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Abstract

In this research, approximate analytical solutions for the scattered electromagnetic

(EM) fields radiated by a vertical electric dipole (VED) antenna in the presence

of a lossy half-space for ordinary and plasmonic media are investigated. First, an

approximate analytical solution for the wave scattering above a lossy half-space with

a smooth interface is proposed for frequencies below the very high frequency (VHF)

band. The solution to the problem is given in terms of two-dimensional Fourier

transforms, which leads to Sommerfeld-type integrals. The solution is decomposed

into three terms. Two terms are expressed with hyperbolic functions and the third

term is presented using the Gauss error function. A numerical evaluation of the

integrals validates the accuracy and efficiency of the proposed solution at various

frequencies and distances from the source. Second, an approximate analytical solution

of the problem with a smooth interface is proposed for frequencies below 10 GHz.

The solution for the intermediate Hertz potential is decomposed into two integrals

and a rigorous approximate closed-form solution in the near and far field regions

is presented for each term. Then, the scattered electric field (E-field) components

are calculated from the intermediate Hertz potential. A numerical evaluation of the

solution for different lossy half-spaces, i.e., seawater, wet earth, dry earth and lake

water, validates the accuracy of the proposed solution at various frequencies and

distances from the antenna. Following this work, a new asymptotic solution for the

scattered EM fields above a lossy half-space with a smooth interface for ordinary
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and plasmonic media is proposed using the modified saddle point method. The new

formulations are applied to calculate radiation patterns of different impedance half-

planes for both ordinary media (e.g., seawater, silty clay soil, silty loam soil and lake

water) and plasmonic media (e.g., silver and gold). A numerical evaluation of the

proposed solution at various frequencies and comparisons with two alternative state-

of-the-art solutions show that the proposed solution has higher accuracy for plasmonic

and non-plasmonic structures. Lastly, random roughness is added to the interface, and

a solution for EM scattering over a two-dimensional random rough surface with large

roughness height using the generalized functions approach is proposed. The EM field

derivation incorporates an arbitrary rough surface profile with small slope, a radiation

source and involves all scattering orders of the scattered E-field for high and moderate

contrast media. Subsequently, the first-order scattered E-field is calculated using the

Neumann series solution for transverse magnetic (TM) polarization. By considering a

pulsed dipole antenna and a two-dimensional Gaussian rough surface distribution with

different root mean square heights and correlation lengths, the scattered E-field along

with the radar cross-section is calculated. Using the result of the method of moments

(MoM) as reference, a numerical evaluation of the solution for different roughness

heights and contrast media demonstrates that the proposed solution is better than

those of the small perturbation method (SPM), Kirchhoff approximation (KA) and

small-slope approximation (SSA).
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Chapter 1

Introduction

The propagation, absorption and scattering of electromagnetic (EM) waves provide

potential tools for exploring different media, such as the surface of the ocean and soil

media. These phenomena have been important in the design and use of various sys-

tems and devices, such as radar, sonar, altimeter and radio communication links. EM

scattering incorporates wave refraction, reflection, diffraction and absorption, while

the development of EM scattering essentially depends on mathematical modeling and

analysis of wave phenomena [1]. Generally, EM field theories are expressed in terms of

partial differential equations along with boundary conditions. The method of Green’s

function [2] is utilized to represent scattered EM fields in the integral form depending

on the unknown field, which can be within or on the scatterers. EM scattering from

a surface is a complex process depending on two surface parameters including the di-

electric properties of the surface (i.e., relative permittivity and conductivity) and its
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geometric structure. In scattering from surfaces, two main phenomena are identified:

diffuse reflection and specular reflection. Depending on their varying proportions on

the observed surface type, the combination of these two phenomena should be consid-

ered in the scattering process. For specular reflection, EM waves transmitted in one

direction with a specific energy E1 are reflected in another direction with a slightly

lower energy E2 due to absorption by the surface. On the other hand, the diffuse

reflection is the reflection of the EM wave in different directions with different ener-

gies. The proportion of these two phenomena in the scattering process is determined

by dielectric properties and roughness of the surface. In this study, plasmonic and

non-plasmonic half-spaces with and without roughness are considered and the scat-

tered fields are derived by assuming vertically polarized incident waves at different

frequencies and distances from the antenna, i.e., in the near and far field regions. The

proposed solutions are compared with numerical and state of the art solutions for

different material constitutions, various frequencies and distances from the antenna.

1.1 Research Rationale

The scattering of EM waves is the process of re-radiation of an incident wave by a

material body. The incident wave may change its type (e.g., from plane to spheri-

cal or cylindrical), the direction of propagation, amplitude, phase, and polarization

state. EM fields scattered by an object incorporate information regarding geomet-

ric and material properties of the scatterer along with its position, orientation and

2



speed. Remote sensing technologies use this information to survey, explore, and study

remotely and non-destructively the space and material objects surrounding an ob-

server. It is essential to know the way that EM waves interact with the targets and

are scattered from them in order to extract the information encoded in the scattered

fields. The wave nature of EM fields is determined by various scattering effects such

as penetration, absorption, reflection, resonance and so forth. In general, these wave

phenomena cannot be comprehended and modeled in the framework of simple ray

optical constructions.

EM scattering theory, as a branch of electromagnetics, describes, explains, and

predicts EM field behavior in the presence of material obstacles. EM theory is still in

the process of development motivated by different insights arising from different con-

texts and applications, from radar and remote sensing technologies to metamaterials

and plasmonics in photonics and nanoscience [3]. The physics of EM scattering can

be studied by the solutions of Maxwell’s equations, while exact analytical solutions

are relatively difficult to acquire. A closed-form solution is only obtainable for simply

shaped scatterers, i.e., planar infinite interfaces of homogeneous materials, spheres,

cones, wedges and cylinders, with simple materials, such as a perfect electric con-

ductor. These closed-form solutions provide important information about radiation,

propagation, diffraction and scattering of EM waves and can be used to explain and

forecast the behavior of the fields. Recent advances in computational technologies

have empowered researchers to use numerical methods, such as the finite-difference
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time-domain method (FDTD) and the finite element method (FEM), to represent the

behavior of the scattered fields. However, numerical approaches have fundamental

limitations. First, calculation of scattered fields for objects larger than a dozen wave-

lengths leads to systems of equations with millions of unknowns, which are difficult

to evaluate due to unrealistic runtime and memory requirements. Second, numerical

solutions may not be able to provide physical insights regarding the mechanism of the

scattering. Therefore, there is a continuing need for the development of approximate

and asymptotic solutions for EM scattering scenarios.

In this research, one of the common EM scattering problems, which is called the

Sommerfeld problem, is reconsidered for smooth and rough interfaces due to its appli-

cation in remote sensing [1, 4], ground penetrating radar (GPR) [5], near field optics

[6], terahertz (THz) devices [7], and plasmonic/nanophotonic applications [8, 9]. In

earth sciences, GPR is utilized to study soils, bedrock, groundwater and ice [10]. GPR

electromagnetic wave propagation can be modeled by the Sommerfeld problem with

smooth and rough interfaces, and then material constitution can be characterized

from the scattered fields [11]. In remote sensing applications, the scattered fields over

natural targets (e.g., ocean surface, sea ice, vegetation and earth) are analyzed to

detect and monitor their physical characteristics, while the backscattered fields can

be obtained through the Sommerfeld problem [12]. For instance, the backscattered

electric field (E-field) from the ocean surface or sea ice can be acquired by model-

ing the scattering surface as a two-dimensional random rough surface. In near-field

4



optics, the goal is to increase the optical resolution beyond the diffraction limit. In

order to model the light scattering mechanism and limitations of near-field optics, an

arbitrarily oriented dipole antenna as an elementary light source is considered above

a half-space and the light scattering can be modeled using the Sommerfeld problem

[6].

In this thesis, various approximate closed-form solutions for the Sommerfeld prob-

lem with smooth and rough interfaces at various frequencies, distances from the an-

tenna (near and far field regions) and material constitutions are proposed.

1.2 Literature Review

To develop detection or inversion techniques in the study of EM wave scattering,

interaction of EM waves with smooth and rough surfaces is required. Many researchers

have attempted to present approximate solutions for the scattered fields over smooth

and rough surfaces [13–18].

1.2.1 EM Scattering Over Smooth Surfaces

The problem of EM scattering from lossy half-spaces has been the subject of numer-

ous studies since 1909. Sommerfeld presented the first rigorous solution of the EM

field of a vertical Hertzian dipole in the presence of a lossy ground [19]. The pro-

posed solution contains improper integrals commonly with a Bessel function kernel,

referred to as Sommerfeld integrals (SIs) and cannot be evaluated in closed form due

5



to the oscillatory and slowly decaying integrand, as well as various singularities on the

integration path of the integrands. He deformed the integration path of the Fourier-

Bessel transform around the fundamental branch cuts and the pole of the integrand

to convert the axial-transmission form of the solution to the radial-transmission form

associated with the cylindrical Zennek surface wave [20] playing a considerable role

in long-distance EM field propagation on the half-space interface. He also presented

an asymptotic closed-form expression for the term associated with the Zenneck sur-

face wave in the Hertz vector using the error function of a complex argument called

numerical distance. Subsequently, this problem was reconsidered by Wise [21] and

Van Der Pol [22], and their independent solutions for the Hertz vector were in agree-

ment with the Sommerfeld solution for high media contrast (i.e., |η2| � 1, where η is

the complex refractive index) and far field regions near the interface of regions (i.e.,

k0ρ � 1 and z/ρ � 1, wherein k0 represents the free-space wavenumber, z denotes

the z coordinate of the observation point and ρ is the horizontal distance between the

source and the observation point). Another important milestone in the development

of scattered EM fields over lossy half-spaces was the surface wave formula derived by

Norton [23] and Wait [24], which was based on the work of Wise [21] and is referred

to as the Norton surface wave or the Sommerfeld-Norton groundwave formula, and is

valid for an arbitrary height of transmitter or receiver. However, in this formulation,

Norton’s numerical distance parameter was not quite accurate, particularly for field

points away from the interface due to premature truncation of a binomial expansion
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of a square root in the derivation of the solution. Subsequently, Bannister [25] ex-

tended Norton’s far-field equations to the quasi-near-field region, while an inaccurate

Norton’s numerical distance parameter was adopted.

The saddle point method of integration is an asymptotic technique applied to

evaluate SIs when the distance between the source and the observation point is large.

However, for a highly lossy surface, the integrand poles are close to the saddle point

and their contributions cannot be separated. Thus, Van Der Waerden [26] introduced

the modified saddle point method by considering the presence of the poles near the

saddle point, and then the proposed method was applied to the Sommerfeld problem

by Bernard and Ishimaru [27] and Collin [28]. The obtained solutions, which consid-

ered higher order terms (i.e., lateral wave), were consistent with the Norton surface

wave formulation for highly conductive and far-field regions near the interface.

Wait [29, 30] and King and Schlak [31] studied the effect of a layered ground

in the Sommerfeld problem, where the surface impedance becomes inductive. In

this problem, the Zenneck wave evolves into a trapped surface wave contributing

to the asymptotic ground-wave solution. An integral formulation using the surface

impedance concept and the compensation theorem were applied to the Sommerfeld

problem by King [32] and Green [33]. In their formulations, the auxiliary Hertz vector

was employed for obtaining the scattered field components, while only the terms of

order r−1 were retained. It should be noted that the numerical distance parameter

employed in this method was similar to Norton’s numerical distance. The most recent
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approximate solution of the Sommerfeld problem was proposed by King and Sandler

[34–36], which is valid for high contrast media with refractive index of |η2| > 9 (e.g.,

ocean surface in the high frequency (HF) band) and is hereinafter referred to as the

King solution. By a simple modification in the presented numerical distance in [34, 35],

the formulation is capable of calculating the scattered electric field components in the

presence of a thin dielectric overlayer. The King approach is relatively similar to

previous methods of Sommerfeld and Norton, while his formulation is based on the

real-axis integral representation of the scattered electric and magnetic fields rather

than the Hertz vector. Furthermore, instead of the error function used by Norton

and Wait, he used the Fresnel integral. However, it was indicated by Collin [37] and

Mahmoud et al. [38] that the solutions for EM fields excited by a vertical electric dipole

(VED) in the presence of lossy or dielectric coated half-space were not quite accurate

due to the trapped surface wave. Therefore, this classical problem was revisited by

several researchers over the past several years [14, 15, 36, 39, 40]. Sarabandi et al.

[41] introduced an analytical method for calculating SIs in the near-field and far-field

regions based on the reflection coefficient approximation of integrands using the Prony

method. Although this method can estimate the value of the integral in the near-field

and far-field regions, its accuracy is limited due to the number of image points when

the source and observation points are located near the surface.

In order to evaluate the Sommerfeld-type integrals numerically, several techniques

have been proposed. Parhami et al. [42] deformed the path of integration to the steep-
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est descent path, and computed the SIs numerically when the distance between image

and observation is large. Michalski [43] improved Parhami’s method by proposing a

variation over the branch cut. Subsequently, Johnson and Dudley [44] proposed a

numerical method valid for small distances between the observation and the image,

in which the integration is performed after removing singularities along the real axis.

Lindell and Alanen [45] proposed an interesting approach called exact image theory to

rectify the difficulty in the calculation of SIs by modifying the Sommerfeld integrand

to a convenient form for numerical purposes. Although the convergence properties of

the SIs have been improved by employing these numerical techniques, the computa-

tional cost of numerical evaluation is high. Further, they are not valid for the general

source and observation point locations and arbitrary electrical properties of a lossy

half-space [41].

In this thesis, the classical Sommerfeld half-space problem is reconsidered and

rigorous approximate closed-form solutions for the intermediate Hertz potential and

the scattered fields are presented for general source and observation point locations as

well as good dielectric and conductor media. The theoretical development is validated

by representative numerical results and compared with alternative state of the art

solutions for ordinary and plasmonic media.
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1.2.2 EM Scattering by Random Rough Surfaces

Over the past six decades, the problem of EM scattering from rough surfaces has been

the subject of extensive investigation due to its application in sonar, optics, astronomy,

medical imaging and remote sensing of the environment [1] including radar remote

sensing of the oceans [4, 46], mine detection [47] and soil moisture measurement [48].

In the study of electromagnetics, wave scattering from natural targets such as sea

ice, vegetation, soil and ocean surface can be modeled as a three-dimensional random

rough surface scattering problem (the third dimension is the height of each point in the

2D plane) and valuable information, such as physical characteristics, can be extracted

from the scattered fields. However, an exact analytical solution for EM scattering by

random rough surfaces does not exist [13] and many researchers have attempted to

present approximate closed-form solutions for the scattered fields [13, 16–18]. Dif-

ferent approximate solutions have been presented by researchers for calculating the

scattered E-field over rough surfaces with different roughness characteristics. The

small perturbation method (SPM) is one of the most common methods for the cal-

culation of scattered fields for surfaces with small root mean square (RMS) height

and slope. Rayleigh [49] presented the perturbation scattering theory by considering

acoustic scattering from corrugated surfaces with sinusoidal profile. This method is

applicable for slightly rough surfaces where the product of the incident wavenum-

ber (k) and surface deviation, ξ(x, y), from the mean is much less than unity (i.e.,

kξ � 1). Afterwards, Rice [50] presented an extensive methodology for EM wave
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scattering from two-dimensional slightly rough surfaces with small slopes, for which

the surface derivatives are much less than one (i.e., ξx, ξy � 1), using the perturba-

tion method. The surface roughness was represented by expanding a periodic rough

surface into a Fourier series with independent random coefficients, and scattered E-

field components were calculated by applying the divergence relation (∇ · ~E = 0)

and boundary conditions to the E-field series form. Later, Wait [51] calculated the

scattered fields from a two-dimensional rough surface along with the effective nor-

malized surface impedance for the case of specular reflection for a vertically polarized

incident wave using the perturbation technique. Subsequently, the SPM method was

developed for time-varying rough sea surfaces [52], homogeneous dielectric [53] and

inhomogeneous dielectric [54] rough surfaces. However, the main constraint in using

the SPM is the small height assumption in the derivation of the scattered E-field.

The other method for calculating scattered fields is the Kirchhoff approximation

(KA) (i.e., tangent approximation or physical optics approximation) based on the

Stratton–Chu integral equations [55, 56]. This method is valid if the radius of curva-

ture (Rc) on the rough surface is much greater than the wavelength (λ) of the incident

wave (i.e., Rc � λ). In this method, the dependence of the scattered field on the sur-

face slope is indicated as functions of the Fresnel coefficients. Kodis [57] used the

physical optics approach to calculate the radar cross-section of a highly conductive

rough time-invariant surface, while the stationary phase method was used for evalu-

ating the scattered field integrals. Afterwards, Barrick [58] extended Kodis’s analysis
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to the bistatic configuration and finite conductive and time-varying rough surfaces,

particularly for the sea surface [59]. The small slope approximation (SSA) is another

scattering model making a bridge between the KA and the SPM in order to broaden

its validity region incorporating the SPM and KA validity domains. By using the

SPM kernels, the scattering amplitude of the first-order SSA can be acquired [60].

Monte Carlo simulation is an alternative approach for finding the scattered field

and its statistics over rough surfaces. Several sample rough surfaces are generated

first with defined roughness distribution, and then the scattered field for each sample

surface is acquired by a numerical method, such as the finite difference method (FDM)

[61, 62], the FEM [63, 64] and the method of moments (MoM) [60]. However, the

required memory and the computation time are the main constraints in computing

scattered fields.

The fundamental analysis of scattered fields in this dissertation is based on a de-

composition of surface characteristics and electromagnetic field components employing

Heaviside functions imposed by the various scattering regions. Scattered EM fields

are derived directly from the point form of Maxwell’s equations, while the boundary

conditions are evolved naturally from the beginning of the formulations. Two integral

equations associated with above and below the scatter are generated, and then the

Neumann series solution is used for obtaining scattered fields with different orders.

Final equations directly relate the scattered field to the arbitrary source field without

employing the intermediate Hertz potential. This approach was initially proposed
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by Walsh [65] for the study of rough surface scattering using mathematical distribu-

tions known as generalized functions. The method was later developed for two-body

scattering [66], horizontally stratified media [67] and surface propagation for periodic

rough surfaces [68]. Subsequently, Walsh and Gill [69] developed the formulations for

highly conductive rough surfaces with arbitrary profiles while the small height and

small slope assumptions were considered in the EM field derivations. As the surface

height grows beyond the small height limitation, the scattered field expressions lose

their validity in this method. Silva et al. [46, 70] proposed new formulations for the

scattering of ocean surfaces with large roughness scales in the HF frequency band.

They derived the radar cross-section for the ocean surfaces (highly conductive) with

different significant wave heights at grazing angle with and without correction terms.

However, their formulations are not applicable to the case of different incident angles

and moderate contrast media, while the roughness height is large. Also, the validation

of the results has not been made using a numerical method.

In this thesis, the EM wave scattering formulations are developed for a time-

invariant random rough surface with large roughness heights and different contrast

media, and the normal component of the scattered electric field is obtained in the form

of a Fredholm integral equation. With a monostatic configuration, the field equations

are developed for a pulsed radar, and then the first-order scattered E-field and the

radar cross-section at different incident angles are derived.
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1.3 The Scope of the Thesis

This thesis focuses on proposing analytical solutions for the scattered EM fields over

smooth and rough surfaces in the presence of a VED at different frequencies and

distances from the antenna in the near and far field regions. The outline of this thesis

is as follows.

In Chapter 2, the intermediate Hertz potential and scattered fields are derived in

the presence of a VED over a lossy half-space with a smooth interface. The interme-

diate Hertz potential is decomposed into three terms and approximate solutions are

proposed for each term below the very high frequency (VHF) band. The developed

formulation for the intermediate Hertz potential is assessed by comparing it with the

conventional [36, 71] and numerical solutions.

In Chapter 3, by decomposing the Sommerfeld integral into two integrals and

using proper near and far field approximations, the intermediate Hertz potential and

scattered electric field components over a lossy half-space with a smooth interface are

acquired at various frequencies (up to 10 GHz) and distances from the antenna in the

near and far field regions. The theoretical developments for the intermediate Hertz

potential and scattered electric field are compared with two alternative state of the

art solutions referred to as the King [36] and the Norton-Bannister [25] solutions for

different media characteristics and various frequencies and distances from the antenna

in the near and far field regions.
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In Chapter 4, the scattered electric and magnetic field components are obtained

above a lossy half-space with a smooth interface using the modified saddle-point

method for both ordinary and plasmonic media in a wide frequency range, i.e., 100

MHz to 100 GHz for non-plasmonic and 300 THz to 900 THz for plasmonic media in

far field regions. The developed formulations for the scattered electric and magnetic

field components are validated by representative numerical results and compared with

the King and the Norton-Bannister solutions for ordinary and plasmonic media.

In Chapter 5, time-invariant random roughness is added to the interface and scat-

tered fields over a two-dimensional random rough surface with large roughness heights

and different contrast media are calculated. The scattered electric field is derived from

a general operator equation for the Neumann boundary conditions, which results in

an integral equation containing the normal component of the scattered electric field.

By using the Neumann series solution and considering a Fourier series representation

of the scattering surface, a general series solution is derived. By considering a mono-

static configuration, the scattered electric field formulation is developed for a pulsed

radar. Then, the first-order scattered electric field along with radar cross-section is

calculated for different contrast media and roughness heights. The theoretical devel-

opment is validated by the MoM [60] as a numerical reference solution and compared

with the widely accepted SPM [50] and KA [72] solutions.

In Chapter 6, a summary of the fundamental conclusions obtained from the re-

search in this thesis is given. Moreover, several suggestions for future work are pro-
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posed.

The research results presented in this thesis have been published in four refereed

journal and two conference papers as listed below:

1. M. E. Nazari and W. Huang, “An analytical solution of electromagnetic radi-

ation of a vertical dipole over a layered half-space,” IEEE Trans. Antennas

Propag., vol. 68, no. 2, pp. 1181-1185, 2020.

This journal paper provides the development of the scattered E-field over a lossy

half-space for frequencies below VHF band (Section 2.2 and Section 2.3).

2. M. E. Nazari and W. Huang, “An analytical solution of the electric field excited

by a vertical electric dipole above a lossy half-space: From radio to microwave

frequencies,” IEEE Trans. Antennas Propag., vol. 68, no. 11, pp. 7517-7529,

2020.

This journal paper proposes the development of the scattered E-field over a

lossy half-space at different frequencies (below 10 GHz) and distances from the

antenna in the near and far field regions (Chapter 3).

3. M. E. Nazari and W. Huang, “An analytical solution of the electric field radiated

by a dipole over a layered half-space,” 2020 IEEE International Symposium on

Antennas and Propagation and North American Radio Science Meeting, vol.

68, no. 11, pp. 943-944, 2020.

This conference paper proposes the development of the scattered E-field over a

lossy half-space below 10 GHz in the near and far field regions (Chapter 3).
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4. M. E. Nazari, W. Huang, “Asymptotic solution for the electromagnetic scat-

tering of a vertical dipole over plasmonic and non-plasmonic half-spaces,” IET

Microw. Antennas Propag., vol. 15, no. 7, pp. 704-717, 2021.

This journal paper presents the development of the scattered E- and H-field over

a lossy half-space with extensions to plasmonics (Chapter 4).

5. M. E. Nazari and W. Huang, “EM wave scattering by random surfaces with

different contrast and large roughness heights,” IEEE J. Multiscale Multiphys.

Comput. Tech., vol. 7, pp. 252-267, 2022.

This journal paper provides the development of the scattered E-field and the

radar cross-section from random rough surfaces with different contrast and large

roughness heights (Chapter 5).

6. M. E. Nazari and W. Huang, “Scattering of EM waves from random surfaces

with different contrast and surface roughness,” 2021 International Applied Com-

putational Electromagnetics Society Symposium (ACES), pp. 1-3, 2021.

This conference paper provides the development of the scattered E-field and the

radar cross-section from random rough surfaces with low and moderate contrasts

and different roughness heights (Chapter 5).
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Chapter 2

Intermediate Hertz Potential

Calculation for Frequencies Below

the VHF Band

In this chapter1, the classical Sommerfeld half-space problem with a smooth interface

is revisited and the formal solution presented by Walsh and Donnelly [66] is utilized

for calculating electric field intensity when the source is a vertical dipole. New ap-

proximations for the electric field integral equations are proposed to achieve a rigorous

approximate closed-form solution for the scattered electric fields for frequencies be-

1The content of this chapter is based on the following publication:
M. E. Nazari and W. Huang, “An analytical solution of electromagnetic radiation of a vertical dipole
over a layered half-space,” IEEE Trans. Antennas Propag., vol. 68, no. 2, pp. 1181-1185, 2020.
This paper provides the development of the scattered E-field over a lossy half-space for frequencies
below the VHF band (Section 2.2 and Section 2.3).
Roles: Mr. Nazari conducted this research under the guidance of Dr. Huang and acted as the first
author of the manuscript. All the contents of this paper were written by Mr. Nazari and further
refined by Dr. Huang.
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low VHF band. It is shown that the proposed solution solution is not only effective

for the far field, but also justifiable near the antenna. The theoretical development

is validated by the representative numerical results, and is also compared with the

widely accepted approximation presented in [36, 71].

This chapter is organized as follows. In Section 2.1, theoretical analysis and formu-

lation of the problem are presented. In Section 2.2, the formulations of the scattered

electric field above a lossy half-space in the presence of a vertical dipole antenna are

introduced. In Section 2.2.1, each term of the approximate closed-form solution for

the scattering problem is presented. In Section 2.3, the solution obtained in Sec-

tion 2.2.1 is assessed at various frequencies for the near and far field regions and is

implemented for the particular case of ocean surface scattering in the HF frequency

band.

2.1 Theoretical Analysis and Formulation of the

Problem

In this section, a detailed analysis of the two-body model with different electrical

properties, as shown in Fig. 2.1, is reviewed and scattered fields are represented using

the generalized functions approach [73]. Subsequently, the scattered E-field expression

for a lossy half-space is derived from the general scattered E-field expression obtained

from the analysis of the two-body model. With the aid of two Heaviside functions as
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Fig. 2.1: Cross section of the 3D physical geometry for the two-body model.

hM1 =


1, (x, y, z) ∈M1

0, otherwise

, hM2 =


1, (x, y, z) ∈M2

0, otherwise

, (2.1)

the electrical properties of the entire space can be represented as

εt = hM1ε1 + hM2ε2 + (1− hM1)(1− hM2)ε0 (2.2)

σt = hM1σ1 + hM2σ2 (2.3)

in which M1 and M2 denote Medium 1 and Medium 2, respectively, in Fig. 2.1. Also,

εi, µi and σi represent permittivity, permeability and conductivity of each medium, i,

respectively. In the entire space, the point form of Maxwell’s equations for the electric
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( ~E) and magnetic ( ~H) fields in the frequency domain can be expressed as

∇× ~E = −jωµ0
~H, (2.4)

∇× ~H = jω ~D + ~Jc + ~Js, (2.5)

and

∇ · ~D = ρv, ∇ · ~B = 0 (2.6)

where ~Jc represents the conduction current, ~Js denotes the source current out of media

1 and 2, ρv denotes the volumetric charge density, ω is the angular frequency, ~D is

the electric flux density and ~B represents the magnetic flux density. Using (2.2) and

(2.3), the conduction current and the electric flux density in the entire space may be

expressed as

~Jc = σt ~E = hM1σ1
~E + hM2σ2

~E (2.7)

and

~D = εt ~E = hM1ε1 ~E + hM2ε2 ~E + (1− hM1)(1− hM2)ε0 ~E. (2.8)

By substituting (2.7) and (2.8) into (2.5), (2.5) can be written as

∇× ~H = jωε0η
2
0
~E + ~Js (2.9)
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wherein the refractive index η0 is defined by

η0 ≡
[
εt
ε0

+
σt
jωε0

]1/2

=
[
η2

01hM1 + η2
02hM2 + (1− hM1)(1− hM2)

]1/2
(2.10)

in which η01 and η02 are the refractive index in Medium 1 and Medium 2, respectively,

and can be expressed as

η01 =

[
ε1
ε0

+
σ1

jωε0

]1/2

, η02 =

[
ε2
ε0

+
σ2

jωε0

]1/2

. (2.11)

By applying the curl operator to both sides of (2.4) and using (2.9) for the right

hand side of the obtained equation, the Helmholtz equation for this problem can be

obtained as

∇2 ~E + k2
0η

2
0
~E = ∇(∇ · ~E) + jωµ0

~Js (2.12)

wherein k0 is the wavenumber in free space. Now, we need to find an expression for

the divergence of the E-field in (2.12). By taking the divergence of (2.9), we have

∇ · (η2
0
~E) = − 1

jωε0
∇ · ~Js. (2.13)

By taking the divergence of η2
0
~E and using (2.10), the left hand side of (2.13) becomes

∇ · (η2
0
~E) =(1− hM1)(1− hM2)∇ · ~E + η2

01hM1∇ · ~E + η2
02hM2∇ · ~E

+ η2
01
~E1− · ∇hM1 + η2

02
~E2− · ∇hM2 − ~E1+ · ∇hM1 − ~E2+ · ∇hM2

(2.14)
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wherein the subscript 1− and 2− indicate the E-field within the boundary of Medium

1 and Medium 2, respectively. Similarly, 1+ and 2+ represent the E-field outside of

Medium 1 and Medium 2 on the boundary area. By inserting (2.14) into (2.13) we

have

hM1∇ · ~E = 0, hM2∇ · ~E = 0, (1− hM1)(1− hM2)∇ · ~E = − 1

jωε0
∇ · ~Js(

η2
01
~E1− − ~E1+

)
· ∇hM1

∣∣∣∣
R1

= 0,
(
η2

02
~E2− − ~E2+

)
· ∇hM2

∣∣∣∣
R2

= 0

η2
01
~E1− · ∇hM1

∣∣∣∣
R12

+ η2
02
~E2− · ∇hM2

∣∣∣∣
R12

= 0

(2.15)

where R1 illustrates the restriction of the expression to the boundary between region

M1 and the vacuum and the same definition is provided for R2. R12 denotes the

the boundary between region M1 and M2. It should be noted that the boundary

conditions are provided by the last three equations of (2.15). The E-field for different

regions can also be expressed as

~E = hM1
~E + hM2

~E + (1− hM1)(1− hM2) ~E. (2.16)
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Moreover, the divergence of ~E with the use of the fact that ∇hM1

∣∣∣∣
R12

= −∇hM2

∣∣∣∣
R12

becomes

∇ · ~E =hM1∇ · ~E + hM2∇ · ~E + (1−hM1)(1−hM2)∇ · ~E +
(
~E1− − ~E1+

)
· ∇hM1

∣∣∣∣
R1

+
(
~E2− − ~E2+

)
· ∇hM2

∣∣∣∣
R2

+
(
~E1− − ~E2−

)
· ∇hM1

∣∣∣∣
R12

.

(2.17)

Now, by substituting (2.15) into (2.17) and replacing the negative superscript quanti-

ties with the positive ones, or vice versa, the divergence of the E-field can be acquired

as

∇ · ~E =− 1

jωε0
∇ · ~Js +

(
1

η2
01

− 1

)
~E1+ · ∇hM1

∣∣∣∣
R1

+

(
1

η2
02

− 1

)
~E2+ · ∇hM2

∣∣∣∣
R2

+
(
~E1− − ~E2−

)
· ∇hM1

∣∣∣∣
R12

.

(2.18)

By inserting the divergence of the E-field obtained from the last equation into (2.12),

the Helmholtz equation becomes

∇2 ~E + k2
0η

2
0
~E = −TSE(~Js) +∇

(
~E1+ · ∇hM1

∣∣∣∣
R1

)(
1

η2
01

− 1

)

+

(
1

η2
02

− 1

)
∇

(
~E2+ · ∇hM2

∣∣∣∣
R2

)
+∇

[(
~E1− − ~E2−

)
· ∇hM1

∣∣∣∣
R12

]
(2.19)

in which TSE is the electrical source operator defined as

TSE(~Js) =
1

jωε0

[
∇(∇ · ~Js) + k2

0
~Js

]
. (2.20)
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In order to find the scattered fields over a lossy half-space, the Heaviside function

of Medium 1 and its gradient, respectively, can be written as hM1 = 1 − h(z) and

∇hM1 = −δ(z)ẑ, while hM2 = 0. Now, by using (2.15), (2.19) may be expressed as

[66]

∇2 ~E + k2
0η

2
0
~E =−

(
η2

01 − 1
)
∇
[
Ez

1+δ(z)
]

+

[
η2

01 − 1

η2
01

]
∇ [Ez

zpδ(z)]− TSE(~Js)

(2.21)

in which zp represents the z coordinate of the observation point. On the other hand,

the general form of the Green’s function for each medium can be expressed as

Gm(x, y, z) =
e−jγ

′
mr

4πr
,m ∈ {0, 1} (2.22)

wherein γ′m denotes the propagation constant for each medium and can be written as

γ′m = k0η0m in which η0m is calculated using (2.11) for different media. The source

current when the source is a VED located at (0, 0, h) in the Cartesian coordinate

system above the lossy half-space can be given by

~Js = I∆l δ(x) δ(y) δ(z − h) ẑ (2.23)

where I is the current source and ∆l represents the length of the antenna. The

Helmholtz equation along with the boundary conditions can be obtained by sub-

stituting (2.23) into (2.20) and then (2.21). Subsequently, the method of Green’s
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function is utilized to calculate the spatial Fourier transform of the scattered E-field

components as

Ex =
I∆l

ωε0
kx

∂

∂z

e−|z−h|γ02γ0

+
e−(z+h)γ0

2γ0

γ0 −
1

η2
01

√
k2 − γ′21

γ0 +
1

η2
01

√
k2 − γ′21

 (2.24)

Ey =
I∆l

ωε0
ky

∂

∂z

e−|z−h|γ02γ0

+
e−(z+h)γ0

2γ0

γ0 −
1

η2
01

√
k2 − γ′21

γ0 +
1

η2
01

√
k2 − γ′21

 (2.25)

Ez =
I∆l

jωε0

(
∂2

∂z2
+ k2

)
∂

∂z

e−|z−h|γ02γ0

+
e−(z+h)γ0

2γ0

γ0 −
1

η2
01

√
k2 − γ′1

2

γ0 +
1

η2
01

√
k2 − γ′21

 (2.26)

in which k2 = k2
x + k2

y (Kx and ky are spatial frequency domain) and a bar beneath a

quantity denotes its two-dimensional Fourier transform. The scattered magnetic field

components can also be calculated by substituting (2.24)-(2.26) into (2.4). In the

next section, we attempt to find approximate closed-form solutions for the scattered

fields over a lossy half-space in the presence of a VED for different frequencies and

distances from the antenna.

2.2 Scattered E-field Calculation

In this section, the scattered fields above a lossy half-space is obtained when the source

is taken to be a VED located at (0, 0, h) in the Cartesian coordinate system above

the lossy half-space, as shown in Fig. 2.2. By applying an inverse two dimensional
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Fourier transform to (2.24)-(2.26), scattered E-field components can be obtained as

[16]
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Fig. 2.2: Dipole source above a lossy half-space.

~E =
I∆l

jωε0

[
∂2Πz

∂x∂z
x̂+

∂2Πz

∂y∂z
ŷ +

(
∂2

∂z2
+ k2

0

)
Πz ẑ

]∣∣∣∣
z=zp

(2.27)

in which ε0 denotes the permittivity of free space. Also, the Fourier transform of the

intermediate Hertz potential Πz is defined by

Πz =

[
e−|z−h|γ0

2γ0

+
e−(z+h)γ0

2γ0

γ0 − 1
η201
γ1

γ0 + 1
η201
γ1

]∣∣∣∣∣
z=zp

(2.28)

wherein γm and the refractive index η0m can be written as

γm =
√
k2 − k2

0η
2
0m , η0m =

[
εm
ε0

+
σm
jωε0

]1/2

(2.29)
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where the value of m can be 0 or 1. The inverse Fourier transform needs to be applied

to (2.28) in order to determine the components of the electric field in (2.27). After

taking the inverse Fourier transform of (2.28), the intermediate Hertz potential can

be expressed as

Πz =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

(
e−|z−h|γ0

2γ0

+
e−(z+h)γ0

2γ0

)
ej(kxx+kyy)dkxdky − P (2.30)

wherein

P =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

1
η201
γ1

γ0 + 1
η201
γ1

e−(z+h)γ0

γ0

ej(kxx+kyy)dkxdky. (2.31)

2.2.1 Evaluation of Integrals

Although some approximate solutions have been offered for the calculation of (2.30),

their accuracy depends significantly on the location of the observation point. Re-

searchers in [36] and [71] used the free-space Green’s function solution of the Helmholtz

equation, which is referred to as the conventional method, as an approximation to sim-

plify the integral in (2.30). Nonetheless, this approximation is justifiable at distances

quite far away from the antenna and cannot follow the exact solution, which can be

considered as the numerical solution, in the near and far field regions excluding quite

far away distances from the source.

In order to reduce the complexity of calculation in (2.30) and (2.31), the double

integral is converted to a single integral by changing the Cartesian integration variables
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into polar form. Therefore, (2.30) can be converted to

Πz =
1

4π

∫ +∞

0

k

(
e−|z−h|γ0

γ0

+
e−(z+h)γ0

γ0

)
J0(kρ)dk − 2P (2.32)

and P can be changed to

P =
1

4π

∫ +∞

0

k

1
η201
γ1

γ0 + 1
η201
γ1

e−(z+h)γ0

γ0

J0(kρ) dk (2.33)

wherein J0(kρ) denotes the zero-order Bessel function with argument kρ and ρ =√
x2 + y2. Subsequently, (2.32) and (2.33) can be separated into three terms as

Term 1 =

∫ +∞

0

k
e−|z−h|γ0

γ0

J0(kρ) dk (2.34)

Term 2 =

∫ +∞

0

k
e−(z+h)γ0

γ0

J0(kρ) dk (2.35)

Term 3 =

∫ +∞

0

k

1
η201
γ1

γ0 + 1
η201
γ1

e−(z+h)γ0

γ0

J0(kρ) dk (2.36)

and the intermediate Hertz potential, which consists of three terms, can be written

as

Πz =
1

4π
(Term 1 + Term 2− 2 Term 3) . (2.37)

2.2.1.1 Term 1 and Term 2

Our goal is to seek an approximate closed-form solution for terms in (2.34) - (2.36).

The zero order Bessel function can be written as the sum of two Hankel functions of

29



the first and second kinds with the same argument as [15]

J0(kρ) =
1

2

[
H1

0 (kρ) +H2
0 (kρ)

]
=

1

2

[
H1

0 (kρ)−H1
0 (−kρ)

]
. (2.38)

By substituting (2.38) into (2.34) and changing the limits of the second integral to

−∞ and zero, Term 1 can be written as

Term 1 =
1

2

∫ +∞

−∞
k
e−|z−h|γ0

γ0

H1
0 (kρ)dk. (2.39)

The Hankel function of the first kind in (2.39) can be approximated by the first term

of asymptotic expansion as

H1
0 (kρ) ≈

√
2

πkρ
ej(kρ−

π
4 ). (2.40)

Although this Hankel function approximation gets quite accurate for large arguments,

its accuracy is still acceptable for small arguments. After substituting (2.40) into

(2.39) and assuming that the observation point is higher than the antenna height

on the z-axis (this assumption simply remove the absolute value in the exponential),

Term 1 becomes

Term 1 =
1

2

√
2

πρ
e−j

π
4

∫ +∞

−∞
g(k) ejkρ dk (2.41)

where

g(k) =

√
k

k2 − k2
0

e−(z−h)
√
k2−k20 . (2.42)
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By approximating g(k) with a complex exponential function at various k, an approxi-

mate closed-form solution for (2.41) can be obtained. Although using two exponential

functions forms a better approximation, finding a closed-form expression in this case

is practically impossible due to the system of nonlinear equations. The function of

g(k) decays fast when the magnitude of the argument is large. Therefore, it can be

assumed that the function is close to zero after its argument reaches a certain value

kf , which depends on the wavenumber or frequency of the source. In order to estimate

kf , first, the behavior of g(k) is represented with w(k), defined by w(k) = e−(z−h)k
√
k

,

and then the value of kf is calculated when the amplitude of w(k) reaches 1% of its

maximum (i.e., e
−(z−h)kf√

kf
= e−(z−h)k0

100
√
k0

). Consequently, the tail of the function after kf

will not significantly affect the integral since the amplitude of the function after that

point is close to zero. By applying the natural logarithm function to both sides of

w(k) and solving the obtained nonlinear equation employing linear approximation of

the ln() function around kf , kf can be obtained as

kf =
9.2 + 2(z − h)k0 + ln(k0) + n

n+ 2(z − h)
(2.43)

in which

n =
ln
(
k0 + 6.7e−1.1(z−h) + 2e−0.1(z−h)

)
k0 + 6.7e−1.1(z−h) + 2e−0.1(z−h) − 1

. (2.44)

As noted previously, it can then be assumed that for |k| > kf , g(k) is close to zero.

For −kf < k < −k0 and k0 ≤ k < kf , g(k) of (2.42) is an imaginary and real function,
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respectively, because of the presence of
√
k/(k2 − k2

0). Moreover, for −k0 ≤ k < 0

and 0 ≤ k < k0, g(k) becomes a complex value since the exponential function in (2.42)

becomes complex. Therefore, we obtain estimates for g(k) in the following intervals:



−kf < k < −k0 : g(k) ≈ jA1e
B1k

−k0 ≤ k < 0 : g(k) ≈ A2e
B2k − jA3e

B3k

0 ≤ k < k0 : g(k) ≈ A4e
B4k + jA5e

B5k

k0 ≤ k < kf : g(k) ≈ A6e
B6k

|k| > kf : g(k) ≈ 0

(2.45)

where

A1 =

√
p1

p2
1 − k2

0

exp

[
−(z − h)

√
p2

1 − k2
0 −B1p1

]
A2 =

1√
k0

cos [0.8k0(z − h)] exp (0.6k0B2)

A3 =
0.6√
k0

sin [k0(z − h)] exp (0.3k0B3)

A4 =
1.2√
k0

sin [0.7k0(z − h)] exp (−0.7k0B5)

A5 =
1√
k0

cos [0.8k0(z − h)] exp (−0.6k0B5)

A6 =

√
p1

p2
1 − k2

0

exp

[
−(z − h)

√
p2

1 − k2
0 +B1p1

]
(2.46)
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and also

B1 =
ln c− (z − h)

[√
p2

1 − k2
0 −

√
p2

2 − k2
0

]
p1 − p2

, p1 = k0 +
kf + k0

10
, p2 = k0 +

kf + k0

5

B2 =
1

0.3k0

ln

[
cos [0.8k0 (z − h)]

2.2 cos [0.43k0 (z − h)]

]
, B3 =

1

0.6k0

ln

[
0.3 sin [0.8k0 (z − h)]

sin [0.43k0 (z − h)]

]
B4 =

1

0.6k0

ln

[
4k0 sin [0.7 (z − h)]

sin [k0 (z − h)]

]
, B5 =

1

0.3k0

ln

[
2.2k0 cos [0.43 (z − h)]

cos [0.8k0 (z − h)]

]

B6 =
ln c− (z − h)

[√
p2

1 − k2
0 −

√
p2

2 − k2
0

]
p2 − p1

, c =

√
p1 (p2

2 − k2
0)

p2 (p2
1 − k2

0)
.

(2.47)

By substituting (2.46) and (2.47) into (2.45), and then splitting the integral of (2.41)

according to the five intervals in (2.45), Term 1 can be expressed as

Term 1 ≈ j
A1

B1 + jρ
exp [−k0(B1 + jρ)] +

2A2

B2 + jρ
sinh

[
k0(B2 + jρ)

2

]
exp

[
−k0(B2 + jρ)

2

]
− j 2A3

B3 + jρ
sinh

[
k0(B3 + jρ)

2

]
exp

[
−k0(B3 + jρ)

2

]
+

2A4

B4 + jρ
sinh

[
k0(B4 + jρ)

2

]
exp

[
k0(B4 + jρ)

2

]
+ j

2A5

B5 + jρ

sinh

[
k0(B5 + jρ)

2

]
exp

[
k0(B5 + jρ)

2

]
− A6

B6 + jρ
exp [k0(B6 + jρ)] .

(2.48)

The same procedure can be applied to Term 2 to find an approximate closed-form

solution for that integral. However, the only difference between Term 1 and Term 2

is the z + h term. In other words, by changing the term of z − h to z + h in (2.46)

and (2.47), the solution for Term 2 can be obtained.
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2.2.1.2 Term 3

In order to find an approximate closed-form solution for Term 3, the modified steepest

descent method [74] is utilized to approximate this integral. Deforming the integration

contour to lie on the steepest descent path leads to the following approximation for

(2.29) in Term 3 because the significant portion of the integral occurs for k in the

vicinity of the saddle point. Therefore, Term 3 can be expressed as

Term 3 =

∫ +∞

0

k
jk0β

γ0 + jk0β

e−(z+h)γ0

γ0

J0(kρ) dk (2.49)

wherein β = γ1
jk0

1
η201

for η2
01 > 1 . By substituting (2.38) into (2.49) and changing the

variable k as k = k0 cosα, Term 3 becomes

jk0β

2

∫ π+j∞

−j∞

cosα H1
0 (k0ρ cosα) e−jk0(z+h) sinα

sin α+α0

2
cos α−α0

2

dα (2.50)

in which α0 = sin−1(β). By employing the first term of asymptotic expansion of the

Hankel function, which was mentioned in (2.40), Term 3 becomes

ej
π
4 β

√
k0

2πρ

∫ π+j∞

−j∞

√
cosαe−jk0R cos(θ−α)

sin α+α0

2
cos α−α0

2

(2.51)

where R and θ are defined as

R =
√
ρ2 + (z + h)2 , θ = − tan−1

(
z + h

ρ

)
(2.52)

34



Using the modified steepest descent method, (2.51) can be further simplified as

Term 3 ' j
√
πPe e

−We erfc(j
√
We)

e−jk0R

R
(2.53)

in which We and Pe may be expressed as

Pe = −jk0R

2
β2 , We ' Pe

(
1 +

h+ z

βR

)2

(2.54)

wherein erfc() denotes the complementary error function [75]. The intermediate Hertz

potential Πz is the sum of three terms and can be obtained from (2.37). By substi-

tuting (2.48) and (2.53) into (2.34) - (2.36) the approximate closed-form solution for

Πz can be obtained. Finally, by employing (2.27), the amplitude and phase of the

scattered E-field can be calculated.

2.3 Results

In this section, we show the accuracy of the proposed solutions for calculating Term

1, Term 2 and Term 3 using the normalized root-mean-square error (NRMSE), while

the numerical method presented in [76] with error tolerance 10−8 is used as reference.

The NRMSE can be calculated using the reference and calculated values as

NRMSE =

[∑n
i=1 (χi − χ̂i)2

n

]1/2

χ̄
(2.55)
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wherein χ denotes the reference values, χ̂ represents the calculated values and n is

the number of reference or calculated values. It should be noted that in (2.55), the

mean value of the reference values (χ̄) is adopted to normalize the root-mean-square

error (RMSE).

In order to evaluate the efficiency as well as the accuracy of the proposed closed-

form solution for different distances from the source, NRMSE is calculated in the

near and far field regions at each frequency, while the z coordinate of the observation

point and antenna height are 1.5 m and 1 m, respectively. Furthermore, the relative

permittivity and conductivity of the impedance half-plane is assumed to be 81 and

4 S/m respectively, which corresponds to seawater. It is worth mentioning that 101

points (i.e., n=101) have been considered here to calculate and plot the NRMSE in

terms of the frequency and distance from the antenna.

For the near field evaluation, according to the near field definition, the value of

NRMSE is calculated in terms of frequency, while the horizontal distance between

the source and the observation point is changed between −λ0/10 to λ0/10, in which

λ0 denotes the wavelength of the source. Fig. 2.3(a) depicts the value of NRMSE

in terms of frequency for the near field region for Term 1. The value of NRMSE is

obtained at each frequency when the observation point is changed in the near field

region. As is evident, the NRMSE value of the proposed solution for the near field

regions is less than 0.06, and also less than the free-space Green’s function solution

of the Helmholtz equation, which is referred to as the conventional method, for all

36



0 2 4 6 8 10 12

10
7

0

0.05

0.1

0.15

0.2

(a)

0 2 4 6 8 10 12

10
7

0

0.05

0.1

0.15

0.2

0.25

(b)

Fig. 2.3: Comparison between the conventional and proposed solutions for Term 1 in
terms of NRMSE in the (a) near field region and (b) far field region.

frequencies shown. It should be noted that the proposed approximations for the

integrand of Term 1 and Term 2 depend on the frequency (i.e., the points defined in

each integral limit for the approximation of the integrand depend on the frequency),

and they become small at some frequencies such as 20 MHz in 2.3(a). This results in

sharp reductions in the NRMSE shown in Fig. 2.3. For the far field regions, according

to its definition, the horizontal distance between the source and the observation point

is changed between −10λ0 to 10λ0 excluding the near field region. Fig. 2.3(b) depicts

the NRMSE value of Term 1 at each frequency when the observation point is in

the far field of the antenna. As can be seen in this figure, the NRMSE is less than

0.08 at various frequencies. This figure shows that the proposed solution of Term 1

outperforms the conventional solution in terms of NRMSE and it can be safely used

up to the VHF band for both near and far field regions. It is worth mentioning that

the NRMSE value of Term 2 for the near and far field regions is similar to Term 1
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due to the fact that only z − h is changed to z + h in (2.46) and (2.47).
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Fig. 2.4: The value of NRMSE for Term 3 at various frequencies.

Fig. 2.4 shows the NRMSE of Term 3 at various frequencies when the horizontal

distance between the source and the observation point is between −10λ0 to 10λ0. As

shown, the NRMSE is less than 0.015 for all frequencies and indicates the accuracy

of the proposed solution.

The HF band is employed in radio oceanography and HF radars use high frequency

radio waves in order to remotely measure sea surface parameters after receiving scat-

tered fields [77–79]. The proposed technique can be applied to the ocean surface,

which is used to study weather, climate and other dynamic ocean phenomena, in or-

der to find the scattered E-field. By assuming air and seawater EM properties, the

intermediate Hertz potential can be acquired. The proposed solutions are employed

for calculating the intermediate Hertz potential, which consists of Term 1, Term 2

and Term 3, and is compared with results obtained by the numerical method [76]. It
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Fig. 2.5: Comparison between the numerical, proposed and conventional methods for
the magnitude of Term 1 in (a) Y = 0 plane and (b) Y = 36 m plane.
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Fig. 2.6: Comparison between the numerical, proposed and conventional methods for
the magnitude of Term 2 in (a) Y = 16 m plane and (b) Y = 96 m plane.

should be noted that the frequency of the antenna has been assumed to be 30 MHz

and also the z coordinate of the observation point and antenna height have been as-

sumed to be 2 m and 1 m, respectively. Fig. 2.5(a) shows the magnitude of Term 1

between −200 m to +200 m in the Y = 0 plane. As can be seen in this figure, the

closed-form solution has good agreement with the numerical solution in all intervals
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Fig. 2.7: Comparison between the numerical and proposed solutions for the magnitude
of Term 3. (a) In Y = 0 plane. (b) In Y = 38 m plane.

and can follow the oscillation of the response in the near and far field regions. On the

other hand, except for the region surrounding the antenna, which has a large value,

the conventional method is unable to match the numerical solution in the near and

far field regions. Far from the point at which all solutions converge to a certain value,

the conventional solution is quite accurate. Fig. 2.5(b) also shows the magnitude of

Term 1 for the Y = 36 m plane. As can be seen in this figure, the proposed solution

follows the numerical solution not only in the near field region, but also in the far

field region. However, the conventional solution can only be acceptable at distances

far away from the antenna. Although the main difference between Term 1 and Term

2 is the sign of h in z − h, the magnitude of Term 2 in two different planes has been

obtained and shown in Fig. 2.6. As is obvious in this figure, the proposed solution

outperforms the conventional solution at various distances from the antenna. Fig. 2.7

also shows the magnitude of Term 3 between −200 m to +200 m in the Y = 0 and
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Y = 38 m planes. Note that these two planes are simply being used as examples.

For the proposed and numerical solution, as can be seen in this figure, the proposed

solution has a good agreement with the numerical method in both near and far field

regions.

2.4 Chapter Summary

In this chapter, the development of an approximate analytical solution for the in-

termediate Hertz potential over a smooth lossy half-space below the VHF band is

presented. The first and second terms of the intermediate Hertz potential are cal-

culated using hyperbolic functions, and the third term is represented with the help

of the error function, which is dependent on the frequency, observation point and

electromagnetic properties of the half-space. In order to verify the obtained results,

the solutions are compared with the numerical and conventional methods for differ-

ent cases (i.e., various frequencies and distances from the source). The comparisons

indicate that the proposed solutions are more accurate than the conventional method

at various frequencies (up to the VHF band) and distances from the antenna in the

near and far field regions.

41



Chapter 3

Scattered Electric Field

Calculation for Frequencies Below

10 GHz

In the previous chapter, an approximate solution for the intermediate Hertz potential

below the VHF band for highly conductive surfaces was proposed. In this chapter1,

the classical Sommerfeld half-space problem with a smooth interface is revisited, and

1The content of this chapter is based on the following publications:
-M. E. Nazari and W. Huang, “An analytical solution of the electric field excited by a vertical electric
dipole above a lossy half-space: From radio to microwave frequencies,” IEEE Trans. Antennas
Propag., vol. 68, no. 11, pp. 7517-7529, 2020.
-M. E. Nazari and W. Huang, “An analytical solution of the electric field radiated by a dipole over
a layered half-space,” IEEE AP-S/URSI, vol. 68, no. 11, pp. 943-944, 2020.
These papers propose the development of the scattered E-field over a lossy half-space at different
frequencies (below 10 GHz) and distances from the antenna in the near and far field regions.
Roles: Mr. Nazari conducted this research under the guidance of Dr. Huang and acted as the first
author of the manuscript. All the contents of this paper were written by Mr. Nazari and further
refined by Dr. Huang.
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rigorous approximate closed-form solutions for the scattered electric field and inter-

mediate Hertz potential for a source above good dielectric and conductor media below

10 GHz in the near and far field regions are presented. The theoretical development is

validated by representative numerical results and compared with the widely accepted

solutions presented in [36] and [25], referred to as the King and the Norton-Bannister

methods, respectively. It is worth mentioning that those solutions are valid in both

near and far-field regions, as well as high media contrast (i.e., |η2| � 1).

This chapter is organized as follows. In Section 3.1, the scattered electric field

components using the intermediate Hertz potential over a lossy half-space are derived.

A rigorous approximate closed-form solution for the intermediate Hertz potential and

scattered electric field components in the near and far-field regions is proposed in

Section 3.2. Finally, in Section 3.3, the proposed solutions are evaluated numerically

and compared with the conventional methods, i.e., King [36] and Norton-Bannister

[25] methods, at various frequencies, from radio to microwave frequencies, in the near

and far field regions.

3.1 Problem Statement and Formulation

The scattered electric field components from a lossy half-space when the source is

taken to be a VED located on the z-axis of the Cartesian coordinate system at height

h above a lossy half-space, as illustrated in Fig. 2.2, can be obtained from (2.27). By
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using the Sommerfeld approximation in the cylindrical coordinate [80]

∫ ∞
0

e−jkz |z|

jkz
J0(kρρ)kρdkρ ≈

e−jkr

r
, (3.1)

the intermediate Hertz potential in (2.30) can be approximated as [17, 81]

Πz '
1

4π

(
e−jk0R0

R0

+
e−jk0R1

R1

− 2P

)
(3.2)

wherein

R0 = (ρ2 + (zp − h)2)1/2, R1 = (ρ2 + (zp + h)2)1/2. (3.3)

Also, P expressed initially in (2.31) can be represented as

P =
1

4π2

+∞∫∫
−∞

1

η2
01

γ1

γ0 +
1

η2
01

γ1

e−(z+h)γ0

γ0

ej(kxx+kyy)dkxdky (3.4)

while γ1 is calculated from (2.29). In order to reduce the complexity of the calculations

in (3.4), the double integral is converted to a single integral by changing the Cartesian

integration variables into polar form. Subsequently, (3.4) can be written as

P =

∫ ∞
0

k

1

η2
01

γ1

γ0 +
1

η2
01

γ1

e−(z+h)γ0

γ0

J0(kρ) dk (3.5)
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in which the function J0(kρ) denotes the Bessel function of the first kind of order

zero and ρ =
√
x2 + y2 indicates the horizontal distance between the source and the

observation point. By decomposing P into partial fractions and assuming that the

observation point is higher than the antenna height on the z-axis, (3.5) becomes

P =

∫ ∞
0

k

γ0

e−(z+h)γ0J0(kρ)dk −
∫ ∞

0

ke−(z+h)γ0

γ0 +
1

η2
01

γ1

J0(kρ)dk. (3.6)

After employing the Sommerfeld approximation, (3.6) may be simplified as

P =
e−jk0R1

R1

−
∫ ∞

0

k

γ0 +
1

η2
01

γ1

e−(z+h)γ0J0(kρ) dk. (3.7)

By multiplying the numerator and denominator by the conjugate of the denominator,

the integral part in (3.7) can be divided into two parts, I1 and I2, as

I1 =
η4

01

η4
01 − 1

∫ ∞
0

k
√
k2 − k2

0

k2 − η2
01

η2
01 + 1

k2
0

e−(z+h)γ0 J0(kρ) dk (3.8)

I2 = − η2
01

η4
01 − 1

∫ ∞
0

k
√
k2 − η2

01k
2
0

k2 − η2
01

η2
01 + 1

k2
0

e−(z+h)γ0 J0(kρ) dk. (3.9)

45



The amplitude and the phase of ν2 =
η2

01

η2
01 + 1

in the denominator of (3.8) and (3.9)

can be written as

∣∣ν2
∣∣ =

 1 + tan2 δ(
εr + 1

εr

)2

+ tan2 δ


1/2

(3.10)

∠ν2 = − tan−1 (tan δ) + tan−1

(
εr tan δ

εr + 1

)
(3.11)

where tan δ and εr indicate the loss tangent and the permittivity of the half-space,

respectively. For good dielectrics (tan δ � 1 such as sea ice in the HF frequency band)

and good conductors (tan δ � 1 such as ocean surface in the HF frequency band),

which are media of practical importance in applications, the amplitude (3.10) and

the phase (3.11) can be replaced by 1 and 0, respectively, when the media contrast

is relatively high. Therefore, by substituting
η2

01

η2
01 + 1

by 1 in (3.8) and (3.9) and

employing the Sommerfeld approximation, (3.8) and (3.9) can be further simplified

to the following equations.

I1 '
η4

01

η4
01 − 1

∫ ∞
0

k e−(z+h)γ0√
k2 − k2

0

J0(kρ) dk =
η4

01 e
−jk0R1

R1 (η4
01 − 1)

(3.12)

I2 ' −
η2

01

η4
01 − 1

∫ ∞
0

k
√
k2 − η2

01k
2
0

k2 − k2
0

e−(z+h)γ0 J0(kρ) dk (3.13)

By inserting (3.12) and (3.13) into (3.7), P may be expressed as

P ' e−jk0R1

R1 (1− η4
01)

+
jη3

01k0

η4
01 − 1

∫ ∞
0

k

γ2
0

e−(z+h)γ0J0(kρ) dk, (3.14)
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which consists of a Sommerfeld-type integral.

3.2 Sommerfeld-type Integral Evaluation

In order to calculate the scattered electric field components, first, the intermediate

Hertz potential should be calculated. By evaluating (3.14) and then substituting

into (3.2), the intermediate Hertz potential and scattered electric field components

can be evaluated. In this section, accurate approximate closed-form solutions for

the intermediate Hertz potential and the scattered electric field are proposed. The

solutions are obtained for the near field, far field and the particular case of zp = h = 0,

which implies that both transmitter and receiver are at the interface.

3.2.1 Particular Scattering Problem (zp = h = 0)

In coplanar circuits and antennas, particularly microstrip antennas, the metallization

corresponding to the source and observation points is at the interface between the

dielectric and the air [82]. In order to calculate the scattered electric field components,

the height of the antenna and the z coordinate of the observation point are equal to

zero. Consequently, the intermediate Hertz potential (3.2) and also P (3.14) can be

reduced to

Πz =
1

2π

(
e−jk0ρ

ρ
− P

)
(3.15)
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and

P ' e−jk0ρ

ρ (1− η4
01)

+
jη3

01k0

η4
01 − 1

∫ ∞
0

k

k2 − k2
0

J0(kρ) dk. (3.16)

By decomposing the integral part of (3.16) into partial fractions, the integral is split

up into two separate integrals, I3 and I4, as follows:

I3 =
1

2

∫ ∞
0

J0(kρ)

k + k0

dk (3.17)

I4 =
1

2

∫ ∞
0

J0(kρ)

k − k0

dk. (3.18)

By using the Bessel function transform, the exact expression of (3.17) can be written

as

I3 =
1

2

∫ ∞
0

J0(kρ)

k + k0

dk =
π

4
[H0 (k0ρ)− Y0 (k0ρ)] (3.19)

in which H0(·) denotes the Struve function and Y0(·) indicates the zero order Bessel

function of the second kind (Neumann function) available for reference in [75]. By

employing the small and large argument approximation for the Bessel function in

(3.18) and performing the change of variable (kρ = t), I4 can be written as

I4 '
1

2

∫ 1

0

cos(0.7t)

t− k0ρ
dt+

1√
2π

∫ ∞
1

cos(t− π/4)√
t (t− k0ρ)

dt. (3.20)

By approximating 1/
√
t within the limits of integration in (3.20) using the rational

function
ar

t+ br
+ cr, in which ar = 5.4, br = 6.8 and cr = 0.03 are calculated by

considering three points between 1 and 1% of the maximum integrand amplitude, the
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approximate closed-form solution of I4 can be expressed as

I4 '
1

2
cos(0.7k0ρ)

[
Ci(0.7(1− k0ρ))− Ci(−0.7k0ρ)

]
+

1

2
sin(0.7k0ρ)

[
Si(−0.7k0ρ)

− Si(0.7(1− k0ρ))
]

+
1√
2π

(
ar

k0ρ+ br
+ cr

)[
sin(k0ρ− π/4) Si(1− k0ρ)

− π

2
sin(k0ρ−

π

4
)−cos(k0ρ−

π

4
) Ci(1− k0ρ)

]
− 1√

2π

(
ar

br + k0ρ

)[
π

2
sin(b+

π

4
)

− cos(b+
π

4
) Ci(1 + b)− sin(b+

π

4
) Si(1 + b)

]
(3.21)

wherein Ci indicates the Cosine integral and Si denotes the Sine integral [75]. By

substituting I3 and I4 into (3.16), the approximate closed-form solution of the inter-

mediate Hertz potential (3.15) can be obtained as

Πz =
1

2π(η4
01 − 1)

[
e−jk0ρ

ρ
− jη3

01k0(I3 + I4)

]
. (3.22)

In order to calculate the scattered electric field components, the intermediate

Hertz potential (3.2) along with (3.14) is substituted into (2.27) and then the antenna

height and z coordinate of the observation point are set to zero. Afterwards, (3.22) is

employed as the intermediate Hertz potential. Therefore, the approximated scattered

electric field components over the lossy half-space can be obtained as

~E =
I∆l

j2πωε0

e−jk0ρ

ρ

[
−jk0η

3
01

ρ2 (η2
01 − 1)

(x x̂+ y ŷ) +

(
k2

0 −
1

ρ2
− jk0

ρ
+

1 + jk0ρ

ρ2(1− η4
01)

− k2
0P

)
ẑ

] (3.23)
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wherein P can be expressed as

P ' e−jk0ρ

ρ (1− η4
01)

+
jη3

01k0

η4
01 − 1

(I3 + I4) . (3.24)

In comparison with the King [36] and Norton-Bannister [25] formulations, the

proposed approximate closed-form solution of the scattered electric field is valid not

only in the far-field region, but also in the near-field region. Moreover, as can be

seen in (3.23), the magnitude of the scattered electric field decays with respect to the

free-space Green’s function.

3.2.2 Near-Field Region

In the near-field observation, where the horizontal distance of the observation point is

much less than the free space wavelength (i.e., k0ρ� 1), the evaluation of the electric

field components becomes important due to its application in EM wave scattering

applications, such as ground penetrating radar (GPR) [83] and nondestructive testing

and evaluation [84]. GPR uses backscattered fields over half-spaces (mostly soil)

for subsurface surveying. The far-field solutions of calculating depths, which are of

interest for GPR applications, may not accurately describe radiation patterns in the

near-surface since the scattered electric field components are commonly measured over

ranges of centimetres or metres, which is in the near-field region of the antenna at the

operating frequency. In order to calculate the scattered electric field components in

the near-field regions, first, the intermediate Hertz potential (3.2) along with (3.14) is
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calculated in the near-field region, and then all electric field components are calculated

using (2.27).

By decomposing the integral part of (3.14) into partial fractions, it can be divided

into two integrals, I5 and I6, as follows:

I5 =
1

2

∫ ∞
0

e−(z+h)
√
k2−k20

k + k0

J0(kρ) dk (3.25)

I6 =
1

2

∫ ∞
0

e−(z+h)
√
k2−k20

k − k0

J0(kρ) dk. (3.26)

I5 can be further split up according to the different behaviour of the exponential

function, which can be real or complex at various k. It should be noted that, for 0 <

k < 1/ρ, the small argument approximation of the Bessel function is used because the

argument of the Bessel function (kρ) is less than one in this interval. However, for k >

1/ρ, the argument of the Bessel function is greater than one and the large argument

approximation of the Bessel function is employed for this interval. Therefore, I5 can

be written as

I5 =
1

2

∫ k0

0

e−j(z+h)
√
k20−k2

k + k0

cos(0.7kρ) dk +
1

2

∫ 1/ρ

k0

e−(z+h)
√
k2−k20

k + k0

cos(0.7kρ) dk

+
1√
2πρ

∫ ∞
1/ρ

e−(z+h)
√
k2−k20

√
k(k + k0)

cos(kρ− π/4) dk.

(3.27)

In (3.27), for k > 1/ρ,
e−(z+h)

√
k2−k20

√
k

can be approximated by a rational function

since it decays when the value of k is greater than 1/ρ. In addition, it can be assumed
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that the function is close to 0 when k reaches ku, which depends on the wavenumber

or frequency of the source, z coordinate of the observation point and antenna height.

The value of ku is obtained when the amplitude of e−(z+h)
√
k2−k20/

√
k reaches 1% of its

maximum, which is 0.01/
√
k0. Thus, the tail of the aforementioned function may not

impact the integral because the amplitude can be assumed to be zero after ku. In order

to calculate the value of ku, the nonlinear equation
e−(z+h)

√
k2−k20

k + k0

∣∣∣∣∣
k=ku

=
1

100
√
k0

should be solved. After applying the ln(·.) function to both sides and using the linear

approximation of the ln(·.) function around k0, ku can be obtained as

ku =
npg1 +

[
(npg1)2 − (n2

p − 1)(g2
1 + k2

0)
]1/2

1− n2
p

(3.28)

in which g1 =
4.6

z + h
+

0.01

k0(z + h)
and np = − 1

50(z + h)k0

.

In (3.27), for 0 < k < k0, the function of
√
k2

0 − k2 can be approximated as a

second-degree polynomial function, and the rational function
1

k + k0

can be approx-

imated as an exponential function, as shown in (3.29). Also, for k0 < k < 1/ρ,

e−(z+h)
√
k2−k20

k + k0

behaves as a rational function when the value of k increases from k0 to

1/ρ in the interval. Consequently, the following approximations are applied to (3.27)
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over various integrals of k to find an approximate closed-form solution for I5:

0 < k < k0 :
√
k2

0 − k2 ' p1k
2 + p2k + p3 ,

1

k + k0

' p4 exp(p5k)

k0 < k <
1

ρ
:
e−(z+h)

√
k2−k20

k + k0

' p6

k + p7

1

ρ
< k < ku :

e−(z+h)
√
k2−k20

√
k

' p8

k + p9

k > ku :
e−(z+h)

√
k2−k20

√
k

' 0

(3.29)

In order to find the unknown coefficients of the second-degree polynomial function

in the first interval of (3.29), three points are required to be fitted to the original

function. To obtain an accurate approximation, the interval is divided into four

sections and the first, second and third quarter points are selected to fit the proposed

function into the original function. For the rational function approximation using an

exponential function at the first interval in (3.29), the first and third quarter points are

selected. In order to approximate the rational-exponential function at the second and

third intervals in (3.29) using a rational function, the second and third quarter points

are considered to obtain accurate approximations. Subsequently, all the unknown

coefficients in (3.29) (i.e., pi, i = 1, 2, ..., 9) can be expressed as

p1 =
−0.82

k0

, p2 = 0.2, p3 = 0.97k0, p4 =
0.94

k0

, p5 =
−0.67

k0

, a = z+h, k3 =
3

4ρ
+
ku
4
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p6 =
k1 + p7

k1 + k0

exp

(
−a
√
k2

1 − k2
0

)
, p7 =

k2 − h0k1

h0 − 1
, k1 =

3k0

4
+

1

4ρ
, k2 =

k0

4
+

3

4ρ
,

h0 =
k2 + k0

k1 + k0

exp

[
−a
(√

k2
1 − k2

0−
√
k2

2 − k2
0

)]
, p8 =

k3 + p9√
k3

exp

(
−a
√
k2

3−k2
0

)
,

p9 =
k4 − h1k3

h1 − 1
, h1 =

√
k3

k4

exp

[
−a
(√

k2
3 − k2

0 −
√
k2

4 − k2
0

)]
, k4 =

1

4ρ
+

3ku
4
.

(3.30)

In order to evaluate the proposed approximations in (3.29), the absolute error of those

functions are calculated for the first two intervals shown in Fig. 3.1. The evaluation

of the error for the fourth function associated with the third interval has not been

shown here since it is quite similar to the second interval.

By employing the proposed approximations in (3.29) for each integrand function

in (3.27) and evaluating the integrals, the approximate closed-form expression for I5

can be obtained as

I5 '
√
πe−jap3p4

8
√
jap1

[
exp

(
(p5 − jap2 − j0.7ρ)2

j4ap1

)[
erf

(
ja(2p1k0 + p2)− p5 + j0.7ρ

2
√
jp1a

)

− erf

(
jap2 − p5 + j0.7ρ

2
√
jp1a

)]
+ exp

(
(p5 − jap2 + j0.7ρ)2

j4ap1

)
[
erf

(
ja(2p1k0 + p2)− p5 + j0.7ρ

2
√
jp1a

)
− erf

(
jap2 − p5 + j0.7ρ

2
√
jp1a

)]]
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Fig. 3.1: The absolute error of the proposed approximations in 3.29. (a) The first
function of the first interval. (b) The second function of the the first interval. (c) The
third function in the second interval.

+
p6

2

[
sin (0.7ρ p7)

[
Si (0.7 + 0.7ρ p7)− Si (0.7ρ (k0 + p7))

]
+ cos (0.7ρ p7)

[
Ci (0.7 + 0.7ρ p7)− Ci (0.7ρ (k0 + p7))

]]
+

p8

(p9 − k0)
√

2πρ

[
− sin(ρ p9 +

π

4
)[π

2
− Si(1 + ρ p9)

]
+ cos(ρ p9 +

π

4
) Ci(1+ρ p9)+sin(ρk0 +

π

4
)
[π

2
−Si (1 + ρk0)

]
− cos(ck0 +

π

4
) Ci (1 + ρk0)

]
(3.31)
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in which erf represents the Gauss error function [75]. I6 is the last integral that should

be evaluated for finding the approximate closed-form solution for (3.14), which is a

part of the intermediate Hertz potential. The difference between I5 and I6 is the pole

of k0 lies on the positive real axis of k. It will be shown that the solution of (3.26) only

depends on the wavenumber or frequency of the source, z coordinate of the observation

point and antenna height, and is not contingent on the horizontal distance between

the observation point and antenna. Therefore, the approximate closed-form solution

of (3.26) can be approximated as

I6 '
1

2

2∑
i=1

aiJ0(bi k0 + ci) +
j

2

4∑
i=3

aiJ0(bi k0 + ci). (3.32)

The approximate solution in (3.32) does not significantly depend on ρ (i.e., its vari-

ation is negligible at various horizontal distances) because the pole of k0 lies on the

positive real axis of k. In other words, the solution of the integral is related to the

residue of the integrand at its pole. By assuming the near-field (k0ρ � 1) and the

far-field (k0ρ� 1) regions, the value of J0(k0ρ), which is a part of the residue of the

integrand, is not significantly dependent on ρ since for small arguments it can be as-

sumed as one and for large arguments it can be neglected. For instance, the numerical

solution of I6 is calculated at different frequencies with respect to ρ in the near field

region in order to show the independence of its solution to ρ. Figs. 3.2 and 3.3 show

the real and imaginary parts of I6 with respect to ρ in two different frequencies, i.e.,

10 MHz and 10 GHz, and two different a values, i.e., a = 10 m and a = 2 m. As can
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Fig. 3.2: The real and imaginary parts of I6 for a = 10 m at a) 10 MHz and b) 10
GHz.

be seen from the figures, both the real and imaginary parts of I6 do not significantly

depend on ρ at different frequencies and a values. All the coefficients in (3.32) can

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(b)

Fig. 3.3: The real and imaginary parts of I6 for a = 2 m at a) 10 MHz and b) 10 GHz.

be calculated for different z coordinates of the observation points and antenna heights

based on the approximate closed-form formulations developed in Appendix A. These

coefficients have been acquired for some different coordinates of the observation points
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z and antenna heights h as shown in Table 3.1.

Table 3.1: Coefficients of the Bessel series function in (3.32) for different a values

Coefficients a = 1 m a = 2 m a = 5 m a = 10 m
a1 -2.40 -4.40 -3.70 -2.10
b1 -1.00 -0.96 -0.90 -1.00
c1 -0.05 -3.60 -3.50 -0.30
a2 -0.70 -5.00 -4.10 -2.50
b2 -1.00 -0.97 -0.90 -1.00
c2 2.40 -0.60 -0.40 -3.10
a3 -4.20 -5.40 -0.60 0.80
b3 -1.00 -0.98 -0.90 -1.00
c3 -3.60 -4.20 1.00 -0.90
a4 -5.20 -4.60 0.05 0.30
b4 -1.00 -1.00 -1.00 -1.00
c4 -0.70 -0.70 1.00 1.20

By substituting the proposed approximate closed-form solutions of I5 and I6, pre-

sented in (3.31) and (3.32), respectively, into (3.14), the solution of the intermediate

Hertz potential in the near-field region can be obtained as

Πz =
1

4π

[
e−jk0R0

R0

+
e−jk0R1

R1

(
1− 2

R1 (1− η4
01)

)
− 2

jη3
01k0

η4
01 − 1

(I5 + I6)

]
. (3.33)

In order to calculate the scattered electric components over the lossy half-space,

the intermediate Hertz potential (3.33) is inserted into (2.27). Thus, the scattered
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electric field components become

~E =
I∆l

j4πωε0

[
e−jk0R0

R5
0

A0 −
e−jk0R1

R5
1

1 + η4
01

1− η4
01

B0 +
e−jk0R1

R3
1

j2η3
01k0

(η4
01 − 1)2

(1 + jk0R1)

]
(xx̂ + yŷ) +

I∆l

j4πωε0

[
4πk2

0Πz +
e−jk0R0

R6
0

A1 +
e−jk0R1

R6
1

[1 + η4
01

η4
01 − 1

B1

− 2
jη3

01k0

η4
01 − 1

R3
1(z + h)(1 + jk0R1)

]]
ẑ

(3.34)

in which A0, B0, A1 and B1 are defined as

A0 =(h− z)
[
R2

0k
2
0 − 3 (1 + jk0R0)

]
B0 =(h+ z)

[
R2

1k
2
0 − 3 (1 + jk0R1)

]
A1 = (1 + jk0R0)

[
−R3

0 + jk0R
2
0(z − h)2 + 3R0(z − h)2

]
− jk0R

2
0(z − h)2

B1 = (1 + jk0R1)
[
R3

1 − jk0R
2
1(z + h)2 − 3R1(z + h)2

]
+ jk0R

2
1(z + h)2.

(3.35)

3.2.3 Far-Field Region

Evaluation of the scattered electric field components in the far-field region, in which

the horizontal distance between the source and the observation point is much greater

than the free space wavelength (i.e., k0ρ >> 1), is important as it has been widely

applied in medical imaging [85], geophysics [86], remote sensing [4] and wireless com-

munications [87]. In the same manner as the near-field evaluation, the intermediate

Hertz potential (3.2) along with (3.14) are calculated in the far-field region and then

(2.27) is adopted for calculating the scattered electric field components. In order to
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evaluate the scattered electric field, I5 in (3.25) and I6 in (3.26) should be evaluated

in the far-field region. After evaluating I5 and I6, P in (3.14) can be expressed in

closed-form. Then, the intermediate Hertz potential (3.2) and scattered electric fields

in (2.27) can be obtained in the far-field region.

I5 can be split up into three integrals according to the behaviour of the integrand

at various k values. For 0 < k < 1/ρ, the small argument approximation for the

Bessel function of the first kind is adopted since its argument is less than one in the

interval, while for 1/ρ < k < k0 and 1/ρ < k < k0 the large argument approximation

of the Bessel function is employed as a result of the fact that its argument is greater

than one in the aforementioned intervals. Consequently, I5 can be divided into three

parts as

I5 =
1

2

∫ 1/ρ

0

e−j(z+h)
√
k20−k2

k + k0

cos(0.7kρ) dk+
1√
2πρ

∫ k0

1/ρ

e−j(z+h)
√
k20−k2

√
k(k + k0)

× cos(kρ− π/4) dk +
1√
2πρ

∫ ∞
k0

e−(z+h)
√
k2−k20

√
k(k + k0)

cos(kρ− π/4) dk.

(3.36)

For 0 < k < 1/ρ and 1/ρ < k < k0, the term of
√
k2

0 − k2 can be approximated by

a second-degree polynomial. Moreover, for 0 < k < 1/ρ the rational function
1

k + k0

can be represented by an exponential, and for 1/ρ < k < k0 the function
1√

k(k + k0)

inside the integral can be approximated by an exponential. Also, in the last part

of the integral in (3.36), the integrand
e−(z+h)

√
k2−k20

√
k

can be modelled by a rational

function. Therefore, the following approximations can be proposed for the integrands
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of I5 at corresponding intervals of k.

0 < k < 1/ρ :
√
k2

0 − k2 ' p10k
2 + p11k + p12

1

k + k0

' p13 exp(p14k)

1/ρ < k < k0 :
√
k2

0 − k2 ' p15k
2 + p16k + p17

1√
k(k + k0)

' p18 exp(p19k)

k0 < k < ku :
e−(z+h)

√
k2−k20

√
k

' p20

k + p21

.

(3.37)

The integral is not calculated when |k| is greater than ku because the integrand decays

quickly when the value of k is greater than k0, and after the value of ku, the integrand

can be assumed to be zero. To represent an accurate approximation for the integrand

in the first interval of (3.37), the interval is divided into four sections, and the first,

second and third points are chosen to fit the second-degree polynomial function to

the original one. The first and third quarter points are selected to approximate the

rational function with an exponential function in the first interval. In the second

interval of (3.37), three points are required to approximate the radical and rational

functions. Thus, the first, second and third quarter points are selected within the

interval to fit the proposed functions into the original function. Lastly, for the third

interval, the first and the third quarter points are chosen to approximate the function

using a rational function. Thus, all the coefficients in (3.37) can be expressed in terms

of the wave number, z coordinate of the observation point, antenna height and the
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horizontal distance between the source and the observation point as follows:

p10 =8ρ2 (A2 − 2A3 + A4) , p11 = −2ρ (5A2 − 8A3 + 3A4) , p12 = 3A2 − 3A3 + A4,

p13 =
1

k0

(
4k0ρ+ 3

4k0ρ+ 1

)1.5

, p14 = −2ρ ln

(
4k0ρ+ 3

4k0ρ+ 1

)
, A2 =

(16k2
0ρ

2 − 1)0.5

4ρ
,

A3 =
(4k2

0ρ
2 − 1)0.5

2ρ
, A4 =

(16k2
0ρ

2 − 9)0.5

4ρ
, x2 =

ρk0 + 1

2ρ
, x3 =

3ρk0 + 1

4ρ
,

x4 =
ku + 3k0

4
, p15 =

1

A5

(f2x2 − f3x1 − f2x3 + f4x1 + f3x3 − f4x2) , x1 =
ρk0 + 3

4ρ
,

p16 =
−1

A5

(
f2x

2
2−f3x

2
1−f2x

2
3+f4x

2
1+f3x

2
3−f4x

2
2

)
, f2 =

√
k2

0 − x2
1, f3 =

√
k2

0 − x2
2,

p17 =
−1

A5

(−f4x
2
1x2+f3x

2
1x3+f4x1x

2
2−f3x1x

2
3 − f2x

2
2x3 + f2x2x

2
3), f4 =

√
k2

0 − x2
2,

A5 =(x1 − x2)(x1 − x3)(x2 − x3), p18 = f5 exp(−p19x1), p19 =
ln (f5/f6)

x1 − x3

,

f5 =
1

√
x1(x1 + k0)

, f6 =
1

√
x3(x3 + k0)

, p21 =
f7x4 − f8x5

f8 − f7

, p20 = f7(x4 + p21),

x5 =
3ku + k0

4
, f7 =

exp(−a
√
x2

4 − k2
0)

√
x4

, f8 =
exp(−a

√
x2

5 − k2
0)

√
x5

.

(3.38)

By using the proposed approximations in (3.37) along with (3.38) and substituting in

(3.36) and performing the integral, the approximate closed-form solution for I5 can

be acquired in the far-field region as
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I5 '
√
πp12e

−jap11

8
√
ja
√
p9

[
exp

(
(0.7jρ−p13+jap10)2

j4ap9

)[
erf

(
ja (2p9/ρ+p10)+0.7jρ−p13

2
√
ja
√
p9

)

− erf

(
jap10 + 0.7jρ− p13

2
√
ja
√
p9

)]
+ exp

(0.7jρ+ p13 − jap10)2

j4ap9[
erf

(
ja (2p9/ρ+ p10)− 0.7jρ− p13

2
√
ja
√
p9

)
− erf

(
jap10 − 0.7jρ− p13

2
√
ja
√
p9

)]]

+
p17e

−jap16

8
√
jaρp14

[
(j + 1) exp

(jρ− p18 + jap15)2

j4ap14

[
erf

(
ja (2p14k0 + p15) + jρ− p18

2
√
ja
√
p14

)

− erf

(
ja (2p14/ρ+ p15) + jρ− p18

2
√
ja
√
p14

)]
− (j − 1) exp

(jρ+ p18 − jap15)2

j4ap14[
erf

(
ja (2p14k0 + p15)− jρ− p18

2
√
ja
√
p14

)
− erf

(
ja (2p14/ρ+ p15)− jρ− p18

2
√
ja
√
p14

)]

+
p19

(p20 − k0)
√

2πρ

[
− sin(p20ρ+ π/4)

[π
2
− Si(ρk0 + ρp20)

]
+ cos(p20ρ+ π/4)

Ci(ρk0 + ρp20) + sin(k0ρ+ π/4)
[π

2
− sin(2k0ρ)

]
− cos(k0ρ+ π/4) Ci(2ρk0)

]
.

(3.39)

By using the proposed approximate closed-form solution for I5 and I6 in the far-

field region, the intermediate Hertz potential in the far-field zone is calculated. There-

fore, we obtain

Πz =
1

4π

[
e−jk0R0

R0

+
e−jk0R1

R1

(
1− 2

R1 (1− η4
01)

)
− 2

jη3
01k0

η4
01 − 1

(I5 + I6)

]
. (3.40)

It should be noted that the scattered electric field components in the far-field region

have the same formulation as (3.34) except the intermediate Hertz potential, which

should be replaced by (3.40).
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3.3 Results

In order to evaluate the accuracy of the proposed approximate closed-form solutions

for the intermediate Hertz potential and the scattered electric field, the NRMSE is

employed, while the numerical computation of the Sommerfeld integrals is considered

as reference. The NRMSE value in (2.55) is calculated for various frequencies and

distances from the antenna, while the observation point is changed in the near and far-

field regions. In the near-field, the observation point is changed between 0 to λ0/(2π),

in which λ0 represents the wavelength of the source. For the far-field transition region,

the distance of the observation point from the antenna is changed between λ0/(2π)

to 10λ0. In this calculation, at each observation point, in either the near or far-field

regions, the NRMSE is calculated for the whole frequency range, which is between 10

MHz to 10 GHz. Moreover, in order to obtain the accuracy of the proposed solution

in terms of frequency, the NRMSE value is calculated at each frequency while the

observation point is changed in the whole distance range of the near and far field.

Four different problems have been selected for analysis, with the parameters listed

in Table 3.2. It should be noted that the relative permittivity and permeability in

Table 3.2 do not depend on the frequency. Also, f1 and f2 in Table 3.2 correspond to 10

MHz and 10 GHz, respectively. The scattered electric field components are calculated

over the four media, i.e. seawater, wet earth, dry earth and lake water, using the

proposed solutions in the near and far-field regions, and are compared with the King
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Table 3.2: Media characteristics

Parameters Seawater Wet earth Dry earth Lake water
σ (S/m) 4.00 0.40 0.04 4× 10−3

εr 80.00 12.00 8.00 80.00
|η2

01(f1)| 7193.90 719.44 72.38 80.32
|η2

01(f2)| 80.32 12.02 8.00 80.00
tan δ(f1) 89.91 59.94 9.00 0.09
tan δ(f2) 0.09 0.06 9× 10−3 9× 10−5

|ν2(f1)| 1 1 0.99 0.99
|ν2(f2)| 0.99 0.92 0.9 0.98
∠ν2(f1) −1.39× 10−4 -0.0014 -0.013 -0.001
∠ν2(f2) -0.0011 -0.0046 -0.001 −1.1× 10−6

and Norton-Bannister formulations while the numerical integral computations are

considered as reference. As seen in Table 3.2, the value of |ν2| in low and high

frequencies and different layer properties is around one, which is consistent with the

results obtained in (3.10) and (3.11). Also, the value of the loss tangent at 10 MHz

shows that all media, except lake water, act as good conductors in low frequencies

since the loss tangent is greater than one, and they act as good dielectrics in high

frequencies because the loss tangent is less than one. Lake water acts as a good

dielectric in the whole frequency range according to the value of the loss tangent

in Table 3.2. Two sets of the antenna height and z coordinate of the observation

point are chosen in the evaluation of the scattered electric field. For the cases of on

boundary source and observation point, which has been derived in Section 3.2.1, the

antenna height and z coordinate of the observation point are assumed to be zero,

while for a general scattering problems, they are both taken as 0.5 m as example.
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3.3.1 Near-Field Evaluation

In this section, the scattered electric field components are evaluated in the near-

field region when the dipole antenna is located over the different media mentioned

in Table 3.2. Fig. 3.4 shows the NRMSE value of the proposed approximate closed-

form solution for the magnitude of the scattered electric field obtained by (3.41) in

the near-field region in terms of frequency and distance from the antenna when the

antenna height and z coordinate of the observation point are both 0.5 m.

|E| =
(
|Ex|2 + |Ey|2 + |Ez|2

)1/2
(3.41)

As can be seen in Fig. 3.4(a), the NRMSE value of the proposed approximate closed-

form solution is better than 0.026 and also better than the King and Norton-Bannister

solutions in the whole frequency range. Fig. 3.4(b) depicts the value of NRMSE

for the proposed solution and its comparison with the King and Norton-Bannister

solutions at various distances from the antenna in the near-field region. As is evident,

the NRMSE is better than 0.028 and is better than the conventional methods in all

horizontal distances from the antenna in the near-field region. Furthermore, at high

frequencies where higher accuracy is required (according to the radar equation for the

received power), the accuracy of the proposed solution is improved and returns more

accurate results than the conventional solutions, which has a constant accuracy over

all the frequencies.
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Fig. 3.4: Comparison between the proposed, King and Norton-Bannister solutions for
seawater at various (a) frequencies and (b) distances from the antenna in the near
field region when a = 1 m.
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Fig. 3.5: Comparison between the proposed, King and Norton-Bannister solutions
over seawater at various (a) frequencies and (b) distances from the antenna in the
near field region when a = 0 m.

Fig. 3.5 depicts the NRMSE value of the proposed solution and its comparison

with the conventional methods for the scattered electric field in the particular scatter-

ing problem, where the antenna and the observation point are at the interface. As we

can see in Fig. 3.5(a), the proposed solution performs better than the conventional
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methods in terms of NRMSE and is less than 0.0004 in the whole frequency range.

In order to evaluate the accuracy of the proposed solution in terms of distance from

the antenna for this particular case of scattering, the NRMSE is calculated in each

horizontal distance while the frequency is changed between 10 MHz and 10 GHz, as

shown in Fig. 3.5(b). As the figure demonstrates, the proposed solution outperforms

the conventional methods at various distances from the antenna and the value of

NRMSE is better than 0.016. It should be noted that the proposed approximations

for the integrand of P depend on frequency due to the points defined in each integral

limits and these points generate a choppy curve for the NRMSE at different frequen-

cies shown in Fig. 3.5(a). In order to assess the accuracy of the proposed solution

for moderate contrast media, the NRMSE value is obtained in terms of varying fre-

quency and distance from the antenna for dry earth, as shown in Fig. 3.6. In this

figure, the NRMSE values of the proposed solution are less than those of the King

and Norton-Bannister solutions not only at various frequencies, but also at different

distances from the antenna. These plots substantiate that the proposed solution per-

forms better than the conventional solutions even for moderate contrast media, in

which the reflection coefficient becomes smaller compared with high media contrast.

In order to quantify the validity of the proposed solution for different layer proper-

ties mentioned in Table 3.2, some measures of accuracy are obtained in the near-field

region for the scattered electric field when a = 1 m, as shown in Table 3.3. The

NRMSE and the mean absolute error (MAE) presented in (3.42) have been chosen to
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Fig. 3.6: Comparison between the proposed, King and Norton-Bannister solutions
over dry earth at various (a) frequencies and (b) distances from the antenna in the
near-field region when a = 0 m.

Table 3.3: Performance comparison between the proposed and conventional methods
in the near field region

Seawater Wet earth Dry earth Lake water

Method NRMSE
MAE

(V/m)
NRMSE

MAE

(V/m)
NRMSE

MAE

(V/m)
NRMSE

MAE

(V/m)

Proposed E(f) 0.005 0.155 0.016 0.406 0.022 0.503 0.008 0.157

solution E(ρ) 0.009 0.178 0.024 0.466 0.030 0.581 0.009 0.181

King
E(f) 0.037 1.147 0.037 1.142 0.037 1.143 0.037 1.082

E(ρ) 0.039 1.317 0.039 1.325 0.039 1.212 0.039 1.324

Norton- E(f) 0.045 1.395 0.045 1.383 0.045 1.391 0.045 1.320

Bannister E(ρ) 0.042 1.312 0.042 1.324 0.042 1.312 0.042 1.305

quantify the accuracy of the solutions for different layer properties with respect to the

frequency (E(f)) and the distance from the antenna (E(ρ)), where MAE is calculated

by

MAE =

∑n
i=1 |χi − χ̂i|

n
(3.42)

in which χ represents the reference values, χ̂ denotes the calculated values and n is
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the number of reference or calculated values.

As can be seen in this table, the NRMSE and MAE values of the proposed method

are better than the conventional methods for different layer properties.

3.3.2 Far-Field Evaluation

The NRMSE is also used to evaluate the accuracy of the proposed solution in the

far-field region obtained in Section 3.2.3. Fig. 3.7 shows the NRMSE comparison of

the proposed solution with the conventional methods when the dipole antenna has

been located over seawater with a = 1 m.
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Fig. 3.7: Comparison between the proposed, King and Norton-Bannister solutions for
seawater at various (a) frequencies and (b) distances from the antenna in the far-field
region when a = 1 m.

As can be seen in Fig. 3.7(a), the NRMSE value of the proposed solution is better

than 0.023 and better than the conventional methods in the whole frequency range

in the far-field region. In terms of distance from the antenna, the NRMSE of the
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proposed solution is less than 0.015 and better than the conventional methods in

the far-field region as shown in Fig. 3.7(b). As it is evident, the proposed solution

outperforms the conventional methods in the far-field region in terms of frequency

and distance from the antenna.

Fig. 3.8 shows the NRMSE comparison between the proposed solution and the

conventional methods for the particular scattering problem over seawater (a = 0 m).

As we can see in Fig. 3.8(a), the proposed solution has a better accuracy in the whole

frequency range and the NRMSE value is less than 0.024. In Fig. 3.8(b), the NRMSE

value has been obtained at various distances from the antenna, while the frequency is

changed from 10 MHz to 10 GHz at each distance. The figure shows that, the proposed

solution has lower NRMSE values and outperforms the conventional methods in the

far-field region. In order to evaluate the efficiency of the proposed solution in the

calculation of the scattered electric field components over moderate contrast media,

the NRMSE value is calculated over dry earth at various frequencies and distances

from the antenna. Fig. 3.9 shows the accuracy comparison between the proposed and

conventional solutions for dry earth, as moderate contrast media, when a = 0 m. As

can be seen from the figure, the proposed solution has accuracy that is better than

the conventional methods in the whole frequency range and various distances from

the antenna in the far-field region.

Table 3.4 shows the performance of the proposed approximate closed-form solution

for the scattered electric field in the far-field region and its comparison with other
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Fig. 3.8: Comparison between the proposed, King and Norton-Bannister solutions for
seawater at various (a) frequencies and (b) distances from the antenna in the far-field
region when a = 0 m.
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Fig. 3.9: Comparison between the proposed, King and Norton-Bannister solutions
over dry earth at various (a) frequencies and (b) distances from the antenna in the
far-field region when a = 0 m.

methods. With regard to the accuracy metrics, the proposed solution is the most

accurate method for different layer properties since it has the lowest NRMSE and

MAE values compared with other methods.

To evaluate the contribution of the interface between the top and bottom half-
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Table 3.4: Performance comparison between the proposed and conventional methods
in the far field region

Seawater Wet earth Dry earth Lake water

Method NRMSE
MAE

(V/m)
NRMSE

MAE

(V/m)
NRMSE

MAE

(V/m)
NRMSE

MAE

(V/m)

Proposed E(f) 0.004 0.110 0.004 0.143 0.005 0.153 0.001 0.108

solution E(ρ) 0.005 0.148 0.008 0.162 0.009 0.164 0.004 0.147

King
E(f) 0.054 1.424 0.050 1.410 0.049 0.408 0.054 1.411

E(ρ) 0.027 0.588 0.020 0.561 0.018 0.558 0.027 0.583

Norton- E(f) 0.057 1.481 0.053 1.431 0.051 1.412 0.057 1.480

Bannister E(ρ) 0.030 0.610 0.022 0.571 0.020 0.563 0.029 0.587

space on the pattern of the scattered electric field in the far-field region, the cor-

responding elevation pattern of |E| = (|Ex|2 + |Ey|2 + |Ez|2)1/2 is computed over

seawater, as the case of high contrast media, and dry earth, as the case of moderate

contrast media, for two different frequencies using the reference solution, which is the

numerical method, and the proposed solution. Figs. 3.10(a) and (b), respectively,

show the elevation patterns of the scattered electric field over seawater at 10 MHz

and 10 GHz when the antenna height is 5 m and the distance between the origin of

the Cartesian coordinate and the observation point is 50/k0. As is evident in the

figure, the proposed solution has good agreement with the numerical method in both

low and high frequencies. Furthermore, as the frequency increases, blind zones occur

over the interface due to multipath fading [1]. Figs. 3.10(c) and (d), respectively,

depict the elevation pattern of the scattered electric field over dry earth under same

conditions. As we can see, the proposed solution also agrees well with the numerical

solution in high and low frequencies. It is worth mentioning that the contribution
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Fig. 3.10: Elevation pattern of the scattered electric field. (a) Over seawater at 10
MHz. (b) Over seawater at 10 GHz. (c) Over dry earth at 10 MHz. (d) Over dry
earth at 10 GHz.

of the surface wave is relatively high in dry earth case compared with seawater since

the refractive index as well as the reflection coefficient of seawater is higher than dry

earth.

It should be noted that the computation time using a computer equipped with a

core i7-4700MQ CPU clocked at 2.40 GHz and 16 GB RAM memory for the numerical

computations accomplished in Fig. 3.10 is around 1 h 54 min for each medium.
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3.4 Chapter Summary

In this chapter, an analytical evaluation of the intermediate Hertz potential and the

scattered electric field components in the presence of a VED over a lossy half-space

with a smooth interface is proposed. The solution consists of the Sommerfeld integral

evaluated in the near and far-field regions. The accuracy of the proposed solution

was assessed using NRMSE and MAE in the near and far-field regions over different

layer properties in the whole frequency range, from radio to microwave frequencies.

The comparisons indicate that the proposed solution has higher accuracy compared

with the conventional methods at various distances from the antenna and different

frequencies in the whole frequency range. In many EM scattering applications, such

as nondestructive testing to determine the thickness or internal structure of a test

piece [88], highly accurate solutions for the scattered fields are needed.
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Chapter 4

Scattered Fields Calculation With

Extensions to Plasmonics

In this chapter1, the classical Sommerfeld half-space problem with a smooth interface

is reconsidered and a rigorous approximate closed-form solution for the intermediate

Hertz potential and the scattered electric and magnetic field components is presented

for ordinary and plasmonic media in a wide frequency range (i.e., 100 MHz to 100

GHz for non-plasmonic and 300 THz to 900 THz for plasmonic media). The scattered

fields with more terms associated with high-order surface waves are characterized

1The content of this chapter is based on the following publication:
M. E. Nazari, W. Huang, “Asymptotic solution for the electromagnetic scattering of a vertical dipole
over plasmonic and non-plasmonic half-spaces,” IET Microw. Antennas Propag., vol. 15, no. 7, pp.
704-717, 2021.
This paper presents the development of the scattered E- and H-field over a lossy half-space with
extensions to plasmonics.
Roles: Mr. Nazari conducted this research under the guidance of Dr. Huang and acted as the first
author of the manuscript. All the contents of this paper were written by Mr. Nazari and further
refined by Dr. Huang.
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from the intermediate Hertz potential approximated by the modified saddle-point

method. The theoretical development is validated by representative numerical results

and compared with two alternative state of the art solutions referred to as the King

[36] and the Norton-Bannister [25] solutions for non-plasmonic and plasmonic media.

The obtained results show that the proposed solution outperforms the conventional

solutions at various frequencies and distances from the antenna and even for moderate

contrast media.

This chapter is organized as follows. In Section 4.1, the scattered electric and

magnetic field components using the intermediate Hertz potential are derived and a

rigorous approximate closed-form solution for the intermediate Hertz potential and

scattered electric and magnetic field components in the far field region is proposed.

In Section 4.2, numerical evaluation of the proposed solution at various frequencies

and comparisons with the conventional methods, i.e., King and Norton-Bannister so-

lutions, for both ordinary and plasmonic media are presented in terms of the NRMSE

and the normalized maximum absolute error (NMAE).

4.1 Scattered Fields Calculation

The scattered electric field components radiated by a VED located on the z-axis of

the cylindrical coordinate system at height h above a lossy half-space, as shown in

Fig. 2.2, can be obtained from the intermediate Hertz potential mentioned in (3.2).

Using Maxwell’s equations, the scattered magnetic field components can be calculated
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from the scattered electric field (2.27) as [18]

~H =I∆l

[
∂Πz

∂y
x̂− ∂Πz

∂x
ŷ

]
. (4.1)

The Sommerfeld-type integral of P in (3.4) should be identified for the calculation

of the scattered electric and magnetic field components. Various analytical solutions

have been proposed for seeking an approximate closed-form solution for the scattered

electric and magnetic field components. However, proposing a general closed-form

solution for different antenna and observation point locations with an arbitrary value

of the complex refractive index is the main difficulty in evaluating them.

The zero order Bessel function in (3.5) can be written as the sum of two Hankel

functions of the first and second kinds with the same argument mentioned in (2.38).

By substituting (2.38) into (3.5), P can be written as

P =
1

2

∫ ∞
−∞

k

1

η2
01

γ1

γ0 +
1

η2
01

γ1

e−(z+h)γ0

γ0

H1
0 (kρ) dk. (4.2)

For moderate and high contrast media, (4.2) can be further simplified as

P =
1

2

∫ +∞

−∞
k

jk0β

γ0 + jk0β

e−(z+h)γ0

γ0

H1
0 (kρ) dk (4.3)

wherein β = γ1/jk0η
2
01. By changing the integral variable k to ζ = arccos(k/k0), P
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becomes

jk0β

2

∫ π+j∞

−j∞

cos ζ H1
0 (k0ρ cos ζ) e−jk0(z+h) sin ζ

sin ζ+α0

2
cos ζ−α0

2

dζ (4.4)

in which α0 = sin−1(β). It should be noted that by representing ζ in the polar form

(i.e., ejζ + e−jζ = k/k0), the bounds of the integral in (4.4) are obtained. By using

the first term of the asymptotic expansion of the Hankel function of the first kind in

the far field region, (4.4) can be expressed as

ejπ
4 β

√
k0

2πρ

∫ π+j∞

−j∞

√
cos ζ e−jk0R1 cos(θ2−ζ)

sin ζ+α0

2
cos ζ−α0

2

dζ (4.5)

where θ2 is defined as

θ2 = − tan−1

(
z + h

ρ

)
=
π

2
+ θ1. (4.6)

Although extra terms for the asymptotic expansion of the Hankel function in (4.5)

may increase the accuracy of the integral evaluation, it is quite accurate in the far-

field region since the NRMSE values for the real and imaginary parts of the proposed

approximation of the Hankel function are 0.004 and 0.0042, respectively.

By deforming the integration path via the substitution cos(θ2 − ζ) = 1 − jt2 and

using the modified saddle-point method, P can be approximated as

P ≈ −2
√

2je−jπ/4e−jk0R1 cos ((θ2 − α0)/2)

∫ ∞
−∞

e−k0R1t2dt

t2 + j2 cos2 ((θ2 − α0)/2)
(4.7)
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and finally,

P ' j
√
πPe e

−We erfc(j
√
We)

e−jk0R1

R1

(4.8)

in which Pe and We may be expressed as

Pe = − jk0R1

2
β2 , We ≈ Pe

(
1 +

h+ z

βR1

)2

. (4.9)

4.1.1 Scattered E-field Components

In order to calculate the scattered electric field components over the lossy half-space,

the intermediate Hertz potential (3.2) along with (4.8) are substituted into (2.27).

The x-component of the scattered electric field may be expressed as

~Ex =
I∆l

j4πωε0

[
x(h− z)

[
R2

0k
2
0 − 3 (1 + jk0R0)

] e−jk0R0

R5
0

− x(h+ z)

[
R2

1k
2
0−3 (1 + jk0R1)

] e−jk0R1

R5
1

+
√

2πk0 e
−j

3π

4 β
[
T1 T2 + T3 erfc(j

√
We)−jT4

] ]
(4.10)

wherein T1 to T4 with their sub variables (i.e., C1 to C7) can be acquired from the

following equations.

T1 = − k0β
2xeWe

2R1

√
πWe

[
1− cos2 θ1

β2

]
T2 = −e−We

e−jk0R1

R2.5
1

[
(
1

2
+ jk0R1)(h+ z) + C1R

2
1

]
T3 = −2(1 + jk0R1)C2 − jk0 x e

−We e−jk0R1
h+ z

R3.5
1

+ C2
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T4 = C7e
−jk0R1 − jk0 x C1√

πWe

e−jk0R1

R1.5
1

C1 = − jk0β
2

2

(
1 +

cos θ1

β

)[
cos θ1

(
1 +

cos θ1

β

)
+ 2R1

]
− C4e

−We
e−jk0R1

R0.5
1

− C5C6

C2 = −(h+ z)e−Wee−jk0R1

2R4.5
1

(
C3R

2
1 + jk0xR1 + 2.5x

)
C3 =

−jk0β
2x

2R1

(
1− cos2 θ1

β2

)
C4 =

−jk0x

2R2
1

[
− sin(2θ1) sin θ1 − cos θ1

(
β2 − cos2 θ1

)]
C5 = − jk0β

2

[
(1 + cos θ)

(
1 + sin2 θ1 + β cos θ1

)]
C6 =

e−Wee−jk0R1

R2.5
1

(
−R2

1C3 +
x

2
− x(1 + jk0R1)

)
C7 =

1

2R2
1We

√
πR1We

[
2C4R

2
1We − C1

(
xWe +R2

1C3

)]
(4.11)

The y-component of the scattered electric field can be expressed as

~Ey =
I∆l

j4πωε0

[
y(h− z)

[
R2

0k
2
0 − 3 (1 + jk0R0)

] e−jk0R0

R5
0

− y(h+ z)
[
R2

1k
2
0

− 3 (1 + jk0R1)
]e−jk0R1

R5
1

+
√

2πk0 e
−j

3π

4 β
[
T ′1 T2 + T ′3 erfc(j

√
We)− jT ′4

] ]
.

(4.12)

The only difference between the prime parameters, i.e., T ′1, T ′2, T ′3 and T ′4, and un-

primed parameters in (4.12) is the x parameter. In other words, by changing x to

y in T1, T2, T3, T4 and their sub variables, prime parameters can be obtained. By

calculating the x- and y- components of the scattered electric field over the lossy half-

space, cross polarized components are obtained since the polarization of the antenna

is vertical. By using (2.27), the z-component of the scattered electric field can be
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calculated. Thus, we have

~Ez =
I∆l

j4πωε0

[
k2

0

(
e−jk0R0

R0

+
e−jk0R1

R1

)
+

cos2 θ0 (1 + jk0R0) e−jk0R0

R3
0

(
− sec θ0

+ jk0R0 + 3− jk0R0

1 + jk0R0

)
+

cos2 θ1 (1 + jk0R1) e−jk0R1

R3
1

(
− sec θ1 + jk0R1 + 3

+
jk0R1

1 + jk0R1

)
− 2k2

0P − 2T5

]
(4.13)

in which T5 to T8 and their sub variables are obtained from the following equations.

T5 = −
√
πk0

2
e
−j

3π

4 β

[
−j
eWeC1√
πWe

T6 + T7 erfc(j
√
We)− jT8

]
T6 = −cos θ1e

−Wee−jk0R1

R1.5
1

(
1

2
+ jk0R1 +

R1C1

cos θ1

)
T7 = − (1 + 2jk0R1)C8 +

jk0

R1.5
1

e−Wee−jk0R1 cos2 θ1 + C9

T8 =
C1e

−jk0R1

√
πR1We

[
C1 − jk0 cos θ1 −

We cos θ1 +R1C1

2R1We

]
C8 = −e

−jk0R1−We

2R2.5
1

[
−1 + (h+ z)C1 + cos2 θ1(jk0R1 +

5

2
)

]
C9 =

e−jk0R1−We

2R1.5
1

[
− 2R1C10 + 2R1C

2
1 + C1(1 + 2jk0R1) cos θ1

]
C10 = − jk0

2R1

[
(1 + β) sin2 θ1 cos θ1 + 2 sin4 θ1 + (β + cos θ1)

(
sin2 θ1−

2 cos θ1ρ
2

βR2
1

)]
(4.14)
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4.1.2 Scattered H-field Components

The scattered magnetic field components can also be calculated using the intermediate

Hertz potential (3.2). In other words, by substituting (3.2) along with (4.8) into

(4.1), different components of the scattered magnetic field can be obtained. The

x-component of the scattered magnetic field may be expressed as

~Hx = −I∆l

4π
y

[
e−jk0R0(1 + jk0R0)

R3
0

+
e−jk0R1(1 + jk0R1)

R3
1

− e
j
π

4 e−jk0R1β
√

2πk0(
erfc(j

√
We)e

−WeT9 +
jC11

y
√
πWeR1

)] (4.15)

wherein T9 and C11 can be expressed as follows:

T9 =
C11

y
√
R1

+
1 + 2jk0R1

2R2.5
1

C11 = − jk0β
2y

2R1

(
1− cos2 θ1

β2

)
.

(4.16)

The y-component of the scattered magnetic field over the lossy half-space can also be

written as

~Hy = −I∆l

4π
x

[
e−jk0R0(1 + jk0R0)

R3
0

+
e−jk0R1(1 + jk0R1)

R3
1

− ejπ
4 e−jk0R1β

√
2πk0(

erfc(j
√
We)e

−We

x
T ′9 +

jC3

x
√
πWeR1

)] (4.17)
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in which T ′9 can be obtained by noting that C11 in (4.16) is the same as C3 in (4.11)

with x changed to y.

4.2 Results

In order to evaluate the accuracy and efficiency of the recently developed method

for the calculation of the intermediate Hertz potential and the scattered electric and

magnetic field components over the lossy half-space, the NRMSE and the normalized

maximum absolute error (NMAE) (see 4.18 below), in which the standard deviation

of the reference values is used for normalization [89], are utilized for each frequency.

It should be noted that in the calculation of the NRMSE, the numerical solutions

obtained by the high-order global adaptive quadrature method [90] are considered

as reference. In order to calculate the NRMSE for each frequency using (2.55), the

amplitude of the scattered electric field (i.e.,
√
|Ex|2 + |Ey|2 + |Ez|2) is considered as

χ̂ while θ (elevation angle in Fig. 2.27) is changed between 0 to π/2 with a resolution

of π/200 (N = 100). The numerical solution for the amplitude of the scattered electric

field is also considered as χ, while θ is changed between 0 to π/2 with the resolution of

π/200. The next metric used here for the accuracy evaluation of the proposed solution

is the NMAE defined as the maximum difference between the proposed and numerical

solutions for the scattered electric field. The normalization is accomplished by the

standard deviation of the numerical results. Therefore, the NMAE can be expressed
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Table 4.1: Media parameters

Parameter Seawater
Silty loam

soil

Silty clay

soil
Lake water Silver Gold

f 300 MHz 1.8 GHz 108 MHz 9.4 GHz 351.87 THz 420.52 THz

k0 (m−1) 6.28 37.7 2.26 196.87 7.36× 106 8.8× 106

h 0.5 m 2.5 m 1.5 m 0.5 m 48 nm 220 nm

R(m) 8/k0 10/k0 10/k0 10/k0 10/k0 20/k0

σ0 (S/m) 4 0.04 0.012 17.51 6.3× 106 7.2× 106

εr 80 4.64 23.06 60.98 -36.93 -17.2

|n201| 252.77 4.66 23.15 69.58 36.93 17.24

tan δ 2.99 0.09 0.086 0.55 0.012 0.075

as

NMAE =
Max

i=1,2,...,N
|χi − χ̂i|

σχ
. (4.18)

Next, the proposed solutions for the scattered E and H fields are compared with the

King and Norton-Bannister solutions, while the reference E- and H-fields are computed

by the rigorous numerical computation of the integrals in P considered as SIs using the

high-order global adaptive quadrature method [90]. Moreover, the elevation pattern of

the scattered electric field is compared with the numerical solution. Six various media

with different electromagnetic properties are selected for the accuracy evaluation of

the proposed solution listed in Table 4.1. Silver and gold illustrate plasmonic media,

which have been considered in the optical frequency range, and the others represent

ordinary (i.e., non-plasmonic) media.
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4.2.1 Non-plasmonic Media

The proposed formulations are applied to four different ordinary media listed in Table

4.1. In this table, two of the media are soil and the soil composition is characterized

by the percentage of soil constituents, i.e., sand, clay, silt and water. Silty loam

soil consists of roughly equal amounts of silt and sand and a little less clay. On the

other hand, silty clay soil has more clay than silt. The complex relative permittivity of

seawater as well as lake water are calculated using the Meissner and Wentz model [91],

which is based on the double Debye model and is quite accurate at higher frequencies.

On the other hand, for silty loam and silty clay soil, the complex relative permittivity

is calculated by the developed Dobson model [92, 93].

The frequency carried by the antenna over each medium in Table 4.1 is related

to the application of wave scattering over that region. For seawater, the VHF fre-

quency band has been selected since pulsed radars operate in this frequency band to

extract the speed and direction of ocean surface currents in real time [4, 94]. For

the silty loam soil scattering problem, the global system for mobile communications

(GSM) frequency band has been considered since finding the pattern of the scattered

EM fields, coverage area and blind zones over earth surface are of interest [1, 95].

Therefore, GSM-1800 (1.8 GHz) has been selected for this scattering problem. On

the other hand, the frequency modulation (FM) broadcast band has been selected for

the silty clay soil scattering problem due to its application in finding the coverage

area of passive radars and FM broadcast radio systems [96]. For radio oceanography
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applications, X-band marine radar is commonly used to scan the water surface with

high temporal and spatial resolutions [97], and this frequency range has been selected

for the lake water scattering problem.
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Fig. 4.1: The elevation pattern of the scattered electric field for a VED and its com-
parison with the proposed, Norton-Bannister and King solutions over a) seawater b)
silty loam soil c) silty clay soil and d) lake water as non-plasmonic media.

The elevation pattern of the scattered electric field, i.e., |E| = (|Ex|2 + |Ey|2 +

|Ez|2)0.5, over the selected ordinary media listed in Table 4.1 is calculated using

the proposed method and compared with the numerical and conventional (Norton-
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Banister and King solutions) methods. Fig. 4.1 depicts the elevation pattern of

the scattered electric field for a VED over selected non-plasmonic media in different

frequencies and distances from the antenna. The horizontal and vertical axes, respec-

tively, correspond to θ = 90◦ and θ = 0◦, as shown in Fig. 2.2. As can be seen in Fig.

4.1, the King and Norton-Bannister results are close to each other and become indis-

tinguishable when the media contrast is sufficiently high [98]. In Fig. 4.1(a), which

has been obtained for seawater at VHF band, the proposed solution has a good agree-

ment with the numerical method not only for low angles, but also near the interface,

in which groundwave contribution is high. In order to evaluate the accuracy of the

proposed solution compared with the conventional solutions, the NRMSE and NMAE

are calculated shown in Table 4.2. As can be seen in this table, both NRMSE and

NMAE of the proposed solution are lower than the conventional solutions for both

scattered E and H fields. The elevation pattern of the scattered electric field over silty

loam soil is shown in Fig. 4.1(b). The proposed solution follows the numerical solu-

tion, particularly on the pattern nulls and also on the interface, which corresponds to

the groundwave contribution. The NRMSE and NMAE evaluation of the scattered E

and H fields reveal that the proposed solution outperforms the conventional solutions

even for moderate contrast media. In Fig. 4.1(c), the elevation pattern of the scat-

tered electric field over silty clay soil has been obtained. As can be observed in this

figure, the proposed solution agrees well with the numerical solution, particularly, in

high angles and near the interface, and the NRMSE and NMAE values for silty clay

88



Table 4.2: Performance comparison between the proposed and conventional
solutions for the ordinary media

Proposed solution King Norton-Bannister
Medium NRMSE NMAE NRMSE NMAE NRMSE NMAE

Seawater
E-field 0.0355 0.0571 0.0654 0.1317 0.0649 0.1313
H-field 0.0064 0.0135 0.0132 0.0237 0.0112 0.0238

Silty loam
soil

E-field 0.1182 0.2216 0.1459 0.2585 0.1458 0.2584
H-field 0.0135 0.0316 0.0169 0.0452 0.0170 0.0452

Silty clay
soil

E-field 0.1098 0.2028 0.1555 0.2794 0.1528 0.2780
H-field 0.021 0.0525 0.041 0.0612 0.032 0.0610

Lake water
E-field 0.044 0.1042 0.0601 0.1218 0.0601 0.1218
H-field 0.0287 0.0735 0.0522 0.1096 0.0522 0.1096

soil problem listed in Table 4.2 are lower than the conventional solutions. Fig. 4.1(d)

illustrates the elevation pattern of the scattered electric field for lake water, in which

discrepancies between results are not noticeable. However, the NRMSE and NMAE

values listed in Table 4.2 substantiate that the proposed solution is more accurate

than the King and Norton-Bannister solutions. Similarly, to evaluate the accuracy

of the proposed solution for the scattered magnetic field, the NRMSE and NMAE

values for the H-field over non-plasmonic media listed in Table 4.1 are calculated,

which have been shown in Table 4.2. As evident, all the NRMSE and NMAE values

for the H-fields are smaller than the conventional solutions for the ordinary media.

To assess the robustness of the proposed solution in terms of NRMSE at various

frequencies, the NRMSE value is calculated for the scattered electric field compo-

nents for the whole frequency range, which is between 100 MHz to 100 GHz for

non-plasmonic media. In other words, the NRMSE value is calculated for each fre-

quency (500 frequency samples) while the observation point angle is changed between
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Fig. 4.2: The NRMSE of the scattered electric field for a VED at various frequencies
and its comparison with the Norton-Bannister and King solutions over a) seawater b)
silty loam soil c) silty clay soil and d) lake water as non-plasmonic media.

θ = 0◦ and θ = 90◦. It should be noted that the real and imaginary parts of the

dielectric constant for the ordinary media listed in Table 4.1 depend on frequency.

Therefore, the relative permittivity should be calculated for each frequency for the

NRMSE calculation. For seawater, the relative permittivity depends on temperature

and also salinity and varies with frequency [99]. In the NRMSE calculation of the

scattered fields over seawater, the salinity of seawater and lake water have been as-
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Fig. 4.3: The NRMSE comparison of each scattered electric field component for a
VED at various frequencies over a) seawater b) silty loam soil c) silty clay soil and d)
lake water.

sumed as 35 and 0, respectively, while the temperature is 17 ◦C. For the silty clay

and loam soil, the relative permittivity depends on frequency, temperature and also

the texture of the soil [100]. For this scattering problem, the temperature has been

assumed as 23 ◦C.

Fig. 4.2 illustrates the NRMSE comparison of the proposed and conventional

solutions over ordinary media in a wide variety of frequency ranges, while the antenna
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Fig. 4.4: The NMAE of the scattered electric field for a VED at various frequencies
and its comparison with the Norton-Bannister and King solutions over a) seawater b)
silty loam soil c) silty clay soil and d) lake water as non-plasmonic media.

height (h) and distance of the observation point from the origin of the coordinate

system (R) are assumed to be λ/10 and k0/10, respectively. As is obvious from

this figure, the NRMSE value of the scattered electric field components is better

than the conventional solutions (i.e., King and Norton-Bannister solutions) in all

frequencies shown in Fig. 4.2(a) to (d). In order to evaluate the accuracy of each

scattered electric field component, i.e., Ez and Eρ, the NRMSE has been calculated
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over the presented ordinary media. Fig. 4.3 shows the NRMSE comparison of the

scattered electric field for each component, i.e., Eρ and Ez, over non-plasmonic media

at various frequencies. As can be seen in this figure, the Eρ component obtained

by the proposed method has better accuracy in comparison with the Ez component.

In other words, the Ez component has more impact on the NRMSE value of the

scattered electric field over non-plasmonic media since its NRMSE value is greater

than the other component. Also, the NMAE comparison between the proposed and

the conventional methods shown in Fig. 4.4 substantiates that the proposed solution

outperforms the conventional solution over non-plasmonic media since the value of

NMAE is better than the King and the Norton-Bannister solutions in all frequency

ranges.

The evaluation of the error shown in Figs. 4.2-4.4 for non-plasmonic media in-

dicates that the error becomes greater when the frequency increases. By increasing

the frequency, the integrand in (4.5) becomes more oscillatory at the stationary phase

and may deviate from the saddle-point assumption.

4.2.2 Plasmonic Media

In order to evaluate the accuracy of the proposed solution for plasmonic media, silver

and gold have been considered and the elevation patterns of the scattered electric field

have been compared with the numerical solutions at 351.87 and 420.52 THz for silver

and gold, respectively. It should be noted that for light-matter interaction in THz
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Fig. 4.5: The elevation pattern of the scattered electric field for a VED and its com-
parison with the proposed, Norton-Bannister and King solutions over a) silver and b)
gold.

frequencies, the real part of the permittivity attains negative value and varies with

frequency [101]. Figs. 4.5(a) and (b) depict the elevation patterns of the scattered

electric field over the silver and gold, respectively, as plasmonic media. As is obvious

from these two figures, the proposed solution agrees well with the numerical method,

especially at high angles and near the interface where the surface wave contribution

is high. Moreover, the NRMSE and NMAE values mentioned in Table 4.3 reveal that

the proposed solution outperforms the conventional solution for plasmonic media. In

order to evaluate the accuracy of the proposed solution for the magnetic field, the

NRMSE and NMAE values of the H-field for silver and gold are provided in Table

4.3. As evident, all the NRMSE and NMAE values for the H-field are smaller than

those associated with the conventional solutions.

Similar to non-plasmonic media, the NRMSE evaluation of the scattered electric

94



Table 4.3: Performance comparison between the proposed and conventional
solutions for the plasmonic media

Proposed solution King Norton-Bannister
Medium NRMSE NMAE NRMSE NMAE NRMSE NMAE

Silver
E-field 0.0261 0.0397 0.0795 0.1188 0.0773 0.1188
H-field 0.0123 0.0266 0.0237 0.0387 0.0241 0.0397

Gold
E-field 0.0267 0.0537 0.0736 0.2285 0.0896 0.2133
H-field 0.0057 0.0141 0.0222 0.0495 0.0321 0.0727
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Fig. 4.6: The NRMSE of the scattered electric field for a VED at various frequencies
and its comparison with the Norton-Bannister and King solutions over a) silver and
b) gold.

fields for silver and gold are accomplished, while the frequency is changed between

300 to 900 THz. Fig. 4.6 demonstrates the NRMSE value of the scattered electric

field at various frequencies for plasmonic media. As can be seen in this figure, the

NRMSE value of the scattered electric field is less than the King and Norton-Bannister

solutions in the optical frequency range. The NRMSE value of the silver in Fig. 4.6(a)

is relatively similar to gold in Fig. 4.6(b) since the real and imaginary parts of the

permittivity for both of them are quite similar in the optical frequency range. To
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evaluate the accuracy of each scattered electric field component over plasmonic media,

the NRMSE has been calculated for Eρ and Ez components over silver and gold and

compared with the conventional solutions, as shown in Fig. 4.7. As can be seen in

this figure, the Eρ and Ez components obtained by the proposed method have better

accuracy in comparison with the conventional solutions over plasmonic media. The

accuracy of Ez is better than Eρ for plasmonic media contrary to non-plasmonic media

due to the approximate solution of the integral in P represented in (4.3) using the

modified saddle-point method. In addition, the accuracy of the proposed solution is

evaluated in terms of NMAE for plasmonic media. Fig. 4.8 depicts the NMAE of the

proposed solution for the scattered electric field intensity over plasmonic media. As is

clear from the figure, the proposed solution outperforms the conventional solutions at

various frequencies. It is worth mentioning that the complex relative permittivity of

the plasmonic media varies with frequency. Here, the Drude model [102] is employed

for the calculation of the complex relative permittivity at each frequency, which can

be expressed as

εr(ω) = 1 +
jσ0

ωε0 (1− jωτ)
(4.19)

wherein τ represents the average time between collisions experienced by an electron

and can be written as

τ =
σ0m

n0e2
(4.20)

in which m denotes the electron mass, n0 is the electron density of the metal and e

represents the elementary charge. Subsequently, (4.19) is utilized for each frequency
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Fig. 4.7: The NRMSE comparison of each scattered electric field component for a
VED at various frequencies over a) silver and b) gold.
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Fig. 4.8: The NMAE of the scattered electric field for a VED at various frequencies
and its comparison with the Norton-Bannister and King solutions over a) silver and
b) gold.

in order to calculate the real and imaginary parts of the complex relative permittivity

for the NRMSE and the NMAE calculations at various frequencies.

According to the error evaluations for plasmonic and non-plasmonic media, the

error shows a general increase with frequency because by increasing the frequency, the
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integrand of (4.4) becomes more oscillatory due to the presence of the wavenumber

in the exponential function of the inetgrand.

4.3 Chapter Summary

In this chapter, a new asymptotic solution for the far-zone electromagnetic fields of

a VED radiating over an imperfectly conducting half-space with a smooth interface

has been developed. The solution has been evaluated for the both non-plasmonic

and plasmonic media. Accuracy comparison indicates that the proposed solution

outperforms the conventional solutions, i.e., King and Norton-Bannister solutions, in

terms of NRMSE and NMAE at various frequencies and distances from the antenna

in the far field region.
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Chapter 5

Electromagnetic Wave Scattering

by Random Surfaces With

Different Contrast and Large

Roughness Heights

In previous chapters, the Sommerfeld problem with a smooth interface was inves-

tigated. In this chapter1, random roughness is added to the interface, and a new

1The content of this chapter is based on the following publications:
-M. E. Nazari and W. Huang, “EM wave scattering by random surfaces with different contrast and
large roughness heights,” IEEE J. Multiscale Multiphys. Comput. Tech., vol. 7, pp. 252-267, 2022.
-M. E. Nazari and W. Huang, “Scattering of EM waves from random surfaces with different contrast
and surface roughness,” ACES, pp. 1-3, 2021.
These papers provide the development of the scattered E-field and the radar cross-section from
random rough surfaces with different contrast and large roughness heights.
Roles: Mr. Nazari conducted this research under the guidance of Dr. Huang and acted as the first
author of the manuscript. All the contents of this paper were written by Mr. Nazari and further
refined by Dr. Huang.
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formulation for the scattered field over lossy time-invariant random rough surfaces

with different contrast media and large roughness heights is proposed. The scattered

field is represented in the form of an integral equation containing the normal compo-

nent of the E-field. By using a Fourier series to represent the scattering surface, a

general series solution is derived. With a monostatic configuration, the field equations

are developed for a pulsed radar, and then the first-order scattered field and the radar

cross-section at different incident angles are derived. This developed EM scattering

theory can be used to identify electromagnetic properties (i.e., dielectric permittivity,

electrical conductivity, and magnetic permeability) of the structure. For instance, in

geophysical explorations, this theory may be used to determine the physical bound-

aries and characteristics of the soil layers [103].

This chapter is organized as follows. In Section 5.1, a general formulation for

the scattered E-field over a lossy random rough surface with large roughness height

is presented. The scattered E-field derivation incorporating the vertical dipole an-

tenna is carried out in Section 5.2. The first-order backscattered E-field along with

the radar cross-section is derived in Section 5.3. The proposed solution is evaluated

by comparing it with the numerical (i.e., the method of moments (MoM) solution)

and three alternative analytical solutions (i.e., the small perturbation (SPM), Kirch-

hoff approximation (KA) and small slope approximation (SSA) methods) at different

incident angles and media characteristics in Section 5.4.
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5.1 Statement of the Problem and Formulations

For a rough surface scattering problem, the entire space is divided into two regions

and can be expressed using the generalized functions [69, 73, 104] as

hR(x, y, z) = 1− h [z − ξ(x, y)] , R〉 i ∈ {0, 1} (5.1)

in which h(·) is the Heaviside function, R〉 represents each region and ξ(x, y) denotes

the two-dimensional rough surface shown in Fig. 5.1 in which ε, µ and σ respectively

represent permittivity, permeability and conductivity of each region. Using (5.1), the

E-field expression can be written as [69]

jkη1|~n|2 ~E+
t = −η

2
1 − 1

η2
1

∇xy

(
|~n|E+

n

)
− jk∆|~n|2 ~E−n − ~R+ (5.2)

wherein the intermediate vector ~R+ can be obtained from

2u~Es = Fxy
{(
u|~n|2 ~E+ − ~R+

)
ez−ξ(x,y)u

}
. (5.3)

The remaining parameters in (5.2) and (5.3) can be acquired as

u =
√
K2 − k2, ∆ =

1

η1

, η1 =

√
εr1 −

jσ1

ωε0
, ~E+

n = n̂ · ~E+

~Es =

{
1

jωε0

[
∇(∇ · ~Js) + k2 ~Js

]}
xyz
∗ G0, G0 =

e−jkr

4πr
.

(5.4)
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Fig. 5.1: Rough surface characterization and geometry of the problem

The plus and minus superscript respectively denote the value of the E-field above or

below the scattering surface. In (5.2)-(5.4), η1 denotes the refractive index in region

1, εr1 is the relative permittivity of Region 1, ~En and ~Et respectively represent the

normal and tangential component of the E-field, K denotes the surface wavenumber,

k is the wavenumber of the source field, ∆ is the surface impedance, Fxy represents the

spatial Fourier transform in the x− y plane, ~n is the normal vector to the scattering

surface, ~Es is the source electric field generated by the source current density ~Js and

G0 is the Green’s function solution of the Helmholtz equation in the free space. By

inserting the intermediate vector ~R+ from (5.2) into (5.3) and representing the normal

and tangential components of the E-field using operators [69, 73], the E-field operator
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equation for lossy rough surface and arbitrary roughness heights can be derived as

NL−1

[
2uFxy( ~Es)
u+ jk∆

− jk(η1 −∆)

u+ jk∆
LTL−1

(
2uFxy( ~Es)
u+ jkη1

)]

= ~E+
n +NL−1

[
1

u+ jk∆
L

(
∇xy(|~n|E+

n )

|~n|2

)]
−NL−1

{
jk(η1 −∆)

u+ jk∆
LTL−1

[
1

u+ jkη1

L

(
∇xy(|~n|E+

n )

|~n|2

)]
+
k2(η1 −∆)2

u+ jk∆
LTL−1

(
L(E+

n )

u+ jkη1

)}
(5.5)

where the tangential propagation operator T , the normal projection operator N and

the invertible L operator are defined as

N(~E) = n̂n̂·~E = ~En, T (~E) = ~E−N(~E) = ~Et, L(~E) = Fxy
{
|~n|2~E e(z−ξ(x,y))u

}
. (5.6)

If the small-height approximation along with the highly conductive surface assumption

is applied to (5.5), the equation would reduce to (41) presented in [69]. By applying

the operators defined in (5.6), the left-hand side (LHS) of (5.5) becomes

LHS=
A

|~n|2
N

{
F−1
xy

(
1

u+ jk∆

)
xy
∗
[
F−1
xy

{
2ue−zuFxy( ~Es)

}
− jk(η1 −∆)F−1

xy

{
e−zuLTL−1

(
2uFxy( ~Es)
u+ jkη1

)}]} (5.7)

wherein A = F−1
xy

{
Fxy

[
eξ(x,y)u

]}
is associated with the RMS height of the rough

surface and derived from the L operator. It is worth mentioning that the two Fourier

transforms in A cannot cancel each other since the argument eξ(x,y)u is in both x− y
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space and spatial frequency (kx-ky) domain. On the other hand, by assuming a vertical

dipole antenna located above the scattering surface, ~Es can be expressed as

~Es =
I∆l k2

jωε0

e−jkr

4πr
ẑ , C0G0 ẑ (5.8)

wherein ∆l denotes the dipole length and I is the current of the antenna. To sim-

plify the field source expression in (5.7), the L−1 operator is applied to 2uFxy( ~Es).

Therefore, we have

L−1
{

2uFxy( ~Es)
}

=
A

|~n|2
C0δ(x)δ(y) ẑ. (5.9)

By distributing the N operator over a sum in (5.7), using an asymptotic expansion in

the integral of F−1
xy

(
1

u+jk∆

)
and employing (5.9), the LHS can be further simplified

as

LHS=C0A~n

{
F (ρ)e−jkρ

2πρ
+∇ξ ·

[
jk(η1−∆)

F (ρ)e−jkρ

2πρ

xy
∗ Λ∇ξ

]}
(5.10)

where F (ρ) is the Sommerfeld attenuation function [105] and Λ = F−1
xy

(
1

u+jkη1

)
.

Using F (ρ) and applying the L−1 operator, the right-hand side (RHS) of (5.5) is

simplified as

RHS = ~E+
n +

A

|~n|2
N

[
F (ρ)e−jkρ

2πρ

xy
∗ F−1

xy (T1 + T2 + T3)

]
(5.11)
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wherein T1, T2 and T3 are derived as

T1 = Fxy
{
e−ξ(x,y)u∇xy

(
|~n|E+

n

)}
(5.12)

T2 =−jk(η1 −∆)Fxy

{
Ae−ξ(x,y)u T

[
Λ
xy
∗ ∇xy (|~n|E+

n )

A

]}
(5.13)

T3 = −k2(η1 −∆)2Fxy

{
Ae−ξ(x,y)u T

[
Λ
xy
∗
~E+
n

A

]}
. (5.14)

By applying the spatial Fourier transform along with the small-slope approximation

(i.e., |~n|2 = 1 + |∇ξ(x, y)|2 ≈ 1), the RHS can be derived as

RHS = ~E+
n + A~n~n ·

{
F (ρ)e−jkρ

2πρ

xy
∗

[
− jk(η1 −∆)T

(
Λ
xy
∗ ∇xy(E

+
n )

A

)

−k2(η1 −∆)2T

(
Λ
xy
∗
~E+
n

A

)
+
∇xy(E

+
n )

A

]}
.

(5.15)

By considering (5.15) and (5.10) and applying the small-slope approximation to (5.10),

particularly the second term, the scattered E-field expression (5.5) can be written as

~E+
n−A~n~n ·

{
F (ρ)e−jkρ

2πρ

xy
∗

[
jk(η1 −∆)T

[
∇xy(E

+
n )

A

xy
∗Λ

]

+k2(η1−∆)2T

[
Λ
xy
∗
~E+
n

A

]
−∇xy(E

+
n )

A

]}
=C0A~n

F (ρ)e−jkρ

2πρ
.

(5.16)

In order to obtain an expression for the scattered E-field in terms of the field source,

the first-order Neumann series solution [69] is applied to (5.16). It should be noted

that the order of the Neumann series corresponds to the coupling of the electro-
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magnetic waves with the rough surface, and the zero order term corresponds to the

scattering by a smooth plane surface with the surface impedance ∆. Therefore, the

first-order scattered E-field can be derived as [106, 107]

(E+
n )1 = −A~n ·

{
F (ρ)e−jkρ

2πρ

xy
∗

[
1

A
∇xy

(
C0A

F (ρ)e−jkρ

2πρ

)
− jk(η1 −∆)T

[
Λ
xy
∗ 1

A
∇xy

(C0AF (ρ)

2πρ
e−jkρ

)]
− k2(η1 −∆)2T

[
Λ
xy
∗ C0

F (ρ)

2πρ
e−jkρ~n

]]}
.

(5.17)

The E-field expression in (5.17) not only contains the arbitrary height factor A but

also can deal with moderate contrast media. In order to find an approximate closed-

form solution for the first-order scattered E-field (5.17), the RHS of (5.17) is split up

into three terms (i.e., Term 1, Term 2 and Term 3) while the first-order scattered

E-field is the summation of these three terms. By expanding the normal vector ~n and

considering the dot product in (5.17), these three terms can be obtained.

Term 1 = AC0∇ξ ·

[
F (ρ)e−jkρ

2πρ

xy
∗ 1

A
∇xy

(
C0A

F (ρ)e−jkρ

2πρ

)]
(5.18)

Term 2 = jAk(η1 −∆)C0n̂ ·

[
F (ρ)e−jkρ

2πρ

xy
∗ T
[
Λ
xy
∗ 1

A
∇xy

(AF (ρ)e−jkρ

2πρ

)]]
(5.19)

Term 3 =
AC0k

2

(η1 −∆)−2
n̂ ·

[
F (ρ)e−jkρ

2πρ

xy
∗ T
[
Λ
xy
∗ F (ρ)e−jkρ~n

2πρ

]]
(5.20)
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5.2 Scattered Field Calculation Incorporating Ver-

tical Dipole Antenna

In this section, the proposed three terms associated with the first-order scattered E-

field are calculated while the arbitrary height factor and moderate contrast media

are considered simultaneously in the derivation of the scattered E-field. First, the A

parameter associated with arbitrary height should be calculated. By using the power

series expansion of eξ(x,y)u and applying the spatial Fourier transform we have

Fxy
{
eξ(x,y)u

}
∼ 4π2δ(x)δ(y) + uFxy {ξ(x, y)} . (5.21)

In order to further simplify (5.21), the rough surface should be characterized. The

two-dimensional Fourier series is utilized to represent the rough surface as follows

ξ(x, y) =
∑
m,n

Pmne
jκ(mx+ny) (5.22)

wherein the Pmn denote Fourier coefficients and κ represents the fundamental wavenum-

ber of the surface in x and y directions. By using the (m,n)th surface wave vector

~kmn = κmx̂ + κnŷ and displacement vector ~ρ = xx̂ + yŷ on the surface, the rough
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surface can be rewritten as

ξ(x, y) =
∑
m,n

Pmne
j~ρ·~kmn =

∑
m,n

Pmne
jρkmn cos(θmn−θ) (5.23)

where θ and θmn represent the directions of ~ρ and ~kmn, respectively. By inserting

(5.22) into (5.21) and using the Dirac delta identities, (5.21) can be further simplified

as

Fxy
[
eξ(x,y)u

]
∼4π2

[∑
m,n

Pmnδ(kx−κm)δ(ky−κn)

(k2
mn−k2)−0.5

+ δ(x)δ(y)

]
(5.24)

where δ(.) represents the Dirac delta function. Now, by applying the inverse spatial

Fourier transform to (5.24), the A parameter is approximated as

A ' 1 +
∑
m,n

Pmn
√
k2
mn − k2 ejρkmn cos(θmn−θ). (5.25)

5.2.1 Term 1

By considering the gradient in x − y space in the cylindrical coordinate, i.e., ∇xy =

∂/∂ρ ρ̂+ (1/ρ)(∂/∂θ) θ̂, and considering the far-field region (kρ� 1), we have

∇xy

(
C0
F (ρ)e−jkρ

2πρ

)
∼ −jkC0F (ρ)

e−jkρ

2πρ
. (5.26)
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By considering (5.26) and applying the gradient in the cylindrical coordinate, Term

1 can be further simplified in an asymptotic sense as follows

Term 1=−C0A

[
F (ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
(g1(x, y)+jk)∇ξ · ρ̂

+
F (ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
g2(x, y)∇ξ · θ̂

]
≡ −C0A(T4∇ξ · ρ̂+ T5∇ξ · θ̂)

(5.27)

wherein Dt = 1/A and g1 as well as g2 are

g1(x, y) = −j
∑
m,n

Pmnkmn cos(θmn − θ)
√
k2
mn − k2ejρkmn cos(θmn−θ)

− j
∑
m,n

∑
p,q

PmnPpqkpq cos(θpq − θ)
√

(k2
mn − k2)(k2

pq − k2)

× ejρ[kmn cos(θmn−θ)+kpq cos(θpq−θ)]

(5.28)

g2(x, y) = −j
∑
m,n

Pmnkmn sin(θmn − θ)
√
k2
mn − k2ejρkmn cos(θmn−θ)

− j
∑
m,n

∑
p,q

PmnPpqkpq sin(θpq − θ)
√

(k2
mn − k2)(k2

pq − k2)

× ejρ[kmn cos(θmn−θ)+kpq cos(θpq−θ)].

(5.29)

Now, the convolution in (5.27) in x − y space should be calculated. By changing of

from Cartesian coordinates to polar form and considering the backscattered E-field

we have

T4 =
1

4π2

∫
ρ1

∫
θ1

F 2(ρ1)e−2jkρ1

ρ1

g(θ1)g1(ρ1, θ1) dθ1dρ1 +
jkG

4π2

∫
ρ1

F 2(ρ1)e−2jkρ1

ρ1

dρ1

(5.30)
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wherein g(θ) denotes the normalized radiation pattern of the receiver antenna and G

represents the integral of the radiation pattern over azimuth. By inserting (5.28) into

T4 and using the stationary phase integration technique [108], (5.30) becomes

T4 = −j
√

2π

4π2

∫
ρ1

F 2(ρ1)e−2jkρ1

ρ1.5
1

(T6 + T7 + T8) dρ1 +
jkG

4π2

∫
ρ1

F 2(ρ1)e−2jkρ1

ρ1

dρ1

(5.31)

wherein T6, T7 and T8 are calculated as follows

T6 =
∑
m,n

Pmng(θmn)
√
kmn(k2

mn − k2)ej(ρ1kmn−π/4)

−
∑
m,n

Pmng(θmn + π)
√
kmn(k2

mn − k2)e−j(ρ1kmn−π/4)

(5.32)

T7 =
∑
m,n

∑
p,q

PmnPpqkpq

√
(k2
mn − k2)(k2

pq − k2)

ejρ1|
~kmn+~kpq | cos(θpq − θs) g(θs)

e−jπ/4√
|~kmn + ~kpq|

(5.33)

T8 = −
∑
m,n

∑
p,q

PmnPpqkpq

√
(k2
mn − k2)(k2

pq − k2)

e−jρ1|
~kmn+~kpq | cos(θpq − θs) g(θs + π)

ejπ/4√
|~kmn + ~kpq|

(5.34)

where

θs = tan−1

[
kmn sin θmn + kpq sin θpq
kmn cos θmn + kpq cos θpq

]
. (5.35)

The next term that requires calculation for simplifying Term 1 in (5.27) is T5. By

substituting g2(x, y) from (5.29) into the second expression of (5.27) and using the
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stationary phase integration method, T5 becomes

T5 = −j
√

2π

4π2

∫
ρ1

F 2(ρ1)e−2jkρ1

ρ1.5
1

(T9 + T10) dρ1 (5.36)

wherein T9 and T10 respectively are similar to T7 and T8 except for the term of cos(θpq−

θs). In other words, by replacing cos(θpq − θs) in T7 and T8 with sin(θpq − θs), T9 and

T10 are acquired.

5.2.2 Term 2

Following Term 1, Term 2 requires calculation for determining the scattered E-field

in (5.17). By applying the gradient in x− y space in the cylindrical coordinate to the

Sommerfeld attenuation term in (5.19) and employing (5.28) and (5.29) we have

Term 2 = − jk
Dt

(η1 −∆)C0~n ·

[
F (ρ)e−jkρ

2πρ

xy
∗ T
[
F (ρ)e−jkρ

2πρ[(
jk + g1(x, y)

)
ρ̂+ g2(x, y)θ̂

]
xy
∗ Λ

]
.

(5.37)

To simplify (5.37), a solution for Λ should be derived. This solution is addressed below

in section 5.2.2.1. It is worth mentioning that by considering small height condition

along with highly conductive surface (i.e., high contrast media), the arbitrary height

factor A in (5.25) becomes one. Also, g1(x, y) and g2(x, y) in (5.28) and (5.29) become

zero since the derivative of the arbitrary factor A in g1(x, y) and g2(x, y) are zero.
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Consequently, Term 1 can be reduced to

Term 1 = −jkC0

[
F (ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
∇ξ · ρ̂

]
. (5.38)

Furthermore, the surface impedance can be ignored when compared with the complex

refractive index due to highly conductive surface assumption. Thus, Term 2 for small

height condition and highly conductive surface can be reduced to

Term 2 = −jkC0~n ·
[
F (ρ)e−jkρ

2πρ

xy
∗ T

[
F (ρ)e−jkρ

2πρ
ρ̂

]]
(5.39)

Also, Term 3 becomes zero as addressed in section 5.2.3. By applying the T operator

of (5.6) in (5.39) and adding (5.38) and (5.39), the first order backscattered E-field

can be expressed as

(E+
n )1 =−jkC0

[
F (ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
∇ξ ·ρ̂

]
−jkC0~n ·

[
F (ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
ρ̂

+
F (ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
∇ξ · ρ̂ n̂

]
(5.40)

in which the first two terms cancel each other. Consequently, the first order backscat-

tered E-field for small height condition and highly conductive surface can be reduced

to

(E+
n )1 = −jkC0

[
F (ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
∇ξ · ρ̂

]
(5.41)
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which is same as the backscattered E-field equation derived in [69] for small height

and high contrast media conditions.

5.2.2.1 Calculation of Λ

By multiplying the numerator and denominator of the argument of Λ by the conjugate

of the denominator, Λ can be expressed as

Λ = F−1
xy

[
u

K2 + (η2
1 − 1)k2

− jkη1

K2 + (η2
1 − 1)k2

]
(5.42)

wherein K2 = k2
x + k2

y. By considering high and moderate contrast media, Λ can be

approximated as

Λ ' F−1
xy

(
u

u2
p

− u1

u2
p

)
(5.43)

in which u2
1 = K2 − η2

1k
2, u2

p = K2 + n2
pk

2 and n2
p = η2

1 − 1. First, we represent an

approximate closed-form solution for the second term of Λ since by changing η1 to one,

the first term corresponds to the free space solution. By multiplying the numerator

and the denominator of this term with u1 and then decomposing into partial fractions,

this term becomes

F−1
xy

(
u1

u2
p

)
= F−1

xy

(
1

u1

)
− k2(η2

1 + n2
p)F−1

xy

(
1

u1u2
p

)
=
e−jkη1ρ

2πρ
− k2(η2

1 + n2
p)

[
e−jkη1ρ

2πρ

xy
∗ e
−knpρ

2πρ

xy
∗ e
−knpρ

2πρ

]
.

(5.44)

113



Fig. 5.2: Geometry of the first-order scatter

By calculating the double convolution using a series of variable changes in the Carte-

sian coordinate for the inner double integral and approximating the integrand in

descending powers of ρ, (5.44) is approximated as

F−1
xy

(
u1

u2
p

)
'j

2

√
k(η2

1 + n2
p)

2npρπ

e−kρ(np+jη1)

2πρ
erf
(√
ρk(jη1−np)

)
(5.45)

By changing η1 to one in (5.45), the first term of Λ can also be acquired. Consequently,

Λ can be approximated as Fn(ρ)e−jkρ

2πρ
where

Fn(ρ) = 1− e−jkρ(η1−1) + jekρ(j−np)

√
kρπ

2np

[√
1 + n2

p erf

(√
ρk(j − np)

)

−
√
η2

1 + n2
p erf

(√
ρk(jη1 − np)

)]
.

(5.46)

114



Now, by inserting (5.46) into (5.37), the internal spatial convolution in x−y space can

be calculated. As is evident in (5.37), the argument of operator T has two dimensions.

By decomposing this expression into two terms (i.e., I1 and I2 respectively in ρ̂ and

θ̂ directions), we have

I1 =
Fn(ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
(jk + g1(x, y)) (5.47)

I2 =
Fn(ρ)e−jkρ

2πρ

xy
∗ F (ρ)e−jkρ

2πρ
g2(x, y) (5.48)

By considering the spatial convolution in the x− y plane, I1, in its integral form, can

be expressed as

I1 =
jk

4π2

∫
x1

∫
y1

F (ρ1)Fn(ρ2)

ρ1ρ2

e−jk(ρ1+ρ2) dx1dy1

+
1

4π2

∫
x1

∫
y1

F (ρ1)Fn(ρ2)

ρ1ρ2

g1(x1, y1)e−jk(ρ1+ρ2)dx1dy1≡I3 + I4

(5.49)

wherein ρ2 is the distance from the scatter point to the reception point as shown in

Fig. 5.2. It should be noted that ρ2 depends on θ1 and can be small. Thus, the

assumption of slowly varying in the stationary phase approximation method might

be violated. By rotating the axes by θ, a shift of the origin to a position halfway

along ρ and converting the Cartesian coordinate to the elliptic coordinate system, the

integrals can be calculated using the stationary phase approximation method since

the product ρ1ρ2 in the denominator is eliminated. According to Fig. 5.3, x1 and y1

in the new coordinate system become
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Fig. 5.3: Rotation of coordinate axes by θ2

x1 =(x
′′

1 +
ρ

2
) cos θ−y′′1 sin θ, y1 =(x

′′

1 +
ρ

2
) sin θ−y′′1 cos θ. (5.50)

By converting the Cartesian coordinate to the elliptic coordinate (µ, δ), x
′′
1 and y

′′
1 are

expressed as

x
′′

1 =
ρ

2
coshµ cos δ, y

′′

1 =
ρ

2
sinhµ sin δ (5.51)

By substituting (5.51) into (5.50), ρ1 and ρ2 become

ρ1 =
ρ

2
(coshµ+ cos δ) , ρ2 =

ρ

2
(coshµ− cos δ) . (5.52)

Thus, I3 in the elliptic coordinate system can be acquired by inserting (5.52) into

(5.51). Thus, we have

I3 =
jk

π2

∫
µ

∫
δ

F (ρ1)Fn(ρ2)e−jkρ coshµJ(µ, δ)

ρ2(coshµ+ cos δ)(coshµ− cos δ)
dδ dµ (5.53)
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where J(µ, δ) denotes the Jacobian determinant [109] and can be calculated as follows

J(µ, δ) =

∣∣∣∣∣∣∣∣∣∣
∂x1

∂µ

∂x1

∂δ

∂y1

∂µ

∂y1

∂δ

∣∣∣∣∣∣∣∣∣∣
=
ρ2

4

(
sin2 δ + sinh2 µ

)
. (5.54)

By inserting the Jacobian determinant (5.54) into (5.53), I3 can be expressed as

I3 =
jk

4π2

∫
µ

∫
δ

F (ρ1)Fn(ρ2)e−jkρ coshµ dδ dµ. (5.55)

Now, the stationary phase integration method is applied to (5.55) and I3 becomes

I3 =
jk
√

2πe−jπ/4

8π2
√
kρ

∫ π

0

F
(ρ

2
(1 + cos δ)

)
Fn
(ρ

2
(1− cos δ)

)
dδ. (5.56)

In order to further simplify I3, the Sommerfeld attenuation function F and Fn in

(5.46) should be substituted into (5.56). By using the stationary phase integration

method along with small and large argument approximations of the error function,

this integral can be calculated. The details concerning this integral calculation are

shown in Appendix B.

The next integral that requires calculation is I4 in (5.49). By inserting g1(x, y) as

presented in (5.28) and converting the Cartesian coordinates to elliptic coordinates,
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I4 becomes

I4 =
−j
4π2

∑
m,n

Pmnkmn
√
k2
mn − k2

∫
δ

∫
µ

cos(θmn − θ1)ejρ1kmn cos(θmn−θ1)e−jkρ coshµ

F (ρ1)Fn(ρ2) dµ dδ +
−j
4π2

∑
p,q

∑
m,n

PmnPpqkpq

√
(k2
mn−k2)(k2

pq−k2)

∫
δ

∫
µ

cos(θpq−θ1)

ejρ1[kmn cos(θmn−θ1)+kpq cos(θpq−θ1)]e−jkρ coshµF (ρ1)Fn(ρ2) dµ dδ ≡ I5 + I6

(5.57)

in which θ1 = tan−1(y1/x1). By considering the first integral term in (5.57) (i.e., I5)

and using (5.52), I5 can be simplified as

I5 =
∑
m,n

S0

∫
δ

∫
µ

F (ρ1)Fn(ρ2) cos(θmn − θ1)ej
ρ
2
ψdδ dµ (5.58)

wherein S0 and ψ can be written as

S0 =
−j
4π2

Pmnkmn
√
k2
mn − k2

ψ = −2k coshµ+ kmn cos(θmn − θ1)(coshµ+ cos δ).

(5.59)

In order to represent a closed-form solution for I5, the two-dimensional stationary

phase integration method should be employed. Thus, the determinant of the Hessian

matrix [109] should be calculated, which can be represented as follows

det
(
H(µ, δ)

)
=

∣∣∣∣∣∣∣∣∣∣
∂2ψ

∂µ2

∂2ψ

∂δ∂µ

∂2ψ

∂δ∂µ

∂2ψ

∂δ2

∣∣∣∣∣∣∣∣∣∣
=2kkmn cos(θmn − θ)− k2

mn. (5.60)
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By employing (5.60) along with the two-dimensional stationary phase integration

method, I5 can be approximated as

I5 '
2π

ρ

∑
m,n

S0F (ρ)
cos(θmn − θ)ejρ(kmn cos(θmn−θ)−k)√

k2
mn − 2kkmn cos(θmn − θ)

. (5.61)

Similar to I5, two-dimensional stationary phase integration method is used for the

calculation of I6 in (5.57), resulting in

I6 =
2πF (ρ)

ρ

∑
m,n

∑
p,q

S1e
jρ[kmn cos(θmn−θ)+kpq cos(θpq−θ)−k] cos(θpq − θ)

R1
(5.62)

wherein S1 and R1 are written as

S1 =
−j
4π2

PmnkpqPpq

√
(k2
mn − k2)(k2

pq − k2)

R1=

√
|~kmn+~kpq|2−2k

(
kmncos(θmn−θ)+kpq cos(θpq−θ)

)
.

(5.63)

By adding I5 and I6, I4 in (5.57) can be calculated. Notably, I2 is similar to I4 except

for the cosine functions: by changing cos(θpq − θ) and cos(θmn − θ) respectively to

sin(θpq − θ) and sin(θmn − θ), I2 in (5.48) is acquired. By inserting I1 and I2 into

(5.37), Term 2 is simplified as

Term 2 = − jk
Dt

(η1 −∆)C0~n ·

[
F (ρ)e−jkρ

2πρ

xy
∗ T

(
I1ρ̂+I2θ̂

)]
. (5.64)

By calculating ~n · ρ̂ ≡A1 and ~n · θ̂ ≡A2 in which ~n = ẑ − ∇ξ and applying the T
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operator, Term 2 in (5.64) becomes

Term 2 =
−jk
Dt

(η1 −∆)C0

[(
F (ρ)e−jkρ

2πρ

xy
∗ I1

)
A1 +

(
F (ρ)e−jkρ

2πρ

xy
∗ I2

)
A2

− F (ρ)e−jkρ

2πρ

xy
∗ (A1I1 + A2I2)

]
≡ −jk

Dt

(η1 −∆)C0 (T11A1 + T12A2 − T13 − T14)

(5.65)

in which T11 − T14 respectively correspond to each additive term inside the bracket

of Term 2. According to (5.49), I1 in T11 consists of two terms (i.e., I3 and I4). By

considering these two terms, calculating the spatial convolution, using the stationary

phase integration method and considering a monostatic configuration (i.e., ρ1 = ρ2),

T11 can be expressed as

T11 =
G

2π

∫
ρ1

F (ρ1)e−jkρ1I3(ρ1)dρ1+
∑
m,n

S0

√
2πe−jπ/4

∫
ρ1

F 2(ρ1)g(θmn)ejρ1(kmn−2k)

ρ1.5
1

√
kmn(k2

mn − 2kkmn)
dρ1

−
∑
m,n

S0

√
2π

∫
ρ1

F 2(ρ1)

e−jπ/4
g(θmn + π)e−jρ1(kmn+2k)

ρ1.5
1

√
kmn(k2

mn + 2kkmn)
dρ1 +

∑
m,n

∑
p,q

S1

√
2π

∫
ρ1

F 2(ρ1)

ejπ/4

g(θs)e
jρ1(|~kmn+~kpq |−2k) cos(θpq − θs)

ρ1.5
1

√
|~kmn + ~kpq| R1

∣∣
θ=θs

dρ1 −
∑
m,n

∑
p,q

S1

√
2π

∫
ρ1

F 2(ρ1)g(θs + π)

e−jπ/4ρ1.5
1

e−jρ1(|~kmn+~kpq |+2k)√
|~kmn + ~kpq| R1

∣∣
θ=θs+π

cos(θpq − θs) dρ1.

(5.66)

The same procedure is followed for calculating T12 since the only difference between

I4 and I2 is the cosine functions (i.e., cos(θmn − θ) and cos(θpq − θ)). Notably, the

integrals containing sin(θmn − θ) become zero since the saddle points are located at
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θmn and θmn + π. Thus, T12 becomes

T12 =
∑
m,n

∑
p,q

S1

√
2πe−jπ/4

∫
ρ1

ejρ1(|~kmn+~kpq |−2k)

ρ1.5
1

√
|~kmn + ~kpq| R1

∣∣
θ=θs

F 2(ρ1)g(θs)

ρ1.5
1

sin(θpq−θs) dρ1

−
∑
m,n

∑
p,q

S1

√
2πejπ/4

∫
ρ1

F 2(ρ1)g(θs + π)e−jρ1(|~kmn+~kpq |+2k)

ρ1.5
1

√
|~kmn + ~kpq| R1

∣∣
θ=θs+π

sin(θpq − θs) dρ1.

(5.67)

To calculate T13, the spatial convolution in the cylindrical coordinate system is con-

sidered. Using the stationary phase method, the saddle points are located at θz,

θz + π, θu and θu + π. θu is obtained by changing pq to rs in (5.35), while θz is

acquired by adding krs sin θrs and krs cos θrs to the numerator and denominator of

(5.35), respectively. Consequently,

T13 =
−j√
2π

∑
m,n

Pmn
√
kmn

[
g(θmn)e−jπ/4

∫
ρ1

F (ρ1)
√
ρ1

I3(ρ1)e−jρ1(k−kmn)dρ1

− g(θmn+π)ejπ/4
∫
ρ1

F (ρ1)e−jρ1(k+kmn)

√
ρ1

I3(ρ1) dρ1

]
+
∑
r,s

∑
m,n

∑
p,q

PrskrsS1

√
2π√

|~krs + ~kmn + ~kpq|

.

[∫
ρ1

F 2(ρ1)

ρ1.5
1

ejρ1(|~krs+~kmn+~kpq |−2k)g(θz)

ej3π/4R1

∣∣
θ=θz

sin(θrs − θz) cos(θpq − θz)

+

∫
ρ1

F 2(ρ1)e−jρ1(|~krs+~kmn+~kpq |+2k)

ρ1.5
1 e−j3π/4R1

∣∣
θ=θz+π

sin(θz − θrs)g(θz + π) cos(θpq − θz)

]

+
∑
r,s

∑
m,n

PrskrsS0

√
2π√

|~krs + ~kmn|

[∫
ρ1

F 2(ρ1)

ρ1.5
1

g(θu)
ejρ1(|~krs+~kmn|−2k) sin(θrs−θu) cos(θmn−θu)

ej3π/4
√
k2
mn − 2kkmn cos(θmn − θu)

+

∫
ρ1

F 2(ρ1)

ρ1.5
1

e−jρ1(|~krs+~kmn|+2k) sin(θu − θrs) cos(θmn − θu)
e−j3π/4

√
k2
mn + 2kkmn cos(θmn − θu)

g(θu + π)

]
.

(5.68)

In Term 2, the last term that requires calculation is T14. By applying the spatial
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convolution in x− y plane, changing the Cartesian coordinate to the cylindrical coor-

dinate and using the stationary phase integration technique, T14 is calculated, which

is similar to the terms containing sine and cosine functions in T13 such that chang-

ing all the cosine functions to the sine functions yield to T14. After calculating all

subordinate terms in (5.65) (i.e., T11 − T14), Term 2 can be calculated.

5.2.3 Term 3

In this section, Term 3 in (5.20) is further simplified. In the first step, Λ is substituted

into (5.20) and the T operator is applied to the inner bracket. By assuming the small

slope approximation, Term 3 can be simplified as

Term 3 = AC0k
2(η1 −∆)2n̂ ·

[
F (ρ)e−jkρ

2πρ

xy
∗
[
T15ẑ − A1

xy
∗ A2∇ξ

− n̂
[
∇ξ · (A1

xy
∗ A2∇ξ) + T15

] ]] (5.69)

wherein T15 = F (ρ)e−jkρ

2πρ

xy
∗ Fn(ρ)e−jkρ

2πρ
. It is easy to show that by applying the normal

vector n̂, each term will cancel the other and Term 3 becomes zero.
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5.3 First-order Backscattered E-field Calculation

in the Time Domain

In this section, the backscattered fields derived in Section 5.2 are adapted by impos-

ing a particular source excitation (here, a pulsed dipole source) to develop a proper

expression for the backscattered E-field. For finding the backscattered E-field in the

time domain, the inverse temporal Fourier transform is applied to each remaining

term (i.e., Term 1 and Term 2), while ω is the transformed time variable and kC0 is a

function of ω. Afterwards, the first-order backscattered E-field will be the summation

of Term 1 and Term 2 transformed into the time domain.

5.3.1 Backscattered E-field Derived From Term 1

By applying the inverse Fourier transform to Term 1 in (5.27) we have

F−1
t {Term 1}=−F−1

t (C0A)
t∗
(
F−1
t (T4)∇ξ · ρ̂+F−1

t (T5)∇ξ · θ̂
)

(5.70)

in which
t∗ represents time convolution and F−1

t denotes the inverse temporal Fourier

transform. Therefore, the inverse temporal Fourier transform should be applied to T4

and T5 by assuming that [69]

F−1
t

[
F 2(ρ, ω)e−2jkρ

]
' F 2(ρ, ω0)δ(t− 2ρ

c
) (5.71)
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where ω0 is the dominant or representative frequency of excitation and c is the speed

of light. By applying the inverse Fourier transform to T4 in (5.31) we have

F−1
t {T4} = −j

√
2π

4π2

∫
ρ1

F 2(ρ1, ω0)δ(t− 2ρ1
c

)

ρ1.5
1

(T6 + T7 + T8)
∣∣
k=k0

dρ1

+
jG

4π2
F−1
t (k)

t∗
∫
ρ1

F 2(ρ1)

ρ1

δ(t− 2ρ1

c
) dρ1.

(5.72)

The variation of
√
kmn(k2

mn − k2) in T6 with respect to ω is quite small at different

frequencies for Rayleigh, non-selective and Mie scatters excluding the case of kmn =

ω/c. Consequently, its inverse temporal Fourier transform can be assumed constant,

while ω is the angular frequency of the radar [46]. By the same logic, the variation of

T7 and T8 with respect to ω is small. Therefore, only the frequency should be changed

to the radar frequency in T7 and T8. Using the sifting property of the Dirac delta

function [110], the integration over ρ1 can be performed without difficulty, resulting

in

F−1
t {T4} = −j

√
2π

4π2

c

2

F 2(ct/2, ω0)

(ct/2)1.5
(T6 + T7 + T8)

∣∣
k=k0,ρ1=ct/2

+
jG

4π2
F−1
t (k)

t∗ F
2(ct/2, ω0)

t
.

(5.73)

Using the properties of the continuous-time Fourier transform, the convolution in

(5.73) can be changed to multiplication and (5.73) becomes

F−1
t {T4} = −j

√
2π

4π2

c

2

F 2(ct/2, ω0)

(ct/2)1.5
(T6 + T7 + T8)

∣∣
k=k0,ρ1=ct/2

+
G

4π2c

∂

∂t

[
F 2(ct/2, ω0)

t

]
.

(5.74)
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The next inverse Fourier transform that requires calculation is F−1
t (T5). By applying

the inverse Fourier transform to (5.36) and employing (5.71) we have

F−1
t {T5}=−

j
√

2π

4π2

∫
ρ1

F 2(ρ1, ω0)δ(t− 2ρ
c

)

ρ1.5
1

(T9 + T10)
∣∣
k=k0

dρ1 (5.75)

while the variations in T9 and T10 are quite small with respect to the frequency. By

utilizing the sifting property of the Dirac delta function, the integration over ρ1 can

be performed as

F−1
t {T5} = −j

√
2π

4π2

c

2

F 2(ct/2, ω0)

(ct/2)1.5
(T9 + T10)

∣∣
k=k0,ρ1=ct/2

. (5.76)

In order to represent a closed-form solution for Term 1 in (5.70), the inverse Fourier

transform of C0A should be calculated. As the variation of A with respect to frequency

is small, A can be taken out of the integral and only the inverse Fourier transform

of C0 should be calculated. By considering (5.8) along with the properties of Fourier

transform, the inverse Fourier transform of C0A can be written as

F−1
t {C0A} = −jAη0∆l

c
F−1
t [ωI(ω)] = −Aη0∆l

c

∂

∂t
[i(t)] (5.77)

in which η0 is the intrinsic impedance of the vacuum. In the present discussion, a

pulsed radar has been considered. Therefore, the antenna current can be modeled as

i(t) = I0e
jω0t [h(t)− h(t− τ0)] (5.78)

125



wherein h represents the Heaviside function, I0 is the magnitude of the current and

τ0 is the pulse width. By substituting (5.78) into (5.77) and neglecting the trailing

edge terms, the inverse Fourier transform of C0A can be simplified as

F−1
t {C0A} = −jkAη0 ∆l I0e

jω0t [h(t)− h(t− τ0)] . (5.79)

Thus, all inverse Fourier transform terms in (5.70) have been calculated. In the

next step, time convolution for finding an approximate closed-form expression for the

backscattered E-field derived from Term 1 should be calculated. T4 consists of four

terms and the convolution should be applied to each of them. By considering T4 in

(5.70) and splitting the convolution into four terms (i.e., M1 −M4), we have

F−1
t (C0A)

t∗
[
F−1
t (T4)

]
≡

4∑
i=1

Mi. (5.80)

By taking the convolution in (5.80), M1 can be obtained as

M1=L1

∫ t

t−τ0

F 2(ct′/2, ω0)

t′
√
t′c/2

ejω0(t−t′)
∑
m,n

Pmn
√
k3
mn − k2kmn[

g(θmn)ej(c/2kmnt
′−π/4) − g(θmn + π)e−j(c/2kmnt

′−π/4)

]
dt′

(5.81)

wherein L1 = −
√

2π
4π2 k0η0∆lI0A. Using the fact that the Sommerfeld attenuation func-

tion varies slowly over the integration range, M1 can be calculated as
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M1 =
cτ0

2
L1e

jω0t
F 2(r0, ω0)

r1.5
0

∑
m,n

Pmn
√
kmn(k2

mn − k2)[
g(θmn)e−jπ/4e−jr0(2k0−kmn) sinc

[
∆ρ

2
(2k0 − kmn)

]

− g(θmn + π)ejπ/4e−jr0(2k0+kmn) sinc

[
∆ρ

2
(2k0 + kmn)

]]
(5.82)

in which r0 = c
2
(t− τ0

2
) and ∆ρ = cτ0

2
. By applying the convolution to other terms of

T4 in (5.73), M2 to M4 can be calculated as follows

M2 =
cτ0

2
L1e

j(ω0t−π/4)F
2(r0, ω0)

r1.5
0

∑
m,n

∑
p,q

PmnPpqkpqg(θs)
√

(k2
mn − k2

0)(k2
pq − k2

0)

.
e−j(2k0−|

~kmn+~kpq |)r0√
|~kmn + ~kpq|

cos(θpq − θs) sinc

[
∆ρ

2
(2k0 − |~kmn + ~kpq|)

]
(5.83)

M3 = −cτ0

2
L1e

j(ω0t+π/4)F
2(r0, ω0)

r1.5
0

∑
m,n

∑
p,q

PmnPpqkpq

√
(k2
mn − k2

0)(k2
pq − k2

0)

e−j(2k0+|~kmn+~kpq |)r0√
|~kmn + ~kpq|

g(θs + π) cos(θpq − θs) sinc

[
∆ρ

2
(2k0 + |~kmn + ~kpq|)

] (5.84)

M4 =
cτ0

2
L1

k0G√
2π
ej

ω0τ0
2
F 2(r0, ω0)

r0

sinc
(ω0τ0

2

)
. (5.85)

The last term that should be calculated in (5.70) for finding an approximate closed-

form solution for Term 1 is F−1
t (C0A)

t∗
[
F−1
t (T5)

]
, which can be obtained as
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F−1
t (C0A)

t∗
[
F−1
t (T5)

]
= L1

cτ0

2
ej(ω0t−π/4)F

2(r0, ω0)

r1.5
0

∑
m,n

∑
p,q

PmnPpqkpq

.
√

(k2
mn − k2

0)(k2
pq − k2

0)

[
g(θs)

e−j(2k0−|
~kmn+~kpq |)r0 sinc

[
∆ρ
2

(2k0 − |~kmn + ~kpq|)
]

√
|~kmn + ~kpq|

. sin(θpq − θs)−g(θs + π) sin(θpq − θs)e−j(2k0+|~kmn+~kpq |)r0 ejπ/4√
|~kmn + ~kpq|

. sinc

[
∆ρ

2
(2k0 + |~kmn + ~kpq|)

]]
.

(5.86)

By substituting (5.80) and (5.86) into (5.70), the inverse Fourier transform of Term

1 is calculated in the time domain. This term along with Term 2 constructs the

first-order backscattered E-field.

5.3.2 Backscattered E-field Derived From Term 2

In order to represent a closed-form solution for Term 2, the inverse temporal Fourier

transform is applied to Term 2 presented in (5.65). Therefore, we have

F−1
t {Term 2} =− j(η1 −∆)F−1

t

(
C0k

Dt

)
t∗ F−1

t

(
T11A1 + T12A2 − T13 − T14

)
.

(5.87)

Similar to (5.77), F−1
t

(
C0k
Dt

)
can be calculated as

F−1
t

(
C0k

Dt

)
= −jk2

0A
∣∣
k=k0

η0∆lI0e
jω0t [h(t)− h(t− τ0)] . (5.88)
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In the next step, the inverse Fourier transform is applied to T11A1 +T12A2−T13−T14

in (5.87).

For finding the inverse Fourier transform of T11A1, all the dominant terms of I3

presented in Appendix B are substituted in T11 and then the inverse Fourier trans-

form is applied to each term. After performing some derivations, the inverse Fourier

transform of T11A1 can be expressed as

F−1
t (T11A1) = jA1

Gη4
1e
−jπ/4

√
2π

16π3(η4
1 − 1)

F−1
t

10∑
i=5

Mi (5.89)

in which

M5=πc

√
k0

ct
F (ct, ω0)−

√
jπ

1− η1

[
F (ct, ω0)

t
− j

F ( ct
2
, ω0)

t

]
(5.90)

M6=
πc

η2.5
1

√
k0

ct
F (

ct

η1

, ω0)−
√
jπ√

1− η1

[
F (ct, ω0)−jF ( ct

η1
, ω0)

tη2
1

]
(5.91)

M7 =
π
√
ck0√

2nuη1(η1 − nu)
√

1 + η2
1

F (ct/nu, ω0)√
t

[
erf

(
ejπ/4

√
k0ct(η1 − nu)

nu

)

− erf

(√
jk0ct(1− nu)

nu

)]
− π

√
ck0

η1

√
2t(η1 − nu)

√
1 + η2

1

F (ct/η1, ω0)

(5.92)

M8 = − δ0

√
k0F (ct, ω0)

t
√

2η1(1− nu)
√

1 + η2
1

− (ck0)2.5(t− tnu)1.5

6
√

2η1

√
1 + η2

1

F (ct, ω0)
[
3π − 3δ0

− sin δ0(4 + cos δ0)
]∣∣∣
k=k0,ρ=ct

(5.93)
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M9 = −j 8(ck0)3.5t2.5

15
√

2η1

√
1 + η2

1

(1− nu)2.5F (ct, ω0)

[
5π

16
− 5δ0

16
− sin δ0

2
+

sin3 δ0

24

− 3 sin 2δ0

32

]
+

j(ck0)1.5
√
t√

2η1

√
1 + η2

1

√
1 + n2

uF (ct, ω0)(π − δ0 − sin δ0)
∣∣
k=k0,ρ=ct

(5.94)

M10 =
√

2π
∑
m,n

S0

∣∣
k=k0

cF 2(ct/2, ω0)g(θmn)ej(ct/2kmn−π/4)

2( ct
2

)1.5
√
kmn(k2

mn − 2k0kmn)

−
√

2π
∑
m,n

S0

∣∣
k=k0

cF 2(ct/2, ω0)g(θmn + π)e−j(ct/2kmn−π/4)

2( ct
2

)1.5
√
kmn(k2

mn + 2k0kmn)

+
√

2π
∑
m,n

∑
p,q

S1
cF 2(ct/2, ω0)g(θs)e

j(ct/2|~kmn+~kpq |−π/4)

2( ct
2

)1.5

√
|~kmn + ~kpq| R1

∣∣
θ=θs,k=k0

cos(θpq − θs)

−
√

2π
∑
m,n

∑
p,q

S1
cF 2(ct/2, ω0)g(θs + π)

2( ct
2

)1.5

√
|~kmn + ~kpq|

e−j(ct/2|
~kmn+~kpq |−π/4)

R1

∣∣
θ=θs+π,k=k0

(5.95)

After applying the inverse Fourier transform to A2T12, F−1
t (T12A2) = A2M11 wherein

M11 is calculated as

M11 =
∑
m,n

∑
p,q

S1

∣∣
k=k0

√
2πe−jπ/4√

|~kmn + ~kpq|

ejct/2(|~kmn+~kpq |)

R1

∣∣
θ=θs,k=k0

F 2(ct/2, ω0)g(θs)

( ct
2

)1.5
sin(θpq − θs)

−
∑
m,n

∑
p,q

S1

√
2πg(θs + π)

e−jct/2(|~kmn+~kpq |)ejπ/4√
|~kmn + ~kpq|R1

∣∣
θ=θs+π,k=k0

F 2(ct/2, ω0)

( ct
2

)1.5
sin(θpq − θs).

(5.96)

After applying the inverse Fourier transform to the first integral of T13 in (5.68), which

is

e−j
3π
4

√
2π

∑
m,n

Pmn
√
kmng(θmn)

∫
ρ1

F (ρ1)
√
ρ1

I3(ρ1)e−jρ1(k−kmn)dρ1, (5.97)

M12 is obtained. By substituting I3 from (A.10) mentioned in Appendix B into (5.97)
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and taking the inverse Fourier transform, M12 can be approximated as

M12'
e−j

3π
4

2π

∑
m,n

Pmn
√
kmng(θmn)

[
ejctkmnF (ct, ω0)

[
πc√
ct
− 1

t

√
jπ

k0(1− η1)

]

+ e
j ct
η1
kmnF (

ct

η1

, ω0)

[
πc

η3
1

√
η1

ct
+

1

t

√
jπ

k0(1− η1)

]
+

M7√
k0

ej
ct
nu
kmn+

M8 +M9√
k0

ejctkmn

]
(5.98)

By applying the inverse Fourier transform to the rest of T13, M13 is acquired as

follows

M13 =
∑
r,s

∑
m,n

∑
p,q

S1

∣∣
k=k0

cF 2(ct/2, ω0)

2( ct
2

)1.5
sin(θrs−θz) cos(θpq−θz)

ejct/2(|~krs+~kmn+~kpq |)

R1

∣∣
θ=θz ,k=k0

g(θz)
√

2πe−j3π/4√
|~krs + ~kmn + ~kpq|

+
∑
r,s

∑
m,n

∑
p,q

S1

∣∣
k=k0

cF 2(ct/2, ω0)

2( ct
2

)1.5
sin(θrs−θz)ej3π/4 cos(θpq−θz)

e−jct/2(|~krs+~kmn+~kpq |)

R1

∣∣
θ=θz+π,k=k0

g(θz + π)
√

2π√
|~krs + ~kmn + ~kpq|

−j
∑
r,s

∑
m,n

PrskrsS0

∣∣
k=k0

√
2π√

|~krs + ~kmn|

cF 2(ct/2, ω0)

2( ct
2

)1.5

[
g(θu)e

−jπ/4 e
jct/2|~krs+~kmn| sin(θrs − θu) cos(θmn − θu)√

k2
mn − 2k0kmn cos(θmn − θu)

+ g(θu + π)ejπ/4

ejct/2|
~krs+~kmn| sin(θu − θrs) cos(θmn − θu)√
k2
mn + 2k0kmn cos(θmn − θu)

]
.

(5.99)

The last term that requires calculation before taking the temporal convolution in

(5.87) is the inverse Fourier transform of T14, which can be presented as M14. The

inverse Fourier transform of this term is quite similar to M13 except the cosine func-

tions. In other words, by replacing the cosine functions in M13 with sine functions,

M14 is acquired. After applying the inverse Fourier transform to all the terms in

(5.87), the temporal convolution should be considered.
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By applying the convolution and considering (5.88), the first term of Term 2 in the

time domain derived from A1T11 can be expressed as

− j(η1 −∆)F−1
t

(
C0k

Dt

)
t∗ F−1

t (T11A1) ≡
20∑
i=15

Mi. (5.100)

By substituting (5.88) and (5.89) into (5.100) and calculating the temporal convolu-

tion, M15 −M19 are calculated as

M15 = cτ0M0e
jω0t sinc

(ω0τ0

2

)[
π
√
k0
F (r1, ω0)
√
r1

− 1

r1

√
π

1− η1

e−jω0
r1
c

.

[
F (r1, ω0) + F (

r1

η1

, ω0)

]] (5.101)

M16 =
M0cτ0

η3
1

ejω0(t− r1
c

) sinc
(ω0τ0

2

)
.

[
π
√
k0η1

F (r1, ω0)
√
r1

−

√
jπ

1− η1

η1

r1

.

[
F (r1, ω0)− jF (

r1

η1

, ω0)

] ] (5.102)

M17 = M0

πc
√
k0 sinc

(
ω0τ0

2

)√
2nuη1(η1 − nu)

√
1 + η2

1

τ0√
r1

e−jω0(
r1
c
−t)

[
F (r1/nu, ω0)

. erf

(
ejπ/4

√
k0r1(η1 − nu)

nu

)
−F (r1/nu, ω0) erf

(√
jk0r1(1− nu)

nu

)
−F (r1/η1, ω0)

]
(5.103)

M18 = −M0cτ0e
jω0(t− r1

c
)√

2η1

√
1 + η2

1

sinc
(ω0τ0

2

) F (r1, ω0)

r1

[
δ0

√
k0√

(1− nu)
+

(r1k0)2.5(1− nu)
6

[3π − 3δ0 − sin δ0(4 + cos δ0)]

]
k=k0,ct=r1

(5.104)
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M19 = −j
M0cτ0k

1.5
0

√
r1√

2η1

√
1 + η2

1

ejω0(t− r1
c

) sinc
(ω0τ0

2

)
F (r1, ω0)

[
r1k

2
0

(
5π

16
− 5δ0

16
− sin δ0

2

+
sin3 δ0

24
− 3 sin 2δ0

32

)
−
√

1− nu (π − δ0 − sin δ0)

]
k=k0,ct=r1

(5.105)

wherein M0 = (jA1Gη
4
1e
−jπ/4

√
2π)/(16π3(η4

1 − 1)) and r1 = r0/2. By taking the

temporal convolution between (5.88) and the last term of F−1
t (T11A1), which is M10,

M20 is acquired. M20 is obtained by applying some changes in M10. By multiplying

M10 by A1τ0e
j(ω0t−2r0k0), changing ct

2
to r0 and considering the sinc functions derived

from the convolution, M20 is obtained.

The second term of Term 2 in the time domain, which is represented by M21,

is calculated by taking the temporal convolution between (5.88) and M11. M21 is

obtained by applying some changes in M11. By multiplying M11 to A2τ0e
j(ω0t−2r0k0),

changing ct
2

to r0 and multiplying sinc
(

∆ρ
2

(2k0 − |~kmn + ~kpq|)
)

and sinc
(

∆ρ
2

(2k0 +

|~kmn + ~kpq|)
)

, respectively, by the first and the second term of M11, M20 is obtained,

while ∆ρ = cτ0/2. The third term of Term 2 in the time domain, which is denoted

by M22, is calculated by taking the temporal convolution between (5.88) and both

M12 and M13. By multiplying M12 and M13 by τ0e
j(ω0t−2r0k0), changing ct

2
to r0 and

considering the sinc functions derived from the convolution, M22 is obtained.

The last term of Term 2 in the time domain, which is represented by M23, is quite

similar to the terms containing cosine and sine functions in M22. In other words,

by replacing the cosine functions in M22 with the sine functions, M23 is attained.

Consequently, the scattered E-field derived from Term 2 in the time domain can be
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calculated from the summation of all the calculated terms as

Term 2(t) = −(η1 −∆)k2
0η0∆lI0A

∣∣
k=k0

23∑
i=15

Mi. (5.106)

The polarization of the incident and scattered E-field is assumed to be similar

in our derivations. In other words, cross-polarized scattered fields are approximately

neglected. Therefore, the summation of Term 1 and Term 2 corresponds to the co-

polarized backscattered E-field. The radar cross-section can be calculated from the

received power in the receiver antenna by considering the Gaussian distribution [108]

for the random rough surface as [69]

Pr =
Ar
2η0

< (E+
n )1(t) (E+

n )∗1(t) > (5.107)

where Ar = k2
0Gr is the effective aperture of the receiving antenna and can be cal-

culated using the free space gain of the receiving antenna (Gr). By considering the

received and transmitted power along with the radar equation [1], the incoherent co-

polarized radar cross-section for the time-invariant rough surface can be calculated
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as

σs =
32π3l2h2

η2
0k

2
0

[
3k6

0

α4
η2

0F
4(r0, ω0)W (2β3)+

k0η
2
0γ

16πα4
F 4(r0, ω0) +

γF 4(r0, ω0)

32k0α4

+4π2r2
0F

2(r1, ω0)k2
0W (β3)+

8πk0r0

1− η1

W (β3)F 2(r1, ω0)+
4πk0r

2
0

1− η1

η3
1W (β3η1)F 2(

r1

η1

, ω0)

+
4r2

0

η2
1

π2k2
0W (β3η1)F 2(

r1

η1

, ω0) +
2η1r

2
0

nu(η1 − nu)
π2k0F

2(
r1

η1

, ω0)
[
nu+| erf(β1)|2

+| erf(β2)|2
]

+
2k2

0

η2
1

r3
0W (β3)F 2(r1, ω0)

[ δ2
0

2r2
1(1−nu)

+
k4

0

72
r3

1(1−nu)3
(
3π−3δ0

−sin δ0(4+cos δ0)2
)]

+
π

η2
1

k4
0F

2(r1, ω0)W (β3)
[
r5

1k
4
0(1− nu)5(

5π

16
− 5δ0

16
− sin δ0

2

+
sin3 δ0

24
− 3 sin 2δ0

32
)2 + πr1(1 + nu)(π − δ0 − sin δ0)2

]]
(5.108)

where W (·) is the surface spectral density for the stationary Gaussian height distri-

bution with correlation length l and RMS height h, α = l sin θi, β1 =
√

jk0r1(η1−nu)
nu

,

β2 =
√

jk0r1(1−nu)
nu

, β3 = k0l sin θi and θi is the incident angle.

It is important to note that only specular reflection can be considered for the

coherent wave scattering. Therefore, it is expected to have a significant co-polarized

backscattered fields at zero angle for the monostatic configuration.

5.4 Results

In this section, the new development for the first-order backscattered E-field is eval-

uated by comparing the first-order radar cross-section with three analytical solutions

(i.e., the SPM, KA and SSA solutions). The MoM as a numerical method is employed
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Table 5.1: Media characteristics

Parameters Seawater Sea ice
σ (S/m) 4.00 10−3

εr 80.00 4.00
|η2

1| 2399.15 4.04
tan δ 29.97 0.15

f (MHz) 30 30

to show the accuracy of the proposed solution for the first-order backscattered E-field.

In order to validate the proposed solution, two different media with different permit-

tivities and conductivities listed in Table 5.1 as high and moderate contrast media at

30 MHz are selected for Region 1. As is obvious in this table, the refractive index and

loss tangent (tan δ1) of seawater are relatively high while they are quite small for sea

ice at 30 MHz. Therefore, seawater and sea ice can be assumed as high and moderate

contrast media with respect to air, respectively.

It is also worth noting that the proposed scattering solution does not have a fre-

quency constraint since the band-limited assumption (|k2
x + k2

y| < k2) has not been

retained in the derivation of the scattered E-field. In order to assess the proposed

solution for different roughness heights, various Gaussian random rough surfaces with

different RMS heights (hRMS), correlation lengths and roughness scales (khRMS) are

considered. Table 5.2 illustrates all the parameters associated with the defined Gaus-

sian random rough surfaces. The length and the width of all the random rough

surfaces have been assumed as 10λ (to be sizable in terms of the wavelength), while

the sampling rate of the surface has been set to 5 points per square wavelength. For
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instance, Fig. 5.4(a) shows a generated random rough surface with the parameters

listed in Table 5.2 for the second defined rough surface in only one-dimension. In order

to evaluate the distribution of this surface, the probability density function (PDF)

of the generated surface has been obtained and compared with the theoretical PDF.

As can be seen in this figure, the probability density of the generated random rough

surface is close to the theoretical PDF. In order to show the robustness of the results

Table 5.2: Random rough surface parameters

Surface
RMS

height (m)
Correlation
length (m)

khRMS

1 0.40 5.50 0.25
2 1.25 5.00 0.79
3 2.20 5.20 1.38
4 3.00 7.20 1.90
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Fig. 5.4: (a) Surface realization with RMS height of 1.25 m and correlation length 5 m
as defined for the second rough surface. (b) The probability density of the generated
random rough surface and its comparison with the theoretical probability density.

against media characteristics, the electromagnetic properties of the selected random
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rough surfaces in Table 5.2 are changed to seawater as high contrast and sea ice as

moderate contrast media. Subsequently, the radar cross-section is calculated at differ-

ent incident angles and compared with the analytical solutions, while the numerical

solution obtained by the MoM is considered as reference. Monte Carlo simulation

over 100 sample rough surfaces is performed for finding the radar cross-section using

the MoM. It should be pointed out that all the defined random rough surfaces have

a finite extent. Therefore, edge diffraction occurs due to the edge of the surface. In

order to reduce the edge diffraction for the scattering from rough surfaces, a tapered

incident wave [111] with tapering parameter g is utilized in the numerical analysis. In

this investigation, the tapering parameter g has been set to 25 m at 30 MHz in the

numerical analysis.

5.4.1 Seawater

To evaluate the performance of the proposed solution at different incident angles over

high contrast media, the solution is applied to two-dimensional random rough seawa-

ter surfaces listed in Table 5.2. Fig. 5.5 depicts the radar cross-section of four selected

random rough surfaces at different incident angles. In this figure, the SPM, KA and

SSA solutions are referred to as the first-order radar cross sections acquired by SPM,

KA and SSA methods, respectively. Although higher-order scattering of SPM [112],

KA [56] and SSA [113] may improve their accuracy compared to the MoM method,

only the first-order scattering has been considered in this study to be comparable with
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the proposed solution derived from the first-order scattering. As can be seen in this

figure, the proposed solution can follow the numerical and more accurate solution (i.e.,

the MoM) at different incident angles, while the RMS heights are increased. It should

be noted that the solutions acquired by the MoM consider both coherent and incoher-

ent scattered fields, in which coherent scattering corresponds to the specular reflection

around zero incident angles. However, in the other solutions, only incoherent wave

scattering phenomenon has been considered. On the other hand, in remote sensing

and radar applications, the matched polarization (i.e., considering only co-polarized

scattered fields) in the receiver is one of the ways to increase the signal-to-noise ratio

(SNR). Consequently, the scattered fields possessing the TM polarization [72] were

considered in this study for the calculation of the radar cross section. Accordingly,

the co-polarized radar cross-section is obtained for the all defined random rough sur-

faces listed in Table 5.2. Fig. 5.5(a) shows the radar cross-section of the first random

rough surface listed in Table 5.2. As can be seen in this figure, the proposed solution

along with other approximate solutions is close to each other and follow the MoM

solution at various incident angles except for near θ = 0. For this surface, the RMS

height is much smaller than the source wavelength, while the radius of curvature is

relatively greater than the source wavelength. As a result, the SPM, KA and SSA

solutions are close to the MoM solution. By increasing the RMS height to 1.25 m in

the second random rough surface mentioned in Table 5.2, discrepancies between the

SPM and MoM solution increase as shown in Fig. 5.5(b). The KA and SSA solutions
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remain credible at various incident angles. Nonetheless, the proposed solution for this

surface is better than the KA and SSA solutions at different incident angles and has

a good agreement with the MoM solution. By increasing the roughness height, as we

defined in the third random rough surface, the discrepancies between SPM and the

KA and SSA solutions increase, while the proposed solution can follow the numerical

solution at various incident angles. For the last random rough surface listed in Table

5.2, the RMS height has been increased to 3 m. As can be seen in Fig. 5.5(d), the

proposed solution agrees well with the MoM solution at various incident angles and

outperforms the SPM, KA and SSA solutions for the large roughness height.

5.4.2 Sea Ice

In order to assess the performance of the proposed solution for the backscattered

E-field over moderate contrast media, the new development is applied to different

random rough sea ice surfaces with the parameters listed in Table 5.1, while only co-

polarized scattered fields are considered in the calculation of the radar cross section.

Similar to seawater, the SPM, KA, SSA and MoM solutions are used to show the

accuracy of the proposed solution at different incident angles. As is obvious in this

figure, the proposed solution follows the numerical solution at various incident angles

and RMS heights. Fig. 5.6(a) depicts the radar cross-section over the first defined

random rough surface mentioned in Table 5.2. The proposed and other analytical

solutions follow the numerical solution at different incident angles, particularly below
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Fig. 5.5: The radar cross-section and its comparison with the other solutions over
seawater with a) khRMS = 0.25 b) khRMS = 0.79 c) khRMS = 1.38 d) khRMS = 1.9.

40 degrees. The SPM, KA and SSA solutions are reasonably good at different incident

angles since the RMS height of this surface is small, and the radius of curvature is

greater than the source wavelength for this random rough surface. For the second

random rough surface, the RMS height is increased to 1.25 m. Fig. 5.6(b) shows

the radar cross-section of this surface at various incident angles. The discrepancies

between the numerical and other analytical solutions have increased in this figure.

Nevertheless, the proposed solution agrees well with the MoM solution and outper-
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Fig. 5.6: The radar cross-section and its comparison with the other solutions over sea
ice with a) khRMS = 0.25 b) khRMS = 0.79 c) khRMS = 1.38 d) khRMS = 1.9.

forms the conventional solutions at different incident angles. Fig. 5.6(c) demonstrates

the radar-cross section and its comparison for the third defined random rough surface

characterized in Table 5.2. As is obvious, the proposed solution follows the MoM

solution at various incident angles, and the SSA solution remains credible for low

incident angles. On the other hand, the SPM and KA solutions cannot follow the

numerical solution due to the large value of RMS height. The radar cross-section over

the last random rough surface with the RMS height of 3 m has been depicted in Fig.
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5.6(d). In this figure, the proposed solution outperforms other analytical solutions

(SPM, KA and SSA) and can follow the numerical solution at various incident angles.

It should be noted that the computation time of the MoM solution for each random

rough surface is almost constant with respect to the roughness scale (khRMS), and

it only varies by changing the electromagnetic properties of the surface. For rough

seawater surfaces, the computation time using a computer equipped with a core i7-

4700MQ CPU clocked at 2.40 GHz and 16 GB RAM memory is around 52 min, while

it is about 2 h 42 min for rough sea ice surfaces. It is important to note that 5 points

per square wavelength have been used for the rough surface in our investigation. The

computation time for the numerical calculations considerably increases if we increase

this amount. For instance, if the sampling rate is increased to 20 to have a better

rough surface resolution, it takes around a day to compute the results for the rough

sea ice surfaces.

5.5 Chapter Summary

The scattered E-field is derived from a general operator equation and represented in

the form of an integral equation containing the normal component of the E-field for ar-

bitrary radiation source and rough surface profile. By representing a new formulation

for the terms associated with the moderate contrast media and incorporating large

RMS height factor, the backscattered E-field by assuming a vertical dipole antenna lo-

cated above the scattering surface is obtained. By utilizing the Fourier series solution
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of the scattering surface, the first-order backscattered E-field and incoherent radar

cross section are calculated. A numerical evaluation of the proposed solution and its

comparison with three alternative analytical solutions(i.e., the SPM, KA and SSA

methods) indicate that the proposed solution outperforms the conventional solutions

for large roughness height and a verity media characteristics.
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Chapter 6

Conclusion

6.1 Summary

The objectives of this thesis have been: 1) to develop approximate analytical solutions

for the scattered EM fields radiated by a VED in the presence of a lossy half-space with

a smooth interface at various frequencies and distances from the antenna for plasmonic

and non-plasmonic structures; and 2) to develop an approximate analytical solution

for EM scattering over two-dimensional random rough surfaces with large roughness

height and different contrast media.

First of all, the intermediate Hertz potential and scattered fields are derived for

frequencies below the VHF band above a lossy half-space with a smooth interface.

By decomposing the intermediate Hertz potential into three terms and proposing ap-

proximate solutions for each term at various distances from the antenna, the solution

for the intermediate Hertz potential associated with the Sommerfeld-type integral is
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acquired. A numerical evaluation of the integrals that constitute the formal result of

the problem validates the accuracy and efficiency of the proposed solution at various

frequencies and distances from the antenna. Furthermore, the overall behavior of the

solution is illustrated for the particular case of ocean surface scattering in the HF

frequency band in the near and far field regions.

Secondly, the Sommerfeld half-space problem with a smooth interface is revisited

and accurate solutions for the intermediate Hertz potential and scattered electric field

are derived for higher frequencies (up to 10 GHz) in the near and far field regions. The

intermediate Hertz potential is decomposed into two Sommerfeld-type integrals and

accurate solutions are proposed for good dielectric and conductor media by employing

the small and large argument approximation of the Bessel function of the first kind

in the Sommerfeld-type integrals. By finding an approximate closed-form solution

for the intermediate Hertz potential, the scattered electric field in the near and far

field regions is calculated. To evaluate the accuracy of the theoretical development,

the scattered electric field over different lossy half-spaces (i.e., seawater, wet earth,

dry earth and lake water) is obtained and compared with two alternative state of the

art solutions at various frequencies and distances from the antenna in terms of the

normalized root-mean-square error (NRMSE) and mean absolute error (MAE), while

the numerical solution is considered as a reference.

Following this work, new approximate solutions for the scattered electric and mag-

netic field components for plasmonic and non-plasmonic media over a lossy half-space
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with a smooth interface have been proposed. The modified saddle-point method is

utilized to represent an approximate closed-form solution for the intermediate Hertz

potential expressed in terms of the Fourier-Bessel transforms associated with the

Sommerfeld-type integral. The scattered fields including surface waves in the far field

region are calculated from the intermediate Hertz potential. To assess the efficiency

of the developed formulations, radiation patterns of different impedance half-planes

are obtained for plasmonic (e.g., silver and gold) and non-plasmonic (e.g., seawater,

silty clay soil, silty loam soil and lake water) media. In terms of accuracy, the pro-

posed solutions for the scattered fields are evaluated by the NRMSE and normalized

maximum absolute error (NMAE) using the numerical solution and compared with

two alternative state of the art solutions for plasmonic and ordinary structures.

Finally, random roughness is added to the problem and the formulations for EM

wave scattering over a two-dimensional random rough surface with different roughness

heights and contrast media are derived based on the generalized functions approach.

The scattered electric field is derived for an arbitrary radiation source, and surface pro-

file and incorporates all scattering orders obtained from the Neumann series solution.

Afterwards, the first-order scattered electric field and radar-cross section are calcu-

lated for a Gaussian random rough surface distribution with different RMS heights

and correlation lengths. The proposed solutions for the backscattered E-field and

the radar cross-section do not have a constraint over the roughness height and can

be applied to surfaces with large roughness heights. However, the other analytical
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solutions, such as the SPM, KA and SSA methods are unable to accurately calculate

scattered fields. In addition, the proposed solution is applicable for rough surfaces

with moderate contrasts, while the other alternative analytical solutions (i.e., the

SPM, KA and SSA methods) are well accurate only for high contrast media. In order

to show the efficiency of the proposed solution, a numerical evaluation of the solution

and its comparison with three alternative analytical solutions (i.e., the SPM, KA and

SSA methods) are acquired. The comparisons indicate that the proposed solution

outperforms the conventional solutions for large roughness height and a verity media

characteristics.

The main contribution of this work is the development of various approximate an-

alytical solutions for the scattered EM fields over a lossy half-space including smooth

and rough interfaces at various frequencies and distances from the antenna in the

near and far field regions. These solutions can be used in a verity of forward and in-

verse scattering problems, such as ocean remote sensing, GPR applications, medical

imaging, wireless communication link design, retrieving soil moisture and vegetation

biomass. Moreover, the proposed solutions for the scattered fields from rough sur-

faces are valid for high roughness height and different contrast media for which the

refractive index is greater than one. Therefore, scattered EM fields can be acquired

not only for high but also for moderate contrast media such as sea ice and soil.

148



6.2 Suggestions for Future Works

Based on the work presented in this thesis, several remaining problems are discussed

here with suggestions for future theoretical work.

First, approximate analytical solutions over half-spaces have been obtained for

homogeneous and isotropic media. These solutions can be developed for inhomoge-

neous anisotropic media when the source is a vertical or horizontal dipole antenna.

For isotropic media, the electric and magnetic flux density are respectively related to

the electric and magnetic field by a number. However, for anisotropic media, they are

related through dielectric permittivity and permeability tensors. Therefore, dyadic

analysis [114] is required in the derivation of scattered EM fields. Also, for inhomo-

geneous media, the EM properties are a function of position and depend on x, y or z

in the Cartesian coordinate system and should be considered in the derivation of the

scattered EM fields.

Second, for the EM scattering by random rough surfaces, higher-order scattered

E-fields and radar-cross sections can be developed. Higher order fields may increase

the accuracy of the solution compared with the numerical solutions. In this case, a

higher-order Neumann series solution for the scattered E-field should be considered.

Third, in the calculation of the scattered E-field by random surfaces, the small

slope condition has been considered. By removing this constraint, the scattered E-field

can be calculated for general rough surface profiles with different slopes.
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Fourth, the scattered electric field has been obtained over a time-invariant random

rough surface. The existing derivations for the scattered electric field can be developed

for time- and space-variant random rough surfaces. In order to consider a time-variant

random surface, an exponential function ejωkt, in which ωk is the angular frequency

of the surface variation, needs to be integrated with the Fourier series representation

of the scattering surface.

Finally, scattered EM fields can be developed for layered media with rough in-

terfaces since most real structures, such as soil, can be modeled as layered media.

Also, developing high-order (e.g., the second and the third order scattering) scattered

fields for large scale and moderate contrast random rough surfaces and comparing

with other unifying methods such as the advanced integral equation method (AIEM)

can be considered as possible future work.

150



References

[1] M. E. Nazari and A. Ghorbani, “Predicting a three-dimensional radar coverage

area : Introducing a new method based on propagation of radio waves.” IEEE

Antennas Propag. Mag., vol. 58, no. 1, pp. 28–34, Feb 2016.

[2] K. A. Michalski and J. R. Mosig, “Multilayered media Green’s functions in

integral equation formulations,” IEEE Trans. Antennas Propag., vol. 45, no. 3,

pp. 508–519, March 1997.

[3] D. H. Werner, Broadband Metamaterials in Electromagnetics: Technology and

Applications. Florida, United States: CRC Press, 2017.

[4] M. E. Nazari, W. Huang, and C. Zhao, “Radio frequency interference suppres-

sion for HF surface wave radar using CEMD and temporal windowing methods,”

IEEE Geosci. Remote Sens. Lett., vol. 17, no. 2, pp. 212–216, Feb 2020.

[5] H. Liu, K. Takahashi, and M. Sato, “Measurement of dielectric permittivity and

thickness of snow and ice on a brackish lagoon using GPR,” IEEE J. Sel. Topics

Appl. Earth Observ., vol. 7, no. 3, pp. 820–827, March 2014.

151



[6] L. Novotny, “Allowed and forbidden light in near-field optics. i. a single dipolar

light source,” J. Opt. Soc. Am. A, vol. 14, no. 1, pp. 91–104, Jan 1997.

[7] T.-I. Jeon and D. Grischkowsky, “THz zenneck surface wave (THz surface plas-

mon) propagation on a metal sheet,” Appl. Phys. Lett., vol. 88, no. 6, pp.

061 113–1–061 113–3, 2006.

[8] B. Ung and Y. Sheng, “Optical surface waves over metallo-dielectric nanostruc-

tures: Sommerfeld integrals revisited,” Opt. Exp., vol. 16, no. 12, pp. 9073–9086,

Jun 2008.

[9] A. Y. Nikitin, S. G. Rodrigo, F. J. Garcia-Vidal, and L. Martin-Moreno, “In

the diffraction shadow: Norton waves versus surface plasmon polaritons in the

optical region,” New J. Phys., vol. 11, no. 12, p. 123020, Dec 2009.

[10] E. Pettinelli, P. Burghignoli, A. R. Pisani, F. Ticconi, A. Galli, G. Vannaroni,

and F. Bella, “Electromagnetic propagation of GPR signals in martian subsur-

face scenarios including material losses and scattering,” IEEE Trans. Geosci.

Remote Sens., vol. 45, no. 5, pp. 1271–1281, 2007.

[11] R. W. P. King, B. H. Sandler, and L. C. Shen, “A comprehensive study of

subsurface propagation from horizontal electric dipoles,” IEEE Trans. Geosci.

Remote Sens., vol. GE-18, no. 3, pp. 225–233, 1980.

[12] Y. Du, Electromagnetic scattering: A remote sensing perspective. World scien-

tific, 2017.

152



[13] D. Zahn, K. Sarabandi, K. F. Sabet, and J. F. Harvey, “Numerical simulation

of scattering from rough surfaces: a wavelet-based approach,” IEEE Trans.

Antennas Propag., vol. 48, no. 2, pp. 246–253, 2000.

[14] K. Li and Y. Lu, “Electromagnetic field generated by a horizontal electric dipole

near the surface of a planar perfect conductor coated with a uniaxial layer,”

IEEE Trans. Antennas Propag., vol. 53, no. 10, pp. 3191–3200, Oct 2005.

[15] K. A. Michalski and J. R. Mosig, “On the surface fields excited by a Hertzian

dipole over a layered halfspace: From radio to optical wavelengths,” IEEE

Trans. Antennas Propag., vol. 63, no. 12, pp. 5741–5752, Dec 2015.

[16] M. E. Nazari and W. Huang, “An analytical solution of electromagnetic ra-

diation of a vertical dipole over a layered half-space,” IEEE Trans. Antennas

Propag., vol. 68, no. 2, pp. 1181–1185, Feb 2020.

[17] M. Eslami Nazari and W. Huang, “An analytical solution of the electric field

excited by a vertical electric dipole above a lossy half-space: From radio to

microwave frequencies,” IEEE Trans. Antennas Propag., vol. 68, no. 11, pp.

7517–7529, 2020.

[18] M. E. Nazari and W. Huang, “Asymptotic solution for the electromagnetic

scattering of a vertical dipole over plasmonic and non-plasmonic half-spaces,”

IET Microw. Antennas Propag., vol. 15, no. 7, pp. 704–717, 2021.

153



[19] A. Sommerfeld, “Propagation of waves in wireless telegraphy,” Ann. Phys.,

vol. 28, pp. 665–736, March 1909.

[20] A. Ishimaru, J. D. Rockway, and S. W. Lee, “Sommerfeld and zenneck wave

propagation for a finitely conducting one-dimensional rough surface,” IEEE

Trans. Antennas Propag., vol. 48, no. 9, pp. 1475–1484, Sep. 2000.

[21] W. H. Wise, “Sommerfeld and zenneck wave propagation for a finitely con-

ducting one-dimensional rough surface,” Bell Syst. Tech. J., vol. 8, no. 4, pp.

662–671, Oct. 1929.

[22] B. Van Der Pol, “Theory of the reflection of the light from a point source by a

finitely conducting flat mirror, with an application to radiotelegraphy,” Physica,

vol. 2, no. 1, pp. 843–853, 1935.

[23] K. A. Norton, “The propagation of radio waves over the surface of the earth

and in the upper atmosphere,” Proc. IRE, vol. 25, no. 9, pp. 1203–1236, Sep.

1937.

[24] J. R. Wait, “The ancient and modern history of EM ground-wave propagation,”

IEEE Trans. Antennas Propag., vol. 40, no. 5, pp. 7–24, Oct. 1998.

[25] P. R. Bannister, “New formulas that extend Norton’s farfield elementary dipole

equations to the quasi-nearfield range,” Naval Underwater Syst. Center, New

London, CT, USA, Tech. Rep. 6883, Tech. Rep., Jan. 1984.

154



[26] B. L. Van Der Waerden, “On the method of saddle points,” Appl. Sci. Res. B,

vol. 2, no. 1, pp. 33–45, Dec 1952.

[27] G. Bernard and A. Ishimaru, “On complex waves,” Electrical Engineers, Pro-

ceedings of the Institution of, vol. 114, pp. 43–49, 02 1967.

[28] R. E. Collin, “Hertzian dipole radiating over a lossy earth or sea: some early

and late 20th-century controversies,” IEEE Trans. Antennas Propag., vol. 46,

no. 2, pp. 64–79, April 2004.

[29] J. R. Wait, “Radiation from a vertical electric dipole over a stratified ground,”

IRE Trans. Antennas Propag., vol. AP-1, pp. 9–12, 1953.

[30] ——, “Electromagnetic surface waves,” in Advances in Radio Research, vol. 1,

J. A. Saxton, Ed. San Diego, CA, USA: Academic, pp. 157–217, 1964.

[31] R. J. King and G. A. Schlak, “Groundwave attenuation function for propagation

over a highly inductive earth,” Radio Sci., vol. 2, no. 7, pp. 687–693, 1967.

[32] R. J. King, “Electromagnetic wave propagation over a constant impedance

plane,” Radio Science, vol. 4, no. 3, pp. 255–268, 1969.

[33] H. E. Green, “Derivation of the Norton surface wave using the compensation

theorem,” IEEE Antennas Propag. Mag., vol. 49, no. 6, pp. 47–57, 2007.

[34] R. W. P. King and S. S. Sandler, “The electromagnetic field of a vertical electric

155



dipole over the earth or sea,” IEEE Trans. Antennas Propag., vol. 42, no. 3, pp.

382–389, 1994.

[35] ——, “The electromagnetic field of a vertical electric dipole in the presence of

a three-layered region,” Radio Sci., vol. 29, no. 1, pp. 97–113, 1994.

[36] R. W. P. King, “Electromagnetic field of a vertical dipole over an imperfectly

conducting half-space,” Radio Sci., vol. 25, pp. 149–160, 1990.

[37] R. E. Collin, “Some observations about the near zone electric field of a Hertzian

dipole above a lossy earth,” IEEE Trans. Antennas Propag., vol. 52, no. 11, pp.

3133–3137, Nov 2004.

[38] S. F. Mahmoud, R. W. P. King, and S. S. Sandler, “Remarks on ”the electro-

magnetic field of a vertical electric dipole over the earth or sea” [and reply],”

IEEE Trans. Antennas Propag., vol. 47, no. 11, pp. 1745–1747, Nov 1999.

[39] H. Q. Zhang and W. Y. Pan, “Electromagnetic field of a vertical electric dipole

on a perfect conductor coated with a dielectric layer,” Radio Sci., vol. 37, no. 4,

pp. 13–1–13–7, 2002.

[40] H. Q. Zhang, K. Li, and W. Y. Pan, “The electromagnetic field of a vertical

dipole on the dielectric-coated imperfect conductor,” J. Electromagn. Waves

Appl., vol. 18, no. 10, pp. 1305–1320, 2004.

[41] K. Sarabandi, M. D. Casciato, and I. S. Koh, “Efficient calculation of the fields of

156



a dipole radiating above an impedance surface,” IEEE Trans. Antennas Propag.,

vol. 50, no. 9, pp. 1222–1235, 2002.

[42] P. Parhami, Y. Rahmat-Samii, and R. Mittra, “An efficient approach for eval-

uating Sommerfeld integrals encountered in the problem of a current element

radiating over lossy ground,” IEEE Trans. Antennas Propag., vol. 28, no. 1, pp.

100–104, January 1980.

[43] K. A. Michalski, “On the efficient evaluation of integral arising in the Sommer-

feld halfspace problem,” IEE Proc. Part H-Microwaves, Antennas and Propa-

gat., vol. 132, pp. 312–318, August 1985.

[44] W. A. Johnson and D. G. Dudley, “Real axis integration of Sommerfeld inte-

grals: Source and observation points in air,” Radio Sci., vol. 18, no. 02, pp.

175–186, March 1983.

[45] I. Lindell and E. Alanen, “Exact image theory for the Sommerfeld half-space

problem, part II: Vertical electrical dipole,” IEEE Trans. Antennas Propag.,

vol. 32, no. 8, pp. 841–847, 1984.

[46] M. T. Silva, W. Huang, and E. W. Gill, “High-frequency radar cross section

of the ocean surface with arbitrary roughness scales: A generalized functions

approach,” IEEE Trans. Antennas Propag., vol. 69, no. 3, pp. 1643–1657, 2021.

[47] M. El-Shenawee, C. Rappaport, E. L. Miller, and M. B. Silevitch, “Three-

dimensional subsurface analysis of electromagnetic scattering from penetra-

157



ble/PEC objects buried under rough surfaces: use of the steepest descent fast

multipole method,” IEEE Trans. Geosci. Remote Sens, vol. 39, no. 6, pp. 1174–

1182, 2001.

[48] C. Kuo and M. Moghaddam, “Electromagnetic scattering from multilayer rough

surfaces with arbitrary dielectric profiles for remote sensing of subsurface soil

moisture,” IEEE Trans. Geosci. Remote Sens, vol. 45, no. 2, pp. 349–366, 2007.

[49] J. Strutt, The Theory of Sound. Dover, New York, 1945, vol. 2.

[50] S. O. Rice, “Reflection of electromagnetic waves from slightly rough surfaces,”

Commun. Pure Appl. Math., vol. 4, no. 2-3, pp. 351–378, 1951.

[51] J. R. Wait, “Perturbation analysis for reflection from two-dimensional periodic

sea waves,” Radio Sci., vol. 6, no. 3, pp. 387–391, 1971.

[52] D. Barrick, “First-order theory and analysis of MF/HF/VHF scatter from the

sea,” IEEE Trans. Antennas Propag., vol. 20, no. 1, pp. 2–10, 1972.

[53] A. Tabatabaeenejad and M. Moghaddam, “Study of validity region of small

perturbation method for two-layer rough surfaces,” IEEE Geosci. Remote Sens.

Lett., vol. 7, no. 2, pp. 319–323, 2010.

[54] H. Zamani, A. Tavakoli, and M. Dehmollaian, “Scattering from two rough sur-

faces with inhomogeneous dielectric profiles,” IEEE Trans. Antennas Propag.,

vol. 63, no. 12, pp. 5753–5766, 2015.

158



[55] J. Stratton, Electromagnetic Theory. McGraw-Hill, New York, 1941, vol. 2.

[56] P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from

Rough Surfaces. Artech House, Norwood, MA, 1987.

[57] R. Kodis, “A note on the theory of scattering from an irregular surface,” IEEE

Trans. Antennas Propag., vol. 14, no. 1, pp. 77–82, 1966.

[58] D. Barrick, “Rough surface scattering based on the specular point theory,” IEEE

Trans. Antennas Propag., vol. 16, no. 4, pp. 449–454, 1968.

[59] ——, “Wind dependence of quasi-specular microwave sea scatter,” IEEE Trans.

Antennas Propag., vol. 22, no. 1, pp. 135–136, 1974.

[60] C. Bourlier, N. Pinel, and G. Kubické, Method of Moments for 2D Scattering
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Appendix A

Approximation of I6 Coefficients in

(3.32)

An approximate solution for each coefficient in (3.32) is obtained using curve fitting,

while the frequency changes between 10 MHz to 10 GHz. In other words, the proposed

approximate solution is fitted to the numerical solution in the whole frequency range

for a selected a value for finding each coefficient. This process is repeated for different

z coordinates of the observation points and antenna heights corresponding to a values

to find each coefficient. Finally, a approximate formulation for each coefficient is

obtained using curve fitting in terms of a value as follows.

a1 '11.5 sin(0.4 a+ 3) + 8.3 sin(0.4 a− 0.5) + 0.7 sin(2.4 a− 0.6)

b1 '− 0.97− 0.03 cos(2 a)− 0.05 sin(2 a)

c1 '33.7 sin(0.5 a+ 1.8) + 0.9 sin(2 a+ 0.8) + 31 sin(0.6 a− 1.5)
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a2 '37.7 sin(0.5 a+ 2.2) + 34.9 sin(0.5 a− 1.1) + 1.1 sin(2.4 a− 0.4)

b2 '2.7 sin(0.1 a+ 3.6) + 1.8 sin(0.2 a+ 0.1)

c2 '0.1− 0.4 cos(1.2 a) + 0.5 sin(1.2 a)− 0.6 cos(2.4 a) + 1.2 sin(2.4 a)

a3 '7.9 + 7.7 sin(0.3 a− 1.4) + 1.6 sin(2.5 a+ 0.6)

b3 '2.6 sin(0.1 a+ 3) + 0.9 sin(0.3 a− 1.5)− 0.1 sin(0.9 a− 1.6)

c3 '− 2.4− 0.3 cos(0.5 a) + 0.2 sin(0.5 a) + 1.4 cos(a)− 2 sin(a)− cos(1.5 a)

− 0.2 sin(1.5 a)

a4 '121 sin(0.1 a− 0.2) + 870.9 sin(0.01 a− 3.2) + 1.5 sin(2.8 a− 1.2), b4 ' −1

c4 '108
[
2.09− 3.2 cos(0.06 a)− 1.2 sin(0.06 a) + 1.3 cos(0.12 a) + 1.1 sin(0.12 a)

− 0.24 cos(0.18 a)− 0.43 sin(0.18 a) + 0.0097 cos(0.24 a) + 0.062 sin(0.24 a)
]

(A.1)

As can be seen in (A.1), the sum of sinusoidal functions has been used for finding

an approximate expression for each coefficient since it provides higher accuracy at

various a values and frequencies.
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Appendix B

Approximate Closed-form solution

of I3 in (5.56)

In this section, an approximate closed-form solution for the integral of I3 in (5.56)

obtained from (5.49) is proposed. By multiplying the Sommerfeld attenuation function

F (ρ) to Fn(ρ) presented in (5.46), the integral of I3 in (5.55) can be formed. To

avoid confusion, the integral is split up into five additive terms and an approximate

closed-form solution is obtained for each term. The first integral presented in (A.2)

is calculated using the stationary phase integration method as

T ′1 =

∫ π

0

(
1− e−jk(η1−1)(1−cos δ)ρ/2

)
dδ ' π −

√
π

2C1

(
ejπ/4 − e−jkρ(η1−1)e−jπ/4

)
(A.2)

wherein C1 = −k(η1 − 1)ρ/2. T ′2 is the next integral mentioned in (A.3). The

stationary phase integration method is also used for the calculation of this integral.
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Thus, we have

T ′2 =
1

η1

[∫ π

0

e−jk(η1−1)ρdδ−
∫ π

0

e−jk(η1−1)(1+cos δ)ρ/2dδ

]
' −1

η2
1

√
π

2C1

(
e−jkρ(η1−1)e−jπ/4+ejπ/4

)
+
π

η2
1

e−jkρ(η1−1).

(A.3)

T ′3, which contains the error function, can be calculated using the same procedure

accomplished for T ′2. Thus, we have

T ′3 = j

√
kπ

2np

∫ π

0

√
C2e

kC2(j−np)
(√

1 + n2
p erf(

√
C3)−

√
η2

1 + n2
p erf(

√
C4)
)
dδ

' jπ

2

√
kρ

npC5

ej(2C5−π/4)

[
η1 erf

(√
kρ(j − np)

)
− η1

√
2 erf

(√
kρ(jη1 − np)

)]
(A.4)

in which C2 = ρ(1 − cos δ)/2, C3 = kρ(j − np)(1 − cos δ)/2, C4 = kρ(jη1 − np)(1 −

cos δ)/2 and C5 = kρ(1 + jnp)/2. The next integral is T ′4, which can be expressed as

T ′4 = j

√
−jkπρ

2η1

√
1 + η2

1

e−jkρ(η1+nu−2)/2

∫ π

0

ejC6 cos δ cos
δ

2

[
erfc(

√
C7)− erfc(

√
C8)
]
dδ

(A.5)

wherein C6 = kρ(η1− nu)/2, C7 = jkρ(1 + cos δ)(1− nu)/2, C8 = jkρ(1 + cos δ)(η1−

nu)/2 and nu =
√

η21
η21+1

. In order to find an approximate closed-form solution for this

integral, the stationary phase integration method along with an asymptotic expansion

of the error function [75] is employed. It should be noted that the stationary phase

integration method is not applicable for the calculation of the second part of the

integral consisting erfc(
√
C8) since the error function has an impact on the stationary
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phase part C6 cos δ. By using the asymptotic expansion of the complementary error

function for the second part and the stationary phase integration technique for the

first part of the integral in (A.5), T ′4 can be approximated as

T ′4 ' j

√
−jkπρ

2η1

√
1 + η2

1

e−jkρ(η1+nu−2)/2

[√
π

2C6

ej(C6−π/4)

[
erf
(
ejπ/4

√
2C6

)
− erf

(√
2jC9

)]
− πe−jC6

√
2jπC6

] (A.6)

where C9 = kρ(1 − nu)/2. T ′5 is the next integral that needs to be calculated. After

doing some simplification, this integral can be represented as

T ′5 = −j
√

−jkπρ
2η1

√
1 + η2

1

∫ π

0

cos
δ

2
eC7 erfc

(√
C7

)
. (A.7)

To calculate this integral, the small and large argument approximations of the com-

plementary error function are used. The stationary phase integration approach is

not applicable for the calculation of T ′5 since the complementary error function has

an impact on the stationary phase part C7. Therefore, the Taylor series is used for

the small argument (i.e., less than one) approximation of the complementary error

function while the asymptotic expansion is utilized when the argument is greater than

one. By splitting the bound of the integral (A.7) at δ0 = cos−1 (1/|C9| − 1) due to the

criteria of the large and small argument approximation of the complementary error
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function, T ′5 can be approximated as

T ′5 ' −j
√

−jkπρ
2η1

√
1 + η2

1

(
δ0√
j2πC9

+
4∑
i=1

Ni

)
(A.8)

in which

N1 =

√
π

2jC9

e2jC9

[
erf
(√

2jC9

)
− erf

(√
2jC9 sin

δ0

2

)]

N2 =
−
√

2

3
√
π

(jC9)1.5 [3π − 3δ0 − (4 + cos δ0) sin δ0]

N3 =
−3(jC9)2.5

√
π

[
π − δ0

3.2
− sin δ0

2
+

sin3 δ0

24
− sin 2δ0

10.7

]
N4 = −

√
2jC9

π
(π − δ0 − sin δ0) .

(A.9)

Finally, I3 is obtained by adding all the dominant terms as

I3 =
jk
√

2πe−jπ/4

8π2
√
kρ

5∑
i=1

T ′i . (A.10)

173


	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Table of Symbols
	List of Acronyms
	Introduction
	Research Rationale
	Literature Review
	EM Scattering Over Smooth Surfaces
	EM Scattering by Random Rough Surfaces

	The Scope of the Thesis

	Intermediate Hertz Potential Calculation for Frequencies Below the VHF Band
	Theoretical Analysis and Formulation of the Problem
	Scattered E-field Calculation
	Evaluation of Integrals
	Term 1 and Term 2
	Term 3


	Results
	Chapter Summary

	Scattered Electric Field Calculation for Frequencies Below 10 GHz
	Problem Statement and Formulation
	Sommerfeld-type Integral Evaluation
	Particular Scattering Problem (zp=h=0)
	Near-Field Region
	Far-Field Region

	Results
	Near-Field Evaluation
	Far-Field Evaluation

	Chapter Summary

	Scattered Fields Calculation With Extensions to Plasmonics
	Scattered Fields Calculation
	Scattered E-field Components
	Scattered H-field Components

	Results
	Non-plasmonic Media
	Plasmonic Media

	Chapter Summary

	Electromagnetic Wave Scattering by Random Surfaces With Different Contrast and Large Roughness Heights
	Statement of the Problem and Formulations
	Scattered Field Calculation Incorporating Vertical Dipole Antenna
	Term 1
	Term 2
	Calculation of  

	Term 3

	First-order Backscattered E-field Calculation in the Time Domain
	 Backscattered E-field Derived From Term 1
	 Backscattered E-field Derived From Term 2

	Results
	Seawater
	Sea Ice

	Chapter Summary

	Conclusion
	Summary
	Suggestions for Future Works

	References
	Appendix A
	Appendix B

