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ABSTRACT 

 
Offshore systems suffer from excessive corrosion damage in the marine environment because of 

the dynamic operational and environmental contributing factors. Such situations enhance the 

serious integrity and safety concerns, systems degradation, and associated risks, especially in harsh 

environmental conditions. The microbiologically influenced corrosion as an essential corrosion 

category has considerable characteristic complexity because of the interactions between the 

bacteria and the corrosion contributing factors.  The microbial corrosion and the interconnected 

system safety management plan are impacted by the stochastic behavior of microbial metabolism 

and operational parameters. To have a robust and reliable corrosion management plan in offshore 

systems, the dynamic microbial corrosion features, as well as the corresponding risk factors, must 

be taken into account. 

The present thesis proposes a dynamics-based approach for risk-based safety and integrity 

management of marine and offshore systems that suffer from microbial corrosion. First of all, a 

literature review is presented for the identification of microbial corrosion shortages, challenges, 

and requirements in the risk-based decision-making framework. The study is focused on the four 

tasks, including characteristics, mechanisms, modeling, and management of microbial corrosion. 

Secondly, a new probabilistic model is proposed to estimate the corrosion rate of a subsea pipeline 

by assessing the failure time and probability. The microbial corrosion monitoring and management 

activities are achieved using the Continuous Bayesian Network technique with the integration of 

Hierarchical Bayesian Analysis. The analysis outcomes indicate that the interdependencies 

between the contributing factors of microbial corrosion could raise the rate of corrosion and reduce 

the failure time of engineered corroded systems. Thirdly, new reliability is proposed to assess the 

optimum maintenance strategy time-interval for a subsea system impacted by multiple microbial 
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corrosion defects. The different probabilistic models, including the non-homogeneous Markov 

processes, non-homogeneous Poisson, and homogeneous gamma, are utilized to model the 

maximum and average pit depth and multiple defects generations. The results show the influence 

of multiple microbial corrosion defects on the subsea pipeline considering several scenarios and 

recommend the optimal intervention time and management practices. Finally, a novel risk-based 

safety and integrity management framework is recommended to evaluate the subsea pipeline's 

failure. A multi-objective functional optimization methodology is developed to minimize the 

operational risk associated with microbial corrosion. The research results highlight an actual safety 

and integrity management plan consistent with the industrial practices. An innovative and dynamic 

Bayesian Network-based approach is proposed to assess the subsea system's resilience under MIC 

as a function of time. The subsea system is designed with sufficient resilience to maintain its 

performance under the time-varying interdependent stochastic conditions. The proposed 

methodology assists decision-makers in considering the resilience of the system design and 

operation. The present thesis investigates the mechanisms of microbial corrosion and explores the 

dynamic risk-based methodologies for several operating scenarios to manage the safety and 

integrity of marine and offshore systems. 
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Chapter 1 

Introduction 

 

1.1. Background 

The marine environment and offshore sectors are critical challenges for infrastructures, increasing 

the risk of material degradation. It is exposed to harsh environmental and operating conditions due 

to the operational, environmental, and external influential factors. The contributing factors might 

contain the concentration of CO2, pH, biofouling, temperature, pollutants, pressure, velocity, 

bacteria, carbonate solubility, and salinity. The influential factors induce corrosion of the offshore 

and marine systems, which further causes integrity and safety concerns. The dynamic 

interdependencies between the factors and their stochastic behavior in nature support the material 

degradation of the relevant transportation system in oil and gas industrial sectors (e.g., subsea 

pipelines). Notably, the two phases of water-oil provide a potential environmental condition 

contacting the marine and offshore internal face; this then poses microbial growth and CO2 

dissolution. The interactions between the microorganisms and influential factors introduce 

microbiologically-influenced corrosion (MIC) [1].  

Commonly, different types of corrosion, including MIC, enface the marine and offshore operating 

system with integrity challenges. MIC is a stochastic material degradation progression initiated by 

the metabolic process and microorganisms presence, including bacteria and fungi [2]. Considering 

MIC metabolic activities and formation, the MIC mechanism produces corrosive substances and 

makes the failure characteristics of marine and offshore systems complicated. Besides, the external 

environmental factors and bio-chemical nutrients enhance the formation and mechanism MIC. 
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In addition, the microorganisms have significant contributions to the deterioration of the subsea 

systems (e.g., pipeline corrosion) [3,4], reservoir souring [2,5], and cargo tank leakage [6,7]. The 

newest studies have highlighted that MIC is the cause of over 20 % of worldwide corrosion and 

the corresponding failures, with the considerable loss [8]. The microbial metabolism complication 

and growth process make decision-makers in the system face a detailed understanding of the MIC 

mechanism and its relevant characteristics. Besides, the microorganisms' instability and co-

existence on the biofilm contributes to numerous disastrous MIC-based failures in the offshore and 

marine system [3,9,10]. Specifically, the rupture accident of a natural gas high pressure 

transportation "pipeline near Carlsbad, New Mexico" [11] and the transit line failure at Prudhoe 

Bay [12] are recognized as MIC. The latter one resulted in the loss of over $8 billion, that is while 

the failure of the gas transporting line claimed 12 deaths with related reputation and consequences 

loss. This seriously calls the essential research to well-understanding, reliably diagnosing, 

precisely predicting MIC characteristics and consequences, and adequately managing MIC over 

time. Having an appropriate MIC knowledge in terms of failure rate would assist in the 

development of a reliable and robust MIC integrity management approach for the subsea system.  

The available model in the state of arts is inadequate to capture interdependencies of the “physio-

chemical parameters” on MIC rate as well as failure probability estimation. There are a few 

dynamic-based models to assess the impact of microorganisms and characteristics’ dependencies 

on the rate of MIC of the subsea system. The microorganisms’ co-existence impacts the failures 

of the subsea system have not been considered MIC prediction rate. In addition, the efficiency and 

applicability of different management actions (e.g., preventive, control, and mitigative) have not 

been taken into account in the management strategy plan. It is a requirement to improve our 
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understanding and investigate the dynamic and stochastic behavior of MIC in subsea systems to 

acquire a MIC and integrity management plan reliably. 

1.2. Motivation and objectives 

MIC poses serious risks of failure in the subsea systems and highlights its significant impact on 

the whole of system failure and related loss [8,13,14]. MIC can be increased underlying the 

microorganisms' instability and co-existence on the biofilm. The biofilm is complex structurally 

and made by the fusion of bacteria cells and extracellular polymeric substances. These complex 

microbial communities lead to a dynamic system failure impacting the potential subsea systems.  

Moreover, the complex and stochastic MIC nature includes the interrelationships between 

physical, chemical factors, and biological, leading MIC modeling to become a challenging task. 

The existing methodologies assumed the simple mechanistic model for MIC, such as the 

correlation of the chemical parameters causing the intense MIC occurrences [15]. Moreover, cause 

and effect connections are realized by controlling the lab scale assessments [16]. Therefore, the 

dynamic characteristics of microorganisms cause extrapolation to become problematic over time. 

In addition, the extensive published works in terms of MIC modeling methodologies are according 

to the worst-scenarios on localized pitting corrosion. Besides, the available MIC modeling 

frameworks consider only SRB as an influential factor, and some take the balance between sulfate-

mass and biofilm. There are also limited methods that have taken the kinetic microorganisms’ 

growth in the mechanistic MIC model. To obtain the time that the system would collapse entirely, 

the rate of failure probability and pit depth distributions must be investigated systematically.  

This research aims to develop a risk-based decision-making model to manage subsea systems 

impacted by microbial corrosion. The presented decision-making model addresses the complicated 

interdependencies among the various vital corrosion contributing factors (e.g., steel composition, 
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temperature, carbon content, fluid velocity, CO2 pressure, and more factors) and the bacteria for 

the marine and offshore failure system assessment. The research goal is accomplished considering 

the objectives mentioned below. Figure 1.1 presents the translation of research objectives into a 

research task. 

i. To develop systematic literature on risk-based decision-making models for MIC in offshore 

pipelines by identifying the existing gaps, needs, and challenges of MIC models and 

explaining further research opportunities. 

ii. To propose a dynamic-based framework to analyze the system reliability of subsea systems 

with consideration of the non-linear interdependencies among MIC influential and 

contributing factors. 

iii. To develop a probabilistic model to simulate operational subsea pipeline maintenance 

strategies by studying the time-interval, detection probability, average, and maximum pit 

depth by identifying the optimum strategy considering MIC multiple defects. 

iv. To develop an MIC integrity management framework within the tradeoff between 

reliability and cost of management practices.  

To develop a dynamic framework to assess and evaluate the marine and offshore system's 

resilience under the influence of microbiological corrosion. 
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Figure 1.1. The thesis research objectives  
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1.3. Scope and limitations 

This research study is established particularly for subsea operational conditions. The study mainly 

focuses on the risk-based decision-making models for integrity management of marine and 

offshore systems suffering from MIC. As mentioned earlier, the MIC degradation process is 

complex and provides serious concerns in system failure estimation and integrity management. 

Therefore, robust, reliable, and dynamic MIC management models are required to address the 

connected complexity, uncertainties, and stochasticity. Besides, it should have enough capabilities 

to address the safety and reliability of marine and offshore systems. Numerous uncertainties in 

information, primary data processing MIC contributing factors, and diminishing mechanisms 

because the availability of sparse data might initiate subjective uncertainty in the introduced 

approaches. The current research work is not an effort to capture all research gaps, challenges, and 

needs related to the MIC subsea systems integrity management; however, it is an effort to capture 

a few of them in subsea systems operations under the influence of microbial corrosion. 

1.4. The novelties and contributions 

The present doctoral key research's novelties and contributions are in corrosion management of 

the subsea system suffering from microbial corrosion. The novelties and contributions are 

highlighted as the following: 

• A systematic review attempts to the identification of MIC shortages, requirements, and 

challenges in risk-based decision-making approaches. The review assessment mainly 

determines the characteristics, modeling, mechanisms, and management of microbial 

corrosion. Both theoretical and empirical outcomes are then integrated. The gaps and 

capabilities of the state of arts are then highlighted, and future research tasks are explained. 

The novelty and contribution of this research task is presented in chapter 2. 
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• A new probabilistic model is proposed for the corrosion-based failure rate assessment and 

failure time of subsea pipelines influenced by microbial corrosion. The proposed model 

accurately monitors the activities of microorganisms and accordingly develops 

management strategies. The Continuous Bayesian Network technique with the integration 

of Hierarchical Bayesian Analysis is utilized to monitor and manage microbial corrosion. 

Besides, the framework considers both model and data uncertainty and develops a novel 

MIC mechanistic model to determine pit depth growth. The research task presents a 

comprehensive knowledge regarding the MIC contributing factors and associated failure 

probability. The novelty and contribution of this research task is presented in chapter 3. 

• A new reliability model is introduced to assess the optimum maintenance of strategy time 

interval for the marine and offshore process systems impacted by multiple microbial 

corrosion defects. The presented approach integrated the non-homogeneous Markov 

processes and Poisson and homogeneous gamma to model the multiple defects generations, 

the maximum and average pit depth. The introduced methodology reproduces maintenance 

strategies with consideration of cost, time interval, detection probability, maximum and 

average pit depth, and classifies the optimum management strategies. The aim of this 

research task is to help decision-makers to select an optimum maintenance strategy for the 

subsea system impacted by microbial corrosion. The novelty and contribution of this 

research task is presented in chapter 4. 

• A novel integrity risk management approach is recommended to assess the subsea 

pipelines' failure behavior. A multi-objective functional methodology involving Dynamic 

Continuous Bayesian Network modeling to minimize the operational risk associated with 

the MIC is proposed. The Meta-heuristic algorithm as a Genetic Algorithm is used to obtain 
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the optimum schedule for performing integrity management actions. The results identify a 

series of solutions allowing decision-makers to select the optimal combination of integrity 

management actions with the tradeoff between reliability and cost. The novelty and 

contribution of this research task is presented in chapter 5. 

• A novel “dynamic Bayesian Network-based approach” is proposed to assess the resilience 

of marine and offshore systems suffering from microbial corrosion over time. The design 

of the subsea system is based on adequate resilience and performance maintenance 

considering time dependency and stochastic MIC parameters. The proposed approach 

helps decision-makers in the resilience consideration of the subsea system during the 

design and operation period. The promising novelty and contribution of this research task 

are presented in chapter 6. 

1.5. The statement co-authorship  

 
The authorship contributions of Mr. Mohammad Yazdi, Dr. Faisal Khan, Dr. Rouzbeh Abbassi, 

Dr. Noor Quddus, and Dr. Homero Castaneda-Lopez regarding the thesis [the outlined is structured 

in Figure 1.2] and present research tasks are explained as the following. 

Mohammad Yazdi: Conceptualization, methodology development, idea preparation, MIC 

integrity management plan development, conducting data analysis, validating the model; writing 

the original draft of the manuscript for journals submission; editing and reviewing the manuscripts 

according to the co-authors and journal reviewers’ feedback. 

Faisal Khan: Idea preparation of research activities, methodology development, MIC integrity 

management plan development, data analysis supervision; editing and reviewing the manuscripts 

and thesis. 
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Rouzbeh Abbassi: Idea preparation of research activities, methodology development, MIC 

integrity management plan development, data analysis supervision; editing and reviewing the 

manuscripts and thesis. 

Noor Quddus: Assistance in development and data analysis of systematic review work, and 

reviewing and re-organizing the manuscripts.  

Homero Castaneda-Lopez: Assistance in development and data analysis of systematic review 

paper and reviewing the manuscript. 

1.6. The Thesis organization  

The present thesis is constructed and written in the format of manuscripts. The five peer-reviewed 

journal chapters are the primary outcomes of the current thesis work. The organization of the 

present thesis is depicted in Figure 1.2. The introduction, literature review, and conclusions are 

presented in Chapters 1, 2, and respectively. Chapters 2 to 6 are prepared according to the peer-

reviewed journal's submissions. 
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Figure 1.2. The organization of present thesis and the relevant publications  
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Chapter 2 presents a systematic review related to the research objectives. The chapter contains a 

state of arts on risk-based decision-making models for microbial corrosion in marine and offshore 

pipelines. This chapter is published and available online in the journal of Reliability Engineering 

& System Safety 2022; 223: 108474. 

Chapter 3 covers a novel dynamic probabilistic approach for MIC management of offshore 

structures. This chapter is published and available online in the journal of Ocean Engineering, 

2021; 226: 108852 

Chapter 4 introduces an innovative operational offshore structures assessment impacted by 

multiple microbial corrosion defects. This chapter is published and available online in the journal 

of Process Safety and Environmental Protection, 2022; 158: 159-171. 

Chapter 5 presents an integrated dynamic model for MIC Integrity risk management of subsea 

pipelines by selecting the optimal combination of integrity management actions and the tradeoff 

between reliability and cost. This chapter is submitted to Ocean Engineering  

Chapter 6 proposes a probabilistic and dynamic framework to assess and evaluate the resilience of 

marine and offshore systems in a corrosive environment. The dynamic Bayesian Network and the 

“two-state Markov chain framework” are integrated to assess the resilience of a subsea pipeline 

suffering from MIC. This chapter is published and available online in the journal of Journal of 

Pipeline Science and Engineering, 2022: 100053. 
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Chapter 2 

A review of risk-based decision-making models for microbiologically influenced corrosion 

(MIC) in offshore pipelines 

 

Preface 

A version of this chapter has been published in the Reliability Engineering & System Safety 2022; 

223: 108474. I am the primary author along with the Co-authors, Faisal Khan, Rouzbeh Abbassi, 

Noor Quddus, Homero Castaneda-Lopez. I developed the conceptual framework for the review of 

risk-based decision-making models for MIC in offshore pipelines. I prepared the first draft of the 

manuscript and subsequently revised the manuscript based on the co-authors’ and peer review 

feedbacks. Co-authors Faisal Khan and Rouzbeh Abbassi provided support in implementing the 

concept development, reviewing, and revising the manuscript. Co-authors Noor Quddus and 

Homero Castaneda-Lopez provided assistance in reviewing and correcting the results. The co-

authors also contributed to the review and revision of the manuscript. 

 

Abstract 

Microbiologically influenced corrosion (MIC) is one of the critical integrity threats in marine and 

offshore industrial sectors. Thus, MIC should be considered for effective risk-based decision-

making and asset integrity management of systems. The experience with accidents in this domain 

indicates that many corroded subsea pipelines involve a complex failure mode with MIC 

implications. Researchers have actively studied the MIC characteristics, mechanisms, modeling, 

and management since the last decades. However, despite MIC importance and practical 
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implications for a better understanding of decision-makers, there is a lack of reliable knowledge 

of risk-based decision-making models for MIC in marine and offshore sectors. The current work 

aims to present a systematic attempt to identify the gaps, needs, and challenges of MIC in risk-

based decision-making models. Therefore, an analysis of the arts in different database core 

collections is conducted. The analysis is focused on MIC characteristics, mechanisms, modeling, 

and management. It integrates the empirical and theoretical conclusions, highlighting the 

capabilities and drawbacks of existing literature and explaining the further research tasks’ 

opportunities.  

Keywords: Microbiologically influenced corrosion, MIC, offshore systems, Corrosion Modelling, 

Pitting, Risk management, Localized corrosion  

2.1. Introduction 

Offshore structures have faced high corrosion rates because of many operational factors and 

dynamic environmental circumstances, which raises system safety integrity concerns. The offshore 

equipment and pipelines are the leading offshore capital assets and have a crucial infrastructure 

role for oil and gas transportation. However, the offshore assets suffer from microbial influence 

corrosion (MIC) failure due to metal degradation. The complexity and diversity of the MIC 

mechanism pose an uncertain and unpredicted failure rate within unacceptable risk levels in 

offshore systems. Despite extremely varying failure cost estimations, the National Association of 

Corrosion Engineers (NACE -now AMPP “Association for Materials Protection and 

Performance”) developed a comprehensive study that approximated that the global failure cost of 

corrosions was 2.5 US trillion in 2013 [1]. In MIC, the material degradation is accelerated with 

different microorganisms on the metal surface, including bacteria, fungi, and algae [2,3]. The 

direct and indirect costs due to MIC failures are estimated to be 10 to 20 percent of total corrosion 
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cost [4,5]. However, the unavailability of a public MIC database associated with MIC failure 

modes, incidents, and accidents would limit the entire understanding of MIC impacts. Several MIC 

failures that lead to catastrophic accidents have been highlighted in the existing literature, such as 

an accident in propane tank explosion due to MIC leading to the weld failure, where the 

approximated loss was almost $180 million (US dollar) because of explosion and fire damages [6]. 

MIC is also a significant cause of gas pipeline internal corrosion leading to leaks and explosions 

in the offshore platforms in the Gulf of Mexico [7]. Another significant accident was an oil spill 

and environmental pollution in Alaska by discharging more than 950 cubic meters of crude oil [8]. 

Besides direct cost, MIC accidents would be critical when indirect costs result from environmental 

pollutions [9]—for example, releasing thousands of tons of methane in well casing leakage “the 

Aliso storage field,” causing significant environmental impacts [10].  

MIC is created as a result of three fields, including (i) microorganisms, (ii) media (i.e., physical 

parameters and chemical compositions), and (iii) material characteristics (i.e., metallurgy) [11]. 

The MIC would occur when microorganisms, media, and material characteristics have acceptable 

overlap. Thus, it is necessary to mutually understand the mentioned components based on the 

different MIC investigation views. It should be noted that MIC is a challenge in various materials 

and grades such as API 5LX70 carbon steel [12], 1010 carbon steel [13], 1018 carbon steel [14], 

aluminum alloys [15], copper and copper alloys [16], where the operational factors (e.g., low flow 

and temperature) and stagnation (residence time) period affecting the microbial activities. These 

statements reaffirm that understanding the MIC requires multi-disciplinary sciences, and 

investigating its impacts on failures of different materials in various offshore applications is an 

emergent need.    
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In order to have insights developing MIC protocols, the relevant MIC-based guidelines are taken 

into account, such as ASTM E3 “Standard Guide for Preparation of Metallographic Specimens” 

[17], ASTM A370 “Standard Test Methods and Definitions for Mechanical Testing of Steel 

Products” [18], ASTM D-93 “Standard Test Methods for Flash Point by Pensky-Martens Closed 

Cup Tester” [19], ASTM D422-63 “Standard Test Method for Particle-Size Analysis of Soils” 

[20], NACE SP0775 “Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons 

in Oilfield Operations” [21], ASTM E1404 “Standard Specification for Laboratory Glass Conical 

Flasks” [22], and Microbiological NACE TM0194 “Field Monitoring of Bacterial Growth in Oil 

and Gas Systems” [23]. Despite the numerous published research works on MIC, many gaps still 

exist, requiring further attempts to deal with MIC problems practically.  

For example, Abdulhaqq et al. [24] recently studied a comprehensive investigation on the chemical 

environment impacting MIC and corresponding model development. In another review, Kannan 

et al. [25] evaluated the analytical methods used to identify MIC, an aggressive microbiota-

facilitated degradation of engineering materials, and discussed their benefits and restrictions. In 

this regard, the main objective of the present work making differences between related papers is 

to provide a systematic review of risk-based decision-making models for MIC in offshore sectors 

by highlighting the shortages and advantages of current approaches and discussing future 

directions. The specific emphasis in this paper is addressing the following main research questions: 

• What research streams have investigated the MIC detection and characterization, MIC 

modeling, and MIC management in the offshore environment? 

• How have the previous investigations and attempts contributed to MIC in the offshore 

environmental systems, and what needs and gaps remain unaddressed in these studies? 
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• How should the existing shortages be overcome, and what challenges are decision-makers 

in MIC approaches facing, which further help decision-makers improve system safety and 

reliability of offshore systems over time? 

The organization of this review work has proceeded as the following. In Section 2, the review 

methodology is provided. Sections 3, 4, and 5 present the results and discussions. In Section 6, 

discussion and future work prospects to show the deficiency of current research content and 

development needs. In Section 7, the conclusion of this review and remarks are explained.  

2.2. Review methodology  

The reviewing process conducted in this paper has three main steps. In the beginning, the published 

studies from different primary databases were collected considering the proper keywords such as 

“MIC” AND “microbiologically influenced corrosion” AND “risk-based” AND 

“microbiologically induced corrosion”. Subsequently, a decision is made about every paper, 

whether indexed by WOS (Web of Science Core collection) or Scopus. Otherwise, they are 

excluded. Different databases were searched from January 1980 to the end of August 2021, and 

the number of paper counts reached 1237. This timeline was selected because most research studies 

on MIC areas have been released in the last 40 years. Afterward, the related studies' keywords, 

titles, and abstracts are reviewed. The 428 studies are excluded in the next step considering the 

title, abstract, and keywords. Then, 297 studies are retrieved by reviewing the full text of the 

manuscript due to their qualities (particularly based on the index: Science Citation Index, Science 

Citation Index Expanded, and Social Sciences Citation Index). Finally, all these papers were 

studied in detail and classified using a systematic review method [26,27], including publication 

year, application area, sub-application area, and methodology type. Figure 2.1 demonstrates the 

six main steps of the utilized review methodology in the present study [28]. 
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Figure 2.1. The research framework employed for the MIC risk-based decision-making 

systematic review in the offshore pipelines 

2.3. Results and discussion 

This section presents a brief review of MIC definiens, and then comprehensive literature in MIC 

approaches (i.e., MIC detection and characterization, MIC modeling, and MIC management) is 

discussed. The authors attempted to recognize MIC-based approaches' main drawbacks, needs, 

and challenges in the offshore structures. In addition, the dominant published works up to this date 

and directions for future studies are specified.  
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2.3.1. Definition of MIC 

MIC refers to the influence of the microorganisms in the material deterioration mechanism, either 

metallic or non-metallic, in the presence of water [29]. There are several microbes, which are 

responsible for MIC occurrence, including sulfate-reducing bacteria (SRB) methanogens, sulfur-

oxidizing bacteria (SOB), acid-producing bacteria (APB), iron-oxidizing bacteria (IOB), iron-

reducing bacteria (IRB), and manganese-oxidizing bacteria (MOB). Each group of 

microorganisms might include a multinumber of individual species [30,31]. That is why the MIC 

would occur naturally with the microbial communities containing several microbes.  

MIC is linked with the formation of biofilm on the metal surface. The biofilm is defined as a colony 

containing different types of bacteria within a “polymeric matrix”, which engages in the 

degradation process. An individual microorganism could not engage independently [32]. Thus, a 

biofilm simply plays an essential role as a microorganisms’ habitat. Biofilm creation is the most 

critical step in MIC formation and metal degradation due to a synergistic relationship among a set 

of microorganisms. This enables microorganisms for metabolization process turning into 

influences material degradation. The biofilm is created because of immobilized microbiological 

cells’ accumulation, which causes the cells to be reproduced on the metal surface, called the 

biofouling process [33]. During biofilm formation, the exopolymeric substances as extracellular 

polymers protect the microorganism from the environment [34]. A hypothesis was studied in 

which the biofilm could increase the chance of microorganisms' life and enhance the transferring 

conditions and availability of nutrients reaching microorganisms [35]. Besides, exopolymeric 

substances can also control the interfacial chemistry at the biofilm metal interface, including 

adhesion, protection, and structure. Therefore, providing a specific condition (e.g., pH and 
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chemical species) would be different from biofilm external environmental conditions. In Figure 

2.2, an adaption of biofilm evolution is presented [36].  

 

Figure 2.2. The early stage of a biofilm evolution on a metal surface, modified after [37] 
 

The mature biofilm is influenced by various circumstances, such as surface topography, surface 

wettability, and the presence of the nutrients [24]. In addition, the chemical and physical features 

of a mature biofilm are heterogeneous. If the environmental conditions include oxygen, this will 

diffuse to the out layer of biofilm and make it the aerobic area [36]. The rough surfaces would 

provide more surface zone into the microbiocidal cell adhesion [38]. The surface impact of 

roughness zone on cell attachment is studied by scholars [39], on a 340L stainless steel. The 

derived results showed that a significant cell attachment existed in the unwelded surface.   

It should be highlighted that the presence of biofilm does not essentially prove the MIC attack, 

that is, while it is the foremost important observation in the MIC investigation process. The 

activities of all MIC-based microorganisms are taken place in the biofilm zone. The MIC 

mechanism is further defined as the activities of microorganisms within a biofilm colony that 

promotes MIC. It is a vital task to properly understand the mechanism of MIC to deal with MIC 
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investigation (i.e., identifying, characterizing, modeling, and management). In the next Section, 

the microbial activities and their influence on metal surface degradation have been studied.  

2.3.2. MIC mechanisms 

The anaerobic microorganisms play an active role in an environment with low or even no oxygen 

for the evolution of MIC. They are the most referenced problematic microorganisms in oil and gas 

industrial sectors (e.g., marine and offshore environment) [36]. The most common type of 

anaerobic microorganism caused by MIC is SRB as an electron acceptor, which receives energy 

from an organic matter (H2) or even metal (Fe0) under specific environmental circumstances [2]. 

Figure 2.3 presents a list of common microbiological groups that participated in MIC and includes 

a limited number of microbial groups, well-known in MIC manner [40].  

The metal surface is covered with biofilm; some areas have much denser biofilm, and some are 

uncovered. Thus, the covered metal with biofilm would have a lower oxygen concentration and 

play an anodic role. On the opposite side, the covered part with no/less biofilm would reveal a 

higher oxygen concentration and play a cathodic role. Once the anodic and cathodic sites are settled 

at the metal surface, the MIC mechanism would have occurred due to differential aeration cells 

[41]. Furthermore, the microorganisms may create denser metal surface deposits, which can 

remove the oxygen from the deposit in a short period. This causes the area to be described as an 

anodic site. Also, the cathodic reaction becomes an oxygen reduction on the surrounding metal 

surface.  In the following, three main MIC mechanisms are explained in detail. 
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Figure 2.3. Most characteristic microbial groups (Note: the high-resolution of figure is provided 

in the published version of paper) 

2.3.2.1. Microbial activities producing corrosive metabolites 

Some microorganisms can attack the surface of metal within metabolic by-products. SRB would 

react with stainless steel and yield the corrosion products such as FexSy [24]. The deposits could 

have enough contributions into different aeration cells on the surface of the metal. This, therefore, 

can induce additional corrosion. In aerobic conditions, the FexSy reactions within oxygen could 

yield the elemental sulfur (S0), which is highly corrosive [36]. In addition, the acetic acid from 

APB is a significant metabolic by-product and can directly reduce the electrons from the surface 

of the metal by producing H+. This may cause a lower pH with the biofilm, making the metal 

surface susceptible to the MIC [42].  

2.3.2.2.  Synergy of bacteria in a biofilm consortium accelerating corrosion 

The fact is that a microorganisms’ metabolic activities can feed another microorganism. The 

synergy between the microorganism in the biofilm zone is significant for biodiversity. Some 

microorganisms have conductive structures (e.g., pilis, nanowires) that shuttle electrons to the 

biofilm zone. Then, these microorganisms could be engaged by those microorganisms inside the 

biofilm zone. Enning et al. [43] studied the conductive property of microorganisms, in which the 
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SRB is cultured as an electron donor and the presence of CO2 as a carbon source. The outcome 

highlighted the metal degradation with aggressive pitting and intimate SRB growth. 

Identifying such microorganism that causes degradation is a critical task in understanding MIC 

mechanisms, and it can provide a vision into MIC occurrence. In recent days, microbiological 

molecular methods (MMM) such as quantitative polymerase chain reaction (qPCR) and 

polymerase chain reaction (PCR) analysis are the standard and primary tools to identify the active 

microorganism in a biofilm zone [44]. As it is not adequately understood, the number of 

microorganisms and MIC are either correlated or not; therefore, microorganisms can only show 

the presence of MIC [29]. In addition, the small number of microorganisms can be the cause of 

MIC occurrence; however, the large amount of the same microorganisms do not necessarily 

present the severe existence of the MIC process.  

Although microorganism identification is an essential step in understanding the MIC mechanism, 

many attempts have been made to predict the rate of MIC and further MIC modeling. In the next 

Section, the MIC models have been reviewed.  

2.3.3. MIC modeling 

The relevant MIC protocols and models have been reviewed in a couple of review works 

[11,24,25,45,46]. All five published works are recommended to be studied by an interested reader 

to understand the existing literature's in-depth presentation better. Table 2.1 enlisted the key 

highlights and drawbacks of current MIC protocols and published reference works. In addition, 

Table 2.1 enlisted the main outcomes and summarized the reviewed published works.  
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Table 2.1. The key findings and drawbacks of current MIC protocols and published reference 

works 

Row References Key highlights Drawbacks Average citations 

per year* 

Total 

citation** 

#1 Little et al. 

(20200 [11] 

Suggesting the proactive, 

integrated approaches be used 

for MIC prevention and 

mitigation. 

-Research has not provided 

tools for detection of MIC in 

the field.  

-There are no systematic 

programs to mitigate and 

prevent MIC. 

10 30 

#2 Ibrahim et al. 

(2018) [24] 

Study inform further 

investigation on the chemical 

environment impacting MIC 

and model development. 

- There is no MIC 

identification and 

characterization developed 

concepts. 

- No consideration of 

identifying more compounds 

with major contributions, 

interaction pathways, and 

their impacts. 

3.4 17 

#3 Kannan et al. 

(2018) [25] 

- Review evaluates the 

analytical methods used for 

detecting MIC. 

- Challenges are presented by 

the lack of a comprehensive 

mechanistic understanding of 

MIC detection. 

There is no application  

scopes of introduced MIC 

identification and 

characterization developed 

concepts. 

 

3 15 

#4 Skovhus et al. 

(2018) [46] 

- MIC can be managed with a 

three-phase corrosion 

management approach.  

- Multidisciplinary work 

processes should link 

microbiology and corrosion 

science. 

Combination of system 

metadata and data from 

molecular microbiological 

methods is the key to MIC 

management. 

8.83 53 

#5 Marciales et 

al. (2019) 

[45] 

Most mechanistic MIC models 

reviewed based their 

prediction on SRB as the main 

player. 

- No model was found to 

accurately correlate sessile 

and planktonic bacteria.  

- Non biological source of 

sulphate was taken into 

consideration in literature. 

7.5 30 

* This means that the number of Web of Science-based citations for a paper by the end of the year 2021 

** This means that the number of Web of Science citation index for a paper by the end of the year 2021 

 

The meta-analysis performed in [25] indicated that the much more reliable MIC modeling 

approach combined multiple analytical techniques with accurate field observation. As stated in the 

previous sections, the complex nature of MIC contains the complicated interrelationships between 

biological, physical, and chemical factors, and it causes MIC modeling to be a challenging task. 
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The described approaches simplified the MIC mechanistic model; for example, the correlation of 

chemical factors contributed to severe MIC phenomena [58]. In addition, controlling the lab-scale 

tests would provide the realization of cause-effect relationships (e.g., MIC biofilm generation 

(effect) by SRB and APB (cause)) [57]. Thus, extrapolation is a highly challenging task because 

of the dynamic features of microorganisms over time. 

That is why in recent years, the novel developed techniques such as Bayesian Network (BN) 

[59,60], Fuzzy-based methods [27,61], and neural networks [62,63] with a combination of field 

data and experts’ knowledge are becoming a more effective tool for MIC modeling.  

In this regard, Fuzzy-based methodologies provide a development approach according to the 

predictive models [64]. In a study [65], a risk-based framework based on Fuzzy logic is developed 

to predict the rate of MIC for oil and gas systems. The Fuzzy logic-based models include the MIC 

initiation possibility, corrosion kinetics, and the time for required pipelines inspections. In another 

study [66], authors used a neuro fuzzy-based tool by engaging operational parameters, pipeline 

characteristics, and microorganisms’ concentrations to develop a quantitative MIC risk-based 

model. Such models are trying to duplicate the cognitive decision-making progression, in which 

an approach would be provided for uncertain information [67,68]. However, the lack of field data 

causes the validation of the Fuzzy-based models to be restricted. Thus, the model's reasoning for 

predicting the MIC would be a difficult task [69].  

For Bayesian Network-based studies, Adumene et al. [70] proposed an integrated dynamic failure 

assessment model for subsea systems under the influence of MIC. In this work, a combination of 

BN and Markov chain is utilized to predict the system's MIC rate and failure probability. Taleb-

Berrouane et al. [44] proposed a network-based framework to examine the essential factors in MIC 

considering their complex interactions. In another study, Adumene et al. [71] integrated the 
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dynamic Bayesian network (DBN) with loss aggregation tools to estimate the risk of MIC. For 

example, using DBN, Arzaghi et al. [72] developed a dynamic damage model for fatigue and 

pitting corrosion of offshore facilities. In another study, Arzaghi et al. [73] developed a risk-based 

maintenance technique for the subsea pipelines considering fatigue corrosion using BN. Adumene 

et al. [74] developed a stochastic-based formulation model to estimate MIC rate and obtain the 

remaining strength and safe operating pressure with multiple MIC defects. A combination of BN 

and Markov Mixture (MM) was utilized for this purpose. Shekari et al. [75] proposed a framework 

to predict pit depth growth on equipment under insulation in offshore sectors. The average pit 

density of multiple defects using the Markov process is obtained. Adumene et al. [76] integrated 

the BN with Copula-based Monte Carlo (CMC) simulation. The BN considers the dynamic 

interactions between physio-chemical parameters and microorganisms to estimate the rate of 

corrosion at the offshore system. In addition, the stochastic MIC factors’ dependencies and the 

corresponding failure modes defining the functionalities’ performance are modeled using CMC. 

Kamil et al. [77] utilized a data-driven approach to engage the available microbiological and 

operational data as well as learn the data variation. The proposed approach can obtain the 

correlation between the variables and corresponding characteristics to measure the likelihood of 

MIC. Thus, the available field and laboratory data are integrated into the Learning-based Bayesian 

network (LBN) model in this work. The BN-based models have enough capabilities for the 

uncertainty of knowledge accounting and model uncertainty to make more reliable decision-

making [78]. 

Corrosion behavior is studied in [79] for neural networks-based studies using a neural network as 

a data mining tool. The neural network learned alloys composition and environmental conditions 

leading to corrosion rate. Kamrunnahar et al. [80] conducted a back-propagation neural network 
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to train and test the understudy system. Using this approach, the steel corrosion is analyzed, and 

the experimental error counts as only 5 percent.  

The fact is that the MIC modeling task is multidisciplinary demands and needed incorporated 

mathematical materials engineering to consider the complexity in MIC’s model simulation. 

According to the many efforts that have been done by Wolodko et al. [81], the four tasks have to 

be combined to provide a robust and reliable model framework, including (i) empirical approaches, 

(ii) informatics, (iii), scientific modes, and (iv) uncertainty quantification. The mentioned featured 

model can be extended by integrating with microbiological corrosion methods. This would provide 

a strong data-driven approach for MIC prediction [25]. Finally, it can be concluded that the models 

within BN, Fuzzy based, are restricting with standard formulation and integrated solutions [82]. 

Thus, further high-quality data is required to estimate the accurate MIC rate and failure 

probabilities.  

Up to this point, different types of MIC modeling approaches have been introduced within high 

contribution to corrosion science. In the following, a couple of recommendations are listed 

considering the significant shortages of the existing state of arts for MIC modeling [11,25,45,81].  

• Such a complicated computational process would enhance the complexity of biological 

levels as the features of properties’ integration and causes that the models would be less 

reproducible and consistent due to the stochastic nature of MIC, 

• Such MIC modeling approaches are required the precise measurement tools at accurate 

scales in both model development and validation; that is, while such tools are almost 

unavailable in MIC modeling works,  
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• Such models should consider the relationships between microorganisms leading MIC and 

MIC control process; therefore, more attempts are required to consider these connections 

and multispecies biofilm, and  

• Comprehensive investigations are needed for MIC representative communities and an 

adequate understanding of nutria's chemical and physical parameters.  

• Integration of deterministic and mechanistic approaches with stochastic and random nature 

of the biofilm with the metallic surface could be the next trend 

2.4. A review of MIC identification and characterization  

There are two primary ways to detect and identify the MIC in offshore pipelines as online or offline 

modes [25]. In the online mode, indirect methods such as sampling are included. A couple of 

systems identify the active indicators of MIC in the biofilm zone according to the based-line 

comparisons. The settlement impact of microbial activities on the metal surface and continual 

examining of the surface changes can be conducted. The second mode falls into off-site analysis, 

including performing pigging, coupons defect site analysis, and samples. The off-site mode can 

characterize the MIC in different ways, such as the formation of carbon-based compounds, surface 

resolution of meta, chemical distribution, electrochemical methods, bioactivity (e.g., 

microorganism), and so on.  

The off-site mode is performed in laboratories near the sampling sites, or the samples are 

transferred to the centrally located laboratories. A study [83] discussed the sampling procedure 

accuracy. The oil sample includes an SRB consortium, APB, and common heterotrophic bacteria 

(GHB) subjected to the 4 stage circumstances, and they were monitored in a week. It is observed 

that there is a decrease in microbiological concentration when the samples are preserved at four 

centigrade degrees. Once the samples are stored at different temperatures, including 77°F and 
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86°F, and cycling in intervals 77°F and 95°F, indicated that the microbiological concentration is 

increased. This finding is significant because the microorganisms are sensitive to time, 

temperature, and micro-environmental constitutions.  

In Figure 2.4, the four types of MIC identification and characterization techniques developed are 

depicted. A brief review of identification and characterization techniques has been conducted in 

the following sub-sections.   
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Figure 2.4. A summary of MIC identification and characterization developed concepts (A: 

Electrochemical-based, B: Biological-based, C: Radiation-based, and D: Microscopy-based) 

 

2.4.1. Radiation-based techniques  

In this sub-section, three radiation-based techniques are reviewed in the existing literature. The 

“X-ray Diffraction and X-ray Photoelectron Spectroscopy” concepts are constructed according to 

the bio-film zone's abiotic products and chemical composition data. UV radiation tool 

spectroscopy evaluates the extracellular polymeric substances in highly corrosive conditions 
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[84,85]. Besides, electrolyte variation impact of amine, ester groups, and carboxyl are examined 

[86,87]. In another study, X-ray Photoelectron Spectroscopy is utilized to study thin-layer surface 

composition data [88]. The results highlighted preferential attack concerning the ferrite phase 

helping in the steel preparation. 

X-ray Diffraction has enough capability to provide a valuable understanding of phase variation 

and compositional in different circumstances. A study investigated the stepwise variation from 

aerobic into anaerobic environments on the stainless steel under microbiological corrosion [89]. 

The X-ray Diffraction results for the corrosion specified that in the sterilized coupon, the magnetite 

exists. It is obtained that the corrosion rate was low; the X-ray Diffraction information can provide 

a piece of reliable evidence for (i) mechanism and (ii) rate of corrosion.  

The Energy Dispersive Spectroscopy is utilized to recognize the coupons deposits underexposure 

of “Desulfovibrio capillatus” in the separator influenced by severe corrosion [90]. In this study, 

the Energy Dispersive Spectroscopy indicated the contributed corrosion in steels; API-5XL52 

includes S and Fe over forty-five days. Another research highlighted that Energy Dispersive 

Spectroscopy analysis of the exposed coupon of sterile tap water over 40 weeks without S and Fe. 

The results indicated a lack of MIC activity [91]. Furthermore, radiation-based techniques have 

been widely engaged in surface scanning purposes. A study is used for carbon steel exposed to 

aerobic corrosion to investigate the damages and biofilm formation changes [92]. The results 

illustrated that increasing biofilm would increase the C, O, and N concentrations, and there would 

be a decrease in the Cr and Fe concentrations after four weeks of exposure. 

X-ray Diffraction obtains information regarding crystallographic evaluation for composition and 

phases, and X-ray Photoelectron Spectroscopy cares about the thin layer chemical composition on 

the surface. Besides, the Energy Dispersive Spectroscopy considers the basic composition 
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information. The shortages (SH) and advantages (AD) of the mentioned techniques are as follows 

X-ray Diffraction (AD: low cost, SH: non-specific data and limited resolution), X-ray 

Photoelectron Spectroscopy (AD: evaluation of relative composition and elemental analysis, SH: 

limited spatial coverage and performing offsite), and Energy Dispersive Spectroscopy (AD: 

comparative compositional examination, and joined through the “electron microscopy” for 

microbiological perspective, SH: expensive, complex data analysis, limited spatial resolution, and 

vacuum requirement). 

2.4.2. Microscopy-based techniques 

The existing literature highlights that microscopy-based techniques are utilized to analyze the 

surface deposits, fluid samples, biofilms, and coupons. This would provide valuable information 

to qualify or quantify the variation visualization in metal surfaces (i.e., pits development, grain 

directions, spatial distribution, microbial colonies). More details can be provided in the study of 

[25].  

A study explained that the three microscopy-based techniques contain “scanning electron 

microscopy, environmental scanning electron microscopy, and atomic force microscopy”, can 

provide a piece of reliable visual information regarding corrosion [93] as it is discussed in [25], 

the prominent shortages of scanning electron microscopy are the surface damages and improper 

biofilm structure. Considering the scanning electron microscopy tools, scanning electron 

microscopy has the potential to deal with the lack of biological samples [94]. Using the low-energy 

secondary electrons would help to protect the biofilm integrity, in which the highest number of 

electrons can cause matching. The biofilm heterogeneity has the complicated spatial distribution 

of different microorganisms, causing the evaluation process is much more complicated in two-

dimensional microscopy. The study investigated the effect of SRB-based microorganisms in the 
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oil field sample of low steel coupons. The scanning electron microscopy technique can recognize 

the activity of microorganisms between the pitting, sterile, and active culture [95]. The authors 

concluded that aggressive pitting corrosion in the active culture indicates SRB activity on the 

surface. In another study, the steel in heat exchangers is studied with “scanning electron 

microscopy and energy dispersive spectroscopy”. The results indicated several organic nutrients 

on the affected area, sulfide and iron deposits meaning they sing MIC activity [96]. In a similar 

study, the images from scanning electron microscopy illustrated that biofilm development is 

efficient. 

Moreover, “scanning electron microscopy and energy dispersive spectroscopy” could provide a 

valuable understanding of surface modification and corrosion site formation [97]. Song et al. [98] 

have made many attempts to make insights into the corrosion morphology of the pipelines. Their 

study recommended that the three species of microorganisms, SRB, IOB, and total generated 

bacteria, are the main causative species.  

The “atomic force microscopy” is a non-destructive practice and can explain metal surface 

variation [99]. Using atomic force microscopy confirmed that heterogeneity biofilm under the 

microbial steel degradation resulted in mixed culture [100]. A research study conducted by Silva 

at. Al. [101], The outcome of Aspergillus on the aluminum coupons is examined using “atomic 

force microscopy”. The “atomic force microscopy” made the oxides discrete partials imaged on 

the metal surface. The results indicated that biofilm has a more excellent interaction zone than the 

“bulk liquid” than the environment. In another study, the microbial adhesion forces are quantified 

and found that the greater adhesion forces can be accredited to the growth of the extracellular 

polymeric substances [102].  
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Fluorene microscopy (“Confocal laser scanning microscopy”) can also be utilized to provide 3-

dimensional biofilm images. Fluorene microscopy analyzes the biofilm from samples and 

illustrates the mechanical properties, including ridges [103]. This was formed because of detrital 

absorption. The authors concluded that the ridges formed would increase on the metal surface due 

to microhabitats of differential colonization and additional nutrient resources. Fluorene 

microscopy technique is utilized on the accelerated corrosion of “duplex stainless” in the study of 

[104] in the offshore existence “Pseudomonas aeruginosa”. It is designated that the pit depth 

growth path in sterile media and inoculated medial are almost 5 and 12 micrometers. Chen et al. 

[105] used Fluorene microscopy to compare SRB, and “abiotic sulfide” improved sterile culture. 

The culture exposed to the “stainless steel 316L”, and “Confocal laser scanning microscopy” 

visualization clearly illustrated that the microorganisms accumulated in the surface clusters. Thus, 

the localized pitting corrosion was correlated spatially on the coupons’ surface. 

The microscopic-based techniques are not required to generate the artifact; however, the image of 

wall surface features might be limited due to inherent shortages of scanning devices [106]. In 

addition, the non-destructive property of microcopy-based techniques provides an opportunity to 

visualize the microorganisms and cells by decreasing the images of the artifacts [107]. Besides, 

using atomic force microscopy characterized the increase of surface roughness and biofilm growth 

[108]. Research work on the stainless steel with “Geobacter sulfurreducens” microorganisms was 

discovered ten more times, increasing the defect size within biotic conditions rather than the abiotic 

condition, highlighting the effect of MIC into the system [109].  

The microscopy-based techniques can provide an experimental indication of the existence of 

microorganisms and general and local corrosion conditions. The advantages (AD) and shortages 

(SH) of each technique are provided as the following: (i) scanning electron microscopy obtain the 



 

 
55 

information from the magnified micrograph of substrate morphology (AD: quick images, high-

resolution, proper for metal and conductive surface, and outstanding reliability, SH: expensive, 

off-site, bulky equipment, “electron micrography” needs vacuum accumulative, probable harm to 

the “biological structures”), (ii) atomic force microscopy obtains the information from practical 

features of the physical contains defect size, friction, shape, cohesiveness, and adhesion forces 

(AD: sensitive, and quantitative it morphology evaluation, SH: highly skill level, slow 

performance, limited sampling area, and off-site), (iii) optical microscopy obtains the evaluation 

of impaired surface (AD: quick, practical infield, and low-cost, SH: limited resolution, and non-

specific), (iv) transition electron microscopy obtain the information from the “ultra-high increase, 

and the resolution of material morphology”, and “crystal structure” (AD: fundamental evolutions, 

and high-resolution, SH: needs excessive skills, off-site, costly, “sample preparation challenging”, 

information incomplete due to sampling), and (v) Florence microscopy obtains the information 

from three-dimension of biofilm and quantification of depth and thickness (AD: restricted sample 

coupon preparation, and high-resolution, SH: high skill requirements, and off-site).  

2.4.3. Electrochemical-based techniques  

In this sub-section, the electrochemical-based techniques are reviewed. Electrochemical-based 

techniques have been widely used in industrial sectors for over 40 years, within fundamental 

corrosion and thermodynamic mechanisms [110]. Electrochemical-based techniques have been 

used to understand MIC mechanisms and monitor MIC. However, it is still a challenging topic for 

scholars and industrial sectors, which provides valuable insights for interpreting field data, 

corrosion mechanisms, and the dynamic nature of corrosion.  

The “Open circuit potential” for the corroded material is the “steady-state potential”, in which the 

“net current” would be equal to zero. The potential differences amongst the corrosive-medium and 
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standard reference electrodes are commonly used to measure the potential circuit. In addition, the 

open circuit can be derived with the potentiometric circuit and high impedance voltmeter. The 

Open circuit potential is widely used in fields and laboratories because of its simplicity in 

measurement, which would measure the electrochemical performance of materials in the corrosive 

medium [2].  

It is discussed that in the existing literature, microorganisms in the biofilm zone cause a potential 

circuit with different kinds of metals, including nickel, chromium, gold, stainless steel, etc [111]. 

The potential circuit signified a positive direction of the potential shift resulting in biofilm 

formation, leading to oxygen reduction and increasing cathodic reduction rate [112].In the existing 

state of the arts, much research has been discussed on passive metals like stainless steel during the 

exposure time with seawater. For example, in the studies [113], it is reported that increasing the 

voltages to 250-350 in seawater would enhance the microbial activities. A study compared the 

response of non-carbon steel and low alloy steel to treat the non-treated seawater [114]. After 

seven-month immersions, the results indicated a small variation amongst the “treated and non-

treated seawater”. This means that the higher alloying elements cause a higher circuit potential. In 

a study, MIC has investigated the “Nickel high nitrogen stainless steel” underlying existence of 

“Pseudomonas aeruginosa”. It is highlighted that the potential open circuit is more fabulous in the 

“inoculated medium” comparison of the abiotic controlling [115]. In addition, it is required to be 

mentioned that the main impact of a potential open circuit is increasing the metrical crevicing 

probability, initiation, and pitting corrosion propagation. This would be in those material 

degradations when the potential circuit is near the corrosion potential. In another study, the noises 

or fluctuations in the open circuit potential measurement have been studied [116]. The noises for 

the mild steel sample illustrated that these noises follow a stochastic process. It is also concluded 
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that reason if fluctuations were not apparent. Therefore, it is an excellent technique to identify the 

corrosion mechanism characteristics. The stochastic process correlates with the voltages 

fluctuations in the corrosion rate and time-based on coupon weight loss. Thus, the two-electrode 

system is considered the best study system for open circuit potential, in which it has at least a 

cathode and anode in the system process.  

It should be added that “ennoblement” is defined as a “phenomenon exhibited by stainless steel 

exposed to natural waters. It is characterized by an approximately 400 mV increase in corrosion 

potential. This increase in corrosion potential can aggravate pitting corrosion” [117], has been 

observed in various metal types subjected to the different service environmental conditions under 

MIC attack. However, “it is a difficult task to determine the cause of ennoblement using a potential 

open circuit over time. Thus, it is challenging to compare the ennoblement data from different site 

locations since the ennoblement depends on the microbiological population and water chemistry, 

and the ennoblement is influenced by temperature, rate of flow, and sample size”.  

The “electrochemical noise” methods are the “non-destructive and non-interfering” methods, in 

which they would not vary the steady-state form of the system [118]. This method has enough 

capability for continual monitoring by ignoring the consideration of external perturbation [119]. 

The “electrochemical noise” has been widely used to measure and monitor pitting and cracking 

corrosion. Besides, it can distinguish between localized and uniform corrosion [120].  

Generally, the “electrochemical noise” quantities the potential currents’ fluctuations with 

“spontaneous electrochemical reactions”. The more significant fluctuations and a higher noise 

level indicate the localized corrosion mechanisms. That is why a uniform corroding metal would 

be less noisy [121]. A study investigated that noisy electrochemical signals carry the frequency 

and time domain. The noise signal electrochemical analysis can provide several statistical 
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parameters, including electrochemical noise resistance and localized index [120]. The mentioned 

parameters are commonly utilized to determine the corrosion rate, and it is discussed that they 

have some advantages rather than polarization resistance [119]. Men et al. [122] investigated the 

SRB-based MIC on stainless steel 304 using the back-propagation neural network to identify the 

passivation pitting induction. The results indicated that the pitting corrosion would increase 

uniform MIC. A research work [123] highlighted that mathematical analysis could evaluate the 

localized corrosion mechanisms. The MIC is monitored then by engaging the time instantaneous 

frequency information on electrochemical noise. It should be worth noticing that frequency domain 

analysis can be conducted using fast Fourier transformation or maximum entropy methods, in 

which both can distinguish the corrosion types [25].  

The “Potentiodynamic Polarization” technique is a kind of scanning tool which includes the 

“potential perturbation” far beyond the steady-state corrosion. Potentiodynamic Polarization can 

be from small voltages into the hundred millivolts in a considerable interval. The Potentiodynamic 

Polarization can provide a big picture of the given corrosion reactions system, such as transferring 

charges, controlling diffusion reactions, passivity, pitting, and possible protection. In this regard, 

the potential would be measured by net charges in the reactions’ rate, and then these are established 

in the form of corrosion currents. It is appropriate to assess the materials’ susceptibility for 

localized corrosion in different microbial environments [124]. Anodic polarization curves 

conducted a study on stainless steel 316 within three environmental conditions (SRB-based, IOB-

based, and mixture of both) [125]. The results indicated the stainless steel showed the pitting 

corrosion in all conditions, and the rate of corrosion was most severe once the environment was 

the mixture of both IOB and SRB. In addition, the considerable growth in potential current and 
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reduction in the potential passive size is highlighted.  Besides, the potential decrease in 316 types 

of stainless steel means that this is much more prone to localized corrosion attacks.  

The “Electrochemical Impedance Spectroscopy” needs a small perturbation to the studied system. 

The “Electrochemical Impedance Spectroscopy” plays a current alternative method, in which it 

contains the sinusoidal potential application into the system since measuring the potential current 

sending [126]. Many works have been conducted applying this method to study material 

degradation, disbonding, and coating systems [101].  

The “Electrochemical Impedance Spectroscopy” method significantly evaluates the 

“electrochemical reactions” in MIC as the microbiological films adhere to a metal surface in non-

conducting and natural environmental conditions. In addition, this method can provide a 

comprehensive understanding of corrosion mechanisms inducing adsorption, capable controlling, 

and diffusion [127]. This would be obtained by fitting the results of “Electrochemical Impedance 

Spectroscopy” into the electrochemical equivalent circuit model, in which the electrochemical 

parameters would be obtained. This technique also can measure the polarization resistance as it is 

the inverse of corrosion rate [46]. 

A study performed by Castaneda et al. [128] reported that biofilm development is moved to the 

effective mechanism from active transferring charges’ reaction into the restricted diffusion 

mechanism. In another study, an experimental investigation is performed to obtain the impedance 

spectra for 316 stainless steel exposing the oil-field produced water in the different periods [129]. 

In addition, it is correlated with extensive corrosion, indicating the existence of multiple time 

constants in the “Phase angle plots” (i.e., pitting corrosion happening). Moreover, the growth in 

the angle phase with the lower occurrences would show a higher thickness value in the formed 
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biofilm [130]. Thus, it is illustrated that the “Electrochemical Impedance Spectroscopy” is a 

helpful tool in oil-filed for corrosion detection purposes.   

It is difficult to obtain the proper model for electrochemical behavior quantification in MIC [131]. 

Using the external perturbation besides voltage and current density can cause a disturbance to the 

understudy system as well as a flawed rate of corrosion. 

The electrochemical frequency modulation engages the current responses at intermodulation and 

harmonics of input frequencies within the lowest interference and highest sensitivity from the 

current density [132]. The capability of “Electrochemical Impedance Spectroscopy” makes it a 

potential technique for MIC detection and leads to short-term fluctuations in electron chemistry.  

However, it depends on the speed of fluctuation occurrence, and therefore it might or might not 

detect the MIC data over different frequencies using “Electrochemical Impedance Spectroscopy” 

[89]. Thus, it is critical to be careful during data interpretation and use these techniques under 

steady-state environmental conditions, and it would not be recommended for localized corrosion.  

The “Linear Polarization Resistance” is a non-destructive technique typically utilized to obtain the 

corrosion rate [133,134]. In addition, it is used to monitor the rate of corrosion continuously. In 

this technique, a small signal perturbation is required regarding the potential corrosion and current 

density. The corrosion rate is proportional to the polarization resistance near the corrosion potential 

[111]. Many factors play roles in “Linear Polarization Resistance”, including material density, 

corrosion rate, Tafel constant, current change, potential change, conversion constant, and 

equivalent.  

It should be added that this technique can provide rapid responses, and the decision-makers can 

evaluate the instance changes of the system. Moreover, the effectiveness of the injecting inhibitors 

to the system due to controlling the rate of corrosion can also be determined using “Linear 
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Polarization Resistance” over time. In a study, the effect of methanogens on the oil pipeline's water 

corrosion is investigated [134]. The authors evaluated the biocide injecting efficiency and the 

“Linear Polarization Resistance” technique in this work. The results indicated a strong correlation 

between the rate of corrosion and methane production in the steel coupon subjected to several 

biocide injections at different concentrations (e.g., nitrate, NaCl, and tetrakis-hydroxymethyl 

phosphonium sulfate). The results highlighted an increase in methanogens’ production and 

corrosion rate. Thus, methanogens are the predominant factors in MIC regarding aerobic 

environmental conditions.  

The “Linear Polarization Resistance” would affect the steady-state database, considering the 

corrosion mechanisms are constant through the surface of the metal. It is worth mentioning that 

the “polarization curves” are well-known for challenging tasks to be determined. This is because 

of the stochastic and dynamic features of MIC and biofilm activities on the metal surface as 

inhomogeneous [135]. The resistance of “duplex stainless steel” under the influence of MIC is 

investigated. It is discovered that the Tafel slope is changed during the “incubation period”. It is 

regarding biofilm thickness and activities [136]. It could be utilized as an analytical indicator of 

the high pitting rate.  

Finally, the “electrochemical noise” technique obtains the information by distinguishing between 

uniformed localized corrosion and measuring/monitoring the corresponding rate (AD: providing 

the differences between abiotic and biotic, non-destructive, and continues, SH: complex data 

examination, and noises’ fluctuation). The “open circuit potential” obtains the “electrochemical 

behavior” in a corrosive system (AD: low cost and no external perturbation, SH: the difference is 

controlled, and “ennoblement is non-specific” to the metals). The “linear polarization resistance” 

obtains the information from monitoring the instantaneous corrosion rate (AD: rapid responses, 
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steady-state data, corrosion rate determination, SH: external perturbation, instantaneous corrosion 

rate values are unreliable). The “electrochemical impedance spectroscopy” obtains the information 

from assessing the electrochemical reactions on the surface (AD: mechanistic information and 

differentiation, SH: complex data analysis and external perturbation). The “potentiodynamic 

polarization” obtains the information from charges transfers, passivity formation, pitting, and 

production (AD: corrosion rate determination, and determining the susceptibility of corrosion, SH: 

significant external perturbation, and repeatability).  

2.4.4. Biological analysis-based techniques  

The main biological tools have been reviewed in this sub-section, particularly three M methods 

(molecular microbiological methods). This has been widely utilized in practice, while the 

conventional methodologies could only capture the one percent of microbes in nature [137]. A 

couple of new approaches such as “stable isotope probing, functional gene markers, gene 

hybridization, meta-omics, and whole-genome sequencing” would provide a relief of high-tech 

analysis and small sample sizes. Moreover, it was made to easily understand metabolic pathways 

[25]. Well-trained employees, systems feedback, and high-level data analysis are needed to 

mitigate MIC in the site. There are two types of biological analysis, (i) the metagenomics analysis, 

in which it could provide a piece of genomic information with the methods, for example, 

“polymerase chain reaction (PCR) and gene sequencing”, and (ii) metabolomic analysis, which 

engages different methodologies such as “high-performance liquid chromatography”, “gas 

chromatography”, and “mass spectroscopy” to recognize and analyze the chemical components in 

biological environments assessing the metabolome information [138]. Combining (i) and (ii) 

techniques can deploy the MIC correlated mechanisms with MIC formation chemical 

reorganization and microbiological communities.  
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The metabolomic analysis is the biofilm metabolomics contains the microbiological process of the 

microbiological society in the biofilm zone accessing the chemical components indicating the MIC 

activities in the metal surface [25]. The high resolution of “mass spectroscopy” requires the 

differentiae’s ability among ions of approximately identical mass and mass determination of an 

ion within acceptable accuracy, determining the element of composition for an ion [25,45]. The 

“mass spectroscopy” would be developed using the laser-based technique that leads to practical 

analysis and efficient transport. The “laser ablation and solvent capture by aspiration” system is 

the method that material in “laser plumes” would be gathered in a “coarse aerosol” and investigated 

by “electrospray ionization” in a “high-mass-resolution”.  

Research conducted by Gutarowska et al. [139], the materials’ biodeterioration is assessed, and 

the samples were utilized to abstract the organic deposits. Furthermore, the “organic residues” 

were analyzed using “high-performance liquid chromatography”. The metabolic activation 

resulted in “primary and secondary metabolites”. It was identified according to the “putative 

metabolites”. A considerable number of merits can be highlighted for this method, such as small 

information of sample quantity should be obtained with the species interactions. In another study, 

the “laser ablation and solvent capture by aspiration” method is extended, assessing the corrosion 

loss at the surface of carbon steel 1018 caused by over 1000 ion-metabolite [140]. This revealed 

that the biofilm is heterogeneities. In addition, there is a correlation between biofilm metabolome 

and anaerobic corrosion. It is also recommended that the metabolome spatial correlation might 

indicate MIC occurrence. In this regard, such studies provided a new MIC perspective focusing on 

the constituent’s activation, meaning that they consider microorganisms instead of sources.  

In metagenomic analysis tools, the “polymerase chain reaction”-based have been broadly engaged 

for the last couple of years, in which this decision-makers to have a better understanding of 
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microbiological mechanism and profile [141,142]. The main shortages of culturing different types 

of microorganisms in laboratories motivated scholars to use molecular biology methods to 

examine the presence of different microbiota sample species [143]. Using the “polymerase chain 

reaction”-based tools have been combined with the methods including the “denaturing gradient 

gel electrophoresis”, in which the gene named 16SrRNA examination are derived once the DNA 

amplification of uncharacterized microorganisms [144]. It should be highlighted that using these 

methods is useful in MIC-affected problems since the mixed biofilm species are attached to the 

metal surface of the system.   

The research was conducted by Teng et al. [145] to recognize the microbiological group during 

biofilm investigation in corroded water network pipelines lines. In this study, the Simpson is 

utilized to compute the diversity of microorganisms. In the study [146], the “denaturing gradient 

gel electrophoresis” is established to assess the biofouling corrosion on seawater cooling system. 

Another improvement is attempted in [147], the combination of DNA optimization technologies 

is used to enhance the microbiological activities evaluation process. This technique enables 

decision-makers to quantify the distributions of microorganism populations with 10% accuracy 

[148]. 

Moreover, these techniques have been developed for hydraulic fracturing characterization [149], 

in which there was bacteria proliferation. Subsequently, the 16SrRNA was engaged with clone 

libraries and pyrosequencing to examine relative microbiota abundance. The chemical analysis 

illustrated the presence of anaerobic microorganisms and extensive metabolic capabilities. The 

results indicated the microorganism communities could produce water. Thus, it is required a better 

understanding of produced water disinfection. In a study conducted by Gonzalez et al. [150], the 
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bacterial communities of corroded oil pipelines recognized multiple SRB-based species (e.g., 

desulfobacter, desulfococcus desulfonema, and desulfobulbus).  

Besides, metagenomic methods are commonly used for collecting data on phylogenetic biofilm 

diversity [151]. The presence of a hydrogenotrophic and autotrophic methanogen denotes two 

types of corrosion mechanisms: cathodic depolarization and SRB-based syntrophic actions in the 

same order. However, these methods do not cover the bacteria species responsible for severe MIC 

[152]. There is a “polymerase chain reaction” tool to analyze the corrosion deposits of pigging 

[153]. These methods have been conducted in many different domains, such as gas pipeline [154], 

Mexico pipeline [155], Alaskan slope infrastructure [156], North Sea area [157], and so on.  

2.5. A review of MIC management methods (preventive, control, and mitigative)    

In this section, the common MIC management tools are reviewed. In Figure 2.5, the MIC 

management methods for the vulnerable systems are presented. A description of the management 

method is provided as the following.  

 

Figure 2.5. The MIC management methods for the vulnerable systems 
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2.5.1. Physical-based method 

The “ultraviolet light” kills the microorganism and can be considered an important alternative for 

biocides treatments for controlling the MIC mechanism [24]. The critical challenge is that it is 

difficult to be implemented in practice. The ultraviolet light can only affect the microorganisms, 

in which they are exposed to the light directly. In case the microorganisms are covered in the 

production of corrosion, the ultraviolet light cannot affect that; they are properly protected. 

Furthermore, the internal surface of the pipeline is not suited for ultraviolet light treatments. 

Besides, the ultraviolet light might inactivate the living cells; however, the cells would not be 

removed from the surface and would still be in the biofilm zone. Thus, they can play the nutrients 

roles of the organism, including those prone to the MIC.  

The “ultrasonic” or the ultrasound can produce the cavitation bubbles in the fluid, in which once 

they collapse, they would influence microorganisms detrimental. The ultrasonic treatment is 

recommended for MIC mitigation purposes [158]. The main concern is that the efficiency of 

ultrasonic to kill the microorganism in products of corrosion has never been validated. Therefore, 

it has to be considered that the products of corrosion and MIC-based microorganisms would 

drastically mitigate the energy of ultrasonic.  

The “pigging” as a physical cleaning tool is typically utilized in contrast to the corrosion, without 

consideration of microbial contributions. In pigging tools, the sponge balls or plugs are inserted 

into the pipelines to remove the corrosion tuberosities [159]. The challenge of the pigging tool is 

that it can only be conducted in the specific type of pipelines within the constant diameter and has 

no impediments throughout the pigging path. Once the pigging process is successfully finished, 

the metal surface would be a highly anode-active cell. In case of the surface of metal not being 

passivated, the pigging performing can accelerate the rate of corrosion [11]; moreover, the results 
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of variation of environmental circumstances, the microorganism would react. The thin biofilm 

zone might be less corrosive than the beginning community [160].  

2.5.2. Chemical-based methods 

Over the last decades, chemical and corrosion scientists have been attempted to develop biocides, 

killing the microorganisms as much as possible in many species. The main challenge is that the 

biocides should be activated on microorganisms of the biofilm zone, in which the cells are more 

tolerant than planktonic cells [161]. Research suggested using biocide enhancers [162] because the 

biofilm zone contains more than 98 percent water and does not have a diffusion barrier for such 

small biocides [163]. However, there is a condition that using biocides could decline the 

concentration when there is a “reaction diffusion inhibition”. It can also be explained as the 

microorganism of biofilm transition into the per-sister state or a stress reaction into the biocide 

exposure [164]. The biocide tolerance would be lost in the case of biofilm cells [165].  

One of the main chemical-based treatments is injecting Glutaraldehyde into the oil and gas 

industrial sectors [166]. The challenge is that Glutaraldehyde can be problematic because of non-

toxicity during other treatments such as long-term sanitation. In addition, Glutaraldehyde is 

corrosive to carbon steel [167], and ionic silver is recommended for microbiological inactivation 

[168]. Many research tasks highlighted that nanoparticles have significant tolerance in developed 

biofilms [165]. Another chemical-based treatment is using Tetrakis-hydroxymethyl phosphonium 

(THPS), which has advantages against SRB; however, there are limited practical application 

reports in this regard [169]. 
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2.5.3. Sanitation-based methods 

In order to eliminate the MIC in the system as much as possible, performing sanitation is vital. 

Sanitation treats the effect of system microorganisms would reestablish the original properties’ 

performance. In only references [11], authors recommended sanitation against MIC.  

The sanitation measures include (i) “physical clean-up”, (ii) “mechanical changes”, and (iii) using 

biocides. However, the biocides maybe contain the dispersion agent on more effective outcomes. 

The sanitation process may cause a disposal problem, which is costly [170].  

In the reference book [158], the different levels required for sanitation are explained. The main 

occlusion remarks are that the replacement absence of corroded metal can be mitigated MIC, 

considering operational and environmental circumstances [159]. The fact is that sanitation cannot 

eliminate the further metal damages.   

2.5.4. Coating-based methods 

The coating-based methods isolate the potential corroding metal surface from an elect, providing 

some corrosion protection. The coating is one of the main conventional methods to protect the 

metal surface under the influence of MIC, such as polyimides, epoxy resins, silicones, polyvinyl 

chlorides. [171]. However, the coating can also be biodegraded or damaged over time [172]. This 

would then result in the rapid activity off anodic sites for localized pitting corrosion by attracting 

different microorganisms. In addition, the coating can be justified in order to enhance the surface's 

coverage and reduce the degradation of metal defects. Besides, this can control microbiological 

growth by biocide activities and control killing or adhesion resistance [171]. The coating strategies 

can be performed in a combination or individually. In the following, the main coating-based 

method has been reviewed.   
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The “adhesion resistance coating” strategic plan is used to control the MIC according to the 

properties of the surface, which would prevent bacteria adhesion without killing them. This 

strategy includes hydrophilic, amphiphilic, biomimetic, hydrophobic, and superhydrophobic [11]. 

However, biomimetic is designed to minimize the natural occurrence of antifouling metal surfaces. 

For instance, this strategy is designed to mimic the “antifouling properties of shark skin”, including 

the overlapping of the nanoscale plate within parallel ridges. The “hydrophilic polymers” based 

on the interfacial layer could prevent contact between the metal surface and bacteria [171]. The 

hydrophobic coating-based strategies from a surface by “low surface energy” would remove the 

bacteria. In addition, the amphiphilic coatings would integrate the hydrophobic element to prevent 

the microorganism attachment in the metal surface and enhance the antimicrobial coating behavior 

[173]. It should be highlighted that the adhesion resistance is not just exposed to the 

microorganisms; it also includes abiotic foulants. The mentioned features adhere to the main 

properties and encompass their anti-microbiocidal functions.  

The “biocide leaching coating” is an agent that contains toxic metal ions or biogenic elements that 

could be combined with polymers as antifoulants. The efficiency of “biocide leaching coating” is 

based on the rate of leach prediction. The biocides could leach from polymer, and it can be 

controlled by polymer degradation. The main challenge is that there are considerable 

environmental damage sides. Moreover, the biocides have a restricted lifetime due to the release 

rate and the total amount of activated elements that may be loaded into the coating. There are many 

biocides leaching coating applications globally, including copper and tin ions, with “a consequence 

of overt ecotoxicity as well as biomagnification through the food chain” [11].   
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In the end, the smart-based coating has been developed to protect the metal degradation, such as 

inhibitors release, to corrosion onset responses [174]. However, there is no practical experience to 

investigate the biocide release. 

The “Vivianite” is a widely established “phosphate-rich” media within different microorganisms, 

especially in IRB with sulfate reaction on stainless steel [175]. The studies [176,177] recognized 

the “Vivianite” layer. The results indicated that besides phosphate concentration, “Vivianite” 

formation is needed, the growth of the microorganisms contact with the metal surface [176]. Three 

MIC-based reactions are involved in the “dissolution of the thin iron oxide layer” release and the 

precipitation of “Vivianite”. The authors highlighted that the significant corrosion protection 

“lasted 4-6 weeks in highly corrosive” media. That is why the conclusion indicated biofilm 

presence on “Vivianite,” meaning that pitting corrosion occurs. It is recommended that the painting 

be needed to optimize corrosion protection. Another study presents that the “phosphate-rich layer” 

is much more protective than the iron oxide based on the abiotic controlling process [175].  

The “Graphene” is typically recommended with considerable advantages rather than conventional 

coating strategies for MIC p/revention purposes [178]. The “Graphene” is thicker than carbon in 

terms of atoms, and it is bounded in “hexagonal honeycomb lattice”. The main features to describe 

the “Graphene” are (i) light material, (ii) thin and strong compound, (iii) adequate conductivity for 

electricity and temperature compared to the existing compounds. In addition, the “Graphene” is 

avoided for the major defects in the mentioned study work. It is a deliciated coating strategy and 

would be damaged easily. In a study [179], it is highlighted that resistance oxidation of “Graphene” 

was less than when there is long-term exposure with air. It is found that there is a low performance 

of “Graphene” for coating irregularities. Thus, the anodic sites would be developed in highly 

cathodic “Graphene” coating. Thus, research [180] recommended that the multilayer of 
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“Graphene” would be better for coating strategy. The main challenge is that using the “Graphene” 

in abiotic substances would restrict the practical advantages of coating, especially in long-term 

exposure. The “Graphene” is performed using thermalizes to protect the metal surface from 

corrosion and erosion. The fact is that the failure mechanism is caused by the delimitation of the 

thermal spray coating, which begins at heterogeneous defects [181]. In the study [182], the 

“Graphene”-based coating is designed to reduce the mild stainless steel porosity. The results 

indicated that such coating strategies could reduce the numbers of sessile and planktonic SRB. 

Moreover, there was no localized corrosion on the metal surface with coated stainless steel; 

however, the general form of corrosion was observed.  

Finally, the “Contact-killing and conductive coating” includes the positively charged compound 

immobilization with the polymer matrix. The mechanism is that the positive charges interact with 

the negative ones as bacterial cells; therefore, it disrupts cell walls [168]. Besides, the positive 

charges can be added to the polymers such as chitosan, “quaternary ammonium salts”, conductive 

polymers, etc.  

The conductive polymers have been widely utilized as an anti-corrosion coating strategy for 

different metals, copper, aluminum, and stainless steel [168]. The mixture of the oxide layer can 

protect the metals against corrosion [183]. It also has anti-fouling features, in which positive 

charges nitrogen can interact with negative charges bacterial cells, which causes material 

degradation.  

In this regard, the coated metal surface plays the anode role, and the un-coated surface of metal 

contacting with seawater plays the cathode role [184]. It should be noted that, in case of a weak 

current between the two anodes and cathode, the seawater would be electrolyzed. A study 

concluded that the polyaniline with the special features is conducted in the absence of applied 
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current density. In addition, the polyaniline conduction could vary the hydrophobicity of the coated 

metal surface responding to the electric signal changes. Besides, this could produce anti-fouling in 

case of adding other types of anti-fouling agents in the metal coating. The different types of anti-

fouling incorporated with coating strategy plans are described in the study of [171], such as the 

immobilization of steel surface with “quaternary ammonium salts” provided the information 

regarding biocide leaching contact would kill the combination of microorganisms. The coated 

metal surface indicated that there are sufficient advantages without coating. 

Furthermore, the combination of adhesion resistance killing may be utilized for anti-bacterial 

coating purposes. However, the significant challenge is that contact killing strategic plans are 

available in the limited range of candidate compounds [185]. Thus, decision-makers need to 

determine the efficiency and effectiveness of the contact killing plans, considering operational 

parameters and the interface between all parameters. The point is that, in case of working, the 

metal surface coating is restricted, and the inactivated cells would remain on the main coating. 

Long-term exposure is required to examine the challenges mentioned earlier.  

2.5.5. Biological-based methods 

The main idea of using biological-based methodologies is to inhibit the MIC microorganisms' 

activities by engaging non-MIC-supported microorganisms. The fact is that the observation 

highlighted that not all microorganisms would enhance the rate of corrosion [11]. Besides, the term 

“MIC” supports that some bacteria in some media could be inhibited [164]. The biological methods 

can convert the products of reactive corrosion into stable biogenic minerals such as siderite and 

vivianite [186]. However, there is no evidence to show that the inhabitation methods using 

microorganisms would be performed in practical applications [187]. 
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For example, the different approaches, “extracellular polymeric substances” against MIC, 

“quorum sensing inhibitors”, or “strategy to transferring into the non-corrosive species,” might be 

working in the laboratory, it most probably cannot be applied in the work field [188]. In addition, 

the “quorum sensing inhibitors” method requires a large number of materials. It should be 

considered that there would be tolerance in corroding site directions, and the cost of such 

treatments methods is so much. 

In practice, nitrate injection is the most common way to crush reservoir souring. The nitrate-

reducing bacteria (NRB) would suppress the SRB-caused MIC. Due to the fact that the NEB could 

outcompete the SRB since the energy of nitrate reduction is much more than sulfate reduction. 

Moreover, the activity NRB would restrict the production of H2S and increase the redox potential. 

Thus, it can be considered a proper alternative for biocide performance [189]. The mentioned 

studies reported that the mentioned biological method was successful and could mitigate MIC over 

time.  

In addition, the biological manipulation needs enough nitrate levels, which depend on water 

volume and environmental conditions [190]. The NRB includes a range of microorganisms, and 

some of them can increase the corrosion rate [191]. Besides, some SRB microorganisms can utilize 

nitrate-causing MIC [192]. In the studies [193], it is reported that the rate of corrosion is increased 

after nitrate mediated souring control process.  

2.5.6. Cathodic protection-based methods 

The cathodic protection-based methods to control MIC SRB-based have been widely studied in 

the literature. The cathodic protection is a control tool that can be conducted in the system with 

coating integration or independence to protect the marine and offshore pipelines. The cathodic 
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protection mechanism limits the structure of metal corrosion by changing the metal as an 

electrochemical cell. This can be performed in two ways: (i) impressing the current density with 

an external current source or (ii) using a more active material as an anode. In fact, in the ideal 

cathodic protection, a potential is needed to reduce the level of corrosion for an exposed structure 

to a corrosive environment [194].  

The Calcareous deposits are poor electrons’ conductors and do not have the potential supporting 

oxygen reduction. It can contribute to the efficiency of cathodic protection; however, it may lead 

to a small diameter of pipeline blockages. A study reported that the micro-fouling-organism would 

be grown on the sacrificial anode; however, it cannot prevent anodes from the stainless-steel 

structure effectively [195].   

Generally, the alkaline generated from cathodic protection polarization could slow bacterial 

proliferation and activities [196]. That is why there are studies against it. In the study [197], it is 

highlighted that cathodic protection polarization, the SRB-based counts on coupons are two times 

bigger than coupons with no cathodic protection. It is recommended that the SRB engage the 

cathodes as electron donors for the metabolism process [198]. It concluded that cathodic protection 

polarization could feed the MIC-based microorganism on the metal surface within electrons’ 

energy underlying the anaerobic environmental circumstances [131]. Another study discussed that 

the cathodic protection under an anaerobic environment could activate the microorganism on 

cathodes [199]. An attempt has been made to control the oxygen reduction activity of 

microorganisms to control the cathodic protection system considering the microbial fuel cell [200].  

The SRB can induce additional pressure on the cathodic protection system by generating the H2S 

and dissociating sulfite (S2-) and bisulfite (HS-). In addition, the insoluble ferrous sulfides can 

move the cathodic protection potential circuit into much more negative amounts. Subsequently, in 
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the case of sulfide presentation, the common standards suggested that the cathodic protection 

potential circuit has less negative values than normal references, such as “DNV RP B401”. The 

environmental circumstances play an important role in the cathodic protection-based method's 

effectiveness. In the study [201], it is noticed that cathodic protection polarization potential 

requires much more negative values to prevent SRB-based corrosion.  

The strong electrical fields and high pH value due to the cathodic protection polarization circuit 

can disbond coatings. This means that the protective coating would be delaminated from protected 

features because of hydroxyl ions formations over the protected metal surface [202]. Fatehi et al. 

studied that the SRB causes severe corrosion compared to abiotic control [203]. Many 

microorganisms growing cathodic surface protected indicated that when cathodic protection is 

intermittent, the corrosion would be aggressive [204]. Thus, the SRB might be assassinated with 

the coating cathodic disbondment in a couple of metals.  

The cathodic protection has negative side effects as producing a hydrogen atom. The hydrogen 

atom is small and can easily diffuse within the steel structure. In addition, the hydrogen may cause 

hydrogen blistering. Moreover, the negative potential to protect the MIC would enhance the 

number of hydrogen atoms. Therefore, the risk of hydrogen embrittlement is high. For example, 

in the study [205], the hydrogen atoms in the steel structure within cathodic protection in seawater 

under the influence of SRB are investigated. It is reported that the SRB would enhance the rate of 

the hydrogen atom with ferrite pearlite. In this regard, SRB causes hydrogen steel deterioration at 

the cathodic potential circuit. In another research, the hydrogen blistering in steel seawater the 

influence of SRB at a potential range of cathodic protection is studied [206]. The hydrogen 

concentrations absorbed by steel were greater than cathodic protection. It is concluded that the 
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increased sulfide based on SRB on the metal surface would be enhanced by hydrogen atom 

sorption.  

To recapitulate, chemical treatments, pigging, and sanitation mitigates the MIC. The biological 

methods can mitigate the MIC; however, they are not practical. It is needed to understand the MIC 

mechanism much more effectively. The only option to limit microbial growth is restricting the 

nutrients. The coatings management actions are designed to protect the pipeline for long-term 

exposure. However, the cost of coatings is high and would be lost because of biofilm formation 

over time. 

Moreover, the cathodic protection cannot effectively protect the pipeline from biofilm formation 

and cannot prevent the MIC. Once the potential circuit is much more negative than standard 

practice, it can prevent MIC. However, the cost of such operations would be extremely high.  

2.6. Discussion and future work prospects 

MIC has been significantly evolved in recent years. However, by reviewing risk-based decision-

making models for MIC in offshore pipelines, it can be found that there are still further attempts 

required to be taken into account to enhance MIC knowledge and reduce the critical gaps: 

• It is a challenging task to provide a risk-based decision-making model of MIC as it might 

have several potential effects, such as pitting corrosion,  

• It is challenging to assess and manage MIC and requires a well-understanding of 

microbiological circumstances and corrosion. Integrating the outcomes of published works 

indicated that the nature of MIC is dynamic and difficult to be predicted, including 

microbiological activities and chemical environments,  
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• It is a challenging task to provide an MIC management plan by preventing, controlling, 

and mitigating MIC contributing factors, including microorganisms, metal-fluid 

interactions, chemical, and environmental conditions,  

• It is still challenging to understand MIC due to the varieties of affected areas starting from 

produced water, tanks, flowlines, and reaching other sections. Thus, it calls further and 

deeply assessing oil, solid, aqueous phases to define a comprehensive picture of MIC, and  

• It is challenging to provide a MIC risk-based decision-making model because of data 

scarcity, potential uncertainty of MIC contributing factors, and potential correlation among 

microbiological activities and chemical environments.  

Keeping in mind that developing a MIC risk-based decision-making model is multidisciplinary 

and stochastic. Thus, it is siloed between four main subject areas as (i) material and MIC products, 

(ii) chemical environment, (iii) physical and operational conditions, and (iv) microbiology, as 

depicted in Figure 2.6 [3]. 
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Figure 2.6. The schematic representation of data integration developing a MIC risk-based 

decision-making model 

The presented schematic representation of data integration developing a MIC risk-based decision-

making model can be further elaborated by addressing a series of questions considering the sample, 

data collection, assessments, and analysis. Some examples of questions are provided as the 

following but not limited to: 

• Material and MIC products: “Are there corrosion products present that can only be 

produced by microbial activity? How does the corrosion morphology relate to the chemical, 

microbiological and physical conditions present? Are both general corrosion and pitting 

corrosion observed? Is the damage observed characteristic for this alloy in this 

environment? Does the metallurgy of the component conform with the standards to which 

it was manufactured?” 

• Chemical environment: “What types of microbial nutrients are present? How does the 

composition change over time or during upsets or maintenance? How does the chemical 

environment compare with the microbial functional groups or types of detected 
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microorganisms? Are there bioproducts of microbial activity present? Does the 

environment support their growth?” 

• Physical and operational conditions: “When did the corrosion occur relative to changes in 

the operational history of the asset? How long was the component exposed to water? How 

do temperature and velocity contribute to the corrosive conditions? Are there design 

features that contribute to the corrosive environment? What mitigation measures have been 

used, and how have they been applied? How were they monitored?”, and  

• Microbiology: “How do the numbers, types, or activities of microorganisms at the corroded 

location differ from areas where there is no corrosion or from the bulk phase? Which 

microorganisms could thrive under the chemical and physical conditions that are present? 

Which would not?”. 

The future work prospects fall in the use of mechanistic, empirical MIC, probabilistic, and other 

models together, in which the potential risk-based decision-making models will integrate data from 

a MIC investigation. As much as decision-makers could provide precise and accurate responses to 

the questions mentioned earlier and more, the model will be reliable to a great extent. In addition, 

an effective and efficient risk-based decision-making model can be derived if and only if the MIC 

mechanism was correctly identified at the first stage, following that the model would be developed.  

2.7. Conclusions 

This literature review provides a different observation regarding MIC characteristics, detection, 

modeling, and management in the existing literature. In the following, the main findings are 

highlighted: 

• The presence of microorganisms in the pipeline does not necessarily mean that there would 

be any evidence of MIC activities,  
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• Most of the studies suffer from using off-site facilities, and they are restricted to rapid 

assessment due to the high cost of simulation environmental conditions,   

• The microbiological evaluation-based method (e.g., metabolomic and metagenomic) is the 

most robust tool for MIC determination,  

• The significant point to detect MIC in a short period is the characterizing the diversity of 

microorganisms on suspectable field sites,  

• The data mining on the microbiological data set may provide a valuable understanding for 

the most remarkable possible proliferation of MIC impacts,  

• The probabilistic and fuzzy-based methods can enhance the system's capabilities to assess 

MIC treatments. Thus, an intelligent system can provide a much more realistic timeline for 

decision-makers and operators to obtain the level of risk,  

• Utilizing such qPCR techniques to derive the total numbers of a single gene (16S rRNA), 

bacteria, and archaea is the critical performing indicator of consistent reporting in the 

system, 

• Engaging the nano-material tools can provide insights for robust detection sensors, such as 

smart pigs and miniaturized kits,  

• Reducing the cost of MIC management can only be applied in case using multi-disciplinary 

approaches between chemical, corrosion, and safety engineering,  

• There is a requirement for research tasks to obtain the solutions for MIC in dynamic 

environmental circumstances. 

It should be highlighted that the impact of such research works in the MIC field can reduce the 

MIC-based accidents and follow the costs. Thus, it can provide a reliable and low-cost solution. 



 

 
81 

Exploring the available investigations and findings into the MIC-risk-based models could deal 

with difficulties and provide the research opportunities for future research tasks.  
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Chapter 3 

Microbiologically influenced corrosion (MIC) management using Bayesian inference 
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Abstract 

Microbiologically influenced corrosion (MIC) is a complex phenomenon that occurs when a 

microbial community is involved in the degradation of an asset (e.g., pipelines). It is widely 

recognized as a significant cause of hazardous hydrocarbon release and subsequently, fires, 

explosions, and economic and environmental impacts. This paper presents a new MIC 

management methodology. The proposed methodology assists in accurately monitoring MIC 

activity and accordingly develop strategies to manage it. The MIC monitoring and management 

activities are achieved using Continuous Bayesian Network (CBN) technique with Hierarchical 
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Bayesian Analysis (HBA). The integration of HBA and CBN helps overcome the Bayesian 

network's discrete value limitations (BN) and source-to-source uncertainty for each node in the 

network. The methodology can provide the accurate value of parameters, such as failure 

probability and MIC occurrence rate. The application of the methodology is demonstrated on a 

subsea pipeline. The study provides a better understanding of the influencing factors of MIC rate 

and failure probability. This assists in developing effective MIC management strategies.  

Keywords: Safety management, Subsea pipeline, Uncertainty, Pipeline, Markov Chain Monte 

Carlo method, Bayesian analysis  

 

3.1. Introduction 

Microbiologically influenced corrosion (MIC), also known as biocorrosion, is a significant threat 

to asset integrity in most industries especially in oil and gas industrial sectors [1–3]. Because of 

their activities based on metabolites MIC is caused by microbial biofilms, where their activities 

reflect in reservoir souring and asset deterioration [4,5]. As industrial assets age, MIC becomes a 

common risk factor leading to an accident (e.g., fluid flooding, leakage, rupture, etc). Besides, 

MIC has been extensively reported as annually causing the loss of billions of dollars in the US [6]. 

MIC has been attributed to approximately 10% of corrosion cases in the UK [7], the largest, 

Prudhoe Bay’s oil spill occurred due to MIC in 2006 [5], and Alaskan pipeline leakage was caused 

by microbial activities.  

Staying with the aforementioned introduction, performing MIC management is therefore vital,  

whereby operators can use quantitative, semi-quantitative, and qualitative models to support 

decision making to manage corrosion. MIC management, underlying the idea of corrosion 

management approaches, should employ the key factors of recently introduced corrosion 
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management systems (CMS) [8] to make sure that all required MIC preventives, control and 

mitigative actions are performed in a sustainable, well-established, and effective manner [9,10]. 

Three main steps need to be considered in any corrosion management approach: (i) understanding 

the MIC threat mechanism and how it affects the assets, (ii) recognizing and performing an 

appropriate management practice, and (iii) monitoring the management practices to examine 

whether the practices are effective or need further modifications [10,11]. These steps are taken 

into account based on CMS procedures on a daily, weekly, monthly, and annual basis. Thus, 

corrosion management in general, and MIC specifically, can be viewed as a supporting program, 

in which management practice is presented and facilitated. It should be highlighted that MIC 

management in an ongoing and continuous process since MIC is known as an asset integrity threat, 

which further increases the operational risk. Therefore, MIC management has to follow the ISO 

31000 [12] framework on risk management.  

There are a considerable number of corrosion management programs based on the 

reliability/availability of assets proposed by both the academic and industrial sectors over the past 

few decades. These management programs are typically categorized into different classes, namely: 

(i) calculating the failure probability of asset (pipeline) over a period (before and after launching 

in-line inspection and cleaning tools), (ii) repairing the defect if required, (iii) optimizing the 

periodic schedule of in-line inspection tools to determine the defects and corresponding sizes of 

the defects, (iv) manipulating operational parameters, (v) using chemical compounds (e.g., 

inhibitors and biocides), (vi) applying coating and cathodic protection, and combination of the 

classes [13–20].   

The pit depth growth models play an important role in proposing a corrosion management practice, 

to approximate the failure probability of the pipeline as a function of time, predicting the remaining 
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strength of the pipeline, as well as examining the defect’s location and determining the efficiency 

of each management practice. This is why utilizing the data collected from pipeline history over 

time is essential for the industry to develop a pit depth growth model in a much more realistic way. 

In literature, pit depth growth models can be developed by using conservative and non-

conservative techniques. The latter may lead to critical defects being overlooked by the 

management practice and increase the occurrence of serious consequences. On the other hand, the 

conservative pit depth growth models will increase the uncertainty of management practice [21]. 

Developing a mechanistic model for pit depth growth models is an intrinsically complex process 

as it may include two types of variables, namely temporal and spatial. The temporal variables are 

defined as the pit depth growth path of a defect that varies over time, while the spatial variables 

are defined as the pit depth growth path of more than one defect. However, all variables may be 

correlated. The probabilistic pit depth growth model is widely used in the literature as random 

variables and stochastic-based models. It simply means that the pit depth growth is considered to 

follow a linear or power-law function of time [14,16,17,19,22,23]. As an example, the growth of 

a corrosion defect is characterized by utilizing the Markov process and a gamma distribution with 

a shape and scale parameter as time-variant and time-invariant, respectively [24–26]. A gamma 

process is employed to characterize corrosion growth of the multiple defect [27]. A non-

homogenous Markov process is used for pit growth according to the experimental data for 

Aluminum [27]. A non-homogenous Markov process is also used by [28,29] to characterize the 

pitting corrosion, in which Weibull distribution is assumed for corrosion initiation time. A power-

law function of time is considered to model the parameters in transition probability. In another 

study, the time-dependent transition intensities were examined by collecting the pipeline defect 

information with in-line inspection tools [30]. However, there are significant challenges associated 
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with modeling  the pit growth by adopting Markov process-based models: (i) selecting a transition 

probability function and the sufficient numbers of damage state, (ii) using data from in-line 

inspection tools introduces the uncertainties as well as errors, and (iii) facing the spatial correlation 

between the defects. 

This is why the Bayesian-based methodologies are robust and powerful tools, utilizing data for pit 

depth growth modeling. As an example, hierarchical Bayesian methodology and dynamic 

Bayesian networks, by incorporating new data, have been used to analyze the deterioration 

mechanistic model of corrosion and updating the parameters in the model [31–34].  The 

hierarchical Bayesian analysis (HBA) is utilized to model the pit growth in the pipeline [21]. 

Researchers used a non-homogenous gamma process to derive the probability distribution for the 

parameters within multiple defects. In another study, Al-Amin et al. [35] developed a pit depth 

growth model for a specific defect using HBA based on the data obtained from the in-line 

inspection tools. A hierarchical Bayesian framework was developed by Qin et al. [36] to model 

defect generation and growth of metal deterioration in oil and gas steel pipelines. Pesinis and Tee 

[37] proposed a framework to estimate corrosion-based failure probabilities of underground 

natural gas pipelines and corrosion growth defects by using a hierarchical Bayesian model. A 

hierarchical Bayesian model based on a non-homogeneous gamma process is proposed considering 

the operational conditions of a pipeline over a period of time [38]. Zhang and Wang [32] used a 

Bayesian network (BN) to construct a knowledge-based model by analyzing the failure probability 

and leakage size of corrosion for an underground gas pipeline. 

However, in all aforementioned studies, there is a lack of comprehensive pit depth growth 

modelling considering both model and data uncertainties, which further helps on-site operators to 

make decisions by proposing a management practice. Therefore, to deal with the lack of previous 
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studies, CBN along with HBA can be used. CBN which can be considered as an extension of 

typical BN [39] is a powerful tool and can handle model uncertainty using adaptive models. In 

addition, CBN, by utilizing continuous nodes, can better reflect those variables that change 

continuously in nature. CBN and its extensions have been broadly used such as, but not limited to 

the field of safety, reliability, and risk management [40–44]. HBA is also a robust technique to 

deal with different sources of information known as data uncertainty. In safety, reliability, and risk 

management domains, the existing data is generally inadequate to conduct analysis, especially 

modeling the pit depth growth, where improper modeling causes pipeline failure. Thus, to obtain 

acceptable results to support decision making, HBA utilizes and then aggregates a wide range of 

information. In addition, in recent years, the availability of Markov Chain Monte Carlo (MCMC) 

using a sampling application can help decision-makers to fully track performing HBA [45–48].  

The contribution of this study is threefold. The first contribution is in providing CBN along with 

HBA in one methodology framework for MIC management. Thus, the proposed framework takes 

into account both model and data uncertainty. Second is in developing a new mechanistic model 

for pit depth growth under the influence of MIC, and third is using the Bayesian-based model over 

a period of time to propose the optimum and best management practices.  

The organization of the paper is presented as follows. In Sections 2 and 3, the preliminaries of 

CBN and HBA are explained, respectively. In Section 4, a framework is proposed to manage MIC 

considering both types of model and data uncertainties. In Section 5, a corroded pipeline is studied 

as a case study to demonstrate the application of the developed methodology. In the final section 

a conclusion, challenges of the current study, and direction for upcoming research are provided. 
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3.1.1. Continuous Bayesian Network 

The BN has enough capacity to analyze the behavior of each node over time given new data, 

making it one of the most powerful and robust tools. Common BN-based approaches have been 

widely used in different engineering domains such as, but not limited to [49–56]. BN-based 

approaches can employ different types of input data (objective or subjective) to estimate the 

probability centered event by reducing the model uncertainty with consideration of 

interdependency between all the participating nodes. However, the common BN-based models 

ignore the preciseness and modeling flexibility since the discrete nodes are used in the models. In 

other words, the common BN-based approaches consider the continuous nature of causal factors 

in the network as discrete variables. Therefore, these types of estimations provides uncertainty 

during the analysis process [57–63]. In real-world applications, there are often variables that 

continuously change over time and therefore cannot be modeled using common BN-based models 

with discrete variables. Such is the case for MIC.   

To deal with the abovementioned drawbacks, the common BN-based approaches can be further 

developed as a CBN considering the continuous causal factors. In CBN, the nodes of the models 

can be represented as a combination of discrete and continuous variables. To see how CBN can be 

constructed from a common BN-based model, Guozheng et al [39] proposed a framework to 

convert BN into the CBN. According to this study, two significant changes are required so that the 

parental nodes can quantitatively signify the child nodes. First of all, all nodes with a continuous 

nature in BN-based modes must be defined by employing measurable variables. Next, the child 

nodes’ value in CBN needs to be represented as a function of the parental nodes’ value. This simply 

means that the conditional probability tables (CPTs) in the common BN-based models are 
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transferred into the conditional probability distributions or mathematical functions that represent 

the relationships between the value of the child and parental nodes.    

In CBN, the computation of posterior distribution becomes much more complex and therefore the 

analytical methods or Monto Carlo simulations cannot compute the posterior distributions. Markov 

Chain Monto Carlo (MCMC) is a robust tool and has high level capacity to compute the 

complicated posterior distribution with high dimensions. To elaborate, MCMC has two main parts 

(i) Monto Carlo, and (ii) Markov Chain. Monto Carlo refers to a method that relies on the 

generation of random numbers and Markov Chain refers to a sequence of numbers in which each 

number depends on the previous number in the sequence. However, Monto Carlo simulations fail 

to sample from the complicated distribution which has different types of dependent variables. To 

handle this issue, Markov Chain is used to assist Monto Carlo, and therefore MCMC is utilized. 

To obtain more details about MCMC and its algorithms one can refer to [64]. 

3.1.2. Hierarchical Bayesian Analysis  

Simply put, Bayesian analysis is one of the main elements of the Bayesian methods that deal with 

the unknown parameters of a mechanistic process as random variables instead of using 

deterministic values. The Bayesian analysis makes use of prior knowledge about the mechanistic 

process’ parameters which may be derived from expert opinion, past experience, and information 

from previous research studies.  Subsequently, the prior knowledge is adjusted based on the newly 

observed data to update the opinions about the parameters of a mechanistic model. Furthermore, 

the updated belief can then be considered as the prior distribution for updating in the future as the 

new data becomes obtainable. Thus, by repeating this process, the data uncertainty about the 

parameters of the mechanistic model is reduced. Hierarchical Bayesian Analysis (HBA) [65] is a 

unique case of the Bayesian methods, in which the prior distribution is disjointed into the 
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conditional distribution sequentially [66]. HBA is a powerful tool for making statistical inferences 

about the parameters of the mechanistic model in which there are complicated interactions between 

the parameters. In addition, HBA is principally appropriate for population, where the model’s 

parameters described as a sample in the population are measured to be associated with the 

parameters for another sample from the same population [35,67].  

Let it be  assumed that there is a population of 𝑛 random variable, 𝒴𝑖(1 = 1,2,3, … , 𝑛) which can 

describe similar mechanistic processes. Consider that there is a set of unknown parameters where 

𝜃𝑖 denotes the probability distribution of a random variable 𝒴𝑖. The prior distribution 𝑝(𝜃𝑖|𝜔) can 

be assigned to 𝜃𝑖, in which 𝑝(𝜃𝑖|𝜔) signifies the PDF of 𝜃𝑖 and is conditioned on the known 

parameters 𝜔, and are considered to be common to the population of 𝒴𝑖. Moreover, let it be us 

assumed that 𝑦𝑖 denotes a set of observed data for 𝒴𝑖. The updated opinion of 𝜃𝑖 can be obtained 

using Bayes’ theorem [68] by combining the prior distribution and the observed data in the 

following Equation: 

𝑝(𝜃𝑖|𝑦𝑖) =
𝐿(𝑦𝑖|𝜃𝑖)×𝑝(𝜃𝑖|𝜔)

𝑝(𝑦𝑖)
                                                                                                        (3.1) 

𝐿(𝑦𝑖|𝜃𝑖) is the known likelihood function is based on the information provided by the data, which 

is conditional on 𝜃𝑖. Besides, the entity 𝑝(𝜃𝑖|𝜔) is called the posterior distribution, which reflects 

the combination information of prior information and obtained new data. The quantity 𝑝(𝑦𝑖) is the 

normalizing constant which confirms that the left-hand side of Equation 3.1 is a probability 

distribution. The 𝑝(𝜃𝑖|𝑦𝑖) integrates to be unity and is known as the marginal likelihood, which 

can further be determined by integrating the numerator on the right-hand side of Equation 3.1, 

regarded as 𝜃𝑖.Therefore, the following Equation can be derived: 

𝑝(𝑦𝑖) = ∫ 𝐿(𝑦𝑖|𝜃𝑖) × 𝑝(𝜃𝑖|𝜔)𝑑𝜃𝑖                               (3.2) 
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Keeping the normalization constant in mind, using proportionality symbol (∝), Equation 3.1 can 

be rewritten as: 

𝑝(𝜃𝑖|𝑦𝑖) ∝ 𝐿(𝑦𝑖|𝜃𝑖) × 𝑝(𝜃𝑖|𝜔)                                    (3.3) 

The abovementioned explanations are based on standard Bayesian formulations, where it is 

assigned a prior distribution into the parameter 𝜃𝑖 by controlling the distribution 𝒴𝑖 . However, the 

standard Bayesian formulations can be further developed by considering that the parameter  𝜔 

which controls the distribution of 𝜃𝑖 is a random variable as well, by assigning the prior 

distribution, 𝑝(𝜔|𝜓), into the 𝜔. According to this extension, the 𝑝(𝜔|𝜓) is named as hyper-prior 

and 𝜓 in named as hyper-parameter [65,66]. In addition, the hyper-parameter can be known and 

can present the prior belief about 𝜓. In practice, 𝜔 can also be treated as random variables and 

proceed to the next level of hierarchy. As can be seen from Figure 3.1 (modified after [65]), the 

simple graphical structure of a common HBN of extended Bayesian model is provided. Therefore, 

the extended Bayesian model can be summarized as follows:    

i. Likelihood of data: 𝐿(𝑦𝑖|𝜃𝑖) ,  

ii. First stage of prior: 𝑝(𝜃𝑖|𝜔) , 

iii. Second stage of prior: 𝑝(𝜔|𝜓),  

iv. Posterior distribution of 𝜃𝑖: 𝑝(𝜃𝑖|𝑦𝑖) ∝ 𝐿(𝑦𝑖|𝜃𝑖)𝑝(𝜃𝑖|𝜔) , 

v. Posterior distribution of 𝜔: 𝑝(𝜔|𝜃𝑖) ∝ 𝐿(𝜃1, 𝜃2, … , 𝜃𝑛|𝜔)𝑝(𝜔|𝜓). 
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Figure 3.1. The simple graphical structure of a common hierarchical Bayesian Network (square 

and circle nodes represent the deterministic and stochastic component) 

 

In such cases, HBA can be defined in four levels, due to the fact that level one is based on 

inspection data, i.e., the defect depths described by inspections which are connected to 

measurement uncertainties, level two highlights the auxiliary variables, including the actual depths 

at the times of inspections and increments of the actual depths between two consecutive 

inspections, level two also makes the likelihood function for the measured depth mathematically 

tractable and facilitates the Bayesian updating, in level three the parameters for level two are 

provided (e.g., the parameters in gamma distributions), and finally in level four hyperparameters 

assist in finding out the parameters in level three. It should be added that based on the type of 

decision-making problem, the level can be increased or shortened. By studying the literature and 

with the support of decision-makers such as, but not limited to [35,46,69–71], and to the best of 

the authors’ understanding, some of the merits of HBA compared to other statistical models can 

be highlighted as following:  
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(i) HBA enables one to deal with the source to source uncertainties by utilizing the 

hierarchical prior assignment. Thus, the feature of HBA makes a robust estimation of 

the parameters, in which the posterior results are based on the average from different 

possible prior options [66].  

(ii) HBA using the conditional hierarchical priors can better describe the spatiotemporally 

(space-time) correlated data [72]. 

(iii) The computations of the Bayesian model are commonly simplified by the hierarchical 

structure within posterior distribution simplification. This results from priors’ 

decomposition. Thus, different sampling algorithms can be employed to update the 

parameters [65,66,72]. 

(iv) In HBA, a specific group or singular parameter can derive information from the 

equivalent of the parameters[73]. Thus, the level of singular inference can be obtained 

as precisely as possible and shows its merits when the observed data and sample size 

are small. To characterize the pit depth for a single MIC defect of a subsea pipeline, 

HBA using inferences is practically advantageous, since the information that is linked 

to give defect is commonly limited.  

The mean, standard deviation, and other probabilistic characteristics of random variables, which 

are entered in HBA can be determined by integrating and combining the posterior distribution. 

However, there is a lack of close form solutions to obtain the posterior distribution when the 

Bayesian Network has high dimensions and is complex. Therefore, similar to the CBN mentioned 

in Preliminary 2, the difficulties can be handled using MCMC techniques. In the MCMC methods, 

a Markov chain is initially constructed to consider the start values of the parameters, and 

subsequently converges to the posterior distribution which is actual target density. It should be 
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added that the sample is dependent on the start value; therefore, the influence of the start value 

needs to be reduced by ignoring the first part of the sample. This period is referred to as the 

burning-in period. The burning-in period is the time it takes the chains to be stabilized, which 

means therefore that there is not up and down drifting over time by ignoring the sample in the 

burning-in period. Afterward, the sample can be used for Bayesian inference of the parameters. 

There are some important algorithms that are commonly utilized to perform an MCMC, such as, 

but not limited to “Metropolis random walk Hastings”, “Slice sampling”, and “Gibbs’s sampling”. 

To get more details about MCMC methods and corresponding algorithms, one can refer to the 

following references [65,66,72,73]. 

3.2. Methodology 

It is important to predict the rate of MIC as well as pit depth growth in the early stage of subsea 

pipeline development to provide appropriate management practice(s), which can prevent, mitigate, 

and control the occurrence of pipeline failure caused by MIC. However, MIC management is a 

challenging task for decision-makers due to a lack of information in probabilistic risk analysis. 

The rate of MIC and pit depth growth can be estimated by utilizing modeling techniques such as 

Bayesian network. Such Bayesian network modeling techniques have a number of shortfalls which 

result from some degree of uncertainty. As can be seen from Figure 3.2, the proposed six step 

methodology enables consideration of both types of data and model uncertainties by modeling 

CBN and HBA. In the proposed methodology, CBN and HBA can deal with the model and data 

uncertainties, respectively.    
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Figure 3.2. The developed methodology framework 
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Step 1: Constructing the mechanistic model of MIC 

In this step, mechanistic modelling of individual pit initiation influenced by MIC is developed. 

The mechanistic model considers the type of corrosion, which in our case is MIC, chemical, 

material type, alloy composition, mechanic characteristics of the system (e.g. subsea, onshore), 

and effective environmental and operational conditions. This can further lead, but is not limited. 

to the rate of corrosion, material strength properties, depth and width of the pits, and remaining 

age of the pipeline. Once all potential factors impacting on the MIC are identified, the BN tool is 

further developed to consider the relationship between different parameters in the MIC 

mechanistic model. 

Step 2: Collecting all the required information  

The related data for each node in developed. BN are obtained from different sources including 

different industrial sectors, operational conditions, various regions, or subjective opinions from 

experts in the field. Because the nodes in BN can be defined by combination of both discrete and 

continuous variables, CBN is therefore used instead of BN.  

Collecting data is the key step in any kind of statistical inference. Data can be defined as an 

observation value in a stochastic domain which may have different sources of uncertainty. 

However, assessing, evaluating, manipulating, and organizing any form of data is referred as 

information. Knowledge, in its general form, is assembled from the information. The inference is 

referred to as the process of obtaining a conclusion according to what is known for us [45].   

In addition, once all required data/information is collected, they are further processed into the 

intervals to approximate their probabilities for identified ranges. Therefore, the predicted 
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probabilities can be used as input data for the CBN model. The CBN, similarly to the BN, can deal 

with model uncertainty. 

Step 3: Utilizing Hierarchical Bayesian Analysis to deal with data uncertainty 

As mentioned in Preliminary 3, HBA is used to derive the probability of each node in CBN. After 

collecting the relevant data for each node from different sources, the likelihood function of 

continuous nodes is specified for each data set according to the type of aggregated data. As an 

example, if the number of observed variables is collected in a specific period, the Poisson 

likelihood function can be used to model the data set [45]. Thereafter, the hierarchical model can 

be structured as the following: 

𝑥𝑖~Poisson (𝜆𝑖 , 𝑡𝑖) as likelihood function,  

𝜆𝑖~gamma (𝛼, 𝛽) as the first state of prior, 

𝛼~gamma (0.0001,0.0001)  diffusive hyperprior, 

𝛽~gamma (0.0001,0.0001)  diffusive hyperprior. 

According to this point, HBA provides a posterior distribution for the parameter of interest, which 

is probability. In addition, probability reflects the mean and reliable intervals. The mean value 

signifies the most fitting value for the interested parameter. The obtained distribution denotes 

source to source uncertainties in the interested parameter, and therefore can be used as a prior 

information distribution when new information becomes available. Thus, HBA correctly deals 

with data uncertainty. 
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Step 4: Estimating the rate of MIC and pit depth growth  

Once all the probabilities of each node to be used in the developed CBN are obtained, the pit depth 

growth can be estimated. Firstly, the probability of parental nodes in CBN will be used as a prior 

belief to estimate the probability of pit depth growth. Secondly, the probability of each node will 

be updated, given new information through the probability propagation or reasoning process. 

Moreover, CBN enables the setting of evidence in the network at any stage. Hence, the posterior 

distribution estimated by HBA is considered as an informative prior distribution. Thereafter, the 

obtained informative prior distribution is used to update the probability of the nodes. Using 

probability reasoning processes, the CBN is then updated the model completely.  

To compute the pit depth growth over time, it is assumed that the actual depth of an MIC defect 

follows a power-law path. It is further assumed that the parameters of power-law growth are 

constant by time and quantified for each specific defect [45]. Therefore, it is also considered that 

the pit depth growths of different defects are spatially independent. According to the power-law 

path model, the pit depth growth of the defect 𝑖 at time 𝑗 can be estimated in the following equation 

[21,35]: 

𝑑𝑎𝑖𝑗 = 𝑎𝑖 (𝑡𝑗 − 𝑡0𝑖 )
𝑏𝑖 + 𝜂𝑖𝑗                             (3.4)  

where the parameter 𝑎𝑖  (𝑎𝑖 > 0) is an indication of pit depth growth for defect 𝑖 in one year from 

the initiation time of defect, the parameter 𝑡𝑗  is the proceed time (elapse time in a year) from 

installation date until time 𝑗 as the reorganization of a defect, the parameter 𝑡0𝑖 represents the MIC 

initiation time (the proceed time from installation date to the time when defect 𝑖 starts to grow), in 

practice 𝑡0𝑖 > 𝑡𝑗 , the parameter 𝑏𝑖  (𝑏𝑖 > 0) denotes the MIC rate of growth path, in which 𝑏𝑖 =



 

 
121 

0, 𝑏𝑖 > 0, and 𝑏𝑖 < 1 representthe linear, acceleration, and deceleration pit depth growth path, 

respectively, 𝜂𝑖𝑗  denotes the model error of the pit depth growth connected with defect 𝑖 at time 𝑗.  

In practice, there is no date for the specific defect until the first launch of an in-line inspection tool. 

Thus, HBA, using prior distribution are considered for the parameters. The truncated normal 

distribution is allocated for the prior distribution of the parameter 𝑎𝑖, due to the fact that it should 

be positive. In addition, selecting a normal distribution provides better computational stability as 

well as enhancing the efficiency of the model. The parameter 𝑏𝑖 is approximated with respect to 

the mechanistic model of MIC. The prior distribution of the parameter 𝑡0𝑖 is assumed to be 

uniformly distributed in interval zero and 𝑡1, since 𝑡1 is the elapsed time from installation until the 

reorganization of a defect using observation, inspection tools, etc. The parameter 𝜂𝑖𝑗 as the model 

error for the defect 𝑖 at time 𝑗 is considered to be normal distribution having a value of mean equal 

to zero, which means that the power-law model is considered to be on average unbiased for each 

defect. Therefore, the prior distribution of three parameters 𝑎𝑖, 𝑡0𝑖 , and 𝜂𝑖𝑗 (𝑖 = 1,2,3, … 𝑚; 𝑗 =

1,2,3, … 𝑛) are represented as the following Equations: 

𝑎𝑖~𝑁(𝜇𝑎 , 𝜎𝑎
2)                                        (3.5a) 

𝑡𝑜𝑖~𝑈(0, 𝑡1)                           (3.5b) 

𝜂𝑖𝑗~𝑁𝑖(𝜇𝑎, 𝜎𝜂𝑖
2 )                           (3.5c)  

in which all above-mentioned distributions are identically distributed and independent.  𝑁(𝑥, 𝑦) 

represents the normal distribution with mean and variance of x and y, respectively. 𝑈(𝑙𝑥, 𝑢𝑦) 

denotes a uniform distribution having a lower and upper bound of 𝑙𝑥 and 𝑢𝑦, respectively. The 

parameter 𝜂𝑖𝑗 is considered to be independent and identically distributed for a given defect 𝑖 in a 
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different time slice. In addition, the parameter 𝜂𝑖𝑗 is considered to be independent at a given time 

the parameter 𝜂𝑖𝑗 for different defects. 

The prior distribution of parameter of 𝑏𝑖 is obtained from the MIC mechanistic model using CBN. 

The prior distribution parameters for 𝑎𝑖 and 𝜂𝑖𝑗 are assigned another level of prior, named hyper-

prior as they deal with the random variables. To treat the random variables, the normal and inverse-

gamma distributions are considered for mean 𝜇𝑎, and standard deviation 𝜎𝑎
2 and 𝜎𝜂𝑖

2  as prior 

distributions, respectively. The normal and inverse-gamma distributions are well-known conjugate 

priors of a normal distribution and using conjugate priors further provides posterior distributions 

without numerical integration [14]. Keeping the above mentioned explanations, the hyper-priors 

can be defined as the following:  

𝜇𝑎~𝑁(𝐴, 𝐵)                           (3.6a)               

𝜎𝑎
2~𝐼𝐺(𝐶, 𝐷)                         (3.6b) 

𝜎𝜂𝑖
2 ~𝐼𝐺(𝐸, 𝐹)                         (3.6c)   

where 𝐼𝐺(𝑥, 𝑦) denotes the probability density function of inverse gamma distribution with shape 

and scale factors 𝑥, and 𝑦, respectively. The parameters 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, and 𝐹 are named as hyper-

priors of the model and are considered to be known using non-informative distribution. In addition, 

as mentioned earlier, the 𝜇𝜂𝑖 is assumed to be zero.  

The fully hierarchical Bayesian model for pit depth growth is established in Figure 3.3 with respect 

to the aforementioned hyper-priors.  
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Figure 3.3. The schematic representation of a fully hierarchical Bayesian model for pit depth 

growth (rectangular nodes and circle nodes represent the constant and stochastic (uncertain) 

components of the model, respectively and arcs show the relationships between the nodes which 

can be deterministic or stochastic) 

 

Step 5: Performing sensitivity analysis  

The sensitivity analysis is carried out to study how the output uncertainty of the pit depth growth 

model can be separated into the different sources of input uncertainties [74]. In addition, sensitivity 

analysis helps to validate the model by using different methods such as, but not limited to, the 

conditional variances-first path, conditional variances second path, higher-order sensitivity 

indices, total effects, etc. To obtain more details, one can refer to [75].  

MIC case is a highly complex process, and as a result, relationships between inputs and outputs in 

the model are not easy to follow. Therefore, sensitivity analysis helps decision-makers to see how 

changing, or a combination of, input parameters impacts the output. According to this point, in this 

study, a sensitivity analysis is performed to provide valuable information for the next step to 

propose the best and optimum management practice.  
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Step 6: Proposing the best and optimum management practice 

Once sensitivity analysis is performed from the previous step, the behavior vitiation of each root 

parameter with the pit depth growth path will be obtained over a period of time. In addition, as 

mentioned earlier, applying each management program with respect to its corresponding 

characteristics, has an identified effect on the pit depth growth path. By comparing all possible 

management programs including each practice as well as a combination of them, we can select the 

optimum management practices in each time slice.  

3.3. Application to a case study 

The proposed methodology is applied to an APL 5L grade X42 subsea hydrocarbon transition 

pipeline which is highly suspect of internal MIC and is required to be in operational condition for 

at least 40 years. The pipeline carries co-mingled fluids from a different number of subsea 

resources.  

According to the first step of the developed methodology, the mechanistic model of maximum pit 

depth growth influence by MIC appears in Figure 3.4. The mechanistic model of MIC is drawn 

with consideration to (i) environmental conditions, including salinity, CO2 partial pressure, pH, 

O2, temperature, water cut, and Sulphides, (ii) operational conditions including fluid velocity and 

pressure, (iii) material conditions including steel composition and Carbon content, (iv) biofilm, 

and (v) exposure duration.  
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Figure 3.4. The influence diagram of the mechanistic model of maximum pit depth growth 

influence by MIC (SRB (sulfate-reducing bacteria), SRA (sulfate-reducing Archaea), and IOB 

(iron-oxidizing bacteria) 

 

In the second step, the pipeline operational data and information, according to the operational 

environment, are provided in Table 3.1 based on the combination of discrete and continuous 

variables. The provided data is based on literature [19,33,34,52,57,59,76–79] and mean value of 

continuous variables are based on operational and chemical analysis from SeaRose FPSO. It is 

assumed that the pipeline contains multiple defects throughout. The non-informative distributions 

(i.e., distributions with small means and very large variances) are allocated as hyper-priors to the 

pit depth growth factors 𝑎𝑖 , 𝑡𝑜𝑖 , and 𝜂𝑖𝑗 . To obtain pit depth growth, Bayesian updating software 

such as OpenBugs (www.openbugs.net) using MCMC methods is utilized by 1000000 iterations 

within interval 2 tinning, in which the estimated parameters of the growth models were then used 

to estimate the depth of a defect. Table 3.2 provides a chemical analysis of produced water showing 

the total number of microorganisms using the qPCR (quantitative Polymerase Chain Reaction) 

http://www.openbugs.net/
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method, different types of microorganisms percentage as well as sulfate reduction rate (SRR), 

which further means that the defect in the pipeline is influenced by MIC. In addition, the sulfate 

reduction rate is used in the mechanistic model of MIC.  

Table 3.1. The pipeline operational parameters’ data range 

Variables Descriptions   

pH Distribution: 3.2-7.86  

Temperature (degree) Distribution: 0-50 

Flow rate (m3/s) Distribution: 0.01-1.116 

Exposure time (yrs) Distribution: 2.5- 3.5  

Salinity Discrete: Present/Absent 

Steel composition Discrete: Present/Absent 

Carbon content  Discrete: Present/Absent 

Pressure  Discrete: High/Moderate/Low 

O2 Discrete: High/Moderate/Low 

Sulfate ion (ppm) Distribution: 0.01-32000 

CO2
 
partial pressure: Discrete: High/Moderate/Low 

Water cut Discrete: High/Moderate/Low 

Biofilm  Discrete: High/Moderate/Low thickness 

 

Table 3.2. Characteristic of microorganisms affecting the MIC (Chemical analysis was 

performed from produce water after separator (PW-Terra Nova SC003, F2-P (2019) 

Category Name of organism  Value % 

SRB Desulfacinum 0 

Desulfobulbaceae 0 
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Desulfonauticus 0 

Desulfomicrobium 0 

Desulfoplanes 0 

Desulfovibrio 8.72  

Desulfuromonas 0 

Desulfuromonadaceae 0 

Dethiosulfatibacter 10.14 

Dethiosulfovibrio 0 

Fusibacter 0 

Marinitoga 0 

Sulfurospirillum 0 

SRA Archaeoglobus 38.36  

Caminicella 0 

Kosmotoga 0 

Petrotogaceae 0 

Thermacetogenium 0 

Thermoanaerobacter 1.35  

Thermoanaerobacteraceae 0 

Thermococcus 9.9  

Thermosipho 3.6  

Methanogen Methanosarcinaceae 0 

Methanothermococcus 0 

Methanolobus 0 

Methermicoccus 4.79 % 

IOB Unknown - 

ABP Unknown - 
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Sum  76.86 % 

qPCR 3.19E+06 (16S copies/mL sample) 

SRR in situ  0.52 

SRB (sulfate-reducing bacteria), SRA (sulfate-reducing 

Archaea), IOB (iron-oxidizing bacteria), and ABP (Acid-

producing bacteria), qPCR (quantitative Polymerase Chain 

Reaction), SRR (sulfate reduction rate) 

 

To propose a management practice in this study, a pit within a maximum pit depth is considered 

for evaluation.  

In the third step, testing data are provided from Table 3.1 with HBA as described in Section 3 

(Preliminary of Hierarchical Bayesian Analysis) which provides a probability distribution (i.e. a 

predictive posterior distribution for each node in CBN) as shown in Figure 3.5. The mean value of 

the distributions represents an adequate value of each node. After obtaining the Description and 

probability value of all nodes in CBN, it will then be used as prior belief in CBN to estimate the 

rate of MIC and further pit depth growth as shown in Figure 3.6.  As it can be seen from Figure 

3.6, the node “pit depth growth” is constructed based on an equation, representing that time-

varying characteristics of pit depth growth considered in the BN prediction mode. In addition, it 

should be highlighted that parameters such as pit indication of pit depth growth using gamma 

distribution represent the randomness in the BN model. 

In the fourth step, the probability of pit depth growth gained from the previous analysis can further 

be utilized to estimate the probability of pit depth growth over a period, considering that only 

𝑡𝑗  and 𝑡0𝑖  are varied by time. Figure 3.7 depicts the approximation of pit depth growth over a 

period showing mean, median, and 10 percent error.  
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Figure 3.5. Posterior predictive distribution for each root node 

 

 

Figure 3.6. The CBN for obtaining a pit depth growth 
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Figure 3.7. The predicted pit depth growth path for the defect 

For the fifth step, sensitivity analysis is performed as a forward propagation to understand how 

proposing a management practice can properly prevent, mitigate, and control MIC. In addition, it 

can increase the lifetime of the pipeline by decreasing the pit depth growth path over a period. 

Figure 3.8 presents the possible management practice for the subsea pipelines influenced by MIC 

[80].  

 

Figure 3.8.  MIC preventive, mitigative, and control management practice 
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The first two management practices are assumed that they are already considered in the pipeline 

installation. It is known as a method to prevent, or at least limit, internal contamination. The 

cathodic protection and coatings would be the least difficult, most economically friendly, and 

proficiently and preventively proactive to deal with MIC [81]. The majority of offshore pipelines 

have coatings. The Fusion-bonded epoxy (FBE) is the most popular applied coating for North 

America [82]. Cathodic protection systems are divided into two methods (i) the sacrificial anode, 

and (ii) the impressed current system. In the latter, an external DC current is used to cathodically 

polarize the pipeline. This method of cathodic protection can be used to protect bare or poorly 

coated pipelines because of high current capacity. In the majority of subsea pipelines, the sacrificial 

anode technique is used.  

As a first practice, continuous injecting inhibitors are evaluated. MIC inhibitors are those 

chemicals that influence anodic (chromates (CrO4
2−), nitrites (NO2-), phosphate, and molybdate), 

cathodic (Zinc salts (ZnSO4), Polyphosphates (Na4P2O7), and Phosphonates), or both types of 

reactions (polyphosphates, phosphates, silicates, and benzotriazole) to considerably reduce the rate 

of corrosion, in this case MIC [83]. The selection of MIC inhibitor is a difficult task for subsea 

industries as different types of aspects need to be taken into consideration such as, but not limited 

to, partitioning effect, compatibility of MIC inhibitors and other injected chemicals, the 

composition of produced water, the content of CO2 and/or H2S, for example [84,85]. Inhibitors 

can control MIC in three ways (i) increasing the anodic or cathodic polarization behavior, (ii) 

reducing the movement or diffusion of ions to the metallic surface, and (iii) increasing the electrical 

resistance of the metallic surface. Inhibitors can be generally classified as passivating inhibitors, 

cathodic inhibitors, precipitation inhibitors, organic inhibitors, volatile corrosion inhibitors. In the 

subsea industry, three types of chemical injection are typically used as inhibitors, 1) Hydrate 
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Inhibition, 2) Paraffin Inhibitors, and 3) Asphaltene Inhibitors [86]. In this study, a value of 80% 

for inhibitor efficiency is considered and assumed that the efficiency of inhibitors would be present 

in the system at the required dosage through the entire pipeline. In such cases, the efficiency of the 

inhibitor is considered in mechanistic model in which parent node leading to rate of MIC and 

further pit depth growth are updated. As an example, if a management practice has a specific target 

such as biofilm, the efficiency of the practice could improve the target parent node. To estimate 

the pit depth growth path over a period, HBA within the MCMC method is utilized. Figure 3.9 

shows the efficiency of selected inhibitors on the pit depth growth path. 

 

Figure 3.9. The efficiency of selected inhibitors on the pit depth growth path 
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can be used in different environmental conditions. In addition, this type of biocide can reduce 

hydrocarbon contents. Formaldehyde, Glutaraldehyde, Quaternary amine substances, Carbamates, 

Metronidazole, and Isothiazolone which all have advantages and disadvantageous, are the common 

biocides in subsea industries. Among all industry-based biocides, as an example, Formaldehyde is 

economical, but it is carcinogenic, large quantities are needed, and combines with ammonia, 

oxygen scavengers, and hydrogen sulfide. In this study, Formaldehyde (CH2O (H−CHO)) is 

considered for evaluation, since it is economical and adequate for Desulfo-based microorganism 

(SRB category) and SRA category [88,89], which together constitute approximately 60% of 

available microbes in the system. In this study, a value of 60% for laboratory-based biocide 

efficiency is considered, since it can have efficiencies in the field of  >99.9% [89]. It also assumed 

that Formaldehyde would be present in the system at the required dosage through the the entire 

pipeline. To estimate the pit depth growth path over a period, HBA within MCMC method is 

utilized. Figure 3.10 shows the efficiency of selected inhibitors on the pit depth growth path based 

on Equation 3.4.  

 

Figure 3.10. The efficiency of Formaldehyde as a biocide on the pit depth growth path 
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As a third practice, launching periodical pigging is evaluated. Periodical pigging as a mechanical 

strategy is a way of MIC mitigation. In pipelines, a mechanical pig is used to clean garbage from 

the interior portion of the pipeline and can be used for investigation purposes. Its mechanism is 

removing a piece of the biofilm and keeping solid particles [90]. According to the laboratory study, 

the efficiency of pigging in the rate of MIC is approximately 65% [91]. Figure 3.11 shows the 

efficiency of periodically launching pig within 3 years on the pit depth growth path based on 

Equation 3.4.  

 

Figure 3.11. The efficiency of periodically launching pig within 3 years on the pit depth growth 

paths, with and without pigging 
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NRB are autotrophs and do not compete for  SRB for electrons’ donation [92,93]. A study 

demonstrated that the practicability of persevering with NRB as a treatment for MIC mitigation 

can reduce the rate of MIC up to 40 % [94] in the presence of biocides and 50 % without the 

presence of biocides [95]. To estimate the pit depth growth path over a period, HBA within MCMC 

method is utilized. Figure 3.12 shows the efficiency of NRB with and without biocides on the pit 

depth growth path based on Equation 3.4.  

 

Figure 3.12. The efficiency of NRB with and without biocide on the pit depth growth path 
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period, HBA within the MCMC method is utilized. Figure 3.13 shows the effect of the optimum 

value of pH on the pit depth growth path according to Equation 3.4. The parameter temperature 

also highly influences corrosion behavior. The pit depth growth path is a function of temperature 

and it can be concluded that it would increase with temperature. According to Melchers studies, 

the temperature in value of 17.5 has influenced the lowest rate of corrosion and further metal loss 

[98]. Thus, the optimum value of 17.5 is considered for the temperature in the mechanistic model 

(Figure 3.6) in order to update the model. To estimate the pit depth growth path over a period, 

HBA within the MCMC method is utilized. Figure 3.13 shows the effect of the optimum value of 

pH on the pit depth growth path according to Equation 3.4. The parameter velocity also has a high 

influence on corrosion behavior. The pit depth growth path is a function of velocity and Melchers 

reported that the velocity nonlinearly increases the rate of corrosion, [99]. The higher level of 

velocity increases the rate of corrosion. According to the study of Soares et al, [100], the minimum 

value velocity of 0.1 m/s has the maximum effect on the rate of corrosion in the marine 

environment, 0.12 mm/yr. Thus, to update the model, the optimum value of 0.1 m/s is considered 

for the velocity in the mechanistic model (Figure 3.6). To estimate the pit depth growth path over 

a period, HBA within the MCMC method is utilized. Figure 3.13 shows the effect of optimum 

value of pH on the pit depth growth path based on Equation 3.4.  
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Figure 3.13. The efficiency of operational parameters’ manipulation with and without 

manipulation operational parameters on the pit depth growth path  
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will sharply decrease and defect 2 will have maximum pit depth growth. The pit depth growth 

considering the replacement and repair for defect 1 is depicted in Figure 3.15.  

In step six of our proposed framework, the efficiency of all singular management practice as well 

as different combinations in several time slices are considered. Thus, the best management practice 

would be based on optimum operational parameters (pH, temperature, and velocity), injecting 

NRB and biocide into the system at the required dosage in addition to launching periodical pig in 

order for  the pipeline to survive for 40 years. As can be seen in Figure 3.16, the period of launching 

pig increases to 5 years instead of 3 years as before, and the last pigging would be in year 30. In 

addition, if the pipeline still needs to be in operational condition, replacement and repair can be 

applied, and the second defect monitored within maximum pit depth growth. 

 

Figure 3.14. The pit depth growth of three different defects 
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Figure 3.15. The pit depth growth considering the replacement and repair for defect 1 

 

Figure 3.16. The proposed management practice for the defect within maximum pit depth growth 
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collected, the pit depth growth path would be updated, and accordingly a management practice 

may be changed.  

In the first case scenario, the in-line inspection tool is launched into the pipeline in year 3. 

Considering the measurement error of the in-line inspection tool [21,35], the actual pit depth of 

the defect is estimated (as an example 35 % wt), MIC rate (as an example 0.9 mm/yr), and biofilm 

thickness (High). As can be seen from Figure 3.17, using new data as input into HBA, the pipeline 

will fail by the end of year 7. This sharp increase in the pit depth growth may be the result of the 

breakdown of the internal coating. Considering injection of NRB and biocide are in a highly 

effective manner, immediate launching pigging can be utilized. According to this practice, the 

pipeline can operate for the extra few years. Observing the efficiency of pigging, it is continued 

annually until year 13, with the pipeline close to failure point. According to this point, repair and 

replacement methods have been applied in years 13 and 19, respectively. Thus, the pipeline will 

work under operational conditions for a longer time.   

 

Figure 3.17. Changing management practice based on collected new information by in-line 

inspection tools  
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In the second scenario, following the previous scenario, another in-line inspection tool is launched 

in the pipeline in year 5. The actual pit depth of the defect is estimated (as an example 55% wt), 

MIC rate (as an example 1.6 mm/yr), and biofilm thickness (high). As can be seen from Figure 

3.18, using new data as input into HBA, the pipeline will fail in the middle of year 6. According 

to the pit depth growth path, the proposed management practice seems to be ineffective. Therefore, 

the replacement of that area should be considered. After replacement, in year 6, the proposed 

management practice is continued.  

 

Figure 3.18. Changing management practice based collected new information by in-line 

inspection tools  
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The application of the proposed model was demonstrated in a subsea pipeline currently in service. 

The parameters of the pit depth growth model were developed for an internal corrosion defect 

influenced by MIC. The pit depth growth path for a period until reaching the failure point was 

estimated. Accordingly, different types of management practices to prevent, control, and mitigate 

MIC for the defect were proposed. The effectiveness of each management practice and the their 

combination were evaluated. Thus, the best and optimum management practice was selected. 

Moreover, HBA can incorporate the value of the parameters that affect pit depth growth as 

distribution, which shows its effectiveness in dealing with data uncertainty compared with 

conventional methods. Considering the ability to update probability in CBN and dependency 

between the parameters, it can adequately deal with the traditional methods’ limitation and reduce 

model uncertainty.  

During the study however, some important challenges have arisen.  These are necessary to mention 

and can be improved in further studies. Firstly, the growth of an individual internal defect is 

assumed to be influenced by MIC, while multiple defects’ interactions need to be considered as 

much more practical. Second, there is a lack of information to understand corrosion growth 

behaviours under the combination of management practice. Thus, this requires further laboratory-

based studies. Lastly, in the current study, the cost, which is an important factor for management 

strategies, is not considered. This can be regarded as a future research activity. In addition, to show 

the robustness of the proposed model, it needs to be validated once new information from pigging 

becomes available.  
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Chapter 4 

Operational Subsea pipeline Assessment Affected by Multiple Defects of Microbiologically 

Influenced Corrosion 

 

Preface 

A version of this chapter has been published in the Process Safety and Environmental Protection, 

2022; 158: 159-171. I am the primary author along with the Co-authors, Faisal Khan, and 

Rouzbeh Abbassi. I developed the conceptual framework for the operational subsea pipeline 

assessment model and carried out the literature review. I prepared the first draft of the manuscript 

and subsequently revised the manuscript based on the co-authors’ feedbacks. Co-author Faisal 

Khan helped in the concept development and testing the model, reviewing, and revising the 

manuscript. Co-author Rouzbeh Abbassi provided support in implementing the concept and testing 
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Abstract 

This paper presents a systematic approach to evaluate the time interval of optimal maintenance 

strategy for the subsea process system influenced by Microbiological Influenced Corrosion (MIC) 

within multiple defects. The proposed method incorporates the non-homogeneous Poisson, 

homogeneous gamma, and non-homogeneous Markov processes for modeling the generation of 

multiple defects, the average pit depth growth, and maximum pit depth, respectively. The 

maintenance strategy comprises industrial procedure, probability of failure detection, errors sizing 

in-line inspection tools, management actions costs, and failure cost. The developed framework 
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simulates maintenance strategies considering time interval, cost, probability of detection, average 

pit depth, and maximum pit depth and identifies the optimal strategy. The practical application is 

demonstrated in a North Sea subsea pipeline system under MIC’s influence. This work assists 

decision-makers in selecting the optimal conditioned-based maintenance strategy for the 

processing system. While the application is demonstrated to subsea process systems under MIC 

influence, the developed approach is equally applicable to other process systems.    

Keywords: MIC management; reliability-based maintenance; multiple defects; Markov process; 

Condition Modelling  

4.1. Introduction 

The marine environment is one of the significant challenges of engineering infrastructures, which 

increase the risk of metal degradation. The two biotic and abiotic factors influence metal 

degradation depending on operational and environmental conditions [1–4]. The bacteria, fungi, 

and algae as abiotic factors play a significant role in metal degradation in offshore industrial 

sectors, e.g., pipeline corrosion [5–15], and souring of the reservoir [16]. Thus, facing a 

catastrophic accident resulting from microbial-influenced degradation by impacting asset losses, 

environmental pollution, and the system's reputation indicates that there is still a necessity for more 

attempts to manage offshore integrity. The microbial-influenced corrosion (MIC) is stochastic and 

uncertain; therefore, MIC propagation and formation are complicated by considering multispecies 

biofilm architecture [17–25]. Due to limited and insufficient understanding of MIC stochastic 

behavior, this may result in risky improper decisions made by onsite decision-makers. 

There are several models for MIC risk assessment in the existing literature and a limited number 

of MIC management. As an example, in the case of MIC risk assessment, Melchers et al. studied 

the MIC assessment, including studying (i) the corrosion of mooring chain under the influence of 
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MIC [26], (ii) MIC loss and pit depth growth path on the carbon steel coupons considering the 

similar operational parameters [27], (iii) the corrosion of floating storage and offloading unit 

mooring systems under the influence of MIC [28], (iv) MIC of steel water injection pipelines at 

the six o'clock position using extreme value distributions [29], (v) MIC of offshore water injection 

pipelines by assessing the service lifetime [30]. Adumene et al. (2020a) [31] proposed an 

integrated dynamic failure assessment model for subsea systems under the influence of MIC. In 

this work, a combination of Bayesian Network (BN) and Markov chain is utilized to predict the 

rate of MIC and failure probability of the system. In another study, Adumene et al. (2020c) [32] 

integrated the dynamic Bayesian network (DBN) with loss aggregation tools to estimate the risk 

of MIC. Additionally, in the case of MIC risk management, Torben Lund Skovhus et al. (2017) 

[33] reviewed the MIC management on North Sea case studies. In the study, the authors proposed 

three step-based approaches based on biotic and abiotic MIC mechanisms, including assessment, 

mitigation, and monitoring. Salgar-Chaparro et al. (2020) [34] introduced a MIC management 

approach based on nutrient-level biocide treatment, which determines biofilm characteristics. 

Eckert and Skovhus (2018) [35] proposed the three core activities of the corrosion management 

process as (i) assessing threats, (ii) identifying barriers, and (iii) measuring the effectiveness. In 

another study, Wang and Melchers (2017b) [36] studied Nitrate addition into the system by 

managing bacterial H2S production oil reservoirs, which further help in pipeline integrity 

management. 

Reviewing the advanced methods to improve the corrosion risk-based models and other similar 

application domains, they fall into two categories which use probabilistic-based models, including 

Markov, Petri nets, Bayesian belief network (BBN) [37–40], Monte Carlo simulation, Markov 

Chain Monte Carlo (MCMC) [41–45], and fuzzy-based models such as fuzzy experts system and 
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fuzzy inference [46–51]. For example, using DBN, Arzaghi et al. (2018) [51] developed a dynamic 

damage model for fatigue and pitting corrosion of offshore facilities. In another study, Arzaghi et 

al. (2017) [52] developed a risk-based maintenance technique applicable to the subsea pipelines 

considering fatigue corrosion using BN. Singh and Pokhrel (2018) [53] introduced a fuzzy logic-

based methodology to predict the MIC rate of carbon steel systems (i.e., pipelines and pressure 

vessels). Considering all the advantages of proposed models in the literature to deal with stochastic 

behavior of different corrosion types, MIC management is still a challenging task in practice. It 

should be noted that MIC creates multiple defects through the pipeline in realistic cases. However, 

most of the attempts performed by scholars mainly focused on estimating a single maximum pit 

depth growth path. The multiple defects in a specific area can interact with each other, and 

multispecies biofilms architecture has a high impact on multiple defects interactions. Therefore, 

MIC management practices should be performed with consideration of MIC multiple defects. 

Adumene et al. (2020b) [54] developed a stochastic-based formulation model to estimate MIC rate 

and obtain the remaining strength and safe operating pressure with multiple MIC defects. A 

combination of BN and Markov Mixture (MM) was utilized for this purpose. Shekari et al. (2017) 

[55] proposed a framework to predict pit depth growth on equipment under insulation in offshore 

sectors. The average pit density referring to the multiple defects using the Markov process is 

obtained. In other studies, Adumene et al. (2021) [56] proposed a methodology to integrate the 

Bayesian Network with Copula-based Monte Carlo (BN-CMC) simulation. The BN captures the 

dynamic interactions among physio-chemical parameters and microbes to predict the corrosion 

rate of an offshore system. The random corrosion parameters dependencies and the failure modes 

that define the performance functions under microbial corrosion are modeled using CMC. 

Adumene et al. (2021b) [57] presented a framework to combine a “semi-empirical corrosion 
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model” with a probabilistic steel structural failure behavior assessment considering the material 

and parametric uncertainties. The semi-empirical models are used to assess the asset’s 

susceptibility, system degradation rate, and defect growth overtime under a harsh corrosive 

environment. A limited number of studies have been worked on reliability-based approaches 

considering multiple defects assets such as, but not limited to, [58,59]. However, to the best of our 

understanding, there has been no study to propose a model for corrosion management within 

multiple defects. Therefore, there is still room to make more attempts to model MIC maintenance 

management induced multiple defects asset. 

The critical contribution of the present study is in proposing an approach for scheduling 

conditioned-based maintenance management actions considering multiple defects caused by MIC 

(MIC-based defects) through the pipeline. In addition, another contribution is to use a combination 

of three stochastic tools such as non-homogeneous Poisson process, homogeneous gamma process, 

and non-homogeneous Markov process to appropriately deal with the stochastic behavior of 

multiple defects in nature. The third contribution is developing new reliability and cost functions 

for maintaining pipelines under the influence of MIC. 

The rest of the paper is prepared as follows. In Section 2, a framework is developed to estimate 

the average pit depth growth path from multiple defects, maximum pit depth, and the 

corresponding total management cost rate by time. Section 3 describes the application of the 

proposed methodology with a case study as well as presenting results. In Section 4, the discussion 

is provided to put the results into context. In Section 4, the conclusion, including recent work 

challenges and a direction for future research, is discussed.  
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4.2. The proposed methodology 

It is vital to accurately predict the pit depth growth path in the early stage of the subsea pipeline 

under the influence of multiple MIC defects to help decision-makers provide reliable condition-

based management actions(s) and preventing/controlling the failure occurrence. Therefore, it is 

essential to propose a framework to predict the pit depth growth for multiple defect paths over 

time. Due to the lack of information from in-line inspection tools, the estimation process is 

challenging for decision-makers. Therefore, stochastic tools should be employed to estimate pit 

depth growth paths and obtain reliable condition-based management actions(s). The main 

objective of this work is to develop a framework to capture the stochastic nature of MIC multiple 

defects and the safety management of the corroded subsea pipeline. Therefore, a model can provide 

a more robust tool for risk assessment, evaluation, and management of offshore systems under 

complex features such as multiple defects and biofilm architecture. As shown in Figure 4.1, three 

steps methodology is proposed to manage the subsea pipeline under multiple defects. This 

framework enables decision-makers to obtain acceptable management actions by a trade-off 

between the efficiency of management actions and the corresponding cost. 

In step one, the unique elements of MIC that are taken into account and modeled in the introduced 

corrosion prediction model are as the following (i) modeling the generation of new defects, (ii) 

modeling the pit depth growth path, and (iii) modeling the pit density and maximum pit depth. In 

step two, the limit state function based on pipeline thickness is defined. Finally, as maintenance 

decisions, the optimum condition-based management actions are obtained by defining the 

management actions’ performance policy and evaluating the expected cost of the management 

actions. The descriptions of every single step in the developed methodology are presented as 

follows. 
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Figure 4.1. The developed framework to obtain conditioned-based MIC management actions 

 

Step one: Modeling degradation of the pipeline under the influence of MIC 

In this step, three tasks, (i) modeling the generation of new defects, (ii) modeling the average pit 

density, and (iii) modeling the pit depth growth path and maximum pit depth, are explained. 

(i) Modeling the generation of new defects 

In order to generate new defects, consideration should be made to the defects that are 

not generated uniformly by time and should be random. Thus, in this study, the non-

homogenous Poisson process is utilized for modeling the generation of new defects 

[60]. Let us assume that, 𝒩(𝑡) shows that the total number of defects and 𝒩(𝑡) is 



 

 
162 

generated between zero and 1. The time 𝑡 = 0 stands for the pipeline's installation time, 

and time 𝑡 = 1 is indicating that the last year of assessment. The total number of defects 

in the time interval [0,1] is following a Poisson distribution having a PMF 

ℱ𝑃 (𝒩(𝑡)| ∇(𝑡)) and is defined by Equation (4.1): 

ℱ𝑃(𝒩(𝑡)|∇(𝑡)) =
∇(𝑡) 𝒩(𝑡)𝑒−∇(𝑡)

𝒩(𝑡)!
    for 𝑡 > 0                                      (4.1) 

The abovementioned Equation, ∇(𝑡) shows the expected number of defects, which are 

generated in the interval [0 , 𝑡], and ∇(𝑡) = ∫ 𝜆(𝜏)𝑑𝜏
𝑡

 0
 , in which 𝜆(𝜏) is taken into 

account as intensity function (i.e., it can be named instantaneous generation rate). As 

an example, it can be considered that 𝜆(𝜏) =  𝜆0 𝜏
 𝑎 , where  𝜆 0 and 𝑎 are positive 

values and can be obtained according to the objective data or subjectively from experts. 

If we consider 𝑎 = 0, Equation (4.1) is shortened to the homogenous Poisson process. 

It simply means that the intensity function would be time-independent and constant. In 

this work, the quantification of pit locations in time, space, and pit spatially dependency 

is not considered to simplify model defect generation. 

Three examples considering  𝜆0 = 1, 2, 𝑎𝑛𝑑 3 and the exponent 𝑎 is assumed to be 1 

(i.e., ∇(𝑡) =
 𝜆 0𝜏2 

2
) are simulated with MATLAB (R2020b). The results are then 

connected with the expected values of 2.5 and 97.5 percentile. There would be a 

relatively narrow confidence interval for the number of defects in the subsea pipeline. 

In some cases, with the availability of inspection results over time, using the Poisson 

process might not suit the generation of new defects. Those Processes with higher 

variance to mean ratios may provide better reflection to generate new defects.  
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The initiation times for all single 𝑛 defects can be signified as 𝑇1 , 𝑇2 , … 𝑇 𝑛 (𝑇1 <

𝑇2 < ⋯ < 𝑇 𝑛 < 𝑇) in the exact accordance. The joint PDF (probability density 

function) of (𝑇1, 𝑇2 , … 𝑇 𝑛 ), conditioned on 𝒩(𝑡) = 𝑛 can be expressed by adopting 

Equation 4.2.  

ℱ 𝑇1 , 𝑇2 ,… 𝑇 𝑛| 𝒩(𝑡)(𝑇1, 𝑇2 , … 𝑇 𝑛| 𝑛) =
𝑛! ∏  𝜆 (𝑡𝑖) 𝑛

 𝑖=1

(∇(𝑡)) 𝑛      (0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡 𝑛 ≤ 𝑇)             (4.2) 

 For comparison purposes, the HPP (homogeneous Poisson process) where 𝑎 = 0 in 

the instantaneous generation rate, Equation (4.2) updated into 
𝑛!

 t𝑛  [60]. This shows that 

the joint probability density function of the initiation times for homogeneous Poisson 

process conditioned on 𝒩(𝑇) = 𝑛 is equivalent to the joint PDF of the statistics 

ordering samples (i. e. , 𝑅1, 𝑅2, . . . . , 𝑅𝑛), where 𝑅1 , 𝑅2 , . . . . , 𝑅𝑛 are the 

𝑛 identically distributed and independent and the random variables, which are 

entirely uniformly distributed in the time interval [0 , 𝑇]. The remarks mentioned above 

for homogeneous Poisson process can be generalized to non-homogeneous Poisson 

process, 𝑅 (𝑖 = 1 , 2 , . . . . , 𝑛) as the following equation:   

𝑃( 𝑅𝑖 ≤ 𝑡) =
 ∇ (𝑡)

 ∇ (𝑇)
   (0 ≤ 𝑡 ≤ 𝑇)                                                     (4.3) 

where 𝑃( 𝑅 𝑖 ≤ 𝑡) is the independent and identically distributed random variables. 

Let us assume that the expected service life of the pipeline is 𝑇, 𝜏 (𝜏 = 1 , 2 , 3 , … , 𝑇) 

is standing for a single year 𝑇, 𝑛 𝑇 indicates the total number of defects, which are 

generated by time 𝑇. The problem is coded in MATLAB to induce the new defects and 

their initiation time. 
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It should be highlighted that a couple of previous studies particularly consider the 

interaction between the defects according to the different interaction rules such as, but 

not limited to [54]. Therefore, the present work focuses on 𝑛 independent multiple 

defects by utilizing average pit density, explained in the next step.  

(ii) Modeling the average pit density  

The average pit density stands for the number of pits per unit area of the metal surface 

in the present study. The average pit density 𝑎𝑑̅̅̅̅ (𝑡) is estimated from the average 

number of predicted pits in the pipeline area. A review study was conducted by Shekari 

et al. (2017), and in the present work, the equations provided by Shekari have been 

used. 

In this case, a combination of exponential and power models is utilized in this study to 

obtain the average pit depth density [61], as explained by adopting Equation 4.4. 

𝑎𝑑̅̅̅̅ (𝑡) =
 Α

 𝜓
 [1 − 𝑒−𝜓𝑡] + 𝑤𝑡  𝜂                           (4.4) 

from equation (4.4), there are four parameters  - Α , 𝑤 , 𝜓 , and 𝜂 in the 𝑎𝑑̅̅̅̅ (𝑡) model. 

Equation (4.4) has enough flexibility to deal with MIC pits' complex and uncertain 

behaviors.  Additionally, the distribution of pit density is assumed to follow a 

homogeneous gamma process.  Furthermore, the distribution of pit density at time 𝑡, 

which is 𝑎𝑑̅̅̅̅ (𝑡), is pursuing a gamma distribution with the probability density function, 

𝑓 𝐺( 𝑎𝑑̅̅̅̅ (𝑡))| 𝛼(𝑡 − 𝑡 0) , 𝛽), is given by the following equation: 

 ℱ 𝐺( 𝑎𝑑̅̅̅̅ (𝑡)| 𝛼(𝑡 − 𝑡 0) , 𝛽) =
 𝛽 𝛼 (𝑡 −𝑡 0) 𝑎𝑑̅̅ ̅̅ (𝑡) 𝛼 (𝑡 −𝑡 0)−1𝑒− 𝑎𝑑̅̅ ̅̅ (𝑡)𝛽

Γ(𝛼 (𝑡 −𝑡 0)) (𝐼 0 ,∞( 𝑎𝑑̅̅ ̅̅ (𝑡)))
                       (4.5) 

where 𝑎𝑑̅̅̅̅
 𝑛 = ∫

 Α

 𝜓
 [1 − 𝑒  −𝜓𝑡] + 𝑤𝜂𝑡  𝜂−1 𝑑𝑡

 𝑡1

 𝑡2
,  
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(iii) Modeling the maximum pith depth 

In this study, the maximum pit depth at time 𝑡 is denoted as 𝑑 𝑀𝑎𝑥, characterized by a 

non-homogeneous Markov process, where 𝑡 = 0 means pipeline's installation time  

[61,62]. Markov process has been widely used previously to estimate the pit depth such 

as [63], and in all, it is assumed that the pit depth growth path would be determined in 

the varieties of time slices (i.e., intervals). In addition, the pit depth growth path for the 

following years only depends on the pit depth at the current time [64]. Another 

assumption is that the initiation and growth of pits are independent. The dependency 

between the pits can only be considered once the reactions occur in a single pit, and 

this depends on the area of pits and what is taking place in that area [64]. Figure 4.2 

illustrates the visual exemplification of the Markov states processing in simple 

cylindrical-based assets.  
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Figure 4.2. The Markov states process for pitting on the surface of the cylindrical asset 

 

Let us assume that 𝛾𝑖 (𝑖 | 𝜒 , 𝜔), 𝑖 = 1 , 2 , … , 𝑛, shows the probabilities in which the 

maximum pit depth growth should be in the state, satisfying that 𝑠𝑡𝑎𝑡𝑒 ≤ 𝑖 at time 𝑡. 

This can be characterized within 𝜒 having the distance dimensions as well as 𝜔th time 

power-law. Due to the fact that the two parameters 𝜒 and 𝜔 describe 𝜗(𝑡) as this is the 

times of transited states for a single pit. It is considered to follow a power-law function 

and is presented in the following equation [62]: 

 𝜗(𝑡) = 𝜒 ( 𝑡 −  𝑡 𝑘  ) 𝜔                              (4.6) 

Subsequently, the CDF (cumulative distribution function) for maximum pit depth 

growth path is defined as predicted in the following equation: 

Wall thickness

Pits

State 1

State i

State n

.

.

.

.

.

State thickness

Pit depth
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𝛾𝐻 = (𝑖 , 𝑡 | 𝜒 , 𝜔) = ∏  { 1 − [1 − exp(−𝜗(𝑡 − 𝑡𝑘))] 𝑖 } 𝑚
 𝑘 = 1             

 ∀    𝑖 = 1 , 2 , … , 𝑛                                        (4.7) 

in which, 𝑡 indicates the assessment time based on the year, month, week, and day, 𝑡𝑘 

shows the initiation time of pit depth growth path, 𝑖 is standing for the total counted 

states in the Markov process, 𝑚 denotes the 𝑎𝑑̅̅̅̅ (𝑡) at assessment time, and 𝜗( 𝑡 − 𝑡𝑘) 

indicates the total transited states of pit depth growth path in the time interval (𝑡 𝑘  , 𝑡). 

This equation provides a predictive model, which can be utilized to approximate the 

CDF of maximum pit depth growth in different time slices. The PDF can be defined by 

using Equation 4.8.  

 ℱ𝑖 = (𝑖 , 𝑡| 𝜒 , 𝜔) =
 𝑑𝛾𝐻 𝑖

 𝑑𝑖
≅

 𝛾𝐻 𝑖 
 − 𝛾𝐻 𝑖 − 1

 1
                                (4.8) 

in which,  ℱ𝑖 is presenting the PDF function as state 𝑖,  𝛾𝐻 𝑖
 and  𝛾𝐻 𝑖−1 are the CDF 

function on the states 𝑖, and 𝑖 − 1, respectively. To get more details related to Equation 

(4.8), one can refer to the study of Valor et al. (2013). The equation for probability 

distribution function is further developed in the present study by integrating with the 

average pit density model from Equation (4.5). It should be added; the average pit 

density would help to obtain maximum pit depth over time. More defects (maximum 

pit density) will lead to more defects in the pipeline and, therefore, to higher pit depth 

value [55,64].  

Step two: Defining limit state function for MIC failure  

For a given pipeline containing different pipe joints, which are all under the influence of MIC pits, 

the limit state function equivalent to the area of pits based on average pit density, in which 

penetrating the pipeline wall at time 𝜏, is defined as the following equation: 
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𝑔(𝜏) =  𝑠𝑓. 𝑤𝑡 −  𝑑𝑀𝑎𝑥                              (4.9) 

where 𝑤𝑡 denotes the thickness of the pipeline at the area of defects; 𝑑𝑀𝑎𝑥 signifies the maximum 

pith depth growth in the area of defects with time 𝑡. The constant factor 𝑠𝑓 is a safety factor (i.e., 

80 % , 60 % , 𝑒𝑡𝑐.), which accounts for the residual ligament of the pipeline thickness at a 

maximum depth of MIC defect(s), which is likely to develop a pinhole that causes leakage. 

It is also essential to see how maximum pit depth can be determined. Therefore, probability of 

detection (PoD) is defined as the ability of a proper in-line inspection tool to adequality and is 

purely used to identify defects based on the actual depth of the defect. For large pits, PoD is close 

to 100 %. This ability depends on defect size and many characteristic parameters. The PoD 

function is usually considered as the exponential function for the maximum pit depth d Max in the 

available literature, and is defined as the following equation: 

𝑃𝑜𝐷( 𝑑 𝑀𝑎𝑥 ) = 1 − 𝑒  𝑞𝑑 𝑀𝑎𝑥                              (4.10) 

where 𝑞 is the constant value and represents the inherent in-line inspection tool capability. The 

value of 𝑞 can be quantified from a vendor such as 80 % 𝑃𝑜𝐷 of a pit within a pit depth growth of 

20 % of pipeline thickness. In this paper, considering unavailability, it is tried to show how PoD 

is working. 

It should be highlighted that the uncertainty for the detected defect is commonly described by the 

random scattering errors and biases connected to the in-line inspection tools. In the following, the 

pit depth of MIC defect measured by in-line inspection tool is presented as an example for 

maximum pit depth [60]: 

 𝑑 𝑀𝑎𝑥
 𝑖𝑙𝑖 = 𝑅 +  𝐵𝑑𝑀𝑎𝑥  +  𝜀                                           (4.11) 
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Where 𝑅 and 𝐵 are representing the biases which are stable and non-stable, connected to the pit 

depth (i.e., 𝑅 = 0 , and 𝐵 = 1, this is unbiased), they are considered as having deterministic 

quantities, and 𝜀 is random scattering error connected with the measured pit depth growth path, in 

which it is commonly characterized with normal distribution with zero mean as well as unknown 

standard deviation. The present work assumes that the ransom scattering error connected to a 

different area of defects is mutually independent. According to this point, the three-dimensional 

correlation connected to the 𝜀 is disregarded. This can be acceptable since an area of defects is not 

in close proximity close spaces to other areas.  

However, to see how one could use 𝑃𝑜𝐷, 𝑑 𝑀𝑎𝑥
 𝑖𝑙𝑖 , and 𝑑𝑀𝑎𝑥 to make a reliable decision, two 

essential steps are required to be performed as follows: 

(i) Generating a random number called 𝑢 from an entirely uniform distribution in the 

interval [0 , 1], then computing the value of 𝑃𝑜𝐷 connected with the area of defects 

and showing as 𝑃𝑜𝐷 𝜍. Utilizing equation (4.10), we have 𝑃𝑜𝐷 𝜍 = 1 − 𝑒  𝑞𝑑 𝑀𝑎𝑥 ,   𝜍;   

(ii) If 𝑢 < 𝑃𝑜𝐷 𝜍 , compute 𝑑 𝑀𝑎𝑥,𝜍
 𝑖𝑙𝑖 ; if 𝑑 𝑀𝑎𝑥 ,   𝜍

 𝑖𝑙𝑖 > 𝑠𝑓. 𝑤𝑡, the cost of management actions 

needs to be computed and the total number of defects regenerated, step one.   

Step three: Defining condition-based optimal maintenance decision  

Once the limit state function is defined from step two, in this step, a combination of condition-

based optimal maintenance management decisions would be obtained in two different sub-steps, 

being: (i) defining a management actions performance policy and (ii) evaluating the expected cost 

of maintenance management. In the following, the detail for every single sub-step is described. 

(i) Defining a management actions’ performance policy 
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In this study, it is assumed that the pipeline failure (i.e., pinhole) in the understudy defect(s) 

is caused by MIC (MIC-based defects) and does not impact other types of defects(s).  

Therefore, the pinhole through the pipeline will be examined and replaced as soon as 

recognition for pipeline failure. In addition, the maintenance management actions are 

assumed to be based on common industry practices and utilize a periodic in-line inspection 

tool. The following management actions’ performance policies are considered in this study. 

The pit corroded area of the pipeline will be examined and replaced immediately if one can 

see the pinhole and fluid leakage or 𝑑 𝑀𝑎𝑥
 𝑖𝑙𝑖 ≥ 𝑤𝑡. The reason for considering greater than 

nominal pipeline wall thickness is that errors of in-line inspection tools may show higher 

thickness measurement than nominal pipeline wall thickness.  

• The pit corroded area of the pipeline will be examined and maintained immediately 

if 𝑑 𝑀𝑎𝑥
 𝑖𝑙𝑖 ≥ 𝑠𝑓. 𝑤𝑡, in which safety factor 𝑠𝑓 (𝑠𝑓 < 1) is considered as 80 %. Repair 

and replacement can be performed for maintenance. A goal is set in which the 

pipeline's expected service life would e only for at least 30 years. Therefore, it is 

essential to minimize the cost of maintenance actions. Typically, the total cost of 

replacement is more than repair actions and also has greater efficacy. Therefore, 

another goal is the performance of maintenance action repair 𝑀 Repair (sleeving), 

if 𝑑 𝑀𝑎𝑥
 𝑖𝑙𝑖 ≥ 𝑠𝑓. 𝑤𝑡 and 𝑇 ≥ 20, where 𝑇 is standing for the service life of the 

pipeline, and the unit is a year. Moreover, performing maintenance action 

replacement 𝑀Replacement (replace the corroded area of the pipeline completely), if 

𝑑 𝑀𝑎𝑥
 𝑖𝑙𝑖 ≥ 𝑠𝑓. 𝑤𝑡 and 𝑇 < 20. 
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• Recoating or recoating plus maintenance action repair can be done based on the 

severity of the corroded area. First of all, all coating should be removed; thereafter, 

the recoating or recoating plus maintenance action repair will be applied. It should 

be added that the risk of coating the wrong section of a subsea pipeline is usually 

very high; however, in this work, these risks are not considered for assessment as it 

is out of scope. The selection between these two is based on the actual difference 

size of maximum pit depth (𝑑 𝑀𝑎𝑥) and the in-line inspection tool (𝑑 𝑀𝑎𝑥
 𝑖𝑙𝑖 ). A simple 

suggestion to apply recoating is that the corroded area satisfying 𝑑 𝑀𝑎𝑥 < 𝑠𝑓. 𝑤𝑡 

(actual size of maximum pit depth) and recoating plus maintenance action repair 

will be performed if 𝑑 𝑀𝑎𝑥 ≥ 𝑠𝑓. 𝑤𝑡. 

• Is it assumed that the corroded area's recoating plus maintenance action repair is 

fully reinstated into the initial pipeline condition.  

• It is also assumed that the likelihood of maintenance management actions with low 

quality is negligible. Thus, the likelihood is disregarded in the current work. 

• Finally, no maintenance actions would be performed at the end of the pipeline 

service lifetime, and no inspection would be applied if the scheduled inspections 

upon a failure.   

(ii) Evaluating the expected cost of maintenance management 

To evaluate the expected cost of maintenance management, it is assumed that the pipeline 

is under periodic inspection and maintenance with a specified time interval ( 𝑇𝑖). Given 

units cost of the different maintenance management actions (inspection ( ∁𝐼𝑁), sleeving 

repair ( ∁𝑆𝑅), recoating repair (∁𝑅𝑅), pipeline surface examination ( ∁𝑆𝐸), replacement ( ∁𝑅), 
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and failure cost ( ∁𝐹), the total cost can be obtained. Different types of up to date cost 

function models are available , such as, but not limited to [65,66]; however, in this study, 

we utilized the cost rate function (the total cost per unit service time,  ∁𝑇(𝑇𝑖) utilized by 

Zhang and Zhou [60], which can be further determined from the following equation: 

∁𝑇(𝑇𝑖) =
 1

 𝑇
( ∑  ∁𝐼𝑁𝑒−𝛿 𝑡 𝑖 𝑛𝐼𝑁

 𝑖 = 1 + ∑  ∁𝐹𝑒−𝛿 𝑡𝐹 𝑖 + ∑  ∁𝑅𝑅𝑒−𝛿 𝑡𝑅𝑅 𝑖 +
 𝑛𝑅𝑅
 𝑖 = 1

 𝑛𝐹
 𝑖 = 1

∑  ∁ 𝑆𝐸𝑒−𝛿 𝑡𝑆𝐸𝑖 +
 𝑛𝑆𝐸
 𝑖 = 1 ∑ ∁𝑆𝑅𝑒−𝛿 𝑡𝑆𝑅𝑖 + ∑  ∁𝑅𝑒−𝛿 𝑡𝑅 𝑖

 𝑛𝑅
 𝑖 = 1

 𝑛𝑆𝑅
 𝑖 = 1 )                                   (4.12) 

in which 𝛿 is standing for discount rate (where 𝛿 = 0,  ∁ 𝑇 (𝑇 𝑖) will increase as the 

maintenance actions’ cost increase, 𝑡 𝑖 indicates the time of 𝑖th action/failure, 𝑛 𝐼𝑁 denotes 

the total number of inspections, 𝑛 𝐹  shows the total number of failures in the service 

lifetime of the pipeline, 𝑛 𝑅𝑅  shows the total number of recoating repairs, 𝑛 𝑆𝐸 denotes the 

total number of pipeline surface examinations, 𝑛 𝑆𝑅 shows the total number of sleeve 

repairs, and 𝑛 𝑅 represents the total number of replacements. In this study, the failure cost 

is considered as both direct cost and indirect cost by placing different failure costs into the 

model (parametric analysis), and the cost model would help assessors to construct the risk-

based decision-making model [65,67,68].   

As understood so far, pit depth growth process, material properties, the capability of a limit 

state function, and 𝑡 𝑖 for the mentioned cost are uncertain and stochastically based. 

Therefore, it is a challenging task to compute and solve Equation (4.12) analytically. 

According to this point, in the present study, the numerical simulation is used to estimate 

the ∁ 𝑇(𝑇 𝑖), which is further called 𝑆[∁ 𝑇(𝑇 𝑖)]. 

To obtain the 𝑆[∁𝑇(𝑇𝑖)] and other essential parameters, the problem is coded in MATLAB. 

Let it be assumed that 𝐶(𝑇𝑖) indicates the total cost related to an inspection time of 𝑇 𝑖. By 
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giving the specific amounts for 𝑇,  𝑇 𝑖 ,  ∁ 𝐼𝑁,  ∁ 𝑆𝑅,  ∁ 𝑅𝑅 ,  ∁ 𝑆𝐸,  ∁ 𝑅,  ∁ 𝐹 , 𝛿, and 𝑐𝑓, the 

stepwise programming code has been done with MATLAB. In general, the Pseudocode 

helps assessors learn how to program the proposed approach to solve the problem. The 

expectation is that the Pseudocode should be as simple as possible, and by following step 

by step, their codes can be provided and the same results obtained as those achieved in the 

present work. By reviewing the literature, there are a couple of Pseudocodes to estimate pit 

characteristics and associated costs such as [60,69,70]; however, in the current study, the 

pit characteristic is unique when using the Markov process.   

4.3. Application of study 

In order to find condition-based MIC maintenance management actions, the proposed 

methodology in Section 2 was utilized using a subsea hydrocarbon transmission pipeline (API 5L, 

Grade X42 steel within the wall thickness of 20 mm and selected joint pipeline length 12.5 m). 

This subsea pipeline carries co-mingled fluids depicting two or more fluid phases from different 

offshore resources. It is considered that the subsea pipeline at the installation time is free of any 

defects.    

A chemical analysis of produced water according to the operational and chemical analysis from 

an offshore facility off the East Coast of Canada shows the total number of microorganisms using 

the qPCR (quantitative Polymerase Chain Reaction) method (3.19E+06 (16S rRNA copies/mL 

sample)), different types of microorganisms percentage (Methermicoccus 4.79 %, Desulfovibrio 

8.72 %, Dethiosulfatibacter 10.14 %, Archaeoglobus 38.36 %, Thermoanaerobacter 1.35 %, 

Thermococcus 9.9 %, Thermosipho 3.6 %, Methermicoccus 4.79 %), and sulfate reduction rate 

(SRR) (0.52 in situ). The characteristic of biofilm architecture in the present research analysis is 

provided in Table 4.1.   
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Table 4.1. The characteristic of biofilm architecture 

Group Mode Product Performance 

SRB 1 Anaerobic H2S, HS-, and FeS Active state 

ABP 2 Aerobic/anaerobic  Organic-based acids Active state 

IRB 3 Aerobic/anaerobic  Soluble Fe ions  Active state 

1- Sulfur reducing bacteria, 2- Acid-producing bacteria, 3- Iron reducing bacteria 

 

4.4. Discussion  

According to the first step, the number of defects on the pipeline surface is described using 

Equation 4.1, in which 𝜆 0 and 𝑎 are assumed to be 4, and 1, respectively. The values  𝜆0 and 𝑎 

denote that in the 40 years lifespan of the subsea pipeline, the expected number of multiple defects 

with 97.5 % and 2.5 % confidence level and simulation will be 3312, 3039, and 3200 defects, 

respectively. The numerical results show that the confidence interval for the number of defects at 

40 years is narrow due to using the specific values of the new defect generation model with  𝜆 0 =

4, and 𝑎 = 1. This assumption has been made to simplify the problem as well as consider different 

environmental conditions. 

Considering the number of defects, the corresponding initiation times from Equation (4.2), the 

parameters of the model, and a couple of assumptions are presented in Table 4.2 to obtain the 

average pit density and maximum pit depth growth path. The assumptions are utilized from the 

literature [55,64,71,72] and subjective opinions from decision-makers. Decision-makers are 

defined as a group of experts who are qualified within enough knowledge of technical practices, 

training, and experiences. If the empirical data are not available such as new installation having a 

lack of inspection and operational background, experts’ judgment seems to be the best alternative 
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to empirical data. This means that experts with relevant backgrounds are employed to express their 

opinions qualitatively about unknown parameters that we are looking for. Next, the aggregation 

process will be performed to obtain a single value parameter (see Yazdi et al. (2019)). There are a 

couple of tools to minimize the subjective uncertainty from the experts’ judgment in practice.   

Table 4.2. The characteristic parameters to estimate pit depth growth path 

Characteristic  Definition of equations  Parameters values 

Average pit 

density  
𝑎𝑑̅̅̅̅ (𝑡) =

 Α

 𝜓
 [ 1 −  𝑒− 𝜓𝑡] + 𝑤𝑡  𝜂          Α = 35 , 𝜂 = 1 , 𝜓 = 0.09 , and 

𝑤 = 0 

Transited states 𝜗(𝑡) = 𝜒( 𝑡 − 𝑡 𝑘) 𝜔         𝜒 = 0.940 , and 𝜔 = 0.102 

Maximum pit 

depth 
𝛾𝐻 = (𝑖 , 𝑡| 𝜒 , 𝜔) = ∏ {1 − [1 − 𝑚

 𝑘 =1

exp(−𝜗( 𝑡 − 𝑡 𝑘))]  𝑖}  

𝑖 = 100 

 

In addition, the partial unit costs of inspection ( ∁ 𝐼𝑁), sleeving repair ( ∁ 𝑆𝑅), recoating repair 

( ∁ 𝑅𝑅), pipeline surface examination ( ∁ 𝑆𝐸), replacement ( ∁ 𝑅), and failure cost ( ∁ 𝐹), which are 

all representative of the common industry practices in Canada, are provided in Table 4.3. 

Moreover, to obtain the total cost rate 𝑆[∁ 𝑇(𝑇 𝑖 )], the discount rate 𝛿 is assumed to be zero. Table 

4.4 also provides a value for the rest of the model parameters. In this study, the pit depth reported 

by in-line inspection tools is considered unbiased (i. e. , 𝑅 = 0 , 𝐵 = 1), and the random scattering 

error according to the study report of [60] is assumed to be 0.078 mm. This means that a confidence 

level of the actual pit depth is somehow ± % 10 𝑤𝑡 within 0.8 measured probability for the pit 

depth growth path. The 𝑃𝑜𝐷 value is assumed to be 90 % for the pit depth of ± % 10 𝑤𝑡, which 

is 5.73 mm. The safety factor for all management actions is 80 %, which is consistent with industry 

practices.   
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Table 4.3. The summary of all unit costs  

Item Partial costs (CAD) 

Inspection ( ∁ 𝐼𝑁) 4,876 

Sleeving repair ( ∁ 𝑆𝑅) 35,000 

Recoating repair ( ∁ 𝑅𝑅) 20,000 

Pipeline surface examination 

( ∁ 𝑆𝐸) 

5,000 

Replacement ( ∁ 𝑅) 68,000 

Failure cost ( ∁ 𝐹) 543,407 

 

Table 4.4. The values of model parameters 

Parameters  Value 

𝑅 0 

𝐵 1 

𝑠𝑓 80 % 

𝛼 1 

𝛽 2 

𝜀 0.078 

mm 

𝑞 2.57 

mm 

 

According to the published works, the obtained CDF and PDF of maximum pit depth growth path 

would be varied and moved into the right side particular time [55,64,72]. This signifies that the 
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probability of the pits with maximum depth has increased with time. However, this also means 

that there will be resulting further thickness loss. 

As highlighted in the methodology section, there are a couple of variables, which are changed by 

service lifetime of the understudy pipeline, including the probability of detection (𝑃𝑜𝐷), cost rate, 

(𝑎𝑑̅̅̅̅ (𝑡)), (𝑑 𝑀𝑎𝑥), average maximum pit depth based on in-line inspection tools (𝑑 𝑀𝑎𝑥
 𝑖𝑙𝑖 ), and 

thickness loss. The variation of each parameter, as well as its combinations, is depicted in Figure 

4.3. According to the obtained results, managing multiple MIC defects within conditioned-based 

management actions can be understood. Corresponding to the obtained results, the policies of 

performing management actions presented in Section 2 are feasible because the service lifetime of 

the subsea pipeline underlies the idea of the set goal being more than 30 years. Thus, the sensitive 

analysis (SA) should be performed by varying all essential factors in the formulation of the 

framework, including 𝑠𝑓, 𝜆, 𝛿 , 𝑞 , 𝜀, ∁ 𝑇(𝑇 𝑖), and using HPP instead of NHPP in the modeling 

process. Based on the results obtained from SA, it would be clear to see how the pipeline being 

studied, under the influence of multiple MIC defects, is behaving under different conditions. Thus, 

it helps assessors to discover the feasible results and those optimum ones. This may further cause 

the policies of performing management actions to be revised and improved according to 

management actions scheduling.  

According to the updated results, this would help the system to improve its policies in three 

different categories as (i) safety, (ii) cost reduction, and (iii) improving the system efficiency. This 

would help in safety because the system works with hydrocarbon material, potential fire, and 

explosion. The pipeline would be susceptible to corrosion over time and rescued its resistance to 

harsh environmental conditions (e.g., temperature and pressure). Therefore, increasing system 

safety would prevent accidents in which the types of equipment, employees, and environments are 
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kept safe. This also would help in cost reduction since replacing the section of pipeline prematurely 

by MIC is costly. Thus, the system should avoid such costs by contributing to the long-term 

corrosion management and maintaining the pipeline for many years. Finally, the obtained results 

would assist system policies to improve the general efficiency of the system considering the 

following aspects, (a) providing insight for the decision-makers to purchase and invest in the less 

likely corroded materials in the future, (b) reducing the number of system shutdowns which would 

satisfy connected industries as customers, (c) recognizing different cost-effective approach for 

remedying the MIC pit depth growth and similar concerns, (d) surviving the pipeline and related 

operational types of equipment (e.g., pumps, valve, and so on), and recognizing the conditions that 

make MIC worse, and then can be used for purchasing in future and maintenance decisions.   
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Figure 4.3. Analysis of the model parameters varying over service lifetime of the pipeline under 

study (the Loss thickness is in percentage %) 

 

4.5. Sensitivity analysis  

Sensitivity analysis (SA) is a systematic methodology with considerable proficiency in describing 

information about quantitative evaluation by identifying the system's weakness and designing 

much better options for the system and the significant foundations of subjective and objective 

uncertainty in a stochastic-based problem [74]. In this study, the SA is performed by varying 

different types of parameters in the management process.  

(i) Evaluating the effect  𝜆 0 in the total number of defects over the service lifetime 

According to Equation (4.1), it can be considered that 𝜆(𝜏) =  𝜆 0𝜏𝑎 where  𝜆 0 is a 

positive value and it can be obtained according to the objective data or subjective 

information from experts. In the present study, it is assumed that  𝜆 0 = 4, that is while 

for performing SA, two different values  𝜆 0 are taken into account as  𝜆 0 = 0.5 , and 

 𝜆 0 = 2. To simplify this, the main changes of considering  𝜆 0 = 0.5, and  𝜆 0 = 2 on 

thickness loss and the probability of detection are depicted for further discussion. The 

reason for this selection is that this is much better from an uncertainty propagation 

perspective to have uncertainty on the parameters that control the models. 

As can be seen, by varying  𝜆 0 the value of model parameters is changed; however, the 

changes are not considered. 𝜆 0 affects the total number of defects, which does not 

necessarily make the system worse in the case of maximum pit depth, and cost rate. 

The results are depicted in Figure 4.4. 
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Figure 4.4. The model parameters analysis by varying over service lifetime with consideration of 

 𝜆 0 = 0.5 (top) and  𝜆 0 = 2 (bottom) (the Loss thickness is in percentage %) 

 

(ii) Evaluating the effect the Poisson process (𝑎 = 0) has on model parameters 

According to equation (4.1), it can be considered that 𝜆(𝜏) =  𝜆 0𝜏  𝑎 , if we consider 

𝑎 = 0, the equation (4.1) is shortened to the homogenous Poisson process. Figure 4.5 

represents the expected total number of defects related to HPP and NHPP for 

comparison purposes. For the  𝜆 0 = 4 and 𝑎 = 1 (NHPP), the ∇(𝑡) is obtained as 

∇(𝑡) = 2𝑡2, and for  𝜆 0 = 4 and 𝑎 = 0, the ∇(𝑡) is obtained as ∇(𝑡) = 100𝑡. From 

this finding as well as from the support of literature [60], it can be highlighted that all 
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values based on the HPP model-results should be more than all values based on the 

NHPP model-results excluding the 50th year, where HPP and NHPP are equal, and 

after the 50th year, NHPP passes the HPP model. Using NHPP is much more realistic, 

and therefore, the results of the HPP-based model are skipped here.    

 

Figure 4.5. Analysis of the total number of defects with consideration of HPP and NHPP based 

models 

(iii) Evaluating the effect of different management action costs on cost rate parameter 

In order to perform SA (iii), in Table 4.5, two different sets of management action costs are 

provided. First, the cost rate over service lifetime is updated by modifying the relevant MATLAB 

code and depicted in Figure 4.6. As can be seen, once the management costs have been changed 

in Case 1, the total cost rate decreases without considerable change in the probability of detection. 

In addition, by increasing the management costs from Case 1 to Case 2, the total cost rate is almost 

consistent with the initial assessment. Therefore, it is clear that the obtained changes are partial, 

and varying all costs in the same pattern does not necessarily affect scheduling management 

actions over the service lifetime of the pipeline under study.   
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Table 4.5. The summary of all unit costs 

Item Partial costs (partial unit cost) 

Case 2 Case 1 

Inspection ( ∁ 𝐼𝑁) 5000 300 

Sleeving repair ( ∁ 𝑆𝑅) 25000 400 

Recoating repair ( ∁ 𝑅𝑅) 18000 550 

Pipeline surface examination 

( ∁ 𝑆𝐸) 

4000 350 

Replacement ( ∁ 𝑅) 50000 700 

Failure cost ( ∁ 𝐹) 2000 3000 
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Figure 4.6. Analysis of the model parameters varying over service lifetime with two sets of 

management actions cost (Right side: Case 1, Left side: Case 2, (the Loss thickness is in 

percentage %)) 

 

(iv) Evaluating the effect of discount rate on cost rate parameter 

In the original form of assessment, the discount rate 𝛿 is assumed to be zero. Here it is 

assumed that 𝛿 = 10 %. Figure 4.7 depicts the results of ∁ 𝑇(𝑇 𝑖) based on the new 

discount rate value. It can be seen that when 𝛿 = 10 %. The new model makes a lower 

cost rate, and therefore it makes for a longer optimal service lifetime of the pipeline 

than the model when the 𝛿 = 0.  In addition, where 𝛿 = 10 %, it means that ∁ 𝑇(𝑇 𝑖) 

decreases as the highest cost value (i.e., failure cost) decreases as is expected. 

 

Figure 4.7. Analysis of expected ∁ 𝑇(𝑇 𝑖) in term of discount rate 
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(v) Evaluating the effect of safety factors on the parameter cost rate 

The effect of safety factor on the model parameter ∁ 𝑇(𝑇 𝑖) is evaluated by varying it 

with two values being 𝑠𝑓 = 50 % and 𝑠𝑓 = 70 %. The results of this analysis are 

presented in Figure 4.8. Similar to the industrial practice, it can be seen that by 

decreasing the value of the safety factor, the cost of assessing integrity increases, and 

subsequently, the cost rate increases. Therefore, selecting a reliable safety factor is a 

critical task considering the asset's annual budget and acceptable service lifetime. In 

the present study, it is assumed that there is no limit for spending assets integrity cost. 

  

 
 

Figure 4.8. Evaluating the effect of safety factor on the parameter cost rate (Right: 𝑠𝑓 = 70 %. 

Left: 𝑠𝑓 = 50  %, (the Loss thickness is in percentage %)) 



 

 
185 

(vi) Evaluating the effect of 𝜀 (random scattering error) on the probability of detection and 

thickens loss 

To perform this SA, two different values are assigned to the random scattering error 

being 𝜀 = 0.01 and 𝜀 = 0.001. Figure 4.9 depicts the results of POD, maximum depth, 

and thickness loss over the service lifetime of the pipeline. The critical point is that as 

much as the random scattering error decreases, the results of measured depth from in-

line inspection tools fall. Therefore, it is essential to use an accurately calibrated 

inspection tool. 

  

Figure 4.9. Evaluating the effect of 𝜀 (random scattering error) on the 𝑃𝑜𝐷 and thickness loss 

(Right: 𝜀 = 0.01 and Left: 𝜀 = 0.001, (the Loss thickness is in percentage %)) 

 

(vii) Evaluating the effect of average pit depth density 𝑎𝑑̅̅̅̅ (𝑡) overtime 

Different environmental conditions and different types of coating may cause different pit 

rates, which further influences average pit density. By varying the paraments of average 

pit depth density (equation (4.4)), this can evaluate the different behaviors of the 

management model over time. Two scenarios are considered, and relevant modifications 

are presented in Table 4.5. By assuming 𝑡 stands for the year, Figure 4.10 illustrates the 
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average pit density based on two defined scenarios. As depicted in Figure 4.10, the 

average number of pits in a unit area in scenario #S1 is initiated in the early service 

lifetime of the pipeline. This can be used to signify the harsh environmental conditions. 

Therefore, by varying the Equation parameters (Equation (4.4)), the 𝑎𝑑̅̅̅̅ (𝑡) can be 

correctly reflected by various environmental circumstances.   

Table 4.5. Varying the parameters for average pit depth density in the model 

Scenario 

tag 

Parameters’ value Modified equation 

# S1 A = 0 , 𝜂 = 1 , 𝜓 = 2 , 𝑤 =
30 

𝑎𝑑̅̅̅̅ (𝑡) = 𝑤𝑡 

# S2 A = 2 , 𝜂 = 2 , 𝜓 = 4 , 𝑤 =
0 

𝑎𝑑̅̅̅̅ (𝑡)

=
 Α

 𝜓
 [ 1 − 𝑒 − 𝜓𝑡] 

 

 

Figure 4.10. Evaluating the effect of average pit depth density 𝑎𝑑̅̅̅̅ (𝑡) overtime 
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4.6. Conclusion 

MIC appears extensively in the broad range of metals in marine and offshore environments, 

stochastically. The present work delivers a comparative study of models to characterize the 

multiple MIC defects, including the generation of defects, initiation times, the average pit density, 

and the maximum pit depth growth path. This paper considers the uncertainties for modeling the 

number of defects, defects’ size, and uncertainty of in-line inspection tools. In addition, this study 

determines the optimal time of subsea pipeline inspections. The non-homogeneous Poisson 

process is utilized to obtain the number of defects over the service life of the pipeline. The 

combination of homogenous Gamma process and exponential and power equations is used to 

model average pit depth through a pipeline thickness (i.e., pit depth). The Markov process is then 

engaged for modeling the dynamic feature of pit depth growth over time. The uncertainty 

associated with in-line inspection tools is also considered with the probability of detection, random 

scattering, and bias errors. By reading the existing literature, and the obtained results in current 

work highlighted that: (i) the presence of microorganisms in the pipeline does not mean that there 

would be any evidence of MIC activities, (ii) most of the studies suffer from using off-site 

facilities, and they are restricting to rapid assessment due to the high cost of simulation 

environmental conditions, (iii) the microbiological evaluation-based method (e.g., metabolomic 

and metagenomic) is the most robust tool for MIC determination, (iv) the significant point to detect 

MIC in a short period is the characterizing the diversity of microorganisms on suspectable field 

sites, (v) the data mining on the microbiological data set may provide a valuable understanding for 

the greatest possible and proliferation of MIC impacts, (vi) the probabilistic and fuzzy-based 

methods can be employed to enhance the system's capabilities to assess MIC treatments. Thus, an 

intelligent system can provide a much more realistic timeline for decision-makers and operators to 

obtain the level of risk, (vii) utilizing such qPCR techniques to derive the total numbers of a single 
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gene (16S rRNA), bacteria, and archaea is the critical performing indicator of consistent reporting 

in the system, (viii) engaging the nano-material tools can provide insights for robust detection 

sensors, such as smart pigs and miniaturized kits, (ix) reducing the cost of MIC management can 

only be applied in case using multi-disciplinary approaches between chemical, corrosion, and 

safety engineering, and (x) There is a requirement for research tasks to obtain the solutions for 

MIC in dynamic environmental circumstances. 

Moreover, the cost of maintenance actions in the given inspection time interval over the service 

life of the pipeline is formulated. The Monte Carlo simulation technique is used to examine the 

cost rate by service lifetime of the pipeline. Finally, different sensitivity analyses are performed to 

show how the proposed models behave in a couple of scenarios.   

However, a couple of challenges have arisen during the study that needs further work to direct 

future studies. First of all, there are a couple of parameters in the stochastic equations such as Α, 𝜓, 

𝑤, and 𝜂 in average pit depth equation for which there is no empirical data available to estimate 

them. Experts’ judgment elicitation procedure as an alternative needs to be improved by correctly 

dealing with subjective uncertainties. Secondly, the direct cost of system failure and maintenance 

actions assessment were the only considerations in the present work. In real applications, the 

indirect costs are required to be determined using methods such as parametric analysis. In addition, 

this work focused on the external surface of the subsea pipeline under the influence of MIC. As a 

direction for further study, the internal MIC can be examined considering relevant maintenance 

management actions such as biocide, inhibitors treatment, and periodical pigging. 
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Chapter 5 

   A dynamic model for Microbiologically Influenced Corrosion (MIC) Integrity Risk 

Management of Subsea Pipelines  
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Abstract 

Microbiologically Influenced Corrosion (MIC) is a severe problem for offshore oil and gas 

facilities. MIC causes pinholes, which become a source of the leak. The pipeline integrity 

management requires preventive (proactive) (i.e., coatings, cathodic protection) and mitigative 

(reactive) actions (i.e., inhibitor treatment, biocide treatment). The efficiency and the cost of these 

integrity management actions play a critical role in overall integrity risk management. A multi-

objective functional methodology involving Dynamic Continuous Bayesian Network modeling to 

minimize the operational risk associated with the MIC is proposed. The Meta-heuristic algorithm 

as Genetic Algorithm (GA) is used to obtain the optimum schedule for performing integrity 

management actions. The application of the proposed model is illustrated in a subsea pipeline 
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under the influence of MIC. The results identify a series of solutions allowing decision-makers to 

select the optimal combination of integrity management actions with the tradeoff between 

reliability and cost. 

Keywords: Optimization, Bayesian network, Meta-heuristic algorithm, Pipelines, MIC integrity 

management  

5.1. Introduction 

Microbiologically Influenced Corrosion (MIC) is one of the most significant metal degradation 

mechanisms, which further affects subsea pipelines' long-term availability and integrity [1–4]. 

MIC causes different incidents in the oil and industrial sectors, such as hazardous hydrocarbon 

containment loss leading to fire and explosion as well as environmental and economic impact [5]. 

Steel deterioration is a common cause of loss in the subsea pipeline in Canada [6]. To ensure the 

pipeline integrity for a specific period, considering the preventive (proactive) and mitigative 

(reactive) practices are the key components for the MIC integrity management program [7]. 

Determination of optimal practices times and interval are vital for decision-makers. Since 

performing the integrity management practices in a long time interval will result in extreme 

integrity management action, it could be costly in time, human resources, and finances. In contrast, 

the short time interval may ignore the critical defects through the pipeline and lead to serious safety 

and economic impacts. Therefore, it is vital to derive the best interval to perform management 

practices. 

Therefore, optimizing the time interval for applying certain integrity management practices is 

challenging for site operators. Firstly, the metal deterioration mechanism under the influence of 

MIC is still under discussion and uncertain with time-variation, which assessors face to model 

uncertainty. Secondly, the pit depth growth of individual defects and the number of defects is 
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uncertain with time variation. According to the challenges mentioned above, scheduling and 

selecting optimum integrity management actions have been investigated by considering different 

reliability-based models. Early studies developed a framework to estimate pit depth growth and 

further determine the optimum interval of the inspection schedule [8]. Following the Hong study 

[8], Gomes et al. [9] proposed a cost-effective safety integrity management framework that 

includes assigning the cost to determine the optimum inspection period for onshore pipelines 

subjected to external corrosion. Gomes and Beck [10] designed an objective function to minimize 

the total expected life-cycle costs. They considered different types of variables such as thickness, 

time to the first inspection, the time between successful inspections, and expected numbers of 

failures. Similarly, Zhang and Zhou [11] considered the minimum expected life-cycle costs to 

obtain the optimum inspection intervals by attending to the set of defects. 

In order to investigate the optimum integrity management practices over a period, two primary 

objectives should be considered. These objectives are (i) maximizing the reliability/availability of 

the pipeline under study and (ii) minimizing the cost associated with the integrity management 

practices. In a realistic case, decision-makers need to consider multiple objectives with or without 

the same importance weight. Then, decision-makers can find all possible solutions using multi-

objective functions, which tradeoff between the two objectives as mentioned above. According to 

this point, Gong and Zhou [12] provided objective functions with conditional probabilities of burst 

and small leak for an in-service corroded pipeline within a limited annual budget. Latif et al. [13] 

formulated optimum condition-based maintenance scheduling for metal structures using 

multidisciplinary algorithmic approaches. A comprehensive outline for managing an underground 

pipeline was proposed to optimize the reliability and cost factors using Monte Carlo simulation 

[14]. Ghimire et al. [15] addressed the challenges of identifying the optimal location of gas network 
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maintenance centers in natural gas transmission systems. A combination of Bayesian network 

(BN) and Genetic Algorithm (GA) are utilized to propose a methodology for the inspection 

scheduling of pipelines under the influence of corrosion [16]. 

Since corrosion defect under the influence of MIC grows over time, the MIC defects are not critical 

at a certain point but may become much more critical over time. This denotes that the MIC defects 

might not be prevented, controlled, or mitigated simultaneously because of the limited annual 

budget, resources, and access limitations. Therefore, to manage the MIC defect, the application of 

a management practice may not be sufficient over a period, and different types of integrity 

management actions should be employed over time. 

This study’s main contribution in MIC management for subsea systems proposes a framework for 

scheduling integrity management actions over time. In addition, the dynamic Continuous Bayesian 

network (CBN) is used in the assessment framework for MIC integrity management. Thus, the 

proposed framework takes into account both model and data uncertainty. Another contribution is 

developing the reliability and cost functions for pit depth growth under the influence of MIC, and 

the third is using the mathematical optimization modeling technique over a period to obtain 

optimum integrity management practices.  

The remainder of the paper is structured as follows. A reliable framework to determine the 

optimum integrity management practices is proposed in Section 2 for the subsea pipeline under 

the influence of MIC. The application of the developed framework to a case study of a subsea 

pipeline is discussed in Section 3. Finally, Section 4 is devoted to the present study's conclusions, 

highlighting the challenges and the direction for further research in this field. 
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5.2. The Proposed Microbiologically Influenced Corrosion (MIC) Integrity Management 

Methodology 

It is essential to predict the rate of MIC and pit depth growth in the early stage of subsea pipeline 

development to provide appropriate integrity management actions(s), which can prevent, mitigate, 

and control the occurrence of a pipeline failure. However, MIC integrity management is 

challenging for decision-makers due to the lack of information required in the probabilistic risk 

analysis, such as the problematic data availability from in-line inspection tools. Thus, as 

demonstrated in Figure 5.1, the seven steps methodology is proposed to find the optimum time 

interval for performing the required integrity management practices. This framework enables 

decision-makers to tradeoff between reliability and cost. In step one, the mechanistic model of 

MIC and all required information for developing the models will be obtained. Different integrity 

management practices will be presented in step two, including preventive and mitigative. In steps 

three and four, reliability functions and cost functions for each integrity management practice will 

be derived. In addition, failure cost is also considered in the case of comparison purposes. The 

multi-objective functions are then defined with consideration of different constraints in step five. 

In step six, all possible solutions will be derived. Finally, the optimal decision will be implemented 

in step seven. The details of the steps are provided in the following sections. 
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Figure 5.1. The developed framework to implement the optimal integrity management actions 
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Step 1: Developing a mechanistic model of MIC as well as collecting all required information 

In this step, mechanistic modeling of individual pit initiation influenced by MIC is developed. The 

mechanistic model considers the type of corrosion (which is MIC), chemical compositions of 

internal fluid, material type, alloy composition, mechanic characteristics of the system (e.g., 

subsea, onshore), and effective environmental and operational conditions. This can further lead 

but is not limited to the corrosion rate, material strength properties, depth and width of the pits, 

and remaining age of the pipeline.  

After identifying all potential factors impacting the MIC, the BN tool is used to reflect the 

relationship between different parameters in the mechanistic model developed for MIC. Thus, 

developing BN by considering the dependency and interrelationships between the potential factors 

is the first step in providing the mechanistic model of MIC. 

The related data for each node in developed BN are obtained from various sources, including 

different industrial sectors, operational conditions, multiple regions, or subjective opinions from 

experts in the field. Once all the necessary data/information is collected, they are further processed 

into intervals to approximate their probabilities for identified ranges. Therefore, the predicted 

probabilities can be used as input data for the BN model.  

The BN based on discrete and continuous nodes has enough capacity to analyze each node's 

behavior over time, given new data, making it one of the most effective and robust tools. Common 

BN-based approaches have been widely used in different engineering domains, such as [17–22]. 

BN-based techniques can employ different input data (objective or subjective) to estimate the 

probability centered event by reducing the model uncertainty with consideration of 

interdependency between all the participating nodes [23,24]. However, the discrete BN-based 

models ignore the precision and modeling flexibility. In other words, the discrete BN-based 
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approaches consider the continuous nature of causal factors in the network as discrete variables. 

Therefore, this type of estimation provides uncertainty during the analysis process [25–28]. In real-

world applications, there are often variables that continuously change over time. Therefore, they 

cannot be modeled by adopting standard BN-based models with discrete variables, such as the case 

for MIC.    

Once continuous nodes are used in BN, the computation of posterior distribution becomes much 

more complicated. Therefore, the analytical methods or Monte Carlo simulations cannot compute 

the posterior distributions. Markov Chain Monte Carlo (MCMC) is a robust tool and has a high 

capacity to calculate the posterior distribution with high dimensions [29–31]. To elaborate, MCMC 

has two main parts: (i) Monte Carlo and (ii) Markov Chain. Monte Carlo refers to a method that 

relies on the generation of random numbers, and Markov Chain refers to a sequence of numbers 

in which each number depends on the last number in the sequence. However, Monte Carlo 

simulations fail to sample from the complicated distribution, which has different dependent 

variables. To handle this issue, Markov Chain is used to assist Monte Carlo, and therefore MCMC 

is utilized. To obtain more details about MCMC and its algorithms, one can refer to [32]. 

Step 2: Proposing preventive (proactive), mitigative (reactive) integrity management actions 

In this step, the possible integrity management actions to maintain the understudied pipelines are 

proposed. The first maintenance plan is preventive actions. Preventive actions refer to decreasing 

the occurrence probability of a more hazardous event [33]. The primary motivation for preventive 

actions is to avoid nonconformances, which means it can improve the efficiency of the system 

[34]. These intervention actions highlight the technical requirements associated with the product 

or service supplied or the internal integrity management system. Preventive (proactive) actions are 

typically used in different fields, including using firewalls and encryption computers-based 
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technologies; modeling and simulating playing the roles of preventive actions in information 

systems; having a healthy lifestyle, and regular check-ups to prevent risk factors of different 

diseases in the healthcare system and varieties of safeguards in industrial sectors. Finally, 

mitigative (reactive) actions can be taken in three different ways (i) providing reactive barriers 

which are able to stop or reduce the energy rate released by the hazardous event, (ii) separating the 

assets with coating, lining, and painting, (iii) making the assets less vulnerable to impacts (e.g., 

hard hats, protective clothing), and (iv) improving first aid and rehabilitation systems (e.g., 

ambulances, hospitals) [33]. 

In order to define the policy of performing integrity management practices, it is assumed that there 

is only one pit at the particular location, and it is not merged with other pits in the duration of the 

process.  

Step 3: Developing reliability functions using dynamic continuous Bayesian network 

Thomas Bayes, a British mathematician, proposed Bayes’ rule [1701-1761] [35]. Bayes’ rule 

shows that both probabilities of 𝑋 and 𝑌 as two variables can occur when the production of 𝑋 and 

𝑌 give 𝑋 in term of probability. The expression mentioned above can be stated as the following 

equation:   

𝑃(𝑋, 𝑌) = 𝑃(𝑋) × 𝑃(𝑌|𝑋)                                           (5.1) 

where 𝑃(𝑋, 𝑌) represents the probability of both variables 𝑋 and 𝑌, which can occur.   

With consideration of symmetry law, Equation (5.1) can be modified into Equation (5.2) as: 

𝑃(𝑋|𝑌) =
𝑃(𝑌|𝑋)×𝑃(𝑋)

 𝑃(𝑌)
                                (5.2) 
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where 𝑃(𝑌|𝑋) represents the probability of evidence 𝑌 when the hypothesis of 𝑋 is true, 𝑃(𝑋) is 

denoted as the prior probability of variable 𝑋, 𝑃(𝑌) is the prior probability when the evidence 𝑌 

occurs (true), and 𝑃(𝑌|𝑋) is the posterior probability of 𝑋 given the evidence of variable 𝑌. 

To show the operational features of BN, assume that in a typical BN, 𝑛 variables as 

𝑋 1 ,  𝑋 2 ,  𝑋 3 , … ,  𝑋 𝑛 , are included. Accordingly, the joint probability distribution of variables can 

be decomposed as Equation (5.3): 

𝑃(𝑋 1,  𝑋2 ,  𝑋3 , … ,  𝑋𝑛 ) = 𝑃(𝑋1 |  𝑋 2 ,  𝑋 3 , … ,  𝑋 𝑛 ) × 𝑃( 𝑋 2 | 𝑋 3 , … ,  𝑋 𝑛 ) … × 𝑃(𝑋 𝑛 − 1 | 𝑋 𝑛 )           (5.3) 

Subsequently, by simplification, Equation (5.3) can be streamlined into Equation (5.4): 

𝑃(𝑋 1 ,  𝑋 2 ,  𝑋 3 , … ,  𝑋 𝑛 ) =

∏ 𝑃(𝑋𝑖 | 𝑋 𝑖 + 1 ,  𝑋 𝑖 + 2 , … ,  𝑋 𝑛 ) = 𝑛  
 𝑖  = 1  ∏ 𝑃(𝑋 𝑖 |Parrents (𝑋 𝑖 )) 𝑛  

 𝑖  =  1                            (5.4) 

Assume that a typical BN is structured having a set of limited variables as 𝑀 =

{𝑋 1 ,  𝑋 2 ,  𝑋 3 ,  𝑋 4 }, and consists of arcs that illustrate the interdependency and relationships 

between the existing variables. To get more details related to BN structuring, BN implementation, 

and BN computations, one can refer to the previous studies and literature [36–38]. Generally, when 

BN is constructed based on a combination of continuous and discrete nodes, it cannot be solved 

using single analytical methods such as Monte Carlo simulation or first/second-order momentum 

over a period. The computation can perform MCMC as explained in step 1 [30].   

As illustrated in Figure 5.2, dynamic continuous BN is established for computing as well as 

updating the failure probability of the pipeline under the influence of MIC in the current work. The 

left-hand side of the constructed BN at time 𝑡 = 0 illustrates the initial rate of MIC, pit depth 

growth, and failure probability of the pipeline for a single defect. The right-hand side shows the 

growth of pit depth and dynamic failure probability.  
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In Figure 5.2, the parameter 𝑎 𝑖  (𝑎 𝑖 > 0) is an indication of pit depth growth for defect 𝑖 in one 

year from the initiation time of the defect. The parameter 𝑡 0𝑖 represents the MIC initiation time 

(the proceed time from installation date to the time defect 𝑖 starts to grow). In practice  𝑡 0𝑖 > 𝑡 𝑗 , 

the parameter 𝑏 𝑖 (𝑏 𝑖 > 0) denotes the MIC rate of growth path, in which 𝑏 𝑖 = 0 , 𝑏 𝑖 > 0, and 

𝑏 𝑖 < 1 are representing the linear, acceleration, and deceleration pit depth growth path, 

respectively.  𝜂 𝑖𝑗  denotes the model error of the pit depth growth connected with defect 𝑖 at time 

and 𝑗, 𝑑𝑎 𝑖𝑗 is the pit depth growth path, and is the probability of failure of the corroded pipeline.  

Once the probability of failure is obtained over a period, the reliability function for each single 

integrity management practice can be derived.  

 

Figure 5.2. The dynamic structure of BN for the corroded pipeline under the influence of MIC 
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Step 4: Developing cost functions for integrity management actions 

In this step, the associated parameters with the cost for all integrity management practices will be 

provided. In addition, the interest rate, as well as the annual budget, will be considered. A reference 

pipeline defect is also assumed to be subjected to periodic inspection and maintenance with a fixed 

time interval. Corresponding to this point, the unit cost of all integrity management practices and 

periodic inspection fall into the integrity management policy in step two, with the total cost of all 

integrity management practices over a while able to be estimated.  

Step 5: Driving multi-objective functions based on maximizing reliability and minimizing cost 

Multi-objective optimization is an essential field of multi-criteria decision-making. This is based 

on mathematical optimization problems, including more than one objective function to be 

optimized simultaneously. In addition, the objective functions may be on opposite sides. 

Therefore, no exact solution optimizes each objective simultaneously, and there is possibly an 

infinite number of Pareto optimal solutions. Without ignoring the supplementary subjective 

preference information, all optimal Pareto distribution solutions would be considered similarly 

reliable [39]. The reason for constructing a multi-objective function is that obtaining Pareto 

optimal solutions with consideration of different objectives. 

Based on step three, the rate of MIC, pit depth growth, and the probability of failure will be 

obtained over a period for each integrity management practice. Every year, all integrity 

management practices are evaluated to observe which one has the highest probability of failure 

and minimize the maximum probability of failure for each year. Thus, the first objective is 

reducing the highest probability of failure over time. According to step 4, the second objective 

function would be minimizing the total cost of all integrity management practices over time.  
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Once the multi-objective optimization is provided, constraints need to be presented to solve the 

provided multi-objective functions. A constraint is a circumstance of an optimization problem that 

the solution needs to be satisfied. There are three sorts of constraints, equality, inequality, and 

integer constraints. The set of candidate solutions as feasible solutions should satisfy the 

constraints [40]. 

Our study’s constraints would be the annual budget for each year, the cost of integrity management 

practices, reliability function for each integrity management practice over time, and integrity 

management policy.  

Step 6: Finding optimal integrity management actions 

In order to solve the optimization model, two different algorithms can be utilized. Firstly, using an 

algorithm based on those methods that provide the exact optimum values such as Branch and 

bounds; secondly, using Meta-Heuristic algorithms such as genetic, gray wolf, bees, whale, ant 

lions, etc. Considering the complexity of the multi-objective functions, the optimal solutions can 

only be determined by adopting enumeration and random methods that fall under Meta-Heuristic 

algorithms' idea. Meta-Heuristic algorithms are the higher-level procedures to find, generate, or 

select a heuristic (partial search algorithm), which might represent an adequate solution to the 

multi-objective functions [39,41–44]. 

The Genetic Algorithm (GA) as a random method is selected to obtain optimum solutions because 

of its widely effective capabilities and its efficient global search capability [45]. In GA, Darwin’s 

theory of biological evolution is considered to construct the computational model. GA can also be 

used as a methodology of optimum solution searching with simulations of the natural evolutionary 

process [16,46–49]. The simple form of the GA solving process is depicted in Figure 5.3, 

underlying the idea of study [16]. 
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Figure 5.3. The performing procedure of the GA  
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As illustrated in Figure 5.3, six steps are required, including (i) population generation, (ii) 

evaluation, (iii) fitness value, (iv) reproduction, (v) crossover, and (vi) mutation. The solutions 

have to be encoded in a fixed-width form as a first step, called “genetic strings”. The number of 

“bit” has to be employed to properly present the solutions to the optimization problem in the 

Genetic Algorithm. For example, for a corroded pipeline under the influence of MIC, a 10 bits 

binary is used to encode the optimal time interval for performing all integrity management 

practices during a set goal of 40 years. In addition, the accuracy of the optimal time interval is 

assumed as one or two decimal places. The 5 bits of the 10 bits binary located in the first-order 

show the integer part (this means that they are searchable 0-41, which are more than the set goal). 

The 5 bits of the 10 bits binary located last illustrate fractional parts (this means that they are 

searchable from 0-2). When performing different types of integrity management practices over 

time, the encoding of subsequent integrity management practices is ordered before in the queue. 

Therefore, the fitness value of the initial population is computed according to objective functions. 

The population with proper fitness value are then selected for the next step of reproduction. 

Subsequently, the reproduced population is then utilized in the following steps as the cross-over 

and mutation, respectively. A set of the evolved population is then assessed in the cycle of 

optimization. This cycle is sustained until the evolved population is satisfied with the termination 

criteria set. The relevant programming model can also be developed using MATLAB as it has 

useful features.  

Step 7: Identifying and Implementing the optimal decision 

In this step, decision-makers can select the best time interval for combining integrity management 

practices by a tradeoff between reliability and cost. The optimum series of solutions will be 

presented in optimal Pareto distributions. Decision-makers can also give importance weights to 
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the objective functions to allow balance. In the present study, the importance weights of both 

reliability and cost functions are equal. 

5.3. Application of the proposed methodology: A case study  

The introduced method is applied to an APL 5L grade X42 subsea hydrocarbon transition pipeline 

that is highly suspect to internal MIC and must be in operational condition for at least 40 years. 

The pipeline carries co-mingled fluids from a different number of subsea resources. 

Step 1: Developing a mechanistic model of MIC as well as collecting all required information 

According to the first step of the developed methodology, the mechanistic model of maximum pit 

depth growth influence by MIC appears in Figure 5.4. The mechanistic model of MIC is drawn 

with consideration of (i) environmental conditions, including salinity, CO2 partial pressure, pH, 

O2, temperature, water cut, and Sulphides, (ii) operational conditions including fluid velocity and 

pressure, (iii) material conditions including steel composition and Carbon content, (iv) biofilm, 

and (v) exposure duration.  
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Figure 5.4. The influence diagram of the mechanistic model of maximum pit depth growth 

influence by MIC (SRB (sulfate-reducing bacteria), SRA (sulfate-reducing Archaea), and IOB 

(iron-oxidizing bacteria) 

 

The data presented in Table 5.1 are based on literature [19,27,50–52], and mean values of 

continuous variables are based on operational and chemical analysis from an offshore facility off 

the East Coast of Canada. A chemical analysis of produced water shows the total number of 

microorganisms using the qPCR (quantitative Polymerase Chain Reaction) method (3.19E+06 

(16S copies/mL sample)), different types of microorganisms percentage (Methermicoccus 4.79 %, 

Desulfovibrio 8.72 %, Dethiosulfatibacter 10.14 %, Archaeoglobus 38.36 %, Thermoanaerobacter 

1.35 %, Thermococcus 9.9 %, Thermosipho 3.6 %, Methermicoccus 4.79 %), and sulfate reduction 

rate (SRR) (0.52 in situ). 

Table 5.1. The pipeline operational parameters’ data range  

Variables Descriptions   

pH Distribution: 3.2 - 7.86  
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Temperature (degree) Distribution: 0 - 50 

Flow rate (m3/s) Distribution: 0.01 - 1.116 

Exposure time (yrs) Distribution: 2.5 - 3.5  

Salinity Discrete: Present/ Absent 

Steel composition Discrete: Present/ Absent 

Carbon content  Discrete: Present/ Absent 

Pressure  Discrete: High/ Moderate/ Low 

O2 Discrete: High/ Moderate/ Low 

Sulfate ion (ppm) Distribution: 0.01 - 32000 

CO2
 
partial pressure Discrete: High/ Moderate/ Low 

Water cut Discrete: High/ Moderate/ Low 

Biofilm  Discrete: High/ Moderate/ Low thickness 

 

Step 2: Proposed preventive (proactive), mitigative (reactive) integrity management actions 

As mentioned earlier, proactive practices, also called a frequency-reducing barrier, are barriers 

that prevent or reduce the probability of a failure. Moreover, reactive practices, moreover named 

a mitigating or consequence-reducing barrier, are a barrier that avoids or reduces the consequences 

of failure. These practices prevent the occurrence of defects influenced by MIC falling into 

proactive integrity management practices. Once pit depth starts to grow, the reactive integrity 

management practices play their roles.   

Figure 5.5 presents the possible integrity management practices for the subsea pipelines influenced 

by MIC [53]. The efficiency of each integrity management practice is studied in the previous study 

[54].  
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Figure 5.5. MIC preventive and mitigative integrity management actions 

Step 3: Developing reliability functions by performing dynamic continuous Bayesian network        

In the study's conducted application, it is assumed that the pipeline's lifetime is equal to 40 years. 

Besides, the lowest accuracy of searching the in-line inspection design is equal to 12 months based 

on industrial practice. As soon as the lifetime of the pipeline and lowest accuracy of searching are 

set, the dynamic continuous BN is developed to estimate the rate of MIC, pit depth growth path, 

and failure probability over a period, as depicted in Figure 5.6.  
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Figure 5.6. Developed dynamic continuous BN  

 

The non-informative distributions (i.e., distributions with small means and very large variances) 

are considered for the pit depth growth factors 𝑎𝑖 , 𝑡𝑜𝑖 , and 𝜂𝑖𝑗 . In order to obtain pit depth growth 

and accordingly failure probability, Bayesian updating software such as OpenBugs 

(www.openbugs.net) using MCMC methods is utilized by 1000000 iterations within interval two 

tinning, in which the estimated parameters of the growth models were then used to estimate the 

failure probability of the defect. The failure probability of the pipeline under the influence of MIC 

will be further developed and updated using BN in all possible discrete time intervals with one 

year. Once the failure probability function is derived, the same procedure is applied with 

consideration of each single integrity management practice’s efficiency. 

The first three integrity management practices (assuring cleanness, coating, and cathodic 

protection) are assumed to have been already performed and considered in the pipeline installation 

http://www.openbugs.net/
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[54]. The reliability or failure probability functions for the rest of integrity management practices 

can then be derived and provided. It is also assumed that the three integrity management practices 

Pigging, Repairing, and Replacing, are performing desecrate, and the rest of the actions are 

performing continuously.  

𝑅 Periodic inspection = 1  −  5.00 × 𝑒  −  4 × 𝑋 × 𝑒 −  2 +  𝑋 −  7.70 × 𝑒  −  3       

𝑅 Inhibitors treatment = 1 − 2.00 × 𝑒 −  5 × 𝑋 × 𝑒  −  2 + 3.58 × 𝑒  − 02𝑋 + 1.80 × 𝑒  − 3  

𝑅 Biocide treatment = 1 −  3.00 × 𝑒 −  4 × 𝑋 × 𝑒 −  2 +  3.40 × 𝑒 −  02𝑋 −  9.00 × 𝑒  −  3 

𝑅 Biological treatment = 1 − 2.00 × 𝑒 − 4 × 𝑋 × 𝑒 − 2 +  3.04 × 𝑒 − 02𝑋 − 2.90 × 𝑒 − 3  

𝑅 𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒) = 1 − 3.00 × 𝑒 − 04 × 𝑋 × 𝑒 − 2 + 3.62 × 𝑒 − 02𝑋 −

2.90 × 𝑒 − 03                  

𝑅 𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (𝑝𝐻) = 1 − 4.00 × 𝑒 − 4 × 𝑋 × 𝑒 − 02 + 4.58 × 𝑒 − 2 × 𝑒 − 1.11 × 𝑒 − 2                    

𝑅 Manipulating operational parameters (Velocity) = 1 − 3.00 × 𝑒 − 4 × 𝑋 × 𝑒 − 02 +  3.31 × 𝑒 − 2𝑋 − 3.80 × 𝑒 − 3 

𝑅 Pigging = 1 − 1.00 × 𝑒 − 4 ×  𝑋 × 𝑒 − 2 +  3.29 × 𝑒 − 2𝑋 + 1.96 × 𝑒 − 2 

𝑅 Repairment = 1 − 2.40 ∗ 𝑒 − 3 ×  𝑋 × 𝑒 − 02𝑡 + 8.24 × 𝑒 − 02𝑋𝑡 − 8.72 × 𝑒 − 2 

𝑅 Replacement = 1 − 5.60 × 𝑒 − 3 ×  𝑋 × 𝑒 − 02𝑡 + 1.31 × 𝑒 − 01𝑋𝑡 − 2.14 × 𝑒 − 1                               (5.5) 

 

where 𝑋 is the time of performance of integrity management practices, and 𝑡 is whether integrity 

management practices are performed or not (0 or 1). To obtain equation (5.5), the system's 

reliability using BN according to each performance is evaluated, and the best function is fitted to 

the pit depth growth path. 

Step 4: Obtaining cost functions for the integrity management actions 

To obtain the cost functions for all mentioned integrity management practices, it considered the 

input from industries’ experts by highlighting only and only direct costs [11].Given unit costs to 

all integrity management practices (provided in Table 5.2) and annual inflation rate as 0.61 % in 

Canada, 2020 (www.statista.com), the cost functions can be defined as a summation of all integrity 

management practices their single performance. 

http://www.statista.com/
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Table 5.2.  The approximated integrity management actions cost for a single cycle 

Reference name Integrity management practices Cost (US) 

𝐶𝑀𝑃 1
 Periodic inspection * 3,840 

𝐶𝑀𝑃 2
 Inhibitors treatment ** 900000 per year 

𝐶𝑀𝑃 3
 Biocide treatment ** 185000 million per year 

𝐶𝑀𝑃 4
 Biological treatment ** 380000 million per year 

𝐶𝑀𝑃5
 Manipulating operational parameters (Temperature) *** 15,000 per year 

𝐶𝑀𝑃 6
 Manipulating operational parameters (pH) *** 20,000 per year 

𝐶𝑀𝑃 7
 Manipulating operational parameters (Velocity) *** 35,000 per year 

𝐶𝑀𝑃 8
 Pigging 35,000 per mile 

𝐶𝑀𝑃 9 
 Repair 2,400 

𝐶𝑀𝑃 10
 Replace 6,800 

𝐶 𝑓 Failure cost **** 543,407 

𝐶 𝐴 Annual budget 1,000,000 

* Periodic inspection includes (i) Gaining  access, (ii) Surface preparation, (iii) Inspection: UT, (iv) Inspection: RI, (v) 

Technical support, and (vi) Logistics [55]. 

** To compute the cost of these treatments, with consideration of pipeline (APL 5L grade X42) features (i.e., diameter, 

and length) and operation condition (flow rate), one standard cubic meter in the pipeline is assumed to obtain how 

many Kg of chemical treatments is required per one cubic meter. We then compute how many seconds with a constant 

flow rate are required for 1 standard cubic meter with an exact amount of chemical treatment. Subsequently, this is 

computed for kg/year, and finally considering the price value of 1 kg (Inhibitors, Biocide, and Biological) treatments. 

The total cost for a single year is therefore determined for each treatment. 

*** It is estimated based on experts’ opinions who have relevant expertise and background, and this study is conducted 

as partial study.  

**** Failure cost includes (i) Loss because of breakdown, (ii) Loss because of shutdown, (iii) Spill cleaning, (iv) 

Environment damage, and (v) Liability charges [55]. 

Therefore, considering two sets: 𝐼{𝑀𝑃1, … , 𝑀𝑃7}, 𝐽{ 𝑀𝑃8, 𝑀𝑃9, 𝑀𝑃10}, and K: I U J the cost 

function can be defined as the following:  

∑ 𝐶 𝑀𝑃 𝑖  
(

𝑋2 𝑖 

(1 + 𝐼𝑅) 𝑖 −
𝑋1 𝑖 

(1 + 𝐼𝑅) 𝑖)
 7 
 𝑖 = 1  + ∑ ∑

𝑌𝑗𝑡 𝐶𝑀𝑃 𝑖  

(1 + 𝐼𝑅) 𝑡 
 40 
 𝑡 = 1 

 10 
 𝑗 = 8                                    (5.6) 
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where, 𝐶𝑀𝑃 𝑖 
 is the cost of integrity management practice 𝑖 in one-year, 𝐶𝑀𝑃 𝑗 

 is the cost of integrity 

management practice 𝑗 in each performance, IR is the annual inflation rate, 𝑋1 𝑖  is start year of 

integrity management practice 𝑖, 𝑋2 𝑖  is end year of integrity management practice 𝑖, 𝑌 𝑗𝑡  

integrity management practice 𝑗 is performed on time 𝑡 (𝑡 = 1), otherwise (𝑡 = 0). 

Step 5: Driving multi-objective functions based on maximizing reliability and minimizing cost 

In the above model, the multi-optimization function can be defined with and without considering 

annual cost in the following and subject to the provided constraints. The completed form of models 

is provided in Appendix A. It should be added that constant terms in the equations are determined 

based on reliability function determinations. 

Model 1 without consideration of annual cost: 

Max [Min [∑ 𝑅 𝑀𝑃 𝑖 

 7 
 𝑖 = 1 + ∑ ∑ 𝑅𝑀𝑃𝑗 

(𝑌𝑗𝑡 )𝑡  40 
 𝑡 = 1

 10 
 𝑗 = 8 ] ]                            (5.6) 

Min ∑ 𝐶 𝑖 (𝑋2 𝑖 − 𝑋1 𝑖 )
 7 
 𝑖  =  1  + ∑ ∑ 𝑌 𝑗𝑡 𝐶 𝑗 

 40 
 𝑡  =  1 

 10 
 𝑗  =  8 +  𝑟 × 𝐶 𝑓                                             (5.7) 

Subject to. 

𝑅𝑀𝑃 𝑖 
                       (5.8) 

1 ≤ 𝑋2 𝑖 ≤ 40                  ∀ 𝑖 ∈ 𝐼                                              (5.9a) 

1 ≤ 𝑋1 𝑖 ≤ 40                   ∀ 𝑖 ∈ 𝐼                                          (5.9b) 

1 ≤ 𝑋2 𝑖 − 𝑋1𝑖 ≤ 39                      ∀ 𝑖 ∈ 𝐼                                (5.9c) 

𝐶𝑀𝑃 𝑖                                (5.10)                      

Model 2 with consideration of annual cost: 

Max [Min [∑ 𝑅𝑀𝑃 𝑖 

 7 
 𝑖 = 1 + ∑ ∑ 𝑅𝑀𝑃𝑗 

(𝑌𝑗𝑡 )𝑡 40 
 𝑡 = 1 

 10 
 𝑗 = 8 ] ]                         (5.11) 
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Min ∑ ∑ (𝐶𝑖 𝑌𝑘𝑡 /(1 + 𝐼𝑅) 𝑡 ) 10 
 𝑘 = 1 

 40 
 𝑡 = 1 + (𝑟 × 𝐶𝑓 )/(1 + 𝐼𝑅) 𝑡                                (5.12) 

Subject to. 

𝐶𝑀𝑃𝑖 
                                                                          (5.13) 

𝑅𝑀𝑃𝑖 
                                                                                    (5.14) 

1 ≤  𝑌𝑘 ≤ 40                  ∀ 𝑘 ∈ 𝐾                                                                                           (5.15)    

𝐶𝑓 = 543407                            (5.16) 

In the above model, Equations (5.6) and (5.7) in model 1 and Equations (5.11) and (5.12) in model 

2 are objective functions, Equations (5.10) and (5.13) are costs in model 1 and 2, respectively. 

Equations (5.8) in model 1 and (5.14) in model 2 are reliability functions for each integrity 

management practice. Equation (5.16) is the annual budget. Finally, Equations (5.9) and 15 are 

additional restrictions for the time of integrity management practices performed. 

Step 6: Finding all optimal integrity management actions 

In this step, the program code for performing GA is provided in MATLAB software. A similar 

code of Pseudocode of GA to obtain the optimum solutions are depicted in the state of arts, such 

as [56–58]. The optimum solutions to schedule the MIC integrity management practices are 

conducted based on Models 1 and 2. The chromosome codification of performing integrity 

management practices time can also find out in the literature. The population size is considered 40 

based on the recommendation from literature, and the values of the three other parameters in GA 

generation, crossover fraction, and mutation are 60, 0.75, and 0.3. respectively. 

The employed computer has an Intel Core i7(5500) CPU @ 2.4 GHz with 8 GB RAM.  Similar to 

all GA-based studies, the reproduced performing times are wildly fluctuating the whole lifetime 
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of the pipeline. These performing times then steadily converge to the optimal solution values. Due 

to the influence of such fluctuation, the computation of fitness value is also challenging and would 

differ from the best fitness value. It should be added that the GA can only find the local optimal 

solution most of the time for integer programming models. However, the initial steps in GA cover 

nearly the pipeline lifetime, which guarantees global optimization rather than local optimization. 

Thus, it provides an advantage for decision-makers to make reliable decisions. The mean fitness 

value is also steadily going to the best fitness value equal to 52.658. The Pareto optimal solutions, 

with consideration of annul budget, are depicted in Figure 5.7. 

 

Figure 5.7. The optimal solutions with consideration of the annual budget 

 

As illustrated in Figure 5.7, the two objectives, reliability and cost, are targeting differently. Once 

program runtime was finished, there were 36 optimal solutions, which by analyzing only 9 of them 

can be adequate or somehow acceptable since the others have close results, not a representation of 

our problems or not feasible. Similarly, the Pareto optimal solutions without consideration of the 

annual budget are depicted in Figure 5.8. 
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Figure 5.8. The optimal solutions without consideration of the annual budget 

 

In the next step, decision-makers can decide on scheduling integrity management practices over 

a period.    

Step 7: Identification and Implementing the optimal decision 

According to the Pareto optimal solutions obtained in step 6, the optimal scheduling plan for 

performing the integrity management practices with several time inspections can be evaluated. 

There are nine alternatives for decision-makers to retain and maintain the pipeline for the set target 

of 40 years. For example, alternatives 5, 8, and 9 were evaluated for optimal solutions without 

considering the annual budget in detail, which is presented in Table 5.3. This table shows in which 

year the integrity management practices can be performed. For instance, in alternative 5, the 

integrity management practices MP5 (Manipulating operational parameters (Temperature)), MP 6 

(Manipulating operational parameters (pH)), and MP 7 ((Manipulating operational parameters 
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(Velocity)) are performed in years 1 and 3 - 38. Also, Figure 5.9 illustrates how much MP 7 is 

performed every single year. To add more, a couple of management actions are performing 

concisely during a single year. This figure provides the information to see how many days the 

management action should be performed in a single year. 

Table 5.3. Optimal solutions without consideration of annual budget 

Integrity 

management 

practices 

Year 

Alternative 5 Alternative 8 Alternative 9 

MP 1 4, 9, 13, 18, 22, 27, 30, 34, 38 5, 9, 16, 21, 28  2, 4, 6, 8,10,12,14 ,16,18, 20, 21 - 30 

MP 2 1- 7, 9 - 16, 18-25, 28 - 34, 36 - 37 NA NA 

MP 3 2 - 6, 8 - 15, 17, 19, 22, 24 - 32, 35 - 37 NA NA 

MP 4 7, 8,17, 26, 27, 35 4 - 10, 15 - 19 2, 4 - 20 

MP 5 1, 3 - 38 1- 2, 5 - 10 NA 

MP 6 1, 3 - 38 1 - 2, 5 - 10 NA 

MP 7 1, 3 - 38 1- 2, 5 -10 NA 

MP 8 4, 7, 11, 15, 20, 26, 30, 34, 36, 37 5,10 4, 8, 15, 22, 28 

MP 9 38 NA NA 

MP 10 NA 30 33 



 

 
225 

 

Figure 5.9. The percentages of the integrity management practice MP 7, which should be 

performed in 40 years 

A similar procedure is also conducted to determine the optimal scheduling plan for performing the 

integrity management practices considering the annual budget. There are also nine alternatives for 

decision-makers to retain and maintain the pipeline for the set target of 40 years. For example, 

alternatives 5, 7, and 9 were evaluated for optimal solutions considering the annual budget in detail, 

which is presented in Table 5.4. Figure 5.10 illustrates how much MP6 can be performed every 

single year. 

Table 5.4. Optimal solutions with consideration of the annual budget 

Integrity 

management 

practices 

Year 

Alternative 5 Alternative 7 Alternative 9 

MP 1 6, 14, 22, 28, 30, 32, 34 4, 8, 12, 16, 20, 24, 28, 30, 

32, 34, 36 

4, 8, 12, 16, 20, 24, 28, 30, 32, 34, 36 

MP 2 1 - 35  1-38 1-38, 
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MP 3 3 - 5,7 - 10, 12 - 15, 17 - 

20, 22 -26, 28 - 32, 35 

1-38 1-38, 

MP 4 NA NA 2, 8, 14, 20, 26, 28, 30, 32, 34, 35, 36, 37, 

38 

MP 5 1- 30, 32, 36 1-38 1-38  

MP 6 1- 30, 32, 36 1-38 1- 38 

MP 7 1-30, 32, 36 1- 38 1-38 

MP 8 4, 10, 16, 24, 31, 36 4, 10, 15, 20, 25, 30,36 4, 10, 15, 20, 25, 30, 36 

MP 9 20, 28, 35 20, 30, 38 NA 

MP 10 NA NA 38 

 

 

Figure 5.10. The percentages of the integrity management practice MP 7, which should be 

performed in 40 years 

 

As was explained in Section 3, Pareto optimal solutions provide different types of answers, all of 

which are feasible and optimum. What can be understood is first is that the mentioned annual 
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budget (1,000,000) has not impacted the optimal solutions. This means that the obtained optimal 

solutions with and without consideration of the annual budget are almost the same. Another 

interesting point is that in “Alternative 9”, Model 1 (with consideration of annual budget), 

decision-makers can decrease the number of integrity management practices by early replacing 

corroded parts of the pipelines. This means that reactive integrity management practice in some 

cases will have many more advantages and merits compared with proactive actions.  

By updating input information based on data from in-line inspection tools, reliability functions and 

scheduling of integrity management practices would be updated, respectively, which would impact 

the outcomes of the decision-making processes.  

5.4. Conclusions 

In this study, a probabilistic framework is proposed to determine the optimum time interval for 

performing both reactive and proactive integrity management practices for the corroded subsea 

pipeline under the influence of MIC. For this purpose, multi-objective optimization is utilized 

based on all integrity management practices' reliability and cost functions. The dynamic structure 

of BN is used to obtain reliability functions. GA is then employed to search for all optimum 

solutions, in which the optimal solutions are non-dominated against each other with consideration 

of both objective functions. The analysis results show that the obtained diverse set of optimum 

solutions allows decision-makers to balance reliability and cost of integrity management actions. 

The annual budget is also added as a constraint to the model. It is indicated that the annual budget 

has no significant impact on the optimum solutions. Thus, the proposed framework in this study 

can be based on decision-making support tools for optimal maintenance for a corroded subsea 

pipeline subjected to risk, safety, and resource integrity management.  
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However, some critical challenges have arisen in current work that needs to be mentioned, which 

could be improved as directions for further research. Firstly, in this study, a single defect and other 

pit depth growth paths are considered for integrity management purposes. While in realistic cases, 

multiple defects, which may have counter effects, play a critical role in the reliability of the 

pipelines. As a direction for future study, the generation of new defects using stochastic models 

can be considered over a period. Secondly, the direct cost is only considered for failure cost in the 

optimization model. However, indirect costs such as salary/wages, transport, and rent, might be 

higher than the direct cost. Thus, a parametric study can examine the influence of indirect cost on 

the optimal solutions in future studies.  
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Appendix A. 

Model 1 without consideration of annual cost: 

Max [ Min [∑ 𝑅𝑀𝑃𝑖 

7  
 𝑖 = 1 + ∑ ∑ 𝑅 𝑀𝑃𝑗 

(𝑌 𝑗𝑡 ) 𝑡 40 
 𝑡 = 1 

 10 
 𝑗 = 8 ] ]                             (A1) 

Min ∑ 𝐶 𝑖 (𝑋2 𝑖 − 𝑋1 𝑖 )
 7 
 𝑖 = 1  + ∑ ∑  𝑌 𝑗𝑡 𝐶 𝑗 

 40 
 𝑡 = 1

 10 
 𝑗 = 8 +  𝑟 × 𝐶𝑓                                  (A2) 

Subject to. 

𝑅 𝑀𝑃1 
= 1 −  0.0005 (𝑋2𝑀𝑃 1 

− 𝑋1𝑀𝑃 1
)

 2 
− (𝑋2𝑀𝑃 1 

− 𝑋1𝑀𝑃 1 
) +  0.0077                       (A3) 

𝑅 𝑀𝑃2 
= 1 −  2e − 05 (𝑋2𝑀𝑃 2 

− 𝑋1𝑀𝑃 2 
)

 2 
− 0.0358 (𝑋2𝑀𝑃 2 

− 𝑋1𝑀𝑃 2 
) − 0.0018           (A4) 
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𝑅 𝑀𝑃3 
= 1 −  0.0003 (𝑋2𝑀𝑃 3 

− 𝑋1𝑀𝑃 3 
)

 2 
− 0.034 (𝑋2𝑀𝑃 3 

− 𝑋1𝑀𝑃3 
) +  0.009                 (A5) 

𝑅 𝑀𝑃4 
= 1 − 0.0002 (𝑋2𝑀𝑃 4 

− 𝑋1𝑀𝑃 4 
)

 2 
−  0.0304 (𝑋2𝑀𝑃 4 

− 𝑋1𝑀𝑃4 
) +  0.0029            (A6) 

𝑅 𝑀𝑃 5 
= 1 −  0.0003 (𝑋2𝑀𝑃5 

− 𝑋1𝑀𝑃 5 
)

 2
−  0.0362 (𝑋2𝑀𝑃 5 

− 𝑋1𝑀𝑃 5 
) +  0.0029            (A7) 

𝑅 𝑀𝑃 6 
= 1 −  0.0004 (𝑋2𝑀𝑃 6

− 𝑋1𝑀𝑃 6
)

 2
 −  0.0458 (𝑋2𝑀𝑃 6 

− 𝑋1𝑀𝑃 6 
) +  0.0111           (A8) 

𝑅 𝑀𝑃 7 
= 1 − 0.0003 (𝑋2𝑀𝑃 7 

− 𝑋1𝑀𝑃 7 
)

 2 
−  0.0331 (𝑋2𝑀𝑃 7  

− 𝑋1𝑀𝑃 7  
) +  0.0038                    (A9) 

𝑅 𝑀𝑃 8 
= 1 − 0.0001 (𝑌𝑀𝑃 8 𝑡

) 2 𝑡 − 0.0329 (𝑌𝑀𝑃 8 𝑡
) 𝑡 −  0.0196                                         (A10) 

𝑅 𝑀𝑃 9 
= 1 − 0.0024 (𝑌𝑀𝑃 9 𝑡) 2 𝑡 − 0.0824 (𝑌𝑀𝑃 9 𝑡) 𝑡  − 0.0872                                         (A11) 

𝑅 𝑀𝑃 10 
= 1 − 0.0056 (𝑌𝑀𝑃 10 𝑡

) 2 𝑡 − 0.1313 (𝑌𝑀𝑃 10 𝑡) 𝑡 − 0.2136                                      (A12) 

1 ≤  𝑋2 𝑖 ≤ 40                  ∀ 𝑖 ∈ 𝐼                                                                     (A13) 

1 ≤  𝑋1 𝑖 ≤ 40                   ∀ 𝑖 ∈ 𝐼                                        (A14) 

1 ≤ 𝑋 2 𝑖 − 𝑋1 𝑖  ≤ 39                      ∀ 𝑖 ∈ 𝐼                              (A15) 

𝑌 𝑀𝑃 9 
=  0 if   (Max [ Min [∑ 𝑅𝑀𝑃𝑖 

 7  
 𝑖 = 1 + ∑ 𝑅 8 (𝑌𝑀𝑃 8 𝑡) 𝑡 40 

 𝑡 = 1 ] ])  ≤  0.2                            (A16) 

𝑌 𝑀𝑃 10 
=  0 if   (Max [ Min [∑ 𝑅𝑀𝑃𝑖 

 7 
 𝑖 = 1 + ∑ 𝑅𝑀𝑃 8 

(𝑌𝑀𝑃 8 𝑡) 𝑡 40
 𝑡 = 1 ] ])  ≤  0.2                       (A17) 

𝐶 𝑀𝑃 1 
=  3840                             (A18) 

𝐶 𝑀𝑃 2 
=  9000000                         (A19) 

𝐶 𝑀𝑃 3 
=  18500000                         (A20) 

𝐶 𝑀𝑃 4 
=  38000000                          (A21) 

𝐶 𝑀𝑃 5 
=  15000                          (A22) 
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𝐶 𝑀𝑃 6 
=  20000                          (A23) 

𝐶 𝑀𝑃 7 
=  35000                          (A24) 

𝐶 𝑀𝑃 8 
=  35000                        (A25) 

𝐶 𝑀𝑃 9 
=  2400                        (A26) 

𝐶 𝑀𝑃 10 
=  6800                      (A27) 

𝐶 𝑓  =   543407                      (A28) 

1 ≤  𝑋2 𝑖                                   (A29)                  

𝑟 > Max [ Min [∑ 𝑅 𝑀𝑃 𝑖 

 7 
 𝑖 = 1 +  ∑ ∑ 𝑅 𝑀𝑃𝑗 

(𝑌 𝑗𝑡 ) 𝑡 40 
 𝑡 = 1

 10 
 𝑗 = 8 ] ]                                      (A30)                  

Model 2 with consideration of annual cost: 

Max [ Min [∑  𝑅 𝑀𝑃𝑖 

 7 
 𝑖 = 1 + ∑ ∑ 𝑅𝑀𝑃𝑗 

(𝑌𝑗𝑡 ) 𝑡 40
 𝑡 = 1

 10 
 𝑗 = 8 ] ]                        (A31) 

Min ∑ ∑ (𝐶 𝑖𝑌 𝑘𝑡 /(1 + 𝐼𝑅) 𝑡 ) 10 
 𝑘 = 1 

 40 
 𝑡 = 1 + (𝑟 ×  𝐶𝑓 )/(1 + 𝐼𝑅) 𝑡                      (A32) 

Subject to. 

𝑌 𝑀𝑃 9 
=  0 if   (Max [ Min [∑ 𝑅 𝑀𝑃 𝑖 

 7 
 𝑖 = 1 + ∑  𝑅𝑀𝑃 8 

(𝑌𝑀𝑃 8 𝑡) 𝑡 40
 𝑡 = 1  ] ])  ≤ 0.2                      (A33) 

𝑌 𝑀𝑃 10 
= 0 if   (Max [ Min [∑  𝑅𝑀𝑃 𝑖 

 7
 𝑖 = 1 + ∑  𝑅𝑀𝑃 8 

(𝑌𝑀𝑃 8 𝑡) 𝑡40
𝑡 = 1  ] ])  ≤ 0.2                       (A34) 

𝐶 𝑀𝑃 1 
=  3840                            (A35) 

𝐶 𝑀𝑃 2  =  9000000                           (A36) 

𝐶 𝑀𝑃 3 
=  18500000                         (A37) 

𝐶 𝑀𝑃 4 
=  38000000                         (A38) 
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𝐶 𝑀𝑃5 
=  15000                          (A39) 

𝐶 𝑀𝑃 6 
=  20000                          (A40) 

𝐶 𝑀𝑃 7 
=  35000                          (A41) 

𝐶 𝑀𝑃 8 
=  35000                        (A42) 

𝐶 𝑀𝑃 9 
=  2400                         (A43) 

𝐶 𝑀𝑃 10 
=  6800                      (A44) 

𝑟 > 𝑥Max [ Min [ ∑ 𝑅𝑀𝑃 𝑖  
 7 
 𝑖 = 1 + ∑ ∑  𝑅𝑀𝑃𝑗 

(𝑌𝑗𝑡 ) 𝑡 40
 𝑡 = 1

10 
𝑗 = 8 ] ]                                  (A45)     

𝑅 𝑀𝑃 1 
= 1 − 0.0005 (𝑌𝑀𝑃 1 𝑡)

 2 
−  (𝑌𝑀𝑃 1 𝑡) −  0.0077                                (A46) 

𝑅 𝑀𝑃 2 
=  1 − 2e − 05 (𝑌𝑀𝑃 2 𝑡)

2
− 0.0358 (𝑌𝑀𝑃 2 𝑡) −  0.0018                       (A47) 

𝑅 𝑀𝑃 3 
=  1 −  0.0003 (𝑌𝑀𝑃 3 𝑡)

2 
− 0.034 (𝑌𝑀𝑃 3 𝑡) +  0.009                                                 (A48) 

𝑅𝑀𝑃 4 
=  1 −  0.0002 (𝑌𝑀𝑃 4𝑡)

2 
−  0.0304 (𝑌𝑀𝑃 4 𝑡)  +  0.0029                (A49) 

𝑅 𝑀𝑃 5 
=  1 −  0.0003 (𝑌𝑀𝑃5 𝑡)

2 
−  0.0362 (𝑌𝑀𝑃 5 𝑡) +  0.0029                      (A50) 

𝑅 𝑀𝑃 6 
=  1 −  0.0004 (𝑌𝑀𝑃 6 𝑡)

2 
 −  0.0458 (𝑌𝑀𝑃 6 𝑡)  +  0.0111                        (A51) 

𝑅 𝑀𝑃 7 
=  1 −  0.0003 (𝑌𝑀𝑃 7 𝑡)

2 
−  0.0331 (𝑌𝑀𝑃 7 𝑡) +  0.0038                       (A52) 

𝑅 𝑀𝑃 8 
=  1 −  0.0001 (𝑌𝑀𝑃 8 𝑡)

2 
𝑡 −  0.0329 (𝑌𝑀𝑃 8 𝑡) 𝑡 ∗  0.0196                     (A53) 

𝑅 𝑀𝑃 9 
=  1 −  0.0024 (𝑌𝑀𝑃 9  𝑡)2 𝑡 − 0.0824 (𝑌𝑀𝑃 9 𝑡) 𝑡  +  0.0872                        (A54) 

𝑅 𝑀𝑃 10 
=  1 − 0.0056 (𝑌𝑀𝑃 10 𝑡

) 2 𝑡 + 0.1313 (𝑌𝑀𝑃 10 𝑡
) 𝑡 −  0.2136                       (A55) 
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1 ≤  𝑌 𝑘 ≤ 40                  ∀  𝑘 ∈  𝐾                                             (A56)    

𝐶 𝑓 =  543407                      (A57) 

𝐶 𝐴 =  1000000                       

(A58) 
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Chapter 6 

Resilience assessment of a subsea pipeline using dynamic Bayesian network 
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Abstract 

Microbiologically influenced corrosion (MIC) is a serious concern and plays a significant role in 

the marine and subsea industry's infrastructure failure. A probabilistic methodology is introduced 

in the present study to assess the subsea system's resilience under MIC. Conventionally, the risk-

based models are constructed using the system's characteristic features. This helps decision-makers 

understand how a system operates and how the failed system can be recovered. The subsea system 

needs to be designed with sufficient resilience to maintain the performance under the time-varying 

interdependent stochastic conditions. This paper presents the dynamic Bayesian Network-based 

approach to model the subsea system's resilience as a function of time. An industry-based 
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application study of the subsea pipeline is studied to demonstrate the efficiency and effectiveness 

of the proposed methodology for the resilience assessment. The proposed methodology will assist 

decision-makers in considering the resilience in the system design and operation. 

Keywords: Pipeline, Offshore, Bayesian Network, Engineering resilience, MIC, Subsea system  

6.1. Introduction  

The main engineering-based infrastructures in the oil and gas industrial sectors have the potential 

to have a high material degradation rate. Different types of catastrophic failures in ocean 

environmental conditions have been recognized due to undesired corrosion [1,2]. The mechanisms 

of corrosion and their complexities in subsea and marine technologies depend on varieties of 

parameters, including material properties, operating, and environmental circumstances [3–7]. The 

mentioned parameters fall into temperature, salinity, metal composition, pressure, seawater flow 

velocity, carbon dioxide, and more. These are prone to the stochastic and uncertain nature of 

microbially influenced corrosion (MIC). There is a limited understanding of MIC formation and 

propagation, causing risky operational decisions, which leads to system failure and direct/indirect 

consequences [1,8,9]. This would continue to face a severe degradation, particularly in 

microorganism groups (i.e., sulphate-reducing bacteria (SRB), exopolymers, manganese-

oxidizing, acid-producing bacteria, sulphate-oxidizing bacteria, and the iron-oxidizing bacteria in 

marine environments) [10]. These factors are commonly stochastic in nature and time dependent. 

Thus, designing a reliable system suspected of the MIC occurrence under such uncertain 

circumstances is challenging for engineering decision-makers. 

MIC formation and its propagation as a mechanistic model have been studied by numerous 

researchers [11]. For example, Gu et al. [12] introduced the bioenergetic theory by describing the 

thermodynamic-based mechanism for MIC formation within SRB. The MIC formation depends 
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on the microbes' respiration process. This process contains an extracellular electron transferring 

the ions (e.g., nitrate, or sulphate) to the microbial cytoplasm. The conclusion is derived as an 

integrated mechanistic model including mass transfer, electrochemical and biochemical reactions, 

and kinetics could deliver a reliable tool to predict the MIC formation and propagation. A limited 

number of models for MIC risk assessment are accessible in the existing state of the art [13–17]. 

In addition, risk-based models have been utilized to support decision-making in the system design 

period [18,19]. For example, Al-Darbi et al. [20] developed a mathematics-based polarization 

model. In that work, the authors explained cathodic SRB mediated polarization and its 

corresponding effects of MIC rate in different pit depth growth dynamically. Sørensen et al. [14] 

identified the worst MIC rate and risk factors by proposing a risk-based model according to the 

sulphate reducing archaea (SRA), methanogens, and SRB. The study highlighted that the colony 

of the bacteria could increase the wastage rate and suggested having a proactive plan to control the 

MIC rate. Marciales et al. [11] made a comprehensive review of the MIC mechanistic model, its 

prediction rate, and the shortages.   

There are a few limitations of the studies as mentioned above. First, the approaches are not 

dynamic-based and could not reflect the non-linearity and complexity of dependency with MIC 

influential parameters in-service time of the system. Second, the available risk-based models are 

defined by permanent failure and assessing the scenarios reaching into the failures. Instead, the 

system can be assessed based on its states once the disruption has occurred. In the present work, it 

is assumed that these disruptions are caused by the MIC rate and its corresponding pit depth growth 

path and effect on structural safety. The states of the system are changing in a dynamic manner 

after the disruption. Therefore, resilience, instead of risk assessment, should develop risk-based 
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models. This means that resilience assessment of marine and subsea systems under the influence 

of MIC would be a much more desirable task.  

Numerous resilience metrics and relevant evaluation-based approaches have been improved to 

assess and develop engineering resilience of the system, such as but not limited to the following 

references [21–30]. In the next section, a review of resilience assessment has been done in safety 

engineering system domains. There is still room for further development among the existing state 

of the art. According to this point, the dynamic Bayesian network is considered a reliable tool in 

the field of probabilistic assessment approaches within reasoning and knowledge representation. 

Dynamic Bayesian network has the capability of system failure modeling, where the system has 

interdependency between the factors with consideration of conditional probabilities. Thus, this 

study has three contributions to the safety and scientific communities. The first contribution is 

developing a new influence diagram for the resilience assessment of the subsea system. Therefore, 

the introduced methodology considers two uncertainties called data and model. The second 

contribution is to assess the system's resilience under the influence of internal MIC using a 

dynamic Bayesian network. The third is developing a framework to design a MIC-based subsea 

system with high resilience. 

The organization of this study is provided as the following. In Section 2, the resilience in the safety 

engineering system and pipeline domains is discussed. In Section 3, the new methodology is 

proposed to assess and further evaluate the engineering system's resilience. In Section 4, an 

application case study is studied. Finally, a conclusion, further remarks, and directions for future 

studies are provided in Section 5.   
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6.2. Reviewing resilience in safety engineering system domains  

In this section, a literature reviewing process has been conducted with three main steps, as depicted 

in Figure 6.1. First, the published studies from several primary databases were collected 

considering the proper keywords such as “resilience” AND “system” AND “safety”. Subsequently, 

a decision is made about each paper, whether it has been indexed by WOS (Web of Science) or 

Scopus. Otherwise, they are excluded. Search has been conducted from January 2000 to the end 

of April 2021 and gathered about 1005 papers. Timeline selection is because most research studies 

on resilience areas have been released in the last 20 years. Afterward, the related studies' keywords, 

titles, and abstracts are reviewed. In the next step, 148 studies are excluded with consideration of 

title, abstract, and keywords, in which the ignored papers were not application-based or did not 

have a considerable development of the resilience concept in the engineering system domains. 

Then, 112 studies are retrieved by reviewing the full text of the manuscript.  
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Figure 6.1. Steps of methodology to review resilience in engineering system domains 

 

Recently, there has been considerable growth in resilience topics in addressing the main research 

question of how an engineering system can restore its performance after a disruption occurs 

[31,32]. Holling [33] defined the term “resilience” as an ecological system property, in which this 

can measure its resistance to disruption and its capability to absorb changes and stabilize to its 

original form. Since its first explicit definition by Holling, resilience has been extensively utilized 
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in numerous applications areas, including chemical process industries [34–39], infrastructure 

resilience [40–43], Engineering electrical electronic [44–46], Operations research management 

science [47–50], Engineering civil [51–53], and Environmental Sciences [54–57]. The resilience 

studies in the state of the art present the latest concept of resilience assessment for the design of 

the engineering system. Many scholars have been attempted to introduce new methodologies by 

assessing and measuring the resilience in different engineering system attributes. As an example, 

a two-state Markov chain framework is utilized for the resilience assessment of supply systems, in 

which the system probability from failure to full-recovery state is studied [58]. In another study, a 

time-dependent method is proposed to quantify the system resilience [22]. Baroud et al. [59] 

quantified the resilience of the system, considering the recovered performance loss over time. In 

two studies,  Hosseini et al. [60] and Yodo and Wang [61] quantified the complex system resilience 

of industry application-based such as production process and supply chain. Hosseini and Barker 

[62] used an approach underlying the idea of Bayesian networks for resilience quantification and 

assessment of a water-way network. Yodo et al. [63] proposed a dynamic Bayesian network 

approach to model and predict the resilience of complex engineered electricity distribution systems 

over time. According to the WOS database, Table 6.1 provides the studies in engineering domains 

within high contributions in resilience-based methodologies. 

Table 6.1. The published works in engineering domains within high contributions in resilience-

based methodologies  

Number Reference Keywords 

#1  Madni and Jackson 

(2009) [64] 

Defining resilience from different perspectives and learning lessons 

could design resilient systems. 

#2 Ouyang and Dueñas-

Osorio (2014) [65] 

Developing a probabilistic technique for resilience assessment of 

power systems. 
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#3 Aven (2011) [66] Discussing and looking more closely into the risk concepts and risk 

assessment and resilience and vulnerability.  

#4 Barker et al. (2013) 

[67] 

Providing two different importance measures to assess the resilience 

of the components. 

#5 Patriarca et al. (2018) 

[68] 

Reviewing the methodology based on resilience engineering  

#6 de Carvalho (2011) 

[69] 

Using Functional Resonance Analysis Model (FRAM) to understand 

the main resilience attributes for the case study managing the air 

traffic system.  

#7 Azadeh et al. (2014a) 

[34] 

Assessing the factors playing an essential role in the resilience 

assessment process, with a case study of highly risky circumstances 

of the chemical complex plant.  

#8 Azadeh et al. (2014b) 

[35] 

Evaluating the performance of factors plays an essential role in the 

resilience assessment process, with a case study of highly risky 

circumstances of the chemical complex plant. 

#9 Gomes et al. (2009) 

[70] 

Assessing the resilience engineering of a complex socio-technical 

system as a subsea helicopter transportation system.  

#10 Shirali et al. ( 2012) 

[71] 

Studying the shortages and limitations of structuring resilience in a 

petrochemical complex unit. 

 

What can be concluded by reviewing the resilience in the existing literature falls into two points 

(i) resilience is an uncertain and time-dependent feature of an engineering system, and (ii) 

resilience may sound similar to the availability of the system. However, this is the system's 

distinctive property and should be distinguished by the engineering system's reliability and 

maintainability. The resilience assessment of an engineering system depends on the system's 

performance loss in the state of the art. While there is a lack of probability consideration, the 

system could recover or restore to its normal state after the disruption. Taking the vehicle tire with 

the self-sealant central tire inflation system as an example [72], there is a vehicle with tire 

punctuation at the moment. Conventionally, the vehicle should be stopped to change the tire and 
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then continue the road. However, the car may still work with deficient performance (i.e., disruption 

occurrence) when there is no chance to change a flat tire (e.g., there is no spare tire, and there is 

no garage service nearby). In simple words, there is a very low probability of the system being 

restored to its normal performance level or desired functionality. Therefore, this vehicle cannot be 

called a resilient vehicle. 

Nevertheless, in case the flat tire has the capability to quickly be restored to the desired 

functionality with a self-sealant central tire inflation system, the system would have a high 

probability of being at a normal performance level. Therefore, the probabilistic perspective of 

resilience definition and assessment can better reflect engineering system performance over time.  

6.2.1. Resilience assessment in engineering application domains  

The resilience of the engineering system includes four characteristics named as (i) absorption, (ii) 

adaption, (iii) restoration, and (iv) learning, which represents the engineering system’s ability to 

absorb, adapt, restore, and learn after disruptions occurrence over service lifetime. The resilience 

characteristics are the inherent properties of engineering systems, and it is an essential task to be 

evaluated. Therefore, resilience characteristics can be abstracted with system functionalities’ 

states. Once the system faces a disruption, absorption as a capability of system resistance prepares 

and adjusts itself to prevent the disruption impact and minimize the undesired consequences. 

Subsequently, two scenarios can be implied as (i) the engineering system can adequately be 

prepared and self-adjusted to prevent any disruptions, and (ii) in case of disruption, the engineering 

system has enough potential to reduce the change of functionality rate (i.e., decreasing 

functionality) [73,74]. Another resilience characteristic is the adaption referring to the system's 

ability to recover the performance loss of the engineering system after disruption occurrence 

without any external intervention actions from the restoration. In addition, restoration is the 
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system's ability to receive external intervention actions to repair the performance loss initiated by 

disruption into the normal operation state. It should be highlighted that the new state should not 

essentially be exactly equal to the last state, either less or more than the state before disruption 

(i.e., normal operation state). However, the new state has to be at an acceptable level of 

functionalities satisfying the system operating regulations. Finally, learning is the system's ability 

to study the past disruptions and then assist the system in obtaining reliable knowledge for its 

performance improvement. According to this point, the system would respond better to future 

disruptions. The learning ability of the system can improve the system with the operational 

procedure, safety, and technical guidelines. 

According to the definitions mentioned above of resilience characteristics, resilience can be refined 

using functionalities’ states [31]. As shown in Figure 6.2, the functionality curve of the system is 

depicted to show the quantification of resilience performance. In this figure, 𝐹(𝑡) signifies the 

system's functionality (system performance) in normal operating state at time 𝑡. 𝐹 0 denotes the 

initial functionality of the system, and 𝐹 2 is the functionality of the system after disruption 

occurrence. In addition, 𝑡 0 is the initial time, 𝑡 1 denotes the disruption time, 𝑡 2 signifies the time 

when the system has the lowest functionality, and 𝑡 3 is a time when system functionality is 

recovered (adaption and restoration) to the normal operating state. By analyzing the performance 

curve, one can measure the system's ability to anticipate the absorb, adapt to, and restore from 

disruptions. 
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Figure 6.2. Simple representation of time-dependent performance loss (functionality curve) 

within a disruptive event (modified after [74]) 

 

6.3. The proposed methodology 

In this section, a methodology is proposed to dynamically assess the subsea system's resilience 

under the influence of MIC. Conventionally, assessing and further managing the engineering 

systems under the influence of MIC consider merely failure scenarios. However, MIC formation 

and propagation are debatable topics in existing literature and complex in the incredibly uncertain 

and potentially harsh environmental operating conditions. Therefore, the resilience assessment of 

the suspected system with MIC would be a much more desirable task, in which the impact of MIC 

on the engineering system needs to be adequately understood, and the system requires to be 

designed such that the system should be able to develop an early response before the system 

reaches to complete failure. Thus, as demonstrated in Figure 6.3, the five steps methodology is 

proposed to assess the resilience of a subsea system under the influence of MIC. This framework 

enables decision-makers to understand the engineering system properly and save it long. In step 
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one, the system is defined by highlighting the environmental condition, which fluid is carried, and 

system prosperities. In addition, the influence diagram of MIC and all required information for 

developing the models will be obtained. In step two, the four functionalities (absorption, 

adaptation, restoration, and disruptions) of the subsea system under the influence of MIC are 

identified. Besides, a Markov chain is developed to present the functionality states of the system. 

In step three, the transition rates are computed in the developed Markov chain in step two. 

Moreover, the Markov chain is translated into the dynamic Bayesian network explained in section 

Preliminary 1, in which transition rates in the Markov chain process define the relevant conditional 

probabilities in the corresponding Bayesian Network. In step four, the probabilities of functionality 

states of the system are computed, and the probability summation of all functionality states 

representing resilience is then obtained. Finally, in step five, the sensitivity analysis is studied to 

recognize the critical parameters in the subsea system, in which the contributions of parameters 

into the resilience variation are evaluated.  

The details of the steps are provided in the following sections. 

Step one: Defining the system and obtaining the influence diagram of MIC, and all required 

information 

In this step, the system is defined by highlighting the environmental condition, which fluid is 

carried, and the system prosperities. For example, the system is defined as APL 5L grade X42 

subsea pipeline. In this case, it carries the hydrocarbon material like co-mingled fluids and would 

highly be suspected to internal MIC. The subsea pipeline needs to operate for more than 30 years.  

In addition, the influence diagram (mechanistic model) of MIC is established. This model reflects 

the corrosion type (which in this case is MIC), chemical compositions of internal fluid, type of 

material, material composition, characteristics features of the pipeline, and operating and 
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environmental circumstances. At the end of the day, MIC leads to pipeline failure by increasing 

the pit depth growth path and reducing the wall thickness.  

The related data is collected from various sources, such as industries, operating circumstances, or 

decision-makers judgment which has a relevant background in the field.  

 

Figure 6.3. The developed methodology for resilience assessment of the subsea system under the 

influence of MIC 
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Step two: Identifying the functionality of the system and developing a Markov chain to represent 

the states of the system 

In this step, the four functionalities state (absorption, adaptation, restoration, and disruptions) of 

the understudy system are defined, in which all states are decomposed into the substates. As an 

example, the functionality state of absorption can be broken top-down into redundancy, preventive 

measure, and robustness. The functionality state of adaptation can be decomposed into flexibility, 

protection measures, and learning. This process continues until the system's detailed structural 

resilience is derived.   

Step three: Estimating the value of transition states of the Markov chain and translating the 

Markov chain into the dynamic Bayesian network  

Preliminary 1. Dynamic Bayesian Network  

This part presents the theoretical context of the dynamic Bayesian Network. Dynamic Bayesian 

Network is a directed acyclic graph (DAG), including edges and vertices, which are named as arcs 

and nodes, respectively, in the constructed network. In a Bayesian Network, nodes signify the 

variables, and arcs denote the relations between two different nodes. This is properly known as a 

practical method with enough potential to consider the uncertainty and variability over time. In 

this accordance, this assists decision-makers in predicting the decisions connected with 

complicated decision-making problems [75–78]. The dynamic Bayesian Network also used the 

prior knowledge of the main event, which further could execute a rational-based statistical 

inference. 
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In contrast, the circumstances are correct. According to this point, the prior knowledge can be 

derived from decision-makers opinions or frequentist approaches within observed data [79–82]. 

The term dynamic means dynamic system modeling. 

The probabilities of 𝑋 and 𝑌 as two variables can occur when the production of 𝑋 and 𝑌 given 𝑋 in 

terms of probability. The expression, as mentioned earlier, can be stated as the following Equation: 

𝑃(𝑋 , 𝑌) = 𝑃(𝑋) × 𝑃(𝑌|𝑋)                                    (6.1) 

where 𝑃(𝑋, 𝑌) represents the probability of both variables 𝑋 and 𝑌 which can occur.   

With consideration of symmetry law, Equation (6.1) can be modified into Equation (6.2) as: 

𝑃(𝑋|𝑌) =
𝑃(𝑌|𝑋) × 𝑃(𝑋)

 𝑃(𝑌)
                      (6.2) 

where 𝑃(𝑌|𝑋) represents the evidence probability of 𝑌 when the hypothesis of 𝑋 true holds, 𝑃(𝑋) 

is denoted as the prior probability of variable 𝑋, 𝑃(𝑌) is equal to the prior probability that the 

evidence 𝑌 has occurred (true), and 𝑃(𝑌|𝑋) is equal to the posterior probability of 𝑋 given the 

evidence of variable 𝑌. To get more details of the transformation of Equation (6.1) into Equation 

(6.2), one can refer to the previous literature [83]. 

The joint probability distribution of the variables is decomposed as Equation (6.3): 

𝑃(𝑋 1,  𝑋 2,  𝑋 3, … ,  𝑋 𝑛) = 𝑃( 𝑋 1|  𝑋 2,  𝑋 3, … ,  𝑋 𝑛) × 𝑃( 𝑋 2| 𝑋 3, … ,  𝑋 𝑛) … × 𝑃(𝑋 𝑛−1| 𝑋 𝑛)            (6.3) 

Subsequently, by simplification Equation (6.3) can be streamlined into Equation (6.4): 

𝑃(𝑋 1,  𝑋 2,  𝑋 3, … ,  𝑋 𝑛) = ∏ 𝑃(𝑋 𝑖| 𝑋 𝑖 + 1,  𝑋 𝑖 + 2, … ,  𝑋 𝑛) = 𝑛 
 𝑖 = 1 ∏ 𝑃(𝑋 𝑖| Parents (𝑋 𝑖)) 𝑛 

 𝑖  = 1             (6.4) 

in which 𝑋 𝑖, 𝑋 𝑖 + 1 and 𝑋 𝑛 are standing for the parent nodes at different time slices 𝑡 = 0 , 𝑡 =

1, and 𝑡 = 𝑛.  
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Dynamic Bayesian Network presents the relationships between causes and effects nodes in 

probabilistic manners. Two types of analysis are introduced to show that the proposed model can 

be effectively used in the decision-making problems as in each time slice: (i) forward propagation 

analysis and (ii) backward propagation analysis.  

A dynamic Bayesian network is developed to quantify resilience in the present work. In addition, 

it is assumed that resilience is independent of exterior factors such as harsh environment and 

human error. That is while the exterior factors influence the system performance and system 

resilience. However, they are not considered in this study. ∎ 

Then, a Markov chain is developed by obtaining the transition probabilities of four functionalities’ 

state (absorption, adaptation, restoration, and disruptions) as 𝜆 0, 𝜇 0, 𝜆 1, and 𝜇 1. The value of 𝜆 0, 

𝜇 0, 𝜆 1, and 𝜇 1are affected by four attributes as mentioned above. The computation process would 

be much more complicated by decomposing the absorption, adaptation, restoration, and 

disruptions into the substates. In step three, there are a couple of assumptions as (i) the rates of 

adaptation and restoration are considered constant value as 𝜇 0 Furthermore, 𝜇 1, respectively, and 

(ii) an exponential representation is utilized for time slices between 𝑡 = 0 and 𝑡 = 1 as 𝜆 0. At the 

end of the day, the understudy system would be reached the new state 4. After that, the new chain 

begins. Thus, the third assumption is defined as (iii) the rate of failure for the understudy system 

in normal operational circumstance is assumed to be constant value as 𝜆 1. Figure 6.4 presents a 

simplified version of the Markov chain model illustrating the functionalities’ state of resilience as 

well as their corresponding rates. It should be added that terms 𝜆 , and 𝜇  are assumed that there 

are parameters of a negative exponential distribution based on domain experts. The explanation of 

mathematical terms in which how 𝜆 , and 𝜇  would be converted into probabilities are available in 

the existing literature [84].  
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Figure 6.4. Markov chain model illustrating the functionalities’ state resilience 

 

In past steps, the defined Markov chain was translated into the dynamic Bayesian network. As 

depicted in Figure 6.5, the probability of each transition state in the Markov chain model is 

translated into the conditional probabilities, in which four functionalities’ state (absorption, 

adaptation, restoration, and disruptions). For example, the transition probability of state 3 to state 

4 in the defined Markov chain is transformed into the conditional probabilities’ functionality state 

from state 3 to state 4 given restoration in the structured Bayesian network. To obtain more 

information, one can refer to transferring the Markov chain model to the Bayesian network [84], 

and the Markov chain into the dynamic Bayesian network [85]. 
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Figure 6.5. Translation of Markov chain (part a) model to the dynamic Bayesian network (part b) 

 

Step four: Computing the probability of each functional state and resilience as a summation of all 

states’ probability 

In this step, a dynamic Bayesian network can dynamically assess the understudy system's 

resilience. Forward and backward propagation analysis can be conducted in a dynamic Bayesian 

network. This enables decision-makers to update the latest evidence and model the system 

according to real-time conditions. The dynamic Bayesian network representation of resilience 

includes six nodes as states of functionalities, four functionalities’ states, and learning. The first 

mentioned node presents the child node, and the rest represent the parent nodes in this structured 

Bayesian network. All probabilities regarding the corresponding functional state are computed to 

obtain the system resilience quantification. For example, the four states have a relationship for the 

child node according to the identified functionalities’ state in the Markov chain model (see Figure 

6.5). The time dependency of system resilience is taken into account with the model of the 
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functionalities’ state in different time slices such as time 𝑡 = 0 to 𝑡 = 1. It is assumed that the 

parent nodes, including absorption, adaptation, and restoration, are constructed within three states 

High, Moderate, and Low. In addition, it is considered that the disruption node has two states as 

Yes and No, meaning the occurrence of disruption over time. It is also considered that the first 

disruption appears at time 𝑡 = 0 since it is the time system starting to work. Therefore, the 

functioning state of disruption would be set as “Yes”. It is worth noting that to our best 

understanding from the problem as well as having support from the literature [39,60,61,63], 

resilience is intrinsically standing for the system properly except for human errors; this should be 

independent of an exterior parameter such as disruption. That is, the exterior parameters can 

considerably affect the functionality of the engineering system and the corresponding 

performance. Subsequently, it has an impact on system resilience. For instance, the environmental 

conditions as an exterior parameter can affect system resilience under normal operating, in which 

temperate environmental circumstances have higher resilience than harsh environmental 

conditions. Therefore, the exterior parameters can change the functionalities’ state (resilience) of 

the system within two aspects (i) human reliability and (ii) system performance. According to this 

point, the disruption in the present study only refers to system performance (i.e., MIC impacts 

system performance).    

The dynamic Bayesian network in the present work illustrates three different processes over time 

(i) influence of state absorption, adaptation, restoration, and disruptions on the system resilience, 

(ii) exterior disruptions, and (iii) system resilience in the period. It can be concluded that if the 

system is working without any disruptions, the functionalities’ state depends on the last states. 

This means that the disruption would occur based on the degradation of the system in its normal 

time. Looking at the dynamic Bayesian network representing the system resilience over time, the 
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disruption occurs at time 𝑡 = 1, and the functioning state (state 1) depends on its corresponding 

state at time 𝑡 = 0. This includes the resilience nodes containing absorption, adaptation, and 

restoration, and they are assessed at both time 𝑡 = 1 and 𝑡 = 0. The only node repressing 

disruption is assessed at time 𝑡 = 1. According to this point, the functionalities’ state is changing 

from state 1 to state 4, and vice versa. Considering the concept of resilience, the system resilience 

can be obtained using probabilities of the system to be sustained in the normal operating state or 

restored into the normal operating state from an abnormal state in two periods after and before the 

time of disruption. It should be added that inference analysis in dynamic Bayesian Network such 

as filtering, prediction, and smoothing based on the times of shreds of evidence and the times of 

queries does not with the scope of present work.  

Two cases can be derived as scenarios to assess the resilience probabilities: (i) the high ability of 

the engineering system for disruption absorption is strong and properly handled the upfront 

damages. This system's capability can increase the probabilities of the system being sustained in 

the normal operating state. Therefore, the probability of the system absorbing the damages is state 

1 in the resilience functionality curve (Figure 6.2). (ii) the system can be restored by receiving 

external intervention actions (i.e., repair action) to the acceptable functional state. The probability 

of the system reaching the probability of system restored from disruption state is the probability 

of state 4 in resilience functionality curve (Figure 6.2).  

In addition, the resilience is quantified by probability summation of all functionalities’ states from 

state 1 to state 4 in different time slices. In this way, resilience can be presented as a probabilistic 

term. Using a dynamic Bayesian network enables decision-makers to properly represent the 

temporal term's resilience within different time slices. This would help assessors determine the 

recovery time (as an example, 85%) of the resilience loss after a disruption.  
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Step five: Sensitivity analysis  

In this step, sensitivity analysis is executed to determine the main and critical factors in the 

resilience system. All the functionalities’ state and resilience attributes can be marked as targets 

for sensitivity analysis. For example, all of the factors can be varied to the High, Moderate, and 

Low probability of operating state, and then assess the system resilience in the temporal term. 

6.4. Application of the proposed methodology  

The proposed methodology is applied to an “APL 5L” with an “X42 grade” subsea pipeline. In 

this case, it carries the hydrocarbon material like co-mingled fluids and would highly be suspected 

to MIC. The subsea pipeline needs to operate for more than 30 years [86–88]. The detailed 

descriptions of the computation process assessing the resilience of the subsea system are provided 

as the following.  

Step one: Defining the system and obtaining the influence diagram of MIC, and all required 

information 

In this step, a mechanistic model of MIC rate is provided. The mechanistic model of MIC rate 

includes (i) environmental circumstances such as CO2 partial pressure, O2, temperature, and 

Sulphides, (ii) operating circumstances such as pressure and velocity, (iii) material circumstances 

such as steel Carbon content, (iv) exposure duration. The rate of MIC has a direct contribution to 

the maximum pit depth, and the subsea pipeline would further fail. Therefore, it is essential to 

design the pipeline with the capability of accepting a certain level of failure. According to this 

point, the disruption attribute of resilience is defined based on the rate of MIC as Sever or High.  

The mechanistic model of MIC rate and relevant data based on literature [87,89–91],  

and operational and chemical analysis from a subsea facility off the East Coast of 
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Canada is presented in Figure 6.6 (i.e., the observed variables). In addition, a chemical 

examination of produced water shows the overall microorganisms through the qPCR 

(quantitative Polymerase Chain Reaction) technique (3.20e+06 (16S rRNA copies/mL 

for the sample)), different types of microorganisms’ percentage (Methermicoccus 4.79 

%, Desulfovibrio 8.72 %, Dethiosulfatibacter 10.14 %, Archaeoglobus 38.36 %, 

Thermoanaerobacter 1.349 %, Thermococcus 9.88 %, Thermosipho 3.6 %, 

Methermicoccus 4.79 %), and sulfate reduction rate (SRR) (umolS/mL/day 0.52 in 

situ). In order to have insights developing a mechanistic model of MIC, the relevant 

MIC-based guidelines are taken into account [92–98].   

 

Figure 6.6. The influence diagram representing the mechanistic model of MIC rate and relevant 

data  
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Step two: Identifying the functionality of the system and developing a Markov chain to represent 

the states of the system 

In this step, the four functionality states (absorption, adaptation, restoration, and disruption) of the 

subsea pipeline are defined, in which all states are decomposed into the substates (e.g., the Markov 

chain presented in Figure 6.5). Besides main resilience attributes, this is influenced by more 

parameters such as learning and external factors. Thus, to assess the resilience of the subsea 

pipeline under the influence of MIC, a new model is developed by identifying key contributing 

factors of the system, as illustrated in Figure 6.7.  

Three factors are identified that effecting the absorption ability of the system as (i) preventive 

actions (these measures prevent the occurrence of disruptions), (ii) redundancy (this ability of the 

system provides an additional component that is not required to function and reduces the impact 

of disruption), and (iii) robustness (this is the system ability, in which the system resist any changes 

caused by the disruption) [39,63,72]. Thus, different preventive actions are taken into account in 

the pipeline design to prevent the MIC occurrence, such as (i) assuring cleanness, (ii) coating, (iii) 

cathodic protection, and (iv) periodic inspection. Two factors are identified that effecting the 

adaptation ability of the system as (i) mitigative actions (these measures reduce the consequences 

of undesired disruptions and can maintain the system to operate), and (ii) flexibility (this is the 

ability of the system by adapting the deviations and perversions without effecting to the 

functionality of the system). In addition, different mitigative actions are considered in the system, 

including (i) Inhibitors treatment, (ii) Biocide treatment, (iii) Biological treatment, (iv) 

Manipulating operational parameters, and (v) Pigging [86]. Finally, three factors are identified that 

effecting the restoration ability of the system (i) mitigative actions (mentioned earlier) and (ii) 

maintenance actions (repair or replace). 
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The resilience of the system would be enhanced by improving the resilience attributes (absorption, 

adaptation, restoration, and disruption) [32,72]. The above contributors' factors into the system 

resilience are connected within the normal arcs. The reason is that the factors establish the 

resilience attributes simultaneously at the same time slice.
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Figure 6.7. The influence diagram presents the system resilience of the subsea pipeline 
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As shown in Figure 6.7, a schematic representation influence diagram is provided for the resilience 

assessment of the subsea system under the influence of MIC. The system functionality is assessed 

for measuring system resilience of subsea pipelines, considering the rate of MIC. In the following, 

we studied the substates of resilience attributes, in which all influential parameters are evaluated. 

(i) Disruption 

In this study, the disruption is defined as the rate of MIC, and the rate of MIC for an 

individual corrosion defect is influenced by different parameters, including bacteria 

colonies (SRB, APB, and IRB), material properties, exposure duration, and the 

environmental parameters. Different environmental factors in MIC rate play an 

important role in temperature, pressure, pH, fluid velocity, oil and gas-phase 

composition, and solids [99]. It should be highlighted that the IRB, SRB, and APB 

activities are a function of the nearby environmental parameters. For example, the fluid 

velocity would induce a MIC defect due to boosted turbulence and mass transfer of 

fluid velocity on the surface [100]. The temperature would double the rate of MIC in 

the interval 283.15–288.15 oK and would rise in the interval 273.15–348.15 oK. In 

addition, the MIC rate would be accelerated in an acidic medium due to mentioned 

temperature ranges [4,100,101]. The high value of pressure can enhance the rate of 

MIC by increasing the protective surface dissolution from the metal surface. Microbial 

activities can tolerate a wide variety of pressure, such as SRB standing up to ~51 

Megapascal pressure [4,102]. The value of pH depends on many factors such as 

temperature, organic acids, buffering species’ concentrations, pressures of H2S and 

CO2 [103]. The final example, the rate of MIC depends on water conductivity function. 

The higher value of Cl- concentration would increase the water conductivity. The MIC 
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rate would grow by increasing the Cl- concentration with a range of 10,000 – 120,000 

ppm [104]. In addition, the influence diagram of the mechanistic model of MIC rate 

and relevant data are depicted in Figure 6.7. 

(ii) Absorption  

In this study, absorption is decomposed into three parameters. The subsea pipeline is 

assumed to be strong and healthy in the constitution. Besides, the system has a high 

ability to tolerate disruptions, and therefore the system would be much more robust. 

Redundancy in pipeline design is taken into account using High Integrity Pressure 

Protection Systems (HIPPS) in case of pressure drop caused by disruptions. The 

preventive actions are presumed to be already in the pipeline design and installation. 

The cathodic protection and coatings have the lowest installation difficulty and cost, 

which proficiently prevents MIC occurrence [105]. This study assumes that Fusion-

bonded epoxy (FBE) and sacrificial anode techniques are used for the mentioned 

coating and cathodic protection, respectively [86,106]. 

(iii) Adaption  

This study decomposes adaption into two parameters: flexibility and mitigation actions. 

The latter will be explained in the restoration part (iv: restoration). In addition, the 

flexibility of the pipeline is evaluated by providing the answer to the following 

question. First, regarding fault-tolerant, “Could the total subsea system continue to 

operate in case of disruptions for the critical components, machinery, servers, and 

software?”. Second, regarding self-organization, “Does the onsite decision-maker(s) 

have enough authority to make an adequate decision?”. In this study, it is considered 
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that the system has a high ability of flexibility, and the system has a high capability of 

fault-tolerant and decision-maker(s) have enough authority to make a viable decision. 

(iv) Restoration 

This study decomposes restoration in detail by performing two different sets of actions. 

First, mitigative actions are explained as follows: (i) MIC inhibitors are referred to 

chemicals that influence anodic part such as chromates 𝐶𝑟𝑂 4
 2−, and 𝑁𝑂 2

 – [107]. A value 

of 80 % efficiency is considered for inhibitors in the system and assumed that the 

inhibitors have a required dosage through the system [86,108]. (ii) Biocides are defined 

as living things (microbes) killers such as chlorine dioxide, Metronidazole, 

Formaldehyde, and Glutaraldehyde [109–111]. A 60 % value for laboratory-results 

(Formaldehyde) efficiency is used in this study [86,111]. Periodical pigging is a 

mechanical strategy that is used to mitigate MIC. A value of 65 % pigging efficiency 

based on laboratory results is considered in this study [112]. Periodical pigging would 

help to remove the piece of the biofilm and solid particles [113]. The biological 

treatment is another mitigative action that uses bacteria against the MIC responsible for 

primary bacteria [114]. For example, persevering the system with Nitrate induces the 

heterotrophic to reduce the rate of MIC up to 40 % [115]. The manipulation parameters 

which can treat the MIC effectively are explained earlier. 

Regarding maintenance actions, replacement and repair are considered in case of 

disruption. Selecting replacement or repair depends on the pipeline's age, budget, and 

efficiency over the expected service life of the pipeline, as discussed in previous 

authors’ study [86]. Finally, the emergency shutdown may be used to reduce the 

consequences of the emergency disruption occurrence. 
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Step three: Estimating the value of transition states of the Markov chain and translating the 

Markov chain into the dynamic Bayesian network 

As presented in Figures 6.4 and 6.5, the transition states of four resilience attributes (absorption, 

adaptation, restoration, and disruptions) from state one to state four are characterized with relevant 

transitional probabilities 𝜆 0, 𝜇 0, 𝜆 1, and 𝜇 1. This should be added that the transitional 

probabilities would better be obtained from historical data in case of availability. To obtain the 

values of state one to state four, the conditional probability tables for the corresponding nodes are 

utilized afterward, directing the node state of functionality [85]. 

For simplicity, it is assumed that the nodes representing absorption, adaptation, and restoration 

have only states “High” and “Low”. As an example, the state “High” for the node restoration 

means that how much is the probability of the system to have an ability of restoration, in which 

the system could restore itself from the state disruption into the state normal. Figure 6.8 shows the 

translation of the Markov chain into the Bayesian network, presenting all potential contributing 

factors. In the present work, the importance weights present the impact of parental nodes on their 

corresponding child nodes, in which the weights represent the relevant conditional probabilities. 

In this work, the Best worst method (BWM) is utilized to assist in obtaining conditional 

probabilities. BWM, proposed by Rezaei (2015) [116] applied in different application domains 

[117–122], requires fewer comparison data than existing methods and provides much more viable 

and consistent results based on its unique comparison procedure. BWM handles a subjective 

judgment caused by uncertainty in this decision-making process. It should be noted that the BWM 

is developed based on the opinions coming from decision-makers within relevant backgrounds 

about the understudy system. Therefore, the weights of contributing factors highly depend on the 

specific features of the system and its operational condition and environmental circumstances. The 
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importance weights of the causal factors are presented in Table 6.2. In addition, the contributing 

parameters’ effects of parental nodes are assumed to be neutral and independent. Thus, the Leaky 

Noisy-OR gate functions are used to model all parent nodes' impact on the corresponding child 

nodes [123,124]. Besides, the subsea pipeline is assumed that the system is functioning 

appropriately with consideration of all industrial safety precautions.     
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Figure 6.8. The Bayesian network structure for resilience assessment of the subsea pipeline influenced by MIC 



 

 
270 

 

Table 6.2. The importance weights of the contributing parameters for the three resilience 

attributes (absorption, adaption, and restoration) in the identified Bayesian network structure 

Child nodes Node tag Node descriptions  Importance weights*, state “High” 

Absorption 

N1 Redundancy ~ 0.04 

N2 Robustness ~ 0.10 

N3 Preventive measures ~ 0.86 

Preventive 

measures 

N4 Industrial codes and 

standards 
~ 0.68 

N5 Assuring cleanness ~ 0.81 

N6 Coating ~ 0.75 

N7 Cathodic protection ~ 0.80 

N8 Periodic inspection ~ 0.90 

Adaption 

N9 Flexibility ~ 0.53 

N10 Mitigative actions ~ 0.97 

Restoration 

N11 Maintenance actions ~ 0.92 

Maintenance 

actions 

N13 Repair ~ 0.65 

N13 Replace ~ 0.85 

N14 Emergency shutdown ~ 0.10 

Mitigative 

actions 

N15 Inhibitor treatment ~ 0.80 

N16 Manipulating parameters ~ 0.68 

N17 Biocide treatment ~ 0.60 

N18 Pigging ~ 0.65 
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N19 Biological treatment ~ 0.50 

Flexibility 

N21 Fault-tolerant ~ 0.86 

N22 Self-organization ~ 0.68 

* It considered as conditional probability 

 

Step four: Computing the probability of each functional state and resilience as a summation of all 

states’ probability 

In this step, a dynamic model of the Bayesian network is developed to obtain the resilience of the 

subsea system over time. The structural dynamic Bayesian network within 70-time slices is 

depicted in Figure 6.9. It is considered the time slice indicating month; however, it can be a second, 

minute, an hour, a day, a week, or a year. The results show that the four attributes, disruption, 

absorption, adaption, and restoration at 𝑡 = 0 are 0.78, 0.81, 0.75, and 0.91, respectively. To assess 

the resilience in the period of 𝑡 = 1 to 𝑡 = 70, the state of node disruption is set to be “High”. As 

shown in Figure 6.10, the resilience of the system decreases gradually until it reaches the lowest 

point as 0.091 at time 𝑡 = 6. According to Figure 6.10, it is concluded that the 90 % recovery of 

performance loss from the lowest point is equal to 0.9091 (i.e., 0.90 * (1 - 0.091) + 0.091) in 30 

time slices (i.e., 36 – 6 = 30). In addition, the lower absorption system ability results in a more 

important reduction in system performance loss (resilience), and the performance loss would be 

greater in the case of higher absorption ability of the system. After a rapid decrease of performance 

loss, the adaption and restoration abilities of the system are going to be recovered till the state four 

probability is stabilized at 0.9091. Another observation is that the system continues to improve 

even after 90 % recovery of performance lost and is stabilized at time 𝑡 = 46 and afterward (see 

Figure 6.11).  
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Figure 6.9. The structural dynamic Bayesian network for assessing the resilience of the subsea pipeline over time 
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Figure 6.10. The resilience assessment of subsea pipeline over time 
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Figure 6.11. The resilience of subsea pipeline after 90 % recovery of performance lost (stabilization period)
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Step five: Sensitivity analysis  

In this step, the sensitivity analysis is conducted in two ways. First, the node “Learning,” as 

explained in Section 3 (“The ability of a system to learn from past experiences, knowledge, and 

previous disruption. This helps practitioners in predicting and avoiding disruptions.”) is added 

to the dynamic Bayesian network model, in which this plays as an external factor to consider 

the experience in the past and use to predict the future disruptions. The second is identifying 

the primary contributing resilience factors. This would help decision-makers identify the most 

critical factors in the system and provide some intervention actions for improvement.   

First, the node “Learning” is added to the dynamic Bayesian network model, as depicted in 

Figure 6.12. It is assumed that the learning node has three states “High”, “Moderate”, and 

“Low”. The results of system resilience for different states of node learning are illustrated in 

Figure 6.13. It can be concluded that subsea pipeline with higher learning ability typically has 

a sharper recovery rate. In this case, the system resilience with state “High” learning ability is 

improved much more than the system resilience with “Low” learning ability. The 90 % recovery 

of performance loss from the lowest point equals 0.9091, and the time for the state High, 

Moderate, and Low are 19, 21, and 25 time slices, respectively. Learning from the experiences 

helps decision-makers improve the system's resilience attributes for the following possible 

disruptions in the future. In addition, learning ability would offer constructive response from 

knowledge achieved from occurred disruptions. This also helps system resilience generating 

new knowledge to better respond to the disruptions. This new knowledge can be performed to 

correct inappropriate technical guidelines, assist the specialists in predicting the undesired 

disruptions, and make the appropriate adjustments in the subsea pipeline.  
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Figure 6.12. Performing sensitivity analysis by adding the node “Learning” to the dynamic 

Bayesian network 

 

Figure 6.13. The sensitivity analysis of resilience assessment for subsea pipeline considering 

node “Learning” with different states 
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The second is performing sensitivity analysis by changing the contributing factors (i.e., 

resilience attributes), in which the time to 90 % recovery is evaluated. The results are illustrated 

in Figure 6.14, in which the factor disruption based on reliability has more variation. The factors 

adaption, restoration, and absorption are relatively consistent over time. In Figure 6.15, two 

lines represent the desired system resilience when all nodes in the Bayesian network are set to 

be “High”, and system resilience fails since a node has the state “Low”, and the rest of the nods 

are set to state “High”. According to this point, the system resilience becomes the lowest in 

ascending order when the nodes are not functioning: N3 (Preventive measures), N16 

(Manipulating parameters), N10 (Mitigative actions), and N17 (Biocide treatment). Finally, in 

Figure 6.16, the variation of states’ probability is time dependent.  

 

Figure 6.14. Assessing the variation of contributing factors on system resilience changes 
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Figure 6.15. Assessing the variation of contributing factors (child nodes) on system resilience 

changes 

 

Figure 6.16. Assessing the variation of states’ probability in a time-dependent manner 
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To validate the resilience assessment of the model, it requires information and data for the 

states’ functionalities as well as inherent features of the system. First, considering the dynamic 

Bayesian network, analyzing the posterior needs to be performed for model verification. In this 

case, the system functionalities of restoration are 70 time slices (stabilization period). As shown 

in Figure 6.16, the time-dependent states’ functionalities are provided. The probability of 

disruption drops to nearly 0.2 at 𝑡 =  25. States’ probabilities of adaption and absorption touch 

their peak of 0.45 and 0.2 at 20 and 25 time slices, respectively. In addition, the system 

resilience goes to the lowest point around 0.1 at 𝑡 = 10 time slices and surges till it stabilizes 

at 0.91 at 𝑡 = 70 time slices. This information has enough potential to validate the proposed 

model partially. The reason is the that the changes of system resilience variation are exactly 

based on the expectations. Therefore, it can be concluded that the obtained evidence is expected 

to result in rapid restoration for the resilience of the system.   

6.5. Conclusions 

In this study, a new methodology is proposed using a dynamic Bayesian network to assess the 

subsea pipeline's resilience dynamically. There are limited attempts to quantify the system's 

restoration probability with the sustained operation, which defines resilience. Lack of data, 

uncertainty in the data, and the impact of harsh environmental conditions make MIC 

management of the subsea pipeline further challenging. The dynamic Bayesian network 

approach provides a mechanism to model and manage the resilience of such a system. It 

addresses most of the challenges mentioned above. In addition, i) it utilizes both types of 

subjective and objective input information, ii) it performs the network updating once the new 

information becomes available, and iii) it assesses the resilience of the system over time. 

This work proposes a new methodology to assess resilience as a function of time. Applying the 

methodology to a practical case study confirms that the proposed framework could provide a 

dynamic resilience profile. The dynamic resilience profile helps decision-makers better 
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understand the subsea pipeline's resilience capability, monitor its performance, evaluate the 

safety-critical actions', prevent undesired disruptions, and identify the viable operational system 

improvement. In addition, the robustness and applicability of the proposed approach assert that 

it can be performed in other types of pipeline derogations and different engineering application 

domains. Such investigation is recommended to can be conducted for future study.  

Two challenges have been faced during the study, which require further consideration. Firstly, 

while the current study has focused on discrete time-dependent operations, the actual operation 

is continued. This means discrete states characterize the Bayesian network's child nodes. A 

dynamic continuous Bayesian network can address this challenge. It is not considered in the 

present study to maintain the simplicity of the approach and establish the foundational base that 

a dynamic Bayesian network can model system resilience. Secondly, the transition states and 

the probabilities of the child nodes could be determined using historical data rather than logic 

(used in the current study). A data-driven approach can define the conditional probability tables 

and assist in addressing the epistemic uncertainty of the model. Authors hope other research 

will pick on these challenges and comprehensively address them. 
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Chapter 7 

Summary, Conclusions and Recommendations 

7.1. Summary 

The present thesis reveals the original presentation of the Hierarchical Bayesian Analysis, 

Resilience assessment, Monte Carlo Markov Chain Simulation, non-homogeneous Markov 

processes, Meta-heuristic optimization algorithms, Bayesian inference, continuous Bayesian 

network, dynamic Bayesian network, and loss computations method for corrosion management 

of the marine and offshore systems under MIC. The existing MIC mechanistic models for 

failure estimations and further management are not structured in a dynamic manner, incapable 

of addressing the dynamic, unstable, and interdependency between the MIC contributing factors 

to estimate the system failure rate. The risk-based decision-making methodologies for MIC-

based failures are established to address the significant MIC contributing factors and 

interdependencies. In addition, they can capture the lack of knowledge and assist microbial 

corrosion management of the offshore structure system. 
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The present thesis proposes integrated-based probabilistic models to manage the s offshore 

structure system suffering from MIC. The introduced model considers the 

interdependencies/interactions of contributing factors and their impacts on subsea systems' 

corrosion and failure rate. The stochastic behavior of microorganism metabolism in nature and 

failure estimation of corroding subsea systems are captured. A systematic literature review is 

conducted by highlighting the research shortages, requirements, and challenges of microbial 

corrosion in risk-based decision-making approaches. The results highlighted the potential and 

gaps in the present literature and explained the following research activities in the near future. 

Also, monitoring and management practices of the microbial corrosion are determined by 

engaging the "Continuous Bayesian Network technique with Hierarchical Bayesian Analysis". 

The integration helps overcome the Bayesian network's discrete value limitations and source-

to-source uncertainty for each node. In addition, the non-homogeneous Markov processes and 

Poisson, homogeneous gamma is taken into account to model multiple defects generations, the 

average, and maximum pit depth growth. The outcomes help decision-makers choose an 

optimum and feasible maintenance plan for the offshore structure systems. Besides, the Meta-

heuristic algorithm as Genetic Algorithm (GA) is used to obtain the optimum schedule for 

performing integrity management actions. The results identify a series of solutions allowing 

decision-makers to select the optimal combination of integrity management actions with the 

tradeoff between reliability and cost. Finally, the resilience of offshore structural systems 

impacted by MIC is assessed probabilistically. The aggregated results assisted decision-makers 

in consideration of the resilience in the design and operation period of the system. 

7.2. Conclusions 

The main remarks and conclusions obtained from the current thesis are summarized as the 

following.  
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7.2.1. Reviewing the risk-based decision-making models for microbiologically influenced 

corrosion 

This research presents several observations in terms of microbial corrosion characteristics, 

detection, modeling, and management in the available state of the arts. A series of questions in 

terms of the sample, collecting data, assessments, and analysis are elaborated to represent the 

data integration in a risk-based decision-making model. In summary, the key finding is: the 

existence of microorganisms in the understudy system does not provide proof of microbial 

corrosion activities; many published model only depends on the off-site facilities and are 

limited to rapid assessment because of the high simulation cost and environmental conditions, 

the microbiological evaluation-based techniques (e.g., metagenomic and metabolomic) are the 

greatest reliable and robust methods to determine microbial corrosion, the data mining on the 

microbiological data set might offer a valued insight for the remarkable MIC impacts 

proliferation, and detecting MIC in a short time.  

7.2.2. Development of an innovative MIC failure predication model 

The present study predicts the rate of microbial corrosion and pit depth growth in the early stage 

of marine and offshore system development to derive an appropriate safety and integrity 

management plan(s) by preventing, mitigating, and controlling the system failure that occurs 

due to MIC. The modeling methods such as the Bayesian network can be utilized to estimate 

the rate of MIC and pit depth growth. The proposed methodology assists in accurately 

monitoring MIC activity and developing strategies to manage it. The MIC monitoring and 

management activities are achieved using the Continuous Bayesian Network technique with 

Hierarchical Bayesian Analysis. The integration of the Bayesian Network technique with 

Hierarchical Bayesian Analysis aids in dealing with the Bayesian network's discrete value 

drawbacks and "source-to-source uncertainty" for each node in the network. The approach 

could provide an accurate parameters value, including failure probability and MIC occurrence 
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rate. The study provides a better understanding of the MIC rate contributing factors and failure 

probability. The outcomes help decision-makers to develop an effective microbial corrosion 

management plan.  

7.2.3. Development of an integrated operational safety model considering multiple MIC 

defects 

This research introduces a novel operational reliability analysis framework for subsea systems 

under multiple microbial corrosion defects. In the model, optimum maintenance scheduling of 

the subsea pipeline is evaluated. The non-homogeneous Poisson and Markov processes and 

homogeneous gamma are integrated to model the maximum and average pit depth and corrosion 

defects generations. The developed integrated operational safety model provides maintenance 

scheduling, detection probability, average and maximum pit depth, cost/benefit, and optimum 

maintenance plans. The current research task aids decision-makers in choosing conditional 

maintenance scheduling for offshore structures systems. In addition, the results indicated that 

with consideration applicability of the model, it could be applied to other processing systems.  

7.2.4. Development of integrity risk management of subsea pipelines  

This study has developed a multi-objective functional methodology involving dynamic 

continuous Bayesian network modeling to minimize the operational risk associated with the 

MIC. The Meta-heuristic algorithm as a Genetic Algorithm is used to obtain the optimum 

schedule for performing integrity management actions. The application of the proposed model 

is illustrated in a subsea pipeline under the influence of MIC. The analysis results highlighted 

that the obtained diverse set of optimum solutions allows decision-makers to balance reliability 

and cost of integrity management actions. The annual budget is also added as a constraint to the 

model. It is indicated that the annual budget has no significant impact on the optimum solutions. 

Thus, the proposed framework in this study can be based on decision-making support tools for 
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optimal maintenance of a corroded subsea pipeline subjected to risk, safety, and resource 

integrity management. 

7.2.5. Development of resilience risk assessment of subsea pipelines  

This task model, the offshore structure system's resilience, uses a dynamic Bayesian network. 

The formation and propagation of microbial corrosion are debatable topics in the state of the 

arts and are uncertain and complex in harsh marine and environmental, operational situations. 

Thus, assessing the resilience of the marine and offshore systems under the influence of MIC 

is vital. According to this point, the microbial mechanism of corrosion should be adequately 

understood, and the understudy system needs to be designed in order to be able to develop an 

early response for the potential undesired event before the system collapse entirely. The actual 

application of the study indicated that the introduced methodology could reflect the resilience 

profile of the system dynamically. This approach assists decision-makers in having a 

comprehensive understanding of offshore structure system resilience capability, monitoring the 

corresponding performance, evaluating the safety and risk crucial intervention actions, 

preventing any potential undesired events (e.g., disruptions), and identifying system safety 

operational improvements. Besides, the applicability and robustness of the proposed dynamic 

resilience assessment asserted that it could be applied to other types of structural derogations 

in different application domains. 

7.3. Recommendations 

The present thesis aims in developing a practical approach to managing microbial corrosion 

management offshore structure systems. According to the conducted objectives, the following 

highlights are suggested for future research tasks and more investigations: 

• The development of a progressive digitalization and data acquisition approach for MIC-

based information needs to be deeply studied. Such work would systematically collect, 
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assign, and analyze the related objective and subjective input information to have a 

robust and reliable microbial corrosion safety and integrity management strategy.  

• The development of a dynamic cost-based MIC management optimization approach 

considering the best fitted machine learning algorithm for subsea systems can be a 

promising research work considering both direct and indirect costs.  

• Advanced developments of probabilistic and fuzzy-based approaches could enhance the 

capabilities of marine and offshore systems by assessing and evaluating microbial 

corrosion treatments. Therefore, a human-machine intelligent system could further 

present an accurate timeline for operators and decision-makers to derive the risk levels. 

• The development of an integrated dynamic continuous Bayesian network with resilience 

concepts needs to be investigated to minimize the subjective and objective uncertainties 

in MIC decision-making purposes.  

• The development of a hybrid risk-based decision-making modeling approach for MIC 

management of subsea systems requires to be investigated dynamically. Such 

developments would enable decision-makers to separate the objective and subjective 

uncertainties adequately, considering the information sources to have robust and reliable 

safety and integrity decision-making system. 
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