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Abstract

This study presents the design, implementation, and validation of a robust GPS-
aided multi-sensory odometry and mapping system for an end-to-end UAV-based
parcel delivery application. There are two main approaches for UAV navigation,
GPS navigation and GPS denied navigation. However, the existing GPS navigation
solutions sometimes produce degenerative results due to GPS loss, multipath signals,
and spoofing events. On the other hand, GPS denied navigation solutions suffer from
inherent drift and sensor degradation scenarios. Additionally, the existing navigation
solutions do not comply with UAV safety regulations when possible sensor failures
end-to-end navigation requirements is considered.
Therefore, this thesis focus on developing a robust UAV navigation system by inte-
grating visual, inertial, and lidar sensors with GPS to overcome the limitations of
existing navigation solutions. Three significant contributions are produced in this
study. First, a numerical study to evaluate the possibility of incorporating GPS with
a GPS denied navigation solution for improved performance and safety regulatory
compliance. Second, the development of a novel UAV navigation architecture com-
bining visual, lidar, and inertial sensors that is robust for environmental degradation
and aggressive motion. Third, integrating GPS with the novel UAV navigation ar-
chitecture for improved accuracy. Additionally, this study presents results and a
comparison study of the proposed navigation system and state-of-the-art navigation
systems for different online benchmark datasets and in-house datasets. Moreover, the
proposed GPS-aided UAV navigation system is evaluated against compliance with the
associated safety regulations under different GPS scenarios.

keywords: Unmanned aerial vehicle (UAV), Navigation, Simultaneous localization
and mapping (SLAM), UAV-based parcel delivery, Optimization, Visual inertial lidar
odometry and mapping (VI-LOAM).
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Chapter 1

Introduction

In this chapter, the motivation for this thesis, and an overview of available navigation

methods for Unmanned aerial vehicle (UAV) based end-to-end delivery and their

associated limitations are presented. The problem statement of the thesis will then

be introduced, and the outstanding issues of existing UAV navigation methods for

end-to-end delivery addressed in this thesis will be outlined. Finally, objectives and

expected contributions of this thesis will be highlighted along with the organization

of the thesis.

1.1 Motivation

UAV-based delivery has gained popularity among many industries as a cost-effective,

low-carbon-footprint solution for goods delivery [7–11]. Example operational scenar-

ios include last-mile goods delivery [12], regional air transit [13], delivery to remote

communities [14], emergency medical supplies [15], and providing services to offshore

and marine platforms [16]. These applications demand UAVs to operate close to crit-

ical infrastructure and human traffic during transit [17]. Due to the risks of causing

human injuries and damage to properties, these UAVs need to be fault-tolerant while
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adhering to the highest safety standards imposed by regulatory bodies [18].

To facilitate end-to-end delivery operations, semi-autonomous or fully-autonomous

capability of the UAV systems is desired depending on the level of human pilot inter-

vention that is necessary [19]. The levels of autonomy can vary from low-level controls

such as attitude heading control of remotely-piloted UAVs to fully autonomous execu-

tion of preprogrammed delivery operations. UAV autonomy functions mainly consist

of three main modules [20]:

1. Guidance: planing an optimal mission from the current location to a destina-

tion avoiding any pre-known obstacles and controlled air-spaces. This can also

include local predictive trajectory planning to handle behaviours such as detect

and avoid (DAA) and landing.

2. Navigation: finding pose1, speed, and other states of interest (locations of ob-

stacles, map of the environment) of the platform with respect to a pre-defined

navigation frame.

3. Control: generating a sequence of control commands that drives the platform

along an optimal route.

As shown in Figure 1.1, the guidance system is responsible for generating instructions

related to path planning and mission planning, i.e., what state trajectory that UAV

should follow to accomplish the given mission. The control system in turn operates

the aircraft controls such as thrust, elevators to follow the trajectory generated by

the guidance systems. The guidance systems updates its path and mission plans

according to the current state given by the navigation system. Also, state vector

provided by navigation system acts as a feedback to the control system. Therefore,

guidance and control systems rely on having an accurate estimation of the UAV
1Pose is the position and orientation in 3D space.
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Planning
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Trajectory

Commands
for actuators

Figure 1.1: The Key modules of UAV autonomy: guidance, navigation, and control
(Guidance) systems

platform’s states (pose, speed, sensor biases). Additionally, a reliable pose estimation

module is necessary to rectify human perspective errors and maintain correct pose

in beyond visual line of sight (BVLOS) operations. Therefore, reliable navigation

becomes a fundamental requirement for all levels of autonomy of UAVs. Additionally,

when operating in dynamic environments, UAVs need to be integrated with obstacle

detection and landing zone detection capabilities to ensure the safety of humans and

infrastructure. To this end, UAVs require to have the ability to build an accurate

map of the traversed environment.

Among UAV navigation solutions, Global positioning system (GPS) and inertial
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measurement unit (IMU) aided inertial navigation systems (INS) are at the fore-

front [21–24]. These systems use inertial data (accelerometer and gyroscope) and

GPS pseudo-range measurements to estimate the platform states [25]. Additionally,

they may use magnetometers for heading estimation. However, GPS-based methods

can result in faulty navigation solutions, especially in urban environments, due to

signal obstructions and multipath errors [26, 27]. A study assessing the risk of UAVs

reported that the loss of GPS signals contributes to 12%-17% of UAV crashes, posing

a significant safety risk for UAV-based delivery [28].

This risk can be reduced by aiding GPS navigation with GPS denied navigation

solutions [29, 30], including ultra-wideband (UWB) positioning-based [31–33], radar-

based [34–36], vision-based [37–39], lidar-based [4, 40], and multi-sensory combined

navigation solutions [2, 41]. UWB positioning systems are commonly used for indoor

navigation and can achieve centimeter-level accuracies [31]. These systems require

physical anchors to be installed within the UAV navigation space, making it an appli-

cable solution for zones where infrastructure support can be added. The long-range

capability of radio sensors and the robustness of radar waves to weather conditions

such as mist, rain, and fog make radar-based navigation solutions suited for outdoor

navigation [34]. However, these solutions are at the developing stage and require

other additional sensors such as camera and lidar to overcome the challenges of low

accuracy, low resolution, and delayed sensor response [42].

Vision-based and lidar-based navigation solutions are emerging as GPS denied UAV

navigation methods due to their map building, obstacles avoidance, and improved

pose estimation capabilities [43]. The challenge of vision-based navigation solutions

is that they are ineffective in low light conditions and environments with a low num-

ber of visually distinct features [2]. Lidar-based navigation solutions tend to fail in

structureless environments and during aggressive motions [2]. Multi-sensory com-
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bined methods have managed to overcome these challenges by developing a visual,

lidar, and INS integrated navigation solution [2,44]. It is robust to aggressive motions

and can handle sensor degradation due to low light, featureless and structureless envi-

ronments. One such realization is the visual lidar odometry, and mapping (VLOAM)

system, which provides a multi-sensory robust solution for the GPS denied navigation

problem [2, 45]. This visual-lidar combined solution demonstrates the second-highest

performance among navigation methods for benchmark GPS denied navigation chal-

lenge, KITTI odometry benchmark [5]. However, the source code of the VLOAM

architecture is not publicly available and it does not incorporate GPS in the pipeline.

Several research work focus on combining GPS/INS navigation with GPS denied nav-

igation methods. Work in [46] and [29] present fusing GPS/INS with vision sensors

and [47] presents fusing GPS/INS with lidar. Work in [48] proposes a general frame-

work to integrate local and global sensors. Nonetheless, they have only presented

results for the visual-inertial navigation system (VINS) and GPS integration. In this

work, we propose a robust UAV navigation system by combining GPS with visual,

inertial and lidar sensor information addressing the main drawbacks of the state of

the art systems discussed in section 1.2.

1.2 Problem Statement

This study presents a novel GPS-aided visual lidar combined navigation method for

end-to-end UAV-based delivery applications by addressing the following key chal-

lenges.
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1.2.1 Problem I: GPS errors and mapping capability

GPS can provide precise location information. However, the accuracy of GPS posi-

tioning can be degraded by the multipath effect, electromagnetic interference, spoofing

and other interruptions [26, 27]. Especially in urban environments, the multipath ef-

fect severely reduces the location accuracy of GPS. Moreover, GPS-based methods

are limited to pose information and they do not provide information about the sur-

rounding area such as a 3D map of the environment. Therefore, GPS-based methods

alone are not sufficient for ensuring safe navigation. This thesis provides a visual and

lidar combined navigation method that can build an accurate map of the environment

and also assist with the navigation when GPS signals are erroneous or unavailable.

1.2.2 Problem II: Inherent drift in GPS denied navigation

solutions

GPS denied navigation solutions that only rely on local sensors suffer from position

drift accumulated over time. The best-reported accuracy of VLOAM has a drift of

0.22% of the distance traveled [2] and actual values of this drift can vary significantly

based on sensor and calibration errors. Therefore, if used alone, a UAV with VLOAM

navigation will only be permitted to fly under 5 km distances as the position drift error

can exceed the safety regulation limits beyond the 5 km range. Consequently, GPS

denied navigation methods could not be used alone for end-to-end delivery operations

and is suitable for locally navigating an environment avoiding any obstacles within

the local map. Therefore, this study proposes a visual and lidar combined method

aided with GPS to correct the drift error when GPS signals are available.

6



1.2.3 Problem III: Unavailability of public packages for state-

of-the-art robust UAV VLOAM navigation algorithms

Work in [2] and [49] are at the forefront of the multi-sensory UAV navigation archi-

tectures in terms of robustness and accuracy. Their robustness is determined by the

ability to handle sensor degradation and aggressive motion that can cause sensor fail-

ures. The camera is sensitive to lighting changes and may fail in low light or feature-

less environments or when significant motion blur is present. The laser cannot handle

structureless environments. However, navigation methods presented in [2] and [49]

have enabled different combinations of sensors by having a modular architecture to

bypass the failed sensor module, making them adaptable to different environments

and motion. Even though these algorithms claim good performance, the modules are

not publicly available for use in testing. Given the complexity of robotic navigation

algorithms, it is common practice for navigation system researchers to publish their

code on Github or similar. This allows unbiased evaluation of the methods with new

datasets and compare with new algorithms. However, the work of [2] and [49] are

commercially protected and not made available. Moreover, architecture in [2] uses

loosely-coupled IMU, and it does not utilize modern efficient optimization libraries

such as Ceres [50], GTSAM [51] for their implementation. There are robust naviga-

tion methods that use either vision or lidar sensors that work with many datasets.

These include ALOAM for lidar only navigation [4], LIO-sam for lidar-inertial navi-

gation [52], VINS-mono for visual-inertial navigation [37], and VINS-fusion for visual-

inertial GPS fusion [48]. However, in these publicly available methods, the combina-

tion of all visual, lidar, imu, and GPS is not incorporated to be applicable to custom

indoor/outdoor datasets. Therefore, a robust multi-sensory architecture needs to be

developed for UAV navigation.
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1.2.4 Problem IV: GPS is not incorporated with robust multi-

sensory UAV navigation architectures

To the best of authors knowledge, work in [6] is the only implementation at the

time of writing that has incorporated GPS with visual, lidar and inertial sensor in-

formation for UAV navigation and this architecture is publicly available for eval-

uation [github.com/LVI-SAM]. However, this implementation runs into robustness

issues and does not properly handle dynamic conditions. Even though, work in [48]

proposes a general framework to integrate local and global sensors, the results are

only presented for the visual-inertial and GPS integration. Therefore, GPS aided ro-

bust multi-sensory UAV navigation with visual, lidar and inertial sensors need to be

developed.

1.3 Objective and Expected Contributions of the

Research

This thesis proposes a novel UAV navigation architecture to estimate the UAVs’ pose

(3D position and 3D orientation) and build a map of the traversed environment. The

main objectives of this thesis can be outlined as follows:

Objective 1 Propose a novel robust visual, lidar and inertial integrated odometry

and mapping system for UAV navigation which includes following features.

• Implementing more accurate tighly-coupled IMU pretintegration.

• Computationally efficient modern optimization libraries are used.

• Combining features of the existing VINS-mono and ALOAM packages to

improve the robustness to sensor degradation.
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Objective 2 Propose a novel GPS aided multi-sensory navigation system with GPS

outlier rejection.

Objective 3 Experimentally validate and compare the performance of the proposed

method with state-of-the-art UAV navigation methods [4, 25, 37].

• Experimental validation of the odometry and mapping accuracy of the pro-

posed method for different datasets, including KITTI benchmark dataset

[5] and LVI-SAM dataset [6].

• Compare odometry estimation accuracy of the proposed method with state-

of-the-art navigation methods such as VINS-mono [37], LOAM [4] and

GPS/INS [25].

• Performance evaluation of the proposed method for different GPS denied

scenarios and validate the regulatory compliance. .

1.4 Organization of the Thesis

Chapter 1 presents an overview of the research area, highlights the research state-

ment, and outlines the objectives and associated contributions of this study.

Chapter 2 presents the literature review in the area of UAV navigation methods

and highlights the limitations of the existing systems.

Chapter 3 presents the results of the numerical study to evaluate the suitability of

state-of-the-art navigation systems and proposed system for UAV-based parcel

delivery.

Chapter 4 presents the novel visual lidar combined navigation pipeline and its re-

sults for different datasets with a comparison with the state-of-the-art UAV
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navigation methods. This implementation is referred to as Visual inertial lidar

odometry and mapping (VI-LOAM) version 1.1,

Chapter 5 presents the improvements carried out to develop VI-LOAM version 1.2

from the previous version. Also, this chapter discusses the methodology for

incorporating GPS with the VI-LOAM navigation pipeline and presents com-

parison results for different GPS scenarios.

Chapter 6 presents the conclusion and directions for future studies.
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Chapter 2

Background

2.1 UAV Safety Regulations

To ensure safety and compliance in air transport, many international, national, and

local governing bodies around the world regulate UAV operations [18]. The Interna-

tional Civil Aviation Organization (ICAO) [53] is a specialized agency under United

Nations that regulates international air navigation. The Federal Aviation Adminis-

tration (FAA) [54] of the USA and Transport Canada [55] in Canada regulate air

transportation in North America. These regulations address a wide variety of issues,

including airspace control, navigation, remote pilot licensing, UAV registration, pri-

vacy, data security, and public safety. Among these, the regulations that are directly

related to the navigation system of UAVs are discussed below.

“Standard 922, Remotely Piloted Aircraft Systems (RPAS) Safety Assurance - Cana-

dian Aviation Regulations (CARs)" of transport Canada describes the technical re-

quirements of a UAV for compliance [55]. According to section 04 of standard 922,

the remotely piloted aircraft system must have a lateral position accuracy of at least

± 10 m and altitude accuracy of at least ± 16 m while operating within a controlled

11



airspace1. The UAV operations should ensure that this accuracy can be maintained,

accounting for possible degraded sensory modes of operation and within the entire

operational space. Further, for operations near people, section 05 of standard 922

states that the occurrence of any single failure of the RPAS, which may result in a

severe injury to a person on the ground within 30 m, must be very unlikely.

Table 2.1 summarizes Transport Canada’s safety assurance accuracy requirements for

RPASs. In subsequent sections, this thesis discusses each navigation solution in the

context of regulatory compliance.

Table 2.1: Transport Canada RPAS Safety Assurance Accuracy Requirements

State Required Accuracy Evaluation Standard
Lateral position ± 10 m Absolute Error
Altitude ± 16 m Absolute Error
Human injury alert range 30 m Absolute horizontal distance

Additionally, the UAVs’ GNSS navigation systems should be able to overcome the

following erroneous scenarios.

Terrain errors: terrain masking of the signal, for example, by a building or moun-

tain, blocks the antenna on the RPAS from receiving the satellite signal or create

multipath components of the signal.

Atmospheric errors: errors caused from the refraction of GNSS radio signals by

the ionosphere and the troposphere.

Satellite errors: errors resulting from poor or unexpected geometries related to

the positions of the GNSS satellites in reference to an RPAS due to reasons such as

gravitational effects of the Sun and Moon may pull the satellites from the planned

orbital path.
1Controlled airspace is airspace of defined dimensions within which air traffic control services are

provided
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Geometric dilution of precision (DOP): errors occur when there is no adequate

cross cut in the “fix” ,i.e., all satellites are too closely located to one other.

2.1.1 Performance Evaluation

Ensuring the safety of people and infrastructure is paramount for UAV-based delivery.

According to the safety regulations presented in section 2.1, position accuracy is

the only performance indicator for ensuring safe navigation. Moreover, reaching the

correct destination, which is directly related to the position estimation accuracy, is also

one of the top priorities for delivery applications. Therefore, while other performance

metrics such as energy efficiency, computation power, and delivery times can be used

to evaluate UAV navigation methods, this thesis mainly focuses on position accuracy.

In the literature, mainly two performance metrics are used to evaluate position accu-

racy: root-mean-square error (RMSE) and percentage position drift (relative position

drift) of the distance traveled [56].

2.1.1.1 Root-Mean-Square Error (RMSE)

RMSE position error is the square root of the average of squared differences between

actual path coordinate values and coordinate values from the estimated trajectory.

Equation 2.1 computes the RMSE position error at time t of the trajectory.

RMSEt =

√√√√ 1
N

N∑
i=1

(∆x2
i + ∆y2

i + ∆z2
i ) (2.1)

N is the number of samples taken up to time t. ∆xi, ∆yi, and ∆zi are the X, Y, and

Z direction absolute position errors between the actual and estimated trajectories at

each sample time.
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2.1.1.2 Percentage Position Drift

Percentage position drift is the position difference between actual and estimated tra-

jectories as a percentage of distance traveled along the trajectory to the calculated

point. The percentage position drift is computed by Equation 2.2.

Percentage position drift = Position difference
Distance along the trajectory × 100% (2.2)

Where, Position difference =
√

∆x2
i + ∆y2

i + ∆z2
i

2.2 UAV Navigation Methods

UAV navigation solutions are divided into four main categories based on the sen-

sors used. Satellite-based navigation [57–59], inertial navigation [60,61], vision-based

navigation [62–64], and light detection and ranging (lidar) sensor-based navigation

[4, 65,66].

Satellite-based navigation with global coverage uses GNSS receivers onboard a UAV

and calculates the pose using the timing information received from orbiting satellites

[57]. Inertial navigation uses IMU with sensors such as gyroscopes, accelerometers,

and magnetometer sensors to estimate UAV’s pose [67]. IMU provides data on linear

acceleration and angular speed along three axes which can be integrated over time

to estimate the pose information relative to the starting position. It is important to

note that this solution drifts from the true values due to the accumulation of errors

present in the sensor reading. The degree of drift is specified for the IMU class,

where fiber-optic navigation grade IMUs provide the highest accuracy [68]. Vision-

based navigation systems use vision sensors such as stereo cameras, RGB cameras to

capture images of the surroundings [38]. Then the motion of the images is estimated

by comparing the successive images. This estimated motion of the images or image
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features can be used to estimate the trajectory of the UAV. Similarly, in lidar-based

navigation, lidar sensors capture point clouds of the surrounding environment [66].

Then spatial feature points such as edge points, planar points of point clouds are

detected and tracked to estimate the trajectory of the UAV. Each of these systems has

its own merits and demerits. Vision-based navigation solutions are low cost and less

susceptible to aggressive motion errors, whereas low lighting may result in erroneous

results. Lidar-based navigation solutions are highly accurate and immune to lighting

changes. However, aggressive motion and structureless environments can affect them.

Therefore, available UAV navigation systems use the above sensor technologies either

stand-alone or in combination, depending on the application.

To realize these sensor combinations, different sensor fusion approaches are used. This

study mainly considers three sensor fusion approaches: filter-based, optimization-

based, and artificial intelligence (AI)-based-sensor fusion architectures. Moreover,

sensor fusion can be further categorized into loosely-coupled and tightly-coupled meth-

ods based on the type of measurement data used [69]. For a given application, there

are various factors, including the accuracy requirement and computational complexity,

that govern the selection of sensor fusion mechanisms.

2.3 Types of Sensor Combinations

2.3.1 GNSS-based Navigation Methods

GNSS-based navigation methods work well in the outdoor clear sky-view environment.

However, when it comes to urban environments, it encounters errors due to multi-path

propagation. On the other hand, INS suffers from accumulated errors from the IMU

measurements. Consequently, GNSS and IMU measurement are fused to develop

GNSS/INS combined navigation systems [25, 58, 71]. However, when GNSS signals
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are erroneous, GNSS/INS systems only rely on INS and suffer from large accumulation

errors.

2.3.2 Vision-based Navigation Methods

Vision-only navigation systems are extensively studied, and most notable methods

are based on simultaneous localization and mapping (SLAM) [72]. To this end, im-

age features, such as corners, edges or blobs, and pixel intensities are used to track

the camera path and to build a map of the environment. The elementary vision-

based sensor solutions are solely based on vision sensors. Among them, semi-direct

monocular visual odometry (SVO) [62] has recorded the highest precision i.e., 1%

position drift of the distance traveled. Other popular visual SLAM methods include

large-scale direct monocular-SLAM (LSD-SLAM) [73], oriented fast and rotated brief-

SLAM (ORB-SLAM) [63], direct sparse odometry (DSO) [74] and stereo odometry

algorithm relying on feature tracking-SLAM (SOFT-SLAM) [64]. The most common

vision-based navigation system is visual-inertial navigation, where vision sensors and

IMU are integrated [37, 75–80]. Data from vision sensors and GPS can be combined

to obtain improved state estimations [29, 46, 81–83]. Work presented in [48] and [84]

propose navigation solution combining camera, IMU and GPS. They have managed

to reduce the position error under 1 m (RMSE). However, to achieve this accuracy,

readings from all the sensors must be integrated. Typically, vision-based naviga-

tion systems face challenges caused by camera sensor degradation due to the lack of

features in captured images and poor lighting conditions. Further, for UAV-based de-

livery applications where long distances are traveled, the position estimate will drift

considerably without loop closure, in-between GPS updates [85].
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2.3.3 Lidar-based Navigation Methods

Lidar only navigation systems have been successfully implemented to estimate the

motion of UAVs as lidar can provide accurate range measurements to the objects in

space [4,65,66,86]. Many studies integrate lidar with additional sensors to mitigate the

drift error accumulation. For instance, work presented in [87] and [88] integrated lidar

with GPS, [89] and [90] integrated lidar with IMU, and [47, 91–93] integrated lidar

with GPS and IMU. The lidar, GPS, and IMU combined system proposed in [47] has

significantly improved the navigation accuracy and it only has a RMS position error

of 1.1 m. However, lidar-based navigation systems are unable to handle aggressive

motion due to their low-frequency update rate [2] and are prone to failures in structure-

less environments due to lack of features.

2.3.4 Vision, lidar Combined Navigation Methods

To mitigate the limitations of stand-alone vision and lidar sensors and achieve better

accuracy in navigation, vision and lidar-based systems are fused together [94, 95]. A

filter-based lidar, IMU, and camera fusion navigation system, namely LIC-Fusion, is

proposed in [44,96]. [2] proposes a highly re-configurable optimization-based pipeline

that can handle lidar or camera sensor degradation scenarios. This method is known

as VLOAM and has the highest accuracy, i.e, 0.22% position error of the distance

traveled, among the multi-sensory navigation systems used in GPS denied environ-

ments. Lidar and vision sensors with both GPS and IMU sensors are used in a specific

application of river mapping and navigation of a micro-helicopter presented in [97].

To this end, motion estimation is done using visual, inertial, and sparse GPS. The

lidar measurements are only used for obstacle detection and map building. Accord-

ingly, vision and lidar combined methods show better results for navigation and map
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building among the GPS denied navigation systems [43].

2.4 Sensor Fusion Approaches

In a multi-sensory system, each of the sensors has its advantages and disadvantages.

Sensor fusion allows to aggregate information from different sensors together and

obtains more accurate navigation as presented in section 2.3. The performance of

the same sensor combination can vary depending on the sensor fusion approach. The

available sensor fusion approaches can be categorized into three groups:

1. Filter-based approaches,

2. Optimization-based approaches, and

3. Artificial intelligence (AI)-based/ learning-based approaches

2.4.1 Filter-based Approaches

Filter-based approaches follow a recursive probabilistic formulation that uses a motion

model and a measurement model [44, 96]. Using the motion model, the filter-based

approaches predict the current pose of the UAV along with the associated uncer-

tainty. Then the current measurements are predicted using the measurement models,

which are compared with the actual measurements to update the predicted pose and

the associated uncertainty calculation. Filter-based approaches typically solves the

navigation problem using variants of Kalman filters including extended Kalman filter

(EKF) [98], unscented Kalman Filter (UKF) [99] or particle filter [100]. To this end,

they iterate at one time-step or iterate over several time-steps but do not have to

consider measurements over the entire trajectory. This enables them to have a lower

computation complexity and operate in real-time. However, as the entire trajectory
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is not considered, typically, the navigation accuracy of the filter-based approaches is

lower than its counterpart, optimization-based approaches.

2.4.2 Optimization-based Approaches

Optimization-based approaches formulate navigation as a constrained non-linear op-

timization problem. These approaches maintain the past state information and solve

a full trajectory optimization or a sliding window with a subset of states, making it

more accurate. However, solving a large dimensional non-linear optimization prob-

lem at each time step is computationally expensive. Therefore, in the past, using

optimization-based approaches for real-time navigation was problematic [101]. How-

ever, with the improvement of computation power of onboard hardware and opti-

mization techniques which updates only a subset of variables, optimization-based

approaches are now used as online state estimators [2, 80, 82].

2.4.3 AI-based Approaches

AI-based approaches use AI techniques to model and train a system for safe and accu-

rate navigation using sensor data under various conditions [102–105]. Work presented

in [106, 107] introduce intelligent navigation using fuzzy logic and neural networks.

A common learning-based approach experimented by many research works is using

deep neural network (DNN) for navigation [105,108,109]. This is due to DNNs having

higher degrees of freedom to represent data and provide better results than shallow

neural networks [110, 111]. However, DNNs’ requirement of large data sets makes it

time-consuming to train a network for navigation. Deep reinforcement learning (deep-

RL), which is an adaptive system that learns from real-world experiences, has also

been used for UAV navigation [112]. To this end, a reward function for navigation is

evaluated from a trial and error approach based on the UAVs’ navigation decisions.
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The aforementioned learning-based sensor fusion approaches exhibit better perfor-

mance in modeling the measurement noise and providing more accurate estimates.

Hence, learning-based systems are expected to have an improvement in accuracy and

reduced processing time after sufficient training. In addition to state estimation, AI-

based methods are used in navigation pipeline for tasks such as semantic segmentation

and mode identification [113].

Apart from the classification summarized above, sensor fusion approaches can be clas-

sified into two groups based on the type of data and the inter-dependencies between

them. These two groups are referred to as loosely-coupled and tightly-coupled sys-

tems [69]. Loosely-coupled systems treat outputs of each sensor as an independent

information and sequentially combine them to estimate UAV states [114,115]. In con-

trast, tightly-coupled systems use raw measurements of sensors and consider the cor-

relation between measurements [116–118]. The next chapter discusses tightly-coupled

and loosely-coupled architectures in detail. For learning-based methods, this tight

coupling of measurement is achieved using end-to-end deep learning architectures.

Although tightly-coupled implementations require better synchronization, calibration

between sensor sources, and a marginal increase in computational requirements, they

generate more accurate estimation compared to the loosely-coupled systems. Since

safe navigation is key to the success of UAV-based delivery and with the recent im-

provement in onboard processing and memory capabilities of UAVs, tightly-coupled

optimization-based approaches are preferred for UAV’s state estimation.
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Table 2.2: Type of sensor combinations and their performance

Combination Sensor Fusion Ap-
proach

ReferenceEstimation Posi-
tion Error (Best
method)

Orientation
Error

Experiment
GPS & IMU Filter-Based : Un-

scented Kalman Fil-
ter (UKF)

[25] 1.12 m (RMSE) 0.2196◦

(RMSE)

lidar, IMU &
GPS

Optimization-based
sliding window/Pose
Graph Optimization

[47] 1.1 m (RMSE) 0.166◦

(RMSE)

Camera, IMU &
GPS

Optimization-based
sliding window/Pose
Graph Optimization

[48] 0.40 m (RMSE) -

Camera only Graph optimiza-
tion (SOFT-SLAM,
stereo camera)

[64] 0.65% of the dis-
tance travelled

0.0014◦/m

Lidar only Nonlinear Optimiza-
tion (LOAM)

[4] 0.88% of the dis-
tance travelled

-

Camera & Lidar Nonlinear Optimiza-
tion (DEMO)

[41] 1.14% of the dis-
tance travelled

0.0049◦/m

KITTI Dataset
Camera & IMU Nonlinear optimiza-

tion/Pose Graph
Optimization(VINS-
Mono)

[70] 0.88% of the dis-
tance travelled

-

Lidar & IMU Nonlinear Optimiza-
tion (LOAM with
IMU)

[2,4] 0.39% of the dis-
tance travelled

0.0013◦/m

Lidar, Camera &
IMU

Nonlinear Opti-
mization (VLOAM
pipeline)

[2] 0.22% of the dis-
tance travelled

0.0013◦/m
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Chapter 3

Numerical Study of Navigation

Methods for UAV-based Parcel

Delivery

3.1 Introduction

This chapter presents the preliminary study conducted to evaluate the suitability of

the proposed method and compare it with state-of-the-art navigation systems. As

mentioned earlier, the regulatory compliance of existing navigation solutions is chal-

lenged during GPS loss, multipath signals, spoofing events, and other sensor degra-

dation scenarios. This study investigates the suitability of GPS-aided VLOAM navi-

gation system for UAV delivery applications. To this end, a simulation and numerical

evaluation were carried out, confirming that the state-of-the-art multi-sensory naviga-

tion solutions violate the UAV navigation regulations, while the proposed combined

GPS/VLOAM system comply with the regulations.
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3.2 GPS/INS Based Navigation Methods

The most widely used sensor technologies for UAV navigation are GPS receivers and

IMUs with accelerometers, gyroscopes, and on occasion, magnetometers [46, 58, 119,

120]. GPS can provide precise location information. However, the accuracy of GPS

positioning can be degraded by the multipath effect, electromagnetic interference, and

other interruptions [26, 27]. Especially in urban environments, the multipath effect

severely reduces the location accuracy of GPS. Moreover, GPS can only provide 3D

position measurements without 3D orientation. Therefore, GPS sensors alone are not

sufficient for 6-DoF (Degrees of Freedom) state estimation.

IMUs can provide accurate motion information for a brief time period by integrating

the acceleration and angular velocity measurements gathered by the sensor package.

However, the accumulation of the error in IMU measurements over a period of time

causes significant inaccuracies in position estimation [121]. Consequently, the com-

bination of GPS and IMU complements the limitations of both systems where IMU

addresses the intermittent availability of GPS data.

GPS/INS integration has been extensively studied, and many different research work

exists for the integration [25, 102, 122, 123]. The integrating methods vary according

to the application based on the complexity of the integration, cost, and accuracy

requirement. The level of GPS/INS integration can be classified into two categories,

namely,

1. loosely-coupled GPS/INS integration, and

2. tightly-coupled GPS/INS integration.

GPS derived position and velocity measurements are used in the loosely coupled in-

tegration [115], as shown in Figure 3.1. A tightly coupled GPS/INS navigation, as
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shown in Figure 3.2, integrates GPS pseudorange measurements and inertial mea-

surements for motion estimates [116,117,124–128]. The pseudorange measurement is

the difference between the time of reception and the time of transmission of a GPS

satellite signal. The Mechanization equations are set of equations used to convert the

acceleration and angular velocity measurements obtained from an IMU into position,

velocity and attitude information.

IMU
Mechanization
Equations

Integration
Filter

Navigation
Solution

GPS
pGPS

freqGPS

∆V, ∆θ

Position, Velocity

Position, Velocity,

Attitude

INS error

Position, Velocity,

Attitude

Figure 3.1: Loosely-coupled GPS/INS integration [1]

The combined GPS/INS system can achieve centimeter-level position accuracy when

differential GPS (DGPS) is used, and accuracy in the order of several meters otherwise

[123]. DGPS requires a ground-based reference station at a known GPS location,

and the accuracy of a DGPS system degrades at an approximate rate of 0.22 m for

each 100 km distance from the broadcast site [129]. Generally, the more complex

the receiver design and the more expensive the GPS device, the higher the accuracy.

A typical GPS/INS system has a position accuracy of approximately 1.12 m [25].

Therefore, it is safe to assume an accuracy within 1-2 meters for long-distance UAV-

based delivery, and it is within the regulations of Transport Canada given in Table
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IMU
Mechanization
Equations

Integration
FilterPseudorange

and doppler
of INS

GPS
pGPS

freqGPS

∆V, ∆θ

pINS

freqINS

Position, Velocity, Attitude

INS error

Position, Velocity,

Attitude

Figure 3.2: Tightly-coupled GPS/INS integration [1]

2.1.

During GPS loss, GPS/INS navigation systems solely rely on onboard IMU sensor,

causing noticeable drift in the position estimation. For instance, using a MEMS

tactical-grade IMU, C-MIGITS (BEI), a 3 minute GPS loss can cause a position error

of approximately 20 m [26]. Consequently, relying only on INS in the absence of GPS

presents reliability issues, and the system may not be able to maintain the accuracy

within the regulated values in Table 2.1. Additionally, it is impossible to create an

obstacle map of the navigation space by utilizing the GPS/INS sensor data. As a

result, it is challenging to implement a collision detection module and maintain a safe

distance for stationary or moving objects, including humans, as required by Transport

Canada regulations. A prior map of the environment can be added to avoid collisions

with stationary objects and infrastructure. However, a prior map cannot be used to

avoid dynamic obstacles and unmapped obstacles. Therefore, a collision-avoidance

system with an additional sensor suite needs to be added to protect infrastructure

and people from UAV interference and reduce potential harm.
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3.3 GPS Aided VLOAM Navigation

VLOAM fuses camera, lidar, and IMU data to provide accurate navigation within a

short distance but could lead to erroneous pose estimations due to unbounded drift.

In contrast, the GPS/INS system provides drift-free navigation for long distances

through intermittent GPS updates but suffers noticeable estimation drift within a

short distance when GPS loss occurs. The unique complementary characteristics of

VLOAM and GPS/INS can be integrated to address the limitations of each system,

resulting in improved navigation solutions for UAVs.

3.3.1 VLOAM Navigation

VLOAM provides a data processing pipeline for online navigation and builds a map

of the traversed environment, utilizing data from a 3D lidar scanner, a camera, and

an IMU [2]. A complete VLOAM pipeline has achieved an accuracy of 0.22% of the

distance traveled, which is the highest level of accuracy achieved using onboard sensor

kit without external aids like GPS to the best of our knowledge at the time of writing.

This implementation used an optimization-based method to estimate UAV’s pose.

Figure 3.3: Overview of the VLOAM pipeline [2]

VLOAM is developed by integrating real-time depth enhanced monocular odome-

try [41] and lidar odometry and mapping in real-time (LOAM) [4]. Overview of the
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VLOAM pipeline is shown in Figure 3.3. This pipeline begins with IMU mecha-

nization for pose prediction, and then the visual-inertial combined method estimates

the motion. Finally, a scan matching method further refines the motion estimate

and builds a map of the traversed environment. The modules are arranged from

left to right such that high-frequency modules at the beginning handle the aggres-

sive motion, whereas low-frequency modules correct the drift from previous modules.

Feedback from both the visual-inertial module and scan matching module are used

for correcting the velocity drift and biases of the IMU.

Additionally, the modularized data processing pipeline enables the system to handle

sensor degradation effectively. If the camera is futile due to poor lighting conditions

or texture-less environments, or if the lidar is futile due to structure-less environments

or weather conditions, the system can bypass the corresponding module and estimate

the motion reliably using the rest of the pipeline.

IMU prediction subsystem of the VLOAM pipeline utilizes angular rates and acceler-

ation in the camera frame as measurement inputs. This subsystem obtains a short-

term prediction of the orientation by integrating gyro measurements. Then, with the

help of calculated orientation, acceleration is integrated over time twice to obtain the

translation. Next, the visual-inertial odometry (VIO) subsystem combines vision and

IMU sensors. To this end, it uses pose constraints from IMU and camera to solve

an optimization problem to estimate the incremental motion. Camera constraints are

formulated by matching unique features observed across a sequence of images. Based

on depth association, three types of features are used:

(a) features with depth associated from lidar range measurements,

(b) features with depth associated from triangulation, and

(c) features without depth.
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VIO module is followed by the scan matching subsystem, which further refines the

motion estimates received from previous modules. First, lidar points of the current

lidar sweep are registered to a local point cloud using the previous odometry estimate.

Then, edge and planar geometric features are detected from the point cloud and

matched with the existing map. Lidar constraints are formulated to minimize the

distance between detected features to the map features. Further, pose constraints

from the previous VIO estimate are also used for solving the optimization problem.

The map is then updated by merging the current point cloud at the end of the

lidar scan sweep. Finally, the transform integration module integrates the motion

estimates from three modules. Note that each module updates at different rates, the

IMU prediction module runs at 200 Hz, the VIO module runs at 50 Hz, and the scan

matching module runs at 5 Hz, to generate accurate high-frequency motion estimate.

High accuracy of only 0.22% drift of the distance traveled of the system is useful

for last-mile goods delivery in urban settings. Further, the increased reliability by

compensating for sensor degradation and robustness to the aggressive motion of the

VLOAM pipeline is accommodating for the UAV-based delivery application, which

requires higher safety standards with the presence of humans and other structures.

Moreover, the sensor suite of lidar and camera can be used to enhance safety by

assisting obstacle detection and avoidance.

However, when we evaluate the system performance with the Transport Canada reg-

ulations, if used alone, a UAV with the VLOAM pipeline will only be permitted to

fly under 5 km distances as there will be no loop closure in a straight path. Be-

yond 5 km, the position drift can be more than 10 m which violates the Transport

Canada safety regulations. Moreover, the system might fail in weather conditions,

for instance, foggy, rainy, or snow conditions, which can deteriorate lidar and vision

sensor measurements. Therefore, VLOAM needs a global sensor that is not affected
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by weather conditions and also, which can correct the drift intermittently to keep the

drift in check.

3.3.2 GPS and VLOAM Integration

For GPS/VLOAM integration, an optimization-based framework will perform better

than filter-based methods as they are more accurate [130]. Also, filter-based methods

are extremely challenging due to time synchronization and complexities associated

with time-delayed measurement updates [130]. A general optimization-based frame-

work to fuse local states with global sensors is proposed in [48]. To this end, they use

a secondary pose graph optimization to fuse the local and global sensors as shown in

Figure 3.4.

Figure 3.4: Overview of framework to fuse the local and global sensors

In this framework, sensors that are not globally referenced, such as camera, lidar, and

IMU, are considered as local sensors. For navigation using local sensors, the initial

pose of the UAV is taken as the origin, and UAV motion is incremented relative to that.

These local sensor information is fused in local state estimator provide 6D pose relative

to the origin. For pose graph optimization, any local sensor navigation framework

which can provide 6-DoF poses can be used [48]. On the other hand, global sensors

such as GPS, magnetometer, barometer provide globally referenced measurements
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and fused in global estimator. Global sensor measurements are considered general

factors in pose graph optimization. The global pose graph structure of this work is

shown in Figure 3.5.

X0 X1 X2 Xn

Xn State

Local Factor (6D Pose)

GPS Factor

Magnetometer Factor

Barometer Factor

Figure 3.5: An illustration of the global pose graph structure with local and global
factors

In the global pose graph, each node represents the position and orientation of the

UAV in a globally referenced frame. Local factors, i.e., local constraints, are obtained

by the relative pose between two frames of the local state estimator, connecting the

consecutive nodes. Global measurements directly constrain the position of nodes, and

they are mapped as edges in the pose graph optimization. Solving the graph involves

finding the best configuration of nodes that matches all the edges to the fullest extent.

To this end, the pose graph optimization is run at low frequency (1 Hz). Further, after

every optimization, a transformation from local frame to global frame is estimated,

enabling the real-time high-frequency global state estimation.

In their study, to obtain the experimental results, state-of-the-art VIO, namely, VINS-

fusion is used as the local state estimator. GPS measurements are used as global
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sensor input. Extending this work to use VLOAM as the local state estimator and

GPS measurements as a global sensor can improve accuracy and reliability.

3.4 Evaluation of Navigation Methods

A simulation study was conducted using MATLAB to compare the performance of

existing navigation systems with a combined GPS/VLOAM system. To this end, the

2-D trajectory of the UAV as shown in Figure 3.6 is considered. The trajectory has

a total distance of 15 km, and a maximum velocity of 18 m/s which is the maxi-

mum velocity of DJI Matrice 600 UAV, is reached during the simulation. Moreover,

simulations for combined sensor systems with GPS were carried out under different

GPS conditions to compare the performance. This simulation study assumed that the

UAV-based delivery operation is started in a space with proper GPS measurements

in which multipath and other GPS errors are negligible. The sensor parameters for

this simulation study were obtained from the literature and using the established

datasets for UAV navigation. KITTI odometry dataset [5] has been used as the main

source as it is the benchmark dataset used by state-of-the art UAV navigation meth-

ods [2, 4, 48, 131]. Moreover, to the best of authors knowledge, the KITTI dataset is

the only publicly available dataset with camera, IMU, laser and GPS sensor data.

3.4.1 Sensor Parameters

The IMU sensor used in KITTI odometry dataset [5] is adopted as the IMU sensor

for this simulation. To this end, OXTS RT 3003 GPS/IMU inertial navigation system

is used, and IMU is simulated with gyro and accelerometer sensors with an update

rate of 100 Hz. IMU parameters were obtained from VINS-fusion implementation for

KITTI dataset [132] and these parameter values are given in Table 3.1.
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Figure 3.6: Actual Trajectory of the simulation

Table 3.1: IMU sensor parameters

Sensor Parameter Standard deviation
Accelerometer Bias 0.001 m/s2

Accelerometer Noise 0.1 m/s2

Gyro Bias 0.0001 rad/s
Gyro Noise 0.01 rad/s

The VLOAM navigation system is simulated as a combination of an IMU and an

odometry sensor to mimic the performance of the VLOAM system. Odometer provides

velocity measurements at 50 Hz, and it is equivalent to lidar and camera correction.

To maintain the consistency of the results, the same IMU parameters from the KITTI

odometry dataset are used here. In general, the VLOAM system’s percentage position

error for the distance traveled starts with a 1.25% and ends with a 0.5% according to

results submitted to KITTI odometry benchmark [5] (refer to Figure 3.7). Moreover,

VLOAM system’s rotation error for distance traveled starts with a 0.004◦/m and
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ends with a 0.001◦/m (refer to Figure 3.8). First, we simulated the VLOAM system

as an IMU and an odometer for the 00 sequence of the KITTI odometry dataset and

adjusted the standard deviation of gyro noise and standard deviation of velocity noise

to match the aforementioned performance criteria. The simulation results for the

KITTI 00 sequence are shown in Figure 3.9. Then, the simulation was carried out to

the benchmark trajectory shown in Figure 3.6 using the tuned sensor parameters.
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Figure 3.7: Percentage position error for the distance traveled of VLOAM system for
sequence 13 of KITTI dataset [3]

In this simulation, GPS is simulated as a position sensor that provides 2-D position

coordinates of the UAV at an update rate of 1 Hz. It was assumed that the GPS

position noise distribution is Gaussian according to the central limit theorem [133]

as there are various random noises that sum up the GPS position noise. Further,

the simulation study was conducted under different GPS conditions, namely, GPS

with DGPS correction, GPS without DGPS correction, and GPS with the presence of

multipath errors. The first 5 km of the trajectory is considered as an area with DGPS

(this corresponds to 0 s to 723 s time interval), and beyond that, GPS measurements

are given without the DGPS correction (723 s to 1340 s time interval). Then, the area

between 10 km and 11 km of the trajectory is considered as an area with multipath
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Figure 3.8: Rotation error for the distance traveled of VLOAM system for sequence
13 of KITTI dataset [3]

GPS signals (1061 s to 1118 s time interval). The parameters used for each GPS

condition is acquired from literature. These parameters and other sensor parameters

used for this simulation are summarized in Table 3.2.

Table 3.2: Sensor performance parameters

Combination Reference Position Error Orientation
Accuracy
(deg/m)

IMU (100 Hz) [134] 1.12 m (RMSE) 0.04
VLOAM (50 Hz) [5] 1.25% of the dis-

tance traveled
0.004

GPS (1 Hz)
• Accuracy with DGPS [135] 3 cm -
• Accuracy without DGPS [25] 1.12 m -
• Accuracy with the Presence

of Multipath signals
[136] 15 m -
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Figure 3.9: Results of the simulated VLOAM system for 00th sequence of KITTI
dataset

3.4.2 Results

Figure 3.10 illustrates the absolute position error with respect to the time. As shown in

the figure, the position error of both IMU only and VLOAM only navigation systems

keeps increasing as a result of drift accumulation. It remains bound for the other

two systems except for the area with GPS multipath signal errors. Comparatively,

VLOAM drifts slower than the IMU drift. However, both the standalone VLOAM

and IMU systems surpass the required safety accuracy level of 10 m position error.

In contrast, GPS/INS and GPS/VLOAM systems have managed to keep the absolute

position error in centimeter-level with DGPS correction. In the absence of DGPS,

GPS/INS system was able to maintain the estimation error under 2 m except for

the area with multipath signals. The position error of GPS/INS exceeded the 10 m

safe margin set by Transport Canada and reached 14.432 m when multipath signals

were present. In contrast, even with the multipath signals, GPS/VLOAM system has
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kept the position error around 1 m. The maximum position error for different regions

of the trajectory for each navigation system is summarized in Table 3.3. According

to this simulation results, only GPS/VLOAM integrated solution manages to meet

the required safety accuracy levels by maintaining the position error under 10 m

throughout the entire trajectory.
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Figure 3.10: Absolute position error of IMU Only, VLOAM Only, GPS/INS and
GPS/VLOAM with respect to time
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Figure 3.11: Orientation error of IMU Only, VLOAM Only, GPS/INS and GP-
S/VLOAM with respect to time

Figure 3.11 shows the orientation error of each system with respect to the distance.
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Table 3.3: Maximum errors for each navigation solution

Method Maximum Position Error Maximum
Orientation
Error

With DGPS Without
DGPS

With Multi-
path errors

IMU 426 m 2045 m N/A 0.0669
VLOAM 23.52 m 158.70 m N/A 0.0352
GPS/INS 0.125 m 1.519 m 14.432 m 0.0482
GPS/VLOAM 0.012 m 0.115 m 0.8406 m 0.0344

IMU only system has the highest orientation error, whereas GPS/VLOAM system has

the lowest orientation error. Maximum orientation errors for each navigation system

are summarized in Table 3.3. This simulation depicts that GPS/VLOAM navigation

solution has superior performance in terms of both position and orientation accuracy.

Error states with their two standard deviations of the mean for each navigation solu-

tion are shown in Figure 3.12-3.15. Note that the Y-axis scale of each graph is different

because the estimation error characteristics of each estimator are different. These re-

sults validate the consistency of proposed state estimator. As the error states are well

within the two standard deviation bounds of the mean error, it is possible to confirm

that the filter is working properly. Moreover, this indicates that GPS/VLOAM navi-

gation solution does not violate the 10 m accuracy requirement in either of the X-Y

directions.

3.4.3 Summary

This chapter evaluated the regulatory compliance of GPS/VLOAM integrated solution

through a numerical simulation. The results demonstrated that the GPS/VLOAM

integrated solution manages to solve the GPS degradation issues while adhering to
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recommended safety regulations. Therefore, this solution has a high potential to be

used in long-distance UAV-based delivery. This chapter is only a numerical simulation

to validate the proposed system. In next chapter, implementation of a novel VLOAM

system is explained and Chapter 5 presents results with more exhuastive validation

for the actual implementation of GPS incorporated VLOAM system.

Figure 3.12: Error states with two standard deviations of the mean for IMU only
navigation. Green: Region with DGPS (0s to 723s time interval or 0 to 5km), Blue:
Region without DGPS correction (723s to 1340s time interval or 5km to 15km), Red:
Region with multipath errors (1061s to 1118s time interval or 10km to 11km)

Figure 3.13: Error states with two standard deviations of the mean for VLOAM only
navigation. Green: Region with DGPS (0s to 723s time interval or 0 to 5km), Blue:
Region without DGPS correction (723s to 1340s time interval or 5km to 15km), Red:
Region with multipath errors (1061s to 1118s time interval or 10km to 11km)
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Figure 3.14: Error states with two standard deviations of the mean for GPS/INS
navigation. Green: Region with DGPS (0s to 723s time interval or 0 to 5km), Blue:
Region without DGPS correction (723s to 1340s time interval or 5km to 15km), Red:
Region with multipath errors (1061s to 1118s time interval or 10km to 11km)

Figure 3.15: Error states with two standard deviations of the mean for GPS/VLOAM
navigation. Green: Region with DGPS (0s to 723s time interval or 0 to 5km), Blue:
Region without DGPS correction (723s to 1340s time interval or 5km to 15km), Red:
Region with multipath errors (1061s to 1118s time interval or 10km to 11km)
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Chapter 4

VI-LOAM Version 1.1

4.1 Introduction

This chapter describes version 1.1 of the Visual Inertial Lidar Odometry and Mapping

(VI-LOAM) pipeline and demonstrates the performance of the system for captured

in-house ground data and online benchmark data. VI-LOAM is a multi-sensory robust

navigation solution that localizes a moving platform in an environment while creating

a map of the traversed environment. To this end, VI-LOAM combines inertial, lidar,

and visual sensor information to provide high accuracy estimation. This version of the

pipeline is not aided from global sensors such as GPS. Incorporating global sensors

will be addressed in Chapter 5 of this thesis.

4.2 VI-LOAM Version 1.1 Architecture

VI-LOAM version 1.1 pipeline combines visual-inertial odometry (VIO) [37] and lidar

odometry (LO) and mapping [4] as shown in Figure 4.1. In this work, lidar odometry

and mapping are aided by VIO pose estimation for improved results as suggested

in [2]. LO module is initialized by the solution of VIO, and global pose constraints
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Figure 4.1: Architecture of VI-LOAM version 1.1

from the VIO are added to the optimization of the lidar mapping module. These

modifications are found in sections 4.2.3.2 and 4.2.4.1. One main difference from [2] is

that the proposed method uses tightly coupled visual-inertial navigation, whereas [2]

uses a loosely-coupled approach to combine vision and inertial data, i.e., the IMU

mechanization equations run as a separate module, and its bias is periodically updated

by using the solutions given by the VIO, LO, and mapping modules. Most of the latest

research work use a tightly-coupled approach for state estimation due to improved

accuracy compared to the loosely-coupled systems [6, 37, 62, 76]. The functionalities

of each module are described in the following sections.

4.2.1 Visual-Inertial Odometry (VIO)

Images

IMU

Feature
Tracker

VINS
Estimator

20 Hz Visual

odometry pose

Tracked

Features

20 Hz

100 Hz

Figure 4.2: Visual inertial odometry module
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Visual-inertial odometry module takes IMU and images as inputs and estimates the

incremental motion of the system at the camera rate (20 Hz). This module con-

sists of two submodules: feature tracker and odometry estimator. Feature tracker

extracts corner features from images using the FAST (Features from Accelerated Seg-

ment Test) corner detector method and tracks them across image frames using the

OpenCV KLT feature tracker. VIO estimator is adopted from [37] uses constraints

from IMU and camera (termed the IMU pre-integration factors [101] and visual fea-

ture reprojection factors [37]). Camera constraints are formulated using the tracked

features received from the feature tracker. This estimator solves a sliding window-

based local optimization problem using Ceres Solver [50] to estimate the incremental

motion.

4.2.1.1 Ceres Solver

Throughout the implementation of this system, Ceres Solver [50] is employed to solve

optimization problems. Ceres Solver is an open source library for modeling and solving

complex optimization problems. Ceres Solver can solve two types of problems:

1. Non-linear Least Squares problems with bounds constraints, and

2. General unconstrained optimization problems.

Ceres Solver solves the non-linear least squares problems of the form:

min
x

1
2

∑
i

ρi

(
∥fi (xi1 , ..., xik

)∥2
)

s.t. lj ≤ xj ≤ uj

(4.1)

Where, ρi

(
∥fi (xi1 , ..., xik

)∥2
)

is known as a residual block. fi(·) is a cost function

that depends on the parameters {xi1 , ..., xik
}. lj and uj are lower and upper bounds
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on the parameter block xj. The cost function is responsible for computing a vector

of residuals and Jacobian matrices, Ji = Dif(x1, ..., xk) ∀i ∈ {1, . . . , k}. ρi is a loss

function that reduces the influence of outliers on the solution.

We can rewrite the the Equation 4.2 as follows;

arg min
x

1
2∥F (x)∥2 .

L ≤ x ≤ U

(4.2)

Where, F (x) = [f1(x), ..., fm(x)]⊤ and L are U lower and upper bounds on the pa-

rameter vector. The general method to solve non-linear optimization problems is to

solve a sequence of approximations to the original problem. For non-linear problems,

an approximation can be computed by linearization, F (x + ∆x) ≈ F (x) + J(x)∆x.

Then the non-linear optimization problem becomes;

min
∆x

1
2∥J(x)∆x+ F (x)∥2 (4.3)

This problem is solved by iteratively updating x← x+∆x. The algorithm convergence

depend on the method to control the size of the step size ∆x. To this end, the thesis

used the Levenberg-Marquardt algorithm [137] given in Ceres Solver.

4.2.1.2 Sliding Window

The sliding window approach is used to increase the computational efficiency and

achieve real-time performance. To this end, the optimization is carried out over a

bounded-size sliding window of recent states rather than all the previous states. To

estimate the system states, only the measurements inside a sliding window is utilized

as shown in the Figure 4.3. When estimation is carried out for the next state, last
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state inside the sliding window is removed and next state with relevant measurements

are added to the sliding window.

Xm-3 Xm-2 Xm-1 Xm Xm+1 Xm+2 Xm+n

Xn System State IMU preintegration factor Camera key frame pose factor

Previous graph (Outside the sliding window) Sliding Window

Figure 4.3: Illustration of sliding window optimization for VIO with IMU and camera
factors

4.2.1.3 VIO Motion Estimation

The full state vector in the sliding window of VIO is as follows;

χ =
[
x0,x1, ....,xn, λ0, λ1, ..., λm

]

xk =
[
pw

bk
vw

bk
qw

bk
ba bg

]
, k ∈ [0, n] (4.4)

xb
c =

[
pb

c qb
c

]

where χ is the keyframe vector with visual keyframe poses xn and inverse depth of

features λm. n is the total number of keyframes, and m is the total number of features

in the sliding window. xk is the IMU state at the kth image time. IMU state has

position, velocity, orientation of the IMU in the world frame and acceleration bias, and

gyroscope bias in IMU’s body frame. The extrinsic parameters between the camera
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and the IMU is given by xb
c.

The maximum posterior estimation is obtained by minimizing the sum of prior and

the Mahalanobis norm [138] of all measurement residuals:

min
χ

{
∥rp −Hpχ∥2 +

∑
k∈B

∥r
B

(zbk
bk+1,χ)∥2

pbk
bk+1

+
∑

(l,j)∈C

ρ(∥r
C
(zcj

l ,χ)∥2
p

cj
l

)
}

(4.5)

Where the Huber norm, ρ(s), is the loss function; ρ(s) =


1 s ≥ 1

2
√
s− 1 s < 1

To solve the Equation 4.5 and estimate the system states, measurements inside a

sliding window is utilized as explained in section 4.2.1.2. The images inside the

sliding window are between the mth frame and (m + n)th frame. C is the set of

features that have been observed two or more times in the current sliding window,

and B is the set of all IMU measurements. r
B

(zbk
bk+1,χ) and r

C
(zcj

l ,χ) are residuals

for IMU and visual measurements respectively. [rp,Hp] is the prior information from

marginalization. This nonlinear problem is solved using the Ceres Solver.

The proposed system tracks around 150-200 features across images. The odometry

is published with respect to the IMU frame at 20 Hz, which is the camera’s image

capture frequency.

4.2.2 Scan Registration

Scan
Registration

Lidar Point
Cloud

10 Hz Planar and Edge

Features

Figure 4.4: Scan registration module
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The scan registration module determines the number of channels in the lidar point

cloud received and arranges the points received orderly with respect to time and

channel number for further processing. The number of channels can vary from 16,

32 to 64 for Velodyne lidars [139]. Further, this module extracts four different planar

and edge features from the lidar point cloud and publishes them under different topics

used for the lidar odometry estimation.

4.2.2.1 Planar and Edge Point Extraction

Let P̂ be the points received in the laser scan. These points are registered in the

lidar frame, and the combined point cloud during sweep k is Pk. Let i be a point in

Pk. Then, S is the set of consecutive points of i in the same scan. The lidar frame

coordinates of a point i, i ∈ {L} are denoted as XL
(k,i). [4] has defined a parameter to

evaluate the smoothness of the local surface and extract features;

c = 1
|S|.∥XL

(k,i)∥
∥

∑
j∈S,j̸=i

(XL
(k,i))−XL

(k,j)∥ (4.6)

Based on the c values, the points in a scan are sorted. The points with maximum c

values are classified as edge points, and the points with minimum c values are classified

as planar points.

4.2.3 Lidar Odometry (LO)

The LO module calculates motion within a lidar sweep using the planar and edge

features received from the scan registration module. To this end, it runs a non-linear

optimization using Ceres Solver with lidar constraints. Lidar constraints are computed

by calculating the distances between matched point to plane and point to edge. The

LO module estimates the odometry at 10 Hz which is the lidar update rate.
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Figure 4.5: Lidar odometry module

4.2.3.1 LO Motion Estimation

Let Pk be the point cloud of previous kth sweep and Pk+1 be the point cloud of current

(k + 1)th sweep. Pk is reprojected to tk+1 timestamp and it is denoted as P̄k. At the

beginning of sweep k + 1, Pk+1 is an empty set and as more points are received,

it grows during the course of the sweep. Lidar odometry recursively estimates the

6-DoF motion during the sweep. Let Ek+1 and Hk+1 be the sets of edge points and

planar points in Pk+1. For a point i ∈ Ek+1, if (j, l) is the corresponding edge line,

{j, l} ∈ P̄k, the point to line distance is given by dE . For a point i ∈ Hk+1, if (j, l,m)

is the corresponding planar patch, {j, l, m} ∈ P̄k, the point to plane distance is given

by dH. Refer [4] for the derived equations for dE and dH.

Let TL
k+1 be the lidar pose transform between tk+1 and t where t is the current

timestamp and tk+1 is the starting time of sweep k + 1. TL
k+1 consist of translation

and rotation angles with respect to lidar frame, {L}, TL
k+1 = [tx, ty, tz, θx, θy, θz]. Then

we we can derive a geometric relationship between an edge points and planar points

and the pose transform.

fE(XL
(k+1,i),TL

k+1) = dE , i ∈ Ek+1 (4.7)

fH(XL
(k+1,i),TL

k+1) = dH, i ∈ Hk+1 (4.8)
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Finally, by stacking 4.7 and 4.8 for each matched feature point, a nonlinear function

is obtained. Ceres Solver solves this nonlinear optimization problem by minimizing

the distances dE and dH towards zero [50].

4.2.3.2 Initialization

In addition to the implementation proposed in [4], the proposed method provides the

initial value for the nonlinear optimization using the odometry value computed in

the VIO module. This enables optimization to converge to the optimum value faster

as the initial value provided by the frame to frame motion of VIO is much closer to

the optimum solution. To this end, a matching VIO update for each lidar sweep is

identified.

Let visual-inertial odometry at lidar sweep timestamps tk and tk+1 are vXI
(k) and

vXI
(k+1) respectively. The VIO is published with respect to the IMU world frame {I}.

XI
(k) =

[
pk

I
qk

I

]
where pk

I is the translation vector and qk
I

is the rotation quaternion.

Then, frame to frame motion in IMU frame is computed as;

vqI
(k,k+1) = (qI

k)−1 ⊗ vqI
k+1 (4.9)

vpI
(k,k+1) = qI

k
−1 ⊗ (vpI

k − vpI
k+1) (4.10)

Let tranformation matrix between lidar and IMU is TL
I =

[
pL

I
qL

I

]
. Using 4.9 and

4.10, VIO frame to frame motion with respect to the lidar frame {L} can be derived

as follows;

vqL
(k,k+1) = qL

I
⊗ vqI

(k,k+1) (4.11)
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vpL
(k,k+1) = (qL

I
⊗ vpI

(k,k+1)) + pL
I

(4.12)

4.2.4 Lidar Mapping

Lidar Mapping Module
VIO Global Pose

10 Hz Lidar

Odometry

Planar and Edge

Features

10 Hz Mapped

odometry pose

Generated Map

Figure 4.6: Lidar mapping module

Lidar mapping further refines the odometry by carrying out a batch optimization and

updates a map of the travelled environment. The mapping algorithm is also adopted

from [4] and updates once per sweep, i.e., at 10 Hz.

Lidar odometry generates undistorted point cloud P̂k+1 and pose transform TL
k+1

which contains the lidar motion during the sweep. Let us define Qk as the point

cloud of the map accumulated until sweep k and TW
k be the pose of the lidar on the

map at the end of sweep k where {W} represents the world coordinate frame. As

shown in Figure 4.7 the mapping algorithm extends TW
k for one more sweep from tk

to tk+1, obtaining TW
k+1 while simultaneously projecting P̂k+1 to the world coordinates

{W}, denoted as Q̂k+1. Then, the algorithm matches Q̂k+1 to the existing map Qk

by optimizing the lidar pose TW
k+1.

To this end, similar to the lidar odometry process, the edge and planar geometric

features of the current sweep’s point cloud is matched with the existing map. However,

for this optimization, ten times more features are used since map is updated after ten

sweeps. The nonlinear optimization is solved using the Ceres Solver [50]. This map
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is incrementally built by down-sampling and registering the incoming point cloud on

a voxel grid.

Figure 4.7: Illustration of mapping process [4]

4.2.4.1 Visual pose constraints

In this work, we have improved the mapping algorithm by using global pose constraints

from the previous VIO estimate to solve the optimization problem. First, the pose

from the VIO module is transformed to the world frame {W}. In our implementation,

initial lidar frame {L} is taken as the reference world frame {W}.

Let vXI
(k+1) =

[
vpI

(k+1)
vqI

(k+1)

]
be the VIO pose at lidar timestamp tk+1. Then, this

can be transformed to world frame using the world to IMU transformation matrix,

TW
I =

[
pW

I
qW

I

]
.

vqW
(k+1) = qW

I
⊗ vqI

(k+1) (4.13)

vpW
(k+1) = (qW

I
⊗ vpI

(k+1)) + pW
I

(4.14)

Let the variance of translation and rotation of VIO pose estimate be σ2
t and σ2

R

respectively. TW
k+1 =

[
pW

(k+1) qW
(k+1)

]
is the motion to be solved. The constraints for
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the motion using the VIO global pose can be formulated as:

 (pW
(k+1) − vpW

(k+1))/σ2
t

(qW
(k+1)

−1 ⊗ vqW
(k+1))/σ2

R

 = 0 (4.15)

These constraints are added to the optimization problem together with lidar edge

and planar feature constraints and solved using Ceres Solver. The mapping and the

odometry refinement are carried out at 1 Hz. However, previous lidar odometry is

integrated on top of that to provide 10 Hz mapped odometry update.

4.3 Results

The VI-LOAM version 1.1 implementation was tested and evaluated with two datasets.

The KITTI online benchmark dataset [5] and AI4L payload datasets which were cap-

tured locally in St John‘s, NL.

4.3.1 Datasets

4.3.1.1 KITTI Dataset

The KITTI dataset [5] consists of around 6 hours of data captured from driving in

city of Karlsruhe, Germany. It includes grayscale and color camera images, laser point

clouds, GPS measurements, and IMU data. The sensors they have used are as follows:

• Two PointGray Flea2 grayscale cameras, 1.4 Megapixels at 10 Hz

• Two PointGray Flea2 color cameras, 1.4 Megapixels at 10 Hz

• Velodyne HDL-64E rotating 3D laser scanner at 10 Hz

• OXTS RT3003 inertial and GPS navigation system at 100 Hz
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Figure 4.8: Recording zones of the KITTI dataset. This figure shows the GPS traces
of the recordings [5]

The images are post-processed and cropped to a size of 1382 x 512-pixel resolution.

One limitation of this system is that, even though the IMU rate is 100 Hz, the synced

IMU data with other sensors are only available at 10 Hz. The sensor setup with their

coordinate frames is shown in Figure 4.9. The sensor calibrations, IMU to lidar, and li-

dar to camera, can be found here: http://www.cvlibs.net/datasets/kitti/rawdata.php
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Figure 4.9: KITT dataset sensor setup with their coordinate frames [5]

4.3.1.2 AI4L Payload Data

AI4L Payload is a custom sensor payload designed, implemented and tested by re-

searchers in Intelligent Systems Laboratory (ISLab), Memorial University of New-

foundland, collaborating with NRC Flight Research Lab, Ottawa, Canada. The pay-

load consists of four sensors:

• FLIR backfly camera,1.6 Megapixels at 20 Hz (Resolution: 1440 x 1080 pixels)

• Velodyne VLP-16 rotating 3D laser scanner at 10 Hz

• Ublox F9P GPS receiver running on RTK mode with a reach RS2 base station

at 10 Hz

• Xsense MTI 30 IMU at 200 Hz
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Figure 4.10: AI4L Payload sensor setup

The AI4L payload sensor setup is shown in Figure 4.10. The calibrations parameters of

sensors used, IMU to camera and lidar to the camera, are mentioned below. The IMU

to camera calibration was achieved using the Kalibr [140] toolbox, and the camera to

laser calibration was found using the Matlab visual Lidar calibration tool.

CT
I

=



−0.0009792 0.00685726 0.99997601 0.18648448

0.99931723 −0.03692628 0.00123178 −0.04199414

0.03693384 0.99929446 −0.00681642 −0.03693199

0 0 0 1


=



[
R

]
3×3

[
t

]
3×1

[
0

]
1×3

1



The standard t block of the homogeneous transformation matrix provides the trans-

lation between the camera and the IMU, and the standard R block corresponds to

the rotation of the camera with respect to the IMU. Similarly, following homogeneous
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transformation matrix provides translation and rotation between the camera and the

lidar.

CT
L

=



−0.0062 −0.0009 1.000 0.0923

−0.9992 0.0391 −0.0061 0.0388

−0.0391 −0.9992 −0.0012 −0.0740

0 0 0 1


We captured several datasets while driving around the Memorial University of New-

foundland, Canada. GPS traces of one of them is shown in Figure 4.11, and it has a

path length of around 2.3 km. The datasets include color camera images, laser point

clouds, GPS measurements, and IMU data.

Figure 4.11: GPS traces of one of the datasets captured around the Memorial univer-
sity of Newfoundland, Canada
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4.3.2 KITTI Dataset Results

The proposed VI-LOAM version 1.1 was tested with three sequences of the KITTI

odometry benchmark dataset which include sequence ’04’, ’06’ and ’10’. To this end,

stereo visual-inertial odometry was used instead of monocular visual-inertial odome-

try because the IMU update rate of KITTI data set is not sufficient for generating

accurate monocular VIO. These results were used to verify if adding lidar improves

the estimation performance. The resultant estimated path with the ground truth for

each navigation system for one of the sequences is presented in Figure 4.12. It indi-

cates that VI-LOAM version 1.1 estimation is closer to the ground truth path than

the other state-of-the-art systems.
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(a) Visual-inertial Odometry (VIO) (b) Lidar Odometry (LO)

(c) VIO initialized LO (d) VI-LOAM version 1.1

Figure 4.12: KITTI dataset sequence 10 results for each navigation solution

A summary of position and orientation estimation accuracy for each navigation method

for KITTI datasets are presented in Table 4.1. According to that, VI-LOAM version

1.1 system has managed to achieve close to 1% translation accuracy and it outper-

forms all the other state-of-the-art navigation methods (VIO [37] and LOAM [4])

presented here for the selected KITTI data sequences. Moreover, rotation errors are

also improved when the VI-LOAM system is introduced. (Note: VIO initialized LO

is an intermediate architecture that only uses VIO as initialization to the LO.)
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Table 4.1: Performance evaluation of each navigation method for KITTI benchmark
online dataset

KITTI
Sequence

Error Type VIO LO VIO Ini-
tialized LO

VI-LOAM

04 Translation
Error %

4.5345 1.2690 1.2655 1.1977

Rotation Er-
ror (deg/m)

0.0062 0.0047 0.0046 0.0045

06 Translation
Error %

3.1876 1.6127 1.6995 1.4243

Rotation Er-
ror (deg/m)

0.0062 0.0071 0.0071 0.0065

10 Translation
Error %

3.032 1.7721 1.5530 1.4339

Rotation Er-
ror (deg/m)

0.0079 0.0068 0.0053 0.0053

4.3.3 AI4L Payload Data Results

The proposed VI-LOAM version 1.1 was evaluated on two data sets that were captured

around the Memorial University of Newfoundland utilizing the AI4L sensor payload.

The resultant estimated path with the generated map of the environment for each

dataset is presented in Figure 4.13 and 4.14. The paths for the stand-alone VIO

and stand-alone LO systems were also generated and compared with the VI-LOAM

version 1.1 implementation.
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Figure 4.13: Estimated paths and ground truth with the generated map for the AI4L
payload dataset #1. Colors illustrate different navigation methods and ground truth.
Yellow track is for ground truth. Blue track is for standalone VIO and Green track
is for VI-LOAM version 1.1 estimation.

Figure 4.14: Estimated paths and ground truth with the generated map for the AI4L
payload dataset #2. Colors illustrate different navigation methods and ground truth.
Yellow track is for ground truth. Blue track is for standalone VIO and Green track
is for VI-LOAM version 1.1 estimation.
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4.3.3.1 AI4L Payload Dataset #1

(a) Visual-inertial Odometry (VIO) (b) Lidar Odometry (LO)

(c) VIO initialized LO (d) VI-LOAM version 1.1

Figure 4.15: Results of each navigation solution for AI4L payload dataset #1.

The estimated path with the ground truth for each navigation system for the AI4L

payload dataset #1 is illustrated in Figure 4.15. According to that, stand-alone LO

had a significant variation in the z-direction, whereas stand-alone VIO had some drift

in the x and y-direction. VI-LOAM version 1.1 estimation managed to minimize the
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variation in z-direction while reducing the drift in x and y directions as well.

4.3.3.2 AI4L Payload Dataset #2

(a) Visual-inertial Odometry (VIO) (b) Lidar Odometry (LO)

(c) VIO initialized LO (d) VI-LOAM version 1.1

Figure 4.16: Results of each navigation solution for AI4L payload dataset #2.

The estimated path with the ground truth for each navigation system for the AI4L

payload dataset #2 is shown in Figure 4.16. According to that, stand-alone LO and

stand-alone VIO had similar performance to dataset #1, in which LO had large vari-
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ations in the z-direction and VIO had drift in other directions as shown in Figure

4.16. Additionally, for that dataset, VIO was unable to estimate the rotations cor-

rectly at the corners introducing a more erroneous final pose. Even though z-direction

variations were corrected and drift errors were minimized with VI-LOAM version 1.1

estimation, this rotation error was unable to correct with the VI-LOAM version 1.1

system as well. However, these results were generated without the loop closure al-

gorithm, which is useful to identify revisiting the same place and correct the path

accordingly. So, this should be evaluated with a loop closure module for better per-

formance. Moreover, these results are only preliminary results, and there are specific

improvements, such as improving the calibration of the camera, which can further

improve the estimation.

Table 4.2 summarizes the performance of VI-LOAM version 1.1 system for AI4L

payload datasets. In this evaluation, GPS position information was used as the ground

truth. Since the GPS position data does not provide any orientation information, the

results presented in Table 4.2 do not include rotational error values. According to the

results, VI-LOAM version 1.1 achieves the best accuracy compared to the other state-

of-the-art navigation methods (VIO [37] and LOAM [4]). However, the translation

drift is between 2.5% and 9% which is as not as good as the accuracy values for

the KITTI dataset. This is due to availability of stereo visual odometry and more

accurate sensor calibrations for KITTI odometry data. Moreover, the ground truth

GPS used for the payload evaluation is not accurate as ground truth provided by

KITTI dataset. Additionally, errors have occurred due to the inability to estimate

the yaw angle accurately. Fixing these issues will improve the accuracy of our proposed

navigation system.
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Table 4.2: Performance evaluation of each navigation method for Payload dataset
sequences

Payload
Sequence

Error Type VIO LO VIO Ini-
tialized LO

VI-LOAM

01 Translation
Error %

6.3208 16.9296 11.8107 2.7096

RMSE (m) 10.4 20.17 16.22 3.5

02 Translation
Error %

12.1860 16.3915 15.2838 8.5199

RMSE (m) 28.14 34.08 21.26 20.15

4.3.4 Execution Time Results

The execution time of the current VI-LOAM version 1.1 implementation was evaluated

for two different devices: (i) a laptop computer which has an Intel Core i7-8750H

CPU @ 2.20GHz with 16 GB RAM and 8 GB VGA (NVIDIA GeForce 1070) and

(ii) a NVIDIA Jetson Xavier with 8-core ARM CPU, 32 GB RAM and 512-core

Volta GPU. To achieve the real-time performance, odometry needs to updated at 10

Hz which is the update rate of the lidar sensor. Therefore, feature tracker, visual

odometry, and lidar odometry needs to complete under 100 ms.

Execution times for the laptop computer is presented in Table 4.3. According to

the results, the total odometry mean time is 113.3 ms (Total mean time of feature

tracker, visual odometry, and lidar odometry nodes) which is marginally higher than

the expected 100 ms.

Table 4.3: Execution time statistics for the laptop computer (in seconds)

Statistic Feature
Tracker

Visual
Odometry

Scan Reg-
istration

Lidar
Odometry

Lidar
Mapping
(Visual
aided)

Mean 40.8 57.9 3.7 14.6 135.9
Std. Deviation 31 20.4 1.2 4.4 80.25
Max 130 147 13.5 35.4 350.5
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NVIDIA Jetson Xavier module execution times are presented in Table 4.4. The total

odometry mean time is 94.7 ms which is under 100 ms, indicating the ability to

perform the navigation in real-time. However, these results are limited to a few

datasets, and more validation needs to be done, which will be completed as part of

the improvements described in chapter 6.

Table 4.4: Execution time statistics for the NVIDIA Jetson Xavier module (in sec-
onds)

Statistic Feature
Tracker

Visual
Odometry

Scan Reg-
istration

Lidar
Odometry

Lidar
Mapping
(Visual
aided)

Mean 8.5 62.2 5.3 24.0 119.4
Std. Deviation 3.4 18.0 1.9 6.2 36.2
Max 15.7 91.3 18.5 54.9 120.5

The execution time statistics of each module of the VI-LOAM version 1.1 system for

each device are presented below in box and whisker plots.

Figure 4.17: Box and whisker plot of execution times for the laptop computer
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Figure 4.18: Box and whisker plot of execution times for the NVIDIA Jetson Xavier
module

According to the box and whisker plot, execution times of feature tracker and visual

odometry modules have improved in the NVIDIA Jetson Xavier implementation com-

pared to the laptop computer. This is due to the GPU implementation of the visual

odometry algorithm and Jetson Xavier manages to complete the process under 100

ms.

4.4 Summary

The implementation of the proposed novel VI-LOAM version 1.1 architecture and

comparison with state-of-the-art navigation methods were presented in this chapter.

According to the results, the proposed VI-LOAM version 1.1 has better pose accuracy

than the state-of-the-art methods. However, some improvements, such as correcting

orientation errors in yaw angle, are yet to be carried out. The next chapter discusses

the VI-LOAM version 1.2 with the improvements. Additionally, the next chapter

incorporates GPS with the novel VI-LOAM navigation system and delivers results for
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different GPS scenarios.
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Chapter 5

VI-LOAM Version 1.2

5.1 Introduction

This chapter describes improvements in version 1.2 of the VI-LOAM pipeline and the

results of this system. The main addition is the global measurements like GPS in the

pipeline. Additionally, the architecture performs several algorithmic improvements to

the architecture in version 1.1.

5.2 VI-LOAM Version 1.2 Architecture

Similar to VI-LOAM version 1.1, VI-LOAM version 1.2 consists of visual-inertial

odometry, lidar odometry, and lidar mapping modules. Additionally, the mapped

odometry is further corrected using GPS signals in the global fusion node, as shown

in Figure 5.1. Furthermore, the following changes were carried out:

• incorporate depth information from lidar to visual features;

• include VIO frame to frame motion constraints in the lidar odometry optimiza-

tion;
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• include only roll and pitch global orientation constraints in lidar mapping opti-

mization in contrast to including 6-DoF pose constraints in version 1.1, and

• update the VI-LOAM odometry estimation using GPS signals as and when they

become available.

These revisions are discussed in sections 5.2.1, 5.2.2, 5.2.3, and 5.2.4, respectively.

Depth Enhanced
Visual Iner-

tial Odometry

Lidar
Mapping

Lidar Odometry
Scan

Registration

Global
Fusion

10 Hz
LO estimation

VO pose constraints

100 Hz

20 Hz

1 Hz

IMU

Images

Lidar Point
Cloud

GPS

Mapped odometry

pose 10 Hz

Final odometry

pose 10 Hz

Figure 5.1: Architecture of VI-LOAM version 1.2

5.2.1 Depth-Enhanced Visual Inertial Odometry

Previous visual inertial odometry module is adopted from [37] and derive two types

of camera constraints using the visual features:

• features without depth, and

• features with depth from triangulation.

In this implementation, these constraints are extended by adding depth measurements

from lidar to image features. As lidar depth measurement is more accurate, depth

association from lidar take precedence over triangulation. This method is adopted

from [6] and the new constraint is features with depth associated from lidar.
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To this end, lidar frames are registered to the camera frame using the estimated

visual-inertial odometry. Multiple lidar scans are stacked to obtain a dense depth

map. First, visual features and lidar depth points are projected to a unit sphere that

is centered at the camera. Depth points are then downsampled and stored in a 2D

K-D tree based on the two angular coordinates. Next, we search for the nearest three

depth points on the sphere for a visual feature by searching the 2D K-D tree using the

coordinates of the visual feature. An illustration of this process is shown in Figure

5.2.

Figure 5.2: Depth association to visual features using lidar depth map [6]

Let X̂k
j , j ∈ {1, 2, 3} be the coordinates of the three points in the unit sphere centered

at the camera and let Xk
i be the coordinates of feature i. Then, depth can be computed

as follows:

(Xk
i − X̂k

1)((X̂k
1 − X̂k

2)× (X̂k
1 − X̂k

3)) = 0 (5.1)

5.2.2 VIO Frame to Frame Constraints

The lidar odometry module follows an implementation similar to version 1.1. However,

considering the observability of VIO, frame to frame motion of the VIO is incorporated
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as constraints in the optimization problem. VIO has observable velocities, and frame

to frame motion for small time steps can be considered as velocity measurements.

Recall equations 4.11 and 4.12 for frame to frame motion of VIO transformed to

lidar frame {L}. Let the variance of frame to frame translation and rotation of VIO

estimate be σ2
t,ff and σ2

R,ff respectively. TL
k,k+1 =

[
pL

(k,k+1) qL
(k,k+1)

]
is the motion to

be solved. The constraints for the motion using the VIO frame to frame pose can be

formulated as:

 (pL
(k,k+1) − vpL

(k,k+1))/σ2
t,ff

(qL
(k,k+1)

−1 ⊗ vqL
(k,k+1))/σ2

R,ff

 = 0 (5.2)

These constraints are added to the optimization problem together with lidar edge and

planar feature constraints and solved using Ceres solver to estimate the motion during

the lidar sweep.

5.2.3 VIO Global Orientation Constraints

Similarly, lidar mapping constraints are adjusted according to the observability of

VIO motion. In VI-LOAM version 1.1, the global 6-DoF VIO pose, both position

and orientation, was incorporated as constraints. However, only the roll and pitch

orientations are the observable measurements from the VIO global state. Therefore,

constraints were adjusted only to incorporate roll and pitch orientations.

Recall equation 4.13 for the quaternion, vqW
(k+1), representing the global VIO orienta-

tion in lidar world frame {L}. Recall that, for this study, the lidar frame {L} overlaps

with the world frame {W}, i.e., {L} ≡ {W}. Let the variance of orientation estimate

to be σ2
R

and motion to be solved be TW
k+1 =

[
pW

(k+1) qW
(k+1)

]
. In order to compute the

difference between roll and pitch orientation difference, a new quaternion is derived

by combining the yaw of the motion to be solved and VIO roll and pitch. This deriva-
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tion is initialized by converting the existing quaternions into their respective Euler

angle representation. Let [ψv, θv, ϕv] be Euler angles for the global VIO orientation

quaternion vqW
(k+1) and let [ψ, θ, ϕ] be Euler angles for the quaternion of the motion

to be solved. Therefore, Euler angle representation for the new combined orientation

is [ψ, θv, ϕv]. The quaternion for these Euler angles can be computed as follows:

CombqW
(k+1) =



cosψ/2

0

0

sinψ/2





cos θv/2

0

sin θv/2

0





cosϕv/2

sinϕv/2

0

0


(5.3)

Consequently, the constraint for the motion using the VIO roll and pitch can be

formulated as:

[
(qW

(k+1)
−1)⊗ (CombqW

(k+1))/σ2
R

]
= 0 (5.4)

5.2.4 Global Fusion

The global fusion module momentarily corrects the odometry from the VI-LOAM

version 1.2 system when GPS signals are available. GPS provides absolute position

information without any drift errors. This ensures that the drift of the VI-LOAM esti-

mation does not accumulate and provides large erroneous results. To this end, a non-

linear optimization problem is solved using GPS absolute measurement constraints

and VI-LOAM version 1.2 estimation constraints. The factor graph corresponds to

this optimization problem is shown in Figure 5.3.

GPS receives absolute longitude, latitude, and altitude measurements at 1 Hz. The

longitude, latitude, and altitude can be converted to x, y, and z coordinates with

respect to the earth frame, {G}. We can denote these coordinates as GP SpG
(k+1). Let
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X0 X1 X2 Xn

Xn Global State

VI-LOAM between pose factor

GPS measurement factor

Figure 5.3: Factor graph of the global fusion optimization

the pose to be solved be TG
k+1 =

[
pG

(k+1) qG
(k+1)

]
. Let the variance of the position

measurement of GPS be GP Sσ2
t . Then the constraints from GPS is formulated as:

(pG
(k+1) − GP SpG

(k+1))/GP Sσ2
t = 0. (5.5)

On the other hand, odometry from VI-LOAM version 1.2 is formulated as a pose

difference between two updates at 1 Hz. We can derive the following equations for

the VI-LOAM pose difference between updates using the equation 4.9 and equation

4.10.

qW
(k,k+1) = (qW

k )−1 ⊗ qW
k+1 (5.6)

pW
(k,k+1) = qW

k
−1 ⊗ (pW

k − pW
k+1) (5.7)

Let already solved previous pose of the global fusion be TG
k . Let the variance of the

translation and rotation between updates for the VI-LOAM estimate be σ2
t,δ and σ2

R,δ,

respectively. Then constraints from the VI-LOAM is given by 5.8.
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 (pG
(k+1) − pG

(k))− (pW
(k,k+1))/σ2

t,δ

(qG
(k+1)

−1 ⊗ qG
(k))−1 ⊗ qW

(k+1,k))−1/σ2
R,δ

 = 0 (5.8)

These constraints are formulated for all the measurements within a sliding window

to jointly estimate global pose. Note that GPS constraints are only for the position.

Therefore, orientation of the global pose degenerates to the orientation of the VI-

LOAM version 1.2 system.

To ensure robust performance, GPS degradation cases are assessed. If the variance

of the GPS signal is high, indicating an erroneous signal, the corresponding GPS

measurement will be discarded and the GPS measurement constrain will not be ap-

plied in the optimization process. Consequently, the system is naturally degraded to

VI-LOAM estimation if GPS is not available or provides erroneous measurements.

5.3 Results

To evaluate the proposed VI-LOAM version 1.2 implementation, it is required to have

a dataset with different GPS availability regions. Neither two datasets capture using

in-house AI4L sensor payload nor publicly available KITTI benchmark dataset satisfy

this condition. In contrast, LVI-SAM dataset [6] contains different regions of GPS

availability which is ideal for evaluating the proposed GPS aided implementation and

its performance for different GPS scenarios.

5.3.1 LVI-SAM Dataset

The LVI-SAM dataset [6] consists of three datasets, with each one having a duration

of more than 30 minutes. It includes grayscale camera images, laser point clouds,

GPS measurements, and IMU data. The sensors they have used are as follows:
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• Velodyne VLP-16 lidar updates at 10 Hz

• FLIR BFS-U3-04S2M-CS camera,1.4 Megapixels updates at 10 Hz

• MicroStrain 3DM-GX5-25 IMU updates at 100 Hz

• Reach RS+ GPS updates at 5 Hz

We have considered two LVI-SAM datasets named Handheld and Jackal for our eval-

uation. The Handheld dataset is gathered by carrying the sensor payload around in

an open field, whereas the Jackal dataset is gathered by mounting the sensor payload

on a Clearpath Jackal unmanned ground vehicle (UGV). Both datasets begin and end

at the same position.

5.3.2 LVI-SAM Dataset Results

The proposed GPS aided VI-LOAM system was evaluated with two sequences of the

LVI-SAM dataset. This dataset provides positioning information using a reach RTK

GPS with 5 Hz update rate. In that, there are regions with GPS loss with over 15 m

GPS position error. Accordingly, the path of an LVI-SAM dataset can be divided into

three regions based on the GPS availability: regions without GPS error, regions with

random GPS error spikes, and regions with continuous GPS loss. The comparison

results of the GPS aided VI-LOAM path and GPS position for LVI-SAM dataset 1

and 2 are illustrated in Figure 5.4 and 5.5. According to them, GPS aided VI-LOAM

has corrected the drift errors of stand-alone VI-LOAM and follows the ground truth

path.
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Figure 5.4: Estimated path and GPS position for the LVI-SAM dataset #1. Yellow
track is for GPS position and Green track is for GPS aided VI-LOAM estimation.

Figure 5.5: Estimated path and GPS position for the LVI-SAM dataset #2. Yellow
track is for GPS position and Green track is for GPS aided VI-LOAM estimation.
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Additionally, the performance of proposed method was evaluated for all the GPS

regions. In the LVI-SAM dataset, when GPS was erroneous it only affected the

GPS altitude estimation. Since the data were captured on a 2D terrain, the nominal

altitude at each location was taken as the ground truth to compute the error. Figure

5.6 illustrates the estimated path of GPS aided VI-LOAM when random GPS errors

occur. The estimated path is unaffected by these momentary GPS errors. On the

other hand, when the GPS signal provides continuous errors, as shown in Figure 5.7,

the estimated path has drifted in that direction. However, it has managed to keep

the error to a lower value than the GPS.

Figure 5.6: Estimated path when random GPS error spikes occur.Yellow track is for
GPS position and Green track is for GPS aided VI-LOAM estimation.
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Figure 5.7: Estimated path in the region of continuous GPS errors.Yellow track is for
GPS position and Green track is for GPS aided VI-LOAM estimation.

Maximum RMS position error for different GPS region is summarized in Table 5.1.

According to them, VI-LOAM version 1.2 has kept the position error under 2.5 m

when GPS corrections are available. Also, the system only has around 3 m position

errors when sudden GPS losses occur, resulting in GPS spikes. Even when GPS is lost

for a continuous period, the maximum error has gone only up to 9.7 m. Therefore,

the GPS aided VI-LOAM version 1.2 system meets the required safety accuracy levels

by maintaining the position error under 10 m.

5.4 Summary

This chapter introduced the improvements carried out to develop VI-LOAM version

1.2 and the integration of GPS sensor information with that system. The performance

of the proposed GPS aided VI-LOAM system was evaluated with the LVI-SAM dataset
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Table 5.1: Performance of GPS aided VI-LOAM version 1.2 for different regions of
GPS availability

Dataset GPS signal
error

Maximum RMS Error

No GPS errors Random GPS
error spikes

Continuous GPS
loss

LVI Dataset 1-
Handheld

5-10 m 2.35 m 3 m 5 m

LVI Dataset 2-
Jackal

15 m 1.3 m 3 m 9.7 m

for different GPS scenarios. According to the results, the proposed GPS aided VI-

LOAM manages to correct the drift errors in the stand-alone VI-LOAM system and

rectify the GPS degradation situations such as GPS loss and multipath errors. More-

over, the GPS aided VI-LOAM version 1.2 system meets the UAV safety regulations

imposed by Transport Canada. The next chapter discusses the accomplishment of the

objectives of this thesis work and future directives addressing some of the limitations

of the proposed system.
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Chapter 6

Conclusion and Future Work

The focus of this research study was to develop a novel visual, inertial, and lidar

combined navigation system aided with GPS for UAV-based parcel delivery applica-

tions. The navigation system is developed while addressing the identified drawbacks

of state-of-the-art navigation systems. This chapter summarizes the accomplishment

of each objective with the conclusions. Future directions are then presented based on

the observations and conclusions.

6.1 Research Summary Based on Objective I

The first objective of this study was to develop a novel robust visual, lidar and in-

ertial integrated odometry and mapping system for UAV navigation. Chapter 4 has

presented a novel multi-sensory architecture VI-LOAM 1.1 that was implemented by

effectively combining already existing robust navigation packages VINS-mono and

ALOAM. Improvements for this architecture was done in Chapter 5. This method

uses tightly-coupled IMU preintegration and uses modern optimization library Google

Ceres for the implementation. The proposed architecture was evaluated with KITTI

benchmark dataset and in-house AI4L payload dataset. The results indicate that pro-
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posed method has higher accuracy than state-of-the-art vision-based and lidar-based

navigation methods.

6.2 Research summary Based on Objective II

The second objective of this study was to implement a GPS aided multi-sensory navi-

gation system for UAV navigation. The visual, lidar and inertial integrated navigation

system was extended by incorporating GPS as a global pose correction in Chapter

5. To this end, GPS corrects the drift errors from the VI-LOAM estimator as and

when the GPS signals are available. The proposed GPS aided VI-LOAM method

was evaluated with LVI-SAM dataset with different GPS scenarios. According to the

results, GPS aided VI-LOAM method rectify the errors by GPS failure cases such as

multipath errors and GPS loss.

6.3 Research Summary Based on Objective III

The third objective of this study was to compare the proposed method with state-

of-the-art UAV navigation methods and evaluate the system with UAV safety reg-

ulations. The proposed multi-sensory navigation system and state-of-the-art UAV

navigation methods, VINS-mono and ALOAM, were tested and evaluated on KITTI

odometry benchmark dataset and AI4L payload data in Chapter 4. Findings indicate

that the proposed system has significant improvement for the position drift compared

to the other methods. The extended multi-sensory navigation system with GPS was

evaluated with LVI-SAM online dataset with different GPS regions. The results in-

dicate that the system managed to keep the maximum RMS Error under 10 m even

when GPS is erroneous for continuous period of time. Therefore, the proposed system

meets the required safety regulations by maintaining the position error under 10 m.
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6.4 Publications

A part of this work is presented at the IEEE Newfoundland Electrical and Computer

Engineering Conference (NECEC) 2021 under the title "Numerical Study of GPS

Aided Visual Lidar Odometry and Mapping (VLOAM) for Safety Regulatory Com-

pliance." A journal paper from this study is submitted to the IEEE Transactions on

Automation Science and Engineering, 2022 with the title "Review of Navigation Meth-

ods and Implementation of GPS/VLOAM Solution for UAV-Based Parcel Delivery",

and it is under review at the time of submitting this thesis.

6.5 Future Directives

This work has obtained successful results for the proposed navigation system for se-

lected datasets. However, an exhaustive validation needs to be done through system-

atic field trials to confirm its applicability under different scenarios and its robustness

against unplanned weather conditions before real-world application.

The proposed method has some limitations that need to be addressed in future iter-

ations. The transformations between lidar, camera, and IMU need to be calibrated

by the user for each payload. Therefore, the accuracy of the proposed method relies

on this sensor calibration provided by the user. Also, the proposed method is limited

to navigation and does not include any obstacle detection or avoidance techniques.

Additionally, using GPS as a global correction can be problematic as GPS is prone

to signal errors and can be manipulated by others.

The proposed system can be extended to carry out self-calibration from approximate

sensor calibration values. Therefore, over-dependence on user input can be avoided.

This navigation system can be equipped with obstacle detection and avoidance tech-

niques using the generated map [141] to tackle emergency situations and improve the
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safety of navigation. Additionally, detecting dynamic obstacles and updating the map

without them [142] may improve the mapping accuracy. Future work will target using

3D digital elevation maps to provide global updates in addition to GPS as they are

immune from signal errors and spoofing events.
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