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ABSTRACT 

 Pavement Management Systems (PMS) enhance pavement performance over the pavements' 

predicted lifespan by maximizing pavement life. PMS have become an essential aspect of 

construction and maintenance in the road domain, providing significant cost and energy emission 

reductions. In addition, using pavement performance prediction models have become an important 

part of PMS as a technically method for road engineers and various transportation agencies during 

the past several decades. The Pavement Condition Index (PCI) and International Roughness Index 

(IRI) are generally accepted methods for gauging ride quality and pavement conditions. Asphalt 

pavements are highly sensitive to various parameters, including pavement distress, environment, 

and traffic volume. Hence, studying these variables while developing prediction models is a vital 

step that can help develop asphalt pavement performance indices. 

This research aimed to introduce an effective method for developing asphalt pavement 

performance indices in different climate regions. This research provided a methodology to develop 

performance models using three soft computing techniques, namely the fuzzy inference system 

(FIS), multiple linear regression (MLR), and artificial neural networks (ANNs). Two sources were 

used for the extracted dataset: the long-term pavement performance (LTPP) data set for four 

climate regions in the U.S. and Canada and filed survey data of section roads of St. John's, 

Newfoundland, Canada. 

First, for the classification section, the research presented in this study provided a FIS that uses 

appropriate membership functions for computing PCI and IRI values. A fuzzy input was calculated 

by considering the degree of distress from nine density types of pavement distress coefficients 

(rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, patching, 

potholes, bleeding, and ravelling), which were considered as fuzzy input variables. Results 
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presented that the rutting and transverse cracking had the most significant influence on the PCI 

model, while rutting and patching had the most significant impact on the IRI model.   

Second, the MLR and ANNs techniques were used for predicting and developing models for the 

PCI and IRI of flexible pavements. The LTPP database was used to obtain three fundamental 

variables (pavement distress, environmental, and traffic volume) as input variables for four climate 

regions.  

Finally, for the case study, the research developed a second set of pavement distress models based 

on a field survey of St. John's city's input variables for predicting PCI and IRI models. A high 

determination coefficient (𝑅2), low root mean square error (RMSE) and mean absolute error 

(MAE)indicated good accuracy for the prediction models. The results showed that the ANNs have 

more precision than the MLR techniques. However, the results showed that both methods perform 

well. 
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Chapter1: Introduction 

1.1  Introduction  

 Around 93% of the world's paved roads are surfaced with asphalt. These pavements, better known 

as flexible pavements, consist of several layers of asphalt materials placed over granular material 

layers or treated subgrade. Each layer plays a role in supporting traffic loads. The layers also limit 

the impact of the environment (e.g., freezing and thawing) on the road. However, the life cycle of 

pavement is influenced by numerous distresses. These include rutting, fatigue cracking, block 

cracking, transverse cracking, potholes, patching, and thermal cracking.  

In the first few years of a road's usage, distresses initially form as micro-sized fissures. After the 

pavement has been exposed to traffic, distresses form and the process continues, resulting in a 

series of cracks. The functional condition is mainly concerned with the surface texture or quality 

of the ride. In contrast, the structural condition is concerned with the pavement's structural ability 

and capability to maintain certain traffic volume, as determined by deflection, layer thickness, and 

material characteristics. Technically, road damage means that roads cannot deliver the best 

possible service to users and passengers and require maintenance work. Many factors influence 

the service life of road, such as (1) structure and material parameters, (2) volumetric properties of 

the mixture, (3) environmental conditions, and (4) traffic volume (AASHTO R30, 2002). These 

pavement distress forms have continually been a challenge for pavement engineers aiming to build 

roads with long life and good performance. 

1.2 Problem Statement 

Highways is a major contributor to national and local economic and social well-being. In the U.S, 

Canada, and other countries worldwide, government transportation departments spend a 
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significant portion of their annual budgets on road repair. Therefore, major efforts have been made 

in recent decades to improve prediction models by understanding the mechanisms underlying the 

variables that influence pavement performance. Deterioration of pavements is caused by the 

increasing volume of traffic, repeated loads, asphalt concrete layer properties, coupled with 

weather conditions.  

The active pavement management system assures that pavement sections are maintained at high 

levels of service, structurally sound conditions, and with a minimum budget and resources. 

 Predicting pavement performance and enhancing the realism and accuracy of performance 

prediction models continues to be challenging for the following reasons: 

▪ Pavement predictions concerning various distresses are achieved through mathematical 

approaches. Nevertheless, pavement performance assessment is still challenging,  as  these 

approaches can only be applied effectively under similar conditions and often entail 

continuous calibration. 

▪ Precisely predicting the distresses of asphalt pavement, such as fatigue cracking, permanent 

deformation (rutting), patching, potholes, transverse cracking, ravelling, and longitudinal 

cracking, may be problematic due to the highly complicated behaviour of asphalt pavement 

material under different environmental conditions. 

▪ Predicting pavement performance is linked to the evaluation of road conditions and the 

level of serviceability, along with factors such as operation function, location, traffic 

volume, type of soil, and economic conditions. 
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1.3 Research Objectives  

 

 The primary motivation of the research was the Modeling asphalt pavement performance indices 

in four climate regions, introducing performance prediction models that can accurately predict 

pavement conditions and service life based on the effect of internal and external parameters on 

pavement performance. Research Specific objectives can be summarized as follows: 

▪ Modeling the relationship between asphalt pavement performance indices. 

▪ To study and define parameters that significantly impact pavement indices by conducting 

a comprehensive investigation of the effects of three fundamental parameters and relevant 

performance models. 

▪ Modeling of asphalt pavement performance indices using conventional techniques in four 

climate regions. 

▪ Modeling of asphalt pavement performance indices using soft computing techniques in 

four climate regions. 

1.4 Research Scope 

 

To fulfil all the research objectives, the scope of the study was divided into six phases, as follows: 

▪ Phase A: Modeling of Asphalt Pavement Performance Indices Using (FIS)  

This research proposes using a fuzzy inference system (FIS) to estimate pavement indices (PCI 

and IRI), taking the severity and level of the other pavement distress as input parameters. It should 

be noted that FIS is one of the most common techniques used for classification problems.  
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▪ Phase B: Modeling the Relationship Between Asphalt Pavement Performance Indices 

 This research work modeling the relationship between two asphalt pavement performance 

indicators (PCI and IRI) for climate regions in the U.S. and Canada. 

▪ Phase C: Modeling of Asphalt Pavement Performance Indices Using (MLR) 

The multiple linear regression (MLR)method was used to modeling asphalt pavement 

performance indices (PCI & IRI).  

▪ Phase D:  Modeling of Asphalt Pavement Performance Indices Using (ANN) 

The fourth phase proposed modeling asphalt pavement performance indices using (ANN). The 

ANNs method effectively investigates and analyzes the data. This technique could recognize data 

patterns that are not easily detected by traditional statistical. 

▪ Phase E: Comparison and validation between (MLR) and (ANNs) models 

The performance of the MLR models was compared with the performance of the ANNs 

models to evaluate the accuracy of the models in predicting pavement performance based 

on pavement distress parameters. 𝑅2, RMSE and MAE values were used to measure and 

compare the performance of the models. 

▪ Phase F: Case Study 

The case study focuses on studying the effect of pavement distress on determining 

pavement condition. St. John's, the capital of Newfoundland and Labrador-Canada is the 

case study's site. These include the determination of PCI, IRI, and PSR of flexible 

pavement and developing reliable prediction models for St. John's roads using soft 

computing techniques. 



 

 

 

 

 5 

 Research Scope Limited 

The research focused on only flexible asphalt pavement data with no maintenance or rehabilitation. 

Method Analysis:  

The study relies on three different techniques to achieve its objectives, as follows: 

1- Machine learning (FIS) technique using MATLAB software. 

2- Multiple linear regression (MLR) method using statistical product and service solutions 

(IBM SPSS software). 

3- Machine learning (ANNs) technique using MATLAB software. 

1.5  Dissertation Structure  

This thesis is comprised of eight chapters as follow: 

Chapter 1: Introduction 

This chapter introduced the concept of pavement management and asset management. Also 

included are the research objective, scope of the study. 

Chapter 2: Literature Review 

This chapter presented a review of the pavement management system. The chapter also presented 

a review of pavement condition evaluation, previous studies on pavement performance modelling, 

and types of distress. Finally, the chapter reviewed all parameters that influence pavement 

performance. 

Chapter 3: Research Methodology 

This chapter presented the research methodology for Modeling of Asphalt Pavement Performance 

Indices. The chapter also briefly explained the principle of the three soft computing techniques 

used in later chapters. 
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Chapter 4: Modeling of Asphalt Pavement Performance Indices Using FIS 

This chapter presented the modeling of asphalt pavement performance indices using a fuzzy 

inference system (FIS). 

Chapter 5: Modeling the Relationship Between Asphalt Pavement Performance Indices 

(PCI&IRI) 

This chapter focused on studying the correlation between PCI and IRI using different mathematical 

methods. 

Chapter 6: Modeling of Asphalt pavement performance Indices Using (MLR) and (ANNs) 

Techniques 

This chapter discussed different pavement performance prediction models and the significant 

factors affecting PCI and IRI models. This chapter also discussed the asphalt pavement 

performance indices modeling using different techniques. 

Chapter 7: A Case Study 

This chapter described a simple case study for 37 road sections in St. John’s, Newfoundland, 

Canada. It summarized of significant findings of the study. 

Chapter 8: Conclusions and Recommendations 

 This chapter considered with summarizes the conclusions and suggestions for future work. 
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Chapter2:  Literature Review 

2.1  Pavement Management System 

 Pavement performance can be generally defined as the change in their condition or function 

concerning age. It can also indicate the ability of pavement to carry the intended traffic and satisfy 

the environment during the design life, both functionally and structurally. The United States and 

Canada face a broad range of challenges due to their harsh climates, road safety issues, 

environmental concerns, and vast land size. These challenges increase the government's 

responsibility for maintaining an effective road transport system to sustain both countries' 

competitiveness in the global economy. Economic and financial conditions are driving 

governments to explore new and creative ways to finance transportation projects. 

The prediction model is an essential method for implementing efficient maintenance strategies. 

Pavement network management agencies need to consider such a strategy to realize cost-efficient 

management of pavements for long-term service life. 

This chapter summarises the methods, main observations, and knowledge gaps in using these 

pavement performance methods and prediction models. The chapter also reviews previous studies 

conducted concerning the objectives of the present work. A systematic literature review also 

highlights studies that use the PMS, PCI, and IRI when studying flexible pavement. 

2.1 History of Test Roads in North America (US and Canada) 

 In the early 1920s, the American Association of State Highway Officials (AASHO) began 

conducting a significant series of road tests, with the last important experiment performed in the 

late 1950s (AASHTO, 1972). These comprehensive studies were intended to determine the extent 

to which load traffic leads to the deterioration of the pavement. Canadian transportation agencies 
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noticed the empirical studies being carried out in the United States and decided to use local 

materials and conditions to perform similar experiments. 

Early in 1965, the Ministry of Transportation Ontario (MTO) started to collect data on 36 newly designed 

pavement test sections in the province of Ontario. These test parts were located near Brampton, on Highway 

10. The key objectives of the experiments were to: compare the results of the AASHO Road Test with the 

materials and conditions of Ontario; measure the performance of standard pavement designs; and record 

the performance of different base materials (Kamel et al., 1973). An empirical study was the primary feature 

of the AASHO Road Test, in which a specific vehicle type and weight were used to repeat the loading of 

each road segment. A total of six 2-lane test loops were constructed. Loops 2 to 6 were exposed to different 

truck traffic combinations. It should be noted that loop 1 was used as a section of control to test 

environmental impact, so it was not part of the loading tests. The main drawback of this empirical study is 

that such approaches can only be applied effectively under local conditions and often entail continuous 

calibration. 

 

                          Figure 2-1: The AASHO road test configuration (1962). 
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One of the most significant drawbacks of empirical studies is related to the limitations of the Road Test 

experiment. The data obtained from this experiment are highly related to the constraints associated with the 

experiment's location. Data were collected on one type of subgrade soil and road construction material 

under specific environmental and traffic conditions (NCHRP, 2004). C-SHRP initiated additional research 

in the late 1980s to study the effects of climate conditions on roadway efficiency. The main objectives of 

that study were to record paving practices in Canada; and better understand asphalt concrete (AC) properties 

that affect the efficiency of low temperatures (Gavin et al., 2003). In three separate locations across Canada 

– Lamont, Alberta; Hearst, Ontario; and Sherbrooke, Quebec – three C-SHRP test sites were built. 

However, only one test site was a full-study experiment (the one near Lamont), whereas the other two sites 

were used as smaller-scale satellite experiments (Gavin et al., 2003). 

 

2.2 Pavement Management Systems 

 A Pavement Management System (PMS) for pavement rehabilitation can be defined as "a system 

that will produce a multi-layer program for pavement rehabilitation to utilize available finds most 

cost-effectively" (Hudson et al., 1979). PMSs are becoming essential resources in the decision-

making process to maintain and preserve pavement networks. The PMS program is ideal for 

keeping all paved road sections under satisfactory structural conditions and serviceability. 

Nevertheless, it should not have any significant adverse effects on the environment, traffic, or 

social and community activities(Fwa et al, 2000) . 

Numerous PMSs, ranging from the complex to the simplistic, have been established. However, 

many of these systems suffer from mismanagement. Dewan (2004) reported on the main issues 

confronting pavement management efforts, with the author highlighting the components that are 

crucial for the inclusion of ineffective management strategies.  
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Several different management systems have been developed, applied, and studied across the U.S. 

In Pennsylvania, Kilareski and Churilla (1983) built a PMS that was suitable for a highly 

industrialised state and large highway network. Their PMS was then implemented in a few other 

states and monitored using two modules: a distress progression survey, and a network 

serviceability inventory. The distress progression survey was intended to gather data related to 

repair decision optimization and prioritizing, as well as budget estimations (Kilareski & Churilla, 

1983). In a similar project, Sachs and Suede (1996) looked at modifications in a PMS implemented 

in Washington. The authors developed a procedure that identified five kinds of distresses, then 

applied it to a look-up Table charting three severity levels for alligator cracking across various 

percentage ranges (Sachs & Suede, 1996).  In other related work, several different types of PMSs 

have been applied at the project and network levels. Gharaibeh et al. (1999) presented a 

management system in Illinois that integrated data, analytical procedures, geographical 

information system (GIS), and presentation methods. The developed system was used in five 

highway infrastructure components (i.e., intersections, bridges, culverts, traffic signs, and 

pavement). The authors employed an integrated network-level system to carry out a trade-off 

analysis on feasible maintenance options for the five components mentioned above. The analysis 

aimed to prioritize the minimizing of traffic disruptions (Gharaibeh et al, 1999). 

Sebaaly et al. (1996), in similar work, also proposed developing a PMS in Nevada at the project 

and network levels. Their developed system integrated performance models that considered life-

cycle cost analysis (LCCA) and traffic and environmental impacts. Another key consideration in 

their study was network optimisation methods that dealt with maintenance and rehabilitation 

prioritisation. At the project level, the authors performed pavement evaluations using non-

destructive deflection testing (sebaaly et al., 1996). 
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A few years later, Rasdorf et al. (2000) developed a PMS to implement in the North Carolina 

Department of Transportation (NCDOT). This system was intended to highlight the needs and 

challenges of developing a comprehensive information management system. The PMS enabled an 

environment that permitted data format standardisation and data sharing and reduced the need for 

training. The key contribution of the developed database was the application of geographic 

information system (GIS) and the linear reference method (LRM) (Rasdorf et al., 2000). 

In Portugal, Golabi and Pereira (2003) investigated how the Portuguese pavement management 

system (PPMS) was being developed and implemented. The authors noted that the main modules 

in the system were GIS, a database, a model that evaluated pavement quality, and pavement 

rehabilitation and strategic improvement model (PRISM). The authors also reported that the Mov 

modelling method, which applied probabilistic prediction models for assigning state transition 

probabilities using knowledge and experience, was being employed to further develop 

optimisation models with predictive capabilities (Golabi & Pereira, 2003).The average age of the 

highways and roads in Canada is 15.4 years (Gagnon et al., 2008), with a high percentage of the 

network length being more than 10 years old and requiring regular maintenance and rehabilitation. 

Table (2-1) presents the ages of highways and roads across Canada. 

 In-service overlay performance investigation and assessment over the years significantly supports 

the potential decisions of provincial transportation ministries regarding design variables such as 

type of pavement, asphalt mixture, pavement structure and construction parameters. In fact, in both 

the U.S. and Canada, a large portion of the transportation departments’ annual budgets are 

allocated to road repair and maintenance. Alberta Transportation, for instance, spends around 50% 

of its annual budget repairing and maintaining the highway network in Alberta(Government of 

Alberta, 2011). 
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                       Table 2-1: Ages of highways and roads in all provinces of Canada. 

Canada/Province  Age of Highway and roads(year) 

Newfoundland and Labrador  14.9 

Prince Edward Island  16.4 

Nova Scotia 13.9 

New Brunswick  16.3 

Newfoundland and Labrador 15.2 

 Quebec 15.2 

  Ontario 13.9 

  Manitoba 17.1 

 Saskatchewan  16.7 

Alberta 14.4 

British Columbia  15.8 

 

 Road maintenance programs have developed rapidly over the past 30 years. One study from the 

late 1900s reports on road work done in western Canada. In May 1990, the SPS-5 sections in 

Alberta joined the LTPP programme, and the overlay building was completed in September 1990 

(although the control section did not receive an overlay). After completing the overlay building, 

each of the eight sections underwent different maintenance, depending on their circumstances. 

Crack sealing and pothole patching were the most common treatments applied. The researchers 

report that two of the sections (502 and 509) came to an end in 2006, after only 16 years of service 

life (Norouzi et al., 2014). 
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In another study that looked at all SPS-5 sections across North America, Hall et al. (2003) applied 

the newly revised IRI measurements. The researchers found no noticeable difference between 

recycled asphalt pavement (RAP) and virgin long-term IRI or between milled and non-milled 

overlays. The influence of pre-overlay IRI, overlay age and average annual temperature on long-

term IRI was significant (Kathleen T. Hall et al., 2003). 

Rajagopal and George (1991) conducted parametric studies to estimate appropriate maintenance 

timing and select the most suitable level for three treatments (surface treatment and thin and thick 

overlays). The researchers found that the underlying structural condition directly impacted the 

immediate effect of maintenance work and that early maintenance treatment decreased future costs 

(Rajagopal & George, 1991). 

Several studies were conducted on SPS 5 sections across sixteen states in the U.S. and two 

provinces in Canada to evaluate the influence of various overlay strategies on pavement 

performance. West et al. (2011) used the latest reported data to compare the statistical distress 

found for the nine sections. The authors concluded in their analysis that both mixture type and 

milling before overlay construction would significantly affect pavement output in terms of fatigue 

cracking, transverse cracking, and longitudinal cracking. Their research also showed no significant 

impact of overlay thickness on longitudinal cracking (West et al., 2011). 

2.3 Parameters Affecting Pavement Performance 

Predicting pavement performance is considered a difficult task since several variables affect the 

pavement's performance. A number of different parameters have identified the research as 

affecting pavement performance. Janno and Shepherd (2000) investigated how seasonal variations 

impact pavement material properties. They found that moisture and temperature have the most 
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significant impacts overall, but that long-term performance is highly dependent on pavement layer 

properties and the subgrade soil. There is a need to determine and investigate the different potential 

parameters that influence pavement performance. As presented in Figure (2-2), the most crucial 

factors are materials and construction, Traffic volume, climate, and performance.  

These factors were especially influential in regions where wide seasonal fluctuations were the 

norm (Janno and Shepherd 2000). Even so, given the changes in climate across different regions, 

including closely neighbouring ones developing accurate prediction models based on a "one-size-

fits-all" approach is very challenging.  

 

                                Figure 2-2: Parameters affecting pavement performance. 

 

Despite the inherent difficulties in creating such a model, there is widespread consensus that such 

a model is needed for predicting various aspects of planning and budgeting in, for instance, 

transportation departments. The hope is that accurately predicting the impact of local and regional 

environments might enhance pavement performance and lead to decreased maintenance costs. A 

broad range of environmental factors has been reported to impact pavement performance (Mrawira 
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and Wile 2000) strongly. The most critical are temperature, the freeze/thaw cycle, overall moisture 

content, and the Ground Water Table (GWT). At the same time, seasonal weather variations 

contribute to changes in pavement material properties, thus affecting performance through 

secondary effects resulting from the factors mentioned above.                 

2.4 Pavement Deterioration 
 

 The extent and types of distress need to be identified and the reasons underlying the deterioration 

before a proper repair strategy is chosen to remedy the distressed pavement. Common causes of 

deterioration include harsh climate, heavy traffic loading, low-quality materials, deficient 

drainage, and construction flaws. The most typical causes of pavement distresses are ageing and 

traffic repetition, but distress may also be compounded simply through time, when, for instance, a 

crack can permit the intrusion of water to the pavement and eventually results in a pothole or 

stripping. Therefore, timely maintenance is critically essential. Deteriorates can be classified into 

several types as follow: 

Cracking 

 Cracks are fractures that occur on the pavement surface in various ways forms. The causes of 

cracks are many, including fatigue, shrinkage, deformation, and climate impact (temperature, 

snow, wind..., etc.). Table (2-2) shows the most common crack types in flexible pavement. Four 

fundamental types of cracking have been described as mentioned in this section. 

Fatigue Cracking (Alligator Cracking) 

Fatigue cracking is one of the main modes of distress in flexible pavements along with rutting and 

thermal cracking. Fatigue cracking includes a single crack and series of interconnected multi 

cracks leading to create small, nonuniform zones on the pavement, fatigue cracking due to 
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primarily dependent on 3 main reasons, repeated traffic loads, vehicle speed, and temperature of 

the pavement (Langlois et al., 1999).  

The linear distance in square metres of the impacted wheel path or fatigue cracking area is 

measured. Each area is categorized based on the severity level. If there are two distress in the same 

place, such as fatigue cracking and rutting, each distress must be dealt with separately (Miller & 

Bellinger, 2003) (FHWA 2009). 

   

          (a)Low Severity                                             (b) Medium Severity 

 

(c) High Severity 

Figure 2-3: Severity levels for fatigue cracking in asphalt pavement. 
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Block cracking 

Block cracking may be defined as the development of interconnected cracks across areas that have 

not been subjected to heavy traffic load. These cracks demarcate rectangular shaped blocks on the 

pavement. The size of the blocks typically ranges between 30 x 30 cm and 300 x 300 cm (ACRP, 

2016; DOT, 2010; Federal Highway Administration 2009). This form of distress develops across 

the width of the pavement (i.e., including wheel paths). However, on hot-mix asphalt (HMA) 

surfaces, they tend to extend a short distance only. An example of block cracking is given in Figure 

(2-4).  

 

Figure 2-4: Block cracking in asphalt pavement. 

The main causes of block cracking are hardening, shrinking, and inadequate compaction of the 

mix (FHWA 2009, FDOT 2015). Options include low, medium, and high. At low (L) severity 

levels, the cracks are tight and feature little spalling. The average width of these cracks is up to 6 

mm (Hall et al. 1993). At medium (M) severity levels, crack widths measure greater than 6 mm 

but less than 12 mm. At high (H) severity levels, the cracks have an average width 12 mm or 

greater, and there is severe spalling as well as either moderate or severe parallel cracking occurring 
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near the crack intersections. Note that this cracking is typically randomized (Hall et al. 1993). The 

best approach is to measure the area(s) affected either by square meters or by the entire pavement 

length. Block cracking of low severity can be remedied by constructing a thin wearing course, 

while block cracking that is medium or high may require recycling or overlays, and base problems 

may need pavement reconstruction or reclamation (Adlinge & Gupta, 2013). 

Longitudinal cracking 

Longitudinal cracking may be defined as the presence of long cracks parallel with the centerline. 

Cracking at the exact lane center is referred to as center-of-lane cracking. This form of cracking 

may occur from the centre line to the wheel path’s outer edge, as depicted in Figure 2-5 (a, b). 

Note that the positioning of these cracks (i.e., wheel path/non-wheel path) in large part determines 

their severity. 

 

(a)                                                                (b) 

Figure 2-5: Longitudinal cracking in asphalt pavement. 

The main causes of longitudinal cracks are construction-related failures, i.e., poor technique or 

low compaction, as well as heavy loads and frost heaving occurring between lanes. Additional 

causes are sub-surface crack development and low temperatures that lead to surface shrinkage  
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(Scott et al., 2012). Options include low, medium, and high. Low (L) severity levels of longitudinal 

cracking involve issues such as cracks that are not on the wheel path and which have only minor 

spalling. At L severity, the crack width measures a maximum of 6 mm (FHWA 2009). Medium 

(M) severity levels in longitudinal cracking are indicated by moderate spalling that features filled 

cracks less than 6 mm wide and non-filled cracks between 6 mm and 19 mm (Miller et al., 2003). 

High (H) severity levels of longitudinal cracking are indicated by crack widths 19 mm or greater. 

For each severity level (L, M and H), the affected areas are measured linearly in meters. 

Longitudinal cracking may be repaired using spray patching or other similar applied treatment.  

Transverse cracking 

Transverse cracking may be defined as cracks which develop perpendicular to a road’s centerline. 

This form of cracking is typically regularly spaced and begins as hairline (narrow) cracks that grow 

wider over time (Miller et al., 2003). Transverse cracking may form at any surface location and 

grow deeper over time. The main causes of transverse asphalt cracking are low temperatures that 

lead to surface shrinkage. This form of cracking may also be caused by a paving lane joint being 

poorly constructed, or by reflective cracks that have been induced by sub-surface cracking (Hall 

et al.,1993). Options include low, medium, and high. In low (L) severity levels of transverse 

cracking, tight cracks appear with widths measuring around 6 mm, accompanied by slight spalling. 

In medium (M) severity levels of transverse cracking, the cracks measure between 6 mm and 19 

mm and are randomly placed (FHWA 2009). In high (H) levels of severity for this form of 

cracking, the cracks are greater than 19 mm, with severe spalling around the cracks (Miller et al. 

2003). Examples of transverse cracking are shown in Figure 2-6 (a, b).For each severity level (L, 

M and H), the measurement of transverse cracks includes length and number of cracks. If the 
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severity level of the distress for this form of cracking is rated L or M, sealing of cracks is the best 

option. However, for transverse cracking rated as H, an overlay should be applied. 

    

(a)                                                                                (b) 

Figure 2-6: Transverse cracking in asphalt pavement. 

 

Rutting  

Rutting may be defined as vertical deformations in pavements that cause surface depressions in 

the direction of the wheel path. Depressions may develop across wide expanses, mostly in the 

direction of the wheel path. Figure 2-7(a, b) illustrates abrasive and structural rutting in St. John’s, 

Newfoundland, Canada. Rutting represents a critically important form of distress that occurs in 

flexible pavements. Shearing may then form as a result of the rutting, damaging the road’s top 

surface and thus significantly impacting the ride quality of motorists (Kandhal et al., 2003; 

Miljkovic et al., 2011).  

Options include low, medium, and high. In the low (L) degree, the rut depth measures between 6 

and 12 mm. In the medium (M) severity degree, the rut depth is greater than 3 mm but less than 

25 mm, while a high (h) degree of severity measures above 26 mm (ODOT 2010).  
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(a)  Abrasive rutting                   (b) Structural rutting 

                                         Figure 2-7: Rutting in asphalt pavement. 

 

To measure the depth of ruts, recording implements such as a straightedge or a profilometer may 

be used. Another option is using a data collection vehicle (DCV) (ODOT 2010). 

If a surface rut is categorized as minor, it likely can be filled. However, ruts with a deeper profile 

need to be treated with an overlay on top of the affected surface. In cases of unstable asphalt, 

recycling is an option, whereas in cases where inconsistencies are found in the sub-grade, the best 

approach is either reconstruction or reclamation, both of which require extensive work (Adlinge 

et al., 2009). 

Potholes 

Potholes may be defined as localized distress that form as bowl-shaped holes that range in size. 

The primary location of potholes is an area of poor drainage that is characterized as having heavy 

slow-moving traffic. Classic examples of water-filled potholes are given in Figure 2-8 (a, b). The 

formation of potholes occurs when pavement depressions deteriorate over time as the result of 

inadequate strength in the pavement layer. Potholes may also be caused by fatigue cracking. In 

either of these cases, tiny pavement fragments are incrementally removed, leading to progressive 

distress that eventually propagates within the pavement’s lower layers.  
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(a) (b) 

Figure 2-8: Potholes in asphalt pavement. 

Options include low, medium, and high. Pothole that are considered to be low (L) severity have a 

depth of 25 mm or less, while those considered to have medium (M) severity range in depth 

between (25-&50) mm. High (H) severity potholes feature depths of 50 mm or more. For each 

severity level (L, M and H), the potholes are counted, and the pothole area is measured in square 

meters. Pothole repair options include excavation, patching and/or rebuilding. The most common 

approach is to patch the hole on a regular basis (i.e., seasonally). Patching must be done correctly, 

however, or the unevenness of the road may cause further driver discomfort. 

Delamination 

Delamination may be defined as the removal of a portion of the asphalt surface as the result of the 

surface’s improper bonding to the layer underneath. Delamination distress decreases the 

pavement’s serviceability due to peeling and slipping of the layers as well as cracking in the wheel 

paths. Delamination primarily occurs along the shoulder or wheel path, as illustrated in Figure 2-

9 (a, b, c, d). The main causes of delamination are heavy traffic loads, water percolation, and 

inadequate interfacial bonding of the layers. This form of pavement distress has no severity degree 
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measurement, as any delamination that extends to depths below the top two layers leads to surface 

distress in high traffic. Moreover, delamination may vary in size from a few square centimetres to 

dozens of square meters. Surface or sub-surface delamination is primarily measured using non-

destructive test strategies, including strain gages or Ground Penetrating Radar.  

Delamination is usually repaired either by placing a thin overlay of asphalt on top of the affected 

area, milling off the affected surface layers, or replacing the wearing course (Celaya et al., 2011). 

    

(a)                                                                           (b) 

   

(b)                                                                            (d) 

Figure 2-3: Delamination in asphalt pavement. 
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For flexible pavements, Hicks (1999) provided a logical approach to determine the most effective 

preventive maintenance treatment for distress as shown in Table (2-2) (Miller & Bellinger, 2003) 

(Miller & Bellinger, 2003). Moreover, materials play a significant role in determining the life of 

pavements. Change of structure, chemical composition, and surface tension properties of asphalt 

varies with the ageing of asphalt, making the asphalt cement stiffer and more vulnerable to 

moisture damage. Moreover, some other significant binding characteristics include temperature 

susceptibility, adhesion cohesion and hardening & ageing (Miller & Bellinger, 2003). 

Based on the information published by Gupta et al. (2011), IRI is typically influenced by four 

factors, namely: The California Bearing Ratio (CBR) of the subgrade soil, the thickness of the 

pavement, the traffic volume on the road, and the age of the pavement. Researchers used  ANNs 

and MLR to develop deterioration models and observed that prediction accuracy with the 

regression equation was less than that with an ANNs model(Gupta et al., 2011). 

2.4.1 Materials and Constructions Parameters 

The material parameters needed for the design phase are divided into three fundamental classes, 

pavement model material inputs, material-related criteria for pavement distress, and other 

properties of materials. The following independent variables are considered to develop the IRI 

performance deterioration prediction equations: 

• Age, the age is selected since it reflects the impacts of the season and the environment. 

• structural number (SN) is an important Independent Variable (input variable). It represents 

the overall structure constructed to ensure load road carrying capacity to the frequent traffic 

loads over the service life. The SN considers structural parameters of layer, layer thickness 

and drainage parameters of the base and the sub-base.,  
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• Equivalent Single Axle Load.  

Table 2-2: Flexible pavement distress types. 

*W is width of crack.   **P is cracks forming a complete pattern. 

 

Distress Categorised Unit Potential causes Severity Level 

L M H 

Fatigue Crack(W*P) 𝑚𝑚2 Repeated traffic loading. W≤6 

P≤32.8 

6≤W ≤19 

32.8≤P≤150 

W≥19 

Block Crack 𝑚𝑚2 1-Asphalt concrete shrinkage. 

2-Daily temperature cycling. 

W≤6 

 

6≤W ≤12 

 

W≥12 

Longitudinal 

       & 

Transverse Crack 

mm 

 

1-Asphalt concrete surface shrinkage.  

2-A poor joint between pavement lanes.  

3-The reflection of the joint in the 

underlying layer. 

W≤6 

 

6≤W ≤12 

 

 

Edge Crack mm 1-Repeated traffic loading. 

2-Frost-weakened base. 

 -----  

Rutting (rut depth) 𝑚𝑚2 1-The inadequate thickness of the surface 

of the pavement.  

2-Rise moisture content. 

 3-Poor compaction. 

(6-12) (13-25) ≥ 26 

Patching 𝑚𝑚2 Lack of serviceability structural capacity 

in the surface pavement. 

 ------  

Potholes 𝑚𝑚2 1-From a surface loss.  

2-Base layer material is weak due to water 

leaking the pavement layer through cracks. 

25 25 – 50 ≥50 

Ravelling 𝑚𝑚2 Loss of asphalt and aggregate particles 

dislodging.  

 

------ 

Bleeding 𝑚𝑚2 Excess bituminous material.  

 

Delamination 

 

    

    

mm 

1-Water leaks and heavy loads. 

2-Poor interfacial bonding between 

various courses. 

 

30 square centimeters to tens 

of square meters 
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Some sections of some years the data are not available the cumulative equivalent single axle load 

(ESAL) for in the LTPP database. The ESAL values for the missing data are estimated using 

following Equation: 

𝐄𝐒𝐀𝐋𝐬𝐲 = 𝐄𝐒𝐀𝐋𝐬𝐲−𝟏 − 𝐗(𝟏 + 𝐀𝐀𝐑𝐆)                                                                                           2-1 

Where, Y is the year of the measured or interpolated IRI and PCI, the latest ESAL value depends 

on calculate the ESAL of the previous year multiplied by the Average Annual Rate of Growth 

(AARG).                        

2.4.2 Environmental Parameters 

 The environmental effect is one of the important parameters contributing to pavement 

deterioration. This includes temperature, precipitation quantities and freeze-thaw cycles, 

temperatures in all asphalt layers, Pavement’s structural performance can be gauged through 

observation and measurement of pavement deflection, and it has been shown that stiff asphalt 

layers are sometimes too brittle for winter conditions like Canada. Asphalt layers should be stiff 

enough to limit the permanent deformation in the summertime, but it should be flexible enough in 

the wintertime to the long-term performance of pavement structure was showed to strongly depend 

on the properties of the pavement layer(s) and the subgrade soil. There influences were especially 

strong in regions where there were seasonal weather fluctuations (Janno & Shepherd, 2000). Such 

regional changes in climatic conditions, along with variations within those regions, can make the 

development of prediction models extremely difficult, particularly when the models need to have 

a “one-size-fits-all” solution. Therefore, developing a model that is able to predict regional 

environmental impacts while also incorporating seasonal variabilities in pavement materials will 
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contribute immensely to the improvement of pavement performance. It will also reduce costs 

related to maintenance. 

Various environmental factors have been reported in the literature as having substantial impacts 

on pavement performance and strength (Mrawira & Wile, 2000).  

A pavement’s structural performance is usually measured by pavement deflection as well as by 

observation. For flexible pavement, layer moduli and surface deflection can be significantly 

impacted by asphalt concrete temperature, along with asphalt concrete layer stiffness. The latter 

factor has a strong effect on the structural capacity of the pavements. Increases in temperature 

cause the asphalt to decrease in stiffness, leaving it vulnerable to heavy loads. Furthermore, as the 

asphalt concrete stiffness decreases, higher stress levels are being transmitted both to the base and 

the subgrade layers. 

2.4.3 Traffic Volume Parameters 

Traffic loading-induced fatigue is a key parameter that leads to significantly shortened pavement 

life. This type of fatigue results in compression that occurs at the top layer and tension on the 

bottom. When these stress states persist over a long period of time, the usually result in the 

formation of surface cracks that permit moisture to enter the pavement sub-layers (i.e., the base 

and sub-grade layers). Repeated traffic loading with the presence of these stresses and deteriorating 

conditions cause furthermore serious cracking and ultimately pavement failure. Common traffic-

induced stresses are traffic volume, truck type, load application time, tire pressure, and ESAL 

(specifically, the number of equivalent single axle loads).  

Additionally, material pavement layers employed in roadway construction are critical factors 

toward the future performance of the pavement. Asphalt mixes need to have appropriate blending 



 

 

 

 

 28 

properties suitable for the environment to resist cracking. The aggregate used in the base and sub-

base should have sufficient stiffness to avoid deformation caused by repeated traffic. These 

properties are obtainable when properly performed compaction processes are applied. 

A crucial parameter for describing the strength of pavement is the sub-grade resilient modulus, 

given that the since the sub-grade forms the foundation. Hence, the use of sub-grade materials 

appropriate to the environmental and load conditions will likely yield pavement that is strong and 

enjoys a lengthy operational life. Several studies (Tarefder et al., 2008) demonstrate the connection 

between a suitable sub-grade and longer pavement life. 

2.4.4 Additional Parameters 

 Additional parameters include construction quality (e.g., construction joints and roughness level); 

construction and design factors (e.g., surface and maintenance properties); and geometric features 

(e.g., drainage facilities provision, longitudinal and cross slope, and horizontal /vertical alignment, 

etc.). All of these parameters are well-known to affect the performance of the pavement. However, 

because they typically have only a slight or indirect effect, they will not be heavily weighted in the 

models’ classification and development process. 

2.5 Pavement Performance Measures 

  Pavement performance is defined as the ability of pavement to serve traffic over time 

satisfactorily serve traffic over time (AASHTO, 2003). Pavement performance measures are 

ratings for a pavement section representing the pavement condition and are used to help manage a 

pavement network.  

A pavement condition index can help provide paving rehabilitation alternatives, estimate 

maintenance and rehabilitation costs, and track different pavement types of performance. There 
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are various popular types of performance systems. Still, the most popular ones and will be 

described in more detail are Pavement Condition Index (PCI), the International Roughness Index 

(IRI), and the Present Serviceability Index (PSI). The adopted condition rating generally 

numerically scales based on good or poor pavement results (Pavement Interactive, 2007). 

2.5.1 International Roughness Index (IRI) 

One of the key factors determining pavement serviceability is roughness.  American society for 

testing and materials (ASTM E867-06) defines pavement roughness as a “deviation of a surface 

from the true planar surface with characteristic dimensions that affect vehicle dimensions and ride 

quality” (ASTM International 2012). The roughness of a pavement can be determined using the 

International Roughness Index (IRI), which is a measurement devised in 1982 by the International 

Road Roughness Experiment (IRRE) in Brazil, with sponsorship from the World Bank. The aim 

of the IRRE in developing the IRI was to create a stable standard that was globally recognized 

(Sayers 1995). 

Road roughness needs to be properly measured in order to apply suitable repair and maintenance 

procedures. Its measurement is also important for improving traffic safety, decreasing dynamic 

loads on pavement structures, and enhancing ride comfort levels. As mentioned, the IRI represents 

a consensus model for a standard parameter which describes a vehicle’s vertical movement along 

a road characterized as ‘non-smooth’. The idea of an IRI was initially presented in a report 

(National Cooperative Highway Research Program), after which the World Bank solicited for 

researchers to devise the index on a universal scale (Gillespie et al., 1980). Today, the IRI is used 

the world over as a standard measurement of road roughness.  
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The IRI uses simulations to determine roughness responses in vehicles moving 80 km/hr. It is 

represented as the ratio of a quarter car model’s accumulated suspension motion to the travelled 

distance and typically ranges in value between 1 to 5 m/km for a paved stretch of highway, with 

low values of IRI denoting a smooth surface. In current usage, the U.S. Federal Highway 

Administration classifies high-speed pavements that have IRI values exceeding 2.7 m/km as being 

in “poor” condition (U.S. Department of Transportation 2010). Table (2-3) presents five main 

pavement ride quality categories, based on the IRI’s measured values as standards. 

In recent research, pavement roughness has been found to be synonymous with pavement 

serviceability. Kavianipour et al., (2015) reported in their findings that pavement roughness 

significantly impacted traffic safety. The relationship between pavement distress and the IRI was 

also investigated in earlier studies (Perera & Kohn, 2006; Prozzi and Madanat, 2004). The findings 

generally show that because the IRI provides such an accurate reflection of pavement performance, 

changes in a pavement’s life cycle essentially mirror changes in IRI levels. 

Numerous factors may determine the degree of a pavement’s roughness. These include climatic 

conditions, material properties, rehabilitation and design parameters, and traffic loading. The 

distress’s extent and severity are also a contributing factor. Perera and Kohn (2001), when 

measuring roughness traits in a road’s test areas, noted strong associations between environmental 

conditions and pavement performance. More specifically, the authors noted patterns in roughness 

progression occurring between distinct environmental areas that were characterized by, for 

instance, dry Freeze/dry no-freeze, or by wet-freeze/wet no-freeze. The patterns appeared 

dependent on pavement thickness in total, which included the base, sub-base and sum of the 

surface, as well as freezing indices, number of fines in base layers, number of wet days, and annual 

precipitation (Perera & Kohn, 2006).    
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In both Canada and the U.S., nearly all monitoring of roughness at the network level is conducted 

with accelerometer sensors, along with infrared, acoustic, and/or laser sensors (Ong et al., 2010). 

Smartphones integrate a number of sensors, such as accelerometers and Global Positioning System 

(GPS). Accelerometers measure accumulative vertical displacement caused by pavement 

roughness, while GPS sensors determine distance travelled (Zang et al., 2018). Both of these 

values are used in formulating the IRI. In the present study, the smartphone-based application 

TotalPave is employed for determining the IRI (TotalPave Inc. 2018). TotalPave streams 

unprocessed sensor data from the smartphone to the cloud for IRI conversion. According to the 

U.S. Department of Transportation, pavement ride quality based on IRI can be categorized into 

five groups, as shown in Table (2-3) (Islam et al., 2014).  

The IRI can also be used as a statistic index for summarizing surface deviations of a single wheel 

track by using the quarter car system to create a profile. Figure (2-10) illustrates a quarter car 

comprising a sprung mass (i.e., the portion of the vehicle body with the user) and an unsprung 

mass (i.e., wheels and suspension). The sprung mass connects with the unsprung mass via 

suspension, as simulated using a spring and a damper. Another spring is used to bring the sprung 

mass and the real pavement into contact with each other (Arellano et al., 2006). 

Table 2-3: Pavement ride quality based on roughness. 

 

Category 

IRI Rating (m/Km), 

by Highway Type 

Interstate and 

Noninterstate Ride Quality 

Interstate Noninterstate 

Very good <1 <1.0 Acceptable 0–2.0 

Good 1.0-1.5 1.0-1.50 

Fair 1.5-1.90 1.50-2.70 

Poor 1.9-2.70 2.70-3.50 - 

Very poor >2.70 >3.5 Less than acceptable >2.70 
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The quarter car system moves through the longitudinal pavement profile at 80 km/hr (~50 mph) in 

the simulation. As the car moves through the simulated pavement roughness, dynamic excitation 

occurs in the system. These create varying vertical speeds (Z_S) and accelerations (Z_U) in the 

sprung/unsprung masses, thus producing relative movement between the simulated vehicle’s axle 

and chasses. The following equation can be used to calculate a given section length’s IRI value 

(Arellano 2006): 

𝑰𝑹𝑰 =
𝟏

𝑳
∫ |𝒁𝑺 − 𝒁𝑼|

𝑿

𝑽
𝟎

𝒅𝒕  2-2 

where: 

IRI= International Roughness Index (mm/m or m/km), L= length of section (m)  

X= longitudinal distance (m) ,V= speed of the quarter-car model (m/s) , 
𝑋

𝑉
 = time it takes the model 

to run a certain distance x , dt= time increment , 𝑍𝑆= vertical speed of the sprung mass  

𝑍𝑈= vertical speed of the unsprung mass. 

 

Figure 2-4: The quarter car comprising a sprung mass. 
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In 2002, the U.S. Federal Highway Administration (FHWA) deemed roads with an IRI of 

maximum 170 inches/mile to be categorized as “acceptable” with regard to roads in the national 

highway system (NHS) (Shahin, 1994). 

A few years later, FHWA defined roads with an IRI of 95 inches/mile or less to be “good”. 

Nowadays, specifications to obtain an IRI are being set by ASTM International (2008) in 

accordance with 15 ASTM Standard E1926-08. So, for instance, the IRI of a right wheel track 

right international roughness index (RIRI) denotes the roughness measurement of a road surface 

as specified by the FHWA and in accordance with the administration’s highway performance 

monitoring system (HPMS). 

Various researchers have investigated roughness trends over the past few decades. (Khazanovich 

et al. (1998) analyzed JPC (i.e., GPS-3) sections by classifying them as “good”, “normal” and 

“poor” according to IRI vs. time performance. In the study, a pavement section was deemed “good” 

under the following IRI conditions: 

𝑰𝑹𝑰 <  𝟎. 𝟔𝟑𝟏 +  𝟎. 𝟎𝟔𝟑𝟏 ×  𝒂𝒈𝒆 2-3 

 Where IRI is denoted in m/km, and age represents the age of the pavement (in years). Similarly, 

a pavement section was deemed “normal” under the following IRI conditions: 

𝑰𝑹𝑰 >  𝟏. 𝟐𝟔𝟑 +  𝟎. 𝟎𝟗𝟒𝟕 ×  𝒂𝒈𝒆 2-4 

Where IRI is referenced in m/km, and age indicates the age of the pavement (in years).  

Note that pavement sections were categorized as "normal" if their performance fell between 

"good" and the cut-off limit for "poor." 

It is worth mentioning that 71% of the sections deemed "poor"  Khazanovich et al.'s (1998) study 

were situated along wet-freeze zones, while only 24% were located in dry-freeze areas, 6% in wet 
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no-freeze zones and 0% were found in dry no-freeze locations. The authors also found that higher 

IRI values were correlated with higher numbers of freeze-thaw cycles, higher numbers of annual 

days below 0 °C, and higher freeze index values. They also reported that increased moisture levels 

that persisted over time (as determined by the annual average number of wet days) resulted in 

higher roughness levels. Accordingly, pavements located in more moderate climates generally 

showed lower IRI values. 

Another important correlation reported by Khazanovich et al. (1998) was the no relationship 

existing between the type of sub-grade and the pavement performance. For example, around 70% 

of road sections that were built over sub-grade that was fine-grained gave "poor" performance 

measurements on the IRI. In contrast, only 33% of road sections constructed over coarse-grained 

soils showed poor performance. Interestingly, the authors found no trend between IRI and traffic 

loadings (Khazanovich et al. 1998). 

Meanwhile, sections of the studied roadways that had stabilized bases (18%) showed lower levels 

of IRI in comparison to road sections that had granular bases (82%). In fact, the road sections that 

had asphalt-stabilized bases showed an IRI that was lower than every other base. In their study, 

Khazanovich et al. (1998) applied linear regression strategies in order to estimate the initial 

roughness (i.e., at the time of construction) as a means to find the rate of increase for roughness. 

Their calculations determined that the poorest performing road sections demonstrated higher 

average rates of increasing roughness compared to all other types, whereas those sections whose 

performance was deemed “good” demonstrated much lower rates. At the same time, poorly 

performing road sections consistently showed back-casted initial roughness that was much higher 

in comparison to sections whose performance was considered either “good” or “normal”  

(Khazanovich et al. 1998). 
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In a study done by Perera et al. (1998), the authors discovered that jointed reinforced concrete 

pavements (JRCP) (i.e., GPS-4) pavements with high values of IRI shared similar features, such 

as thicker slabs, longer joint spacing, higher portland cement concrete (PCC) modulus values, 

higher sub-grade moisture content, and lower water/cement ratios.      

  Khazanovich et al. (1998) investigated jointed reinforced concrete pavements (JRCP) sections by 

applying a method similar to their general pavement studies (GPS-3) section analysis approach. 

The authors found that JRCP built over coarse-grained soil generally gave better performance 

compared to JRCP built over sub-grade characterized as fine-grained  (Khazanovich et al. 1998). 

The IRI boundary for new and rebuilt roads in Canadian provinces and several countries is 

presented in Table (2-4), with many national guidelines identifying different thresholds to approve 

new and rebuilt roads. IRI frontier values are primarily a function of: 

• Functional classification of the road such as principal roads, minor roads, and 

highways, 

• surface type (flexible pavement, rigid pavements),  

• speed design of the road, 

• road section length, and 

• average annual daily traffic (AADT). 

 Generally, 4 out of 10 reported countries (Belarus, Slovakia, Spain, and Australia) represented 

IRI specifications as a road functional classification function. For example, Australia classified 

practical road levels into “highways and principal roads” based on vehicle speed (Gaspard, 2014; 

Múčka, 2017; Puppala & Chittoori, 2012). 
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Table 2-4: IRI limit specifications for reconstructed roads. 
Country Road type Evaluation 

length (m) 

IRI (mm/m) 

 

 

 

 

Belarus 

AC/PCC – new roads (highways and first-class roads)  

 

 

N/A 

1.5 

AC/PCC – reconstructed (highways and first-class roads) 

AC/PCC – Second- and third-class roads 

2 

Third class roads – cold AC and crushed stone – reconstruction 2 

Fourth and fifth class roads – cold AC and crushed stone –

reconstruction 

2.5 

 

 

 

 

Slovakia 

AC/PCC – highways and expressways – acceptance 20 1.9 

AC/PCC – primary and secondary roads – acceptance - 1.9 

AC/PCC – third class roads and local roads –acceptance - 3.3 

Highways and expressways – during the warranty period (1–5 

years) 

- 2.2 -3  

 

 

 

 

 

Spain 

AC – highways (50,80, and 100) % 100 1.5, 1.8, and 2  

AC – other roads (50,80, and 100) % 100 1.5, 2, and 2.5  

AC – highways – after rehabilitation (>10 cm) (50,80, and 100) % 100 1.5, 1.8, and 2 

AC – highways – after rehabilitation (<10 cm) (50,80, and 100) % 100 1.5 ,2 and 2.5  

AC – other roads – after rehabilitation (>10 cm) (50,80, and 100) 

% 

100 1.5 ,2 and 2.5 

AC – other roads – after rehabilitation (<10 cm) (50,80, and 100) 

% 

10 1.5 ,2 and 2.5 

Note: IRI limits are defined as three percentiles 

 

 

Australia 

AC/PCC – freeways  

 

500 

1.6 

AC/PCC-highways and main roads (<80 km/h) 1.9 

AC/PCC-highways and main roads (100 km/h) 1.9 

 

 

 

 

 

 

 

Bosnia and 

Herzegovina 

 

AC/PCC – new road – acceptance 

(AADT > 2000 and medium or heavy traffic loading (>80 

equivalent standard axle loads (ESALs) of 82 KN/day)) 

(AADT < 2000 and lighter traffic 

loading (up to 80 ESALs of 82 KN/day)) 

*Limit value, **threshold value 

20 2.0*, 2.6**  

4.0*, 4.6**  

AC/PCC – new road – acceptance 

(AADT > 2000, ESAL > 80) 

(AADT < 2000, ESAL < 80) 

*Limit value, **threshold value 

 

100 1.2*, 1.8**  

 

3.8*, 4.6**  

 

AC/PCC – new road – the end of the warranty period 

(Five years from construction) 

(AADT > 2000, ESAL > 80) 

(AADT < 2000, ESAL < 80) 

 

100 1.8*, 2.5**  

4.5*, 4.6**  
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Country Road type Evaluation 

length (m) 

IRI (mm/m) 

 

Canada – Alberta 

AC – Schedules I, II and III, acceptance (full pay) 100 (0.71–1.04), 

(0.81–1.20) and 

(0.81–1.54) 

AC – Schedules I, II and III, corrective work 100 1.55, 1.55 and 

1.85 

AC – localised roughness 7.62 2.8 

 

Canada – Quebec 

 

AC – acceptance (full pay) 

 (70%), and (100%) 

100/1000 (1.2–1.3) and 

<1.4  

AC – rejection, remedial action is specified.   1.8 

 

Canada – British 

Columbi 

AC – acceptance (full pay) 100 1.1–1.2 

AC – corrective work 100 1.8 

 

Canada – Ontario 

AC – acceptance (full pay) 100 0.65–1 

AC – rejection (corrective work) 

AC – localised roughness 

100 1.25 

7.62 3.4 

 

 

Canada – Nova 

Scotia 

AC – Categories A, B and C, acceptance (full pay) 100 (0.8, 1) and 1.1 

AC – Categories A, B and C, optional corrective work 100 (1.8–3), (2.3–3) 

and (2.4–3) 

AC – Categories A, B and C, acceptance 10 (1.1, 1.4) and 

1.5 

AC – Categories A, B and C, corrective work 10 3 

 

2.5.2 Pavement Condition Index (PCI) 

The PCI was developed in the 1980s to estimate a road’s general condition. This index determines 

the condition by counting and weighing various distress types of distress based on either imagery 

or physical inspection data. The PCI was initially created by the U.S. Army’s Engineering Corps 

as a means to gauge the condition of airfield pavement. Today, several transportation agencies rely 

solely on PCI data to make decisions around the construction, repair, and maintenance of airfields, 

roads and parking lots around the world. Arhin et al. (2015)  investigated the similarities and 

differences between IRI and PCI by studying data from the U.S. and Canada.  
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PCI uses visual survey results (whether through imagery or field site inspections) to identify the 

quantity, type, and severity of the pavement distress. The field inspection method has consistently 

shown that PCI is good at determining the condition and integrity of the structure under study. It 

has also been shown to be a reliable index for gauging both current and future performance solely 

by considering traffic conditions, without the need for testing structural capacity, skid resistance, 

or roughness (Al-Suleiman & Shiyab, 2003; Shahin & Walther, 1990). In fact, PCI is currently in 

use globally by public and private highway agencies. In comparison to other indexes, the PCI takes 

into consideration every kind of distress, including quantity and severity, while also providing a 

good indication of a network’s functional and structural conditions. For these reasons, PCI is the 

strategy chosen for the present work. 

The program “TotalPave” was used for gathering and extracting IRI and PCI data. Test site 

locations comprised sections of roads from a variety of climatic regions in Canada and the United 

States. In Canada, the test sites were located in the provinces of Ontario, Quebec, and Prince 

Edward Island, while in the U.S., the sites were situated in New York, New Jersey, Virginia, 

Vermont, and Maryland. A simplistic model was developed for the study in order to relate the IRI 

method with the PCI. The formula is given in Equation (2-5) below: 

𝐋𝐨𝐠(𝐏𝐂𝐈) = 𝟐 − 𝟎. 𝟒𝟑𝟔𝟏𝐥𝐨𝐠 (𝐈𝐑𝐈) 2-5 

Optimization strategies are typically used for developing correlations. Some of these techniques 

include genetic programming (GP) and Artificial neural networks(ANNs), both of which may be 

used for evaluating PCI data in relation to other pavement indexes (except for IRI), according to 

the various forms of distress and their severity (Shahnazari et al. 2012). Utilizing PCI data derived 

from a total of 1,250 km of roadway, Shahnazari et al. (2012) devised a regression-based model 

that employed an ANNs framework. Then, in order to evaluate the PCI, the authors used a GP-
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based root-mean-square error (RMSE) fitness function. They discovered that the field-investigated 

PCI values were highly similar to those generated by the GP and ANNs approaches. More 

specifically, in the GP-based model, RMSE and R-squared showed 1.79, 2.63 and 0.98, 

respectively, while in the ANNs-based models, RMSE and R-squared showed 0.99, and 0.996, 

respectively. 

A model that was developed for use with IRI as a PCI function was employed as a way to evaluate 

pavement management system user benefits. In the model, the R-squared value is 0.53 with a 28% 

coefficient of variation. Real and predicted IRI rates are then graphically correlated in order to 

illustrate the data dispersion and validate the model. Equation (2-6) expressed the model (note that 

the IRI appears as m/km) (Arhin et al. 2015): 

𝑰𝑹𝑰 = 𝟎. 𝟎𝟏𝟕(𝟏𝟓𝟑 − 𝑷𝑪𝑰) 2-6 

PCI is a pavement condition number rating of 0 to 100, the worst-case rating is 0, and the best-

case condition is 100, as shown in Table (2-5). (Morova et al., 2012; Salama et al., 2006). 

Table 2-5: Pavement condition index (PCI). 

PCI 0-10 10-25 25-40 40-55 55-70 70-85 85-100 

Rating Failed Very poor Poor Fair Good Very good Excellent 

The method of calculation for the flexible paving PCI- system (Fwa, 2006) is as follows: 

Phase 1: Assess the intensity and extent of each type of distress. The level of severity is 

represented by three clusters: low, medium and high. Whereas the extent is quantified by linear or 

square metres is measured according to the form of distress. 

Phase 2: Calculate the density of pavement distress by. 

Phase 2-a: Obtain distress extent is measured following equation 
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𝑫𝒆𝒏𝒔𝒊𝒕𝒚 =  
𝑫𝒊𝒔𝒕𝒓𝒆𝒔𝒔 𝒂𝒓𝒆𝒂 (𝒎𝟐)

𝑺𝒆𝒄𝒕𝒊𝒐𝒏 𝒂𝒓𝒆𝒂(𝒎𝟐) 
×  𝟏𝟎𝟎   2-7 

 Phase 2-b: Calculate distress extent is measured by linear metres 

𝑫𝒆𝒏𝒔𝒊𝒕𝒚 =
𝑫𝒊𝒔𝒕𝒓𝒆𝒔𝒔 𝒂𝒎𝒐𝒖𝒏𝒕 𝒊𝒏 𝒕𝒉𝒆 𝒍𝒊𝒏𝒆𝒂𝒓 (𝒎𝟐)

𝑺𝒂𝒎𝒑𝒍𝒆 𝒖𝒏𝒊𝒕 𝒂𝒓𝒆𝒂 𝒊𝒏 (𝒎𝟐)
×  𝟏𝟎𝟎  2-8      

Phase 2-c: Calculate distress extent is measured by number of potholes 

𝑫𝒆𝒏𝒔𝒊𝒕𝒚 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒕𝒉𝒐𝒍𝒆𝒔

𝑺𝒂𝒎𝒑𝒍𝒆 𝒖𝒏𝒊𝒕 𝒂𝒓𝒆𝒂 𝒊𝒏 (𝒎𝟐)
×  𝟏𝟎𝟎  2-9                  

Phase 3: Determine deduct points (DP) from standard deduct value curves for each distress type. 

Phase 4: Calculate total deduct value (TDV) for all distress of each section. 

Phase 5: Adjust total deduct value (TDV) by calculating corrected deduct value (CDV). 

Phase 6: Compute (PCI) for each part by subtracting (CDV) from 100. 

2.5.3 Present Serviceability Rating (PSR) 

After the 1950s, measuring indicators such as roughness, skew and slip resistance began to appear, 

which could be used to measure road performance. The current level of service (PSR) is based on 

personal observation after creating the AASHO Road Test (AASHO 1962).  

In the AASHO road test, a useful tool was devised for characterizing road surface conditions 

according to the driver's comfort level, namely the Pavement Serviceability Rating (PSR). To use 

the PSR, drivers submit their opinions based on a scale (0 to 5), with 0 indicating poor pavement 

conditions and 5 indicating excellent conditions. It explains the road's roughness because the PSR 

relies on the rider's interpretation of the ride quality. Table (2-6) presents a typical PSR rating form 

obtained from the AASHO road test protocol (US DOT 2000). The need for a non-board-based 
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system is that the PSR is a level of ride quality that requires a certain number of monitors, which 

is unrealistic for large networks. 

Table 2-6: Present serviceability rating. 

PSR  Rating Description 

4.0–5.0 Excellent Only new (or nearly new) pavements that are smooth enough and 

distress free. Constructed/resurfaced during the data year. 

3.0–4.0 Good Not quite as smooth but provide a first-class ride and few visible 

distresses (initial signs of rutting and fine random cracks). 

2.0–3.0 Fair Riding quality is noticeably inferior and barely tolerable for high-speed 

traffic. Rutting, map cracking and heavy patching is seen. 

1.0–2.0 Poor Heavily damaged to affect speed of free-flow traffic. Large potholes, 

raveling, cracking, rutting on 50% or more of the surface. 

0.0–1.0 Very poor Extremely deteriorated condition. Pavements are passable only at 

reduced speed and considerable ride discomfort. Large potholes and 

deep cracks exist. Distresses over 75% or more of the surface. 

 

 

2.6 Finding Connections Between PCI, IRI, and PSR 

Several studies have investigated the possibility that specific relationships may exist between 

different pavement condition indexes. Initial efforts investigated connections between IRI and 

PSR, since both parameters provide an indication of pavement surface roughness as it potentially 

relates to ratings such as rideability (Al-Omari and Darter 1994). In other work, Loprencipe et al. 

(2017) created a regression model based on IRI and PCI. Their aim was to calculate Vehicle 

Operating Costs (VOC) by employing technically advanced distress evaluation strategies for 

airports and highways, and visual surveys for urban roadways. The researchers found that PCI 

correlated to other indexes that applied automated surveys in their calculations. A few of the 

highway agencies’ jurisdictions also utilized PCI and/or IRI models, as pavement distress (PCI) 

had an impact on pavement smoothness (IRI). A firm correlation between IRI and PCI was found 

in Arhin et al.’s (2015) study conducted in urban areas. These authors used the least squares 
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method to predict PCI from IRI, which led to the development of statistically notable regression 

models. 

Another group of researchers who investigated IRI and PCI as predictor variables were Park et al. 

(2007). These authors created a power regression model that showed a disappointing 59% 

efficiency. From their results, they conceded that IRI is unfeasible as a unique predictor for 

pavement condition ratings, A few years later, Shah et al. (2013) worked on devising the Overall 

Pavement Condition Index (OPCI), which included distress factors such as longitudinal cracking, 

transverse cracking, and alligator cracking, as well as skid resistance, structural capacity, and 

roughness. The latter factor was determined through ride quality rating (RQR) and IRI.  

Overall, reasonably extensive research has been carried out with the goal of determining the extent 

of the relationship (if any) between and among various pavement performance indexes. Most of 

the studies, however, have been conducted in areas characterized by moderate climates. In contrast, 

the present work attempts to find the interrelationships of performance indexes in regions 

characterized by cold and harsh climatic conditions.  

Finding connections between PCI and IRI 

Several studies have investigated the possibility that specific relationships may exist between 

different pavement condition indices. Initial efforts explored connections between IRI and PCI, 

since both parameters indicate pavement surface roughness and pavement condition. 

Dewan and Smith (2002) later found the relationship between PCI and IRI. Their proposed model 

resulted in the formulation: 

𝑷𝑪𝑰 = 𝟏𝟓𝟑 − (𝟓𝟖. 𝟒𝟖 × 𝑰𝑹𝑰)                                                                                                            2-10 

The 𝑅2value of this model was determined to be 28%. 
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Another group of researchers, Park et al. (2007), investigated IRI and PCI as predictor variables. 

The model they proposed gave the following equation: 

𝒍𝒐𝒈𝑷𝑪𝑰 = −𝟎. 𝟏𝟏𝟓(𝒍𝒐𝒈𝑰𝑹𝑰) + 𝟐. 𝟏𝟑   2-11       

The 𝑅2value here was determined to be 59%. 

Furthermore, a strong correlation between IRI and PCI was found in a study by Arhin et al. (2015), 

which was conducted in urban areas. These authors used linear scheduling method (LSM) to 

predict PCI from IRI, which led to the development of statistically notable regression models. 

Three models proposed by the researchers led to the following equations: 

1- Model proposed for Asphalt: 

𝑷𝑪𝑰 = −𝟎. 𝟐𝟐𝟒 × 𝑰𝑹𝑰 + 𝟏𝟐𝟎. 𝟎𝟐   2-12   

The 𝑅2value of this model was determined to be 82%. 

2- Model proposed for Composite: 

𝑷𝑪𝑰 = −𝟎. 𝟐𝟎𝟑 × 𝑰𝑹𝑰 + 𝟏𝟏𝟑. 𝟕𝟑     2-13      

The 𝑅2value of this model was determined to be 75%. 

3- Model proposed for Concrete: 

𝑷𝑪𝑰 = −𝟎. 𝟏𝟕𝟐 × 𝑰𝑹𝑰 + 𝟏𝟏𝟏. 𝟎𝟏   2-14 

The 𝑅2value of this model was determined to be 72%. 

In another study, developed IRI regression models considering pavement age as the input 

parameter where describing the relationship between IRI and pavement age by deriving an 

exponential relationship(Psalmen Hasibuan & Sejahtera Surbakti, 2019). Equation (2-15) below 

presents their proposed model: 
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IRI= 16.07× 𝒆𝒙𝒑(−𝟎.𝟐𝟔𝟗∗𝑷𝑪𝑰)      2-15  

The 𝑅2value of this model was determined to be 59%. 

In related work, Elhadidy et al. (2019) found that PCI correlated to other indices that applied 

automated surveys in their calculations. A few of the highway agencies’ jurisdictions also utilized 

PCI and or IRI models, as pavement distress (PCI) had an impact on pavement smoothness (IRI). 

Their proposed model is presented in Equation (2-16) below: 

𝑷𝑪𝑰 =
𝟏

𝟎.𝟎𝟒𝟖
× 𝒍𝒏 (

𝟕𝟗.𝟗𝟑𝟑

𝑰𝑹𝑰
− 𝟏𝟒. 𝟎𝟔𝟏)                                                                                                2-16 

The 𝑅2value of this model was determined to be 93%. 

 Piryonesi et al. (2019) found a low correlation between IRI and PCI values despite having a larger 

sample size. Their proposed model is shown in Equation (2-17) below: 

𝐼𝑅𝐼 = −0.012𝑃𝐶𝐼 + 2.064      2-17 

The 𝑅2value of this model was determined to be 30.2%. 

2.7 Modelling Pavement Deterioration 

 Effective pavement management, whether at the network or project level, requires the 

development of a deterioration model that is sufficiently accurate to minimize prediction errors. 

Thus, reducing overall costs related to maintenance. Ideally, an optimal deterioration model would 

incorporate contributions from variables like traffic, pavement structure, and the effects of climate 

and weathering on the deterioration process. At the network level, predicting deterioration of 

pavements enables appropriate resource allocation as well as plan prioritization, while at the 

project level, good prediction enables the relevant authorities overseeing the project to be informed 

of the best maintenance actions to take well in advance (Lytton, 1987; Prozzi and Madanat, 2004). 



 

 

 

 

 45 

Considering the importance of the above, highway authorities around the world have been 

involved in the development of several pavement deterioration models which they apply to their 

respective pavement management systems. These models are invaluable because they can forecast 

various distress types and range from being quite simplistic and project-specific to being quite 

comprehensive and applicable to numerous situations across multiple projects (Lytton, 1987). 

 Al-Omari and Darter. (1994) developed a linear regression model between IRI and pavement rut 

depth. The model proposed in work led to the following equation: 

𝑰𝑹𝑰 = 𝟓𝟕. 𝟓𝟔 × 𝒓𝒖𝒕 𝒅𝒆𝒑𝒕𝒉 − 𝟑𝟑𝟒. 𝟐𝟖     2-17 

The 𝑅2value of the model was determined to be 93%. 

Farias and Souza. (2002) also examined a linear regression model between IRI and Root Mean 

Square of the vertical acceleration values were determined for 1 and 3.5-meter base lengths. Their 

work proposed a model resulting in the equation 2-19. 

𝑰𝑹𝑰 =  𝟎. 𝟎𝟒 +  𝟎. 𝟒𝟓 × 𝑹𝑴𝑺𝑽𝑨𝟏. 𝟎 +  𝟏. 𝟔𝟔 × 𝑹𝑴𝑺𝑽𝑨𝟑. 𝟓    2-18 

Where RMSVA: Root Mean Square of the vertical acceleration. 

 The 𝑅2value of the model was determined to be 95.8%. 

In another researchers, Adams and Bahia. (2004) applied a model between IRI and asphalt 

concrete properties. Their a model presents in the equation 2-20.   

𝑰𝑹𝑰 =  𝟒. 𝟎𝟖 − 𝟎. 𝟔𝟏𝟔 × 𝑺𝑵 − 𝟒. 𝟓𝟏 × 𝑨𝑪 + 𝟕. 𝟕𝟗𝒙 𝑷𝟐𝟎𝟎 ×  𝑨𝑪 − 𝟑. 𝟕𝟖 × 𝑷𝟐𝟎𝟎 +

𝟎. 𝟕𝟎𝟗 × 𝑬𝑺𝑨𝑳 − 𝟎. 𝟒𝟖𝟗 ×  𝑻𝒉𝒊𝒄𝒌                                                2-20 

where AC, Asphalt Concrete, P200, the percent passing no. 200 seize,  

The 𝑅2value of the model was determined to be 71.4%. 
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Garber et al. (2011) studied relationship among PCI and various parameters. Age, ADT, and 

Structure Number. The model shows in the equation 2-21. 

PCI = 98.87 – 2.18× age+0.02× 𝐀𝐃𝐓+ 0. 28× Structure Number                                      2-21   
 
where ADT, average daily traffic in 1000 Vah/day. 
 
The 𝑅2value of the model was determined to be 97.3% 

                                                                                  
Mahmood (2015) studied the relationship among PCI and various parameters. Cracking area, 

Maintenance effect Longitudinal, and ESAL. The model shows in the equation 2-22. 

𝑷𝑪𝑰 =  𝟗𝟖. 𝟖𝟔 −  𝟎. 𝟒𝟎𝟕 × 𝒂𝒈𝒆 −  𝟎. 𝟐𝟒 × 𝑪𝒓𝒂𝒄𝒌𝒊𝒏𝒈 𝒂𝒓𝒆𝒂 − 𝟎. 𝟎𝟔𝟓 × 𝑳𝒐𝒏𝒈𝒊𝒕𝒖𝒅𝒊𝒏𝒂𝒍 +

𝟑. 𝟒𝟎𝟒 × 𝑴𝒂𝒊𝒏𝒕𝒆𝒏𝒂𝒏𝒄𝒆 𝒆𝒇𝒇𝒆𝒄𝒕 −  𝟎. 𝟎𝟎𝟑 × 𝑬𝑺𝑨𝑳                                                                          2-22                                                        

The 𝑅2value of the model was determined to be 79%. 

 Castelló et al. (2020) studied relationship among PCI and the influence of traffic load. Their a 

model presents in Equation 2-23. 

PCI = 121.96 − 5.80× age− 0.0296×ESAL                                                                                   2-23 

The 𝑅2value of the model was determined to be 55%. 

 In the same study, Castelló et al. (2020) studied the influence of the pavement structure. Their 

proposed model is presented in Equation (2-24) below: 

PCI = 99.44 − 5.54× age + 1.27× Structure Number                                                                2-24 

The 𝑅2value of the model was determined to be 49%. 

Zeiada et al. (2020) investigated the impact of pavement design factors on pavement performance 

in hot climates. Their proposed model is presented in Equation (2-25) below: 
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IRI=0.4406× Initial IRI+0.0003× E− 0.0015× P− 0.0024 × MAT + 0.0037 × ARH+ 0.0446 

× MAWV + 1.0688 × ALD− 0.1555 × SSH + 0.5318 × AE − 0.1274 × SCI                          2-25 

where E is the evaporation, P is the precipitation, MAT is the mean annual temperature, ARH is 

the annual relative humidity, MAWV is the mean annual wind velocity, ALD is the average albedo, 

SSH is the sunshine percentage, AE is the average emissivity, and SCI is the Structural Capacity 

Index. 

The 𝑅2value of the model was determined to be 38%. 

2.8 Summary of Reviewed 

This chapter has reviewed the literature related to PMS characterization and performance 

assessment using predicted-based approaches and numerical modelling. The literature review 

showed some of the MPS' difficulties and challenges in planning and building modern pavement. 

Furthermore, the standard prediction methods available are insufficient to fully understand the 

study of all influence variables on pavement performance networks. Developing an approach to 

PMS can provide an enhanced prediction modelling of pavement performance to combat one 

distress but ignore other distresses. Therefore, the motivation for this study was to provide different 

enhanced modelling approaches that help predict pavement performance in different climate 

conditions while working on how to determine and minimize any adverse impact on pavement 

performance. 

 

 

 



 

 

 

 

 48 

Chapter3: Research Methodology 

3.1 Soft Computing Techniques 

In pavement engineering, the application of soft computing techniques has been growing in 

popularity due to the efficiency of the data storage and management, as well as the fast data 

processing speeds and impressive learning/adaptability of the systems. In real life, engineering 

decisions must be made in highly dynamic, ever-changing environments, which means that the 

tools used by engineers must be likewise readily adaptable to change and suitable for various levels 

of expertise. 

In general terms, soft computing strategies are logic-based information processing tools used to 

solve complex problems related to performance evaluation and prediction (Chattopadhyay, 2006). 

The two most common soft computing approaches are Artificial Neural Networks (ANNs) and -

Fuzzy Inference Systems (FIS). The present chapter provides a short overview of the main features 

of ANNs and FIS, showing how these techniques are beneficial to pavement engineering in relation 

to planning, scheduling, condition monitoring, forecasting, classification, and trend analysis. 

3.2  Multiple Linear Regression 

Multiple Linear Regression (MLR) is typically used to research the relationship between 

independent and dependent variables. The conventional regression method is a powerful and 

comprehensive means for evaluating relationships between independent and dependent 

parameters. Some regression assumptions must be considered in developing regression models. 

For example, Sousa et al. (2007) reported that error values are assumed to be independent across 

observations since collinearity between variables can lead to incorrect predictions. 
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Developing regression models requires some consideration of regression assumptions. According 

to(Sousa et al., 2007) , have been reported that predictions are inaccurate if the error values are not 

independent across observations due to the possibility of collinearity between variables causing 

incorrect predictions. A study by(Smith, 1999)  found the error term distribution to be a normal 

distribution N (o,𝜎2) and the relationship between the response variable (𝑌𝑖) and the explanatory 

variables to be linear. As one of the commonest and oldest of all statistical techniques, linear 

regression has been used extensively in research (Guisan et al., 2000). The classical linear 

regression model is formulated as follows: 

𝒀 = 𝜶 +  𝑿𝑻𝜷 + 𝜺  3-1 

where Y stands for the dependent variable, α indicates a constant called the intercept, X = (𝑥 1 , 

𝑥 2,…,  , 𝑥 𝑛) denotes an explanatory variable vector, β = {β 1,…, β 𝑛} expresses a regression 

coefficient vector (i.e., one for every explanatory variable), and ε is random measured errors and 

all other variations that are not explained using the linear model. Note that in calibrating regression 

models, the aim is minimizing unexplained variations through the use of estimation strategies like 

the least squares algorithm (Guisan et al. 2000). In the present work, the statistical software SPSS 

is employed for developing MLR models. 

The 𝑅2 value is a method used to estimate the accuracy of a model by calculating correlation 

between observed and predicted values. 𝑅2values range between 0 and 1, where the closer to (1) 

represents that the observed and predicted values are the stronger the relationship, and 0 indicates 

no relationship between them. RMSE and MAE values represent used to measure the differences 

between observed and predicted values. Good prediction models should have a high 𝑅2 and a low 
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RMSE and MAE. 𝑅2, RMSE, and MAE values were determined using Equations (3-2) to (3-4), 

respectively. 

 𝑹𝟐 = 𝟏 −
∑ (𝒕𝒊−𝒐𝒊)𝟐

𝒊

∑ (𝒐𝒊)𝟐
𝒊

    3-2    

RMSE=√
∑ (𝒕𝒊−𝒐𝒊)𝟐

𝒊

𝒏
                                                                                                3-3     

MAE=
𝟏

𝒏
∑ |𝒕𝒊 − 𝒐𝒊|

𝒏
𝒊        3-4          

𝑜𝑖= actual value observation i; 

 ti = predicted value of observation i 

and n = number of observations.       

3.3  Fuzzy logic 

Zadeh (1965) proposed the fuzzy set theory in 1965. The main reason it was developed was to 

serve as a tool that could provide efficient solutions to complicated problems. When used in a 

model, fuzzy logic incorporates linguistic (qualitative) and numerical (quantitative) data. Since its 

introduction, fuzzy set theory has been applied to a broad range of fields, including design, 

scheduling, planning, decision-making, structural damage assessment, and automatic control, for 

disciplines as diverse as transportation, anthropology, and real estate. Figures (3-1) and (3-2) 

representation of a crisp of a fuzzy set. 

Zadeh (1965), in developing fuzzy set theory, defined a fuzzy set as an extension of a crisp 

(classical) set that permits either full membership or no membership only as elements. 
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Figure 3-1: Representation of a crisp (classical) set. 

Fuzzy set theory is a further extension of this concept by permitting the inclusion of partial 

membership in a set. Hence, according to Selvi (2009), fuzzy set A in a discourse universe U may 

be characterized as having a membership μA (x) which assumes values at an interval [0, 1]

 

                                                Figure 3-2: Representation of a fuzzy set. 
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In classical fuzzy logic theory, a challenge arises in that any object belonging in a single set may 

get rejected. The latter approach proposes partial belonging of an object in a variety of subsets 

within a universal set (Tayfur et al. 2003). 

3.4 Fuzzy inference system (FIS)  

The FIS considers all fuzzy rules belonging to a specified rule base and then learns to transform 

an input set into corresponding outputs. This process involved five distinct sub-processes, as listed 

below:  

1. Fuzzification layer: containing the input variables. 

2. Product (Rule layer): This layer composed of several fuzzy If-Then rules. 

3. Normalization: In this step, control rules are combined with membership functions (MFs) 

to derive outputs. 

4. Defuzzification: Finally, every aggregated fuzzy output set is converted to single values. 

5. Overall Output layer:  This layer representative the dependents variables. 

Overall, fuzzification consists of two processes: the creation of MFs as input/output data, and their 

representation in the form of linguistic labels. Note that fuzzy sets generally provide simplistic 

linguistic labels (e.g., poor-good-excellent, low-medium-high, etc.). Further, fuzzy rules present 

as an IF-THEN sequence format as input parameters, which then proceeds to algorithms that define 

the output label (e.g., low-medium-high). Figure (3-3) illustrated the flowchart of the methodology 

used to develop a model built for pavement classification utilizing a fuzzy inference system.  

3.4.1 Membership Functions Generation 

In conventional mathematics, a single numerical rating might be assigned to each descriptive term. 

This number might represent the mean value, for example, when some range of values might all 
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be classified with that same number in reality. Fuzzy sets can be used to describe this uncertainty 

(Elton & Juang, 1988). 

Tigdemir et al. three following guidelines were considered really useful in developing any fuzzy 

logic system (Tigdemir et al., 2002). 

1. The fuzzy system operates effectively when it is possible to define the rules connecting outputs 

to inputs precisely. 

 

Figure 3-3: Schematic diagram of a fuzzy inference system. 

2. Sets of rules can be obtained via the fuzzy inference method from operating data, but these 

weren't quite as strong as those extracted from specific results. Even so, they can be strengthened 

by providing greater weight to inputs with larger membership functions and integrating from 

relevant specifically from experience. 

3. The system is Table. Certain rules may be left out or may contain errors without significantly 

sacrificing performance. When collecting pavement condition data and the international roughness 

index data, two forms of uncertainty are inherent in each distress's magnitude, density, and 

weighting factors. The level of preparation and accuracy between evaluators (Tighe et al., 2008) 
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affects the magnitude and density of distress data. However, can be dealt with by these 

complexities and contradictions associated with the subjectively evaluated. Functions are added to 

denote a value that would be a member of the set with a number between [0 1], reflecting its actual 

membership degree. Therefore, a degree of (0) indicates that the related value is not in the set, 

while a value of (1) is wholly representative of the set value. (Golroo & Tighe, 2009). 

 The simplest and sufficient function to represent severity, density, and weighting factors is 

Triangular Fuzzy Numbers (TFN). Equation. (3-5) to (3-9) Explain the concept of TFN: 

𝝁(𝒙) = 𝟎; 𝒙 < 𝒍  3-5  

𝝁(𝒙) =
𝒙−𝒍

𝒎−𝒍
; 𝒍 < 𝒙 < 𝒎   3-6 

𝝁(𝒙) = 𝟏; 𝒙 = 𝟏 3-7 

𝝁(𝒙) =
𝒖−𝒙

𝒖−𝒎
; 𝒎 < 𝒙 < 𝒖   3-8 

𝝁(𝒙) = 𝟎; 𝒙 > 𝒖 3-9           

where: 𝜇(𝑥)=Membership function,  𝑙 and 𝑢 =lower and upper domains, respectively., 𝑚 =value 

which its corresponding membership measure is equal to 1. 

 The fuzzy method provides convenient tools to combine subjective analysis and uncertainty in 

international roughness index, pavement condition index, and maintenance-needs evaluation. 

The two most common types of fuzzy rules are Takagi-Sugeno and Mamdani (Mehran 2008). Also 

known as “Sugeno”, the Takagi-Sugeno type of fuzzy rules is more widely used than the other 

type, as it clearly defines output in the rules as being a function of all the input variables. The 

Takagi-Sugeno fuzzy rules may be formulated as: 
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If 𝑥 1 is 𝑀1 and 𝑥 2 is 𝑀2 and 𝑥 3 is 𝑀3 THEN 𝑢1 = f (𝑥 1 , 𝑥 2 , 𝑥 3 ), 𝑢12 = g (𝑥 1 , 𝑥 2 , 𝑥 3 ) 

where: 𝑥 1 , 𝑥 2 , 𝑥 3 : input parameters, 𝑢1 , 𝑢2: Outputs, 𝑀1, 𝑀2 , 𝑀3 : fuzzy sets; f (x) and g (x) 

indicated any type of function. 

3.5  Artificial Neural Networks (ANNs) 

Artificial neural networks have demonstrated their usefulness in solving complex problems quickly 

and efficiently. Below is a short summary of ANNs models, with information mostly obtained 

from the work of Gershenson (2003). Viewed from their most basic aspect, ANNs comprise inputs 

multiplied by weights that are representations of the relevant input’s strength. Using a 

mathematical function, these inputs are processed to calculate a neuron’s activation. An additional 

computational function is needed to find the artificial neuron’s output(s), with the ANNs then 

combining the artificial neurons as a means to process information. 

In this network process, weights play a pivotal role in describing the input, such that a higher 

weight for an artificial network indicates a more influential input. Furthermore, because weights 

have an integral impact on neuron computation, the weights in an ANN require adjusting to obtain 

the desired output. This process is relatively straight-forward with only a few neurons, but more 

neurons added to the mix means greater complexity in weight adjustment. To remedy this situation, 

algorithms are used in a process known as “training” (or “learning”). Backpropagation is 

frequently used for training neuron weights (Mcclelland and Rumelhart 1986). In an ANN network 

that is organised by layers, the process of backpropagation sends a forwarding signal, after which 

the error gets propagated backwards. Neurons in the input layers supply the network with inputs, 

while neurons in the output layers supply the ANN with outputs. Note that there is one (or more) 

hidden layer located between the output and input and layers. 
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Figure 3-4: Typical structure of ANN. 

Additionally, backpropagation functions through supervised learning, where the network obtains 

from the user examples of inputs/outputs the network should determine. Based on these provided 

examples, the error can be computed, i.e., the difference between predicted and real results. The 

whole point of backpropagation is minimizing this error while the ANN learns the training data. 

The process of training an ANN typically begins using random weight values, which are later these 

adjusted and the error subsequently reduced. In other words, ANNs are created in such a way as 

to learn based on supplied information (Ceylan et al. 2009; Zaman et al. 2010). 

3.6 Applying ANNs and FIS to Pavement Studies 

Roberts and Attoh-Okine (1998) conducted a comparison of two different ANNs models for their 

efficacy in predicting roughness according to traffic load and pavement condition. Their study 

employed 105 data points that were characterized as different kinds of variables (e.g., block 
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cracking, transverse cracking, fatigue cracking, rutting, equivalent axle loads, etc.). In this 

approach, the IRI was used as a target variable to the problem, while the rest were used as input 

counterparts. In total, 75 examples were extracted from the dataset for the training process and 30 

were used for validation purposes. 

In many transportation departments worldwide, the pavement distress evaluation method has 

significant problems due to subjectivity and inconsistency in pavement distress manifestations. 

Develop an expert system to organize pavement distress manifestations to provide consistency to 

the process and minimize subjectivity (Tsao et al. 1994; Abaza et al. 2001; Labi and Shiha 2005). 

 The expert system, which can process information in qualitative grades, e.g., minimal, moderate, 

etc., can be developed using fuzzy logic (Pedersen 1989; Li et al. 2005). Expert systems help 

nonexperts of engineers to solve or diagnose problems and learn about situations (Zimmermann., 

1991).  

According to Slatter (1987); Zimmermann (1991), expert systems are soft computing techniques 

that depend more on the heuristics of experts rather than logical problem-solving procedures and 

can eliminate inconsistency, reduce subjectivity, and deal with uncertainty in any decision process. 

Tigdemir et al. (2002) utilized fuzzy set theory to categorize pavement distress into minimal, 

moderate, and severe levels under uncertainty and fuzzy logic. A fuzzy logic approach can be used 

to define the classifiers, which are symbolic representations of distress. Mahmood (2015) applied 

fuzzy logic theory for PCI models for 180 and 291 sections of the measured deterioration. 

A BP-based 10-5-1 multilayer perceptron (MLP) is another proposed neural net whose comparison 

model comprises a quadratic function ANNs. This tool utilizes both supervised and unsupervised 

(i.e., self-organized) learning and has feedforward functioning in its generalized adaptive 

architecture. Moreover, it employs an evolutionary mechanism for problem-fitting and does not 
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need a certain layer or node number to be specified by the modeller. The researchers demonstrated 

that the latter model (𝑅2 = 0.74) easily out performed a conventional MLP network (𝑅2 = 0.57) 

(Roberts and Attoh-Okine, 1998). A study carried out by Ghanizadeh and Fakhri (2014) presented 

an ANN model that aimed to predict transverse and longitudinal stresses under an asphalt layer. 

The data for their work came from the analysis of 5,000 flexible pavement sections; the analysis 

was conducted by employing the layered elastic theory, which stipulates 3,000 for training, 500 

for cross-validation, and 1,500 for testing (Ghanizadeh and Fakhri 2014). The authors’ levenberg–

marquardt (LM) -based 7-15-4 MLP network model was then demonstrated in the study as being 

highly accurate (𝑅2=0.999) (Ghanizadeh and Fakhri 2014). 

In an earlier work, Choi et al. (2004) utilized a BP-based 6-10-1 MLP network to develop an ANN 

that could predict IRI values. The researchers designed a series of nets in order to determine 

whether or not the network topology would give acceptable performance. The nets employed 

hidden nodes that increased 1 by 1, starting at 1 and going to 15. For the learning portion, 92 data 

points were used, with 25 of these being set aside to test validation. The results showed that the 

authors’ proposed network was effective when used for purposes of predicating pavement 

performance (Choi et al. 2004). Within the same research field, Solhmirzaei et al. (2012) designed 

a model that was highly accurate in predicting pavement profiles. The authors used a BP-based x-

15-4 Wavelet Neural Network (WNN) in their study, with inputs comprising vehicle acceleration 

on a road and outputs comprising vertical displacement profiles for the moving wheels. 

In a recent study, Tigdemir (2014) presented two BP-based 7-20-1 MLP NNs with the same input 

variables. The author’s goals were, firstly, to predict AASHTO-based design life, and secondly, to 

predict correlations (if any) between AASHTO-based design and real-life design, with regard to 

lifespan of pavement using ESAL. The study used 234 road sections overall, while the training 
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dataset used 164 random sections from this sample. The rest were equally divided for testing and 

validation. Tigdemir (2014) found that although the first model performed excellently (𝑅2= 0.999), 

the second model gave only accepTable results in the training and testing datasets (𝑅2 > 0.90). 

Even worse, significant errors occurred during validation. In the same line of research, Tigdemir 

(2014) presented a BP-based 7-20-2 MLP net integrating the previously mentioned output 

variables and retaining the same inputs. The author reported good correlations in each output 

variable of 𝑅2 was 97%, and 94%. Fathi et al. (2019) predicted the alligator deterioration index 

(ADI) index using a hybrid car training method that combined random forests (RF) and ANN 

methods. Nitsche et al. (2014) attempted to predict weighted longitudinal profile (WLP) indices. 

Researchers were primarily interested in evaluating the effectiveness of these techniques for 

predicting range and standard deviation. 

In another study, some researchers employed image processing techniques to characterize 

laboratory-made asphalt concrete samples (Nejad et al.,2015). The same research used an ANN 

technique to characterize laboratory-made samples asphalt concrete samples (Nejad et al.,2015). 

Fujita et al. (2017) applied the Support Vector Machine (SVM) technique to detect asphalt 

pavement cracks. 

Hoang et al. (2019) investigated and identified pavement cracks using various machine learning 

(ML) techniques in several studies, such as support vector machine (SVM), artificial neural 

network (ANN), random forests (RF) mm, radial basis function neural network (RBFNN), naive 

Bayesian classifier (NBC), and classification tree (CT), as well as image processing techniques. 

According to Karballaeezadeh et al. (2020) three techniques were used for determining structural 

capacity in Coatings flexible pavements: Gaussian process regression (GPR), tree and random 

forest. Some researchers applied ANN and SVM methods to model acoustic longevity where 



 

 

 

 

 60 

maximum aggregate size, binder content, air void content, vehicle speed, and thickness were input 

variables (Cao et al.,2020). 

Zeiada et al. (2019) applied four ML techniques (GPR, SVM, Ensemble, ANN) to simulate 

pavement performance in warm climates. Inkoom et al. (2019) attempted to predict highway 

pavement conditions using ML methodologies. They used methods such as bootstrap forest, 

gradient boosted trees, K nearest neighbours, Nave Bayes, and multivariable linear regression. 

Nabipour et al. (2019) predicted the remaining service life (RSL) of pavement using SVM and 

genetic expression programming (GEP) methods. 

In a more recent study conducted by Leiva-Villacorta et al. (2017), ANN models were developed 

that were able to accurately predict pavement layer moduli. The authors generated a database by 

utilizing layered-elastic analysis of a multi-layered (3 layers in this case) flexible pavement 

structure. In all, 100,000 data points per ANN were generated. The authors then applied these 

results to developing a BP-based 13-20-20-3 MLP network that was subsequently demonstrated 

to give estimations that were highly correlated (𝑅2 ≥ 0.99) (Leiva-Villacorta et al., 2017).  

In related work, Ziari et al. (2015) proposed developing an ANN that could predict IRI values for 

flexible pavements both over the long and short terms. The authors employed sensitivity analysis 

utilizing a range of LM-based MLP networks and parameterizing the hidden layer number (1 - 3) 

and nodes (3-100) as a means to determine the optimal model for their purposes. The learning 

databank had 205 data points; of these, 154 were used for training, 41 for validation, and 10 for 

testing. Based on their findings, the authors were satisfied that the ANN models could predict 

future pavement conditions with satisfactory accuracy both for the short and long terms. The best 

short-term performance was yielded in the topology 9-80-50-30-1, while for structure, the 

topology 9-3-1 gave the best performance. For long-term performance, the 9-8-1 layout resulted 
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in the best performance, while for the testing sets, the layouts 9-5-1, 9-7-1, 9-20-1 and 950-1 

yielded mean absolute percentage error (MAPE) < 10% and 𝑅2 > 0.9 (Ziari et al., 2015). 

Meanwhile, Zofka and Yut (2012) considered whether it would be feasible to use three ANNs in 

predicting the compliance of hot mix asphalt creep in relation to the compliance of binder creep, 

and vice-versa. The network dataset for the three ANNs had 594, 594, and 600 points each. These 

were randomly separated into subsets designated for training (60%), validation (20%) and testing 

(20%). The authors’ proposed nets comprised BP-based 11-20-6, 15-20-6 and 12-20-6 MLPs. 

According to the study results, extremely high correlation (~98%) was shown in comparison to the 

targeted counterpart (Zofka and Yut., 2012). 

Yousefzadeh et al. (2010) proposed an LM-based X-6-6-4 RNN (input node number unclear) to 

predict pavement profiles for four vehicle wheels, i.e., four outputs. Both the profiles themselves 

and the vehicle acceleration were used as inputs for network feedback. The results indicated 

reasonably good estimation of pavement profiles by the ANNs (Yousefzadeh et al., 2010). A 

similar study (Ngwangwa et al., 2014) also investigated ANNs-based predictions for road profiles. 

The authors created an LM-based 3-50-50-2 MLP network that was trained using around 4,000 

data points, with validation conducted utilizing measured data. The authors’ results indicated 

correlations they described as very good, including for discrete obstacles (Ngwangwa et al. 2014). 

In a study conducted by Singh et al. (2013), the authors used an ANN to predict asphalt mixture 

dynamic modulus according to aggregate parameter shape. An automated aggregate image 

measurement system was employed to determine the shape parameters (e.g., sphericity, texture, 

angularity, etc.) of the fine and coarse aggregates. A 4-layer feedforward neural network was for 

model construction and a backpropagation algorithm was employed for data training. The input 

variables for the shape parameters were air voids, asphalt viscosity, and loading frequency (Singh 
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et al., 2013). Mirzahosseini et al. (2013) looked at the feasibility of applying ANNs models for 

predicting rutting performance in dense asphalt mixtures. Six input parameters were used by the 

authors in the proposed network, namely filler, air voids, bitumen, viscosity modifying admixture 

(VMA), coarse aggregate percentage, and Marshall Quotient. Additionally, statistical measures 

were employed as a means for evaluating the predictive tool’s efficiency. The authors reported that 

the ANN-based model gave excellent performance in predicting asphalt mixture flow number, 

which is defined as a measure for repeated load deformation (Mirzahosseini et al., 2013).  

ANN was also used in a study by Shafabakhsh et al. (2015) to predict deformation in asphalt 

concrete mixtures that had been modified using nano-additives, giving good results (Shafabakhsh 

et al., 2015). Other researchers investigated the predictive quality of ANN in Marshall tests on 

dense bituminous mixtures that were polypropylene-modified (Tapkin et al., 2010). 

3.7  Research Plan 

Based on this research's literature review and objectives, there is a clear need to analyze an 

extensive data set and a series of tasks designed for various road sections in the U.S. and Canada. 

The present study considers three different key parameters, as follows: 

• Pavement distresses (performance parameters). 

• Environmental parameters. 

• Traffic volume parameters. 

The primary purpose of this research was to introduce a practical approach for the Modeling 

asphalt pavement performance indices (PCI and IRI) under different climate regions and 

different parameters. In this study were used three different techniques were (FIS), (MLR), and 

(ANNs). The research methodology is illustrated in Figure (3-5). The research plan includes 

seven principal areas as follows: 



 

 

 

 

 63 

▪ Data aggregation of study, 

▪ Modeling of asphalt pavement performance indices using (FIS), 

▪ Modeling the relationship between asphalt pavement performance indices (PCI&IRI), 

▪ Modeling of asphalt pavement performance indices using (MLR), 

▪ Modeling of pavement performance indices using (ANNs),  

▪ Comparison and validation between (MLR) and (ANNs) models, and 

▪ Case study.  
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Figure 3-5: Schematic diagram of research methodology.
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3.8 Data Aggregation of Study 

Data are the basis for establishing stable predictive models, so obtaining correct and high-quality 

data is important. Two data resources were used for this study as follows: 

▪ The Long-Term Pavement Performance (LTPP) dataset.  

▪ The Field Survey of the city St. John's -Newfoundland- Canada.  

The Long-Term Pavement Performance (LTPP) program is a significant resource for data 

collection about pavement conditions. The data include four climatic zones in the U.S. and Canada. 

The study considers three key parameters: pavement distress, environmental, and traffic volume 

parameters. The preprocessing of data is essential to provide homogeneity to the data, improve the 

networks' output, and improve the predictive models. Figure 3-6 shows the LTPP climatic regions 

(FHWA2014). 

 

Figure3-6: LTPP climatic regions. 
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3.9 Modeling of Asphalt Pavement Performance Indices  

This study utilized three techniques to achieve its primary goals: Multiple Linear Regression 

(MLR), Fuzzy Inference System (FIS), and Artificial Neural Networks (ANNs).These techniques 

were used to build models of asphalt pavement to predict the asphalt pavement performance and 

evaluate the level of their applicability to the performance models available.  

3.10 Modeling of Asphalt Pavement Performance Indices Using (FIS) 

The LTPP was selected as the data source for constructing a fuzzy rule-based system for pavement 

section classification. Nine distress types were input parameters (Rutting, fatigue cracking, block 

cracking, longitudinal cracking, transverse cracking, patching, potholes, bleeding, and ravelling). 

Each distress type was represented by three triangular membership functions representing its 

severity level (Minimal, Moderate, and Severe), creating seven membership functions of output 

PCI and five triangular membership functions of output IRI. 

3.11 Modeling of Asphalt Pavement Performance Indices Using (MLR) 

This study used the statistical computer software SPSS 27 to regression analysis to predict the 

value of pavement performance from data collected from the LTPP data. Equations (3-10) to (3-

12) showed basic formulations equations of the prediction models to find the correlation between 

PCI and IRI. Equations (3-13) to (3-18) presented the prediction models' basic formulations to 

discover the influence of pavement distress, environmental data, and traffic parameters on PCI and 

IRI values. 

PCI=𝑪 + 𝒂𝟏 × (𝑰𝑹𝑰)       3-10  

PCI=𝑪 + 𝒂𝟏 × (𝑰𝑹𝑰) + 𝒂𝟐 × (𝑰𝑹𝑰)𝟐 3-11 
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PCI=𝑪 + 𝒂𝟏 × (𝑰𝑹𝑰) + 𝒂𝟐 × (𝑰𝑹𝑰)𝟐 + 𝒂𝟑 × (𝑰𝑹𝑰)𝟑           3-12                                                       

PCI=𝑪 + 𝒂𝟏𝑿𝒂𝒈𝒆 + 𝒂𝟐𝑿𝟏 + 𝒂𝟑𝑿𝟐 + 𝒂𝟒𝑿𝟑 + 𝒂𝟓𝑿𝟒 + 𝒂𝟔𝑿𝟓 + 𝒂𝟕𝑿𝟔 + 𝒂𝟖𝑿𝟕 + 𝒂𝟗𝑿𝟖 +

𝒂𝟏𝟎𝑿𝟗 + 𝒂𝟏𝟏𝑿𝟏𝟎             3-13  

IRI=𝑪 + 𝒂𝟏𝑿𝒂𝒈𝒆 + 𝒂𝟐𝑿𝟏 + 𝒂𝟑𝑿𝟐 + 𝒂𝟒𝑿𝟑 + 𝒂𝟓𝑿𝟒 + 𝒂𝟔𝑿𝟓 + 𝒂𝟕𝑿𝟔 + 𝒂𝟖𝑿𝟕 + 𝒂𝟗𝑿𝟖 +

𝒂𝟏𝟎𝑿𝟗 + 𝒂𝟏𝟏𝑿𝟏𝟎       3-14  

PCI=𝑪 + 𝒂𝟏𝑿𝒂𝒈𝒆 + 𝒂𝟐𝓦𝟏 + 𝒂𝟑𝓦𝟐 + 𝒂𝟒𝓦𝟑 + 𝒂𝟓𝓦𝟒 + 𝒂𝟔𝓦𝟓 + 𝒂𝟕𝓦𝟔+𝒂𝟖𝓦𝟕 3-15  

IRI=𝑪 + 𝒂𝟏𝑿𝒂𝒈𝒆 + 𝒂𝟐𝓦𝟏 + 𝒂𝟑𝓦𝟐 + 𝒂𝟒𝓦𝟑 + 𝒂𝟓𝓦𝟒 + 𝒂𝟔𝓦𝟓 + 𝒂𝟕𝓦𝟔+𝒂𝟖𝓦𝟕  3-16 

PCI=𝑪 + 𝒂𝟏𝑿𝒂𝒈𝒆 + 𝒂𝟐𝑿𝑬𝑺𝑨𝑳 + 𝒂𝟑𝑿𝑨𝑨𝑫𝑻𝑻 + 𝒂𝟒𝑿𝑨𝑫𝑻𝑻 3-17 

IRI=𝑪 + 𝒂𝟏𝑿𝒂𝒈𝒆 + 𝒂𝟐𝑿𝑬𝑺𝑨𝑳 + 𝒂𝟑𝑿𝑨𝑨𝑫𝑻𝑻 + 𝒂𝟒𝑿𝑨𝑫𝑻𝑻      3-18    

where PCI = Pavement Condition Index, IRI = International Roughness Index, C= 

Constant, 𝐗 𝑎𝑔𝑒  = Age of pavement, 𝐗 1 =Rutting, 𝐗 2 = Fatigue Cracking, 𝐗 3 = Block Cracking, 

𝐗 4 = Longitudinal Cracking, 𝐗 5 = Transverse Cracking, 𝐗 6 = Patching, 𝐗 7 = Potholes, 𝐗 8 = 

Bleeding, 𝐗 9 = Ravelling,  𝐗 10 = Delamination, 𝐗𝑬𝑺𝑨𝑳 = Annual ESAL, 𝐗𝑨𝑨𝑫𝑻𝑻 = Annual 

average daily truck traffic Trucks, 𝐗𝑨𝑨𝑫𝑻 = Annual average truck traffic,  𝓦1 = Temperature 

average, 𝓦2 = Freeze index year, 𝓦3 = Number of freeze days, 𝓦4 = Total precip, 𝓦5 =

 Total snowfall year, 𝓦6 = Wind average, 𝓦7 = Humidity, 𝑎1, 𝑎2, 𝑎3 … … … … 𝑎11 = 

Coefficients. 
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3.12 Modeling of Asphalt Pavement Performance Indices Using (ANNs)  
 

 Artificial neural networks were applied to train and test data to create models in various fields. In 

the present thesis, ANNs have been used to address regression modelling limitations. This study's 

techniques to predict pavement performance were based on ANNs methods. These numerical 

analysis provide a possible explanation for the underlying correlation between the independent 

and dependent parameters identified as relevant for evaluating pavement performance. Moreover, 

ANNs work to demonstrate each variable's influence on pavement performance and the influence 

of interactions of the variables.  

The backpropagation method is a well-known supervised learning algorithm used for training and 

adjusting the artificial network by reducing the error between the network's performance and that 

of the target output. The network training process begins with a random number of weights and 

biases, after which inputs are introduced to the system. The error is then measured as the difference 

between the network output and output values propagated backwards over the artificial neural 

network. The weights of each layer are adjusted to reduce errors during the next round. This 

operation continues until a minimum error is reached. The present study divides the data into three 

phases, giving 70% of the data for training, 15% for testing, and 15% for validation. 

The network outputs PCI and IRI can be calculated using Equations (3-19) and (3-20). A 

hyperbolic tangent sigmoid transfer function (tansig) is applied as a transfer function for the hidden 

and output layers. This method is one of the best ways to simulate an ANNs. Figure (3-7) presented 

an architecture of an ANNs processing of the backpropagation algorithm (Svozil et al. 1997). 

IRI=PCI=𝒇°{𝑶𝑶 + ∑ 𝑾𝒊
𝒏
𝒊=𝟏 𝒇𝒉[𝑯𝒍 + ∑ 𝑾𝒌𝒍

𝒛
𝒌=𝟏 𝒇𝒉 ][𝑯𝒌 + ∑ 𝑾𝒋𝒌

𝒔
𝒋=𝟏 𝒇𝒉( 𝑯𝒋 + ∑ 𝑾𝒊𝒋

𝒗
𝒊=𝟏 𝑰𝒊)]}   3-19    
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𝒇𝒐,𝒉(𝑻) =
𝟐

𝟏+𝒆−𝟐𝑻 − 𝟏             3-20 

 where , 𝑂𝑂 = bias for the output layer, 𝑙= subscript for hidden layer 3, k = subscript for hidden 

layer 2, 

j = subscript for hidden layer 1, i = subscript for the input layer, n = number of nodes in hidden 

layer 3, z = number of nodes in hidden layer 2, s = number of nodes in hidden layer 1, 

v = number of nodes in the input layer,  𝑊𝑙 = weight factors for the output layer (size: 1 × z), 

𝑊𝑘𝑙 = weight factors for hidden layer 3 (size: n × z), 𝑊𝑗𝑘 = weight factors for hidden layer 2 (size: 

k ×j), 𝑊𝑖𝑗 = weight factors for hidden layer 1 (size: j ×i), 𝐻𝑙 = bias for hidden layer 3 (size: n × 1), 

𝐻𝑘 = bias for hidden layer 2 (size: z × 1), 𝐻𝑗 = bias for hidden layer 1 (size: s × 1), 𝑓° = transfer 

function for the output layer, 𝑓ℎ = transfer function for the hidden layers. 

Figure 3-7: Architecture of (ANN) processing of backpropagation algorithm. 
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3.13 Comparison and validation between (MLR) and (ANNs) models 
 

 

The performance of the MLR models was compared with the performance of the ANNs models to 

evaluate the accuracy of the models in predicting pavement performance based on pavement 

distress parameters. 𝑅2, RMSE and MAE values were used to measure and compare the 

performance of the models. 

3.14 Case study 
 

 

The case study focuses on studying the effect of pavement distress on determining pavement 

conditions. St. John's, the capital of Newfoundland and Labrador-Canada, is the case study's site. 

This study includes the determination of PCI, IRI, and PSR of flexible pavement and developing 

reliable prediction models for St. John's roads. 
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Chapter4: Modeling of Asphalt Pavement Performance Indices Using (FIS) 

4.1 Introduction 

This chapter's main objectives are to present a classification for flexible pavement based on 

severity and density distress. The research study presented two indices for predictions of the 

distress values: The Fuzzy Pavement Condition Index (FPCI) and the Fuzzy International 

Roughness Index (FIRI). These two measurements offer quantitative indicators for the entire 

pavement network to assess pavement segment degradation. Mahmood (2015) utilized fuzzy logic 

theory for PCI models for 180 and 291 sections of the measured deterioration. 

4.2 Methodology and Data Collection  
 

This study selected (120) and (150) test sections from the LTPP dataset to create the fuzzy rules. 

These sections have nine distress types (rutting, fatigue cracking, block cracking, longitudinal 

cracking, transverse cracking, patching, potholes, bleeding, and ravelling). Each severity level 

(Minimal, Moderate, and Severe) was extracted and calculated. Table (4-1) presents the descriptive 

statistics for 120 and 150 sections of the measured deterioration. 

The system was evaluated for two datasets sections (120) and (150). This technique creates 

membership functions and rules by measuring fuzzy pavement classification efficiency. The 

coefficients of determination (R2), (RMSE), and (MAE) were used as the performance indicator 

metrics in the evaluation of the performance (FPCI &IRI) of analytical models and the comparison 

among four methods, Centroid, Bisector, Som, and Lom. Figure (4-1) showed that Structure of 

fuzzy logic approach of PCI and IRI. 
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             Table 4-1: Descriptive statistics for 120 and 150 sections of the measured deterioration. 

Parameters Min 

Statistic 

Maxi 

Statistic 

Mean        

Statistic 

Mean 

Std. Error 

Std 

Statistic 

PCI 5.00 100.00 59.07 2.78 32.34 

IRI 0.74 4.04 1.54 0.06 0.72 

Age 4.00 23.00 13.01 0.40 4.60 

Rutting 0.0 135.9 23.6 3.1 37.7 

Fatigue Cracking 0.00 377.90 38.59 6.58 76.48 

Block Cracking 0.00 557.60 5.80 4.30 50.01 

Longitudinal 0.00 325.60 66.88 7.77 90.29 

Transverse 0.00 192.30 30.63 3.74 43.50 

Patching 0.00 45.80 1.52 0.67 7.73 

Potholes 0.00 0.00 0.00 0.00 0.00 

Bleeding 0.00 350.80 18.95 6.12 70.32 

Ravelling 0.00 564.30 44.98 10.62 122.05 

 

 

                                     Figure 4-1: Structure of fuzzy logic approach of PCI and IRI. 
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4.3  Fuzzy Inference System  

4.3.1  Model Formulation and Fuzzy Rule-Based System 

The research study presents two models estimating the Fuzzy Pavement Condition Index (FPCI) 

and Fuzzy International Roughness Index (FIRI). A pavement classification system was built by 

considering the density of Rutting, fatigue cracking, block cracking, longitudinal cracking, 

transverse cracking, patching, potholes, bleeding, and ravelling as inputs. These models were 

created using MATLAB 2020b.   

4.4 Constructing the Fuzzy Logic Model 

4.4.1   Data Pre-Processing and Feature Selection 

The fuzzy model used nine independent variables as inputs and one dependent variable as output 

(FPCI or FIRI). After extracting and revising data from the LTPP data set, the fuzzy model was 

prepared with nine independent parameters of distress types. Triangular membership function 

(time) was selected to fuzzy the crisp values of inputs variables, and various numbers of 

memberships functions (MF) were specified for each input and output variable. Distress types and 

the number of membership functions to evaluate PCI and IRI are described in Table (4-2).      

4.4.2 Membership Function 

 In evaluating the pavement distress performance using fuzzy logic, the membership functions for 

input variables of distress severity levels were classified into three classes: minimal, moderate, and 

severe. The output variables have seven PCI membership functions classified as: Failed, Very 

Poor, Poor, Fair, Good, Very Good, and Excellent. Similarly, the output variables have five IRI 

membership functions classified as: Poor, Mediocre, Fair, Good. and Very Good (ASTM 

International D6433-18). In this technique, for each input and output (FPCI and FIRI). 
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             Table 4-2: Distress types and number of membership functions to evaluate PCI and IRI. 

Distress of type Category Number of MF Description 

Rutting Input 3 Extremely important 

Fatigue Cracking Input 3 Relatively important 

Block Cracking Input 3 Relatively important 

Longitudinal Cracking 
 

Input 3 Important 

Transverse Cracking 
 

Input 3 Important 

Patching  Input 3 Moderately important 

Potholes Input 3 Moderately important 

Ravelling Input 3 Relatively important 

Bleeding Input 3 Relatively important 

PCI Output 7 Extremely important 

IRI Output 5 Extremely important 

  

4.4.3 Fuzzy Rule Generation 

 Generating the rules is the second phase of this approach.  Tables (4-3) and (4-4) present rules 

generation FIS for FPCI and FIRI, respectively. 

4.4.4 Defuzzification methods  

This study used four deduzzification methods : 

 

1- Centroid method 

 

Sugeno (1985) developed this widely used technique. A centroid defuzzification method can be 

expressed as follows: 

𝒁𝑪 =
∫ 𝝁𝑨(𝒁)𝒁𝒅𝒙

∫ 𝝁𝑨(𝒁)𝒅𝒙
                                                                                                                         4-1 

Where 𝑍𝐶   is the crisp output, 𝜇𝐴(𝑍) is the aggregated membership function and z is the output 

variable. 



 

 

 

 

 76 

2- Bisector Method 

Essentially, a bisector is a vertical line dividing an area into two equal zone subregions. Sometimes 

it coincides with the centroid line, but not always. A bisector defuzzification method can be 

expressed as follows: 

𝒁𝑩 = ∫ 𝝁𝑨(𝒁)𝒅𝒙
𝜷

𝒁𝑩
    4-2 

where 𝑍𝐵 is the crisp output. 

3- Largest of Maximum  

Largest of maximum takes the largest amongst all z that belong to [𝑍1, 𝑍2] as the crisp value 

called  𝑍𝐿𝑜𝑚 .  

4- Smallest of Maximum  

This selects the smallest output with the maximum membership function as the crisp value 𝑍𝑆𝑜𝑚. 

In other words, in Smallest of Maximum chooses the smallest among all z that belong to [𝑍1, 𝑍2]. 
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Table 4-3: Fuzzy rules for PCI. 

 

Rule 

No 

Distress type (Input)  

FPCI 

(Output) 

Rutting 

 

Fatigue 

Cracking 

Block 

Cracking 

Longitudinal 

Cracking 

 

Transverse 

Cracking 

 

Patching Potholes Bleeding Ravelling 

1 Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Excellent 

2 Minimal Minimal Minimal Moderate Minimal Minimal Minimal Minimal Minimal Excellent 

3 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Moderate Very Good 

4 Minimal Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Good 

5 Minimal Severe Minimal Moderate Minimal Minimal Minimal Minimal Minimal Good 

6 Minimal Moderate Minimal Minimal Severe Minimal Minimal Minimal Minimal Good 

7 Minimal Moderate Minimal Minimal Minimal Minimal Minimal Minimal Minimal Good 

8 Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Moderate Good 

9 Minimal Moderate Minimal Moderate Severe Minimal Minimal Moderate Minimal Good 

10 Minimal Moderate Minimal Moderate Minimal Minimal Minimal Minimal Severe Fair 

11 Minimal Minimal Minimal Moderate Moderate Minimal Minimal Minimal Minimal Fair 

12 Moderate Severe Minimal Minimal Minimal Minimal Minimal Moderate Minimal Fair 

13 Moderate Minimal Minimal Minimal Minimal Minimal Minimal Minimal Severe Poor 

14 Minimal Severe Minimal Minimal Moderate Minimal Minimal Minimal Minimal Poor 

15 Moderate Moderate Minimal Minimal Minimal Moderate Minimal Minimal Minimal Poor 

16 Minimal Minimal Minimal Moderate Severe Minimal Minimal Minimal Minimal Poor 

17 Minimal Minimal Minimal Moderate Moderate Minimal Minimal Minimal Minimal Very Poor 

18 Moderate Moderate Minimal Minimal Moderate Minimal Minimal Moderate Minimal Very Poor 

19 Moderate Moderate Minimal Moderate Severe Minimal Minimal Moderate Moderate Very Poor 

20 Minimal Minimal Minimal Minimal Moderate Minimal Minimal Minimal Severe Very Poor 

21 Minimal Severe Minimal Severe Severe Minimal Minimal Moderate Minimal Very Poor 

22 Moderate Moderate Minimal Moderate Moderate Minimal Minimal Minimal Moderate Very Poor 

23 Minimal Minimal Minimal Severe Severe Minimal Minimal Minimal Minimal Very Poor 

24 Minimal Moderate Minimal Minimal Moderate Minimal Minimal Minimal Minimal Failed 

25 Moderate Severe Minimal Moderate Severe Minimal Minimal Minimal Minimal Failed 

26 Severe Moderate Minimal Moderate Severe Minimal Minimal Minimal Minimal Failed 

27 Severe Severe Minimal Moderate Moderate Minimal Minimal Moderate Minimal Failed 
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Table 4-4: Fuzzy rules for IRI. 

Rule 

No 

Distress type (Input)  

FIRI 

(Output) 

Rutting 

 

Fatigue 

Cracking 

Block 

Cracking 

Longitudinal 

Cracking 

 

Transverse 

Cracking 

 

Patching Potholes Bleeding Ravelling 

1 Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Very Good 

2 Minimal Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Very Good 

3 Minimal Minimal Minimal Minimal Moderate Minimal Minimal Minimal Minimal Very Good 

4 Moderate Moderate Minimal Minimal Minimal Minimal Minimal Minimal Minimal Good 

5 Minimal Minimal Minimal Minimal Moderate Minimal Minimal Moderate Minimal Good 

6 Moderate Moderate Minimal Moderate Minimal Minimal Minimal Minimal Moderate Fair 

7 Minimal Moderate Minimal Moderate Minimal Minimal Minimal Minimal Severe Fair 

8 Minimal Minimal Minimal Severe Moderate Minimal Minimal Minimal Minimal Fair 

9 Moderate Moderate Minimal Moderate Moderate Minimal Minimal Minimal Minimal Mediocre 

10 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Moderate Mediocre 

11 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Minimal Mediocre 

12 Severe Severe Minimal Minimal Moderate Minimal Minimal Minimal Minimal Poor 

13 Severe Moderate Minimal Severe Moderate Minimal Minimal Moderate Minimal Poor 

14 Severe Severe Minimal Severe Severe Minimal Minimal Moderate Minimal Poor 

15 Severe Severe Minimal Severe Severe Minimal Minimal Moderate Minimal Poor 

 

 

4.5 The Results of Pavement Section Classification 

4.5.1  Fuzzy Pavement Condition Index (PCI) 

Table (4-5) displays the level of agreement of the (FPCI) values for 120 and 150 sections, 

respectively. The performance was evaluated by the (𝑅2) (RMSE) and (MAE) for FPCI. 

Comparison of the goodness of fit statistics of the 120 sections versus the 150 sections in Table 

(4-5) provides the following conclusions: 

• Centroid method: The results indicated that the 𝑅2, RMSE, and MAE values were 

Improvements; the improvement values were 1.03%, 6.12%, and 8.10%, respectively.  
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• Bisector method: The results indicated that the 𝑅2, RMSE, and MAE values were 

improvements; the Improvement values were 0.62%, 7.01%, and 0.372%, respectively   

Table 4-5: Assessment various fuzzy inference systems’ configurations for FPCI. 

Inference Number 

of 

sections 

Defuzzification Statistical Error Measures 

(PCI) 

Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE MAE 

 

 

 

Mamdani 

(Triangular) 

 

 

     120 

Centroid 97.3* 5.28* 4.617* - - - 

Bisector 96.3 5.916 5.367 - - - 

Lom 95.4 8.096 6.185 - - - 

Som 95.8 6.696 5.567 - - - 

 

 

    150 

Centroid 98.3* 4.957* 4.243* +1.03 +6.12 +8.10 

Bisector 96.9 5.499 5.347 +0.62 +7.01 +0.372 

Lom 98.2 5.042 4.487 +2.85 +37.72 +27.45 

Som 97.6 5.465 4.92 +1.84 +18.38 +11.6 

*Indicates the best results for each fuzzy system in the column. 

• Lom method: The results indicated that the 𝑅2, RMSE, and MAE values were 

Improvements; the improvement values were 2.85%,37.72%, and 27.45%, respectively. 

• Som method: The results indicated that the 𝑅2, RMSE, and MAE values were 

Improvements; the improvement values were 1.84%,18.38%, and 11.6%, respectively. 

 The results illustrated the centroid method yields a more accurate result (𝑅2= 98.3%, RMSE 

=4.957%, and MAE=4.243%) compared to other methods. The Lom method has the most 

significant Improvement among methods (𝑅2= 2.85%, RMSE =37.72% and MAE=27.45%). This 

means that the accuracy of models was enhanced by increasing the number of sections. 
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                            Figure 4-2: Fuzzy inference system for PCI (120 sections). 
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                                Figure 4-3: Fuzzy inference system for PCI (150 sections).  

Although the Improvement was relatively slight, it still showed that the accuracy level improved 

with an increase in the number of sections. Figures (4-2) and (4-3) show the relation between the 

observed PCI and fuzzified FPCI and use four methods of analysis for 120 and 150 sections, 

respectively. 
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4.5.2 Fuzzy International Roughness Index (IRI) 

Table (4-6) presents the level of agreement of the (FIRI) values for 120 and 150 sections, 

respectively. 

Table 4-6: Assessment various fuzzy inference systems’ configurations for FIRI 

Inference Number 

of 

sections 

Defuzzification Statistical Error Measures 

(IRI) 

Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE MAE 

 

 

 

Mamdani 

(Triangular) 

 

 

     120 

Centroid 90.3* 0.318* 0.26* - - - 

Bisector 89.9   0.319 0.261 - - - 

Lom 89.3 0.412 0.314 - - - 

Som 88.3 0.345 0.278 - - - 

 

 

    150 

Centroid 92.9* 0.285* 0.227* +2.78 +10.37 +12.70 

Bisector 92.7 0.286 0.233 +3.02 +10.34 +10.73 

Lom 91.9 0.33 0.249 +2.83 +19.90 +20.7 

Som 91.5 0.345 0.277 +3.5 0 +0.36 

*Indicates the best results for each fuzzy system in the column. 

The performance was evaluated by the 𝑅2, RMSE, and MAE for FIRI. Comparison of the 

goodness of fit statistics of the 120 sections versus the 150 sections in Table (4-6) provides the 

following conclusions: 

• Centroid method: The results indicated that the 𝑅2, RMSE, and MAE values were 

Improvements; the improvement values were 2.78%, 10.37%, and 12.70%, respectively.  

• Bisector method: The results indicated that the 𝑅2, RMSE, and MAE values were 

Improvements; the Improvement values were 3.02%, 10.34%, and 10.73%, respectively. 

• Lom method: The results indicated that the 𝑅2, RMSE, and MAE values were 

Improvements; the improvement values were 2.83%,19.90%, and 20.70%, respectively. 
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• Som method: The results indicated that the 𝑅2, RMSE, and MAE values were 

Improvements; the improvement values were 3.5%,0%, and 0.36%, respectively. 

   

     

               Figure 4-4: Fuzzy inference system for FIRI (120 sections).  
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Improvement among methods (𝑅2= 2.83%, RMSE =19.90% and MAE=20.70%). This means that 

the accuracy of models was enhanced by increasing the number of sections. 

   

   
 

                  Figure 4-5: Fuzzy inference system for FIRI (150 sections). 
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4.5.2.1 Sensitivity of Pavement Distress Types Using the FIS 

The FPCI and FIRI models were created through several steps. The first step was the fuzzy 

partition generation for inputs and outputs for the 120 and 150 sections of pavement. The second 

step was the generation of fuzzy rules from numerical data. The third step was the FPCI and FIRI 

model development of a pavement classification model, which used nine variables as FIS inputs: 

rutting, fatigue cracking, block cracking, longitudinal and transverse cracking, patching and 

potholes, bleeding, and ravelling. 

The effect of input parameters on the efficiency of the fuzzy pavement categorization system in 

the computation of output parameters (FPCI and FIRI) was investigated using a sensitivity 

analysis. The sensitivity analysis was carried out by creating the FIS model and analysing the 

influence of each input on output.  

Table (4-7) summarizes a sensitivity analysis to determine the effects of input variables on the 

efficacy of PCI and IRI evaluation models. This analysis generated empirical models by 

considering the individual independent input impact (one by one) and neglecting the other 

independent input impacts. 𝑅2 was used as the index to evaluate the correlation strength between 

independent and dependent input variables. 

Figure (4-6) presents the sensitivity analysis for FPCI. Compared to other variables, the analysis 

showed that rutting has the most significant impact on FPCI fuzzified classification, and 

transverse, fatigue, and longitudinal cracking have some effects on FPCI. In contrast, block 

cracking, and patching slightly influence the classification model. 

Figure (4-7) shows the sensitivity analysis for FIRI. Compared to other variables, this analysis 

showed that rutting has the most significant impact on FIRI fuzzified classification and patching 
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and fatigue cracking have some effects on FIRI fuzzified classification. Other variables have minor 

effect on FIRI fuzzified classification. 

                  Table 4-7: Sensitivity analysis of prediction models for FPCI and FIRI. 

               

Independent 

Variable 

𝑹𝟐 

PCI IRI 

120 150 120 150 

Rutting 45.1 46.5 12.4 14.2 

Fatigue 27.9 28.4 58 63 

Block Cracking 0. 1 0. 2 0. 1 - 

Longitudinal Cracking 26.6 26.6 0. 1 1.4 

Transverse Cracking 35.5 39.9 1.7 1.6 

Patching 5.1 0.6 9.6 0. 1 

Potholes - - - 0. 1 

Bleeding 9.6 7.2 12 0. 6 

Ravelling 6.5 7.1 0. 1 0. 2 

 



 

 

 

 

 87 

 

             Figure 4-6: Sensitivity analysis of input variables on prediction for FPCI. 

 

                    Figure 4-7: Sensitivity analysis of input variables on prediction for FIRI. 
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4.6  Summary 

This study used two sets of pavement distress data extracted from the LTPP database. Data sets 

were used to develop a PCI and IRI prediction model using the fuzzy inference algorithm. The 

membership function parameter was determined by a set of input and output data defined via a 

hybrid optimization algorithm. Drafting the structure of the FIS model by trial and error was a 

method adopted for constructing the optimal FIS. The nine density types of pavement distress 

coefficients (rutting, fatigue cracking, block cracking, longitudinal cracking, transverse cracking, 

patching, potholes, bleeding, and ravelling) were input variables. And IRI and PCI were considered 

as the target parameters. Two data sets were collected from the LTPP data set for FIS modelling, 

with (120) and (150) sections.   

Several important advantages were drawn from FIS technique, as follows: 

▪ Although the FIS technique does not provide an equation for the prediction of PCI and IRI, 

the model can correlate with pavement distress. Based on the 𝑅2 values, it was evident that 

the four methods have good accuracy, as their 𝑅2values exceed 89%. 

▪  Based on the sensitivity analysis, it is concluded that the rutting has most influence on the 

FPCI calculation, and transverse cracking, longitudinal cracking, and fatigue cracking have 

some influence on the FPCI calculation, while patching, bleeding, and ravelling have minor 

effects on the FPCI calculation. 

▪ Based on the sensitivity analysis, it is concluded that the rutting has most influence on the 

FIRI calculation patching and fatigue cracking have some influence on the FIRI, while 

transverse cracking, longitudinal cracking, bleeding, and ravelling have only minor effects 

on the FIRI.       
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▪ Incorporating additional sections with different distresses and various severities improves 

the model results, which helps the programme to learn and develop additional rules. 

▪  Results indicated that the performance of developed models was enhanced by increasing 

the number of sections. 
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Chapter5: Modeling the Relationship Between Asphalt  

Pavement Performance Indices (PCI and IRI) 

5.1  Introduction 
 

The IRI and the PCI are widely used pavement performance indicators in many countries. These 

indicators are important in determining the effectiveness of pavement rehabilitation and treatment 

programs. This chapter sought to clarify the relationship between these two performance indicators 

using the LTPP data for four climate regions in the U.S. and Canada. Figure (5-1) shows the 

research methodology of examining and developing the relationship between asphalt pavement 

performance indices.    

5.2 Pavement Condition Index Calculation 
 

After collecting the pavement distress data and IRI values from the LTPP database for four climate 

regions in the U.S.  and Canada, PCI values were calculated for 53 road sections with 408 

observations using the ASTM D6433-18 standard. Based on these data, three mathematical 

methods (linear, quadratic, and cubic) and ANNs techniques were developed for prediction 

models. Table (5-1) presents a brief description of the specification of the IRI and PCI dataset.  

Table 5-1: Gathered pavement distress data for four climate regions.  

 

Parameters 

 

Unit 

Climate Regions 

Dry  

Freeze 

Dry no 

 Freeze 

Wet  

Freeze 

Wet no  

Freeze 

PCI % 52-80 50-100 8-100 8-100 

IRI (m/km) 0.89-1.69 0.68-2.66 0.72-4.04 0.62-3.76 
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Figure 5-1: Research methodology of the examining and  Modeling  the relationship between 

asphalt pavement performance indices. 
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5.3 Modeling the Relationship Between Asphalt Pavement Indices (PCI and 

IRI) Using Mathematical Methods  

 

Three mathematical methods (linear, quadratic, and cubic) were used to develop a correlation 

between the two indicators PCI and IRI. Analysis was carried out by the SPSS programme to 

determine the correlation between the PCI and IRI. The correlation between the PCI and IRI was 

conducted based on the LTPP dataset, and the correlation was assessed using R2 values, RMSE, 

and MAE. Equations from (5-1) to (5-12) summarised the regression models and presented the 

relation between (PCI& IRI) for four climate regions as follows: 

1-Dry Freeze:  

Regression analysis was carried out to determine the correlation between the PCI and IRI. 

Equations (5-1), (5-2), and (5-3) represent the correlation between the PCI and IRI and used the 

linear, quadratic, and cubic methods, respectively. 

𝑷𝑪𝑰 = 𝟗𝟕. 𝟑𝟔𝟑 − 𝟐𝟕. 𝟗𝟐(𝑰𝑹𝑰)     5-1 

The correlation coefficient (R2) of this relationship is 87.7%. 

𝑷𝑪𝑰 = 𝟏𝟒𝟑. 𝟖𝟑 − 𝟏𝟎𝟖. 𝟐𝟕𝟎(𝑰𝑹𝑰) + 𝟑𝟏. 𝟖𝟖(𝑰𝑹𝑰)𝟐    5-2 

The correlation coefficient (R2) of this relationship is 92.3%. 

𝑷𝑪𝑰 = 𝟏𝟒𝟑. 𝟖𝟑 − 𝟏𝟎𝟖. 𝟐𝟕𝟎(𝑰𝑹𝑰) + 𝟑𝟏. 𝟖𝟖(𝑰𝑹𝑰)𝟐        5-3 

The correlation coefficient (R2) of this relationship is 92.3%. 
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                                   Figure 5-2: PCI versus IRI plot for dry freeze. 

The previous three equations showed that the dependant variable PCI was negatively correlated 

with the independent variable (IRI), which was to be expected, since the roughness of roads causes 

PCI values to decrease. Figure (5-2) presented the relationship between PCI and IRI for the dry 

freeze region, and the Figure showed the relationship between PCI and IRI by three mathematical 

methods, linear, quadratic, and cubic. 

2-Dry no Freeze:   

 Regression analysis was carried out to determine the correlation between the PCI and IRI. 

Equations (5-4), (5-5), and (5-6) represent the correlation between the PCI and IRI and used the 

linear, quadratic, and cubic methods, respectively. 

𝑷𝑪𝑰 = 𝟏𝟏𝟓. 𝟎𝟏𝟐 − 𝟐𝟗. 𝟕𝟐(𝑰𝑹𝑰)    5-4 

The correlation coefficient (R2) of this relationship is 89%. 

𝑷𝑪𝑰 = 𝟏𝟐𝟖. 𝟕 − 𝟓𝟕. 𝟑(𝑰𝑹𝑰) + 𝟏𝟏. 𝟒𝟒(𝑰𝑹𝑰)𝟐    5-5 
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The correlation coefficient (R2) of this relationship is 92%. 

𝑷𝑪𝑰 = 𝟏𝟐𝟖. 𝟕 − 𝟓𝟕. 𝟑(𝑰𝑹𝑰) + 𝟏𝟏. 𝟒𝟒(𝑰𝑹𝑰)𝟐    5-6 

The correlation coefficient (R2) of this relationship is 92%. 

As observed in equation (5-4), the regression analysis (linear method) showed that the PCI variable 

was negatively correlated with IRI. R2 for equation (5-4) was 86 %. While R2for equations (5-5) 

and (5-6) were 92 % for the quadratic and cubic methods, respectively. Figure (5-3) presents the 

relationship between PCI and IRI for the dry no freeze region using three mathematical methods: 

linear, quadratic, and cubic. 

 

                                     Figure 5-3: PCI versus IRI plot for dry no freeze. 
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3-Wet Freeze:  

Three regression models were developed to predict PCI from IRI data. Equations (5-7), (5-8), 

and (5-9) represents the correlation between the PCI and IRI, using the linear, quadratic, and 

cubic methods, respectively. 

𝑷𝑪𝑰 = 𝟏𝟏𝟓. 𝟎𝟏𝟐 − 𝟐𝟗. 𝟕𝟐(𝑰𝑹𝑰)   5-7 

The correlation coefficient (R2) of this relationship is 82.1%. 

𝑷𝑪𝑰 = 𝟏𝟐𝟏. 𝟔 − 𝟑𝟖. 𝟐𝟑(𝑰𝑹𝑰) + 𝟐. 𝟏𝟏(𝑰𝑹𝑰)𝟐  5-8 

The correlation coefficient (R2) of this relationship is 82.5%. 

𝑷𝑪𝑰 = 𝟗𝟕. 𝟗𝟕 + 𝟖. 𝟏𝟏(𝑰𝑹𝑰) − 𝟐𝟒. 𝟑𝟔(𝑰𝑹𝑰)𝟐 + 𝟒. 𝟑𝟏(𝑰𝑹𝑰)𝟑    5-9      

The correlation coefficient (R2) of this relationship is 83.5 %. 

 

                                          Figure 5-4:PCI versus IRI plot for wet freeze. 
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As observed in equations (5-7), (5-8), and (5-9), 𝑅2 values were 82.1 %, and 82.5 %, and 83.5%, 

respectively.  This indicates that using the IRI data in a wet freeze climate model it challenging to 

predict PCI value. Figure (5-4) presents the relationship between PCI and IRI for the wet freeze 

region using three mathematical methods: linear, quadratic, and cubic. 

4-Wet no Freeze:  

Three regression models were developed to predict PCI from IRI data. Equations (5-10), (5-11), 

and (5-12) represented the correlation between the PCI and IRI, and used the linear, quadratic, and 

cubic methods, respectively. 

PCI=136.508-45.923(IRI)          5-10 

The correlation coefficient (R2) of this relationship is 92.7%. 

PCI=161.51-79(IRI)+9.23(𝑰𝑹𝑰)𝟐    5-11   

The correlation coefficient (R2) of this relationship is 94.4%. 

𝑷𝑪𝑰 =  𝟏𝟑𝟑. 𝟒𝟔𝟓 − 𝟐𝟕. 𝟐𝟏(𝑰𝑹𝑰)  − 𝟏𝟖. 𝟕𝟏(𝑰𝑹𝑰)𝟐 + 𝟒. 𝟔𝟎(𝑰𝑹𝑰)𝟑   5-12  

The correlation coefficient (R2) of this relationship is 94.8%. 

Equations (5-10), (5-11) and (5-12) showed that the R2 were 92.7 %, 94.4 % and 94.8 %, 

respectively. Based on this, IRI data in the wet no freeze climate can easily predict PCI value. 

Figure (5-5) presents the relationship between PCI and IRI for the wet no freeze region using three 

mathematical methods: linear, quadratic, and cubic. 
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                             Figure 5-05: PCI versus IRI plot for wet no freeze. 

5.4 Comparison and validation of the mathematical models 
 

The R2, RMSE, and MAE three statistical error measures were used for validating the developed 

regression model for the three mathematical methods mentioned above. Results showed that the 

R2was good, while the RMSE and the MAE values in all cases were low, as shown in Table (5-2).   

Table 5-2: Summary of correlation between IRI & PCI. 

 

Climate 

Regions 

Statistical Error Measures 

𝑹𝟐 RMSE MAE 

Linear Quadratic Cubic Linear Quadratic Cubic Linear Quadratic Cubic 

Dry Freeze 87.7 92.3 92.3 2.704 2.132 2.132 1.764 1.563 1.563 

Dry no Freeze 86 92 92 5.274 3.999 3.999 4.401 2.974 2.974 

Wet Freeze 82.1 82.5 83.5 8.387 8.301 8.055 4.708 4.09 4.045 

Wet no Freeze   92.7 94.4 94.8 8.173 7.137 6.940 6.354 5.763 5.348 
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According to Table (5-2), several conclusions can be drawn: 

• Dry Freeze: The results indicated that the 𝑅2, RMSE, and MAE values of the cubic models 

improved by 4.9%, 21.15%, and 11.39% compared to the linear models. 

• Dry no Freeze: The results indicated that the 𝑅2, RMSE, and MAE values of the cubic 

models improved by 6.52%, 24.17%, and 32.42% compared to the linear models. 

• Wet Freeze: The results indicated that the 𝑅2, RMSE, and MAE values of the cubic models 

improved by 1.68%, 1.20%, 3.96%,2.96%, 14.08%, and 1.10% compared to the linear 

models and quadratic model, respectively.   

• Wet no Freeze: The results indicated that the 𝑅2, RMSE, and MAE values of the cubic 

models improved by 2.22%, 15.09%, 15.83%, 0.42%, 2.76%, 7.20% compared to the linear 

models and quadratic model, respectively.   

The results obtained from the regression analysis showed that the cubic regression models could 

be used for estimating the PCI values from the IRI. Cubic model results provided the best fit in all 

cases, with less error between the observed and predicted values compared to linear and quadratic 

methods. This result is consistent with some previous research. For example, Park et al. (2007) 

conducted a regression model and reported 𝑅2=59%. AASHTO (2008a) used the M-E model to 

predict IRI values, the 𝑅2 was 56%, by Arhin et al. (2015), 𝑅2 = 82%, Psalmen Hasibuan & 

Sejahtera Surbakti, 2019), 𝑅2 = 59%, Elhadidy et al. (2019), 𝑅2 = 93%, and Timm (2015), 𝑅2 = 

63%.  Despite following the ASTM standard, there remains a certain amount of uncertainty related 

to the correlation between PCI and IRI of flexible pavements owing to factors such as: 

▪ the survey team estimates (human errors), 

▪ the data collection devices, and 

▪ the maintenance record of the road. 
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Table (5-1) shows PCI and IRI values for four climate regions. For example, PCI values for the 

dry no freeze region ranged between 52 and 100; these values were classified as fair to excellent. 

In contrast, IRI values were rated as very good to poor, and ranged between 0.68 and 2.66 (m/km). 

The results demonstrated that the same section of the road could have a good PCI but a poor IRI, 

even though IRI and PCI were strongly correlated. To understand these differences, the impact of 

pavement distress type was investigated with two road performance indicators. Some pavement 

distress, like potholes and bleeding, substantially reduce the PCI values but insignificantly 

influences the IRI values. However, the patching significantly affects the IRI values but 

insignificantly influences the PCI values. 

5.5 Modeling the Relationship Between Asphalt Pavement Indices (PCI and 

IRI) Using Artificial Neural Network (ANNs) Technique 

 

 Artificial neural networks have been used to develop effective and accurate models. These models 

aim to predict the relationship between the PCI and IRI obtained from the LTPP datasets for four 

climate regions in the U.S. and Canada. The architecture of the designed network consists of one 

input layer with one variable, three hidden layers, and an output layer. 53 flexible pavement 

sections with 408 observations have been chosen within the four climatic regions. Figure (5-6) 

displays the architecture of the ANNs. The model’s performance was assessed using the three 

common methods of 𝑅2value, RMSE, and MAE. Figure (5-7) presents the ANN prediction results 

for PCI models for four climate regions. According to Table (5-3), several conclusions can be 

drawn: 

• Dry Freeze: The 𝑅2value was 99.7%, while the RMSE and MAE values were 0.89% and 

0.89%.  
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• Dry no Freeze: The R2value was 98.5%, while the RMSE and MAE values were 0.39% 

and 0.336%.      

Table 5-3: Performance of PCI models by using ANNs technique based on IRI values. 

 

       Climate Regions 

Statistical Error Measures(%) 

𝑹𝟐 
 

RMSE 
 

MAE 
 

Dry Freeze 99.7 0.89 0.89 

Dry no Freeze 98.5 0.39 0.336 

Wet Freeze 99.8 0.661 0.484 

Wet no Freeze 99.8 0.827 0.601 

 

• Wet Freeze: The 𝑅2 value was 99.8%, while the RMSE and MAE values were 0.661% 

and 0.484%.      

• Wet no Freeze: The 𝑅2 value was 99.8%, while the RMSE and MAE values were 0.827% 

and 0.601%.     

 

                                   Figure 5-6: Architecture of ANN model for PCI. 
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            Figure 5-7: Performance of the ANNs for predicting PCI models for four climate regions. 

5.6 Comparison and validation of the models 
 

To validate the prediction models developed in this chapter, the 𝑅2, RMSE, and MAE methods 

were adopted to validate the cubic and ANNs techniques. The 𝑅2 was used to evaluate the 

relationship strength between the input and output variables. The RMSE and MAE were used to 
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determine whether if there were any significant differences between observed and prediction 

errors’ values. In all cases, the calculated 𝑅2 were strong, and RMSE and MAE values were found 

to be low, as shown in Table (5-4). Figures (5-8) and (5-9) present the comparison between the 

cubic method and the ANNs technique. Table (5-4) provided a promising approach to compare the 

cubic models to ANNs models. A summary of the findings is as follows: 

This study presented good models for accurate PCI prediction for flexible pavement for four 

climate regions. The model’s input variables were evaluated and assessed to produce an accurate 

and strong model. 

Table 5-04: Comparison of the cubic models to the ANNs models. 

 

Climate Region 

Statistical Error Measures 

Cubic Generated ANNs Generated Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝐌𝐀𝐄 𝑹𝟐 RMSE 𝐌𝐀𝐄 

Dry Freeze 92.3 2.132 1.563 99.7 0.89 0.89 +7.42 +58.26 +43.06 

Dry no Freeze 92 3.999 2.974 98.5 0.39 0.336 +6.60 +90.25 +88.70 

Wet Freeze 83.5 8.055 4.045 99.8 0.661 0.484 +16.33 +91.79 +88.03 

Wet no Freeze 94.8 6.940 5.348 99.8 0.827 0.601 +5.01 +88.08 +88.76 

 

• The results indicated that the 𝑅2of the ANNs models improved by 7.42%, 6.60%, 16.33 

%, and 5.01%, compared to the cubic models, for dry freeze, dry no freeze, wet freeze, and 

wet no freeze, respectively. 

•  The results indicated the RMSE value of the ANNs models was reduced by 58.26%, 

90.25%, 91.79%, and 88.08% compared to the cubic models, for dry freeze, dry no freeze, 

wet freeze, and wet no freeze, respectively. 
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• The results indicated the MAE value of the ANNs models was reduced by 43.06%, 88.70%, 

88.03%, and 88.76%, compared to the cubic models, for dry freeze, dry no freeze, wet 

freeze, and wet no freeze, respectively. 

• According to the results, the cubic models could estimate the PCI values from the IRI with 

reasonable accuracy. Results showed that the ANNs technique has the best fit and high 

accuracy in all cases with less error between observed and predicted values than the cubic 

method.  

5.7 Summary 

 Several important conclusions can be drawn from this chapter, as follow: 

• The LTPP data were used in this study to determine correlations between the PCI and IRI 

of flexible pavement. The results indicate that all methods were able to predict models by 

using IRI data. 

• The results indicated that the most accurate models were the cubic models, compared to 

linear and quadratic models, in all cases. 

• The results indicated that the ANNs models were more accurate than cubic models in all 

cases. 

•  Finally, when comparing the MLR and the ANN data, it was observed that the ANNs 

models showed more strong correlations between the PCI and IRI. 
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Chapter6: Modeling of Asphalt Pavement Performance Indices Using 

(MLR) and (ANNs) Techniques 

 

6.1 Introduction 
 

The pavement performance prediction models are essential for pavement management and 

effectively prioritize allocating resources, where pavement redesign and maintenance costing are 

conducted with these models. This section provides the research methodology used to model 

performance prediction indices (PCI and IRI) and investigates the potential impact of various 

fundamental parameters on pavement performance. This is critical to understanding potential 

relationship types and calculating correlations between input and output variables.  

The methodology for this chapter is based on the several following steps: 

1. Collecting data from the LTPP dataset for four climate regions. 

2. Modeling of asphalt pavement performance indices using (MLR) technique. 

3. Modeling of asphalt pavement performance indices using (ANNs) technique. 

4. Comparison and validation of the MLR and ANNs models. 

5. Specifically, the following three parameters are analyzed to determine study their effect on 

asphalt pavement performance indices (PCI &IRI) prediction models: 

▪ Effect of pavement distress (performance parameters), 

▪ effect of environmental parameters, and 

▪ effect of traffic parameters. 

Figure 6-1 presents the research methodology of the Modeling asphalt pavement performance 

indices. 
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Figure 6-1: The research methodology of the modeling asphalt pavement performance indices. 
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6.2 Effect of Pavement Distress on Indices Values 

 This section focused on modeling asphalt pavement performance indices (PCI and IRI) based on 

pavement distress variables and studying the effect of these variables on asphalt pavement 

performance indices for four climate regions in the U.S. and Canada. The relevant data were 

collected on the pavement distress parameters of 53 road sections with 408 observations from the 

LTPP dataset, and distributed to four climate regions (dry freeze, dry no freeze, wet freeze, wet no 

freeze). The present study was divided into three phases as follows: 

▪ Modeling of asphalt pavement performance indices using (MLR) technique. 

▪ Modeling of asphalt pavement performance indices using (ANNs) technique. 

▪ Comparison and validation of the MLR and ANNs models. 

Ten pavement distress variables were assessed and used to predict the PCI and IRI for each climate 

region, including age, rutting, fatigue cracking, block cracking, longitudinal cracking, transverse 

cracking, potholes, patching, bleeding, and ravelling. 

Note that both the surface type of asphalt concrete pavement (ACP) and type of subgrade (coarse-

grained) are constant for all data regions. Table (6-1) briefly describes the selected dataset of 

pavement distress specification. 
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Table 6-1: Gathered pavement distress data from four climate regions.  

 

Parameters 

 

Unit 

Climate Regions 

Dry  

Freeze 

Dry no 

 Freeze 

Wet  

Freeze 

Wet no  

Freeze 

PCI % 52-80 50-100 8-91 8-100 

IRI (m/km) 0.89-1.69 0.68-2.66 0.79-4.04 0.75-3.76 

Number of data samples Number 14 61 144 189 

Age Year 6-18 3-34 3-33 1-31 

Rutting Mm 0-10 0-16 0-29 0-22 

Fatigue Cracking 𝑚2 0-170 0-304.8 0-218.7 0-377.90 

Block Cracking 𝑚2 0 0 0 0 

Longitudinal Cracking M 128.9-378.5 0-306 0-319 0-377.1 

Transverse Cracking M 22-65 0-140 0-293 0-193 

Patching  𝑚2 0 0-1.5 0 0-46 

Potholes (Count) 0 0 0 0 

Bleeding  𝑚2 0 0 0-350.80 0-275 

Ravelling 𝑚2 0 0-76.3 0-564.3 0-564 

 

6.2.1 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique 

Research in this part focuses on using pavement distress variables to model asphalt pavement 

performance indices (PCI and IRI). Pavement distress parameters were input variables, and 

pavement performance indices (PCI and IRI ) were output parameters. Eight prediction models 

were developed using (MLR) technique from the collected data. The PCI and IRI regression 

models are shown in Tables (6-2) and (6-3).  

The PCI regression analysis results illustrated in Table (6-2) indicate that the  𝑅2 values were 77%, 

91.6%, 86.6%, and 89.3% for dry freeze, dry no freeze, wet freeze, and wet no freeze, respectively. 
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Based on the 𝑅2 values, it was evident that all models have good accuracy, as their 𝑅2values 

exceed 77%. 

                  Table 6-2: PCI models summary based on pavement distress. 

Model 

PCI 

Dry 

 Freeze 

Dry no  

Freeze 

Wet  

Freeze 

Wet no 

 Freeze 

𝑅2 77 91.6 86.8 89.4 

Constant 82.2 104.94 116.52 113.33 

Age 0.067 -0.492 -2.74 -3.087 

Rutting 0.232 0.048 0.178 0.205 

Fatigue Cracking -0.095 0.04 –0.018 0.007 

Block Cracking - - - - 

Longitudinal Cracking -0.096 -0.011 0.001 -0.004 

Transverse Cracking 0.054 0.104 0.024 -0.045 

Patching  - -2.793 - 0.021 

Potholes - - - - 

Bleeding  - - 0.01 0.005 

Ravelling - -0.053 0.008 -0.004 

 

 The IRI regression analysis results illustrated in Table (6-3) indicate that the  𝑅2 values were 

70.7%, 90.3%, 77.7%, and 89.4% for dry freeze, dry no freeze, wet freeze, and wet no freeze, 

respectively. Based on the 𝑅2 values, all models had a good correlation, as their 𝑅2 values exceed 

70%.  
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                     Table 6-3: IRI models summary based on pavement distress.  

Model 

IRI 

Dry 

 Freeze 

Dry no  

Freeze 

Wet  

Freeze 

Wet no 

 Freeze 

𝑅2 70.7 90.6 77.7 89.3 

Constant 2.273 0.063 0.155 0.365 

Age -0.126 0.088 0.081 0.074 

Rutting 0.083 0.011 -0.007 -0.004 

Fatigue Cracking -0.003 -0.002 0.001 -0.0001 

Block Cracking - - - - 

Longitudinal Cracking -0.007 - - -0.0001 

Transverse Cracking 0.035 - -0.001 -0.001 

Patching  - 0.043 - - 

Potholes - - - - 

Bleeding  - - - - 

Ravelling - -0.002 - - 

 

Equations from (6-1) to (6-8) summarised the regression models for four climate regions as 

follows:                            

1- Dry Freeze  

 Table (6-2) presents the regression analysis result for PCI for the dry freeze area. The PCI model 

was negatively correlated with fatigue and longitudinal cracking, and positively correlated with 

age, rutting, and transverse cracking. Equation (6-1) described the relationship between the PCI 

and pavement distress as follows:  

𝑷𝑪𝑰 =  𝟖𝟐. 𝟐 + 𝟎. 𝟎𝟔𝟕𝑿𝒂𝒈𝒆 + 𝟎. 𝟐𝟑𝟐𝑿𝟏 − 𝟎. 𝟎𝟗𝟓𝑿𝟐 − 𝟎. 𝟎𝟗𝟔𝑿𝟒 + 𝟎. 𝟎𝟓𝟒𝑿𝟓                 6-1                                                                                                                                  

The correlation coefficient (R2) of this relationship is 77%. 
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Table (6-3) presents the regression analysis result of the IRI for the dry freeze area. The IRI model 

had a positive relationship with rutting and transverse cracking. The IRI model had a negative 

relationship with age, fatigue cracking, and longitudinal cracking, Equation (6-2) described the 

relationship between the IRI and pavement distress as follows: 

𝑰𝑹𝑰 = 𝟐. 𝟐𝟕𝟑 − 𝟎. 𝟏𝟐𝟔𝑿𝒂𝒈𝒆 + 𝟎. 𝟎𝟖𝟑𝑿𝟏 − 𝟎. 𝟎𝟎𝟑𝑿𝟐 − 𝟎. 𝟎𝟎𝟕𝑿𝟒 + 𝟎. 𝟎𝟑𝟓𝑿𝟓                    6-2               

The correlation coefficient (𝑅2) of this relationship is 70.7 %. 

2- Dry no Freeze  

The regression analysis result of the PCI model for the dry no freeze area is shown in Table (6-2). 

The PCI model was positively correlated with fatigue and transverse cracking. The PCI model was 

negatively correlated with age, rutting, fatigue cracking, longitudinal cracking, patching, and 

ravelling. Equation (6-3) described the relationship between the PCI and pavement distress as 

follows:  

P𝑪𝑰 = 𝟏𝟎𝟒. 𝟗𝟒 − 𝟎. 𝟒𝟗𝟐𝑿𝒂𝒈𝒆 + 𝟎. 𝟎𝟒𝟖𝑿𝟏 + 𝟎. 𝟎𝟒𝑿𝟏 − 𝟎. 𝟎𝟏𝟏𝑿𝟒 + 𝟎. 𝟏𝟎𝟒𝑿𝟓 − 𝟐. 𝟕𝟗𝟑𝑿𝟔 −

𝟎. 𝟎𝟓𝟑𝑿𝟗                  6-3                                                                                                                                                       

The correlation coefficient (R2) of this relationship is 91.6 %. 

The regression analysis result of the IRI model for the dry no freeze area is presented in Table (6-

3). The IRI model was negatively correlated with fatigue cracking and ravelling. The IRI model 

had a positive relationship correlated with age, rutting, and patching. Equation (6-4) described the 

relationship between the IRI and pavement distress as follows: 

𝐈𝐑𝐈 = 𝟎. 𝟎𝟔𝟑 + 𝟎. 𝟎𝟖𝟖𝐗𝐚𝐠𝐞 + 𝟎. 𝟎𝟏𝟏 𝐗𝟏 − 𝟎. 𝟎𝟎𝟐 𝐗𝟐 +  𝟎. 𝟎𝟒𝟑𝐗𝟔 − 𝟎. 𝟎𝟎𝟐 𝐗𝟗               6-4    

The correlation coefficient (R2) of this relationship is 90.6%.             
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3- Wet Freeze  

Table (6-2) presents the regression analysis results for the PCI model for the wet freeze area. The 

PCI model was negatively correlated with age and fatigue cracking. The PCI model was positively 

correlated with rutting, longitudinal cracking, transverse cracking, bleeding, and ravelling. 

Equation (6-5) described the relationship between the PCI and pavement distress as follows: 

𝑷𝑪𝑰 = 𝟏𝟏𝟔. 𝟓𝟐 − 𝟐. 𝟕𝟒𝑿𝒂𝒈𝒆 + 𝟎. 𝟏𝟕𝟖𝑿𝟏 − 𝟎. 𝟎𝟏𝟖𝑿𝟐 + 𝟎. 𝟎𝟎𝟏𝑿𝟒 + 𝟎. 𝟎𝟐𝟒𝑿𝟓 + 𝟎. 𝟎𝟏𝟎𝑿𝟖 +

+𝟎. 𝟎𝟎𝟖𝑿𝟗      6-5 

The correlation coefficient (R2) of this relationship is 86.8%.    

Table (6-3) presents the regression analysis results for the IRI model for the wet freeze area. The 

IRI model was negatively correlated with rutting and transverse cracking. The IRI model was 

positively correlated with age, and fatigue cracking. Equation (6-6) described the relationship 

between the IRI and pavement distress as follows: 

𝐈𝐑𝐈 = 𝟎. 𝟏𝟓𝟓 + 𝟎. 𝟎𝟖𝟏𝐗𝐚𝐠𝐞 − 𝟎. 𝟎𝟎𝟕𝐗𝟏 + 𝟎. 𝟎𝟎𝟏𝐗𝟐 − 𝟎. 𝟎𝟎𝟏𝐗𝟓                                       𝟔-6 

 

                

The correlation coefficient (R2) of this relationship is 77.7%.      

4- Wet no Freeze  

 The regression analysis result of the PCI model for the wet no freeze area is presented in Table 

(6-2). The PCI model was negatively correlated with age, transverse cracking, longitudinal 

cracking, and ravelling. The PCI model was positively correlated with rutting, fatigue cracking, 

patching, and bleeding. Equation (6-7) describes the relationship between the PCI, and pavement 

distress as follows: 
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𝑷𝑪𝑰 = 𝟏𝟏𝟑. 𝟑𝟑– 𝟑. 𝟎𝟕𝟖𝑿𝒂𝒈𝒆 + 𝟎. 𝟐𝟎𝟓𝑿𝟏 + 𝟎. 𝟎𝟎𝟕𝑿𝟐 − 𝟎. 𝟎𝟎𝟒𝑿𝟒 − 𝟎. 𝟎𝟒𝟓𝑿𝟓 + 𝟎. 𝟎𝟐𝟏𝑿𝟔 +

𝟎. 𝟎𝟎𝟓𝑿𝟖 − 𝟎. 𝟎𝟎𝟒𝑿𝟓  6-7 

The correlation coefficient (R2) of this relationship is 89.3%.  

 The regression analysis result of the IRI model for the wet no freeze area is presented in Table (6-

3). The IRI model was negatively correlated with rutting, fatigue cracking, longitudinal cracking, 

and transverse cracking. Equation (6-8) described the relationship between the IRI and pavement 

distress as follows: 

𝑰𝑹𝑰 = 𝟎. 𝟑𝟔𝟓 + 𝟎. 𝟎𝟕𝟒𝑿𝒂𝒈𝒆 − 𝟎. 𝟎𝟎𝟒𝑿𝟏 − 𝟎. 𝟎𝟎𝟎𝟏𝑿𝟐 − 𝟎. 𝟎𝟎𝟎𝟏𝑿𝟒 − 𝟎. 𝟎𝟎𝟏𝑿𝟓     6-8 

The correlation coefficient (R2) of this relationship is 89.4 %.   

6.2.1.1 Validation of MLR Models 

Models Validation was applied to determine how accurately the PCI and IRI models can forecast. 

In this study used cross validation method to evaluating models performance. 80 % of the data 

samples for each category were randomly selected to construct deterioration models. The 

remaining 20 % of the data samples were used to test the empirical models’ accuracy(Field. 2009; 

Mahmood. 2014). Figures (6-2) to (6-5) show the linear relations in each climate area for PCI and 

IRI. Tables (6-4) and (6-5) illustrate the reduction in 𝑅2, RMSE, and MAE values for all sections 

in the four climate regions. 

• Models Validation of PCI Models  

 

 

 After the validation test, Table (6-4) illustrates the reduction in 𝑅2, RMSE, and MAE values for 

all sections in the four climate regions. 
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Table 6-4: Validation of PCI models based on pavement distress. 

 

Climate 

Regions 

Statistical Error Measures (PCI) 

MLR Validation Reduction % (±) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 77.0 5.468 4.361 75.4 3.816 2.777 -2.078 -30.212 -36.322 

Dry no Freeze 91.6 4.247 3.2 89.4 4.583 3.537 -2.402 +7.331 +9.528 

Wet Freeze 86.8 7.195 5.616 77.4 7.495 6.001 -10.83 +4.003 +6.416 

Wet no Freeze 89.3 7.324 5.79 92.6 8.909 6.16 +3.5 +17.791 +6.006 

 

Based on Table (6-4), Figures (6-2), and (6-3), the following conclusions can be drawn: 

• Dry Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 2.078 %, 30.212 %, and 36.322 %, respectively. 

Thus, the MLR method’s ability to predict PCI models of pavement distress was accurate. 

• Dry no Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values 

was insignificant; the accuracy reductions were 2.402 %, 7.331 %, and 9.528%, 

respectively. Thus, the MLR method’s ability to predict PCI models of pavement distress 

was accurate. 

• Wet Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 10.83%, 4.003%, and 6.416%, respectively. 

Thus, the MLR method’s ability to predict PCI models of the pavement distress was good. 

• Wet no Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values 

was insignificant; the accuracy reductions were 3.5%, 17.791%, and 6.006%, respectively. 

Thus, the MLR method’s ability to predict PCI models of the pavement distress was good. 
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Figure 6-2: MLR model for the dry freeze and dry no freeze regions based on pavement distress. 

   

Figure 6-3: MLR model for the wet freeze and wet no freeze regions based on pavement distress. 
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• Models Validation of IRI   

 

After the validation test, Table (6-5) illustrates the reduction in 𝑅2, RMSE, and MAE values for 

all sections in the four climate regions. 

Table 6-5: Validation of IRI models based on pavement distress. 

 

Climate 

Regions 

Statistical Error Measures (IRI) 

MLR Validation Reduction % (±) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 70.7 0.144 0.099 60.6 0.178 0.113 -14.29 -19.10 -12.39 

Dry no Freeze 90.6 0.213 0.164 89.1 0.221 0.173 -1.656 +3.182 +5.202 

Wet Freeze 77.7 0.286 0.204 76.0 0.297 0.212 -2.19 +3.704 +3.774 

Wet no Freeze 89.4 0.178 0.092 88.4 0. 295 0.113 -1.12 +39.661 +18.584 

 

Based on Table (6-5), Figures (6-4), and (6-5), the following conclusions can be drawn: 

• Dry Freeze:  The results indicated that the reduction of 𝑅2 was insignificant, while RMSE 

and MAE values was insignificant; the accuracy reductions were 14.29%, 19.10%, and 

12.39 %, respectively. Thus, the MLR method’s ability to predict IRI models of pavement 

distress was accurate. 

• Dry no Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values 

was insignificant; the accuracy reductions were 1.656%, 3.182%, and 5.202%, 

respectively. Thus, the MLR method’s ability to predict IRI models of pavement distress 

was accurate. 
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Figure 6-4: MLR model for the dry freeze and dry no freeze regions based on pavement distress. 

   

Figure 6-5: MLR model for the wet freeze and wet no freeze regions based on pavement distress. 

• Wet Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 2.19%, 3.704%, and 3.774%, respectively. 

Thus, the MLR method’s ability to predict IRI models of pavement distress was reasonable. 
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• Wet no Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values 

was insignificant; the accuracy reductions were 1.12%, 39.661%, and 18.584%, 

respectively. Thus, the MLR method’s ability to predict IRI models of pavement distress 

was acceptable. 

6.2.1.2 MLR Model Sensitivity Analysis for PCI and IRI 

 

The PCI and IRI evaluations include a sensitivity analysis to determine the effect of input variables 

on the statistical prediction models’ effectiveness. A multiple regression was performed, the 

Backward elimination approach to determine the predictor’s type (pavement distress) that has 

significant effects on the dependent variables (PCI& IRI). The model starts with all dependent 

variables included, and the least important variables are eliminated. The operation ends when there 

are no significant variables in the model.  

• MLR Model Sensitivity Analysis for PCI 

 

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of 

the prediction models (PCI). The results of the sensitivity analysis for PCI were presented in Table 

(6-6) and Figure (6-6). 

Based on Table (6-6) and Figure (6-6), the following conclusions can be drawn: 

Dry Freeze:  Compared with other variables, longitudinal cracking is the most significant factor 

affecting the prediction model. Age, fatigue cracking, and transverse cracking have some impacts 

on the prediction model. While rutting has a minor impact on the prediction model. Other 

parameters have no influence on the prediction model. 
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       Table 6-6: Sensitivity analysis of prediction models for PCI based on pavement distress. 

Independent Variable 𝑹𝟐 

Dry 

Freeze 

Dry no 

Freeze 

Wet 

Freeze 

Wet no 

Freeze 

Age 7.9 85.9 85.9 89 

Rutting 1.6 8.5 2.3 - 

Fatigue Cracking 10.3 6.3 15.5 0.8 

Block Cracking  - - - - 

Longitudinal Cracking 49.1 8.0 0.3 4 

Transverse Cracking 16.2 2.0 7.9 6.6 

Patching - -  - 

Potholes - - - - 

Bleeding - - - - 

Ravelling - - - - 

 

Dry no Freeze: Compared with other variables, age is the most significant factor affecting the 

prediction model. Rutting, fatigue cracking, longitudinal cracking, and transverse cracking have 

some and minor impacts on the prediction model. Other parameters have no influence on the 

prediction model. 

Wet Freeze: Compared with other variables, age is the most significant impact variable on the 

prediction model. Fatigue has some impact on the prediction model. While rutting, longitudinal, 

and transverse cracking have minor impacts on the prediction model. Other parameters have no 

influence on the prediction model. 

Wet no Freeze:   Compared with other variables, age is the most significant factors affecting the 

prediction model. Fatigue cracking, longitudinal and transverse cracking have some minor effects 

on the prediction model. Other parameters have no influence on the prediction model. 
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Figure 6-6: Sensitivity analysis of MLR for PCI based on pavement distress. 

• MLR Model Sensitivity Analysis for IRI 

 

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of 

prediction models (IRI). The results of the sensitivity analysis for IRI are presented in Table (6-

7) and Figure (6-7). 

Table (6-7) and Figure (6-7) showed the following conclusions: 

Dry Freeze: Compared with other variables, age is the most significant factor affecting the 

prediction pavement performance model. Fatigue cracking, transverse cracking, and rutting have 

some impacts on the prediction model. While Longitudinal cracking has a minor effect on the prediction 

model.  Conversely, block cracking, patching, potholes, bleeding, and ravelling do not have a 

statistical significance influence on pavement condition. 
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                     Table 6-7: Sensitivity analysis of prediction models for IRI for pavement distress. 

 

Independent Variable 
𝑹𝟐 

Dry 

Freeze 

Dry no 

Freeze 

Wet 

Freeze 

Wet no 

Freeze 

Age 79.8 88.2 76 89.3 

Rutting 18.9 10.1 17 0.2 

Fatigue Cracking 59 7.1 13.2 1.1 

Block Cracking - - - - 

Longitudinal Cracking 1.3 1.6 3.0 4.1 

Transverse Cracking 50.7 1.2 5.4 7.7 

Patching - 0.1 - - 

Potholes - - - - 

Bleeding - - - - 

Ravelling - - - - 

 

Dry no Freeze: Compared with other variables, age is the significant impact variable on the 

prediction model.  Rutting has some impact on the prediction model. While fatigue cracking, 

longitudinal cracking, transverse cracking, and patching have minor impacts on the model. Conversely, 

block cracking, potholes, bleeding, and ravelling do not have a statistical significance influence on 

pavement condition. 

Wet Freeze: Compared with other variables, age is the significant impact variable on the 

prediction model. Rutting and fatigue cracking have some effects on the prediction model, while 

longitudinal and transverse cracking have minor effects on the model. Conversely, block cracking, 

patching, potholes, bleeding, and ravelling do not have a statistical significance influence on 

pavement condition. 
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Wet no Freeze: Compared with other variables, age is the significant impact variable on the 

prediction model. Fatigue cracking, rutting, Longitudinal and transverse cracking have minor 

effects on the prediction model. Conversely, block cracking, patching, potholes, bleeding, and 

ravelling do not have a statistical significance influence on pavement condition. 

 

          Figure 6-7: Sensitivity analysis of MLR for IRI based on pavement distress. 

6.2.2 Modeling of Asphalt Pavement Performance Indices Using (ANNs) Technique 

 The artificial neural network has been used to train the data presented in Table (6-1). The ANNs 

technique aimed to model asphalt pavement performance indices (PCI and IRI) based on the age 

and nine pavement distress  parameters as input variables for four climate regions. The inputs used 

were rutting, fatigue cracking, block cracking, longitudinal, transverse, patching, potholes, 
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the ANN. The ANNS models' performance was assessed using the three standard methods of 𝑅2 

value, RMSE, and MAE.   

  

Figure 6-8: Architecture of ANN model based on pavement distress. 
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6.2.2.1 Modeling of Asphalt Pavement Performance Index (PCI) 

Table (6-8) illustrates a summary of the PCI models by using ANNs technique based on pavement 

distress for four climate regions. 

   Table 6-8: Performance of PCI models by using ANNs technique based on pavement distress. 

Climate Regions 

 

Statistical Error Measures (PCI) 

𝑹𝟐 RMSE MAE 

Dry Freeze 99.1 1.425 1.417 

Dry no Freeze 99.2 0.585 0.499 

Wet Freeze 99.8 0.44 0.44 

Wet no Freeze 98.3 1.413 1.022 

 

        Table (6-8) and Figure (6-9) showed the following conclusions: 

• Dry Freeze:  The 𝑅2value was 99.1%, while the RMSE and MAE values were 1.425% 

and 1.417%.   

• Dry no Freeze:  The 𝑅2value was 99.2%, while the RMSE and MAE values were 0.585% 

and 0.499%. 

• Wet Freeze:  The 𝑅2value was 99.8%, while the RMSE and MAE values were 0.44% and 

0.44%. 

• Wet no Freeze: The 𝑅2value was 98.3% while the RMSE and MAE values were 1.413% 

and 1.022%.   
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Figure 6-9: ANNs model goodness-of-fit results for PCI values based on pavement distress.  
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6.2.2.2 Modeling of Asphalt Pavement Performance Indices (IRI) 

Table (6-9) illustrates a summary of the IRI models by using ANNs technique, based on pavement 

distress for four climate regions.      

Table 6-9:Performance of IRI models by using ANNs technique based on pavement distress. 

Climate Regions 

 

Statistical Error Measures (IRI) 

𝑹𝟐 RMSE MAE 

Dry Freeze 99.8 0.008 0.007 

Dry no Freeze 99.5 0.006 0.005 

Wet Freeze 99.1 0.021 0.021 

Wet no Freeze 97.5 0.028 0.023 

 

Based on Tables (6-9), and Figure (6-10), the following conclusions can be drawn: 

• Dry Freeze:  The 𝑅2value was 99.8%, while the RMSE and MAE values were 0.008% 

and 0.007%.   

• Dry no Freeze:  The 𝑅2value was 99.5%, while the RMSE and MAE values were 0.006% 

and 0.005%. 

• Wet Freeze:  The 𝑅2value was 99.1%, while the RMSE and MAE values were 0.021% 

and 0.021%. 

• Wet no Freeze: The 𝑅2value was 97.5%, while the RMSE and MAE values were 0.028% 

and 0.023%. 

Larger values of 𝑅2 and lower values of RMSE and MAE suggest that a strong correlation exists 

between the predicted and the measured IRI values. 
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Figure 6-10: ANNs model goodness-of-fit results for IRI values based on pavement distress. 
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6.2.3 Validation of ANN Models 

A total of 408 observations have been chosen from the LTPP dataset for four climate regions 

investigations were used in ANNs modeling, where 70% of the data set was used for training, 15% 

for testing, and 15% for validation (checking) the network. Tables (6-10) and (6-11) show the 

results of the models for the validation dataset. 

 

• Validation of PCI Models   

 

 The statistical error measures 𝑅2 and RMSE were used to evaluate the performance of the ANNs 

models. Based on the 𝑅2values, all models had a strong correlation, as their 𝑅2values exceeded 

98%, while with RMSE values, all models had a low error, as their error did not exceed 1.515%. 

Thus, the ANNs technique’s ability to predict PCI models of pavement distress was accurate. Table 

(6-10) illustrates Validation of PCI models for all sections in the four climate regions. 

Table 6-10: Validation of PCI models based on pavement distress. 

 

Climate 

Regions 

Statistical Error Measures (PCI) 

𝑹𝟐 RMSE 

Traning Testing Validation Traning Testing Validation 

Dry Freeze 98.6 99.7 99.3 1.361 0.792 1.425 

Dry no Freeze 99.1 99.4 100 0.308 0.930 0.959 

Wet Freeze 99.9 99.6 99.8 0.275 0.873 1.515 

Wet no Freeze 98.4 98.6 98.4 1.994 4.174 0.964 
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• Validation of IRI Models   

 

 

 The statistical error measures 𝑅2and RMSE were used to evaluate the performance of the ANNs 

models. Based on the 𝑅2 values, all models had a strong correlation, as their 𝑅2 values exceeded 

99%, while for RMSE values, all models had minor errors. Thus, the ANNs technique’s ability to 

predict IRI models of pavement distress was accurate. Table (6-11) illustrates Validation of IRI 

models for all sections in the four climate regions. 

Table 6-11: Validation of IRI models based on pavement distress. 

 

Climate 

Regions 

Statistical Error Measures (IRI) 

𝑹𝟐 RMSE 

Traning Testing Validation Traning Testing Validation 

Dry Freeze 99.6 99.8 99.8 0.009 0.026 0.037 

Dry no Freeze 99.7 100 100 0.024 0.062 0.04 

Wet Freeze 99.9 99.9 99.6 0.027 0.002 0.009 

Wet no Freeze 99.4 99.6 99.1 0.044 0.019 0.102 

 

6.2.4 Comparison of the Models 

 To validate the developed models in this part, all models were evaluated by comparing MLR and 

ANNs techniques based on pavement distress for four climate regions, as shown in Tables (6-12) 

and (6-13). 

6.2.4.1 Comparison of MLR and ANNs Models for PCI 

 The performance of the MLR models was compared with the performance of the ANNs models 

to evaluate the accuracy of the models in predicting pavement performance based on pavement 
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distress parameters. 𝑅2, RMSE and MAE values were used to measure and compare the 

performance of the models. Table (6-12) and Figures (6-12) and (6-13) present the comparison of 

the MLR models to the ANNs models for PCI.  

Table 6-12: Comparison of the  MLR and ANNs models for PCI based on pavement distress. 

 

Climate 

Regions 

               Statistical Error Measures (PCI) 

MLR Generated ANNs Generated Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 77 5.468 4.361 99.1 1.425 1.417 +22.30 +73.94 +67.51 

Dry no Freeze 91.6 4.247 3.2 99.2 0.585 0.499 +7.66 +86.23 +84.41 

Wet Freeze 86.8 7.195 5.616 99.8 0.44 0.44 +13.03 +93.88 +92.17 

Wet no Freeze 89.3 7.324 5.79 98.3 1.413 1.022 +9.16 +80.71 +82.35 

                                   

 ANNs and MLR models for PCI were compared in Table (6-12). Accordingly, the following 

conclusions can be drawn: 

• The statistics indicated 𝑅2values from the ANNs models were higher than its MLR 

counterpart by 22.30%, 7.66%, 13.03%, and 9.16% for dry freeze, dry no freeze, wet 

freeze, and wet no freeze, respectively.  

• The RMSE values of the ANNs models were less than its MLR counterparts by 73.94%, 

86.23%, 93.88%, and 80.71% for dry freeze, dry no freeze, wet freeze, and wet no freeze, 

respectively. 

• The MAE values of the ANNs models were less than its MLR counterparts by 67.51%, 

84.41 %, 92.17 %, and 82.35 % for dry freeze, dry no freeze, wet freeze, and wet no freeze, 

respectively. 
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• Larger values of 𝑅2 and lower values of RMSE and MAE suggest that a strong correlation 

exists between the predicted and the measured PCI values. 

   

Figure 6-11: Fitness of MLR and ANNs models to PCI prediction based on pavement distress 

data from two climate regions: (left) dry freeze; (right) dry no freeze. 

   

Figure 6-12: Fitness of MLR and ANNs models to PCI prediction based on pavement distress 

data from two climate regions: (left) wet freeze; (right) wet no freeze. 
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  Several conclusions can be drawn from Figures (6-11) and (6-12): 

• The MLR approach had a slight corrugation while ANNs had a straight line, which explains 

why ANNs models tend to be more accurate. 

• Figures clearly showed that the ANNs prediction models provided more accuracy than 

the MLR models under different climate conditions. 

 Table (6-12), Figures (6-11), and (6-12) showed that the MLR and ANNs models have an actual 

ability to the predict PCI. In addition, the ANNs technique can predict the PCI with higher accuracy 

than the MLR technique in all cases. 

6.2.4.2 Comparison of ANNs and MLR Models for IRI 

The performance of the MLR models was compared with the performance of the ANNs models to 

evaluate the accuracy of the models in predicting pavement performance based on pavement 

distress parameters. 𝑅2, RMSE and MAE values were used to measure and compare the 

performance of the models. Table (6-13) and Figures from (6-13) and (6-14) present the 

comparison of the MLR models to the ANNs models for IRI. 

Table 6-13: Comparison of the  MLR and ANNs models for IRI based on pavement distress. 

 

Climate 

Regions 

               Statistical Error Measures (IRI) 

MLR Generated ANNs Generated Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 70.7 0.144 0.099 99.8 0.008 0.007 +29.16 +94.44 +92.29 

Dry no Freeze 90.6 0.213 0.164 99.5 0.006 0.005 +9.94 +97.18 +96.95 

Wet Freeze 77.7 0.286 0.204 99.1 0.021 0.021 +21.59 +92.66 +89.71 

Wet no Freeze 89.4 0.178 0.092 97.5 0.028 0.023 +8.31 +84.30 +75.00 
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According to Table (6-13), several conclusions can be drawn: 

• The statistics indicated 𝑅2values from the ANNs models were higher than the 𝑅2values of 

the MLR models by 29.16%, 9.94%, 21.59%, and 8.31% for dry freeze, dry no freeze, wet 

freeze, and wet no freeze, respectively.  

• The RMSE values of the ANN models were less than the RMSE values of the MLR models 

by 94.44%, 97.18%, 92.66%, and 84.30%, for dry freeze, dry no freeze, wet freeze, and 

wet no freeze, respectively. 

• The MAE values of the ANNs models were less than the MAE values of the MLR models 

by 92.29 %, 96.95 %, 89.71 %, and 75 %for dry freeze, dry no freeze, wet freeze, and wet 

no freeze, respectively. 

 Table (6-13), and Figures (6-13) and (6-14) showed that the MLR and ANNs models have an   

ability to perform the prediction of IRI models. In addition, the ANNs technique can predict the 

IRI models with higher accuracy than the MLR technique in all cases. This result is consistent with 

some previous research. For example, Chandra et al. (2012) compared the performance of ANN 

and MLR models in predicting pavement roughness from various types of distress. They found 

that the ANN model is significantly more accurate than the MLR model, with a mean square error 

of 18% lower. 

Alharbi (2018) compared the performance of ANN and MLR models in riding, cracking, and 

rutting indices. The R2 values from the MLR models were lower than the R2 values of the ANN 

models by 61.40%, 48.15%, and 48.15% for riding, cracking, and rutting index, respectively. 
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Figure 6-13: Fitness of MLR and ANNs models to IRI prediction based on pavement distress 

data from two climate regions: (left) dry freeze; (right) dry no freeze. 

   

Figure 6-14: Fitness of MLR and ANNs models to IRI prediction based on pavement distress 

data from two climate regions: (left) wet freeze; (right) wet no freeze. 
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6.2.5 Summary 

This part of the research focused on modeling asphalt pavement performance indices (PCI and 

IRI) based on pavement distress variables and studying the effect of these variables on asphalt 

pavement performance indices for four climate regions in the U.S. and Canada. Several important 

advantages were drawn from the MLR and the ANNs technique, as follows: 

▪ Nine pavement distress variables and the age of the pavement were included for four 

climate regions. Rutting, fatigue cracking, block cracking, transverse cracking, patching, 

potholes, bleeding, and ravelling were considered independent variables in developing the 

models to predict PCI and IRI.  

▪ The MLR and ANNs models have an ability to perform the prediction of PCI and IRI 

models. In addition, the ANNs prediction models provided more accuracy than the MLR 

models under four climate regions. 

▪ Even though the ANN technique does not provide equations for predicting PCI and IRI as 

the MLR technique, the models can be used to forecast pavement distress with high 

accuracy. The approach has good accuracy since its𝑅2values exceed 97 %, as evidenced 

by the 𝑅2 values. 

▪  There is a considerable reduction in error value when using the ANNs technique for each 

climate region compared to the MLR technique. 

▪ Modelling of distress parameters is helpful for predicting pavement destress. Incorporating 

additional sections with different distresses and various severities improves the model 

results, which helps the programme to learn and develop models. The present study uses 

nine distress parameters for predicting the (PCI) and IRI. Future studies may include some 

more parameters like construction number, corrugation, slippage cracks, depression, 

polished aggregate, shoving to further improve these models. 
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6.3 Effect of Environmental Parameters on IRI and PCI Values 

This section focused on modeling asphalt pavement performance indices (PCI and IRI) based on 

environmental variables and studying the effect of these variables on asphalt pavement 

performance indices for four climate regions in the U.S. and Canada. The relevant data were 

collected on the environmental parameters of 53 road sections with 408 observations from the 

LTPP dataset and distributed to four climate regions (dry freeze, dry no freeze, wet freeze, wet no 

freeze). The present study was divided into three phases as follows: 

▪  Modeling of asphalt pavement performance indices using (MLR) technique. 

▪  Modeling of asphalt pavement performance indices using (ANNs) technique. 

▪ Comparison and validation of the MLR and ANNs models. 

Eight environmental variables were assessed effect and used to predict the PCI and IRI for each 

climate region, including the age of pavement, the annual average freezing temperature, the 

average freeze index, the number of freeze days, the average annual precipitation, the average total 

snowfall, average speed wind, and humidity average. 

Note that both the type of asphalt concrete pavement (ACP) and subgrade (coarse-grained) were 

constant for all data regions. Table (6-14) briefly describes the selected dataset of environmental. 
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Table 6-14: Gathered environmental data from four climate regions. 

 

Parameters 

 

Unit 

Climate Regions  
Dry  

Freeze 

Dry no 

Freeze 

Wet        

Freeze 

Wet no 

Freeze 

PCI % 52-80 50-100 8-91 8-100 

IRI (m/km) 0.89-1.69 0.68-2.66 0.79-4.04 0.75-3.76 

Number of data samples Number 14 61 144 189 

Age Year 6-18 3-34 3-33 1-31 

Temperature average  C 4.95-9.9 10.5-25.2 4.1-14.1 12.1-25.6 

Freeze Index   C/day 86.4-726 1-182 65-1759 0-185 

Number of freeze Days Number 82-133 45-83 78-143 0-87 

Total average annual precipitation (mm) 345-702.6 50.7-737.3 349.9-1881.2 357.5-4917 

Total Snowfall  (%) 425-2371 0-184 561-10325 0-916 

Wind average Km/h 4-5.5 3.5-7.2 3.3-7.25 2.4-7.8 

Humidity % 57.5-86 53.5-71 42.5-82 37-77.5 

 

6.3.1  Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique 

 Research in this part focuses on studying the influence of environmental factors on the road 

condition indicator values PCI and IRI across four climate regions in the U.S. and Canada. Eight 

prediction models were developed using multiple regression analysis techniques from the collected 

data. The PCI and IRI regression models are shown in Tables (6-15) and (6-16). Eight prediction 

models were developed using multiple regression analysis techniques from the collected data. 

Environmental data collected for each section of asphalt pavement included eight input variables. 

The PCI regression analysis results illustrated in Table (6-15) indicate that the  𝑅2 values were 

71.4%, 91.8%, 87.3%, and 89.5% for dry freeze, dry no freeze, wet freeze, and wet no freeze, 

respectively. 
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          Table 6-15: PCI models summary based on environmental parameters. 

        Model PCI 

Dry 

 Freeze 

Dry no  

Freeze 

Wet  

Freeze 

Wet no 

 Freeze 

𝑹𝟐 71.4 91.8 87.3 89.5 

Constant 133.91 144.75 108.40 118.43 

Age -0.784 – 1.993 -2.71 –3.053 

Temperature average -8.044 0.043 –0.89 -0.244 

Freeze Index  -0.035 -0.047 0.004 -0.088 

Number of freeze Days 0.12 -0.041 -0.088 0.19 

Total average annual precipitation 0.003 - 0.004 0.001 0.001 

Total Snowfall  0.005 -0.001 - 0.006 

Wind average -11.24 -1.10 0.101 0.054 

Humidity 0.837 -0.52 0.107 -0.103 

 

      Table 6-16: IRI models summary based on environmental parameters. 

        Model IRI 

Dry 

 Freeze 

Dry no  

Freeze 

Wet  

Freeze 

Wet no 

 Freeze 

𝑹𝟐 74 90.2 81 89.6 

Constant 0.324 0.552 0.508 0.059 

Age 0.015 0.086 0.077 0.073 

Temperature average 0.177 -0.14 -0.054 0.006 

Freeze Index  - -0.002 - - 

Number of freeze Days -0.003 0.001 0.004 - 

Total average annual precipitation -3.9x10−5 0.000021 3.8x10−5 2.53𝑥10−5 

Total Snowfall  -4.8x10−5 0.001 -2.5x10−5 -7.788x10−5 

Wind average 0.26 0.036 -0.016 0.009 

Humidity -0.027 -0.005 -0.002 0.001 
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The IRI regression analysis results illustrated in Table (6-16) indicate that the  𝑅2 values were 

74%, 90.2%, 81%, and 89.6% for dry freeze, dry no freeze, wet freeze, and wet no freeze, 

respectively. Equations from (6-9) to (6-16) summarised the regression models for four climate 

regions as follows: 

1- Dry Freeze  

 Table (6-15) presents the regression analysis results for PCI for the dry freeze area. The PCI model 

was negatively correlated with age, temperature average, freeze index, and wind average. The PCI 

model was positively correlated with number of freeze days, total average annual precipitation, 

total snowfall, and humidity. Equation (6-9) described the relationship between the PCI and 

environmental parameters as follows:   

𝑷𝑪𝑰 = 𝟏𝟑𝟑. 𝟗𝟏 −  𝟎. 𝟕𝟖𝟒 𝑿 𝒂𝒈𝒆 − 𝟖. 𝟎𝟒𝟒 𝓦𝟏 − 𝟎. 𝟎𝟑𝟓 𝓦𝟐 + 𝟎. 𝟏𝟐 𝓦𝟑  + 𝟎. 𝟎𝟎𝟑 𝓦𝟒 +

𝟎. 𝟎𝟎𝟓 𝓦𝟓 −  𝟏𝟏. 𝟐𝟒 𝓦𝟔 + 𝟎. 𝟖𝟑𝟕 𝓦𝟕   6-9 

The correlation coefficient (R2) of this relationship is 71.4%.    

Table (6-16) presents the regression analysis result of IRI for the dry freeze area. The IRI model 

was positively correlated with age, temperature average, and wind average. The IRI model was 

negatively correlated with number of freeze days, total average annual precipitation, total snowfall, 

and humidity. Equation (6-10) described the relationship between the IRI and environmental 

parameters as follows: 

𝑰𝑹𝑰 = 𝟎. 𝟑𝟐𝟒 + 𝟎. 𝟎𝟏𝟓𝑿 𝒂𝒈𝒆 + 𝟎. 𝟏𝟕𝟕 𝓦𝟏 −  𝟎. 𝟎𝟎𝟑 𝓦𝟑 − 𝟑. 𝟗𝒙𝟏𝟎−𝟓𝓦𝟒 − 𝟒. 𝟖𝑿𝟏𝟎−𝟓𝓦𝟓 +

𝟎. 𝟐𝟔𝓦𝟔 − 𝟎. 𝟎𝟐𝟕 𝓦𝟕                                                                                                                       6-10 

The correlation coefficient (R2) of this relationship is 74%.    
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2- Dry no Freeze  

 The regression analysis result of the PCI model for the dry no freeze area is shown in Table (6-

15). The PCI model was negatively correlated with age, freeze index, number of freeze days, total 

average annual precipitation, total snowfall, wind average, and humidity. The PCI was positively 

correlated with temperature average. Equation (6-11) described the relationship between the PCI 

and environmental parameters as follows: 

𝑷𝑪𝑰 = 𝟏𝟒𝟒. 𝟕𝟓 –  𝟏. 𝟗𝟗𝟑𝑿 𝒂𝒈𝒆 + 𝟎. 𝟎𝟒𝟑 𝓦𝟏 − 𝟎. 𝟎𝟒𝟕 𝓦𝟐 − 𝟎. 𝟎𝟒𝟏 𝓦𝟑 −  𝟎. 𝟎𝟎𝟒 𝓦𝟒 −

 𝟎. 𝟎𝟎𝟏 𝓦𝟓 − 𝟏. 𝟏𝟎𝓦𝟔 − 𝟎. 𝟓𝟐 𝓦𝟕    6-11 

The correlation coefficient (R2) of this relationship is 91.8%.    

The regression analysis result of the IRI model for the dry no freeze area is presented in Table (6-

16). The IRI model was negatively correlated with temperature average, freeze index, total average 

annual precipitation, and humidity. The IRI model was positively correlated with age, number of 

freeze days, total snowfall, and wind average. Equation (6-12) described the relationship between 

the IRI and environmental parameters as follows: 

𝑰𝑹𝑰 = 𝟎. 𝟓𝟓𝟐 + 𝟎. 𝟎𝟖𝟔𝑿 𝒂𝒈𝒆 − 𝟎. 𝟏𝟒𝓦𝟏 − 𝟎. 𝟎𝟎𝟐𝓦𝟐 + 𝟎. 𝟎𝟎𝟏𝓦𝟑 − 𝟎. 𝟎𝟎𝟎𝟎𝟐𝟏 𝓦𝟒 +

𝟎. 𝟎𝟎𝟏𝓦𝟓 + 𝟎. 𝟎𝟑𝟔𝓦𝟔 − 𝟎. 𝟎𝟎𝟓 𝓦𝟕                                                                                                 6-12 

The correlation coefficient (R2) of this relationship is 90.2%.    

3- Wet Freeze  

 The regression analysis result of the PCI model for the wet freeze area is presented in Table (6-

15). The PCI model was negatively correlated with age, temperature average, and number of freeze 

days. The PCI model was positively correlated with freeze index, total average annual 
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precipitation, wind average, and humidity. Equation (6-13) described the relationship between the 

PCI and environmental parameters as follows: 

PCI=108.4– 2.71𝑿 𝒂𝒈𝒆-0.89𝓦𝟏+0.0044𝓦𝟐-0.088 𝓦𝟑+0.001 𝓦𝟒+0.101 𝓦𝟔+0.107 𝓦𝟕

 6-13 

The correlation coefficient (R2) of this relationship is 87.3%.    

The regression analysis result of the IRI model for the wet freeze area is presented in Table (6-16). 

The IRI model was negatively correlated with temperature average, total snowfall, wind average, 

and humidity. The IRI model was positively correlated with age, number of freeze days, and total 

average annual precipitation. Equation (6-14) described the relationship between the IRI and 

environmental parameters as follows: 

𝑰𝑹𝑰 = 𝟎. 𝟓𝟎𝟖 + 𝟎. 𝟎𝟕𝟕𝑿 𝒂𝒈𝒆 − 𝟎. 𝟎𝟓𝟒𝓦𝟏 + 𝟎. 𝟎𝟎𝟒𝓦𝟑 + 𝟑. 𝟖𝒙𝟏𝟎−𝟓𝓦𝟒 − 𝟐. 𝟓 × 𝟏𝟎−𝟓𝓦𝟓 −

𝟎. 𝟎𝟏𝟔 𝓦𝟔 − 𝟎. 𝟎𝟎𝟐𝓦𝟕      6-14 

The correlation coefficient (R2) of this relationship is 81%.    

4- Wet no Freeze  

The regression analysis result of the PCI model for the wet no freeze area is presented in Table (6-

15). The PCI model was negatively correlated with age, temperature average, freeze index, and 

humidity. The PCI model was positively correlated with number of freeze days, total average annual 

precipitation, total snowfall, wind average. Equation (6-15) described the relationship between the 

PCI and environmental parameters as follows: 
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𝑷𝑪𝑰 = 𝟏𝟏𝟖. 𝟒𝟑– 𝟑. 𝟎𝟓𝟑𝑿 𝒂𝒈𝒆 − 𝟎. 𝟐𝟒𝟒𝓦𝟏 − 𝟎. 𝟎𝟎𝟖𝓦𝟐 + 𝟎. 𝟏𝟗 𝓦𝟑 + 𝟎. 𝟎𝟎𝟏𝓦𝟒 +

 𝟎. 𝟎𝟎𝟔 𝓦𝟓 + 𝟎. 𝟎𝟓𝟒𝓦𝟔  − 𝟎. 𝟎𝟏𝟑𝓦𝟕   6-15 

The correlation coefficient (R2) of this relationship is 89.5%.   

The regression analysis result of the IRI model for the dry no freeze area is presented in Table (6-

16). The IRI was negatively correlated with total snowfall. The IRI was positively correlated with 

age, temperature average, total average annual precipitation, wind average, and humidity. Equation 

(6-16) described the relationship between the IRI and environmental parameters as follows: 

𝑰𝑹𝑰 = 𝟎. 𝟎𝟓𝟗 + 𝟎. 𝟎𝟕𝟑𝑿 𝒂𝒈𝒆 + 𝟎. 𝟎𝟔𝓦𝟏 + 𝟐. 𝟓𝟑 × 𝟏𝟎−𝟓𝓦𝟒 − 𝟕. 𝟕𝟖𝟖 × 𝟏𝟎−𝟓𝓦𝟓 +

𝟎. 𝟎𝟎𝟗𝓦𝟔 + 𝟎. 𝟎𝟎𝟏 𝓦𝟕   6-16 

The correlation coefficient (R2) of this relationship is 89.6%.    

6.3.1.1 Validation of MLR Models 

• Validation of PCI  Models 

After the validation test, Table (6-17) illustrates the reduction in 𝑅2, RMSE, and MAE values for 

all sections in the four climate regions. 

Based on Table (6-17), Figures (6-15), and (6-16), the following conclusions can be drawn: 

• Dry Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 23.81%, 24.96%, and 7.57%, respectively. 

Thus, the MLR method's ability to predict PCI models of environmental parameters was 

accurate. 
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Table 6-17: Validation of PCI models based on environmental parameters. 

 

Climate 

Regions 

Statistical Error Measures (PCI) 

MLR Validation Reduction % (±) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 71.4 4.114 3.482 54.4 5.483 3.767 -23.81 +24.96 +7.57 

Dry no Freeze 91.8 6.586 4.194 88.2 5.162 3.786 -3.92 -21.62 -9.73 

Wet Freeze 87.3 7.057 5.642 85.8 7.468 5.85 -1.72 +5.50 +3.56 

Wet no Freeze 89.5 6.606 5.481 72.0 7.532 5.946 -19.55 +12.29 +7.82 

 

• Dry no Freeze:  The results indicated that the reduction of 𝑅2 , RMSE, and MAE was 

insignificant; the accuracy reductions were 3.92%, 21.62%, and 9.73%, respectively. Thus, 

the MLR method's ability to predict PCI models of the environmental parameters with was 

accuracy. 

• Wet Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 1.72%, 5.50%, and 3.56%, respectively. Thus, 

the MLR method's ability to predict PCI models of environmental parameters was good. 

• Wet no Freeze: The results indicated that the reduction of 𝑅2, RMSE, and MAE was 

insignificant, while; the accuracy reductions were 19.55%,12.29%, and 7.82%, 

respectively. Thus, the MLR method's ability to predict PCI models of environmental 

parameters was accuracy.     
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Figure 6-15: MLR model for the dry freeze and the dry no freeze region based on environmental. 

 

Figure 6-16: MLR model for the wet freeze and the wet no freeze region based on environmental. 
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• Validation of IRI Models  

 

After the validation test, Table (6-18) illustrates the reduction in 𝑅2, RMSE, and MAE values for 

all sections in the four climate regions.  

Table 6-18: Validation of PCI models based on environmental parameters. 

 

Climate 

Regions 

Statistical Error Measures (IRI) 

MLR Validation Reduction % (±) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 74 0.136 0.116 61.5 0.165 0.132 -16.89 +17.58 +12.12 

Dry no Freeze 90.2 0.294 0.184 89.0 0.224 0.172 -1.33 -23.81 -6.52 

Wet Freeze 81.0 0.264 0.202 76.0 0.297 0.215 -6.17 +11.11 +6.05 

Wet no Freeze 89.6 0.177 0.093 88.9 0.181 0.095 -0.78 +2.21 +2.11 

 

Based on Table (6-18), Figures (6-17), and (6-18), the following conclusions can be drawn: 

• Dry Freeze:  The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 16.89 %, 17.58%, and 12.12%, respectively. 

Thus, the MLR method's ability to predict IRI models of environmental parameters was 

accurate. 

• Dry no Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values 

was insignificant; the accuracy reductions were 1.33%, 23.81%, and 6.52%, respectively. 

Thus, the MLR method's ability to predict IRI models of environmental parameters was 

accurate. 
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Figure 6-17: MLR model for the dry freeze and the dry no freeze region based on environmental. 

   

Figure 6-18 : MLR model for the wet freeze and the wet no freeze region based on environmental. 

• Wet Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 6.17%,11.11%, and 6.05%, respectively. Thus, 

the MLR method's ability to predict IRI models of environmental parameters was accurate.    
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• Wet no Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values 

was insignificant; the accuracy reductions were 0.78%, 2.21%, and 2.11%, respectively. 

Thus, the MLR method's ability to predict IRI models of environmental parameters was 

accurate. 

6.3.1.2 MLR Model Sensitivity Analysis for PCI and IRI 

• MLR Model Sensitivity Analysis for PCI 

A sensitivity analysis is conducted to determine the effects of input variables on the efficacy of the 

prediction models (PCI). A multiple regression was performed the Backward elimination approach 

to determine the predicator's type (environmental parameters) that have major effects on the 

dependent variables (PCI& IRI). The results of the sensitivity analysis for PCI were presented in 

Table (6-19) and Figure (6-19). 

Table 6-19: Sensitivity analysis of prediction models for PCI based on environmental parameters. 

Independent Variable 𝑹𝟐 

Dry 

Freeze 

Dry no 

Freeze 

Wet 

Freeze 

Wet no 

Freeze 

Age 7.7 87.6 85.5 89 

Temperature average 46.1 2.6 2.5 1.0 

Freeze index  23.0 6.2 4.9 4.0 

Number of freeze days 15.5 1.5 2.7 4.8 

Total average annual precipitation 2.0 3.6 15.3 1.1 

Total snowfall  70.1 6.4 2.0 3.0 

Wind average 19.3 9.0 13.3 2.2 

Humidity 36.2 2.8 4.2 1.0 

 

 



 

 

 

 

 147 

 

Figure 6-19: Sensitivity analysis of MLR for PCI based on environmental parameters. 

 

Based on Table (6-19) and Figure (6-19), the following conclusions can be drawn:  

Dry Freeze:  Compared with other variables, total snowfall is a significant factor affecting the 

prediction model. Temperature average, humidity, freeze index, wind average, and number of 

freeze days have some effects on the prediction model; the impact values were 46.1%,36.2%, 23%, 

19.3%, and 15.5%, respectively. While total average annual precipitation has minor effect on the 

model. 

Dry no Freeze:  Compared with other variables, age is the most significant impact variable 

affecting the prediction model. Temperature average, freeze index, number of freeze days, total 
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annual precipitation, total snowfall, wind average, and humidity have some and minor effects on 

the model; the impact values were 2.5%, 4.9%, 2.7%, 15.3%, 2%, 13.3%, 14.2%, respectively.  

Wet no Freeze: Compared with other variables, age is the most significant impact variable 

affecting the prediction model. Temperature average, freeze index, number of freeze days, total 

average annual precipitation, total snowfall, wind average, and humidity have minor effects on the 

model; the impact values were 1.0%, 4.0%, 4.8%, 1.1%, 3.0%, 2.2%, 1.0%, respectively.  

• MLR Model sensitivity analysis for IRI 

 

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of 

prediction models (IRI).  The results of the sensitivity analysis for IRI are presented in Tables (6-

20) and Figure (6-20).  

Table 6-20: Sensitivity analysis of prediction models for IRI based on environmental parameters. 

Independent Variable 𝑹𝟐 

Dry 

Freeze 

Dry no 

Freeze 

Wet 

Freeze 

Wet no 

Freeze 

Age 79.1 88.2 76 89.3 

Temperature average - 6.6 5.1 2.0 

Freeze index  3.2 1.6 4.6 8.0 

Number of freeze days 21.7 1.90 3.7 6.5 

Total average annual precipitation 1.1 6.4 14 2.3 

Total snowfall  21.6 9.3 7 13 

Wind average 10.8 11 10.9 2.5 

Humidity 3.9 15.2 4.2 1.0 

 

Based on Table (6-20) and Figure (6-20), the following conclusions can be drawn:  
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Dry Freeze:   Compared with other variables, age is a significant factor affecting the prediction 

model. Number of freezes days, total snowfall, and wind average have some effects on the 

prediction model. Other parameters have minor statistical significance impacts on the prediction 

model. 

Dry no Freeze: Compared with other variables, age is the most significant impact variable 

affecting the prediction model. Humidity has some effect on the prediction model, while 

temperature average, freeze index, number of freeze days, total average annual precipitation, total 

snowfall, and average wind have minor effects on the prediction model.  

 

           Figure 6-20: Sensitivity analysis of MLR for IRI based on environmental parameters. 

Wet Freeze:  Compared with other variables, age has the most significant variable impact on the 
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Wet no Freeze: Compared with other variables, age is the most significant factor affecting the 

prediction model. Total snowfall has some impact on the IRI models. While other parameters have 

minor impacts on the prediction model. 

6.3.2  Modeling of Asphalt Pavement Performance Indices Using (ANNs) Technique 

Th artificial neural network has been used to train the data presented in Table (6-14). The ANNs 

technique aimed to model asphalt pavement performance indices (PCI and IRI) based on age and 

seven environmental parameters as input variables for four climate regions. The inputs used were 

age of pavement, the annual average freezing temperature, the average freeze index, the number 

of freeze days, the average annual precipitation, the average total snowfall, average speed wind, 

and humidity average. The architecture of the designed network consists of one input layer with 

eight parameters, three hidden layers, and an output layer. Figure (6-21) illustrates the architecture 

of the ANN.  

 

Figure 6-21: Architecture of ANN model for PCI and IRI based on environmental parameters. 
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6.3.2.1  Modeling of Asphalt Pavement Performance Index (PCI) 

Table (6-21) illustrates a summary of the PCI models by using an ANNs technique based on 

environmental parameters for four climate regions. 

Table 6-21: Performance of PCI models by using ANNs technique based on environmental parameters. 

 

 Climate Regions 

 

Statistical Error Measures (PCI) 

𝑹𝟐 RMSE MAE 

Dry Freeze 99.8 1.112 0.945 

Dry no Freeze 99.1 0.636 0.542 

Wet Freeze 98.7 0.558 0.478 

Wet no Freeze 99.8 0.75 0.553 

 

Based on Table (6-21) and Figure (6-22), the following conclusions can be drawn: 

• Wet Freeze: The 𝑅2 value was 99.8%, while the RMSE and MAE values were 1.112% 

and 0.945%. 

• Wet no Freeze: The 𝑅2 value was 99.1%, while the RMSE and MAE values were 0.636% 

and 0.542%. 

• Wet Freeze:  The 𝑅2 value was 98.7%, while the RMSE and MAE values were 0.558% 

and 0.478%. 

• Wet no Freeze: The 𝑅2 value was 99.8%, while the RMSE and MAE values were 0.75%, 

and 0.553%. 
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6.3.2.2  Modeling of Asphalt Pavement Performance Index (IRI) 

Table (6-22) illustrates a summary of the IRI models by using an ANNs technique, based on 

environmental parameters for four climate regions. 

Table 6-22: Performance of IRI models by using ANNs technique based on environmental parameters. 

 

 Climate Regions 

 

Statistical Error Measures (IRI)  

𝑹𝟐 RMSE MAE 

Dry Freeze 99.7 0.008 0.007 

Dry no Freeze 98.9 0.007 0.006 

Wet Freeze 99.9 0.012 0.008 

Wet no Freeze 99.6 0.028 0.021 

 

Based on Table (6-22) and Figure (6-23), the following conclusions can be drawn: 

• Wet Freeze:  The 𝑅2value was 99.7%, while the RMSE and MAE values were 0.008% 

and 0.006%. 

• Wet no Freeze: The 𝑅2value was 98.9%, while the RMSE and MAE values were 0.007% 

and 0.006%. 

• Wet Freeze:  The 𝑅2value was 99.9% while the RMSE and MAE values were 0.012% and 

0.008%. 

• Wet no Freeze: The 𝑅2value was 99.6%, while the RMSE and MAE values were 0.028% 

and 0.021%.    
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Figure 6-22: ANNs model goodness-of-fit results for PCI values based on environmental 

parameters. 
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Figure 6-23: ANNs model goodness-of-fit results for IRI values based on environmental 

parameters. 
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6.3.3 Validation of ANNs Models 

A total of 408 observations obtained from the LTPP dataset for four climate regions investigations 

were used in ANNs modeling. The models were 70% of the data set was used for training, 15% 

for testing, and 15% for validation (checking) the network. Tables (6-23) and (6-24) shows the 

results of the models for the validation dataset. 

• Validation of PCI Models   

 

 

 The statistical error measures 𝑅2 and RMSE were used to evaluate the performance of the ANNs 

models. Based on the 𝑅2values, all models had a strong correlation, as their 𝑅2values exceeded 

98%, while with RMSE values, all models had a low error, as their error did not exceed 1.71%. 

Thus, the ANNs technique’s ability to predict PCI models of environmental parameters was 

accurate. Table (6-23) illustrates Validation of PCI models for all sections in the four climate 

regions. 

Table 6-23: Validation of PCI models based on environmental parameters. 

 

Climate 

Regions 

Statistical Error Measures (PCI) 

𝑹𝟐 RMSE 

Traning Testing Validation Traning Testing Validation 

Dry Freeze 97.6 100 100 0.262 0.778 1.161 

Dry no Freeze 99.1 100 100 0.448 0.959 0.937 

Wet Freeze 99.9 99.6 99.8 0.756 0.471 0.97 

Wet no Freeze 98.4 98.6 98.1 2.30 4.174 1.71 
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• Validation of IRI Models   

 

 

 The statistical error measures 𝑅2and RMSE were used to evaluate the performance of the ANNs 

models. Based on the 𝑅2 values, all models had a strong correlation, as their 𝑅2 values exceeded 

98%, while for RMSE values, all models had minor errors. Thus, the ANNs technique’s ability to 

predict IRI models of environmental parameters was accurate. Table (6-24) illustrates Validation 

of IRI models for all sections in the four climate regions. 

Table 6-24: Validation of IRI models based on environmental parameters. 

 

Climate 

Regions 

Statistical Error Measures (IRI) 

𝑹𝟐 RMSE 

Traning Testing Validation Traning Testing Validation 

Dry Freeze 99.6 100 99.8 0.011 0.034 0.045 

Dry no Freeze 98.6 99.3 100 0.013 0.013 0.015 

Wet Freeze 99.9 100 99.5 0.259 0.264 0.259 

Wet no Freeze 99.4 100 99.1 0.003 0.107 0.017 

 

6.3.4 Comparison of the Models 

 To validate the developed models in this part, all models were evaluated by comparing MLR and 

ANNs techniques based on environmental parameters for four climate regions, as shown in Tables 

(6-25) and (6-26). 

6.3.4.1 Comparison of ANNs and MLR Models for PCI 

The performance of the MLR models was compared with the performance of the ANNs models to 

evaluate the accuracy of the models in predicting pavement performance based on environmental 
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parameters. 𝑅2, RMSE and MAE values were used to measure and compare the performance of 

the models. Table (6-25) and Figures (6-24) and (6-25) present the comparison the MLR models 

to the ANNs models for PCI. 

Table 6-25: Comparison of the MLR and ANNs models for PCI based on environmental parameters. 

 

Climate 

Regions 

                    Statistical Error Measures (PCI) 

MLR Generated ANNs Generated Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 71.4 4.114 3.482 99.8 1.112 0.945 +28.46 +72.97 +72.86 

Dry no Freeze 91.8 6.586 4.194 99.1 0.636 0.542 +7.37 +90.34 +87.08 

Wet Freeze 87.3 7.057 5.642 98.7 0.558 0.478 +11.55 +92.09 +91.53 

Wet no Freeze 89.5 6.606 5.481 99.8 0.75 0.553 +10.32 +88.65 +89.91 

 

According to Table (6-25), several conclusions can be drawn: 

• The statistics indicated 𝑅2values from the ANNs models were higher than its MLR 

counterpart by 28.46%, 7.37%, 11.55%, and 10.32% for dry freeze, dry no freeze, wet 

freeze, and wet no freeze, respectively.  

• The RMSE values of the ANNs models were less than its MLR counterparts by 72.97%, 

90.34%, 92.09%, and 88.65% for dry freeze, dry no freeze, wet freeze, and wet no freeze, 

respectively. 

• The MAE values of the ANNs models were less than the MAE values of the MLR models 

by 72.86%, 87.08%, 91.53%, and 89.91% for dry freeze, dry no freeze, wet freeze, and wet 

no freeze, respectively. 

• ANNs models provided more accurate predictions than MLR models. 
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Figure 6-24: Fitness of MLR and ANNs models to PCI prediction based on environmental data 

from two climate regions: (left) dry freeze; (right)dry no freeze. 

 

   

Figure 6-25: Fitness of MLR and ANNs models to PCI prediction based on environmental data 

from two climate regions: (left) wet freeze; (right)wet no freeze. 
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According to Figures (6-24) and (6-25), several conclusions can be drawn:  

• The MLR strategy has a corrugation, but the ANNs approach has a straight line, 

explaining why ANNs models are more accurate.  

• The graphs clearly illustrated that the ANNs prediction models were more accurate under 

various climate conditions than the MLR prediction models. 

Table (6-25), Figures (6-24), and (6-25) showed that the MLR and ANNs models have an ability 

to perform the prediction PCI models. In addition, the ANNs technique can predict the PCI models 

with higher accuracy than the MLR technique in all cases. 

6.3.4.2 Comparison of ANNs and MLR Models for IRI 

The performance of the MLR models was compared with the performance of the ANNs models to 

evaluate the accuracy of the models in predicting pavement performance based on environmental 

parameters. 𝑅2, RMSE and MAE values were used to measure and compare the performance of 

the models. Table (6-26) and Figures from (6-26) and (6-27) present the comparison the MLR 

models to the ANNs models for IRI. 

    Table 6-26: Comparison of the  MLR and ANNs models for IRI based on environmental parameters. 

 

Climate 

Regions 

                    Statistical Error Measures (IRI) 

MLR Generated ANNs Generated Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝐌𝐀𝐄 𝑹𝟐 RMSE 𝐌𝐀𝐄 

Dry Freeze 74 0.136 0.116 99.7 0.008 0.007 +25.78 +94.12 +93.97 

Dry no Freeze 90.2 0.294 0.184 98.9 0.007 0.006 +8.80 +96.20 +96.74 

Wet Freeze 81.0 0.264 0.202 99.9 0.012 0.008 +18.92 +94.06 +96.04 

Wet no Freeze 89.6 0.177 0.093 99.6 0.028 0.021 +10.04 +69.89 +77.42 
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According to Table (6-26), several conclusions can be drawn: 

• ANNs models provided more accurate predictions than MLR models. 

• The statistics indicated 𝑅2 values from the ANNs models were higher than its MLR 

counterpart by 25.78%, 8.80%, 18.92%, and 10.04% for dry freeze, dry no freeze, wet 

freeze, and wet no freeze, respectively.  

• The statistics indicated RMSE values from the ANNs models were higher than its MLR 

counterpart by 94.12%, 96.20%, 94.06%, and 69.89% for dry freeze, dry no freeze, wet 

freeze, and wet no freeze, respectively. 

• The statistics indicated MAE values from the ANNs models were higher than its MLR 

counterpart by 93.97%, 96.74%, 96.04%, and 77.42%for dry freeze, dry no freeze, wet 

freeze, and wet no freeze, respectively. 

Based on Figures from (6-26) and (6-27), several conclusions can be drawn: 

• The MLR approach has a slight corrugation while ANNs exhibits a straight line, which 

explains why ANN models tend to be more accurate. 

• Figures clearly showed that the ANNs prediction models provided more accuracy than the 

MLR prediction models under different climate conditions. 
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Figure 6-26: Fitness of MLR and ANNs models to IRI prediction based on environmental data 

from two climate regions: (left) dry freeze; (right)dry no freeze. 

   

Figure 6-27: Fitness of MLR and ANNs models to IRI prediction based on environmental data 

from two climate regions: (left) wet freeze; (right)wet no freeze. 
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• Table (6-26), Figures (6-26), and (6-27) showed that the MLR and ANNs models have an 

ability to perform the prediction IRI models. In addition, the ANNs prediction models 

provided more accuracy than the MLR models under all climate conditions.   

• The results of this study are consistent with some of the previous studies. For example, 

Hossain et al. (2017) studied the performance of ANN and MLR models in predicting 

pavement roughness based on environmental parameters. They found the ANN model 

more accurate than the MLR model, with a RMSE of 2% lower for four climate regions. 

Zeiada et al. (2020) compared the performance of ANN and MLR models in predicting 

pavement roughness based on environmental parameters. They found that the ANN model 

is significantly more accurate than the MLR model, with a 𝑅2 of 56% lower. 

6.3.5 Summary 

This part of the research focused on modeling asphalt pavement performance indices (PCI and 

IRI) based on environmental variables and studying the effect of these variables on asphalt 

pavement performance indices for four climate regions in the U.S. and Canada. Several important 

advantages were drawn from the MLR and the ANNs technique, as follows: 

▪ The pavement's age and seven different environmental variables were included for the four 

studied climate regions, namely temperature average, freeze index, number of freeze days, 

total average annual precipitation, total snowfall, wind average, and humidity. These were 

considered independent variables in developing the models to predict future PCI and IRI. 

▪ The MLR and ANNs models have the ability to perform the prediction of PCI and IRI 

models. In addition, the ANNs prediction models provided more accuracy than the MLR 

models under four climate regions. 



 

 

 

 

 163 

6.4    Effect of Traffic Volume Parameters on IRI and PCI Values 
 

This section focused on modeling asphalt pavement performance indices (PCI and IRI) based on 

traffic volume variables and studying the effect of these variables on asphalt pavement 

performance indices for four climate regions in the U.S. and Canada. The relevant data were 

collected on the traffic volume parameters of 53 road sections with 408 observations from the 

LTPP dataset and distributed to four climate regions . Table (6-27) briefly describes the selected 

dataset of traffic volume. The present study was divided into three phases as follows: 

▪  Modeling of asphalt pavement performance indices using (MLR) technique. 

▪  Modeling of asphalt pavement performance indices using (ANNs) technique. 

▪ Comparison and validation of the MLR and ANNs models. 

Table 6-27: Gathered traffic volume data from four climatic regions.    

 

 

         Parameters 

 

Unit 

Climate Regions 

Dry 

Freeze 

Dry no 

Freeze 

Wet 

Freeze 

Wet no 

Freeze 

PCI % 52-80 50-100 8-91 8-100 

IRI (m/km) 0.89-1.69 0.68-2.66 0.73-4.04 0.62-3.76 

Number of data samples Number 14 61 144 189 

Age Year 6-18 3-34 3-33 1-31 

 ESAL - 5044-47803 4851-1085824 15432-579222 5880-797000 

AADTT  Track/day 41-183 11-3538 78-1914 54-3219 

AADT Track/year 6466-66978 4015-1294908 21756-698610 12555-1107775 
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6.4.1 Modeling of Asphalt Pavement Performance Indices Using (MLR) Technique 

Research in this part focuses on using traffic volume variables to model asphalt pavement 

performance indices (PCI and IRI). Traffic volume parameters were input variables, and pavement 

performance indices (PCI and IRI) were output parameters. Eight prediction models were 

developed using (MLR) technique from the collected data. The PCI and IRI regression models are 

shown in Tables (6-28) and (6-29).  

                 Table 6-28: PCI models summary based on traffic volume. 

        

     Model 

PCI 

Dry 

 Freeze 

Dry no  

Freeze 

Wet  

Freeze 

Wet no 

 Freeze 

𝑹𝟐 76.4 87.7 85.7 88.1 

Constant 78.43 100.53 112.08 114.1 

Age -0.82 - 1.724 - 2.45 - 3.0 

ESAL - 1.77 𝑥 10−6 -1.55 𝑥 10−5 1.65 𝑥 10−5 

AADTT -0.037 -0.001 0.004 -0.003 

AADT - 1.87 𝑥 10−6 6.82 𝑥 10−6 -2.80 𝑥 10−6 

 

The PCI regression analysis results illustrated in Table (6-28) indicate that the  𝑅2 values were 

76.4%, 87.7%, 85.7%, and 88.1% for dry freeze, dry no freeze, wet freeze, and wet no freeze, 

respectively. 

The IRI regression analysis results illustrated in Table (6-29) indicate that the  𝑅2 values were 

78.4%, 94.7%, 75%, and 89.4% for dry freeze, dry no freeze, wet freeze, and wet no freeze, 

respectively.  
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             Table 6-29: IRI models summary based on traffic volume. 

         

       Model 

IRI 

Dry 

 Freeze 

Dry no  

Freeze 

Wet  

Freeze 

Wet no 

 Freeze 

𝑹𝟐 78.4 94.7 75 89.4 

Constant 0.767 0.20 0.274 0.342 

Age 0.07 0.084 0.071 0.073 

ESAL 7.34 𝑥 10−5 -3.9 𝑥 10−7 -5.75 𝑥 10−5 -1.82 𝑥 10−7 

AADTT -0.025 6.75 𝑥 10−7 - 4.52 𝑥 10−5 

AADT 1.95 𝑥 10−5 2.68 𝑥 10−7 -2.07𝑥10−7 -2.73 𝑥 10−8 

   

Equations from (6-17) to (6-24) summarised the regression models for four climate regions as 

follows: 

1- Dry Freeze   

The PCI model for the dry freeze region is presented in Table (6-28). The PCI model was 

negatively correlated with age and AADTT. Equation (6-17) described the relationship between 

PCI and traffic volume as follows: 

𝑷𝑪𝑰 = 𝟕𝟖. 𝟒𝟑 − 𝟎. 𝟖𝟐 𝑿𝒂𝒈𝒆 − 𝟎. 𝟎𝟑𝟕𝑿𝑨𝑨𝑫𝑻𝑻   6-17 

The correlation coefficient (R2) of this relationship is 76.4%.    

Table (6-29) presents the regression analysis result of IRI for the dry freeze area. The IRI model 

was negatively correlated with AADTT. The IRI model was positively correlated with age, ESAL 

and AADT. Equation (6-18) described the relationship between the IRI and traffic volume as 

follows: 

𝑰𝑹𝑰 = 𝟎. 𝟕𝟔𝟕 +  𝟎. 𝟎𝟕 𝑿𝒂𝒈𝒆 + 𝟕. 𝟑𝟒 × 𝟏𝟎−𝟓𝑿𝑬𝑺𝑨𝑳 -0.025𝑿𝑨𝑨𝑫𝑻𝑻-1.95 × 10−5𝑿𝑨𝑨𝑫𝑻 6-18 
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The correlation coefficient (R2) of this relationship is 78.4%.    

2- Dry no Freeze  

Table (6-28) presents the PCI model for the dry no freeze area. The PCI model was negatively 

correlated with the age and AADTT. The PCI model was positively correlated with ESAL and 

AADT. Equation (6-19) described the relationship between the PCI and traffic volume as follows: 

𝑷𝑪𝑰 = 𝟏𝟎𝟎. 𝟓𝟑 − 𝟏. 𝟕𝟐𝟒𝑿𝒂𝒈𝒆 + 𝟏. 𝟕𝟕 × 𝟏𝟎−𝟔𝑿𝑬𝑺𝑨𝑳 − 𝟎. 𝟎𝟎𝟏𝑿𝑨𝑨𝑫𝑻𝑻 +  𝟏. 𝟖𝟕 × 𝟏𝟎−𝟔𝑿𝑨𝑨𝑫𝑻     

6-19 

The correlation coefficient (R2) of this relationship is 87.7%.    

Table (6-29) presents the IRI model for the dry no freeze area. The IRI value was negatively 

correlated with ESAL. The IRI model was positively correlated with age, AADTT and AADT. 

Equation (6-20) described the relationship between the IRI and traffic volume as follows: 

𝑰𝑹𝑰 = 𝟎. 𝟐𝟎 + 𝟎. 𝟎𝟖𝟒𝑿𝒂𝒈𝒆 − 𝟑. 𝟗𝟎 × 𝟏𝟎−𝟕𝑿𝑬𝑺𝑨𝑳 + 𝟔. 𝟕𝟓 × 𝟏𝟎−𝟕𝑿𝑨𝑨𝑫𝑻𝑻 + 𝟐. 𝟔𝟖 × 𝟏𝟎−𝟕𝑿𝑨𝑨𝑫𝑻 

 6-20 

The correlation coefficient (R2) of this relationship is 94.7%.   

3- Wet Freeze  

The regression analysis result of the PCI model for the dry no freeze area is presented in Table (6-

28). The PCI model was negatively correlated with age and ESAL. The PCI model was positively 

correlated with AADT and AADTT. The (6-21) described the relationship between PCI and traffic 

volume as follows: 

𝑷𝑪𝑰 = 𝟏𝟏𝟐. 𝟎𝟖–  𝟐. 𝟒𝟓 𝑿 𝒂𝒈𝒆 -1.55× 𝟏𝟎−𝟓𝑿 𝑬𝑺𝑨𝑳+0.004𝑿 𝑨𝑨𝑫𝑻𝑻+6.82× 𝟏𝟎−𝟔𝑿 𝑨𝑨𝑫𝑻 6-21 
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The correlation coefficient (R2) of this relationship is 85.7%.   

Table (6-29) presents the regression analysis results for IRI model for the wet freeze area. The IRI 

value was negatively affected with AADT. The IRI was positively correlated with age and ESAL. 

Equation (6-22) described the relationship between the IRI and traffic volume as follows: 

𝑰𝑹𝑰 = 𝟎. 𝟐𝟕𝟒 + 𝟎. 𝟎𝟕𝟏𝑿𝒂𝒈𝒆 + 𝟓. 𝟕𝟓 × 𝟏𝟎−𝟓𝑿𝑬𝑺𝑨𝑳 − 𝟐. 𝟎𝟕 × 𝟏𝟎−𝟕𝑿𝑨𝑨𝑫𝑻   6-22 

The correlation coefficient (R2) of this relationship is 75%.   

4- Wet no Freeze  

The regression analysis result of the PCI model for the dry no freeze area is presented in Table (6-

28). The PCI model was negatively correlated with age, AADT and AADTT, and positively 

correlated with ESAL. Equation (6-23) described the relationship between the PCI and traffic 

volume as follows: 

PCI =114.1 – 3.0  𝑿𝒂𝒈𝒆+ 1.65× 𝟏𝟎−𝟓𝑿𝑬𝑺𝑨𝑳 − 𝟎. 𝟎𝟎𝟑𝑿𝑨𝑨𝑫𝑻𝑻 -2.80× 𝟏𝟎−𝟓𝑿𝑨𝑨𝑫𝑻                  6-23 

The correlation coefficient (R2) of this relationship is 88.1%.    

The regression analysis result of the IRI model for the dry no freeze area is presented in Table (6-

29). The IRI value was negatively correlated with ESAL and AADT. The IRI was positively 

correlated with age and AADTT. Equation (6-24) described the relationship between the IRI and 

traffic volume as follows: 

𝑰𝑹𝑰 = 𝟎. 𝟑𝟒 + 𝟎. 𝟎𝟕𝟑 𝑿𝒂𝒈𝒆 − 𝟏. 𝟖𝟐 × 𝟏𝟎−𝟕𝑿𝑬𝑺𝑨𝑳 + 𝟒. 𝟓𝟐 × 𝟏𝟎−𝟓𝑿𝑨𝑨𝑫𝑻𝑻 − 𝟐. 𝟕𝟑 × 𝟏𝟎−𝟖𝑿𝑨𝑨𝑫𝑻 

 6-24 

The correlation coefficient (R2) of this relationship is 89.4%.    
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6.4.1.1  Validation of MLR Models 

• Validation of PCI Models 

 

After the validation test, Table (6-30) illustrates the reduction in 𝑅2, RMSE, and MAE values for 

all sections in the four climate regions. 

Table 6-30: Validation of PCI models based on traffic volume. 

 

Climate 

Regions 

Statistical Error Measures (PCI) 

MLR  Validation Reduction % (±) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 76.4 3.738 2.793 60.8 5.136 3.874 -20.42 +27.220 +27.92 

Dry no Freeze 87.7 4.935 4.281 87.1 4.963 4.241 -0.684 +0.564 +0.934 

Wet Freeze 85.7 7.486 5.631 85.1 7.613 5.821 -0.700 +1.668 +3.264 

Wet no Freeze 88.1 7.458 5.939 89.4 7.503 6.053 +1.454 +0.600 +1.883 

 

Based on Table (6-30), Figures (6-28), and (6-29), the following conclusions can be drawn: 

• Dry Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 20.42%, 27.22%, and 27.92%, respectively. 

Thus, the MLR method's ability to predict PCI models of the traffic volume was accurate. 

• Dry no Freeze: The results indicated that the reduction of 𝑅2 ,RMSE and MAE values was 

insignificant; the accuracy reductions were 0.684%,0.564%, and 0.934%, respectively. 

Thus, the MLR method's ability to predict PCI models of the traffic volume was accurate. 

• Wet Freeze: The results indicated that the reduction of 𝑅2 , RMSE, and MAE values was 

insignificant; the accuracy reductions were 0.7%,1.668%, and 3.264%, respectively. Thus, 

the MLR method's ability to predict PCI models of the traffic volume was accurate. 
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• Wet no Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values 

was insignificant; the accuracy reductions were 1.454%, 0.60%, and 1.883%, respectively. 

The MLR method's ability to predict PCI models of the traffic volume was accurate. 

   

Figure 6-28: MLR model for the dry freeze and the dry no freeze region based on traffic volume. 

                                                                                                                 

Figure 6-29: MLR model for the wet freeze and the wet no freeze region based on traffic volume. 
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• Validation of IRI  Models 

 

After the validation test, Table (6-31) illustrates the reduction in 𝑅2, RMSE, and MAE values for 

all sections in the four climate regions. 

Table 6-31: Validation of IRI models based on traffic volume 

 

Climate 

Regions 

Statistical Error Measures (IRI) 

MLR Validation Reduction % (±) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 78.4 0.123 0.082 73.4 0.095 0.071 -6.30 -22.76 -13.41 

Dry no Freeze 94.7 0.15 0.118 94.1 0.162 0.125 -0.634 +7.407 +5.600 

Wet Freeze 75.0 0.304 0.216 74.7 0.308 0.222 -0.400 +1.299 +2.703 

Wet no Freeze 89.4 0.18 0.093 89.0 0.18 0.094 -0.447 0.000 +1.064 

 

Based on Table (6-31), Figures (6-30), and (6-31), the following conclusions can be drawn: 

• Dry Freeze:  The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 6.30%, 22.76%, and 13.41%, respectively. 

Thus, the MLR method's ability to predict IRI models of the traffic volume was accurate. 

• Dry no Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values 

was insignificant; the accuracy reductions were 0.634%, 7.407%, and 5.60%, respectively. 

Thus, the MLR method ability to predict IRI models of the traffic volume was accurate. 

• Wet Freeze: The results indicated that the reduction in 𝑅2, RMSE, and MAE values was 

insignificant; the accuracy reductions were 0.40%,1.299%, and 2.703%, respectively. 

Thus, the MLR method's ability to predict IRI models of the traffic volume was accurate. 
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• Wet no Freeze: The results indicated that the reduction of 𝑅2 ,RMSE, and MAE values 

was insignificant; the accuracy reductions were 0.447%, 0.0%, and 1.046%, respectively.  

 

Figure 6-30: MLR model for the dry freeze and the dry no freeze region based on traffic volume. 

                                                                     

 

Figure 6-31: MLR model for the wet freeze and the wet no freeze region based on traffic volume. 
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6.4.1.2 MLR Model Sensitivity Analysis for PCI and IRI 

• MLR Model Sensitivity Analysis for PCI 

 

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of 

the statistical prediction models in the PCI evaluation. The results of the sensitivity analysis for 

PCI are presented in Table (6-32) and Figure (6-32).   

Based on Table (6-32) and Figure (6-32), the following conclusions can be drawn: 

Dry Freeze: Compared with ESAL and AADTT are the most significant factors affecting on the 

prediction model, and AADT has some effect on the model. While age has a minor effect on the 

prediction model. 

Dry no Freeze: Compared with other variables, age is the most significant factor affecting on the 

prediction model. AADTT and AADT have minor impacts on the prediction model, while ESAL 

has no a statistical significance effect on the prediction model.  

                    Table 6-32: Sensitivity analysis of prediction models for PCI based on traffic volume. 

 

Independent 

Variable 

𝑹𝟐 

Dry      

Freeze 

Dry no 

Freeze 

Wet      

Freeze 

Wet no 

Freeze 

Age 5.2 87.5 85.2 89 

ESAL 56.5 - 6.0 - 

 AADTT 55.1 5.0 2.0 2.0 

AADT 28.6 4.0 1.0 - 
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Wet Freeze: Compared with other variables, age is the most significant factor affecting on the 

prediction model.  ESAL, AADTT and AADT have minor effects on the prediction model.  

Wet no Freeze: Compared with other variables, age is the most significant factor affecting on the 

prediction model. AADTT has a minor impact on the prediction model. While ESAL and AADT 

do not have a statistical significance influence on the PCI model.  

 

              Figure 6-32: Sensitivity analysis of MLR for PCI based on traffic volume. 

• MLR Model Sensitivity Analysis for IRI 

 

 

A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of 
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             Table 6-33: Sensitivity analysis of prediction models for IRI based on traffic volume. 

 

Independent 

Variable 

𝑹𝟐 

Dry      

Freeze 

Dry no 

Freeze 

Wet      

Freeze 

Wet no 

Freeze 

Age 73.5 94.2 74.4 89.3 

ESAL 6.0 4.0 7.0 0.194 

 AADTT 4.0 1.0 3.0 2.0 

AADT 16.5 7.0 2.0 - 

 

Based on Table (6-33) and Figure (6-33), the following conclusions can be drawn: 

Dry Freeze: Compared with other variables, age is the most significant factor affecting the 

prediction model, and AADT has some impact on the prediction model. While ESAL and AADTT 

have minor effects on the model. 

Dry no Freeze: Compared with other variables, age is the most significant factor affecting the 

prediction model, and others have some a statistical significance influence on  the prediction model.  

Wet Freeze: Compared with other variables, age is the most significant factor affecting the 

prediction model, and others have minor impacts on the prediction model.  

Wet no Freeze: Compared with other variables, age is the most significant factor affecting the 

prediction model, and AADTT ESAL have minor effects on the prediction model. While AADT 

has no a statistical significance influence on the prediction model.  
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            Figure 6-33: Sensitivity analysis of MLR for IRI based on traffic volume. 
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       Figure 6-34: Architecture of ANN model for PCI and IRI based on traffic volume. 

 

6.4.2.1  Modeling of Asphalt Pavement Performance Index (PCI) 

Table (6-34) illustrates a summary of the PCI models by using an ANNs technique based on traffic 

volume for four climate regions. 

Table 6-34: Performance of PCI models by using ANNs technique based on traffic volume. 

 

     Climate Regions 

 

ANNs Models  

Statistical Error Measures (PCI) 

𝑹𝟐 RMSE MAE 

Dry Freeze 99.2 0.89 0.89 

Dry no Freeze 99.4 0.39 0.336 

Wet Freeze 99.3 0.661 0.484 

Wet no Freeze 98.5 1.868 1.34 
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Figure 6-35: ANNs model goodness-of-fit results for IRI values based on traffic volume. 

Based on Table (6-34) and Figure (6-35), the following conclusions can be drawn: 

• Dry Freeze:  The 𝑅2value was 99.2%, while the RMSE and MAE values were 0.89% and 

0.89%.   
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• Dry no Freeze:  The 𝑅2value was 99.4%, while the RMSE and MAE values were 0.39% 

and 0.336%. 

• Wet Freeze:  The 𝑅2value was 99.3%, while the RMSE and MAE values were 0.661% 

and 0.484%. 

• Wet no Freeze: The 𝑅2value was 98.5%, while the RMSE and MAE values were 1.868% 

and 1.34%. 

6.4.2.2  Modeling of Asphalt Pavement Performance Index (IRI) 

Table (6-35) illustrates a summary of the IRI models by using an ANNs technique based on traffic 

volume for four climate regions. 

Table 6-35: Performance of IRI models by using ANNs technique based on traffic volume. 

 

   Climate Regions 

 

ANNs Models  

Statistical Error Measures (IRI) 

𝑹𝟐 RMSE MAE 

Dry Freeze 99.3 0.008 0.006 

Dry no Freeze 99 0.024 0.024 

Wet Freeze 98.7 0.012 0.012 

Wet no Freeze 98.5 0.052 0.039 

 

Based on Table (6-35) and Figure (6-36), the following conclusions can be drawn: 

• Dry Freeze:  The 𝑅2value was 99.3%, while the RMSE and MAE values were 0.008% 

and 0.006%.   

• Dry no Freeze:  The 𝑅2value was 99 %, while the RMSE and MAE values were 0.024% 

and 0.024%. 
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• Wet Freeze:  The 𝑅2value was 98.7%, while the RMSE and MAE values were 0.012% 

and 0.012%. 

• Wet no Freeze: The 𝑅2value was 98.5%, while the RMSE and MAE values were 0.052% 

and 0.039%. 

   

 

Figure 6-36: ANNs model goodness-of-fit results for IRI values based on traffic volume. 

0.8 1 1.2 1.4 1.6 1.8

Observed IRI

0.8

1

1.2

1.4

1.6

1.8

P
re

d
ic

te
d

 I
R

I

Dry Freeze

R
2
=0.993

0.5 1 1.5 2 2.5 3

Observed IRI

0.5

1

1.5

2

2.5

3

P
re

d
ic

te
d
 I

R
I

Dry no Freeze

R
2
=0.99

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Observed IRI

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

P
re

d
ic

te
d

 I
R

I

Wet Freeze

R
2
=0.987

0.5 1 1.5 2 2.5 3 3.5 4

Observed IRI

0.5

1

1.5

2

2.5

3

3.5

4

P
re

d
ic

te
d
 I

R
I

Wet no Freeze

R
2
=0.985



 

 

 

 

 180 

6.4.3 Validation of ANNs Models 

A total of 408 observations obtained from the LTPP dataset for four climate regions investigations 

were used in ANNs modeling, where 70% of the data set was used for training, 15% for testing, 

and 15% for validation (checking) the network. Tables (6-36) and (6-37) show the results of the 

models for the validation dataset. 

 

• Validation of PCI Models   

 

 

 The statistical error measures 𝑅2 and RMSE were used to evaluate the performance of the ANNs 

models. Based on the 𝑅2values, all models had a strong correlation, as their 𝑅2values exceeded 

98%, while with RMSE values, all models had a low error, as their error did not exceed 2.963%. 

Thus, the ANNs technique’s ability to predict PCI models of traffic volume parameters was 

accurate. Table (6-36) illustrates Validation of PCI models for all sections in the four climate 

regions. 

Table 6-36 : Validation of PCI models based on traffic volume parameters. 

 

Climate 

Regions 

Statistical Error Measures (PCI) 

𝑹𝟐 RMSE 

Training Testing Validation Traning Testing Validation 

Dry Freeze 98.6 99.7 99.3 0.371 2.243 1.374 

Dry no Freeze 99.1 99.4 100 0.355 2.431 1.245 

Wet Freeze 99.9 100 99.8 0.469 1.124 0.451 

Wet no Freeze 98.4 98.6 98.9 4.115 4.115 2.963 
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• Validation of IRI Models   

 

 

 The statistical error measures 𝑅2and RMSE were used to evaluate the performance of the ANNs 

models. Based on the 𝑅2 values, all models had a strong correlation, as their 𝑅2 values exceeded 

99%, while for RMSE values, all models had minor errors. Thus, the ANNs technique’s ability to 

predict IRI models of traffic volume parameters was accurate. Table (6-37) illustrates Validation 

of IRI models for all sections in the four climate regions. 

Table 6-37 : Validation of IRI models based on traffic volume parameters. 

 

Climate 

Regions 

Statistical Error Measures (IRI) 

𝑹𝟐 RMSE 

Training Testing Validation Traning Testing Validation 

Dry Freeze 99.6 99.8 99.8 0.009 0.010 0.016 

Dry no Freeze 99.7 100 100 0.023 0.097 0.028 

Wet Freeze 99.9 99.9 99.6 0.016 0.071 0.025 

Wet no Freeze 99.4 99.6 99.1 0.045 0.044 0.022 

 

 

6.4.4 Comparison of the Models 

 To validate the developed models in this part, all models were evaluated by comparing MLR and 

ANNs techniques based on traffic volume for four climate regions, as shown in Tables (6-38) and 

(6-38). 

6.4.4.1 Comparison of ANNs and MLR Models for PCI 

The performance of the MLR models was compared with the performance of the ANNs models to 

evaluate the accuracy of the models in predicting pavement performance based on traffic volume 
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parameters. 𝑅2, RMSE and MAE values were used to compare the performance of the models. 

Table (6-38) and Figures from (6-37) and (6-38) presented the comparison the MLR models to the 

ANNs models for PCI.  

Table 6-38: Comparison of the MLR and ANNs models for PCI based on traffic volume. 

 

Climate 

Regions 

Statistical Error Measures (PCI) 

MLR Generated ANNs Generated Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝑴𝑨𝑬 𝑹𝟐 RMSE 𝑴𝑨𝑬 

Dry Freeze 76.4 3.738 2.793 99.2 0.89 0.89 +22.98 +76.19 +68.13 

Dry no Freeze 87.7 4.935 4.281 99.4 0.39 0.336 +11.77 +92.10 +92.15 

Wet Freeze 85.7 7.486 5.631 99.3 0.661 0.484 +13.70 +91.17 +91.40 

Wet no Freeze 88.1 7.458 5.939 98.5 1.868 1.34 +10.56 +74.95 +77.44 

 

According to Table (6-38), several conclusions can be drawn: 

• The statistics indicated that 𝑅2values from the ANNs models were higher than the 𝑅2values 

of the MLR models by 22.98%, 11.77%, 13.70%, and 9.54% for dry freeze, dry no freeze, 

wet freeze, and wet no freeze, respectively.  

• The RMSE values of the ANNs models were less than the RMSE values of the MLR 

models by 76.19%, 92.10%, 91.17%, and 74.95% for dry freeze, dry no freeze, wet freeze, 

and wet no freeze, respectively. 

• The MAE values of the ANNs models were less than the MAE values of the MLR models 

by 68.13%, 92.15%, 91.40%, and 77.44% for dry freeze, dry no freeze, wet freeze, and wet 

no freeze, respectively. 
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Figure 6-37: Fitness of MLR and ANNs models to PCI prediction based on traffic volume data 

from two climate regions: (left) dry freeze; (right)dry no freeze. 

   

Figure 6-38: Fitness of MLR and ANNs models to PCI prediction based on traffic volume data 

from two climate regions: (left) wet freeze; (right)wet no freeze. 
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Based on Figures from (6-37) to (6-38), several conclusions can be drawn: 

• The MLR approach has a slight corrugation while ANNs exhibits a straight line, which 

explains why ANN models tend to be more accurate. 

Table (6-38), Figures (6-37), and (6-38) showed that the MLR and ANNs models have an ability 

to perform the prediction PCI models. In addition, the ANNs prediction models provided more 

accuracy than the MLR models under all climate conditions. 

6.4.4.2 Comparison of ANNs and MLR Models for IRI 

The performance of the MLR models was compared with the performance of the ANNs models to 

evaluate the accuracy of the models in predicting pavement performance based on traffic volume 

parameters. 𝑅2, RMSE and MAE values were used to compare the performance of the models. 

Table (6-39) and Figures from (6-39) and (6-40) show the comparison the MLR models to the 

ANNs models for IRI. 

Table 6-39: Comparison of the MLR and ANNs models for IRI based on traffic volume. 

 

Climate 

Regions 

Statistical Error Measures (IRI) 

MLR Generated ANNs Generated Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝐌𝐀𝐄 𝑹𝟐 RMSE 𝐌𝐀𝐄 

Dry Freeze 78.4 0.073 0.057 99.3 0.008 0.006 +20.75 +89.04 +89.47 

Dry no Freeze 94.7 0.15 0.118 99 0.024 0.024 +4.34 +84.00 +79.66 

Wet Freeze 75 0.304 0.216 98.7 0.012 0.012 +24.01 +96.05 +94.44 

Wet no Freeze 89.4 0.18 0.093 98.5 0.052 0.039 +9.24 +71.11 +58.06 
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Figure 6-39: Fitness of MLR and ANNs models to IRI prediction based on traffic volume data 

from two climate regions: (left) dry freeze; (right)dry no freeze. 

   

Figure 6-40: Fitness of MLR and ANNs models to IRI prediction based on traffic volume data 

from two climate regions: (left) wet freeze; (right)wet no freeze. 
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According to Table (6-39), Figures from (6-39) and (6-40), several conclusions can be drawn: 

• The statistics indicated that 𝑅2values from the ANNs models were higher than the 

𝑅2values of the MLR models by 20.75%, 4.34%, 24.01%, and 9.24% for dry freeze, 

dry no freeze, wet freeze, and wet no freeze, respectively. 

• The RMSE values of the ANNs models were less than the RMSE values of the MLR 

models by 89.04%, 84%, 96.05%, and 71.11% for dry freeze, dry no freeze, wet freeze, 

and wet no freeze, respectively. 

• The MAE values of the ANNs models were less than the MAE values of the MLR 

models by 89.47%, 79.66%, 94.44%, and 58.06% for dry freeze, dry no freeze, wet 

freeze, and wet no freeze, respectively. 

• The MLR approach has a slight corrugation while ANN has a straight line, which 

explains why ANN models tend to be more accurate. 

• Figures clearly show that the ANNs prediction models provided more accuracy than 

the MLR prediction models under different climate conditions. 

Table (6-39), Figures (6-39), and (6-40) showed that the ANN prediction models provided more 

accuracy than the MLR models under all climate conditions. 

 The results of this study are consistent with some of the previous studies. For example, Ziari et al. 

(2015) developed various ANN networks to predict IRI using structural, traffic, and climate 

parameters. They used RMSE to evaluate the ANN model and achieved an RMSE of 0.012. 
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6.4.5 Summary 

This part of the research focused on modeling asphalt pavement performance indices (PCI and 

IRI) based on traffic volume variables and studying the effect of these variables on asphalt 

pavement performance indices for four climate regions. Several important advantages were drawn 

from the MLR and the ANNs technique, as follows: 

▪ The MLR and ANNs models have the ability to perform the prediction of PCI and IRI 

models. In addition, the ANNs prediction models provided more accuracy than the MLR 

models under four climate regions. The approaches have good accuracy since their 

𝑅2values exceed 75 and 98 % for MLR and ANN, respectively, as evidenced by the 𝑅2 

values. 

▪  The ANNs method reduces the error value by a considerable amount compared to the 

MLR method for each climate region. 
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Chapter7:  Field Survey (Case Study) 

7.1 Field Survey (Case Study) 

The case study site is located in St. John’s, the capital of the province Newfoundland and Labrador, 

Canada. St. John’s city has a wet freeze climate; all roads are negatively influenced by the 

challenging environment and ever-growing traffic volume. The case study focuses on studying the 

effect of pavement distress on determining pavement condition. These include the determination 

of PCI, IRI, and PSR of flexible pavement and developing reliable prediction models for St. John's 

roads, based on data obtained from the collected data over the past few years. 

The PCI was computed using the ASTM International D6433-18 standard; the IRI values were 

measured using a smartphone application named TotalPave, and the PSR was obtained by 

distributing a questionnaire to drivers. 

 The present case study was divided into six phases as follows: 

• Collect the pavement distress parameters for 19 road sections, 

• Modeling of asphalt pavement performance indices using the (FIS) technique, 

• Modeling the relationship between Indices PCI, IRI, and PSR using mathematical methods, 

• Modeling of asphalt pavement performance indices using the (MLR) technique, 

• Modeling of Asphalt Pavement performance indices using (ANNs), and 

• Compare and validate the FIS, MLR, and ANNs models. 

Eight pavement distress variables’ effect were assessed and used to predict the PCI, IRI, and PSR 

models: fatigue cracking, block cracking, rutting, longitudinal cracking, transverse cracking, 

potholes, patching, and delimitation. The case study outline is presented in Figure (7-1). 
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Figure7-1: Outline of the case study of research methodology. 
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7.2 Climate and Weather 

Table (7-1) shows the available climate data for the last 90 years. The city is experiencing a harsh 

inclement climate, including an average snowfall of (330 mm /year) and temperature fluctuations 

(average low temp and average high temp) of -8.3 and 15.5  C, respectively. The average wind 

velocity is 21.5 km / h, with an annual precipitation average of 81%. Therefore, roads in this city 

suffer significant distresses, such as rutting, and potholes caused by moisture damage.  This 

distress leads to substantial economic, health, and psychological problems for road users, due to 

increased travel time, increased accident rates, damage to vehicles and increased fuel usage. 

                  Table 7-1: Weather conditions in the St. John’s Newfoundland, Canada 

 

Parameters 
unit 

St. John’s region 

(Wet Freeze) 

Age Year 90 

Average temp (low, high)  C (-8.3) to (+15.5) 

Record daily (low, high)  C (-23.3) to (+29.5) 

Total annual precipitation (mm) 89-149 

Total snowfall  Cm/year 27.58 

Wind average Km/h 21.5 

Humidity % 81 

  

7.3 Smartphone Data Collection and Field Studies 

The objective of collecting data on roads in St. John's was to evaluate pavement performance using 

three methods: (IRI), (PCI), and (PSR). The data collected contribute to creating models to predict 

the pavement condition via three methods (TotalPave smartphone application, visual inspection, 

and gathering drivers' opinions on driving comfort and road safety). To develop flexible pavement 
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performance and realize this research's objectives, researchers at Memorial University conducted 

a detailed field investigation of pavement conditions for 19 different roads.  

The following sections overview the data collection methods and data processing techniques 

employed. The models developed in this section are particular for St. John's. A smartphone 

equipped with GPS and other sensors was used to collect data.  

The smartphone and the holder were placed on the windshield, and then a TotalPave application 

was used to compile the data. This included roughness measurements of some major roads in St. 

John’s, Newfoundland are mentioned in Table (7-2).  

As specified by the TotalPave user guidelines, the vehicle was driven at a speed of (20-80 km / h) 

throughout data gatherings, as the IRI is sensitive to the same wavelengths of the profile, which 

causes vibrations in cars on roads at the designated speed (Sayers, 1995). 

 TotalPave can estimate IRI values based on the smartphone's vertical and horizontal motion. The 

motion along the vehicle's left-right, front-rear, and up-down directions is represented by the 

accelerometer's (x, y, z) axes. The data were obtained automatically and submitted to the 

application servers. 

7.4 Study Area Location and Data Preparation 

According to Canada's sixth annual climate change report (Government of Canada 2014), 28% of 

Canada's energy consumption is used in the transport sector. Road-driven vehicle transport 

constitutes the most considerable portion of this sector.  

 The number of vehicles in St. John's, Newfoundland, has increased by more than 100% in a short 

period due to a growing population. This ever-increasing trend influences the condition and 

efficiency of roads over time.  
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                                       Figure 7-2: Map of the road network of the of St. John’s. 

The survey covered 19 different roads in St. John's (wet freeze climate) which were considered in 

this study. Pavement conditions in the selected sections ranged from very poor to excellent. The 

study examined a total of 58.3 km of road length, which included two Urban divided (7.7 km), 

sixteen Urban undivided (42 km), and one highway (8.6 km). The survey data collected in (2018 

and 2021) have been used to develop asphalt performance models. Detailed information to classify 

IRI, PSR, and PCI were collected for all these roads. Table (7-2) shows a descriptive summary of 

the road network in St. John's selected for this study. 

Ali et al. performed a distress survey on some road sections in St. John's, and they which was 

published at the 2021 (Journal of Transportation Engineering, Part B: Pavements). They also 

studied some roads other than the sections considered in the current analysis, and the survey was 

presented at the 2018 Conference of the Canadian Society for Civil Engineering (CSCE) (Ali et 

al., 2021., Ali et al., 2018). 
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      Table 7-27: Details of study section. 

Geometric 

Type   

Road Name Starting Coordinate Ending Coordinate Length 

(m) 

Highway  

 

Trans-Canada 

Highway 
47.613080, -52.693132 47.572898, -52.778936 8600 

Urban 
(Divided) 

Prince Philip Dr 47.588916, -52.720251 47.561888, -52.749006 3900 

Portugal Cove Rd 47.595724, -52.726608 47.609546, -52.765798 3800 

 

 

 

Urban 

(Undivided) 

 

 

 

 

 

 

 

 

Elizabeth Ave Rd 47.563756, -52.739265 47.586281, -52.708537 3500 

Kenmount Rd 47.560475, -52.749060 47.533357, -52.831811 7000 

Torbay Rd 47.599852, -52.711999 47.638361, -52.724715 4500 

Logy Bay Rd 47.598178, -52.698031 47.581270, -52.704083 2000 

Kenna's Hill 47.580354, -52.704381 47.571455, -52.701725 1000 

Water St 47.570864, -52.697512 47.562220, -52.709403 1300 

King’s Bridge Rd 47.577570, -52.703921 47.571912, -52.701928 1000 

Blackhead Rd 47.539661, -52.712965 47.522431, -52.660019 8200 

Newfoundland Dr 47.595526, -52.725829 47.591908, -52.687005 3600 

Newtown Rd 47.569411, -52.731490 47.566484, -52.716049 1300 

Freshwater Rd 47.563767, -52.717459 47.561518, -52.745447 2200 

MacDonald Dr 47.590916, -52.718891 47.593944, -52.701323 1400 

Aberdeen Ave 47.619806, -52.718596 47.612738, -52.711725 1000 

Empire Ave 47.572286, -52.713828 47.565904, -52.729028 1400 

The Blvd 47.577727, -52.703588 47.584444, -52.684521 1600 

Highland Dr 47.604463, -52.717754 47.610121, -52.708517 1000 

 

It was observed that damage caused by rutting and moisture (e.g., ravelling and potholes) are 

among the main types of distress observed on all roads in and around St. John's. Figure (7-3) 

displays representative photos of some of the road distress in the city. The severity levels were 

classified as the following, "Severe" for high severity, "Moderate" for moderate severity, and 

"Minimal" for low severity.  
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        Figure 7-3: Representative photo showing different distress types in pavement sections. 
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7.5 Compilation and Analysis of Data 
 

The following sections will concentrate on creating prediction models based on three indices: PCI, 

IRI, and PSR. 

7.5.1  Pavement Condition Index (PCI) 

Visual examination is essential to understanding all challenges facing the roads in St. John's, which 

suffer from severe structural and functional distress. Visual inspection information is used to 

determine the current pavement condition for PCI determination.  

A two-step method was applied to the collected data using visual examination. First, the survey 

team drove across the chosen major and minor roads and collected pictures and videos of the road 

surfaces. These photos and clips were then manually processed and analyzed to understand the 

pavement performance. Secondly, the survey team walked along with the selected road areas for 

closer examination and gathering of road condition data. The distress was categorised and rated 

based on type and severity. 

This research is expected to improve pavement service life by creating enhanced prediction models 

and improving traffic safety. PCI values were determined using the ASTM D6433-18 process. 

Around 60 km of road sections located within the St. John's municipality were visually examined, 

and the various distress characteristics were recorded. The PCI value calculation for Empire 

Avenue is presented in Table (7-3) as an example. Table (7-4) presents IRI, PSR, and PCI values 

measured for the 19 road sections. 
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Table 7-3: PCI determination from pavement distresses. 

Empire Avenue Road (Section: I)                                                                             Area of Sample =720𝒎𝟐 

Type of Distress Rutting  Block  Fatigue  Long  Trans Delamination  Pothole  Patching  

Unit (𝑚2) (𝑚2) (𝑚2) (𝑚2) (𝑚2) (𝑚2) (no) (𝑚2) 

Quantity 1.10 1.30 0 17 0 11 4 38 

Level of Severity Mb Mb  - Lc - Ha Lc Mb 

Density (%) 0.15 0.18 0 2.35 0 1.52 0.55 5.24 

Deduct Value 7 16 0 14 0 11 46 36 

Total 130 

Corrected Deduct Value= 89 

PCI 100-89=11 Very poor 

Empire Avenue Road (Section: II)                                                                              Area of Sample =1440𝒎𝟐 

Quantity 2.25 2.10 0 21 0 10.50 6 51 

Level of Severity Mb Lc - Mb - Mb Lc Mb 

Density (%) 0.16 0.15 0 1.47 0 0.74 0.42 3.57 

Deduct Value 8 5 0 20 0 17 42 31 

Total 123 

                                             Corrected Deduct Value=87 

PCI 100-87=13 Very poor 

Ha = High severity, Mb = Medium severity, Lc = Low severity 

 

 

7.5.2 International Roughness Index (IRI) 

IRI data were being captured by a smartphone application called "TotalPave". This application can 

capture the vertical movement resulting from the road's rough surface and calculate the IRI value 

in real-time. This application feature of no pre-or post-processing required for the pavement 

distress data obtained was the primary motivation behind this application's use in the study. 
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Furthermore, TotalPave is easy to use at a comparatively low cost. The TotalPave application was 

installed on a smartphone to gather the IRI data, then placed on the vehicle's windshield using a 

mobile phone holder. It was confirmed that minimal bumping and vibration of the phone occurred. 

 To comply with TotalPave user guidelines, the vehicle was driven at a speed of between 20 and 

80 kilometres per hour (km/h) throughout data gathering. The final IRI value for each road was 

stated as the arithmetic average of IRI values of all road sections. The average IRI data obtained 

for various road sections are illustrate in Table (7-4). As predicted, a high variation in IRI values 

was noted, based on the distress conditions. Specifically, Portugal Cove Road can be regarded as 

the best performing road among the city's roads. The freeway sections showed the lowest levels of 

roughness when all various types of roads were considered. Users felt less comfort because of the 

highest IRI value on Empire Avenue, followed by King's Bridge Road. Generally, most of these 

road sections showed high IRI values, suggesting bad road conditions. 

7.5.3 Present Serviceability Rating (PSR) 

 This survey was carried out to gather drivers' opinions on driving comfort and road safety on a 

scale of five levels, namely very bad, poor, fair, good, and excellent. The survey was emailed to 

potential respondents (drivers that were mainly graduate students and employees of Memorial 

University). The percentage of opinions was determined to evaluate (PSR) values for the chosen 

road sections. A low value of serviceability means that the road surface was compromised by 

numerous difficulties and was in poor condition. The PSR value for most of these road sections 

was between 2 and 3, suggesting that the roads were fair to good. The results collected from the 

pavement serviceability survey carried out during this research are summarised in Table (7-4). 
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Table 7-4: IRI, PSR, and PCI values of the road sections. 

Type Road Name IRI  
(2018) 

IRI 
(2021) 

PSR (2018) PCI (2018) PCI (2021)  

I II I II I II 

Highway 

(Divided) 
Trans-Canada 
Highway 

1.09 1.10 3.22 3.47 75  74 71 73 

Urban 
(Divided) 

 

Prince Philip Dr  2.22 2.44 3.25 3.30 68 67 55 55 

Portugal Cove Rd 1.77 1.88 2.84 2.89 60 64 61 64 

 
 
 
 
 
 

Urban 
(Undivided) 

 

Elizabeth Ave Rd 5.3 6.02 2.593 2.591 23 14 21 13 

Kenmount Rd 2.59 3.10 2.84 3.0 49 45 43 39 

Torbay Rd 3.04 3.29 2.90 2.91 44 33 48 37 

Blackhead Rd 2.13 2.53 2.91 2.99 49 61 41 57 

Logy Bay Rd 3.98 5.83 2.87 2.96 23 41 19 22 

Kenna’s Hill 4.28 3.94 2.73 2.77 33 - 40 - 

Water St 3.63 2.25 2.75 2.89 48 20 60 44 

King’s Bridge Rd 5.68 4.37 2.75 2.60 17 20 35 35 

Newfoundland Dr 3.89 3.42 2.68 2.80 21 19 27 25 

Newtown Rd 4.39 4.78 2.82  2.82 32 37 28 31 

Freshwater Rd 3.50 4.26 2.70 2.75 41 44 37 37 

MacDonald Dr 2.16 2.77 3.31 3.47 57 67 54 54 

Aberdeen Ave 2.11 2.80 3.20 2.43 50 58 53 43 

Empire Ave  4.05 4.10 2.43 2.61 11 13 11 13 

The Blvd 3.19 3.87 2.93 2.96 44 37 41 32 

Highland Dr 2.94 2.59 3.27 3.20 45 62 56 71 

 

 

7.6  Modeling of Asphalt Pavement Performance Indices using (FIS) 
 

This part of the research attempts to implement one of the soft computing methods in pavement 

serviceability evaluation. The FIS has been applied to 19 St. John’s roads as a case study in areas 

where roads of St. John’s suffer from the eight distress types: rutting, fatigue cracking, block 
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cracking, longitudinal and transverse cracking, patching, potholes, and delamination. The fuzzy 

model uses iterations of the severity of the deterioration as inputs to create prediction models (PCI 

and IRI). 

7.6.1 Methodology Fuzzy Inference System  

As mentioned in chapter 4, a methodology based on a case study to evaluate road pavements using 

soft computing techniques has been proposed. The case study presented two models estimating the 

FPCI and FIRI, based on the data collected. Three trade-off steps were followed during the 

analysis, the Fuzzification, Normalization, and Defuzzification modules, as demonstrated in 

Figure (7-4). 

 

                                 Figure 7-4: Diagram of a pavement classification on FIS. 

 

7.6.1.1 Data Pre-processing and Feature Selection 

 After the data were collected and revised for 19 roads in St. John’s, the fuzzy model was prepared 

with eight independent parameters of the distress types. 
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Table 7-5: Distress types and number of membership functions to evaluate PCI and IRI. 

Distress of type Category Number of MF Description 

Rutting Input Minimal, Moderate, Severe Extremely important 

Fatigue Cracking Input Minimal, Moderate, Severe Relatively important 

Block Cracking Input Minimal, Moderate, Severe Important 

Longitudinal Cracking Input Minimal, Moderate, Severe Important 

Transverse Cracking Input Minimal, Moderate, Severe Moderately important 

Patching  Input Minimal, Moderate, Severe Moderately important 

Potholes Input Minimal, Moderate, Severe Relatively important 

Delamination Input Minimal, Moderate, Severe Relatively important 

IRI Output Poor, Mediocre, Fair, Good, 

Very Good 

Extremely important 

PCI Output Failed, Very Poor, Poor, Fair, 

Good, Very Good, Excellent 

Extremely important 

 

7.6.1.2 Membership Functions 

The membership functions for the input and output variables functions have been determined. The 

membership functions for all input variables are categorised as Minimal, Moderate, and Severe. 

The output variables have seven PCI membership functions classified as: Very Poor, Poor, Fair, 

Good, Very Good, and Excellent. Similarly, the output variables have five IRI membership 

functions classified as: Poor, Mediocre, Fair, Good. and Very Good (ASTM International D6433-

18). As mentioned in chapter 4, for each input and output (PCI and IRI), the x-axis reflects the 

distress density, while the y-axis is a membership function varying between [0 to 1]. '0' indicates 

no statistical relationship, and '1' indicates a strong relationship. 

7.6.1.3 Fuzzy Rule Generation: 

 Generating the rules is the major challenge in FIS through the second phase. It was complicated 

to generate all rules concerning all previous combinations. The classification model's generation 
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rules described in this work are difficult and complex because they consist of eight inputs and one 

output. The Tables (7-6) (7-7) Rule base was formed for FIS, for PCI, and IRI, respectively. 

Table 7-6: Fuzzy rules for PCI by 19 road sections. 

 

Rule 

No 

Distress type (Input)  

PCI 

(Output) 

Rutting Fatigue 

Cracking 

Block 

Cracking  

Longitudinal 

Cracking 

 

Transverse 

Cracking 

 

Patching Potholes Delamination 

1 Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Excellent 

2 Minimal Minimal Minimal Moderate Minimal Minimal Minimal Minimal Excellent 

3 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Very Good 

4 Minimal Minimal Minimal Minimal Severe Minimal Minimal Minimal Good 

5 Minimal Severe Minimal Moderate Minimal Minimal Minimal Minimal Good 

6 Minimal Moderate Minimal Minimal Severe Minimal Minimal Minimal Good 

7 Minimal Moderate Minimal Minimal Minimal Minimal Minimal Minimal Good 

8 Moderate Minimal Minimal Minimal Minimal Minimal Minimal Minimal Good 

9 Minimal Moderate Minimal Moderate Severe Minimal Minimal Moderate Good 

10 Minimal Moderate Minimal Moderate Minimal Minimal Minimal Minimal Fair 

11 Minimal Minimal Minimal Moderate Moderate Minimal Minimal Minimal Fair 

12 Minimal Severe Minimal Minimal Minimal Minimal Minimal Moderate Fair 

13 Severe Moderate Minimal Minimal Minimal Minimal Minimal Minimal Poor 

14 Minimal Severe Minimal Minimal Moderate Minimal Minimal Minimal Poor 

15 Minimal Moderate Minimal Minimal Minimal Moderate Minimal Minimal Poor 

16 Minimal Minimal Minimal Moderate Severe Minimal Minimal Minimal Poor 

17 Minimal Minimal Minimal Moderate Moderate Minimal Minimal Minimal Very Poor 

18 Moderate Moderate Minimal Minimal Moderate Minimal Minimal Moderate Very Poor 

19 Minimal Moderate Minimal Moderate Severe Minimal Minimal Moderate Very Poor 

20 Moderate Minimal Minimal Minimal Moderate Minimal Minimal Minimal Very Poor 

21 Moderate Severe Minimal Severe Severe Minimal Minimal Moderate Very Poor 

22 Minimal Moderate Minimal Moderate Moderate Minimal Minimal Minimal Very Poor 

23 Moderate Minimal Minimal Severe Severe Minimal Minimal Minimal Very Poor 

24 Minimal Moderate Minimal Minimal Moderate Minimal Minimal Minimal Failed 

25 Minimal Severe Minimal Moderate Severe Minimal Minimal Minimal Failed 

26 Moderate Moderate Minimal Moderate Severe Minimal Minimal Minimal Failed 

27 Severe Severe Minimal Moderate Moderate Minimal Minimal Moderate Failed 
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Table 7-7: Fuzzy rules for IRI by 19 road sections. 

Rule 

No 

Distress type (Input)  

IRI 

(Output) 

Rutting Fatigue 

Cracking 

Block 

Cracking 

Longitudinal 

Cracking 
 

Transverse 

Cracking 
 

Patching Potholes Delamination 

1 Minimal Minimal Minimal Minimal Minimal Minimal Minimal Minimal Very Good 

2 Minimal Minimal Minimal Minimal Severe Minimal Minimal Minimal Very Good 

3 Minimal Minimal Minimal Minimal Moderate Minimal Minimal Minimal Very Good 

4 Moderate Moderate Minimal Minimal Minimal Minimal Minimal Minimal Good 

5 Minimal Minimal Minimal Minimal Moderate Minimal Minimal Moderate Good 

6 Moderate Minimal Minimal Moderate Minimal Minimal Minimal Minimal Fair 

7 Minimal Moderate Minimal Severe Moderate Minimal Minimal Minimal Fair 

8 Moderate Minimal Minimal Moderate Moderate Minimal Minimal Minimal Mediocre 

9 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Mediocre 

10 Minimal Minimal Minimal Severe Minimal Minimal Minimal Minimal Mediocre 

11 Severe Moderate Minimal Minimal Moderate Minimal Minimal Minimal Poor 

12 Moderate Minimal Minimal Severe Moderate Minimal Minimal Moderate Poor 

13 Severe Severe Minimal Severe Severe Minimal Minimal Moderate Poor 

 

7.6.1.4 The Results of Pavement Section Classification 

 The system was evaluated using data collected for 19 road sections during 2018 and 2021. This 

technique created membership functions and rules by measuring fuzzy pavement classification 

efficiency. Four defuzzified methods (Centroid, Bisector, Som, and Lom) were used to find the 

𝑅2, the RMSE, and MAE, to display the level of agreement of the PCI and IRI values. 

• Fuzzy Pavement Condition Index (PCI) 

 

Table (7-8) presents the agreement level of the PCI values using four defuzzified methods. Figure 

(7-5) shows the relation between the observed PCI and fuzzified PCI for 19 road sections. 
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Table 7-8: Assessment various fuzzy inference systems' configurations for PCI.  

Inference Year Defuzzification Statistical Error Measures  Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE MAE 

 

 

 

Mamdani 

(Triangular) 

 

 

     

2018 

Centroid 96.6* 3.456* 2.919* - - - 

Bisector 96.6 3.652 3.149 - - - 

Lom 96.1 4.136 3.541 - - - 

Som 95.9 4.751 3.595 - - - 

 

 

    

2021 

Centroid 96.3 3.468 2.917 -0.31 -0.35 -0.07 

Bisector 96.0 3.68 3.167 -0.62 -0.76 -0.57 

Lom 96.1 4.11 3.50 0 +0.63 +1.58 

Som 95.5 4.805 3.639 -0.42 +1.19 -1.21 

*Indicates the best results for each fuzzy system in the column. 

The goodness of fit statistics of the 19 road sections in Table (7-8) provides the following 

observation: 

• Centroid method: The results indicated that the 𝑅2, RMSE, and MAE values were 96.6%, 

3.456%, and 2.919%, respectively.  

• Bisector method:  The results indicated that the 𝑅2, RMSE, and MAE values were 96.6%, 

3.652%, and 3.149%, respectively. 

• Lom method: The results indicated that the 𝑅2, RMSE, and MAE values were 96.1 

%,4.136%, and 3.541%, respectively. 

• Som method: The results indicated that the 𝑅2, RMSE, and MAE values were 

95.9%,4.751%, and 3.595%, respectively. 
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                          Figure 7-5: Fuzzy inference system for PCI(2018).  

The results illustrated that the centroid method yields a more accurate result (𝑅2= 96.6%, RMSE 

=3.456%, and MAE=2.919%) than other methods. However, the Som method shows the lowest 

values out of the four methods, (𝑅2= 95.9%, RMSE =4.751% and MAE=3.595%).  
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                               Figure 7-6: Fuzzy inference system for PCI (2021).   

 

• Fuzzy International Roughness Index (IRI) 

 

 

Table (7-9) presents the agreement level of the PCI values using four defuzzified methods Figure 

(7-6) showed the relation between the observed IRI and fuzzified IRI for 19 road sections. 
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Table 7-9: Assessment various fuzzy inference systems' configurations for IRI. 

Inference Year Defuzzification Statistical Error Measures  Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE MAE 

 

 

 

Mamdani 

(Triangular) 

 

 

     

2018 

Centroid 88.3* 0.567* 0.446* - - - 

Bisector 88.1 0.675 0.523 - - - 

Lom 88.2 0.671 0.521 - - - 

Som 86.3 0.988 0.797 - - - 

 

 

    

2021 

Centroid 88.5* 0.537* 0.409* +0.226 +5.30 +8.30 

Bisector 87.2 0.54 0.411 -1.02 +20.0 +21.41 

Lom 86.5 0.662 0.506 -1.93 +1.34 +2.88 

Som 87.2 0.637 0.431 +1.03 +35.52 +45.92 

 

*Indicates the best results for each fuzzy system in the column. 

The goodness of fit statistics of the 19 road sections in Table (7-9) provides the following 

observation: 

• Centroid method: The results indicated that the 𝑅2, RMSE, and MAE values were 88.3%, 

0.567%, and 0.446%, respectively.  

• Bisector method:  The results indicated that the 𝑅2, RMSE, and MAE values were 88.1%, 

0.675%, and 0.523%, respectively. 

• Lom method: The results indicated that the 𝑅2, RMSE, and MAE values were 88.2 

%,0.671%, and 0.521%, respectively. 

• Som method: The results indicated that the 𝑅2, RMSE, and MAE values were 86.3%, 

0.988%, and 0.797%, respectively. 
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                                     Figure 7-7: Fuzzy inference system for IRI(2018).   

 

 

The results illustrated that the centroid method yields a more accurate result (R2= 88.3%, RMSE 

=0.567%, and MAE=0.446%) than other methods.  

The Bisector method showed the lowest values of the four methods (𝑅2= 88.1 %, RMSE =0.675% 

and MAE=0.523%).  
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                               Figure 7-8: Fuzzy inference system for IRI (2021).   
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7.7  Modeling the Relationship Between Indices PCI, IRI, and PSR Using Mathematical 

and (ANNs)Techniques 

7.7.1  Modeling the Relationship Between Indices PCI, IRI, and PSR Using Mathematical 

Methods  

This section seeks to shed light on the relationship between IRI, PSR, and PCI based on field 

surveys for (2018 and 2021). Three mathematical methods (linear, quadratic, and cubic) have been 

used to develop a correlation between (PCI and IRI,) (PCI and PSR), and (IRI and PSR). Analysis 

was carried out by the SPSS programme to determine the correlation between these indicators. The 

correlation was assessed using R2 values, RMSE, and MAE. Figures (7-9) to (7-11) present 

relationships among (PCI and IRI), (PCI and PSR), and (IRI and PSR), respectively. Equations 

from (7-1) to (7-9) summarised the regression models and presented the relation between (PCI and 

IRI,) (PCI and PSR), and (IRI and PSR) as follows: 

1- Equations from (7-1) to (7-13) present the regression models and the relation between 

PCI and IRI using linear, quadratic, and cubic, respectively:               

𝑷𝑪𝑰 =  𝟖𝟓. 𝟔𝟓𝟕 –  𝟏𝟏. 𝟑𝟖𝟎(𝑰𝑹𝑰)           7-1 

The correlation coefficient (𝑅2) of this relationship is 89.5%. 

 𝑷𝑪𝑰 = 𝟏𝟎𝟎. 𝟎𝟗𝟐 − 𝟎. 𝟏𝟗𝟓(𝑰𝑹𝑰) + 𝟎. 𝟗𝟕𝟖(𝑰𝑹𝑰)𝟐          7-2 

The correlation coefficient (R2) of this relationship is 91.6%. 

𝑷𝑪𝑰 =  𝟖𝟎. 𝟔𝟒𝟓 –  𝟏. 𝟒𝟒(𝑰𝑹𝑰) − 𝟑. 𝟖𝟕(𝑰𝑹𝑰)𝟐 − 𝟎. 𝟑𝟖𝟕(𝑰𝑹𝑰)𝟑                                                    7-3   

The correlation coefficient (R2) of this relationship is 92.9%. 
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Figure7-9: PCI versus IRI plot. 

2- Equations from (7-4) to (7-6) present the regression models and the relation between PCI 

and PSR using linear, quadratic, and cubic, respectively: 

𝐏𝐂𝐈 = –  𝟏𝟏𝟏. 𝟎𝟓𝟓 +  𝟓𝟑. 𝟓𝟒 (𝐏𝐒𝐑)                                                                                                  7-4  

The correlation coefficient (R2) of this relationship is 55.7%.        

𝑷𝑪𝑰 = −𝟐𝟖𝟔 + 𝟏. 𝟕𝟐 × 𝟏𝟎𝟐(𝑷𝑺𝑹) − 𝟐𝟎. 𝟏𝟒(𝑷𝑺𝑹)𝟐                                                                     7-5                                                     

The correlation coefficient (R2) of this relationship is 56.5%.           

𝑷𝑪𝑰 =  𝟏. 𝟒𝟔 × 𝟏𝟎𝟑 − 𝟏. 𝟔𝟑 × 𝟏𝟎𝟑(𝑷𝑺𝑹) + 𝟓. 𝟗𝟖 × 𝟏𝟎𝟐(𝑷𝑺𝑹)𝟐 − 𝟕𝟎. 𝟐𝟏(𝑷𝑺𝑹)𝟑             7-6                                        

The correlation coefficient (R2) of this relationship is 57.3%. 
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Figure 7-10: PCI versus PSR plot. 

3- Equations from (7-7) to (7-9) present the regression models and the relation between IRI 

and PSR using linear, quadratic, and cubic, respectively: 

𝑰𝑹𝑰 =  𝟏𝟒. 𝟖 –  𝟑. 𝟖𝟎 (𝑷𝑺𝑹)                                                                                                               7-7                                                                            

The correlation coefficient (R2) of this relationship is 42%. 

 𝑰𝑹𝑰 = 𝟐𝟕. 𝟑𝟗 − 𝟏𝟐. 𝟑𝟔(𝑷𝑺𝑹) + 𝟏. 𝟒𝟓(𝑷𝑺𝑹)
𝟐                                                                                 7-8                                                                                                      

The correlation coefficient (R2) of this relationship is 42.5%. 

 IRI = -1.22× 𝟏𝟎𝟐+1.42× 𝟏𝟎𝟐(PSR)−𝟓𝟏. 𝟒𝟖(𝑷𝑺𝑹)𝟐+6.01(𝑷𝑺𝑹)𝟑                                      7-9                         

The correlation coefficient (R2) of this relationship is 43.4%. 
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                                                  Figure7-11: IRI versus PSR plot. 

7.7.2 Comparison and Validation of the Models 

The performance of the linear method was compared with the performance of the quadratic and 

cubic methods to evaluate the accuracy of the models in predicting pavement performance based 

on pavement distress parameters. 𝑅2, RMSE and MAE values were used to compare the 

performance of the models. Table (7-10) presents the comparison among (PCI&IRI), (PCI&PSR), 

and (IRI&PSR).  

        Table 7-10: Correlation between IRI, PCI & PSR. 

 

Correlation 

Statistical Error Measures   

Linear Quadratic Cubic 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE MAE 

PCI &IRI 89.5 5.956 4.68 91.6 5.216 4.145  92.9 4.899 3.744 

PCI&PSR 55.7 12.3  9.82  56.5 13.27   11.3 57.3 12.10   9.48 

IRI&PSR 42.0  1.925 1.496 42.5  1.72  0.91  43.4  1.16  0.90  
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According to Table (7-10), several observations can be drawn: 

 

• PCI &IRI: The results indicated that the 𝑅2, RMSE, and MAE values of the cubic models 

improved by 3.66%, 17.75%, 20%,1.4%, 6.08%, and 9.67% compared to the linear models 

and quadratic model, respectively.   

• PCI&PSR: The results indicated that the 𝑅2, RMSE, and MAE values of the cubic models 

improved by 2.79%, 1.63%, 3.46%,1.4%, 8.82%, and 16.11% compared to the linear 

models and quadratic model, respectively.   

• IRI&PSR: The results indicated that the 𝑅2, RMSE, and MAE values of the cubic models 

improved by 2.07%, 39.74%, 39.84%, 2.07%, 32.56%, and 1.10% compared to the linear 

models and quadratic model, respectively.   

Results showed that the cubic had the best fit in all cases with less error between the observed and 

predicted values, compared to linear and quadratic methods. 

7.7.3 Modeling the Relationship between Indices Using (ANNs) Technique 

Artificial neural networks have been used to develop effective and accurate models. These models 

were used to predict the relationship between the (PCI&IRI), (PCI&PSR), and (IRI &PSR) 

obtained from the field survey. The architecture of the designed network consisted of one input 

layer with one variable, three hidden layers, and an output layer. The model's performance was 

assessed using the three common methods of 𝑅2value, RMSE, and MAE. Figures (7-12) to (7-14) 

present the ANNs prediction results for PCI, IRI, and PSR models. Table (7-11) show the 

performance of PCI models. 
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                                                        Table 7-11: Performance of PCI models. 

 

Indicators 

Statistical Error Measures (PCI) 

𝑹𝟐 
 

RMSE 
 

MAE 
 

PCI &IRI 94.6 4.275 2.924 

PCI&PSR 75.4 9.272 5.994 

IRI&PSR 70.0 0.841 0.539 

 

Table (7-11) shows the 𝑅2, RMSE and MAE values were as follows: 

• PCI &IRI: The 𝑅2value was 94.6%, while the RMSE and MAE values were 4.275% and 

2.924%.   

• PCI&PSR: The 𝑅2value was 75.4%, while the RMSE and MAE values were 9.272% and 

5.994%. 

• IRI&PSR: The 𝑅2value was 70.0%, while the RMSE and MAE values were 0.841% and 

0.539%. 

 

                      Figure 7-12: Performance of the ANNs for predicting PCI model from IRI. 
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                    Figure 7-13: Performance of the ANNs for predicting PCI model from PSR. 

 

                         Figure 7-14: Performance of the ANNs for predicting IRI model from PSR. 
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7.7.4 Comparison and Validation of the Models 

To validate the prediction models developed, the 𝑅2, RMSE, and MAE methods were used to 

validate the cubic and ANNs techniques. In all cases, the calculated 𝑅2 were strong, RMSE, and 

MAE values were found to be low, as shown in Table (7-12).   

Table 7-12: Comparison of the Cubic models to ANNs models. 

 

Climate 

Region 

      Statistical Error Measures (PCI)  

Cubic Generated ANNs Generated Improvement (%) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝐌𝐀𝐄 𝑹𝟐 RMSE 𝐌𝐀𝐄 

PCI &IRI 92.9 4.899 3.744 94.6 4.275 2.924 +1.80 +12.74 +21.90 

PCI&PSR 57.3 12.10   9.48 75.4 9.272 5.994 +24.01 +23.37 +36.77 

IRI&PSR 43.4  1.16  0.90  70.0 0.841 0.539 +38.00 +27.50 +40.11 

 

Table (7-12) shows the comparison of the cubic models with ANNs models; a summary of the 

findings as follows: 

• PCI &IRI:  The results indicated that the 𝑅2, RMSE, and MAE values of the ANNs models 

improved by 1.80%, 12.74%, and 21.90%, compared to the cubic models.   

• PCI&PSR:   The results indicated that the 𝑅2, RMSE, and MAE values of the ANNs 

models improved by 24.01%, 23.37%, and 36.77%, compared to the cubic models. 

• IRI&PSR:  The results indicated that the 𝑅2, RMSE, and MAE values of the ANNs 

models improved by 38%, 27.5%, and 40.11%, compared to the cubic models. 

According to the results, the cubic models could estimate the PCI values from the IRI, PCI from 

PSR, and IRI from PSR with reasonable accuracy. The results showed the ANNs technique has 
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the best fit and high accuracy in all cases, with less error between observed and predicted values 

than the cubic method. 

7.8  Modeling of Asphalt Pavement Performance Indices Using (MLR) 

Technique 

Research in this part focuses on using pavement distress variables to model asphalt pavement 

performance indices (PCI, IRI, and PSR). Pavement distress parameters were input variables, and 

pavement performance indices (PCI, IRI, and PSR) were output parameters. Five prediction 

models were developed using (MLR) technique from the collected data. The PCI, IRI, and PSR 

regression models are shown in Table (7-13). These consider surface pavement distress: rutting, 

fatigue cracking, block cracking, longitudinal cracking, transverse cracking, potholes, patching, 

and delamination. 

Table 7-13: PCI, IRI, and PSR models based on field survey.  

        Model PCI  IRI  PSR 

2018 2021 2018 2021 2018 

𝐑𝟐 48.0 63.0 39 53.2 54 

Constant 39.73 36.294 3.58 4.006 3.00  

Rutting 0.84  0.972 -0.06 -0.078 0.01 

Fatigue Cracking 1.24  1.367 -0.12 0.194 0.02  

Block Cracking 0.04 -0.161 -0.03 -0.222 -0.05  

Longitudinal Cracking -0.10  0.628 0.03 -0.067 -0.01 

Transverse Cracking 0.10  -0.975 -0.02 0.081 0.01 

Patching -0.08  0.036 0.01 -0.004 -0.01 

Potholes 0.22 -0.008 -0.01 -0.014 0.01 

Delamination -1.29  -2.552 0.08 0.15 -0.01 
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The PCI, IRI, and PSR regression models shown in equations (7-10) to (7-14) were as follows: 

1-Factors Influencing PCI 

Table (7-13) shows two regression models developed using PCI values and surface pavement 

distress data. The PCI (2018) model was negatively correlated with longitudinal cracking, 

patching, and delamination. The PCI (2018) model was positively correlated with rutting, fatigue 

cracking, block cracking, transverse cracking, and potholes. Equation (7-10) described the 

relationship between The PCI (2018) and surface pavement distress as follow:  

𝑷𝑪𝑰 𝟐𝟎𝟏𝟖= 39.73 + 0.84  𝑿𝟏 + 1.24 𝑿𝟐 + 0.04 𝑿𝟑–0.10 𝑿𝟒 + 𝟎. 𝟏𝟎 𝑿𝟓 − 𝟎. 𝟎𝟖 𝑿𝟔+ 0.22 𝑿𝟕 - 

1.29 𝑿𝟏𝟎                                                                                                                                                   7-10                                                                   

The correlation coefficient (R2) of this relationship is 48%.  

The PCI (2018) model was negatively correlated with block cracking, transverse cracking, 

potholes, and delamination. The PCI (2018) model was positively correlated with rutting, fatigue 

cracking, longitudinal cracking, and patching. Equation (7-11) described the relationship between 

The PCI (2018) and surface pavement distress as follows: 

𝑷𝑪𝑰 𝟐𝟎𝟐𝟏= 36.294+ 0.972  𝑿𝟏 +1.367 𝑿𝟐 - 0.161 𝑿𝟑+0.628 𝑿𝟒 - 0.975 𝑿𝟓+ 0.036 𝑿𝟔 -

0.008𝑿𝟕- 2.552 𝑿𝟏𝟎          7-11 

The correlation coefficient (R2) of this relationship is 63%.    

2-Factors Influencing IRI                                                                                  

Table (7-14) shows two regression models developed using IRI values and surface pavement 

distress data. The IRI (2018) model was negatively correlated with rutting, fatigue cracking, block 

cracking, transverse cracking, and potholes. The IRI (2018) model had positively correlated with 
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longitudinal cracking, patching, and delamination. Equation (7-12) described the relationship 

between IRI and surface pavement distress as follows: 

𝑰𝑹𝑰𝟐𝟎𝟏𝟖 = 3.58 – 0.06 𝑿𝟏 – 0.12 𝑿𝟐 -0.03  𝑿𝟑 + 0.03 𝑿𝟒 – 0.02 𝑿𝟓+ 0.01 𝑿𝟔– 0.01 𝑿𝟕+ 0.08 

𝑿𝟏𝟎             7-12                                                                                                                                                                                      

The correlation coefficient (R2) of this relationship is 39%. 

 

The IRI (2021) model was negatively correlated with rutting, block cracking, longitudinal 

cracking, patching, and potholes. The IRI (2021) model had positively correlated with fatigue 

cracking, transverse cracking, and delamination. Equation (7-13) described the relationship 

between IRI and surface pavement distress as follows: 

𝑰𝑹𝑰𝟐𝟎𝟐𝟏 = 4.006– 0.078 𝑿𝟏  +0.194  𝑿𝟐- 0.222 𝑿𝟑 - 0.067 𝑿𝟒 +0.081 𝑿𝟓- 0.004 𝑿𝟔 – 0.014 

𝑿𝟕 + 0.15 𝑿𝟏𝟎            7-13                                                                                                                                     

The correlation coefficient (R2) of this relationship is 53.2%. 

 

3-Factors Influencing PSR 

Table (7-14) shows one regression model developed using PSR values and surface pavement 

distress data. The PSR model was negatively correlated with block cracking, longitudinal cracking, 

patching, and delamination. The PSR model was positively correlated with rutting, fatigue 

cracking, transverse cracking, and potholes. Equation (7-14) described the relationship between 

the PSR and surface pavement distress as follows: 

PSR= 3.0 + 0.01 𝑿𝟏 + 0.02 𝑿𝟐 – 0.05 𝑿𝟑- 0.01 𝑿𝟒+ 0.01 𝑿𝟓 - 0.01 𝑿𝟔+ 0.01 𝑿𝟕-0.001𝑿𝟏𝟎                     

7-14 

The correlation coefficient (R2) of this relationship is 54%. 
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7.8.1 Validation for PCI and IRI Models 

After the validation test, Table (7-14) illustrates the reduction in 𝑅2, RMSE, and MAE values for 

all sections. Figures (7-15) and (7-16) present the errors and linear relation for the two periods 

(2018 and 2021). 

Table 7-14: Validation of PCI models based on pavement distress. 

 

Indicator 

MLR Validation Reduction % (±) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝐌𝐀𝐄 𝑹𝟐 RMSE 𝐌𝐀𝐄 

PCI (2018) 48 14.051 11.368 45 14.227 11.98 -6.25 -1.24 -5.11 

IRI (2018) 39 
 

1.046 
 

0.827 
 

35.8 
 

1.253 
 

1.036 
 

-8.21 -16.52 -20.17 

PCI (2021) 63 9.932 7.844 61.4 9.135 7.22 -2.54 +8.02 +7.96 

IRI (2021) 53.2 0.751 0.605 46.5 0.802 0.613 -12.6 -6.36 -1.31 

 

Based on Table (7-14), Figures (7-15), and (7-16), the following conclusions can be drawn: 

• PCI (2018): The results indicated that the reduction of 𝑅2 and RMSE, and MAE values 

was insignificant. The accuracy reductions were 6.25%,1.24%, and 5.11%, respectively. 

Thus, the MLR method's ability to accurately predict PCI models of the pavement distress 

models was good. 

• PCI (2021): The results indicated that the reduction of 𝑅2 and RMSE, and MAE values 

was insignificant. The accuracy reductions were 2.54%, 8.02%, and 7.96%, respectively. 

Thus, the MLR method's ability to accurately predict PCI models of the pavement distress 

models was good. 

• IRI (2018): The results indicated that the reduction of 𝑅2 and RMSE, and MAE values 

was insignificant. The accuracy reductions were 8.21%,16.52%, and 20.17%, respectively. 
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Thus, the MLR method's ability to accurately predict IRI models of the pavement distress 

models was good. 

   

Figure 7-15:Accuracy of the prediction PCI values based on surface pavement distress: left 

(2018), and right (2021). 

   

Figure 7-16: Accuracy of the prediction IRI values based on surface pavement distress: left 

(2018), and right (2021). 
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• IRI (2021):  The results indicated that the reduction of 𝑅2 and RMSE, and MAE values 

was insignificant. The accuracy reductions were 12.6%,6.36%, and 1.31%, respectively. 

Thus, the MLR method's ability to accurately predict IRI models of the pavement distress 

models was good. 

7.8.2 Cronbach’s alpha 

 Cronbach's alpha calculates inner consistency, i.e., how closely associated a group of parameters 

is. This test is used to calculate reliability, and it is worth noting that an alpha high value does not 

mean the calculation is one-dimensional. Cronbach's alpha can be written according to the number 

of test objects and the average correlation between the parameters. Equation (7-20) presented the 

formula for the Cronbach alpha for conceptual purposes: 

                           𝜶 =
𝑵𝒄

𝝊+(𝑵−𝟏)𝒄
       7-15                                     

where: 

 N is equal to the number of items, 𝑐 is the average inter-item covariance among the items, 

and 𝜐 equals the average variance. 

Table 7-15: Reliability statistics. 

Case Processing Summary Reliability Statistics 

   

N 

 

% 

Cronbach's 

Alpha 

Cronbach's Alpha Based 

on Standardized Items 

Number of 

Items 

Valid 
Excluded 

Total 

38 82.6  

0.973 

 

0.973 

 

37 

 

8 17.4 

46 100 

 

The alpha coefficient for the 37 items is (97.3%), suggesting that the items have relatively high 

internal consistency.  
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Note that a 70% or higher reliability coefficient is considered “acceptable” in most research 

situations. 

Table 7-16: Summary item statistics. 

Summary Item Statistics 

  Mean Minimum Maximum Range Maximum 

Minimum 

Variance N of Items 

Item 

Means 
2.988 2.316 3.526 1.211 1.523 0.080 37 

Item 

Variances 
0.704 0.453 1.121 0.668 2.474 0.031 37 

  

7.9  Modeling of Asphalt Pavement Performance Indices Using (ANNs) 

Technique 

The Artificial neural network has been used to train the data presented in Table (7-3). The ANNs 

technique aimed to model asphalt pavement performance indices (PCI, IRI, and PSR) based on 

eight surface pavement distresses. The input variables were rutting, fatigue cracking, block 

cracking, longitudinal and transverse cracking, patching, potholes, and delamination, while (PCI, 

IRI, and PSR) were the output variables. The network architecture consisted of one layer of 7 

nodes and three hidden layers of nodes. Table (7-17) presents the performance of the ANNs model 

for PCI, IRI, and PSR. The model's performance was assessed using the three standard methods 

of 𝑅2value, RMSE, and MAE.  Within wet climatic zones, 19 road sections of flexible pavement 

have been chosen. The models were trained on 70% of the data, tested on15%, and validated on 

15%; the results showed a good ability of the pavement distress models to predict the PCI, IRI, 

and PSR values. Table (7-17) shows the 𝑅2, RMSE and MAE values of the PCI, IRI, and PSR 

models. The highest 𝑅2 value was 99.6 % in the case of PSR for (2018). The lowest 𝑅2value was 

98.6 % and was observed for IRI model for (2018). The lowest RMSE and MAE values were 
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(0.007), (0.005) and were observed for PSR (2018). Figures (7-17) to (7-19) present the ANNs 

prediction results for PCI, IRI, and PSR, respectively. 

Table 7-17: Summary of PCI, IRI, and PSR models of ANNs developed.   

 

Indicators 

 

ANNs Models 

Model (2018)                  Model (2021) 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE MAE 

PCI 98.6 0.888 0.734 99.3 0.72 0.592 

IRI 99.2 0.276 0.234 99.5 0.16 0.16 

PSR 99.6 0.007 0.005 - - - 

 

   

   
 

Figure 7-17: ANNs model goodness-of-fit results for PCI values based on pavement distress: left 

(2018), and right (2021). 
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Figure 7-18: ANNs model goodness-of-fit results for IR values based on pavement distress: left 

(2018), and right (2021). 

 
 

Figure 7-19: ANNs model goodness-of-fit results for PSR values based on pavement distress 

(2018). 
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7.9.1   Comparison and Validation of the Models 

To validate the developed models in this part, all models were evaluated by comparing MLR, FIS, 

and ANNs techniques based on pavement distress, as shown in Tables (7-18), (7-19) and (7-20). 

7.9.2 Comparison and Validation of MLR, FIS, and ANNs Models for PCI 

The performance was compared among MLR, FIS, and ANNs models to evaluate the accuracy of 

the models in predicting pavement performance, based on pavement distress parameters. 𝑅2, 

RMSE and MAE values were used to measure and compare the performance of the models. Table 

(7-18), Figures (7-20), and (7-21) present the comparison the MLR models to the ANNs models 

for PCI. 

           Table 7-18: Comparison among MLR, FIS, and ANNs models for PCI. 

 

 Technique 

Year 

2018 2021 

𝑹𝟐 RMSE MAE 𝐑𝟐 RMSE 𝐌𝐀𝐄 

MLR Generated 48.0 14.051 11.368  63.0 9.932 7.844 

FIS Generated 96.6 3.456 2.919 96.3 3.468 2.917 

ANNs Generated 98.6 0.888 0.734 99.3  0.72 0.592 

 

According to Table (7-18), Figures (7-20), and (7-21), several conclusions can be drawn: 

▪ PCI (2018): 

• The statistics indicated 𝑅2values from the ANNs and FIS models were higher than 

the 𝑅2values of the MLR models more than 50%. 



 

 

 

 

 227 

• The RMSE value of the ANNs model was less than the RMSE values of the FIS and 

the MLR models by 74.31% and 99.4%, respectively.  

• The RMSE value of the FIS model was less than the RMSE value of the MLR model 

by 75.4%. 

• The MAE value of the ANNs model was less than the MAE values of the FIS and the 

MLR models by 74.85% and 93.54%, respectively. 

▪ PCI (2021): 

• The statistics indicated that the 𝑅2value from the ANNs model was higher than the 

𝑅2values of the MLR model by 36.56 %. 

• The RMSE value of the ANNs model was less than the RMSE value of the MLR model 

by 92.75%.  

• The MAE value of the ANNs model was less than the MAE value of the MLR model 

by 92.45 %. 

• Figures (7-20) and (7-21) clearly show that the ANNs prediction models provided more 

accuracy than the FIS and MLR prediction models. 

• The ANNs technique has the best fit and good accuracy in all cases, with less error 

between observed and predicted values than the FIS and MLR methods. 
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Figure 7-20: Fitness of MLR, FIS, and ANNs models to PCI prediction based on pavement 

distress data (2018 and 2021). 

 

Figure 7-21: Fitness of MLR and ANNs models to PCI prediction based on pavement distress 

data (2018 and 2021). 
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7.9.3 Comparison and Validation of MLR, FIS, and ANNs Models for IRI 

The performance was compared among MLR, FIS, and ANNs models to evaluate the accuracy of 

the models in predicting pavement performance based on pavement distress parameters. 𝑅2, 

RMSE and MAE values were used to measure and compare the performance of the models. Table 

(7-19), Figures (7-22), and (7-23) present the comparison of the MLR models to the ANNs models 

for IRI. 

             Table 7-19: Comparison among MLR, FIS, and ANNs models for IRI. 

 

Indicator 

 

Technique 

2018 2021 

𝑹𝟐 RMSE MAE 𝑹𝟐 RMSE 𝐌𝐀𝐄 

 

    IRI 

MLR Generated 39 1.046 0.827 53.2 0.751 0.605 

FIS Generated 88.3 0.567 0.446 88.5 0.54 0.411 

ANNs Generated 99.2 0.276 0.234  99.5 0.16 0.16 

 

According to Table (7-19), Figures (7-22), and (7-23), several conclusions can be drawn: 

▪ IRI (2018): 

• The statistics indicated the  𝑅2 value from the ANNs model was higher than the 

𝑅2values of the FIS and the MLR models by 60.69% and 10.99%, respectively. 

• The statistics indicated the 𝑅2value from the FIS model was higher than the 𝑅2value 

of the MLR model by 55.83%. 

• The RMSE value of the ANNs model was less than the RMSE values of the FIS and 

the MLR models by 51.32% and 73.6%, respectively.  
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• The RMSE value of the FIS model was less than the RMSE value of the MLR model 

by 45.79%. 

• The MAE value of the ANNs model was less than the MAE values of the FIS and MLR 

models by 47.53% and 71.70%, respectively. 

 

Figure 7-22: Fitness of MLR, FIS, and ANNs models to IRI prediction based on pavement 

distress data (2018 and 2021). 
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Figure 7-23: Fitness of MLR and ANNs models to IRI prediction based on pavement distress 

data (20182021). 

7.9.4 Comparison and Validation of MLR and ANNs Models for PSR  

The models predict pavement performance based on pavement distress parameters. 𝑅2, RMSE and 

MAE values were used to measure and compare the performance of the models. Table (7-20) and 

Figure (7-24) present the comparison of the MLR models to the ANNs models for PSR.     

                      Table 7-20: Comparison of the MLR models to the ANNs models. 

Indicator Technique 

2018 

𝑹𝟐 RMSE MAE 

 

PSR 

MLR Generated 54.0 0.45 0.368 

ANNs Generated 99.6 0.007 0.005 
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• The statistics indicate that the 𝑅2value from the ANNs model was higher than the 

𝑅2value of the MLR model by 45.78%. 

 

Figure 7-24: Fitness of MLR and ANNs models to PSR prediction based on pavement distress 

data (2018). 
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• The MAE value of the ANNs model was less than the MAE value of the MLR model by 

98.64%.          

7.9.5 MLR Model sensitivity analysis for PCI, IRI, and PSR 

 A sensitivity analysis was conducted to determine the effects of input variables on the efficacy of 

prediction models PCI, IRI, and PSR. The results of the sensitivity analysis were presented in 

Table (7-21), and Figures (7-25) and (7-26) were as follows: 
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             Table 7-21: Sensitivity analysis of prediction models for PCI, IRI, and PSR. 

 

Parameters 

𝑹𝟐 

2018 2021 

PCI IRI PSR PCI IRI 

Rutting 18.3 17.4 25.8 17.1 5.4 

Fatigue Cracking 13.3 13.3 15.1 14.4 10 

Block Cracking 2.5 3.3 - 1.2 1.7 

Longitudinal Cracking 11.4 13.7 10.9 8.1 11.7 

Transverse Cracking 0.4 - 0.1 4.1 0.1 

Patching  19.0 11.0 11.7 16.6 3.2 

Potholes - 0.1 0.3 0.9 0.8 

Delamination 19.1 12.9 14.4 19.0 5.4 

 

Table (7-21) and Figures (7-25) and (7-26) present the following conclusions: 

PCI (2018): Compared with other variables, rutting, patching, and delamination are the most 

significant variables on the prediction model. Fatigue cracking and longitudinal cracking have 

some effects on the PCI model. Block cracking and transverse cracking have minor effects on the 

PCI model, while potholes have no effect on the prediction model. 

PCI (2021): Compared with other variables, rutting, patching, and delamination are the most 

significant variables on the prediction model. Fatigue cracking, and longitudinal cracking have 

some effects on the PCI model, while block cracking, transverse cracking, and potholes have minor 

effects on the PCI model. 
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IRI (2018): Compared with other variables, rutting is the most significant effect on the prediction 

model. Fatigue cracking, longitudinal cracking, patching, and delamination have some impacts on 

the prediction model, while block cracking and potholes have minor effects on the prediction 

model. 

IRI (2021): Compared with other variables, longitudinal and fatigue cracking are the most 

significant effect on the prediction model. Rutting, block cracking, patching, and delamination 

have some effects on the prediction model, while transverse cracking and potholes have minor 

effects on the prediction model. 

PSR (2018): Compared with other variables, rutting is the most significant effect on the prediction 

model. Fatigue cracking, longitudinal cracking, patching, and delamination have some impacts on 

the prediction model, while transverse cracking and potholes have minor effects on the prediction 

mode.  

 

                       Figure 7-25: Sensitivity analysis of MLR for PCI, IRI, and PSR (2018). 
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                       Figure 7-26:  Sensitivity analysis of MLR for PCI and IRI (2021).    

7.10 Summary 

This case study investigated 19 road sections for 2018 and 2021 in St. John's, Newfoundland, 

Canada. Pavement distress of varying types was analyzed, and performance indicators were 

collected. St. John's has a very harsh climate due to a plethora of snowfall and freeze thaws in the 

winter season, plenty of rain throughout the year, and copious temperature fluctuations. Here are 

some conclusions are drawn from this research: 

▪ The extensive maintenance work carried out by St. John's municipality between 2018 and 

2021 affect road performance. It was improvement in the performance of the roads that 

received maintenance, while the roads not assigned for maintenance work had a worse 

performance than previously. 

▪ Based on Table (7-4), the maintenance work carried out by St. John's municipality between 

2018 and 2021could affect road performance. It was clear the improvement in the 
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performance of some roads sections that maybe have been received maintenance, while the 

others were worse, due to its have not been received any maintenance. 

▪ According to FHWA, pavement conditions are poor if the IRI value exceeds 2.7 m/km. 

Table (7-4) showed that 81% of road sections were classified as poor in 2018, and around 

84% of road sections were classified as poor in 2021. 

▪ The ANNs technique has the best fit and high accuracy in all cases with less error between 

observed and predicted values than the FIS and MLR methods. 
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Chapter8: Conclusions and Recommendations 

8.1 Conclusions 

 This thesis has included the investigation of typical and advanced characterization methods to 

model asphalt pavement performance indices and better understand the effect of various variables 

on pavement performance. In general, the results presented can be applied to evaluate pavement 

performance and predict future pavement conditions. 

The study's general goal was to apply comprehensive research to model Asphalt Pavement 

Performance Indices (PCI& IRI) and compute various parameters' effects on pavement 

performance. The ultimate goal was to identify the most significant parameters that optimize 

pavement performance to provide longer road life. This chapter summarizes the extensive 

numerical work, the conclusions drawn from the work results, and an advanced understanding of 

soft computing mechanisms using the Fuzzy Inference System, Multiple Linear Regression, and 

Artificial Neural Network. Recommendations for potential future research arising from this study 

are also discussed. The proposed methods to estimate PCI and IRI of pavement performance are 

promising but still need validation with a more significant amount of different data. Analytical 

models and numerical simulations (such as Fuzzy Inference System models, Multiple Linear 

Regression models, and Artificial neural network models) can be used to predict models for 

pavement performance (PCI and IRI) and compare results with observed data. The results of the 

work and analysis revealed the following: 

 Modeling of Asphalt Pavement Performance Indices Using (FIS) 

To modeling asphalt pavement performance indices, a fuzzy inference system (FIS) has been used 

to compute the fuzzy- pavement condition index (FPCI) and fuzzy international roughness index 
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(FIRI). The long-term pavement performance (LTPP) database and field Survey of St. John's, 

Newfoundland, Canada have been used to develop membership functions. Based on the results 

obtained from this analysis technique, fuzzy classification systems presented a strong correlation 

level and low percentage error for the prediction models. 

According to FIS-based PCI and IRI models, the technique proved to optimize a few of the 

advantages drawn from this study as follows: 

▪ As a direct result of using the fuzzy inference system approach, human involvement is 

limited for the decision process and distress classification. 

▪ Pavement engineers can effectively identify pavement conditions and enhance decision-

making by employing this methodology.  

▪  Incorporating additional sections with different types of distress and severity helped the 

system learn and develop additional rules, which improved the models' results. 

▪ The results indicated that the centroid method yields a more accurate prediction PCI model 

(𝑅2= 98.3%, RMSE =4.957%, and MAE=4.243%) than other methods (Bisector, Lom, 

Som). The Lom method has the most significant Improvement among methods (𝑅2= 

2.85%, RMSE =37.72% and MAE=27.45%). This means that the accuracy of models was 

enhanced by adding just 30 sections increased accuracy. 

▪ The results indicated that the centroid method yields a more accurate prediction IRI model 

(𝑅2= 92.9%, RMSE =0.285%, and MAE=0.227%) than other methods (Bisector, Lom, 

Som). The Lom method has the most significant Improvement among methods (𝑅2= 

2.83%, RMSE =19.90% and MAE=20.70%). This means that the accuracy of models was 

enhanced when added just 30 sections increased the accuracy. 
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▪ The sensitivity analysis revealed that rutting and transverse cracking had the most 

significant impact on FPCI fuzzified classification compared to other distress types.  

▪ The sensitivity analysis showed that rutting and patching had the most significant impact 

on FIRI fuzzified classification compared to other distress types for pavement performance 

prediction. 

Modeling the Relationship Between Asphalt Pavement Performance Indices (PCI &IRI) 

This part of the research sought to clarify the relationship between two performance indicators 

(PCI and IRI) using the LTPP data for four climate regions in the U.S. and Canada. Several 

important conclusions can be drawn from this part, as follow: 

• The results indicate that three methods (linear, quadratic, and cubic) are able to predict PCI 

by using IRI data. 

• The results indicated that the most accurate models were the Cubic models, compared to 

Linear and Quadratic models, in all cases of climate regions. 

• The results indicated that the ANNs models were more accurate than cubic models for four 

climate regions. 

 Modeling of Asphalt Pavement Performance Indices Using (MLR)and (ANNs) 

 

Pavement distress, traffic volume, and environmental parameters were studied as input variables 

for modeling asphalt pavement performance indices in this part of the study. The conclusions are 

as follows: 

▪ Based on the models related to pavement distress parameters of PCI and IRI, the 𝑅2values 

range between 77% and 91.6% for PCI, and 70.7% and 90.6% for IRI using the MLR 

technique. However, the 𝑅2value ranges between 98.3% and 99.8%, and between 97.5% 
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and 99.8%, respectively, to PCI and IRI using the ANNs technique. That’s mean the ANNs 

prediction models provided more accuracy than the MLR models under all climate regions. 

▪ Based on the models related to environmental parameters of PCI and IRI, the 𝑅2 values 

range between 71.4% and 91.8% for PCI and between 74% and 90.2% for IRI using the 

MLR technique. Furthermore, the 𝑅2values range between 98.7% and 99.8%, and between 

98.9% and 99.9% for PCI and IRI using the ANNs technique. That’s mean the ANNs 

prediction models provided more accuracy than the MLR models under all climate regions. 

▪ Based on the models related to traffic volume parameters of PCI and IRI, the 𝑅2values 

range between 76.4% and 88.1% for PCI and between 78.4% and 94.7 % for IRI using the 

MLR technique. The 𝑅2value was between 98.5% and 99.4%, and 98.5% and 99.3% for 

PCI and IRI using the ANNs technique. That’s mean the ANNs prediction models provided 

more accuracy than the MLR models under all climate regions. 

▪ Based on the case study, here are some conclusions are drawn: 

• The extensive maintenance work carried out by St. John's municipality between 2018 

and 2021 affect road performance. It was improvement in the performance of the roads 

that received maintenance, while the roads not assigned for maintenance work had a 

worse performance than previously. 

• According to results, the maintenance work carried out by St. John's municipality 

between 2018 and 2021 could affect road performance. It was clear the improvement 

in the performance of some roads sections that maybe have been received maintenance, 

while the others were worse, due to its have not been received any maintenance. 
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• According to FHWA, pavement conditions are poor if the IRI value exceeds 2.7 m/km. 

The results showed that 81% of road sections were classified as poor in 2018, and more 

than 84% of road sections were classified as poor in 2021. 

• The results showed the fuzzy pavement classification of FPCI and FIRI was more 

accurate than the observed (PCI and IRI). 

• The ANNs technique has the best fit and high accuracy in all cases with less error 

between observed and predicted values than the FIS and MLR methods. 

8.2 Contribution to Knowledge 
 

The following contributions are made based on current developments: 

Asphalt Pavement Performance Indices based on Fuzzy Inference System  

The current study presented a significant contribution of developing an effective system that can 

overcome the failure of traditional classification. In addition, this technique has a crucial advantage 

because it generates rules from large-scale distress data in a short time. With the FIS technique, 

the distress classification becomes more consistent. Using FIS has reduced human involvement in 

decision-making processes. 

Development of Enhanced Models: 

The current research employs soft computing techniques (FIS) and ANNs) to optimize prediction 

models. Using these optimization techniques, the most reasonable prediction model can minimize 

the discrepancies between predicted and measured data. 
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Pavement Performance Prediction 

This research uses two data sources stored in the LTPP dataset and the field survey of St. John’s 

city for different climate regions to Mode asphalt pavement performance indices in different 

climate regions. Models developed to predict pavement performance address several variables that 

influence pavement performance. MLR and ANNs techniques have been utilized to predict models 

for pavement performance. According to the results, the ANN technique was able to predict the 

PCI and IRI models with high accuracy, and the ANNs technique was able to predict models under 

various conditions and several variables, such as: 

• Pavement distress, 

• traffic volume, and 

• environmental parameters. 

Better Understanding of Different Pavement Performance in Different Climate Regions: 

The current research provides prediction models for three fundamental parameters (pavement 

distress, traffic volume, and environmental) in four climate regions in the U.S. and Canada. 

Comparison among different models for each performance index (PCI) and (IRI) reveals variation 

in pavement performances. Comparison among methods permits understanding pavement 

performance behaviour and identifying terminal service life for the four regions. Adding more 

historical data on the four climate regions will aid in improving the model developed in this study. 

Prediction Models Development based on soft computing concepts: 

The current research develops new performance prediction models based on soft computing 

techniques. These models represent pavement performance more than traditional models based on 

empirical concepts. 
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Automation of the Soft Computing Calibration Process: 

The current research provides an innovative approach to calibrating soft computing models and 

moving away from traditional techniques based mainly on "trial and error" approaches. This 

research provides a methodology to automate the calibration process fully and thus provide an 

opportunity for pavement engineers and experts to explore the application of different optimization 

techniques to the soft computing (FIS) and (ANNs) calibration problem, which is not possible 

using a traditional approach. 

8.3 Recommendations 

In the present study, only data for flexible pavement were used, but the same concepts and methods 

applied in work could conceivably be applied to studies on rigid pavements. Further, the sensitivity 

analysis could be extended to determine optimal values of minimum acceptable PCI and IRI levels. 

Additionally, correlations between a distresses-based PCI index as presented in FIS and a more 

general distresses-based PCI and IRI could lead to PCI and IRI models that are based on concepts 

involving machine learning. Other promising future research directions are as follows: 

• The present research applied linear programming techniques, ANNs, and fuzzy logic to 

determine prediction models using calibration coefficients. The calibration process used 

here could lead to other optimization techniques being used in the calibration process. 

• LTPP data needs quality control procedures, and the database should be completely redone 

according to stricter standards. This could lead to higher accuracy for future models. 

• Correlations between empirical models and the ANNs and FIS models could be further 

developed as a way for transport agencies to change their current PMS models into machine 

learning-based models. 
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• The fuzzy system could be improved by changing membership function shapes or 

incorporating additional pavement section data. 

• More and more pavement data on Canada and the U.S. become available, more realistic 

models can be developed. According to the municipality, the collected data can then be 

further categorized as different regional sets to make the models more site-specific. 

• By optimizing the database design, it will be easier to create high-quality predictive models 

in the future. Updating the plan for data collection will reduce the cost of roads. 
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Appendices 
Appendix A: Data Extraction (LTPP dataset) 

Table A-1:  Pavement distress of each section with PCI and IRI. 
State /Province Country Climate regions Age Rutting Fatigue  Block  Long  Transverse   Patching  Potholes  Bleeding Raveling IRI PCI 

Washington US DRY Freeze 6 10 98.9 0 129 50 0 0 0 0 1.488 72 

Washington US DRY Freeze 7 9 170 0 155.2 35 0 0 0 0 1.08 69 

Washington US DRY Freeze 8 9 61.7 0 232.6 45 0 0 0 0 1.331 71 

Washington US DRY Freeze 15 9 0.3 0 204.7 37 0 0 0 0 1.015 70 

Washington US DRY Freeze 13 8 0 0 155.3 30 0 0 0 0 1.559 80 

Washington US DRY Freeze 13 8 84.7 0 378.5 65 0 0 0 0 0.989 68 

Washington US DRY Freeze 11 8 0 0 250.8 22 0 0 0 0 1.14 65 

Washington US DRY Freeze 10 6 0 0 199.7 34 0 0 0 0 0.888 64 

Washington US DRY Freeze 9 6 0 0 142.1 31 0 0 0 0 1.692 60 

Washington US DRY Freeze 9 4 0 0 140.7 24 0 0 0 0 1.469 59 

Washington US DRY Freeze 8 4 0 0 128.9 27 0 0 0 0 1.145 58 

Wyoming US DRY Freeze 17 3 0 0 289.2 22 0 0 0 0 0.908 55 

Wyoming US DRY Freeze 17 0 7.6 0 213.7 29 0 0 0 0 0.906 55 

Wyoming US DRY Freeze 18 0 0 0 173.3 29 0 0 0 0 1.5 52 

California US DRY no Freeze 32 16 39.9 0 136.6 140 0 0 0 0 0.819 100 

California US DRY no Freeze 30 6 17.1 0 27.5 62 0 0 0 0 0.781 100 

California US DRY no Freeze 29 3 16.5 0 182.3 3 0 0 0 0 1.606 100 

California US DRY no Freeze 27 12 5.8 0 0 0 0 0 0 0 1.408 100 

California US DRY no Freeze 25 4 5.8 0 43.9 21 0 0 0 0 2.379 100 

California US DRY no Freeze 24 4 3.8 0 305.6 4 0 0 0 0 0.765 80 

California US DRY no Freeze 23 7 1.5 0 0 1 0 0 0 0 0.683 95 

California US DRY no Freeze 23 6 2.6 0 98.3 59 0 0 0 0 0.735 63 

California US DRY no Freeze 21 5 1.3 0 0 0 0 0 0 0 0.754 92 

California US DRY no Freeze 21 6 1.3 0 305.2 0 0 0 0 0 0.782 61 

California US DRY no Freeze 20 6 0.8 0 2.8 11 0 0 0 0 0.783 62 

California US DRY no Freeze 20 2 1.1 0 176.6 2 0 0 0 0 0.817 90 

California US DRY no Freeze 19 5 0 0 1.7 9 0 0 0 0 0.82 88 

California US DRY no Freeze 19 12 0 0 242.2 71 0 0 0 0 0.823 87 

California US DRY no Freeze 19 0 0 0 0 0 0 0 0 0 0.828 83 

Hawaii US DRY no Freeze 18 6 0 0 36.1 7 0 0 0 0 0.835 80 

Hawaii US DRY no Freeze 18 5 0 0 0 8 0 0 0 0 0.848 80 

Hawaii US DRY no Freeze 18 4 0 0 0 8 0 0 0 0 0.855 75 
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Hawaii US DRY no Freeze 18 5 0 0 1.2 9 0 0 0 0 0.874 74 

Hawaii US DRY no Freeze 17 5 0 0 0 0 0 0 0 0 1.321 74 

Hawaii US DRY no Freeze 17 5 0 0 0 1 0 0 0 0 1.408 73 

Hawaii US DRY no Freeze 17 5 0 0 0 4 0 0 0 0 1.418 72 

Hawaii US DRY no Freeze 16 5 0 0 0 0 0 0 0 0 1.434 70 

Hawaii US DRY no Freeze 16 0 0 0 0 0 0 0 0 0 1.434 66 

Hawaii US DRY no Freeze 16 5 0 0 0 0 0 0 0 0 1.473 65 

Hawaii US DRY no Freeze 15 4 0 0 0 1 0 0 0 0 1.528 63 

Hawaii US DRY no Freeze 15 0 0 0 0 0 0 0 0 0 1.544 61 

Hawaii US DRY no Freeze 15 0 0 0 0 0 0 0 0 0 1.613 57 

Hawaii US DRY no Freeze 15 0 0 0 0 0 0 0 0 0 1.636 56 

Hawaii US DRY no Freeze 13 6 0 0 270.2 0 0 0 0 0 1.653 55 

Hawaii US DRY no Freeze 13 5 0 0 270.1 3 0 0 0 0 1.67 55 

New Mexico US DRY no Freeze 13 5 0 0 0 0 0 0 0 0 1.838 52 

New Mexico US DRY no Freeze 13 5 0 0 0 12 1.5 0 0 0 2.113 69 

New Mexico US DRY no Freeze 13 0 0 0 0 0 0 0 0 0 2.318 68 

New Mexico US DRY no Freeze 13 5 0 0 2.4 1 0 0 0 76.3 2.332 70 

New Mexico US DRY no Freeze 12 7 0 0 263.1 7 0 0 0 0 2.362 55 

New Mexico US DRY no Freeze 11 4 0 0 0 0 0 0 0 0 2.404 81 

New Mexico US DRY no Freeze 11 4 0 0 0 0 0 0 0 0 2.412 70 

New Mexico US DRY no Freeze 11 5 0 0 0 0 0 0 0 0 2.42 54 

New Mexico US DRY no Freeze 11 5 0 0 0 0 0 0 0 0 2.425 66 

New Mexico US DRY no Freeze 11 4 0 0 85.6 0 0 0 0 0 2.441 67 

New Mexico US DRY no Freeze 11 5 0 0 213.1 2 0 0 0 0 2.464 67 

New Mexico US DRY no Freeze 10 3 0 0 0 0 0 0 0 0 2.497 67 

New Mexico US DRY no Freeze 10 3 0 0 0 0 0 0 0 0 2.5 74 

New Mexico US DRY no Freeze 10 2 0 0 22.8 0 0 0 0 0 2.525 62 

New Mexico US DRY no Freeze 9 2 0 0 179 83 0 0 0 0 2.662 59 

New Mexico US DRY no Freeze 9 3 0 0 153 37 0 0 0 0 0.925 59 

New Mexico US DRY no Freeze 9 3 0 0 0 0 0 0 0 0 0.856 58 

New Mexico US DRY no Freeze 9 3 0 0 0 0 0 0 0 0 1.369 58 

New Mexico US DRY no Freeze 9 4 0 0 0 0 0 0 0 0 1.396 82 

New Mexico US DRY no Freeze 7 5 0 0 60.9 22 0 0 0 0 1.012 58 

New Mexico US DRY no Freeze 7 3 0 0 36.9 19 0 0 0 0 0.857 58 

New Mexico US DRY no Freeze 7 3 0 0 88.7 27 0 0 0 0 1.31 58 

New Mexico US DRY no Freeze 7 4 0 0 102.7 41 0 0 0 0 1.183 57 

New Mexico US DRY no Freeze 7 3 0 0 123.4 31 0 0 0 0 0.88 55 
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New Mexico US DRY no Freeze 6 3 0 0 23.4 17 0 0 0 0 0.877 56 

New Mexico US DRY no Freeze 5 11 0 0 115.2 18 0 0 0 0 0.862 61 

New Mexico US DRY no Freeze 5 4 0 0 112.4 13 0 0 0 0 0.887 91 

New Mexico US DRY no Freeze 3 5 0 0 59.3 60 0 0 0 0 0.925 50 

Idaho US Wet Freeze 3 0 5.4 0 29.5 0 0 0.00 0.00 0.00 4.005 8 

Idaho US Wet Freeze 4 0 63.8 0 309 153 0 0.00 0.00 0.00 3.659 10 

Idaho US Wet Freeze 4 0 3.7 0 20.4 0 0 0.00 0.00 0.00 3.519 10 

Idaho US Wet Freeze 4 0 0 0 305 58 0 0.00 31.20 0.00 3.308 12 

Idaho US Wet Freeze 4 0 63.8 0 309 152 0 0.00 0.00 0.00 3.251 15 

Maine US Wet Freeze 5 0 0.9 0 329.1 113 0 0.00 5.50 0.00 3.116 22 

Idaho US Wet Freeze 5 0 0 0 305 23 0 0.00 244.00 91.50 3.112 23 

Idaho US Wet Freeze 5 0 0 0 305 17 0 0.00 0.00 547.20 2.967 27 

Illinois US Wet Freeze 5 0 66.6 0 8.8 82 0 0.00 350.80 0.00 2.275 40 

Maine US Wet Freeze 5 0 0 0 2.6 10 0 0.00 0.00 0.00 2.183 43 

Michigan US Wet Freeze 5 0 0 0 0 11 0 0.00 0.00 556.60 1.985 44 

Michigan US Wet Freeze 5 0 0 0 0 0 0 0.00 259.30 259.30 1.929 50 

Michigan US Wet Freeze 5 0 0 0 0 2 0 0.00 0.00 0.00 1.929 52 

Missouri US Wet Freeze 6 0 0 0 0 0 0 0.00 0.00 0.00 1.863 52 

Michigan US Wet Freeze 6 0 0 0 26.3 0 0 0.00 0.00 0.00 1.775 52 

Michigan US Wet Freeze 6 0 0 0 0 0 0 0.00 0.00 0.00 1.754 55 

Michigan US Wet Freeze 6 0 0 0 0 0 0 0.00 0.00 0.00 1.742 55 

Idaho US Wet Freeze 6 0 0 0 0 0 0 0.00 0.00 0.00 1.7 58 

Idaho US Wet Freeze 6 3 0 0 0 0 0 0.00 0.00 0.00 1.691 58 

Idaho US Wet Freeze 7 3 0 0 294.6 0 0 0.00 0.00 0.00 1.649 59 

Michigan US Wet Freeze 7 3 0 0 64.4 0 0 0.00 0.00 0.00 1.526 60 

Maine US Wet Freeze 7 4 3.1 0 19.1 18 0 0.00 0.00 0.00 1.526 61 

Michigan US Wet Freeze 7 4 1 0 342.7 267 0 0.00 0.00 0.00 1.509 62 

Michigan US Wet Freeze 7 4 0 0 0 0 0 0.00 0.00 0.00 1.501 66 

Missouri US Wet Freeze 8 4 1.1 0 300 1 0 0.00 0.00 0.00 1.485 66 

Idaho US Wet Freeze 8 4 0 0 298.1 6 0 0.00 0.00 0.00 1.473 67 

Idaho US Wet Freeze 8 4 0 0 283.3 0 0 0.00 0.00 0.00 1.473 67 

Idaho US Wet Freeze 8 5 7.5 0 14.5 0 0 0.00 0.00 0.00 1.458 68 

Idaho US Wet Freeze 8 5 0 0 0 0 0 0.00 0.00 0.00 1.457 68 

Missouri US Wet Freeze 9 5 0.9 0 306.3 173 0 0.00 274.00 0.00 1.457 68 

Missouri US Wet Freeze 9 5 78.2 0 308.2 3 0 0.00 0.00 0.00 1.445 69 

Maine US Wet Freeze 9 5 47.3 0 305.2 2 0 0.00 0.00 0.00 1.441 69 

Missouri US Wet Freeze 9 5 0 0 0 0 0 0.00 0.00 0.00 1.433 69 
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Maine US Wet Freeze 9 5 0 0 120.6 0 0 0.00 10.80 0.00 1.416 69 

Missouri US Wet Freeze 10 5 0 0 94.4 0 0 0.00 0.00 0.00 1.399 69 

Maine US Wet Freeze 10 5 0 0 0 0 0 0.00 0.00 0.00 1.357 70 

Maine US Wet Freeze 10 5 0 0 146 0 0 0.00 0.00 0.00 1.309 70 

Illinois US Wet Freeze 10 5 0 0 0 0 0 0.00 0.00 0.00 1.293 70 

Missouri US Wet Freeze 10 5 0 0 145.7 0 0 0.00 0.00 0.00 1.278 71 

Missouri US Wet Freeze 10 6 218.7 0 305 35 0 0.00 0.00 305.00 1.274 72 

Maine US Wet Freeze 10 6 2.1 0 313.2 293 0 0.00 0.00 0.00 1.274 72 

Missouri US Wet Freeze 11 6 7.7 0 23.6 13 0 0.00 0.00 0.00 1.269 74 

Michigan US Wet Freeze 11 6 0 0 295.3 22 0 0.00 305.00 0.00 1.257 74 

Missouri US Wet Freeze 11 6 3.1 0 20.1 0 0 0.00 0.00 0.00 1.249 75 

Michigan US Wet Freeze 11 6 91.5 0 0 0 0 0.00 0.00 0.00 1.247 75 

Newfoundland Canada Wet Freeze 11 6 0 0 0 0 0 0.00 0.00 0.00 1.247 76 

Newfoundland Canada Wet Freeze 11 6 0.4 0 171.7 33 0 0.00 0.00 0.00 1.242 76 

Newfoundland Canada Wet Freeze 11 6 0 0 30.3 6 0 0.00 0.00 0.00 1.242 76 

Missouri US Wet Freeze 11 6 0.6 0 325.5 190 0 0.00 0.00 0.00 1.235 76 

Newfoundland Canada Wet Freeze 12 6 0 0 0 0 0 0.00 0.00 0.00 1.235 77 

New Jersey US Wet Freeze 12 6 0 0 0 0 0 0.00 0.00 0.00 1.233 77 

New Jersey US Wet Freeze 12 6 32.3 0 277 98 0 0.00 0.00 0.00 1.23 77 

Missouri US Wet Freeze 12 6 0 0 0 0 0 0.00 0.00 0.00 1.229 77 

Newfoundland Canada Wet Freeze 12 6 0 0 2300.4 20 0 0.00 0.00 0.00 1.222 78 

Illinois US Wet Freeze 13 7 0 0 312.8 36 0 0.00 0.00 0.00 1.216 78 

New Jersey US Wet Freeze 13 7 1.6 0 312.6 180 0 0.00 0.00 0.00 1.202 79 

New Jersey US Wet Freeze 13 7 7.1 0 13.8 3 0 0.00 0.00 0.00 1.197 79 

New Jersey US Wet Freeze 13 7 132.7 0 0 0 0 0.00 0.00 0.00 1.197 80 

Newfoundland Canada Wet Freeze 13 7 1 0 10.4 4 0 0.00 0.00 0.00 1.196 81 

Illinois US Wet Freeze 14 7 0 0 0 0 0 0.00 0.00 61.00 1.19 81 

Newfoundland Canada Wet Freeze 14 7 0.8 0 162.7 171 0 0.00 0.00 0.00 1.177 81 

New Jersey US Wet Freeze 14 7 0 0 167 1 0 0.00 0.00 0.00 1.176 81 

Illinois US Wet Freeze 14 7 3.7 0 18.1 16 0 0.00 0.00 0.00 1.174 81 

Illinois US Wet Freeze 14 7 0 0 36.7 17 0 0.00 0.00 0.00 1.167 82 

New Jersey US Wet Freeze 14 7 0 0 150.5 13 0 0.00 0.00 0.00 1.151 82 

Illinois US Wet Freeze 14 7 0 0 14.9 0 0 0.00 0.00 0.00 1.13 83 

Montana US Wet Freeze 14 8 4.4 0 72.4 2 0 0.00 0.00 0.00 1.127 83 

New Jersey US Wet Freeze 15 8 0 0 305.1 28 0 0.00 196.00 0.00 1.123 83 

Montana US Wet Freeze 15 8 1 0 15.6 1 0 0.00 0.00 0.00 1.116 83 

New Jersey US Wet Freeze 15 8 71.9 0 161.4 31 0 0.00 0.50 0.00 1.116 84 
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New Jersey US Wet Freeze 15 8 87.2 0 157 14 0 0.00 0.00 0.00 1.082 84 

Montana US Wet Freeze 15 8 0 0 305 30 0 0.00 0.00 244.00 1.078 84 

New Jersey US Wet Freeze 15 8 94.2 0 152.4 0 0 0.00 0.00 0.00 1.074 84 

Montana US Wet Freeze 15 8 0 0 155.7 6 0 0.00 0.00 0.00 1.073 84 

New Jersey US Wet Freeze 15 8 91.6 0 146.9 1 0 0.00 0.00 0.00 1.063 84 

Michigan US Wet Freeze 15 8 6.7 0 95.1 27 0 0.00 0.00 0.00 1.058 84 

Montana US Wet Freeze 15 8 58.5 0 245.5 23 0 0.00 0.00 0.00 1.051 84 

New Jersey US Wet Freeze 15 8 5.9 0 63 17 0 0.00 0.00 0.00 1.043 85 

Vermont US Wet Freeze 16 8 0 0 0 0 0 0.00 0.00 0.00 1.039 85 

Montana US Wet Freeze 16 9 63.3 0 216 17 0 0.00 259.30 305.00 1.038 85 

Montana US Wet Freeze 16 9 116.4 0 144.2 16 0 0.00 0.00 0.00 1.031 86 

Montana US Wet Freeze 16 9 73.9 0 0 39 0 0.00 0.00 0.00 1.031 86 

Vermont US Wet Freeze 17 9 0 0 7 0 0 0.00 4.70 82.40 1.031 87 

Illinois US Wet Freeze 17 9 0 0 0 0 0 0.00 0.00 76.20 1.03 87 

Montana US Wet Freeze 17 10 0.2 0 299.9 27 0 0.00 0.00 0.00 1.028 87 

Montana US Wet Freeze 17 10 3.5 0 29.1 18 0 0.00 0.00 0.00 1.025 87 

Vermont US Wet Freeze 17 10 31.8 0 20.7 85 0 0.00 0.00 0.00 1.02 87 

Vermont US Wet Freeze 17 10 0 0 27 18 0 0.00 0.00 0.00 1.02 87 

Michigan US Wet Freeze 17 10 28.4 0 0 39 0 0.00 0.00 0.00 1.018 88 

Michigan US Wet Freeze 17 10 0 0 6.1 9 0 0.00 0.00 0.00 1.004 88 

Vermont US Wet Freeze 17 10 0 0 2.3 5 0 0.00 0.00 0.00 0.999 88 

Vermont US Wet Freeze 17 10 0 0 24.9 19 0 0.00 0.00 0.00 0.996 89 

Vermont US Wet Freeze 17 10 0 0 0 5 0 0.00 0.00 0.00 0.98 89 

Vermont US Wet Freeze 17 10 0 0 26.1 0 0 0.00 0.00 0.00 0.973 89 

Vermont US Wet Freeze 18 10 0 0 0 0 0 0.00 0.00 0.00 0.965 89 

Vermont US Wet Freeze 18 11 0 0 0 0 0 0.00 5.20 0.00 0.961 89 

Montana US Wet Freeze 18 11  0   0 0.00 127.80 0.00 0.954 90 

Illinois US Wet Freeze 18 11 0 0 0 0 0 0.00 21.00 500.50 0.946 90 

Vermont US Wet Freeze 18 11 64.3 0 0 56 0 0.00 0.00 0.00 0.942 90 

Michigan US Wet Freeze 18 11 0 0 10 0 0 0.00 0.00 0.00 0.942 91 

Vermont US Wet Freeze 18 11 0 0 1.1 4 0 0.00 0.00 0.00 0.942 91 

Vermont US Wet Freeze 19 11 0 0 6.8 6 0 0.00 0.00 0.00 0.939 91 

Illinois US Wet Freeze 19 11 0 0 0.8 0 0 0.00 245.90 0.00 0.927 92 

Michigan US Wet Freeze 19 12 0 0 289.5 18 0 0.00 0.00 0.00 0.924 92 

Illinois US Wet Freeze 19 12 100.3 0 7.7 67 0 0.00 0.00 79.50 0.923 92 

Vermont US Wet Freeze 19 12 73.2 0 2.7 93 0 0.00 0.00 564.30 0.906 92 

Vermont US Wet Freeze 19 12 14.1 0 20.9 101 0 0.00 0.00 0.00 0.904 92 
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Illinois US Wet Freeze 19 12 0 0 36.3 39 0 0.00 0.00 0.00 0.899 92 

Vermont US Wet Freeze 19 12 0 0 7.4 4 0 0.00 0.00 0.00 0.898 92 

Michigan US Wet Freeze 20 12 0 0 0 0 0 0.00 0.00 0.00 0.892 92 

Vermont US Wet Freeze 20 13 140.2 0 11.2 81 0 0.00 0.00 304.80 0.892 92 

Michigan US Wet Freeze 20 13 181.8 0 26 67 0 0.00 0.00 0.00 0.864 93 

Vermont US Wet Freeze 20 13 0 0 0 3 0 0.00 0.00 0.00 0.863 93 

Vermont US Wet Freeze 20 14 0 0 0 0 0 0.00 0.00 0.00 0.859 93 

Michigan US Wet Freeze 20 14 0 0 4.5 12 0 0.00 0.00 0.00 0.859 93 

Vermont US Wet Freeze 20 14 0 0 24.2 3 0 0.00 0.00 0.00 0.845 93 

Vermont US Wet Freeze 21 15 77.4 0 1.8 75 0 0.00 0.00 0.00 0.835 93 

Vermont US Wet Freeze 21 15 2.3 0 96.2 150 0 0.00 0.00 0.00 0.822 93 

Vermont US Wet Freeze 21 15 0 0 0 0 0 0.00 0.00 0.00 0.819 93 

Indiana US Wet Freeze 21 15 0 0 0 0 0 0.00 12.00 500.50 0.819 93 

Vermont US Wet Freeze 21 15 130.3 0 8.1 85 0 0.00 0.00 0.00 0.81 94 

Michigan US Wet Freeze 22 15 0.4 0 163.5 136 0 0.00 0.00 0.00 0.808 94 

Minnesota US Wet Freeze 22 15 0 0 56.2 28 0 0.00 7.60 0.00 0.805 94 

Indiana US Wet Freeze 22 15 62.1 0 1.6 83 0 0.00 0.00 0.00 0.803 94 

Indiana US Wet Freeze 22 15 114 0 3 84 0 0.00 0.00 0.00 0.796 94 

Newfoundland Canada Wet Freeze 22 15 0 0 60.1 30 0 0.00 0.00 0.00 0.796 94 

Minnesota US Wet Freeze 23 15 0 0 40.8 0 0 0.00 0.00 564.30 0.792 94 

Newfoundland Canada Wet Freeze 24 16 162.1 0 1.5 85 0 0.00 0.00 0.00 0.787 94 

Minnesota US Wet Freeze 25 16 163.9 0 1.5 103 0 0.00 0.00 76.20 0.786 94 

Indiana US Wet Freeze 26 16 0 0 78 44 0 0.00 0.00 0.00 0.785 95 

Minnesota US Wet Freeze 26 16 0 0 29.3 0 0 0.00 0.00 0.00 0.77 95 

Illinois US Wet Freeze 26 17 0 0 0 0 0 0.00 0.00 0.00 0.757 95 

Minnesota US Wet Freeze 26 18 0 0 3.7 0 0 0.00 0.00 0.00 0.756 95 

Illinois US Wet Freeze 26 19 0 0 91.6 2 0 0.00 0.00 0.00 0.753 95 

Michigan US Wet Freeze 26 21 5.6 0 82.8 5 0 0.00 0.00 0.00 0.751 95 

Indiana US Wet Freeze 26 24 8.2 0 89.4 1 0 0.00 0.00 0.00 0.75 95 

Newfoundland Canada Wet Freeze 27 26 22.3 0 92.6 2 0 0.00 259.30 305.00 0.744 95 

Indiana US Wet Freeze 28 29 25.5 0 104.8 3 0 0.00 0.00 0.00 0.734 95 

Newfoundland Canada Wet Freeze 28 0 0 0 15.8 1 0 0.00 0.00 0.00 0.732 95 

Alabama US Wet no Freeze 1 14 0 0 152.8 0 0 0 0 0 0.621 100 

Alabama US Wet no Freeze 1 0 0 0 0 0 0 0 0 0 0.627 100 

Alabama US Wet no Freeze 1 0 0 0 0 0 0 0 0 0 0.641 100 

Alabama US Wet no Freeze 1 0 0 0 0 0 0 0 0 0 0.646 100 

Alabama US Wet no Freeze 3 0 0 0 0 1 0 0 0 0 0.653 100 
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Alabama US Wet no Freeze 3 0 0 0 0 0 0 0 0 0 0.67 100 

Alabama US Wet no Freeze 3 0 0 0 18.2 0 0 0 0 0 0.7 100 

Alabama US Wet no Freeze 4 0 0 0 164.6 0 0 0 0 0 0.702 100 

Alabama US Wet no Freeze 4 0 0 0 0 0 0 0 0 0 0.713 100 

Alabama US Wet no Freeze 4 0 0 0 0 0 0 0 0 0 0.716 100 

Alabama US Wet no Freeze 5 0 31.6 0 0 16 0 0 0 0 0.717 100 

Alabama US Wet no Freeze 5 0 0 0 0 0 0 0 0 0 0.72 100 

Alabama US Wet no Freeze 5 0 0 0 15.5 0 0 0 0 0 0.735 100 

Alabama US Wet no Freeze 5 0 0 0 0 11 0 0 0 0 0.735 100 

Alabama US Wet no Freeze 5 0 0 0 0.4 7 0 0 0 0 0.749 100 

Alabama US Wet no Freeze 5 0 75.6 0 27.4 26 0 0 0 0 0.778 100 

Arkansas US Wet no Freeze 5 0 377.9 0 0 0 0 0 0 0 0.785 100 

Arkansas US Wet no Freeze 5 0 6.2 0 14.9 5 0 0 0 0 0.796 100 

Arkansas US Wet no Freeze 6 0 0 0 10.1 38 0 0 0 0 0.8 100 

Arkansas US Wet no Freeze 6 1 2.3 0 97.8 2 0 0 0 0 0.811 100 

Arkansas US Wet no Freeze 6 1 1.2 0 0 1 0 0 0 0 0.813 100 

Arkansas US Wet no Freeze 6 1 0 0 0 0 0 0 0 0 0.815 100 

Arkansas US Wet no Freeze 6 1 1 0 0 0 0 0 0 0 0.825 100 

Arkansas US Wet no Freeze 6 1 0 0 0 0 0 0 0 0 0.834 100 

California US Wet no Freeze 6 1 0 0 0 0 0 0 0 0 0.84 96 

California US Wet no Freeze 6 1 0 0 0 0 0 0 0 0 0.847 90 

California US Wet no Freeze 6 3 2.4 0 12.6 16 0 0 0 0 0.847 89 

California US Wet no Freeze 6 3 0 0 0 0 0 0 0 0 0.869 89 

California US Wet no Freeze 7 3 0 0 0 0 0 0 0 0 0.871 89 

California US Wet no Freeze 7 3 0 0 0 0 0 0 0 0 1.364 89 

California US Wet no Freeze 7 3 0 0 0 2 0 0 0 0 1.363 88 

California US Wet no Freeze 7 3 0 0 39.2 1 0 0 0 0 1.352 88 

California US Wet no Freeze 7 3 187.6 0 81.4 72 0 0 0 0 1.352 88 

California US Wet no Freeze 7 4 0 0 126.5 4 0 0 0 0 1.352 88 

California US Wet no Freeze 7 4 0 0 0 0 0 0 0 0 1.319 88 

Florida US Wet no Freeze 7 4 0 0 0 0 0 0 0 0 1.302 88 

Florida US Wet no Freeze 7 4 0 0 0.7 0 0 0 0 0 1.287 87 

Florida US Wet no Freeze 7 4 0 0 0 4 0 0 0 0 1.269 87 

Florida US Wet no Freeze 7 4 0 0 0 0 0 0 0 0 1.267 87 

Florida US Wet no Freeze 7 4 0 0 0 1 0 0 0 0 1.249 87 

Florida US Wet no Freeze 7 4 0 0 0 2 0 0 0 0 1.246 87 

Florida US Wet no Freeze 7 4 7.3 0 7.6 2 0 0 0 0 1.196 87 
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Florida US Wet no Freeze 7 4 108.9 0 15.8 16 0 0 0 0 1.176 87 

Florida US Wet no Freeze 8 4 2.6 0 5.2 1 0 0 0 0 1.164 87 

Florida US Wet no Freeze 8 4 20.1 0 3.3 14 0 0 0 0 1.154 87 

Florida US Wet no Freeze 8 4 0 0 0 0 0 0 0 0 1.15 86 

Florida US Wet no Freeze 8 4 22.6 0 53..3 16 0 0 0 0 1.15 86 

Florida US Wet no Freeze 8 4 15.2 0 9.8 5 0 0 0 0 1.136 86 

Florida US Wet no Freeze 9 4 0 0 0 1 0 0 0 0 1.123 86 

Florida US Wet no Freeze 9 4 11.4 0 8.9 4 0 0 0 0 1.12 86 

Florida US Wet no Freeze 9 4 0 0 0 0 0 0 0 0 1.113 85 

Florida US Wet no Freeze 9 4 8.4 0 7.6 1 0 0 0 0 1.11 85 

Florida US Wet no Freeze 9 4 319.3 0 60.4 57 0 0 0 0 1.108 85 

Florida US Wet no Freeze 9 4 7.3 0 8.2 2 0 0 0 0 1.108 85 

Florida US Wet no Freeze 9 4  0   0 0 0 0 1.104 85 

Florida US Wet no Freeze 9 4 318.3 0 27.6 5 0 0 0 0 1.104 84 

Florida US Wet no Freeze 9 5 29.9 0 2.9 7 0 0 0 0 1.104 84 

Florida US Wet no Freeze 9 5 0 0 0 3 0 0 0 0 1.104 84 

Florida US Wet no Freeze 10 5 0 0 138.5 6 0 0 0 0 1.103 84 

Florida US Wet no Freeze 10 5 365.7 0 32.9 113 0 0 0 0 1.098 83 

Florida US Wet no Freeze 10 5 0 0 0 0 0 0 0 0 1.093 83 

Florida US Wet no Freeze 10 5 56.6 0 96.5 90 0 0 0 0 1.093 83 

Florida US Wet no Freeze 10 5 0 0 0 0 0 0 0 0 1.088 83 

Florida US Wet no Freeze 10 5 18.8 0 63.2 116 0 0 0 0 1.085 83 

Florida US Wet no Freeze 10 5 83.5 0 0 0 0 0 0 0 1.081 83 

Florida US Wet no Freeze 11 5 7.5 0 181.8 1 0 0 0 0 1.078 83 

Florida US Wet no Freeze 11 5 0 0 0 0 0 0 0 0 1.074 83 

Florida US Wet no Freeze 11 5 0 0 1 0 0 0 0 0 1.074 83 

Florida US Wet no Freeze 11 6 0 0 0 0 0 0 0 0 1.068 83 

Florida US Wet no Freeze 11 6 0 0 0 3 0 0 0 0 1.064 83 

Florida US Wet no Freeze 11 6 0 0 0 0 0 0 0 0 1.064 83 

Florida US Wet no Freeze 11 6 1.3 0 89.2 6 0 0 0 0 1.062 83 

Florida US Wet no Freeze 11 6 0 0 130.4 67 0 0 0 0 1.061 82 

Florida US Wet no Freeze 11 6 7.7 0 78.4 6 0 0 0 0 1.052 82 

Georgia US Wet no Freeze 12 6 1.4 0 99.2 45 0 0 0 0 1.05 82 

Georgia US Wet no Freeze 12 6 0 0 26.9 13 0 0 0 0 1.045 82 

Hawaii US Wet no Freeze 12 6 152.4 0 0 3 0 0 0 0 1.041 82 

Hawaii US Wet no Freeze 12 6 0 0 152.3 0 0 0 0 0 1.008 82 

Hawaii US Wet no Freeze 12 6 2.6 0 337.1 27 0 0 0 0 1.005 82 
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Hawaii US Wet no Freeze 12 6 0 0 0 0 0 0 0 0 1.002 82 

Hawaii US Wet no Freeze 12 6 0 0 304.1 3 0 0 0 0 0.998 82 

Hawaii US Wet no Freeze 12 6 0 0 0 7 0 0 0 0 0.994 82 

Hawaii US Wet no Freeze 12 6 25.9 0 9.7 15 0 0 0 0 0.988 81 

Hawaii US Wet no Freeze 13 6 0 0 0.2 19 0 0 0 0 0.985 81 

Hawaii US Wet no Freeze 13 6 43.9 0 23.2 39 0 0 0 0 0.97 81 

Hawaii US Wet no Freeze 13 6 13.4 0 94.6 61 0 0 0 0 0.969 81 

Hawaii US Wet no Freeze 13 6 0 0 15.8 59 0 0 0 0 0.96 80 

Hawaii US Wet no Freeze 13 7 0 0 0 0 0 0 0 0 0.959 80 

Hawaii US Wet no Freeze 13 7 0 0 0.8 4 0 0 0 0 0.952 79 

Hawaii US Wet no Freeze 13 7 0 0 0 1 0 0 0 0 0.951 78 

Hawaii US Wet no Freeze 13 7 0 0 1.2 0 0 0 0 0 0.949 78 

Hawaii US Wet no Freeze 13 7 0.7 0 1.4 7 0 0 0 0 0.948 78 

Mississippi US Wet no Freeze 13 7 0 0 0 0 0 0 0 0 0.947 77 

Mississippi US Wet no Freeze 13 7 0 0 0 5 0 0 0 0 0.944 77 

Mississippi US Wet no Freeze 14 7 3.4 0 3.2 26 0 0 0 0 0.938 76 

Mississippi US Wet no Freeze 14 7 0 0 17.2 22 0 0 0 0 0.926 76 

Mississippi US Wet no Freeze 14 7 29.4 0 46.3 2 0 0 0 0 0.918 76 

Mississippi US Wet no Freeze 14 7 0 0 122 0 0 0 0 0 0.912 75 

Mississippi US Wet no Freeze 15 7 3 0 0 0 0 0 0 0 0.906 75 

Mississippi US Wet no Freeze 15 7 0.5 0 286.8 93 0 0 0 0 0.906 75 

Mississippi US Wet no Freeze 15 7 0 0 0 1 0 0 0 0 0.894 75 

Mississippi US Wet no Freeze 15 7 0 0 3 0 0 0 0 0 0.884 74 

Mississippi US Wet no Freeze 15 7 0 0 15.2 0 0 0 0 0 0.877 74 

Mississippi US Wet no Freeze 15 7 1.7 0 31.9 25 0 0 0 0 1.366 74 

Mississippi US Wet no Freeze 15 8 0 0 0 0 0 0 0 0 1.38 74 

Mississippi US Wet no Freeze 16 8 0.9 0 0 6 0 0 0 0 1.383 74 

Mississippi US Wet no Freeze 16 8 0 0 7.7 10 0 0 0 0 1.387 74 

Mississippi US Wet no Freeze 16 8 0.6 0 30.8 5 0 0 0 0 1.393 73 

Mississippi US Wet no Freeze 16 8 0 0 153.3 0 0 0 0 0 1.402 73 

North Carolina US Wet no Freeze 16 8 0 0 0.1 2 0 0 0 0 1.418 73 

North Carolina US Wet no Freeze 16 8 0 0 0 1 0 0 0 0 1.418 73 

North Carolina US Wet no Freeze 16 8 0 0 0 0 0 0 0 0 1.422 71 

North Carolina US Wet no Freeze 17 8 0.3 0 287.8 116 0 0 0 0 1.429 71 

North Carolina US Wet no Freeze 17 8 4.7 0 307.2 107 0 0 0 0 1.433 70 

North Carolina US Wet no Freeze 17 8 0 0 97.5 1 0 0 0 0 1.444 70 

Oklahoma US Wet no Freeze 17 8 0 0 0 0 0 0 0 0 1.45 70 
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Oklahoma US Wet no Freeze 17 8 185.5 0 117.7 100 0 0 0 0 1.451 70 

Oklahoma US Wet no Freeze 17 8 57.4 0 42.3 11 0 0 0 0 1.454 70 

Oklahoma US Wet no Freeze 17 8 1.1 0 151.5 3 0 0 0 0 1.455 70 

Oklahoma US Wet no Freeze 17 8 0 0 0 0 0 0 0 0 1.455 70 

Oklahoma US Wet no Freeze 17 9 0.3 0 0 6 0 0 0 0 1.456 68 

Oklahoma US Wet no Freeze 17 9 0 0 0 1 0 0 0 0 1.46 68 

Oklahoma US Wet no Freeze 17 9 0 0 0 0 0 0 0 0 1.461 68 

Oklahoma US Wet no Freeze 17 9 0 0 0 2 0 0 0 0 1.474 68 

Oklahoma US Wet no Freeze 18 9 20.7 0 59.8 23 0 0 0 0 1.484 68 

Oklahoma US Wet no Freeze 18 9 10.7 0 9.3 21 0 0 0 0 1.491 68 

Oklahoma US Wet no Freeze 18 9 67.1 0 10.6 73 0 0 0 0 1.499 68 

Oklahoma US Wet no Freeze 18 9 2 0 43.9 4 0 0 0 0 1.506 68 

Oklahoma US Wet no Freeze 18 9 2.9 0 5.2 19 0 0 0 0 1.508 68 

Oklahoma US Wet no Freeze 18 9 1.8 0 6.1 17 0 0 0 0 1.514 68 

Oklahoma US Wet no Freeze 18 9 3.7 0 0 9 0 0 0 0 1.517 68 

Oklahoma US Wet no Freeze 19 9 6.9 0 313.6 4 0 0 0 0 1.529 68 

Oklahoma US Wet no Freeze 19 9 0 0 0 0 0 0 0 0 1.57 68 

Oklahoma US Wet no Freeze 19 9 38.7 0 334.1 99 0 0 0 0 1.584 67 

Oklahoma US Wet no Freeze 19 9 0 0 1.2 0 0 0 0 0 1.589 65 

Oklahoma US Wet no Freeze 19 9 47 0 23 94 0 0 0 0 1.616 65 

Oklahoma US Wet no Freeze 19 10 0 0 141.1 0 0 0 0 0 1.619 65 

Oklahoma US Wet no Freeze 19 10 3 0 0 9 0 0 0 0 1.633 65 

Oklahoma US Wet no Freeze 19 10 30.7 0 13.6 20 0 0 0 0 1.64 63 

Oklahoma US Wet no Freeze 19 10 2.3 0 107.9 16 0 0 0 0 1.662 63 

South Carolina US Wet no Freeze 20 10 0 0 13.3 11 0 0 0 0 1.674 63 

South Carolina US Wet no Freeze 20 10 0 0 0 2 0 0 0 0 1.689 62 

South Carolina US Wet no Freeze 20 10 0.3 0 35.6 0 0 0 0 0 1.693 62 

South Carolina US Wet no Freeze 20 10 0 0 0 0 0 0 0 0 1.735 62 

South Carolina US Wet no Freeze 20 10 0 0 2 2 0 0 0 0 1.791 62 

South Carolina US Wet no Freeze 20 10 0 0 0 0 0 0 0 0 1.805 61 

South Carolina US Wet no Freeze 20 10 8 0 3.8 13 0 0 0 0 1.807 61 

South Carolina US Wet no Freeze 21 10 91.3 0 149.5 37 0 0 0 0 1.85 60 

South Carolina US Wet no Freeze 21 10 0 0 137.8 39 0 0 0 0 1.858 60 

South Carolina US Wet no Freeze 21 10 0 0 159 39 0 0 0 0 1.859 60 

South Carolina US Wet no Freeze 21 10 6.3 0 0 10 0 0 0 0 1.867 59 

South Carolina US Wet no Freeze 21 10 79.3 0 99.1 0 0 0 0 0 1.868 59 

South Carolina US Wet no Freeze 21 10 97 0 46.3 119 0 0 0 0 1.87 59 
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South Carolina US Wet no Freeze 21 10 18 0 267.2 72 0 0 0 0 1.875 58 

South Carolina US Wet no Freeze 21 10 21.9 0 12.6 20 0 0 0 0 1.875 58 

South Carolina US Wet no Freeze 21 10 0.9 0 237.8 193 0 0 0 0 1.932 57 

Tennessee US Wet no Freeze 21 11 11.3 0 302.7 17 0 0 0 0 1.946 57 

Tennessee US Wet no Freeze 21 11 12.9 0 18.6 37 0 0 0 0 1.954 56 

Tennessee US Wet no Freeze 22 11 62.5 0 4.6 121 0 0 0 0 1.981 56 

Tennessee US Wet no Freeze 22 11 6.6 0 12.8 31 0 0 0 0 1.99 55 

Tennessee US Wet no Freeze 22 11 0 0 153.1 1 0 0 0 0 1.993 53 

Tennessee US Wet no Freeze 22 11 0 0 1.5 13 0 0 0 0 1.994 52 

Tennessee US Wet no Freeze 22 11 252.4 0 152.5 18 0 0 0 0 2.006 45 

Texas US Wet no Freeze 22 11 19.2 0 34.4 57 0 0 0 0 2.013 40 

Texas US Wet no Freeze 22 11 1.7 0 51.7 59 0 0 0 0 2.031 40 

Texas US Wet no Freeze 22 12 1.1 0 0 0 0 0 0 0 2.038 38 

Texas US Wet no Freeze 23 12 252.7 0 153.1 33 0 0 0 0 2.053 36 

Texas US Wet no Freeze 23 12 0 0 0 0 0 0 0 0 2.053 35 

Texas US Wet no Freeze 23 12 0 0 0 1 0 0 0 0 2.078 34 

Texas US Wet no Freeze 24 12 0 0 172.9 3 0 0 0 0 2.094 32 

Texas US Wet no Freeze 24 12 0.2 0 0.5 0 0 0 0 0 2.103 30 

Texas US Wet no Freeze 25 12 0 0 12.3 31 0 0 0 0 2.125 29 

Texas US Wet no Freeze 25 12 0 0 237.6 99 0 0 0 0 2.135 27 

Texas US Wet no Freeze 25 12 0 0 62.6 5 0 0 0 0 2.14 24 

Texas US Wet no Freeze 25 12 0 0 169.3 134 0 0 0 0 2.169 24 

Texas US Wet no Freeze 26 13 0 0 1.4 9 0 0 0 0 2.246 23 

Texas US Wet no Freeze 26 13 0 0 66.5 0 0 0 0 0 2.322 23 

Texas US Wet no Freeze 26 13 0 0 0 0 0 0 0 0 2.322 22 

Texas US Wet no Freeze 26 13 0 0 4.9 0 0 0 0 0 2.337 20 

Texas US Wet no Freeze 27 13 0 0 1.8 14 0 0 0 0 2.385 19 

Texas US Wet no Freeze 27 14 0 0 0 1 0 0 0 0 2.388 19 

Texas US Wet no Freeze 27 14 0 0 244.3 3 0 0 0 0 2.526 19 

Texas US Wet no Freeze 28 15 0 0 4.4 19 0 0 0 0 2.54 19 

Texas US Wet no Freeze 28 15 4.8 0 156 41 0 0 0 0 2.614 18 

Texas US Wet no Freeze 28 15 0 0 54.2 0 0 0 0 0 2.626 18 

Texas US Wet no Freeze 29 15 0 0 152.5 0 0 0 0 0 2.782 18 

Texas US Wet no Freeze 31 17 0 0 116.4 6 0 0 0 0 2.868 15 

Texas US Wet no Freeze 31 22 13.7 0 17.8 53 0 0 0 0 3.543 8 

Texas US Wet no Freeze 31 22 0 0 8.2 23 0 0 0 0 3.758 8 
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Table A-2: Presents the Environmental data of each section with PCI AND IRI in the U.S. and Canada. 
State /Province Country Climate regions AGE TEMP 

AVG 

FREEZE 

INDEX YR 

NUMBER 

FREEZE 

DAYS 

TOTAL 

ANN 

PRECIP 

TOTAL 

SNOWFALL 

YR 

WIND 

AVG 

HUM IRI PCI 

Washington US DRY Freeze 6 8.9 247.5 82 515.3 1080 5.10 66.5 1.488 72 

Washington US DRY Freeze 7 9.9 310 120 462.4 2371 5.20 61 1.08 69 

Washington US DRY Freeze 8 9.7 203.6 83 397.6 826 4.80 65 1.331 71 

Washington US DRY Freeze 15 9.6 285 128 446 1963 5.50 62 1.015 70 

Washington US DRY Freeze 13 9.3 86.4 117 435.9 659 4.70 62.5 1.559 80 

Washington US DRY Freeze 13 9.2 189.1 133 493.9 2105 5.50 66.5 0.989 68 

Washington US DRY Freeze 11 9 247.4 115 581.5 638 4.70 65 1.14 65 

Washington US DRY Freeze 10 8.9 306 127 438.1 2012 4.90 66 0.888 64 

Washington US DRY Freeze 9 8.6 301 113 386 671 4.5 62 1.692 60 

Washington US DRY Freeze 9 7.7 514 89 702.6 1061 4.00 62.5 1.469 59 

Washington US DRY Freeze 8 7.7 558 133 411.9 1462 5.00 66 1.145 58 

Wyoming US DRY Freeze 17 6.4 691 97 345.1 590 4 57.5 0.908 55 

Wyoming US DRY Freeze 17 6.4 588.8 121 478.4 535 5.1 58 0.906 55 

Wyoming US DRY Freeze 18 4.9 726 110 399.3 425 4.8 52 1.5 52 

California US DRY no Freeze 32 10.5 94.1 67 369.5 43 3.90 53.5 0.819 100 

California US DRY no Freeze 30 10.5 182 54 411 34 3.90 53.5 0.781 100 

California US DRY no Freeze 29 10.7 132.7 68 373.9 28 3.90 54 1.606 100 

California US DRY no Freeze 27 11.1 52.3 59 287 53 3.90 55 1.408 100 

California US DRY no Freeze 25 11.2 36.3 77 245.5 44 3.91 55 2.379 100 

California US DRY no Freeze 24 11.4 99 67 346.1 62 3.60 55 0.765 80 

California US DRY no Freeze 23 11.6 109 57 228.6 35 3.89 56 0.683 95 

California US DRY no Freeze 23 11.9 84 64 261.8 55 7.00 56 0.735 63 

California US DRY no Freeze 21 12.1 91 54 297.4 29 5.90 56 0.754 92 

California US DRY no Freeze 21 12.1 48 61 298.9 58 7.20 56 0.782 61 

California US DRY no Freeze 20 12.1 62 60 344.4 79 5.20 56 0.783 62 

California US DRY no Freeze 20 15.1 1 57 472 44 4.20 56.5 0.817 90 

California US DRY no Freeze 19 15.5 1 78 524.5 0 4.10 57 0.82 88 

California US DRY no Freeze 19 15.6 1 76 392.7 25 4.10 57 0.823 87 

California US DRY no Freeze 19 15.8 1 73 272.4 105 4.10 57 0.828 83 

Hawaii US DRY no Freeze 18 15.8 1 53 486.3 79 4.40 57 0.835 80 

Hawaii US DRY no Freeze 18 15.9 1 69 168.4 28 4.10 57.5 0.848 80 

Hawaii US DRY no Freeze 18 16 19.8 71 405.2 81 3.85 57.5 0.855 75 

Hawaii US DRY no Freeze 18 16.1 1 78 433.2 0 4.10 57.5 0.874 74 
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Hawaii US DRY no Freeze 17 16.1 1 45 382.2 184 4.10 58 1.321 74 

Hawaii US DRY no Freeze 17 16.2 3.3 72 411.8 62 5.9 58 1.408 73 

Hawaii US DRY no Freeze 17 16.2 6.5 77 656.4 70 4.10 58 1.418 72 

Hawaii US DRY no Freeze 16 16.2 1 63 612.3 4 3.60 58.5 1.434 70 

Hawaii US DRY no Freeze 16 16.2 1 55 385.2 4 3.90 59 1.434 66 

Hawaii US DRY no Freeze 16 16.3 6 78 520.3 66 7.0 59 1.473 65 

Hawaii US DRY no Freeze 15 16.3 1 62 554.4 21 3.60 59.5 1.528 63 

Hawaii US DRY no Freeze 15 16.4 8.5 54 244.9 85 3.84 59.5 1.544 61 

Hawaii US DRY no Freeze 15 16.4 1 70 476.2 0 3.60 59.5 1.613 57 

Hawaii US DRY no Freeze 15 16.6 24.6 55 353 70 3.6 60 1.636 56 

Hawaii US DRY no Freeze 13 16.6 31.3 71 377.2 74 3.60 60 1.653 55 

Hawaii US DRY no Freeze 13 16.6 1 46 393.2 0 3.80 60 1.67 55 

New Mexico US DRY no Freeze 13 16.8 1 51 181.4 70 7.2 60 1.838 52 

New Mexico US DRY no Freeze 13 16.8 9.6 62 484.2 77 3.86 60 2.113 69 

New Mexico US DRY no Freeze 13 17 4 58 291.1 58 5.2 60.5 2.318 68 

New Mexico US DRY no Freeze 13 17.4 33 71 189.1 28 3.84 60.5 2.332 70 

New Mexico US DRY no Freeze 12 17.5 12 62 189 66 3.9 60.5 2.362 55 

New Mexico US DRY no Freeze 11 17.5 3 77 217 62 3.8 60.5 2.404 81 

New Mexico US DRY no Freeze 11 17.8 1 55 205.8 77 3.5 60.5 2.412 70 

New Mexico US DRY no Freeze 11 17.9 3.6 65 211.7 58 3.8 60.5 2.42 54 

New Mexico US DRY no Freeze 11 18 6.8 74 128.4 74 4.5 62 2.425 66 

New Mexico US DRY no Freeze 11 18.1 5 71 185.1 81 5.2 62 2.441 67 

New Mexico US DRY no Freeze 11 20.7 1 69 50.7 29 3.80 62.5 2.464 67 

New Mexico US DRY no Freeze 10 21.4 1 58 122.3 92 3.90 62.5 2.497 67 

New Mexico US DRY no Freeze 10 24 1 83 207.1 77 3.60 63 2.5 74 

New Mexico US DRY no Freeze 10 24 1 65 207.1 70 3.84 68 2.525 62 

New Mexico US DRY no Freeze 9 24.3 1 50 249.1 38 3.80 68 2.662 59 

New Mexico US DRY no Freeze 9 24.3 1 57 256.8 74 3.83 68 0.925 59 

New Mexico US DRY no Freeze 9 24.3 1 53 249.1 58 3.86 68 0.856 58 

New Mexico US DRY no Freeze 9 24.4 1 51 336.2 74 3.81 68 1.369 58 

New Mexico US DRY no Freeze 9 24.5 1 71 286.3 35 4.10 68 1.396 82 

New Mexico US DRY no Freeze 7 24.7 1 66 361.5 55 3.80 69 1.012 58 

New Mexico US DRY no Freeze 7 24.7 1 67 361.5 62 3.85 69 0.857 58 

New Mexico US DRY no Freeze 7 24.8 1 66 506.6 36 4.10 69 1.31 58 

New Mexico US DRY no Freeze 7 24.8 1 55 209.3 28 3.80 69 1.183 57 

New Mexico US DRY no Freeze 7 24.8 1 71 506.6 66 3.84 69.5 0.88 55 

New Mexico US DRY no Freeze 6 24.8 1 72 209.3 0 3.82 70.5 0.877 56 
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New Mexico US DRY no Freeze 5 25 1 55 737.3 37 3.90 70.5 0.862 61 

New Mexico US DRY no Freeze 5 25.2 1 55 607.8 21 3.81 70.5 0.887 91 

New Mexico US DRY no Freeze 3   60.4 73 68.4 66 4.10 71 0.925 50 

Idaho US Wet Freeze 3 13.1 111 103 1157.5 1233 6.11 75 4.005 8 

Idaho US Wet Freeze 4 13.4 203 121 993.1 2438 5.95 70 3.659 10 

Idaho US Wet Freeze 4 12.7 65 140 1277.7 2050 5.96 75 3.519 10 

Idaho US Wet Freeze 4 12.7 912 123 1010.7 1403 5.91 67 3.308 12 

Idaho US Wet Freeze 4 10.5 1351.6 142 1480.2 2200 5.78 61 3.251 15 

Maine US Wet Freeze 5 7.9 628 108 1056 2162 5.64 73 3.116 22 

Idaho US Wet Freeze 5 9.2 461.9 139 778.1 812 3.9 69.5 3.112 23 

Idaho US Wet Freeze 5 6.8 691 112 1208.8 1865 5.40 69.5 2.967 27 

Illinois US Wet Freeze 5 6.7 696 115 1251.9 1850 6 60 2.275 40 

Maine US Wet Freeze 5 11.5 275.4 118 992.5 2713 4.5 74.5 2.183 43 

Michigan US Wet Freeze 5 10.5 435 121 1105.9 2910 4 74 1.985 44 

Michigan US Wet Freeze 5 5.8 992 117 1282.8 1895 5.15 74 1.929 50 

Michigan US Wet Freeze 5 12 217.4 129 1103.7 1432 3.5 68 1.929 52 

Missouri US Wet Freeze 6 12.4 85 130 1067.7 2715 4.40 72 1.863 52 

Michigan US Wet Freeze 6 11.5 223 142 1386 2010 4 80 1.775 52 

Michigan US Wet Freeze 6 6.3 742 101 363.9 1876 5.00 58 1.754 55 

Michigan US Wet Freeze 6 13.1 269.9 92 1150.4 2550 4.50 72 1.742 55 

Idaho US Wet Freeze 6 7 673.8 89 444.6 997 4.40 57.5 1.7 58 

Idaho US Wet Freeze 6 6.6 667 94 483.2 2721 4.50 60 1.691 58 

Idaho US Wet Freeze 7 7.1 563 93 409.8 3367 6.60 57 1.649 59 

Michigan US Wet Freeze 7 5.8 877 103 444.9 1083 3.60 60 1.526 60 

Maine US Wet Freeze 7 4.4 1240 92 1499.7 2697 6.26 71 1.526 61 

Michigan US Wet Freeze 7 7.5 664 105 747.3 1062 6.25 74.5 1.509 62 

Michigan US Wet Freeze 7 12 137.9 112 1094.9 2516 5.1 71 1.501 66 

Missouri US Wet Freeze 8 12.5 211 106 1193.4 1083 6 75 1.485 66 

Idaho US Wet Freeze 8 12.3 229.4 96 1083.4 2820 3.7 80 1.473 67 

Idaho US Wet Freeze 8 5.4 834.8 100 569.4 2952 6.60 61 1.473 67 

Idaho US Wet Freeze 8 11.9 283 104 1113.5 2500 6.02 68 1.458 68 

Idaho US Wet Freeze 8 8.9 482.5 104 971.7 2456 6.00 69.5 1.457 68 

Missouri US Wet Freeze 9 7.4 557 106 1010.2 836 4 70 1.457 68 

Missouri US Wet Freeze 9 7.7 574.7 89 892 1880 5.35 64 1.445 69 

Maine US Wet Freeze 9 6.4 842 85 1208.3 2683 5.25 75 1.441 69 

Missouri US Wet Freeze 9 11.3 357.3 79 1065.9 1137 5.6 69.5 1.433 69 

Maine US Wet Freeze 9 9.7 321 73 1484 1531 5.1 74.5 1.416 69 
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Missouri US Wet Freeze 10 13.4 159.5 85 980.2 1514 4.25 64 1.399 69 

Maine US Wet Freeze 10 6.3 481.7 103 624.9 1320 6.50 62.5 1.357 70 

Maine US Wet Freeze 10 6.6 522.1 94 502.7 4941 6.60 63 1.309 70 

Illinois US Wet Freeze 10 6.4 787 89 435.5 2107 3.50 57.5 1.293 70 

Missouri US Wet Freeze 10 4.3 901 95 667.6 1137 4.10 59.5 1.278 71 

Missouri US Wet Freeze 10 13 187 90 1329.1 1681 6.14 74.5 1.274 72 

Maine US Wet Freeze 10 13.7 123 119 857.4 1905 6.15 76 1.274 72 

Missouri US Wet Freeze 11 12.8 164 107 1031.1 1457 6.12 69.5 1.269 74 

Michigan US Wet Freeze 11 12.6 208.5 91 1594 3475 5.99 65 1.257 74 

Missouri US Wet Freeze 11 11.4 1009 109 1219.4 2363 5.86 71 1.249 75 

Michigan US Wet Freeze 11 5.5 1242.4 95 839.6 1237 5.72 70 1.247 75 

Newfoundland Canada Wet Freeze 11 7.4 394 111 1189.1 902 5.48 42.5 1.247 76 

Newfoundland Canada Wet Freeze 11 7.6 699.3 87 1002.6 1112 3.8 73 1.242 76 

Newfoundland Canada Wet Freeze 11 7.6 663.8 113 946.7 3661 5.25 76 1.242 76 

Missouri US Wet Freeze 11 6.5 784 115 925.5 2668 4.50 75 1.235 76 

Newfoundland Canada Wet Freeze 12 5.9 585 109 1059.1 1530 5.25 72 1.235 77 

New Jersey US Wet Freeze 12 6.8 679 112 1293.2 1062 5 57 1.233 77 

New Jersey US Wet Freeze 12 5.9 902 115 857.3 3047 5.8 65.5 1.23 77 

Missouri US Wet Freeze 12 7.5 472 111 1265.3 2092 5 72 1.229 77 

Newfoundland Canada Wet Freeze 12 10.4 399.3 118 974.9 1925 4.6 68 1.222 78 

Illinois US Wet Freeze 13 4.8 1053 101 1525.9 3025 6.22 68 1.216 78 

New Jersey US Wet Freeze 13 12.4 191.8 113 1297.1 2517 6.04 66 1.202 79 

New Jersey US Wet Freeze 13 14 116.3 87 1341.9 2525 6.05 64 1.197 79 

New Jersey US Wet Freeze 13 11.5 201 133 1770.8 1003 4.50 74 1.197 80 

Newfoundland Canada Wet Freeze 13 5.6 946 89 933.7 3250 5.74 74.5 1.196 81 

Illinois US Wet Freeze 14 4.5 1277 91 904 1262 5.75 59.2 1.19 81 

Newfoundland Canada Wet Freeze 14 5.5 1304.4 93 1046.6 3275 5.76 64.5 1.177 81 

New Jersey US Wet Freeze 14 7.3 609.5 89 1403.1 2289 4.8 72.5 1.176 81 

Illinois US Wet Freeze 14 6.6 890.1 85 1218.2 1880 5.05 57.5 1.174 81 

Illinois US Wet Freeze 14 10.1 425 81 1445.1 1530 4.1 82 1.167 82 

New Jersey US Wet Freeze 14 13.4 140 93 1227.5 2952 4 69 1.151 82 

Illinois US Wet Freeze 14 7.1 657 113 437.8 879 4.80 60.5 1.13 83 

Montana US Wet Freeze 14 5.2 738.9 95 1513.8 2473 6.25 70 1.127 83 

New Jersey US Wet Freeze 15 13.5 120 87 990.5 1009 5.30 67.5 1.123 83 

Montana US Wet Freeze 15 10.7 1100 99 1312.1 2350 4.30 65 1.116 83 

New Jersey US Wet Freeze 15 11 1079 91 1203.1 920 5.89 72 1.116 84 

New Jersey US Wet Freeze 15 8.2 590 141 1032.4 4174 5.65 70 1.082 84 
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Montana US Wet Freeze 15 6 1472 87 886.9 2425 5.68 70.5 1.078 84 

New Jersey US Wet Freeze 15 7.1 639 91 938.5 3374 5.5 75.5 1.074 84 

Montana US Wet Freeze 15 6.2 881 98 997.3 2092 4.5 75 1.073 84 

New Jersey US Wet Freeze 15 5.5 878 101 1121.7 2289 6.25 71 1.063 84 

Michigan US Wet Freeze 15 7.7 552 102 1166.3 1274 5.38 69 1.058 84 

Montana US Wet Freeze 15 7.6 466 105 1395.9 2456 6.4 58 1.051 84 

New Jersey US Wet Freeze 15 7.2 518 108 1061.4 3244 6.25 72 1.043 85 

Vermont US Wet Freeze 16 11.6 345 112 1023.3 1764 4.50 65.5 1.039 85 

Montana US Wet Freeze 16 8.7 336 114 1299.1 2259 5.45 76 1.038 85 

Montana US Wet Freeze 16 8.6 457.8 85 931.6 2683 5.55 66 1.031 86 

Montana US Wet Freeze 16 9.5 467 92 1275.8 2122 4.25 69.5 1.031 86 

Vermont US Wet Freeze 17 11.7 297 78 1480.9 930 4.5 71 1.031 87 

Illinois US Wet Freeze 17 7.3 742 97 349.9 2907 4.90 60.5 1.03 87 

Montana US Wet Freeze 17 4.9 1531 80 825.5 2212 5.69 67.5 1.028 87 

Montana US Wet Freeze 17 8.5 439.5 76 1234.1 1865 5.4 63 1.025 87 

Vermont US Wet Freeze 17 6.1 649 72 1110.2 1486 3.6 68.5 1.02 87 

Vermont US Wet Freeze 17 10.7 409 68 1347.4 1698 4.75 65.5 1.02 87 

Michigan US Wet Freeze 17 10.2 366.4 62 928.5 1728 5 68 1.018 88 

Michigan US Wet Freeze 17 12.9 238 56 1307.7 2107 5.5 69.5 1.004 88 

Vermont US Wet Freeze 17 9.3 475 50 1182.8 2021 7 74.5 0.999 88 

Vermont US Wet Freeze 17 10.8 157 44 1559.2 940 7.25 76 0.996 89 

Vermont US Wet Freeze 17 5.8 740 81 691.9 4280 6.70 57 0.98 89 

Vermont US Wet Freeze 17 6.5 539.8 103 636.8 2141 6.40 62 0.973 89 

Vermont US Wet Freeze 18 5.7 788.8 83 497.2 1004 4.30 60.5 0.965 89 

Vermont US Wet Freeze 18 12.2 308 86 1262.5 888 5.92 67 0.961 89 

Montana US Wet Freeze 18 13.4 117 94 1197.7 1425 5.94 73 0.954 90 

Illinois US Wet Freeze 18 6.4 878 97 1375.1 1653 5.25 57 0.946 90 

Vermont US Wet Freeze 18 11.1 180 104 1170.7 2330 4.25 74 0.942 90 

Michigan US Wet Freeze 18 13.1 87 98 1222.3 2141 4.5 67.5 0.942 91 

Vermont US Wet Freeze 18 12.2 270.5 80 1197.5 3440 4.1 75 0.942 91 

Vermont US Wet Freeze 19 7.9 458 119 418.4 2632 4.90 57 0.939 91 

Illinois US Wet Freeze 19 13.1 127 115 1461.4 1596 4.50 72 0.927 92 

Michigan US Wet Freeze 19 10.8 682.1 121 1288.8 10325 3.30 67 0.924 92 

Illinois US Wet Freeze 19 7.1 759 123 1123.8 2077 5.36 68 0.923 92 

Vermont US Wet Freeze 19 6.5 667.1 119 1368.4 1471 3.75 61 0.906 92 

Vermont US Wet Freeze 19 8 437 115 1352.9 2668 3.8 62 0.904 92 

Illinois US Wet Freeze 19 11.4 226 122 1062.5 2107 4.45 71 0.899 92 
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Vermont US Wet Freeze 19 13.9 110.1 134 1254.3 890 4 66 0.898 92 

Michigan US Wet Freeze 20 12.5 274 146 981.8 4280 5 68 0.892 92 

Vermont US Wet Freeze 20 7.3 852.6 96 1288.5 2577 4.50 74.5 0.892 92 

Michigan US Wet Freeze 20 4.1 637 108 1463 2801 6.21 68 0.864 93 

Vermont US Wet Freeze 20 6.2 857.3 115 1005 1895 4.3 80 0.863 93 

Vermont US Wet Freeze 20 10.3 755 115 1881.2 2375 3.75 61 0.859 93 

Michigan US Wet Freeze 20 6.6 663 111 1701.5 1274 5.5 57 0.859 93 

Vermont US Wet Freeze 20 9.8 197 105 1042.9 1334 5.6 76 0.845 93 

Vermont US Wet Freeze 21 5.9 1185 120 1370.3 2129 6.16 69.5 0.835 93 

Vermont US Wet Freeze 21 6.6 940 97 1375.6 2353 6.18 76 0.822 93 

Vermont US Wet Freeze 21 14.1 123.3 124 1475.3 1561 6.06 68 0.819 93 

Indiana US Wet Freeze 21 13.6 233 89 1569.5 2785 6.08 69 0.819 93 

Vermont US Wet Freeze 21 8.9 580 93 833.6 2187 5.66 73 0.81 94 

Michigan US Wet Freeze 22 6.6 807 98 655.9 1024 5.71 59.5 0.808 94 

Minnesota US Wet Freeze 22 7.4 467.3 97 989.2 3087 5.55 75.5 0.805 94 

Indiana US Wet Freeze 22 8.3 607 102 948.1 3824 4.7 71.5 0.803 94 

Indiana US Wet Freeze 22 9.2 405 99 985.2 3513 5.2 70 0.796 94 

Newfoundland Canada Wet Freeze 22 5.9 665.3 101 1050.8 1486 5 68 0.796 94 

Minnesota US Wet Freeze 23 7.8 661 104 973.4 2259 5.5 60.5 0.792 94 

Newfoundland Canada Wet Freeze 24 12.2 1759 87 1169.9 1310 5.79 60.5 0.787 94 

Minnesota US Wet Freeze 25 12.3 1164.7 108 1168.3 3789 6.40 71 0.786 94 

Indiana US Wet Freeze 26 10 287.3 89 849 2099 4.1 72 0.785 95 

Minnesota US Wet Freeze 26 6.9 721.1 85 1424.4 2077 5.25 62.5 0.77 95 

Illinois US Wet Freeze 26 4.7 888.4 117 1629.7 1249 5.50 69.5 0.757 95 

Minnesota US Wet Freeze 26 6 726 120 1070.7 1698 5 80 0.756 95 

Illinois US Wet Freeze 26 7.3 651.5 114 1059.2 1441 6.5 72 0.753 95 

Michigan US Wet Freeze 26 7.3 477 122 781.5 1471 5.39 67.5 0.751 95 

Indiana US Wet Freeze 26 8.8 337 124 1100.8 3949 6.1 73 0.75 95 

Newfoundland Canada Wet Freeze 27 11.1 772.2 110 1283.7 2338 5.84 55 0.744 95 

Indiana US Wet Freeze 28 12.5 260.6 87 1223.7 1488 6.01 58 0.734 95 

Newfoundland Canada Wet Freeze 28 9.8 303.2 94 1143.4 2319 5 70 0.732 95 

Alabama US Wet no Freeze 1 16.8 36 60 1329.8 0 2.8 75 0.621 100 

Alabama US Wet no Freeze 1 14.7 3.7 0 1533.3 0 5.5 70 0.627 100 

Alabama US Wet no Freeze 1 13.7 11 10 731.3 0 5.3 67 0.641 100 

Alabama US Wet no Freeze 1 13.7 34 47 1381 495 3 73 0.646 100 

Alabama US Wet no Freeze 3 13.8 25.3 0 1587.5 0 6 66 0.653 100 

Alabama US Wet no Freeze 3 14.4 28 38 1007.9 0 4.8 69 0.67 100 



 

 

 

 

 18 

Alabama US Wet no Freeze 3 14.5 37.2 56 1006.7 0 6.4 60.5 0.7 100 

Alabama US Wet no Freeze 4 14.5 6.4 5 1646.4 0 5.3 70 0.702 100 

Alabama US Wet no Freeze 4 14.6 73.2 15 1032.4 373 4.75 68 0.713 100 

Alabama US Wet no Freeze 4 14.7 176 5 1819.8 0 5.4 73 0.716 100 

Alabama US Wet no Freeze 5 13.3 53 15 1651.1 31 5.25 63 0.717 100 

Alabama US Wet no Freeze 5 13.4 38 29 853 72 2.85 68 0.72 100 

Alabama US Wet no Freeze 5 13.6 84 46 1698 0 4 61.5 0.735 100 

Alabama US Wet no Freeze 5 12.6 32 39 2149.7 0 3.25 62.5 0.735 100 

Alabama US Wet no Freeze 5 12.8 9.3 8 1364.5 0 5.3 66 0.749 100 

Alabama US Wet no Freeze 5 13.2 136.9 30 1482.7 0 4.5 59 0.778 100 

Arkansas US Wet no Freeze 5 12.1 29 43 1960.5 1 5.1 69.5 0.785 100 

Arkansas US Wet no Freeze 5 12.3 89 20 2161.4 109 4.65 63 0.796 100 

Arkansas US Wet no Freeze 6 12.6 3 4 1868.8 0 3.2 72 0.8 100 

Arkansas US Wet no Freeze 6 14.8 85 55 1648 0 4.1 75 0.811 100 

Arkansas US Wet no Freeze 6 14.8 24.8 45 1466.9 710 3.5 75 0.813 100 

Arkansas US Wet no Freeze 6 15 23 23 455.4 0 3.75 66.5 0.815 100 

Arkansas US Wet no Freeze 6 15 9 73 1725.9 0 4 68 0.825 100 

Arkansas US Wet no Freeze 6 15 36.3 0 1030 742 4.5 70 0.834 100 

California US Wet no Freeze 6 15.1 48.2 66 1805.7 515 3.9 65.5 0.84 96 

California US Wet no Freeze 6 15.2 115 68 1491.9 0 5.3 68 0.847 90 

California US Wet no Freeze 6 15.3 4.1 35 806.5 410 7.3 59 0.847 89 

California US Wet no Freeze 6 15.3 7 25 1499.4 0 5.1 67.5 0.869 89 

California US Wet no Freeze 7 15.3 8.9 0 1325.5 44 7.3 64.5 0.871 89 

California US Wet no Freeze 7 15.4 5.8 41 1236.7 33 3.5 69 1.364 89 

California US Wet no Freeze 7 15.4 69 36 1473.3 223 5.5 66.5 1.363 88 

California US Wet no Freeze 7 15.2 6 69 646.9 0 3 55 1.352 88 

California US Wet no Freeze 7 15.2 6 64 1007.3 7 5.5 67 1.352 88 

California US Wet no Freeze 7 16.1 82 36 1291.7 0 5.25 70 1.352 88 

California US Wet no Freeze 7 16.1 102 4 1510 0 6.25 66 1.319 88 

Florida US Wet no Freeze 7 16.1 10.8 5 1457.1 6 5 61.5 1.302 88 

Florida US Wet no Freeze 7 16.3 31.1 53 965.7 0 3.2 55 1.287 87 

Florida US Wet no Freeze 7 16.3 89 53 1418.8 0 4.3 67.5 1.269 87 

Florida US Wet no Freeze 7 16.3 14.6 44 1209.3 44 4.15 63 1.267 87 

Florida US Wet no Freeze 7 16.4 45 0 1663.3 0 6.4 66 1.249 87 

Florida US Wet no Freeze 7 16.4 33.3 64 1501 367 6.2 65 1.246 87 

Florida US Wet no Freeze 7 15.9 20.7 21 1099.8 7 3 68 1.196 87 

Florida US Wet no Freeze 7 15.9 14 45 1574.1 19 4.6 73 1.176 87 
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Florida US Wet no Freeze 8 15.9 73.2 0 1050 0 6 38 1.164 87 

Florida US Wet no Freeze 8 16 172 0 1042.9 0 4.7 74 1.154 87 

Florida US Wet no Freeze 8 16 32 36 1554.9 0 5.1 70 1.15 86 

Florida US Wet no Freeze 8 15.4 10 0 648.8 0 4.8 64 1.15 86 

Florida US Wet no Freeze 8 15.4 88.5 0 861.8 0 5.8 67.5 1.136 86 

Florida US Wet no Freeze 9 15.5 8 0 884.5 0 6 60.5 1.123 86 

Florida US Wet no Freeze 9 15.5 83 24 548.3 0 2.7 54 1.12 86 

Florida US Wet no Freeze 9 15.6 20.7 51 1525.4 315 3.7 68 1.113 85 

Florida US Wet no Freeze 9 15.7 18 0 1096.4 8 4 67 1.11 85 

Florida US Wet no Freeze 9 15.7 44.6 53 1823.5 91 4.75 70 1.108 85 

Florida US Wet no Freeze 9 15.7 43 76 1658.6 52 4.5 65 1.108 85 

Florida US Wet no Freeze 9 15.7 10 44 1357.1 229 6 66 1.104 85 

Florida US Wet no Freeze 9 15.8 64 45 1243.6 661 3 67 1.104 84 

Florida US Wet no Freeze 9 16.7 6.4 20 1375.9 0 4.8 69 1.104 84 

Florida US Wet no Freeze 9 16.7 13.3 54 1511.4 655 5.3 66.5 1.104 84 

Florida US Wet no Freeze 10 16.8 8 0 1552.8 0 6 63 1.103 84 

Florida US Wet no Freeze 10 16.5 46 80 1340.8 8 4 62.5 1.098 83 

Florida US Wet no Freeze 10 16.5 8.2 29 1003.7 0 5 66 1.093 83 

Florida US Wet no Freeze 10 16.6 34 39 1220.9 0 3.3 70 1.093 83 

Florida US Wet no Freeze 10 16.6 10.3 63 1514.4 417 3.1 70 1.088 83 

Florida US Wet no Freeze 10 16.6 19 54 1691.3 25 2.75 59.5 1.085 83 

Florida US Wet no Freeze 10 16.7 17.9 52 357.5 6 3.25 70 1.081 83 

Florida US Wet no Freeze 11 16.7 8.9 45 1622.8 0 2.9 65.5 1.078 83 

Florida US Wet no Freeze 11 16.4 43.8 0 1049.8 0 5.95 73 1.074 83 

Florida US Wet no Freeze 11 16.4 35 55 679 456 7.1 64 1.074 83 

Florida US Wet no Freeze 11 17.4 143 74 1809.9 7 3 68.5 1.068 83 

Florida US Wet no Freeze 11 17.6 79.5 0 676.4 0 5.4 68 1.064 83 

Florida US Wet no Freeze 11 17.7 27.8 0 1283.3 0 5.3 58 1.064 83 

Florida US Wet no Freeze 11 17.7 3.3 0 1283.3 0 5.8 58 1.062 83 

Florida US Wet no Freeze 11 17.1 14 35 1222.1 47 5 70 1.061 82 

Florida US Wet no Freeze 11 17.1 4 20 1180.4 0 3.1 61.5 1.052 82 

Georgia US Wet no Freeze 12 17.2 8 32 575 0 2.45 59 1.05 82 

Georgia US Wet no Freeze 12 17.3 82 41 1146.3 682 6 54 1.045 82 

Hawaii US Wet no Freeze 12 17.3 28 0 1790.2 0 4.25 67 1.041 82 

Hawaii US Wet no Freeze 12 17.3 8 47 1786 345 4 72 1.008 82 

Hawaii US Wet no Freeze 12 17.3 26.2 44 1786 0 5.5 37 1.005 82 

Hawaii US Wet no Freeze 12 17.3 49 25 1146.3 661 5.35 64.5 1.002 82 
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Hawaii US Wet no Freeze 12 17.4 52 29 1600.2 1 3.2 64 0.998 82 

Hawaii US Wet no Freeze 12 16.8 36 52 1329.8 0 2.5 74 0.994 82 

Hawaii US Wet no Freeze 12 16.8 4 29 573.4 0 5.5 58 0.988 81 

Hawaii US Wet no Freeze 13 17 8.6 0 1590.1 229 2.8 67 0.985 81 

Hawaii US Wet no Freeze 13 17 4 55 1581.4 0 5.8 71 0.97 81 

Hawaii US Wet no Freeze 13 17 6 41 1581.4 25 5.3 71 0.969 81 

Hawaii US Wet no Freeze 13 17 8.6 45 1526.8 274 2.5 75 0.96 80 

Hawaii US Wet no Freeze 13 18.2 106 56 3708.8 229 3 72 0.959 80 

Hawaii US Wet no Freeze 13 18.3 12 25 4661.1 0 4.5 72 0.952 79 

Hawaii US Wet no Freeze 13 18.4 108 48 1172.2 0 5.5 68.5 0.951 78 

Hawaii US Wet no Freeze 13 18.5 31.8 30 1555.8 15 2.6 65 0.949 78 

Hawaii US Wet no Freeze 13 18.5 185 70 4916.9 0 2.75 68 0.948 78 

Mississippi US Wet no Freeze 13 18.6 29.8 66 3397.7 0 3.1 73 0.947 77 

Mississippi US Wet no Freeze 13 18.1 94 20 1441.9 0 4.25 69 0.944 77 

Mississippi US Wet no Freeze 14 18.2 18.2 43 1103 31 6.35 62 0.938 76 

Mississippi US Wet no Freeze 14 18.2 17.7 41 1675.7 373 5.25 70 0.926 76 

Mississippi US Wet no Freeze 14 18.2 45.1 0 1254.8 0 7.8 62 0.918 76 

Mississippi US Wet no Freeze 14 17.8 0.7 53 1268 0 4.5 70 0.912 75 

Mississippi US Wet no Freeze 15 17.8 2.1 53 1268 33 4.2 72 0.906 75 

Mississippi US Wet no Freeze 15 17.9 3 74 1259.6 12 3.1 67 0.906 75 

Mississippi US Wet no Freeze 15 18 124.6 0 950.9 0 5.3 67 0.894 75 

Mississippi US Wet no Freeze 15 18 123 52 464.7 51 4.1 66 0.884 74 

Mississippi US Wet no Freeze 15 18 65.5 32 1439.1 245 2.45 70.5 0.877 74 

Mississippi US Wet no Freeze 15 18.1 0 82 1175.9 256 5.2 61.5 1.366 74 

Mississippi US Wet no Freeze 15 19 9 1 875.2 0 2.8 62.5 1.38 74 

Mississippi US Wet no Freeze 16 19 15 0 875.2 0 3.3 62.5 1.383 74 

Mississippi US Wet no Freeze 16 19.1 2 54 2876.2 18 5.25 69 1.387 74 

Mississippi US Wet no Freeze 16 19.1 0.2 20 1547.9 33 5.1 68 1.393 73 

Mississippi US Wet no Freeze 16 19.2 32 29 1378.8 816 7.5 61.5 1.402 73 

North Carolina US Wet no Freeze 16 19.4 6.3 0 1192.1 0 5.2 69 1.418 73 

North Carolina US Wet no Freeze 16 19.6 9 51 1420.1 345 2.85 62 1.418 73 

North Carolina US Wet no Freeze 16 19.6 3.4 53 1420.1 109 3.15 63 1.422 71 

North Carolina US Wet no Freeze 17 18.6 13 87 1318.9 0 4.1 62.5 1.429 71 

North Carolina US Wet no Freeze 17 18.6 12.7 35 1267.7 109 4.7 69.5 1.433 70 

North Carolina US Wet no Freeze 17 18.7 33 64 1523.6 0 3.7 69.5 1.444 70 

Oklahoma US Wet no Freeze 17 18.7 93 34 1390.5 57 4.5 64 1.45 70 

Oklahoma US Wet no Freeze 17 18.8 20 3 938 0 2.5 65 1.451 70 
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Oklahoma US Wet no Freeze 17 18.9 0.4 63 3644.6 564 4.6 67.5 1.454 70 

Oklahoma US Wet no Freeze 17 18.9 15 41 4053.6 91 4 69 1.455 70 

Oklahoma US Wet no Freeze 17 18.6 20 55 1235.6 77 7 61.5 1.455 70 

Oklahoma US Wet no Freeze 17 20.4 71.4 51 1480.9 0 5.15 68 1.456 68 

Oklahoma US Wet no Freeze 17 20.4 0.6 41 1480.9 91 3.8 63.5 1.46 68 

Oklahoma US Wet no Freeze 17 20.7 12 0 2774.4 0 3.95 71 1.461 68 

Oklahoma US Wet no Freeze 17 20.8 172 63 2210.6 0 2.5 43.5 1.474 68 

Oklahoma US Wet no Freeze 18 20.9 22.3 63 1920.6 0 4.6 68 1.484 68 

Oklahoma US Wet no Freeze 18 20 55 46 1501.3 0 5.75 61.5 1.491 68 

Oklahoma US Wet no Freeze 18 20 5.8 73 1501.3 0 7.1 68 1.499 68 

Oklahoma US Wet no Freeze 18 20.1 73 74 1156.5 209 6.25 65.5 1.506 68 

Oklahoma US Wet no Freeze 18 20.1 158 64 1156.5 95 5.8 60.5 1.508 68 

Oklahoma US Wet no Freeze 18 20.1 1 20 1497.7 816 2.5 68 1.514 68 

Oklahoma US Wet no Freeze 18 20.1 80 36 1497.7 682 3.3 68 1.517 68 

Oklahoma US Wet no Freeze 19 20.2 42.3 0 1162.1 0 6 68 1.529 68 

Oklahoma US Wet no Freeze 19 19.6 42 33 1048.7 0 3.25 64.5 1.57 68 

Oklahoma US Wet no Freeze 19 19.8 81 37 1451.8 254 6 70 1.584 67 

Oklahoma US Wet no Freeze 19 19.8 7 66 1451.8 419 5.5 67 1.589 65 

Oklahoma US Wet no Freeze 19 19.9 8 0 695.1 0 3.1 68 1.616 65 

Oklahoma US Wet no Freeze 19 21.8 11 41 1420.2 28 7.8 62.5 1.619 65 

Oklahoma US Wet no Freeze 19 21.9 113 66 986.1 0 5.25 54 1.633 65 

Oklahoma US Wet no Freeze 19 22 10 65 1024.4 916 4 67 1.64 63 

Oklahoma US Wet no Freeze 19 22.1 51 35 1151.8 6 4.5 72.5 1.662 63 

South Carolina US Wet no Freeze 20 22.2 9.5 48 1474.9 548 4.4 70 1.674 63 

South Carolina US Wet no Freeze 20 22.3 7.3 0 732.1 0 5.8 69 1.689 62 

South Carolina US Wet no Freeze 20 22.4 39 41 1890.5 0 4.5 74 1.693 62 

South Carolina US Wet no Freeze 20 22.5 11 46 1077.3 6 3.5 61.5 1.735 62 

South Carolina US Wet no Freeze 20 22.5 7.2 51 1163.9 15 6 62 1.791 62 

South Carolina US Wet no Freeze 20 21.5 1 55 1516.1 415 6 68 1.805 61 

South Carolina US Wet no Freeze 20 21.5 107 74 1041.7 0 2.5 68 1.807 61 

South Carolina US Wet no Freeze 21 21.5 6 3 725.3 0 3.1 70 1.85 60 

South Carolina US Wet no Freeze 21 21.6 19 5 886.1 0 4.5 65.5 1.858 60 

South Carolina US Wet no Freeze 21 21.6 0.7 0 886.1 0 4.9 65.5 1.859 60 

South Carolina US Wet no Freeze 21 21.7 44 32 1195.8 8 6 70.5 1.867 59 

South Carolina US Wet no Freeze 21 21.7 61.5 87 965.5 0 5.3 67 1.868 59 

South Carolina US Wet no Freeze 21 21.1 85 29 1213.9 373 3 67 1.87 59 

South Carolina US Wet no Freeze 21 21.1 17.9 54 2227.5 268 2.5 67.5 1.875 58 
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South Carolina US Wet no Freeze 21 21.2 16 20 1107.2 91 6.8 62.5 1.875 58 

South Carolina US Wet no Freeze 21 21.4 10 66 2620.7 736 4.25 69 1.932 57 

Tennessee US Wet no Freeze 21 22.8 61 41 1145.6 31 5.25 69 1.946 57 

Tennessee US Wet no Freeze 21 22.9 29 65 1401.6 18 6 64 1.954 56 

Tennessee US Wet no Freeze 22 23.1 71 29 1480 456 2.75 67 1.981 56 

Tennessee US Wet no Freeze 22 23.2 19 73 1663.6 0 4.85 63.5 1.99 55 

Tennessee US Wet no Freeze 22 23.5 57 43 908.7 0 4.5 64.5 1.993 53 

Tennessee US Wet no Freeze 22 23.6 4.1 53 1461.7 109 4.25 77 1.994 52 

Tennessee US Wet no Freeze 22 23.6 3 35 1268.7 0 5.25 69.5 2.006 45 

Texas US Wet no Freeze 22 22.7 5.9 48 1182.4 0 3.1 68.5 2.013 40 

Texas US Wet no Freeze 22 22.8 28 0 765 0 4.2 67.5 2.031 40 

Texas US Wet no Freeze 22 24.1 56.7 35 979.3 0 3.35 69.5 2.038 38 

Texas US Wet no Freeze 23 24.1 19 74 1287 0 6.7 68 2.053 36 

Texas US Wet no Freeze 23 24.3 21.2 48 1589.1 32 6.1 62.5 2.053 35 

Texas US Wet no Freeze 23 24.6 60 70 895.5 781 5.4 59.5 2.078 34 

Texas US Wet no Freeze 24 24 43 51 1661 0 5.4 70 2.094 32 

Texas US Wet no Freeze 24 24.1 6 15 897.9 0 3.2 69.5 2.103 30 

Texas US Wet no Freeze 25 23.8 0.7 30 992.8 0 4.25 65.5 2.125 29 

Texas US Wet no Freeze 25 23.8 94.2 41 954.6 373 3.75 69 2.135 27 

Texas US Wet no Freeze 25 23.9 3 53 1167.1 0 6.2 63 2.14 24 

Texas US Wet no Freeze 25 23.7 10 71 792.7 682 4 66 2.169 24 

Texas US Wet no Freeze 26 24.7 21.7 64 977.7 77 3.6 67 2.246 23 

Texas US Wet no Freeze 26 24.6 38.1 46 1377.4 6 6.25 68.5 2.322 23 

Texas US Wet no Freeze 26 24.6 43 87 1123.1 91 3.7 63 2.322 22 

Texas US Wet no Freeze 26 24.7 3.4 32 1420.2 615 5.5 67.5 2.337 20 

Texas US Wet no Freeze 27 24.7 13 41 1166.3 109 3.8 69.5 2.385 19 

Texas US Wet no Freeze 27 24.8 21 56 918 0 3 62 2.388 19 

Texas US Wet no Freeze 27 24.9 5 35 1064.9 0 3.1 69.5 2.526 19 

Texas US Wet no Freeze 28 25.2 1 50 743.9 102 3.75 61.5 2.54 19 

Texas US Wet no Freeze 28 25 1 0 941.1 0 4 66 2.614 18 

Texas US Wet no Freeze 28 25 69 23 1397.9 0 4 59 2.626 18 

Texas US Wet no Freeze 29 25 4 20 959.6 0 4.1 60.5 2.782 18 

Texas US Wet no Freeze 31 25.5 5 84 1153.1 373 4.5 65 2.868 15 

Texas US Wet no Freeze 31 25.5 50.8 74 1377.5 425 2.65 62.5 3.543 8 

Texas US Wet no Freeze 31 25.6 10 1 963.6 0 4 64.5 3.758 8 
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Table A-3: Presents the Traffic volume data of each section with PCI AND IRI in  the U.S. and Canada. 
State /Province Country Climate regions AGE ESAL AADTT AADT IRI PCI 

Washington US DRY Freeze 6 6844 46 16790 1.488 72 

Washington US DRY Freeze 7 6888 53 19398 1.08 69 

Washington US DRY Freeze 8 6913 54 19710 1.331 71 

Washington US DRY Freeze 15 5325 42 15330 1.015 70 

Washington US DRY Freeze 13 7616 53 6466 1.559 80 

Washington US DRY Freeze 13 9975 77 28105 0.989 68 

Washington US DRY Freeze 11 7074 56 20440 1.14 65 

Washington US DRY Freeze 10 5044 41 14965 0.888 64 

Washington US DRY Freeze 9 47446 182 66430 1.692 60 

Washington US DRY Freeze 9 7300 57 20805 1.469 59 

Washington US DRY Freeze 8 6957 55 20075 1.145 58 

Wyoming US DRY Freeze 17 47803 183 66978 0.908 55 

Wyoming US DRY Freeze 17 43304 167 60955 0.906 55 

Wyoming US DRY Freeze 18 41420 160 24320 1.5 52 

California US DRY no Freeze 32 85797 426 155490 0.819 100 

California US DRY no Freeze 30 6028 16 5856 0.781 100 

California US DRY no Freeze 29 739530 1938 591090 1.606 100 

California US DRY no Freeze 27 720372 2865 263580 1.408 100 

California US DRY no Freeze 25 5000 15 5475 2.379 100 

California US DRY no Freeze 24 57728 166 60590 0.765 80 

California US DRY no Freeze 23 59670 165 60225 0.683 95 

California US DRY no Freeze 23 26455 154 56210 0.735 63 

California US DRY no Freeze 21 156578 381 139065 0.754 92 

California US DRY no Freeze 21 18155 953 347845 0.782 61 

California US DRY no Freeze 20 718404 2865 1045725 0.783 62 

California US DRY no Freeze 20 36000 202 73730 0.817 90 

California US DRY no Freeze 19 95010 330 120780 0.82 88 

California US DRY no Freeze 19 23520 496 38192 0.823 87 

California US DRY no Freeze 19 33921 200 73200 0.828 83 

Hawaii US DRY no Freeze 18 42555 208 75920 0.835 80 

Hawaii US DRY no Freeze 18 91489 309 113094 0.848 80 

Hawaii US DRY no Freeze 18 46920 139 46704 0.855 75 

Hawaii US DRY no Freeze 18 139437 689 251485 0.874 74 

Hawaii US DRY no Freeze 17 1028796 2237 816505 1.321 74 

Hawaii US DRY no Freeze 17 67105 194 70810 1.408 73 
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Hawaii US DRY no Freeze 17 40000 55 20130 1.418 72 

Hawaii US DRY no Freeze 16 57856 167 60955 1.434 70 

Hawaii US DRY no Freeze 16 13954 37 13505 1.434 66 

Hawaii US DRY no Freeze 16 528717 2106 768690 1.473 65 

Hawaii US DRY no Freeze 15 21243 49 17885 1.528 63 

Hawaii US DRY no Freeze 15 32127 187 68255 1.544 61 

Hawaii US DRY no Freeze 15 440321 1752 639480 1.613 57 

Hawaii US DRY no Freeze 15 26000 84 30660 1.636 56 

Hawaii US DRY no Freeze 13 95570 309 113094 1.653 55 

Hawaii US DRY no Freeze 13 570867 2278 831470 1.67 55 

New Mexico US DRY no Freeze 13 115252 354 129210 1.838 52 

New Mexico US DRY no Freeze 13 70938 270 98820 2.113 69 

New Mexico US DRY no Freeze 13 67518 172 62780 2.318 68 

New Mexico US DRY no Freeze 13 12585 31 11315 2.332 70 

New Mexico US DRY no Freeze 12 179040 452 164980 2.362 55 

New Mexico US DRY no Freeze 11 183332 909 331785 2.404 81 

New Mexico US DRY no Freeze 11 181861 459 167535 2.412 70 

New Mexico US DRY no Freeze 11 158008 373 136145 2.42 54 

New Mexico US DRY no Freeze 11 44000 229 83585 2.425 66 

New Mexico US DRY no Freeze 11 123355 612 223380 2.441 67 

New Mexico US DRY no Freeze 11 4851 11 4015 2.464 67 

New Mexico US DRY no Freeze 10 754004 3000 1098000 2.497 67 

New Mexico US DRY no Freeze 10 1028796 2237 816505 2.5 74 

New Mexico US DRY no Freeze 10 33284 197 71905 2.525 62 

New Mexico US DRY no Freeze 9 194089 490 178850 2.662 59 

New Mexico US DRY no Freeze 9 86049 297 108405 0.925 59 

New Mexico US DRY no Freeze 9 109000 481 175565 0.856 58 

New Mexico US DRY no Freeze 9 889578 3538 1294908 1.369 58 

New Mexico US DRY no Freeze 9 40000 252 92232 1.396 82 

New Mexico US DRY no Freeze 7 807427 3216 1173840 1.012 58 

New Mexico US DRY no Freeze 7 29000 157 57305 0.857 58 

New Mexico US DRY no Freeze 7 751944 3000 1095000 1.31 58 

New Mexico US DRY no Freeze 7 119267 594 216810 1.183 57 

New Mexico US DRY no Freeze 7 1085824 2361 861765 0.88 55 

New Mexico US DRY no Freeze 6 43646 214 78324 0.877 56 

New Mexico US DRY no Freeze 5 48585 138 50370 0.862 61 

New Mexico US DRY no Freeze 5 38000 210 76650 0.887 91 
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New Mexico US DRY no Freeze 3 78000 239 87474 0.925 50 

Idaho US Wet Freeze 3 116880 468 170820 4.005 8 

Idaho US Wet Freeze 4 128000 567 206955 3.659 10 

Idaho US Wet Freeze 4 82000 375 137250 3.519 10 

Idaho US Wet Freeze 4 411658 1320 481800 3.308 12 

Idaho US Wet Freeze 4 32534 160 58560 3.251 15 

Maine US Wet Freeze 5 76000 262 95630 3.116 22 

Idaho US Wet Freeze 5 68948 195 71175 3.112 23 

Idaho US Wet Freeze 5 247218 1178 429970 2.967 27 

Illinois US Wet Freeze 5 285000 776 283240 2.275 40 

Maine US Wet Freeze 5 75000 224 81760 2.183 43 

Michigan US Wet Freeze 5 45000 187 68442 1.985 44 

Michigan US Wet Freeze 5 69058 220 80300 1.929 50 

Michigan US Wet Freeze 5 73361 480 175200 1.929 52 

Missouri US Wet Freeze 6 52000 207 75762 1.863 52 

Michigan US Wet Freeze 6 17527 126 45990 1.775 52 

Michigan US Wet Freeze 6 244112 760 277400 1.754 55 

Michigan US Wet Freeze 6 40000 217 79205 1.742 55 

Idaho US Wet Freeze 6 79690 212 77380 1.7 58 

Idaho US Wet Freeze 6 75515 199 72635 1.691 58 

Idaho US Wet Freeze 7 61816 290 105850 1.649 59 

Michigan US Wet Freeze 7 70314 224 81760 1.526 60 

Maine US Wet Freeze 7 115000 525 191625 1.526 61 

Michigan US Wet Freeze 7 119811 480 72960 1.509 62 

Michigan US Wet Freeze 7 64576 172 62780 1.501 66 

Missouri US Wet Freeze 8 358207 1150 419750 1.485 66 

Idaho US Wet Freeze 8 99327 395 144175 1.473 67 

Idaho US Wet Freeze 8 265640 1254 457710 1.473 67 

Idaho US Wet Freeze 8 449377 1437 524505 1.458 68 

Idaho US Wet Freeze 8 48454 188 68620 1.457 68 

Missouri US Wet Freeze 9 53564 151 55115 1.457 68 

Missouri US Wet Freeze 9 576006 1843 672695 1.445 69 

Maine US Wet Freeze 9 111602 446 162790 1.441 69 

Missouri US Wet Freeze 9 207420 644 235704 1.433 69 

Maine US Wet Freeze 9 557444 1782 652212 1.416 69 

Missouri US Wet Freeze 10 72646 189 46116 1.399 69 

Maine US Wet Freeze 10 142000 450 164250 1.357 70 
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Maine US Wet Freeze 10 35000 158 57828 1.309 70 

Illinois US Wet Freeze 10 79795 214 78324 1.293 70 

Missouri US Wet Freeze 10 88762 282 103212 1.278 71 

Missouri US Wet Freeze 10 355999 1914 698610 1.274 72 

Maine US Wet Freeze 10 363255 1700 620500 1.274 72 

Missouri US Wet Freeze 11 96000 290 105850 1.269 74 

Michigan US Wet Freeze 11 69445 450 164250 1.257 74 

Missouri US Wet Freeze 11 60718 220 80300 1.249 75 

Michigan US Wet Freeze 11 38000 208 75920 1.247 75 

Newfoundland Canada Wet Freeze 11 274319 1250 456250 1.247 76 

Newfoundland Canada Wet Freeze 11 111602 446 162790 1.242 76 

Newfoundland Canada Wet Freeze 11 87439 564 53580 1.242 76 

Missouri US Wet Freeze 11 82000 375 136875 1.235 76 

Newfoundland Canada Wet Freeze 12 58586 210 76860 1.235 77 

New Jersey US Wet Freeze 12 39000 212 77380 1.233 77 

New Jersey US Wet Freeze 12 89000 405 148230 1.23 77 

Missouri US Wet Freeze 12 92000 348 127020 1.229 77 

Newfoundland Canada Wet Freeze 12 67139 469 171654 1.222 78 

Illinois US Wet Freeze 13 91659 292 106580 1.216 78 

New Jersey US Wet Freeze 13 326409 1609 587285 1.202 79 

New Jersey US Wet Freeze 13 31167 130 47450 1.197 79 

New Jersey US Wet Freeze 13 399412 1280 467200 1.197 80 

Newfoundland Canada Wet Freeze 13 379224 1210 442860 1.196 81 

Illinois US Wet Freeze 14 53000 286 104390 1.19 81 

Newfoundland Canada Wet Freeze 14 55046 155 56575 1.177 81 

New Jersey US Wet Freeze 14 354698 1615 591090 1.176 81 

Illinois US Wet Freeze 14 107000 330 120780 1.174 81 

Illinois US Wet Freeze 14 239049 1167 425955 1.167 82 

New Jersey US Wet Freeze 14 143255 446 162790 1.151 82 

Illinois US Wet Freeze 14 527140 1690 616850 1.13 83 

Montana US Wet Freeze 14 47000 247 90402 1.127 83 

New Jersey US Wet Freeze 15 61737 168 61488 1.123 83 

Montana US Wet Freeze 15 377683 1860 680760 1.116 83 

New Jersey US Wet Freeze 15 76000 338 123370 1.116 84 

New Jersey US Wet Freeze 15 102000 465 169725 1.082 84 

Montana US Wet Freeze 15 313696 1430 521950 1.078 84 

New Jersey US Wet Freeze 15 105518 420 153720 1.074 84 
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Montana US Wet Freeze 15 210707 656 239440 1.073 84 

New Jersey US Wet Freeze 15 361781 1160 423400 1.063 84 

Michigan US Wet Freeze 15 226712 1146 418290 1.058 84 

Montana US Wet Freeze 15 260840 1190 434350 1.051 84 

New Jersey US Wet Freeze 15 396627 1270 463550 1.043 85 

Vermont US Wet Freeze 16 163000 473 172645 1.039 85 

Montana US Wet Freeze 16 154000 705 257325 1.038 85 

Montana US Wet Freeze 16 76000 305 111325 1.031 86 

Montana US Wet Freeze 16 122881 657 239805 1.031 86 

Vermont US Wet Freeze 17 91000 379 138335 1.031 87 

Illinois US Wet Freeze 17 100474 602 219730 1.03 87 

Montana US Wet Freeze 17 41132 200 73000 1.028 87 

Montana US Wet Freeze 17 114847 457 167262 1.025 87 

Vermont US Wet Freeze 17 108752 435 158775 1.02 87 

Vermont US Wet Freeze 17 79000 248 90768 1.02 87 

Michigan US Wet Freeze 17 117000 404 147460 1.018 88 

Michigan US Wet Freeze 17 478022 1530 558450 1.004 88 

Vermont US Wet Freeze 17 146456 586 213890 0.999 88 

Vermont US Wet Freeze 17 190000 597 217905 0.996 89 

Vermont US Wet Freeze 17 182000 565 206225 0.98 89 

Vermont US Wet Freeze 17 83664 483 176778 0.973 89 

Vermont US Wet Freeze 18 157388 490 178850 0.965 89 

Vermont US Wet Freeze 18 70628 225 82125 0.961 89 

Montana US Wet Freeze 18 102018 325 118625 0.954 90 

Illinois US Wet Freeze 18 201071 626 228490 0.946 90 

Vermont US Wet Freeze 18 118752 474 173484 0.942 90 

Michigan US Wet Freeze 18 141000 402 147132 0.942 91 

Vermont US Wet Freeze 18 106616 424 154760 0.942 91 

Vermont US Wet Freeze 19 561114 1799 242865 0.939 91 

Illinois US Wet Freeze 19 116880 468 170820 0.927 92 

Michigan US Wet Freeze 19 303828 1380 505080 0.924 92 

Illinois US Wet Freeze 19 58000 205 74825 0.923 92 

Vermont US Wet Freeze 19 45964 170 62050 0.906 92 

Vermont US Wet Freeze 19 158030 492 179580 0.904 92 

Illinois US Wet Freeze 19 169000 528 193248 0.899 92 

Vermont US Wet Freeze 19 72190 200 73000 0.898 92 

Michigan US Wet Freeze 20 174000 530 193450 0.892 92 
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Vermont US Wet Freeze 20 75542 240 87840 0.892 92 

Michigan US Wet Freeze 20 123386 392 143472 0.864 93 

Vermont US Wet Freeze 20 84165 542 197830 0.863 93 

Vermont US Wet Freeze 20 16151 80 29200 0.859 93 

Michigan US Wet Freeze 20 19520 98 21756 0.859 93 

Vermont US Wet Freeze 20 278400 1269 463185 0.845 93 

Vermont US Wet Freeze 21 119282 380 138700 0.835 93 

Vermont US Wet Freeze 21 69058 220 80300 0.822 93 

Vermont US Wet Freeze 21 50000 202 73730 0.819 93 

Indiana US Wet Freeze 21 60805 172 62780 0.819 93 

Vermont US Wet Freeze 21 34485 184 67160 0.81 94 

Michigan US Wet Freeze 22 232000 633 231045 0.808 94 

Minnesota US Wet Freeze 22 65481 299 109135 0.805 94 

Indiana US Wet Freeze 22 48000 217 79205 0.803 94 

Indiana US Wet Freeze 22 234450 1149 419385 0.796 94 

Newfoundland Canada Wet Freeze 22 343282 1592 581080 0.796 94 

Minnesota US Wet Freeze 23 73391 481 175565 0.792 94 

Newfoundland Canada Wet Freeze 24 15432 78 28470 0.787 94 

Minnesota US Wet Freeze 25 125210 668 142284 0.786 94 

Indiana US Wet Freeze 26 420395 1343 491538 0.785 95 

Minnesota US Wet Freeze 26 94798 302 110230 0.77 95 

Illinois US Wet Freeze 26 80672 257 93805 0.757 95 

Minnesota US Wet Freeze 26 52677 195 32175 0.756 95 

Illinois US Wet Freeze 26 579222 1854 676710 0.753 95 

Michigan US Wet Freeze 26 48089 167 60955 0.751 95 

Indiana US Wet Freeze 26 253309 1189 435174 0.75 95 

Newfoundland Canada Wet Freeze 27 141000 645 236070 0.744 95 

Indiana US Wet Freeze 28 17272 82 30012 0.734 95 

Newfoundland Canada Wet Freeze 28 108500 433 158045 0.732 95 

Alabama US Wet no Freeze 1 14582 85 31025 0.621 100 

Alabama US Wet no Freeze 1 74419 235 86010 0.627 100 

Alabama US Wet no Freeze 1 163000 472 172280 0.641 100 

Alabama US Wet no Freeze 1 266000 991 361715 0.646 100 

Alabama US Wet no Freeze 3 22707 173 61415 0.653 100 

Alabama US Wet no Freeze 3 195000 413 150745 0.67 100 

Alabama US Wet no Freeze 3 69941 224 81760 0.7 100 
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Alabama US Wet no Freeze 4 69941 224 81760 0.702 100 

Alabama US Wet no Freeze 4 24375 146 53290 0.713 100 

Alabama US Wet no Freeze 4 43610 253 92345 0.716 100 

Alabama US Wet no Freeze 5 29000 148 54020 0.717 100 

Alabama US Wet no Freeze 5 62000 208 75920 0.72 100 

Alabama US Wet no Freeze 5 141752 493 180438 0.735 100 

Alabama US Wet no Freeze 5 52257 256 93696 0.735 100 

Alabama US Wet no Freeze 5 115552 410 149650 0.749 100 

Alabama US Wet no Freeze 5 26192 92 33580 0.778 100 

Arkansas US Wet no Freeze 5 50399 94 34310 0.785 100 

Arkansas US Wet no Freeze 5 73000 193 70445 0.796 100 

Arkansas US Wet no Freeze 6 376914 1529 558085 0.8 100 

Arkansas US Wet no Freeze 6 136328 498 181770 0.811 100 

Arkansas US Wet no Freeze 6 59000 121 44165 0.813 100 

Arkansas US Wet no Freeze 6 76500 295 81420 0.815 100 

Arkansas US Wet no Freeze 6 453000 1338 488370 0.825 100 

Arkansas US Wet no Freeze 6 78537 291 106215 0.834 100 

California US Wet no Freeze 6 10654 83 30378 0.84 96 

California US Wet no Freeze 6 411000 1208 440920 0.847 90 

California US Wet no Freeze 6 797000 3035 1107775 0.847 89 

California US Wet no Freeze 6 65985 210 76650 0.869 89 

California US Wet no Freeze 7 43187 210 76650 0.871 89 

California US Wet no Freeze 7 24742 254 92964 1.364 89 

California US Wet no Freeze 7 44180 491 179215 1.363 88 

California US Wet no Freeze 7 30000 97 35405 1.352 88 

California US Wet no Freeze 7 48876 206 75396 1.352 88 

California US Wet no Freeze 7 48866 244 89060 1.352 88 

California US Wet no Freeze 7 110599 214 78110 1.319 88 

Florida US Wet no Freeze 7 28178 324 118260 1.302 88 

Florida US Wet no Freeze 7 81070 346 126290 1.287 87 

Florida US Wet no Freeze 7 117000 386 140890 1.269 87 

Florida US Wet no Freeze 7 30000 92 33580 1.267 87 
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Florida US Wet no Freeze 7 70133 224 81984 1.249 87 

Florida US Wet no Freeze 7 15374 54 19710 1.246 87 

Florida US Wet no Freeze 7 566150 3219 788655 1.196 87 

Florida US Wet no Freeze 7 94670 304 110960 1.176 87 

Florida US Wet no Freeze 8 293053 1022 374052 1.164 87 

Florida US Wet no Freeze 8 72365 307 112055 1.154 87 

Florida US Wet no Freeze 8 80231 298 108770 1.15 86 

Florida US Wet no Freeze 8 63000 219 79935 1.15 86 

Florida US Wet no Freeze 8 36000 146 53436 1.136 86 

Florida US Wet no Freeze 9 107000 354 129564 1.123 86 

Florida US Wet no Freeze 9 58758 297 108405 1.12 86 

Florida US Wet no Freeze 9 41966 147 53802 1.113 85 

Florida US Wet no Freeze 9 711000 2360 861400 1.11 85 

Florida US Wet no Freeze 9 22926 264 96360 1.108 85 

Florida US Wet no Freeze 9 455359 1713 625245 1.108 85 

Florida US Wet no Freeze 9 52000 169 61685 1.104 85 

Florida US Wet no Freeze 9 89000 145 52925 1.104 84 

Florida US Wet no Freeze 9 326211 1149 419385 1.104 84 

Florida US Wet no Freeze 9 138587 251 91615 1.104 84 

Florida US Wet no Freeze 10 58300 171 62586 1.103 84 

Florida US Wet no Freeze 10 92496 296 108336 1.098 83 

Florida US Wet no Freeze 10 308000 1146 419436 1.093 83 

Florida US Wet no Freeze 10 47570 220 80300 1.093 83 

Florida US Wet no Freeze 10 361814 1373 501145 1.088 83 

Florida US Wet no Freeze 10 773000 2946 1075290 1.085 83 

Florida US Wet no Freeze 10 91557 177 21948 1.081 83 

Florida US Wet no Freeze 11 73000 267 97455 1.078 83 

Florida US Wet no Freeze 11 40981 199 72834 1.074 83 

Florida US Wet no Freeze 11 40402 198 72270 1.074 83 

Florida US Wet no Freeze 11 71080 223 81395 1.068 83 

Florida US Wet no Freeze 11 60000 209 76494 1.064 83 

Florida US Wet no Freeze 11 39305 215 78690 1.064 83 
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Florida US Wet no Freeze 11 382594 1346 492636 1.062 83 

Florida US Wet no Freeze 11 58800 465 70680 1.061 82 

Florida US Wet no Freeze 11 648000 2467 900455 1.052 82 

Georgia US Wet no Freeze 12 30999 351 128115 1.05 82 

Georgia US Wet no Freeze 12 84552 297 108405 1.045 82 

Hawaii US Wet no Freeze 12 21000 87 31755 1.041 82 

Hawaii US Wet no Freeze 12 18892 81 29565 1.008 82 

Hawaii US Wet no Freeze 12 92706 285 104025 1.005 82 

Hawaii US Wet no Freeze 12 88461 224 81760 1.002 82 

Hawaii US Wet no Freeze 12 58000 211 77015 0.998 82 

Hawaii US Wet no Freeze 12 74000 316 115340 0.994 82 

Hawaii US Wet no Freeze 12 203670 744 271560 0.988 81 

Hawaii US Wet no Freeze 13 184000 608 222528 0.985 81 

Hawaii US Wet no Freeze 13 448000 1334 486910 0.97 81 

Hawaii US Wet no Freeze 13 22557 126 45990 0.969 81 

Hawaii US Wet no Freeze 13 43466 490 179340 0.96 80 

Hawaii US Wet no Freeze 13 27167 109 39785 0.959 80 

Hawaii US Wet no Freeze 13 62934 222 40182 0.952 79 

Hawaii US Wet no Freeze 13 37489 169 61854 0.951 78 

Hawaii US Wet no Freeze 13 60320 173 63145 0.949 78 

Hawaii US Wet no Freeze 13 125000 326 118990 0.948 78 

Mississippi US Wet no Freeze 13 114840 461 168726 0.947 77 

Mississippi US Wet no Freeze 13 18060 188 28576 0.944 77 

Mississippi US Wet no Freeze 14 188000 526 192516 0.938 76 

Mississippi US Wet no Freeze 14 69941 224 81760 0.926 76 

Mississippi US Wet no Freeze 14 72000 134 49044 0.918 76 

Mississippi US Wet no Freeze 14 56000 193 70445 0.912 75 

Mississippi US Wet no Freeze 15 53684 264 96360 0.906 75 

Mississippi US Wet no Freeze 15 43913 187 68255 0.906 75 

Mississippi US Wet no Freeze 15 30396 344 125904 0.894 75 

Mississippi US Wet no Freeze 15 213000 572 208780 0.884 74 

Mississippi US Wet no Freeze 15 361168 1273 464645 0.877 74 
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Mississippi US Wet no Freeze 15 48476 186 67890 1.366 74 

Mississippi US Wet no Freeze 15 25000 81 29565 1.38 74 

Mississippi US Wet no Freeze 16 70346 298 108770 1.383 74 

Mississippi US Wet no Freeze 16 43559 153 55845 1.387 74 

Mississippi US Wet no Freeze 16 45870 209 76285 1.393 73 

Mississippi US Wet no Freeze 16 68000 229 83585 1.402 73 

North Carolina US Wet no Freeze 16 26000 82 30012 1.418 73 

North Carolina US Wet no Freeze 16 208324 761 277765 1.418 73 

North Carolina US Wet no Freeze 16 114000 375 136875 1.422 71 

North Carolina US Wet no Freeze 17 729000 2777 1013605 1.429 71 

North Carolina US Wet no Freeze 17 362649 837 305505 1.433 70 

North Carolina US Wet no Freeze 17 34715 178 64970 1.444 70 

Oklahoma US Wet no Freeze 17 13049 96 35040 1.45 70 

Oklahoma US Wet no Freeze 17 77409 248 90520 1.451 70 

Oklahoma US Wet no Freeze 17 453555 1701 622566 1.454 70 

Oklahoma US Wet no Freeze 17 119205 511 186515 1.455 70 

Oklahoma US Wet no Freeze 17 38000 144 52560 1.455 70 

Oklahoma US Wet no Freeze 17 89341 287 104755 1.456 68 

Oklahoma US Wet no Freeze 17 176900 1305 279270 1.46 68 

Oklahoma US Wet no Freeze 17 294000 557 203862 1.461 68 

Oklahoma US Wet no Freeze 17 22261 258 94170 1.474 68 

Oklahoma US Wet no Freeze 18 84479 355 129575 1.484 68 

Oklahoma US Wet no Freeze 18 82035 149 54534 1.491 68 

Oklahoma US Wet no Freeze 18 88912 165 49335 1.499 68 

Oklahoma US Wet no Freeze 18 329712 1240 452600 1.506 68 

Oklahoma US Wet no Freeze 18 133199 259 94535 1.508 68 

Oklahoma US Wet no Freeze 18 367522 1383 504795 1.514 68 

Oklahoma US Wet no Freeze 18 70980 449 69146 1.517 68 

Oklahoma US Wet no Freeze 19 73156 307 112362 1.529 68 

Oklahoma US Wet no Freeze 19 31547 357 130305 1.57 68 

Oklahoma US Wet no Freeze 19 41282 237 15642 1.584 67 

Oklahoma US Wet no Freeze 19 55020 433 65816 1.589 65 
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Oklahoma US Wet no Freeze 19 73840 262 95630 1.616 65 

Oklahoma US Wet no Freeze 19 19345 224 81760 1.619 65 

Oklahoma US Wet no Freeze 19 465550 1753 639845 1.633 65 

Oklahoma US Wet no Freeze 19 329015 1238 451870 1.64 63 

Oklahoma US Wet no Freeze 19 402194 1322 482530 1.662 63 

South Carolina US Wet no Freeze 20 43986 214 78110 1.674 63 

South Carolina US Wet no Freeze 20 667000 2541 930006 1.689 62 

South Carolina US Wet no Freeze 20 676000 2275 830375 1.693 62 

South Carolina US Wet no Freeze 20 40979 179 65335 1.735 62 

South Carolina US Wet no Freeze 20 22000 139 50874 1.791 62 

South Carolina US Wet no Freeze 20 95196 327 119355 1.805 61 

South Carolina US Wet no Freeze 20 42763 208 75920 1.807 61 

South Carolina US Wet no Freeze 21 88520 671 244915 1.85 60 

South Carolina US Wet no Freeze 21 176000 745 272670 1.858 60 

South Carolina US Wet no Freeze 21 23966 130 47580 1.859 60 

South Carolina US Wet no Freeze 21 438406 1773 648918 1.867 59 

South Carolina US Wet no Freeze 21 111000 364 132860 1.868 59 

South Carolina US Wet no Freeze 21 471540 1706 622690 1.87 59 

South Carolina US Wet no Freeze 21 411230 803 139722 1.875 58 

South Carolina US Wet no Freeze 21 78077 323 117895 1.875 58 

South Carolina US Wet no Freeze 21 34956 162 59130 1.932 57 

Tennessee US Wet no Freeze 21 386430 1448 529968 1.946 57 

Tennessee US Wet no Freeze 21 55641 272 99280 1.954 56 

Tennessee US Wet no Freeze 22 146135 246 89790 1.981 56 

Tennessee US Wet no Freeze 22 148810 510 186150 1.99 55 

Tennessee US Wet no Freeze 22 54290 207 75555 1.993 53 

Tennessee US Wet no Freeze 22 79000 289 105485 1.994 52 

Tennessee US Wet no Freeze 22 130000 449 163885 2.006 45 

Texas US Wet no Freeze 22 69941 224 81760 2.013 40 

Texas US Wet no Freeze 22 49968 155 56575 2.031 40 

Texas US Wet no Freeze 22 65000 198 72270 2.038 38 

Texas US Wet no Freeze 23 165330 1376 166496 2.053 36 



 

 

 

 

 34 

Texas US Wet no Freeze 23 115000 380 138700 2.053 35 

Texas US Wet no Freeze 23 44515 203 74095 2.078 34 

Texas US Wet no Freeze 24 91133 321 117165 2.094 32 

Texas US Wet no Freeze 24 5880 81 12555 2.103 30 

Texas US Wet no Freeze 25 338382 1052 385032 2.125 29 

Texas US Wet no Freeze 25 61000 168 61320 2.135 27 

Texas US Wet no Freeze 25 363870 714 261324 2.14 24 

Texas US Wet no Freeze 25 172134 699 255135 2.169 24 

Texas US Wet no Freeze 26 708000 2696 984040 2.246 23 

Texas US Wet no Freeze 26 50965 249 90885 2.322 23 

Texas US Wet no Freeze 26 41866 203 74095 2.322 22 

Texas US Wet no Freeze 26 76000 278 101470 2.337 20 

Texas US Wet no Freeze 27 187245 684 249660 2.385 19 

Texas US Wet no Freeze 27 76248 347 126655 2.388 19 

Texas US Wet no Freeze 27 248422 905 331230 2.526 19 

Texas US Wet no Freeze 28 159282 647 236155 2.54 19 

Texas US Wet no Freeze 28 109803 350 127750 2.614 18 

Texas US Wet no Freeze 28 39343 230 83950 2.626 18 

Texas US Wet no Freeze 29 36344 154 56364 2.782 18 

Texas US Wet no Freeze 31 35274 153 55845 2.868 15 

Texas US Wet no Freeze 31 86684 366 133590 3.543 8 

Texas US Wet no Freeze 31 363865 1282 467930 3.758 8 
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Appendix B: Data Extraction (St. John’s city- Canada) 

Table B-1: Presents the data from TotalPave (St. John’s city- Canada). 
Road Name IRI 2018(m/km) IRI 2021(m/km) Length of section(m) 

TRANS CANADA HWY  1.03 1.32 1000.00 

TRANS CANADA HWY  0.91 1.19 1000.00 

TRANS CANADA HWY  1.22 0.83 1000.00 

TRANS CANADA HWY  1.17 1.34 1000.00 

TRANS CANADA HWY  1.13 0.88 1000.00 

TRANS CANADA HWY  1.15 0.82 1000.00 

TRANS CANADA HWY  1.18 0.66 1000.00 

TRANS CANADA HWY  1.01 1.01 613.36 

TRANS CANADA HWY  1.01 0.75 1000.00 

HIGHLAND DR 3.67 2.23 146.36 

HIGHLAND DR 4.33 2.70 134.73 

HIGHLAND DR 2.45 1.85 638.24 

HIGHLAND DR 2.99 3.54 532.60 

THE BOULEVARD 3.51 3.79 377.36 

THE BOULEVARD 3.28 3.92 288.51 

THE BOULEVARD 2.15 2.99 440.53 

THE BOULEVARD 4.72 4.37 285.92 

THE BOULEVARD 2.74 4.72 297.50 

EMPIRE AVE 8.27 7.16 76.77 

EMPIRE AVE 6.94 7.79 77.65 

EMPIRE AVE 3.26 2.72 167.25 

EMPIRE AVE 4.67 2.81 79.05 

EMPIRE AVE 6.03 5.40 82.87 

EMPIRE AVE 2.46 2.60 612.20 
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EMPIRE AVE 3.71 8.53 75.16 

EMPIRE AVE 6.29 5.47 68.33 

EMPIRE AVE 5.60 5.16 143.23 

ABERDEEN AVE 2.11 2.80 436.43 

MACDONALD DR 2.84 3.78 236.66 

MACDONALD DR 0.81 2.32 89.50 

MACDONALD DR 2.38 3.26 43.51 

MACDONALD DR 1.68 4.59 40.45 

MACDONALD DR 1.81 1.94 281.12 

MACDONALD DR 2.02 2.55 185.05 

MACDONALD DR 1.04 1.71 80.61 

MACDONALD DR 2.60 3.63 204.80 

MACDONALD DR 2.72 2.48 180.59 

MACDONALD DR 1.60 2.27 156.37 

FRESHWATER RD 2.18 3.44 27.80 

FRESHWATER RD 3.51 4.34 194.11 

FRESHWATER RD 2.51 3.83 100.03 

FRESHWATER RD 3.40 4.80 159.81 

FRESHWATER RD 2.52 4.23 96.78 

FRESHWATER RD 3.61 4.60 216.01 

FRESHWATER RD 2.97 3.85 91.64 

FRESHWATER RD 3.16 3.80 102.62 

FRESHWATER RD 3.69 4.59 97.39 

FRESHWATER RD 3.16 5.54 187.58 

FRESHWATER RD 3.56 4.30 137.95 

FRESHWATER RD 2.43 1.84 89.13 

FRESHWATER RD 3.68 3.14 255.46 
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FRESHWATER RD 4.25 4.54 105.23 

FRESHWATER RD 5.28 4.70 156.26 

FRESHWATER RD 5.78 8.32 61.08 

FRESHWATER RD 3.50 3.91 218.48 

FRESHWATER RD 2.01 2.87 42.58 

FRESHWATER RD 2.52 4.23 96.78 

FRESHWATER RD 3.61 4.60 216.01 

FRESHWATER RD 3.51 4.34 194.11 

FRESHWATER RD 2.51 3.83 100.03 

FRESHWATER RD 3.40 4.80 159.81 

FRESHWATER RD 2.18 3.44 27.80 

FRESHWATER RD 2.97 3.85 91.64 

FRESHWATER RD 3.16 3.80 102.62 

FRESHWATER RD 3.69 4.59 97.39 

FRESHWATER RD 3.16 5.54 187.58 

FRESHWATER RD 3.56 4.30 137.95 

FRESHWATER RD 2.43 1.84 89.13 

FRESHWATER RD 3.68 3.14 255.46 

FRESHWATER RD 4.25 4.54 105.23 

FRESHWATER RD 4.82 4.70 156.26 

FRESHWATER RD 5.78 8.32 61.08 

FRESHWATER RD 3.50 3.91 218.48 

FRESHWATER RD 2.01 2.87 42.58 

NEWTOWN RD 3.37 3.39 92.53 

NEWTOWN RD 4.70 5.28 280.14 

NEWTOWN RD 4.42 4.92 205.74 

NEWTOWN RD 3.49 3.30 107.19 
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NEWTOWN RD 4.33 5.54 63.66 

NEWTOWN RD 5.73 5.64 76.27 

NEWFOUNDLAND DR 2.60 2.89 141.99 

NEWFOUNDLAND DR 3.05 2.59 91.08 

NEWFOUNDLAND DR 4.77 4.05 214.58 

NEWFOUNDLAND DR 6.21 1.83 117.00 

NEWFOUNDLAND DR 3.41 3.10 84.54 

NEWFOUNDLAND DR 1.22 3.12 75.65 

NEWFOUNDLAND DR 3.64 2.94 122.78 

NEWFOUNDLAND DR 3.39 3.44 107.45 

NEWFOUNDLAND DR 2.92 2.02 219.52 

NEWFOUNDLAND DR 2.94 5.36 180.13 

NEWFOUNDLAND DR 6.42 5.86 135.30 

NEWFOUNDLAND DR 4.51 3.56 104.89 

NEWFOUNDLAND DR 3.76 2.86 55.08 

NEWFOUNDLAND DR 4.34 3.49 229.79 

NEWFOUNDLAND DR 2.81 4.06 80.92 

NEWFOUNDLAND DR 4.00 1.97 190.44 

NEWFOUNDLAND DR 4.18 4.04 276.32 

WATER ST 4.05 3.20 87.36 

WATER ST 3.20 2.97 303.55 

WATER ST 4.53 2.75 92.30 

WATER ST 2.97 2.52 144.51 

WATER ST 3.61 2.29 140.97 

WATER ST 3.25 2.06 27.30 

WATER ST 4.29 1.83 186.51 

WATER ST 5.17 1.60 61.58 
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WATER ST 3.65 1.37 146.47 

WATER ST 3.39 1.14 116.09 

WATER ST 1.48 1.92 34.91 

KING'S BRIDGE RD 4.57 2.37 175.05 

KING'S BRIDGE RD 5.41 11.57 28.36 

KING'S BRIDGE RD 6.09 2.83 83.43 

KING'S BRIDGE RD 6.70 3.40 127.25 

KING'S BRIDGE RD 5.90 6.92 155.16 

KENNA'S HILL 4.28 3.94 368.25 

KING'S BRIDGE RD 3.98 5.83 106.80 

LOGY BAY RD 3.97 4.09 142.89 

LOGY BAY RD 1.05 1.45 104.36 

LOGY BAY RD 5.13 3.91 128.35 

LOGY BAY RD 1.44 2.87 70.48 

LOGY BAY RD 3.65 3.08 99.04 

LOGY BAY RD 3.03 3.56 278.94 

LOGY BAY RD 3.76 5.97 101.20 

LOGY BAY RD 1.63 1.76 65.90 

LOGY BAY RD 3.10 3.90 65.76 

LOGY BAY RD 3.43 3.28 176.68 

LOGY BAY RD 2.78 3.45 292.96 

LOGY BAY RD 2.20 4.03 104.74 

LOGY BAY RD 1.91 3.64 173.20 

LOGY BAY RD 1.08 1.19 78.45 

LOGY BAY RD 1.06 0.77 24.60 

LOGY BAY RD 1.11 1.44 116.59 

BLACKHEAD RD 2.45 3.51 206.83 
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BLACKHEAD RD 3.54 4.66 439.53 

BLACKHEAD RD 2.17 2.43 2571.66 

BLACKHEAD RD 2.26 2.74 1199.58 

BLACKHEAD RD 1.89 2.27 3829.73 

TORBAY RD 2.75 3.82 72.84 

TORBAY RD 3.69 3.83 248.62 

TORBAY RD 2.83 2.48 234.53 

TORBAY RD 2.89 2.00 160.48 

TORBAY RD 3.85 3.83 206.76 

TORBAY RD 2.40 4.27 241.23 

TORBAY RD 2.79 3.59 318.77 

TORBAY RD 3.36 1.63 30.15 

TORBAY RD 2.02 1.82 17.82 

TORBAY RD 3.64 3.93 193.08 

TORBAY RD 2.47 1.54 162.16 

TORBAY RD 2.24 4.41 90.99 

TORBAY RD 3.21 3.04 319.38 

PORTUGAL COVE RD 1.51 2.22 51.93 

PORTUGAL COVE RD 1.10 2.14 110.61 

PORTUGAL COVE RD 1.21 1.75 128.74 

PORTUGAL COVE RD 3.45 2.99 360.07 

PORTUGAL COVE RD 1.22 1.63 165.08 

PORTUGAL COVE RD 2.46 1.62 154.31 

PORTUGAL COVE RD 1.30 1.63 96.60 

PORTUGAL COVE RD 0.88 2.27 76.41 

PORTUGAL COVE RD 1.69 1.63 390.96 

PORTUGAL COVE RD 1.09 1.34 501.59 
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PORTUGAL COVE RD 2.28 2.55 607.99 

PORTUGAL COVE RD 1.42 1.57 1155.07 

PORTUGAL COVE RD 2.71 2.85 110.84 

KENMOUNT RD 2.04 3.01 151.48 

KENMOUNT RD 1.49 2.60 103.12 

KENMOUNT RD 2.26 3.24 1246.70 

KENMOUNT RD 3.33 3.93 305.60 

KENMOUNT RD 1.84 2.95 205.62 

KENMOUNT RD 2.21 3.15 155.66 

KENMOUNT RD 3.05 2.15 75.08 

KENMOUNT RD 4.49 3.55 618.84 

KENMOUNT RD 2.24 2.99 604.55 

KENMOUNT RD 2.72 2.22 169.11 

KENMOUNT RD 1.62 3.52 505.53 

KENMOUNT RD 3.12 1.69 142.46 

KENMOUNT RD 1.81 2.31 441.93 

PRINCE PHILIP DR 1.69 1.82 179.20 

PRINCE PHILIP DR 1.56 2.62 309.77 

PRINCE PHILIP DR 1.39 2.42 158.72 

PRINCE PHILIP DR 2.38 2.66 307.76 

PRINCE PHILIP DR 2.78 3.34 992.07 

PRINCE PHILIP DR 1.86 1.73 505.38 

PRINCE PHILIP DR 2.02 2.26 213.68 

PRINCE PHILIP DR 2.54 2.46 266.21 

PRINCE PHILIP DR 4.01 3.46 89.09 

PRINCE PHILIP DR 3.58 2.93 180.44 

PRINCE PHILIP DR 2.08 1.39 228.11 
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PRINCE PHILIP DR 2.21 1.55 198.35 

PRINCE PHILIP DR 1.16 1.59 361.24 

ELIZABETH AVE 2.79 3.09 369.19 

ELIZABETH AVE 2.92 2.53 36.68 

ELIZABETH AVE 5.21 6.79 62.18 

ELIZABETH AVE 3.57 2.98 169.72 

ELIZABETH AVE 2.29 3.20 177.68 

ELIZABETH AVE 3.46 3.32 34.22 

ELIZABETH AVE 7.54 4.19 170.47 

ELIZABETH AVE 2.66 3.53 187.79 

ELIZABETH AVE 2.10 2.74 292.38 

ELIZABETH AVE 1.87 3.58 98.92 

ELIZABETH AVE 3.42 4.93 50.15 

ELIZABETH AVE 3.38 3.95 45.61 

ELIZABETH AVE 2.93 3.01 353.93 

ELIZABETH AVE 2.94 3.36 35.49 

ELIZABETH AVE 4.94 3.93 238.94 

ELIZABETH AVE 4.43 4.59 181.44 

ELIZABETH AVE 3.19 4.36 111.27 

ELIZABETH AVE 3.48 3.88 83.96 

ELIZABETH AVE 4.40 2.87 196.48 

ELIZABETH AVE 4.79 4.07 217.75 

ELIZABETH AVE 4.66 4.24 182.74 

ELIZABETH AVE 4.00 3.63 57.79 

ELIZABETH AVE 2.03 2.86 88.57 

ELIZABETH AVE 3.30 2.92 106.33 
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