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Abstract

We introduce two variations of the cops and robber game for graphs which define

two invariants for infinite connected graphs: the weak-cop number and the strong-cop

number. We exhibit examples of graphs with arbitrary weak-cop number, and exam-

ples with arbitrary strong-cop number. We prove that these invariants are preserved

by quasi-isometry; for example, this allow us to show that the square-grid, triangular-

grid and hexagonal-grid have the same weak-cop number and the same strong-cop

number. We also prove that hyperbolic graphs have strong cop number one; for ex-

ample this implies that any graph arising as a regular tiling of the hyperbolic plane

has strong cop-number one. Our main result is that one-ended non-amenable locally-

finite vertex-transitive graphs have infinite weak-cop number. This last result includes

graphs arising as regular tilings of the hyperbolic plane.
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Lay summary

A graph is a collection of vertices (nodes) and edges (links), where each edge consists

of two vertices. A property of a graph is the cop number ; this number comes from

playing a game of Cops and Robber in the graph, where both, the cops and the robber

move between adjacent vertices in a strategy to try to capture the robber (in the case

of the cops) and try to escape from the cops (in the case of the robber). The cop

number is the smallest number of cops which are able to always capture a robber.

Several variations of this game have been studied, for example providing a range (of

capture) to the cops or changing the speeds on how both cops and robber move, in

particular we introduce two variations and our objective is to provide some results for

these variations on different families of graphs.

In this document we study graphs with geometric properties such as hyperbolicity,

ends or amenability. We provide three main results, the first one is that the cop-

number given by our variations is preserved through the group theoretic notion of

quasi-isometry and there is an inequality in the notion of quasi-retraction. The second

is that for hyperbolic graphs there is only one cop needed for one of the variations.

And the third result is on one-ended non-amenable graphs, that tell us that those

graphs need an infinite number of cops to win in one of our variations. Finally these

results together with a family of graphs we denote Θn-extensions, we manage to exhibit

examples with arbitrary cop number for each of the variations.

iv



Acknowledgements

First of all I want to express my gratitude to my supervisor Dr. Martinez-Pedroza,

who, since the first moment, has been understanding, made this work possible and

guided me through all my research.

To my best friend Diana, who accompanied me for a lot of hours and supported

me in hard times. Also to my family, that helped me in every possible way, as in the

distance as in person and without their backup I could not finish this document.

Finally I thank Memorial University for creating the environment were it all was

possible to do.

v



Statement of contribution

Chapters 3 and 4 were suggested by Dr. Martinez-Pedroza. Chapters 5, 6 and 7 came

as result from the discussed ideas with Dr. Martinez-Pedroza. The preparation of the

thesis document was done by myself under the supervision of Dr. Martinez-Pedroza.

vi



Contents

Title page i

Abstract ii

Lay summary iv

Acknowledgements v

Statement of contribution vi

Contents vii

List of Tables ix

List of Figures x

1 Introduction 1

2 Preliminaries 7

2.1 Graph theory preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Products of graphs . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Definitions of the cops and robber games . . . . . . . . . . . . . . . . . 9

2.2.1 Parameters of the games . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Instructions of the game . . . . . . . . . . . . . . . . . . . . . . 9

vii



2.2.3 Definition of cop numbers . . . . . . . . . . . . . . . . . . . . . 10

3 Cop numbers and quasi-retractions 12

3.1 Quasi-retractions of subgraphs . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Proof of Theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Strong cop number of hyperbolic graphs 22

5 Weak cop number of one-ended non-amenable graphs 27

5.1 One-ended graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Non-amenable graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 One-ended non-amenable implies fast-robber win . . . . . . . . . . . . 31

5.3.1 Existence of Robber Speed . . . . . . . . . . . . . . . . . . . . . 32

5.3.2 Proof of Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . 35

6 Θn-extensions 41

7 Cop numbers and groups 46

7.1 Ends of groups and Cop numbers . . . . . . . . . . . . . . . . . . . . . 48

7.2 Products of groups and cop numbers . . . . . . . . . . . . . . . . . . . 48

7.2.1 Direct products . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2.2 Free products and amalgamated free products . . . . . . . . . . 50

7.3 Hyperbolic Groups and Cop numbers . . . . . . . . . . . . . . . . . . . 51

8 Conclusions 54

Bibliography 56

viii



List of Tables

8.1 wCop and sCop for some groups . . . . . . . . . . . . . . . . . . . . . . 55

8.2 wCop and sCop for some Θn-extensions of groups . . . . . . . . . . . . 55

ix



List of Figures

1.1 Θ3-extension of the infinite length path . . . . . . . . . . . . . . . . . . 5

3.1 The graph in the illustration quasi-retracts to the subgraph spammed

by the vertices a, b but does not retract to that subgraph . . . . . . . . 13

3.2 Some quasi-isometric tilings, from [Ruen, 2013] . . . . . . . . . . . . . 14

4.1 δ-slim condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Regular tilings of the hyperbolic plane, from [Ruen, 2013] . . . . . . . . 23

4.3 Illustration of the thin triangle defining the strategy of the cops on the

proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Local view of 4-regular infinite tree . . . . . . . . . . . . . . . . . . . . 28

5.2 Schematic of a graph RipsΓ(∆1, . . . ,∆7;L) . . . . . . . . . . . . . . . . 31

6.1 A graph with weak-cop-number 3 . . . . . . . . . . . . . . . . . . . . . 41

6.2 Θ2-extension of the infinite path . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Explicit quasi-retraction from Θ2-extension . . . . . . . . . . . . . . . . 44

6.4 Θ3-extension of the infinite path . . . . . . . . . . . . . . . . . . . . . . 45

x



Chapter 1

Introduction

The Cops and Robber game was introduced in [Quilliot, 1978] and [Nowakowski and

Winkler, 1983]. This is a two player game on a graph, where one player controls a

set of cops and the other one controls a single robber. On the graph each cop and

the robber chooses a vertex to occupy, with the cops choosing first. The game then

alternates between cops and the robber moving along adjacent vertices, with the cops

moving first. The cops win if, after a finite number of rounds, a cop occupies the same

vertex as the robber; and the robber wins if he can avoid capture indefinitely. Different

variations of this game have been studied especially on finite graphs, some classical

results can be found in [Bonato and Nowakowski, 2011]. A particular variation of

the game was studied in [Chalopin et al., 2010] where the cops and the robber have

different speeds, that is, at each turn cops and robber are allowed to move to vertices

a distance at most their speeds. Their results show connections between graphs that

are cop-win in this variation and the notion of Gromov’s hyperbolicity. On the other

hand, a version of the game involving the concept of radius of capture was studied

in [Bonato and Chiniforooshan, 2009] and [Bonato et al., 2010]; in this variation, the

cop captures if the distance to the robber is less than the radius of capture. In this

work we introduce two variations of the game which involve different speeds for the

cops and the robber, as well as an extra parameter called the cop’s reach which works

similarly to the radius of capture. Our variations of the cops and robber game define

invariants of infinite graphs called the weak-cop number and the strong-cop number.

Let us give an informal definition of these invariants, for a formal definition we

refer the reader to Section 2.2. Let Γ be a graph. For positive integers σ, ρ, ψ and R,



2

we say that Γ is CopWin(n, σ, ρ, ψ,R) if, for any vertex u0 of Γ, n cops with speed σ

and reach ρ can eventually protect the closed ball BR(u0) from a robber with speed ψ.

The definitions of the weak-cop number and the strong-cop number differ in the order

the parameters of the game are chosen, for the weak-cop number the robber has an

information advantage, and for the strong-cop number the cops have the advantage.

More precisely, these invariants are defined as follows:

• We say that Γ is n-weak-cop win if there exists a σ ∈ Z>0 and a ρ ∈ Z≥0 such

that for any ψ,R ∈ Z>0 and any u0 ∈ V (Γ), Γ is CopWin(n, σ, ρ, ψ,R). In

symbols,

Γ is n-weak-cop win⇐⇒ ∃ σ, ρ ∀ ψ,R : Γ is CopWin(n, σ, ρ, ψ,R).

• We say that Γ is n-strong-cop win if there exists σ ∈ Z>0 such that for any

ψ ∈ Z>0, there is ρ ∈ Z≥0 so that for any R ∈ Z>0, and u0 ∈ V (Γ), Γ is

CopWin(n, σ, ρ, ψ,R). In symbols,

Γ is n-strong-cop win⇐⇒ ∃ σ ∀ ψ ∃ ρ ∀ R : Γ is CopWin(n, σ, ρ, ψ,R).

Observe that if the robber chooses the parameters ψ and R after the cops chose the

parameters σ and ρ, then the robber has an information advantage.

The strong-cop number sCop(Γ) of a graph Γ is defined as the smallest value of n

such that Γ is n-strong-cop-win, with sCop(Γ) =∞ if there is no such n. In the case

that sCop(Γ) = ∞, we say that Γ is robber-win. The weak-cop number wCop(Γ) is

defined analogously, and if wCop(Γ) = ∞ we say that Γ is fast-robber win. Observe

that

sCop(Γ) ≤ wCop(Γ).

Let us summarize the result of the thesis. We exhibit examples of graphs with

arbitrary weak cop number, and examples with arbitrary strong cop number, see

Corollary 6.10. We prove that these invariants are preserved by quasi-isometry, for

example, this allow us to show that the square-grid, triangular-grid and hexagonal-

grid have the same weak-cop number and the same strong-cop number. We also prove

that hyperbolic graphs have strong cop number one, see Theorem 4.6; for example

this implies that any graph arising as a regular tiling of the hyperbolic plane has
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strong cop-number one. Our main result is that one-ended non-amenable locally-

finite vertex-transitive graphs have infinite weak-cop number, Theorem 5.1. This last

result includes graphs arising as regular tilings of the hyperbolic plane. The rest of

the introduction states the results.

Cops numbers as large scale invariants

Our first result gives an extension to the concept of retractions on graphs, using the

notion of quasi-retractions introduced in [Alonso, 1994]. This notion is weaker than

retractions of graphs, as a quasi-isometry does not necessarily involve a subgraph.

The second section provides a formal definition of quasi-retraction and proves the

following result.

Theorem A (Theorem 3.6). Let Γ and ∆ be connected graphs. If ∆ is a quasi-retract

of Γ then:

wCop(∆) ≤ wCop(Γ) and sCop(∆) ≤ sCop(Γ).

An illustration of this result can be found in Corollary 3.8, that give us a lower

bound on the weak and strong cop number of the product of graphs in terms of their

factors. We recover that the weak cop number is a quasi-isometric invariant, a result

first proved in [Lee, 2019]; this result is an immediate corollary that is also extended

to strong-cop numbers as follows:

Corollary B (Corolary 3.14). If Γ and ∆ are connected quasi-isometric graphs, then:

wCop(∆) = wCop(Γ) and sCop(∆) = sCop(Γ).

Let us remark that there are similar results to this corollary for other persuit and

evasion games in the literature. For example, it is shown in [Dyer et al., 2017] that for

a variation of Hartnell’s firefighter game [Hartnell, 1995], the existence of a winning

strategy for the firefighters is a quasi-isometic invariant.
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Strong-cop number of hyperbolic graphs

The notion of a δ-hyperbolic graph is a generalization of the notion of a tree, moreover,

trees are 0-hyperbolic graphs. A graph is δ-hyperbolic if every geodesic triangle is

δ-slim in the sense that the δ-neighborhood of any two sides contains all sides of

the triangle (see Figure 4.1), and we refer the reader to Section 4 for the formal

definition. The connection between cop-win graphs and Gromov’s hyperbolicity has

been previously studied for variations of the cops and robber game, see for example

in [Chalopin et al., 2010]. For the variations introduced in this work there is also a

strong relation given by the following result which is proved in Section 4.

Theorem C (Theorem 4.6). If Γ is a hyperbolic graph then sCop(Γ) = 1.

It was remarked in [Lee, 2019] that trees have weak-cop number one, a first illus-

tration of our result. Some examples of hyperbolic graphs that are not trees arise as

regular tilings of the hyperbolic plane, see Figure 4.2 for some illustrations.

Corollary D. Any graph arising as a regular tiling of the hyperbolic plane has strong-

cop-number one.

In contrast the weak-cop number of an arbitrary hyperbolic graph is not necessarily

one, as our next result will show.

Non-amenable one-ended graphs

Now we state the main result of this work. Definitions of the terminology used in the

statement as well as the proof are the contents of Section 5. Let us briefly describe

some of the terminology in the theorem, one-ended graphs and non-amenable graphs.

A connected graph Γ is one-ended if for any finite subset of vertices the induced

subgraph Γ \ K has only one unbounded connected component. An example of a

one-ended graph is the infinite square grid.

Intuitively, a connected graph Γ is non-amenable if does not have large bottlenecks.

More formally, for a subset of vertices K of Γ, let ∂K be the set of edges of Γ with

one endpoint in K and the other endpoint not in K. The graph Γ is non-amenable if
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its Cheeger constant h(Γ) is nonzero, that is

0 < h(Γ) = inf

{
|∂K|
|K|

| K ⊂ V (Γ), |K| <∞
}

The Cheeger constant can be interpreted as how difficult is to remove large subsets

of vertices with small boundary.

Theorem E (Theorem 5.1). If Γ is a connected, one-ended, non-amenable, locally

finite, vertex transitive graph then wCop(Γ) =∞.

While this result looks technical due to the number of hypotheses, the class of

graphs where the theorem applies is large as the following corollaries illustrate.

Corollary F. Every graph arising as a regular tiling of the hyperbolic plane has

infinite weak-cop number.

Corollary G (Corollary 7.31). Let Γ be the Cayley graph of a one-ended hyperbolic

group. Then wCop(Γ) =∞ and sCop(Γ) = 1.

Range of the weak and strong cop numbers.

. . .

. . .

. . .

. . .

. . .

. . .

Figure 1.1: Θ3-extension of the infinite length path

Given a graph Γ and a positive integer n, we introduce the Θn-extension Θn(Γ)

of Γ. As an example, the graph in Figure 1.1 is the Θ3-extension of the infinite path.

The graph Θn(Γ) quasi-retracts to Γ and allows us to produce a variety of examples

of graphs with different weak and strong cop numbers. The construction of Θn(Γ) is

defined in Section 6 where the following results are proved.
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Theorem H (Corollary 6.10). For any connected graph Γ and for any integer n > 0,

wCop(Γ) ≤ wCop(Θn(Γ)) ≤ n · wCop(Γ)

and

sCop(Γ) ≤ sCop(Θn(Γ)) ≤ n · sCop(Γ).

Since trees have weak and strong cop number one, the following result shows

that there exists graphs with arbitrary weak-cop number, and with arbitrary strong-

cop number. Theorem I is not proved in this thesis, it appears in an the following

article [Lee et al., 2022].

Theorem I. [Lee et al., 2022] Let Γ be a connected infinite graph. If wCop(Γ) = 1

then wCop(Θn(Γ)) = n. Analogously, if sCop(Γ) = 1 then sCop(Θn(Γ)) = n.

The Θn-extensions allow to construct graphs that have different weak and strong

cop numbers. However, we do not have examples addressing the following question.

Question J. Let n,m be arbitrary positive integers, such that n > m. Does there

exist a graph Γ with wCop(Γ) = n and sCop(Γ) = m?

Finally in section 7 we define an extension of the weak and strong cop numbers to

finitely generated groups using Cayley graphs, and provide additional applications of

our theorems.



Chapter 2

Preliminaries

2.1 Graph theory preliminaries

A graph Γ is defined as a pair (V,E), where V is the set and E is a set subsets of

V of cardinality two. Elements of V and E are vertices and edges respectively. A

pair of vertices u and v are adjacent in Γ if {u, v} is an an edge of Γ. A path in Γ

is a sequence of vertices v0, v1 . . . , vn such that vi and vi+1 are adjacent; n is called

the length of the path; and v0 and vn are called the initial and terminal vertices of

the path respectively. A graph is said to be connected if there exists a path between

any two vertices. The degree of a vertex v is the number of edges containing v. If

every vertex of Γ has finite degree, we say that the graph is locally finite. If there

is N > 0 such that every vertex has degree at most N we say that the graph has

uniform bounded degree.

We can define a metric on the vertex set of a connected graph Γ by defining the

distance distΓ(u, v) between vertices u and v as the minimum of the lengths of all

paths from u to v. If the graph is understood from the context we denote this met-

ric by dist(u, v). More generally the distance between subgraphs ∆1,∆2 is defined as

min{dist(u, v) : u ∈ ∆1 and v ∈ ∆2}. A path from u to v of minimal length is called

a geodesic. In this metric, the closed ball of size N with center the vertex u is denoted

as BN(u) and diam(Γ) = sup{dist(x, y) : x, y ∈ V (Γ)} is the diameter of Γ.
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A graph automorphism is a function σ : V (Γ) → V (Γ) such that for any pair of

vertices u, v of Γ, {u, v} ∈ E if and only if {σ(u), σ(v)} ∈ E. A graph is vertex

transitive if given any two vertices on the graph, there is an automorphism that maps

one into the other. We say that ∆ is a retract of Γ if there is a homomorphism f from

Γ onto ∆ so that f(v) = v for v ∈ V (Γ); that is f is the identity on ∆. The map f is

sometimes called a graph retraction.

2.1.1 Products of graphs

There are many different products between graphs, some of them are listed below.

Cartesian product of graphs: Let Γ = (V (Γ), E(Γ)) and ∆ = (V (∆), E(∆)) be

two graphs. We can define the Cartesian product, denoted as Γ � ∆, as:

• V (Γ � ∆) = V (Γ)× V (∆).

• Any two vertices (x1, y1), (x2, y2) ∈ V (Γ � ∆), are adjacent if and only if:

◦ x1 = x2 and y1 is adjacent to y2 in ∆, or

◦ y1 = y2 and x1 is adjacent to x2 in Γ.

Strong product of graphs: Let Γ = (V (Γ), E(Γ)) and ∆ = (V (∆), E(∆)) be two

graphs. We can define the Strong product, denoted as Γ � ∆, as:

• V (Γ � ∆) = V (Γ)× V (∆).

• Any two vertices (x1, y1), (x2, y2) ∈ V (Γ � ∆), are adjacent if and only if:

◦ x1 = x2 and y1 is adjacent to y2 in ∆, or

◦ y1 = y2 and x1 is adjacent to x2 in Γ, or

◦ x1 is adjacent to x2 in Γ and y1 is adjacent to y2 in ∆.

Lexicographic product of graphs: Let Γ = (V (Γ), E(Γ)) and ∆ = (V (∆), E(∆))

be two graphs. We can define the Lexicographic product, denoted as Γ(∆), as:

• V (Γ(∆)) = V (Γ)× V (∆).

• Any two vertices (x1, y1), (x2, y2) ∈ V (Γ(∆)), are adjacent if and only if:

◦ x1 is adjacent to x2 in Γ, or

◦ x1 = x2 and y1 is adjacent to y2 in ∆.
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Rooted product of graphs: Let Γ = (V (Γ), E(Γ)) and ∆ = (V (∆), E(∆)) be two

graphs and y be a fixed vertex in V (∆). We can define the Rooted product,

denoted as Γ ◦y ∆, using a three stage process:

1. For each v ∈ V (Γ) create a copy of ∆.

2. Identify the vertex correspond to y in its copy of ∆, Denote this vertex yv,

3. replace the vertex v with yv.

2.2 Definitions of the cops and robber games

We will present two games, the parameters and instructions are the same for both of

them.

2.2.1 Parameters of the games

Let Γ be a connected graph and n be a positive integer representing the number of

cops in the game, ρ be a positive integer called cop reach, and σ and ψ be positive

integers called the cop speed and robber speed, respectively. Let u0 be a fixed vertex

of Γ and R be a positive integer. The closed ball BR(u0) of radius R will be referred

to as the ball that the cops aim to protect.

After the parameters have been chosen, the n cops choose their initial positions

c1,1, . . . , cn,1. Then the robber, knowing the initial positions of the cops, choose his

initial position r1.

The players take alternating turns, starting with the cops. At the beginning of

the j-th turn, the positions of the n cops are denoted by ci,j with i corresponding to

the i-th cop. Similarly rj is the position of the robber at the beginning of the same

turn.

2.2.2 Instructions of the game

At the beginning of a turn, the cops positions are (c1,j, ..., cn,j). Moving to the positions

(c1,j+1, ..., cn,j+1) is valid if there is a path with length less than or equal to σ from

each ci,j to ci,j+1.
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After the cop’s movement on the same turn, the position of the robber is rj. He

moves to the position rj+1 if there is a path γ from rj to rj+1 that does not intersect

the reach ρ of the cops, and whose length is at most the speed of the robber ψ.

It is the objective of the cops to protect the closed ball BR(u0). If the robber is

at distance less than or equal to ρ from the one of the cops, the robber is said to be

caught, or captured, and the ball is said to be protected if the robber has been caught

or, after some point in the game, the position of the robber stays outside the closed

ball BR(u0) for the rest of the game.

2.2.3 Definition of cop numbers

For values σ, ρ, ψ,R ∈ Z>0, and u0 ∈ V we say that Γ is CopWin(n, σ, ρ, ψ, u0, R) if

n cops with speed σ and reach ρ can eventually protect the closed ball BR(u0) from

a robber with speed ψ, this means, either the robber is captured at some stage, or

there exists N such that dist(rk, u0) > R for every k ≥ N .

• We say that Γ is n-weak-cop win if there exists a σ ∈ Z>0 and a ρ ∈ Z≥0 such

that for any ψ,R ∈ Z>0 and any u0 ∈ V (Γ), Γ is CopWin(n, σ, ρ, ψ, u0, R). In

symbols,

Γ is n-weak-cop win⇐⇒ ∃ σ, ρ ∀ ψ,R, u0 : Γ is CopWin(n, σ, ρ, ψ, u0, R).

• We say that Γ is n-strong-cop win if there exists σ ∈ Z>0 such that for any

ψ ∈ Z>0, there is ρ ∈ Z≥0 so that for any u0 ∈ V (Γ) and any R ∈ Z>0, Γ is

CopWin(n, σ, ρ, ψ, u0, R). In symbols,

Γ is n-strong-cop win⇐⇒ ∃ σ ∀ ψ ∃ ρ ∀ R, u0 : Γ is CopWin(n, σ, ρ, ψ, u0, R).

The smallest value of n such that the graph is n-strong-cop-win (resp. n-weak-cop

win) is called the strong-cop number (resp. weak-cop number) of the graph; we denote

it as sCop(Γ) (resp. wCop(Γ)). If there is no n such that the graph is n-strong-cop-

win (resp. n-weak-cop win), then the graph is said to be robber-win (resp. fast-robber

win) or sCop(Γ) =∞ (resp. wCop(Γ) =∞).
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Remark 2.1. As the main difference between both games is the order of the param-

eters, ρ can depend on ψ for the strong cops. Moreover:

sCop(Γ) ≤ wCop(Γ).

Remark 2.2. If Γ is a connected finite graph, then wCop(Γ) = sCop(Γ) = 1. Indeed,

a single cop with reach the diameter of the graph can capture the robber on turn one.

Remark 2.3. We consider only connected graphs for this game, note that, if Γ is a

non-connected graph, then

wCop(Γ) = max{wCop(Γi) : Γi is a connected component of Γ},

and

sCop(Γ) = max{sCop(Γi) : Γi is a connected component of Γ}.

As neither the robber nor the cops can escape from the connected component they lie

on.

Proposition 2.4. [Lee, 2019, Proposition 3.1] Trees are 1-weak-cop win.

Proposition 2.5. [Lee, 2019, Proposition 3.5] The infinite square grid has infinite

weak-cop-number.

This previous result motivates the following question for which we do not have an

answer.

Question 2.6. Does the infinite square grid have infinite strong-cop-number?



Chapter 3

Cop numbers and quasi-retractions

Results by Jonathan Lee [Lee, 2019] show that the behaviour of wCop on infinite

graphs relates to the large scale structure rather than to the local structure. Indeed,

the main theorem of his Master’s project shows that quasi-isometric graphs have the

same weak-cop-number. We study a weaker relation between graphs called quasi-

retraction, and show that this relation implies inequalities between the weak and

strong cop numbers of the related graphs. Our main theorem generalizes and recovers

Lee’s results.

Let C ≥ 1 and D ≥ 0 be integers, a function f : X → Y between two metric spaces

(X, distX) and (Y, distY ) is (C,D)-Lipschitz if for any x1, x2 ∈ X, distY (f(x1), f(x2)) ≤
C distX(x1, x2) +D.

Definition 3.1 (Quasi-retraction). Given two metric spaces (X, distX) and (Y, distY ),

we say that X is a quasi-retract of Y if there exists two (C,D)-Lipschitz functions

f : X → Y and g : Y → X such that:

distX(g(f(x)), x) ≤ D,

for any x ∈ X. The pair (f, g) is called a quasi-retraction of Y into X.

Definition 3.2 (Quasi-retraction of graphs). A connected graph Γ determines a met-

ric on its vertex set V (Γ) by defining the distance between vertices u and v as the

minimum of the lengths of all paths from u to v. A path from u to v of minimal

length is called a geodesic. A graph ∆ is a quasi-retract of a graph Γ if the metric

space determined by ∆ is a quasi-retract of the metric space determined by Γ.
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Example 3.3 (Quasi-retractions and finite graphs). If Γ and ∆ are connected graphs

and ∆ is finite, then ∆ is a quasi-retract of Γ. Specifically, let f : V (∆)→ V (Γ) and

g : V (Γ) → V (∆) be constant functions, and observe that (f, g) is a quasi-retraction

of Γ into ∆ with constants C = 1 and D = diam(∆).

Example 3.4 (Graph products and quasi-retractions ). Let Γ, ∆ be two connected

graphs. If Λ denotes the Cartesian product Γ � ∆, the strong product Γ � ∆, or the

rooted product Γ◦y∆; then Λ quasi-retracts onto Γ and also onto ∆. The lexicographic

product Γ(∆) quasi-retracts onto Γ, but not necessarily onto ∆. To prove this, note

that the pair (ı, r) is a quasi-retraction, where r is the retraction from Λ into Γ and ı

is one of the natural inclusions from ∆ onto Λ.

Example 3.5 (Graph retractions and quasi-retractions). It is an observation that a

graph retraction r : Γ → ∆ induces a quasi-retraction (ı, r) of Γ into ∆. However

quasi-retractions into subgraphs are not necessarily graph retractions. For example,

consider the graph Γ in Figure 3.1 and let ∆ be the subgraph spammed by the vertices

a, b. It can easily be seen that there is no graph retraction from Γ to ∆. However,

there is a quasi-retraction (f, g) of Γ into ∆ where g : V (Γ) → V (∆) is given by

g(x) = b if x 6= a and g(a) = a and f : {a, b} → V (Γ) is the inclusion map.

. . .

. . .

ba

Figure 3.1: The graph in the illustration quasi-retracts to the subgraph spammed by
the vertices a, b but does not retract to that subgraph

The main result of this section is the following.

Theorem 3.6. Let Γ and ∆ be connected graphs. If ∆ is a quasi-retract of Γ then:

wCop(∆) ≤ wCop(Γ) and sCop(∆) ≤ sCop(Γ).

We give an example which illustrates that the quasi-retraction hypothesis in The-

orem 3.6 is not superfluous.

Example 3.7. Let ∆ be the infinite square grid. It was proved in [Lee, 2019, Prop.

3.5] that wCop(∆) = ∞. Let Γ be the graph obtained by adding to ∆ a new vertex
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w which is adjacent to every vertex of ∆. Note that for any u, v ∈ V (Γ), d(u, v) ≤ 2,

and hence wCop(Γ) = 1. Since ∆ has vertices at arbitrary large distance, there is no

Lipschitz map from V (Γ)→ V (∆). In particular, ∆ is not a quasi-retract of Γ.

Corollary 3.8. Let Γ and ∆ be connected graphs, and let y ∈ V (∆). Suppose

Λ ∈ {Γ � ∆,Γ � ∆,Γ ◦y ∆,Γ(∆)}.

Then

wCop(Γ) ≤ wCop(Λ) and sCop(Γ) ≤ sCop(Λ).

Definition 3.9 (Quasi-isometry). Given two metric spaces (X, distX), (Y, distY ), we

say that X and Y are quasi-isometric if there exists two (C,D)-Lipschitz functions

f : X → Y and g : Y → X such that:

distX(g(f(x)), x) ≤ D and distY (f(g(y)), y) ≤ D,

for any x ∈ X and any y ∈ Y . The pair (f, g) is called a quasi-isometry between X

and Y .

Remark 3.10 (Quasi-isometry in terms of quasi-retractions). Note that a pair (f, g)

is a a quasi-isometry between the metric spaces X and Y if and only if (f, g) and

(g, f) are quasi-retractions from X into Y and Y into X respectively.

Example 3.11. Regular tilings of the euclidean plane are quasi-isometric between

each other. See Figure 3.2 for some illustrations. The explanation of this statement

is beyond the scope of this work, for the interested reader, it is a consequence of

Ŝvarc-Milnor Lemma, see [Löh, 2017].

Figure 3.2: Some quasi-isometric tilings, from [Ruen, 2013]
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Example 3.12. Let Γ, ∆ be two connected graphs such that ∆ is finite. If Λ denotes

the Cartesian product Γ � ∆ , the strong product Γ � ∆, the lexicographic product

Γ(∆), or the rooted product Γ ◦y ∆; then Λ and Γ are quasi-isometric.

For this, note that Example 3.4 shows that Λ quasi-retracts to Γ, moreover note

that if we take D = diam(∆), then we have the inequality that we need to show the

quasi-isometry.

Example 3.13 (A non-example). As mentioned before, if ∆ is the infinite square grid

then wCop(∆) = ∞ [Lee, 2019, Prop. 3.5]. Moreover if Γ is a tree then wCop(Γ) =

1 [Lee, 2019, Proposition 3.1]. As a consequence of the following result, these two

graphs are not quasi-isometric.

The following corollary appears as the main result of Jonathan Lee Master’s

project.

Corollary 3.14. [Lee, 2019] If Γ and ∆ are quasi-isometric connected graphs, then

wCop(∆) = wCop(Γ) and sCop(∆) = sCop(Γ).

The rest of Chapter 3 consists of two subsections. The first subsection establishes

important observations regarding quasi-retractions. The second subsection contains

the proof of Theorem 3.6.

3.1 Quasi-retractions of subgraphs

Most examples of quasi-retractions that we have discussed are quasi-retracts into

subgraphs. The following proposition shows that any quasi-retractions of a graph Γ

into a graph ∆ can be thought as quasi-retraction into a subgraph.

Theorem 3.15. If (f, g) is a quasi-retraction from Γ into ∆, then there exists a

quasi-retraction (ı, g′) of Γ onto a subgraph ∆′ of Γ, where ı is the natural inclusion;

and a quasi-isometry h : ∆→ ∆′ such that the following diagram commutes
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∆′ ∆′

Γ

∆ ∆

g̃

g′

gf
f̃

To prove Theorem 3.15 we require the following lemma.

Lemma 3.16. If X is a quasi-retract of X ′ and X ′ is a quasi-retract of X ′′, then X

is itself a quasi-retract of X ′′.

Proof. Let consider a quasi-retraction (f, g) from X → X ′ and a quasi-retraction

(f ′, g′) from X ′ → X ′′. Now, define:

f ′′ = f ′ ◦ f g′′ = g ◦ g′.

Note that the composition of Lipschitz functions, is indeed, another Lipschitz function,

hence both f ′′ and g′′ are Lipschitz, moreover:

dX(g′′(f ′′(x)), x) = dX(g(g′(f ′(f(x)))), x)

≤ dX(g(g′(f ′(f(x)))), g(f(x))) + dX(g(f(x)), x)

≤ (CdX(g′(f ′(f(x))), f(x)) +D) +D ≤ D(C + 2),

and the result follows.

Proof of Theorem 3.15. Suppose that ∆ is a quasi-retract of Γ with constants (C,D)

in the following way:

∆
f−→ Γ

g−→ ∆,

Hence we want to exhibit a subgraph ∆′ ⊆ Γ and functions f̃ : ∆′ → ∆ and

g̃ : ∆→ ∆′ that makes the diagram commute.

For this, define the vertex set of ∆′. First consider two adjacent vertices x, y ∈
V (∆), as f is (C,D)-Lipschitz, distΓ(f(x), f(y)) ≤ C +D, hence, there exists a path

γ of vertices v0 = f(x), v1, . . . , vn−1, vn = f(y) such that n ≤ C + D. We denote

γx,y = {v0, . . . , vn}. Hence we get the following sets for vertices and edges.
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V (∆′) = {vi ∈ γx,y : x, y ∈ V (∆) with dist∆(x, y) = 1},

and,

E(∆′) = {(vi, vi+1) : vi ∈ γx,y for all x, y ∈ V (∆) with dist∆(x, y) = 1}.

Clearly ∆′ is a subgraph of Γ. Note that f and g induce a quasi-isometry between ∆

and ∆′ ⊂ Γ. Let us denote them f̃ : ∆′ → ∆ and g̃ : ∆→ ∆′, and Lemma 3.16 tells

us that then, ∆′ ⊂ Γ is indeed a quasi-retract of Γ. What is more, as all functions

have finite distance with the others, we can modify the constants such that:

∆′ ↪→ Γ
g′−→ ∆′,

is a quasi-retract and hence the diagram commutes.

3.2 Proof of Theorem 3.6

The argument relies on the following proposition.

Proposition 3.17. Given two graphs Γ and ∆ such that (f, g) is a quasi-retraction

with constants (C,D) of Γ into ∆.

If Γ is CopWin(n, σ, ρ, ψ, f(u0), R) then ∆ is CopWin(n, σ∆, ρ∆, ψ∆, u0, R∆), where:

σ∆ = Cσ +D, ρ∆ = Cρ+ 2D, R = CR∆ +D, ψ = (C +D)ψ∆.

Proof. Fix the parameters (n, σ, ρ, ψ, u0, R) for the game in Γ, and let the parameters

for the game on ∆ be defined as in the statement of the proposition.

Suppose that Γ is CopWin(n, σ, ρ, ψ, f(u0), R). To show that the graph ∆ is

CopWin(n, σ∆, ρ∆, ψ∆, u0, R∆) we describe a winning strategy for ∆ based on the

winning strategy for Γ. We will be playing simultaneous games on ∆ and Γ. The cops

in Γ will move accordingly to a winning strategy. The moves of the cops in Γ will

determine the moves of the cops in ∆, and the move of the robber on ∆ will determine

the move of the robber on Γ. We will show that this translates to a winning strategy

for the cops on ∆.
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In the set up of the game on Γ, the initial position of the i-th cop is denoted as

cΓ
(i,0). For the game on ∆, choose the initial position of the i-th cop as

c(i,0) = g(cΓ
(i,0)).

In this way, each cop in ∆ corresponds to a cop in Γ. At this point the robber in ∆

chooses an initial position r0 ∈ ∆. Let the initial position of the robber in Γ be

rΓ
0 = f(r0).

For the game in Γ, let cΓ
(1,l), c

Γ
(2,l), . . . , c

Γ
(n,l) and rΓ

l denote the locations of the

the cops and the robber respectively after l turns; similarly for the game on ∆, let

c(1,l), c(2,l), . . . , c(n,l) and rl denote the locations of the the cops and the robber after l

turns. The positions of the cops in ∆ are defined by

c(i,l) = g(cΓ
(i,l)),

for 1 ≤ i ≤ n. The movement from the position c(i,l) at the stage l to the position

c(i,l+1) at stage l + 1 is valid since

dist∆(c(i,l), c(i,l+1)) = dist∆(g(cΓ
i,l), g(cΓ

i,l+1)) ≤ C distΓ(cΓ
i,l, c

Γ
i,l+1) +D

≤ Cσ +D = σ∆.

At turn l + 1, after the cops have made their movement in ∆, if the robber in ∆ has

not been captured, the robber moves from rl to a position rl+1.

Now the robber in Γ moves from rΓ
l to

rΓ
l+1 = f(rl+1).

We need to show that this is a valid move, that is, there is a path in Γ from rΓ
l to rΓ

l+1

of length at most ψ which has every vertex a distance larger than ρ from every cop.

Since the move of the robber from rl to rl+1 in ∆ was valid, there is a path

[rl = w0, w1, . . . , wk = rl+1] of length k ≤ ψ∆ such that ρ∆ < dist∆(wi, ci,l+1) for each
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1 ≤ i ≤ n. It follows that

ρ∆ < dist∆(wi, c(i,l+1))

≤ dist∆(wi, g(f(wi)) + dist∆(g(f(wi)), g(cΓ
(i,l+1)))

≤ 2D + C distΓ(f(wi), c
Γ
(i,l+1))).

Since ρ∆ = Cρ+ C + 3D, we have that

ρ+ C +D < distΓ(f(wi), c
Γ
(i,l+1)).

On the other hand,

distΓ(f(wi), f(wi+1)) ≤ C dist∆(wi, wi+1) +D = C +D.

These last two inequalities imply that every vertex in a geodesic from f(ui) to f(ui+1)

is at distance larger than ρ from the cops positions cΓ
i,l+1 during turn l + 1. Hence a

path from rΓ
l to rΓ

l+1 obtained as a concatenation of geodesic paths between consecutive

vertices of the sequence rΓ
l = f(w0), f(w1), . . . , f(wk) = rΓ

l+1 has length at most

(C +D)k ≤ (C +D)ψ∆ = ψ

and every vertex is at distance larger than ρ from every from the cops positions cΓ
i,l+1

during turn l+ 1. Hence the move of the robber in Γ during the (l+ 1)-turn is valid.

Through the rest of the game, the moves of the cops in ∆ are given by the moves

of the cops in Γ, and the moves of the robber in Γ are given by the moves of the

robber in ∆ as described above. The conclusion of the proposition then follows from

the following two claims.

Claim 1: Once the robber is captured in the game on Γ, the robber will be captured

in the game on ∆.

Suppose that the robber is captured in Γ during the l-turn. This means that
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distΓ(cΓ
(i,l), r

Γ
l ) ≤ σ + ρ for some i. It follows that

dist∆(c(i,l), rl) = dist∆(g(cΓ
i,l), rl)

≤ dist∆(g(cΓ
i,l), g(f(rl)) + dist∆(g(f(rl), rl)

≤ C distΓ(cΓ
i,l, f(rl)) + 2D

≤ C distΓ(cΓ
i,l, r

Γ
l ) + 2D

≤ C(σ + ρ) + 2D

≤ σ∆ + ρ∆

This shows that at the end of the round l the robber in ∆ is at distance less

than σ∆ + ρ∆ from at least one cop, and hence it has been captured.

Claim 2: If the robber is forced out of the ball in the game on Γ, the robber will be

forced out of the ball in the game on ∆.

Assume the robber is forced outside the ball in the game on Γ at stage l, that

is, distΓ(rΓ
l , f(u0)) > R. Then

dist∆(rl, u0) ≥ 1

C
(distΓ(f(rl), f(u0))−D)

=
1

C
(distΓ(rΓ

l , f(u0))−D)

=
1

C
(distΓ(rΓ

l , f(u0))−D)

≥ 1

C
(R−D)

= R∆

Hence, if the robber in Γ is outside the ball B(f(u0), R) in Γ, then the robber

in ∆ is outside the ball B(u0, R∆).

This two claims together, implies the result.

Proof of Theorem 3.6. Let us suppose that (f, g) is a (C,D)-quasi-retraction from

Γ into ∆. Suppose Γ is CopWin(n, σ, ρ, ψ, f(u), R). Proposition 3.17 implies that

∆ is CopWin(n, σ∆, ρ∆, ψ∆, u0, R∆) where ψ∆ and R∆ are the constants provided by
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Proposition 3.17. Hence wCop(∆) ≤ n. The argument for sCop(∆) ≤ sCop(Γ) is

analogous.



Chapter 4

Strong cop number of hyperbolic

graphs

Is well known that hyperbolicity is a quasi-isometric invariant of metric spaces, hence

study the behaviour of wCop and sCop on graphs with this property. There are

several equivalent definitions of a hyperbolic space; we refer the reader to [Bridson

and Haefliger, 1999] for a survey. For our purposes we use the following:

Definition 4.1. [Bridson and Haefliger, 1999, Chapter III.H, Definition 1.1] Let X

be a geodesic metric space and let δ ≥ 0. A triangle is said to be δ-slim if each one

of its sides is contained in the δ-neighborhood of the union of the other two sides. A

geodesic metric space X is said to be δ-hyperbolic (or just hyperbolic) if every triangle

whose sides are geodesics, is δ-slim. An example of this condition is given in Figure 4.1

A connected graph can be considered a geodesic metric space by regarding each

edge as a segment of length one and imposing the path metric, that is, the distance

between any two points is the length of a shortest path.

Definition 4.2. A connected graph is said to be hyperbolic if it is a hyperbolic metric

space with the path metric.

Proposition 4.3. If T is a tree, then T is hyperbolic for δ = 0.

Proof. As T contains no cycles, any triangle is a subtree with at most one vertex of

degree three. It is immediate that two sides of the triangle contain the third side.
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δ δ

δ

Figure 4.1: δ-slim condition

Example 4.4. Any regular tiling of the hyperbolic plane, is hyperbolic. Some exam-

ples of these are in Figure 4.2. The explanation of this statement is beyond the scope

of this work, it is a consequence of Ŝvarc-Milnor Lemma, for this see [Löh, 2017].

Some examples of these are given in Figure 4.2.

Figure 4.2: Regular tilings of the hyperbolic plane, from [Ruen, 2013]

Example 4.5. A particular class of examples of hyperbolic graphs are Cayley graphs

of hyperbolic groups. Hyperbolic groups include groups with a cyclic group of finite

index, free groups, groups that act properly discontinuously on locally finite trees,

and fundamental groups of oriented closed connected surfaces of genus at least two.

Understanding these examples goes beyond the scope of this document. We refer the

interested reader to [Löh, 2017] and [Bridson and Haefliger, 1999].

It was proven in [Lee, 2019, Proposition 3.1] that if Γ is a tree, wCop(Γ) = 1,

hence sCop(T ) = 1 as well. Trees are the first examples of hyperbolic graphs, hence,

we initially thought to extend the property of being 1-weak-cop win to hyperbolic
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graphs, but, as we will show, this is not true. Nevertheless, this holds for the strong

cop number through the following result.

Theorem 4.6. Hyperbolic graphs are 1-strong-cop win.

To establish this, we use the following lemma.

Lemma 4.7. [Bridson and Haefliger, 1999, Chapter III.H, Proposition 1.6] Let X

be a δ-hyperbolic geodesic space, let C be a continuous rectifiable path in X, if [p, q] is

a geodesic segment containing the endpoints of C, then for all x ∈ [p, q]:

dist(x,C) ≤ δ| log2(l(C))|+ 1,

with l(C) the length of C.

Proof of Theorem 4.6. Note that we can assume that δ is an integer by taking dδe,
this is the smallest integer greater or equal to δ.

Consider a hyperbolic graph, and the game for a robber with speed ψ and one cop

with speed σ = 2δ+ 1 and reach ρ = δ| log2(ψ)|+ δ+ψ+ 1. The cop must protect the

closed ball BR(u0). Let us assume the initial location of the cop is c1 = u0 and the

initial position of the robber is r1 and let g1 be a geodesic path from u0 to r1. At the

beginning of the n-th turn, the position of the cop is denoted by cn and the position

of the robber is rn. We describe a strategy for the cop that guaranties the following

two conditions for every n:

1. If after the cop moves on the n-th turn, and the robber has not been captured;

then cn+1 is a vertex of a geodesic from u0 to rn,

2. dist(u0, cn) < dist(u0, cn+1).

Let us recall that at the beginning of every turn, the cop moves first. The strategy

for the cop is defined below:

• In the first turn, the cop moves in the direction of the robber along g1.

• If at the beginning of the (n + 1)-th turn the robber has not been captured,

then the movement of the cop is described as follows: Consider a δ-slim triangle
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rn rn+1

u0

gn+1gn

g

C

cn+1

Figure 4.3: Illustration of the thin triangle defining the strategy of the cops on the
proof of Theorem 4.6

with vertices rn, rn+1 and u0 and with sides gn, gn+1 and g, where g is defined

as a geodesic path between rn and rn+1. We assume that cn+1 is a vertex of the

geodesic gn.

The assumption that the robber was not captured during the n-th turn implies

that dist(cn+1, g) > δ. Indeed, suppose that dist(cn+1, g) ≤ δ. Then there exists

a vertex x in the geodesic g such that dist(cn+1, x) ≤ δ. Suppose that the robber

moved from rn to rn+1 along the path C, and hence its length satisfies l(C) ≤ ψ.

Lemma 4.7 implies that

dist(cn+1, C) ≤ dist(cn+1, x) + dist(x,C) ≤ δ + δ| log2(l(C))|+ 1 ≤ ρ,

and therefore the robber was captured. This contradicts our hypothesis and

therefore dist(cn+1, g) > δ.

Since the triangle is δ-thin there is a vertex y on gn+1 at distance less than or

equal to δ from cn+1. The cop will move first to y. If the robber has not been

captured yet, then dist(y, rn+1) > ρ > δ+ 1 and the cop moves δ+ 1 units along

the geodesic gn+1 in the direction of rn+1. Note that the cop can do this total
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movement due to the assumption that 2δ + 1 ≤ σ. Moreover,

dist(u0, cn+2) = dist(u0, y) + δ + 1

≥ dist(u0, cn+1)− dist(cn+1, y) + δ + 1

≥ dist(u0, cn+1)− δ + δ + 1

> dist(u0, cn+1).

Let us verify that this is a winning strategy for the cop. Assume the cop follows

the strategy and the robber is never captured. After the cop moves, on the n-th

turn, dist(u0, rn) = dist(u0, cn+1) + dist(cn+1, rn) due to condition (1). In particular

dist(u0, rn) ≥ dist(u0, cn+1). After a finite number of steps, let us say m, the cop will

be located at distance at least R from u0, this is dist(u0, cn) ≥ R for every n ≥ m,

due to condition (2). It follows that dist(u0, rn) ≥ R for any n ≥ m, thus the cop has

been able to protect the ball.



Chapter 5

Weak cop number of one-ended

non-amenable graphs

The objective of this section is to prove the following result.

Theorem 5.1. If Γ is a connected, one-ended, non-amenable, vertex transitive graph

with uniform bounded degree, then wCop(Γ) =∞.

In order to do this, we divide the chapter into 3 sections. The first section establish

the definitions and some results on ends of graphs and amenability, respectively. The

third is meant to construct the lemmas and propositions we use to proof the main

result.

5.1 One-ended graphs

The ends of a graph for an infinite graph can be interpreted as the set of “directions”

when the graph goes to infinity. There are different ways to define the ends of a

graph. The concept is more generally defined using the concept of geodesic rays but a

more intuitive definition can be done when the graph is locally finite and connected,

see [Diestel and Kühn, 2003].

As we consider a graph as a metric space, we can consider the ball of radius r

with center v denoted as Br(v). We denote the number of connected, unbounded

components on the complement of Br(v) as ||Γ \ Br(v)||. For unbounded component
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we refer to a subgraph with vertex at arbitrary distance.

Definition 5.2. Let Γ be a connected, locally finite graph, and for any vertex v ∈
V (Γ) then the number of ends of Γ is

E(Γ) = lim
r→∞
||Γ \Br(v)||

Note that the sequence ||Γ \Br(v)|| for r = 1, 2, 3 . . . is non-decreasing and more-

over the base point is irrelevant; hence the limit is well defined.

Example 5.3. The following examples illustrate better the concept of ends:

1. If Γ is a finite graph, then E(Γ) = 0.

2. Let Γ be the infinite square grid, ||Γ \Br(v)|| = 1 for any r, hence E(Γ) = 1.

3. Let Γ be the infinite length path, ||Γ\Br(v)|| = 2 for any r ≥ 0, hence E(Γ) = 2.

4. Let Γ be the 4-regular infinite tree, ||Γ \ Br(v)|| = 4(3)r, hence E(Γ) = ∞. A

local view of this is shown in Figure 5.1.

Figure 5.1: Local view of 4-regular infinite tree

Definition 5.4. A locally finite graph is said to be almost symmetrical if its auto-

morphism group have finitely many orbits.

Theorem 5.5. [Mohar, 1991] Let Γ be a connected, locally finite and almost sym-

metrical graph, then E(Γ) ≤ 2 or E(Γ) =∞.
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5.2 Non-amenable graphs

There are many different ways to define the concept of amenability. Most of those

are beyond the scope of this document, but more information can be found on [Löh,

2017]. We present the following definition.

Definition 5.6. For a subset of vertices K of a graph Γ, let |K| denote number of

vertices in K, and let ∂K be the set of edges of Γ with one endpoint in K and the other

endpoint not in K. Hence |∂K| is the number of edges with the given characteristic.

The Cheeger constant of a graph Γ is defined as:

h(Γ) = inf
K

|∂K|
|K|

,

where K is any non-empty finite subset of vertices. We say that a graph Γ with

uniform bounded degree is non-amenable if h(Γ) > 0, otherwise we say that the

graph is amenable.

Remark 5.7 (Convention). When we consider a non-amenable graph we always as-

sume that the graph is connected.

Example 5.8. The infinite length path is amenable since |∂K| = 2 for any connected

non-empty finite subset of vertices.

Theorem 5.9. The 4-regular infinite tree (Figure 5.1), is non-amenable.

In order to prove this consider the following results.

Lemma 5.10. Let T be a finite tree such that every vertex is either a leaf or has

degree at least 3. If T has ` leaves, then T has at most 2`− 3 edges.

Proof. Let T be a tree as in the statement and denote by e(T ) and `(T ) the number

of edges and leaves respectively. Note that there is a tree ∆ such that every vertex

of ∆ is either a leaf or has degree 3, and a simplicial map (i.e. the image of an edge

is another edge or a vertex), ∆ → T which, when restricted to the set of leaves, is a

bijection. In particular, e(T ) ≤ e(∆) and `(T ) = `(∆). Hence, it is enough to prove

the statement for trees for which every interior vertex has degree 3.
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Let T be a tree such that every vertex is either a leaf or has degree three. If

`(T ) ≤ 2 the statement of the lemma is trivial. Suppose that `(T ) > 2. Let u be a

leaf adjacent to v. Since `(T ) > 2, v is a vertex of degree three. Let T ′ be the tree

obtained by deleting u and v, and then adding an edge between the two remaining

vertices that were adjacent to v. Then T ′ is a tree such that every vertex is either a

leaf or has degree three. Since e(T ′) + 2 = e(T ) and `(T ′) + 1 = `(T ), by induction

we have that

e(T ) = e(T ′) + 2 ≤ 2`(T ′)− 1 = 2`(T )− 3.

Lemma 5.11. If T is a finite tree with ` leaves and d vertices of degree 2, if e denotes

the number of edges of T , then:

e ≤ 2`− 3 + d.

Proof. This is a direct consequence of Lemma 5.10.

Proof of theorem 5.9: Let K be a finite subset of vertices and let T be the induced

subgraph. We will show that |∂T |/|T | ≥ 1/4. Let e(T ), `(T ) and d(T ) denote the

number of edges, leaves and vertices of degree 2 of T respectively.

First suppose that T is connected. If T has no edges, then it is a single vertex and

|∂T |/|T | = 4. Suppose that T has edges. Then |T | = e(T ) + 1 ≤ 2e(T ) and therefore

|∂T |
|T |
≥ `(T ) + d(T )

2e(T )
≥ 1

2e(T )

(
e(T )− d(T ) + 3

2
+ d(T )

)
≥ 1

4

(
e(T ) + 3 + d

e(T )

)
≥ 1

4
,

where the second inequality is given by Lemma 5.11.

Suppose that T is not connected. Then T = T1 ∪ T2 ∪ · · · ∪ Tk where each Ti

is a connected component of T . Since T is an induced subgraph, if i 6= j then

dist(Ti, Tj) ≥ 2 and in particular ∂Ti ∩ ∂Tj = ∅. It follows that

|∂T | =
k∑
i=1

|∂Ti|.

Define subgraphs T ′1, . . . , T
′
k such that T ′j is isomorphic to Tj and dist(

⋃j−1
i=1 T

′
i , T

′
j) = 1

for 1 ≤ j ≤ k. The existence of the subgraphs T ′j can be argued by induction on
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j by letting T ′1 = T1 and observing that if T ′1, . . . , T
′
j−1 have been defined there is a

subgraph T ′j with the required properties. Let T ∗ be the subgraph induced by the

union of the sets of vertices of all T ′j . Note that T ∗ is a tree arising as the union of⋃k
j=1 T

′
j and k − 1 additional edges. In particular, |T ∗| = |T | and by induction one

verifies that

|∂T ∗| =
k∑
j=1

|∂T ′j| − 2(k − 1) = |∂T | − 2(k − 1).

Since T ∗ is connected, it follows that

|∂T |
|T |
≥ |∂T

∗|
|T ∗|

≥ 1

4
.

5.3 One-ended non-amenable implies fast-robber

win

In order to prove the Theorem 5.1, we use several lemmas and concepts that are

shown/introduced this section. First, we provide a definition and some remarks.

Definition 5.12 (Rips’s Graph [Gromov, 1987]). Let Γ be a graph and let ∆1, . . . ,∆n

be a collection of n subgraphs. Define RipsΓ(∆1, . . . ,∆n;L) as the graph with vertex

set {∆1, . . . ,∆n} and edge set {{∆i,∆j} | 0 < distΓ(∆i,∆j) ≤ L}. One example of

this is given in Figure 5.2.

∆1

∆2

∆3

∆4∆5

∆6

∆7
v1

v2

v3

v4
v5

v6

v7

Figure 5.2: Schematic of a graph RipsΓ(∆1, . . . ,∆7;L)

Remark 5.13. If RipsΓ(∆1, . . . ,∆n;L) is disconnected then, after re-enumerating

the ∆i’s, there is 1 ≤ k < n such that RipsΓ(∆1, . . . ,∆n;L) is the disjoint union of

RipsΓ(∆1, . . . ,∆k;L) and RipsΓ(∆k+1, . . . ,∆n;L).
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Remark 5.14 (Notation for cardinality of spheres and balls). Let v be a fixed vertex

of Γ. Let α(n) denote the number of vertices of Γ at distance exactly n from v, and

let β(n) denote the number of vertices of Γ at distance at most n from v. If Γ is vertex

transitive, α(n) and β(n) are independent of the choice of v, and we refer to them as

the size of the spheres of radius n, and the size of the balls of radius n, respectively.

For our purposes, since Γ is necessarily an infinite graph, we have that β : Z+ → Z+

is an increasing function and in particular limn→∞ β(n) =∞.

5.3.1 Existence of Robber Speed

The purpose of this subsection is to prove the following proposition.

Proposition 5.15 (Undistorted Embedding). Let Γ be a connected, vertex transitive,

locally finite graph. For any pair of integers m and n, there is an integer Lm,n =

L(Γ,m, n) with the following property: Let ∆ be a subgraph of Γ with at most m

vertices and such that Γ − ∆ is connected. Suppose that ∆ is the union of pairwise

disjoint connected subgraphs ∆1,∆2, . . . ,∆n. If a, b are vertices in Γ−∆ then:

distΓ−∆(a, b) ≤ Lm,n distΓ(a, b).

This proposition will allow us to define a robber speed in the main theorem. The

proof of the proposition is divided into a series of lemmas. The definition of the

constants Lm,n is given as part of Lemma 5.18. That the constants Lm,n satisfy the

statement of the proposition is proved by induction on n, where Lemma 5.19 provides

the case n = 1, and then Lemma 5.20 concludes the proof of the proposition.

Lemma 5.16. Let m,n and L be positive integers and let Γ be a locally finite, vertex

transitive graph. Then, up to the action by Aut(Γ), there are finitely many subgraphs

∆ such that

• |∆| ≤ m,

• ∆ is the union of n pairwise disjoint connected subgraphs ∆ = ∆1 ∪ · · · ∪∆n,

• 0 < distΓ(∆1,∆i) ≤ L for 1 < i ≤ n.



33

Proof. Fix a vertex u of Γ. Since Γ is locally finite, there are finitely many subgraphs

∆ as in the statement that contain the vertex u. Since Γ is vertex transitive, lemma

follows.

Lemma 5.17. Let m,n and L be positive integers and let Γ be a locally finite, vertex

transitive graph. Then, up to the action by Aut(Γ), there are finitely many subgraphs

∆ such that

• |∆| ≤ m,

• ∆ is the union of n pairwise disjoint connected subgraphs ∆ = ∆1 ∪ · · · ∪∆n,

• RipsΓ(∆1, . . . ,∆n;L) is connected.

Proof. Since each ∆i is connected with at most m vertices, it follows that each ∆i

has diameter at most m − 1. Since RipsΓ(∆1, . . . ,∆n;L) is connected, we have that

0 < distΓ(∆1,∆i) ≤ (m + n)L for 1 < i ≤ n. Then the statement follows from

Lemma 5.16.

Lemma 5.18 (Definition of Lm,n). Let Γ be a locally finite, vertex transitive graph.

For integers m > 0, n ≥ 0, let Lm,0 = 0 and

Lm,n = max{ distΓ−∆(a, b) |

1 ≤ k ≤ n,

∆1, . . . ,∆k are disjoint connected subgraphs of Γ,

∆ = ∆1 ∪ . . . ∪∆k,

RipsΓ(∆1, . . . ,∆k;Lm,k−1) is connected,

Γ−∆ is connected,

|∆| ≤ m,

a, b ∈ V (Γ)− V (∆), and

distΓ(a,∆) = 1 and distΓ(b,∆) = 1}.

Then Lm,n are well-defined integers such that:

0 ≤ Lm,1 ≤ Lm,2 ≤ · · ·Lm,k ≤ Lm,k+1 ≤ · · · .
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Proof. By Lemma 5.17, for m > 0 and n > 0, Lm,n is the maximum of a finite number

of integers and hence it is well defined. That Lm,k ≤ Lm,k+1 is immediate from the

definition.

Lemma 5.19 (Base Case). Let Γ be a locally finite, vertex transitive graph, for any

connected subgraph ∆ such that |∆| ≤ m and Γ −∆ is connected, if a, b are vertices

in Γ−∆ then

distΓ−∆(a, b) ≤ Lm,1 distΓ(a, b).

Proof. Let a and b be vertices of Γ−∆ and let p be a geodesic in Γ between them. Then

one can replace maximal sub-paths of p with all interior vertices in ∆ with sub-paths

in Γ−∆ of length at most Lm,1 showing that distΓ−∆(a, b) ≤ Lm,1 distΓ(a, b).

Lemma 5.20 (Inductive Step). Let Γ be a locally finite, vertex transitive graph, let

∆ be a subgraph such that |∆| ≤ m, Γ − ∆ is connected, and ∆ is the union of n

pairwise disjoint connected subgraphs ∆ = ∆1 ∪ · · · ∪∆n. If a, b are vertices in Γ−∆

then

distΓ−∆(a, b) ≤ Lm,n distΓ(a, b).

Proof. Fix m. We argue by induction on n that Lm,n satisfies the property of the

statement of the lemma. The base case n = 1 is Lemma 5.19. Hence, suppose n > 1

and that the result holds for all Lm,k if k < n. We consider two cases:

Case 1. Suppose that RipsΓ(∆1, . . . ,∆n;Lm,n−1) is disconnected. By Remark 5.13,

we can assume that there is 1 ≤ k < n such that the graph RipsΓ(∆1, . . . ,∆n;Lm,n−1)

is the disjoint union of RipsΓ(∆1, . . . ,∆k;Lm,n−1) and RipsΓ(∆k+1, . . . ,∆n;Lm,n−1).

Let Λ1 = ∆1 ∪ · · · ∪∆k and Λ2 = ∆k+1 ∪ · · · ∪∆n, and observe that

distΓ(Λ1,Λ2) > Lm,n−1.

Note that the subgraph Γ − Λi is connected, |Λi| ≤ m, and Λi has at most

n − 1 connected components. By induction, the constant Lm,n−1 applies to

both Λi. More specifically, suppose that a, b ∈ V (Γ) satisfy that dist(a,Λ1) =

dist(b,Λ1) = 1. By definition of Lm,n−1, any geodesic path q in Γ− Λ1 between

a and b has length at most Lm,n−1 and hence it does not intersect the subgraph

Λ2. It follows that q is a path in Γ−∆. This reasoning is symmetric in Λ1 and

Λ2.
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Let v and w be vertices of Γ − ∆ and let p be a geodesic in Γ between them.

Then each maximal sub-path of p with all internal vertices in Λ1 (respectively,

Λ2) can be replaced with a sub-path in Γ−∆ of length at most Lm,n−1. In this

way, one can obtain a path between v and w of length at most Lm,n−1 distΓ(v, w)

in Γ−∆. Hence

distΓ−∆(v, w) ≤ Lm,n−1 distΓ(v, w) ≤ Lm,n distΓ(v, w).

Case 2. Suppose that RipsΓ(∆1, . . . ,∆n;Lm,n−1) is connected. Let v and w be ver-

tices of Γ − ∆. Let p be a geodesic path in Γ between v and w. Then, by

definition of Lm,n, one can replace each maximal subpath of p with all interior

vertices in ∆ with subpaths in Γ −∆ of length at most Lm,n. This produces a

path in Γ − ∆ between v and w of length at most Lm,n distΓ(v, w), and hence

distΓ−∆(v, w) ≤ Lm,n distΓ(v, w).

5.3.2 Proof of Theorem 5.1

Before proving the main theorem, we need additional lemmas.

Remark 5.21 (Estimations using the Cheeger constant). Let Γ be a non-amenable

connected graph with uniform bounded degree and Cheeger constant h(Γ). Let K

be a finite subset of vertices and consider the subgraph Γ −K. If ∆ is a connected

component of Γ−K then ∂∆ ⊂ ∂K. Therefore

1. If ∆ is a finite connected component, then

|∆| ≤ 1

h(Γ)
|∂∆| ≤ 1

h(Γ)
|∂K|.

2. The number of connected components of Γ − K is at most |∂K|. As a con-

sequence, the number of vertices of Γ − K that belong to a finite connected

component is at most 1
h(Γ)
|∂K|2.

3. If ∆ is a connected subgraph of Γ disjoint from K, and |∆| > 1

h(Γ)
|∂K|; then ∆

is a subgraph of an unbounded connected component of Γ−K.
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Remark 5.22. Let Γ be a connected, locally finite, infinite graph. A connected

component ∆ is finite if and only if it is bounded. Indeed, observe that in a locally

finite graph, any ball of finite radius has finitely many vertices. Hence a bounded

locally finite graph is finite. On the other hand, observe that a graph with finitely

many vertices is bounded.

Lemma 5.23. Let Γ be a one-ended, non-amenable, vertex transitive connected graph

and Cheeger constant h(Γ). For any positive integers n and ρ, there is an integer

m = m(Γ, n, ρ) > 0 with the following property. If {c1, . . . , cn} is any collection

of n vertices of Γ, and Λ is the unbounded connected component of the subgraph

Γ−
⋃n
i=1Bρ(ci), then

distΛ(a, b) ≤ Lm,n distΓ(a, b).

for any pair of vertices a, b of Λ, where Lm,n is defined in Lemma 5.18 and:

m = nβ(ρ) +
(α(ρ) · d · n)2

h(Γ)

where d is the degree of each vertex in Γ.

Proof. Let ∆ be the subgraph of Γ induced by all vertices in
⋃n
i=1Bρ(ci) together

with all vertices that belong to bounded components of Γ −
⋃n
i=1Bρ(ci). Since Γ is

one-ended, the graph Γ−∆ is the unbounded connected component of Γ−
⋃n
i=1Bρ(ci).

In particular, Λ = Γ−∆ is connected.

Let us argue that ∆ has at most m vertices. Observe that∣∣∣∣∣
n⋃
i=1

Bρ(ci)

∣∣∣∣∣ ≤ nβ(ρ) and

∣∣∣∣∣∂
n⋃
i=1

Bρ(ci)

∣∣∣∣∣ ≤ α(ρ) · d · n.

Hence, by Remark 5.21, the number of vertices in Γ −
⋃n
i=1Bρ(ci) that belong to

bounded components is at most 1
h(Γ)

(α(ρ) · n · d)2 and therefore

|∆| ≤ nβ(ρ) +
1

h(Γ)
(α(ρ) · d · n))2 = m.

Now we argue that ∆ has at most n connected components. First observe that the

subgraph of Γ induced by a ball Bρ(ci) is connected. Since Γ is connected, every con-

nected component of Γ−
⋃n
i=1Bρ(ci) has a vertex adjacent to a vertex in

⋃n
i=1Bρ(ci).
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It follows that every vertex of ∆ is in a connected component containing a ball Bρ(ci),

and therefore ∆ has at most n connected components.

To summarize ∆ is a subgraph of Γ with at most m vertices, at most n connected

components, and such that Γ−∆ is a connected subgraph. By Proposition 5.15, for

any vertices a, b ∈ Γ−∆, we have that

distΛ(a, b) = distΓ−∆(a, b) ≤ Lm,n distΓ(a, b).

Lemma 5.24 (Safe Distance). Let Γ be a connected, vertex transitive, non-amenable

graph with uniform bounded degree. For any integers n and ρ there exists an integer

λ = λ(ρ, n) such that for any collection of (n+1) vertices, denoted as r and (c1, . . . , cn),

if dist(r, ci) > λ for every i, then r lies in an unbounded component of Γ−
⋃n
i=1Bρ(ci).

Proof. Let d be the degree of vertices of Γ. Define λ to be the least integer such that

β(λ) >
1

h(Γ)
(α(ρ) · d · n).

Let r and (c1, . . . , cn) be n + 1 arbitrary vertices of Γ such that dist(r, ci) > λ for

every i. Let K =
⋃n
i=1Bρ(ci) and observe that

|∂K| ≤
n∑
i=1

|∂Bρ(ci)| ≤ n · d · α(ρ).

Let ∆ be the subgraph induced by Bλ(r). Observe that ∆ is connected and |∆| =

β(λ) > 1
h(Γ)
|∂K|. By the third item of Remark 5.21, the subgraph ∆ lies inside the

unbounded connected component of Γ−K that contains the vertex r.

Lemma 5.25 (Robber’s strategy safe points). Let Γ be a connected non-amenable

vertex transitive graph, and let u0 be a fixed vertex. For any positive integers n, σ

and ρ, there exists integers R and D > ρ, and there are (n+1) vertices {s1, . . . , sn+1}
such that the following properties hold:

1. For every i, dist(u0, si) ≤ R.

2. For any collection of n vertices {c1, . . . , cn}, there is a vertex s in {s1, . . . , sn+1}
such that dist(s, {c1, . . . , cn}) > D + σ.
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3. If s ∈ {s1, . . . , sn+1} satisfies dist(s, {c1, . . . , cn}) > D, then s belongs to an

unbounded component of Γ−
⋃n
i=1Bρ(ci).

Proof. Let λ(ρ, n) be the constant provided by Lemma 5.24. Let

D > max{λ(ρ, n), ρ}.

Since Γ is a locally finite, infinite and connected graph, we can let s1 = u0 and choose

inductively vertices si such that dist(si, {s1, . . . , si−1}) > 2D+2σ to obtain a collection

of n+ 1 vertices s1, . . . , sn, sn+1 with the property that dist(si, sj) > 2D+ 2σ if i 6= j.

Let R = max{dist(u0, si) | 1 ≤ i ≤ n+ 1}. The first item of the lemma is immediate.

Let {c1, . . . , cn} be n vertices. First we prove that there is s ∈ {s1, . . . , sn} such

that dist(s, {c1, . . . , cn}) > D+ σ. Suppose by contradiction that this is not the case,

that is, for each 1 ≤ i ≤ n+1, there exists at least one cj such that dist(si, cj) ≤ D+σ.

By the pigeon-hole argument, there must be ci and two distinct sj and sk such that

dist(sj, ci) ≤ D + σ and dist(sk, ci) ≤ D + σ. It follows that

dist(sj, sk) ≤ dist(sj, ci) + dist(sk, ci) ≤ 2D + 2σ,

which contradicts the properties of the set {s1, . . . , sn+1}.

Let s ∈ {s1, . . . , sn} such that dist(s, ci) > D for 1 ≤ i ≤ n. Since D > λΓ(ρ, n),

Lemma 5.24 implies that s lies in an unbounded component of Γ−
⋃n
i=1Bρ(ci).

Now we have all the necessary tools to prove the main result.

Proof of Theorem 5.1. Let Γ be the given graph and let σ, ρ, u0, be fixed parameters.

We will prove that for every n there exists an R and ψ such that Γ is not n-weak-cop

win. First, we construct the parameters that we are going to use, and then we will

prove that using these R and ψ, then Γ indeed is not n-weak-cop win.

Consider a collection of vertices {s1, . . . , sn+1} and the integers R and D provided

by Lemma 5.25 for the parameters u0, n, σ, ρ. Let

ψ = 2RLm,n
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where Lm,n is the constant provided by Proposition 5.15 for

m = nβ(ρ) +
(α(ρ) · n · d)2

h(Γ)
.

Consider the game in Γ with parameters (n, σ, ρ, ψ, u0, R). We will prove that the

robber has an strategy such it is never captured and at any stage of the game. His

position is on a vertex in {s1, . . . , sn+1}. Since distΓ(u0, {s1, · · · , sn+1}) < R, this will

be a winning strategy for the robber.

The robber will move in the following way:

• Suppose the n cops have chosen their initial positions, say c1,0, . . . cn,0. By the

second item of Lemma 5.25, there is a vertex

r0 ∈ {s1, . . . , sn+1}

such that

distΓ(si, {c1,0, . . . , cn,0}) > D + σ.

Let r0 be the initial position of the robber. Since Γ is one-ended, Γ−
⋃n
i=1Bρ(ci,0)

has one unbounded connected component. The third item of Lemma 5.25 implies

that r0 is in the unbounded component of Γ−
⋃n
i=1 Bρ(ci,0).

• Let rk and c1,k, . . . , cn,k denote the positions of the robber and the cops respec-

tively at the end of the k-turn. Suppose that

rk ∈ {s1, . . . , sn+1},

and

distΓ(rk, {c1,k, . . . , cn,k}) > D + σ.

Then, at the beginning of the (k + 1)-turn, the cops move first. The last in-

equality implies that

distΓ(rk, {c1,k+1, . . . , cn,k+1}) > D > ρ

and hence the robber has not been captured. By the second item of Lemma 5.25,
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there is a vertex rk+1 ∈ {s1, . . . , sn+1} such that

distΓ(rk+1, {c1,k+1, . . . , cn,k+1}) > D + σ > ρ.

Now we argue that the robber has a valid move from rk to rk+1. Since Γ is one-

ended, Γ −
⋃n
i=1 Bρ(ci,k+1) has only one unbounded connected component that

we denote by Λ. The last two inequalities of the previous paragraph together

with the the third item of Lemma 5.25 imply that both rk to rk+1 are both

elements of the unbounded component Λ of the subgraph Γ −
⋃n
i=1Bρ(ci,k+1).

By Lemma 5.23, we have that

distΛ(rk, rk+1) ≤ Lm,n distΓ(rk, rk+1) ≤ 2R · Lm,n = ψ

where the second inequality follows distΓ(u0, {s1, . . . , sn+1}) < R as it was as-

sumed. It follows that there is a path in Λ ⊂ Γ−
⋃n
i=1Bρ(ck+1,i) from rk to rk+1

of length at most ψ, and hence this is valid move for the robber.



Chapter 6

Θn-extensions

In this chapter we look at the weak and strong cop numbers of an specific extension

of a graph. We present the following result due to Lee.

Proposition 6.1. [Lee, 2019, Proposition 3.2].

For each n ∈ Z>0, there exists a connected graph with weak-cop number n.

Figure 6.1 gives an example of a graph provided by Lee with have weak-cop-number

3.

Figure 6.1: A graph with weak-cop-number 3

To establish this result, Lee exhibits examples An for any n > 0 of connected
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graphs such that wCop(An) = n. It is possible to show that sCop(An) = n as well.

These examples are a specific case of a construction that we call Θn-extensions. This

will allow us to give an examples of graphs Γ such that wCop(Γ) =∞ and sCop(Γ) = n

for any n ∈ N (see Corollary 7.31).

Definition 6.2. Let Γ be a connected graph and n > 1, we can define the Θn-

extension of the graph, denoted as Θn(Γ), in the following way:

• Let Γi for 1 ≤ i ≤ n − 1 be graphs such that Γi ∼= Γ i.e. there is an fixed

isomorphism ηi : Γ→ Γi. To simplify notation, let Γ = Γ0.

• Let u0 ∈ Γ0 be a fixed vertex, and ηi(u0) = ui ∈ Γi. We will call this vertex the

center of Γ0 (resp. center of Γi).

• For any r ≥ 0, let Sr = {x ∈ Γ0 : distΓ0(x, u0) = r}.

• For any x0 ∈ Sr, denote xi = ηi(x0). We will construct bridges between the

image of the same vertex, of length r + 1. Specifically, for any xi, xj let Bi,j be

the graph defined as:

◦ Construct r additional vertices v1, . . . , vr. Denoting xi = v0 and xj = vr+1

V (Bi,j) = {v0, . . . , vr+1}.

◦ E(Bi,j) = {{vi, vi+1} : 0 ≤ i ≤ r + 1}

The union of all Bi,j for all vertices on Sr is denoted as Br.

After adding all possible bridges we obtain:

• V (Θn(Γ)) =
⋃n−1
i=0 V (Γi) ∪

⋃∞
r=0 V (Br).

• E(Θn(Γ)) =
⋃n−1
i=0 E(Γi) ∪

⋃∞
r=0E(Br).

Definition 6.3. Let Γ be a graph, consider Θn(Γ), for any v ∈ V (Γi) there exists a

vertex u ∈ V (Γ0) such that ηi(u) = v. We denote the “shadows” of v to be the set:

W(v) = {u, η1(u), η2(u), . . . , ηn(u)}.

Moreover, if a vertex t belongs to a bridge, then there exists a vertex u ∈ Γ0 and

integers i, j such that the bridge connects ηi(u) and ηj(u). We will define W(t) =

W(u).
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Remark 6.4. The Θn-extension of a graph, depends on the vertex defined as the

center of the graph, but if the initial graph is vertex transitive, then all Θn-extensions

are isomorphic.

Remark 6.5. The graphs exhibited by [Lee, 2019] are the Θn-extension of the infinite

ray with centre the initial vertex with an additional central vertex.

Example 6.6. Consider the infinite length path, the Θ2-extension and Θ3-extension

of this graph can be shown on Figures 6.2 and 6.4 respectively.

Remark 6.7. If a graph Γ has one of the following properties: connected, has n-ends,

or has uniform bounded degree; then for any n > 0, then Θn(Γ) has them as well.

. . . . . .

. . .. . .

Figure 6.2: Θ2-extension of the infinite path

Proposition 6.8. For any connected graph Γ and any n > 1, Γ is a quasi-retract of

Θn(Γ).

Proof. We will use the notation of Definition 6.2. Let consider the following:

Γ
ι
↪−→ Θn(Γ)

g−→ Γ,

with the function g that send ηi(v) → v for any i and all paths on the bridges that

are connected to v or to ηi(v), also to v. Note that this function is (1, 0)-Lipschitz,

and moreover (ι, g) is a quasi-retraction.

Figure 6.3 is an explicit example of the quasi-retraction for Γ the infinite length

path and n = 2 provided by the previous proposition.

Proposition 6.9. For any connected graph Γ and any integer N > 0,

wCop(ΘN(Γ)) ≤ N · wCop(Γ),

and

sCop(ΘN(Γ)) ≤ N · sCop(Γ).
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. . . . . .

. . .. . .

. . . . . .

Figure 6.3: Explicit quasi-retraction from Θ2-extension

Proof. To prove these inequalities it is enough to show that if Γ is CopWin(n, σ, ρ, ψ, v, R)

then ΘN(Γ) is CopWin(nN, σ, ρ, ψ, η0(v), R). Suppose that Γ is CopWin(n, σ, ρ, ψ, v, R).

We will describe an strategy for a game on ΘN(Γ) with those parameters by playing

a parallel game on Γ. The n ·N cops in the game on ΘN(Γ) will be indexed by pairs

i, k where 0 ≤ i < n and 0 ≤ k < N , and their positions after the end of the j-turn

will be denoted by cki,j where 0 ≤ i < n and 0 ≤ k < N . While playing on ΘN(Γ),

the cops play a parallel game on Γ with parameters (n, σ, ρ, ψ, v, R) using a winning

strategy. The positions of n cops in Γ after the end of the j-turn are denoted by

ci,j. The movements of the cops in Γ will determine the moves of the cops in ΘN(Γ)

according to the rule

ηk(ci,j) = cki,j.

The moves of the robber in ΘN(Γ) will determine the moves of the robber in the game

on Γ by considering its shadow on Γ.

It is an observation that a movement of the robber in ΘN(Γ) determines a valid

move of the robber in Γ. Indeed if p is a path in ΘN(Γ) such that its shadow in Γ

has a vertex at distance less than ρ, then p has a vertex at distance less than ρ from

a cop in ΘN(Γ).

Note that if the robber on ΘN(Γ) lies on a bridge that connects ηi(x) and ηj(x) and

there are cops on those two vertices, the robber is trapped between those vertices and

the cops can now capture the robber after a finite number of turns. In this situation

we will say that the robber is in “zugzwang”.

Observe that if the robber in Γ is captured by the end of the j-turn, then the
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robber in ΘN(Γ) is in zugzwang by the end of the j-turn. Hence after a finite number

of turns the robber in ΘN(Γ) is captured.

On the other hand, if at any turn the robber in Γ is at distance larger than R from

v, then the robber in ΘN(Γ) is at distance larger than R from η0(v).

The statements of the last two paragraphs show that following the strategy on

Γ yields an strategy on ΘN(Γ) so that if the robber is captured in Γ then it is also

captured in ΘN(Γ); and if the robber in Γ is pushed away from the R-ball centered at

v, then the robber in ΘN(Γ) is also pushed away from the R-ball centered at η0(v).

Corollary 6.10. For any connected graph Γ and for any integer N > 0,

wCop(Γ) ≤ wCop(ΘN(Γ)) ≤ N · wCop(Γ)

and

sCop(Γ) ≤ sCop(ΘN(Γ)) ≤ N · sCop(Γ).

Proof. The left inequalities are consequences of Proposition 6.8 and Theorem 3.6. The

right inequalities follow from Lemma 6.9.

. . .

. . .

. . .

. . .

. . .

. . .

Figure 6.4: Θ3-extension of the infinite path



Chapter 7

Cop numbers and groups

A very interesting family of graphs is given by groups through Cayley graphs, this

allow us to extend the concepts of weak and strong cop numbers to finitely generated

groups. In this chapter we provide some results on this, using the theorems and

corollaries that were studied in the whole document.

Definition 7.1. Let G be group, and S a finite generating set, we define the Cayley

graph of G with respect to S, denoted as Cay(G,S), in the following way:

• the of vertices of Cay(G,S) are the elements of G,

• the of edges of Cay(G,S) are:

{{g, g · s}|g ∈ G and s ∈ (S ∪ S−1)}.

Example 7.2. Some Cayley graphs are isomorphic to graphs that we have already

worked with, for example:

• If G = Z, with generator set S = {1}, then Cay(G,S) is isomorphic to the

infinite length path.

• If G = Z2 with generator set {(1, 0), (0, 1)}, then Cay(G,S) is isomorphic to the

infinite square grid.

• Consider a set S, the free group F generated by S consists on all reduced words

on S ∪ S−1, where S−1 are the formal inverses of the set S; by reduced we refer
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as not having elements of S next to its formal inverse (for example ab−1bc = ac).

A well known interpretation of a free group is to think on F as the set of all

possible words using S as an alphabet. The isomorphism class of a free group

is determined by the cardinality of S which is called the rank of the free group.

We denote by Fn the free group of rank n. The Cayley graph of the free group

F2 with respect a free generating set is isomorphic to the infinite regular tree of

degree four. An illustration of this graph is given in Figure 5.1.

Observe that if G is a finitely generated group, the Cayley Graph Cay(G,S) with

respect to any finite generating set S, is a locally finite, vertex transitive graph.

Proposition 7.3. [Löh, 2017, Proposition 5.2.5] Let G be a finitely generated group,

with finite generating sets S and T . The Cayley graphs Cay(G,S) and Cay(G, T ) are

quasi-isometric.

As a consequence of the quasi-isometry invariance of the weak and strong cop-

number of graphs, we can define the weak-cop-number and strong-cop-number of a

finitely generated group and they become quasi-isometric invariants of finitely gener-

ated groups.

Definition 7.4. Let G be a finitely generated group, with finite generating set S, we

say that wCop(G) = n (resp. sCop(G) = n) if and only if wCop(Cay(G,S)) = n (resp.

sCop(Cay(G,S)) = n).

Proposition 7.5. Quasi-isometric groups have the same weak-cop-number and strong-

cop-number.

Example 7.6. From Example 7.2 and the results from [Lee, 2019], we have:

• If G = Z then wCop(G) = sCop(G) = 1.

• If G = Z2 then wCop(G) =∞.

• If G = F2 then wCop(G) = sCop(G) = 1.

Quasi-isometries of groups is a well studied area in geometric group theory. Some

of the following results on cop numbers follow from classic results that can be found

in [Löh, 2017]. For example, a finitely generated group is quasi-isometric to any

subgroup of finite index [Löh, 2017, Corollary 5.3.10], therefore we get the following.
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Proposition 7.7. Let G be a finitely generated group, and H be a finite index sub-

group, then H and G have the same weak and strong cop-numbers.

7.1 Ends of groups and Cop numbers

Definition 7.8. A finitely generated group have n ends if and only if Cay(G,S) has

n ends under a finite generating set.

Remark 7.9. As all Cayley graphs of a group are quasi-isometric no matter the finite

generating set, the ends of a group is a well defined invariant on finitely generated

groups.

Remark 7.10. Let Γ be a finitely generated group, then E(Γ) ≤ 2 or E(Γ) =∞ due

to Theorem 5.5.

The following statement is a classical result on ends of groups, for more information

see [Löh, 2017].

Proposition 7.11. A group has two ends if and only if it has a subgroup of finite

index isomorphic to the group Z.

As a consequence of the above proposition we have:

Corollary 7.12. If a group G is two-ended then wCop(G) = sCop(G) = 1.

Remark 7.13. Note that the previous result is not necessarily true in general for

graphs. The Θ2-extension of the infinite length path is two ended and has weak and

strong cop number two, see Theorem I.

7.2 Products of groups and cop numbers

In this section we recall the notions of direct product, free product and amalgamated

free product of groups. It will turn out that these products quasi-retract to their

factors and as consequence of Theorem 3.6 we have that cop numbers of the factors

are bounded from above by the cop numbers of the products, see Corollary 7.24.
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Definition 7.14. Let G and H be finitely generated groups. We say that G quasi-

retracts to H if a Cayley graph of G with respect to a finite generating set quasi-

retracts to a Cayley graph of H with respect to a finite generating set.

It is an observation that the above definition is independent of the choice of gen-

erating sets for G and H. An immediate consequence of Theorem 3.6 is the following.

Theorem 7.15. Let G and H be finitely generated groups. If G quasi-retracts to H

then

wCop(H) ≤ wCop(G) and sCop(H) ≤ sCop(G).

The following is a well known fact in geometric group theory.

Proposition 7.16. [Alonso, 1994] Let G be a finitely generated group and H a

subgroup. If r : G → H is a retraction of groups, then H is finitely generated and G

quasi-retracts to H.

7.2.1 Direct products

Definition 7.17. Given two groups with their binary operations (G, ∗) and (H, ·),
the direct product, denoted as G⊕H, is defined as:

1. the elements of the group are ordered pairs (g, h) such that g ∈ G and h ∈ H,

2. if we consider two elements (g1, h1) and (g2, h2), the product (g1, h1)(g2, h2) =

(g1 ∗ g2, h1 · h2).

Proposition 7.18. Let G, H be two finitely generated groups, the direct product G⊕H
quasi-retracts to both, G and H.

Proof. Let G and H be two finitely generated groups with finite generating sets S, T

respectively. Consider Cay(G,S) and Cay(H,T ). Observe that Cay(G⊕H, (S, eS) ∪
(eG, T )) = Cay(G,S) � Cay(H,T ). Therefore immediate that Cay(G⊕H, (S, eS) ∪
(eG, T )) retracts to Cay(G,S).
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7.2.2 Free products and amalgamated free products

Definition 7.19. Given two groups G and H, we can define free product of these as

the group G ∗H with homomorphisms ιG : G→ G ∗H and ιH : H → G ∗H so that

given any other group K with homomorphisms fG : G → K and fH : H → K there

is a unique homomorphism ϕ : G ∗H → K. The diagram that refers to this property

is the following.

G H

G ∗H

K

ιG

fH

ιH

ϕ

fG

Proposition 7.20. Let G and H be finitely generated groups, the free product G ∗H
quasi-retracts to both, G and H.

Proof. In the definition of free product of G ∗ H, take K = H and the functions

fG(g) = eH , for all g ∈ G and fH(h) = h for any h ∈ H. Then the resulting function

ϕ give us a retraction from G ∗H → H and therefore G ∗H quasi-retracts to H by

Proposition 7.16. Analogously, we can get a quasi-retraction from G ∗H → G.

There exists another quasi-retraction from the free product G ∗H to G, different

from than one provided by the previous retraction. For example, one can regard the

elements of the free product as words using the generating sets H and T of G and H

respectively. Then we can consider πG : G ∗ H → G as the function that sends an

element of the free product to the first syllable of its normal form if its first syllable

belong to G, and to the identity if the first syllable belongs to H. This yields a

quasi-retraction of the corresponding Cayley graphs, as the length of every word in

G ∗ H is reduced in G to length of the first syllable or to 1. This construction of

quasi-retractions can be extended to show that amalgamated free products over finite

products quasi-retract to their factors as stated in the next proposition. The details

of such argument belong to the area of combinatorial group theory and are beyond

the scope of this work, so we will not provide a proof here.

Definition 7.21. Suppose a pair of group homomorphisms ϕG : N → G and ϕH :

N → H. We define the amalgamated free product as the quotient G∗NH = (G∗H)/N
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where N is a normal subgroup of G ∗N that is generated by the elements of the form

ϕG(n)ϕH(n)−1.

Proposition 7.22. Let G and H be finitely generated groups, and N a finite group,

then G ∗N H quasi-retracts to both, G and H.

Example 7.23. For the interested reader, it can be shown that the result is not

necessarily true when we amalgamate over an infinite group, for example taking

BS(1, 2) ∗Z Z2.

Corollary 7.24. Let G and H be finitely generated groups, and let K be a finite

group. Then

1. wCop(H) ≤ wCop(G⊕H) and sCop(H) ≤ sCop(G⊕H).

2. wCop(H) ≤ wCop(G ∗H) and sCop(H) ≤ sCop(G ∗H).

3. wCop(H) ≤ wCop(G ∗K H) and sCop(H) ≤ sCop(G ∗K H).

Proof. This follows from Theorem 7.15 and Proposition 7.16. The statements uses

Propositions 7.18, 7.20 and 7.22 respectively.

Example 7.25. The following statements are direct consequences of Theorem 3.6,

and Propositions 7.18 and 7.20.

• The group Z2 ∗ Z quasi-retracts to Z2 so wCop(Z2 ∗ Z) = ∞. More generally,

wCop(Z2 ∗G) =∞ for any finitely generated group G.

• All free abelian groups of any range greater or equal than two have infinite

weak-cop number since they retract to Z2.

7.3 Hyperbolic Groups and Cop numbers

Definition 7.26. A group G is said to be hyperbolic if Cay(G,S) is hyperbolic as

a metric space. Similarly a group is said to be non-amenable if if Cay(G,S) is non-

amenable as a metric space.

Example 7.27. The groups Z and F2 are hyperbolic, as their Cayley graphs are trees.
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The following proposition follows directly from Theorem 4.6.

Proposition 7.28. All hyperbolic groups have strong cop number equal to one.

Example 7.29. The group F2 is non-amenable, this follows from Example 5.9.

Proposition 7.30. One-ended hyperbolic groups are non-amenable.

Sketch of the proof. This proof is away from the scope of this paper, but the idea

is that every one-ended hyperbolic group contains a free subgroup of rank two by

the ping pong argument. Since free groups of rank at least two are non-amenable,

it follows that one-ended hyperbolic groups are non-amenable. The definitions and

theorems needed for this proof can be found on [Löh, 2017].

The following corollary follows from putting together the previous proposition and

our Theorems 4.6 and 5.1.

Corollary 7.31. Let Γ be the Cayley-graph of a one-ended hyperbolic group. Then

wCop(Γ) =∞ and sCop(Γ) = 1.

Corollary 7.32. Let Γ be the Cayley graph of a one-ended hyperbolic group. Then

wCop(Θn(Γ)) =∞ and sCop(Θn(Γ)) = n.

This is a consequence of the previous Corollary and Theorem I. An interesting

extension that could be done for this last corollary is given by the following question.

Question 7.33. Let Γ be a connected, one-ended, hyperbolic, locally finite, vertex

transitive graph. Does wCop(Γ) =∞ hold?

The point here is that the Cayley graph of a one-ended discrete hyperbolic group

is non-amenable. We do not know whether this is true in the framework of the

question. A positive answer to this question could be implicit in deep work by Caprace,

Cournullier, Monod and Tessera [Caprace et al., 2015]. They have a classification of

amenable locally compact hyperbolic groups. It could be the case that for a locally

finite hyperbolic graph the locally compact group Aut(Γ) is never amenable.

Question 7.34. Is there a finitely generated group G such that the weak-cop number

is different from one or infinite? Similarly for the strong-cop number.
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A classic result is that the number of ends of Cayley graphs of a finitely generated

group is 0, 1, 2 or infinite, [Löh, 2017, Theorem 8.2.8]. We have shown that if a finitely

generated group has two ends, then its weak and strong cop numbers are both one. For

one ended non-amenable groups, the weak cop number is infinite. We could not show

a stronger result for amenable groups, but as Lee proved (see [Lee, 2019]) the infinite

square grid also have infinite weak cop number, and a classic result (see [Löh, 2017])

is that all abelian groups are amenable. Hence we have an example of a one-ended

amenable group with infinite weak-cop number. Finally for groups with infinite ends,

we have F2 such that wCop(F2) = sCop(F2) = 1 and also wCop(Z2 ∗ Z) = ∞, hence

we need more properties in order to characterize cop numbers of groups in terms of

ends.



Chapter 8

Conclusions

This chapter summarizes our main results and examples.

We first introduce two variations of the classical game of Cops and Robber in

graphs, with the difference that our variations have different speed for the Cops and

the Robber and also a parameter reach for the cop. This games define two quasi-

isometric invariant of graphs, the weak-cop number and the strong-cop number. They

have the property (Theorem 3.6) that if, ∆ is a quasi-retract of Γ, then:

wCop(∆) ≤ wCop(Γ) and sCop(∆) ≤ sCop(Γ).

We also study these new graph invariants parallel to other quasi-isometric invari-

ants of graphs as hyperbolicity, amenability and the number of ends. For this we have

two main results, the first one (Theorem 4.6) on hyperbolic graphs was that, one of

our invariants, the strong-cop number, is always one. The second result (Theorem 5.1)

is on one-ended amenable graphs, where the other invariant, the weak-cop number, is

infinite.

Finally, given a graph Γ and an integer n, we construct a graph Θn(Γ) that we call

the Θn-extension of Γ. The construction allows us to exhibit examples of graphs with

arbitrary weak-cop number and examples with arbitrary strong-cop number (Theo-

rem H). We also observe that the weak and strong cop number are invariants of groups

and compute these invariants in some cases. In particular this is used to provide a
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graph with infinite weak-cop number and arbitrary finite strong-cop number (Corol-

lary 7.31).

Let us summarize some of our examples in the following tables:

Groups Weak-cop-number Strong-cop-number

Finite groups 1 1
Z 1 1
F2 1 1

Zn : n ≥ 2 ∞ unknown
Z2 ∗G ∞ unknown

One-ended non-amenable ∞ unknown
One-ended hyperbolic groups ∞ unknown

Two-ended groups 1 1

Table 8.1: wCop and sCop for some groups

Graphs Weak-cop-number Strong-cop-number

Θn(Z) n n
Θn(F2) n n

Θn(Zn) : k ≥ 2 ∞ unknown
Θn(G) : G is one-ended non-amenable ∞ unknown

Θn(G) : G is one-ended hyperbolic ∞ n

Table 8.2: wCop and sCop for some Θn-extensions of groups
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