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ABSTRACT 

 

Offshore structures are complex in their structural and functional form and operate in a harsh and 

uncertain environment with complex interactions between ocean variables. Consequently, the 

ocean environment presents a high risk to these structures hence the need to develop an efficient 

and reliable design. Therefore, the need for a design that effectively: captures complex ocean 

parameter interactions, reduces the computational burden in structural response determination, 

quantifies the structure's ability to bounce back when faced with disruptive events, and minimizes 

cost under uncertainty at the desired safety levels of the asset is critical. A robust offshore structural 

design under uncertainty is essential for the safety of life, asset, and the environment during oil 

and gas exploration and production activities. This thesis presents improved methods for the 

effective reliability-based design of offshore structures. First, a framework is developed to capture 

the dependency of multivariate environmental ocean variables using vine copula and its impact on 

the reliability assessment of offshore structural systems. The model was tested using a cantilever 

beam and applied to an offshore jacket structure. The comparative results from the jacket structure 

and cantilever problem reveals that failure probability considering dependence between ocean 

variables is closer to the reference value than when variables are independent or modeled with a 

Gaussian copula. The outcome shows the importance of capturing nonlinearity and tail dependence 

between ocean variables in reliability evaluation. Secondly, the effectiveness of a hybrid 

metamodel, which is a combination of two commonly and independently used methods, Kriging 

and Polynomial Chaos Expansions (PCE), is investigated for offshore structural response 

determination and reliability studies. The hybrid metamodel herein, called (APCKKm-MCS) is 

constructed from an adaptive process with multiple enrichment of Experimental Design (ED). The 

hybrid approach was tested on simple non-linear functions, a truss bar, and an offshore deepwater 
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Steel Catenary Riser (SCR). The study's outcome revealed that APCKKm-MCS produced a high 

predictive response capacity, reduced model evaluation, and shorter computing time during 

reliability evaluation than the single enrichment case (APCK-MCS) and the adaptive ordinary 

Kriging case (AK-MCS) considered. In addition, a novel framework is developed for the resilience 

quantification of offshore structures in terms of their time-varying reliability, adaptability, and 

maintainability. The developed framework was demonstrated using an internally corroded pipeline 

segment subject to disruptive events of leak, burst, and rupture. The framework captured the 

resilience index of the natural gas pipeline for its design life, and its sensitivity analysis revealed 

the influence of the pipe wall thickness and corrosion depth growth rate on the resilience of the 

pipeline. The framework provides a quantitative approach to determine the resilience of offshore 

structures and ascertain their critical influencing parameters for effective decision-making. Finally, 

a methodology for optimal structural design under uncertainty considering the dependency of 

environmental variables with the implementation of a hybrid metamodel in the inner loop of a 

nested optimization problem is presented and demonstrated on a steel column function and a 

segmented SCR. The study showed different decision outcomes for various vine tree 

configurations in the dependence modeling for the steel column function noting the importance of 

choosing the appropriate variable order in the vine tree for optimal design under uncertainty. Also, 

the research reveals the suitability of adaptive PCK for the inner loop reliability phase for a double-

loop structural optimization due to its high predictive capacity and observed relatively low cross-

validation error. The method shows the importance of effective dependence modeling of 

environmental ocean variables in structural cost minimization and selecting optimal structural 

design variables under uncertainty. From the research outcomes, considering multivariate 

dependence between ocean variables using vine copula and utilizing multiple enrichment hybrid 
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metamodels in response evaluation for reliability and optimal design assessment of offshore 

structures could better predict their failure probability and enhance a safer structural design. In 

addition, the resilience quantification framework developed provides a vital decision-making tool 

for offshore structural systems' design and integrity management. The research into high 

dimensional dependence modeling of offshore structures using vine copula, comparative study of 

sampling strategies required for the hybrid (Kriging and PCE) metamodel construction, 

dependence-based structural resilience quantification, and multiobjective dependence-based 

structural optimization under uncertainty are among areas proposed for future investigation. 
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Chapter 1 

Introduction 

  

1.1. Background and Motivation 

 

Offshore oil and gas support structures are critical infrastructures that operate in the harsh and 

uncertain ocean environment and help in the exploration and production of essential mineral 

resources (oil and gas). These facilities include fixed structures (Jacket structures, Gravity Based 

structures), floating structures (drillships, semi-submersible, Spars, Tension Leg Platforms (TLP)), 

flexible structures (marine risers, umbilical, TLP tendons), pipelines, support vessels, and Floating 

Production Storage and Offloading units (FPSO) (Casciati & Roberts,1996). The imposed loads 

and complex loading combinations, including environmental loads such as wind, wave, current, 

seismic, and ice, can induce failure in the structure, thereby affecting lives, assets, and the 

environment (Faltinsen,1990). Some notable offshore accidents due to structural failure which lead 

to loss of lives include semi-submersible (Alexander Kielland, Ocean Ranger), drillship (Seacrest, 

Glomar Java Sea), Jack-up rig (Bohai 2), and platform (Mumbai High North) (Dhillon,2010). 

These disasters could be traced to the impact of environmental load on the structure, presenting 

the need to focus on structural safety for the life cycle of marine assets and considering the many 

forms of uncertainty (Li et al., 2016) associated with the structural system's demand (load) and 

capacity (strength). The satisfactory performance of offshore assets over their design life is 

essential, and the assurance of performance in probabilistic terms considering known criteria of 

the offshore structure, describes its reliability (Haldar & Mahadevan, 2000). Also, considering the 

given performance criteria, a relationship is developed between the demand and capacity of a 

structure and its response [Limit State Function (LSF)]. A state beyond the limit state surface 
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where the functional requirement of the system is not satisfied is considered a failure domain. 

Shittu et al.(2020) describe four limit states considered in the reliability assessment of offshore 

structures (serviceability, ultimate, fatigue, and accidental) limit states. 

Typically, environmental load variables exhibit complex dependency (American Petroleum 

Institute (API), 2020; DNVGL,2020); this needs to be accounted for and their impact monitored 

when evaluating the reliability of offshore structures to ensure confidence in the outcome of the 

assessment. For simplicity in the structural reliability evaluation of offshore structures, most 

research considers independence between environmental variables or a linear dependence based 

on Pearson correlation and Nataf transformation (Schober et al., 2018; Lebrun & Dutfoy, 2009). 

Consequently, this creates concern about the accuracy of the environmental load acting on the 

structure, thus reducing the confidence in the reliability outcome for the performance criteria 

considered. Copulas provide a flexible and marginal independent approach to model dependency 

between two or more variables (Nelsen,2006). They have wide applications in finance and 

actuarial science and are gradually becoming an integral concept for dependence modeling for 

engineering systems. Also, a vital copula characteristic is that it captures linear dependence, 

nonlinearity, and tail dependence between variables (Joe,2014). The inability to capture these 

complex dependencies among the various ocean variables can significantly affect the reliability 

evaluation outcome. In addition, it can be a point of concern for the safety of offshore assets over 

their design life. Although limited studies exist in the literature where copulas have been used for 

dependence modeling of environmental load for offshore structures, most of the existing studies 

have focused on bivariate analysis (Zhang et al., 2018). A consideration of multivariate analysis 

using copula for effective modeling of dependence of ocean variables is desired to ensure 

confidence in the outcome from reliability assessment. 
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Offshore support structures are complex in their form and operate in an uncertain environment 

which further creates more complexities. An explicit LSF function (those with a close form 

function of input variables) is typically unavailable to describe the relationship between the input 

variables and the structure's response. Consequently, numerical computational methods such as 

Finite Element Analysis (FEA) present a viable alternative for specific response determination of 

these structures given the corresponding input variables and allowable response required for a 

given limit state condition (Haldar & Mahadevan, 2000). However, the numerical analysis 

approach can be computationally expensive and time-consuming for large and complex structures 

to determine the response required for reliability evaluation. Metamodels provide a cheap and 

approximate alternative in response determination and reduce the computational burden of the 

FEA approach. Various types of metamodels have been applied in engineering, including but not 

limited to Polynomial Regression, Support Vector Regression (SVR), Low-Rank Tensor 

Approximation, PCE, Radial Basis Function (RBF), and Kriging (Bucher & Most, 2008). The 

metamodel is essential in the practical reliability assessment of offshore structures.  

From the literature, ordinary Kriging and PCE are methods widely applied in metamodel 

construction for offshore structures compared to other methods. However, given the complexity 

of offshore structural systems, an ensemble or a combination of such metamodels (Goel et al., 

2007) and strategies to reduce the computational burden of construction by sampling around the 

limit state surface are required to produce a robust model that improves the accuracy of response 

structure approximation. 

The paper by C.S Holling (Holling,1973), which focused on the resilience of ecological systems, 

set the foundation for resilience research. Consequently, resilience has been an essential topic of 

discussion and research in many disciplines, including ecology, built environment, supply chain 
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management, engineering, nuclear, and process systems. Various metrics and resilience 

assessment methods have been described based on the discipline. In the context of engineering 

resilience, Yodo et al.(2017) presented a connection between reliability and system recovery in 

describing the resilience of an engineering system. Similarly, offshore structures are faced with 

disruptive events during their operational life. Their ability to withstand these events and recover 

by restoring the system's functionality(resilience) is critical for the overall safety of the asset, lives, 

and the environment. Although the concept of resilience is widespread in other disciplines and 

sectors, very few research activities have focused on the resilience of offshore structures and the 

ability to quantify it for single or multiple disruptive states. Also, with the nature of the ocean 

environment and the natural or man-made disruptive events that are likely to occur and cause a 

threat to structural safety during operation, developing a framework for structural resilience 

quantification of offshore oil and gas support assets is critical. 

The trade-off between structural safety and cost is integral to designing complex structural systems 

operating in an uncertain environment like the ocean. The need for an economical design that 

considers the structure's uncertainties related to material, geometry, manufacturing, and loading is 

essential. The trade-off between these competing factors (safety and cost) creates an optimization 

problem required for design decisions. Consequently, the Reliability-Based Design Optimization 

(RBDO) of offshore support structural systems results in an improved design performance under 

uncertainty, considering target reliability values and stated constraints. The RBDO approach leads 

to structural weight reduction and cost savings. In terms of offshore structures, evaluating 

uncertainty in ocean variables, material, and other existing load and resistance makes a reliability-

based approach more feasible to ensure a proper trade-off between cost and structural safety.  
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To ensure confidence in the optimal results obtained and associated design variables, the need to 

consider the dependence between environmental load and utilize a metamodel with a better 

prediction capability in the inner loop of the RBDO process is of utmost importance.   

With the quest for oil and gas exploration and production moving into deepwaters which is harsh 

and uncertain, offshore assets' safety is critical, and a robust reliability-based design is necessary. 

The poor dependence modeling (using Pearson correlation), simplicity in handling the interaction 

of ocean variables required for offshore structural load determination during reliability assessment, 

and non-consideration of dependency in optimal structural design evaluations are primary reasons 

for this study. In addition, the accuracy obtained from the response evaluation of offshore 

structures (mainly large and complex) is needed to improve further using a metamodel that reduces 

the computational cost and time and reflects the system's response from numerical analysis. 

Finally, with less emphasis in the literature on an important area related to offshore structures' 

adaptive and restorative capacity when faced with disruptive events during their operational life, 

this research takes a step further to develop a framework for offshore structural resilience 

quantification.  

1.2. Objectives 

 

Offshore structures are complex and faced with uncertainty and numerous challenges in the 

operational environment. Consequently, a robust and safe design of these structures is crucial. This 

study attempts to answer the following research questions for reliability-based offshore structural 

design. 

i. How can multivariate dependency be captured for environmental ocean variables that 

induce load on offshore structures? 
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ii. What is the impact of dependence modeling on offshore structural safety? 

iii. Will a combination of high-performance metamodels improve computational accuracy and 

time in the response determination for complex offshore structures? 

iv. How can a performance-based resilience quantification framework for offshore structures 

be developed? 

v. What impact will the consideration of multivariate dependency of environmental variables 

have in the optimization of complex ocean structures under uncertainty? 

Although various aspects of consideration exist in the reliability-based design of structures, based 

on the presented research questions in this section, this research focuses on the following 

objectives: 

i. To develop a framework to capture dependence between multivariate ocean variables 

using vine copula. 

ii. To examine the significance and effect of dependence through a vine copula-based 

reliability assessment of offshore structures.  

iii. To investigate the impact of a combination of metamodels (Kriging and PCE) 

considering their unique properties in the reliability evaluation of offshore structures. 

iv. Develop a framework that considers reliability, adaptability, and maintainability in 

quantifying the resilience of oil and gas support structures faced with multiple 

disruptive events. 

v. To develop a double-loop framework for structural cost minimization of offshore 

structures under uncertainty that considers the dependency between the environmental 

variables using vine copula. 
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Considering these areas outlined in the objectives provides an opportunity to develop an improved 

reliability-based design process and ensure safety for complex offshore structural systems. The 

aspects described in the objectives of this study are clearly shown in Figure 1.1.  
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  RELIABILITY-BASED DESIGN OF OFFSHORE STRUCTURES 

 

 
Task 1: Develop a multivariate 

dependence-based offshore 

structure reliability model 

Task 2: Construct a hybrid 

metamodel for offshore structure 

reliability assessment 

Task 3: Quantify resilience of 

offshore structures for oil and 

gas applications 

Task 4: Develop a dependence-

based structural optimization 

framework under uncertainty 

A framework to capture 

multivariate dependency using 

D-vine copula is developed 

An active learning multiple 

enrichment metamodel 

combining Kriging and PCE is 

developed 

Offshore structural resilience 

model is developed based on 

reliability, adaptability and 

maintainability. 

An RBDO framework with 

environmental variables 

modeled using vine copula is 

developed. 

Figure 1.1. Offshore Structure Reliability-Based Design. 

Objectives 
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1.3. Scope and limitations 

 

The study focuses on offshore structures which support oil and gas exploration and production 

activities. The research questions initially highlighted guide the scope of this research. For the 

reliability and resilience assessment activities presented in this study, the limit state approach has 

been utilized with a focus on Ultimate Limit State (ULS) and Serviceability Limit State (SLS) 

conditions. This study does not consider the structures' accidental and fatigue limit states. In terms 

of environmental load on the offshore system, this research has focused on wind, wave, and current 

conditions due to data availability. Although many copula types exist in the literature for 

dependence modeling purposes, the analysis in this study has been limited to commonly used 

copula (Gaussian, Student t, Gumbel, Clayton, and Frank). In addition, the demonstration 

examples have been focused on an offshore jacket, pipeline, and riser structure due to the limited 

numerical computational tools available to the author during this study for response determination.  

1.4. Organization of the thesis 

 

The manuscript format is adopted for this thesis, which comprises seven chapters. The research 

outcomes are presented in four chapters in this work and have been submitted to peer-reviewed 

journals (three have been accepted, and the fourth is under review). In this thesis, Chapters 1, 

2, and 7 are the introduction, literature review, and conclusion. Also, Chapters 3 to 6 are 

chapters developed based on papers submitted to peer- review journals. Figure 1.2 shows the 

organization of the doctoral thesis. A summary of the contents for the rest of this thesis is 

presented as follows: 
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Chapter 2 presents a comprehensive literature review of previous studies relevant to this work 

and related to offshore structure dependence modeling, metamodel application, resilience 

modeling, and RBDO. In addition, identified knowledge gaps are outlined.  

Chapter 3 presents a methodology for multivariate dependence modeling of environmental 

ocean variables for reliability assessment of offshore structures using a vine copula (D-vine). 

The demonstration of the approach was on an offshore jacket structure considering 

environmental load from the harsh ocean environment. This chapter is published in Ocean 

Engineering 2021; 230:109021. 

Chapter 4 proposes a hybrid metamodel that combines Kriging and PCE for structural 

reliability assessment of complex offshore structures. The hybrid approach is applied to a series 

of examples, including an oil and gas SCR. This chapter is published in Ocean Engineering 

2021; 235:109399. 

Chapter 5 presents a framework to quantify the resilience of offshore structures utilizing time-

varying reliability, adaptability, and maintainability. The framework is applied to an internally 

corroded offshore pipeline segment. This chapter is published in the Journal of Pipeline 

Science and Engineering 2022;100054. 

Chapter 6 investigates the effect of environmental variables' dependence on the optimal 

design of offshore structures under uncertainty. This approach is demonstrated on a segmented 

SCR operating in deepwater. This chapter is under peer review in Reliability Engineering and 

System Safety Journal. 

Chapter 7 presents the contributions and conclusions drawn from the thesis. In addition, 

recommendations for future studies are presented. 
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                  Figure 1.2. Organization of doctoral thesis and related publications.  

RELIABILITY-BASED DESIGN OF OFFSHORE STRUCTURES FOR OIL 

AND GAS APPLICATIONS 

Abstract 

Chapter 2: Literature Review 

Chapter 1: Introduction 
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“Reliability assessment of marine structures considering 

multidimensional dependency of the variables”. Ocean 

Engineering, 230, 109021. 
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(Published) 

Chapter 4: Active Learning Hybrid 
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Reliability Assessment 

“An Active Learning Polynomial Chaos Kriging metamodel 

for reliability assessment of marine structures”. Ocean 

Engineering, 235, 109399. 

https://doi.org/10.1016/j.oceaneng.2021.109399 

(Published) 

Chapter 5: Resilience 
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“A methodology for time-varying resilience quantification 
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Science and Engineering, 2(2), 100054. 
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“Reliability-Based Design Optimization of Complex 

Offshore Structure”. Reliability Engineering & System 

Safety Journal.  

(under review) 
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Chapter 2 

Literature Review 

 

2.1. Dependence-based modeling in offshore structure reliability assessment 

 

To appropriately determine the reliability of offshore structures, consideration of dependency 

between the environmental variables is essential. Most research on the reliability of complex ocean 

support structures for oil and gas operations assumes independence between variables for 

simplicity of analysis. An investigation of the non-negligible effect of this relationship between 

variables is essential for the efficient reliability-based design of these structures. Consequently, 

studies considering Pearson correlation between variables and copula functions for bivariate 

dependence analysis have been seen in the literature. Several studies have utilized the Pearson 

correlation coefficient to determine the dependence between pairs of ocean variables comprising 

wind, wave, and current and their overall impact on load determination on marine structures (Dong 

et al., 2008; Nizamani et al., 2017). A study into the effect of spatial Pearson correlation of ocean 

wave parameters along a ship's route on its vertical bending moment also shows the importance of 

considering correlation in ship operations (Mikulić et al., 2021). The dependency between wave 

height and period is captured using a Gaussian copula (Huang & Dong, 2021), which does not 

consider nonlinearity and tail dependence between variables but can capture the linear relationship.  

The use of bivariate copulas to model dependence between pairs of ocean variables has been a 

significant focus in the literature. The modeling approach using copulas allows the consideration 

of nonlinearity and tail dependence between variables. Studies into the dependence between wave 

height and other ocean parameters such as zero-crossing period (Vanem, 2016),  storm surge (Li 

et al., 2021; Chen et al.,2019), steepness (Antão & Guedes Soares, 2014), and extreme sea level 
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(Mazas & Hamm, 2017) has been considered in the literature. In the case of a tropical cyclone, the 

dependency between wind speed and wave height was modeled using a Gumbel copula (Sheng & 

Hong, 2020). Also, asymmetric and truncated copula approach for bivariate ocean data 

dependency cases have been considered (Zhang et al., 2018; Ma & Zhang, 2022; Zhang et al., 

2015). 

In the reliability assessment of offshore structures, the research into considering the bivariate 

dependency of the environmental load has been presented in the literature. In the case of a semi-

submersible platform, consideration of dependence between wave parameters (Zhao & Dong, 

2021), wind-wave variables of the structural elements of the semi-submersible (Fu & Khan,2020), 

and dependency on station keeping capability of a semi-submersible for short and long-term 

extreme loads (Zhao et al., 2020) are areas where copulas have been used to capture dependency. 

Tao et al.(2013) modeled the dependence between the extreme wave height and wind speed in 

determining the base shear stress on a jacket structure at different return periods using the Gaussian 

and Frank Copula.  

In addition, Ramadhani et al.(2021) presented a comparative study of the influence of symmetric 

and asymmetric copula in the dependence modeling of ocean variables (wind speed and wave 

height) and its effect on the reliability assessment of offshore structures. 

For most of the cases in the literature where dependence is considered in the reliability assessment 

of complex offshore structures, studies have been limited to bivariate environmental load. 

Consequently, multivariate consideration is necessary to capture the dependence properties of 

three or more input variables, and the need to investigate the impact of copula parameter choice in 

the overall reliability assessment process is necessary. 
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2.2. Metamodels for complex offshore structures 

 

In dealing with large and complex ocean systems, a cheap and accurate model is essential to 

replace the computationally intensive FEA approach required for structural response 

determination. Metamodel approaches such as Polynomial regression, Artificial Neural Network 

(ANN), Kriging, RBF, and SVR relieve the computational burden of numerical methods (Cheng 

et al., 2020). Kriging and PCE have broad applications to complex multivariate ocean structural 

systems. The PCE is non-intrusive with model response described by the sum of orthogonal 

polynomial basis defined by the distribution type of the input variables (Lüthen et al., 2021). The 

application of the PCE metamodel approach spans various aspects of marine research activities, 

such as maritime evacuation safety (Xie et al., 2020), determination of frequency response for 

marine shafting systems (Zhang et al., 2021), determination of the crosstalk's statistical 

characteristics for a naval ship's wiring harness (Chi et al., 2017) and ship performance research 

(Xia et al., 2021). In addition, is the implementation of PCE in the uncertainty quantification for 

ship hull optimization (Scholcz, 2019). For offshore and subsea analysis, the PCE approach is 

employed in the displacement response determination at the top of a marine riser considering its 

dynamic response and fluid-structure interaction (Ni et al., 2019), the prediction of the uplift 

capacity and reliability of plate anchor in clay soil (Charlton & Rouainia, 2016; Charlton & 

Rouainia, 2019) and in the prediction of surge motion for moored offshore structure (Lim et al., 

2021). Other areas PCE metamodel have been applied include the uncertainty propagation and 

reliability of chlorine-induced corrosion on reinforced concrete offshore structures (Bastidas-

Arteaga et al., 2020) and Vortex-Induced Vibration (VIV) prediction of top tension risers (Lim et 

al., 2017). For metamodel type sensitivity analysis, PCE has played an essential role in the 
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determination of the influence of the input variable on the structural response parameter (Wei et 

al., 2019; Radhakrishnan et al., 2021).  

Kriging is an interpolation metamodel type and treats the interest function as a Gaussian process 

realization (Cheng et al., 2020); it comprises a trend and Gaussian process term. Although 

originating from geostatistics, the concept has been applied in modeling oil and gas support 

structures. The superior performance of Kriging metamodel over the polynomial regression 

approach in reliability analysis is demonstrated using a fatigue growth rate assessment of the weld 

toe of a welded joint plate and the ultimate strength analysis of a stiffened plate for marine 

applications (Dong et al., 2020; Gaspar et al., 2017). Shi et al.(2015) used a combination of Kriging 

and the First Order Reliability Method (FORM) for metamodel construction and reliability 

assessment of the stiffened plate for a ship. A Kriging model was developed for the structural risk 

assessment of a jacket platform considering serviceability and strength limit state  (Vazirizade & 

Haldar, 2021). For the reliability assessment of the mooring line strength of semi-submersible and 

floating structures, the model describing the mooring line's extreme tension is constructed using 

ordinary Kriging (Xu et al., 2020; Gumley et al., 2016). The active learning technique further 

improves the computation efficiency of constructed Kriging metamodel by starting with a small 

initial Experimental Design (ED) of input variables and enriching the ED with sample points in 

the vicinity of the limit state surface. The concept of Kriging construction using the active learning 

approach has been applied in developing metamodel for complex marine hull structures (Gaspar 

et al., 2017), reliability assessment of ships (intact and damaged), subsea pipelines, and even in 

reliability code calibration from target reliability values (Teixeira & Soares, 2018). 

The response from constructed metamodels is only an approximate representation of the real-world 

scenario for structural systems, which include offshore structures. Consequently, with the need for 
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appropriate structural safety evaluation under uncertainty, the quest for continuous improvement 

of metamodel accuracy is essential. Kriging and PCE metamodels have vast engineering 

applications; research into the effect on offshore structural response determination (computational 

accuracy and efficiency) and reliability from combining their unique properties are essential. 

2.3. Resilience in the marine and offshore industry  

 

Structures operating in the offshore environment are faced with natural and man-made hazards; 

the ability of these structures to absorb, adapt, and recover in the face of disruptive events is 

critical. Considering the structure's pre and post events activities from a performance perspective 

in its design and operational phase is vital to enhance structural lifecycle safety, reduce risk, and 

ensure effective offshore asset management. 

The concept of resilience has received research interest in specific sectors of the marine and 

offshore industry, such as marine operations, marine transport, ship power, and port operations. In 

maritime operations, the concept of the Bayesian Network (BN) has been used for resilience 

assessment to investigate potential hydrocarbon release during an FPSO and a marine Liquified 

Natural Gas (LNG) loading operation (Hu et al., 2021; Sarwar et al., 2018). Other research 

activities involving resilience assessment include ship bunkering (Vairo et al., 2020), offshore 

helicopter operations (Gomes et al., 2009), and marine fleet design for more resilient operations 

(Pettersen & Asbjørnslett, 2016).  

 The concept of resilience has seen significant application in marine transport. Some areas of 

application include cyber resilience during vessel navigation (Nissov et al., 2021), the dynamic 

resilience assessment of arctic shipping (Liu et al., 2022), and crew resilience and coping strategies 

following a ship accident in a polar climate (Ivar Kruke, 2021). In addition, the risk-based 
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resilience approach (Wan et al., 2019) and methodologies for resilience management for the port 

and vessel route operations (Dui et al., 2021) are additional research focus areas in the literature. 

The resilience assessment of port activities and networks typically affects the supply chain and 

vessel transportation. Xu et al.(2019) investigated the resilience of the chain handling system in a 

container port. Also, the resilience determination of seaport structures due to seismic effect with 

its improvement strategies (Hur et al., 2019) and an investigation into port operations and scenario-

based methods for resilience due to the impact of disruptive events (Al-Mutairi et al., 2022; 

Verschuur et al., 2020; Liu & Chen, 2021) are areas of focus in maritime and port activities. 

In the aspect of shipboard power resilience, Billah Kushal & Illindala (2020) developed a data-

driven framework to determine the best performance predictors of the shipboard power plant 

during a contingency to reduce the power recovery time and ensure its availability. Furthermore, 

a resilience control mechanism is developed for a shipboard direct current power system (Li et al., 

2018). 

Finally, considering the complexity of offshore support structures and the environment in which 

they operate, very few attempts and methodologies have been developed to quantify the resilience 

of these structures. Ramadhani et al.(2022) developed a method for the resilience assessment of 

offshore structures considering ice load. Also, an approach to quantify the resilience of subsea 

pipelines using the Dynamic Bayesian Network (DBN) and Markov Process has been considered 

(Bao-ping et al.,2020; Yazdi et al., 2022). 

While various metrics and methods to quantify resilience exist and more are constantly being 

developed in multiple fields, few attempts have been made to quantify the resilience of offshore 

structures from a performance standpoint. Resilience is a system concept with safety as the 
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emerging property; thus, the need for appropriate resilience design for critical offshore and marine 

structural systems. Developing a performance-based resilience framework in terms of the 

structural system's reliability, recoverability, and maintainability considering multiple disruptive 

events, is vital. 

2.4. Optimization of ocean structure under uncertainty 

 

From the literature, the optimal design of some offshore oil and gas support structures fails to 

consider the uncertainty arising from the operating environment, loading conditions, and 

manufacturing tolerances. Examples of these cases include floating structural systems such as 

semi-submersible hull optimization (Tian et al., 2021) and the hull and tendon optimal design of a 

TLP ( Du Kim & Jang, 2016; Nordgren, 1989; Vannucci, 1996). In addition, the weight and 

volume optimization of offshore jacket structures (Motlagh et al., 2021; Burak & Mengshoel, 

2021; Ni & Ge, 2019)  and the optimal design of the spud can, gearbox, and hull shape of a Jack-

up platform (Yu et al., 2022; Li et al., 2020; Yu et al., 2012; Tang et al., 2013) are more cases 

presented in the literature. Also are the optimal design of offshore mooring systems (Yu & Tan, 

2010; Yan et al., 2018), flexible marine risers (Yang et al., 2018; Yuan et al., 2021), and cross-

sectional layout optimization of marine umbilical (Yin et al., 2021; Yang et al., 2020). From the 

above literature, uncertainty quantification and propagation were not considered in the designs 

presented which are integral for a realistic evaluation of optimal design decisions for offshore oil 

and gas support structures. 

On the other hand, some research activities in optimizing offshore structural systems have 

considered the effect of uncertainty and the use of metamodels. Yong et al.(2011) applied a moving 

least square approach to minimize the weight of an FPSO riser support using classical RBDO 

methods considering different constraints such as the operating, extreme, damage, and installation 
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conditions. Another case is the weight optimization of an SCR using the ordinary Kriging 

metamodel (Yang & Zheng, 2011). Furthermore, the stack-up of a  marine drilling riser is 

optimized using an RBF metamodel (Yang et al., 2018). RBDO has also been applied to a subsea 

control cable (umbilical) to minimize its mass per unit length using a Particle Swarm Optimization 

(PSO) technique (Yan et al., 2017). In addition, the RBDO approach has been applied to different 

types of marine structures, such as adaptive composites rotors (Young et al., 2010), Cranes (Li et 

al., 2021), and pipeline insulation for subsea production systems (Hong et al., 2020). The effect of 

the choice of a metamodel for optimization was demonstrated in the fatigue RBDO study of a 

bending stiffener for an umbilical by a comparative analysis of the response surface method, RBF, 

and Kriging approach with the Kriging method providing better performance (Yang & Wang, 

2012). 

RBDO has been applied in optimizing structural components of a ship with constraints related to 

sizing, materials type, shape, topology, and the structural system in general (Akpan et al., 2015; 

Ayyub et al., 2015). The various aspects include the minimization of a ship's stiffened panel weight 

subject to constraints related to buckling (plate and longitudinal stiffened panel), collapse, and 

stiffener torsion (Leheta & Mansour, 1997). The application of the Sequential Optimization and 

Reliability Assessment (SORA) framework to optimize plates and beams elements of a 

multipurpose ship using the Kriging and PSO approach (Hu & Wang, 2016) and fatigue 

optimization of the stiffened panel of ship considering stochastic loads (Garbatov & Huang, 2020) 

are other areas of focus in marine vessel components optimization. 

Furthermore, structural optimization under uncertainty has been applied to offshore structures. The 

offshore tower optimization considers critical stress, buckling, and natural frequency probabilistic 

constraints under extreme loading conditions (Karadeniz et al., 2009; Togan et al., 2010). The 
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structural optimization of an oil and gas production platform (Ang et al., 2021), minimizing the 

weight of a fixed-type offshore platform (Kim et al., 2021), and the column and braces of a jack-

up platform (Datta et al., 2019). Regarding oil well production and intervention structures, the 

RBDO approach is implemented to minimize a casing tubular cross-sectional area (da Silveira & 

Lima Junior, 2019).  

The ocean environment is harsh and uncertain, and the safety of lives, assets, and its operating 

surrounding are critical. The concept of considering uncertainty and a cost-safety trade-off for 

offshore structures has relatively limited application compared to other types of systems. Also, 

from the literature, there is little knowledge on the impact of considering variables dependency in 

RBDO analysis of offshore structures. Consequently, further research into dependency modeling, 

uncertainty consideration, and a metamodel ensemble or hybrid is essential in an efficient trade-

off for the optimal design of oil and gas support structures. 

2.5. Knowledge Gaps and Research Tools 

 

A comprehensive study of the existing literature on the reliability-based design of offshore 

structures for oil and gas applications reveals the following gap requiring further research. 

i. Limited research activities in the reliability assessment of ocean structures consider the 

possible nonlinearity and tail dependence of the environmental input variables. 

ii. Current research involving input variables for reliability studies of offshore structures 

at best considers bivariate dependence of ocean variables. The existing literature does 

not account for the multivariate dependency of variables in reliability assessment. 
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iii. Although significant advancements have been made in using Kriging and PCE for 

constructing metamodels to reduce the computational burden of complex offshore 

structures, an investigation into the impact of a combination of these methods (hybrid) 

has not been significantly explored. 

iv. Although the concept of resilience has been widely studied in various disciplines and 

even in oil and gas process operations, there are still limited research activities in the 

resilience quantification of offshore structures (structural resilience). 

v. From the literature and to the extent reviewed by the author, no known studies consider 

the multivariate dependency of environmental variables in optimizing offshore 

structures under uncertainty and a hybrid metamodel construction in a nested RBDO 

problem. 

In this thesis, journal articles obtained from related scientific databases are used to ascertain the 

state of knowledge and determine possible gaps for research purposes. The engineering and 

simulation analysis uses an i7-7500U computer with a Central Processing Unit (CPU) of 2.90GHz 

and an 8GB memory. The codes and algorithms for uncertainty quantification, metamodel 

construction, resilience analysis, stochastic discretization, and optimization were implemented 

using MATLAB. The open-source package R-Studio and Microsoft office excel were used for 

statistical and probabilistic analysis. For numerical simulation, modeling and FEA were 

implemented using SACS (Version 13.0) and Flexcom software (Version 8.10.4) for fixed and 

floating structures. The environmental ocean data utilized for offshore applications are mainly 

obtained from reports of site-specific data for offshore Newfoundland and Labrador (Grand Banks 

and Flemish Pass). Also, the language for writing this thesis was made as clear and concise as 

possible for easy communication of thoughts and ideas. 
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Chapter 3 

Reliability Assessment of Marine Structures considering Multidimensional Dependency of 

the variables 
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Abstract 

For an improved estimation of marine structural reliability, a consideration of random variable 

dependency is essential. With a limited study on dependence modeling of marine structures, this 

study proposes a framework for the reliability assessment of ocean structural systems with 

multidimensional variables. This framework captures possible nonlinearity and tail dependence in 

the variables using vine copula. The proposed method develops a graphical structure of random 

variables consisting of nodes, edges, and trees using the D-vine approach. This study demonstrates 

the developed framework on a jacket support structure subjected to the extreme environmental 
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load conditions at Jeanne D' Arc basin on Canada's east coast. The structure's reliability is 

evaluated with optimally selected copulas in the D-vine trees and associated marginal distributions. 

A comparison between the reliability result using the D-vine copula method, Gaussian coupling 

assumption, and statistical independence between variables proved its superiority in modeling variable 

dependence of complex marine systems. The probability of failure (𝑃𝑓) using the D-vine copula was 

closer to the reference Importance Sampling (IS) results than other methods. 

Keywords:  Structural Reliability; vine copula; probability of failure (𝑃𝑓); Limit State Function 

(LSF) 

       3.1. Introduction 

 

Structural reliability methods such as the response surface approach, FORM, and Second-Order 

Reliability Method (SORM) involve the determination of the reliability index (𝛽𝐻𝐿)  in the 

standard normal space and, consequently, the probability of failure (𝑃𝑓) of a structure with the 

common assumption that the random input variables are independent. Practically, there exists 

dependency among variables, which may affect the reliability estimation of the structural system. 

From the literature on the variable dependency of marine structures, Nataf and Rosenblatt's 

transformation are essential methods for dealing with the challenges of dependence between input 

variables (Melchers & Beck, 2018). Rare consideration is given to Rosenblatt transformation since 

it requires the determination of the joint Probability Density Function (PDF) of the variables for 

analysis, which is difficult to obtain. Also, Nataf transformation has been widely used in dealing 

with correlated non-normal variables. Der Kiureghian & Liu (1986) developed an empirical 

derivation of Pearson's correlation coefficient (𝜌𝑝)for the conversion of  correlated non-normal 

variables to standard normal variables.  Li et al. (2012) applied Nataf transformation in the 
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reliability analysis of complex correlated variables. Ditlevsen (2002) used the Nataf transformation 

for dynamic analysis of correlated wind and wave effects on offshore structures. Chang et al. 

(1995) combined Nataf transformation and Monte Carlo Simulation (MCS) to analyze complex 

systems. Lebrun & Dutfoy (2009) research revealed that Nataf transformation results were the 

same as using a Gaussian copula. Although Nataf transformation can convert correlated non-

normal variables to independent standard normal variables for reliability analysis, its major 

limitation is the inability to capture tail dependence between variables. 

Recently, bivariate copula functions have gained useful application in dependency and reliability 

studies. Goda (2010) studied the relationship between peak and residual displacement in the 

reliability of structures subject to seismic loads. Also, in a risk-based design, Shao et al. (2019) 

developed a data-driven approach for risk assessment of concrete dams using copula functions. In 

the field of uncertainty quantification, Uzielli & Mayne (2012) research focused on load-

displacement uncertainty in soil geotechnics for shallow footing structures using copula functions. 

Lu & Zhu (2018) applied the copula concept and the moment matching principles in structural 

system reliability analysis.  Tang et al. (2013a) studied the effect of bivariate copula on systems' 

reliability in parallel. Liu & Fan (2016) applied a mixed copula to analyze a series-parallel system's 

structure. Another research area considers copulas' effect in the sensitivity analysis of a structural 

system with truncated variables (Xiao et al., 2017).   Tang et al. (2013b) developed a framework 

for dependence analysis of structures using bivariate copulas. 

The ocean environment is complex. The need to study the interaction effect among ocean 

parameters such as wave, wind, current, and geotechnical conditions is critical for a realistic 

description of marine structural design and operations. In recent times, research has considered the 

dependence modeling of ocean variables. Antão & Guedes Soares (2014) developed a model 
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considering the dependence of wave steepness and wave height in the ocean environment.  Zhang 

et al.(2018) modeled the significant wave height dependency with average wave period and wind 

speed using asymmetric copulas. Michele et al. (2007) considered the dependence modeling of 

storm conditions (significant wave height, duration, direction, and interarrival time) using copulas. 

Masina et al.(2015) studied the dependence between sea levels and waves using copulas. Gupta & 

Bhaskaran (2017) studied the interdependency between ocean parameters (wind and waves) in the 

Indian Ocean basin for about two decades. The correlation between sea-state loads on fixed 

offshore structures has been successfully studied using Archimedean copulas (Zhai et al.,2017). 

Yang & Zhang (2013) studied the joint probability distribution of wave load and wind speed at 

Bohai Bay using Clayton and Gumbel copulas. Montes-Iturrizega & Heredia-Zavoni (2016) 

modeled offshore mooring lines' wave height and peak period dependence using copula. 

 From the preceding literature, it is evident that more research has focused on using copula 

functions for component or system reliability assessment with mainly bivariate input variables.  

Regarding the determination of dependency for more than two input random variables 

(multidimensional), Bedford & Cooke (2002) introduced the concept of vine copula to decompose 

the joint PDF into a cascade of bivariate copulas and the marginal distribution of the variables. 

Furthermore, considering traditional copulas’ central problem of flexibility in handling higher 

dimensional variables, the vine copula offers simplicity in its application and flexibility in 

combining different bivariate copulas for dependence modeling. This set of copulas can capture 

complex dependency amongst input variables compared with traditional multivariate copulas.  

Although its early application has been in financial mathematics, the vine copula has recently 

gained useful engineering applications. Vine copulas can deal with dependency and capture 
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nonlinearity and tail dependence between variables. More specifically, modeling variables using the 

vine copula has been an area of research interest in geotechnics, hydrology, and power systems 

engineering. 

In geotechnics, the research focus has mainly been on soil properties. Wang & Li (2019) studied 

the dependence of soil properties modeled by the random field method using a vine copula-based 

approach. Tang et al.(2020) applied the concept of vine copulas in soil slope reliability assessment 

considering various soil properties such as friction angle, soil cohesion, and unit weight of the soil. 

Lü et al.(2020) investigated the dependency of structured clay’s multiple soil parameters using the 

vine copula method. Wang & Li (2017) research demonstrates the importance of copulas in 

stability reliability studies of tunnel excavation using a stochastic surrogate model through a 

comparative study.  

In hydrology, Wang et al.(2018) developed a framework to study monthly river flow in the dry 

season using vine copula. Jiang et al.(2019) modeled the dependence for multivariate hydrological 

designs with vine copula.  Tu Pham et al.(2018)  applied a vine copula-based approach to generate 

the evapotranspiration, precipitation, and temperature time series required for discharge in a 

rainfall model. Also, Tosunoglu et al. (2020) applied the vine copula concept to model the 

dependence between flood characteristics: peak, volume, and discharge. 

In the field of power-based systems, Qiu et al.(2019)  have applied the concept of vine copula in 

modeling the dependence of the output of multiple wind power generation systems. Khuntia et 

al.(2019) focused on the spatial relationship between wind power plants and electrical load using 

a vine copula. 



 

45 
 

Integrating copulas with BN has seen applications in mechanical and process systems. Sun et al. 

(2021) utilized the Copula Bayesian Network concept (CBN) in the reliability assessment of a 

mechanical gantry system, given its components’ prior probability. Hashemi et al. (2016) applied 

the idea of CBN in process facility safety analysis. Similarly, Guo et al.(2019) used the CBN 

concept to model safety accidents. Fundamentally, CBN has a conditional independence 

assumption in its dependence structure, which may not be a preferred option for dependence 

modeling in structural reliability analysis. 

Conversely, vine copula considers conditional dependence among its dependence structure 

variables, making it a useful tool for practical structural reliability problems. The CBN approach 

is effective in dealing with high-dimensional variables. However, it does not pose a significant 

advantage since one primary concern in structural reliability is the curse of dimensionality, where 

the computational cost of structural reliability analysis grows exponentially with an increased 

number of input variables (Hurtado,2004). Consequently, the primary focus is on reducing the 

variable dimension as much as possible, considering the most critical variables affecting the 

quantity of interest. This approach allows for improved computational efficiency in reliability 

analysis given the LSF. 

The existing literature shows that dependence modeling and reliability assessment of marine 

structures have focused on Pearson correlation; copulas for the bivariate structural system or 

variables have been assumed statistically independent for simplicity of analysis. Consequently, 

using correlation only captures linear dependence (at best) between variables. Marine structures 

are subject to extreme ocean conditions where tail dependency and nonlinearity between the 

variables might be critical. For such systems, the results obtained using the correlation method 

(Pearson) may present some bias and inaccuracy in modeling the association between its 
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environmental variables. From the literature, copula utilization in marine structural reliability is 

limited to two variables at a time. 

With the apparent advantage of vine copula for dependence modeling of multivariate systems and 

with limited attention to its use in modeling dependency of marine structures, this study 

1. Proposes a framework through a flexible approach (vine copula) to model variable 

dependence for complex marine structural systems. 

2. Evaluates the effect of considering nonlinearity and tail dependence of variables captured 

by the vine copula approach on the reliability assessment of marine structures under given 

limit state conditions. 

The organization of the remaining part of this work is as follows: Section 3.2 briefly introduces 

the preliminaries on copula functions; Section 3.3 outlines the methodology of the proposed vine 

copula framework with an illustrative example; Section 3.4 considers the application of the 

framework to an offshore structure; Section 3.5 gives a summary of the entire work. 

3.2. Preliminaries on Copulas and Structural Reliability  

 

This section gives a general overview of the structural reliability concept, copula functions, and 

measures of dependence between variables. 

3.2.1 Structural Reliability 

 

The LSF divides the standard normal plane for random variables into the safe and failure region 

in reliability analysis. If the LSF is given by 𝐺(𝑋) = 0, where X represents the random variables 

of the function, then the failure region is the domain of 𝐺(𝑋) < 0, and the safe area is the domain 
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of 𝐺(𝑋) > 0. The 𝑃𝑓 of a structure over the failure domain can be represented by the expression 

in Eq. (3.1).  

                     𝑃𝑓 = ∫…∫ 𝑓(𝑥1, 𝑥2,𝑥3… . 𝑥𝑛)𝑑𝑥1𝑑𝑥2𝑑𝑥3…𝑑𝑥𝑛𝐺(𝑋)<0
                            (3.1) 

Where 𝑓(𝑥1, 𝑥2,𝑥3… . 𝑥𝑛)  is the joint PDF of n-random variables𝑋1, 𝑋2, X3… . . 𝑋n. 

The difficulty in determining the joint PDF has led to approximate methods like FORM and SORM 

to obtain the standard normal plane design point and, consequently, the system’s reliability. 

Simulation-type methods such as MCS, Importance Sampling (IS), and  Subset Simulation are 

other commonly used methods for evaluating the 𝑃𝑓; these methods use large simulation cycles 

and provide greater accuracy but are computationally expensive and cumbersome (Melchers & 

Beck, 2018). 

This work utilizes the approximate method (SORM) and simulation techniques in the structural 

reliability evaluation of the LSF. The IS approach (Eq. (3.2)), which relies on the convergence 

speed of FORM and the robustness of MCS, is used as a benchmark for the results obtained.  

                                              𝑃𝑓 =
1

𝑁
∑ 𝐼𝑔(𝑥𝑖)

𝑓𝑥(𝑥𝑖)

𝑓𝐼(𝑥𝑖)

𝑁
𝑖=1                                                            (3.2)   

For Eq. (3.2), N is the number of simulations, 𝐼𝑔 an indicator function, 𝑓𝐼(𝑥𝑖) is the sampling 

density function and 𝑥𝑖 are realizations of random variables for the 𝑖𝑡ℎ simulation. 

In reliability assessment, copulas are an important linking function between marginal distributions 

to enhance the estimation of the 𝑃𝑓 of a system. 
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3.2.2 Copula Functions 

 

Copulas are multivariate probability distributions with uniform marginals, allowing dependence 

modeling under uncertainty, and are useful and flexible linking tools for random input variables. 

The 1959 Sklar’s theorem serves as a foundation for the concept of copulas; it explains the 

decomposition of multivariate distribution into univariate marginals and copulas, which allows for 

the expression of dependency between variables (Nelsen, 2006). 

Eqs. (3.3) to (3.5). show important expressions of Sklar’s theorem. 

𝐹(𝑥1… . . 𝑥𝑛) = 𝐶 (𝐹1(𝑥1)……𝐹𝑛(𝑥𝑛))                                                                             (3.3) 

          𝑓(𝑥1, 𝑥2, … . 𝑥𝑛) = 𝑐(𝐹1(𝑥1), 𝐹2(𝑥2)……𝐹𝑛(𝑥𝑛))∏ 𝑓𝑖(𝑥𝑖)
𝑛
𝑖=1                                     (3.4)  

𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2…… 𝑋𝑛 ≤ 𝑥𝑛)  =   𝑃 (𝑋1 ≤ 𝐹1
−1(𝑢1), …… . 𝑋1 ≤ 𝐹𝑛

−1(𝑢𝑛))    (3.5) 

Where C is the unique copula distribution function, which is the dependence structure, 𝐹𝑖(𝑥𝑖) is 

the continuous marginal distribution function for the 𝑖𝑡ℎ variable with an n-dimension random 

vector.  F (.) is the joint distribution function with 𝑥𝑖 realization of the random variable 𝑋𝑖. The 

effect of copula creates simplicity in analyzing the joint PDF [𝑓(𝑥1, 𝑥2, … . 𝑥𝑛)] where c is the 

copula density function and 𝑢𝑖 the uniform marginal of the copula. From Sklar’s theorem, it 

becomes possible to create an approximate joint PDF from copulas and marginals of random 

variables.  

Among the commonly used copula functions are the elliptical copulas (Gaussian, Student t copula) 

and the Archimedean copulas (Clayton, Frank, Gumbel); Table 3A.1 of Appendix 3A shows 

various copulas and their properties. This study will limit optimal copula selection to those 

mentioned in this section.  
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The vine copula is a simple and efficient way of dealing with conditional dependence between 

variables, nonlinear correlation, and tail dependence. It comprises a graphical object of nodes and 

edges with connected trees; it uses bivariate copulas to construct an approximate joint PDF for 

multivariate distributions. Vine copulas have wide applications in the financial, insurance, 

genetics, and health sectors; it is an evolving area in various engineering sectors for determining 

dependency between system variables (Chang et al., 2019). Among the class of vine copulas used 

for linking marginals and dealing with the variables are the D-vine and the Canonical Vine (C-

vine), with the PDF relating its n-dimensional variables as shown in Eqs. (3.6) and (3.7), 

respectively (Aas et al., 2009).  

𝑓(𝑥1… . 𝑥𝑛)

=∏𝑓(𝑥𝑘)

𝑛

𝑘=1

∏∏𝑐𝑖,𝑖+𝑗|𝑖+1…𝑖+𝑗−1

𝑛−𝑗

𝑖=1

 {𝐹(𝑥𝑖|𝑥𝑖+1… . . , 𝑥𝑖+𝑗−1), 𝐹(𝑥𝑖+𝑗|𝑥𝑖+1… . . , 𝑥𝑖+𝑗−1)}          (3.6) 

𝑛−1

𝑗=1

 

𝑓(𝑥1… . 𝑥𝑛)

=∏𝑓(𝑥𝑘)

𝑛

𝑘=1

∏∏𝑐𝑗,𝑗+𝑖|1…𝑗−1

𝑛−𝑗

𝑖=1

 {𝐹(𝑥𝑗|𝑥1… . . , 𝑥𝑗−1), 𝐹(𝑥𝑗+𝑖|𝑥1… . . , 𝑥𝑗−1)}                                (3.7)

𝑛−1

𝑗=1

 

In Eqs. (3.6) and (3.7), j represents the trees of the D-vine and C-vine, respectively. Also, 𝑖 means 

the edges within each tree of the vine copula.  

When a leading variable drives interaction between the data set, a C-vine copula is adopted 

(Aas et al., 2009). In the absence of such variables, the D-vine Copula provides a more direct 

approach to modeling dependency between variables. This study adopts the D-vine approach since 

the problems presented have no leading variable governing random variables’ interaction.  
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A statistical independence test is essential in ascertaining a relationship (linear or nonlinear) 

between random variables, especially in the first tree of a D-vine structure. The non-parametric 

Kendall’s test which is simple to implement, interpret, and depends on the empirical Kendall’s tau 

(𝜏𝑘) is applied in this study to test for independence between variables before copula type 

determination.  

Eq. (3.8) shows an expression for Kendall’s test statistic where 𝑁′  represents the number of 

variable observations, and T is the test statistic value. A null hypothesis of independence is 

accepted when T < 1.96 at a 5% significance level (Genest & Favre, 2007). 

𝑇 = √
9𝑁′(𝑁′ − 1)

2(2𝑁′ + 5)
  |𝜏𝑘|                                                                                                   (3.8) 

For copula selection, this study adopts the Maximum Likelihood Estimation (MLE) approach in 

copula parameter (θ) determination and the Akaike Information Criterion (AIC) in the optimal 

selection of copulas for the D-vine structure. The AIC value captures the information loss in 

determining θ while fitting various copula in the vine tree. A minimum value of AIC indicates less 

information loss. The selection of the most suitable copula model for the vine depends on the 

copula with the minimum AIC value (Zhai et al.,2017). 

The AIC creates a trade-off between the goodness of fit of the copula and its simplicity. The 

expression for the logarithm-likelihood function, AIC, and determination of θ, are shown in Eqs. 

(3.9) to (3.11), respectively. 

𝐼𝑛𝐿(𝜃) =∏𝑐(𝑢1…𝑢𝑛; 𝜃)

𝑛

𝑖=1

=∑𝐼𝑛𝑐(𝑢1…𝑢𝑛; 𝜃) 

𝑛

𝑖=1

                                        (3.9) 

            𝐴𝐼𝐶 = −2𝐼𝑛𝐿(𝜃) + 2𝐾                                                                                            (3.10) 
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𝜕𝐼𝑛𝐿(𝜃)

𝜕𝜃
= 0                                                                                                               (3.11) 

L(θ) represents the logarithm likelihood function,(𝑢1…𝑢𝑛)𝜖[0,1] standard uniform, K is the 

number of model parameters. 

The system’s structural reliability is determined from the estimated joint PDF obtained from 

corresponding copulas and their marginals. 

3.2.3 Dependence measures 

 

Dependence measures are essential in modeling copulas. In the reliability study, 𝜌𝑝 is the most 

common measure of dependence due to its simplicity in implementation; this is not without its 

shortcomings of capturing only linear relationships between variables. Also, 𝜌𝑝 is with the 

assumption of normality and homoscedasticity between the variables.  

Other measures of dependence are Spearman’s correlation (𝜌𝑟ℎ𝑜) which considers the correlation 

of ranks and  𝜏𝑘 which represents the likelihood of concordance over discordance of data. These 

other dependence measures are non-parametric and independent of the marginal distribution (Joe, 

2014). The mathematical expression describing these measures is shown in (Eqs. (3A.1) to (3A.3), 

Appendix 3A). 

3.3. Framework for Reliability Assessment using Vine Copulas  

 

This section describes a five-step approach for the reliability assessment of marine structures 

considering dependency using vine copulas (D-vine). 
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3.3.1 Implementation procedure 

Step 1: With the data for random variables and their associated marginal distributions, the 

dependence measures between variables is determined using the non-parametric 𝜏𝑘, 𝜌rho and 𝜌p 

described in Section 3.2.3 and (Eq. (3A.3), Appendix 3A) of this study. 

Step 2: Model the multivariate dependence between the random variables using the D-vine copula 

approach described in (Eq. (3.6), Section 3.2.2). The D-vine structure shows the dependency 

(conditional and unconditional) between variables in graphical form. The order of the random 

variables in the first tree of the D-vine structure is determined based on experience or 

combinatorics ( using 𝜏𝑘 obtained in Step 1 and determining the minimum 1-|𝜏𝑘| path). 

Step 3: Using the 𝜏𝑘 obtained in Step 1, a test of statistical independence between random variables 

is carried out using (Eq. (3.8)) described in Section 3.2.2 of this study. The independence test helps 

reduce the complexity of the vine modeling by identifying edges in the vine tree where no 

dependence relationship exists (especially for high-dimensional cases); this also enhances the 

order of the D-vine first tree, presented in Step 2. 

Step 4:  Select the optimal copula from known elliptical and Archimedean copulas for conditional 

and unconditional variables in the D-vine trees described in Section 3.2.2 for the edges of the D-

vine tree structure developed. The MLE approach and minimum AIC for optimal copula selection, 

copula parameter determination (θ), and tail dependence evaluation (where necessary) are 

described in Eqs. (3.9) to (3.11) and (Table 3A.1, Appendix 3A) of this study.  

Step 5: From Step 4, the estimate of the joint PDF for the variables is determined for the given 

copula and marginals of the random variables considered. From the realization of the D-vine 

structure developed in Step 4, the methods described in Section 3.2.1  is employed in the reliability 
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analysis of the structural system to obtain the 𝑃𝑓. The reliability implementation is done in UQLab, 

an uncertainty quantification tool in MATLAB (Marelli & Sudret, 2014). 

Figure 3.1 shows the procedure described for reliability assessment considering dependency 

between variables using a D-vine copula. 

 

 

 

  

 

 

               

 

 

                           Figure.3.1.  Framework for reliability analysis using vine copula. 

                                  

3.3.2. Application example: Cantilever Beam Structure 

A cantilever beam example that models part of a drilling module clarifies the framework described 

in Section 3.3.1. 

Eq. (3.12) shows the LSF of a cantilever beam (Figure 3.2) where 𝑋1, 𝑋2 represent the resisting 

moment capacity of the section. 𝑃1 and 𝑃2 represents the applied load at the cantilever mid-span 

Determination of dependence measures 

between random variables (𝜌rho, 𝜏k, 𝜌p) 

Development of D-vine tree for random 

variables from dependence measures 

Test of independence between variables in the 

vine tree using the Kendall’s test 

Determination of copula parameters and 

optimal selection of copula using MLE and 

AIC method in the vine tree 

Reliability assessment of marine structure 

using (SORM, simulation approach) 
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and derrick end, respectively. Also, the length of the cantilever is denoted by 𝐿2 which is 3m in 

dimension. 𝑋1,𝑋2,𝑃1and 𝑃2are assumed as random variables with parameters shown in Table 3.1. 

                     g (𝑋1, 𝑋2, 𝑃1, 𝑃2) = 𝑋1𝑋2 − 𝑃1𝐿1 − 𝑃2𝐿2                                                 (3.12) 

        

                        Figure 3.2.  Cantilever beam structure. 

Table 3.1. Statistical information of random variables for the cantilever beam. 

         Variables                 Mean                Standard Deviation                Distribution Type 

         𝑋1(kN/m
2)           25x104                       25x103                            Lognormal 

         𝑋2(m
3)                 2.2x10−3                    1.1x10−4                          Lognormal 

         𝑃1(kN)                    100                              10                                  Weibull 

         𝑃2(kN)                    100                              10                                  Weibull 

 

Step1: Determination of dependence measures  

The dependence measures (𝜌p, 𝜌rho, and 𝜏k ) of the cantilever beam’s random variables obtained 

from 300 samples of random variables are shown in Table 3.2. 

Table 3.2. Dependence measures for the cantilever beam. 

                 Variables                      𝜌p                              𝜌rho                               𝜏k 

                     𝑋1, 𝑋2                     -0.848                       -0.876                            -0.844 

                      𝑋1, 𝑃1                      0.779                        0.803                             0.618 
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                      𝑋1, 𝑃2                     -0.051                        0.031                             0.019 

                      𝑋2, 𝑃1                     -0.854                     - 0.860                            -0.728 

                      𝑋2, 𝑃2                     -0.072                      -0.121                            -0.093 

                       𝑃1, 𝑃2                      0.418                        0.457                             0.311 

 

Step 2: vine structure construction for the random variables 

A D-vine structure [𝑃2-𝑃1-𝑋2-𝑋1] as shown in Figure 3.3 is developed for the random variables 

𝑃2, 𝑃1, 𝑋2 and 𝑋1 for this problem. The architecture consists of nodes and edges, with Tree 1 

containing all four random variables of the problem. 

 

                   Figure 3.3.  D-vine structure for cantilever beam variables. 

 

Step 3: Test for independence  

A test for independence of variables in Tree 1 of the D-vine structure shown in Figure 3.3 is 

determined using Kendall’s test as obtained in Eq. (3.8). From the results (Table 3.3), since T > 

1.96, the null hypothesis of independence between variables is rejected at a 5% confidence level. 
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 Table 3.3. Independence test statistics for the cantilever beam. 

                           Variables                                                       T (Statistic) 

                             𝑃2, 𝑃1                                                              8.04 

                             𝑃1, 𝑋2                                                             18.53 

                             X2, 𝑋1                                                             23.01 

 

Consequent to Kendall’s test outcome, independence between variables are not considered in the 

analysis of Tree 1 of the D-vine structure. 

Step 4: Optimal copula selection between random variables  

An optimal copula choice between the random variables is made from known elliptical and 

Archimedean copulas. This work limits selection to the six (6) commonly used copulas; 

Independent, Gaussian, Student t, Clayton, Gumbel, and Frank Copulas. Furthermore, the 

minimum AIC is used as a criterion for optimal copula selection among the random variables and 

determination of θ. Table 3.4 shows the selected copula types in the D-vine trees based on the AIC. 

Table 3.4.  Parameter and Rotation (θ, 𝜃𝑅) of selected copula function. 

 Tree                  Copula Density             Selected Copula                   𝜃𝑅                    θ 

   1                              𝑐𝑃2,𝑃1                             Frank                          270                 -3.09 

   1                              c𝑃1,𝑋2                            Clayton                        270                  5.40 

   1                             c𝑋2,𝑋1                             Gumbel                         90                   9.34 

   2                             c𝑃2,𝑋2𝑃1                          Clayton                         0                     2.66 

   2                             c𝑃1,𝑋1|𝑋2                         Clayton                        90                    4.60 

   3                            c𝑃2,𝑋1|𝑃1,𝑋2                      Independent                  0                       0 
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The copula rotation (𝜃R) and θ for the selected copula, as shown in Table 3.4, are essential for the 

drilling cantilever beam’s reliability assessment. For the beam’s random variables, Figure.3.4 

shows the scatter plot (the visual relationship between realizations of random variables). Figure 

3.4 shows evidence of nonlinearity and tail dependence between the cantilever beam's random 

variables, which obviously cannot be captured using Pearson correlation. 

 

.                                Figure.3.4. Scatter plot for cantilever beam variables. 
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Step 5: Reliability Analysis  

Reliability analysis is evaluated using SORM to determine the 𝑃𝑓 of the structure while considering 

the effect of dependency using selected copulas and LSF of the cantilever beam. The results are 

benchmarked with results from 𝑁 = 105 simulation cycle using IS (Figure 3.5). From Figure 3.5a, 

the reliability plot using the approximate SORM approach shows a convergence outcome (whose 

equivalent failure probability is close to the reference IS (Figure 3.5b) for the cantilever beam. 

                                            

                                                                                (a)  
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                                                                                   (b) 

         Figure 3.5. Cantilever convergence plot (a) considering dependency (D-vine) (b) Using IS. 

 

To check the result’s efficiency from D-vine coupled random variables, a comparative reliability 

analysis is carried out between statistically independent, Gaussian coupled, and D-vine coupled 

cantilever variables. The comparison evaluates the accuracy of reliability results compared with 

benchmark values obtained from IS, as shown in Table 3.5. 

Table 3.5.   Cantilever beam reliability assessment. 

  Assumed Variable Relationship                     𝑃𝑓 (10−3)                               𝛽𝐻𝐿 

   Statistically Independent                                  78.35                                  1.42 

   Gaussian Copula (correlation)                        10.35                                    2.31 

   D-vine Copula                                                  2.90                                    2.76 

   IS (reference)                                                   3.09                                     2.74 
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Also, Figure 3.6 shows the effect of a change in θ on  𝑃𝑓 for selected copulas in the first tree of the 

D-vine structure. The sensitivity plot for the Gumbel and Clayton copula (Figure 3.5 a,b) revealed 

a sharp drop in 𝑃𝑓 with an increase in θ. However, the Frank copula (Figure 3.5 c) only showed a 

slight change in 𝑃𝑓 with θ.  Consequently, this spotlights the significance of appropriate 

determination of the value of  θ as it could have a significant impact on the evaluation of 𝑃𝑓.  

                            

                                                               (a) c𝑋2,𝑋1 (Gumbel,90𝑜)                                
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                                                             (b) c𝑃1,𝑋2 (Clayton, 270𝑜)                           

 

                                   

                                                                 (c) c𝑃2,𝑃1 (Frank,270𝑜) 

                      Figure 3.6.   Copula parameter sensitivity plot for the cantilever beam.  
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3.4. Application of Framework to an Offshore Structure 

 

In this section, the framework discussed in Section 3.3 is demonstrated on a proposed 97m jacket 

support structure with four legs; the structure is subjected to extreme sea state conditions at the 

Jeanne D’Arc basin on Canada’s east coast. This basin is a significant source for oil and gas 

exploration in Canada and is located offshore Newfoundland and Labrador. Jacket structures are 

tubular steel structures (Figure 3.7) that can support drilling and production operations in shallow 

and intermediate water depths. 

                                   

                 Figure 3.7. Model of jacket structure in SACS Version 13.0 (Bentley, 2018). 
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3.4.1. Statistical parameters and probability distribution 

 

The random variables considered for the structure include wave effects [significant wave height 

(H)], current at mean sea level (𝑉s) and current at the mudline(𝑉m).  With a significant part of the 

jacket support structure submerged in water, the wind speed on the structure for a 100-year return 

period is considered deterministic, with an average magnitude and direction of 32.7m/

s, SW 235O. The wind is assumed to approach the jacket approximately 10m above the mean sea 

level. The structure’s response required to develop the LSF under extreme load conditions is the 

Base Shear force (BSF).  

The jacket support structure (Figure 3.7) is modeled (including soil-structure interaction), and 

structural response is obtained under ULS conditions using Structural Analysis Computer 

Software (SACS) to model jackets and tubular structures. The structure is assumed to be located 

at a water depth of 90m in the basin for modeling purposes. Information on prevailing and extreme 

environmental conditions in the offshore basin is obtained from site-specific met-ocean data and 

reports (C-CORE, 2017). Table 3.6 provides the statistical overview of ocean variables for extreme 

load events (100yr return period)  related to ocean waves (H) and current (𝑉s, 𝑉m) obtained from 

the C-CORE report for the Grand Banks region offshore Newfoundland. 

Table 3.6. Statistical information of random variables (C-CORE, 2017). 

  Variables                          Mean                          Coefficient of Variation              Unit 

                               (100-year return period)                    (CoV) 

       H                                 15.5                                         0.1                                    m 

       𝑉s                                2.07                                          0.1                                   m/s 

       𝑉m                               0.77                                          0.1                                   m/s 
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Also, the observation data of random variables (H, 𝑉s, 𝑉m) obtained from the block maxima 

approach are fitted to Extreme Value Distribution (EVD) using the MLE (minimum AIC) method; 

this is to determine the appropriate EVD to fit the random variables related to environmental load 

on the jacket support structure, as shown in Table 3.7. This study assumes sea state data of a given 

random variable as independent and identically distributed and limits the selection to commonly 

used EVD for ocean data (Weibull and Gumbel). 

Table 3.7.  Selection of EVD for ocean variables. 

  Variables                                       EVD                                               MLE (AIC) 

     H (m)                                       Weibull                                               115.72 

                                                      Gumbel                                               129.89 

     𝑉s (m/s)                                    Weibull                                               -10.98 

                                                      Gumbel                                               -7.313 

    𝑉m (m/s)                                    Weibull                                               -76.90 

                                                      Gumbel                                               -54.49 

 

The AIC values in Table 3.7 helps in the choice of the possible EVD for each ocean variable that 

affects the offshore structure. The EVD corresponding to the minimum AIC is chosen for the 

variables related to wave and current for analysis. As shown in Table 3.7, P-P and Q-Q plots of 

Appendix 3A (Figure 3A.1, 3A.2, and 3A.3), the random variables fit the Weibull distribution. 

This is used in the reliability assessment of the jacket support structure. 
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3.4.2. Dependence modeling using D-vine Copula 

 

For the support structure, the dependence measure between random variables H, 𝑉s and 𝑉m as 

shown in Table 3.8, is obtained from the analysis of met-ocean data obtained in the C-CORE 

report. The 𝜌𝑝 and 𝜌𝑟ℎ𝑜 (Table 3.8) provide similar results of correlation between variables, and 

the non-parametric 𝜏𝑘 presents the strength of dependence between the ocean variables (such as 

the strong positive dependence observed between 𝑉s and 𝑉m). 

Table 3.8. Dependence measures between variables of Jacket Structure (C-CORE, 2017). 

Variables                             𝜌𝑝                                    𝜌𝑟ℎ𝑜                               𝜏𝑘 

𝐻 and 𝑉s                          -0.7159                             -0.7740                           -0.6 

𝑉s and 𝑉m                         0.8901                               0.9337                          0.7931 

𝐻 and 𝑉m                        -0.7007                              -0.7958                        -0.6046 

Considering the dependency between the variables (H, 𝑉s, 𝑉m), a D-vine structure of order [H-𝑉𝑠-

𝑉𝑚] is developed, as shown in Figure 3.8. 

                      

            Figure 3.8.  Offshore jacket structure D-vine configuration for ocean variables. 
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Kendall’s test (Eq. (3.8)) helps ascertain the possibility of independence in the D-vine tree. Table 

3.9 shows the independence test statistic between ocean variables for the jacket structure using 

Kendall’s test. Since the value of  (T >1.96) is observed in Table 3.9, the study rejects the null 

hypothesis of independence between ocean variables at a 5% confidence, as described in Eq.(3.8). 

   Table 3.9. Independence test for variables of the jacket structure. 

                              Variables                                                          T (Statistic) 

                                H, Vs                                                                4.657 

                                𝑉s, 𝑉m                                                               6.155 

                                H,𝑉m                                                                4.692 

 

The optimal selection of copulas is made from the elliptical (Gaussian, Student t) and Archimedean 

(Clayton, Gumbel, Frank) copula families using the MLE approach (Table 3.10 and Table 3.11).  

Table 3.10. Copula selection for the jacket structure using the MLE approach. 

               Copula Type               AIC c𝐻,𝑉s                     AIC c𝑉s,𝑉m                   AIC c𝐻,𝑉m|𝑉s  

                Independent                   -                                  -                                    0 

                Gaussian                     -28.62                           -58.25                           0.67 

                Student t                     -26.90                           -57.31                           2.94 

                Clayton                      -31.43                            -55.39                           1.52 

                Gumbel                      -31.52                            -61.10                           1.82 

                 Frank                         -24.98                            -56.10                           0.87 
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Table 3.11. Optimal copula for variables of the jacket structure. 

    Copula                  Optimal Copula Type                    𝜃𝑅(Deg)                     θ 

     c𝐻,𝑉s                              Gumbel                                    270                        2.50 

     c𝑉s,𝑉m                            Gumbel                                    180                        4.83 

    c𝐻,𝑉m|𝑉s                        Independent                                  0                            0 

 

The result from copula selection (Table 3.11) using the MLE method is essential in characterizing 

the dependency between variables for the jacket reliability assessment.  

The scatter plots of the random variables (H,𝑉𝑠,𝑉m) is shown in Figure 3.9. The plot in Figure 3.9 

suggests evidence of nonlinearity and upper tail dependence between ocean variables captured by 

the Gumbel copula. 

                
 

                       Figure 3.9.  Scatter plots for H, 𝑉𝑠 and 𝑉𝑚 variables for jacket structure. 
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3.4.3. Metamodel and reliability assessment of the structure 

 

The LSF of most complex marine structures is implicit in form. To reduce the computational 

burden due to large runs using the Finite Element Method for reliability assessment, a metamodel 

describing the jacket ULS condition is developed using ED points and corresponding responses.  

The ED is constructed using the Latin Hypercube Sampling (LHS) infill sampling technique, and 

150 sampling points are obtained from met-ocean statistical summary data, as shown in Table 3.6. 

BSF responses of the jacket for the sampling points are determined using SACS at different 

environmental load angles.  

The Polynomial Chaos Kriging (PCK) technique is used to develop a metamodel for reliability 

analysis. PCK (Eq. (3.13)) combines the advantages of the PCE and Kriging metamodel, as it 

captures both the global behavior and local variability of the model. 

                 𝑀𝑃𝐶𝐾(𝑥) =  ∑ 𝑦𝛼𝜑𝛼(𝑥)  𝛼𝜀𝐴 +  𝜎2𝑧(𝑥, 𝜔)                                                          (3.13) 

𝑀𝑃𝐶𝐾(𝑥) is the approximated PCK response,  𝜎2  is the variance of the Gaussian process, 𝑧(𝑥, 𝜔) 

represents the stationary Gaussian process, and 𝜑𝛼(𝑥) represents the orthonormal polynomial with 

the corresponding coefficient 𝑦𝛼.  

The PCK model substitutes the trend function of Kriging with orthonormal polynomials (Schobi 

et al., 2015). With sampling points, copula functions, and responses, the PCK approach is used to 

develop the metamodel required for reliability analysis. The metamodel is validated with 50 

environmental load data and their corresponding BSF responses, which showed minimal deviation 

from the actual structural responses (see Table 3A.2, Appendix 3A). In this case,  𝑔(𝐻, 𝑉𝑠, 𝑉𝑚) ≈

𝑀𝑃𝐶𝐾(𝑥) represents the LSF of the jacket structure. 
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Next, the jacket’s reliability is determined from the constructed metamodel at various 

environmental load angles. For reliability analysis, this study focuses on the ULS condition, with 

its violation resulting in an eventual collapse of the jacket structure. Also, it considers the 

dependency between environmental variables affecting the jacket support structure using a D-vine 

copula. Current and wave loads are assumed to approach the jacket from the same direction and at 

a step of 45𝑜. The metamodel is constructed at various approach angles to the structure, 

considering dependency. 

Appendix 3A (Figure 3A.4) shows the convergence plot at various approach angles of the jacket 

structure’s environmental load.   

The contribution of the variables (Figure 3.10) to the reliability assessment using the D-vine copula 

is also determined to ascertain the essential and leading variables that affect the structure’s 

reliability.            

                  

                       Figure 3.10. Contribution of variables to jacket structure reliability assessment. 
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The IS simulation approach (105 simulation cycles) is utilized as a reference to compare results 

obtained from reliability assessment using D-vine Copula, Gaussian Copula, and statistically 

independent variables, as shown in Table 3.12. This comparison further emphasizes the 

effectiveness of the D-vine copula approach in obtaining an improved estimate of the 𝑃𝑓 for the 

structure. 

Table 3.12. Offshore jacket structure failure probability for different load directions. 

  Load                      Statistically                        Gaussian                     D-vine              Reference 

  Direction               Independent                         Copula                       Copula 

                                   𝟏𝟎−𝟏𝟏                               𝟏𝟎−𝟏𝟎                          𝟏𝟎−𝟓                    𝟏𝟎−𝟓 

    0/360𝑜                   104.47                              149.52                          5.99                      6.08 

    45𝑜                           47.28                                86.06                          4.66                      6.36 

    90𝑜                             3.32                                13.80                          4.14                      5.98 

   135𝑜                            6.55                                22.12                          4.05                      6.44 

   180𝑜                            4.02                                11.05                          4.68                      6.02 

   225𝑜                            6.16                                20.19                          7.06                      6.81 

   270𝑜                            3.31                                13.97                          4.66                      5.91 

   315𝑜                           50.75                               88.10                          5.90                      6.57 

 

3.4.4. Discussion on dependence modeling results 

 

From the cantilever beam example in Section 3.3 and the case study presented in this section, it is 

evident that the introduction of D-vine copula to model dependency between random variables 

provides a better approximation of the 𝑃𝑓 for complex marine structures compared to Gaussian 

Copula or when variables are assumed statistically independent. In the case of the cantilever beam, 

𝑃𝑓 result for the D-vine copula approach was found to be relatively closer to the IS benchmark 
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result (𝑃𝑓 deviation 1.9x10−4) as shown in Table 3.5. Similarly, 𝑃𝑓 results for all approach angles 

of the environmental loads to the jacket support structure (Table 3.12) show the comparative 

superiority of D-vine copulas in the reliability assessment to the benchmark values. D-vine copula 

provides robustness in its ability to capture nonlinearity and tail dependence between variables, as 

seen in the selection of Clayton and Gumbel copulas in the presented example and case study.  The 

D-vine Copula overcomes the Gaussian Copula’s limitation, which uses correlation values and can 

only capture linear dependence between variables. 

Although vine copulas are flexible for dependence modeling, the results from the copula sensitivity 

plot for Tree 1 of the cantilever beam (Figure 3.6) reveal that the Clayton and Gumbel copulas are 

highly sensitive to a change in copula parameters. In contrast, the Frank copula is the least 

susceptible to parameter change. The results suggest the need for optimal copula selection and 

accurate determination of copula parameters during dependence modeling of structures to obtain 

reliable results with a higher confidence level.  In this study, the optimal copula choice is made 

considering the copula type with the lowest AIC value between random variables, as illustrated in 

Table 3.10 for the jacket support structure. 

From the reliability analysis results (Table 3.12) of the support structure using the D-vine copula 

(Gumbel and Independent), the highest 𝑃𝑓 (7.06 𝑥 10−5) is observed at an approach angle of 225𝑜 

of wave and current to the jacket structure. Consequently, this value indicates how the structure 

meets target reliability values and gives insight into the critical environmental load direction 

required in the site-specific structural reliability design and reassessment under ULS conditions.   

As shown in Figure 3.10, the random variable H(m) provides approximately 70% of the 

contribution to the LSF and is the most significant variable in the reliability assessment of the 
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jacket structure, with the most negligible contribution from 𝑉𝑚(m/s) in all directions. The 

contribution of random variables to the LSF can help design engineers in variable screening and 

determining the essential variables during limit state design of marine structures.  

Although a wide range of bivariate copulas exists, this study is limited to a few known copulas 

(Gaussian, Student t, Clayton, Gumbel, Independent, and Frank). However, this can be expanded 

to consider more copulas families to determine the best fit copula for modeling the dependency of 

marine structures under specific conditions. The selection of probability distribution for random 

variables is limited to the known extreme (Weibull and Gumbel) and continuous distributions. 

More distribution types can be considered, especially in a data-driven case, to ascertain the D-vine 

Copula’s efficacy in the reliability study of marine structures. The case study (jacket) considered 

three-dimensional input random ocean variables due to limited data. The framework can be further 

investigated to determine its robustness with the availability of data for different ocean parameters, 

such as ice, earthquakes, and tidal effects. 

3.5. Conclusions 

 

This work develops a framework to model the dependency between variables of marine structures 

using a D-vine copula. The method overcomes the challenge of capturing the nonlinearity and tail 

dependence among variables that may affect its reliability evaluation and cannot be accounted for 

by the Pearson correlation.  

The study applied the framework to an offshore structure, with results showing the efficiency of 

the D-vine copula in providing a more accurate estimate of the 𝑃𝑓 compared to the Gaussian copula 

or when variables were assumed statistically independent. The bias in results using Gaussian 
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copula or statistically independent variables was evident in the jacket structure and cantilever beam 

problem presented in this work. 

D-vine copula proved to be a powerful and flexible tool for modeling dependency between marine 

structural variables and ensuring an improved quality of reliability-based assessment.   

The framework presented in this study can be applied to different marine structures with higher 

dimension variables, implicit LSF as well as low 𝑃𝑓 under various limit state conditions. 

With the limitation of this study to commonly used copulas, research into the use of other families 

of copulas can be investigated. An optimal selection among various copulas can improve the 

quality of dependence modeling for structural reliability assessment.  
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Appendix 3A 

 

Table 3A.1.  Selected bivariate copula functions.  

Copula Type             Copula Function                 Lower Tail                   Upper Tail         Copula Parameter 

                                                                             Dependence (⅄L)      Dependence (⅄𝑈)         Range (𝜃) 

Clayton          (𝑢1
−𝜃 + 𝑢2

−𝜃)−
1

𝜃                                 2−
1

𝜃                              0                         (0,∞)                

 

Gumbel      Exp {-[(−In𝑢1)
𝜃 + (−In𝑢1)

𝜃]
1

𝜃}              0                          2 − 2−
1

𝜃                    (1,∞) 
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Frank           - 
1

𝜃
In (1+

(𝑒−𝜃𝑢1−1)(𝑒−𝜃𝑢2−1)

(𝑒−𝜃−1)
)                     0                               0                        (−∞,∞) 

 

Gaussian         𝞍 (𝛷−1(𝑢1), 𝛷
−1(𝑢1)|𝜃)                      0                                 0                          (-1,1) 

 

Student t        𝑡𝜃,𝑣∗(𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢1)|𝜃)      𝑡𝑣+1(−√𝑣 + 1)√
1−𝜃

1+𝜃
)   2𝑡𝑣+1(−√(𝑣 + 1)√

1−𝜃

1+𝜃
)         (-1,1) 

 

𝑣 ∗  is a parameter of the t copula. 

 

Equations for Dependence Measures  

𝜌𝑝 = 
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2∑(𝑦𝑖 − 𝑦̅)2
                                                         3A. 1 

                      𝜌𝑟ℎ𝑜 = 1 −
6∑𝑑𝑖

2

𝑛(𝑛2−1)
                                                                                3A. 2 

                      𝜏𝑘 = 4∫ ∫ 𝐶(𝑢1, 𝑢2|𝜃)𝑑𝐶(𝑢1, 𝑢2) − 1
1

−1

1

−1
                                  3A. 3   
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                    Gumbel Distribution                                              Weibull Distribution  

                Figure 3A.1.  Fitting extreme value distribution to H (m) data. 

  

                     Gumbel Distribution                                        Weibull Distribution 

                     Figure 3A.2.  Fitting extreme value distribution to 𝑉𝑠(m/s) data. 
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                          Gumbel Distribution                                        Weibull Distribution 

                   Figure 3A.3.  Fitting extreme value distribution to 𝑉𝑚(m/s) data. 

 

Table 3A.2. PCK metamodel validation error at approach angle to jacket structure. 

              Environmental load                                              PCK metamodel validation error 

               approach angle                                                                        (kN) 

                      0/360𝑜                                                                    1.849 x 10−2 

                        45𝑜                                                                        2.006 x 10−2 

                        90𝑜                                                                        1.846 x 10−2 

                      135𝑜                                                                        1.751 x 10−2 

                      180𝑜                                                                        1.304 x 10−2 

                      225𝑜                                                                        1.664 x 10−2 

                      270𝑜                                                                        1.358 x 10−2 

                      315𝑜                                                                        1.987 x 10−2 
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                        (a)     0𝑂/360𝑂                                                     (b)       45𝑂                               

 

                      (c)      90𝑂                                                                  (d)    135𝑂 
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                            (e)    180𝑂                                                            (f)     225𝑂 

 

 

                            (g)     270𝑂                                                             (h)    315𝑂 

 Figure 3A.4.  Convergence plots for various environmental load angles on a jacket structure. 
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Chapter 4 

An Active Learning Polynomial Chaos Kriging Metamodel for Reliability Assessment of 

Marine Structures 

Preface 

A version of this chapter has been published in the Ocean Engineering 2021; 235:109399.  I am 

the primary author that produced this work, along with Co-authors Faisal Khan and Salim Ahmed. 

I reviewed the relevant literature, developed the concept and methodology, prepared the original 

manuscript, software implementation, reviewed and revised the manuscript following the co-

authors' feedback and peer review from the journal. Co-author Faisal Khan assisted in the concept 

development and methodology, research supervision, funding for the work, review, and editing of 

the manuscript. Co-author Salim Ahmed assisted in concept development and its methodology, 

validation, research supervision, reviewing, and manuscript editing. 

Abstract 

Metamodel combined with simulation type reliability method is an effective way to determine the 

probability of failure (𝑃𝑓) of complex structural systems and reduce the burden of computational 

models. However, some existing challenges in structural reliability analysis are minimizing the 

number of calls to the numerical model and reducing the computational time. Most research work 

considers adaptive methods based on ordinary Kriging with a single-point enrichment of the ED. 

This work presents an active learning reliability method using a hybrid metamodel with multiple-

point enrichment of ED for structural reliability analysis. The hybrid method (APCKKm-MCS) 

takes advantage of the global prediction and local interpolation capability of Polynomial Chaos 

Expansion (PCE) and Kriging, respectively. The U learning function drives active learning in this 

approach, while K-means clustering is proposed for multiple-point enrichment purposes. Two 
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benchmark functions and two practical marine structural cases validate the performance and 

efficiency of the method. The results confirm that the APCKKm-MCS approach is efficient and 

reduces the computational time for reliability analysis of complex structures with nonlinearity, 

high dimension input random variables, or implicit function. 

Keywords: Structural Reliability; Polynomial Chaos Kriging; Active learning function; Monte 

Carlo Simulation; Experimental Design   

4.1. Introduction 

 

Complex marine structures operating in the harsh and remote ocean environment require higher 

reliability to ensure the safety of life, asset, and the environment throughout their operational life. 

To ensure higher reliability, one would need efficient and robust reliability assessment models 

(Weinmeister et al., 2019). There have been efforts to develop and use metamodels for engineering 

structures and systems; this ranges from but is not limited to Polynomial Regression, ANN, SVR, 

PCE, and Kriging  (Weinmeister et al., 2019). Ocean structures are complex in their physical and 

functional form, with mainly implicit or no closed-form LSF describing their various failure modes  

(Bai & Jin, 2016).  For such structures, metamodel choice becomes crucial in the limit state design 

(Ultimate, Serviceability, Damage, and Fatigue). Among these metamodels, Kriging and PCE are 

non-intrusive and have gained wide application for reliability assessment in various engineering 

fields, including marine structures (Teixeira & Soares, 2018).  

PCE is a well-established metamodel with wide application in mathematics and engineering; it 

started as a stochastic FEA concept in the 90s (Ghanem & Spanos, 1997). The method gained 

usefulness in reliability analysis as a metamodel in the 2000s (Sudret & Der Kiureghian, 2002). 

PCE is a spectra-based metamodeling approach that expresses the system response of finite 

variance in terms of the polynomial of its input variables. It comprises a series of multivariate 
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orthogonal polynomials and their corresponding coefficients. The PCE approach is relatively 

simple to construct; it provides an easy estimation of the global statistics of the system's response, 

which includes the statistical moment and distribution. PCE model allows for the computation of 

sensitivity analysis, and it is efficient for resampling purposes (Marelli &Sudret,2019).  

Similarly, Kriging is an interpolation technique that originated in geostatistics. The system’s 

response is assumed to follow a Gaussian process with a given covariance structure. The approach 

explores the correlation information of existing data samples to obtain the output for new input 

points. It captures the local variability of the response as a function of the neighboring data points. 

Kriging is flexible to a wide range of correlation functions, provides a strong interpolation 

capability among the data points, and can produce the mean prediction and associated variance for 

output response. Also, the statistical information from the output response can be utilized for 

model refinement through an adaptive process (Santner et al., 2003).  

Various marine-related studies have applied the Kriging and PCE technique in prediction and 

reliability studies. Chi et al. (2017) demonstrated the Legendre PCE method's application in the 

statistical analysis of crosstalk in wire harnesses for naval ships. Ni et al. (2018) applied the 

concept of PCE in dynamic response analysis of marine risers.  Zhang et al. (2021) studied the 

uncertainty propagation and sensitivity analysis of a marine vehicle's shafting system using the 

generalized PCE method. Bahmyari et al. (2017) research considered the effect of a combination 

of PCE and the Galerkin method for the bending analysis of deformable plates. Lim et al. (2018) 

utilized PCE in developing a long-term surge motion analysis for a moored offshore vessel. In 

another study, Nguyen et al.(2019) developed a PCE framework for extreme load analysis of a 

single-body wind energy converter.   The reliability assessment of subsea anchors using the PCE 

approach also showed its application to subsea facilities (Charlton & Rouainia,2019). Hu et al. 
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(2019) investigated the performance of second and third-order PCE in hydrological modeling. The 

concept of developing a PCE metamodel has also gained practical application in marine concrete 

analysis. Bastidas-Arteaga et al. (2020) applied the PCE method in uncertainty propagation and 

sensitivity analysis of chloride-induced corrosion on marine concrete structures.  

Furthermore, Kriging metamodels have found wide applications in marine science and technology; 

below are some research-related applications of Kriging in the reliability analysis of marine 

structures and maritime operations. Morató et al.(2019) applied Kriging for the reliability analysis 

of an offshore wind energy converter's monopile support structure. Teixeira et al. (2019) proposed 

an approach to reduce the computational effort in the fatigue stress analysis of an offshore wind 

tower using the Kriging method. Gaspar et al.(2014) studied Kriging's efficiency in developing 

metamodels for marine structures with its application to a stiffened plate; the study showed the 

superiority of Kriging over the polynomial regression method in structural reliability assessment. 

Chen et al. (2016) applied a combination of Kriging metamodels for flexible risers optimal design. 

Hill et al.(2016) developed a Kriging model for motion response monitoring of FPSO mooring 

lines. For a vessel-shaped fish farm mooring system, Kriging was applied for optimization 

purposes (Li et al., 2019). Shi et al. (2015) developed a metamodel using Kriging for reliability 

assessment of a marine vessel's bottom plate subject to environmental load. Kriging has also found 

applications in offshore semi-submersible reliability assessment (Xu et al.,2018). Brandt et al. 

(2017) demonstrated the application of Kriging in the fatigue assessment of an offshore wind 

turbine's jacket support structure. Wang et al.(2019) investigated the optimization of an 

autonomous underwater vehicle's appendage using Kriging. Abdalla et al.(2018) demonstrated the 

application of Kriging in studying the effect of chemicals on workers' exposure to new positions 

on a coastline. Bian et al.(2019) applied the concept of Kriging to monitor the marine environment 
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in coastal China. Zhang et al.(2018) used the interpolation ability of Kriging in determining the 

possibility of drilling sections of formations in oil and gas drilling operations. 

The Kriging and PCE metamodels can capture local variability and global behavior of the output 

response, respectively, which is a significant strength of these models. 

The PCK method combines these advantages of Kriging and PCE to produce a robust metamodel 

that can reduce the rigor involved with computational models (Schöbi et al., 2015). Recently,  

research has focused on combining metamodels for efficient reliability assessment, especially in 

aerospace-related research. Cheng & Lu (2020) study focused on developing a metamodel 

ensemble for reliability assessment. PCK metamodel has been applied in airfoil and aircraft engine 

nacelle analysis (Weinmeister et al., 2019). Also, Leifsson et al.(2020) utilized PCK metamodel 

in the yield estimation of multiband patch antennas.  

Unlike the broad application of PCE and Kriging in various engineering design areas, the potential 

advantage of PCK has not been widely explored, especially in the reliability assessment of marine 

structures. 

This study aims to achieve the following objectives 

1. Develop an active learning PCK framework for marine structure reliability, combining 

PCE and ordinary Kriging advantages.  

2. Implement a multiple sampling point ED enrichment of PCK metamodel by K-means 

clustering to reduce computational time during reliability analysis rather than a single point 

enrichment as commonly adopted in active learning studies.  

3. To present a practical application of the developed framework for marine structural 

reliability assessment.  
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The proposed method is described in this work as an Active Learning PCK using K-means 

clustering (APCKKm-MCS).   

The remainder of this work is organized as follows: Section 4.2 describes the preliminaries of 

active learning, metamodels, and reliability. Section 4.3 details the methodology with illustrative 

examples. Section 4.4 presents case studies applying the APCKKm-MCS approach in the 

reliability-based analysis of a truss system and an SCR under operating conditions. Section 4.5 

concludes the study. 

4.2. Preliminaries on the hybrid metamodel 

 

4.2.1. Metamodels 

With the burden from computational models for complex structures, metamodels provide an 

inexpensive way to approximate input and output relationships using cheap-to-evaluate analytical 

models. This section will establish the fundamentals of Kriging and PCE required in PCK 

construction. 

4.2.1.1. Kriging 

Kriging structure comprises a trend, and stochastic part, with the latter represented by a stationary 

Gaussian Process of zero mean and unit standard deviation. Eq. (4.1) is a typical representation of 

the Kriging model.  

                 𝑦 ≈ 𝑀𝐾(𝑥) = 𝛽𝑇𝑓(𝑥) + 𝜎𝑔
2𝑧(𝑥)                                                             (4.1) 

𝛽𝑇𝑓(𝑥) , 𝜎𝑔
2  represents the mean value (trend function) and the variance of the Gaussian process, 

respectively. The notation 𝑧(𝑥); denotes the stationary Gaussian process, determined by the 
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autocorrelation function R. Also, the response approximation using Kriging metamodel is 

represented as 𝑀𝐾(𝑥).  

The Kriging model parameters such as the coefficient of the trend function (𝛽), process variance 

(𝜎𝑔
2) and the hyperparameters (𝜃ℎ) of the stationary Gaussian process are determined by the MLE 

approach as shown in Eqs. (4A.1) to (4A.4) of Appendix 4A.  

For the stochastic term, kernel selection for the Kriging model is made from a range of 

autocorrelation functions such as linear, exponential, Gaussian, and Matérn. This study adopts the 

more generalized Matérn autocorrelation function (Santner et al.,2003) with shape parameter ν𝑠 = 

5/2, as shown in Eq. (4.2).  

          𝑅(|𝑥 − 𝑥 ,|; 𝑙; 𝜈𝑠 = 5 2⁄ ) = ∏ (1 +
√5|𝑥−𝑥,|

𝑙𝑖
+
5|𝑥𝑖−𝑥𝑖

,|2

3𝑙𝑖
2 ) exp (

−5|𝑥𝑖−𝑥𝑖
,|

𝑙𝑖

𝑀
𝑖=1 )                  (4.2)  

From the expression, 𝑥 , 𝑥 ,; are sample points, and 𝑙 is the correlation length.  

The Kriging unique predictor is based on available observation and response data. The predicted 

mean (𝜇𝑌̂) at a given point gives the output shown in Eq. (4.3). 

Finally, the predicted variance (Eqs. (4.4) and (4.5)) provides further information about the 

uncertainty of the mean.  

                    𝜇𝑌̂(𝑥) = 𝑓(𝑥)
𝑇𝛽 + 𝑟(𝑥)𝑇𝑅−1(𝑦 − 𝐹𝛽)                                                        (4.3)      

                  𝜎2𝑌̂(𝑥) = 𝜎2[1 − 𝑟𝑇(𝑥)𝑅−1𝑟(𝑥) + 𝑉𝑇(𝑥)(𝐹𝑇𝑅−1𝐹)−1𝑉(𝑥)]                  (4.4)    

Where                     𝑉(𝑥) = 𝐹𝑇𝑅−1𝑟(𝑥) − 𝑓(𝑥)                                                                (4.5) 

𝑟(𝑥) represents the cross-correlation vector between prediction point 𝑥 and N sample points (Eq. 

(4.6)). 
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                 𝑟(𝑥) = [𝑅𝜃(𝑥, 𝑥
1), 𝑅𝜃(𝑥, 𝑥

2),……𝑅𝜃(𝑥, 𝑥
𝑁)]                                                (4.6) 

 

4.2.1.2.  The orthogonal polynomial model (PCE) 

 

PCE is a weighted sum of multivariate orthogonal polynomials and considers a finite output 

variance. Eq. (4.7) shows the structure of a PCE model. 

𝑦 ≈ 𝑀𝑃𝐶𝐸 = ∑ 𝑦𝛼𝛹𝛼(𝑥)

𝛼∈𝑁𝑀

                                                                                  (4.7) 

𝛹𝛼(𝑥)  is the polynomial basis function of the multivariate polynomial and 𝑦𝛼; represents the 

coefficients of the function. The family of orthogonal polynomials satisfies an inner product 

requirement (Eq. (4A.5), Appendix 4A). 

The multivariate polynomials are a tensor product of univariate polynomials, as shown in Eq. (4.8). 

These polynomials follow the orthogonality condition shown in Eq. (4.9). 

𝛹𝛼(𝑋) =∏𝛹𝛼
(𝑖)(𝑋𝑖)

𝑀

𝑖=1

                                                                                    (4.8) 

                 𝐸(𝛹𝛼𝛹𝛽) = ∫ 𝛹𝛼𝛹𝛽𝑓𝑋(𝑥)𝑑𝑥𝐷𝑥
= 𝛿𝛼𝛽                                                     (4.9) 

There is a natural relationship between orthogonal polynomials and probability distribution. The 

Wiener-Askey scheme attributes specific orthogonal polynomials to a given probability 

distribution of the random variables (Xiu & Em Karniadakis, 2003). Table 4A.1 (Appendix 4A) 

shows the families of orthogonal polynomials and the associated distribution. For situations with 

no specific basis for the distribution type, an isoprobabilistic transformation to the desired 

distribution type in the conventional Askey scheme basis is considered (Lebrun & Dutfoy, 2009). 
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The PCE approach suffers from the curse of dimensionality, as shown in Eq. (4.10), where the 

number of required polynomials grows exponentially both in degree and dimension. The result 

increases the computational expense of the model. Consequently, there is a need for truncation of 

the terms of the polynomial. 

𝑃𝑂 =
(𝑃 + 𝑁𝑑)!

𝑃!𝑁𝑑!
                                                                                                     (4.10) 

𝑃𝑂 is the number of terms in the PCE, 𝑁𝑑 represents the dimensionality of the random variable, 

and 𝑃  is the maximum order of the basis polynomial. The truncation of the orthogonal polynomial 

infinite series is achieved using a sparse algorithm that disregards interactive terms and penalizes 

higher-order terms while selecting a 𝑃 that minimizes the cross-validation error (Fajraoui et al., 

2017). This approach increases the robustness of the method and prevents overfitting. 

 The Least Angle Regression Selection (LARS) provides an algorithm that allows for appropriate 

truncation, considering only the orthogonal basis's non-zero terms. This study adopts LARS for its 

successful application in obtaining the best sparse set (Blatman & Sudret, 2011). Eqs. (4.11) and 

(4.12) show the penalized least square with regularization (𝛾) and Leave-One-Out error (∈𝐿𝑂𝑂) 

which needs to be minimized to obtain the best sparse set of coefficients. ∈𝐿𝑂𝑂 is a cross validation 

error which prevents the common overfitting problem peculiar to PCE (Lataniotis et al,2019). 

𝑦𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛
1

𝑛
∑(𝑌𝑇𝛹𝛼(𝑥

(𝑖)) − 𝑀(𝑥(𝑖)))2
𝑛

𝑖=1

+ 𝛾∑|𝑦𝛼|

𝛼∈𝐴

                                  (4.11) 

                             ∈𝐿𝑂𝑂=
1

𝑛
[
∑ (𝑀(𝑥𝑖)−𝑀𝑌,̂(−𝑖)(𝑥𝑖))

2
𝑛
𝑖=1

𝑉𝑎𝑟(𝑦)
]                                                (4.12) 
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From Eqs. (4.11) and (4.12), n represents the number of sample points in the ED. 𝑉𝑎𝑟(𝑦); denotes 

response data variance and 𝑀𝑌,̂(−𝑖)(𝑥𝑖); represents the model response with the exclusion of a data 

point from the ED. 

4.2.1.3. The hybrid metamodel (PCK)  

 

The hybrid model effectively combines Kriging and PCE's advantage, as highlighted in the 

introduction. To connect the metamodels, the sparse PCE term, shown in Eq. (4.7), is utilized as 

the trend function in Eq. (4.1). Consequently, a robust metamodel for the reliability assessment of 

marine structures is formed. 

Eq. (4.13) shows a typical PCK expression with a polynomial trend term. 

𝑦 ≈ 𝑀𝑃𝐶−𝐾(𝑥) = ∑ 𝑦𝛼𝛹𝛼(𝑥)

𝛼=𝐴

+ 𝜎𝑔
2𝑧(𝑥)                                                              (4.13) 

In this approach, the sparse polynomial set obtained from the LARS algorithm is ranked based on 

its correlation with the residual obtained and introduced individually as a trend function in the 

Kriging model (Eq. (4.1)). In the process, the error is determined at each iterative step until the 

trend function contains all sparse set of polynomials initially defined. The iterative action which 

minimizes ∈𝐿𝑂𝑂 is determined and used as the optimal PCK model. The calibrated model then 

serves as a metamodel for response determination. The least-square minimization approach has 

the obvious advantage of using an arbitrary number of input points to determine the coefficients if 

they represent the random input variables. 

4.2.2. Active Learning Function and ED Enrichment 

 

In recent times, the enrichment of ED in metamodel construction has become an attractive means 

to reduce computational cost. The enrichment concept reduces the performance function's 
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computational evaluation and improves the metamodel's efficiency and accuracy. It selects the 

next best point in an iterative pattern from the candidate sample pool until the stopping criteria are 

met. Current research focuses on developing active learning functions, although these are mainly 

variants of the existing learning functions. 

The Efficient Global Optimization (EGO) method for computational cost reduction pioneered the 

concept of active learning (Jones et al.,1998). Other active learning methods have developed after 

the EGO approach.  The Expected Feasibility Function (EFF)  (Bichon et al.,2008) and the U 

function (Echard et al., 2011) selects points from the candidate population with consideration of 

sample points close to the limit state surface and with considerable uncertainty of the prediction. 

Lv et al. (2015) proposed the H function, which considers sample points with significant prediction 

error and information entropy close to the limit state surface. Also, Sun et al. (2017) proposed the 

Least Important Function (LIF), which considers the improvement of 𝑃𝑓 of the Kriging model with 

enrichment of the ED. Although, there exist several active learning functions, they are rarely 

applied practically because of their difficulty in implementation. However, U function stands out 

in its simplicity in implementation and fast convergence. Consequently, it will be used for active 

learning in this study. More specifically, the U function selects from the candidate pool the sample 

with the maximum probability of misclassification. The U function is premised on the fact that the 

sign of the performance function affects the next point required for enrichment. The probability of 

misclassification (𝑃𝑚𝑖𝑠) is shown in Eq. (4.14). 

     

𝑃𝑚𝑖𝑠 = Ф (
−|𝜇𝑔̂(𝑥)|

𝜎𝑔̂
)                                                                                    (4.14) 
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                Where   𝑈(𝑥) =
|𝜇𝑔̂(𝑥)|

𝜎𝑔̂
                   

The sample point which minimizes 𝑈(𝑥) (Eq. (4.15)) has a high tendency to change the sign in the 

vicinity of the limit state surface and is considered the next new point in the ED. The smaller the 

U(x) value, the more prediction uncertain the sign is for the LSF. The stopping criterion of the U 

function is set as min U(x)≥2.  

               𝑥𝑛𝑒𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑈(𝑥))   for x ∈ 𝑆𝑃                                                               (4.15)  

                  where  𝑆𝑃  is the sample population 

The initial development and application of active learning methods have focused on ordinary 

Kriging taking advantage of its interpolation and stochastic capabilities. Also, single-point 

enrichment has been the focus of the active learning methods developed. 

The enrichment of ED is usually achieved by the next best point from the candidate pool, as 

described in Eq. (4.15). While most active learning approaches in the literature have enriched the 

ED with a single point, this work considers multiple enrichment using the weighted K-means 

clustering approach (Zaki & Meira, 2014). The clustering weight is determined by 𝑃𝑚𝑖𝑠 (Eq. 

(4.14)); the approach significantly reduces the number of iterations while still maintaining the 

quality of the metamodel and accuracy of the 𝑃𝑓. 

 4.2.3. Structural Reliability 

 

The structural reliability approach determines the probability of structural failure given random 

input variables. 𝐺(𝑥) represents the LSF that characterizes the performance of the system. The 

limit state surface (𝐺(𝑥) = 0) divides the standard normal plane into safe (𝐺(𝑥) > 0) and failure 

regions (𝐺(𝑥) < 0). The integral of a joint PDF (𝑓𝑋(𝑥)) in the failure domain determines 𝑃𝑓 (Eq. 
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(4.16)). X represents the random input vector where 𝑋 = [𝑥1, … . 𝑥𝑛]
𝑇. For the joint PDF, obtaining 

a closed-form solution for this integral is challenging. 

            𝑃𝑓 = ∫ 𝑓𝑋
𝐺(𝑥)≤0

(𝑥)𝑑𝑥                                                                (4.16)                     

The gradient-based reliability approach (based on Taylor's expansion series) and the simulation 

type methods provide an alternative in the determination of the structural system 𝑃𝑓 . Examples of 

this approach include the FORM and SORM (Zhao & Ono, 1999). However, the gradient-based 

method presents difficulty in dealing with nonlinear and complex LSF, system reliability 

problems, and multiple design points. The simulation methods include MCS and variance 

reduction methods like ‘IS’ (Ang et al.,1992), Line Sampling (Pradlwarter et al., 2007), and Subset 

Simulation (Au & Beck, 2001). The MCS method (Eq. (4.17)) is straightforward to implement, 

independent of the type of LSF and distribution of the input variables. MCS has gained useful 

applications in various engineering areas. From Eq. (4.17), 𝑁𝑚𝑐𝑠 and 𝑁𝐺(𝑥)≤0 represents the 

sampling size and samples in the failure domain or on the limit state surface respectively. Also, 

Eq. (4.18).  shows the CoV which signifies the uncertainty in  𝑃𝑓 from the MCS approach 

(Melchers & Beck, 2018). 

                                          𝑃𝑓 =
𝑁𝐺(𝑥)≤0

𝑁𝑚𝑐𝑠
                                                                 (4.17)      

                                           CoV = √
1−𝑃𝑓

𝑃𝑓𝑁𝑚𝑐𝑠
                                                        (4.18) 

The difficulty of MCS application in the reliability assessment of finite element models due to the 

computational burden during analysis has led to the concept of metamodels to simplify the 

reliability evaluation of complex engineering systems.  
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4.3. Methodology for metamodel development 

 

This section describes the sequential steps for reliability assessment using the proposed APCKKm-

MCS approach. For clarity, two benchmark functions further explain the framework. 

4.3.1. Procedural Steps 

 

Step 1: Obtain statistical parameters, probability distribution, and dependency information (where 

necessary) of random variables from observation data. This work determines the dependence 

between random variables using copula functions. Copulas are links between univariate marginals 

and significantly capture tail dependence and nonlinear relationships between random variables 

(Nelsen.,2006). 

Step 2: With the PDF of the input distribution, generate candidate sample points using MCS 

(𝑁𝑚𝑐𝑠). The sample points required for ED enrichment at each iterative step are drawn from the 

candidate pool. 

Step 3: Initial sampling plan and points of data are determined. The study adopts a type of ED 

called LHS. The LHS approach is a space-filling method for generating sample points of random 

variables for metamodel construction (Forrester et al., 2008). The ED is dependent on the 

dimension of random input variables. For the initial ED, although there are no agreed methods to 

determine the number of samples required, one of the pioneering works on active learning, Echard 

et al. (2011), suggested a small initial ED for this purpose (about a dozen sample points). For 

systems with random input variables less than twelve (12), this study adopts an initial ED of at 

least 12 sample points. For random variables greater than 12, the initial ED utilized equals the 

number of random variables (where applicable). 
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Step 4: With a computational model or experiment, obtain structural responses for the quantity of 

interest using the initial ED obtained in Step 3.   

Step 5: Train the proposed metamodel using initial ED (Step 3) and responses obtained in Step 4. 

Section 2 describes the construction process of the metamodel. 

Step 6: Obtain candidate pool response with developed APCKKm-MCS metamodel. 

Consequently, evaluate the prediction sign required for candidate pool sample classification and 

the 𝑃𝑓. 

Step 7: Develop weighted K-means clusters in the candidate pool. Using the U learning function, 

determine the min U(x) for K-means clusters.  

Step 8:  The min U(x) points that represent the potential enrichment points to the ED are checked 

against the stopping criteria (U(x)≥2). If the possible enrichment points meet the stopping criteria, 

then MCS sufficiency is tested. Otherwise, update the ED in Step 5 with the best new sample 

points and their corresponding responses. 

Step 9: Determine the candidate pool sufficiency. If the CoV is less than 5%, accept the 𝑃𝑓. 

Otherwise, the candidate sample pool is updated accordingly, and the process is repeated. 

Figure 4.1 shows the procedure described above for reliability assessment using APCKKm-MCS. 

This work uses code implementation for reliability analysis in MATLAB-based software Uqlab 

(Marelli & Sudret, 2014). 
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             Figure 4.1.  Flowchart for reliability assessment using APCKKm-MCS.  
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Y= {𝑦1, 𝑦2, … . . 𝑦𝑁}
𝑇 

Train APCKKm-MCS metamodel {X, Y} 
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Learning function 

 

Y= {𝑦1, 𝑦2, … . . 𝑦𝑁}
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 4.3.2. Illustrative examples using benchmark functions 

 

This section explains the framework described in Section 4.3.1 using two benchmark functions. 

The reliability results from the proposed method are compared with active learning ordinary 

Kriging metamodel (AK-MCS) and active learning PCK with a single point enrichment approach 

(APCK-MCS). 

4.3.2.1. Ten-dimensional nonlinear function  

 

The Ten-dimensional function expressed in Eq. (4.19) is highly nonlinear and shows the 

relationship between independent random input variables (X) and the corresponding response 

𝑔(𝑋) .  

               𝑔(𝑋) =  (∑𝑋𝑖
2

10

𝑖=1

) + 10𝑋1
2𝑋2

2 +∑𝑋𝑖
2

9

𝑖=2

𝑋𝑖+1
2 − 16                                                   (4.19) 

The steps detailed in Section 4.3.1 are applied to the function for metamodel development and 

reliability assessment. 

Step 1: All variables of the Ten-dimensional function are assumed to be statistically independent 

and normally distributed 𝑋𝑖~ 𝑁 (1,0.2)𝑓𝑜𝑟 𝑖 = 1,2… . 10. 

Step 2: The MCS candidate pool required for the enrichment of the ED comprises of 𝑁𝑚𝑐𝑠 = 10
6 

sample points for the input variables of known distribution. 

Step 3: The initial ED comprises twelve (12) LHS sampling points for metamodel training. 

Step 4: Determine the responses (𝑔(𝑋) ) of the initial sampling points obtained in Step 3.  
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Step 5:  Using the initial ED sampling points (Step 3) and the corresponding responses (Step 4), 

the proposed metamodel is constructed as described in Eqs. (4.1) to (4.13) of Section 2. The 

conventional Hermite orthogonal polynomial (Xiu & Em Karniadakis,2003) is selected as the 

polynomial basis in the metamodel construction with normally distributed variables.  

Step 6: The signs for candidate sample points and reliability are determined using the developed 

metamodel. 

Step 7:  Points with the probability of misclassification are determined using the U learning 

function. This study considers three clusters (K=3) for the weighted K-means clustering.  

Steps 8 & 9:  Next best points from the clusters enrich the ED, and the iterative process continues 

as shown in Figure 4.1 until 𝑈(𝑥) ≥ 2  in the candidate pool. For reliability analysis, the stopping 

criterion is CoV ≤ 0.05.  

The reliability results (Table 4.1) obtained with multiple enrichment (APCKKm-MCS) are 

compared with the single sample point enrichment case (APCK-MCS) and the conventional 

ordinary Kriging active learning (AK-MCS). Also, in Table 4.1 is the number of model evaluations 

(𝑁𝑚𝑜𝑑), which indicates the number of calls to the model, especially when dealing with implicit 

LSF.  The number of iterations (𝑁𝑖𝑡𝑟) required in achieving the stopping condition, as shown in 

the framework (Figure. 4.1), is also detailed in Table 4.1. 
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Table 4.1.  Reliability analysis summary (Ten-dimensional nonlinear function). 

                            APCKKm-MCS             APCK-MCS               AK-MCS             MCS (Reference)       

   𝑃𝑓                        8.528E-3                    8.501E-3                    8.242E-3                  8.519E-3 

  𝑁𝑚𝑜𝑑                         237                             234                            958                          1E6 

  𝑁𝑖𝑡𝑟                            75                              222                            946                            - 

𝜖𝐿𝑂𝑂                         1.2116E-4                 1.8593E-4                   1.06E-2 

 𝑃𝑓 deviation (%)       0.11                             0.21                           3.25                           - 

CoV                         1.07E-2                     1.08E-2                      1.13E-2 

The average CPU time indicates the average time of convergence of a metamodeling approach. 

Simulation is implemented using an i7-7500U, 2.90GHz CPU with an 8GB memory computer. 

The average CPU time from 40 runs of the proposed method (APCKKm-MCS) is compared with 

APCK-MCS and AK-MCS using the same starting ED (Figure 4.2). 

                       

                                   Figure 4.2. Average computational time (Ten-dimensional function). 
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4.3.2.2.  Infinite Soil Slope Problem   

 

This section applies the framework and procedure described in Section 4.3.2.1 to an infinite slope 

model (Figure 4.3), which characterizes soil slope stability subject to water infiltration 

(Phoon,2008). Eq. (4.20) shows the LSF for the infinite slope problem.  

𝑃 =
[𝛾(𝐻 − ℎ) + ℎ(𝛾𝑠𝑎𝑡 − 𝛾𝑤)]𝑐𝑜𝑠𝜃𝑡𝑎𝑛∅

[𝛾(𝐻 − ℎ) + ℎ𝛾𝑠𝑎𝑡]𝑠𝑖𝑛𝜃
− 1                                (4.20) 

The parameters 𝛾 (moist soil unit weight kN𝑚−3) and 𝛾𝑠𝑎𝑡 (surface soil saturated unit weight 

kN𝑚−3); in Eq. (4.20) are obtained from Eqs. (4.21) to (4.23), respectively. The term 𝛾𝑤 is the 

unit weight of water ≈ 9.81 kN𝑚−3 and ℎ(𝑚) represents the groundwater table above bedrock. 

                  𝛾 = 𝛾𝑤
(𝐺𝑠+0.2𝑒)

(1+𝑒)
                                                                                             (4.21)    

                  𝛾𝑠𝑎𝑡 = 𝛾𝑤
(𝐺𝑠+𝑒)

(1+𝑒)
                                                                                            (4.22) 

                  𝑈ℎ =
ℎ

𝐻
                                                                                                            (4.23) 

Six (6) random variables, as shown in Table 4.2, are considered for the infinite slope model.   
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                                   Figure 4.3. Infinite soil slope problem. 

  

Table 4.2.  Statistical parameters for the infinite slope model (Phoon,2008). 

       Variables                          Symbols        Units            Distribution              Parameters             

 Depth of soil above bedrock       H                m                  Uniform                2.0              8.0 

 Relative height of water table     𝑈ℎ               -                   Uniform                 0                1.0 

 Specific gravity of soil                𝐺𝑠               -                    Uniform               2.5              2.7    

 Void Ratio                                   e                 -                    Uniform               0.3              0.6      

 Slope Inclination                         𝜃𝑠            radians            Lognormal      µ𝜃𝑠:0.3491   𝜎𝜃𝑠:0.0175            

Effective stress frictional angle   ∅              radians            Lognormal       µ∅:0.6109   𝜎∅:0.0489 

 

The random variables are assumed statistically independent for simplicity of analysis.  The 

candidate pool consists of  106 MCS sampling points. First, to train the APCKKm-MCS 

metamodel for the infinite slope problem, an initial ED containing 12 LHS sampling points and 

the corresponding responses are determined. Classical orthogonal polynomial related to the 

probability distribution of infinite slope random variables determines the polynomial basis (Eq. 

(4.8)). For the uniformly distributed random input variables, the Legendre polynomial is selected, 

and the Hermite orthogonal polynomial for other input random variables of the slope model. The 

LARS approach determines the appropriate polynomial truncation for the trend function, as 

detailed in Section 4.2.  Multiple enrichment of ED for the infinite slope function is achieved using 

the K-means clustering approach (K=3). All stopping criteria and learning functions, as shown in 

Figure 4.1, are applied to the infinite slope model. The parameters of the metamodel are determined 

using the MLE approach (Eq. (4A.1) to (4A.4), Appendix 4A). Table 4.3 shows the results of the 
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reliability analysis using the proposed method. The results obtained from the reliability assessment 

are compared with other metamodel types of the same initial ED (Table 4.3).  

Table 4.3.  Reliability analysis summary (infinite slope function). 

                            APCKKm-MCS       APCK-MCS           AK-MCS           MCS (Reference)        

𝑃𝑓                              5.771E-2                5.759E-2                5.641E-2               5.78E-2 

𝑁𝑚𝑜𝑑                             39                           54                         199                       1E+6 

𝑁𝑖𝑡𝑟                                9                            42                         187   

𝜖𝐿𝑂𝑂                         1.7813E-5                2.8758E-4              1.15E-2 

𝑃𝑓 deviation (%)          0.16                         0.36                        2.40                                        

CoV                            3.70E-3                3.90E-3                   4.20E-3 

 

Figure 4.4 shows the computational time (average) from 40 runs of the various metamodels using 

the same initial ED. 

                           

                                      Figure 4.4. Average CPU time (Infinite slope model). 
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The illustrative examples show that the results obtained from the combination of PCE and Kriging 

(APCKKm-MCS, APCK-MCS) comparatively provide a better reliability approximation than the 

metamodel constructed by ordinary Kriging (AK-MCS).   

 4.4. Application of the Proposed Metamodel to Marine Structures 

 

This section presents the practical engineering application of the framework described in Section 

4.3 in the reliability-based design of marine structures. The proposed approach (APCKKm-MCS) 

is applied to a ten-bar truss structure and a marine riser (SCR). 

4.4.1. Ten-Bar Truss Structure 

 

The Truss system has practical application in various aspects of engineering. Some marine 

structural application includes offshore vessel guard rails, derrick structures, crane booms, jacket 

platforms, and truss-type jack-up leg structures.  

This section considers a ten-bar truss system. The schematic diagram in Figure 4.5 shows the truss 

bar system. 

                                    

                                           Figure 4.5.  Ten-Bar Truss System. 
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Ten (10) random input variables are considered with statistical parameters shown in Table 4.4. 

The probabilistic parameters considered include the length of the bars (L), the sectional area of the 

truss bar (A), elastic modulus (E), and the applied point loads on the bar (𝑃𝑖). The horizontal and 

vertical bars are assumed to be of equal length.  All input variables are considered statistically 

independent. 

Table 4.4.  Parameters of truss bar input variables [modified from (Liu & Xie, 2020)]. 

 Variables                                      Symbol              Unit          Distribution            Mean          CoV 

Length of bar                                   L                        m            Lognormal                1               0.05 

Elastic Modulus (Horizontal)         𝐸𝐻                    GPa          Lognormal              100            0.05 

Elastic Modulus (Vertical)             𝐸𝑉                    GPa           Lognormal              100            0.05 

Elastic Modulus (Diagonal)           𝐸𝐷                    GPa           Lognormal              100            0.05 

Sectional Area (Horizontal)           𝐴𝐻                     m2            Gaussian                0.001           0.1 

Sectional Area (Vertical)               𝐴𝑉                     m2             Gaussian                0.001          0.1 

Sectional Area (Diagonal)             𝐴𝐷                     m2             Gaussian                0.001          0.1 

Point Load                                       𝑃1                      𝑘𝑁            Gaussian                 80            0.05 

Point Load                                       𝑃2                      𝑘𝑁            Gaussian                 10            0.05 

Point Load                                       𝑃3                      𝑘𝑁            Gaussian                 10            0.05 

 

The allowable vertical displacement of the ten-bar system at a given point 'c', as shown in Figure 

4.5, is 0.005. Eq. (4.24) shows the implicit LSF of the truss system. 

                                           𝑔(𝑋) = 0.005 − |∆𝑦|                                                             (4.24) 

The framework described in Section 4.3 is applied to the truss system. Concerning the initial ED 

for the truss, this paper utilizes 15 LHS points. The metamodel construction basis is the Hermite 
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orthogonal polynomial (with a nonlinear transformation of the lognormal distribution). The 

vertical displacement of the truss |∆𝑦|; is obtained from FEA. A displacement representation of 

the ten-bar truss system due to applied load is shown in Figure 4.6.  

The enrichment of the ED is from the candidate pool  𝑁𝑚𝑐𝑠=10
6 , multiple point enrichment (K=3) 

is utilized from weighted K-means clusters in the pool. The determination of truss displacement 

for ED enrichment is achieved using the FEA approach. 

 

                               

                                    Figure 4.6.  Load response FEA for the ten-bar truss.  

 

Table 4.5 summarises the proposed method's results with the stopping criteria met. 

Table 4.5.  Reliability analysis summary (ten-bar truss system). 

       Method                𝑃𝑓                𝑁𝑚𝑜𝑑           𝑁𝑖𝑡𝑟            CoV         𝜖𝐿𝑂𝑂       CPU Time (mins) 

APCKKm-MCS       7.278E-4       39                 8              0.036       1.06E-7           4 

APCK-MCS             7.320E-4       39                24             0.037       5.58E-5           9 

AK-MCS                  6.814E-4      186              171            0.038       5.41E-3          54  
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Figure 4.7 shows the APCKKm-MCS reliability plot with iterative steps from the initial ED sample 

points while meeting the stopping criteria.  

                          

                                             Figure 4.7.  Reliability plot for ten-bar truss system. 

 

4.4.2. SCR application of hybrid metamodel 

 

As shown in Figure 4.8, SCR has practical application in various aspects of oil and gas activities, 

from product export to gas and water injection during petroleum production activities. TLP, Semi-

Submersibles, Spars, and FPSO units are among the structures where SCR has been successfully 

applied (Bai & Bai,2005). This study considers the prevailing environmental conditions of the 

Flemish Pass basin. The basin has a huge potential for oil and gas exploration and is located about 

400km offshore St John's, Newfoundland (Canada). Due to data availability, the study limits the 

environmental condition to the wave and current loads acting on the SCR during normal operating 

conditions. 
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                                                 Figure 4.8.  SCR configuration and dimensions. 

 

Two essential points of the SCR are the Touch Down Point (TDP), as shown in Figure 4.8, where 

the SCR contacts the seabed while operating, and the SCR connection to the offshore vessel. The 

SCR is assumed free hanging from the flex joint and connected to an FPSO on its starboard side. 

The operating depth of the SCR in the basin is 1190m, and the internal transport fluid is crude oil. 

Table 4.6 provides more details of the SCR and FPSO for this study. 

Table 4.6.  SCR and FPSO parameters. 

SCR and Vessel Parameters                                                       Dimensions 

              Length                                                                                1955m 

             Diameter                                                                               0.22m 

        Hang-Off Angle                                                                         18.5𝑜 

        Mass of SCR                                                                          155.11kg/m 

         SCR Material                                                  Steel 𝑋65 (API 5L), 𝜎𝑦 =450MPa 

         Internal Fluid                                                Medium Crude Oil (mass density: 950kg/m3) 
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         FPSO (Vessel)                                         Length: 400m, Height: 100m, Width:70m 

 

 4.4.2.1. Statistical parameters and probability distribution determination  

 

The significant wave height (𝐻𝑠), zero-crossing period (𝑇𝑧) and mean surface current (𝑉𝑐)  

represents the sea load random variables assumed to be acting on the SCR during operations in the 

Flemish Pass.  The statistical summary of the annual environmental operating conditions, 

including the dominant wave and current directions (Table 4.7) for the Flemish Pass, is obtained 

from site-specific met ocean data (C-CORE, 2017).  

The environmental data is fitted to continuous probability distributions to determine the best fit for 

the random variables. The MLE approach uses the minimum AIC to fit various data distributions 

(Table 4A.2 and Figure 4A.1, Appendix 4A). The distribution selection is based on the minimum 

AIC with Weibull distribution selected for 𝐻𝑠 and 𝑉𝑐 . For  𝑇𝑧 , the lognormal distribution is 

selected, as shown in Table 4.7. 

Table 4.7.  Statistical summary of environmental variables (C-CORE,2017). 

   Variables                      Distribution          Mean               CoV             Direction (Deg) 

      𝐻𝑠  (m)                        Weibull                3.19                  0.53                     225𝑜 

      𝑇𝑧 (s)                          Lognormal           10.21                 0.18                     225𝑜 

      𝑉𝑐 (m/s)                      Weibull               0.284                  0.56                     180𝑜 

 

 

 



 

114 
 

4.4.2.2. SCR dependence modeling of variables 

 

The dependence between random variables (𝐻𝑠 , 𝑇𝑧 and 𝑉𝑐)  is considered in this study and 

determined using a unique type of copula called the D-vine copula. The D-vine copula can handle 

dependence between variables by the process of decomposition (Aas et al.,2009).  The vine is 

graphically oriented with the dependence relationships between SCR random variables in Tree 1 

of the vine structure and conditional relationships in Tree 2 (Figure 4.9). For the vine structure, 

the non-parametric Kendall Tau (𝜏𝑘) values between the variables are essential in determining the 

architecture and dependence of the vine trees. Using Sklar's theorem and the minimum AIC 

approach (Nelsen.,2006), the copula's optimal selection is determined from bivariate copulas.  

               

                      Figure 4.9.  Dependence of SCR variables using D-vine copula. 

 

The bivariate copulas considered for selection are the Gaussian, t, Clayton, Gumbel, Frank, and 

independent copulas (Table 4A.3, Appendix 4A). Table 4.8 shows the selected copulas based on 

minimum AIC values; it also shows the associated copula parameter (𝜃𝑐) and rotation (𝜃𝑅) of the 

vine structure using Eq. (4A.6) to (4A.8) of Appendix 4A. 
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Table 4.8.  Dependence parameters using D-vine copula. 

    Tree        Copula density        Copula Type              𝜏𝑘             𝜃𝑐            𝜃𝑅 (Deg) 

      1                   c𝐻𝑠𝑇𝑧
d                     Clayton                 0.0196        0.04            0 

      1                   c𝑇𝑧𝑉𝑐
d                     Clayton                 0.0240        0.05          270𝑜 

      2                   c𝐻𝑠𝑉𝑐|𝑇𝑧
d              Independent                -                -                0 

 

The Clayton and rotated Clayton ( 270𝑜) copulas are selected for modeling dependency between 

the SCR's random variables, as shown in Tree 1 of the D-vine structure (Table 4.8). 

4.4.2.3.  Initial ED and SCR responses  

 

Following the determination of the optimal copulas for the SCR, the vectors of dependent random 

variables with continuous marginals are mapped (isoprobabilistic transform) onto independent 

random variables using the Rosenblatt transformations (Eqs. (4A.9) to (4A.11), Appendix 4A). 

Consequently, independent samples required for initial ED and metamodel construction are 

obtained. An initial ED, which comprises 20 LHS points of sea state data, is generated, with 

corresponding responses obtained through a time-domain dynamic strength analysis of the SCR 

using Flexcom (Wood,2019). The random sea wave characteristics are modeled using the Pierson-

Moskowitz spectrum, widely used in wave analysis of structures operating in deepwater (Massel, 

2018). For this demonstration, the seabed of the Flemish Pass is modeled as elastic and flat. 

SCR responses considered include the maximum and minimum effective tension (𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥) and 

the maximum von Mises stress (𝑆𝑣𝑚𝑠) in operating condition. 

From the SCR effective tension profile obtained for response analysis (Figure 4.10), 𝑇𝑚𝑖𝑛 is 

observed within the seabed and touchdown zone (0-600m) of the SCR and 𝑇𝑚𝑎𝑥 ; at the flex joint 
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region (1955m) for all ED point considered. Also, stress ( 𝑆𝑣𝑚𝑠) for the SCR is observed about the 

touchdown zone (400-600m). 

                               

                                                                          (a) 

                           

                                                                         (b) 

      Figure 4.10.  SCR tension and stress profile (a) effective tension profile (b) stress profile. 
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4.4.2.4. Enrichment of ED and reliability analysis 

 

With the tension and stress responses obtained for the SCR and corresponding LHS points as 

detailed in Section 4.4.2.3, the APCKKm-MCS metamodel is constructed for the SCR system as 

described in Section 4.2 and further enriched from 𝑁𝑚𝑐𝑠 = 10
6 candidate samples using the 

weighted K-means clustering approach (K=3). Based on the probability distribution of the random 

variables and an isoprobabilistic transformation, the classical Hermite orthogonal polynomial is 

used as the basis of the trend term.  

                           𝑔1(𝐻𝑠, 𝑇𝑧 . 𝑉𝑐) =  Tmin               Tmin ≥ 0                                      (4.25)      

                           𝑔2(𝐻𝑠, 𝑇𝑧 . 𝑉𝑐) =  Ta − Tmax                                                           (4.26)                  

                           𝑔3(𝐻𝑠, 𝑇𝑧 . 𝑉𝑐) =  𝑆𝑎 − 𝑆𝑣𝑚𝑠                                                            (4.27)                      

 Eqs. (4.25) to (4.27) represents the implicit LSF of the SCR, considering effective tension and 

stress. The failure condition of the SCR is given by 𝑔𝑖(𝐻𝑠, 𝑇𝑧 . 𝑉𝑐) ≤ 0  where i = 1,2,3. Failure 

occurs when any one of these conditions is satisfied. Tmin ≤ 0, 𝑇𝑚𝑎𝑥  exceeds the allowable tension 

(𝑇𝑎)  or  𝑆𝑣𝑚𝑠 exceeds the allowable stress (𝑆𝑎)  at the given location. Consequently, this section 

formulates the SCR reliability assessment as a series problem. For demonstration, Ta for the given 

location is assumed to be 3500kN. Also, as described by the API standard,  Sa= 0.67𝜎𝑦 for the 

SCR in operating conditions; with yield stress (𝜎𝑦) (API, 2013). The failure modes of the SCR are 

expressed as a series system (Eq. (4.28)).                            

                𝑃𝑓𝑠 = 𝑃[⋃ {𝑔𝑖(𝐻𝑠, 𝑇𝑧 . 𝑉𝑐) ≤ 0}]
𝑛
𝑖=1    𝑤ℎ𝑒𝑟𝑒 𝑛 = 3                                      (4.28) 

               𝑔𝑆𝐶𝑅(𝐻𝑠, 𝑇𝑧 . 𝑉𝑐) = 𝑚𝑖𝑛 {

𝑔1(𝐻𝑠, 𝑇𝑧. 𝑉𝑐)

𝑔2(𝐻𝑠, 𝑇𝑧 . 𝑉𝑐)

𝑔3(𝐻𝑠, 𝑇𝑧 . 𝑉𝑐)
}                                                        (4.29) 
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Table 4.9 shows the enrichment of the system LSF (Eq. (4.29)) and the SCR reliability analysis 

results using the framework described in Section 4.2. 

Table 4.9. SCR system reliability analysis summary.  

   Method                    𝑃𝑓𝑠                 𝑁𝑚𝑜𝑑        𝑁𝑖𝑡𝑟          CoV            𝜖𝐿𝑂𝑂       CPU Time (mins) 

APCKKm-MCS     8.795E-2             89            23          0.0030        0.0105              12 

APCK-MCS           8.771E-2             85            65          0.0032        0.0201              25 

AK-MCS                8.567E-2            212          192         0.0035        0.4730              39 

 

                             

                                              Figure 4.11.  SCR reliability and convergence plot.  

 

Figure 4.11 shows the convergence plot from the initial ED using the APCKKm-MCS approach 

for the SCR.  
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 4.4.2.5. Predictive metamodel response for SCR   

 

The predictive capacity of the constructed SCR metamodel is evaluated using fifteen (15) MCS 

sampling points. The results show that metamodel (APCKKm-MCS) response results are close to 

the FEA responses (effective tension and stress) from Flexcom. 
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                                             Figure 4.12.  SCR tension and stress LSF responses. 

 

The cluster of response points on a straight line (Figure 4.12) with a coefficient of determination 

(𝑅2) value of [ 𝑔1(. )=99.2% , 𝑔2(. )=99.6% and 𝑔3(. )=98.5% ] proves the metamodel's 

effectiveness in predicting actual stress and tension on the SCR. 

4.4.2.6. SCR safety compliance using the APCKKm-MCS model 

 

For site-specific SCR safety design, reliability assessment results are compared with a target 𝑃𝑓 . 

The target probability can be national, international, or facility owner's requirements. More 

specifically, the SCR reliability results in operating conditions using APCKKm-MCS metamodel 

(Table 4.9) is compared with the target (𝑃𝑓) for serviceability conditions using the Det Norske 
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Veritas (DNV) requirement for dynamic risers (DNV,2001). Table 4A.4 (Appendix 4A) shows the 

SLS requirement by DNV. 

From the DNV standard, the safety classes described in Table 4A.4 refer to the level of risk to 

humans and the environment arising from SCR failure.  From the reliability results 𝑃𝑓𝑠= 8.795E-

2, as shown in Table 4.9 for the operating condition, the SCR can be classed under the normal 

safety class. From the code, the normal safety class considers injury to humans and the impact on 

the environment in the event of SCR failure. 

   4.4.3. Discussion of results 

 

From the reliability assessment of the benchmark functions, it is evident that the deviation of the 

𝑃𝑓 from the MCS reference is relatively smaller for the hybrid metamodels compared to the 

conventional AK-MCS. With the APCKKm-MCS method, a deviation of 0.11% for the Ten-

dimensional function (Table 4.1) and 0.16% for the infinite slope problem (Table 4.2) is observed. 

Conversely, the AK-MCS approach produces the highest deviation, with 3.25% for the Ten-

dimensional function (Table 4.1) and 2.40% for the infinite slope problem (Table 4.2). 

For the truss and SCR with implicit LSF, the comparative study of various metamodels (Table 4.5 

and 4.9) reveals that the APCKKm-MCS approach provides the same accuracy level as the 

conventional AK-MCS and the APCK-MCS method. 

The computational time reduces considerably using the proposed method compared to other 

metamodels described. For the benchmark functions, the average CPU time is 45mins and 4 mins 

for the Ten-dimensional function (Figure 4.2) and infinite slope problem (Figure 4.4), respectively. 

Also, time reduction is observed for the truss bar (Table 4.5) and the SCR (Table 4.9). The multiple 

enrichment using K-means clustering and rapid convergence from the combination of the Kriging 
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and PCE approach reduces the number of computational iterations (𝑁𝑖𝑡𝑟)  during reliability 

assessment. 

The APCKKm-MCS metamodel provides a high predictive capacity, given input data of random 

variables. From the SCR study, responses evaluated using this approach are close to those obtained 

from FEA, as evident in the alignment of plot points on a straight line for SCR tension and stress 

responses (Figure 4.12). Consequently, obtaining a computationally cheap and efficient method 

for response determination using the proposed framework. 

The global error (𝜖𝐿𝑂𝑂) as determined by the cross-validation approach for the truss bar 

(𝜖𝐿𝑂𝑂=1.06E-7) as seen in Table 4.5 and the SCR (𝜖𝐿𝑂𝑂=1.05E-2) from Table 4.9 reveals a high 

quality of the constructed metamodel, making it suitable for response determination and reliability 

analysis of complex structures. 

Regarding the DNV marine riser requirement (as detailed in Section 4.4.2.6), an upgrade in the 

SCR safety class to ensure improved reliability during normal operating conditions can be 

achieved by an RBDO scheme for its design parameters. This RBDO approach provides a trade-

off between the design parameters requirements of the SCR and achieving a high safety class (𝑃𝑓 =

10−2 − 10−3). According to the DNV requirement, a high safety class (Table A4.4, Appendix 4A) 

will imply a design to reduce the high risk of human injury and significant environmental pollution 

from system failure. The benefit of this is an improved SCR design with optimal parameters 

(length, diameter, material, thickness) while still achieving a high level of safety compliance 

requirement for the riser under serviceability conditions. Generally, the reliability results help 

evaluate marine structures' compliance with site-specific safety standards or regulations. 
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For demonstration purposes, this paper limits the multiple enrichment of ED to three clusters (K=3) 

only. Also, the SCR utilizes three random variables for reliability assessment due to the 

unavailability of data for other site-specific ocean parameters affecting the riser. Research into a 

robust metamodel construction for the SCR can be considered with data available for other ocean 

parameters. In this study, active learning is limited to the U learning function; other learning 

schemes for ED enrichment for the proposed metamodel can be explored in future research. 

 4.5. Conclusions 

 

This study proposes an active learning hybrid metamodel framework (APCKKm-MCS) with 

multiple-point enrichment of ED for the reliability assessment of marine structures. The 

metamodel is constructed as a combination of PCE and Kriging models, considering their 

respective advantages and uniqueness. The learning and enrichment of ED are achieved using the 

U learning function and the K-means clustering approach, respectively.  The framework is 

demonstrated on benchmark functions and practical marine structural problems (Truss Bars and 

SCR). 

Comparing its performance with the commonly used active learning ordinary Kriging metamodel 

(AK-MCS) and a single point enrichment hybrid model (APCK-MCS), the study concludes as 

follows. 

1. As demonstrated, the APCKKm-MCS approach handles a diverse range of reliability 

problems. It includes high dimensional functions, nonlinear functions, and marine 

structural problems with implicit LSF. The proposed method produces reliable results, 

allows fewer computational model evaluations, reduces the computational burden using 

FEA, and converges fast (minimal iterations) to the reference or actual 𝑃𝑓. 
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2. A more robust and highly efficient approach that combines state-of-the-art Kriging and 

PCE metamodeling methods that take advantage of their capabilities is achieved. 

3. Taking a step ahead with the framework presented to consider multiple ED enrichment 

using the K-means clustering approach with MCS candidate sample points reduces the 

computational time for reliability analysis, as evident in the benchmark examples and 

marine structural problems.  

4. APCKKm-MCS approach also showed a high predictive capacity with limited data (Figure 

4.12), making it suitable for efficient response determination for marine structures. 

5. The relatively low model error 𝜖𝐿𝑂𝑂, evident in the truss bar and SCR cases, provides a 

high level of confidence for the model constructed using APCKKm-MCS. 

The proposed framework (APCKKm-MCS) offers the possibility of applying a combination of 

metamodels with efficient reliability techniques such as variance reduction methods or subset 

simulation for reliability-based assessment of marine structures with small failure probability 

(<10−5). Consequently, further research into the performance of multiple-enrichment active 

learning PCK using subset simulation methods or variance reduction techniques for the reliability 

of complex marine structures is necessary. Furthermore, its application to a marine riser (SCR) 

and truss system confirms the suitability of the methodology presented in this study for the 

reliability of different types of ocean structures. 

Also, research into optimal cluster size determination for ED enrichment of high-dimensional 

structural problems is necessary. Finally, applying the proposed framework to the RBDO of marine 

systems will be essential. 
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Appendix 4A 

 

Kriging Parameters MLE approach 

                      ℒ(𝛽, 𝜎2, 𝜃, 𝑦) =
(𝑑𝑒𝑡𝑅)

−
1
2

(2𝜋𝜎2)
𝑁
2

exp [−
1

2𝜎2
(𝑦 − 𝐹𝛽)𝑇𝑅−1(𝑦 − 𝐹𝛽)]                    (4A. 1) 

                             𝛽(𝜃) = (𝐹𝑇𝑅−1𝐹)−1𝐹𝑇𝑅−1𝑦                                                                   (4A. 2) 

                                  𝜎𝑔
2(𝜃) =

1

𝑁
(𝑦 − 𝐹𝛽)𝑇𝑅−1(𝑦 − 𝐹𝛽)                                                     (4A. 3) 

                     𝜃𝑀𝐿𝐸 = 𝑎𝑟𝑔 min
𝜃𝜖𝐷𝜃

1

2
[𝐿𝑜𝑔(𝑑𝑒𝑡𝑅) + 𝑁𝐿𝑜𝑔(2𝜋𝜎2) + 𝑁]                                  (4A. 4) 

       F and R represent the regression and correlation matrix, respectively 

PCE Orthogonal Polynomials 

< 𝑃𝑗
(𝑖), 𝑃𝐾

(𝑖) > = ∫ 𝑃𝑗
(𝑖)(𝑥)𝑃𝑘

(𝑖)(𝑥)𝑓𝑥𝑖(𝑥)𝑑𝑥 = 𝛿𝑗𝑘
𝐷𝑖

                                             (4A. 5)    

               𝑖𝑓 𝑗 ≠ 𝑘 𝑡ℎ𝑒𝑛 𝛿𝑗𝑘 = 0, 𝑖𝑓 𝑗 = 𝑘 𝑡ℎ𝑒𝑛 𝛿𝑗𝑘 = 1      

Where 𝑃𝑗
(𝑖)
 𝑎𝑛𝑑 𝑃𝑘

(𝑖)
are candidate   polynomials of the 𝑖𝑡ℎ variable. Also, 𝑓𝑥𝑖(𝑥) is the PDF of   the 

𝑖𝑡ℎ variable. 
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Table 4A.1. Classical Orthogonal Polynomials (Xiu & Em Karniadakis, 2003). 

Distribution Type                          Orthogonal Polynomial                         Basis Ψk(x) 

Uniform                                               Legendre    𝑃𝑘(𝑥)                                
𝑃𝑘(𝑥)

√
1

2𝑘+1

        

Gaussian                                              Hermite      𝐻𝑒𝑘(𝑥)                             
𝐻𝑒𝑘(𝑥)

√𝑘!
 

Gamma                                                Laguerre    𝐿𝑘
𝑎(𝑥)                              

𝐿𝑘
𝑎(𝑥)

√
Г(𝑘+𝑎+1)

𝑘!

 

 Beta                                                     Jacobi        𝐽𝑘
𝑎,𝑏(𝑥)                              

𝐽𝑘
𝑎,𝑏(𝑥)

𝐼𝑎,𝑏,𝑘
 

Where 𝐼𝑎,𝑏,𝑘
2 =

2𝑎+𝑏+1

2𝑘+𝑎+𝑏+1

Г(𝑘+𝑎+1)Г(𝑘+𝑏+1)

Г(𝑘+𝑎+𝑏+1)Г(𝑘+1)
 

Table 4A.2. Minimum AIC values for variables 𝐻𝑠 , 𝑇𝑧 and 𝑉𝑐. 

Probability Distribution                  𝐻𝑠(m)                    𝑇𝑧(s)                         𝑉𝑐(m/s) 

                                                        AIC                        AIC                           AIC 

         Gaussian                            11300.08                 11714.27                    -2405.40 

         Lognormal                         11495.82                 11610.45                    -2354.80 

         Exponential                        12616.08                19386.39                    -1569.61 

           Logistic                            11330.69                11742.88                     -2409.65 

          Weibull                             10975.31                12013.79                     -2855.03 

          Gamma                             11063.35                11615.62                     -2783.35 
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(a) Weibull fit  Hs(m)                                         (b) Lognormal fit  Tz (s) 

                       

                                          ( c ) Weibull fit Vc (m/s) 

                    Figure 4A.1.  Probability distribution fit for ocean variables 𝐻𝑠 , 𝑇𝑧 and 𝑉𝑐. 
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Vine Copula Expressions 

𝑓(𝑥1… . 𝑥𝑛)

=∏𝑓(𝑥𝑘)

n

k=1

∏∏𝑐𝑖,𝑖+𝑗|𝑖+1…𝑖+𝑗−1

𝑛−𝑗

𝑖=1

 {𝐹(𝑥𝑖|𝑥𝑖+1… . . , 𝑥𝑖+𝑗−1), 𝐹(𝑥𝑖+𝑗|𝑥𝑖+1… . . , 𝑥𝑖+𝑗−1)}       

n−1

j=1

(4A. 6) 

𝐼𝑛𝐿(𝜃𝑐) = ∏ 𝑐(𝑢1…𝑢𝑛; 𝜃𝑐)
𝑛
𝑖=1 = ∑ 𝐼𝑛𝑐(𝑢1…𝑢𝑛; 𝜃𝑐) 

𝑛
𝑖=1      (4A.7) 

𝐴𝐼𝐶 = −2𝐼𝑛𝐿(𝜃𝑐) + 2𝐾           (4A.8) 

In Eq. (4A.6), j represents the trees of the D-vine, and 𝑖 represents the edges within each tree of 

the vine copula 

𝐿(𝜃𝑐) is the Loglikelihood function, K: the number of model parameters, 𝑢1…𝑢𝑛 𝝐 [0,1], c 

represents the copula density function. F(.) represent the variable Cumulative Density Function 

(CDF) and 𝑓(𝑥𝑘); the variable PDF. 

Table 4A.3.  Bivariate Copula Functions.  

Copula Type      Copula Function                Lower Tail           Upper Tail          Copula Parameter 

                                                                  Dependence (⅄L)    Dependence (⅄U)         Range (θc) 

Clayton          (𝑢1
−𝜃𝑐 + 𝑢2

−𝜃𝑐)
−
1

𝜃𝑐                         2
−
1

𝜃𝑐                        0                            (0,∞)                

 

Gumbel      Exp {-[(−𝐼𝑛𝑢1)
𝜃𝑐 + (−𝐼𝑛𝑢1)

𝜃𝑐]
1

𝜃𝑐}      0                     2 − 2
−
1

𝜃𝑐                      (1,∞) 

 

Frank         - 
1

𝜃𝑐
In(1+

(𝑒−𝜃𝑐𝑢1−1)(𝑒−𝜃𝑐𝑢2−1)

(𝑒−𝜃𝑐−1)
)               0                            0                          (−∞,∞) 

 

Gaussian         𝞍(𝛷−1(𝑢1),𝛷
−1(𝑢1)|𝜃𝑐)                0                            0                               (-1,1) 
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Student t   𝑡𝜃𝑐,𝑣∗(𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢1)|𝜃𝑐)  𝑡𝑣+1(−√𝑣 + 1)√
1−𝜃𝑐

1+𝜃𝑐
)   2𝑡𝑣+1(−√(𝑣 + 1)√

1−𝜃𝑐

1+𝜃𝑐
)   (-1,1) 

 

v ∗  is a parameter of the t copula. 

Rosenblatt Transformation  

X in the random vector 𝑋 = (𝑋1, …… . 𝑋𝑛)  with marginal distribution 𝐹(𝑥𝑖) and conditional 

distribution 𝐹(𝑥𝑖|𝑥1, 𝑥2………,𝑥𝑖−1). The Rosenblatt transform is given as 𝑍𝑖 = 𝑇(𝑋𝑖) (independent 

and uniformly distributed [0,1]n) (Aas et al., 2009) 

{
 
 

 
 

𝑇(𝑋1) = 𝐹(𝑥1)

𝑇(𝑋2) =  𝐹(𝑥2|𝑥1)

𝑇(𝑋3) = 𝐹(𝑥3|𝑥1, 𝑥2)
.
.

𝑇(𝑋𝑛) =  𝐹(𝑥𝑛|𝑥1, 𝑥2………,𝑥𝑛−1)}
 
 

 
 

                                                                               (4A.9) 

   𝑋 → 𝑈~𝐶𝑋 , 𝑈 → 𝑍: 𝑍𝑖 = 𝐶𝑥𝑖|𝑥1………,𝑥𝑖−1(𝑢𝑖|𝑢1………,𝑢𝑖−1)                                           (4A.10)     

Inverse Rosenblatt Transform                                                                   

    𝑋𝑖 = 𝐹−1𝑥𝑖|𝑥1………,𝑥𝑖−1(𝑢𝑖|𝑢1,……..𝑢𝑖−1)  =  𝐶
−1
𝑥𝑖|𝑥1………,𝑥𝑖−1

(𝑢𝑖|𝑢1………,𝑢𝑖−1)               (4A.11)                                     

Where 𝐶𝑥𝑖|𝑥1………,𝑥𝑖−1(𝑢𝑖|𝑢1………,𝑢𝑖−1) is the conditional copula of 𝑋 and 

𝐶−1𝑥𝑖|𝑥1………,𝑥𝑖−1(𝑢𝑖|𝑢1………,𝑢𝑖−1) the conditional quantile function. 
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Table A4.4.  Target failure probability (DNV,2001). 

         Limit State                  Probability Basis                               Safety Class 

                                                                                         Low              Normal           High 

       Serviceability                 Annual per riser                  10−1          10−1-10−2    10−2-10−3 

           Ultimate                     Annual per riser                  10−3              10−4             10−5 

           Fatigue                       Annual per riser                  10−3              10−4             10−5 
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Chapter 5 

A methodology for time-varying resilience quantification of an offshore natural gas 

pipeline 
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work, reviewing, and editing of the manuscript. Co-author Salim Ahmed assisted in concept 
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Abstract 

Many resilience definitions and metrics have been presented across various disciplines in recent 

times. However, from a design and operations perspective, a limited effort is focused on 

quantifying the resilience of oil and gas support structures. This study proposes a methodology for 

structural resilience quantification of an offshore hydrocarbon pipeline. Resilience is modeled as 

a function of the structure's time-dependent reliability, adaptability, and maintainability. The 

proposed model is demonstrated on an internally corroded offshore natural gas pipeline segment 

with multiple initial defects; and considers disruptive events arising from the leak, burst, and 

rupture failure modes. The resilience index and sensitivity analysis are evaluated for the offshore 

pipeline. The pipeline sensitivity analysis indicates the apparent effect of pipe wall thickness and 
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defect depth growth rate on resilience over its design life. The outcome of this study provides 

insight into the resilience quantification of structural systems considering multiple disruptive 

events. The proposed model is expected to serve as an essential tool for resilience evaluation during 

the design and operations of oil and gas structures.  

Keywords: Resilience, Reliability, Adaptability, Maintainability, Stochastic Process  

 

5.1. Introduction 

 

The term resilience derives its origin from the Latin word "resilire" which means "to bounce back" 

(Hosseini et al.,2016). This meaning applies to the restoring ability of infrastructures, physical 

systems, communities, economy, and various aspects of life. From the preceding, the concept of 

resilience is multidisciplinary. The paper of C.S Holling on resilience and stability of ecological 

systems (Holling, 1973) sets a foundation for resilience research. Holling defined resilience as "a 

measure of the persistence of systems and their ability to absorb change and disturbance and 

maintain the same relationships between populations or state variables." Following this, resilience 

has evolved in diverse fields such as ecology, economics, geology, psychology, sociology, built 

environment, supply chain, and engineering. Consequently, resilience has different definitions as 

various disciplines, organizations and authorities define resilience in the context of their activities. 

Table 5.1 shows some definitions of resilience and its perception in multiple fields.  
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Table 5.1. Definition of the concept of resilience in different sectors. 

Discipline                                                                                 Definition 

Social Resilience (Adger et al., 2018)             "ability of groups of communities to cope with  

                                                                          external stresses and disturbances as a result of 

                                                                         social, political, and environmental change." 

 

Organizational Resilience (Denyer, 2017)     "the ability of an organization to anticipate,  

                                                                          prepare for, respond to, and adapt to incremental 

                                                                          changes and sudden disruptions in other to  

                                                                          survive and prosper." 

 

Economic Resilience (Rose & Liao, 2005)       "inherent ability and adaptive responses that  

                                                                             enables firms and regions to avoid maximum 

                                                                             potential losses."  

 

Community Seismic Resilience                    "the ability of social units (e.g., organizations, 

 (Bruneau et al.,2003)                                     communities) to mitigate hazards, contain the  

                                                                        effects of disasters when they occur and carry 

                                                                         out recovery activities in ways that minimize 

                                                                          social disruption and reduce the impact of  

                                                                         future earthquakes. " 

 

Engineering Resilience I                             " the ability to predict, absorb, adapt, and quickly   

(National infrastructure and Advisory           recover from a disruptive event such as natural 

  Council) (NIAC, 2009)                                disasters." 

 

Engineering Resilience II                            "a combination of passive and proactive survival rates; 

  (Yodo et al., 2017)                                      the former connected to system reliability and the latter  

                                                                      on the recovery process after a disruptive event."  

 

Structural Resilience                                   "a system’s elastic ability to return to its original state                          

 (JCSS, 2008)                                                after some perturbation." 

                                                                        

 System Resilience                                      "the property of a system that provides the capacity to       

  (Francis & Bekera,2014)                            combat effectively (absorbing, adapting to, or rapid 

                                                                      recovery."       
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Hosseini et al.(2016) provide additional information on the perception of resilience in different 

fields. Thus, from a broad perspective, resilience is the ability of a system to resist, mitigate and 

quickly recover from disruptive events. The bedrock of the concept of resilience is its dimensions 

(social, economic, organizational, and engineering) described in Table 5.1 and its system 

properties: robustness, rapidity, redundancy, and resourcefulness (Bruneau et al.,2003). Bruneau 

et al. (2003) clarify these system properties: robustness as the system's ability to withstand extreme 

events and still deliver service, rapidity as the system's recovery speed to a high functionality level. 

The terms robustness and rapidity describe the desired output of the system, otherwise called the 

"ends". 

Furthermore, redundancy is the ability to substitute system components, and resourcefulness is the 

capacity for proper budgeting, material allocation, staffing, and logistics to achieve the desired 

system output. The properties (redundancy and resourcefulness) are called the "means," which 

describes the approach and inputs to achieve the desired system output.  

Resilience is a significant metric in determining system performance when faced with disruptive 

events or situations. Some actions that may trigger disruptive events include natural disasters, 

environmental conditions, human-made accidents, and cyber attacks. Various metrics have been 

developed for resilience quantification for engineering and non-engineering disciplines (Hosseini 

et al., 2016; Yodo & Wang, 2017). A commonly discussed resilience metric designed for 

community resilience application is presented in this paper (Eq. (5A.1), Appendix 5A); some of 

these metrics might not find universal application since they were developed for specific sectors 

and disruptive conditions. Different systems have diverse failure modes and respond differently to 

several forms of disruptive events; hence, using a unique resilience quantification metric that 

effectively captures the required resilience input parameters, allows appropriate interpretation, and 
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provides confidence in its outcome is necessary. 

The concept of resilience in the engineering domain is evolving; details of its definition in an 

engineering context can be seen in Table 5.1. The research activities in engineering resilience span 

infrastructure and built environment, transportation engineering, chemical process, energy, 

electrical, and port terminal operations.  

In the last decade, a tremendous amount of research contribution to resilience has been seen in the 

infrastructure and built environment sector. This research includes the resilience of bridges 

(Stevens and Tuchscherer,2020), disruption to heating pipelines, gas, electrical, and water supply 

networks to buildings (Feofilovs & Romagnoli, 2017; Zhao et al.,2017; Cimellaro et al., 2013; 

Iannacone et al., 2022; Wu et al., 2021; Han et al., 2021), consideration of blast and seismic 

damages to buildings and infrastructures (Cimellaro et al.,2016; Quiel et al., 2016) and critical 

community-based infrastructures such as dams and power systems (Eldosouky et al.,2021).  

Lately, the concept of resilience has evolved in the transportation sector  (Minaie & Moon,2017; 

Kammouh et al.,2019; Zhou et al.,2019). In process engineering, Taleb-berrouane & Khan (2019) 

utilized stochastic Petri-nets for resilience quantification of process systems, focusing on the 

system's capacities (absorptive, adaptive, and recovery capacity). Also, Zinetullina & Yang (2020) 

quantified the resilience of a chemical process separator using the DBN technique. In addition, 

Zinetullina et al.(2021) applied a combination of DBN and functional resonance analysis in the 

resilience assessment of a chemical process comprising a two-phase separator and an acid gas 

sweetening unit. For oil and gas support structures resilience,  Cai et al.(2020) developed an 

approach to quantify the resilience of a subsea pipeline using a combination of Markov Chain and 

DBN.  
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The concept of resilience has been a focal point regarding power and energy. Consequently, 

various resilience frameworks have been developed for energy systems. Some of these applications 

include wind energy devices (Feng et al.,2019), the Markov reward process for nuclear power 

plants subject to earthquake events (Zeng et al., 2021), and urban power distribution (Bie et 

al.,2017). Furthermore, contributions can be seen in offshore power systems using the Bayesian 

Network (Sarwar et al.,2018a), resilience quantification of electrical infrastructures (Toroghi & 

Thomas, 2020),  Markov process for the electrical and control system of subsea blowout preventers 

(Cai et al., 2021) and availability-based DBN method for the resilience evaluation of network 

systems  (Cai et al.,2018).  

In port terminal operations research, the concept of resilience has gained practical application to 

characterize terminal activities at the ports (Pant et al., 2014). Similarly, research into seaport 

seismic resilience assessment has been conducted (Shafieezadeh & Ivey Burden, 2014). Hu et 

al.(2021) developed a framework for resilience assessment of LNG offloading operations under 

weather-related hazards. 

The resilience approach across the engineering disciplines discussed in this section includes 

deterministic methods, expert knowledge (which is subjective), and the Markov state process (with 

implicit exponential distribution assumption). Also, rigorous mathematical techniques have been 

developed for network systems (community networks, transportation, process operations), raising 

questions about their ease of implementation and application in practice. Understanding how the 

structure can adapt and recover from disruptive events is essential for critical oil and gas support 

structures such as subsea pipelines operating in the uncertain ocean environment. Consequently, it 

is necessary to consider probabilistic techniques, limit state conditions, historical and expert 
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information, and a straightforward and efficient approach to quantifying resilience for an asset's 

operating life.  

An essential part of resilience quantification is the recovery process. Recovery functions have been 

a common approach adopted to model recovery and eventually resilience. The commonly used 

functions range from linear (Sharma et al.,2018; Ayyub, 2015), power-law (Imani & Hajializadeh, 

2020), and exponential (Reed et al., 2010; Todman et al., 2016). However, the difficulty in 

capturing all the required resilience metrics in a single expression,  the choice of recovery function 

which adequately fits the circumstance considered, the inability to capture the performance loss, 

and the assumption that the post-recovery performance level is identical to the pre-disruption phase 

presents some challenges in the use of recovery function for resilience quantification (Cassottana 

et al., 2019). With the uncertainty involved in the phases of recovery after a disruptive event, the 

use of a probabilistic approach becomes an essential tool in resilience quantification. 

The literature shows limited research on the resilience of oil and gas support structures (pipelines, 

offshore drilling structures, fixed platforms, and vessels). 

From the above review and to fill the gaps identified, this study aims to: 

1. Develop a probabilistic approach to quantify the resilience of an offshore natural gas 

pipeline. 

2. Propose a maintainability-based method to characterize the recovery process for structural 

resilience assessment. 

The organization of the remainder of this study is as follows: Section 5.2 describes the 

preliminaries of resilience quantification. Section 5.3 describes the framework for structural 
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resilience assessment. Section 5.4 presents a case study of the resilience quantification of an 

offshore natural gas pipeline segment. Finally, Section 5.5 concludes the study. 

5.2. Preliminaries of resilience quantification 

 

 5.2.1. Engineering Resilience  

 

The definition of engineering resilience (Youn et al.,2011; Yodo et al., 2017) is a foundation for 

modeling the resilience of an engineering system using passive and proactive survival rates. The 

passive survival rate describes the system's reliability, which is its ability to perform its intended 

function over a specified period (Choi et al.,2007). In this context, the focus of reliability is to 

maintain the performance and capacity of the system.  Furthermore, the proactive survival rate 

describes the concept of system recoverability, which is restoring the system to a steady state after 

a disruptive event. Depending on the system restoration type, the steady state could typically be to 

the pre-disrupted state, slightly higher or lower. Also, Sarwar et al. (2018b) describe two essential 

components of a system's recoverability: adaptability and maintainability.  The system's 

maintainability is a term that explains the probability at which a system is restored to a steady state 

in a given time following a disruptive event (Sarwar et al., 2018b). Also, system adaptability is the 

ability to continue operation in the face of unexpected events and conditions (Asadzadeh et al., 

2020). The level of performance loss of a system following a disruptive event measures the degree 

of the system's adaptability. 

Eq. (5.1) shows a mathematical description of the resilience of an engineering system.  

                                 𝜂(𝑡) ≜ R(0, t) + 𝜓𝑟                                                                  (5.1)   

Where: t represents time,  𝜂(𝑡) represents the system resilience, R(0, t) is the time-dependent 

reliability from an initial start time 0 to a time t, and 𝜓𝑟 the system recoverability. As described in 
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this section, 𝜓𝑟 is a function of adaptability represented by 𝐴𝑑  and maintainability denoted by 

Ϻ(𝑡𝑔) (Eq. (5.2)). For maintainability, the term 𝑡𝑔 describes the repair goal, which defines the 

target time set for the repair process. 

                                 𝜓𝑟 =  ƒ (𝐴𝑑 , Ϻ(𝑡𝑔))                                                                  (5.2)  

The resilience value derived from Eq. (5.1). is expressed within the interval [0 1]. As 𝜂(𝑡) tends 

towards the upper bound, the structural system is highly resilient. Also, all elements describing  

𝜂(𝑡) as shown in Eqs. (5.1) and (5.2) have no units (𝐴𝑑 , Ϻ(𝑡𝑔), R(0, t)) consequently 𝜂(𝑡)  has 

no unit. 

 5.2.2. Structural Resilience Metric 

 

This section details the structure's transition phase following a disruptive event and the derivation 

of the expression for structural resilience quantification described in Section 5.2.1. The transition 

phase describes the stages of the structural system's performance over time, from the pre-disruption 

phase (stable) through the disrupted to the recovery phase. Figure 5.1 presents a typical diagram 

showing performance change following disruptive events and the various resilience transition 

phases. The performance of a system can be related to its intended function, structural properties, 

production output, economic effects, and financial implications. The specific choice of 

performance measure is user-defined and focused on the intended aim of the resilience 

quantification process.  The performance diagram (Figure 5.1) is an idealized plot and appears 

linear to clearly describe the resilience process and computational stages. 

The timeline described in Figure 5.1 includes the structural system's time for initiation of 

disruption:𝑡𝑒, time at the disrupted state:𝑡𝑑 and the time in its recovered state:𝑡𝑟. For performance, 



 

148 
 

the performance pre-disruption is represented by 𝑃𝑜 , performance at a disrupted state 𝑃𝑑 which 

corresponds to the time 𝑡𝑑 and performance at recovery 𝑃𝑟 which corresponds to the time 𝑡𝑟.  

 

                            Figure 5.1. Resilience performance curve showing transition phase. 

 

The symbol  𝑡𝐼𝑟 and 𝑃𝐼𝑟 (Figure 5.1) represents the time actual repair starts and the corresponding 

system performance at the beginning of repair, respectively. For most systems, recovery is not 

instantaneous and involves defect detection, careful planning, resource availability, and eventual 

repairs. Consequently, for a system in the disrupted state (𝑡𝑑) and within the recovery phase, a 

further loss in performance is probable. In the recovery phase, all performance loss arising from 

delays in the repairs or during the repair process is accounted for by the average performance loss 
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represented by 𝑃̅.  The uncertainty in the determination of 𝑃̅  is accounted for in the resilience 

analysis described in this study. 

The mathematical formulation of the system's resilience is presented in Eqs. (5.3) to (5.12) and 

shows the key elements described in Eq. (5.1).  First, the principle of total expectation is utilized 

to describe 𝜂(𝑡) as shown in Eq. (5.3) in terms of failure and non-failure events situations. In this 

formulation, failure events imply the disruptive event on the structural system, which is 

represented by 𝑆𝑓. Also, the symbol 𝑆𝑓̅ describes a non-failure event which means no disruptive 

event on the system. 

                              𝜂(𝑡) = 𝜂(𝑡)|𝑆𝑓 . 𝑃𝑟(𝑆𝑓) +  𝜂(𝑡)|𝑆𝑓̅. 𝑃𝑟(𝑆𝑓̅)                                      (5.3) 

From Eq. (5.3), 𝑃𝑟(𝑆𝑓̅) describes the probability of a non-failure state which can be substituted by 

the time-dependent reliability of the system R(0, t). The expression  𝜂(𝑡)|𝑆𝑓̅  in Eq. (5.3) describes 

the system's resilience given that no disruptive event occurs; since the bound of resilience is 

defined between [0 1] with a value of 1 denoting a highly resilient system, then 𝜂(𝑡)|𝑆𝑓̅ = 1. The 

term 𝑃𝑟(𝑆𝑓) (Eq. (5.3)) represents the probability of a system failure and can be expressed in terms 

of time-dependent reliability (Eq. (5.4)). 

                                   𝜂(𝑡) = 𝜂(𝑡)|𝑆𝑓 . (1 − R(0, t)) + R(0, t)                                   (5.4) 

The term 𝜂(𝑡)|𝑆𝑓 (Eq. (5.4)) describes the resilience of a system given a disruptive event, and in 

describing the resilience of such a system, the recovery process is essential. The term related to 

resilience can be mathematically defined considering the concept of recovery, as shown in Eq. 

(5.5). 

𝜂(𝑡)|𝑆𝑓 = 𝑃𝑟  (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦|𝑆𝑓). (𝜂(𝑡)|𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦, 𝑆𝑓)                            (5.5) 
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Barker et al. (2013) describes the concept of resilience (Eq. (5.6)) and relate the recovered 

performance of a structure at a given time with the performance loss following a disruptive event. 

This concept provides an approach to quantifying the resilience of a structural system and will be 

the foundation of this analysis.  

𝜂(𝑡)|𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦, 𝑆𝑓 =
𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐿𝑜𝑠𝑠 
                         (5.6) 

 The recovered performance and performance loss are shown in Eq. (5.7) and Eq. (5.8)        

                  𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(𝑡𝑟 , 𝑡𝑑) =  𝑃𝑟 − 𝑃𝑑 − 𝑃̅(𝑡𝑟 − 𝑡𝑑)            (5.7) 

                      𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐿𝑜𝑠𝑠 =  𝑃𝑜 − 𝑃𝑑                                                           (5.8) 

  Eq.(5.9) shows resilience in terms of performance during a  disruptive event and recovery. 

𝜂(𝑡)|𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦, 𝑆𝑓 = 
𝑃𝑟 − 𝑃𝑑 − 𝑃̅(𝑡𝑟 − 𝑡𝑑)

𝑃𝑜 − 𝑃𝑑
                                   (5.9) 

The resilience index can be expressed as a ratio of the system's initial performance before 

disruption, as shown in Eq. (5.10). 

𝜂(𝑡)|𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦, 𝑆𝑓 = 

𝑃𝑟
𝑃𝑜
−
𝑃𝑑
𝑃𝑜
−
𝑃̅
𝑃𝑜
(𝑡𝑟 − 𝑡𝑑)

1 −
𝑃𝑑
𝑃𝑜

                            (5.10) 

The performance ratios derived from Eq. (5.10) are 
𝑃𝑟

𝑃𝑜
= 𝑞𝑟 , 

𝑃𝑑

𝑃𝑜
= 𝑞𝑒 and 

𝑃̅

𝑃𝑜
= 𝑞𝑎𝑣𝑔 . The notation 

𝑞𝑟, 𝑞𝑒 and 𝑞𝑎𝑣𝑔 represents the performance recovery ratio, the performance loss ratio at the 

disrupted state, and the average performance loss ratio in the recovery phase. The value of  𝑞𝑒 

describes the system's adaptability (𝐴𝑑) expressed in Eq. (5.2). 
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The time it takes the structure from its disrupted state to a final stable recovered state where 

necessary repairs have been completed is called the recovery time and is denoted by 𝑡𝑟𝑒𝑐 = 𝑡𝑟 − 𝑡𝑑 

Eq. (5.10). 

The expression 𝑃𝑟  (𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦|𝑆𝑓) (Eq. (5.5)) describes the probability of recovery given a 

disruptive event. The probability of recovery will be determined in this paper using (Ϻ(𝑡𝑔)) shown 

in Eq. (5.2). 

The substitution of Eqs. (5.10) and (5.5) into Eq. (5.4) provide an expression for the resilience of 

a structural component. 

𝜂(𝑡) =  Ϻ(𝑡𝑔).
𝑞𝑟 − 𝑞𝑒 − 𝑞𝑎𝑣𝑔𝑡𝑟𝑒𝑐

1 − 𝑞𝑒
. (1 − R(0, t)) + R(0, t)                        (5.11)               

The time-dependent reliability (R(0, t)), the adaptability component (𝑞𝑒) and maintainability 

(Ϻ(𝑡𝑔)) described in Eq. (5.1) are captured in Eq. (5.11). Also, the performance ratios related to 

the recovery process. 

For multiple components or failure modes and mutually exclusive failure paths, Eq. (5.12) applies. 

A derivation of the expression in Eq. (5.12) is shown in the Appendix (Eq. (5A.2) to (5A.7), 

Appendix 5A). 

𝜂(𝑡)  =  𝑅𝑠(0, 𝑡)

+∑[(

𝑁𝑐

𝑖=1

𝐹𝑝𝑖(0, 𝑡).∏Ϻ(𝑡𝑔)
𝑖
(𝑗)  

𝑛𝑖

𝑗=1

. (
∑ (𝑞𝑟

𝑖𝑛
𝑗=1 (𝑗) − 𝑞𝑒

𝑖 (𝑗) − 𝑞𝑎𝑣𝑔𝑡𝑟𝑒𝑐
𝑖 (𝑗)) 

𝑛𝑖 − ∑ 𝑞𝑒
𝑖 (𝑗)𝑛𝑖

𝑗=1

)     (5.12) 

From Eq. (5.12), 𝑁𝑐, 𝐹𝑝𝑖(0, 𝑡), 𝑛
𝑖 represents the number of failure modes, the cumulative failure 

probability of a specific failure mode, and the number of defective components in a failure mode. 
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𝑅𝑠(0, 𝑡)  describes the time-dependent system reliability.  

 5.2.3. Time-Dependent Structural Reliability Analysis 

 

Following the degradation of structural elements with time and the stochastic load acting on them, 

time-dependent reliability methods have become a veritable approach to evaluating structural 

reliability. Time-dependent structural reliability is implemented using various techniques; this 

includes the outcrossing process (Hu & Du, 2013b), simulation method (Wang et al., 2014), 

metamodel approach (Hu & Mahadevan, 2016), and the extreme value approach (Hu & Du, 

2013a). Also is the PHI2 technique, which combines the outcrossing method with FORM for time-

dependent reliability analysis (Andrieu-Renaud et al., 2004). A straightforward approach with high 

accuracy to handle time-dependent reliability problems is using MCS. However, this approach 

becomes computationally expensive (requiring a large sample size), especially for small failure 

probability problems and LSF with no closed-form solution. This study adopts the variance 

reduction IS approach for time-varying reliability analysis. The IS approach samples around areas 

that contribute to the failure probability and combines the fast convergence using FORM and 

robustness from MCS (Wang et al., 2021). 

 Eqs. (5.13) to (5.18) present the expression for time-dependent reliability using the IS approach 

for obtaining the cumulative probability of failure (𝑃𝑓𝑐(𝑡𝑜 , 𝑡𝑛)) from a defined LSF  𝐺(𝑋, 𝑌(𝑡), 𝑡). 

The term 𝑃𝑓𝑐(𝑡𝑜 , 𝑡𝑛) describes the probability of occurrence of structural failure for a defined time 

domain (𝑡𝑜 , 𝑡𝑛) where  𝑡𝑜 and 𝑡𝑛  represents the initial and final time of the interval.  

           𝑃𝑓𝑐(𝑡𝑜 , 𝑡𝑛) = 𝑃𝑟[𝐺(𝑋, 𝑌(𝑡), 𝑡) ≤ 0)], ∃ 𝑡 ∈ [𝑡𝑜 𝑡𝑛]                                                    (5.13) 
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𝑃𝑓𝑐
𝐼𝑆(𝑡0, 𝑡𝑒) ≈

1

𝑁𝐼𝑆
∑(𝐼𝑘(𝑥𝐼𝑆,𝑛, 𝑦(𝑡)𝐼𝑆,𝑛)

𝑓𝑋(𝑥𝐼𝑆,𝑛)𝑓𝑌(𝑡)(𝑦(𝑡)𝐼𝑆,𝑛)

ℎ(𝑥𝐼𝑆,𝑛, 𝑦(𝑡)𝐼𝑆,𝑛)

𝑁𝐼𝑆

𝑛=1

                      (5.14) 

For Eq. (5.13), X is a vector of time-independent random variables, and Y(t) is a vector of a 

stochastic process of the LSF 𝐺(𝑋, 𝑌(𝑡), 𝑡). Eq. (5.14) represents the cumulative failure probability 

from the X and Y(t) PDF. For the IS approach, the sampling center shifts from origin to the Most 

Probable Point (MPP) using a sampling density function ℎ(𝑥𝐼𝑆,𝑛, 𝑦(𝑡)𝐼𝑆,𝑛). 

The failure indicator 𝐼𝑘(𝑥𝐼𝑆,𝑛, 𝑦(𝑡)𝐼𝑆,𝑛) (Eq. (5.14)) is given by 

𝐼𝑘(𝑥𝐼𝑆,𝑛, 𝑦(𝑡)𝐼𝑆,𝑛) = {
1 𝑖𝑓min{(𝐺(𝑥, 𝑦(𝑡), 𝑡) ≤ 0} 𝑓𝑜𝑟 𝑡𝑜 ≤ 𝑡 ≤ 𝑡𝑛 

𝑒𝑙𝑠𝑒 0
}                       (5.15) 

Where 𝑥𝐼𝑆,𝑛 and 𝑦(𝑡)𝐼𝑆,𝑛 are realizations from 𝑓𝑋(𝑥) and 𝑓𝑌(𝑡)(𝑦(𝑡𝑜),… . 𝑦(𝑡𝑛)) respectively for 𝑛 

=1…,.𝑁𝐼𝑆 where 𝑁𝐼𝑆  is the number of sample points for the IS method. Also, 𝑃𝑓𝑐
𝐼𝑆(𝑡𝑜, 𝑡𝑛) is the 

cumulative probability of failure using the IS approach for the given time-domain (Eq. (5.14)). 

The variance (𝑉𝑎𝑟𝑃𝑓𝑐
𝐼𝑆) and Coefficient of Variation (𝐶𝑜𝑉𝑃𝑓𝑐

𝐼𝑆) from the IS approach are shown 

in Eqs. (5.16) and (5.17). 

𝑉𝑎𝑟𝑃𝑓𝑐
𝐼𝑆 =

1

𝑁𝐼𝑆
[
1

𝑁𝐼𝑆
∑(𝐼𝑘(𝑥𝐼𝑆,𝑛, 𝑦(𝑡)𝐼𝑆,𝑛),

𝑓𝑋(𝑥𝐼𝑆,𝑛)𝑓𝑌(𝑡)(𝑦(𝑡)𝐼𝑆,𝑛)

ℎ(𝑥𝐼𝑆,𝑛, 𝑦(𝑡)𝐼𝑆,𝑛)
)

2

− (𝑃𝑓𝑐
𝐼𝑆(𝑡0, 𝑡𝑒))

2
𝑁𝐼𝑆

𝑛=1

] (5.16) 

𝐶𝑜𝑉𝑃𝑓𝑐
𝐼𝑆 =

√𝑉𝑎𝑟𝑃𝑓𝑐
𝐼𝑆

𝑃𝑓𝑐
𝐼𝑆(𝑡0, 𝑡𝑒)

                                                                                                              (5.17) 

 

 

 



 

154 
 

5.2.4. Random Process Discretization 

 

In the case of the time-varying reliability analysis described in Section 5.2.3, quantities that vary 

randomly with time, which may be related to materials properties, degradation, or applied load, 

are treated as a random process. The random process exists in a continuous domain with infinite 

random variables, which presents the need to discretize and truncate the random process to ease 

computation. The discretization process allows the representation of a random process by random 

variables such that each random variable represents the random field at a specific time.   A series 

expansion method is a common way of handling the discretization processes, such as the 

Karhunen-Loeve method (Ghanem & Spanos,1991), Orthogonal Series Expansion (OLE) 

approach (Zhang & Ellingwood,1994), and Expansion Optimal Linear Estimation (EOLE) method 

(Li & Der Kiureghian, 1993).  Sudret and Der Kiureghian (2000) suggested the EOLE approach 

in dealing with exponential square autocorrelation functions since it produces better accuracy than 

earlier mentioned series expansion methods. 

The EOLE approach is a spectral decomposition method proposed by Li and Der Kiureghian based 

on the optimal linear estimation theory. In the EOLE method, discretization is achieved by solving 

an eigenvalue problem. For EOLE, its shape function is described by the autocorrelation function 

of the random process.  

Eqs. (5.18) to (5.20) describes the EOLE series decomposition for the random process. 

                             𝐶𝑐𝑜𝑣(𝑡1, 𝑡2) = ∑ 𝜆𝑖
∞
𝑖=0 ∅𝑖(𝑡1)∅𝑖(𝑡2)                                           (5.18)                                  

𝐻(𝑡, 𝜃) = 𝐻̅(𝑡) +∑√𝜆𝑖

∞

𝑖=1

𝜉𝑖(𝜃)∅𝑖(𝑡)                                              (5.19) 

By truncating the infinite series to 𝑁𝑥𝑥 terms the new EOLE series expression is shown in Eq. 

(5.20) 
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    𝐻(𝑡, 𝜃) ≈ 𝐻̂(𝑡, 𝜃) = 𝐻̅(𝑡) +∑ √𝜆𝑖
𝑁𝑥𝑥

𝑖=1
𝜉𝑖(𝜃)∅𝑖(𝑡)                                            (5.20) 

For Eqs. (5.18) to (5.20), 𝐶𝑐𝑜𝑣(𝑡1, 𝑡2) is the covariance matrix, 𝜆𝑖 and ∅𝑖(𝑡) describes the 

eigenvalues and eigenvectors of the covariance matrix. 𝐻̅(𝑡) is the expectation of the Gaussian 

random process 𝐻(𝑡, 𝜃) with outcome 𝜃. The approximate random process following the 

truncation of series terms is given by 𝐻̂(𝑡, 𝜃). This approach is applied for discretizing the 

stochastic input parameter of the natural gas pipeline. 

5.3. The Methodology for Resilience Quantification  

 

This section presents the proposed framework for structural resilience quantification using a seven-

step approach, as outlined in Section 5.3.1. Also, Figure 5.2. shows the flowchart of the method 

described. 

5.3.1. Steps for structural resilience quantification 

 

The steps below are a chronological description of the stages of resilience quantification of an 

offshore natural gas pipeline using the process described in Section 5.2 of this study. 

Step 1: System identification, boundaries, hazards, and failure modes 

Identify the system required for resilience quantification, its boundaries, the likely disruptive 

events the system might encounter, and the possible failure modes from the disruptive events. This 

paper considers a natural gas pipeline segment operating in an offshore environment. Offshore 

pipelines face several hazards, such as extreme environmental loads (seismic loads), process 

deviation, internal and external corrosion, and dropped objects. This study will focus on system 

disruption from over-pressure conditions (process deviation), considering the remaining useful life 
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of an internally corroded natural gas pipeline segment with the leak, burst, and rupture conditions 

as the likely failure modes. 

Step 2: Define LSF of all failure modes incorporating possible degradation 

The LSF for the various failure modes, which describes the disruptive events of the structural 

system presented in Step 1, is determined. In cases where there exists an implicit LSF (no closed-

form function of input variables), the construction of a metamodel is necessary to describe the 

performance of the structural system under a given limit state condition. Also, considering the 

degradation of the structure with time arising from corrosion is essential during the LSF 

construction. 

Step 3:  Determine the probability distribution of random variables and discretize stochastic 

variables 

Determine if stochastic random variables for the parameters of the given failure modes identified 

in Step 1 exist. Consequently, a discretization process is utilized to determine the random variable's 

distribution information at each time step for stochastic random variables affecting the structure. 

This study adopts the EOLE method discussed in Section 5.2. Furthermore, the probability 

distribution for the associated parameters affecting the failure modes is determined. 

Step 4: Time-dependent reliability analysis of the LSF 

This step involves the evaluation of the reliability of the structure over time for the failure modes 

and LSF described in the previous steps outlined. For structural systems with multiple components, 

a possible approach to determine the failure paths for resilience assessment is by enumeration, 

which involves the identification of all possible combinations of success and failure of the system's 

components and the effect on the overall system. Consequently, the cumulative failure probability 
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is evaluated for series, parallel, or combined structural systems. This stage will utilize the variance 

reduction approach discussed in Section 5.2 for the offshore natural gas pipeline segment.  

Step 5: System Adaptability determination  

The ability of the structural system to adjust and operate in the disrupted state is determined by the 

performance loss ratio information (𝑞𝑒)  detailed in Section 5.2.  For structures such as pipelines, 

this information can be obtained by numerical analysis such as Computational Fluid Dynamics 

during design analysis of failure scenarios (Reddy et al., 2016; Yousef et al., 2021) or from 

historical process data in operating cases obtained by flow sensors for similar failure situations 

considered. The method of performance information determination is also applicable to 𝑞𝑟 and 

𝑞𝑎𝑣𝑔. It is essential to determine the performance parameters for the loss ratio determination. For 

pipelines, flow conditions (flow rate, output pressure, temperature), produced quantity, or 

production cost are possible performance parameters for loss ratio determination. The initial flow 

rate of natural gas in the pipeline before the disruptive event and at the disrupted state is required 

to determine the loss ratio (which has no unit) for the natural gas pipeline segment considered. The 

flow rate is typically measured in cubic meters per hour.  

Step 6: Recovery modeling from repair data 

System recovery is an essential part of structural resilience evaluation. As described in the earlier 

section, maintainability is proposed to characterize the recovery of structures. While system 

recovery has been represented in terms of recovery curve (Nocera et al., 2019)  and specific 

recovery functions (Shang et al., 2022);  this study proposes a model of recovery that relies on the 

probability of recovery within a specified time Ϻ(𝑡𝑔). The repair goal denoted by 𝑡𝑔 is the user-

defined target time set for the recovery process, and it is integral in the concept of maintainability. 
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A decrease in the repair time (shorter completion time) relative to the set repair goal means an 

increase in the probability of recovery. In this step, the value  Ϻ(𝑡𝑔) is determined from historical 

recovery data of similar repair situations and sometimes from expert judgment when data is 

unavailable. In using available historical repair information, statistical analysis is utilized to 

determine the type of probability distribution that best fits and characterizes the repair data (repair 

distribution) to help develop a maintainability function that describes the probability of completing 

a recovery action at a specified time. Consequently, the recovery probability can be obtained from 

the defined function. 

Step 7: Structural Resilience Quantification and Sensitivity Analysis 

The structure's resilience is determined using outcomes from Steps (1-6) described in this section 

and the derived resilience expression in Section 5.2. The resilience index outcome is quantified 

with a bound between 0 and 1 and has no unit with a value close to 1, indicating a highly resilient 

structure. Also, the sensitivity of resilience parameters provides insight into how resilience 

changes with a change in input parameters.  An acceptable target resilience level can be user-

defined or determined by appropriate regulatory standards. Intuitively, a value close to 1 may be 

suitable for critical offshore structures. However, re-evaluating resilience parameters might be 

necessary where target values exist and the resilient index is below the set target. The sensitivity 

analysis outcome plays a vital role in the re-evaluation process. 

. 
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                                                                                                                        Figure 5.2. Resilience Quantification Flowchart

System: identification, boundaries, hazards, and failure modes  Step 1 

                            Define LSF for all failure modes incorporating possible degradation Step 2 

Determine probability distribution of random variables of LSF and discretize stochastic random field 

variables      

Step 3 

Time-dependent reliability analysis using 

variance reduction technique 

System adaptability determination  

 

Recovery modeling  

 

𝜂(𝑡) ≥  target 

resilience value 
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Stop 

No Re-evaluation of resilience 
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Step 7 Resilience Quantification (𝜂(𝑡)) and Sensitivity Analysis 
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5.4. Application of the framework to a natural gas pipeline 

 

This section presents the engineering application of the resilience quantification framework 

described in the previous section to an offshore natural gas pipeline segment.  

5.4.1. Background (Offshore Pipeline Resilience) 

 

Offshore pipelines are a vital transportation medium for oil and gas production activities; the safety 

of these facilities is critical during their operational life. Consequently, pipeline reliability and 

resilience assessment are essential during their design and operations to ensure a structure that can 

absorb, adapt, and restore performance when faced with disruptive events.  

5.4.2. Case Study: Internally Corroded Natural Gas Pipeline Segment 

 

 5.4.2.1. Pipeline disruptive events and LSF 

 

This case study is a hypothetical example that demonstrates the application of the resilience 

quantification framework to an offshore natural gas pipeline segment (API5L-X60, SCH 40) with 

multiple initial internal corrosion defects and a design life of 20 years. The disruptive events 

considered in this study are leak, burst, and rupture failure conditions and are represented by 

explicit LSF (closed-form function for input variables), as shown in Eqs. (5.21) to (5.23). In a 

situation where no explicit LSF exists, a metamodel is constructed to define the relationship 

between the system's random input and response variables. 

Eqs. (5.21) to (5.23) show the LSF for the failure modes.  

𝑔𝑖
𝑙(𝑡) = 𝑡𝑤 − 𝑑𝑖(𝑡)                                                                                                               (5.21) 

𝑔𝑖
𝑏(𝑡) = 𝑃𝑏(𝑡) − 𝑃𝑝(𝑡)                                                                                                        (5.22) 
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𝑔𝑖
𝑟(𝑡) = 𝑃𝑟𝑢𝑝(𝑡) − 𝑃𝑝(𝑡)                                                                                                      (5.23) 

𝑔𝑖
𝑙(𝑡) , 𝑔𝑖

𝑏(𝑡) and 𝑔𝑖
𝑟(𝑡) represents the LSF for the leak, burst, and rupture, respectively                           

𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2. . . 𝑛𝑑 (𝑛𝑑 is the number of defects) 

The notation 𝑡𝑤 represents the pipe wall thickness and  𝑑𝑖(𝑡) the corrosion defect depth. The 

natural gas flow pressure is represented by 𝑃𝑝(𝑡). 

The expression for the burst pressure 𝑃𝑏(𝑡) and rupture pressure 𝑃𝑟𝑢𝑝(𝑡)  are presented in Eqs. 

(5.24) and (5.25) (Ossai et al., 2016). This study adopts the modified ASME B31G (ASME,2009) 

for the burst pressure condition with further details on 𝑀𝑓(t) (Folias Factor) in the Appendix 5A 

(Eqs. (5A.8) and (5A.9)). In practice, modified ASME B31G has gained wide application for oil 

and gas pipeline burst pressure assessment and applied to low and moderate toughness pipes such 

as the X60 pipeline described in this study.   

𝑃𝑏(𝑡) =  ξ 
2𝑡𝑤
𝐷
(𝜎𝑦 + 69) [

1 − 0.85 (
𝑑𝑖(𝑡)
𝑡𝑤

)

1 − 0.85 (
𝑑𝑖(𝑡)
𝑡𝑤

)𝑀𝑓(𝑡)−1
]                                            (5.24) 

𝑃𝑟𝑢𝑝(𝑡) =
1.8𝜎𝑢𝑡𝑤
𝑀𝑓(𝑡)𝐷

                                                                                                             (5.25) 

The symbol  ξ  represents the model error for ASME burst pressure, 𝜎𝑦 : pipeline yield stress, 𝜎𝑢: 

pipeline ultimate stress and 𝐷 : outer pipe diameter: Table 5.2 presents further details on the 

pipeline parameters and statistical distribution. 
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Table 5.2. Parameters of the offshore natural gas pipeline [modified from:(Pandey, 1998)] 

     Parameter                     Symbol        Unit           Mean            CoV (%)            Distribution 

Pipe outer diameter               D              mm           457.2                  3                        Normal 

Pipe wall thickness                𝑡𝑤            mm           14.27                  5                       Lognormal 

Yield Stress                           𝜎𝑦             MPa         1.1SMYS          2.5                       Normal 

Ultimate Stress                      𝜎𝑢            MPa          520                    3.7                     Lognormal 

Fluid Pressure                        𝑃𝑝(t)          MPa          1.05MOP            2                  Gaussian Process**  

Defect growth rate (length)  𝑙𝑔(𝑡)        mm/yr          0.4                  15                    Gamma Process 

Model error                           ξ                   -           1.026                 25                      Gumbel 

** Gaussian process is defined by autocorrelation function exp (−(𝛥𝑡/3)2)   

The CoV describes the relative dispersion of the pipeline parameters about the mean. The Specified 

Minimum Yield Strength (SMYS) is 415MPa, and the Maximum Operating Pressure (MOP) is 9 

MPa. 

5.4.2.2. Pipeline Corrosion Rate Determination  

 

This study considers an internally corroded offshore natural gas pipeline segment with initial 

defects. The effect of corrosion is time-dependent and a potential safety issue that could initiate 

disruption caused by a leak, burst, or rupture failure during operation and as the pipeline ages. The 

pipeline defect length 𝑙𝑔(𝑡) and depth 𝑑𝑔(𝑡)growth rate considerably impacts its remaining 

strength. This study considers multiple initial internal corrosion defects (Table 5.3) with the 

corrosion growth rate (length and depth) modeled as a stochastic gamma process (Gong & Zhou, 

2017). The stochastic gamma process is capable of modeling gradual deterioration, the process is 

easy to implement, increments are non-negative, and the scale parameter is time-dependent 
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(Noortwijk, 2009). Eq. (5.26) shows the expression for the gamma process for depth growth rate; 

a similar expression is utilized for the length growth rate. 

𝐹(𝑑𝑔(𝑡)|𝑎𝑡, 𝑏) =
𝑏𝑎𝑡𝑑𝑔

𝑎𝑡−1

Г(𝑎𝑡)
exp(−𝑏𝑑𝑔)                                               (5.26) 

For the gamma process, a and b are the scale and shape parameters that are related to the year 

mean (
𝑎

𝑏
 )and standard deviation (

𝑎

𝑏2
) of the depth and length increment. Г(.) represents the gamma 

function.  

The expression below (Eqs. (5.27) and (5.28)) shows the natural gas pipeline defect length and 

depth growth rate model, respectively. 

                           𝑙𝑖(𝑡) = 𝑙𝑜𝑖 + 𝑙𝑔𝑖(𝑡)                                                                                  (5.27)             

                          𝑑𝑖(𝑡) = 𝑑𝑜𝑖 + 𝑑𝑔𝑖(𝑡)                                                                                (5.28) 

                        𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2. . .6 (𝑛𝑑 = 6) 

This study considers six (6) non-interacting defects in the pipeline segment. The longitudinal and 

circumferential separation distance for adjacent defects is assumed to be greater than three times 

the pipe wall thickness (3𝑡𝑤) (Bao & Zhou, 2021), and the defects are isolated such that developed 

stress and strain do not interact with an adjacent defect. Table 5.3 shows the offshore natural gas 

pipeline's initial defect dimensions (length and depth), which are assumed to follow a lognormal 

distribution.  
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Table 5.3. Initial defect length and depth dimensions of the natural gas pipeline segment. 

          𝒊               Initial defect depth  𝒅𝒐𝒊 (mm)           Initial defect length 𝒍𝒐𝒊 (mm) 

                                 Mean             CoV                         Mean                CoV       

         1                      2.4                  0.05                               50                  0.08        

         2                      2.5                  0.03                               70                  0.03        

         3                      2.2                  0.07                               94                  0.02        

         4                      3.7                  0.11                               75                   0.03       

         5                      3.7                  0.09                             116                  0.02        

         6                      2.9                  0.10                             118                  0.03        

 

The statistical information of  𝑙𝑔(𝑡) is described in Table 5.2 of this section, and the method for 

the determination of the corrosion depth growth rate 𝑑𝑔(𝑡) is described in the next section using a 

semi-empirical model. The stochastic gamma process is utilized to determine 𝑙𝑔(𝑡) and 𝑑𝑔(𝑡) for 

the pipeline design life. A correlation coefficient of 0.7 is assumed between 𝑙𝑔(𝑡)  and 𝑑𝑔(𝑡)  for 

individual defects. 

5.4.2.2.1. Determination of the Corrosion Rate (Depth)  

 

Various semi-empirical corrosion models have been applied to corrosion rate determination in the 

oil and gas industry. Most of these models tend to focus on the influence of 𝐶𝑂2 on corrosion rate. 

These models include the popularly used de Waard, Norsok, Dream, Tulsa, Ohio, Cassandra, and 

Lipucor models (Nyborg, 2002). The corrosion effect of Hydrogen Sulphide (𝐻2𝑆) is significant 

in natural gas pipelines, but the models earlier described cannot account for the influence of 𝐻2𝑆 

on the corrosion rate. The Southwest Research Institute (SwRI) model (Kale et al., 2004) is a linear 
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model which can account for not only the influence of  Carbon-dioxide (𝐶𝑂2) but also Oxygen 

(𝑂2) and 𝐻2𝑆. For 𝑑𝑔(𝑡)  determination, the SwRI model is utilized in this study.  

The SwRI semi-empirical model for the corroded natural gas pipeline in mm/year is expressed in 

Eq. (5.29). 

𝑑𝑔(𝑡)  =  𝑘 x 𝐶1x 0.0254 x (8.7 + 9.86x10
−3(𝑂2) − 1.48x10

−7(𝑂2)
2 − 1.31(𝑝𝐻)

+ 4.93x10−2(𝑝𝐶𝑂2)(𝑝𝐻2𝑆) − 4.82x10
−5(𝑝𝐶𝑂2)(𝑂2) − 2.37x10

−3(𝑝𝐻2𝑆)(𝑂2)

− 1.11x10−3(𝑂2)(𝑝𝐻))
𝑚𝑚

𝑦𝑒𝑎𝑟
                                                               (5.29) 

Table 5.4 shows the parameters that affect the natural gas pipeline with all parameters lognormally 

distributed. In Eq. (5.29), the partial pressure of 𝐶𝑂2 and 𝐻2𝑆 is captured,  𝑘 is the corrosion model 

error and  𝐶𝐼 the inhibitor correction factor. 

Table 5.4. Corrosion Parameters for natural gas pipeline [modified from (Kale et al., 2004)]. 

                               𝑂2(𝑝𝑝𝑚)            𝑝𝐻       %𝐻2𝑆(𝑚𝑜𝑙𝑒)    %𝐶𝑂2(𝑚𝑜𝑙𝑒)        𝑘                𝐶𝐼 

Mean                         7500                6.00              0.06                4.0                  1.0              0.85 

Standard Deviation   1800                0.06             0.005              0.08                 0.5              0.26 
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                       Figure 5.3.  Histogram of corrosion depth growth rate (𝑑𝑔(𝑡) 𝑚𝑚/𝑦𝑒𝑎𝑟). 

 

Figure 5.3 shows the histogram for the corrosion rate using the SwRI model. In addition, Table 

5.5 shows the statistical information on the corrosion rate of the natural gas pipeline using the 

semi-empirical model from Eq. (5.29). 

Table 5.5. Corrosion depth growth rate statistical information. 

                                                          𝑁𝑐𝑟                  Mean                 CoV           

      𝑑𝑔(𝑡) 𝑚𝑚/𝑦𝑒𝑎𝑟                        1E5                 0.2919                  0.61              

 

The results presented in Table 5.5 show the essential statistical parameters of 𝑑𝑔(𝑡) for the natural 

gas pipeline, which is assumed to follow a stochastic gamma process. The number of MCS 

simulations in the determination of 𝑑𝑔(𝑡)  is represented by  𝑁𝑐𝑟. 
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5.4.2.3. Fluid pressure discretization 

 

The internal fluid pressure 𝑃𝑝(t) changes with time, and it is necessary to model this activity during 

the structural resilience assessment. The natural gas pressure 𝑃𝑝(t) is modeled as a stationary 

Gaussian process with autocorrelation function exp (−(𝛥𝑡/3)2)  (Sudret & Der Kiureghian, 

2000). The stochastic random process for the fluid pressure is discretized into a random variable 

and for the pipeline's design life (20 years) using the EOLE approach discussed in Section 5.2. For 

the autocorrelation function presented in this study, its scaling parameter that describes the 

correlation between pressure values in the random field is three months. The discretization domain 

is 20 years (240 months), and the mean and CoV of the stochastic process are presented in Table 

5.2. In practice, the autocorrelation function can be obtained from monitored pressure records and 

time lag data using appropriate curve fitting techniques. The EOLE method is a series expansion 

method with an infinite number of terms arranged in descending order. However, it is essential to 

determine the appropriate truncation terms (𝑁𝑥𝑥) in the discretization process to capture the non-

zero eigenvalues (Eq. (5.20)). A truncation term of  𝑁𝑥𝑥 =115, as shown in Figure 5.4, captures 

the non-zero eigenvalues of the fluid pressure expansion series.  
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                               Figure 5.4.  EOLE random process discretization eigenvalues for 𝑷𝒑(t).   

 

The random variables (pressure) from the fluid pressure discretization are essential in the time-

dependent reliability assessment of the pipeline segment. 

5.4.2.4. Pipeline time-dependent reliability assessment 

 

The time-dependent reliability of the natural gas pipeline is an integral part of its resilience 

quantification. Using the LSF approach, failures occur when there is a violation of the LSF (when 

the LSF is zero or a negative value). Eqs. (5.30) to (5.32) present the pipeline's leak, burst, and 

rupture failure condition. For the probability of leak failure, as shown in Eq. (5.30), a violation of 

the leak LSF (𝑔𝑖
𝑙(𝑡)) in at least one of the defect locations occurs with no possible violation of the 

burst LSF (𝑔𝑖
𝑏(𝑡)). Similarly, for the probability of burst failure (Eq. (5.31)), a violation of the 

burst LSF (𝑔𝑖
𝑏(𝑡)) in at least one of the defect locations occurs with no possible violation of the 

leak LSF (𝑔𝑖
𝑙(𝑡)). 
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𝑃𝑓𝑐
𝑙𝑒𝑎𝑘(0, 𝑡) = 𝑃𝑟  [⋃(

𝑛𝑑

𝑖=1

𝑔𝑖
𝑙(𝑡) ≤ 0 ) ∩ (𝑔𝑖

𝑏(𝑡) > 0)]                                         (5.30) 

𝑃𝑓𝑐
𝑏𝑢𝑟𝑠𝑡(0, 𝑡) = 𝑃𝑟 [⋃(

𝑛𝑑

𝑖=1

𝑔𝑖
𝑙(𝑡) > 0 ) ∩ (𝑔𝑖

𝑏(𝑡) ≤ 0)]                                        (5.31) 

𝑃𝑓𝑐
𝑟𝑢𝑝𝑡𝑢𝑟𝑒(0, 𝑡) = 𝑃𝑟  [⋃(

𝑛𝑑

𝑖=1

𝑔𝑖
𝑙(𝑡) > 0 ) ∩ (𝑔𝑖

𝑏(𝑡) ≤ 0) ∩ (𝑔𝑖
𝑟(𝑡) ≤ 0)]         (5.32) 

In addition, for a pipeline rupture failure (Eq. (5.32)), a violation of the burst and rupture LSF, as 

expressed in Eqs. (5.22) and (5.23) will occur in at least one of the defect locations with no possible 

violation of the leak condition (Eq. (5.21)). The time-dependent IS approach described in Section 

5.2.3 is utilized to obtain the pipeline cumulative failure probability for failure conditions 

[𝑃𝑓𝑐
𝑙𝑒𝑎𝑘(0, 𝑡) , 𝑃𝑓𝑐

𝑏𝑢𝑟𝑠𝑡(0, 𝑡) and 𝑃𝑓𝑐
𝑟𝑢𝑝𝑡𝑢𝑟𝑒(0, 𝑡) ] considering the pipeline input variables and all 

corrosion defects. In this study, 𝑁𝐼𝑆 = 106 sample points are utilized in the time-varying reliability 

analysis.   

The corresponding IS reliability index (𝛽𝐼𝑆) is obtained from 𝑃𝑓𝑐
𝐼𝑆(0, 𝑡) using Eq. (5.33), and this 

is shown in Figure 5.5 for the leak, burst, and rupture conditions. 

                                    𝛽𝐼𝑆 = −Ф−1 (𝑃𝑓𝑐
𝐼𝑆(0, 𝑡))                                                                  (5.33) 
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          Figure 5.5.  Pipeline reliability index for the leak, burst, and rupture failure condition. 

 

 

From Figure 5.5, the pipeline is least likely to fail from a rupture condition. The 𝐶𝑜𝑉𝑃𝑓𝑐
𝐼𝑆  (Eq. 

(5.17)) for the different pipeline failure modes is presented in Figure 5.6. with a high 𝐶𝑜𝑉𝑃𝑓𝑐
𝐼𝑆 

observed for the leak and rupture conditions using the IS approach and specified sample points 

(𝑁𝐼𝑆 = 106). 
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                               Figure 5.6.  Pipeline Importance Sampling 𝐶𝑜𝑉𝑃𝑓𝑐
𝐼𝑆 plot (𝑁𝐼𝑆 = 106). 

 

The failure probability for the different pipeline failure modes is essential in resilience 

quantification since it represents the term 𝐹𝑝𝑖(0, 𝑡) in Eq. (5.12). A leak, burst, or rupture condition 

of the pipeline segment leads to system failure. Consequently, the pipeline segment failure 

conditions are evaluated in series to obtain the time-dependent probability of failure of the system 

(Eq. (5.34)), and R(0, t). 

𝑃𝑓𝑐(𝑠𝑦𝑠)(0, 𝑡) = 1 − [(1 − 𝑃𝑓𝑐
𝑙𝑒𝑎𝑘(0, 𝑡)) . (1 − 𝑃𝑓𝑐

𝑏𝑢𝑟𝑠𝑡(0, 𝑡)) . (1 − 𝑃𝑓𝑐
𝑟𝑢𝑝𝑡𝑢𝑟𝑒(0, 𝑡))]       (5.34) 

5.4.2.5. Pipeline recovery analysis  

 

Recovery analysis of a structural system is a critical aspect of resilience assessment. This study 

adopts the concept of maintainability in recovery modeling. As discussed in Section 5.3, repair 

information is obtained from historical data, then the distribution is determined, and the 

maintainability function is developed. A gamma repair distribution is fitted to the pipeline repair 
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data for demonstration purposes. The gamma distribution is an excellent choice to characterize 

repair times because of its flexibility, ability to model wait times, and represent various 

maintenance data (Dhillion,2006). The probability of repair at a given time is obtained using the 

gamma maintainability function shown in Eq. (5.35). 

𝑀(𝑡𝑔) =
𝐶𝑚

Г(𝑚)
∫ 𝑡𝑔

𝑚−1

𝑡𝑔

0

𝑒−𝑐𝑡𝑔𝑑𝑡𝑔                                                                (5.35) 

The maintainability parameters 𝐶 and 𝑚 in Eq. (5.35) are obtained from the mean repair time (
𝑚

𝑐
) 

and standard deviation (
√𝑚

𝑐
) of the gamma-fitted repair data. The target repair time, otherwise 

called the repair goal, is represented by 𝑡𝑔. Table 5.6 shows the statistical parameters of the 

assumed repair data and the values of  𝑀(𝑡𝑔) for specified 𝑡𝑔 obtained using Eq. (5.35). The repair 

time for the offshore natural gas pipeline depends on the water depth, failure type, repair crew 

competence, logistics, repair method, and equipment availability. The repair methods include 

clamps and sleeves installation, repair robots, hyperbaric welding, and a complete pipe section 

replacement (Eidaninezhad et al., 2019).  Leak repairs can typically involve the introduction of 

sleeves and clamps, while burst and rupture repairs can result in a total replacement of the pipe 

section.  
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Table 5.6. Offshore natural gas pipeline repair and maintainability data. 

                                              Leak Repair                  Burst Repair                   Rupture Repair 

Mean repair time(weeks)             8                                     11                                     13 

CoV                                              0.4                                  0.7                                    0.3 

𝑡𝑔 (weeks)                                    10                                   15                                     15 

𝐶, 𝑚                                       (6.25,0.78)                      (2.04,0.19)                        (11.11,0.85) 

𝑀(𝑡𝑔)                                          0.79                                0.76                                  0.73 

 

The repair time described includes time to locate the damaged section, pipeline preparation and 

repair planning, actual repair, installation, and pressure testing on completion of repairs. Due to 

data unavailability for actual pipeline repair, the data presented in Table 5.6 is obtained from 

experience gathered by the researchers. The repair data describes the recovery from a single failure 

condition at a time.  

5.4.2.6. Pipeline resilience quantification 

 

The evaluation of the time-dependent reliability of the pipeline, the likelihood of recovery when 

faced with disruptive events, and the performance ratios (Table 5.7) are essential parameters in 

quantifying its resilience. The adaptability of the structure in the disruptive phase is defined by 

𝐴𝑑= 𝑞𝑒  and the ratio 𝑞𝑎𝑣𝑔 (Table 5.7) describes the performance loss ratio for the period of the 

pipeline recovery. For simplicity of analysis, this study assumes the same performance ratio for all 

failure modes of the offshore pipeline.  

Table 5.7. Performance ratio of the natural gas pipeline (recovery and loss). 

           Performance ratio                 Distribution type                     Mean                         CoV 

                        𝑞𝑟                                     Lognormal                          0.8                          0.2 
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                        𝑞𝑒                                     Lognormal                          0.3                          0.05 

                       𝑞𝑎𝑣𝑔                                  Lognormal                          0.2                         0.01 

 

With the resilience expression (Eq. (5.12)), 𝜂(𝑡) is determined considering the pipeline segment. 

Figure 5.7 shows the pipeline resilience plot for the design life (20 years). 

                                   

                               Figure 5.7.   Resilience index (𝜼(𝒕)) for the offshore natural gas pipeline. 

 

5.4.2.7. Pipeline Resilience Sensitivity Analysis 

 

It is essential to analyze the influence of input parameters on the resilience index through its design 

lifecycle. The Borgonovo index, a global sensitivity analysis method, is utilized in the pipeline's 

sensitivity analysis (Borgonovo, 2007).  The advantages of using the Borgonovo index are that it 

is moment independent, utilizes the entire input and output response, and evaluates correlated and 

uncorrelated variables. Eq. (5.36) shows the expression of the Borgonovo index (𝛿𝐵). 
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                          𝛿𝐵𝑖 =
1

2
∫ 𝑓𝑋𝑖(𝑥𝑖) ∫ |𝑓𝑌(𝑦) − 𝑓𝑌|𝑋𝑖(𝑦)|𝑑𝑦𝑑𝑋𝑖  𝐷𝑦𝐷𝑋𝑖

                                 (5.36) 

Where 𝑓𝑌(𝑦) is the PDF of the model output, 𝑓𝑌|𝑋𝑖(𝑦) is the conditional distribution on 𝑋𝑖 and 

𝑓𝑋𝑖(𝑥𝑖) is the PDF of the input variable 𝑋𝑖. For the sensitivity index, when the given input variable 

is independent of the output 𝛿𝐵𝑖 = 0. Also, when all input variables contribute to the output 

response, the sum of 𝛿𝐵𝑖 = 1 for 𝑖 = 1,2. . 𝑛 where n is the number of input variables. 

From the resilience expression (Eq. (5.12)), the sensitivity analysis of the pipeline is evaluated 

using 𝛿𝐵 to determine the sensitivity of the resilient input variables for its design life. Figure 5.8 

shows the sensitivity analysis outcome for the gas pipeline. 

                

                 Figure 5.8. Pipeline resilience sensitivity plot of the using Borgonovo Index. 
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 From Figure 5.8, the segmented pipeline resilience was highly sensitive to the pipe wall thickness 

and the defect growth rate (depth) parameters, while other parameters had less impact on resilience.                                    

 

5.4.3. Discussion of results 

 

For the offshore natural gas pipeline segment considered, the outcome, as shown in Figure 5.7, 

reveals an approximately constant resilience index (𝜂(𝑡)) for the first five years with the index 

equals 1; this is followed by a gradual decline from the fifth year through its design life 

((𝜂(20))  = 0.931). Although there was no known target resilience value to compare the 

evaluated resilience index in this study, the resilience evaluation outcome indicates a high safety 

level and ability to recover under the given conditions and disruptive events (leak, burst, or rupture) 

considered.  A significant aspect of structural resilience is modeling the recovery process; a change 

in repair goals (𝑡𝑔) affects  𝑀(𝑡𝑔) and the resilience index of the structural system using the 

framework presented. Hence, it is essential to effectively model the recovery process and set 

realistic repair goals. Furthermore, Figure 5.5 reveals that the pipeline segment is more likely to 

fail due to burst conditions than other failure modes in the early operating years and a leak in 

subsequent years. This information could be helpful for pipeline asset operating parameter 

monitoring and maintenance planning during its service life. 

The influence of pipeline parameters on the system's resilience is critical during the asset life cycle. 

In this study, the result of the resilience sensitivity analysis (Figure 5.8) indicates that the pipeline 

wall thickness (𝑡𝑤) has a significant impact on its resilience, especially in the early years of its 

design life. Consequently, this emphasizes the importance of appropriate material selection and 

determination of pipe wall thickness for strength and toughness during the pipeline design, 

particularly for short service life pipelines. The pipe joint thrust resistance, appropriate corrosion 
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management strategy (to improve pipeline durability), adaptability of pipeline materials with 

appurtenances to the offshore operating environment, and effective management during operations 

against cyber and physical attacks are additional measures to improve pipeline resilience. Another 

noticeable trend from the sensitivity analysis (Figure 5.8) is the gradual increase in the influence 

of corrosion depth growth rate (𝑔𝑑); this parameter becomes the most sensitive factor affecting the 

pipeline's resilience from the fifth year. Consequently, an increase in 𝑔𝑑 indicates the importance 

of corrosion on the pipeline integrity, which could trigger a failure (leak, burst, or rupture). Hence, 

the need to consider corrosion prevention and maintenance planning strategies through the pipeline 

lifecycle and for asset life extension purposes (operating beyond the design life). 

The unavailability of actual pipeline repair data and offshore industry pipeline resilience standards 

to help set appropriate resilience targets is a limitation of this study. A realistic implementation of 

the proposed framework can be achieved with data availability. 

5.5. Conclusions  

 

A framework for offshore pipeline resilience quantification is presented based on the system's 

time-dependent reliability, adaptability, and maintainability. The approach considers disruptive 

events characterized by their LSF. The framework is demonstrated using an internally corroded 

offshore natural gas pipeline segment considering leak, burst, and rupture failure conditions over 

its design life. From the description presented in subsequent sections, the study arrives at the 

following conclusions. 

1. The framework provides the possibility to quantify the ability of a structural system to 

bounce back if faced with disruptive events over the design life, as demonstrated by the 
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case study of the natural gas pipeline segment detailed in this study (𝜂(0)≈ 1, 𝜂(20)) ≈

0.931). 

2. It provides a means to identify critical parameters that affect the structural system's 

resilience during its life cycle; this is essential for informed decision-making in structural 

design and maintenance planning during the asset's operational life.  For the case study 

presented, the sensitivity analysis showed that the pipe wall thickness (𝑡𝑤) and the 

corrosion depth growth rate (𝑔𝑑) are important parameters that affect the resilience of the 

pipeline under stated conditions. 

3. With the LSF approach presented in this framework, the resilience of a structural system 

faced with multiple disruptive events can be easily determined.  

Although this study focuses on the resilience quantification of an offshore natural gas pipeline 

segment, the approach can be extended and applied to other oil and gas support structures. Finally, 

areas for further research include the resilience assessment of complex marine structural systems 

using metamodels and assessing pipeline resilience utilizing the framework presented and 

considering the following factors: external disruptive events, the effect of interacting defects, and 

variable dependency.  
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Appendix 5A 

 

Resilience Metric: 

Community Earthquake Resilience describes resilience as a function of the quality of the 

structural system and recovery time (Bruneau et al., 2003).  

𝜂(𝑡) = ∫ (100 − 𝑄(𝑡))𝑑𝑡
𝑡𝑟
′

𝑡𝑒
′

                                                                                           (5A. 1)       

   Q(t) is the structural functionality, 𝑡𝑒
′ : loss of quality start time, 𝑡𝑟

′: recovery time to steady-

state. 

Resilience Expression (multiple failure path and component) Derivation of Eq. (5.12) 

𝜂(𝑡) = 𝑅𝑠(0, 𝑡) + (1 − 𝑅𝑠(0, 𝑡))∑[𝑃𝑟{𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦|𝐶𝑓
𝑖, 𝑆𝑓}. 𝑃𝑟{

𝑁𝑐

𝑖=1

𝐶𝑓
𝑖, 𝑆𝑓}𝜔𝑖]       (5A. 2) 

Determine cumulative failure probability and maintainability for different failure mode 

𝐹𝑝𝑖(0, 𝑡) = (1 − 𝑅𝑠(0, 𝑡)). 𝑃𝑟{𝐶𝑓
𝑖, 𝑆𝑓}                                                                          (5A. 3) 

                                             

𝑃𝑟{𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦|𝐶𝑓
𝑖, 𝑆𝑓} =∏Ϻ(𝑡𝑔)

𝑖
(𝑗)  

𝑛𝑖

𝑗=1

                                                                    (5A. 4) 

 Obtain component performance ratio                                                   

𝜔𝑖 =
𝑞𝑟𝑖 − 𝑞𝑒𝑖 − 𝑞𝑎𝑣𝑔𝑡𝑟𝑒𝑐𝑖

1 − 𝑞𝑒𝑖
                                                                                             (5A. 5) 

                     𝑞𝑒𝑖 = 1 −∑ 1− 𝑞𝑒
𝑖(𝑗)

𝑛𝑖

𝑗=1
 , 𝑞𝑟𝑖 = 1 −∑ 1 − 𝑞𝑟

𝑖(𝑗)
𝑛𝑖

𝑗=1
, 𝑡𝑟𝑒𝑐𝑖 =∑ 𝑡𝑟𝑒𝑐

𝑖(𝑗)
𝑛𝑖

𝑗=1
 

𝜔𝑖 =
[1 −∑ 1− 𝑞𝑟

𝑖(𝑗)]
𝑛𝑖

𝑗=1
− [1 −∑ 1 − 𝑞𝑒

𝑖(𝑗)]
𝑛𝑖

𝑗=1
− 𝑞𝑎𝑣𝑔∑ 𝑡𝑟𝑒𝑐

𝑖(𝑗)
𝑛𝑖

𝑗=1

1 − [1 −∑ 1 − 𝑞𝑒𝑖(𝑗)]
𝑛𝑖

𝑗=1

      (5A. 6) 
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𝜔𝑖 =
∑ 𝑞𝑟

𝑖(𝑗)
𝑛𝑖

𝑗=1
−∑ 𝑞𝑒

𝑖(𝑗)
𝑛𝑖

𝑗=1
− 𝑞𝑎𝑣𝑔∑ 𝑡𝑟𝑒𝑐

𝑖(𝑗)
𝑛𝑖

𝑗=1

𝑛𝑖 −∑ 𝑞𝑒𝑖(𝑗)
𝑛𝑖

𝑗=1

                                               (5A. 7) 

𝜔𝑖 : Performance ratio for a given failure mode 

𝑛𝑖 : Number of failure components in a failure path 

𝐶𝑓
𝑖 : Component failure event 

 

Folias Factor 

𝑀𝑓(t) (Folias Factor): dependent on the pipeline ratio 
𝑙𝑖(𝑡)

2

𝐷𝑡𝑤
  . 

                      𝑀𝑓(𝑡) = (1 + 0.6275 (
𝑙𝑖(𝑡)

2

𝐷𝑡𝑤
) − 0.003375(

𝑙𝑖(𝑡)
2

𝐷𝑡𝑤
)2)0.5                                   (5A. 8) 

                      𝑀𝑓(𝑡) = 3.3 + 0.032 (
𝑙𝑖(𝑡)

2

𝐷𝑡𝑤
)                                                                                (5A. 9) 

For 
𝑙𝑖(𝑡)

2

𝐷𝑡𝑤
≤ 50, Eq.5A.1 is utilized to determine 𝑀𝑓(t). Conversely, for 

𝑙𝑖(𝑡)
2

𝐷𝑡𝑤
≥ 50, 𝑀𝑓(t) is 

determined using Eq.5A.2. 
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Chapter 6 

Reliability-Based Design Optimization of Complex Offshore Structure 

 

Preface 

A version of this chapter is under review in Reliability Engineering and System Safety Journal. 

I am the primary author that produced this work, along with Co-authors Faisal Khan and Salim 

Ahmed. I reviewed the relevant literature and developed a framework for variable dependency in 

the reliability-based optimization of offshore structures. I prepared the original manuscript, 

carried out formal analysis and software implementation, reviewed and revised the manuscript 

following the co-authors' feedback. Co-author Faisal Khan assisted in the concept development 

and methodology refinement, supervision, funding for the work, reviewing, and editing of the 
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Abstract 

A trade-off between cost and safety is essential in the reliability-based design of offshore support 

structures operating in uncertain harsh environments. This study proposes a dependence-based 

double-loop optimization framework for complex structural systems under such environmental 

conditions. It considers the dependency of the environmental variables using a D-vine copula. The 

reliability (inner loop of the design cycle) is modeled using the adaptive PCK approach as a 

metamodel. The study employs a hybrid optimization approach that combines Genetic Algorithm 

(GA) and Sequential Quadratic Programming (SQP) in the outer loop optimization phase. The 

dependency effect is demonstrated on a steel column and a deepwater segmented SCR at various 

hang angles to the offshore structure. The study shows the importance of multivariate dependence 

modeling in the RBDO process. It also highlights the significance of : i) optimal copula selection, 
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ii) the impact of variable order in the D-vine copula's dependence tree, and iii) the efficiency 

provided by the PCK metamodel. The method described in this study provides a road map for a 

dependency-based optimal design of complex ocean structures. Also, it allows for strategic design 

decision-making under uncertainty, considering cost and safety. 

Keywords: Steel Catenary Riser, Reliability-Based Design Optimization, Copula Functions, 

Polynomial Chaos Kriging, Reliability. 

6.1. Introduction 

 

In traditional structural optimization problems, uncertainty is considered using partial safety 

factors. However, partial safety factors present an implicit and conservative approach to 

accounting for uncertainty in optimization. This approach can lead to increased cost and raises 

questions about the safety of the structural design (Ditlevsen and Madsen, 1996). Uncertainty 

exists in structural systems, and its explicit consideration during optimization cannot be over-

emphasized. The main aim of every design is to achieve the desired safety while minimizing the 

cost as much as practicable. Hence, a trade-off between the safety and cost of a structure 

considering uncertainty during the service life is essential. Reliability-Based Design Optimization 

(RBDO) extends the concept of Deterministic Design Optimization (DDO) by considering the 

uncertainties in the structural system, such as those related to loading, material, and the model.  

RBDO is an active area of research with a growing number of contributions to the field. The RBDO 

concept considers the best trade-off between a given structural system's safety and economic cost. 

The approach allows designers to incorporate uncertainty while achieving the desired performance 

at a minimal cost. 
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For RBDO problems, the double-loop, mono-level, and decoupled approaches are the three 

commonly used methods for optimization under uncertainty(Yi et al., 2016). A vast amount of 

research contribution using the double-loop (Dutta, 2020; Slowik et al.,2021; Qi et al., 2022; 

Chaudhuri et al.,2020), mono-level (Yang et al.,2021b; Yang et al., 2020), and decoupled 

techniques (Zhang et al.,2021; Sohouli et al., 2018; Li et al.,2019) are available in the literature. 

The double-loop RBDO is a nested approach that comprises an inner loop reliability phase and an 

outer loop optimization phase. The mono-level method, also called the Single Loop Approach 

(SLA), utilizes the Karush-Kuhn-Tucker (KKT) condition (Kuschel & Rackwitz, 1997) to solve 

optimization problems. Furthermore, the decoupled approach solves a deterministic optimization 

and reliability problem sequentially. The SORA method is a typical decoupled method (Du & 

Chen, 2004). SORA involves converting probabilistic constraints to deterministic ones using a 

shifting vector. Other decoupling RBDO methods include the B-Spline approach (Dizangian & 

Ghasemi, 2016), the threshold shift method (Goswami et al., 2019), and the evidence-based 

decoupling approach (Huang & Jiang, 2017). 

These methods of RBDO have their drawbacks in implementation. Among the significant 

challenges with the mono-level and decoupled approach is the difficulty in dealing with multiple 

failure domains and convergence issues, especially with nonlinear LSF (Dubourg et al., 2011). The 

double-loop approach provides high accuracy and ease of implementation; this is not without its 

problem of high computational cost. The use of metamodels and a simulation-based reliability 

approach in the inner loop for an RBDO problem further improves the computational cost and 

efficiency of the double-loop method (Moustapha & Sudret, 2019).  

The application of the concept of RBDO to structures spreads across various engineering 

disciplines as the quest remains to obtain an optimally safe design at a minimal cost. RBDO has 
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gained tremendous research acceptance and application in diverse engineering design fields, 

including civil engineering (Ni et al.,2021; Peng et al.,2021) and manufacturing (Liu et al., 2018; 

Yang et al.,2021a). Other areas with significant research application of the RBDO technique 

include automobile systems (Wang et al.,2020), marine structural design (Eamon & Rais-Rohani, 

2009; Karadeniz et al.,2009; Gholinezhad & Hosein, 2021; Debiao et al.,2020; Yan et al.,2017), 

and aerospace (Song et al., 2021; Nguyen et al., 2022; Tekaslan et al., 2021). The research 

contribution to RBDO includes renewable energy structures (Lee et al.,2014; Leimeister & 

Kolios,2021; Yang et al.,2018) and systems for nuclear power plants (Velayudhan et al., 2021).  

With the presented drawback of the double-loop approach, the use of metamodels which provides 

a computationally cheap option to evaluate LSF, is viable for computational cost reduction in 

RBDO analysis, especially for complex engineering systems such as oil and gas support structures 

(Moustapha & Sudret, 2019). The use of metamodel for complex, difficult-to-evaluate systems has 

been a typical approach for reliability-based problems. Metamodels replace the time-consuming 

use of the FEA for RBDO and improve the computational cost. 

Different metamodels have been utilized for RBDO analysis in recent times. Amongst these are 

the Kriging metamodel (Kim & Song, 2021; Ni et al., 2020; Lacaze & Missoum, 2013; Cui et al., 

2020; Zhang et al., 2021; Fathima Sana et al., 2022; Li et al., 2022; Jung et al., 2022; Jiang et al., 

2021; Xiao et al.,2020), the response surface method, also called polynomial regression (Li, 2013; 

Youn & Choi, 2004; Shi & Lin, 2016; Lee,2019), PCE (Dutta & Putcha, 2020; Lopez et al., 2017)  

and the SVR approach (Strömberg, 2018). For a complex engineering system with no closed-form 

LSF, a combination of metamodel types to improve the accuracy of the constructed LSF is essential 

(Stromberg, 2019). This study uses the combined advantage of the interpolation approach 
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(Kriging) and the regression PCE method to develop a metamodel for the probability constraints 

(hard constraints) of the double-loop RBDO optimization problem.  

The accuracy of optimizing complex structures with no closed-form LSF is essential. Copulas play 

a vital role and help capture the nonlinear correlation and tail dependence between variables where 

such a relationship exists. A few attempts have been made to consider copula in structural 

optimization under uncertainty. Wang et al. (2020) studied the influence of individual copulas on 

vehicle body crashworthiness optimization. Although unable to capture nonlinear and tail 

dependence (Lebrun & Dutfoy, 2009), the Gaussian copulas have been utilized to model 

dependency in structural optimization cases (Choi et al., 2007; Noh et al., 2009; Shuai et al., 2019). 

Also, the concept of copula has been implemented in a two-dimensional evidence-based design 

optimization problem (Huang et al., 2019) and bivariate RBDO problems using Clayton and Frank 

copula (Kuczera et al., 2010). For ocean structures, the environment in which they operate is 

uncertain, and the interaction with the ocean environment poses a risk to the ability of these 

structures to perform their intended function. The need to capture and better understand 

interactions between ocean variables (linear, nonlinear, and possible tail dependence) is essential 

to account for uncertainties and make efficient optimal design decisions related to the tradeoff 

between the engineering design costs and the safety of these structures. 

Dependence-based RBDO has not been well explored in the literature, especially for multivariate 

systems. Typically, variables (environmental and design) are assumed to be independent. 

However, with the ocean environment's complexity and the operating structures' safety-sensitive 

nature, the dependency between environmental variables needs to be considered in an RBDO 

design context. This study attempts to fill this gap by developing an approach that considers the 

multivariate dependence between environmental variables during structural optimization. 
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In the light of considering dependency and ensuring improved computational efficiency in nested 

RBDO problems, this study aims to: 

1. Provide an efficient design framework for RBDO using the D-vine copula and capture the 

dependence between the environmental variables affecting the offshore structural system. 

2. Develop an optimization case that considers a hybrid metamodel to improve the inner 

loop's computational accuracy, cost, and time in a nested RBDO approach. 

The remainder of this study is organized as follows: Section 6.2 describes the preliminaries of 

RBDO, vine copulas, metamodels, and optimization. Section 6.3 details the methodology for the 

RBDO concept. Section 6.4 presents an illustrative example (Steel Column Function) and a case 

study of optimizing a segmented SCR under uncertain harsh operating conditions. Section 6.5 

discusses the results related to the Steel Column Function and SCR. Section 6.6 concludes the 

study. 

6.2. RBDO Formulation and Preliminaries 

 

This section describes the essential elements for implementing the dependency-based RBDO 

problem ranging from problem formulation and dependency modeling to the integral constituent 

of the double-loop process (inner loop reliability and outer loop optimization). 

 6.2.1. RBDO problem formulation 

 

Optimization problems comprise an objective function herein referred to as a cost function  𝑐(𝑑) 

and a set of constraints to be satisfied. From a structural perspective, the cost function in the 

optimization case mainly refers to minimizing dimensions such as weight, mass, and volume, 

which can have a financial implication on the design. Eq. (6.1) shows the general formulation of 

an RBDO problem.  
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                       𝑑∗ =min
𝑑∈𝐷

𝑐(𝑑)  

         subject to {
𝑚𝑗(𝑑) ≤ 0

𝑃𝑟(𝑔ℎ(𝑋(𝑑), 𝑍) ≤ 0) ≤ 𝑃̂𝑓ℎ
                                                        (6.1) 

        Where 𝑗 = 1,2,3… . . 𝑠 and ℎ = 1,2,3…𝑛  from Eq. (6.1). 

 𝑑∗ represents the optimal values, and the term 𝑚𝑗(𝑑) represents the soft constraints, which are 

simple functions that bound the design space. The probabilistic constraints ((Eq. (6.1)), otherwise 

called the hard constraints, are represented by the LSF 𝑔ℎ(. )  which is a function of the design 

𝑋(𝑑) and environmental (𝑍) variables. For the design variables, the designer can exercise control 

over them and, consequently, be optimized. The desired safety levels of the structure are essential 

in the RBDO implementation; and expressed using the target failure probability (𝑃̂𝑓ℎ) as shown in 

Eq. (6.1). 

Eqs. (6.2) and (6.3) show the relationships between the target and system reliability indices (𝛽̂ℎ, 𝛽ℎ)  

and the corresponding failure probabilities (𝑃̂𝑓ℎ, 𝑃𝑓ℎ). The symbol Ф represents the standard 

normal cumulative Gaussian distribution. 

                                                           𝑃̂𝑓ℎ = Ф(−𝛽̂ℎ)                                           (6.2) 

                                                           𝑃𝑓ℎ = Ф(−𝛽ℎ)                                           (6.3) 

Consequently, the optimization problem described in Eq. (6.1) can be formulated in terms of 𝛽ℎ  

as shown in Eq. (6.4) 

                         𝑑∗ =min
𝑑∈𝐷

𝑐(𝑑)  

                        subject to {
𝑚𝑗(𝑑) ≤ 0

𝛽̂ℎ − 𝛽ℎ(𝑋(𝑑), 𝑍) ≤ 0)
                                               (6.4) 
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                       Where 𝑗 = 1,2,3… . . 𝑠 and ℎ = 1,2,3…𝑛  

In fulfilling the constraint requirement of the optimization problem, then 𝑃𝑓ℎ ≤ 𝑃̂𝑓ℎ and 𝛽ℎ > 𝛽̂ℎ 

6.2.2. Copula Functions (D-vine Copula) 

 

The Pearson correlation coefficient between variables only measures linear dependence and cannot 

capture nonlinearity and tail dependence. Copulas are flexible with uniform marginals and link the 

marginals of random variables with the joint CDF; they provide a means to handle nonlinearity 

and tail dependence relationships effectively between variables. The concept of copulas was 

initially used in financial mathematics but has recently gained wide application in modeling 

dependency between variables in other fields. The joint PDF decomposition results in the marginal 

distribution and associated copula functions. The approximation of the CDF using copulas is 

adequately described by Sklar's theorem (Nelsen.,2006), as shown in Eqs. (6.5) and (6.6).  

                             𝐹(𝑧1, 𝑧2, … . . 𝑧𝑛) = 𝐶(𝐹1(𝑧1), 𝐹2(𝑧2)… . . 𝐹𝑛(𝑧𝑛))                            (6.5) 

                             𝑓(𝑧1, 𝑧2, … . . 𝑧𝑛) = 𝑐(𝐹1(𝑧1), 𝐹2(𝑧2)… . . 𝐹𝑛(𝑧𝑛))∏ 𝑓𝑖
𝑛
𝑖=1 (𝑧𝑖)         (6.6)                              

Where 𝑧1, 𝑧2, …… 𝑧𝑛  represent n random variables. 𝐹(. )the joint probability distribution function, 

𝑓(. ) the joint PDF. Also, 𝐶(. ) is the copula function, and 𝑐(. ) copula density function. 

A copula that can capture multivariate and conditional dependence between variables using pair-

copula decomposition is the vine copula (Bedford & Cooke, 2002). A vine copula is a graphical 

object which comprises nodes, edges, and trees. Also, using different bivariate copula functions, 

the vine copula approach can decompose a multivariate function. The D-vine and C-vine are the 

most common vines applied to multidimensional dependence problems. The C-vine is utilized for 

dependence modeling when there is a leading variable; otherwise, the D-vine configuration is 
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selected (Aas et al., 2009). The expression for the D-vine and C-vine are shown in Eqs. (6.7) and 

(6.8), respectively. 

𝑓(𝑧1… . 𝑧𝑛)

=∏𝑓(𝑧𝑘)

𝑛

𝑘=1

∏∏𝑐𝑖,𝑖+𝑗|𝑖+1…𝑖+𝑗−1

𝑛−𝑗

𝑖=1

 {𝐹(𝑧𝑖|𝑧𝑖+1… . . , 𝑧𝑖+𝑗−1), 𝐹(𝑧𝑖+𝑗|𝑧𝑖+1… . . , 𝑧𝑖+𝑗−1)}         (6.7) 

𝑛−1

𝑗=1

 

𝑓(𝑧1… . 𝑧𝑛)

=∏𝑓(𝑧𝑘)

𝑛

𝑘=1

∏∏𝑐𝑗,𝑗+𝑖|1…𝑗−1

𝑛−𝑗

𝑖=1

 {𝐹(𝑧𝑗|𝑧1… . . , 𝑧𝑗−1), 𝐹(𝑧𝑗+𝑖|𝑧1… . . , 𝑧𝑗−1)}                                (6.8)

𝑛−1

𝑗=1

 

The notations 𝑖 and j (Eqs. (6.7) and (6.8)) represent the edges and trees of the vine copula 

expression. Also,  𝐹1(𝑧1) = 𝑢1… . . 𝐹𝑛(𝑧𝑛) = 𝑢𝑛 for n variables described in Eqs. (6.5) to (6.8). 

For subsequent trees beyond the first tree of the D-vine copula, the conditional distribution for the 

pair-copula construction is given by Eq. (6.9). 

𝐹(𝑧|ѷ) =
𝜕𝐶𝑧,ѷ𝑗|ѷ−𝑗{𝐹(𝑧|ѷ−𝑗), 𝐹(ѷ𝑗|ѷ−𝑗)}

𝜕𝐹(ѷ𝑗|ѷ−𝑗)
                                                                                       (6.9) 

Where ѷ is the vector of random variables, ѷ𝑗  represents an arbitrarily chosen component of the 

vector ѷ and ѷ−𝑗 is the vector ѷ, which excludes component ѷ𝑗. Appendix 6A (Table 6A.1) presents 

the h function required in conditional copula determination.  

The different copula functions with varying properties create flexibility in determining dependence 

between variables. This study utilizes commonly used elliptical (Gaussian, Student t) and 

Archimedean copulas (Gumbel, Clayton, Frank) in the determination of optimal copula for the 

environmental variables in the RBDO analysis (Appendix 6A, Table 6A.1 and 6A.2). The MLE 
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method determines the copula parameter (𝜃). The AIC defines the information loss generated while 

obtaining 𝜃 (Eqs. (6.10) to (6.12)). Consequently, a minimum AIC value determines the best-fit 

copula type for the random variables considered. 

𝐼𝑛𝐿(𝜃) =∏𝑐(𝑢1…𝑢𝑛; 𝜃)

𝑛

𝑖=1

=∑𝐼𝑛𝑐(𝑢1…𝑢𝑛; 𝜃) 

𝑛

𝑖=1

                                      (6.10) 

𝜕𝐼𝑛𝐿(𝜃)

𝜕𝜃
= 0                                                                                                             (6.11) 

                𝐴𝐼𝐶 = −2𝐼𝑛𝐿(𝜃) + 2𝐾                                                                                      (6.12) 

where 𝐿(𝜃) is the loglikelihood function, K is the number of model parameters, 𝑢1…𝑢𝑛 𝝐 [0,1] 

(standard uniform input variables). 

In copula determination, the Kendall Tau Coefficient (𝜏𝑘), which is a measure of dependence is 

adopted. The coefficient 𝜏𝑘 is non-parametric, independent of the marginal distribution, and 

measures the strength of association based on the concordance and discordance between paired 

variables (Joe, 2014). An expression for 𝜏𝑘 is shown in Eq. (6.13).  

                            𝜏𝑘 = 4∫ ∫ 𝐶(𝑢1, 𝑢2|𝜃)𝑑𝐶(𝑢1. 𝑢2) − 1
1

−1

1

−1
                                       (6.13) 

The non-parametric coefficient 𝜏𝑘 determines the independence test between variables as shown 

in Eq. (6.14), with 𝑛 being the number of observations. 

√
9𝑛(𝑛 − 1)

2(2𝑛 + 5)
|𝜏𝑘| < 1.96                                                                                                (6.14) 

The null hypothesis of independence is accepted if Eq.(6.14) is satisfied at a 5% confidence 

interval (Genest & Favre, 2007).  



 

201 
 

This study utilizes the D-vine copula for the dependence modeling of the variables, and the order 

of the first tree is such that the strongest variable dependence is created. The first tree variable 

order is achieved by determining the shortest Hamiltonian Path using the weighted absolute 1 −

|𝜏𝑘|  and solving a traveling salesman’s problem (Brechmann,2010).  

6.2.3. Metamodel construction and reliability for RBDO 

 

Metamodels reduce the computational burden and complexity of analysis obtained from numerical 

models. Although several metamodels have been utilized in the reliability studies of complex 

systems, the two commonly used methods are Kriging (interpolation) and PCE (regression). 

Kriging interpolates the local variability of the output as a function of the input variables, and PCE 

determines the global response behavior using a set of orthogonal polynomials  (Schöbi et al., 

2015). The PCK (Eq. (6.15)) approach takes advantage of the unique properties of Kriging and 

PCE to construct a metamodel with improved performance and computational efficiency. PCK is 

a hybrid metamodel developed from ordinary Kriging and PCE metamodels. Okoro et al.(2021) 

demonstrated improved PCK metamodel outcomes compared to Kriging and PCE for structural 

reliability assessment and provided further details on both methods individually. A Kriging 

metamodel comprises two parts which are the trend and stochastic process terms. For PCK, the 

trend term is a weighted sum of multivariate orthogonal polynomials, as shown in the first part of 

Eq. (6.15). and the stochastic component is given by (𝜎𝑔
2𝑇(𝑧)).  The symbol  𝛹𝛼(𝑧) represents the 

multivariate orthogonal polynomial function with coefficient 𝑦𝛼. For the trend term, a tensor 

product of univariate polynomial results in the orthogonal function 𝛹𝛼(𝑧) (Eq. (6.16)).  

𝑦 ≈ 𝑀𝑃𝐶−𝐾(𝑧) = ∑ 𝑦𝛼𝛹𝛼(𝑧)

𝛼=𝐴

+ 𝜎𝑔
2𝑇(𝑧)                                                    (6.15) 
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𝛹𝛼(𝑍) =∏𝛹𝛼
(𝑖)(𝑍𝑖)

𝑀

𝑖=1

                                                                          (6.16) 

Where 𝜎𝑔
2 is the variance of the Gaussian process and 𝑇(𝑧) represents the stationary Gaussian 

process. The stochastic term (Eq.(6.15)) is determined from a range of autocorrelation functions, 

including linear, Gaussian, exponential, and the Mater𝑛́ function (Schöbi et al., 2015). This study 

utilizes the Mater𝑛́  autocorrelation function which is more generic than others described (Santner 

et al.,2003). The orthogonal polynomial for the trend term (Eq.(6.15)) can be attributed to specific 

probability distribution (Xiu & Karniadakis, 2002); they grow with increased input variable 

dimension, and truncation of terms is achieved using the LARS method with consideration of only 

the non-zero terms (Blatman & Sudret, 2011). The computational efficiency of the PCK approach 

can be improved by an adaptive process that approximates the metamodel close to the limit state 

surface. The adaptive approach of the metamodel is implemented by enriching the ED and 

selecting the next best point in an iterative pattern from a candidate sample pool until the required 

stopping criterion is achieved. Learning functions that drive the adaptive process include EGO 

(Jones et al.,1998), EFF (Bichon et al.,2008), H function (Lv et al.,2015), LIF (Sun et al.,2017), 

and U function (Echard et al., 2011). This study adopts the U learning function due to its fast 

convergence and simplicity in implementation. The U learning function enriches the ED based on 

the probability of misclassification of samples. The expression for the U learning function with 

the predicted mean 𝜇𝑔̂(𝑧, 𝑥) and standard deviation (𝜎𝑔̂(𝑧, 𝑥)) using the PCK model is presented 

in Eq. (6.17). Also, Eq. (6.18) shows the next best point (𝑧𝑛𝑒𝑥𝑡, 𝑥𝑛𝑒𝑥𝑡) selected from the candidate 

MCS pool (S) for the enrichment of the ED. 

𝑈(𝑧, 𝑥(𝑑)) =
|𝜇𝑔̂ℎ(𝑧, 𝑥(𝑑))|

𝜎𝑔̂ℎ(𝑧, 𝑥(𝑑))
                                                                             (6.17) 
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                (𝑧𝑛𝑒𝑥𝑡, 𝑥(𝑑)𝑛𝑒𝑥𝑡) = 𝑎𝑟𝑔min
𝑧𝑖𝜖𝑆

(𝑈(𝑧𝑖))                                                           (6.18) 

In this study, the stopping criterion for ED enrichment using the U learning function is achieved 

when 𝑈(𝑧𝑛𝑒𝑥𝑡, 𝑥(𝑑)𝑛𝑒𝑥𝑡) > 2. The PCK metamodel is constructed in the so-called augmented 

space of the environmental and design variables (Kharmanda et al., 2002; Moustapha et al., 2016; 

Taflanidis & Beck, 2008;  Zhang et al., 2017). The augmented space prevents the cumbersome 

nature of building a new model at every iteration step by constructing a global metamodel in the 

input space of both the design and environmental variables. The metamodels in this space are 

reusable during the RBDO iteration phase and reduce likely model construction inefficiency 

during iteration. For the constructed PCK metamodel, the quality of the metamodel can be 

determined using the leave one out cross-validation error (𝜀𝐿𝑂𝑂) as shown in Eq. (6.19).   

𝜀𝐿𝑂𝑂 =
1

𝑛
[
∑ (𝑀(𝑥𝑖(𝑑), 𝑧𝑗) − 𝑀𝑌,̂(−𝑖)(𝑥𝑖(𝑑), 𝑧𝑗))

2
𝑛
𝑖=1

𝑉𝑎𝑟(𝑦)
]                                                (6.19) 

𝑛 is the number of sample points, 𝑉𝑎𝑟(𝑦) is the response data variance, 𝑀𝑌,̂(−𝑖)(. ) is the model 

response with the exclusion of a data point from ED. 𝑀(. ) represents the model response 

considering all input variables in the ED. The input design and environmental variables of the ED 

are denoted by 𝑥𝑖(𝑑) 𝑎𝑛𝑑 𝑧𝑗 , respectively. 

In this study, the reliability of the adaptive process (inner loop of the RBDO problem) described 

in this section is computed using the MCS in the input space. The CoV from the MCS serves as a 

convergence criterion that can adaptively increase the sample pool (S) during the active learning 

reliability process (Eq. (6.20)).  The failure probability using the MCS simulation approach (𝑃𝑓𝑀𝐶) 

is obtained from the number of samples (𝑁𝑓) that violates the constructed LSF where the total 
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sample population is 𝑁𝑚𝑐𝑠  (Eq. (6.21)). A violation of the LSF occurs when 𝑔ℎ(𝑋(𝑑), 𝑍) ≤ 0 (Eq. 

(6.1)). 

𝐶𝑜𝑉 = √
1 − 𝑃𝑓𝑀𝐶

(𝑁𝑚𝑐𝑠 − 1)𝑃𝑓𝑀𝐶
                                                              (6.20) 

𝑃𝑓𝑀𝐶 =
𝑁𝑓

𝑁𝑚𝑐𝑠
                                                                                     (6.21) 

In this paper, a CoV ≤ 5% is utilized as the convergence criterion for the MCS in the inner RBDO 

loop. 

6.2.4. RBDO Outer Loop Optimization 

 

To determine the optimal values of  𝐶(𝑑) (Eq. (6.1)) subject to the specified constraints, the outer 

loop of the RBDO is evaluated as an optimization problem. The gradient-free and gradient-based 

methods are typical approaches utilized for optimization. Gradient-free optimization methods such 

as (Genetic Algorithms (GA), evolutionary strategies, and PSO can determine optimal global 

solutions. In contrast, gradient-based methods such as (Sequential Quadratic Programming (SQP) 

and Interior Point Method) are effective strategies for obtaining local optimal solutions (Meng et 

al., 2021). This paper adopts a hybrid approach using a combination of GA and SQP in the 

optimization phase of the double-loop RBDO. The optimization phase is implemented using 

fmincon (minimizing constrained, nonlinear, and multivariate functions), a MATLAB built-in 

function. First, a global optimal is obtained using GA and refined using SQP. The GA approach is 

gradient-free, biologically inspired, and can deal with complex optimization problems. GA 

optimization starts with an initial random population where good strings are selected for the mating 

pool (reproduction), the crossover process creates new generations, and the mutation operators 
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alter the offspring. The GA process undergoes successive iterations (generations) until 

convergence is attained. Katoch et al.(2021) provide further details on the concepts and 

terminologies of GA. Also, the SQP approach is efficient and offers fast convergence; it can handle 

constrained, differentiable, nonlinear, and convex optimization problems. In the SQP optimization 

phase, the gradient of the cost function is obtained using a finite difference approach. The 

Lagrangian function whose gradient satisfies the KKT necessary optimality condition at the 

optimal values of the objective function and applicable lagrangian multipliers is developed, leading 

to a quadratic subproblem formulation solved at every iteration. The corresponding positive 

definite Hessian matrix of the Lagrange function is updated at every iteration stage using Newton's 

approach until convergence is achieved. Further details can be found in (Rao,2019). 

6.3. The Methodology (RBDO with dependence) 

 

This section describes the steps for structural optimization under uncertainty using the double-loop 

RBDO approach and considering the dependency of the environmental variables. Figure 6.1 shows 

a flowchart of the process. 

Step 1: Determine input parameters, optimization function, and associated data  

Identify the RBDO input variables (environmental and design), the corresponding probability 

distributions with design bounds, and collect associated variable data that describe the structure's 

performance for the optimization process. Also, determine the RBDO cost function that requires 

optimization considering possible constraints, including the target failure probability or reliability 

index to be satisfied. The RBDO formulation in (Section 6.2, Eqs. (6.1) to (6.4)) clearly describes 

these essential design elements.   
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Step 2: Dependence modeling of environmental variables 

For the environmental variables described in Step 1, model their dependency using vine copula as 

described in (Section 6.2, Eqs. (6.5) to (6.8)). This study assumes the non-existence of a leading 

variable and utilizes the D-vine copula (Eq. (6.7)) for dependence modeling. The D-vine copula is 

flexible and can capture possible multivariate dependence (linear, nonlinear, or tail dependence) 

between variables, as described in Section 6.2. For the D-vine structure, the order of variables in 

the first tree of the D-vine is determined using the shortest Hamiltonian path, as described in 

Section 6.2. The selection of optimal copula for the vine tree is made from Gaussian, Student t, 

Clayton, Gumbel, and Frank (bivariate) copulas. Copula parameters evaluation and optimal copula 

selection (including the test for independence) for the vine tree is determined using the MLE and 

AIC criteria described in (Section 6.2, Eqs. (6.9) to (6.14)). Furthermore, with the marginals of 

environmental variables defined by their statistical distributions and associated parameters 

(obtained by fitting distribution to data) in the input space (Step 1), and the vine structure with 

optimally selected copula and parameters, the joint PDF is estimated. 

Step 3: Development of sampling strategy for metamodel construction 

Following the joint PDF estimated in Step 2, develop initial sampling points of input variables 

(initial ED) in the space of the environmental and design variables using a space-filling Latin 

Hypercube Sampling (LHS) method (Forrester, 2008). The associated structural response for the 

initial sampling points is determined using a defined LSF or the FEA approach for complex 

structural systems. The nested RBDO process is utilized in this study and comprises an inner loop 

reliability phase with an outer loop optimization. The inner loop stage is carried out by first 

adaptively constructing a metamodel within an augmented space. A metamodel is computationally 

cost-effective and approximates the LSF of the complex system. The developed metamodel is 
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required for the inner loop reliability assessment (failure probability evaluation). Also, the 

metamodel serves as the probabilistic performance constraint in the optimization phase. The PCK 

approach is adopted for the inner loop metamodel construction and reliability evaluation in this 

paper due to its high efficiency and ability to integrate the merits of the global predictive capability 

of PCE and the local interpolation potential of Kriging, as described in (Section 6.2, Eqs. (6.15) to 

(6.16)) of this study. 

Step 4: Metamodel construction and inner-loop reliability assessment 

 The adaptive PCK metamodel construction starts with the initial ED described in Step 3 and is 

continually enriched until the stopping criterion is attained, as described in (Eqs. (6.17) to (6.18)). 

The error from the adaptive PCK metamodel construction is also determined (Eq. (6.19)). In this 

study, the enrichment process for the adaptive PCK metamodel construction is obtained from an 

MCS pool of 108 sample points. The U learning function is adopted in this paper with its stopping 

criterion described by U (z, x(d)) > 2. A global adaptive PCK metamodel is developed, which 

does not change during the RBDO iteration process, making it easy to employ the simulation 

approach for reliability assessment. Reliability assessment of the constructed metamodel is carried 

out using the MCS approach described in (Eqs. (6.20) to (6.21)). Reliability is implemented in 

Uqlab, a MATLAB-based framework for uncertainty quantification and reliability analysis 

(Marelli & Sudret, 2014). The metamodel developed from this process represents the probabilistic 

constraint of the RBDO problem. 

Step 5: Outer-loop structural cost optimization 

Further to the inner loop reliability described in Step 4, evaluate the outer loop optimization 

(minimization) of the cost function of the structure described in Step 1, given the constraints in the 
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RBDO problem. As presented in Section 6.2, a hybrid approach that combines GA and SQP is 

utilized for optimization. First, the GA iteratively explores the entire design space until 

convergence is achieved and obtains a global solution to the cost function using the principle of 

survival of the fittest. Consequently, an SQP (a gradient-based approach) is utilized to refine the 

global optimization's outcome (starting point for optimization using SQP). This study uses the 

forward finite difference approach to obtain gradients with a step size of 0.001. The SQP 

optimization iteration continues until a minimal cost is attained and the constraints of the cost 

function, as presented in Eqs. (6.1) to (6.4) are satisfied. The maximum iteration for the SQP 

approach is set as 103. Also, due to the stochasticity and inherent noise of the failure probability 

obtained using the MCS approach described in Step 4, the common random number strategy is 

adopted to eliminate this effect in the gradient-based optimization phase. The common random 

number approach involves using the same random seed used in generating the MCS samples for 

the different iterations stages (Spall, 2003). Furthermore, the large sample size eliminates the 

introduced error bias. For the first stage optimization using GA, the number of generations and 

stall generations for iteration are set at 100 and 50, respectively. Also, the initial population size 

of 20 is utilized for the GA. 
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                                  Figure 6.1. Double-loop RBDO flowchart considering variable dependency. 
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6.4. Application of the RBDO with dependence  

 

This section investigates the effect of dependence modeling on structural optimization under 

uncertainty using the framework described in Section 6.3. The method is demonstrated using a 

mathematical example (steel column function) and a practical case study of a deepwater segmented 

SCR. 

6.4.1. Steel Column Function [modified from(Eldred et al., 2008)] 

 

The steel column function is a nine-dimensional RBDO problem and comprises six environmental 

variables and three design variables. This example investigates the effect of dependency and 

various copula types in optimizing the steel column under uncertainty. In addition, the impact of 

the order of load variables in the D-vine first tree on the optimization process is examined. 

The problem aims to determine the optimal design variables (b, t, and h) at which 𝐶𝑠𝑐 is minimized 

(Eq. (6.22)) subject to the constraint shown in Eq. (6.23). The bounds (upper and lower) of the 

design variables (b, t, and h) are b= [250 450], t= [5 40], and h = [150 600]; all units are in mm. 

The target reliability for the steel column is 𝛽̂ℎ=3  

         𝐶𝑠𝑐 = (𝑏 ∗ 𝑡) + 8 ∗ ℎ                                                                 (6.22) 

The adaptive PCK metamodel, which serves as a constraint for the RBDO process, is constructed 

from Eq. (6.23). 

𝑔ℎ(𝑋𝑑, 𝑍𝑑) = 𝐹𝑠 − 𝐹(
1

2𝑏𝑡
+ (

𝐹𝑜
𝑏𝑡ℎ

 . (
𝜉𝑏

𝜉𝑏 − 𝐹
)))                     (6.23) 
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where 𝜉𝑏 and F represents the Euler buckling load and the steel column's combined load, 

respectively. Also,  𝐹 = 𝑍1 + 𝑍2 + 𝑍3 and 𝜉𝑏 =
𝜋2𝐸𝑏𝑡ℎ2

2𝐿2
 . 

Table 6.1 shows details of the design and environmental variables of the steel column function. 

The length of the steel column is given by (L=8000mm).     

Table 6.1. Statistical summary of the steel column function variables [modified from(Eldred et 

al., 2008)]. 

Variables                                Symbol              Distribution         Mean              CoV         Unit 

Flange Breath                              b                      Uniform               µ𝑏                0.2            mm 

Flange Thickness                         t                      Uniform               µ𝑡                0.1            mm 

Height of Steel Profile                h                      Uniform               µℎ                0.3            mm 

Yield Stress                                𝐹𝑠                     Uniform               400              0.15          MPa 

Young's Modulus                       E                      Uniform              21000            0.1           MPa 

Initial Deflection                        𝐹𝑜                     Uniform                30                0.1           mm 

Dead Weight Load                     𝑍1                     Uniform             600000          0.15           N 

Variable Load                            𝑍2                     Uniform             700000           0.1            N 

Variable Load                            𝑍3                     Uniform             500000           0.2            N 

 

An independent relationship is assumed between other variables, except the load of the steel 

column. This study uses a D-vine copula to capture the dependency between the deadweight and 

variable loads of the function.  Dependence modeling of the steel column load is limited to 

commonly used elliptical and Archimedean pair copulas (Gaussian, Student t, Clayton, Gumbel, 

and Frank). Also, this study assumes a non-parametric dependence measure (τ𝑘) between the load 

variables of the steel column (Table 6.2). 
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Table 6.2. Non-parametric relationship of steel column loads. 

                                           𝑍1𝑍2                            𝑍2𝑍3                              𝑍1𝑍3 

     τ𝑘                                   0.85                             0.92                               0.61 

The copula parameters (𝜃), rotation (𝜃𝑅), and possible tail dependence [upper (𝜆𝑢) and lower (𝜆𝐿)] 

are determined using expressions described in Appendix 6A (Table 6A.1 and Table 6A.2). In 

addition, all possible D-vine structures (Figure 6.2) are considered to investigate the impact of the 

load variable order (first tree) on the steel column optimization. 

                                                            

(a)                                                                            (b) 

                                      

                                                                      (c) 

                   Figure 6.2. D-vine copula configuration for steel column function loads. 
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In Figure 6.2, the notation 𝑐𝑍1,𝑍2, 𝑐𝑍2,𝑍3 and 𝑐𝑍1,𝑍3 represents the copula density for the steel column 

loads in the first tree of the structure. Also, 𝑐𝑍1,𝑍2|𝑍3, 𝑐𝑍1,𝑍3|𝑍2 and 𝑐𝑍2,𝑍3|𝑍1 represent the conditional 

copula density of the second tree. The evaluated 𝜃 and corresponding 𝜃𝑅 for the three D-vine 

structural configurations using the various copula types considered in this study are presented in 

Table 6.3.   
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Table 6.3.  D-vine copula parameters and rotations for steel column loads.  

D-vine Structure      Copula Type                  𝜃𝑍1,𝑍2           𝜃𝑍2,𝑍3         𝜃𝑍1,𝑍3              𝜃𝑍1,𝑍3|𝑍2        𝜃𝑍2,𝑍3|𝑍1         𝜃𝑍1,𝑍2|𝑍3       𝜃𝑅 (Deg)                                                                                                                                                                                                            

      𝑍1𝑍2𝑍3               Gaussian                        0.98               0.89              -                0.91                   -                     -                 (0,0,0) 

                                 Student t                (0.98,4.73)        (0.89,5.64)        -              (0.92,4.64)          -                     -                  (0,0,0) 

                                 Clayton                         10.33              3.77              -                1.66                  -                     -             (180,180,0) 

                                 Gumbel                          7.96               3.39              -                 4.10                -                      -                (0,0,180) 

                                 Frank                            29.39             11.44             -                14.54                -                     -                   (0,0,0) 

     𝑍2𝑍1𝑍3               Gaussian                        0.98                  -                0.95              -                 -0.78                   -                (0,0,0) 

                                Student t                   (0.98,4.73)             -             (0.96,5.09)        -              (-0.8,5.35)           -                 (0,0,0) 

                                Clayton                         10.33                 -                 6.88              -                   0.56                 -            (180,0,90) 

                                Gumbel                          7.96                  -                 5.45              -                   2.64                 -             (0,0,270) 

                                 Frank                            29.40                -                 19.61             -                  6.85                  -                (0,0,0) 

      𝑍2𝑍3𝑍1             Gaussian                          -                    0.89             0.95               -                     -                   0.96            (0,0,0) 

                               Student t                           -              (0.89,5.64)    (0.96,5.09)       -                     -               (0.96,5.61)      (0,0,0) 

                               Clayton                            -                     3.77             6.88              -                     -                   3.89            (0,0,180) 

                               Gumbel                            -                     3.39             5.45              -                     -                   6.45             (0,0,0) 

                               Frank                               -                    11.44            19.61            -                     -                   22.89            (0,0,0)
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The pair copula in the D-vine structure can capture non-linear dependence and the degree of tail 

dependence between steel column load variables, as shown by the scatter plot in Figure 6.3. 

           

                   

     

          Gumbel ( 𝜆𝑢 = 0.77)                                                Student t (𝜆𝑢=𝜆𝐿=0.72) 

 

                                                 

 

                                                     Clayton ( 𝜆𝑢=0.94, 𝜃𝑅=180𝑜) 

                      Figure 6.3. Steel column function scatter plots of bivariate copulas. 

 

𝑍2 

𝑍3 
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The scatter plot (Figure 6.3) shows the nonlinearity between the environmental variables and also 

captures upper and lower tail dependence between variables 𝑍1 and 𝑍3 using the Student t copula, 

upper tail dependence between variables 𝑍2 and 𝑍3 using the Gumbel copula. The rotated Clayton 

copula also captures the tail dependence between variables 𝑍2 and 𝑍1. 

This study utilizes the double-loop RBDO approach comprising a reliability analysis in the inner 

loop with an outer loop optimization. With the LSF (Eq. (6.23)), an adaptive PCK metamodel is 

developed using the approach described in Section 6.2. First, an initial ED sample of random input 

variables using 20 LHS sample points in the input space is created. The learning (U function) and 

enrichment of ED are carried out until convergence is attained based on the stopping criteria 

(Figure 6.1). The initial ED is enriched with 270 sample points for the steel column function to 

develop the global PCK metamodel for the random input variables comprising different dependent 

structures and pair copula functions. The inner nested loop reliability is evaluated using the MCS 

approach, considering the target value 𝛽̂ℎ=3. The outer loop optimization is implemented using a 

hybrid approach (GA and SQP) described in Section 6.2. For the optimization phase, a starting 

point [b=300mm, t=12mm, h=250mm] and the upper and lower bounds for the design variables 

are utilized. Table 6.4 shows the optimization outcome from the double-loop RBDO approach for 

the various steel column load dependency considered and the errors (𝜀𝐿𝑂𝑂) in constructing the 

metamodel using the adaptive PCK method. 

Table 6.4.  RBDO outcome considering steel column loads dependency. 

Dependence           Copula            𝐶𝑠𝑐(mm
2)     b(mm)       t(mm)       h(mm)      𝑁𝑖𝑡𝑟      𝜀𝐿𝑂𝑂 

Structure 

𝑍1𝑍2𝑍3                  Gaussian         6.56E+3      264.31         19.74       167.50      224     1.602E-5 

                              Student t         6.59E+3      276.43         18.89       170.99      345     8.431E-6 
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                              Clayton           6.57E+3      282.23         18.68       162.20      323     2.659E-5 

                              Gumbel          6.80E+3      258.96         20.56       183.42       314     8.463E-6 

                              Frank              6.22E+3      372.15        13.23       162.20        319     1.630E-5 

𝑍2𝑍1𝑍3                 Gaussian         6.70E+3      446.25         12.10      162.45        253     1.667E-4 

                             Student t         6.88E+3      394.15         13.57       191.26       334     5.919E-4 

 

                             Clayton           6.59E+3      287.81         18.50       158.17       328     6.346E-4 

                             Gumbel          6.81E+3       387.53         13.79       182.67       323     6.124E-4 

                             Frank              6.50E+3      356.80          13.59       206.83       324     4.175E-4 

𝑍2𝑍3𝑍1                 Gaussian        6.82E+3       388.05          13.53      196.75       334     1.100E-3 

                             Student t         6.67E+3       338.29         15.96      158.92       345     3.759E-4 

                             Clayton          6.73E+3       309.43          17.12      179.87       307      1.400E-3 

                             Gumbel          6.99E+3       414.01          12.97        202.19    251     3.332E-4 

                             Frank             6.77E+3        390.22         13.64        180.77    332     5.766E-4 

Independent            -                   6.36E+3        291.97        17.22        166.96    363     3.826E-6  

 

For comparison, the steel column cost function is optimized while considering the uncertainty of 

variables as implicit (DDO) using safety factors (assumed safety factor = 1.8). The resulting DDO 

problem is evaluated using fmincon in MATLAB.  Table 6.5 and Figure 6.4 present the DDO 

results for the steel column cost minimization, the associated optimal design variables, and the 

iteration steps in its evaluation. 

Table 6.5.  DDO outcome for steel column function. 

 Optimization Method             𝐶𝑠𝑐(mm
2)       b(mm)         t(mm)         h(mm)          

           DDO                              2473.5           256.2              5.0            150.0           

         



 

219 
 

 

                              

                                 Figure 6.4. DDO iteration steps for steel column function. 

 

For the DDO convergence plot (Figure 6.4), the optimal steel column cost function gradually 

declined from 6500𝑚𝑚2   until a convergence  value of  2473.5𝑚𝑚2 was attained from the tenth 

iteration cycle. 

For the RBDO case of the steel function, all three D-vine configurations satisfied the target 

reliability index (Figure 6.5) at the optimal point.
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(a)                                                                                                     (b) 

                                                       

                                   Figure 6.5. Convergence plot for D-vine structure (a)  𝑍1-𝑍2-𝑍3  (b) 𝑍2-𝑍1-𝑍3  (c) 𝑍2-𝑍3-𝑍1 .                                                                      
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6.4.2. Practical Application: Segmented SCR Optimization 

 

6.4.2.1. Background and SCR dimensions 

 

SCR has served as a preferred solution in deepwater hydrocarbon transport for oil and gas 

production, export, and gas injection activities (Bai & Bai,2005). This study investigates the effect 

of environmental load dependence in optimizing a free-hanging segmented SCR under operating 

load conditions. The sea load condition in the Bay du Nord area of the Flemish Pass is considered 

for demonstration purposes. The Flemish Pass is a basin about 400km off the coast of 

Newfoundland with significant oil discoveries and a potential area for offshore oil and gas 

production in Canada. This area is an essential point of concern as it is hoped to be the future of 

deepwater activities in the region. The location has a water depth of about 1000m to 1200m (C-

CORE, 2017). Due to the water depth described, a typical offshore production asset for SCR 

dynamic analysis for this location is the FPSO platform. For this analysis, the SCR internal 

transport fluid is crude oil. Table 6.6 shows the SCR and FPSO properties considered in this study. 

Table 6.6. Segmented SCR parameters and FPSO dimensions. 

             SCR and Vessel Particulars                                                Dimensions 

            SCR Length (𝐿𝑅)                                                                     1955m 

            Internal Diameter (𝐷𝐼)                                                             0.22m 

            Riser Material                                                                       Steel 𝑋65 (API 5L)  

            Internal Fluid                                                  Crude Oil (mass density:900kg/m3) 

          SCR Yield Stress (𝜎𝑦)                                                                450MPa 

             FPSO                                                              Length=300m, Height = 40m, Width=50m 

           Inertia Coefficient (𝐶𝐼)                                                                 2.0 

           Drag Coefficient (𝐶𝑑)                                                                   1.2 
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6.4.2.2. Statistical Parameters of Environmental Load 

 

The Flemish Pass Basin's prevailing wave and current conditions are the environmental operating 

load considered in optimizing the segmented SCR. Typically, the Significant Wave Height (𝐻𝑠) 

and the Zero-Crossing Period (𝑇𝑧) are the random wave variables for analysis.  

The available statistical summary and data for the environmental load ( 𝐻𝑠 , 𝑇𝑧 and ocean current 

(𝑉𝑐)) for the Flemish Pass (C-CORE, 2017; Okoro et al.,2021) are utilized for the RBDO analysis. 

The marginals for the environmental variables are selected from six probability distribution types 

using the minimum AIC (Appendix 6A, Table 6A.3). Table 6.7 shows the statistical data summary 

and dominant direction of 𝐻𝑠,  𝑇𝑧 and 𝑉𝑐.  

Table 6.7.  Statistical summary of environmental variables (operating condition) (C-CORE, 

2017). 

      Variables                Distribution             Mean                      CoV              Direction (Deg) 

          𝐻𝑠 (m)                   Weibull                 3.19                        0.53                      225𝑜 

          𝑇𝑧  (s)                    Lognormal           10.21                       0.18                      225𝑜 

          𝑉𝑐  (m/s)                Weibull                 0.284                       0.56                     225𝑜 

 

In this study, 𝑉𝑐 is assumed to be a random variable at a depth of 2m below the ocean surface 

during normal operations and deterministic at other depths for simplicity of analysis (Table 6.8). 

The ocean current decreases with ocean depth. 

 

 

 



 

223 
 

Table 6.8. Flemish Pass Ocean Current profile at 1200m water depth (C-CORE,2017). 

Depth from Ocean Surface (m)                Mean Ocean Current (𝑚/𝑠)               Distribution 

                    2                                                    0.284 (CoV:0.56)                         Weibull 

                   250                                                 0.14                                              Deterministic 

                   500                                                 0.12                                              Deterministic 

                 1000                                                 0.07                                              Deterministic 

                 1200                                                 0.05                                              Deterministic 

 

6.4.2.3 Environmental data dependence analysis 

 

With the possibility of nonlinear and tail dependence between ocean environment variables, the 

multivariate dependency between the random variables associated with waves and current in the 

Flemish Pass basin is determined using a D-vine copula. The D-vine configuration of the first tree 

is obtained by solving a traveling salesman's problem described in Section 6.2, and the optimal 

selection of pair copula is made, as explained in Step 2 (Section 6.3). Table 6.9 and Figure 6.6 

show the optimal copula selected and scatter copula plot for the operating environmental load case. 

Table 6.9. Copula Selection (operating load case). 

    Tree       Copula Density     Type                 𝜏𝑘                       𝜃                𝜃𝑅 (Deg) 

      1                  𝐶𝐻𝑠𝑇𝑧            Clayton            0.0196                 0.04                    0 

      1                  𝐶𝑉𝑐𝑇𝑧             Clayton           0.0240                 0.05                   270 

      2                 𝐶𝑉𝑐𝐻𝑠|𝑇𝑧         Independent        -                          -                         0 
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                       Clayton Copula   𝜏𝑘=0.0196                                    Clayton Copula  𝜏𝑘=0.024   

                 Figure 6.6.  Copula scatter plot for SCR environmental data. 

 

6.4.2.4.  RBDO formulation for segmented SCR. 

 

The SCR considered in this study has three segments to be optimized. The original dimensions of 

the segments are (seabed section: 𝐿𝑜1=675m, 𝑡𝑜1=0.055m), (mid-section: 𝐿𝑜2=475m, 𝑡𝑜2=0.035m) 

and (section connected to FPSO: 𝐿𝑜3=805m, 𝑡𝑜3=0.021m). Where 𝐿𝑜𝑖 and 𝑡𝑜𝑖 represents the 

original length and thickness of the SCR sections, respectively. The SCR parameters to be 

optimized (design parameters) are shown in Table 6.10, with all design tolerance assumed to be 

normally distributed.  

Table 6.10. Statistical parameters of the segmented SCR design variables  

  Segment Description                                             Symbol               Distribution             CoV 

  Seabed section length                                                𝐿1                     Gaussian                  0.5 

  Mid-section length                                                     𝐿2                    Gaussian                  0.5  
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  Section connected to the vessel (length)                   𝐿3                    Gaussian                  0.5  

  Seabed section thickness                                           𝑡1                    Gaussian                  0.5 

  Mid-section thickness                                               𝑡2                     Gaussian                  0.5 

  Section connected to the vessel (thickness)             𝑡3                      Gaussian                  0.5 

 

The total dry weight (𝑊𝑑) of the segmented SCR (Eq. (6.24)) is the optimized cost function while 

satisfying the optimization problem's hard and soft constraints.  

                                           𝑊𝑑 = ƒ (𝐷𝐼 , 𝐿1, 𝐿2, 𝑡1, 𝑡2, 𝑡3)                                           (6.24) 

 As described in Section 6.2 of this chapter, 𝑚𝑗(𝑑) represents the soft constraints for optimization, 

which are simple functions that bound the design space. Also, the probabilistic constraints (hard) 

describe the segmented riser's LSF and are characterized by the environmental variables. In this 

study, the target 𝑃̂𝑓ℎ of the segmented riser is based on known safety cases described by regulatory 

standards (DNV,2001). This study considers the DNV high safety class for serviceability 

conditions (𝑃̂𝑓ℎ = 10
−3) as target value (Table 6A.4, Appendix 6A). As the standard describes, 

the high safety case considers a design that reduces the risk of human injury and significant 

environmental pollution from SCR failure. Eqs. (6.25) to (6.27) show the soft constraints for the 

segmented riser; the design variable 𝐿3 is described in terms of  𝐿1 and 𝐿2 (Eq. (6.27)). The goal 

is to have a highly reliable SCR at increased water depth and optimal (minimal) cost. 

                                                            𝐿2 ≤ 𝐿1                                           (6.25) 

                                                           𝐿3 ≤ 𝐿2                                            (6.26) 

                                                           𝐿3 = 𝐿𝑅 − 𝐿1 − 𝐿2                       (6.27) 
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The probabilistic constraints (inner loop RBDO) are obtained using adaptive PCK and consider 

tension (maximum and minimum), maximum von Mises stress, and the bending moment of the 

segmented SCR. Eqs. (6.28) to (6.31) show the formulated probabilistic constraints for the 

segmented SCR considering the operational case where  𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥 denotes the minimum and 

maximum effective tension, respectively. Also, 𝑆𝑣𝑚𝑠 and 𝑀𝐵 represents the maximum equivalent 

stress and bending moment on the segmented riser.  

𝑔1(𝐻𝑠, 𝑇𝑧, 𝑉𝑐) =  𝑇𝑚𝑖𝑛           𝑇𝑚𝑖𝑛 ≥ 0                 (6.28) 

                                      𝑔2(𝐻𝑠, 𝑇𝑧 , 𝑉𝑐) =  𝑇𝑎 − 𝑇𝑚𝑎𝑥                               (6.29)                       

𝑔3(𝐻𝑠, 𝑇𝑧 , 𝑉𝑐) =  𝑆𝑎 − 𝑆𝑣𝑚𝑠                                   (6.30) 

𝑔4(𝐻𝑠, 𝑇𝑧 , 𝑉𝑐) =  𝑀𝑎 −𝑀𝐵                                     (6.31) 

For this demonstration, 𝑇𝑎=3500 kN, 𝑆𝑎=0.67𝜎𝑦 (API,2013) and 𝑀𝑎=1200kN.m. These values 

represent the allowable tension (𝑇𝑎), stress (𝑆𝑎) and bending moment (𝑀𝑎) of the segmented SCR. 

For the DDO case considered in this study for comparison, a safety factor of 1.5 is adopted for the 

SCR. 

6.4.2.5.  SCR Numerical Modeling and Response Determination 

 

The SCR is considered free hanging and connected to an FPSO using a flex joint. The modeling 

and response analysis of the segmented riser is evaluated using an FEA tool called Flexcom 

(Wood,2019). The analysis comprises static and dynamic evaluation of the SCR, with the coupled 

effect of the FPSO in random seas considered in the dynamic phase. The ocean wave is modeled 

as a random sea using the Pierson- Moskowitz spectrum, which assumes a deep and fully 

developed sea (Bai and Jin, 2016).  Figure 6.7 shows the FEA model, including the TDP of the 
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segmented SCR in 1200m water depth. The SCR geometry, seabed properties, internal fluid, 

hydrodynamics, and vessel (FPSO) characteristics are modeled for the static phase. The seabed 

stiffness is assumed linear elastic with longitudinal and transverse stiffness considered 

(longitudinal friction coefficient: 0.2, transverse friction coefficient: 0.4).  

Ocean structures are complex and mostly do not have explicit LSF, which describes their 

performance. Consequently, the need to construct a reasonably accurate metamodel, cheap to 

evaluate, reduces the computational burden of numerical models and reflects the system's reality.  

With the determination of optimal copula for the environmental variables, an ED of 20 LHS sample 

points of the random input variables (𝐻𝑠, 𝑇𝑧 , 𝑉𝑐) is set up in the input space.   

          

 

                        Figure 6.7. Segmented SCR FEA model using Flexcom (Wood,2019). 

 

The responses related to tension, stress, and bending moments are determined for various selected 

hang angles (14.5𝑜 , 16.5𝑜 , 18𝑜 and 18.5𝑜) of the segmented SCR using FEA. Figure 6.8 shows a 
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typical response plot of the segmented riser for the input sample (𝐻𝑠=0.89m, 𝑇𝑧=7.9s, 𝑉𝑐=0.43m/s) 

at a hang angle of 16.5𝑜.  Similar responses are obtained for all sample points and hang angles 

considered. The effective tension plot (Figure 6.8) shows both the maximum and minimum values 

at various sections of the SCR length. From Figure 6.8, SCR maximum tension occurs near the 

connecting vessel (FPSO) with the maximum bending moment and von Mises stress near the TDP. 

The PCK metamodels describing the tension, stress, and bending moment of the segmented SCR 

are built by an adaptive process by enriching the initial ED using the U learning function until 

convergence is achieved (Figure 6.1). The responses from constructed PCK metamodels for the 

RBDO problem and all SCR hang angles considered were close to those obtained using FEA, as 

shown by the validation plots using 30 MCS input sample points (Figure 6.9).  
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                      Figure 6.8. Response plot of segmented SCR at hang angle (16.5𝑜). 
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          Figure 6.9.  Response validation plots using adaptive PCK for SCR at hang angle (18.5𝑂). 

 

Appendix 6A (Table 6A.5) of this study provides further details about the error from the PCK 

construction for the segmented SCR and its comparison with Kriging and PCE. Also, the RBDO 

inner loop reliability is implemented using the MCS described in Section 3. Table 11 shows the 

optimization outcome from the double-loop RBDO approach for the SCR using adaptive PCK and 

hybrid optimization methods. Also, Figure 6.10 shows the optimization plots at various hang 

angles.
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Table 6.11.  RBDO optimal weight and design variables for segmented SCR. 

    Dependence    Hang Angle (Deg)  𝑊𝑑 (kN)       𝑡1 (mm)       𝑡2  (mm)         𝑡3 (mm)        𝐿1 (m)            𝐿2 (m)           𝐿3(m)         𝛽ℎ 

  D-vine copula          14.5𝑜                 2042              41.6              25.8             22.2              674.5              640.4            640.12      3.35 

                                   16.5𝑜                 2892              53.3              41.7             18.7              755.6              612.7            586.7        3.50 

                                   18𝑜                    2391              41.8              31.2             19.2              871.7              830.2            253.1        3.52 

                                  18.5𝑜                  3414              64.4              28.2             25.1              897.3              691.9            365.8        3.42 

Independent               14.5𝑜                 2914              47.5              41.4             25.7              819.3              670.0            465.8        3.26 

                                   16.5𝑜                 4202              63.2              49.5             20.1              896.3              882.8            176.0        3.22 

                                   18𝑜                    4136              62.2              57.8             26.7              889.1              589.2            476.8        3.34 

                                  18.5𝑜                  4414              60.3              58.7             41.2              828.9              708.1             417.9       3.40 

DDO                            -                       1142              20.3              18.0             15.0               846.0              844.8            264.2       
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(a)   Hang Angle 14.5𝑜 
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                                                                                                                         (c)  Hang Angle 18𝑜 
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                            Figure 6.10. SCR optimization plots at different hang angles. 

 

6.5. Discussion  

 

This section describes the outcomes from the RBDO study of the presented example of a steel 

column function and a deepwater segmented SCR case study. 

For the steel column function described in Section 6.4.1, this paper examines the effect of the 

environmental variable configurations in the first tree of the D-vine structure for various copula 

types (Gaussian, Student t, Clayton, Gumbel, and Frank). As seen in Table 6.4, for different D-

vine orders with consideration of Gaussian Copula (linear dependence) between variables, the 

optimal steel column cost is (3.14%, 5.34%, and 7.23%) higher than the cost when variables are 

considered independent. Consequently, a non-consideration of possible dependence between 

variables could affect the accuracy level of the RBDO optimal cost; this can impact structural 

safety and ultimately affect the decision made regarding design variables during optimization. 

Also, Table 6.4 shows a difference in the RBDO outcome (optimal cost (𝐶𝑠𝑐) and dimensions of 

design variables (𝑏, 𝑡 𝑎𝑛𝑑 ℎ)) for the various dependence modeling conditions considered 

(independent variables and dependent variables modeled with different bivariate copulas). In 

addition, the order of variables in the first tree of the vine configuration also contributes to the 

difference in the optimization results. This variance indicates that the choice of copula for 

dependence modeling between variables and variable order significantly impacts the design 

decision in selecting optimal variable parameters, cost, and the overall safety of the structure. 

Consequently, the result of the steel column provides a learning outcome on D-vine variable 

configuration, which is critical in the RBDO of offshore structures where there exists probable 

nonlinear and tail dependence between ocean variables that interact with these structures with 
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various levels of dependency among themselves. Therefore, choosing an appropriate copula for 

multivariate dependence modeling and its variable order using vine copula raises the confidence 

level in the optimal design of offshore structures while meeting the required safety targets. 

Also, for the DDO outcome (Tables 6.5 and 6.11), uncertainties are only captured implicitly using 

safety factors during the optimization process. The choice of safety factor primarily depends on 

engineering experience and related design codes for a given optimization case. Consequently, this 

could result in wide variability in the optimal cost (sub-optimal or superoptimal) of the structure, 

as noticed in the relatively low DDO optimal cost outcome in Table 6.5 (𝐶𝑠𝑐=2473.5mm2) and 

Table 6.11 (𝑊𝑑=1142kN), resulting in cost values that might not be reliable and affect the design 

variables' decision accuracy. Therefore, using safety factors may not provide reliable and robust 

optimization results concerning uncertainty.  

The consideration of dependence using D-vine copula for the segmented SCR at various hang 

angles resulted in a lower optimal cost value than when variables were considered independent 

[29.9%(14.5o), 31.2%(16.5o), 42.2%(18o), 22.7%(18.5o)]; this further reveals that the SCR hang 

angle to the FPSO affects the cost and design variable outcomes during dependence-based RBDO 

analysis (Figure 6.10), which invariably impacts the design decision during optimization studies. 

Appropriate determination of the SCR hang angle to the fixed offshore installation is necessary for 

optimal design purposes. 

Furthermore, the adaptive PCK metamodel in the inner loop of the RBDO problem shows a high 

prediction ability of the computational model, as seen in the validation plot of segmented SCR 

(Figure 6.9) and a relatively smaller 𝜀𝐿𝑂𝑂 compared to outcomes from ordinary Kriging and PCE, 

as shown in (Appendix 6A , Table 6A.5) for the segmented SCR, this shows its suitability for 
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metamodel-assisted RBDO. Also, Table 6.4 for the steel column function shows low error values 

using adaptive PCK for the RBDO inner loop (1.1E-3 to 3.826E-6). 

The ability of copula functions to capture possible nonlinearity and tail dependence, as seen in 

(Figures 6.3 and 6.6), shows their suitability in obtaining a high level of accuracy in RBDO 

analysis, especially for offshore structures. 

A limitation of this study is that only commonly used copulas have been considered; this could be 

extended to other copula types for a more robust dependence effect investigation.  

 

6.6. Conclusions 

 

This study presents a framework for optimization under uncertainty for an offshore structure 

considering the effect of complex multivariate dependency modeling between environmental 

ocean variables using a D-vine copula. The optimization of a steel column function (example) and 

a segmented SCR (practical application) were used to demonstrate the implementation of the 

framework. 

The following can be inferred from the outcomes of the study: 

1. Considering uncertainty and dependence between environmental variables significantly 

affects offshore structural reliability evaluation and the design decision related to the 

optimal structural cost and choice of design variables from optimization studies. 

2. The steel column function and segmented SCR study reveal that if dependency between 

the variables of offshore structures is ignored during RBDO analysis, a possible suboptimal 

or superoptimal structural cost is obtained. Conversely, capturing multivariate dependence 
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raises confidence in the design and produces a reliable and safe structure for offshore 

operations. 

3. From the steel column example, determining the correct variable order of the D-vine copula 

structure in the first tree is essential in ensuring appropriate modeling of multivariate 

dependence between variables and obtaining reliable optimization outcomes (cost and 

design variables). 

4. The uncertainty in the ocean environment requires that existing nonlinearity and tail 

dependence between ocean variables are captured to ensure an appropriate tradeoff 

between structural safety and design cost. The steel column function and segmented SCR 

examples show that the D-vine copula is a flexible and efficient method to capture this vital 

information between ocean variables.  

5. Using adaptive PCK for the inner loop of the RBDO problem improves the accuracy of the 

two-level RBDO approach, produces a relatively minimal error, and provides a level of 

confidence in the overall optimization process. 

Future research areas include vine copula-based RBDO problems with mixed uncertainty 

(epistemic and aleatory), a study that considers fatigue, and extreme load effect on the structural 

optimization of deepwater SCR. Also, further investigation into the impact of design variables' 

dependency on the RBDO problem is necessary. Finally, implementing the dependence-based 

framework to other complex offshore structures to investigate further the effect of multivariate 

dependence modeling in the optimal design of offshore structures is essential. 
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Appendix 6A 

 

Table 6A.1. Expression for selected copula functions (Elliptical and Archimedean). 

Copula               𝐶(𝑢1, 𝑢2|𝜃)                                                 h function                                              ℎ−1function                                                   𝜃 range     

Gaussian      Ф(Ф−1(𝑢1),Ф
−1(𝑢2)|𝜃)                         Ф(

Ф−1(𝑢1)−𝜃Ф
−1(𝑢2)

√1−𝜃2
)                       Ф(Ф−1(𝑢1)√1 − 𝜃2 + 𝜃Ф

−1(𝑢2))                                 [-1,1] 

Student  t           𝑡𝜃,𝜈(𝑡𝜈
−1(𝑢1), 𝑡𝜈

−1(𝑢2)|𝜃)        𝑡𝜈+1(
𝑡𝜈
−1(𝑢1)−𝜃𝑡𝜈

−1(𝑢2)

√
(𝜈+(𝑡𝜈

−1(𝑢2))
2
)(1−𝜃2)

𝜈+1

)                    𝑡𝜈(𝑡𝜈+1
−1(𝑢1)

√𝜈+(𝑡𝜈
−1(𝑢2))

2
)(1−𝜃2)

𝜈+1
+ 𝜃𝑡𝜈

−1(𝑢2)            [-1,1] 

Clayton   ((𝑢1)
−𝜃 + (𝑢2)

−𝜃 − 1)−
1

𝜃          (𝑢2)
−𝜃−1((𝑢1)

−𝜃 + (𝑢2)
−𝜃 − 1)−1−

1

𝜃               ((𝑢1𝑢2)
𝜃+1)−

𝜃

𝜃+1 + 1− (𝑢2)
−𝜃)−

1

𝜃                                [0 ∞] 

Gumbel   exp (−((−𝑙𝑛𝑢1)
𝜃 + (−𝑙𝑛𝑢2)

𝜃)
1

𝜃)   𝐶(𝑢1, 𝑢2|𝜃)
1

𝑢2
(−𝑙𝑜𝑔𝑢2)

𝜃−1. ((−𝑙𝑜𝑔𝑢1))
𝜃 + (−𝑙𝑜𝑔𝑢2))

𝜃)
1

𝜃−1        -                                               [1,+∞] 

Frank    −
1

𝜃
ln (1 +

(𝑒−𝜃𝑢1−1)(𝑒−𝜃𝑢2−1)

𝑒−𝜃−1
)                         

𝑒−𝜃𝑢2

1−𝑒−𝜃

1−𝑒−𝜃𝑢1
+𝑒−𝜃𝑢2−1

                                 −log (1 −
1−𝑒−𝜃

((𝑢1)
−1−1)𝑒−𝜃𝑢2+1

)/𝜃                                [−∞,+∞] 

𝜈 : degree of freedom of the t copula. 

 

Table 6A.2. Tail dependence expression for selected copulas 

  Tail Dependence                                        Gaussian                   Student t                                 Clayton                   Gumbel                  Frank 

Upper Tail Dependence (⅄U)                          0                   2𝑡𝑣+1(−√(𝑣 + 1)√
1−𝜃

1+𝜃
)                     0                           2 − 2−

1

𝜃                    0 

Lower Tail Dependence (⅄L)                         0                         𝑡𝑣+1(−√𝑣 + 1)√
1−𝜃

1+𝜃
)                  2−

1

𝜃                             0                          0 
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Table 6A.3. Minimum AIC values for variables 𝐻𝑠 , 𝑇𝑧 and 𝑉𝑐 

Probability Distribution                  𝐻𝑠(m)                     𝑇𝑧(s)                        𝑉𝑐(m/s) 

                                                        AIC                        AIC                           AIC 

         Gaussian                            11300.08                 11714.27                    -2405.40 

         Lognormal                         11495.82                 11610.45                    -2354.80 

         Exponential                        12616.08                19386.39                    -1569.61 

           Logistic                            11330.69                11742.88                     -2409.65 

          Weibull                             10975.31                12013.79                     -2855.03 

          Gamma                             11063.35                11615.62                     -2783.35 

 

Table 6A.4.  Target failure probability (DNV,2001) 

Limit State                                                                          Safety Class 

                                                                            Low                Normal                     High 

Serviceability                                                      10−1             10−1 − 10−2       10−2 − 10−3 

Ultimate                                                               10−3                 10−4                        10−5 

Fatigue                                                                 10−3                 10−4                        10−5 

 

Table 6A.5. Metamodel error for the segmented SCR 

Metamodel                                    14.5𝑜                    16.5𝑜                 18𝑜                       18.5𝑜        

𝜀𝐿𝑂𝑂                                                                        SCR Hang Angles 

Adaptive PCK                      1.242E-9                1.85E-9             4.68E-9                   1.48E-9 

Adaptive Kriging                 6.43E-7                  7.11E-5             8.31E-6                   2.22E-6 

PCE                                      2.13E-3                  5.73E-4             6.22E-5                   3.62E-4 
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Chapter 7 

Contributions, Conclusions and Recommendations for Future Research 

 

An improved reliability prediction method for offshore structures is necessary to ensure the safety 

of life, asset, and the environment. This research demonstrates the effect of appropriate modeling 

of the complex interaction between multivariate ocean variables and their impact on the reliability 

assessment and optimization of offshore structures under uncertainty. In addition, the study 

investigates the use of a hybrid metamodel to reduce the computational burden of the numerical 

technique (FEA) for complex offshore structures and develops a framework for its resilience. The 

technical activities of this research aimed at developing a reliability-based design approach for oil 

and gas structures are detailed in four chapters of this work (Chapters 3-6). These activities 

constitute a version of manuscripts accepted and published by journals or are currently under 

review. The contributions, conclusions, and recommendations for future research are presented in 

the sections of this chapter. 

7.1. Novelty and Contributions 

 

This doctoral research's major novelty and contribution relate to dependency modeling, metamodel 

construction, resilience assessment, and structural optimization under uncertainty. Details of 

contributions are highlighted below. 

1. Development of a multivariate dependence-based modeling approach for reliability 

evaluation of complex offshore structures using the D-vine copula. The method can 

capture ocean variables' complex interaction and possible linearity, nonlinearity, and 

tail dependence between variables. 
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2. A hybrid metamodel developed from Kriging and PCE through an adaptive technique 

and multiple-enrichment strategy. This hybrid approach can improve the computational 

cost and efficiency for response determination in the reliability-based assessment of 

offshore structures. 

3. A novel framework for offshore structural resilience quantification is developed. It 

utilizes the concept of reliability, adaptability, and maintainability. The framework 

created can handle multiple disruptive events and adopts a probabilistic approach to 

address the recovery phase of the resilient assessment. 

4. A methodology for offshore structures optimization under uncertainty that considers 

the multivariate dependency of the environmental variables (ocean) is developed. 

5. Develops an approach that utilizes a hybrid metamodel (adaptive PCK) for inner loop 

reliability in dependence-based structural optimization under uncertainty.  

7.2. Conclusions 

The research outcomes indicate that multivariate dependence modeling captures the complex 

interaction in ocean variables for the reliability assessment of offshore structures and their optimal 

design. Also, a combination of metamodels can improve their computational efficiency, and 

offshore structural resilience can be adequately quantified for its design life. In addition, nonlinear 

functions, modeled jacket structure, offshore pipeline segment, and deepwater SCR were used to 

demonstrate the developed frameworks. The data for demonstration purposes for this research was 

from met ocean data for Newfoundland and Labrador's offshore areas (Jeanne D’ Arc and Flemish 

Pass basins), related research journal articles, international standards, and reasonable data 

assumptions made where necessary (due to data unavailability). 
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7.2.1. A Multivariate Dependence Modeling Approach for Offshore Structures 

The appropriate modeling of the complex interaction (linear, nonlinear, and tail dependence) for 

multivariate ocean variables using the powerful and flexible D-vine copula tool as detailed in this 

study (Chapter 3) provides confidence in the outcomes from the reliability assessment of offshore 

structures under a specified limit state condition or a combination of conditions, especially for 

complex offshore systems with no closed form LSF. This approach prevents the simplification and 

assumption of independence or Pearson correlation (linear dependence) between ocean variables 

in reliability-based studies. 

7.2.2. A Hybrid Metamodel for Reliability Assessment of Offshore Structures 

 

Metamodel alleviates the computational complexities of response determination from time-

consuming numerical methods for large and complex offshore structures. However, constructing 

a metamodel whose output reflects the offshore structure's actual response under stated conditions 

is essential for appropriate reliability evaluation. This technical activity (Chapter 4) investigates 

the performance of a hybrid active learning metamodeling approach using Kriging and PCE, with 

multiple enrichment of ED (APCKKm-MCS). The research proves that combining metamodels 

can provide the needed computational efficiency (with minimal error), produce fast convergence, 

reduce model evaluation, decrease computing time in response determination, and reflect the 

actual offshore structure's response under stated conditions.  

7.2.3. Structural Resilience Quantification for Offshore Structures 

 

The research outcome from the technical activity in Chapter 5 demonstrates that the resilience of 

offshore structures can be quantified using a probabilistic approach. The developed framework 

quantified resilience based on its time-dependent reliability, adaptability, and maintainability. 
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Furthermore, the framework builds on the limit state approach and can evaluate the resilience of 

multiple disruptive events on an offshore structure. In addition, the framework helps ascertain 

critical factors affecting the structure's resilience for a specified disruptive event.  

7.2.4. Dependence-based Structural Optimization under Uncertainty 

 

The research activity (Chapter 6) presents a dependence-based double-loop RBDO approach for 

the optimal design of offshore structures. The method assesses the impact of modeling the complex 

interaction of ocean variables (using a D-vine copula) and utilizing a hybrid metamodel (adaptive 

PCK) in the inner loop of the nested RBDO problem. The results revealed that design variable 

optimal decisions could vary significantly if dependence between the environmental variables in 

the optimization case is ignored, which invariably affects the structure's optimal cost. The adaptive 

PCK method also revealed its high performance in the inner loop of the nested RBDO case 

presented. 

 

7.3. Future Research Activities 

 

The research aspects considered in this thesis can be expanded to improve further the reliability-

based design approach to offshore structures required for oil and gas activities. Some areas for 

future research and consideration include: 

1. For the fixed offshore structure case study in Chapter 3, the multivariate dependence 

modeling was limited to wave and current related load variables with no consideration of 

the dependence of offshore soil parameters due to the unavailability of data. Further 

research on high dimensional dependence modeling is desired considering other ocean 

variables such as ice, wind, tidal effect, and soil parameter dependency related to variables 
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such as shear strength, stress, weight, friction angle, and cohesion. In addition, the research 

task in Chapter 3 focused on ULS conditions only; the dependence-based approach could 

be expanded to include SLS, fatigue, and possible damage limit state of offshore structure. 

 

2. The active learning hybrid metamodel (APCKKm-MCS) developed in Chapter 4 for 

offshore structural response determination and reliability studies focused on the use of 

specific functions and sampling strategies such as the U learning function for ED 

enrichment, Matérn autocorrelation function for metamodel construction, and LHS 

sampling strategy for ED. However, with the quest to constantly develop efficient 

metamodels for complex offshore structures, a comparative study that investigates the 

possibility of improving the hybrid metamodel through a combination of different learning 

functions, sampling strategies, and various autocorrelation functions might be necessary. 

Also, the application of APCKKm-MCS can be expanded to more complex offshore 

structures beyond SCR. 

 

3. The resilience quantification framework presented in Chapter 5 described the multiple 

disruptive events of the offshore pipeline segment with explicit LSF; it does not consider 

dependency between input variables and focuses on internal disruptive events only. 

Consequently, further research into a metamodel-assisted, dependence-based offshore 

structural resilience quantification framework in terms of the system’s reliability, 

adaptability, and maintainability is desired. Also, a combination of internal and external 

disruptive events could be considered in offshore structural resilience quantification. 
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4. The concept of structural optimization under uncertainty presented in Chapter 6 considers 

the dependence of environmental variables and time-independent reliability in the inner 

loop of the RBDO problem. Further research into dependence modeling of both 

environmental and design variables using vine copula and considering a time-dependent 

reliability assessment in the nested RBDO problem for offshore structures could provide 

an improved and more realistic approach for an effective reliability-based design. Also, the 

present study considers a single cost function for optimization, with the possibility of 

multiple optimization cost options for offshore structural design, a methodology for 

dependence-based structural multiobjective optimization of offshore structures could be 

investigated. 

 

 

 

 

 

 

 

 

 

                                                


