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Abstract

The dependence of modern life on numerous hazardous products is an undeni-

able matter. Considering the dangerous nature of these materials, providing versatile

means of transportation is critical and essential. The flexibility and applicability of

the mode of truck transportation have made it the most favorable method for con-

veying hazardous materials (hazmats), yet the shipping performance can be largely

susceptible to ever-changing traffic and weather conditions. Inspired by the impor-

tance as well as lack of joint considerations of uncertainties, random disruptions,

and time-relevant issues, this research plans to examine the location-routing deci-

sions in hazmat transportation by applying stochastic and robust programming mod-

els to vehicle routing problems with time windows, so to ensure the corresponding

efficiency, efficacy, and equity. Providing effective solutions to the hazmat location-

routing problems is of significant importance for both logistics companies and the

government. Exact and heuristic algorithms will be explored for timely and accurate

solutions. To assess the practicability and validity of the proposed approaches, real-

world case studies will be investigated from the optimization perspective, from which

we derive managerial insights that enhance decision-making for system stakeholders.

In this regard, this thesis contributes to the current literature in the following three

ways. First, we develop a scenario-based robust location-routing model for hazmat

transportation with joint consideration of time windows, time-dependency, multiple

existing paths between nodes, and disruptions. Second, a stochastic location-routing

problem of infectious waste during a pandemic is discussed in a 3-tier network. Em-
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bedding temporary facilities, uncertainty, and chance-constrained time windows into

the model, a brach-and-price algorithm is developed to solve the model to optimality.

Finally, the stochastic location-routing problem of the hazardous waste network is

addressed using a three-stage decision framework. The critical features involved in

this model are stochastic waste release dates, the risk-aversion parameter, and the

proposed decision framework of the model. The framework is built upon a cost-

clustering approach, risk-oriented a priori plan, and recourse actions respectively for

location-allocation, routing, and adaption decisions. We summarize the contributions

of this thesis, discuss the overall results obtained, and present the potential future

research directions.
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Chapter 1

Introduction

1.1 Introduction

Since logistics advanced in the 1950s, numerous researchers have concentrated on its

various applications, leading to significant improvements in this field (Chira, 2014).

Logistics now encompass a broader impact on business and economic prosperity due

to the existing nationalization and globalization trend in recent decades. Companies

are aware that utilizing proper logistic management techniques contributes to optimal

assignment and use of resources and consequently optimizing the existing production

and distribution processes. One of the key elements in logistics management is the

transportation system accounting for one-third of the logistics costs (Zunic et al.,

2020). Transportation systems hugely influence logistics systems’ performance as

they are required in the whole production procedures, from manufacturing to de-

livery to the final consumers and returns. Only a well-established transportation

network between each component would maximize the benefits. A poorly functioning
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transportation system can lead to a shortage of products and burden additional costs

on the organization. In contrast, a well-functioning transportation system can help

an organization cut off significant expenses and increase customer satisfaction.

The primary modes of transportation in logistics are shipments by truck (road),

ship (marine), train (rail), and plane (air). In some cases, the pipeline mode is

also used for shipping specific materials such as crude oil. In this thesis, we are

interested in road transportation mode as one of the most popular shipment methods

in logistics. For example, in January 2020, truck freight accounted for more than

54% (26.1 billion dollars) of all northern border freight between Canada and the

United States. Also, routes constituted 71.1% (35 billion dollars) of all southern

border freight (Bureau of Transportation Statistics, 2020). Road freight offers many

advantages, such as more affordable shipments, highly accessible nature, flexibility in

scheduling deliveries, easier freight tracking, and fewer restrictions.

In addition to the regular shipment, large volumes of hazardous materials (haz-

mat) are transported daily through the transportation networks. Since the late 1980s,

the transportation of hazardous materials has been the subject of interest by re-

searchers, and much research has been done so far addressing different aspects of

it. A hazardous material is a substance that, despite being widely used in industry,

can cause damage to a vulnerable element due to its physical or chemical properties.

Vulnerable features include humans, animals, the environment, properties, and build-

ings. Hazardous materials are classified into nine categories by the United Nations

based on their physical, chemical, and nuclear properties: 1) explosives and pyrotech-

nics, 2) gasses, 3) flammable and combustible liquids, 4) flammable, combustible,

and dangerous-when-wet solids, 5) oxidizers and organic peroxides, 6) poisonous and
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infectious materials, 7) radioactive materials 8) corrosive materials (acidic or basic),

9) miscellaneous dangerous goods, such as hazardous wastes (Erkut et al., 2007).

Modern industrialized societies are dependent on applications of chemicals and

hazardous materials as inevitable elements of their process. The industry and the

residents’ lives rely on numerous hazardous products such as petroleum derivatives

and a variety of detergents. In addition, residues and the relevant generated waste

from these activities might contain hazmat. To highlight the importance of the mat-

ter, it is noteworthy to mention that even handling municipal household waste is

associated with elements threatening individuals and the environment. According to

(U.S. Department of Energy, 2019), there is an increasing trend of hazmat shipments

between the U.S. Petroleum Administration for Defense Districts. The crude oil and

petroleum shipments were estimated to be around 167, 186, and 205 thousand barrels

in 2016, 2017, and 2018, respectively. Besides the general benefits of road transporta-

tion, the truck mode for hazmat shipments faces fewer restrictions than other modes

of transportation. Also, many specialized trucking companies are available to accom-

modate hazardous goods. As a result, this method is a favorable means of dangerous

cargo conveyance worldwide, especially for short to medium distances.

Confronting the public’s concerns and government restrictions, urban hazmat

transportation’s primary challenges are determining the vehicle courses that mini-

mize the associated network cost and risk while handling the existing disruptions

and meeting the time windows. Therefore, optimizing the location-routing choices

by addressing the available realistic assumptions is an important area for research to

improve knowledge of this class of hazmat transport management. In this research,

we formulate this problem and examine a new algorithm to solve the model. This
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procedure can also provide several recommendations and managerial insights serving

as the ground for managing the corresponding risks in this area by manufacturing

companies, logistic corporations, and management enterprises. The proposed frame-

work in the research can guarantee the safety of the hazmat transportation process

while saving the financial resources of the stakeholders.

This thesis includes five chapters. The introduction to the thesis, chapter 3.1,

includes six main sections. Sections 1.2 and 1.3 portray a big picture of this research.

The research statement and objectives are highlighted in section 1.2, where expected

outcomes and deliverables of this project are discussed in section 1.3. Methodologies

applied in this project are explained in section 1.4, focusing on different aspects of

the model, from risk assessment to solution algorithms. Finally, the co-authorship

statement has been provided in section 1.5.

1.2 Research statement and research objectives

This thesis explores the location-routing problem in the hazmat transportation field

in an uncertain environment. Stochastic programming techniques and scenario-based

robust optimization methods are applied in the corresponding models to encompass

the uncertain nature of several parameters. The uncertainty might arise from link dis-

ruptions, generated waste amount, or generation waste speeds. The logistic company

(distributor or collector) handles the routing problem in several tours by adhering to

the available time windows. Both cost and risk objectives are addressed to satisfy

different stakeholders of the process, underlining the importance of discussing the

trade-offs between these objectives. Moreover, we introduce several helpful indicators

4



to facilitate the carrier in making appropriate decisions. The developed models can

be applied to a real-world hazmat transportation network, from which practical in-

sights are derived. Finally, the bi-objective nature of the model is handled using an

ε-constraint method, and a branch-and-price exact method is developed to overcome

the complexity of the resulting mathematical models.

Building the model based on the most recent literature gaps, this research not

only fulfills its mission in academia but also, using realistic assumptions, offers a

practical solution to assist associated authorities. Also, more contributions can be

added to these models in the future based on the authorities’ point of view. As a re-

sult, by providing a better understanding of current hazmat transportation networks,

this thesis aims to generate more reliable and robust systems with realistic features

as its general objective. Different shareholders can benefit from the outcomes and

the suggested managerial insights of this project, with the government establishing

more risk-efficient decisions and the hazmat carriers employing more economical and

environment-friendly transportation plans.

More particularly, we seek to answer the following questions:

� Where is the optimal location for the candidate facilities considering the trade-

offs between the cost and risk objectives?

� What is the proper capacity for these facilities and the vehicles?

� What is the optimal customer allocation decision for the activated facilities

employing a finite number of vehicles?

� What is the optimal customer service sequence according to the derived vehicle

routing decisions?
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� What are the implications of time windows, potential network disruptions, and

uncertainties?

� What additional measures may be taken to mitigate those influences?

Within the general objective, the following activities are carried out:

1. Investigating the trade-offs in a bi-objective hazmat planning model. A signifi-

cant challenge that needs to be addressed in the hazmat transportation concept

is the bi-objective nature of the network. Cost and risk objectives are crucial

in this type of network, as they need to be balanced to keep the network func-

tioning effectively. Failure to do so can lead to inefficient use of resources and

increased risk, both of which are detrimental to the network’s overall goal. The

developed location-routing models help logistic planners to achieve a balanced

decision based on both hazmat-planning objectives. The model also allows

planners to account for each objective’s impact on the other objectives and to

make informed decisions about the best way to achieve the desired results by

assessing the available trade-offs.

2. Embedding realistic assumptions as time considerations and possible disruptions

into the model. In order to create a realistic hazmat transportation model that

can be used for risk assessment and management purposes, it is necessary to

have realistic assumptions embedded into the model. In this regard, inspired

by real-life networks, several factors have been added to this project. First, we

have assumed time considerations through time windows and time-dependent

parameters. Second, disruptions or deviations from the original plan are in-

volved as a basis of uncertainty in reacting against unplanned situations. Also,
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the model incorporates other uncertainty sources through stochastic and robust

programs. Finally, the decision-maker’s perspective impacts have been studied

in the model through the risk-aversion concept.

3. Incorporating uncertainties in the model. In order to incorporate different exist-

ing uncertainties into the hazmat model, it is necessary for researchers to develop

proper methods for parameter estimation as well as improved knowledge about

how these uncertainties interact with other elements of the model. Therefore,

selecting the most influential components as uncertain parameters and address-

ing them with suitable techniques is challenging for researchers. There should

be a supporting logic for the application of specific methods. For example, ac-

cess to sufficient historical records of an attribute leads to the application of

stochastic programming or scenario-based robust optimization technique. How-

ever, when dealing with a deep uncertainty with insufficient supporting data,

some robust optimization or fuzzy logic approaches have priority over stochastic

programming. This research examines the efficiency of both stochastic and ro-

bust programs by considering different uncertain parameters and demonstrates

how they affect the solutions of the model.

4. Applying efficient exact algorithms to achieve the optimal solution of the hazmat

transportation model. Today, there is a great need for efficient algorithms that

can be used to solve problems in the hazmat transportation domain, especially

considering the lack of such algorithms in the hazmat location-routing problem

(HLRP) literature. Hazmat transportation is one of the industries where ac-

curate and timely decisions are essential for averting potential disasters. This
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thesis presents an algorithm that has been explicitly employed to optimize the

hazmat transport planning process. The proposed algorithm uses a branch-and-

price methodology to derive the optimal solution, while the bi-objectiveness is

tackled with the ϵ-constraint technique.

5. Exploring the model’s validity and applicability by adopting a real case of haz-

mat logistics network. This project’s proposed hazmat logistics networks are

validated and proven to apply to different industries and case studies. The de-

veloped models are demonstrated to be effective in helping businesses transport

hazmat-sensitive materials and products safely and efficiently. The network has

also been shown to be reliable in helping businesses to comply with different

hazmat transportation attributes affecting the network. The finding of this re-

search can be utilized for most types of hazmats, including flammable liquids

and gases, corrosive agents, toxic chemicals, explosive devices, household waste,

medical waste, and hazardous waste, as their relevant networks share significant

similarities.

1.3 Expected outcomes and deliverables

In this thesis, we explore hazardous materials, infectious waste, and hazardous waste

in separate chapters. We develop redundant and robust location-routing models for

both ordinary days and unpredicted situations such as pandemics. Also, more realis-

tic assumptions are included in the model, such as time windows, time-dependency,

disruptions, multi-period problems, uncertainty, and decision-maker’s risk adversity.

Providing a comprehensive analysis of hazmat transportation with different variants
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and features, the findings of this research would be an asset to the stakeholders and

relevant authorities in hazmat logistics. Less risky and more cost-efficient solutions

are derived by deriving practical and realistic decisions, from which both the govern-

ment and the logistic company may benefit. Finally, optimal locations for establishing

or activating facilities, assignment of customers to the chosen facilities, routing and

scheduling decisions, inventory management of the network, and obtaining the opti-

mal number of required vehicles are arranged.

Considering the aforementioned points, studying the location-routing problem

of hazardous materials and providing improved hazmat logistic plans is inevitable.

Hazmat planners must find ways to optimize routes while minimizing environmen-

tal impact, ensuring safe transport, and reducing the associated network expenses.

This project applies to different parts of the world, including Newfoundland and

Labrador. In Newfoundland and Labrador, the harsh weather might cause disrup-

tions in the road due to edge unavailabilities. We assess disruptions and deviations in

optimistic, normal, and pessimistic situations, covering the majority of possible sce-

narios. Therefore, the outcomes of this project are economically and environmentally

practical worldwide. The associated economic orientation of this project is as follows.

1. Providing cost-effective plans for carrier companies. Providing cost-

effective plans for carrier companies is a common and constant endeavor in

today’s competitive business environment. With so many carriers vying for

customers, it is essential that providers create strategies to maintain and grow

their customer base while saving their financial resources as much as possible.

The financial savings can be related to selecting the most economical location
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for establishing the facilities like depots, following routing plans requiring a low

budget for transportation and handling the hazmat, optimizing the inventory

management, and utilizing a reasonable number of trucks in the vehicle fleet.

Carrier planning should concentrate on both short-term and long-term goals,

taking into account the current economic climate and future trends. For this

purpose, we assess different uncertain scenarios, from optimistic to pessimistic,

to make the system applicable and effective in the short and long run. Also,

in the case of unpredicted circumstances like the COVID-19 pandemic, the

authorities want to adapt to the realized situation at a low cost. Therefore,

optimizing the location-routing decisions of hazmat transportation networks,

this project aims to propose sustainable plans and ameliorate the financial status

of carriers.

2. Providing risk-effective plans for the government. The associated statis-

tics we mentioned earlier highlighted the importance of risk consideration and

mitigation in hazmat logistics. Apart from the potential adverse impacts on

people, properties, and the environment, reckless and unwise location-routing

decisions might lead to social unrest. People oppose their government when they

believe it is not acting in the best interests of its citizens. As a result, when dan-

gerous cargo is transported in highly populated areas, hauled without inequity

considerations, or hazmat processing facilities are established in crowded loca-

tions, the governments are more likely to be questioned by individuals. There-

fore, to improve the safety of hazmat transportation, the government should

focus on creating risk-effective plans and improving the hazmat transportation
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planning process. The other challenge for logistic companies and the regulating

authorities is that not every safe path is also a cost-efficient plan. The collector

or distributor is looking to minimize the logistic expenses while the government

favors routes that impose low risks to the vulnerable elements. Therefore, an

optimal plan should incorporate both risk and cost reductions. Exploring the

trade-off between different objectives, this research can be utilized to assess the

trade-off between the risk and cost to derive acceptable solutions for both the

government and carriers.

3. Applicability to real-life systems. The proposed models in this thesis are

applicable to many real-life hazmat transportation systems. From petroleum

shipments to handling medical waste can be addressed using these models. In

fact, each model is tested and verified using a real-life case study. Each model

has unique features embedded in the problem to yield more practical solutions.

For example, customer time window consideration is a vital component for main-

taining customer satisfaction while adhering to some particular roles, such as an

infectious generated waste that should be handled in a permissible time inter-

val. Ignoring such crucial criteria can result in irreversible losses. This project’s

other outstanding realistic feature is the inclusion of disruptions and deviations

from the original plan. Regions such as Newfoundland and labrador have harsh

weather with significant precipitation and snowfall rates. As a result, disrup-

tions are inevitable due to road closures, traffic congestion, or other accidents.

Therefore, to be prepared for deviations from the initial scheduled plans, the

corresponding agencies should organize alternative and adjustable plans that re-
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main close to the optimum path. Also, the proposed model can highly simulate

the real-case transportation systems by embedding many time restrictions and

assumptions such as decision-maker risk-aversion and time-dependent parame-

ters. The former incorporates the mentality of the decision-maker in the model

through a subjective risk-aversion parameter, while the latter applies variations

of specific parameters as a function of time.

1.4 Methodologies

Generally belonging to the mathematical optimization field, this study plans to con-

struct a mixed-integer programming model with multiple objectives. Various method-

ologies are applied in this research for a comprehensive formulation of the HLRP

problem that can be effectively solved.

1.4.1 Risk assessment

Accidents associated with hazardous substances in the literature are known as low-

probability, high-consequence events. Therefore, despite the relatively low probability

of such incidents, the consequences can be catastrophic and sometimes irrecoverable.

The recent report by Canadian Transport Emergency Center (2021), operated by the

Transport of Dangerous Good Directorate of Transport Canada, stated that from 2017

to 2021, Petroleum Crude Oil, diesel, and liquefied petroleum gases accounted for the

most hazmat incidents. This department was respectively involved in 2850, 2950,

2320, and 2021 emergencies from 2017 to 2021. Here, we review several disastrous

incidents in the hazmat field. On July 11, 1978, a propane tanker blast killed more
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than 200 people and led to more than 120 individuals in Spain. The other associated

incident was the evacuation of more than 200,000 people in Ontario due to chlorine

gas leakage in 1979. The gasoline tanker explosion (1982) in Afghanistan that killed

2,700 people and the Neyshabur 2003 train derailment accident that left 295 dead

and 460 injured are other examples of historical tragedies in hazardous materials

accidents that demonstrate the necessity of exploring this field. The tragic event in

Lac–Mégantic (Québec) in July 2013 is a more recent accident where a runaway train

hauling 72 tankers filled with crude oil derailed as it approached the center of the

town of Lac-Mégantic.

Generally, highways are the primary source of hazmat transportation with more

associated incidents. In the U.S. between 2011 and 2015, as announced by the U.S.

Department of Transportation Pipeline and Hazardous Materials Safety Adminis-

tration (PHMSA, 2015), highways accounted for around 87% of all hazmat-related

accidents. In another report by the U.S. Department of Transportation it was indi-

cated that from 2004 to 2013, highways with 140,742 incidents out of 163,469 in total

have the most significant portion of fatalities, injuries, and damage among all modes

of transportation. Also, this report emphasizes the importance of focusing on risk

mitigation on hazmat road networks and explaining the motivations of researchers

from OR/MS fields of studies to explore hazmat transportation scope. In Germany,

road hazmat transportation was the most favorable mode, responsible for over 46% of

the transported hazmat in 2015, which was a total of 141.48 million tonnes (Holeczek,

2019).

Risk is the most crucial factor separating hazardous transportation problems from

other transportation subjects. In this concept, the risk is defined by calculating the
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probability and severity of harm to the exposed recipient through unintentional acci-

dents caused by the transportation of hazardous materials. The exposed recipient of

the risk can be a person, environment, or environmental attributes of the proximity

of the accident, and the unintended incident is the distribution of hazardous material

because of the occurrence of the accident. Dissemination of hazmat has consequences,

including the effects on the health of individuals (death, injury, or long-term effects

due to exposure to hazardous substances) or the loss of property, environmental im-

pacts such as soil contamination or effects on plant health and animals, or evacuation

nearby populations because of anticipation of imminent danger and traffic congestion

along the evacuation route.

Different considerations must be taken into account in estimating the risk of leak-

age because of accidents during the transportation of hazardous materials. The con-

sequences regarding the cost can be categorized as follows (Erkut et al., 2007):

� Injuries and deaths

� Property damage

� Evacuation of residents

� Traffic delays

� Cleaning costs

� Loss of hazardous substances

� Environmental damage
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Generally, two types of risks exist, including individual and societal risks. An

individual’s risk is when a person is at risk in a particular situation, the risk is

measured at a particular point and only for him. This risk generally depends on the

source of risk, while societal risk indicates the relationship between the frequency of

an accident and the number of people injured; in other words, the risk is measured

for a group of individuals. Based on previous studies, risk calculation and evaluation

are classified into three groups: qualitative, quantitative, and hybrid (quantitative-

qualitative) (Yacob and Hassim, 2017).

Qualitative risk assessment uses judgment and sometimes expert opinions about

probability and consequences. In other words, qualitative risk assessment deals with

identifying possible accident situations and trying to estimate adverse outcomes and

is often used when there is little reliable information to accurately estimate the prob-

ability and severity of an accident. In fact, the only purpose is to identify probable

and/or very traumatic events and focus on them. In this method, keywords or de-

scriptive terms are used to indicate the magnitude of a possible outcome and the

probability of its occurrence. Qualitative risk assessment is based on the personal

experience and skills of experts and engineers in this field. Depending on the appro-

priateness of the resources available, this approach can produce acceptable results.

The ”What-If Analysis” analytical method and the ”Safety audits” are examples of

qualitative risk methods. The basis of these methods is the first attempt to identify

potential problems by using general questions about a system and determining what

causes the problem. Then, their possible consequences are also considered qualita-

tively. The output of this approach, given its thorough knowledge of the system and

its risk points, is used in various decisions for that system and in providing appropri-
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ate suggestions for maintaining its safety. Examples of qualitative work can be found

in Ikeagwuani and John (2013).

1.4.1.1 Quantitative risk assessment

Quantitative risk assessment is a numerical risk assessment. The language of quan-

titative risk assessment is the language of frequency analysis and results and, unlike

qualitative risk analysis, leads to numerical risk assessment. A comprehensive ex-

planation for the risk models was provided in Erkut et al. (2007). They focused on

Quantitative Risk Assessment (QRA) with three fundamental steps: hazard and ex-

posed receptor identification, frequency analysis, and Consequence modeling and risk

calculation. The consequences of an incident are a function of the exposure zone,

population, property, and environmental assets within this area. Several factors af-

fect the shape and size of an impact area, such as the material being transported,

topology, weather, and wind speed and direction Erkut et al. (2007).

Hazard identification is the identification of potential sources of pollutant release

into the environment, type (for example, heat radiation, explosion, metals, or other

objects thrust due to explosion wave and toxic cloud) and amount of compounds

emitted, and potential effects of each substance on health and safety matters. In

some cases, such as the release of carcinogens due to an accident while transporting

hazardous substances, we need to consider the long-term effects on human health and

the environment. It is also necessary to examine the risks associated with different

types of exposure recipients. Quantitative risk assessment is based on statistical and

probabilistic methods that require numerical data, which represents the numerical

value of the probability of occurrence and consequences, to calculate risk.
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Figure 1.1: Possible shapes of impact area around the route segment (Erkut et al.,

2007)

Hazmat transportation accidents have many undesirable consequences, such as

economic losses, injuries, environmental pollution, and fatalities. These consequences

are a function of the impact area (or exposure zone) and population, property, and en-

vironmental assets within the impact area. In this regard, the traditional risk model,

based on the product of the consequence and the probability of an unwanted incident,

is the most frequent definition approach in hazmat networks (Holeczek, 2019; Erkut

et al., 2007). Even if the number of hazmat incidents with the release seems insignif-

icant compared to the number of hazmat-carrying shipments, the consequences can

still be catastrophic. Apart from the destructive nature of the associated incidents,

they can lead to social and media attention and consequently act as pressure leverage

from these groups on the authorities. Different geometric shapes have been utilized

to represent the exposure area. Figure 1.1 displays four commonly applied shapes for

the impact area.

The shape and size of an impact area depend on several factors, such as the
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substance being transported, topology, and wind speed and direction. In the danger

circle case, the impact area can be defined as the associated area of the danger zone

with the radius of λ as π×λ2. The radius of the danger zone depends on the class and

the amount of hazmat loaded on the vehicle. Usually, due to the hazardous nature of

the material, the worst-case situation is applied by assuming that the radius represents

the danger zone of a fully-loaded vehicle for one given hazmat class. Subsequently,

the consequence of the incident can be achieved by multiplying the impact area by

a measure such as the average population density along the arcs. Similarly, we can

define the impact area in a rectangle danger zone by 2 × li,j × λ as we have two

rectangles above and below the arc li,j. In the fixed bandwidth approach, if li,j

stands for the length of an arc (i, j), the impacted area of a hazmat incident using

the bandwidth method is calculated by 2× li,j × λ+ π × λ2 (Holeczek, 2019).

The Gaussian plume model is more complicated than the three other methods.

The concentration of the airborne contaminant depends on the distance from the

source of the accident in an airborne hazmat. Here the impact of wind and the

distance from the source leads to lower concentration. Therefore, the Gaussian plume

model is applied to achieve more realistic approximations of the impact area. The

following is the associated formulation from Erkut et al. (2007):

C(x, y, z, he) =
Q

2πµσyσz
exp

−1

2

(
y

σy

)2


×

exp(−1

2

(
z − he
σz

)2
)

+ exp

(
−1

2

(
z + he
σz

)2
) (1.1)

In the above formulation C is the concentration level (mass per unit volume
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–µg/m3 or parts per million –ppm), x is the distance downwind from the source

(m), y is the distance crosswind (perpendicular) from the source (m), z is the ele-

vation of the destination point (m), he is the elevation of the source (m), Q is the

release rate of pollutant (mass emission rate –g/s or volumetric volume rate –m3/s),

µ is the average wind speed (m/s), σy and σz are the dispersion parameters in the y

and z directions (m).

Gaining more knowledge about the potential adverse impacts of these materials,

people from industries, government, and academia have concentrated on the hazmat

field of study. This covers from providing training for personnel and utilizing more

hazmat-resistant vehicles to the development of safer and more economical trans-

portation networks. In academia, the researchers have tried to alter the traditional

perspective, which only takes into account cost or profits when establishing the sys-

tem. For this purpose, many studies have involved risk mitigation in their decision-

making process, mainly employing risk as an indicator of the probability and severity

of loss to an exposed receptor due to potential unwanted events regarding a hazmat

(Alp, 1995).

1.4.2 Facility location problem

The facility location decisions have drawn considerable attention due to their impact

on strategic and operational policies in mid-term and long-term horizons. This issue

in determining the locations of hazmat-related facilities is highlighted more due to

the dangerous nature of the products. There are many hazmat incidents that occur

in the facilities; some have irreversible consequences. Take the Tianjin port incident
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that happened on August 12, 2015, for example. In this catastrophe, 165 people were

killed, and almost 7 billion RMB of economic losses were caused by an explosion at

hazmat depots. There were many casualties and property losses due to improper

selection of the hazmat depot, located only 600 meters from a large community that

accommodates 5600 people.

The location and allocation of hazmat logistics systems play a crucial role in miti-

gating network risk to a great extent. This is because both storage and transportation

risks are closely connected to facility location and customer allocation decisions. As

the facility location process determines the best location for establishing a site from

the set of candidate spots, it directly impacts storage risk while affecting transporta-

tion risk indirectly. Furthermore, based on the located stations, customer allocation

makes the optimal allocation plans and determines the amount of hazmat to be stored

in each facility, which directly impacts transportation risks and indirectly impacts

storage risks (Fan et al., 2019).

In this section, we go through the capacitated facility location problem (CFLP),

which is one of the bases for the optimization problems explored in this thesis. Each

facility in CFLP has a limited capacity that cannot be violated. Hence, both demand

satisfaction and capacity constraints should be considered when modeling such a

problem setting.

Here, a mathematical model for CFLP is introduced. We represent the set of fa-

cilities and customers respectively by F and V . Let us assume that we have a network

with n customers (i = {1, ..., n}) with associated demand of di andm facilities or sites

(j = {1, ...,m}). Also, assume that xij is a continuous variable defining the amount

serviced from facility j to demand point i, and yj is a binary variable where yj = 1
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indicating if a facility is established at location j. Each facility has a fixed open-

ing/activating cost of fj and an associated transportation cost to customer j equal

to cij. Finally, Capj stands for the capacity of site j or the maximum service volume

that can be handled by facility j. Based on the notation, the relevant optimization

model for the CFLP can be specified as follows:

min
m∑
j=1

fiyi +
n∑

i=1

m∑
j=1

cijxij (1.2)

m∑
j=1

xij = di ∀i ∈ V (1.3)

n∑
i=1

xij ≤ Capjyj ∀j ∈ F (1.4)

xij ≤ diyj ∀i ∈ V ,∀j ∈ F (1.5)

xij ≥ 0 ∀i ∈ V ,∀j ∈ F (1.6)

yj ∈ {0, 1} ∀j ∈ F (1.7)

The objective function addresses the minimization of facility activation costs and

transportation expenses. Constraint (1.3) ensures that each customer’s demand is

satisfied. Constraint (1.4) indicates that if a facility is activated, the total demand

satisfied by this site cannot exceed its capacity. An upper bound for variable xij

has been provided in (1.5). Although this constraint might seem redundant, it can

lead to tighter linear programs with better performance. It implies that if a facility

is established, the maximum amount of satisfied demand for customer i from site j

cannot exceed di. Finally, (1.6) and (1.7) specify the nature of the decision variables

in the problem.
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1.4.3 Vehicle routing problem

The initial work in the Vehicle Routing Problem area was presented in an article by

Dantzig and Ramser (1959). Entitled “Truck Dispatching Problem,” their model con-

sisted of a fleet of homogeneous trucks originating from a central hub and responsible

for satisfying the oil demands of several gas stations. Later on, a more generalized

form of this model was developed by Clarke andWright (1964) as a linear optimization

problem. In their logistics-oriented model, a set of geographically dispersed customers

around the central depot were served using a fleet of capacitated vehicles. These two

studies were the pillars for developing the well-known vehicle routing problem as one

of the most widely examined subjects in the operations research scope.

There has been an exponential growth in the number of publications in this scope

after the introduction of VRP by citedantzig1959truck and Clarke and Wright (1964).

In this regard, Eksioglu et al. (2009) stated that the VRP literature has been ex-

panding at a rate of 6% each year. Moreover, different variants of VRP have been

developed, incorporating real-life complexities, such as time window considerations,

time-dependent parameters, and multi-period planning horizons.

The VRP models explicitly specify a set of routes utilized by a vehicle starting

from and ending in the same depot or warehouse so that all customer needs are met,

all operational constraints are satisfied, and transportation costs are minimized. Em-

bedding more features into the original VRP drags more complexity into the model. It

was proven by Lenstra and Kan (1981) that the VRP is an NP-hard problem. There-

fore, only the small-scale problems can be solved by the exact algorithms optimally

in a reasonable computational time, leaving the large-scale ones as a challenge for the

22



researchers. Considering that large-size problems are an inevitable part of modern

life, just imagine the available interactions in a company like Amazon, many authors

have tried to handle them by employing more efficient exact algorithms, heuristics,

and metaheuristics. Now, determining the daily routes of vehicles is not the only

application for the VRP algorithms. These algorithms and models also handle other

strategic and tactical decisions such as facility location, inventory management, fleet

sizing, scheduling, and production problems (Andersson et al., 2010; Vidal et al.,

2020).

The proposed models in this thesis determine optimal facility locations and trans-

portation routes for the available fleet of vehicles, raising the necessity of applying

VRP-based formulations. We explore location-routing with time windows (LRPTW)

with time-dependent parameters in chapter 3. Chapter 4 deals with an LRPTW in a

waste collection network, while a multi-period LRP with permissible service intervals

is investigated in chapter 5. The time window limitations are one of the most impor-

tant features of the model. The quality of customer service plays a vital role in the

stability and growth of corporations. As a requirement of establishing a customer-

oriented business, organizations strive to satisfy their customers’ needs to retain them

as long as possible. An essential element of customer satisfaction is adhering to their

service time windows, especially in the logistics and transportation area, where VRP

plays a significant role. Apart from customer satisfaction, neglecting time windows

in the strategic planning phase, if there are any, can lead to infeasible routing deci-

sions in the operative planning or other stages. Having tighter time windows puts

more pressure on the logistics company’s resources and may lead to higher invest-

ments to compensate for the hectic service time windows. When the time windows
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are wider, it is easier for the decision-maker to determine optimal routing decisions.

This is because of the higher degrees of freedom of shifting customers in a wider time

interval. In this section, we review three important variants of VRP, including capac-

itated vehicle routing problem (CVRP), vehicle routing problem with time windows

(VRPTW), and multi-period vehicle routing problem (MPVRP).

1.4.3.1 Capacitated vehicle routing problem

In this problem, we are given a network of G = (V ,A) which represents the network

graph of the transportation system, in which V is equal to the set of vertices (nodes)

and A is equal to the set of arcs. V consists of a depot and multiple customers

where the distances between each pair of nodes are known. A number of vehicles

are available to serve the customers defined by K = {1, ..., K}. All customers have

a specific demand, and the vehicles have the same maximum capacity. Therefore,

conveying shipments beyond the capacity of the vehicles is not allowed. CVRP tries

to find the shortest route for the vehicles while satisfying all customers’ demands. In

this model, the vehicles all start and end their route at the depot.

In this section, a linear integer programming model of a CVRP is presented. The

objective function for this model is minimizing the total cost of the system, which in

this particular case is the total distance of the route, where all customers’ demands

are satisfied. Let xijk be a binary variable with a value of 1 if the arc from node i

to node j using vehicle k exists in the optimal routing decision, whereby there is no

travel from a node to itself. Also, cij indicates the cost of traveling from node i to

node j. Here, demi represents each customer’s demand, and V Cap is the maximum

capacity of each vehicle. Here, the cumulative sum of the satisfied demands by vehicle
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k in a route should not violate its capacity. Based on the explanations mentioned

above, and assuming node 1 as the depot, the related mathematical model of a CVRP

can be formulated as follows:

min
n∑

i=1

n∑
j=1

K∑
k=1

cijkxijk (1.8)

n∑
i=1

xijk =
n∑

i=1

xjik ∀j ∈ V , k ∈ K (1.9)

n∑
i=1

K∑
k=1

xijk = 1 ∀j ∈ {2, ..., n} (1.10)

n∑
j=2

x1jk = 1 ∀k ∈ K (1.11)

n∑
i=1

n∑
j=2

demjxijk ≤ V Cap ∀k ∈ K (1.12)

∑
i∈S

∑
j∈S

K∑
k=1

xijk ≤ |S| − 1 ∀S, |S| ∈ {2, ..., n} (1.13)

xijk ∈ {0, 1} ∀i, j ∈ V , k ∈ K (1.14)

The cost objective is presented by (1.8). Constraint (1.9) guarantees that the

number of times a vehicle enters a node equals the number of times it leaves that

node. Constraint sets (1.9) and (1.10) together ensure that each node is visited only

once using the same vehicle. Constraint (1.11) makes sure that each vehicle ends its

route at the depot. The capacity limitation is applied in constraint (1.12). Finally,

the sub-tour elimination is handled utilizing constraint (1.13). It is noteworthy to

mention that there are different methods to handle the sub-tours, such as Dantzig-

Fulkerson-Johnson formulation and Miller-Tucker-Zemlin formulation. Here, we have

applied the former in the model, which indicates that the number of arcs that can

be packed in the clique defined by the set of nodes S cannot exceed |S| − 1. Finally,
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(1.14) determines the nature of the decision variables in the problem.

1.4.3.2 Vehicle routing problem with time windows

The VRPTW is an extension of the CVRP in which the service time of each cus-

tomer should adhere to a specified time interval or window, and vehicles arrive at the

customer station at that specified time window. The assumptions are similar to the

ones addressed in the CVRP model. In addition to the previous notation, some extra

variables are required. Let [αi, βi] be the time window of costumer i. Therefore, a

vehicle must arrive at costumer i not earlier than αi and not later than βi. Here, tij

denotes the required time to arrive at costumer i from costumer j, which includes the

service time at costumer i as well. The arriving time of the vehicle to customer i is

denoted by si. Now, the associated model of VRPTW can be formulated as follows:

min
n∑

i=1

n∑
j=1

K∑
k=1

cijkxijk (1.15)

n∑
i=1

xijk =
n∑

i=1

xjik ∀V , k ∈ K (1.16)

n∑
i=1

K∑
k=1

xijk = 1 ∀j ∈ {2, ..., n} (1.17)

n∑
j=2

x1jk = 1 ∀k ∈ K (1.18)

si + tij +M(1− xijk) ≤ sj ∀i ∈ V , j ∈ V\{1}, k ∈ K (1.19)

αi ≤ si ≤ βi ∀i ∈ V (1.20)

xijk ∈ {0, 1} ∀i, j ∈ V , k ∈ K (1.21)

si ≥ 0 ∀i,∈ V , k ∈ K (1.22)

Constraint (1.16) to (1.18) is the same as the CVRP. Constraint (1.19) ensures
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that the hard time window limitations are established when developing the optimal

routing plans. Considering a soft time windows necessitates a penalty function in the

objective function for potential violations of the time windows. Constraint (1.20) is

utilized to keep track of the duration of the routes. If there is a route from i to j,

servicing node j can be initiated at least tij later than the start of the service time at

costumer i. It is noteworthy to mention that when applying time windows, it is not

necessary to incorporate sub-tour elimination constraints because the time window

constraints automatically exclude sub-tours. Also, (1.21) and (1.22) define the nature

of the decision variables. It is noteworthy to mention that Big-M constraints are a

common source of instability for optimization problems. Generally, they include a

large coefficient determined to be larger than any reasonable value assigned to a

continuous variable or expression. The big M impacts the constraint based on the

binary variable getting a value of zero or one.

1.4.3.3 Multi-period vehicle routing problem

First introduced by Beltrami and Bodin (1974), MPVRP is a variant of the capaci-

tated VRP, in which serving the customers is handled during a multi-period planning

horizon. The real-life applications of MPVRP are available in many topics such as

green VRP, VRP in reverse logistics, and waste collection problems. In MPVRP,

the decision-maker is interested in assigning the customers to the available days of

the planning horizon, clustering customers to tours, and defining the sequence of

customers in each tour.

To develop the MPVRP, we need to adjust the variables to encompass the time

concept and also introduce a new variable to identify the scheduling of customers over
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the planning horizon T = {1, ..., T}. Therefore, we adopt xtijk as the binary variable

indicating the movement from node i to node j using vehicle k in day t. Also, define

the binary variable ztik = 1 if node i is assigned to day t using vehicle k. Then, we

can formulate MPVRP as follows:

min
T∑
t=1

n∑
i=1

n∑
j=1

K∑
k=1

cijkx
t
ijk (1.23)

n∑
i=1

xijk =
n∑

i=1

xtijk ∀j ∈ V , k ∈ K, t ∈ T (1.24)

T∑
t=1

n∑
i=1

K∑
k=1

xtijk = 1 ∀j ∈ {2, ..., n} (1.25)

n∑
j=2

xt1jk ≤ 1 ∀k ∈ K, t ∈ T (1.26)

n∑
j=2

xtj1k ≤ 1 ∀k ∈ K, t ∈ T (1.27)

n∑
i=1

n∑
j=2

demjx
t
ijk ≤ V Cap ∀k ∈ K, t ∈ T (1.28)

ztik =
n∑

j=1

xtijk ∀i ∈ V , k ∈ K, t ∈ T (1.29)

∑
i∈S

∑
j∈S

K∑
k=1

xtijk ≤ |S| − 1 ∀S ∈ {2, ..., n}, t ∈ T (1.30)

xtijk, z
t
ik ∈ {0, 1} ∀i, j ∈ V , k ∈ K, t ∈ T (1.31)

The cost objective is presented by (1.23). Constraint (1.24) is the flow balance

constraint. Constraint sets (1.25) to (1.27) together ensure that each node is visited

only once in just one period and using the same vehicle. Constraint (1.28) ensure the

solution adheres to the capacity limitations. The connection between the assignment

and routing variables is established in 1.29. Also, sub-tour elimination is addressed
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by constraint (1.30). Finally, (1.31) determines the nature of the decision variables

in the problem.

1.4.4 Optimization with uncertain data

Unknown data and the lack of perfect information abound in decision-making prob-

lems in the real world. However, actions still need to be taken, and decisions must be

made, even without perfect access to information. This has motivated the application

of different methods for decision-making under uncertainty. We are not exactly look-

ing to measure the uncertainty. In fact, these models seek a proper way to provide a

measure to estimate the uncertainty and adequately formulate it as in an optimiza-

tion problem. Considering well-defined and deterministic input data for a model,

the associated optimal solution is derivable. However, with uncertain but describable

(using some measures such as probability function) data, a desirable solution can be

achieved, although not globally optimal. Therefore, here, the decision-maker is trying

to describe the uncertain data through some measures, such as probability functions.

Assuming that the uncertainty has been described using probability functions,

the decision-maker can formulate the problem in different ways. Maybe the easiest

method is using corresponding expected values of uncertain data, from which the

deterministic optimization problem is achievable. The drawback of this approach is

that the outcome might not be satisfactory as the data variance might be significant.

Alternatively, different scenarios (plausible input data sets) can be assumed with

their associated probability of occurrence. This approach belongs to the stochastic

optimization category. A single solution can be achieved by formulating the prob-
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lem implicitly by weighting the individual solutions associated with each input data

set. In other words. the obtained solution is sufficiently pre-positioned concerning

all the scenarios but not particularly to any of them. How to formulate uncertain

data meaningfully in optimization problems is the main topic of optimization with

uncertain data approaches.

Although different studies have provided interpretations of uncertainty, they share

similarities, and three main groups can be developed based on them. The uncertainty

was defined as the difference between available information and the amount of de-

manded information when performing a specific task by Galbraith (1973). Two types

of uncertainty were introduced in Mula et al. (2007) based on flexibility in the con-

straints, aspiration levels of goals, and uncertainty in input data: randomness and

epistemic uncertainty. The main difference between these two classes is that ran-

domness originates from the random nature of the parameters, whereas epistemic

uncertainty suffers from a lack of knowledge of data. The epistemic uncertainty can

originate from insufficient data or unavailability of reliable data about input param-

eters.

Bairamzadeh et al. (2018) proposed three types of uncertainties: randomness,

epistemic, and deep uncertainty based on the amount of available information. The

randomness can be tackled using stochastic programming methods or the scenario-

based robust optimization technique. Epistemic uncertainty can be addressed by pos-

sibilistic programming (fuzzy logic) or a robust optimization approach. Finally, deep

uncertainties are handled by convex robust optimization and with fuzzy logic tech-

niques. According to Bairamzadeh et al. (2018) deep uncertainty can be characterized

by lack of information to estimate objective or subjective probability/possibility of
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Figure 1.2: Uncertainty types and modelling approaches (Bairamzadeh et al., 2018)

plausible future situations. In other words, deep uncertainty is a condition in which

the decision-maker does not know either the suitable models to characterize interac-

tions among a system’s variables or the probability/possibility measures to describe

uncertainty about critical parameters in the models. A similar category has been pro-

vided by Bairamzadeh et al. (2018) in Figure 1.2. It is noteworthy to mention that

epistemic uncertainty is presented in linguistic form or judgmental data, and they are

associated with the lack of knowledge about input data. In this type of uncertainty,

experts’ opinion is a primary component.

The fuzzy set and possibility theories are pertinent to decision-making among the

complementary techniques developed for an uncertain environment. In both theories,

imprecision is represented and manipulated mathematically through separate but re-

lated mathematical frameworks (Julien, 1994). There may also be cases in which

some of the parameters of a decision model are not precisely known, and thus their

probability distributions cannot be determined. Using the fuzzy set theory, it may

be possible to represent the uncertainty resulting from this lack of knowledge. Fuzzy

sets can also often be expressed in terms of possibility theory, where the member-

ship functions represent possibility distributions describing fuzzy restrictions on the

allowable values of the parameters.
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In possibility theory, uncertainty is characterized by employing a possibility func-

tion πY (y). The degree of possibility of each y in a set S is represented by πY (y).

A situation is considered impossible when πY (y) = 0 for some y. When πY (y) = 1

for some y, the outcome y is deemed to be possible, i.e., just unsurprising, normal,

usual. Compared to a probability of 1, this is a much weaker statement. Based on

the possibility function πY (y) necessity and possibility measures, (NY ,ΠY ), can be

described as probability bounds (upper and lower probabilities) (Zio and Pedroni,

2014). In this regard. the possibility of a set A, Π(A), is defined by:

ΠY (A) = sup
y∈A
{πY (y)} (1.32)

Also, the necessity measure is obtained using (1.33):

NY (A) = 1− ΠY (A) = 1− sup
y/∈A
{πY (y)} (1.33)

In the above formulation, A stands for the complement of A. Considering P(πY )

as a family of probability distributions such that for all sets A, we have NY (A) ≤

P (A) ≤ ΠY (A). Then

NY (A) = inf P (A) (1.34)

ΠY (A) = supP (A) (1.35)

where inf and sup are concerning all probability measures in P . As a result, the

necessity level is regarded as a lower probability level, while the possibility level

represents an upper limit of probability.

On the other hand, when estimating the probability or possibility of parameters

is not an option, deep uncertainty can be utilized to involve uncertainty in the model.
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Also, each of these categories is comprised of several sub-classes, and even there are

hybrid methods, such as fuzzy robust optimization. In this thesis, we utilize different

approaches to reflect the existing uncertainties: stochastic programming, scenario-

based robust optimization, and chance-constrained programming. Here, we review

the basics of these methods.

Finally, it is noteworthy to highlight the difference between a dynamic program

and a stochastic one. The first issue differentiating a stochastic program from a

dynamic one is uncertainty. In stochastic programming, there is uncertainty, and

the decision results in a distribution of changes. However, dynamic programming,

does not necessarily involve uncertainty. For example, in two-stage stochastic pro-

gramming, the model simultaneously decides the solutions for design and control

variables, not in sequence. In dynamic programming, a complex problem is divided

into more manageable subproblems, which are solved recursively to find the optimal

solution to the complex problem. Here using Bellman’s principle of optimality, it

is assumed that whatever the initial state is, the remaining decisions must form an

optimal policy concerning the state resulting from the first decision. However, appli-

cations for integrating two techniques as a stochastic dynamic program are available

in the literature, such as Han et al. (2018).

1.4.4.1 Stochastic programming

In this section, a standard formulation of the two-stage linear program introduced

by Birge (1997) has been provided. The model can be equivalently formulated as a

large-scale linear program that can be solved employing standard linear programming

techniques. In this model, X and Y are two polyhedral sets, the uncertain parameter
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ω ∈ Ω is a random variable from a probability space. The first stage is built upon the

first-stage variable x in problem (SP1), which is decided before the realization of the

uncertain parameter ω. The second stage, problem (SP2), involves corrective actions

that can be taken after the realizations of the random variables. In other words,

problem (SP1) seeks a first-stage decision that minimizes the first-stage objective

and the expected cost of second-stage decisions (recourse decisions). It is noteworthy

to mention that a single-stage stochastic program only optimizes the expected value

with no subsequent recourse.

(SP1)min ctx+ Eω[Q(x, ω)]

x ∈ X (1.36)

(SP2)Q(x, ω) = min f(ω)ty (1.37)

D(ω)y ≥ h(ω) + P (ω)x (1.38)

y ∈ Y (1.39)

1.4.4.2 Scenario-based robust optimization

Robust optimization is applied in this study to handle the uncertainty of parameters.

This method can be extremely useful especially in the case with limited information

about the distribution of data. Based on partial details of the uncertain parameters’

distribution, a proper design of uncertainty sets can ensure the consistency between

the robust counterpart and the primary problem. Mulvey et al. (1995) extended

the objective function of problem (SP1) and introduced the scenario-based robust

optimization approach. They discussed the robust optimization of mathematical pro-
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gramming problems with noisy, erroneous, or incomplete data where the optimization

process is related to problems that the data type is of scenario type. That research

raised two issues, including model robustness and solution robustness, and presented

a robust optimization model by considering the cost-benefit analysis between these

two concepts. The optimal solution of mathematical programming regarding optimal-

ity is still robust if it remains close to the optimal for each realization of a particular

scenario, called solution robustness. On the other hand, the solution is robust if it

remains almost feasible for any realization of a specific scenario, named model robust-

ness. The penalty function measures the infeasibility of the model. In their robust

optimization model, there are two types of variables: design variables and control

variables. For design variables, possible parameters are decided before the realiza-

tion of the uncertain parameters, and they cannot be altered after the realization.

Control variables are adjusted after a certain realization of the uncertain parameters.

Therefore, they depend both on the realization of uncertain parameters as well as the

optimal vector of the design variables.

In this formulation, the objective function is (1.40). Here, f(y) is a variability

measure of the second-stage objective. The variance is a widely used measure for this

purpose. Also, λ is a non-negative scalar that stands for the risk tolerance of the

modeler. The first element of the objective function stands for the design variables.

The second component incorporates the expected value of the objective function for

different scenarios with regard to control variables. Finally, the last part is utilized

as a penalty term to maintain the stability of controls over all scenarios.

min ctx+ Eω[Q(x, ω)] + λf(y) (1.40)
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1.4.4.3 Chance-constrained programming

First introduced by Charnes and Cooper (1959) and Miller and Wagner (1965),

chance-constrained programming (CCP) is a competitive tool for solving optimization

problems under uncertainty. This method guarantees that the model’s constraints are

satisfied with a specific confidence level. In fact, quantifying the relationship between

profitability and reliability, CCP guarantees a certain performance level.

We assume that X ∈ Rn, and the uncertain parameter ω ∈ Ω is a random variable

with a probability distribution of P . Also, α is the confidence level that belongs to

interval (0, 1). We define the original model as:

min ctx

G(x, ω) ≤ 0 (1.41)

x ∈ X (1.42)

Then, we can develop the associated CCP of the model as:

min ctx

P
(
G(x, ω) ≤ 0

)
≥ (1− α) (1.43)

x ∈ X (1.44)

1.4.5 Solution algorithms

There are mainly two points to be considered in the developed solutions algorithms

for this research: managing the bi-objective nature of the problem, deriving efficient

solutions and handling large-scale problems. The former matter is addressed in the

associated models using an augmented ε-constraint method from which global Pareto
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front points are achieved. Also, this technique is an effective way to explore the

existing trade-offs between the objective functions. The second question is handled

by applying branch-and-cut (available in the programming software) and developed

branch-and-price techniques.

1.4.5.1 ε-constraint method

The augmented ε-constraint method was proposed by Mavrotas (2009) and then im-

proved by Mavrotas and Florios (2013). We select this method due to its advantages

in effectively and efficiently generating the Pareto optimal set for the decision-maker.

Belonging to the category of generation methods for multiple objective problems,

the ε-constraint method outshines the most commonly applied weighting approach

(Mavrotas, 2009) in the following aspects: 1) capability of producing non-extreme

efficient solutions and hence providing a richer representation of the solution set, 2)

being able to handle integer and mixed-integer models, 3) indifference in the scale of

multiple objectives (as only one objective remains as the main objective, and the rest

are treated as constraints), and 4) the easiness in adjusting the number of solutions.

In addition to the benefits of the standard ε-constraint method, the augmented ε-

constraint method is further enhanced by incorporating acceleration issues to ensure

the solution efficiency while keeping reasonable solution times. Moreover, accord-

ing to a numerical test conducted by Zhao et al. (2021), it is demonstrated that

the augmented ε-constraint approach delivers better performance (i.e., average gap

and computational time) over the weighted goal programming and the lexicographic

approach in a waste management network. Furthermore, unlike many other popu-

lar multi-objective approaches, such as goal programming and weighted sum meth-
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ods, the augmented ϵ-constraint approach exempts the decision-maker from agitating

about the weights of objective functions, which in turn omits the need for scaling

them over each other. Given the above features, the augmented ε-constraint method

is applied in this research to derive a global Pareto set of solutions effectively with

both continuous and discrete variables. This method can be formulated as follows:

min f1(x)− eps× (δ/∆)

f2(x) + δ = ε

B(x, b) = 0

δ ≥ 0

The symbol ε represents the upper bound of the second objective, and δ is the cor-

responding slack variable for the constraint. Given the range of the second objective

function, parameter ∆ is included to avoid scaling issues. Furthermore, parameter eps

is an adequately small number that usually takes a value in the interval [10−6, 10−3]

(Mavrotas, 2009).

1.4.5.2 Branch-and-price algorithm

Obtained by combining branch-and-bound (BB) with column generation (CG) meth-

ods, branch-and-price (BP) is a combinatorial optimization technique for solving inte-

ger linear programming and mixed-integer linear programming problems with many

variables. This method takes advantage of CG as a pricing scheme to deal with

large-scale problems. CG avoids unnecessary enumerations by considering the most

negative (or positive) reduced cost. However, when an LP relaxation is solved by
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column generation, the solution is not necessarily integral, and it is not clear how to

obtain an optimal or even feasible integer solution to the IP since standard branch-

and-bound techniques can interfere with the column generation algorithm.

The procedure in BP starts with reformulating the model using the Dantzig-

Wolfe formulation technique to generate the master problem (MP). The challenge in

solving the master problem lies in a large number of generated columns. To deal with

this issue, BP considers a restricted master problem (RMP) in which only a subset

of columns has been considered. Then, a relaxed form of the RMP is solved, and

the achieved solution’s optimality is examined using a sub-problem named pricing-

problem. The pricing problem determines if any new columns exist to be added to

the basis in RMP. The algorithm terminates whenever no columns are available to

be added to the RMP. Also, the branching takes place when no columns price out to

enter the basis, meaning that the LP solution does not satisfy integrality conditions.

In other words, if the optimal solution set of the linear master problem contains

fractional values, then two new complementary subproblems are generated using the

branching rules.
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Chapter 2

Literature Review

This chapter explores the relevant literature in several pathways, including time con-

siderations, uncertainty issues, disruption management, solution methods, and haz-

ardous waste management, from which literature gaps are identified.

In academia, different classification exists for the studies in the hazmat field. The

first classification was introduced by Erkut et al. (2007) dividing the existing works

into four categories: risk assessment, routing, combined facility location and routing,

and network design. Later, Bianco et al. (2013) added another group as toll setting

to the above classification. Recently, Mohri et al. (2021) considered six classes for

the related problems: Hazmat Risk Assessment/Analysis, hazmat routing, hazmat

routing-scheduling, hazmat facility location, hazmat location-routing, and hazmat

transportation network design. Regardless of their category, all the papers in these

classifications have contributed a lot to developing efficient networks. Focusing on

single or multi objectives, a significant number of operational research and mathe-

matical optimization techniques have been applied to solve hazmat transportation

problems considering particular objectives. The primary difference between a haz-
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mat transportation model with other transportation models originates from the term

risk. Risk is an inevitable element of any hazmat-related network due to the potential

threats to human beings, the environment, and properties. In the literature, there is

almost a consensus over the definition of the term hazardous material, and different

references share similarities in explaining it. On the contrary, the definition of risk

alters widely, and many distinct methods have been presented and discussed in the

last decades.

In Figure 2.1a, we can see that since 2019 the road transportation mode accounted

for more than 72% of the articles, highlighting the importance of exploring such a

common and vital shipping mode for hazardous materials. Also, as illustrated in

Figure 2.1b, risk assessment and routing problems constitute the most investigated

classes of hazmat transportation.

This project aims to develop a mathematical model that is able to determine

the simultaneous options for the locations of hazmat facilities and the routing plans

by minimizing both cost and risk objectives. For identifying the available gaps in

the relevant literature, the review focus has been on the location-routing problems

in the hazardous material area, including non-medical and medical networks. The

taxonomy of the relevant literature has been provided in Table 2.1. For this purpose,

several features of the related publications such as model decisions (location, routing,

and inventory), uncertainty considerations, disruptions, time-dependent nature, time

windows application, and solution methods have been explored.

The first part of the literature review section focuses on the four most relevant

areas in hazmat transportation: 1) time considerations, 2) uncertainty issues, 3) dis-

ruption management, and 4) solution methods. According to different model features,
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(a) Number of articles divided by transporta-

tion mode

(b) Number of articles divided by problem cate-

gory

Figure 2.1: Number of contributions by transportation mode and problem category

(Holeczek, 2019)
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the second part investigates an important branch of hazardous location-routing prob-

lems (HLRP), which is medical waste management. Then, based on the review, the

literature gap identification is presented at the end of this section.

2.1 Time considerations

The applications of time-related attributes in the transportation networks generally

appear in the form of time windows and time-dependent characteristics. The former

employs restrictions on the arrival and departure times of specific locations in a

dynamic road network. The latter, apart from the spatial considerations, incorporates

time-varying parameters in the model. Although involving time attributes seems to be

a realistic and vital component of any road network setting, they have been addressed

only in a small number of articles in the hazmat location-routing literature.

As one of the pioneers in applying time windows in the vehicle routing problem of

hazardous materials, Tarantilis and Kiranoudis (2001) considered hard time windows

at the depot. Later on, Zografos and Androutsopoulos (2004) studied the vehicle

routing problem with time windows (VRPTW) by assuming permissible service time

intervals. Adopting a weighted sum approach, they converted the bi-objective model

into a single objective one and solved it using an insertion heuristic. Moreover, they

examined the proposed model based on tight and loose time windows in four different

scenarios. Another application of hard time windows can be found in the work of

Zhang et al. (2005a). They implemented hard time windows on the delivery time

of vehicles. Employing load upper bounds on the road segments, a load limitation

was imposed on the various edges of the road, based on the nature of the pathway.
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Ma et al. (2012) examined the VRPTW and link capacity constraints in a hazmat

network. In this study, the arrival time of vehicles to customer nodes should adhere

to the hard time window of the associated customer. Moreover, the vehicles were

obliged to provide a complete service to each location before leaving the spot. Also,

the link capacity feature for the road segments was affected by the weight of the

shipment. Restricting the accessing times of customers and depots, Pradhananga

et al. (2014) and Pradhananga et al. (2016) took advantage of similar time window

settings in formulating the vehicle routing problem. In these studies, the time of

starting and ending the operations of the vehicles in depots as well as the service

time of customers was controlled by predefined time intervals. The former research

developed a bi-objective optimization model for a routing and scheduling problem of

a hazmat network and minimized the total scheduled travel time and transportation

risk. The latter extended the previous work by considering the impacts of significant

traffic delays associated with hazmat incidents, in addition to the risk to the exposed

population. This was performed by utilizing a measure based on the probable loss

due to congestion created by the probable incident.

Imposing time intervals in the models is not limited to the time window concept.

There are occasions where a link is not accessible for the routing decisions as a result

of traffic control, inappropriate weather conditions, or construction activities, which

is called road closure. Unlike the time window, which outlines accessible intervals

during a specific period, road closure restricts the use of a link within a period. In

this regard, the road closure considerations were included in the routing problem of

hazmat shipments by Fan et al. (2015) through assuming no parking or waiting for

the closed road to open. The authors presented a bi-objective nonlinear programming
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model and a heuristic algorithm to optimize the hazmat risk and transportation cost

subject to road closure constraints.

The associated literature is still in its infancy regarding the utilization of time-

dependent attributes. Toumazis and Kwon (2013) included the time-dependent ac-

cident probabilities and consequences depending on the shipment’s entrance time

in the arc and employed the conditional value-at-risk (CVaR) method to measure

the hazmat transportation risks. Zhou et al. (2014) examined the time-dependent

lane reservation problem for hazmat shipment with time-varying transportation risk

throughout the day. They proposed a mixed integer model minimizing the impact

on the normal traffic from lane reservation and the time-dependent transportation

risk. In their work, a cut-and-solve-based ε-constraint method was developed to solve

the model. Incorporating road conditions and time-dependent fuzzy transportation

risk, Meiyi et al. (2015) formulated a location-scheduling model. They designed a

greedy method-based adaptive hybrid particle swarm optimization algorithm to find

the optimal facility locations and the scheduling of vehicles. The research by Hu et al.

(2017) concentrated on a time-dependent hazardous materials vehicle routing prob-

lem in a two-echelon supply chain system. Their mixed-integer model determined the

departure time and the routing arrangement that minimizes the expected risk using a

five-level risk function. This function depended on the different population densities

caused by traffic congestion and was introduced to reflect the peak and off-peak hours

during the day.

There are some articles in the literature that involve both time considerations.

Time-dependent risks taking into account accident probabilities and load-dependent

population exposure were addressed in Androutsopoulos and Zografos (2012). They
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applied a multi-objective integer network flow model to the hazmat distribution prob-

lem with hard customer time windows. For solving the problem with intermediate

stops, a label-setting algorithm was integrated into a route-building heuristic algo-

rithm. Esfandeh et al. (2018) proposed a bi-level time-dependent hazmat logistics

network with road closures as a policy to control the hazmat transportation risk.

Providing a set of alternatives for each shipment in their model, they suggested a

column generation-based heuristic by generating the set of alternatives for each ship-

ment. In a more recent study, the location-routing problem of hazmat shipments was

investigated in Hu et al. (2019). Their model comprised time-dependent features on

edge and customer soft time windows while considering alternative routes between

each origin-destination pair. However, other practical factors such as possible uncer-

tainties and disruptions were entirely ignored in that study.

2.2 Uncertainty issues

Considering the sensitivity of hazmat transportation, embedding uncertainties in the

model, and being prepared for different plausible scenarios in the future is a vital

matter. In this regard, optimization with uncertain data can be categorized into

three main branches: stochastic, epistemic, and deep uncertainties (Bairamzadeh

et al., 2018). While the first two groups (stochastic programming and fuzzy logic)

are mainly measure-based approaches, the last one generally belongs to the robust

optimization concept. It should be noted that by being measure-based, we mean they

can be estimated using proper measures, such as probability and possibility. The

stochastic division requires at least one variable with a volatile or random nature to
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fit density probabilities based on the historical data. Sometimes, logical assumptions

might be replaced with data records as well. On the other hand, when there is no

access to sufficient data records or there is inadequate cognition of the investigated

case, applying fuzzy logic and expert opinions would be a suitable alternative. Finally,

if we face deep uncertainty regarding the required information or want to explore the

worst-case results of the model, the robust optimization approach can be beneficial.

Besides, the application of scenario-based approaches exists in all three categories.

It is almost implausible to perceive that the actual process of a problem would

strictly adhere to the determined plan. Each project is exposed to sudden and unpre-

dicted situations, which can lead to disruptions during the process. In reality, severe

weather conditions, natural or man-made disasters, and traffic congestion are some

examples that might disrupt the facilities or the transportation routes. The orga-

nization should be prepared for managing the situation when facing disruptions in

the system with contingency plans. In this case, by enhancing the practicality of the

transportation framework, deviating from the original plans will be controlled with

a minimum amount of risk and expenses. Motivated by the importance of incorpo-

rating customer-related services in hazmat transportation, this research particularly

will examine the possibility of random edge disruptions. Since edge-disruption is one

common type of resource unavailability in the real-world, this project will support

the hazmat carrier in making proactive location-allocation-routing decisions. As a

result, decision-makers will benefit from cost-effective and environmentally friendly

networks with or without disruptions.

Furthermore, the recent COVID-19 pandemic has been a serious matter for hazmat

transportation. Healthcare waste is known as the second most hazardous waste after
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radiation waste. Processing the tremendous amount of medical waste during the

pandemic has become a considerable burden for the authorities, especially during the

pandemic (Das et al., 2021). The global economy still suffers the loss and irreversible

damages due to the ongoing COVID-19 pandemic. The significant number of infected

people with a high mortality rate due to COVID-19 demonstrates the pandemic’s

pressure on the associated organizations. According to WHO (2021)’s dashboard,

the number of reported COVID-19 cases worldwide has passed 530 million by June

2022, claiming around five million lives. The high amount of generated waste during

the outbreak is also a potential threat to the environment due, considering both

medical (Ding et al., 2021; Abu-Qdais et al., 2020) and plastic (Nowakowski et al.,

2020; Prata et al., 2020) wastes. As stated by State Council’s joint prevention and

control mechanism in China, although a 30% cut in the amount of municipal solid

waste was observed during the pandemic in Hubei Province, the generated medical

waste experienced a surge of 370% (Klemeš et al., 2020).

A significant effort has been undertaken by many authors to deal with determin-

istic location-routing problems (LRPs). However, in reality, assuming fixed values

for many parameters will lead to impractical solutions due to the impacts of factors

such as traffic jams, weather conditions, or road construction imposing uncertainty

on their associated values. Lately, being recognized as a vital component to generate

practical solutions, the necessity of embedding uncertainties in LRPs has been fur-

ther highlighted. As mentioned earlier, three main optimization under uncertainty

approaches have been employed, including robust optimization, stochastic program-

ming, and fuzzy logic.
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Stochastic programming. Several studies have explored the stochastic program-

ming applications in the HLRP literature. The work by Ardjmand et al. (2016)

assumed stochastic transportation costs for hazardous materials and applied a ge-

netic algorithm to develop a bi-objective stochastic HLRP. Moreover, the role of

customers was also involved in their model as an influential parameter. Their model

sought to determine the locations of customer serving facilities and the disposal sites

while making the optimal routing choices considering both risk and cost objectives.

Rabbani et al. (2019a) proposed a stochastic multi-period model with an uncertain

amount of generated waste and the number of people at risk. Aiming for three

model decisions as facility location, inventory, and routing, their model introduced a

simulation-optimization approach based on a multi-objective evolutionary algorithm

through combining NSGA-II and Monte Carlo simulation. Finally, Yu et al. (2020a)

incorporated uncertainty considerations using stochastic cost, demand, and affected

population in the network design of hazardous waste management. The authors for-

mulated a two-stage stochastic multi-objective model for the network planning of this

system and implemented a sample average approximation-based goal programming

to solve the mathematical model.

Robust optimization. Berglund and Kwon (2014) investigated the joint haz-

ardous waste facility location and vehicle routing problems under demand and risk

uncertainty utilizing a budgeted robust optimization methodology. Their research

consisted of an independent route-choice behavior of hazmat carriers, which was re-

formulated as a single-level mixed-integer program. Focusing on a multi-objective

multi-product hazardous waste LRP, Delfani et al. (2020) developed a basic pos-
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sibilistic chance-constrained programming approach and compared its results with

a robust possibilistic programming model of the proposed problem. Liu and Kwon

(2020) considered a bi-level robust mixed-integer optimization problem for addressing

a combined facility location and hazmat network design. In this study, the upper-level

problem handled the facility location and risk mitigation decisions using a min-max

structure while the routing decisions were made at the lower level. Finally, a cutting

plane algorithm combined with Benders decomposition was designed to solve the de-

veloped model. Another bi-level LRP of hazardous waste management network was

examined in Saeidi-Mobarakeh et al. (2020). The uncertainty considerations were em-

bedded in the model through a scenario-based robust technique to tackle the highly

fluctuating nature of hazardous waste generation rates. An exact multi-part solu-

tion method was presented as a solution method to deal with the bi-level and robust

nature of the problem. Finally, the application of temporary facilities in a 4-tiered

infectious waste management network during a pandemic was explored in Zhao et al.

(2021). They Developed a bi-objective scenario-based robust model for the system

and employed a two-commodity flow formulation assuming a set of scenarios for the

generated waste in hospitals and clinics.

Fuzzy logic. The first research incorporating fuzzy numbers in HLRP scope is

Warmerdam and Jacobs (1994). As the pioneers in applying fuzzy sets in this area,

they introduced fuzzy sets standing for the public’s degree of acceptance and imple-

mented linear and non-linear fuzzy membership functions. The very first attempt

to utilize credibilistic chance-constrained programming in the hazardous materials

transportation literature was made in Wei et al. (2015). The authors adopted fuzzy
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variables for the transportation cost and the number of affected people. Considering

fuzzy customer satisfaction level, Ghezavati and Beigi (2016) suggested a multi-waste

HWLRP with multiple treatment technologies. As mentioned earlier, Delfani et al.

(2020) formulated a hybrid robust-fuzzy method by taking advantage of a robust

possibilistic and a basic possibilistic chance-constrained programming approaches.

Implementing fuzzy chance-constrained programming technique to address the un-

certain demand parameters Tirkolaee et al. (2020) explored the sustainable location-

routing problem under the pandemic setting with time windows for medical waste

management. The weighted goal programming method was employed to deal with

the multi-objective nature of the model.

2.3 Disruption management

Considering disruptions in the hazardous products network can play a crucial role in

planning the transportation of the shipments. Failing to make the appropriate deci-

sions in this section might impose high expenses and risks on the system. Moreover,

route and facility disruptions for various reasons make them inaccessible, probably

for an unknown period. This issue will harm the performance of the system with

likely severe consequences. Despite the importance of this subject, only a few studies

have incorporated disruptions in the hazmat literature, with no publication exploring

disruptions in the HLRP field of study.

In this regard, Mohammadi et al. (2017) proposed a mathematical model for haz-

mat transportation network by embedding hub node disruptions through external

events as well as hazmat incidents. Also, integration of the chance-constrained pro-
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gramming with a possibilistic programming framework was developed to handle the

uncertainties. A bi-modal hazmat transportation network with transfer yard disrup-

tions was presented by Ghaderi and Burdett (2019). For this purpose, a two-stage

stochastic HLRP was developed and solved using three heuristic methods based on

statistical sampling. Jabbarzadeh et al. (2020) proposed a bi-objective two-stage

stochastic program for rail shipment planning in the presence of random disruptions.

Their results suggested that the implementation of disruption contingency plans can

significantly mitigate hazmat risks. A mathematical model addressing the rail-truck

intermodal transportation for hazmat under random yard disruptions was presented

in Ke (2020a). In this article, a scenario-based robust optimization model with several

recovery mechanisms at both the operational and strategic levels was proposed.

2.4 Solution methods

Reviewing the LRP literature reveals that the research on the applications of exact

algorithms has attracted relatively less attention compared to other types of solu-

tions methods. This issue is even worse regarding the HLRP publications, with only

a few studies adopting exact algorithms. The classical branch-and-bound algorithms

were the most popular approaches in the early publications in the LRP scope, such

as Laporte and Nobert (1981) and Laporte et al. (1989). Later, more complicated

approaches were developed employing branch-and-price (Berger et al., 2007; Akca

et al., 2009; Ponboon et al., 2016; Yu et al., 2019) and branch-and-cut (Belenguer

et al., 2011; Karaoglan et al., 2011; Contardo et al., 2013,0) algorithms for the LRP.

Talking about LRPTW, Ponboon et al. (2016) was the first work applying an exact
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solution approach by developing a branch-and-price approach. This method consisted

of a column generation and the elementary shortest path problem with resource con-

straint as the pricing problem. It is noteworthy to mention that the branch-and-price

algorithm has been shown to be a practical method in solving complicated and time-

consuming problems in the field of transportation and logistics (Li et al., 2012; Xue

et al., 2016; Qiu et al., 2017; Gao et al., 2020; Li et al., 2021b).

In LRP of hazardous materials or waste management networks, a few publica-

tions have applied exact algorithms. Focusing on obnoxious LRP, Cappanera et al.

(2003) applied a Lagrangean heuristic approach, decomposing the model into loca-

tion and routing subproblems, followed by a branch-and-bound algorithm. Xie et al.

(2016) presented a Lagrangian relaxation with embedded column generation and local

search for handling the LRP assuming probabilistic facility disruptions. In this re-

search, the Lagrangian relaxation decomposes the problem into location and routing

subproblems, while the column generation algorithm is responsible for solving the sub-

problems. A hybrid exact algorithm integrating branch-and-bound with several local

search structures was developed in Alvarez et al. (2020) to explore the HLRP with

split deliveries in a two-echelon network. The only publication addressing decomposi-

tion methods for hazardous waste location-routing problems was Wang et al. (2021).

The authors employed the ε-constraint method to deal with the multi-objectiveness

and utilized Benders decomposition for solving the two-stage stochastic household

hazardous waste network.
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2.5 Hazardous waste management

Waste management is one of the most important concerns of human societies. On

the one hand, the increasing volume of waste with its various available types, and

on the other hand, finding proper waste-handling methods adds to the complexity

of the available conditions. Moreover, hazardous waste forms a considerable portion

of the whole hazmat network. Examples of this hazmat type are solvent wastes,

detergents and cleaning chemicals, pesticides and garden chemicals, and petroleum

refinery wastewater treatment sludges. Therefore, it is worth reviewing their network

structure.

Generally, each hazardous waste management network is built upon a combination

of several operation sequences to fulfill the system’s requirements. These activities

include the collection, storage, treatment, recycling, and disposal of wastes. There-

fore, a suitable way to differentiate the associated network of hazardous waste is to

categorize them based on their system framework or hierarchy levels. According to

this classification logic, there are 2-tiered networks that involve two operation levels,

3-tiered networks with three operation levels, and so forth. In the 2-tiered networks,

the waste generation locations (generation nodes) are mainly the first level, where

the second tier encompasses the treatment or disposal facilities. Here, the generated

waste is collected from the first-tier locations and conveyed to the related operational

facilities in the second tier of the network. Consideration of disposal facilities in a

2-tiered waste logistics system can be found in the works of Zografros and Samara

(1989), ReVelle et al. (1991), Warmerdam and Jacobs (1994), Current and Ratick

(1995), Cappanera et al. (2003), Aboutahoun (2012), Farrokhi-Asl et al. (2018), Liu
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and Kwon (2020), and Tirkolaee et al. (2020). On the other hand, there are several

studies (List and Mirchandani, 1991; Stowers and Palekar, 1993; Wyman and Kuby,

1995; Giannikos, 1998; Zhang et al., 2005b; Berglund and Kwon, 2014; Tunalıoğlu

et al., 2016) with treatment facilities as the destination for the collected waste. Most

publications with a 3-tiered waste management network investigate the interactions

between generation nodes, treatment, and disposal facilities. However, there are cases

addressing storage and disposal activities (Jacobs and Warmerdam, 1994), or storage

and recycling centers (Zhao and Zhu, 2016; Zhao and Ke, 2017).

The most popular approach in the literature is the 4-tiered network. The authors

in this type of waste management system mainly explore the interactions between the

generation nodes, treatment centers, recycling facilities, and disposal locations. In

this scope, the application of storage activities alongside the treatment and disposal

locations exists only in Zhao and Verter (2015) and Mantzaras and Voudrias (2017).

Finally, Asefi et al. (2019) and Aydemir-Karadag (2018) are the only works that

developed 5-tiered networks by incorporating all the available operation options to

manage the system waste.

Apart from the hierarchy categorization of the waste management systems, it is

noteworthy to mention that recently mobile facilities and temporary stations have

attracted the attention of researchers for effective waste management. Especially

considering that establishing temporary storage or treatment stations can be a cost-

effective choice when dealing with high demands. In this regard, except for Zhao et al.

(2021) no papers have studied the temporary facilities in the associated literature so

far.
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2.6 Literature gap

In summary, Table 5.1 provides a comparison of the relevant hazmat literature re-

garding road transportation. For this purpose, several criteria consisting of decisions,

uncertainty involvement, time considerations, and solution methods have been pre-

sented. As shown in the table, so far, no joint consideration of robust optimization,

disruptions, time windows, and time-dependency issues exist in the hazmat location-

routing field of study. To that end, our work will attempt to fill the gap in the road

transportation of hazmat literature in several pathways. First, both the time window

and time-dependent parameters will be embedded into the hazmat carrier’s decisions

to achieve cost-efficient location and routing decisions while mitigating the associated

risk of the whole system. Second, random edge unavailabilities will be addressed as

one of the uncertain factors affecting the system performance, and a proper optimiza-

tion under the uncertainty technique will be applied to deal with them. Moreover,

multiple connecting edges will are assumed in the model to add extra flexibility to

the hazmat transportation network. The importance of this assumption is highlighted

when a balanced trade-off between the risk and cost needs to be achieved in hazmat

logistics.

Considering the medical waste literature in the LRP scope, we plan to formulate

a stochastic LRP for infectious waste management during a pandemic with the ap-

plication of chance-constrained time windows. Except for Tirkolaee et al. (2020) and

Zhao et al. (2021), no publications in the medical waste field determine joint facility

location and vehicle routing decisions under the pandemic setting. Also, Tirkolaee

et al. (2020) and Delfani et al. (2020) are the only publications in the relevant litera-

59



ture that have utilized chance-constraint programming in their mathematical model.

Moreover, the time window is a critical issue that is overlooked in most publications.

Especially assuming a dynamic road network setting for a model necessitates the ap-

plication of this feature. Only three studies have incorporated time windows in their

models in the HWLRP scope. Ghezavati and Beigi (2016) considered vehicle routing

with fuzzy time windows. Determining a service level function to measure satisfac-

tion levels, they compared service level functions of fuzzy time windows with hard

time windows. Rabbani et al. (2021) embedded customer satisfaction in HWLRP by

meeting customers’ time window. Time windows were defined for each demand node

in Tirkolaee et al. (2020), and minimizing the total violation from time windows was

included in the objective function.
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Chapter 3

A Time-Dependant Location-Routing Problem of

Hazardous Material Transportation with Edge

Unavailability and Time Window

Abstract The transportation of hazardous materials (hazmat) is an inseparable component of

any industrial society, where truck transportation is the most applied transportation solution for

hazmat due to its versatility and flexibility, especially for short-distance and direct shipments. This

paper explores the application of robust optimization in hazmat location-routing problems with

edge unavailability, time-dependent parameters, and delivery time window. To be specific, random

disruptions are formulated as a scenario-based robust optimization model, which is integrated with

a vehicle routing problem with time windows, and then solved by an augmented epsilon constraint

method. In applying the robust optimization, variabilities in cost and risk functions are introduced

as critical indicators for designing robust and reliable transportation plans. In the end, the model

is applied to a real-world hazmat transportation network, from which practical insights are derived.

The resulting assessments shed light on the trade-off between hazmat risk versus cost, and introduce

several useful indicators to facilitate the carrier in making appropriate decisions.

Keyword Hazardous Materials, Location-Routing Problem, Time Window, Time-Dependent,

Uncertainty, Disruption
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3.1 Introduction

The transportation of hazardous materials (hazmat), such as petroleum products,

receives a great deal of attention, both in academia and industry, due to the poten-

tial catastrophic impacts on people, property, and the environment. The statistics of

hazmat transportation indicate an increasing trend regarding the number of hazmat

shipments in the world. As shown by the U.S. Department of Energy (2019), the

amount of crude oil and petroleum shipments among the US Petroleum Administra-

tion for Defense Districts was approximated to be around 3,741, 3,943, 4,258, and

4,545 thousand barrels in the years of 2016, 2017, 2018, and 2019, respectively. An-

other reason for the importance of studying hazmat transportation is that the amount

of hazmat shipments in the US account for about 15% of the total cargoes, and al-

most 60% of this amount is conveyed using road transportation in the US (Bureau

of Transportation Statistics, 2017). A report published by the U.S. Department of

Transportation Pipeline and Hazardous Materials Safety Administration (PHMSA,

2015) pointed out that, between 2011-2015, around 87% of all hazmat incidents in the

US have occurred on the highways, and in the 2019 report, PHMSA (2019) indicated

that the number of hazmat incidents on US highways in the year 2017, 2018, and

2019 was 15,746, 17,928, and 20,657, respectively.

The aforementioned statistics are only one aspect of the significance of this issue.

The other challenging factor is that hazmat transportation can jeopardize the lives

of people residing near the roads, as the trucks usually have to pass through human

settlements, as well as its potential negative effects on the environment. Apart from

the risks alongside the roads, the depots containing such materials are a potential
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hazard for the residents as well as the flora and fauna in proximity. According to

the Statistics Canada website, in 2018 road-related accidents accounted for 56.5%

of the hazmat incidents, while 36.6% occurred at terminals and warehouses. This

highlights the importance of both the routes utilized to carry hazmat and the depots

that stock such materials. In August 2020, approximately 2,750 tons of ammonium

nitrate exploded at a port warehouse in Beirut, Lebanon. Leading to at least 204

deaths, 6,500 injuries, and US$15 billion property damage (BBC News, 2020), the

incident is a recent example of a location-related disaster which further accentuates

the need for hazmat management.

In addition to the issues of incident rates and consequences, there are occasions

where the shipping destination requires a specific interval of delivery, called a time

window, which the carrier should adhere to. If the truck arrives at the destination out

of this interval, it has to wait until the next permissible time window. This situation

adds an extra amount of risk to the whole system. Most existing studies in hazmat

transportation assumed time-invariant networks. However, the network parameters

may vary dramatically throughout the day. For example, based on multiple data

sources, Frank et al. (2000) stated that the accident rate varies in terms of both

times of the day and weekday/weekend (Figure 3.1). Different traffic densities on the

roads at specific times of the day can also directly affect the routing and scheduling

problems in many ways. Nonetheless, very few studies have explored the above time

attributes and corresponding influences to the hazmat carrier’s routing decisions.

Furthermore, it is very unlikely that the real process of a problem would exactly

follow the planned solution. Disruptions may happen when there are sudden and

unpredicted situations, such as severe weather conditions, natural or man-made dis-
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Expected consequence is a measure of the expected number of people exposed on an origin±
destination trip. Calculation of accident probabilities is discussed next.

5.2. Accident rates

Considerable research has been devoted to truck accidents, their forecast and measurement.
Research usually focuses on a single geographic region, ranging in size from a metropolitan area
to a state. Seldom is there any emphasis placed on the variation of the truck accident phenomenon
by the hour, the day, or the month.

Mohamedshah et al. (1993) are interested in the non-temporal relationship between highway
geometry and accident rates. Using data from Utah, they have identi®ed horizontal curvature and
vertical gradient as signi®cant factors of truck accident rates. A highway safety information
system summary report (US DoT, 1994a) determines truck accident rates using 1985±1987 Utah
and Illinois accident data. The study also concludes that rates are greatly dependent on road type
and state.

Hazmat routing in the Toronto area is analyzed by Saccomanno and Chan (1985) on the basis
of 1981 Metropolitan Toronto police records. In this study, it is estimated that the probability of
an accident on a 100 km/h dry urban expressway to be 2.379 ´ 10ÿ6 per mile for unrestricted
visibility and 4:054� 10ÿ6 for restricted visibility. Another study by Jovanis and Delleur (1983)
also provides statistical estimates of accident rates. From accident records on the Indiana Toll-
way, they calculate the probability of an accident for a large truck with good weather to be
1:44� 10ÿ6 per mile for day travel and 1:47� 10ÿ6 night travel. Other temporal accident rates are
derived by Lyles et al. (1991) for the state of Michigan. In addition, a few state agencies have
collected, organized and analyzed accident data from their own state. Results of these limited
studies exhibit tremendous inconsistencies and cannot reliably be transformed into national ac-
cident rates. De®ciencies in truck accident and truck usage data have previously been pointed out
by other authors, including Lyles et al. (1991), Lepofsky et al. (1993), and Mohamedshah et al.
(1993). Therefore temporal accident rates used in this study are derived from national databases,
which o�er great consistency and comprehensive geographic coverage at the expense of attribute
speci®city and detail.

Fig. 11. Truck accident rates.

352 W.C. Frank et al. / Transportation Research Part C 8 (2000) 337±359

Figure 3.1: Truck accident rates (Frank et al., 2000)

asters, and traffic congestions. When these occur, there should be plans on how to

return operations to normal. Being prepared for reducing the negative impacts of dis-

ruptions and optimizing the relationship between planned and real processes surely

enhances the practicality of the transportation plan. Motivated by the importance

of incorporating customer-related services in hazmat transportation, this research

specifically considers the possibility of random edge disruptions, one common type

of resource unavailability in the real-world. Through examining disruption scenarios

with probabilities derived from historical data, we aim to assist the hazmat carrier

in making proactive location-allocation-routing decisions, such that the total cost

and risk associated with the transportation routes and warehouse sites are minimized

simultaneously, both with or without disruptions.

To be specific, the contribution of this work is threefold. First, a scenario-based

robust optimization model is integrated with the vehicle routing problem with time

windows, considering possible edge disruptions. To the best of our knowledge, this is

the very first attempt to construct such an integrative approach to address together
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the time windows, time-dependent issues, and uncertainties. Second, also for the first

time, the optimization model is applied to the location-routing problem of hazmat

transportation. Both the system costs and risks for routing and storing hazmats are

minimized and investigated through a trade-off analysis based on the ε-constrained

method. Third, a real-world hazmat transportation network is used to illustrate

the benefit of comprehensively addressing various issues in determining the facility

locations and delivery routes. The numerical experiments reveal managerial insights

that can enable the hazmat carrier to maintain cost efficiency and mitigate associated

risks.

The remainder of this paper is organized as follows. Section 3.2 surveys the relevant

literature in location-routing problems and hazmat transportation. Based on the

problem description in section 3.3, section 3.4 presents the mathematical formulation

with details. Section 3.5 performs a series of numerical experiments and elaborates on

the findings of the model. Finally, managerial insights are summarized in section 3.6

followed by conclusions and possible future research directions in section 3.7.

3.2 Literature Review

The present research constructs a mathematical model jointly determining hazmat

facility locations and travel route choices that minimize time-dependent cost and risk

simultaneously. The location-routing problem for hazardous materials (HLRP) has

been actively examined, especially in the area of hazardous waste management. A

thorough survey of this group of literature can be found in Zhao and Ke (2017). We

next focus our review on the three most relevant areas in hazmat transportation: 1)
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time considerations, 2) uncertainty issues, and 3) disruption management.

3.2.1 Time considerations

The consideration of time attributes in transportation usually includes two aspects,

namely the time windows and time-dependent parameters.

The time window is a critical issue frequently surfacing when planning and rout-

ing distributions under a dynamic road network setting. However, only very limited

publications can be found which address this issue in the hazmat location-routing

problem. The work by Tarantilis and Kiranoudis (2001) was one of the pioneers

in presenting time windows in the routing problem of hazmat, where the hard time

window was considered at the depot. A bi-objective vehicle routing problem with

time windows (VRPTW) was presented by Zografos and Androutsopoulos (2004).

Focusing on time windows for service time, they converted the problem into a single

objective model using a weighted sum approach and solved it through an insertion

heuristic. Their algorithm was tested under four scenarios based on both tight and

loose time windows. Zhang et al. (2005a) applied hard time windows on the delivery

time of vehicles and employed load upper bounds on the road segments. In that

research, depending on the nature of the pathway, a load restriction was enforced on

the various edges of the road. Ma et al. (2012) studied the VRPTW of the hazardous

materials considering the link capacity feature for the road segments, which was af-

fected by the weight of dangerous goods. Their model considered a hard time window

for delivery at the customer that has to be adapted with the arrival time. Restricting

the accessing times of customers and depots, Pradhananga et al. (2014) formulated
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a bi-objective optimization model for routing and scheduling hazmat transportation,

such that the total scheduled travel time and transportation risk are minimized. That

study was later extended by Pradhananga et al. (2016) with similar time window set-

tings. They considered the significant traffic delays associated with hazmat incidents,

in addition to the risk to exposed population. Differing from the time window, which

allows access during a certain period, road closure restricts the use of a link within a

time period due to traffic control, weather conditions, or construction activities. Fan

et al. (2015) presented a bi-objective nonlinear programming model to optimize the

routing of hazmat shipments with the road closure. That paper assumed no parking

or waiting for the closed road to open.

Concerning time-dependent accident probabilities and consequences, Toumazis

and Kwon (2013) employed the conditional value-at-risk (CVaR) method to mea-

sure the hazmat transportation risks. Zhou et al. (2014) proposed a mixed integer

model minimizing the impact on the normal traffic from lane reservation and the

time-dependent transportation risk. A cut-and-solve-based ε-constraint method was

designed to solve the model. Assuming the risks are time-dependent fuzzy random

variables, Meiyi et al. (2015) formulated a location-scheduling model to find the op-

timal locations of depots and the scheduling of vehicles. Hu et al. (2017) developed

a mixed-integer model to determine the departure time and optimal route that min-

imizes the expected risk. Considering the different population densities caused by

traffic congestion situations, a five-level risk function was presented to reflect the peak

and off-peak hours during the day. Hu et al. (2019) investigated the location-routing

decisions in delivering hazmat products to customers with time-dependent charac-

teristics on edges as well as time windows, such as intervals for delivering service to
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customers. However, possible uncertainties and disruptions were entirely ignored in

that study.

Addressing time-dependent times and risks as well as time windows, Androut-

sopoulos and Zografos (2012) applied an integer network flow model with multiple

objectives to the hazmat distribution problem. A label-setting algorithm is integrated

in a route-building heuristic algorithm for solving the problem with intermediate

stops. More recently, Esfandeh et al. (2018) suggested time-dependent road closures

as a policy to control the hazmat transportation risk. That research provided an

alternative-based formulation, which was claimed to be simpler and more effective

than the link-based model.

3.2.2 Uncertainty issues

The classical location-routing problems (LRPs) assume fixed and deterministic val-

ues for the data. However, in reality, the existence of situations such as traffic jams,

weather conditions, or road construction, leads to uncertainty of those values. The

application of uncertainty in LRPs is receiving more attention lately, where, mainly,

uncertainty sets (robust optimization), probability distributions (stochastic program-

ming), or fuzzy numbers are utilized to represent the uncertain parameters.

Stochastic programming. Ardjmand et al. (2016) applied a genetic algorithm to

the bi-objective stochastic HLRP, where the transportation cost of hazardous mate-

rials was considered to be stochastic. In this research, the objective function aims

to minimize the related cost and risk of locating and transporting hazmat. A multi-

objective simheuristic approach through combining NSGA-II and Monte Carlo simu-
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lation was applied to solve a stochastic multi-period industrial hazardous waste LRP

in Rabbani et al. (2019a). Inventory control considerations, as well as the uncertainty

in the waste quantity and number of people at risk, were embedded in the model.

Their model focuses on minimizing the total cost, transportation risk, and site risk.

The cost, demand, and affected population were structured as stochastic parameters

to model the LRP in the network design of hazardous waste in Yu et al. (2020a).

The authors implemented a sample average approximation-based goal programming

to handle the associated two-stage stochastic bi-objective mathematical model.

Robust optimization. Berglund and Kwon (2014) studied the budgeted robust

LRP for hazardous waste management by considering the number of trucks and the

exposure risk as the uncertain parameters. Delfani et al. (2020) compared the re-

sults of a basic possibilistic chance-constraint model with the findings of a robust

possibilistic program developed for hazardous waste LRP. A multi-objective function

with consideration of multi-product transportation was considered in the model. In

the study by Liu and Kwon (2020), a leader-follower game was adopted as a bi-level

problem, where the facility location and risk mitigation decisions were made at the

upper level, and the lower level dealt with the routing decisions. Saeidi-Mobarakeh

et al. (2020) presented a bi-level scenario-based robust formulation for hazardous

waste LRP and solved it by an exact three-part solution method. At the upper level,

the facility location and risk mitigation decisions were made. However, the lower

level concentrated on the associated costs with the collection and transportation of

hazardous waste. Finally, considering temporary facilities in a 4-tiered network, Zhao

et al. (2021) developed a bi-objective scenario-based robust model for the manage-
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ment of infectious wastes during a pandemic. They developed the model with a

two-commodity flow formulation and assuming a set of scenarios for the generated

waste in hospitals and clinics.

Fuzzy logic. Wei et al. (2015) considered fuzzy variables for the transportation

cost and the number of affected people in HLRP. Considering the time windows as

a critical factor in determining the priority of services for hospitals, Tirkolaee et al.

(2020) formulated the sustainable multi-trip LRP with time windows for medical

waste management in the COVID-19 pandemic situation.

3.2.3 Disruption management

Many internal or external factors may cause resource unavailability, and therefore the

consideration of system disruption is a necessary addition to transportation planning.

However, only a few studies have considered disruptions in the hazmat literature.

Note that the stochastic and robust methodologies can also be employed when system

disruptions are considered random.

A mixed-integer nonlinear model was developed by Mohammadi et al. (2017) for

hazmat transportation networks hub disruptions due to hazmat incidents or some

external events. Ghaderi and Burdett (2019) presented a two-stage stochastic pro-

gramming model for the location-routing problem of a bi-modal hazmat transporta-

tion network, considering possible disruptions at transfer yard facilities. Jabbarzadeh

et al. (2020) developed a bi-objective two-stage stochastic program for rail shipment

with the implementation of disruption contingency plans. Exploring the yard dis-

ruptions in rail-truck hazmat networks, Ke (2020a) proposed a scenario-based robust
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optimization model with several recovery mechanisms at both the operational and

strategic level.

3.2.4 Literature gap and our contribution

In summary, Table 3.1 provides a comparison of relevant literature (road transporta-

tion only), containing decisions, methodologies, and the above issues that were imple-

mented in the existing studies and our proposed work. As shown in the table, so far

no work has addressed all four issues jointly in the hazmat location-routing problem.

To that end, our work endeavors to fill the gap in the hazmat-transportation literature

in the following ways. First, both the time window and time-dependent parameters

(namely the transportation risk and traveling speed in this paper) are embedded into

the hazmat carrier’s decisions on properly locating facilities and efficiently routing

the shipments to customers. Second, random edge unavailabilities are considered as

system uncertainties, which are hence formulated by a robust optimization model

given various disruption scenarios. Moreover, the existence of multiple connections

between the network nodes adds extra flexibility to the hazmat transportation net-

work, especially when a balanced trade-off between the risk and cost needs to be

achieved.

3.3 Problem Description

Consider a network of G = (N,E) with N nodes and E edges. There are two

types of nodes in the network, namely warehouse nodes (Nw) and customer nodes

(Nc). The warehouses have to satisfy customers’ demands across the network. A
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decision must be made on each warehouse, whether to be opened or not. Also, the

total customers’ demands must not exceed the maximum capacity of the related

warehouse. A customer’s demand must be satisfied by only one warehouse center.

Therefore, in each scenario, there are at maximum Nw tours starting from warehouses,

then traveling toward their assigned points of demand, and finally returning to the

warehouses. For each edge (i, j) ∈ E, where i ̸= j, there are alternative paths

indexed by k with different cost and risk factors. This assumption makes it more

realistic considering that there are usually different types of roads such as highways,

main roads, and back roads between cities in most countries. Note that when an edge

is unavailable due to disruptions, the truck is not allowed to take any of the paths of

the proposed edge.

3.3.1 Disruption scenarios

Entwined with uncertainty, edge disruption is one of the main considerations in this

research. To better manage the impact of disruptions on the routing plans, this

study considers multiple disruption scenarios, each containing a set of unavailable

edges. These disruption scenarios are generated based on the magnitude and range of

disasters. To that end, one of the scenarios is the normal case, in which none of the

edges is affected. Then, according to the appropriate scaling, other scenarios can be

determined based on a measure of magnitude ranging from low to high impacts. More

specifically, three scenarios, encompassing the uncertainty as the normal, optimistic,

and pessimistic cases, are defined and incorporated in our analyses. This type of

setting can also be seen in the literature on logistics (De Sensi et al., 2008; Piecyk
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and McKinnon, 2010; Azadeh et al., 2014; Aalaei and Davoudpour, 2017; Lagarda-

Leyva et al., 2019), while there are also studies focusing only on the optimistic and

pessimistic scenarios (Klibi and Martel, 2012; Pavlov et al., 2019).

We further assume that all scenarios are independent of each other. Thus the

formula by Snyder and Daskin (2007) can be exploited to calculate the incident prob-

ability of each disruption scenario:

p′′s =
∏
e∈As

ωe ×
∏
e/∈As

(1− ωe), (3.1)

where ωe represents a probability by which an edge is disrupted. The first element

of the formula accounts for all the disrupted edges by multiplying their associated

incident probabilities, while the second part incorporates the undisrupted edges’ prob-

abilities. Historical data can be used to estimate these probability values. As a rule

of thumb, the number of days that an out-of-service event is observed based on a

particular period of time in the past can be used to estimate the probability (Ke,

2020a). For example, if an edge was disrupted for 20 days during the past year, its

probability of unavailability can be computed as roughly 0.055. More sophisticated

probabilistic models like Poisson distribution functions can be used in better shaping

the behavior of the disruption.

3.3.2 Cost and risk functions

Cost and risk functions are defined for warehouses and tours separately. The ware-

house cost is determined by such things as the rental cost of the property and other

maintenance expenses. Every edge is assigned a transportation cost, which is a mea-

sure for calculating the transportation cost of tours by the truck. This research
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calculates the transportation cost as a function of distance traveled on the kth path

linking i and j (dijk), fuel price per unit (FP ), and fuel consumption rate of truck type

(FC), i.e., cijk = dijk × FP × FC. For more complicated situations, an extra cost of

a toll can be included as well. Applications of toll systems in hazmat transportation

can be found in Bianco et al. (2009); Ke et al. (2020).

For the risk assessment, we adopt the traditional risk assessment approach, where

the transportation risk of a specific path is calculated by multiplying the incident rate

along the path and the population exposure. The en-route population exposure can

be estimated as either the population residing alongside a path within a radius from

the path (Verma and Verter, 2007) or the traffic density on the path (Hu et al., 2019).

The risk of installing a warehouse is similarly defined simply by the multiplication of

the residing population around the site by the incident probability of that site.

3.3.3 Delivery time window and time-dependent parameters

The time-related assumption in this research encompasses three aspects: customer

service periods; population exposures; and vehicle velocities. All parameters depend

on the time of the day.

The first parameter, the customer service period, refers to the time period that

the corresponding customer plans to receive the delivery. Mathematically, it can be

expressed as a time window [otc, ctc] every day for customer c. Here, otc and ctc

respectively indicate the opening and closure time of customer c. For example, if

an ordered package can be delivered to a customer only from 9 in the morning to 9

in the evening, the truck must visit the customer in that interval or it has to wait
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until 9 a.m. the next day. In this case, the time window of this customer becomes

[9, 21]. It is important to note that the planning horizon may cover more than a day,

which can cause problems when determining if the arrival time is permitted at the

customer node. Say in scenario s, the truck arrives at customer c at time 40, i.e.,

asc = 40. This value is clearly on the second planning day, which is not compatible

with the 24-hour-based time window of [9, 21]. Hence, we employ l to denote the day

within the planning horizon, and convert the time window to a cumulative format.

Accordingly, we have the following constraints:

24(l − 1) + otc −M(1− qscl) ≤ asc ≤ 24(l − 1) + ctc +M(1− qscl) ∀c, s, l, (3.2)∑
l

qscl = 1 ∀c, s, (3.3)

where qscl is a binary variable that indicates if customer c is to be served in the lth day

in the planning horizon in scenario s. Also, M is a big number that should be larger

than any reasonable value that can be assigned to decision variables. Constraint (3.2)

ensures that the arrival time of a truck for a particular customer happens between

the opening and closure times of the customer within the planned day. In our above

example, we have l = 2 and qsc2 = 1, and so the cumulative time window becomes

[33, 45]. Constraint (3.3) forces the truck to travel on only one day for the delivery

to customer c among all days in the planning horizon.

Secondly, it is assumed that the population exposures vary in different time hori-

zons (TH) during the day, and consequently, the corresponding hazmat transportation

risks change at different times of the day. Letting uusi be the departure time from

node i in a 24-hour format in scenario s, the proposed time-dependent transportation
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risk can then be formulated as

Rs
ijk = pijkP

h
ijk, if uusi ∈ THh, h = 1, 2, ..., H, (3.4)

where pijk stands for the incident probability of traveling from node i to j through

path k, and P h
ijk indicates the population exposure along the kth path of edge linking

nodes i and j in time horizon h. Note that the incident probabilities is normally

derived using historical data on each link. To that end, the accident rate can be

calculated using the number of hazmat transport accidents in a given time period

divided by the total distance that hazmat trucks traveled in the same time interval.

Multiplying the accident rate by the length of road segment yields the hazmat accident

probability. As can be seen, the population exposure of path k between nodes i and

j is determined by the time horizon of a day that a truck departs from node i.

Also, the vehicles’ average traveling speeds on different paths are assumed to vary

in different time horizons throughout the day. As a result, the travel time between

nodes i and j by path k in scenario s (tsijk) is calculated based on the relevant distance

factor (dijk) and the average traveling speed within that path in the proposed time

horizon as:

tsijk =
dijk
vhijk

, if uusi ∈ THh, h = 1, 2, ..., H (3.5)

where vhijk is the average velocity of trucks traveling from node i to j within time

horizon h.

Similar to the arrival time in the time window consideration, the departure time

from node i in scenario s, usi , is also in the cumulative format. This cumulative value

needs to be converted into the 24-hour format, uusi , such that the corresponding time

horizon of the day i.e., THh, can be found to determine the population exposure and
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travel time. To assure this transformation, we present the following constraints.

uusi ≥ usi − 24(l − 1)− (1− qsil)M, ∀i, l, s (3.6)

uusi ≤ usi − 24(l − 1) + (1− qsil)M, ∀i, l, s (3.7)

uusi ≥ THh−1 − (1− psih)M, ∀i, h, s (3.8)

uusi ≤ THh + (1− psih)M, ∀i, h, s (3.9)

Constraints (3.6) and (3.7) jointly play the role of a linear formulation to calculate the

remainder of the variable usi over 24, and calculating the variable uusi . For instance,

if usi = 42, uusi can be computed as 42 − 24 = 18. As in Constraint sets (3.2), qsil

shows on which day node i is served. Because a customer in a particular scenario is

only served on a specific day due to Constraint (3.3), the big number M inactivates

Constraints (3.6) and (3.7) for other days. Also, let variable psih determine which time

horizon is to be chosen when a truck wants to travel from node i to j. Constraints

(3.8) and (3.9) jointly guarantee that if a departure is going to happen in a particular

time horizon h, variable uusi must remain in the corresponding time range of the day.

TH0 is considered zero when h = 1. In addition, to guarantee that the departure

time of the customer occurs in only one of the available time horizons, the following

constraint is required: ∑
h

psih = 1, ∀i, s. (3.10)

Then, we have the following constraints to decide the values from time horizons

to be chosen for parameters Rs
ijk and tsijk in the model.

Rs
ijk ≥ pijkP

h
ijk − (1− psih)M, ∀i, h, s (3.11)

Rs
ijk ≤ pijkP

h
ijk + (1− psih)M, ∀i, h, s (3.12)
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tsijk ≥
dijk
vhijk
− (1− psih)M, ∀i, h, s (3.13)

tsijk ≤
dijk
vhijk

+ (1− psih)M, ∀i, h, s (3.14)

Constraints (3.11) and (3.12) are used to assign the related risk values regarding the

time horizon in which the truck departs from node i to node j through path k. In the

same manner, Constraints (3.13) and (3.14) assign the related travel time in regard

to the time horizon in which the truck departs from node i to node j through path

k. In all of the inequalities from (3.6) to (3.14), the big number M eliminates the

inequalities for other unrelated time horizons.

3.4 Mathematical Formulation

In this section, we present a scenario-based robust optimization approach, proposed by

Mulvey et al. (1995), to deal with the uncertainty. First, the mathematical notation

is given in Figure 3.2. It can be seen that decision variables are categorized into

two different groups as design variables and control variables. Design variables are

independent of the unavailability scenarios, while the control variables are dependent

upon those scenarios and hence are adjusted as they unfold.

Based on these two types of variables, the objective evaluation can be divided

into two parts accordingly. As demonstrated by model (3.15), the design part is f(x),

where x denotes the set of design variables; and the control part is assessed by a

combination of the expectation (µ) and variability (σ) of the control variable set y.

minZ = α1f(x) + α2µg(y) + α3σg(y) (3.15)

s.t. B(x, y, b) = 0
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Sets

N : Set of nodes regardless of their nature (warehouses and customers), indexed by i and j

Nc : Set of customer nodes, indexed by c

Nw : Set of warehouse nodes, indexed by w

E : Set of edges, indexed by e

K : Set of paths, indexed by k

S : Set of disruption scenarios, indexed by s

As : Set of edges affected by disruption scenario s

L : Set of days during the planning horizon, indexed by l

H : Set of time horizons during the day, indexed by h

Parameters

M : a big number

FC: Fuel consumption of each truck

FP : Unit price of fuel

otc: Opening time of customer c

ctc: Closure time of customer c

svc : Service time on customer c

Dc: Demand of customer c

dijk : Distance of the kth path of the edge linking nodes i and j

vhijk: Average speed of trucks in the kth path of the edge linking nodes i and j in time horizon h

tsijk : travel time of a truck from node i to j under path k in scenario s

cijk: Cost of traveling from node i to j through path k

c
′

w : Cost of installing warehouse w

Rs
ijk : Risk of traveling from node i to j through path k in scenario s

R
′

w: Risk of installing warehouse w

Ph
ijk : Population exposure (road traffic) along the kth path of edge linking nodes i and j in time

horizon h

P
′

w: Population exposure around warehouse site w

pijk : Incident probability of traveling from node i to j through path k

p
′

w: Incident probability regarding warehouse w

p
′′

s : Incident probability of scenario s

Capw : Capacity of warehouse w

λs
ij = 1, if the edge connecting node i and j is available in scenario s; 0 otherwise

ωe: Probability of edge e being out of service

Design decision variables

yw = 1, if warehouse w is installed; 0 otherwise

zcw = 1, if customer c is assigned to warehouse w; 0 otherwise

Control decision variables

xs
ijk = 1 if a truck travels from node i to j under path k in scenario s; 0 otherwise

asc : Arrival time of a truck to customer node c

us
i : Departure time of a truck from node i in a cumulative format

uus
i : Departure time of a truck from node i in a 24-hour format

rsi : Rank of node i in scenario s

qscl= 1 if customer c is going to be served in lth day in the planning horizon in scenario s; 0, otherwise

psch = 1 if the truck is going to depart customer c in hth time horizon in scenario s; 0, otherwise

Figure 3.2: Notation
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Coefficients α1, α2, and α3 are applied for balancing the importance of each segment

of the objective function. The first element of the objective function is composed

of the design variables. The expected value of the objective function for different

scenarios regarding control variables is addressed in the second component. Finally,

the last element is the robustness guarantee component, which controls the variability.

Note that σg(y) is used as a penalty term to maintain the stability of controls over

all scenarios. This is one of the major advantages of applying a robust approach in

hazmat transportation. What follows presents the mathematical formulation of the

proposed problem in the form of a scenario-based robust optimization program.

3.4.1 Objective functions

The cost objective can be formulated by

minZ1 = α1

∑
w

c′wyw + α2

∑
s

p′′s
∑
i

∑
j

∑
k

cijkx
s
ijk (3.16)

+ α3

∑
s

p′′s

∣∣∣∣∣∣
∑
i

∑
j

∑
k

cijkx
s
ijk −

∑
s′

p′′s′
∑
i

∑
j

∑
k

cijkx
s′

ijk

∣∣∣∣∣∣ .
As can be seen, following the structure given by (3.15), three segments are included

here: the total installation cost of warehouses, as well as the expected routing (i.e.,

transportation) cost and the variability of cost (shown as an absolute value) over all

scenarios.

The risk objective function is comprised of three parts as well. The first term is

about the risk of installing warehouse sites, while the second and third terms are the

expected transportation risk and the related variability, respectively.

minZ2 = β1
∑
w

R′
wyw + β2

∑
s

p′′s
∑
i

∑
j

∑
k

Rijkx
s
ijk (3.17)
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+ β3
∑
s

p′′s

∣∣∣∣∣∣
∑
i

∑
j

∑
k

Rijkx
s
ijk −

∑
s′

p′′s′
∑
i

∑
j

∑
k

Rijkx
s′

ijk

∣∣∣∣∣∣ .
3.4.2 Problem constraints

In this subsection, we present and then describe all constraints that shape the pro-

posed problem.

∑
w

zcw = 1 ∀c (3.18)

zcw ≤ yw ∀c, w (3.19)∑
j ̸=c

∑
k

xscjk = 1 ∀c, s (3.20)

∑
j

∑
k

xsijk =
∑
j

∑
k

xsjik ∀i, j /∈ Nw(i ̸= j), s (3.21)

∑
k

xscwk ≤ zcw ∀c, w, s (3.22)

∑
k

xswck ≤ zcw ∀c, w, s (3.23)

∑
c

∑
k

xscwk ≤ 1 ∀w, s (3.24)

∑
k

xsijk ≤ ziwzjw ∀i, j ∈ Nc(i ̸= j), s (3.25)

rsi − rsj ≥ −1−M
(
1−

∑
k

xsijk

)
∀i, j ∈ Nc(i ̸= j), s (3.26)

rsi − rsj ≤ −1 +M
(
1−

∑
k

xsijk

)
∀i, j ∈ Nc(i ̸= j), s (3.27)

∑
c

Dczcw ≤ Capwyw ∀w, s (3.28)

asj ≥ usi +
∑
k

tijkx
s
ijk −M

(
1−

∑
k

xsijk

)
∀i, j(j ̸= i ∩ i /∈ Nw ∩ j /∈ Nw), s (3.29)

82



asj ≤ usi +
∑
k

tijkx
s
ijk +M

(
1−

∑
k

xsijk

)
∀i, j(j ̸= i ∩ i /∈ Nw ∩ j /∈ Nw), s (3.30)

usc ≥ asc + svc ∀c, s (3.31)

xsijk ≤ λsij ∀i, j(j ̸= i ∩ i /∈ Nw ∩ j /∈ Nw), s (3.32)

xsijk, yw, zcw, p
s
ch, q

s
cl ∈ {0, 1} ∀i, j, k, s, c, w, l, h (3.33)

asc, u
s
i , uu

s
i ≥ 0 ∀i, s (3.34)

rsi ∈ Z+ ∀i, s (3.35)

Constraint sets (3.18)-(3.19) are concerned with location-allocation decisions. Con-

straint set (3.18) assigns every customer to a warehouse. Not every warehouse needs

to be activated, but every customer must be assigned to those active ones. Constraint

(3.19) makes sure that if a warehouse is not activated, no customers are assigned to

it. Constraint sets (3.20)-(3.27) are relevant to the routing decisions. Constraint

(3.20) guarantees there is always a move from a customer node to a neighboring

node, whether it is a warehouse or customer. This setting ensures every customer

node is eventually met by a truck. Constraint set (3.21) indicates that if a truck

enters a node, it must exit from it. Constraint sets (3.22) and (3.23) together as-

certain that a truck never enters the warehouse from a customer if this customer

is not assigned to that warehouse, and vice versa. Constraint set (3.24) guarantees

that, on the one hand, the truck is allowed to enter a warehouse from at most one

customer node if the warehouse is active; and on the other hand, no travel to this

warehouse is made if it is not active. Constraint set (3.25) shows that a truck is

allowed to travel between two customer nodes only if these customers belong to the

same tour/warehouse. Constraints (3.26) and (3.27) eliminate possible sub-tour con-
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structions, which is typical of the Traveling Salesman Problems (TSP). Accordingly,

if there is a consecutive move from node i to j (i.e.,
∑

k x
s
ijk = 1), the subtraction of

the rank of the nodes (rsi − rsj) equals −1, which means their ranks are only different

up to one degree. In this formulation, there are only moves from nodes with lower

ranks to nodes with higher ones. Constraint set (3.28) is about capacity restrictions.

It states that the total demand of customers assigned to a particular warehouse must

not exceed its capacity. Constraint sets (3.29)-(3.31) are time window restrictions.

These constraints guarantee that, if there is a move from i to j, the arrival time in the

destination (j) should adhere to the prespecified time windows. Constraint sets (3.29)

and (3.30) together calculate the time that a truck arrives at node j after departuring

from node i. Based on these formulations, if there is a consecutive move from node i

to j, the arrival time to node j equals the departure time from node i plus the travel

time of the path between the two nodes. Complementary to Constraint sets (3.29)

and (3.30), Constraint (3.31) computes the departure time from a node as the arrival

time plus the service time. Constraint set (3.32) guarantees that there is no trip

over an edge if this edge is not available in a disruption scenario. Finally, Constraint

sets (3.33)–(3.35) determine the nature of the decision variables in the problem. It is

important to mention that the summation
∑

k embedded in most of the constraints

above ensures that only one path is chosen when traveling between two neighboring

nodes.
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3.4.3 Linearization of the model

Note that Objectives (3.16) and (3.17) are nonlinear in nature due to the absolute

value term. By applying the linearization method proposed by Yu and Li (2000), we

rewrite Objective (3.16) as (3.36) accompanied by an auxiliary coefficient θ1s and add

a new Constraint set (3.37) as the following.

minZ1 = α1

∑
w

c′wyw + α2

∑
s

p′′s
∑
i

∑
j

∑
k

cijkx
s
ijk (3.36)

+ α3

∑
s

p′′s

(∑
i

∑
j

∑
k

cijkx
s
ijk −

∑
s′

p′′s′
∑
i

∑
j

∑
k

cijkx
s′

ijk + 2θ1s

)
s.t. ∑

i

∑
j

∑
k

cijkx
s
ijk −

∑
s′

p′′s′
∑
i

∑
j

∑
k

cijkx
s′

ijk + θ1s ≥ 0 (3.37)

According to this modification, we present the two following counteracting cases, both

of which help the absolute value sign act in a linearized format.

∑
i

∑
j

∑
k cijkx

s
ijk >

∑
s′ p

′′
s′
∑

i

∑
j

∑
k cijkx

s′

ijk: In this case, the content inside the

absolute value term is positive, and hence Constraint set (3.37) is met no matter

what value θ1s takes. As θ1s is placed in the minimization objective function in

(3.36), it must take the lowest possible value, i.e., zero.

∑
i

∑
j

∑
k cijkx

s
ijk <

∑
s′ p

′′
s′
∑

i

∑
j

∑
k cijkx

s′

ijk: In this case, the content inside the

absolute value term is negative, and thus Constraint (3.37) is met only when

θ1s takes a value greater than zero. Due to the minimization function in (3.36),

θ1s =
∑

s′ p
′′
s′
∑

i

∑
j

∑
k cijkx

s′

ijk−
∑

i

∑
j

∑
k cijkx

s
ijk, is certainly a positive value.

Here 2θ1s in the objective function (3.36) ensures that we still have an extra∑
s′ p

′′
s′
∑

i

∑
j

∑
k cijkx

s′

ijk −
∑

i

∑
j

∑
k cijkx

s
ijk term in the objective function.
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Following the same linearization approach, objective (3.17) can be linearized by

(3.38) and (3.39) where θ2s is an auxiliary coefficient.

minZ2 = β1
∑
w

R′
wyw + β2

∑
s

p′′s
∑
i

∑
j

∑
k

Rijkx
s
ijk (3.38)

+ β3
∑
s

p′′s

(∑
i

∑
j

∑
k

Rijkx
s
ijk −

∑
s′

p′′s′
∑
i

∑
j

∑
k

Rijkx
s′

ijk + 2θ2s

)
s.t. ∑

i

∑
j

∑
k

Rijkx
s
ijk −

∑
s′

p′′s′
∑
i

∑
j

∑
k

Rijkx
s′

ijk + θ2s ≥ 0 (3.39)

Moreover, constraint (3.25) is also nonlinear. To linearize the multiplication of

two binary variables, an auxiliary binary variable gijw = ziwzjw is added to the model,

and constraint (3.25) can be replaced with the following additional constraints.

∑
k

xsijk ≤
∑
w

gijw ∀i, j ∈ Nc(i ̸= j), s (3.40)

gijw ≤ ziw ∀i, j ∈ Nc(i ̸= j) (3.41)

gijw ≤ zjw ∀i, j ∈ Nc(i ̸= j) (3.42)

gijw ≥ ziw + zjw − 1 ∀i, j ∈ Nc(i ̸= j) (3.43)

gijw ∈ {0, 1} ∀i, j, w (3.44)

3.4.4 Augmented ε-constraint method for obtaining the bi-

objective solution

To handle the two objectives in our model, we employ the augmented ε-constraint

method (AECM) proposed by Mavrotas and Florios (2013). Regarded as an exact

approach, AECM is able to produce a global set of Pareto frontier solutions, where the
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density of solutions can be easily adjusted. This is because the augmented version has

embedded the optimization process within the other objective functions, which are

transferred to the problem constraints (Mavrotas and Florios, 2013). Furthermore,

unlike many other popular multi-objective methods, the AECM frees the decision-

maker from needing to determine about the weights of the objective functions, which

eliminates the need to scale them over each other. Application of the AECM results in

the following new terms in which one of the objective functions, here f1(x), remains as

the primary objective function of the problem. However, the other objective function

f2(x) is transferred into the problem constraints section as a new constraint with an

enforcing upper bound as follows:

min f1(x)− eps× (δ/∆)

s.t:

f2(x) + δ = ε

B(x, b) = 0

δ ≥ 0

The symbol ε represents the upper bound of the second objective, and δ is the cor-

responding slack variable for the constraint. Given the range of the second objective

function, parameter ∆ is included to avoid scaling issues. Furthermore, parameter eps

is an adequately small number that usually takes a value in the interval [10−6, 10−3]

(Mavrotas, 2009). Applying the AECM to the final model while ensuring that the

cost function is the primary objective function, we obtain the formulation below:

minZ1 = α1

∑
w

c′wyw + α2

∑
s

p′′s
∑
i

∑
j

∑
k

cijkx
s
ijk+ (3.45)
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α3

∑
s

p′′s

(∑
i

∑
j

∑
k

cijkx
s
ijk −

∑
s′

p′′s′
∑
i

∑
j

∑
k

cijkx
s′

ijk + 2θ1s

)
− eps× (δ/∆)

s.t. constraints (3.18)- (3.24), (3.26)-(3.35), (3.37), (3.39), (3.40)-(3.44), and

β1
∑
w

R′
wyw + β2

∑
s

p′′s
∑
i

∑
j

∑
k

Rijkx
s
ijk+ (3.46)

β3
∑
s

p′′s

(∑
i

∑
j

∑
k

Rijkx
s
ijk −

∑
s′

p′′s′
∑
i

∑
j

∑
k

Rijkx
s′

ijk + 2θ2s

)
+ δ = ε.

3.5 Numerical Experiments

In this section, we evaluate different aspects of our model in terms of validity and

applicability. For this purpose, a real-world hazmat transportation network in the

province of Shandong, China, is employed for numerical experiments. As shown in

Figure 3.3 (Hu et al., 2019), this network contains 3 warehouses and 9 customers

(varying from industrial parks to cities), which are numbered Nodes #1-#12. There

are two types of road types, “expressways” and “ordinary roads,” represented in the

model by indices 1 and 2, respectively. Relevant data of the warehouse sites and

customers are given in Tables 3.2 and 3.3. Details of other data, such as edges with

their transportation risks and costs can be found in Hu et al. (2019). The average

fuel consumption rate for the truck type is set as 0.302 liter per kilometer, and it is

assumed that the average diesel costs 5.3 RMB/Liter (RMB is the official currency

of China). The time windows for service delivery to customers is considered to be a

12-hour interval starting from 8:00 a.m. The time horizons throughout the day are

6:00–10:59, 11:00–13:59, 14:00–18:59, 19:00–22:59, and 23:00–5:59, denoted as TH1

to TH5, respectively.

In addition to the network data from Hu et al. (2019), we further consider disrup-
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Figure 3.3: A road network for numerical experiments (Hu et al., 2019)

Table 3.2: Data on the warehouse sites (Hu et al., 2019)

Unit rent Incident Population Site

Warehouse Capacity (RMB) probability (persons) risk

1 50 300 0.0001 800 0.08

2 50 500 0.0001 700 0.07

3 40 450 0.00012 600 0.072

Table 3.3: Data on the customers (Hu et al., 2019)

Customer 4 5 6 7 8 9 10 11 12

Demand (units) 1 1.5 2.5 3 3 3.5 2.5 1 1

Service time (hrs) 0.16 0.25 0.42 0.5 0.5 0.58 0.42 0.16 0.16

tion scenarios to handle uncertainty in the availability of edges during the planning

horizon. To be specific, three scenarios are studied, where the first one represents the

normal situation in which all the edges are available, and the other two scenarios are

designated for handling a minor disastrous situation and a major disastrous situation.

When the magnitude of disruption is minor, it is assumed that only edge (5, 6) is
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affected. As to the major scenario, we consider that the magnitude of the disaster is

high, and the set of edges, {(4, 5), (5, 6), (7, 8), (8, 9)}, is out of service when disrup-

tion happens. To summarize, Scenario #1 represents the normal situation, Scenario

#2 is the minor disastrous scenario, and Scenario #3 serves as the major disastrous

scenario. Moreover, the incident probabilities of Scenarios #1 to #3 are estimated

as 0.7, 0.2, and 0.1. For optimization, the model is coded in LINGO 18, and the

experiments are preformed on an IntelRO Core TMi5 with 2 GB RAM.

3.5.1 Extreme Pareto solutions

We first minimize the two objectives individually for the two extreme Pareto solu-

tions. Without loss of generality, all coefficients, α1 to α3 and β1 to β3, in the objective

functions are considered to be equal to one for now. Additional experiments regard-

ing the impacts of these coefficients are conducted and discussed in Section 3.5.4.

Solving the proposed problem, we present the obtained pay-offs with the two extreme

Pareto points in Table 3.4. Throughout this paper, a total of six indicators are used

to illustrate the solution details. Specifically for the cost objective (Eq. (3.16)), the

first term gives Site Cost (SC); the term multiplied by α2 is named Transportation

Cost Mean (TCM), which shows the average transportation cost for all three scenar-

ios; and Transportation Cost Variability (TCV), the term multiplied by α3, shows

how much variability exists in the transportation cost function. As to the risk objec-

tive (Eq. (3.17)), following the same logic, Site Risk(SR), Transportation Risk Mean

(TRM), and Transportation Risk Variability (TRV) are the terms multiplied by β1,

β2, and β3.
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As shown in Table 3.4, when only the cost objective function is minimized, the

priority is given to establishing the sites with lower installation costs and selecting

edges with lower transportation costs. In this case, the total cost becomes 1,943 RMB,

from which 300 RMB is the cost of installing Site #1 and 1,490 RMB is the average

traveling cost. The customer nodes from Node #4 to Node #12 are all assigned

to Warehouse #1. The corresponding risk objective function has a value of 26.80

persons, from which 0.08 is for the site risk and 23.79 for the transportation risk.

The cost and risk variability values become 153 RMB and 2.92 persons, respectively.

The optimal tour includes the sequence of cities as 1 → 10 → 12 → 11 → 9 → 8 →

7 → 6 → 5 → 4 → 1; while in Scenario #2, as edge (5, 6) is disrupted, the optimal

tour includes the sequence of cities as 1 → 4 → 5 → 7 → 6 → 8 → 9 → 11 → 12 →

10→ 1, and in Scenario #3, as most of the key edges are affected the resulting longer

route includes the sequence of cities as 1→ 4→ 8→ 6→ 7→ 5→ 9→ 11→ 12→

10→ 1. These tours are depicted in Figure 3.4. Also, the numbers in parentheses in

the tours indicate which path is chosen for traveling between two consecutive nodes.

For example, in solution point Z∗
1 , in Scenario #3, the truck goes from Node #1 to

Node #4 by path 2, then goes to Node #8 by path 2, and so forth.

In the second case where the focus is only on the risk reduction, the model aims to

find a solution with the least possible risk. Here, warehouse #2 is the only active site,

and the total risk becomes 13.80 persons with a risk variability of 0.89. Therefore,

all the customers are assigned to Warehouse #2. The corresponding cost becomes

3,420 RMB, of which 500 RMB is for the site installation, and 2,708 RMB is for

the transportation cost, and also, the cost variability is 212. The point is that while

in Z∗
2 the focus is on the minimization of risk, the cost variability increases by 39%
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(a) Z∗
1 , Scenario #1 (b) Z∗

1 , Scenario #2 (c) Z∗
1 , Scenario #3

(d) Z∗
2 , Scenario #1 (e) Z∗

2 , Scenario #2 (f) Z∗
2 , Scenario #3

Figure 3.4: The optimal tours for the two extreme Pareto solution points

compared to the cost variability in solution point Z∗
1 as well as a reduction of 70% in

the risk objective function value.

Tables 3.5 and 3.6 are presented for more details about the scheduling of the

truck’s trip in completing its tours. Due to the huge amount of data, we restrict

our investigations only to Scenario #1 in the two extreme Pareto solutions. In these

tables, the “Edge” column shows which edges are chosen for the trip. The “Path”

column determines which of the two possible paths are selected. The departure,
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travel, and arrival time columns provide the times when the truck leaves a departing

node, travels along the path, and arrives at the destination node. Note that the travel

time values are dependent on the horizon time throughout the day in which the truck

is leaving the departing node. For example, according to the first row of Table 3.5,

the truck leaves Node #1 heading for Node #10 at time point 6.22 (i.e., 6:13 p.m. in

the conventional representation). Because the departure time is within the first time

horizon (6:00 p.m. to 10:59 p.m.), the travel time under TH1 is extracted from the

input data. Moreover, the horizon time in which the truck departs a node heading for

its destination node has been determined in the column “Travel horizon.” The truck

then arrives at Node #10 at 8:00 p.m., and the service is delivered to the customer

immediately. Then the vehicle departs to Node #12 once its service finishes at 8.42

(8:25 p.m.). The special case of this research is that the customers are only available

in certain time intervals during the day. Thus, if the truck arrives at a customer node

out of this interval, it must wait until the next day. This occasion happens a few

times in the proposed example. One of them is when the truck departs Node #8 at

time 19.89 (7:53 p.m.) and arrives at Node #7 at time 20.99 (9:00 p.m.). Because

this arrival time at the customer happens after 8:00 p.m., the truck has to wait until

the next day at 8:00 a.m. Similar information for Z∗
2 is given in Table 3.6.

As tracking the tour is clear, we prefer to proceed to the next important informa-

tion that can be perceived from these two tables. The “Cost” and “Risk” columns

on Tables 3.5 and 3.6 present the costs and risks of alternative paths over the edges

on the tour. Some figures in the two columns are in italics to easily see the values of

cost and risk of the chosen paths along with the tours. As said before, in solution Z∗
1 ,

attention is only given to the cost criterion, meaning that warehouses and paths with
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lesser installation and transportation costs should be selected. Based on Table 3.3,

Warehouse #1, with an installation cost of 300, has been installed in Z∗
1 ; while Ware-

house #2, with an installation cost of 500, is chosen in Z∗
2 . We witness the same trend

when we take a closer look at the behavior of these two Pareto solutions in choosing

the alternative paths in their tours. As for Scenario #1, the best tour in Z∗
1 mostly

selects the paths with lesser traveling costs rather than paths with lesser risks. To

make this comparison more accurate, consider the times in which a path with lesser

cost and risk has been selected among the possible two alternative paths over each

edge. Based on Table 3.5, for Pareto solution Z∗
1 , in 100% of the times (10 cases out

of 10), a path with lesser cost is chosen between the two possible alternatives, while

this percentage is only 40% (4 cases out of 10) for the risk criterion. On the other

hand, Z∗
2 pays more emphasis on solutions with lesser risk values, both on-site and

on the transportation network. According to Table 3.6, paths with lesser risk values

are selected among the possible alternative paths in 100% of the times; however, this

figure drops to only 20% for the cost criterion. Moreover, the total cost and risk of the

traversed tour by the truck through selected paths for Z∗
1 and Z∗

2 are also presented

in the last row of these two tables.

3.5.2 Trade-off analysis

Based on the two extreme solutions, we apply AECM to facilitate risk-cost trade-off

analysis. Figure 3.5 illustrates the plot of the proposed Pareto frontier containing

a total of 11 non-dominated solutions. The detailed information about the nine

additional Pareto solutions is explained in Table 3.7. Next, AECM is used to generate
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Figure 3.5: The Pareto front of the proposed problem

the intervening points in the Pareto set.

As can be seen from Tables 3.4 and 3.7, we obtain 11 Pareto points: (1,943, 26.8),

(1,970, 25.19), (2,025, 23.42), (2,120, 22.12), (2,270, 20.67), (2,300, 19.73), (2,440,

18.33), (2,635, 17.10), (2,880, 15.85), (3,035, 14.35), and (3,420, 13.8). As for all of

the intervening Pareto points from 1 to 9, Warehouse #1 has been activated. So the

only different case belongs to Pareto solution Z∗
2 in which Warehouse #2 is activated.

For each scenario, the optimal tour for the majority of the Pareto solutions includes

the same sequence of cities, and the only difference is in the paths chosen for travelling

between nodes. For example, the optimal tour in Scenario #1 for most of the Pareto

solutions includes the nodes in 1 → 4 → 5 → 6 → 7 → 8 → 9 → 11 → 12 →

10 → 1; the optimal tour in Scenario #2 for all Pareto solutions includes the nodes

in 1 → 4 → 5 → 7 → 6 → 8 → 9 → 11 → 12 → 10 → 1, and the optimal

tour in Scenario #3 for the majority of the Pareto solutions includes the nodes in
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1→ 4→ 7→ 6→ 8→ 5→ 9→ 11→ 12→ 10→ 1.

3.5.3 Analyzing the risk improvement over cost increment

In this section, to obtain more insight into the relationship between risk and cost

objective functions, we define two indicators including Cost Increment Rate (CIR)

and Risk Improvement Rate (RIR), which respectively show the incremental changes

of the cost and risk. Given all 11 Pareto solution points starting with Pareto Point

Z∗
1 in Figure 3.5, we can compute ten different values for CIR’s and RIR’s for Pareto

point #1 to Z∗
2 . These values are shown in Table 3.8, with an additional column

showing the RIR/CIR ratio. Starting from the minimum cost extreme point, the

cost objective follows an increasing trend when moving from a Pareto solution to

the subsequent one, leading to positive values of CIR. However, the RIR values are

negative as the risk objective declines while moving toward the minimum risk extreme

Pareto point. Without loss of generality, we neglect the negative sign in the RIR by

applying the absolute value of RIR. Therefore, whenever we mention RIR in this

manuscript, we mean the absolute value of it. This table gives details about the

relationship between the RIR index and its relevant impact on the CIR index over

different Pareto points. For instance, moving from Z∗
1 to Pareto point #1 leads to

an increase of 1.39% in the cost and a reduction in the risk (reducing the number of

hazmat casualties) of 6.01%.

Given the RIR/CIR indicator, it can be inferred that on average, there is a re-

lationship between risk and cost objective functions with a slope of 1.72, i.e., every

unit of increment in the cost function leads to an average 1.72 units of improvement
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Table 3.8: Details about the risk improvement over cost increment

Pareto Z1: Cost Z2: Risk CIR RIR |RIR|
|RIR| /CIR

point (RMB) (persons) (%) (%) (%)

Z∗
1 1943 26.8 - - - -

1 1970 25.19 1.39 -6.01 6.01 4.32

2 2025 23.42 2.79 -7.03 7.03 2.52

3 2120 22.12 4.69 -5.55 5.55 1.18

4 2270 20.67 7.08 -6.56 6.56 0.93

5 2300 19.73 1.32 -4.55 4.55 3.44

6 2440 18.33 6.09 -7.1 7.1 1.17

7 2635 17.1 7.99 -6.71 6.71 0.84

8 2880 15.85 9.3 -7.31 7.31 0.79

9 3035 14.35 5.38 -9.46 9.46 1.76

Z∗
2 3420 13.8 12.69 -3.83 3.83 0.3

Average 5.87 -6.41 6.41 1.72

in the risk function. In other words, if a reduction of 1% in people at risk is sought,

the carrier has to invest 0.58% more on the current costs. However, there is a large

gap between Pareto points 9 and Z∗
2 , meaning that improving the risk factor by 1%

requires the cost to be increased by 3.33%, which is four and a half times more than

that of Pareto points Z∗
1 to #9. Although it seems humane to reduce the number of

casualties even by one person, the carrier may hesitate to do so given the significant

increase in the cost (indicated by an RIR/CIR ration of 0.3).

3.5.4 Analyzing the weights of variability functions

In this section, we are interested in investigating how the results of the problem would

change when we manipulate the weights of the variability functions, and then try to

present guidelines on how to set these weights at different levels of risk thresholds
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by the carrier. The reason why we do a separate analysis for variability functions is

that the variability is a determining factor in uncertainty management and plays an

important role in the success of the projects in unreliable environments (Jabbarzadeh

et al., 2020; Ke, 2020a).

To analyze the weights of variability functions, we first define new indicators to

evaluate the ratio of variability in results. TCV divided by TCM, or TCV/TCM for

short, is an indicator that calculates the ratio at which variability in cost fluctuates

over the average cost of the transportation plan. A similar TRV/TRM indicator can

also be defined for the risk of the transportation plan. The higher this risk indicator is,

the more the decisions made are unreliable. With that said, the carriers themselves

may have a preset level of tolerance in accepting the variability in the results for

the risk and cost functions. Herein, we call this subjective concept the “level of

satisfaction” in the variability of the cost or risk, namely SLC or SLR, respectively.

For example, if both SLC and SLR are set at 5%, any transportation plans with

TCV/TCM and TRV/TRM of less than 0.05 are considered reliable by the carrier.

Table 3.9 shows the TCV/TCM and TRV/TRM ratios for the Pareto solution points

in Figure 3.5. Based on the results, on average, TCV ranges around 10% of TCM.

The ratio is less for TRV/TRM, with an average of around 7%.

As discussed before, how much variability is tolerable in making transportation

decisions is subjective, and it depends upon the carrier’s attitude towards risk-taking.

For example, the carrier may require to keep a level of satisfaction of 1% for both

cost and risk variability functions. To obtain this, the variability weights in the model

(here α3 and β3) must be adjusted by giving them increased values until the carrier

obtains the intended results; or, the following two constraints can be added to the
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mathematical model.

TCV/TCM ≤ SLC (3.47)

TRV/TRM ≤ SLR (3.48)

It is important to note that, depending upon the nature of the input data, adding

these constraints may lead to infeasibility while solving. To handle this, another pay-

off table can be developed to ensure the compatibility of weights. Table 3.9 lists the

ratios of the above two indexes for all non-dominant solutions. The values for SLC

and SLR can be determined accordingly.

Table 3.9: The ratio of cost and risk variability indexes to the problem of total cost

and risk

Pareto points Z∗
1 1 2 3 4 5 6 7 8 9 Z∗

2 Min Max Ave

TCV/TCM (%) 10 8 8 8 8 11 12 12 11 11 8 8 12 10

TRV/TRM (%) 12 6 6 6 7 6 7 7 7 7 7 6 12 7

TCM: Transportation Cost Mean; TCV: Transportation Cost Variability; TRM: Transportation

Risk Mean; TRV: Transportation Risk Variability

Following the analysis on the importance of cost and risk variability functions, we

know that the greater the weights α3 and β3 are, the smaller the ratios TCV/TCM

and TRV/TRM become. Figure 3.6 shows the trend of how the ratios of TCV/TCM

and TRV/TRM change over different values for α3 and β3. The numbers 1 to 5 for

the horizontal axes in Figure 3.6 represent the weight combinations of (1, 5), (2, 4),

(3, 3), (4, 2), (5, 1) for the pair of (α3, β3), respectively.

In particular, in Figure 3.6, we consider three solutions from the Pareto set repre-

senting high, medium, and low-risk situations. As discussed previously, the range of
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(a) Ratios of TCV/TCM and TRV/TRM for a different combination of weights for (α3,

β3) with a level of satisfaction of 10% for both variabilities when a high-risk situation is

pursued (ε = 25)

(b) Ratios of TCV/TCM and TRV/TRM for a different combination of weights for (α3,

β3) with a level of satisfaction of 10% for both variabilities when a medium-risk situation

is pursued (ε = 20)

Figure 3.6: The behavior of variability per average indicators with changes in vari-

ability weights
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(c) Ratios of TCV/TCM and TRV/TRM for a different combination of weights for (α3,

β3) with a level of satisfaction of 10% for both variabilities when a low-risk situation is

pursued (ε = 15)

Figure 3.6 (continue) : The behavior of variability per average indicators with changes

in variability weights

the risk objective function for this example ranges from 13.80 to 26.80. Therefore, we

change the upper bound of the risk function or parameter ε in constraint (3.46). For

the first solution, we set ε = 25 which is regarded as a high-risk situation. The other

two upper bounds are set as ε = 20 and ε = 15 which are regarded as medium-risk

and low-risk situations, respectively. Based on the plots in Figure 3.6, if we consider a

level of satisfaction of 10% for variability in both cost and risk functions, we conclude

that, as for the medium-risk situation (Figure 3.6b) the weights associated with the

variability functions must be higher to make sure that the variability both in cost and

risk functions are below the level of satisfaction and vice versa. For more details, the

reader can refer to Figure 3.6a to see how in a high-risk situation, the lower weights for

α3 and β3 can still remain with the variability of results below the level of satisfaction.
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The low-risk situation places somewhere between the high and medium cases. To be

more accurate, the cost variability is more sensitive in the low-risk situation so that

it requires larger weights to be kept under a satisfaction level of 10%. However, the

risk variability is more sensitive in the medium-risk situation. As can be seen as the

red line in Figure 3.6b, more values of TRV/TRM are above the level of satisfaction

compared to the other two risk situations.

3.5.5 A sensitivity analysis over warehouse capacity

In this section, we conduct a sensitivity analysis on the warehouse capacity. The

reason for selecting this parameter is that warehouses themselves may be affected

by disruptions which consequently reduce a share of their maximum capacity, and

any loss of capacity in warehouses may highly influence the overall location-routing

plan. In our original analysis, each warehouse’s capacity was selected large enough to

handle the demands of all customers in one single tour. This is why we witness only

one warehouse that needs to be activated in all Pareto solutions. For investigation

purposes, we restrict the capacities of all warehouses to 12, which can force the model

to locate at least two facilities for demand fulfillment. Table 3.10 shows the details

of the two extreme Pareto points Z∗
1 and Z∗

2 , and Figure 3.7 illustrates the best

tours (regardless of paths) for Pareto points Z∗
1 and Z∗

2 to have a glimpse of how the

location-routing plans change after capacity reductions.

As expected, the customers are served from more than one warehouse because of

the reduction in the capacities. In Pareto solution Z∗
1 , customers are supported by

warehouses #1 and #3, while in Z∗
2 with warehouses #2 and #3. This reduction
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(a) Pareto point Z∗
1 (b) Pareto point Z∗

2

Figure 3.7: An illustration of how best tours change after imposing capacity restric-

tions to the model

in the capacity of the warehouses has burdened the system with extra cost and risk,

as indicated by the fact that the total cost and risk of Z∗
1 increase by 11% and 3%,

respectively, while the total cost and risk of Z∗
2 increase by 15% and 4%, respectively.

The increase in total cost is more than that of the total risk because the warehouse

installation costs comprise a more significant share of the total cost than the risk.

Therefore, in the case of a possible reduction in the capacity of warehouses due to

possible disruptions, we may face more tours with even more costs and risks to the

transportation system.

3.5.6 A Comparison with the non-disruption case

This section studies the impact of considering edge disruptions on an optimal logistics

network, and demonstrates why it is necessary to take into account possible random
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system disruption when making location-routing decisions. In doing so, we compare

our model (named as Case I, the disruption case) with a deterministic model with no

disruption consideration (named as Case II, the non-disruption case). It is noteworthy

to mention that the no disruption case is similar to the network presented in Hu et al.

(2019) with a few modification of time window restrictions. In Case II, the objective

functions are transformed to the deterministic format as follows:

minZ1 =
∑
w

c′wyw +
∑
i

∑
j

∑
k

cijkxijk, (3.49)

minZ2 =
∑
w

R′
wyw +

∑
i

∑
j

∑
k

Rijkxijk. (3.50)

Note that here the index s is removed because only one scenario (the normal one) is

considered. Setting all coefficients in Objectives (3.49) and (3.50) (i.e., α1 to α3 and

β1 to β3) to one and dividing the range of the risk function into ten segments, the

obtained Pareto solutions are shown in Table 3.11, and Figure 3.8 plots the Pareto

frontier of our model with disruptions against that of the non-disruption case.

The result shows that considering disruptions in making location-routing decisions

creates both higher cost and risk, respectively 14% and 5% on average. This outcome

is rather intuitive, as additional resources are required to overcome the impact of

unavailable edges and recover from the disruption scenarios. This system redundancy

also leads to difference between the results of Case II and the normal scenario in Case

I, as indicated by comparing Tables 3.7 and 3.11.

For more details, consider Pareto point #8 in both cases. The risk value function

for both cases is below 16 persons; however, Warehouse #1 is activated in Case

I and Warehouse #3 in Case II. To mathematically prove how applying scenario-

based robust optimization leads to solutions with a lesser cost, we solve the following
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Figure 3.8: Difference between the proposed location-routing problem with and with-

out disruption

optimization model. In this model, we keep the prior values for optimal values of

design variables for both cases. The objective function is to minimize the expected

cost of the carrier based on the proposed disruption scenarios while keeping the risk

values function to no more than 16 persons.

minZ1 =
∑
w

c′wyw +
∑
s

p′′s
∑
i

∑
j

∑
k

cijkx
s
ijk − eps× (δ/∆) (3.51)

s.t. ∑
w

R′
wyw +

∑
s

p′′s
∑
i

∑
j

∑
k

Rijkx
s
ijk + δ = 16 (3.52)

Solving this model by keeping y3, z4,3, ..., z12,3 = 1, we obtain the expected cost of 3,010

RMB. Again, by inserting the design variables yq, z4,1, ..., z12,1 = 1 into the model, we

obtain the expected cost of 2,618 RMB. Based on these results, there is a 15% increase

in the expected cost of Case II over Case I. In other words, the design variables
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derived from a no-disruption approach creates more cost to the carrier if there is a

possibility for edge unavailability, and applying a scenario-based robust optimization

model obtains the best possible solutions to the proposed location-routing problem.

3.5.7 Random instances

In this section, we check the validity of the proposed mathematical model for different

sizes of problem instances. A series of random problem instances are generated with

specific ranges for their parameters. The input parameters are considered to be

uniformly distributed with lower and upper bounds specified in Table 3.12. Values of

α and β parameters are all considered to be one.

Table 3.12: Distribution functions for generating random input parameters

Parameter Data

Transportation cost over edge U ∼ [50, 500]

Travel time over edge (hour) U ∼ [0.1, 10]

Risk over edge U ∼ [0.5, 30]

Warehouse capacity U ∼ [20, 100]

Warehouse cost U ∼ [200, 1000]

Site risk U ∼ [0.05, 0.1]

Customer demand U ∼ [0.5, 5]

Service time (hour) U ∼ [0.1, 1]

For all problem instances, we record the three salient points of the Pareto frontier:

two extreme points of “Min Cost” and “Min Risk” and an “Intermediate” point where

the risk value is no more than 10% of Z∗
2 from the “Min Risk” solution, that is

Z2+ δ = ε = 1.1Z∗
2 . The instances in Table (3.13) are built upon four main elements,
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including |W |, |C|, |K|, |S| respectively as the numbers of warehouses, customers,

paths between the nodes, and scenarios. The maximum time allowed for calculations

is set to 3 hours. In this table, the gap is defined as the difference between the best-

known solution (the best feasible objective value found so far) and the value that

bounds the best possible solution. The bound can be explained as a limit indicating

how far the solver will be able to improve the objective. Considering that the best

objective value can never go beyond the bound, the closer these two values are, the

better the solution will be.

Apart from the randomly generated values, instances #1 and #2 consider different

numbers of scenarios. Compared to instance #1, the minimum cost value of #2

is slightly declined, while the minimum risk objective value gains an extra 50%.

Moving from instance #2 to #3, the additional warehouses in the model reduce both

minimum cost and risk values by approximately 32% and 48%, respectively. Here, the

intermediate point experiences a drop regarding both of the objectives as well. From

instance #4 on, the results show that increasing the number of customers causes the

computation time to grow exponentially. The model reaches the optimum value in all

the cases except for the minimum cost boundary point of instance #6 and all the cases

in #7. The gap for #6 reaches almost 9%, and doubles in the corresponding point

of #7, as a result of increasing the number of customers from 15 to 20. Therefore,

while changes in the number of pathways between nodes have a trivial effect on the

results, the model is very sensitive to increasing the number of customers. However,

what is evident and definite is the exponential behavior of the computation time as

the scale gets larger. This highlights the importance of considering algorithms such

as branch-and-cut-and-price for shorter run times.
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3.6 Managerial Insights

This section highlights the managerial insights that are derived from previous dis-

cussions and can be used to help the carrier in constructing a robust hazmat logistic

system for satisfying customer demands.

First of all, it is critical to maintain a certain level of system redundancy such that

the transportation network is robust over time yet flexible enough to handle random

variations, especially disruptions that may be caused by weather, traffic, or any other

unforeseen events. This redundancy may be reflected in either a higher number of

warehouses, or extra capacities at warehouses, or both. Note that it may seem costly

to keep the redundancy when building up the network, but there will certainly be

benefits during disruptions, as shown in Section 3.5.6. Moreover, an improvement

of the geographical distribution of the warehouses may also help, not only in cost

reduction but also in risk reduction. This is because, when warehouses are spread

relatively evenly in the network, the system risk (including both en-route and on-site

risks) would also be more equitably distributed.

Secondly, in searching for an effective and efficient solution, the scenario-based

robust model presented in this research can be implemented as a useful facilitation

tool. To enhance the practicality, those scenarios can be generated based on a detailed

and comprehensive investigation of historical situations. Applying AECM provides

the carrier with more details about the possible alternative solutions to the problem.

None of the Pareto solutions have any priority over each other and the carrier can

choose among them in accordance with other managerial priorities such as budget

restrictions and/or the maximum tolerable risk. To assist in making a balanced
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decision, the RIR/CIR indicator can be used to provide guidance, which indicates

the appropriate range of increment in cost in return for an improvement in risk, as

discussed in Section 3.5.3.

Thirdly, indicators TCV/TCM and TRV/TRM are considered as ways to show

how much variability exists in the output (Section 3.5.4). A pre-defined level of

satisfaction can be applied to ensure the robustness of the system both with or without

disruptions. More importantly, in regard to adjusting the weights of variability terms

in both cost and risk functions, the carrier’s preference on the two objectives, i.e., the

risk-taking situation, should be highly respected.

3.7 Conclusion

In this research, we address a new type of hazmat transportation problem with edge

unavailability scenarios and time window assumptions. Edge unavailability is a practi-

cal aspect of transportation systems, but little attention has been given when hazmat

shipments are involved. Other realistic considerations in making delivery plans are

the time-dependent issues. Among these issues are the customer service time restric-

tions and the varying traffic density and speed over different times of the day, causing

divergent transportation risks and costs associated with various departure times of the

truck from a node. To handle the complicated situations with both disruptions and

time constraints, a vehicle routing problem is embedded into a scenario-based robust

optimization model, which is then solved by adopting an ε-constrained approach to

examine the relationship of the two objectives. In applying the scenario-based robust

optimization model, variability in cost and risk functions has been introduced as a
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critical indicator for designing reliable transportation plans. By keeping variability

functions within a threshold, it is guaranteed that the optimal solution covers all

disastrous scenarios within an acceptable range. We also conduct a comprehensive

analysis of the impact of the weights of variability functions on how the variability of

results changes with different risk situations from the carrier. Moreover, a sensitivity

analysis about the impact of warehouse capacity restriction on the final location-

routing tours has been applied. Based on this analysis, the decrease in the warehouse

capacity may burden the system with more transportation costs and risks.

For future research, the two-stage robust optimization technique developed by

Ben-Tal et al. (2009) will be used. Integrating the ideas of a two-stage stochastic

model and robust optimization, this technique can more practically reflect the real-

world situations in developing a solution in two stages. A comparison of the result

with our present work would provide additional interesting and informative insights

for the carrier or other stakeholders. Other assumptions, such as vehicle capacities,

emergency response networks to reduce transportation risk, and more sophisticated

formulations for hazmat risk could also be applied to make the proposed model more

realistic. The involvement of the salaries and wages in the transportation model would

be another pathway for future studies. Time-dependent service time and hourly paid

wages can be regarded in the model. The situation can become more realistic by

incorporating the skill levels of the employees. In this regard, salary inclusion might

necessitate a punishment or incentive motivator to be included in the model, especially

when discussing time-dependent payments.
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Chapter 4

Infectious Waste Management During a Pandemic:

A Stochastic Location-Routing Problem with

Chance-Constrained Time Windows

Abstract The COVID-19 pandemic has presented tremendous challenges to the world, one

of which is the management of infectious waste generated by healthcare activities. Finding cost-

efficient services with minimum threats to public health has become a top priority. The pandemic

has induced extreme uncertainties, not only in the amount of generated waste, but also in the

associated service times. With this in mind, the present study develops a mixed-integer linear

programming (MILP) model for the location-routing problem with time windows (LRPTW). To

handle the uncertainty in the amount of generated waste, three scenarios are defined respectively

reflecting different severity levels of a pandemic. Furthermore, chance constraints are applied to

deal with the variation of the service times at small generation nodes, and time windows at the

transfer facilities. The complexity of the resulting mathematical model motivated the application

of a branch-and-price (B&P) algorithm along with an ε-constraint technique. A case study of

the situation of Wuhan, China, during the initial COVID-19 outbreak is employed to examine the

performance and applicability of the proposed model. Our numerical tests indicate that the B&P

algorithm outperforms CPLEX in the computational times by more than 83% in small-sized problem
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instances and reduces the gaps by at least 70% in large-scale ones. Through a comparison with the

current and deterministic systems, our proposed stochastic system can timely adjust itself to fulfill

nearly four times the demand of other systems in an extreme pandemic scenario, while maintaining

a cost-efficient operation with no outbreak.

Keyword Infectious Waste, Location-Routing Problem, Time Windows, Stochastic Program-

ming, Chance Constrained Programming, Branch-and-Price Algorithm

4.1 Introduction

The ongoing COVID-19 pandemic has led to millions of deaths and irreversible dam-

age to the economy and industry worldwide. According to WHO (2022), by May 3,

2022, the virus widespread has claimed more than 6.2 million lives out of approxi-

mately 512 million infected individuals. The outbreak is a potential menace to the

environment due to the high amount of associated healthcare waste, both medical

(Ding et al., 2021; Abu-Qdais et al., 2020) and plastic (Nowakowski et al., 2020;

Prata et al., 2020). As stated by the State Council’s joint prevention and control

mechanism in China, despite a reduction of 30% in the amount of municipal solid

waste, the generated medical waste experienced a surge of 370% during the virus

epidemic in Hubei Province (Klemeš et al., 2020).

Healthcare waste is defined as the total waste generated at healthcare facilities.

Infectious waste, particularly, contains infectious sharps (including needles, blades,

or other items that can lead to direct injury) and infectious non-sharps (including

materials that have been in contact with human blood or its derivatives, isolation

waste from highly infectious patients, and other contaminated substances infected
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with human pathogens) (WHO, 2005). On many occasions, the entire mixed volume

of healthcare waste should be considered infectious as no proper categorization of

waste takes place, despite the fact that infectious waste only counts for approximately

18% of the total healthcare waste.

The United Nations Conference on Environment and Development reported that

medical waste related diseases cause the death of at least 5.2 million people (including

4 million children) each year (Das et al., 2021). During the COVID-19 pandemic, the

large number of infected patients has led to the exponential growth of medical waste

in healthcare facilities (Liu et al., 2022; Peng et al., 2020). This substantial amount

of waste has become a new source of infection as it is an important transmission

medium for the virus (Chen et al., 2021; Ranjbari et al., 2022). The highly contagious

virus contained in the resulting infectious waste has been posing harmful impacts

on the environment and human well-being (Homayouni and Pishvaee, 2020). The

United Nations Environmental Programme (UNEP) recommended that authorities

should follow the UN Basel convention’s technical guidelines on the environmentally

sound management of biomedical and healthcare waste, which distinctively stated

that “exposure to hazardous or potentially hazardous biomedical and health-care

waste can induce disease or injury” (Secretariat of the Basel Convention, 2003). The

European Commission has also issued special guidelines on waste management in

the context of the coronavirus crisis to prevent distortions in waste management and

ensure the health and safety of citizens, along with a high standard of environmental

security (European Commission, 2020).

The unpredictable behavior and mutations of the coronavirus impose a great deal

of uncertainties, the most critical one being the variations in the number of active
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Figure 4.1: The continuum of pandemic phases CDC (2016)

pandemic cases over time, which leads to consequential unpredictability of the amount

of waste generated from healthcare activities, and hence imposes tremendous pressure

on the existing waste management system. Figure 4.1 displays the distribution curve

of case averages during a pandemic summarized by CDC (2016), which also resem-

bles WHO’s influenza pandemic alert system (WHO, 2022). Being more contagious

and faster spreading compared to regular influenza, COVID-19 has been demonstrat-

ing not only the increase and decrease of pandemic cases, but more critically, the

incalculable scale of fluctuations and span of duration.

These notable characteristics of uncertainty in an unconventional pandemic emer-

gency necessitate a resilient waste management system that can promptly and con-

tinuously adapt to the demand changes and recover from various contingencies. One

additional feature that differentiates a sudden pandemic from other healthcare cir-

cumstances is the important role played by small medical clinics and offices. These

locations generate relatively a small amount of waste and so require specially designed

collection tours, different from the direct routes from large hospitals or medical cen-

ters to treatment facilities. As mentioned by Srivastava (1993), when dealing with
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less than truckload status, serving multiple customers in a single tour is a more cost-

effective approach than the straight-to-and-back manner. Also, Rathore and Sarmah

(2020) highlighted that a shorter time for collection and disposal of waste is more

desirable because of basic environmental principles. Applying tours instead of direct

routes reduces waste management process time by omitting the unnecessary commut-

ing between storage stations and generation nodes. An effective collection service is

capable of mitigating the associated negative impacts on public health and the ecosys-

tem (Eren and Tuzkaya, 2021). As a result, to improve the system’s preparedness

for such an unexpected event, different countries have applied diversified approaches.

For example, in Wuhan, the authorities decided to construct a new medical waste

disposal center and benefit from 46 mobile waste treatment facilities as well (Calma,

Justine, 2020). When dealing with elevating demands in particular regions, establish-

ing mobile faculties, such as temporary storage (used for collection among small) and

treatment facilities, can be a wise and worthwhile option. Taking this idea, we pro-

pose a stochastic model to determine the existing waste-handling facilities that can be

temporally converted to infectious-compatible ones during a pandemic. The scenario

approach imitating the disparity of the number of active cases in different pandemic

phases is employed to handle the exceedingly unpredictable demand variations and

make use of the available data derived since the beginning of the pandemic.

Another aspect refers to the inconsistent service time at each generation node as it

is mainly related to the amount of waste. This uncertainty in turn directly links to any

possible time windows that may exist. Such a time-related uncertainty, nevertheless,

so far has been overlooked in most literature. According to the “Management and

Technical Guidelines for Emergency Disposal of Medical Waste in the Pneumonia
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Pandemic of COVID-19” presented by the Ministry of Ecology and Environment of

the People’s Republic of China, COVID-related waste should be handled separately

from any other types of waste, and the temporary storage time should not exceed 24

hours. The same time frame was also recommended by Peng et al. (2020). Explicitly

for those temporary facilities, normally only limited hours of a day can be used

for infectious materials, as a certain amount of time also needs to be guaranteed

for the daily regular waste. In this work, we embed the uncertainty of the service

time into our consideration, as well as the resulting possibility of violating the time

window restrictions, and therefore introduce a set of chance constraints for facility

time windows in accordance with stochastic service times at each small generation

node.

In summary, the contribution of this paper is fourfold. First, we develop a bi-

objective location-routing model for hazardous waste management considering time

windows and uncertainties in demand and service time. More specifically, a well-

organized approach is proposed to convert existing facilities into temporary ones when

facing a pandemic, where the corresponding infectious waste can be processed sepa-

rately. The designed network is based on a cost-efficient model addressing locations

of temporary facilities, tour planning, direct routes, and the optimum vehicle acqui-

sition simultaneously. Second, a two-commodity flow formulation with time windows

is utilized for tour planning. The uncertainty in the amount of generated waste is de-

scribed by three scenarios respectively reflecting different severity levels (i.e., phases

as in Figure 4.1) of a pandemic. The chance constraint is implemented to ensure that,

with stochastic service time, the pre-defined time windows of temporary facilities can

be satisfied at a certain confidence level. Third, the augmented ε-constraint solution
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technique and a branch-and-price algorithm are developed and integrated to solve

the proposed bi-objective stochastic problem with chance constraint. Fourth, a case

study of Wuhan in China during the coronavirus pandemic is studied. Practical in-

dications and managerial insights are derived to facilitate real-world infectious waste

management, especially during an unforeseen pandemic.

The rest of this paper is structured as follows. Section 4.2 reviews relevant litera-

ture on the management of medical waste. Section 4.3 presents the detailed network

description and model formulation. Based on the solution methods discussed in sec-

tion 4.4, the proposed model is applied to a case study in section 4.5 for validation

and evaluation purpose. Beneficial managerial insights are derived from numerical

experiments and summarized in section 4.6. Finally, section 4.7 concludes this work

and suggests future research directions.

4.2 Related work

The most relevant research area is the management of medical waste. So far, much

effort has been made to investigate different aspects of the medical waste being gener-

ated at hospitals and medical centers regarding the COVID-19 outbreak. Statistical

analysis was conducted by Abu-Qdais et al. (2020) to evaluate the generation rates

and the composition of the medical waste generated during the treatment of the coro-

navirus pandemic Yu et al. (2020c) suggested the application of temporary facilities in

medical waste management during epidemic outbreaks. Yazdani et al. (2020) studied

healthcare waste disposal location decisions using the best-worst method with inter-

val rough numbers. They positioned the model in an uncertain environment using a

126



hybrid methodology and proposed a new rough-based framework of the best worst

method and the Bonferroni aggregators model for processing imprecise (rough) in-

formation in multi-criteria decision making problems. Kulkarni and Anantharama

(2020) explored different features of solid waste management during the COVID-19

pandemic focusing on waste treatment and disposal facilities. A study carried out

by Nghiem et al. (2020) assessed the consequences of the COVID-19 outbreak on

waste and wastewater service sectors. An effort to establishing efficient guidelines for

collecting, transporting, treating, and disposing of the household waste or areas dif-

ferent from medical centers treating COVID-19 patients was made by Di Maria et al.

(2020). Haque et al. (2020) discussed a future scenario of waste generation throughout

the pandemic period. Eren and Tuzkaya (2021) developed an integer programming

model to determine the safest and shortest transportation route for medical waste.

In their work, the associated safety scores of medical centers are obtained using an

AHP method.

Although the above studies have contributed to the literature in various aspects,

only a few authors have employed analytical models or quantitative technologies for

the logistic network of the medical waste, especially from a location and routing view-

point. Table 4.1 lists the taxonomy of relevant works based on model decisions, opti-

mization objectives, uncertainty techniques, time windows, and solution algorithms.

A detailed survey is presented next.

The routing and scheduling problem for collection system planning of infectious

medical waste was studied in Shih and Lin (2003). The application of RFID technol-

ogy in the collection-managed inventory routing problem of infectious medical waste

was examined in Nolz et al. (2014). Considering a sustainable logistic network, they
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used an adaptive large neighborhood search method to solve their two-stage stochastic

model with uncertain demands. Budak and Ustundag (2017) studied the location-

allocation problem for waste collection and disposal in Turkey. Alshraideh and Qdais

(2017) developed a stochastic route scheduling model of medical waste collection in

Northern Jordan, and showed how the stochasticity of collected waste can be applied

in the model as a probability constraint representing the service level provided by the

waste collector. Mantzaras and Voudrias (2017) introduced an optimization model to

determine the locations and capacities of treatment plants and transfer stations. The

continuous facility location problem of waste disposal sites was modeled in Gergin

et al. (2019) using an artificial bee colony based on a clustering algorithm. Osaba

et al. (2019) presented a multi-attribute clustered VRP addressing a real-world drug

distribution problem with pharmacological waste collection processes. Markov et al.

(2020) formulated the waste collection problem as a non-linear stochastic inventory

routing model in terms of uncertain container overflows and route failures.

More recently, especially after COVID hit, many publications have taken into

consideration the potential risk of infection when constructing decision models. Yao

et al. (2020) explored the risk and cost mitigation in the location-allocation problem

of medical waste disposal centers through a soft-path solution. A multi-trip medi-

cal waste reverse supply chain was investigated by Kargar et al. (2020) considering

two types of hazardous wastes as well as the general medical waste. Taslimi et al.

(2020) applied a periodic load-dependent capacitated vehicle routing problem to plan

the inventory routing schedule for each week. Govindan et al. (2021) focused on the

location-routing problem of medical waste management during the COVID-19 out-

break. They developed a bi-objective MILP model and solved it using a fuzzy goal
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programming approach. Their model incorporated time window-based green vehicle

routing problem and load-dependent fuel consumption to manage medical waste.

Tirkolaee et al. (2020) and Zhao et al. (2021) are two studies that are more re-

lated to this article. Focusing only on the infectious wastes related to the coronavirus,

Tirkolaee et al. (2020) studied a sustainable multi-trip LRPTW. Their model was de-

veloped based on the two levels of a waste management system, including 1) hospitals

and infirmaries 2) disposal sites. They applied a fuzzy chance programming approach

by considering the demand as the uncertain parameter. Also, a weighted goal pro-

gramming approach method was utilized to handle the multi-objective nature of the

model. Zhao et al. (2021) proposed a bi-objective scenario-based robust model for

the management of infectious wastes with a special focus on a pandemic. Considering

temporary facilities in a 4-tiered network, they developed the model assuming a set

of scenarios for the generated waste in hospitals and clinics.

Despite the aforementioned effort, the medical waste literature in the LRP scope

is still in its infancy. Except for Tirkolaee et al. (2020) and Zhao et al. (2021), no pub-

lications in the medical waste field determine joint location-routing decisions under a

pandemic setting. Even these two works did not integratively address uncertainties

existing in multiple parameters, which may greatly influence the system performance,

especially under sudden changes. To fill this gap in the literature, we apply different

approaches according to the specific uncertain natures for different parameters. In

more detail, the change in the amount of medical waste stemming from the severity

levels of a pandemic can be substantial, but has to be controlled properly for public

safety considerations. We therefore define several scenarios in this work to model the

interpandemic, alter/transition, and widespread pandemic phases, which respectively
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describe different severity levels of a pandemic. Taking into account these scenarios

under various probabilities, our model can properly resemble real-world situations and

provide effective decision support accordingly. On the other hand, the uncertainty

in the service time, partially resulting from demand variability, is formulated as a

set of chance constraints associated with each individual scenario, which takes extra

precautions for the variations existing in the time of handling each unit of waste. To

the best of our knowledge, this is the very first attempt to embed these uncertainties

into a multi-tiered waste management system for location-routing decisions with time

window considerations.

4.3 Model Development

We consider a three-tiered waste management system, as illustrated in Figure 4.2.

There are five types of nodes in the network, separately located at different tiers.

The small generation nodes (i.e., medical clinics and laboratories) constitute the first

tier. The second tier includes large generation nodes (i.e., hospitals and medical

centers) and temporary transfer stations. Finally, existing and temporary treatment

centers form the last tier of this network. These treatment centers are considered to be

integrated facilities, meaning that both the treatment and disposal of the infectious

waste processes are done in a single facility. Taking well-planned collection tours,

vehicles pick up the infectious waste from small generation nodes and deliver it to

temporary transfer stations. Then, the accumulated waste is conveyed from those

stations to treatment centers (existing or temporary) through direct routes. All large

generation nodes are directly routed to treatment centers.
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Figure 4.2: Network for the infectious waste management

Decisions needed to be made for this waste system include: location decisions

focused on temporary transfer stations and treatment centers, acquisition decisions

about how many vehicles are required for collections, and routing decisions for the

collection tours from small generation nodes to temporary transfer stations, as well as

direct routes between transfer stations/large generation nodes and treatment centers.

4.3.1 Assumptions and notation

In this model, the planning horizon is set as one day, since the infectious wastes are

usually required to be shipped and handled within 24 hours for the purpose of infection

prevention and control (Peng et al., 2020). Our model is built upon an existing system,

aiming to improve the preparedness and responsiveness when a pandemic hits. We

hence assume that the vehicles for direct routes have already been purchased, and

only the number of vehicles for collection tours needs to be determined. It is also

assumed that all vehicles and facilities meet the required security and safety standards
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for infectious waste handling and treatment.

The amount of waste generated at each node (i.e., demand) is assumed to have

an uncertain nature. Three scenarios are defined covering different pandemic phases,

respectively addressing low, medium, and high demands. When historical data are

available and reliable, the demand and probability for each scenario can be determined

accordingly. However, in reality, existing data may not be enough to predict the

highly unforeseeable pandemic severity level, like what we have experienced during

the ongoing COVID-19 pandemic. In this regard, the decision maker’s perception

and attitude toward the possible degree of impacts that the pandemic may have on

the system can be used to derive the parameters. Then the three scenarios indicate

the decision maker’s estimate of the outbreak severity, respectively optimistic, most

likely, and pessimistic cases; in the meantime, the probabilities quantify the extent of

concerns over those cases. A similar type of scenario setting can also be seen in the

literature on logistics (Tasouji Hassanpour et al., 2021; Zhao et al., 2021).

Tables 4.2 and list the notation used in this work, based on which a detailed

discussion of the mathematical model is then presented.

4.3.2 A two-commodity formulation

The two-commodity formulation (Baldacci et al., 2004) is utilized to examine the

collection tours among temporary transfer stations and small generation nodes. By

excluding the application of traditional sub-tour elimination constraints, this type

of formulation results in a higher convergence rate. To that end, the original road

network is extended by introducing nodes that present copies of temporary transfer
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Table 4.2: Notation - sets & parameters

Sets

N set of nodes regardless of their nature, indexed by i and j

E set of edges, indexed by (i, j)

G set of small infectious generation nodes, indexed by g

L set of large infectious generation nodes, indexed by l

T set of candidate temporary transfer stations,indexed by t

T̄ set of copies of candidate temporary transfer stations, indexed by τ

C set of candidates for temporary treatment centers, indexed by c

C ′ set of existing treatment centers, indexed by c′

S set of uncertain scenarios, indexed by s

Parameters

ws
i amount of waste generated at node i ∈ G ∪ L at scenario s

FCTt fixed cost of opening temporary transfer station t

FCCc fixed cost of opening temporary treatment center c

FCAc′ fixed cost of activating the existing treatment center c′

V CTt variable cost of operating one unit of waste at temporary transfer station t

V CCc variable cost of operating one unit of waste at temporary treatment center c

V CCc′ variable cost of operating one unit of waste at existing treatment center c′

TCT transportation cost per kilometer in the tour

TCD transportation cost for one unit of waste per kilometer in the direct route to the treatment center

CSt capacity of temporary transfer station t

CCc capacity of temporary treatment center c

CCc′ capacity of existing treatment center c′

V CT vehicle capacity for collection tours

V CD vehicle capacity of the trucks for direct routes

V FC Vehicle cost for tours

dij length of edge (i, j) ∈ E

ott opening time of transfer station t ∈ T

ctt closure time of transfer station t ∈ T

stg service time on node g ∈ G

ttst total traveling time of a truck in a tour, departing from a transfer station t ∈ T and ending at its

associated copy, in scenario s

M a big number

tij travel time of a truck from node i to j

Rij risk of traveling from node i to j

Ri risk around facility i ∈ T ∪ C ∪ C ′

Decision variables

λt 1, if temporary transfer station is located at node t; 0, otherwise

γc 1, if treatment center is located at node c; 0, otherwise

γc′ 1, if existing treatment center is located at node c′; 0, otherwise

xs
ijτ amount of waste loaded in the vehicle on edge (i, j) ∈ E, where this vehicle is ended at copy station

τ ∈ T̄ in scenario s

xs
jiτ amount of empty space in the vehicle on edge (i, j) ∈ E, where this vehicle is ended at copy station

τ ∈ T̄ in scenario s
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Table 4.2 (continue) : Notation - decision variables

Decision variables

ysij number of times for transporting infectious waste to treatment centers on edge (i, j) ∈ E in scenario

s

ηsij amount of infectious waste transported to treatment centers on edge (i, j) ∈ E in scenario s

ζst amount of infectious waste collected at temporary transfer station t in scenario s

ϖs
j amount of infectious waste collected at temporary treatment center (j ∈ C) or existing treatment

center (j ∈ C ′) in scenario s

ns number of vehicles required for collecting the infectious waste in scenario s ∈ S

asτ arrival time of a truck to the copy node τ ∈ T̄ in scenario s

us
t departure time of a truck from transfer station t ∈ T in scenario s

rsijτ 1, if edge (i, j) ∈ E appears in the vehicle route where this vehicle is ended at copy station τ ∈ T̄

in scenario s; 0, otherwise

osgτ 1, if the produced waste of the small generation node g ∈ G is collected at copy of the temporary

station τ ∈ T̄ in scenario s; 0, otherwise.

facilities. Hence, a collection tour is defined as a route starting from a transfer

station and finishing at the station’s associated copy after visiting at least one small

generation node, under the condition that the capacities of the vehicles and temporary

transfer stations cannot be violated. The application of this type of formulation in

the field of hazardous material transportation can be found in Zhao and Verter (2015)

and Zhao and Ke (2017).

Fig. 4.3 depicts two types of flows that exist in each tour: a forward flow (solid

arrow) from the original temporary transfer station (t) to its copy (τ), and a backward

flow (dashed arrow) moving in the opposite direction from the copy to the original

facility. While the flow in the former type indicates the vehicle’s actual load, the

backward flow represents the remaining empty space on the same vehicle. In this

regard, the vehicle capacity equals the sum of the two flows, i.e., V CT = xsijτ + xsjiτ

when the vehicle is ended at station τ in scenario s.

In addition, the net flow in each scenario equals twice the amount of generated
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Figure 4.3: Two-commodity formulation’s basic relationships in the network

waste at this specific node, because the waste amount is counted in both the forward

and backward flows. Take node i in Figure 4.3 for example. In scenario s, the net

flow can be calculated by the inflow (xskiτ +x
s
jiτ ) minus the outflow (xsikτ +x

s
ijτ ), which

should equal to double amount of the waste generated at i (2ws
i ).

4.3.3 Objective functions

In this problem, we deal with two objectives, cost and risk. Both are computed

separately for the system-level facility location decisions in the first stage, and the

scenario-level vehicle and routing decisions in the second stage.

Let CF and RF respectively be the fixed components for the cost and risk objec-

tives. We have

CF =
∑
t∈T

λtFCTt +
∑
c∈C

γcFCCc +
∑
c′∈C′

γc′FCAc′ (4.1)

RF =
∑
t∈T

λtRt +
∑
c∈C

γcRc +
∑
c′∈C′

γc′Rc′ (4.2)

In Eq. (4.1), the fixed cost of establishing temporary facilities, such as the rental cost

of the property and other maintenance expenses, for both transfer stations and treat-

ment centers is calculated. In Eq. (4.2), the potential risk of opening or activating

the facilities is computed by applying the exposed population in the proximity of the

facility. Note that we estimate the risk as the population exposure within a certain
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radius, which can be calculated by multiplying the size of the exposure area and the

population density of the area. Concerning the worst-case scenario of a possible in-

cident, this approach has been broadly applied to low-probability-high-consequence

events, such as hazmat-related incidents (examples include Batta and Chiu (1988);

Ke (2020b); Zhao et al. (2021), among others).

On the other hand, each objective also contains a variable portion in each scenario.

The associated values, denoted respectively as CV s and RV s for scenario s, can be

obtained as:

CV s = nsV FC +
∑
t∈T

ζst V CTt +
∑
c∈C

ϖs
cV CCc +

∑
c′∈C′

ϖs
c′V CCc′ (4.3)

+
∑

i,j∈G∪T∪T ′

∑
τ∈T̄

rsijτdijTCT

2
+
∑

i∈L∪T

∑
j∈C∪C′

ysijdijTCD

RV s =
∑

i,j∈G∪T∪T ′

∑
τ∈T̄

rsijτRij

2
+
∑

i∈L∪T

∑
j∈C∪C′

ysijRij (4.4)

Eq. (4.3) adds up the vehicle purchase cost, operation costs at the temporary and

existing facilities, and transportation costs for collection tours and direct routes. Eq.

(4.4) includes the en-route risks for the tours and routes. It is important to note that

the tour-related computations are divided by 2. This is because variable rsijτ = 1 in

both forward and backward flows in the two-commodity flow formulation, while only

the forward flow contains actual waste, and the backward flow shows the vehicle’s

empty space and hence should not be counted.

Now, let πs be the probability of scenario s, the mean cost and mean risk can be

respectively calculated as:

µCost =
∑
s∈S

πsCV s (4.5)
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µRisk =
∑
s∈S

πsRV s (4.6)

Consequently, the objective functions, consisting of the fixed and variable ele-

ments, can be expressed as:

minZCost = CF + µCost (4.7)

minZRisk = RF + µRisk (4.8)

4.3.4 Chance-constrained time window

The time-related assumptions in this research are considered through the time win-

dow concept as permissible facility service periods. In more detail, we propose to use

temporary transfer stations, which are regularly occupied for non-infectious waste.

Without influencing the normal operations and avoiding transmission at those sta-

tions, it is reasonable to assign a specified service interval only for handling infectious

waste. Such service intervals imply the corresponding facility’s regulated time win-

dows to start servicing the small generation nodes and receiving the collected waste

from them. In this interval, ott and ctt are respectively the earliest and latest times

that the vehicle can depart from and arrive at the transfer station t ∈ T . Assuming

hard time windows, the following set of constraints are applied:

ttst =
∑

i,j∈G∪T∪T̄

rsijτ tij

2
+
∑
g∈G

stgo
s
gτ ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ,∀s ∈ S; (4.9)

asτ +M(1− λt) ≥ ust + ttst ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ,∀s ∈ S; (4.10)

ott ≤ ust ∀t ∈ T,∀s ∈ S; (4.11)

asτ ≤ ctt ∀τ ∈ T̄ ,∀s ∈ S. (4.12)
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Constraint (4.9) calculates the traveling time of a truck in a tour by incorporating the

related traveling times on the selected edges and the associated customer service times

in that tour. Constraint (4.10) guarantees that the difference between the arrival time

of a truck to the assumed copy of the transfer station node and its departure time

from the associated facility at least equals the total traveling time of the related tour.

Finally, Constraints (4.11) and (4.12) ensure that the arrival and departure times

adhere to the associated service interval.

In relation to the time window constraints, the stochastic service time is modeled

by Chance Constrained Programming (CCP), which seeks to ensure a certain service

confidence level. In other words, this method formulates a problem in such a way as

to guarantee that the probability of meeting a particular constraint is higher than a

certain threshold. The vehicle’s service times at small generation nodes are relatively

dependent on the amount of generated waste at those nodes. The collection process

becomes more sensitive to variations in the amount of load when dealing with haz-

ardous materials and infectious waste. We assume here the service time is normally

distributed with a known mean and standard deviation. This assumption is made

on the basis of the central limit theorem, which leads to the fact that the normal

distribution can often be applied to represent real-valued random variables when the

distribution is hard to achieve (Casella and Berger, 2001). Practically, empirical stud-

ies can be conducted to find the best distribution that shows a good fit of the service

time.

Applying CCP to Constraint (4.10) guarantees that the probability of meeting

the time window at each transfer station is above a pre-determined confidence level
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θ, that is

P (asτ +M(1−λt) ≥ ust + tt
s
t) ≥ θ ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ,∀s ∈ S. (4.13)

Now, by moving ust to the left-hand side of the inner inequality, we obtain P (asτ +

M(1 − λt) − ust ≥ ttst) ≥ θ, which can be easily converted into the standard normal

distribution, where we can utilize the cumulative distribution function properties of

the normal standard distribution using the following steps:

P (
ttst − µttst

σttst
≤
asτ − ust +M(1− λt)− µttst

σttst
) ≥ θ;

P (Z ≤
asτ − ust +M(1− λt)− µttst

σttst
) ≥ θ;

φ(
asτ − ust +M(1− λt)− µttst

σttst
) ≥ θ;

asτ − ust +M(1− λt)− µttst

σttst
≥ Zθ.

The final CCP deterministic equivalent of the associated constraint will be as

follows:

asτ − ust +M(1− λt) ≥ µttst
+ Zθσttst , ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ,∀s ∈ S. (4.14)

4.3.5 Mathematical formulation

Based on the two-commodity flow formulation, we present the complete mathematical

model in the following.

minZCost

minZRisk
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subject to: (4.9),(4.11),(4.12),(4.14), and

∑
j∈G∪T∪T̄ ,j ̸=i

(xsijτ − xsjiτ ) = 2ws
i o

s
iτ ∀i ∈ G ∪ T,∀τ ∈ T̄ ,∀s ∈ S;

(4.15)∑
g∈G

∑
τ∈T̄

xsτgτ = nsV CT −
∑
g∈G

∑
τ∈T̄

ws
go

s
gτ ∀s ∈ S;

(4.16)∑
g∈G

xsgττ =
∑
g∈G

ws
go

s
gτ ∀τ ∈ T̄ ,∀s ∈ S;

(4.17)∑
g∈G

∑
m∈T̄

∑
τ∈T̄

xsgmτ ≤ nsV CT ∀s ∈ S;

(4.18)

xsijτ + xsjiτ = V CTrsijτ ∀i, j ∈ G ∪ T ∪ T̄ , i ̸= j,

∀τ ∈ T̄ ,∀s ∈ S;

(4.19)∑
g∈G

xstgτ = 0 ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ,∀s ∈ S;

(4.20)∑
i∈G∪T∪T̄ ,i̸=g

(rsgiτ + rsigτ ) = 2osgτ ∀g ∈ G,∀τ ∈ T̄ ,∀s ∈ S;

(4.21)∑
i∈G∪T∪T̄ ,i̸=τ

(rstiτ + rsitτ ) = 0 ∀t ∈ T,∀τ ∈ T̄ , τ − t ̸= |T | ,∀s ∈ S;

(4.22)
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∑
j∈G∪T∪T̄ ,j ̸=τ

(rsmjτ + rsjmτ ) = 0 ∀m, τ ∈ T̄ ,m ̸= τ, ∀s ∈ S;

(4.23)

rstgτ ≤ λt ∀g ∈ G,∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ,∀s ∈ S;

(4.24)∑
τ∈T̄

osgτ = 1 ∀g ∈ G,∀s ∈ S;

(4.25)

ζst = ζsτ ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ,∀s ∈ S;

(4.26)

ζst =
∑
g∈G

ws
go

s
gτ ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ,∀s ∈ S;

(4.27)

ζst =
∑

j∈C∪C′

ηstj ∀t ∈ T,∀s ∈ S;

(4.28)

ws
l =

∑
j∈C∪C′

ηslj ∀l ∈ L,∀s ∈ S;

(4.29)

ϖs
j =

∑
i∈L∪T

ηsij ∀j ∈ C ∪ C ′,∀s ∈ S;

(4.30)

ζst ≤ CStλt ∀t ∈ T,∀s ∈ S;

(4.31)
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∑
j∈L∪T

ηsjc ≤ CCcγc ∀c ∈ C, ∀s ∈ S;

(4.32)∑
j∈L∪T

ηsjc′ ≤ CCc′γc′ ∀c′ ∈ C ′,∀s ∈ S;

(4.33)

ηsij
V CD

≤ ysij ∀i ∈ L ∪ T,∀j ∈ C ∪ C ′,∀s ∈ S;

(4.34)∑
i∈L∪T

ηsij ≤M(γc + γc′) ∀j ∈ C ∪ C ′,∀s ∈ S;

(4.35)

λt, γc, γc′ , r
s
ijτ , o

s
gτ ∈ {0, 1} ∀g ∈ G,∀t ∈ T,∀τ ∈ T̄ ,∀c ∈ C,

∀c′ ∈ C ′,∀(i, j) ∈ E,∀s ∈ S;

(4.36)

xsijτ , η
s
ij, ζ

s
t , ϖ

s
i , a

s
τ , u

s
t ≥ 0 ∀i, j ∈ N, ∀(i, j) ∈ E,∀t ∈ T,∀τ ∈ T̄ ,∀s ∈ S;

(4.37)

ysij, n
s ≥ 0 and integer ∀i ∈ L ∪ T,∀j ∈ C ∪ C ′,∀s ∈ S.

(4.38)

Constraint (4.15) affirms that the difference between the total outflow and total in-

flow in each scenario equals twice the amount of generated waste at this specific node.

The equity between the total outflow of the copy transfer stations and the residual

capacity of vehicles in each scenario is guaranteed in (4.16). Constraint (4.17) en-

sures that the total entering flow for the copy of a temporary transfer station in each

scenario equals the total collected waste from all generation nodes allocated to the
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same transfer facility. Constraint (4.18) guarantees that the total inflow of the copy

of a temporary transfer station does not violate the specified total vehicle capacities

in each scenario. Constraint (4.19) makes sure, provided that edge (i, j) is included

in a tour, the summation of the forward and backward flows on that edge is equal

to the capacity of the vehicle. In other words, this constraint ensures that both xsijm

and xsjim take feasible values. Constraint (4.20) enforces the model not to assign

any load on the vehicle which has just left a temporary transfer station. Constraint

(4.21) states that each small generation node has two incident edges. Constraints

(4.22) and (4.23) force the tour to end at the corresponding copy of a temporary

transfer station from which the vehicle had started its route. This is achieved by

forbidding the treatment centers from participating in other copies’ tours and pre-

venting movements between copies of transfer stations. Constraint (4.24) states that

a tour from temporary storage can be initiated provided that the facility is opened.

Constraint (4.25) guarantees that each small generation node should only be served in

one tour. The flow balances among the three tiers are ensured in Eqs. (4.26)-(4.30).

Eq. (4.26) equals the temporary transfer station and its copy. Eq. (4.27) totals the

waste amount of small generation nodes to the waste collection amount for tempo-

rary transfer stations. Eqs. (4.28)-(4.30) respectively balance the temporary transfer

stations and treatment centers, the large generation nodes and treatment centers, as

well as the shipping and storage amounts of the treatment centers. The establish-

ment of capacity constraints in transfer stations and treatment centers is handled in

(4.31) to (4.33). Constraint sets (4.34) and (4.35) are the logic constraints of decision

variables. In this regard, Constraint (4.34) determines the number of times that the

vehicle should travel in the direct routes based on vehicle capacity and the amount of

144



waste to be transferred between the second and third tiers. Also, Constraint (4.35) al-

lows waste transportation between second and third tiers when the treatment centers

are opened or activated. Finally, Constraint sets (4.36)-(4.38) determine the nature

of the decision variables in the problem.

4.4 Solution method

The difficulty of solving the above model lies in two aspects. First, the bi-objective

structure requires a technology that can effectively and efficiently generate the Pareto

optimal set. An augmented ε-constraint method is applied here. Secondly, Samanli-

oglu (2013) and Yu and Solvang (2016) showed that a single objective location routing

problem is NP-hard. Given the additional objective and uncertain features, our model

is clearly NP-hard. Thus a branch-and-price algorithm is proposed to solve the model

to optimality.

4.4.1 Augmented ε-constraint method

We use the augmented ε-constraint method, proposed by Mavrotas and Florios (2013),

to deal with the bi-objective nature of the presented model. Belonging to the cate-

gory of generation methods for multiple objective problems, the ε-constraint method

outshines the most commonly applied weighting approach (Mavrotas, 2009) in the fol-

lowing aspects, 1) capability of producing non-extreme efficient solutions and hence

providing a richer representation of the solution set, 2) being able to handle inte-

ger and mixed-integer models, 3) indifference in the scale of multiple objectives, and

4) the easiness in adjusting the number of solutions. In addition to the benefits of
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the standard ε-constraint method, the augmented ε-constraint method is further en-

hanced by incorporating acceleration issues to ensure the solution efficiency while

keeping reasonable solution times.

In this exact method, one of the objectives stays in the objective function, while

the rest are treated as constraints according to some limitations and values deter-

mined by the decision-maker. Defining f1(x) as the primary objective function and

transferring f2(x) into the problem constraints section as a new constraint with an

enforcing upper bound results in the following terms:

min f1(x)− eps× (δ/∆)

s.t.

f2(x) + δ = ε,

B(x, b) = 0,

δ ≥ 0.

Herein, ε and δ represent the upper bound of the second objective and the corre-

sponding slack variable for the constraint, respectively. Parameter ∆ is applied to

prevent scaling issues concerning the range of the second objective function, and eps

is a small number taking a value in the interval [10−6, 10−3] (Mavrotas and Florios,

2013).

Setting the cost function as the primary objective, the model can be written as:

min ZCost − eps× (δ/∆) (4.39)

s.t. (4.1)-(4.38), and

ZRisk + δ = ε, (4.40)
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δ ≥ 0. (4.41)

4.4.2 Branch and price algorithm

The ε-constraint model given in the previous section can be solved by CPLEX di-

rectly. However, as the scale of the problem grows, the required computational time

increases exponentially. In the literature, only limited solution methods have been

developed for location-routing problems with uncertainties. Examples include the

parallelized adaptive large neighbourhood search (Schiffer and Walther, 2018), the

Progressive Hedging algorithm (Bashiri et al., 2021), and the imperialist competition

algorithm (Tayebi Araghi et al., 2021), among others. However, the majority of them

are either not exact algorithms, or not suitable for the multi-level structure of our

problem. To facilitate the solution procedure, especially for large-scale instances, we

apply a branch-and-price (B&P) algorithm that is inspired by the work of Wang et al.

(2020). By applying Dantzig-Wolfe decomposition, the mathematical model can be

decomposed to a master problem following the set partitioning formulation (Subsec-

tion 4.4.2.1) and the pricing subproblem concerning the collection tours with negative

reduced costs (Subsection 4.4.2.2).

Algorithm 1 summarizes the procedure of this solution approach. First, a re-

stricted master problem (RMP) is developed for the branching nodes. By solving its

linear relaxed form (RRMP) through duality, a set of new columns is added using

the column generation (CG) method (subsection 4.4.2.4) built upon a pulse algo-

rithm (subsection 4.4.2.3). If the optimal solution set of the linear master problem

contains fractional values, then two new complementary subproblems are generated
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using the branching rules given in subsection 4.4.2.5. Conducting the same procedure

on the child nodes, the solution algorithm continues until any termination condition

is reached or a final solution is obtained.

4.4.2.1 Master problem based on the set partitioning formulation

In this section, we present the set partitioning-based formulation of the model. With-

out loss of generality, we assume V2 = L ∪ T , V3 = C ∪ C ′, and remove the scenario

index from the symbols. To deal with scenarios, the master problem is further divided

into a set of smaller problems, each corresponding to an individual scenario. The al-

gorithm then begins with solving the model for the worst-case scenario, defining the

system structure to handle all the possible scenarios. All required facilities are de-

termined in this step. Benefiting from the resulting reduced number of facilities, the

algorithm subsequently addresses the remaining scenarios. Each tour r ∈ Rt starts

from an open transfer station t and ends up at its corresponding copy. Therefore, we

have
∑

t∈T Rt = R as the set of feasible tours that satisfy Constraints (4.15)-(4.25).

Let αgr be a binary variable indicating whether a small generation node g has been vis-

ited in route r or not. Also, the cost of each tour is shown by Costr, which comprises

the vehicle’s traveling expenses, waste processing charges at the transfer stations, and

the fixed cost of utilizing vehicles. Similarly, Riskr stands for the associated en-route

risk of tours and direct routes. The accumulated demand in a tour by visiting small

generation nodes is defined as ADr =
∑

g∈G αgrωg, where ωg is the related waste of

node g. Finally, the existence of route r in the solution is presented using the binary

variable er. The two-commodity-based formulation can be represented holding the
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Algorithm 1: B&P algorithm

Let Ω be the list of all active nodes in the B&P tree;

Let ϱr be the relaxed solution of node ϱ;

Let Vts and Vtc be the potential transfer station and treatment center nodes,

respectively;

Let V ′
ts and V ′

ts be the set of potential facilities obtained after branching on the

facility locations;

Best ← The intuitive initial solution;

Initialize RMP at root node ϱ̄ using routes in Best and compute ϱ̄r using CG,

Ω← {ϱ̄};
while Ω ̸= ø do

ϱ← The node with the minimum LB, Ω← Ω \ ϱ;
if ϱr is better than Best then

if ϱr is feasible then

Best← ϱr;

else

Start branching on ϱ;

if branching on location variables then

Modify the locations;

Vts becomes V ′
ts according to branching results;

Generate new columns using the pulse algorithm for each of the

transfer stations t ∈ V ′
ts;

Add the new columns to the associated RLMP for feasibility

assurance and adapt V ′
tc accordingly;

if location variables and direct-route variables are feasible then

Calculate the aggregated-based bound LBag;

if node cost of ϱr < LBag then

Construct ϱ1 and ϱ2 achieved from branching on ϱ;

compute ϱ1r and ϱ2r using CG;

Ω← Ω ∪ {ϱ1, ϱ2};

else

Construct ϱ1 and ϱ2 achieved from branching on ϱ;

compute ϱ1r and ϱ2r using CG;

Ω← Ω ∪ {ϱ1, ϱ2};
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following Master problem in the set partitioning format:

min CF +
∑
i∈V2

∑
j∈V3

yijdijTCD+
∑
c∈C

ϖcV CCc +
∑
c′∈C′

ϖc′V CCc′ +
∑
r∈R

Costrer (4.42)

s.t. (4.26)-(4.35), and

RF +
∑
r∈R

Riskrer + δ = ε (4.43)

∑
r∈R

αgrer = 1 ∀g ∈ G; (4.44)

∑
r∈R

erADr ≤ nV CT ; (4.45)

∑
r∈R

erADr =
∑
j∈V3

ηgj ∀g ∈ G; (4.46)

er ∈ {0, 1} ∀r ∈ R. (4.47)

Objective (4.42) includes all elements of the original cost objective; however, it has

been presented in a suitable form to fit in the Dantzig-Wolfe decomposition approach.

The associated risk, based on the ϵ-constraint method, is computed in (4.43). Con-

straint (4.44) confirms that each small generation node is visited only once using

just one route. Constraint (4.45) assures that the amount of collected waste through

different routes does not violate the total available capacity of the trucks in tours.

Finally, (4.46) establishes the balance between the amount of collected waste in tours

and the amount of waste transferred to the treatment centers.

This model can be strengthened using the following valid inequalities where tr and

LTW respectively are the accumulated time in route r and the length of the required

time window:

n ≥
⌈∑

r∈R

ertr/LTW

⌉
, (4.48)
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n ≥
⌈∑

r∈R

erADr/V CT

⌉
. (4.49)

Constraint (4.48) addresses the minimum number of required vehicles based on the

accumulated time of all routes divided by the available time windows, and Constraint

(4.49) is based on satisfying the demands according to the vehicle capacities. Next,

by relaxing to a linear format, i.e., RRMP, the master problem can be easily solved

through duality.

4.4.2.2 Pricing subproblem

The pricing subproblem in this paper contributes to constructing the tours using the

minimum reduced cost as the objective function. The reduced cost of the subproblem

is built using the dual values of the restricted MP (RMP). Let v, ψ, and ϕ be the

dual values of Constraints (4.44)-(4.46). We can obtain the reduced cost of decision

variable er as:

Costr = Costr −Riskr −
∑
g∈G

αgr

[
vg + ωg(ψ + ϕg)

]
. (4.50)

Based on the above formulation, the optimality condition for the feasible routes is:

Costr −Riskr −
∑
g∈G

αgr(vg + ωg(ψ + ϕg)) ≤ 0, (4.51)

where Costr and Riskr are computed by the following equations:

Costr = nV FC +
∑
t∈T

ζtV CTt +
∑

i,j∈G∪T∪T ′

∑
τ∈T̄

rijτdijTCT

2
. (4.52)

Riskr =
∑

i,j∈G∪T∪T ′

∑
τ∈T̄

rijτRij

2
. (4.53)

Replacing αgr with
∑

j∈G∪T∪T̄
j ̸=g

rgjτ , the subproblem can be written as:
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min Costr −
∑
g∈G

∑
j∈G∪T∪T̄

j ̸=g

rgjτ
[
vg + ωg(ψ + ϕg)

]
s.t.

∑
j∈G∪T∪T̄ ,j ̸=i

(xijτ − xjiτ ) = 2wioiτ ∀i ∈ G ∪ T,∀τ ∈ T̄ ; (4.54)

∑
g∈G

∑
τ∈T̄

xτgτ = nV CT −
∑
g∈G

wgogτ ; (4.55)

∑
g∈G

xgττ =
∑
g∈G

wgogτ ∀τ ∈ T̄ ; (4.56)

∑
g∈G

∑
m∈T̄

∑
τ∈T̄

xgmτ ≤ nV CT ; (4.57)

xijτ + xjiτ = V CTrijτ ∀i, j ∈ G ∪ T ∪ T̄ , i ̸= j,∀τ ∈ T̄ ; (4.58)∑
g∈G

xtgτ = 0 ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ; (4.59)

∑
i∈G∪T∪T̄ ,i̸=g

(rgiτ + rigτ ) = 2ogτ ∀g ∈ G,∀τ ∈ T̄ ; (4.60)

∑
i∈G∪T∪T̄ ,i̸=τ

(rtiτ + ritτ ) = 0 ∀t ∈ T,∀τ ∈ T̄ , τ − t ̸= |T | ; (4.61)

∑
j∈G∪T∪T̄ ,j ̸=τ

(rmjτ + rjmτ ) = 0 ∀m, τ ∈ T̄ ,m ̸= τ ; (4.62)

rtgτ ≤ λt ∀g ∈ G,∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ; (4.63)∑
τ∈T̄

ogτ ≤ 1 ∀g ∈ G; (4.64)

ttt =
∑

i,j∈G∪T∪T̄

rijτ tij
2

+
∑
g∈G

stgogτ ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ; (4.65)

aτ +M(1− λt) ≥ ut + ttt ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ; (4.66)

ott ≤ ut ∀t ∈ T ; (4.67)
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aτ ≤ ctt ∀t ∈ T,∀τ ∈ T̄ , τ − t = |T | ; (4.68)

λt, rijτ , rjiτ , ogτ ∈ {0, 1} ∀g ∈ G,∀(i, j) ∈ E,∀t ∈ T,∀τ ∈ T̄ ; (4.69)

xijτ , xjiτ , ζt, aτ , ut ≥ 0 ∀(i, j) ∈ E,∀t ∈ T,∀τ ∈ T̄ ; (4.70)

n ≥ 0, integer. (4.71)

Constraints (4.54) to (4.59) establish the load related requirements. Constraints

(4.60) to (4.64) are regarding the flow conditions in tours. The time window specifi-

cations are applied in (4.65)-(4.68). Finally, Constraints (4.69)-(4.71) determine the

domain of decision variables.

4.4.2.3 Pulse algorithm

In the pricing subproblem, load capacity and the time window constraints are the

primary resource constraints. To solve the subproblems effectively, the pulse algo-

rithm (PA) from Wang et al. (2020) is adapted and tailored accordingly. To start

with, we create a label with four main elements: PPl as the partial path, RCl as

the cumulative reduced cost, ADl as the cumulative load capacity, and TSl stand-

ing for the cumulative spent time in the route. Hence, the label can be stated as

L = (RCl, PPl, LCl, TSl). The process is summarized in Algorithm 2, and the details

are elaborated next.

Infeasibility strategy The idea behind the infeasibility strategy is to prevent the

pulse from propagating as soon as it is known that the traveling pulse does not reach

the final destination without violating the resource constraints. For this purpose,

the minimum resource consumption is calculated from any node g ∈ G to the final
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Algorithm 2: Pulse (i, L)

Assume A1 as all the available small generation nodes;

Γ+(i) = {j ∈ G ∪ T̄ |(i, j) ∈ A1} as the set of next reachable nodes from small

generation node i;

Reduced cost contribution as rcij = rijτ (vi + ωi(ψ + ϕi));

Time window consumption as twij = sti + rijτ tij;

if Feasible(i, L) is true then

if checkBounds(i,L) is false then

if rollback(i,L) is false then

PPl ← PPl ∪ i;

ADl ← ADl + ωi;

for j ∈ Γ+(i) do

RCl ← RCl + rcij;

TSl ← TSl + twij;

pulse (j, L);

end

end

end

end
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node τ ∈ T̄ . This process is performed by reversing the network and assuming the

ending node τ as the new starting point. Then, the shortest path from τ to all of

the nodes in the reverse network can be found, which is equal to the shortest path

from the small generation nodes to the copy of the associated transfer station. There-

fore, the minimum resource consumption (Resgτ ) from each node to the ending node

(i.e., the copy) is computed. Having calculated the minimum resource consumption,

the maximum resource consumption (Resmax) to each small generation node equals

the difference between the maximum resource available (Resmax) and its minimum

computed value, i.e.,

Resgτ = Resmax −Resmax. (4.72)

Now, for a partial tour to node g, if the amount of consumed resource exceeds this

maximum value, this path is assumed to be infeasible.

Bounding strategy The bounding concept is similar to the infeasibility strategy

discussed above. The main difference is that, instead of focusing on resource con-

sumption, bounding addresses the cost objective. Every time the pulse finishes its

journey by reaching a copy of a transfer station, a feasible tour is created. Accord-

ingly, the best-known objective can be updated, and if any other path exceeds this

bound, it will be pruned.

Rollback strategy In the rollback strategy, the two most recently visited nodes (i

and j) and the succeeding node (k) are the inputs. If developing the tour directly

from i to k results in a lower reduced cost compared to the situation where j is the

intermediate between these two nodes, the path can be pruned safely.
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Tour completion strategy When the algorithm reaches an intermediate node

while developing a partial tour, it explores the pruning possibility by applying different

strategies. If pruning is not an option, the tour completion strategy is employed to

add the minimum cost path or the tour with the minimum resource consumption. For

more clarification, assume a partial tour arrives node i during the pulse propagation.

The tour completion strategy seeks the succeeding node, j, with the minimum cost

to be added to the current partial tour. Provided that P (j) is feasible and the

cost of P (j) is less than the best objective found so far, the incumbent solution

can be updated. The side benefit for this process is that the incoming pulse P (i)

can be pruned as we already know that P (j) is a better option. Moreover, the

minimum resource consumption approach is conducted when the partial tour cannot

be extended using the minimum path procedure. Moving from node i to the next

node j, if the partial path for j, P (j), is feasible and P (j) leads to a better-associated

cost compared to the best objective found so far, the incumbent solution is updated.

In this case, the associated pulse for P (i) is not pruned as there may still be paths

with lower costs from i to j.

4.4.2.4 Column generation

The column generation approach is built upon PA in providing a new column with

negative reduced costs for RRMP. PA is based on a depth-first approach investigating

the feasible region. This feature makes PA a suitable match for the column generation

scheme. By applying PA, all pulses recursively create tours, each with a reduced cost

and a cumulative demand. This is accomplished by adding the nodes one by one

in a sequence, and all tours are enumerated so that no restrictions stop pulses from
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spreading through the network.

Then in CG, we decompose the pricing subproblem into two phases. The first

phase handles the customer assignment based on the dual variables obtained from

RRMP. After deciding which small generation nodes are assigned to a tour originating

from a transfer station, the second phase is about building feasible columns using the

pulse algorithm. The procedure continues iteratively until no column is found to

satisfy the optimality condition.

For achieving an appropriate lower bound for CG, we take advantage of an aggregate-

based lower bound, LBag. A simple set-partitioning problem is solved to find the op-

timal solution of serving a small-generation node in a tour starting from the transfer

facility t. Also, the capacity limitations for the facility are neglected. Therefore, the

associated set-partitioning problem can be defined as (SPt) below:

min
∑
r∈Rt

Costrer (4.73)

s.t.∑
r∈Rt

αgrer = 1 ∀g ∈ G; (4.74)

er ∈ {0, 1} ∀r ∈ Rt. (4.75)

To insert feasible columns to SPt, we use PA to solve the LP-relaxed form of SPt. As

described in Wang et al. (2020), and by assuming Λgτ as the dual value of the second

constraint in SPt, the LBag can be found as:

LBag = CF +
∑
i∈V2

∑
j∈V3

ysijdijTCD +
∑
c∈C

ϖs
cV CCc +

∑
c′∈C′

ϖs
c′V CCc′ +

∑
g∈G

min
t∈T̄
{Λgτ}.

(4.76)
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4.4.2.5 Branching rules

The primary branching is performed on the locations of the transfer stations and the

treatment centers. As mentioned in Wang et al. (2020), branching on the location

variables leads to better improvements in the lower bound. Apart from the location

branches, several additional branching rules are applied in the procedure.

Branching on the location of temporary transfer stations If the location

variable of temporary transfer station λt is fractional, two child nodes can be generated

as λt = 0 and λt = 1. Assigning the zero value for this variable, a direct route between

this t and the treatment centers no longer exists. It is noteworthy to mention that

the associated subproblem of the branch with λt = 0, can no longer be solved as it is

eliminated now.

Branching on the number of direct routes and tours The transfer stations

are the intermediate facilities between the small generation nodes and the treatment

centers. When the number of required vehicles in tours and direct routes is fractional,

branching can be applied using the smallest greater and greatest smaller integer values

of the obtained fractional value.

Branching on the assignment of customers to open transfer stations If

the solution provides a fractional value for er, it means that there exist other routes

sharing at least one common small generation node with column r. Now, if we define

Lgt as all the columns originating from t and visiting node g, we can branch on∑
r∈Lgt

er = 0 and
∑

r∈Lgτ
er = 1. As a result, the condition of this node is stabilized

158



regarding temporary transfer station t.

4.4.3 Algorithm tests

In this section, we check the validity and stability of the proposed mathematical

model and examine the performance of the B&P algorithm. All computational tests

(including the case experiments in Section 4.5) are performed on a computer equipped

with a 2.2 GHz Intel processor and 2 GB RAM using Java 11 and CPLEX 12.8.0.

Ten random problem instances with different sizes are generated and tested. The

size of each instance is described by the numbers of small generation nodes (i.e., |G|),

large generation nodes (|L|), temporary transfer stations (|T |), temporary treatment

centers (|C|), and existing treatment centers (|C ′|). The amount of generated waste

for the small generation nodes follows a uniform distribution as U ∼ [0.5, 3], U ∼

[50, 200], and U ∼ [300, 1000] for scenarios 1 to 3. Similarly, the large generation

nodes obtain a random number from U ∼ [4, 8], U ∼ [300, 600], and U ∼ [2000, 3000]

for the associated scenarios. The capacity values are set to ensure feasible solutions.

Table 4.3 displays the comparison between CPLEX and B&P algorithm. Column

“Best Cost” is the optimal solution or the best result obtained within 10,800 seconds

(i.e., 3 hours). Columns “Gap(%)” and “Time” respectively present the optimality

gap and computational time for each instance. As we can see, the presented branch-

and-bound algorithm outperforms CPLEX in all instances. The proposed B&P is able

to solve most of the cases to the optimality by reducing a significant amount of time.

For small instances where both approaches can achieve optimality, the computational

times of B&P improve more than 83% than CPLEX. Three medium instances can
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only be solved to optimality by B&P within 3 hours. When the network is rather

large and an optimal solution cannot be reached in both cases, B&P can improve

the gap by at least 70%. Also note that developing effective cuts for this algorithm

can further enhance the algorithm’s performance and reduce the computation time,

which is a potential pathway for future work.

Table 4.3: Random instances

CPLEX B&P Improvement

# |G| |L| |T | |C|
∣∣C ′
∣∣ Best Gap Time Best Gap Time Gap Time

Cost (%) (s) Cost (%) (s) (%) (%)

1 10 5 4 3 2 2.8012 0.00 915 2.8012 0.00 132 - 85.57

2 20 10 6 4 2 20.0939 0.00 3,487 20.0939 0.00 415 - 88.10

3 25 10 8 4 2 22.1733 0.00 4,274 22.1733 0.00 608 - 85.68

4 25 15 8 6 2 31.0169 0.00 5,423 31.0169 0.00 639 - 88.22

5 30 15 8 6 2 32.6125 0.00 6,791 32.6125 0.00 1,116 - 83.57

6 40 20 8 8 2 50.4507 6.47 10,800 47.1865 0.00 5,681 100 47.40

7 45 20 10 8 3 60.6884 11.33 10,800 53.8124 0.00 8,904 100 17.56

8 50 20 10 8 3 67.5755 18.48 10,800 55.0875 0.00 10,092 100 6.56

9 55 25 10 10 3 83.7921 21.79 10,800 67.0607 2.33 10,800 89.3 -

10 60 30 12 10 4 101.0870 27.32 10,800 79.3843 8.05 10,800 70.5 -

Average - 8.539 7489 - 1.038 4918.7 45.98 50.26

4.5 Case Study

In this section, a case study based on the situation in Wuhan during the initial out-

break of the COVID-19 pandemic is applied to assess the validity and applicability

of the proposed model. The related data are adopted from the study of Zhao et al.

(2021). Herein, according to the official authority for Hubei medical waste man-
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agement (Medical Waste Management in Hubei, 2020), 30 hospitals and clinics are

considered as infectious waste generation locations. The infectious waste generation

nodes are differentiated based on the available sickbeds: those with fewer than 500

sickbeds are categorized as small nodes, leaving the other nodes in the class of large

infectious waste generation nodes. As shown in Fig. 4.4, this network contains twenty

small and ten large generation nodes being distributed in different city regions. Eight

regular transfer stations are considered candidate locations to be converted to tem-

porary transfer stations for infectious waste. Four temporary treatment centers and

two existing ones in the system are used as integrated facilities.

4.5.1 Relevant data

Scenarios and amount of generated waste Addressing different phases of the

COVID-19 outbreak, three scenarios are defined. Scenario 1 represents a minor virus

outbreak with a low amount of associated generated waste. In Scenario 2, the city ex-

periences a serious epidemic. The worst-case pandemic situation, with overwhelmed

medical centers, is reflected in Scenario 3. In scenarios 1 and 2, the occupancy rates

of sickbeds for both small and large generation nodes were assumed to be random

within ranges of [0, 1%] and [15%, 20%], respectively. In the third scenario, we as-

sume that the hospitals are operating with their maximum capacity where all the

sickbeds are occupied. The amount of infectious generated waste for each COVID-19

patient is estimated based on a report prepared by the Institute for Global Envi-

ronmental Strategies (2020), as a random value between 2.2 kg/day and 2.8 kg/day.

The corresponding probabilities of the scenarios are respectively set as 0.25, 0.5, and
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(a) Map showing the location of Wuhan city

(b) Map showing the candidate facilities in the city of Wuhan

Figure 4.4: The medical waste management network in Wuhan, China
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0.25. Based on this information, Table 4.4 summarizes the estimated infectious waste

amount at all generation nodes in the three scenarios.

Capacities and costs The capacity of the candidate transfer station is 3 tonnes.

Each temporary treatment center can process 5 tonnes of infectious waste per day;

and each existing treatment facility works with a capacity of 10 tonnes/day. Two

types of vehicles are considered in this paper. Having a capacity of 1.5 tonnes, the

first vehicle type is responsible for collecting the infectious waste from the small

generation nodes and conveying them to the transfer stations in a tour. Each vehicle

that serves in tours costs 160 thousand dollars, with the unit transportation cost of

waste collection equal to $200/km. The second vehicle type, which is used in direct

routes between the transfer stations and the treatment centers, takes advantage of a

3-tonne container. The unit cost of carrying waste in the direct routes is $ 100/km.

Other facility operational costs are given in Table 4.5.

Risk We approximate the number of exposed populations within the radius of 800

meters from the facilities (Alumur and Kara, 2007). The number of exposed individ-

uals around each facility is shown in Table 4.5. All population data are acquired from

the GIS database. To obtain the exposed population across each edge, we calculate

the average of the people residing in the two associated nodes.

Time considerations A four-hour interval is considered as the time window at

transfer stations for each tour. The effect of this duration restriction is studied in

Subsection 4.5.6. First, we use a 99.9% confidence level for the chance-constrained

method, and then we discuss varying this value in Subsection 4.5.4. The service

163



time of processing infectious waste at each station is directly related to the amount

of waste at that location. We adapt the multiple regression resulting from Giel and

Dabrowska (2021) to estimate the average time spent at a waste collection point. The

standard deviation of the service time is assumed to be 60 seconds. The impact of

the variation of the standard deviation is further examined in Subsection 4.5.7.

4.5.2 Extreme Pareto solutions

We first minimize the two objectives individually for the two extreme Pareto solutions

of the case study. The results are presented in Table 4.6.

The first extreme point focuses on the minimization of cost. The total cost is

$25.1978 million, from which $24.52 million is the fixed cost of the system, and $0.6778

belongs to the variable cost component of the network regarding all three scenarios.

Due to the 4-hour time window limitation, at least two tours are required. In this

regard, both tours originate from temporary transfer station 37 in the first two scenar-

ios. The optimal tours in both scenarios are 37-19-17-16-2-5-14-4-1-12-20-13-18-3-37

with a duration of 3.83 hours and 37-10-8-9-6-7-15-11-37 lasting 2.47 hours. Tempo-

rary treatment center 41 is the main destination for conveying the generated waste

from temporary storage facilities and large generation nodes. It is noteworthy to

mention that the capacity of the vehicles is not violated as the total generated wastes

in Scenarios 1 and 2 equal 0.03106 and 2.2206 tonnes, respectively. These values are

split due to the time window constraint. However, in Scenario 3, the situation is

different as we are dealing with 12.654 tonnes of infectious waste in the first level of

the network. Therefore, not only are the tours affected by the time windows, but
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also the vehicle capacity imposes another burden on the system. To satisfy these

two requirements, nine vehicles are utilized in tours to serve all the medical centers.

For this purpose, five storage facilities are chosen as 33, 34, 35, 37, and 38. The

corresponding risk objective function has a value of 1116.60 thousand persons, from

which 78.11 thousand is the fixed component of risk and 1038.49 thousand stands for

the variable element of it. The corresponding tours of each scenario are depicted in

Fig. 4.5.

Figure 4.5: Recommended plan for the minimum cost extreme point
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In the second case, the model seeks a solution with the least possible risk. To

cope with this requirement, only station 35 is picked for the first two scenarios.

As a result, 35-18-13-20-12-1-4-14-5-2-16-17-3-35 with 3.90 hours of tour time and

35-8-9-10-6-7-19-11-15-35 with a total tour time of 3.88 are adopted for the waste

collection in the first level of the network. Shifting the focus from the cost objective

to the risk objective has led to longer traveling times, growing around 23.5% in the

first two scenarios and a slight increase of approximately 1.42% in the third scenario.

Moreover, both cost and risk extreme points experience a significant surge in total

required tour times by 145% and 98.23%, respectively, moving from scenarios 1 and 2

to scenario 3. Another notable matter in the solution is the trivial difference between

the total risk and total cost extreme points. With only accepting around 0.06%

of the extra total cost, the decision-maker will be able to lower the daily risk by

almost 9.35%. Focusing only on the transportation risk and cost, a more risk-efficient

network will be achieved by providing an extra 2.21% of financial support. The point

is that the main portion of the cost belongs to the fixed cost of the system as the

high amount of infectious waste in scenario 3 necessitates the facilities to work with

their full capacities.

4.5.3 Tradeoff analysis

Based on the two extreme solutions, we apply the augmented ε-constraint method

to assess the risk-cost trade-off analysis in the network. Fig. 4.6 depicts the plot

of the proposed Pareto frontier, which is comprised of 11 non-dominated solutions,

including nine intermediate points plus the two extreme ones. A significant portion of
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both cost and risk objectives in all of the cases is related to their fixed elements. For

example, in the cost extreme point, the pertinent fixed cost of the network constitutes

around 97% of the total cost. Considering the one-day planning focus of the study,

these portions are not unreasonable. Overall, a reduction of risk by almost 9.35%

requires growth of around 0.06% in the cost objective. Several considerable gaps are

observable in these figures. Starting from the minimum cost solution, as the first

iteration, the largest gap regarding the cost belongs to the movement from iterations

1 to 2 and 9 to 10. The sharpest risk change occurs while moving from iteration 8

toward 9 with a 1.78% decline in the value.

Figure 4.6: Pareto frontier

For more explanations about the existing tradeoffs, we explore the intermedi-

ate point in iteration 7 (Table 4.7). The tours in the first and second scenarios

of the solution belong to temporary facilities 35 and 38. On the one hand, hav-

ing tour times of 3.90 and 2.99 respectively for 38-7-15-11-19-10-6-9-8-3-17-16-38 and
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35-18-13-20-12-1-4-14-5-2-35, we notice a reduction by 0.02% and an enhancement by

2.5% in the associated cost and risk, respectively, when compared to the minimum

cost extreme point. On the other hand, when moving from the intermediate point 7

toward the minimum risk extreme point, a 7% reduction in risk with a 0.04% rise in

cost objective is observed.

4.5.4 Sensitivity analysis on the confidence level

In this section, we review the impact of using different confidence levels in the CCP.

For this purpose, considering the cost as the primary objective, we have applied seven

different values for the confidence level, ranging from 70% to 99.9%. As shown in Fig.

4.7, higher degrees of confidence for adhering to the time windows limitations neces-

sitates higher expenses. However, lower confidence level options provide the system

with more flexibility in choosing the more cost-effective tours. Therefore, a confidence

level equal to 70% has the most economical objective function value, while the case

with 100% confidence level imposes the highest charges for the network. However, the

associate risk values do not follow a particular pattern. The confidence level values

equal to 80% and 95% are the most and the least risky networks, respectively.

In summary, the total cost rises along with the increase of confidence level. That

means more resources are needed to avoid time window violations in tours brought

by the random fluctuation of service times in small generation nodes. In other words,

a more robust system entails a high confidence level at the cost of increased expenses.

Also, it is more difficult to improve system cost when the confidence level is at higher

levels, i.e., more than 95%.
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Figure 4.7: Objective function variations with regard to different confidence levels

4.5.5 Sensitivity analysis on tour vehicle capacity

We have considered four different vehicle capacities for the waste collection of the

first tier of the network and compared the results in Table 4.8. The vehicle capacity

alteration mainly affects the results of the last scenario, as we are still limited with

the time windows of the temporary facilities. This issue highlights the importance

and impacts of both the time windows and the vehicle capacity. The major effect of

considering a higher capacity for the trucks is reducing the number of required trucks

for the waste collection, which in turn leads to more savings in transportation costs.

Compared to the original case, the number of required vehicles has decreased by one

and four respectively by assuming 0.5 and 1.5 tonnes of extra capacity.

4.5.6 Sensitivity analysis on the duration of time window

In this section, we evaluate the impact of manipulating the time windows duration

in the network. While minimizing cost is the primary objective for the system. Four
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Table 4.8: Sensitivity analysis on tour vehicle capacity

Vehicle Capacity Number of vehiclesa Total Cost µCost Total Risk µRisk

(tonnes) (×106dollars) (×106dollars)

1 (2,3,16) 25.4830 0.9630 1123.11 1044.99

1.5 (2,2,9) 25.1978 0.6778 1116.60 1038.49

2 (2,2,8) 25.1030 0.5829 1104.10 1025.98

3 (2,2,5) 25.0343 0.5143 1094.92 1016.81

a (Scenario 1, Scenario 2, Scenario 3)

different cases have been considered ranging from 3 to 6, and the results are displayed

in Table 4.9. Our previous analyses are performed assuming a four-hour time window

condition. Reducing this period by one hour forces the model to utilize three vehicles

in scenarios 1 and 2, where scenario 3 remains untouched. In scenario 3, the high

amount of generated waste and vehicle capacity limitations make the model insensitive

to the time window alteration. Not only in this case but also in all the applied changes,

the time window variations do not affect the last scenario, as the maximum required

tour time of it according to Table 4.6 equals 2.04. Starting from the lowest employed

duration, the cost objective enhances, and a 6-hour duration, which acts like a no time

window case, has the best cost objective. However, no specific pattern is observable

in the associated total risk value.

4.5.7 Sensitivity analysis on the degree of uncertainty in the

service time

The degree of uncertainty in the service time can be evaluated by the standard de-

viation. Apart from the original value of 60 seconds for the standard deviation in
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Table 4.9: Sensitivity analysis of time windows

Time windows Number of vehiclesa Total Cost µCost Total Risk µRisk

duration (hours) (×106dollars) (×106dollars)

3 (3,3,9) 25.3158 0.9630 1111.10 1032.99

4 (2,2,9) 25.1978 0.6778 1116.60 1038.49

5 (2,2,9) 25.1830 0.6630 1034.26 956.15

6 (1,1,9) 25.0915 0.5715 1075.12 997.01

a (Scenario 1, Scenario 2, Scenario 3)

the CCP approach, we consider three other values of 30, 90, and 120 seconds for

this parameter and compare the results. A comparison between the associated cost

objective using different values for standard deviation is displayed in Fig. 4.8. As

shown in this figure, higher values of this parameter lead to higher required expenses.

It means that the system has to assign more resources to compensate for the increases

in the service times in tours.

Figure 4.8: Sensitivity analysis on the standard deviation of the service time

with a 95% confidence level
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4.5.8 A comparison of different systems

Herein, we further study the benefit of considering uncertainties at the system design

stage through a comparison of the performances of different systems. To be particular,

the stochastic system obtained from our previous analysis is evaluated and compared

with two other systems described as follows. All systems are based on the cost

minimization solution.

Current system The system is used currently (with no pandemic consideration).

That is to say, no temporary facilities exist; the treatment center is determined

by the normal waste amount; and only direct routes are used for waste collec-

tions.

Deterministic system The system is constructed in view of only the most likely

pandemic scenario (i.e., Scenario 2). That being the case, the temporary trans-

fer station at node 35 is chosen as the only transfer station with the associ-

ated tours of 35-18-13-2-12-1-4-14-5-2-16-17-3-35 and 35-8-9-10-6-7-19-11-15-35.

Also, due to the lower opening and processing cost of the existing treatment

centers than the temporary ones, only treatment 43 operates in this model type.

Stochastic system The system is planned by using the 3-scenario model and algo-

rithm proposed in this research.

Five testing scenarios are employed to mimic the real-world situations that may occur.

Besides the three pandemic scenarios used in this case study: optimistic (s1), most

likely (s2), and pessimistic (s3), two additional scenarios are also considered. A

normal scenario (sn) reflects the normal situation without any disease outbreak. The
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waste amounts are estimated according to the 2019 Wuhan data of medical waste. An

extreme pandemic scenario (se) assumes that the capacity of each generation node is

exceeded by randomly 40% to 60%. Table 4.10 lists the comparison based on three

major criteria.

Table 4.10: Comparison of other criteria in the models

Demand fulfillment (%)

System sn s1 s2 s3 se

Current system 100 100 100 26.84 13.42

Deterministic system 100 100 100 26.84 13.42

Stochastic system 100 100 100 100 53.52

Facility utilization (%)

System sn s1 s2 s3 se

Current system 0.21 0.91 65.35 100 100

Deterministic system 0.21 0.91 65.35 100 100

Stochastic system 0.05 0.23 16.34 93.12 100

Number of vehicles

System sn s1 s2 s3 se

Current system 20 20 20 2 2

Deterministic system 2 2 2 2 2

Stochastic system 2 2 2 9 16

It is clear that the recommended stochastic system outperforms the other two in

all testing scenarios in terms of all criteria. All waste demand can be fully handled for

planned scenarios. In an acute situation (s3), this system can still maintain certain

redundancy (almost 8% still available) which can be useful if the case becomes worse.

When the pandemic is extremely severe (se), with fully occupied facilities, the system

can process more than 53% of the generated waste, which is nearly four times the

amount that other systems can manage. Looking into the current and determinis-
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tic systems, both have massive difficulties when facing serious pandemic situations.

Almost three quarters of the demand cannot be processed, and the system capacity

needs to be increased by at least 3.7 and 7.4 times to satisfy the requirements re-

spectively in s3 and se. Further comparing the current and deterministic systems,

although the facility utilization and demand fulfillment are the same, the number of

vehicles in the latter is much less (more than 72% less on average) and the resulting

average transportation cost is lower by approximately 69%. Such a cost advantage

can also be observed in the stochastic system. In summary, by taking into account

the uncertain pandemic scenarios, our proposed stochastic model can design a waste

management system that can timely and properly adjust to various pandemic situa-

tions at a rather low cost, while, at the same time, is also capable of efficiently dealing

with the situations with no outbreak.

4.6 Managerial insights

The ongoing COVID-19 crisis has been putting enormous pressure on all aspects

and levels of society financially and mentally. In this circumstance, enhancing the

performance of different organizations and presenting more affordable and less risky

approaches is crucial. This section highlights the managerial insights derived from

our experiments and discussions to help the carriers and relevant authorities in waste

management construct an effective and reliable network.

First, although health centers act as the first defense line against pandemics, the

companies and carriers responsible for collecting and treating the related infectious

waste from these centers play a significant role in controlling the situation. Inappro-
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priate management of infectious waste exposes health and waste workers to irreparable

infection consequences. In this regard, developing redundant medical-waste manage-

ment systems to prevail and control the pandemics should be a priority. Note that

it may seem costly to keep the redundancy when building up the network, but there

will undoubtedly be benefits during pandemics.

Secondly, embedding temporary facilities during a pandemic facilitates modifying

the existing waste network to cope with the unexpected generated medical waste and

its associated viral spread effects. Also, the temporary locations help the system to

work with its maximum capacity and deal with the peaks and hot spots as quickly

as possible. The other aspect of this redundant network is the application of tours

instead of only direct routes. The savings resulting from the tour collection approach,

through reducing the number of vehicles, also can be significant.

Thirdly, improving the geographical distribution of both transfer stations and

treatment centers may contribute to cost reduction and risk mitigation. When the

facilities are spread relatively evenly in the network, both en-route and on-site risks

can be more equitably distributed. Therefore, the proposed network can facilitate

practical strategy development for the authorities in designing flexible and redundant

waste management systems with the ability to react appropriately during unantici-

pated and severe pandemics.

Fourthly, the scenario-based stochastic model presented in this research can be

implemented as a helpful tool to derive practical solutions. When the records and

statistics regarding the situations are sufficient enough at the moment, the scenarios

can be generated based on a detailed investigation of historical situations for accurate

estimations. In any other cases when data are unavailable or insufficient, the deci-
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sion maker’s risk perspective can be examined and quantified. Moreover, providing

different non-dominant alternatives using the augmented ε-constraint method creates

extra flexibilities in the authorities’ decision-making process.

Fifthly, it is shown that using different confidence levels in CCP affects the op-

timal solution. Higher degrees of confidence necessitate higher expenses. In other

words, a more robust system entails a high confidence level at the cost of increased

expenses. The government and healthcare managers can define the confidence level

based on an integrative consideration of the pandemic status, public concerns, and

any other relevant factors. The time window at temporary faculties can also be

adjusted accordingly.

Finally, entering the third year of the COVID-19 pandemic, although hospitaliza-

tions and other pandemic markers continuously shrink or level off, many experts still

have concerns over the potential of other variants. The pressure on the waste man-

agement system is not eased but alters to a new state with lessened tension at large

healthcare centers yet higher-than-normal demand at small clinics, medical offices,

and residential areas. These changes make the use of temporary transfer stations

more appealing than ever. As living with COVID becomes a new normal, some of

these temporary stations may be upgraded with larger capacities and better compati-

bility following higher containment standards. Additional clinical necessities include:

creating benchmarks or guidelines for safety and infection control in medical waste

management, training and protection of front-line workers handling infectious waste,

and adjusting collection routes adaptively driven by real-time data, to name a few.

180



4.7 Conclusion

In this research, we investigate the infectious waste management problem with dif-

ferent waste generation scenarios and time window assumptions. Temporary transfer

stations act as storage for the accumulated waste from small generation nodes via

tours. Then, existing and temporary treatment centers receive the infectious waste

from these stations and large generation nodes. Planning the numbers and locations

of temporary facilities assuming possible high-demand conditions caused by a future

pandemic is integral for this study. The proposed bi-objective stochastic model ad-

dresses the location-routing problem of infectious wastes with demand and service

time uncertainties. Another realistic consideration is utilizing tours for the waste

collection process instead of direct routes. A vehicle routing problem using a two-

commodity formulation is embedded into the scenario-based optimization to handle

complicated situations with both uncertainties and time constraints. Then, the model

is solved by adopting an ϵ-constrained approach accompanied by a branch-and-price

algorithm. To demonstrate our model’s practicality and validity, we applied the pro-

posed model to a real-world case study based on the COVID-19 outbreak in Wuhan,

China. Numerical experiments are conducted to examine the tradeoff between the

two objectives, and to study the sensitivity of the model to several key parameters,

such as vehicle capacity, confidence level, and the uncertainty degree of the service

time. Managerial insights are derived and explained from which the government and

other stakeholders can benefit.

For future research, other realistic considerations in making delivery plans such

as the time-dependent issues through varying traffic density and speed over different
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times of the day can be included in the model. The time-dependent parameters will

result in divergent transportation risks and costs associated with various departure

times of the vehicle. Considering a bi-level model incorporating the government or

healthcare system and the carrier’s benefits will make the proposed model more re-

alistic. For this purpose, policies on planning and controlling the waste management

infrastructure and environmental-related concerns in treating infectious waste can be

on the upper level, while optimizing the collection process adhering to these policies

can be the focus of the lower level. Another research avenue is to introduce proper

cuts for the developed branch-and-price algorithm and apply the proposed B&P al-

gorithm in other uncertain environments such as robust optimization techniques. A

comparison of the result with our present work would provide additional interesting

and informative insights for the authorities.
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Chapter 5

A multi-stage decision framework for managing

hazardous waste logistics with random release

dates

Abstract This research develops a multi-stage decision framework for a three-echelon collection

network for hazardous waste considering random release dates. Applying a cost-based clustering

approach, the first stage decisions involve locating the transfer stations and allocating generation

nodes to the chosen facilities. The corresponding results, along with a subjective risk-aversion

notion and estimated release dates, are utilized to generate an a priori collection plan, which can

be further revised once the actual release dates are realized. We performed sensitivity analysis on

important model elements, including the subjective risk-aversion parameter and vehicle capacity for

collection tours. Our findings indicate that depending on the subjective perspective of the collector,

deviations from the original scheduled plan can happen to be a positive or negative phenomenon. For

an optimistic decision-maker, adaption to the realized deviations necessitates accepting additional

total risk. On the other hand, a pessimistic decision-maker is more likely to benefit from deviations.

The findings can facilitate relevant authorities with practical and realistic strategic and operational

decisions.
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5.1 Introduction

Hazardous waste management consists of handling wastes that are harmful to human

health and the environment (Zhao and Ke, 2019). Hazardous waste (HW) includes

waste that has been contaminated by chemicals, bacteria, viruses, and other harmful

agents and can have serious adverse effects on human health if it is not dealt with

properly and safely. Handling HW involves procedures and policies regarding the

collection, storage, transportation, and treatment of waste safely and economically

(Samanlioglu, 2013). Each of these processes is entwined with complex decisions

that can impose an immediate or long-term risk to the surrounding environment and

population (Zhao et al., 2016). As a result, improper storing or processing of HW

is deemed as a menace to the exposed population near locations where associated

activities take place.

In 2009, the US healthcare sector accounted for 17.9% of GDP, with an annual

production of 5.9 million tonnes of waste and 8% of total carbon dioxide emissions in

the US (Voudrias, 2018). As mentioned by Eurostat (2018), of the total waste gener-

ated in 2016 in the European Union, 4% of the total generated waste (100.7 million

tonnes) belonged to the hazardous type. This significant amount of waste originated

from different sources such as industrial and manufacturing processes, hospitals, and

e-wastes. The statistics regarding the situation in developing countries are worrying.

For example, the WHO mentioned environmental risk factors to account for one-third
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of the burden of disease, where hazardous waste was stated to be among the first three

main factors (McCormack and Schüz, 2012).

Hazardous wastes can take the form of solids, liquids, sludge, or contained gases,

and they are generated primarily by chemical production, medical centers, manu-

facturing, and other industrial activities. Among these, medical waste is becoming

a growing concern as it generates high levels of hazardous and infectious materials.

Hazardous medical waste (HMW) comprises biohazardous waste from blood samples,

fluids, and tissues. Also, it involves all the sharp items and personal protective equip-

ment such as masks and gloves utilized in the hospitals. Especially after the recent

pandemic, the necessity of establishing an effective medical waste management system

was highlighted more than ever. The pandemic unveiled the existing weakness of the

available waste handling network and attracted the attention of researchers from dif-

ferent fields to enhance the current system structure and associated processes. Apart

from COVID-19, there are many sources of severe illnesses in the medical waste that

can result in the spread of infectious diseases with their relevant exponential rises

of medical waste amounts such as HIV, hepatitis, and typhoid (Eren and Tuzkaya,

2021). To better understand the significant impact of the outbreak, a comparison

between the amount of generated waste before and after the pandemic is helpful. For

example, in Wuhan, China, an average of 45 tonnes of medical waste was generated

each day before December 19, when the first known case of COVID-19 was identified

(Yu et al., 2020c). However, in a couple of months, the amount of generated med-

ical waste rose by almost 150% and surged to nearly 247 tonnes/day by March 15,

during peaks (Singh et al., 2020). This was not the end, as the growth in infected

cases and social sensitivity toward this issue led to substantial boosts in personal
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protective equipment (PPE) demand, such as masks and gloves. Based on a report

by (Ma et al., 2020), the national medical waste disposal level in China increased by

almost 420% from January 20, 2020, to March 21, 2020. As a result, the necessity of

developing robust and redundant waste management systems for HMW is a pressing

matter.

There are guidelines developed in consultation with experts in the field to enable

the authorities to handle the waste safely and effectively. For example, the Euro-

pean Commission issued special guidelines regarding waste management during the

coronavirus crisis. These guidelines mainly address three issues, including prevent-

ing distortions in the waste management system, ensuring the health and safety of

citizens, and maintaining a high standard of environmental security (European Com-

mission, 2020). It should be mentioned that such a pandemic setting is not limited

to COVID-19, and governments have always been dealing with different types of in-

fectious diseases. Some recent examples during the latest two decades are the severe

acute respiratory syndrome (SARS) in 2003, the Marburg hemorrhagic fever in 2007,

and the Ebola virus in 2014 (Yu et al., 2020c). Therefore, the findings of this research

are applicable to any similar situation.

Like many other real-life activities, there are many uncertainties associated with

the waste collection process. These uncertainties can significantly impact the quality

of service provided by municipalities and collector companies. In fact, medical waste

collection and disposal have been viewed as a vital stage in managing the source

of infection as well as strict establishment and standardization of the waste man-

agement (Peng et al., 2020; Tirkolaee et al., 2021). Apart from general sources of

uncertainties such as weather conditions and disruptions in transportation networks,
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decision-makers confront other uncertainties like uncertain demand/waste availabil-

ity, travel time, and service time (Tasouji Hassanpour et al., 2021). Inspired by the

studies in distribution planning problems, where the delivery of a product is depen-

dent on the availability of sufficient product with known and determinist rate (Coelho

et al., 2014; Dı́az-Madroñero et al., 2015), we consider the waste availability concept.

Considering stochastic waste generation speed in medical centers, a signal is sent to

the collector company indicating the availability of the hazardous waste to be picked

up. However, there is an important factor the collector company should consider as

the maximum permissible time that the hazardous waste can be stored while waiting

for collection. For example, the Ministry of Ecology and Environment of the People’s

Republic of China published the “Management and Technical Guidelines for Emer-

gency Disposal of Medical Waste in the Pneumonia Pandemic of COVID-19,” limiting

the temporary storage time of COVID-related waste to 24 hours. In separate work,

a similar period was also suggested by Peng et al. (2020). Another criterion that

should not be ignored is that the collection process for the hazardous waste should

be handled in limited hours of a day, as the regular daily waste should be managed

as well.

Medical waste logistics focuses mainly on collecting, transporting, storing, and

disposing of medical wastes. The task should be performed by reducing the associ-

ated cost and risk of the network without jeopardizing humans and the environment.

The work involved in safely storing the relevant waste can be very time-consuming

and expensive. In order to minimize the hazardous material’s exposure to the staff,

patients, and even the animals which may come into contact with the contaminated

material, suitable safeguards must be taken at every stage of its management, from
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the generation to disposal.

In summary, the contribution of this paper is fourfold. First, for the first time,

we develop a multi-stage location-routing-inventory model for hazardous waste man-

agement, considering uncertainties through waste generation speed and release time

as well as deviations from the original plan. More specifically, the application of tem-

porary waste storage facilities is proposed to establish a well-organized and efficient

method to handle the corresponding hazardous waste separately and safely. The cost

considerations are involved in the designed network through a cost-clustering algo-

rithm that tackles the locations of temporary storage centers and allocation of medical

centers to the selected facilities. The risk mitigation and inventory considerations are

handled in the second stage to prepare the a priori plan. Finally, deviations in the

pre-specified plan are addressed using recourse actions in the last stage of the solution

procedure. The deviations are described by three scenarios, reflecting different sever-

ity levels as minor, normal, and major deviations from the a priori plan. Second, we

apply a subjective risk-aversion parameter to incorporate the decision-maker mental-

ity in the model and convert the stochastic model into a deterministic one. Third, we

incorporate waste inventory management with location-allocation-routing decisions

to derive more realistic solutions. Moreover, we take advantage of collection tours

instead of direct routes between generation nodes and treatment centers. Fourth, a

case study of Kunming in China during the coronavirus outbreak is explored, from

which we provide practical indications and managerial insights for authorities when

dealing with real-world hazardous waste management, especially under unexpected

circumstances like a pandemic.

The rest of this paper is structured as follows. Section 5.2 reviews related literature
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on the management of medical waste. The details about the network and model

formulation are presented in section 5.3. Then, the proposed model is applied to a

case study in section 5.4 to be validated and assessed. Practical managerial insights

are derived from numerical experiments and explained in section 5.5. Finally, section

5.6 concludes this work and suggests future research directions.

5.2 Related Work

The most related works to this research mainly address two areas in hazardous waste

management: (1) uncertainty issues, and (2) vehicle routing problem (VRP) with

release dates. When talking about uncertainty applications, we explore investigations

with uncertain parameters, not methods like fuzzy MCDM which do not apply the

uncertainty in the inputs of the mathematical model. Also, as a new concept in the

literature in the VRPs with a release date, a release date is associated with each

customer, which can be defined as a lower bound on the time a vehicle can start its

route to visit that customer (Mor and Speranza, 2022). In this section, we will review

the available literature on both the pathways mentioned above. A summary of the

relevant studies is provded in Table 5.1.

5.2.1 Hazardous waste management with uncertainty

Reflecting the real-life circumstances into mathematical models usually involves many

uncertainties regarding the input information. As a result, including uncertainties,

especially in sensitive and health-threatening operations like hazardous waste man-

agement, is vital. However, most of the proposed networks for hazardous waste man-
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agement were formulated under a deterministic setting. To the best of our knowledge,

only a few studies apply uncertain settings in their mathematical models in this scope.

Stochastic In Ardjmand et al. (2016) the transportation cost was regarded as a

source of uncertainty in developing a stochastic model for the locating-allocation-

routing problem of hazardous waste. They also embedded the environmental risk

and profitability in their model and applied a genetic algorithm to derive desirable

solutions. Rabbani et al. (2019a) formulated a multi-period multi-objective location-

routing-inventory problem (LRI) of hazardous waste management. The uncertainty

in their stochastic model originated from the amount of generated waste and the

exposed population. They suggested a simheuristic approach by combining a Monte

Carlo and NSGA-II simulation. Yu et al. (2020b) employed two-stage stochastic

programming to formulate the hazardous waste location-routing problem. Assuming

the cost, demand, and affected population as stochastic parameters, they considered a

bi-objective MILP model with minimizing total cost and population exposure of the

network. A sample average approximation-based goal programming approach was

utilized to solve the mathematical model.

Robust A bi-level robust model was developed by Berglund and Kwon (2014) for

the location-routing problem of handling hazardous waste. The facility location de-

cisions were determined at the upper level while leaving the routing decisions to

be made at the lower level by third-party logistics providers. The randomness in

their model originated from demand and risk uncertainty. The authors converted

the bi-level model into a single-level problem by replacing the inner maximization
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problem with its dual. Finally, a genetic algorithm was proposed for large-scale in-

stances. A scenario-based LRP was developed by Saeidi-Mobarakeh et al. (2020) to

address hazardous waste management through a bi-level optimization model. Their

upper level consisted of the strategic reverse network design problem, while waste

collection decisions were determined in the lower level. A robust optimization ap-

proach was developed to incorporate the uncertain waste generation rates in the

model, which was solved using a multi-part solution methodology. Delfani et al.

(2020) studied the multi-objective hazardous waste LRP minimizing total costs as

well as both risks of transportation and population. They developed a basic pos-

sibilistic chance-constrained programming and a robust possibilistic programming

model of the proposed problem for handling the uncertainties. Homayouni and Pish-

vaee (2020) applied a robust optimization method to introduce a bi-objective hospital

waste collection and disposal network design problem with an uncertain amount of

generated waste. The implemented augmented ε-constraint method to solve the pro-

posed model and obtain efficient Pareto solutions. Negarandeh and Tajdin (2021)

designed a sustainable hospital waste management network incorporating resiliency

and profitability concepts into the model. The proposed model dealt with uncer-

tainty using a robust fuzzy programming approach with an uncertain amount of waste

generated and transportation costs. Two solution methods were implemented: the

improved goal programming technique and the Lp-metric method. In a more recent

study, Raeisi and Jafarzadeh Ghoushchi (2022) explored the multi-objective LRP for

hazardous wastes with uncertain transportation costs and waste generation amounts.

For handling the uncertainty, a robust fuzzy optimization approach was employed.

Also, two types of wastes, including industrial and hospital wastes, were involved in
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developing the proposed mathematical model. Finally, the model was solved using

several metaheuristic methods.

Pandemic setting An investigation of the infectious waste management during

the COVID-19 pandemic was presented in Tirkolaee et al. (2020). The authors stud-

ied the fuzzy multi-trip LRP for medical waste management. The fuzzy chance-

constrained programming technique was applied to address the uncertain demands.

In this research, the model was solved using the weighted goal programming method.

Another article concentrating on COVID-related infectious waste management was

Zhao et al. (2021). In this study, a scenario-based bi-objective robust approach was

developed with random waste generation and temporary facility applications during

a pandemic. Three different solution methods were adapted and compared, including

the ε-constraint solution technique, goal programming method, and a lexicographic

weighted Tchebycheff approach.

5.2.2 Vehicle routing problem with release dates

The classical vehicle routing problem assumes that the shipments to be delivered to

customers or collected from them are ready to be handled at the beginning of the

planning period. However, due to the available uncertainties in real-life conditions,

this is not always true, and there are deviations available in the specified time that

products are ready to be picked up or delivered. To cover this context, recently, the

VRP with release dates (VRPRD) has been introduced in the relevant literature.

To the best of our knowledge, Cattaruzza et al. (2016) made the first attempt to

incorporate the release dates of customers in the decisions. They explored the multi-
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Trip VRP with customer time windows and merchandise release dates. They defined

the release date as the moment that the merchandise becomes available at the depot

for final delivery. Their model was solved using a hybrid genetic algorithm applying

a route decomposition technique for chromosome decoding and a local search.

Following the work of Cattaruzza et al. (2016), several works have included release

dates in their studies. Reyes et al. (2018) explore the complexity of the single depot

dispatching problems with release dates. In their paper, each order has a release

date indicating when the order can be shipped and a service guarantee acting as a

deadline. Their findings show that single and multiple vehicle variants with customers

located on a half-line can be solved to optimality in polynomial time. A formulation

for the Traveling Salesman Problem (TSP) with release date and completion time

minimization was proposed in Archetti et al. (2018). The authors introduced some

properties and proposed an iteration-based local search approach with two variants.

Pina-Pardo et al. (2021) investigated the TSP with release dates and drone resupply.

Considering that each order’s release date was known during delivery planning, their

focus was on defining a minimum time route for a single truck that can receive newly

available orders en-route using drones. For this purpose, they developed a Mixed-

Integer Linear Program (MILP) and a decomposition-based solution approach.

Shelbourne et al. (2017) assumed release and due dates for each customer and in-

corporated machine scheduling into VRP. Their work includes a convex combination

of operational costs and customer service level, which is solved using a path-relinking

algorithm with neighborhood search. Soman and Patil (2020) studied a heteroge-

neous VRP with release and due dates. Their model encompassed several properties

such as order consolidation, finite warehousing capacities, and lateness-dependent
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tardiness costs. They proposed a scatter search technique with strategic oscillation

capable of solving large-size instances. Focusing on the container drayage problem,

Bruglieri et al. (2021) formulated a multi-trip multiperiod with release and due dates

model. Each truck was likely to perform more than one trip in their model, respect-

ing customers’ associated release and due dates. They proposed both an Arc-based

ILP formulation and a Trip-based ILP formulation and designed six Combinatorial

Benders’ Cuts to solve this problem efficiently. Assuming stochastic release dates and

dynamic customer order arrivals, Darvish et al. (2020) explored the multi-period VRP.

The deliveries in their model could happen between release and due dates, where the

customer specified the due date of order with penalties for deviations from delivery

dates. An exact solution for solving VRP with release and due dates was proposed by

Yang et al. (2021), where each vehicle leaves the depot after the release dates of the

customers. The authors developed an exact branch-price-and-cut algorithm based on

the self-partitioning formulation. Their objective comprised of minimizing the total

routing and weighted tardiness costs of a vehicle routing problem.

Applications of release dates in the e-commerce industry were investigated by Liu

et al. (2017). They assumed that order availability time is specified by the precedent

order picking and packing stage in the warehouse of the online grocer and modeled

it using a capacitated vehicle routing problem. Also, a granular tabu search, as well

as a Lagrangian relaxation algorithm, were developed to obtain solutions. Inspired

by the last-mile delivery concept in e-commerce, Li et al. (2020) studied a multi-trip

VRP with order release time. Their model requires the starting time of any trip to

be not earlier than the release time of every onboard order in the trip. The relatively

short delivery distance in this type of problem necessitates multiple trips of vehicles.
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A combination of an adaptive large neighborhood search algorithm with a labeling

method was presented as a solution procedure.

Time considerations through customer time windows and package release dates

were involved in Zhen et al. (2020) in a multi-depot multi-trip VRP. The proposed

MILP model was solved using a hybrid particle swarm optimization algorithm and

a hybrid genetic algorithm. Sun et al. (2021) focused on providing a vehicle routing

problem with flexible time windows and order release for the fresh food industry.

Introducing several valid inequalities, they solved the model using a branch-and-cut

algorithm. Simultaneous consideration of product and service delivery, time windows,

and the explicit reflection of order release dates were embedded in the VRP model

introduced by Li et al. (2021a). They assumed that any vehicle could not start earlier

than the largest order release date associated with orders assigned to it. Moreover,

an adaptive large neighborhood search algorithm with three new customized removal

operators was suggested as the solution procedure.

5.2.3 Research gaps

Despite the efforts mentioned above, the hazardous waste literature with uncertain

data is still in its infancy. Except for Rabbani et al. (2019a) and Zhao et al. (2021),

no publications focused on embedding inventory considerations in the model and

jointly exploring the location, routing, and inventory decisions of HMW. Multi-period

planning is an essential tool in managing hazardous medical waste programs. It is

used to identify and anticipate future needs and determine appropriate courses of

action to meet those needs. Taking into account the potential consequences of various
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actions over time allows for more accurate decision-making and better stewardship of

resources to appropriately manage and dispose of medical waste. In this regard, only

two articles involved multi-period programs in their research (Rabbani et al., 2019a;

Tirkolaee et al., 2020).

Decision-makers have a unique perspective on their decisions, as they see them

through the lens of their own experience, mentality, and knowledge. However, this

perspective is often not incorporated into models and solutions in the literature. This

can lead to suboptimal decision-making because the mathematical model fails to

reflect the unique viewpoint of individual stakeholders. Risk-averse decision-makers

tend to be more conservative and often avoid taking risks, while risk-taking decision-

makers are more inclined to take on risks. Such assumption in the relevant studies of

medical waste has not been employed so far, and we try to fill this gap by applying

the subjective risk-aversion parameter. Finally, this is the first study to explore a

multi-stage decision framework with a priori plans, recourse actions, and uncertain

release dates. Other random parameters such as the amount of generated waste or

transportation cost have been investigated frequently, and no research has handled

stochastic release dates.

5.3 Model

In this model, we deal with a multi-period 3-tier hazardous waste collection network,

as illustrated in Figure 5.1. The first tier includes generation nodes or clients spread

over the network. The second tier consists of temporary storage or repository where

each truck starts its collection route and returns to the same facility after visiting
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at least one client. Finally, there are integrated treatment and disposal centers as

the final destination for the accumulated waste at the storage facilities. The routing

process starts by picking up the generated waste from clients and delivering it to

the candidate transfer stations. Then, the accumulated waste is transferred from

repositories to treatment centers via direct routes.

Figure 5.1: Network for the hazardous waste management

This research develops a multi-stage decision framework for managing hazardous

waste logistics with random release dates. The waste generation speed is subject to

uncertainty leading to stochastic release dates of waste. As a result, the pickup signals

arrive dynamically over the planning horizon from generation nodes. Applying a cost-

based clustering approach, the first stage of the decision framework involves locating

the transfer stations and allocating generation nodes to the chosen facilities. Then,

the information obtained from the first stage, along with a subjective risk aversion

notion and estimated release dates, are utilized to generate a priori plans in the

second stage. Finally, adaptive recourse actions are taken in the third stage to revise
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the decisions for the remaining periods once the actual release dates are realized.

The first decision-making stage is built upon cost and capacity considerations. Risk

reductions are imposed on the model through the second stage, and the third stage

focuses on deviation management.

In summary, the decisions that need to be made for this waste system include

location decisions focused on temporary transfer stations, routing decisions for the

collection tours from client nodes to transfer stations, inventory management for the

waste along the planning horizon, and adapting the model when deviations occur.

5.3.1 Assumptions and notation

In this model, we assume that the collector is responsible for picking up the waste

loads over a finite planning horizon of T days. The speed of waste generated at each

client is assumed to have an uncertain nature. Therefore, the loads are expected

to become ready for pickup at generation nodes on a given date. Inspired by the

work of Darvish et al. (2020), we name these dates as release dates. We consider

a discrete probability distribution for the availability of loads. The clients request

waste collection on different days of the planning horizon. Waste pickup for each

client must be handled within a time interval, starting with the order date (signal

date) and ending at the due date. On the signal day, a signal is sent from the

generation node to the collector regarding the availability of the load. As we are

dealing with hazardous waste, the due date for managing the load cannot exceed a

specific limit. This limit is known in advance, making the due date depending on

the signal date. It should be highlighted that stocking the shipments in the transfer
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stations or generation nodes imposes an additional risk to the system. Moreover, all

the waste generated during the planning horizon must be transferred to the available

treatment center at the end of the planning horizon. Considering that each transfer

station has only one vehicle to handle the waste in each period, the overtime option

will be applied only in the last period of the planning horizon, if required, to ensure

that waste management is performed entirely. However, the associated cost for the

overtime is assumed large enough to enforce the model to avoid it unless necessary.

Based on estimations of signal dates, the decision-maker develops an initial sched-

ule, a priori plan, at the beginning of the planning horizon. A recourse action is taken

when the realized information does not match the estimated values. Such incompat-

ibility might stem from two matters. First, the realized time of waste availability is

sooner than the anticipated period. In this case, the a priori plan is disrupted be-

cause of the existing new node in the current period, which must be handled within

a permissible time interval. The collector should adapt to the realized situation and

might be willing to alter the collection schedule by accepting a bumping penalty. The

second case happens when the collector does not receive any signals on the expected

date leading to postponing waste-handling of the associated client. This issue bumps

some generation nodes from their initial schedule route by bearing bumping penalties.

Moreover, having some loads unavailable on their estimated availability date leaves

extra vehicle space for the collector. Due to the uncertainties, more pickup signals

might be received in the same period. These data mismatches require rescheduling

the a priori plans by accepting bumping penalties.

As our model is built upon an existing system, we assume that all the vehicles have

already been purchased. Therefore, vehicle acquisition is not discussed in the model.

200



It is also assumed that all facilities and vehicles satisfy the mandated security and

safety measures for handling hazardous waste. Table lists the notation used in this

work, based on which a detailed discussion of the mathematical model is presented

next.

5.3.2 Decision Framework

The decision framework for this research is built upon three main stages, includ-

ing location and allocation, a priori routing plan, and recourse routing decision, as

illustrated in Figure 5.2. Each stage is described comprehensively in continue.

Figure 5.2: Multi-stage decision framework for the proposed collection network

5.3.2.1 Stage 1: Location and allocation

The first stage of this framework determines the locations of transfer stations and

the assignment of available generation nodes to the established facilities. For this
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Table 5.2: Notation

Sets

N Set of nodes, indexed by i and j. N = G ∪ C ∪ T

E Set of edges, indexed by (i, j)

G Set of generation nodes, indexed by g

S Set of transfer stations, indexed by s

C Set of treatment centers, indexed by c

T Set of periods, indexed by t, t = 1, 2, ..., T

Parameters

W t
g Amount of waste generated at node g ∈ G in period t

CSs Capacity of temporary transfer station s

CV Vehicle capacity for collection tours

C ′ Bumping penalty

Rij Risk of traveling from node i to j

Rs Risk around treatment center s

Lt
g Maximum permissible lateness for generation node g in period t

ρtg Probability of waste being available at generation node g in period t

P t
g Cumulative probability of waste being available at generation node g in period t

λt
g Subjective estimate of the collector on the availability of the waste at node g in

period t

θ Risk aversion level of the collector

δsg 1 if the waste at generation node g is ready to pickup in period t; 0 otherwise

M A large number

Decision variables

xt
ijs̄ 1 if node j is visited just after node i in a tour ending at s̄ in period t; 0 otherwise

ytgs 1 if the generation node g, allocated to transfer station s, is visited on the day t;

0 otherwise

ptt
′

gs 1 if the waste available to be collected on the day t is handled on day t′, where

t′ ≥ t; 0 otherwise

αt
g 1 if bumping happens in period t for the planned pickup of waste at node g; 0

otherwise

γt
g 1 a pickup is planned for node g in period t; 0 otherwise
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Table 5.2 (continue) : Notation

ηtsc Amount of hazardous waste transported to treatment centers c from transfer sta-

tion s in period t

ζts Amount of hazardous waste collected at transfer station s in period t

bts Beginning inventory at transfer station s in period t

ets Ending inventory at transfer station s in period t

ut
g A positive variable used for subtour elimination

purpose, a cost-based clustering approach is utilized by involving the fixed opening

cost of candidate transfer stations, the fixed cost of activating available treatment

centers, and transportation cost for both direct path and collection routes. Assuming

a single period, the model is solved by considering the worst-case scenario for the

generated waste at each node, which is the highest possible demand over T periods.

The steps for handling the location and allocation are as follows:

1. Initialization: Let As and Âs be the set of generation nodes assigned to transfer

station s and the nodes in the waiting list of this station, respectively. Similarly,

B represents the set of transfer stations that are located and allocated, while B̂

is the set of transfer stations in the waiting list. In this step, it is assumed that

all these sets are empty, meaning that As = ∅, Âs = ∅, B = ∅, and B̂ = ∅.

2. Cost-based clustering: In this step, determining the locations of transfer sta-

tions, allocating generation nodes to the chosen stations, and matching the

opened transfer stations to treatment centers is conducted. All the located

stations are added to B̂, and all generation nodes are moved to corresponding

As.
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3. Break allocation: The process starts with finding the station with the lowest

opening cost. Then, the capacity constraint is checked to ensure the station’s

capacity is not violated. For example, assuming s1 as the station with the least

establishing cost, the following steps are checked:

� If the total waste amount exceed the station’s capacity, the farthest gener-

ation node is identified, removed from the associated list As1, and be added

to Â. This process is repeated until the capacity constraint is satisfied.

Being satisfied, s1 is moved to B.

� If the transfer station’s capacity constraint is not violated but any addi-

tional pickup results in breaking the constraint, s1 is added to B.

� s1 is kept in B̂ if the station has extra capacity.

4. Termination: The process is stopped if Â = ∅. If Â ≠ ∅, reassignment will be

performed.

5. Reassignment: For each node in i ∈ Â the nearest station in B̂ is identified and

added to the associated set. For example, considering s2 as the nearest station

for i, it will be moved to As2. If no more node can be assigned to s2 without

violating its capacity, s2 is added to B. If there are no transfer stations in the

waiting list, B̂ = ∅, the process is continued starting from cost-based clustering

with nodes in Â and candidate station locations in S \ B̂.

5.3.2.2 Stage 2: A priori routing plan

In this stage, a deterministic plan is developed based on the obtained B and As (s ∈

B) from the location-allocation phase. Consider an undirected graph G = (N , E)
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with N nodes and E edges. There are four types of nodes in the network, namely

generation nodes (G), candidate transfer stations (S), copies of transfer stations (S̄),

and treatment centers (C). Moreover, the edge set is E = {(i, j) : i, j ∈ N , i ̸= j} with

an associated risk and cost. The risk consideration is through the exposed population

along the edges, meaning that the more populated an area is, the more risk would

be involved in the process. Both the vehicles and transfer facilities have capacity

limitations. A finite planning horizon of T = {1, ..., T} is defined for the model. It

is noteworthy to mention that an infinite horizon can be assigned a rolling-horizon

mechanism where the problem is solved each day iteratively for {t, t+1, ..., t+T −1}.

In this stage, it is assumed that the amount of the generated waste on the day

t for each node (W t
g) is known and deterministic. A maximum permissible lateness

(Lt
g) limits the collection process by imposing a collection due date for the system.

Here, same-day pickup is represented by maximum permissible lateness equal to zero.

It is assumed that the speed of waste generation is stochastic leading to uncertainty

in the release date for collection at each node. However, once the waste is released on

the day t, it remains available until the end of the planning horizon. Moreover, the

probability of waste being available on the day t (ρtg) is known before its scheduled

collection on the day t. Therefore, the associated cumulative availability probability

of waste at each node on different days (P t
g) is known beforehand. As a result, if

the amount of generated waste on the day t at node g is positive (W t
g > 0), the

cumulative probability of the waste being available in its due date must equal to one

(P t′
g = 1, where t′ = t + Lt

g). Also, the signal is only sent to the transfer station for

collection when the amount reaches a pre-determined threshold. Consequently, if the

waste is available for collection at period t (W t
g > 0), the collection action can occur
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any period on and after that period.

We adopt the subjective estimate of the collector on the availability of the waste

on the day t at node g, denoted by λtg, from Darvish et al. (2020). This binary

parameter is utilized to incorporate the risk aversion level of the collector (θ ∈ [0, 1])

and the cumulative waste availability probabilities as follows:

λtg =


1, if P t

g ≥ θ

0, otherwise

(5.1)

A risk-averse decision-maker (pessimistic point of view) proceeds by assuming that

the generated waste will only be available on the last possible day. Higher values of θ

indicate this personality type where θ = 1 is the most risk-averse level. On the other

hand, an optimistic decision-maker builds the model considering the earliest possible

availability of waste. Lower values of θ represent a risk-taking decision-maker with

θ = 0 standing for the most optimistic collector. Apart from these extreme values,

intermediate values can be applied to define more precise risk aversion levels of the

collector. The challenge in developing the routing plans is that the collector should

be notified of the availability of the waste through a signal from the generation nodes,

where the exact time of this signal is uncertain. The λtg contributes to developing a

deterministic-equivalent form for the stochastic model.

After determining the locations of transfer stations and allocating the genera-

tion nodes to the chosen facilities, the decision-maker establishes an a priori plan by

applying the estimated release dates. However, the a priori plan might require mod-

ifications when the actual release dates are realized. In this case, a recourse action

is activated to revise the pre-specified schedules. When applying a recourse plan, a
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bumping penalty (C ′) is imposed on the model if collection rescheduling occurs for a

node.

The cost reduction considerations were embedded in the model during the location-

allocation stage. In this stage, the focus is on mitigating the total risk of the network.

The risk can be originated from the following sources:

� inventory risk at the transfer station, which is calculated based on the amount

of waste

� transportation risk representing the risk of conveying the hazardous waste on

the edges

� penalty risk in generation nodes caused by delays in pickup

� overtime operation risks in transfer stations

It is noteworthy to mention that the penalty risk is imposed on the system due to

capacity reasons, where a pickup is postponed to another day. Due to its hazardous

nature, the remaining inventory in the facility burdens the station with additional

inventory risk.

In this model, a time-based risk evaluation is employed. Let BI ts and EI ts be the

beginning and ending inventory in period t, respectively. Assuming ζts as the total

amount of collection sent to facility s in period t, we can define the following relations:

EI0s = 0 ∀s ∈ S (5.2)

BI t+1
s = EI ts ∀s ∈ S, ∀t ∈ T \ {T} (5.3)

BI ts + ζts = EI ts ∀s ∈ S, ∀t ∈ T (5.4)
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Equation (5.2) sets the beginning inventory for the planning horizon. Equations

(5.3) and (5.4) together ensure the inventory balance over each period. In the last

period T , all waste inventory, ET
s , is shipped to existing treatment centers.

The value of ending inventory is used to obtain the total risk of transfer station

s. Considering POPs as the exposed population around s, and Rs as the total risk

around s, the site risk component of the objective function can be established:

Rs =
∑
s∈B

∑
t∈T

POPsEI
t
s (5.5)

The penalty risk amount for the generation nodes, assuming POPg as the exposed

population around g, can be defined as:

R′
g =

∑
g∈As

∑
s∈B

∑
t′∈T

∑
t∈T ,t≤t′

ptt
′

gs(t
′ − t)POPgW

t
g (5.6)

To reflect the waste collection deferments in the model, a binary variable, ptt
′

gs , is

defined. We have ptt
′

gs = 1 if and only if the waste available to be collected on the

day t is handled on day t′, where t′ ≥ t. Therefore, based on (5.6), postponing the

generated waste pickup at node g imposes an additional risk to the system each day.

Let xtijs̄ be a binary variable indicating whether the truck traverses from node i to

j in a tour ending in the copy of transfer station s at the day t. Also, ytgs = 1 if and

only if the generation node g, allocated to station s, is visited by the truck on the day

t. Assuming B′ as the copies of transfer stations in B, the transportation risk (Rt)

and overtime risk (Ro) components of the a priori objective function is developed as

follows:

Rt =
∑
t

∑
i∈As

∑
j∈As

∑
s′∈B′

xtijs′Rij (5.7)
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Ro =
∑
s∈B

(EITs − CV )εTs POPs (5.8)

We assume that waiting for the overtime pickups imposes extra on-site risk and utilize

it as the overtime penalty. Here, εTs is a binary parameter indicating if the amount of

accumulated waste at the last period T is more than the vehicle capacity. However,

we need to linearize the this element, assuming ψT
s = EITs ε

T
s as follows:

ψT
s = EITs ε

T
s (5.9)

ψT
s ≤ EITs (5.10)

ψT
s ≤ MεTs (5.11)

ψT
s ≥ EITs −M(1− εTs ) (5.12)

ψT
s ≥ 0 (5.13)

Therefore, the overtime objective component can be rewritten as:

Ro =
∑
s∈B

POPs(ψ
T
s − CV εTs ) (5.14)

Now, based on the introduced variables and assumptions, we can develop the a

priori model as follows:

minRs +Rg +Rt +Ro

xtijs′ ≤ ytjs ∀i ∈ As ∪ {s},∀j ∈ As,∀s ∈ B, ∀s′ ∈ B′,

s′ − s = |B|,∀t ∈ T (5.15)∑
j∈As

xtsjs′ ≥ ytis ∀i ∈ As,∀s ∈ B,∀s′ ∈ B′, s′ − s = |B|, ∀t ∈ T

(5.16)
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∑
j∈As∪{s′},i ̸=j

xtijs′ +
∑

j∈As∪{s},i ̸=j

xtjis′ = 2ytis ∀i ∈ As,∀s ∈ B,∀s′ ∈ B′, s′ − s = |B|, ∀t ∈ T

(5.17)∑
j∈As

xtsjs′ −
∑
j∈As

xtjs′s′ = 0 ∀s ∈ B,∀s′ ∈ B′, s′ − s = |B|, ∀t ∈ T

(5.18)∑
t

ytis = 1 ∀i ∈ As,∀s ∈ B (5.19)

utj ≥ uti + xtijs′ − |As|(1− xtijs′) ∀i ∈ As ∪ {s},∀j ∈ As ∪ {s′},∀s′ ∈ B′,∀t ∈ T

(5.20)

ptt
′

is ≤ ytis +Mδti ∀i ∈ As,∀s ∈ B,∀t ∈ T , ∀t′ ∈ T (5.21)∑
t,t≤t′

ptt
′

is δ
t
i ≤Myt

′

is ∀i ∈ As,∀s ∈ B,∀t′ ∈ T (5.22)

∑
t,t≤t′

ptt
′

is δ
t
i ≥ yt

′

is ∀i ∈ As,∀s ∈ B,∀t′ ∈ T (5.23)

∑
i∈As

∑
t∈T ,t≤t′

ptt
′

isW
t
i ≤ CV ∀s ∈ B,∀t′ ∈ T (5.24)

∑
t′∈T ,t≤t′≤t+Lt

i

ptt
′

is ≤Mδsi ∀i ∈ As,∀s ∈ B,∀t ∈ T (5.25)

∑
t′∈T ,t≤t′≤t+Lt

i

ptt
′

is ≥ 1−M(1− δti) ∀i ∈ As,∀s ∈ B,∀t ∈ T (5.26)

ptt
′

is ≤ λt
′

is +M(1− δti) ∀i ∈ As,∀s ∈ B,∀t ∈ T ,∀t′ ∈ T , t ≤ t′ ≤ t+ Lt
i

(5.27)∑
i∈As

∑
t,t≤t′

ptt
′

isW
t
i = ζt

′

s ∀s ∈ B,∀t′ ∈ T (5.28)

ζts ≤ CSs ∀s ∈ B,∀t ∈ T (5.29)

BI1s = 0 ∀s ∈ B (5.30)
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BI t+1
s = EI ts ∀s ∈ B,∀t ∈ T , t ̸= T (5.31)

BI ts + ζts = EI ts ∀s ∈ B,∀t ∈ T (5.32)

EITs − CV ≤MεTs ∀s ∈ B (5.33)

ψT
s = EITs ε

T
s ∀s ∈ B (5.34)

ψT
s ≤ EITs ∀s ∈ B (5.35)

ψT
s ≤MεTs ∀s ∈ B (5.36)

ψT
s ≥ EITs −M(1− εTs ) ∀s ∈ B (5.37)

xtijs̄, y
t
gs, p

tt′

gs , α
s
g, γ

s
g , ε

T
s ∈ {0, 1} ∀g ∈ G,∀i, j ∈ N,∀s ∈ S,∀s̄ ∈ S̄, ∀t ∈ T

(5.38)

ηtsc, ζ
t
s, BI

t
s, EI

t
s, u

t
g, ψ

T
s ≥ 0 ∀g ∈ G,∀s ∈ S,∀s̄ ∈ S̄, ∀c ∈ C, ∀t ∈ T

(5.39)

The objective function of the model is presented in (5.15). The risk mitigation is

built upon three elements: fixed risk of established transfer stations, transportation

risk, and the penalty risk of postponing waste collection. The connection between

the routing variables and allocation variables are shown in (5.15)-(5.17). Constraint

(5.18) ensures if any route starts from station s on the day t, it will end up at the

associated copy of s. Constraint (5.19) guarantees that all the generation nodes are

visited over the planning horizon. The sub-tour elimination is handled by (5.20).

The connection between ptt
′

is and ytis variables is reflected through (5.21) to (5.23) in

the model. In inequality (5.21) δti = 1 if the load is available to pickup at client i

in period t. Constraint (5.24) deters violating the vehicle capacity in each period.

Constraint (5.25) and (5.26) enforce the model to assign a pickup date for the load

which is available in period t in the permissible collection interval. Constraint (5.27)
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makes sure that handling the waste for a client is done after it becomes available.

Equation (5.28) calculates the amount of waste accumulated at transfer station s

in each period. Constraint (5.29) ensures that the transfer station’s capacity is not

violated. The waste inventory management is handled by (5.30)-(5.32). Overtime

considerations are embedded in the model using (5.33)-(5.37). If the accumulated

waste in the last period exceeds the vehicle capacity, the overtime penalty will be

included in the model. Finally, constraint sets (5.38)-(5.39) determine the nature of

the decision variables in the problem.

5.3.2.3 Recourse model

The solutions obtained from a priori plan are based on the decision-maker estimations

regarding the release dates of the waste. However, in reality, the release dates might

not adhere to this plan, demanding re-optimizing the model based on the realized

data. Therefore, this research attempts to develop an adaptive sequential decision

problem capable of adjusting the solutions when the uncertainties are realized. As

mentioned earlier, the uncertainties lie in the speed of waste generation and, as a

result, in the release dates of waste for pickups.

Recourse plans are employed to address the model dynamism by iteratively solving

the model. A decision has to be made at the beginning of each period t based on the

realization of data. If the estimations are correct, then λtg is correct, and no adjusting

is necessary. However, two types of estimation errors can occur regarding the release

dates. First, the waste signal that was supposed to be sent on the day t from node g

occurs earlier. In this case, as we have an unexpected amount of waste in the current

day, modifications for the current day or the subsequent periods might be required.
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Second, the amount of waste considered to be ready in period t is not available on

that day leading to postponing (bumping) at least one pickup to a day after t.

Let x̄tijs̄ and p̄
tt′
ij be the optimal solution of the a priori plan. In continue, we will

apply an adaptive approach inspired by Darvish et al. (2020). If the waste becomes

available based on the anticipation, λsg = 1, no recomputation of λsg is involved in

the process. Maintaining the same risk estimate as before, the values of λsg demands

modifications considering the remaining probabilities P t
g and the risk aversion level

parameter (θ). Assuming the period t for decision-making, this parameter can be

calculated as follows in the recourse plan:

λtg =


1, if P t

g − P t−1
g ≥ θ

0, otherwise

(5.40)

Provided that any deviations from the pre-defined release dates happen on the

day t, the collector company has to apply the recourse model to achieve the optimal

solution for the remaining decisions. The recourse actions are performed considering

the same risk aversion level for the decision-maker as the a priori model. A new

binary variable is defined as αt
g to reflect the deviations of release dates. αt

g = 1 if

and only if bumping happens on the day t for the planned pickup of waste at node

g. To connect the a priori model with the recourse plan, we define the parameter

βt
g and the variable γtg. The former is utilized to demonstrate whether the collection

was scheduled for node g in period t, while the latter indicates whether a pickup is
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planned for node g on the day t. Parameter βt
g is defined as follows:

βt′

g =


1, if

∑
t≤t′ p̄

tt′
ij ≥ 1

0, otherwise

(5.41)

There is an additional part for the objective function in the recourse action as the

bumping penalty. We can simply define it using equation (5.42).

Rb =
∑
t′∈T

∑
i∈As

C ′αt′

i (5.42)

Now, the recourse model can be developed as follows:

minRs +Rg +Rt +Ro +Rb (5.43)

γt
′

i ≤
∑
t≤t′

ptt
′

is ∀i ∈ As,∀t′ ∈ T (5.44)

∑
t≤t′

W t
i γ

t′

i ≥
∑
t≤t′

ptt
′

is ∀i ∈ As,∀t′ ∈ T (5.45)

αt′

i ≥ βt′

i − γt
′

i ∀i ∈ As,∀t′ ∈ T (5.46)

αt′

i ≥ γt
′

i − βt′

i ∀i ∈ As,∀t′ ∈ T (5.47)

βt
i , γ

t
i ∈ {0, 1} ∀i ∈ As,∀t′ ∈ T (5.48)

The objective function (5.43) is developed by incorporating the bumping penalties

into (5.15). Constraint (5.44) ensures that if a pickup is scheduled for a client in a

period, there exists a load to be collected on that period. The waste quantities to be

handled are guaranteed by (5.45). Bumping penalties are imposed to the model based

on constraints (5.46) and (5.47). In these inequalities, having a conflict between a

new optimized plan and the previously planned schedule results in a bumping penalty

as the associated variable αt
i = 1.
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The values of ptt
′

is are stored in p̄tt
′

ij for any t ≥ 2. After stabilizng the past decisions,

the recourse model is re-optimized by applying the following constraint:

pt̃t
′

is = p̄t̃t
′

is t̃ ∈ {1, ..., t} (5.49)

5.3.3 Sample tests

In this section, we check the validity and performance of the proposed mathematical

model using several randomly generated sample instances. All computational tests

(including the case experiments in section 5.4 are performed on a computer equipped

with a 2.2 GHz Intel processor and 2 GB RAM using Java 11 and CPLEX 12.8.0.

Totally, 28 random problem instances with different sizes and different values for θ

are generated and tested. Four different values for θ are considered, including 0.1, 0.4,

0.7, and 0.9, to test how various risk-aversion viewpoints can affect the model. Also,

the size of each instance is described by the number of generation nodes (i.e., |G|) and

candidate temporary transfer stations (|T |). We assume there is only one existing

treatment center capable of handling all the system waste in all of these instances.

The medical centers can be small facilities like laboratories and clinics or large centers

like large-sized hospitals. As a result, the generated waste for these generation nodes

follows a uniform distribution as U ∼ [300, 2500] with regard to medical center size

and assuming a worst-case scenario. The capacity values are set to ensure feasible

solutions.

Table 5.3 displays the obtained results for the available test instances. We consider

a computation time of 18000 seconds (i.e., 5 hours). Column “Best Obj” is the optimal

solution or the best result obtained within 18000 seconds. Columns “Gap(%)” and
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“Time” respectively present the optimality gap and computational time for each

instance.

As we can observe in Table 5.3, the more optimistic the decision-maker, the more

complex the problem would be. Therefore, lower values of θ result in more computa-

tion time and gaps. For example, the average computation time and gap for θ = 0.1

are respectively 230% and 73% higher than of θ = 0.9. The reason behind this boost

lies in the existence of more flexible plans in a more optimistic setting. On the other

hand, when dealing with a more pessimistic situation with higher values of θ, the

routing decisions are postponed to the ending periods leaving fewer possibilities for

generating the a priori plan. In other words, less flexibility in the model leads to a

more constrained setting with fewer pickup options for the collector.

In general, the risk objective worsens when we increase the values of θ. For

example, in a problem setting with 20 generation nodes, a growth of almost 50% is

observable when moving from θ = 0.1 to θ = 0.9. This means that a more pessimistic

collector should expect a higher system risk. It is noteworthy to mention that in

higher values of θ overtime option is more likely to be activated as the system faces a

less flexible setting where all the waste should be handled by the end of the planning

horizon.

In all values of θ and for problems with less than or equal to 40 generation nodes,

the model is solved to optimality within 18000 seconds. For larger instances, we

obtain the final result with a small gap. Also, in θ = 0.9, due to less complexity, we

achieve the optimal value for the sample test with 50 generation nodes as well.
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Table 5.3: Random instances

# θ |G| |S|
Best Gap Time

Obj (%) (s)

1

0.1

10 3 210768.58 0.00 23

2 20 4 284822.40 0.00 103

3 30 6 319001.09 0.00 1553

4 40 8 357281.22 0.00 6448

5 50 10 428737.46 1.63 14164

6 60 12 488760.71 1.94 18000

7 80 16 586512.85 2.30 18000

Average - 0.84 8327.29

8

0.4

10 3 221139.51 0.00 18

9 20 4 335059.86 0.00 76

10 30 6 371916.44 0.00 1271

11 40 8 423984.75 0.00 5187

12 50 10 500302.00 1.01 11614

13 60 12 580350.32 1.24 13140

14 80 16 679009.88 1.86 14454

Average - 0.59 6537.14

15

0.7

10 3 337476.90 0.00 18

16 20 4 489096.95 0.00 73

17 30 6 538006.65 0.00 1080

18 40 8 594497.34 0.00 4824

19 50 10 677726.97 0.93 9407

20 60 12 759054.21 1.11 10643

21 80 16 857731.25 1.35 13442

Average - 0.48 5641.17

22

0.9

10 3 422814.21 0.00 14

23 20 4 595512.97 0.00 67

24 30 6 643154.01 0.00 972

25 40 8 701037.87 0.00 4438

26 50 10 785162.41 0.00 8843

27 60 12 863678.65 0.86 8621

28 80 16 993230.45 0.92 11023

Average - 0.25 4854.02
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5.4 Case Study

In this section, a case study based on the situation in Kunming, a city in China, is

applied to assess the validity and applicability of the proposed model. As shown in

Fig. 5.3, there are 25 nodes, including 20 generation nodes (G1-G20), four storage

center candidates (S1-S4), and one existing treatment center (T1). We assume one

general type of hazardous waste is involved in this case. The amount of generated

waste for the hazardous waste produced at generation nodes and the nodes’ associated

surrounding population has been provided in Table 5.4. Also, the relevant data for

transfer and treatment centers are presented in Table 5.5.

5.4.1 Relevant data

Capacities and costs Each storage center candidate has a capacity of 10 tonnes

for storing the hazardous waste, and the corresponding variable cost of storing is 120

dollars/tonne. No capacity consideration has been applied to the treatment center.

It is assumed that the treatment center is capable of processing all the generated

waste during the planning horizon. The unit cost of processing the waste is 110

dollars/tonne in the treatment center. First, we assume that the vehicle capacity for

tours is 10 tonnes, and then we discuss varying this value in section 5.4.4. Moreover,

we consider that the unit cost of transportation in the tours and direct routes are 100

and 6 dollars, respectively. Other facility operational costs are given in Table 5.5.

Risk The number of exposed populations is estimated within the radius of 800 me-

ters from the facilities (Alumur and Kara, 2007). The associated number of exposed
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(a) Map showing the location of Kunming city

(b) Map showing the candidate facilities in the city of Kunming

Figure 5.3: The medical waste management network in Kunming, China
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individuals around each facility is shown in Table 5.5. Also, the exposed population

around each generation node can be found in Table 5.4. All population data are

obtained from the GIS database. The average number of people residing in the two

associated nodes presents the exposed population across each edge.

Time considerations A five-day planning time horizon is considered in this case,

where each day stands for a period in the model. When dealing with COVID-19

hazardous waste, it is vital to avoid storing it for more than one day in the storage

centers. In this regard, the Ministry of Ecology and Environment of the People’s

Republic of China implied in the “Management and Technical Guidelines for Emer-

gency Disposal of Medical Waste in the Pneumonia Pandemic of COVID-19” that

COVID-related waste should be processed separately from any other types of waste,

with a maximum of a 24-hour storing period in the temporary facilities. A study

by Shammi et al. (2021) also highlighted that we should anticipate higher risks of

COVID-19 transmission for longer storage time for biomedical medical waste. As a

result, the maximum permissible lateness for the generation nodes is regarded one

day.

Deviations For the recourse plan, we assume that the model is exposed to three

different deviation scenarios, including minor, normal, and major cases. The minor

deviation case represents a minor divergence from the a priori plan by only considering

changes in the availability of waste in G1 and G6. The availability for G1 is shifted

from day 1 to day 2 (t1→ t2), and forG6 from day 3 to day 2 (t3→ t2). In the normal

deviation scenario, the model experiences more deviations compared to the minor
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circumstance. Four changes are embedded in the model as G1(t1→ t2), G2(t3→ t2),

G6(t3 → t2), and G19(t4 → t5). Finally, the major deviation situation, with six

deviations from the original plan, is evaluated in the recourse plan. The changes

include G1(t1 → t2), G2(t3 → t2), G6(t3 → t2), G11(t3 → t2), G19(t4 → t5), and

G20(t1→ t2).

Risk-aversion parameter To cover different levels of the risk-aversion character-

istic of the decision-maker, we apply four different values for θ, including 0.1, 0.4, 0.7,

and 0.9. The more this value is, the more pessimistic the collector becomes. There-

fore, in the higher values of θ, the collector tries to postpone the collection process

as much as possible, while lower values of θ oblige the model to handle the waste as

soon as possible.

Probabilities We assume random values for the probabilities of generated waste

availability in the model. The generated values do not follow particular trends like

low/high starting point with gradual/abrupt changes. This is done to apply more

generalized information in the model. Evaluating different trends can be a potential

pathway for future studies. The relevant data for the probabilities are shown in Table

5.6.

5.4.2 Location-allocation solution

By considering the cost objective in the first stage, the location-allocation model is

solved using the clustering approach described earlier. Based on the results, two

candidate transfer stations are chosen, including S2 and S3. The lower opening
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Table 5.4: Data for generation nodes

Node type #
Amount of waste generation

Population
(tonnes/planning horizon)

Small generation node

G1 5.48 280.82

G2 1.37 347.78

G3 4.93 202.62

G4 3.95 34468.26

G5 3.5 280.82

G6 2.58 3269.80

G7 1.46 162.65

G8 5.12 410.50

G9 1.73 650.06

G10 1.64 413.48

G11 1.32 2143.01

G12 1.51 2221.40

G13 2.05 11089.38

G14 4.44 347.78

G15 2.33 900.82

G16 2.96 4880.35

G17 3.29 1558.59

G18 0.41 529.40

G19 2.74 12347.27

G20 0.82 3343.80

Table 5.5: Data for facilitates

Node type #
Fixed cost Unit variable cost Exposed pop.

(×103$) ($/tonne)

S1 331 120 1054.00

Storage S2 327 120 2150.32

centers S3 321 120 6079.15

S4 338 120 347.78

Treatment
T1 - 110 1322.65

center
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Table 5.6: Associated probabilities for the generated waste availability

Probabilities for each period

Node t1 t2 t3 t4 t5

G1 0.43 0.21 0.17 0.13 0.06

G2 0.13 0.19 0.32 0.2 0.16

G3 0.06 0.09 0.26 0.35 0.24

G4 0.1 0.14 0.2 0.38 0.18

G5 0.03 0.08 0.11 0.31 0.47

G6 0.11 0.19 0.33 0.24 0.13

G7 0.39 0.2 0.15 0.14 0.12

G8 0.23 0.36 0.21 0.12 0.08

G9 0.4 0.2 0.16 0.12 0.12

G10 0.21 0.32 0.18 0.16 0.13

G11 0.08 0.21 0.43 0.18 0.1

G12 0.05 0.12 0.2 0.22 0.41

G13 0.16 0.42 0.16 0.13 0.13

G14 0.44 0.22 0.17 0.13 0.04

G15 0.2 0.44 0.19 0.1 0.07

G16 0.1 0.22 0.34 0.25 0.09

G17 0.04 0.17 0.19 0.21 0.39

G18 0.12 0.14 0.19 0.32 0.23

G19 0.11 0.16 0.21 0.37 0.15

G20 0.33 0.23 0.18 0.14 0.12
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cost of these two facilities plays a significant role in appearing in the final solution.

Based on the capacity limitations, each of these facilities is assigned ten generation

nodes. The obtained location-allocation solution is then stored in sets B and As.

Therefore, B = {S2, S3}, As2 = {G1, G2, G5, G7, G9, G10, G11, G14, G15, G18}, and

As3 = {G3, G4, G6, G8, G12, G13, G16, G17, G19, G20}. It is noteworthy to mention

that the computation time for this stage of the problem is less than two minutes for

the applied problem set. The a priori model and the recourse plan will be optimized

by employing the obtained B and As sets in this stage.

5.4.3 A priori stage

In this section, we will discuss the results obtained in the a priori phase of the model.

This stage is built upon assuming that the decision-maker can determine the most

probable release dates for the generated waste at each node based on the available

data. For example, according to Table 5.6, the signal from node G3 is most likely to

be sent at the fourth period.

Table 5.7 includes different elements of the objective function for the a priori plan

for the assumed values of the risk parameter. In this table, site risk stands for the

risk around the transfer stations due to the accumulated waste during the planning

horizon. Overtime risk is the risk of the network for handling the waste when the

capacity limitations force the model to activate the overtime option. Node risk is the

associated risk value of the exposed population around the generation nodes. The

en-route risk of waste collection is reflected in the transportation risk. Finally, the

total risk encompasses all the mentioned risk elements for the network.
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Similar to the discussion in section 5.3.3, it is evident that with more values

of θ, one can anticipate that more risk is imposed on the system. A nearly 123%

growth of total risk in the pessimistic case with θ = 0.9 compared to the optimistic

condition with θ = 0.1 verifies this claim. The site risk demonstrates a declining trend

moving toward higher values of θ. With a pessimistic collector, the first periods of

the planning horizon are less likely to be assigned with waste collection tours. As

a result, the transfer stations will not store the hazardous waste and jeopardize the

surrounding population. Using similar logic, more values of θ increase the chances of

activating the overtime option. The behavior of the node risk is the opposite of the

site risk. When a collector follows a pessimistic point of view, the hazardous waste

at the generation nodes might remain uncollected for several periods. Postponing

the pickup time endangers the surrounding residents and imposes more risk on the

system. Finally, the lowest variations are noticeable in the transportation risk, where

the vehicle’s capacity plays a major role. A detailed sensitivity analysis of the vehicle

capacity is performed in section 5.4.4.

Table 5.8 summarizes the routing decisions for each transfer station in each pe-

riod for different risk-averse levels. The overtime operations is shown by ot in this

table. In the lower values of θ, the burden of waste collection is distributed in all

periods. However, higher values of θ enforce the model to delay the pickup to the

ending periods. For example, in θ = 0.1, all the periods have been used considering

both transfer stations. No pickup is performed for transfer station S2 on t3, while

operations begin from t2 in facility S3. On the other hand, a pessimistic collector

with a risk-averse level equal to 0.9 starts the collection from t4 for both stations.

This leads to overtime activities in the system with additional associated risks.
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Table 5.7: Results for the a priori stage

Theta

0.1 0.4 0.7 0.9

Site Risk 232,990.12 232,990.12 208,977.48 148,775.37

Overtime Risk 0.00 0.00 36,018.96 126,322.13

Nodes Risk 8,590.21 8,827.67 214,65293 319,775.33

Transportation Risk 43,242.07 43,242.07 41,453.91 42,747.51

Total 284,822.40 285,059.86 501,103.27 637,620.34

5.4.4 Sensitivity analysis

By altering the vehicle capacity for the tour collection, we explore the obtained risk

elements and compare the results in this section. For this purpose, we used four

different values for the vehicle capacity, including 8, 10, 12, and 15 tonnes per tour.

A summary of the obtained results has been provided in Table 5.9. As expected, more

savings in the total risk can be achieved with a more spacious truck. This is because

higher capacities are able to collect more waste and consequently avoid unnecessary

overtime activities. For example, the average total risk for a truck with 8 tonnes

capacity is more than 37% higher than that of a vehicle with 15 tonnes of space for

the waste pickup.

There are several interesting points in Table 5.9. First, for each risk-averse level,

increasing the vehicle capacity results in more risk savings for the model. The change

is more tangible when moving from 8 tonnes to 10 tonnes, whereas the impact gets

slighter for values more than 10 tonnes. Also, it seems that a more pessimistic

perspective does not go through sharp increases or decreases by manipulating the

vehicle capacity. However, a drop of 55% and 31% happens for θ = 0.1 and θ = 0.4,

assuming an additional space of 2 tonnes for a vehicle capacity of 8 tonnes. In other

226



Table 5.8: A priori plan

θ Transfer station Period Route

0.1

S2

t1 S2→ G1→ G7→ G9→ S2

t2 S2→ G15→ G10→ G14→ S2

t3 -

t4 S2→ G11→ G2→ G18→ S2

t5 S2→ G5→ S2

S3

t1 -

t2 S3→ G8→ G13→ G20→ S3

t3 S3→ G6→ G16→ S3

t4 S3→ G4→ G19→ S3

t5 S3→ G3→ G17→ G12→ S3

0.4

S2

t1 S2→ G1→ G9→ S2

t2 S2→ G7→ G15→ G10→ G14→ S2

t3 -

t4 S2→ G11→ G2→ G18→ S2

t5 S2→ G5→ S2

S3

t1 -

t2 S3→ G8→ G13→ G20→ S3

t3 S3→ G6→ G16→ S3

t4 S3→ G4→ G19→ S3

t5 S3→ G3→ G17→ G12→ S3

0.7

S2

t1 -

t2 -

t3 S2→ G7→ G14→ G15→ G9→ S2

t4 S2→ G1→ G2→ G10→ G11→ S2

t5 S2→ G5→ G18→ S2

S3

t1 -

t2 -

t3 S3→ G8→ G13→ G20→ S3

t4 S3→ G19→ G6→ G16→ S3

t5 S3→ G3→ G12→ G17→ S3

ot S3→ G4→ S3
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Table 5.8 (continue) : A priori plan

θ Transfer station Period Route

0.9

S2

t1 -

t2 -

t3 -

t4 S2→ G7→ G11→ G1→ G9→ S2

t5 S2→ G2→ G10→ G14→ G15→ S2

ot S2→ G5→ G18→ S2

S3

t1 -

t2 -

t3 -

t4 S3→ G8→ G16→ S3

t5 S3→ G13→ G20→ G6→ G4→ S3

ot S3→ G19→ G3→ G17→ G12→ S3

words, a pessimistic collector demonstrates a more stable behavior toward the vehicle

capacity alteration. Another point is that in all capacity values except for the CV = 8,

there is an increasing trend when the value of θ rises. It seems that being unable to

handle the waste for the starting period due to the lack of space surges the node risk for

waiting for waste collection more than anticipated. The overtime risk for this vehicle

capacity amount shows similar behavior to the total risk. For CV ∈ {10, 12, 15}, we

observe an increasing trend for overtime risk, node risk, and total risk when being

more pessimistic. There is no special trend for the transportation risk, and it mainly

fluctuates slightly by varying the risk-averse level. Finally, the site risk for all the

capacity amounts has a higher value for optimistic decision-makers. This is because

lower values of θ are more capable of dealing with waste during ordinary working

time with fewer chances of requiring overtime activities.

228



Table 5.9: Sensitivity analysis for vehicle capacity

Vehicle
Risk component

Theta

capacity 0.1 0.4 0.7 0.9

8

Site Risk 148,775.37 223,810.60 192,958.76 108,947.15

Overtime Risk 126,322.13 8,288.51 104,219.06 186,064.45

Nodes Risk 312,878.12 142,989.12 222,125.37 329,415.87

Transportation Risk 42,747.51 39,619.16 32,914.66 24,041.60

Total 630,723.13 414,707.39 522,769.84 648,469.08

10

Site Risk 232,990.12 232,990.12 208,977.48 148,775.37

Overtime Risk 0.00 0.00 36,018.96 126,322.13

Nodes Risk 8,590.21 8,827.67 214,65293 319,775.33

Transportation Risk 43,242.07 43,242.07 41,453.91 42,747.51

Total 284,822.40 285,059.86 501,103.27 637,620.34

12

Site Risk 232,990.12 232,990.12 232,990.12 192,841.80

Overtime Risk 0.00 0.00 0.00 60,222.48

Nodes Risk 6,284.62 6,284.62 191,168.78 312,696.04

Transportation Risk 43,487.47 43,487.47 43,757.26 43,160.76

Total 282,762.21 282,762.21 467,916.15 608,921.08

15

Site Risk 232,990.12 232,990.12 232,990.12 194,653.33

Overtime Risk 0.00 0.00 0.00 57,505.19

Nodes Risk 6,016.80 6,227.34 179,995.19 302,461.43

Transportation Risk 42,260.71 42,260.71 43,100.62 44,519.18

Total 281,267.63 281,478.17 456,085.93 599,139.12
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5.4.5 Recourse action

In this section, we explore the results of the recourse model as a result of available

deviations. As mentioned earlier, we assume three different deviation scenarios for

the recourse plan: 1) the minor deviation case including a minor divergence from the

a priori plan by only considering changes in the availability of waste in G1(t3→ t2)

and G6(t3→ t2) 2) the normal deviation scenario with four changes as G1(t1→ t2),

G2(t3→ t2), G6(t3→ t2), and G19(t4→ t5) 3) the major deviation scenario with six

deviations as G1(t1→ t2), G2(t3→ t2), G6(t3→ t2), G11(t3→ t2), G19(t4→ t5),

and G20(t1→ t2).

The total risk comparison between a priori plan and different disrupted situations

has been provided in Figure 5.4. Except for the optimistic case, where the average risk

is slightly higher than the non-disrupted condition, in the other deviation scenarios,

the average network risk is lower compared to the case without deviations, i.e., the

a priori plan. We can observe an average risk variation of 0.53%, -1.90%, and -

3.45% in minor, normal, and major deviation situations, respectively, compared to

the original plan. The site and overtime risks do not get impacted in the disrupted

condition for lower values of θ. This is because the system still depends on all the

available periods for each transfer station and handles all the generated waste during

the ordinary working time. As a result, still system can process the waste without the

necessity for an overtime operation. However, the pessimistic perspective experiences

variations in the site and overtime risk. A higher value of θ puts more pressure on

the ending periods, and with deviation occurring, it is more likely for the system to

require overtime activities to cope with the changes.

230



The exciting matter regarding the recourse plan is the impact of the risk-averse

parameter on the final risk value after adapting to the realized situation. As shown

in Table 5.10, an optimistic collector (θ ∈ {0.1, 0.4}) adapts to the deviations by

accepting additional risk for the whole system. As a result, considering θ = 0.1, a

rise of about 3.71%, 5.48%, and 5.59% occurred, respectively, in minor, normal, and

major deviation scenarios compared to the original plan. Similarly, there is an extra

risk burden of 4.32%, 5.90%, and 6.29% for θ = 0.4. On the other hand, a pessimistic

point of view seems to benefit from deviations. In fact, the more significant a deviation

is, the more reductions in total risk can be derived. As discussed earlier, a pessimistic

decision-maker postpones the pickup to the ending days, and deviations happening

during the planning horizon enforce the collector to start the process earlier than

what was scheduled in the a priori model. This issue leads to less overtime and

hectic pickups in the ending periods with fewer overtime activities. In this regard,

for θ = 0.7, the total risk declines by 1.38%. 4.46%, and 6.31% in minor, normal,

and major deviation cases. Besides, the recourse model cuts off 1.08%, 6.67%, and

9.60% of the total risk in the associated scenarios. Also, it is evident that the recourse

model goes through more bumping penalties with more disrupted conditions.

In summary, we can conclude that, depending on the subjective perspective of the

collector, deviations can happen to be a positive or negative phenomenon. For an

optimistic decision-maker managing the hazardous waste from the generation nodes as

soon as possible, the realization of different data than the a priori plan is not pleasant.

Adaption to this matter necessitates accepting extra total risk. On the other hand,

a pessimistic decision-maker benefits from deviations. Higher values of θ postpone

waste handling to the ending days. However, with variations in the original plan, the
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Figure 5.4: Total risk comparison between different scenarios

collector is forced to start the pickup process earlier, which in return, cuts off the

overtime actions and reduces the total risk. It can be seen that the overtime amount

declines when we move from minor deviation toward major deviation scenarios.

5.5 Managerial insights

Hazardous waste management is a complicated and sensitive matter requiring a rea-

sonable plan to handle the waste effectively and safely while still meeting all legal

requirements. When developing a hazardous waste management plan, there are sev-

eral factors to consider, such as the type and number of facilities where the hazardous

material will be stored or processed and the amount and risk of hazards posed by the

material. Also, it should be noted that, as discussed in this research, the attribute of

a decision-maker can directly impact the derived decisions regarding the associated

network. Proper management can lead to many benefits, including reduced risk of

potential incidents and reduced costs associated with waste management.
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Table 5.10: Results for the recourse stage

Minor deviation

Cost component
θ

0.1 0.4 0.7 0.9

Site Risk 232,990.12 232,990.12 208,977.48 148,775.37

Overtime Risk 0.00 0.00 36,018.96 126,322.13

Nodes Risk 15,482.14 14,170.28 207,755.71 312,878.12

Transportation Risk 42,905.78 40,223.92 41,453.91 42,747.51

Bumping Penalty 4,000.00 10,000.00 0.00 0.00

Total 295,378.03 297,384.33 494,206.06 630,723.13

Normal deviation

Cost component
θ

0.1 0.4 0.7 0.9

Site Risk 232,990.12 232,990.12 208,977.48 172,320.20

Overtime Risk 0.00 0.00 36,018.96 91,004.88

Nodes Risk 11,871.51 13,171.38 179,276.41 271,196.09

Transportation Risk 41,571.88 41,706.20 42,469.49 46,558.52

Bumping Penalty 14,000.00 14,000.00 12,000.00 14,000.00

Total 300,433.51 301,867.70 478,742.34 595,079.69

Major deviation

Cost component
θ

0.1 0.4 0.7 0.9

Site Risk 232,990.12 232,990.12 218,333.25 172,320.20

Overtime Risk 0.00 0.00 24,985.31 91,004.88

Nodes Risk 10,752.05 10,989.52 175,868.60 248,753.24

Transportation Risk 43,012.50 43,012.50 36,318.64 46,298.60

Bumping Penalty 14,000.00 16,000.00 14,000.00 18,000.00

Total 300,754.67 302,992.13 469,505.79 576,376.91
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The COVID-19 crisis has exposed the vulnerabilities of various public and pri-

vate sectors and organizations regarding their preparedness, response, coordination,

and communication. As a result, all aspects and levels of society have undergone

immersing pressure both financially and mentally. In light of coping with similar

pandemics, it is worth examining strategies for presenting more affordable and less

risky approaches when dealing with hazardous wastes and infectious diseases. This

section underlines the managerial insights derived from our experiments and discus-

sions. We highlight several points to support the carriers and relevant authorities in

establishing practical and reliable networks.

The improper management of hazardous waste exposes health and waste workers

to irreparable infections. Many relevant organizations have highlighted the need for

appropriate waste management, such as the World Health Organization, a leading

authority in public health. Therefore, carrier companies are a central part of the

system responsible for collecting and processing waste. The decisions made by the

collector are vital in establishing a redundant medical-waste management system

capable of controlling the pandemics. Of course, there are investments required for

maintaining such a redundant network. However, in the long run, the advantages

of the applied redundancy will prevail over the initial expenses by mitigating the

associated risks and costs in different circumstances.

The majority of studies do not take into account the decision-maker’s point of

view in their models. We filled this gap and overcame this limitation using a risk-

averse parameter. Introducing the risk-averse function to the model allows users to

observe how their decisions lead to significant variations in the derived solutions.

This parameter can be utilized to determine if managers’ risk-taking or risk-aversing
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attitude is suitable for different settings.

An effective waste collection system should be able to benefit from its assets,

properties, capacities, and composing elements as much as possible. Especially during

unexpected circumstances such as an outbreak, the ability to adapt to the situation

quickly and with utmost capacity is a must. Application of temporary facilities

is one of the methods to adapt quickly to the realized conditions with less risky

and cost-efficient solutions. As a result, incorporating temporary facilities in the

network simplifies adjusting the existing waste network to deal with the unplanned

generated medical waste and control the associated viral spread. Living with COVID

has become a new normal these days. In the upcoming years, we might face other

infectious diseases, where upgrading these temporary stations with larger capacities

and more satisfactory compatibility will help authorities handle unpleasant situations

skillfully.

Serving multiple customers in a single tour imposes less risk and cost on the

system by avoiding unnecessary trips compared to the straight-to-and-back mode.

Furthermore, basic environmental principles encourage a shorter time for collecting

and disposing of waste. As a result, by applying tours instead of direct routes, the

collector benefits from reduced waste management process time and consequently

reduced associated costs as well as population exposure by omitting the unnecessary

commuting between transfer stations and medical centers.

The model suggested in this study entails a comprehensive point of view. Not

only does it incorporate the subjectivity of decision-making, but also it considers

both risk and cost minimization. The multi-stage decision framework provided in this

research allows the collector to plan and schedule the entire planning horizon once in
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the beginning. Then, it deals with deviations once they occur and proposes modified

plans. Three types of deviation are reflected in the model to evaluate different possible

scenarios, including minor, normal, and major deviations from the original plan.

Therefore, this research can be implemented as a helpful tool to derive practical

solutions for real-life applications where the decision maker’s risk perspective can be

examined and quantified.

5.6 Conclusions

In this research, we proposed a multi-stage decision framework for the hazardous

waste management location-routing-inventory problem. The first stage of the problem

determines the locations of candidate storage centers using a cost-based clustering al-

gorithm. Focusing on mitigating different sources of risk, we prepare the a priori plan

where estimations for release dates are applied. Finally, our model is modified once

disruptions happen. We consider several important assumptions. Firstly, random

release dates and waste generation speeds in medical centers. Secondly, temporary

transfer stations act as storage for the accumulated waste from medical centers via

tours. Finally, the decision maker’s risk perspective is applied and quantified using a

subjective risk-aversion parameter. The concept of this parameter helps convert the

stochastic model into a deterministic one. To demonstrate our model’s practicality

and validity, we applied the proposed model to a real-world case study of hazardous

waste management in Kunming, China. Numerical experiments are conducted to

examine different stages of the solution and explore the model’s sensitivity to several

key parameters, such as vehicle capacity and the subjective risk-aversion parame-
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ter. Besides, we examined three different disruption scenarios as minor, normal, and

major deviations. In the end, we derive and explain several managerial insights to

underline beneficial points for the government and other stakeholders.

There are several potential pathways for future research. Investigating multiple

hazardous waste types or simultaneously handling both hazardous and non-hazardous

waste is one research avenue to help provide a more generalized model. Future studies

can incorporate more realistic considerations in making collection plans, such as the

time-dependent parameters. Also, apart from the location, routing, and inventory

decisions, scheduling considerations will be a suitable research contribution for deriv-

ing a more practical solution. Considering more complicated exact solution methods

such as the branch-and-price technique, hoping to achieve better computation time,

especially in the larger instances, would be another potential contribution. Finally,

one can incorporate different stakeholders such as the government or healthcare sys-

tem and the carrier through a bi-level model. The upper level provides the associated

policies, and the lower level optimizes the waste management process by adhering to

these policies.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

In contrast to many other application domains, there is a limited number of articles

focusing on applications of optimization with uncertain data in the location-routing

problem of hazmat transportation. In this dissertation, we proposed a set of three

compatible approaches respectively in hazmat, infectious waste, and hazardous waste

management and transportation areas.

Chapter 3 presented a new hazmat model by assuming edge unavailability scenar-

ios to develop a scenario-based robust program. Time considerations were addressed

in this research through customer time windows and time-dependent parameters. The

former reflected the period that the corresponding customer plans to receive the de-

livery. It was assumed that the population exposures alter in various time horizons

during the day leading to variations in the corresponding hazmat transportation risks

at different times of the day. Also, time-dependent vehicle average traveling speeds

238



were considered on different paths leading to time-variant travel times between nodes.

Then, the ε-constraint method was implemented to handle the model’s bi-objective

nature and provide trade-offs between risk and cost. In this chapter, we defined two

indicators, including Cost Increment Rate (CIR) and Risk Improvement Rate (RIR),

to obtain more insight into the relationship between risk and cost objective functions,

respectively showing the incremental changes of the cost and risk. We guaranteed cov-

ering all disastrous scenarios within an acceptable range in the optimal solution by

keeping variability functions within a threshold. Finally, we conducted a sensitiv-

ity analysis on weights of variability and the warehouse capacity and derived several

managerial insights.

Our results showed that the cost variability is more sensitive in low-risk situations,

demanding larger weights to be maintained under a satisfaction level of 10%. On the

other hand, the risk variability is more sensitive in the medium-risk situation. It was

deducted that reducing the warehouse capacity may burden the system with more

transportation costs and risks. Moreover, we compared our model with a disruption-

free model. The result revealed that disruptions in location routing decisions create

both higher cost and risk, respectively 14% and 5% on average. However, the design

variables derived from a no-disruption system led to more costly decisions for the

carrier if there was a possibility of edge unavailability. In this case, involving a

scenario-based robust optimization model conveyed the best possible solutions to the

proposed location-routing problem.

Chapter 4 investigated infectious waste management in a 3-tier network during

a pandemic. The generated infectious waste from clinics and laboratories (first tier)

piled up in a temporary storage location suing tours. Then, the accumulated waste
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was shipped from the storage stations and the large medical centers (second tier) to

the available integrated treatment centers (third tier) via direct routes. The optimal

solution included locations of temporary storage and treatment facilities, determining

the best routing decision according to the trade-off between risk and cost objectives,

and acquiring the optimum vehicle acquisition. We applied a two-commodity flow

formulation with time windows for tour planning. The uncertainty was involved in

the network through the amount of generated waste. For this purpose, three scenar-

ios were defined addressing different severity levels of a pandemic. Another source of

uncertainty was the service time in small generation nodes, which was incorporated

in the chance constraint to guarantee that the pre-defined time windows of temporary

establishments can be satisfied at a specific confidence level. For the solution part, we

integrated the augmented ε-constraint technique and a branch-and-price algorithm.

The branch-and-price algorithm took advantage of a pulse algorithm for column gen-

eration purposes. Finally, we studied a case study of Wuhan in China during the

coronavirus pandemic and provided several practical indications and managerial in-

sights.

We compared our proposed solution method with CPLEX for several random

instances, from small-scale tests to large-scale ones. The test results showed a su-

periority of the B&P algorithm over CPLEX by saving more than 83% of required

computation time in small-sized problem instances and lowering the gaps by at least

70% in large-scale ones. We also compared our scenario-based stochastic model with

the current and deterministic systems. The results indicated that our proposed sys-

tem could timely adjust itself to fulfill almost four times the demand of other systems

in the worst-case pandemic scenario while maintaining a cost-efficient operation with
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no outbreak. The sensitivity analysis on the confidence levels of the chance constraint

approach revealed that higher confidence level values necessitate higher total cost for

the system to avoid time window violations in tours brought by the random fluctua-

tion of service times in small generation nodes. Also, we investigated the impact of

manipulating vehicle capacities in tours and found that more savings are expected

with higher capacities of utilized trucks. Finally, it was demonstrated that higher

values of degree of uncertainty in the service time result in more expensive decisions

due to assigning more resources to compensate for the increases in the service times

in tours.

In chapter 5, considering stochastic waste release dates, we incorporated the ICT

developments in the hazardous waste management network. This was performed

through signals sent from generation nodes to the logistic company responsible for

waste collection actions. Using a mathematical modeling approach, we considered a

three-stage decision framework to reflect the network: Location-allocation decisions

at the first stage using a cost-clustering algorithm, 2) risk-based a priori routing

decisions at the second stage, and 3) solution adaption to deviations from a priori

plan using recourse actions at the third stage. The decision-maker risk aversion

perspective was involved in the model using a parameter built upon the cumulative

waste availability probabilities. The recourse actions were made according to three

deviation scenarios reflecting minor, normal, and major variations from the original

plan. Finally, we conducted a sensitivity analysis on important model components:

the subjective risk-aversion parameter and vehicle capacity for collection tours.

We concluded that in the a priori plan assuming a higher risk aversion level of the

collector, more risk is imposed on the system. In this regard, θ = 0.9 achieved the
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optimal solution with a nearly 123% growth of total risk compared to the optimistic

condition with θ = 0.1. Also, with higher values of θ, there was a higher chance of

activating the overtime option. Finally, the lowest variations were detectable in the

transportation risk, with the vehicle’s capacity playing a significant role. Our find-

ings pointed out that deviations from the original scheduled plan can have positive or

negative impacts depending on the subjective perspective of the collector. An opti-

mistic point of view should expect additional costs to adapt to the realized deviations,

while a pessimistic decision-maker is more likely to find deviations pleasant. Also, it

was shown that the recourse model goes through more bumping penalties with more

disrupted conditions.

6.2 Future Research

Specific extensions associated with the three research pieces were elaborated in the

respective chapters, i.e., chapters 2-4. In the following, we elaborate on some of

the previously mentioned research pathways or point out other directions for future

research.

Intelligent systems With the exponential urban sprawl, we observe an increase

in population in big cities, putting pressure on the amenities, current infrastructure,

and public services. One of the state-of-art methods to overcome this problem is

converting to smart cities by applying information and communication technologies

(ICT). With the improvement of ICT tools and protocols and the enhancement of

various routing protocols, IoT devices, and applications of sensor networks, we can
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build intelligent systems to keep up with the fast-changing conditions. In chapter 5,

we discussed signals being sent from medical centers to the collector to indicate the

availability of waste for collection. This is an example of applying ICT in the hazmat

or reverse logistics area. Considering more communications between different sys-

tem components, such as treatment centers and storage stations, can be a potential

research avenue. The other potential direction is embedding smart bins capable of

classifying ordinary waste from hazardous waste at facilities, such as medical centers,

based on their nature. The application of ICT in hazmat transportation is still in its

infancy, and more research is required to employ the application of IoT and wireless

sensor networks to design cost-effective routing algorithms. Recent improvements in

technologies such as IoT, machine learning, and cloud computing have encouraged re-

searchers to develop computerized vehicle routing programs for collecting and treating

waste within a city.

Using real-time data in logistics is crucial in coping with the growing digital world

and generating a vehicle routing that ameliorates adverse consequences such as con-

gestion, unsatisfactory safety, and environmental damage. Therefore, apart from

transporting regular materials, there is a necessity for mindful planning and schedul-

ing of hazmat transportation from origin to destination using big data. Intelligent

transport refers to the visualization and analysis of real-time usage of the transport

network. In this regard, future studies can focus on applications of data-driven and

real-time and implement appropriate methods to embed these concepts in the asso-

ciated models. Given data availability, effectively employing various structured and

unstructured forms of real-time data to develop sustainable hazmat vehicle routing

analytics almost remains an open research question. There is a vast potential research
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gap in generating models and algorithms employing data availability to support pol-

icymakers in developing new regulations to mitigate congestion and improve network

safety.

Data-driven approaches In recent years, data-driven operations research (DDOR)

has emerged as a promising tool for addressing problems in logistics and transporta-

tion problems. DDOR is a powerful approach that can be used to help optimize the

flow of goods and resources within complex systems. A combination of opportunities

can be provided using Big Data to develop intelligent transportation and logistics

industries. The complex real-life problems can be handled more efficiently by em-

bedding the tremendous trove of data and data analytics into operations research

techniques. As mentioned in Teoh et al. (2018), data generated through sensors chal-

lenge the logistics industry on how to use these real-time data to develop intelligent

and safer transportation. The enormous accumulated data provides a huge potential

for researchers in the hazmat logistics area to yield safer and cost-efficient models.

Hence, presenting a data-driven multi-objective HLRP is another contribution to

enhancing the discussed models in this thesis. This model can be further extended

by assuming a bi-level model. The non-convex nature of the bi-level program can be

handled by a data-driven bundle method as it can stabilize the model solutions and

reduce relative gaps between iterations (Chiou, 2020). There are articles applying

data-driven methods in the network design of hazmat (Chiou, 2020) or signal design

for traffic networks Chiou (2019). However, the location-routing problem of hazardous

materials lacks efficient algorithms built upon data-driven procedures. Moreover, de-

veloping practical solution algorithms by utilizing data availability is another research
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avenue in the hazmat scope that has not achieved sufficient attention so far.

Risk assessment A concept that is ignored in the majority of articles is equity.

The importance of equity is generally twofold. First, public opposition will arise

with neglecting equity in the designing routes for hazmat-carrying vehicles. Second,

the risk inequity perception through overloading specific road segments with hazmat

flows is more likely to result in higher incident probabilities and probably more severe

consequences (Erkut et al., 2007). Therefore, a potential direction for future studies is

embedding risk equity assumptions in the model. The concept of equality has always

been one of the most important concerns of human beings throughout history, and in

this regard, many definitions have been provided for its applications. For example,

experts have defined different interpretations of the concept of equality in the health

system. According to health experts, we face inequality or injustice in the health

system whenever there is a difference in health outcomes due to irreversible imbalances

in the distribution of facilities and access to different social groups or communities.

Similar to the health system example, equity concerns in hazmat transportation,

apart from the public risk perceptions, double the public sensitivity toward this issue.

Unequal distribution of risk among the population, especially among different layers

of society, based on their income, will impose pressure on the authorities. One of

the most famous indicators by which the distribution of resources and the economic

inequality in different societies is measured is the Gini coefficient. Focusing on the

unequal distribution of income and opportunities between different groups in society,

this coefficient is defined by a ratio that has a value between zero and one. A lower

Gini coefficient shows greater equality in the distribution of income or wealth, while
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a higher Gini coefficient indicates an unequal distribution. Zero means that everyone

has the same income and wealth (absolute equality), and number one means absolute

inequality.

As mentioned in Cordeiro et al. (2016), one of the fundamental elements in defining

the risk in hazmat transportation is the type and nature of the material being shipped,

which is scarcely explored in the literature. Distinguishing among different hazmat

types is a realistic assumption because different limitations will be imposed on the

system based on different substances, such as vehicle speed and consequences, directly

affecting the network risk evaluation. Last but not least, as mentioned by Ditta

et al. (2019), network design and facility location decisions might be affected by the

hazmat type. For instance, while establishing a network based on the fuel as the

hazmat product, one should expect a less rigorous transportation scheme compared

to explosives.

In the literature, risk measurement has been mainly handled through minimizing

population exposure (human fatalities and injuries) or property damage. However,

proposing sustainable models with three associated pillars of sustainability as eco-

nomic, environmental, and social considerations still requires attention. With the

vulnerability of ecosystems and societies and considering the potential negative im-

pacts of hazmat releases, it is essential to build up sustainable networks by mitigating

environmental and social consequences, among the other aspects of risk assessment.

Value at Risk (VaR) was originally designed in finance as a measure to determine

the amount of potential loss that could occur over a specified period. The main crit-

icism for VaR is ignoring what is happening in the tail of a distribution. Because

hazmat accidents are low-probability, high-consequence events, applying VaR as a
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risk measure may lead the model to ignore such road segments from computations.

Conditional Value at Risk (CVaR) is an extension of VaR. Unlike VaR, CVaR is a

computationally tractable and coherent risk measure that mainly concentrates on the

long tail of the risk distribution to avoid extreme events. This measure calculates the

average losses that occur beyond the VaR breakpoint in a distribution. CVaR can

be taken into account as the risk-averse factor for routing and scheduling Hazmat

trucks to protect against high levels of loss in the underlying risk, which will sup-

port robustness as well as determining safe transport routes for hazardous materials.

Moreover, CVaR can quantify some factors such as population exposure that may

be encountered in the tail of distribution to avoid extreme events. As Hosseini and

Verma (2018) was the first article addressing the application of CVaR for rail Hazmat

transportation, this approach, or a developed version of it, or a worst-case CVaR, can

be applied in intermodal problems such as RMIT.

Network A sensitive matter that has been neglected in the literature is the avail-

ability of vulnerable spots such as gas stations or hazmat depots along the routes

where the dangerous cargo is being transported. Incorporating the impacts of these

location types in the incident consequences is another pathway worthy of considera-

tion. Talking about consequences, generally, a fixed value for the radius or bandwidth

is assumed to obtain the exposed population or evaluate the link consequences. How-

ever, in reality, the severity of incident consequence is higher when getting closer to

the accident origin and diminishes when getting far from it. Applying this concept

in the model would lead to more practical solutions for decision-makers.

Incorporating variations and network dynamics into the model seems to be a
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suitable research direction. Although many aspects of transportation networks are

dynamic, the hazmat transportation with uncertain data field still suffers from the

lack of model embedding network dynamics, such as time-dependent traffic conges-

tion, weather impacts, and dynamic population along routes. Therefore, assuming

a static value for such elements is not practical, and more flexible procedures are

required that can integrate such variations.

The social pillar has been neglected in the majority of the works, where mostly,

potential damages to human health are taken into account as a social factor. Although

minimizing the associated risk of the network is an essential element for establishing

sustainable networks; still, other criteria such as jobs opportunities created, the total

number of days to be lost due to accidents at work, equitable routes, employment

stability, and maximizing the distance between the disposal and treatment locations

that lead to social satisfaction.

Solution algorithm As mentioned in Alumur and Kara (2007), the LRP of hazmat

is NP-hard since it can be reduced to an uncapacitated facility location problem

which is itself an NP-hard problem. Therefore, a challenge for the researcher is

dealing with the exponential required computational time to find the exact solution,

especially when solving large-scale instances. For exact algorithms, set partitioning-

based formulations are the most effective methods for solving VRP variants where the

variables embrace the feasible routes in this type of formulation (Pecin et al., 2017).

However, since numerous feasible routes exist, the intention to generate all feasible

paths for application in the set partitioning formulation is an unwise and unrealistic

action. Therefore, the column generation technique, which has demonstrated its
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suitability for the VRPTW variant, usually accompanies such problems for facilitating

the process. Moreover, the integration of the column generation technique with a

branch-and-bound tree is known as the branch-and-price method, which is usually

implemented for generating a subset of the non-dominated extreme points. In chapter

4, we introduced a new branch-and-price algorithm for managing infectious waste.

However, this algorithm still faces challenges in achieving optimal solutions with

more than 100 nodes, including all the medical centers and facilities. Further studies

can present more efficient algorithms, such as applying new cuts when developing

a branch-and-price-and-cut method. Considering that a few studies are applying

such effective techniques, the necessity for introducing more intelligent approaches is

highlighted for future studies.
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