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ABSTRACT 

Energy losses in fluids engineering systems occur due to thermal and viscous 

irreversibilities. These irreversibilities can be tracked to identify regions of design 

modification for efficiency improvement in thermofluid systems. The rate of entropy 

production in numerical heat transfer is an important parameter that characterizes the 

degree of these irreversibilities. This can lead to improved designs with higher system 

efficiency levels for energy savings in various engineering applications. Previous 

conventional techniques have generally detected energy losses on a global scale or end-to-

end basis.  

This thesis focuses on two-dimensional numerical modeling of entropy generation and the 

Second Law of Thermodynamics in mixed convection heat transfer. A Control-Volume 

Based Finite Element Method (CVFEM) is used to discretize and solve the governing 

conservation equations. An entropy-based algorithm is developed by post-processing of the 

velocity and temperature fields to obtain numerical predictions of the rate of entropy 

production. The new model is used to analyze heat transfer and entropy production for both 

natural and mixed convection in enclosures filled with different fluids, including 

nanofluids. The optimal conditions for which viscous and thermal irreversibilities are 

minimized is analyzed. The results from Computational Fluid Dynamics (CFD) are 

validated using available benchmark data. A new approach for minimizing the rate of 

entropy production in different flow configurations with nanofluids is also obtained.  

In addition, the local entropy production rates are obtained from two forms of the 

discretized Second Law – namely, transport and positive-definite forms of the entropy 
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transport equation. The computed local entropy generation rates from both methods are 

compared and related to expected numerical errors from available benchmark solutions. An 

entropy-based error indicator is determined to assess the solution accuracy of fluid flow 

simulations with heat transfer using the Second Law of Thermodynamics. The formulation 

presents a new approach for the characterization of numerical error using a parameter called 

the “apparent entropy production difference.” Furthermore, a corrective mechanism on the 

numerical algorithm is developed. The transport entropy is used to calculate an artificial 

viscosity (named as an entropy-based artificial viscosity) to reduce the numerical error and 

ensure closer compliance with the Second Law. 
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1 INTRODUCTION 

1.1 Background 

The world’s energy demand continues to increase dramatically. Energy efficiency and 

availability are major issues of global concern. In order to ensure a sustainable energy 

supply with a lower environmental impact, better planning and management of limited 

energy resources is required. Hence, there is an increasing need for the design and 

development of engineering systems with higher energy efficiency and environmental 

sustainability. Entropy and the Second Law of Thermodynamics will have an increasingly 

important role in these endeavors. 

Thermofluid systems such as aircraft propulsion, heat exchangers, energy storage, and 

power generation have performance losses due to viscous, thermal, and other 

thermodynamic irreversibilities. The Second Law can serve as a useful design tool for the 

optimization of these fluid, thermal, and energy systems [1]. The rate of entropy production 

can be used in numerical heat transfer as an important parameter to quantify the degree of 

these irreversibilities. The local values of thermal and frictional components of entropy 

production can be tracked to identify regions for design modification [2]. This can lead to 

improved designs with higher levels of system efficiency for energy savings in various 

engineering applications. Previous conventional techniques have generally detected energy 

losses on a global scale or end-to-end basis. This research aims to use entropy and the 

Second Law instead as key design parameters. 
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1.2 Motivation for Research 

The design of thermofluid systems is governed by fundamental principles such as the 

conservation laws of fluid motion and energy. The First Law of Thermodynamics 

characterizes the quantity of energy in a system, while the Second Law of Thermodynamics 

measures the quality of energy or its potential to do useful work. The Second Law provides 

a special insight into energy use, its optimization, and the most effective technology 

selection. This research focuses on a novel application of the Second Law to the prediction 

of thermal and viscous irreversibilities locally instead of globally. This would track the 

regions of highest entropy generation rates to identify the regions of needed design 

improvements. An analogy would be “a sick patient telling a doctor that he/she is sick, 

without knowing the part of the body that is causing the ailment” [2].  

One of the goals of this thesis is to develop a diagnostic tool for tracking energy losses 

(irreversibilities) in thermofluid systems through the computation of entropy production. 

Designers of energy systems may use entropy-based loss tracking as a tool to identify the 

measure of irreversibilities in a system and redesign such systems to minimize entropy 

production and optimize the system efficiency. This thesis focuses on the computation of 

local entropy production as a diagnostic energy loss tracking tool. The scope does not 

include redesigning thermofluid systems. An example of how entropy production 

minimization can be used to optimize the flow configurations such as nanoparticle volume 

fraction and velocity in a mixed convection system will be discussed.  

This objective is generally applicable irrespective of the parameters of the system or flow 

configuration. Alternatively, this can be expressed in terms of the potential of a system to 
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produce useful work, which is known as “exergy”. For example, the cost of lost energy 

availability in a flow through a pipe can be estimated by multiplying exergy destruction in 

the flow by the cost of work input to the system (power for pumping the fluid). Through 

this approach, local entropy generation can be used in an economic framework, such as lost 

potential revenue from exergy destruction [2]. Overall, the entropy generation describes the 

degradation of mechanical energy to internal energy. It provides a valuable indicator for 

the assessment of energy efficiency for all energy-consuming or generating devices. 

Entropy generation has both physical and computational characteristics. In addition to the 

physical processes of heat transfer and viscous dissipation, CFD models may destroy or 

produce false entropy through approximation errors that lead to non-physical numerical 

results, artificial dissipation, and other discretization errors [3-4]. Numerical simulations 

which do not satisfy a prescribed entropy constraint may yield non-physical results [5]. For 

example, the specific form of a convective upwinding scheme can be modified 

appropriately to satisfy entropy constraints and improve the overall accuracy of the model 

[3]. An entropy constraint was constructed based on alternate positive-definite and entropy 

transport forms of the Second Law using the Gibbs equation [6]. 

In this research, a Second Law formulation is presented and analyzed based on different 

forms of the positive-definite and entropy transport equations. In order to assess the 

numerical error, a new parameter called the “apparent entropy production difference” is 

computed based on the difference between the transport and positive-definite forms of the 

entropy production rate. A relationship between this difference and numerical errors in each 

control volume is developed and discussed. The “apparent entropy production difference” 
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is a useful parameter for characterizing errors in numerical solutions [7]. This parameter 

uses the Second Law to identify inconsistencies in numerical approximations which lead 

to anomalous results of the predicted entropy production. Also, a parameter known as 

entropy-based artificial viscosity is developed by using the entropy transport equation to 

calculate an artificial viscosity for a corrective mechanism in the numerical algorithm. This 

results in a significant reduction of the numerical errors in the algorithm by using entropy 

production to re-calculate the numerical viscosity according to the Second Law. 

1.3 Entropy and Exergy Definitions 

1.3.1 Definition of Entropy 

From a second law perspective, the analysis of systems can be achieved in terms of the 

property entropy. A quantity that changes in value between two states which is independent 

of the process is known as a property [8]. The concept of property can be used together 

with the Clausius inequality to introduce a change in entropy. Consider two cycles 

implemented by a closed system as presented in Figure 1.1. One cycle is made up of an 

internally reversible process X from state 1 to state 2, succeeded by an internally reversible 

process Z from state 2 to state 1. Similarly, the other cycle comprises an internally 

reversible process Y from state 1 to state 2, succeeded by the same process Z from state 2 

to state 1.  
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For the first cycle, the Clausius inequality can be written in the form [8]. 

(∫
𝛿𝑄

𝑇

2

1
)
𝑋

+ (∫
𝛿𝑄

𝑇

1

2
)
𝑍

= −𝜎𝑐𝑦𝑐𝑙𝑒                                                                                            (1.1) 

The second cycle takes the form: 

(∫
𝛿𝑄

𝑇

2

1
)
𝑌

+ (∫
𝛿𝑄

𝑇

1

2
)
𝑍

= −𝜎𝑐𝑦𝑐𝑙𝑒                                                                        (1.2) 

By setting the term 𝜎𝑐𝑦𝑐𝑙𝑒  to zero, since the cycle consists of internally reversible processes, 

and subtracting Equation (1.2) from Equation (1.1), 

(∫
𝛿𝑄

𝑇

2

1
)
𝑋

= (∫
𝛿𝑄

𝑇

2

1
)
𝑌

                                                                                           (1.3) 

This shows that for both processes the integral of δQ/T is the same. Since X and Y are 

arbitrary, it implies that the integral of δQ/T produces the same result for any internally 

reversible process between the two states. Hence, the value of the integral solely depends 

1 

2 

X Y Z 

Figure 1-1: Two internally reversible cycles 
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on the end states. Therefore the integral denotes the change in certain property of the 

system. By using the symbol S to represent this property, which is known as entropy, the 

change in entropy is defined as: 

𝑆2 − 𝑆1 = (∫
𝛿𝑄

𝑇

2

1
)

𝑖𝑛𝑡
𝑟𝑒𝑣

                                                                                           (1.4) 

where the subscript “int rev” indicate that the integration is executed for any internally 

reversible process between the two states. On a differential basis, the entropy change 

defining expression takes the form: 

𝑑𝑆 = (
𝛿𝑄

𝑇
)

𝑖𝑛𝑡
𝑟𝑒𝑣

                                                                                                        (1.5) 

  

1.3.2 Definition of Exergy 

Consider a given rigid body at a certain temperature 𝑇 submerged in a thermal reservoir at 

some temperature 𝑇𝑜  (for example, a hot piece of metal inside a cold room). Assuming 

𝑇 > 𝑇𝑜 , the cooling process happens spontaneously until the solid body attains 

thermodynamic equilibrium with its environment. However, work can be developed by 

controlling the cooling. Instead of spontaneous cooling of the body, heat transfer can be 

passed to a power cycle to perform work, 𝑊𝑑 . Such work can be used for executing shaft 

work, lifting a weight, or generating electricity. 

Since the power cycle does not undergo any net change in state, the potential for producing 

work  𝑊𝑐 arises only because the initial state of the body is different from that of the 

environment since 𝑇 > 𝑇𝑜. Eventually, the body achieves thermal equilibrium with the 

environment. At equilibrium, the environment and the body each possess energy, but there 

is no more potential for work done from the two because further interaction can no longer 
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occur between them. Exergy represents the maximum theoretical value for the work,  𝑊𝑑 . 

Maximum work is only achievable when there are no irreversibilities while the body cools 

to attain equilibrium with the environment. 

In the case of spontaneous cooling to 𝑇𝑜 , no work is obtained, hence, the initial potential to 

do work, exergy, is destroyed. The work 𝑊𝑑  can also be developed when 𝑇 < 𝑇𝑜. In this 

case, heat is transferred in the reverse direction, from the environment to the body and work 

is done as the body warms to reach equilibrium with the environment. As the previous case, 

the potential to do work arises solely because of the difference between the initial state of 

the body and that of the environment  (𝑇 < 𝑇𝑜). 

Consider the Earth’s atmosphere; a simple compressible system with an idealized 

temperature, 𝑇𝑜 , and pressure, 𝑝𝑜 , as the exergy reference environment. Exergy can be 

defined as the maximum theoretical work obtained from an overall system comprising of a 

body and its environment as the body comes into equilibrium with the environment. 

The equilibrium state gives rise to the dead state; a state where the body is at  𝑝𝑜   and 𝑇𝑜 ,  

and at rest with respect to the environment. At this state, there can not be any interaction 

between the body and its environment, hence, there is no potential to do work. 

Using entropy and energy balances, the following equation is obtainable for the exergy of 

a system at a specified state [8], 

𝐸 = (𝑈 − 𝑈𝑜) + 𝑝𝑜(𝑉 − 𝑉𝑜 ) − 𝑇𝑜(𝑆 − 𝑆𝑜) + 𝐾𝐸 + 𝑃𝐸                                (1.6) 
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where 𝐸, 𝑈, 𝑉, 𝑆,𝐾𝐸, 𝑎𝑛𝑑 𝑃𝐸  refers to exergy, internal energy, volume, entropy, kinetic 

energy, and potential energy of the system, respectively.  𝑈𝑜 , 𝑉𝑜, 𝑎𝑛𝑑 𝑆𝑜 represent, 

respectively, internal energy, volume, entropy of the system at the dead state.  

1.4  Problem Definition 

Based on a literature review, there are several shortcomings in the current state of 

knowledge in numerical heat transfer, which will be examined in this research. There is a 

need for a more robust local design methodology at a component level based on the Second 

Law of Thermodynamics. Designers of energy systems often adopt conventional 

approaches to evaluate the performance of a design based on global loss parameters or 

efficiencies. This method accounts for losses predicted over an entire system. However, the 

local values of available energy losses or entropy production can provide the designer with 

a more detailed insight than determining an end-to-end loss. The overall performance of 

thermofluid systems can be improved by modifying design parameters locally. 

A literature review shows that there are few or no previous studies regarding entropy-based 

error methods in the analysis of natural and mixed convection heat transfer. So there is an 

opportunity for the development of a potentially new approach for numerical error 

characterization using entropy and the Second Law. This promising alternative approach 

to conventional error indicators would use the distribution and peak values of the apparent 

entropy production difference to predict trends in the solution errors for computational heat 

transfer and fluid flow. 

Furthermore, there is also a need to better understand entropy production and heat transfer 

processes in natural and mixed convection problems with nanofluids. These could be used, 
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for example, to obtain the effects of nanoparticle volume fraction on heat conduction and 

entropy production. This research predicts the optimum nanoparticle volume fraction for 

which entropy production is minimized. This thesis will also extend these above methods 

to address physically implausible solutions and ensure positive entropy production in 

accordance with the Second Law. 

1.5 Scope and Objectives  

The scope and objectives of this research are briefly outlined as follows. 

1. To develop a two-dimensional numerical model for the computation of entropy 

production, using positive-definite and transport forms of the entropy production 

equation, and apparent entropy production difference. 

2. To develop and apply these numerical entropy generation models to natural and 

mixed convection heat transfer problems. 

3. To validate the results from the numerical model with previously published 

benchmark data. 

4. To conduct a numerical investigation of entropy production and heat transfer for 

natural and mixed convection in a rectangular enclosure filled with nanofluids and 

predict the effects of nanoparticle volume fraction on heat conduction and entropy 

production. Also, the research aims to predict the optimum nanoparticle volume 

fraction for which the entropy production is minimized. 

5. To obtain a Second Law formulation that computes a new parameter called the 

“apparent entropy production difference” based on the difference between the 

transport and positive-definite forms of the entropy production rate. A relationship 
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between this difference and numerical errors in each control volume is developed 

and discussed. 

6. To modify the algorithm in regions with physically implausible results to enhance 

the entropy production and compliance with the Second Law. 

1.6 Outline of Thesis 

This thesis outlines new analytical and numerical methods for entropy production analysis 

using the Second Law. Detailed numerical simulations involving entropy transport, energy 

and fluid flow equations will be performed using a Control-Volume Finite Element Method 

(CVFEM) and Finite Difference Method. Also, a new parameter known as the apparent 

entropy production difference will be obtained and used as entropy-based error indicator 

for fluid flow and thermal systems design improvement. A corrective mechanism will also 

be developed using an entropy-based artificial viscosity to improve the accuracy of the 

numerical model. The entropy and Second Law analysis is applied to various natural and 

mixed convection test problems involving different working fluids, including nanofluids. 

The numerical results of the simulations are validated against benchmark solutions. 

In Chapter 2, a literature review for analytical, numerical, and experimental studies of 

entropy generation will be presented. Chapter 3 outlines the research methodology which 

features a generalized formulation for entropy production, fluid flow, and energy equations, 

and nanofluid properties. Chapter 4 presents results and discussion for the application of 

entropy and the Second Law to natural and mixed convection of nanofluids. Detailed 

analysis of the problem configuration is discussed. Chapter 5 examines entropy-based error 
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characterization in numerical heat transfer. The formulation of a new parameter (apparent 

entropy production difference) and its correlation with errors in numerical solutions is 

discussed. In Chapter 6, a new corrective mechanism is presented to minimize numerical 

errors and enhance system efficiency. Chapter 7 presents a general discussion and the thesis 

conclusions, with recommendations for further research. 

Although the thesis is written as continuous text, it does have a feature of a paper-based 

thesis such as the repetition of a few geometries and mathematical models in the results 

chapters. This format is presented because a publication has been produced from each of 

the results chapters. Papers from Chapters 5 and 6 have already been published in journals, 

while Chapter 6 is in the process of submission for journal publication. 
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2 LITERATURE REVIEW 

2.1 Overview 

The concept of entropy has broad applications in several disciplines today, from 

thermodynamics and fluid mechanics to information and coding theory, biology, and 

economics. Entropy serves as an important parameter in attaining the highest limits of 

quality and performance in many engineering devices. Exergy and the Second Law are 

becoming increasingly important in achieving the upper theoretical limits in future 

technologies. They can shed more light on various flow processes, ranging from 

optimization of flow configurations in an aircraft engine to highly ordered crystal structures 

(low entropy) in a turbine blade, and many other applications [1,2]. 

An important application of entropy and the Second Law is flow design optimization of 

energy sub-systems, involving work-producing potential [9]. Entropy computations can 

track the work potential losses within the fluid flow and sub-system processes during a 

system’s operation. With this information, the designer has a systematic means of 

identifying and targeting the regions incurring the most significant losses. Flow exergy can 

provide a valuable set of metrics and unifying framework for a more effective analysis of 

aircraft sub-systems [10,11]. Another example is entropy generation of fluid motion 

through a turbine. In this case, flow irreversibilities arise from fluid friction along the 

blades, tip or corner vortices and viscous mixing in the blade wakes, and other flow 

recirculations. The areas with the highest entropy generation, such as the wake, blade 

inception, and inlet regions, represent the regions where the most significant design 
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improvements can be made. Examples of design modifications to minimize entropy 

production include changes to inflow parameters (temperature, cooling mass flow rate), 

cooling holes (location, number, design), or geometric parameters (angles and blade shape, 

height) [2].  

Entropy and Second Law have been used to compare the efficiency of various wind power 

systems. Exergy analysis can be used as a unified metric to compare a diverse range of 

operating and geometric designs. Through exergy methods, the turbine design and better 

site selection can improve the efficiency of a system and decrease costs [12]. Mamouri et 

al. [13] showed that entropy generation analysis of offshore wind turbine blades is useful 

for the design of the geometries of wind turbine blades. Entropy production can also be 

used as a diagnostic design tool to detect problematic areas in turbine operation, which 

require design changes. The energy losses at the turbine blade can be quantified by entropy 

generation analysis. Recommendations can be provided for future design modifications to 

reduce energy losses and increase the efficiency of the turbines [14]. 

2.2 Analytical Methods 

Significant progress has been made in recent years towards the optimization of energy, 

fluid, and thermal systems using entropy and the Second Law. Part of this progress includes 

the development of various techniques for analytical approaches, such as: (i) minimization 

of entropy generation or available work through design modifications (called EGM; 

Method of Entropy Generation Minimization), and (ii) ideal theoretical operating 

conditions for a proposed design (called EA; Exergy Analysis) [15]. Exergy can be defined 
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as a thermodynamic property that measures the potential of an energy source to produce 

useful work. It quantifies the maximum potential of the energy system to produce useful 

work as it attains a specified final state of equilibrium with its environment. Exergy analysis 

aims to bridge the gap between the actual work produced by a device and exergy by a 

careful examination of the various thermodynamic processes involved in the energy 

conversion. Consequently, the values of exergy at every point are used to obtain the Second 

Law efficiencies which measure the system irreversibilities (or exergy destruction) 

produced by the energy conversion process [15, 16, 17].  

To achieve the entropy generation minimization, the optimal configuration of geometry, 

heat transfer, material, and/or fluid motion, is required. In some cases, an analytical 

expression for the entropy generation in a process can be derived and minimized [1, 18, 19, 

20]. This thesis will consider both numerical and analytical methods of entropy generation 

minimization. 

2.3 Numerical Methods 

The Second Law of Thermodynamics can be used for design optimization by incorporating 

Computational Fluid Dynamics (CFD) as a design tool in solving complex flow problems. 

Entropy generation is determined by post-processing of the computed flow fields [21]. CFD 

has been successfully used to solve many industrial problems arising in aerodynamics, 

energy storage, power generation, metallurgy, and other applications. It provides a designer 

with a time-saving and cost-effective approach for design optimization of engineering 
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systems. Local entropy production minimization with CFD provides additional design 

capabilities.  

Natalini and Sciubba [22] presented a numerical method for the design of air-cooled gas 

turbine blades. A finite element method was used to solve the Navier-Stokes equations of 

motion and energy equation. The authors identified the entropy production rates 

corresponding to the heat transfer and fluid friction irreversibilities. They presented 

information for the assessment of different turbine blade configurations. By identifying the 

entropy generation rates corresponding to the fluid friction and heat transfer 

irreversibilities, the authors provided useful information for the assessment of different 

blade arrangements with optimal thermodynamic performance.  The predicted flow fields 

with pitched turbine blades can be analyzed to identify areas of high exergy losses, thereby 

providing a direction to redesign the blade profile and minimize such losses and enhance 

the system performance [23]. 

Entropy generation predictions have also been used to find the optimal conditions for free 

convection in inclined cavities [24-27]. The results showed that the angle of inclination of 

the enclosure significantly affects the heat transfer effectiveness and flow behavior of the 

fluid. The optimum angle of inclination was obtained to ensure minimum entropy 

generation. Cheng et al. [28] predicted entropy production for mixed convection in a 

vertical enclosure with a transverse fin array. They presented results for various geometric 

and physical parameters and found an optimum geometric configuration of the finned 

channel with a higher level of second-law efficiency.  
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Entropy production for mixed convection in a flow inside concentric cylinder annuli with 

relative rotation was reported [29], the authors found that for the conduction regime, both 

the entropy generation number and the average Nusselt number are independent of the 

variation in Rayleigh number. In the convection dominated regime, the results showed an 

increasing trend for an increase in the Rayleigh number. The near-wall magnitude of overall 

entropy production rate is higher at a larger Rayleigh number, but the heat transfer 

irreversibility is higher at the center region of the cavity. Entropy production rates for 

laminar and turbulent flow through a channel were reported [30-32], Sahin [30] showed 

that the variation in viscosity has a significant effect on both the pumping power and 

entropy generation. The author also reported that the ratio of the pumping power to heat 

transfer and the entropy production per unit of heat transfer becomes large for low heat flux 

conditions. Demirel [31] found that the irreversibility is more uniformly distributed for a 

narrow-gap Couette flow. It was found that the assumption of a constant viscosity may 

yield a significant deviation in pumping power and entropy production results as compared 

with those with a temperature-dependent viscosity, specifically when highly viscous fluids 

are considered [32]. Numerical studies of entropy production have also been applied to 

various diffuser geometries [33]. Results suggested that an entropy-based approach 

provides a new way of establishing the optimum diffuser configuration with minimal flow 

losses.  

Numerical studies of entropy production during natural convection have been applied to 

geological problems [34]. Chen and Du [35] reported turbulent double-diffusive free 

convection in a square cavity for various Rayleigh numbers, aspect ratios, and buoyancy 
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ratios. Their results indicated that the entropy generation rate increases with Rayleigh 

number, aspect ratio and buoyancy ratio. Also, the entropy generation due to heat transfer 

and mass transfer decreases with aspect ratio, whereas the entropy production due to fluid 

friction increases with aspect ratio. Mchirgui et al. [36] predicted the entropy production 

rate in double-diffusive convection in a differentially heated porous rectangular enclosure 

with horizontal concentration gradients. They found that the entropy production due to 

mass diffusion is larger compared to the local entropy production due to heat transfer and 

local entropy production due to fluid friction for Darcy numbers less than 10−3. The 

irreversibilities due to heat transfer dominate over the fluid friction irreversibilities and 

mass diffusion for Darcy numbers of 10−3 and higher. Also, the total entropy production 

decreases with Darcy number.  

Ruocco [37] studied entropy production of conjugate heat transfer from a flat plate to a 

laminar impinging planar jet involving air as the coolant fluid. The bottom plate is assumed 

an isothermal heater, while other surfaces were insulated. Their results showed that entropy 

generation is higher for air compared to that for water. The use of only one heater produced 

the minimum entropy production rate and higher rates of heat transfer for both air and 

water. Hidouri et al. [38] considered entropy generation in double-diffusive convection in 

a differentially heated rectangle cavity containing a binary gas mixture enclosed by  

impermeable vertical walls and permeable horizontal walls. They found that entropy 

production increases with the thermal Grashof number and buoyancy ratio. The minimum 

entropy production occurs at a specific buoyancy ratio between −1 and 0. The Soret effect 

reduces the rate of entropy production due to the concentration gradients.  
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CFD modelling of entropy production in natural convection has also been applied to 

building and ventilation systems. Ziapur and Dehnavi [39] considered entropy production 

in natural convection for a large triangular roof enclosure using a second law analysis. They 

reported that the entropy generation number is lower in the cavity with partial heating from 

the central region of the bottom wall compared to that of the cavity involving partial heating 

from the corner portion of the bottom wall. The entropy production number decreased with 

the aspect ratio of the large triangular-roof greenhouse. Varol et al. [40] examined natural 

convection entropy production in a partially cooled rectangular cross-sectional room with 

partially cooled sidewall windows and a uniformly heated floor. Results of computational 

fluid dynamics and the support vector machine are compared. The support vector machine 

is found to predict the entropy production with reasonable agreement. 

A Second Law analysis in natural convection has also been reported for heat exchangers. 

You et al. [41] considered entropy production in thermal augmentation of horizontal pipes 

with a conical strip. Their results indicate that a non-staggered strip with an angle of 90° 

produced the least global total entropy production. The least global total entropy production 

is based on the optimal Reynolds number. Ko and Ting [42] performed a Second Law 

analysis of heat transfer in a helical coil with a constant heat flux wall in a fully developed 

convection. The authors reported that helical coils with a larger curvature ratio are more 

suitable for the low Reynolds number, while the smaller curvature ratio is suitable for the 

higher Reynolds number based on the minimum entropy production.  

Rathnam et al. [43] studied natural convection entropy production within two entrapped 

triangular enclosures induced by a series of rectangular cross-sectioned tubes. The 
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entrapped enclosures were filled with porous media saturated with fluid. Their results 

showed that in the conduction dominant regime, the magnitudes of total entropy production 

are similar for both the hot entrapped fluid and cold entrapped fluid cases for all Prandtl 

number. At a high Darcy number, the total entropy production is a minimum for the cold 

entrapped fluid case within the upper triangle, whereas the total entropy generation is a 

minimum for the hot entrapped fluid case within the lower triangle at all Prandtl numbers.  

Basak et al. [44] also considered natural convection entropy production within entrapped 

triangular enclosures. Their results showed less total entropy production and larger rates of 

heat transfer are observed in the lower triangle with hot entrapped fluid, and upper triangle 

containing cold entrapped fluid, especially for low Prandtl numbers and high Rayleigh 

numbers. Abu-Hijleh et al. [45, 46] studied natural convection entropy production from a 

heated isothermal cylinder placed horizontally in oil. The authors suggested that the viscous 

dissipation has a negligible effect on the local entropy production rates. The global total 

entropy production can be minimized by modifying the radius of the cylinder. Dagtekin et 

al. [47] examined the natural convection entropy production in a circular duct with various 

longitudinal fins of different shapes. They found that the entropy generation increases with 

the number of fins and decreases with the Rayleigh number for all shapes. The triangular 

fins with less length yielded the minimum entropy generation rate. 

A Second Law analysis has been applied to packed beds by Demirel and Kahraman [48]. 

They considered convective heat transfer and entropy production in an annular packed bed, 

asymmetrically heated, with constant wall heat fluxes. Their results indicated that the 

entropy production due to fluid friction increases with an increase in packing, whereas the 
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addition of the packing reduces the entropy production due to heat transfer. The asymmetric 

thermal boundary condition produces less entropy production compared to the symmetric 

case. Demirel [49] examined natural convection entropy production in an asymmetrically 

heated square packed duct. A constant and asymmetric heat flux was assumed for the top 

and bottom walls, while the vertical walls were insulated. They reported that entropy 

production in each cross-section of the duct decreases with Reynolds number. The 

asymmetric heating is found to be most efficient for the packed bed in the convective 

regime when the entropy production is minimum.  

Natural convection entropy production studies for cooling systems have also been reported.  

Shuja et al. [50] examined natural convection entropy production in a square enclosure with 

two heat generating porous blocks located at various positions. Their results indicated that 

the minimum entropy production due to heat transfer is found where the blocks are 

positioned vertically with reference to the central vertical axis. The optimum configuration 

of the block is determined by the configuration with the minimum total entropy production. 

Shuja et al. [51] studied conjugate natural convection entropy production in a square 

enclosure bounded with adiabatic walls, which contain a steel heated block. Their results 

showed that the local entropy production due to heat transfer is lower when the solid body 

is positioned at the right top and left bottom corners of the enclosure. The larger entropy 

production due to fluid friction is observed when the solid body is positioned at the top 

right or lower left corner of the enclosure, whereas a negligible entropy production occurs 

where fluid friction is observed when the solid body is positioned at the center of the 
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enclosure. The global total entropy production is minimized when the solid body is 

positioned at the center of the cavity, and water is used as the coolant fluid.  

Yang et al. [52] examined convective cooling of printed circuit boards with heat-generating 

chips. Their results indicated that the entropy production due to heat transfer and fluid 

friction are significant around the board surface and near the top surface of the chip at a 

larger aspect ratio. The increase in aspect ratio leads to an increase of the total entropy 

production due to heat transfer but a due to fluid friction. 

The analysis of entropy production has been considered for thermal storage systems. Erek 

and Dincer [53] examined entropy production in a shell-and-tube latent heat storage system. 

Their results suggested that the entropy generation number is not considerably affected by 

the Reynolds number and tube length. A larger heat transfer rate was observed with the 

minimum entropy generation rate for the low shell radius at all Reynolds number. 

Flueckiger and Garimella [54] studied entropy production in a thermocline thermal energy 

storage tank with cyclic operation of a molten-salt system. They observed that the 

thermocline tank performance was improved by a reduction in the filler bed granule 

diameter. The external convection losses and reduction of efficiency of the thermocline 

tank is characterized by a larger entropy generation rate. 

Second Law analysis of natural convection has also been reported for solar energy. Das and 

Basak [55] presented a study on natural convection entropy production during solar heating 

of triangular and square cavities. They found that a symmetric heater configuration is more 

efficient than asymmetric placements of heaters with lower entropy generation. Using the 
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minimum entropy production, the optimal configuration for all the cavities was obtained 

when the heaters along the sidewalls were centrally located. Ghachem et al. [56] examined 

three-dimensional double-diffusive free convection entropy generation in a solar distiller. 

Their results showed that entropy generation is minimized when the buoyancy ratio is equal 

to that for the solar distiller. Naphon [57] examined the entropy generation in a double-pass 

solar air heater with longitudinal fins. Their results indicated that entropy generation 

increases as the mass flow rate of air increases and decreases with the number of fins and 

the fin height. Biswal and Basak [58] performed a numerical study of natural convection 

entropy generation in right angled triangular cavities with curved surfaces whereby the 

right wall is exposed to solar energy. They reported that the structure with the concave right 

wall was optimal with respect to entropy generation for thermal processing of various fluids 

with solar heating on the curved wall. 

Nasrin et al. [59] performed a numerical study of the performance of glass cover plate solar 

collectors with an absorber using Alumina/water nanofluids. Their results showed that the 

effects of higher Prandtl number on improving heat transfer effectiveness are higher in 

Al2O3 than the base fluid. The rate of convective heat transfer increases by 18% and 26% 

for water and Al2O3 – water, respectively. Risi et al. [60] analysed the performance 

improvement of a parabolic trough solar collector using (CuO+Ni) – nitrogen gas 

nanofluid. They obtained a maximum solar to thermal efficiency of 62.5%.  

Tiwari et al. [61] studied the performance of a flat plate solar collector using Al2O3-Water 

nanofluids. They reported an increase in the thermal efficiency by 31.6% using 1.5% 

volume fraction of nanofluid. Risi et al. [62] examined the performance improvement of a 
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parabolic trough using Ni-water nanofluid. A thermal efficiency of 62.5% was reported. 

Tyagi et al. [63] also examined the performance of a non-concentrating microscale direct 

absorption solar collector using Al2O3-water nanofluid. Their results showed significant 

improvements in the efficiency of the solar collector for volume fractions less than 2%, 

while for a volume fraction higher than 2%, the efficiency remained nearly constant. The 

absolute efficiencies were found to be around 10% higher in the case of the nanofluid.  

Rahman et al. [64] investigated heat transfer enhancement in circular solar collectors using 

multi-walled carbon nano-tube (MWCNT) – water nanofluids. Their findings indicated that 

the inclination angle and solid volume fraction have an important role in the improvement 

of the heat transfer and thermal efficiency of the collector. Sarkar [65] investigated the 

performance improvement of a flat plate solar collector using supercritical CO2 – water 

nanofluids. An optimum enhancement in efficiency was found to be 18% as compared to 

water. Saidur et al. [66] examined a direct absorption solar collector for AL2O3 – water 

nanofluids. There was a significant improvement in solar absorption. The light absorption 

enhancement was observed at visible light and shorter wavelengths despite the low 

extinction coefficient. The volume fraction and extinction coefficient were linearly 

proportional. Said et al. [67] performed a Second Law analysis of a flat plate solar collector 

using single-wall carbon nanotube (SWNCT) – water nanofluids. They found that the 

SWCNT – water nanofluid can increase the heat transfer coefficient by 15.33% while 

reducing entropy generation by 4.34%. 

Entropy production modelling has also been applied to compressible flows. Alipanah et al. 

[68] considered incompressible and compressible flow irreversibilities and entropy 
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production. Entropy generation during the incompressible flow was less than the 

compressible flow for the range of dimensionless temperature differences and Rayleigh 

numbers. Arshad et al. [69] studied entropy production of air flow through a diffuser. Their 

results indicated that entropy production near the diffuser wall is high, then decreases 

towards the center from the wall along the radial direction.   

Entropy production modelling has also been reported for non-Newtonian flows. Yurusoy 

et al. [70] investigated the entropy production in a non-Newtonian fluid flow through 

annular tubes with a temperature-dependent viscosity. Their results showed that the non-

Newtonian effects reduce the entropy production rate, whereas the viscosity increases the 

entropy production rate, especially in the region close to the inner wall of the annular tube. 

The minimum entropy production rate is achieved at a lower viscosity and higher non-

Newtonian parameter.  

Pakdemirli and Yilbas [71] examined entropy production in non-Newtonian fluid flow with 

a constant viscosity in the pipe system. They found that the non-Newtonian parameter 

reduced the fluid friction irreversibilities near the tube wall. The local entropy production 

due to fluid friction dominates over the entropy production due to heat transfer. The entropy 

production number increases from the center to an outer radial position in the pipe. The 

Brinkman number increases the total entropy production rates. Yilbas et al. [72] studied 

entropy production in non-Newtonian flow in an annular tube. Their findings suggest that 

the entropy production can be minimized when the Brinkman number is reduced. 
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Entropy production studies in natural convection involving the use of base fluids such as 

air, water, or oil are reported in [73 - 78]. Magherbi et al. [73] examined the entropy 

production due to heat transfer and fluid flow in transient laminar free convection for a 

square cavity with differentially heated sidewalls, filled with air (Pr = 0.71). They reported 

that the global total entropy production increases with Rayleigh number. Values at the onset 

of the steady-state are compared with the transient state and the minimum global total 

entropy production occurs at the steady-state.  

Erbay et al. [74] examined the entropy production in a square cavity with differentially 

heated walls (cold vertical wall with a partially heated opposite vertical lateral wall). They 

observed that the maximum value of local total entropy production is significantly larger 

in the middle regions between the right and left walls for all irreversibility distribution 

ratios. The maximum value of the local total entropy production increases with Rayleigh 

number and Prandtl number, while the maximum value of the local total entropy production 

decreases with Rayleigh number at lower Prandtl numbera.   

Yilbas et al. [75] investigated the entropy production in a square enclosure with different 

upper and lower wall temperatures. In this study, entropy production increased when fluid 

circulation along the x‐axis increases. The entropy production is minimized at a particular 

Rayleigh number. Mukhopadhyay [76] studied the entropy production of free convection 

in an enclosure heated at the bottom by two discrete sources. The minimum entropy 

generation rate occurred for the same condition at which the peak heater temperature was 

minimized. Dagtekin et al. [77] analyzed the natural convection and entropy production in 

a circular duct with various longitudinal fins of different shapes. Here entropy generation 
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decreased with Rayleigh number and increased with the number of fins. The rate of entropy 

generation was less for the triangular fins with a shorter length. Mahmud et al. [78] reported 

the heat transfer and entropy production for free convection in a wavy-wall cavity with 

sidewalls at different temperatures. They presented an optimal case of the inclination angle 

and surface waviness that minimizes the entropy production for various aspect ratios. These 

examples showed how entropy generation computations can be successfully implemented 

with standard CFD solvers. 

2.4 Entropy Production in Natural and Mixed Convection of Nanofluids 

Entropy generation minimization for problems with natural convection has practical utility 

in the design of solar energy collectors, heat exchangers, thermal energy storage systems, 

and biomedical devices, among others. As discussed earlier, the rate of entropy production 

characterizes the degree of fluid friction and thermal irreversibilities. This section reviews 

past numerical modeling of entropy and the Second Law in natural and mixed convection 

problems with nanofluids. 

Nanofluids are fluids that contain nano-scale particles with diameters of 1-100 nanometers 

(nm). These particles have unique thermophysical and chemical characteristics [79]. The 

use of air, water, or oil as a working fluid typically yields a relatively low thermal 

conductivity and heat transfer effectiveness [80-83]. Choi [79] has shown that the thermal 

performance can be enhanced significantly by the addition of nanoparticles with a higher 

thermal conductivity into a base fluid such as water, ethylene glycol , or oil to form a 

nanofluid. This can be advantageous for thermal engineering systems such as power 
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generation or heating and cooling systems [84]. Many past studies have been conducted on 

nanofluids, including various models, both theoretical and experimental, to determine their 

thermophysical properties, methods of preparation and applications [85-92].  

Past studies have examined natural convection in enclosures filled with nanofluids. Hwang 

et al. [93] reported natural convection heat transfer enhancement in a square cavity 

containing Al2O3-water nanofluids. The authors discovered that nanofluids could 

significantly enhance the rates of heat transfer. Khanafer et al. [94] also examined the heat 

transfer in a square cavity filled with Cu-water nanofluids. The results indicated that the 

effects of heat transfer increase as the Cu nanoparticle volume fraction is increased in the 

working fluid. Sheikzadeh et al. [95] and Oztop and Abu-Nada [96] studied the natural 

convection of different nanofluids in a partially heated cavity. The temperature and flow 

fields were a function of position and length of the heat source. The free convection heat 

transfer effects of nanofluids in a differentially heated inclined enclosure were investigated 

by Abu-Nada and Oztop [25], Ghalambaz et al. [26], and Kahveci and Sadati [27]. The 

results showed that the angle of inclination of the enclosure significantly affects the heat 

transfer effectiveness and flow behavior of the nanofluid.  

Relatively few past studies have examined the effects of nanofluids on entropy production 

rates. Shahi et al. [97] reported the entropy production due to natural convection cooling of 

a protruding heat source with Cu-water nanofluids in a square enclosure. The results 

showed an increase in the Nusselt number and a decrease in entropy production as the 

nanoparticle volume fraction increased. Li and Kleinstreuer [98] suggested that nanofluids 

are good coolants at a low nanoparticle volume fraction. An increase in nanoparticle 
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volume fraction reduces the entropy production at low Reynolds numbers with CuO-water 

nanofluids and pure water in trapezoidal microchannels. Singh et al. [99] performed a study 

of entropy production due to heat transfer and fluid friction of Al2O3-water nanofluids 

within different channel sizes and regimes. The effects of different models to calculate the 

viscosity and thermal conductivity of the nanofluid were reported. An optimal channel type 

was reported for which the entropy generation is minimized.  

Moghaddani et al. [100] analyzed the entropy production due to ethylene, Al2O3-glycol, 

and Al2O3-water nanofluids in a circular pipe of constant heat flux. Increasing the 

nanoparticle volume fraction reduced the entropy production when the irreversibility due 

to heat transfer is dominant. They reported that the addition of the nanoparticles gives rise 

to a reduction in total entropy production for water-Al2O3 nanofluids in a laminar flow. In 

turbulent flow of water-Al2O3 nanofluids, the addition of the nanoparticles enhances the 

total entropy production for Reynolds numbers above 46,000 and reduces the total entropy 

production for lower Reynolds numbers. For laminar flow of ethylene glycol-Al2O3 

nanofluid, the increase in nanoparticle volume fraction yields a higher total entropy 

production for Reynolds numbers above 14 and a reduction in total entropy production for 

Reynolds numbers below 11.  The rate of entropy generation decreased with an increase in 

the nanoparticle volume fraction in a flow of Al2O3 -water nanofluids in a parallel disk 

[101].  

Kashani et al. [102] examined natural convection entropy production in an enclosure with 

vertical wavy walls containing Cu-water nanofluid. Their results showed that the addition 

of nanoparticles to the base fluid decreases the total entropy generation. An enclosure with 



29 
 

concave type sidewalls was found to be the optimal case with a minimum entropy 

production rate and enhanced heat transfer for all Rayleigh numbers. Mahmudi et al. [103] 

investigated the entropy production in natural convection cooling of a heat source 

positioned inside the enclosure with a Cu-water nanofluid. Their results showed that the 

minimum entropy generation was used to identify the optimal configuration (where heater 

is positioned on the left wall at a distance of 0.4 m from the bottom wall). Khorasanizadeh 

et al. [104] studied natural convection entropy production in a Cu-water nanofluid within a 

cavity with a conductive baffle enclosed along the bottom hot wall. The authors identified 

an optimum baffle position for which the rate of entropy production is minimized.  

Leong et al. [105] reported on natural convection entropy generation in a circular tube for 

water-base titanium dioxide and alumina nanofluids. Their findings indicated that titanium 

dioxide nanofluids produced less entropy compared to the alumina nanofluids. Natural 

convection Second Law analysis in a baffled L-shaped enclosure filled with water-alumina 

nanofluids was also reported [106]. The authors reported that the rate of entropy generation 

decreases with the irreversibility distribution ratio and dimensional ratio. An optimal baffle 

configuration was obtained.  

Entropy production in conjugate free convection in a square enclosure filled with porous 

media saturated with a water-CuO nanofluid heated by a triangular solid in the lower left 

corner was also reported [107]. These results showed that entropy production increases with 

the irreversibility distribution ratio and thermal conductivity ratio in conjugate convection. 

The lowest wall thermal conductivity ratio and largest solid thickness are the optimum 

conditions based on the minimal value of the entropy production to heat transfer ratio.  
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Salari et al. [108] studied natural convection entropy generation in a differentially heated 

cuboid containing two immiscible liquid/gas fluids (carbon nanotubes-water nanofluid and 

air). They found that the total entropy production increases with the Rayleigh number and 

decreases with the nanofluid interface aspect ratio. The increase in irreversibility 

distribution ratio reduces the total entropy production. Cho [109] examined the effect of the 

magnetic field on entropy production in natural convection of Cu-water nanofluids in an 

enclosure involving wavy surfaces. It was reported that the total entropy production was 

almost constant with respect to the Hartmann number at a low Rayleigh number. At a high 

Rayleigh number, the total entropy production increases with the Hartmann number. The 

wave amplitude of the wavy surface increases with the total entropy production at a high 

Rayleigh number for the entire range of Hartmann numbers. Selimefendigil et al. [110] also 

considered the effects of a magnetic field in trapezoidal cavities containing nanofluids. 

Their results indicated that the entropy production decreases with the applied magnetic field 

and increases with the irreversibility distribution ratio. A decrease in the rate of entropy 

generation with the Hartman number is more evident in the lower enclosure compared to 

the upper enclosure.  

Mamourian et al. [111] analyzed the entropy production in natural convection for water-

Al2O3 nanofluid in a rectangular cavity with a constant axial magnetic field. The findings 

showed that the entropy production, at a specific Hartman number, increases with 

inclination angle of the enclosure until 30° after which there is a decreasing trend. The total 

entropy production increases with Rayleigh number for all Hartman numbers and 

inclination angles. Chamkha et al. [112] examined the natural convection entropy 
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generation for CuO-water nanofluid in a C–shaped enclosure under magnetic effects. They 

found that the rate of total entropy generation increases with the irreversibility distribution 

ratio. The applied magnetic field suppresses both the total entropy production rate and the 

natural convection effect.  

Chen et al. [113] performed a Second Law analysis of double-diffusive natural convection 

in a differentially heated square enclosure containing SiO2 – water nanofluid. They reported 

that the total entropy production is smaller for the laminar regime compared to the turbulent 

regime. The total entropy production decreases with the irreversibility distribution ratio. 

The total entropy generation is minimized at a buoyancy ratio of 1.  

Cho et al. [114] investigated the natural convection entropy generation for an Al2O3-water 

nanofluid filled U-shaped cavity. Their results showed that as the irreversibility distribution 

ratio increases, the total entropy generation decreases, and the average Nusselt number 

increases. The total entropy generation and the average Nusselt number increase with the 

Rayleigh number. Also, an increase in the lengths of the cold walls results in a reduction 

of the total entropy production and an increase in the average Nusselt number.  

Mahian et al. [115] studied the natural convection entropy generation for water-Al2O3 

nanofluid in a flat plate solar collector. Their findings indicate that the entropy production 

is significantly lower for smooth pipes compared to that of rough pipes. The entropy 

production is found to decrease with the nanoparticle size for larger mass flow rates.  

Cho et al. [116] performed a Second Law analysis of natural convection for  Cu-water 

nanofluid and water in cavities with wavy sidewalls. It was reported that the Cu-water 
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nanofluid produced a minimum total entropy generation along with enhanced heat transfer 

performance. The authors showed that the mean Nusselt number can be maximized for a 

given nanofluid, while the total entropy production can be minimized by modifying 

parameters of the wavy surface geometry. Also, their results suggested that the natural 

convection heat transfer performance in wavy-wall cavity can be enhanced while 

simultaneously reducing the entropy production.  

Alim et al. [117] analyzed the entropy production in a flat plate solar collector using CuO-

water nanofluid. Their results showed a reduction in entropy production by 4.3% and heat 

transfer coefficient improvement by 22.1%. Parvin et al. [118] studied the heat transfer 

improvement and entropy production in a direct absorption solar collector for CuO-water 

nanofluid. Their findings indicated that the entropy generation and Nusselt number increase 

as the volume fraction of Cu nanoparticles particles and Reynolds number increases.   

Mirzazadeh et al. [119] reported the entropy production of viscoelastic fluid flow through 

concentric rotating cylinders. Their results showed that the total entropy production number 

decreases as the fluid elasticity increases. The study also indicated that the entropy 

generation number increases with the Brinkman number. Mahian et al. [120] examined the 

entropy production due to heat transfer and fluid flow of nanofluids between cylinders. 

Their results demonstrated an optimum nanoparticle volume fraction for which the 

minimum entropy production rate was achieved.  

In summary, this section reviewed past studies on numerical modeling of heat transfer 

enhancement, entropy generation and the Second Law application to natural and mixed 
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convection problems using nanofluids. The review shows that numerical modeling studies 

of natural and mixed convection heat transfer enhancement using nanofluids have been 

applied to a number of engineering problems including square cavities filled with fluid, 

heated cavity, inclined enclosures, and heat source optimization in enclosures. Also, 

entropy generation with nanofluids in natural convection has been studied in different 

applications such as optimization of microchannels, enclosures with concave sidewalls, 

heat source positions, baffle position, differentially heated cuboids with immiscible liquids, 

wave amplitudes of wavy surfaces, magnetic fields in trapezoidal cavities and C-shaped 

enclosures, U-shaped cavities, and solar collectors. 

This study presents a new approach to the optimization of nanoparticle concentration for 

which entropy production is minimized. This thesis will focus on a numerical study of heat 

transfer and entropy production for natural and mixed convection in a rectangular enclosure 

filled with nanofluids. A case study will find an optimum nanoparticle volume fraction for 

which entropy production is minimized by modifying the moving wall velocity. The study 

also compares the natural convection heat transfer and entropy production for different 

nanofluids in the enclosure to determine the optimal nanofluid conditions in each system. 

An aspect ratio sensitivity analysis will also be performed. 

2.5 Numerical Error Characterization 

The numerical entropy production is a useful parameter for characterizing errors in 

numerical solutions [7]. This parameter uses the Second Law to identify inconsistencies in 

numerical approximations which lead to anomalous results of the predicted entropy 
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production. Entropy generation has both physical and computational characteristics. In 

addition to the physical processes of heat transfer and viscous dissipation, CFD models 

may destroy or produce false entropy through approximation errors. This can lead to non-

physical numerical results, artificial dissipation, and other discretization errors [3,4]. If the 

differential equation solutions for the conservation of mass, momentum, and energy do not 

later satisfy the Second Law, the results may exhibit oscillations, lack of uniqueness, or 

other unusual attributes [121].  

The total entropy generation predicted from a CFD formulation involves a sum of the 

physical and numerical entropy generation parts. Entropy is the measure of randomization 

or the degree of chaos, and this order can be represented in a physical sense and/or a 

computational sense. The physical characteristics of entropy which are the traditional view 

can be traced back to a lecture on the value of entropy relating to steam engine performance 

delivered by the mathematical physicist Rudolf Clausius in 1850 [3]. The computational 

characteristics of entropy are a relatively recent view which arose in the era of digital 

computers, and it examines entropy in terms of artificial dissipation, discretization errors, 

and implausible numerical results [5, 122-125]  

This recent computational characteristic has considered connections between numerical 

stability, overall accuracy, solution uniqueness, and the second law. For example, a discrete 

entropy equation has been implemented to identify unique solutions and physical relevance 

in finite difference compressible flow modelling (Lax [122]). Also, the governing equations 

have been symmetrized through a change of entropy gradient variables to improve the 

performance of iterative algebraic solvers and stability. Merriam [124] has illustrated that 
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satisfaction of the second law is adequate, in some instances, to ensure computational 

stability of fluid flow.  

This numerical stability suggests that entropy can serve as an effective parameter for 

solution convergence criteria. Furthermore, Camberos (7) has shown that entropy can be 

used as an effective measure of convergence and residual error because it defines a 

physically relevant quantity which is fully dependent on all fluid state variables.This 

essential attribute of the Second Law has a capacity to function as a physically based 

discretization error indicator which can identify physically unrealistic solutions in the CFD 

predictions. The promising potential of entropy production computations has been 

demonstrated in past applications. Entropy generation computations have been applied to 

numerical error, timestep constraints, and convergence criteria. It has been shown that a 

CFL condition of numerical stability (Courant, Freidrichs, and Lewy [126]) follows directly 

from the Second Law using the conditions of constant source terms and negligible diffusive 

transport. Source terms may impose more restrictive constraints on the timestep than a 

conventional CFL condition. The discretized entropy production equation can ensure 

nonlinear stability. It has been shown that a restrictive condition which involves a positive 

rate of entropy generation in each control volume can ensure numerical stability of the 

scheme [127].  

Naterer and Schneider [5] presented numerical simulations to show that stable solutions 

which do not satisfy an entropy constraint yield inaccurate results. The Second Law can 

also be applied to improve the reliability of upwinding schemes.  Numerical simulations 

which do not satisfy a prescribed entropy constraint may yield non-physical results [4]. The 
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specific form of a convective upwinding scheme can be modified appropriately to satisfy 

an entropy constraint and improve the overall accuracy of the model [3]. This entropy 

constraint is constructed based on positive-definite and entropy transport forms of the 

Second Law using the Gibbs equation. Errors in a numerical solution can be characterized 

by the magnitude of negative entropy generation which violates the Second Law [6]. With 

the possibility of entropy destruction due to numerical discretization, it becomes 

challenging to describe the generalized entropy generation without estimating the relative 

dimension of the actual (physical) entropy generation.  

A non-negative numerical entropy generation may ensure a physically realistic solution and 

numerical stability. There is a need to quantify and prevent entropy destruction related with 

a numerical formulation. The entropy generation in a thermodynamic process can be 

obtained by using the entropy transport equation, which involves an inequality [6, 28, 127]. 

By using the Gibbs equation, which relates entropy to the mass, pressure, temperature, 

internal energy and density, another form of entropy production equation can also be 

obtained, which is positive-definite with a sum of squared terms [1]. Adeyinka and Naterer 

[7] presented a study that relates the generalized entropy production to a discrete error 

indicator for transient conduction in a solid material. 

In summary, past studies showed that entropy production computations have been applied 

to timestep constraints, convergence criteria, and numerical error characterization. In terms 

of numerical error characterization, entropy generation models have been applied to 

compute discrete error for transient conduction in a solid material. One of the novel 

contributions of this work is the application of entropy generation computations as a 
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numerical error indicator in natural and mixed convection of fluids in square and lid driven 

cavities. 

In this thesis, a Second Law formulation will be presented and analyzed based on different 

forms of the positive-definite and entropy transport equations. In order to assess the 

numerical error, a new parameter called the “apparent entropy production difference” will 

be developed based on the difference between the transport and positive-definite forms of 

the Second Law. A trend between this difference and numerical errors in each control 

volume will be discussed.  

2.6 Entropy-Based Artificial Viscosity  

The application of an “artificial viscosity” to solve the conservation equations was 

pioneered by von Neumann and Richtmyer [128]. The artificial viscosity refers to a 

numerical approximation of the fluid viscosity that achieves some prescribed objectives 

such as numerical stability. The concept of an artificial viscosity has been applied to several 

applications using different methods. Richtmyer [129] studied the use of artificial viscosity 

to stabilize shock waves in a finite difference method. Wilkins [130,131] reported an 

artificial viscosity in HEMP (Hydrodynamic, Elastic, Magneto, and Plastic) problems. An 

artificial viscosity has also been related to large eddy simulations. Smagorinsky [132,133] 

reported that the eddy viscosity can be related to the von Neumann–Richtmyer artificial 

viscosity. Nazarov and Hoffman [134] studied a residual-based artificial viscosity for 

modelling of turbulent compressible flow, based on a posteriori error estimation. The 

artificial viscosity was used in shock capturing, turbulence capturing, and as a numerical 
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stabilization for large eddy simulation of turbulent flow. The adaptive method addressed 

parts of the flow highlighted by posteriori error estimates, but left turbulence and shocks 

under-resolved in a large eddy simulation.  

Albright and Shashkov [135] proposed a new technique for constructing an adaptive, 

artificial viscosity in one-dimensional, staggered-grid Lagrangian hydrodynamics. Their 

result demonstrated that a new adaptive technique produces more accurate results for a 

variety of tests with propagating shock waves. A higher order, state-based artificial 

viscosity method, associated with a governing partial differential equation, was proposed 

by Barter and Darmofal [136]. When applied to heat transfer problems on unstructured 

grids in hypersonic flows, they found that the artificial viscosity was less susceptible to 

numerical errors, thereby enabling more accurate heat transfer predictions. 

Hartmann [137] introduced an artificial viscosity for stabilization of numerical solutions at 

with large local residuals while preserving conservation and orthogonality of the 

discontinuous Galerkin method. The authors derived a posteriori error estimates for the 

measured errors in terms of target functionals of an airfoil immersed in a flow field. Kolev 

and Rieben [138] obtained an artificial viscosity for a Lagrangian-Eulerian hydrodynamics 

model using a finite element approach. The authors reported improved numerical results 

with the model. Persson and Peraire [139] presented a shock-capturing method for higher 

order discontinuous Galerkin approximations of conservation laws. They showed how the 

artificial viscosity could be used to eliminate high frequencies in a solution and enhance 

stability. 
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Yechel et al. [140] studied the use of an upwind symmetric interior penalty Galerkin (SIPG) 

method for convection-diffusion-reaction modelling with nonlinear reaction mechanisms. 

They reported that the addition of an artificial viscosity term minimizes the local spurious 

oscillations. Reisner et al. [141] introduced a new method for adding space–time smoothing 

by a localized artificial viscosity in the nonlinear systems of conservation equations 

involving rarefactions, shock waves, and contact discontinuities.  

Guermond et al. [142] presented a high-order entropy viscous method for approximating 

the nonlinear conservation laws. A nonlinear viscosity based on the local entropy 

production was added to the numerical discretization. The entropy viscosity method was 

applied to the one-dimensional Euler equations for a continuous finite element 

discretization in the MOOSE (Multi-Physics Object Oriented Simulation Environment) 

framework. Their method added dissipative terms to the governing equations, where a 

viscosity coefficient regulates the amount of dissipation. Their results indicated that the 

model can accurately resolve shocks and efficiently smooth out oscillations [143]. 

Chaudhuri et at. [144] proposed a spatio-temporal adaptive artificial viscosity-based shock-

capturing scheme for the solution of both viscous and inviscid compressible flows using a 

Discontinuous Spectral Element Method (DSEM). They reported that artificial thermal 

conduction and artificial viscosity coefficients are proportional to the thermal and viscous 

entropy generating terms, respectively. 

In summary, previous studies indicate that the concept of artificial viscosity has been 

applied to shock wave stabilization in a finite difference method and HEMP 

(Hydrodynamic, Elastic, Magneto, and Plastic) problems, modelling of turbulent 
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compressible flow based on a posteriori error estimation, error analysis in terms of target 

functionals of an airfoil immersed in a flow field, Lagrangian-Eulerian hydrodynamic 

modelling using a finite element approach, shock-capturing methods for higher order 

discontinuous Galerkin approximations of conservation laws, upwind symmetric interior 

penalty Galerkin (SIPG) methods for convection-diffusion-reaction modelling, adding 

space–time smoothing by a localized artificial viscosity in nonlinear systems of 

conservation equations, modelling of one-dimensional Euler equations for a continuous 

finite element discretization in the MOOSE (Multi-Physics Object Oriented Simulation 

Environment) framework, and a spatio-temporal adaptive artificial viscosity-based shock-

capturing scheme for the solution of both viscous and inviscid compressible flows using a 

Discontinuous Spectral Element Method (DSEM). 

Based on this previous literature review, and to the best of the author’s knowledge, no past 

studies have considered the application of entropy-based artificial viscosity which is based 

on a Control Volume Finite Element Method (CVFEM) to improve numerical accuracy, 

particularly in natural and mixed convection heat transfer problems. Therefore, one of the 

goals of this thesis is to develop a new corrective mechanism for numerical algorithms, 

using the entropy transport entropy to calculate an artificial viscosity. This will be called 

an entropy-based artificial viscosity to ensure positive (or minimally negative) entropy 

production and thereby enhance the accuracy of the numerical model. 
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3 METHODOLOGY 

This chapter presents a detailed description of the procedures for implementing the models 

of entropy production and the Second Law. The first section discusses the general scalar 

conservation equation, which includes the general transport equation, and conservation of 

mass, momentum, and energy. The second section describes the formulation of entropy 

generation and the Second Law of Thermodynamics. The third section of this chapter 

presents the numerical formulation, procedure, geometric discretization, and the local-

global coordinate transformations, relevant to the application of the conservation law to the 

discretization of the governing equations. 

The formulation specifically considers incompressible flow and natural / mixed convection 

problems with constant thermophysical properties, involving a Newtonian fluid. It is 

assumed that the buoyancy induced flow is two-dimensional and that a Boussinesq 

approximation can be used to evaluate the density variation in the buoyancy term.  

Heat transfer in buoyancy induced flow in cavities occurs in various engineering 

applications. For example, solar thermal collectors, cooling of microelectronic assemblies, 

and heating/ventilation in buildings involves free convection. A nuclear reactor core 

surrounded by gas-filled cavities, and heat transfer between glass panes in double-pane 

windows, are other examples. Though the physical processes of natural convection have 

been widely published in the literature, only a few studies have considered the importance 

of irreversibilities in such systems. 

A specified heat transfer rate can be achieved, but with different measures of fluid 

irreversibilities, based on the temperature difference and surface area across which heat 
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transfer occurs. For instance, convective cooling of a microelectronic component involves 

natural convection from the heat sink, however, pressure losses occur due to forced 

convection of air through internal components. In this case, each unit of entropy generated 

(or exergy destroyed) results in a corresponding measure of heat flow which is supposed to 

be removed from the system but cannot be removed as a result of entropy production. This 

entropy generation leads to kinetic energy dissipated to internal energy and pressure losses 

which work against the objective of component cooling [7]. 

3.1 General Scalar Conservation Equation 

Consider a general scalar quantity, ϕ, such as velocity, temperature, or concentration, 

transported throughout a flow field by convection and diffusion. The velocity as a general 

scalar quantity refers to each of the individual Cartesian velocity components (𝑢, 𝑣). The 

general two-dimensional scalar conservation equation can be written as [145]: 

𝜕(𝜌𝜙)

𝜕𝑡
+ ∇ ∙ (𝜌𝒗𝜙) − ∇ ∙ (𝛤∇𝜙) = �̇�                                                                               (3.1) 

The first term on the left-hand side of Equation (3.1) refers to the transient storage term and 

the second term represents the convective flux. The third term on the left-hand side is the 

diffusive flux. The term on the right-hand side represents internal or external source terms. 

In the formulation of Equation (3.1), both �̇� and 𝛤 are generalized parameters representing 

the source terms and diffusion coefficient, respectively. For example, 𝛤 could refer to 

viscosity, conductivity, etc. depending on the conserved quantity being considered. Also, 
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terms that cannot be expressed through the diffusion and convection terms (such as the 

pressure gradient) are included within the source term. 

Assume a Newtonian fluid, incompressible flow with constant thermophysical properties. 

The buoyancy induced flow is two-dimensional and the Boussinesq approximation is used 

to evaluate the density variation in the buoyancy term [146]. Under these assumptions, the 

corresponding governing equations for the conservation of mass, momentum (Navier-

Stokes equations), and energy equations are written as follows [146]: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0               (3.2) 

𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+ µ (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)                        (3.3) 

𝜌 [
𝜕𝑣

𝜕𝑡
+ 𝑢 

𝜕𝑣

𝜕𝑥
+ 𝑣 

𝜕𝑣

𝜕𝑦
] = 𝜌𝛽𝑔(𝑇 − 𝑇𝑐) + µ(

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)                                       (3.4) 

𝜌𝐶𝑝 [
𝜕𝑇

𝜕𝑡
+ 𝑢 

𝜕𝑇

𝜕𝑥
+ 𝑣 

𝜕𝑇

𝜕𝑦
] = 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
)                      (3.5) 

where 𝑢 and 𝑣 are the horizontal and vertical component velocities, respectively, 𝜌 denotes 

the density, 𝑝 is the pressure, µ refers to the dynamic viscosity, 𝛽 is the thermal expansion 

coefficient, 𝑔 is the gravitational acceleration, T is temperature, 𝐶𝑝 represents the specific 

heat capacity, and 𝑘 is the thermal conductivity.  

The Boussinesq approximation neglects density differences except where they appear in 

terms multiplied by the acceleration due to gravity, 𝑔. The Boussinesq approximation is 

relevant to problems where the fluid temperature varies from one region to another, driving 

fluid flow and heat transfer. In buoyancy driven flow, the pressure is a function of 
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longitudinal axis only, therefore, the pressure gradient in the horizontal direction inside the 

boundary layer is hydrostatic in the cold wall boundary of the fluid [146]. 

𝜕𝑝

𝜕𝑦
= −𝜌𝑐𝑔                                                                                                            (3.6) 

By substituting Equation (3.6) into the momentum equation, and defining the thermal 

expansion coefficient as: 

𝛽 ≈ −
1

𝜌
(
𝜌𝑐−𝜌

𝑇𝑐−𝑇
)                                                                                                  (3.7) 

Then the body force term in the vertical momentum equation is approximated as 

 (𝜌𝑐 − 𝜌)𝑔 ≈ 𝜌𝛽𝑔(𝑇 − 𝑇𝑐)                                                                                   (3.8) 

 Hence, Equation (3.4) represents the Boussinesq form of the momentum equation, which 

includes the coupling between the flow field and the temperature field.  

3.2 Formulation of Entropy Production 

3.2.1 Positive-Definite Entropy Generation Equation 

Entropy is a scalar quantity that is transported by fluid and heat flow, similar to the transport 

of mass, momentum, and energy; however, with an exception that entropy is not a 

conserved quantity. It is generated by irreversible processes such as fluid friction and heat 

transfer. The entropy generation can be represented in terms of the total derivative of 

entropy of a fluid element with respect to time (temporal and convective components) and 

entropy flux due to heat transfer [1]:  

�̇�𝑠 ≡
𝜕𝑆

𝜕𝑡
+ 𝛁 ∙ 𝑭 ≥ 0                                                                                                   (3.9) 
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where �̇�𝑠 refers to the rate of entropy production and 𝑆 = 𝜌𝑠 is the entropy per unit volume. 

The entropy flux can be written in terms of the heat flux and velocity field as follows: 

𝑭 = 𝜌𝒗𝑠 + 𝒒/𝑇                                                                                                                                           (3.10) 

where 𝑠 is the specific entropy. The specific entropy, 𝑠, is determined from the Gibbs 

equation as follows: 

𝑑𝑠 =
1

𝑇
𝑑𝑒 +

𝑝

𝜌2𝑇
𝑑𝜌                                                                                                                                     (3.11) 

where 𝑒 represents the internal energy per unit mass, 𝑝 refers to the pressure and 𝜌 is the 

density. By integrating the Gibbs equation between two state points, the change in specific 

entropy can be expressed as 

∆𝑠 = ∫ 𝐶𝑣
𝑑𝑇

𝑇

𝑇𝑡

𝑇𝑟
+ ∫

𝑝

𝜌2𝑇
𝑑𝜌

𝜌𝑡

𝜌𝑟
                                                                          (3.12) 

where the subscripts r and t represent a reference state and the current state, respectively. 

The variable 𝐶𝑣 denotes the specific heat, which is assumed to be constant. This formulation 

is limited to incompressible gas or liquid flows over small or moderate temperature 

differences. 

For an incompressible fluid, Equation (3.12) becomes: 

∆𝑠 = 𝑠 − 𝑠𝑟 = 𝐶𝑣 ln (
𝑇𝑡

𝑇𝑟
)                                                                               (3.13) 

For an ideal gas, 
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𝑠 = 𝐶𝑣 ln (
𝑇𝑡

𝑇𝑟
) − 𝑅 ln (

𝜌𝑡

𝜌𝑟
) + 𝑠𝑟                                                                       (3.14) 

Substituting the ideal gas law into Equation (3.14), 

𝑠 = 𝐶𝑣 ln
(𝑝𝑡 𝑝𝑟⁄ )

(𝜌𝑡 𝜌𝑟⁄ )𝛾
+ 𝑠𝑟 = 𝐶𝑣 ln (

𝑝∗

𝜌∗𝛾
) + 𝑠𝑟                                                     (3.15) 

where 𝛾 refers to the ratio of the specific heats. When combined with the Gibbs equation, 

the entropy transport equation provides a way of evaluating the local entropy production 

for an open system. Alternatively, the entropy generation rate can be formulated as [1]: 

�̇�𝑠 =
𝑘

𝑇2
(

𝜕𝑇

𝜕𝑥𝑖
)
2
+

𝜏𝑖𝑗

𝑇

𝜕𝑢𝑖

𝜕𝑥𝑗
≥ 0                                                                                             (3.16) 

where 𝑘 denotes the thermal conductivity and 𝜏𝑖𝑗 represents the viscous stress due to 

velocity gradients in the fluid flow, 

𝜏𝑖𝑗 = 𝜇 [(
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) −

2

3

𝜕𝑢𝑘

𝜕𝑥𝑘
𝛿𝑖𝑗]                                                                (3.17) 

Here 𝜇 refers to the dynamic viscosity and 𝛿𝑖𝑗 is the Kronecker delta. Under the assumption 

of incompressibility, the divergence term in Equation (3.17) will disappear. 

In Equation (3.16), Fourier’s law has been used to represent heat conduction. In addition, 

the fluid was assumed to be Newtonian for the viscous stress term. As a result of these 

models, Equation (3.16) becomes a positive-definite equation for the rate of entropy 

generation, as it represents a sum of squared terms. The positive-definite expression applies 
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to both incompressible and compressible Newtonian fluids. The temperature, T, is 

expressed in absolute (Kelvin) units.  

The resulting form of the positive-definite equation for the rate of entropy production can 

be expressed as 

�̇�𝑠,𝑝𝑑 =
𝑘

𝑇2
[(

𝜕𝑇

𝜕𝑥
)
2
+ (

𝜕𝑇

𝜕𝑦
)
2
] +

µ

𝑇
𝛷 ≥ 0                                                                  (3.18) 

where Φ refers to the viscous dissipation rate due to the velocity gradients in the fluid 

motion. The first term in Equation (3.18) represents the entropy production due to heat 

transfer across the temperature difference in the fluid. The second term refers to the local 

entropy production due to viscous dissipation. This inequality form of the Second Law is 

known as the positive-definite entropy equation because it consists of a sum of squared 

terms which, therefore, must yield a positive-definite result. The equation is obtained by 

combining the differential transport equations for thermal energy and mass with the Gibbs 

equation. The viscous dissipation, Φ, is defined as 

𝛷 = (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2
+ 2 (

𝜕𝑢

𝜕𝑥
)
2
+ 2 (

𝜕𝑣

𝜕𝑦
)
2
                                                                                        (3.19) 

The inequality in Equation (3.18) confirms that entropy is produced for irreversible 

processes according to the Second Law, 

�̇�𝑠 ≥ 0                                                                                                                                                         (3.20) 
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The inequality holds for irreversible processes, while the equality applies to reversible 

processes. 

For a nearly isothermal process, the entropy generation due to thermal irreversibilities is 

neglected. As a result, the entropy production equation, representing the contribution from 

viscous dissipation alone to flow irreversibilities, can be expressed by the second term on 

the right-hand side of Equation (3.18), 

�̇�𝑠,𝑝𝑑 =
µ

𝑇
[(

𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
2
+ 2 (

𝜕𝑢

𝜕𝑥
)
2
+ 2 (

𝜕𝑣

𝜕𝑦
)
2
] ≥ 0                                             (3.21) 

In the numerical model, the local entropy production can be computed based on post -

processing of the velocity and temperature fields to determine their spatial gradients.  

Equation (3.18) can be expressed in a non-dimensional form by defining the following 

dimensionless parameters: 

𝑈 =
𝑢𝐻

𝛼
, 𝑉 =

𝑣𝐻

𝛼
, 𝑋 =

𝑥

𝐻
, 𝑌 =

𝑦

𝐻
, 𝜃 =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
       (3.22) 

�̇�𝑠
∗ = [(

𝜕𝜃

𝜕𝑋
)
2
+ (

𝜕𝜃

𝜕𝑌
)
2
] +𝜑 [2 (

𝜕𝑈

𝜕𝑋
)
2
+ 2(

𝜕𝑉

𝜕𝑌
)
2
+ (

𝜕𝑈

𝜕𝑌
+

𝜕𝑉

𝜕𝑋
)
2
]     (3.23)   

𝜑 =
µ𝑇𝑜

𝑘
(

𝛼

𝐿(𝑇ℎ−𝑇𝑐)
)
2
,   𝑇𝑜 =

𝑇ℎ−𝑇𝑐

2
                              (3.24) 

where φ is the ratio of the viscous and thermal irreversibilities, and 𝑇𝑜  is a reference 

temperature. The total entropy production (�̇�𝑠 ,𝑡
∗ ) is obtained by integration of the local 

entropy production (�̇�𝑠
∗) over a control volume, V,   
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�̇�𝑠,𝑡
∗ = ∫ �̇�𝑠

∗𝑑𝑉
.

𝑉
                                                                                                                           (3.25) 

The values of entropy production are obtained based on the spatial derivatives of 

temperature and velocity calculated within the control volume. A piecewise linear profile 

will be assumed for the temperature and velocity derivatives inside the control volume. The 

local rate of entropy generation will be approximated as the average local rate of entropy 

produced within a control volume.  

3.2.2 Entropy Transport Equation 

According to the Second Law, the rate of entropy production is either zero (for reversible 

processes) or positive (for irreversible processes) for an isolated system. Processes such as 

heat transfer, chemical reactions, and friction are irreversible because the state of the system 

and its environment following the process cannot be returned to their initial thermodynamic 

state without energy expenditure. Entropy is a scalar quantity that is transported by heat 

and fluid flow, similar to the mass, momentum, and energy equations. The entropy balance 

for a differential control volume can be written as: 

𝜌
𝜕𝑠

𝜕𝑡
+ 𝜌𝑢

𝜕𝑠

𝜕𝑥
+ 𝜌𝑣

𝜕𝑠

𝜕𝑦
= −𝛁 ∙ (

𝒒

𝑇
)  + �̇�𝑠                                                           (3.26) 

The first term on the left side is the change in entropy of a fluid element with respect to 

time; the second and third terms on the left side represent the change in entropy with respect 

to space; and the first and second terms on the right-hand side denote the entropy flux due 

to heat flow and the rate of entropy production, respectively. This results in Equation (3.27), 

which is a “transport form” of the Second Law, 
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�̇�𝑠,𝑡𝑒 = 𝜌
𝐷𝑠

𝐷𝑡
+ 𝛁 ∙ (

𝒒

𝑇
)                                                                                                      (3.27) 

where 
𝐷

𝐷𝑡
 refers to the total or substantive derivative including both temporal and convective 

components.  

Another useful form can be obtained if the Gibbs equation and Fourier’s law are used to 

rewrite Equation (3.27) in terms of temperature as follows: 

�̇�𝑠,𝑇 =
𝜌𝐶𝑝

𝑇

𝐷𝑇

𝐷𝑡
−

𝑘

𝑇
(
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
) ≥ 0                                                                  (3.28)    

From the Second Law, the right side of Equation (3.28) must be equal or greater than zero. 

However, negative entropy production due to numerical discretization may be obtained due 

to approximation errors. Any negative entropy production is anticipated to lead to 

physically unrealistic results that violate the Second Law. This could offer a valuable 

insight into the physical viability of numerical predictions when experimental data is 

unavailable to validate the simulation results. 

3.2.3 Apparent Entropy Production Difference 

Two distinct formulations of the entropy production have been derived in the previous 

sections: positive-definite and transport equation forms of the Second Law. The two models 

can be computed independently from each other, for example, Equation (3.18) can be 

obtained by post-evaluation of the temperature and velocity fields from the momentum and 

energy equations, while Equation (3.27) can be calculated from an entropy balance and the 

Gibbs equation. The positive-definite form represents a sum of squared terms and an 
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inequality, which necessarily complies with the Second Law, but on the other hand, the 

transport form is obtained from an entropy balance within a control volume that is subject 

to numerical approximation errors and does not enforce a positivity requirement. The two 

different forms of the entropy generation rate will be represented by the subscripts “pd” 

and “te” for the positive-definite and transport forms, respectively. 

Ideally, both forms of the Second Law should produce the same results for the entropy 

production rate. However, in practice, they may produce different results since they are 

computed separately and independently of each other using different procedures of 

numerical approximations. Therefore, the difference between the two forms of entropy 

expressions may be nonzero. The underlying hypothesis of this work proposes to 

characterize the error in the numerical solution with respect to this apparent entropy 

production difference. By subtracting Equation (3.18) from Equation (3.27), and using the 

quotient rule of calculus to combine and cancel temperature derivative terms, the following 

expression for the “apparent entropy production difference” is obtained,  

𝛥�̇�𝑠 = �̇�𝑠 ,𝑡𝑒 − �̇�𝑠,𝑝𝑑 = 𝜌
𝐷𝑠

𝐷𝑡
−

𝑘

𝑇
[
𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
] −

𝛷

𝑇
                                                                    (3.29) 

The apparent entropy production equation can be normalized as follows: 

𝛥�̇�𝑠,𝑛 =
𝛥�̇�𝑠−𝛥�̇�𝑠 ,𝑚𝑖𝑛

𝛥�̇�𝑠,𝑚𝑎𝑥−𝛥�̇�𝑠,𝑚𝑖𝑛
                                                                                                                                (3.30) 

The difference between the two forms of the entropy expressions would ideally be zero in 

an exact solution. However, in practice, numerical approximation errors may produce a 

nonzero apparent entropy production difference. In the case of the entropy transport 

equation, such errors may also yield negative computed entropy production rates, since 
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there is no enforced positivity requirement, and hence potentially non-physical results due 

to a local violation of the Second Law. Approximation errors through the numerical 

discretization may lead to a nonzero apparent entropy difference. Therefore, the importance 

of the apparent entropy production difference lies in its ability to potentially characterize 

the solution error differently or more accurately than conventional approaches such as grid 

refinements in the absence of experimental data to confirm the numerical model’s accuracy. 

The discretization errors and implausible solution behavior in the numerical results may 

lead to local violations of the Second Law. This means that potentially in some control 

volumes, the rate of entropy production is less than zero, (�̇�𝑠)𝑗 < 0. If there exists a local 

violation of the Second Law, then a quantitative indication of the artificial viscosity is 

required to correct the solution [2]. In section 3.2.4, an entropy-based artificial viscosity is 

formulated using the Prandtl number with a previous transport entropy production equation 

to implement an algorithm corrective mechanism for numerical accuracy improvement.  

3.2.4 Entropy-Based Artificial Viscosity 

As discussed previously, negative entropy production due to numerical discretization may 

be obtained due to approximation errors. Any negative entropy production is anticipated to 

lead to physically unrealistic results that violate the Second Law. This could offer a 

valuable insight into the physical viability of numerical predictions when experimental data 

is unavailable to validate the simulation results. The post-processed temperature results can 

be used to obtain their physical plausibility based on the sign (positive or negative) 

predicted by Equation (3.28) and magnitude of the predicted entropy production difference. 

If the predicted rate of entropy production is negative due to discretization approximation 
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errors, and/or nonzero entropy production differences occur, then this provides a useful 

indicator for physical unrealistic results due to numerical discretization errors. 

A corrective mechanism on the numerical algorithm is developed herein. The transport 

form of the entropy production will be used to calculate a parameter called an entropy-

based artificial viscosity, which is obtained by remodeling of the diffusion coefficient in 

the momentum conservation equations to reduce the numerical error in the algorithm as 

well as compliance with the Second Law. This modification of the algorithm also ensures 

that the transport entropy production is no longer negative (or minimally negative). 

From equation (3.18), the entropy-based artificial viscosity can be obtained as: 

𝜇𝑒 =
|�̇�𝑠 ,𝑡𝑒|

[(
𝐶𝑝∇𝑇.∇𝑇

𝑃𝑟𝑇2 )+(
𝛷

𝑇
)]

                                                                          (3.31) 

where 𝜇𝑒 is the entropy-based artificial viscosity. The Prandtl number is defined as: 

𝑃𝑟 =
𝜇𝐶𝑝

𝑘
                                                                                                                        (3.32) 

and 

∇𝑇. ∇𝑇 = (
𝜕𝑇

𝜕𝑥
)
2
+ (

𝜕𝑇

𝜕𝑦
)
2
                                                                                         (3.33) 

The momentum conservation equations (3.3 and 3.4) become: 

𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+ [

|�̇�𝑠,𝑡𝑒|

[(
𝐶𝑝∇𝑇.∇𝑇

𝑃𝑟𝑇2 )+(
𝛷

𝑇
)]
] (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)                 (3.34) 
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𝜌 [
𝜕𝑣

𝜕𝑡
+ 𝑢 

𝜕𝑣

𝜕𝑥
+ 𝑣 

𝜕𝑣

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑦
+ 𝜌𝛽𝑔(𝑇 − 𝑇𝑐) + [

|�̇�𝑠,𝑡𝑒|

[(
𝐶𝑝∇𝑇.∇𝑇

𝑃𝑟𝑇2 )+(
𝛷

𝑇
)]
] (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)                                 

                                                                                                                                                   (3.35) 

The positive-definite entropy production in Equation (3.18) is greater or equal to zero, 

whereas the transport form of the entropy production equation may be negative. Therefore, 

the absolute value of the transport entropy production is used in Equation (3.31). A 

conventional approach would solve the momentum equations using the dynamic viscosity 

without consideration of the Second Law. However, the proposed entropy-based approach 

uses results from the Second Law to return and iteratively adjust the diffusion coefficient 

to ensure closer compliance with the Second Law. Sample pseudo-code for the 

conventional and modified algorithm steps are presented as follows 

Conventional algorithm 

For loop i = 1 to n 

   Solve mass equation 

   Solve momentum equation 

   Solve energy equation 

End loop 

Solve entropy equations  (�̇�𝑠,𝑝𝑑, �̇�𝑠,𝑡𝑒) 

(Based on post-processed u – velocity, v – velocity, and temperature) 

Iterate until pressure/velocity converges 
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Entropy-based artificial viscosity correction 

For loop i = 1 to n 

   Solve mass equation 

   Solve momentum equation 

   Solve energy equation 

   Solve entropy equations  (�̇�𝑠,𝑝𝑑, �̇�𝑠,𝑡𝑒) 

       Calculate artificial viscosity, 𝜇𝑒 

    Repeat until �̇�𝑠,𝑡𝑒  ≳ 0 

End loop 

In addition to the pressure/velocity convergence in the conventional algorithm, the 

corrective entropy-based algorithm adds a further convergence criterion that the transport 

entropy production should be approximately greater or equal to zero. 

3.3 Numerical Formulation 

A CVFEM (Control Volume Based Finite Element Method) will be used for discretization 

of the governing equations [141]. Each control volume is formed around the nodal points 

by assembling sub-control volumes from the neighbouring adjacent elements. The domain 

is subdivided into linear quadrilateral finite elements. The CVFEM uses a local coordinate 

system (𝑠, 𝑡) with shape functions as well as other element properties, as shown in Figure 
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3.1. The sub-control volumes and sub-surfaces of the surrounding elements define the 

control volume. The sub-surfaces refer to the boundaries of the control volumes, which 

overlap with the external boundaries of the element. The discretized conservation equations 

are obtained by integrating the governing equations over the finite control volumes and 

time steps. The midpoint of a sub-surface is denoted by an integration point (𝑖𝑝).  

The geometry and general scalar variable, ϕ (such as velocity or temperature), at a given 

point within the element can be obtained in terms of nodal values as follows: 

𝑥 = ∑ 𝑁𝑖𝑥𝑖
4
𝑖=1                                                                                                                                               (3.36) 

𝑦 = ∑ 𝑁𝑖𝑦𝑖
4
𝑖=1                                                                                                                                              (3.37) 

𝜙(𝑠, 𝑡) = ∑ 𝑁𝑖(𝑠, 𝑡)𝛷𝑖
4
𝑖=1                                                                                                                               (3.38) 

where 𝛷 refers to the local nodal values and 𝑁𝑖(𝑠, 𝑡) are the shape functions defined as: 

𝑁1(𝑠, 𝑡) =
1

4
(1 + 𝑠)(1 + 𝑡)                                                                                                                        (3.39) 

𝑁2(𝑠, 𝑡) =
1

4
(1 − 𝑠)(1 + 𝑡)                                                                                                                       (3.40) 

𝑁3(𝑠, 𝑡) =
1

4
(1 − 𝑠)(1 − 𝑡)                                                                                                                        (3.41) 

𝑁4(𝑠, 𝑡) =
1

4
(1 + 𝑠)(1 − 𝑡)                                                                                                                       (3.42)  
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The scalar spatial derivatives can be expressed as: 

𝜕𝜙

𝜕𝑥
= ∑

𝜕𝑁𝑖

𝜕𝑥
𝑖

4
𝑖=1                                                                                                                                          (3.43) 

𝜕𝜙

𝜕𝑦
= ∑

𝜕𝑁𝑖

𝜕𝑦
𝑖

4
𝑖=1                                                                                                                                           (3.44) 

The shape function derivatives can be determined using the chain rule of calculus, given 

by: 

{

𝜕𝑁𝑖

𝜕𝑥
𝜕𝑁𝑖

𝜕𝑦

} =
1

| 𝐽|
(

𝜕𝑦

𝜕𝑡
−

𝜕𝑦

𝜕𝑠

−
𝜕𝑥

𝜕𝑡

𝜕𝑥

𝜕𝑠

)  {

𝜕𝑁𝑖

𝜕𝑠
𝜕𝑁𝑖

𝜕𝑡

}                                                                  (3.45) 

where | 𝐽| represents the Jacobian determinant expressed as: 

ip 

Node  𝑠 

𝑡 

4 
3 

Control 
volume  

1 
2 

Node number  

Sub-control 
volume  

Sub-surface 

SCV1 
SCV2 

SCV3 
SCV4 

Figure 3-1: Schematic of finite elements and a control volume 
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| 𝐽| =
𝜕𝑥

𝜕𝑠

𝜕𝑦

𝜕𝑡
− 

𝜕𝑦

𝜕𝑠

𝜕𝑥

𝜕𝑡
                                                                                               (3.46) 

Also, 

𝜕𝑥

𝜕𝑠
= ∑

𝜕𝑁𝑖

𝜕𝑠
𝑥𝑖

4
𝑖=1 ;  

𝜕𝑥

𝜕𝑡
= ∑

𝜕𝑁𝑖

𝜕𝑡
𝑥𝑖

4
𝑖=1                                                                            (3.47) 

𝜕𝑦

𝜕𝑠
= ∑

𝜕𝑁𝑖

𝜕𝑠
𝑦𝑖

4
𝑖=1 ;  

𝜕𝑦

𝜕𝑡
= ∑

𝜕𝑁𝑖

𝜕𝑡
𝑦𝑖

4
𝑖=1                                                      (3.48) 

The local-global coordinate transformations and geometric information will be used to 

discretize the conservation equations. 

3.3.1 General Transport Equation Discretization 

Consider a general scalar quantity, 𝜙, such as temperature, transported throughout a flow 

field by convection and diffusion. The CVFEM ensures a balance for the conserved scalar 

across the control volumes within the domain. The general two-dimensional scalar 

conservation equation can be written as: 

𝜕(𝜌𝜙)

𝜕𝑡
+ ∇ ∙ (𝜌𝒗𝜙) − ∇ ∙ (𝛤∇𝜙) = �̇�                                                                                             (3.49) 

Integrating Equation (3.49) over the sub-control volume, 𝑆𝐶𝑉𝑖, enclosed by the surface 

area, 𝑆𝑖, and using the Gauss divergence theorem,  

∫ ∫
𝜕(𝜌𝜙)

𝜕𝑡
𝑑𝑉𝑑𝑡 +

.

𝑆𝐶𝑉𝑖

𝑡+∆𝑡

𝑡
∫ ∫ (𝜌𝒗𝜙) ∙ 𝑛

.

𝑆𝑖
𝑑𝑆𝑑𝑡

𝑡+∆𝑡

𝑡
  

−∫ ∫ (𝛤∇𝜙) ∙ 𝑛𝑑𝑆𝑑𝑡 =
.

𝑆𝑖

𝑡+∆𝑡

𝑡
∫ ∫ �̇� 𝑑𝑉𝑑𝑡

.

𝑆𝐶𝑉𝑖

𝑡+∆𝑡

𝑡
                                                 (3.50)                                              



59 
 

where 𝒗 represents the velocity vector at the surface, and 𝒏 denotes the unit normal vector 

at the surface. The transient storage term is discretized based on a backward difference 

method. Given a reference sub-control volume, 𝑆𝐶𝑉𝑖, the transient term is approximated 

as: 

∫ ∫
𝜕(𝜌𝜙)

𝜕𝑡
𝑑𝑉𝑑𝑡 = 𝐽𝑖(𝜌𝛷𝑖

𝑡+∆𝑡 − 𝜌𝛷𝑖
𝑡)

.

𝑆𝐶𝑉𝑖

𝑡+∆𝑡

𝑡
                                                        (3.51) 

where Φ represents the local nodal value, and  𝐽𝑖  represents the Jacobian determinant for a 

given node 𝑖. To integrate the transient term over the entire control volume, the terms of 

the sub-control volume of other elements sharing the same node are added to the transient 

term.  

The integration point variables, as well as their convective fluxes can be obtained by an 

upwinding differencing scheme (UDS), central differencing scheme (CDS), or exponential 

differencing scheme (EDS) [3,147]. In this thesis, the convection fluxes are determined by 

UDS for the values at the integration point. The integration point equations are obtained by 

pointwise approximations in Equation (3.50). For example, the transient term at each 

integration point, 𝑖, is approximated by a backward difference, 

∂ϕ

∂t
|
ipi

=
ϕipi

t+∆t‐ϕipi
t

∆t
                                                                                                                                         (3.52) 

3.3.2 Discretization of Convection and Diffusion Terms 

The convection and diffusion terms in the discretized general transport equation are 

evaluated at the sub-surfaces (see Figure 3.1) using a midpoint approximation method. For 

the convection term in Equation (3.50), 
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∫ ∫ (𝜌𝒗𝜙) ∙ 𝑛
.

𝑆𝑖
𝑑𝑆𝑑𝑡

𝑡+∆𝑡

𝑡
= 𝜌𝑢𝑖𝑝∅𝑖𝑝∆𝑡∆𝑦𝑖 − 𝜌𝑣 𝑖𝑝∅𝑖𝑝∆𝑡∆𝑥𝑖                            (3.53) 

Then the convective operator at the integration point can be expressed as:  

𝜌𝑢
𝜕𝜙

𝜕𝑥
+ 𝜌𝑣

𝜕𝜙

𝜕𝑦
|
𝑖𝑝𝑖

= 𝜌𝑉 (
𝜙𝑖𝑝𝑖

− 𝜙𝑢

𝐿𝑐
)        (3.54) 

where 𝑉 = √𝑢2 + 𝑣2 denotes the velocity magnitude of the fluid, 𝜙𝑢 refers to the upwind 

value of the variable ϕ, and 𝐿𝑐 represents the convective length scale. The directional 

calculation of the line portion between 𝜙𝑢 and 𝜙𝑖𝑝𝑖
 is a skewed upwinding approach as 

shown in Figure 3.2.  

 

Figure 3-2: Schematic of skew upwinding 
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The exponential differencing scheme is used to evaluate the integration point scalar 

variables in the discretized general scalar transport equation, Equation (3.50). The EDS 

discretization is a hybrid scheme which provides a smooth transition from the central 

differencing scheme, for low Peclet numbers, to the upwind differencing scheme for high 

Peclet numbers. It can be written as [29]: 

𝜙𝑖𝑝 = (
1+∝

2
)𝜙𝑢 + (

1−∝

2
)𝜙𝑑                                                                                        (3.55) 

where ∝  ≃ 𝑃𝑒2 (5 + 𝑃𝑒2) [29]⁄  and the Peclet number is 𝑃𝑒 = 𝜌𝑢𝑖∆𝑥𝑖 𝛤⁄ . The upstream 

value, 𝜙𝑢, is obtained by interpolation between local nodes where the upwind direction line 

and the quadrant edge intersect. For example, between local nodes i and i+1, the upstream 

value is: 

𝜙𝑢 = 𝑓𝑢Φ𝑖 + (1 − 𝑓𝑢)Φ𝑖+1                                                                                                       (3.56) 

where 𝑓𝑢 represents the coefficient of the corresponding linear interpolation for  𝜙𝑢 with 

reference to the local nodes as illustrated in Figure 3.2.  Similarly, the downstream value 

of the variable is obtained as: 

𝜙𝑑 = 𝑓𝑑Φ𝑖 + (1 − 𝑓𝑑)Φ𝑖+1                                                                                      (3.57) 

where 𝑓𝑑 represents the coefficient of the corresponding linear interpolation for 𝜙𝑑 with 

reference to 𝛷𝑖 and 𝛷𝑖+1. The order of accuracy for the approximated interpolation variable 

between the local nodes and integration point variable in the convection and diffusion terms 

is second-order accurate [3]. 
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The diffusion operator at the integration point is approximated by a CDS method [145], 

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
|
𝑖𝑝𝑖

=
1

𝐿𝑑
2
(∑ 𝑁𝑖Φ𝑖

4
𝑗=1 − 𝜙𝑖𝑝𝑖

)                                             (3.58) 

where 𝐿𝑑 represents the diffusion length scale. For an integration point 1, the diffusion 

length scale can be written as: 

𝐿𝑑
2 = (

2

∆𝑥2
+

8

3∆𝑦2
)
−1

         (3.59) 

The diffusion term in Equation (3.50) is computed at the bottom and left sub-surfaces 

relating to SCV1, 

∫ ∫ (𝛤∇𝜙) ∙ 𝑛 𝑑𝑆 𝑑𝑡 =
.

𝑆

𝑡+∆𝑡

𝑡
𝛤

𝜕𝜙

𝜕𝑛
|
𝑖𝑝𝑖

∆𝑡∆𝑦𝑖 − 𝛤
𝜕𝜙

𝜕𝑛
|
𝑖𝑝𝑖

∆𝑡∆𝑥𝑖                      (3.60) 

The scalar variable, temperature, and diffusion flux for the energy equation are related by 

Fourier’s law. Equation (3.60) is calculated based on the midpoint approximation. 

The lumped approximation method is used to evaluate the source term in Equation (3.50), 

∫ ∫ �̇� 𝑑𝑉 𝑑𝑡 =
.

𝑆𝐶𝑉𝑖

𝑡+∆𝑡

𝑡
𝐽𝑖∆𝑡�̇�|

(
1

2
,
1

2
)
                                                      (3.61) 

where the subscript, (
1

2
,
1

2
), refers to the local coordinate position in the middle of 𝑆𝐶𝑉𝑖. 

The local source terms are obtained by directly substituting the corresponding variables at 

the integration point using the Boussinesq approximation. After the substitution of the 

integration point variables into Equation (3.50), the integration point variable is written 

explicitly in terms of nodal values through the local inverted matrices [148]. 
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3.3.3 Assembly of Elemental Equations 

The assembly of all elements is performed after the integration point and sub-control 

volume equations are obtained within an element. Consider node P, with four different 

neighbouring elements. The control volume for the node is produced by assembling the 

respective sub-control volume contribution from each of the four elements sharing node P. 

For example, consider the heat conduction term of the energy equation at node 3 in Figure 

3.1. The energy balance at local node 3 of sub-control volume 1 can be defined as: 

∫ 𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
𝑑𝑉 = 𝑄2,1

.

𝑉
+ 𝑄4,1 + 𝑄𝑒1,1 + 𝑄𝑒2,1                     (3.62) 

where 𝑄𝑒1,1 and 𝑄𝑒2,1 refer to the exterior elements that also add heat flows to the energy 

balance for sub-control volume 1, while 𝑄 represents the heat flux across the sub-surface. 

Within the element 𝑄2,1, the heat flux at subsurface 1 can be determined as: 

𝑄2,1 = ∑ {∫ (𝑘
𝜕𝑁𝑖

𝜕𝑥

𝜕𝑦

𝜕𝑡
− 𝑘

𝜕𝑁𝑖

𝜕𝑦

𝜕𝑥

𝑑𝑡
)
𝑠=0

𝑑𝑡
1

0
}4

𝑖=1 𝑇𝑖                     (3.63) 

where 𝑡 denotes the local coordinate. 

3.3.4 Entropy Formulation 
 

In the previous section (3.3.3), a CVFEM was outlined. Results will be presented for 

velocity and temperature in a subsequent section based on numerical simulations with the 

CVFEM. These results can be post-processed to determine the velocity and temperature 

gradients, followed by the entropy production rates, with a CVFEM again or any other 
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numerical method. The resulting magnitude of the discretized entropy production and 

apparent entropy production difference will provide a useful numerical indicator for the 

selected numerical method under consideration. In some circumstances, it may be desirable 

or necessary to use a different numerical method for the Second Law analysis, for example, 

in post-processing of past results by the apparent entropy production difference to assess 

accuracy of a numerical model if experimental data was not available.  

A Second Law analysis can be performed independently of the numerical method used to 

solve the conservation variables because it assesses the positivity of entropy production 

only within the numerical framework of how the Second Law is formulated. To 

demonstrate this versatility, a general method of numerical discretization will be used in 

this section to compute the apparent entropy production difference. A common and 

standard finite difference method will be adopted.  

A typical finite difference grid is presented in Figure 3.3. The nodes are located at the points 

of intersection of the grid lines. Additional nodes can be created throughout the domain if 

required for higher accuracy. The location of an arbitrary point in the domain is denoted by 

the nodal coordinates (𝑖, 𝑗), where 𝑖 and 𝑗 are counter indices in the x and y directions, 

respectively. The point above is (𝑖, 𝑗 + 1), while the point below is (𝑖, 𝑗 − 1). The point to 

the right is (𝑖 + 1, 𝑗), while the point to the left is (𝑖 − 1, 𝑗). In nonuniform grids, the 

spacing between nodal points in the x and y-directions varies, while, in uniform grids, the 

spacing between nodes is uniform. Grid refinements produce more accurate results; 

however, at the cost of more computer memory and computational time for a larger number 

of equations to be solved. 
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Using a standard central differencing approximation, the positive-definite entropy 

generation in Equation (3.18) at node (i, j) can be discretized as follows: 

�̇�𝑠,𝑝𝑑 =
𝑘

𝑇𝑖,𝑗
2 (

𝜕𝑇

𝜕𝑥
|
𝑖,𝑗

2
+

𝜕𝑇

𝜕𝑦
|
𝑖,𝑗

2
) +

µ

𝑇𝑖,𝑗
𝛷𝑖,𝑗                                                      (3.64) 

where 

𝛷𝑖,𝑗 = (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
)
𝑖,𝑗

2
+ 2 (

𝜕𝑢

𝜕𝑥
)
𝑖,𝑗

2
+ 2 (

𝜕𝑢

𝜕𝑥
)
𝑖,𝑗

2
                                                               (3.65) 

Here the subscript (𝑖, 𝑗) refers to the discretized approximation at node (𝑖, 𝑗) for terms in 

brackets using the local spatial gradients from the derivative expression. 
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Figure 3-3: Schematic for finite difference formulation 



66 
 

The central difference approximation of the scalar derivative is second-order accurate since 

the truncation errors correspond to terms truncated above the second order from a Taylor 

series expansion, i.e., 

𝜕𝜃

𝜕𝑥
|
𝑖,𝑗

=
𝜃𝑖+1,𝑗−𝜃𝑖−1,𝑗

2∆𝑥2
+ 𝛰(∆𝑥2)                                                                                (3.66) 

where ∆𝑥 refers to the grid spacing in the x-direction. The magnitude of the truncation error 

decreases approximately quadratically with the square of the grid spacing. 

Using Fourier’s law of heat conduction in Equation (3.27) and the central differencing 

approximation, the entropy transport equation can be discretized as: 

�̇�𝑠,𝑡𝑒 = 𝜌(
𝜕𝑠

𝜕𝑡
|
𝑖,𝑗

+ 𝑢
𝜕𝑠

𝜕𝑥
|
𝑖,𝑗

+ 𝑣
𝜕𝑠

𝜕𝑦
|
𝑖,𝑗

) −
𝑘

𝑇𝑖 ,𝑗
(

𝜕2𝑇

𝜕𝑥2
|
𝑖,𝑗

+
𝜕2𝑇

𝜕𝑦2
|
𝑖,𝑗

)                 (3.67) 

where k is the thermal conductivity. The second derivative of the scalar variable is given 

as: 

𝜕2𝜃

𝜕𝑥2
|
𝑖,𝑗

=
𝜃𝑖+1,𝑗−2𝜃𝑖,𝑗+𝜃𝑖−1,𝑗

∆𝑥2
+ 𝛰(∆𝑥2)                                                                      (3.68) 

This approximation is also second-order accurate. The scalar variable at nodal point (𝑖, 𝑗) 

for a uniform grid is expressed as: 

 𝜃𝑖,𝑗 =
1

4
(𝜃𝑖+1,𝑗 + 𝜃𝑖−1,𝑗 + 𝜃𝑖,𝑗+1 + 𝜃𝑖,𝑗−1)                                                               (3.69) 

The magnitude of truncation errors and order of accuracy for the numerical approximation 

of the entropy production (positive-definite and transport equation) are both second order.  
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In the entropy transport equation, a piecewise logarithmic equation of state is used to 

compute entropy at the node: 

𝑠 = 𝑠𝑟 + 𝐶𝑝  log (
𝑇

𝑇𝑟
)                                                                                               (3.70) 

where the subscript 𝑟 represents a reference state i.e., 𝑠𝑟 = 0 at 𝑇𝑟 = 273 K.  

Using the above formulations, the positive-definite and transport forms of the Second Law 

can be computed, after which the apparent entropy production difference is found and 

normalized (non-dimensional). A new hypothesis is hereby proposed that the solution error 

is directly related to this normalized apparent entropy production difference, i.e.,  

𝐸𝜙 = ∆�̇�𝑠,𝑛                                                                                                                                   (3.71) 

where 𝐸𝜙 denotes the numerical solution error in the scalar variable, . In the following 

chapter, this hypothesis will be examined, tested, and further discussed. 

3.4 Nanofluids Formulation 

As discussed previously, nanofluids are fluids that contain nano-scale particles and 

typically have enhanced heat transfer characteristics and thermal conductivity when 

compared to a base fluid such as water, ethylene glycol or oil. Nanoparticles are made from 

the synthesis of metallic or non-metallic materials such as metals, nitrides, oxides, and 

graphite. They can be synthesized by various procedures such as gas condensation, 

chemical precipitation, or mechanical attrition. Nanofluids are formed through a colloidal 

mixture of nanoparticles and a base fluid. In fluids engineering applications, there can be 
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possible wall surface erosion, an increase in pumping power due to the presence of 

nanoparticles, and potential instability due to silts of particles. 

Different possible transport mechanisms for the particle motion in the nanofluids include 

Brownian motion, diffusiophoresis, and thermophoresis. Brownian motion occurs due to 

the collision of nanoparticles with molecules of the base fluid. This is a random motion of 

the particle suspended in the gas or fluid. The Brownian motion is driven by an increase in 

temperature, while the thermal conductivity is enhanced by energy transfer from the 

collision of particles of higher temperatures with lower temperature particles. As the bulk 

viscosity increases, the Brownian motion effectiveness increases [149,150]. 

Thermophoresis (also known as a Soret effect) occurs due to the drifting of nanoparticles 

against a temperature gradient, from a high-temperature region to a region of low 

temperature. This phenomenon is most significant in a free convection process, in which 

the flow is driven by temperature and buoyancy. A reduction in bulk density increases the 

rate of heat transfer. In contrast, diffusiophoresis (or osmo-phoresis) is a transport 

mechanism which involves drifting of suspended nanoparticles from a zone of lower 

concentration to a zone of higher concentration. This is generally not a preferred method 

due to the agglomeration of the nanofluids [151]. 

Nanofluids are analogous to two-phase multicomponent fluids which consist of 

nanoparticles and a base fluid. The effective properties of nanofluids have been modelled 

in numerous past studies [94, 96, 145, 152]. For the effective density, 

𝜌𝑛𝑓 = (1 − Ø)𝜌𝑓 + Ø𝜌𝑝                                                                                                (3.72) 
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where Ø is the nanoparticle volume fraction. The specific heat capacity of the nanofluid 

can be expressed as: 

𝐶𝑛𝑓 =
(1−Ø)(𝜌𝐶)𝑓+Ø(𝜌𝐶)𝑝

(1−Ø)𝜌𝑓+Ø𝜌𝑝
                                                                                                 (3.73)        

The effective dynamic viscosity can be predicted by the Brickman model [152], 

µ𝑛𝑓 =
µ𝑓

(1−Ø)2.5
                                                                                                                      (3.74) 

The effective thermal conductivity cannot be simply obtained by the volume fraction-

weighted sum of the nanoparticle properties and the base fluid, as in the case of the effective 

density and specific heat capacity of the nanofluid, since there are typically no universal 

relations for the effective thermal conductivity of various nanofluids. The calculation of the 

effective thermal conductivity involves a more detailed formulation based on experimental 

correlations such as the Maxwell-Garnetts model [145], 

𝑘𝑛𝑓

𝑘𝑓
=

𝑘𝑝+2𝑘𝑓−2Ø(𝑘𝑓−𝑘𝑝)

𝑘𝑝+2𝑘𝑓+Ø(𝑘𝑓−𝑘𝑝)
                                                                                                   (3.75) 

where 𝑘𝑓  is the thermal conductivity of the base fluid, 𝑘𝑝 is the thermal conductivity of the 

nanoparticle, and 𝑘𝑛𝑓  is the thermal conductivity of the nanofluid. 

Also, the heat capacity of the nanofluid is given by: 

(𝜌𝐶)𝑛𝑓 = (1 − Ø)(𝜌𝐶)𝑓 + Ø(𝜌𝐶)𝑝                                                                         (3.76) 

The effective thermal diffusivity is written as: 

𝛼𝑛𝑓 =
𝑘𝑛𝑓

𝜌𝐶𝑛𝑓
                                                                                                                           (3.77)                                                                                                                 

For the thermal expansion coefficient, 
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(𝜌𝛽)𝑛𝑓 = (1 − Ø)(𝜌𝛽)𝑓 + Ø(𝜌𝛽)𝑝                                                                         (3.78) 

The physical principle of the general mixture rule is used to predict the effective density, 

effective heat capacity and effective thermal expansion coefficient. The rule of mixtures is 

a weighted mean used to estimate various properties of a composite material. It provides a 

theoretical lower and upper-bound on properties such as density and heat capacity. These 

effective properties of the nanofluids were theoretically calculated through their basefluid 

and nanoparticle properties, and both the working fluid and nanoparticles are assumed to 

be a mixed property [153]. The use of the rule of mixtures to predict effective density and 

effective thermal expansion coefficient is generally accepted by researchers . The only 

constraint to the use of this method is that it is generally applicable to a low and moderate 

volume fraction (0-10%) [154], and the nanofluids analyzed in this thesis fall in this 

category. 

The correlation for the effective specific heat is a product of experimentally investigated 

values that considered nanofluids involving nanoparticles with 45 nm average particle 

diameter, a temperature range of 298.15K and 313.15K and volume fraction between 0 - 

21.7%. It was concluded that the model can predict the value of effective specific heat of 

nanofluids well within the ±5% margin. This is the closest accurate correlation available 

for predicting the effective specific heat as research is currently ongoing to develop a more 

accurate model [155,156]. 

The Brinkman model used to calculate the effective dynamic viscosity was developed in 

1952 as an extension of Einstein’s equation suitable for use with moderate particle volume 

fractions. This examined the effect of a mixture of solute molecules with an existing 
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continuous medium of particle volume fraction less than 10 %. This correlation has broad 

acceptance among the researchers [157]. The theoretical calculation of the effective thermal 

diffusivity of nanofluids has been studied by very few published articles. From past 

literature, there appears to exist only one theoretical model for predicting the effective 

thermal diffusivity, which is generally used by researchers. 

Maxwell’s model for the prediction of the effective thermal conductivity of base fluid-

nanoparticle mixtures with particles above 1 μm diameter shows reasonable agreement with 

experimental data at low and moderate nanoparticles volume fractions. Maxwell’s model 

predicts that the thermal conductivity of the mixture depends on the thermal conductivity 

of the base fluid and spherical particle, as well as the solid particles volume fraction. More 

recent research has attempted to include other factors such as nanolayers between the base 

fluid and nanoparticles, clustering of particles, nonspherical particles, intermolecular 

interactions among distributed particles, thermophoresis, and Brownian motion. Due to the 

complexity of these processes, there have not been a generally applicable relations for all 

types of nanofluids [145]. These properties will be used in subsequent chapters for the 

formulation and analysis of fluid flow and heat transfer problems involving nanofluids.  

3.5 Numerical Modelling 

The modelling and discretization of the formulations described in Chapter 3 are 

implemented by developing a source code using the Python programming language. The 

Python code solves the entropy production equations by using post-processed velocity and 

temperature fields, which are obtained by using the Control-Volume-Based Finite Element 

Method (CVFEM) to solve the mass, momentum and energy conservation equations using 
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a C++ source code. Both Python and C++ source codes are interfaced through data recovery 

and a management program which is an enhanced Python version of a PHASES C++ 

function called filedata that is used to import problem and mesh parameters. 

The typical simulation workflow can be broken down into three main components: the 

problem definition, the simulation, and the data analysis. The problem definition occurs 

where the problem parameters are defined. This includes the geometry of the problem, the 

initial and boundary conditions of the simulation, and the fluid properties. The second part 

is to simulate the fluid behavior and dynamics based on the problem parameters as stated 

in the problem definition. After the simulation is the data analysis stage, at which point the 

outputs from the simulation are presented visually so that they can be interpreted and 

analyzed by the user.  

The first simulation input is the geometry of the problem. The problem domain is 

discretized by dividing into nodes and elements. For a CVFEM, each of these elements is 

a quadrilateral. Each element is defined by specifying the x and y coordinates of its four 

corners (nodal points). Other important parts of the mesh that need to be defined are the 

boundary edges, which are defined by a set of two nodes which lie on the boundary of the 

mesh. 

In addition to the mesh geometry, the simulation requires initial conditions, boundary 

conditions, and fluid properties to be defined. Initial conditions are defined for each 

individual element, and represent the values of temperature, velocity, and concentration of 

the fluid at the time in which the simulation starts. Boundary conditions are defined for 
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each boundary. This is represented by a differential equation that has three coefficients 

which must be defined.  

Boundary conditions appear in the form A (dG/dn) + B (G) = C where G represents a scalar 

(i.e. velocity, concentration, temperature, etc.). This equation permits three types of 

conditions. 

1) Dirichlet condition; the scalar value of G is specified along the boundary nodes, i.e. 

A = 0, B = 1 and C = 1 implies G (concentration) = 1 along the boundary. 

2) Neumann conditions: the scalar’s first derivative, dG/dn (n=normal direction) is 

specified along the boundary nodes, i.e. A = 1, B = 0 and C = 0 implies an adiabatic 

boundary for G = temperature. 

3) Robin conditions: this type refers to a combination of scalar (i) and flux specified 

(ii) conditions. For example, A = k (where k = conductivity), B = h (where h = 

convection coefficient) and C = T0 (T0 represents a reference value) refers to a 

mixed conduction /convection condition for T = temperature. Thirdly, the fluid 

properties must be defined. 

The simulation will then produce output data for each node within the mesh. This can be 

done for five different types of data which are the temperature, u-velocity, v-velocity, 

entropy production, and concentration. This data is represented in discretized time steps, 

meaning that there will be output data for a finite number of points in time which must be 

defined.  
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Once the output data has been calculated it is necessary to visualize it graphically. The 

current implementation uses a package called matplotlib, which offers similar functionality 

to Matlab within the Python programming language. It can also be embedded into a 

Graphical User Interface (GUI), which makes it stratightforward to generate graphs 

efficiently. The output data for the velocities, temperature and entropy production can be 

visualized using contour plots and vector fields.  

The results and discussion of this work are presented in the following chapters, Chapters 4, 

5 and 6. 
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4 ENTROPY PRODUCTION IN NATURAL AND MIXED 

CONVECTION HEAT TRANSFER 

4.1 Introduction 

Natural convection heat transfer in enclosures occurs in various engineering applications. 

For example, heating, cooling and ventilation in buildings, cooling of microelectronic 

assemblies, heat transfer between glass panes in double-pane windows, fluid-filled cavities 

surrounding a nuclear reactor core, and solar collectors, involve natural convection. Several 

studies on natural convection have been reported in the literature, although only a relatively 

few studies have considered the related importance of entropy and the Second Law in 

natural and mixed convection applications.  

A specified rate of heat transfer can be achieved in natural convection problems, but with 

varying degrees of frictional and thermal irreversibilities, depending on the temperature 

difference across which heat transfer occurs and the surface area. For example, the 

convective cooling of a microelectronic assembly involves natural convection from the heat 

sink; however, pressure losses occur due to forced convection of air past the internal 

components. In this case, each unit of entropy generation (or exergy destruction) gives rise 

to a corresponding level of heat flow which should be removed but cannot due to entropy 

generation. This entropy generation leads to pressure losses and dissipation of kinetic 

energy into internal energy which opposes the desired aim of the component cooling.  

Another example is the addition of nanoparticles to a base fluid, in a mixed convection 

setting, which increases the effective thermal conductivity of the nanofluid, giving rise to 

a reduction in the temperature gradient and entropy production due to heat transfer 
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irreversibilities. But the addition of nanoparticles to the base fluid will increase the effective 

fluid viscosity and result in an increase of the entropy production due to friction. As the 

wall velocity increases, heat is removed from the system, thereby reducing entropy 

production due to thermal irreversibilities. But the increase in the wall velocity will enhance 

the fluid friction and produce higher entropy production due to friction irreversibilities. 

The study of nanofluids has become an area of interest to many researchers due to the 

unique heat transfer potential of such a new category of fluids. Nanofluids are suspension 

of nanoparticles, which are usually metal oxides, within a working fluid such as oil, glycol, 

or water. The mixture of nanoparticles with a base fluid leads to the increase of its thermal 

conductivity; in particular, nanoparticles contribute to enhance the heat transfer capabilities 

of nanofluids when compared to the base fluids such as water, oil, or glycol. On the other 

hand, the viscosity of the suspension also increases, and the viscosity of the fluid impact 

on its flow configuration such as pumping power.  Hence, there is a competing behavior of 

viscosity and thermal conductivity which both increase with nanoparticles concentration, 

therefore it is necessary to obtain an optimal value. 

The nanofluid properties are modelled differently from the base fluids by using well 

established and suitable effective nanofluid property models which are described in Section 

3.4. There may be other phenomena that drive the nanoparticle transport and thermal 

enhancement. However, as an emerging field, several investigations are currently ongoing 

to develop a more robust effective properties model for all nanofluids types, but this is not 

a scope of this research. 
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The essence of this research to perform a numerical investigation of entropy generation and 

Second Law analysis for Cu-water, TiO2-water, and  Al2O3-water nanofluids in natural and 

mixed convection enclosure, in order to understand the optimal working conditions of the 

system. For example, the investigation of the optimum nanoparticle volume fraction for 

which entropy production is minimized is essential for pumping power optimization. 

Different flow conditions, such as, wall velocity, wall temperature, heat flux, and particle 

concentrations are considered in order to understand their impact on the entropy production. 

The information presented in this work is believed to be useful in the pursuit of the design 

optimization of thermal and fluid devices. 

Past studies have indicated that numerical solutions involving natural convection in a cavity 

can be successfully determined by finite elements, finite volumes, or finite differences 

[158,159,160,161]. The buoyancy term is based on the local temperature; therefore, 

coupled flow solutions with the energy equation are needed. Previous benchmark solutions 

provide useful data for the validation of predictive results for variations of heat transfer and 

flow patterns [158, 159]. Entropy production models have also been applied to system 

optimization involving natural convection in an inclined cavity [162], laminar natural 

convection across a heated rotating cylinder [163], and irreversibilities at the onset of free 

convection in a square enclosure [73]. In contrast to these previous studies, this thesis will 

present a new approach for determining local entropy production rates, thereby providing 

a new useful design tool for energy efficiency improvement in natural and mixed 

convective systems. 
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A numerical study is performed to analyze the heat transfer and entropy production for both 

natural and mixed convection in a rectangular enclosure filled with water-based nanofluids. 

This study presents a new approach for minimizing the entropy production rate in different 

flow configurations with nanofluids. The governing equations are discretized with a 

control-volume-based finite-element method (CVFEM). The thermophysical properties of 

the nanofluids will be evaluated based on experimental data. The analysis considers the 

effects on entropy production due to variations of the volume fraction (0 ≤ ∅ ≤ 0.12) of 

the nanofluid, aspect ratio (𝐴𝑅) of the enclosure, and moving wall velocity (𝑣𝑤). The study 

compares the entropy production rates and heat transfer rates for three different nanofluids.  

The number of timesteps in the simulations of the problems in Chapters 4 and 5 is normally 

30. The timesteps are each of 1s duration, although results are steady-state, so the timestep 

progression of the transient formulation serves like an iterative solver.  

 The results for a natural convection case indicate a reduction in the rate of entropy 

production as the nanoparticle volume fraction increases. Results for the mixed convection 

case establish the optimal nanoparticle volume fraction that minimizes the total entropy 

production. Through this numerical study, the distribution of nanoparticles and cavity 

aspect ratio can be more effectively controlled to minimize the entropy production rates. 

4.2 Problem Configuration: Natural Convection 

Schematic diagrams for the natural convection studies in the rectangular enclosure are 

illustrated in Figures 4.1 and 4.2. The problem setup is a square enclosure of height 𝐻, and 

width 𝐿, filled with water-based nanofluids. A cartesian coordinate system is used so that 
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the x-axis represents the horizontal axis, and the y-axis refers to the vertical axis in the 

upwards direction.  It is assumed that the nanoparticles and the working fluid are in thermal 

equilibrium and there is no chemical reaction. Radiative heat transfer , as well as heat 

transfer due to nanoparticle motion relative to the working fluid, are neglected.  

The buoyancy induced flow is assumed to be two-dimensional of a Newtonian fluid. The 

thermophysical properties of the nanofluid are assumed to be constant. The variation of 

density in the buoyancy term is determined based on the Boussinesq approximation [146]. 

The nanofluids are assumed Newtonian with constant properties based on the nanoparticle 

shape, nanofluid shear rate which is a function of particles volume fraction, the 

temperatures, and the choice of nanofluids. Nanofluids which contains nanotubes show 

non-Newtonian behavior, however, nanofluids with spherical nanoparticles exhibit 

Newtonian flow behavior [164]. A spherical shaped nanoparticles is assumed for this study. 

Studies demonstrate that certain nanofluids show Newtonian and constant property 

behaviour when the particle volume fraction is less that 10.5 percent [164,165,166,167], 

hence, this study focuses on cases of nanoparticle concentrations between 0 and 10 percent.  

The physical model of this study considers a steady natural convection boundary layer 

along the heated walls, as well as a uniform heat flux density. The model uses sufficiently 

small temperature gradients across the boundary layer, such that thermophysical properties 

of the nanofluids, can be assumed to be constant with exception of the density variation in 

the buoyancy force, which is modeled using Boussinesq approximation based on 

incompressibility. Small solid particles with dimensions <50 nm are assumed, hence, 

believed to fluidize easily, and these particles are considered to have a fluid-like 
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characteristics [168,169]. One may expect that the basic theory for single-phase fluids can 

be applied to nanofluids. 

The development of nanofluids is generally faced with some challenges such as a higher 

pressure drop especially at higher thermal conductivity, higher production and operational 

cost, higher viscosity, increased pumping power, and long-term stability of nanoparticles 

in engineering applications. Since knowledge of nanofluids is still at elementary stages, it 

seems extremely difficult to have a precise idea on how the use of nanofluids acts in natural 

and mixed convection heat transfer, so further research is needed and ongoing in the area 

of nanofluids development and this is not a scope of this thesis. 

Under the above assumptions, the governing equations to be solved for this problem include 

the continuity, Navier-Stokes, and energy equations as follows: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0              (4.1) 

𝜌𝑛𝑓 [
𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+ 𝜇𝑛𝑓 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)        (4.2) 

𝜌𝑛𝑓 [
𝜕𝑣

𝜕𝑡
+ 𝑢 

𝜕𝑣

𝜕𝑥
+ 𝑣 

𝜕𝑣

𝜕𝑦
] = (𝜌𝛽)𝑛𝑓𝑔(𝑇 − 𝑇𝑐) + 𝜇𝑛𝑓 (

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)                (4.3) 

(𝜌𝐶𝑝)𝑛𝑓
[
𝜕𝑇

𝜕𝑡
+ 𝑢 

𝜕𝑇

𝜕𝑥
+ 𝑣 

𝜕𝑇

𝜕𝑦
] = 𝑘𝑛𝑓 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
)        (4.4) 

where 𝜌𝑛𝑓  represents the density, 𝜇𝑛𝑓  denotes the dynamic viscosity, (𝜌𝐶𝑝)𝑛𝑓
 refers to the 

heat capacity, (𝜌𝛽)𝑛𝑓 is the thermal expansion coefficient, and 𝑘𝑛𝑓  represents the thermal 

conductivity. The subscript nf refers to the nanofluid.  
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The Nusselt number is used to estimate the convective heat transfer at a fluid boundary. It 

was obtained as the ratio of the heat flux across the enclosure to the heat flux resulting from 

conduction. The heat flux across the cavity was evaluated as the mean heat flux on the hot 

and cold walls of the enclosure since the formulation is conservative. The Nusselt number 

is calculated by determining temperature gradients at the sub-control volume for boundary 

elements. The Nusselt number can be defined as: 

𝑁𝑢 =
ℎ𝐻

𝑘𝑛𝑓
                                                                                                                      (4.5) 

The heat transfer coefficient is calculated from: 

ℎ =
𝑞0

"

𝑇ℎ−𝑇𝑐
                                                                                                                      (4.6) 

The thermal conductivity of the nanofluid can be written as: 

𝑘𝑛𝑓 = −
𝑞0

"

𝜕𝑇 𝜕𝑥⁄
                                                                                                             (4.7) 

By substituting Equations (4.6) and (4.7) into Equation (4.5), the local Nusselt number on 

the hot (left) wall can be expressed as: 

𝑁𝑢 = − (
𝜕𝑇

𝜕𝑥
) .

𝐻

𝑇ℎ−𝑇𝑐
                                                                                                   (4.8) 

The average Nusselt number is determined by integrating the local Nusselt number on the 

hot wall: 

𝑁𝑢𝑎𝑣𝑔 = ∫ 𝑁𝑢(𝑦)𝑑𝑦
1

0
                                                                                               (4.9) 
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The thermophysical properties of the nanofluids are presented in Table 4.1. The parameters 

for the base case simulation are 𝑅𝑎 = 105, 𝐴𝑅 = 1, Ø = 0.02, 𝑃𝑟 = 6.2, and the base 

case nanofluid is Al2O3 – water. The rate of entropy production will be presented in non-

dimensional form. 
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Table 4-1: Thermophysical properties of nanoparticles and water 

Physical Property Al2O3 Cu TiO2 H2O 

Density, ρ (kg/m3) 3970 8933 4250 993 

Thermal Conductivity, K (W/m K) 40 400 8.953 0.613 

Specific Heat Capacity, Cp (J/kg K) 765 385 687 4179 

Thermal expansion coefficient, β (1/K) 8.5 x 10-6 1.7 x 10-5 9.0 x 10-6 2.1 x 10-6 

Dynamic Viscosity, µ (Pa.s)    8.9 x 10-4 

 

The thermophysical properties of the nanofluids depend on the models used, the 

thermophysical properties of the nanoparticles, the thermophysical properties of the 

basefluid, and the nanoparticle volume fraction. The thermophysical properties of the 

nanofluids are presented in Table 4.2. These thermophysical properties are obtained based 

on the models presented in section 3.4, and the thermophysical properties of the basefluid 

and nanoparticles presented in Table 4.1, at the nanoparticle volume fraction of 0.02. 

 

Table 4-2: Thermophysical properties of nanofluids 

Physical Property Al2O3 – H2O Cu – H2O TiO2 – H2O 

Density, ρ (kg/m3) 1053 1152 1058 

Thermal Conductivity, K (W/m K) 0.649 0.650 0.644 

Specific Heat Capacity, Cp (J/kg K) 3921 3590 3898 

Thermal expansion coefficient, β (1/K) 2.059 x 10-4 2.061 x 10-4 2.060 x 10-4 
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4.3 Grid Refinement Study and Validation of Results 

A mesh convergence study was performed for the numerical results. The solutions of 

temperature and velocity at the local nodes were compared for 11 x 11, 21 x 21, 41 x 41, 

and 81 x 81 grids. Four different grid sizes were considered for the case of 𝑅𝑎 = 104  and 

𝑃𝑟 = 0.71. As shown in Figures 4.3 and 4.4, the difference between the results of the 

variables for 41 x 41 and 81 x 81 is infinitesimal, therefore the mesh convergence study 

shows that grid independent results were obtained with the 41 x 41 grid. It was observed 

that the values of the variables at the local nodes in the central region (y = 0.004, and y = 

0.006) of the problem domain reached convergence earlier than values of the variables at 

the local nodes in the outer region (y = 0.002, and y = 0.008) of the problem domain.  
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Figure 4-3: Temperature profiles along the length of the enclosure for different grid 

refinements at (a) y = 0.002, (b) y = 0.004, (c) y = 0.006, (d) y = 0.008 (Ra = 104, Pr = 

0.71) 

 

301

302

303

304

305

306

307

308

0 0.002 0.004 0.006 0.008 0.01

T
em

p
er

at
u

re
 (

K
)

Position, x (m)

(d)

11 x 11 mesh

21 x 21 mesh

41 x 41 mesh

81 x 81 mesh

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 0.002 0.004 0.006 0.008 0.01

U
 (

m
/s

)

Position, x (m)

(a)

11 x 11 mesh

21 x 21 mesh

41 x 41 mesh

81 x 81 mesh



87 
 

 

 

 

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.002 0.004 0.006 0.008 0.01

U
 (

m
/s

)

Position, x (m)

(b)

11 x 11 mesh

21 x 21 mesh

41 x 41 mesh

81 x 81 mesh

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.002 0.004 0.006 0.008 0.01

U
 (

m
/s

)

Position, x (m)

(c)

11 x 11 mesh

21 x 21 mesh

41 x 41 mesh

81 x 81 mesh



88 
 

 

Figure 4-4: Velocity profiles along the length of the enclosure for different grid 

refinements at (a) y = 0.002, (b) y = 0.004, (c) y = 0.006, (d) y = 0.008 (Ra = 104, Pr = 

0.71) 
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grid. The results around the outer region (y = 0.002, and y = 0.008) of the problem domain 

reach a grid independent solution at a 41 X 41 grid. Generally, the temperatures and 

velocities converge towards the grid independent solution as the mesh is refined.  

Figure 4.5 presents a validation of this work by comparing the numerical results with 

experimental work by Krane and Jesse [177] and a numerical study by Khanafer et al. [94]. 
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number of 0.71 was considered for this problem. The temperature values were obtained 

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 0.002 0.004 0.006 0.008 0.01

U
 (

m
/s

)

Position, x (m)

(d)

11 x 11 mesh

21 x 21 mesh

41 x 41 mesh

81 x 81 mesh



89 
 

from local nodes along the horizontal centreline. In this case, the validation of the numerical 

results is limited to the local nodes along the horizontal centreline because of unavailability 

of experimental data in other regions of the domain. In such problems, only validation of 

along the centreline is often published. 

 

Figure 4-5: Comparison of temperature distribution with past experimental work (Ra = 

1.89 X 105, Pr = 0.71) 
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viscosity as a corrective mechanism to potentially reduce solution errors and enhance 

numerical accuracy will be discussed. 

Also, the results were verified by comparisons with benchmark solutions [158,170]. Tables 

4.3 and 4.4 show the predicted values of the maximum horizontal velocity along the vertical 

centerline (𝑢𝑚𝑎𝑥) of the enclosure with its position (𝑦), and the maximum vertical velocity 

(𝑣𝑚𝑎𝑥)  along the horizontal centerline with its position (𝑥). A comparison of the values 

with the given benchmark solutions for Ra = 103 and Ra = 104 shows good agreement 

overall. The percentage error difference for the predicted values of the maximum horizontal 

velocity along the vertical centerline (𝑢𝑚𝑎𝑥 ) of the enclosure, and the maximum vertical 

velocity (𝑣𝑚𝑎𝑥)  along the horizontal centerline with the benchmark solutions of de Vahl 

Davis [158], ranges from 0.01% to 3.60 %, which is good. However, for positions (𝑥), the 

percentage error difference is 11%. The percentage difference is indicative of potential 

numerical discretization approximation errors. 

The variables in Tables 4.3 and 4.4 are non-dimensional. The dimensionless values of the 

positions were obtained by dividing the positions by the cavity height, while the non-

dimensional velocities were calculated by dividing the product of the velocities and the 

cavity height by the thermal diffusivity. The equations used to determine the non-

dimensional parameters are presented in Equation (3.22). 
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Table 4-3: Comparison of horizontal velocity (with position) and vertical velocity (with 

position) with benchmark solutions (Ra = 103) 

 

Table 4-4: Comparison of horizontal velocity (with position) and vertical velocity (with 

position) with benchmark solutions (Ra = 104) 

S/n Source 𝒖max  

(Ra = 104) 

Position (𝒚) 𝒗max  

(Ra = 104) 

Position (𝒙) 

1 Present study 16.01 0.80 19.62 0.10 

2 de Vahl Davis [158] 16.18 0.823 19.62 0.119 

3 de Vahl Davis and Jones 

[170] 

15.24 - 21 0.781 – 0.883 19.17 – 26.30 0.094 – 0.145 

4 Wan et al. [171] 16.17 0.823 19.79 0.120 

5 Sarler [172] 15.80 - 19.04 - 

6 Kosec and Sarler [173] 16.27 0.825 19.83 0.120 

7 Markatos and Pericleous 

[174] 

16.18 0.832 19.44 0.113 

8 Tian et al. [175] 16.16 - 19.63 - 

9 Projahn et al. [176] 16.20 0.883 19.56 0.110 

 

S/n Source 𝒖max  

(Ra = 103) 

Position (𝒚) 𝒗max  

(Ra = 103) 

Position (𝒙) 

1 Present study 3.621 0.80 3.835 0.20 

2 de Vahl Davis [158] 3.649 0.813 3.697 0.178 

3 de Vahl Davis and Jones 

[170] 

2.10 – 3.75 0.75 – 0.88 2.10 – 3.77 0.125 – 0.205 

4 Wan, et al. [171] 3.489 0.813 3.686 0.188 

5 Sarler [172] 3.544 - 3.566 - 

6 Kosec and Sarler [173] 3.653 0.812 3.699 0.177 

7 Markatos and Pericleous 

[174] 

3.544 0.832 3.593 0.168 

8 Tian et al. [175] 3.605 - 3.689 - 

9 Projahn et al. [176] 3.7 0.825 3.770 0.175 
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The results of velocity, temperature, and the position at which they occur from the 

numerical model were obtained locally at the specified node positions and compared with 

benchmark solutions of de Vahl Davies [158] along with other publications that validated 

their results against de Vahl Davies [158]. The benchmark solution by de Vahl Davies [158] 

is numerical, but popular and widely used by researchers as benchmark results. Also, the 

results of the benchmark solution were validated with experimental work by Krane and 

Jesse [177]. The percentage error for the compared data is calculated and tabulated along 

with results in Tables 4.5 and 4.6. 

Table 4-5: Percentage difference for comparison of horizontal velocity (with position) 

and vertical velocity (with position) with benchmark solutions (Ra = 103) 

 

Table 4-6: Percentage difference for comparison of horizontal velocity (with position) 

and vertical velocity (with position) with benchmark solutions (Ra = 104) 

Source 𝒖max  

(Ra = 104) 

Position (𝒚) 𝒗max  

(Ra = 104) 

Position (𝒙) 

Present study 16.017 0.829 19.619 0.110 

de Vahl Davis [158] 16.178 0.823 19.617 0.119 

Percentage difference (%) 1.00 0.73 0.01 7.86 

 

The percentage error is calculated by taking a ratio between the absolute difference between 

the numerical solution and the benchmark solution and the average of the benchmark 

Source 𝒖max  

(Ra = 103) 

Position (𝒚) 𝒗max  

(Ra = 103) 

Position (𝒙) 

Present study 3.621 0.80 3.835 0.20 

de Vahl Davis [158] 3.649 0.813 3.697 0.178 

Percentage difference (%) 0.77 1.61 3.66 11.64 
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solution and the numerical solution. The percentage difference equation is presented in 

Equation (4.10). 

Percentage difference = (
|∅𝑛−∅𝑏|

[
∅𝑛+∅𝑏

2
]
) × 100                                                                    (4.10) 

where ∅𝑛 and ∅𝑏represent results of the numerical variable (velocity, temperature), and 

results of the benchmark variable (velocity, temperature), respectively. The validated 

results are non-dimensional and calculated in-line with non dimensional variables used in 

the benchmark solution of de Vahl Davies [158].  

Recent studies in second law analysis have indicated that entropy has both traditional 

physical characteristics and computational characteristics. In addition to physical processes 

of heat transfer and viscous dissipation, CFD procedures may destroy (or produce) 

computational entropy due to artificial dissipation, discretization errors, and implausible 

numerical results [3,4]. The differential equations solutions for the conservation of mass, 

momentum, and energy that do not satisfy the second law could be characterized by 

oscillations, a lack of uniqueness, or other unusual behavior [121]. The total entropy 

generation computed from a numerical formulation entails a sum of the computational and 

physical entropy production. This unique characteristic of the entropy can potentially serve 

as a physically based parameter which can indicate physically unrealistic solutions and 

discretization errors in computational thermofluids. 

This perspective has been demonstrated by various entropy computations applications. For 

example, entropy computations have been applied to numerical error, convergence criteria, 

and time-step constraints. The second law analysis was used to show that the condition for 
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which the Courant, Freidrichs, and Lewy (CFL) parameter attains numerical stability 

directly relates to the second law under conditions that the diffusive transport is negligible 

and source term is constant.  

The discretized entropy equation can be used as a method of ensuring nonlinear stability. 

Merrian [127] showed that a restrictive condition based on a positive entropy generation 

rate in each control volume is adequate to guarantee the stability of a scheme. Numerical 

experiments have been presented to indicate that stable solutions which do not satisfy the 

entropy constraint may obtain quantitatively incorrect results [5]. The second law can also 

be used to improve the reliability of upwinding schemes.  

In Chapter 5 of this thesis, a Second Law formulation based on a new parameter called the 

“apparent entropy production difference” will be presented and applied to numerical error 

characterization [7,178]. In Chapter 6 the use of entropy-based artificial viscosity as a 

corrective mechanism to potentially reduce solution errors and enhance numerical accuracy 

will also be discussed. 

The temperature field from the simulations with a Grashof number of 104, Prandtl number 

of 6.2, and nanoparticle volume fraction of 20%, were examined, as well as a Grashof 

number of 105, Prandtl number of 6.2, and nanoparticle volume fraction of 5%. The results 

were compared and validated against past published data by Khanafer et al. (2003), as 

shown in Figure 4.6. 
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Figure 4-6: Comparison of temperature distribution with past published 

results (Gr = 104, Ø=20%, Pr = 6.2 and Gr = 105, Ø=5%, Pr = 6.2) 

 

Predictions were validated with experimental results of Krane and Jesse (1983). The results 

are validated locally as the temperature results were obtained locally from nodal points 

along the horizontal mid-plane. The validation is done at the local nodes along the mid-

plane based on available experimental/benchmark results. 

4.4 Cases 1 and 2: Natural Convection in Cavity 

Two case studies were considered for natural convection (Figures 4.1 and 4.2). An adiabatic 

boundary condition is assumed for the top and bottom walls of the enclosure for both cases. 

The vertical walls for Case 1 are maintained at isothermal conditions. The left wall is held 

at a constant high temperature, while the right wall is maintained at a constant low 

temperature. For Case 2, the left wall is maintained at a constant heat flux while the right 
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wall boundary is maintained at a low temperature. The boundary conditions for the natural 

convection case studies are defined as follows. 

𝜕𝑇

𝜕�⃗⃗� 
= 0,𝑣 = 𝑢 = 0       𝑓𝑜𝑟 𝑦 = 0, 𝐻 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝐿    

𝑇 = 𝑇ℎ , 𝑣 = 𝑢 = 0  𝑜𝑟  𝑣 = 𝑢 = 0,
𝜕𝑇

𝜕�⃗⃗� 
= −

𝑘𝑓

𝑘𝑛𝑓
   𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻  

𝑇 = 𝑇𝑐 , 𝑣 = 𝑢 = 0    𝑜𝑟     𝑣 = 𝑢 = 0,𝑇 = 𝑇𝑐        𝑓𝑜𝑟 𝑥 = 𝐿 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻    

       

                   (4.11) 

For Case 1, the effects of the nanoparticle volume fraction on the effective thermal 

conductivity and dynamic viscosity are presented in Figure 4.7. The results illustrate that 

the effective thermal conductivity of the nanofluid increases when the nanoparticle volume 

fraction is increased. When the effective thermal conductivity of the nanofluid is increased, 

the heat transfer rates also increase [79]. The results indicate that the heat transfer of the 

nanofluid is significantly enhanced by the addition of Aluminium oxide nanoparticles to 

the base fluid (water) to form the Al2O3-water nanofluid. A 10% increase in the 

nanoparticle volume fraction yields a 31.7% increase in the effective thermal conductivity 

of the nanofluid. 

The variation of dynamic viscosity with nanoparticle volume fraction is also presented in 

Figure 4.7. It can be observed that an increase in the nanoparticle volume fraction enhances 

the dynamic viscosity. Furthermore, the dynamic viscosity increases by 30.1% with a 10% 

increase in the nanoparticle volume fraction.  Since fluid friction is a function of viscosity, 

and a source of flow irreversibility, the result implies that an increase in the dynamic 
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viscosity due to the addition of nanoparticles will yield an increase in the rate of entropy 

production due to fluid friction irreversibilities. The effective thermal conductivity is the 

ratio of the thermal conductivity of the nanofluid and the thermal conductivity of the base 

fluid. It is dimensionless. 

A schematic for Case 2 is presented in Figure 4.2. The effect of the nanoparticle volume 

fraction on the effective thermal conductivity and entropy production is compared for 

different nanofluids (Al2O3-water, Cu-water, and TiO2-water) and presented in Figures 4.8 

and 4.9. The aspect ratio sensitivity is also studied for this case. 

 

 

 Figure 4-7: Variation of effective thermal conductivity and dynamic viscosity with 

nanoparticle volume fraction 
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Figure 4.8 compares the effective thermal conductivity for the different nanofluids. It can 

be observed that the Cu-water nanofluid has the highest effective thermal conductivity, and 

next is the Al2O3-water nanofluid, while the TiO2-water nanofluid has the lowest effective 

thermal conductivity. Therefore, the Cu-water nanofluid yields the most effective heat 

transfer relative to other nanofluids, followed by the Al2O3-water nanofluid, while the 

TiO2-water nanofluid yields the least heat transfer.    

 

Figure 4-8: Variation of effective thermal conductivity with nanoparticle volume fraction 

for different nanoparticle types 
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increase in the nanoparticle volume fraction. In contrast to the effective thermal 

conductivity results in Figure 4.8, the Cu-water nanofluid yielded the minimum total 

entropy production among the nanofluids, followed by the Al2O3-water nanofluid. The 

TiO2-water nanofluid produced the highest total entropy production over the range of 

nanoparticle volume fractions. When the nanoparticles are added to the base fluid, there 

will be a corresponding increase in the effective thermal conductivity, leading to a 

reduction in the temperature gradient, thereby resulting in a decrease of the total entropy 

production. 

 
Figure 4-9: Variation of entropy production with nanoparticle volume fraction for 

different nanoparticle types 
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In this case, the entropy production due to thermal irreversibilities is higher than fluid 

friction irreversibilities as a result of weak buoyancy induced flow and the enhanced 

thermal conductivity. The rate of entropy production with units of W/m3K is volumetric 

entropy, which is entropy production per unit volume. 

From Figures 4.8 and 4.9, it can be seen that, generally, for all nanofluid types, the variation 

of the nanoparticle volume fraction produces an opposite effect on the effective thermal 

conductivity and the total entropy production. While the effective thermal conductivity 

increases with an increase in the nanoparticle volume fraction, the total entropy production 

decreases. 

Figure 4.10 presents results of the average Nusselt number (Nuavg) on the hot wall for 

various nanoparticle volume fractions and Grashof numbers. A linear variation of the 

average Nusselt number with the nanoparticle volume fraction is observed in Figure 4.10. 

The trend in Figure 4.10 indicates that the addition of nanoparticles to the fluid enhances 

the heat transfer rate, hence this increases the Nusselt number by 17% for a Grashof number 

of 103, and 19% for a Grashof number of 105. This enhancement of the average Nusselt 

number by nanofluids plays a potentially significant role in cooling system applications 

such as electronics cooling.  

The Nusselt number of nanofluids usually depends on a few factors such as thermal 

conductivity, the nanoparticle volume fraction, the heat capacitance of both the 

nanoparticles and pure fluid, the flow structure, the nanofluid viscosity, and the dimensions 

of the particles. 
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Figure 4-10: Variation of average Nusselt number with nanoparticle volume fraction for 

different Grashof number 
 

Figure 4.11 illustrates the effect of aspect ratio on entropy production for the different 

nanofluids. It is observed that an increment in the aspect ratio of the enclosure increases 

the rate of entropy production. When the aspect ratio of the rectangular enclosure is 

increased, the area with a constant heat flux and low wall temperature (left and right walls) 

is increased, while the insulated area (upper and bottom walls) is reduced. Consequently, 

an increase in the heat flux area relative to the insulated area will produce a higher 

temperature gradient, larger heat transfer irreversibilities, and a higher entropy production 

rate.  
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 Figure 4-11: Effect of aspect ratio on total entropy production for different nanoparticle 

types 

Figure 4.12 shows the isotherms of the simulation for the case of Ra = 103 − 105  and 

Pr =0.71. The temperature profile is almost linear at the smallest Rayleigh number (103). 

An increase in the Rayleigh number leads to a corresponding increase in the convection 

flow where the profiles exhibit a more progressive departure from linearity. The isotherms 

flatten as the Rayleigh number increases, with the highest temperature drop observed closer 

to the wall. This trend arises due to the increasing buoyancy-induced motion of the fluid. 
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Figure 4-12: Isotherms for (a) Ra=103 (b) Ra=104 and (c) Ra=105 with Pr = 0.71 

 

Figure 4.13 shows the predicted velocity field for Rayleigh numbers of 103 − 105  

and Pr = 0.71. At the lowest Rayleigh numbers in Figure 4.13 (a), the fluid flow is nearly 

symmetrical about the center point. An increase in the Rayleigh number results in a more 

elliptical recirculation which eventually separates into two regions at Ra = 105, as illustrated 

by Figure 4.13 (c). 
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Figure 4-13: Velocity fields for (a) Ra=103 (b) Ra=104 and (c) Ra=105 with Pr = 0.71 
 

Error! Reference source not found. presents the predicted local positive definite entropy p

roduction field for isothermal walls and a temperature difference of (a) 10 oC, (b) 15 oC, 

and (c) 20 oC at Pr = 0.71. The temperature difference is obtained as the difference between 

the temperature of the hot wall, Th and that of the cold wall, Tc. It was observed that more 

entropy is produced in the regions with a higher temperature difference in the fluid and in 

regions with viscous dissipation due to buoyancy-induced motion of the fluid. The results 

also indicate that as the temperature difference across the isothermal walls increases, the 

rate of entropy production also increases.  
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Figure 4-14:  Positive definite entropy production field maps for isothermal walls and 

temperature difference of (a) 10 oC, (b) 15 oC, and (c) 20 oC at Pr = 0.71 

 

4.5 Case 3 and 4: Mixed Convection in Cavity 

Schematic diagrams for the mixed convection case studies (Cases 3 and 4) are presented in 

Figures 4.15 and 4.16. Case 3 is mixed convection of nanofluids in a lid-driven cavity 

(Figure 4.15). The top and bottom walls of the cavity are insulated. The lid of the cavity is 

driven at a constant initial velocity, 𝑢𝑜 . The vertical walls are isothermal. The right wall is 

kept at a constant low temperature, while the left wall is maintained at a constant high 

temperature. The boundary conditions for this problem are defined as follows: 

𝜕𝑇

𝜕𝒏
= 0;     𝑣 = 𝑢 = 0       𝑓𝑜𝑟 𝑦 = 0 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝐿    

(c) 
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𝜕𝑇

𝜕𝒏
= 0;    𝑣 = 0,𝑢 = 𝑢𝑜       𝑓𝑜𝑟 𝑦 = 𝐻 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝐿    

𝑇 = 𝑇ℎ;    𝑣 = 𝑢 = 0           𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻  

𝑇 = 𝑇𝑐;    𝑣 = 𝑢 = 0           𝑓𝑜𝑟 𝑥 = 𝐿 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻         

                                                                                                                                      (4.12) 

 

Figure 4-15: Schematic for Lid-Driven Cavity - Case 3 (Pr = 6.2) 

 

In Case 4 (Figure 4.16), the upper and lower boundary walls are insulated. The left 

boundary is held at a constant low temperature as a moving wall with a constant velocity 
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𝑣𝑤, while the right boundary wall is maintained at a constant heat flux. The boundary 

conditions for this mixed convection case are defined as follows. 

𝜕𝑇

𝜕�⃗⃗� 
= 0,𝑣 = 𝑢 = 0       𝑓𝑜𝑟 𝑦 = 0, 𝐻 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝐿  

𝑇 = 𝑇𝑐 , 𝑣 = 𝑣𝑤, 𝑢 = 0       𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻     

𝜕𝑇

𝜕�⃗� 
= −

𝑘𝑓

𝑘𝑛𝑓
, 𝑣 = 𝑢 = 0       𝑓𝑜𝑟 𝑥 = 𝐿 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻   

                      (4.13)  

                                                                                                               

 

 

 

 

 

 

 

 

 

 Figure 4-16: Schematic of mixed convection case study – case 4 
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Figures 4.17 (a) and (b) show the change in the average Nusselt number on the hot wall 

(left wall) with the nanoparticle volume fraction as a function of Rayleigh number and 

Reynolds number. Figure 4.17 (a) illustrates the variation in average Nusselt number with 

nanoparticle concentration at Re =10. Figure 4.17 (b) presents the change in average 

Nusselt number with nanparticle volume fraction when Re = 100. The increase of  the 

nanoparticle concentration enhances the effective thermal conductivity and therefore the 

heat transfer. As nanoparticles are added to the base fluid, the flow intensity increases, and 

the heat transfer rate is induced, hence increasing the Nusselt number. In addition, an 

increase in the Reynolds number means a higher velocity of the top lid, which leads to 

increased forced convection, and thus the Nusselt number.  
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Figure 4-17: Variation of Nusselt number with nanoparticle volume fraction for different 

Rayleigh numbers and Reynolds numbers (a) Re =10 (b) Re = 100 

 

The use of nanofluids instead of a base fluid, by increasing the nanoparticle volume fraction 

from 0 to 5%, significantly enhances the Nusselt number by 53% at Ra = 106 and 29% at 

Ra = 104 for Re = 10. For Re = 100, the use of nanofluids instead of a base fluid enhances 

the Nusselt number by 52% at Ra = 106 and 27% at Ra = 104. 

A Second Law analysis is performed to find the optimal nanoparticle fraction for which the 

entropy production is minimized. Figure 4.18 illustrates the variation of entropy production 

with nanoparticle volume fraction as a function of the wall velocity, 𝑣𝑤. The results for the 

optimal nanoparticle volume fraction that minimizes the entropy production are presented 

in Table 4.7.  
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The addition of nanoparticles to the base fluid increases the effective thermal conductivity 

of the nanofluid, leading to a reduction in the temperature gradient and entropy production 

due to thermal irreversibilities. This explains the downward trend in the curve. On the other 

hand, the addition of nanoparticles to the base fluid will enhance the fluid viscosity and 

result in an increase of the entropy production due to friction irreversibilities which leads 

to the other upward trend in the curve. The temperature gradients, as well as the entropy 

generation due to heat transfer across the temperature difference in the fluid is computed 

by the first term in Equation (3.18). The second term refers to the local entropy production 

due to viscous dissipation. The results of total entropy production presented in Figure 4.18 

are calculated by Equation (3.18). 

As the wall velocity increases, heat is removed from the system, thereby reducing entropy 

production due to thermal irreversibilities, whereas the increase in the wall velocity will 

enhance the fluid friction and produce higher entropy production due to fr iction 

irreversibilities. This explains the different trends observed in Figure 4.18. 

The optimal wall velocity for which the total entropy production is minimized was also 

predicted. As shown in Table 4.7, a wall velocity of approximately -0.50 m/s produced the 

minimum entropy production of 388,213 W/m3K. It is observed that the optimal wall 

velocity also represents an inflection point in the total entropy production rate as illustrated 

in Table 4.7 and Figure 4.18. The aim of studying the entropy production rate in a mixed 

convention of nanofluids is to obtain the optimum nanoparticle concentration and wall 

velocity for which the entropy production is minimized in a mixed convection system. 
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These optimum parameters are important because they can be used to maintain the 

minimum irreversibilities in a system, as shown in Tables 4.7 and 4.18. 

 

Figure 4-18: Variation of entropy production with nanoparticle volume fraction as a 

function of wall velocity 
 

 

Table 4-7: Optimal values of nanoparticle volume fraction and entropy production as a 

function of wall velocity 

Wall Velocity 

(m/s) 

Optimal Volume Fraction (%) Minimum Entropy Production 

(W/m3K) 

-0.25 0.04 410205 

-0.50 0.04 388213 
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The entropy and Second Law analysis for natural and mixed convection systems involving 

nanofluids can be potentially applied to nanofluid-based solar thermal collectors. For 

example, based on the minimum entropy production, an optimum nanoparticle volume 

fraction can be obtained, and the pumping power of a nanofluid-based solar thermal 

collector can potentially be optimized. Also, the entropy production studies can be 

applicable in comparing the heat transfer enhancement and measure of irreversibilities at 

various nanoparticle concentrations for different nanofluids types. This is essential for the 

selection of a nanofluid type that is best suited (for example, a nanofluid type with high 

heat transfer enhancement, and minimum entropy production) for a system. 

4.6 Conclusion 

This chapter presented a new approach for how entropy and the Second Law of 

Thermodynamics can be used as effective tools for the energy efficiency improvement and 

numerical modeling of thermofluid systems. Previous conventional methods generally 

detect energy losses on a system-wide basis. With such approaches, the margins for 

improving the efficiency for existing devices are often relatively small. However, entropy-

based methods track energy losses locally and therefore can offer higher levels of system 

efficiency and energy savings in various applications.  

A numerical investigation of heat transfer and entropy production for natural and mixed 

convection in rectangular enclosures using air, water, as well as nanofluids as the working 

fluid was reported in this chapter. For the study with nanofluids, an optimum nanoparticle 

volume fraction for which entropy production is minimized was determined. The chapter 

also presented comparisons of the natural convection heat transfer and entropy production 
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for different nanofluids in the cavity to obtain the optimal nanofluid that is best suited for 

each system. The heat transfer rates and entropy production for Cu-water, Al2O3-water, and 

TiO2-water nanofluids in the enclosure were compared. The results showed an increase in 

heat conduction and a reduction in the rate of entropy production when the nanoparticle 

volume fraction increases. Among the nanofluids compared, Cu-water was found to 

produce the best heat transfer performance and lowest entropy production.   

The results for an aspect ratio sensitivity study were also presented. It was also observed 

that the total entropy generation increases with an increase in the aspect ratio of the cavity. 

The analysis for the mixed convection case was presented in this chapter. It showed that an 

optimum value of the nanoparticle volume fraction can be achieved, as well as a wall 

velocity, for which the total rate of entropy production is minimized.  

In general, Chapter 4 presented a new approach for the application of the Second Law, 

entropy generation minimization and heat transfer enhancement in mixed and natural 

convection of nanofluids in cavities. The next chapter will present the application of the 

Second Law and entropy production as a numerical error indicator in numerical heat 

transfer.  
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5 ENTROPY-BASED ERROR CHARACTERIZATION IN 

NUMERICAL HEAT TRANSFER 

5.1 Overview 

This section presents another novel application of the entropy production formulation. An 

entropy-based error indicator will be used to assess the solution accuracy of fluid flow 

simulations with heat transfer using the Second Law. The control-volume-based finite-

element method (CVFEM) is used to discretize and solve the governing equations. Then 

the numerical procedure computes and compares the local entropy production rates 

obtained from the two forms of the discretized Second Law – or the transport and positive-

definite forms of the entropy transport equation. The computed local entropy generation 

rates from both methods are compared and related to expected numerical errors from the 

benchmark solutions. 

In previous chapters, each of the case studies have offered a unique perspective of how 

entropy generation and the Second Law can provide useful design insights for the 

improvement of system thermal performance. Furthermore, entropy generation has both 

physical and computational characteristics. In addition to the physical processes of heat 

transfer and viscous dissipation, CFD models may destroy or produce entropy due to 

numerical discretization through approximation errors that lead to non-physical numerical 

results, artificial dissipation, and other discretization errors [3, 4]. Numerical simulations 

which do not satisfy a prescribed entropy constraint may yield non-physical results [6]. 

Appropriate steps may be adopted to overcome these anomalies, for example, the specific 
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form of a convective upwinding scheme can be modified appropriately to satisfy the 

entropy constraint and improve the overall accuracy of the model [3]. The entropy 

constraint is constructed based on alternate positive-definite and entropy transport forms of 

the Second Law along with the Gibbs equation [6]. 

In this chapter, a Second Law formulation will be analyzed based on different forms of the 

positive-definite and entropy transport equations. In order to assess the numerical error, a 

new parameter called the “apparent entropy production difference” will be computed based 

on the difference between the transport and positive-definite forms of the entropy 

production rate. A relationship between this difference and numerical errors in each control 

volume will be developed and discussed. The present study considers mixed convection in 

lid-driven and isothermal wall cavities. It is observed that the apparent entropy production 

difference is related to the numerical error. The normalized peak apparent entropy 

production difference shows a reasonable agreement with the normalized peak numerical 

error at corresponding nodes. Although the results are obtained for limited application 

problems, it is anticipated that similar trends exist for other flow conditions and geometrical 

configurations.  

This section presents results for the apparent entropy production difference and numerical 

error analysis for mixed and natural convection of various fluids in a lid-driven cavity and 

isothermal wall enclosure. The analysis focuses on the determination of the apparent 

entropy production difference, numerical errors, and a potential relationship between these 

variables. The results also include grid refinement studies and their effects on the apparent 
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entropy production difference. The thermophysical properties of the fluids are presented in 

Table 5.1 [116].  

Table 5-1: Thermophysical properties of fluids 

Physical Property Air Water 

Density, ρ (kg/m3) 1.180 993 

Thermal Conductivity, K (W/m K) 0.027 0.613 

Thermal expansion coefficient, β (1/K) 0.031 2.1 x 10-6 

Specific Heat Capacity, Cp (J/kg K) 1004 4179 

Dynamic Viscosity, µ (Pa.s) 1.9 x 10-5 8.9 x 10-4 

 

The numerical model is applied to two test problems. The first example is a lid-driven 

cavity containing a working fluid with a Prandtl number of Pr = 5.23, and lid Reynolds 

number, Re = 100, as shown in Figure 5.1. The second problem is an isothermal wall 

enclosure containing a working fluid with a Prandtl number of Pr = 0.71, and Rayleigh 

number of Ra = 104. The assumptions include: (i) a Newtonian fluid; (ii) incompressible, 

laminar flow; (iii) two-dimensional flow; (iv) density variation in the buoyancy force term 

that is approximated by the Boussinesq method; and (v) a fluid with constant 

thermophysical properties. Under these assumptions, the governing equations include the 

conservation of mass, Navier-Stokes, and energy equations as follows: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                         (5.1) 

𝜌 [
𝜕𝑢

𝜕𝑡
+ 𝑢 

𝜕𝑢

𝜕𝑥
+ 𝑣 

𝜕𝑢

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+ µ (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
)        (5.2) 
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𝜌 [
𝜕𝑣

𝜕𝑡
+ 𝑢 

𝜕𝑣

𝜕𝑥
+ 𝑣 

𝜕𝑣

𝜕𝑦
] = 𝜌𝛽𝑔(𝑇 − 𝑇𝑐) + µ(

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
)                                (5.3) 

𝜌𝐶𝑝 [
𝜕𝑇

𝜕𝑡
+ 𝑢 

𝜕𝑇

𝜕𝑥
+ 𝑣 

𝜕𝑇

𝜕𝑦
] = 𝑘 (

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
)                           (5.4) 

Dimensionless velocities are defined for the test problems as follows: 

𝑈 =
𝑢

√𝑔𝛽∆𝑇𝐻3
                (5.5) 

𝑉 =
𝑣

√𝑔𝛽∆𝑇𝐻3
                (5.6) 
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Figure 5-1: Schematic for Lid-Driven Cavity - Problem 1 

(Pr = 5.23, Re = 100) 
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5.2 Problem 1: Lid-Driven Cavity Flow 

The first test problem is mixed convection of water in a lid-driven cavity (Figure 5.1). The 

top and bottom walls of the cavity are insulated. The lid of the cavity is driven at a constant  

initial velocity, 𝑢𝑜 . The vertical walls are isothermal. The right wall is kept at a constant 

low temperature, while the left wall is maintained at a constant high temperature. The 

boundary conditions for this problem are defined as follows: 

𝜕𝑇

𝜕𝒏
= 0;     𝑣 = 𝑢 = 0       𝑓𝑜𝑟 𝑦 = 0 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝐿    

𝜕𝑇

𝜕𝒏
= 0;    𝑣 = 0,𝑢 = 𝑢𝑜       𝑓𝑜𝑟 𝑦 = 𝐻 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝐿    

𝑇 = 𝑇ℎ;    𝑣 = 𝑢 = 0           𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻  

𝑇 = 𝑇𝑐;    𝑣 = 𝑢 = 0           𝑓𝑜𝑟 𝑥 = 𝐿 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻         

                                                                                                                                        (5.7) 

The horizontal component velocity, u, along the vertical axis is presented in Figure 5.2.  

The results are compared against past data presented by Ghia et al. [179]. The comparison 

shows good agreement. The results show the effects of the initial lid velocity on the fluid 

in the top region of the cavity. The horizontal component velocity of the fluid in the upper 

region of the enclosure is higher than other regions. The numerical error in the u-velocity 

is determined by the difference between the values of u-velocity from the numerical 

computations and past data of Ghia et al. (1982).  
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      Figure 5-2: Comparison of dimensionless u-velocity with Ghia et al. (1982) 
 

The data from Ghia et al. (1982) is based on a model validated with experimental work by 

Durst et al. (1974) in which a laser anemometer was used to determine the local values of 

the velocity. The work had indicated that with an uncertainty of less than 1 mm/s, velocities 

as low as 4mm/s within 0.15mm of walls can be measured using this technique. The 

velocity measurements were augmented with studies of flow visualization which were 

recorded on film. 

Table 5-2 presents the first level u-velocity and how it was processed to obtain the 

dimensionless parameter which was compared with data from Ghia et al. [179]. The 

dimensionless values are obtained by dividing the product of the nodal velocity and height 

of the cavity by the thermal diffusivity.  
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Table 5-2: Dimensionless velocity calculation from first level results 

U-Velocity 

(m/s) 

Height of 

Cavity 

(m) 

Thermal 

Diffusivity 

(m2/s) 

Dimensionless 

Parameter 

 (
𝑢𝐻

∝
) ∗ 10−2 

0 0.01 2.3x10-5 0 

-0.020 0.01 2.3x10-5 -0.087 

-0.031 0.01 2.3x10-5 -0.138 

-0.036 0.01 2.3x10-5 -0.159 

-0.036 0.01 2.3x10-5 -0.160 

-0.033 0.01 2.3x10-5 -0.146 

-0.028 0.01 2.3x10-5 -0.123 

-0.022 0.01 2.3x10-5 -0.095 

-0.015 0.01 2.3x10-5 -0.064 

-0.0074 0.01 2.3x10-5 -0.032 

0 0.01 2.3x10-5 0 

0.007 0.01 2.3x10-5 0.031 

0.014 0.01 2.3x10-5 0.063 

0.021 0.01 2.3x10-5 0.094 

0.028 0.01 2.3x10-5 0.123 

0.033 0.01 2.3x10-5 0.146 

0.037 0.01 2.3x10-5 0.160 

0.036 0.01 2.3x10-5 0.160 

0.032 0.01 2.3x10-5 0.138 

0.020 0.01 2.3x10-5 0.087 

0 0.01 2.3x10-5 0 

 

Figure 5.3 shows the positive-definite and transport forms of entropy production along the 

vertical axis. Since the positive-definite entropy equation is given by a sum of squared 

terms, it is expected that the results are all positive values. It is also expected that the highest 

entropy production occurs in the upper region of the enclosure, due to friction 

irreversibilities caused by the high velocity of the moving lid of the cavity. The results of 

the transport form of entropy production have a similar trend as the positive-definite 

entropy production. However, entropy production values are not all positive due to 

numerical errors. 
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A negative entropy production is an indication of numerical error and a local violation of 

the second law [6]. However, the presence of numerical entropy destruction makes it 

challenging to evaluate the generalized entropy generation without quantifying the 

proportion of the actual (physical) entropy generation. Although a positive entropy 

generation may suggest numerical stability and a physically realistic solution, it does not 

quantify the possible entropy destruction in the CFD formulation.  

 
Figure 5-3: Transport and positive-definite entropy production along the height of the 

enclosure. 
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The numerical formulation of both the positive definite and transport forms of the entropy 

production equations involve numerical approximation which is prone to discretization 

error. Though the positive definite entropy computation produces non-negative entropy in 

the solution, there is still the possibility of numerical error in the solution due to 

discretization approximations. On the other hand, negative entropy generation may be 

obtained from the computation of the transport entropy. 

By looking at the results from both entropy computations, it is difficult to determine which 

of the formulations possess less numerical errors or higher accuracy. However, the apparent 

entropy production difference, which is the difference between the positive definite and 

transport form of the entropy production equations is an important parameter for predicting 

the magnitude and trend of the numerical error in the solution because in an ideal situation 

with an exact solution, the difference between the transport form and positive-definite 

entropy equations should be equal to zero. Hence, the apparent entropy production 

difference is an important parameter for predicting the magnitude and trend of the 

numerical error in the solution. For numerical algorithm correction, this parameter is used 

in Chapter 6 to model an entropy-based artificial viscosity which is used to develop a 

corrective mechanism for the numerical algorithm. 

Figure 5.4 shows a comparison between the error in u-velocity and apparent entropy 

production difference. Recall that the apparent entropy production difference is the change 

between the entropy production as computed and normalized by the transport and positive-

definite forms of the entropy equation. The results in Figures 5.3 and 5.4 show a similar 
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trend, whereby a relationship appears to exist between the numerical error in u-velocity and 

the apparent entropy production difference.  

 

Figure 5-4: Apparent entropy production difference and numerical error in u-velocity 

along the height of the enclosure. 
 

Figure 5.5 presents a comparison between the normalized numerical error in u-velocity and 

the normalized apparent entropy production difference. It is observed that the normalized 
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transport equation yields negative rates of entropy production, this suggests non-physical 

erroneous results that scale approximately in relation to the magnitude of the solution error. 

 

Figure 5-5: Normalized apparent entropy production difference and numerical error in 

u-velocity along the height of the enclosure. 
 

The apparent entropy production difference is normalized by using Equation (5.10). The 

dimensionless temperature is normalized using Equation (5.9). Other variables such as 

velocity and error are normalized using Equation (5.11). 

Table 5-3 shows the first level results of apparent entropy production difference. The 

apparent entropy production difference is the difference between the positive definite and 

transport forms of entropy production.  
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Table 5-3: Normalized apparent entropy production from first level results 

Apparent 

Entropy 

Production 

Difference 

(W/m3K) 

Minimum 

Apparent 

Entropy 

Production 

Difference 

(W/m3K) 

Maximum 

Apparent 

Entropy 

Production 

Difference 

(W/m3K) 

Normalized 

Apparent 

Entropy 

Production 

Difference 

4414.97 -9198.66 86856.60 0.142 

86856.60 -9198.66 86856.60 1 

80831.43 -9198.66 86856.60 0.937 

18417.28 -9198.66 86856.60 0.288 

2730.60 -9198.66 86856.60 0.124 

-1000.39 -9198.66 86856.60 0.085 

-10.25 -9198.66 86856.60 0.096 

2291.32 -9198.66 86856.60 0.120 

4949.57 -9198.66 86856.60 0.147 

6500.34 -9198.66 86856.60 0.163 

5972.60 -9198.66 86856.60 0.158 

3607.00 -9198.66 86856.60 0.133 

223.29 -9198.66 86856.60 0.098 

-3361.57 -9198.66 86856.60 0.061 

-6539.80 -9198.66 86856.60 0.028 

-8717.25 -9198.66 86856.60 0.005 

-9198.66 -9198.66 86856.60 0 

-7517.33 -9198.66 86856.60 0.018 

-4294.59 -9198.66 86856.60 0.051 

-1209.48 -9198.66 86856.60 0.083 

-373.03 -9198.66 86856.60 0.092 

 

The results of the apparent entropy production difference are normalized to have a value 

between 0 and 1 by calculating the ratio of the difference between the apparent entropy 

production difference at a nodal point and the minimum value of apparent entropy 

production difference in the distribution (𝛥�̇�𝑠 − 𝛥�̇�𝑠,𝑚𝑖𝑛) to the difference between the 
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maximum value of apparent entropy production difference in the distribution and the 

minimum value of apparent entropy production difference in the distribution (𝛥�̇�𝑠,𝑚𝑎𝑥 −

𝛥�̇�𝑠,𝑚𝑖𝑛). Equation (5.10) was used to obtain the normalized apparent entropy production 

difference. The normalized apparent entropy production difference is dimensionless.  

Table 5-4 shows how the normalized error in u-velocity is processed. The error in u-

velocity is obtained as the difference between the present results and past published data.  

Table 5-4: Normalized error calculation from first level results 

Error in 

U-Velocity 

Minimum 

Error in 

U-Velocity 

Maximum 

Error in 

U-Velocity 

Normalized 

Error in 

U-Velocity 

0 -0.053 0.090 0.370 

0.038 -0.053 0.090 0.638 

0.090 -0.053 0.090 1 

0.072 -0.053 0.090 0.875 

0.049 -0.053 0.090 0.715 

0.026 -0.053 0.090 0.549 

0.003 -0.053 0.090 0.391 

-0.002 -0.053 0.090 0.357 

-0.003 -0.053 0.090 0.346 

0.003 -0.053 0.090 0.390 

0.002 -0.053 0.090 0.384 

0.002 -0.053 0.090 0.384 

-0.002 -0.053 0.090 0.355 

-0.012 -0.053 0.090 0.287 

-0.026 -0.053 0.090 0.190 

-0.044 -0.053 0.090 0.059 

-0.048 -0.053 0.090 0.035 

-0.053 -0.053 0.090 0 

-0.048 -0.053 0.090 0.033 

-0.030 -0.053 0.090 0.160 

0 -0.053 0.090 0.370 
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The error in u-velocity is then normalized by dividing the difference between the error in 

u-velocity at a nodal point and the minimum value of the error in u-velocity by the 

difference between the maximum value of the error in u-velocity and the minimum value 

of the error in u-velocity. The normalized error in u-velocity is a dimensionless parameter.                                                                           

5.3 Problem 2: Free Convection in a Cavity 

The second test problem is natural convection of air in an isothermal wall cavity. The 

problem configuration is presented in Figure 5.6. The upper and bottom walls of the cavity 

are assumed adiabatic. The vertical walls are maintained at isothermal conditions. The left 

wall is maintained at a constant high temperature, while the right wall is kept at a constant 

low temperature. In this case, the numerical errors in temperature and u-velocity are 

considered. The boundary conditions for the isothermal wall cavity test problem are defined 

as follows: 

𝜕𝑇

𝜕�⃗⃗� 
= 0;      𝑣 = 𝑢 = 0       𝑓𝑜𝑟 𝑦 = 0, 𝐻 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝐿    

𝑇 = 𝑇ℎ;    𝑣 = 𝑢 = 0           𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻  

𝑇 = 𝑇𝑐;    𝑣 = 𝑢 = 0           𝑓𝑜𝑟 𝑥 = 𝐿 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻           

                                                                                                                                        (5.8) 

The dimensionless temperature is evaluated as follows: 

𝜃 =
𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
                                                                                                     (5.9) 

The normalized apparent entropy production difference is calculated as follows:  
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𝛥�̇�𝑠,𝑛 =
𝛥�̇�𝑠−𝛥�̇�𝑠 ,𝑚𝑖𝑛

𝛥�̇�𝑠,𝑚𝑎𝑥−𝛥�̇�𝑠,𝑚𝑖𝑛
                                                                               (5.10) 

The variable, 𝜙 (such as velocity or temperature) is normalized by the equation given 

below: 

𝜙𝑛 =
𝜙 − 𝜙𝑚𝑖𝑛

𝜙𝑚𝑎𝑥  − 𝜙𝑚𝑖𝑛
                                                                                                               (5.11) 

 

 

 

 

 

 

 

 

 

Figure 5.7 (a) shows a comparison of temperature distributions with past data presented by 

Khanafer et al. [94]. Figure 5.7 (b) presents a comparison of u-velocity with past results of 

Engelman [181]. Figure 5.8 shows the numerical error in temperature and u-velocity as 

computed by values obtained from numerical computations and past data. The 

dimensionless temperature, Ɵ is evaluated using Equation (5.9). 

g 

𝑇𝑐 

 

𝑇ℎ 
H 

Figure 5-6: Configuration for Natural Convection - 

Problem 2 (Ra=104, Pr =0.71). 
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                 Figure 5-7: (a) Temperature and (b) u-velocity in the cavity 
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The result from this model is validated with published numerical benchmark data that are 

widely referenced and generally accepted by researchers in the field of thermofluids. The 

results presented in Figures 5.2, 5.7(a), and 5.7(b) are comparisons with numerical work of 

Ghia et al. (1982), Khanafer et al. (2003), and Engelman (1987), respectively, which was 

originally validated with experimental work of Durst et al. (1974) and Krane and Jesse 

(1983).  

Table 5-5: Dimensionless temperature calculation from first level results 

Temperature 

(K) 

Minimum 

Temperature 

(K) 

Maximum 

Temperature 

(K) 

Dimensionless 

Temperature 

312.00 300 312 1 

310.58 300 312 0.881 

309.21 300 312 0.768 

308.04 300 312 0.670 

307.14 300 312 0.595 

306.54 300 312 0.545 

306.19 300 312 0.516 

306.02 300 312 0.501 

305.96 300 312 0.496 

305.96 300 312 0.497 

305.99 300 312 0.499 

306.02 300 312 0.502 

306.03 300 312 0.502 

305.97 300 312 0.497 

305.79 300 312 0.483 

305.45 300 312 0.454 

304.85 300 312 0.404 

303.96 300 312 0.330 

302.78 300 312 0.232 

301.42 300 312 0.118 

300.00 300 312 0 

 

Hence, the benchmark solutions which were used to calculate the errors are considered to 

be exact solutions. The uncertainty of experimental work was obtained by measurement 
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deviation of the parameters. The measuring error of Th is ± 0.001 oC, the measuring error 

of Tc is ± 0.001 oC, and the measuring errors of the width and the length are ± 0.5 mm. 

Table 5-5 presents the first level results of the temperature distribution. The dimensionless 

temperature is processed to lie between 0 and 1 by calculating the ratio of the difference 

between the temperature at a nodal point and the minimum value of temperature in the 

distribution (𝑇 − 𝑇𝑚𝑖𝑛) to the difference between the maximum value of temperature in the 

distribution and the minimum value of temperature in the distribution (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛). 

Equation (5.9) was used to obtain the dimensionless temperature.  

                  

 

Figure 5-8: Numerical error in temperature (x-direction) and u-velocity (y-direction) 

along the length and height of the enclosure, respectively. 
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The apparent entropy production difference and numerical error in the temperature 

distribution along the cavity length are compared in Figure 5.9 (a).  Figure 5.9 (b) compares 

the apparent entropy difference with the error in u-velocity along the cavity height. Again, 

the results show a similar trend between the numerical error and the apparent entropy 

production difference (in both cases of temperature and u-velocity distribution). This 

further suggests a relationship between these variables. Errors in numerical solutions are 

normally due to numerical approximations, artificial dissipation, and discretization 

methods, hence, the discrepancy between the results of this study and the benchmark 

solutions is due to numerical discretization approximations. The numerical error in the 

variable (velocity and temperature) is determined by the difference between the values of 

the variables from the numerical computations and past benchmark solutions. The variable 

𝜙 (such as velocity or error) is then normalized by Equation (5.11).  

A new hypothesis is proposed in this thesis that the solution error is directly related to the 

normalized apparent entropy production difference as illustrated by the different case 

studies presented in this Chapter. The correlation hypothesis presented in Equation (3.71) 

suggests that the numerical solution error in the scalar variable 𝐸𝜙 is equal to the 

normalized apparent entropy production difference ∆�̇�𝑠,𝑛 . 
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Figure 5-9: Comparison of normalized entropy production difference and solution error 

in (a) temperature and (b) u-velocity. 
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Figure 5.10 (a) shows a comparison between the normalized error in temperature and the 

normalized apparent entropy production difference. The normalized peak error in 

temperature and the normalized peak apparent entropy production difference are nearly 

equal. Also, results of the normalized error in u-velocity and normalized apparent entropy 

production difference along the height of the enclosure are compared in Figure 5.10 (b). 

Again, the normalized peak error in the u-velocity and the normalized peak apparent 

entropy production difference are nearly equal.  

But additionally, the present results have provided a unique insight into the potential 

relationship between the apparent entropy production difference, solution error and 

convergence criteria. The results have indicated that the apparent entropy production 

difference approaches the solution error upon grid refinement in a manner that appears 

consistent with the rate of convergence of the numerical method. Additional studies on 

other flow problems and geometrical configurations are recommended to further explore 

this relationship between numerical entropy generation and error indicators in 

computational heat and fluid flow. 

Based on these results, it is anticipated that the normalized peak solution error can be 

predicted using the normalized apparent entropy production difference. In the previous case 

studies, they were approximately equal, although this may have occurred due to the 

relatively simple nature of the test problems. Likely a correlation factor or higher order 

relationship among the two variables may be required for more complex flow 

configurations and geometries. Nevertheless, there appears to be a promising potential to 
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characterize solution errors with respect to entropy indicators without the prior availability 

of experimental data to confirm a numerical model’s accuracy. 

A grid refinement study was also performed for the velocity and temperature distributions 

to demonstrate independence of the results with respect to the grid spacing. Three 

successively refined grids were considered for the case of Ra = 104 and Pr = 0.71. The 

results in Figures 5.11 (a) and 5.11 (b) illustrate convergence and grid independence of the 

results with the 41 × 41 mesh. Finer grids yield an increasingly accurate and close 

relationship between the normalized apparent entropy production difference and solution 

error. 
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Figure 5-10: Comparison of normalized entropy production difference and solution error 

in (a) temperature and (b) u-velocity                 

Verification and validation of the numerical predictions were presented in earlier figures 

through comparisons with past data of Ghia et al. (1982) and Khanafer et al. (2003). The 

present results have provided a unique insight into the potential relationship between the 

apparent entropy production difference, solution error and convergence criteria. The results 

have indicated that the apparent entropy production difference approaches more closely to 

the solution error upon grid refinement in a manner that appears consistent with the rate of 

convergence of the numerical method. Additional studies on other flow problems and 

geometrical configurations would further explore this relationship between entropy 

generation due to numerical discretization and error indicators in computational heat and 

fluid flow. 
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Figure 5-11: Grid refinement comparison of normalized entropy production difference 

and solution error in (a) temperature and (b) u-velocity 
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5.4 Conclusions 

This chapter examined both physical and computational attributes of entropy production. 

A Second Law formulation based on different forms of the positive-definite and entropy 

transport equations was analyzed and presented in this chapter. To evaluate the numerical 

error, a new parameter called the “apparent entropy production difference” was defined 

based on the difference between the positive-definite and transport forms of the entropy 

production rate. A trend between this difference and numerical errors in each control 

volume was developed and discussed.  

In addition, this chapter presented the analysis of entropy production of mixed convection 

in lid-driven and isothermal wall cavities filled with various fluids. It was found that the 

apparent entropy production difference is related to the numerical error. The results of the 

normalized peak apparent entropy production difference showed a reasonable agreement 

with the normalized peak numerical error at corresponding nodes. It is anticipated that 

similar trends exist for other geometrical configurations and flow conditions. 

Furthermore, this chapter presented a new model of the apparent entropy production 

difference, numerical solution errors, and a new trend between these variables. The 

normalized peak values of apparent entropy production and numerical error were 

connected. The results from the lid-driven cavity problem suggested a relationship between 

the apparent entropy production difference and the numerical error of the u-velocity. 

Similar results for velocity and temperature were obtained for natural convection in a 

cavity. Grid refinement studies were performed, and their effects on the apparent entropy 

production difference were analyzed and reported in this chapter.  
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The next chapter will discuss the use of entropy-based artificial viscosity as a corrective 

mechanism to potentially stabilize the numerical results, reduce solution errors, and 

enhance numerical accuracy. 
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6 ENTROPY-BASED ARTIFICIAL VISCOSITY 

6.1 Overview 

In this chapter, the momentum equations will be modified by introducing an artificial 

viscosity as a coefficient of the diffusion terms to potentially stabilize the numerical results, 

reduce solution errors in the numerical results, and ultimately enhance the overall 

compliance of the results with the Second Law. This modification of the algorithm aims to 

ensure that the transport entropy production is minimally or non-negative.  

As discussed earlier, the application of artificial viscosity to solve the conservation 

equations was pioneered by von Neumann and Richtmyer [128] in 1950. Over the past 

decades, artificial viscosity has evolved and been used in several numerical modelling 

applications to stabilize shock wave predictions and enhance the accuracy of numerical 

results and their efficiency. The concept of artificial viscosity has also been applied to 

numerical modelling in hydrodynamic, elastic, magneto, and plastic simulations [130, 131], 

as well as large eddy simulation of turbulent flow [134], staggered-grid Lagrangian 

hydrodynamics [135], discontinuous Galerkin methods [139], convection-diffusion-

reaction modelling with nonlinear reaction mechanisms [140], nonlinear conservation laws 

[142], and the Euler equations [144].  

The artificial viscosity method has been used by previous researchers, for example, to 

obtain shock wave prediction stabilization which leads to the improvement of numerical 

accuracy. The application of artificial viscosity is based on different methods. For example, 

past studies considered the following artificial viscosity based methods: residual -based 
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artificial viscosity; a posteriori error estimation; higher order, state-based artificial viscosity 

method; upwind symmetric interior penalty Galerkin (SIPG) method; spatio-temporal 

adaptive artificial viscosity method; and a Discontinuous Spectral Element Method 

(DSEM). 

Based on a review of previous studies, and to the best of the author’s knowledge, no past 

studies have considered the application of entropy-based artificial viscosity to improve 

numerical accuracy, particularly in natural and mixed convection heat transfer problems. 

Therefore, one of the novel contributions of this thesis is the development of a new 

corrective mechanism for numerical algorithms, using the transport entropy to calculate an 

artificial viscosity. This new algorithm corrective mechanism produces positive (or 

minimally negative) entropy generation and thereby enhances the accuracy of the numerical 

model. 

This chapter focuses on the development of an entropy-based artificial viscosity as a 

corrective mechanism to improve numerical accuracy in natural convection heat transfer  

simulations. 

6.2 Problem Configuration 

A schematic diagram for natural convection in a square cavity is presented in Figure 6.1. 

The problem geometry is a square enclosure of height 𝐻, and width 𝐿, filled with a gas. 

The buoyancy induced flow is assumed to be two-dimensional flow of a Newtonian fluid. 

The thermophysical properties of the base fluid are assumed to be constant. The variation 

of density in the buoyancy force term is determined based on the Boussinesq 
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approximation. The upper and bottom walls of the cavity are assumed adiabatic. The 

vertical walls are maintained at isothermal conditions. The left wall is maintained at a 

constant high temperature, while the right wall is kept at a constant low temperature.  

 

 

 

 

 

 

 

 

 

 

 

The boundary conditions for the test problem are defined as follows: 

𝜕𝑇

𝜕�⃗⃗� 
= 0;      𝑣 = 𝑢 = 0       𝑓𝑜𝑟 𝑦 = 0, 𝐻 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 𝐿    

𝑇 = 𝑇ℎ;    𝑣 = 𝑢 = 0           𝑓𝑜𝑟 𝑥 = 0 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻  

𝑇 = 𝑇𝑐;    𝑣 = 𝑢 = 0           𝑓𝑜𝑟 𝑥 = 𝐿 𝑎𝑛𝑑 0 ≤ 𝑦 ≤ 𝐻           

                                                                                                                                        (6.1) 

g 

𝑇𝑐 

 

𝑇ℎ 
H 

Figure 6-1: Configuration for Natural Convection - 

Problem 2 (Ra=104, Pr =0.71) 
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6.3 Results and Discussion 

In this section, a varying number of timesteps will be used in the simulations, each of 1s 

duration, although results are steady-state so the timestep progression of the transient 

formulation serves like an iterative solver. Figure 6.2 presents the variation of total negative 

transport entropy production, total negative entropy-based artificial viscosity, and 

numerical error in velocity with grid spacing (11x11, 21x21, 41x41, and 81x81) along the 

midplane (y = 0.5), when the number of timesteps is set at 10. The top horizontal axis, 

(1/∆X), represents the grid spacing. 

The total entropy production is obtained as the summation of the products of the volumetric 

entropy productions and the areas of each control volume. The results indicate that the total 

negative transport entropy production and total negative entropy-based artificial viscosity 

decrease with finer grids. It is also observed that as the total negative transport entropy 

production and total negative entropy-based artificial viscosity decrease, the numerical 

error in v-velocity along the midplane also decreases. The numerical error in v-velocity is 

obtained by comparing the dimensionless v-velocity along the cavity midplane with past 

data of Khanafer et al. (2003).  

Another interesting observation is that the entropy-based artificial viscosity yields less 

negative values compared to the transport entropy form for each subsequent grid spacing. 

The rate of entropy production with units of W/mK represent the total entropy production, 

which is obtained by the summation of the product of the volumetric entropy and the area 

of the control volume. 
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Figure 6-2: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in velocity with grid spacing along 

the midplane (y=0.5), for the number of timesteps of 10 

 

The same procedure in Figure 6.2 is repeated for a different number of timesteps; in this 

case the number of timesteps is increased to 20. The results are presented in Figure 6.3, the 

total negative transport entropy production, the total negative entropy-based artificial 

viscosity, as well as the numerical error in v-velocity along the midplane decrease with 

finer grids. It is observed that as the number of timesteps is increased, the difference 

between the total negative transport entropy production and total negative entropy-based 

artificial viscosity increase. The entropy-based artificial viscosity produces lower negative 

entropy values for a timestep number of 20 when compared to entropy-based artificial 

viscosity with a timestep number of 10.  
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Figure 6-3: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in velocity with grid spacing along 

the midplane (y=0.5), for the number of timesteps of 20 
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viscosity when the number of timesteps is set at 20 or 10. It is also observed that the 

entropy-based artificial viscosity results converged at the number of timesteps of 30, the 

entropy-based artificial viscosity at this number of timesteps is minimally negative (nearly 

zero). This suggests that the number of timesteps is a relevant factor in the application of 

the entropy-based artificial viscosity. 

 

Figure 6-4: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in v-velocity with grid spacing 

along the midplane (y=0.5), for the number of timesteps of 30 

 

Overall, the results in Figures 6.2 - 6.4 suggest that grid spacing and number of timesteps 
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artificial viscosity significantly minimizes the negative values in entropy production and 

reduces the error in the v-velocity results, thereby improving the overall accuracy of the 

numerical model. 

A similar computational procedure is repeated in Figures 6.5 – 6.7.  

 

Figure 6-5: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in temperature with grid spacing 

along the horizontal midplane, for a number of timesteps of 10 
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case of the numerical error in v-velocity, the numerical error in temperature along the 

midplane also decreases as the total negative transport entropy production and total 

negative entropy-based artificial viscosity decreased. The numerical error in temperature is 

determined by comparing the dimensionless temperature along the cavity midplane with 

past data of Khanafer et al. (2003). 

Figure 6.6 presents the variation of the total negative transport entropy production, total 

negative entropy-based artificial viscosity, and numerical error in temperature with grid 

spacing along the horizontal midplane, when the number of timesteps is increased to 20. 

As in the previous case, the numerical error in temperature along the midplane decreases 

as the total negative transport entropy production and total negative entropy-based artificial 

viscosity decrease. And the entropy-based artificial viscosity tends to zero as the number 

of timesteps is increased. 

In Figure 6.7, variation of the numerical error in temperature with grid spacing along the 

horizontal midplane is once again compared with the variation of the total negative 

transport entropy production and total negative entropy-based artificial viscosity, when the 

number of timesteps is set at 30. These results show that the total negative transport entropy 

production, total negative entropy-based artificial viscosity, and numerical error in 

temperature decrease as the grid density is increased. 
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Figure 6-6: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in temperature with grid spacing 

along the horizontal midplane, for a number of timesteps of 20 
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Figure 6-7: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in temperature with grid spacing 

along the horizontal midplane, for a number of timesteps of 30 
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Figure 6-8: Comparison between transport entropy production, P(s,te), and entropy-

based artificial viscosity, P(s,av), along the cavity horizontal midplane for a 21 x 21 mesh 

at different number of timesteps 

The number of timesteps used to compute the transport entropy production, P(s,te), is 30. 

At convergence, the results of the transport entropy production, P(s,te) produce higher 

negative entropy production compared to the entropy-based artificial viscosity, P(s,av). 

This demonstrates the effectiveness of the entropy-based artificial viscosity, P(s,av) for 
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In Figure 6.9, a 41 x 41 mesh was considered for the computation of the transport entropy 

production, P(s,te), and entropy-based artificial viscosity, P(s,av), along the cavity 

horizontal midplane for at different number of timesteps (10, 20, and 30). As in the case of 

the 21 x 21 mesh, the entropy-based artificial viscosity stabilizes with increase in number 

of timesteps until it reaches convergence. As the entropy-based artificial viscosity 

stabilizes, the negative entropy production decreases until it becomes minimally negative. 

 

 

Figure 6-9: Comparison between transport entropy production, P(s,te) and entropy-

based artificial viscosity, P(s,av) along the cavity horizontal midplane for 41 x 41 mesh at 

different timesteps sizes 

 

Figure 6.10 presents the comparison of entropy-based artificial viscosity along the cavity 

midplane for different grid spacings (21x21, 41x41, and 81x81), when the number of 

-550

-450

-350

-250

-150

-50

50

150

250

350

450

550

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
(s

,t
e)

 a
n

d
 P

(s
,a

v
) 

 (
W

/m
3
K

)

Position, X

P(s,te)_41x41 mesh

P(s,av) _ Δt=10

P(s,av) _ Δt=20

P(s,av) _ Δt=30



156 
 

timesteps is set at 30. The stabilized entropy-based artificial viscosity at the number of 

timesteps of 30, is not zero as it appears in Figures 6.8 and 6.9. The results show that finer 

grids yielded less negative entropy production. For example, the entropy-based artificial 

viscosity for a 21x21 mesh yielded a negative entropy production of -2.3155 (W/m3K). The 

entropy-based artificial viscosity for a 41x41 mesh yielded negative entropy production of 

-1.8872 (W/m3K), while a negative entropy production of -1.6229 (W/m3K) was obtained 

by the entropy-based artificial viscosity for the 81x81 mesh. 

 

Figure 6-10: Comparison of entropy-based artificial viscosity along the cavity horizontal 

midplane for different grid spacings at the number of timesteps of 30 
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spacings (41 x 41 and 81x81) as a function of number of timesteps (10, 20, and 30). The 

results illustrate that both the negative transport entropy production and negative entropy-

based artificial viscosity vary as a function of the grid spacing and number of timesteps. As 

the grid density and number of timesteps increase, the negative entropy-based artificial 

viscosity and negative transport entropy decrease. 

 

Figure 6-11: Comparison between total negative transport entropy and total negative 

entropy-based artificial viscosity along the cavity horizontal midplane for different grid 

spacings as a function of number of timesteps. 
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entropy production, correct numerical errors in the algorithm, and improve the accuracy of 

the model. 

The total negative transport entropy production, and total negative entropy-based artificial 

viscosity with the computation time for the results of 21x21 mesh is presented in Figure 

6.12, while Figure 6.13 presents the total negative transport entropy production, and total 

negative entropy-based artificial viscosity with the computation time for the results of 

41x41 mesh. Figures 6.11 - 6.13 illustrate that as the grid density and number of timesteps 

is increased, the negative entropy reduces, and the computation time of the results 

increases. For example, between Figures 6.12 and 6.13, a minimum total negative entropy-

based artificial viscosity of -1.1 x 10-8 W/mK is obtained by a 41x41 mesh at computation 

time of 175.13 seconds.  

 
Figure 6-12: Total negative transport entropy production, and total negative entropy-

based artificial viscosity with the computation time for the results for 21x21 mesh 
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Figure 6-13: Total negative transport entropy production, and total negative entropy-

based artificial viscosity with the computation time for 41x41 mesh 

 

This imply that the application of the entropy-based artificial viscosity to improve the 

accuracy of the numerical model is at the expense of storage memory and computational 

time. Figure 6.14 compares the artificial viscosity for different number of timesteps (10, 

20, 30, and 40) at a grid spacing of 21x21. Also, a grid spacing of 41x41 is considered in 

the comparison of the artificial viscosity for different number of timesteps (10, 20, 30, and 

40) as presented in Figure 6.15, while a grid spacing of 81x81 is used in the comparison of 

the artificial viscosity for different number of timesteps (10, 20, 30, and 40) presented in 

Figure 6.16. The results from Figures 6.14 – 6.16 illustrates that the artificial viscosity 

stabilizes as the number of timesteps is increased for each grid spacing. The results also 

indicate that the artificial viscosity is approximately proportional to the entropy-based 

artificial viscosity. 

-70

-60

-50

-40

-30

-20

-10

0

80 100 120 140 160 180

T
o
ta

l 
P

(s
,t
e)

 a
nd

 P
(s

,a
v
) 

(W
/m

K
) 

x1
0

-6

Time (s)

Transport entropy

Artificial viscosity based

entropy (41x41 mesh)



160 
 

 
Figure 6-14: Comparison between the artificial viscosity for different number of 

timesteps at a grid spacing of 21x21 

 
Figure 6-15: Comparison between the artificial viscosity for different number of 

timesteps at a grid spacing of 41x41 

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

µ
av

(P
a.

s)

Position, X

Δt=10 (21x21 mesh)

Δt=20 (21x21 mesh)

Δt=30 (21x21 mesh)

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

µ
av

(P
a.

s)

Position, X

Δt=10 (41x41 mesh)
Δt=20 (41x41 mesh)
Δt=30 (41x41 mesh)



161 
 

 
Figure 6-16: Comparison between the artificial viscosity for different number of 

timesteps at a grid spacing of 81x81 
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that the magnitude of the artificial viscosity decreases with an increase in the number of 

timesteps.  
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           Figure 6-17: Artificial viscosity for different grid spacings and number of 

timesteps of 10 

 
           Figure 6-18: Artificial viscosity for different grid spacings and number of 

timesteps of 20 
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          Figure 6-19: Artificial viscosity for different grid spacings and number of 

 timesteps of 30 

 

Also, the results indicate that the waveform in the artificial viscosity solution decreases and 

stabilizes with an increase in the number of timesteps. The stabilized artificial viscosity is 

important for correcting the algorithm, yielding minimally negative entropy production, 

minimizing numerical errors, and improving the overall accuracy of the model. 

The results along the horizontal midplane (y = 0.5) has been considered in previous Graphs. 

In Figures 6.20 – 6.23, the results along the horizontal midplane at y = 0.75 will be 

analyzed. Figure 6.20 presents the variation of total negative transport entropy production, 

total negative entropy-based artificial viscosity, and numerical error in v-velocity as a 

function of grid spacing (21x21, 41x41, and 81x81) along the horizontal plane at y = 0.75, 

for the number of timesteps of 20.  
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Figure 6-20: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in v-velocity with grid spacing 

along the horizontal plane (y=0.75), for the number of timesteps of 20 

 

Similar to the case of y = 0.5, the results indicate that the total negative transport entropy 

production and total negative entropy-based artificial viscosity decreases as the grid density 

increases. It is also observed that as the total negative transport entropy production and total 

negative entropy-based artificial viscosity decrease, the numerical error in v-velocity also 

decreases. 

 

The number of timesteps is increased to 30, and the variation of total negative transport 

entropy production, total negative entropy-based artificial viscosity, and numerical error in 

v-velocity as a function of grid spacing (21x21, 41x41, and 81x81) along the horizontal 

plane at y = 0.75, is analyzed in Figure 6.21.  
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Figure 6-21: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in v-velocity with grid spacing 

along the horizontal plane (y=0.75) for the number of timesteps of 30 
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also observed that the numerical error in v-velocity decreases as the total negative transport 

entropy production and total negative entropy-based artificial viscosity decrease. 
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artificial viscosity, as a function of grid spacing along the horizontal midplane at y = 0.75 

for the number of timesteps of 20 and 30, respectively.  

 

Figure 6-22: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in temperature with grid spacing 

along the horizontal plane (y=0.75), for a number of timesteps of 20 

 

Like the case of numerical error in v-velocity and y = 0.5, the results show that the total 

negative transport entropy production and total negative entropy-based artificial viscosity 

decrease with finer grids, and the numerical error in temperature decreases as the  total 

negative entropy-based artificial viscosity and total negative transport entropy production 

decrease. It is also observed that the entropy-based artificial viscosity yields less negative 

values compared to the transport entropy production for each grid spacing, and the entropy-

based artificial viscosity tends to zero as the number of timesteps is increased.  
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Figure 6-23: Variation of total negative transport entropy production, total negative 

entropy-based artificial viscosity, and numerical error in temperature with grid spacing 

along the horizontal plane (y=0.75) for a number of timesteps of 30 

 

Figure 6.24 (a) shows a comparison of temperature distributions of the present study and 
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Figure 6-24: (a) Temperature and (b) velocity using the entropy-based artificial viscosity 

model 
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Hence, the results suggest that the use of the entropy-based artificial viscosity considerably 

minimizes the negative values in entropy production and reduces the numerical errors in 

the temperature and v-velocity results, thereby enhancing the accuracy of the numerical 

model. 

In summary, the results in Figures 6.20 – 6.24 shows that the characteristics of the negative 

entropy-based artificial viscosity and the negative transport entropy production along the 

horizontal plane at y = 0.75 has a similar pattern with the results along y = 0.5. This is an 

indication that entropy-based artificial viscosity is effective as an algorithm corrective 

mechanism in different regions of the geometry. The results suggest that the application of 

the entropy-based artificial viscosity significantly minimizes the negative values in entropy 

production across the geometry and reduces the numerical errors in both velocity and 

temperature results, thereby improving the accuracy of the numerical model. 

6.4 Conclusions 

This chapter presented the development of a corrective mechanism in the numerical 

algorithm. The corrective mechanism was developed by using the transport form of the 

entropy production to calculate a parameter called the entropy-based artificial viscosity. It 

remodeled the diffusion coefficient in the momentum conservation equations to minimize 

the numerical error in the algorithm. The modification ensured that the transport entropy 

production was minimally negative.  

The results of the modified algorithm for natural convection in cavities were presented and 

discussed for horizontal midplanes. It was shown that as the number of timesteps increased, 
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the entropy-based artificial viscosity stabilized and reached convergence. As a result, the 

negative entropy production decreased until it became minimally negative. The results also 

showed that finer grids produced less negative entropy production. For example, the 

entropy-based artificial viscosity for the 21x21 mesh had a total negative entropy 

production of -2.32 (W/m3K), while the entropy-based artificial viscosity for the 41x41 

mesh yielded -1.89 (W/m3K), and -1.62 (W/m3K) by the entropy-based artificial viscosity 

for the 81x81 mesh. It was also analyzed in this chapter that as the entropy-based artificial 

viscosity stabilized, the numerical accuracy was improved. 

Overall, the analysis presented in this chapter indicated that the use of the entropy-based 

artificial viscosity significantly minimizes the negative values of entropy production and 

reduces the error in the velocities and temperature results, thereby improving the numerical 

accuracy of the model. The presented results also suggested that the grid spacing and 

number of timesteps are important parameters in the application of the entropy-based 

artificial viscosity as an algorithm corrective mechanism.  
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7 CONCLUSIONS AND RECOMMENDATIONS 

7.1 Summary and Conclusions  

In this thesis, a new approach is presented for how entropy and the Second Law of 

Thermodynamics can be used as tools for the improvement of energy efficiency and 

numerical modeling of thermal engineering systems. Past conventional methods generally 

detect energy losses on a system-wide or global scale, while the margins for improving the 

efficiency for existing devices are often relatively small. However, entropy-based design 

tracks energy losses locally and therefore can offer higher levels of system efficiency and 

energy savings in various applications.  

This thesis presented a numerical investigation of entropy production and heat transfer for 

natural and mixed convection in rectangular enclosures including those filled with 

nanofluids. For the analysis with nanofluids, an optimum nanoparticle volume fraction is 

determined for which entropy production is minimized. The study also compared the 

natural convection heat transfer and entropy production for different nanofluids in the 

enclosure to determine the optimal nanofluid that is best suited for each system. An aspect 

ratio sensitivity study was also performed. A comparison of the heat transfer rates and 

entropy production for Cu-water, Al2O3-water, and TiO2-water nanofluids in the enclosure 

was performed. The results indicated a reduction in the rate of entropy production and an 

increase in heat conduction when the nanoparticle volume fraction increases. Among the 

nanofluids compared, Cu-water was found to produce the lowest entropy production and 

best heat transfer performance.   
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Results for the mixed convection case showed that an optimum value of the nanoparticle 

volume fraction can be achieved, as well as a wall velocity, for which the total rate of 

entropy production is minimized. It was also observed that the total entropy production 

increases with an increase in the aspect ratio of the enclosure. Overall, the study has 

presented a new approach for the application of the Second Law, entropy generation 

minimization and heat transfer enhancement in mixed and natural convection of nanofluids 

in enclosures. 

The thesis also examined both physical and computational characteristics of entropy 

generation. Numerical methods may destroy or produce computational entropy due to 

approximation errors that lead to non-physical numerical results, artificial dissipation, or 

other discretization errors. A Second Law formulation was presented and analyzed in this 

thesis based on different forms of the positive-definite and entropy transport equations. In 

order to assess the numerical error, a new parameter called the “apparent entropy 

production difference” was established based on the difference between the transport and 

positive-definite forms of the entropy production rate. A relationship between this 

difference and numerical errors in each control volume was developed and discussed.  

Furthermore, this thesis examined entropy production of mixed convection in lid-driven 

and isothermal wall cavities filled with various fluids. It was observed that the apparent 

entropy production difference is related to the numerical error. The normalized peak 

apparent entropy production difference showed a reasonable agreement with the 

normalized peak numerical error at corresponding nodes. It is anticipated that similar trends 

exist for other flow conditions and geometrical configurations. 
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This thesis further presented a new model of the apparent entropy production difference, 

numerical solution errors, and a new trend between these variables. Grid refinement studies 

were performed, and their effects on the apparent entropy production difference were 

reported. The normalized peak values of apparent entropy production and numerical error 

were connected. The results from the lid-driven cavity problem suggested a relationship 

between the numerical error in u-velocity and the apparent entropy production difference. 

Similar results for velocity and temperature were obtained for natural convection in a 

cavity. The effects of grid size on the relationship were analyzed. 

A corrective mechanism in the numerical algorithm was also developed. The transport form 

of the entropy production was used to calculate a parameter (entropy-based artificial 

viscosity) and remodel the diffusion coefficient in the momentum conservation equations 

to minimize the numerical error in the algorithm. This modification of the algorithm also 

ensured that the transport entropy production was minimally negative.  

The modified algorithm was tested on a case study of natural convection in enclosures. 

Results were analyzed and discussed for horizontal midplanes. It was observed that as the 

number of timesteps increased, the entropy-based artificial viscosity stabilized and reached 

convergence. Also, as the entropy-based artificial viscosity stabilized, the negative entropy 

production decreased until it became minimally negative. As the entropy-based artificial 

viscosity stabilized, the numerical accuracy was enhanced. The results also showed that 

finer grids produced less negative entropy production.  

Overall, the analysis presented in this study suggested that the grid spacing and number of 

timesteps are important parameters in the application of the entropy-based artificial 
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viscosity as an algorithm corrective mechanism. The results indicated that the application 

of the entropy-based artificial viscosity significantly minimizes the negative values of 

entropy production and reduces the error in the velocities and temperature results, thereby 

enhancing the accuracy of the numerical model. 

In summary, the main conclusions and major contributions from this thesis are outlined as 

follows. 

1. This thesis presented a new application of entropy and the Second Law for the 

mapping of available energy losses in a system. It has described design 

modifications to minimize irreversibilities and enhance energy efficiency.  

2. This thesis also outlined the application of the Second Law to formulate a new 

entropy-based indicator for numerical error characterization, which can be useful to 

predict trends in the solution errors for computational heat transfer and fluid flow. 

3. Local values of the computed entropy production have provided a valuable new 

metric because the overall performance of thermofluid systems can be improved by 

modifying design parameters locally based on the local entropy production rates. 

4. The new approach for numerical error characterization can use the distribution and 

peak values of the apparent entropy production difference to predict trends in the 

solution errors for computational heat transfer and fluid flow. 

5. The new model of entropy production and heat transfer for natural and mixed 

convection can predict and optimize the effects of nanoparticle volume fraction on 

heat conduction and entropy production. It predicted the optimum nanoparticle 

volume fraction for which entropy production is minimized. 
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6. The formulation has also provided a new corrective mechanism on the numerical 

algorithm. A parameter known as the entropy-based artificial viscosity was used to 

remodel the diffusion coefficient in the momentum conservation equations to 

reduce numerical errors in the solution algorithm. This modification aimed to 

ensure that the transport entropy production is minimally negative, and that the 

accuracy of the model is enhanced. 

7.2 Recommendations for Future Research 

Further research is recommended in the following areas. 

• Entropy and Second Law predictions should be extended to other flow applications 

including turbulent flows. Local energy losses have been analyzed successfully in 

internal flows. The application of entropy production analysis in external flows will 

be useful for drag prediction. 

• A Second Law formulation based on different forms of the positive-definite and 

entropy transport equations was used to obtain entropy-based numerical error 

indicators for convective heat transfer. This thesis considered mixed convection in 

lid-driven and isothermal wall cavities filled with various fluids. A correlation 

factor or higher order relationship between the apparent entropy production 

difference and numerical error is recommended for more complex flow 

configurations and geometries. Also, it is recommended to implement an entropy-

based corrective mechanism to further modify the convective scheme to ensure 

positive entropy production and further reduce the numerical errors.   
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