the data set was used for training, 15% for testing, and 15% for validation (checking) the network. Tables (6-10) and (6-11) show the results of the models for the validation dataset.

#### • Validation of PCI Models

The statistical error measures  $R^2$  and RMSE were used to evaluate the performance of the ANNs models. Based on the  $R^2$  values, all models had a strong correlation, as their  $R^2$  values exceeded 98%, while with RMSE values, all models had a low error, as their error did not exceed 1.515%. Thus, the ANNs technique's ability to predict PCI models of pavement distress was accurate. Table (6-10) illustrates Validation of PCI models for all sections in the four climate regions.

|               | Statistical Error Measures (PCI) |                       |            |         |         |            |  |  |
|---------------|----------------------------------|-----------------------|------------|---------|---------|------------|--|--|
| Climate       |                                  | <b>R</b> <sup>2</sup> |            | RMSE    |         |            |  |  |
| Regions       | Traning                          | Testing               | Validation | Traning | Testing | Validation |  |  |
| Dry Freeze    | 98.6                             | 99.7                  | 99.3       | 1.361   | 0.792   | 1.425      |  |  |
| Dry no Freeze | 99.1                             | 99.4                  | 100        | 0.308   | 0.930   | 0.959      |  |  |
| Wet Freeze    | 99.9                             | 99.6                  | 99.8       | 0.275   | 0.873   | 1.515      |  |  |
| Wet no Freeze | 98.4                             | 98.6                  | 98.4       | 1.994   | 4.174   | 0.964      |  |  |

Table 6-10: Validation of PCI models based on pavement distress.

#### • Validation of IRI Models

The statistical error measures  $R^2$  and RMSE were used to evaluate the performance of the ANNs models. Based on the  $R^2$  values, all models had a strong correlation, as their  $R^2$  values exceeded 99%, while for RMSE values, all models had minor errors. Thus, the ANNs technique's ability to predict IRI models of pavement distress was accurate. Table (6-11) illustrates Validation of IRI models for all sections in the four climate regions.

|                    | Statistical Error Measures (IRI) |                |            |         |         |            |  |  |
|--------------------|----------------------------------|----------------|------------|---------|---------|------------|--|--|
| Climate<br>Regions |                                  | R <sup>2</sup> |            | RMSE    |         |            |  |  |
| Regions            | Traning                          | Testing        | Validation | Traning | Testing | Validation |  |  |
| Dry Freeze         | 99.6                             | 99.8           | 99.8       | 0.009   | 0.026   | 0.037      |  |  |
| Dry no Freeze      | 99.7                             | 100            | 100        | 0.024   | 0.062   | 0.04       |  |  |
| Wet Freeze         | 99.9                             | 99.9           | 99.6       | 0.027   | 0.002   | 0.009      |  |  |
| Wet no Freeze      | 99.4                             | 99.6           | 99.1       | 0.044   | 0.019   | 0.102      |  |  |

Table 6-11: Validation of IRI models based on pavement distress.

#### 6.2.4 Comparison of the Models

To validate the developed models in this part, all models were evaluated by comparing MLR and ANNs techniques based on pavement distress for four climate regions, as shown in Tables (6-12) and (6-13).

#### 6.2.4.1 Comparison of MLR and ANNs Models for PCI

The performance of the MLR models was compared with the performance of the ANNs models to evaluate the accuracy of the models in predicting pavement performance based on pavement distress parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models. Table (6-12) and Figures (6-12) and (6-13) present the comparison of the MLR models to the ANNs models for PCI.

|                    | Statistical Error Measures (PCI) |       |       |                       |       |       |                       |        |        |
|--------------------|----------------------------------|-------|-------|-----------------------|-------|-------|-----------------------|--------|--------|
| Climate<br>Regions | MLR Generated                    |       |       | ANNs Generated        |       |       | Improvement (%)       |        |        |
|                    | <b>R</b> <sup>2</sup>            | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |
| Dry Freeze         | 77                               | 5.468 | 4.361 | 99.1                  | 1.425 | 1.417 | +22.30                | +73.94 | +67.51 |
| Dry no Freeze      | 91.6                             | 4.247 | 3.2   | 99.2                  | 0.585 | 0.499 | +7.66                 | +86.23 | +84.41 |
| Wet Freeze         | 86.8                             | 7.195 | 5.616 | 99.8                  | 0.44  | 0.44  | +13.03                | +93.88 | +92.17 |
| Wet no Freeze      | 89.3                             | 7.324 | 5.79  | 98.3                  | 1.413 | 1.022 | +9.16                 | +80.71 | +82.35 |

Table 6-12: Comparison of the MLR and ANNs models for PCI based on pavement distress.

ANNs and MLR models for PCI were compared in Table (6-12). Accordingly, the following conclusions can be drawn:

- The statistics indicated *R*<sup>2</sup>values from the ANNs models were higher than its MLR counterpart by 22.30%, 7.66%, 13.03%, and 9.16% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The RMSE values of the ANNs models were less than its MLR counterparts by 73.94%, 86.23%, 93.88%, and 80.71% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The MAE values of the ANNs models were less than its MLR counterparts by 67.51%, 84.41 %, 92.17 %, and 82.35 % for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.

• Larger values of  $R^2$  and lower values of RMSE and MAE suggest that a strong correlation exists between the predicted and the measured PCI values.



Figure 6-11: Fitness of MLR and ANNs models to PCI prediction based on pavement distress data from two climate regions: (left) dry freeze; (right) dry no freeze.



Figure 6-12: Fitness of MLR and ANNs models to PCI prediction based on pavement distress data from two climate regions: (left) wet freeze; (right) wet no freeze.
Several conclusions can be drawn from Figures (6-11) and (6-12):

- The MLR approach had a slight corrugation while ANNs had a straight line, which explains why ANNs models tend to be more accurate.
- Figures clearly showed that the ANNs prediction models provided more accuracy than the MLR models under different climate conditions.

Table (6-12), Figures (6-11), and (6-12) showed that the MLR and ANNs models have an actual ability to the predict PCI. In addition, the ANNs technique can predict the PCI with higher accuracy than the MLR technique in all cases.

# 6.2.4.2 Comparison of ANNs and MLR Models for IRI

The performance of the MLR models was compared with the performance of the ANNs models to evaluate the accuracy of the models in predicting pavement performance based on pavement distress parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models. Table (6-13) and Figures from (6-13) and (6-14) present the comparison of the MLR models to the ANNs models for IRI.

|               |                                                        | Statistical Error Measures (IRI) |       |                |       |       |                 |        |        |  |  |
|---------------|--------------------------------------------------------|----------------------------------|-------|----------------|-------|-------|-----------------|--------|--------|--|--|
| Climate       | M                                                      | LR Gener                         | ated  | ANNs Generated |       |       | Improvement (%) |        |        |  |  |
| Regions       | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |                                  |       |                |       | MAE   | R <sup>2</sup>  | RMSE   | MAE    |  |  |
| Dry Freeze    | 70.7                                                   | 0.144                            | 0.099 | 99.8           | 0.008 | 0.007 | +29.16          | +94.44 | +92.29 |  |  |
| Dry no Freeze | 90.6                                                   | 0.213                            | 0.164 | 99.5           | 0.006 | 0.005 | +9.94           | +97.18 | +96.95 |  |  |
| Wet Freeze    | 77.7                                                   | 0.286                            | 0.204 | 99.1           | 0.021 | 0.021 | +21.59          | +92.66 | +89.71 |  |  |
| Wet no Freeze | 89.4                                                   | 0.178                            | 0.092 | 97.5           | 0.028 | 0.023 | +8.31           | +84.30 | +75.00 |  |  |

Table 6-13: Comparison of the MLR and ANNs models for IRI based on pavement distress.

According to Table (6-13), several conclusions can be drawn:

- The statistics indicated R<sup>2</sup> values from the ANNs models were higher than the R<sup>2</sup> values of the MLR models by 29.16%, 9.94%, 21.59%, and 8.31% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The RMSE values of the ANN models were less than the RMSE values of the MLR models by 94.44%, 97.18%, 92.66%, and 84.30%, for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The MAE values of the ANNs models were less than the MAE values of the MLR models by 92.29 %, 96.95 %, 89.71 %, and 75 % for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.

Table (6-13), and Figures (6-13) and (6-14) showed that the MLR and ANNs models have an ability to perform the prediction of IRI models. In addition, the ANNs technique can predict the IRI models with higher accuracy than the MLR technique in all cases. This result is consistent with some previous research. For example, Chandra et al. (2012) compared the performance of ANN and MLR models in predicting pavement roughness from various types of distress. They found that the ANN model is significantly more accurate than the MLR model, with a mean square error of 18% lower.

Alharbi (2018) compared the performance of ANN and MLR models in riding, cracking, and rutting indices. The  $R^2$  values from the MLR models were lower than the  $R^2$  values of the ANN models by 61.40%, 48.15%, and 48.15% for riding, cracking, and rutting index, respectively.



Figure 6-13: Fitness of MLR and ANNs models to IRI prediction based on pavement distress data from two climate regions: (left) dry freeze; (right) dry no freeze.



Figure 6-14: Fitness of MLR and ANNs models to IRI prediction based on pavement distress data from two climate regions: (left) wet freeze; (right) wet no freeze.

### 6.2.5 Summary

This part of the research focused on modeling asphalt pavement performance indices (PCI and IRI) based on pavement distress variables and studying the effect of these variables on asphalt pavement performance indices for four climate regions in the U.S. and Canada. Several important advantages were drawn from the MLR and the ANNs technique, as follows:

- Nine pavement distress variables and the age of the pavement were included for four climate regions. Rutting, fatigue cracking, block cracking, transverse cracking, patching, potholes, bleeding, and ravelling were considered independent variables in developing the models to predict PCI and IRI.
- The MLR and ANNs models have an ability to perform the prediction of PCI and IRI models. In addition, the ANNs prediction models provided more accuracy than the MLR models under four climate regions.
- Even though the ANN technique does not provide equations for predicting PCI and IRI as the MLR technique, the models can be used to forecast pavement distress with high accuracy. The approach has good accuracy since  $itsR^2$ values exceed 97 %, as evidenced by the  $R^2$  values.
- There is a considerable reduction in error value when using the ANNs technique for each climate region compared to the MLR technique.
- Modelling of distress parameters is helpful for predicting pavement destress. Incorporating additional sections with different distresses and various severities improves the model results, which helps the programme to learn and develop models. The present study uses nine distress parameters for predicting the (PCI) and IRI. Future studies may include some more parameters like construction number, corrugation, slippage cracks, depression, polished aggregate, shoving to further improve these models.

## 6.3 Effect of Environmental Parameters on IRI and PCI Values

This section focused on modeling asphalt pavement performance indices (PCI and IRI) based on environmental variables and studying the effect of these variables on asphalt pavement performance indices for four climate regions in the U.S. and Canada. The relevant data were collected on the environmental parameters of 53 road sections with 408 observations from the LTPP dataset and distributed to four climate regions (dry freeze, dry no freeze, wet freeze, wet no freeze). The present study was divided into three phases as follows:

- Modeling of asphalt pavement performance indices using (MLR) technique.
- Modeling of asphalt pavement performance indices using (ANNs) technique.
- Comparison and validation of the MLR and ANNs models.

Eight environmental variables were assessed effect and used to predict the PCI and IRI for each climate region, including the age of pavement, the annual average freezing temperature, the average freeze index, the number of freeze days, the average annual precipitation, the average total snowfall, average speed wind, and humidity average.

Note that both the type of asphalt concrete pavement (ACP) and subgrade (coarse-grained) were constant for all data regions. Table (6-14) briefly describes the selected dataset of environmental.

|                                    |         | Climate Regions |            |              |            |  |  |
|------------------------------------|---------|-----------------|------------|--------------|------------|--|--|
| Parameters                         | Unit    | Dry             | Dry no     | Wet          | Wet no     |  |  |
|                                    |         | Freeze          | Freeze     | Freeze       | Freeze     |  |  |
| PCI                                | %       | 52-80           | 50-100     | 8-91         | 8-100      |  |  |
| IRI                                | (m/km)  | 0.89-1.69       | 0.68-2.66  | 0.79-4.04    | 0.75-3.76  |  |  |
| Number of data samples             | Number  | 14              | 61         | 144          | 189        |  |  |
| Age                                | Year    | 6-18            | 3-34       | 3-33         | 1-31       |  |  |
| Temperature average                | ° C     | 4.95-9.9        | 10.5-25.2  | 4.1-14.1     | 12.1-25.6  |  |  |
| Freeze Index                       | ° C/day | 86.4-726        | 1-182      | 65-1759      | 0-185      |  |  |
| Number of freeze Days              | Number  | 82-133          | 45-83      | 78-143       | 0-87       |  |  |
| Total average annual precipitation | (mm)    | 345-702.6       | 50.7-737.3 | 349.9-1881.2 | 357.5-4917 |  |  |
| Total Snowfall                     | (%)     | 425-2371        | 0-184      | 561-10325    | 0-916      |  |  |
| Wind average                       | Km/h    | 4-5.5           | 3.5-7.2    | 3.3-7.25     | 2.4-7.8    |  |  |
| Humidity                           | %       | 57.5-86         | 53.5-71    | 42.5-82      | 37-77.5    |  |  |

Table 6-14: Gathered environmental data from four climate regions.

### 6.3.1 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique

Research in this part focuses on studying the influence of environmental factors on the road condition indicator values PCI and IRI across four climate regions in the U.S. and Canada. Eight prediction models were developed using multiple regression analysis techniques from the collected data. The PCI and IRI regression models are shown in Tables (6-15) and (6-16). Eight prediction models were developed using multiple regression analysis techniques from the collected data. Environmental data collected for each section of asphalt pavement included eight input variables. The PCI regression analysis results illustrated in Table (6-15) indicate that the  $R^2$  values were 71.4%, 91.8%, 87.3%, and 89.5% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.

| Model                              |               | PC               | I             |                  |
|------------------------------------|---------------|------------------|---------------|------------------|
|                                    | Dry<br>Freeze | Dry no<br>Freeze | Wet<br>Freeze | Wet no<br>Freeze |
| $R^2$                              | 71.4          | 91.8             | 87.3          | 89.5             |
| Constant                           | 133.91        | 144.75           | 108.40        | 118.43           |
| Age                                | -0.784        | - 1.993          | -2.71         | -3.053           |
| Temperature average                | -8.044        | 0.043            | -0.89         | -0.244           |
| Freeze Index                       | -0.035        | -0.047           | 0.004         | -0.088           |
| Number of freeze Days              | 0.12          | -0.041           | -0.088        | 0.19             |
| Total average annual precipitation | 0.003         | - 0.004          | 0.001         | 0.001            |
| Total Snowfall                     | 0.005         | -0.001           | -             | 0.006            |
| Wind average                       | -11.24        | -1.10            | 0.101         | 0.054            |
| Humidity                           | 0.837         | -0.52            | 0.107         | -0.103           |

Table 6-15: PCI models summary based on environmental parameters.

Table 6-16: IRI models summary based on environmental parameters.

| Model                              |                | IR               | [              |                  |
|------------------------------------|----------------|------------------|----------------|------------------|
|                                    | Dry<br>Freeze  | Dry no<br>Freeze | Wet<br>Freeze  | Wet no<br>Freeze |
| $R^2$                              | 74             | 90.2             | 81             | 89.6             |
| Constant                           | 0.324          | 0.552            | 0.508          | 0.059            |
| Age                                | 0.015          | 0.086            | 0.077          | 0.073            |
| Temperature average                | 0.177          | -0.14            | -0.054         | 0.006            |
| Freeze Index                       | -              | -0.002           | -              | -                |
| Number of freeze Days              | -0.003         | 0.001            | 0.004          | -                |
| Total average annual precipitation | $-3.9x10^{-5}$ | 0.000021         | $3.8x10^{-5}$  | $2.53x10^{-5}$   |
| Total Snowfall                     | $-4.8x10^{-5}$ | 0.001            | $-2.5x10^{-5}$ | $-7.788x10^{-5}$ |
| Wind average                       | 0.26           | 0.036            | -0.016         | 0.009            |
| Humidity                           | -0.027         | -0.005           | -0.002         | 0.001            |

The IRI regression analysis results illustrated in Table (6-16) indicate that the  $R^2$  values were 74%, 90.2%, 81%, and 89.6% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively. Equations from (6-9) to (6-16) summarised the regression models for four climate regions as follows:

## 1- Dry Freeze

Table (6-15) presents the regression analysis results for PCI for the dry freeze area. The PCI model was negatively correlated with age, temperature average, freeze index, and wind average. The PCI model was positively correlated with number of freeze days, total average annual precipitation, total snowfall, and humidity. Equation (6-9) described the relationship between the PCI and environmental parameters as follows:

$$PCI = 133.91 - 0.784 X_{age} - 8.044 W_1 - 0.035 W_2 + 0.12 W_3 + 0.003 W_4 + 0.005 W_5 - 11.24 W_6 + 0.837 W_7$$
6-9

The correlation coefficient  $(R^2)$  of this relationship is 71.4%.

Table (6-16) presents the regression analysis result of IRI for the dry freeze area. The IRI model was positively correlated with age, temperature average, and wind average. The IRI model was negatively correlated with number of freeze days, total average annual precipitation, total snowfall, and humidity. Equation (6-10) described the relationship between the IRI and environmental parameters as follows:

$$IRI = 0.324 + 0.015X_{age} + 0.177 \mathcal{W}_1 - 0.003 \mathcal{W}_3 - 3.9x10^{-5} \mathcal{W}_4 - 4.8X10^{-5} \mathcal{W}_5 + 0.26 \mathcal{W}_6 - 0.027 \mathcal{W}_7$$
6-10

The correlation coefficient  $(R^2)$  of this relationship is 74%.

#### 2- Dry no Freeze

The regression analysis result of the PCI model for the dry no freeze area is shown in Table (6-15). The PCI model was negatively correlated with age, freeze index, number of freeze days, total average annual precipitation, total snowfall, wind average, and humidity. The PCI was positively correlated with temperature average. Equation (6-11) described the relationship between the PCI and environmental parameters as follows:

$$PCI = 144.75 - 1.993X_{age} + 0.043 \mathcal{W}_1 - 0.047 \mathcal{W}_2 - 0.041 \mathcal{W}_3 - 0.004 \mathcal{W}_4 - 0.001 \mathcal{W}_5 - 1.10 \mathcal{W}_6 - 0.52 \mathcal{W}_7$$
6-11

The correlation coefficient  $(R^2)$  of this relationship is **91.8%**.

The regression analysis result of the IRI model for the dry no freeze area is presented in Table (6-16). The IRI model was negatively correlated with temperature average, freeze index, total average annual precipitation, and humidity. The IRI model was positively correlated with age, number of freeze days, total snowfall, and wind average. Equation (6-12) described the relationship between the IRI and environmental parameters as follows:

$$IRI = 0.552 + 0.086X_{age} - 0.14W_1 - 0.002W_2 + 0.001W_3 - 0.000021W_4 + 0.001W_5 + 0.036W_6 - 0.005W_7$$
6-12

The correlation coefficient  $(R^2)$  of this relationship is **90.2%**.

#### 3- Wet Freeze

The regression analysis result of the PCI model for the wet freeze area is presented in Table (6-15). The PCI model was negatively correlated with age, temperature average, and number of freeze days. The PCI model was positively correlated with freeze index, total average annual precipitation, wind average, and humidity. Equation (6-13) described the relationship between the PCI and environmental parameters as follows:

 $PCI=108.4-2.71X_{age}-0.89\mathcal{W}_{1}+0.0044\mathcal{W}_{2}-0.088\mathcal{W}_{3}+0.001\mathcal{W}_{4}+0.101\mathcal{W}_{6}+0.107\mathcal{W}_{7}$  6-13

The correlation coefficient  $(R^2)$  of this relationship is 87.3%.

The regression analysis result of the IRI model for the wet freeze area is presented in Table (6-16). The IRI model was negatively correlated with temperature average, total snowfall, wind average, and humidity. The IRI model was positively correlated with age, number of freeze days, and total average annual precipitation. Equation (6-14) described the relationship between the IRI and environmental parameters as follows:

 $IRI = 0.508 + 0.077X_{age} - 0.054W_1 + 0.004W_3 + 3.8x10^{-5}W_4 - 2.5 \times 10^{-5}W_5 - 0.016W_6 - 0.002W_7$ 6-14

The correlation coefficient  $(R^2)$  of this relationship is **81%**.

#### 4- Wet no Freeze

The regression analysis result of the PCI model for the wet no freeze area is presented in Table (6-15). The PCI model was negatively correlated with age, temperature average, freeze index, and humidity. The PCI model was positively correlated with number of freeze days, total average annual precipitation, total snowfall, wind average. Equation (6-15) described the relationship between the PCI and environmental parameters as follows:

$$PCI = 118.43 - 3.053X_{age} - 0.244W_1 - 0.008W_2 + 0.19W_3 + 0.001W_4 + 0.006W_5 + 0.054W_6 - 0.013W_7$$

$$6-15$$

The correlation coefficient  $(R^2)$  of this relationship is **89.5%**.

The regression analysis result of the IRI model for the dry no freeze area is presented in Table (6-16). The IRI was negatively correlated with total snowfall. The IRI was positively correlated with age, temperature average, total average annual precipitation, wind average, and humidity. Equation (6-16) described the relationship between the IRI and environmental parameters as follows:

$$IRI = 0.059 + 0.073X_{age} + 0.06W_1 + 2.53 \times 10^{-5}W_4 - 7.788 \times 10^{-5}W_5 + 0.009W_6 + 0.001W_7$$
6-16

The correlation coefficient  $(R^2)$  of this relationship is **89.6%**.

## 6.3.1.1 Validation of MLR Models

### • Validation of PCI Models

After the validation test, Table (6-17) illustrates the reduction in  $R^2$ , RMSE, and MAE values for all sections in the four climate regions.

Based on Table (6-17), Figures (6-15), and (6-16), the following conclusions can be drawn:

<u>Dry Freeze:</u> The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 23.81%, 24.96%, and 7.57%, respectively. Thus, the MLR method's ability to predict PCI models of environmental parameters was accurate.

|                    | Statistical Error Measures (PCI)                       |       |       |      |       |       |                       |        |       |  |
|--------------------|--------------------------------------------------------|-------|-------|------|-------|-------|-----------------------|--------|-------|--|
| Climate<br>Bogions | MLR Validation Reduction % (±)                         |       |       |      |       |       |                       | (±)    |       |  |
| Kegions            | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |       |       |      |       | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE   |  |
| Dry Freeze         | 71.4                                                   | 4.114 | 3.482 | 54.4 | 5.483 | 3.767 | -23.81                | +24.96 | +7.57 |  |
| Dry no Freeze      | 91.8                                                   | 6.586 | 4.194 | 88.2 | 5.162 | 3.786 | -3.92                 | -21.62 | -9.73 |  |
| Wet Freeze         | 87.3                                                   | 7.057 | 5.642 | 85.8 | 7.468 | 5.85  | -1.72                 | +5.50  | +3.56 |  |
| Wet no Freeze      | 89.5                                                   | 6.606 | 5.481 | 72.0 | 7.532 | 5.946 | -19.55                | +12.29 | +7.82 |  |

Table 6-17: Validation of PCI models based on environmental parameters.

- <u>Dry no Freeze:</u> The results indicated that the reduction of *R*<sup>2</sup>, RMSE, and MAE was insignificant; the accuracy reductions were 3.92%, 21.62%, and 9.73%, respectively. Thus, the MLR method's ability to predict PCI models of the environmental parameters with was accuracy.
- <u>Wet Freeze:</u> The results indicated that the reduction in  $R^2$ , RMSE, and MAE values was insignificant; the accuracy reductions were 1.72%, 5.50%, and 3.56%, respectively. Thus, the MLR method's ability to predict PCI models of environmental parameters was good.
- <u>Wet no Freeze:</u> The results indicated that the reduction of  $R^2$ , RMSE, and MAE was insignificant, while; the accuracy reductions were 19.55%,12.29%, and 7.82%, respectively. Thus, the MLR method's ability to predict PCI models of environmental parameters was accuracy.



Figure 6-15: MLR model for the dry freeze and the dry no freeze region based on environmental.



Figure 6-16: MLR model for the wet freeze and the wet no freeze region based on environmental.

## • Validation of IRI Models

After the validation test, Table (6-18) illustrates the reduction in  $R^2$ , RMSE, and MAE values for all sections in the four climate regions.

|               | Statistical Error Measures (IRI) |       |       |                       |       |       |                       |        |        |  |
|---------------|----------------------------------|-------|-------|-----------------------|-------|-------|-----------------------|--------|--------|--|
| Climate       |                                  | MLR   |       | Validation            |       |       | Reduction % (±)       |        |        |  |
| Regions       | <b>R</b> <sup>2</sup>            | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |  |
| Dry Freeze    | 74                               | 0.136 | 0.116 | 61.5                  | 0.165 | 0.132 | -16.89                | +17.58 | +12.12 |  |
| Dry no Freeze | 90.2                             | 0.294 | 0.184 | 89.0                  | 0.224 | 0.172 | -1.33                 | -23.81 | -6.52  |  |
| Wet Freeze    | 81.0                             | 0.264 | 0.202 | 76.0                  | 0.297 | 0.215 | -6.17                 | +11.11 | +6.05  |  |
| Wet no Freeze | 89.6                             | 0.177 | 0.093 | 88.9                  | 0.181 | 0.095 | -0.78                 | +2.21  | +2.11  |  |

Table 6-18: Validation of PCI models based on environmental parameters.

Based on Table (6-18), Figures (6-17), and (6-18), the following conclusions can be drawn:

- Dry Freeze: The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 16.89 %, 17.58%, and 12.12%, respectively. Thus, the MLR method's ability to predict IRI models of environmental parameters was accurate.
- <u>Dry no Freeze:</u> The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 1.33%, 23.81%, and 6.52%, respectively. Thus, the MLR method's ability to predict IRI models of environmental parameters was accurate.



Figure 6-17: MLR model for the dry freeze and the dry no freeze region based on environmental.



Figure 6-18 : MLR model for the wet freeze and the wet no freeze region based on environmental.

• <u>Wet Freeze:</u> The results indicated that the reduction in *R*<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 6.17%,11.11%, and 6.05%, respectively. Thus, the MLR method's ability to predict IRI models of environmental parameters was accurate.

Wet no Freeze: The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 0.78%, 2.21%, and 2.11%, respectively. Thus, the MLR method's ability to predict IRI models of environmental parameters was accurate.

## 6.3.1.2 MLR Model Sensitivity Analysis for PCI and IRI

# • MLR Model Sensitivity Analysis for PCI

A sensitivity analysis is conducted to determine the effects of input variables on the efficacy of the prediction models (PCI). A multiple regression was performed the Backward elimination approach to determine the predicator's type (environmental parameters) that have major effects on the dependent variables (PCI& IRI). The results of the sensitivity analysis for PCI were presented in Table (6-19) and Figure (6-19).

| Independent Variable               | R <sup>2</sup> |                  |               |                  |  |  |
|------------------------------------|----------------|------------------|---------------|------------------|--|--|
|                                    | Dry<br>Freeze  | Dry no<br>Freeze | Wet<br>Freeze | Wet no<br>Freeze |  |  |
| Age                                | 7.7            | 87.6             | 85.5          | 89               |  |  |
| Temperature average                | 46.1           | 2.6              | 2.5           | 1.0              |  |  |
| Freeze index                       | 23.0           | 6.2              | 4.9           | 4.0              |  |  |
| Number of freeze days              | 15.5           | 1.5              | 2.7           | 4.8              |  |  |
| Total average annual precipitation | 2.0            | 3.6              | 15.3          | 1.1              |  |  |
| Total snowfall                     | 70.1           | 6.4              | 2.0           | 3.0              |  |  |
| Wind average                       | 19.3           | 9.0              | 13.3          | 2.2              |  |  |
| Humidity                           | 36.2           | 2.8              | 4.2           | 1.0              |  |  |

Table 6-19: Sensitivity analysis of prediction models for PCI based on environmental parameters.



Figure 6-19: Sensitivity analysis of MLR for PCI based on environmental parameters.

Based on Table (6-19) and Figure (6-19), the following conclusions can be drawn:

**Dry Freeze:** Compared with other variables, total snowfall is a significant factor affecting the prediction model. Temperature average, humidity, freeze index, wind average, and number of freeze days have some effects on the prediction model; the impact values were 46.1%,36.2%, 23%, 19.3%, and 15.5%, respectively. While total average annual precipitation has minor effect on the model.

**Dry no Freeze:** Compared with other variables, age is the most significant impact variable affecting the prediction model. Temperature average, freeze index, number of freeze days, total average annual precipitation, total snowfall, wind average, and humidity have minor effects on the model; the impact values were 2.6%, 6.2%, 1.5%, 3.6%, 6.4%, 9%, 2.8%, respectively.

**Wet Freeze:** Compared with other variables, age is the most significant impact variable affecting the prediction model. Temperature average, freeze index, number of freeze days, total average

annual precipitation, total snowfall, wind average, and humidity have some and minor effects on the model; the impact values were 2.5%, 4.9%, 2.7%, 15.3%, 2%, 13.3%, 14.2%, respectively.

<u>Wet no Freeze</u>: Compared with other variables, age is the most significant impact variable affecting the prediction model. Temperature average, freeze index, number of freeze days, total average annual precipitation, total snowfall, wind average, and humidity have minor effects on the model; the impact values were 1.0%, 4.0%, 4.8%, 1.1%, 3.0%, 2.2%, 1.0%, respectively.

# • MLR Model sensitivity analysis for IRI

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of prediction models (IRI). The results of the sensitivity analysis for IRI are presented in Tables (6-20) and Figure (6-20).

| Independent Variable               |               |                  |               |                  |
|------------------------------------|---------------|------------------|---------------|------------------|
|                                    | Dry<br>Freeze | Dry no<br>Freeze | Wet<br>Freeze | Wet no<br>Freeze |
| Age                                | 79.1          | 88.2             | 76            | 89.3             |
| Temperature average                | -             | 6.6              | 5.1           | 2.0              |
| Freeze index                       | 3.2           | 1.6              | 4.6           | 8.0              |
| Number of freeze days              | 21.7          | 1.90             | 3.7           | 6.5              |
| Total average annual precipitation | 1.1           | 6.4              | 14            | 2.3              |
| Total snowfall                     | 21.6          | 9.3              | 7             | 13               |
| Wind average                       | 10.8          | 11               | 10.9          | 2.5              |
| Humidity                           | 3.9           | 15.2             | 4.2           | 1.0              |

Table 6-20: Sensitivity analysis of prediction models for IRI based on environmental parameters.

Based on Table (6-20) and Figure (6-20), the following conclusions can be drawn:

**Dry Freeze:** Compared with other variables, age is a significant factor affecting the prediction model. Number of freezes days, total snowfall, and wind average have some effects on the prediction model. Other parameters have minor statistical significance impacts on the prediction model.

**Dry no Freeze:** Compared with other variables, age is the most significant impact variable affecting the prediction model. Humidity has some effect on the prediction model, while temperature average, freeze index, number of freeze days, total average annual precipitation, total snowfall, and average wind have minor effects on the prediction model.



Figure 6-20: Sensitivity analysis of MLR for IRI based on environmental parameters.

**Wet Freeze:** Compared with other variables, age has the most significant variable impact on the prediction model. Total average annual precipitation and average wind have some effects on the prediction model, while temperature average, freeze index, number of freeze days, total snowfall, and humidity have minor effects on the prediction model.

<u>Wet no Freeze</u>: Compared with other variables, age is the most significant factor affecting the prediction model. Total snowfall has some impact on the IRI models. While other parameters have minor impacts on the prediction model.

### 6.3.2 Modeling of Asphalt Pavement Performance Indices Using (ANNs) Technique

Th artificial neural network has been used to train the data presented in Table (6-14). The ANNs technique aimed to model asphalt pavement performance indices (PCI and IRI) based on age and seven environmental parameters as input variables for four climate regions. The inputs used were age of pavement, the annual average freezing temperature, the average freeze index, the number of freeze days, the average annual precipitation, the average total snowfall, average speed wind, and humidity average. The architecture of the designed network consists of one input layer with eight parameters, three hidden layers, and an output layer. Figure (6-21) illustrates the architecture of the ANN.



Figure 6-21: Architecture of ANN model for PCI and IRI based on environmental parameters.

## 6.3.2.1 Modeling of Asphalt Pavement Performance Index (PCI)

Table (6-21) illustrates a summary of the PCI models by using an ANNs technique based on environmental parameters for four climate regions.

Table 6-21: Performance of PCI models by using ANNs technique based on environmental parameters.

| Climate Pagions | Statistical Error Measures (PCI) |       |       |  |  |  |  |
|-----------------|----------------------------------|-------|-------|--|--|--|--|
| Chinate Regions | R <sup>2</sup>                   | RMSE  | MAE   |  |  |  |  |
| Dry Freeze      | 99.8                             | 1.112 | 0.945 |  |  |  |  |
| Dry no Freeze   | 99.1                             | 0.636 | 0.542 |  |  |  |  |
| Wet Freeze      | 98.7                             | 0.558 | 0.478 |  |  |  |  |
| Wet no Freeze   | 99.8                             | 0.75  | 0.553 |  |  |  |  |

Based on Table (6-21) and Figure (6-22), the following conclusions can be drawn:

- Wet Freeze: The  $R^2$  value was 99.8%, while the RMSE and MAE values were 1.112% and 0.945%.
- Wet no Freeze: The  $R^2$  value was 99.1%, while the RMSE and MAE values were 0.636% and 0.542%.
- Wet Freeze: The  $R^2$  value was 98.7%, while the RMSE and MAE values were 0.558% and 0.478%.
- Wet no Freeze: The  $R^2$  value was 99.8%, while the RMSE and MAE values were 0.75%, and 0.553%.

## 6.3.2.2 Modeling of Asphalt Pavement Performance Index (IRI)

Table (6-22) illustrates a summary of the IRI models by using an ANNs technique, based on environmental parameters for four climate regions.

Table 6-22: Performance of IRI models by using ANNs technique based on environmental parameters.

|                 | Statistical Error Measures (IRI) |       |       |  |  |  |  |
|-----------------|----------------------------------|-------|-------|--|--|--|--|
| Climate Regions | <i>R</i> <sup>2</sup>            | RMSE  | MAE   |  |  |  |  |
| Dry Freeze      | 99.7                             | 0.008 | 0.007 |  |  |  |  |
| Dry no Freeze   | 98.9                             | 0.007 | 0.006 |  |  |  |  |
| Wet Freeze      | 99.9                             | 0.012 | 0.008 |  |  |  |  |
| Wet no Freeze   | 99.6                             | 0.028 | 0.021 |  |  |  |  |

Based on Table (6-22) and Figure (6-23), the following conclusions can be drawn:

- <u>Wet Freeze:</u> The *R*<sup>2</sup>value was 99.7%, while the RMSE and MAE values were 0.008% and 0.006%.
- <u>Wet no Freeze:</u> The *R*<sup>2</sup> value was 98.9%, while the RMSE and MAE values were 0.007% and 0.006%.
- <u>Wet Freeze:</u> The *R*<sup>2</sup> value was 99.9% while the RMSE and MAE values were 0.012% and 0.008%.
- <u>Wet no Freeze:</u> The *R*<sup>2</sup> value was 99.6%, while the RMSE and MAE values were 0.028% and 0.021%.



Figure 6-22: ANNs model goodness-of-fit results for PCI values based on environmental parameters.



Figure 6-23: ANNs model goodness-of-fit results for IRI values based on environmental parameters.

#### 6.3.3 Validation of ANNs Models

A total of 408 observations obtained from the LTPP dataset for four climate regions investigations were used in ANNs modeling. The models were 70% of the data set was used for training, 15% for testing, and 15% for validation (checking) the network. Tables (6-23) and (6-24) shows the results of the models for the validation dataset.

### • Validation of PCI Models

The statistical error measures  $R^2$  and RMSE were used to evaluate the performance of the ANNs models. Based on the  $R^2$  values, all models had a strong correlation, as their  $R^2$  values exceeded 98%, while with RMSE values, all models had a low error, as their error did not exceed 1.71%. Thus, the ANNs technique's ability to predict PCI models of environmental parameters was accurate. Table (6-23) illustrates Validation of PCI models for all sections in the four climate regions.

|                    |                     | Statistical Error Measures (PCI) |            |         |         |            |  |  |  |
|--------------------|---------------------|----------------------------------|------------|---------|---------|------------|--|--|--|
| Climate<br>Regions | R <sup>2</sup> RMSE |                                  |            |         |         |            |  |  |  |
| ittegions          | Traning             | Testing                          | Validation | Traning | Testing | Validation |  |  |  |
| Dry Freeze         | 97.6                | 100                              | 100        | 0.262   | 0.778   | 1.161      |  |  |  |
| Dry no Freeze      | 99.1                | 100                              | 100        | 0.448   | 0.959   | 0.937      |  |  |  |
| Wet Freeze         | 99.9                | 99.6                             | 99.8       | 0.756   | 0.471   | 0.97       |  |  |  |
| Wet no Freeze      | 98.4                | 98.6                             | 98.1       | 2.30    | 4.174   | 1.71       |  |  |  |

Table 6-23: Validation of PCI models based on environmental parameters.

### • Validation of IRI Models

The statistical error measures  $R^2$  and RMSE were used to evaluate the performance of the ANNs models. Based on the  $R^2$  values, all models had a strong correlation, as their  $R^2$  values exceeded 98%, while for RMSE values, all models had minor errors. Thus, the ANNs technique's ability to predict IRI models of environmental parameters was accurate. Table (6-24) illustrates Validation of IRI models for all sections in the four climate regions.

|                    |         | Statistical Error Measures (IRI) |            |         |         |            |  |  |  |
|--------------------|---------|----------------------------------|------------|---------|---------|------------|--|--|--|
| Climate<br>Regions |         | R <sup>2</sup> RMSE              |            |         |         |            |  |  |  |
| ingrou.            | Traning | Testing                          | Validation | Traning | Testing | Validation |  |  |  |
| Dry Freeze         | 99.6    | 100                              | 99.8       | 0.011   | 0.034   | 0.045      |  |  |  |
| Dry no Freeze      | 98.6    | 99.3                             | 100        | 0.013   | 0.013   | 0.015      |  |  |  |
| Wet Freeze         | 99.9    | 100                              | 99.5       | 0.259   | 0.264   | 0.259      |  |  |  |
| Wet no Freeze      | 99.4    | 100                              | 99.1       | 0.003   | 0.107   | 0.017      |  |  |  |

Table 6-24: Validation of IRI models based on environmental parameters.

### 6.3.4 Comparison of the Models

To validate the developed models in this part, all models were evaluated by comparing MLR and ANNs techniques based on environmental parameters for four climate regions, as shown in Tables (6-25) and (6-26).

## 6.3.4.1 Comparison of ANNs and MLR Models for PCI

The performance of the MLR models was compared with the performance of the ANNs models to evaluate the accuracy of the models in predicting pavement performance based on environmental parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models. Table (6-25) and Figures (6-24) and (6-25) present the comparison the MLR models to the ANNs models for PCI.

|                    | Statistical Error Measures (PCI) |       |       |                       |       |       |                       |        |        |  |
|--------------------|----------------------------------|-------|-------|-----------------------|-------|-------|-----------------------|--------|--------|--|
| Climate<br>Regions | MLR Generated                    |       |       | ANNs Generated        |       |       | Improvement (%)       |        |        |  |
|                    | <b>R</b> <sup>2</sup>            | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |  |
| Dry Freeze         | 71.4                             | 4.114 | 3.482 | 99.8                  | 1.112 | 0.945 | +28.46                | +72.97 | +72.86 |  |
| Dry no Freeze      | 91.8                             | 6.586 | 4.194 | 99.1                  | 0.636 | 0.542 | +7.37                 | +90.34 | +87.08 |  |
| Wet Freeze         | 87.3                             | 7.057 | 5.642 | 98.7                  | 0.558 | 0.478 | +11.55                | +92.09 | +91.53 |  |
| Wet no Freeze      | 89.5                             | 6.606 | 5.481 | 99.8                  | 0.75  | 0.553 | +10.32                | +88.65 | +89.91 |  |

Table 6-25: Comparison of the MLR and ANNs models for PCI based on environmental parameters.

According to Table (6-25), several conclusions can be drawn:

- The statistics indicated *R*<sup>2</sup>values from the ANNs models were higher than its MLR counterpart by 28.46%, 7.37%, 11.55%, and 10.32% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The RMSE values of the ANNs models were less than its MLR counterparts by 72.97%, 90.34%, 92.09%, and 88.65% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The MAE values of the ANNs models were less than the MAE values of the MLR models by 72.86%, 87.08%, 91.53%, and 89.91% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- ANNs models provided more accurate predictions than MLR models.



Figure 6-24: Fitness of MLR and ANNs models to PCI prediction based on environmental data from two climate regions: (left) dry freeze; (right)dry no freeze.



Figure 6-25: Fitness of MLR and ANNs models to PCI prediction based on environmental data from two climate regions: (left) wet freeze; (right)wet no freeze.

According to Figures (6-24) and (6-25), several conclusions can be drawn:

- The MLR strategy has a corrugation, but the ANNs approach has a straight line, explaining why ANNs models are more accurate.
- The graphs clearly illustrated that the ANNs prediction models were more accurate under various climate conditions than the MLR prediction models.

Table (6-25), Figures (6-24), and (6-25) showed that the MLR and ANNs models have an ability to perform the prediction PCI models. In addition, the ANNs technique can predict the PCI models with higher accuracy than the MLR technique in all cases.

## 6.3.4.2 Comparison of ANNs and MLR Models for IRI

The performance of the MLR models was compared with the performance of the ANNs models to evaluate the accuracy of the models in predicting pavement performance based on environmental parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models. Table (6-26) and Figures from (6-26) and (6-27) present the comparison the MLR models to the ANNs models for IRI.

|                    | Statistical Error Measures (IRI) |       |       |                       |       |       |                       |        |        |
|--------------------|----------------------------------|-------|-------|-----------------------|-------|-------|-----------------------|--------|--------|
| Climate<br>Regions | MLR Generated                    |       |       | ANNs Generated        |       |       | Improvement (%)       |        |        |
|                    | <b>R</b> <sup>2</sup>            | RMSE  | MAE   | <i>R</i> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |
| Dry Freeze         | 74                               | 0.136 | 0.116 | 99.7                  | 0.008 | 0.007 | +25.78                | +94.12 | +93.97 |
| Dry no Freeze      | 90.2                             | 0.294 | 0.184 | 98.9                  | 0.007 | 0.006 | +8.80                 | +96.20 | +96.74 |
| Wet Freeze         | 81.0                             | 0.264 | 0.202 | 99.9                  | 0.012 | 0.008 | +18.92                | +94.06 | +96.04 |
| Wet no Freeze      | 89.6                             | 0.177 | 0.093 | 99.6                  | 0.028 | 0.021 | +10.04                | +69.89 | +77.42 |

Table 6-26: Comparison of the MLR and ANNs models for IRI based on environmental parameters.

According to Table (6-26), several conclusions can be drawn:

- ANNs models provided more accurate predictions than MLR models.
- The statistics indicated *R*<sup>2</sup> values from the ANNs models were higher than its MLR counterpart by 25.78%, 8.80%, 18.92%, and 10.04% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The statistics indicated RMSE values from the ANNs models were higher than its MLR counterpart by 94.12%, 96.20%, 94.06%, and 69.89% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The statistics indicated MAE values from the ANNs models were higher than its MLR counterpart by 93.97%, 96.74%, 96.04%, and 77.42% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.

Based on Figures from (6-26) and (6-27), several conclusions can be drawn:

- The MLR approach has a slight corrugation while ANNs exhibits a straight line, which explains why ANN models tend to be more accurate.
- Figures clearly showed that the ANNs prediction models provided more accuracy than the MLR prediction models under different climate conditions.



Figure 6-26: Fitness of MLR and ANNs models to IRI prediction based on environmental data from two climate regions: (left) dry freeze; (right)dry no freeze.



Figure 6-27: Fitness of MLR and ANNs models to IRI prediction based on environmental data from two climate regions: (left) wet freeze; (right)wet no freeze.

- Table (6-26), Figures (6-26), and (6-27) showed that the MLR and ANNs models have an ability to perform the prediction IRI models. In addition, the ANNs prediction models provided more accuracy than the MLR models under all climate conditions.
- The results of this study are consistent with some of the previous studies. For example, Hossain et al. (2017) studied the performance of ANN and MLR models in predicting pavement roughness based on environmental parameters. They found the ANN model more accurate than the MLR model, with a RMSE of 2% lower for four climate regions. Zeiada et al. (2020) compared the performance of ANN and MLR models in predicting pavement roughness based on environmental parameters. They found that the ANN model is significantly more accurate than the MLR model, with a  $R^2$  of 56% lower.

#### 6.3.5 Summary

This part of the research focused on modeling asphalt pavement performance indices (PCI and IRI) based on environmental variables and studying the effect of these variables on asphalt pavement performance indices for four climate regions in the U.S. and Canada. Several important advantages were drawn from the MLR and the ANNs technique, as follows:

- The pavement's age and seven different environmental variables were included for the four studied climate regions, namely temperature average, freeze index, number of freeze days, total average annual precipitation, total snowfall, wind average, and humidity. These were considered independent variables in developing the models to predict future PCI and IRI.
- The MLR and ANNs models have the ability to perform the prediction of PCI and IRI models. In addition, the ANNs prediction models provided more accuracy than the MLR models under four climate regions.

# 6.4 Effect of Traffic Volume Parameters on IRI and PCI Values

This section focused on modeling asphalt pavement performance indices (PCI and IRI) based on traffic volume variables and studying the effect of these variables on asphalt pavement performance indices for four climate regions in the U.S. and Canada. The relevant data were collected on the traffic volume parameters of 53 road sections with 408 observations from the LTPP dataset and distributed to four climate regions . Table (6-27) briefly describes the selected dataset of traffic volume. The present study was divided into three phases as follows:

- Modeling of asphalt pavement performance indices using (MLR) technique.
- Modeling of asphalt pavement performance indices using (ANNs) technique.
- Comparison and validation of the MLR and ANNs models.

| T 11 ( AT        | C 1 1, CC          | 1 1          | C      | C    | 1        | •        |
|------------------|--------------------|--------------|--------|------|----------|----------|
| Table $6_{-}$ ?/ | ( isthered trattic | · volume dat | a trom | tour | climatic | regions  |
| 1 4010 0 27.     | Gamered traine     | volume dat   | a nom  | IUui | onnatio  | regions. |

|                        |            | Climate Regions |              |              |               |  |  |  |
|------------------------|------------|-----------------|--------------|--------------|---------------|--|--|--|
| Parameters             | Unit       | Dry             | Dry no       | Wet          | Wet no        |  |  |  |
|                        |            | Freeze          | Freeze       | Freeze       | Freeze        |  |  |  |
| PCI                    | %          | 52-80           | 50-100       | 8-91         | 8-100         |  |  |  |
| IRI                    | (m/km)     | 0.89-1.69       | 0.68-2.66    | 0.73-4.04    | 0.62-3.76     |  |  |  |
| Number of data samples | Number     | 14              | 61           | 144          | 189           |  |  |  |
| Age                    | Year       | 6-18            | 3-34         | 3-33         | 1-31          |  |  |  |
| ESAL                   | -          | 5044-47803      | 4851-1085824 | 15432-579222 | 5880-797000   |  |  |  |
| AADTT                  | Track/day  | 41-183          | 11-3538      | 78-1914      | 54-3219       |  |  |  |
| AADT                   | Track/year | 6466-66978      | 4015-1294908 | 21756-698610 | 12555-1107775 |  |  |  |

### 6.4.1 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique

Research in this part focuses on using traffic volume variables to model asphalt pavement performance indices (PCI and IRI). Traffic volume parameters were input variables, and pavement performance indices (PCI and IRI) were output parameters. Eight prediction models were developed using (MLR) technique from the collected data. The PCI and IRI regression models are shown in Tables (6-28) and (6-29).

|                       | PCI           |                      |                       |                        |  |  |  |  |  |
|-----------------------|---------------|----------------------|-----------------------|------------------------|--|--|--|--|--|
| Model                 | Dry<br>Freeze | Dry no<br>Freeze     | Wet<br>Freeze         | Wet no<br>Freeze       |  |  |  |  |  |
| <i>R</i> <sup>2</sup> | 76.4          | 87.7                 | 85.7                  | 88.1                   |  |  |  |  |  |
| Constant              | 78.43         | 100.53               | 112.08                | 114.1                  |  |  |  |  |  |
| Age                   | -0.82         | - 1.724              | - 2.45                | - 3.0                  |  |  |  |  |  |
| ESAL                  | -             | $1.77 \ x \ 10^{-6}$ | $-1.55 \ x \ 10^{-5}$ | $1.65 \ x \ 10^{-5}$   |  |  |  |  |  |
| AADTT                 | -0.037        | -0.001               | 0.004                 | -0.003                 |  |  |  |  |  |
| AADT                  | -             | $1.87 x  10^{-6}$    | $6.82 \times 10^{-6}$ | $-2.80 \times 10^{-6}$ |  |  |  |  |  |

Table 6-28: PCI models summary based on traffic volume.

The PCI regression analysis results illustrated in Table (6-28) indicate that the  $R^2$  values were 76.4%, 87.7%, 85.7%, and 88.1% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.

The IRI regression analysis results illustrated in Table (6-29) indicate that the  $R^2$  values were 78.4%, 94.7%, 75%, and 89.4% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.

|          | IRI              |                       |                        |                        |  |  |  |  |  |
|----------|------------------|-----------------------|------------------------|------------------------|--|--|--|--|--|
| Model    | Dry<br>Freeze    | Dry no<br>Freeze      | Wet<br>Freeze          | Wet no<br>Freeze       |  |  |  |  |  |
| $R^2$    | 78.4             | 94.7                  | 75                     | 89.4                   |  |  |  |  |  |
| Constant | 0.767            | 0.20                  | 0.274                  | 0.342                  |  |  |  |  |  |
| Age      | 0.07             | 0.084                 | 0.071                  | 0.073                  |  |  |  |  |  |
| ESAL     | $7.34 x 10^{-5}$ | $-3.9 x 10^{-7}$      | $-5.75 \times 10^{-5}$ | $-1.82 \times 10^{-7}$ |  |  |  |  |  |
| AADTT    | -0.025           | $6.75 \times 10^{-7}$ | -                      | $4.52 x 10^{-5}$       |  |  |  |  |  |
| AADT     | $1.95 x 10^{-5}$ | $2.68 \times 10^{-7}$ | $-2.07 \times 10^{-7}$ | $-2.73 \times 10^{-8}$ |  |  |  |  |  |

Table 6-29: IRI models summary based on traffic volume.

Equations from (6-17) to (6-24) summarised the regression models for four climate regions as follows:

#### 1- Dry Freeze

The PCI model for the dry freeze region is presented in Table (6-28). The PCI model was negatively correlated with age and AADTT. Equation (6-17) described the relationship between PCI and traffic volume as follows:

$$PCI = 78.43 - 0.82 X_{age} - 0.037 X_{AADTT}$$
6-17

The correlation coefficient  $(R^2)$  of this relationship is 76.4%.

Table (6-29) presents the regression analysis result of IRI for the dry freeze area. The IRI model was negatively correlated with AADTT. The IRI model was positively correlated with age, ESAL and AADT. Equation (6-18) described the relationship between the IRI and traffic volume as follows:

$$IRI = 0.767 + 0.07 X_{age} + 7.34 \times 10^{-5} X_{ESAL} - 0.025 X_{AADTT} - 1.95 \times 10^{-5} X_{AADT} - 6-18$$

The correlation coefficient  $(R^2)$  of this relationship is **78.4%**.

## 2- Dry no Freeze

Table (6-28) presents the PCI model for the dry no freeze area. The PCI model was negatively correlated with the age and AADTT. The PCI model was positively correlated with ESAL and AADT. Equation (6-19) described the relationship between the PCI and traffic volume as follows:

$$PCI = 100.53 - 1.724X_{age} + 1.77 \times 10^{-6}X_{ESAL} - 0.001X_{AADTT} + 1.87 \times 10^{-6}X_{AADT}$$
  
6-19

The correlation coefficient  $(R^2)$  of this relationship is 87.7%.

Table (6-29) presents the IRI model for the dry no freeze area. The IRI value was negatively correlated with ESAL. The IRI model was positively correlated with age, AADTT and AADT. Equation (6-20) described the relationship between the IRI and traffic volume as follows:

$$IRI = 0.20 + 0.084X_{age} - 3.90 \times 10^{-7}X_{ESAL} + 6.75 \times 10^{-7}X_{AADTT} + 2.68 \times 10^{-7}X_{AADT}$$
6-20

The correlation coefficient  $(R^2)$  of this relationship is **94.7%**.

#### 3- Wet Freeze

The regression analysis result of the PCI model for the dry no freeze area is presented in Table (6-28). The PCI model was negatively correlated with age and ESAL. The PCI model was positively correlated with AADT and AADTT. The (6-21) described the relationship between PCI and traffic volume as follows:

$$PCI = 112.08 - 2.45 X_{age} - 1.55 \times 10^{-5} X_{ESAL} + 0.004 X_{AADTT} + 6.82 \times 10^{-6} X_{AADT} - 6-21$$
The correlation coefficient  $(R^2)$  of this relationship is **85.7%**.

Table (6-29) presents the regression analysis results for IRI model for the wet freeze area. The IRI value was negatively affected with AADT. The IRI was positively correlated with age and ESAL. Equation (6-22) described the relationship between the IRI and traffic volume as follows:

$$IRI = 0.274 + 0.071X_{age} + 5.75 \times 10^{-5}X_{ESAL} - 2.07 \times 10^{-7}X_{AADT}$$
 6-22

The correlation coefficient  $(R^2)$  of this relationship is 75%.

#### 4- Wet no Freeze

The regression analysis result of the PCI model for the dry no freeze area is presented in Table (6-28). The PCI model was negatively correlated with age, AADT and AADTT, and positively correlated with ESAL. Equation (6-23) described the relationship between the PCI and traffic volume as follows:

PCI = 114.1 - 3.0 
$$X_{age}$$
 + 1.65 × 10<sup>-5</sup> $X_{ESAL}$  - 0.003 $X_{AADTT}$  - 2.80 × 10<sup>-5</sup> $X_{AADT}$  6-23

The correlation coefficient  $(R^2)$  of this relationship is **88.1%**.

The regression analysis result of the IRI model for the dry no freeze area is presented in Table (6-29). The IRI value was negatively correlated with ESAL and AADT. The IRI was positively correlated with age and AADTT. Equation (6-24) described the relationship between the IRI and traffic volume as follows:

$$IRI = 0.34 + 0.073 X_{age} - 1.82 \times 10^{-7} X_{ESAL} + 4.52 \times 10^{-5} X_{AADTT} - 2.73 \times 10^{-8} X_{AADTT}$$
6-24

The correlation coefficient  $(R^2)$  of this relationship is **89.4%**.

## 6.4.1.1 Validation of MLR Models

## • Validation of PCI Models

After the validation test, Table (6-30) illustrates the reduction in  $R^2$ , RMSE, and MAE values for all sections in the four climate regions.

|                    | Statistical Error Measures (PCI) |       |       |                       |       |       |                       |         |        |  |
|--------------------|----------------------------------|-------|-------|-----------------------|-------|-------|-----------------------|---------|--------|--|
| Climate<br>Regions |                                  | MLR   |       | Validation            |       |       | Reduction % ( $\pm$ ) |         |        |  |
|                    | <b>R</b> <sup>2</sup>            | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE    | MAE    |  |
| Dry Freeze         | 76.4                             | 3.738 | 2.793 | 60.8                  | 5.136 | 3.874 | -20.42                | +27.220 | +27.92 |  |
| Dry no Freeze      | 87.7                             | 4.935 | 4.281 | 87.1                  | 4.963 | 4.241 | -0.684                | +0.564  | +0.934 |  |
| Wet Freeze         | 85.7                             | 7.486 | 5.631 | 85.1                  | 7.613 | 5.821 | -0.700                | +1.668  | +3.264 |  |
| Wet no Freeze      | 88.1                             | 7.458 | 5.939 | 89.4                  | 7.503 | 6.053 | +1.454                | +0.600  | +1.883 |  |

Table 6-30: Validation of PCI models based on traffic volume.

Based on Table (6-30), Figures (6-28), and (6-29), the following conclusions can be drawn:

- <u>Dry Freeze:</u> The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 20.42%, 27.22%, and 27.92%, respectively. Thus, the MLR method's ability to predict PCI models of the traffic volume was accurate.
- Dry no Freeze: The results indicated that the reduction of R<sup>2</sup>, RMSE and MAE values was insignificant; the accuracy reductions were 0.684%, 0.564%, and 0.934%, respectively. Thus, the MLR method's ability to predict PCI models of the traffic volume was accurate.
- <u>Wet Freeze:</u> The results indicated that the reduction of  $R^2$ , RMSE, and MAE values was insignificant; the accuracy reductions were 0.7%, 1.668%, and 3.264%, respectively. Thus, the MLR method's ability to predict PCI models of the traffic volume was accurate.

• <u>Wet no Freeze:</u> The results indicated that the reduction in  $R^2$ , RMSE, and MAE values was insignificant; the accuracy reductions were 1.454%, 0.60%, and 1.883%, respectively.



Figure 6-28: MLR model for the dry freeze and the dry no freeze region based on traffic volume.



Figure 6-29: MLR model for the wet freeze and the wet no freeze region based on traffic volume.

## • Validation of IRI Models

After the validation test, Table (6-31) illustrates the reduction in  $R^2$ , RMSE, and MAE values for all sections in the four climate regions.

|                    |                       |       | St    | atistical             | Error Me | asures (l | RI)                   |        |        |
|--------------------|-----------------------|-------|-------|-----------------------|----------|-----------|-----------------------|--------|--------|
| Climate<br>Regions |                       | MLR   |       | Validation            |          |           | Reduction % (±)       |        |        |
|                    | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE     | MAE       | <b>R</b> <sup>2</sup> | RMSE   | MAE    |
| Dry Freeze         | 78.4                  | 0.123 | 0.082 | 73.4                  | 0.095    | 0.071     | -6.30                 | -22.76 | -13.41 |
| Dry no Freeze      | 94.7                  | 0.15  | 0.118 | 94.1                  | 0.162    | 0.125     | -0.634                | +7.407 | +5.600 |
| Wet Freeze         | 75.0                  | 0.304 | 0.216 | 74.7                  | 0.308    | 0.222     | -0.400                | +1.299 | +2.703 |
| Wet no Freeze      | 89.4                  | 0.18  | 0.093 | 89.0                  | 0.18     | 0.094     | -0.447                | 0.000  | +1.064 |

 Table 6-31: Validation of IRI models based on traffic volume

Based on Table (6-31), Figures (6-30), and (6-31), the following conclusions can be drawn:

- <u>Dry Freeze</u>: The results indicated that the reduction in *R*<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 6.30%, 22.76%, and 13.41%, respectively. Thus, the MLR method's ability to predict IRI models of the traffic volume was accurate.
- Dry no Freeze: The results indicated that the reduction in R<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 0.634%, 7.407%, and 5.60%, respectively. Thus, the MLR method ability to predict IRI models of the traffic volume was accurate.
- <u>Wet Freeze:</u> The results indicated that the reduction in *R*<sup>2</sup>, RMSE, and MAE values was insignificant; the accuracy reductions were 0.40%,1.299%, and 2.703%, respectively. Thus, the MLR method's ability to predict IRI models of the traffic volume was accurate.

• <u>Wet no Freeze:</u> The results indicated that the reduction of  $R^2$ , RMSE, and MAE values was insignificant; the accuracy reductions were 0.447%, 0.0%, and 1.046%, respectively.



Figure 6-30: MLR model for the dry freeze and the dry no freeze region based on traffic volume.



Figure 6-31: MLR model for the wet freeze and the wet no freeze region based on traffic volume.

## 6.4.1.2 MLR Model Sensitivity Analysis for PCI and IRI

### • MLR Model Sensitivity Analysis for PCI

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of the statistical prediction models in the PCI evaluation. The results of the sensitivity analysis for PCI are presented in Table (6-32) and Figure (6-32).

Based on Table (6-32) and Figure (6-32), the following conclusions can be drawn:

**Dry Freeze**: Compared with ESAL and AADTT are the most significant factors affecting on the prediction model, and AADT has some effect on the model. While age has a minor effect on the prediction model.

**Dry no Freeze**: Compared with other variables, age is the most significant factor affecting on the prediction model. AADTT and AADT have minor impacts on the prediction model, while ESAL has no a statistical significance effect on the prediction model.

|             | <i>R</i> <sup>2</sup> |        |        |        |  |  |  |  |
|-------------|-----------------------|--------|--------|--------|--|--|--|--|
| Independent | Dry                   | Dry no | Wet    | Wet no |  |  |  |  |
| Variable    | Freeze                | Freeze | Freeze | Freeze |  |  |  |  |
| Age         | 5.2                   | 87.5   | 85.2   | 89     |  |  |  |  |
| ESAL        | 56.5                  | -      | 6.0    | -      |  |  |  |  |
| AADTT       | 55.1                  | 5.0    | 2.0    | 2.0    |  |  |  |  |
| AADT        | 28.6                  | 4.0    | 1.0    | -      |  |  |  |  |

Table 6-32: Sensitivity analysis of prediction models for PCI based on traffic volume.

<u>Wet Freeze</u>: Compared with other variables, age is the most significant factor affecting on the prediction model. ESAL, AADTT and AADT have minor effects on the prediction model.

<u>Wet no Freeze</u>: Compared with other variables, age is the most significant factor affecting on the prediction model. AADTT has a minor impact on the prediction model. While ESAL and AADT do not have a statistical significance influence on the PCI model.



Figure 6-32: Sensitivity analysis of MLR for PCI based on traffic volume.

# • MLR Model Sensitivity Analysis for IRI

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of the prediction models (IRI). The results of the sensitivity analysis for IRI are presented in Table (6-33) and Figure (6-33).

|             | R <sup>2</sup> |        |        |        |  |  |  |  |
|-------------|----------------|--------|--------|--------|--|--|--|--|
| Independent | Dry            | Dry no | Wet    | Wet no |  |  |  |  |
| Variable    | Freeze         | Freeze | Freeze | Freeze |  |  |  |  |
| Age         | 73.5           | 94.2   | 74.4   | 89.3   |  |  |  |  |
| ESAL        | 6.0            | 4.0    | 7.0    | 0.194  |  |  |  |  |
| AADTT       | 4.0            | 1.0    | 3.0    | 2.0    |  |  |  |  |
| AADT        | 16.5           | 7.0    | 2.0    | -      |  |  |  |  |

Table 6-33: Sensitivity analysis of prediction models for IRI based on traffic volume.

Based on Table (6-33) and Figure (6-33), the following conclusions can be drawn:

**Dry Freeze**: Compared with other variables, age is the most significant factor affecting the prediction model, and AADT has some impact on the prediction model. While ESAL and AADTT have minor effects on the model.

**Dry no Freeze**: Compared with other variables, age is the most significant factor affecting the prediction model, and others have some a statistical significance influence on the prediction model. **Wet Freeze**: Compared with other variables, age is the most significant factor affecting the prediction model, and others have minor impacts on the prediction model.

<u>Wet no Freeze</u>: Compared with other variables, age is the most significant factor affecting the prediction model, and AADTT ESAL have minor effects on the prediction model. While AADT has no a statistical significance influence on the prediction model.



Figure 6-33: Sensitivity analysis of MLR for IRI based on traffic volume.

#### 6.4.2 Modeling of Asphalt Pavement Performance Indices Using (ANNs) Technique

Artificial neural network has been used to train the data presented in Table (6-27). The ANNs technique aimed to model asphalt pavement performance indices (PCI and IRI) based on age and three traffic volume as input variables for four climate regions. The architecture of the designed network consists of one input layer with 4 parameters, three hidden layers, and an output layer (4-14-10-10-1). Figure (6-34) illustrates the architecture of the ANN.



Figure 6-34: Architecture of ANN model for PCI and IRI based on traffic volume.

# 6.4.2.1 Modeling of Asphalt Pavement Performance Index (PCI)

Table (6-34) illustrates a summary of the PCI models by using an ANNs technique based on traffic volume for four climate regions.

Table 6-34: Performance of PCI models by using ANNs technique based on traffic volume.

|                        | ANNs Models Statistical Error Measures (PCI) |       |       |  |  |  |  |
|------------------------|----------------------------------------------|-------|-------|--|--|--|--|
| <b>Climate Regions</b> |                                              |       |       |  |  |  |  |
|                        | <b>R</b> <sup>2</sup>                        | RMSE  | MAE   |  |  |  |  |
| Dry Freeze             | 99.2                                         | 0.89  | 0.89  |  |  |  |  |
| Dry no Freeze          | 99.4                                         | 0.39  | 0.336 |  |  |  |  |
| Wet Freeze             | 99.3                                         | 0.661 | 0.484 |  |  |  |  |
| Wet no Freeze          | 98.5                                         | 1.868 | 1.34  |  |  |  |  |



Figure 6-35: ANNs model goodness-of-fit results for IRI values based on traffic volume.

Based on Table (6-34) and Figure (6-35), the following conclusions can be drawn:

Dry Freeze: The R<sup>2</sup> value was 99.2%, while the RMSE and MAE values were 0.89% and 0.89%.

- **Dry no Freeze:** The *R*<sup>2</sup> value was 99.4%, while the RMSE and MAE values were 0.39% and 0.336%.
- Wet Freeze: The  $R^2$  value was 99.3%, while the RMSE and MAE values were 0.661% and 0.484%.
- <u>Wet no Freeze:</u> The *R*<sup>2</sup> value was 98.5%, while the RMSE and MAE values were 1.868% and 1.34%.

# 6.4.2.2 Modeling of Asphalt Pavement Performance Index (IRI)

Table (6-35) illustrates a summary of the IRI models by using an ANNs technique based on traffic volume for four climate regions.

| Table 6-35: Performance of IRI models by | y using ANNs technic | que based on traffic volume. |
|------------------------------------------|----------------------|------------------------------|
|------------------------------------------|----------------------|------------------------------|

|                        | ANNs Models Statistical Error Measures (IRI) |       |       |  |  |  |  |
|------------------------|----------------------------------------------|-------|-------|--|--|--|--|
| <b>Climate Regions</b> |                                              |       |       |  |  |  |  |
|                        | <b>R</b> <sup>2</sup>                        | RMSE  | MAE   |  |  |  |  |
| Dry Freeze             | 99.3                                         | 0.008 | 0.006 |  |  |  |  |
| Dry no Freeze          | 99                                           | 0.024 | 0.024 |  |  |  |  |
| Wet Freeze             | 98.7                                         | 0.012 | 0.012 |  |  |  |  |
| Wet no Freeze          | 98.5                                         | 0.052 | 0.039 |  |  |  |  |

Based on Table (6-35) and Figure (6-36), the following conclusions can be drawn:

- **Dry Freeze:** The  $R^2$  value was 99.3%, while the RMSE and MAE values were 0.008% and 0.006%.
- **Dry no Freeze:** The *R*<sup>2</sup> value was 99 %, while the RMSE and MAE values were 0.024% and 0.024%.

- <u>Wet Freeze:</u> The *R*<sup>2</sup>value was 98.7%, while the RMSE and MAE values were 0.012% and 0.012%.
- <u>Wet no Freeze:</u> The *R*<sup>2</sup> value was 98.5%, while the RMSE and MAE values were 0.052% and 0.039%.



Figure 6-36: ANNs model goodness-of-fit results for IRI values based on traffic volume.

#### 6.4.3 Validation of ANNs Models

A total of 408 observations obtained from the LTPP dataset for four climate regions investigations were used in ANNs modeling, where 70% of the data set was used for training, 15% for testing, and 15% for validation (checking) the network. Tables (6-36) and (6-37) show the results of the models for the validation dataset.

# • Validation of PCI Models

The statistical error measures  $R^2$  and RMSE were used to evaluate the performance of the ANNs models. Based on the  $R^2$  values, all models had a strong correlation, as their  $R^2$  values exceeded 98%, while with RMSE values, all models had a low error, as their error did not exceed 2.963%. Thus, the ANNs technique's ability to predict PCI models of traffic volume parameters was accurate. Table (6-36) illustrates Validation of PCI models for all sections in the four climate regions.

|                    | Statistical Error Measures (PCI) |                     |         |         |            |       |  |  |  |
|--------------------|----------------------------------|---------------------|---------|---------|------------|-------|--|--|--|
| Climate<br>Regions |                                  | R <sup>2</sup> RMSE |         |         |            |       |  |  |  |
| ingions            | Training                         | Testing             | Traning | Testing | Validation |       |  |  |  |
| Dry Freeze         | 98.6                             | 99.7                | 99.3    | 0.371   | 2.243      | 1.374 |  |  |  |
| Dry no Freeze      | 99.1                             | 99.4                | 100     | 0.355   | 2.431      | 1.245 |  |  |  |
| Wet Freeze         | 99.9                             | 100                 | 99.8    | 0.469   | 1.124      | 0.451 |  |  |  |
| Wet no Freeze      | 98.4                             | 98.6                | 98.9    | 4.115   | 4.115      | 2.963 |  |  |  |

Table 6-36 : Validation of PCI models based on traffic volume parameters.

## • Validation of IRI Models

The statistical error measures  $R^2$  and RMSE were used to evaluate the performance of the ANNs models. Based on the  $R^2$  values, all models had a strong correlation, as their  $R^2$  values exceeded 99%, while for RMSE values, all models had minor errors. Thus, the ANNs technique's ability to predict IRI models of traffic volume parameters was accurate. Table (6-37) illustrates Validation of IRI models for all sections in the four climate regions.

|                    | Statistical Error Measures (IRI) |                     |            |         |         |            |  |  |  |
|--------------------|----------------------------------|---------------------|------------|---------|---------|------------|--|--|--|
| Climate<br>Regions |                                  | R <sup>2</sup> RMSE |            |         |         |            |  |  |  |
| ingions            | Training                         | Testing             | Validation | Traning | Testing | Validation |  |  |  |
| Dry Freeze         | 99.6                             | 99.8                | 99.8       | 0.009   | 0.010   | 0.016      |  |  |  |
| Dry no Freeze      | 99.7                             | 100                 | 100        | 0.023   | 0.097   | 0.028      |  |  |  |
| Wet Freeze         | 99.9                             | 99.9                | 99.6       | 0.016   | 0.071   | 0.025      |  |  |  |
| Wet no Freeze      | 99.4                             | 99.6                | 99.1       | 0.045   | 0.044   | 0.022      |  |  |  |

Table 6-37 : Validation of IRI models based on traffic volume parameters.

## 6.4.4 Comparison of the Models

To validate the developed models in this part, all models were evaluated by comparing MLR and ANNs techniques based on traffic volume for four climate regions, as shown in Tables (6-38) and (6-38).

# 6.4.4.1 Comparison of ANNs and MLR Models for PCI

The performance of the MLR models was compared with the performance of the ANNs models to evaluate the accuracy of the models in predicting pavement performance based on traffic volume parameters.  $R^2$ , RMSE and MAE values were used to compare the performance of the models. Table (6-38) and Figures from (6-37) and (6-38) presented the comparison the MLR models to the ANNs models for PCI.

| Table 6-38: Comparison of the MLH | R and ANNs models | for PCI based on | traffic volume. |
|-----------------------------------|-------------------|------------------|-----------------|
|-----------------------------------|-------------------|------------------|-----------------|

|                    |                       | Statistical Error Measures (PCI) |       |                       |       |       |                       |        |        |  |  |
|--------------------|-----------------------|----------------------------------|-------|-----------------------|-------|-------|-----------------------|--------|--------|--|--|
| Climate<br>Regions | M                     | LR Gener                         | ated  | ANNs Generated        |       |       | Improvement (%)       |        |        |  |  |
|                    | <b>R</b> <sup>2</sup> | RMSE                             | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |  |  |
| Dry Freeze         | 76.4                  | 3.738                            | 2.793 | 99.2                  | 0.89  | 0.89  | +22.98                | +76.19 | +68.13 |  |  |
| Dry no Freeze      | 87.7                  | 4.935                            | 4.281 | 99.4                  | 0.39  | 0.336 | +11.77                | +92.10 | +92.15 |  |  |
| Wet Freeze         | 85.7                  | 7.486                            | 5.631 | 99.3                  | 0.661 | 0.484 | +13.70                | +91.17 | +91.40 |  |  |
| Wet no Freeze      | 88.1                  | 7.458                            | 5.939 | 98.5                  | 1.868 | 1.34  | +10.56                | +74.95 | +77.44 |  |  |

According to Table (6-38), several conclusions can be drawn:

- The statistics indicated that R<sup>2</sup> values from the ANNs models were higher than the R<sup>2</sup> values of the MLR models by 22.98%, 11.77%, 13.70%, and 9.54% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The RMSE values of the ANNs models were less than the RMSE values of the MLR models by 76.19%, 92.10%, 91.17%, and 74.95% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The MAE values of the ANNs models were less than the MAE values of the MLR models by 68.13%, 92.15%, 91.40%, and 77.44% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.



Figure 6-37: Fitness of MLR and ANNs models to PCI prediction based on traffic volume data



from two climate regions: (left) dry freeze; (right)dry no freeze.

Figure 6-38: Fitness of MLR and ANNs models to PCI prediction based on traffic volume data

from two climate regions: (left) wet freeze; (right)wet no freeze.

Based on Figures from (6-37) to (6-38), several conclusions can be drawn:

• The MLR approach has a slight corrugation while ANNs exhibits a straight line, which explains why ANN models tend to be more accurate.

Table (6-38), Figures (6-37), and (6-38) showed that the MLR and ANNs models have an ability to perform the prediction PCI models. In addition, the ANNs prediction models provided more accuracy than the MLR models under all climate conditions.

# 6.4.4.2 Comparison of ANNs and MLR Models for IRI

The performance of the MLR models was compared with the performance of the ANNs models to evaluate the accuracy of the models in predicting pavement performance based on traffic volume parameters.  $R^2$ , RMSE and MAE values were used to compare the performance of the models. Table (6-39) and Figures from (6-39) and (6-40) show the comparison the MLR models to the ANNs models for IRI.

|                    | Statistical Error Measures (IRI) |           |       |                       |       |       |                       |        |        |  |
|--------------------|----------------------------------|-----------|-------|-----------------------|-------|-------|-----------------------|--------|--------|--|
| Climate<br>Regions | MI                               | AR Genera | nted  | ANNs Generated        |       |       | Improvement (%)       |        |        |  |
|                    | <b>R</b> <sup>2</sup>            | RMSE      | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |  |
| Dry Freeze         | 78.4                             | 0.073     | 0.057 | 99.3                  | 0.008 | 0.006 | +20.75                | +89.04 | +89.47 |  |
| Dry no Freeze      | 94.7                             | 0.15      | 0.118 | 99                    | 0.024 | 0.024 | +4.34                 | +84.00 | +79.66 |  |
| Wet Freeze         | 75                               | 0.304     | 0.216 | 98.7                  | 0.012 | 0.012 | +24.01                | +96.05 | +94.44 |  |
| Wet no Freeze      | 89.4                             | 0.18      | 0.093 | 98.5                  | 0.052 | 0.039 | +9.24                 | +71.11 | +58.06 |  |

Table 6-39: Comparison of the MLR and ANNs models for IRI based on traffic volume.



Figure 6-39: Fitness of MLR and ANNs models to IRI prediction based on traffic volume data from two climate regions: (left) dry freeze; (right)dry no freeze.



Figure 6-40: Fitness of MLR and ANNs models to IRI prediction based on traffic volume data from two climate regions: (left) wet freeze; (right)wet no freeze.

According to Table (6-39), Figures from (6-39) and (6-40), several conclusions can be drawn:

- The statistics indicated that R<sup>2</sup>values from the ANNs models were higher than the R<sup>2</sup>values of the MLR models by 20.75%, 4.34%, 24.01%, and 9.24% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The RMSE values of the ANNs models were less than the RMSE values of the MLR models by 89.04%, 84%, 96.05%, and 71.11% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The MAE values of the ANNs models were less than the MAE values of the MLR models by 89.47%, 79.66%, 94.44%, and 58.06% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively.
- The MLR approach has a slight corrugation while ANN has a straight line, which explains why ANN models tend to be more accurate.
- Figures clearly show that the ANNs prediction models provided more accuracy than the MLR prediction models under different climate conditions.

Table (6-39), Figures (6-39), and (6-40) showed that the ANN prediction models provided more accuracy than the MLR models under all climate conditions.

The results of this study are consistent with some of the previous studies. For example, Ziari et al. (2015) developed various ANN networks to predict IRI using structural, traffic, and climate parameters. They used RMSE to evaluate the ANN model and achieved an RMSE of 0.012.

#### 6.4.5 Summary

This part of the research focused on modeling asphalt pavement performance indices (PCI and IRI) based on traffic volume variables and studying the effect of these variables on asphalt pavement performance indices for four climate regions. Several important advantages were drawn from the MLR and the ANNs technique, as follows:

- The MLR and ANNs models have the ability to perform the prediction of PCI and IRI models. In addition, the ANNs prediction models provided more accuracy than the MLR models under four climate regions. The approaches have good accuracy since their  $R^2$ values exceed 75 and 98 % for MLR and ANN, respectively, as evidenced by the  $R^2$  values.
- The ANNs method reduces the error value by a considerable amount compared to the MLR method for each climate region.

# **Chapter7: Field Survey (Case Study)**

# 7.1 Field Survey (Case Study)

The case study site is located in St. John's, the capital of the province Newfoundland and Labrador, Canada. St. John's city has a wet freeze climate; all roads are negatively influenced by the challenging environment and ever-growing traffic volume. The case study focuses on studying the effect of pavement distress on determining pavement condition. These include the determination of PCI, IRI, and PSR of flexible pavement and developing reliable prediction models for St. John's roads, based on data obtained from the collected data over the past few years.

The PCI was computed using the ASTM International D6433-18 standard; the IRI values were measured using a smartphone application named TotalPave, and the PSR was obtained by distributing a questionnaire to drivers.

The present case study was divided into six phases as follows:

- Collect the pavement distress parameters for 19 road sections,
- Modeling of asphalt pavement performance indices using the (FIS) technique,
- Modeling the relationship between Indices PCI, IRI, and PSR using mathematical methods,
- Modeling of asphalt pavement performance indices using the (MLR) technique,
- Modeling of Asphalt Pavement performance indices using (ANNs), and
- Compare and validate the FIS, MLR, and ANNs models.

Eight pavement distress variables' effect were assessed and used to predict the PCI, IRI, and PSR models: fatigue cracking, block cracking, rutting, longitudinal cracking, transverse cracking, potholes, patching, and delimitation. The case study outline is presented in Figure (7-1).



Figure 7-1: Outline of the case study of research methodology.

# 7.2 Climate and Weather

Table (7-1) shows the available climate data for the last 90 years. The city is experiencing a harsh inclement climate, including an average snowfall of (330 mm /year) and temperature fluctuations (average low temp and average high temp) of -8.3 and 15.5 ° C, respectively. The average wind velocity is 21.5 km / h, with an annual precipitation average of 81%. Therefore, roads in this city suffer significant distresses, such as rutting, and potholes caused by moisture damage. This distress leads to substantial economic, health, and psychological problems for road users, due to increased travel time, increased accident rates, damage to vehicles and increased fuel usage.

| Parameters                 | unit    | St. John's region<br>(Wet Freeze) |
|----------------------------|---------|-----------------------------------|
| Age                        | Year    | 90                                |
| Average temp (low, high)   | ° C     | (-8.3) to (+15.5)                 |
| Record daily (low, high)   | ° C     | (-23.3) to (+29.5)                |
| Total annual precipitation | (mm)    | 89-149                            |
| Total snowfall             | Cm/year | 27.58                             |
| Wind average               | Km/h    | 21.5                              |
| Humidity                   | %       | 81                                |

Table 7-1: Weather conditions in the St. John's Newfoundland, Canada

# 7.3 Smartphone Data Collection and Field Studies

The objective of collecting data on roads in St. John's was to evaluate pavement performance using three methods: (IRI), (PCI), and (PSR). The data collected contribute to creating models to predict the pavement condition via three methods (TotalPave smartphone application, visual inspection, and gathering drivers' opinions on driving comfort and road safety). To develop flexible pavement

performance and realize this research's objectives, researchers at Memorial University conducted a detailed field investigation of pavement conditions for 19 different roads.

The following sections overview the data collection methods and data processing techniques employed. The models developed in this section are particular for St. John's. A smartphone equipped with GPS and other sensors was used to collect data.

The smartphone and the holder were placed on the windshield, and then a TotalPave application was used to compile the data. This included roughness measurements of some major roads in St. John's, Newfoundland are mentioned in Table (7-2).

As specified by the TotalPave user guidelines, the vehicle was driven at a speed of (20-80 km / h) throughout data gatherings, as the IRI is sensitive to the same wavelengths of the profile, which causes vibrations in cars on roads at the designated speed (Sayers, 1995).

TotalPave can estimate IRI values based on the smartphone's vertical and horizontal motion. The motion along the vehicle's left-right, front-rear, and up-down directions is represented by the accelerometer's (x, y, z) axes. The data were obtained automatically and submitted to the application servers.

## 7.4 Study Area Location and Data Preparation

According to Canada's sixth annual climate change report (Government of Canada 2014), 28% of Canada's energy consumption is used in the transport sector. Road-driven vehicle transport constitutes the most considerable portion of this sector.

The number of vehicles in St. John's, Newfoundland, has increased by more than 100% in a short period due to a growing population. This ever-increasing trend influences the condition and efficiency of roads over time.



Figure 7-2: Map of the road network of the of St. John's.

The survey covered 19 different roads in St. John's (wet freeze climate) which were considered in this study. Pavement conditions in the selected sections ranged from very poor to excellent. The study examined a total of 58.3 km of road length, which included two Urban divided (7.7 km), sixteen Urban undivided (42 km), and one highway (8.6 km). The survey data collected in (2018 and 2021) have been used to develop asphalt performance models. Detailed information to classify IRI, PSR, and PCI were collected for all these roads. Table (7-2) shows a descriptive summary of the road network in St. John's selected for this study.

Ali et al. performed a distress survey on some road sections in St. John's, and they which was published at the 2021 (Journal of Transportation Engineering, Part B: Pavements). They also studied some roads other than the sections considered in the current analysis, and the survey was presented at the 2018 Conference of the Canadian Society for Civil Engineering (CSCE) (Ali et al., 2021., Ali et al., 2018).

| Geometric<br>Type | Road Name               | Starting Coordinate   | Ending Coordinate     | Length<br>(m) |
|-------------------|-------------------------|-----------------------|-----------------------|---------------|
| Highway           | Trans-Canada<br>Highway | 47.613080, -52.693132 | 47.572898, -52.778936 | 8600          |
| Urban             | Prince Philip Dr        | 47.588916, -52.720251 | 47.561888, -52.749006 | 3900          |
| (Divided)         | Portugal Cove Rd        | 47.595724, -52.726608 | 47.609546, -52.765798 | 3800          |
|                   | Elizabeth Ave Rd        | 47.563756, -52.739265 | 47.586281, -52.708537 | 3500          |
|                   | Kenmount Rd             | 47.560475, -52.749060 | 47.533357, -52.831811 | 7000          |
|                   | Torbay Rd               | 47.599852, -52.711999 | 47.638361, -52.724715 | 4500          |
|                   | Logy Bay Rd             | 47.598178, -52.698031 | 47.581270, -52.704083 | 2000          |
| Urban             | Kenna's Hill            | 47.580354, -52.704381 | 47.571455, -52.701725 | 1000          |
| (Undivided)       | Water St                | 47.570864, -52.697512 | 47.562220, -52.709403 | 1300          |
|                   | King's Bridge Rd        | 47.577570, -52.703921 | 47.571912, -52.701928 | 1000          |
|                   | Blackhead Rd            | 47.539661, -52.712965 | 47.522431, -52.660019 | 8200          |
|                   | Newfoundland Dr         | 47.595526, -52.725829 | 47.591908, -52.687005 | 3600          |
|                   | Newtown Rd              | 47.569411, -52.731490 | 47.566484, -52.716049 | 1300          |
|                   | Freshwater Rd           | 47.563767, -52.717459 | 47.561518, -52.745447 | 2200          |
|                   | MacDonald Dr            | 47.590916, -52.718891 | 47.593944, -52.701323 | 1400          |
|                   | Aberdeen Ave            | 47.619806, -52.718596 | 47.612738, -52.711725 | 1000          |
|                   | Empire Ave              | 47.572286, -52.713828 | 47.565904, -52.729028 | 1400          |
|                   | The Blvd                | 47.577727, -52.703588 | 47.584444, -52.684521 | 1600          |
|                   | Highland Dr             | 47.604463, -52.717754 | 47.610121, -52.708517 | 1000          |

Table 7-27: Details of study section.

It was observed that damage caused by rutting and moisture (e.g., ravelling and potholes) are among the main types of distress observed on all roads in and around St. John's. Figure (7-3) displays representative photos of some of the road distress in the city. The severity levels were classified as the following, "Severe" for high severity, "Moderate" for moderate severity, and "Minimal" for low severity.



(a) Longitudinal Cracking

(b)Transverse Cracking



(c) Structural Rutting

(d) Abrasive Rutting



(d) Potholes

(e) Fatigue Cracking

Figure 7-3: Representative photo showing different distress types in pavement sections.

# 7.5 Compilation and Analysis of Data

The following sections will concentrate on creating prediction models based on three indices: PCI, IRI, and PSR.

#### 7.5.1 Pavement Condition Index (PCI)

Visual examination is essential to understanding all challenges facing the roads in St. John's, which suffer from severe structural and functional distress. Visual inspection information is used to determine the current pavement condition for PCI determination.

A two-step method was applied to the collected data using visual examination. First, the survey team drove across the chosen major and minor roads and collected pictures and videos of the road surfaces. These photos and clips were then manually processed and analyzed to understand the pavement performance. Secondly, the survey team walked along with the selected road areas for closer examination and gathering of road condition data. The distress was categorised and rated based on type and severity.

This research is expected to improve pavement service life by creating enhanced prediction models and improving traffic safety. PCI values were determined using the ASTM D6433-18 process. Around 60 km of road sections located within the St. John's municipality were visually examined, and the various distress characteristics were recorded. The PCI value calculation for Empire Avenue is presented in Table (7-3) as an example. Table (7-4) presents IRI, PSR, and PCI values measured for the 19 road sections.

| Empire Avenue Road (Section: I) Area of Sample = $720m^2$       |                           |                           |                           |                           |                           |                           |             |                             |  |  |
|-----------------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------|-----------------------------|--|--|
| Type of Distress                                                | Rutting                   | Block                     | Fatigue                   | Long                      | Trans                     | Delamination              | Pothole     | Patching                    |  |  |
| Unit                                                            | ( <i>m</i> <sup>2</sup> ) | (no)        | ( <i>m</i> <sup>2</sup> )   |  |  |
| Quantity                                                        | 1.10                      | 1.30                      | 0                         | 17                        | 0                         | 11                        | 4           | 38                          |  |  |
| Level of Severity                                               | Mb                        | Mb                        | -                         | Lc                        | -                         | На                        | Lc          | Mb                          |  |  |
| Density (%)                                                     | 0.15                      | 0.18                      | 0                         | 2.35                      | 0                         | 1.52                      | 0.55        | 5.24                        |  |  |
| Deduct Value                                                    | 7                         | 16                        | 0                         | 14                        | 0                         | 0 11 46                   |             |                             |  |  |
| Total                                                           | al 130                    |                           |                           |                           |                           |                           |             |                             |  |  |
| Corrected Deduct Value= 89                                      |                           |                           |                           |                           |                           |                           |             |                             |  |  |
| PCI                                                             |                           | 100-8                     | 9=11                      |                           |                           | Very p                    | oor         |                             |  |  |
| Empire Avenue Roa                                               | d (Section:               | II)                       |                           |                           |                           | Are                       | a of Sample | e=1440 <b>m<sup>2</sup></b> |  |  |
| Quantity                                                        | 2.25                      | 2.10                      | 0                         | 21                        | 0                         | 10.50                     | 6           | 51                          |  |  |
| Level of Severity                                               | Mb                        | Lc                        | -                         | Mb                        | -                         | Mb                        | Lc          | Mb                          |  |  |
| Density (%)                                                     | 0.16                      | 0.15                      | 0                         | 1.47                      | 0                         | 0.74                      | 0.42        | 3.57                        |  |  |
| Deduct Value                                                    | 8                         | 5                         | 0                         | 20                        | 0                         | 17                        | 42          | 31                          |  |  |
| Total                                                           | 123                       |                           |                           |                           |                           |                           |             |                             |  |  |
|                                                                 |                           |                           | Corrected                 | Deduct V                  | Value=87                  |                           |             |                             |  |  |
| PCI                                                             | 100-87=13 Very poor       |                           |                           |                           |                           |                           |             |                             |  |  |
| Ha = High severity, $Mb = Medium$ severity, $Lc = Low$ severity |                           |                           |                           |                           |                           |                           |             |                             |  |  |

Table 7-3: PCI determination from pavement distresses.

# 7.5.2 International Roughness Index (IRI)

IRI data were being captured by a smartphone application called "TotalPave". This application can capture the vertical movement resulting from the road's rough surface and calculate the IRI value in real-time. This application feature of no pre-or post-processing required for the pavement distress data obtained was the primary motivation behind this application's use in the study.

Furthermore, TotalPave is easy to use at a comparatively low cost. The TotalPave application was installed on a smartphone to gather the IRI data, then placed on the vehicle's windshield using a mobile phone holder. It was confirmed that minimal bumping and vibration of the phone occurred. To comply with TotalPave user guidelines, the vehicle was driven at a speed of between 20 and 80 kilometres per hour (km/h) throughout data gathering. The final IRI value for each road was stated as the arithmetic average of IRI values of all road sections. The average IRI data obtained for various road sections are illustrate in Table (7-4). As predicted, a high variation in IRI values was noted, based on the distress conditions. Specifically, Portugal Cove Road can be regarded as the best performing road among the city's roads. The freeway sections showed the lowest levels of roughness when all various types of roads were considered. Users felt less comfort because of the highest IRI value on Empire Avenue, followed by King's Bridge Road. Generally, most of these road sections showed high IRI values, suggesting bad road conditions.

#### 7.5.3 Present Serviceability Rating (PSR)

This survey was carried out to gather drivers' opinions on driving comfort and road safety on a scale of five levels, namely very bad, poor, fair, good, and excellent. The survey was emailed to potential respondents (drivers that were mainly graduate students and employees of Memorial University). The percentage of opinions was determined to evaluate (PSR) values for the chosen road sections. A low value of serviceability means that the road surface was compromised by numerous difficulties and was in poor condition. The PSR value for most of these road sections was between 2 and 3, suggesting that the roads were fair to good. The results collected from the pavement serviceability survey carried out during this research are summarised in Table (7-4).

| Туре                 | Road Name               | IRI    | IRI    | PSR (2018) |       | PCI (2 | PCI (2018) |    | PCI (2021) |  |
|----------------------|-------------------------|--------|--------|------------|-------|--------|------------|----|------------|--|
|                      |                         | (2018) | (2021) | Ι          | II    | Ι      | II         | Ι  | II         |  |
| Highway<br>(Divided) | Trans-Canada<br>Highway | 1.09   | 1.10   | 3.22       | 3.47  | 75     | 74         | 71 | 73         |  |
| Urban<br>(Divided)   | Prince Philip Dr        | 2.22   | 2.44   | 3.25       | 3.30  | 68     | 67         | 55 | 55         |  |
| (Divided)            | Portugal Cove Rd        | 1.77   | 1.88   | 2.84       | 2.89  | 60     | 64         | 61 | 64         |  |
|                      | Elizabeth Ave Rd        | 5.3    | 6.02   | 2.593      | 2.591 | 23     | 14         | 21 | 13         |  |
|                      | Kenmount Rd             | 2.59   | 3.10   | 2.84       | 3.0   | 49     | 45         | 43 | 39         |  |
|                      | Torbay Rd               | 3.04   | 3.29   | 2.90       | 2.91  | 44     | 33         | 48 | 37         |  |
|                      | Blackhead Rd            | 2.13   | 2.53   | 2.91       | 2.99  | 49     | 61         | 41 | 57         |  |
| Urban<br>(Undivided) | Logy Bay Rd             | 3.98   | 5.83   | 2.87       | 2.96  | 23     | 41         | 19 | 22         |  |
| (onaiviacu)          | Kenna's Hill            | 4.28   | 3.94   | 2.73       | 2.77  | 33     | -          | 40 | -          |  |
|                      | Water St                | 3.63   | 2.25   | 2.75       | 2.89  | 48     | 20         | 60 | 44         |  |
|                      | King's Bridge Rd        | 5.68   | 4.37   | 2.75       | 2.60  | 17     | 20         | 35 | 35         |  |
|                      | Newfoundland Dr         | 3.89   | 3.42   | 2.68       | 2.80  | 21     | 19         | 27 | 25         |  |
|                      | Newtown Rd              | 4.39   | 4.78   | 2.82       | 2.82  | 32     | 37         | 28 | 31         |  |
|                      | Freshwater Rd           | 3.50   | 4.26   | 2.70       | 2.75  | 41     | 44         | 37 | 37         |  |
|                      | MacDonald Dr            | 2.16   | 2.77   | 3.31       | 3.47  | 57     | 67         | 54 | 54         |  |
|                      | Aberdeen Ave            | 2.11   | 2.80   | 3.20       | 2.43  | 50     | 58         | 53 | 43         |  |
|                      | Empire Ave              | 4.05   | 4.10   | 2.43       | 2.61  | 11     | 13         | 11 | 13         |  |
|                      | The Blvd                | 3.19   | 3.87   | 2.93       | 2.96  | 44     | 37         | 41 | 32         |  |
|                      | Highland Dr             | 2.94   | 2.59   | 3.27       | 3.20  | 45     | 62         | 56 | 71         |  |

Table 7-4: IRI, PSR, and PCI values of the road sections.

# 7.6 Modeling of Asphalt Pavement Performance Indices using (FIS)

This part of the research attempts to implement one of the soft computing methods in pavement serviceability evaluation. The FIS has been applied to 19 St. John's roads as a case study in areas where roads of St. John's suffer from the eight distress types: rutting, fatigue cracking, block

cracking, longitudinal and transverse cracking, patching, potholes, and delamination. The fuzzy model uses iterations of the severity of the deterioration as inputs to create prediction models (PCI and IRI).

### 7.6.1 Methodology Fuzzy Inference System

As mentioned in chapter 4, a methodology based on a case study to evaluate road pavements using soft computing techniques has been proposed. The case study presented two models estimating the FPCI and FIRI, based on the data collected. Three trade-off steps were followed during the analysis, the Fuzzification, Normalization, and Defuzzification modules, as demonstrated in Figure (7-4).



Figure 7-4: Diagram of a pavement classification on FIS.

## 7.6.1.1 Data Pre-processing and Feature Selection

After the data were collected and revised for 19 roads in St. John's, the fuzzy model was prepared with eight independent parameters of the distress types.

| Distress of type      | Category | Number of MF                                                 | Description          |
|-----------------------|----------|--------------------------------------------------------------|----------------------|
| Rutting               | Input    | Minimal, Moderate, Severe                                    | Extremely important  |
| Fatigue Cracking      | Input    | Minimal, Moderate, Severe                                    | Relatively important |
| Block Cracking        | Input    | Minimal, Moderate, Severe                                    | Important            |
| Longitudinal Cracking | Input    | Minimal, Moderate, Severe                                    | Important            |
| Transverse Cracking   | Input    | Minimal, Moderate, Severe                                    | Moderately important |
| Patching              | Input    | Minimal, Moderate, Severe                                    | Moderately important |
| Potholes              | Input    | Minimal, Moderate, Severe                                    | Relatively important |
| Delamination          | Input    | Minimal, Moderate, Severe                                    | Relatively important |
| IRI                   | Output   | Poor, Mediocre, Fair, Good,<br>Very Good                     | Extremely important  |
| PCI                   | Output   | Failed, Very Poor, Poor, Fair,<br>Good, Very Good, Excellent | Extremely important  |

Table 7-5: Distress types and number of membership functions to evaluate PCI and IRI.

#### 7.6.1.2 Membership Functions

The membership functions for the input and output variables functions have been determined. The membership functions for all input variables are categorised as Minimal, Moderate, and Severe. The output variables have seven PCI membership functions classified as: Very Poor, Poor, Fair, Good, Very Good, and Excellent. Similarly, the output variables have five IRI membership functions classified as: Poor, Mediocre, Fair, Good. and Very Good (ASTM International D6433-18). As mentioned in chapter 4, for each input and output (PCI and IRI), the x-axis reflects the distress density, while the y-axis is a membership function varying between [0 to 1]. '0' indicates no statistical relationship, and '1' indicates a strong relationship.

#### 7.6.1.3 Fuzzy Rule Generation:

Generating the rules is the major challenge in FIS through the second phase. It was complicated to generate all rules concerning all previous combinations. The classification model's generation

rules described in this work are difficult and complex because they consist of eight inputs and one output. The Tables (7-6) (7-7) Rule base was formed for FIS, for PCI, and IRI, respectively.

|      | Distress type (Input) |          |          |              |            |          |          |              |           |  |
|------|-----------------------|----------|----------|--------------|------------|----------|----------|--------------|-----------|--|
| Rule | Rutting               | Fatigue  | Block    | Longitudinal | Transverse | Patching | Potholes | Delamination | rti       |  |
| INO  |                       | Cracking | Cracking | Cracking     | Cracking   |          |          |              | (Output)  |  |
|      |                       |          |          |              |            |          |          |              |           |  |
| 1    | Minimal               | Minimal  | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal      | Excellent |  |
| 2    | Minimal               | Minimal  | Minimal  | Moderate     | Minimal    | Minimal  | Minimal  | Minimal      | Excellent |  |
| 3    | Minimal               | Minimal  | Minimal  | Severe       | Minimal    | Minimal  | Minimal  | Minimal      | Very Good |  |
| 4    | Minimal               | Minimal  | Minimal  | Minimal      | Severe     | Minimal  | Minimal  | Minimal      | Good      |  |
| 5    | Minimal               | Severe   | Minimal  | Moderate     | Minimal    | Minimal  | Minimal  | Minimal      | Good      |  |
| 6    | Minimal               | Moderate | Minimal  | Minimal      | Severe     | Minimal  | Minimal  | Minimal      | Good      |  |
| 7    | Minimal               | Moderate | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal      | Good      |  |
| 8    | Moderate              | Minimal  | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal      | Good      |  |
| 9    | Minimal               | Moderate | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Moderate     | Good      |  |
| 10   | Minimal               | Moderate | Minimal  | Moderate     | Minimal    | Minimal  | Minimal  | Minimal      | Fair      |  |
| 11   | Minimal               | Minimal  | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Minimal      | Fair      |  |
| 12   | Minimal               | Severe   | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Moderate     | Fair      |  |
| 13   | Severe                | Moderate | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal      | Poor      |  |
| 14   | Minimal               | Severe   | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Minimal      | Poor      |  |
| 15   | Minimal               | Moderate | Minimal  | Minimal      | Minimal    | Moderate | Minimal  | Minimal      | Poor      |  |
| 16   | Minimal               | Minimal  | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Minimal      | Poor      |  |
| 17   | Minimal               | Minimal  | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Minimal      | Very Poor |  |
| 18   | Moderate              | Moderate | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Moderate     | Very Poor |  |
| 19   | Minimal               | Moderate | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Moderate     | Very Poor |  |
| 20   | Moderate              | Minimal  | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Minimal      | Very Poor |  |
| 21   | Moderate              | Severe   | Minimal  | Severe       | Severe     | Minimal  | Minimal  | Moderate     | Very Poor |  |
| 22   | Minimal               | Moderate | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Minimal      | Very Poor |  |
| 23   | Moderate              | Minimal  | Minimal  | Severe       | Severe     | Minimal  | Minimal  | Minimal      | Very Poor |  |
| 24   | Minimal               | Moderate | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Minimal      | Failed    |  |
| 25   | Minimal               | Severe   | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Minimal      | Failed    |  |
| 26   | Moderate              | Moderate | Minimal  | Moderate     | Severe     | Minimal  | Minimal  | Minimal      | Failed    |  |
| 27   | Severe                | Severe   | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Moderate     | Failed    |  |

Table 7-6: Fuzzy rules for PCI by 19 road sections.

| Rule | Distress type (Input) |          |          |              |            |          |          |              |           |  |  |
|------|-----------------------|----------|----------|--------------|------------|----------|----------|--------------|-----------|--|--|
| No   | Rutting               | Fatigue  | Block    | Longitudinal | Transverse | Patching | Potholes | Delamination | IRI       |  |  |
|      |                       | Cracking | Cracking | Cracking     | Cracking   |          |          |              | (Output)  |  |  |
| 1    | Minimal               | Minimal  | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal      | Very Good |  |  |
| 2    | Minimal               | Minimal  | Minimal  | Minimal      | Severe     | Minimal  | Minimal  | Minimal      | Very Good |  |  |
| 3    | Minimal               | Minimal  | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Minimal      | Very Good |  |  |
| 4    | Moderate              | Moderate | Minimal  | Minimal      | Minimal    | Minimal  | Minimal  | Minimal      | Good      |  |  |
| 5    | Minimal               | Minimal  | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Moderate     | Good      |  |  |
| 6    | Moderate              | Minimal  | Minimal  | Moderate     | Minimal    | Minimal  | Minimal  | Minimal      | Fair      |  |  |
| 7    | Minimal               | Moderate | Minimal  | Severe       | Moderate   | Minimal  | Minimal  | Minimal      | Fair      |  |  |
| 8    | Moderate              | Minimal  | Minimal  | Moderate     | Moderate   | Minimal  | Minimal  | Minimal      | Mediocre  |  |  |
| 9    | Minimal               | Minimal  | Minimal  | Severe       | Minimal    | Minimal  | Minimal  | Minimal      | Mediocre  |  |  |
| 10   | Minimal               | Minimal  | Minimal  | Severe       | Minimal    | Minimal  | Minimal  | Minimal      | Mediocre  |  |  |
| 11   | Severe                | Moderate | Minimal  | Minimal      | Moderate   | Minimal  | Minimal  | Minimal      | Poor      |  |  |
| 12   | Moderate              | Minimal  | Minimal  | Severe       | Moderate   | Minimal  | Minimal  | Moderate     | Poor      |  |  |
| 13   | Severe                | Severe   | Minimal  | Severe       | Severe     | Minimal  | Minimal  | Moderate     | Poor      |  |  |

Table 7-7: Fuzzy rules for IRI by 19 road sections.

## 7.6.1.4 The Results of Pavement Section Classification

The system was evaluated using data collected for 19 road sections during 2018 and 2021. This technique created membership functions and rules by measuring fuzzy pavement classification efficiency. Four defuzzified methods (Centroid, Bisector, Som, and Lom) were used to find the  $R^2$ , the RMSE, and MAE, to display the level of agreement of the PCI and IRI values.

# • Fuzzy Pavement Condition Index (PCI)

Table (7-8) presents the agreement level of the PCI values using four defuzzified methods. Figure (7-5) shows the relation between the observed PCI and fuzzified PCI for 19 road sections.
| Inference               | Year | Defuzzification | Statistic             | cal Error I | Measures | Imp   | rovement | (%)   |
|-------------------------|------|-----------------|-----------------------|-------------|----------|-------|----------|-------|
|                         |      |                 | <b>R</b> <sup>2</sup> | RMSE        | MAE      | $R^2$ | RMSE     | MAE   |
|                         |      | Centroid        | 96.6*                 | 3.456*      | 2.919*   | -     | -        | -     |
|                         |      | Bisector        | 96.6                  | 3.652       | 3.149    | -     | -        | -     |
| Mamdani<br>(Triangular) | 2018 | Lom             | 96.1                  | 4.136       | 3.541    | -     | -        | -     |
|                         |      | Som             | 95.9                  | 4.751       | 3.595    | -     | -        | -     |
|                         |      | Centroid        | 96.3                  | 3.468       | 2.917    | -0.31 | -0.35    | -0.07 |
|                         |      | Bisector        | 96.0                  | 3.68        | 3.167    | -0.62 | -0.76    | -0.57 |
|                         | 2021 | Lom             | 96.1                  | 4.11        | 3.50     | 0     | +0.63    | +1.58 |
|                         |      | Som             | 95.5                  | 4.805       | 3.639    | -0.42 | +1.19    | -1.21 |

Table 7-8: Assessment various fuzzy inference systems' configurations for PCI.

\*Indicates the best results for each fuzzy system in the column.

The goodness of fit statistics of the 19 road sections in Table (7-8) provides the following observation:

- <u>Centroid method</u>: The results indicated that the R<sup>2</sup>, RMSE, and MAE values were 96.6%,
   3.456%, and 2.919%, respectively.
- Bisector method: The results indicated that the R<sup>2</sup>, RMSE, and MAE values were 96.6%, 3.652%, and 3.149%, respectively.
- Lom method: The results indicated that the R<sup>2</sup>, RMSE, and MAE values were 96.1 %,4.136%, and 3.541%, respectively.
- <u>Som method</u>: The results indicated that the  $R^2$ , RMSE, and MAE values were 95.9%,4.751%, and 3.595%, respectively.



Figure 7-5: Fuzzy inference system for PCI(2018).

The results illustrated that the centroid method yields a more accurate result ( $R^2$ = 96.6%, RMSE =3.456%, and MAE=2.919%) than other methods. However, the Som method shows the lowest values out of the four methods, ( $R^2$ = 95.9%, RMSE =4.751% and MAE=3.595%).



Figure 7-6: Fuzzy inference system for PCI (2021).

## • Fuzzy International Roughness Index (IRI)

Table (7-9) presents the agreement level of the PCI values using four defuzzified methods Figure (7-6) showed the relation between the observed IRI and fuzzified IRI for 19 road sections.

| Inference    | Year | Defuzzification | Statisti              | cal Error | Measures | Improvement (%)       |        |        |  |
|--------------|------|-----------------|-----------------------|-----------|----------|-----------------------|--------|--------|--|
|              |      |                 | <b>R</b> <sup>2</sup> | RMSE      | MAE      | <b>R</b> <sup>2</sup> | RMSE   | MAE    |  |
|              |      | Centroid        | 88.3*                 | 0.567*    | 0.446*   | -                     | -      | -      |  |
|              |      | Bisector        | 88.1                  | 0.675     | 0.523    | -                     | -      | -      |  |
|              | 2018 | Lom             | 88.2                  | 0.671     | 0.521    | -                     | -      | -      |  |
| Mamdani      |      | Som             | 86.3                  | 0.988     | 0.797    | -                     | -      | -      |  |
| (Triangular) |      | Centroid        | 88.5*                 | 0.537*    | 0.409*   | +0.226                | +5.30  | +8.30  |  |
|              |      | Bisector        | 87.2                  | 0.54      | 0.411    | -1.02                 | +20.0  | +21.41 |  |
|              | 2021 | Lom             | 86.5                  | 0.662     | 0.506    | -1.93                 | +1.34  | +2.88  |  |
|              |      | Som             | 87.2                  | 0.637     | 0.431    | +1.03                 | +35.52 | +45.92 |  |

Table 7-9: Assessment various fuzzy inference systems' configurations for IRI.

\*Indicates the best results for each fuzzy system in the column.

The goodness of fit statistics of the 19 road sections in Table (7-9) provides the following observation:

- <u>Centroid method</u>: The results indicated that the *R*<sup>2</sup>, RMSE, and MAE values were 88.3%,
   0.567%, and 0.446%, respectively.
- Bisector method: The results indicated that the R<sup>2</sup>, RMSE, and MAE values were 88.1%, 0.675%, and 0.523%, respectively.
- Lom method: The results indicated that the R<sup>2</sup>, RMSE, and MAE values were 88.2 %,0.671%, and 0.521%, respectively.
- Som method: The results indicated that the R<sup>2</sup>, RMSE, and MAE values were 86.3%, 0.988%, and 0.797%, respectively.



Figure 7-7: Fuzzy inference system for IRI(2018).

The results illustrated that the centroid method yields a more accurate result ( $R^2$ = 88.3%, RMSE =0.567%, and MAE=0.446%) than other methods.

The Bisector method showed the lowest values of the four methods ( $R^2$ = 88.1 %, RMSE =0.675% and MAE=0.523%).



Figure 7-8: Fuzzy inference system for IRI (2021).

# 7.7 Modeling the Relationship Between Indices PCI, IRI, and PSR Using Mathematical and (ANNs)Techniques

# 7.7.1 Modeling the Relationship Between Indices PCI, IRI, and PSR Using Mathematical Methods

This section seeks to shed light on the relationship between IRI, PSR, and PCI based on field surveys for (2018 and 2021). Three mathematical methods (linear, quadratic, and cubic) have been used to develop a correlation between (PCI and IRI,) (PCI and PSR), and (IRI and PSR). Analysis was carried out by the SPSS programme to determine the correlation between these indicators. The correlation was assessed using R<sup>2</sup> values, RMSE, and MAE. Figures (7-9) to (7-11) present relationships among (PCI and IRI), (PCI and PSR), and (IRI and PSR), respectively. Equations from (7-1) to (7-9) summarised the regression models and presented the relation between (PCI and IRI,) (PCI and PSR), and (IRI an

Equations from (7-1) to (7-13) present the regression models and the relation between
 PCI and IRI using linear, quadratic, and cubic, respectively:

$$PCI = 85.657 - 11.380(IRI)$$
 7-1

The correlation coefficient  $(R^2)$  of this relationship is **89.5%**.

$$PCI = 100.092 - 0.195(IRI) + 0.978(IRI)^2$$
7-2

The correlation coefficient  $(R^2)$  of this relationship is **91.6%**.

$$PCI = 80.645 - 1.44(IRI) - 3.87(IRI)^2 - 0.387(IRI)^3$$
7-3

The correlation coefficient  $(R^2)$  of this relationship is **92.9%**.



Figure 7-9: PCI versus IRI plot.

2- Equations from (7-4) to (7-6) present the regression models and the relation between PCI and PSR using linear, quadratic, and cubic, respectively:

$$PCI = -111.055 + 53.54 (PSR)$$
 7-4

The correlation coefficient  $(R^2)$  of this relationship is **55.7%**.

$$PCI = -286 + 1.72 \times 10^{2} (PSR) - 20.14 (PSR)^{2}$$
 7-5

The correlation coefficient  $(R^2)$  of this relationship is **56.5%**.

$$PCI = 1.46 \times 10^{3} - 1.63 \times 10^{3} (PSR) + 5.98 \times 10^{2} (PSR)^{2} - 70.21 (PSR)^{3}$$
 7-6

The correlation coefficient  $(R^2)$  of this relationship is **57.3%**.



Figure 7-10: PCI versus PSR plot.

3- Equations from (7-7) to (7-9) present the regression models and the relation between IRI and PSR using linear, quadratic, and cubic, respectively:

$$IRI = 14.8 - 3.80 (PSR)$$
 7-7

The correlation coefficient  $(R^2)$  of this relationship is **42%**.

$$IRI = 27.39 - 12.36(PSR) + 1.45(PSR)^2$$
7-8

The correlation coefficient  $(R^2)$  of this relationship is **42.5%**.

$$IRI = -1.22 \times 10^{2} + 1.42 \times 10^{2} (PSR) - 51.48 (PSR)^{2} + 6.01 (PSR)^{3}$$
 7-9

The correlation coefficient  $(R^2)$  of this relationship is **43.4%**.



Figure 7-11: IRI versus PSR plot.

#### 7.7.2 Comparison and Validation of the Models

The performance of the linear method was compared with the performance of the quadratic and cubic methods to evaluate the accuracy of the models in predicting pavement performance based on pavement distress parameters.  $R^2$ , RMSE and MAE values were used to compare the performance of the models. Table (7-10) presents the comparison among (PCI&IRI), (PCI&PSR), and (IRI&PSR).

|             | Statistical Error Measures |       |       |           |       |       |       |       |       |  |  |
|-------------|----------------------------|-------|-------|-----------|-------|-------|-------|-------|-------|--|--|
| Correlation | Linear                     |       |       | Quadratic |       |       | Cubic |       |       |  |  |
|             | $R^2$                      | RMSE  | MAE   | $R^2$     | RMSE  | MAE   | $R^2$ | RMSE  | MAE   |  |  |
| PCI &IRI    | 89.5                       | 5.956 | 4.68  | 91.6      | 5.216 | 4.145 | 92.9  | 4.899 | 3.744 |  |  |
| PCI&PSR     | 55.7                       | 12.3  | 9.82  | 56.5      | 13.27 | 11.3  | 57.3  | 12.10 | 9.48  |  |  |
| IRI&PSR     | 42.0                       | 1.925 | 1.496 | 42.5      | 1.72  | 0.91  | 43.4  | 1.16  | 0.90  |  |  |

Table 7-10: Correlation between IRI, PCI & PSR.

According to Table (7-10), several observations can be drawn:

- <u>PCI &IRI:</u> The results indicated that the *R*<sup>2</sup>, RMSE, and MAE values of the cubic models improved by 3.66%, 17.75%, 20%, 1.4%, 6.08%, and 9.67% compared to the linear models and quadratic model, respectively.
- PCI&PSR: The results indicated that the R<sup>2</sup>, RMSE, and MAE values of the cubic models improved by 2.79%, 1.63%, 3.46%, 1.4%, 8.82%, and 16.11% compared to the linear models and quadratic model, respectively.
- IRI&PSR: The results indicated that the R<sup>2</sup>, RMSE, and MAE values of the cubic models improved by 2.07%, 39.74%, 39.84%, 2.07%, 32.56%, and 1.10% compared to the linear models and quadratic model, respectively.

Results showed that the cubic had the best fit in all cases with less error between the observed and predicted values, compared to linear and quadratic methods.

#### 7.7.3 Modeling the Relationship between Indices Using (ANNs) Technique

Artificial neural networks have been used to develop effective and accurate models. These models were used to predict the relationship between the (PCI&IRI), (PCI&PSR), and (IRI &PSR) obtained from the field survey. The architecture of the designed network consisted of one input layer with one variable, three hidden layers, and an output layer. The model's performance was assessed using the three common methods of  $R^2$  value, RMSE, and MAE. Figures (7-12) to (7-14) present the ANNs prediction results for PCI, IRI, and PSR models. Table (7-11) show the performance of PCI models.

|            | Statistical Error Measures (PCI) |       |       |  |  |  |  |  |  |
|------------|----------------------------------|-------|-------|--|--|--|--|--|--|
| Indicators | <b>R</b> <sup>2</sup>            | RMSE  | MAE   |  |  |  |  |  |  |
| PCI &IRI   | 94.6                             | 4.275 | 2.924 |  |  |  |  |  |  |
| PCI&PSR    | 75.4                             | 9.272 | 5.994 |  |  |  |  |  |  |
| IRI&PSR    | 70.0                             | 0.841 | 0.539 |  |  |  |  |  |  |

Table 7-11: Performance of PCI models.

Table (7-11) shows the  $R^2$ , RMSE and MAE values were as follows:

- <u>PCI &IRI:</u> The *R*<sup>2</sup> value was 94.6%, while the RMSE and MAE values were 4.275% and 2.924%.
- **PCI&PSR:** The *R*<sup>2</sup> value was 75.4%, while the RMSE and MAE values were 9.272% and 5.994%.
- **IRI&PSR:** The *R*<sup>2</sup> value was 70.0%, while the RMSE and MAE values were 0.841% and 0.539%.



Figure 7-12: Performance of the ANNs for predicting PCI model from IRI.



Figure 7-14: Performance of the ANNs for predicting IRI model from PSR.

#### 7.7.4 Comparison and Validation of the Models

To validate the prediction models developed, the  $R^2$ , RMSE, and MAE methods were used to validate the cubic and ANNs techniques. In all cases, the calculated  $R^2$  were strong, RMSE, and MAE values were found to be low, as shown in Table (7-12).

|                   | Statistical Error Measures (PCI) |       |       |                       |       |       |                       |        |        |  |  |
|-------------------|----------------------------------|-------|-------|-----------------------|-------|-------|-----------------------|--------|--------|--|--|
| Climate<br>Region | Cubic Generated                  |       |       | ANNs Generated        |       |       | Improvement (%)       |        |        |  |  |
| 8                 | <b>R</b> <sup>2</sup>            | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE  | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |  |  |
| PCI &IRI          | 92.9                             | 4.899 | 3.744 | 94.6                  | 4.275 | 2.924 | +1.80                 | +12.74 | +21.90 |  |  |
| PCI&PSR           | 57.3                             | 12.10 | 9.48  | 75.4                  | 9.272 | 5.994 | +24.01                | +23.37 | +36.77 |  |  |
| IRI&PSR           | 43.4                             | 1.16  | 0.90  | 70.0                  | 0.841 | 0.539 | +38.00                | +27.50 | +40.11 |  |  |

Table 7-12: Comparison of the Cubic models to ANNs models.

Table (7-12) shows the comparison of the cubic models with ANNs models; a summary of the findings as follows:

- **PCI &IRI:** The results indicated that the *R*<sup>2</sup>, RMSE, and MAE values of the ANNs models improved by 1.80%, 12.74%, and 21.90%, compared to the cubic models.
- **PCI&PSR:** The results indicated that the *R*<sup>2</sup>, RMSE, and MAE values of the ANNs models improved by 24.01%, 23.37%, and 36.77%, compared to the cubic models.
- **IRI&PSR:** The results indicated that the *R*<sup>2</sup>, RMSE, and MAE values of the ANNs models improved by 38%, 27.5%, and 40.11%, compared to the cubic models.

According to the results, the cubic models could estimate the PCI values from the IRI, PCI from PSR, and IRI from PSR with reasonable accuracy. The results showed the ANNs technique has

the best fit and high accuracy in all cases, with less error between observed and predicted values than the cubic method.

# 7.8 Modeling of Asphalt Pavement Performance Indices Using (MLR)

# Technique

Research in this part focuses on using pavement distress variables to model asphalt pavement performance indices (PCI, IRI, and PSR). Pavement distress parameters were input variables, and pavement performance indices (PCI, IRI, and PSR) were output parameters. Five prediction models were developed using (MLR) technique from the collected data. The PCI, IRI, and PSR regression models are shown in Table (7-13). These consider surface pavement distress: rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, potholes, patching, and delamination.

| Model                 | P     | CI     | II    | RI     | PSR   |
|-----------------------|-------|--------|-------|--------|-------|
|                       | 2018  | 2021   | 2018  | 2021   | 2018  |
| R <sup>2</sup>        | 48.0  | 63.0   | 39    | 53.2   | 54    |
| Constant              | 39.73 | 36.294 | 3.58  | 4.006  | 3.00  |
| Rutting               | 0.84  | 0.972  | -0.06 | -0.078 | 0.01  |
| Fatigue Cracking      | 1.24  | 1.367  | -0.12 | 0.194  | 0.02  |
| Block Cracking        | 0.04  | -0.161 | -0.03 | -0.222 | -0.05 |
| Longitudinal Cracking | -0.10 | 0.628  | 0.03  | -0.067 | -0.01 |
| Transverse Cracking   | 0.10  | -0.975 | -0.02 | 0.081  | 0.01  |
| Patching              | -0.08 | 0.036  | 0.01  | -0.004 | -0.01 |
| Potholes              | 0.22  | -0.008 | -0.01 | -0.014 | 0.01  |
| Delamination          | -1.29 | -2.552 | 0.08  | 0.15   | -0.01 |

Table 7-13: PCI, IRI, and PSR models based on field survey.

The PCI, IRI, and PSR regression models shown in equations (7-10) to (7-14) were as follows:

#### **1-Factors Influencing PCI**

Table (7-1*3*) shows two regression models developed using PCI values and surface pavement distress data. The PCI (2018) model was negatively correlated with longitudinal cracking, patching, and delamination. The PCI (2018) model was positively correlated with rutting, fatigue cracking, block cracking, transverse cracking, and potholes. Equation (7-10) described the relationship between The PCI (2018) and surface pavement distress as follow:

 $PCI_{2018} = 39.73 + 0.84 X_1 + 1.24 X_2 + 0.04 X_3 - 0.10 X_4 + 0.10 X_5 - 0.08 X_6 + 0.22 X_7 - 1.29 X_{10}$ 7-10

The correlation coefficient  $(R^2)$  of this relationship is **48%**.

The PCI (2018) model was negatively correlated with block cracking, transverse cracking, potholes, and delamination. The PCI (2018) model was positively correlated with rutting, fatigue cracking, longitudinal cracking, and patching. Equation (7-11) described the relationship between The PCI (2018) and surface pavement distress as follows:

 $PCI_{2021} = 36.294 + 0.972 X_1 + 1.367 X_2 - 0.161 X_3 + 0.628 X_4 - 0.975 X_5 + 0.036 X_6 - 0.008 X_7 - 2.552 X_{10}$ 7-11

The correlation coefficient  $(R^2)$  of this relationship is **63%**.

#### **2-Factors Influencing IRI**

Table (7-14) shows two regression models developed using IRI values and surface pavement distress data. The IRI (2018) model was negatively correlated with rutting, fatigue cracking, block cracking, transverse cracking, and potholes. The IRI (2018) model had positively correlated with

longitudinal cracking, patching, and delamination. Equation (7-12) described the relationship between IRI and surface pavement distress as follows:

 $IRI_{2018} = 3.58 - 0.06 X_1 - 0.12 X_2 - 0.03 X_3 + 0.03 X_4 - 0.02 X_5 + 0.01 X_6 - 0.01 X_7 + 0.08 X_{10}$ 7-12

The correlation coefficient  $(R^2)$  of this relationship is **39%**.

The IRI (2021) model was negatively correlated with rutting, block cracking, longitudinal cracking, patching, and potholes. The IRI (2021) model had positively correlated with fatigue cracking, transverse cracking, and delamination. Equation (7-13) described the relationship between IRI and surface pavement distress as follows:

$$IRI_{2021} = 4.006 - 0.078 X_1 + 0.194 X_2 - 0.222 X_3 - 0.067 X_4 + 0.081 X_5 - 0.004 X_6 - 0.014$$
$$X_7 + 0.15 X_{10}$$
7-13

The correlation coefficient  $(R^2)$  of this relationship is 53.2%.

#### **<u>3-Factors Influencing PSR</u>**

Table (7-14) shows one regression model developed using PSR values and surface pavement distress data. The PSR model was negatively correlated with block cracking, longitudinal cracking, patching, and delamination. The PSR model was positively correlated with rutting, fatigue cracking, transverse cracking, and potholes. Equation (7-14) described the relationship between the PSR and surface pavement distress as follows:

$$PSR = 3.0 + 0.01 X_1 + 0.02 X_2 - 0.05 X_3 - 0.01 X_4 + 0.01 X_5 - 0.01 X_6 + 0.01 X_7 - 0.001 X_{10}$$
  
7-14

The correlation coefficient  $(R^2)$  of this relationship is **54%**.

#### 7.8.1 Validation for PCI and IRI Models

After the validation test, Table (7-14) illustrates the reduction in  $R^2$ , RMSE, and MAE values for all sections. Figures (7-15) and (7-16) present the errors and linear relation for the two periods (2018 and 2021).

|            |                       | MLR    |        |                       | Validatio | n     | Reduction % (±)       |        |        |
|------------|-----------------------|--------|--------|-----------------------|-----------|-------|-----------------------|--------|--------|
| Indicator  | <b>R</b> <sup>2</sup> | RMSE   | MAE    | <b>R</b> <sup>2</sup> | RMSE      | MAE   | <b>R</b> <sup>2</sup> | RMSE   | MAE    |
| PCI (2018) | 48                    | 14.051 | 11.368 | 45                    | 14.227    | 11.98 | -6.25                 | -1.24  | -5.11  |
| IRI (2018) | 39                    | 1.046  | 0.827  | 35.8                  | 1.253     | 1.036 | -8.21                 | -16.52 | -20.17 |
| PCI (2021) | 63                    | 9.932  | 7.844  | 61.4                  | 9.135     | 7.22  | -2.54                 | +8.02  | +7.96  |
| IRI (2021) | 53.2                  | 0.751  | 0.605  | 46.5                  | 0.802     | 0.613 | -12.6                 | -6.36  | -1.31  |

Table 7-14: Validation of PCI models based on pavement distress.

Based on Table (7-14), Figures (7-15), and (7-16), the following conclusions can be drawn:

- <u>PCI (2018)</u>: The results indicated that the reduction of R<sup>2</sup> and RMSE, and MAE values was insignificant. The accuracy reductions were 6.25%,1.24%, and 5.11%, respectively. Thus, the MLR method's ability to accurately predict PCI models of the pavement distress models was good.
- <u>PCI (2021)</u>: The results indicated that the reduction of R<sup>2</sup> and RMSE, and MAE values was insignificant. The accuracy reductions were 2.54%, 8.02%, and 7.96%, respectively. Thus, the MLR method's ability to accurately predict PCI models of the pavement distress models was good.
- **IRI (2018):** The results indicated that the reduction of  $R^2$  and RMSE, and MAE values was insignificant. The accuracy reductions were 8.21%,16.52%, and 20.17%, respectively.



Thus, the MLR method's ability to accurately predict IRI models of the pavement distress models was good.

Figure 7-15:Accuracy of the prediction PCI values based on surface pavement distress: left (2018), and right (2021).



Figure 7-16: Accuracy of the prediction IRI values based on surface pavement distress: left (2018), and right (2021).

IRI (2021): The results indicated that the reduction of R<sup>2</sup> and RMSE, and MAE values was insignificant. The accuracy reductions were 12.6%,6.36%, and 1.31%, respectively. Thus, the MLR method's ability to accurately predict IRI models of the pavement distress models was good.

#### 7.8.2 Cronbach's alpha

Cronbach's alpha calculates inner consistency, i.e., how closely associated a group of parameters is. This test is used to calculate reliability, and it is worth noting that an alpha high value does not mean the calculation is one-dimensional. Cronbach's alpha can be written according to the number of test objects and the average correlation between the parameters. Equation (7-20) presented the formula for the Cronbach alpha for conceptual purposes:

$$\alpha = \frac{N_c}{\nu + (N-1)c}$$
 7-15

where:

N is equal to the number of items, c is the average inter-item covariance among the items, and v equals the average variance.

| Tab | le 7- | 15: R | leliab | ility | statistics. |
|-----|-------|-------|--------|-------|-------------|
|-----|-------|-------|--------|-------|-------------|

| Case Processi     | Case Processing Summary |      |            | Reliability Statistics |           |  |  |  |  |
|-------------------|-------------------------|------|------------|------------------------|-----------|--|--|--|--|
|                   |                         |      | Cronbach's | Cronbach's Alpha Based | Number of |  |  |  |  |
|                   | Ν                       | %    | Alpha      | on Standardized Items  | Items     |  |  |  |  |
|                   | 38                      | 82.6 |            |                        |           |  |  |  |  |
| Valid<br>Excluded | 8                       | 17.4 | 0.973      | 0.973                  | 37        |  |  |  |  |
| Total             | 46                      | 100  |            |                        |           |  |  |  |  |
|                   |                         |      |            |                        |           |  |  |  |  |

The alpha coefficient for the 37 items is (97.3%), suggesting that the items have relatively high internal consistency.

Note that a 70% or higher reliability coefficient is considered "acceptable" in most research situations.

|                   | Summary Item Statistics |         |         |       |         |          |            |  |  |  |  |
|-------------------|-------------------------|---------|---------|-------|---------|----------|------------|--|--|--|--|
|                   | Mean                    | Minimum | Maximum | Range | Maximum | Variance | N of Items |  |  |  |  |
|                   |                         |         |         |       | Minimum |          |            |  |  |  |  |
| Item<br>Means     | 2.988                   | 2.316   | 3.526   | 1.211 | 1.523   | 0.080    | 37         |  |  |  |  |
| Item<br>Variances | 0.704                   | 0.453   | 1.121   | 0.668 | 2.474   | 0.031    | 37         |  |  |  |  |

Table 7-16: Summary item statistics.

## 7.9 Modeling of Asphalt Pavement Performance Indices Using (ANNs)

#### Technique

The Artificial neural network has been used to train the data presented in Table (7-3). The ANNs technique aimed to model asphalt pavement performance indices (PCI, IRI, and PSR) based on eight surface pavement distresses. The input variables were rutting, fatigue cracking, block cracking, longitudinal and transverse cracking, patching, potholes, and delamination, while (PCI, IRI, and PSR) were the output variables. The network architecture consisted of one layer of 7 nodes and three hidden layers of nodes. Table (7-17) presents the performance of the ANNs model for PCI, IRI, and PSR. The model's performance was assessed using the three standard methods of  $R^2$  value, RMSE, and MAE. Within wet climatic zones, 19 road sections of flexible pavement have been chosen. The models were trained on 70% of the data, tested on15%, and validated on 15%; the results showed a good ability of the pavement distress models to predict the PCI, IRI, and PSR values. Table (7-17) shows the  $R^2$ , RMSE and MAE values of the PCI, IRI, and PSR models. The highest  $R^2$  value was 99.6 % in the case of PSR for (2018). The lowest  $R^2$  value was 98.6 % and was observed for IRI model for (2018). The lowest RMSE and MAE values were

(0.007), (0.005) and were observed for PSR (2018). Figures (7-17) to (7-19) present the ANNs prediction results for PCI, IRI, and PSR, respectively.

|            | ANNs Models           |           |       |                       |      |       |  |  |  |  |
|------------|-----------------------|-----------|-------|-----------------------|------|-------|--|--|--|--|
| Indicators | Μ                     | odel (201 | 8)    | Model (2021)          |      |       |  |  |  |  |
|            | <b>R</b> <sup>2</sup> | RMSE      | MAE   | <b>R</b> <sup>2</sup> | RMSE | MAE   |  |  |  |  |
| PCI        | 98.6                  | 0.888     | 0.734 | 99.3                  | 0.72 | 0.592 |  |  |  |  |
| IRI        | 99.2                  | 0.276     | 0.234 | 99.5                  | 0.16 | 0.16  |  |  |  |  |
| PSR        | 99.6                  | 0.007     | 0.005 | -                     | -    | -     |  |  |  |  |

Table 7-17: Summary of PCI, IRI, and PSR models of ANNs developed.



Figure 7-17: ANNs model goodness-of-fit results for PCI values based on pavement distress: left (2018), and right (2021).



Figure 7-18: ANNs model goodness-of-fit results for IR values based on pavement distress: left (2018), and right (2021).



Figure 7-19: ANNs model goodness-of-fit results for PSR values based on pavement distress (2018).

#### 7.9.1 Comparison and Validation of the Models

To validate the developed models in this part, all models were evaluated by comparing MLR, FIS, and ANNs techniques based on pavement distress, as shown in Tables (7-18), (7-19) and (7-20).

#### 7.9.2 Comparison and Validation of MLR, FIS, and ANNs Models for PCI

The performance was compared among MLR, FIS, and ANNs models to evaluate the accuracy of the models in predicting pavement performance, based on pavement distress parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models. Table (7-18), Figures (7-20), and (7-21) present the comparison the MLR models to the ANNs models for PCI.

|                | Year                  |        |        |                |       |       |  |  |  |
|----------------|-----------------------|--------|--------|----------------|-------|-------|--|--|--|
| Technique      |                       | 2018   |        | 2021           |       |       |  |  |  |
|                | <b>R</b> <sup>2</sup> | RMSE   | MAE    | R <sup>2</sup> | RMSE  | MAE   |  |  |  |
| MLR Generated  | 48.0                  | 14.051 | 11.368 | 63.0           | 9.932 | 7.844 |  |  |  |
| FIS Generated  | 96.6                  | 3.456  | 2.919  | 96.3           | 3.468 | 2.917 |  |  |  |
| ANNs Generated | 98.6                  | 0.888  | 0.734  | 99.3           | 0.72  | 0.592 |  |  |  |

Table 7-18: Comparison among MLR, FIS, and ANNs models for PCI.

According to Table (7-18), Figures (7-20), and (7-21), several conclusions can be drawn:

#### • <u>PCI (2018):</u>

• The statistics indicated  $R^2$  values from the ANNs and FIS models were higher than the  $R^2$  values of the MLR models more than 50%.

- The RMSE value of the ANNs model was less than the RMSE values of the FIS and the MLR models by 74.31% and 99.4%, respectively.
- The RMSE value of the FIS model was less than the RMSE value of the MLR model by 75.4%.
- The MAE value of the ANNs model was less than the MAE values of the FIS and the MLR models by 74.85% and 93.54%, respectively.

### • <u>PCI (2021):</u>

- The statistics indicated that the  $R^2$  value from the ANNs model was higher than the  $R^2$  values of the MLR model by 36.56 %.
- The RMSE value of the ANNs model was less than the RMSE value of the MLR model by 92.75%.
- The MAE value of the ANNs model was less than the MAE value of the MLR model by 92.45 %.
- Figures (7-20) and (7-21) clearly show that the ANNs prediction models provided more accuracy than the FIS and MLR prediction models.
- The ANNs technique has the best fit and good accuracy in all cases, with less error between observed and predicted values than the FIS and MLR methods.



Figure 7-20: Fitness of MLR, FIS, and ANNs models to PCI prediction based on pavement distress data (2018 and 2021).



Figure 7-21: Fitness of MLR and ANNs models to PCI prediction based on pavement distress data (2018 and 2021).

#### 7.9.3 Comparison and Validation of MLR, FIS, and ANNs Models for IRI

The performance was compared among MLR, FIS, and ANNs models to evaluate the accuracy of the models in predicting pavement performance based on pavement distress parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models. Table (7-19), Figures (7-22), and (7-23) present the comparison of the MLR models to the ANNs models for IRI.

|           |                | 2018                  |       |       | 2021                  |       |       |
|-----------|----------------|-----------------------|-------|-------|-----------------------|-------|-------|
| Indicator | Technique      | <i>R</i> <sup>2</sup> | RMSE  | MAE   | <i>R</i> <sup>2</sup> | RMSE  | MAE   |
|           | MLR Generated  | 39                    | 1.046 | 0.827 | 53.2                  | 0.751 | 0.605 |
| IRI       | FIS Generated  | 88.3                  | 0.567 | 0.446 | 88.5                  | 0.54  | 0.411 |
|           | ANNs Generated | 99.2                  | 0.276 | 0.234 | 99.5                  | 0.16  | 0.16  |

Table 7-19: Comparison among MLR, FIS, and ANNs models for IRI.

According to Table (7-19), Figures (7-22), and (7-23), several conclusions can be drawn:

#### • <u>IRI (2018):</u>

- The statistics indicated the  $R^2$  value from the ANNs model was higher than the  $R^2$  values of the FIS and the MLR models by 60.69% and 10.99%, respectively.
- The statistics indicated the  $R^2$  value from the FIS model was higher than the  $R^2$  value of the MLR model by 55.83%.
- The RMSE value of the ANNs model was less than the RMSE values of the FIS and the MLR models by 51.32% and 73.6%, respectively.

- The RMSE value of the FIS model was less than the RMSE value of the MLR model by 45.79%.
- The MAE value of the ANNs model was less than the MAE values of the FIS and MLR models by 47.53% and 71.70%, respectively.



Figure 7-22: Fitness of MLR, FIS, and ANNs models to IRI prediction based on pavement distress data (2018 and 2021).

# • <u>IRI (2021):</u>

- The statistics indicated that the  $R^2$  value from the ANNs model was higher than the  $R^2$  values of the MLR model by 46.5 %.
- The RMSE value of the ANNs model was less than the RMSE value of the MLR model by 78.70%.
- The MAE value of the ANNs model was less than the MAE value of the MLR model by 73.55 %.



Figure 7-23: Fitness of MLR and ANNs models to IRI prediction based on pavement distress data (20182021).

# 7.9.4 Comparison and Validation of MLR and ANNs Models for PSR

The models predict pavement performance based on pavement distress parameters.  $R^2$ , RMSE and MAE values were used to measure and compare the performance of the models. Table (7-20) and Figure (7-24) present the comparison of the MLR models to the ANNs models for PSR.

| Indicator | Technique      | 2018                  |       |       |  |  |
|-----------|----------------|-----------------------|-------|-------|--|--|
|           |                | <b>R</b> <sup>2</sup> | RMSE  | MAE   |  |  |
|           | MLR Generated  | 54.0                  | 0.45  | 0.368 |  |  |
| PSR       | ANNs Generated | 99.6                  | 0.007 | 0.005 |  |  |

Table 7-20: Comparison of the MLR models to the ANNs models.

• The statistics indicate that the  $R^2$  value from the ANNs model was higher than the



 $R^2$  value of the MLR model by 45.78%.

Figure 7-24: Fitness of MLR and ANNs models to PSR prediction based on pavement distress data (2018).

- The RMSE value of the ANNs model was less than the RMSE value of the MLR model by 98.44%.
- The MAE value of the ANNs model was less than the MAE value of the MLR model by 98.64%.

# 7.9.5 MLR Model sensitivity analysis for PCI, IRI, and PSR

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of prediction models PCI, IRI, and PSR. The results of the sensitivity analysis were presented in Table (7-21), and Figures (7-25) and (7-26) were as follows:

| Deneration            | $R^2$ |      |      |      |      |  |  |
|-----------------------|-------|------|------|------|------|--|--|
| Parameters            | 2018  |      |      | 2021 |      |  |  |
|                       | PCI   | IRI  | PSR  | PCI  | IRI  |  |  |
| Rutting               | 18.3  | 17.4 | 25.8 | 17.1 | 5.4  |  |  |
| Fatigue Cracking      | 13.3  | 13.3 | 15.1 | 14.4 | 10   |  |  |
| Block Cracking        | 2.5   | 3.3  | -    | 1.2  | 1.7  |  |  |
| Longitudinal Cracking | 11.4  | 13.7 | 10.9 | 8.1  | 11.7 |  |  |
| Transverse Cracking   | 0.4   | -    | 0.1  | 4.1  | 0.1  |  |  |
| Patching              | 19.0  | 11.0 | 11.7 | 16.6 | 3.2  |  |  |
| Potholes              | -     | 0.1  | 0.3  | 0.9  | 0.8  |  |  |
| Delamination          | 19.1  | 12.9 | 14.4 | 19.0 | 5.4  |  |  |

Table 7-21: Sensitivity analysis of prediction models for PCI, IRI, and PSR.

Table (7-21) and Figures (7-25) and (7-26) present the following conclusions:

**PCI (2018):** Compared with other variables, rutting, patching, and delamination are the most significant variables on the prediction model. Fatigue cracking and longitudinal cracking have some effects on the PCI model. Block cracking and transverse cracking have minor effects on the PCI model, while potholes have no effect on the prediction model.

**PCI (2021):** Compared with other variables, rutting, patching, and delamination are the most significant variables on the prediction model. Fatigue cracking, and longitudinal cracking have some effects on the PCI model, while block cracking, transverse cracking, and potholes have minor effects on the PCI model.

**IRI (2018):** Compared with other variables, rutting is the most significant effect on the prediction model. Fatigue cracking, longitudinal cracking, patching, and delamination have some impacts on the prediction model, while block cracking and potholes have minor effects on the prediction model.

**IRI (2021):** Compared with other variables, longitudinal and fatigue cracking are the most significant effect on the prediction model. Rutting, block cracking, patching, and delamination have some effects on the prediction model, while transverse cracking and potholes have minor effects on the prediction model.

**PSR (2018):** Compared with other variables, rutting is the most significant effect on the prediction model. Fatigue cracking, longitudinal cracking, patching, and delamination have some impacts on the prediction model, while transverse cracking and potholes have minor effects on the prediction mode.



Figure 7-25: Sensitivity analysis of MLR for PCI, IRI, and PSR (2018).



Figure 7-26: Sensitivity analysis of MLR for PCI and IRI (2021).

### 7.10 Summary

This case study investigated 19 road sections for 2018 and 2021 in St. John's, Newfoundland, Canada. Pavement distress of varying types was analyzed, and performance indicators were collected. St. John's has a very harsh climate due to a plethora of snowfall and freeze thaws in the winter season, plenty of rain throughout the year, and copious temperature fluctuations. Here are some conclusions are drawn from this research:

- The extensive maintenance work carried out by St. John's municipality between 2018 and 2021 affect road performance. It was improvement in the performance of the roads that received maintenance, while the roads not assigned for maintenance work had a worse performance than previously.
- Based on Table (7-4), the maintenance work carried out by St. John's municipality between
   2018 and 2021could affect road performance. It was clear the improvement in the

performance of some roads sections that maybe have been received maintenance, while the others were worse, due to its have not been received any maintenance.

- According to FHWA, pavement conditions are poor if the IRI value exceeds 2.7 m/km. Table (7-4) showed that 81% of road sections were classified as poor in 2018, and around 84% of road sections were classified as poor in 2021.
- The ANNs technique has the best fit and high accuracy in all cases with less error between observed and predicted values than the FIS and MLR methods.

#### **Chapter8: Conclusions and Recommendations**

#### **8.1 Conclusions**

This thesis has included the investigation of typical and advanced characterization methods to model asphalt pavement performance indices and better understand the effect of various variables on pavement performance. In general, the results presented can be applied to evaluate pavement performance and predict future pavement conditions.

The study's general goal was to apply comprehensive research to model Asphalt Pavement Performance Indices (PCI& IRI) and compute various parameters' effects on pavement performance. The ultimate goal was to identify the most significant parameters that optimize pavement performance to provide longer road life. This chapter summarizes the extensive numerical work, the conclusions drawn from the work results, and an advanced understanding of soft computing mechanisms using the Fuzzy Inference System, Multiple Linear Regression, and Artificial Neural Network. Recommendations for potential future research arising from this study are also discussed. The proposed methods to estimate PCI and IRI of pavement performance are promising but still need validation with a more significant amount of different data. Analytical models and numerical simulations (such as Fuzzy Inference System models, Multiple Linear Regression models, and Artificial neural network models) can be used to predict models for pavement performance (PCI and IRI) and compare results with observed data. The results of the work and analysis revealed the following:

#### Modeling of Asphalt Pavement Performance Indices Using (FIS)

To modeling asphalt pavement performance indices, a fuzzy inference system (FIS) has been used to compute the fuzzy- pavement condition index (FPCI) and fuzzy international roughness index (FIRI). The long-term pavement performance (LTPP) database and field Survey of St. John's, Newfoundland, Canada have been used to develop membership functions. Based on the results obtained from this analysis technique, fuzzy classification systems presented a strong correlation level and low percentage error for the prediction models.

According to FIS-based PCI and IRI models, the technique proved to optimize a few of the advantages drawn from this study as follows:

- As a direct result of using the fuzzy inference system approach, human involvement is limited for the decision process and distress classification.
- Pavement engineers can effectively identify pavement conditions and enhance decisionmaking by employing this methodology.
- Incorporating additional sections with different types of distress and severity helped the system learn and develop additional rules, which improved the models' results.
- The results indicated that the centroid method yields a more accurate prediction PCI model (R<sup>2</sup>= 98.3%, RMSE =4.957%, and MAE=4.243%) than other methods (Bisector, Lom, Som). The Lom method has the most significant Improvement among methods (R<sup>2</sup>= 2.85%, RMSE =37.72% and MAE=27.45%). This means that the accuracy of models was enhanced by adding just 30 sections increased accuracy.

The results indicated that the centroid method yields a more accurate prediction IRI model (R<sup>2</sup>= 92.9%, RMSE =0.285%, and MAE=0.227%) than other methods (Bisector, Lom, Som). The Lom method has the most significant Improvement among methods (R<sup>2</sup>= 2.83%, RMSE =19.90% and MAE=20.70%). This means that the accuracy of models was enhanced when added just 30 sections increased the accuracy.
- The sensitivity analysis revealed that rutting and transverse cracking had the most significant impact on FPCI fuzzified classification compared to other distress types.
- The sensitivity analysis showed that rutting and patching had the most significant impact on FIRI fuzzified classification compared to other distress types for pavement performance prediction.

## Modeling the Relationship Between Asphalt Pavement Performance Indices (PCI &IRI)

This part of the research sought to clarify the relationship between two performance indicators (PCI and IRI) using the LTPP data for four climate regions in the U.S. and Canada. Several important conclusions can be drawn from this part, as follow:

- The results indicate that three methods (linear, quadratic, and cubic) are able to predict PCI by using IRI data.
- The results indicated that the most accurate models were the Cubic models, compared to Linear and Quadratic models, in all cases of climate regions.
- The results indicated that the ANNs models were more accurate than cubic models for four climate regions.

## Modeling of Asphalt Pavement Performance Indices Using (MLR)and (ANNs)

Pavement distress, traffic volume, and environmental parameters were studied as input variables for modeling asphalt pavement performance indices in this part of the study. The conclusions are as follows:

• Based on the models related to pavement distress parameters of PCI and IRI, the  $R^2$  values range between 77% and 91.6% for PCI, and 70.7% and 90.6% for IRI using the MLR technique. However, the  $R^2$  value ranges between 98.3% and 99.8%, and between 97.5%

and 99.8%, respectively, to PCI and IRI using the ANNs technique. That's mean the ANNs prediction models provided more accuracy than the MLR models under all climate regions.

- Based on the models related to environmental parameters of PCI and IRI, the R<sup>2</sup> values range between 71.4% and 91.8% for PCI and between 74% and 90.2% for IRI using the MLR technique. Furthermore, the R<sup>2</sup> values range between 98.7% and 99.8%, and between 98.9% and 99.9% for PCI and IRI using the ANNs technique. That's mean the ANNs prediction models provided more accuracy than the MLR models under all climate regions.
- Based on the models related to traffic volume parameters of PCI and IRI, the R<sup>2</sup>values range between 76.4% and 88.1% for PCI and between 78.4% and 94.7% for IRI using the MLR technique. The R<sup>2</sup>value was between 98.5% and 99.4%, and 98.5% and 99.3% for PCI and IRI using the ANNs technique. That's mean the ANNs prediction models provided more accuracy than the MLR models under all climate regions.
- Based on the case study, here are some conclusions are drawn:
  - The extensive maintenance work carried out by St. John's municipality between 2018 and 2021 affect road performance. It was improvement in the performance of the roads that received maintenance, while the roads not assigned for maintenance work had a worse performance than previously.
  - According to results, the maintenance work carried out by St. John's municipality between 2018 and 2021 could affect road performance. It was clear the improvement in the performance of some roads sections that maybe have been received maintenance, while the others were worse, due to its have not been received any maintenance.

- According to FHWA, pavement conditions are poor if the IRI value exceeds 2.7 m/km. The results showed that 81% of road sections were classified as poor in 2018, and more than 84% of road sections were classified as poor in 2021.
- The results showed the fuzzy pavement classification of FPCI and FIRI was more accurate than the observed (PCI and IRI).
- The ANNs technique has the best fit and high accuracy in all cases with less error between observed and predicted values than the FIS and MLR methods.

## **8.2** Contribution to Knowledge

The following contributions are made based on current developments:

## Asphalt Pavement Performance Indices based on Fuzzy Inference System

The current study presented a significant contribution of developing an effective system that can overcome the failure of traditional classification. In addition, this technique has a crucial advantage because it generates rules from large-scale distress data in a short time. With the FIS technique, the distress classification becomes more consistent. Using FIS has reduced human involvement in decision-making processes.

## **Development of Enhanced Models:**

The current research employs soft computing techniques (FIS) and ANNs) to optimize prediction models. Using these optimization techniques, the most reasonable prediction model can minimize the discrepancies between predicted and measured data.

#### **Pavement Performance Prediction**

This research uses two data sources stored in the LTPP dataset and the field survey of St. John's city for different climate regions to Mode asphalt pavement performance indices in different climate regions. Models developed to predict pavement performance address several variables that influence pavement performance. MLR and ANNs techniques have been utilized to predict models for pavement performance. According to the results, the ANN technique was able to predict the PCI and IRI models with high accuracy, and the ANNs technique was able to predict models under various conditions and several variables, such as:

- Pavement distress,
- traffic volume, and
- environmental parameters.

## Better Understanding of Different Pavement Performance in Different Climate Regions:

The current research provides prediction models for three fundamental parameters (pavement distress, traffic volume, and environmental) in four climate regions in the U.S. and Canada. Comparison among different models for each performance index (PCI) and (IRI) reveals variation in pavement performances. Comparison among methods permits understanding pavement performance behaviour and identifying terminal service life for the four regions. Adding more historical data on the four climate regions will aid in improving the model developed in this study.

#### Prediction Models Development based on soft computing concepts:

The current research develops new performance prediction models based on soft computing techniques. These models represent pavement performance more than traditional models based on empirical concepts.

#### Automation of the Soft Computing Calibration Process:

The current research provides an innovative approach to calibrating soft computing models and moving away from traditional techniques based mainly on "trial and error" approaches. This research provides a methodology to automate the calibration process fully and thus provide an opportunity for pavement engineers and experts to explore the application of different optimization techniques to the soft computing (FIS) and (ANNs) calibration problem, which is not possible using a traditional approach.

## **8.3 Recommendations**

In the present study, only data for flexible pavement were used, but the same concepts and methods applied in work could conceivably be applied to studies on rigid pavements. Further, the sensitivity analysis could be extended to determine optimal values of minimum acceptable PCI and IRI levels. Additionally, correlations between a distresses-based PCI index as presented in FIS and a more general distresses-based PCI and IRI could lead to PCI and IRI models that are based on concepts involving machine learning. Other promising future research directions are as follows:

- The present research applied linear programming techniques, ANNs, and fuzzy logic to determine prediction models using calibration coefficients. The calibration process used here could lead to other optimization techniques being used in the calibration process.
- LTPP data needs quality control procedures, and the database should be completely redone according to stricter standards. This could lead to higher accuracy for future models.
- Correlations between empirical models and the ANNs and FIS models could be further developed as a way for transport agencies to change their current PMS models into machine learning-based models.

- The fuzzy system could be improved by changing membership function shapes or incorporating additional pavement section data.
- More and more pavement data on Canada and the U.S. become available, more realistic models can be developed. According to the municipality, the collected data can then be further categorized as different regional sets to make the models more site-specific.
- By optimizing the database design, it will be easier to create high-quality predictive models in the future. Updating the plan for data collection will reduce the cost of roads.

#### **Publications**

## **Journal Papers**

- Ali, A., Usama Heneash., & Hussein, A. (2022). Development of Pavement Condition Index Using Artificial Neural Network Approach: Case Study. Submitted.
- Ali, A., Usama Heneash., & Hussein, A. (2022). Performance of Soft Computing Technique in Predicting the Pavement International Roughness Index: Case Study. Under review.
- Ali, A., Usama Heneash., Hussein, A., & Shahbaz Khan. (2022). Application of Artificial Neural Network Technique for Prediction of Pavement Roughness as a Performance Indicator. Under review.
- Ali, A., Heneash, U., Hussein, A., Ali, S., & Khan, S. (2023). Models Development for Asphalt Pavement Performance Index in Different Climate Regions Using Soft Computing Techniques. Journal of Soft Computing in Civil Engineering, 7(1), 20-42. doi: 10.22115/scce.2022.357135.1512
- Ali A, Heneash U, Hussein A, Eskebi, M. (2022). Predicting Pavement Condition Index Using Fuzzy Logic Technique. 7(7):91. https://doi.org/10.3390/infrastructures7070091.
- Ali, A., Dhasmana, H., Hossain, K., & Hussein, A. (2021). Modeling Pavement Performance Indices in Harsh Climate Regions. Journal of Transportation Engineering, Part B: Pavements, 147(4), 04021049.

## **Conference Papers**

 Ali, A., Hossain, K., Dhasmana, H., Safiuddin, M., Bazan, C., and Hussein, A. (2018). Field Inspection and Classification of Pavement Distress of St. John's City in Newfoundland Canada. 7th International Materials Specialty Conference, Canadian Society for Civil Engineering. Presented.  Ali, A., A., Hossain, K., Hussein, A., Swarna, S., Dhasmana, H., & Hossain, M. (2019). Towards development of PCI and IRI models for road networks in the City of St. John's. In Airfield and American Society of Civil Engineers (ASCE) International Conference on Highway Pavements and Airfield Technology. Chicago, Illinois, USA. Presented.

#### References

- AASHTO, A. A. of S. H. and T. O. (1972). AASHTO Method.
- AASHTO Guidefor Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington, D.C., 1985.

AASHTO. 2008a. Mechanistic-Empirical Pavement Design Guide: A Manual of Practice.

Interim Edition, American Association of Highways and Transportation Officials.

- ACRP. (2016). Pavement Maintenance Guidelines for General Aviation Airport Management. Pavement Maintenance Guidelines for General Aviation Airport Management.
- Adlinge, S. S., & Gupta, P. a K. (2013). Pavement Deterioration and its Causes. Mechanical & Civil Engineering, 9–15. www.iosrjournals.org
- Al-Suleiman, T. I., & Shiyab, A. M. S. (2003). Prediction of Pavement Remaining Service Life Using Roughness Data - Case Study in Dubai. International Journal of Pavement Engineering, 4(2), 121–129.
- Ali, A., Hossain, K., Dhasmana, H., Safiuddin, M., Bazan, C., and Hussein, A. (2018). Field

Inspection and Classification of Pavement Distress of St. John's City in Newfoundland Canada.

7th International Materials Specialty Conference, Canadian Society for Civil Engineering.

Ali, A., Dhasmana, H., Hossain, K., & Hussein, A. (2021). Modeling pavementm performance indices in harsh climate regions. Journal of Transportation Engineering, Part B: Pavements, 147(4), 04021049

Abaza, K. A., Ashur, S. A., Abu-Eisheh, S. A., & Rabay'a, A. (2001). Macroscopic optimum system for management of pavement rehabilitation. Journal of Transportation

Engineering, 127(6), 493-500.

Alharbi, F. (2018). Predicting pavement performance utilizing artificial neural network (ANN) models. Graduate Theses and Dissertations, 16703

- Arellano, G. L. (2006). Improving Pavements With Long-Term Pavement Performance : Products for Today and Tomorrow. September.
- Arhin, S. A., Williams, L. N., Ribbiso, A., & Anderson, M. F. (2015). Predicting Pavement Condition Index Using International Roughness Index in a Dense Urban Area. Journal of Civil Engineering Research, 5(1), 10–17.

- ASTM International. (2018). "ASTM D6433-18 Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys." 10.1520/D6433-18, West Conshohocken, PA.
- ASTM International. (2015). "ASTM E2840-11 Standard Practice for Pavement Condition Index Surveys for Interlocking Concrete Roads and Parking Lots." 10.1520/E2840-11R15, West Conshohocken, PA.
- ASTM International. (2012). "ASTM E867-06 Standard Terminology Relating to Vehicle-Pavement Systems." 10.1520/E0867-06R12, West Conshohocken, PA.

Chandra, S., Sekhar, C. R., Bharti, A. K., & Kangadurai, B. (2012). Relationship between pavement roughness and distress parameters for Indian highways. Journal of Transportation Engineering, 139(5), 467-475.

- Cao, R., Leng, Z., Hsu, S. C., & Hung, W. T. (2020). Modelling of the pavement acoustic longevity in Hong Kong through machine learning techniques. Transportation Research Part D: Transport and Environment, 83, 102366.
- Ceylan, H., Gopalakrishnan, K., & Kim, S. (2009). Looking to the future: The next-generation hot mix asphalt dynamic modulus prediction models. International Journal of Pavement Engineering, 10(5), 341–352. https://doi.org/10.1080/10298430802342690
- Chattopadhyay, S. (2006). Soft Computing Techniques in combating the complexity of the atmosphere- a review. 16.
- Choi, J. H., Adams, T. M., & Bahia, H. U. (2004). Pavement roughness modeling using backpropagation neural networks. Computer-Aided Civil and Infrastructure Engineering, 19(4), 295–303.
- Dehzangi, O., Zolghadri, M.J., Taheri, S., Fakhrahmad, S.M., 2007. Efficient Fuzzy Rule Generation: A New Approach Using Data Mining Principles and Rule Weighting. In: Fourth International Conference on Fuzzy Systems and Knowledge Discovery. IEEE, Haikou, pp. 134–139.
- Dewan, S. A. (2004). Pavement Management and Asset Management Side-by-Side. 6th International Conference on Managing Pavements, 34, 12.

DOT, F. (2010). Airfiel Pavement Inspection Reference Manual. March.

Elton, D. J., & Juang, C. H. (1988). Asphalt pavement evaluation using fuzzy sets.

Transportation Research Record, 1196, 1–6.

- Fathi, A., Mazari, M., Saghafi, M., Hosseini, A., & Kumar, S. (2019). Parametric study of pavement deterioration using machine learning algorithms. Airfield and highway pavements, 2019, 31-41.
- Field, A., (2009). Discovering Statistics Using SPSS. 3 rd ed. London: SAGE Publication Ltd.
- Fujita, Y., Shimada, K., Ichihara, M., & Hamamoto, Y. (2017, May). A method based on machine learning using hand-crafted features for crack detection from asphalt pavement surface images. In Thirteenth International Conference on Quality Control by Artificial Vision 2017 (Vol. 10338, pp. 117-124). SPIE.
- Federal Highway Administration, U. (2009). Pavement distressesidentification manual for the NPS Road Inventory. Cycle 4, 1–25.
- Fwa, T.F., Chan, W.F., Hoque, K.Z., 2000. Multi-Objective Optimisation for Pavement Maintenance Programming. J. Transp. Eng. 126, 367–374.
- Fwa, T.F., 2006. The Handbook of Highway Engineering. Taylor & Francis, Boca Raton, FL.
- FHWA, Federal Highway Administration. (2009). "LTPP Beyond FY 2009: What Needs to Be Done?" Washington, DC.
- Government of Canada. (2014). "Canada's Sixth National Report on Climate Change: Actions to Meet Commitments Under the United Nations Framework Convention on Climate Change."
- Inkoom, S., Sobanjo, J., Barbu, A., & Niu, X. (2019). Pavement crack rating using machine learning frameworks: Partitioning, bootstrap forest, boosted trees, Naïve bayes, and K-Nearest neighbors. Journal of Transportation Engineering, Part B: Pavements, 145(3), 04019031.
- IBM Corporation. (2020). "IBM SPSS Statistics for Windows." Version 27.0, Armonk, NY.
- Gagnon, M., Gaudreault, V., & Overton, D. (2008). Analysis in Brief Age of Public
  Infrastructure : A Provincial Perspective Age of Public Infrastructure : A Provincial.11,1-27.
- Gaspard, K. (2014). International Journal of Pavement Engineering International roughness

index models for HMA overlay treatment of flexible and composite pavements.

- Garber NJ, Hoel LA, Sadek AW (2011) Transportation infrastructure engineering. A multimodal integration SI edition. Cengage Learning Publishing Company, Toronto
- Gavin, J., Dunn, L., & Juhasz, M. (2003). Long term performance monitoring of the Lamont test road. TAC/ATC 2003 - 2003 Annual Conference and Exhibition of the Transportation Association of Canada: The Transportation Factor.
- Gershenson, C. (2003). Artificial neural networksfor Beginners. September 2003.
- Ghanizadeh, A. R., & Fakhri, M. (2014). Prediction of frequency for simulation of asphalt mix fatigue tests using MARS and ANN. The Scientific World Journal, 2014(2005).

Gharaibeh et al. (1999). D Evelopment of P Olarographic S Ensors for. 5(June), 61-68.

- Golabi, K., & Pereira, P. (2003). Innovative Pavement Management and Planning System for Road Network of Portugal. Journal of Infrastructure Systems, 9(2), 75–80.
- Golroo, A., & Tighe, S. (2009). Use of soft computing applications to model pervious concrete pavement condition in cold climates. Journal of Transportation Engineering, 135(11), 791–800.
- Government of Alberta, T. (2011). Engineering Consulting Guidelines for Highway, Bridge, and Water Projects.
- Guisan et al. (2000). Effect of boundary layer conductance on the response of stomata to humidity. Plant, Cell & Environment, 8(1), 55–57.
- Gupta, A., Kumar, P., & Rastogi, R.(2011). Pavement deterioration and maintenance model for low volume roads. International Journal of Pavement Research and Technology, 4(4),202.
- Hall, K T, Correa, C. E., Carpenter, S. H., & Elliott, R. P. (1993). NCHRP W35 Appendiz A Pavement DistressesTypes and Causes. DistressesIdentification Manual for the Long-Term
   Pavement Performance Project, 1–31.
- Hall, Kathleen T., Correa, C. E., & Simpson, A. L. (2003). Performance of Flexible Pavement Rehabilitation Treatments in the Long-Term Pavement Performance SPS-5 Experiment. Transportation Research Record, 1823, 93–101.
- Hein, D., & Watt, D. (2005). Municipal pavement performance prediction based on pavement condition data. TAC/ATC 2005 2005 Annual Conference and Exhibition of the Transportation Association of Canada: Transportation Investing in Our Future, January

2005.

- Hoang, N. D., & Nguyen, Q. L. (2019). A novel method for asphalt pavement crack classification based on image processing and machine learning. Engineering with Computers, 35(2), 487-498.
- Hossain, M. I., Gopisetti, L. S. P., & Miah, M. S. (2019). International roughness index prediction of flexible pavements using neural networks. Journal of Transportation Engineering, Part B: Pavements, 145(1), 04018058
- Hudson, W. R., Haas, R., & Pedigo, R. D. (1979). Pavement Management System Development.In National Cooperative Highway Research Program Report (Issue 215).
- Infrastructur, C. E. S. C. and M. B. M. of T. and. (2011). 2012 Standard Specifications for Highway Construction 2012 STANDARD SPECIFICATIONS FOR.
- Islam, S., Buttlar, W., Aldunate, R., & Vavrik, W. (2014). Measurement of Pavement Roughness Using Android-Based Smartphone Application. Transportation Research Record: Journal of the Transportation Research Board, 2457(January), 30–38.
- Juang, C. H., & Chen, C. J. (1999). CRT-based liquefaction evaluation using artificial neural networks. Computer-Aided Civil and Infrastructure Engineering, 14(3), 221–229.
- Kamel, N. I., Phang, W., Morris, J., & Haas, R. C. G. (1973). Layer Analysis of the Brampton Test Road and Application To Pavement Design. Highw Res Rec, 466, 113–126.
- Karballaeezadeh, N., Ghasemzadeh Tehrani, H., Mohammadzadeh Shadmehri, D., & Shamshirband, S. (2020). Estimation of flexible pavement structural capacity using machine learning techniques. Frontiers of Structural and Civil Engineering, 14(5), 1083-1096.
- Khazanovich, L., Darter, M., Bartlett, R., & McPeak, T. (1998). Common Characteristics of Good and Poorly Performing PCC Pavements. 204.
- Kilareski, W. P., & Churilla, C. J. (1983). Pavement management for large highway networks. Journal of Transportation Engineering, 109(1), 33–45.

Labi, S., & Sinha, K. C. (2005). Life-cycle evaluation of flexible pavement preventive

maintenance. Journal of transportation engineering, 131(10), 744-751.

Leiva-Villacorta, F., Vargas-Nordcbeck, A., & Timm, D. H. (2017). Non-destructive evaluation of sustainable pavement technologies using artificial neural networks. International Journal of Pavement Research and Technology, 10(2), 139–147.

Li, Z., Chau, C. K., & Zhou, X. (2005). Accelerated assessment and fuzzy evaluation of concrete durability. Journal of materials in civil engineering, 17(3), 257-263.

- Llopis-Castelló, D., García-Segura, T., Montalbán-Domingo, L., Sanz-Benlloch, A., & Pellicer,
   E. (2020). Influence of pavement structure, traffic, and weather on urban flexible pavement
   deterioration. Sustainability, 12(22), 9717
- Lytton, R. (1987). Concepts of pavement performance prediction and modeling. In Second North American Conference on Managing Pavements (p. G-1-G-33).
- Mcclelland, J. L., & Rumelhart, D. E. (1986). The Apppeal of Paralled Distributed Processing.pdf (pp. 1–43).
- Mehran. (2008). Fuzzy Modeling for Process Control. School of Electrical, Electronic and Computer Engineering, 28.
- Miller, J. S., & Bellinger, W. Y. (2003). DistressesIdentification Manual for the Long-Term Pavement Performance Program. Publication of US Department of Transport, Federal Highway Administration, June, 129.
- Mirzahosseini, M., Najjar, Y. M., Alavi, A. H., & Gandomi, A. H. (2013). {ANN}-Based Prediction Model for Rutting Propensity of Asphalt Mixtures. The 92nd Transportation Research Board (TRB) Annual Meeting, 386(330), Paper No. 13--2180.
- Mahmood, M., 2014. Cross Validation of Multi Input Deterioration Prediction Model (MID-PM) for Network Level Pavement Management. Proceedings of the Inaugural College of Art, Design & Built Environment Doctoral Conference, Nottingham Trent University, 9th -10 th June, Nottingham, UK.
- Mahmood, M. S. (2015). Network-level maintenance decisions for flexible pavement using a soft computing-based framework. Nottingham Trent University (United Kingdom).
- Morova, N., Sargin, Ş., Terzi, S., Saltan, M., & Serin, S. (2012). Modeling Marshall stability of light asphalt concretes fabricated using expanded clay aggregate with artificial neural networks. INISTA 2012 - International Symposium on INnovations in Intelligent SysTems and Applications, May.
- Múčka, P. (2017). International Roughness Index specifications around the world. Road Materials and Pavement Design, 18(4), 929–965.

NCHRP. (2004). Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement

Structures. Transportation Research Board of the National .

- Nabipour, N., Karballaeezadeh, N., Dineva, A., Mosavi, A., Mohammadzadeh S, D., & Shamshirband, S. (2019). Comparative analysis of machine learning models for prediction of remaining service life of flexible pavement. Mathematics, 7(12), 1198.
- Nitsche, P., Stütz, R., Kammer, M., & Maurer, P. (2014). Comparison of machine learning methods for evaluating pavement roughness based on vehicle response. Journal of Computing in Civil Engineering, 28(4), 04014015.
- Nejad, F. M., Mehrabi, A., & Zakeri, H. (2015). Prediction of asphalt mixture resistance using neural network via laboratorial X-ray images'. Journal of Industrial and Intelligent Information Vol, 3(1).
- Nejad, F. M., Motekhases, F. Z., Zakeri, H., & Mehrabi, A. (2015). An image processing approach to asphalt concrete feature extraction. Journal of Industrial and Intelligent Information, 3(1).
- Ngwangwa, H. M., Heyns, P. S., Breytenbach, H. G. A., & Els, P. S. (2014). Reconstruction of road defects and road roughness classification using Artificial neural networkssimulation and vehicle dynamic responses: Application to experimental data. Journal of Terramechanics, 53(1), 1–18.
- Norouzi, M., Nassiri, S., Haghi, N. T., & Bayat, A. (2014). Performance evaluation of asphalt overlays in Alberta using long term pavement performance specific pavement study 5 sections. International Journal of Pavement Research and Technology, 7(1), 60–68.
- Park, K., Thomas, N. E., & Lee, K. W. (2007). Applicability of the international roughness index as a predictor of asphalt pavement condition. Journal of Transportation Engineering, 133(12), 706–709.
- Perera, R. W., & Kohn, S. D. (2006). Ride Quality Performance of Asphalt Concrete Pavements Subjected to Different Rehabilitation Strategies. Airfield and Highway Pavement, 789–800.

Piryonesi, S. M. (2019). The application of data analytics to asset management: Deterioration and climate change adaptation in Ontario roads (Doctoral dissertation, University of Toronto (Canada)).

Prozzi and Madanat. (2004). Development of pavement deterioration models by combining

experimental and field data sets. Proceedings of the International Conference on

Applications of Advanced Technologies in Transportation Engineering, 10(March), 529-

536.

- Psalmen Hasibuan, R., & Sejahtera Surbakti, M. (2019). Study of Pavement Condition Index (PCI) relationship with International Roughness Index (IRI) on Flexible Pavement. MATEC Web of Conferences, 258, 03019.
- Puppala, A. J., & Chittoori, B. C. S. (2012). Transportation infrastructure settlement and heave distress: challenges and solutions. Journal of Zhejiang University SCIENCE A, 13(11), 850–857.
- Rajagopal, A. S., & George, K. P. (1991). Pavement maintenance effectiveness. Transportation Research Record, 1276, 62–68.
- Rasdorf et al. (2000). I nformation M anagement M anual. 1(1), 237–256.
- Roberts, C. A., & Attoh-Okine, N. O. (1998). A Comparative Analysis of Two Artificial neural networksUsing Pavement Performance Prediction. Computer-Aided Civil and Infrastructure Engineering, 13(5), 339–348.
- Salama, H. K., Chatti, K., & Lyles, R. W. (2006). Effect of Heavy Multiple Axle Trucks on Flexible Pavement Damage Using In-Service Pavement Performance Data. Journal of Transportation Engineering, 132(10), 763–770.
- Sarie, F., Bisri, M., Wicaksono, A., & Effendi, R. (2015). Types of Road Pavement Damage for Road on Peatland, A Study Case in Palangka Raya, Central Kalimantan, Indonesia. 9(12), 53–59.

Slatter, P. E. (1987). Building expert systems: Cognitive emulation. Open University (United Kingdom).

Scott, G., & Engineer, T. A. (2012). Pavement Cracking : A Failure Indicator of Your Roads Changes to Professional Development Hour Requirements. XXXI(March).

sebaaly et al. (1996). Nevada 's Approach to. 109-117.

- Selvi. (2009). Traffic Accident Predictions Based on Fuzzy Logic Approach for Safer Urban Environments, Case Study İzmir Metropolitan Area. Area.
- Shafabakhsh, G. H., Ani, O. J., & Talebsafa, M. (2015). Artificial neural network modeling (ANN) for predicting rutting performance of nano-modified hot-mix asphalt mixtures containing steel slag aggregates. Construction and Building Materials, 85, 136–143. https://doi.org/10.1016/j.conbuildmat.2015.03.060.

- Shahin, M. Y., & Walther, J. A. (1990). Pavement Maintenance Management PAVER System. Tehchnical Department of the Army.
- Singh, D., Zaman, M., & Commuri, S. (2013). Artificial Neural Network Modeling for Dynamic Modulus of Hot Mix Asphalt Using Aggregate Shape Properties. Journal of Materials in Civil Engineering, 25(1), 54–62.
- Smith, S. D. (1999). I Mage Snr E Stimation U Sing. Syria, 0(June), 1.
- Solhmirzaei, A., Azadi, S., & Kazemi, R. (2012). Road profile estimation using wavelet neural network and 7-DOF vehicle dynamic systems. Journal of Mechanical Science and Technology, 26(10), 3029–3036.
- Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networksbased on principal components to predict ozone concentrations. Environmental Modelling and Software, 22(1), 97–103.
- Sugeno M (1985) An introductory survey of fuzzy control. Inf Sci 36(1):59-83
- Sun, L., & Gu, W. (2011). Pavement condition assessment using fuzzy logic theory and analytic hierarchy process. Journal of Transportation Engineering, 137(9), 648–655.
- Svozil, D., Kvasnicka, V., and Pospichal, J., (1997). Introduction to multilayer feed-forward
- neural networks. Chemometrics and Intelligent Laboratory Systems, Elsevier, 39 (1), 43-62.

Tsao, S., Kehtarnavaz, N., Chan, P., & Lytton, R. (1994). Image-based expert-system approach to distress detection on CRC pavement. Journal of Transportation Engineering, 120(1), 52-64.

- Tapkin, S., Çevik, A., & Uşar, Ü. (2010). Prediction of Marshall test results for polypropylene modified dense bituminous mixtures using neural networks. Expert Systems with Applications, 37(6), 4660–4670.
- Tarefder, R. A., Saha, N., Hall, J. W., & Ng, P. T. T. (2008). Evaluating weak subgrade for pavement design and performance prediction: A case study of US 550. Journal of GeoEngineering, 3(1), 13–24.
- Tayfur, G., Ozdemir, S., & Singh, V. P. (2003). Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Advances in Water Resources, 26(12), 1249– 1256.
- Tigdemir, M., Karasahin, M., & Sen, Z. (2002). Investigation of fatigue behaviour of asphalt concrete pavements with fuzzy-logic approach. International Journal of Fatigue, 24(8), 910.

- Tiłdemir, M. (2014). Re-evaluation of the AASHTO-flexible pavement design equation with neural network modeling. PLoS ONE, 9(11), 1–9.
- Unit, P. S. (2010). Pavement Distressessurvey Manual Pavement Services Unit. June, 1–58.
- West, R., Michael, J., Turochy, R., & Maghsoodloo, S. (2011). Use of data from specific pavement studies experiment 5 in the long-term pavement performance program to compare virgin and recycled asphalt pavements. Transportation Research Record, 2208, 82–89.
- Yousefzadeh, M., Azadi, S., & Soltani, A. (2010). Road profile estimation using neural network algorithm. Journal of Mechanical Science and Technology, 24(3), 743–754.
- Zadeh. (1965). Fuzzy Sets. Information and Control. 38(4), 656–657.
- Zaman, M., Solanki, P., Ebrahimi, A., & White, L. (2010). Neural Network Modeling of Resilient Modulus Using Routine Subgrade Soil Properties. International Journal of Geomechanics, 10(1), 1–12.
- Zeiada, W., Dabous, S. A., Hamad, K., Al-Ruzouq, R., & Khalil, M. A. (2020). Machine learning for pavement performance modelling in warm climate regions. Arabian journal for science and engineering, 45(5), 4091-4109
- Ziari, H., Sobhani, J., Ayoubinejad, J., & Hartmann, T. (2015). Prediction of IRI in short and long terms for flexible pavements: ANN and GMDH methods. International Journal of Pavement Engineering, 17(9), 776–788.
- Zeiada, W., Dabous, S. A., Hamad, K., Al-Ruzouq, R., & Khalil, M. A. (2020). Machine learning for pavement performance modelling in warm climate regions. Arabian journal for science and engineering, 45(5), 4091-4109.
- Zimmerman, H. J. (1991). Fuzzy Set Theory and its Applications, Chapter 1.
- Zofka, A., & Yut, I. (2012). Prediction of asphalt creep compliance using artificial neural networks. Archives of Civil Engineering, 58(2), 153–173.

# Appendices Appendix A: Data Extraction (LTPP dataset)

| Tab | le A | <b>\-1</b> : | Pavement | distress | of eac | h section | with | PCI | and IRI |
|-----|------|--------------|----------|----------|--------|-----------|------|-----|---------|
|-----|------|--------------|----------|----------|--------|-----------|------|-----|---------|

| State /Province | Country | Climate regions | Age | Rutting | Fatigue | Block | Long  | Transverse | Patching | Potholes | Bleeding | Raveling | IRI   | PCI |
|-----------------|---------|-----------------|-----|---------|---------|-------|-------|------------|----------|----------|----------|----------|-------|-----|
| Washington      | US      | DRY Freeze      | 6   | 10      | 98.9    | 0     | 129   | 50         | 0        | 0        | 0        | 0        | 1.488 | 72  |
| Washington      | US      | DRY Freeze      | 7   | 9       | 170     | 0     | 155.2 | 35         | 0        | 0        | 0        | 0        | 1.08  | 69  |
| Washington      | US      | DRY Freeze      | 8   | 9       | 61.7    | 0     | 232.6 | 45         | 0        | 0        | 0        | 0        | 1.331 | 71  |
| Washington      | US      | DRY Freeze      | 15  | 9       | 0.3     | 0     | 204.7 | 37         | 0        | 0        | 0        | 0        | 1.015 | 70  |
| Washington      | US      | DRY Freeze      | 13  | 8       | 0       | 0     | 155.3 | 30         | 0        | 0        | 0        | 0        | 1.559 | 80  |
| Washington      | US      | DRY Freeze      | 13  | 8       | 84.7    | 0     | 378.5 | 65         | 0        | 0        | 0        | 0        | 0.989 | 68  |
| Washington      | US      | DRY Freeze      | 11  | 8       | 0       | 0     | 250.8 | 22         | 0        | 0        | 0        | 0        | 1.14  | 65  |
| Washington      | US      | DRY Freeze      | 10  | 6       | 0       | 0     | 199.7 | 34         | 0        | 0        | 0        | 0        | 0.888 | 64  |
| Washington      | US      | DRY Freeze      | 9   | 6       | 0       | 0     | 142.1 | 31         | 0        | 0        | 0        | 0        | 1.692 | 60  |
| Washington      | US      | DRY Freeze      | 9   | 4       | 0       | 0     | 140.7 | 24         | 0        | 0        | 0        | 0        | 1.469 | 59  |
| Washington      | US      | DRY Freeze      | 8   | 4       | 0       | 0     | 128.9 | 27         | 0        | 0        | 0        | 0        | 1.145 | 58  |
| Wyoming         | US      | DRY Freeze      | 17  | 3       | 0       | 0     | 289.2 | 22         | 0        | 0        | 0        | 0        | 0.908 | 55  |
| Wyoming         | US      | DRY Freeze      | 17  | 0       | 7.6     | 0     | 213.7 | 29         | 0        | 0        | 0        | 0        | 0.906 | 55  |
| Wyoming         | US      | DRY Freeze      | 18  | 0       | 0       | 0     | 173.3 | 29         | 0        | 0        | 0        | 0        | 1.5   | 52  |
| California      | US      | DRY no Freeze   | 32  | 16      | 39.9    | 0     | 136.6 | 140        | 0        | 0        | 0        | 0        | 0.819 | 100 |
| California      | US      | DRY no Freeze   | 30  | 6       | 17.1    | 0     | 27.5  | 62         | 0        | 0        | 0        | 0        | 0.781 | 100 |
| California      | US      | DRY no Freeze   | 29  | 3       | 16.5    | 0     | 182.3 | 3          | 0        | 0        | 0        | 0        | 1.606 | 100 |
| California      | US      | DRY no Freeze   | 27  | 12      | 5.8     | 0     | 0     | 0          | 0        | 0        | 0        | 0        | 1.408 | 100 |
| California      | US      | DRY no Freeze   | 25  | 4       | 5.8     | 0     | 43.9  | 21         | 0        | 0        | 0        | 0        | 2.379 | 100 |
| California      | US      | DRY no Freeze   | 24  | 4       | 3.8     | 0     | 305.6 | 4          | 0        | 0        | 0        | 0        | 0.765 | 80  |
| California      | US      | DRY no Freeze   | 23  | 7       | 1.5     | 0     | 0     | 1          | 0        | 0        | 0        | 0        | 0.683 | 95  |
| California      | US      | DRY no Freeze   | 23  | 6       | 2.6     | 0     | 98.3  | 59         | 0        | 0        | 0        | 0        | 0.735 | 63  |
| California      | US      | DRY no Freeze   | 21  | 5       | 1.3     | 0     | 0     | 0          | 0        | 0        | 0        | 0        | 0.754 | 92  |
| California      | US      | DRY no Freeze   | 21  | 6       | 1.3     | 0     | 305.2 | 0          | 0        | 0        | 0        | 0        | 0.782 | 61  |
| California      | US      | DRY no Freeze   | 20  | 6       | 0.8     | 0     | 2.8   | 11         | 0        | 0        | 0        | 0        | 0.783 | 62  |
| California      | US      | DRY no Freeze   | 20  | 2       | 1.1     | 0     | 176.6 | 2          | 0        | 0        | 0        | 0        | 0.817 | 90  |
| California      | US      | DRY no Freeze   | 19  | 5       | 0       | 0     | 1.7   | 9          | 0        | 0        | 0        | 0        | 0.82  | 88  |
| California      | US      | DRY no Freeze   | 19  | 12      | 0       | 0     | 242.2 | 71         | 0        | 0        | 0        | 0        | 0.823 | 87  |
| California      | US      | DRY no Freeze   | 19  | 0       | 0       | 0     | 0     | 0          | 0        | 0        | 0        | 0        | 0.828 | 83  |
| Hawaii          | US      | DRY no Freeze   | 18  | 6       | 0       | 0     | 36.1  | 7          | 0        | 0        | 0        | 0        | 0.835 | 80  |
| Hawaii          | US      | DRY no Freeze   | 18  | 5       | 0       | 0     | 0     | 8          | 0        | 0        | 0        | 0        | 0.848 | 80  |
| Hawaii          | US      | DRY no Freeze   | 18  | 4       | 0       | 0     | 0     | 8          | 0        | 0        | 0        | 0        | 0.855 | 75  |

| Hawaii     | US | DRY no Freeze | 18 | 5 | 0 | 0 | 1.2   | 9  | 0   | 0 | 0 | 0    | 0.874 | 74 |
|------------|----|---------------|----|---|---|---|-------|----|-----|---|---|------|-------|----|
| Hawaii     | US | DRY no Freeze | 17 | 5 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.321 | 74 |
| Hawaii     | US | DRY no Freeze | 17 | 5 | 0 | 0 | 0     | 1  | 0   | 0 | 0 | 0    | 1.408 | 73 |
| Hawaii     | US | DRY no Freeze | 17 | 5 | 0 | 0 | 0     | 4  | 0   | 0 | 0 | 0    | 1.418 | 72 |
| Hawaii     | US | DRY no Freeze | 16 | 5 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.434 | 70 |
| Hawaii     | US | DRY no Freeze | 16 | 0 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.434 | 66 |
| Hawaii     | US | DRY no Freeze | 16 | 5 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.473 | 65 |
| Hawaii     | US | DRY no Freeze | 15 | 4 | 0 | 0 | 0     | 1  | 0   | 0 | 0 | 0    | 1.528 | 63 |
| Hawaii     | US | DRY no Freeze | 15 | 0 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.544 | 61 |
| Hawaii     | US | DRY no Freeze | 15 | 0 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.613 | 57 |
| Hawaii     | US | DRY no Freeze | 15 | 0 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.636 | 56 |
| Hawaii     | US | DRY no Freeze | 13 | 6 | 0 | 0 | 270.2 | 0  | 0   | 0 | 0 | 0    | 1.653 | 55 |
| Hawaii     | US | DRY no Freeze | 13 | 5 | 0 | 0 | 270.1 | 3  | 0   | 0 | 0 | 0    | 1.67  | 55 |
| New Mexico | US | DRY no Freeze | 13 | 5 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.838 | 52 |
| New Mexico | US | DRY no Freeze | 13 | 5 | 0 | 0 | 0     | 12 | 1.5 | 0 | 0 | 0    | 2.113 | 69 |
| New Mexico | US | DRY no Freeze | 13 | 0 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 2.318 | 68 |
| New Mexico | US | DRY no Freeze | 13 | 5 | 0 | 0 | 2.4   | 1  | 0   | 0 | 0 | 76.3 | 2.332 | 70 |
| New Mexico | US | DRY no Freeze | 12 | 7 | 0 | 0 | 263.1 | 7  | 0   | 0 | 0 | 0    | 2.362 | 55 |
| New Mexico | US | DRY no Freeze | 11 | 4 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 2.404 | 81 |
| New Mexico | US | DRY no Freeze | 11 | 4 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 2.412 | 70 |
| New Mexico | US | DRY no Freeze | 11 | 5 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 2.42  | 54 |
| New Mexico | US | DRY no Freeze | 11 | 5 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 2.425 | 66 |
| New Mexico | US | DRY no Freeze | 11 | 4 | 0 | 0 | 85.6  | 0  | 0   | 0 | 0 | 0    | 2.441 | 67 |
| New Mexico | US | DRY no Freeze | 11 | 5 | 0 | 0 | 213.1 | 2  | 0   | 0 | 0 | 0    | 2.464 | 67 |
| New Mexico | US | DRY no Freeze | 10 | 3 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 2.497 | 67 |
| New Mexico | US | DRY no Freeze | 10 | 3 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 2.5   | 74 |
| New Mexico | US | DRY no Freeze | 10 | 2 | 0 | 0 | 22.8  | 0  | 0   | 0 | 0 | 0    | 2.525 | 62 |
| New Mexico | US | DRY no Freeze | 9  | 2 | 0 | 0 | 179   | 83 | 0   | 0 | 0 | 0    | 2.662 | 59 |
| New Mexico | US | DRY no Freeze | 9  | 3 | 0 | 0 | 153   | 37 | 0   | 0 | 0 | 0    | 0.925 | 59 |
| New Mexico | US | DRY no Freeze | 9  | 3 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 0.856 | 58 |
| New Mexico | US | DRY no Freeze | 9  | 3 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.369 | 58 |
| New Mexico | US | DRY no Freeze | 9  | 4 | 0 | 0 | 0     | 0  | 0   | 0 | 0 | 0    | 1.396 | 82 |
| New Mexico | US | DRY no Freeze | 7  | 5 | 0 | 0 | 60.9  | 22 | 0   | 0 | 0 | 0    | 1.012 | 58 |
| New Mexico | US | DRY no Freeze | 7  | 3 | 0 | 0 | 36.9  | 19 | 0   | 0 | 0 | 0    | 0.857 | 58 |
| New Mexico | US | DRY no Freeze | 7  | 3 | 0 | 0 | 88.7  | 27 | 0   | 0 | 0 | 0    | 1.31  | 58 |
| New Mexico | US | DRY no Freeze | 7  | 4 | 0 | 0 | 102.7 | 41 | 0   | 0 | 0 | 0    | 1.183 | 57 |
| New Mexico | US | DRY no Freeze | 7  | 3 | 0 | 0 | 123.4 | 31 | 0   | 0 | 0 | 0    | 0.88  | 55 |

| New Mexico | US | DRY no Freeze | 6 | 3  | 0    | 0 | 23.4  | 17  | 0 | 0    | 0      | 0      | 0.877 | 56 |
|------------|----|---------------|---|----|------|---|-------|-----|---|------|--------|--------|-------|----|
| New Mexico | US | DRY no Freeze | 5 | 11 | 0    | 0 | 115.2 | 18  | 0 | 0    | 0      | 0      | 0.862 | 61 |
| New Mexico | US | DRY no Freeze | 5 | 4  | 0    | 0 | 112.4 | 13  | 0 | 0    | 0      | 0      | 0.887 | 91 |
| New Mexico | US | DRY no Freeze | 3 | 5  | 0    | 0 | 59.3  | 60  | 0 | 0    | 0      | 0      | 0.925 | 50 |
| Idaho      | US | Wet Freeze    | 3 | 0  | 5.4  | 0 | 29.5  | 0   | 0 | 0.00 | 0.00   | 0.00   | 4.005 | 8  |
| Idaho      | US | Wet Freeze    | 4 | 0  | 63.8 | 0 | 309   | 153 | 0 | 0.00 | 0.00   | 0.00   | 3.659 | 10 |
| Idaho      | US | Wet Freeze    | 4 | 0  | 3.7  | 0 | 20.4  | 0   | 0 | 0.00 | 0.00   | 0.00   | 3.519 | 10 |
| Idaho      | US | Wet Freeze    | 4 | 0  | 0    | 0 | 305   | 58  | 0 | 0.00 | 31.20  | 0.00   | 3.308 | 12 |
| Idaho      | US | Wet Freeze    | 4 | 0  | 63.8 | 0 | 309   | 152 | 0 | 0.00 | 0.00   | 0.00   | 3.251 | 15 |
| Maine      | US | Wet Freeze    | 5 | 0  | 0.9  | 0 | 329.1 | 113 | 0 | 0.00 | 5.50   | 0.00   | 3.116 | 22 |
| Idaho      | US | Wet Freeze    | 5 | 0  | 0    | 0 | 305   | 23  | 0 | 0.00 | 244.00 | 91.50  | 3.112 | 23 |
| Idaho      | US | Wet Freeze    | 5 | 0  | 0    | 0 | 305   | 17  | 0 | 0.00 | 0.00   | 547.20 | 2.967 | 27 |
| Illinois   | US | Wet Freeze    | 5 | 0  | 66.6 | 0 | 8.8   | 82  | 0 | 0.00 | 350.80 | 0.00   | 2.275 | 40 |
| Maine      | US | Wet Freeze    | 5 | 0  | 0    | 0 | 2.6   | 10  | 0 | 0.00 | 0.00   | 0.00   | 2.183 | 43 |
| Michigan   | US | Wet Freeze    | 5 | 0  | 0    | 0 | 0     | 11  | 0 | 0.00 | 0.00   | 556.60 | 1.985 | 44 |
| Michigan   | US | Wet Freeze    | 5 | 0  | 0    | 0 | 0     | 0   | 0 | 0.00 | 259.30 | 259.30 | 1.929 | 50 |
| Michigan   | US | Wet Freeze    | 5 | 0  | 0    | 0 | 0     | 2   | 0 | 0.00 | 0.00   | 0.00   | 1.929 | 52 |
| Missouri   | US | Wet Freeze    | 6 | 0  | 0    | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.863 | 52 |
| Michigan   | US | Wet Freeze    | 6 | 0  | 0    | 0 | 26.3  | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.775 | 52 |
| Michigan   | US | Wet Freeze    | 6 | 0  | 0    | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.754 | 55 |
| Michigan   | US | Wet Freeze    | 6 | 0  | 0    | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.742 | 55 |
| Idaho      | US | Wet Freeze    | 6 | 0  | 0    | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.7   | 58 |
| Idaho      | US | Wet Freeze    | 6 | 3  | 0    | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.691 | 58 |
| Idaho      | US | Wet Freeze    | 7 | 3  | 0    | 0 | 294.6 | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.649 | 59 |
| Michigan   | US | Wet Freeze    | 7 | 3  | 0    | 0 | 64.4  | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.526 | 60 |
| Maine      | US | Wet Freeze    | 7 | 4  | 3.1  | 0 | 19.1  | 18  | 0 | 0.00 | 0.00   | 0.00   | 1.526 | 61 |
| Michigan   | US | Wet Freeze    | 7 | 4  | 1    | 0 | 342.7 | 267 | 0 | 0.00 | 0.00   | 0.00   | 1.509 | 62 |
| Michigan   | US | Wet Freeze    | 7 | 4  | 0    | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.501 | 66 |
| Missouri   | US | Wet Freeze    | 8 | 4  | 1.1  | 0 | 300   | 1   | 0 | 0.00 | 0.00   | 0.00   | 1.485 | 66 |
| Idaho      | US | Wet Freeze    | 8 | 4  | 0    | 0 | 298.1 | 6   | 0 | 0.00 | 0.00   | 0.00   | 1.473 | 67 |
| Idaho      | US | Wet Freeze    | 8 | 4  | 0    | 0 | 283.3 | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.473 | 67 |
| Idaho      | US | Wet Freeze    | 8 | 5  | 7.5  | 0 | 14.5  | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.458 | 68 |
| Idaho      | US | Wet Freeze    | 8 | 5  | 0    | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.457 | 68 |
| Missouri   | US | Wet Freeze    | 9 | 5  | 0.9  | 0 | 306.3 | 173 | 0 | 0.00 | 274.00 | 0.00   | 1.457 | 68 |
| Missouri   | US | Wet Freeze    | 9 | 5  | 78.2 | 0 | 308.2 | 3   | 0 | 0.00 | 0.00   | 0.00   | 1.445 | 69 |
| Maine      | US | Wet Freeze    | 9 | 5  | 47.3 | 0 | 305.2 | 2   | 0 | 0.00 | 0.00   | 0.00   | 1.441 | 69 |
| Missouri   | US | Wet Freeze    | 9 | 5  | 0    | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.433 | 69 |

| Maine        | US     | Wet Freeze | 9  | 5 | 0     | 0 | 120.6  | 0   | 0 | 0.00 | 10.80  | 0.00   | 1.416 | 69 |
|--------------|--------|------------|----|---|-------|---|--------|-----|---|------|--------|--------|-------|----|
| Missouri     | US     | Wet Freeze | 10 | 5 | 0     | 0 | 94.4   | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.399 | 69 |
| Maine        | US     | Wet Freeze | 10 | 5 | 0     | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.357 | 70 |
| Maine        | US     | Wet Freeze | 10 | 5 | 0     | 0 | 146    | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.309 | 70 |
| Illinois     | US     | Wet Freeze | 10 | 5 | 0     | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.293 | 70 |
| Missouri     | US     | Wet Freeze | 10 | 5 | 0     | 0 | 145.7  | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.278 | 71 |
| Missouri     | US     | Wet Freeze | 10 | 6 | 218.7 | 0 | 305    | 35  | 0 | 0.00 | 0.00   | 305.00 | 1.274 | 72 |
| Maine        | US     | Wet Freeze | 10 | 6 | 2.1   | 0 | 313.2  | 293 | 0 | 0.00 | 0.00   | 0.00   | 1.274 | 72 |
| Missouri     | US     | Wet Freeze | 11 | 6 | 7.7   | 0 | 23.6   | 13  | 0 | 0.00 | 0.00   | 0.00   | 1.269 | 74 |
| Michigan     | US     | Wet Freeze | 11 | 6 | 0     | 0 | 295.3  | 22  | 0 | 0.00 | 305.00 | 0.00   | 1.257 | 74 |
| Missouri     | US     | Wet Freeze | 11 | 6 | 3.1   | 0 | 20.1   | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.249 | 75 |
| Michigan     | US     | Wet Freeze | 11 | 6 | 91.5  | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.247 | 75 |
| Newfoundland | Canada | Wet Freeze | 11 | 6 | 0     | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.247 | 76 |
| Newfoundland | Canada | Wet Freeze | 11 | 6 | 0.4   | 0 | 171.7  | 33  | 0 | 0.00 | 0.00   | 0.00   | 1.242 | 76 |
| Newfoundland | Canada | Wet Freeze | 11 | 6 | 0     | 0 | 30.3   | 6   | 0 | 0.00 | 0.00   | 0.00   | 1.242 | 76 |
| Missouri     | US     | Wet Freeze | 11 | 6 | 0.6   | 0 | 325.5  | 190 | 0 | 0.00 | 0.00   | 0.00   | 1.235 | 76 |
| Newfoundland | Canada | Wet Freeze | 12 | 6 | 0     | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.235 | 77 |
| New Jersey   | US     | Wet Freeze | 12 | 6 | 0     | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.233 | 77 |
| New Jersey   | US     | Wet Freeze | 12 | 6 | 32.3  | 0 | 277    | 98  | 0 | 0.00 | 0.00   | 0.00   | 1.23  | 77 |
| Missouri     | US     | Wet Freeze | 12 | 6 | 0     | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.229 | 77 |
| Newfoundland | Canada | Wet Freeze | 12 | 6 | 0     | 0 | 2300.4 | 20  | 0 | 0.00 | 0.00   | 0.00   | 1.222 | 78 |
| Illinois     | US     | Wet Freeze | 13 | 7 | 0     | 0 | 312.8  | 36  | 0 | 0.00 | 0.00   | 0.00   | 1.216 | 78 |
| New Jersey   | US     | Wet Freeze | 13 | 7 | 1.6   | 0 | 312.6  | 180 | 0 | 0.00 | 0.00   | 0.00   | 1.202 | 79 |
| New Jersey   | US     | Wet Freeze | 13 | 7 | 7.1   | 0 | 13.8   | 3   | 0 | 0.00 | 0.00   | 0.00   | 1.197 | 79 |
| New Jersey   | US     | Wet Freeze | 13 | 7 | 132.7 | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.197 | 80 |
| Newfoundland | Canada | Wet Freeze | 13 | 7 | 1     | 0 | 10.4   | 4   | 0 | 0.00 | 0.00   | 0.00   | 1.196 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 7 | 0     | 0 | 0      | 0   | 0 | 0.00 | 0.00   | 61.00  | 1.19  | 81 |
| Newfoundland | Canada | Wet Freeze | 14 | 7 | 0.8   | 0 | 162.7  | 171 | 0 | 0.00 | 0.00   | 0.00   | 1.177 | 81 |
| New Jersey   | US     | Wet Freeze | 14 | 7 | 0     | 0 | 167    | 1   | 0 | 0.00 | 0.00   | 0.00   | 1.176 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 7 | 3.7   | 0 | 18.1   | 16  | 0 | 0.00 | 0.00   | 0.00   | 1.174 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 7 | 0     | 0 | 36.7   | 17  | 0 | 0.00 | 0.00   | 0.00   | 1.167 | 82 |
| New Jersey   | US     | Wet Freeze | 14 | 7 | 0     | 0 | 150.5  | 13  | 0 | 0.00 | 0.00   | 0.00   | 1.151 | 82 |
| Illinois     | US     | Wet Freeze | 14 | 7 | 0     | 0 | 14.9   | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.13  | 83 |
| Montana      | US     | Wet Freeze | 14 | 8 | 4.4   | 0 | 72.4   | 2   | 0 | 0.00 | 0.00   | 0.00   | 1.127 | 83 |
| New Jersey   | US     | Wet Freeze | 15 | 8 | 0     | 0 | 305.1  | 28  | 0 | 0.00 | 196.00 | 0.00   | 1.123 | 83 |
| Montana      | US     | Wet Freeze | 15 | 8 | 1     | 0 | 15.6   | 1   | 0 | 0.00 | 0.00   | 0.00   | 1.116 | 83 |
| New Jersey   | US     | Wet Freeze | 15 | 8 | 71.9  | 0 | 161.4  | 31  | 0 | 0.00 | 0.50   | 0.00   | 1.116 | 84 |

| New Jersey | US | Wet Freeze | 15 | 8  | 87.2  | 0 | 157   | 14  | 0 | 0.00 | 0.00   | 0.00   | 1.082 | 84 |
|------------|----|------------|----|----|-------|---|-------|-----|---|------|--------|--------|-------|----|
| Montana    | US | Wet Freeze | 15 | 8  | 0     | 0 | 305   | 30  | 0 | 0.00 | 0.00   | 244.00 | 1.078 | 84 |
| New Jersey | US | Wet Freeze | 15 | 8  | 94.2  | 0 | 152.4 | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.074 | 84 |
| Montana    | US | Wet Freeze | 15 | 8  | 0     | 0 | 155.7 | 6   | 0 | 0.00 | 0.00   | 0.00   | 1.073 | 84 |
| New Jersey | US | Wet Freeze | 15 | 8  | 91.6  | 0 | 146.9 | 1   | 0 | 0.00 | 0.00   | 0.00   | 1.063 | 84 |
| Michigan   | US | Wet Freeze | 15 | 8  | 6.7   | 0 | 95.1  | 27  | 0 | 0.00 | 0.00   | 0.00   | 1.058 | 84 |
| Montana    | US | Wet Freeze | 15 | 8  | 58.5  | 0 | 245.5 | 23  | 0 | 0.00 | 0.00   | 0.00   | 1.051 | 84 |
| New Jersey | US | Wet Freeze | 15 | 8  | 5.9   | 0 | 63    | 17  | 0 | 0.00 | 0.00   | 0.00   | 1.043 | 85 |
| Vermont    | US | Wet Freeze | 16 | 8  | 0     | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 1.039 | 85 |
| Montana    | US | Wet Freeze | 16 | 9  | 63.3  | 0 | 216   | 17  | 0 | 0.00 | 259.30 | 305.00 | 1.038 | 85 |
| Montana    | US | Wet Freeze | 16 | 9  | 116.4 | 0 | 144.2 | 16  | 0 | 0.00 | 0.00   | 0.00   | 1.031 | 86 |
| Montana    | US | Wet Freeze | 16 | 9  | 73.9  | 0 | 0     | 39  | 0 | 0.00 | 0.00   | 0.00   | 1.031 | 86 |
| Vermont    | US | Wet Freeze | 17 | 9  | 0     | 0 | 7     | 0   | 0 | 0.00 | 4.70   | 82.40  | 1.031 | 87 |
| Illinois   | US | Wet Freeze | 17 | 9  | 0     | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 76.20  | 1.03  | 87 |
| Montana    | US | Wet Freeze | 17 | 10 | 0.2   | 0 | 299.9 | 27  | 0 | 0.00 | 0.00   | 0.00   | 1.028 | 87 |
| Montana    | US | Wet Freeze | 17 | 10 | 3.5   | 0 | 29.1  | 18  | 0 | 0.00 | 0.00   | 0.00   | 1.025 | 87 |
| Vermont    | US | Wet Freeze | 17 | 10 | 31.8  | 0 | 20.7  | 85  | 0 | 0.00 | 0.00   | 0.00   | 1.02  | 87 |
| Vermont    | US | Wet Freeze | 17 | 10 | 0     | 0 | 27    | 18  | 0 | 0.00 | 0.00   | 0.00   | 1.02  | 87 |
| Michigan   | US | Wet Freeze | 17 | 10 | 28.4  | 0 | 0     | 39  | 0 | 0.00 | 0.00   | 0.00   | 1.018 | 88 |
| Michigan   | US | Wet Freeze | 17 | 10 | 0     | 0 | 6.1   | 9   | 0 | 0.00 | 0.00   | 0.00   | 1.004 | 88 |
| Vermont    | US | Wet Freeze | 17 | 10 | 0     | 0 | 2.3   | 5   | 0 | 0.00 | 0.00   | 0.00   | 0.999 | 88 |
| Vermont    | US | Wet Freeze | 17 | 10 | 0     | 0 | 24.9  | 19  | 0 | 0.00 | 0.00   | 0.00   | 0.996 | 89 |
| Vermont    | US | Wet Freeze | 17 | 10 | 0     | 0 | 0     | 5   | 0 | 0.00 | 0.00   | 0.00   | 0.98  | 89 |
| Vermont    | US | Wet Freeze | 17 | 10 | 0     | 0 | 26.1  | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.973 | 89 |
| Vermont    | US | Wet Freeze | 18 | 10 | 0     | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.965 | 89 |
| Vermont    | US | Wet Freeze | 18 | 11 | 0     | 0 | 0     | 0   | 0 | 0.00 | 5.20   | 0.00   | 0.961 | 89 |
| Montana    | US | Wet Freeze | 18 | 11 |       | 0 |       |     | 0 | 0.00 | 127.80 | 0.00   | 0.954 | 90 |
| Illinois   | US | Wet Freeze | 18 | 11 | 0     | 0 | 0     | 0   | 0 | 0.00 | 21.00  | 500.50 | 0.946 | 90 |
| Vermont    | US | Wet Freeze | 18 | 11 | 64.3  | 0 | 0     | 56  | 0 | 0.00 | 0.00   | 0.00   | 0.942 | 90 |
| Michigan   | US | Wet Freeze | 18 | 11 | 0     | 0 | 10    | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.942 | 91 |
| Vermont    | US | Wet Freeze | 18 | 11 | 0     | 0 | 1.1   | 4   | 0 | 0.00 | 0.00   | 0.00   | 0.942 | 91 |
| Vermont    | US | Wet Freeze | 19 | 11 | 0     | 0 | 6.8   | 6   | 0 | 0.00 | 0.00   | 0.00   | 0.939 | 91 |
| Illinois   | US | Wet Freeze | 19 | 11 | 0     | 0 | 0.8   | 0   | 0 | 0.00 | 245.90 | 0.00   | 0.927 | 92 |
| Michigan   | US | Wet Freeze | 19 | 12 | 0     | 0 | 289.5 | 18  | 0 | 0.00 | 0.00   | 0.00   | 0.924 | 92 |
| Illinois   | US | Wet Freeze | 19 | 12 | 100.3 | 0 | 7.7   | 67  | 0 | 0.00 | 0.00   | 79.50  | 0.923 | 92 |
| Vermont    | US | Wet Freeze | 19 | 12 | 73.2  | 0 | 2.7   | 93  | 0 | 0.00 | 0.00   | 564.30 | 0.906 | 92 |
| Vermont    | US | Wet Freeze | 19 | 12 | 14.1  | 0 | 20.9  | 101 | 0 | 0.00 | 0.00   | 0.00   | 0.904 | 92 |

| Illinois     | US     | Wet Freeze    | 19 | 12 | 0     | 0 | 36.3  | 39  | 0 | 0.00 | 0.00   | 0.00   | 0.899 | 92  |
|--------------|--------|---------------|----|----|-------|---|-------|-----|---|------|--------|--------|-------|-----|
| Vermont      | US     | Wet Freeze    | 19 | 12 | 0     | 0 | 7.4   | 4   | 0 | 0.00 | 0.00   | 0.00   | 0.898 | 92  |
| Michigan     | US     | Wet Freeze    | 20 | 12 | 0     | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.892 | 92  |
| Vermont      | US     | Wet Freeze    | 20 | 13 | 140.2 | 0 | 11.2  | 81  | 0 | 0.00 | 0.00   | 304.80 | 0.892 | 92  |
| Michigan     | US     | Wet Freeze    | 20 | 13 | 181.8 | 0 | 26    | 67  | 0 | 0.00 | 0.00   | 0.00   | 0.864 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 13 | 0     | 0 | 0     | 3   | 0 | 0.00 | 0.00   | 0.00   | 0.863 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 14 | 0     | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.859 | 93  |
| Michigan     | US     | Wet Freeze    | 20 | 14 | 0     | 0 | 4.5   | 12  | 0 | 0.00 | 0.00   | 0.00   | 0.859 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 14 | 0     | 0 | 24.2  | 3   | 0 | 0.00 | 0.00   | 0.00   | 0.845 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 15 | 77.4  | 0 | 1.8   | 75  | 0 | 0.00 | 0.00   | 0.00   | 0.835 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 15 | 2.3   | 0 | 96.2  | 150 | 0 | 0.00 | 0.00   | 0.00   | 0.822 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 15 | 0     | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.819 | 93  |
| Indiana      | US     | Wet Freeze    | 21 | 15 | 0     | 0 | 0     | 0   | 0 | 0.00 | 12.00  | 500.50 | 0.819 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 15 | 130.3 | 0 | 8.1   | 85  | 0 | 0.00 | 0.00   | 0.00   | 0.81  | 94  |
| Michigan     | US     | Wet Freeze    | 22 | 15 | 0.4   | 0 | 163.5 | 136 | 0 | 0.00 | 0.00   | 0.00   | 0.808 | 94  |
| Minnesota    | US     | Wet Freeze    | 22 | 15 | 0     | 0 | 56.2  | 28  | 0 | 0.00 | 7.60   | 0.00   | 0.805 | 94  |
| Indiana      | US     | Wet Freeze    | 22 | 15 | 62.1  | 0 | 1.6   | 83  | 0 | 0.00 | 0.00   | 0.00   | 0.803 | 94  |
| Indiana      | US     | Wet Freeze    | 22 | 15 | 114   | 0 | 3     | 84  | 0 | 0.00 | 0.00   | 0.00   | 0.796 | 94  |
| Newfoundland | Canada | Wet Freeze    | 22 | 15 | 0     | 0 | 60.1  | 30  | 0 | 0.00 | 0.00   | 0.00   | 0.796 | 94  |
| Minnesota    | US     | Wet Freeze    | 23 | 15 | 0     | 0 | 40.8  | 0   | 0 | 0.00 | 0.00   | 564.30 | 0.792 | 94  |
| Newfoundland | Canada | Wet Freeze    | 24 | 16 | 162.1 | 0 | 1.5   | 85  | 0 | 0.00 | 0.00   | 0.00   | 0.787 | 94  |
| Minnesota    | US     | Wet Freeze    | 25 | 16 | 163.9 | 0 | 1.5   | 103 | 0 | 0.00 | 0.00   | 76.20  | 0.786 | 94  |
| Indiana      | US     | Wet Freeze    | 26 | 16 | 0     | 0 | 78    | 44  | 0 | 0.00 | 0.00   | 0.00   | 0.785 | 95  |
| Minnesota    | US     | Wet Freeze    | 26 | 16 | 0     | 0 | 29.3  | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.77  | 95  |
| Illinois     | US     | Wet Freeze    | 26 | 17 | 0     | 0 | 0     | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.757 | 95  |
| Minnesota    | US     | Wet Freeze    | 26 | 18 | 0     | 0 | 3.7   | 0   | 0 | 0.00 | 0.00   | 0.00   | 0.756 | 95  |
| Illinois     | US     | Wet Freeze    | 26 | 19 | 0     | 0 | 91.6  | 2   | 0 | 0.00 | 0.00   | 0.00   | 0.753 | 95  |
| Michigan     | US     | Wet Freeze    | 26 | 21 | 5.6   | 0 | 82.8  | 5   | 0 | 0.00 | 0.00   | 0.00   | 0.751 | 95  |
| Indiana      | US     | Wet Freeze    | 26 | 24 | 8.2   | 0 | 89.4  | 1   | 0 | 0.00 | 0.00   | 0.00   | 0.75  | 95  |
| Newfoundland | Canada | Wet Freeze    | 27 | 26 | 22.3  | 0 | 92.6  | 2   | 0 | 0.00 | 259.30 | 305.00 | 0.744 | 95  |
| Indiana      | US     | Wet Freeze    | 28 | 29 | 25.5  | 0 | 104.8 | 3   | 0 | 0.00 | 0.00   | 0.00   | 0.734 | 95  |
| Newfoundland | Canada | Wet Freeze    | 28 | 0  | 0     | 0 | 15.8  | 1   | 0 | 0.00 | 0.00   | 0.00   | 0.732 | 95  |
| Alabama      | US     | Wet no Freeze | 1  | 14 | 0     | 0 | 152.8 | 0   | 0 | 0    | 0      | 0      | 0.621 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 0  | 0     | 0 | 0     | 0   | 0 | 0    | 0      | 0      | 0.627 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 0  | 0     | 0 | 0     | 0   | 0 | 0    | 0      | 0      | 0.641 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 0  | 0     | 0 | 0     | 0   | 0 | 0    | 0      | 0      | 0.646 | 100 |
| Alabama      | US     | Wet no Freeze | 3  | 0  | 0     | 0 | 0     | 1   | 0 | 0    | 0      | 0      | 0.653 | 100 |

| Alabama    | US | Wet no Freeze | 3 | 0 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.67  | 100 |
|------------|----|---------------|---|---|-------|---|-------|----|---|---|---|---|-------|-----|
| Alabama    | US | Wet no Freeze | 3 | 0 | 0     | 0 | 18.2  | 0  | 0 | 0 | 0 | 0 | 0.7   | 100 |
| Alabama    | US | Wet no Freeze | 4 | 0 | 0     | 0 | 164.6 | 0  | 0 | 0 | 0 | 0 | 0.702 | 100 |
| Alabama    | US | Wet no Freeze | 4 | 0 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.713 | 100 |
| Alabama    | US | Wet no Freeze | 4 | 0 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.716 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 0 | 31.6  | 0 | 0     | 16 | 0 | 0 | 0 | 0 | 0.717 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 0 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.72  | 100 |
| Alabama    | US | Wet no Freeze | 5 | 0 | 0     | 0 | 15.5  | 0  | 0 | 0 | 0 | 0 | 0.735 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 0 | 0     | 0 | 0     | 11 | 0 | 0 | 0 | 0 | 0.735 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 0 | 0     | 0 | 0.4   | 7  | 0 | 0 | 0 | 0 | 0.749 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 0 | 75.6  | 0 | 27.4  | 26 | 0 | 0 | 0 | 0 | 0.778 | 100 |
| Arkansas   | US | Wet no Freeze | 5 | 0 | 377.9 | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.785 | 100 |
| Arkansas   | US | Wet no Freeze | 5 | 0 | 6.2   | 0 | 14.9  | 5  | 0 | 0 | 0 | 0 | 0.796 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 0 | 0     | 0 | 10.1  | 38 | 0 | 0 | 0 | 0 | 0.8   | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 1 | 2.3   | 0 | 97.8  | 2  | 0 | 0 | 0 | 0 | 0.811 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 1 | 1.2   | 0 | 0     | 1  | 0 | 0 | 0 | 0 | 0.813 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 1 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.815 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 1 | 1     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.825 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 1 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.834 | 100 |
| California | US | Wet no Freeze | 6 | 1 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.84  | 96  |
| California | US | Wet no Freeze | 6 | 1 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.847 | 90  |
| California | US | Wet no Freeze | 6 | 3 | 2.4   | 0 | 12.6  | 16 | 0 | 0 | 0 | 0 | 0.847 | 89  |
| California | US | Wet no Freeze | 6 | 3 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.869 | 89  |
| California | US | Wet no Freeze | 7 | 3 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 0.871 | 89  |
| California | US | Wet no Freeze | 7 | 3 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 1.364 | 89  |
| California | US | Wet no Freeze | 7 | 3 | 0     | 0 | 0     | 2  | 0 | 0 | 0 | 0 | 1.363 | 88  |
| California | US | Wet no Freeze | 7 | 3 | 0     | 0 | 39.2  | 1  | 0 | 0 | 0 | 0 | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 3 | 187.6 | 0 | 81.4  | 72 | 0 | 0 | 0 | 0 | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 4 | 0     | 0 | 126.5 | 4  | 0 | 0 | 0 | 0 | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 4 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 1.319 | 88  |
| Florida    | US | Wet no Freeze | 7 | 4 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 1.302 | 88  |
| Florida    | US | Wet no Freeze | 7 | 4 | 0     | 0 | 0.7   | 0  | 0 | 0 | 0 | 0 | 1.287 | 87  |
| Florida    | US | Wet no Freeze | 7 | 4 | 0     | 0 | 0     | 4  | 0 | 0 | 0 | 0 | 1.269 | 87  |
| Florida    | US | Wet no Freeze | 7 | 4 | 0     | 0 | 0     | 0  | 0 | 0 | 0 | 0 | 1.267 | 87  |
| Florida    | US | Wet no Freeze | 7 | 4 | 0     | 0 | 0     | 1  | 0 | 0 | 0 | 0 | 1.249 | 87  |
| Florida    | US | Wet no Freeze | 7 | 4 | 0     | 0 | 0     | 2  | 0 | 0 | 0 | 0 | 1.246 | 87  |
| Florida    | US | Wet no Freeze | 7 | 4 | 7.3   | 0 | 7.6   | 2  | 0 | 0 | 0 | 0 | 1.196 | 87  |

| Florida | US | Wet no Freeze | 7  | 4 | 108.9 | 0 | 15.8  | 16  | 0 | 0 | 0 | 0 | 1.176 | 87 |
|---------|----|---------------|----|---|-------|---|-------|-----|---|---|---|---|-------|----|
| Florida | US | Wet no Freeze | 8  | 4 | 2.6   | 0 | 5.2   | 1   | 0 | 0 | 0 | 0 | 1.164 | 87 |
| Florida | US | Wet no Freeze | 8  | 4 | 20.1  | 0 | 3.3   | 14  | 0 | 0 | 0 | 0 | 1.154 | 87 |
| Florida | US | Wet no Freeze | 8  | 4 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.15  | 86 |
| Florida | US | Wet no Freeze | 8  | 4 | 22.6  | 0 | 533   | 16  | 0 | 0 | 0 | 0 | 1.15  | 86 |
| Florida | US | Wet no Freeze | 8  | 4 | 15.2  | 0 | 9.8   | 5   | 0 | 0 | 0 | 0 | 1.136 | 86 |
| Florida | US | Wet no Freeze | 9  | 4 | 0     | 0 | 0     | 1   | 0 | 0 | 0 | 0 | 1.123 | 86 |
| Florida | US | Wet no Freeze | 9  | 4 | 11.4  | 0 | 8.9   | 4   | 0 | 0 | 0 | 0 | 1.12  | 86 |
| Florida | US | Wet no Freeze | 9  | 4 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.113 | 85 |
| Florida | US | Wet no Freeze | 9  | 4 | 8.4   | 0 | 7.6   | 1   | 0 | 0 | 0 | 0 | 1.11  | 85 |
| Florida | US | Wet no Freeze | 9  | 4 | 319.3 | 0 | 60.4  | 57  | 0 | 0 | 0 | 0 | 1.108 | 85 |
| Florida | US | Wet no Freeze | 9  | 4 | 7.3   | 0 | 8.2   | 2   | 0 | 0 | 0 | 0 | 1.108 | 85 |
| Florida | US | Wet no Freeze | 9  | 4 |       | 0 |       |     | 0 | 0 | 0 | 0 | 1.104 | 85 |
| Florida | US | Wet no Freeze | 9  | 4 | 318.3 | 0 | 27.6  | 5   | 0 | 0 | 0 | 0 | 1.104 | 84 |
| Florida | US | Wet no Freeze | 9  | 5 | 29.9  | 0 | 2.9   | 7   | 0 | 0 | 0 | 0 | 1.104 | 84 |
| Florida | US | Wet no Freeze | 9  | 5 | 0     | 0 | 0     | 3   | 0 | 0 | 0 | 0 | 1.104 | 84 |
| Florida | US | Wet no Freeze | 10 | 5 | 0     | 0 | 138.5 | 6   | 0 | 0 | 0 | 0 | 1.103 | 84 |
| Florida | US | Wet no Freeze | 10 | 5 | 365.7 | 0 | 32.9  | 113 | 0 | 0 | 0 | 0 | 1.098 | 83 |
| Florida | US | Wet no Freeze | 10 | 5 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.093 | 83 |
| Florida | US | Wet no Freeze | 10 | 5 | 56.6  | 0 | 96.5  | 90  | 0 | 0 | 0 | 0 | 1.093 | 83 |
| Florida | US | Wet no Freeze | 10 | 5 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.088 | 83 |
| Florida | US | Wet no Freeze | 10 | 5 | 18.8  | 0 | 63.2  | 116 | 0 | 0 | 0 | 0 | 1.085 | 83 |
| Florida | US | Wet no Freeze | 10 | 5 | 83.5  | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.081 | 83 |
| Florida | US | Wet no Freeze | 11 | 5 | 7.5   | 0 | 181.8 | 1   | 0 | 0 | 0 | 0 | 1.078 | 83 |
| Florida | US | Wet no Freeze | 11 | 5 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.074 | 83 |
| Florida | US | Wet no Freeze | 11 | 5 | 0     | 0 | 1     | 0   | 0 | 0 | 0 | 0 | 1.074 | 83 |
| Florida | US | Wet no Freeze | 11 | 6 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.068 | 83 |
| Florida | US | Wet no Freeze | 11 | 6 | 0     | 0 | 0     | 3   | 0 | 0 | 0 | 0 | 1.064 | 83 |
| Florida | US | Wet no Freeze | 11 | 6 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.064 | 83 |
| Florida | US | Wet no Freeze | 11 | 6 | 1.3   | 0 | 89.2  | 6   | 0 | 0 | 0 | 0 | 1.062 | 83 |
| Florida | US | Wet no Freeze | 11 | 6 | 0     | 0 | 130.4 | 67  | 0 | 0 | 0 | 0 | 1.061 | 82 |
| Florida | US | Wet no Freeze | 11 | 6 | 7.7   | 0 | 78.4  | 6   | 0 | 0 | 0 | 0 | 1.052 | 82 |
| Georgia | US | Wet no Freeze | 12 | 6 | 1.4   | 0 | 99.2  | 45  | 0 | 0 | 0 | 0 | 1.05  | 82 |
| Georgia | US | Wet no Freeze | 12 | 6 | 0     | 0 | 26.9  | 13  | 0 | 0 | 0 | 0 | 1.045 | 82 |
| Hawaii  | US | Wet no Freeze | 12 | 6 | 152.4 | 0 | 0     | 3   | 0 | 0 | 0 | 0 | 1.041 | 82 |
| Hawaii  | US | Wet no Freeze | 12 | 6 | 0     | 0 | 152.3 | 0   | 0 | 0 | 0 | 0 | 1.008 | 82 |
| Hawaii  | US | Wet no Freeze | 12 | 6 | 2.6   | 0 | 337.1 | 27  | 0 | 0 | 0 | 0 | 1.005 | 82 |

| Hawaii         | US | Wet no Freeze | 12 | 6 | 0    | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.002 | 82 |
|----------------|----|---------------|----|---|------|---|-------|-----|---|---|---|---|-------|----|
| Hawaii         | US | Wet no Freeze | 12 | 6 | 0    | 0 | 304.1 | 3   | 0 | 0 | 0 | 0 | 0.998 | 82 |
| Hawaii         | US | Wet no Freeze | 12 | 6 | 0    | 0 | 0     | 7   | 0 | 0 | 0 | 0 | 0.994 | 82 |
| Hawaii         | US | Wet no Freeze | 12 | 6 | 25.9 | 0 | 9.7   | 15  | 0 | 0 | 0 | 0 | 0.988 | 81 |
| Hawaii         | US | Wet no Freeze | 13 | 6 | 0    | 0 | 0.2   | 19  | 0 | 0 | 0 | 0 | 0.985 | 81 |
| Hawaii         | US | Wet no Freeze | 13 | 6 | 43.9 | 0 | 23.2  | 39  | 0 | 0 | 0 | 0 | 0.97  | 81 |
| Hawaii         | US | Wet no Freeze | 13 | 6 | 13.4 | 0 | 94.6  | 61  | 0 | 0 | 0 | 0 | 0.969 | 81 |
| Hawaii         | US | Wet no Freeze | 13 | 6 | 0    | 0 | 15.8  | 59  | 0 | 0 | 0 | 0 | 0.96  | 80 |
| Hawaii         | US | Wet no Freeze | 13 | 7 | 0    | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 0.959 | 80 |
| Hawaii         | US | Wet no Freeze | 13 | 7 | 0    | 0 | 0.8   | 4   | 0 | 0 | 0 | 0 | 0.952 | 79 |
| Hawaii         | US | Wet no Freeze | 13 | 7 | 0    | 0 | 0     | 1   | 0 | 0 | 0 | 0 | 0.951 | 78 |
| Hawaii         | US | Wet no Freeze | 13 | 7 | 0    | 0 | 1.2   | 0   | 0 | 0 | 0 | 0 | 0.949 | 78 |
| Hawaii         | US | Wet no Freeze | 13 | 7 | 0.7  | 0 | 1.4   | 7   | 0 | 0 | 0 | 0 | 0.948 | 78 |
| Mississippi    | US | Wet no Freeze | 13 | 7 | 0    | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 0.947 | 77 |
| Mississippi    | US | Wet no Freeze | 13 | 7 | 0    | 0 | 0     | 5   | 0 | 0 | 0 | 0 | 0.944 | 77 |
| Mississippi    | US | Wet no Freeze | 14 | 7 | 3.4  | 0 | 3.2   | 26  | 0 | 0 | 0 | 0 | 0.938 | 76 |
| Mississippi    | US | Wet no Freeze | 14 | 7 | 0    | 0 | 17.2  | 22  | 0 | 0 | 0 | 0 | 0.926 | 76 |
| Mississippi    | US | Wet no Freeze | 14 | 7 | 29.4 | 0 | 46.3  | 2   | 0 | 0 | 0 | 0 | 0.918 | 76 |
| Mississippi    | US | Wet no Freeze | 14 | 7 | 0    | 0 | 122   | 0   | 0 | 0 | 0 | 0 | 0.912 | 75 |
| Mississippi    | US | Wet no Freeze | 15 | 7 | 3    | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 0.906 | 75 |
| Mississippi    | US | Wet no Freeze | 15 | 7 | 0.5  | 0 | 286.8 | 93  | 0 | 0 | 0 | 0 | 0.906 | 75 |
| Mississippi    | US | Wet no Freeze | 15 | 7 | 0    | 0 | 0     | 1   | 0 | 0 | 0 | 0 | 0.894 | 75 |
| Mississippi    | US | Wet no Freeze | 15 | 7 | 0    | 0 | 3     | 0   | 0 | 0 | 0 | 0 | 0.884 | 74 |
| Mississippi    | US | Wet no Freeze | 15 | 7 | 0    | 0 | 15.2  | 0   | 0 | 0 | 0 | 0 | 0.877 | 74 |
| Mississippi    | US | Wet no Freeze | 15 | 7 | 1.7  | 0 | 31.9  | 25  | 0 | 0 | 0 | 0 | 1.366 | 74 |
| Mississippi    | US | Wet no Freeze | 15 | 8 | 0    | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.38  | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 8 | 0.9  | 0 | 0     | 6   | 0 | 0 | 0 | 0 | 1.383 | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 8 | 0    | 0 | 7.7   | 10  | 0 | 0 | 0 | 0 | 1.387 | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 8 | 0.6  | 0 | 30.8  | 5   | 0 | 0 | 0 | 0 | 1.393 | 73 |
| Mississippi    | US | Wet no Freeze | 16 | 8 | 0    | 0 | 153.3 | 0   | 0 | 0 | 0 | 0 | 1.402 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 8 | 0    | 0 | 0.1   | 2   | 0 | 0 | 0 | 0 | 1.418 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 8 | 0    | 0 | 0     | 1   | 0 | 0 | 0 | 0 | 1.418 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 8 | 0    | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.422 | 71 |
| North Carolina | US | Wet no Freeze | 17 | 8 | 0.3  | 0 | 287.8 | 116 | 0 | 0 | 0 | 0 | 1.429 | 71 |
| North Carolina | US | Wet no Freeze | 17 | 8 | 4.7  | 0 | 307.2 | 107 | 0 | 0 | 0 | 0 | 1.433 | 70 |
| North Carolina | US | Wet no Freeze | 17 | 8 | 0    | 0 | 97.5  | 1   | 0 | 0 | 0 | 0 | 1.444 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 8 | 0    | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.45  | 70 |

| Oklahoma       | US | Wet no Freeze | 17 | 8  | 185.5 | 0 | 117.7 | 100 | 0 | 0 | 0 | 0 | 1.451 | 70 |
|----------------|----|---------------|----|----|-------|---|-------|-----|---|---|---|---|-------|----|
| Oklahoma       | US | Wet no Freeze | 17 | 8  | 57.4  | 0 | 42.3  | 11  | 0 | 0 | 0 | 0 | 1.454 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 8  | 1.1   | 0 | 151.5 | 3   | 0 | 0 | 0 | 0 | 1.455 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 8  | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.455 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 9  | 0.3   | 0 | 0     | 6   | 0 | 0 | 0 | 0 | 1.456 | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 9  | 0     | 0 | 0     | 1   | 0 | 0 | 0 | 0 | 1.46  | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 9  | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.461 | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 9  | 0     | 0 | 0     | 2   | 0 | 0 | 0 | 0 | 1.474 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 9  | 20.7  | 0 | 59.8  | 23  | 0 | 0 | 0 | 0 | 1.484 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 9  | 10.7  | 0 | 9.3   | 21  | 0 | 0 | 0 | 0 | 1.491 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 9  | 67.1  | 0 | 10.6  | 73  | 0 | 0 | 0 | 0 | 1.499 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 9  | 2     | 0 | 43.9  | 4   | 0 | 0 | 0 | 0 | 1.506 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 9  | 2.9   | 0 | 5.2   | 19  | 0 | 0 | 0 | 0 | 1.508 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 9  | 1.8   | 0 | 6.1   | 17  | 0 | 0 | 0 | 0 | 1.514 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 9  | 3.7   | 0 | 0     | 9   | 0 | 0 | 0 | 0 | 1.517 | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 9  | 6.9   | 0 | 313.6 | 4   | 0 | 0 | 0 | 0 | 1.529 | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 9  | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.57  | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 9  | 38.7  | 0 | 334.1 | 99  | 0 | 0 | 0 | 0 | 1.584 | 67 |
| Oklahoma       | US | Wet no Freeze | 19 | 9  | 0     | 0 | 1.2   | 0   | 0 | 0 | 0 | 0 | 1.589 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 9  | 47    | 0 | 23    | 94  | 0 | 0 | 0 | 0 | 1.616 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 10 | 0     | 0 | 141.1 | 0   | 0 | 0 | 0 | 0 | 1.619 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 10 | 3     | 0 | 0     | 9   | 0 | 0 | 0 | 0 | 1.633 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 10 | 30.7  | 0 | 13.6  | 20  | 0 | 0 | 0 | 0 | 1.64  | 63 |
| Oklahoma       | US | Wet no Freeze | 19 | 10 | 2.3   | 0 | 107.9 | 16  | 0 | 0 | 0 | 0 | 1.662 | 63 |
| South Carolina | US | Wet no Freeze | 20 | 10 | 0     | 0 | 13.3  | 11  | 0 | 0 | 0 | 0 | 1.674 | 63 |
| South Carolina | US | Wet no Freeze | 20 | 10 | 0     | 0 | 0     | 2   | 0 | 0 | 0 | 0 | 1.689 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 10 | 0.3   | 0 | 35.6  | 0   | 0 | 0 | 0 | 0 | 1.693 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 10 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.735 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 10 | 0     | 0 | 2     | 2   | 0 | 0 | 0 | 0 | 1.791 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 10 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 1.805 | 61 |
| South Carolina | US | Wet no Freeze | 20 | 10 | 8     | 0 | 3.8   | 13  | 0 | 0 | 0 | 0 | 1.807 | 61 |
| South Carolina | US | Wet no Freeze | 21 | 10 | 91.3  | 0 | 149.5 | 37  | 0 | 0 | 0 | 0 | 1.85  | 60 |
| South Carolina | US | Wet no Freeze | 21 | 10 | 0     | 0 | 137.8 | 39  | 0 | 0 | 0 | 0 | 1.858 | 60 |
| South Carolina | US | Wet no Freeze | 21 | 10 | 0     | 0 | 159   | 39  | 0 | 0 | 0 | 0 | 1.859 | 60 |
| South Carolina | US | Wet no Freeze | 21 | 10 | 6.3   | 0 | 0     | 10  | 0 | 0 | 0 | 0 | 1.867 | 59 |
| South Carolina | US | Wet no Freeze | 21 | 10 | 79.3  | 0 | 99.1  | 0   | 0 | 0 | 0 | 0 | 1.868 | 59 |
| South Carolina | US | Wet no Freeze | 21 | 10 | 97    | 0 | 46.3  | 119 | 0 | 0 | 0 | 0 | 1.87  | 59 |

| South Carolina | US | Wet no Freeze | 21 | 10 | 18    | 0 | 267.2 | 72  | 0 | 0 | 0 | 0 | 1.875 | 58 |
|----------------|----|---------------|----|----|-------|---|-------|-----|---|---|---|---|-------|----|
| South Carolina | US | Wet no Freeze | 21 | 10 | 21.9  | 0 | 12.6  | 20  | 0 | 0 | 0 | 0 | 1.875 | 58 |
| South Carolina | US | Wet no Freeze | 21 | 10 | 0.9   | 0 | 237.8 | 193 | 0 | 0 | 0 | 0 | 1.932 | 57 |
| Tennessee      | US | Wet no Freeze | 21 | 11 | 11.3  | 0 | 302.7 | 17  | 0 | 0 | 0 | 0 | 1.946 | 57 |
| Tennessee      | US | Wet no Freeze | 21 | 11 | 12.9  | 0 | 18.6  | 37  | 0 | 0 | 0 | 0 | 1.954 | 56 |
| Tennessee      | US | Wet no Freeze | 22 | 11 | 62.5  | 0 | 4.6   | 121 | 0 | 0 | 0 | 0 | 1.981 | 56 |
| Tennessee      | US | Wet no Freeze | 22 | 11 | 6.6   | 0 | 12.8  | 31  | 0 | 0 | 0 | 0 | 1.99  | 55 |
| Tennessee      | US | Wet no Freeze | 22 | 11 | 0     | 0 | 153.1 | 1   | 0 | 0 | 0 | 0 | 1.993 | 53 |
| Tennessee      | US | Wet no Freeze | 22 | 11 | 0     | 0 | 1.5   | 13  | 0 | 0 | 0 | 0 | 1.994 | 52 |
| Tennessee      | US | Wet no Freeze | 22 | 11 | 252.4 | 0 | 152.5 | 18  | 0 | 0 | 0 | 0 | 2.006 | 45 |
| Texas          | US | Wet no Freeze | 22 | 11 | 19.2  | 0 | 34.4  | 57  | 0 | 0 | 0 | 0 | 2.013 | 40 |
| Texas          | US | Wet no Freeze | 22 | 11 | 1.7   | 0 | 51.7  | 59  | 0 | 0 | 0 | 0 | 2.031 | 40 |
| Texas          | US | Wet no Freeze | 22 | 12 | 1.1   | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 2.038 | 38 |
| Texas          | US | Wet no Freeze | 23 | 12 | 252.7 | 0 | 153.1 | 33  | 0 | 0 | 0 | 0 | 2.053 | 36 |
| Texas          | US | Wet no Freeze | 23 | 12 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 2.053 | 35 |
| Texas          | US | Wet no Freeze | 23 | 12 | 0     | 0 | 0     | 1   | 0 | 0 | 0 | 0 | 2.078 | 34 |
| Texas          | US | Wet no Freeze | 24 | 12 | 0     | 0 | 172.9 | 3   | 0 | 0 | 0 | 0 | 2.094 | 32 |
| Texas          | US | Wet no Freeze | 24 | 12 | 0.2   | 0 | 0.5   | 0   | 0 | 0 | 0 | 0 | 2.103 | 30 |
| Texas          | US | Wet no Freeze | 25 | 12 | 0     | 0 | 12.3  | 31  | 0 | 0 | 0 | 0 | 2.125 | 29 |
| Texas          | US | Wet no Freeze | 25 | 12 | 0     | 0 | 237.6 | 99  | 0 | 0 | 0 | 0 | 2.135 | 27 |
| Texas          | US | Wet no Freeze | 25 | 12 | 0     | 0 | 62.6  | 5   | 0 | 0 | 0 | 0 | 2.14  | 24 |
| Texas          | US | Wet no Freeze | 25 | 12 | 0     | 0 | 169.3 | 134 | 0 | 0 | 0 | 0 | 2.169 | 24 |
| Texas          | US | Wet no Freeze | 26 | 13 | 0     | 0 | 1.4   | 9   | 0 | 0 | 0 | 0 | 2.246 | 23 |
| Texas          | US | Wet no Freeze | 26 | 13 | 0     | 0 | 66.5  | 0   | 0 | 0 | 0 | 0 | 2.322 | 23 |
| Texas          | US | Wet no Freeze | 26 | 13 | 0     | 0 | 0     | 0   | 0 | 0 | 0 | 0 | 2.322 | 22 |
| Texas          | US | Wet no Freeze | 26 | 13 | 0     | 0 | 4.9   | 0   | 0 | 0 | 0 | 0 | 2.337 | 20 |
| Texas          | US | Wet no Freeze | 27 | 13 | 0     | 0 | 1.8   | 14  | 0 | 0 | 0 | 0 | 2.385 | 19 |
| Texas          | US | Wet no Freeze | 27 | 14 | 0     | 0 | 0     | 1   | 0 | 0 | 0 | 0 | 2.388 | 19 |
| Texas          | US | Wet no Freeze | 27 | 14 | 0     | 0 | 244.3 | 3   | 0 | 0 | 0 | 0 | 2.526 | 19 |
| Texas          | US | Wet no Freeze | 28 | 15 | 0     | 0 | 4.4   | 19  | 0 | 0 | 0 | 0 | 2.54  | 19 |
| Texas          | US | Wet no Freeze | 28 | 15 | 4.8   | 0 | 156   | 41  | 0 | 0 | 0 | 0 | 2.614 | 18 |
| Texas          | US | Wet no Freeze | 28 | 15 | 0     | 0 | 54.2  | 0   | 0 | 0 | 0 | 0 | 2.626 | 18 |
| Texas          | US | Wet no Freeze | 29 | 15 | 0     | 0 | 152.5 | 0   | 0 | 0 | 0 | 0 | 2.782 | 18 |
| Texas          | US | Wet no Freeze | 31 | 17 | 0     | 0 | 116.4 | 6   | 0 | 0 | 0 | 0 | 2.868 | 15 |
| Texas          | US | Wet no Freeze | 31 | 22 | 13.7  | 0 | 17.8  | 53  | 0 | 0 | 0 | 0 | 3.543 | 8  |
| Texas          | US | Wet no Freeze | 31 | 22 | 0     | 0 | 8.2   | 23  | 0 | 0 | 0 | 0 | 3.758 | 8  |

| State /Province | Country | Climate regions | AGE | TEMP | FREEZE   | NUMBER | TOTAL  | TOTAL    | WIND | HUM  | IRI   | PCI |
|-----------------|---------|-----------------|-----|------|----------|--------|--------|----------|------|------|-------|-----|
|                 |         |                 |     | AVG  | INDEX YR | FREEZE | ANN    | SNOWFALL | AVG  |      |       |     |
|                 |         |                 |     |      |          | DAYS   | PRECIP | YR       |      |      |       |     |
| Washington      | US      | DRY Freeze      | 6   | 8.9  | 247.5    | 82     | 515.3  | 1080     | 5.10 | 66.5 | 1.488 | 72  |
| Washington      | US      | DRY Freeze      | 7   | 9.9  | 310      | 120    | 462.4  | 2371     | 5.20 | 61   | 1.08  | 69  |
| Washington      | US      | DRY Freeze      | 8   | 9.7  | 203.6    | 83     | 397.6  | 826      | 4.80 | 65   | 1.331 | 71  |
| Washington      | US      | DRY Freeze      | 15  | 9.6  | 285      | 128    | 446    | 1963     | 5.50 | 62   | 1.015 | 70  |
| Washington      | US      | DRY Freeze      | 13  | 9.3  | 86.4     | 117    | 435.9  | 659      | 4.70 | 62.5 | 1.559 | 80  |
| Washington      | US      | DRY Freeze      | 13  | 9.2  | 189.1    | 133    | 493.9  | 2105     | 5.50 | 66.5 | 0.989 | 68  |
| Washington      | US      | DRY Freeze      | 11  | 9    | 247.4    | 115    | 581.5  | 638      | 4.70 | 65   | 1.14  | 65  |
| Washington      | US      | DRY Freeze      | 10  | 8.9  | 306      | 127    | 438.1  | 2012     | 4.90 | 66   | 0.888 | 64  |
| Washington      | US      | DRY Freeze      | 9   | 8.6  | 301      | 113    | 386    | 671      | 4.5  | 62   | 1.692 | 60  |
| Washington      | US      | DRY Freeze      | 9   | 7.7  | 514      | 89     | 702.6  | 1061     | 4.00 | 62.5 | 1.469 | 59  |
| Washington      | US      | DRY Freeze      | 8   | 7.7  | 558      | 133    | 411.9  | 1462     | 5.00 | 66   | 1.145 | 58  |
| Wyoming         | US      | DRY Freeze      | 17  | 6.4  | 691      | 97     | 345.1  | 590      | 4    | 57.5 | 0.908 | 55  |
| Wyoming         | US      | DRY Freeze      | 17  | 6.4  | 588.8    | 121    | 478.4  | 535      | 5.1  | 58   | 0.906 | 55  |
| Wyoming         | US      | DRY Freeze      | 18  | 4.9  | 726      | 110    | 399.3  | 425      | 4.8  | 52   | 1.5   | 52  |
| California      | US      | DRY no Freeze   | 32  | 10.5 | 94.1     | 67     | 369.5  | 43       | 3.90 | 53.5 | 0.819 | 100 |
| California      | US      | DRY no Freeze   | 30  | 10.5 | 182      | 54     | 411    | 34       | 3.90 | 53.5 | 0.781 | 100 |
| California      | US      | DRY no Freeze   | 29  | 10.7 | 132.7    | 68     | 373.9  | 28       | 3.90 | 54   | 1.606 | 100 |
| California      | US      | DRY no Freeze   | 27  | 11.1 | 52.3     | 59     | 287    | 53       | 3.90 | 55   | 1.408 | 100 |
| California      | US      | DRY no Freeze   | 25  | 11.2 | 36.3     | 77     | 245.5  | 44       | 3.91 | 55   | 2.379 | 100 |
| California      | US      | DRY no Freeze   | 24  | 11.4 | 99       | 67     | 346.1  | 62       | 3.60 | 55   | 0.765 | 80  |
| California      | US      | DRY no Freeze   | 23  | 11.6 | 109      | 57     | 228.6  | 35       | 3.89 | 56   | 0.683 | 95  |
| California      | US      | DRY no Freeze   | 23  | 11.9 | 84       | 64     | 261.8  | 55       | 7.00 | 56   | 0.735 | 63  |
| California      | US      | DRY no Freeze   | 21  | 12.1 | 91       | 54     | 297.4  | 29       | 5.90 | 56   | 0.754 | 92  |
| California      | US      | DRY no Freeze   | 21  | 12.1 | 48       | 61     | 298.9  | 58       | 7.20 | 56   | 0.782 | 61  |
| California      | US      | DRY no Freeze   | 20  | 12.1 | 62       | 60     | 344.4  | 79       | 5.20 | 56   | 0.783 | 62  |
| California      | US      | DRY no Freeze   | 20  | 15.1 | 1        | 57     | 472    | 44       | 4.20 | 56.5 | 0.817 | 90  |
| California      | US      | DRY no Freeze   | 19  | 15.5 | 1        | 78     | 524.5  | 0        | 4.10 | 57   | 0.82  | 88  |
| California      | US      | DRY no Freeze   | 19  | 15.6 | 1        | 76     | 392.7  | 25       | 4.10 | 57   | 0.823 | 87  |
| California      | US      | DRY no Freeze   | 19  | 15.8 | 1        | 73     | 272.4  | 105      | 4.10 | 57   | 0.828 | 83  |
| Hawaii          | US      | DRY no Freeze   | 18  | 15.8 | 1        | 53     | 486.3  | 79       | 4.40 | 57   | 0.835 | 80  |
| Hawaii          | US      | DRY no Freeze   | 18  | 15.9 | 1        | 69     | 168.4  | 28       | 4.10 | 57.5 | 0.848 | 80  |
| Hawaii          | US      | DRY no Freeze   | 18  | 16   | 19.8     | 71     | 405.2  | 81       | 3.85 | 57.5 | 0.855 | 75  |
| Hawaii          | US      | DRY no Freeze   | 18  | 16.1 | 1        | 78     | 433.2  | 0        | 4.10 | 57.5 | 0.874 | 74  |

Table A-2: Presents the Environmental data of each section with PCI AND IRI in the U.S. and Canada.

| Hawaii     | US | DRY no Freeze | 17 | 16.1 | 1    | 45 | 382.2 | 184 | 4.10 | 58   | 1.321 | 74 |
|------------|----|---------------|----|------|------|----|-------|-----|------|------|-------|----|
| Hawaii     | US | DRY no Freeze | 17 | 16.2 | 3.3  | 72 | 411.8 | 62  | 5.9  | 58   | 1.408 | 73 |
| Hawaii     | US | DRY no Freeze | 17 | 16.2 | 6.5  | 77 | 656.4 | 70  | 4.10 | 58   | 1.418 | 72 |
| Hawaii     | US | DRY no Freeze | 16 | 16.2 | 1    | 63 | 612.3 | 4   | 3.60 | 58.5 | 1.434 | 70 |
| Hawaii     | US | DRY no Freeze | 16 | 16.2 | 1    | 55 | 385.2 | 4   | 3.90 | 59   | 1.434 | 66 |
| Hawaii     | US | DRY no Freeze | 16 | 16.3 | 6    | 78 | 520.3 | 66  | 7.0  | 59   | 1.473 | 65 |
| Hawaii     | US | DRY no Freeze | 15 | 16.3 | 1    | 62 | 554.4 | 21  | 3.60 | 59.5 | 1.528 | 63 |
| Hawaii     | US | DRY no Freeze | 15 | 16.4 | 8.5  | 54 | 244.9 | 85  | 3.84 | 59.5 | 1.544 | 61 |
| Hawaii     | US | DRY no Freeze | 15 | 16.4 | 1    | 70 | 476.2 | 0   | 3.60 | 59.5 | 1.613 | 57 |
| Hawaii     | US | DRY no Freeze | 15 | 16.6 | 24.6 | 55 | 353   | 70  | 3.6  | 60   | 1.636 | 56 |
| Hawaii     | US | DRY no Freeze | 13 | 16.6 | 31.3 | 71 | 377.2 | 74  | 3.60 | 60   | 1.653 | 55 |
| Hawaii     | US | DRY no Freeze | 13 | 16.6 | 1    | 46 | 393.2 | 0   | 3.80 | 60   | 1.67  | 55 |
| New Mexico | US | DRY no Freeze | 13 | 16.8 | 1    | 51 | 181.4 | 70  | 7.2  | 60   | 1.838 | 52 |
| New Mexico | US | DRY no Freeze | 13 | 16.8 | 9.6  | 62 | 484.2 | 77  | 3.86 | 60   | 2.113 | 69 |
| New Mexico | US | DRY no Freeze | 13 | 17   | 4    | 58 | 291.1 | 58  | 5.2  | 60.5 | 2.318 | 68 |
| New Mexico | US | DRY no Freeze | 13 | 17.4 | 33   | 71 | 189.1 | 28  | 3.84 | 60.5 | 2.332 | 70 |
| New Mexico | US | DRY no Freeze | 12 | 17.5 | 12   | 62 | 189   | 66  | 3.9  | 60.5 | 2.362 | 55 |
| New Mexico | US | DRY no Freeze | 11 | 17.5 | 3    | 77 | 217   | 62  | 3.8  | 60.5 | 2.404 | 81 |
| New Mexico | US | DRY no Freeze | 11 | 17.8 | 1    | 55 | 205.8 | 77  | 3.5  | 60.5 | 2.412 | 70 |
| New Mexico | US | DRY no Freeze | 11 | 17.9 | 3.6  | 65 | 211.7 | 58  | 3.8  | 60.5 | 2.42  | 54 |
| New Mexico | US | DRY no Freeze | 11 | 18   | 6.8  | 74 | 128.4 | 74  | 4.5  | 62   | 2.425 | 66 |
| New Mexico | US | DRY no Freeze | 11 | 18.1 | 5    | 71 | 185.1 | 81  | 5.2  | 62   | 2.441 | 67 |
| New Mexico | US | DRY no Freeze | 11 | 20.7 | 1    | 69 | 50.7  | 29  | 3.80 | 62.5 | 2.464 | 67 |
| New Mexico | US | DRY no Freeze | 10 | 21.4 | 1    | 58 | 122.3 | 92  | 3.90 | 62.5 | 2.497 | 67 |
| New Mexico | US | DRY no Freeze | 10 | 24   | 1    | 83 | 207.1 | 77  | 3.60 | 63   | 2.5   | 74 |
| New Mexico | US | DRY no Freeze | 10 | 24   | 1    | 65 | 207.1 | 70  | 3.84 | 68   | 2.525 | 62 |
| New Mexico | US | DRY no Freeze | 9  | 24.3 | 1    | 50 | 249.1 | 38  | 3.80 | 68   | 2.662 | 59 |
| New Mexico | US | DRY no Freeze | 9  | 24.3 | 1    | 57 | 256.8 | 74  | 3.83 | 68   | 0.925 | 59 |
| New Mexico | US | DRY no Freeze | 9  | 24.3 | 1    | 53 | 249.1 | 58  | 3.86 | 68   | 0.856 | 58 |
| New Mexico | US | DRY no Freeze | 9  | 24.4 | 1    | 51 | 336.2 | 74  | 3.81 | 68   | 1.369 | 58 |
| New Mexico | US | DRY no Freeze | 9  | 24.5 | 1    | 71 | 286.3 | 35  | 4.10 | 68   | 1.396 | 82 |
| New Mexico | US | DRY no Freeze | 7  | 24.7 | 1    | 66 | 361.5 | 55  | 3.80 | 69   | 1.012 | 58 |
| New Mexico | US | DRY no Freeze | 7  | 24.7 | 1    | 67 | 361.5 | 62  | 3.85 | 69   | 0.857 | 58 |
| New Mexico | US | DRY no Freeze | 7  | 24.8 | 1    | 66 | 506.6 | 36  | 4.10 | 69   | 1.31  | 58 |
| New Mexico | US | DRY no Freeze | 7  | 24.8 | 1    | 55 | 209.3 | 28  | 3.80 | 69   | 1.183 | 57 |
| New Mexico | US | DRY no Freeze | 7  | 24.8 | 1    | 71 | 506.6 | 66  | 3.84 | 69.5 | 0.88  | 55 |
| New Mexico | US | DRY no Freeze | 6  | 24.8 | 1    | 72 | 209.3 | 0   | 3.82 | 70.5 | 0.877 | 56 |

| New Mexico | US | DRY no Freeze | 5 | 25   | 1      | 55  | 737.3  | 37   | 3.90 | 70.5 | 0.862 | 61 |
|------------|----|---------------|---|------|--------|-----|--------|------|------|------|-------|----|
| New Mexico | US | DRY no Freeze | 5 | 25.2 | 1      | 55  | 607.8  | 21   | 3.81 | 70.5 | 0.887 | 91 |
| New Mexico | US | DRY no Freeze | 3 |      | 60.4   | 73  | 68.4   | 66   | 4.10 | 71   | 0.925 | 50 |
| Idaho      | US | Wet Freeze    | 3 | 13.1 | 111    | 103 | 1157.5 | 1233 | 6.11 | 75   | 4.005 | 8  |
| Idaho      | US | Wet Freeze    | 4 | 13.4 | 203    | 121 | 993.1  | 2438 | 5.95 | 70   | 3.659 | 10 |
| Idaho      | US | Wet Freeze    | 4 | 12.7 | 65     | 140 | 1277.7 | 2050 | 5.96 | 75   | 3.519 | 10 |
| Idaho      | US | Wet Freeze    | 4 | 12.7 | 912    | 123 | 1010.7 | 1403 | 5.91 | 67   | 3.308 | 12 |
| Idaho      | US | Wet Freeze    | 4 | 10.5 | 1351.6 | 142 | 1480.2 | 2200 | 5.78 | 61   | 3.251 | 15 |
| Maine      | US | Wet Freeze    | 5 | 7.9  | 628    | 108 | 1056   | 2162 | 5.64 | 73   | 3.116 | 22 |
| Idaho      | US | Wet Freeze    | 5 | 9.2  | 461.9  | 139 | 778.1  | 812  | 3.9  | 69.5 | 3.112 | 23 |
| Idaho      | US | Wet Freeze    | 5 | 6.8  | 691    | 112 | 1208.8 | 1865 | 5.40 | 69.5 | 2.967 | 27 |
| Illinois   | US | Wet Freeze    | 5 | 6.7  | 696    | 115 | 1251.9 | 1850 | 6    | 60   | 2.275 | 40 |
| Maine      | US | Wet Freeze    | 5 | 11.5 | 275.4  | 118 | 992.5  | 2713 | 4.5  | 74.5 | 2.183 | 43 |
| Michigan   | US | Wet Freeze    | 5 | 10.5 | 435    | 121 | 1105.9 | 2910 | 4    | 74   | 1.985 | 44 |
| Michigan   | US | Wet Freeze    | 5 | 5.8  | 992    | 117 | 1282.8 | 1895 | 5.15 | 74   | 1.929 | 50 |
| Michigan   | US | Wet Freeze    | 5 | 12   | 217.4  | 129 | 1103.7 | 1432 | 3.5  | 68   | 1.929 | 52 |
| Missouri   | US | Wet Freeze    | 6 | 12.4 | 85     | 130 | 1067.7 | 2715 | 4.40 | 72   | 1.863 | 52 |
| Michigan   | US | Wet Freeze    | 6 | 11.5 | 223    | 142 | 1386   | 2010 | 4    | 80   | 1.775 | 52 |
| Michigan   | US | Wet Freeze    | 6 | 6.3  | 742    | 101 | 363.9  | 1876 | 5.00 | 58   | 1.754 | 55 |
| Michigan   | US | Wet Freeze    | 6 | 13.1 | 269.9  | 92  | 1150.4 | 2550 | 4.50 | 72   | 1.742 | 55 |
| Idaho      | US | Wet Freeze    | 6 | 7    | 673.8  | 89  | 444.6  | 997  | 4.40 | 57.5 | 1.7   | 58 |
| Idaho      | US | Wet Freeze    | 6 | 6.6  | 667    | 94  | 483.2  | 2721 | 4.50 | 60   | 1.691 | 58 |
| Idaho      | US | Wet Freeze    | 7 | 7.1  | 563    | 93  | 409.8  | 3367 | 6.60 | 57   | 1.649 | 59 |
| Michigan   | US | Wet Freeze    | 7 | 5.8  | 877    | 103 | 444.9  | 1083 | 3.60 | 60   | 1.526 | 60 |
| Maine      | US | Wet Freeze    | 7 | 4.4  | 1240   | 92  | 1499.7 | 2697 | 6.26 | 71   | 1.526 | 61 |
| Michigan   | US | Wet Freeze    | 7 | 7.5  | 664    | 105 | 747.3  | 1062 | 6.25 | 74.5 | 1.509 | 62 |
| Michigan   | US | Wet Freeze    | 7 | 12   | 137.9  | 112 | 1094.9 | 2516 | 5.1  | 71   | 1.501 | 66 |
| Missouri   | US | Wet Freeze    | 8 | 12.5 | 211    | 106 | 1193.4 | 1083 | 6    | 75   | 1.485 | 66 |
| Idaho      | US | Wet Freeze    | 8 | 12.3 | 229.4  | 96  | 1083.4 | 2820 | 3.7  | 80   | 1.473 | 67 |
| Idaho      | US | Wet Freeze    | 8 | 5.4  | 834.8  | 100 | 569.4  | 2952 | 6.60 | 61   | 1.473 | 67 |
| Idaho      | US | Wet Freeze    | 8 | 11.9 | 283    | 104 | 1113.5 | 2500 | 6.02 | 68   | 1.458 | 68 |
| Idaho      | US | Wet Freeze    | 8 | 8.9  | 482.5  | 104 | 971.7  | 2456 | 6.00 | 69.5 | 1.457 | 68 |
| Missouri   | US | Wet Freeze    | 9 | 7.4  | 557    | 106 | 1010.2 | 836  | 4    | 70   | 1.457 | 68 |
| Missouri   | US | Wet Freeze    | 9 | 7.7  | 574.7  | 89  | 892    | 1880 | 5.35 | 64   | 1.445 | 69 |
| Maine      | US | Wet Freeze    | 9 | 6.4  | 842    | 85  | 1208.3 | 2683 | 5.25 | 75   | 1.441 | 69 |
| Missouri   | US | Wet Freeze    | 9 | 11.3 | 357.3  | 79  | 1065.9 | 1137 | 5.6  | 69.5 | 1.433 | 69 |
| Maine      | US | Wet Freeze    | 9 | 9.7  | 321    | 73  | 1484   | 1531 | 5.1  | 74.5 | 1.416 | 69 |

| Missouri     | US     | Wet Freeze | 10 | 13.4 | 159.5  | 85  | 980.2  | 1514 | 4.25 | 64   | 1.399 | 69 |
|--------------|--------|------------|----|------|--------|-----|--------|------|------|------|-------|----|
| Maine        | US     | Wet Freeze | 10 | 6.3  | 481.7  | 103 | 624.9  | 1320 | 6.50 | 62.5 | 1.357 | 70 |
| Maine        | US     | Wet Freeze | 10 | 6.6  | 522.1  | 94  | 502.7  | 4941 | 6.60 | 63   | 1.309 | 70 |
| Illinois     | US     | Wet Freeze | 10 | 6.4  | 787    | 89  | 435.5  | 2107 | 3.50 | 57.5 | 1.293 | 70 |
| Missouri     | US     | Wet Freeze | 10 | 4.3  | 901    | 95  | 667.6  | 1137 | 4.10 | 59.5 | 1.278 | 71 |
| Missouri     | US     | Wet Freeze | 10 | 13   | 187    | 90  | 1329.1 | 1681 | 6.14 | 74.5 | 1.274 | 72 |
| Maine        | US     | Wet Freeze | 10 | 13.7 | 123    | 119 | 857.4  | 1905 | 6.15 | 76   | 1.274 | 72 |
| Missouri     | US     | Wet Freeze | 11 | 12.8 | 164    | 107 | 1031.1 | 1457 | 6.12 | 69.5 | 1.269 | 74 |
| Michigan     | US     | Wet Freeze | 11 | 12.6 | 208.5  | 91  | 1594   | 3475 | 5.99 | 65   | 1.257 | 74 |
| Missouri     | US     | Wet Freeze | 11 | 11.4 | 1009   | 109 | 1219.4 | 2363 | 5.86 | 71   | 1.249 | 75 |
| Michigan     | US     | Wet Freeze | 11 | 5.5  | 1242.4 | 95  | 839.6  | 1237 | 5.72 | 70   | 1.247 | 75 |
| Newfoundland | Canada | Wet Freeze | 11 | 7.4  | 394    | 111 | 1189.1 | 902  | 5.48 | 42.5 | 1.247 | 76 |
| Newfoundland | Canada | Wet Freeze | 11 | 7.6  | 699.3  | 87  | 1002.6 | 1112 | 3.8  | 73   | 1.242 | 76 |
| Newfoundland | Canada | Wet Freeze | 11 | 7.6  | 663.8  | 113 | 946.7  | 3661 | 5.25 | 76   | 1.242 | 76 |
| Missouri     | US     | Wet Freeze | 11 | 6.5  | 784    | 115 | 925.5  | 2668 | 4.50 | 75   | 1.235 | 76 |
| Newfoundland | Canada | Wet Freeze | 12 | 5.9  | 585    | 109 | 1059.1 | 1530 | 5.25 | 72   | 1.235 | 77 |
| New Jersey   | US     | Wet Freeze | 12 | 6.8  | 679    | 112 | 1293.2 | 1062 | 5    | 57   | 1.233 | 77 |
| New Jersey   | US     | Wet Freeze | 12 | 5.9  | 902    | 115 | 857.3  | 3047 | 5.8  | 65.5 | 1.23  | 77 |
| Missouri     | US     | Wet Freeze | 12 | 7.5  | 472    | 111 | 1265.3 | 2092 | 5    | 72   | 1.229 | 77 |
| Newfoundland | Canada | Wet Freeze | 12 | 10.4 | 399.3  | 118 | 974.9  | 1925 | 4.6  | 68   | 1.222 | 78 |
| Illinois     | US     | Wet Freeze | 13 | 4.8  | 1053   | 101 | 1525.9 | 3025 | 6.22 | 68   | 1.216 | 78 |
| New Jersey   | US     | Wet Freeze | 13 | 12.4 | 191.8  | 113 | 1297.1 | 2517 | 6.04 | 66   | 1.202 | 79 |
| New Jersey   | US     | Wet Freeze | 13 | 14   | 116.3  | 87  | 1341.9 | 2525 | 6.05 | 64   | 1.197 | 79 |
| New Jersey   | US     | Wet Freeze | 13 | 11.5 | 201    | 133 | 1770.8 | 1003 | 4.50 | 74   | 1.197 | 80 |
| Newfoundland | Canada | Wet Freeze | 13 | 5.6  | 946    | 89  | 933.7  | 3250 | 5.74 | 74.5 | 1.196 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 4.5  | 1277   | 91  | 904    | 1262 | 5.75 | 59.2 | 1.19  | 81 |
| Newfoundland | Canada | Wet Freeze | 14 | 5.5  | 1304.4 | 93  | 1046.6 | 3275 | 5.76 | 64.5 | 1.177 | 81 |
| New Jersey   | US     | Wet Freeze | 14 | 7.3  | 609.5  | 89  | 1403.1 | 2289 | 4.8  | 72.5 | 1.176 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 6.6  | 890.1  | 85  | 1218.2 | 1880 | 5.05 | 57.5 | 1.174 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 10.1 | 425    | 81  | 1445.1 | 1530 | 4.1  | 82   | 1.167 | 82 |
| New Jersey   | US     | Wet Freeze | 14 | 13.4 | 140    | 93  | 1227.5 | 2952 | 4    | 69   | 1.151 | 82 |
| Illinois     | US     | Wet Freeze | 14 | 7.1  | 657    | 113 | 437.8  | 879  | 4.80 | 60.5 | 1.13  | 83 |
| Montana      | US     | Wet Freeze | 14 | 5.2  | 738.9  | 95  | 1513.8 | 2473 | 6.25 | 70   | 1.127 | 83 |
| New Jersey   | US     | Wet Freeze | 15 | 13.5 | 120    | 87  | 990.5  | 1009 | 5.30 | 67.5 | 1.123 | 83 |
| Montana      | US     | Wet Freeze | 15 | 10.7 | 1100   | 99  | 1312.1 | 2350 | 4.30 | 65   | 1.116 | 83 |
| New Jersey   | US     | Wet Freeze | 15 | 11   | 1079   | 91  | 1203.1 | 920  | 5.89 | 72   | 1.116 | 84 |
| New Jersey   | US     | Wet Freeze | 15 | 8.2  | 590    | 141 | 1032.4 | 4174 | 5.65 | 70   | 1.082 | 84 |

| Montana    | US | Wet Freeze | 15 | 6    | 1472  | 87  | 886.9  | 2425  | 5.68 | 70.5 | 1.078 | 84 |
|------------|----|------------|----|------|-------|-----|--------|-------|------|------|-------|----|
| New Jersey | US | Wet Freeze | 15 | 7.1  | 639   | 91  | 938.5  | 3374  | 5.5  | 75.5 | 1.074 | 84 |
| Montana    | US | Wet Freeze | 15 | 6.2  | 881   | 98  | 997.3  | 2092  | 4.5  | 75   | 1.073 | 84 |
| New Jersey | US | Wet Freeze | 15 | 5.5  | 878   | 101 | 1121.7 | 2289  | 6.25 | 71   | 1.063 | 84 |
| Michigan   | US | Wet Freeze | 15 | 7.7  | 552   | 102 | 1166.3 | 1274  | 5.38 | 69   | 1.058 | 84 |
| Montana    | US | Wet Freeze | 15 | 7.6  | 466   | 105 | 1395.9 | 2456  | 6.4  | 58   | 1.051 | 84 |
| New Jersey | US | Wet Freeze | 15 | 7.2  | 518   | 108 | 1061.4 | 3244  | 6.25 | 72   | 1.043 | 85 |
| Vermont    | US | Wet Freeze | 16 | 11.6 | 345   | 112 | 1023.3 | 1764  | 4.50 | 65.5 | 1.039 | 85 |
| Montana    | US | Wet Freeze | 16 | 8.7  | 336   | 114 | 1299.1 | 2259  | 5.45 | 76   | 1.038 | 85 |
| Montana    | US | Wet Freeze | 16 | 8.6  | 457.8 | 85  | 931.6  | 2683  | 5.55 | 66   | 1.031 | 86 |
| Montana    | US | Wet Freeze | 16 | 9.5  | 467   | 92  | 1275.8 | 2122  | 4.25 | 69.5 | 1.031 | 86 |
| Vermont    | US | Wet Freeze | 17 | 11.7 | 297   | 78  | 1480.9 | 930   | 4.5  | 71   | 1.031 | 87 |
| Illinois   | US | Wet Freeze | 17 | 7.3  | 742   | 97  | 349.9  | 2907  | 4.90 | 60.5 | 1.03  | 87 |
| Montana    | US | Wet Freeze | 17 | 4.9  | 1531  | 80  | 825.5  | 2212  | 5.69 | 67.5 | 1.028 | 87 |
| Montana    | US | Wet Freeze | 17 | 8.5  | 439.5 | 76  | 1234.1 | 1865  | 5.4  | 63   | 1.025 | 87 |
| Vermont    | US | Wet Freeze | 17 | 6.1  | 649   | 72  | 1110.2 | 1486  | 3.6  | 68.5 | 1.02  | 87 |
| Vermont    | US | Wet Freeze | 17 | 10.7 | 409   | 68  | 1347.4 | 1698  | 4.75 | 65.5 | 1.02  | 87 |
| Michigan   | US | Wet Freeze | 17 | 10.2 | 366.4 | 62  | 928.5  | 1728  | 5    | 68   | 1.018 | 88 |
| Michigan   | US | Wet Freeze | 17 | 12.9 | 238   | 56  | 1307.7 | 2107  | 5.5  | 69.5 | 1.004 | 88 |
| Vermont    | US | Wet Freeze | 17 | 9.3  | 475   | 50  | 1182.8 | 2021  | 7    | 74.5 | 0.999 | 88 |
| Vermont    | US | Wet Freeze | 17 | 10.8 | 157   | 44  | 1559.2 | 940   | 7.25 | 76   | 0.996 | 89 |
| Vermont    | US | Wet Freeze | 17 | 5.8  | 740   | 81  | 691.9  | 4280  | 6.70 | 57   | 0.98  | 89 |
| Vermont    | US | Wet Freeze | 17 | 6.5  | 539.8 | 103 | 636.8  | 2141  | 6.40 | 62   | 0.973 | 89 |
| Vermont    | US | Wet Freeze | 18 | 5.7  | 788.8 | 83  | 497.2  | 1004  | 4.30 | 60.5 | 0.965 | 89 |
| Vermont    | US | Wet Freeze | 18 | 12.2 | 308   | 86  | 1262.5 | 888   | 5.92 | 67   | 0.961 | 89 |
| Montana    | US | Wet Freeze | 18 | 13.4 | 117   | 94  | 1197.7 | 1425  | 5.94 | 73   | 0.954 | 90 |
| Illinois   | US | Wet Freeze | 18 | 6.4  | 878   | 97  | 1375.1 | 1653  | 5.25 | 57   | 0.946 | 90 |
| Vermont    | US | Wet Freeze | 18 | 11.1 | 180   | 104 | 1170.7 | 2330  | 4.25 | 74   | 0.942 | 90 |
| Michigan   | US | Wet Freeze | 18 | 13.1 | 87    | 98  | 1222.3 | 2141  | 4.5  | 67.5 | 0.942 | 91 |
| Vermont    | US | Wet Freeze | 18 | 12.2 | 270.5 | 80  | 1197.5 | 3440  | 4.1  | 75   | 0.942 | 91 |
| Vermont    | US | Wet Freeze | 19 | 7.9  | 458   | 119 | 418.4  | 2632  | 4.90 | 57   | 0.939 | 91 |
| Illinois   | US | Wet Freeze | 19 | 13.1 | 127   | 115 | 1461.4 | 1596  | 4.50 | 72   | 0.927 | 92 |
| Michigan   | US | Wet Freeze | 19 | 10.8 | 682.1 | 121 | 1288.8 | 10325 | 3.30 | 67   | 0.924 | 92 |
| Illinois   | US | Wet Freeze | 19 | 7.1  | 759   | 123 | 1123.8 | 2077  | 5.36 | 68   | 0.923 | 92 |
| Vermont    | US | Wet Freeze | 19 | 6.5  | 667.1 | 119 | 1368.4 | 1471  | 3.75 | 61   | 0.906 | 92 |
| Vermont    | US | Wet Freeze | 19 | 8    | 437   | 115 | 1352.9 | 2668  | 3.8  | 62   | 0.904 | 92 |
| Illinois   | US | Wet Freeze | 19 | 11.4 | 226   | 122 | 1062.5 | 2107  | 4.45 | 71   | 0.899 | 92 |

| Vermont      | US     | Wet Freeze    | 19 | 13.9 | 110.1  | 134 | 1254.3 | 890  | 4    | 66   | 0.898 | 92  |
|--------------|--------|---------------|----|------|--------|-----|--------|------|------|------|-------|-----|
| Michigan     | US     | Wet Freeze    | 20 | 12.5 | 274    | 146 | 981.8  | 4280 | 5    | 68   | 0.892 | 92  |
| Vermont      | US     | Wet Freeze    | 20 | 7.3  | 852.6  | 96  | 1288.5 | 2577 | 4.50 | 74.5 | 0.892 | 92  |
| Michigan     | US     | Wet Freeze    | 20 | 4.1  | 637    | 108 | 1463   | 2801 | 6.21 | 68   | 0.864 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 6.2  | 857.3  | 115 | 1005   | 1895 | 4.3  | 80   | 0.863 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 10.3 | 755    | 115 | 1881.2 | 2375 | 3.75 | 61   | 0.859 | 93  |
| Michigan     | US     | Wet Freeze    | 20 | 6.6  | 663    | 111 | 1701.5 | 1274 | 5.5  | 57   | 0.859 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 9.8  | 197    | 105 | 1042.9 | 1334 | 5.6  | 76   | 0.845 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 5.9  | 1185   | 120 | 1370.3 | 2129 | 6.16 | 69.5 | 0.835 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 6.6  | 940    | 97  | 1375.6 | 2353 | 6.18 | 76   | 0.822 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 14.1 | 123.3  | 124 | 1475.3 | 1561 | 6.06 | 68   | 0.819 | 93  |
| Indiana      | US     | Wet Freeze    | 21 | 13.6 | 233    | 89  | 1569.5 | 2785 | 6.08 | 69   | 0.819 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 8.9  | 580    | 93  | 833.6  | 2187 | 5.66 | 73   | 0.81  | 94  |
| Michigan     | US     | Wet Freeze    | 22 | 6.6  | 807    | 98  | 655.9  | 1024 | 5.71 | 59.5 | 0.808 | 94  |
| Minnesota    | US     | Wet Freeze    | 22 | 7.4  | 467.3  | 97  | 989.2  | 3087 | 5.55 | 75.5 | 0.805 | 94  |
| Indiana      | US     | Wet Freeze    | 22 | 8.3  | 607    | 102 | 948.1  | 3824 | 4.7  | 71.5 | 0.803 | 94  |
| Indiana      | US     | Wet Freeze    | 22 | 9.2  | 405    | 99  | 985.2  | 3513 | 5.2  | 70   | 0.796 | 94  |
| Newfoundland | Canada | Wet Freeze    | 22 | 5.9  | 665.3  | 101 | 1050.8 | 1486 | 5    | 68   | 0.796 | 94  |
| Minnesota    | US     | Wet Freeze    | 23 | 7.8  | 661    | 104 | 973.4  | 2259 | 5.5  | 60.5 | 0.792 | 94  |
| Newfoundland | Canada | Wet Freeze    | 24 | 12.2 | 1759   | 87  | 1169.9 | 1310 | 5.79 | 60.5 | 0.787 | 94  |
| Minnesota    | US     | Wet Freeze    | 25 | 12.3 | 1164.7 | 108 | 1168.3 | 3789 | 6.40 | 71   | 0.786 | 94  |
| Indiana      | US     | Wet Freeze    | 26 | 10   | 287.3  | 89  | 849    | 2099 | 4.1  | 72   | 0.785 | 95  |
| Minnesota    | US     | Wet Freeze    | 26 | 6.9  | 721.1  | 85  | 1424.4 | 2077 | 5.25 | 62.5 | 0.77  | 95  |
| Illinois     | US     | Wet Freeze    | 26 | 4.7  | 888.4  | 117 | 1629.7 | 1249 | 5.50 | 69.5 | 0.757 | 95  |
| Minnesota    | US     | Wet Freeze    | 26 | 6    | 726    | 120 | 1070.7 | 1698 | 5    | 80   | 0.756 | 95  |
| Illinois     | US     | Wet Freeze    | 26 | 7.3  | 651.5  | 114 | 1059.2 | 1441 | 6.5  | 72   | 0.753 | 95  |
| Michigan     | US     | Wet Freeze    | 26 | 7.3  | 477    | 122 | 781.5  | 1471 | 5.39 | 67.5 | 0.751 | 95  |
| Indiana      | US     | Wet Freeze    | 26 | 8.8  | 337    | 124 | 1100.8 | 3949 | 6.1  | 73   | 0.75  | 95  |
| Newfoundland | Canada | Wet Freeze    | 27 | 11.1 | 772.2  | 110 | 1283.7 | 2338 | 5.84 | 55   | 0.744 | 95  |
| Indiana      | US     | Wet Freeze    | 28 | 12.5 | 260.6  | 87  | 1223.7 | 1488 | 6.01 | 58   | 0.734 | 95  |
| Newfoundland | Canada | Wet Freeze    | 28 | 9.8  | 303.2  | 94  | 1143.4 | 2319 | 5    | 70   | 0.732 | 95  |
| Alabama      | US     | Wet no Freeze | 1  | 16.8 | 36     | 60  | 1329.8 | 0    | 2.8  | 75   | 0.621 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 14.7 | 3.7    | 0   | 1533.3 | 0    | 5.5  | 70   | 0.627 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 13.7 | 11     | 10  | 731.3  | 0    | 5.3  | 67   | 0.641 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 13.7 | 34     | 47  | 1381   | 495  | 3    | 73   | 0.646 | 100 |
| Alabama      | US     | Wet no Freeze | 3  | 13.8 | 25.3   | 0   | 1587.5 | 0    | 6    | 66   | 0.653 | 100 |
| Alabama      | US     | Wet no Freeze | 3  | 14.4 | 28     | 38  | 1007.9 | 0    | 4.8  | 69   | 0.67  | 100 |

| Alabama    | US | Wet no Freeze | 3 | 14.5 | 37.2  | 56 | 1006.7 | 0   | 6.4  | 60.5 | 0.7   | 100 |
|------------|----|---------------|---|------|-------|----|--------|-----|------|------|-------|-----|
| Alabama    | US | Wet no Freeze | 4 | 14.5 | 6.4   | 5  | 1646.4 | 0   | 5.3  | 70   | 0.702 | 100 |
| Alabama    | US | Wet no Freeze | 4 | 14.6 | 73.2  | 15 | 1032.4 | 373 | 4.75 | 68   | 0.713 | 100 |
| Alabama    | US | Wet no Freeze | 4 | 14.7 | 176   | 5  | 1819.8 | 0   | 5.4  | 73   | 0.716 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 13.3 | 53    | 15 | 1651.1 | 31  | 5.25 | 63   | 0.717 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 13.4 | 38    | 29 | 853    | 72  | 2.85 | 68   | 0.72  | 100 |
| Alabama    | US | Wet no Freeze | 5 | 13.6 | 84    | 46 | 1698   | 0   | 4    | 61.5 | 0.735 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 12.6 | 32    | 39 | 2149.7 | 0   | 3.25 | 62.5 | 0.735 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 12.8 | 9.3   | 8  | 1364.5 | 0   | 5.3  | 66   | 0.749 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 13.2 | 136.9 | 30 | 1482.7 | 0   | 4.5  | 59   | 0.778 | 100 |
| Arkansas   | US | Wet no Freeze | 5 | 12.1 | 29    | 43 | 1960.5 | 1   | 5.1  | 69.5 | 0.785 | 100 |
| Arkansas   | US | Wet no Freeze | 5 | 12.3 | 89    | 20 | 2161.4 | 109 | 4.65 | 63   | 0.796 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 12.6 | 3     | 4  | 1868.8 | 0   | 3.2  | 72   | 0.8   | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 14.8 | 85    | 55 | 1648   | 0   | 4.1  | 75   | 0.811 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 14.8 | 24.8  | 45 | 1466.9 | 710 | 3.5  | 75   | 0.813 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 15   | 23    | 23 | 455.4  | 0   | 3.75 | 66.5 | 0.815 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 15   | 9     | 73 | 1725.9 | 0   | 4    | 68   | 0.825 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 15   | 36.3  | 0  | 1030   | 742 | 4.5  | 70   | 0.834 | 100 |
| California | US | Wet no Freeze | 6 | 15.1 | 48.2  | 66 | 1805.7 | 515 | 3.9  | 65.5 | 0.84  | 96  |
| California | US | Wet no Freeze | 6 | 15.2 | 115   | 68 | 1491.9 | 0   | 5.3  | 68   | 0.847 | 90  |
| California | US | Wet no Freeze | 6 | 15.3 | 4.1   | 35 | 806.5  | 410 | 7.3  | 59   | 0.847 | 89  |
| California | US | Wet no Freeze | 6 | 15.3 | 7     | 25 | 1499.4 | 0   | 5.1  | 67.5 | 0.869 | 89  |
| California | US | Wet no Freeze | 7 | 15.3 | 8.9   | 0  | 1325.5 | 44  | 7.3  | 64.5 | 0.871 | 89  |
| California | US | Wet no Freeze | 7 | 15.4 | 5.8   | 41 | 1236.7 | 33  | 3.5  | 69   | 1.364 | 89  |
| California | US | Wet no Freeze | 7 | 15.4 | 69    | 36 | 1473.3 | 223 | 5.5  | 66.5 | 1.363 | 88  |
| California | US | Wet no Freeze | 7 | 15.2 | 6     | 69 | 646.9  | 0   | 3    | 55   | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 15.2 | 6     | 64 | 1007.3 | 7   | 5.5  | 67   | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 16.1 | 82    | 36 | 1291.7 | 0   | 5.25 | 70   | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 16.1 | 102   | 4  | 1510   | 0   | 6.25 | 66   | 1.319 | 88  |
| Florida    | US | Wet no Freeze | 7 | 16.1 | 10.8  | 5  | 1457.1 | 6   | 5    | 61.5 | 1.302 | 88  |
| Florida    | US | Wet no Freeze | 7 | 16.3 | 31.1  | 53 | 965.7  | 0   | 3.2  | 55   | 1.287 | 87  |
| Florida    | US | Wet no Freeze | 7 | 16.3 | 89    | 53 | 1418.8 | 0   | 4.3  | 67.5 | 1.269 | 87  |
| Florida    | US | Wet no Freeze | 7 | 16.3 | 14.6  | 44 | 1209.3 | 44  | 4.15 | 63   | 1.267 | 87  |
| Florida    | US | Wet no Freeze | 7 | 16.4 | 45    | 0  | 1663.3 | 0   | 6.4  | 66   | 1.249 | 87  |
| Florida    | US | Wet no Freeze | 7 | 16.4 | 33.3  | 64 | 1501   | 367 | 6.2  | 65   | 1.246 | 87  |
| Florida    | US | Wet no Freeze | 7 | 15.9 | 20.7  | 21 | 1099.8 | 7   | 3    | 68   | 1.196 | 87  |
| Florida    | US | Wet no Freeze | 7 | 15.9 | 14    | 45 | 1574.1 | 19  | 4.6  | 73   | 1.176 | 87  |
| Florida | US | Wet no Freeze | 8  | 15.9 | 73.2 | 0  | 1050   | 0   | 6    | 38   | 1.164 | 87 |
|---------|----|---------------|----|------|------|----|--------|-----|------|------|-------|----|
| Florida | US | Wet no Freeze | 8  | 16   | 172  | 0  | 1042.9 | 0   | 4.7  | 74   | 1.154 | 87 |
| Florida | US | Wet no Freeze | 8  | 16   | 32   | 36 | 1554.9 | 0   | 5.1  | 70   | 1.15  | 86 |
| Florida | US | Wet no Freeze | 8  | 15.4 | 10   | 0  | 648.8  | 0   | 4.8  | 64   | 1.15  | 86 |
| Florida | US | Wet no Freeze | 8  | 15.4 | 88.5 | 0  | 861.8  | 0   | 5.8  | 67.5 | 1.136 | 86 |
| Florida | US | Wet no Freeze | 9  | 15.5 | 8    | 0  | 884.5  | 0   | 6    | 60.5 | 1.123 | 86 |
| Florida | US | Wet no Freeze | 9  | 15.5 | 83   | 24 | 548.3  | 0   | 2.7  | 54   | 1.12  | 86 |
| Florida | US | Wet no Freeze | 9  | 15.6 | 20.7 | 51 | 1525.4 | 315 | 3.7  | 68   | 1.113 | 85 |
| Florida | US | Wet no Freeze | 9  | 15.7 | 18   | 0  | 1096.4 | 8   | 4    | 67   | 1.11  | 85 |
| Florida | US | Wet no Freeze | 9  | 15.7 | 44.6 | 53 | 1823.5 | 91  | 4.75 | 70   | 1.108 | 85 |
| Florida | US | Wet no Freeze | 9  | 15.7 | 43   | 76 | 1658.6 | 52  | 4.5  | 65   | 1.108 | 85 |
| Florida | US | Wet no Freeze | 9  | 15.7 | 10   | 44 | 1357.1 | 229 | 6    | 66   | 1.104 | 85 |
| Florida | US | Wet no Freeze | 9  | 15.8 | 64   | 45 | 1243.6 | 661 | 3    | 67   | 1.104 | 84 |
| Florida | US | Wet no Freeze | 9  | 16.7 | 6.4  | 20 | 1375.9 | 0   | 4.8  | 69   | 1.104 | 84 |
| Florida | US | Wet no Freeze | 9  | 16.7 | 13.3 | 54 | 1511.4 | 655 | 5.3  | 66.5 | 1.104 | 84 |
| Florida | US | Wet no Freeze | 10 | 16.8 | 8    | 0  | 1552.8 | 0   | 6    | 63   | 1.103 | 84 |
| Florida | US | Wet no Freeze | 10 | 16.5 | 46   | 80 | 1340.8 | 8   | 4    | 62.5 | 1.098 | 83 |
| Florida | US | Wet no Freeze | 10 | 16.5 | 8.2  | 29 | 1003.7 | 0   | 5    | 66   | 1.093 | 83 |
| Florida | US | Wet no Freeze | 10 | 16.6 | 34   | 39 | 1220.9 | 0   | 3.3  | 70   | 1.093 | 83 |
| Florida | US | Wet no Freeze | 10 | 16.6 | 10.3 | 63 | 1514.4 | 417 | 3.1  | 70   | 1.088 | 83 |
| Florida | US | Wet no Freeze | 10 | 16.6 | 19   | 54 | 1691.3 | 25  | 2.75 | 59.5 | 1.085 | 83 |
| Florida | US | Wet no Freeze | 10 | 16.7 | 17.9 | 52 | 357.5  | 6   | 3.25 | 70   | 1.081 | 83 |
| Florida | US | Wet no Freeze | 11 | 16.7 | 8.9  | 45 | 1622.8 | 0   | 2.9  | 65.5 | 1.078 | 83 |
| Florida | US | Wet no Freeze | 11 | 16.4 | 43.8 | 0  | 1049.8 | 0   | 5.95 | 73   | 1.074 | 83 |
| Florida | US | Wet no Freeze | 11 | 16.4 | 35   | 55 | 679    | 456 | 7.1  | 64   | 1.074 | 83 |
| Florida | US | Wet no Freeze | 11 | 17.4 | 143  | 74 | 1809.9 | 7   | 3    | 68.5 | 1.068 | 83 |
| Florida | US | Wet no Freeze | 11 | 17.6 | 79.5 | 0  | 676.4  | 0   | 5.4  | 68   | 1.064 | 83 |
| Florida | US | Wet no Freeze | 11 | 17.7 | 27.8 | 0  | 1283.3 | 0   | 5.3  | 58   | 1.064 | 83 |
| Florida | US | Wet no Freeze | 11 | 17.7 | 3.3  | 0  | 1283.3 | 0   | 5.8  | 58   | 1.062 | 83 |
| Florida | US | Wet no Freeze | 11 | 17.1 | 14   | 35 | 1222.1 | 47  | 5    | 70   | 1.061 | 82 |
| Florida | US | Wet no Freeze | 11 | 17.1 | 4    | 20 | 1180.4 | 0   | 3.1  | 61.5 | 1.052 | 82 |
| Georgia | US | Wet no Freeze | 12 | 17.2 | 8    | 32 | 575    | 0   | 2.45 | 59   | 1.05  | 82 |
| Georgia | US | Wet no Freeze | 12 | 17.3 | 82   | 41 | 1146.3 | 682 | 6    | 54   | 1.045 | 82 |
| Hawaii  | US | Wet no Freeze | 12 | 17.3 | 28   | 0  | 1790.2 | 0   | 4.25 | 67   | 1.041 | 82 |
| Hawaii  | US | Wet no Freeze | 12 | 17.3 | 8    | 47 | 1786   | 345 | 4    | 72   | 1.008 | 82 |
| Hawaii  | US | Wet no Freeze | 12 | 17.3 | 26.2 | 44 | 1786   | 0   | 5.5  | 37   | 1.005 | 82 |
| Hawaii  | US | Wet no Freeze | 12 | 17.3 | 49   | 25 | 1146.3 | 661 | 5.35 | 64.5 | 1.002 | 82 |

| Hawaii         | US | Wet no Freeze | 12 | 17.4 | 52    | 29 | 1600.2 | 1   | 3.2  | 64   | 0.998 | 82 |
|----------------|----|---------------|----|------|-------|----|--------|-----|------|------|-------|----|
| Hawaii         | US | Wet no Freeze | 12 | 16.8 | 36    | 52 | 1329.8 | 0   | 2.5  | 74   | 0.994 | 82 |
| Hawaii         | US | Wet no Freeze | 12 | 16.8 | 4     | 29 | 573.4  | 0   | 5.5  | 58   | 0.988 | 81 |
| Hawaii         | US | Wet no Freeze | 13 | 17   | 8.6   | 0  | 1590.1 | 229 | 2.8  | 67   | 0.985 | 81 |
| Hawaii         | US | Wet no Freeze | 13 | 17   | 4     | 55 | 1581.4 | 0   | 5.8  | 71   | 0.97  | 81 |
| Hawaii         | US | Wet no Freeze | 13 | 17   | 6     | 41 | 1581.4 | 25  | 5.3  | 71   | 0.969 | 81 |
| Hawaii         | US | Wet no Freeze | 13 | 17   | 8.6   | 45 | 1526.8 | 274 | 2.5  | 75   | 0.96  | 80 |
| Hawaii         | US | Wet no Freeze | 13 | 18.2 | 106   | 56 | 3708.8 | 229 | 3    | 72   | 0.959 | 80 |
| Hawaii         | US | Wet no Freeze | 13 | 18.3 | 12    | 25 | 4661.1 | 0   | 4.5  | 72   | 0.952 | 79 |
| Hawaii         | US | Wet no Freeze | 13 | 18.4 | 108   | 48 | 1172.2 | 0   | 5.5  | 68.5 | 0.951 | 78 |
| Hawaii         | US | Wet no Freeze | 13 | 18.5 | 31.8  | 30 | 1555.8 | 15  | 2.6  | 65   | 0.949 | 78 |
| Hawaii         | US | Wet no Freeze | 13 | 18.5 | 185   | 70 | 4916.9 | 0   | 2.75 | 68   | 0.948 | 78 |
| Mississippi    | US | Wet no Freeze | 13 | 18.6 | 29.8  | 66 | 3397.7 | 0   | 3.1  | 73   | 0.947 | 77 |
| Mississippi    | US | Wet no Freeze | 13 | 18.1 | 94    | 20 | 1441.9 | 0   | 4.25 | 69   | 0.944 | 77 |
| Mississippi    | US | Wet no Freeze | 14 | 18.2 | 18.2  | 43 | 1103   | 31  | 6.35 | 62   | 0.938 | 76 |
| Mississippi    | US | Wet no Freeze | 14 | 18.2 | 17.7  | 41 | 1675.7 | 373 | 5.25 | 70   | 0.926 | 76 |
| Mississippi    | US | Wet no Freeze | 14 | 18.2 | 45.1  | 0  | 1254.8 | 0   | 7.8  | 62   | 0.918 | 76 |
| Mississippi    | US | Wet no Freeze | 14 | 17.8 | 0.7   | 53 | 1268   | 0   | 4.5  | 70   | 0.912 | 75 |
| Mississippi    | US | Wet no Freeze | 15 | 17.8 | 2.1   | 53 | 1268   | 33  | 4.2  | 72   | 0.906 | 75 |
| Mississippi    | US | Wet no Freeze | 15 | 17.9 | 3     | 74 | 1259.6 | 12  | 3.1  | 67   | 0.906 | 75 |
| Mississippi    | US | Wet no Freeze | 15 | 18   | 124.6 | 0  | 950.9  | 0   | 5.3  | 67   | 0.894 | 75 |
| Mississippi    | US | Wet no Freeze | 15 | 18   | 123   | 52 | 464.7  | 51  | 4.1  | 66   | 0.884 | 74 |
| Mississippi    | US | Wet no Freeze | 15 | 18   | 65.5  | 32 | 1439.1 | 245 | 2.45 | 70.5 | 0.877 | 74 |
| Mississippi    | US | Wet no Freeze | 15 | 18.1 | 0     | 82 | 1175.9 | 256 | 5.2  | 61.5 | 1.366 | 74 |
| Mississippi    | US | Wet no Freeze | 15 | 19   | 9     | 1  | 875.2  | 0   | 2.8  | 62.5 | 1.38  | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 19   | 15    | 0  | 875.2  | 0   | 3.3  | 62.5 | 1.383 | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 19.1 | 2     | 54 | 2876.2 | 18  | 5.25 | 69   | 1.387 | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 19.1 | 0.2   | 20 | 1547.9 | 33  | 5.1  | 68   | 1.393 | 73 |
| Mississippi    | US | Wet no Freeze | 16 | 19.2 | 32    | 29 | 1378.8 | 816 | 7.5  | 61.5 | 1.402 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 19.4 | 6.3   | 0  | 1192.1 | 0   | 5.2  | 69   | 1.418 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 19.6 | 9     | 51 | 1420.1 | 345 | 2.85 | 62   | 1.418 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 19.6 | 3.4   | 53 | 1420.1 | 109 | 3.15 | 63   | 1.422 | 71 |
| North Carolina | US | Wet no Freeze | 17 | 18.6 | 13    | 87 | 1318.9 | 0   | 4.1  | 62.5 | 1.429 | 71 |
| North Carolina | US | Wet no Freeze | 17 | 18.6 | 12.7  | 35 | 1267.7 | 109 | 4.7  | 69.5 | 1.433 | 70 |
| North Carolina | US | Wet no Freeze | 17 | 18.7 | 33    | 64 | 1523.6 | 0   | 3.7  | 69.5 | 1.444 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 18.7 | 93    | 34 | 1390.5 | 57  | 4.5  | 64   | 1.45  | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 18.8 | 20    | 3  | 938    | 0   | 2.5  | 65   | 1.451 | 70 |

| Oklahoma       | US | Wet no Freeze | 17 | 18.9 | 0.4  | 63 | 3644.6 | 564 | 4.6  | 67.5 | 1.454 | 70 |
|----------------|----|---------------|----|------|------|----|--------|-----|------|------|-------|----|
| Oklahoma       | US | Wet no Freeze | 17 | 18.9 | 15   | 41 | 4053.6 | 91  | 4    | 69   | 1.455 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 18.6 | 20   | 55 | 1235.6 | 77  | 7    | 61.5 | 1.455 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 20.4 | 71.4 | 51 | 1480.9 | 0   | 5.15 | 68   | 1.456 | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 20.4 | 0.6  | 41 | 1480.9 | 91  | 3.8  | 63.5 | 1.46  | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 20.7 | 12   | 0  | 2774.4 | 0   | 3.95 | 71   | 1.461 | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 20.8 | 172  | 63 | 2210.6 | 0   | 2.5  | 43.5 | 1.474 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 20.9 | 22.3 | 63 | 1920.6 | 0   | 4.6  | 68   | 1.484 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 20   | 55   | 46 | 1501.3 | 0   | 5.75 | 61.5 | 1.491 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 20   | 5.8  | 73 | 1501.3 | 0   | 7.1  | 68   | 1.499 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 20.1 | 73   | 74 | 1156.5 | 209 | 6.25 | 65.5 | 1.506 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 20.1 | 158  | 64 | 1156.5 | 95  | 5.8  | 60.5 | 1.508 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 20.1 | 1    | 20 | 1497.7 | 816 | 2.5  | 68   | 1.514 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 20.1 | 80   | 36 | 1497.7 | 682 | 3.3  | 68   | 1.517 | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 20.2 | 42.3 | 0  | 1162.1 | 0   | 6    | 68   | 1.529 | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 19.6 | 42   | 33 | 1048.7 | 0   | 3.25 | 64.5 | 1.57  | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 19.8 | 81   | 37 | 1451.8 | 254 | 6    | 70   | 1.584 | 67 |
| Oklahoma       | US | Wet no Freeze | 19 | 19.8 | 7    | 66 | 1451.8 | 419 | 5.5  | 67   | 1.589 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 19.9 | 8    | 0  | 695.1  | 0   | 3.1  | 68   | 1.616 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 21.8 | 11   | 41 | 1420.2 | 28  | 7.8  | 62.5 | 1.619 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 21.9 | 113  | 66 | 986.1  | 0   | 5.25 | 54   | 1.633 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 22   | 10   | 65 | 1024.4 | 916 | 4    | 67   | 1.64  | 63 |
| Oklahoma       | US | Wet no Freeze | 19 | 22.1 | 51   | 35 | 1151.8 | 6   | 4.5  | 72.5 | 1.662 | 63 |
| South Carolina | US | Wet no Freeze | 20 | 22.2 | 9.5  | 48 | 1474.9 | 548 | 4.4  | 70   | 1.674 | 63 |
| South Carolina | US | Wet no Freeze | 20 | 22.3 | 7.3  | 0  | 732.1  | 0   | 5.8  | 69   | 1.689 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 22.4 | 39   | 41 | 1890.5 | 0   | 4.5  | 74   | 1.693 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 22.5 | 11   | 46 | 1077.3 | 6   | 3.5  | 61.5 | 1.735 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 22.5 | 7.2  | 51 | 1163.9 | 15  | 6    | 62   | 1.791 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 21.5 | 1    | 55 | 1516.1 | 415 | 6    | 68   | 1.805 | 61 |
| South Carolina | US | Wet no Freeze | 20 | 21.5 | 107  | 74 | 1041.7 | 0   | 2.5  | 68   | 1.807 | 61 |
| South Carolina | US | Wet no Freeze | 21 | 21.5 | 6    | 3  | 725.3  | 0   | 3.1  | 70   | 1.85  | 60 |
| South Carolina | US | Wet no Freeze | 21 | 21.6 | 19   | 5  | 886.1  | 0   | 4.5  | 65.5 | 1.858 | 60 |
| South Carolina | US | Wet no Freeze | 21 | 21.6 | 0.7  | 0  | 886.1  | 0   | 4.9  | 65.5 | 1.859 | 60 |
| South Carolina | US | Wet no Freeze | 21 | 21.7 | 44   | 32 | 1195.8 | 8   | 6    | 70.5 | 1.867 | 59 |
| South Carolina | US | Wet no Freeze | 21 | 21.7 | 61.5 | 87 | 965.5  | 0   | 5.3  | 67   | 1.868 | 59 |
| South Carolina | US | Wet no Freeze | 21 | 21.1 | 85   | 29 | 1213.9 | 373 | 3    | 67   | 1.87  | 59 |
| South Carolina | US | Wet no Freeze | 21 | 21.1 | 17.9 | 54 | 2227.5 | 268 | 2.5  | 67.5 | 1.875 | 58 |

| South Carolina | US | Wet no Freeze | 21 | 21.2 | 16   | 20 | 1107.2 | 91  | 6.8  | 62.5 | 1.875 | 58 |
|----------------|----|---------------|----|------|------|----|--------|-----|------|------|-------|----|
| South Carolina | US | Wet no Freeze | 21 | 21.4 | 10   | 66 | 2620.7 | 736 | 4.25 | 69   | 1.932 | 57 |
| Tennessee      | US | Wet no Freeze | 21 | 22.8 | 61   | 41 | 1145.6 | 31  | 5.25 | 69   | 1.946 | 57 |
| Tennessee      | US | Wet no Freeze | 21 | 22.9 | 29   | 65 | 1401.6 | 18  | 6    | 64   | 1.954 | 56 |
| Tennessee      | US | Wet no Freeze | 22 | 23.1 | 71   | 29 | 1480   | 456 | 2.75 | 67   | 1.981 | 56 |
| Tennessee      | US | Wet no Freeze | 22 | 23.2 | 19   | 73 | 1663.6 | 0   | 4.85 | 63.5 | 1.99  | 55 |
| Tennessee      | US | Wet no Freeze | 22 | 23.5 | 57   | 43 | 908.7  | 0   | 4.5  | 64.5 | 1.993 | 53 |
| Tennessee      | US | Wet no Freeze | 22 | 23.6 | 4.1  | 53 | 1461.7 | 109 | 4.25 | 77   | 1.994 | 52 |
| Tennessee      | US | Wet no Freeze | 22 | 23.6 | 3    | 35 | 1268.7 | 0   | 5.25 | 69.5 | 2.006 | 45 |
| Texas          | US | Wet no Freeze | 22 | 22.7 | 5.9  | 48 | 1182.4 | 0   | 3.1  | 68.5 | 2.013 | 40 |
| Texas          | US | Wet no Freeze | 22 | 22.8 | 28   | 0  | 765    | 0   | 4.2  | 67.5 | 2.031 | 40 |
| Texas          | US | Wet no Freeze | 22 | 24.1 | 56.7 | 35 | 979.3  | 0   | 3.35 | 69.5 | 2.038 | 38 |
| Texas          | US | Wet no Freeze | 23 | 24.1 | 19   | 74 | 1287   | 0   | 6.7  | 68   | 2.053 | 36 |
| Texas          | US | Wet no Freeze | 23 | 24.3 | 21.2 | 48 | 1589.1 | 32  | 6.1  | 62.5 | 2.053 | 35 |
| Texas          | US | Wet no Freeze | 23 | 24.6 | 60   | 70 | 895.5  | 781 | 5.4  | 59.5 | 2.078 | 34 |
| Texas          | US | Wet no Freeze | 24 | 24   | 43   | 51 | 1661   | 0   | 5.4  | 70   | 2.094 | 32 |
| Texas          | US | Wet no Freeze | 24 | 24.1 | 6    | 15 | 897.9  | 0   | 3.2  | 69.5 | 2.103 | 30 |
| Texas          | US | Wet no Freeze | 25 | 23.8 | 0.7  | 30 | 992.8  | 0   | 4.25 | 65.5 | 2.125 | 29 |
| Texas          | US | Wet no Freeze | 25 | 23.8 | 94.2 | 41 | 954.6  | 373 | 3.75 | 69   | 2.135 | 27 |
| Texas          | US | Wet no Freeze | 25 | 23.9 | 3    | 53 | 1167.1 | 0   | 6.2  | 63   | 2.14  | 24 |
| Texas          | US | Wet no Freeze | 25 | 23.7 | 10   | 71 | 792.7  | 682 | 4    | 66   | 2.169 | 24 |
| Texas          | US | Wet no Freeze | 26 | 24.7 | 21.7 | 64 | 977.7  | 77  | 3.6  | 67   | 2.246 | 23 |
| Texas          | US | Wet no Freeze | 26 | 24.6 | 38.1 | 46 | 1377.4 | 6   | 6.25 | 68.5 | 2.322 | 23 |
| Texas          | US | Wet no Freeze | 26 | 24.6 | 43   | 87 | 1123.1 | 91  | 3.7  | 63   | 2.322 | 22 |
| Texas          | US | Wet no Freeze | 26 | 24.7 | 3.4  | 32 | 1420.2 | 615 | 5.5  | 67.5 | 2.337 | 20 |
| Texas          | US | Wet no Freeze | 27 | 24.7 | 13   | 41 | 1166.3 | 109 | 3.8  | 69.5 | 2.385 | 19 |
| Texas          | US | Wet no Freeze | 27 | 24.8 | 21   | 56 | 918    | 0   | 3    | 62   | 2.388 | 19 |
| Texas          | US | Wet no Freeze | 27 | 24.9 | 5    | 35 | 1064.9 | 0   | 3.1  | 69.5 | 2.526 | 19 |
| Texas          | US | Wet no Freeze | 28 | 25.2 | 1    | 50 | 743.9  | 102 | 3.75 | 61.5 | 2.54  | 19 |
| Texas          | US | Wet no Freeze | 28 | 25   | 1    | 0  | 941.1  | 0   | 4    | 66   | 2.614 | 18 |
| Texas          | US | Wet no Freeze | 28 | 25   | 69   | 23 | 1397.9 | 0   | 4    | 59   | 2.626 | 18 |
| Texas          | US | Wet no Freeze | 29 | 25   | 4    | 20 | 959.6  | 0   | 4.1  | 60.5 | 2.782 | 18 |
| Texas          | US | Wet no Freeze | 31 | 25.5 | 5    | 84 | 1153.1 | 373 | 4.5  | 65   | 2.868 | 15 |
| Texas          | US | Wet no Freeze | 31 | 25.5 | 50.8 | 74 | 1377.5 | 425 | 2.65 | 62.5 | 3.543 | 8  |
| Texas          | US | Wet no Freeze | 31 | 25.6 | 10   | 1  | 963.6  | 0   | 4    | 64.5 | 3.758 | 8  |

| State /Province | Country | Climate regions | AGE | ESAL    | AADTT | AADT    | IRI   | PCI |
|-----------------|---------|-----------------|-----|---------|-------|---------|-------|-----|
| Washington      | US      | DRY Freeze      | 6   | 6844    | 46    | 16790   | 1.488 | 72  |
| Washington      | US      | DRY Freeze      | 7   | 6888    | 53    | 19398   | 1.08  | 69  |
| Washington      | US      | DRY Freeze      | 8   | 6913    | 54    | 19710   | 1.331 | 71  |
| Washington      | US      | DRY Freeze      | 15  | 5325    | 42    | 15330   | 1.015 | 70  |
| Washington      | US      | DRY Freeze      | 13  | 7616    | 53    | 6466    | 1.559 | 80  |
| Washington      | US      | DRY Freeze      | 13  | 9975    | 77    | 28105   | 0.989 | 68  |
| Washington      | US      | DRY Freeze      | 11  | 7074    | 56    | 20440   | 1.14  | 65  |
| Washington      | US      | DRY Freeze      | 10  | 5044    | 41    | 14965   | 0.888 | 64  |
| Washington      | US      | DRY Freeze      | 9   | 47446   | 182   | 66430   | 1.692 | 60  |
| Washington      | US      | DRY Freeze      | 9   | 7300    | 57    | 20805   | 1.469 | 59  |
| Washington      | US      | DRY Freeze      | 8   | 6957    | 55    | 20075   | 1.145 | 58  |
| Wyoming         | US      | DRY Freeze      | 17  | 47803   | 183   | 66978   | 0.908 | 55  |
| Wyoming         | US      | DRY Freeze      | 17  | 43304   | 167   | 60955   | 0.906 | 55  |
| Wyoming         | US      | DRY Freeze      | 18  | 41420   | 160   | 24320   | 1.5   | 52  |
| California      | US      | DRY no Freeze   | 32  | 85797   | 426   | 155490  | 0.819 | 100 |
| California      | US      | DRY no Freeze   | 30  | 6028    | 16    | 5856    | 0.781 | 100 |
| California      | US      | DRY no Freeze   | 29  | 739530  | 1938  | 591090  | 1.606 | 100 |
| California      | US      | DRY no Freeze   | 27  | 720372  | 2865  | 263580  | 1.408 | 100 |
| California      | US      | DRY no Freeze   | 25  | 5000    | 15    | 5475    | 2.379 | 100 |
| California      | US      | DRY no Freeze   | 24  | 57728   | 166   | 60590   | 0.765 | 80  |
| California      | US      | DRY no Freeze   | 23  | 59670   | 165   | 60225   | 0.683 | 95  |
| California      | US      | DRY no Freeze   | 23  | 26455   | 154   | 56210   | 0.735 | 63  |
| California      | US      | DRY no Freeze   | 21  | 156578  | 381   | 139065  | 0.754 | 92  |
| California      | US      | DRY no Freeze   | 21  | 18155   | 953   | 347845  | 0.782 | 61  |
| California      | US      | DRY no Freeze   | 20  | 718404  | 2865  | 1045725 | 0.783 | 62  |
| California      | US      | DRY no Freeze   | 20  | 36000   | 202   | 73730   | 0.817 | 90  |
| California      | US      | DRY no Freeze   | 19  | 95010   | 330   | 120780  | 0.82  | 88  |
| California      | US      | DRY no Freeze   | 19  | 23520   | 496   | 38192   | 0.823 | 87  |
| California      | US      | DRY no Freeze   | 19  | 33921   | 200   | 73200   | 0.828 | 83  |
| Hawaii          | US      | DRY no Freeze   | 18  | 42555   | 208   | 75920   | 0.835 | 80  |
| Hawaii          | US      | DRY no Freeze   | 18  | 91489   | 309   | 113094  | 0.848 | 80  |
| Hawaii          | US      | DRY no Freeze   | 18  | 46920   | 139   | 46704   | 0.855 | 75  |
| Hawaii          | US      | DRY no Freeze   | 18  | 139437  | 689   | 251485  | 0.874 | 74  |
| Hawaii          | US      | DRY no Freeze   | 17  | 1028796 | 2237  | 816505  | 1.321 | 74  |
| Hawaii          | US      | DRY no Freeze   | 17  | 67105   | 194   | 70810   | 1.408 | 73  |

Table A-3: Presents the Traffic volume data of each section with PCI AND IRI in the U.S. and Canada.

| Hawaii     | US | DRY no Freeze | 17 | 40000   | 55   | 20130   | 1.418 | 72 |
|------------|----|---------------|----|---------|------|---------|-------|----|
| Hawaii     | US | DRY no Freeze | 16 | 57856   | 167  | 60955   | 1.434 | 70 |
| Hawaii     | US | DRY no Freeze | 16 | 13954   | 37   | 13505   | 1.434 | 66 |
| Hawaii     | US | DRY no Freeze | 16 | 528717  | 2106 | 768690  | 1.473 | 65 |
| Hawaii     | US | DRY no Freeze | 15 | 21243   | 49   | 17885   | 1.528 | 63 |
| Hawaii     | US | DRY no Freeze | 15 | 32127   | 187  | 68255   | 1.544 | 61 |
| Hawaii     | US | DRY no Freeze | 15 | 440321  | 1752 | 639480  | 1.613 | 57 |
| Hawaii     | US | DRY no Freeze | 15 | 26000   | 84   | 30660   | 1.636 | 56 |
| Hawaii     | US | DRY no Freeze | 13 | 95570   | 309  | 113094  | 1.653 | 55 |
| Hawaii     | US | DRY no Freeze | 13 | 570867  | 2278 | 831470  | 1.67  | 55 |
| New Mexico | US | DRY no Freeze | 13 | 115252  | 354  | 129210  | 1.838 | 52 |
| New Mexico | US | DRY no Freeze | 13 | 70938   | 270  | 98820   | 2.113 | 69 |
| New Mexico | US | DRY no Freeze | 13 | 67518   | 172  | 62780   | 2.318 | 68 |
| New Mexico | US | DRY no Freeze | 13 | 12585   | 31   | 11315   | 2.332 | 70 |
| New Mexico | US | DRY no Freeze | 12 | 179040  | 452  | 164980  | 2.362 | 55 |
| New Mexico | US | DRY no Freeze | 11 | 183332  | 909  | 331785  | 2.404 | 81 |
| New Mexico | US | DRY no Freeze | 11 | 181861  | 459  | 167535  | 2.412 | 70 |
| New Mexico | US | DRY no Freeze | 11 | 158008  | 373  | 136145  | 2.42  | 54 |
| New Mexico | US | DRY no Freeze | 11 | 44000   | 229  | 83585   | 2.425 | 66 |
| New Mexico | US | DRY no Freeze | 11 | 123355  | 612  | 223380  | 2.441 | 67 |
| New Mexico | US | DRY no Freeze | 11 | 4851    | 11   | 4015    | 2.464 | 67 |
| New Mexico | US | DRY no Freeze | 10 | 754004  | 3000 | 1098000 | 2.497 | 67 |
| New Mexico | US | DRY no Freeze | 10 | 1028796 | 2237 | 816505  | 2.5   | 74 |
| New Mexico | US | DRY no Freeze | 10 | 33284   | 197  | 71905   | 2.525 | 62 |
| New Mexico | US | DRY no Freeze | 9  | 194089  | 490  | 178850  | 2.662 | 59 |
| New Mexico | US | DRY no Freeze | 9  | 86049   | 297  | 108405  | 0.925 | 59 |
| New Mexico | US | DRY no Freeze | 9  | 109000  | 481  | 175565  | 0.856 | 58 |
| New Mexico | US | DRY no Freeze | 9  | 889578  | 3538 | 1294908 | 1.369 | 58 |
| New Mexico | US | DRY no Freeze | 9  | 40000   | 252  | 92232   | 1.396 | 82 |
| New Mexico | US | DRY no Freeze | 7  | 807427  | 3216 | 1173840 | 1.012 | 58 |
| New Mexico | US | DRY no Freeze | 7  | 29000   | 157  | 57305   | 0.857 | 58 |
| New Mexico | US | DRY no Freeze | 7  | 751944  | 3000 | 1095000 | 1.31  | 58 |
| New Mexico | US | DRY no Freeze | 7  | 119267  | 594  | 216810  | 1.183 | 57 |
| New Mexico | US | DRY no Freeze | 7  | 1085824 | 2361 | 861765  | 0.88  | 55 |
| New Mexico | US | DRY no Freeze | 6  | 43646   | 214  | 78324   | 0.877 | 56 |
| New Mexico | US | DRY no Freeze | 5  | 48585   | 138  | 50370   | 0.862 | 61 |
| New Mexico | US | DRY no Freeze | 5  | 38000   | 210  | 76650   | 0.887 | 91 |

| New Mexico | US | DRY no Freeze | 3  | 78000  | 239  | 87474  | 0.925 | 50 |
|------------|----|---------------|----|--------|------|--------|-------|----|
| Idaho      | US | Wet Freeze    | 3  | 116880 | 468  | 170820 | 4.005 | 8  |
| Idaho      | US | Wet Freeze    | 4  | 128000 | 567  | 206955 | 3.659 | 10 |
| Idaho      | US | Wet Freeze    | 4  | 82000  | 375  | 137250 | 3.519 | 10 |
| Idaho      | US | Wet Freeze    | 4  | 411658 | 1320 | 481800 | 3.308 | 12 |
| Idaho      | US | Wet Freeze    | 4  | 32534  | 160  | 58560  | 3.251 | 15 |
| Maine      | US | Wet Freeze    | 5  | 76000  | 262  | 95630  | 3.116 | 22 |
| Idaho      | US | Wet Freeze    | 5  | 68948  | 195  | 71175  | 3.112 | 23 |
| Idaho      | US | Wet Freeze    | 5  | 247218 | 1178 | 429970 | 2.967 | 27 |
| Illinois   | US | Wet Freeze    | 5  | 285000 | 776  | 283240 | 2.275 | 40 |
| Maine      | US | Wet Freeze    | 5  | 75000  | 224  | 81760  | 2.183 | 43 |
| Michigan   | US | Wet Freeze    | 5  | 45000  | 187  | 68442  | 1.985 | 44 |
| Michigan   | US | Wet Freeze    | 5  | 69058  | 220  | 80300  | 1.929 | 50 |
| Michigan   | US | Wet Freeze    | 5  | 73361  | 480  | 175200 | 1.929 | 52 |
| Missouri   | US | Wet Freeze    | 6  | 52000  | 207  | 75762  | 1.863 | 52 |
| Michigan   | US | Wet Freeze    | 6  | 17527  | 126  | 45990  | 1.775 | 52 |
| Michigan   | US | Wet Freeze    | 6  | 244112 | 760  | 277400 | 1.754 | 55 |
| Michigan   | US | Wet Freeze    | 6  | 40000  | 217  | 79205  | 1.742 | 55 |
| Idaho      | US | Wet Freeze    | 6  | 79690  | 212  | 77380  | 1.7   | 58 |
| Idaho      | US | Wet Freeze    | 6  | 75515  | 199  | 72635  | 1.691 | 58 |
| Idaho      | US | Wet Freeze    | 7  | 61816  | 290  | 105850 | 1.649 | 59 |
| Michigan   | US | Wet Freeze    | 7  | 70314  | 224  | 81760  | 1.526 | 60 |
| Maine      | US | Wet Freeze    | 7  | 115000 | 525  | 191625 | 1.526 | 61 |
| Michigan   | US | Wet Freeze    | 7  | 119811 | 480  | 72960  | 1.509 | 62 |
| Michigan   | US | Wet Freeze    | 7  | 64576  | 172  | 62780  | 1.501 | 66 |
| Missouri   | US | Wet Freeze    | 8  | 358207 | 1150 | 419750 | 1.485 | 66 |
| Idaho      | US | Wet Freeze    | 8  | 99327  | 395  | 144175 | 1.473 | 67 |
| Idaho      | US | Wet Freeze    | 8  | 265640 | 1254 | 457710 | 1.473 | 67 |
| Idaho      | US | Wet Freeze    | 8  | 449377 | 1437 | 524505 | 1.458 | 68 |
| Idaho      | US | Wet Freeze    | 8  | 48454  | 188  | 68620  | 1.457 | 68 |
| Missouri   | US | Wet Freeze    | 9  | 53564  | 151  | 55115  | 1.457 | 68 |
| Missouri   | US | Wet Freeze    | 9  | 576006 | 1843 | 672695 | 1.445 | 69 |
| Maine      | US | Wet Freeze    | 9  | 111602 | 446  | 162790 | 1.441 | 69 |
| Missouri   | US | Wet Freeze    | 9  | 207420 | 644  | 235704 | 1.433 | 69 |
| Maine      | US | Wet Freeze    | 9  | 557444 | 1782 | 652212 | 1.416 | 69 |
| Missouri   | US | Wet Freeze    | 10 | 72646  | 189  | 46116  | 1.399 | 69 |
| Maine      | US | Wet Freeze    | 10 | 142000 | 450  | 164250 | 1.357 | 70 |

| Maine        | US     | Wet Freeze | 10 | 35000  | 158  | 57828  | 1.309 | 70 |
|--------------|--------|------------|----|--------|------|--------|-------|----|
| Illinois     | US     | Wet Freeze | 10 | 79795  | 214  | 78324  | 1.293 | 70 |
| Missouri     | US     | Wet Freeze | 10 | 88762  | 282  | 103212 | 1.278 | 71 |
| Missouri     | US     | Wet Freeze | 10 | 355999 | 1914 | 698610 | 1.274 | 72 |
| Maine        | US     | Wet Freeze | 10 | 363255 | 1700 | 620500 | 1.274 | 72 |
| Missouri     | US     | Wet Freeze | 11 | 96000  | 290  | 105850 | 1.269 | 74 |
| Michigan     | US     | Wet Freeze | 11 | 69445  | 450  | 164250 | 1.257 | 74 |
| Missouri     | US     | Wet Freeze | 11 | 60718  | 220  | 80300  | 1.249 | 75 |
| Michigan     | US     | Wet Freeze | 11 | 38000  | 208  | 75920  | 1.247 | 75 |
| Newfoundland | Canada | Wet Freeze | 11 | 274319 | 1250 | 456250 | 1.247 | 76 |
| Newfoundland | Canada | Wet Freeze | 11 | 111602 | 446  | 162790 | 1.242 | 76 |
| Newfoundland | Canada | Wet Freeze | 11 | 87439  | 564  | 53580  | 1.242 | 76 |
| Missouri     | US     | Wet Freeze | 11 | 82000  | 375  | 136875 | 1.235 | 76 |
| Newfoundland | Canada | Wet Freeze | 12 | 58586  | 210  | 76860  | 1.235 | 77 |
| New Jersey   | US     | Wet Freeze | 12 | 39000  | 212  | 77380  | 1.233 | 77 |
| New Jersey   | US     | Wet Freeze | 12 | 89000  | 405  | 148230 | 1.23  | 77 |
| Missouri     | US     | Wet Freeze | 12 | 92000  | 348  | 127020 | 1.229 | 77 |
| Newfoundland | Canada | Wet Freeze | 12 | 67139  | 469  | 171654 | 1.222 | 78 |
| Illinois     | US     | Wet Freeze | 13 | 91659  | 292  | 106580 | 1.216 | 78 |
| New Jersey   | US     | Wet Freeze | 13 | 326409 | 1609 | 587285 | 1.202 | 79 |
| New Jersey   | US     | Wet Freeze | 13 | 31167  | 130  | 47450  | 1.197 | 79 |
| New Jersey   | US     | Wet Freeze | 13 | 399412 | 1280 | 467200 | 1.197 | 80 |
| Newfoundland | Canada | Wet Freeze | 13 | 379224 | 1210 | 442860 | 1.196 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 53000  | 286  | 104390 | 1.19  | 81 |
| Newfoundland | Canada | Wet Freeze | 14 | 55046  | 155  | 56575  | 1.177 | 81 |
| New Jersey   | US     | Wet Freeze | 14 | 354698 | 1615 | 591090 | 1.176 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 107000 | 330  | 120780 | 1.174 | 81 |
| Illinois     | US     | Wet Freeze | 14 | 239049 | 1167 | 425955 | 1.167 | 82 |
| New Jersey   | US     | Wet Freeze | 14 | 143255 | 446  | 162790 | 1.151 | 82 |
| Illinois     | US     | Wet Freeze | 14 | 527140 | 1690 | 616850 | 1.13  | 83 |
| Montana      | US     | Wet Freeze | 14 | 47000  | 247  | 90402  | 1.127 | 83 |
| New Jersey   | US     | Wet Freeze | 15 | 61737  | 168  | 61488  | 1.123 | 83 |
| Montana      | US     | Wet Freeze | 15 | 377683 | 1860 | 680760 | 1.116 | 83 |
| New Jersey   | US     | Wet Freeze | 15 | 76000  | 338  | 123370 | 1.116 | 84 |
| New Jersey   | US     | Wet Freeze | 15 | 102000 | 465  | 169725 | 1.082 | 84 |
| Montana      | US     | Wet Freeze | 15 | 313696 | 1430 | 521950 | 1.078 | 84 |
| New Jersey   | US     | Wet Freeze | 15 | 105518 | 420  | 153720 | 1.074 | 84 |

| Montana    | US | Wet Freeze | 15 | 210707 | 656  | 239440 | 1.073 | 84 |
|------------|----|------------|----|--------|------|--------|-------|----|
| New Jersey | US | Wet Freeze | 15 | 361781 | 1160 | 423400 | 1.063 | 84 |
| Michigan   | US | Wet Freeze | 15 | 226712 | 1146 | 418290 | 1.058 | 84 |
| Montana    | US | Wet Freeze | 15 | 260840 | 1190 | 434350 | 1.051 | 84 |
| New Jersey | US | Wet Freeze | 15 | 396627 | 1270 | 463550 | 1.043 | 85 |
| Vermont    | US | Wet Freeze | 16 | 163000 | 473  | 172645 | 1.039 | 85 |
| Montana    | US | Wet Freeze | 16 | 154000 | 705  | 257325 | 1.038 | 85 |
| Montana    | US | Wet Freeze | 16 | 76000  | 305  | 111325 | 1.031 | 86 |
| Montana    | US | Wet Freeze | 16 | 122881 | 657  | 239805 | 1.031 | 86 |
| Vermont    | US | Wet Freeze | 17 | 91000  | 379  | 138335 | 1.031 | 87 |
| Illinois   | US | Wet Freeze | 17 | 100474 | 602  | 219730 | 1.03  | 87 |
| Montana    | US | Wet Freeze | 17 | 41132  | 200  | 73000  | 1.028 | 87 |
| Montana    | US | Wet Freeze | 17 | 114847 | 457  | 167262 | 1.025 | 87 |
| Vermont    | US | Wet Freeze | 17 | 108752 | 435  | 158775 | 1.02  | 87 |
| Vermont    | US | Wet Freeze | 17 | 79000  | 248  | 90768  | 1.02  | 87 |
| Michigan   | US | Wet Freeze | 17 | 117000 | 404  | 147460 | 1.018 | 88 |
| Michigan   | US | Wet Freeze | 17 | 478022 | 1530 | 558450 | 1.004 | 88 |
| Vermont    | US | Wet Freeze | 17 | 146456 | 586  | 213890 | 0.999 | 88 |
| Vermont    | US | Wet Freeze | 17 | 190000 | 597  | 217905 | 0.996 | 89 |
| Vermont    | US | Wet Freeze | 17 | 182000 | 565  | 206225 | 0.98  | 89 |
| Vermont    | US | Wet Freeze | 17 | 83664  | 483  | 176778 | 0.973 | 89 |
| Vermont    | US | Wet Freeze | 18 | 157388 | 490  | 178850 | 0.965 | 89 |
| Vermont    | US | Wet Freeze | 18 | 70628  | 225  | 82125  | 0.961 | 89 |
| Montana    | US | Wet Freeze | 18 | 102018 | 325  | 118625 | 0.954 | 90 |
| Illinois   | US | Wet Freeze | 18 | 201071 | 626  | 228490 | 0.946 | 90 |
| Vermont    | US | Wet Freeze | 18 | 118752 | 474  | 173484 | 0.942 | 90 |
| Michigan   | US | Wet Freeze | 18 | 141000 | 402  | 147132 | 0.942 | 91 |
| Vermont    | US | Wet Freeze | 18 | 106616 | 424  | 154760 | 0.942 | 91 |
| Vermont    | US | Wet Freeze | 19 | 561114 | 1799 | 242865 | 0.939 | 91 |
| Illinois   | US | Wet Freeze | 19 | 116880 | 468  | 170820 | 0.927 | 92 |
| Michigan   | US | Wet Freeze | 19 | 303828 | 1380 | 505080 | 0.924 | 92 |
| Illinois   | US | Wet Freeze | 19 | 58000  | 205  | 74825  | 0.923 | 92 |
| Vermont    | US | Wet Freeze | 19 | 45964  | 170  | 62050  | 0.906 | 92 |
| Vermont    | US | Wet Freeze | 19 | 158030 | 492  | 179580 | 0.904 | 92 |
| Illinois   | US | Wet Freeze | 19 | 169000 | 528  | 193248 | 0.899 | 92 |
| Vermont    | US | Wet Freeze | 19 | 72190  | 200  | 73000  | 0.898 | 92 |
| Michigan   | US | Wet Freeze | 20 | 174000 | 530  | 193450 | 0.892 | 92 |

| Vermont      | US     | Wet Freeze    | 20 | 75542  | 240  | 87840  | 0.892 | 92  |
|--------------|--------|---------------|----|--------|------|--------|-------|-----|
| Michigan     | US     | Wet Freeze    | 20 | 123386 | 392  | 143472 | 0.864 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 84165  | 542  | 197830 | 0.863 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 16151  | 80   | 29200  | 0.859 | 93  |
| Michigan     | US     | Wet Freeze    | 20 | 19520  | 98   | 21756  | 0.859 | 93  |
| Vermont      | US     | Wet Freeze    | 20 | 278400 | 1269 | 463185 | 0.845 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 119282 | 380  | 138700 | 0.835 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 69058  | 220  | 80300  | 0.822 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 50000  | 202  | 73730  | 0.819 | 93  |
| Indiana      | US     | Wet Freeze    | 21 | 60805  | 172  | 62780  | 0.819 | 93  |
| Vermont      | US     | Wet Freeze    | 21 | 34485  | 184  | 67160  | 0.81  | 94  |
| Michigan     | US     | Wet Freeze    | 22 | 232000 | 633  | 231045 | 0.808 | 94  |
| Minnesota    | US     | Wet Freeze    | 22 | 65481  | 299  | 109135 | 0.805 | 94  |
| Indiana      | US     | Wet Freeze    | 22 | 48000  | 217  | 79205  | 0.803 | 94  |
| Indiana      | US     | Wet Freeze    | 22 | 234450 | 1149 | 419385 | 0.796 | 94  |
| Newfoundland | Canada | Wet Freeze    | 22 | 343282 | 1592 | 581080 | 0.796 | 94  |
| Minnesota    | US     | Wet Freeze    | 23 | 73391  | 481  | 175565 | 0.792 | 94  |
| Newfoundland | Canada | Wet Freeze    | 24 | 15432  | 78   | 28470  | 0.787 | 94  |
| Minnesota    | US     | Wet Freeze    | 25 | 125210 | 668  | 142284 | 0.786 | 94  |
| Indiana      | US     | Wet Freeze    | 26 | 420395 | 1343 | 491538 | 0.785 | 95  |
| Minnesota    | US     | Wet Freeze    | 26 | 94798  | 302  | 110230 | 0.77  | 95  |
| Illinois     | US     | Wet Freeze    | 26 | 80672  | 257  | 93805  | 0.757 | 95  |
| Minnesota    | US     | Wet Freeze    | 26 | 52677  | 195  | 32175  | 0.756 | 95  |
| Illinois     | US     | Wet Freeze    | 26 | 579222 | 1854 | 676710 | 0.753 | 95  |
| Michigan     | US     | Wet Freeze    | 26 | 48089  | 167  | 60955  | 0.751 | 95  |
| Indiana      | US     | Wet Freeze    | 26 | 253309 | 1189 | 435174 | 0.75  | 95  |
| Newfoundland | Canada | Wet Freeze    | 27 | 141000 | 645  | 236070 | 0.744 | 95  |
| Indiana      | US     | Wet Freeze    | 28 | 17272  | 82   | 30012  | 0.734 | 95  |
| Newfoundland | Canada | Wet Freeze    | 28 | 108500 | 433  | 158045 | 0.732 | 95  |
| Alabama      | US     | Wet no Freeze | 1  | 14582  | 85   | 31025  | 0.621 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 74419  | 235  | 86010  | 0.627 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 163000 | 472  | 172280 | 0.641 | 100 |
| Alabama      | US     | Wet no Freeze | 1  | 266000 | 991  | 361715 | 0.646 | 100 |
| Alabama      | US     | Wet no Freeze | 3  | 22707  | 173  | 61415  | 0.653 | 100 |
| Alabama      | US     | Wet no Freeze | 3  | 195000 | 413  | 150745 | 0.67  | 100 |
| Alabama      | US     | Wet no Freeze | 3  | 69941  | 224  | 81760  | 0.7   | 100 |

| Alabama    | US | Wet no Freeze | 4 | 69941  | 224  | 81760   | 0.702 | 100 |
|------------|----|---------------|---|--------|------|---------|-------|-----|
| Alabama    | US | Wet no Freeze | 4 | 24375  | 146  | 53290   | 0.713 | 100 |
| Alabama    | US | Wet no Freeze | 4 | 43610  | 253  | 92345   | 0.716 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 29000  | 148  | 54020   | 0.717 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 62000  | 208  | 75920   | 0.72  | 100 |
| Alabama    | US | Wet no Freeze | 5 | 141752 | 493  | 180438  | 0.735 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 52257  | 256  | 93696   | 0.735 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 115552 | 410  | 149650  | 0.749 | 100 |
| Alabama    | US | Wet no Freeze | 5 | 26192  | 92   | 33580   | 0.778 | 100 |
| Arkansas   | US | Wet no Freeze | 5 | 50399  | 94   | 34310   | 0.785 | 100 |
| Arkansas   | US | Wet no Freeze | 5 | 73000  | 193  | 70445   | 0.796 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 376914 | 1529 | 558085  | 0.8   | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 136328 | 498  | 181770  | 0.811 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 59000  | 121  | 44165   | 0.813 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 76500  | 295  | 81420   | 0.815 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 453000 | 1338 | 488370  | 0.825 | 100 |
| Arkansas   | US | Wet no Freeze | 6 | 78537  | 291  | 106215  | 0.834 | 100 |
| California | US | Wet no Freeze | 6 | 10654  | 83   | 30378   | 0.84  | 96  |
| California | US | Wet no Freeze | 6 | 411000 | 1208 | 440920  | 0.847 | 90  |
| California | US | Wet no Freeze | 6 | 797000 | 3035 | 1107775 | 0.847 | 89  |
| California | US | Wet no Freeze | 6 | 65985  | 210  | 76650   | 0.869 | 89  |
| California | US | Wet no Freeze | 7 | 43187  | 210  | 76650   | 0.871 | 89  |
| California | US | Wet no Freeze | 7 | 24742  | 254  | 92964   | 1.364 | 89  |
| California | US | Wet no Freeze | 7 | 44180  | 491  | 179215  | 1.363 | 88  |
| California | US | Wet no Freeze | 7 | 30000  | 97   | 35405   | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 48876  | 206  | 75396   | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 48866  | 244  | 89060   | 1.352 | 88  |
| California | US | Wet no Freeze | 7 | 110599 | 214  | 78110   | 1.319 | 88  |
| Florida    | US | Wet no Freeze | 7 | 28178  | 324  | 118260  | 1.302 | 88  |
| Florida    | US | Wet no Freeze | 7 | 81070  | 346  | 126290  | 1.287 | 87  |
| Florida    | US | Wet no Freeze | 7 | 117000 | 386  | 140890  | 1.269 | 87  |
| Florida    | US | Wet no Freeze | 7 | 30000  | 92   | 33580   | 1.267 | 87  |

| Florida | US | Wet no Freeze | 7  | 70133  | 224  | 81984   | 1.249 | 87 |
|---------|----|---------------|----|--------|------|---------|-------|----|
| Florida | US | Wet no Freeze | 7  | 15374  | 54   | 19710   | 1.246 | 87 |
| Florida | US | Wet no Freeze | 7  | 566150 | 3219 | 788655  | 1.196 | 87 |
| Florida | US | Wet no Freeze | 7  | 94670  | 304  | 110960  | 1.176 | 87 |
| Florida | US | Wet no Freeze | 8  | 293053 | 1022 | 374052  | 1.164 | 87 |
| Florida | US | Wet no Freeze | 8  | 72365  | 307  | 112055  | 1.154 | 87 |
| Florida | US | Wet no Freeze | 8  | 80231  | 298  | 108770  | 1.15  | 86 |
| Florida | US | Wet no Freeze | 8  | 63000  | 219  | 79935   | 1.15  | 86 |
| Florida | US | Wet no Freeze | 8  | 36000  | 146  | 53436   | 1.136 | 86 |
| Florida | US | Wet no Freeze | 9  | 107000 | 354  | 129564  | 1.123 | 86 |
| Florida | US | Wet no Freeze | 9  | 58758  | 297  | 108405  | 1.12  | 86 |
| Florida | US | Wet no Freeze | 9  | 41966  | 147  | 53802   | 1.113 | 85 |
| Florida | US | Wet no Freeze | 9  | 711000 | 2360 | 861400  | 1.11  | 85 |
| Florida | US | Wet no Freeze | 9  | 22926  | 264  | 96360   | 1.108 | 85 |
| Florida | US | Wet no Freeze | 9  | 455359 | 1713 | 625245  | 1.108 | 85 |
| Florida | US | Wet no Freeze | 9  | 52000  | 169  | 61685   | 1.104 | 85 |
| Florida | US | Wet no Freeze | 9  | 89000  | 145  | 52925   | 1.104 | 84 |
| Florida | US | Wet no Freeze | 9  | 326211 | 1149 | 419385  | 1.104 | 84 |
| Florida | US | Wet no Freeze | 9  | 138587 | 251  | 91615   | 1.104 | 84 |
| Florida | US | Wet no Freeze | 10 | 58300  | 171  | 62586   | 1.103 | 84 |
| Florida | US | Wet no Freeze | 10 | 92496  | 296  | 108336  | 1.098 | 83 |
| Florida | US | Wet no Freeze | 10 | 308000 | 1146 | 419436  | 1.093 | 83 |
| Florida | US | Wet no Freeze | 10 | 47570  | 220  | 80300   | 1.093 | 83 |
| Florida | US | Wet no Freeze | 10 | 361814 | 1373 | 501145  | 1.088 | 83 |
| Florida | US | Wet no Freeze | 10 | 773000 | 2946 | 1075290 | 1.085 | 83 |
| Florida | US | Wet no Freeze | 10 | 91557  | 177  | 21948   | 1.081 | 83 |
| Florida | US | Wet no Freeze | 11 | 73000  | 267  | 97455   | 1.078 | 83 |
| Florida | US | Wet no Freeze | 11 | 40981  | 199  | 72834   | 1.074 | 83 |
| Florida | US | Wet no Freeze | 11 | 40402  | 198  | 72270   | 1.074 | 83 |
| Florida | US | Wet no Freeze | 11 | 71080  | 223  | 81395   | 1.068 | 83 |
| Florida | US | Wet no Freeze | 11 | 60000  | 209  | 76494   | 1.064 | 83 |
| Florida | US | Wet no Freeze | 11 | 39305  | 215  | 78690   | 1.064 | 83 |

| Florida     | US | Wet no Freeze | 11 | 382594 | 1346 | 492636 | 1.062 | 83 |
|-------------|----|---------------|----|--------|------|--------|-------|----|
| Florida     | US | Wet no Freeze | 11 | 58800  | 465  | 70680  | 1.061 | 82 |
| Florida     | US | Wet no Freeze | 11 | 648000 | 2467 | 900455 | 1.052 | 82 |
| Georgia     | US | Wet no Freeze | 12 | 30999  | 351  | 128115 | 1.05  | 82 |
| Georgia     | US | Wet no Freeze | 12 | 84552  | 297  | 108405 | 1.045 | 82 |
| Hawaii      | US | Wet no Freeze | 12 | 21000  | 87   | 31755  | 1.041 | 82 |
| Hawaii      | US | Wet no Freeze | 12 | 18892  | 81   | 29565  | 1.008 | 82 |
| Hawaii      | US | Wet no Freeze | 12 | 92706  | 285  | 104025 | 1.005 | 82 |
| Hawaii      | US | Wet no Freeze | 12 | 88461  | 224  | 81760  | 1.002 | 82 |
| Hawaii      | US | Wet no Freeze | 12 | 58000  | 211  | 77015  | 0.998 | 82 |
| Hawaii      | US | Wet no Freeze | 12 | 74000  | 316  | 115340 | 0.994 | 82 |
| Hawaii      | US | Wet no Freeze | 12 | 203670 | 744  | 271560 | 0.988 | 81 |
| Hawaii      | US | Wet no Freeze | 13 | 184000 | 608  | 222528 | 0.985 | 81 |
| Hawaii      | US | Wet no Freeze | 13 | 448000 | 1334 | 486910 | 0.97  | 81 |
| Hawaii      | US | Wet no Freeze | 13 | 22557  | 126  | 45990  | 0.969 | 81 |
| Hawaii      | US | Wet no Freeze | 13 | 43466  | 490  | 179340 | 0.96  | 80 |
| Hawaii      | US | Wet no Freeze | 13 | 27167  | 109  | 39785  | 0.959 | 80 |
| Hawaii      | US | Wet no Freeze | 13 | 62934  | 222  | 40182  | 0.952 | 79 |
| Hawaii      | US | Wet no Freeze | 13 | 37489  | 169  | 61854  | 0.951 | 78 |
| Hawaii      | US | Wet no Freeze | 13 | 60320  | 173  | 63145  | 0.949 | 78 |
| Hawaii      | US | Wet no Freeze | 13 | 125000 | 326  | 118990 | 0.948 | 78 |
| Mississippi | US | Wet no Freeze | 13 | 114840 | 461  | 168726 | 0.947 | 77 |
| Mississippi | US | Wet no Freeze | 13 | 18060  | 188  | 28576  | 0.944 | 77 |
| Mississippi | US | Wet no Freeze | 14 | 188000 | 526  | 192516 | 0.938 | 76 |
| Mississippi | US | Wet no Freeze | 14 | 69941  | 224  | 81760  | 0.926 | 76 |
| Mississippi | US | Wet no Freeze | 14 | 72000  | 134  | 49044  | 0.918 | 76 |
| Mississippi | US | Wet no Freeze | 14 | 56000  | 193  | 70445  | 0.912 | 75 |
| Mississippi | US | Wet no Freeze | 15 | 53684  | 264  | 96360  | 0.906 | 75 |
| Mississippi | US | Wet no Freeze | 15 | 43913  | 187  | 68255  | 0.906 | 75 |
| Mississippi | US | Wet no Freeze | 15 | 30396  | 344  | 125904 | 0.894 | 75 |
| Mississippi | US | Wet no Freeze | 15 | 213000 | 572  | 208780 | 0.884 | 74 |
| Mississippi | US | Wet no Freeze | 15 | 361168 | 1273 | 464645 | 0.877 | 74 |

| Mississippi    | US | Wet no Freeze | 15 | 48476  | 186  | 67890   | 1.366 | 74 |
|----------------|----|---------------|----|--------|------|---------|-------|----|
| Mississippi    | US | Wet no Freeze | 15 | 25000  | 81   | 29565   | 1.38  | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 70346  | 298  | 108770  | 1.383 | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 43559  | 153  | 55845   | 1.387 | 74 |
| Mississippi    | US | Wet no Freeze | 16 | 45870  | 209  | 76285   | 1.393 | 73 |
| Mississippi    | US | Wet no Freeze | 16 | 68000  | 229  | 83585   | 1.402 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 26000  | 82   | 30012   | 1.418 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 208324 | 761  | 277765  | 1.418 | 73 |
| North Carolina | US | Wet no Freeze | 16 | 114000 | 375  | 136875  | 1.422 | 71 |
| North Carolina | US | Wet no Freeze | 17 | 729000 | 2777 | 1013605 | 1.429 | 71 |
| North Carolina | US | Wet no Freeze | 17 | 362649 | 837  | 305505  | 1.433 | 70 |
| North Carolina | US | Wet no Freeze | 17 | 34715  | 178  | 64970   | 1.444 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 13049  | 96   | 35040   | 1.45  | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 77409  | 248  | 90520   | 1.451 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 453555 | 1701 | 622566  | 1.454 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 119205 | 511  | 186515  | 1.455 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 38000  | 144  | 52560   | 1.455 | 70 |
| Oklahoma       | US | Wet no Freeze | 17 | 89341  | 287  | 104755  | 1.456 | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 176900 | 1305 | 279270  | 1.46  | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 294000 | 557  | 203862  | 1.461 | 68 |
| Oklahoma       | US | Wet no Freeze | 17 | 22261  | 258  | 94170   | 1.474 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 84479  | 355  | 129575  | 1.484 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 82035  | 149  | 54534   | 1.491 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 88912  | 165  | 49335   | 1.499 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 329712 | 1240 | 452600  | 1.506 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 133199 | 259  | 94535   | 1.508 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 367522 | 1383 | 504795  | 1.514 | 68 |
| Oklahoma       | US | Wet no Freeze | 18 | 70980  | 449  | 69146   | 1.517 | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 73156  | 307  | 112362  | 1.529 | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 31547  | 357  | 130305  | 1.57  | 68 |
| Oklahoma       | US | Wet no Freeze | 19 | 41282  | 237  | 15642   | 1.584 | 67 |
| Oklahoma       | US | Wet no Freeze | 19 | 55020  | 433  | 65816   | 1.589 | 65 |

| Oklahoma       | US | Wet no Freeze | 19 | 73840  | 262  | 95630  | 1.616 | 65 |
|----------------|----|---------------|----|--------|------|--------|-------|----|
| Oklahoma       | US | Wet no Freeze | 19 | 19345  | 224  | 81760  | 1.619 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 465550 | 1753 | 639845 | 1.633 | 65 |
| Oklahoma       | US | Wet no Freeze | 19 | 329015 | 1238 | 451870 | 1.64  | 63 |
| Oklahoma       | US | Wet no Freeze | 19 | 402194 | 1322 | 482530 | 1.662 | 63 |
| South Carolina | US | Wet no Freeze | 20 | 43986  | 214  | 78110  | 1.674 | 63 |
| South Carolina | US | Wet no Freeze | 20 | 667000 | 2541 | 930006 | 1.689 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 676000 | 2275 | 830375 | 1.693 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 40979  | 179  | 65335  | 1.735 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 22000  | 139  | 50874  | 1.791 | 62 |
| South Carolina | US | Wet no Freeze | 20 | 95196  | 327  | 119355 | 1.805 | 61 |
| South Carolina | US | Wet no Freeze | 20 | 42763  | 208  | 75920  | 1.807 | 61 |
| South Carolina | US | Wet no Freeze | 21 | 88520  | 671  | 244915 | 1.85  | 60 |
| South Carolina | US | Wet no Freeze | 21 | 176000 | 745  | 272670 | 1.858 | 60 |
| South Carolina | US | Wet no Freeze | 21 | 23966  | 130  | 47580  | 1.859 | 60 |
| South Carolina | US | Wet no Freeze | 21 | 438406 | 1773 | 648918 | 1.867 | 59 |
| South Carolina | US | Wet no Freeze | 21 | 111000 | 364  | 132860 | 1.868 | 59 |
| South Carolina | US | Wet no Freeze | 21 | 471540 | 1706 | 622690 | 1.87  | 59 |
| South Carolina | US | Wet no Freeze | 21 | 411230 | 803  | 139722 | 1.875 | 58 |
| South Carolina | US | Wet no Freeze | 21 | 78077  | 323  | 117895 | 1.875 | 58 |
| South Carolina | US | Wet no Freeze | 21 | 34956  | 162  | 59130  | 1.932 | 57 |
| Tennessee      | US | Wet no Freeze | 21 | 386430 | 1448 | 529968 | 1.946 | 57 |
| Tennessee      | US | Wet no Freeze | 21 | 55641  | 272  | 99280  | 1.954 | 56 |
| Tennessee      | US | Wet no Freeze | 22 | 146135 | 246  | 89790  | 1.981 | 56 |
| Tennessee      | US | Wet no Freeze | 22 | 148810 | 510  | 186150 | 1.99  | 55 |
| Tennessee      | US | Wet no Freeze | 22 | 54290  | 207  | 75555  | 1.993 | 53 |
| Tennessee      | US | Wet no Freeze | 22 | 79000  | 289  | 105485 | 1.994 | 52 |
| Tennessee      | US | Wet no Freeze | 22 | 130000 | 449  | 163885 | 2.006 | 45 |
| Texas          | US | Wet no Freeze | 22 | 69941  | 224  | 81760  | 2.013 | 40 |
| Texas          | US | Wet no Freeze | 22 | 49968  | 155  | 56575  | 2.031 | 40 |
| Texas          | US | Wet no Freeze | 22 | 65000  | 198  | 72270  | 2.038 | 38 |
| Texas          | US | Wet no Freeze | 23 | 165330 | 1376 | 166496 | 2.053 | 36 |

| Texas | US | Wet no Freeze | 23 | 115000 | 380  | 138700 | 2.053 | 35 |
|-------|----|---------------|----|--------|------|--------|-------|----|
| Texas | US | Wet no Freeze | 23 | 44515  | 203  | 74095  | 2.078 | 34 |
| Texas | US | Wet no Freeze | 24 | 91133  | 321  | 117165 | 2.094 | 32 |
| Texas | US | Wet no Freeze | 24 | 5880   | 81   | 12555  | 2.103 | 30 |
| Texas | US | Wet no Freeze | 25 | 338382 | 1052 | 385032 | 2.125 | 29 |
| Texas | US | Wet no Freeze | 25 | 61000  | 168  | 61320  | 2.135 | 27 |
| Texas | US | Wet no Freeze | 25 | 363870 | 714  | 261324 | 2.14  | 24 |
| Texas | US | Wet no Freeze | 25 | 172134 | 699  | 255135 | 2.169 | 24 |
| Texas | US | Wet no Freeze | 26 | 708000 | 2696 | 984040 | 2.246 | 23 |
| Texas | US | Wet no Freeze | 26 | 50965  | 249  | 90885  | 2.322 | 23 |
| Texas | US | Wet no Freeze | 26 | 41866  | 203  | 74095  | 2.322 | 22 |
| Texas | US | Wet no Freeze | 26 | 76000  | 278  | 101470 | 2.337 | 20 |
| Texas | US | Wet no Freeze | 27 | 187245 | 684  | 249660 | 2.385 | 19 |
| Texas | US | Wet no Freeze | 27 | 76248  | 347  | 126655 | 2.388 | 19 |
| Texas | US | Wet no Freeze | 27 | 248422 | 905  | 331230 | 2.526 | 19 |
| Texas | US | Wet no Freeze | 28 | 159282 | 647  | 236155 | 2.54  | 19 |
| Texas | US | Wet no Freeze | 28 | 109803 | 350  | 127750 | 2.614 | 18 |
| Texas | US | Wet no Freeze | 28 | 39343  | 230  | 83950  | 2.626 | 18 |
| Texas | US | Wet no Freeze | 29 | 36344  | 154  | 56364  | 2.782 | 18 |
| Texas | US | Wet no Freeze | 31 | 35274  | 153  | 55845  | 2.868 | 15 |
| Texas | US | Wet no Freeze | 31 | 86684  | 366  | 133590 | 3.543 | 8  |
| Texas | US | Wet no Freeze | 31 | 363865 | 1282 | 467930 | 3.758 | 8  |

## Appendix B: Data Extraction (St. John's city- Canada)

| Tab | le ] | B-1 | : | Presents | the c | lata 1 | from | Total | Pave | (St. | John | 's c | ity- | Canao | da) | ). |
|-----|------|-----|---|----------|-------|--------|------|-------|------|------|------|------|------|-------|-----|----|
|-----|------|-----|---|----------|-------|--------|------|-------|------|------|------|------|------|-------|-----|----|

| Road Name        | IRI 2018(m/km) | IRI 2021(m/km) | Length of section(m) |
|------------------|----------------|----------------|----------------------|
| TRANS CANADA HWY | 1.03           | 1.32           | 1000.00              |
| TRANS CANADA HWY | 0.91           | 1.19           | 1000.00              |
| TRANS CANADA HWY | 1.22           | 0.83           | 1000.00              |
| TRANS CANADA HWY | 1.17           | 1.34           | 1000.00              |
| TRANS CANADA HWY | 1.13           | 0.88           | 1000.00              |
| TRANS CANADA HWY | 1.15           | 0.82           | 1000.00              |
| TRANS CANADA HWY | 1.18           | 0.66           | 1000.00              |
| TRANS CANADA HWY | 1.01           | 1.01           | 613.36               |
| TRANS CANADA HWY | 1.01           | 0.75           | 1000.00              |
| HIGHLAND DR      | 3.67           | 2.23           | 146.36               |
| HIGHLAND DR      | 4.33           | 2.70           | 134.73               |
| HIGHLAND DR      | 2.45           | 1.85           | 638.24               |
| HIGHLAND DR      | 2.99           | 3.54           | 532.60               |
| THE BOULEVARD    | 3.51           | 3.79           | 377.36               |
| THE BOULEVARD    | 3.28           | 3.92           | 288.51               |
| THE BOULEVARD    | 2.15           | 2.99           | 440.53               |
| THE BOULEVARD    | 4.72           | 4.37           | 285.92               |
| THE BOULEVARD    | 2.74           | 4.72           | 297.50               |
| EMPIRE AVE       | 8.27           | 7.16           | 76.77                |
| EMPIRE AVE       | 6.94           | 7.79           | 77.65                |
| EMPIRE AVE       | 3.26           | 2.72           | 167.25               |
| EMPIRE AVE       | 4.67           | 2.81           | 79.05                |
| EMPIRE AVE       | 6.03           | 5.40           | 82.87                |
| EMPIRE AVE       | 2.46           | 2.60           | 612.20               |

| EMPIRE AVE    | 3.71 | 8.53 | 75.16  |
|---------------|------|------|--------|
| EMPIRE AVE    | 6.29 | 5.47 | 68.33  |
| EMPIRE AVE    | 5.60 | 5.16 | 143.23 |
| ABERDEEN AVE  | 2.11 | 2.80 | 436.43 |
| MACDONALD DR  | 2.84 | 3.78 | 236.66 |
| MACDONALD DR  | 0.81 | 2.32 | 89.50  |
| MACDONALD DR  | 2.38 | 3.26 | 43.51  |
| MACDONALD DR  | 1.68 | 4.59 | 40.45  |
| MACDONALD DR  | 1.81 | 1.94 | 281.12 |
| MACDONALD DR  | 2.02 | 2.55 | 185.05 |
| MACDONALD DR  | 1.04 | 1.71 | 80.61  |
| MACDONALD DR  | 2.60 | 3.63 | 204.80 |
| MACDONALD DR  | 2.72 | 2.48 | 180.59 |
| MACDONALD DR  | 1.60 | 2.27 | 156.37 |
| FRESHWATER RD | 2.18 | 3.44 | 27.80  |
| FRESHWATER RD | 3.51 | 4.34 | 194.11 |
| FRESHWATER RD | 2.51 | 3.83 | 100.03 |
| FRESHWATER RD | 3.40 | 4.80 | 159.81 |
| FRESHWATER RD | 2.52 | 4.23 | 96.78  |
| FRESHWATER RD | 3.61 | 4.60 | 216.01 |
| FRESHWATER RD | 2.97 | 3.85 | 91.64  |
| FRESHWATER RD | 3.16 | 3.80 | 102.62 |
| FRESHWATER RD | 3.69 | 4.59 | 97.39  |
| FRESHWATER RD | 3.16 | 5.54 | 187.58 |
| FRESHWATER RD | 3.56 | 4.30 | 137.95 |
| FRESHWATER RD | 2.43 | 1.84 | 89.13  |
| FRESHWATER RD | 3.68 | 3.14 | 255.46 |

| FRESHWATER RD | 4.25 | 4.54 | 105.23 |
|---------------|------|------|--------|
| FRESHWATER RD | 5.28 | 4.70 | 156.26 |
| FRESHWATER RD | 5.78 | 8.32 | 61.08  |
| FRESHWATER RD | 3.50 | 3.91 | 218.48 |
| FRESHWATER RD | 2.01 | 2.87 | 42.58  |
| FRESHWATER RD | 2.52 | 4.23 | 96.78  |
| FRESHWATER RD | 3.61 | 4.60 | 216.01 |
| FRESHWATER RD | 3.51 | 4.34 | 194.11 |
| FRESHWATER RD | 2.51 | 3.83 | 100.03 |
| FRESHWATER RD | 3.40 | 4.80 | 159.81 |
| FRESHWATER RD | 2.18 | 3.44 | 27.80  |
| FRESHWATER RD | 2.97 | 3.85 | 91.64  |
| FRESHWATER RD | 3.16 | 3.80 | 102.62 |
| FRESHWATER RD | 3.69 | 4.59 | 97.39  |
| FRESHWATER RD | 3.16 | 5.54 | 187.58 |
| FRESHWATER RD | 3.56 | 4.30 | 137.95 |
| FRESHWATER RD | 2.43 | 1.84 | 89.13  |
| FRESHWATER RD | 3.68 | 3.14 | 255.46 |
| FRESHWATER RD | 4.25 | 4.54 | 105.23 |
| FRESHWATER RD | 4.82 | 4.70 | 156.26 |
| FRESHWATER RD | 5.78 | 8.32 | 61.08  |
| FRESHWATER RD | 3.50 | 3.91 | 218.48 |
| FRESHWATER RD | 2.01 | 2.87 | 42.58  |
| NEWTOWN RD    | 3.37 | 3.39 | 92.53  |
| NEWTOWN RD    | 4.70 | 5.28 | 280.14 |
| NEWTOWN RD    | 4.42 | 4.92 | 205.74 |
| NEWTOWN RD    | 3.49 | 3.30 | 107.19 |

| NEWTOWN RD      | 4.33 | 5.54 | 63.66  |
|-----------------|------|------|--------|
| NEWTOWN RD      | 5.73 | 5.64 | 76.27  |
| NEWFOUNDLAND DR | 2.60 | 2.89 | 141.99 |
| NEWFOUNDLAND DR | 3.05 | 2.59 | 91.08  |
| NEWFOUNDLAND DR | 4.77 | 4.05 | 214.58 |
| NEWFOUNDLAND DR | 6.21 | 1.83 | 117.00 |
| NEWFOUNDLAND DR | 3.41 | 3.10 | 84.54  |
| NEWFOUNDLAND DR | 1.22 | 3.12 | 75.65  |
| NEWFOUNDLAND DR | 3.64 | 2.94 | 122.78 |
| NEWFOUNDLAND DR | 3.39 | 3.44 | 107.45 |
| NEWFOUNDLAND DR | 2.92 | 2.02 | 219.52 |
| NEWFOUNDLAND DR | 2.94 | 5.36 | 180.13 |
| NEWFOUNDLAND DR | 6.42 | 5.86 | 135.30 |
| NEWFOUNDLAND DR | 4.51 | 3.56 | 104.89 |
| NEWFOUNDLAND DR | 3.76 | 2.86 | 55.08  |
| NEWFOUNDLAND DR | 4.34 | 3.49 | 229.79 |
| NEWFOUNDLAND DR | 2.81 | 4.06 | 80.92  |
| NEWFOUNDLAND DR | 4.00 | 1.97 | 190.44 |
| NEWFOUNDLAND DR | 4.18 | 4.04 | 276.32 |
| WATER ST        | 4.05 | 3.20 | 87.36  |
| WATER ST        | 3.20 | 2.97 | 303.55 |
| WATER ST        | 4.53 | 2.75 | 92.30  |
| WATER ST        | 2.97 | 2.52 | 144.51 |
| WATER ST        | 3.61 | 2.29 | 140.97 |
| WATER ST        | 3.25 | 2.06 | 27.30  |
| WATER ST        | 4.29 | 1.83 | 186.51 |
| WATER ST        | 5.17 | 1.60 | 61.58  |

| WATER ST         | 3.65 | 1.37  | 146.47 |
|------------------|------|-------|--------|
| WATER ST         | 3.39 | 1.14  | 116.09 |
| WATER ST         | 1.48 | 1.92  | 34.91  |
| KING'S BRIDGE RD | 4.57 | 2.37  | 175.05 |
| KING'S BRIDGE RD | 5.41 | 11.57 | 28.36  |
| KING'S BRIDGE RD | 6.09 | 2.83  | 83.43  |
| KING'S BRIDGE RD | 6.70 | 3.40  | 127.25 |
| KING'S BRIDGE RD | 5.90 | 6.92  | 155.16 |
| KENNA'S HILL     | 4.28 | 3.94  | 368.25 |
| KING'S BRIDGE RD | 3.98 | 5.83  | 106.80 |
| LOGY BAY RD      | 3.97 | 4.09  | 142.89 |
| LOGY BAY RD      | 1.05 | 1.45  | 104.36 |
| LOGY BAY RD      | 5.13 | 3.91  | 128.35 |
| LOGY BAY RD      | 1.44 | 2.87  | 70.48  |
| LOGY BAY RD      | 3.65 | 3.08  | 99.04  |
| LOGY BAY RD      | 3.03 | 3.56  | 278.94 |
| LOGY BAY RD      | 3.76 | 5.97  | 101.20 |
| LOGY BAY RD      | 1.63 | 1.76  | 65.90  |
| LOGY BAY RD      | 3.10 | 3.90  | 65.76  |
| LOGY BAY RD      | 3.43 | 3.28  | 176.68 |
| LOGY BAY RD      | 2.78 | 3.45  | 292.96 |
| LOGY BAY RD      | 2.20 | 4.03  | 104.74 |
| LOGY BAY RD      | 1.91 | 3.64  | 173.20 |
| LOGY BAY RD      | 1.08 | 1.19  | 78.45  |
| LOGY BAY RD      | 1.06 | 0.77  | 24.60  |
| LOGY BAY RD      | 1.11 | 1.44  | 116.59 |
| BLACKHEAD RD     | 2.45 | 3.51  | 206.83 |

| BLACKHEAD RD     | 3.54 | 4.66 | 439.53  |
|------------------|------|------|---------|
| BLACKHEAD RD     | 2.17 | 2.43 | 2571.66 |
| BLACKHEAD RD     | 2.26 | 2.74 | 1199.58 |
| BLACKHEAD RD     | 1.89 | 2.27 | 3829.73 |
| TORBAY RD        | 2.75 | 3.82 | 72.84   |
| TORBAY RD        | 3.69 | 3.83 | 248.62  |
| TORBAY RD        | 2.83 | 2.48 | 234.53  |
| TORBAY RD        | 2.89 | 2.00 | 160.48  |
| TORBAY RD        | 3.85 | 3.83 | 206.76  |
| TORBAY RD        | 2.40 | 4.27 | 241.23  |
| TORBAY RD        | 2.79 | 3.59 | 318.77  |
| TORBAY RD        | 3.36 | 1.63 | 30.15   |
| TORBAY RD        | 2.02 | 1.82 | 17.82   |
| TORBAY RD        | 3.64 | 3.93 | 193.08  |
| TORBAY RD        | 2.47 | 1.54 | 162.16  |
| TORBAY RD        | 2.24 | 4.41 | 90.99   |
| TORBAY RD        | 3.21 | 3.04 | 319.38  |
| PORTUGAL COVE RD | 1.51 | 2.22 | 51.93   |
| PORTUGAL COVE RD | 1.10 | 2.14 | 110.61  |
| PORTUGAL COVE RD | 1.21 | 1.75 | 128.74  |
| PORTUGAL COVE RD | 3.45 | 2.99 | 360.07  |
| PORTUGAL COVE RD | 1.22 | 1.63 | 165.08  |
| PORTUGAL COVE RD | 2.46 | 1.62 | 154.31  |
| PORTUGAL COVE RD | 1.30 | 1.63 | 96.60   |
| PORTUGAL COVE RD | 0.88 | 2.27 | 76.41   |
| PORTUGAL COVE RD | 1.69 | 1.63 | 390.96  |
| PORTUGAL COVE RD | 1.09 | 1.34 | 501.59  |

| PORTUGAL COVE RD | 2.28 | 2.55 | 607.99  |
|------------------|------|------|---------|
| PORTUGAL COVE RD | 1.42 | 1.57 | 1155.07 |
| PORTUGAL COVE RD | 2.71 | 2.85 | 110.84  |
| KENMOUNT RD      | 2.04 | 3.01 | 151.48  |
| KENMOUNT RD      | 1.49 | 2.60 | 103.12  |
| KENMOUNT RD      | 2.26 | 3.24 | 1246.70 |
| KENMOUNT RD      | 3.33 | 3.93 | 305.60  |
| KENMOUNT RD      | 1.84 | 2.95 | 205.62  |
| KENMOUNT RD      | 2.21 | 3.15 | 155.66  |
| KENMOUNT RD      | 3.05 | 2.15 | 75.08   |
| KENMOUNT RD      | 4.49 | 3.55 | 618.84  |
| KENMOUNT RD      | 2.24 | 2.99 | 604.55  |
| KENMOUNT RD      | 2.72 | 2.22 | 169.11  |
| KENMOUNT RD      | 1.62 | 3.52 | 505.53  |
| KENMOUNT RD      | 3.12 | 1.69 | 142.46  |
| KENMOUNT RD      | 1.81 | 2.31 | 441.93  |
| PRINCE PHILIP DR | 1.69 | 1.82 | 179.20  |
| PRINCE PHILIP DR | 1.56 | 2.62 | 309.77  |
| PRINCE PHILIP DR | 1.39 | 2.42 | 158.72  |
| PRINCE PHILIP DR | 2.38 | 2.66 | 307.76  |
| PRINCE PHILIP DR | 2.78 | 3.34 | 992.07  |
| PRINCE PHILIP DR | 1.86 | 1.73 | 505.38  |
| PRINCE PHILIP DR | 2.02 | 2.26 | 213.68  |
| PRINCE PHILIP DR | 2.54 | 2.46 | 266.21  |
| PRINCE PHILIP DR | 4.01 | 3.46 | 89.09   |
| PRINCE PHILIP DR | 3.58 | 2.93 | 180.44  |
| PRINCE PHILIP DR | 2.08 | 1.39 | 228.11  |

| PRINCE PHILIP DR | 2.21 | 1.55 | 198.35 |
|------------------|------|------|--------|
| PRINCE PHILIP DR | 1.16 | 1.59 | 361.24 |
| ELIZABETH AVE    | 2.79 | 3.09 | 369.19 |
| ELIZABETH AVE    | 2.92 | 2.53 | 36.68  |
| ELIZABETH AVE    | 5.21 | 6.79 | 62.18  |
| ELIZABETH AVE    | 3.57 | 2.98 | 169.72 |
| ELIZABETH AVE    | 2.29 | 3.20 | 177.68 |
| ELIZABETH AVE    | 3.46 | 3.32 | 34.22  |
| ELIZABETH AVE    | 7.54 | 4.19 | 170.47 |
| ELIZABETH AVE    | 2.66 | 3.53 | 187.79 |
| ELIZABETH AVE    | 2.10 | 2.74 | 292.38 |
| ELIZABETH AVE    | 1.87 | 3.58 | 98.92  |
| ELIZABETH AVE    | 3.42 | 4.93 | 50.15  |
| ELIZABETH AVE    | 3.38 | 3.95 | 45.61  |
| ELIZABETH AVE    | 2.93 | 3.01 | 353.93 |
| ELIZABETH AVE    | 2.94 | 3.36 | 35.49  |
| ELIZABETH AVE    | 4.94 | 3.93 | 238.94 |
| ELIZABETH AVE    | 4.43 | 4.59 | 181.44 |
| ELIZABETH AVE    | 3.19 | 4.36 | 111.27 |
| ELIZABETH AVE    | 3.48 | 3.88 | 83.96  |
| ELIZABETH AVE    | 4.40 | 2.87 | 196.48 |
| ELIZABETH AVE    | 4.79 | 4.07 | 217.75 |
| ELIZABETH AVE    | 4.66 | 4.24 | 182.74 |
| ELIZABETH AVE    | 4.00 | 3.63 | 57.79  |
| ELIZABETH AVE    | 2.03 | 2.86 | 88.57  |
| ELIZABETH AVE    | 3.30 | 2.92 | 106.33 |