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Abstract

Genome-Wide Association Studies (GWAS) identify genetic variations in individuals

affected with diseases such as Parkinson's disease (PD), whose allele or genotype fre-

quencies are significantly different between the affected individuals and individuals

who are free of the disease. GWAS data can be used to identify genetic variations

associated with the disease of interest. However, GWAS datasets are extensive and

contain many more Single Nucleotide Polymorphisms (SNPs pronounced “snips”)

than individual samples. To address these challenges, we used Singular-Vectors Fea-

ture Selection (SVFS) and applied it to PD GWAS datasets. We discovered a group

of SNPs that are potentially novel PD biomarkers as we found indirect links between

them and PD in the literature but have not directly been associated with PD before.

Direct association means that current literature directly links a SNP with PD; while

an indirect link means that current literature suggests the involvement of a SNP in

a disease other than PD but this other disease co-occurs with PD in a significant

number of PD patients. These indirectly-linked SNPs open new potential lines of in-

vestigation. Directly-linked SNPs identified by our method are rs11248060, rs239748,

rs999473, and rs2313982. One can see the full list of identified SNPs in Section 4.4.
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Chapter 1

Introduction

Parkinson's disease (PD) is one of the most prevalent neurodegenerative disorders

affecting 1-2 persons per 1,000 people and has a prevalence rate of 1% over the age

of 60 [1]. Due to a growth in the number of senior individuals and age-standardized

incidence rates, the estimated number of people affected with PD in the world more

than doubled (from 2.5 million to 6.1 million) between 1990 and 2016 [2]. According to

Jankovic [3], PD is a degenerative neurological condition that affects both the motor

and non-motor aspects of movement including planning, initiation, and execution [4].

Parkinson's symptoms appear in people who have lost 80% or more of dopamine-

producing cells in the substantia nigra region of the brain [5]. To assist with the

coordination of the millions of nerve and muscle cells involved in movement, dopamine

often works in a careful balance with other neurotransmitters. Without adequate

dopamine, this equilibrium is disrupted, leading to the typical symptoms of PD,
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including tremor (trembling in the hands, arms, legs, and jaw), rigidity (stiffness

of the limbs), slowness of movement, and decreased balance and coordination [6].

Patients with PD experience severe impairments in their quality of life (QoL), ability

to engage in social activities, and ability to maintain healthy family relationships

[7]–[9].

Motor symptoms have historically been used to make PD diagnosis. Although

the cardinal indications of PD have been established in clinical examinations, most

of the rating scales used to determine the disease severity have not been thoroughly

examined and verified [3]. While non-motor symptoms (such as cognitive changes,

difficulties with attention and planning, sleep disorders, sensory abnormalities, and

olfactory dysfunction) are common in patients before the onset of PD, they lack

specificity, are challenging to assess, and/or vary from patient to patient [3], [10],

[11]. Non-motor symptoms cannot currently be utilized to diagnose PD on their own,

despite some of them being used as supportive diagnostic criteria [12], [13]. Although

there is no cure, there are numerous treatment options available, including drugs,

lifestyle changes, and surgery. PD is not lethal in and of itself, although significant

complications might arise.

In the healthcare industry, the use of Machine Learning (ML) techniques is ex-

panding. As the term “Machine Learning” suggests, it is possible for computer soft-

ware to learn from data in a semi-automatic way and extract meaningful representa-

tions from it. Handwriting patterns ([14], [15]), movement ([16], [17]), neuroimaging
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([18]–[20]), speech ([21], [22]), Cerebrospinal Fluid (CSF) ([23], [24]), cardiac scintig-

raphy ([25]), serum ([26]), and Optical Coherence Tomography (OCT) ([27]) are just

a few of the data modalities that have been subjected to ML models for the PD diag-

nosis. In order to diagnose PD, ML also enables the combination of several modalities,

such as Magnetic Resonance Imaging (MRI) and Single-Photon Emission Computed

Tomography (SPECT) data [18], [28]. Therefore, we can rely on these alternative

measures to diagnose the disease in its preclinical phases or atypical forms to uncover

pertinent elements that are not frequently used in the clinical diagnosis of PD.

Genome-Wide Association Studies (GWAS) look for genetic variants (particularly

Single Nucleotide Polymorphisms (SNPs)) in people with a particular disease and

those without. This information can be utilized to find SNPs linked to the disease

of interest. SNPs (pronounced “snips”) are human's most prevalent form of genetic

variation [29]. GWAS datasets are massive and include considerably more SNPs than

individual samples.

In this thesis, we will focus on finding SNPs that could be used as biomarkers for

PD. The term “biomarker” [30], a portmanteau of “biological” and “marker”, refers

to a large subclass of molecular and medical signs or objective indicators of health

status, which can be quantified precisely and consistently.

We used GWAS data from PD cases and healthy controls (here healthy controls

refer to people without PD but they might have other health-related issues). These

datasets are described in Section 3.1, and downloaded from the database of Genotypes
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and Phenotypes (dbGaP) 1. We worked with five PD datasets, including Tier1 [31],

NINDS1 [32], NINDS2 [32], Familial [33], and Autopsy [34] datasets. To prepare

the datasets for the feature selection method, we preprocessed and cleaned them.

These datasets were all decrypted, then converted into a Comma-Separated Values

(CSV) format. After converting the GWAS data into CSV format, we used a data

imputation technique, KNNcatimpute [35] to impute Not Available (NA) values.

As it was mentioned before, GWAS data is extensive and building a model on such

large datasets takes a long time. So, due to the high dimensionality of the GWAS

dataset, we have to reduce dimensionality. The standard technique for dimensionality

reduction is feature selection. Feature selection is the process of choosing the most

reliable, non-redundant, and pertinent features to include in a model and its primary

objectives are to enhance a predictive model's performance and lower modelling's

computational expense. We used the Singular-Vectors Feature Selection (SVFS) al-

gorithm [36] as the feature selection technique. Let D = [A ∣ b] be a labelled dataset,

with b representing the class label and features (attributes) representing columns in

matrix A. M. Afshar and H. Usefi showed how the signature matrix SA = I − A†A

(I is the identity matrix and A† is the pseudo-inverse of A) can be used to partition

A's columns into clusters, with columns in one cluster correlating exclusively with

columns in another cluster. The signature matrix SD of D is used by SVFS to locate

the cluster that holds b. Afshar and Usefi reduced the size of A by eliminating irrel-

1https://www.ncbi.nlm.nih.gov/gap/
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evant features from the other clusters. The signature matrix SA of reduced A is then

used by SVFS to partition the remaining features into clusters and select the most

important features from each cluster. We also evaluated HSIC-Lasso [37] feature se-

lection as another technique. HSIC Lasso is one of the best techniques for choosing

sparse nonlinear features and is based on the Hilbert-Schmidt independence criterion

[38]. HSIC Lasso can be regarded as a convex variant of widely used minimum re-

dundancy maximum relevance (mRMR) feature selection algorithm. However, the

HSIC-Lasso's results were not as good as SVFS's (see Table 3.7). Consequently, we

used SVFS for feature selection for all of the approaches.

We proposed five different approaches to integrate datasets and compare them

with the baseline approach of no integration. By integrating datasets, we mean

combining independent datasets into a single dataset containing data points from

each of the original datasets to be used for generating a machine learning model for

detecting PD cases. We used Random Forests (RF) as the classifier for all approaches.

We also tested Support Vector Machine (SVM) and Gradient Boosting (GB), but they

required a lengthy time to process the datasets and performed less accurately than

RF.

In Approach 0, we ran the SVFS feature selection algorithm on each dataset

separately to extract the most important features. After 50 rounds, we constructed a

dictionary of SNP IDs with the number of times each SNP was selected by the SVFS

(henceforth referred to as frequency). For each dataset we obtained the SNPs with
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the highest frequency and using Cross-Validation (CV), we assessed the classification

performance of a model generated using these highly frequent SNPs as features. We

considered this approach as the baseline for our analysis. Out of all the approaches,

we found that Approach 0 (baseline approach) had the best accuracy on each dataset

compared to other approaches. We obtained the highest (87.46%) and lowest (51.92%)

accuracy on the NINDS2 and Tier1 datasets, respectively.

In Approach 1, we ran the SVFS feature selection algorithm on the Familial

dataset and selected the most frequent SNPs, then performed CV to assess the classi-

fication performance of each of the other four datasets. Due to the limited availability

of SNPs in Approach 1, we expected Approach 1 to be less accurate.

In Approach 2, we first obtained the intersection of SNPs between the Familial

dataset and each of the other four datasets. SNPs not in the intersection were re-

moved. We followed the same steps that had been done for Approach 1 by extracting

the most frequent SNPs from the condensed version of the Familial dataset and doing

CV on the other datasets. Approaches 1 and 2 had comparable performance with

average accuracy (Autopsy = 64.89%, NINDS1 = 51.98%, NINDS2 = 53.04%, and

Tier1 = 44.47%) and (Autopsy = 65.40%, NINDS1 = 52.56%, NINDS2 = 50.38%,

and Tier1 = 31.50%), respectively.

In Approach 3, to enhance the classification performance, we combined datasets

to increase the number of instances (individuals) before feature selection. We ob-

tained the SNPs in the intersection between the Familial dataset and the other four
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datasets (common SNPs between Familial and other datasets). We ran the SVFS

feature selection algorithm on each of the four merged datasets and extracted the

most frequent SNPs. Then, performed CV to assess the classification performance of

the model generated on each of the merged datasets.

Approach 4 was the same as Approach 3, but an equal number of instances per

dataset were merged. The number of cases and healthy controls taken from each

dataset was the same. The trend between approaches 3 and 4 was the same, but

these two approaches performed better than Approach 1 and 2.

After performing approaches 0 to 4, we had different list of most frequent SNPs

from each approach for each dataset. We collected SNPs that are in common among

different approaches for the same dataset and among different datasets. There are

some SNPs that are in common among at least two approaches or two datasets. We

extracted those SNPs and called them the possible biomarkers for PD. Additionally,

we investigated the associated phenotypes of selected SNPs to find out any potential

link with PD. The main results of this thesis were discussed in Chapter 4. We

discovered rs11248060, rs239748, rs999473, and rs2313982 that were directly linked

to PD. We presented our candidate list of SNPs associated with PD in Section 4.4.

Further clinical investigations are required to validate these findings.

The main contributions of this thesis are:

• Showing that feature selection and machine learning algorithms can be used for

identifying SNPs potentially associated with PD.
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• Comparing the impact of integrating data sets in the identification of SNPs

potentially associated with PD.

• Identifying a number of SNPs as potential biomarkers of PD not yet mentioned

in the literature.

The summary of the contents of the subsequent chapters are:

• Chapter 2 - Background and related works: Recent research on applying ML

algorithm on GWAS and PD datasets

• Chapter 3 - Methodology: All steps of applying ML approaches on PD datasets

• Chapter 4 - Results and Discussion: Identified SNPs as the biomarkers of PD

• Chapter 5 - Conclusion: Major findings in relation to the objectives and research

questions and limitation of the work
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Chapter 2

Background and related works

2.1 Background

Deoxyribonucleic acid (DNA) is a long, double-stranded molecule that contains all

the instructions needed to develop and direct living things [39]. Each strand of DNA

is made up of four chemical units called nucleotides (Adenine (A), Cytosine (C),

Guanine (G), and Thymine (T)). These units are, in fact, the letters of the genetic

alphabet. The two strands of DNA complement each other and are paired together.

The pairing process is such that A is always paired with T, and C is always paired

with G.

The complete DNA set in any living thing is called its genome [40]. Because DNA

is almost always present in two strands, the length of the genome is measured in base

pairs. The genome is stored in long molecules of DNA called chromosomes.
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A gene is a region of DNA that is transcribed [41]. The genes are copied into

RNA molecules. Some of these RNA molecules contain the instructions to produce

proteins.

The entire content of human nuclear DNA is divided into 46 chromosomes [42].

Chromosomes are inherited from each parent to the offspring as a set of 23. Thus,

there are two copies of most genes in each cell. These different versions of a single

gene are called alleles. Some alleles [43] may cause a particular trait (phenotype) in an

organism. The composition and set of alleles that an organism carries are called the

genotypes and is often expressed in letters [44]. All visible traits in an organism that

result from the interaction of its genotype with the environment are called phenotypes

[45]. Examples of phenotypes include the colour, shape, size of the organism, and

its behaviour, and susceptibility to certain diseases. An organism's phenotype may

change during its life with environmental changes or physiological and morphological

changes resulting from ageing.

A locus is a specific location on the genome [46]. SNPs are the most prevalent

form of genetic variation in humans. Each SNP is a variation in a single nucleotide.

In a specific locus, a SNP might, for instance, swap out the nucleotide cytosine (C)

with the nucleotide thymine (T). SNPs typically occur all over a person's DNA.

There are around 4 to 5 million SNPs in an individual's genome, which implies they

typically occur almost once every 600 to 750 nucleotides (3 billion nucleotides in the

human genome divided by 4 or 5 million SNPs). Every single individual has SNPs;
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nevertheless, for a variation to be called SNP, it must be present in at least 1% of the

population [29]. More than 600 million SNPs have been discovered by researchers in

human populations worldwide.

2.2 Using ML on GWAS data

There have been many research projects using ML on GWAS data in recent years.

ML applications in GWAS were explored by Nicholls et al., 2020 ([47]). This

review article focused on three components: selected models, input features, and out-

put model efficiency. The authors focused on prioritizing complex disease-associated

loci and the contributions made by ML to achieving the GWAS end-game, with

wide-ranging translational implications. GWAS end-game is a situation in which all

common population variation that affects a characteristic has been recognized, of-

fering sound scientific explanations and mechanisms with a dependable translational

capacity [47]. According to this paper, many ML algorithms are used for post-GWAS

analysis. Still, the most common ones are Gradient Boosting (GB), Random Forests

(RF), Support Vector Machine (SVM), Logistic Regression (LR), and Neural Network

(NN).

Enhanced Permutation tests through Multiple Pruning (ENPP), proposed by

Leem et al., 2020 is a permutation method for GWAS [48]. If the features in each

permutation round are found to be non-significant, ENPP prunes them. They used

this method to find the association with a non-normally distributed phenotype (fast-
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ing plasma glucose) in an actual dataset (Korea Association REsource: KARE [49])

of 327,872 SNPs.

A. Nalls et al., 2014 performed an analysis of PD across 7,893,274 variants, 13,708

cases, and 95,282 healthy controls [50]. They performed a meta-analysis of all exist-

ing European ancestry PD GWAS study data. They applied their methods to three

datasets. The genomic inflation factor for each dataset was between 0.889 and 1.056

and was calculated for each chromosome separately as well as for the entire genome

for the various densities. It was defined as the median of the observed chi-squared

test statistics divided by the expected median of the corresponding chi-squared dis-

tribution. The p − value threshold was 5 × 10−8. They found 28 independent risk loci

for PD.

2.3 Classification on PD patients using ML

We can utilize ML algorithms to uncover pertinent aspects that are not often employed

in the clinical diagnosis of PD and rely on these alternative measures to detect the

disease in its preclinical stages or in atypical forms [51].

With the objective of enabling improved individualized treatments and evaluating

the suggested ones, Artificial Intelligence (AI) and Internet of Things (IoT) technolo-

gies can support both the early diagnosis of PD and the monitoring of PD patients

[52], adding to the already well-established conventional procedures. Additionally,

the evaluation of the efficacy of currently prescribed medications, as well as the op-
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timization of surgical treatments, the prediction of the course of the disease, and

the prevention of unfavourable consequences even in real-time, can be facilitated by

training ML algorithms on sensory data collected from PD patients [53]. These inter-

ventions facilitate the shift from clinic-centric to patient-centric healthcare practices

and pave the way for precision therapy in PD and other chronic diseases [54].

The classification of PD patients and healthy controls, which is usually addressed

based on inertial signals, is the first issue that will be tackled. In order to accomplish

this, gait features have been extracted manually using feature engineering approaches

[55]–[59] or automatically using deep Convolutional Neural Networks (CNNs) [60],

and these features have been fed into several classification algorithms. SVM, Deci-

sion Trees (DTs), RF, K-Nearest Neighbour (KNN), bagged, boosted, and fine trees,

LR, Linear Discriminant Analysis (LDA), and Naive Bayes (NB) classifiers, as well

as Multi-Layered Perceptrons (MLPs) or other NNs, are some of the deployed algo-

rithms.

There is a wealth of genetic and transcriptome data of patients with PD thanks

to high-throughput methodologies, but traditional statistical methods used for data

analysis have not produced much in the way of insightful integrated analysis or in-

terpretation of the data [61]. ML has thus been used to evaluate and interpret exten-

sive, extremely complicated genomic and transcriptome data in order to gain better

insights into PD. ML models have been created in particular to integrate patient geno-

type data either alone or in combination with demographic, clinical, neuroimaging,
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and other data for PD outcome studies. Additionally, they have been applied to dis-

covering PD biomarkers based on transcriptome information, such as gene expression

patterns from microarrays [62].

Several studies looking into the role of the gut microbiota in PD found some

common microbial population changes in PD patients, such as a decrease in Lach-

nospiraceae and an increase in Verrucomicrobiaceae families [63]. They analyzed 165

rRNA gene sequencing data from six different studies using three different supervised

ML algorithms. They developed a classifier that can predict the pathological status

of PD patients compared to healthy controls as a result of this research, and they

established a subset of 22 bacterial families that are discriminative for the prediction.

DEEPENA is a Deep Learning (DL) technique that is used to determine whether

or not an individual has PD based on premotor features [64]. Specifically, several

indicators were considered in this study to detect PD at an early stage, including rapid

eye movement, olfactory loss, cerebrospinal fluid data, and dopaminergic imaging

markers. A comparison of the proposed DL model with twelve ML and ensemble

learning methods based on relatively limited data, including 183 healthy controls

and 401 early onset PD patients, reveals that the built model has the best detection

efficiency, with an average accuracy of 96.45%. Their case study was the Parkinson's

Progression Markers Initiative (PPMI) [65] database (401 early onset PD patients

and 183 healthy controls).

Ahmadi Rastegar et al., 2019 tested 27 inflammatory cytokines and chemokines
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in serum at baseline and after a year to examine cytokine stability. Cytokines might

be useful in ML models for PD progression prediction. The baseline measurements

were then combined with ML models to predict longitudinal clinical outcomes after

a two-year follow-up [66]. The best prediction models achieved a Normalized Root

Mean Square Error (NRMSE) of 0.1123 and 0.1993 in the motor symptom severity

scales of Hoehn and Yahr and the unified PD rating scale part three, respectively.

Their case study was the Michael J Fox Foundation LRRK2 [67] clinical consortium

longitudinal sample collection (serum samples and clinical data from 160 patients for

a baseline comparison of LRRK2-PD and idiopathic PD).

Singh Dhami et al., 2017 proposed a ML method that takes as input a specific

collection of data from the PPMI study and divides them into two classes: PD cases

and healthy controls [68]. They tested their method on 1194 patients obtained from

the PPMI, and the results demonstrate that it achieves cutting-edge performance

with minimal feature engineering.

There is no standard procedure for making a PD diagnosis, which makes it a

challenging and time-consuming task. As a result, numerous investigations have been

carried out to identify reliable PD biomarkers. One method that has been applied in

the search for biomarkers is the examination of electroencephalogram (EEG) signal

features [69]. This study assessed the efficacy of EEG Hjorth features as biomarkers

for PD. SVM, KNN, and RF algorithms were used for classification, following a 5-

fold CV methodology, using the database that is accessible at the public repository

29



known as The Patient Repository for EEG Data Computational Tools (PRED + CT).

With an SVM classifier, the suggested model distinguished between PD patients and

healthy controls with an accuracy of 89.56%.

Alex Li and Chenyu Li used ML techniques to create a classifier using gait data

from Parkinson'patients and healthy controls [70]. A more precise and affordable

diagnostic procedure might be facilitated by the classifier. The Gait in PD dataset,

available on PhysioNet [71], [72], is the input to their algorithm. It contains force

sensor data used to measure the gait of 214 individuals with idiopathic PD and 92

healthy controls. A classification model of Parkinson's patients and healthy controls

was created using a variety of ML approaches, including LR, SVM, DT, and KNN.

A cohort of cognitively healthy controls' s single-cell chromatin accessibility land-

scapes and three-dimensional chromatin interactions were profiled to create a multi-

omic epigenetic atlas of the adult human brain by Corces et al., 2020 ([73]). With

the help of a ML classifier, authors were able to integrate this multi-omic framework

and predict dozens of functional SNPs for Alzheimer's and Parkinson's disorders, as

well as target genes and cell types for hitherto orphaned locations from GWAS.

This Chapter presented the previous promising work in biomarker discovery using

ML for classification purposes, and the use of ML and feature selection algorithms to

identify SNPs has been studied [74]. However, what made our study different was the

use of ML techniques on novel PD datasets. We deployed different feature selection

algorithms in our research, contributing to the area of interest.

30



Chapter 3

Methodology

We will apply the SVFS algorithm [36] and ML classifiers on five GWAS PD datasets

to differentiate between PD patients and healthy controls. In this section the methods

and datasets used will be described.

3.1 Dataset description

We used five different datasets. We obtained those datasets from Genotype and

Phenotype (dbGaP) database [75].

1. Phs000126 (Familial) [33], [76]–[82] dataset combines the results of two major

National Institutes of Health (NIH)-funded genetic research aimed at discover-

ing new genes that influence the risk of PD. PROGENI (PI: Tatiana Foroud;

R01NS037167) and GenePD (PI: Richard Myers; R01NS036711) have been an-

alyzing and recruiting families with two or more PD affected members for over
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eight years. There are almost 1,000 PD families in the total sample.

Type Source Platform

Whole Genome Genotyping Illumina HumanCNV370v1

Table 3.1: Technology/Platform for genotyping for Familial dataset

2. Phs000394 (Autopsy)-Confirmed Parkinson Disease GWAS Consortium (APDGC)

[34] was established to perform a genome-wide association research in people

with neuropathologically diagnosed PD and healthy controls. Their study's hy-

pothesis is that by enrolling only cases and healthy controls with neuropatho-

logically proven illness status, diagnostic misclassification will be reduced and

power to identify novel genetic connections will be increased.

Type Source Platform

Whole Genome Genotyping Illumina HumanOmni1 −Quad v1 − 0 B

Table 3.2: Technology/Platform for genotyping for Autopsy dataset

3. Phs000089 (NINDS) [32], [83]–[86] repository was created in 2001 with the in-

tention of creating standardised, widely applicable diagnostic and other clinical

data as well as a collection of DNA and cell line samples to enhance the field

of neurological illness gene discovery. All samples, phenotypic information, and

genotypic information are accessible. The collection also includes well-described

neurologically healthy controls subjects. This collection served as the founda-
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tion for both the expanded investigation by Simon-Sanchez et al. and the first

stage study by Fung et al [83]. The laboratories of Dr. Andrew Singleton of the

National Institute on Aging (NIA) and Dr. John Hardy of the NIA produced

and submitted the genotyping data (NIH Intramural, funding from NIA and

NINDS). NINDS dataset is divided into NINDS1 and NINDS2 (NINDS2 is a

subset of NINDS1).

Type Source Platform

Whole Genome Genotyping Illumina HumanHap250Sv1.0

Table 3.3: Technology/Platform for genotyping for NINDS1 & NINDS2 dataset

4. The dbGaP team at NCBI calculated this Genome-Wide Association scan phs000048

(Tier 1) [31], [87]–[89] between genotype and PD status. 443 sibling pairs that

were at odds for PD served as the samples. Between June 1996 and May 2004,

the sibling pairs were drawn from the Mayo Clinic's Rochester, Minnesota,

Department of Neurology's clinical practise. Drs. Maraganore and Rocca used

three Perlegen DNA chips per person and 85k SNP markers to provide genotype

data.

Type Source Platform

Whole Genome Genotyping Perlegen PERLEGEN-85K

Table 3.4: Technology/Platform for genotyping for Tier1 dataset
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3.2 Data collection

All used data are gathered from the National Center for Biotechnology Information

(NCBI) website [90].

Table 3.5, shows a summary of used datasets. The provided information is ex-

tracted from the ped.log of each dataset.

Dataset ID Samples Missing Phenotype Cases healthy controls SNPs

1. phs000394 (Autopsy) 1001 24 642 335 1134514

2. phs000126 (Familial) 2082 315 900 867 344301

3. phs000089 (NINDS1) 1741 0 940 801 545066

4. phs000089 (NINDS2) 526 0 263 263 241847

5. phs000048 (Tier1) 886 0 443 443 198345

Table 3.5: Dataset description

3.3 Computing machine hardware details

We used a computing server for all of our computations. The system has two NVIDIA

RTX 800 GPUs and around 250G of RAM. The full specifications are listed below:
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Figure 3.1: CPU details

3.4 Data gathering

3.4.1 SRA toolkit installation

Before starting to preprocess the datasets, we need to decrypt and convert the datasets

into PED [91] format. PED format is a standard format among genomic datasets.

After downloading the whole datasets, one would perform the following steps:

1. Install SRA toolkit [92] on the server:

• Download the installation file from: https://github.com/ncbi/sra-tools/

wiki/02.-Installing-SRA-Toolkit

• After downloading the toolkit, extract it with this command:
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$ tar -vxzf sratoolkit.tar.gz

• For convenience (and to show where the binaries are), append the path to

the binaries to the PATH environment variable:

$ export PATH=$PATH:$PWD/sratoolkit.2.

4.0-1.mac64/bin$

• Verify that the shell will find the binaries:

$ which fastq-dump

• This should produce output similar to:

$ /Users/JoeUser/sratoolkit.2.4.0-1.m

ac64/bin/fastq-dump$

• Proceed:

https://github.com/ncbi/sra-tools/wiki/Quick-Toolkit-Configuration

• Test that the toolkit is functional:

$ fastq-dump --stdout SRR390728 | head -n 8

Within a few seconds, the command should produce this exact output (and

nothing else):

$ @SRR390728.1 1 length=72 CAT\\

TCTTCACGTAGTTCTCGAGCCTTGGTTTTCAG

C GATGGAGAATGACTTTGACAAGCTGAGAGA
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AGNTNC +SRR390728.1 1 length=72

;;;;;;;;;;;;;;;;;;;;;;;;;;;9;;66514

2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;96&&&&

(@SRR390728.2 2 length=72 AAGTAGGTC

TCGTCTGTGTTTTCTACGAGCTTGTG TTCCAGCTG

ACCCACTCCCTGGGTGGGGGGACTGGGT +SRR390

728.2 2 length=72 ;;;;;;;;;;;;;;;;;4

;;;;3;393.1+4&&5&& ;;;;;;;;;;;;;;;;;

;;;;<9;<;;;;;464262$

3.4.2 Dataset decryption

We need to decrypt the “matrixfmt” file for our research. To do that, we

performed the following steps:

• Decrypt the file named: phg000233.v1.CIDR AutopsyPD.genotype-calls

matrixfmt.c1.ARU.tar.ncbi enc. As an example, the commands are show-

ing the steps for the Autopsy dataset.

This file is encrypted with a.ngc key value.

• Read this guideline before applying the decryption command on the datasets:

https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?view=toolkit_

doc&f=vdb-decrypt
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• Run this command for decryption:

$ /gpfs/home/aameli/sratoolkit.2.11.0-

ubuntu64/bin/vdb-decrypt --ngc /

research/ project/cs-genomics/

PD/Datasets/68660/prj_21073.ngc

/research/project/ cs-genomics/

PD/Datasets/68660/ PhenoGenoty

peFiles/RootStudyConsentSet _

phs000394.CIDR_AutopsyPD.v1.p1

.c1.ARU/ GenotypeFiles/phg0

00233.v1.CIDR_AutopsyPD .genoty

pe-calls-matrixfmt.c1.ARU.tar.ncbi_enc$

• The output of this command is a folder that contains three files: “.bed”,

“.bim”, “.fam”.

3.4.3 What are BED, BIM, FAM, PED, MAP files?

The genotyping data is contained in a binary file called the BED [93] file. The

SNP names and MAP coordinates are contained in the BIM [94] file.

A BIM file contains the following six fields [95]:

• Chromosome code (either an integer, or “X”/“Y”/“XY”/“MT”; “0” indi-
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cates unknown) or name

• Variant identifier

• Position in morgans or centimorgans (safe to use dummy value of “0”)

• Base-pair coordinate (1-based; limited to 231-2)

• Allele 1 (corresponding to clear bits in .bed; usually minor)

• Allele 2 (corresponding to set bits in .bed; usually major)

The FAM [96] file contains the Familial structure, where the affection status for

each individual in the 6th column should be specified.

• Familial ID (“FID”)

• Within-Familial ID (“IID”; cannot be “0”)

• Within-Familial ID of father (“0” if father is not in dataset)

• Within-Familial ID of mother (“0” if mother is not in dataset)

• Sex code (“1” = male, “2” = female, “0” = unknown)

• Phenotype value (“1” = control, “2” = case, “-9”/“0”–out/non-numeric

= missing data if case/control)

For sample pedigree information and genotyping calls, the PED format is an

original standard text format. Usually requires a “.map” file to be included.

• CHR Chromosome code
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• SNP Variant identifier

• BETA Regression slope for real data. Only present with “–qfam emp-se”.

• EMP BETA Sample mean of permutation regression slopes. Only present

with “–qfam emp-se”.

• EMP SE Sample stdev of permutation regression slopes. Only present

with “–qfam emp-se”.

• EMP1 Empirical p−value (pointwise), or lower p−value permutation count

• NP Number of permutations performed for this variant

A variant information file in MAP [97] format is included with a “.ped” text

pedigree and genotyping table.

• Chromosome code: PLINK [98] 1.9 also permits contig names here, but

most older programs do not.

• Variant identifier

• Position in morgans or centimorgans (optional; also safe to use dummy

value of “0”)

• Base-pair coordinate

3.4.4 Dataset conversion to PED format with PLINK

We made sure PLINK [98] is installed on the server properly. If it is not installed

on one's operating system, one can obtain PLINK at:
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https://zzz.bwh.harvard.edu/plink/

• Create a text file which has:

allfiles.txt

CIDR AutopsyPD Top sample level. bed

CIDR AutopsyPD Top sample level. bim

CIDR AutopsyPD Top sample level. fam

Note: Sometimes, these three files are zipped. So, extract them before

going to the next step. The file names mentioned are from the Autopsy

dataset.

• Use PLINK to convert these three files into PED format:

$ plink - -bfile dbGaP_AutopsyPD_filter

- -merge-list allFiles.txt - -recode

- -allele1234 - -out PD_5 - -noweb$

• After running the mentioned command, there will be some outputs. The

outputs which we are looking for are:

PD 5. map

PD 5. ped

PD 5. fam

Now, we can run the preprocessing R® script on PED and FAM files to convert

them into CSV format.
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3.5 Data preprocessing

One can see the flowchart of the whole analysis process in Figure 3.2. Details of

specific steps are given in Figures 3.3 to 3.6.

Figure 3.2: Flowchart of whole process
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Figure 3.3: Flowchart of data preprocessing steps (refer to Section 3.5 for more details)
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Figure 3.4: Flowchart of hyper parameter optimization for knncatimpute (refer to

Section 3.5.1 for more details)
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Figure 3.5: Flowchart of data gathering steps (refer to Section 3.4 for more details)
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Figure 3.6: Flowchart of depicting SVFS tunning steps (refer to Section 3.6.1 for

more details)
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3.5.1 Tunning data imputer

Because the genomic dataset has lots of NA values, we applied data imputation

techniques such as KNNcatimputer [35]. There are two important files for our pre-

processing. FAM and PED files. The label of our instances is stored in the Fam file.

We used the “Cohen” distance and n = 20 as the parameters for the imputer. The

mentioned parameters were all tunned. We used Algorithm 1 for finding the optimal

value for each parameter (see also Figure 3.4). We selected 10 random portion of the

original datasets. This means that we repeated our algorithm 10 times on 10 differ-

ent portions. Each portion contained 10,000 features. We defined a list of possible

values for percentage of missing values, number of neighbours, and distance measure.

Percentage of missing values indicates what percentage of the values in each column

is allowed to be NA.

KNNcatimputer is:

knncatimpute(x, dist = NA, nn = 3, weights = TRUE)

This function accepts four parameters [99] as the input:

• x: a numeric matrix containing missing values. For our project, we passed the

datasets that is converted to a numeric matrix to this function.

• dist: a character string naming the distance measure or a distance matrix. This

parameter can be “SMC”, “PCC”, or “Cohen”. For our project we considered

all these values and the optimized one was “Cohen”.
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• nn: an integer specifying the number of nearest neighbors used in the imputation

of the missing values. We chose nn=20 as this was the optimal value for the

datasets.

• weights: should weighted KNN be used to impute the missing values? If true,

the vote of each nearest neighbor is weighted by the reciprocal of its distance

to the observation or variable when the missing values of this observation or

variable, respectively, are replaced.

So, for using the mentioned imputer we need below libraries in R®:

library(data.table)

library(dplyr)

library(tidyr)

library(scrime)

library(missForest)
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Algorithm 1 Finding the best parameters for knncatimpute function

Require:

n← 10,000

TotalRound← 10

missingV aluesList← c(0.05,0.1,0.15,0.2)

numberOfNeighborsList← c(5,10,15,20)

distanceList← c(“cohen”,“pcc”,“smc”)

Ensure: data← knncatimpute(dataset, nn = nei, dist = dist)

for roundNo in 1:TotalRound do

for miss in missingValuesList do

Generating missing values in the selected partition

extract the location of NA values, and keep the values of each

NA cell

for nei in numberOfNeighborsList do

for dist in distanceList do

data← knncatimpute(datat, nn = nei, dist = dist)

return accuracy with selected parameters

end for

end for

end for

end for
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After applying Algorithm 1 on each dataset, we obtained a CSV file with each

combination of the parameters values and their corresponding accuracy per round,

average accuracy and standard deviation. Figure 3.7 shows a sample of the results

obtained.

Figure 3.7: Data imputer accuracy for each combination of the parameters values

We utilized the “Cohen” distance and n = 20 as the imputer's settings across all

datasets to ensure a consistent outcome. Additionally, we counted the number of

NA values in each dataset and realized that more than 5% of some columns' values

were NA. Thus, we eliminated any column with more than 5% NA values. We used

the threshold of 5% for missing values because we randomly selected a subset of the

dataset with 0% NA values and experimented with different values for the percentage

of missing values. The best results were obtained with 5% as the missing values. To

ensure this value was stable, we repeated this procedure 10 times.

3.5.2 Common SNPs among datasets

In section 3.7, we will need the intersection of the Familial dataset with other datasets.

That is why we found the SNPs in common with the Bedtools [100] toolkit.

50



We get all the information we need from the BIM file. The columns of the BIM

file are these:

• Chromosome code (either an integer, or “X”/“Y”/“XY”/“MT”; “0” indicates

unknown) or name

• Variant identifier

• Position in morgens or centimorgans (safe to use dummy value of “0”)

• Base-pair coordinate (1-based; limited to 231-2)

• Allele 1 (corresponding to clear bits in. bed; usually minor)

• Allele 2 (corresponding to set bits in. bed; usually major)

For the Bedtools installation in Linux we need to use another toolkit to find

the number of common SNPs between the available datasets. One can easily install

Bedtools as below:

Figure 3.8: Bedtools installation

51



For finding the intersection between SNPs of those datasets, we need to convert

the BIM file of each dataset into BED format.

1. 1st column of the BIM file will be the 1st column of the BED file.

2. 4th column of the BIM file -1 will be the 2nd column of the BED file.

3. 4th column of the BIM file will be the 3rd column of the BED file.

4. 2nd column of the BIM file will be the 4th column of the BED file.

For finding the intersection between the datasets, we used this command:

bedtools intersect -a SNPs_file1.bed -b SNPs_file2.bed

We calculated the common SNPs between Familial dataset and other datasets.

Because in some of the approaches described in Section 3.7 we used the intersected

version of datasets. As a starting point, we used the Familial dataset and considering

it as the base dataset. Considering that it has the most number of instances and

features. On the Familial dataset, our model accuracy is also higher.

52



DatasetID 1 DatasetID 2 Number of SNPs in common

phs000126 (Familial) phs000394 (Autopsy) 209,730

phs000126 (Familial) phs000089 (NINDS1) 305,812

phs000126 (Familial) phs000089 (NINDS2) 4,034

phs000126 (Familial) phs000048 (Tier1) 28,646

Table 3.6: Number of SNPs in common between Familial and all other four datasets.

3.6 Feature selection

In this step of our project, we used the SVFS algorithm [36] as the feature selection

technique. After converting the datasets into CSV format, we can apply the SVFS

feature selection algorithm to them. Next we describe briefly how SVFS works. Let

D = [A ∣ b] be a labelled dataset, with b representing the class label and features

(attributes) representing columns in matrix A. M. Afshar and H. Usefi showed how

the signature matrix SA = I − A†A (I is the identity matrix and A† is the pseudo-

inverse of A) can be used to partition A's columns into clusters, with columns in one

cluster correlating exclusively with columns in another cluster. The signature matrix

SD of D is used by SVFS to locate the cluster that holds b. Afshar and Usefi reduced

the size of A by eliminating irrelevant features from the other clusters. The signature

matrix SA of reduced A is then used by SVFS to partition the remaining features into
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clusters and select the most important features from each cluster.

The parameters used for SVFS feature selection algorithm are:

• K = The number of selected features

• Thirr = The threshold set to filter out the irrelevant features

• Thred = Maps the weak feature correlations to zero.

• α = The parameter α is used when facing significant clusters to divide the

clusters into sub-clusters with α members.

• β = The parameter β is the number of features selected from each of the sub-

clusters with β members.

As a second option, we used the HSIC-Lasso [37], [38] feature selection algorithm

with the default parameters [101] (default parameters are B=20 and M=3, B is the

block parameter and M is the permutation parameter). However, this feature selection

algorithm's performance was worse than SVFS. Thus, it has been confirmed by [36]

that SVFS outperformed all other feature selection algorithms. Table 3.7 shows the

comparison between the SVFS and HSIC-Lasso feature selection performance on the

mentioned datasets.

We used the SVFS implementation available at https://github.com/Majid1292/

SVFS and the HSIC-Lasso implementation available at https://github.com/riken-aip/

pyHSICLasso.
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Dataset ID Feature Selection Algorithm Accuracy±sd

phs000394 (Autopsy)
SVFS 68.09% ± 0.93

HSIC-Lasso 65.71% ± 0.09

phs000126 (Familial)
SVFS 100% ± 0

HSIC-Lasso 51.10% ± 0.38

phs000089 (NINDS1)
SVFS 64.10% ± 1.73

HSIC-Lasso 53.27% ± 0.95

phs000089 (NINDS2)
SVFS 75.72% ± 2.91

HSIC-Lasso 49.71% ± 0.53

phs000048 (Tier1)
SVFS 51.11% ± 2.38

HSIC-Lasso 47.46% ± 2.97

Table 3.7: Comparison between SVFS & HSIC-Lasso on baseline approach 0

3.6.1 Tunning SVFS

The SVFS algorithm parameters need to be tunned. We defined five lists for possible

values of K, Thirr, Thred, α, and β. The initial values for these parameters were

selected according to Majid Afshar and Hamid Usefi's paper [36]. We used Algorithm

2 to find the optimal parameter values from the specified list (see also Figure 3.6).
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Algorithm 2 Finding the best parameters for SVFS algorithm

Require:

kList← [20,30,40,50,60,70,80,90,100]

thirrList← [2,3,4,5,6,7]

thredList← [2,3,4,5,6,7]

αList← [20,30,40,50,60,70,80,90,100]

βList← [5,10,15,20]

Ensure: fs← SV FS(trainx, trainy, irr,1.7, red, k,α, β)

for k ∶ kList do

for irr ∶ thirrList do

for red ∶ thredList do

for alpha ∶ alphaList do

for beta ∶ betaList do

fs← SV FS(trainx, trainy, irr,1.7, red, k, alpha, beta)

return accuracy with selected parameters

end for

end for

end for

end for

end for
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The best accuracy belonged to:

K = 50

Thirr = 3

Thred = 4

α = 50

β = 5

3.7 Approaches to integrate datasets

In this thesis, we proposed five different approaches to integrate datasets. For each

approach, we defined two modes (A and B).

We used the preproccessed version of the supplied datasets, which were described

in detail in Section 3.4, for all approaches. We repeated 10 times 5-fold CV on the

datasets for each approach. For all methods, we used Random Forests (RF) as the

ML classifier with the following settings: n estimator = 100, criteria = “gini”, max

depth = None, and min samples split = 2. We also tested Support Vector Machine

(SVM) and Gradient Boosting (GB), but they required a lengthy time to process

the datasets and performed less accurately than RF. The parameters of RF were

tuned. We used the implementation available in scikit-learn (version 1.2) for all the

classifiers.
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3.7.1 Approach 0

This is our baseline approach. In approach 0, we ran the SVFS feature selection

algorithm on each datasets separately to extract the most important features. SVFS

feature selection algorithm ran 50 rounds (5-fold CV for 10 times) for each dataset.

In each round, SVFS selected some SNPs. After 50 rounds, we constructed a dic-

tionary of SNP ID with number of times each SNP was selected by SVFS (henceforth

referred to as frequency). We chose a threshold for the frequency. We set five as the

frequency, selected the SNPs with at least a frequency of 5 and named them the most

common SNPs. We chose five as the frequency since, in some datasets, using different

thresholds resulted in a sharp decline in the number of common SNPs. Having a small

number of common SNPs (features) caused issues when obtaining SNPs in common

between dataset in subsequent approaches (see below).

For each dataset we obtained the common SNPs and using CV we assess the

classification performance of a model generated using the common SNPs as features

and random forest as the classifier. This was part A of this approach.

For part B, we extended the list of most common SNPs by finding SNPs in linkage

disequilibirum (LD) with the most common SNPs. LD is when nearby variants are

associated within a population more often than if they were unlinked [102]. There are

multiple websites to get SNPs in LD. We used SNIPA [103] and Ensemble Rest API

[104]. Both websites' results were similar regarding the accuracy of built models. So,

we chose SNIPA for its usability.
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To get SNPs in LD with a list of SNP IDs, we must define some values for specified

parameters. These parameters are genome assembly, variant set, population, and

genome annotation. The variant set is the main criteria for comparing the given

SNPs list with other SNPs. The population can be chosen from African, American,

European, East Asian, and South Asian.

The mentioned parameters for all our approaches were set to GRCH-37, 1000

genomes phase 3 V5, European, and Ensemble 87, respectively. We chose GRCH-37,

1000 genomes phase 3 V5, and Ensemble 87, because these values were the most up to

date configuration for our processing. The population for all of 5 datasets is European

that is why we chose European. So, we extended each dataset's most common SNPs

list with LD and again tried to make a model according to the new list of SNPs and

did CV.

3.7.2 Approach 1

In approach 1, we selected the important features from the Familial dataset and

performed CV to assess the classification performance of a model generated using

each of the other datasets. We ran the SVFS feature selection algorithm on the

Familial dataset and extracted the most common SNPs. This time, our features were

the selected most common SNPs from the Familial dataset obtained the most common

SNPs in common with each of the other datasets and carried out 10-fold CV on each

of the other datasets. As with approach 0, we extended the common SNPs with LD

59



and did the same steps in part B.

3.7.3 Approach 2

In approach 2, we first obtained the intersection of SNPs between the Familial dataset

and each of the other four datasets. SNPs not in the intersection were removed from

the datasets. We did the same steps that have been done for approach 1 by extracting

the most common SNPs from the condensed version of the Familial dataset and doing

CV on the other datasets. As before, for part B SNPs were extended with LD as well.

3.7.4 Approach 3

In approach 3, we increased the number of instances (individuals) by merging datasets,

before doing feature selection. Four merged datasets were created: Familial and

Autopsy, Familial and NINDS1, Familial and NINDS2, and Familial and Tier1. We

got the SNPs in the intersection between the Familial dataset and the other 4 datasets.

We ran the SVFS feature selection algorithm on each of the four merged datasets and

extracted the most common SNPs. Then, performed CV to assess the classification

performance of a model generated using each of the other datasets.

To allow for a direct comparison with the other approaches, in this approach we

calculated the accuracy per each dataset in addition to the accuracy on the merged

dataset. To do this, we added another column called datasetID to indicate the original

dataset of every instance. In this approach we obtained three accuracies: one overall
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for the merged dataset and one for the instances of each merged dataset (Table 4.4).

3.7.5 Approach 4

This approach is the same as approach 3, but equal number of instances per dataset

were merged. The number of cases and healthy controls taken from each dataset is

the same. The cases and healthy controls to include on the merged dataset from the

dataset with the higher number of cases and healthy controls were selected randomly.

3.7.6 Compare SNPs ID & gene names between approaches

and datasets

We obtained the percentage of SNP IDs and genes in common selected as the most

common SNPs among approaches and among datasets.

For getting the genes name associated with a SNP ID we used Biomart platform

[105]. See Figures 3.9 and 3.10.

http://useast.ensembl.org/biomart/martview/0850cfdd1575058045850fddafc913b9

Once opened the link, set the below configuration:

1. Choose database: “Ensemble Variation 107”

2. Choose dataset: “Human Short Variants (SNPs and indels excluding flagged

variants) (GRCh38.p13)”. Then click on attributes

3. “VARIANT ASSOCIATED INFORMATION”: In phenotype annotation sec-
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tion, select:

• Associated gene with phenotype

• Phenotype name

• Phenotype description

4. Click on “GENE ASSOCIATED INFORMATION” and select:

• Gene stable ID

• Gene Name

5. Click on filters. In “GENERAL VARIANT FILTERS”, click on “Filter by

Variant name” and pass the SNPs list.

6. Click on “count” and then “results”.

7. Download the result in any format.
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Figure 3.9: Biomart input

Figure 3.10: Biomart result

63



3.7.7 Gene-level agreement

Note that when using the Biomart platform for getting the gene names according to

SNP IDs, there might be some SNP IDs that do not have a gene name. This will

happen when a SNP is an intergenic variant. An intergenic region (IGR) is a stretch

of DNA sequences located between genes. Refer to Tables 3.8, 3.9, 3.10, and 3.11

for more details on percentage of intergenic and non-intergenic variants selected as

the most frequent SNPs per approach and dataset.

Approach Percentage of genes identified Percentage of intergenic variants (between genes)

Approach 0 37.5% 62.5%

Approach 1 34.50% 65.49%

Approach 2 38.70% 61.29%

Approach 3 40.61% 59.38%

Approach 4 37.52% 62.47%

Table 3.8: Percentage of most frequent SNPs located in genes and in intergenic regions

for Autopsy dataset
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Approach Percentage of genes identified Percentage of intergenic variants (between genes)

Approach 0 40.18% 59.81%

Approach 1 37.66% 62.33%

Approach 2 37.41% 62.58%

Approach 3 39.81% 60.18%

Approach 4 42.21% 57.78%

Table 3.9: Percentage of most frequent SNPs located in genes and in intergenic regions

for NINDS1 dataset

Approach Percentage of genes identified Percentage of intergenic variants (between genes)

Approach 0 39.02% 60.97%

Approach 1 0% 100%

Approach 2 27.77% 72.22%

Approach 3 36.87% 63.12%

Approach 4 46.51% 53.48%

Table 3.10: Percentage of most frequent SNPs located in genes and in intergenic

regions for NINDS2 dataset
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Approach Percentage of genes identified Percentage of intergenic variants (between genes)

Approach 0 36.88% 63.11%

Approach 1 54.54% 45.45%

Approach 2 41.97% 58.02%

Approach 3 37.69% 62.30%

Approach 4 40.24% 59.75%

Table 3.11: Percentage of most frequent SNPs located in genes and in intergenic

regions for Tier1 dataset
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Chapter 4

Results and Discussion

In this section, we present the CV accuracies for each of the five approaches described

in Section 3. Tables 4.1, 4.2, 4.3, 4.4, and 4.5 show the results for approaches per

dataset respectively.

The computational time for each approach is around 3 to 5 hours depending on

the input dataset's size (the bigger the dataset, the longer the execution time). For

all experiments we have available 250 Gb of RAM.

Table 4.1 shows that there are more available SNPs in approach 0 than other ap-

proaches. Out of all the approaches, we found that approach 0 had the best accuracy.

Parts A and B for all approaches both have similar accuracy levels. Therefore, the

LD had little effect on the performance.

The least number of selected SNPs are presented in Approach 1 (Table 4.2). We

used the SNPs we extracted from the Familial dataset in Autopsy, NINDS1, NINDS2,
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and Tier1 datasets in approach 1. Due to the limited availability of SNPs in approach

1, we expected approach 1 to be less accurate.

Approaches 1 and 2 had comparable performance (Tables 4.2, 4.3) with average

accuracy (Autopsy = 64.89%, NINDS1 = 51.98%, NINDS2 = 53.04%, and Tier1 =

44.47%) and (Autopsy = 65.40%, NINDS1 = 52.56%, NINDS2 = 50.38%, and Tier1

= 31.50%), respectively. The trend between approaches 3 and 4 is the same, but this

trend performs better (Tables 4.4 and 4.5) than that of Approach 1 and 2. In all

below tables, number of available SNPs means number of SNPs included in to the

approach.

In general, we recommend other researchers to use Approaches 3 and 4 in studies

similar to ours. In the mentioned two approaches, we increased the number of samples.

As a result, we achieved higher classification performance in terms of accuracy. Our

approaches can be applied to other SNPs data of different disease like breast cancer,

lung cancer and etc. The input data should be in tabular format along with the SNPs

ID as the columns.

The results are dependent on the selected features. If one selects other features,

the accuracy will be changed. Note that, the selected features are the features that

are common among at least 2 approaches for a consistent result.

In all tables, by the number of Available SNPs we mean number of SNPs included

in to the corresponding approach.
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Approach Dataset Number of Available SNPs Number of Samples Accuracy±sd

0

A. Same dataset (Most Common SNPs)

Autopsy 404

Total: 977

Case (2): 642

Control (1): 335

70.83% ± 1.74

NINDS1 1723

Total: 1741

Case (2): 940

Control (1): 801

77.14% ± 2.12

NINDS2 792

Total: 526

Case (2): 263

Control (1): 263

87.46% ± 3.30

Tier1 218

Total: 886

Case (2): 443

Control (1): 443

51.92% ± 3.12

B. Same dataset (Most Common SNPs + LD)

Autopsy 507

Total: 977

Case (2): 642

Control (1): 335

70.11% ± 1.69

NINDS1 2575

Total: 1741

Case (2): 940

Control (1): 801

75.88% ± 1.52

NINDS2 988

Total: 526

Case (2): 263

Control (1): 263

84.41% ± 0.49

Tier1 422

Total: 886

Case (2): 443

Control (1): 443

48.31% ± 1.35

Table 4.1: Approach 0
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Approach Dataset Number of Available SNPs Number of Samples Accuracy±sd

1

A. Familial dataset (Most Common SNPs)

Autopsy 143

Total: 977

Case (2): 642

Control (1): 335

64.89% ± 0.20

NINDS1 238

Total: 1741

Case (2): 940

Control (1): 801

51.98% ± 2.87

NINDS2 1

Total: 526

Case (2): 263

Control (1): 263

53.04% ± 4.83

Tier1 23

Total: 886

Case (2): 443

Control (1): 443

44.47% ± 2.13

B. Familial dataset (Most Common SNPs + LD)

Autopsy 190

Total: 977

Case (2): 642

Control (1): 335

64.28% ± 0.56

NINDS1 414

Total: 1741

Case (2): 940

Control (1): 801

51.69% ± 1.83

NINDS2 97

Total: 526

Case (2): 263

Control (1): 263

48.68% ± 7.33

Tier1 148

Total: 886

Case (2): 443

Control (1): 443

33.53% ± 4.89

Table 4.2: Approach 1
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Approach Dataset Number of Available SNPs Number of Samples Accuracy±sd

2

A. Intersection (Most Common SNPs)

Familial ∩Autopsy 278

Total: 977

Case (2): 642

Control (1): 335

65.40% ± 0.47

Familial ∩NINDS1 290

Total: 1741

Case (2): 940

Control (1): 801

52.56% ± 2.02

Familial ∩NINDS2 32

Total: 526

Case (2): 263

Control (1): 263

50.38% ± 2.86

Familial ∩ Tier1 317

Total: 886

Case (2): 443

Control (1): 443

31.50% ± 7.31

B. Intersection (Most Common SNPs + LD)

Familial ∩Autopsy 318

Total: 977

Case (2): 642

Control (1): 335

65.61% ± 0.79

Familial ∩NINDS1 388

Total: 1741

Case (2): 940

Control (1): 801

50.66% ± 2.50

Familial ∩NINDS2 32

Total: 526

Case (2): 263

Control (1): 263

50.94% ± 3.50

Familial ∩ Tier1 327

Total: 886

Case (2): 443

Control (1): 443

32.28% ± 2.25

Table 4.3: Approach 2
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Approach Dataset Number of Available SNPs Number of Samples Accuracy ± sd

3

A. The intersection of SNPs & Union of the Individual (Most Common SNPs)

∪(Familial ∩Autopsy) 452
Total: 2744

Case (2): 1542

Control (1): 1202

Familial: 1767

Case (2): 900

Control (1): 867

87.86% ± 0.68
Familial: 100% ± 0

Autopsy: 977

Case (2): 642

Control (1): 335

Autopsy: 65.94% ± 1.3

∪(Familial ∩NINDS1) 858
Total: 3508

Case (2): 1840

Control (1): 1668

Familial: 1767

Case (2): 900

Control (1): 867

80.67% ± 0.99
Familial: 100% ± 0

NINDS1: 1741

Case (2): 940

Control (1): 801

NINDS1: 61.06% ± 1.85

∪(Familial ∩NINDS2) 164
Total: 2293

Case (2): 1163

Control (1): 1130

Familial: 1767

Case (2): 900

Control (1): 867

90.27% ± 0.33
Familial: 99.72% ± 0.18

NINDS2: 526

Case (2): 263

Control (1): 263

NINDS2: 58.56% ± 0.55

∪(Familial ∩ Tier1) 196
Total: 2653

Case (2): 1343

Control (1): 1310

Familial: 1767

Case (2): 900

Control (1): 867

80.25% ± 2.04
Familial: 100% ± 0

Tier1: 886

Case (2): 443

Control (1): 443

Tier1: 40.88% ± 5.05

B. The intersection of SNPs & Union of Individual (Most Common SNPs + LD)

∪(Familial ∩Autopsy) 570
Total: 2744

Case (2): 1542

Control (1): 1202

Familial: 1767

Case (2): 900

Control (1): 867

87.75% ± 0.39
Familial: 100% ± 0

Autopsy: 977

Case (2): 642

Control (1): 335

Autopsy: 65.43% ± 3.06

∪(Familial ∩NINDS1) 1184
Total: 3508

Case (2): 1840

Control (1): 1668

Familial: 1767

Case (2): 900

Control (1): 867

80.10% ± 1.97
Familial: 100% ± 0

NINDS1: 1741

Case (2): 940

Control (1): 801

NINDS1: 59.97% ± 3.10

∪(Familial ∩NINDS2) 165
Total: 2293

Case (2): 1163

Control (1): 1130

Familial: 1767

Case (2): 900

Control (1): 867

89.88% ± 1.38
Familial: 99.72% ± 0.17

NINDS2: 526

Case (2): 263

Control (1): 263

NINDS2: 57.02% ± 3.22

∪(Familial ∩ Tier1) 212
Total: 2653

Case (2): 1343

Control (1): 1310

Familial: 1767

Case (2):

Control (1):

81.27% ± 1.03
Familial: 100% ± 0

Tier1: 886

Case (2): 443

Control (1): 443

Tier1: 43.93% ± 1.74%

Table 4.4: Approach 3
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Approach Dataset Number of Available SNPs Number of Samples Accuracy ± sd

4

A. The intersection of SNPs & Union of the Individual (Balanced Data & Most Common SNPs)

∪(Familial ∩Autopsy) 525
Total: 1954

Case (2): 1284

Control (1): 670

Familial: 977

Case (2): 642

Control (1): 335

83.26% ± 1.79
Familial: 100% ± 0

Autopsy: 977

Case (2): 642

Control (1): 335

Autopsy: 66.56% ± 3.16

∪(Familial ∩NINDS1) 806
Total: 3402

Case (2): 1800

Control (1): 1602

Familial: 1701

Case (2): 900

Control (1): 801

79.89% ± 1.24
Familial: 100% ± 0

NINDS1: 1701

Case (2): 900

Control (1): 801

NINDS1: 59.79% ± 2.31

∪(Familial ∩NINDS2) 125
Total: 1052

Case (2): 526

Control (1): 526

Familial: 526

Case (2): 263

Control (1): 263

81.56% ± 1.01
Familial: 100% ± 0

NINDS2: 526

Case (2): 263

Control (1): 263

NINDS2: 63.02% ± 2.36

∪(Familial ∩ Tier1) 168
Total: 1772

Case (2): 886

Control (1): 886

Familial: 886

Case (2): 443

Control (1): 443

71.61% ± 2.04
Familial: 100% ± 0

Tier1: 886

Case (2): 443

Control (1): 443

Tier1: 43.20% ± 3.36

B. The intersection of SNPs & Union of Individual (Balanced Data & Most Common SNPs + LD)

∪(Familial ∩Autopsy) 676
Total: 1954

Case (2): 1284

Control (1): 670

Familial: 977

Case (2): 642

Control (1): 335

82.81% ± 2.29
Familial: 100% ± 0

Autopsy: 977

Case (2): 642

Control (1): 335

Autopsy: 65.57% ± 4.60

∪(Familial ∩NINDS1) 1123
Total: 3402

Case (2): 1800

Control (1): 1602

Familial: 1701

Case (2): 900

Control (1): 801

79.78% ± 0.87
Familial: 100% ± 0

NINDS1: 1701

Case (2): 900

Control (1): 801

NINDS1: 59.47% ± 2.89

∪(Familial ∩NINDS2) 127
Total: 1052

Case (2): 526

Control (1): 526

Familial: 526

Case (2): 263

Control (1): 263

81.18% ± 1.52
Familial: 100% ± 0

NINDS2: 526

Case (2): 263

Control (1): 263

NINDS2: 62.35% ± 2.88

∪(Familial ∩ Tier1) 184
Total: 1772

Case (2): 886

Control (1): 886

Familial: 886

Case (2): 443

Control (1): 443

73.48% ± 2.04
Familial: 100% ± 0

Tier1: 886

Case (2): 443

Control (1): 443

Tier1: 46.86% ± 3.90

Table 4.5: Approach 4
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4.1 Comparison between approaches & datasets

In the previous section, we have seen the results per approach. In this section, we

aggregate and summarize the results for further comparison between approaches and

datasets. We achieved the highest accuracy for all datasets with approach 0 (Ta-

ble 4.6). We anticipated that approach 0 achieves the highest accuracy, because we

train and assess performance on the same datasets. Approaches 1 & 2,and approaches

3 & 4 have similar accuracy. Approaches 3 and 4 achieved higher accuracy than ap-

proaches 1 and 2 for Autopsy, NINDS1, and NINDS2. As we have discussed before

extending the list of most common SNPs by LD did not improve accuracy (Table

4.7).

Approach Autopsy Accuracy ± sd NINDS1 Accuracy ± sd NINDS2 Accuracy ± sd T ier1 Accuracy ± sd

Approach 0 (A) 70.83% ± 1.74 77.14% ± 2.12 87.46% ± 3.30 51.92% ± 3.12

Approach 1 (A) 64.89% ± 0.20 51.98% ± 2.87 53.04% ± 4.83 44.47% ± 2.13

Approach 2 (A) 65.40% ± 0.47 52.56% ± 2.02 50.38% ± 2.86 31.50% ± 7.31

Approach 3 (A) 65.94% ± 1.30 61.06% ± 1.85 58.56% ± 0.55 40.88% ± 5.05

Approach 4 (A) 66.56% ± 3.16 59.79% ± 2.31 63.02% ± 2.36 43.20% ± 3.36

Table 4.6: Comparison of datasets accuracy for part A per approach

74



Approach Autopsy Accuracy ± sd NINDS1 Accuracy ± sd NINDS2 Accuracy ± sd T ier1 Accuracy ± sd

Approach 0 (B) 70.11% ± 1.69 75.88% ± 1.52 84.41% ± 0.49 48.31% ± 1.35

Approach 1 (B) 64.28% ± 0.56 51.69% ± 1.83 48.68% ± 7.33 33.53% ± 4.89

Approach 2 (B) 65.61% ± 0.79 50.66% ± 2.50 50.94% ± 3.50 32.28% ± 2.25

Approach 3 (B) 65.43% ± 3.06 59.97% ± 3.10 57.02% ± 3.22 43.93% ± 1.74

Approach 4 (B) 65.57% ± 4.60 59.47% ± 2.89 62.35% ± 2.88 46.86% ± 3.90

Table 4.7: Comparison of datasets accuracy for part B per approach

Tables 4.8, 4.9, 4.10, and 4.11 show the percentage of SNPs and genes in

common between approaches. There are a small number of SNPs and genes that

are common between approach 0 and other approaches. This is expected because,

in approach 0 we selected the most common SNPs from each datasets separately.

However, in approach 1 and 2 we selected the most common SNPs from Familial

dataset and in approaches 3 and 4 from a merged dataset that included Familial. As

a result, they have more SNPs and genes in common.

As the features available vary between approaches and datasets, the features se-

lected also vary and thus the accuracy achieved also varies. Thus our results provide

a range of the expected accuracy that can be achieved when using GWAS data to

identify SNPs associated with PD. We expect that a SNP strongly associated with PD

would be selected multiple times and thus all those SNPs identified by more than one

approach or in more than one dataset have stronger support to be a PD biomarker

and should be prioritized for further investigation. Often there are multiple SNPs in
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a single gene, so considering whether a gene is identified multiple times via different

SNPs might be useful to understand which genes might be involved in the develop-

ment of PD. In the Table below, we see that indeed the gene-level agreement is higher

than the SNP-level agreement between approaches.

method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Approach0

β = Approach1

SNPs ID: 0.24%

Gene Name: 1.48%

SNPs ID: 0.69%

Gene Name: 4.08%

SNPs ID: 0.18%

Gene Name: 1.09%

α = Approach0

β = Approach2

SNPs ID: 0.24%

Gene Name: 2.96%

SNPs ID: 0.35%

Gene Name: 3.73%

SNPs ID: 0.14%

Gene Name: 1.68%

α = Approach0

β = Approach3

SNPs ID: 2.47%

Gene Name: 9.62%

SNPs ID: 2.21%

Gene Name: 7.22%

SNPs ID: 1.18%

Gene Name: 4.30%

α = Approach0

β = Approach4

SNPs ID: 8.41%

Gene Name: 13.33%

SNPs ID: 6.47%

Gene Name: 9%

SNPs ID: 3.79%

Gene Name: 5.67%

α = Approach1

β = Approach2

SNPs ID: 72.02%

Gene Name: 79.59%

SNPs ID: 37.05%

Gene Name: 36.44%

SNPs ID: 32.38%

Gene Name: 33.33%

α = Approach1

β = Approach3

SNPs ID: 35.66%

Gene Name: 34.69%

SNPs ID: 11.28%

Gene Name: 9.44%

SNPs ID: 9.37%

Gene Name: 8.01%

α = Approach1

β = Approach4

SNPs ID: 32.86%

Gene Name: 32.65%

SNPs ID: 8.95%

Gene Name: 8%

SNPs ID: 7.56%

Gene Name: 6.86%

α = Approach2

β = Approach3

SNPs ID: 31.65%

Gene Name: 36.44%

SNPs ID: 19.46%

Gene Name: 21.66%

SNPs ID: 13.70%

Gene Name: 15.72%

α = Approach2

β = Approach4

SNPs ID: 31.65%

Gene Name: 36.44%

SNPs ID: 16.76%

Gene Name: 19.5%

SNPs ID: 12.30%

Gene Name: 14.55%

α = Approach3

β = Approach4

SNPs ID: 74.55%

Gene Name: 71.11%

SNPs ID: 64.19%

Gene Name: 64%

SNPs ID: 52.65%

Gene Name: 50.79%

Table 4.8: Percentage of common SNPs & genes between approaches for Autopsy

76



method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Approach0

β = Approach1

SNPs ID: 0.05%

Gene Name: 2.43%

SNPs ID: 0.42%

Gene Name: 13.63%

SNPs ID: 0.05%

Gene Name: 2.11%

α = Approach0

β = Approach2

SNPs ID: 0.05%

Gene Name: 3.86%

SNPs ID: 0.34%

Gene Name: 17.11%

SNPs ID: 0.04%

Gene Name: 3.25%

α = Approach0

β = Approach3

SNPs ID: 7.77%

Gene Name: 14.63%

SNPs ID: 15.61%

Gene Name: 23.52%

SNPs ID: 5.47%

Gene Name: 9.91%

α = Approach0

β = Approach4

SNPs ID: 7.60%

Gene Name: 16.66%

SNPs ID: 16.25%

Gene Name: 26.62%

SNPs ID: 5.46%

Gene Name: 11.42%

α = Approach1

β = Approach2

SNPs ID: 90.75%

Gene Name: 90.90%

SNPs ID: 74.48%

Gene Name: 72.07%

SNPs ID: 69.23%

Gene Name: 67.22%

α = Approach1

β = Approach3

SNPs ID: 23.10%

Gene Name: 36.36%

SNPs ID: 6.41%

Gene Name: 10.45%

SNPs ID: 5.28%

Gene Name: 8.83%

α = Approach1

β = Approach4

SNPs ID: 22.26%

Gene Name: 32.95%

SNPs ID: 6.57%

Gene Name: 9.41%

SNPs ID: 5.34%

Gene Name: 7.90%

α = Approach2

β = Approach3

SNPs ID: 20%

Gene Name: 31.53%

SNPs ID: 6.75%

Gene Name: 11.43%

SNPs ID: 5.32%

Gene Name: 9.16%

α = Approach2

β = Approach4

SNPs ID: 20%

Gene Name: 33.33%

SNPs ID: 7.19%

Gene Name: 12.01%

SNPs ID: 5.58%

Gene Name: 9.68%

α = Approach3

β = Approach4

SNPs ID: 68.64%

Gene Name: 75.16%

SNPs ID: 73.07%

Gene Name: 74.67%

SNPs ID: 54.79%

Gene Name: 59.89%

Table 4.9: Percentage of common SNPs & genes between approaches for NINDS1
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method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Approach0

β = Approach1

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

α = Approach0

β = Approach2

SNPs ID: 0%

Gene Name: 0.38%

SNPs ID: 0%

Gene Name: 9.09%

SNPs ID: 0%

Gene Name: 0.37%

α = Approach0

β = Approach3

SNPs ID: 0.12%

Gene Name: 2.31%

SNPs ID: 0.60%

Gene Name: 10.34%

SNPs ID: 0.10%

Gene Name: 1.92%

α = Approach0

β = Approach4

SNPs ID: 0.37%

Gene Name: 2.31%

SNPs ID: 2.4%

Gene Name: 9.83%

SNPs ID: 0.32%

Gene Name: 1.91%

α = Approach1

β = Approach2

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

α = Approach1

β = Approach3

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

α = Approach1

β = Approach4

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

α = Approach2

β = Approach3

SNPs ID: 15.62%

Gene Name: 27.27%

SNPs ID: 3.04%

Gene Name: 5.17%

SNPs ID: 2.61%

Gene Name: 4.54%

α = Approach2

β = Approach4

SNPs ID: 15.62%

Gene Name: 36.36%

SNPs ID:4%

Gene Name: 6.55%

SNPs ID: 3.28%

Gene Name: 5.88%

α = Approach3

β = Approach4

SNPs ID: 15.85%

Gene Name: 29.31%

SNPs ID: 20.8%

Gene Name: 27.86%

SNPs ID: 9.88%

Gene Name: 16.66%

Table 4.10: Percentage of common SNPs & genes between approaches for NINDS2
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method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Approach0

β = Approach1

SNPs ID: 0%

Gene Name: 2.43%

SNPs ID: 0%

Gene Name: 15.38%

SNPs ID: 0%

Gene Name: 2.15%

α = Approach0

β = Approach2

SNPs ID: 0%

Gene Name: 4.87%

SNPs ID: 0%

Gene Name: 2.98%

SNPs ID: 0%

Gene Name: 1.88%

α = Approach0

β = Approach3

SNPs ID: 3.21%

Gene Name: 3.65%

SNPs ID: 3.57%

Gene Name: 4.10%

SNPs ID: 1.71%

Gene Name: 1.97%

α = Approach0

β = Approach4

SNPs ID: 1.83%

Gene Name: 6.09%

SNPs ID: 2.38%

Gene Name: 7.46%

SNPs ID: 1.04%

Gene Name: 3.47%

α = Approach1

β = Approach2

SNPs ID: 86.95%

Gene Name: 92.30%

SNPs ID: 6.30%

Gene Name: 8.95%

SNPs ID: 6.25%

Gene Name: 8.88%

α = Approach1

β = Approach3

SNPs ID: 30.43%

Gene Name: 38.46%

SNPs ID: 3.57%

Gene Name: 6.84%

SNPs ID: 3.30%

Gene Name: 6.17%

α = Approach1

β = Approach4

SNPs ID: 13.04%

Gene Name: 23.07%

SNPs ID: 1.78%

Gene Name: 4.47%

SNPs ID: 1.59%

Gene Name: 3.89%

α = Approach2

β = Approach3

SNPs ID: 26.49%

Gene Name: 29.10%

SNPs ID: 42.85%

Gene Name: 53.42%

SNPs ID: 19.58%

Gene Name: 23.21%

α = Approach2

β = Approach4

SNPs ID: 19.55%

Gene Name: 23.13%

SNPs ID:36.90%

Gene Name: 46.26%

SNPs ID: 14.65%

Gene Name: 18.23%

α = Approach3

β = Approach4

SNPs ID: 35.71%

Gene Name: 41.09%

SNPs ID: 41.66%

Gene Name: 44.77%

SNPs ID: 23.80%

Gene Name: 27.27%

Table 4.11: Percentage of common SNPs & genes between approaches for Tier1
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Tables 4.12, 4.13, 4.14, 4.15,and 4.16 show the comparison of the percentage of

SNP IDs and gene names common among different datasets for approach 0, approach

1, approach 2, approach 3, and approach 4 respectively.

method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Autopsy

β = NINDS1

SNPs ID: 0.49%

Gene Name: 8.88%

SNPs ID: 0.11%

Gene Name: 2.43%

SNPs ID: 0.09%

Gene Name: 1.95%

α = Autopsy

β = NINDS2

SNPs ID: 0%

Gene Name: 9.62%

SNPs ID: 0%

Gene Name: 5.01%

SNPs ID: 0%

Gene Name: 3.41%

α = Autopsy

β = Tier1

SNPs ID: 0%

Gene Name: 1.48%

SNPs ID: 0%

Gene Name: 2.43%

SNPs ID: 0%

Gene Name: 0.93%

α = NINDS1

β = NINDS2

SNPs ID: 4.41%

Gene Name: 14.43%

SNPs ID: 9.59%

Gene Name: 27.41%

SNPs ID: 3.11%

Gene Name: 10.44%

α = NINDS1

β = Tier1

SNPs ID: 0%

Gene Name: 2.23%

SNPs ID: 0%

Gene Name: 13.41%

SNPs ID: 0%

Gene Name: 1.95%

α = NINDS2

β = Tier1

SNPs ID: 0%

Gene Name: 2.31%

SNPs ID: 0%

Gene Name: 7.31%

SNPs ID: 0%

Gene Name: 1.79%

Table 4.12: Percentage of common SNPs & genes between datasets for approach 0
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method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Autopsy

β = NINDS1

SNPs ID: 92.30%

Gene Name: 95.91%

SNPs ID: 55.46%

Gene Name: 53.40%

SNPs ID: 53.01%

Gene Name: 52.22%

α = Autopsy

β = NINDS2

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

α = Autopsy

β = Tier1

SNPs ID: 9.79%

Gene Name: 12.24%

SNPs ID: 60.86%

Gene Name: 46.15%

SNPs ID: 9.21%

Gene Name: 10.71%

α = NINDS1

β = NINDS2

SNPs ID: 0.42%

Gene Name: 0%

SNPs ID: 100%

Gene Name: 0%

SNPs ID: 0.42%

Gene Name: 0%

α = NINDS1

β = Tier1

SNPs ID: 9.24%

Gene Name: 14.77%

SNPs ID: 95.65%

Gene Name: 100%

SNPs ID: 9.20%

Gene Name: 14.77%

α = NINDS2

β = Tier1

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

SNPs ID: 0%

Gene Name: 0%

Table 4.13: Percentage of common SNPs & genes between datasets for approach 1
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method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Autopsy

β = NINDS1

SNPs ID: 38.84%

Gene Name: 42.99%

SNPs ID: 37.24%

Gene Name: 41.44%

SNPs ID: 23.47%

Gene Name: 26.74%

α = Autopsy

β = NINDS2

SNPs ID: 0%

Gene Name: 1.86%

SNPs ID: 0%

Gene Name: 18.18%

SNPs ID: 0%

Gene Name: 1.72%

α = Autopsy

β = Tier1

SNPs ID: 10.43%

Gene Name: 14.01%

SNPs ID: 9.14%

Gene Name: 11.19%

SNPs ID: 5.12%

Gene Name: 6.63%

α = NINDS1

β = NINDS2

SNPs ID: 0%

Gene Name: 1.80%

SNPs ID: 0%

Gene Name: 18.18%

SNPs ID: 0%

Gene Name: 1.66%

α = NINDS1

β = Tier1

SNPs ID: 7.58%

Gene Name: 16.21%

SNPs ID: 6.94%

Gene Name: 13.43%

SNPs ID: 3.76%

Gene Name: 7.92%

α = NINDS2

β = Tier1

SNPs ID: 3.12%

Gene Name: 18.18%

SNPs ID: 0.31%

Gene Name: 1.49%

SNPs ID: 0.28%

Gene Name: 1.39%

Table 4.14: Percentage of common SNPs & genes between datasets for approach 2
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method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Autopsy

β = NINDS1

SNPs ID: 15.26%

Gene Name: 22.22%

SNPs ID: 8.04%

Gene Name: 13.07%

SNPs ID: 5.56%

Gene Name: 8.96%

α = Autopsy

β = NINDS2

SNPs ID: 0.66%

Gene Name: 3.33%

SNPs ID: 1.82%

Gene Name: 10.34%

SNPs ID: 0.48%

Gene Name: 2.58%

α = Autopsy

β = Tier1

SNPs ID: 1.54%

Gene Name: 3.33%

SNPs ID: 3.57%

Gene Name: 8.21%

SNPs ID: 1.09%

Gene Name: 2.42%

α = NINDS1

β = NINDS2

SNPs ID: 0.69%

Gene Name: 2.94%

SNPs ID: 3.65%

Gene Name: 15.51%

SNPs ID: 0.59%

Gene Name: 2.53%

α = NINDS1

β = Tier1

SNPs ID: 1.51%

Gene Name: 3.26%

SNPs ID: 6.63%

Gene Name: 13.69%

SNPs ID: 1.24%

Gene Name: 2.71%

α = NINDS2

β = Tier1

SNPs ID: 0.60%

Gene Name: 5.17%

SNPs ID: 0.51%

Gene Name: 4.10%

SNPs ID: 0.27%

Gene Name: 2.34%

Table 4.15: Percentage of common SNPs & genes between datasets for approach 3
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method1 =
length(α ∩ β)

length(α)
× 100 method2 =

length(α ∩ β)

length(β)
× 100 method3 =

length(α ∩ β)

length(α ∪ β)
× 100

α = Autopsy

β = NINDS1

SNPs ID: 12.95%

Gene Name: 24%

SNPs ID: 8.43%

Gene Name: 15.58%

SNPs ID: 5.38%

Gene Name: 10.43%

α = Autopsy

β = NINDS2

SNPs ID: 0.76%

Gene Name: 3%

SNPs ID: 3.2%

Gene Name: 9.83%

SNPs ID: 0.61%

Gene Name: 2.35%

α = Autopsy

β = Tier1

SNPs ID: 1.90%

Gene Name: 4.5%

SNPs ID: 5.95%

Gene Name: 13.43%

SNPs ID: 1.46%

Gene Name: 3.48%

α = NINDS1

β = NINDS2

SNPs ID: 0.86%

Gene Name: 3.57%

SNPs ID: 5.60%

Gene Name: 18.03%

SNPs ID: 0.75%

Gene Name: 3.07%

α = NINDS1

β = Tier1

SNPs ID: 1.86%

Gene Name: 4.22%

SNPs ID: 8.92%

Gene Name: 19.40%

SNPs ID: 1.56%

Gene Name: 3.59%

α = NINDS2

β = Tier1

SNPs ID: 0%

Gene Name: 3.27%

SNPs ID: 0%

Gene Name: 2.98%

SNPs ID: 0%

Gene Name: 1.58%

Table 4.16: Percentage of common SNPs & genes between datasets for approach 4

4.2 Venn diagram for different approaches and same

dataset

In Figure 4.1, we show the number of SNPs and genes that are in common among

different approaches for the same dataset. It should be noted that there are some

SNPs or genes that are common among at least two approaches or two datasets. We

extracted those SNPs and genes and called them the possible biomarkers for PD.

The reason that approach 0 is excluded from the Venn diagram is that the SNPs

that were chosen in this approach were from different datasets (Autopsy, NINDS1,
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NINDS2, and Tier1), whereas in the other approaches, the SNPs that were chosen

came from the Familial dataset. Diagram (f) only includes 3 approaches because

there are no common SNPs between approach 1 and approach 2, 3, 4.

(a) Autopsy(SNPs) (b) Autopsy(Gene) (c) NINDS1(SNPs) (d) NINDS1(Gene)

(e) NINDS2(SNPs) (f) NINDS2(Gene) (g) Tier1(SNPs) (h) Tier1(Gene)

Figure 4.1: Venn diagram for different approaches and same dataset

4.3 Venn diagram for different datasets and same

approach

Figure 4.2 shows the number of SNPs and genes that are in common among different

datasets for each approach. It is clear that the number of SNPs overlap between

datasets fell dramatically when we compare the findings using different datasets but

85



the same approach.

(a) Approach 0(SNPs) (b) Approach 0(Gene) (c) Approach 1(SNPs) (d) Approach 1(Gene)

(e) Approach 2(SNPs) (f) Approach 2(Gene) (g) Approach 3(SNPs) (h) Approach 3(Gene)

(i) Approach 4(SNPs) (j) Approach 4(Gene)

Figure 4.2: Venn diagram for different datasets and same approach

4.4 Biomarkers and associated phenotypes

We selected the SNPs identified by at least two datasets or two approaches and listed

their associated phenotype in Tables 4.17, 4.18, 4.19, 4.20, 4.21, 4.22 ,and 4.23 (we
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have several small tables because it is difficult to fit all this information into one single

table). The process of obtaining each SNP phenotype was explained in Section 3.7.6.

The third column lists the approaches and datasets were the corresponding SNP was

in the list of frequent SNPs. Some of these SNPs were linked to other diseases,

however the diseases highlighted were linked to PD indirectly.

We identified four SNP IDs (11248060, rs239748, rs999473, and rs231398) that

have a direct link with PD (see table 4.22). Additional research demonstrates

that 50 identified SNP IDs (rs13006682, rs1037100, rs1367445, rs2827784, rs4409785,

rs11727767, rs2551043, rs7039377, rs4984406, rs1420956, rs2070762, rs4794665, rs6088520,

rs2240308, rs2298632, rs3892715, rs4077636, rs7152906, rs1950829, rs1801274, rs12490036,

rs12643013, rs6749972, rs1801274, rs1919309, rs2284178, rs901273, rs10894032, rs4300072,

rs7554436, rs7646765, rs130423, rs12659814, rs252139, rs194933, rs934178, rs1870676,

rs6590810, rs1007415, rs385893, rs11076194, rs4771493, rs4886755, rs799160, rs7026582,

rs706779, rs799160, rs9303277, rs9409664, and rs10117) are indirectly associated

with PD. These indirectly associated SNPs can be further investigated as potential

biomarkers for PD.

Direct association means that current literature directly links a SNP with PD;

while an indirect link means that current literature suggests the involvement of a SNP

in a disease other than PD but this other disease co-occurs with PD in a significant

number of PD patients.
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SNPs ID Phenotypes Datasets / Approaches Literature linking phenotype to PD

rs13006682

rs1037100

PR interval (The time between atrial depolarization and ventricular depolarization)

Approach 0 (NINDS1 and NINDS2)

Approach 4 (Autopsy and NINDS1)

NINDS1 (Approach 2 and Approach 3)

NINDS1 (Approach 2 and Approach 4)

NINDS1 (Approach 3 and Approach 4)

[106]

rs1367445 Osteoporosis Lumbar Spine BMD(bone density) Approach 0 (NINDS1 and NINDS2) [107][108][109][110]

rs2827784 C-reactive protein Approach 0 (NINDS1 and NINDS2) [111][112]

rs4409785

Rheumatoid arthritis Approach 0 (NINDS1 and NINDS2) [113][114][115][116]

Vitiligo Approach 0 (NINDS1 and NINDS2) [117]

Sex hormone-binding globulin levels Approach 0 (NINDS1 and NINDS2) [118][119]

Myasthenia gravis Approach 0 (NINDS1 and NINDS2) [120]

Multiple sclerosis and Low Density Lipoprotein (LDL) levels Approach 0 (NINDS1 and NINDS2) [121][122]

Multiple sclerosis Approach 0 (NINDS1 and NINDS2) [123]

Medication use thyroid preparations Approach 0 (NINDS1 and NINDS2) [124]

Hypothyroidism, Approach 0 (NINDS1 and NINDS2) [125],[126]

Graves disease Approach 0 (NINDS1 and NINDS2) [127]

Eosinophil counts Approach 0 (NINDS1 and NINDS2) [128][129]

Autoimmune traits Approach 0 (NINDS1 and NINDS2) [130][131]

Autoimmune thyroid diseases (Graves'disease or Hashimoto's thyroiditis) Approach 0 (NINDS1 and NINDS2) [132][133]

Table 4.17: SNPs in association with phenotypes - 1
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SNPs ID Phenotypes Datasets / Approaches Literature linking phenotype to PD

rs11727767

rs2551043

rs7039377

rs4984406

rs1420956

Obesity-related traits

Approach 1 (Autopsy and NINDS1)

Approach 1 (NINDS1 and Tier1)

Approach 2 (Autopsy and NINDS1)

Approach 4 (Autopsy and NINDS1)

Autopsy (Approach 1 and Approach 2)

Autopsy (Approach 2 and Approach 4)

NINDS1 (Approach 1 and Approach 2)

NINDS1 (Approach 1 and Approach 2)

NINDS1 (Approach 3 and Approach 4)

[134][135][136][137]

rs2070762

rs4794665

rs6088520

Height

Approach 1 (Autopsy and NINDS1)

Approach 2 (Autopsy and NINDS1)

Autopsy (Approach 1 and Approach 2)

Autopsy (Approach 3 and Approach 4)

NINDS1 (Approach 1 and Approach 2)

NINDS1 (Approach 1 and Approach 3)

NINDS1 (Approach 1 and Approach 4)

NINDS1 (Approach 2 and Approach 3)

NINDS1 (Approach 2 and Approach 4)

NINDS1 (Approach 3 and Approach 4)

Tier1 (Approach 3 and Approach 4)

[138][139][140]

rs2240308 Oligodontia-colorectal cancer syndrome Approach 1 (Autopsy and NINDS1) [141]

Table 4.18: SNPs in association with phenotypes - 2
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SNPs ID Phenotypes Datasets / Approaches Literature linking phenotype to PD

rs2298632

QT interval (The time it takes for the electrical system to fire an impulse through the ventricles and then recharge) Approach 1 (Autopsy and NINDS1) [142][143]

High Density Lipoprotein (HDL) cholesterol

Approach 1 (Autopsy and NINDS1)

Approach 2 (Autopsy and NINDS1)

Autopsy (Approach 1 and Approach 2)

NINDS1 (Approach 1 and Approach 2)

[144][145]

Electrocardiographic traits multivariate

Approach 1 (Autopsy and NINDS1)

Approach 2 (Autopsy and NINDS1)

Autopsy (Approach 1 and Approach 2)

[146]

rs3892715 Attention Deficit Hyperactivity Disorder (ADHD)

Approach 1 (Autopsy and NINDS1)

NINDS1 (Approach 1 and Approach 3)

NINDS1 (Approach 1 and Approach 4)

NINDS1 (Approach 3 and Approach 4)

[147][148][149]

rs4077636 Lung function FEV1 (The amount of air exhaled may be measured during the first)/Forced vital capacity (FVC)

Approach 1 (Autopsy and NINDS1)

Approach 1 (Autopsy and Tier1)

Approach 1 (NINDS1 and Tier1)

Approach 2 (Autopsy and NINDS1)

Approach 2 (Autopsy and Tier1)

Approach 2 (NINDS1 and Tier1)

Autopsy (Approach 1 and Approach 2)

NINDS1 (Approach 1 and Approach 2)

NINDS1 (Approach 3 and Approach 4)

Tier1 (Approach 1 and Approach 2)

[150]

Table 4.19: SNPs in association with phenotypes - 3

90



SNPs ID Phenotypes Datasets / Approaches Literature linking phenotype to PD

rs7152906

rs1950829

Major depressive disorder Multi Trait Analysis of GWAS (MTAG)

Approach 1 (Autopsy and NINDS1)

Approach 2 (Autopsy and NINDS1)

Approach 2 (NINDS1 and Tier1)

Autopsy (Approach 1 and Approach 2)

Autopsy (Approach 1 and Approach 3)

Autopsy (Approach 1 and Approach 4)

Autopsy (Approach 2 and Approach 3)

Autopsy (Approach 2 and Approach 4)

Autopsy (Approach 3 and Approach 4)

NINDS1 (Approach 1 and Approach 2)

Tier1 (Approach 1 and Approach 2)

[151][152][153]

rs1801274
Programmed Death Ligand 1 (PDL-1) on cluster of differentiation 14 (CD14+), cluster of differentiation 14 (CD16+) monocyte

Approach 1 (NINDS1 and Tier1)

Approach 2 (NINDS1 and Tier1)

NINDS1 (Approach 1 and Approach 2)

Tier1 (Approach 1 and Approach 2)

[154][155]

Inflammatory bowel disease

Approach 1 (NINDS1 and Tier1)

NINDS1 (Approach 1 and Approach 2)

Tier1 (Approach 1 and Approach 2)

[156][157][158]

rs12490036 Mean corpuscular hemoglobin concentration
Approach 2 (Autopsy and NINDS1)

Autopsy (Approach 2 and Approach 4)

[159][160][161][162]

rs12643013 Iron Approach 2 (Autopsy and NINDS1) [163][164]

rs6749972 Smoking initiation (ever regular vs never regular) (MTAG) Approach 2 (Autopsy and NINDS1) [165][166]

rs1801274 Ankylosing spondylitis

Approach 2 (NINDS1 and Tier1)

NINDS1 (Approach 1 and Approach 2)

Tier1 (Approach 1 and Approach 2)

[167]

rs1919309 Apolipoprotein A1 levels
Approach 3 (Autopsy and NINDS1)

NINDS1 (Approach 3 and Approach 4)

[167][168]

Table 4.20: SNPs in association with phenotypes - 4
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SNPs ID Phenotypes Datasets / Approaches Literature linking phenotype to PD

rs2284178 Behcet Syndrome

Approach 3 (Autopsy and NINDS1)

Approach 4 (Autopsy and NINDS1)

Autopsy (Approach 3 and Approach 4)

NINDS1 (Approach 3 and Approach 4)

[169]

rs901273

rs10894032

rs4300072

rs7554436

rs7646765

Stroke

Approach 3 (Autopsy and NINDS1)

Approach 4 (Autopsy and NINDS1)

Autopsy (Approach 3 and Approach 4)

NINDS1 (Approach 3 and Approach 4)

[170][171]

rs130423 Glucose

Approach 3 (Autopsy and NINDS2)

Approach 4 (Autopsy and NINDS1)

Approach 4 (Autopsy and NINDS2)

Approach 4 (NINDS1 and NINDS2)

Autopsy (Approach 3 and Approach 4)

NINDS2 (Approach 3 and Approach 4)

[172][173]

rs12659814 Creatinine Approach 3 (NINDS1 and NINDS2) [174][175]

rs252139 Amyotrophic lateral sclerosis Approach 3 (NINDS1 and NINDS2) [176]

rs194933 Heart Rate
Approach 4 (Autopsy and NINDS1)

NINDS1 (Approach 3 and Approach 4)

[177][178]

Table 4.21: SNPs in association with phenotypes - 5
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SNPs ID Phenotypes Datasets / Approaches Literature linking phenotype to PD

rs934178 Red cell distribution width

Autopsy (Approach 1 and Approach 2)

Autopsy (Approach 2 and Approach 3)

Autopsy (Approach 2 and Approach 4)

Autopsy (Approach 3 and Approach 4)

[179]

rs1870676 Intelligence Autopsy (Approach 3 and Approach 4) [180]

rs6590810 Hair color NINDS1 (Approach 1 and Approach 2) [181]

rs1007415

rs385893

Platelet Count NINDS1 (Approach 3 and Approach 4) [182]

rs11076194 Heel bone mineral density NINDS1 (Approach 3 and Approach 4) [183][109]

rs4771493 Numerical cognitive ability NINDS1 (Approach 3 and Approach 4) [184]

rs11248060

rs239748

rs999473

rs2313982

Parkinson's disease (PD)
NINDS1 (Approach 3 and Approach 4)

Tier1 (Approach 3 and Approach 4)

Direct link with PD

rs4886755

rs799160

Urate levels
NINDS1 (Approach 3 and Approach 4)

Tier1 (Approach 2 and Approach 3)

[185][186]

Hemoglobin NINDS1 (Approach 3 and Approach 4) [187][188]

rs7026582 Lipids NINDS1 (Approach 3 and Approach 4) [189]

Table 4.22: SNPs in association with phenotypes - 6
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SNPs ID Phenotypes Datasets / Approaches Literature linking phenotype to PD

rs706779
Vitiligo NINDS1 (Approach 3 and Approach 4) [190]

Type 1 diabetes NINDS1 (Approach 3 and Approach 4) [191][192]

rs799160 Triglyceride levels Tier1 (Approach 2 and Approach 3) [193]

rs9303277 Primary biliary cholangitis Tier1 (Approach 2 and Approach 3) [194][195]

rs9409664 Inflammation

Tier1 (Approach 2 and Approach 3)

Tier1 (Approach 2 and Approach 4)

Tier1 (Approach 3 and Approach 4)

[196][197]

rs10117 Even-plus syndrome Tier1 (Approach 3 and Approach 4) [198]

Table 4.23: SNPs in association with phenotypes - 7
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Chapter 5

Conclusion

This chapter summarizes the major findings in relation to the objectives and research

questions and analyzes their importance and contribution. Additionally, I discuss the

study's limitations and suggest areas for additional investigation.

The major findings:

1. We identified four SNP IDs (11248060, rs239748, rs999473, and rs231398) that

have a direct link with PD. Additional research demonstrates that 50 identified

SNP IDs (rs13006682, rs1037100, rs1367445, rs2827784, rs4409785, rs11727767,

rs2551043, rs7039377, rs4984406, rs1420956, rs2070762, rs4794665, rs6088520,

rs2240308, rs2298632, rs3892715, rs4077636, rs7152906, rs1950829, rs1801274,

rs12490036, rs12643013, rs6749972, rs1801274, rs1919309, rs2284178, rs901273,

rs10894032, rs4300072, rs7554436, rs7646765, rs130423, rs12659814, rs252139,

rs194933, rs934178, rs1870676, rs6590810, rs1007415, rs385893, rs11076194,
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rs4771493, rs4886755, rs799160, rs7026582, rs706779, rs799160, rs9303277, rs9409664,

and rs10117) are indirectly associated with PD. These indirectly associated

SNPs can be further investigated as potential biomarkers for PD.

2. Combining datasets (e.g., Approaches 3 and 4) increases the number of SNPs

found in more than one dataset and has comparable performance than training

on a single data set (approach 0).

3. RF seems to be a suitable classifier to use with GWAS data once the number

of features (SNPs) is reduced by a feature selection step.

4. Our methodology can be applied to a wide range of diseases, including the most

prevalent ones like breast cancer, lung cancer, colorectal cancer, and others.

Limitations and future directions:

1. This study was very resource intensive and running the whole process took

several days for some of the datasets.

2. Due to different genotyping platforms, the set of SNPs genotyped on each

dataset was quite different from some of the other datasets. Because of this,

many SNPs were discarded and not considered as potential biomarkers. Re-

peating this same study on SNPs detected by whole-genome sequencing might

resolve this issue.

3. Having access to other datasets obtained from different populations would allow

to see if our identified SNPs can be replicated.
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