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Abstract

Hand gesture recognition is the primary driver of many applications across user groups. It

uses machine learning classifiers to classify users’ data, most prominently Electromyography

(EMG) or Forcemyography (FMG). Whereas EMG sensors detect signals going down the arm

to the muscles, FMG sensors measure the pressure change on the arm’s skin. Nevertheless,

many inconsistencies impact gesture recognition drastically. For instance, gesture recognition

for the same user, intra-subject, is affected by the duration between the collected signals for

classifiers’ training and the classified signals, requiring more data from the user. A more sig-

nificant hurdle is inter-subject gesture error, in which classifiers are trained on signals from one

or more subjects perform exceptionally poorly on the signals of another. These issues arise

due to the uniqueness of such signals per person and their variance through time. We offer

methods to encounter several downsides of EMG and FMG. We propose a machine learning

pipeline that yields features of consistent performance across various classifier types and re-

duces intra-subject signal variance. To tackle other intra-subject errors, we offer a ranking for

what we define as the feature-classifier compatibility relationship that controls the recognition

performance. The methods are tested on FMG and EMG, respectively, and enhanced gesture

recognition.
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General Summary

Recognizing hand gestures is essential to many applications, from virtual reality to artificial

limbs. These applications use sensors to detect signals transmitted to the hand muscles, Elec-

tromyography (EMG), or measure deflection on the arm skin, Forcemyography (FMG), while

performing these gestures. However, many challenges arise in these applications. Due to the

change of the measured signals for a single person with time, recognition performance can also

change with time, requiring more samples from the application user. A bigger problem is the

uniqueness of such signals for each person, prohibiting using other users’ signals to boost the

gesture recognition of the end-users of these applications. We introduce machine learning and

signal processing methods to limit these factors for EMG and FMG. We subsequently use a se-

ries of machine learning to process FMG signals, making their classification more consistent.

As for EMG, we introduce a compatibility relationship that controls recognition performance.
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Chapter 1

Overview

1.1 Background

Various fields depend on hand gesture recognition to deliver realistic user experiences, from

entertainment purposes such as virtual reality (VR) [3] to critical applications such as remote

control of robotic arms and upper-limb prosthetics [4] [5] [6]. Gesture recognition can be based

on several data types, such as visual data from cameras [7], motion data obtained from worn-

on gyroscopes [8], or muscle activation data such as surface Electromyography (EMG) [9] and

Forcemyography (FMG) [10]. The data is used to train machine learning classifiers to predict

the gestures of future unseen data.

Electromyography (EMG) is the collection of signals transmitted down the forearm to the

hand muscles. It is performed using electrodes worn on the user’s forearm. On the other

hand, Forcemyography (FMG) sensors measure the pressure change on the forearm skin due to

muscles’ contraction and relaxation. Compared to the other methods, EMG and FMG do not

suffer from vital problems such as occlusion, and they are more sensitive to subtle differences in

hand gestures and power exerted [11] [12]. At the same time, EMG and FMG are non-invasive

methods compared to more complex biosignals acquisition methods.
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1.2 Problem Statement

Electromyography and forcemyography are the main methods used in critical applications,

such as upper-limb prosthetics. Nevertheless, it is seen that prosthetics users prefer to use

artificial mechanical limbs over electrically-powered ones [13], more than 70% of users in

some studies [14]. Their disfavor of electrical prostheses is due to the weak reproducibility of

correct gesture recognition arising from hindrances of such methods [15] [16]. For instance,

electromyography is susceptible to high noise levels because of sweat on the skin [17]. Another

downside is the high cost compared to the rest of the methods. Even though FMG does not

suffer from these problems, being relatively cheaper and more robust to sweat, it suffers from

other factors. FMG is prone to signal changes over time due to muscle fatigue [18] or sensors

displacement. These limiting factors, and others, contribute to different gesture recognition

errors using EMG or FMG.

Intra-subject errors are significantly prominent in EMG and FMG gesture recognition, caus-

ing recognition performance to decline for the same user, especially with time [18] [19] [11].

The drop can be attributed to the change of muscle activation patterns for the same gesture due

to fatigue, among other sources, which makes gesture recognition inconsistent. For instance,

the inter-session error is an intra-subject error that occurs when classifiers’ training data is from

one session and the test or prediction data is from another.

A more complex issue is the inter-subject gesture recognition error, referring to the plunge

of recognition accuracy when machine learning classifiers are trained on data from one or more

users and tested on another [20]. This inter-subject error can be tracked to the uniqueness of

EMG and FMG signals per user, thus prohibiting any benefits from incorporating more data

from other users.

Such errors question whether it is possible to reduce them and provide a more reliable

recognition experience. Because machine learning methods have enabled breakthroughs in

different fields, they are the main research procedures in EMG and FMG processing literature.
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1.3 Literature Review

Several studies were conducted on different EMG and FMG gesture recognition errors, most

notably inter-subject and intra-subject errors, to analyze and minimize them. These studies

aimed to enhance user-specific classifiers of hand gestures and mainly reduce intra-user errors

for EMG.

An example of such errors can be viewed in a study by Pale et al. [15], who investigated the

similarity of muscle synergies extracted from EMG signals from different sessions of the Ni-

napro dataset 6. Muscle synergy is a hypothesized concept regarding how the nervous system

controls the muscles simultaneously and can be considered another representation of the EMG

signals. Their empirical investigation concluded that the change of the muscle synergies ex-

tracted from EMG varies with sessions, which could not be explained by sensor repositioning or

other factors. Their results supported their conclusion as they reported inter-session synergies

to have 0.2–15% variance accounted for (VAF). In contrast, intra-session synergies had 0.1-

2.5% VAF, highlighting a much higher inter-session synergies variance than the intra-session

synergies’.

Despite Forcemyography being seen as a possible alternative to electromyography, it suf-

fers from inconsistent, user-specific errors similar to EMG, such as the inter-session errors

mentioned.

For instance, Belyea et al. [21] have compared gesture recognition performance based on

FMG and EMG signals. In their comparison, they used evaluation metrics such as throughput,

a performance index from Fitts’ law which is a model of human movement used in human-

computer interaction. They also defined a path efficiency metric to measure the quality of the

hand’s path to achieve the required gesture. For classification tasks, they reported an average

of 90.02% for FMG versus 75.1% for EMG on the throughput metric and 87.2% for FMG

compared to 83.2% for EMG on their defined path efficiency metric.

In another study, Jiang et al. [22] got similar findings while comparing electromyography-

based and forcemyograhpy-based gesture recognition, as mentioned in Section 2.1. Their re-

sults revealed that FMG signals are more indicative of the hand gesture in the case of linear

discriminant analysis (LDA) classification than EMG. However, the LDA classifier also ex-
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perienced a drop in recognition accuracy on FMG as on EMG signals. Using eight sensors

for each of the two methods, they reported 91.2% and 83.5% recognition accuracy from their

first test session and a later test session for FMG. In contrast, they obtained 84.6% and 79.1%

accuracy for EMG from the same test sessions mentioned.

Both studies pointed out the same inter-session error in FMG and EMG. In addition to this

error, other user-specific errors are evident in FMG signal gesture recognition.

An example of user-specific errors is shown in a study by Jiang et al. [18], in which they

investigated hand gesture recognition using forcemyography across different levels of force

exerted while performing the gestures. They used one data collection session to train an LDA

classifier per subject and tested it on two separate testing data collection sessions. Besides a

10% drop in recognition accuracy between the two sessions, they found that the minimum force

exerted yielded 70% accuracy, which rose to about 86% with increased force, then decreased

for stronger force levels. This study showcased another user-specific error of FMG signals that

arises from varying force levels used to apply the exact gesture for the same person.

Intra-subject errors aside, inter-subject gesture recognition offers major benefits if applied

successfully. However, it reduces inter-subject gesture classification to near randomness if not

used adequately. Inter-subject gesture recognition studies are primarily concerned with EMG

signals and oriented toward domain adaptation techniques known in machine learning literature

as the compensation of the shift between two data distributions. As for gesture recognition,

domain adaptation uses machine learning to adapt classifiers trained on specific users’ data to

the target user data.

One study proposed a domain shift technique by Du et al. [23] used a neural network to

adapt classifiers trained on EMG data collected from several subjects to EMG data collected

from a target subject. They obtained an inter-subject gesture classification accuracy as high

as 55.3% on the CapgMyo-b electromyography dataset. However, they used half of the test

data of the target subject to perform the domain adaptation and evaluated the classifiers using

the other half. As a strong counterpoint, the data used for domain adaptation could have been

used to train a user-specific classifier that maintained or even surpassed the domain adaptation

performance.
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In addition to the counterpoint stated, Marano et al. [24] investigated several proposed

domain adaptation techniques for inter-subject hand gesture classification using electromyog-

raphy. They found that the reported results could only be achieved in specific experimental

settings and are heavily influenced by excluded factors, such as classifiers’ hyperparameters

tuning. They also concluded that the amount of data used for domain adaptation in these tech-

niques could train user-specific classifiers that surpassed domain adaptation methods in most

scenarios.

As seen from the studies discussed, there are two main reasons, among others, that impede

the adoption of EMG and FMG hand gesture recognition applications. The first arises from

the inconsistency of classification performance due to intra-subject variance of the signals, as

proved by the drop in accuracy between sessions, different force levels, and other factors [18].

Thus, the survey of prosthetics users, for example, preferred artificial mechanical limbs to

EMG ones due to the abovementioned inconsistency [14]. The latter comes down to the poor

generalization of the results of the controlled experiment into other conditions. This is seen in

the performance downgrade of the classifiers in real-time applications [25] or the negation of

the classifier’s role when evaluating the quality of the signal processing methods.

1.4 Thesis Work

This thesis aims to limit the intra-subject errors of FMG and EMG signals to boost the repro-

ducibility of gesture recognition performance and make it more consistent. Reducing these er-

rors enriches the user experience of gesture-recognition applications, such as making electrically-

powered prosthetics more appealing to mechanical prosthetics users or enhancing virtual reality

experiences.

The thesis proposes two methods to address the mentioned errors, mainly intra-subject

errors. We developed a machine learning pipeline to process signals into robust signal rep-

resentation, reducing the user’s classification error across different classifiers. The pipeline

increased the forcemyography signals’ reliability and reduced recognition errors per user. The

second method ranks the performance of feature-classifier pairs, showing that compatibility

5



between a feature and a classifier vastly influences the recognition accuracy despite the lack

of investigation of that compatibility in the literature. We show that the suggested compatible

pairings acquire the highest recognition accuracy for EMG signals alongside normalization and

preprocessing steps that reduce intra-subject recognition error further.

Chapter 2 proposes a pipeline of machine learning methods that process forcemyography

signals to gain preferred characteristics, boosting gesture classifiers. These characteristics en-

able the pipeline to reduce the stochastic variance in FMG signals for enhanced gesture recog-

nition. The pipeline consists of Fisher’s discriminant analysis (FDA) which projects the data

to separate signals of different gestures, making them easier to classify correctly. FDA is then

followed by principal component analysis (PCA), aiming to remove any correlation between

the new dimensions. Correlation removal is intended to raise the performance of less complex

classifiers and linear models. The inter-dependency between dimensions requires a more com-

plex decision boundary to separate signal data according to their correct gestures. Finally, we

apply Uniform Manifold Approximation and Projection (UMAP), one of many machine learn-

ing techniques known as manifold learning methods. These methods hypothesize that data in

n−dimensonal space lie on a manifold on which the data distribution is simpler, in the sense

that data of different labels are more separated. This last step helps reduce the complexity of

the distribution and finds a better non-linear transformation of the space.

The proposed machine learning pipeline achieves desirable attributes for the FMG data

as all classifiers’ accuracy was boosted to reach the same level. The classifiers’ similar per-

formances, regardless of their complexity, proved the processed signals to be more linearly

separable in the data space according to their gestures and are subject to the same amount of er-

ror. This pipeline enables a more consistent gesture recognition of FMG data regardless of the

classifier, benefiting low-computation devices, and yielding better consistency through time.

Therefore, the pipeline reduced intra-subject errors within each test session and minimized the

intra-session error.

Chapter 3 discusses the reliability of the classifiers and signal filters chosen to process and

classify electromyography signals. Due to certain limitations of the EMG gesture recognition

literature studies, we investigate the pairing choice of EMG features and classification methods.
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Most studies use a single feature to test the performance of several classifiers or vice versa.

We find a compatibility relationship between the feature used and the selected classifier that

primarily determines the gesture recognition performance for EMG signals. The compatibility

shows that the pairing choice of the feature-classifier pair can influence results more than the

feature type used or the complexity of the classifier. All the pairs of ten classifiers and 12

features are investigated and ranked. This ranking provides guidelines for future research and

applications of EMG gesture recognition, showing which pairs outperform the others. Most

importantly, the ranking proposes that linear classification models can outperform ensemble

models when paired with the proper features. Thus, it allows low-computational devices to use

linear models without sacrificing recognition accuracy. The chapter also investigates the best

preprocessing steps over multiple scenarios. The recognition performance change across four

normalization ranges is included, along with the recognition performance of 2 features during

their tuning. In addition, the performance difference with varying filtering window sizes and

the optimal models’ hyperparameters are added. The optimal window size is much above the

limit for real-time gesture recognition, 300ms. However, smaller window sizes can achieve

real-time recognition with a slight decrease in performance. Using the suggested compatible

feature-classifier pairs gives the most accurate recognition compared to other pairs. In addition,

the proposed signal normalization and window size reduce the intra-subject recognition errors

for each user even further.

1.5 Contributions

The work of this thesis has been published partially in other versions in peer review journals.

We have the approval of the publishers to use the published findings in the thesis. Published

versions of this research chapters:

• Chapter 2 proposes a signal processing pipeline employing a manifold learning method

to produce a robust signal representation to boost hand gesture classifiers’ performance

and reduce intra-subject errors. This chapter is published as Asfour, M.; Menon, C.;

Jiang, X. A Machine Learning Processing Pipeline for Reliable Hand Gesture Clas-
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sification of FMG Signals with Stochastic Variance. Sensors 2021, 21, 1504.

https://doi.org/10.3390/s21041504. [1]

• Chapter 3 explores the feature–classifier pairing compatibility for sEMG, showing that

it is an unexplored primary determinant of gesture recognition accuracy. The proposed

pairing ranking provides a guideline for choosing the proper feature or classifier in fu-

ture research. This chapter is published as Asfour, M.; Menon, C.; Jiang, X. Fea-

ture–Classifier Pairing Compatibility for sEMG Signals in Hand Gesture Recog-

nition under Joint Effects of Processing Procedures. Bioengineering 2022, 9, 634.

https://doi.org/10.3390/bioengineering9110634 [2].
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Chapter 2

Machine Learning Processing of FMG

Signals for Reduced Intra-subject Gesture

Recognition Errors

2.1 Introduction

Many daily activities rely on hand gesture recognition, such as virtual reality (VR) [3], human-

robot interaction [4,5] and prosthesis control [6]. Gesture recognition is performed by machine

learning classifiers trained on pre-collected data from the users. Such data can be visual data

from cameras [7], inertial data obtained from a gyroscope or accelerometer [8], or muscle

activity data such as surface Electromyography (sEMG or EMG) [9,26]. Unlike most methods,

muscle activity-based hand gesture recognition does not have occlusion problems. It can also

detect fine motor hand gestures, and possibly gesture-performing strength [11, 12].

Hand gesture recognition relies primarily on EMG [27, 28] whose sensors are mounted

on the upper limb to detect muscles’ signals sent down the arm. EMG signal processing and

classification have been investigated thoroughly for various applications [6, 19, 29–31]. Force

myography (FMG) [32] is seen as an alternative with recent investigations in hand gesture

recognition literature [10, 33]. FMG-based hand gesture recognition uses force-resisting sen-

sors on the forearm to capture the volumetric muscle changes while performing gestures [34].
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Unlike EMG, FMG is robust to external electrical interference and sweating, inexpensive, and

easy to use. Using sophisticated machine learning techniques, FMG can achieve competi-

tive performance to EMG [35]. Jiang et al. [22] analyzed FMG sensors’ performance in hand

gesture classification compared to EMG. The results showed that using only 8 FMG sensors

obtained gesture recognition accuracy on par with commercially available EMG prostheses in

a controlled study.

However, EMG and FMG are prone to stochastic variation in their signals for the same ges-

ture with time passage, leading to low inter-session classification performance [15,16]. Feature

engineering has been used to address this limitation previously [36,37]. Tkach et al. [36] inves-

tigated stochastic variance of EMG signals and their effect on classification performance. They

concluded that although feature engineering could combat the effect, it could not eliminate the

error. They recommend that further research be conducted to improve the robustness of EMG

signals. Ketykó et al. [37] inspected the variation of EMG signals between sessions and with

multiple participants, also known as domain shift, which affects the accuracy negatively. They

proposed a recurrent neural network (RNN) to process EMG. They analyzed their model’s per-

formance on public EMG datasets to enhance the recognition performance. However, using

half the collected data trials, 50% of CapgMyo dataset [38], without limitations on their order

in training, could have reduced the variance by itself. As described in their study, trials 1, 3, 5,

7, and 9 were chosen to train the classifier, reducing the variance effect compared to choosing

trials 1, 2, 3, 4, and 5 for training.

This chapter introduces a novel pre-processing pipeline to reduce the stochastic variance

of FMG signals in hand gesture classification, a type of intra-subject error. Firstly, Fisher’s

Discriminant Analysis (FDA) [39] clusters data points of the same gesture together while sep-

arating them from other gestures’ data. Secondly, Principal Component Analysis (PCA) [40]

eliminates correlation between data features. Lastly, Uniform Mapping and Approximation

Projection (UMAP) [41] learns an internal data pattern that transforms them into enhanced fea-

tures. The proposed method’s performance and the robustness of the processed features were

evaluated with five classifiers compared to raw FMG data.
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2.2 Materials and Methods

2.2.1 Forcemyography Data

The data in this chapter was obtained from a previous study [18] investigating the force exer-

tion effect on hand gesture classification. The Interdisciplinary Committee on Ethics in Human

Research (ICEHR) at the Memorial University of Newfoundland approved the secondary use

of the data for our research under application number 20230479-SC. The data was collected

using an array of 16 force-sensitive resistors (FSR) in a custom-designed wristband. The data

collection process was divided into a training session and two testing sessions, with 16 grasp

gestures performed per session. The grasps were large diameter heavy wrap (G1), small diam-

eter heavy wrap (G2), medium wrap (G3), adducted thumb wrap (G4), light tool (G5), thumb

+ 4 fingers pinch (G6), thumb + 3 fingers pinch (G7), thumb + 2 fingers pinch (G8), thumb +

1 finger pinch (G9), disk power grasp G(10), sphere power grasp (G11), disk precision grasp

(G12), sphere precision grasp (G13), tripod grasp (G14), push (G15), and lateral pinch (G16).

In that study, signals from varying force levels were recorded from nine participants, seven

males and two females, with a median age of (27 ± 6) years. All were right-handed and self-

reported to be 100% functional with their working hands. All participants read and signed

the consent form before the study, approved by Simon Fraser University to collect their data

throughout 180 repetitions, four for training and eight for each of the two testing sessions. Data

from the 16 FSR channels were obtained with a sampling rate of 15 Hz [18].

The training session’s gestures were performed using natural grasping force, similar to

naturally grasping an object in daily activities. Each repetition lasted 3 s, yielding 45 samples

with a 15 Hz sampling rate. Thus the 16 gestures, with four repetitions each, yielded 2880

training samples for each participant.

Alternatively, the testing sessions’ gestures were performed using eight grasping force lev-

els purposely, yielding 5760 test samples for each testing session per participant.

A monitor displayed the object’s image with the required exerted force level as a reference

to guide the participants to match the force level on the monitor. There was only a short break

between the sessions, and the band was not removed in between. This data collection protocol
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was used for 9 participants to collect 16 gestures’ data. For a more detailed description of the

data collection protocol, please refer to [18].

2.2.2 Design of the Machine Learning Pipeline

The pipeline successfully employs FDA, PCA, and UMAP algorithms, as shown in Figure 2.1.

 UMAPPCAFDA  

Principal  
Component  
Analysis
Eliminates co-linearity 
between dimensions of
feature space

Uniform Manifold
Approximation and
Projection
Constructs a manifold  
on data and unfolds it  
into a new feature space

Fisher's  
Discriminant  
Analysis
Minimizes Intra-Class  
variance and maximizes 
Inter-Class Variance

Processed  
Robust

Features

Subject's
Raw  

FMG Data

Figure 2.1: Diagram of the proposed machine learning pipeline.

• FDA Model: The raw FMG data firstly underwent Fisher’s Discriminant Analysis (FDA)

[39]. FDA finds the best linear projection that maximizes the separation of different

classes’ data, reducing the overlap between different classes. Maximizing the distances

between different classes’ points increases inter-class variance. In contrast, minimizing

distances between the same class points decreases intra-class variance. FDA solves a

constrained optimization function using Lagrangian multipliers as follows

L(λ ,W ) = trace(W T SB W ) − λ
(
trace(W T SW W ) − 1

)
(2.1)

where SB is the variance between classes, inter-class variance, and SW is the variance

within each of the classes, intra-class variance. Both of the variance matrices’ dimen-

sions are d ∗ d, where d is the number of the original data dimensions. The solution W ,

containing the basis vectors of the transformation space, is given by
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W = eigen(S−1
W SB) (2.2)

• PCA Model: After FDA processing, PCA [40] was applied to remove the correlation

between data dimensions. Removal of correlation significantly benefited the final step

of the pipeline, UMAP. UMAP learned the underlying structure more efficiently with-

out considering any inter-dimensional relationship. The principal components can be

obtained from

U = eigen(
1
n
(X −µ)T (X −µ)) (2.3)

where Xn∗d is the matrix of n data samples in d-dimensional space, and µ1∗d is the mean

of the data.

• UMAP Model: Finally, UMAP [41] was used to produce a more robust set of data fea-

tures. This method assumes the data is distributed on a connected manifold. A manifold

is a nonlinear surface that resembles a new Euclidean space if unfolded. UMAP con-

nects data points to construct that manifold, followed by an optimization step to unfold

the manifold to a simpler distribution. Its optimization is weighted between conserving

the relative positions of points through the established connections and separating dif-

ferent classes after unfolding via the points’ classes. The graph resulting from UMAP

connections between training points for participant two after applying FDA and PCA

is depicted in Figure 2.2a, whereas the same points distribution with the same connec-

tions after applying UMAP is shown in Figure 2.2b. UMAP [42,43] algorithm has many

hyperparameters to tune its manifold and optimization. We prioritize finding the separa-

tion between different classes to reduce the stochastic variance of FMG signals. UMAP

hyperparameters were tuned on participant two’s data and are shown in Table 2.1.
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(a) UMAP connections prior to the optimization step.
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(b) UMAP connections post the optimization step.

Figure 2.2: Connections created by UMAP on participant two training data prior to and post
UMAP optimization step with enlargement on gesture G7 neighborhood.

FDA is a linear transformation based on gesture classes, whereas PCA is a linear class-

agnostic transformation. Both can be considered pre-processing steps for UMAP, the vital step
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Table 2.1: Tuned UMAP hyperparameters.

UMAP Hyperparameter Tuned Value

Number of Neighbors 2
Metric Cosine Distance

Output Metric Euclidean
Target Metric Euclidean
Target Weight 0.75

Repulsion Weight 3.0
Embedding Initialization Random

Minimum Distance 0.25

in the pipeline, giving consistent features throughout time sessions. Nevertheless, its perfor-

mance is boosted by pre-eliminating specific characteristics using FDA and PCA.

Even though UMAP separates the classes, FDA linear transformation has made UMAP’s

optimization easier and enhanced the set of possible nonlinear UMAP manifolds. By reducing

the overlap using FDA, UMAP manifolds can give better results, which we discuss in detail.

PCA is used in the pipeline for correlation elimination. We found that UMAP’s chosen mani-

fold, given a non-correlated set of features, separates the classes more consistently throughout

time. PCA has been coupled with UMAP [42, 43] in the literature for different purposes, such

as data analysis and visualization, rather than the proposed pipeline.

2.2.3 Classification Models Used for Evaluation

Five machine learning classifiers are used to evaluate the performance after applying the pro-

posed pipeline, compared to the raw FMG features [18, 22]. The models used in this chapter

are listed below:

• Linear Discriminant Analysis (LDA) [44] has been widely used in gesture recognition

[32, 45–47]. LDA assumes that each class’ data is normally distributed in the feature

space with the same variance for all classes.

• Quadratic Discriminant Analysis (QDA) [48] is similar to LDA, assuming classes are

normally distributed but with separate variances, giving a quadratic decision boundary.

• Support Vector Machine with Radial Basis Kernel (SVM-RBF) [49] uses a kernel to
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transform data into another feature space before finding a linear decision boundary in it.

The radial basis function transforms data into infinite-dimensional space, theoretically.

The linear boundary in the transformed space is nonlinear in the original feature space.

• Fully-Connected Neural Network (FC-NN) [50] is the most complex of the used mod-

els. Only a few fully-connected layers were sufficient for this study. Neural networks

have numerous hyperparameters to tune, making them highly flexible during design. The

hyperparameters are tuned once to evaluate the pipeline subjectively in Table 2.2. Regu-

larization techniques are used for a better generalization of test data.

• K-nearest Neighbors (KNN) [51] is one of the most basic classifiers, which uses neigh-

boring labeled data points to classify unlabelled data.

Table 2.2: Tuned Neural Network hyperparameters.

Hyperparameter Used Value

Learning Rate 0.001

Epochs 30

Batch Size 1024

Validation Split 0.2

The decision boundaries of these models have different orders of non-linearity. For in-

stance, LDA has linear boundaries, and FC-NN has highly nonlinear boundaries. In contrast,

KNN uses a distance metric instead of decision boundaries. The higher the classifier’s non-

linearity or flexibility, the higher its capacity or complexity is said to be. Enhancement in

all classifiers’ performance would suggest that the pipeline yields a more robust feature space

regardless of the classifier used.

An instance of the pipeline and an instance of each of the classifiers were trained and tested

per participant. The FMG data from the training session was used to calibrate the pipeline. The

data was used to train the FDA model, which transformed the data to fit the PCA model, which

then transformed the data to train the UMAP method. Finally, training data transformed by the
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pipeline was used to train the classifiers, whereas the test sessions’ data was transformed by the

pipeline and then used to evaluate each classifier’s accuracy.

2.2.4 Statistical and Validation Methods

Three-way ANOVA was computed to show the impact of different factors on classification ac-

curacy. The three independent variables were the classifier type, the test session order, and the

data features, raw FMG vs. pipeline features. The classification accuracy was selected as the

dependent variable. Post-hoc pairwise comparisons, Tukey’s HSD (honestly significant dif-

ference) was conducted for independent variables for any significant effects. The significance

level was set to p-value = 0.05.

2.3 Results

The pipeline improved the separation between classes’ data and reduced the variation within

each class; thus, the classification performance significantly improved on the pipeline features.

The transformation of the data throughout each step of the pipeline is visualized in Figure 2.3

while focusing and one gesture data in Figure 2.4. The mean accuracy results are reported in

Figure 2.5, whereas per-class accuracy for several classifiers is depicted in confusion matrices

in Figure 2.6. Furthermore, QDA performance is investigated for all participants in Figure 2.7.

Figure 2.3 shows the comparison of the data distribution of participant 2 using the raw data

(Figure 2.3a) and the data processed by the pipeline (Figure 2.3d), throughout the training and

two testing sessions. In each plot, the x-axis and y-axis show the first two dimensions of the raw

FMG data and the pipeline’s features. The distributions of the gesture classes became easier to

separate after the pipeline processing (Figure 2.3d) compared to raw FMG data in Figure 2.3a.

On top of improving the separation between classes’ data, the inter-class variance, the pipeline

reduced the signal variance within a class, the intra-class variance.

In order to highlight the reduction of the intra-class variation, Figure 2.4 depicts only a

single gesture data from participant 2 during the processing steps of the pipeline in the same

manner as in Figure 2.3. Comparing Figure 2.4d to Figure 2.4a, we can see that the intra-
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(b) Sessions data post applying FDA, the first step of the pipeline.

-200 -100 0 100 200 300

      -100

            0

        100

        200

2nd
 P

ro
ce

ss
ed

 F
ea

tu
re Training Data

-100 0 100 200 300

1st Testing Data

-100 0 100 200 300

2nd Testing Data

1st Processed Feature

(c) Sessions data post applying PCA, the second step of the pipeline.
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(d) Sessions data post applying UMAP, the final step of the pipeline.

Figure 2.3: Feature spaces after applying each pipeline step for all participant 2 data gestures,
displaying the first two dimensions for each feature space.

18



Medium Wrap (G3) All Other Gestures

0 200 400 600
        450
        500
        550
        600
        650

2nd
 R

aw
 F

ea
tu

re
Training Data

0 200 400 600

1st Testing Data

0 200 400 600

2nd Testing Data

1st Raw Feature

(a) Gesture (G3) data using raw features.

-200 -100 0 100 200 300

      -950

      -850

      -750

      -650

2nd
 P

ro
ce

ss
ed

 F
ea

tu
re Training Data

-100 0 100 200 300

1st Testing Data

-100 0 100 200 300

2nd Testing Data

1st Processed Feature

(b) Gesture (G3) post applying FDA, the first pipeline step.
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(c) Gesture (G3) post-applying PCA, the second pipeline step.
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(d) Gesture (G3) post-applying UMAP, the final pipeline step.

Figure 2.4: Feature spaces after applying each pipeline step, highlighting medium wrap gesture
(G3) of participant 2 training data, showing the first two dimensions for each feature space.

class variance was reduced and the data points for the highlighted gesture data after pipeline

processing clustered together.

Figure 2.5 shows the mean accuracies over all participants’ data per test session using raw
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features (Figure 2.5a) and pipeline features (Figure 2.5b). We can see that the accuracies have

consistently improved for all classifiers after pipeline processing for both testing sessions.
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(b) Mean accuracy using the pipeline features as
classifiers’ input.

Figure 2.5: Classifiers’ accuracy averaged over all participants for each test session using raw
and pipeline features. Error bars resemble one standard deviation.

To investigate the cause of the accuracy similarity of the different classifiers, we present the

per-class accuracies in confusion matrices in Figure 2.6. The confusion matrices are computed

for 3 of the classifiers for participant two’s first and second test sessions.

The confusion matrices for participant 2 in Figure 2.6 further support the similarity of

results. For each test session in the figure, three different classifiers misclassify almost the

same overlapping outliers that are hard to classify correctly, regardless of the model employed.

Among the five classifiers, the QDA classifier most benefited from applying the proposed

pipeline to the data. Figure 2.7 shows each participant’s QDA accuracy results for raw features

and the proposed pipeline features, respectively. As shown in Figure 2.7, the pipeline improves

QDA performance for all participants except for participant 4, whose second test session accu-

racy decreases. We conclude that this session is an outlier, given the consistent performance of

the pipeline with all other test sessions.

The stochastic variance of FMG signals led to declined classification performance and mas-

sive variance in accuracy of different classifiers (Figure 2.5a) and different participants (Figure

2.7a). The pipeline reduced the variance above, making the accuracy difference in the test
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(a) Confusion matrices using participant two’s first test session.
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(b) Confusion matrices using participant two’s second test session.

Figure 2.6: Confusion matrices for QDA, FC-NN, and KNN displaying per-class accuracy on
the pipeline’s features for participant two’s test sessions.

sessions near-constant in Figure 2.5b and reducing the variance for all classifiers for the nine

participants in Figure 2.7b.

To investigate individual steps’ impact on classification accuracy, we obtained the recogni-

tion results for applying each pipeline step separately in Table 2.3. These results explain the

individual effects, depicting the transformation distribution at each step in Figure 2.3.

ANOVA results showed that the test session order (F1,199 = 59.304, p ¡ 0.0001) and data fea-

ture space (F1,199 = 29.690, p ¡ 0.0001) impact the recognition accuracy significantly; whereas

the classifier type had marginal significance to the accuracy (F4,199 = 2.373,

p = 0.054). There are no significant interactions between the independent variables, neither

2-way nor 3-way interactions. As the classifier type effect was insignificant, we further applied

1-way ANOVA to the results based on raw FMG and pipeline processed features, respectively,

taking only classifier type as an independent factor.
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(a) Quadratic Discriminant Analysis classifier accuracy results on raw features.
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(b) Quadratic Discriminant Analysis accuracy results on the pipeline features.

Figure 2.7: Comparison of QDA accuracy using raw and pipeline features for each test session
of all participants.

There was a significant effect on accuracy due to the classifier type using raw FMG fea-

tures (F4,99 = 3.083, p ¡ 0.05), but there was no significant difference between classifiers’ after

pipeline processing. Further post-hoc analysis on the raw FMG-based classification showed

LDA had significantly higher accuracy than QDA (p ¡ 0.05) and FC-NN (p ¡ 0.01), respectively,

affirming the results in Figure 2.5a. No other pairs of classifiers had a significant difference.
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Table 2.3: Mean accuracy for the pipeline features and features of FDA, PCA, and UMAP
individually as standalone preprocessing methods. The accuracy results are averaged over all
participants and rounded to 1 decimal place.

Classifier FDA Features PCA Features UMAP Features Pipeline Features

Session 1 Session 2 Session 1 Session 2 Session 1 Session 2 Session 1 Session 2

LDA 86.5 % 77.4 % 84.3 % 76.9 % 81.5 % 72.5 % 86.4 % 78.5 %
QDA 79.4 % 67.7 % 78.8 % 67.3 % 81.5 % 72.5 % 86.4 % 78.5 %

SVM-RBF 83.2 % 75.4 % 85.3 % 76.0 % 81.5 % 72.5 % 86.5 % 78.5 %
FC-NN 82.1 % 72.8 % 79.6 % 68.4 % 81.5 % 72.6 % 86.4 % 78.5 %
KNN 86.5 % 78.4 % 82.4 % 74.2 % 81.6 % 72.5 % 86.5 % 78.6 %

Mean 83.6 % 74.2 % 82.3 % 72.5 % 81.5 % 72.5 % 86.4 % 78.5 %
Std Dev ±10.4 % ±12.9 % ±11.4 % ±13.8 % ±10.8 % ±12.1 % ±8.6 % ±11.0

2.4 Discussion

2.4.1 Gesture Recognition Enhancement

After applying the pipeline processing, the recognition accuracy improved significantly and

consistently for all the classifiers for both test sessions, as shown in Figure 2.5b. From sim-

ple to non-linear classifiers, all five models obtained almost identical accuracy and standard

deviations, regardless of their performances prior to the pipeline in (Figure 2.5a). The per-

formance similarity illustrates that the models learned from the same underlying structure and

that the pipeline produced reliable features, which enhanced all classifiers’ accuracy by varying

degrees.

The higher separability of the pipeline distribution classes, compared to raw FMG distri-

bution, is supported by Figure 2.3d. Additionally, the misclassifications using the processed

features were due to noise in the data, which can be seen in the remaining overlap between

different classes. The processed data needed only the simplest of decision boundaries to ob-

tain the highest recognition accuracy in the presence of noise; hence the classification accuracy

became independent of the classifier’s complexity.

Without pipeline preprocessing, there was significant variance in classification results for

different classifiers, as shown in Table 2.3. Interestingly, simpler models, such as LDA, achieved

higher accuracy using FDA and PCA features than more complex classifiers, such as FC-NN.

FDA or PCA features yielded results strongly dependent on the type of classifier, as seen
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in Table 2.3. However, UMAP features appeared consistent and robust concerning classifier

type but with lower mean accuracy. Therefore, the pipeline has all three methods’ advantages,

enabling all classifiers to achieve high and consistent accuracy. The comparison in Table 2.3

showcases the pipeline impact on the classification accuracy that one method could not ob-

tain. The comparison results support the concept of tackling the FMG variance characteristics

sequentially in a combined manner.

The pipeline effect on all participants’ data and enhancement of all classifiers’ accuracy

reveals the benefit of incorporating it into forcemyography applications. The pipeline obtains

a mean accuracy over all participants and classifiers of 86.4% with ±8.6% standard deviation

for the first test session and 78.5% with ±11.0% standard deviation for the second test session.

The pipeline results surpass all its individual processing steps in Table 2.3 while simultane-

ously reducing the variation in the accuracy results, which is most beneficial in hand gesture

applications requiring prolonged FMG signal acquisition.

The classification accuracy using LDA based on raw FMG features in the present chapter

was similar to the results from the previous study based on the same data set [18]. In contrast,

the pipeline proposed in this chapter achieved more robust performance across different clas-

sification algorithms. Another similar state-of-the-art study by Anvaripour et al. [52] achieved

almost 93% classification accuracy on six hand gestures using a similar FMG band on the fore-

arm. They employed a feature extraction technique to enhance the classifier’s performance.

Due to the difference between their study to ours, we need to compare the difficulty of the

classification task. Their study’s random chance classification is 16.66% for six gestures. In

contrast, we have a random chance of correct classification of 6.25% for our 16 gestures. Thus

our pipeline gives more accuracy gain to the classifiers. Furthermore, our testing condition

was more rigorous. For instance, we trained the models using natural grasping force. We then

evaluated them by two testing sessions’ data using eight different grasping force levels. Due to

the 16 grasps we use in our study, the performance achieved by our pipeline method is more

beneficial to daily applications requiring several hand gestures.

It is worth pointing out that the pipeline could not entirely eliminate the accuracy decline

caused by the stochastic variance of FMG signals. We observe this from Figure 2.5b by com-
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paring the accuracy of test session 1 to test session 2; there were still significant differences be-

tween the two sessions even after pipeline processing. However, both testing sessions’ results

improved significantly, demonstrating that the pipeline works throughout multiple sessions.

2.4.2 Similarity of Processed Distributions

The stochastic FMG variance produced different distributions for different time sessions. In

Figure 2.3, participant two’s data is shown after each pipeline step. FDA managed to reduce

the overlap to some extent, as seen in Figure 2.3b. Afterward, PCA removed the colinearity

between dimensions. PCA can be seen as a combination of a translation and a rotation of the

distribution. However, only the first two dimensions of the distribution are shown in Figure

2.3c.

Finally, UMAP in Figure 2.3d utilized these uncorrelated dimensions previously processed

by both FDA and PCA to obtain the final output distribution of the pipeline and separate the

classes significantly compared to the original distribution in Figure 2.3a.

The proposed pipeline increased the similarity of gesture data distributions between the

training and test sessions. Moreover, the pipeline separated different classes’ data and increased

the inter-class variance, making the outliers in test sessions easier to be distinguished from the

main gesture data distribution. In contrast, in Figure 2.3a, data distribution varied significantly

from testing session 1 to testing session 2 using the raw features.

The reduction of intra-class variance is easier seen in Figure 2.4a with highlighted gesture

(G3) data only, while Figure 2.4d illustrates gesture (G3) distribution on the pipeline’s features.

FDA and PCA processing in Figure 2.4b2.4c are not sufficient to obtain the same degree of

separation, as the (G3) gesture data still suffers from considerable inter-class variance and

overlap, whereas the same gesture is entirely separated using the entire pipeline as shown in

Figure 2.4d. The change in data distributions in Figure 2.4a is known as covariate shift [52].

The covariate shift is from machine learning literature, describing the same phenomena as the

inter-session variance mentioned in the FMG literature. The figure shows that the distribution

for gesture (G3) has a similar mean and variance through different sessions. Notably, there

were still class outliers; however, most points had the same distribution across sessions. In
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addition, the gesture (G3) had a much higher intra-variance on raw features and overlapped

with other gestures making its classification harder.

2.4.3 Limitation and Future Work

The pipeline method was tested on an FMG dataset from a study constrained to a lab setting

and conducted in different time sessions with short breaks without taking off the FSR wrist-

band during the break. Obtaining FMG data for longer intervals requires wearing the wristband

for the entire collection protocol, as different wearings of the wristband introduce sensor mis-

alignment as another source of variance. Future investigating of the processing pipeline effect

for extended periods would be possible if the variance due to the shifts in sensors’ positions is

eliminated.

The feature space obtained by the processing pipeline cannot be interpreted as human-

understood features. The interpretability could help understand the correlation between features

obtained from muscle activations’ and their corresponding hand gestures. For instance, the data

of gestures (G5) and (G13) may seem unrelated according to FMG signals in Figure 2.3a. In

contrast, the pipeline finds these two gestures very similar while clustering the data of each

class in Figure 2.3d according to its processed features. Future investigation of this correlation

could make the processed features human-understandable. A research field currently on the

rise is explainable artificial intelligence, which can provide understandable insights into the

features.

The proposed pipeline’s output signal has several preferred qualities, such as class separa-

tion and variance reduction within a class. These properties allow the pipeline to be utilized in

other applications like FMG signals analysis, interpretation, and discovery of latent patterns.

Finally, this pipeline can enhance clustering techniques, given its class separability, as proved

by the KNN improvement, which uses concepts similar to several clustering techniques.
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2.5 Conclusion

The present work proposed a data processing pipeline to improve hand gesture recognition per-

formance using machine learning to produce consistent data features. The results showed that

the pipeline effectively maximized the inter-class signal variance and minimized the within-

class variance, separating different classes into unique clusters. Thus, the pipeline improves

the classification reliability and accuracy when using different classifiers. As shown in this

study, the pipeline performance was not affected by the participant’s data distribution and clas-

sifiers’ types, as all participants’ and classifiers’ results were improved. This study reduces

hand gesture recognition variation due to muscle activity and FMG stochastic variance, which

has prominent potential to be used in more applications.

Results imply that the pipeline effect is not merely its features’ consistency but also in-

creased separation of classes, allowing simple classifiers to compete with complex ones. The

similar performance of classification methods could enhance the inference experience for real-

time gesture classification of FMG signals, as simpler models require less computation. Com-

pared to the individual application of each of the pipeline components, the enhanced effect

of adding them together as a whole pipeline demonstrated superiority in obtaining robust and

higher accuracy results by deliberately tackling particular characteristics in the data.
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Chapter 3

Compatibility of Feature-Classifier Pairs

for EMG Hand Gesture Recognition

under Joint Processing Procedures

3.1 Introduction

Many fields, such as virtual reality (VR) [53], robotic arms control [54], or hand prosthe-

sis [55] depend on hand gesture recognition. Its data could be visual using cameras [56],

kinematic using motion sensors [57], or muscles signals detected by surface electromyography

sensors (sEMG or EMG) [58] [59]. Out of them all, sEMG has significant advantages and

is prominently used in medical devices, human-machine interaction [60] [61], and prosthesis

control [62] [63], due to being a safe, easy to use, and noninvasive way to collect data.

The recent advancement in many fields made electromyography sensors more affordable

and sensitive. For instance, Prakash et al. [64] developed an sEMG armband that acquired a

1.4 times Signal to Noise Ratio (SNR) on average and a 45% increase in sensitivity compared

to a commercial EMG sensor. Whereas, a study showing the medical applications for sEMG

by Dwivedi et al. [65] presented a virtual reality experience to help rehabilitate upper limb

prostheses users. They evaluated their hypotheses about sEMG hand gesture classification with

a Random Forest classifier after optimizing the feature window size, stride, and the number of
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base models of the classifier. They successfully predicted the manipulated object movement

in VR with up to 92% accuracy from the participants’ EMG signals. In addition, their model

predicted the gesture used with 83% classification accuracy.

Due to the importance of sEMG signals [66] in such applications, their classification and

processing methods were extensively researched [67] [68], such as feature engineering [69].

Nonetheless, most literature focuses on a controlled environment that limits the generality of the

results to other settings, such as the choice of the classifier. For instance, Phinyomark et al. [70]

investigated different sEMG features, such as Mean Absolute Value (MAV) and Waveform

Length (WL), and the resulting recognition accuracy. They concluded that some features were

redundant and recommended others. However, they used only the linear discriminant analysis

classifier (LDA) and a fixed feature window size, disregarding the classifier’s complexity and

bias. Thus, the features’ results could not be extended to other classifiers.

As for using studies’ findings in different applications, most studies choose a specific appli-

cation, making their results inconsistent with others. For example, offline gesture recognition

studies, with large window sizes, obtain around 95% recognition accuracy [71] [72], whereas

real-time studies, with small window sizes, obtain around 80-85% accuracy [73]. Benalcazar

et al. [74] proposed a multiple-stage model for the acquisition, preprocessing, feature engi-

neering, classification, and postprocessing of EMG signals. Using the KNN classifier, they

surpassed a commercial armband accuracy by 3% on five gestures. They used a 1-second win-

dow with a 250 ms stride because real-time classification has to be under 300 ms.

Hence, these distinct settings in the EMG studies present the necessity for an exhaustive

study of the various EMG processing and classification methods with the fewest predetermined

conditions while exploring processing factors, such as the feature window size and signal nor-

malization range. Such an analysis would be a solid basis for EMG research points and applica-

tions regardless of their specific study settings, such as features, classifiers, or other processing

methods.

A study with a similar aim was conducted by Mendes Junior et al. [75] in which they in-

vestigated multiple classifiers’ performance across different sEMG features from the literature.

They used feature selection to determine the optimal feature combination per classifier. More-
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over, they investigated the impact of multiple dimensionality reduction techniques on classifi-

cation. However, without a standard window size in literature, their 2000 ms window could

require relatively large computational resources and cause delay for real-time gesture classi-

fication. This hurdle is shown by Smith et al. [25], who confirmed an inversely proportional

relationship between recognition error and the window size. Thus, their results could not be

generalized to other filtering window sizes.

This chapter proposes the existence of feature-classifier pairing compatibility that radically

governs recognition performance. We test this compatibility with varying window sizes and

normalization ranges to obtain optimal processing and classification settings for various re-

search points and applications without bias. Secondly, the optimal window size for gesture

recognition ranges beyond window sizes that can be used in real-time applications. As a final

analysis point, we investigate if a signal normalization range that maintains signal polarity, in-

cluding more information, is optimal for most feature-model pairs. From several normalization

formulas [76] [77] [78], we use the task peak values as it suits the scope of gesture recognition.

By incorporating different scenarios, we remove any bias towards a selected application

or circumstances; thus, the results become generalizable. We discuss the findings of the com-

binatorial settings and rank them by recognition accuracy. Consequently, we deduce from the

proposed hypotheses that a compatible feature-model pair with a moderately large window will

surpass any configuration for hand gesture recognition. Research that benefits from this anal-

ysis vary from real-time with a small window to offline recognition. Others vary from limited

computation using linear models to higher-end systems with ensemble models without much

delay.

3.2 Materials and Methods

3.2.1 Electromyography Data

The data is from a previous study [79] using a Noraxon Myosystem 1400 L acquisition device

in Figure 3.1. The Interdisciplinary Committee on Ethics in Human Research (ICEHR) at the

Memorial University of Newfoundland approved the secondary use of the data for our research
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under application number 20230479-SC. The signals were obtained using eight bipolar sen-

sors, 16 channels, at a sampling rate of 1000 Hz with an amplification gain of 500. The data

was collected from 12 fully operational right-handed participants, six males, and six females.

All participants signed a consent form approved by Simon Fraser University. Participants com-

pleted three label sets; each had 16 hand gestures, shown on a screen with the object and gesture

to perform. Signal samples are shown in Figure 3.2. Further description of the gestures with

images is in the original data collection study [79].

The data is broken down in Figure 3.3 as follows:

• Sessions: Two data collection sessions were conducted. In the first, electrodes were

on the forearm of the participants, whereas in the second, they were on their wrists,

providing different scenarios to test if our hypotheses can be generalized to multiple

scenarios.

• Label Groups: For each session, signals of three sets of gestures were collected. The

first is 16 hand grasps of different objects taken from Cutkosky’s grasp taxonomy [80].

The second has 16 gestures from the American Sign Language (ASL) [81]. The third

contains hand positions [82], such as pronation and supination.

• Repetitions: Each gesture in a label group was performed by every participant 5 times.

The dataset is chosen due to its variations to test hypotheses in multiple scenarios, such as

different placement of sensors.

Figure 3.1: The MyoSystem 1400L EMG acquisition device.
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Figure 3.2: EMG samples acquired from participant 4.
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Figure 3.3: A diagram of the categories in the dataset.

3.2.2 Hypotheses Testing and Conducting Experiments

To study feature-model compatibility, we evaluate models of different theories and assump-

tions, as we believe their assumptions to be crucial to this relationship. We evaluate them using

several sEMG features under a spectrum of feature window sizes and normalization ranges. The

multiple test settings enable us to analyze the feature-model compatibility hypothesis without

bias and find its optimal processing settings. This research is conducted via Python program-

ming language.

Feature-Classifier Pairing Effect on Recognition Accuracy

We use various classifiers with different work theories to investigate the pairing impact thor-

oughly. The list of classifiers used and their theoretical assumptions are as follows:
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• Logistic Regression (LR) [83] assumes the linearity between data features and classes’

log probability.

• Linear Discriminant Analysis (LDA) [84] is another linear method. LDA assumes each

class data is a Gaussian in feature space with the same covariance matrix.

• Support Vector Machine with Linear Kernel (SVM-LIN) [85] is a linear classifier that

uses fringe points of each class to obtain the best linear boundary separating the classes.

• Quadratic Discriminant Analysis (QDA) [86] is a quadratic model with similar as-

sumptions to LDA, except it assumes the uniqueness of each class’s covariance matrix.

• Naive Bayes (NB) [87] model assumes the conditional independence between features

given the data’s class.

• Decision Tree (DT) [88] classifier sequentially splits the feature space based on learned

thresholds.

• K-Nearest Neighbors (KNN) [89] stores the training data, without learning, to assign

test data to the majority class of the nearest K neighbors in the feature space.

• Random Forest (RF) [90] is an ensemble of Decision Trees and is a critical classifier.

In RF, a bagging technique, each tree is trained independently.

• Gradient Boosting (GB) [91] is a boosting ensemble of Decision Trees, using misclas-

sified points of a DT to enhance the training of the next one.

• Support Vector Machine with Radial Basis Kernel (SVM-RBF) [85] has the same

concept as SVM-LIN; however, it uses a kernel, a function resembling a metric in a

hypothesized space instead of the dot product.

Deep Learning was excluded due to the dataset size. In each session, 400,000 samples were

recorded per participant per label group [79]. Using the smallest window we investigate, 100

ms, yields 4,000 samples, which is extremely small for deep learning.
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EMG Features

We pair the classifiers with commonly used twelve different sEMG features from literature [75].

Each feature is applied separately per sEMG electrode signal using a non-overlapping window

as listed:

• Root Mean Square (RMS) [70] accumulates the square of the signals inside the sliding

window from the equation

RMS =

√
1
N

N

∑
i=1

x2
i (3.1)

where N is the window size and xi is the current reading.

• Integrated EMG (IEMG) [70] integrates the absolute values in the window to represent

its total activation using

IEMG =
N

∑
i=1

|xi| (3.2)

where N is the window size and xi is the current reading.

• Mean Absolute Value (MAV) [70] computes the mean of the absolute values inside the

sliding window using

MAV =
1
N

N

∑
i=1

|xi| (3.3)

where N is the window size and xi is the current reading.

• Waveform Length (WL) [70] accumulates the signals in the window as its representa-

tion using the equation

WL =
N−1

∑
i+1

|xi+1 − xi| (3.4)

where N is the window size and xi and xi+1 are the current and next readings respectively.

• Log Detector (LOG) [70] applies to each sEMG sensor data for each window the fol-

lowing processing

LOG = exp

(
1
N

N

∑
i=1

log(|xi|)

)
(3.5)

where N is the window size and xi is the current reading.
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• Simple Square Integral (SSI) [70] integrates the square values of the sginals in each

window using the formula

SSI =
N

∑
i=1

x2
i (3.6)

where N is the window size and xi is the current reading.

• Variance of EMG (VAR) [70] computes the variance of each sEMG sensor data for each

window using

VAR =
1

N −1

N

∑
i=1

(xi − x̄)2 (3.7)

where N is the window size, xi is the current reading, and x̄ is the mean of the signals in

the window.

• Willison Amplitude (WA) [70] computes how often two subsequent readings’ difference

exceeds a threshold using

WA =
N−1

∑
i=1

f (|xi − xi+1|)

where f (x) =


1, i f x ≥ δ

0, otherwise

(3.8)

where N is the window size and xi and xi+1 are the current and next readings. δ is the

threshold value.

• Slope Sign Change (SSC) [70] computes how often the sEMG signal changes their sign

using the equation

SSC =
N−1

∑
i=2

f ([xi − xi−1]× [xi − xi+1])

where f (x) =


1, i f x ≥ δ

0, otherwise

(3.9)

where N is window size and xi−1, xi, and xi+1 are previous, current and next readings. δ

is threshold value.
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• Skewness (SKW) computes the lack of symmetry in the sliding window data using the

equation

SKW =
∑

N
i=1(xi − x̄)3/N

δ 3 (3.10)

where N is the window size, xi is the current reading, x̄ and and δ are the signals’ mean

and standard deviation.

• Kurtosis (KURT) computes the degree to which the data is heavy-tailed or light-tailed

relative to a Gaussian using

KURT =
∑

N
i=1(xi − x̄)4/N

δ 4 (3.11)

where N is the window size, xi is the current reading, x̄ and and δ are the signals’ mean

and standard deviation.

• Signal Histogram (HIST) counts the signals in bins, frequency domain dimensions. For

each bin, HIST counts a sensor’s readings, and averages over all sensors using

HIST =
1
S

S

∑
j=1

N

∑
i=1

I(Blower < x j,i ≤ Bupper) (3.12)

where N is the window size, xh,i is the current reading of the jth out of S sensors, Blower

and Bupper are the bin’s bounds. HIST changes the number of data dimensions.

Influence of Window Size on feature-Classifier Pairing Recognition Accuracy

We investigate nine window sizes, 100, 250, 500, 750, 1000, 1250, 1500, 1750, and 2000

ms, with non-overlapping stride, to monitor if some feature-classifier pairs surpass others by

altering the window size. The findings of this analysis are essential for the performance-delay

balance of gesture recognition. We then rank the pairs by balanced accuracy.
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Signal Normalization Range Optimality

We evaluate four normalization ranges as a preprocessing step. We computed the normalization

parameters from training data only and used them on each participant’s training and test data

individually.

Despite applying a single feature to the eight sEMG signals giving similar value ranges, we

normalize each sensor’s signals per participant to compare results between participants’ differ-

ent signal amplitudes. Because the training data values influence the classifiers’ performance,

normalization ensures that the classifiers are not affected by varying signal amplitudes from

training to testing for the same participant. This change is known as the inter-session variance

for sEMG gesture recognition.

De Luca et al. [92] and Konrad et al. [93] explained that signal normalization is essential

to make sEMG independent of unwanted characteristics and to compare their results between

several users or variations in sensors placement. Besides, our study includes two different

sensor placements among 12 participants. We experiment with three ranges that preserve signal

polarity: (-1, 1), (-2, 2), and normalization-free raw signals. We add (0, 1) normalization as

a typical machine learning approach. We analyze these procedures using non-tunable feature-

model pairs with 100, 500, and 1000 ms window sizes to remove any bias towards any single

configuration.

3.2.3 Experiments’ Control Settings for Generalizable Results

For the conclusions to be valid and extendable, we have to guarantee that information is not

transferred from the testing data to the models. We carefully formulate requirements and rules

to test any hypothesis to hold this criterion.

Experimenting on a Subset of Participants and Label Groups

We only used three random participants’ data to conduct the experiments. Using only 3 par-

ticipants’ data to dissect ensures that the study’s findings are clear of two main hindrances.

The first predicament arises from using data from one participant, which might incorporate too

many anomalies; thus, the conclusions can not be generalized to other participants. Alterna-
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tively, selecting too many participants for analysis would jeopardize generalizing the findings to

settings outside this study because it would be prone to bias toward these specific participants.

Further, we used only the labels from the first session of the grasp gestures group to ex-

amine the research hypotheses without learning from all labels’ groups or sensors’ placement.

The whole dataset is used to validate the research’s findings to check if the hypotheses are

generalizable to other gesture types.

Data Splitting by Repetition

We split each participant’s data by repetitions to ensure no data sharing between training and

testing, as signals from the exact repetition would have similar characteristics. In all ex-

periments, we use four training repetitions (80%) and one test repetition (20%) with cross-

validation, changing the repetitions assignment per iteration.

For each EMG feature type, the participant’s data consisted of 8 columns, their features,

except for the HIST feature, in which the number of feature columns was equal to the number

of bins. After data cleaning and removing transitions between gestures, rows were reduced

from 400,000 to 240,000 for each participant per label set in each collection session. The

number of rows after applying the features varied depending on the window size.

Training and Evaluation Classifiers per Participant

For each participant in this study, we use 12 features. Per each feature, we train and evaluate

ten classification models using cross-validation. Each participant’s classifiers were trained and

evaluated on their training and test subsets without inter-participant testing, thus making them

subject-specific.

We use the balanced accuracy metric as it is used for multi-class classification and handles

class imbalance. The balanced accuracy metric weighs the accuracy of each class relative to

its number of points. Each class’s accuracy has an equal contribution to the total accuracy.

We interchange the ”balanced accuracy” and ”accuracy” to mean the balanced accuracy metric

throughout this chapter.
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Table 3.1: Values used in grid search for classifiers hyperparameters.

Classifier Hyperparameter Grid Values
SVM-LIN C 0.1, 1, 5, 25, 45, 65, 85, 105, 125, 145

DT
Pruning Coeff

Split Min Samples
0.0, 0.01, 0.02, 0.03, 0.04, 0.05

5, 10, 15

KNN
Distance Metric

Neighbors Weights
Neighbors (K)

Minkowski, Euclidean
Uniform, Distance

5, 10, 15

RF
Pruning Coeff.
# Base Models

0.0, 0.01, 0.02, 0.03, 0.04, 0.05
25, 50

GB
Pruning Coeff.
# Base Models

0.0, 0.0025, 0.005, 0.0075, 0.01, 0.0125
25, 50

SVM-RBF C 0.1, 1, 10, 20, 30, 40, 50, 60, 70, 80, 90

Classifiers’ Hyperparameters Tuning

We perform grid search cross-validation for six classifiers with hyperparameters to optimize

them. The grid is in Table 3.1.

We started with evaluating a reasonable value for each hyperparameter and then evaluated

the effect of its increment or decrement. We iterated the increments and decrements until

reaching upper and lower limits, beyond which the classifier’s performance degraded. We then

generated a range of values between the upper and lower limits.

We apply the grid search with cross-validation with each feature to yield optimized hy-

perparameters specific to each feature-model pair. The search ensures that the pair results are

objective, as each model was tuned specifically for the feature used. Due to the number of

hyperparameters investigated, we cannot cover them all. For instance, the kernel scale for

SVM-RBF, for which we use the fixed value of 1
n f eatures∗VAR .
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3.3 Results

3.3.1 EMG Signal Normalization

We test the normalization firstly as a preprocessing step of EMG signals. In Figure 3.4, we

apply four normalization ranges, each per subfigure, to raw sEMG data, followed by applying

the RMS, IEMG, MAV, WL, and LOG features, on the x-axis, with varying window sizes, as

separate rows, to check if the effect is feature-independent without bias to a specific configura-

tion. Figure 3.4 shows the averaged accuracy of non-tunable classifiers, LR, LDA, and QDA,

to judge the normalization objectively. As shown in Figure 3.4, (-1, 1) normalization gives the

best results; thus, it is applied to process the data before the coming investigation points.
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Figure 3.4: Accuracy results of Logistic Regression (LR), Linear Discriminant Analysis (LDA),
and Quadratic Discriminant Analysis (QDA) averaged on participants 4, 5, and 6 data using no-
tuning features and varying window size.

3.3.2 Grid Search for tunable Features and Classifiers

We tune the WA, SSC, and HIST features to optimize them first. Figure 3.5 and Figure 3.6

show a classifier per column and window sizes as rows. The x-axis contains the threshold

values, whereas the y-axis resembles the accuracy.

Notably, Figure 3.5 shows a specific threshold range with the best accuracy across all

classifier-window configurations. Therefore, the peak of this range is the optimal threshold

for WA for this dataset. Similarly, SSC experiences a shared range of threshold values whose

peak is chosen as the optimal threshold in Figure 3.6. The optimal values for WA, SSC, and
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HIST are 0.065, 0.0066, and 30, respectively, and are used in the following experiments. We

report the accuracy of two linear models, LR and LDA, and a quadratic model, QDA, to include

the models’ different assumptions and varying complexity.
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Figure 3.5: Accuracy results of Logistic Regression (LR), Linear Discriminant Analysis (LDA),
and Quadratic Discriminant Analysis (QDA) with multiple WA thresholds on varying window
sizes averaged on EMG data of participants 4, 5, and 6.

The grid search yields the optimal hyperparameters for models in Table 3.2 for each pair to

tune each model to its paired feature. The grid results show that the optimal hyperparameters

are the same regardless of the feature and window size. Hence, these values tuned the models

to the recognition task, not towards a specific setting, feature, or window size.

3.3.3 Processing Window Size Impact on Recognition

From Figure 3.5 and Figure 3.6, we notice that window expansion notably enhances accuracy,

aligning with our hypothesis. To investigate if expanding the window benefits the feature-

classifier pairings, we illustrate the mean classification accuracy for the three participants. Fig-

ure 3.7 shows the mean recognition accuracy per each model-feature pair with window sizes of

100, 250, 500, 750, 1000, 1250, 1500, 1750, and 2000. The optimal window size in Figure 3.7

is 1250ms; thus, it is used in future experiments.
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Figure 3.6: Accuracy results of Logistic Regression (LR), Linear Discriminant Analysis (LDA),
and Quadratic Discriminant Analysis (QDA) with multiple SSC thresholds on varying window
sizes averaged on EMG data of participants 4, 5, and 6.

Table 3.2: Classifiers’ optimal hyperparameters after performing grid search using sEMG data
of participants 4, 5, and 6.

Classifier Hyperparameters
SVM-LIN C = 80 (for Win=100), 85 (for other Win Sizes)

DT Pruning Coeff = 0; Split Min Samples = 5

KNN
Distance Metric = Minkowski

Neighbors Weights = Uniform; Neighbors (K) = 5

RF Pruning Coeff = 0; # Base Models = 50

GB Pruning Coeff = 0; # Base Models = 50

SVM-RBF C = 90

3.3.4 Feature-Classifier Compatibility and Accuracy Ranking

We finally evaluate the accuracy of all feature-classifier pairs, averaged over all participants’

data from the first session of the grasp labels using the optimal window size of 1250 ms. Dis-

tributions of accuracy results are shown in Figure 3.8

Figure 3.8 is summarized in Figure 3.9, whose first column contains the descending order
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Figure 3.7: Features test recognition accuracy for different window sizes of all classifiers aver-
aged on sEMG data of participants 4, 5, and 6.

of the best features on the optimal window of 1250 ms from top to bottom. The models are

ranked descendingly from left to right for each feature, containing each feature-model pair’s

accuracy. Figure 3.9 shows IEMG and RMS features at 79.0% and 78.1% accuracy without

threshold tuning, performing the best on average. At the same time, SKW and KURT are much

less efficient regardless of the classifier, averaging around 32.1% and 31.9%, respectively.

The results in Figure 3.8 are also summarized in Figure 3.10 with the descending order of

the models on the 1250 ms optimal window in the left-most column from top to bottom. The

features are ranked, descendingly, from left to right for each model, showing the same pairs but

using the model as the primary index. The Random Forest model is the best for the grasp group

with 74.1% accuracy averaged on all features, yet HIST-LDA is the top with 88.63%.

Finally, we investigate if the results generalize for the sign language group, the hand move-

ments group, and the other sensors’ placement. Figure 3.11 contains the mean accuracy of the

features for participants’ signals from all sessions, and sensors’ placement, of all label groups.

Most features enable the classifier to perform well, except with SKW and KURT features. We

notice that tunable features give worse accuracy than others, except for the HIST feature, yet,

it has the most outlier results.
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Figure 3.8: Distribution of accuracy results for all feature-model pairs for grasp label group
averaged on all participants’ data from the first session.

3.4 Discussion

The feature-classifier ranking in Figure 3.9 supports our primary hypothesis that the promi-

nence of the pair compatibility on the recognition accuracy regardless of the models’ complex-

ity, as model ranking changes per feature. The SVM-LIN best witnesses this change, as it is

the best model for the WL feature despite performing poorly on several features. We also find

that the optimality of the 1250 ms window in Figure 3.7 proves the need for relatively large

windows to include sufficient information for optimal performance as proposed. As for the

normalization, Fig, 3.4 implies that the (-1, 1) range is sufficient for the best performance with

no substantial enhancement by expanding the range.
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Figure 3.9: Feature accuracy ranking on the 1250 ms window with classifiers’ sub-ranking
averaged on all participants’ grasp data.
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Figure 3.10: Classifier accuracy ranking on the 1250 ms window with features’ sub-ranking
averaged on all participants’ grasp data.

As the results show the impact of the proposed feature-model compatibility, we provide the

ranking of the pairs in Figure 3.9 and Figure 3.10 to guide future research. The compatibility

ranking reveals that simpler classifiers, such as LDA, are on par with ensemble models, such

as RF, on particular features, such as HIST, RMS, and MAV. Therefore, to deliver accurate

recognition with low computation, thus it is crucial to choose the appropriate pair for sEMG
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(a) Distribution of accuracy on grasp label group.
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(b) Distribution of accuracy on sign language group.
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(c) Distribution of accuracy on unique movements label group.

Figure 3.11: Accuracy distribution per feature on Grasp Gestures, Sign Language Gestures,
and Unique Movements Gestures averaged on all classifiers and all participants.

gesture classification. For instance, our ranking finds the Willison Amplitude (WL) feature as

the most suitable for linear classifiers, as Support Vector Machine with Linear Kernel (SVM-

LIN) outperforms all, including ensembles. In contrast, SVM-LIN performs erroneously on the

VAR feature, whereas other linear models surpass the Gradient Boosting (GB) ensemble. We

notice general behaviors of particular features or classifiers from their pairings’ performances.

Focusing on models in Figure 3.9, the Random Forest (RF) is the top classifier with a small

performance variability compared to others, as noted in Figure 3.8. In contrast, Quadratic Dis-

criminant Analysis (QDA) performs worst with all paired features, implying that the theoretical

assumptions of QDA are incompatible with the classification task at hand. This claim is backed

47



by the HIST feature’s high to satisfactory results in Figure 3.9 on all classifiers except for

QDA. These comparisons prove that the classifier’s theoretical assumptions, known as theoret-

ical bias, and its compatibility with the feature play a more significant role in the recognition

process than its complexity. This is evident by the ensemble models surpassing linear ones for

some features while failing for others.

Concentrating on the features in the ranking, we find that IEMG, RMS, MAV, and SSI are

the top-performing ones unconditionally, regardless of the window. Thus, these features are the

best choice regardless of the application type, real-time or offline recognition. Further, we note

that SKW, KURT, and SSC, mainly tunable features, offer poor performance independent of the

window. Their subpar performance is recorded in Figure 3.7 despite giving an acceptable per-

formance for the three subjects’ data used for tuning. Such results indicate that the tuned values

do not generalize to the other participants. Figure 3.8 results concur with this observation, as

all models perform accurately on all pairings but for SSC, SKW, and KURT features. These

three features have low recognition accuracy and a distinctive overfitting issue. We infer from

these two notes that these three features are signal-dependent in gesture recognition and must

be tuned per user regardless of the classifier or feature window. Despite the top-performing

HIST feature, it yields significant out-of-distribution results when generalized to other partici-

pants. HIST accuracy results are in Figure 3.11, confirming the need for user-specific feature

tuning. We only report 12 commonly used features from the time domain, yet, more features,

such as auto-regressive features, can be investigated in future work. Moreover, our research in-

vestigates single feature-classifier compatibility. However, feature selection and combination’s

effect on compatibility could be a future research topic, using this study as a basis.

Regarding our assumption about the feature window, Figure 3.7 indicates that the 1250 ms

window is optimal for all investigated features. The result supports our assumption that the op-

timal window for classifying this number of labels, 16 gestures, is above the range of real-time

applications to incorporate more information from signals for recognition. Our results agree

with other findings in the literature [25]; however, the optimal window depends on the classi-

fication’s difficulty, which corresponds to the number of labels of 16 hand gestures. Thus we

analytically prove that a small window size does not contain enough data to achieve optimal
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performance. Furthermore, overextending the window in Figure 3.7 can have counter out-

comes, permitting signal noise to deteriorate the recognition performance throughout diverse

control settings. However, a reasonable window of 250 ms reaches acceptable accuracy for

real-time applications, forfeiting around 7% accuracy from the optimal window performance.

This trade-off is a known accuracy-delay paradigm in sEMG gesture recognition literature and

has been investigated under specific environment controls [25]. However, our study confirms

it with various classifiers, features, and window sizes, thus having nearly no bias toward any

specific model or feature. Increasing the window size removes most disparities between the

features, making the feature choice less meaningful. The windows’ overlap and the window

stride are not covered in this study, which could be analyzed in the future.

As we hypothesized, (-1, 1) normalization gives superior results to non-normalized features

in Figure 3.4, in which (0, 1) normalization gives a worse performance. From this remark,

we deduce that the signals’ polarity plays a critical role in gesture recognition. We confirm

this by the higher performance of all procedures with negative to positive ranges than 0 to 1

normalization. On top of that, equalizing the upper and lower limits, -1 to +1, performed better

than non-normalized signals. However, expanding the range to (-2, 2) did not notably impact

the accuracy. Thus, a basic polarity-preserving signal normalization that balances the range

limits is optimal regardless of the feature-classifier pair.

Experiments yield equivalent results for different sensor placement and gestures, such as

sign language and unique movements in Figure 3.11. Thus, our ranking and recommendations

are generalizable to other recognition tasks and armband wearings.

Gesture classification applications treat false positives and false negatives errors equally;

hence, the balanced accuracy metric is used throughout the literature and our study. Despite

that, statistical analysis and other metrics might give an insight into the feature-classifier rela-

tionship as a future point which is excluded due to the number of points investigated. Further-

more, investigating the compatibility behavior differences among males and females or by age

could give future insights into it.
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3.5 Conclusion

This chapter explores the effect of pairing features and classification models on gesture recog-

nition while influenced by combined processing methods, such as normalization ranges and

window sizes. We provide a feature-classifier pairing ranking, the primary determinant of the

recognition performance, as a guideline for future sEMG research to choose the appropriate

pair for the research point or application. The ranking gives the best pairing for an applica-

tion’s pre-chosen feature or classifier. It also gives comparable feature-classifier pairs to the

chosen ones with simpler classifiers. These advantages benefit any gesture recognition appli-

cation, especially those with limited computational capabilities.

The compatibility’s prominence is evident by the SVM-LIN achieving the best on the WL

feature, 80.56% accuracy, and the second-worst on the MAV feature, 69.24% accuracy. The

ranking shows linear models compete with complex ones on specific features, as HIST-LDA

feature-model pair performs best with 88.63% accuracy for 16 gestures. Thus, the pair can

perform high-accuracy gesture recognition with low computation, which implies that the mod-

els’ complexity in gesture recognition is not as effective as believed. We present the optimal

hyperparameters under different scenarios for future research on various conditions.

Secondly, the 1250 ms window is optimal for 16 hand gestures in this recognition task.

Raising or lowering its size reduces classification accuracy. Nonetheless, real-time applica-

tions that require window sizes less than 300 ms benefit from the fact that the 250 ms window

provides acceptable accuracy with a 7% reduction from optimal performance. We further con-

clude that the inequalities between feature performances fade for larger window sizes.

As for signal normalization, the standard normalization, -1 to +1, is unconditionally optimal

for any gesture recognition task. Other ranges are less or equally valuable, particularly ones

removing the signal polarity, which yield notably worse recognition accuracy.
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Chapter 4

Conclusion

This work presents methods to enhance hand gesture classification of electromyography (EMG)

and (FMG). By introducing a machine learning pipeline that yields robust features in Chapter

2 and recommending a feature-classifier pairing ranking, in Chapter 3, EMG and FMG gesture

recognition common errors are minimized.

The machine learning pipeline processed signals into robust features, increasing the classi-

fication consistency across different classifiers for FMG signals. It partially limits intra-subject

recognition error, reducing the accuracy gap between testing sessions. The classifiers’ per-

formance was inconsistent as different gestures’ data on the raw FMG features was heavily

overlapping. Linear discriminant analysis (LDA) performed better than most other classifica-

tion methods, including highly non-linear ones; however, we show that it is due to randomness

rather than learning a reasonable decision boundary. We find that quadratic discriminant anal-

ysis (QDA) performs worse than LDA, despite being similar but with higher complexity. The

results illustrate an intra-user inconsistency that comprises the recognition performance, de-

pending on randomness rather than the data.

The proposed pipeline in Chapter 2 composes of Fisher’s discriminant analysis (FDA), prin-

cipal component analysis (PCA), and uniform manifold approximation and projection (UMAP),

in that order. FDA is used to transform the raw feature space linearly into the best separation

between signals of different gestures, making their correct classification more feasible. PCA

removes any correlation between the features, dismissing the need for many higher-order terms
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in the decision boundary equation that consider the relationship between pairs of dimensions.

UMAP is finally applied to non-linearly transform the data to a new distribution, making data

of varying gestures more separable. We demonstrate that applying these methods separately

can not achieve the desired outcome of the pipeline, with recognition accuracy results lower

than the overall pipeline, as shown in Table 2.3. As FDA and PCA alone boost performance

for some classifiers, they remain ineffective for some. UMAP can give a consistent recognition

performance to all classifiers but at lower accuracy. The pipeline can boost accuracy and con-

sistency for all classifiers while reducing variation between test sessions to a limit. The pipeline

features give classifiers a mean accuracy of 86.4%±8.6 for session one and 78.5%±11.0 for

session two, showing a significant enhancement in accuracy and consistency in Figure 2.5.

Whereas Figure 2.5b reports a reduced intra-subject error between test sessions. The similar

accuracy of classifiers with different complexity degrees indicates that all classifiers learn sim-

ilar decision boundaries and are subject to the same amount of error. This claim is supported

by Figure 2.2b, which depicts data of the same gesture grouped away from other gestures, with

a slight overlap for some gestures. This claim is further asserted by Figure 2.6 with different

classifiers producing the same misclassifications and predicting the exact wrong gesture for the

same input signals.

In addition, We propose a filter-classifier compatibility relationship in Chapter 3 for hand

gesture recognition to combat other user-specific inconsistencies. When tested on EMG sig-

nals, this relationship is presented as the most considerable influence on gesture recognition

performance. We also yield the best processing techniques for EMG gesture recognition when

investigated simultaneously, such as varying window size and changing the EMG feature used.

Based on the compatibility relationship, a proposed ranking of all investigated classifiers and

feature pairs provides future applications and research with an overview of the best compatible

features with a classifier, independent of a classifier’s complexity. The support vector machine

classifier with a linear kernel (SVM-LIN) emphasizes compatibility importance. SVM-LIN is

the best classifier pairing for the Willison amplitude feature, at 80.56% recognition accuracy.

In contrast, SVM-LIN gives only 69.24% accuracy on the mean absolute value (MAV) fea-

ture, despite another linear classifier, linear discriminant analysis (LDA), achieving 84.07%.
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LDA performs similarly to the random forest ensemble classifier in Figure 3.9 on the MAV

feature. This result ascertains that pairing the proper classifier and feature can result either in

the deterioration or enhancement of the recognition performance regardless of the classifier’s

complexity.

We further conclude that the best filtering window size of the investigated features of EMG

in that application is 1250 ms. Increasing the window incorporates more noise, decreasing

accuracy, and reducing it does not include enough information to achieve the same accuracy.

However, a 250 ms window is recognized as an appropriate filtering window size for real-

time applications, below the 300 ms limit, with only a 7% drop in accuracy. The chapter also

concludes that (-1, 1) signal normalization, a basic sign-preserving procedure, allows optimal

performance. (-1, 1) normalization surpasses raw signals and (0, 1) normalization, a sign-

removing normalization.

Our investigation concludes that features with tunable hyperparameters must be tuned sep-

arately per user as their optimal value changes from one user to another. This issue can be

noticed in Fig. 3.11, for which the threshold values for skewness and kurtosis features were

chosen optimally for three users and tested for all 12. However, the recognition results fall

lower than any other feature, despite being optimal for three users. Even though the number of

bins for the histogram feature was optimized over the same 3 participants and behaved similarly

to other features in Figure 3.11, it produces significant outliers. The number of outliers suggests

that the mean result of the histogram feature is not a result of consistency for all participants.

We present the methods in this thesis to provide further consistency and stability of elec-

tromyography (EMG) and forcemyography (FMG) hand gesture recognition. The findings of

this thesis enable lower computation devices to use simple classification models to achieve en-

semble classifiers’ performance for the hand gesture recognition of electromyography (EMG)

and forcemyography (FMG) by tackling several user signal inconsistencies and errors. These

methods are also intended to become a basis for future research studies in this field.

Future studies can use our findings as a background for different research purposes. For

instance, a future direction might investigate the interpretability of the processed features of

our machine learning pipeline as it gives a consistent data distribution regardless of the session.
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In addition, our pipeline could be expanded to work with other types of signals for hand gesture

recognition. At the same time, the results can be further analyzed to determine if our proposed

methods are independent of the participant’s biological characteristics. More analytical and

processing techniques are available in the literature to expand upon the compatibility pairing

ranking we propose in Chapter 3. That chapter’s results can also be a basis for investigating

other factors that were not included, such as window overlap.
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