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Abstract

Pattern recognition using surface Electromyography (sEMG) applied on prosthesis

control has attracted much attention. The strong relationship between visual percep-

tion and hand manipulation makes vision play an essential role in prosthetic hand con-

trol. Utilizing both sEMG and visual information to improve prosthetic hand control

became a promising research direction. In most existing hand grasping classification

research using sEMG, the signals collected during the firmly grasped period were used

for classification because stable signals facilitated classification performance. However,

using signals collected from the firm grasp period may cause a delay in controlling the

prosthetic hand. Targeting this issue, we explored a new way for grasp classification

using signals collected before the firm grasp. We examined accuracy changes during

the reaching and grasping process and identified an sEMG sweet period, starts at 1100

ms and ends at 1400 ms in the early grasping phase, that can leverage the grasp classi-

fication accuracy for the earlier grasp detection. Although Surface Electromyography

(sEMG) achieved a feasible solution in a laboratory environment, the classification

accuracy is not high enough for real-time application. Researchers proposed integrat-

ing sEMG signals with another feature not affected by amputation. The muscular

coordination between vision and hand manipulation makes us consider including the

visual information in prosthetic hand control. In this study, we identify another sweet

period, starts at 0 ms and ends at 320 ms during the early reaching phase, in which the
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vision data could better classify the grasp patterns. Moreover, the visual classification

results from the sweet period could be naturally integrated with sEMG data collected

during the grasp phase. After the integration, the accuracy of grasp classification

increased from 85.5% (only sEMG) to 90.06% (integrated). Knowledge gained from

this study encourages us to further explore the methods for incorporating computer

vision into myoelectric data to enhance the movement control of prosthetic hands.
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Chapter 1

Introduction

Hands are one of the essential tools for humans to achieve a wide variety of manip-

ulations. The loss of hands can devastate a person, depriving them of their ability

to study, work or even live a daily life [64]. After amputation, people may have to

change their careers or stay unemployed, leading to more severe problems such as

social isolation [43, 12].

Amputees often choose to wear non-invasive prosthetic hands to restore their fun-

damental abilities and increase their independence in their daily life. There are three

types of non-invasive prosthetic hands: cosmetic hand, body-powered hand, and my-

oelectric controlled hand [53, 15], as shown in Figure 1.1. The first type is the passive

prosthetic hand, which is only for decoration; the rest are active prosthetic hands

that can move and implement specific hand gestures [13]. The body-powered device

comprises a mechanical structure that allows the wearer to open and close the hand by

tightening or releasing the wire. The myoelectric prosthesis can achieve a more real-

istic simulation of the grasping process than body-powered hands, providing a better
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user experience [53, 15]. Nowadays, an advanced myoelectric prosthesis is actuated by

a classifier, which converts muscular signals into corresponding grasp gestures. The

surface electromyography (sEMG) sensors on the upper limb collect the muscular sig-

nals.

Figure 1.1: Examples of three types of non-invasive prosthesis hands. The cosmetic

hand is passive type. Body-powered and myoelectric hand are active type [32].

In recent research, pattern recognition was widely used to recognize hand gestures by

analyzing and classifying the muscle sEMG signals, which makes myoelectric pros-

thetic hands promising for precise hand movement control. However, research by

Carey et al. showed that body-powered prosthetic hands are more practical [13] and
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have less production cost and learning cost in real-life conditions [69, 39]. Most re-

search on myoelectric prosthesis did not provide enough technical support for effective

application improvement in the clinical and real-life environment [25, 71, 68, 74]. The

major issue with myoelectric prosthetic hands is that sEMG signals are hard to be

decoded to an appropriate level, and the control process is time-consuming [4, 14].

One of the control problems is the delay between the onset of the movement of an

amputee and the start of prosthetic hand manipulation. The root cause for the delay

is the use of sEMG signals collected during the firm grasp period for classification;

sEMG signals in this period are relatively stable and can yield a better classification

outcome. However, the firm grasp occurs late in the grasping process [83]. In this

work, we consider using the sEMG signal captured in the early grasping period to

reduce the delay.

Another control problem is how to address the variability in the sEMG signals. The

variation of sEMG signals not only comes from the muscle condition of amputees [24],

such as muscle fatigue, but is also affected by other factors, such as displacement of the

electrodes and sweat [85, 14, 78]. To solve this problem and further improve pattern

recognition performance, researchers have proposed several strategies [14, 25, 54, 37].

These strategies integrated sEMG signals with another feature, such as visual infor-

mation, which is not affected by amputation. A better classification result can be

obtained after the incorporation of other features.
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1.1 Improve Prosthetic Hand Control by Phase-

based sEMG Analysis

Interpretation of muscle signals is essential for controlling electric-powered prosthetic

hands, which requires machine learning algorithms to classify muscular electric signals

into corresponding hand movement patterns. When signals during the whole grasp

period (including Reaching, Early Grasping and Firm Grasping) were used, the accu-

racy was not high enough to control the prosthetic hands. In Cognolato et al.’s report

[19], the classification accuracy for ten grasp gestures was approximately 63% to 82%

using the sEMG signals during the whole grasp period.

Therefore, in most of the published papers, myoelectric signals recorded during firmly

grasped periods for grasp classification were used, which yielded satisfactory classifi-

cation outcomes [45, 44, 3, 18, 17, 19]. For instance, the research done by Jiang et

al. [45] using 3 s firm grasp sEMG signals achieved approximately 85% accuracy for

classifying 16 grasp gestures. For more examples, please see Table 1.1. However, the

firmly grasped periods occur at the end of reaching and grasping, giving no time to

control arm movement in a real-life environment [81].
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Table 1.1: Examples of previous studies for myoelectric signal classification.

Researcher and Year Signal Type Gesture Amount Accuracy

Chen et al., 2007 sEMG 5 wrist gestures 93.5%

Chen et al., 2007 sEMG 6 wrist motions 88%

Jiang et al., 2017 sEMG 48 hand gestures 84.6%

Jiang et al., 2018 FMG 16 hand gestures 82%

Cognolato et al., 2020 sEMG 10 hand gestures 82.46%

Asfour et al., 2021 FMG 16 hand gestures 86.4%

To solve this problem, developing a method to classify grasp patterns using sEMG

data recorded in the earlier grasp period with high accuracy is necessary. This study

investigates how the grasp classification accuracy changes over the entire reaching

and grasping process and identifies a period in the early grasp phase that can achieve

the best classification outcome. We call this period as sEMG sweet period. Once the

sweet period is identified, we can develop a better classification strategy used in the

real-time environment.

Specifically, we first apply and compare several processing methods for the feature

extraction of the sEMG signals. Then, we design an experiment to find the sEMG

sweet period suitable for early grasp classification with the best classification outcome.

Finally, we will conduct another experiment to compare several typical training and
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testing strategies to identify an effective strategy for better real-time grasp classifica-

tion.

1.2 Improve Prosthetic Hand Control by Adding

Vision Information

In humans, vision is critical in performing hand gestures before the activity and guid-

ing the activity itself. Humans use visual information to understand and predict

future actions [46]. Moreover, in the study of Hebert et al. [34], it has been found

that the visual interaction of amputees is more active than intact subjects. The strong

relationship between vision and action makes integrating vision and muscle signals a

promising prospect.

Some researchers have integrated visual information with a myoelectric prosthesis

to improve their performance [33, 55, 56, 30]. In these experiments, the subjects often

wore an eye-tracking device, which could also record the first-person video using the

integrated camera. The main idea behind these studies is to identify objects to be

grasped in the video and then select the corresponding grasp gestures. However, the

subjects were asked to stare at the object [10, 77, 34] or manually take a photo [30]

until it was recognized and then grasped it. In these cases, the visual information

is obtained by established rules that the subject must follow, such as staring at the

object for at least 3 seconds, which is not a natural way to perform the grasp action.

We explore how the grasp classification accuracy changes over the entire grasping
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process while identifying a period that can achieve the best grasp classification out-

come using visual data. We call this interval vision sweet period. The sweet period

should also be short and located in the early phases to speed up the control process.

Once the sweet period is identified, grasp classification by the camera can be automat-

ically conducted during this interval without purposed confirmation. As mentioned

previously, in Section 1.1, a similar sweet period (for sEMG) right before the hand

grasps the target object was identified for hand grasp classification using sEMG. It

will be interesting to explore the vision sweet period again during the reach-and-grasp

process and utilize both the vision and sEMG sweet periods for better prosthetic hand

control.

In order to achieve the above analysis, we design an experiment to analyze the vision

performance and find the vision sweet period with the best grasp type classification

outcome. We first extract object photos from the original dataset to build a new

dataset. Then we fed a sequence of object images during the reach-and-grasp process

to a deep learning model and output classified grasp types. The grasp classification

accuracy and the ratio of the number of images containing objects to the total im-

ages are analyzed along the whole reach-and-grasp process to identify the vision sweet

period. Finally, we integrated sEMG and vision classification outcomes to identify a

better classification strategy.

1.3 Hypotheses

We hypothesize that the muscle activities recorded in the early period of the hand

grasping process can provide sufficient information to achieve the same or higher accu-

racy of grasp classification with a reduced delay for prosthetic hand control. We also
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hypothesize that the vision sweet period is at the beginning of the reaching phase when

the target object has a higher probability of being visible to the participant. We also

hypothesize that the integration can provide higher accuracy of grasp classification.

1.4 Thesis Organization

In Chapter 1, we have introduced the two main research topics, including the research

questions, hypotheses, and the summary of our work.

In the second chapter, we will make a general introduction on related topics on which

the work is based. The first content will be the introduction of surface electromyog-

raphy and its application for a myoelectric prosthetic hand, followed by the current

research status of gesture recognition by computer vision technologies. Subsequently,

we will introduce the general mechanism of machine learning and its utilization in the

related fields.

In Chapter 3, we will introduce the methodology of this research, including the grasp

phases segmentation, eleven sEMG filters, sEMG signal feature engineering, sEMG

and vision classification model. In addition, we will introduce the object detection

model.

In Chapter 4, we will first introduce the data collection and pre-processing. Then

we will provide the details of the experiments, analysis and results, which will start

with the sEMG part and be followed by the vision part.
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In Chapter 5, we will discuss the findings and possible reasons behind the experi-

ment results and explain the contribution of this research. Finally, the conclusion and

future work will also be presented.



Chapter 2

Background

The research of this thesis is multi-disciplinary, including the topics of machine learn-

ing, kinesiology of forearm muscle and computer vision. This chapter aims to pro-

vide the concepts and mechanisms behind the related research. In the first section,

we introduced the EMG signals and the signal acquisition technologies. Then we

explained the mechanism for controlling the myoelectric prosthetic hands by EMG

signals. Moreover, we introduced object and gesture classification by computer vision

technologies and the research status of this field. In recent years, pattern recognition

for prosthesis control has been highly developed by many machine learning methods.

Therefore, in this section, we also provide the general concepts of machine learning

and its application to prosthesis control.
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2.1 Surface Electromyography for Myoelectric pros-

thesis

The human motion system is a complex system composed of control and implemen-

tation units, which work together to produce human motions [70, 5]. Hand grasp

begins with producing electrical signals in the brain. These signals travel to skeletal

muscles through the nervous system and cause the contraction of muscles, resulting

in hand and finger movement. The Motor unit action potentials (MUAPs) are the

fundamental components of muscle electrical signals, which can be obtained by sen-

sors invasively or non-invasively [62], as shown in Figure 2.1.

Figure 2.1: Illustrations of invasive and non-invasive EMG acquirement methods [62].

In (a) the sensor is attached on the surface of the skin. In (b) the sensor is placed

into the muscle by a needle.
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Invasive EMG sensors can acquire more localized and accurate EMG signals because

the sensor is placed in the deep muscles by the needle, significantly reducing the dis-

tance between the muscle and the sensor. For example, EMG can provide accurate

information in the research of investigating muscle pain [16, 75]. However, sEMG can-

not be used in that study because it cannot be accurate enough as an invasive EMG.

However, sEMG is used more widely due to its stability and convenience because

most researchers do not require such high precision that invasive EMG can provide.

Although precision limits its utilization in the specific field, sEMG is promising and

widely used in wearable devices. Several studies have proposed strategies for where

to place the sEMG sensors to detect the specific muscle activity [31, 21].

Figure 2.2: Example of a upper-limb amputee. The upper-limb amputee lost their

hand and the area close to the hand, most muscles on the forearm still remain [1].
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As shown in Figure 2.2, most upper-limb amputees still have muscles on their forearms.

When these residual muscles contract, we can obtain sEMG signals from muscles on

their forearms [29]. Most amputees retain muscle memory for different grasping ac-

tions, making it possible for us to detect their movement intentions from sEMG signals

and translate them into grasping gesture commands [65, 76].

Figure 2.3: Example of a myoelectric prosthetic hand with two sensors from the

company COAPT [2].

In the early studies, only two sensors were placed on the surface of the forearm muscle,

as shown in Figure 2.3. The number of signals obtained was minimal; therefore, the

muscle activity was divided into contraction and relaxation. Through the analysis of

signal amplitudes, threshold values of muscle contraction and relaxation were found

and used by Zecca et al. to control the switch of myoelectric prosthetic hands [87].

When the muscles contract, the signal amplitude increases and myoelectric prosthetic

hands close after exceeding the threshold value. When the muscles relax, the signal
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amplitude returns to a lower level below the threshold value, and the myoelectric pros-

thetic hands open. In a subsequent study, different grasping gestures were introduced

into the function of myoelectric prosthetic hands. In the systems designed by Belter

et al., Van et al. and Mastinu et al., the user is allowed to switch the grasping ges-

ture manually and perform hand open and close by using the threshold value method

mentioned above [7, 82, 58].

Figure 2.4: Example of multiple sEMG sensors placement in the laboratory environ-

ment [63].

The control method mentioned above is cumbersome, and the learning cost for users

is high [35]. In recent years, due to the development of machine learning, pattern
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recognition has been applied to a myoelectric prosthetic hand. Since all the applica-

tions mentioned above use only two sensors, the signal richness is far from the level

required for pattern recognition applications. Therefore, in recent studies, more sen-

sors have been placed on users’ forearms, as shown in Figure 2.4. In the subsequent

development, the array-based sensor placement method was used instead of specific

placement for each individual sensor [59, 36]. This sEMG sensor placement method

makes the classification of signals more widely applicable, not only to experimental

subjects but also to other amputees. At the same time, it also promotes the develop-

ment of research on the universality of prosthetic grasp classification.

By obtaining the multi-dimensional signals on the forearm and using pattern recog-

nition technology, users no longer need to manually or rely on particular methods

to select grasping gestures. Therefore, the myoelectric prosthetic hand is expected

to be more natural when performing grasping actions. However, so far, most of the

pattern recognition applications are still in the research stage and have not funda-

mentally improved the user experience of amputees. As mentioned in the Section 1.1,

the quality of pattern recognition application depends on how we record and decode

the information in sEMG signals and how we address noises caused by other factors,

such as body condition, muscle flexibility, muscle fatigue, and sweat [85, 14, 78].

2.2 Gesture Recognition by Computer Vision

There are some limitations in using only sEMG for gesture recognition. First, the

sEMG signal fluctuates greatly in the early period of the grasping process, which

means it is hard to decode in this period. Therefore, most researchers choose to im-

plement classification during the later period when the subject firmly holds the object
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because the signal is relatively steady in this period. Although using the later pe-

riod significantly increases the classification accuracy, it causes the second limitation

that the prosthetic grasping process has a long delay. The reason is that, in real-life

applications, the prosthesis controller has to wait until reaching the later period to

produce the correct grasp command. Moreover, the sEMG signal easily interferes with

other electronic devices, which produce signals in a similar frequency range. Due to

decoding difficulty, these problems are hard to be solved only by using sEMG signals

because the sEMG classification accuracy might reach its ceiling. Instead of focusing

solely on the sEMG, researchers have proposed several strategies that integrate sEMG

signals with other information channels, such as visual information, which is not af-

fected by amputation. Therefore, grasping gesture recognition by computer vision has

become a new research direction.

Grasping gesture recognition based on computer vision is a technology that gener-

ates the corresponding grasping gesture according to the visual information of the

target object. The technology can be applied to a myoelectric prosthetic hand to

guide the execution of the grasp movements. Typical visual gesture recognition and

grasping systems consist of the visual gesture recognition module and the manipula-

tor control module. The former obtains the visual information of the captured object

through the camera, analyzes and classifies it, determines the corresponding grasping

action, and transmits the information to the manipulator control module. The latter

monitors the sEMG signals in real time and triggers the grasping action by the signal

changes.
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Figure 2.5: Camera placement. The camera was placed in the palm of the prosthetic

hand [41].

Compared with the previous manual selection of grasping gestures, Hundhausen et

al. [41] tried to reduce user input instructions as much as possible by using computer

vision technology for gesture recognition. The study simplified the operation process

and switched the pure manual gesture selection into the semi-autonomous grasping

process, which can effectively accelerate the grasping process. In their experiment, a

camera was placed in the palm, as shown in Figure 2.5. When the hand approached

the object, the visual information obtained by the camera was processed, and the cor-

responding grasping gesture was determined for final prosthesis execution. Although

this method significantly reduced human manual intervention, it cannot entirely rely

on computer vision to determine the final grasping gesture.
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Figure 2.6: Camera placement. The camera was placed on the forearm at the same

location of sEMG sensors. This system work process is a) the video camera obtained

the object photo, b) the connector transferred the data into a smartphone phone

application, c) the sEMG sensor armband read sEMG signals, d) the system generated

the corresponding grasp gesture [80].

In contrast to the above study, Taverne et al. [80] developed a gesture recognition

system purely based on computer vision, which did not require any manual interven-

tion by users, significantly reduced the delay and improved the robustness. In their

experiment, a camera was placed on the forearm in the same position as the sEMG

sensors, as shown in Figure 2.6. The system can generate predictive results for each

video frame and automatically select the corresponding grasping gesture when the

hand touches the object. The gesture recognition rate on objects that appeared in

the dataset reached 95.90%. In addition to recognizing objects in the data set, the



19

system also included a gesture recognition function for entirely new objects, and the

accuracy reached 88.65%.

From the above two studies, we can find that the visual pattern recognition accuracy

achieves a better performance than sEMG with stable object photos as the input.

Nevertheless, in a natural grasp process, the input of object photos is not as stable

as in the laboratory environment. However, the sEMG signal is a stable source in

a laboratory and real-life environment. Therefore, a new research direction arises,

which is using sEMG as a basis and integrating vision as a support to improve the

overall prosthetic control performance.

2.3 Machine Learning

As a branch of artificial intelligence, machine learning provides a variety of methods

to deal with complex problems, such as classification and regression. Machine learn-

ing studies computational algorithms that can make predictions or decisions using

training data to find the solutions to problems [60]. The essence of machine learning

algorithms is mathematical modelling [60, 73, 61]. Based on the existing form of la-

bels in the data set, machine learning can be divided into three categories: supervised

learning, unsupervised learning and reinforcement learning. In supervised learning,

the machine is constantly training itself using data and corresponding labels to get a

mapping from input to output. In unsupervised learning, there are no labels in the

data set, and the model only relies on the data for pattern recognition. The main

idea in reinforcement learning is to interact with the environment and determine the

decision to maximize the benefit in the current environment. The diversity of machine

learning makes it a powerful tool for solving complex problems.
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Machine learning is applied to prosthesis control to predict the grasping gestures

of users. Myoelectric prosthesis controlled by various machine learning methods has

more intuitive control ability. Each machine learning method is a model that can

predict the grasping action from the captured sEMG signal. Therefore, these models

can be regarded as a mapping function that receives input signals from the sEMG

sensor and outputs the motion instructions to the manipulator.

The classification model occupies the most significant proportion of machine learning

models in the myoelectric prosthesis. This model can gradually form the prediction

ability of unlabelled data by learning existing data, so this model is also called a

data-driven model. The model’s input is a part of the existing data, also known as

training data, including observations and corresponding classes, also known as labels.

For the sEMG signal data, the observation is the signal recorded by sEMG sensors,

and the label is the actual grasp gesture corresponding to the signal. A classifier can

convert an input signal into an output instruction. However, before that, the user

must implement data collection to form training data and then train the model. The

prediction can only be made after the model has been trained. Through continuous

learning of the training data, the parameters in the model are constantly improved

until labels can be generated for the unknown sample data. For example, we need to

collect the corresponding ten muscle signal patterns for a myoelectric prosthetic hand

that can perform ten different grasping gestures. Each signal pattern corresponds

to each grasping gesture. Another portion of the existing data is used to measure

the model’s performance, known as testing data. The model’s performance can be

measured by feeding observations from testing data into the classifier and comparing

the output labels with actual labels. Once the classifier has completed training and
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testing, it can be used in the controller of the myoelectric prosthetic hand.

Machine learning approaches have shown an excellent potential for myoelectric pros-

thesis study. However, original data cannot be applied directly to machine learning

models because of the highly fluctuated signals and noise problem in the raw data. It

is a challenge for machine learning algorithms to classify noisy biological signals. Re-

searchers have put plenty of effort into sEMG signal processing and proposed feasible

methods to increase the signal to noise ratio of the original data. Signal denoising is

one of the data processing methods, including modular maximal reconstruction filter-

ing, spatial correlation filtering and threshold filtering. Using these technologies, the

wavelet components generated by noise at each scale can be removed, and an accu-

rate estimate of the original signal can be obtained [84]. Feature selection is another

efficient machine learning data processing method to extract discriminatory features,

which can significantly increase the classification accuracy and reduce the training

time and over-fitting [42].



Chapter 3

Methods

This chapter discusses the terminology and methodology used in the thesis studies.

We will start by introducing the challenges we met, followed by grasp phases that

an entire grasp process includes. Then we will introduce the sEMG signal processing

methods and the sEMG classification model. At last, we will discuss some methods

related to computer vision, such as object detection and visual classification models.

3.1 Research Challenges

The first challenge is to figure out the suitable overlapped window size and step. As

the increase of window size, the classification accuracy increased, but the delay also

increased. This is because when we increase the window size, more data was used to

derive better features, and betters features led to higher classification accuracy. It is

challenging to find the balance that can obtain an acceptable classification accuracy

and keep a low latency time at the same time. To solve this problem, we implement

an experiment to find the correlation between windows length, step and classification
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accuracy. A balance with 200 ms window length and 50 ms step was chosen in our

research. The second challenge is building the object detection dataset from the

recorded video. Considering the high volume of videos, it is impossible to manually

extract each object to build the dataset. In this condition, we trained a RetinaNet

object detection model and build a pipeline to detect and extract each object frame by

frame from the video. The details of how we solve these challenges will be discussed

in Chapter 3.

3.2 Grasp Phases

Normally, a typical reaching and grasping process can be divided into three phases

[57, 79]:

1. The Reaching Phase: starts from the hand lifting off and ends by touching the

object. During this phase, the hand is accelerated to a peak velocity and then

is decelerated and brought to touch the target object. The hand is usually

configured to the target grasp gesture (pre-shape) [6].

2. The Early Grasping Phase begins when the hand initially contacts the object

and gradually closes the fingers until the hand starts to grasp the object firmly.

3. The Firm Grasping Phase: the target object is firmly grasped, and the hand

shape is maintained relatively steady.
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Figure 3.1: An example of grasp phases overlaid with sEMG signals during a full

grasp trial. The start and end positions of these three phases were determined by

observing corresponding videos frame by frame.

We segmented the Reaching, Early grasping, and Firm Grasping phases of each grasp

gesture from each subject by observing the corresponding video frame by frame and

calculated the average duration of each phase from all the observations. The judgment

criteria for entering an Early Grasping Phase was the moment that the hand started

to touch the target object, and the judgement criteria for entering a Firm Grasping

Phase was the moment that the target grasp gesture was completely formed and the

hand started to keep relatively steady. According to the segmentation, Early Grasping

Phase and Firm Grasping Phase started at 1020 ms and 1604 ms from the beginning

of the Reaching phase, respectively. The start and end positions of these three phases
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were determined by inter-rater reliability testing between two people. An example

of grasp phases overlaid with sEMG signals during an entire grasp trail is shown in

Figure 3.1.

3.3 sEMG Signal Processing and Classification Model

3.3.1 sEMG Filters

In this section, we listed the details of the eleven different sEMG filters from literature

[66, 47] because these filters are proved to have potential to be suitable for sEMG

signals.

• Standard Deviation (STD) calculates the amount of variation or dispersion

of sEMG signals. The mathematical equation can be defined as

STD =

√√√√ N∑
i=1

(xi − x̄)2 (3.1)

where N represents the length of the sEMG signal, xi is the current sEMG sig-

nal reading in a segment i, x̄ is the signals’ mean value.

• Root Mean Square (RMS) is similar to standard deviation and widely used

for sEMG signal analysis [8, 49]. It calculates the summation of the square of the

signals inside the sliding window. The mathematical equation can be defined as

RMS =

√√√√ 1

N

N∑
i=1

x2i (3.2)
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where N represents the length of the sEMG signal, xi is the current sEMG sig-

nal reading in a segment i.

• Integrated EMG (IEMG) is usually used to detect early symptoms of dis-

eases in clinical environment [38]. It calculates summation of the absolute values

in the window. The mathematical equation can be defined as

IEMG =
N∑
i=1

|xi| (3.3)

where N represents the length of the sEMG signal, xi is the current sEMG sig-

nal reading in a segment i.

• Mean Absolute Value (MAV) is another popular method used for the sEMG

signal analysis. [40, 86]. Besides IEMG, it is also used for detecting early

symptoms of diseases in clinical environment. It computes the mean of the

absolute values inside the sliding window. The mathematical equation can be

defined as

MAV =
1

N

N∑
i=1

|xi| (3.4)

where N represents the length of the sEMG signal, xi is the current sEMG sig-

nal reading in a segment i.

• Waveform Length (WL) is normally used for measuring the complexity of

the sEMG signal [40]. It calculates the cumulative length of the signals in the
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window as its representation. The mathematical equation can be defined as

WL =
N−1∑
i=1

|xi+1 − xi| (3.5)

where N represents the length of the sEMG signal, xi is the current sEMG signal

reading in a segment i and xi+1 is the next sEMG signal reading in a segment

i+1.

• Log Detector (LOG) is a non-linear method for providing the measurement

of the muscle contraction force. The mathematical equation can be defined as

LOG = exp

(
1

N

N∑
i=1

log(|xi|)
)

(3.6)

where N represents the length of the sEMG signal, xi is the current sEMG sig-

nal reading in a segment i.

• Simple Square Integral (SSI) is a measurement of the energy of the sEMG

signals. It calculates the summation of the square values of the sEMG sginals.

The mathematical equation can be defined as

SSI =
N∑
i=1

x2i (3.7)

where N represents the length of the sEMG signal, xi is the current sEMG sig-

nal reading in a segment i.

• Skewness (SKW) is one of the High Order Statistics (HOS) parameters and
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has been widely used for detecting the shape features in sEMG analysis [9]. It

computes the lack of symmetry. The mathematical equation can be defined as

SKW =

∑N
i=1(xi − x̄)3/N

δ3
(3.8)

where N represents the length of the sEMG signal, xi is the current sEMG signal

reading in a segment i, x̄ and and δ are the signals’ mean value and standard

deviation, respectively.

• Kurtosis (KURT) is another HOS parameters for detecting the shape features

in sEMG analysis [88]. It calculates the degree to which the data is heavy-tailed

or light-tailed relative to a Gaussian. The mathematical equation can be defined

as

KURT =

∑N
i=1(xi − x̄)4/N

δ4
(3.9)

where N represents the length of the sEMG signal, xi is the current sEMG signal

reading in a segment i, x̄ and and δ are the signals’ mean value and standard

deviation, respectively.

• Average Amplitude Change (AAC) is a similar measurement method to

Waveform Length, the only difference is that AAC is averaged. [27]. The

mathematical equation can be defined as

AAC =
1

N

N−1∑
i=1

|xi+1 − xi| (3.10)

where N represents the length of the sEMG signal, xi is the current sEMG signal

reading in a segment i and xi+1 is the next sEMG signal reading in a segment
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i+1.

• Difference Absolute Standard Deviation Value (DASDV) is similar to

Root Mean Square, it is a measurement of the standard deviation value of the

wavelength.

DASDV =

√√√√ 1

N − 1

N−1∑
i=1

(xi+1 − xi)2 (3.11)

where N represents the length of the sEMG signal, xi is the current sEMG signal

reading in a segment i.

3.3.2 Electromyography Feature Extraction and Selection

In the feature extraction process, we first determined the suitable window size for

deriving features [23]. As shown in Table 3.1, several sizes of the overlapped window

were tested, which are 50 ms, 100 ms, 200 ms, 500 ms, and 1000 ms. As the increase

of the window size, the accuracy keeps increasing, which means that the more data we

used to derive features, the better performance we could get. However, considering

the capability of Myoelectric prosthesis in real-life conditions, a large window would

delay the grasp action from the prosthetic hand. On the other hand, it can be seen

that, when increasing the window size over 200 ms, the accuracy increase is less than

1%, which is a tiny increase. Therefore, to keep the balance between accuracy and

implementation speed, we chose 200 ms as the window length with the step of 50 ms,

which is a 75% overlap between successive windows.
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Table 3.1: Window Length Analysis. Both training and test data used the whole grasp

period. The classifier used was lightGBM. The features used were STD, RMS, IEMG,

MAV, WL, SSI, AAC, and DASDV mentioned in Figure 3.2. The cross-validation

method used was leave-one-repetition-out cross-validation which used one repetition

data for testing and the rest three repetitions for training the model, and repeated

this process four times to cover all repetitions for testing.

Window Length Accuracy

50 ms 77.02%

100 ms 78.79%

200 ms 79.98%

500 ms 80.04%

1000 ms 80.33%

To assure the recognition accuracy by using proper features, we tested eleven com-

monly used features, which are Standard Deviation (STD), Root Mean Square (RMS),

Integrated EMG (IEMG), Mean Absolute Value (MAV), Waveform Length (WL), Log

Detector (LOG), Simple Square Integral (SSI), Skewness (SKW), Kurtosis (KURT),

Average Amplitude Change (AAC) and Difference Absolute Standard Deviation Value

(DASDV) [67]. We dropped the three lowest performance features, which are LOG,

SKW and KURT and chose the rest eight with the highest accuracy as the final fea-

tures for the following research. The performance of these features is shown in Figure

3.2. After applying the eight features to the sEMG signals, the data set was converted
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from 12 to 96 columns. Due to the sensor hardware issue mentioned in the first sub-

section, the sEMG data of subject S024 was changed from 11 to 88 columns.

Figure 3.2: Single feature performance with window size 200 ms. The eleven fea-

tures are Standard Deviation (STD), Root Mean Square (RMS), Integrated EMG

(IEMG), Mean Absolute Value (MAV), Waveform Length (WL), Log Detector (LOG),

Simple Square Integral (SSI), Skewness (SKW), Kurtosis (KURT), Average Ampli-

tude Change (AAC) and Difference Absolute Standard Deviation Value (DASDV).

The classifier used was lightGBM. The cross-validation method used was leave-one-

repetition-out cross-validation which used one repetition data for testing and the rest

three repetitions for training the model, and repeated this process four times to cover

all repetitions for testing.
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3.3.3 sEMG Classification Model

Gradient boosting decision tree, such as XGBoost [28] and Light Gradient Boosting

Machine (LightGBM) [48], is a popular machine learning algorithm used by a large

amount of data scientists recently, which can achieve high performance by using deci-

sion trees as weak learners and assembling them to come up with one strong learner.

Considering the high feature dimensions and large data size, we chose LightGBM as

the classifier which runs faster while maintaining a high level of accuracy by utilizing

two novel techniques called Gradient-Based One-Side Sampling (GOSS) and Exclu-

sive Feature Bunding (EFB) [48]. In the experiment of Ke et al. (2017), LightGBM

can accelerate the training process up to twenty times more than XGBoost. The

tool we used to implement the LightGBM classifier is an open-source python package

LightGBM developed by Microsoft Corporation.

We tuned the hyperparameters by using the training set of all the subjects and ob-

tained the best results as follows: the learning rate is 0.1; no limit was set for the

maximum depth; the number of estimators is 100; the number of leaves is 31; the re-

maining parameters were set to the default values. In the parameter turning process,

the training set was split into sub-training and validation set with the default ratio

of 80% for training and 20% for validation.
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3.4 Object Detection and Classification Model

3.4.1 RetinaNet Detection Model

We used RetinaNet to detect objects from the frames of the video. RetinaNet is a

one-stage convolutional neural network model widely used for object detection, which

utilizes a focal loss function to address class imbalance during training [51]. Consid-

ering the high volume of the dataset and the heavy labelling work, in this study, we

chose the RetinaNet model pre-trained by the MS COCO (Microsoft Common Ob-

jects in Context) dataset to reduce the required size of the training dataset. COCO

dataset included photos of 91 object types that would be easily recognizable by a

four-year-old, and it contained a total of 2.5 million labelled instances in 328k images

[52].

Since the COCO dataset did not fully cover the object types in the dataset we used,

fine-tuning is required to make it fit our object types. We build a dataset by collecting

and labelling 1186 photos from the videos of the 30 subjects. There are 3-6 objects

in each photo, and each object showed approximately 200 times in these 1186 photos.

80% of this dataset was used for training, and 20% was used for validation. Then

we created a new output layer to replace the previous output layer in the pre-trained

model and trained it using the training and testing data mentioned above (this train-

ing and testing data has no overlap with the data for classification training and testing

in the following work). Therefore, the final model we obtained can be used to detect

the object in each frame.

There could be multiple objects that appeared in a frame of the first-person video.
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However, we only needed to detect the target object that the participant was trying to

grasp using the fine-tuned RetinaNet model (as described in the Section 2.1), where

the target object was cropped using a bounding box. If the target object was shown

in the frame, we regarded this frame as a valid one. We regarded it invalid if the

target object was not shown in the frame or entirely blocked by the hands. Setting up

the valid frame where the target object is shown within the frame was necessary for

further analysis. The object and gesture recognition model we applied only worked

under the condition where one object is presented in the frame. Objects could be

detected by the RetinaNet model from approximately 90% frames. We reviewed and

manually detected the object on the rest of the frames.

3.4.2 Dual-Channel CNN Classification Model

Zhang et al. proposed a dual-channel convolutional neural network (DcnnGrasp),

in which object category information was adopted to improve the accuracy of the

grasp pattern recognition [89]. To maximize the collaborative learning of object cate-

gory classification and grasp pattern recognition, they proposed a loss function called

Joint Cross-Entropy with Adaptive Regularizer (JCEAR) derived from maximizing

a posterior. A developed training strategy updated the regularization coefficient and

trainable parameters in the loss function JCEAR and DcnnGrasp. From the exper-

iments given in their paper, it can be seen that, compared with SOTA methods,

DcnnGrasp achieved the best accuracy in most cases [89].

In this study, we trained the DcnnGrasp model using the object photos from the

first three repetitions and tested using the left one repetition. When applying this

model to testing data, the input photos in the same grasp trial were fed to the model
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chronologically so that we could obtain the outcome in a time sequence.



Chapter 4

Experiments and Results

4.1 Data Collection and Pre-processing

4.1.1 Data Collection

The data used in this study were from an open-source dataset collected by Cognolato

et al. [19], where the sEMG and vision data were recorded from 30 healthy subjects

(27 male and 3 female), with an average age of 46.63 ± 15.11 years.

Twelve sEMG sensors were placed on the forearm of each subject, producing twelve

columns of sEMG data, respectively. The head-mounted camera recorded the first-

person videos simultaneously with the sEMG data. Due to a hardware problem, no

myoelectric data were received from electrode number eight during the acquisition of

subject S024. Therefore, the sEMG data for this subject was recorded from eleven

electrodes instead of twelve [19].
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Ten grasp gestures were performed in this data collection which was selected based

on the hand taxonomies [22, 72, 20, 26] and grasp frequency in Activities of Daily

Living [11]. As shown in Figure 4.1, the participant performed each gesture for four

repetitions, and in each repetition, the same gesture was performed three times us-

ing three different objects, respectively. A designated experimenter vocally guided

the participant to perform which gestures and grasp which objects. The data were

labelled according to the vocal instruction. Table 4.1 shows the list of gestures and

objects.

Figure 4.1: The data structure and processing steps.
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Table 4.1: The columns indicate the ID and name of the grasp gestures, the name of

the object, and the name of the part of the object involved in the grasping [19].

ID Grasp Gesture Object Grasp Location

bottle bottle body

1 medium wrap can can body

door handle door handle stick

mug mug handle

2 lateral key key body

pencil case case zip

plate plate edge

3 parallel extension book book body

drawer drawer edge

bottle bottle cap

4 tripod grasp mug mug body

drawer drawer knob

ball ball body

5 power sphere bulb bulb body

key key chain

jar jar lid

6 precision disk bulb bulb body

ball ball body

clothespin clothespin body

7 prismatic pinch key key ring

can can pull tab

remote remote button

8 index finger extension knife knife body

fork fork body

screwdriver screwdriver body

9 adducted thumb remote remote body

wrench wrench body

knife knife handle

10 prismatic four finger fork fork handle

wrench wrench handle
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4.1.2 Data Pre-processing and Splitting

As part of data pre-processing, the abnormal samples were replaced with the prece-

dent valid samples when filtering outliers [19]. As there might be a delay between the

participant’s response to the vocal instructions [19], the sEMG activation time might

not be matched perfectly with the stimulus time. Therefore, relabeling was performed

to calibrate this difference using the method described by Kuzborskij et al. [50].

In this study, each participant performed one grasp gesture four times (repetitions)

which allowed us to split the sEMG data by repetitions to validate testing results.

For all the cases in this study, we used three repetitions (75%) for training and one

repetition (25%) for testing with leave-one-repetition-out cross-validation, which used

one repetition data for testing and the rest three repetitions for training the model.

We repeated this process four times to cover all repetitions for testing. The data

organization and processing steps can be easily understood from Figure 4.1.

4.2 Grasp Phase Analysis for sEMG and Experi-

ments

We conducted two experiments. The first aimed to analyze the grasp classification

accuracy during the three grasping phases and find the best position and length of

the sweet period; another was to find the best training strategy.
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4.2.1 Data Processing

The grasp trials performed by the participants lasted approximately 4.5–5 s [19]. We

removed the data after 4.5 s to align all the trials to the same length. Because the

overlapped window step is 50 ms and the grasp period length is 4.5 s, 90 samples of

data reminded for each trial.

As mentioned in the Section 4.1.1, three objects were grasped in each repetition with

the same gesture to increase the reliability of the sEMG data set. In other words, there

were 324,000 data samples (90 samples/grasp × 10 grasp gestures × 4 repetitions ×

3 objects × 30 subjects) in the data set.

4.2.2 Phases and Sweet Period Analysis

Figure 4.2 shows the mean changes in testing accuracy of grasp classification during

all three phases. Each data point is averaged across all 900 trials from 30 participants.

From Figure 4.2 we can see that the accuracy increases from 42% to 84% during

the Reaching phase and then becomes stable at the start of the Early Grasping phase

at around the time of 1000 ms, fluctuating between 84% and 87% during the rest of

the grasp period. The mean accuracy further increases to relatively stable at around

1250 ms, where we then define the location of the sweet period.

To find the optimal length of the sweet period, we designed different sliding win-

dows with sizes of 300 ms, 400 ms, 500 ms, 600 ms, 700 ms, 800 ms, 900 ms and 1000

ms. The sliding window moved along with the time with step 50 ms; in each move, it

calculated and recorded the mean accuracy. We analyzed the records from the sliding
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window, and the results are given in Figure 4.3.

Figure 4.2: Mean accuracy at each time point during the entire grasp period. This

result is from the model which was trained using all three phases data using leave-

one-repetition-out cross-validation, and the mean accuracy represents the average

accuracy of 30 subjects. The blue region, starts from 1100 ms and ends from 1400

ms, is the sweet period which was confirmed from the first experiment. The vertical

dashed lines are averaged starting times of Early Grasping and Firm Grasping phases,

which locates at 1020 ms and 1604 ms, respectively. The red dots are outliers.

From Figure 4.3, we can see that the mean accuracy increases with the increase of

window length significantly during the Reaching phase and beginning of the Early

Grasping phase (at about 1100 ms) but not significantly afterward. For instance,

although the window length of 1000 ms can reach the highest accuracy of 86.3%, it
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takes much longer than the length of 300 ms with an accuracy of 85.5%. Therefore,

the sweet period length is set to 300 ms, and the position is set from 1100 ms to 1400

ms, which makes it entirely located in the Early Grasping phase as the blue region

shown in Figure 4.2.

Figure 4.3: Mean accuracy with different sweet period lengths at different start time.

4.2.3 Comparison Experiment

In the comparison experiment, we tested six strategies using different training and

testing data, as shown in Table 4.2.



43

Table 4.2: Analysis Results for Six Cases. All Three Phases include signal from the

time of 0 ms to 4500 ms, Firm Grasping Phase is from the time of 2000 ms to 4500 ms,

sweet period is from the time of 1100 ms to 1400 ms. Leave-one-repetition-out cross-

validation was employed for all cases, such that all testing data was excluded from

training the model.

Case Number Training Data Testing Data Accuracy

1 All Three Phases All Three Phases 79.98%

2 All Three Phases Firm Grasping Phase 81.68%

3 All Three Phases Sweet Period 85.50%

4 Firm Grasping Phase Firm Grasping Phase 80.39%

5 Firm Grasping Phase Sweet Period 60.80%

6 Reaching Phase Sweet Period 81.01%

and Early Grasping Phase

7 Early and Firm Grasping Phase Sweet Period 82.51%

8 Sweet Period Sweet Period 74.99%

In cases 1–3, we used all three grasp phases as training data and reduced the test-

ing data size from all three phases to only the firm grasping phase, then to the

sweet period. The purpose of performing these three comparisons was to study which

phase/period was better for testing data when using all grasp phases as training data.

Besides, we studied another five cases to figure out which phase played a better role in

model training. For cases 4–5, we used Firm Grasping Phase for training and reduced
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the testing data size. In cases 6–7, we used combined phases for training and the sweet

period for testing. In case 8, we used the data in the sweet period both for training

and testing. It is worth mentioning again that the cross-validation method used for

all the cases was leave-one-repetition-out cross-validation which used one repetition

of data for testing and the rest three repetitions for training the model, and repeated

this process four times to cover all repetitions for testing, such that all testing data

was excluded from training the model. For example, in one testing repetition of case

8, the data from the sweet period of three repetitions were used for training the model

and the rest for testing. The results are presented in Table 4.2.

As shown in Table 4.2, we get the highest accuracy of 85.50% when we train with all

grasp phases and test with the only sweet period. Besides, from cases 1 to 3, we find

that if we keep the training data unchanged, the accuracy increases as the decrease

of testing data size.

4.3 Grasp Phase Analysis for Visual Information

and Integration with sEMG

The main workflow of this part is shown in Figure 4.4. Besides the RetinaNet model,

DcnnGrasp model and frame extraction discussed in the last section, another four

steps will be introduced.

4.3.1 Visual Dataset Building

Each subject performed 10 grasp gestures in the original video, and each grasp was

acting on 3 different objects. On each object, the same grasp gesture was required
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Figure 4.4: Work flow of analysis for visual information. Object Detection Model
Training, Frame Extraction, DcnnGrasp Model are discussed in Methods section.
The rest four parts are discussed in Experiments and Results section.

to perform 4 times. There were 30 subjects in the database. Therefore, there were

3600 grasp trials in total (120 trials x 30 subjects) in this dataset. Therefore, there

were 120 (10 × 4 × 3) grasp trials in total for each subject. Each grasp trial lasted

approximately 4.5–5 s [19]. To keep all the trials to the same length, we removed the

frames after 4.48 s. Please be noted that the video was recorded with a frame rate of

25 Hz (one frame per 0.04 s), and there were 112 frames in each trial of video.

4.3.2 Sweet Period Analysis

After extracting the frames from the first-person videos, we calculated the proportion

of valid frames and drew Figure 4.5 to illustrate the changes during the entire grasp

process. There are 900 trials in testing data (30 subjects x 10 grasp gestures x 1 test

repetition x 3 objects), which means that there are 900 frames at each time point.

The percentage in Figure 4.5 represents the proportion of valid frames among these

900 frames at each time point. The result is calculated with leave-one-repetition-out
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cross-validation.

We can see that the valid frame proportion increases at the beginning of the Reaching

phase (Figure 4.5), reaching the peak at 160 ms. The valid frame starts to decrease

until the late Early Grasping phase, keeping a stable low level during the entire Firm

Grasping phase. The high percentage of the valid frame at the early Reaching phase

allowed us to define the location of the sweet period.

In searching for the sweet period, we defined several windows with different lengths

and calculated the average percentage of valid frames in these windows. Since we

wanted the sweet period to locate at as early period as possible and the percentage is

high enough at the start of the Reaching phase (0 ms in Figure 4.5), we made all the

windows start from 0 ms and end at different times. After calculation, the window

with the second highest average accuracy was chosen as the sweet period shown in the

blue zone, which was from 0 ms to 320 ms (Figure 4.5). The window with the highest

average accuracy (from 0ms to 160 ms) was dropped because it only contained four

frames which were not enough to make it reliable.

In our previous research [83], we achieved the best grasp classification outcome using

the sEMG sweet period between 1100 ms and 1400 ms in the Early Grasping phase

(pink zone in Figure 3). The sEMG sweet period was 800 ms behind the vision sweet

period. The time gap between these two sweet periods makes it possible for us to

integrate the classification outcome using vision and sEMG in a real-life situation.

Although the definition of the sweet period for sEMG and vision was the same, the

methods to determine the sweet period were different. The sEMG sweet period was

identified by analyzing classification accuracy, while the vision sweet period was found
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by analyzing the percentage of valid frames.

Figure 4.5: Valid frame proportion at each time point during the entire grasping

process. The percentage represents the average proportion of valid frames in 900

trials from 30 subjects. The x-axis contains 112 points representing 112 frames in a

grasp trial (40 ms for each frame, 4480 ms in total). The vision sweet period starts

from 0 ms and ends at 320 ms. The sEMG sweet period starts at 1100 ms and ends at

1400 ms. The vertical dashed lines are averaged starting times of the Early Grasping

and Firm Grasping phases, which locates at 1020 ms and 1604 ms, respectively. The

result is calculated with leave-one-repetition-out cross-validation.

4.3.3 Comparison of Grasp Classification Performance

Figure 4.6 shows mean accuracy rates for grasp classification by three different meth-

ods (object recognition, gesture recognition, and sEMG) over the entire grasping

phases. The value at each time point is averaged across all 900 trials from 30 par-

ticipants. From Figure 4.6 we can see that object and gesture recognition accuracy
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keep relatively stable, fluctuating slightly between 97% and 91% and are both higher

than sEMG recognition accuracy in most circumstances. The object classification

yields higher accuracy than the gesture classification during the entire grasp process,

only reverses once at 3200 ms. The accuracy achieved by the gesture classification

only goes below the sEMG classification on three occasions during the Firm Grasping

phase. Overall, the gesture classification accuracy is much higher than sEMG recog-

nition.

Figure 4.6: Mean accuracy for sEMG, object and gesture classification at each time

point during the entire grasping process. The object and gesture recognition results

are from the trained Dual-channel CNN model with leave-one-repetition-out cross-

validation among valid frames. The mean accuracy represents the average accuracy

of 900 trials from 30 subjects. The result is also calculated with leave-one-repetition-

out cross-validation.
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Figure 4.7: Mean classification accuracy of object and gesture during sweet period

among 30 subjects. The sEMG result is from the best strategy we achieved in our last

research which also utilized the sweet period for sEMG signals. The values for sEMG,

object and gesture classification accuracy are 85.50%, 98.81%, 91.59%, respectively.

The result is calculated with leave-one-repetition-out cross-validation.

Our last comparison of grasp classification over three methods focused on the sweet

periods. Specifically, we calculated the mean accuracy of object and gesture recog-

nition using data collected in their sweet periods. Compared to sEMG classification

from the best strategy we have achieved in the previous report [83]. The results are

shown in Figure 4.7, in which the object and gesture classification accuracy was calcu-

lated from valid frames in the sweet period. The mean accuracy reaches 98.81% and

91.59% for the object and gesture classification, respectively. Both are much higher

than the sEMG classification accuracy of around 85.50%.
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4.3.4 Integration of Vision and sEMG Classification Out-

come

Satisfied grasp classification outcome from visual data encouraged us to integrate the

gesture data from the vision sweet period with the sEMG data from the sEMG sweet

period [83]. The simplest and most effective method to integrate these two outcomes

was comparing the plurality vote probabilities during their respective sweet period.

For the visual part, the probability was calculated from the plurality vote results of

gesture recognition only for the valid frames during the sweet periods. For the sEMG

part, the probability was also calculated from the plurality vote results during the

sweet period, but each time point in the sweet period was valid. Both probabilities

illustrated the confidence of the grasp recognition results classified from sweet peri-

ods. We calculated and compared the probabilities for each grasp trial in the testing

dataset and chose the outcome with the higher probability as the final classification

result. After calculating the mean accuracy of all the 900 grasp trials in the testing

dataset with leave-one-repetition-out cross-validation, we obtained the results in Ta-

ble 4.3. After the integration, the grasp classification accuracy was increased from

85.50% to 90.06% as shown in Table 4.3; however, the result was 1.5% lower than the

visual gesture classification.

The vision sweet period lasts for 320 ms, which means there are 8 frames in this

period. Due to the valid frame proportion being approximately 53%, around half of

the frames are invalid. For the circumstance that the number of valid frames is less

than 5 and at least one frame failed the recognition, the probability would be equal

to or less than 75%, in which the sEMG would dominate this result because the prob-

abilities of sEMG are stable and higher than 75% in most circumstances according to
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our previous research [83]. If no frame failed the recognition, the vision with 91.59%

probability would dominate the result.

Table 4.3: Gesture Classification Comparison. The result is calculated during sweet

period among 900 grasp trials from 30 subjects with leave-one-repetition-out cross-

validation.

Gesture Classification Basis Mean Accuracy

sEMG 85.50%

Visual information 91.59%

Integration of sEMG and visual information 90.06%



Chapter 5

Discussion and Conclusion

Our hypothesis is supported by the results that there is an sEMG sweet period located

in the Early Grasping Phase where sEMG signals can be used to achieve a similar

or higher accuracy and lower delay of grasp classification than other windows, which

would help to improve the performance of robotic hand manipulation in the real-life

applications. This is important as the classifier can get the data much earlier instead of

waiting for the muscle to get into the Firm Grasping Phase. We also identified a vision

sweet period ahead of grasping the object where visual information can be used to

classify gestures and integrated with sEMG. This is also important as the integration

can break the accuracy limit by only using sEMG signals. Furthermore, this vision

sweet period can be used to extract images automatically for grasp classification

without a pause that is required when images are acquired manually.. This would

make the prosthetic hand control more natural.
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5.1 sEMG Phase-based Analysis for Delay Reduc-

ing

From the the Section 4.2.2, we obtained the result that the sEMG sweet period may

be used to accelerate the speed of prosthetic hand control. In this part, we will discuss

the details behind this result.

We found that the mean accuracy of sEMG during the Reaching phase is only about

63%. This is because, in this period, the subjects moved their hands to reach the

object and started to perform the grasping gesture, keeping the hand moving. There-

fore, the sEMG signal patterns in this period are not related to grasps, making it

difficult to decode the sEMG signals, see Figure 3.1.

When getting into the Early Grasping phase, the accuracy of sEMG reaches ap-

proximately 85%, which is as high as that in the Firm Grasping phase. The possible

reason is that the hand has already fully formed into the target gesture during the

Early Grasping phase. Although this formed gesture may be slightly different from

the final target gesture, it can provide sufficient information for the classification. Af-

ter the subject firmly grasps the object (getting into the Firm Grasping phase), the

accuracy keeps stable at around 85% because the sEMG signals started to be stable,

which also makes the classification performance stable.

Notice that the sEMG signal is more active in the Reaching and Early Grasping

phases with high amplitude of the sEMG waveform as shown in Figure 3.1. This is

because the hand starts to perform the corresponding grasping gestures, such as hand
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aperture, where the sEMG signals from the forearm are usually active with higher am-

plitude than other phases [6]. However, the hand has not grasped the object during

the Reaching Phase. In contrast, starting from the mid-Early Grasping phase to the

Firm Grasping Phase, the muscle status keeps relatively unchanged, which makes the

amplitude sEMG signal slightly lower than that in the reaching and grasping phase;

this is also why better grasp classification performance was achieved during the Early

Grasping phase and the Firm Grasping Phase where the sEMG signal patterns are

relatively similar. Therefore, using the sEMG sweet period can obtain similar or even

higher accuracy than using the Firm Grasping phase. Since the sweet period is lo-

cated much earlier than the Firm Grasping phase, using the sweet period will reduce

the delay significantly. Overall, using a sweet period can simultaneously reduce the

delay and maintain a high classification performance.

5.2 Vision Phase-based Analysis

We found that the valid frame proportion peaks at the start of the Reaching phase,

as shown in Figure 4.5. This is because, before the grasp manipulation, the subject

would look at the object before executing the grasp action, making it possible to

identify hand movement using the visual signal during this period. After reaching

the peak, the proportion quickly decreases to approximately 10% at the end of the

Reaching phase. This is because, once the hand touches the object, some part of the

object starts to be fully covered by the hand, blocking the object from showing in the

subjects’ vision. Therefore, the RetinaNet model cannot detect the objects, and the

classifier cannot process the recognition. Since the hand starts to cover the object

in the camera’s view during the Reaching phase, the highest decline of valid frame

proportion occurs in this period. During the Firm Grasping phase, hand occlusion
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happened frequently; only a few objects with considerable volume can be recognized,

thus making the valid frame proportion keep a low level of less than 10%. Although

the proportion is the highest during the sweet period, it is only 53%. This is because

the value for each time point is calculated across the 900 grasp trials (from 30 sub-

jects), in which some objects are not shown in the subjects’ vision at the current time

point, or the objects are blocked by hand, makes this frame an invalid one at this

time point. For this proportion level, we can find that it is impossible to implement

recognition at a particular time point for different subjects and objects. However,

it is feasible to expand the time point to a period to implement the recognition. In

this research, we call this period the sweet period and find it between 0 ms and 320

ms. The probability of obtaining valid frames is higher in this period than in other

periods. This period can provide a stable input to the classifier when performing a

grasp action naturally.

From Figure 4.6 we can find that the visual recognition accuracy is much more sta-

ble than sEMG recognition accuracy in the Reaching phase. This is because sEMG

signals change very much with muscle contraction, but visual information changes

are rare, only some minor changes of visual angle. Therefore, as long as the visual

information input is enough, the classification outcome would be stable.

5.3 Accuracy Improvement

Using all three grasp phases for training the model and only using the sEMG sweet

period for controlling is found to achieve the highest classification accuracy, which

implies that it can be the best strategy for myoelectric prosthetic hand application

in real-life conditions. Not only because the sweet period during the Early Grasping
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phase is suitable for prosthesis control, as discussed before, but this strategy can also

increase the recognition accuracy compared to other strategies. The possible reason

for this strategy’s higher accuracy could be that more variation data were included

in the model training. From cases 3 and 6 in Table 4.2, we can see that if we remove

the Firm Grasping Phase from the training set, the accuracy decreases from 85.5%

to 81.01%. The Firm Grasping Phase is essential for training data because it may

contain information about the final target gesture. In cases 3 and 7, we find that if we

remove the Reaching phase from the training set, the accuracy decreases from 85.5%

to 82.51%. This means that the Reaching phase is also vital for training data because

it is the progress in which the gesture is formed.

For case 5, the accuracy is only 60.80% when only using the Firm Grasping Phase for

training because this period lost much information about gesture formation in Reach-

ing and Early Grasping Phases. For case 8, the accuracy reaches 74.99% only using

the sweet period for training because this training data also lost the part of informa-

tion about the gesture in the Reaching Phase and the Firm Grasping Phase. However,

using all phase data for training and the sweet period data for testing achieved the

best accuracy, which can be the common practice in real-life situations where training

a model is not time-sensitive.

Besides using better strategies for sEMG-based grasp classification, integrating vi-

sion is another method to improve recognition accuracy. As we mentioned in the

Section 4.3.3, there is an approximately 800 ms time difference between the sweet pe-

riods of sEMG and visual information. Therefore, in the real-life application, we can

obtain the vision recognition result before processing sEMG classification and inte-

grate these two classification outcomes without causing a delay in myoprosthetic hand
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control in the real-life application. After the integration, the accuracy increases from

85.50% to 90.06%, from which we can find that the visual information can effectively

increase the overall gesture classification accuracy, thus increasing the performance of

the sEMG prosthetic hand.

5.4 Conclusion

In order to reduce the delay of myoprosthetic hand control in a real-life situation

while maintaining a high recognition accuracy, we investigated the grasp classifica-

tion performance during three grasping phases to identify the sweet period. We found

that the sEMG sweet period is located between 1.1 s and 1.4 s from the start of the

hand grasping, which happens in the Early Grasping phase before the hand is firmly

grasped.

Furthermore, we found that using sEMG from all three grasping phases (Reaching,

Early Grasping, and Firm Grasping phases) for grasp classification model training

achieved the best accuracy. Together with the identified sweet period for testing, the

grasp classification accuracy and the response speed of the prosthetic hand can be

balanced to achieve high performance.

In order to increase the performance of myoprosthetic hand control in real-life sit-

uations by integrating visual information to sEMG, we investigated the object and

gesture recognition performance during the entire natural grasp process to identify

the sweet period for grasp classification. We found that the vision sweet period is

between 0 s and 3.2 s from the start of the hand grasping, which happens in the

Reaching phase. Furthermore, we found that visual information can yield a higher
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classification accuracy. When integrating gesture recognition and sEMG classification,

we improved myoprosthetic hand control performance.

5.5 Limitation and Future Work

This study has some limitations. First, only one target object was chosen by the

RetinaNet model to simplify the experiment. In future, we could use gaze tracking

technology to identify the target object in prosthetic hand control. Second, we only

used one head-mounted camera for capturing the visual information. With the fast

developing ubiquitous computing technology, multiple cameras will be available on

the prosthetic hand or the ambient environment. Thus we will conduct the actual

task, such as data collection, to further improve and validate the system, such as

employing multiple channels’ visual information to enhance prosthesis control and

explore the sweet period/periods. Last, considering this paper focuses on finding the

best duration for vision grasp classification and its integration strategies with sEMG,

we have not validated our results on the unseen objects in our study. The recognition

accuracy might be affected when dealing with unseen objects.
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