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Abstract

Pose estimation of multi-rotor micro-aerial vehicles (MAVs) in indoor environments

is a key challenge in the development of autonomous MAV applications. The main

focus of this research is to develop robust, and accurate localization systems for MAVs

utilizing the least number of sensors. This research develops three range assisted

inertial navigation system (RINS) designs for quadrotor MAVs. Range measurement

is selected as the key measurement due to the robustness, accuracy of the emerging

ranging technologies, and ease of deployment in various types of environments even

under challenging conditions.

The first part of this thesis presents the development of a RINS that utilizes three

or two range measurements along with the accelerometer and gyroscope measure-

ments. The proposed RINS incorporates the effects of aerodynamic drag forces on

MAV, which allows the RINS to operate without using a velocity sensor. A non-

linear observability study is carried out to evaluate the feasibility, and identify the

limitations of the proposed RINS. The observability analysis is conducted based on

two cases. Case 1 : RINS with three range measurements, and Case 2 : RINS with

two range measurements. For each case, the analysis shows that the RINS is locally

weakly observable for a generic trajectory. Additionally, several specific trajectories

are identified that render the RINS unobservable. The unobservable directions for

each unobservable trajectory are determined analytically and validated through nu-
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merical simulations. The performance of the proposed RINS during an observable

trajectory is validated through experiments conducted on a quadrotor MAV.

The second part of this thesis analyzes the consistency of the error-state extended

Kalman filter (EKF) implementation of the proposed two and three range assisted

INS. The analysis shows that the EKF-RINS suffers from inconsistencies when the

MAV is flying on the unobservable trajectories identified through the observability

study. The consistency of the estimator under unobservable trajectories is improved

by applying observability constraints during the estimation process. The novelty of

the proposed approach is that the observability constraints are dependent on the un-

observable scenarios and applied only during any unobservable trajectory. A Monte

Carlo analysis is performed to validate the improvement of the localization perfor-

mance of EKF-RINS achieved through selectively applying the observability con-

straints.

Finally, this thesis presents two RINS designs that use a single range measurement.

The first design uses just the range measurement. However, the observability analysis

shows that this design is unobservable under any trajectory. In order to develop a

locally weakly observable trajectory, the second design incorporates heading informa-

tion in addition to the single range measurement. The observability study identified

several unique trajectories under which the magnetometer and single range assisted

INS (M-RINS) becomes unobservable. Performance evaluation of the M-RINS and

the validation of unobservable directions are carried out using numerical simulations.
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Chapter 1

Introduction

1.1 Research Motivation

Multi-rotor micro aerial vehicles (MAV) are rotorcrafts that generate lift using more

than two rotors. Due to the vertical take-off and landing capability, high maneuver-

ability, and ability to operate in confined environments, multi-rotor MAVs have been

adapted for various indoor and outdoor applications. In practice, the payload re-

quirement of the application is a key factor that determines the type of MAVs to use.

Hexacopter and octocopter, which has six and eight rotors, respectively, are used for

applications that require a high payload capacity. Quadrotor MAVs with four rotors

are preferred for more general applications with small payloads. A few years back,

commercially available MAVs1 were predominantly used by enthusiasts and hobbyists

for entertainment purposes. However, the MAVs have been adapted for professional

and industrial applications in recent years. Some applications include aerial photogra-

phy [1], aerial surveillance [2], package delivery [3,4], visual art performances [5] and

infrastructure inspection [6]. Most of the MAV related applications are carried out
1In the rest of the thesis, MAV refers to the quadrotor multi-rotor micro-aerial vehicle. Otherwise,

the type of vehicle will be specified.
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with a skilled pilot manually controlling the MAV. This limits the broad adaptation

of MAVs in applications that can benefit from their unique properties. One of the

main challenges of developing autonomous MAVs is estimating accurate six DOF pose

(position and orientation)2 of the MAV.

Micro-electromechanical system (MEMS) based Inertial Measurement Unit (IMU)

is a key component of any MAV, and IMU measurements are generally used to es-

timate the orientation of the MAV [7]. In contrast, there are various techniques to

estimate the position of the MAV. Global Navigation Satellite System (GNSS) pro-

vides accurate position information and is widely used in outdoor applications [8].

However, GNSS position information becomes unreliable or sometimes unavailable in

indoor or in cluttered environments. Therefore several techniques have been developed

to estimate the position in GNSS denied environments.

Simultaneous Localization and Mapping (SLAM) is a widely used localization

technique capable of estimating the pose and generating a map of the operating en-

vironment using various sensor readings [9]. VSLAM is a sub category of SLAM that

uses vision sensors (mono cameras, stereo cameras, depth cameras) to detect features

and landmarks in the environment [10]. For most of the applications, the objective is

to estimate the pose of the MAV, and therefore, map building is not always necessary.

A visual inertial navigation system (VINS) localizes the MAVs without generating

a map of the environment. VINS incorporates vision information with the inertial

measurements of the MAV obtained through the IMU [11].

One of the main drawbacks of the aforementioned vision based localization tech-

niques is error accumulation, leading to drift in the estimation over time. Existing

drift minimization techniques are computationally expensive and require additional

computational resources on top of the high processing power required to perform local-
2In this thesis, the term pose is used to represent the 3D position and the orientation of the

MAV.

2



ization in real-time. Furthermore, vision based techniques require detectable features

to perform localization. Some operating environments may lack detectable features,

and therefore the localization performance might be impacted.

On the other hand, range based localization techniques provide global position

estimates and do not suffer from drift over time. These techniques are less compu-

tationally demanding and, therefore, can be implemented without significant compu-

tational overhead. Additionally, depending on the ranging technology, range based

localization can be used in a wide variety of environments [12]. Range based localiza-

tion can be categorized into two categories range only localization and range assisted

localization. As the name suggests, range only localization uses only the range mea-

surements and requires a minimum of four distinct range measurements to calculate

the position of the MAV [13]. Range assisted localization techniques utilize other

sensor measurements in addition to the range measurements to estimate the pose of

the MAV [14].

Despite having additional information, almost all of the range assisted localization

studies carried out for MAVs have used four or more range measurements. Requiring

four or more distinct range measurements at any given time can be challenging in

practical applications. For example, deploying sufficient range sensors to cover a

building while maintaining minimum visibility of four range sensors at all times can

be challenging. If contingencies are taken to overcome sensor failures or dynamic

occlusion of sensors, the number of sensors required would increase significantly.

The few studies that have used less than four range measurements have used IMU,

velocity, and height measurements to aid in the estimation process. The performance

of the height and velocity sensors available for MAVs are highly dependent on the

operating conditions. Optical flow and visual inertial odometry (VIO) are two key

velocity measurement techniques used for MAV applications. The optical flow tech-
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nique provides velocity measurements based on the apparent motion in a visual scene

seen by the sensor. VIO techniques visual features and inertial measurements to

estimate the velocity of the MAV. Both techniques require detectable features, and

optical flow sensors require a structured surface to provide accurate velocity measure-

ments. Similarly, ultrasound and time-of-flight height sensors require a structured

environment to produce accurate height measurements.

Hence, developing a range-assisted localization technique for MAVs that use only

range and IMU measurements and require fewer range measurements can reduce the

total number of range sensors needed and overcome the limitations of the velocity and

height measurements.

1.2 Thesis Problem Statement

The main focus of this research study is to develop a range assisted inertial navigation

system (RINS) for MAVs using IMU and less than four range measurements. Special

attention is given to the unique drag forces acting on the multi-rotor MAV during

flight and incorporated into the development of the RINS [15]. Throughout this

research study, it is assumed that there is no wind in the operating environment.

1.2.1 Problem 1: RINS with Three and Two Range Measure-

ments

An inertial navigation system (INS) tracks a robot’s pose using the accelerometer

and gyroscope measurements relative to an initial pose and velocity. The orientation

is calculated by integrating the angular velocity measured by the gyroscope. The

linear velocity is calculated by integrating the linear acceleration measured by the

accelerometer and the position by integrating the velocity. However, the calculated
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pose can drift over time due to the noise in the measurements. Instead of integrat-

ing the measurements, in practical application, filtering techniques such as Kalman

filtering are used to estimate the pose of the robot. Attitude estimation by fusing

accelerometer and gyroscope measurements has shown more accuracy over the simple

integration [7]. However, additional information is required to obtain an accurate

position estimate.

It is straightforward to show that it is possible to obtain a unique solution for

the robot’s position with a minimum of four range measurements to known locations.

Hence, this information can be used to calculate the position and incorporate it in

the INS as a loosely coupled estimator [16] or use the range information directly in a

tightly coupled INS [17]. However, there is no unique solution for the position with

three or two range measurements.

The first problem this thesis address focuses on developing a RINS for MAVs with

three and two range measurements. The designed RINS does not use any additional

sensors other than range and IMU sensors. Additionally, this design incorporates

the unique drag force dynamics of the MAVs into the mechanization equations of

the RINS. Furthermore, a detailed observability study is carried out to determine the

feasibility and limitations of the proposed RINS.To the best of the author’s knowledge,

no other study has developed a RINS of this nature for multi-rotor aerial vehicles.

Experiments are conducted to validate the performance of the proposed three and

two range assisted INS. The experimental setup consists of an AscTec Hummingbird

quadrotor MAV flying in an arena populated by decaWave DWM1001 modules. IMU

data are obtained using the onboard IMU of the Hummingbird MAV, and a DWM1001

module (Tag) on the MAV is used to measure the distance between the DWM1001

modules (Anchors) placed at known locations in the arena. The estimated pose

information is compared with the ground truth pose information obtained through a

5



Mocap motion capture system.

1.2.2 Problem 2: Consistency Improvement of the Three and

Two Range Assisted INS

The proposed RINS with three and two range measurements, is implemented using

the error-state extended Kalman filter (EKF3) formulation. A key factor when se-

lecting the estimation technique was the computational efficiency of the algorithm.

Compared to the optimization based techniques, filtering techniques are computa-

tionally efficient, so filtering is chosen to implement the RINS. Similarly, the EKF

formulation is chosen over other nonlinear filtering techniques such as the unscented

Kalman filter and Cubature Kalman filter due to the computational efficiency in the

EKF implementation. [18, 19].

Based on the observability analysis carried out for the developed RINS with three

and two range measurements, the RINS is locally weakly observable during a generic

trajectory. However, there are certain trajectories that render the RINS unobservable.

Even though the number of unobservable trajectories is few, they can occur in practical

applications. In such instances, the EKF implementation of the RINS (EKF-RINS)

can become inconsistent. It is crucial to determine and address inconsistencies to

achieve better performance under unobservable conditions.

A consistent estimator has zero-mean estimation errors, and the estimated error

covariances closely resemble the true error covariances calculated by the filter [20].

For nonlinear systems, there are several potential sources of inconsistency. One such

source is the mismatch between the unobservable modes of the actual nonlinear system

and the linearized model used for the estimator implementation [21].

Consistency of VSLAM and VINS has been studied extensively in the litera-
3Through out the thesis EKF stands for the error-state extended Kalman filter.
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ture [22,23]. 3-D global position and the yaw angle are the four unobservable states,

also known as unobservable modes of VSLAM and VINS. These unobservable modes

are independent of the trajectory and, therefore, always present. Hence, consistency

improvement techniques developed are applied throughout the trajectory. However, in

the proposed RINS, there are several trajectories where few states become unobserv-

able. These unobservable states are temporary and are dependent on the trajectory.

This study analyzes the consistency of the EKF-RINS, determines the consistency

rules, and applies them to improve the consistency of the EKF-RINS. To the best of

the author’s knowledge, this is the first study that analyzes the consistency of the

EKF-RINS with three and two range measurements.

1.2.3 Problem 3: RINS with One Range Measurement

The third challenge addressed in this thesis is localizing the MAV using a single range

measurement to a known location. Single range based localization has been studied

in underwater robotics applications and in relative localization applications.

In general underwater robotics applications use multiple range measurements to

localize autonomous underwater vehicles (AUVs). However, few studies have used

one range sensor to obtain range measurements between two AUVs or an AUV, and

a surface vehicle [24–27]. These studies have used complementary sensors such as

depth sensors and Doppler Velocity Logs (DVL) to obtain additional information on

the AUVs’ state. Authors in [28] have proposed a leader-follower MAV system that

uses velocity and heading sensors in addition to the range sensor and IMU.

Measuring the velocity of a MAV is challenging. Motion capture system (MCS) is a

widely used external system capable of providing velocity measurements of MAVs [29].

Due to the high price tag of MCS, it is generally used in laboratory spaces to obtain

ground truth data. Since MCS also provides position and orientation information,
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there is no need to develop a separate system to estimate the pose of the MAV.

Another popular approach of measuring the velocity of MAVs is using an onboard

optical flow sensor [30], but the performance of the optical flow sensors degrades

when used over unstructured surfaces.

The single range assisted INS presented in this thesis does not require a velocity

measurement of the MAV. Compared to the two and three range based RINS, the only

additional measurement used in single range assisted INS is the heading of the MAV.

To the best of the author’s knowledge, no other study has developed a single range

assisted INS, incorporating the unique dynamics of the MAV. The feasibility and

the limitations of the proposed RINS with single range measurement are determined

through an observability study, and validated using numerical simulations.

1.3 Research Objective and Contributions

The main goal of this research is to develop a range assisted INS to estimate the pose

of the quadrotor MAV with less than four range measurements. In order to achieve

this research goal following objectives are identified.

Objective 1: Development of a three and two range assisted inertial navigation

system (RINS) for MAVs.

• Contribution 1: Designing a RINS for MAVs, which incorporates the unique

dynamics of the MAVs, and can operate with three or two range measurements

to known locations.

• Contribution 2: Conducting an observability analysis of the RINS with three

and two range measurements and identifying the unobservable trajectories and

corresponding unobservable directions.
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Objective 2: Development of a trajectory dependent observability constrained RINS

with three and two range measurements.

• Contribution 1: Analyzing the consistency of the EKF implementation of the

proposed RINS under unobservable trajectories.

• Contribution 2: Determining the observability consistency rules and developing

a trajectory based observability constrained RINS.

Objective 3: Development of a single range assisted inertial navigation system

(RINS) for MAVs.

• Contribution 1: Developing a RINS for MAVs using a single range measurement.

• Contribution 2: Developing a RINS for MAVs incorporating heading and single

range measurement.

• Contribution 3: Conducting an observability study of the proposed single range

assisted INS in determining the feasibility and identifying the unobservable tra-

jectories and unobservable directions.

1.4 Organization of the Thesis

This thesis is organized as follows.

• Chapter 1 - Introduction: This chapter provides an overview of the research

motivation, highlights the problem statements, and outlines the objectives and

contributions of this thesis.

• Chapter 2 - Literature Review: This chapter presents the literature review

in the areas of state estimation, range based localization, and observability

analysis.
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• Chapter 3 - Three and Two Range assisted Inertial Navigation Sys-

tem: This chapter relates to the objective 1 of this thesis. The chapter presents

the formulation of the three and two range assisted inertial navigation system

and EKF implementation of the RINS. A detailed observability analysis of the

proposed RINS is presented, and unobservable trajectories along with unobserv-

able modes are identified. Simulation and experimental studies are carried out

to validate the performance of the proposed RINS.

• Chapter 4 - Observability Constrained Three and Two Range assisted

Inertial Navigation System: This chapter relates to the objective 2 of this

thesis. A consistency analysis is carried out for the three and two range assisted

INS proposed in Chapter 3. Consistency rules are determined for the unob-

servable trajectories of the RINS and implemented a observability constrained

RINS with three and two range measurements. Simulation results are presented

to show the consistency improvement.

• Chapter 5 - Single Range assisted Inertial Navigation System: This

chapter relates to the objective 3 of this thesis. This chapter presents the design

of EKF-RINS with single range and heading measurements. An observability

analysis is carried out to identify the limitations of the single range assisted INS.

The performance of the RINS is validated through simulation studies.

• Chapter 6 - Summary and Future Work: This chapter concludes the thesis

and presents the applicability of the proposed RINS for MAVs. Also, it presents

possible future research directions.
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Chapter 2

Literature Review

2.1 Dynamics and Control of MAVs

In recent years usage of multi-rotor micro aerial vehicles has increased significantly.

Due to the vertical take-off and land landing capabilities, simple construction, and

high maneuverability, multi-rotor MAVs are being adapted for indoor applications

and applications which require high agility [1, 2, 4]. Quadrotor micro-aerial vehicles

have four thrust generating rotors, producing torques for maneuvering in the 3-D

space. They are the most used MAV for applications with small to medium payload

requirements.

The earliest studies on the quadrotor MAVs focused on the basic dynamics and

controls of the MAVs [31, 32]. MAV is an underactuated system with four actuators

to control 6 degrees of freedom (DOF). Hence, the MAV is modeled as a 6 DOF

rigid body, and four control variables are selected to develop the attitude control

algorithms. Earlier studies have chosen thrust and orientation as the four control

variables [33], whereas more recent studies have selected thrust and angular velocities

of the MAV [29].
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2.1.1 Aerodynamic Drag Forces Acting on MAV

The dynamics of the MAV are more complex than the 6DOF rigid body dynamics due

to various aerodynamic forces acting on the MAV. The study carried out by Derafa et

al. in [34] is one of the first studies that have incorporated the aerodynamic forces in

modeling the MAV. They have modeled the aerodynamic drag as a force proportional

to the velocity of the MAV with respect to the inertial frame. In [35], authors have

studied how the thrust variations and blade flapping affect the dynamics of the MAV.

The translational flight of a propeller through the air causes the blade to flap. The

advancing rotor blade experiences an increase in the effective velocity relative to the

air, increasing the lift. Similarly, the retreating blade experiences a reduction in lift.

The resulting force is parallel to the propeller plane of the MAV. A more detailed

study on the aerodynamic forces acting on the MAV is carried out in [15], where the

authors have analyzed blade flapping, induced drag, translational drag, profile drag,

and parasitic drag. All the drag forces except for translational and parasitic drags

have a linear relationship with the translational speed of the MAV. Among these drag

forces, blade flapping drag is the most significant contributor to the drag force1.

Studies have shown that incorporating the drag forces into the estimator formu-

lation has improved the performance of the estimators. Few of them are listed here.

Leishman et al. in [36] have shown that the estimator which uses the drag force model2

outperforms the standard attitude heading reference system (AHRS) and provides the

velocity of the MAV. A similar study by Abeywardena et al., in [37] showed that a

drift-free velocity estimate could be obtained using the drag force model. One key

takeaway from these studies is that incorporating the drag force model enables the

estimator to estimate the velocity of the MAV without requiring a dedicated veloc-
1From this point onwards the drag force refers to the blade flapping and other drag-like forces

that are proportional to the translational velocity of the MAV.
2Dynamic model of MAV incorporating the aerodynamic drag forces
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ity sensor. This is an advantage, especially for MAV applications, where measuring

velocities is challenging.

2.2 MAV Localization

Localization is one of the main challenges in developing autonomous, semi-autonomous

MAV applications. A plethora of studies has addressed the localization problem using

various approaches. Localizing in an outdoor environment is straightforward due to

the availability of GNSS. GNSS provides absolute position and velocity information

of the MAV at a relatively lower rate (1Hz - 10Hz). Several studies have fused GNSS

with other sensors such as IMU and vision to improve the accuracy of the localiza-

tion [8, 38, 39]. GNSS is unreliable or sometimes unavailable in indoor and cluttered

environments despite good performance in outdoor environments. Therefore, other

techniques have been proposed for localizing MAVs in GNSS-denied environments.

Vision based localization techniques are one of the widely studied localization

techniques for GNSS-denied environments. One such technique is Visual SLAM, and

it aims to construct a map of the environment and simultaneously estimate the global

position of the MAV using visual features of the environment. VSLAM algorithms are

developed using different types of camera configurations such as single camera [40,41],

stereo cameras [42, 43], and RGB-D cameras [10, 44]. Another popular approach of

vision based localization is VINS. Vision information is fused with IMU and other

onboard sensors to estimate the pose of the MAV [11, 45].One main drawback of the

aforementioned vision based techniques is the drift in the estimation over time due to

error accumulation. The drift can be minimized using loop closure [46], global pose

graph optimization [11] or relocalization [47] techniques.
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2.2.1 Range Based Localization

Compared to vision based localization techniques, range based localization techniques

are computationally efficient. Since the vision based techniques require features in the

image or video, the operating environment should have detectable features. Addition-

ally, the range based localization techniques do not suffer from drift in the estimates.

Therefore range based localization can be an attractive alternative to vision based

localization techniques. Range based localization techniques can be broadly divided

into two categories, range only localization and range assisted localization. As the

name suggests, range only localization uses only range measurements. Whereas range

assisted localization makes use of additional sensors to aid in localization.

There are various sensor technologies that are capable of providing distance mea-

surement between the robot and the environment, and few of them are WiFi, cellular,

ultrasonic, and Ultra-wideband (UWB). Distance measurements are commonly ob-

tained through the time of arrival (TOA) [48], time difference of arrival (TDOA) [49],

and received signal strength (RSS) [50]. Ultra-wideband (UWB) is a key technique

that has been proven effective in indoor ranging. UWB has a unique nature: its dual

capabilities, communication, and ranging. Radio communication is considered UWB

if the signal has a large relative bandwidth that exceeds 20% of the center frequency or

a large absolute bandwidth of more than 500MHz [51]. This bandwidth enables high

data throughput using short pulses, and more importantly, the wide bandwidth al-

lows accurate ranging. The UWB technology uses short pulses, which are more robust

in multipath conditions, and the wide bandwidth allows better ranging performance

even in non-line-of-sight conditions [52, 53]. In recent years several companies such

as Ubisense [54], Decawave [55], and Sewio [56] have developed real-time localization

systems (RTLS) using UWB technology.
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2.2.1.1 Range Only Localization

Bertrand Fang has shown that a unique solution for the position can be calculated

when there are a minimum of four range measurements to known locations at any given

time [13]. When distance measurements to four known locations are available, the

position fix can be obtained by solving a quartic equation. Additionally, techniques

such as lateration [57], fingerprinting [58], and probabilistic approaches [59] can be

used to localize when there are four or more range measurements.

One of the early studies conducted on UWB based localization was carried out by

Krishnan et al. in [60]. This study has used TDOA to measure the distance between

the robot and the UWB anchors. Interestingly, the authors have developed the UWB

anchor module and used wires to synchronize the stationary anchors. However, recent

studies have used off-the-shelf UWB modules such as DW1001, to develop localization

techniques. Authors in [61] have proposed a multi robot localization system with a self-

calibrating UWB network. They have proposed a novel clock synchronization scheme

for the UWB anchors and showed improvement in TDOA measurement accuracy.

A MAV-based inventory management system is proposed in [62] that uses DW1001

module for ranging and a sub-GHz beacon for synchronization. Authors in [63] use

off-the-shelf RTLS and improve the performance of the localization by tracking the

dynamic motion of the robot through Bayesian filtering.

2.2.1.2 Range Assisted Localization

Range assisted localization incorporates measurements from sensors such as IMU, ve-

locity, heading, etc., along with the range measurements in the localization algorithm.

Several relative localization algorithms have used range measurements along with ve-

locity measurements to localize agents. In [64], Trawny et al. have shown that it is

feasible to obtain an algebraic solution for the 3D relative pose of two robots using
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ten distance measurements between the robots at ten different time steps. In order to

obtain the algebraic solution, the robots should have the capability of estimating their

location, which can be achieved through dead reckoning (integrating wheel encoders

or IMU measurements). Extending the work in [64], Trawny et al. have conducted

an observability study on the single range relative localization problem in [65], and

propose an EKF based estimator which incorporates velocity measurements of the

two robots. Autonomous underwater vehicle (AUV) applications is another area that

uses range assisted localization. Most AUV related applications use depth sensors to

measure the operating depth of the AUV. Hence localization is mainly carried out

on the 2D plane. Authors in [66] have proposed a single range based localization

for AUV, and they have used depth measurements along with the yaw measurement.

Gadre et al. have proposed a similar single range assisted localization of AUV under

the influence of unknown, constant speed currents [26]. In [25] Arrichiello et al. have

used a velocity sensor to measure the AUV vehicle and incorporate it with the single

range measurement to localize the AUV in 2D. Extending the work in [25], authors

in [67] proposed 3D localization with single range measurement to a fixed location.

These localization techniques have focused on the kinematics of the robot and used

additional velocity and height sensors. Since all the MAVs are equipped with at least

one IMU, MAV related applications have opted for range assisted inertial navigation

systems for localization.

2.2.2 Range Assisted INS

An inertial navigation system (INS) is a dead reckoning technique that uses an ac-

celerometer and gyroscope to continuously calculate the robot’s position, orientation,

and velocity. With the development of low cost MEMS-IMUs, INS has been exten-

sively used in the localization of robots. Due to the noise characteristics of low cost
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MEMS-IMU, the pose estimate suffers from drift [68]. Hence other sensor measure-

ments are fused with the INS to improve the estimation accuracy.

Early studies on range assisted INS have used GNSS to obtain pseudo range mea-

surements to the satellites and fuse with inertial measurements to obtain accurate

localization [69, 70]. Later, for indoor applications, other ranging techniques were

used. Study in [71] is one of the early studies that has used UWB technology with

INS. Authors in [71] have used the time of arrival (TOA) measurement as the pseudo

range measurement in the tightly coupled EKF implementation. In [14], authors have

proposed an algorithm fusing IMU, UWB, and vision to estimate the orientation and

the 2D position of a MAV. The proposed algorithm is a loosely coupled estimator

that uses the position information from the off-the-shelf UWB system, velocity from

down facing camera, and inertial measurements and assumes that the height of the

MAV is available. A RINS for relative localization of two MAVs using a single range

measurement is proposed in [28]. This study assumes that the height and velocity

information is available and focuses on addressing the 2.5D pose estimation problem

during a leader-follower flight formation. Authors in [72] have proposed a tightly cou-

pled RINS that focuses on the spatial and temporal calibration of the UWB anchors

while estimating the pose of the MAV. The study in [73] is one of the first studies that

has used the aerodynamic drag force model of MAV in a range assisted INS. However,

the authors have used five range anchors to obtain range measurements but have not

discussed the effect of fewer range measurements on the estimation performance. To

the best of the author’s knowledge, this research study is the first that develop a

RINS which incorporates the aerodynamic drag forces and uses three or fewer range

measurements.
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2.2.2.1 Estimation Techniques

Range assisted INS has been implemented using various algorithms, and among them,

Kalman filter based algorithms are the most popular. Early studies have used vanilla

Kalman filter to implement the RINS by linearizing both system and measurement

models [69, 70]. However, the range measurements and the MAV dynamics are in-

herently nonlinear. Therefore the majority of the RINS implementations have used

the extended Kalman filter formulation [14, 71–73]. In recent years, several stud-

ies have used unscented Kalman filter (UKF), and cubature Kalman filter (CKF) to

capture the higher-order nonlinear dynamics of the range measurements and MAV

dynamics [74–77]. Optimization based algorithms such as moving horizon estimator

(MHE) have been used in several studies to implement the RINS for MAVs, and the

authors claim that optimization based RINS implementation has better performance

over Kalman filter based techniques [78,79]. It should be noted that among the non-

linear filtering and optimization techniques, EKF is one of the techniques with the

least computational overhead. Since EKF performs with acceptable accuracy, this

thesis focuses on the EKF implementation of the RINS.

2.3 Nonlinear Observability Analysis

Observability of a system quantifies how well the internal states of a system can

be determined by the external outputs of the system over a finite period of time

[80]. The observability of linear systems is well documented in the literature. Since

the research on this thesis is focused on a highly nonlinear system of MAV, special

attention is given to the observability of nonlinear systems. The study [81] conducted

by Hermann et al. is one of the first studies that discuss the observability of nonlinear

systems. Hermann et al. define four classes of observability of nonlinear system. They
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are 1) observable, 2) locally observable, 3) weakly observable, and 4) locally weakly

observable. This thesis focuses on the locally weakly observability of the RINS since it

can be determined through an algebraic test. If a system is locally weakly observable,

then the states of the system can be inferred instantaneously3.

Several studies have carried out nonlinear observability analysis on various nonlin-

ear systems. One of the early studies that have utilized the analysis method proposed

in [81] is conducted by Trawny et al. in [65]. They studied the observability4 of rel-

ative localization problem when using range and bearing measurements between the

robots, and presented the conditions under which the system become unobservable.

Authors in [82] have carried out a similar observability study on the 2.5D relative

localization problem subjected to velocity constraints.

Observability analysis of a VINS is performed in [83], and this study is one of

the first studies that have parameterized the rotation using Rodrigues parameteriza-

tion (Gibbs vector). Gibbs parameterization is a three-component parameterization

instead of the four used in quaternion [84], and it reduces the complexity of the ob-

servability analysis. Furthermore, authors in [83] have defined basis functions which

further simplifies the observability analysis. Observability of RINS for MAVs is stud-

ied in [72], and the authors have identified the sufficient conditions under which the

RINS becomes locally weakly observable. In [28], authors have conducted a similar

observability study on the single range assisted INS in leader-follower flight formation

and identified the unobservable trajectories of the system. The aforementioned stud-

ies on the RINS for MAVs have not considered the aerodynamic effects on the MAV,

and they have not identified unobservable directions5 when the MAV is flying in an
3A more detailed explanation of the nonlinear observability is given in section 3.1.3
4The term observability refers to the nonlinear observability of a system, unless otherwise men-

tioned
5The terms unobservable modes and unobservable directions are used interchangeably through

out thesis.
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unobservable trajectory.

Several studies have analyzed the observability of RINS using different analysis

techniques. Authors in [85] have analyzed the global observability of discrete-time

range assisted localization for non-holonomic robots and identified the global unob-

servable conditions. Discretization of the continuous system has facilitated an easy

analysis of the observability. Several studies related to range assisted localization of

AUVs have proposed state augmentation techniques to convert an inherently nonlin-

ear system to a linear time-varying system and conducted observability analysis by

analyzing the observability Gramian [27,67,86].

2.4 Consistency Analysis and Improvement

The proposed RINS in this thesis involves the nonlinear process model, i.e., dynamics

of MAV, and measurement model, i.e., range measurements. The EKF based estima-

tor can suffer from inconsistencies due to linearization during uncertainty propagation.

A consistent estimator has errors that 1) are zero mean and 2) have covariance less

than or equal to the values calculated by the filter [20]. The accuracy of the state

estimates of an inconsistent estimator is unknown, and therefore the estimator is

unreliable.

Inconsistency of the SLAM and VINS have been studied extensively in the liter-

ature. Authors in [87] have shown that the EKF implementation of SLAM is incon-

sistent. They have focused on a stationary robot making several measurements of

the same landmark and have shown that the covariance of the yaw angle estimate de-

creases, even though there is no additional information. Huang et al. have shown that

the inconsistency of the EKF-SLAM is caused by a mismatch between the number

of unobservable directions of the nonlinear system and the number of unobservable
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directions of the error state model used for the EKF implementation [21]. A similar

study has been carried out in [23] to analyze the consistency of the VINS implemen-

tation. No other study has analyzed the consistency of the EKF-RINS with three and

two range measurements under unobservable conditions.

In [88], authors have proposed a technique to improve the consistency of the EKF-

SLAM implementation. The technique ‘First Estimates Jacobian’ (FEJ) computes

Jacobians with the first-ever available estimates for each of the state variables. This

results in both the error-state model and the underlying nonlinear model having the

same observability properties, which improves the consistency and the accuracy of

the estimates. Authors in [23] have proposed observability constrained VINS (OC-

VINS) algorithm which enforces both linearized and nonlinear models have the same

number of unobservable directions and the same structure. OC-VINS technique is a

generalized algorithm that can be adapted for linearized estimator frameworks.

In contrast to the consistency improvement techniques mentioned above, Wu et

al. [89] have proposed a novel formulation for VINS, which does not require modifying

the Jacobians, or the transition matrix. They have proposed a novel Right Invariant

error extended Kalman filter (RIEKF) formulation for the standard VINS and proved

that the RIEKF-VINS has invariant properties. RIEKF has been adapted for various

localization techniques to improve consistency. In [90] authors have developed an

object based SLAM based on RIEKF algorithm.
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Chapter 3

Three and Two Range assisted

Inertial Navigation System: Design

and Observability Analysis

This chapter focuses on developing a three and two range assisted INS for MAVs

incorporating the aerodynamic drag forces. An observability study is conducted to

determine the feasibility of the RINS with three and two range measurements, and

unobservable trajectories along with the corresponding unobservable directions are

identified. Numerical simulations are used to validate the identified unobservable

trajectories, and the performance of the RINS is experimentally validated.

3.1 Preliminaries

This section introduces rotation parameterizations, general notational definitions, and

operators used throughout the thesis.
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3.1.1 System Description

In this thesis, it is assumed that the MAV is flying in an environment populated with

range sensors, also referred to as range anchors, that are capable of measuring the

distance to the MAV. The locations of the range anchors are known with respect to a

global reference frame {W}. The frame {W} is defined according to the east, north,

up (ENU) coordinates system. The frame {B} is attached to the center of gravity of

the MAV, and {B} is oriented such that the x−y plane of {B} is parallel the propeller

plane of the MAV and the thrust is parallel to the z axis of {B}. The frames {W},

and {B} are illustrated in Figure 3.1.

ZW

YW

XW

ZB

YB

XB

{W}

{B}
WpB

Anchor 1

Anchor 2

Anchor 3

Wp1

Fig. 3.1: Frames of reference

Without loss of generality, it is assumed that the frames of the sensors onboard the

MAV coincide with the frame {B}. I acknowledge that this assumption is not valid

for most of the commercially available MAVs. However, there are various techniques

to identify the transformation between {B} and the sensor frames, and the identified

transformations can be used to map the sensor measurements onto {B} [91–93].

In this thesis, vectors are expressed as W aB, where the subscript represents the

frame of the vector b , and the superscript represents the frame in which the vector b is

expressed. For example, W pB in Fig. 3.1 denotes the position of {B} expressed in {W}
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. For the clarity of presentation, the subscript is omitted when both frames are the

same. There are a few exceptions to these conventions. First is the accelerometer bias
Bba, and gyroscope bias Bbg, where the subscript represents the sensor. The second is

the accelerometer measurement Bam, and gyroscope measurementBωm. The subscript

m denotes a measured value.

3.1.2 3D Rotation Parameterziation

Compared to the representations of 3D position, representations for orientation of a

rigid body are numerous. The attitude representations comprise three and four com-

ponent vectors, as well as 3× 3, and 4× 4 matrices. Each representation has its own

advantages and disadvantages, and it can be advantageous to use one representation

over the other in certain applications [84]. In this thesis, the quaternion parameter-

ization is used for the RINS implementation and the Gibbs vector parameterization

for the observability analysis.

3.1.2.1 Quaternion parameterization

Quaternion parameterization is a four element parameterization of the 3D orientation.

Quaternion representation does not suffer from the singularity problem associated

with the Euler angles. There are several ways to determine quaternion, and it has lead

to confusion in the science community. Two conventions, namely Hamilton and JPL

are the widely used conventions in literature, however the Hamilton convention has

gained the wide acceptance in the community [94]. In this thesis Hamilton convention

is used to represent the quaternion.

A unit quaternion is denoted by q = [qw qx qy qz]T =
[
qw q̄T

]T
, and ∥q∥ = 1. The

unit quaternion can be used to represent the rotation of a frame about an axis n̂ by
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an angle of θ as.

q =
[
cos

(
θ

2

)
n̂T sin

(
θ

2

)]T

(3.1)

The quaternion multiplication operator (⊗) is defined as follows

q1 ⊗ q2 = Ξ(q1)q2 and q1 ⊗ q2 = q1Ψ(q2), (3.2)

where

Ξ(q) = qwI4 +


0 −q̄T

q̄ ⌊q̄⌋×

 and Ψ(q) = qwI4 +


0 −q̄T

q̄ −⌊q̄⌋×

 . (3.3)

I4 is the 4× 4 identity matrix1.

The operator ⌊·⌋× is the skew operator that produces the cross-product matrix,

⌊a⌋× ≜



0 −az ay

az 0 −ax

−ay ax 0


. (3.4)

The unit quaternion represents the rotation of {B} in {W} is denoted as W qB, and

the operation that express the vector Ba in {B}, in frame {W} is defined as

W aB = W qB ⊗


0

Ba

⊗ W q−1
B , (3.5)

1In this thesis In represents the n× n identity matrix
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where

q−1 = [qw − q̄] (3.6)

The rotation matrix from frame {B} to {W} is denoted as W CB, and can be

expressed using quaternion as

W CB = C(W qB) = (qw − q̄T q̄)I3 + 2q̄q̄T + 2qw ⌊q̄⌋× (3.7)

Rotation kinematics between two frames can be expressed using quaternion and

rotation matrix parameterization as

˙W qB = 1
2

W qB ⊗


0

Bω

 and ˙W CB = W CB ⌊Bω⌋× , (3.8)

where Bω is the angular velocity of the MAV expressed in {B}.

3.1.2.2 Gibbs parameterization

Gibbs parameterization, also known as Gibbs vector, Cayley–Gibbs–Rodriguez (CGR)

parameterization is a minimal parameterization of orientation using three elements.

Gibbs parameterization suffers from singularity problem, hence not recommended for

RINS implementation. However, the minimal representation makes the observability

analysis straightforward. The Gibbs vector that represents the rotation of a frame

about the axis n̂ by an angle θ can be expressed as

s = n̂ tan
(

θ

2

)
. (3.9)
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Composition of two Gibbs vectors, s1, and s2 is defined as

s∗ = s2 + s1 − s2 × s1

1− s2 · s1
(3.10)

The Gibbs vector for the orientation of {B} expressed in {W} is denoted as W sB,

and the corresponding rotation matrix can be defined using W sB as

W CB = C(W sB) = 1
1 + ∥W sB∥2

((
1− ∥W sB∥2

)
I3 + 2 ⌊W sB⌋× + 2W sB

W sT
B

)
. (3.11)

Gibbs vector kinematics are defined as

W ṡB = DBω, (3.12)

where

D = D(W sB) ≜ ∂W sB

∂θ
= 1

2
(
I3 + ⌊W sB⌋× + W sB

W sT
B

)
. (3.13)

The following identities and the differentiation expressions related to Gibbs vector
W sB and a vector a are used throughout the thesis.

Gibbs vector identities

W sB = −BsW (3.14)

D(BsW ) = D(W sB)T (3.15)

D(W sB)D(BsW )−1 = D(BsW )−1D(W sB) = W CB (3.16)

D(BsW )D(W sB)−1 = D(W sB)−1D(BsW ) = BCW (3.17)

Differentiation expressions

∂

∂s
W CBa = −⌊W CBa⌋× D(BsW )−1 (3.18)

27



∂

∂s
BCW a = ⌊BCW a⌋× D(W sB)−1 (3.19)

∂

∂a
W CBa = W CB (3.20)

∂

∂a
BCW a = BCW (3.21)

3.1.3 Nonlinear Observability Analysis

A general nonlinear system can be expressed as

ẋ = f(x, u), y = h(x), (3.22)

where the state vector, control input vector and output vector are denoted by x ∈ Rn,

u = [u1 . . . ul]T ∈ Rl, and y = [y1 . . . ym]T ∈ Rm respectively. The control affine form

of (3.22) can be expressed as

ẋ = f0(x) +
l∑

∀k=1
fk(x)uk

y = h(x),
(3.23)

where f0 is the zero-input process function and fk corresponds to the process function

that is excited by the kth component of the input control vector u. Observability of

a nonlinear system was introduced by Hermann et. al, and they have defined four

classes to describe various levels of observability of a nonlinear system [81]. The four

classes were defined based on the distinguishability of states, and a pair of states,

x0, and x1 in the state space χ are said to be indistinguishable, if the system (3.23)

produce the same input-output map for every admissible input trajectory u.

Observable A system is observable if each state x ∈ χ is distinguishable from all

other states in the state space χ. This can be denoted as I(x) = {x}, where I
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is the indistinguishability relation on χ.

Locally Observable A system is locally observable if each state x ∈ χ is distinguish-

able within every open neighborhood U of x. This is denoted as IU(x) = {x}.

Weakly Observable A system is weakly observable if each state x ∈ χ is only

distinguishable in an open subset U ⊆ χ. This can be denoted as I(x)∩U = {x},

and this implies that there can be multiple indistinguishable states in the state

space.

Locally Weakly Observable A system is locally weakly observable if each state

x ∈ χ is distinguishable in every open neighborhood V ⊆ U . Where U is an

open neighborhood of x. This can be denoted as IV (x) ∩ U = {x}.

The advantage of locally weakly observability over other classes is that it can be

determined using a straightforward algebraic test. Interestingly for autonomous linear

systems, these four classes of observability are equivalent.

Authors in [81] have defined an observability matrix using the Lie derivatives of the

output function h(x) to determine the locally weakly observability of the nonlinear

system. Lie derivatives evaluate how the output function changes due to the changes

in the states and input trajectory. The zeroth-order Lie derivative is defined as the

output function itself, i.e.

L0h = h(x). (3.24)

Higher order Lie derivatives can be derived recursively from the definition of L0h.

Assume ith order Lie derivative with respect to kth process function is given by Li
fk

h,

then (i+1)th order Lie derivative with respect to ith process function can be calculated

as

Li+1
fkfl

h = ∇Li
fk

h · fl, k, l, i ∈ N (3.25)
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where

∇Li
fk

h =
[

∂Li
fk

h
∂x1

∂Li
fk

h
∂x2

· · ·
∂Li

fk
h

∂xn

]
.

Using the Lie derivatives, the observability matrix O is defined as the matrix with

rows

O = {∇Li
fa,...,fb

h|a, b = 0 . . . k; i ∈ N}. (3.26)

In [81], authors provide the necessary and sufficient conditions under which the

nonlinear system given in (3.23) becomes locally weakly observable (Th. 3.1). They

also define the term observability rank condition which is said to be satisfied when the

observability matrix (3.26) is full rank.

3.2 Range Assisted Inertial Navigation System

This section presents the design of the range assisted inertial navigation system for the

MAV. The structure of the RINS is similar when three and two range measurements

are available, and the only difference is in the measurement model of the RINS. In

order to distinguish between the three range and two range measurement availability,

the terms Case 1 and Case 2 are used. The Case 1 refers to the RINS with three

range measurements, and Case 2 refers to the RINS with two range measurements.

3.2.1 System Mathematical Model

The states of the proposed range assisted INS consists of the position, velocity, and

orientation of the MAV along with the time varying IMU biases. The 16 dimensional

state vector can be expressed as

x =
[

W pT
B

BvT W qT
B

BbT
g

BbT
a

]T
, (3.27)
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where W pB is the position of the MAV expressed in {W}, Bv is the velocity of the MAV

with respect to {W} expressed in {B}, and W qB is the quaternion representation of

the orientation of the MAV, {B} in {W}. Biases of the gyroscope and accelerometer

measurements are represented by Bbg and Bba.

The aerodynamic drag forces acting on the MAV are proportional to the linear

velocity of the MAV expressed in {B} and to the sum of propeller speeds [15]. Hence

the mass normalized drag force fd can be expressed as

fd ∝
1
m

θ̇Σ
Bv, θ̇Σ =

4∑
i=1

∣∣∣θ̇i

∣∣∣ , (3.28)

where θ̇i is the speed of the ith propeller and m is the mass of the quadrotor MAV.

The attitude control of MAV is achieved by increasing the propeller speed of a

propeller while decreasing the speed of the opposing propeller [95]. Hence during

slow maneuvers, the sum of propeller speeds, θ̇Σ can be approximated as a constant

similar to [36, 37, 96]. Hence, mass and propeller speed normalized drag coefficient

matrix Kd is defined as

Kd = θ̇Σ

m
diag(κ⊥, κ⊥, κ∥), (3.29)

where κ⊥ and κ∥ are the proportionality constants for the drag forces in the plane

of the rotors and in the direction of the thrust vector, respectively. Thus the mass

normalized drag force expressed in {B} can be expressed as

fd = −Kd
Bv. (3.30)

Identifying the mass normalized drag coefficient matrix Kd is crucial for the accuracy

of the proposed RINS. The drag coefficients can be identified using the least square

optimization approach [73].
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The linear acceleration of the MAV expressed in {W} can be expressed as

W p̈B = W CBfd + W CBft − g, (3.31)

where g is the gravitational acceleration vector expressed in {W}, ft is the mass

normalized thrust vector in {B}. In general, the propellers of the MAV are placed

on the same plane or in parallel planes. Hence the thrust generated by the propellers

is perpendicular to the plane of the propellers. Based on the placement of {B} , the

thrust vector ft can be expressed as

ft = ftè3, (3.32)

where è3 = [ 0 0 1 ]T . The velocity of the MAV expressed in {W} can be expressed

using the body frame velocity, Bv as

W ṗB = W vB = W CB
Bv. (3.33)

In order to facilitate the observability analysis and the estimator design, the linear

acceleration expressed in {B} is calculated by taking the time derivative of (3.33) and

replacing W p̈B by (3.30).

Bv̇ = ⌊Bv⌋×
Bω + fd + ft − W CT

B g. (3.34)
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3.2.2 Measurement Model

The angular velocity of the MAV is measured by three orthogonal rate gyroscopes,

and the measurement can be modelled as

Bωm = Bω + Bbg + ηω, (3.35)

where Bωm is the measured angular velocity, ηω is the zero-mean white Gaussian

noise with a standard deviation of σω. MEMS gyroscope measurements suffer from

time varying bias Bbg, and can be modelled as random-walk process governed by a

zero-mean white Gaussian noise, ηgb with a standard deviation of σgb [97]. Therefore,

the evolution of gyroscope bias can be expressed as

Bḃg = ηgb. (3.36)

Three axis accelerometer measures the linear acceleration of the MAV, and can be

modeled as
Bam = W CT

B (W p̈B + g) + Bb̃a + ηa, (3.37)

where η̃a is the zero-mean white Gaussian noise and b̃a is the bias of the accelerometer

measurement. Similar to gyroscope bias, evolution of accelerometer bias can also be

modeled as a random-walk process governed by zero-mean white Gaussian noise η̃ab

with standard deviation of σ̃ab [97].

B ˙̃ba = η̃ab (3.38)

In developing the three and two range assisted INS, the thrust, ft is considered an

estimated variable. Most MAVs are not equipped with sensors to measure the thrust
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or the propeller speeds, and in some commercially available MAVs, thrust information

is unavailable to the developers. In this study, the thrust is modeled as a random

walk process, and the mass normalized thrust is several magnitudes higher than the

accelerometer bias in the z direction. Therefore, the accelerometer bias in the z

direction and the mass normalized thrust are combined2 and the new combined bias

is defined as Bba, where

Bba = [ bax bay baz ]T = Bb̃a + ftè3. (3.39)

The noise characteristics of the combined bias ηab can be modeled as

ηab = η̃ab + ηft è3, (3.40)

where ηft is the standard deviation of the thrust. Hence the dynamics of the combined

accelerometer bias can be expressed as

Bḃa = ηab. (3.41)

Combining (3.30), (3.32), (3.37), and (3.39) accelerometer measurement can be rewrit-

ten as
Bam = −Kd

Bv + Bba + ηa. (3.42)

The range measurements are between the MAV and the ith range anchor can be

expressed as

ri = ∥W ri∥+ ηri,
W ri ≜

W pB − W pi, (3.43)

where W pi is the location of the ith range anchor expressed in {W}, and ηri is the
2Based on the assumption stated in section 3.1.1, the direction of thrust and z direction of the

accelerometer are parallel.
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zero-mean white Gaussian noise of the ith range measurement.

The nonlinear state space model of the proposed RINS can be summarized as

follows

ẋ = f(x, u, η)

W ṗB

Bv̇

W q̇B

Bḃg

Bḃa



=



W CB
Bv

⌊Bv⌋× (Bωm − Bbg − ηω)−Kd
Bv + bazè3 − W CT

B g

1
2Ξ(q)

[
0 (Bωm − Bbg − ηω)T

]T
ηgb

ηab



(3.44)

The measurement model of the RINS includes the accelerometer and range mea-

surements. The number of available range measurements determines the number of

range measurements included in the measurement model. Hence the generic measure-

ment model can be expressed as

y = h(x, ν)

y =


ha(x)

hr(x)

 =



−Kd
Bv + Bba + ηa

−−−−−−−−−

r1 + ηr1

...

rj + ηrj



, j ∈ Z+, j > 1, (3.45)

where for Case 1, j = 3 and for Case 2, j = 2. 3

3Through out the thesis, the variables, i, j, n, m ∈ Z+ and α∗, β∗ ∈ R. Otherwise stated.
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3.3 Observability Analysis of RINS

3.3.1 Revisiting System Model

The nonlinear observability analysis is carried out by calculating an observability

matrix using the Lie derivatives of the output function and their gradients. The three

element Gibbs vector parameterization is used to parameterize the orientation of the

MAV instead of the four element quaternion parameterization used in the design of

the RINS. Modeling the system using Gibbs vector simplifies the observability analysis

and allows the identification of the unobservable modes of the system. The maximum

rotation facilitated during the observability analysis is less than 180 degrees about any

axis. Therefore, the observability analysis does not suffer from the singularity issue

of Gibbs parameterization. The new 15 dimensional state vector can be redefined as

x =
[

W pT
B

BvT W sT
B

BbT
g

BbT
a

]T
. (3.46)

Substituting the angular velocity measurements provided by the gyroscope in (3.35)

into the Gibbs kinematics in (3.12), the rotation kinematics can be expressed as

W ṡB = D (Bωm − Bbg − ηω) . (3.47)

The control affine form of the RINS presented in (3.44) without the noise compo-
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nents can be rewritten with Gibbs parameterization as



W ṗB

Bv̇

W ṡB

Bḃg

Bḃa



=



W CB
Bv

−⌊Bv⌋× Bbg −Kd
Bv + bazè3 − W CT

B g

−DBbg

03×1

03×1


︸ ︷︷ ︸

f0

+



03×3

⌊Bv⌋×

D

03×3

03×3


︸ ︷︷ ︸

f1

Bωm, (3.48)

f1 is the concatenated matrix of three process functions that corresponds to the

three components of the angular velocity, and they are defined such that

f1ω = f11 · ωx + f12 · ωy + f13 · ωz, (3.49)

and

f1 = [f11 f12 f13] . (3.50)

In order to further simplify the observability analysis, r2
i /2 is used instead of ri in

the measurement model. Since ri and r2
i are strictly positive and have a one-to-one

correspondence, both provide the same information and do not affect the system’s

observability [65]. Hence the modified measurement model can be expressed as

y = h(x) =



−Kd
Bv + Bba

1
2r2

1

...

1
2r2

j


=



−Kd
Bv + Bba

1
2 (W pB − W p1)T (W pB − W p1)

...

1
2 (W pB − W pj)T (W pB − W pj)


, j ∈ Z+, j > 1. (3.51)
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3.3.2 Case 1 : Three range assisted INS

Three range measurements are available for the RINS under Case 1, and therefore

j = 3 in (3.51). The zeroth order Lie derivative of the measurement function h(x)

can be expressed as

L0h = h(x) (3.52)

The gradient of L0h with respect to the state vector can be calculated as

∇L0h =


03×3 −Kd 03×3 03×3 I3

Γ3 03×3 03×3 03×3 03×3

 , (3.53)

where Γ3 ≜ [ W r1
W r2

W r3 ]T . The first order Lie derivative with respect to f0 can be

calculated as

L1
f0

h = ∇L0h · f0 =


−Kd

Bv̇′

Γ3
W CB

Bv

 , (3.54)

where
Bv̇′ = −⌊Bv⌋×

Bbg −Kd
Bv + bazè3 − W CT

B g. (3.55)

The span of the L1
f0

h can be calculated as

∇L1
f0

h =


03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× −KdI33

V3
W CT

B Γ3
W CB −Γ3 ⌊W CB

Bv⌋×
(
DT

)−1
03×3 03×3

 ,

(3.56)

where V3 = [ Bv, Bv, Bv ]T , and I33 ≜ [03×2, è3].

The second order Lie derivative of L1
f0

h with respect to f0 and it’s gradient can be

38



expressed as

L2
f0f0

h = ∇L1
f0

h · f0 =


Kd

(
Kd − ⌊Bbg⌋×

)
Bv̇ −Kd

⌊
W CT

B g
⌋

×
Bbg

V3
Bv + Γ3

W CB
Bv̇′ + Γ3

W CB ⌊Bv⌋× Bbg

 (3.57)

∇L2
f0f0

h =


03×3 −Kd

(
Kd − ⌊Bbg⌋×

)2
Θ Φ Kd

(
Kd − ⌊Bbg⌋×

)
I33

Υ3 2V3 − Γ3
W CBKd Λ3 03×3 Γ3

W CBI33

 ,

(3.58)

where

Θ = −Kd

(
Kd − 2 ⌊Bbg⌋×

) ⌊
W CT

B g
⌋

×
D−1

Φ = Kd

⌊(
−Kd

Bv + bazè3 − 2W CT
B g
)⌋

×
−Kd

(
Kd − ⌊Bbg⌋×

)
⌊Bv⌋× . . .

. . . + Kd

⌊
⌊Bbg⌋×

Bv
⌋

×

Λ3 = −Γ3
(
⌊W CB(−Kd

Bv + bazè3)⌋×
) (

DT
)−1

Υ3 = [ W p̈B
W p̈B

W p̈B ]T ; W p̈B = W CB

(
−Kd

Bv + bazè3 − W CT
B g
)

.

Using (3.53), (3.56) and (3.58), the nonlinear observability matrix can be con-

structed as

O3R =



∇L0h

∇L1
f0

h

∇L2
f0f0

h


. (3.59)
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O3R =

03×3 −Kd 03×3 03×3 I3

Γ3 03×3 03×3 03×3 03×3

03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× KdI33

V3
W CT

B Γ3
W CB −Γ3 ⌊W CB

Bv⌋×
(
DT

)−1
03×3 03×3

03×3 −Kd

(
⌊Bbg⌋× −Kd

)2
Θ Φ Kd

(
Kd − ⌊Bbg⌋×

)
I33

Υ3 2V3 − Γ3
W CBKd Λ3 03×3 Γ3

W CBI33



.

(3.60)

Lemma 3.1. The RINS with three range measurements is locally weakly observable

when 1) Three range anchors are non-collinear. 2) MAV is not on the plane of the

three anchors. 3) MAV is not stationary, and Bv ∦ W CT
B g

Proof. The rank of the observability matrix in (3.60) is determined by calculating the

rank of each block column of the matrix O3R. When the MAV is not on the plane of

the three anchors, Γ3 on the first block column has full rank of three, irrespective of

the velocity and the acceleration of the MAV. Kd is a diagonal matrix, and therefore

the second block column is also full rank. The non-zeros blocks of the third block

column can be expressed as

O′
3R,(:,3) =



Kd

⌊
W CT

B g
⌋

×
D−1

Γ3 ⌊W CB
Bv⌋× (DT )−1

−Kd

(
Kd − 2 ⌊Bbg⌋×

) ⌊
W CT

B g
⌋

×
D−1

Γ3
(
⌊W CB(Bv − bazè3)⌋×

) (
DT

)−1



If the MAV is non-stationary, and Bv ∦ W CT
B g, the block matrix O′

3R,(:,3)
4 has a rank

4The subscript notation O(i,:) and O(:,j) refer to the ith block row and jth block column of

40



of three. By analyzing the non-zero blocks of the fourth column, it is straightforward

to show that the column has full rank except when the MAV is stationary. Since the

first block row of the fifth column is the identity matrix, the fifth column has full

rank. Therefore, the observability matrix O3R has a rank of 15, and based on Lemma

3.1 of [81], the RINS with three range measurements is locally weakly observable.

3.3.3 Unobservable Scenarios of Case 1

This section focuses on three scenarios (trajectories) that cause the three rang assisted

INS to become unobservable. The observability matrix O3R is analyzed to identify the

unobservable directions corresponding to each scenario. The unobservable directions

span the unobservable sub-space of an unobservable system. Therefore, if information

acquired by the estimator lies along an unobservable direction, then the accuracy of

the estimation decreases.

3.3.3.1 Scenario 1: MAV is stationary with three range anchors

Lemma 3.2. When the MAV is stationary, the RINS with three range measurements

become unobservable, and the unobservable sub-space is spanned by

1N =



03×1 03×1

03×1 03×1

DW CT
B g 03×1

03×1 bazè3

03×1 03×1



. (3.61)

matrix O, respectively, while O(i,j) refers to the block element (i, j).
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Proof. The stationary MAV has zero velocity, Bv = 03×1 and zero acceleration W p̈B =

03×1. Hence the equation (3.31) can be simplified as W CBbazè3 = g, Substituting

these values into (3.53), (3.56) and (3.58), the new observability matrix O3RS1 can

be expressed as

O3RS1 =

03×3 −Kd 03×3 03×3 I3

Γ3 03×3 03×3 03×3 03×3

03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 03×3 KdI33

03×3 Γ3
W CB 03×3 03×3 03×3

03×3 −Kd

(
⌊Bbg⌋× −Kd

)2
Θ −Kd ⌊(bazè3)⌋× Kd

(
Kd − ⌊Bbg⌋×

)
I33

03×3 −Γ3
W CBKd Λ3S1 03×3 Γ3

W CBI33



,
(3.62)

where,

Λ3S1 = −Γ3
(
⌊g⌋×

) (
DT

)−1
.

It is straightforward to show that the rank of both the third and fourth block

columns of O3RS1 have rank of two. Hence the three range assisted INS is unobserv-

able under Scenario 1, and the system has two unobservable directions.

Multiplying O3RS1 by the first column of the null vector 1N results in

O3RS1
1N (:,1) = −Γ3

(
⌊g⌋×

) (
DT

)−1
DW CT

B g

= −Γ3
(
⌊g⌋×

)
W CB

W CT
B g

= 03×1.

(3.63)

It is straight forward to show that O3RS1
1N (:,2) = 03×1. Hence, the 1N spans the

unobservable sub-space.

42



The null vector given in (3.61) shows that the two unobservable directions corre-

spond to the orientation and gyroscope bias states. 1N (:,1) corresponds to rotation

about the gravity vector5, and 1N (:,2) corresponds to the gyroscope bias along the z

axis of {B}.

3.3.3.2 Scenario 2: MAV is flying on the plane of the three range anchors

Lemma 3.3. When the MAV is flying on the plane of the three range anchors, the

RINS with three range measurements becomes unobservable, and the unobservable sub-

space is spanned by

2N =
[

(l12 × l13)T 01×3 01×3 01×3 01×3
]T

. (3.64)

where l12 = W r2 − W r1 and l13 = W r3 − W r1.

Proof. When the MAV is flying on the plane of the anchors, i.e. (W r1 × W r2) · W r3 =

0 and W r3 = αW r1 + βW r2, the velocity and the acceleration of the MAV can be

expressed as

W vB = W CB
Bv = α1l12 + β1l13,

W p̈B = α2l12 + β2l13. (3.65)

Hence using the elementary row operations, the first block column of O3R can be

reduced to

O′
3R(:,1)

=
[

03×3 ΓT
3 03×3 03×3 03×3 03×3

]T
(3.66)

The block column O3R(:,1) has rank of two. Therefore the rank of the observability

matrix becomes 14, and the system becomes unobservable.
5The Gibbs vector related to the rotation about the gravity vector can be expressed as λ∗DW CT

B g
(See Appendix A). Since λ∗ is a scalar, it does not affect the null vector 1N (:,1). Therefore, for the
clarity of the presentation, λ∗ is omitted throughout the thesis.
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The null vector of Γ3 can be calculated as (l12 × l13), and therefor it is straight

forward to show that the 2N is the null vector of O3R.

The null vector given in (3.64) shows that the unobservable direction under Sce-

nario 2 corresponds to the perpendicular direction to the plane of the three anchors.

If the MAV is stationary while on the plane of the three anchors, the unobservable

sub-space is spanned by [ 1N 2N ].

3.3.3.3 Scenario 3: MAV is flying parallel to the gravity with three range

anchors

Lemma 3.4. When the MAV is flying parallel to gravity, the three range assisted INS

becomes unobservable. The unobservable sub-space is spanned by

3N =
[

01×3 01×3
(
DW CT

B g
)T

01×3 01×3

]T

. (3.67)

Proof. When the MAV is flying parallel to gravity, the velocity and the acceleration

of the MAV can be expressed as

W vB = W CB
Bv = αg, W p̈B = βg. (3.68)

Substitute the conditions in (3.68) into O3R, and consider the third column of the

modified observability matrix O3RS3,(:,3)

O3RS3,(:,3) =[
03×3 03×3

(
Kd

⌊
W CT

B g
⌋

×
D−1

)T (
−Γ3

(
⌊g⌋×

) (
DT

)−1
)T

ΘT ΛT
3S3

]T

,

(3.69)
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where Λ3S3 = Γ3
(
⌊g⌋×

) (
DT

)−1
. The block column matrix O3RS3,(:,3) has a rank of

2, hence the system is locally weakly observable.

Similar to the proof in Lemma 3.2, it is straight forward to prove that
(
DW CT

B g
)T

is the null vector of O3RS3,(:,3) . Hence the unobservable sub-space under Scenario 3

is spanned by 3N .

Similar to Scenario 1, the null vector 3N represents the rotation about the

gravity vector. Therefore, when the MAV is flying parallel to gravity, any rotation

about the gravity vector is unobservable.

3.3.4 Case 2 : Two Range Assisted INS

Two range measurements are used in the measurement model of the RINS under Case

2, and therefore j = 2 in (3.51). The Lie derivatives of the output function and their

gradients can be calculated as follows.

L0h = h(x) (3.70)

∇L0h =


03×3 −Kd 03×3 03×3 I3

Γ2 03×3 03×3 03×3 03×3

 , (3.71)

where Γ2 ≜ [ W r1
W r2 ]T .

L1
f0

h = ∇L0h · f0 =


Kd

Bv̇′

Γ2
W CB

Bv

 , (3.72)

45



∇L1
f0

h =
03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× −KdI33

V2
W CT

B Γ2
W CB −Γ2 ⌊W CB

Bv⌋×
(
DT

)−1
03×3 03×3

 ,

(3.73)

where V2 = [ Bv, Bv ]T .

L2
f0f0

h = ∇L1
f0

h · f0 =


Kd

(
Kd − ⌊Bbg⌋×

)
Bv̇ −Kd

⌊
W CT

B g
⌋

×
Bbg

V2
Bv + Γ2

W CB
Bv̇′ + Γ2

W CB ⌊Bv⌋× Bbg

 (3.74)

∇L2
f0f0

h =


03×3 −Kd

(
⌊Bbg⌋× −Kd

)2
Θ Φ Kd

(
⌊Kd − Bbg⌋×

)
I33

Υ2 2V2 − Γ2
W CBKd Λ2 03×3 Γ2

W CBI33

 ,

(3.75)

where

Λ2 = Γ2
(
⌊W CB(Kd

Bv − bazè3)⌋×
) (

DT
)−1

Υ2 = [ W p̈B
W p̈B ]T .

The nonlinear observability matrix for the Case 2, O2R can be constructed using

(3.71), (3.73), (3.75) as

O2R =



∇L0h

∇L1
f0

h

∇L2
f0f0

h


. (3.76)
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O2R =

03×3 −Kd 03×3 03×3 I3

Γ2 03×3 03×3 03×3 03×3

03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× KdI33

V2
W CT

B Γ2
W CB −Γ2 ⌊W CB

Bv⌋×
(
DT

)−1
03×3 03×3

03×3 −Kd

(
⌊Bbg⌋× −Kd

)2
Θ Φ Kd

(
Kd − ⌊Bbg⌋×

)
I33

Υ2 2V2 − Γ2
W CBKd Λ2 03×3 Γ2

W CBI33



.

(3.77)

Lemma 3.5. The RINS with two range measurements is locally weakly observable

when 1) MAV is nonstationary 2) MAV is not flying on the plane generated by the

MAV and the two anchors. 3) Bv ∦ W CT
B g.

Proof. The rank of the observability matrix in (3.77) is determined by calculating the

rank of each block column of the matrix O2R. Consider the non zero matrices of the

first block column of O2R.

O′
2R(:,1) =

[
ΓT

2 (V2
W CT

B )T ΥT
2

]T

It is straightforward to show that O′
2R(:,1) has full rank when MAV is moving in

any direction that is not along the plane generated by the MAV and the two an-

chors. Following a similar approach of proofing Lemma 3.1, it can be shown that the

block columns three, four, and five have full rank if the MAV trajectory satisfies the

conditions given in this Lemma.
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3.3.5 Unobservable Scenarios of Case 2

This section focuses on three trajectories that causes the two range assisted INS to

become unobservable and identify the unobservable directions for each trajectory.

3.3.5.1 Scenario 4: MAV is stationary with two range anchors

Lemma 3.6. When the MAV is stationary in the two range assisted INS, the RINS

becomes unobservable, and the unobservable sub-space is spanned by

4N =



03×1 03×1 (W r1 × W r2)

03×1 03×1 03×1

DW CT
B g 03×1 03×1

03×1 bazè3 03×1

03×1 03×1 03×1



. (3.78)

Proof. A stationary MAV has zero velocity and acceleration, and the thrust is in the

direction of gravity. Hence the observability matrix for Scenario 4 can be expressed

as

O2RS2 =

03×3 −Kd 03×3 03×3 I3

Γ2 03×3 03×3 03×3 03×3

03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 03×3 KdI33

03×3 Γ2
W CB 03×3 03×3 03×3

03×3 −Kd

(
⌊Bbg⌋× −Kd

)2
Θ −Kd ⌊(bazè3)⌋× Kd

(
Kd − ⌊Bbg⌋×

)
I33

03×3 −Γ2
W CBKd Λ2S4 03×3 Γ2

W CBI33



,
(3.79)
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where,

Λ2S4 = −Γ2
(
⌊g⌋×

) (
DT

)−1
.

It is straightforward to show that the first, third, and fourth block columns of O2RS2

each has a rank of 2. Hence the RINS is unobservable when the MAV is stationary.

Following the steps of Lemma 3.2, it can be shown that the first two columns of

the null vector 4N span the unobservable sub-space of the system. Γ2 has a null

vector of W r1 × W r2. Therefore, it is straightforward to show that the third column

of 4N spans the unobservable sub-space of the RINS under Scenario 4.

The null vector given in (3.78) shows that the three unobservable directions under

Scenario 4 correspond to the rotation about the gravity vector, gyroscope bias along

z axis of {B}, and the perpendicular direction to the plane created by the MAV and

the two anchors.

3.3.5.2 Scenario 5: MAV is flying on the plane of the MAV and the two

anchors

Lemma 3.7. When the MAV is flying on the plane generated by the MAV and the

two anchors, the RINS is unobservable, and the unobservable sub-space is spanned by

5N =
[
(W r1 × W r2)T , 01×3, 01×3, 01×3, 01×3

]T

. (3.80)

Proof. When the MAV is flying on the plane of the anchors, the velocity and the

acceleration of the MAV can be expressed as

W vB = W CB
Bv = α1

W r1 + β1
W r2,

W p̈B = α2
W r1 + β2

W r2. (3.81)

By substituting the relations into V2, and Υ2 it is straight forward to show that
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(W r1 × W r2) is the null vector of the first column of O2R. Hence the 5N spans the

unobservable sub-space of the RINS under Scenario 5.

3.3.5.3 Scenario 6: MAV is flying parallel to the gravity with two range

anchors

Lemma 3.8. When the MAV is flying parallel to gravity, the two range assisted INS

becomes unobservable. The unobservable sub-space is spanned by

3N =
[

01×3 01×3
(
DW CT

B g
)T

01×3 01×3

]T

. (3.82)

Proof. The proof is similar to that of Lemma 3.4.

Table 3.1 summarize the results of the observability analysis of three and two

range assisted INS.

3.4 Simulation Results

A MATLAB simulator was developed using the measured physical parameters of

the AscTec Hummingbird quadrotor MAV to validate the observability conditions

identified in section 3.3. The IMU and range measurements were modelled as in

(3.42), (3.43), and the noise characteristics were obtained using experimental data.

Noise characteristics of the IMU and range measurements used for the simulation are

shown in Table 3.2. All the unobservable modes of orientation are the rotation about

the gravity vector. The velocity and acceleration conditions of the corresponding

scenarios enforce that the MAV is horizontal; hence the rotation about the gravity

vector can be interpreted as a change in the yaw angle of the MAV. Therefore the

Euler angles are used to visualize the estimated orientation of the MAV. The estimated
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Table 3.1: Summary of the observability analysis of three and two range assisted INS

Case Scenario Unobservable Directions

Case 1: Three
range mea-
surements

Scenario 1: Hovering
• Rotation about gravity vector
• Gyroscope bias along z axis

Scenario 2: Flying on the
plane of the three anchors

• Position perpendicular to the
plane of the three anchors

Scenario 3: Vertical
flight

• Rotation about gravity vector
• Gyroscope bias along Bv

Case 2: Two
range mea-
surements

Scenario 4: Hovering
• Position perpendicular to the
plane of the MAV and two anchors
• Rotation about gravity vector,
• Gyroscope bias along z axis

Scenario 5: Flying on the
plane of the MAV and the
two anchors

• Position perpendicular to the
plane of the MAV and two anchors

Scenario 6: Vertical flight
• Rotation about the gravity vector
• Gyroscope bias along Bv

Table 3.2: IMU and Range Noise Figures

Measurement Noise Density
Acceleration 2.08× 10−3 (ms−2/

√
Hz)

Angular Velocity 5.088× 10−4 (◦s−1/
√

Hz)
Accelerometer Bias 3.0× 10−5 (ms−3/

√
Hz)

Gyroscope Bias 2.657× 10−5 (◦s−2/
√

Hz)
UWB Range 1.04× 10−2 (m/

√
Hz)

quaternions and the estimation covariances are used to calculate the corresponding

Euler angles and their covariances. For a better illustration of the unobservable modes,

the simulated trajectories were divided into two parts. For the first part, the MAV

was flown along a circular trajectory with varying altitude during the first 50 seconds.

51



As for the second portion of the simulation, the MAV was flown along a straight line,

vertically or kept stationary for another 50 seconds depending on the scenario. Fig.

3.2 shows the three different trajectories used to simulate the unobservable modes.

The covariance matrix P [see (4.17)] represents the confidence level of the estima-

tion. The diagonal elements of P correspond to the variance of each estimated error

state, and the standard deviation is represented by σ. The 3σ boundary represents

the 99% confident boundary of the estimation. During an unobservable scenario, the

estimator does not have sufficient information to estimate the states along the unob-

servable direction. Hence the 3σ boundary of the error states along the unobservable

direction diverge.

(a)
(b) (c)

Fig. 3.2: Trajectories used for the three and two range assisted INS simulation. (a)
Circular trajectory with varying altitude, (b) Circular trajectory with varying altitude
and straight line, (c) Circular trajectory with varying altitude and vertical climb

3.4.1 Case 1 : RINS with three range measurements

The simulated circular trajectory is shown in Fig. 3.2a, and the estimator was run

with five different anchor constellations, each containing three anchors. The anchor

positions are randomly selected, and the locations of the anchors are shown in Table

3.3. Fig. 3.3 shows the total position and the total angle estimation errors for the

five range constellations. This shows that when the MAV is flying in an observable
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trajectory, the proposed RINS with three range measurements can estimate the pose

of the MAV with good accuracy irrespective of the anchor locations.

Table 3.3: Anchor Locations for Case 1

Anchor 1 (m) Anchor 2 (m) Anchor 3 (m)
Constellation 1 (4.2, 7.2, 0) (3.0, 1.5, 0.9) (1.9, 3.5, 4.0)
Constellation 2 (7.4, 3.9, 6.7) (7.3, 7.7, 1.3) (8.7, 1.3, 9.5)
Constellation 3 (6.2, 6.0, 2.5) (7.4, 4.8, 8.6) (1.2, 6.3, 3.0)
Constellation 4 (5.3, 8.2, 3.9) (2.7, 9.4, 7.3) (7.7, 4.0, 5.0)
Constellation 5 (0.1, 6.5, 1.8) (7.6, 5.1, 2.6) (8.8, 9.8, 8.3)
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Fig. 3.3: Case 1 : Localization using three range measurements, (a) Total Position
error and 3σ boundary, (b) Total Angle Error and 3σ boundary. ( ) is total error,
and (-∗-) is 3σ boundary.

25 Monte-Carlo simulations were conducted with the anchor constellations in Table

3.3. Due to space limitations, the Mean Absolute Error (MAE) of estimates and the

average 3σ of the simulation with constellation 1 are shown in Fig. 3.4. This shows

that all the estimation errors are bounded and well within the 3σ boundary under

Case 1. The covariance values of the estimates depends on the position of the MAV

relative to the anchor locations. Since the MAV is flying in a circular trajectory, a

repeating pattern can be seen in the estimation covariances. This phenomenon is

clearly visible in the position covariance in Fig. 3.4a
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Fig. 3.4: Case 1 : Localization using three range anchors in Constellation 1, 25 Monte-
Carlo simulations conducted. MAE and 3σ boundary of (a) Position, (b) Orientation,
(c) Body frame velocity, (d) Gyroscope bias, (e) Accelerometer bias.

3.4.2 Case 2 : RINS with two range measurements

Similar to Case 1, I ran the simulation with five range anchor constellations for the

case with two range measurements. Each constellation contains two anchors and the

anchor locations are shown in Table 3.4. Fig. 3.5a and Fig. 3.5b shows the total

position and total angle errors along with corresponding 3σ error boundary for each
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anchor constellation.

Table 3.4: Anchor Locations for Case 2

Anchor 1 (m) Anchor 2 (m)
Constellation 1 (7.1, 7.5, 2.8 ) (6.8, 6.6, 1.6)
Constellation 2 (1.2, 5.0, 9.6) (3.4, 5.9, 2.2)
Constellation 3 (7.5, 2.6, 5.1) (7.0, 8.9, 9.6)
Constellation 4 (5.5, 1.4, 1.5) (2.6, 8.4, 2.5)
Constellation 5 (0.1, 2.4, 9.3) (3.5, 2.0, 2.5)
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Fig. 3.5: Case 2 : Localization using two range measurements, (a) Total Position error
and 3σ boundary, (b) Total Angle Error and 3σ boundary. ( ) is total error, and
(-∗-) is 3σ boundary.

25 Monte-Carlo simulations are conducted with each constellation in Table 3.4.

Fig. 3.6 shows the MAEs and average 3σ boundaries of the simulations with Con-

stellation 1. The estimation errors of Case 2 are larger than the errors in Case 1.

However, all the errors are bounded and well within the 3σ confidence level.

It can be seen that the total error values in both cases lie within the 3σ boundary,

and the covariances remain bounded as expected since non of the unobservable con-

ditions are met during the flight. It can be seen that the proposed estimator is able

to estimate the position and orientation of the MAV with three and two range mea-

surements. The total estimation errors are bounded well within the 3σ boundary.
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Fig. 3.6: Case 2, 25 Monte-Carlo simulations: Constellation 1, MAE and 3σ boundary
(a) Position, (b) Orientation, (c) Body frame velocity, (d) Gyroscope bias, (e) Ac-
celerometer bias.

3.4.3 Unobservable Scenarios

Simulations of Scenario 1 to Scenario 3 use the same anchor constellation. The three

anchors are located at (3,−1, 0) m, (3, 7, 5) m, (3, 0, 7) m. The x coordinate is selected

to be fixed, and the rest of the coordinates are selected randomly. The range anchors

are located on the y−z plane so that the unobservable modes in position estimate will
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align with the x axis of {W}. This does not change the observability conditions but

allows a clear presentation of the unobservable modes. Scenarios 4 to 6 require two

range measurements, and therefore the first two anchors of the previous constellation

are used as the range anchors. The simulation results show the MAE of the estimates

of 25 Monte-Carlo simulations and the average of 3σ boundary.

Scenario 1: MAV is stationary with three range anchors: For this scenario, the

MAV was kept stationary during the second portion of the simulation. The analysis

shows that when the MAV is stationary with three range measurements, rotation

about the gravity vector, under these conditions, the yaw angle, and the gyroscope

bias along the z axis of {B}are unobservable modes. Fig. 3.7 shows the errors of the

entire trajectory, circular portion, and stationary portion. The figures for the rest of

the scenarios will show only the last 50 s of the simulation.
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Fig. 3.7: Scenario 1: MAV is stationary with three range anchors, Estimation errors,
and 3σ boundary. (a) Orientation error, (b) Gyroscope bias error.

Fig. 3.7a shows the angle error and the 3σ error boundary for Scenario 1, and

it can be seen that after the first 50 s, the covariance of the yaw estimation diverge

rapidly, which shows that the yaw angle is an unobservable mode. Fig. 3.7b shows

the gyroscope bias error and the 3σ error boundary. It can be seen that there is a

slight divergence in the covariance of the z component of the gyroscope bias estimate.

Since the gyroscope is modeled as a slow varying random walk process, the change of
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the covariance is not significant during the 50 second simulation period.

Scenario 2: MAV is flying on the plane of the three range anchor: In this

scenario, the MAV follows the trajectory shown in Fig. 3.2b, and the velocity and

acceleration of the MAV are on the plane of the three range anchors. The position of

the MAV in the direction perpendicular to the plane is the unobservable mode. Fig.

3.8 shows the position error and the 3σ error boundary. It is clear that the covariance

of the x estimate diverges significantly since x direction is perpendicular to the plane

of the anchors.
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Fig. 3.8: Scenario 2: MAV is flying on the plane of the three anchors. Position
estimation error and 3σ boundary,

Scenario 3: MAV is flying parallel to the gravity with three range anchors:

In this scenario, the MAV transitions from the circular trajectory to a vertical climb at

50 seconds. According to the theoretical analysis, the rotation about gravity vector,

i.e, yaw angle, is an unobservable mode. It is visible in Fig. 3.9 where the covariance

of the yaw estimation diverges rapidly.
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Fig. 3.9: Scenario 3: MAV is flying vertically with three range anchors. Orientation
estimation error and 3σ boundary.

Scenario 4: MAV is stationary with two range anchors: In scenario 4, the

MAV is hovering at (3, 6, 3.1) m such that the anchors and the MAV lie on the y − z

plane. According to the analysis, the position of the MAV becomes unobservable in

the direction perpendicular to the plane of the MAV and the two anchors, which in

this configuration is the x direction.

Fig. 3.10a shows the position error and the 3σ error boundary. It can be seen

that the covariance of the x estimate diverges rapidly, which can be interpreted as

the position along the x axis is unobservable. Furthermore, the covariance of the y

estimate also diverges but at a much lower rate, and this behavior can be attributed

to the errors in position estimation. Due to the errors, the plane of the estimated

MAV position and the two anchors is not parallel with the y− z plane, and therefore

the normal direction to the estimated plane has a component in the y direction.

In addition to the position being unobservable, the yaw angle and the gyroscope

bias in the z direction are also unobservable. Fig. 3.10b shows that the covariance of

the yaw estimation diverges rapidly; therefore, it confirms the theoretical calculation.

In Fig. 3.10c we can see a slight divergence in the covariance of the z direction
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estimation of gyroscope bias as well.
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Fig. 3.10: Scenario 4: MAV is stationary with two range measurements, Estimation
errors, and 3σ boundary. (a) Position error, (b) Orientation error, (c) Gyroscope bias
error.

Scenario 5: MAV is flying on the plane of the MAV and the two anchors:

For this scenario, the MAV is flown in the trajectory shown in Fig. 3.2b such that the

plane of the MAV and the two anchors is parallel to the y− z plane. Fig. 3.11 shows

that the covariance of the x estimate, perpendicular to the y−z plane diverges rapidly,

confirming the unobservable modes of Scenario 5. Similar to position estimation in

Scenario 4, the covariances for y and z estimates diverge slightly due to the errors in

the estimated position of the MAV which results in the plane between MAV and two

anchors to be not parallel to the y − z plane.
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Fig. 3.11: Scenario 5: MAV is flying on the plane of the MAV and the two range
anchors. Position estimation error and 3σ boundary

Scenario 6: MAV is flying parallel to the gravity with two range anchors:

In this scenario, the MAV starts flying vertically on the trajectory shown in Fig.

3.2c. According to the theoretical analysis, the rotation about the gravity vector axis

is unobservable. This can be seen in Fig. 3.12, where the covariance of the yaw

estimate increase while the covariances of roll and pitch estimate stay constant.

0

0.002

0.004

0

0.002

0.004

50 55 60 65 70 75 80 85 90 95 100

0

0.2

Time (s)

Roll Error (rad) 3  Boundary

Pitch Error (rad) 3  Boundary

Yaw Error (rad) 3  Boundary

Fig. 3.12: Scenario 6: MAV is flying vertically with two range anchors. Orientation
estimation error and 3σ boundary
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3.5 Experimental Results

The main objective of the experiment is to validate the proposed INS’s ability to

localize the quadrotor MAV with two or three range measurements under real world

conditions. The trajectory of the MAV and the placement of the anchors are decided

such that the unobservable conditions identified in the observability analysis are not

invoked. The MAV follows a circular trajectory with a constant height, and the range

anchors are placed such that the height of the range anchors are not same as height

of the trajectory.

Fig. 3.13: Experimental setup

The experiments are carried out using an Ascending Technologies Hummingbird

quadrotor with its factory programmed attitude controller. A high-level trajectory

controller is implemented using the Robotic Operating System (ROS) to fly the

quadrotor along the desired trajectory. The trajectory controller uses the differen-

tial flatness property of the quadrotor MAV to generate feasible reference attitude

and thrust control commands for the attitude controller [98]. The trajectory con-

troller runs at 60Hz in ROS and transmits the control commands to the quadrotor
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via XBee modules. The feedback for the trajectory controller and the ground truth

of the experiment are captured using an Optitrack motion capture system. Fig. 3.13

shows the experimental setup.

Range measurements for the experiment are obtained using DWM1001 transceivers

from decaWave. DWM1001 module compromises of DW1000 UWB range sensor and

a system on chip (SoC), which includes an embedded UWB-based Real-Time Lo-

cation System (RLTS). In a network of DWM1001 modules, the range is measured

between a Tag and an Anchor. There can be several anchors and at least one Tag in

the network to obtain the range measurements. In the current configuration, three

DWM1001 modules are configured as Anchors and placed at the following locations.

• Anchor 1 : [−1.592 −1.480 0.104] m

• Anchor 2 : [ 2.130 −0.828 0.057] m

• Anchor 3 : [ 1.379 1.293 0.053] m

Another DWM1001 module is configured as a Tag, and it is mounted on the

quadrotor. Tag measures the distance to the three anchors and provides range mea-

surements at a rate of 10Hz. The quadrotor is flown on a circular trajectory with 1 m

radius at a constant height of 1 m, and flight data are recorded.

The proposed estimator is executed offline using the recorded data from the

quadrotor and the range sensors. The initialization of the estimator is done using

groundtruth data obtained from the Optitrack motion captures system. The experi-

mental results focus on validating the observable behavior of the estimator when the

MAV is flying in an observable trajectory. Fig. 3.14 shows the position error for the

case with three range measurements (Case 1 ). It can be seen that the estimation error

is well within the 3σ boundary. The 3σ boundary is calculated using the covariance
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matrix generated by the error-state Kalman filter implementation (See Section 4.1.2).

The total RMS error for the Case 1 is 0.3248 m.
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Fig. 3.14: Circular trajectory position estimation error with three range measure-
ments.

For the case with two range measurements, I use the range measurements to

Anchor 1 and Anchor 2. Fig. 3.15 shows the position error and the 3σ error boundary.

The error is slightly larger than the case with three range measurements, but the error

is well within the boundary. The total RMS error for Case 2 is 0.8858 m. One of the

main reasons for higher RMSE is the accuracy of the DWM1001 range measurements.

DWM range measurements have an accuracy of around 10 cm. Additionally, the noise

of the range measurements from DWM1001 module changes depending on the relative

orientation of the two modules.
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Fig. 3.15: Circular trajectory position estimation error with two range measurements.

There are a few challenges to mimicking the identified unobservable scenarios

while performing experiments. One such challenge is the capture volume of the motion

capture system. The capture volume is not large enough to sustain some unobservable

conditions for a sufficient period of time. Therefore the results of the unobservable

scenarios are limited to simulation results.

3.6 Summary

This chapter presented the design of a RINS that estimate the 3D pose of the MAV

with three or two range measurements. The unique aerodynamic drag force effects

were introduced into the system model, and this enabled the RINS to operate with-

out a velocity sensor. An observability analysis was carried out to determine the

observability of the RINS, and six unobservable trajectories and the corresponding

unobservable directions were identified. The numerical simulations validated the un-

observable directions identified in the observability analysis, and the experimental

results showed that the proposed RINS is able to estimate the pose of the MAV when
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it is flying in an observable trajectory. The unobservable directions identified in this

chapter is used in Chapter 4 to study the consistency of the proposed RINS.
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Chapter 4

Observability Constrained Three

and Two Range assisted Inertial

Navigation System

In the previous chapter, the observability analysis of the three and two range as-

sisted INS identified the unobservable trajectories and the corresponding unobservable

modes of the proposed RINS. When the MAV is flying along an unobservable trajec-

tory, the linearized estimator, the error-state Kalman filter (EKF) can suffer from

inconsistencies, and the estimator gain spurious information along the unobservable

directions. This chapter analyzes the ideal linearized estimator along unobservable

trajectories to identify the cause of inconsistency and determine the consistency rules

for the observability constrained RINS.
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4.1 Error-state Kalman Filter Implementation

4.1.1 Continuous Time Model

The EKF implementation of the RINS is formulated using the nonlinear error defini-

tions of the states of the system. Applying the expectation operator (̂·) on both sides

of (3.44), the state estimate propagation model can be expressed as



W ˙̂pB

W ˙̂v

W ˙̂qB

W ˙̂
bg

W ˙̂
ba



=



W ĈB
Bv̂

⌊Bv̂⌋× (Bω̂)−Kd
Bv̂ + b̂azê3 − W ĈT

B g

1
2Ξ(W q̂B)

[
0 Bω̂T

]T
03×1

03×1



(4.1)

where W ĈB = C(W q̂B), and Bω̂ = Bωm − b̂g.

The error-state vector δx is defined as

δx =
[
δpT δvT

b δθT δbT
g δbT

a
]T

, (4.2)

where δp, δvb, δbg, δba are the position error, body frame velocity error, gryroscope

bias error, and accelerometer bias error respectively.

The states of the RINS can be defined using the estimated states (x̂) and the error-

states (δx) as, δx = x ⊖ x̂. The operator ⊖ is the same as the standard subtraction

for all the states except for quaternion. For the quaternion, the multiplicative error

model has been used [99]. The error between the quaternion W qB and its estimate
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W q̂B is denoted by the angle-error vector δθ as

δq = q̂−1 ⊗ q ≃
[

1 1
2δθT

]
. (4.3)

The rotation matrix, W CB can be expressed using the estimated rotation matrix and

the angle error as
W CB = W ĈBδC, δC = exp(⌊δθ⌋×) (4.4)

The system is linearized about the current state estimate, and the linearized error-

states’ dynamics can be expressed as

˙δp = W ĈBδvb −
W ĈB ⌊Bv̂⌋× δθ (4.5)

˙δvb = −
⌊
(Bωm − b̂g)

⌋
×

δvb −Kdδvb −
⌊

W ĈT
B g
⌋

×
δθ−

⌊Bv̂⌋× δbg + I33δba − ⌊Bv̂⌋× ηω (4.6)

δ̇θ = −
⌊
(Bωm − b̂g)

⌋
×

δθ − δbg − ηω (4.7)

˙δbg = ηgb (4.8)

˙δba = ηab, (4.9)

where I33 = [03×1 03×1 è3]. The linearized error-state dynamics given in (4.5), can be

rewritten using the continuous time state transition matrix, Fc and continuous time

input noise matrix, Gc as
˙δx = Fcδx + Gcη, (4.10)
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where

Fc =



03×3
W ĈB −W ĈB ⌊Bv̂⌋× 03×3 03×3

03×3 −
⌊
(Bωm − b̂g)

⌋
×
−Kd −

⌊
W ĈT

B g
⌋

×
⌊Bv̂⌋× I33

03×3 03×3 −
⌊
(Bωm − b̂g)

⌋
×
−I3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3



, (4.11)

Gc =



03×3 03×3 03×3

−⌊Bv̂⌋× 03×3 03×3

−I3 03×3 03×3

03×3 I3 03×3

03×3 03×3 I3



, (4.12)

η =
[

ηT
ω ηT

gb ηT
ga

]T
. (4.13)

4.1.2 Discrete-time Implementation

4.1.2.1 State Propagation

The IMU measurements are sampled at interval of δt, where δt ≜ tk+1 − tk. 4th

order Runge-Kutta numerical integration is used to propagate the estimated states

after each gyroscope measurement based on the process model given in (4.1). The

covariance propagation is carried out by the discrete-time transition matrix Φk defined
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as

Φk = Φ(tk+1, tk) = exp
(∫ tk+1

tk

Fc(τ)dτ
)

. (4.14)

The discrete-time system noise covariance matrix Qd is calculated as

Qd,k =
∫ tk+1

tk

Φ(tk+1, τ)GcQcGc
T Φ(tk+1, τ)T dτ, (4.15)

where

Qc = diag((δt2σ2
ω)T , (δt2σ2

gb)T , (δt2σ2
ab)T ) (4.16)

The propagated covariance matrix is calculated as

Pk+1|k = ΦkPk|kΦT
k + Qd,k. (4.17)

4.1.2.2 Measurement update

Measurements for the filter are obtained using accelerometer and range sensors. The

linearized error model of the measurements given in (3.45) can be expressed as

δy = ym − ŷ = Hδx + ν, (4.18)

where ŷ = h(x̂) is the expected measurements computed by evaluating (3.45) with

current state estimate. The measurement Jacobian w.r.t to the error states is ex-

pressed as

H =
[

Ha
T Hr

T
]T

, (4.19)

where

Ha = [ 03×3 −Kd 03×3 03×3 I3 ] (4.20)
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Hr =



W rT
1

r1
01×3 01×3 01×3 01×3

...
W rT

j

rj

01×3 01×3 01×3 01×3


. (4.21)

The Kalman gain for the filter correction is calculated as

Kk = Pk+1|kH
(
HPk+1|kHT + R

)−1
(4.22)

where R is the covariance of ν. Employing the Kalman gain and the residual, the

error state and covariance updates are calculated as

δx← Kk (ym − ŷ) (4.23)

Pk+1|k+1 ← Pk+1|k −Kk

(
HPk+1|kHT + R

)
KT

k (4.24)

4.2 Verification of Unobservable Modes

A primary cause of estimator inconsistency is the mismatch between the unobservable

modes of the linearized system and the unobservable modes of the nonlinear system.

Hence accurately identifying the unobservable modes of a system can facilitate im-

provements in the consistency of the estimator.

The observability analysis carried out in Section 3.3 utilized the observability

rank condition proposed in [81] to identify the unobservable trajectories and the cor-

responding unobservable modes. The rank of the observability matrix provides the

sufficient conditions to determine the local weakly observability of the system. The

nonlinear observability matrix is calculated using Lie derivatives of the output func-

tion. The first order Lie derivative of the output function captures the sensitivity of
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the system output along the states of the system. The nonlinear observability matrix

constructed using the first and higher-order Lie derivatives captures the output’s and

its time derivatives’ sensitivity along the states. The sensitivity of the output and its

derivatives along the state space is only first order and does not capture any higher-

order dynamics in the state space [100]. Therefore, the unobservable modes identified

through the rank condition might not hold under certain conditions.

Wu et. al. have defined the unobservability of a nonlinear system based on

unobservable transformations [89]. Internal states of an unobservable system cannot

be inferred using the outputs of the system. This implies that there can be multiple

states which produce the same output. Therefore, an unobservable system is always

accompanied by at least one unobservable transformation, which is a relationship

between the states that produce the same output. So the output of a system being

invariant to a transformation is a description of unobservability.

Definition 4.1. A transformation T is an unobservable transformation if the the

system outputs and their derivatives are invariant under T .

The transformation T is an unobservable transformation if for arbitrary time t,

h(j)(x) = h(j)(x∗), where h(j) the jth derivative with respect to time1. x and x∗

denote the two states of the system defined as x∗ = T (x) [89].

4.2.1 Unobservable Scenarios of Case 1

4.2.1.1 Scenario 1: MAV is stationary with three range anchors

Unobservable transformations are defined based on the null vector spanning the unob-

servable subspace. The transformations are defined such that the transformed states

are in the unobservable directions.
1Through out the thesis (·)(j) represents the jth time derivative of (·), j ∈ [0,Z+].
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The transformations correspond to the null vectors in (3.61) can be defined as

TS1 = [ TS11(x) TS12(x) ] =



W pB
W pB

BCT
B′

Bv Bv

W qB ⊗ BqB′ W qB

Bbg
Bbg + θ2è3

Bba
Bba



, (4.25)

where
BCB′ = exp

(⌊
W CT

B gθ1
⌋

×

)
, (4.26)

BqB′ =


cos ϕ

2

û sin ϕ
2

 ; ϕ = ∥W CT
B gθ1∥, û =

W CT
B gθ1

ϕ
, (4.27)

TS11 represents the transformation for the rotation of the MAV about the gravity

vector, and TS12 represents the transformation for the gyroscope bias along the z axis

of {B}.

Lemma 4.1. When the MAV is stationary, the outputs of the RINS with three range

measurements are invariant under the transformation TS1

Proof. When the MAV is stationary, Bωm − Bbg = 03×1, W p(n)
B , W C(n)

B , ω(n) = 03×1,
Bv, Bv(n) = 03×1 and bazè3 = W CT

B g. Using the output function and the derivatives

given in (B.2) to (B.6), it is straightforward to show that

ha(x) = ha(TS11(x)) = Bba, h(n)
a (x) = h(n)

a (TS11(x)) = 03×3

hj(x) = hj(TS11(x)) = 1
2

W rT
j

W rj h(n)
j (x) = h(n)

j (TS11(x)) = 0.
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Hence, the output and its derivatives are invariant to the transformation TS11 .

All the gyroscope bias terms of h(n)
a (x) are multiplied with Bv, and its derivatives.

Since Bv(n) = 03×1, h(n)
a (x) is invariant under TS12 . h(n)

j (x) is a function of W rj and

derivatives of W rj, and therefore h(n)
j (x) is also invariant under TS12 . Hence the output

and its derivatives are invariant under TS12 .

By the Definition 1, the unobservable modes identified through the observability

analysis for Scenario 1 are truly unobservable.

4.2.1.2 Scenario 2: MAV is flying on the plane of the three range anchors

The observability analysis showed that the position perpendicular to the plane of the

three anchors is the unobservable direction under Scenario 2. Hence a transformation

corresponding to the unobservable direction can be defined as

TS2(x) =
[

(W pB + θnl)T BvT W qT
B

BbT
g

BbT
a

]T
, (4.28)

where θ ∈ R, θ ̸= 0, nl = l12 × l13, l12 = W r2 − W r1, and l13 = W r3 − W r1.

Lemma 4.2. When the MAV is flying on the plane of the three anchors, the outputs

of RINS are variant under transformation TS2.

Proof. Consider the output function hj(x). By substituting TS2(x) we get

hj(TS2(x)) = 1
2 (W pB + θnl − W pj)T (W pB + θnl − W pj)

= θ2nT
l nl + hj(x)

(4.29)

(4.29) shows that, hj(TS2(x)) ̸= hj(x),∀θ ̸= 0. Therefore the outputs of the RINS is

variant under the transformation TS2.
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Lemma 4.2 shows that the unobservable direction identified through the observ-

ability analysis for Scenario 2, is not a true unobservable direction.

4.2.1.3 Scenario 3: MAV is flying parallel to the gravity with three range

anchors

The observability analysis provides two unobservable modes for Scenario 3, rotation

about the gravity vector and gyroscope bias along Bv direction. Similar to (4.25), the

unobservable transformations correspond to unobservable modes can be defined as

TS3 = [ TS31(x) TS32(x) ] =



W pB
W pB

BCT
B′

Bv Bv

W qB ⊗ BqB′ W qB

Bbg
Bbg + θ2

Bv

Bba
Bba



. (4.30)

Lemma 4.3. When the MAV is flying parallel to the gravity vector, the outputs of

the RINS are invariant under transformation TS3.

Proof. When the MAV is flying parallel to the gravity vector, the velocity and the

acceleration of the MAV in {W} can be expressed as W p(1)
B = αg, and W p(2)

B = βg .

Using (3.31) and (3.33), it is trivial to show that Bv is parallel to the z axis of {B},

and Bv = αW CT
B g. Since any vector rotated about itself results in the same vector,

applying the transformation TS31 to (B.2) results in

ha(TS31(x)) = −Kd
BCT

B′
Bv + Bba = −Kd

Bv + Bba = ha(x) (4.31)

C(W qB ⊗ BqB′) = W CB′ = W CB
BCB′ , and from (4.26) it can be shown that
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W CT
B′g = W CT

B g. Furthermore, from (3.34) it can be shown that Bω ∥ Bv, i.e.
Bω(n) = [ 0 0 ω(n)

z ]T , and this results in ⌊Bv(n)⌋× Bω(m)
m = 0 and

(
W CT

B

)(n)
g = 0.

Using the aforementioned relations, it is trivial to show that

h(1)
a (X) = h(1)

a (TS31(X)) = −Kd
Bv + bazè3 − W CBg

h(n)
a (X) = h(n)

a (TS31(X)) = (−1)nKn
d

(
−Kd

Bv + bazè3 − W CT
B g
)

.

This shows that output function ha(X) is invariant to TS31(X). Since the position

does not change under TS31(X), the output function hj(X) is invariant. Hence the

output function is invariant to TS31(X).

In (B.4), the gyroscope bias and its derivatives always appear as a cross prod-

uct with Bv and its derivatives. It is straightforward to show that ⌊Bv⌋× (Bωm −

(Bbg + θ2
Bv)) = ⌊Bv⌋× (Bωm− Bbg). Therefore ha(x) and its derivatives are invariant

under TS31(X). h(n)
j (x) is a function of W rj and derivatives of W rj, and does not con-

tain any Bbg terms. Therefore h(n)
j (x) is also invariant under TS32 . Hence the output

and its derivatives are invariant under TS32 ,

The unobservable modes identified for the Scenario 3 are truly unobservable.

4.2.2 Unobservable Scenarios of Case 2

4.2.2.1 Scenario 4: MAV is stationary with two range anchors

This scenario has three unobservable modes, out of which two of them are similar to

the unobservable mode of Scenario 1. The third unobservable mode is the perpendic-

ular direction to the plane having the MAV and the two anchors. The corresponding
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transformations can be defined as

TS4(x) = [ TS41(x) TS42(x) TS43(x) ]

=



W pB
W pB exp(⌊θ3l12⌋×)W rj + W pj

BCT
B′

Bv Bv Bv

W qB ⊗ BqB′ W qB
W qB

Bbg
Bbg + θ2è3

Bbg

Bba
Bba

Bba



,
(4.32)

where θ3 ∈ R and l12 = W r1 − W r2.

Lemma 4.4. When the MAV is stationary with two range anchors, the outputs of

the RINS is invariant under the transformation TS4(x).

Proof. The transformations TS41(x), and TS42(x) are similar to the unobservable trans-

formations of Scenario 1. Therefore the invariance of the outputs can be proven

similar to Lemma 4.1.

The position state does not appear in ha(x). Therefore, TS43(X) does not affect

ha(x) and it’s derivatives. Once TS43(X) applied to the range vector,

r∗
j = exp(⌊θ3l12⌋×)W rj + W pj − W pj = exp (⌊θ3l12⌋×)W rj. (4.33)

(4.33) represents the rotation of the range vector W rj about l12. Therefore, r∗
i , and

W rj has the same magnitude, and hj(x) = hj(TS43(x)). Since the MAV is stationary,
W p(n)

B = 03×1, and h(n)
j (TS11(x)) = h(n)

j (x) = 0. Therefore h(x) is invariant to the

transformation TS43(x).

The proof shows that the output function is invariant under the transformation
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TS4(x). Therefore, the unobservable modes of Scenario 4 are truly unobservable.

4.2.2.2 Scenario 5: MAV is flying on the plane of the MAV and the two

anchors

The only unobservable mode of this scenario is the perpendicular direction to the

plane of the MAV and the two anchors. The corresponding transformation, TS5(x)

can be defined as as

TS5(x) =



exp(⌊θ3l12⌋×)W rj + W pj

Bv

W qB

Bbg

Bba



, (4.34)

Lemma 4.5. When the MAV is flying on the plane created by the MAV and the two

anchors, the output of the RINS is invariant under transformation TS5(x)

Proof. The position state does not appear in ha(x). Therefore, TS5(X) does not affect

ha(x) and it’s derivatives. The r∗
j expressed in (4.33) holds true under TS5(X), and

the time derivative of r∗
j can be calculated as

r∗(n)
j = exp(⌊θ3l12⌋×)W r(n)

j . (4.35)

With (4.35), it is trivial to show that h(n)
j (TS5(x)) = h(n)

j (x),∀n ∈ Z+. Hence the

h(x) is invariant under transformation TS5

This proof shows that the perpendicular direction to the plane created by the
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MAV and the two range anchors is a true unobservable mode, under Scenario 5.

4.2.2.3 Scenario 6: MAV is flying parallel to the gravity with two range

anchors

Null space of this scenario is spanned by the same two vectors as in Scenario 3, and

the transformations corresponding to the unobservable directions, TS6(x) are similar

to the transformations defined in (4.30)

Lemma 4.6. When the MAV is flying parallel to the gravity vector, the outputs of

the RINS with two range measurements are invariant under transformation TS6(x)

Proof. The proof is similar to that of Lemma 4.3.

4.3 Consistency Analysis

A key contributor to inconsistency in filter implementation is the mismatch between

the unobservable properties of the true nonlinear system and the one employed by

the estimator. This section examines the observability properties of the linearized

RINS model. First, the unobservable directions of the ideal linearized RINS (i.e.

Jacobians evaluated at the true states) are determined and show that they match the

unobservable directions of the nonlinear system. Then the unobservable directions of

the linearized RINS (i.e. Jacobians evaluated at the estimated states) are calculated

and show that they differ from the ideal linearized RINS.

4.3.1 Observability analysis of Ideal Linearized RINS

The observability matrix (also known as observability Gramian) M is defined as a

function of the linearized measurement model H, and the discrete time transition
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matrix Φ. M and Φ are functions of x∗, and can be expressed as

M(x∗) =



H1

H1Φ2,1

...

HkΦk,1


, (4.36)

where Φk,1 is the state transition matrix from time-step 1 to k, and Hk is the Jacobian

of the measurement model given in (4.19), at time step k.

4.3.1.1 Structure of Φ(tk, t1)

The discrete state transition matrix Φ(tk, t1) satisfies the following differential equa-

tions,

Φ̇(tk, t1) = FcΦ(t, t0) (4.37)

Φ(t1, t1) = I15. (4.38)

The analytical expressions of the elements of Φ(t, t1) can be obtained by analyzing the

block elements of (4.37). Following the process provided in [23], elements of Φ(t, t1)
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are determined as 2

Φ(tk, t1) = Φk,1 =



I3 Φ(1,2) Φ(1,3) Φ(1,4) Φ(1,5)

03×3 Φ(2,2) Φ(2,3) Φ(2,4) Φ(2,5)

03×3 03×3 Φ(3,3) Φ(3,4) 03×3

03×3 03×3 03×3 I3 03×3

03×3 03×3 03×3 03×3 I3



, (4.39)

where

Φ(1,2)
k,1 = −W CB(t1) exp (−Kd(tk − t1)) K−1

d (4.40)

Φ(1,3)
k,1 =

∫ tk

t1

(
W CB(s) exp (−Kd(s− t1))

∫ s

t1

(
Λ(τ)

⌊
W CT

B(τ)g
⌋

×
B(τ)CB(t1)

)
dτ
)

ds

+
∫ tk

t1

(
W CB(s) ⌊Bv⌋×

B(s)CB(t1)

)
ds (4.41)

Φ(1,4)
k,1 =

∫ tk

t1

W CB(s)Φ(2,.4)
k,1 ds−

∫ tk

t1

(
W CB(s) ⌊Bv⌋×

∫ s

t1

B(tk)CB(τ)dτ
)

ds (4.42)

Φ(1,5)
k,1 =

∫ tk

t1

(
W CB(s) exp (−Kd(s− t1))

∫ s

t1
(Λ(τ)I33)

)
dτds (4.43)

Φ(2,2)
k,1 = B(tk)CB(t1) exp (−Kd(t− t1)) (4.44)

Φ(2,3)
k,1 = exp (−Kd(tk − t1))

∫ tk

t1

(
Λ(τ)

⌊
W CT

B(τ)g
⌋

×
B(τ)CB(t1)

)
dτ (4.45)

Φ(2,4)
k,1 = exp (−Kd(tk − t1))

∫ tk

t1

(
Λ(s)

(⌊
W CT

B(s)g
⌋

×

∫ s

t1

B(s)CB(τ)dτ − ⌊Bv⌋×
))

ds

(4.46)

Φ(2,5)
k,1 = exp (−Kd(tk − t1))

∫ tk

t1
(Λ(τ)I33) dτ (4.47)

Φ(3,3)
k,1 = B(tk)CB(t1) (4.48)

Φ(3,4)
k,1 = −

∫ tk

t1

B(tk)CB(τ)dτ (4.49)

2In this calculation I omit the time parameters for clarity. Φ(i,j) refers to the block matrix on
ith row and jth column.
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Λ(τ) = B(t)CB(τ) exp (Kd(τ − t1)) (4.50)

Using the expressions calculated above, the kth row of M for any k > 1 can be

calculated as

Mk = HkΦk,1 =


03×3 −KdΦ(2,2)

k,1 −KdΦ(2,3)
k,1 −KdΦ(2,4)

k,1 −KdΦ(2,5)
k,1 + I33

R3 R3Φ(1,2)
k,1 R3Φ(1,3)

k,1 R3Φ(1,4)
k,1 R3Φ(1,5)

k,1

 ,

(4.51)

where

R3 =
[

W r1

r1

W r2

r2

W r3

r3

]T

. (4.52)

Lemma 4.7. The right nullspace of the observability matrix M(x) of the linearized

RINS under Scenario 1 is spanned by

1N =



03×1 03×1

03×1 03×1

W CT
B g 03×1

03×1 bazè3

03×1 03×1



. (4.53)

Proof. Multiplying each block row of M(x), with 1N (:,1), we get

Mk
1N (:,1) =


−KdΦ(2,3)

k,1
W CT

B g

R3Φ(1,3)
k,1

W CT
B g

 (4.54)
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−KdΦ(2,3)
k,1

W CT
B g = −Kd

∫ tk

t1

(
Λ(τ)

⌊
W CT

B(τ)g
⌋

×
B(τ)CB(t1)

)
dτ · W CT

B(t1)g

= −Kd

∫ tk

t1

(
Λ(τ)

⌊
W CT

B(τ)g
⌋

×
W CT

B(τ)g
)

dτ

= 03×1

(4.55)

Since the MAV is stationary, Bv = 03×1,

R3Φ(1,3)
k,1

W CT
B g

= R3

∫ tk

t1

(
W CB(s) exp (−Kd(s− t1))

∫ s

t1

(
Λ(τ)

⌊
W CT

B(τ)g
⌋

×
B(τ)CB(t1)

)
dτ
)

ds · W CT
B(t1)g

= R3

∫ tk

t1

(
W CB(s) exp (−Kd(s− t1))

∫ s

t1

(
Λ(τ)

⌊
W CT

B(τ)g
⌋

×
B(τ)CB(t1)

W CT
B(t1)g

)
dτ
)

ds

= R3

∫ tk

t1

(
W CB(s) exp (−Kd(s− t1))

∫ s

t1

(
Λ(τ)

⌊
W CT

B(τ)g
⌋

×
W CT

B(τ)g
)

dτ
)

ds

= 03×1

(4.56)

Similarly, it is trivial to prove that

Mk
1N (:,2) = 06×1 (4.57)

Therefore, Mk
1N = 06×2, and 1N spans the null space of M(x) under Scenario

1.

Following similar steps, it is straightforward to show that the rest of the unob-

servable scenarios of the nonlinear system are unobservable in the ideal linearized

RINS.

4.3.2 Observability analysis of Linearized RINS

The EKF implementation of the RINS employs a linearized system, and When the

system is linearized about the estimated state x̂, M(x̂) gains rank due to errors in the
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state estimates [23]. As the EKF is operating over time, evaluating the state transition

matrix and the measurement Jacobian with the current estimated states changes the

structure of (4.51) due to linearization errors. Therefore, the null spaces identified

in Section 3.3, for each scenario, are not equal to the null spaces of M(x̂). This can

be verified by evaluating the rank of the observability matrix during simulations or

experiments.

4.4 Consistency Improvement

This section focuses on improving the consistency of the EKF implementation of the

RINS. The consistency can be improved by ensuring the linearized system and the

nonlinear system both have the same number of unobservable directions with a similar

structure. In other words, each block row of (4.36) should satisfy HkΦk,1N = 0. This

condition can be enforced by satisfying the conditions given in (4.58), and (4.59) at

each time step.

N k+1 = ΦkN k (4.58)

HkN k = 0, (4.59)

where N corresponds to the vectors that span the null space of the nonlinear system,

Hk is the measurement Jacobian at time tk, and Φk is the state transition matrix

defined in (4.39)

First, the null space of each scenario is evaluated with (4.58), and (4.59) to deter-

mine whether the null space violates both or a single condition. The null vectors of
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the Scenario 1 at the time step k, and at k + 1 can be expressed as

1N k =



03×1 03×1

03×1 03×1

W CT
B(k)g 03×1

03×1 bazè3

03×1 03×1



1N k+1 =



03×1 03×1

03×1 03×1

W CT
B(k+1)g 03×1

03×1 bazè3

03×1 03×1



(4.60)

Take the first null vector of the 1N k. If the EKF-RINS is consistent, the null

vector should satisfy 1N k+1 = Φ̂k
1N tk

, where Φ̂k is the discrete state transition

matrix evaluated with the estimated states.

1N ′
k+1,(:,1) = Φ̂k

1N k,(:,1) =



Φ̂(1,3)
k

W CT
B(k)g

Φ̂(2,3)
k

W CT
B(k)g

Φ̂(3,3)
k

W CT
B(k)g

03×1

03×1



. (4.61)

Consider the third row of 1N ′
k+1,(:,1), and using (4.48) and (4.4) we obtain

Φ̂(3,3)
k

W CT
B(k)g = W ĈT

B(k+1)g

= exp
(
⌊δθ⌋×

)
W CT

B(k+1)g

̸= W CT
B(k+1)g. (4.62)
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Therefore, 1N ′
k+1,(:,1) ̸= 1N k+1,(:,1). Considering the second null space, we get

1N ′
k+1,(:,2) = Φ̂k

1N k,(:,2) =



Φ̂(1,4)
k bazè3

Φ̂(2,4)
k bazè3

Φ̂(3,4)
k bazè3

bazè3

03×1



. (4.63)

The first three rows of the 1N ′
k+1,(:,2) are not zero, and therefore, 1N ′

k+1,(:,2) ̸=
1N k+1,(:,2). By multiplying the measurement Jacobian by the null vectors, it is

straightforward to show that 1N satisfies (4.59). Following a similar technique, it

is straightforward to evaluate the rest of the true unobservable directions and deter-

mine the null spaces violate the conditions given in (4.58), and (4.59). A summary of

the evaluated null spaces is shown in Table 4.1

4.4.1 Modification of state transition matrix Φk

During each propagation step, the condition in (4.58) must be enforced for all the

unobservable directions that violate it. This can be achieved by using the definitions

of the state transition matrix in (4.39) and the corresponding null vectors to expand

the relationship expressed in (4.58), and determining the requirements for each block
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Table 4.1: Summery of Consistency Analysis

Scenario Null Vector
Conditions

N k+1 = ΦkN k HkN k = 0

Scenario 1
1N (:,1) ✗ ✓

1N (:,2) ✗ ✓

Scenario 3
3N (:,1) ✗ ✓

3N (:,2) ✗ ✓

Scenario 4

4N (:,1) ✗ ✓

4N (:,2) ✗ ✓

4N (:,3) ✓ ✗

Scenario 5 5N (:,1) ✓ ✗

Scenario 6
6N (:,1) ✗ ✓

6N (:,2) ✗ ✓

✓: Satisfies condition, ✗: Violates condition

elements of Φk. Consider the first unobservable direction of Scenario 1 (see (4.60)).



03×1

03×1

W CT
B(k+1)g

03×1

03×1



=



I3 Φ(1,2) Φ(1,3) Φ(1,4) Φ(1,5)

03×3 Φ(2,2) Φ(2,3) Φ(2,4) Φ(2,5)

03×3 03×3 Φ(3,3) Φ(3,4) 03×3

03×3 03×3 03×3 I3 03×3

03×3 03×3 03×3 03×3 I3





03×1

03×1

W CT
B(k)g

03×1

03×1



=



Φ(1,3)
k

W CT
B(k)g

Φ(2,3)
k

W CT
B(k)g

Φ(3,3)
k

W CT
B(k)g

03×1

03×1



.

(4.64)

Requirement for the third row of (4.64) is,

W ĈT
B(k+1)g = Φ(3,3)

k
W ĈT

B(k)g

Φ(3,3)
k = B(k+1)ĈB(K). (4.65)
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The requirements for the first and the second rows are

Φ13W ĈT
B(k)g = 0 (4.66)

Φ23W ĈT
B(k)g = 0. (4.67)

These expressions are a special case of expression that has the form of Au = w,

where w = 0 . In order to full fill the constraint, the perturbation, A∗ should be

computed such that

min
A∗

= ∥A∗ −A∥2
ℑ, s.t A∗u = w, (4.68)

where ∥.∥2
ℑ represents the Frobenius matrix norm. The closed form solution for A∗

that satisfies (4.68) can be calculated as [23]

A∗ = A− (Au−w)(uT u)−1uT . (4.69)

Once Φ(1,3)
k and Φ(2,3)

k are calculated using (4.69), the constrained discrete-time

state transition matrix are constructed and conduct the covariance propagation ex-

pressed in (4.17).

4.4.2 Modification of Hk

The observability constraint should be applied to the measurement Jacobian, H based

on the null space vectors of each scenario. Scenario 1 automatically satisfies this

condition. Therefore there is no need to modify H. Under Scenario 4, the third null

vector, 4N k,(:,3) violates (4.59), and therefore H must be modified.

Hk
4N k,(:,3) =
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=


03 −Kd 03 03 I3

R2 03 03 03 03





(W r̂1 × W r̂2)

03×1

03×1

03×1

03×1



= 06×1, (4.70)

where R2 =
[

W r1

r1
,

W r2

r2

]T

.

The first block element of (4.70) requires that R2(r̂1× r̂2) = 02×1. This constraint

has the form of Au = 0. We calculate the optimal A∗ that satisfies the condition

using the solution in (4.69) and modify the R2 of the measurement Jacobian. After

modifying the Jacobian, proceed with the update step of the EKF.

4.5 Simulation Results

Average NEES and the average root mean square error (RMSE) are used to evaluate

the consistency of the estimator. NEES of a consistent estimator with M -states χ2

distribution with M degrees of freedom. Therefore, the average NEES of a large set

of Monte-Carlo simulations will be close to the number of states. For example, the

average NEES for the MAV location will be close to three if the estimator is consistent.

A large deviation of the NEES from the expected value means a large inconsistency

of the estimator.

The MATLAB simulator developed in Section 3.4 was used to simulate unobserv-

able trajectories. Four different types of trajectories were used for the simulation.

The first trajectory is a fully observable circular trajectory with a varying altitude,

and the range anchors are placed at random locations. During the second trajectory,
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the MAV is kept stationary, and it is used for scenarios 1 and 4. The third trajectory

has a vertical climb, and it is used for Scenario 3 and Scenario 6. Since anchor lo-

cations do not contribute to unobservability under scenarios 1, 3, 4, and 6, the second

and the third trajectories use the same range anchor locations as the first trajectory.

The final trajectory is a circular trajectory with constant altitude, and it is used for

Scenario 4. The two range anchors are placed on the same plane as the trajectory

since it invokes unobservability. The first, third, and fourth trajectories are shown in

Fig 4.1.
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Fig. 4.1: Trajectories used in the simulation. (a) First trajectory: Circular with
varying altitude, (b) Third trajectory: Vertical climb, (c) Fourth trajectory: Circular
with constant altitude

Figure 4.2 shows the average NEES of the states for EKF-RINS with two and

three range measurements. The MAV is flying on the first trajectory (Figure 4.1),

and since the first trajectory is observable, the average NEES should have a value

close to three. In Figure 4.2, it is evident that average NEES values are closer to the

expected value, and these values will be used as the baseline of a consistent estimator.
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Fig. 4.2: Average NEES of 50 Monte-carlo simulations, under observable trajectory
shown in Fig. 4.1a. (a) Position NEES, (b) Orientation NEES, (c) Velocity NEES,
(d) Gyroscope bias NEES, (d) Accelerometer bias NEES.

Figure 4.3a shows the orientation NEES of the estimator under Scenario 1. When

the MAV is stationary, the orientation NEES of the standard EKF-RINS increases.

It can be seen that the orientation NEES of the EKF-RINS with the observability

constraints also increases, but at a much lower rate than the standard EKF-RINS. A

similar observation can be made with the NEES of the gyroscope bias in Figure 4.3c.

There is a significant improvement in NEES when the observability constraints are

applied. Figure 4.3b and Figure 4.3d show that the average RMSE of the angle and

gyroscope bias estimates have decreased in observability constrained RINS compared
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to the standard EKF-RINS. These results imply that the consistency of the estimator

has been improved by applying the observability constraints under Scenario 1.
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Fig. 4.3: Scenario 1: MAV is stationary with three range anchors. (a) Average
orientation NEES, (b) Average orientation RMSE, (c) Average gyroscope bias NEES,
(d) Average gyroscope bias RMSE.3

Figure 4.4 shows the results for Scenario 3, and it has two unobservable direc-

tions, rotation about the gravity and the gyroscope bias. Figure 4.4a, Figure 4.4b

shows the NEES and RMSE of the orientation estimate. It is visible that there is

a noticeable improvement when the observability constraints are applied. Similarly,

improvement can be seen in the gyroscope bias estimate. Therefore, it is evident that

applying observability constraints has improved the estimator’s consistency under

Scenario 3.
3OC: Observability Constraints.

93



0 50 100 150 200 250

Time(s)

0

50

100
Orientation NEES

Without OC

With OC

(a)

0 50 100 150 200 250

Time(s)

0

0.5

1

Orientation RMSE

Without OC

With OC

(b)

0 50 100 150 200 250

Time(s)

2

4

6

8

10
Gyroscope Bias NEES

Without OC

With OC

(c)

0 50 100 150 200 250

Time(s)

2

4

6
10

-3 Gyroscope Bias RMSE

Without OC

With OC

(d)

Fig. 4.4: Scenario 3: MAV is flying vertically with three range anchors. (a) Average
orientation NEES, (b) Average orientation RMSE, (c) Average gyroscope bias NEES,
(d) Average gyroscope bias RMSE.

Under Scenario 4, the MAV is stationary with two range measurements, and

the system has three unobservable directions, position, orientation of the MAV, and

gyroscope bias. Figure 4.5a shows the NEES of the position estimate. The position

NEES of standard EKF is significantly higher than the NEES values of other sce-

narios. However, the position NEES decreases substantially when the observability

constraints are applied. Similarly, the position RMSE of the EKF with observability

constraints is lower compared to the standard EKF Figure 4.5b. Orientation and

gyroscope bias estimates also show improvements when the observability constraints

are applied. Hence it is clear that the consistency of the EKF is improved under

Scenario 4.
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Fig. 4.5: Scenario 4: MAV is stationary with two range anchors. (a) Average position
NEES, (b) Average position RMSE, (c) Average orientation NEES, (d) Average orien-
tation RMSE, (e) Average gyroscope bias NEES, (f) Average gyroscope bias RMSE.

The position of the MAV in the perpendicular direction to the plane of the MAV

and the two anchors is unobservable in Scenario 5. Figure 4.6 shows an improvement

in both position NEES and RMSE in observability constrained EKF. This shows that

the consistency of the estimator is improved under Scenario 5.
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Fig. 4.6: Scenario 5: MAV is flying on the plane of the MAV and the two anchors.
(a) Average position NEES, (b) Average position RMSE.

Both Scenario 6 and Scenario 3 have the same unobservable directions. Re-

sults in Figure 4.7 show that there is improvement in both NEES and RMSE of the

orientation and gyroscope bias estimates. Similar to Scenario 3, the observability

constraints have improved the consistency of the estimation under Scenario 6.
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Fig. 4.7: Scenario 6: MAV is flying vertically with two range anchors. (a) Average
orientation NEES, (b) Average orientation RMSE, (c) Average gyroscope bias NEES,
(d) Average gyroscope bias RMSE.
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4.6 Summary

This chapter analyzes the consistency of the EKF implementation of the RINS with

two and three range measurements and improves the consistency of the EKF during

unobservable trajectories. In order to observe a significant increase in NEES of an

unobservable state, the MAV should be flown on the unobservable trajectory for a

longer duration. However, it is challenging to mimic the unobservable conditions for

such a time span, and therefore, numerical simulations were used to verify the con-

sistency improvement. The simulation results have shown significant improvement in

the consistency of the estimator after applying the observability constraints. Addi-

tionally, the estimation accuracy has improved compared to the unconstrained EKF.

When the consistency of the estimator is improved, the states are estimated with

proper confidence levels. Therefore proper decisions can be made based on the more

accurate state estimates and the corresponding covariances.
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Chapter 5

Single Range Assisted Inertial

Navigation System: Design and

Observability Analysis

This chapter focuses on developing a range assisted inertial navigation system for

MAVs using the least possible number of sensors. Two RINS formulations are pre-

sented where the first RINS uses the minimum number of sensors, i.e. a single range

sensor, while the second RINS uses a magnetometer in addition to the single range

sensor. An Observability study is carried out for both formulations to identify the fea-

sibility and limitations of the design. Numerical simulations are conducted to evaluate

the performance of the proposed inertial navigation systems.
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5.1 Single Range assisted Inertial Navigation Sys-

tem

The range assisted inertial navigation system with a single range sensor has the same

state vector as the two and three range assisted INS developed in section 3.2.1, and

can be expressed as

x =
[

W pT
B

BvT W qT
B

BbT
g

BbT
a

]T
, (5.1)

The system model used for the RINS with a single range is similar to the two and

three range assisted INS, and therefore, the evolution of the system states can be

expressed as1



W ṗB

Bv̇

W q̇B

Bḃg

Bḃa



=



W CB
Bv

⌊Bv⌋× (Bωm − Bbg − ηω)−Kd
Bv + bazè3 − W CT

B g

1
2Ξ(q)

[
0 (Bωm − Bbg − ηω)T

]T
ηgb

ηab



. (5.2)

The measurement model of the RINS with a single range includes the accelerometer

and a single range measurement to a ranging anchor at a known location, and it can

be expressed as

y =


ha(x)

hr(x)

 =


−Kd

Bv + Bba + ηa

r1 + ηr1

 . (5.3)

1See sections 3.2.1 and 3.2.2 for details.
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5.1.1 Observability Analysis of RINS with a Single Range

Nonlinear observability analysis of the RINS with a single range measurement is car-

ried out using the same techniques used for the two and three range assisted INS in

Section 3.3. The system model of the single range assisted INS is the same as the

RINS with three and two range measurements [see (3.44)]. The modified state vector

with the Gibbs parameterization and the control affine form of the modified state

space model in (5.2) can be expressed as

x =
[

W pT
B

BvT W sT
B

BbT
g

BbT
a

]T
, (5.4)



W ṗB

Bv̇

W ṡB

Bḃg

Bḃa



=



W CB
Bv

−⌊Bv⌋× Bbg −Kd
Bv + bazè3 − W CT

B g

−DBbg

03×1

03×1


︸ ︷︷ ︸

f0

+



03×3

⌊Bv⌋×

D

03×3

03×3


︸ ︷︷ ︸

f1

Bωm. (5.5)

The modified range measurement model that replaces r1 with r2/2 can be expressed

as

y = h(x) =


−Kd

Bv + Bba

1
2r2

1

 =


−Kd

Bv + Bba

1
2 (W pB − W p1)T (W pB − W p1)

 . (5.6)

The nonlinear observability matrix for the RINS with the single range measure-
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ment is defined as follows 2

O =



∇L0h

∇L1
f0

h

∇L2
f0f0

h

∇L3
f0f0f0

h


. (5.7)

A detailed calculation of the nonlinear observability matrix is given in Appendix

C. Using (C.4),(C.7)(C.9), and (C.11), the observability matrix can be expressed as

O1R =

03×3 −Kd 03×3 03×3 I3

W rT
1 01×3 01×3 01×3 01×3

03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× KdI33

(W CB
Bv)T W rT

1
W CB −W rT

1 ⌊Bv⌋×
(
DT

)−1
01×3 01×3

03×3 −Kd

(
Kd − ⌊Bbg⌋×

)2
Θ Φ Kd

(
Kd − ⌊Bbg⌋×

)
I33

W p̈T
B 2BvT − W rT

1
W CBKd Λ1 01×3

W rT
1

W CBI33

03×3 Kd

(
Kd − ⌊Bbg⌋×

)3
Π1 Π2 −Kd

(
Kd − ⌊Bbg⌋×

)2
I33

Π3 Π4 Π5 Π6 Π7


(5.8)

The block elements Π1 to Π7 are defined in (C.12) - (C.18).

Lemma 5.1. When the MAV is flying in a generic trajectory, the unobservable sub-

space of the observability matrix O1R is spanned by the following direction

7N =
[

(g × W r1)T 01×3 (DW CT
B g)T 01×3 01×3

]T
. (5.9)

2Since the measurement function is four dimensional, the gradient of the third order Lie derivative
is required to construct the observability matrix that has sufficient rows to have the rank.
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Proof. First, let’s prove that the second, fourth, and fifth block columns do not con-

tribute to forming the basis of the null space of O1R when the MAV is flying in a

generic trajectory. The first element of the second and the fifth block columns are

diagonal matrices, and therefore, each block column has full rank. Additionally, by

looking at the O1R(3,2) , and O1R(3,5) , it is obvious that the second and the fifth block

columns are independent. Hence, the second and the fifth block columns do not con-

tribute to the basis of the null space. The non-zero block elements of the second block

column can be expressed as

O′
1R(:,4)

=
[

(Kd ⌊Bv⌋×)T ΦT ΠT
2 ΠT

6

]T
(5.10)

By analyzing the elements of (5.10), it is straightforward to show that the fourth

block column has full rankHence, the second, fourth and fifth block columns do not

contribute to the basis of the null space under a generic trajectory.

The fact that 7N spans the unobservable subspace of O1R can be verified by

multiplying each block row of O1R with 7N . It is straightforward to show that

O1R(2,:)
7N = 0, and O1R(j,:)

7N = 03×1, j = 3, 5, 7.

O1R(4,:)
7N = (W CB

Bv)T (g × W r1)− W rT
1 ⌊W CB

Bv⌋×
(
DT

)−1
DW CT

B g

= (W CB
Bv)T (g × W r1)− W rT

1 (W CB
Bv × g)

= 0

(5.11)

O1R(7,:)
7N = W p̈T

B(g × W r1)−Λ1DW CT
B g

= (W CB (−Kd
Bv + bazè3))T (g × W r1)− W rT

1

(
⌊W CB (−Kd

Bv + bazè3)⌋×
)

g

= 0

(5.12)
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Following similar steps, it can be shown that O1R(8,:)
7N = 0. Hence 7N spans the

null space of the RINS with a single range measurement.

Lemma 5.1 shows that the RINS with a single range measurement is unobservable

under any generic trajectory. The unobservable direction 7N can be interpreted as the

orientation about the gravity vector and the perpendicular direction to both gravity

and the range vectors. It should be noted that under special trajectories, i.e., MAV

being stationary, constant velocity, etc., the dimension of the unobservable subspace

can increase.

5.1.2 Simulation Results

The Matlab simulator developed in Section 3.4 was used to simulate the MAV flying

on a circular trajectory with varying altitudes (Fig. 5.4a), and the RINS with a single

range measurement was used to estimate the pose of the MAV. Fig. 5.2a, and Fig.

5.2b show the total position error and the total orientation error of the single range

INS for five different range anchor locations.

The location of the single range anchor for the five simulations are given in Table

5.1(Fig. 5.1).

Table 5.1: Location of the single range anchor used for single range assisted INS

Location (m)
Simulation 1 (2.7, 2.1, 8.8)
Simulation 2 (4.5, 8.7, 2.2)
Simulation 3 (9.5, 2.7, 1.8)
Simulation 4 (6.3, 6.8, 2.1)
Simulation 5 (1.2, 0.9, 1.8)
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Fig. 5.1: Locations of the single range anchor used in the five simulations of single
range INS

In Fig. 5.2a, it can be observed that the position error covariance does not diverge,

even though the position state is unobservable along the direction of (g× W r1)T (See

(5.9)). Since the MAV is flying in a circular trajectory, the direction (g × W r1)T

always changes. Therefore, as Fig. 5.2a shows the position covariance increases

during a portion of the circle and decreases during the rest. On the other hand, the

orientation about the gravity vector does not change based on the trajectory. In Fig

5.2b there is a slight increase in the total angle covariance as the trajectory progresses.
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Fig. 5.2: Single range assisted INS (a) Total Position error and 3σ boundary, (b) Total
Angle Error and 3σ boundary. ( ) is total error, and (-∗-) is 3σ boundary.

Fig. 5.3 shows the mean absolute orientation error of 25 Monte-Carlo simulations.

The range anchor location of the Constellation 1 is used for the simulations. In Fig.

5.3 it is clearly visible that the covariance of the yaw angle (rotation about the gravity)

error diverges while the covariance of the roll and pitch estimates remain bounded.
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Fig. 5.3: Single range assisted INS orientation error and the 3σ boundary of 25 Monte-
Carlo simulations

5.2 Single Range and Magnetometer Assisted In-

ertial Navigation System

Since the RINS with a single range measurement is unobservable for any trajectory,

this section proposes a RINS design that utilizes a magnetometer in addition to the

single range measurement (M-RINS). An observability study is carried out to show

that the proposed RINS is observable during a generic trajectory, and to identify

specific trajectories that render the system unobservable.

5.2.1 System Model

The states of the proposed RINS with single range and magnetometer measurements

consist of the position, velocity, orientation of the MAV, and the accelerometer bias.
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The 13 dimensional state vector is expressed as

x =
[

W pT
B

BvT W qT
B

BbT
a

]T
. (5.13)

The proposed RINS does not include the gyroscope bias for two main reasons. The

most important reason being the gyroscope bias is observable in an attitude and

heading reference system (AHRS) that incorporates the magnetometer measurements

(See Appendix D). Secondly, omitting the gyroscope bias simplifies the observability

analysis. Since the gyroscope bias is observable under any trajectory, the unobserv-

able conditions identified in the observability analysis will hold true even when the

gyroscope bias is incorporated into the system model. This can be clearly seen in the

simulation results shown in Section 5.2.5.

The system model without the gyroscope bias can be expressed as



W ṗB

Bv̇

W q̇B

Bḃa


=



W CB
Bv

⌊Bv⌋× (Bωm − ηω)−Kd
Bv + bazè3 − W CT

B g

1
2Ξ(q)

[
0 (Bωm − ηω)T

]T
ηab


. (5.14)

5.2.2 Measurement Model

A magnetometer measures the local magnetic field present around the MAV. Gener-

ally, the local magnetic field comprises the earth’s magnetic field W µ, and the local

magnetic effects µext. The local magnetic effects can be categorized as hard iron or

soft iron effects. The impact of these effects on the magnetometer reading can be

minimized through offline calibration of the magnetometer [101], or auto-calibration

during the flight [102]. In this thesis, it is assumed that the magnetometer is cali-
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brated and measures the earth’s magnetic field W µ. The mathematical model of the

magnetometer measurement can be expressed as

Bµ = W CT
B

W µ + ηµ, (5.15)

where Bµ is the magnetometer measurement, and ηµ is the zero-mean white Gaussian

noise with a standard deviation of σµ.

The measurement model for the single range and magnetometer assisted INS can

be expressed as

y =



ha(x)

hµ(x)

hr(x)


=



−Kd
Bv + Bba + ηa

W CT
B

W µ + ηµ

r1 + ηr1


, (5.16)

5.2.3 Observability Analysis

The state vector and the control affine form of the system model used for the nonlinear

observability analysis can be expressed as

x =
[

W pT
B

BvT W sT
B

BbT
g

BbT
a

]T
, (5.17)



W ṗB

Bv̇

W ṡB

Bḃa


=



W CB
Bv

−Kd
Bv + bazè3 − W CT

B g

03×1

03×1


︸ ︷︷ ︸

f0

+



03×3

⌊Bv⌋×

D

03×3


︸ ︷︷ ︸

f1

Bωm (5.18)
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Similar to the previous analysis, the range measurement is substituted by the square

of the range measurement. The measurement model used for the observability analysis

can be expressed as

y = h(x) =



−Kd
Bv + Bba

W CT
B

W µ

1
2r2

1


=



−Kd
Bv + Bba

W CT
B

W µ

1
2 (W pB − W p1)T (W pB − W p1)


. (5.19)

The zeroth order Lie derivative and its gradient of (5.19) can be expressed as

L0h = h(x) (5.20)

∇L0h =



03×3 −Kd 03×3 I3

03×3 03×3
⌊

W CT
B

W µ
⌋

×
D−1 03×3

W rT
1 01×3 01×3 01×3


, (5.21)

The first order Lie derivatives with respect to f0 can be expressed as

L1
f0

h = ∇L0h · f0 =



−Kd

(
−Kd

Bv + bazè3 − W CT
B g
)

03×1

W rT
1

W CB
Bv


=



−Kd
W CT

B
W p̈B

03×1

(W CT
B

W r1)T Bv


, (5.22)

where W p̈B = W CB

(
−Kd

Bv + bazè3 − W CT
B g
)
.

Since the second block row of L1
f0

h is zero, it does not contribute to the higher order

Lie derivatives. Therefore the second block row is left out in the next calculations.
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The gradient of the L1
f0

h can be expressed as

∇L1
f0

h =


03×3 K2

d Kd

⌊
W CT

B g
⌋

×
D−1 −KdI33

(W CB
Bv)T (W CT

B
W r1)T BvT

⌊
W CT

B
W r1

⌋
×

D−1 01×3

 , (5.23)

Similarly, higher order Lie derivatives and their gradients can be calculated as

L2
f0f0

h = ∇L1
f0

h · f0 =


K2

d
W CT

B
W p̈B

BvT Bv + (W CT
B

W r1)T W CT
B

W p̈B

 (5.24)

∇L2
f0f0

h =


03×3 −K3

d −K2
d

⌊
W CT

B g
⌋

×
D−1 K2

dI33

W p̈T
B

(
2Bv −Kd

W CT
B

W r1
)T

Kd (−Kd
Bv + bazè3)T

⌊
W CT

B
W r1

⌋
×

D−1 01×3

 .

(5.25)

L3
f0f0f0

h = ∇L2
f0f0

h · f0 =


K3

d
W CT

B
W p̈B(

W CT
B

W p̈B

)T (
3Bv −Kd(W CT

B
W r1)

)
 (5.26)

∇L3
f0f0f0

h =


03×3 −K3

d −K2
d

⌊
W CT

B g
⌋

×
D−1 K2

dI33(
W CBKd

W CT
B

W p̈B

)T
Π8 Π9 01×3

 , (5.27)

where

Π8 = 3
(

W CT
B

W p̈B

)T
+
(

W CT
B

W r1
)T

K2
d − 3BvT Kd (5.28)

Π9 =
(
−3Bv + Kd

W CT
B

W r1
)T ⌊

W CT
B g
⌋

×
D−1 −

(
Kd

W CT
B

W p̈B

) ⌊
W CT

B

W r1
⌋

×
D−1

(5.29)

The nonlinear observability matrix for the M-RINS can be constructed using (5.21),
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(5.23), (5.25) and (5.27) as

O1RM =

03×3 −Kd 03×3 I3

03×3 03×3
⌊

W CT
B

W µ
⌋

×
D−1 03×3

W rT
1 01×3 01×3 01×3

03×3 K2
d Kd

⌊
W CT

B g
⌋

×
D−1 −KdI33

(W CB
Bv)T (W CT

B
W r1)T BvT

⌊
W CT

B
W r1

⌋
×

D−1 01×3

03×3 −K3
d −K2

d

⌊
W CT

B g
⌋

×
D−1 K2

dI33

W p̈T
B 2BvT − (W CT

B
W r1)T Kd (−Kd

Bv + bazè3)T
⌊

W CT
B

W r1
⌋

×
D−1 01×3

03×3 −K3
d −K2

d

⌊
W CT

B g
⌋

×
D−1 K2

dI33(
W CBKd

W CT
B

W p̈B

)T
Π8 Π9 01×3


(5.30)

Lemma 5.2. The M-RINS is locally weakly observable for all the trajectories except

when the MAV is stationary, flying towards the range anchor, or MAV flying at a

constant velocity.

Proof. First, let’s focus on the third block column of O1RM . Since the earth’s mag-

netic field, W µ and the gravity vector g are not parallel with each other, the matrix[ (⌊
W CT

B
W µ

⌋
×

D−1
)T (

Kd

⌊
W CT

B g
⌋

×
D−1

)T
]T

has full rank of three. Therefore,

the third block column has full rank irrespective of the trajectory of the MAV. The first

block elements of the second and the fourth block columns (O1RM(1,2) , and O1RM(1,4))

are diagonal matrices. Therefore, each block column has full rank independently. Ad-

ditionally, the structure of the fourth block row of the observability matrix, O1RM(4,:)

shows that the second and fourth columns are linearly independent. Therefore, the

second and the fourth block columns have full rank irrespective of the trajectory.
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O′′
1RM(:,1)

shows the non-zero block elements of the first column

O′′
1RM(:,1)

=



W rT
1

(W CB
Bv)T

W p̈T
B(

W CBKd
W CT

B
W p̈B

)T


. (5.31)

It is straightforward to show that O′
1RM(:,1)

loses rank if W CB
Bv = 01×3, or W p̈B =

01×3, or W r1 ∥ W CB
Bv ∥ W p̈B. These conditions correspond to the MAV being

stationary, the MAV flying at a constant speed, and the MAV flying toward the range

anchor. Therefore, the nonlinear observability matrix has a rank of 12 under a generic

trajectory, and the M-RINS is locally weakly observable.

5.2.4 Unobservable Scenarios

This section presents the unobservable trajectories and the corresponding unobserv-

able directions of the RINS with a single range and magnetometer measurements.

5.2.4.1 Scenario 7: MAV is stationary with a single range measurement

Lemma 5.3. When the MAV is stationary with a single range and magnetometer

measurement, the M-RINS becomes unobservable, and the unobservable sub-space is

spanned by

8N =


nT

1 01×3 01×3 01×3

nT
2 01×3 01×3 01×3


T

, (5.32)

where n1, n2 ∈ R3, and n1 · W r1 = n2 · W r1 = n1 · n1 = 0.
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Proof. When the MAV is stationary, the velocity, Bv, and the acceleration of the

MAV, W p̈B are zero. As a result, the first block column of O1RM can be expressed as

O′
1RM(:,1)

= [ 03×6
W r1 03×12 ]T (5.33)

The rank of O′
1RM(:,1)

is one, and the total rank of the observability matrix O1RM

becomes 10. Therefore the M-RINS is unobservable when the MAV is stationary.

Since n1 and n2 are perpendicular to the range vector, it is straightforward to

show that O1RM(:,1)
8N (1,:) = 019×2. This shows that the unobservable sub-space of

Scenario 7 is spanned by 8N .

Lemma 5.3 proves that the M-RINS is unobservable when the MAV is stationary.

The unobservable directions in (5.32) show that the position of the MAV in any

direction perpendicular to the range vector is unobservable under Scenario 7.

5.2.4.2 Scenario 8: MAV is flying at a constant velocity with a single

range measurement

Lemma 5.4. When the MAV is flying at a constant velocity, the M-RINS becomes

unobservable, and the unobservable sub-space is spanned by

9N =
[
(W r1 × W CB

Bv)T 01×3 01×3 01×3

]T

, (5.34)

Proof. When the MAV is flying at a constant velocity, the acceleration of the MAV

is zero, i.e., W p̈B = 03×1. Therefore the first column of the observability matrix can

be expressed as

O′
1RM(:,1)

= [ 03×6
W r1

W CB
Bv 03×9 ]T . (5.35)
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Since there are only two non-zero rows in O′
1RM(:,1)

, the rank becomes two3, and the

rank of O1RM becomes 11. Therefore the M-RINS is unobservable when the MAV is

flying at a constant velocity.

Since W r1 × W CB
Bv is the perpendicular direction to both W r1, and W CB

Bv, it is

straightforward to show that O1RM(:,1)(W r1 × W CB
Bv) = 019×1. This shows that the

unobservable sub-space of Scenario 8 is spanned by 9N .

The null vector 9N shows that position in the perpendicular direction to both

range and velocity vectors is unobservable under Scenario 8.

5.2.4.3 Scenario 9: MAV is flying towards the range anchor with a single

range measurement

Lemma 5.5. When the MAV is flying towards the range anchor, the M-RINS becomes

unobservable, and the unobservable direction sub-space is spanned by

10N =
[(

W r1 × W CBKd
W CT

B
W p̈B

)T
01×3 01×3 01×3

]T

, (5.36)

Proof. When the MAV is flying towards the single range anchor, the velocity and the

acceleration of the MAV are parallel to the range vector. This can be expressed as

W CB
Bv = αW r1,

W p̈B = βW r1. (5.37)

Under these conditions, the rank of the first block column shown in (5.31) loses a rank.

The total rank of the observability matrix becomes 11, and therefore the M-RINS is

unobservable when the MAV is flying towards the range anchor.
3The rank of O′

1RM(:,1)
will become one if W r1 ∥ W CB

Bv, and this condition is discussed in
Scenario 9
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Since 10N (1,1) represents a perpendicular vector to W r1, and W CBKd
W CT

B
W p̈B it

is straightforward to show that O1RM(:,1)
10N (1,1) = 019×1.

If the MAV is flying towards the range anchor at a constant velocity, the range

vector, and the MAV velocity are parallel, i.e., W r1 ∥ W CB
Bv. Under these conditions,

the unobservable directions would be the position perpendicular to the range vector.

A summary of the observability analysis of M-RINS is given in Table 5.2.

Table 5.2: Summary of the observability analysis of M-RINS

Case Scenario Unobservable Directions

Single range

and heading

measurements

Scenario 7: Hovering • Position perpendicular to the range vector

Scenario 8: Flying at a

constant velocity
• Position in the perpendicular direction to

both velocity and range vector

Scenario 9: Flying to-

wards the range anchor
• Position along

(
W r1 × W CBKd

W CT
B

W p̈B

)

5.2.5 Simulation Results

The M-RINS implementation follows the EKF implementation of the three and two

range assisted RINS presented in Section 4.1.2. The M-RINS implementation includes

the gyroscope bias in the EKF mechanization equations.
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Fig. 5.4: Trajectories used in the simulations of single range and heading assisted INS.
(a) Observable Circular with varying altitude, (b) Trajectory used in Scenario 8 (c)
Trajectory used in Scenario 9

First, five simulations are performed, in which the MAV is flown in the observable

circular trajectory shown in Fig 5.4a. For each simulation, the range anchor location

is selected randomly, and the five locations are given in Table 5.3 (Fig. 5.5). Fig 5.6

clearly shows that the total angle and position estimation errors are bounded and are

well within the 3σ boundary for all the five simulations. This shows when the MAV

is flying in an observable trajectory, the M-RINS is able to estimate the pose of the

MAV, irrespective of the anchor position.

Table 5.3: Location of the single range anchor used for M-RINS

Location (m)

Simulation 1 (4.7, 8.2, 1.9)

Simulation 2 (1.3, 0.2, 9.2)

Simulation 3 (8.6, 2.5, 4.4)

Simulation 4 (6.3, 8.1, 1.7)

Simulation 5 (9.0, 1.9, 6.8)

115



10

Y (m)

50
0

X (m)

5

2

Z
 (

m
)

4 06 8

10

10

Trajectory
Simulation 1
Simulation 2
Simulation 3
Simulation 4
Simulation 5

Fig. 5.5: Locations of the single range anchor used in the five simulations of M-RINS

0 10 20 30 40 50 60 70 80 90 100

Time(s)

0

0.5

1

1.5

T
o
ta

l P
o
si

ti
o
n
 E

rr
o
r(

m
)

Simulation 1 Simulation 2 Simulation 3
Simulation 4 Simulation 5

(a)

0 10 20 30 40 50 60 70 80 90 100

Time(s)

0

0.01

0.02

0.03

0.04

T
o
ta

l A
n
g

le
 E

rr
o
r(

ra
d

)

Simulation 1 Simulation 2 Simulation 3
Simulation 4 Simulation 5

(b)

Fig. 5.6: RINS with a single range and heading measurements with five different
anchor locations. (a) Total Position error and the 3σ boundary, (b) Total Angle
Error and the 3σ boundary. ( ) Error, (-∗-) 3σ boundary.

Next, 25 Monte-Carlo simulations were conducted using the same trajectory and

the anchor location as Simulation 1 in Table 3.2. The MAE of the estimated states

and the 3σ boundaries are shown in Fig. 5.7. As explained in Section 5.2.1, including

the gyroscope bias does not affect the observability of the M-RINS. This is evident

in Fig. 5.7 where all the state estimation errors, including the gyroscope bias errors

(Fig. 5.7d) are bounded and well within the 3σ confidence interval.
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Fig. 5.7: Simulation 1, 25 Monte-Carlo simulations: MAE and 3σ boundary (a) Posi-
tion, (b) Orientation, (c) Body frame velocity, (d) Gyroscope bias, (e) Accelerometer
bias.

5.2.5.1 Unobservable Scenarios

Similar to simulations conducted in section 3.4, the simulated trajectories have two

parts, the first segment (0 - 50s) of the trajectory is the observable, height varying

circular trajectory, and the second segment (50s - 100s) is the unobservable trajectory.

The anchor locations are selected such that during unobservable trajectories, the
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unobservable directions coincide with the main axes of {W}. The simulation results

show the MAE of the estimates of 25 Monte-Carlo simulations and the average of

3σ confidence boundary.

For Scenario 7, the MAV is kept stationary at (3, 0, 3.1) m, and the range anchor

is placed at (3, 0, 9) m. In this simulation, the range vector is vertical and based on

the observability analysis of the Scenario 7 (Lemma 5.3), position perpendicular to

the range vector, i.e. along the x− y plane is unobservable.

Fig 5.8 shows the x and y estimation errors, and the estimation covariances di-

verge rapidly in the first few seconds. As time progress, the range vector based on

the estimated states does not lie parallel to the z axis due to the estimation errors.

Therefore the plane perpendicular to the estimated range vector is no longer parallel

to the x− y plane. This can be seen clearly in Fig 5.8, where the z estimation error

and covariance start to diverge during the latter portion of the trajectory.
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Fig. 5.8: Scenario 7: Position estimation error and the 3σ boundary

The MAV is flown on the trajectory shown in Fig 5.4b for the Scenario 8. During

the second portion of the trajectory, the MAV moves in a straight line on the y−z plane
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at a constant velocity. The range anchor is placed at (3, -1, 9), such that the range

and the velocity vectors lie on the y−z plane. Lemma 5.4 shows that the unobservable

direction is perpendicular to both the range and the velocity vectors under Scenario

8. Based on the trajectory and the beacon location, x is the unobservable direction.

Fig. 5.9 clearly shows the divergence of the x position estimate covariance. Similar to

the results of Scenario 7, there is a slight increase in the z error and the covariance

during the latter part of the trajectory.
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Fig. 5.9: Scenario 8: Position estimation error and the 3σ boundary

The trajectory shown in Fig. 5.4c is used to visualize the unobservable directions

under Scenario 9. The straight line portion of the trajectory is horizontal, and

the MAV moves at constant acceleration towards the beacon at (3, 40, 2.9) m. The

unobservable directions of the Scenario 9 are given in (5.35). The drag coefficient

matrix Kd has the structure shown in (3.29), and therefore, the x, y components of
W CBKd

W CT
B

W p̈B are in the same direction as W p̈B, the only difference is in the z

component. Therefore, during the unobservable trajectory W r1 × W CBKd
W CT

B
W p̈B

is parallel to x axis. Fig. 5.10 clearly shows a significant increase in the covariance
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of the x estimate. Additionally, there is a slight increase in the y, and z estimate

covariances due to the estimation errors.
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Fig. 5.10: Scenario 9: Position estimation error and the 3σ boundary

5.3 Summary

This chapter presented a design of a single range assisted inertial navigation system.

A detailed observability analysis showed that the RINS with only a single range mea-

surement is unobservable for any trajectory. The second INS proposed in this chapter,

M-RINS is locally weakly observable for a generic trajectory, and it incorporates mag-

netometer measurements in addition to the single range measurement. An observ-

ability study was carried out on the proposed M-RINS, and identified three special

trajectories that render the M-RINS unobservable and the corresponding unobservable

directions. All of these findings were validated through numerical simulations.
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Chapter 6

Conclusion and Outlook

This chapter summarizes the main contributions achieved in this thesis and discusses

several future research directions. The main issue this thesis attempts to address is the

localization problem of multi-rotor MAVs in indoor environments using a computa-

tionally efficient, robust, and easy to deploy technique. The research study conducted

an extensive literature review on the existing and the state of the art indoor local-

ization techniques used in MAV applications. The outcome of the literature review

indicated that range assisted inertial navigation systems do satisfy the criterion this

study prefers in a localization technique. However, to the author’s knowledge, there

are no studies on RINS that utilize less than four range measurements and no other

types of sensors. In order to address the lack of knowledge, this research was con-

ducted to achieve three primary objectives:

1. Development of tree and two range assisted INS for multi-rotor MAVs,

2. Development of trajectory dependent observability constrained RINS with three

and two range measurements,

3. Development of a single range assisted INS for multi-rotor MAVs,
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Research contributions related to each objective are summarized in the following

sections.

6.1 Research Summary Based on Objective1

The first objective of this research focused on developing a range assisted inertial

navigation system that can localize the multi-rotor MAV with three or two range

measurements to known locations. The design of the RINS incorporated the unique

aerodynamic forces, specifically the blade flapping drag force acting on the MAV. This

enabled the RINS to function without having to use a velocity sensor. A nonlinear

observability analysis was conducted to identify the observability properties of the

proposed RINS. The analysis was carried out for two cases, Case 1 : with three range

measurements, and Case 2 : with two range measurements. The analysis showed that

the proposed RINS is locally weakly observable for a generic trajectory under both

cases. However, three scenarios (trajectories) were identified for each case that ren-

ders the proposed RINS unobservable. The identified scenarios are not exhaustive,

but they are the most practical scenarios that a MAV will experience in a typical

operating condition. The other plausible unobservable conditions can be found using

the analytical expressions of observability matrices derived in section 3.3. However,

the MAV will remain in the unobservable mode momentarily and, therefore, will not

affect the overall performance of the simulator. One such scenario is when the MAV

moves in a straight line. The gyroscope bias will be unobservable if the gyroscope

bias vector is parallel to the body frame velocity of the MAV. By nature, the gyro-

scope bias has characteristics of a random walk process. Therefore the bias vector

will not remain parallel to the body frame velocity for a considerable time period.

The performance of the proposed RINS was evaluated numerically as well as exper-
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imentally for observable trajectories, and the experimental results showed that the

RINS is capable of estimating the pose of the MAV with reasonable accuracy. Addi-

tionally, unobservable directions of the unobservable scenarios were determined and

numerically validated. These unobservable directions will be used for the fulfillment

of Objective 2.

6.2 Research Summary Based on Objective 2

An estimator implemented on an unobservable system can gain spurious information

along the unobservable directions and can impact the consistency and the accuracy

of the estimation. Therefore, the second objective focused on analyzing and improv-

ing the consistency of the three and two range assisted INS during the unobservable

scenarios identified under objective 1. First, the unobservable directions identified

were verified using the unobservable transformations corresponding to the unobserv-

able directions. The outcome of this verification showed that not all the unobservable

directions identified through the Lie derivative based observability analysis are truly

unobservable. Lie derivative based analysis is a good starting point to determine

the unobservable direction but should be verified using unobservable transformations

corresponding to the unobservable directions. Then it was shown that the linearized

model used for the EKF implementation does not have the same unobservable direc-

tions as the nonlinear system during the unobservable scenarios. Finally, consistency

rules for the filter were determined for each unobservable trajectory and applied in

the observability constrained RINS. These rules ensure the linearized system has the

same observability properties as the nonlinear system and prevent the filter from

updating along the unobservable directions. The simulation results show significant

improvement in the consistency of the estimator after applying the observability con-
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straints. Additionally, the estimation accuracy has improved compared to the EKF

implementation without observability constraints. When the consistency of the esti-

mator is improved, the states are estimated with proper confidence levels. Therefore

proper decisions can be made based on the more accurate state estimates and the

corresponding covariances.

6.3 Research Summary Based on Objective 3

The third objective focuses on developing a RINS with a single range measurement,

and the research study presents two RINS designs to fulfill the objective. The first

RINS developed used just a single range measurement, and the observability study

on the RINS showed that the RINS is unobservable for all the trajectories. The unob-

servable direction includes the position in the perpendicular direction to the range and

the gravity vector. The second RINS design was developed to overcome the observ-

ability limitation of the previous design. The M-RINS incorporated a magnetometer

measurement in addition to the single range measurement. The observability analysis

on the M-RINS showed that the system is locally weakly observable for a generic

trajectory. Additionally, three unobservable trajectories were identified that render

the M-RINS unobservable. Numerical results showed that the developed M-RINS is

able to estimate the pose of the MAV with reasonable accuracy and validated the

unobservable directions identified in the observability analysis.

6.4 Contributions

To summarize, this thesis made the following contributions in range assisted localiza-

tion for multi-rotor micro aerial vehicles in indoor environments, fulfilling all of the

outlined research objectives.
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1. Contributions related to Objective 1.

(a) Design of a RINS for MAV, which is capable of estimating with three or

two range measurements.

(b) An observability analysis to determine the overall observability, unobserv-

able trajectories, and unobservable directions of the RINS.

(c) Experimental and numerical validation of the RINS with three and two

range measurements.

2. Contributions related to Objective 2.

(a) Consistency analysis of the EKF implementation of the RINS under unob-

servable trajectories.

(b) Development of trajectory dependent observability constrained RINS.

3. Contributions related to Objective 3.

(a) Design and observability study on RINS for MAVs using a single range

measurement.

(b) Design of a RINS for MAVs using heading and single range measurement.

(c) Observability analysis and unobservable mode identification of M-RINS.

6.4.1 List of Publications

This research led to the following scientific articles and publications:

• Erange Fernando, Oscar De Silva, George K. Mann, and Raymond Gosine,

Trajectory Dependent Consistency Improvement of Two/Three Range Assisted

INS for Micro Aerial Vehicles”, Journal of Intelligent & Robotic Systems, 2022

(Submitted and under review).
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• Erange Fernando, Oscar De Silva, George K. Mann, and Raymond Gosine,

“Towards Developing an Indoor Localization System for MAVs using Two or

Three RF Range Anchors: An Observability Based Approach”, IEEE Sensors

Journal, vol 22, no 6, pp.5173 - 5187,2022.

• Eranga Fernando, Oscar De Silva, George K. Mann, and Raymond Gosine,

“Observability Analysis of Position Estimation for Quadrotors With Modified

Dynamics and Range Measurements”, 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2019, pp. 2783-2788.

• Eranga Fernando, George K. Mann, Oscar De Silva, and Raymond Gosine.

Gosine,“Range Assisted Inertial Navigation System for QuadrotorLocalization:

Observability Analysis and Experimental Validation”, 28th Annual Newfound-

land Electrical and Computer Engineering Conference (NECEC), Nov. 2019.

• Eranga Fernando, George K. Mann, Oscar De Silva and Raymond Gosine, “De-

sign and analysis of a pose estimator for quadrotor MAVs with modified dy-

namics and range measurements”, ASME 2017 Dynamic Systems and Control

Conference.

6.5 Future Research Directions

The research work presented in this thesis has a number of potential extensions.

These future developments aim at improving the practicality of the developed RINS

in real-world applications.

Incorporating additional sensor inputs: One of the main goals of this study

was to utilize the least number of sensor measurements to develop a functional RINS

for MAVs. Towards achieving this goal, this study utilized IMU, range, and magne-
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tometer (only for M-RINS) measurements. However, additional sensors can be incor-

porated to improve the performance of the RINS. One example would be the propeller

speed sensor which is generally integrated into the electronic speed controllers of the

MAV. Having propeller speed information allows the RINS to accurately model the

drag force effects and decouple the thrust and accelerometer bias.

Wind disturbance estimation: A key assumption made in this study is the

no wind conditions. Even though the no wind assumption is valid for most indoor

environments, there can be instances where this assumption is violated. Studies have

shown that the drag force model-based INS performance can degrade under windy

conditions. Therefore it is important to estimate the wind disturbances for robust

operation [103]. It will be interesting to investigate how capable the RINS with fewer

range measurements is in estimating the wind disturbances. Based on the investiga-

tion, additional sensors can be incorporated to overcome any limitations. Accurate

disturbance estimation can extend the use of the RINS into outdoor environments

where the wind is unavoidable.

RINS integration with VINS: VINS has become the go-to localization system

for MAVs. However, VINS suffer from drift of the estimates over a long period of time

due to error accumulation. Loop closure and global pose graph optimization are two

widely used techniques to mitigate the drift at the cost of computational resources.

Since the RINS require less computational overhead and provide the global position

estimates, RINS can be used to reduce the drift in the VINS estimates. Further

research can be conducted on the adaptive sensor fusion of VINS and RINS. This will

enable the switching between VINS and RINS depending on the trajectory, external

disturbances, measurement noise, etc. Since vision and range sensors complement

each other, adaptive sensor fusion can also be developed as a fault tolerance system

for MAV localization.
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Appendix A

Rotation about vector a

Assume that the current orientation of the MAV is given by the Gibbs vector ρ, and

the vector Ba is expressed in the body frame of the MAV, {B}. Then the MAV is

rotated about the vector Ba by an angle of θ. This rotation can be represented using

Gibbs vector as

ϱ =
Ba

∥Ba∥
tan

(
θ

2

)
(A.1)

Since any rotation of any vector about itself gives the same vector, it is trivial to show

that

C(ρ⊕ ϱ)Ba = C(ρ)Ba, (A.2)

where, ρ ⊕ ϱ is the composition of two Gibbs vectors, ρ, and ϱ. The composition

operator ⊕ is defined as [84]

ρ⊕ ϱ = ρ + ϱ− ϱ× ρ

1− ϱT ρ
. (A.3)

(A.3) can be simplified as

ρ⊕ ϱ = ρ + ϱ− ϱ× ρ

1− ϱT ρ
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=
ρ +

(
I3 + ⌊ρ⌋×

)
ϱ + ρρT ϱ− ρρT ϱ

1− ϱT ρ

=

(
ρ− ρρT ϱ

)
+
(
I3 + ⌊ρ⌋× + ρρT

)
ϱ

1− ϱT ρ

=
ρ
(
1− ϱT ρ

)
+ Dϱ

1− ϱT ρ

ρ⊕ ϱ = ρ + λDϱ, λ = 1
1− ϱT ρ

∈ R. (A.4)

(A.4) shows that the composition of two Gibbs vectors can be expressed as an

algebraic sum, and λ∗DBa represents the rotation about the vector Ba, where λ∗ =
tan (θ/2)

∥Ba∥ (1− ϱT ρ) .
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Appendix B

Output Function and its

Derivatives

The output function of the RINS with three and two range measurements comprise of

the accelerometer measurements and the range measurements between the MAV and

the anchors. During the observability analysis, we define the output function h(x) as

y = h(x) =


ha(x)

hr(x)

 , hr(x) =



h1(x)

...

hj(x)


. (B.1)

ha(x) denotes the accelerometer measurements defined as

ha(x) = −Kd
Bv + Bba. (B.2)

The nth order time derivatives of h1(x) can be calculated as

h(n)
a (x) = −Kd

Bv(n). (B.3)
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First and the second order derivatives of Bv can be expressed as

Bv(1) = ⌊Bv⌋× (Bωm − Bbg)−Kd
Bv + bazè3 − W CT

B g (B.4)

Bv(2) = ⌊Bv⌋×
Bω(1)

m − ⌊Bωm − Bbg⌋×
Bv(1) −Kd

Bv(1) − W C(1)
B

T
g. (B.5)

Third and higher order terms of Bv depends on Bv, Bωm, Bbg, W C(3)
B and their higher

order terms.

Since the range measurement to the jth anchor, rj and it’s square are strictly

positive and have one-to-one correspondence, we chose the following definition instead

of rj for the consistency analysis.

hi(x) = 1
2r2

i = 1
2

W rT
i

W rj. (B.6)

The nth order derivative of hj(x) can be expressed as a function of W rj and it’s

derivatives up to nth order as

h(n)
j (x) = g(rj, ..., r(n)

j ). (B.7)
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Appendix C

Observability Analysis of Single

Range Assisted INS

Nonlinear Observability Matrix Calculation

Control affine form of the single range assisted INS and the measurement model are

expressed as



W ṗB

W q̇B

Bv̇

Bḃg

Bḃa



=



W CB
Bv

1
2Ξ(q)

[
0 (Bωm − Bbg − ηω)T

]T
⌊Bv⌋× (Bωm − Bbg − ηω)−Kd

Bv + bazè3 − W CT
B g

ηgb

ηab



. (C.1)

y =


ha(x)

hr(x)

 =


−Kd

Bv + Bba + ηa

r1 + ηr1

 . (C.2)
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The zeroth order Lie derivatives of the measurement function can be expressed as

L0h = h(x). (C.3)

Gradient of L0h with respect to the state vector can be calculated as

∇L0h =


03×3 −Kd 03×3 03×3 I3

W rT
1 01×3 01×3 01×3 01×3

 . (C.4)

The first order Lie derivative with respect to f0 can be calculated as

L1
f0

h = ∇L0h · f0 =


Kd

Bv̇′

W rT
1

W CB
Bv

 , (C.5)

where
Bv̇′ = −⌊Bv⌋×

Bbg −Kd
Bv + bazè3 − W CT

B g. (C.6)

The span of the L1
f0

h can be calculated as

∇L1
f0

h =


03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× KdI33

(W CB
Bv)T W rT

1
W CB −W rT

1 ⌊W CB
Bv⌋×

(
DT

)−1
01×3 01×3

.

(C.7)
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The second order Lie derivative of L1
f0

h with respect to f0 and it’s gradient can be

expressed as

L2
f0f0

h = ∇L1
f0

h · f0 =


(
K2

d −Kd ⌊Bbg⌋×
)

Bv̇ −Kd

⌊
W CT

B g
⌋

×
Bbg

BvT Bv + W rT
1

W CB
Bv̇′ + W rT

1
W CB ⌊Bv⌋× Bbg

 , (C.8)

∇L2
f0f0

h =


03×3 −Kd

(
Kd − ⌊Bbg⌋×

)2
Θ Φ Kd

(
Kd − ⌊Bbg⌋×

)
I33

W p̈T
B 2BvT − W rT

1
W CBKd Λ1 03×3

W rT
1

W CBI33

 ,

(C.9)

where

Θ = −Kd

(
Kd − 2 ⌊Bbg⌋×

) ⌊
W CT

B g
⌋

×
D−1

Φ = Kd

⌊(
−Kd

Bv + bazè3 − 2W CT
B g
)⌋

×
−Kd

(
Kd − ⌊Bbg⌋×

)
⌊Bv⌋× + Kd

⌊
⌊Bbg⌋×

Bv
⌋

×

Λ1 = −W rT
1

(
⌊W CB (−Kd

Bv + bazè3)⌋×
) (

DT
)−1

,

¨W pB = W CB

(
−Kd

Bv + bazè3 − W CT
B g
)

.

Similarly, the third order Lie derivative of L2
f0f0

h and it’s gradient can be expressed

as

L3
f0f0f0

h = ∇L2
f0f0

h · f0

=


−Kd

(
Kd − ⌊Bbg⌋×

)2
Bv̇′ + Kd

(
Kd − 2 ⌊Bbg⌋×

) ⌊
W CT

B g
⌋

×
Bbg

W p̈T
B

W CB
Bv +

(
2BvT − W rT

1
W CBKd

)
Bv̇′ + W rT

1
W CB ⌊−Kd

Bv + bazè3⌋× Bbg

 ,

(C.10)
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∇L3
f0f0f0

h =


03×3 Kd

(
Kd − ⌊Bbg⌋×

)3
Π1 Π2 −Kd

(
Kd − ⌊Bbg⌋×

)2
I33

Π3 Π4 Π5 Π6 Π7

 ,

(C.11)

where

Π1 = Kd

(
Kd − ⌊Bbg⌋×

)2 ⌊
W CT

B g
⌋

×
D−1 −Kd

(
Kd − 2 ⌊Bbg⌋×

)
⌊Bbg⌋×

⌊
W CT

B g
⌋

×
D−1

(C.12)

Π2 = K3
d ⌊Bv⌋× + K2

d

(
−⌊Bbg⌋× ⌊

Bv⌋× −
⌊
⌊Bbg⌋×

Bv
⌋

×

)
+ Kd

(
−⌊Bbg⌋× Kd ⌊Bv⌋× −

⌊
Kd ⌊Bbg⌋×

Bv
⌋

×

)
− ∂

∂Bbg

(
Kd ⌊Bbg⌋3×

Bv
)

(C.13)

Π3 = −(W CBKd
Bv̇′)T +

(
W CB ⌊(−Kd

Bv + bazè3)⌋×
Bbg

)T
(C.14)

Π4 = 3 (−2Kd
Bv + bazè3 − W CBg)T − W rT

1
W CB

(
−K2

d + Kd ⌊Bbg⌋× − ⌊
Bbg⌋× Kd

)
(C.15)

Π5 = −3BvT
⌊

W CT
B g
⌋

×
D−1 −

[((
−Kd + ⌊Bbg⌋×

)
Bv + bazè3

)]T ⌊
W CT

B

W r1
⌋

×
D−1

+
(

W CT
B

W r1
)T

Kd

⌊
W CT

B g
⌋

×
D−1 +

(
Kd

W CT
B g
)T ⌊

W CT
B

W r1
⌋

×
D−1

+
(
⌊−Kd

Bv + bazè3⌋×
Bbg

)T ⌊
W CT

B

W r1
⌋

×
D−1 (C.16)

Π6 = W rT
1

W CB

(
Kd ⌊Bv⌋× + ⌊−Kd

Bv + bazè3⌋×
)

(C.17)

Π7 = 3BvT I33 − (W CT
B

W r1)T
(
K + ⌊Bbg⌋×

)
I33 (C.18)
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Using (aC.4),(C.7)(C.9), and (C.11), the observability matrix can be expressed as

O1R =

03×3 −Kd 03×3 03×3 I3

W rT
1 01×3 01×3 01×3 01×3

03×3 Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× KdI33

(W CB
Bv)T W rT

1
W CB −W rT

1 ⌊W CB
Bv⌋×

(
DT

)−1
01×3 01×3

03×3 −Kd

(
Kd − ⌊Bbg⌋×

)2
Θ Φ Kd

(
Kd − ⌊Bbg⌋×

)
I33

W p̈T
B 2BvT − W rT

1
W CBKd Λ1 01×3

W rT
1

W CBI33

03×3 Kd

(
Kd − ⌊Bbg⌋×

)3
Π1 Π2 −Kd

(
Kd − ⌊Bbg⌋×

)2
I33

Π3 Π4 Π5 Π6 Π7


(C.19)
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Appendix D

Observability Analysis of AHRS

A attitude and heading reference system consists of three axis gyroscope, three axis

accelerometer, and three axis magnetometer to estimate the orientation. Since this

thesis take the aerodynamic drag forces acting on the MAV into consideration, the

velocity of the MAV is included as a state of the AHRS. The AHRS with the aerody-

namic drag forces effects has the following state vector1

x =
[

BvT W sT
B

BbT
g

BbT
a

]T
, (D.1)

Using the definitions given in (3.34), (3.36), (3.41), and (3.47) the nonlinear state

space model of the AHRS can be expressed as
1The orientation is parameterized using Gibbs parameterization due to the ease of conducting the

observability analysis. An implementation of the AHRS would use the quaternion parameterization
to represent the orientation.
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

Bv̇

W ṡB

Bḃg

Bḃa


=



⌊Bv⌋× (Bωm − Bbg − ηω)−Kd
Bv + bazè3 − W CT

B g

D(Bωm − Bbg − ηω)

ηgb

ηab


(D.2)

The control affine form the state space model in (D.2) can be expressed as



Bv̇

W ṡB

Bḃg

Bḃa


=



−⌊Bv⌋× Bbg −Kd
Bv + bazè3 − W CT

B g

−DBbg

03×1

03×1


︸ ︷︷ ︸

f0

+



⌊Bv⌋×

D

03×3

03×3


︸ ︷︷ ︸

f1

Bωm. (D.3)

The measurement model of the AHRS includes the accelerometer and magnetome-

ter measurements. Using the definitions given in (3.42), and (5.15), the measurement

model can be expressed as

y = h(x) =


ha(x)

hµ(x)

 =


−Kd

Bv + Bba + ηa

W CT
B

W µ + ηµ

 , (D.4)

Observability Analysis

The nonlinear observability analysis of the AHRS is conducted by constructing the

observability matrix and determining the rank of the observability matrix. The Lie
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derivatives of the output function and their gradients can be calculated as follows

L0h = h(x) (D.5)

∇L0h =


−Kd 03×3 03×3 I3

03×3
⌊

W CT
B

W µ
⌋

×
D−1 03×3 03×3

 (D.6)

L1
f0

h = ∇L0h · f0 =


Kd

Bv̇′

−
⌊

W CT
B

W µ
⌋

×
Bbg

 , (D.7)

where Bv̇′ = −⌊Bv⌋× Bbg −Kd
Bv + bazè3 − W CT

B g.

∇L1
f0

h =
Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× −KdI33

03×3 ⌊Bbg⌋×
⌊

W CT
B

W µ
⌋

×
D−1 −

⌊
W CT

B
W µ

⌋
×

03×3


(D.8)

L2
f0f0

h = ∇L1
f0

h · f0 =


Kd

(
Kd − ⌊Bbg⌋×

)
Bv̇ −Kd

⌊
W CT

B g
⌋

×
Bbg

−⌊Bbg⌋×
⌊

W CT
B

W µ
⌋

×
Bbg

 (D.9)

∇L2
f0f0

h =
−Kd

(
Kd − ⌊Bbg⌋×

)2
Θ Φ Kd

(
Kd − ⌊Bbg⌋×

)
I33

03×3 ⌊Bbg⌋2×
⌊

W CT
B

W µ
⌋

×
D−1 ∆ 03×3

 ,

(D.10)
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where

Θ = −Kd

(
Kd − 2 ⌊Bbg⌋×

) ⌊
W CT

B g
⌋

×
D−1

Φ = Kd

⌊(
−Kd

Bv + bazè3 − 2W CT
B g
)⌋

×
−Kd

(
Kd − ⌊Bbg⌋×

)
⌊Bv⌋× . . .

. . . + Kd

⌊
⌊Bbg⌋×

Bv
⌋

×

∆ = −⌊Bbg⌋×
⌊

W CT
B

W µ
⌋

×
−
⌊
⌊Bbg⌋×

W CT
B

W µ
⌋

×

The observability matrix is calculated by concatenating the gradients (D.6), (D.8),

(D.10), and can be expressed as

OAHRS =



∇L0h

∇L1
f0

h

∇L2
f0f0

h


, (D.11)

OAHRS =

−Kd 03×3 03×3 I3

03×3
⌊

W CT
B

W µ
⌋

×
D−1 03×3 03×3

Kd

(
Kd − ⌊Bbg⌋×

)
Kd

⌊
W CT

B g
⌋

×
D−1 Kd ⌊Bv⌋× −KdI33

03×3 ⌊Bbg⌋×
⌊

W CT
B

W µ
⌋

×
D−1 −

⌊
W CT

B
W µ

⌋
×

03×3

−Kd

(
Kd − ⌊Bbg⌋×

)2
Θ Φ Kd

(
Kd − ⌊Bbg⌋×

)
I33

03×3 ⌊Bbg⌋2×
⌊

W CT
B

W µ
⌋

×
D−1 ∆ 03×3



.

(D.12)

Lemma D.1. The AHRS which incorporates the aerodynamic drag forces acting on

the MAV is locally weakly observable under any trajectory.

Proof. The rank of the observability matrix is determined by calculating the rank of

each block column of OAHRS. The first block elements of the first and the fourth
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block columns, (OAHRS,(1,1), and OAHRS,(1,4)) are diagonal matrices. Therefore, the

first and the fourth block columns each has a rank of three. Furthermore, it is straight

forward to show that the first and the fourth block columns are linearly independent.

Since the earth’s magnetic field, W µ and the gravity vector g are not parallel with each

other, the matrix
[ (⌊

W CT
B

W µ
⌋

×
D−1

)T (
Kd

⌊
W CT

B g
⌋

×
D−1

)T
]T

has full rank of

three. Therefore, the second block column has full rank. By analyzing the non-zero

block elements of the third block column of OAHRS, it can be seen that the third

block column has full rank under any trajectory of the MAV (even when the MAV

is stationary). Therefore, each block column has full rank irrespective of the MAV’s

trajectory. Therefore the AHRS is locally weakly observable.
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