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ABSTRACT

Offshore systems suffer from excessive corrosion damage in the marine environment because of
the dynamic operational and environmental contributing factors. Such situations enhance the
serious integrity and safety concerns, systems degradation, and associated risks, especially in harsh
environmental conditions. The microbiologically influenced corrosion as an essential corrosion
category has considerable characteristic complexity because of the interactions between the
bacteria and the corrosion contributing factors. The microbial corrosion and the interconnected
system safety management plan are impacted by the stochastic behavior of microbial metabolism
and operational parameters. To have a robust and reliable corrosion management plan in offshore
systems, the dynamic microbial corrosion features, as well as the corresponding risk factors, must
be taken into account.

The present thesis proposes a dynamics-based approach for risk-based safety and integrity
management of marine and offshore systems that suffer from microbial corrosion. First of all, a
literature review is presented for the identification of microbial corrosion shortages, challenges,
and requirements in the risk-based decision-making framework. The study is focused on the four
tasks, including characteristics, mechanisms, modeling, and management of microbial corrosion.
Secondly, a new probabilistic model is proposed to estimate the corrosion rate of a subsea pipeline
by assessing the failure time and probability. The microbial corrosion monitoring and management
activities are achieved using the Continuous Bayesian Network technique with the integration of
Hierarchical Bayesian Analysis. The analysis outcomes indicate that the interdependencies
between the contributing factors of microbial corrosion could raise the rate of corrosion and reduce
the failure time of engineered corroded systems. Thirdly, new reliability is proposed to assess the

optimum maintenance strategy time-interval for a subsea system impacted by multiple microbial

il



corrosion defects. The different probabilistic models, including the non-homogeneous Markov
processes, non-homogeneous Poisson, and homogeneous gamma, are utilized to model the
maximum and average pit depth and multiple defects generations. The results show the influence
of multiple microbial corrosion defects on the subsea pipeline considering several scenarios and
recommend the optimal intervention time and management practices. Finally, a novel risk-based
safety and integrity management framework is recommended to evaluate the subsea pipeline's
failure. A multi-objective functional optimization methodology is developed to minimize the
operational risk associated with microbial corrosion. The research results highlight an actual safety
and integrity management plan consistent with the industrial practices. An innovative and dynamic
Bayesian Network-based approach is proposed to assess the subsea system's resilience under MIC
as a function of time. The subsea system is designed with sufficient resilience to maintain its
performance under the time-varying interdependent stochastic conditions. The proposed
methodology assists decision-makers in considering the resilience of the system design and
operation. The present thesis investigates the mechanisms of microbial corrosion and explores the
dynamic risk-based methodologies for several operating scenarios to manage the safety and

integrity of marine and offshore systems.
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Chapter 1

Introduction

1.1. Background

The marine environment and offshore sectors are critical challenges for infrastructures, increasing
the risk of material degradation. It is exposed to harsh environmental and operating conditions due
to the operational, environmental, and external influential factors. The contributing factors might
contain the concentration of CO2, pH, biofouling, temperature, pollutants, pressure, velocity,
bacteria, carbonate solubility, and salinity. The influential factors induce corrosion of the offshore
and marine systems, which further causes integrity and safety concerns. The dynamic
interdependencies between the factors and their stochastic behavior in nature support the material
degradation of the relevant transportation system in oil and gas industrial sectors (e.g., subsea
pipelines). Notably, the two phases of water-oil provide a potential environmental condition
contacting the marine and offshore internal face; this then poses microbial growth and CO2
dissolution. The interactions between the microorganisms and influential factors introduce
microbiologically-influenced corrosion (MIC) [1].

Commonly, different types of corrosion, including MIC, enface the marine and offshore operating
system with integrity challenges. MIC is a stochastic material degradation progression initiated by
the metabolic process and microorganisms presence, including bacteria and fungi [2]. Considering
MIC metabolic activities and formation, the MIC mechanism produces corrosive substances and
makes the failure characteristics of marine and offshore systems complicated. Besides, the external

environmental factors and bio-chemical nutrients enhance the formation and mechanism MIC.
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In addition, the microorganisms have significant contributions to the deterioration of the subsea
systems (e.g., pipeline corrosion) [3,4], reservoir souring [2,5], and cargo tank leakage [6,7]. The
newest studies have highlighted that MIC is the cause of over 20 % of worldwide corrosion and
the corresponding failures, with the considerable loss [8]. The microbial metabolism complication
and growth process make decision-makers in the system face a detailed understanding of the MIC
mechanism and its relevant characteristics. Besides, the microorganisms' instability and co-
existence on the biofilm contributes to numerous disastrous MIC-based failures in the offshore and
marine system [3,9,10]. Specifically, the rupture accident of a natural gas high pressure
transportation pipeline near Carlsbad, New Mexico [11] and the transit line failure at Prudhoe
Bay [12] are recognized as MIC. The latter one resulted in the loss of over $8 billion, that is while
the failure of the gas transporting line claimed 12 deaths with related reputation and consequences
loss. This seriously calls the essential research to well-understanding, reliably diagnosing,
precisely predicting MIC characteristics and consequences, and adequately managing MIC over
time. Having an appropriate MIC knowledge in terms of failure rate would assist in the
development of a reliable and robust MIC integrity management approach for the subsea system.
The available model in the state of arts is inadequate to capture interdependencies of the “physio-
chemical parameters” on MIC rate as well as failure probability estimation. There are a few
dynamic-based models to assess the impact of microorganisms and characteristics’ dependencies
on the rate of MIC of the subsea system. The microorganisms’ co-existence impacts the failures
of the subsea system have not been considered MIC prediction rate. In addition, the efficiency and
applicability of different management actions (e.g., preventive, control, and mitigative) have not

been taken into account in the management strategy plan. It is a requirement to improve our
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understanding and investigate the dynamic and stochastic behavior of MIC in subsea systems to

acquire a MIC and integrity management plan reliably.

1.2. Motivation and objectives

MIC poses serious risks of failure in the subsea systems and highlights its significant impact on
the whole of system failure and related loss [8,13,14]. MIC can be increased underlying the
microorganisms' instability and co-existence on the biofilm. The biofilm is complex structurally
and made by the fusion of bacteria cells and extracellular polymeric substances. These complex
microbial communities lead to a dynamic system failure impacting the potential subsea systems.
Moreover, the complex and stochastic MIC nature includes the interrelationships between
physical, chemical factors, and biological, leading MIC modeling to become a challenging task.
The existing methodologies assumed the simple mechanistic model for MIC, such as the
correlation of the chemical parameters causing the intense MIC occurrences [15]. Moreover, cause
and effect connections are realized by controlling the lab scale assessments [16]. Therefore, the
dynamic characteristics of microorganisms cause extrapolation to become problematic over time.
In addition, the extensive published works in terms of MIC modeling methodologies are according
to the worst-scenarios on localized pitting corrosion. Besides, the available MIC modeling
frameworks consider only SRB as an influential factor, and some take the balance between sulfate-
mass and biofilm. There are also limited methods that have taken the kinetic microorganisms’
growth in the mechanistic MIC model. To obtain the time that the system would collapse entirely,
the rate of failure probability and pit depth distributions must be investigated systematically.

This research aims to develop a risk-based decision-making model to manage subsea systems
impacted by microbial corrosion. The presented decision-making model addresses the complicated

interdependencies among the various vital corrosion contributing factors (e.g., steel composition,
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temperature, carbon content, fluid velocity, CO2 pressure, and more factors) and the bacteria for

the marine and offshore failure system assessment. The research goal is accomplished considering

the objectives mentioned below. Figure 1.1 presents the translation of research objectives into a

research task.

1i.

1il.

1v.

To develop systematic literature on risk-based decision-making models for MIC in offshore
pipelines by identifying the existing gaps, needs, and challenges of MIC models and
explaining further research opportunities.

To propose a dynamic-based framework to analyze the system reliability of subsea systems
with consideration of the non-linear interdependencies among MIC influential and
contributing factors.

To develop a probabilistic model to simulate operational subsea pipeline maintenance
strategies by studying the time-interval, detection probability, average, and maximum pit
depth by identifying the optimum strategy considering MIC multiple defects.

To develop an MIC integrity management framework within the tradeoff between

reliability and cost of management practices.

To develop a dynamic framework to assess and evaluate the marine and offshore system's

resilience under the influence of microbiological corrosion.
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Development of operational
pipeline assessment under
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Figure 1.1. The thesis research objectives
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1.3. Scope and limitations

This research study is established particularly for subsea operational conditions. The study mainly
focuses on the risk-based decision-making models for integrity management of marine and
offshore systems suffering from MIC. As mentioned earlier, the MIC degradation process is
complex and provides serious concerns in system failure estimation and integrity management.
Therefore, robust, reliable, and dynamic MIC management models are required to address the
connected complexity, uncertainties, and stochasticity. Besides, it should have enough capabilities
to address the safety and reliability of marine and offshore systems. Numerous uncertainties in
information, primary data processing MIC contributing factors, and diminishing mechanisms
because the availability of sparse data might initiate subjective uncertainty in the introduced
approaches. The current research work is not an effort to capture all research gaps, challenges, and
needs related to the MIC subsea systems integrity management; however, it is an effort to capture

a few of them in subsea systems operations under the influence of microbial corrosion.

1.4. The novelties and contributions

The present doctoral key research's novelties and contributions are in corrosion management of
the subsea system suffering from microbial corrosion. The novelties and contributions are

highlighted as the following:

e A systematic review attempts to the identification of MIC shortages, requirements, and
challenges in risk-based decision-making approaches. The review assessment mainly
determines the characteristics, modeling, mechanisms, and management of microbial
corrosion. Both theoretical and empirical outcomes are then integrated. The gaps and
capabilities of the state of arts are then highlighted, and future research tasks are explained.

The novelty and contribution of this research task is presented in chapter 2.
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A new probabilistic model is proposed for the corrosion-based failure rate assessment and
failure time of subsea pipelines influenced by microbial corrosion. The proposed model
accurately monitors the activities of microorganisms and accordingly develops
management strategies. The Continuous Bayesian Network technique with the integration
of Hierarchical Bayesian Analysis is utilized to monitor and manage microbial corrosion.
Besides, the framework considers both model and data uncertainty and develops a novel
MIC mechanistic model to determine pit depth growth. The research task presents a
comprehensive knowledge regarding the MIC contributing factors and associated failure
probability. The novelty and contribution of this research task is presented in chapter 3.

A new reliability model is introduced to assess the optimum maintenance of strategy time
interval for the marine and offshore process systems impacted by multiple microbial
corrosion defects. The presented approach integrated the non-homogeneous Markov
processes and Poisson and homogeneous gamma to model the multiple defects generations,
the maximum and average pit depth. The introduced methodology reproduces maintenance
strategies with consideration of cost, time interval, detection probability, maximum and
average pit depth, and classifies the optimum management strategies. The aim of this
research task is to help decision-makers to select an optimum maintenance strategy for the
subsea system impacted by microbial corrosion. The novelty and contribution of this
research task is presented in chapter 4.

A novel integrity risk management approach is recommended to assess the subsea
pipelines' failure behavior. A multi-objective functional methodology involving Dynamic
Continuous Bayesian Network modeling to minimize the operational risk associated with

the MIC is proposed. The Meta-heuristic algorithm as a Genetic Algorithm is used to obtain
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the optimum schedule for performing integrity management actions. The results identify a
series of solutions allowing decision-makers to select the optimal combination of integrity
management actions with the tradeoff between reliability and cost. The novelty and
contribution of this research task is presented in chapter 5.

¢ A novel “dynamic Bayesian Network-based approach” is proposed to assess the resilience
of marine and offshore systems suffering from microbial corrosion over time. The design
of the subsea system is based on adequate resilience and performance maintenance
considering time dependency and stochastic MIC parameters. The proposed approach
helps decision-makers in the resilience consideration of the subsea system during the
design and operation period. The promising novelty and contribution of this research task

are presented in chapter 6.

1.5. The statement co-authorship

The authorship contributions of Mr. Mohammad Yazdi, Dr. Faisal Khan, Dr. Rouzbeh Abbassi,
Dr. Noor Quddus, and Dr. Homero Castaneda-Lopez regarding the thesis [the outlined is structured
in Figure 1.2] and present research tasks are explained as the following.

Mohammad Yazdi: Conceptualization, methodology development, idea preparation, MIC
integrity management plan development, conducting data analysis, validating the model; writing
the original draft of the manuscript for journals submission; editing and reviewing the manuscripts
according to the co-authors and journal reviewers’ feedback.

Faisal Khan: Idea preparation of research activities, methodology development, MIC integrity
management plan development, data analysis supervision; editing and reviewing the manuscripts

and thesis.
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Rouzbeh Abbassi: Idea preparation of research activities, methodology development, MIC
integrity management plan development, data analysis supervision; editing and reviewing the
manuscripts and thesis.

Noor Quddus: Assistance in development and data analysis of systematic review work, and
reviewing and re-organizing the manuscripts.

Homero Castaneda-Lopez: Assistance in development and data analysis of systematic review

paper and reviewing the manuscript.

1.6. The Thesis organization

The present thesis is constructed and written in the format of manuscripts. The five peer-reviewed
journal chapters are the primary outcomes of the current thesis work. The organization of the
present thesis is depicted in Figure 1.2. The introduction, literature review, and conclusions are
presented in Chapters 1, 2, and respectively. Chapters 2 to 6 are prepared according to the peer-

reviewed journal's submissions.
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Figure 1.2. The organization of present thesis and the relevant publications
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Chapter 2 presents a systematic review related to the research objectives. The chapter contains a
state of arts on risk-based decision-making models for microbial corrosion in marine and offshore
pipelines. This chapter is published and available online in the journal of Reliability Engineering
& System Safety 2022; 223: 108474.

Chapter 3 covers a novel dynamic probabilistic approach for MIC management of offshore
structures. This chapter is published and available online in the journal of Ocean Engineering,
2021; 226: 108852

Chapter 4 introduces an innovative operational offshore structures assessment impacted by
multiple microbial corrosion defects. This chapter is published and available online in the journal

of Process Safety and Environmental Protection, 2022; 158: 159-171.

Chapter 5 presents an integrated dynamic model for MIC Integrity risk management of subsea
pipelines by selecting the optimal combination of integrity management actions and the tradeoff

between reliability and cost. This chapter is submitted to Ocean Engineering

Chapter 6 proposes a probabilistic and dynamic framework to assess and evaluate the resilience of
marine and offshore systems in a corrosive environment. The dynamic Bayesian Network and the
“two-state Markov chain framework™ are integrated to assess the resilience of a subsea pipeline
suffering from MIC. This chapter is published and available online in the journal of Journal of

Pipeline Science and Engineering, 2022: 100053.
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Chapter 2

A review of risk-based decision-making models for microbiologically influenced corrosion

(MIC) in offshore pipelines

Preface

A version of this chapter has been published in the Reliability Engineering & System Safety 2022;
223: 108474. I am the primary author along with the Co-authors, Faisal Khan, Rouzbeh Abbassi,
Noor Quddus, Homero Castaneda-Lopez. I developed the conceptual framework for the review of
risk-based decision-making models for MIC in offshore pipelines. I prepared the first draft of the
manuscript and subsequently revised the manuscript based on the co-authors’ and peer review
feedbacks. Co-authors Faisal Khan and Rouzbeh Abbassi provided support in implementing the
concept development, reviewing, and revising the manuscript. Co-authors Noor Quddus and
Homero Castaneda-Lopez provided assistance in reviewing and correcting the results. The co-

authors also contributed to the review and revision of the manuscript.

Abstract

Microbiologically influenced corrosion (MIC) is one of the critical integrity threats in marine and
offshore industrial sectors. Thus, MIC should be considered for effective risk-based decision-
making and asset integrity management of systems. The experience with accidents in this domain
indicates that many corroded subsea pipelines involve a complex failure mode with MIC
implications. Researchers have actively studied the MIC characteristics, mechanisms, modeling,

and management since the last decades. However, despite MIC importance and practical

31



implications for a better understanding of decision-makers, there is a lack of reliable knowledge
of risk-based decision-making models for MIC in marine and offshore sectors. The current work
aims to present a systematic attempt to identify the gaps, needs, and challenges of MIC in risk-
based decision-making models. Therefore, an analysis of the arts in different database core
collections is conducted. The analysis is focused on MIC characteristics, mechanisms, modeling,
and management. It integrates the empirical and theoretical conclusions, highlighting the
capabilities and drawbacks of existing literature and explaining the further research tasks’
opportunities.

Keywords: Microbiologically influenced corrosion, MIC, offshore systems, Corrosion Modelling,

Pitting, Risk management, Localized corrosion

2.1. Introduction

Offshore structures have faced high corrosion rates because of many operational factors and
dynamic environmental circumstances, which raises system safety integrity concerns. The offshore
equipment and pipelines are the leading offshore capital assets and have a crucial infrastructure
role for oil and gas transportation. However, the offshore assets suffer from microbial influence
corrosion (MIC) failure due to metal degradation. The complexity and diversity of the MIC
mechanism pose an uncertain and unpredicted failure rate within unacceptable risk levels in
offshore systems. Despite extremely varying failure cost estimations, the National Association of
Corrosion Engineers (NACE -now AMPP “Association for Materials Protection and
Performance”) developed a comprehensive study that approximated that the global failure cost of
corrosions was 2.5 US trillion in 2013 [1]. In MIC, the material degradation is accelerated with
different microorganisms on the metal surface, including bacteria, fungi, and algae [2,3]. The

direct and indirect costs due to MIC failures are estimated to be 10 to 20 percent of total corrosion
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cost [4,5]. However, the unavailability of a public MIC database associated with MIC failure
modes, incidents, and accidents would limit the entire understanding of MIC impacts. Several MIC
failures that lead to catastrophic accidents have been highlighted in the existing literature, such as
an accident in propane tank explosion due to MIC leading to the weld failure, where the
approximated loss was almost $180 million (US dollar) because of explosion and fire damages [6].
MIC is also a significant cause of gas pipeline internal corrosion leading to leaks and explosions
in the offshore platforms in the Gulf of Mexico [7]. Another significant accident was an oil spill
and environmental pollution in Alaska by discharging more than 950 cubic meters of crude oil [8].
Besides direct cost, MIC accidents would be critical when indirect costs result from environmental
pollutions [9]—for example, releasing thousands of tons of methane in well casing leakage “the

Aliso storage field,” causing significant environmental impacts [10].

MIC is created as a result of three fields, including (i) microorganisms, (ii) media (i.e., physical
parameters and chemical compositions), and (ii1) material characteristics (i.e., metallurgy) [11].
The MIC would occur when microorganisms, media, and material characteristics have acceptable
overlap. Thus, it is necessary to mutually understand the mentioned components based on the
different MIC investigation views. It should be noted that MIC is a challenge in various materials
and grades such as API SLX70 carbon steel [12], 1010 carbon steel [13], 1018 carbon steel [14],
aluminum alloys [15], copper and copper alloys [16], where the operational factors (e.g., low flow
and temperature) and stagnation (residence time) period affecting the microbial activities. These
statements reaffirm that understanding the MIC requires multi-disciplinary sciences, and
investigating its impacts on failures of different materials in various offshore applications is an

emergent need.
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In order to have insights developing MIC protocols, the relevant MIC-based guidelines are taken
into account, such as ASTM E3 “Standard Guide for Preparation of Metallographic Specimens”
[17], ASTM A370 “Standard Test Methods and Definitions for Mechanical Testing of Steel
Products” [18], ASTM D-93 “Standard Test Methods for Flash Point by Pensky-Martens Closed
Cup Tester” [19], ASTM D422-63 “Standard Test Method for Particle-Size Analysis of Soils”
[20], NACE SP0775 “Preparation, Installation, Analysis, and Interpretation of Corrosion Coupons
in Oilfield Operations” [21], ASTM E1404 “Standard Specification for Laboratory Glass Conical
Flasks™ [22], and Microbiological NACE TMO0194 “Field Monitoring of Bacterial Growth in Oil
and Gas Systems” [23]. Despite the numerous published research works on MIC, many gaps still

exist, requiring further attempts to deal with MIC problems practically.

For example, Abdulhaqq et al. [24] recently studied a comprehensive investigation on the chemical
environment impacting MIC and corresponding model development. In another review, Kannan
et al. [25] evaluated the analytical methods used to identify MIC, an aggressive microbiota-
facilitated degradation of engineering materials, and discussed their benefits and restrictions. In
this regard, the main objective of the present work making differences between related papers is
to provide a systematic review of risk-based decision-making models for MIC in offshore sectors
by highlighting the shortages and advantages of current approaches and discussing future

directions. The specific emphasis in this paper is addressing the following main research questions:

e What research streams have investigated the MIC detection and characterization, MIC
modeling, and MIC management in the offshore environment?
e How have the previous investigations and attempts contributed to MIC in the offshore

environmental systems, and what needs and gaps remain unaddressed in these studies?
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e How should the existing shortages be overcome, and what challenges are decision-makers
in MIC approaches facing, which further help decision-makers improve system safety and
reliability of offshore systems over time?

The organization of this review work has proceeded as the following. In Section 2, the review
methodology is provided. Sections 3, 4, and 5 present the results and discussions. In Section 6,
discussion and future work prospects to show the deficiency of current research content and

development needs. In Section 7, the conclusion of this review and remarks are explained.

2.2. Review methodology

The reviewing process conducted in this paper has three main steps. In the beginning, the published
studies from different primary databases were collected considering the proper keywords such as
“MIC”  AND  “microbiologically influenced corrosion” AND  “risk-based” AND
“microbiologically induced corrosion”. Subsequently, a decision is made about every paper,
whether indexed by WOS (Web of Science Core collection) or Scopus. Otherwise, they are
excluded. Different databases were searched from January 1980 to the end of August 2021, and
the number of paper counts reached 1237. This timeline was selected because most research studies
on MIC areas have been released in the last 40 years. Afterward, the related studies' keywords,
titles, and abstracts are reviewed. The 428 studies are excluded in the next step considering the
title, abstract, and keywords. Then, 297 studies are retrieved by reviewing the full text of the
manuscript due to their qualities (particularly based on the index: Science Citation Index, Science
Citation Index Expanded, and Social Sciences Citation Index). Finally, all these papers were
studied in detail and classified using a systematic review method [26,27], including publication
year, application area, sub-application area, and methodology type. Figure 2.1 demonstrates the

six main steps of the utilized review methodology in the present study [28].
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Figure 2.1. The research framework employed for the MIC risk-based decision-making
systematic review in the offshore pipelines

2.3. Results and discussion

This section presents a brief review of MIC definiens, and then comprehensive literature in MIC
approaches (i.e., MIC detection and characterization, MIC modeling, and MIC management) is
discussed. The authors attempted to recognize MIC-based approaches' main drawbacks, needs,
and challenges in the offshore structures. In addition, the dominant published works up to this date

and directions for future studies are specified.
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2.3.1. Definition of MIC

MIC refers to the influence of the microorganisms in the material deterioration mechanism, either
metallic or non-metallic, in the presence of water [29]. There are several microbes, which are
responsible for MIC occurrence, including sulfate-reducing bacteria (SRB) methanogens, sulfur-
oxidizing bacteria (SOB), acid-producing bacteria (APB), iron-oxidizing bacteria (IOB), iron-
reducing bacteria (IRB), and manganese-oxidizing bacteria (MOB). Each group of
microorganisms might include a multinumber of individual species [30,31]. That is why the MIC

would occur naturally with the microbial communities containing several microbes.

MIC is linked with the formation of biofilm on the metal surface. The biofilm is defined as a colony
containing different types of bacteria within a “polymeric matrix”, which engages in the
degradation process. An individual microorganism could not engage independently [32]. Thus, a
biofilm simply plays an essential role as a microorganisms’ habitat. Biofilm creation is the most
critical step in MIC formation and metal degradation due to a synergistic relationship among a set
of microorganisms. This enables microorganisms for metabolization process turning into
influences material degradation. The biofilm is created because of immobilized microbiological
cells’ accumulation, which causes the cells to be reproduced on the metal surface, called the
biofouling process [33]. During biofilm formation, the exopolymeric substances as extracellular
polymers protect the microorganism from the environment [34]. A hypothesis was studied in
which the biofilm could increase the chance of microorganisms' life and enhance the transferring
conditions and availability of nutrients reaching microorganisms [35]. Besides, exopolymeric
substances can also control the interfacial chemistry at the biofilm metal interface, including

adhesion, protection, and structure. Therefore, providing a specific condition (e.g., pH and
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chemical species) would be different from biofilm external environmental conditions. In Figure

2.2, an adaption of biofilm evolution is presented [36].

Sea water
5) The
‘mature biofilm starts to
Sk e ooy release single cells to the
1) Si cells from the max
] melelcph:“m 2) This keads o : Kinds of surroundings
1o the metal surface lonizati = T *

Figure 2.2. The early stage of a biofilm evolution on a metal surface, modified after [37]

The mature biofilm is influenced by various circumstances, such as surface topography, surface
wettability, and the presence of the nutrients [24]. In addition, the chemical and physical features
of a mature biofilm are heterogeneous. If the environmental conditions include oxygen, this will
diffuse to the out layer of biofilm and make it the aerobic area [36]. The rough surfaces would
provide more surface zone into the microbiocidal cell adhesion [38]. The surface impact of
roughness zone on cell attachment is studied by scholars [39], on a 340L stainless steel. The

derived results showed that a significant cell attachment existed in the unwelded surface.

It should be highlighted that the presence of biofilm does not essentially prove the MIC attack,
that is, while it is the foremost important observation in the MIC investigation process. The
activities of all MIC-based microorganisms are taken place in the biofilm zone. The MIC
mechanism is further defined as the activities of microorganisms within a biofilm colony that

promotes MIC. It is a vital task to properly understand the mechanism of MIC to deal with MIC
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investigation (i.e., identifying, characterizing, modeling, and management). In the next Section,

the microbial activities and their influence on metal surface degradation have been studied.

2.3.2. MIC mechanisms

The anaerobic microorganisms play an active role in an environment with low or even no oxygen
for the evolution of MIC. They are the most referenced problematic microorganisms in oil and gas
industrial sectors (e.g., marine and offshore environment) [36]. The most common type of
anaerobic microorganism caused by MIC is SRB as an electron acceptor, which receives energy
from an organic matter (H2) or even metal (Fe0) under specific environmental circumstances [2].
Figure 2.3 presents a list of common microbiological groups that participated in MIC and includes
a limited number of microbial groups, well-known in MIC manner [40].

The metal surface is covered with biofilm; some areas have much denser biofilm, and some are
uncovered. Thus, the covered metal with biofilm would have a lower oxygen concentration and
play an anodic role. On the opposite side, the covered part with no/less biofilm would reveal a
higher oxygen concentration and play a cathodic role. Once the anodic and cathodic sites are settled
at the metal surface, the MIC mechanism would have occurred due to differential aeration cells
[41]. Furthermore, the microorganisms may create denser metal surface deposits, which can
remove the oxygen from the deposit in a short period. This causes the area to be described as an
anodic site. Also, the cathodic reaction becomes an oxygen reduction on the surrounding metal

surface. In the following, three main MIC mechanisms are explained in detail.
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The list of common microbiological groups that

participated in MIC
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Figure 2.3. Most characteristic microbial groups (Note: the high-resolution of figure is provided
in the published version of paper)

2.3.2.1. Microbial activities producing corrosive metabolites

Some microorganisms can attack the surface of metal within metabolic by-products. SRB would
react with stainless steel and yield the corrosion products such as FexSy [24]. The deposits could
have enough contributions into different aeration cells on the surface of the metal. This, therefore,
can induce additional corrosion. In aerobic conditions, the FexSy reactions within oxygen could
yield the elemental sulfur (S0), which is highly corrosive [36]. In addition, the acetic acid from
APB is a significant metabolic by-product and can directly reduce the electrons from the surface
of the metal by producing H+. This may cause a lower pH with the biofilm, making the metal

surface susceptible to the MIC [42].

2.3.2.2. Synergy of bacteria in a biofilm consortium accelerating corrosion

The fact is that a microorganisms’ metabolic activities can feed another microorganism. The
synergy between the microorganism in the biofilm zone is significant for biodiversity. Some
microorganisms have conductive structures (e.g., pilis, nanowires) that shuttle electrons to the
biofilm zone. Then, these microorganisms could be engaged by those microorganisms inside the

biofilm zone. Enning et al. [43] studied the conductive property of microorganisms, in which the
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SRB is cultured as an electron donor and the presence of CO2 as a carbon source. The outcome

highlighted the metal degradation with aggressive pitting and intimate SRB growth.

Identifying such microorganism that causes degradation is a critical task in understanding MIC
mechanisms, and it can provide a vision into MIC occurrence. In recent days, microbiological
molecular methods (MMM) such as quantitative polymerase chain reaction (qPCR) and
polymerase chain reaction (PCR) analysis are the standard and primary tools to identify the active
microorganism in a biofilm zone [44]. As it is not adequately understood, the number of
microorganisms and MIC are either correlated or not; therefore, microorganisms can only show
the presence of MIC [29]. In addition, the small number of microorganisms can be the cause of
MIC occurrence; however, the large amount of the same microorganisms do not necessarily

present the severe existence of the MIC process.

Although microorganism identification is an essential step in understanding the MIC mechanism,
many attempts have been made to predict the rate of MIC and further MIC modeling. In the next

Section, the MIC models have been reviewed.

2.3.3. MIC modeling

The relevant MIC protocols and models have been reviewed in a couple of review works
[11,24,25,45,46]. All five published works are recommended to be studied by an interested reader
to understand the existing literature's in-depth presentation better. Table 2.1 enlisted the key
highlights and drawbacks of current MIC protocols and published reference works. In addition,

Table 2.1 enlisted the main outcomes and summarized the reviewed published works.
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Table 2.1. The key findings and drawbacks of current MIC protocols and published reference

works

Row References Key highlights Drawbacks Average citations Total
per year* citation**
#1 Little et al. Suggesting the proactive, -Research has not provided 10 30
(20200 [11] integrated approaches be used | tools for detection of MIC in
for MIC prevention and the field.
mitigation. -There are no systematic
programs to mitigate and
prevent MIC.
#2 Ibrahim et al. | Study inform further - There is no MIC 34 17
(2018) [24] investigation on the chemical | identification and
environment impacting MIC characterization developed
and model development. concepts.
- No consideration of
identifying more compounds
with major contributions,
interaction pathways, and
their impacts.
#3 Kannan et al. | - Review evaluates the There is no application 3 15
(2018) [25] | analytical methods used for scopes of introduced MIC
detecting MIC. identification and
- Challenges are presented by | characterization developed
the lack of a comprehensive concepts.
mechanistic understanding of
MIC detection.
#4 | Skovhusetal. | - MIC can be managed witha | Combination of system 8.83 53
(2018) [46] three-phase corrosion metadata and data from
management approach. molecular microbiological
- Multidisciplinary work methods is the key to MIC
processes should link management.
microbiology and corrosion
science.
#5 Marciales et | Most mechanistic MIC models | - No model was found to 7.5 30
al. (2019) reviewed based their accurately correlate sessile
[45] prediction on SRB as the main | and planktonic bacteria.
player. - Non biological source of
sulphate was taken into
consideration in literature.
* This means that the number of Web of Science-based citations for a paper by the end of the year 2021
** This means that the number of Web of Science citation index for a paper by the end of the year 2021

The meta-analysis performed in [25] indicated that the much more reliable MIC modeling

approach combined multiple analytical techniques with accurate field observation. As stated in the

previous sections, the complex nature of MIC contains the complicated interrelationships between

biological, physical, and chemical factors, and it causes MIC modeling to be a challenging task.
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The described approaches simplified the MIC mechanistic model; for example, the correlation of
chemical factors contributed to severe MIC phenomena [58]. In addition, controlling the lab-scale
tests would provide the realization of cause-effect relationships (e.g., MIC biofilm generation
(effect) by SRB and APB (cause)) [57]. Thus, extrapolation is a highly challenging task because

of the dynamic features of microorganisms over time.

That is why in recent years, the novel developed techniques such as Bayesian Network (BN)
[59,60], Fuzzy-based methods [27,61], and neural networks [62,63] with a combination of field

data and experts’ knowledge are becoming a more effective tool for MIC modeling.

In this regard, Fuzzy-based methodologies provide a development approach according to the
predictive models [64]. In a study [65], a risk-based framework based on Fuzzy logic is developed
to predict the rate of MIC for oil and gas systems. The Fuzzy logic-based models include the MIC
initiation possibility, corrosion kinetics, and the time for required pipelines inspections. In another
study [66], authors used a neuro fuzzy-based tool by engaging operational parameters, pipeline
characteristics, and microorganisms’ concentrations to develop a quantitative MIC risk-based
model. Such models are trying to duplicate the cognitive decision-making progression, in which
an approach would be provided for uncertain information [67,68]. However, the lack of field data
causes the validation of the Fuzzy-based models to be restricted. Thus, the model's reasoning for

predicting the MIC would be a difficult task [69].

For Bayesian Network-based studies, Adumene et al. [70] proposed an integrated dynamic failure
assessment model for subsea systems under the influence of MIC. In this work, a combination of
BN and Markov chain is utilized to predict the system's MIC rate and failure probability. Taleb-
Berrouane et al. [44] proposed a network-based framework to examine the essential factors in MIC

considering their complex interactions. In another study, Adumene et al. [71] integrated the
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dynamic Bayesian network (DBN) with loss aggregation tools to estimate the risk of MIC. For
example, using DBN, Arzaghi et al. [72] developed a dynamic damage model for fatigue and
pitting corrosion of offshore facilities. In another study, Arzaghi et al. [73] developed a risk-based
maintenance technique for the subsea pipelines considering fatigue corrosion using BN. Adumene
et al. [74] developed a stochastic-based formulation model to estimate MIC rate and obtain the
remaining strength and safe operating pressure with multiple MIC defects. A combination of BN
and Markov Mixture (MM) was utilized for this purpose. Shekari et al. [75] proposed a framework
to predict pit depth growth on equipment under insulation in offshore sectors. The average pit
density of multiple defects using the Markov process is obtained. Adumene et al. [76] integrated
the BN with Copula-based Monte Carlo (CMC) simulation. The BN considers the dynamic
interactions between physio-chemical parameters and microorganisms to estimate the rate of
corrosion at the offshore system. In addition, the stochastic MIC factors’ dependencies and the
corresponding failure modes defining the functionalities’ performance are modeled using CMC.
Kamil et al. [77] utilized a data-driven approach to engage the available microbiological and
operational data as well as learn the data variation. The proposed approach can obtain the
correlation between the variables and corresponding characteristics to measure the likelihood of
MIC. Thus, the available field and laboratory data are integrated into the Learning-based Bayesian
network (LBN) model in this work. The BN-based models have enough capabilities for the
uncertainty of knowledge accounting and model uncertainty to make more reliable decision-

making [78].

Corrosion behavior is studied in [79] for neural networks-based studies using a neural network as
a data mining tool. The neural network learned alloys composition and environmental conditions

leading to corrosion rate. Kamrunnahar et al. [80] conducted a back-propagation neural network
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to train and test the understudy system. Using this approach, the steel corrosion is analyzed, and

the experimental error counts as only 5 percent.

The fact is that the MIC modeling task is multidisciplinary demands and needed incorporated
mathematical materials engineering to consider the complexity in MIC’s model simulation.
According to the many efforts that have been done by Wolodko et al. [81], the four tasks have to
be combined to provide a robust and reliable model framework, including (i) empirical approaches,
(i1) informatics, (iii), scientific modes, and (iv) uncertainty quantification. The mentioned featured
model can be extended by integrating with microbiological corrosion methods. This would provide
a strong data-driven approach for MIC prediction [25]. Finally, it can be concluded that the models
within BN, Fuzzy based, are restricting with standard formulation and integrated solutions [82].
Thus, further high-quality data is required to estimate the accurate MIC rate and failure

probabilities.

Up to this point, different types of MIC modeling approaches have been introduced within high
contribution to corrosion science. In the following, a couple of recommendations are listed

considering the significant shortages of the existing state of arts for MIC modeling [11,25,45,81].

e Such a complicated computational process would enhance the complexity of biological
levels as the features of properties’ integration and causes that the models would be less
reproducible and consistent due to the stochastic nature of MIC,

e Such MIC modeling approaches are required the precise measurement tools at accurate
scales in both model development and validation; that is, while such tools are almost

unavailable in MIC modeling works,
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¢ Such models should consider the relationships between microorganisms leading MIC and
MIC control process; therefore, more attempts are required to consider these connections
and multispecies biofilm, and

e Comprehensive investigations are needed for MIC representative communities and an
adequate understanding of nutria's chemical and physical paramet