TRANSCRIPTIONAL REGULATION OF HUMAN NEUROTROPIC PAPOVAVIRUS, JCV

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY MAY BE XEROXED

(Without Author's Permission)

KOTLO UMESH KUMAR

National Library of Canada Bibliothèque nationale du Canada Direction des acquisitions et

Acquisitions and Bibliographic Services Branch

des services bibliographiques 395, rue Welington

395 Wellington Street Ottawa, Onlario K1A (IN4 395, rue Wellington Ottawa (Ontario) K1A 0N4

Your Mr. Hote withown

Our late Note Mimence

AVIS

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

NOTICE

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents.

Canada

TRANSCRIPTIONAL REGULATION OF HUMAN NEUROTROPIC PAPOVAVIRUS, JCV

By

[®] Kotlo Umesh Kumar, M.V.Sc.

A thesis submitted to the school of graduate studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy

> Division of Basic Medical Sciences Faculty of Medicine Memorial University of Newfoundland

> > April, 1994

St. John's

Newfoundland

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Weilington Ottawa (Ontario) K1A 0N4

Your Ne Votre relifience

Our Me Note selfence

THE AUTHOR HAS GRANTED AN IRREVOCABLE NON-EXCLUSIVE LICENCE ALLOWING THE NATIONAL LIBRARY OF CANADA TO REPRODUCE, LOAN, DISTRIBUTE OR SELL COPIES OF HIS/HER THESIS BY ANY MEANS AND IN ANY FORM OR FORMAT, MAKING THIS THESIS AVAILABLE TO INTERESTED PERSONS. L'AUTEUR A ACCORDE UNE LICENCE IRREVOCABLE ET NON EXCLUSIVE PERMETTANT A LA BIBLIOTHEQUE NATIONALE DU CANADA DE REPRODUIRE, PRETER, DISTRIBUER OU VENDRE DES COPIES DE SA THESE DE QUELQUE MANIERE ET SOUS QUELQUE FORME QUE CE SOIT POUR METTRE DES EXEMPLAIRES DE CETTE THESE A LA DISPOSITION DES PERSONNE INTERESSES.

THE AUTHOR RETAINS OWNERSHIP OF THE COPYRIGHT IN HIS/HER THESIS. NEITHER THE THESIS NOR SUBSTANTIAL EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT HIS/HER PERMISSION.

Canadä

L'AUTEUR CONSERVE LA PROPRIETE DU DROIT D'AUTEUR QUI PROTEGE SA THESE NI LA THESE NI DES EXTRAITS SUBSTANTIELS DE CELLE-CI NE DOIVENT ETRE IMPRIMES OU AUTREMENT REPRODUITS SANS SON AUTORISATION.

ISBN 0-315-96051-5

This thesis is dedicated to my parents

Smt. K. Rukmini and Sri. K.V. Ranganatham

ABSTRACT

The human papovavirus JC virus (JCV) replicates only in glial cells and exhibits strict cell-specificity for expression. JC virus (JCV) has been frequently found in the plaques of brains of victims of the fatal demyelinating brain disease, progressive multifocal leukoencephalopathy (PML). PML is associated with immunodeficiency and has been identified recently as a frequent complication of acquired immunodeficiency syndrome (AIDS). The regulatory region of JCV is contained mainly within the two 98 base pairs (bp) tandem repeats and is functional in both directions, with the early and late promoter-enhancer (JCV, and JCV,) controlling expression of large and small tumour antigens and viral structural proteins, respectively.

Previously, it was shown in our laboratory that the regulatory region of JCV confers glial cell-specificity to JCV and contains three potential nuclear factor 1 (NF1) motifs (Nakshatri <u>et al</u>, 1990a). One motif towards the late side of the genome has a 3 bp palindromic repeat and the other two located within the 98 bp repeats have 6 bp inverted palindromic sequences.

My initial objective was to evaluate the functional role of NF1 motifs in the restricted cell-specificity of JCV. This was approached by site-directed mutagenesis of the nuclear factor 1 (NF1) motifs within the viral regulatory region. The

1

NF1 motifs, located within the 98 bp tandem repeats which contain 6 bp perfect inverted palindromic sequences were important for glial cell-specific expression of JC virus in differentiated embryonal carcinoma cells <u>in vivo</u>. The NF1 site on the late side of the repeats was not important, an observation confirmed by <u>in vitro</u> transcription studies. These observations were correlated with <u>in vitro</u> DNase I footprinting and mobility shift assays, which demonstrated specific interactions of factors in glial cell nuclear extracts with NF1 sites.

To characterize the brain-specific factor(s) inducing the expression of JCV, a cDNA encoding the factor binding to NF1 II/III located in the repeats was isolated by screening the cDNA library prepared from retincic acid-differentiated P19 embryonal carcinoma cells by Southwestern blotting. Cotransfection of cDNA with $JCV_{\rm c}$ and $JCV_{\rm c}$ reporter plasmids resulted in the expression of JCV in nonglial cells such as HeLa cells. These results suggested that NF1 II/III plays a key role in the elid cell type-specificity of JCV.

Mutations in all the three potential NF1 binding sites greatly reduced the transcriptional activity of JCV early promoter-enhancer in glial cells. However, a residual greater than basal level of activity was still observed. Examination of the JCV promoter-enhancer sequences revealed a cyclic AMP response element (CRE) motif, TGAGCTCA, 4 bp from the NF1

ii

II/III binding site in the repeats. This increased the transcriptional activity of JCV_{g} after treatment with the c^{MVP} analogue dibutyryl cAMP and cyclic AMP inducer for^{-treaser}. In. Mutations in CRE motifs abolished the induction of JCVexpression by cAMP. In vitro binding studies showed the interaction of an approximately 43 kDa protein with CRE oligonucleotide. The results indicated an additive effect of NPI II/III and CRE in the glial cell-specific expression of JCV.

JCV large T-antigen functionally transactivates the viral late promoter only in glial cells and the molecular mechanism for transactivation has remained elusive. The NF1 sequences of JeV and the amino acids of JCV T-antigen required for the transactivation have remained unclear. I performed experiments to address these issues. Using site-directed mutagenesis of NF1 sites of JCV,, the integrity of nuclear factor 1 (NF1) binding motifs in the 98 bp repeats (NF1 II/III), but not the motif external to the repeats, was found to be essential for the induction of JCV, activity by JCV Tantigen, a result which was confirmed by in vitro transcription assays. Mobility shift assays detected the increased binding of NF1 to the NF1 II/III sequences in the presence of T-antigen. This suggests that JCV T-antigen facilitates the increased binding of NF1 to NF1 II/III site, thereby activating the late promoter of JCV. A model

si.

111

describing the mechanism has been proposed.

The region(s) of T-antigen necessary for the transactivation of JCV_{L} was assessed with a series of constructs containing mutated coding sequences which I generated. The amino acids 196-437 region of JCV T-antigen was required for most of the transactivation of JCV_{L} and transformation of primary baby rat kidney cells.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisors Drs Mary M. Pater and Alan Pater for their valuable and immense guidance. I wish to thank Drs. Gary Paterno and Peter Howard for their guidance as supervisory committee members for various durations. I am grateful to Dr. Chet Michalaski, former assistant dean and Dr. Verna Skanes, present assistant dean for their moral support and encouragement. I would like to thank Drs. Jon Church, Laura Gillespie and Martin Muligan for serving as members of my comprehensive examination committee.

I am grateful to Sri. Venkateswarlu, elementary school teacher and late Sri. G. Venkata Reddy, Head master of high school studies for their initial guidance that enabled me to work efficiently and in a planned manner. I am bereft of words to express my gratitude to Dr.S. Krishna Swamy, former professor, department of Microbiology, College of Veterinary Sciences, Tirupati for his moral support which inspired me to pursue higher studies. I am also grateful to Dr. P.C. Choudhury and Dr. P. Rama Rao, professors, college of Veterinary Sciences, Tirupati for their help.

I am thankful to Dr. Harikrishna Nakshatri for his help during the beginning of my Ph.D programme. I am grateful to Dr. Belaguli N. Swamy and Dr. Rakesh Mittal for their stimulating discussions and encouragement and Dr. Kasinadhuni

v

Satish for his encouragement and nice company. I thank my colleagues, Miss Christine Kisaka, Dr. Khare, Dr. Kouichiro Tsutsumi, Dr. Masa'əshi, Mr. Mingfeng Liu, Dr. Nakao, Dr. Sun, Dr. Raghuram, Dr. Shindoh and Mr. Yang. I am especially thankful to Dr. Balaji Balasa for his immense help in making figures and Dr. Devireddy for his help in Western blotting.

The technical assistance provided by Michelle Power, Anne Roche, Clarann Floyd, Macuma Rahimtulla and Ge Jin is highly acknowledged. The support and help extended by Dr. Kota Prasad during my preparation for comprehensive examination is unforgettable. I also thank Drs Nagendra Prasad, Fanduranga Rao and Shyam for their help. I thank Nr. Jason Lilly for proof-reading my thesis. I am grateful to Dr. C.V.V Prasad and Smt. C. Sarada and Dr. Markandeya Jois for making me feel at home during the initial part of my programme.

The blessings of my parents, affection of my brothers, best wishes of my sisters-in-law and longstanding waiting and understanding of my fiance Dr. B. Padmalatha has given me the strength, enthusiasm and encouragement in carrying out this study. The financial assistance provided by graduate studies, Memorial University of Newfoundland was of great help to me and is highly acknowledged.

vi

TABLE OF CONTENTS

ABSTRI	ACT .	• •	•	• •	•	٠		•	٠	•	•	•	•	٠	٠	•	•	•		٠	•	•	i
ACKNOT	WLEDGE	MENT	•	•	•		·		•		•	•		•	•	•	•	•		•		•	v
TABLE	OF CO	NTEN	rs .	•				•	•	•	•	•		•	•	•	•	•		•		1	711
LIST C	OF FIG	URES		•				•	•	•	•					•	•			•	•	,	cii
LIST C	OF TAB	LES	•	•	•	÷	•	•	•	•	•	ġ.	÷	•	•	•	•	•		•		,	rvi
LIST C	OF ABB	REVIN	TIC	NB	•	•	•	•	•	•	•	•		•	•	•	•		•		•	X/	rii
CHAPTH	ER 1 I	NTROI	DUCI	101	N																		
1.1 8	BERO-E	PIDE	101	OG	Y	DF	JC	v	IR	U	3	(J(CV)		•	•	•	•	•	•	•	•	2
1.2 1	ODE O	F TRI	ANS)	IIS	810	DN	OF	J	CV		•	•		•	•	•	•	•					3
1.3 3	C VIR	US GI	INON	E		2																	4
	1.3.1	Gene	aral	f	831	tur	res	÷.,		-	2	3	÷.	Ο.		2	0	С.	0	÷.			4
1	1.3.2	Regu	lat	or	v	rec	rio	n	of	1	C	,	2	2			9	1	1	1	1		5
	1.3.3	Non-	str	ne	tun	a	n	ro	te	1.		۰.	÷.	э.	•			÷.		۰.	•	•	6
	1	. 3. 3.	1 1	ar	-	Ψ.		+ 1	~	-		÷.		•			•	÷.		•	•	•	
	ĩ	. 3. 3.	2 8	ma	11	÷.		+ 4	90	-		•	•	•	•	•	•		•	•	•	•	2
20	2 4	a+			÷		te	1.	90	**	•	•	•	•	•	•	•	•	•	•	•	•	-
		200	1000	II a.	1.1	110	JLe	11	3 	:	•	•	•	•	•	•	•	٠	•	•	•	•	-
	1		1.0	ap	910	1 1	pro	te	11	9	•	•	•	٠	•	•	٠	٠	•	٠	•	•	1
1.4 F	IETERO	GENEI	TY	OF	J	v	GE	NO	ME		•	•	ł	•	•	•	•	•		•	•	•	8
1.5 1	ATENC	Y OF	JCV	1	٠	•	•	•	•	•	•	•	ł	•	•	•	•	•	ŝ	•	•	•	13
1.6 5	ESTRI	OTTON	I OF		v	GI	nw	тн	T	0	GI		ΔТ.	CI	ат. т	8	т		יסי	т.			
	ULTUR	E .																					16
			20.02	- 6	2						÷.			•		2				•	•		
1.7 1	RANSC	RIPTI	ON		•	•	•	•	•	•		÷	•	•	•	•	•		ł	•	٠	•	19
1	.7.1	Pron	ote	r a	and	1 6	nh	an	ce	r	e]	er	ten	ts			Ξ.		÷				19
1	.7.2	Tran	SCT	ip	tie	n	fa	ct	or	8						Ξ.	÷.	2	2			2	20
	1	.7.2.	1	Get	net	- 1	t	ra	na		ir	t.i	0.0	٠,	ar	it e		. · .	a	Fe			20
	-	7 2	2	TT			1.	÷ 4													••	•	24
	1	1 7		2 .	1	M	-P		1.0	-	-	-	al	21		÷.,	÷.,		÷.,	•	•	•	24
				· · ·	•	rie		an	- 3					112	101	÷F	101	.01	1 bi	•			~ *
				•		40		va	-1	UN I		Υ.	aC	-1	va		T.E		:	•	•	٠	44
			1.7	.2.	.2.	1.	1	I	nt	er	ac	11	on	_ 0	r.	ac	521	va	TCC	rs			
								W	it	h	ge	ne	ra	1	tr	ar	ISC	ri	pt	10	n		
								£	ac	to	rs	. (GT	Fs)	•							25

1.7.2.2.1.2 Interaction with TRP associated factors (TAFs)/ coactivators 27 Stimulation of basal 1.7.2.2.1.3 transcription by relieving repression 31 1.7.3 Factors that influence the transcriptional activation by gene-specific activators 1.7.3.1 DNA binding site and transcriptional 1.7.3.2 Intrafamily protein-protein Interfamily protein-protein 1.7.3.3 1.7.3.4 Covalent modification of transcription factors and transcriptional 1.7.4 Transcriptional regulation of cell-1.7.4.1 Muscle specific gene expression . . . 36 1.7.4.2 Brain-specific gene expression 39 1.7.4.2.1 Glial cell-specific gene 1.7.4.2.1.1 Glial cell-specific expression of GFAP 39 1.7.4.2.1.2 Expression of \$100\$ in glial cells 40 1.7.4.2.1.3 Glial cell-specific expression of PLP 40 1.7.4.2.1.4 Myelin basic protein gene expression in glial cells . 41 1.7.4.2.2 Neuron-specific gene expression 41 1.7.5 Glial cell-specific expression of JC virus . 43 1.7.5.1 Transcription initiation of JCV early and late genes 43 1.7.5.2 Glial cell-specific expression of JC virus regulatory region in cell culture 45 1.7.5.2.1 Expression of JCV in P19 embryonal carcinoma cells 50 1.7.5.3 Cellular transcription factors that bind to JCV promoter-enhancer

CHAPTER 2 MATERIALS AND METHODS

2.1	MATERI	ALS .	•	• • •	• • •	• •	• •	•	• •	1	•		•	•	•	•	•	61
2.2	METHOD	в																62
	2.2.1	Cell	cult	ture	, dis	ffer	ent	iat	ior	01	E							
		trang	fact	tion	CINC	June				۰.								62
	2.2.2	Plasm	ida	and	site	n-di	Tec	ted	1 m1	tac	Ten		is	1	•	•	•	64
	2.2.3	Chlor	ampl	heni	101	acet	vit	TAT	sfe	TAS	10				•	•		
		(CAT)	899	RVS								2	2	21				66
	2.2.4	Nucle	ar	ovtr	act a	orer	ara	+10	n i	he	DN			÷	•		•	•••
		footr	rin	ting		Prop							-	۰.	122	121	121	67
	2.2.5	Whole	Ce'	11 61	tra	nt n	Ter		tie	'n	÷.	÷.,		2	•	•	•	69
	2 2 6	Semie	nce	a of	0110	TONI	1010	oti	det		ned	· .	•		•			•••
	2.2.0	in in		trol	hind	ina												70
	2 2 7	Nobil	4 + ++	chi	Ft a				· · ·		•	•	•	•	•	•	•	71
	2.2.7	ITT ar	TCA	link	ing i	obay		•	• •	•	•	•	•	•	•	•	•	73
	2.2.0	Couth	033.	LINA.	hlo	4.550	11.				•	•	•	•	•	•	•	70
	2.2.9	Duch	wes	Cern	DIO		213	913			· .		:	÷.,	•	•	•	14
	2.2.10	RNA P	rep	arat.	LON 4	and	LIL	onu	1016	ase		RN	as	е,				-
		proce	CLI	on as	aaay	· · · ·	• •	•	•		•	•	•	•	•	•	•	/3
	2.2.11	In Vi	tro	tra	nscr:	ipti	on	ass	ays	• •	•	•	•	٠	•	•	٠	13
	2.2.12	Prepa	rat:	ion	DI CI	DNA	111	oral	Y I	roi	n F	A-						
		diffe	ren	tiate	ed P:	19 e	mbi	:YOI	al	ca	rci	no	ma	L				20.3
		cells	• •			• •		•	• •	•	•	•	•	•	•	٠		74
	2	2.2.12	.1 :	Isola	ation	n of	pc)ly	A+	RN	A	•	•	•	٠	٠	•	74
	2	2.2.12	.2	Prepa	arat:	ion	of	CDI	IA 1	roi	n m	RN	A	٠	٠	٠	•	75
		2.2.12	.3 1	Bize	fra	ctic	nat	ior	1 01	C	DNA	a	nđ	L				
				ligat	tion	of	CDP	IA 1	:0 /	lgt	22	A						
				vecto	or .			•		•			•			٠	•	76
		2.2.12	.4 1	Packa	aging	g of	: λ	vec	tot	-cl	DNA	a	nđ	L				
			1	prepa	arat	ion	of	CDI	IA I	ib	rai	Y						77
		2.2.12	.5	Ampl:	ifica	atic	n c	of c	DN	1 1:	lbr	ar	Y					78
	2.2.13	Scree	nine	1 of	CDN	A li	bra	rv										78
	2.2.14	Weste	rn 1	blot	ana	lvsi												79
	2.2.15	North	ern	blo	t and	alvs	is					÷.						80
													-	2	-			
CHAD	TED 3	HIMAN	7.	VTR	IS PI	PRFF	OT	PAI	TN	ROI	ятс	N	uc	T.F	AF	2		
Unin	IDA O	PAOTO	D 1	INP	IN B	TNOT	NG	SEC	TIE	ICE	9 7	MD	OF	TZ	NT			
		FOR C	TTA	C OP		DECT	PTO	1 21	DDI	100	TON	. T	N	DI	0			
		DIPPE	DEM	DTRM	ING I	PHOT	VOI	INT.	CAI	OCT	NON		CE	T.T				
		DIFFE	RER	LANT.	LING 1	DFIDF	101	UAD.	Chi	(CI)	NOR		C.L		10			
3.1	INTROD	UCTION		• • •			• •		•		•	•	•	•	·	•	•	81
2.2	DEGUT.T	q																
3.2	3.2.1	Role	of	snec	fic	NET	94	m	ance		in	ir	1	i.	70			
		activ	1+-	of	TOV	anha	ince	ar						-	-			83
	3 3 3	Pole	of	MP1	amu	anad		n 1				-	÷4	vi	+.	, [•]	•	
	3.6.6	of TO	TT at	nhen.		once							-1			۰.		87
		01 00		unand	er.	• •	• •	•	•		•		•	•	•	•	•	57

	3.2.3	Effect of mutations in NF1 binding sites
		on DNA-protein interactions 92
	3.2.4	Nature of proteins interacting with NF1
		sites
	3.2.5	Isolation and preliminary characterization
		of a cDNA encoding the factor binding to
		NF1 II/III motif of JCV 100
		3.2.5.1 Screening of the P19 RA library 100
		3.2.5.2 Transcriptional activity of cDNA in
		nonglial cells 106
3.3	DISCU	BSION
CHAP	TER 4	HUMAN JC VIRUS NUCLEAR FACTOR 1 BINDING
		MOTIF AND LARGE TUMOUR (T-) ANTIGEN DOMAINS
		REQUIRED FOR TRANSACTIVATION OF LATE PROMOTER
4.1	INTRO	DUCTION
4.2	RESUL	18
	4.2.1	NF1 motifs required for JCV, transactivation.130
	4.2.2	Mediation of JCV large T-antigen effect
		through NF1 II/III 137
	4.2.3	T-antigen domains for JCV, transactivation
		and transformation 145
	4.2.4	Western blot analysis of WT and mutant
		T-antigen expression plasmids 151
4.3	DISCUS	SSION
CHAP	TER 5	ROLE OF CYCLIC AMP RESPONSE ELEMENT (CRE) IN JCV EXPRESSION
5.1	INTROL	DUCTION
5.2	RESULT	18
	5.2.1	Role of CRE in in vivo expression of JCV . 170
	5.2.2	Effect of NF1 mutations on induction by
		cAMP of JCV promoter-enhancer 170
	5.2.3	Role of CRE in in vitro expression of JCV . 173
	5.2.4	Mechanism of cAMP regulation of JCV 178
	5.2.5	Effect of mutations in CRE on cAMP
		induction of JCV promoter-enhancer 178
	5.2.6	Induction by cAMP of expression of a
	2.2.0	heterologous promoter in glial cells
		by cAMP response element (CRE) sequences
		of JOV

5.2.7	Intera (FSK)-	ction of treated	protei P19 gli	ns from al cell	fors s wit	koli h JC	n V CRE	
	sequen	ce						191
	5.2.7.1	In vitr	o inter	actions	dete	cted	in	
		mobility	y shift	assays				191
	5.2.7.2	Identif:	ication	of pro	otein(S)		
		binding	to JCV	CRE Se	grienc	e as		
		determi	ned by	Southwe	estern	blo	t and	
		UV cros	slinkin	g assay	18	• •		191
5.3 DTSCI	STON .							199
JIJ DIDCO	bion .	••••		•••				
CHAPTER 6	FUTURE	DIRECTI	ONS			• •	• • •	212
REFERENCES								220

List of figures

Figure 1.1	Circular diagram of the JCV genome 9
Figure 1.2	Diagrammatic representation of binding
	sites for various transcription factors
	in the regulatory region of JCV 57
Figure 3.1	Wild type and mutated NF1 motifs in JCV_E
	sequences ir CAT plasmids and DNaseI protected
	regions
Figure 3.2	Effect of mutation of JCV NF1 sites on
	<u>in vivo</u> activity
Figure 3.3	Requirement of JCV NF1 sites for in vitro
	activity
Figure 3.4	Effect of mutations on DNaseI footprinting
-	of JCV NF1 sites
Figure 3.5	In vitro binding of glial cell transcription
	factor(s) with JCV promoter-enhancer in
	mobility shift assays
Figure 3.6	In vitro binding of glial cell extract with
riguio oro	NF1 II/III oligonucleotide by mobility shift
	acceve
Timuna 2 7	Assays
Figure 3.7	Identification of x phage recombinant CDMA
	cione which specifically binds to NF1 11/111
	element
Figure 3.8	specificity for NF1 11/111 binding by the
	positive recombinant cDNA clone, 1 K1 104

Figure 3.9 Northern blot analysis of P19 total RNA,

using X1 cDNA as probe 107 Figure 3.10 Expression of JCV early, late and EKV early promoters in nonglial cells in response to clone K1 NF1 109

- Figure 4.2 Effect of NF1 mutations on JCV_L transactivation by T-antigen in glial cells . . 133
- Figure 4.3 Effect of NF1 mutations on JCV_L transregulation by T-antigen in P19 muscle cells 135

- Figure 4.6 Effect of T-antigen on NF1 binding 143
- Figure 4.7 Diagram of mutated T-antigen sequences . . 146
- Figure 4.9 Western blot analysis of T-antigen proteins

expressed from mutated plasmids 152

Figure 4.10 Model for possible mechanism of transactivation of JCV late promoter by large T-

Figure 5.2A Effect of CAMP on CAT expression from JCV_E and JCV 98 bp repeat for wild type and mutated NF1 site in undifferentiated (UD) P19 cells 174

- Figure 5.2B Effect of CANP on CAT expression from JCV_E and JCV 96 bp repeat for wild type and mutated NF1 site in DMS0-differentiated P19 cells . 174

- Figure 5.7 Induction by cAMP of JCV CRE in the context of a heterologous promoter in glial cells . . 187

xiv

Figure	5.9	Invitro binding of JCV CRE oligonucleotide
		in mobility shift assays 192
Figure	5, 1.0	Southwestern blot analysis with JCV CRE
		oligonucleotide 195
Figure	5.11	UV crosslinking assays with JCV CRE
		sequence

LIST OF TABLES

Table 4.1 Transformation domains of JCV T-antigen . . 150

LIST OF ABBREVIATIONS

α -MEM	=	Alpha modification of Eagle's medium
AIDS	-	Acquired Immunodeficiency syndrome
AP1	=	Activator protein 1
AP2	-	Activator protein 2
ATF	=	Activating transcription factor
ATP	=	Adenosine triphosphate
BCIP	=	5-bromo-4-chloro-3-indolyl phosphate
BKV	tot .	BK virus
bp	=	Base pairs
BRK	=	Baby rat kidney
BRL	=	Bethesda Research Laboratories
CAMP	=	Cyclic Adenosine monophosphate
CAT	-	Chloramphenicol acetyl transferase
CCG1	=	Cell cycle gene 1
CDNA	=	Complementary deoxyribonucleic acid
CIP	=	Calf intestinal phosphatase
CK	=	Casein kinase
CMV	-	Cytomegalovirus
CNS	=	Central nervous system
cpm	-	Counts per minute
CRE		Cyclic AMP response element
CREB	-	CyclicAMP response clement binding protein
CTD	=	Carboxy terminal domain
CTF	=	CCAAT transcription factor

DBF	=	TFIID binding factor
DBH	-	Dopamine β hydroxylase
DMSO	=	Dimethylsulfoxide
DNA	=	Deoxyribonucleic acid
DNaseI	=	Deoxyribonuclease I
LTT	=	Dithiothreitol
EIA	=	Early region 1A
EDTA	=	Ethylenediaminetetraacetic acid
EGTA	=	Ethylene glycol-bis-(β -aminoethyl ether) N,N'-
		tetraacetic acid
FSK	=	Forskolin
GFAP	=	Glial fibrillary acidic protein
GR	=	Glucocorticoid receptor
GTF	-	General transcription factor
HEK	-	Human embryonic kidney cells
HEPES	=	H-(2-hydroxyethyl)-1-piperzinuthanesulfonic acid
HIV	10	Human immunodeficiency virus
HNF1	-	Hepatocyte nuclear factor 1
HPV	=	Human papillomavirus
HTLV	=	Human T cell leukemia virus
IE	=	Immediate early
Ig	=	Immunoglobulin
JCV	=	JC virus
JCVE	=	JC virus early promoter-enhancer
JCV,	=	JC virus late promoter-enhancer

kDa	-	Kilodalton
LCE		Lytic control element
LCP 1		Lytic control element-binding protein 1
MBP	=	Myelin basic protein
MCK		Muscle creatine kinase
MOI	-	Multiplicity of infection
mRNA	••	Messenger ribonucleic acid
NBT	-	Nitro blue tetrazolium
NC	-	Negative cofactor
NFL	=	Nuclear factor 1
NP40	-	Nonidet P-40
nt	-	Nucleotide
Oct	=	Octamer binding protein
PAGE		Poly acrylamide gel electrophoresis
PBS	=	Phosphate buffered saline
PC	-	Positive cofactor
PCR		Polymerase chain reaction
PHFG	=	Primary human fetal glial cells
PIC	-	Preinitiation complex
Pit	=	Pituitary specific transcription factor
PKA		Protein kinase 1
PKC	-	Protein kinase C
PLP	=	Proteolipid protein
PMA	-	Phorbol-12 myristate-13 acetate
PML	=	Progressive multifocal leukoencephalopathy

PMSF		Phenylmethylsulfonyl fluoride
pol	=	Polymerase
RA		Retinoic acid
Rb	=	Retinoblastoma gene product
RNA		Ribonucleic acid
RNase	=	Ribonuclease
rpm	=	Revolutions per minute
RSV	=	Rous sarcoma virus
SDS	=	Sodium dodecyl sulfate
SL1	=	Selectivity factor 1
Sp1	=	Specificity protein 1
SV40	=	Simian vacuolating virus 40
t-antigen	-	Small tumour antigen
T-antigen	=	Large tumour antigen
TAF	=	TBP associated factor
TBP	=	TATA box binding protein
TBS	=	Tris buffered saline
TFII	-	Transcription factor II
TH	=	Tyrosine hydroxylase
TK		Thymidine kinase
TLC	=	Thin layer chromatography
TPA	=	12-0-tetradecanoyl phorbol-13-acetate
UD	=	Undifferentiated
UPE	=	Upstream promoter elements
USA	12	Upstream factor stimulatory activity

USF = Upstream stimulatory factor

UV = Ultraviolet

CHAPTER 1

Introduction

Human JC virus (JCV) belongs to the family papovaviridae and subfamily polyomavirinae. The existence of polyoma viruses was first described in 1965 (Zu Rhein and Chou, 1965). The severe demyelinating brain disease called progressive multifocal leukoencephalopathy (PML) had been described previously (Astrom et al, 1958). A role of polyoma viruses in the etiology of PML was suspected, since particles resembling the polyoma virus virions were detected by electron microscopy in the brains of patients with PML (Zu Rhein and Chcu. 1965: Silverman and Rubinstein, 1965). A polyoma virus was isolated from the brain of a PML patient. This virus was named JCV from the initials of the PML patient (Padgett et al, 1971). Further, another polyoma virus, BK virus (BKV), was isolated from the urine of a renal transplant patient (Gardner et al, 1971). It was thought initially that BKV and SV40, a virus introduced into many of the recipients of early polio vaccines due to contamination from monkey cells used in vaccine preparation, were also associated with PML (Weiner et al, 1972; Gribble et al, 1975; Holmberg et al, 1977; Scherneck et al, 1981). Current evidence indicates that JCV is the only or major viral cause of PML (Eizuru et al, 1993). Subsequent to the isolation of JCV in 1971, evidence that JCV is associated with PML was reported by several laboratories (Gardner, 1977; Taquchi et al, 1982; Walker and Padgett, 1983).

1.1 SERO-EPIDEMIOLOGY OF JC VIRUS

Once the association of JCV with PML was established, serological surveys were used to gain insight into the incidence of the disease. Serological studies conducted in Wisconsin showed that 65% of individuals were positive for anti-JCV antibodies by the age of 14 (Padgett and Walker, 1973). The high prevalence of antibodies against JCV was further reported from different regions of the world.

Inapparent primary infection by JCV occurs in childhood and approximately 10% of children between the ages of 1 and 5 years demonstrate antibody to JCV. By 17 years of age, 65% of adults will have seroconversion and the adult population in some urban areas show as high as 92% seroconversion (Walker and Padgett, 1983). The virus is transported to the kidney and probably persists there indefinitely (Arthur et al, 1988 and 1989). In noncompromised individuals attending urologic clinics, JC viral DNA was detected in 29% and the presence of JCV DNA increased with age and peaked at 45% in the 60-89 years age group. Importantly, under immunocompromising conditions, such as renal and bone marrow transplantations, pregnancy, elderly and cancer, the virus is reactivated and can infect the brain (Hogan et al, 1980a, 1983; Gardner et al, 1984; Andrews et al, 1988; Arthur et al, 1988; Coleman et al, 1980 , 1983; Gibson et al, 1981; Daniel et al, 1981; Kitamura et al, 1990). It has been demonstrated that 55 to 85% of cases

of PML have AIDS, again supporting the theory that reactivation of JCV is associated with immunosuppression (Berger <u>et al</u>, 1987; Krupp <u>et al</u>, 1985). Recently, overwhelming evidence has been found for the association of PML with the AIDS epidemic and PML is a frequent complication of AIDS (Quinlivan <u>et al</u>, 1992).

Direct interaction of the AIDS virus (HIV type I) and JCV proteins was also reported (Gendelman <u>st al</u>, 1986; Tada <u>st</u> al, 1990). PML is the cause of death of 4% AIDS patients in North America (Markowitz <u>st al</u>, 1993). Both pregnant women and immunosuppressed patients who do not have PML shed JCV in their urine, suggesting that loss of immunocompetence predisposes individuals to the reactivation of a latent infection (Coleman <u>st al</u>, 1980; Gardner <u>st al</u>, 1984). However, the exact mechanism of primary infection by JCV has remained unclear.

1.2. MODE OF TRANSMISSION OF JCV

As JCV incidence is frequent in pregnant women, studies on the congenital transmission of the virus were attempted. Sera from the umbilical cord of infants of normal mothers did not reveal any JCV-specific IgM antibodies (Gibson <u>et al</u>, 1981) and fetal tissues also failed to show the presence of virus (Andrews <u>et al</u>, 1983). Serological studies confirmed that humans are the natural reservoir of JCV and that the virus is not transmitted by animal intermediates (Padgett <u>et</u> al, 1977).

1.3. JC VIRUS GENOME

1.3.1. GENERAL FEATURES

The genome of prototype strain, MAD1 contains a 5130 bp covalently closed circular double-stranded DNA genome. The genome of this virus encodes two non-structural proteins, large T and small t antigens, three structural proteins named VP1, VP2, VP3 and an agnoprotein (Fig.1.1; Frisque et al, 1984). JCV exhibits close sequence homology to two other well characterized primate papovaviruses, the simian virus (SV40). and the human BK virus (BKV) (Osborn et al, 1974; Frisque et al, 1984). JCV and BKV share approximately 80% homology between their early proteins and late viral capsid proteins. JCV and SV40 share approximately 70% homology in these regions. However, unlike BKV and SV40, JCV has a narrow tissue tropism and JCV replicates efficiently exclusively in primary human fetal glial cells rich in spongioblasts, the precursors of oligodendrocytes (Aksamit and Proper, 1988; Wroblewska et al, 1980). In transgenic mice expressing JCV T-antigen JCV induces dysmyelination in central nervous system but not peripheral nervous system (Small et al, 1986). Subsequent to the isolation of the JCV for the first time in 1971, new isolates were reported. The first isolates of JC virus were reported from the University of Wisconsin in Madison and the isolates were designated as Mad1 (the prototype), Mad2, etc.

The prototype strain, Mad1 , contains two 98 bp repeats with one TATA box in each as part of its regulatory region (Martin et al, 1985; Loeber and Dorries, 1988). Most of the isolates of JCV were from the brain and few were from kidneys, urine of PML patients, renal and bone marrow transplant recipients or from normal individuals. The genome of JCV isolated from the urine of non-PML elderly individual who had no signs of immunosuppression contained a 23 bp insertion which was not found in prototype Madl strain. A 66 bp insertion was also found in the genome between nt 80 and 98 of the tandem repeat. The JCV genome with sequence rearrangements that includes 23 and 66 bp insertion is called the "archetype" genome (Yogo et al, 1990).

1.3.2. REGULATORY REGION OF JCV:

The sequences corresponding to nucleotide positions 5112 to 270 form the non-coding region of JCV (Fig. 1.1). It consists of promoter-enhancer elements essential for transcription and also the core sequences important for viral DNA replication. The regulatory region of JCV is functional in both directions. In one direction, the early region encodes large T and small t antigens. Second expression from the late promoter-enhancer leads to the formation of structural proteins of the virus. The sequences of replication origin of SV40, BKV, and JCV are well conserved, whereas, the sequences of promoter-enhancer elements diverge greatly. The regulatory region of JCV contains two 98 bp tandem repeats (Fig. 1.1) and the unique feature of this virus, compared with BK and SV40 viruses, is that the TATA box is duplicated in each of the 98 bp repeats. The regulatory region also contains several <u>cig-</u> acting elements bound by cellular transcription factors.

The activity of JCV regulatory region unlike those of SV40 and BKV, is strictly restricted to glial calle. %t has been suggested that the JCV control region consisting of the promoter-enhancer elements is responsible for the restricted tissue specificity, because the greatest degree of divergence is noticed in the regulatory region of JCV compared to those papovaviruses such as BKV and SV40 (Kenney <u>et al</u>, 1984; Nakshatri <u>et al</u>, 1990a).

1.3.3. NON-STRUCTURAL PROTEINS:

1.3.3.1. LARGE T- ANTIGEN:

The large T-antigen of JCV has not been studied in as much detail as the SV40 T-antigen. The large T-antigen of SV40 exhibits several properties like specific and non-specific DNA binding, alpha polymerase-primase binding, p53 and Rb binding, ATPase and helicase. These features have been correlated with SV40 transforming and oncogenic properties (Fanning, 1992). Since JCV and SV40 large T-antigens bear significant homologies, it was predicted that JCV T-antigen exhibits most of the properties that SV40 T-antigen does. Consistently, studies with JCV T-antigen showed that it has DNA (Lynch and Frisque, 1991), p53 (Bollag <u>et al</u>, 1989; Haggerty <u>et al</u>,1989), and Rb (Dyson <u>et al</u>, 1989; 1990) binding activities. It has transforming (Frisque <u>et al</u>, 1980) and transregulating (Tada <u>et al</u>, 1990) properties. In addition, it mediates DNA replication of the JCV (Sock <u>et al</u>, 1991; Lynch and Frisque 1991).

1.3.3.2. SMALL t-ANTIGEN:

The JCV early RNA transcript is differentially spliced to produce small tumor (t) RNA (Fig.1.1). The large T and small t-antigens have the same amino terminal region but differ in their carboxyl terminal regions (Frisque <u>st al</u>, 1984). Like large T-antigen, the small t-antigen of JCV is not studied in detail. However, based on the sequence homology (52%), it is presumed that JCV and SV40 small t-antigens behave identically. SV40 small t-antigen was found to be necessary for complete transformation of non-permissive cells (Bouck <u>st</u> <u>al</u>, 1978; Sleigh <u>st al</u>, 1978). Small t-antigen also enhances the transactivating function of large T-antigen (Bikel <u>st al</u>, 1987).

1.3.4. STRUCTURAL PROTEINS:

1.3.4.1. CAPSID PROTEINS:

Due to the difficulty in propagating JC virus in cell culture, limited work has been done on the structural proteins. The largest open reading frame located near the 3'end of the late region encodes the 354 amino acid VPI capsid
protein, the major structural protein. It plays an important role in the cell adsorption. The smallest open reading frame at the 5' end of the late region encodes a 71 amino acid polypeptide, the agnoprotein. The exact function of this protein is not clear but it is assumed that it binds DNA and is involved in the viral maturation pathway. Between the 5' and 3' open reading frames of agnoprotein and VP1 proteins are two open reading frames that encode VP2 and VP3 capsid proteins of 344 and 225 amino acids, respectively (Frisque <u>st</u> al, 1984; Fig. 1.1).

1.4. HETEROGENEITY OF JCV REGULATORY REGION

JCV DNA isolated from infected glial cells is variable in size and considerably shorter than the full length infectious genome (Oaborn <u>et al</u>, 1974; Howley <u>et al</u>, 1976; Martin <u>et al</u>, 1979; Grinnel <u>et al</u>, 1983). The multiplicity of infection (moi) and the cell population influence the degree of heterogeneity of JCV genome. For example, when passaged in oligodendrocyte rich cultures of primary human fetal glial(PHFC) cells at low moi, JCV DNA of unit length were observed. However, when passaged in astrocyte rich cultures with high moi, heterogeneous populations of JCV DNA were recovered (Martin <u>et al</u>, 1983). This suggests that the heterogeneity of the JCV genome depends on the <u>in vitro</u> propagation conditions, the source of the DNA and the natural genetic variation of the isolate.

Fig. 1.1 Circular diagram of the JCV genome.

The early and late regions are shown in the anticlockwise and clockwise directions, respectively. The numbers indicate nucleotide (nt) positions. The relative positions of the origin of DNA replication and the 98 bp repeats in the regulatory region of the JCV are indicated on the top. The open reading frames are shown as large open arrows of early proteins, T-antigen (T) and t. The dashed lines indicate intron sequences in large T-antigen coding sequences. The four open reading frames of late structural proteins of the virus are shown on the right side.

'This figure is made based on the Fig. 3 of Major et al (1992)

Initial studies were focused on the analysis of JCV DNA from brains and kidneys of PML patients. The two types of DNA varied in size and restriction patterns (Dorries 1984). Subsequently, a total of 13 DNA isolates from 6 different patients were cloned from brain tissue or virus that had been propagated in cell culture (Martin et al, 1985). The results suggested the presence of two types of JCV genome, type I and type II. The regulatory region of type I isolates were identical and contained the two 98 bp tandem repeats with duplicated TATA box, one in each of the repeats, lacked the consensus Spl binding site and thus resembled the prototype MAD1 strain. Type II genomes differed from one another but had several features in common. Each of them had lost one TATA box and diverged from the Madl sequence at nt 36. In addition, type II genomes had a 23 bp insertion which includes Sp1 recognition site present in the archetype sequences. Several isolates, namely Mad4, Mad8-Br, Mad11-Br and Her1-Br were recovered during isolation studies. All of these genomes are of type II except Mad1 and Mad4. Mad4 strain resembles Mad1 except for the absence of distal TATA box. The other variants are all of type II, having 23 bp insertion with Sp1 recognition site. Madll-Br contains the 66 bp and 23 bp insertions (Matsuda et al, 1987; Major et al, 1987; Yogo et al, 1990).

Interestingly, passage of the virus from the infected brain tissue in PHFG cells resulted in a number of rearranged regulatory regions. Some of these had lost the 23 bp sequence found in type II regulatory regions, and thus resembled the Mad4 isolate. In order to clearly understand the differences in the regulatory regions of JCV genomes isolated from kidney and brain of PML patients, sequencing of the JCV DNA isolated directly from kidney and brain tissue of a PML patient was attempted. The brain isolate designated as GS/B was slightly larger than the kidney isolate, GS/K. Comparison of coding regions of the Mad1 and GS/B DNAs revealed a total of 96 nt differences and only 4 amino acid changes were detected in the larger T-antigen coding region. Major sequence differences were noticed in the regulatory regions of Mad1, GS/B, and GS/K genomes (Loeber and Dorries, 1988).

The regulatory regions of Madl and GS/B contained two 98 bp repeats and two repeats of 63 and 93 bp, respectively. Sequences from 63 bp and 5' end of 93 bp repeat of GS/B were highly homologous to the 3' region of 98 bp repeat of Madl. The GS/B sequences resembled that of Madl strain to a certain extent and also contained tandem repeats. The sequence of GS/K strain differed from GS/B by not having large tandem repeats and also by containing Sp1 factor binuing site and 23 bp insertion, which was highly suggestive of the presence of archetype sequences. Based on these results, it was thought that the hypervariability of JCV regulatory sequences may be a process of adaptation of JC virus from the kidney to the brain prior to the onset of PML (Loeber and Dorries, 1988).

Subsequent attempts were made to isolate JCV directly from non-PML patients to find out whether the kidney form of JCV differs from that of isolates from PML patients. Successful attempts in this direction have been reported (Yogo et al. 1990). JCV DNA from the urine of 8 non-immunosuppressed patients and two healthy individuals was analyzed in Japan. The sequences of all the clones were related to each other and differed only at 4 nt positions. The genomes resembled archetype DNA with one TATA box and a 23 bp insertion relative to the MAD-types. Interestingly, the sequences of these isolates from Japan were similar to the GS\K strain isolated in Germany several years earlier, except for the difference in 3 nt positions. These results suggested that the JCV DNA from the urine of healthy and nonimmunocompromised individuals predominantly contains archetype DNA. Hence, it was concluded that the brain-specific forms are generated from archetype sequences by DNA rearrangements.

1.5 LATENCY OF JCV

A longstanding puzzle has been the cell type in which JCV is latent. The brains from immunosuppressed and nonimmunosuppressed patients without PML contained no JCV early and late proteins by immunocytochemistry and the JCV genome could not be detected by in situ hybridization (Hogan et al, 1980b). Recently, PCR technology has been used to demonstrate the presence of viral DNA in brain tissue from PML patients (Arthur et al, 1989; Telenti et al, 1990). However, PCR analysis did not detect JCV DNA in healthy brain tissue or brain tissue with other neurological abnormalities (Henson et al, 1991). Taken together, these observations suggest that JCV remains latent outside the central nervous system (CNS) and then gains access to the nervous system during immunosuppression. JCV is shed in the urine of pregnant women and immunosuppressed renal transplant patients. This indicates that the virus is latent in genitourinary tract (Coleman et al, 1980). In one study it was found that 10% of healthy individuals have integrated JCV DNA in renal tissue (Chesters et al, 1983). Using dot blot hybridization, JCV genome was detected in the kidney of five of seven PML patients (Grinnel et al, 1983).

Presence of archetype DNA is also demonstrated in normal renal tissues (Tominaga <u>et al</u>, 1992., White <u>et al</u>, 1992). The phylogenetic analysis indicated that the archetypal regulatory sequences are conserved in the course of JCV evolution (Iida <u>et al</u>, 1993). These observations further supported the previous assumptions that the JCV is latent in the kidney and during the immunosuppression, the regulatory region undergoes rearrangements and subsequently infects the brain. Recent findings on archetype JCV DNA provided evidence for the generation of a brain-specific form from the archetype. The sequences corresponding to nt 177-204 and 192-219 in archetype JCV contain high homology to V-(D)-Jrecombination signals. A host cell DNA-cutting or recombining activity might target the viral regulatory region leading to its rearrangements. Such sites of breakage and rejoining are present only at the sites mentioned above. The rearrangements in the archetype JCV DNA sequences ultimately lead to the generation of infectious brain-specific form (Ault and Stoner, 1993). Support for this comes from another recent study which showed that the incidence of rearranged JCV regulatory regions compared to archetypal sequences is higher in immunosuppressed renal transplant recipients than in monimmunosuppressed patients (Kitamura et al, 1994).

JCV DNA sequences have also been detected in Blymphocytes of normal individuals and PML patients (Tornatore at al, 1992). Using in situ hybridization, presence of JC virus DNA was demonstrated in mononuclear cells at 200-1000 copies per cell, indicating the replication of viral genome (Houff <u>et al</u>, 1988). The B-lymphocytes also possess transcription factors that bind to the regulatory region of JCV (Major <u>et al</u>, 1990). Taken together, these observations suggested a model wherein the JCV can be present in the bone marrow during latency and subsequently, the virus infected lymphocytes enter the perivascular space of the brain resulting in infection of the brain. It has been demonstrated recently that the nuclei of peripheral blood leucocytes of immunocompetent individuals harbour JC virus thus providing a strong evidence for the persistence of JCV in leucocytes of healthy individuals. In addition to kidney and CNS, the leucocytes are also targeted by JCV and upon immunosuppression the virus is reactivated and can infect the brain (Dorries <u>et</u> <u>al</u>, 1994).

1.6. RESTRICTION OF JCV GROWTH TO GLIAL CELLS IN CELL CULTURE

The major difficulty in studying JCV is the identification of a suitable cell culture system that allows its growth. Human embryonic cells from the kidney, lung, liver, amnion, and intestines were tested for expression of JCV (Beckman <u>et al</u>, 1982; Beckman and Shah, 1983; Miyamura <u>et al</u>, 1985). After several weeks in culture, only a few T-antigen positive cells were detected in human embryonic kidney (HEK) cells while the other cell systems were found negative. Later on, monkey kidney cell lines such as, BSC-1, CV-1, and Vero cells that supported the growth of SV40 virus were tried and were not found useful.

These observations raised the question of whether the observed host cell restriction was at the level of virion adsorption or penetration. To address this question, several JCV isolates were used to infect HEK and human lung cells by

transfecting their DNAs. In these studies, primary human fetal glial (PHFG) cells were used as positive control. Only DNA from one JCV MAD type produced T-antigen and late capsid proteins in all the cells tested. DNA of other types were infectious only for glial cells. Therefore, it was concluded that the restricted cell-specificity was not at the level of virion adsorption or penetration but could be due to intracellular factors that control the early gene expression and replication (Frieque <u>et al</u>, 1979).

Consequently, primary human fetal glial (PHFG) cells proved to be the best host for JCV growth. The propagation of JCV was enhanced by elevating incubation temperature from 370 C to 390 C (Grinnel et al, 1982). Cultures that are rich in spongioblasts, the precursor of the oligodendrocytes supported optimum growth of JCV (Padgett et al, 1977). A large number of virions were detected under the electron microscope in the nuclei of spongioblasts and rarely in astrocytes, one of the types of glial cells. However, efficient growth of JCV in astrocytes was reported in another study (Major and Vacante, 1989). No major alterations in the genome, transcriptional activity, virus titres, and lytic cycle were observed in spongioblast rich cultures even after continuous passage. Although the PHFG cells provided a better environment for JCV growth, it is difficult to cultivate these cells. Availability of these cells is another limiting factor. In addition, these

cells contain heterogeneous population of cells and most studies showed that spongioblasts permit maximum yields of virus.

Attempts were then made to look for a permissive cell system that does not have the disadvantages mentioned above. Serial passages of JCV Madl strain in HEK cells resulted in an adapted virus namely, JCV-HEK. This new adapted virus grew efficiently in kidney cells because of deletions and rearrangements in the regulatory region (Yoshiike et al, 1982; Mivamura et al ,1985). Attempts to grow the virus in cells from adult brain were also unsuccessful (Wroblewska et al, 1980). To eliminate all the above mentioned disadvantages, a human fetal glial cell line was developed by immortalization of astrocyte cells with a replication defective SV40 DNA clone that expresses high levels of large T-antigen (Major et al, 1985). This cell line was susceptible to JCV infection. Immortalization of oligodendrocyte precursor cells that divide poorly in the culture was unsuccessful. PHFG cells were transformed by origin defective JC virus to generate a cell line called POJ that allowed maximum growth of JCV (Mandl et al. 1987). Recently, productive infection of JCV was also reported in Schwann cells, the cell type responsible for myelin production in the peripheral nervous system (Assouline and Major, 1991). Overall, the growth and expression of JCV is essentially restricted to glial cells only.

1.7 TRANSCRIPTION

The restricted cell specificity of JCV is largely due to its control region. The activity of JCV regulatory region is limited to glial cells, unlike those of BK and SV40 viruses. Hence further studies were attempted to find out the promoter-enhancer elements and cellular transcription factors that contribute to glial cell specificity of JCV. Before explaining the transcriptional regulation of glial cellspecific expression of JCV, I would like to describe the general transcription machinery and how cell-specific gene expression is controlled at the level of transcription.

1.7.1 PROMOTER AND ENHANCER ELEMENTS

In eucaryotes, promoters transcribed by RNA polymerase II consists of two elements: the TATA box which is usually located 30 nt upstream of the transcription start site, and the initiator elements which are at the start site. These sequences are called the minimal or core promoter elements (Smale and Baltimore, 1989). The TATA box is essential for determining the transcription start site. In promoters lacking TATA box, for example in case of terminal deoxynucleotidyl transferase gene, the initiator element specifies the transpription start site.

The second class of elements called "enhancers" or "upstream promoter elements (UPE)" are recognised by sequencespecific DNA binding proteins that activate transcription from the promoter. The enhancers are of two types: inducible and tissue specific enhancers. The enhancers which are responsive to stimuli such as hormones, heat shock, metals, and growth factors are called inducible enhancers. Examples include metallothionein, β -interferon, <u>g-for</u>, and glucocorticoid hormone response element (Maniatis <u>st al</u>, 1987; Mitchell and Tjian, 1989). The enhancers which are active in certain stages of embryonic development and in specific tissues are called tissue-specific enhancers. The examples for this class include B-cell specific immunoglobulin enhancers, liver cell-specific aminotransferase gene, and brain-specific myelin basic protein gene (Maniatis <u>st al</u>, 1987).

1.7.2 TRANSCRIPTION FACTORS

1.7.2.1 GENERAL TRANSCRIPTION FACTORS

The general transcription factors (GTFs) which are important for basal transcription from the promoter are TFIID, TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, TFIII, and TFIIJ. Most are multimeric complexes which include polypeptides with multiple functional and structural domains (Swadogo and Sentenac, 1990; Zawel and Reinberg, 1993).

TFIID is a multisubunit complex consisting of TATA box binding protein (TBP) and the proteins associated with TBP called TBP associated factors (TAFs) (Pugh and Tjian, 1990). TBP, a 38 kDa protein, specifically recognises and binds the TATA box and is important for transcription initiation (Hawley

Mer.

and Roeder, 1985; Swadogo and Roeder, 1985). The carboxyl terminus of TBP is highly conserved in a variety of species and the amino terminus is highly divergent (Hoffman et al, 1990). The carboxyl terminal domain is essential for DNA binding and species specificity (Cormack et al, 1991; Reddy and Hahn, 1991). TFIID binds in the minor groove and induces bending of DNA. This facilitates the interaction of TFIID with other transcription factors and TAFs (Horikoshi et al. 1992; Starr and Hawley, 1991). Recently, it has been shown that the promoters transcribed by all three polymerases named polymerase I. II. and III. including TATA-less promoters, require binding of TBP (Hernandez, 1993; Zhou et al, 1992). The three dimensional TBP structure revealed the saddle shaped DNA binding domain. The concave surface of 'he saddle makes the specific and non-specific contacts with DNA. The convex surface is made available to the interaction with TAFs, GTFs and gene specific regulators (Kim et al, 1993a; Kim et al, 1993b; Nikolov et al, 1992).

TFIIA stabilizes the TFIID/DNA interactions. In vitro, TFIIA stimulates basal transcription when native partially purified TFIID is used but not when recombinant TBP is used. This indicates that TFIIA is essential to remove a component that negatively regulates TFIID activity (Reinberg <u>et al</u>, 1987). TFIIA is a complex of 35, 19, and 12 kba subunits (Cortes <u>et al</u>, 1992; Coulombe <u>et al</u>, 1992a). A cDNA, hTFIIA/a

encodes both the p35 and p19 subunits of human TFIIA. It was suggested that a protease specifically interacts with the hTFIIA and cleaves 55kDa precursor protein into p35 and p19 subunits (De Jong and Roeder, 1993; Ma <u>et al</u>, 1993; Yokomori <u>at al</u>, 1993a). It has been shown recently that TFIIA has no role in basal transcription. Instead, it acts as a coactivator in activating transcription by gene specific activators by competing with negative regulators of TBP (Ma <u>et al</u>, 1993).

TFIIB interacts with DA complex through the sequences of the carboxyl terminus. The TFIIB amphipathic alpha helical amino terminus is proposed to interact with transcriptional activators (Ha <u>et al</u>, 1991).

TFIIE consists of two subunits, 57 kDa IIE α and 34 kDa IIE β . Both subunits contain sequences homologous to bacterial sigma factor (Ohkuma <u>at al</u>, 1991; Sumimoto <u>et al</u>, 1991). TFIIE stimulates the TFIIH-dependent kinase activity that phosphorylates the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Lu <u>et al</u>, 1992).

TFIIF consists of two subunits of 30 and 74 kDa. Hence it is also called RAP30/74. TFIIF interacts with RNA polymerase II and recruits polymerase to the promoter by preventing interaction with non-specific sites. Since TFIIF exhibits ATP dependent DNA helicase activity, it may play a role in the unwinding of the promoter DNA to form an open complex (Aso <u>st al</u>, 1992; Greenblatt, 1991; Finkelstein <u>st al</u>,

1992).

TFIIH contains seven subunits with molecular masses of 94, 75, 62, 46, 43, 38, and 35 kDa (Ohkuma and Roeder, 1994). Hydrolysis of the $\beta-\gamma$ bond of ATP is essential for transcription initiation and part of the energy is used for unwinding the DNA double helix in the region of the initiation site (Swadogo and Roeder, 1984). TFIIH possesses DNA-dependent ATPase and kinase activities. It phosphorylates CTD of RNA pol II (Lu et al. 1992). Recently, it has been demonstrated that in vitro in the absence of TFIIE, TFIIH can not act on CTD because of the tight association of CTD with TBP and DNA template. Addition of TFIIE enables TFIIH to enter the preinitiation complex, thereby resulting in phosphorylation of CTD of pol II, melting of DNA around start site. This finally leads to transition from transcription initiation to elongation (Ohkuma and Roeder, 1994). The cloning of one of the subunits of TFIIH is an exciting development in understanding the possible roles of GTFs. It has sequence homology to ERCC-3 gene product, a helicase involved in human DNA excision repair disorders such as xeroderma pigmentosum and Cockavne's syndrome (Schaeffer et al. 1993; Sung et al. 1993). TFIIJ is essential for transcription when highly purified TFIID is used but not crude TFIID.

The ordered assembly of these GTFs at the promoter region specified by TATA box is a prerequisite for the transcription initiation by polymerase II leading to basal level of transcription (Flores <u>et al</u>, 1992). There are also complex mixtures of poorly understood polypeptides interacting at the initiator (Inr) elements (Zawel and Reinberg, 1993).

1.7.2.2 TRANSCRIPTION ACTIVATORS

Another class of transcription factors are called activators. Activators and their DNA recognition sequences form a major focus of my studies. Activators interact with the enhancer sequences, are modular and contain two domains: DNA binding and activation domains. DNA binding domains include zinc finger, leucine zipper, homeodomain and helix-loop-helix motifs. The activation domains are of three kinds, acid rich, proline rich, and glutamine rich (Mitchell and Tjian, 1989). Transcriptional activators stimulate the rate of transcription by contacting one or more of the general transcription factors assembled at the promoter (Ptashne and Gann, 1990).

1.7.2.2.1 MECHANISM OF TRANSCRIPTIONAL ACTIVATION BY ACTIVATORS.

In general, eucaryotic gene expression requires transcriptional activators binding to <u>cim</u>-acting elements located either upstream or downstream of the transcription start site (Mitchell and Tjian, 1989; Ptashne, 1988; Struhl, 1989). The <u>cim</u>-acting elements are specific to each gene and are recognised by ubiquitous, development-stage-specific, or tissue-specific DNA binding proteins interacting with the basic transcriptional machinery via their transcriptional activation or inhibition domains (Swadogo and Sentenac, 1990). The interaction may depend on DNA looping or other chromatin structures (Ptashne, 1988). The greater details of the mechanism are discussed in the following subsections. 1.7.2.2.1.1 INTERACTION OF ACTIVATORS WITH GENERAL TRANSCRIPTION FACTORS (GTPs)

TFIID is essential for the assembly of the pre initiation complex (PIC) on all promoters tested in vitro. Thus TFIID was thought to be a target for certain activators. The mammalian transcription activator, activating (ATF), stimulated the rate transcription factor of transcription from adenovirus E4 promoter by interacting with TFIID (Horikoshi et al, 1988a). Subsequently, TFIID was shown to be a target for activators like Gal4 (Horikoshi et al, 1988b) and upstream stimulatory factor (USF) that activates adenovirus major late promoter (Swadogo and Roeder 1985). The pseudorabies virus immediate early protein (IE) stimulates transcription in vitro by accelerating the recruitment of TFIID to TATA box (Abmavr et al. 1988). Adenovirus ElA protein, a potent transactivator of transcription was shown to interact with carboxyl terminal basic repeats of TFIID in order to generate a rapid, efficient assembly of PIC (Lee et al, 1991).

Generally, other viral transactivators like herpes simplex VP16 (Stringer et al. 1990) and papillomavirus E2 protein (Dostani et al, 1991) enhance the rate of transcription by interacting with TFIID and stabilizing the complex at the promoter. Epstein-Barr virus Zta protein, which contains a transcription activation domain different from E1A. interacts with carboxyl terminus of TFIID and stabilizes the association of TFIID with the promoter (Liebermann and Berk. 1991). The activator proteins such as p53 (Truant et al, 1993) and PU.1 (Hagemeier et al, 1993) have been shown to directly interact with TBP. The tat protein of HIV transactivates transcription in vivo and in vitro. Direct interaction of tat with TFIID composed of TBP and associated factors (TAFs) was observed. This suggested that tat may transduce regulatory signals by interacting with TFIID (Kashanchi et al, 1994).

The chimeric activator termed Gal4-VP16 consisting of Gal4 DNA binding domain fused to acidic rich transactivation domain of VP16 stimulates transcription by recruiting TFIIB to the pre-initiation complex (Lin and Green, 1991). LSF cellular factor accelerates the association of the TFIIB with TATA bound TFIID and thereby stimulates the rate of transcription from SV40 major late promoter (Sundseth and Hansen, 1992). These examples demonstrate that activators accelerate the rate of transcription by facilitating the recruitment of GTFs to promoter.

1.7.2.2.1.2 INTERACTION WITH TBP ASSOCIATED FACTORS (TAPs)/COACTIVATORS

Initial studies with purified TBP exhibited only basal but not activated levels of transcription of core promoters in <u>vitre</u> even in the presence of transcriptional activators like Spl, USP, and NF1. Instead, partially purified TFIID allowed transcriptional activation by activators <u>in vitro</u> suggesting that the proteins associated with TBP called TAFs are important for activated transcription. Some of the TAFs can be dissociated from TBP under conditions of high ionic strength and some are tightly associated with TBP and require denaturing agents like urea for removal from TBP. This suggests that some TAFs are always associated with TBP and some interact with TBP transiently (Draokin et al. 1993).

Subsequently TAFs were isolated from crude TFIID using denaturing agents like urea. Addition of these TAFs to the recombinant TBP stimulated the rate of transcription in the presence of activator proteins such as, Sp1 and CTF/NF1 in <u>vitro</u> (Tanese <u>et al</u>, 1991). Thereby, it was suggested that the activators interact with one or more of these TAFs directly and regulate the activity of TBP by altering DNA-TBP interactions. The components of TAFs that interact with activators and form a bridge between TBP and activators to utimulate the rate of transcription from the core promoters are also called co-activators.

At present 13 TAFs have been isolated that mediate activator-dependent transcription by RNA polymerase II. Two complexes containing TBP were isolated from HeLa cells. One of the complexes isolated from the 0.85 M KCl fraction contained 13 TAFs with molecular weights 230, 135, 115, 100, 95, 80, 55, 31, 30, 28, 20, 19, and 18 kDa and supported activated levels of transcription by RNA pol II in the presence of activator proteins. The other complex isolated from 0.3 M KCl fraction contained 4 TAFs of 190, 96, 87 and 60 kDa that substituted for TFIIIB factor required for RNA pol III transcription (Chiang et al, 1993). The pol I transcription factor SL1 contains three TAFs with molecular weights 110, 63, and 48 kDa which are distinct from TAFs important for pol II and III transcription (Comai et al, 1992). This suggests that there are Pol I, II, and III specific TAFs mediating activatordependent transcription.

Not all these TAFs have been cloned. The TAF 250 (Hisatake <u>et al</u>, 1993; Kokubo <u>et al</u>, 1993; Ruppert <u>et al</u>, 1993) and Drosophila TAFs 110 (Hoey <u>et al</u>, 1993), 80 (Dynlacht <u>et al</u>, 1993), and 40 (Goodrich <u>et al</u>, 1993) have been cloned. The human TAF 250 was identical to cell cycle regulator CCG1 and hence the suggestion was given that hTAF250/CCG1 may be involved in regulation of cell cycle progression (Hisatake <u>et</u> <u>al</u>, 1993). It has been shown recently that the TAF_{1,2}50 subunit of the TFIID rescues a temperature sensitive hamster cell line to overcome a G₁ arrest. The nuclear extract from this cell line failed to support the activated levels of transcription by gene _pecific regulators, Sp1 and Gal4-VP16, without affecting the basal level of expression. This is the first report to demonstrate that a general transcription factor, TAF-TBP complex, influences the expression of genes responsible for cell cycle progression (Wang and Tjian, 1994). The Drosophila TAF_{II}110 does not bind TBP directly but interacts with dTAF_{II}250 and dTAF_{II}30 α which bind TBP directly. TAF110 is thereby recruited to TBP (Kokubo <u>et al</u>, 1993).

The Drosophila TAF250 and 110 interact with Sp1 activator and stimulate the rate of transcription (Ruppert <u>st</u> <u>al</u>, 1993; Hoey <u>st al</u>, 1993; Weinzierl <u>st al</u>, 1993). Recently it has been shown that the glutamine rich hydrophobic surface of Sp1 interacts with dTAF₁₁110 and activates transcription (Gill <u>st al</u>, 1994). Another transcription factor CREB also interacts with dTAF₁₁110, apparently through the regions similar to that of Sp1. This suggests that different classes of activators utilize dTAF₁₁110 as a coactivator and stimulate the rate of transcription (Gill <u>st al</u>, 1994). However, in another study it was shown that the acidic activator containing an activation domain different from Sp1 and CREB interacts directly with another component of TFIID, dTAF,40, to activate transcription (Goodrich <u>et al</u>, 1993). This suggests that different classes of activators interact with distinct components of TFIID such as $TAF_{1,2}50$, 110, and 40.

The discovery of coactivators revolutionised the field transcription. especially immunoglobulin of gene transcription. The lymphoid cell-specific oct-2 protein but not ubiquitously expressed Oct-1 protein was shown to be important for B cell-mediated transcription in a number of studies (Tanaka and Herr, 1990; Gerster et al. 1990). Ig H promoter-specific, Oct-1 factor specific, and B cell-specific coactivator that stimulated Ig H promoter effectively in the presence of Oct-1 but not Oct-2 questioned the role of lymphoid cell-specific Oct-2 in immunoglobulin gene transcription (Luo et al, 1992). Further, the disruption of Oct-2 locus in B-cells had no effect on immunoglobulin gene transcription (Feldhaus et al, 1993), supporting the role of B cell-specific coactivator in immunoglobulin gene а transcription.

Dimerization of a liver specific transcription factor, Hepatocyte Nuclear Factor-1 (HNP1) is essential for the transcription of liver-specific genes. A liver-specific coactivator mediates the dimerization of HNP1 and thus plays a key role in liver-specific transcription (Mendel <u>et al</u>, 1991). The evidence for the role of coactivators in the transcription of eucaryotic genes, especially in tissue-

specific gene expression, is well documented.

A mediator activity distinct from TAFs was purified from yeast cells and shown to be necessary for stimulation by acidic activators such as VP16 and GCN4. The mediator facilitates direct interaction between activators and components of the basic transcription machinery (Kelleher <u>et</u> al, 1990; Flanagam <u>et al</u>, 1991).

1.7.2.2.1.3 STIMULATION OF BASAL TRANSCRIPTION BY RELIEVING REPRESSION

Recently, histone-mediated repression of transcription has received considerable attention. Order of addition experiments revealed that nucleosomes prevent preinitiation complex formation by GTFs (Workman <u>et al</u>, 1991). Transcriptional activators like VP16 and Sp1 stimulated transcription of histone H1-mediated but not naked DNA templates by 200-fold by stabilizing and accelerating the recruitment of GTFs to the promoter (Croston <u>et al</u>, 1991; Laybourn and Kadonaga, 1991; Laybourn and Kadonaga, 1992).

An activity called upstream factor stimulatory activity (USA) distinct from co-activators was reported (Meisterernst <u>et al</u>, 1991). USA contains two components, negative cofact: 1 (NC1) and positive cofactor 1 (PC1). They exhibit opposite effects on core promoter activity. NC1 inhibits promoter activity by interacting with TBP, thus preventing interaction of TFIIA with TBP. On the other hand, PC1 in combination with activators like Sp1 and USF reverse the action of NC1 by directly or indirectly facilitating the entry of TFIIA into pre-initiation complex (Meisterernst <u>at</u> <u>al</u>, 1991). In addition, other factors such as negative cofactor 2 (NC2) and TFIID binding factor 4 (DBF4) and with properties similar to NC1 were isolated that reduce the core promoter activity by forming a non-productive complex with TFIID. The transcriptional activators reversed the inhibition by facilitating the formation of a productive pre-initiation complex (Meisterernst and Roeder, 1991).

A novel repressor activity namely Dr1 was isolated from HeLa cell extracts that binds to TFIID and prevents the subsequent binding of TFIIA and B. However, activators like adenovirus ElA and SV40 large T-antigen disrupt this complex and facilitate the entry of TFIIA and TFIID (Inostroza et al, 1992).

1.7.3. FACTORS THAT INFLUENCE THE TRANSCRIPTIONAL ACTIVATION BY GENE-SPECIFIC ACTIVATORS

1.7.3.1 DNA BINDING SITE AND TRANSCRIPTIONAL RESPONSE

The individual <u>cis</u>-acting element in the regulatory region of a gene can bind to one or many different factors which belong to the same or a different family. For example, many homeodomain proteins and ligand-dependent nuclear receptors bind to the same <u>cis</u>-acting element (Hoey and Lewine, 1988; Glass <u>et al</u> 1988; Beato, 1989). A site in human osteocalcin gene is recognised by both <u>Jun/Fos</u> and vitamin A and D receptors. However, each exerts an opposite transcriptional effect (Schulle <u>et al</u>, 1990). Thus a single <u>ois</u>-acting element can elicit different transcriptional responses depending on the binding of the specific transcriptional factor.

On the other hand, a single transcription factor can bind to different DNA sequences. A good example for this is the yeast HAP1 zinc finger protein (Pfeifer <u>st al</u>, 1987). Other examples are certain homeodomain proteins (Hoey and Levine, 1988). Although different transcription factors bind the same <u>cis</u>-element, the relative position, orientation, and spacing of binding motifs can play an important role under certain conditions. For example, the glucocorticoid and the oestrogen receptors recognise related but distinct binding motifs (Klock <u>et al</u>, 1987). On the other hand, the receptors for oostrogen, thyroid hormone, retinoic acid, and vitamin D bind virtually identical sequences. However, the relative spacing and orientation determine the transcriptional response which can be either activation or repression (Glass <u>et al</u>, 1986; Naar et al, 1991; and Umesono et al, 1991).

1.7.3.2 INTRAFAMILY PROTEIN-PROTEIN INTERACTIONS

Some classes of transcription factors bind DNA as either homodimers or heterodimers. Jun and <u>fos</u> transcription factors belonging to the leucine zipper family bind DNA as heterodimers to a <u>cis</u>-acting site called AP-1 site and some of them have different transcriptional activities (Nakabeppu <u>at</u> al, 1988; Cohen <u>at al</u>, 1989). The glucocorticoid and cestrogen receptors bind to their respective sites as homodimers (Kumar and Chambon, 1988; Tsai <u>at al</u>, 1988). The retinoic acid receptors bind DNA as heterodimeric complexes with other nuclear factors called coregulators, one of them being the thyroid hormone receptor (Glass <u>at al</u>, 1989, 1990). These coregulators affect DNA binding and transcriptional activity of retinoic acid receptor. The muscle specific helix-loophelix protein, MyoD, dimerizes with ubiquitously expressed proteins of the same family to activate transcription of muscle-specific genes (Weintraub <u>at al</u>, 1991; Benezra <u>at al</u>, 1990).

Heterodimer formation sometimes results in inhibition of DNA binding and thereby represses transcriptional activity of activators. Id, a member of helix-loop-helix family, heterodimerizes with other members of the same family such as MyoD and E12/47 and inhibits the transcriptional activity of these factors (Benezra <u>et al</u>, 1990). I-POU, a protein belonging to FOU domain class specifically heterodimerizes with another FOU domain protein, cfla, and prevents its DNA binding and transactivating neural specific genes (Treacy <u>et</u> al, 1991; Johnson and Hirsch, 1990).

1.7.3.3 INTERFAMILY PROTEIN-PROTEIN INTERACTIONS

Recently, it has been shown that glucocorticoids can inhibit the transcriptional activity of <u>Jun/Fos</u> on AP-1 site. Glucocorticoid receptor prevents binding of <u>Jun/Fos</u> complex to DNA. Also, the <u>Jun/Fos</u> complex prevents the glucocorticoid and other nuclear receptors from binding to their respective response elements (Schule <u>et al</u>, 1990; Jonat <u>et al</u>, 1990; Diamond <u>et al</u>, 1990). The VP16 transcription activator of herpes simplex virus cannot bind DNA alone, but interacts with the homeodomain protein Oct-1 through its acidic rich transcriptional activation domain to stimulate the rate of transcription (Stern <u>et al</u>, 1989; Kristie and Sharp, 1990). The pX protein of hepatitis B virus interacts with leucime zipper proteins CREB and ATF2 and enables them to bind to a different set of DNA sequences (Maguire <u>et al</u>, 1991).

1.7.3.4 COVALENT MODIFICATION OF TRANSCRIPTION FACTORS AND TRANSCRIPTIONAL ACTIVATION

Certain transcription factors require posttranslational modifications either to activate or inhibit transcription. The phosphorylation of the threenine residue within the DNA binding domain of Pit-1 pituitary specific transcription factor may differentially increase or decrease its binding affinity for the <u>cis</u>-acting element present in prolactin and growth hormone gene promoters (Kapiloff <u>et al</u>, 1991). The <u>Jun</u> transcription factor is phosphorylated near its N-terminal DNA binding domain and protein kinase C activation leads to dephosphorylation at this site. This increases DNA binding and transactivation by the Jun/Fos complex (Boyle <u>et al</u>, 1991). Similarly, phosphorylation of serine residue by cAMP dependent protein kinase A is essential for transcriptional activation of cAMP response element binding protein (Conzalez and Montminy, 1989; Sheng <u>et al</u>, 1990).

1.7.4 TRANSCRIPTIONAL REGULATION OF CELL-SPECIFIC GENE EXPRESSION

Cell-specific gene expression is mainly regulated at the level of transcription. The <u>cis</u>-acting elements and DNA binding proteins involved in the expression of various genes that are expressed in a cell-specific manner are well characterized, especially in the case of the liver (reviewed in Simone and Cortese, 1991; 1992; Lai and Darnell, Jr, 1991), muscle (reviewed in Olson, 1990; Tapscott and Weintraub, 1991; and Li and Olson, 1992), pituitary (reviewed in Sharp and Cao, 1990; Karin <u>et al</u>, 1990), erythroid (reviewed in Orkin, 1990) and immune systems (reviewed in Staudt and Lenardo, 1991).

1.7.4.1 MUSCLE-SPECIFIC GENE EXPRESSION

Muscle-specific expression is a well-studied system serving as a model of tissue-specific gene expression. Musclespecific genes are mainly regulated at the level of transcription. Myoblast differentiation is accompanied by transcriptional induction of muscle-specific genes. Earlier studies suggested the existence of a master gene important for setting the events that finally end up in the formation of mature fibre. The cDNA for the master gene, MyoD was cloned subsequently by subtraction hybridization using myoblasts and fibroblasts. Transfection of MyoD cDNA into 10T1/2 fibroblasts activated myogenesis (Davis <u>st al</u>, 1987). Subsequently, three more muscle specific transcription factors, myogenin (Edmondson and Olson, 1989), myf5 (Braun <u>st al</u>, 1989), and myf6 (Miner and Old, 1990; Braun <u>st al</u>, 1990) were isolated. Like MyoD, each of these factors can convert 10T1/2 fibroblasts to myoblasts.

MyoD alone can activate muscle specific gene expression or set the events that lead to activation of muscle specific genes. In cooperation with ubiquitously expressed factors MyoD can activate muscle cell-specific gene expression. The MyoD is a muscle cell-specific factor that binds to a CANNTG sequence called the "E-box site". The E-box binding site is present in many muscle specific genes such as muscle creatine kinase (MCK), troponin 1, alpha-cardiac actin and MLC1/3 genes. In addition, the E-box binding sites are also present in the regulatory regions of other cell-specific genes, such as immunoglobulin and insulin genes (Sen and Baltimore, 1986; Walker <u>et al</u>, 1990).

MyoD binds to DNA very weakly. However, in cooperation with the widely expressed E2A gene products such as E12, E47, and TFE3 factors MyoD acquires high affinity for binding DNA and regulates transcription (Davis <u>et al</u>, 1990; Murre <u>et al</u>, 1989). Although the members of MyoD and E2A gene products binds to the same sequence, MyoD can activate the transcription of muscle cell-specific genes, whereas, E2A gene products can not (Blackwell and Weintraub, 1990). It was further shown that the basic region of MycD plays a role in the transcriptional activation of muscle cell-specific genes (Davis <u>et al</u>, 1990).

Replacement of the basic region of MyoD with that of E2A gene products does not prevent the DNA binding activity of MyoD but fails to activate muscle cell-specific transcription. The mutations in the basic region of MyoD that allows DNA binding but | revent activation of muscle-specific genes was also reported (Davis et_al, 1990). This observation provided a clue that the activation domain of MyoD is cryptic and the basic region somehow communicates with the activation domain to stimulate transcription upon binding to E-box. Three possible mechanisms were proposed. (1) The basic region may interact with a co-activator that results in communication of the basic region with the activation domain. (2) Both MyoD and myogenin may undergo a conformational change, unmasking the transcriptional activation domain. (3) Another mechanism may involve interaction of muscle specific factors with other transcription factors that bind to nearby sites in DNA leading to activation of muscle cell-specific genes. The examples for this are the activation of NCK enhancer that requires cooperative binding of MyOD and other ubiquitous and musclespecific transcription factors such as MEF2 (Weintraub <u>et al</u>, 1991). Also, the activation of human alpha cardiac actin promoter requires simultaneous binding of serum response factor, Sp1, and MyOD (Sartorelli <u>et al</u>, 1990).

1.7.4.2 BRAIN-SPECIFIC GENE EXPRESSION

JCV expression and replication is brain-specific. JCV is oncogenic in animals and it is the only human virus known to produce solid brain tumors in nonhuman primates (Frisque and white, 1992). Therefore, it is also important to understand brain-specific gene expression. The mammalian brain is a complex organ containing a heterogeneous population of cells. Hence it is very difficult to study its gene expression. Analogous to the cell-specific gene expression of liver, muscle and other organs, brain-specific genes are also regulated mainly at the level of transcription (reviewed in Takahashi, 1992; Mandel and McKinnon, 1993).

1.7.4.2.1 GLIAL CELL-SPECIFIC GENE EXPRESSION

JCV has similarities to the control regions of myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), proteolipid protein (PLP), and $$100\beta$ genes which are expressed mostly in glial cells as detailed in the following.

1.7.4.2.1.1 GLIAL CELL-SPECIFIC EXPRESSION OF GFAP

Three regions (A,B, and D) in the regulatory region of

GFAP were found important for its glial cell-specificity. The region A contains binding sites for transcription factors Sp1 and nuclear factor 1 (NF1). Region B contains adjacent activator protein 1 (AP1) and NF1 binding sites. Region D consists of adjacent NF1 and AP2 binding sites. Region B is the most active of the three regions and stimulates strong glial cell-specific expression. Regions A, B, and D activate heterologous promoters such as that of SV40, in glial cells but not in other cell types. Region D functions primarily to promote interactions that bring region B close to the promoter (Besnard et al, 1991).

1.7.4.2.1.2 EXPRESSION OF S1008 IN GLIAL CELLS

S100\$ protein is primarily present in astrocytes and is found in 30 to 100 fold higher levels than in other tissues (Kato and Kimura, 1985). The binding sites for NP1, cAMP response element binding protein (CREB), and AP2 were found important for the expression of S100\$ in the glial cells (Allore et al, 1990).

1.7.4.2.1.3 GLIAL CELL-SPECIFIC EXPRESSION OF PLP

Proteolipid protein (PLP) is one of the components essential for the formation of myelin that forms a "4 ath around axons. The regulatory region of PLP contains NPI binding sites and also both positive and negative <u>cim</u>regulatory elements which determine the glial cell-specificity (Nave and Lenke, 1991). The <u>cim</u>-acting elements are highly homologous to those observed in MBP.

1.7.4.2.1.4 MYELIN BASIC PROTEIN GENE EXPRESSION IN GLIAL CELLS

MBP forms one of the important constituents of myelin. MBP promoter consists of several regulatory sequences out of which the proximal element MB1 and one of the distal elements are highly active in glial cells as compared to other cells (Beach <u>st al</u>, 1990). The sequences around the NF1 binding sites in the proximal and distal regions were found to be important for glial cell-specific expression of MBP promoter (Aoyoma <u>st al</u>, 1990). Another surprising finding is that the TFIID from brain but not liver stimulated the transcription of MBP in vitro, suggesting that different tissues contain functionally different TFIID species (Tamura <u>st al</u>, 1990a). Hence the interaction of different proteins binding the MBP regulatory region may influence the glial cell-specificity.

1.7.4.2.2 NEURON-SPECIFIC GENE EXPRESSION

The genes for neurofilament, proenkephalin, and dopamine β -hydroxylase (DBH) genes are expressed only in the neurons of the central nervous system. The regulatory regions of neurofilament and proenkephalin contain adjacent NF1 and AP2 binding sites and cooperative interaction of these proteins may play a role in neuronal cell-specific expression (Comb <u>et al</u>, 1988; Nakahira <u>et al</u>, 1990). A role for a negative regulatory element in the neuron specific expression of SCGIO, a neuron-specific growth associated protein, and the type II sodium channel protein was recently reported. Deletion of the <u>cis</u>-acting negative regulatory element or silencer region allows expression of these genes in non-neuronal cells. Thus the silencer region plays a major role in the cell-specific expression of these neuronal genes (Mori <u>et al</u>, 1990; Maue <u>et al</u>, 1990). The sequences of the silencer region of these two unrelated neuronal genes is strikingly similar. In addition, the same protein from various non-neuronal cells was shown to interact with this silencer region (Mori <u>et al</u>, 1992; Kraner <u>et al</u>, 1992).

Dopamine β -hydroxylase, the enzyme catalyzing the conversion of dopamine to norepinephrine, is specifically expressed in adrenergic and noradrenergic neurons in the central nervous system. By DNase I hypersensitive assay and transient expression assays, a 4.3 Kb upstream sequence was found to be essential for neuronal cell-specific expression of DBH gene. By deletion and mutation analyses two regions in the regulatory region of DBH gene were identified that confer cell-specificity. The first region, the CAMP response element (CRE) is essential for positive regulation of DBH and confers 95% of cell specificity. The second region is a silencer region that negatively regulates its expression in nonneuronal cells. Hence interplay between the CRE and neuronspecific silencer plays an important role in the tissuespecific expression of the DEH gene (Ishiguro <u>et al</u>, 1993). The tyrosine hydroxylase (TH) gene contains the consensus CRE in the proximal region and the CRE plays an important role in both the basal and cAMP inducible expression (Kim <u>et al</u>, 1993). Thus these two genes for enzymes TH and DEH adopt similar molecular strategies for their neuronal cell-specific expression by using same <u>cis</u>-acting element, CRE. As will be discussed later (chapter 5), JCV also contains adjacent Nuclear Factor 1 binding and CRE motifs (Ameniya <u>et al</u>, 1992).

1.7.5 GLIAL CELL-SPECIFIC EXPRESSION OF JC VIRUS

1.7.5.1 TRANSCRIPTION INITIATION OF JCV EARLY AND LATE GENES

The promoter-enhancer sequences of JCV were first identified based on the sequence comparison with BK and SV40 viruses. The peculiarity of JLY is that it contains two TATA boxes, one in each of the 98 bp repeats, in contrast to presence of single TATA box in SV40 virus (Frisque <u>st_al</u>, 1984; Fig. 1.1). The presence of two TATA boxes in JCV promoter-enhancer was thought to control the early and late transcription of the virus. The viral early gene transcription was shown to initiate from nt 122-125 using TATA box located in the repeat B (located far from the origin of replication Fig. 1.1), as shown by S1 nuclease analysis (Kenney <u>st_al</u>, 1986a). Using primer extension technique it was shown that the
early transcription initiated from nt 5112 and 5082 and the TATA box located in the repeat A (located near the origin of replication Fig. 1.1) and that repeat B was not utilized (Khalili <u>et al</u>, 1987).

Another study used primer extension technique to map the early transcription start sites to nt 5112, 5119, and 5090, analogous with the above study (Vacante <u>et al</u>, 1989). Early and late gene transcription was shown to utilize the TATA boxes located in the repeat A and B, respectively (Tada and Khalili, 1992). The discrepancies in the study of transcription start site have been resolved in a recent study. Using both primer extension and S1 nuclease analyses, the transcription start sites for early and late genes were mapped to positions 5115-5125 and 200-203, respectively (Daniel and Frisque, 1993). Overall, these studies suggested usage of different TATA boxes and start sites for early and late transcription of JCV.

There are two other examples of the genes containing dual TATA boxes. The CYCl gene of the yeast Saccharomyces cerevisiae contains two functional TATA elements at sites -178 and -123 upstream of start site. The sequence near the 5' end is ATATATATAT, whereas the sequence near 3' the end is TATATATAT. Further, it was suggested that the two TATA boxes recognized different factors of the transcription apparatus (Li and Sherman, 1991). The gene of Autographa californica nuclear polyhedrosis virus (ACMNPV) is controlled by tandem promoters. Late transcripts initiate from conserved TAAG motif utilizing proximal TATA box, while early transcripts initiate from conserved CAGT motif using distal TATA element. Late transcripts were not affected by alterations in the distal TATA box. Similarly, early transcripts were not affected by mutations in the proximal TATA box. The results suggested the usage of different TATA boxes for early and late transcription, respectively (Guarino and Smith, 1992). 1.7.5.2 GitAL CEL-SPECIFIC EXPRESSION OF JC VIRUE REGULATORY

1.7.5.2 GLIAL CELL-SPECIFIC EXPRESSION OF JC VIRUS REGULATORY REGION IN CELL CULTURE

The first report identifying the promoter-enhancer signals of JCV was from Kenney et al (1984). They fused the regulatory sequences of JCV to the reporter gene, chloramphenicol acetyl transferase (CAT), in both orientations. The activity of the reporter plasmids was assayed in PHFG, HeLa, HEK, and CV-1 cells by performing CAT assay. Maximum activity was detected in PHFG cells. The construct in which the JCV promoter-enhancer sequences were cloned in the reverse orientation was about twice as active as the one cloned in the sense orientation. The activity observed in CV-1 cells was negligible. In contrast, the CAT construct with SV40 regulatory sequences was active in all the four cell types tested. Deletion of a single copy of the 98 bp repeat reduced the activity by 5-fold. Removal of all but the first

46 bp of the first tandem repeat totally abolished the activity. Deletion of one copy of the tandem repeat was more detrimental to the promoter-enhancer activity in PHFG cells. These results suggested that, unlike the other human polyoma viruses such as EKV, JCV has restricted glial cellspecificity.

In another study the regulatory region of JCV was replaced with that of either SV40 or BKV. The new hybrid constructs were not viable in human fetal glial cells. In the reverse hybrid constructs, the regulatory region of JCV controlled synthesis of either SV40 or BKV T antigen in human glial cells. These results suggested that SV40 and BKV T antigens could interact with JCV regulatory region but JCV T antigen, although shown to bind SV40 DNA, could not substitute for the homologous T protein. It also indicated that JCV T protein played a significant role in determining efficient gene expression in a cell-type-specific manner (Chuke <u>et al</u>, 1986).

Regulatory regions of type I and type II JCV variants isolated from PML patients were tested for their activity in PMFG and HEK cells. The activity of Madl strain was 15-fold more in PMFG cells than in HEK cells. The activity of Mad8Brcat and the two Madl-cat constructs showed only minor differences in their activity in PMFG cells. Mad7-cat and Her1-cat constructs failed to show detectable activity in PMFG

calls. The results with Herl-Br construct were surprising since the sequences are closely related to those of Mad8-Br. The differences in the activity of different JCV strains in PHFG cells were suspected to be due to differences in the number of promoter-enhancer elements in these strains. The suggestion that the presence of a second TATA box in the prototype MAD1 JCV regulatory region may interfere with the selection of the correct early mENA start site was seriously considered in this case (Mand1 and Prisque, 1986). However, no detectable difference was noticed in the activity of Mad1 and Mad4 strains (the latter not having the second TATA box). Hence the possibility of interference of selection of start site due to presence of a second TATA box was ruled out.

Further studies used additional cell types derived from primate and rodent species to address the mechanism of cell-specificity of JCV . A high level of expression was observed in glial cells but not in other cells. Quantitative S1 nuclease analysis showed higher levels of CAT transcripts, suggesting the high transcriptional activity in glial cells. In nonglial cell lines such as human cervical HeLa and monkey kidney COS cells the CAT activity was negligible and it was only 2-4 times more than the CAT construct lacking promoterenhancer sequences (Feigenbaum <u>et al</u>, 1987). Taken together, the results strongly suggested that the expression of JCV is limited to glial cells.

A chimeric polyona virus was constructed by inserting SV40 21 bp triplicates and 72 bp repeats at the distal end of the JCV regulatory region on the late side of 98 bp repeats without interrupting the coding potential of JCV T-antigen and capsid proteins. Although the chimeric virus replicated efficiently in human fetal glial cells, cell-induced deletions were found in the regulatory region. DNA sequence analysis revealed a 294 bp deletion from the original construct that retained one of the complete 98 bp repeats of JCV and one and one-third of the SV40 72 bp repeats. The other JCV 98 bp repeat and SV40 21 bp triplicates were consistently deleted. The virus produced JCV T-antigen without any changes in the amino acid sequence. The chimeric virus demonstrated wider species and cell-type host-range, producing infectious virus in human fetal brain and embryonic kidney as well as in rhesus monkey fetal and adult glial cells. However, the species host range was not extended beyond primate cells. These data suggested that the JCV regulatory sequences restrict the host range and the SV40 sequences were needed for the extended cell-type range. These sequences are responsible for the host range phenotype and the glial cell tropism (Vacante et al, 1989).

To further confirm the glial cell-specific expression of JCV, the promoter-enhancer sequences of the kidney-adapted variant of JCV, JCV-HEK-A were tested for activity. The

activity of CAT constructs containing the regulatory sequences of Madl and JC-HEK-A was tested in human kidney HEK a.J human neuroblastoma cell line, GOTO. Madl expressed only in GOTO cells, whereas, JC-HEK-A construct expressed in both the cell types. The results suggested that the regulatory region of JC-HEK-A might have undergone rearrangements and that the new DNA sequence inserts were able to interact with the factors present in HEK cells (SinoHara et al, 1989).

Two-phase partition assay for chloramphenicol acetyl transferase (CAT) was done to compare the activities of the JCV Mad1, BKV, and SV40 enhancer sequences in African green monkey kidney (CV-1) and owl monkey kidney (OMK) cells . The activity of Mad1 was 2.0 and 1.2% and BKV was 45 and 8% in CV-1 and OMK cells, respectively. This confirmed the restricted cell specificity of JCV (Martin, 1990). Recent studies compared the activities of Mad1, Mad8-Br, and Mad11-Br promoter-enhancer signals in human cervical HeLa cells, primary hamster fetal glial cell line POJ, and monkey kidney cell line SVG. In these cells, pMadl exhibited only low activity, confirming the earlier observations of glial cell restricted expression of JC virus. Mad8-Br construct was active in all the three cell types. Madl1-Br construct was inactive in Hela cells, but 3.5- and 10-fold more active in POJ and SVG cells, respectively. The results suggested that the heterogeneity of the regulatory sequences of JCV may alter

the cell specificity of JCV promoter-enhancer under some conditions (Martin and Li, 1991).

1.7.5.2.1 EXPRESSION OF JCV IN P19 EMBRYONAL CARCINONA CELLS

Previously, our laboratory used P19 embryonal carcinoma cells as a model system to study the glial cellspecific expression of JC virus. Embryonal carcinoma (EC) cells have been widely used as a model system for studying early murine development. EC cells are the malignant stem cells of teratocarcinoma and resemple the pluripotent cells from the inner cell mass of early mouse preimplantation embryos (Martin, 1980). A number of differentiated cell types, with characteristics of cells of the three germ layers can be obtained by different treatments (Martin, 1980). When implanted into mouse embryos, EC cells can contribute to the development of normal embryos. This suggests that the mechanisms of differentiation of EC cells are similar to those of normal embryonic cells (McEureny et al, 1988).

Addition of retinoic acid (RA) at 10⁻⁶ M to monolayer cultures of P19 EC cell line induces differentiation to a heterogeneous population consisting of endoderm and mesodermlike cells. These cells are fibroblast-like and few neurons are also found (Jones-Villeneuve <u>et al</u>, 1983). When induced to differentiate with 300mM RA, P19 EC cells develop into cells resembling those of embryonic brain tissue. Addition of RA at 300 mM to aggregating P19 cells induces heterogeneous population of neuronal cells consisting of neurons, astroglia, microglia and fibroblast-like cells (McBurney, 1993). Neurons and glial cells in RA-treated P19 cells are always found together with the neurons usually lying on top of the glial cell monolayer. The fibroblast-like cells are seldom covered with neurons (Jones-Villeneuve <u>st</u> al, 1983; Rudnicki and McBurney, 1987). There is no evidence that the neuronal cells induced by RA are mature brain glial cells. However, these cells are a mixture of glioblasts, astrocytes and microglia in various stages of differentiation. P19 EC cells can be differentiated into skelstal and cardiac muscle cells when treated with 1% dimethyl sulfoxide (DMSO).

Previous studies from our laboratory suggested that the expression of regulatory region of JCV was seen only in RA-treated but not in DMSO-treated or undifferentiated P19 cells. (Nakshatri <u>st al</u>, 1990a). The P19 cells are a good system to demonstrate the mode of tissue-specific regulation of JCV expression. These cells can be differentiated into different cell types from an identical genotype. Hence, I used P19 cells in my studies. Earlier studies suggested that JCV is expressed efficiently in glial cells (Major <u>et al</u>, 1992). The neural cells induced after treating P19 cells consist of a heterogeneous population including glial cells. This is the disadvantage of the P19 cell system. However, previous studies from our laboratory reported efficient expression of JCV

regulatory region in RA-treated P19 cells. I also used nuclear and whole cell extracts prepared from RA-treated P19 cells in several <u>in vitro</u> studies presented in this thesis. Since RAtreated P19 cells contain a heterogeneous population of neuronal cells, the exact cell type in which JCV is expressed is uncertain. However, it is evident from the existing literature that the expression of JCV is restricted to glial cells.

1.7.5.3 CELLULAR TRANSCRIPTION FACTORS THAT BIND TO JCV PROMOTER-ENHANCER SEQUENCES

The studies mentioned above clearly indicated that the expression of JCV is restricted to glial cells. Further, cell culture studies, using different strains of JCV, indicated that the glial cell specific expression of JCV is not due to the cell-specific adsorption or penetration of the virus. Cell-specific expression was due to the intracellular factors that bind to the sequences in the regulatory region of JCV (Frisque <u>et al</u>, 1979). Hence subsequent studies including those in this thesis were focused on finding the sequences that are bound by the transcription factors in the glial cells.

Using the oligonucleotides that span the 98 bp tandem repeat of JCV and the nuclear extracts from human fetal brain and HeLa cells, mobility shift and UV crosslinking assays were performed to identify the sequences that confer tissue tropism

and the cellular factors that bind these sequences (Khalili <u>et</u> al, 1988). Complementary oligonucleotides having homology to NFI binding site that span nt 134-160 of the 98 bp repeat of JCV interacted with proteins of 45 and 85 kDa from human fetal brain and HeLa cells, respectively. Oligonucleotide sequences complementary to TATA box interacted with a protein of 78/80 kDa. The oligonucleotide having sequences homologous to the 5' and 3' ends of promoter-enhancer bound similar proteins of 82 and 78/80 kDa from both extracts. However, a protein of 230 kDa from both extracts with several regulatory sequences of promoter-enhancer.

DNaseI footprinting experiments on JCV promoterenhancer were conducted using mouse brain nuclear extracts. The protected sequences in the 98 bp repeats corresponding to nt 35-58 and 133-156 were homologous to nuclear factor 1 (NFI) binding sites. The second set of sequences that were protected corresponding to nt 208-229 have a pseudo-NFI motif (Tamura <u>et</u> al. 1988).

Mobility shift assays with JCV regulatory region showed binding activity with the nuclear extracts from HeIA, PHFG, and human glioma cell line, A172. However, no binding was detected with extracts from HEK cells. Further, DNaseI footprinting was carried out on JCV regulatory region using extracts from two glial-type cells and Hela cells. Similar sequences and NF1 binding motifs were protected as observed

earlier by Tamura <u>et al</u> (1988). Competition experiments with the NF1 binding site oligonucleotide of adenovirus replication origin confirmed that the protected sequences were NF1 motifs (Amemiya <u>et al</u>, 1989).

DNaseI footprinting assay using extracts prepared from undifferentiated (UD) . DMSO-differentiated and DAdifferentiated P19 EC cells was attempted to detect the proteins interacting with the sequences in JCV enhancer (Nakshatri et al, 1990a). Protection of three regions, two in the 98 bp repeats and one towards the late side of the repeat was observed with extract from RA-differentiated but not with extracts from UD and DMSO-differentiated P19 cells. All these sites contained sequences resembling NF1 binding motifs. The sequences protected within the 98 bp repeats were named regions II and III, respectively, whereas the region of sequences protected outside the repeats was called region I. In addition to NF1 binding site, region I also contained a binding motif for E4TF1 factor (Fig. 1.2). Competition experiments with oligonucleotides corresponding to regions I and II suggested that the same factor binds to all the three NF1 binding motifs, although they consist of different sequences. A suggestion that the NF1 I binding site located outside the repeats may play a role in the cell-specific expression of JCV was offered based on competition experiments (Nakshatri et al, 1990a).

Another factor which binds to a sequence overlapping the NFI motifs located in the repeats called SacI motif was also reported. It was suggested that the cooperativity of NFI motif and SacI motif binding factors may be required for the strong brain specificity of JCV (Tamura et al, 1990b).

The 45 kDa protein from human fetal glial cells that interacts with the sequences corresponding to nt 134-160 NF1 motif of JCV enhancer was purified and it complemented for the activity of JCV enhancer in HeLa cells in <u>in vitro</u> transcription assays (Ahmed <u>et al</u>, 1990). Subsequently the cDNA encoding the factor binding to NF1 motif in the 98 bp repeat was cloned. Expression of this cDNA increased the transcription of the JCV late promoter-enhancer and to a lesser degree the early promoter-enhancer (Kerr and Khalili, 1991).

A glial cell transcription factor belonging to the POU-domain family, Tst-1 stimulated transcription of both early and late viral genes. Tst-1 also stimulated viral DNA replication and hence it was suggested that Tst-1 is one of the determining factors in the glial cell-specificity of JCV (Wegner <u>et al</u>, 1993). Presence and role of a binding site homologous to cyclic AMP response element (CRE) adjacent to NF1 II/III in JCV promoter-enhancer in the regulation of JCV was speculated in another study (Ameniya <u>et al</u>, 1992). A pentanucleotide repeat, <u>ACGGARACCGA</u>, present between the NF1

II/III and TATA box interacts with an approximately 56 kDa protein from glial and nonglial cells and down regulates the JCV late promoter activity (Tada <u>et al</u>, 1991).

Overall, it is evident that JCV promoter-enhancer is regulated by both positive and negative regulatory mechanisms. The binding sites for the various transcription factors in the JCV control region are diagrammatically represented in Fig. 1.2.

All the studies mentioned above used <u>in vitro</u> binding assays to suggest that NF1 may play a role in glial cellspecific expression of JCV. Moreover, in the study reported by Wegner <u>et al</u> (1993), cotransfection of a recombinant plasmid expressing a brain-specific factor Tst 1 with the reporter plasmid containing JC early regulatory region activated JCV_t expression in glial cells. In my opinion, this study should have shown the role of Tst 1 in glial cells as such. In addition, studies on late gene expression of JCV, which is important for the productive infection of the virus are lacking elements (Fig. 1.2). At present there is no study that explains how the proteins binding to these elements function in glial cell-restricted expression of JCV.

1.8 THESIS RATIONALE AND ORGANIZATION

The purpose of my study is to understand the role of factor(s) binding to the NF1 motif and cyclic AMP response Fig. 1.2. Diagrammatic representation of binding sites for various transcription factors in the regulatory region of JCV. The letters λ and B and large boxes indicate the 98 bp repeats. The numbers denote the nucleotide positions. Binding sites for cellular transcription factors are indicated. The early JCV_e and late JCV_i promoters are on the left and right, respectively.

element (CRE) located adjacent to the NFI sequence in the 98 bp repeats in <u>in vivo</u> activity of early gene expression of JCV and to correlate the <u>in vivo</u> activity with <u>in vitro</u> DNAprotein interactions. It is also the objective of my study to address the mechanism of regulation of JCV late gene expression. In addition, I have attempted to determine how the proteins binding to <u>cis</u>-acting elements located in the 98 bp repeats function in regulating JCV gene expression.

The thesis is organized in five chapters. In chapter 2, I will describe materials and methods used for the work presented in chapters 3, 4 and 5. In chapter 3, I will detail the role of NF1 binding motifs in glial cell-specific expression of JCV and correlate the <u>in vivo</u> activity with <u>in</u> <u>vitro</u> DNA-protein interactions. Additionally, the isolation and preliminary characterization of a cDNA encoding a factor binding to nuclear factor 1 (NF1) located within the 98 bp repeats will be desoribed.

The early gene product of JCV, T-antigen transactivates the JCV late promoter leading to productive infection of JCV. In chapter 4, I will detail the role of NFI binding sites in the transactivation of JCV_i and the delineation of amino acid sequences of T antigen required for transformation and transactivation of JCV_i . A model for transactivation of JCV_i by T antigen will be presented. In chapter 5, I will detail the role of cyclic AMP response element (CRE) in glial cell-specific expression of JCV. The characterization of protein(s) binding to this sequence is also presented.

CHAPTER 2

MATERIALS AND METHODS

2.1 Materials

The restriction endonucleases were purchased from New England Biolabs and Bethesda Research Laboratories (Gibco-BRL). T4 DNA ligase, calf intestinal phosphatase (CIP) and reverse transcriptase were from BRL, BRL and Life Sciences, respectively. The ["C] chloramphenicol and [³⁴P]dCTP were obtained from ICN and Amersham, respectively. Acetyl coenzyme A was from Sigma. Thin layer chromatography (TLC) plates and X-ray films were purchased from Kodak.

Synthetic oligonucleotides were purchased from Regional DNA Synthesis Laboratories, University of Calgary. The XbaI translation termination linker used in generating JCV large T-antigen mutants described in Fig. 5.7 was commercially obtained from New England Biolabs. The mutagenesis kit was supplied by Bio-Rad. The plasmid pSV0cat was a kind gift from Dr. B. Howard. The JC early promoter-enhancer reporter plasmid pJC_pcat was constructed as described (Nakshatri <u>et al</u>, 1990a). The plasmid pELoat2 was a generous gift of Dr B. Luckow.

The (Nick-column) Sephadex G-50 columns were obtained from Pharmacia. Protease inhibitors like antipain, pepstatin, aprotinin, and PMSF were purchased from Sigma. DNaseI, alphaamanitin, forskolin, dibutyryl cyclic AMP, and 5' bromo deoxyuridine (BUdr) were from Sigma. The chemicals 5-bromo-4chloro-3-indolyl phosphate (BCIP) and nitro blue tetrazolium (NBT), and alkaline phosphatase-tagged anti-mouse IgG secondary antibodies used in western blotting were purchased from Sigma chemicals and Bio-Rad, respectively. Poly dI.dC was purchased from Pharmacia. The nick-translation kit was supplied by Gibco-BRL. Circle nitrocellulose filters were obtained from Mandel Scientific Company. The mRNA isolation kit was from Pharmacia. The cDNA synthesis, and λ packaging kits were purchased from Glbco-BRL.

Alpha-MEM medium and phosphate buffered saline (PBS) were supplied by Flow Laboratories. Trypsin-EDTA, all-trans retinolc acid were from Sigma. Dimethyl sulfoxide (DMSO) was purchased from Baker. The mouse embryona. c-rcinoma Pl9 cell line was a kind gift from Dr. Hamada. Bockneck Laboratories supplied fetal calf serum (FCS). The monoclonal antibodies against SV40 T antigen, FAb 108 and MHC class II antigen, I-A^K were obtained from American Type Culture Collection (ATCC).

2.2 METHODS

2.2.1 Cell culture, differentiation of embryonal carcinoma cells, and transfection

The embryonal carcinoma cell line, P19, was cultured in alpha-MEM medium with 10% heat-inactivated fetal calf serum and cells were induced to differentiate as described (Rudnicki and NoBurney, 1987). Briefly, cells were trypsinised, resuspended in media containing either 300 nM all-trans

retinoic acid (RA) or 1% dimethyl sulfoxide (DMSO) and then cultured in bacterial culture plates for 48 h. Fresh media containing RA or DMSO was added after 48 h and cells were incubated for another 48 h. After four days of treatment the cell aggregates were washed in phosphate buffered saline, trypsinised and resuspended in media containing no RA or DMSO and plated in tissue culture plates. Eight hours after plating, the cells were transfected with 10 µg of indicated test plasmids and 10 µg of pUC19 DNA by calcium phosphate precipitation (Graham and van der Eb. 1973). For the cAMP induction experiments described in chapter 5, the cells were transfected with 5 µg of indicated plasmids and 15 µg of pUC19 DNA unless and otherwise mentioned. Twenty four hours after transfection, the cells were incubated with medium in the absence or presence of 100 µM forskolin and 10 µM dibutyryl CAMP.

For the studies on transactivation of JCV late promoter by T-antigen, the cells were transfected with 1 μ g of indicated reporter plasmid with either 10 μ g of CMV-JCV-TA Tantigen expression plasmid or pUC19 DNA. Primary 5-day-old Fischer baby rat kidney (BRK) cells were used in the transformation assays with JCV T-antigen as described (Pater et_al, 1988). Briefly, the cells were plated in the 60 mm tissue culture dishes and the indicated wild type and mutant T-antigen plasmids were co-transfected with EJ-ras oncogene. After two days the medium containing 2% fetal calf serum was added and the cells were subsequently maintained in this medium for three weeks. Then the transformed foci were stained with crystal violet and counted.

2.2.2 Plasmids and site-directed mutagenesis

Wild type pJC, cat is the same as pJC, cat except that the regulatory sequences of JCV are in reverse orientation (nt 5112 to 270) and as described earlier (Nakshatri et al, 1990a), Site-directed mutagenesis of JCV enhancer was performed with a kit from Gibco-BRL, according to the manufacturer's instructions. The JCV enhancer Pvu II to Hind III fragment from 270 to 5112 served as the substrate for mutagenesis. Mutations in the Nuclear Factor 1 (NF1) binding sites were generated using complementary strand-homologous oligonucleotides for nt 235-206 for region I, 165-137 for the two nt substitution mutations for region II and 152-129 for the remaining region II and III mutations, with appropriate base substitutions. To introduce mutations into cyclic AMP response element (CRE), a complementary strand-homologous oligonucleotide for nt 142-169 with appropriate base substitutions was used. The mutations were confirmed by dideoxy sequencing (Sanger et al, 1977).

The mutated enhancer fragments (<u>Hind</u> II-<u>Sma</u> I) were inserted into the <u>Hind</u> III site of pSVOCAT such that the chloramphenicol acetyltransferase (CAT) gene is expressed from the early JCV promoter (Nakshatri <u>et al</u>, 1990a). The constructs were designated for the NF1 and CRE site(s) that were mutated. The sequences mutated and the names of the plasmids are shown in Figs 3.1 and 4.1 for NF1 mutations and in Fig. 5.5 for CRE mutations.

The plasmids pRII and pmRII contain the single 98 bp repeat having wild type and mutated NPI II sequences, cloned into Hind III site of pSV0 cat. For pJCV-CREcat, the AGCATGAGCTCATACC, JCV CRE oligonucleotide was cloned into <u>Sal</u> I site of pBLcat2 expression vector. Insertion was confirmed by DNA sequencing.

The CMV-JCV-TA plasmid for expressing JCV T-antigen consists of JCV larg. T-antigen coding sequences (nt 5013 to 2603) under the control of cytomegalovirus (CMV) promoterenhancer sequences as described previously (Nakshatri <u>et al</u>, 1990a). The translation termination linker and deletion mutations were derived from CMV-JCV-TA. Plasmids were numbered for the sites of termination and the sizes of deletions. Plasmids pK4984, pK4246, pK4129, pK4085, pK30359, pK3013, and pK2896 were generated with termination linkers having a termination codon in all of the three reading frames, at <u>Noo</u> I, <u>BeplII</u>, <u>SepI</u>, <u>SepI</u>, <u>PetI</u>, <u>StuI</u>, and <u>PvuII</u> sites, respectively. Deletion mutations of the <u>BeplIII-SepI</u> (pK 117), <u>SepI-PetI</u> (pK 726), and <u>StuI</u> (pK 1945) fragments were generated (Fig. 4.7).

65

.

The plasmid, pCNVNF1 contains the cDNA isolated from the cDNA library prepared from P19 RA cells after screening with NF1 binding site located in the 98 bp repeats of JCV. The cDNA from the recombinant AK1 phage was liberated by digesting with NoII and SalI restriction enzymes and cloned in NoII and HindIII sites of pRC/CMV vector purchased from Invitrogen. The insertion and orientation was confirmed by sequencing. The plasmid pBK_g cat contains the regulatory region of human BK virus in early orientation as described previously (Pater and Pater, 1988).

2.2.3 Chloramphenicol acetyltransferase (CAT) assays.

Cells were harvested for CAT assays 48 hours after transfection as described (Gorman <u>et al</u>, 1982). Briefly, the cells were washed with PBS, scraped into eppendorf tubes with a rubber policeman, and pelleted. The pellet was resuspended in 0.25 M Tris-Hol (pH 7.8) and subjected to three cycles of liquid nitrogen freezing and thawing at 37° C. The cell debris was pelleted and the supernatant was used in CAT assays.

Ten μ l of the extract was incubated at 37⁹ C for 1 hour in a reaction mixture containing 14 μ l of 1 M Tris-Hcl (pH 7.8), 4 μ l of 4 mM Acetyl coA, 1 μ l of distilled water, and 1 μ l of [⁴C] chloramphenicol. After 1 hour of incubation, the chloramphenicol was extracted by adding ethyl acetate and then dried in a speed vacuum. The samples were resuspended in 15 μ l of ethyl acetate and spotted on TLC plates. Acetylated and non-acetylated forms of chloramphenicol were separated by ascending TLC in chloroform.methanol (95:5). Percentage acetylation was determined by liquid scintillation counting. The *B*-galactosidase control plasmid was from pCH110 (Pharmacia) in which we replaced SV40 with Rous sarcoma virus (RSV) promoter-enhancer sequences. This served as a control for transfection efficiency. % conversion on CAT assay figures indicate the % CAT activity.

2.2.4 Nuclear extract preparation and DNase I footprinting

The preparation of nuclear extract and DNase I footprinting were done as described previously (Hennighausen and Lubon, 1987). Briefly, the cells from 40 plates of undifferentiated or RA-differentiated cells were used for nuclear extract preparation. The cells were vashed with PBS and then scraped with a rubber policeman and pelleted by centrifugation at 1800 rpm at 40 C for 10 minutes. The pelleted cells were again washed in 10 volumes of PBS and then resuspended in 5 volumes of 0.3 M sucrose in buffer A (10 mM HEPES-KOH, pH 7.9, 10 mM KCl, 1.5 mM MgCl, 0.1 mM EGTA, 0.5 mM dithiothreitol (DTT), 0.5 mM of protease inhibitor phenylmethylsulfonyl fluoride (PMSF), and 2 µg/ml each of other protease inhibitors antipain, pepstatin A, and aprotinin). Cells were homogenised in a Dounce glass homogenizer with a B pestle by applying 10-12 strokes without and 1-2 strokes with 0.3-0.4% of Nonidet P-40 (NP-40). The nuclei were then pelleted by centrifugation at 2700 rpm at 40

C and washed twice with buffer A containing 0.3 M sucrose but no NP-40.

The nuclei were resuspended with a dounce homogenizer by applying 10 strokes in 2.5 pelleted nuclei volumes of buffer B (400 mM NaCl, 10 mM HEPES-KOH pH 7.9, 1.5 mM MgCl₂, 0.1 mM EGTA, 0.5 mM DTT, 5% glycorol and 0.5 mM PMSF). The resuspended nuclei were gently stirred at 4° C for 30 minutes and then centrifuged for 1 h at 39,000 rpm at 4° C. The supernatant was dialysed for 4 h at 4° C against 50 volumes of buffer C (20 mM HEPES-KOH pH 7.9, 75 mM NaCl, 0.1 mM EDTA, 0.5 mM DTT, 20% glycerol and 0.5 mM PMSF). After 4 hours of dialysis, the material which was precipitated during dialysis was removed by centrifugation at 20,000 rpm at 4° C. The supernatant was aliquoted, flash frozen in liquid nitrogen, and stored at -70° C until further use. The protein concentration was estimated by the method of Bradford (1976).

To generate probe for DNaseI protection assays, the <u>Hind</u> III to <u>Pvp</u>II fragment of JCV (nt 5112 to 270) was cloned in <u>Xha</u>I site of pUC19 vector. The <u>SalI</u> to <u>SmaI</u> fragment containing the insertion was used in the footprinting assay. The <u>SalI to <u>SmaI</u> fragments of mutated enhancers eluted from the vector pTZ19 used in <u>in vitro</u> nutagenesis were also included in the footprinting assay. The DNA fragments were end-labelled by using reverse transcriptase in the presence of alpha [²⁹] dCTP which fills the <u>SalI</u> ends. The end-labelled</u> DNA fragments were separated from the non-incorporated nucleotides through Sephadex G-50 columns.

Nuclear extracts in 15-20 µl volumes (containing 45-60 ug of protein) were incubated in 50 µl of binding buffer (50 mM NaCl, 0.1 mM EDTA, 20 mM HEPES-KOH pH 7.5, 0.5 mM DTT, 10% glycerol) and one µg of poly (dI.dC) for 15 minutes on ice. The end labelled probe (40,000 cpm) was added and incubated at 20°C for 10 minutes. MgCl, and CaCl, were added to a final concentration of 5 and 1 mM, respectively, Pancreatic deoxyribonuclease (DNase) I at a concentration of 2 µg/µl in a solution containing 150 mM NaCl and 50% glycerol was diluted with 25 mM NaCl, 10 mM Hepes-KOH pH 7.5 and 0.5 mM DTT. The reaction containing no protein (in lanes marked as free in the figures) contained 2.0 and 1.0 ng of DNase I. The probes incubated with the proteins contained 240 ng of DNase I. After 30 seconds of digestion with DNase I, the reactions were stopped by adding 100 µl of stop buffer (0.375% SDS, 15 mM EDTA, 100 mM NaCl, 100 mM Tris-HCl pH 7.6, 50 µg/ml of sonicated salmon sperm DNA, and 100 µg/ml pronase). The samples were incubated at 37° C for 15 minutes and 2 minutes at 90° C followed by phenol-chloruform-isoamylalcohol extraction and ethanol precipitation. The reaction products were analyzed on polyacrylamide-8M urea sequencing gels.

2.2.5 Whole cell extract preparation

Whole cell extract was prepared by the method described

previously (Tasset et al, 1990). Briefly, the cell, were washed with PBS and scraped with a rubber policeman and pelleted by centrifugation at 1800 rpm at 4°C for 10 minutes. The pelleted cells were washed again with 10 volumes of PBS and suspended in 2 pelleted volumes of buffer containing 10 mM Tris pH 7.6, 1 mM EDTA pH 8.0, 400 mM Kcl, 1.5 mM MgCl, 20% glycerol, 1 mM DTT, 10 µg/ml of soya bean trypsin inhibitor (SBTi), 1 mM PMSF, and 2 µg/ml of each of protease inhibitors antipain, pepstatin A, leupeptin, and aprotinin. This was followed by three cycles of freezing in liquid nitrogen and thawing on ice and centrifugation for 1 h at 39,000 rpm at 4°C. The supernatant was aliquoted, flash frozen in liquid nitrogen, and stored at -70°C for further use. The protein concentration was estimated by the method of Bradford (1976). The whole cell extracts expressing JCV T-antigen were prepared from P19 RA cells transfected with 20 µg of CMV-JCV-TA plasmid.

2.2.6 Sequences of oligonucleotides used in <u>in vitro</u> binding assays.

NF1 I NF1 II/III	5'-AAGGGGAAGTGGAAAGCAGCCAA-3' 3'-TTCCCCTTCACCTTTCGTCGGTT-5'
	5'-GTCGACTGGCTGCCAGCCAA-3' 3'- ACCGACCGTCGGTTGTCGAC-5'
Mutant NF1 II/IJI	5'-GGAGTACTGCCAGACCAG 3'- CATGACGGTCTGGTCCCT-5'

JCV CRE 5'-AGCATGAGCTCA-3' 3'- ACTCGAGTTCGT-5'

2.2.7 Mobility shift assays.

The end labelling of enhancer fragment of JCV and oligonucleotides used in mobility shift assays was the same as that used in DNase I footprinting mentioned in 2.2.4. Since annealing of the complementary strand oligonucleotides generates an overhang, the end labelling was done using reverse transcriptase as described in 2.2.4.

The nuclear and whole cell extracts were used in mobility shift assays as indicated in figure legends. Mobility shift assays were done as described previously (Chodosh <u>et al</u>, 1988). Briefly, the binding reactions in 15 μ l volume were done in buffer containing 12 mM HEPES-NaOH pH 7.9, 4 mM Tris-HCl pH 7.9, 10% glycerol, 0.1 mM EDTA, 1 mM DTT, 5 μ g of poly (dI.dc).poly (dI.dC), 60 mM KCl, 15,000 cpm of end-labelled probes and the indicated amounts of nuclear or whole coll extracts. The reactions were incubated at 20° C for 30 minutes. The lanes labelled as free in the figures did not contain protein. The reaction products were analyzed on 4% non-denaturing polyacrylamide (acrylamide:bisacrylamide, 29:0.5) gels which were run at 4° C with circulation of buffer at 100v in 22 mM Tris-borate, 0.5 mM EDTA. Gels were dried and subjected to autoradiography.

2.2.8 UV crosslinking assays

UV crosslinking assays were done as described (Chodosh at al, 1986). Binding reactions in 35 μ l volume were done as described for mobility shift assays except that 100,000 cpm of BudR incorporated, nick translated JCV CRE oligonucleotide, 10 μ g of poly dI.dC, and 60 μ g of whole cell extract were used. After incubation for 30 min at 30°C, the reaction mixtures were exposed to UV irradiation under the Fotodyne UV lamp for 30 min. The reactions were not treated with DNase I as the size of the probe was less than 50 bp. The reactions were stopped by adding 2X SDS-PAGE loading buffer (100 mM Tris-HCl pH 6.8, 200 mM DTT, 4% SDS, 20% glycerol, and 0.2% bromophenol blue). The products were boiled for 4 minutes and then subjected to electrophoresis on a 10% SDS-polyacrylamide gel at a constant voltage of 100 volts.

2.2.9 Southwestern blot analysis

Southwestern blotting was done according to the method described previously (Vinson <u>st. al</u>, 1988). Fifty μ g of protein from forskolin (FSK)-treated and untreated whole cell extracts prepared from RA-differentiated P19 cells was run by electrophoresis on a 10% denaturing SDS-polyacrylamide gel and transferred onto a nitrocellulose membrane by electrotransfer in Tris-glycine buffer. The filters were blocked in binding buffer containing 5% non-fat dry milk in 25 mM Hepes-NaOH pH 8.0, 5 mM MgCl,, 0.5 mM DTT, 25 mM NaCl at room temperature (RT) for 2 h. This was followed by incubation in the binding buffer containing 10^6 cpm per ml of nick-translated JCV CRE probe at RT for 2 h. The membranes were then washed thrice in binding buffer, 15 minutes each. Subsequently, the membranes were air dried and exposed to X-ray film for autoradiography. 2.2.10 RNA preparation and ribonuclease (RNase) protection assays

RA-treated P19 cells transfected with and without 10 μ g of pJC₂ cat plasmid were harvested for RNA 48 h after transfection (Chirgwin <u>st al</u>, 1979). Total RNA at 10 μ g was used in RNase protection experiments as described (Belaguli <u>st</u> al, 1992). The RNA was hybridized with 100,000 cpm of cat and δ -galactosidase RNA probes at 56°C for 14 h followed by RNase T1 (700 U of RNase T1 per ml) digestion. RNase resistant hybrid RNAs were analyzed on 5% polyacrylamide-SM urea sequencing gels. The quantitation of the signals was done by laser densitometry. The cat and δ -galactosidase probes were generated from the <u>HindIII-EcoRI</u> DNA fragment (nt 5018-4768) of pSV2 cat and <u>EcoRI-AvaI</u> fragment (nt 3286-3063) of pRSV δ galactosidase DNA cloned in the vector, Bluescript KS+, respectively.

2.2.11 In vitro transcription assays

Nuclear and whole cell extracts were prepared from UD and RA-differentiated P19 cells as described in 2.2.4 and

2.2.5, respectively. In vitro transcription was done as described earlier (Ahmed et al. 1990). Transcription reactions were prepared in 50 µl volume containing 12 mM Hepes-NaOH pH 7.9, 12% glycerol, 60 mM KCl, 2 mM MgCl., 1 mM each of ATP. CTP. GTP and 0.5 mM of 32P UTP. 1 ug of DNA template digested with appropriate restriction enzyme and the indicated amounts of protein. After incubation at 300 C for 1h, the samples were extracted with phenol-chloroform-isoamylalcohol and ethanol precipitated. The run-off transcripts were analyzed on a denaturing 5% polyacrylamide-8M urea gel with the appropriate size markers. The DNA templates were 1 µg of Nco I and Pvu II digested JC early and late cat constructs to yield 550 and 160 nt run off transcripts, respectively. In cAMP induction experiments described in chapter 5, 1 µg each of Nco I digested pRII and pmRIIcat DNA templates were used to obtain 550 nt run off transcripts. pBLcat2 and pJC-CREcat DNA were digested with Nco I to yield 576 nt transcripts. The Hpa I digested pRSV-6-galactosidase plasmid was used as an internal control to normalize the recovery of transcripts.

2.2.12 Preparation of cDNA library from RA-differentiated P19 embryonal carcinoma cells

2.2.12.1 Isolation of poly A+ RNA

Poly λ + RNA from P19 RA cells was prepared using the mRNA isolation kit of Pharmacia according to the manufacturer's instructions. Briefly, the cells were washed

with sterile PBS and pelleted down by centrifuging at 1800 rpm at 4° C. Lysis buffer (100 ml) was added to the pellet. The pellet was resuspended and sheared by forcing the lysate in and out of an 18 gauge needle until viscosity reached that of the lysis buffer.

The lysate was then incubated for 2 hours at 45°C with intermittent agitation. The NaCl concentration of the lysate (0.2M) was adjusted to 0.5M and then added to oligo(dT) cellulose equilibrated with binding buffer and incubated for 30-60 minutes at room temperature with intermittent agitation. The resin was pelleted and washed with 5 bed volumes of binding buffer until the buffer was clear. The washed resin was poured into column and washed continuously until the A240 of eluate was less than 0.05. Then, the bound poly A+ mRNA was eluted with 0.3-0.5 ml fractions of elution buffer. The fractions 1-8 containing majority of the mRNA were pooled and precipitated by adding 0.1 volume of 3M NaOAc and 2 volumes of 100% ethanol at -200 C overnight. The mRNA was recovered by centrifugation at 40 C. The amount of mRNA recovered was quantitated by UV spectrophotometry and absorbence readings at wave lengths of 260 and 280 nM were taken to estimate the purity of the mRNA and confirmed the purity.

2.2.12.2 Preparation of cDNA from mRNA

The cDNA was prepared from the mRNA isolated from P19 RA-treated cells, using a kit from Gibco-BRL and according

to the manufacturer's instructions. Five µg of mRNA was added to 1 µg of NotI primer-adapter containing 15 dT residues. The mixture was heated to 70° C for 10 min, and guick-chilled on ice. Then, the 5X first strand buffer (50 mM Tris-HCl pH 8.3, 75 mM KCl, 3 mM MgCl, 10 mM DTT and 500 µM each of dATP. dCTP, dGTP, and dTTP) was added. This was followed by the addition of 2 μ l (200 U/ μ l) of Superscript RT in a reaction volume of 20 µl and incubation at 370 C. After 1 hour of incubation, the mixture was placed on ice and the synthesis of second strand was initiated. To the first strand mixture, 30 µl of 5X second strand buffer (25 mM Tris-HCl, pH 7.5, 100 mM KCl, 5mM MgCl, 10 mM (NH4),SO4, 0.15 mM β-NAD* 250 mM each of dATP, dCTP, dGTP and dTTP, 1.2 mM DTT) was added. E.Coli DNA ligase (10 U), E.Coli DNA polymerase I (40 U) and E.Coli RNase H (2 U) were subsequently added in a total reaction volume of 150 µl and incubated at 16° C for 2 hours. After 2 hours of incubation, 10 U of T4 DNA polymerase was added and incubation was continued at 16° C for 5 min. The reaction was stopped by adding 10 µl of 0.5 M EDTA. The reaction products were subjected to phenol-chloroform-isoamylalcohol extraction followed by ethanol precipitation.

2.2.12.3 Size fractionation of cDNA and ligation of cDNA to Agt22A vector

The cDNA was checked on denaturing alkaline agarose gel before proceeding to the subsequent steps. <u>Sall</u> linker was added at the 5' end of cDNA. Then, the cDNA was digested with NotI and size-fractionated by column chromatography. This removed the residual adapters and the NotI fragments released by restriction digestion of primeradapter with NotI. The size-fractionated cDNA containing SalI and NotI termini was ligated to Agt22A vector digested with NotI and SalI to ensure the preparation of a unidirectional cDNA library.

2.2.12.4 Packaging of phage λ vector-cDNA and preparation of cDNA library

The ligated vector-cDNA was then packaged using BRL's Å packaging system. Briefly, the 5 μ l of the ligated mixture was added to the extract A supplied by BRL packaging kit. Then, 15 μ l of extract B of the kit was added and mixed thoroughly but gently and incubated at 20⁰ C for 2 h. Following the incubation, 0.5 ml phage dilution buffer (50 mM Tris-HCl pH 7.5, 100 mM NaCl, 10 mM MgCl₂, 0.01% (w/v) gelatin) was added and mixed. Chloroform (20 μ l) was added next and mixed gently. The phage mixture was mixed with the Y1090R host bacteria in phage dilution buffer and incubated at 37⁰ C for 30 min. Three ml of molten 0.7% T-Tyn agar containing 10 mM MgCl₂ was then added, mixed and poured onto 100 X 15 mm 1.5% T-Tyn agar plates. After the top agar was set the plates were incubated at 37⁰ C overnight. The phage library consisted of 1.1 X 10⁶ plaques.

2.2.12.5 Amplification of cDNA library

The plates containing approximately 50,000 plaques each were overlaid with 10 ml of phage dilution buffer and incubated at 4° C overnight with gentle rocking. The bacteriophage suspension from each plate was recovered and pooled into sterile tubes. Chloroform was added to 5% final concentration and mixed and incubated for 15 min at room temperature. The cell debris was removed by centrifugation for 5 min at 4000 X g. The supernatant was transferred to fresh tubes and chloroform was added to 0.3% and the aliguots were stored in aliguots at 4° C for further use. After amplification, the titre of the library was 10¹¹ pfu/ml.

2.2.13 Screening of cDNA library

The P19 RA λ gt 22A library was screened by Southwestern blot analysis to isolate cDNA encoding the factor interacting with NP1 II/III of JCV (Vinson <u>et al</u>, 1988). Briefly, the bacterial strain Y1090K was infected with recombinant phages at 37⁶ C for 30 min. Then, 3 ml of 0.7% top agar was plated over the 1.5% T-Tyn agar plates which were then incubated at 42⁹ C for 4h. The IPTG-impregnated nitrocellulose membranes were overlaid on the plates and incubated for 6 hours at 37⁹ C. The filters were then immersed in binding buffer (25 mM NaCl, 5 mM MgCl₂, 25 mM HEPES, pH 8.0, and 0.5 mM DTD) containing 6M guandine hydrochloride and were gently shaken at 4⁰ C for 15 min. The guanidine hydrochloride was

sequentially diluted with an equal volume of binding buffer and filters were immersed in this buffer for 5 min each. This process of denaturation and renaturation was repeated four times.

The filters were then immersed twice in binding buffer without guanidine hydrochloride twice for 15 min each time. Following this, the filters were submerged in binding buffer with 5% nonfat dry milk powder for 2 hours. The filters were further incubated in binding buffer containing 0.25% nonfat dig milk powder and 10⁶ cpm/ml of nick translated tenmer of NF1 II/III oligonucleotide for 2 hours. Finally, the filters were washed in binding buffer with 0.25% nonfat milk powder three times for 10 min. The filters were dried and subjected to autoradiography.

2.2.14 Western blot analysis

Western blotting was performed as described previously (Harlow and Lane, 1988). Briefly, the lysates prepared from P19 RA cells transfected with either wild type (WT) or mutant T-antigen expression plasmids were separated on 10% SUSpolyacrylamide gel and transferred onto nitrocellulose membranes electrophoretically. The membrane was immersed in Tris buffered saline (TBS; 100 mM Tris HCl pH 7.5, and 0.9% NaCl) containing 5% nonfat dry milk overnight. The membrane was washed five times for 20 minutes each wash with TBS containing 0.1% Tween 20 (TTBS). This was followed by
incubation in TTBS containing PAbl08 monoclonal antibody against T-antigen for 2 hours. After 5 washes of 20 minutes each in TTBS, the membrane was incubated for 1 h with the alkaline phosphatase-linked anti-mouse IgG secondary antibody in TTBS. The membrane was washed five times with TTBS and then incubated with detection reagents, 0.5% 5-bromo-4-chloro-3indolyl phosphate (BCIP) and 0.5% nitroblue tetrazolium (NBT), for colour development until the bands were suitably dark. The reaction was stopped by washing with stop solution (20 mM EDTA in phosphate buffered saline) and the membrane was air dried.

2.2.15 Northern blot analysis

Northern blot analysis was done according to standard molecular biology procedures (Sambrook <u>et al</u>, 1989).

CHAPTER 3

Human JC virus perfect palindromic nuclear factor 1 (NF1) binding sequences important for glial cell-specific expression in P19 differentiating embryonal carcinoma cells.

3.1 INTRODUCTION

AS discussed in the thesis introduction, <u>dis</u>-acting enhancer elements interact with cell-specific transcription factors to regulate expression of specific cellular genes. Unlike the other human polyoma virus BK, JC virus exhibits strict cell-specificity and its growth and expression is restricted to glial cells (Kenney <u>et al</u>, 1984; Small <u>et al</u>, 1986). The restricted cell-specificity was attributed to the transcriptional control region of JCV (Nakshatri <u>et al</u>, 1990a).

Nucleotide sequence analysis of brain and kidney forms of JCV from the same patient revealed variations in the transcriptional control elements (Loeber and Dorries, 1988). Transcriptional control elements regulate glial cell-specific expression and the extremely restricted host range of JCV (SinoHara <u>et al</u>, 1989; Kenney <u>et al</u>, 1984). Hence mutations or rearrangements in the JCV regulatory region may result in the spread of the virus from kidney, where it remains latent, to the brain, where it successfully grows.

Previous studies used in vitro binding assays to suggest that the NF1 binding motifs may play a role in the glial cellspecificity of JCV (Khalili <u>et al</u>, 1988; Amemiya <u>et al</u>, 1989; Tamura <u>et al</u>, 1988). No functional assays were done. In order to conclusively determine the role of NF1 sites in glial cellspecific expression of JCV, I continued the preliminary studies initiated in our laboratory (Nakshatri <u>et al</u> 1990a). The main objectives of this chapter are:

 To examine the functional role of NF1 binding sites in the glial cell-specific expression of JCV by performing site directed mutagenesis of NF1 motifs in the JCV regulatory region.

2) To correlate the <u>in vivo</u> activity of JCV promoter-enhancers harbouring WT and mutant NF1 sites with <u>in vitro</u> DNA-protein interaction, employing DNaseI footprinting assays.

 To examine the interaction of factors with JCV promoterenhancer by mobility shift assays.

 To isolate the cDNA encoding the factor(s) interacting with the NF1 II/III site.

3.2 RESULTS

3.2.1 Role of specific NF1 sequences in <u>in vivo</u> activity of JCV enhancer

Previous studies had shown that efficient activity of JCV early regulatory region is restricted to cells of neural origin (Kenney et al, 1994; Nakshatri et al, 1990a). Using nuclear extracts from undifferentiated, DMSO, and RA-treated P19 cells for DNase I footprinting, it was shown that three completely protected regions, all containing NF1 binding motifs, were produced specifically for RA-differentiated cell extracts. Competition with oligonucleotides that span these protected regions suggested interaction of the same factor with all three sites (Nakshatri et al, 1990a).

I examined the functional role of NP1 motifs in RAtreated P19 cell-specific expression of JCV. Site-directed mutagenesis of the JCV regulatory region was undertaken. Soveral mutations were introduced into the three NF1 binding sites in the enhancer of JCV and the enhancer fragments containing each mutation were inserted into the reporter plasmid pSVOcat, a promoter-enhancer less vector (Fig. 3.1). Plasmids were then tested for their functional activity in undifferentiated (UD), DMSO (DM)- and RA-differentiated (RA) P19 cells. Mutation of NF1 and E4TF1 binding sites in DNase I protected region I (Fig. 3.1) did not result in significant alterations in CAT activity when tested in RA P19 cells Fig. 3.1 Wild type and mutated NF1 motifs in JCV_E sequences in CAT plasmids and in DNaseI protected regions.

(Top) Diagram of sequences present in CAT plasmids. Arrows indicate the boundaries of sequences for the first seven constructs listed below, and arrowheads indicate sequences for the last two constructs listed below. Early and late sides are indicated. TATA boxes and NF1 site motifs are indicated and delineated by dark lines. Nucleotide positions are given below and above the lines. Boxes indicate the 98 bp repeats. (Bottom) List of mutated plasmids and mutated sequences and delineation of DNaseI protected sequences for the three NF1 sites. Mutated NF1 nucleotides are indicated by lower case letters. Wild-type NF1 nucleotides are indicated in pJCV_cat by capital letters and in other plasmids by dashes. Inverted palindromic sequences are underlined for pJC_cat. DNaseIprotected sequences of Fig.3.4 are indicated by overlines and nucleotide numbers. The complete oligonucleotide sequence protected for regions NF1 II and NF1 III is 5'-AGGGATGGCTGCCAGCCAAGCATG-3' and that for region NF1 I is 5'-GGAAGTGGAAAGCAGCCAAGGGAA-3'.

early	12	109 110					207 late		
+	TATA	NF1 III	TATA NEL T			Y	NF1 J		
5112	14 22	39 51	66	1	12 120	137 149	164	213 2	25 270
Plasmid		NF1 III				NF1 🛙	NF1 [
		34		57	132		155	208	231
pJCEcat (WT)		TGGCTGCCAGCCA		TGGCTGCCAGCCA			TGGAAAGCAGCCA		
pJCEcat I		34		57 132 155			· aa · c		
pJCEcat []		3 <u>6 4</u> 5		<u>134 14</u> 3			208 231		
pJCEcat I.II		3 <u>6 4</u> 5		<u>134 14</u> 3			- a a - c		
pJCEcat I.III		gtaa.c		**********			-aa-c		
pJCEcat [].[]]		gtaa-c		gtaa.c			208	231	
pJCEcat I.[].[]]		gtaa.c		gtaa-c			- a	a·c	
pR[JCEcat (WT)									
pmR[]JCEcat						gta	a-c		

(Fig.3.2, I). However, constructs which contained mutated GCCA nucleotides of the right half side of the perfectly palindromic NF1 region II motif (Fig. 3.1) had 3.6 (Fig. 3.2, II) and 3.1-fold (Fig. 3.2, I.II) lower cat activity in P19 RA cells. Surprisingly, these mutants had more than 2-fold higher activity in P19 DM muscle cells (Fig. 3.2, DMSO). The importance of combinations of the three JCV NF1 sequences was also examined with mutations in regions II plus III, I plus III and all the three sites (Fig. 3.1). These mutants were 5.8- 4.3- and 7-fold, respectively, lower in cat activity in P19 RA-differentiated glial cells (Fig. 3.2, II.III, I.III, I.II.III). Once again these mutants displayed more activity in P19 DM muscle cells compared to wild type (Fig. 3.2. DMSO). The results suggested that the NF1 binding sites located within, but not outside, the 98 bp repeats are important for the efficient expression of JCV early regulatory region in P19 RA-differentiated cells.

Next, the possibility that a single perfectly palindromic NF1 binding motif located in the repeats would be sufficient for glial cell-specific "xpression of JCV was examined. Plasmids with a single repeat region which had either a wild type or mutated NF1 site were constructed (Fig.3.1). Wild type region II plasmid (Fig. 3.2, pRII) exhibited a substantial amount of activity in P19 RA cells. This was similar to the activity seen for region I plus III mutant (Fig. 3.2, I.III). The cell specificity of these plasmids was also similar to that observed for intact enhancer constructs. Mutation of the region II NF1 site alone (Fig. 3.1, pmRII) reduced the cat activity 3.5-fold in P19 RA cells (Fig. 3.2, pmRII) compared with wild type region II plasmid. The results suggested that the NF1 site located in the 98 bp repeats alone is sufficient for RA P19 cell-specificity of JCV early regulatory region. However, in P19 DM muscle cells, region II mutant (pmRII) showed 2.4-fold more activity compared to wild type pRII construct. Also, its activity was 1.9-fold more in P19 DMSO than in P19 RA cells (Fig. 3.2, compare pRII and pmRII). Thus, the results suggested that the mutations in NF1 site in 98 bp repeat resulted in slightly increased activity in P19 DM muscle cells.

3.2.2 Role of NF1 sequences in <u>in vitro</u> activity of JCV enhancer

The effect of NF1 mutations within the 98 bp repeats on the expression of JCV early control region was examined by in <u>vitro</u> transcription assays. Substantial activity was observed for neural cell extracts (Fig. 3.3, left panel, lanes 3 and 5). Negligible activity was observed in undifferentiated cell extracts (Fig. 3.3 left panel, lane 1). Template with mutations of the three NF1 sites greatly reduced the levels of transcript (Fig. 3.3, left panel, lanes 2 and 4). Template containing mutations in region I NF1 motif supported wild type Fig. 3.2. Effect of mutation of JCV NF1 sites on <u>in vivo</u> activity.

Results are for CAT assays in undifferentiated (UD), dimethylsulfoxide (DNSO)- and retinoic acid (RA)differentiated P19 embryonal carcinoma cells. NF1 site mutations are indicated by the unique letters for the plasmids of Fig. 3.1. The cells were transfected, 8 hours after being plated, with 10 μ g of test plasmid and 10 μ g of pUC19 DNA. Values for CAT activity were calculated from assays with less than 30% conversion and were normalized with assays for Rous sarcoma virus promoter-driven 6-galactosidase plasmid. Results are averages of three experiments. The error bars in the figure represent standard deviations.

Fig. 3.3 Requirement of JCV NF1 sites for in vitro activity. In vitro transcription assay products were resolved in 5% acrylamide gels containing molecular weight markers. (Left) DNA templates were digested with NcoI. Lanes: 1, pJCEcat and 75 µq of extracts from P19 UD cells; 2 and 4, pJCEcat I.II.III and 60 and 75 µg, respectively, of extracts from RAdifferentiated cells; 3 and 5, pJCEcat and 60 and 75 µg, respectively, of extracts from RA-differentiated P19 cells. Tr, 550 nt transcript; IC, 286 bp end-labelled fragment serving as internal control which was added before phenol extractions. (Right) Extracts were 35 µg of RA-differentiated glial cells and DNA templates were digested with Pvuli. Lanes: 1. pJCEcat and incubation in the presence of 1 µg of alphaamanitin RNA polymerase II inhibitor per ml; 2, pJCEcat; 3, pJCEcatI. Tr, 162 nt transcript. The autoradiographs presented in right and left panels are from different experiments. The results were consistent for two experiments.

levels of <u>in vitro</u> transcription (Fig. 3.3, right panel). Transcription was by RNA polymerase II since alpha-amanitin at 1 µg/ml concentration blocked all transcriptional activities (Fig. 3.3, right panel). Thus, these result* supported the <u>in</u> <u>vivo</u> observations and further indicated that the NF1 sites within the two 98 bp repeats of JCV, but not the region I site, are essential for efficient functional activity of JCV enhancer in glial cells.

3.2.3 Effect of mutations in NF1 binding sites on DNA-protein interactions

Since mutating one or both palindromic NF1 sites within the 98 bp repeats greatly reduced JC enhancer activity, I also examined <u>in vitro</u> DNA-protein interactions in the context of mutated NF1 sites. For this purpose, DNaseI protection assays were carried out. The region I mutation eliminated protection, but only for region I (Fig. 3.4, JCI). For the mutation of the GCCA half side of NF1 motif of region II, protection was restricted to the central nt of the region protected for wild type probe and excluded the GCCA sequences (Fig. 3.1 and Fig. 3.4, JCII and I.II). In addition, there was a similar effect on the DNaseI protection of the non-mutated region III (see the region III for lane RA of JCII). The double mutation (JCI.II) displayed a simple additive effect (Fig 3.4, JCI.II). Probes containing mutations in NF1 binding motifs of both half sides for regions II and III mutations were completely

Fig. 3.4 Effect of mutations on DNaseI footprinting of JCV NF1 sites.

The protection from DNaseI by extracts is visualized as fainter regions. NFI sites mutated in the probes are indicated at the bottom and correspond to those of Fig. 3.1. For probes, nt 5112 to 270 of JCV wild-type and mutated fragments (Fig. 3.1) were cloned into the pUC19 <u>Xba</u>I site, and <u>Sal I- Sma</u> I fragments were end-labelled only on the bottom Sal I end with [alpha-³²P]dCTP. Lanes: AG, chemical cleavage of purines; F, free DNA of assay with no nuclear extract; UD, undifferentiated cell extract; RA, retinoic aciddifferentiated cell extract. Protected regions I,II, and III are bracketed and indicated. Protected sequences and binding motifs for transcription factors are as delineated and described in the legend to Fig. 3.1.

unprotected in regions II and III (Fig. 3.4, JCII.III). Mutations in both half sides of all three NF1 binding sites abolished protection in all three regions (Fig. 3.4, JCI.II.III).

3.2.4 Nature of proteins interacting with NF1 sites

To identify the cellular factors from P19 cells that interact with NFI binding sites of JCV regulatory region, DNAprotein binding was further evaluated by mobility shift assays. First JCV whole enhancer was used as a probe in mobility shift assays. In addition to complexes observed for UD cell extracts, a low mobility DNA-protein complex was detected only with extracts from P19 RA cells (Fig. 3.5, arrow). The amount of this complex increased with 2-fold higher protein concentration for P19 RA cell extracts, while the amounts of other complexes did not change for UD and RA extracts (Fig. 3.5, compare lanes UD and RA). The results suggested that a factor restricted to neural cells specifically interacts .ith JCV enhancer and its affinity to JCV enhancer is also higher.

Since the NF1 II/III located in the repeats was found to be important for <u>in vivo</u> activity in RA F19 cells, DNA-protein binding was also examined by mobility shift assays using an oligonucleotide for the region II NF1 motif as a probe. A diffuse DNA-protein band was detected with F19 RA cell extracts but not with UD cell extracts (Fig. 3.6 UD and

95

Pig. 3.5. In vitro binding of glial cell transcription factor(s) with JCV promoter-enhancer in mobility shift assays. Lanes: F, no nuclear extract; UD, undifferentiated cell extract; RA, retinoic acid-differentiated cell extract. Assays were done using the intact JCV enhancer probe described in Fig. 3.4 for wild type. Left and right panels, 2.5 and 5 µg, respectively, of protein per assay. Arrow indicates the specific low-mobility DNA-protein complex for RA lanes. Arrowhead indicates free probe not bound to factor(s).

Fig.3.6 <u>In vitro</u> binding of glial cell extract with NF1 II/III oligonucleotide using mobility shift assays.

Assays were done using end-labelled double stranded NF1 II/III oligonucleotide sequence as a probe and 5 μ g of protein in extracts. RI, RII, and mRII indicate competition with NF1 I, NF1 II/III and mutant NF1 II/III, respectively, oligonucleotides in 200-fold excess amounts. The sequences of wild type RII oligonucleotide used as probe and the oligonucleotide competition were as follows: RI, 5'-AAGGGAAAGTGGAAAGCAGCAA-3'; mRII, 5'-<u>TGGCTGCCAGCCAA-3';</u> mRII, 5'-GTA<u>CTGCCAGACCAGCA</u>-3'. The arrow indicates free probe and the arrowhead specific low-mobility DNA-protein complex.

RA). Moreover, competition with wild type but not mutant NFIII/III oligonucleotide abolished complex formation (Fig. 3.6, RII and mRII). Interestingly, competition with oligonucleotide corresponding to the protected region I did not abolish the complex formation (Fig. 3.6, RI). The results suggested that factor(s) restricted to P19 glial (RA) cells but not UD cells interact specifically with the NFI II/III sequence of JCV enhancer. The results also provided a clue that the protein factor(s) interacting with NFI I and NFI II/III are different since NFI I sequence could not compete with the factor interacting with NFI II/III.

3.2.5 Isolation and preliminary characterization of a CDNA encoding the factor binding to NP1 II/III binding motif of JCV 3.2.5.1 Screening of the P19 RA library

The site-directed mutagenesis studies clearly suggested that NP1 II/III binding motif plays an important role in P19 RA cell-specific expression of JCV. In addition, the <u>in vitro</u> binding assays indicated the interaction of P19 RA cellspecific transcription factor(s) with the NF1 II/III oligonucleotide. Hence, it was of interest to isolate a cDNA that encodes for a protein able to bind the NF1 II/III sequence from retinoic acid-differentiated P19 cells.

Sequence-specific DNA binding proteins can be purified by DNA affinity chromatography (Chodosh <u>et al</u>, 1986). However, this requires large amounts of starting material. Therefore, I decided to isolate the cDNA encoding for the factor interacting with NFI II/III by screening an expression library prepared from RA-differentiated P19 cells using Southwestern blot analysis. This technique was first used to isolate a cDNA encoding for the immunoglobulin enhancer binding protein (Singh <u>et al</u>, 1988). The technique involves direct screening of an expression library with a specific DNA sequence as a ligand.

Approximately 1×10⁶ plaques from P19 RA 1 gt 22A expression library were screened by Southwestern blot analysis as described in 2.2.13. Primary screening resulted in isolation of two positive clones (Fig. 3.7). To further confirm specificity, one of the clones (λ KI) was subjected to further testing. The recombinant phage from this clone was plated and replica filters were exposed to nick-translated wild type NF1 II/III, mutant NF1 II/III, and non-specific NF1 I oligonucleotides. Wild type NF1 II/III showed positive plaques but not mutant or NF1 I oligonucleotides (Fig.3.8 compare A and C with B and D, respectively). The results suggested that the isolated cDNA encodes a factor that binds to KF1 II/III in a sequence specific manner.

To determine whether the isolated cDNA encodes a factor which is restricted to RA P19 cells, Northern blot analysis of total RNA isolated from UD and RA-differentiated P19 cells was undertaken. The cDNA from λ K1 recombinant phage

Fig. 3.7 Identification of λ phage recombinant cDNA clone which specifically binds to NF1 II/III element.

The two positive clones were detected by oligonucleotide probe in the Southwestern blots. The positive cDNA clones detected after primary screening are indicated by arrowheads.

Fig. 3.8 Specificity for NF1 II/III binding by the positive recombinant cDNA clone, λ K1.

The recombinant KlA phage was plated and replica filters were screened in Southwestern blots as in Fig. 3.7 with wild type NF1 II/III oligonucleotide in panels A and C, mutant NF1 II/III oligonucleotide in panel B, and NF1 I oligonucleotide in panel D. Only quarter filters are shown for comparison.

was used as a probe. A message of approximately 1.2 kilobase pairs (kb) was detected for RNA from P19 RA cells and very low level of message in UD cells (Fig. 3.9). The results indicated that the factor isolated is restricted to P19 RA cells. Taken together, the isolated cDNA encodes a P19 RA cell factor that specifically interacts with the NF1 II/III binding site located in the 98 bp repeats which was shown important for glial cell-specific expression of JCV.

3.2.5.2 Transcriptional activity of cDNA in nonglial cells

To examine the transcriptional activity of the cDNA and to find out its ability to complement for the expression of JCV regulatory region in non-neural cells, the cDNA was cloned in eucaryotic expression vector pCMV. The recombinant plasmid, pCMVNFI was cotransfected with JCV_ccat and JCV_ccat plasmids into KeLa cells. In the absence of pCMVNF1, none of the CAT reporter plasmids showed activity, confirming their glial cell-specificity. However, cotransfection with pCMVNF1, pJCV_c and pJCV_c CAT constructs showed 3.5- and 4.0-fold activity, respectively, in HeLa cells (Fig. 3.10). The expression of pCMV NF1 had no effect on the expression of BK virus regulatory region consisting of NF1 sites. This suggests that the isolated cDNA is functional and complements for the activity of JCV control region in nonglial cells. Fig. 3.9 Northern blot analysis of F19 total RNA, using K1 cDNA as probe.

The RNA isolated from UD and RA-differentiated P19 cells were resolved on 1% formaldehyde-containing agarose gels. A northern transfer of this RNA was probed with the isolated cDNA fragment from λ K1 phage clone. RNA molecular weight markers are indicated in kb on right side.

Fig. 3.10 Expression of JCV early, late and BKV early promoters in nonglial cells in response to clone KINFI. The lanes for JCV early, JCV late and BKV early promoters are indicated. The assays were with and without cDNA, the pCMV expression vector for KINFI. Ten µg of reporter plasmids were cotransfected with 10 µg of pCMV expression vector for KINF1 into HeLa cells. Results are averages of two different experiments.

3.3 DISCUSSION

The purpose of the present study was to determine the functional role of NF1 binding motifs in the expression of the JCV early promoter-enhancer. Site-directed mutagenesis of these motifs led to the novel finding that the NF1 motif inside, but not outside, the 98 bp repeats (Fig. 3.2, II.III and I.II.III) is important for RA P19 cell-specific expression of JCV. This observation provided the basis for further studies such as isolation and preliminary characterization of the factor interacting with NF1 II/III described in this chapter. The objectives of the study were achieved, largely through site-directed mutagenesis and cDNA cloning.

Mutation of one of the perfectly palindromic NFI motifs present in the 98 bp repeat resulted in a 3.5- to 4-fold reduction and mutation of both motifs resulted in 7-fold decrease in activity, specifically in RA P19 cells (Fig. 3.2). However, the mutation of the NFI region I motif on the late side of 98 bp repeats had no significant effect. The <u>in vivo</u> observations were further confirmed by <u>in vitro</u> transcription assays (Fig. 3.3). These data provide direct experimental evidence that the NFI factors interacting with these sequences are important in RA P19 cell-specific expression of JCV.

Using cell extracts from retinoic acid-differentiated P19 cells in DNaseI protection assays, it was shown previously that in addition to the protection of three NF1 binding sites in JCV enhancer, E4TF1, overlapping the NF1 I was also protected (Nakshatri <u>et al</u>, 1990a). The functional role for this factor in glial cell-specificity remained unclear. In the present study, the mutations introduced into the NF1 I also disrupted the binding site for the factor interacting with this motif, as revealed by DNaseI protection assays (Fig. 3.1 and Fig. 3.4, JCI). Since the mutations in NF1 I had no effect on the expression of JCV_g , this suggests that the E4TF1 motif has no functional role in glial cell-specific expression of JCV.

To examine the role of the individual NF1 motifs in the 98 bp repeat, wild type (WT) and mutated single 98 bp repeats were tested for comparison of their functional activity in UD, DM, and RA P19 cells (Fig. 3.2, RII and mRII). Three observations could be made. 1) For RA P19 cells there was 3.5fold lower activity as compared to whole enhancer construct for pRII. This lower level of activity was similar to the level seen when one of the two repeat region sites of the whole enhancer construct was mutated. The implication is that region I NF1 has no major role in glial cell-specificity and region INF1 is the same in I.III mutant and pRII. 2) The 3.5-fold decrease in activity after mutating the repeat region NF1 II site was similar to the results obtained with mutated complete enhancer constructs. This demonstrated that effects of such mutations were retained for a single site. 3) There was a muscle cell-specific increase in activity when the single NF1 site was mutated. This observation is consistent with the results for the different mutations of repeat region NF1 sites within the context of whole enhancer.

In an earlier study (Tada et al. 1989), the oligonucleotides encompassing NF1 I, NF1 II/III, and the pyrimidine rich region and the TATA box of JCV regulatory region were placed in front of the SV40 promoter in pAlOcat. The activity of these constructs was assessed in glial and nonglial cells. These constructs showed activity in glial cells. However, the constructs containing NF1 I and TATA box alone showed activity, even in nonglial cells, although not to the same extent as that observed in glial cells. Interestingly, the construct harbouring the NF1 II/III sequence failed to display any detectable activity in nonglial cells while the vector, pA10 cat, by itself showed basal level of activity. The authors interpreted the results as suggesting that the NF1 II/III sequences suppressed the SV40 promoter activity and that these sequences are positive and negative regulators of expression in glial and nonglial cells, respectively (Tada et al, 1989). My observation that the NF1 II/III mutants exhibit higher activity in DMSO P19 cells give credence to these suggestions. More importantly, while Tada et al (1989) analyzed the effect of NF1 sequences using a heterologous promoter, in my studies the functional role of NF1 sites in the glial and nonglial expression of JCV was assessed in the context of the JCV promoter. Since the activity of JCV promoter-enhancer in DMSO-differentiated P19 cells is low, the increased activity of NF1 mutants in these cells compared to WT can be considered significant. Compared to the regulatory regions of BKV and SV40, the activity of JCV promoter-enhancer in P19 RA-differentiated cells is lower by several-fold (Nakshtri <u>et al</u>, 1990a). Hence the reduced activity of NF1 mutants in RA-differentiated P19 cells, although modest, is significant.

JC-HEK, a JC virus adapted to growth in human embryonic kidney cells (HEK), displayed rearrangements in the control region for early transcription. The control region of JC-HEK, when placed in front of CAT gene in pSVOcat vector exhibited activity similar to that of SV40. It also displayed 4 times more activity than that of prototype MADI JCV strain in HEK cells (SinoHara <u>et al</u>, 1989). This again suggests that the rearrangements in the control region might have resulted in alterations in the potential NF1 II/III sequences and thus permitted the expression of JCV early promoter-enhancer in nonglial cells such as HEK cells. These results are qualitatively consistent with the results observed for <u>in vivo</u> activities of pRII and pmRII in DNSO-differentiated PJ9 cells.

The results of experiments using CAT constructs with a single 98 bp repeat confirmed that, while the duplicated

repeats with the two functional palindromic NF1 sites have more activity than constructs with a single NF1 site, NF1 site of one repeat can function independently for glial cellspecific expression. Furthermore, the tissue specificity of the perfectly palindromic NF1 sites appear to be involved in both the activation of JCV expression in glial cells as well as the inhibition of expression in nonglial cells. Previous studies have shown that a protein of 56 kDa binds to the penta nucleotide repeat sequence, AGGGAAGGGA adjacent to NF1 II and III and prevents the expression of JCV, in nonglial cells (Sharma and Kumar, 1991). Therefore, it appears that the glial cell-specific expression of JCV is tightly regulated by cisacting elements that act positively in glial cells and negatively in nonglial cells. This is reminiscent of regulation of the neuron-specific expression of growth associated protein, SCG10, by cis-acting negative regulatory element (Mori et al, 1990). Possibly, the presence of two perfect palindromic NF1 sites in the repeats act indirectly to overcome the effects of repressors interacting with pentanucleotide repeat sequences and allow transcription from JCV.

P19 cells have proven to be a good system to demonstrate this mode of tissue-specific regulation of gene expression, as they can be differentiated into different cell types from an identical genotype. Hence, I could demonstrate
the importance, specifically, of the NF1 binding site present in the 98 bp repeat in glial and nonglial cell-specific expression of the JCV early promoter. However, a heterogeneous population of neuronal cells are induced by RA treatment of P19 EC cells. Hence, this may affect interpretation of my data. For example, the JCV expression is regulated positively in glial cells and negatively in nonglial cells. In <u>in vitro</u> transcription results the efficient activity of JCV_E noticed could be due to positive regulators from glial cells in a mixed population of neural cells (Fig. 3.3). The negative regulators from other neural cells might have an effect on JCV expression. Depending upon relative concentrations and affinities of gene-specific regulators, the expression patterns could alter.

There has been a lot of discrepancy in studies reporting the start sites for the early and late transcription of JCV (Daniel and Frisque, 1993). In the present study the importance of NF1 binding site in glial cell-specific JCV early transcription was confirmed <u>in vitro</u> by performing <u>in</u> <u>vitro</u> transcription assays (Fig. 3.3). The results suggested that the transcription is initiated from position 5115-5125 utilizing the TATA box situated near the origin in repeat A (Fig. 1.1). This result is consistent with the observations reported recently by Daniel and Frisque (1993).

The effect of in vivo activity of NF1 binding site

mutations was correlated with alterations in the <u>in vitro</u> interactions with cell specific factors, as assayed by DNaseI footprinting (Fig. 3.4). Interestingly, the mutation in the NFI binding site in the central 98 bp repeat abolished protection in the NFI binding site present in both repeats, suggesting the cooperative interaction of the proteins binding to these sites (Fig. 2.4 JCII). This was consistent with the lesser effect on activity of mutating the second of the two repeat region sites. This applies even when the second site is the down stream site, which appears to have a greater effect (Fig. 3.2, compare WT and II vorsus I.III and I.II.III effects, respectively).

Earlier studies had indicated that both NF1 I and NF1 II/III oligonucleotides competed with all the three NF1 sites in DNaseI protection assays (Nakshatri <u>et al</u>, 1990a). Hence, it was concluded that the proteins interacting with all the three NF1 sites of JCV may be the same and cooperative binding of the factor interacting with NF1 I and II was suggested. In addition, a report by Amemiya <u>et al</u> (1989) suggested that the proteins interacting with NF1 I and II sites are the same. However, in the present study, DNaseI protection assays with NF1 mutants clearly showed cooperative interaction of proteins binding to NF1 II and NF1 III but not to NF1 I and NF1 II (Fig. 3.4, compare JCI with JCI.II). Further, the results of competition experiments in gel shift assays with NF1 II/III oligonucleotide showed that the factors interacting with NF1 I and II are different (Fig. 3.6). The difference in the results of the present studies could be due to the more sensitive techniques I used in assessing DNA-protein interactions.

NF1 binding sites have been found in several genes such as BK virus control region (Nakshatri et al. 1991), human papillomaviruses (Nakshatri et al, 1990b), myelin basic protein (MBP) gene of the central nervous system (Aovoma et al, 1990), cytomegalovirus (Nowock et al, 1985; Jeang et al, 1987), flanking regions of chicken lysozyme gene (Borgmeyer et al, 1984), human IgM gene (Hennighausen et al, 1985), c-myc gene (Siebenlist et al, 1984) and several cther genes of the CNS (Amemiya et al, 1992). The NF1 binding sites located in all these genes indicated that the minimum nucleotide (nt) sequence required for the binding of NF1 is 15-16 nt with a consensus sequence of TGG(N),GCCAA. However, the first three nt. TGG and the 6 nt spacer are sufficient for NF1 binding but an A or C nt following TGG increases the binding of NF1 (de Vries et al. 1985: Leegwater et al. 1985). Mutation of GCCA in the NF1 binding site located in the promoter of the immediate early gene of cytomegalovirus abolished the binding of the protein (Hennighausen and Fleckenstein, 1986). However, in the present study, mutations introduced into the half side of the NF1 II palindrome (Fig. 3.4, JCII and JCI.II) abolished the

binding for that region only and the other half side was still protected. Mutations in the both half sites completely abolished the binding of protein (Fig. 3.4 JC II.III, I.II.III). Since this sequence is a perfect palindrome which has pronounced two-fold rotational symmetry, possibly the protein binds as a dimer. This is reminiscent of the repressor-activator-operator interactions commonly observed in prokaryotes (Ptashne, 1992). Previously, NFI was shown to form a dimeric complex with its binding site (Hennighausen <u>st al</u>, 1985). The perfect palindromic sequence of JCV NFI II/III, but not the imperfect NFI I sequence, may allow high affinity binding by protein dimers on DNA double strands.

Interestingly, while the sequence <u>TOGCGCGCGCCAA</u> in pBR322 and the sequence <u>TGGCAACTTGCCAA</u> in a middle repetitive element of mouse DNA contain consensus NF1 binding motifs, they were shown to be nonbinders (Hennighausen <u>et al</u>, 1985). The presence of a G-C within the central non consensus region of the NF1 site in pBR322 disrupted the binding of NF1 protein. This suggests that the spacer sequence between the consensus regions is also important. The NF1 II/III sequence of JCV, including the spacer sequence is a perfect palindrome, while the NF1 sequences located in several other genes are non-palindromic except for the sequence T<u>GG(N₆)CCA</u>. This raises the possibility that the presence of the perfect palindrome sequence in JCV may impart additional advantage in terms of binding affinity. This is consistent with the observation that a synthetic NFI oligonucleotides having the perfect palindromic <u>TGCATEGTECCA</u> sequence exhibited 10-fold higher affinity than the NFI oligonucleotides that did not have the pronounced 2-fold axis of symmetry, such as the NFI site of 1gH gene (Hennighausen and Fleckenstein, 1986).

NF1 is a large family of proteins and several forms are generated by alternative splicing (Santoro et al, 1988). There are tissue-specific NF1 proteins that allow the expression of genes in a restricted manner and existence of epithelial cellspecific NF1 factors that interact with the binding sites in the HPV 16 genome has been recently reported (Apt et al, 1993). Interestingly, preliminary studies from our laboratory have revealed the expression of both HPV 16 and 11, which contain multiple NF1 sites, in RA-differentiated P19 cells (Kasinadhuni, 1994). Whether the same NF1 protein is important for the activity of both JCV and HPV remains to be investigated. My construction of a cDNA library and the isolation of a candidate cDNA from this library could readily be used for this study. The RA- and DMSO-differentiated P19 cells also allow expression of BK virus containing multiple NF1 sites. However, while the expression of JC virus is restricted to RA-differentiated P19 glial cells, expression of BKV is observed in nonglial cells (Nakshatri et_al, 1991). This may suggest the presence of different cellular NF1

proteins important for the expression of the two viruses. The interaction of glial cell-specific NF1 is essential for the restricted glial cell specificity of JCV.

The isolation of cDNA from an expression library prepared from RNA from RA P19 cells confirmed the presence of a cell-specific factor and its possible involvement in regulating the activity of JCV enhancer in RA P19 cells. Northern blot analysis revealed the RA P19 cell-specific expression of the cDNA (Fig. 3.9). Moreover, the binding specificity of this cDNA was revealed by its lack of interaction with mutant and non-specific oligonucleotides (Fig. 3.8). The expression of this cDNA in HeLa cells enhanced the activity of JCV early and late promoter-enhancers. In addition, it has no effect on the expression of the early promoter of another polyoma virus, BKV, which contains multiple NF1 birding sites in its regulatory region (Fig. 3.10). However, there is no evidence presented here that transactivation in HeLa cells requires the integrity of any of the NF1II\III sites. Co-transfection of pCMVNF1 with mutated promoter constructs should provide further information on this. It is interesting to note that the cDNA isolated previously from brain cells encoded a factor binding to the NF1 II/III site and activated the late but not early JC promoter in nonglial cells (Kerr and Khalili, 1991). The cDNA which I isolated encodes a factor that stimulates the activity of both JCV_{E} and JCV_{L} , suggesting that the NF1 II/III binding site is bidirectional in function and that this site is important for expression of both promoters as will be discussed later (chapter 4).

Previous studies had shown that a protein of 45 kDa purified from calf brain supported the expression of JCV, in HeLa cells in an in vitro transcription assay (Ahmed et al, 1990). A cDNA was subsequently isolated by screening an expression library prepared from human brain cells using NF1 II/III binding sequence as probe. Surprisingly, this cDNA encoded a 45 kDa protein which stimulated the late promoter and to a very limited extent the early promoter (Kerr and Khalili, 1991). These results, although reported from the same laboratory, are inconclusive. However, from the present study it is clear that different factors are involved in the activation of JCV early and late promoters. The following observations prompt me to suggest that the cDNA isolated by me is different from that isolated earlier (Kerr and Khalili, 1991). 1) My studies used a mouse cell line whereas the other study used human brain cells. 2) It is possible that there may be multiple factors that regulate the early and late gene expression or the same factor may affect both early and late JCV gene expression. This is consistent with the observation that the cDNA I isolated supported the expression of early and late genes equally, while the cDNA isolated by Kerr and

Khalili (1991) activated only the late promoter. 3) NFI is a family of proteins and hence different species of NFI might exist which play a role in gene expression as reported earlier (Santoro et al. 1988).

From the preliminary study presented here, it is not clear whether the cDNA encodes NF1. However, the cDNA encodes a factor that interacts with the NF1 II/III motif of JCV in <u>vitro</u> and activates the JCV promoter-enhancer in vivo. Clearly, further studies such as sequence analysis of cDNA and <u>in vitro</u> binding studies with the isolated cDNA are needed to characterize the nature of this factor. At present, experiments on the detailed characterization of this factor are being undertaken by another graduate student in our laboratory.

NF1/CTF is involved in activating transcription and also replication of adenovirus DNA (Jones <u>et al</u>, 1987). The NF1 II/III binding site of JCV is also essential for both efficient transcription (the present study) and for replication (Sock <u>et al</u>, 1991). Interestingly, the integrity of the perfect palindromic NF1 II/III binding site was also found essential for the replication of JCV in vitro (Sock <u>et</u> al, 1991).

The proteins from HeLa and glial cells interact differently with JCV enhancer, thereby affecting the <u>in vivo</u> activity (Amemiya <u>et al</u>, 1989). The proteins interacting with

NF1 II site are different among different cell types. For example, two proteins of 230 and 85 kDa from HeLa and a protein of 45 kDa from glial cells specifically interact with the NF1 II/III motif of JCV (Khalili et al, 1988). Moreover, the 45 kDa brain cell-specific factor was purified and shown to support transcription of JCV in HeLa cells (Ahmed et al, 1990). Another cellular factor present in B-lymphocytes also interacts with JCV DNA (Major et al, 1990). However, no functional significance or studies on the expression of JCV enhancer in these cells are reported. One possibility is that, while factors from different cell types can physically interact with JCV control region, only brain-specific factors allow functional interaction. For muscle cell-specific gene regulation, a number of factors such as MyoD, myf-5 and the ubiquitously-expressed E2A gene products such as E12 and E47 bind the E-box. However, the muscle cell-specific factors but not the E2A products, are capable of activating transcription of muscle specific genes. Replacement of the basic region of MyoD with that of E12 results in failure of activation of transcript on. This suggests that, although muscle-specific and E2A factors interact with the same DNA sequence, the functional consequences are different (Davis et al, 1990). Regulation of JCV expression might involve a similar mechanism.

An alternative possibility for JCV restricted cell

124

expression is that a glial cell-specific coactivator allows communication between NF1 and the basal transcription factors. The need for a coactivator has been suggested for several cell-specific genes (Weintraub <u>et al</u>, 1991; Mendel <u>et al</u>, 1991; Luo <u>et al</u>, 1992).

The archetype JCV predominantly recovered from kidneys has a Sp1 binding site located between TATA and NF1 II/III sequences. Also, NF1 II/III sequences are not duplicated (Yogo et al. 1990). This strain of JCV is transcriptionally inactive in the brain and is never detected there. The rearrangements in archetype sequences leads to the loss of the Spl factor binding site, generating a brain specific form capable of expression in glial cells (Ault and Stoner, 1993). This suggests that the interaction between factors binding to TATA box and NF1 II/III may be important for the glial cellspecific expression. For the archetype JCV, the presence of a Sp1 binding site between TATA and NF1 II/III may interfere with interaction between factors binding to NF1 sites, thereby rendering it incapable of expression in brain tissue. The interaction of a factor binding to NF1 II/III and TATA binding protein (TBP) may be facilitated by a coactivator. Such a coactivator may be present only in glial cells. Therefore, the binding activity detected in cell types other than glial cells would not be sufficient for expression of JCV. Further studies are needed to examine this possibility.

CHAPTER 4

Human JC virus nuclear factor 1 binding motif and large tumour (T-) antigen domains required for transactivation of late promoter.

4.1 Introduction

The regulatory region of JCV is contained mainly within the two 98 bp tandem repeats and is functional for both early and late genes. The early and late promoter-enhancer ($JCV_{\rm g}$ and $JCV_{\rm l}$) control the expression of large and small T-antigens and viral structural proteins, respectively. Productive JCV infection of glial cells requires the $JCV_{\rm l}$ function that occurs subsequent to T-antigen synthesis.

Transregulation of JCV_i has been reported (Lashgari <u>et</u> <u>al</u>, 1989). As for JCV_i, the activity of JCV_i was also found to be restricted to glial cells. A low level of JCV_i activity was detected in the glial cells. In the presence of JCV T-antigen 9- to 12-fold more activity was observed in glial cells. Moreover, in nonglial cells JCV T-antigen activated the JCV_i to 4- to 8-fold. Sl nuclease mapping, and nuclear run on assays suggested that the effect of JCV T-antigen on latopromoter was at the transcriptional level. Hence, it was concluded that the JCV T-antigen acts as a transactivator (Lashgari <u>et al</u>, 1989).

The HIV tat protein and JCV T-antigen activated the JCV. However, the effect of tat was several fold more than T- antigen. T-antigen transactivated the late promoter significantly in both glial and nonglial cells. However, the tat protein of HIV activated JCV late promoter in glial cells while in nonglial cells very low levels of enhancement was noticed (Tada <u>et al</u>, 1990). Deletion analysis of JCV_i was used to localize the region(s) important for the transactivation of JCV_i by JCV T-antigen and HIV tat proteins. The results suggested that the region between -110 to -172 nt upstream of the start site is important for the transactivation of JCV_i and that the regions on JCV_i that are responsive to T-antigen and HIV tat protein are different. Hence, it was concluded that the JCV large T-antigen and HIV tat transactivate the JCV late promoter by different mechanisms (Chowdhury <u>et al</u>, 1990).

Another study used RA-differentiated P19 cells and reported transactivation and repression of $JCV_{\rm g}$ and $JCV_{\rm g}$, respectively, by JCV T-antigen (Nakshatri <u>et ai</u>, 1990a). However, the mechanism of transactivation of JCV_L by large Tantigen remained elusive. Specifically, the sequences of JCV_L and the amino acids of JCV T-antigen required for transactivation of late transcription remained unclear.

Another function of T-antigen is its transformation property. JC virus is oncogenic in various animals (Walker <u>at</u> <u>al</u>, 1973; Padgett <u>et al</u>, 1977; Varakis <u>et al</u>, 1978; London <u>et</u> <u>al</u>, 1978). Perinatal injection of JC virus into the brains of hamsters induced medulloblastomas (ZuRhein and Varakis, 1979; ZuRhein, 1983). In humans, post mortem analysis of CNS tissues of patients with PML revealed the presence of several glial tumours (Sima <u>et al</u>, 1983). However, evidence that these tumours were caused by JCV was not clear.

The Tokyo-1 strain of JC virus isolated from a PML patient in Japan exhibited high neuro-oncogenicity in hamsters and 95% of the injected animals developed medulloblastomas (Nagashima et al, 1984). The medulloblastomas developed in hamsters resembled human medulloblastomas histologically, immunohistochemically and ultrastructurally. Tumours in both species demonstrated highly malignant characteristics. However, while all the tumours induced in animals expressed Tantigen of JCV, this antigen is not detected in human brain tumours. Importantly, JC virus is the only human virus known to be able to cause solid tumours in non-human primates (London et al, 1978; Reith et al, 1980).

Although JCV readily induces tumours in experimental animale, it transforms cells in culture <u>in vitro</u> inefficiently (Frisque and White, 1992). Transformation efficiency of JCV Tantigen is poor as compared to those of other DNA tumour viruses such as, SV40 and BKV (Nakshatri <u>et al</u>, 1988; Haggerty <u>et al</u>, 1989; Fanting, 1992). Early studies indicated that JCV transforms primary human fetal glial cells (PHFG) and human vascular endothelial cells (Fareed <u>et al</u>, 1978; Walker and Padgett, 1978). Later it was shown that PHFG cells were transformed by origin-defective mutants of JCV to create the POJ cell line (Mandl and Frisque, 1986). Primary hamster brain cells were transformed by infection with Madl, Mad2, Mad3, and Mad4 viruses and by transfection with Mad1 DNA. The transformants exhibited several features characteristic of the transformed phenotype which include high saturation densities, increased growth rates in high and low serum concentrations and anchorage-independent growth. Baby hamster kidney cells (BHK-21) and rat fibroblasts (Rat2) were transformed in culture (Bollag <u>et al</u>, 1989; Haggerty <u>et al</u>, 1989).

The JCV genome was detected in transformed cells as multiple copies in a tandem head-to-tail arrangement (Mandl and Frisque, 1986; Mandl <u>et al</u>, 1987). Southern blot hybridization indicated that JCV DNA integrates randomly into the host chromosomes and free, unintegrated viral genomes have not been observed (0'Neill <u>et al</u>, 1988). However, the large Tantigen sequences important for transformation of cells remained unclear.

The objectives of my study are as follows.

 To examine the role of NF1 binding motifs in the transactivation of JCV, by T-antigen.

 To investigate the ability of these motifs to interact with factors in the presence and absence of T-antigen.

 To delineate the amino acid sequences of large-T antigen required for transformation and transactivation of JCV_i.

4.2 Results

4.2.1 NF1 motifs required for JCV, transactivation.

To examine the role of NF1 binding sites in the transactivation of JCV, by large T-antigen, site-directed mutagenesis was performed (Fig. 4.1). Reporter plasmids containing the various mutations were transfected into RA P19 cells with or without T-antigen expression plasmid. A substantial transactivation of pJC, cat (WT) was obtained by cotransfecting with T-antigen expression plasmid (Fig. 4.2 WT). The mutated NF1 I site (I) construct also showed substantial transactivation by T-antigen (Fig.4.2, I). Next, the role of NF1 II/III was examined. Mutations in NF1 II greatly reduced transactivation in RA P19 cells. Mutations in NF1 II plus III and NF1 I, II, plus III eliminated transactivation (Fig. 4.2, II.III and I.II.III, respectively). The results indicated the necessity of the NF1 II/III binding motifs located in the 98 bp repeats, but not NF1 I, for transactivation of JCV, by T-antigen in RA P19 cells. The effect of NF1 mutations on the transactivation of JCV, by Tantigen was also tested in the DMSO-differentiated P19 muscle cells. The WT promoter and NF1 I mutant (I) were repressed by T-antigen whereas, the NF1 mutants II, II.III and I.II.III were not affected in the presence of T-antigen (Fig. 4.3). The results suggested that the JCV T-antigen activates JCV, in RA P19 cells and represses JCV, in nonglial cells.

Fig. 4.1 Wild type and mutated NF1 motifs in JCV₁ sequences in CAT plasmids.

Top: Diagram of JCV₁ sequences in the JCV fragments inserted into pSV0cat. The early <u>Hind</u>III and late <u>Pyu</u>II sides are indicated. TATA boxes and NF1 site motifs are indicated and delineated by thick lines. The nt positions are indicated. The boxes represent the 98 bp tandem repeats. Bottom: List of mutated plasmids and mutated sequences for the three NF1 sites. Mutated NF1 nt are indicated by lower case letters. Wild type NF1 nt are indicated in pJC₁ cat by upper case letters and in other plasmids by dashes. Inverted palindromic sequences are underlined for pJC₂ cat (WT).

early	12	109 110		207 late	
	TATA	NF1 III	TATA NF1 II	NF1 I	
5112	14 22	39 51	112 120 137 149	213 225 270	
Plasmids		NF1 III	NF1 II	NF1 I	
pJCLcat	(WT)	TGGCTGCCAGCCA	TGGCTGCCAGCCA	TGGAAAGCAGCCA	
pJCLcat I	I			-aa.c	
pJCLcat	u		gtaa-c		
pJC∟cat I	1.10	gtaa-c	gtaa-c		
pJCLcat I	.11.111	gtaa-c	gtaa-c	-aa-c	

.

132

ι

Fig. 4.2 Effect of NF1 mutations on JCV_L transactivation by T-antigen in RA-treated F19 cells.

Plasmids were wild type pJCV_icat (WT) and others with NFI site mutations, as indicated by the unique letters for the constructs described in Fig. 4.1. Transactivation is the difference between CAT activity (% conversion) in the absence and presence of JCV T-antigen expression plasmid. CAT activity was normalized with β -galactosidase. Results are averages of three experiments. Percent CAT conversion in T-antigen nonexpressing cells: WT, 5.9; I, 6.6; II, 6.2; II.III, 4.2, I.II.III, 8.4.

Fig.4.3 Effect of NF1 mutations on JCV₁ transregulation by Tantigen in P19 muscle cells.

Plasmids are as explained for Fig. 4.2. Other methods are the same as in Fig. 4.2. In the figure % conversion is shown instead of transactivation described for Fig. 4.2 as repression of late promoter in the presence of T-antigen was noticed in contrast to activation in P19 RA cells.

The role of NF1 sites in late promoter function was also examined by in vitro transcription assays. In the presence of P19 RA cell extract from cells which expressed JCV T-antigen, JCV, wild type (WT) and mutated NF1 I promoters were transcribed at 5-fold and 5.8-fold greater rates, respectively, compared with extract from non-T-antigen expressing glial cells. Monoclonal antibodies against large Tantigen reduced JCV, transactivation to 1.6-fold, confirming the involvement of T-antigen and indicating that T-antigen acted in vitro. Mutations in the NF1 II plus III sites resulted in 0.6-fold transactivation, a 1.7-fold repression of pJCV, (Fig. 4.4). The transcription was by RNA polymerase II, because alpha-amanitin blocked all transcriptional activities. Thus, the in vitro transcription assays confirmed the requirement of NF1 II and III, but not I, for transactivation of JCV. by large T-antigen in P19 RA cells.

4.2.2 Mediation of JCV large T-antigen effect through NF1

Mobility shift assays were used to examine whether the induction of JCV₁ by T-antigen involved alterations in the binding of the NFI sites of the 98 bp repeats. For normal P19 RA cell extract, the 98 bp repeat probe with wild type NFI II/III was bound in an upper complex and a doublet of lower complexes. Extracts of T-antigen expressing P19 RA cells gave a binding pattern in which the upper complex was increased

Fig. 4.4 Effect of T-antigen and JCV NF1 sites on JCV in <u>vitro</u> transcription.

Names of the plasmids are as described in Fig. 4.1 and 4.2. Glial cell extracts had 75 μ g protein. Labels: T, cells transfected with T-antigen expression plasmid; Ab, crossreacting SV40 monoclonal T-antigen antibody in assays; aa, 1 μ g/ml alpha amanitin polymerase II inhibitor; RSV- β -Gal, β -galactosidase internal control RNA; JCV, JCV, RNA; Transactivation, fold transactivation by T-antigen. Pairs of assays with extracts for cells expressing T-antigen and not expressing T-antigen were compared for fold transactivation values. Results were consistent for two experiments, including greater transactivation for I.

7.2-fold (Fig. 4.5, T). The increased binding for the upper complex was due to the immediate function of the T-antigen, because monoclonal antibodies for T-antigen blocked the increase (Fig. 4.5, T+ λ b(S)). Non-specific monoclonal antibodies against MHC class II (I- λ^{K}) gene product failed to block the increased binding of the upper complex (Fig. 4.5, T+ λ b(S)).

To further examine the effect of T-antigen on the binding activity, mobility shift assays were done with wild type and mutated NF1 II/III oligonucleotide probes. Only one complex was observed with WT NF1 II/III olgonucleotide probe and T-antigen increased the amount of this complex by 6.2fold, similar to the increase for the upper complex with 98 bp repeat probe (Fig. 4.6, WT, lane T). Monoclonal antibodies against T-antigen blocked the increase in the complex (Fig. 4.6, WT, lane T+Ab(S)). The monoclonal antibody against MHC class II gene product had no effect (Fig. 4.6, WT, lane T+Ab(NS)). Mutated NF1 II/III oligonucleotide was not bound, confirming the specificity of binding to this motif (Fig. 4.6, mu). These results confirmed that T-antigen facilitated the binding and that the NF1 II/III motif is involved in binding. Overall, the results suggested that transactivation increased the formation of a productive transcription complex at JCV, due to an interaction(s) with the NF1 II/III motif.

140

Fig. 4.5. Effect of T-antigen on binding of cellular factors to JCV 98 bp repeat regulatory region.

Mobility shift assays used the <u>Sty</u>I 98 bp repeat fragment of JCV regulatory region and 8 μ g of protein. Labels: F, free probe with no protein; B, binding for non-T-antigen expressing glial cell extract; T, T-antigen expression plasmid-transfected cell extract; T+Ab (S), T+ monoclonal T-antigen antibody in assays; T+Ab (NS), T+ nonspecific control MHC monoclonal antibody. Fold change in binding of upper complex in the presence of T antigen, in comparison with lane B which used extract with no T-antigen, are T, 7-2-fold; T+Ab (NS), 6.4-fold; and T+Ab (S), 0.9-fold, as determined by densitometry.

Fig. 4.6. Effect of T-antigen on NF1 binding.

Mobility shift assays used wild type (WT) and mutated (mu) NF1 II/III oligonucleotide probes and 6 µq of protein.

Labels: F, free probe with no protein; B, binding for non-Tantigen expressing glial cell extract; T, T-antigen expression plasmid-transfected cell extract; T+Ab (S), T+ monoclonal antibody against T-antigen; T+Ab (NS), T+ nonspecific control MHC monoclonal antibody. Densitometrically determined fold increases relative to lane B for nonexpressing cell extract and WT probe: T+Ab (S), 2.1; T, 6.2; T, 6.4; and T+Ab (NS), 5.6.

4.2.3 T-antigen domains for JCV transactivation and transformation

The amino acid domain(s) of JCV T-antigen necessary for transactivating JCV, were also examined. Ten translation termination linker and deletion mutations in the T-antigen expression plasmid were generated (Fig. 4.7). See Fig. 1.1 for a comparison of T-antigen with the whole JCV genome. Wild type and mutated expression plasmids were co-transfected with the wild type reporter plasmid. Mutated constructs encoding the first 10, 141, 180, and 195 amino acids (pK4984, pK4246, pK4129, and pK4085, respectively, Fig. 4.7) transactivated poorly (Fig. 4.8). Constructs encoding the first 437, 552, and 591 residues (pK3359, pK3013, and pK2896, respectively, Fig. 4.7) showed nearly wild type activation levels (Fig. 4.8). The internal deletions for amino acids 142-180 (pK4117) and 196-437 (pKA726) reduced transactivation to a half and a third, respectively, of wild type (Fig. 4.8). Taken together, the results suggested that amino acid residues 196-437 are necessary for most of the wild type transactivating activity.

Transformation is an important function of T-antigen and protein domains in general are often functional for different or related biological functions. Therefore, primary BRK cells were assayed for transformation with the same Tantigen domain mutants used for the transactivation studies. The results of the transformation assays indicated that the

Fig. 4.7. Diagram of mutated T-antigen sequences.

Expression plasmids are shown. Numbers in plasmid names correspond to sites of linker insertion and number of nt deleted. The pKA1945 deletion is out-of-frame. Labels: numbers in diagram, JCV nt positions; ATG, initiation codon; TAA, termination codon; TAG and arrow heads, translation termination linker insertion sites; solid lines, JCV T-antigen ORF; dashed lines, intron sequences; black boxes, deleted sequences.

Fig. 4.8. Transactivation of JCV_L by mutated T antigen expression plasmids.

WT indicates wild type CMV-JCV-TA. Other labels and estimate of transactivation are as in Fig. 4.2 and 4.7. CAT expression values in T-antigen nonexpressing cells: WT, 5.1; pK4984, 4.7; pK4246, 5.2, pK4129, 5.7; pK4085, 5.0; pK3359, 5.0; pK3013, 4.8; pK2896, 5.0; pKå117, 5.05; pKå726, 5.55; pKå1945, 4.9.

Plasmids ^a		Transforr BRK o	Number of amino- acids in T antigen ^c		
	Exp.1	Exp.2	Exp.3	Mean	
CMV- ICV- TA	17	28	21	22	1 - 688
pK4984	0	0	0	0	1 - 10
pK4246	10	6	8	8	1 - 141
pK4129	3	5	4	4	1 - 180
pK4085	2	4	3	3	1 - 195
pK3359	16	19	10	15	1 - 437
pK3013	16	21	11	16	1 - 552
pK2896	14	27	14	18	1 - 591
pKΔ117	9	16	12	12	1 - 141; 181 - 688
pKA726	2	5	2	3	1 - 195; 438 - 688
pKΔ1945	0	0	0	0	1 - 19; (552 - 688)

Table 4.1 Transformation domains of JCV T antigen.

^a The indicated plasmids are as shown in Fig. 4.7

b BRK cells were plated in three 50 mm plates. After 24h, the cells were co- transfected with 5 μg/plate of the indicated plasmids and the same amount of EJ-Ha- ras-1-pMi.

C The bracketed amino acids of pK∆1945 are out-of-frame.

transformation domain was mostly in amino acid residues 196-437 (Table 4.1). The requirement of domains was similar to that for transactivation, considering the distinct nature of the two assay systems.

4.2.4 Western blot analysis of WT and mutant T-antigen expression plasmids.

The difference in transactivation observed between wild type and mutated T-antigen expression plasmids could have been due to instability of the mutated proteins. Therefore, lysates from P19 glial cells transfected with these plasmids for expressing T-antigen were examined in Western blot assays for T-antigen protein. For only the pK&1945 out-of-frame deletion mutation encoding the first 19 amino acids (Fig. 4.7) no JCV T-antigen protein was observed (Fig. 4.9). T-antigen was stably produced at comparable rates from the other 9 plasmids, since the protein was present at comparable levels in the glial cells (Fig. 4.9). The size of T-antigen for the various mutated constructs was similar to WT. This is most probably due to the posttranscriptional modifications of T-antigen in vivo, as also reported for BKV T-antigen (Nakshatri et al, 1988). Taken together, the results indicate that the effect of T-antigen mutations on transactivation and transformation are due to functional T-antigen protein domains (Fig. 4.8; Table 4.1).
Fig. 4.9. Western blot analysis of T-antigen proteins expressed from mutated plasmids.

JCV T-antigen is detect.¹ as the band corresponding to the arrow.The labelling is the same as described for Fig. 4.7. Molecular weight markers (M) are indicated in kDa. Lower bands may be degradation products of T-antigen.

4.3 Discussion

The studies of this chapter examined the molecular basis for induction of late JCV gene expression in RA P19 cells by the transactivating early gene product, large Tantigen. The involvement of the NF1 motifs of the JCV late region was approached by site-directed mutagenesis of NF1 motifs. The results clearly showed that the integrity of the two NF1 sites within the 98 bp repeat, but not the third site located towards the late side, was essential for the transactivation of JCV late promoter-enhancer in glial cells (Figs 4.2 and 4.4). Transactivation of JCV. by T-antigen required direct T-antigen function during the assay, since antibody to T-antigen abolished transactivation in vitro (Fig. 4.4). This indicated that the mechanism did not involve alterations such as the level of in vivo synthesis of NF1 or other transcription factors. The in vitro gel shift assays clearly suggested that T-antigen mediates this effect by facilitating the increased binding of NFL. Further, in vitro binding assays with oligonucleotide probes confirmed the requirement of the specific NF1 II/III motifs.

Transactivation of JCV late promoter by T-antigen in the glial cells was clearly shown with 5-fold higher activity in the presence of JCV T-antigen in <u>in vitro</u> trans ription assays. The NFI II and III were distinctly important. These results are in agreement with the previous observations that JCV T-antigen mediates its transactivating effect through the region between nt -110 to -172 (Chowdhury et al, 1990). The results from the present study clearly narrowed down this region to NF1 II/III binding sites (nt -137 to -149 and -39 to -51, respectively). The mutation of only NF1 site II eliminated most of the transactivation. Therefore, the duplicated NF1 of the 98 bp repeat appears to be important for expression in glial cells. NF1 II/III is included in the 62 bp region that was previously shown to be required for glial cell-specific transactivation (Chowdhury et al, 1990). Moreover, the JCV genotypes identified in brain tissue consistently harboured duplications of the sequences that specifically include 12-40 nt containing this NF1 site. In addition, in the archetype JCV which is frequently present in the kidney, the corresponding NF1 site is never duplicated (Yogo et al. 1990). This suggests there are kidney-specific NF1 functions. NF1 is a family of proteins, and distinct factors have been shown previously to regulate gene-specific expression in other tissues such as liver (Jackson et al, 1993). Although the NF1 motifs in the 98 bp repeats are shown here to be essential for the transactivation of JCV late promoter, my results do not rule out the requirement for other sequences in the late promoter.

Earlier, several studies reported different start sites for JCV late transcription and the results were ambiguous (Kenney <u>et al</u>, 1986b; Khalili <u>et al</u>, 1987). The results of <u>in</u> <u>vitro</u> transcription assays of the present study provided precise and important information on the location of the start site of JCV late transcription. Based on the size of the transcript generated, the start site for late transcription is contred around nt 200-203, as suggested by primer extension and S1 nuclease in the studies of Daniel and Prisque (1993).

The NF1 binding motifs (NF1 II/III) in the JCV regulatory region are important for both early and late gene expression of JCV (Kerr and Khalili, 1991; results of the chapter and chapter 3). To examine the molecular mechanism, an attempt was made to look at alterations in the binding activity of NF1 in the presence of T-antigen. The results of mobility shift assays demonstrated that T-antigen increased the binding of NF1 to the NF1 motifs located in the repeats.

JCV is oncogenic in animals and it is the only human virus known to cause solid tumours in non-human primates (London <u>et al</u>, 1978; Reith <u>et al</u>, 1980). Hence the JCV Tantigen amino acid sequences important for transformation were investigated by constructing and studying a panel of T antigen mutants. The present study sh wed that the transactivation and transformation domains of JCV large T-antigen are similar, considering the distinct nature of the two assay systems (Fig. 4.8; Table 4.1).

156

Parental and chimeric DNAs of JCV, BKV, and SV40 have been used to show that both the regulatory sequences and the large T-antigen amino terminus sequences are necessary for the JCV restricted transformation behaviour. Characterization of the cloned cell lines prepared from T-antigen transformants revealed variations in the amount and stability of T-antigen. Ability of T-antigen to form stable complexes with p53 was also affected (Bollag et al, 1989; Haggerty et al, 1989). The tumour suppressor, p53, is important for the control of cell proliferation (Milner, 1991; Levine 1992). JCV T-antigen was also shown to interact with Rb and p107 (Dyson et al. 1989. 1990). Rb and p107 are involved in control of cell cycle progression and Rb blocks the cell cycle at a certain point in G1. JCV T-antigen interacts with all these proteins and possibly perturbs the action of these proteins, thereby resulting in the loss of control on cell proliferation. The mutants pKA117 and pKA726 used in my study showed reduction in their transformation potential (Fig. 4.7; Table 4.1). The mechanism of this reduction in transformation most probably involves loss of T-antigen domain(s) important for binding to one of these proteins involved in the control of cell proliferation.

The differences in transactivation and transformation between WT and mutant JCV T-antigens could have been due to variations in the stability and the levels of mutant T-

antigen, However, results of Western blot analysis revealed no change in either stability or levels of T-antigen protein (Fig. 4.9). The mutant T-antigen expression plasmid expressing the first 141 amino acids (pK4246) showed more transformation efficiency than those expressing the first 180 (pK4129) and 195 (pK4085) amino acids (Table 4.1). It is possible that the T-antigen sequences located between nt 4246 and 4085 contain an inhibitory domain. The interplay between activation domain located within nt 4085-3359 for amino acids 196-437 and the inhibitory domain within nt 4246-4085 may determine the transformation potential of JCV T-antigen. This can be supported by the observation that adenovirus Ela. an oncogenic protein, contains sequences in the carboxyl (C-) terminus responsible for inhibiting its transformation potential (Subramanian et al, 1989). The suppressive effect of the Cterminal region of Ela protein on ras-mediated transformation was due to interference with the ras-directed transformation pathway or abrogation of Ela cooperation with ras (Subramanian et_al, 1989). Hence, the possible interactions between different regions of JCV T antigen, the cellular proteins such as Rb, p107, p53 and ras oncogene lead to oncogenic transformation in a complex process.

A similar cell system to that of my studies was used to study the BK virus large T-antigun domain important for transformation. The BKV T-antigen domain was mapped to amino

158

acids 265-417 (Nakshatri <u>et al</u>, 1988). My studies show that JCV T-antigen amino acids 196-437 are important for transformation (Fig. 4.7, Table 4.1). Therefore, the transformation domain of T-antigens of JCV and BKV appear to be within the same regions. This is not surprising since the T-antigens of these viruses share a high percentage (85%) of homology. The transformation domains of T-antigens of SV40 and BK viruses are different and share only 54% homology (Nakshatri <u>et al</u>, 1988).

The domain of T-antigen required for transactivation was mapped with a panel of T-antigen mutant constructs. Most of the function was localized to the middle third of T-antigen and the amino terminus (Fig 4.7 and 4.8). The overall homology among the genomes of JCV, BKV and SV40 is high (Frisque et al. 1984). However, homology in the regulatory region is below average and only JCV and BKV have NF1 sites. The relative expression level of JCV was 24-fold more than that for SV40 for glial cells compared with muscle cells, and 6-fold more than that for BKV (Nakshatri et al, 1990, 1991). The difference from BKV could be due to the unique productive interaction of the different JCV NFL sites with a distinct NF1. Alternatively, the greater number of motifs, such as the GC-rich sequences in BKV, might alter or conceal a similar NF1 specificity to glial cells. Consistent with the latter possibility, interactions with BKV NF1 sites were specifically weaker in muscle cell extracts than in glial cell extracts
(Nakshatri et al, 1991).

The TATA-less SV40 late promoter functions efficiently through a coactivator interacting with Sp1 which recognizes the SV40 GC-rich motif (Pugh and Tjian, 1990). The BK GC-rich sequences may also function through a similar mechanism. However, JCV has no GC-rich sequences and has much lower activity than SV40 and BKV, even in P19 glial cells (Nakshatri <u>st al</u>, 1990a). Therefore, the brain-specific expression of JCV appears to be relatively more dependent on the NF1 II/III sites.

In contrast to JCV, SV40 has no gli.1 cell specificity. Transactivation of the late promoter of SV40 has been attributed to TEF-1 (Coulombe <u>et al</u>, 1992b; Gruda <u>et al</u>, 1993). SV40 T-antigen was suggested to transactivate the SV40 late promoter as a coactivator through its interaction with TEF-1 and TATA binding protein, TBP (for detailed explanation refer to subsection 1.7.2.2.1.1 and 1.7.2.2.1.2). Although SV40 differs from JCV by having TEF-1 sequences and no NF1 site, the greater information available for SV40 warrants a comparison with JCV. JCV and SV40 T-antigens have 72% homology, compared to 83% between JCV and BKV (Frisque <u>et al</u>, 1984). The domain of SV40 T-antigen that binds TBP is within anino acids 5-172, a region with approximately 40% of wild type transactivation activity (Gruda <u>et al</u>, 1993); the JCV amino acids 1-141 had 12% of wild type transactivation (Fig. 4.7 and 4.8). The domain of SV40 T-antigen that binds TEF-1 and TBP is within amino acids 5-383, and has the most of wild type transactivation. Similarly, the JCV amino acids 1-437 had equal activity to wild type and the deletion of amino acids 196-437 disrupted most of the transactivation.

The JCV amino acids 196-437 region is of further interest, because it also corresponds to the SV40 TEF-1 binding domain and the nt 302-320 zinc finger domain (Fanning, 1992). Whereas the DNA binding domain from nt 131-259 of SV40 probably binds TBP and has an average homology to JCV, the zinc finger domain has a marginal 39% homology. The homology between JCV and BKV is 78% for this region, possibly reflecting a similar mechanism for both of these human viruses. This is still significantly different from the 91% homology for the DNA binding domains between JCV and BKV. There is no quantitative data to suggest that T-antigen was stably produced at comparable rates from the T-antigen mutants. Hence a cell line that constitutively produce JCV Tantigen and the cells transformed by mutant T-antigen expressing plasmids generated in the present study can be used to solve this problem.

The exact mechanism by which T-antigen activates the JCV_{i} is not clear. One possibility is that NF1 protein may be modified by JCV %-antigen leading to transactivation of JCV,

even though no obvious differences in the mobility of complex in the presence of T-antigen were drtected (Fig. 4.5 and 4.6). However, the possibility of post-translational modification of NFI by T-antigen can not be ruled out.

Another possibility is that JCV T-antigen might be acting as an intermediary molecule between NF1 and one of the basal transcription factors for late promoter activation, analogous to adenovirus Ela (Scholer et al, 1990; Lee et al, 1991) and SV40 T-antigen (Gruda et al, 1993). However, mobility shift assays using the 98 bp repeat failed to reveal any obvious difference in the mobility of the complexes in the form of a supershift. However, the ternary complex containing T-antigen could be unstable and dissociate during the native gel electrophoresis. There are several examples for this. HTLV tax protein increases the rate of transcription by facilitating the binding of the factor ATF. Although the tax protein interacts with ATF in vitro, no change in the mobility of the complex containing ATF was observed, either in the presence of tax or with antibodies against tax protein (Franklin et al, 1993; Wagner and Green, 1993) The authors suggested that with the gel conditions used, the complexes might have dissociated. With respect to the glucocorticoid receptor (GR), although it interacts with purified AP-1 in vitro, no further retardation of the fos/jun complex was observed in the presence of GR in mobility shift assays. The

lack of supershift was suggested to be due to disruption of GR during gel resolution (Konig <u>et al</u>, 1992). Instability of ternary complexes in gel shift assays has been reported in other cases such as interaction between oct-1 and GR (Kutoh <u>et</u> <u>al</u>, 1992), SRF Serum response factor and Fhoxl homeodomain protein (Grueneberg <u>et al</u>, 1992) and NF-IL6 Nuclear Factor for interleukin-6 expression and GR (Nishio <u>et al</u>, 1993). Hence, the possibility that T-antigen interacts directly with NF1 end the basal transcription factors can not be excluded, simply based on the failure to detect supershifting in gel shift assays (Fig. 4.5).

The JCV late promoter is down-regulated by LCP-1 56 kDa repressor protein (see the following paragraph) which interacts with a pentanucleotide repeat sequence (<u>AGGGAAGGA</u> which is indicated as NRE in Fig. 1.2). This sequence is located adjacent to NF1 binding sites in the repeats (Tada <u>et</u> <u>al</u>, 1991; Tada and Khalili, 1992). Another possible mechanism for transactivation of late promoter by T-antigen might involve changes in the balance of the interaction of this repressor protein with NF1 II/III and pentanucleotide repeat sequence, leading to the increased binding to NF1 II/III observed in gel shift assays (Fig 4.6). This might involve a mechanism in which NF1 and repressor compete for binding JCV NF1 site and NRE, respectively. Therefore, the effect of Tantigen might be to relieve this competition by proventing the binding of the repressor to NRE.

A single-stranded DNA binding protein named lytic control element-binding protein 1 (LCP-1) binds the lytic control element (LCE) (Tada and Khalili, 1592), previously identified as a pentanucleotide repeat region located adjacent to the NF1 II/III (Tada et al, 1991). Mutations in the LCE affected the binding of LCP-1 leading to reduced early mRNA transcription and had no effect on late mRNA transcription. The possibilities that there may be competition between early and late mRNA start sites for transcription initiation and that occupancy by origin of replication by large T-antigen hinders the early transcription site were ruled out in a study by Khalili et al (1987). It was suggested that JCV T-antigen may inactivate or sequester LCP-1 from binding to LCE/ pentanucleotide repeat region (Tada and Khalili, 1992), analogous to the blocking of binding of AP2 factor to enhancer region of SV40 by large T-antigen (Mitchell et al. 1987). For JCV,, the 56 kDa protein interacting with LCE/pentanucleotide repeat region might repress the late promoter activity by blocking the interaction of NF1 and TATA box binding factors, which is essential for transcription activation, as confirmed in SV40 system (Gruda et al, 1993).

Based on the results of my studies and those reported by others, I propose a model wherein JCV T-antigen facilitates the increased binding of NF1 II/III by preventing the Fig. 4.10 Model for possible mechanism of transactivation of JCV late promoter by large T-antigen.

The JCV regulatory region with early and late sides is shown. NRE (pentanuclectide repeat) and NF1 denote the binding sites for negative regulatory element and nuclear factor 1, respectively. The hatched box denotes the repressor protein which binds NRE. The black box denotes the factor binding to NF1 motif. NRE is also called LCE.

repressor binding to LCE. This would facilitate the interaction of NF1 with NF1 II/III (Fig. 4.10). Thus, the specific interaction of JCV NF1 II/III motifs and brainspecific NF1 may be a doubly important factor in the requirement for NF1-dependent function of the JCV early and late promoter-enhancer in glial colls.

The early promoter of JCV is repressed by JCV large Tantigen (Nakshatri <u>et al</u>, 1990a). Moreover, the integrity of the pentanucleotide repeat region that interacts with the repressor was shown to be important for efficient expression of early but not late promoter-enhancer (Kumar <u>et al</u>, 1992; Tida <u>et al</u>, 1991). My proposed model explains how this could happen. The prevention of repressor binding by T-antigen would lead to activation of late and repression of early promoter of JCV.

167

CHAPTER 5

Role of cyclic AMP response element (CRE) in JCV expression 5.1 Introduction

The regulatory region of JCV consists of several protein binding domains (reviewed in Frisque and White, 1992; Major et al. 1992; and Fig. 1.2). Site-directed mutagenesis of JCV control region suggested a role for nuclear factor 1 (NF1) binding sequences located in the 98 bp repeats in the glial cell-specificity (chapters 3 and 4 of this thesis). Mutations in all three potential NF1 binding sites greatly reduced the transcriptional activity of JCV early promoterenhancer in glial cells. However, a residual activity, more than the base, level activity of the pSV0cat vector was still observed, indicating the possible involvement of other factors in expression of JCV (Fig. 3.2). Earlier studies (Amemiya et al, 1992; Ault and Stoner, 1993) had identified a cyclic AMP response element (CRE) in the JCV regulatory region. Examination of the JCV promoter-enhancer sequences revealed the presence of CRE motif. TGAGCTCA 4 bp upstream of the NF1 II and III binding sites, relative to the early region, in the repeats.

Several eucaryotic cellular and viral genes contain cAMP response element (CRE) in their noncoding region and the genes are regulated by cAMP (reviewed in Roesler <u>et al</u>, 1988; Montminy <u>et al</u>, 1990; Borrelli<u>et al</u>, 1992). Analysis of these

sequences identified TGACGTCA as the CRE consensus sequence. A 43 kDa protein called cAMP response element binding protein (CREB) binds this sequence as a dimer. Dimerization and the transcriptional efficiency of CREB are regulated by its phosphorylation by protein kinase A, PKA (Yamamoto et al, 1988). PKA is located in the cytoplasm in an inactive form and as a tetramer consisting of two catalytic subunits complexed with two regulatory subunits. In the presence of elevated intracellular cAMP levels, the catalytic subunits of PKA are activated and translocated to the nucleus, where they phosphorylate CREB on a serine residue. The phosphorylated CREB is then able to bind the CRE sequence of the cAMP responsive genes and activate their transcription (Borrelli et al, 1992). The presence of a CRE motif in the JCV transcriptional control region prompted me to investigate the role of this sequence, in the context of the NF1 site, on the expression of JCV early promoter-enhancer (JCV, in glial cells. Attempts were also made to characterize the protein(s) binding to the CRE motif by in vitro binding studies.

5.2 Results

5.2.1 Role of CRE in in vivo expression of JCV

To examine the role of CRE in JCV expression, the plasmids pJC_cat for CAT expression from JCV, and pRIIcat for expression from JCV, single 98 bp sequence (Fig. 3.1) were transfected into P19 glial cells. The cells were then treated with and without 10 µM of dibutyryl cAMP, a cAMP analogue, for 24 hours. Transfected cells were also treated with 100 µM forskolin, an agent that elevates the intracellular cAMP levels. Both plasmids expressed efficiently in P19 glial cells and treatment with cAMP induced CAT expression from pJCV, cat and pRIIcat by 2.0- and 2.7-fold, respectively. Forskolin treatment increased expression of these plasmids by 2.1- and 2.6-fold, respectively (Fig. 5.1). No induction of pJCEcat and pRIIEcat by cAMP was observed in UD and DMSO-differentiated P19 cells treated with cAMP and FSK (Fig. 5.2 A and 5.2 B). Thus, the results revealed the functional role of CRE in cellspecific expression of JCV in RA P19 cells.

5.2.2 Effect of NF1 mutations on induction by cAMP of JCV promoter-enhancer

I also wished to examine the effect of mutations in the NF1 binding sites, which are adjacent to the CRE in the 98 bp repeats on the induction by cAMP of JCV promoter-enhancer. Thus, several combinations of NF1 mutants were tested for their expression in the presence or absence of either dibutyry1 Fig. 5.1 Induction by cAMP of CAT expression from $JCV_{\rm g}$ and the single JCV 98 bp sequence for wild type and mutated NF1 sites in RA-differentiated P19 cells.

Wild type (WT) and mutated CAT expression plasmids are indicated as in Fig. 3.1. Labels: cAMP, cyclic AMP; FSK, forskolin. Values for JCV expression (* Conversion) were normalized with assays for enzyme activity of the RSVpromoter- β -galactosidase plasmid. Results are averages of three expressions.

cAMP or forskolin. The mutations in NFI I introduced into pJCVEcat behaved like wild type with 2.2-and 2.1-fold increased CAT activity in cAMP- and FSK-treated cells, respectively. However, mutations in NFI II and III (II.III), in all three NFI binding sites (I.III.III) or in the single 98 bp repeat (mRII) resulted in 2.7-, 3.6-, and 4.2-fold activity, respectively, in cAMP-treated cells. The increase in FSK-treated cells was 3.2-, 3.5-, and 4.8-fold respectively. The increase in activity was more than that observed for WT, I, and RII in cells treated with these agents (Fig. 5.1). In cAMP- and FSK-treated UD and DMSO-differentiated PIS cells, no induction of mutated NFI CAT expression plasmids by cAMP was noticed (Fig. 5.2 A and 5.2 B). The results suggest that induction by cAMP of JCV_g is more pronounced in an NFI II and III mutation background in glial cells.

5.2.3 Role of CRE in in vitro expression of JCV

To further substantiate the <u>in vivo</u> observations, <u>in</u> <u>vitro</u> transcription assays were done with RII and mRII CAT expression constructs as described in Fig. 3.1. The RII showed 2.4-fold more activity in FSK-treated cells than in RA-treated P19 cells. Competition with 250-fold excess of either NFI II/III or CRE oligonucleotides resulted in approximately 50% reduction in activity (Fig. 5.3, RII). The results suggested that the effects of NFI II/III and CRE binding sites on the expression of $JCV_{\rm g}$ are additive. The mutation in NFI II Fig 5.2 A. Effect of CAMP on CAT expression from JCV_t and JCV 98 bp repeat for wild type and mutated NF1 site in undifferentiated (UD) F19 cells.

Wild type (WT) and mutated CAT expression plasmids are indicated as in Fig. 5.1. Labels and methods are as described for Fig. 5.1. Results are averages of two experiments.

Fig. 5.2 B. Effect of cAMP on CAT expression from JCV_E and JCV 98 bp repeat for wild type and mutated NF1 site in DMBOdifferentiated P19 cells.

Plasmids are same as indicated in Fig. 5.1. Methods and labels are as described for Fig. 5.1. Results are averages of two experiments.

Fig. 5.3 <u>In vitro</u> transcription assays with glial cell extracts and effect of NF1 II/III mutations for CAMP induction.

RII and mPI, are as described in Fig. 3.1. The assays had 60 μ g of protein. Labels are FSK, extract from forskolin-treated PJ9 glial cells; RA, extract from control P19 glial cells; NF1, specific competition by NF II/III oligonuclectide; CRE, competition by JCV CRE oligonuclectide; α -a, 1 μ g/ml alphaamanitin polymerase II inhibitor; Tr, CAT RNA from RII and mRII CAT expression vectors; RSV-6-gal, 6-galactosidase internal control RNA. Assays and calculations were as described for Fig. 4.4.

-

NEJ CBE ESK mRII FSK AA **6-2** AA CBE NEJ EZK FSK Tr × RSV-B-Gal

(mRII) abolished the activity of JCV early promoter in P19 glial cells. In FSK-treated cells, a residual activity was noticed. Competition with 250-fold excess of CRE but not NF1 II/III, oligonucleotide reduced its activity. (Fig. 5.3, mRII). Taken together, the results of <u>in vitro</u> transcription support the <u>in vivo</u> observations. The results also suggest that the increased expression of JCV early promoter-enhancer upon forskolin treatment is due to increased level of CAT transcripts.

5.2.4 Mechanism of cAMP regulation of JCV.

To examine if the increased expression of $pJCV_ccat$ was at the level of transcription, RNase protection experiments using RNA from FSK-treated and untreated transfected cells were undertaken (Fig. 5.4). Compared to untreated transfected cells, the transfected RA-treated P19 cells treated with FSK had 2.9-fold more CAT transcripts, as measured densitometrically. These results suggested that the increased expression of $pJCV_ccat$ was due to increased levels of CAT transcripts and that the effect of CAMP on the expression of JCV_ccat is most probably at the level of transcription. This result also confirmed that the <u>in vitro</u> transcription was a reflection of in yivo function.

5.2.5 Effect of mutations in CRE on CAMP induction of JCV promoter-enhancer

To examine the functional role of CRE in JCV expression,

Fig. 5.4 Increased RNA expression from JCV_E after induction by cAMP.

Lanes are: P. probe markers for β -gal (asterisk on the right) and CAT RNA (arrowhead on the right); CAT+6-gal, RNA from pRSV-cat- and pRSV-8-galactosidase-transfected P19 glial cells serving as positive control; E, RNA from control P19 glial cells transfected with pJCEcat; E-FSK, RNA from forskolintreated P19 glial cells transfected with pJCEcat; tRNA, E.coli tRNA serving as negative control. CAT and 6-gal RNA fragments are indicated on the left and represent RNase T1 resistant products. Molecular weight markers (M) in bp are indicated on the right. Qugntitative estimate of the CAT transcripts in FSK-treated and untreated cells Was determined densitometrically and normalized for β -gal transcripts. E, 0.9 and E-FSK, 2.62.

site-specific mutations in CRE were generated by site-directed mutagenesis of JCV promoter-enhancer (Fig. 5.5). The enhancer fragments containing mutations were inserted into pSV0cat. Plasmids were then tested for their functional activity in dibutyryl cAMP-, FSK-treated and untreated P19 glial cells. Wild type whole enhancer (pJCEcat) and single 98 bp repeat (pRIIJCEcat) constructs expressed efficiently in untreated P19 glial cells. Treatment with cAMP resulted in increased expression from pJCEcat and pRIIJCEcat by 2.1- and 3.0-fold, respectively (Fig. 5.6, WT and pRII). Forskolin treatment increased expression of these plasmids by 2.3- and 3.2-fold, respectively (Fig. 5.6, WT and pRII). Mutations in CRE of both repeats or in a single 98 bp repeat revealed no change in the promoter-enhancer activity in either the presence or absence of cAMP or FSK (Fig. 5.5 and 5.6, I.II and mRII). Moreover, the activity of CRE mutants is the same as that of WT constructs in untreated P19 glial cells (Fig. 5.6). These results suggest that the integrity of the CRE sequence is essential for induction of JCV promoter-enhancer by cAMP.

5.2.6 Induction by cAMP of expression of a heterologous promoter in glial cells by cAMP response element (CRE) sequence: of JCV

To further examine the functional significance of the CRE motif, a double stranded oligonucleotide corresponding to nt -154 to -161 of JCV_z was cloned (pJCCREcat) in the early

Fig. 5.5 Wild type and mutated CRE motifs in JCV_{E} sequences in CAT plasmids.

CRE mutations were introduced by site-directed mutagenesis for CAT expression vectors. Top, diagram of sequences present in CAT expression plasmids. Early and late sides are indicated. TATA boxes and CRE motifs are indicated and delineated by thick lines. Nucleotide positions are given below and above the lines. Boxes indicate the 98 bp repeats. Bottom, list of mutated plasmids and sequences for CRE motifs. CRE II and CRE I indicate the CREs adjacent to NFI III and NFI II, respectively, in the 98 bp repeats. Mutated CRE nucleotides are indicated by lower case letters and wild type CRE nucleotides are indicated by capital letters.

arly 12	CRE	109 110 164	_207 late
5112 14 22	56 63	112 120154 161	270
plasmid	CRE II	CREI	
pJCEcat (WT)	TGAGCTCA	TGAGCTCA	
pmJCEcat I.II	TaAGCTCg	TaAGCTCg	
pRIIJCEcat (WT)		TGAGCTCA	
pmRIIJCEcat		TaAGCTCg	

Fig. 5.6 Effect of mutation of JCV CRE motifs on in vivo activity.

Results are for CAT assays in untreated control, CAMP- and forskolin (FSK)-treated P19 glial cells. Mutations in CRE motifs are indicated by the unique numbers and letters for the names of plasmids of Fig. 5.5. The cells were transfected 8 hours after being plated with 5 μ g of test CAT expression plasmid and 15 μ g of pUC19 DNA. The other methods are as described for Fig. 3.2 and 5.1.

orientation in front of the thymidine kinase (TK) promoter of pBLcat2. The CAT activity of pJCCREcat and the parent vector, pBLcat2, was compared in control untreated and cAMP- and forskolin-treated P19 glial cells. The results are shown in Fig. 5.7. The plasmid pJCCREcat was induced 6-fold in cells treated with either CAMP or FSK. Induction was reduced to 2.6and 1.5-fold when pUC19 plasmid containing a double stranded JCV CRE oligonucleotide was cotransfected with pJCCREcat in 4and 8-fold excess amounts, respectively (Fig. 5.7).

To further examine CRE induction, in vitro transcription assays were performed. No activity was observed with pBLcat2 template when extract from FSK-treated P19 glial cells was used (Fig. 5.8, pBLcat2, FSK). With pJCCREcat template, no detectable activity was observed with extract from untreated P19 glial cells (Fig. 5.8, pJCCREcat, RA). However, a substantial amount of transcriptional activity was observed with this template and extract from FSK-treated P19 glial cells. This activity was abolished in the presence of 250-fold excess of CRE oligonucleotide (Fig. 5.8. pJCCREcat. CRE). In the presence of 1 µg/ml concentration of alphaamanitin the transcriptional activity of pJCCREcat was totally abolished, suggesting that transcription was by RNA polymerase II. The results confirmed the presence of a functional CRE sequence in JCV promoter-enhancer. These results also suggested that the JCV CRE sequence enhances the

Fig. 5.7 Induction by CAMP of JCV CRE in the context of a heterologous promoter in glial cells.

The vector, pBLcat2 and pJCCREcat are indicated. The 4X and 8X indicate competition with 4- and 8-fold JCV CRE oligonucleotide in plasmid pUC19. Other labels and methods are as described for Fig. 5.1.

Fig. 5.8 Role of cAMP in activity of pBLcat2 and pJCCREcat as assayed by <u>in vitro</u> transcription.

The DNA templates used are indicated on top. Labels are: a-a, γ 1 $\mu g/ml$ alpha-amanitin polymerase II inhibitor; Tr, CAT RNA from pJCCREcat and pBLcat2 CAT expression vectors. RSV- β -gal, β -galactosidase internal control RNA. FSK, extract from forskolin-treated P19 RA cells. RA, extract from P19 RA cells. CRE, competition in the presence of 250-fold excess of CRE oliconucleotide.

transcriptional activity of a heterologous promoter in glial cells.

5.2.7 Interaction of proteins from forskolin-treated P19 glial cells with JUV CRE sequence

5.2.7.1 In vitro interactions detected in mobility shift assays

The interaction of a protein with JCV CRE sequence was suggested by the <u>in vivo</u> competition with CRE sequence in FSKtreated cells (Fig. 5.7). To examine this possibility, mobility shift experiments with a double stranded oligonucleotide corresponding to JCV CRE sequence was undertak^m. The extract from P19 FA cells chowed no binding (Fig. 5.9, FA, B). However, with extract from FSK-treated P19 glial cells, one complex was noticed (Fig. 5.9, FSK, B). Addition of 500-fold excess specific competitor CRE sequence abolished the complex (Fig. 5.9, S). Addition of 500-fold excess of a non-specific oligonucleotide (corresponding to NF1 binding sites) had no effect on complex formation (Fig. 5.9, NS). The results suggest that a protein from FSK-treated P19 FA cells, but not untreated cells, specifically interacts with JCV CRE sequence.

5.2.7.2 Identification of protein(s) binding to JCV CRE sequence as determined by Southwestern blot and UV crosslinking assays

To characterize the protein(s) binding to the CRE motif,

191

Fig. 5.9 <u>In vitro</u> binding of JCV CRE oligonucleotide in mobility shift assays.

Lanes are: F, free oligonucleotide probe in the absence of extract; B, binding assay with and no competitor; RA, P19 glial cell extract; FSK, forskolin-treated cell extract; S, specific competition by homologous competitor. NS, nonspecific competition by JCV NF1 II oligonucleotide; arrow, free probe.

Southwestern blot and UV crosslinking assays were performed. Southwestern blot analysis re-examines the interaction of protein(s) with the oligonucleotide sequence. The Southwestern blot results indicated that a protein of 43 kDa from forskolin-treated P19 glial cells specifically interacts with the CRE sequence (Fig. 5.10, FSK). No interaction of protein(s) from untreated P19 glial cells was observed (Fig. 5.11, RA, B). In UV crosslinking experiments, two proteins of approximately 150 and 43 kDa from FSK-treated cells were crosslinked with JCV CRE oligonucleotide (Fig. 5.11, FSK.B). Addition of 500-fold excess of CRE oligonucleotide abolished the band corresponding to 43 kDa but not 150 kDa (Fig. 5.11, FSK, S). Further, in the presence of 500-fold excess of nonspecific oligonucleotides corresponding to the NF1 binding site, NS1 and NS2, the 43 kDa band was not significantly affected (Fig. 5.11, FSK, NS1 and NS2). Taken together, these in vitro assays suggested that a protein(s) interacts with the CRE. This protein appears to be an approximately 43 kDa polypeptide from forskolin-treated P19 glial cells which interacts with the JCV CRE oligonucleotide in a sequencespecific manner in two independent in vitro assays.

Fig. 5.10 Southwestern blot analysis with JCV CRE oligonucleotide.

Lanes are as in Fig. 5.9. Numbers on the right indicate the kDa molecular weights of protein markers. Arrow indicates the 43 kDa protein interacting with the CRE sequence.

Fig. 5.11. UV crosslinking assays with JCV CRE sequence. Labels are as described for Figs. 5.9 and 5.10. NS1 and NS2, competition with 500-fold excess of NF1 II and NF1 I oligonucleotides, respectively.

5.3 DISCUSSION

The results of this study clearly demonstrated the presence of a functional CRE in the JCV transcriptional control region. The JCV CRE sequence (TGAGCTCA) is homologous to the consensus CRE (TGACGTCA) except for CG to GC transposition. However, the results of my study suggest without any ambiguity the functional activity of a CRE in the JCV regulatory region. This was based on the observation that the JCV early promoter-enhancer (JCV,) was inducible by treatment with the cyclic AMP analogue, dibutyryl cAMP, and the cAMP inducer, forskolin. In addition, mutations in the CRE abolished induction of JCV expression by cAMP (Fig. 5.6). The purpose of using forskolin in this study is that forskolin activates the adenvivi cyclase enzyme that converts ATP to cAMP, thus increasing the intracellular cAMP levels. This is followed by activation of PKA which phosphorylates CREB. If there is a functional CRE in JCV, the phosphorylated CREB will bind the CRE and activate transcription. The results clearly showed the induction of JCV promoter-enhancer with forskolin, suggesting the existence of a functional CRE in the regulatory region of JCV. In addition, the JCV CRE sequence placed upstream of the TK promoter in pBLcat2 reporter plasmid was inducible in transient cat assays and conferred glial cell-specificity to a heterologous promoter (Fig. 5.7) Increased in vitro transcription was also observed in the

presence of extracts from FSK-treated, but not untreated P19 RA cells (Fig. 5.8). This further confirms the existence of a JCV_c CRE sequence which functions as an enhancer element.

The JCV CRE is located 4 bp from the NF1 binding sites in the 98 bp repeats. Hence, the NF1 mutants were tested for their activity in cAMP- and FSK-treated P19 cells. The results suggest that induction of JCV_e is more on NF1 mutant back ground compared with WT (Fig. 5.1). No induction of JCV_e by cAMP was observed in UD and DNSO-differentiated P19 cells (Fig. 5.2 A and 5.2 B). The results of <u>in vitro</u> transcription with RII and mRI suggest that the effects of NF1 binding and CRE motifs are additive.This study was also focused on the characterization of JCV CRE by identifying and characterizing the proteins interacting with CRE.

In previous studies, the understanding of regulation of gene expression by cAMP was largely facilitated by cloning of the cDMAs encoding CRE-binding proteins (CREBs). The cDMAs were initially isolated from rat phaeochromocytoma (PC12) cells and human placental cell libraries (Hoeffler <u>et al</u>, 1988; Gonzalez <u>et al</u>, 1989). CREB was later shown not to be restricted to these cell types but to be ubiquitously expressed. This suggests a housekeeping role for this factor (Foulkes <u>et al</u>, 1991). The fact that CREB has a housekeeping function was demonstrated by using transgenic mice (Struthers <u>et al</u>, 1991). The induction of JCV₆ by cAMP was observed in RA-differentiated but not in UD and DMSO-differentiated P19 cells (Fig. 5.1 and 5.2A and B). Since CREB is a ubiquitously expressed factor, the involvement of this protein in glial cell-specific expression of JCV is a puzzle. Sp1, a ubiquitous transcription factor, is developmentally regulated and in mouse and in adult human brains its expression is restricted to oligodendrocytes of the CNS and a limited number of other cell types (Saffer <u>et al</u>, 1991; Henson <u>et al</u>, 1992). It is possible that CREB is developmentally regulated similarly and that different cells contain different forms of CREB.

CREB contains multiple properties that may allow tissue-specific regulation. For example, the transcriptional activation domain of CREB consists of several independent regions. CREB belongs to the leucine-zipper family of proteins (Landschulz <u>st al</u>, 1988). The leucine zipper allows dimerization and formation of the appropriate conformation of the protein. This leads to the interaction of the basic region of the protein with the cognate sequence on DNA. The CREB leucine zipper is important for not only homodimerization but also heterodimerization between two different transcription factors such as CREB and ATF. The heterodimers may have unique cell-specific functions.

The data of JCV in P19 RA cells suggests that the binding of the protein interacting with JCV CRE may be detectable only after phosphorylation of CREB by PKA. In fact,

201

CREB binding was shown to be modulated by phosphorylation (Yamamoto et al, 1988), Since there are several isoforms of PKA that are tissue specific, it is quite possible that the PKA of P19 RA cells may behave differently (Habener, 1990). Moreover, the consensus phosphorylation sites of various kinases such as protein kinase A (PKA), protein kinase C (PKC), glycogen synthase kinase 3, and casein kinase (CK) I and II present in CREB might be important in regulating its activity. Also, various phosphorylation sites located in CREB cooperate to elicit the regulatory function of the protein (Habener, 1990). In another report, no phosphorylation of CREB was noticed when HeLa cell nuclear extract was used in in vitro studies, although the cells did contain PKA (Merino et al, 1989). This could have been due to lack of certain cellspecific functions. Support for this comes from another interesting finding that PKA affects phosphorylation of CREB variably depending on the cell type (Auwerx and Sassone Corsi, 1991). Thus, the reports indicate that phosphorylation of CREB by PKA depends on the cell type and CREB activity is further regulated by phosphorylation by kinases other than PKA. There also appears to be multiple CREB domains important for homodimerization and heterodimerization which also affect DNA binding and phosphorylation by additional cell-specific functions.

In vitro binding studies have suggested interaction of a 43 kDa CREB protein with CRE (Montminy and Bilezikiian. 1987; Yamamoto et al, 1988). There are several proteins belonging to the CREB family and the cDNAs isolated from different tissues suggest that the sizes of the proteins range from 39 to 120 kDa. In my study, the results of UV crosslinking assays revealed the interaction of two proteins of 43 and 150 kDa only in RA P19 cells treated with FSK (Fig. 5.11, FSK, B). In other reports CREB was shown to heterodimerize with other proteins such as ATF, AP2 and c-jun (Borrelli et al, 1992). Hence, it is likely that the protein recognizing the JCV CRE sequence binds as a heterodimer. CREB may interact with a factor that is restricted to RAdifferentiated P19 cells. Such a factor may be a cell-specific AP2, another protein which requires phosphorylation for efficient DNA binding. The 150 kDa protein was not competed by 500-fold excess homologous CRE oligonucleotide competitor in crosslinking assays (Fig. 5.11, FSK, S). However, CREB was specifically crosslinked with the CRE oligonucleotide. Clarification and use of more sensitive techniques are required. The 43 kDa protein interacting with JCV CRE is the same size as that binding to consensus CRE of the rat somatostatin gene. Whether the protein binding to JCV CRE is the same as the CREB that binds to the consensus CRE remains to be investigated, considering that there are multiple CREB polypeptides which are also subject to posttranslational modifications.

Southwestern blot analysis with JCV CRE detected only a protein of 43 kba (Fig. 5.10, FSK). The two techniques are different in their sensitivity and the sequence specificity can better be analysed with UV crosslinking assays than with Southwestern blots. Moreover, in Southwestern blots the proteins are subjected to renaturation and denaturation, whereas, in UV crosslinking assays the proteins are in their native form. Recently it has been shown that a CREB-binding protein (CBP) of 265 kDa interacts with CREB and may function as a coactivator for efficient transcriptional activity induced by CREB (Chrivia <u>et al</u>, 1993). The existence of such a coactivator in P19 RA cells which cooperates with JCV CRE binding protein for its efficient transcriptional activity remains to be tested.

Interestingly, the human cytochrome P450 C17 promoter (Brentano <u>et al</u>, 1990) and JUN D promoter (Borrelli <u>et al</u>, 1992) contain the TGAGCTC sequence which is 100% homologous to that found in the JCV regulatory sequence. The CREs of these two genes are cAMP inducible and confer cAMP induction potential to a heterologous promoter. Of note, in BK virus belonging to the same family as JCV, a sequence highly homologous to CRE is present 4 bp from the NFI sites in each 68 bp P block, an arrangement which is identical to JCV DNA (Deyerle and Subramani, 1988; Cassill <u>et al</u>, 1989). It has been shown that the CRE of BKV is also cAMP inducible (Moens et al, 1990).

Since JCV and BKV share many features, studies with BK virus containing CREs in the transcriptional control region are of interest. Compared to the standard MT-1 BKV strain which has one copy of the CRE motif, the variant with a 34 bp duplication containing the CRE site grew as efficiently as the Gardne .: strain having three CRE sites. On the other hand, another variant with a deletion in CRE grew poorly in human embrvonal kidney (HEK) cells (Sugimoto et al, 1989). It was also shown that insertion mutations in the CRE motif abolished the ability of BKV to transform rat cells (Watanabe and Yoshiike, 1989). Taken together, these studies suggest a functional role for CRE in BKV multiplication and transformation. It will be of interest to isolate JC virus variants which lack CRE sequences or contain more than two copies of CRE. Such variants could be used to study the role of the CRE motif in the multiplication and transformation capabilities of JC virus.

Several genes that are expressed in a tissue-specific manner have been shown to be responsive to elevated cAMP levels. Examples are the phosphoenolpyruvate carboxykinase gene (Chrapkiewicz <u>et al</u>, 1982; Cimbala <u>et al</u>, 1982), the vasoactive intestinal peptide precursor gene (Hayakawa et al,

1984), and the liver tyrosine aminotransferase gene (Hashimoto et al. 1984). Several brain-specific genes possess nuclear factor 1 binding sequences followed by activator prc ein binding sites such as CRE, AP1, ATF, and AP2 (Amemiya et al, 1992). Interestingly, the JCV regulatory region which is strictly glial cell-specific also contains the NF1 binding site with adjacent CRE site. The questions that arise are: "Why does the 98 bp repeat of JCV contain several activator protein binding motifs?" and "What is the significance of the NF1 site and CRE in brain-specific JCV expression?" The in vitro transcription studies with RII and mRII cat constructs (Fig 5.3) preliminarily address these questions. Competition with either NF1 or CRE oligonucleotide reduced the activity of RII to approximately 50% in FSK-treated P19 glial cells. This suggests that both NF1 II/III binding and CRE sequences are important for the increased activity of JCV early promoterenhancer. In addition, the effects of both of these sites could be additive. This is of interest and consistent with the observation that CRE mutants exhibited similar levels of activity to wild type constructs in untreated P19 glial cells (Fig. 5.6). Since the effects of NF1 and CRE sites are additive, the mechanism by which they activate transcription from JCV, may be different.

CREB has been shown to interact with several tissuespecific factors. For example, multiple copies of the AP2

protein binding sites placed upstream of the CRE containing genes conferred cAMP inducible transcription, while placing a single copy of the AP2 site had no effect on transcription (Chiu et al. 1987). Forskolin treatment did not increase the binding activity of the AP2, while the transcriptional activity was stimulated, analogous to CREB. The inability of single but not multiple AP2 sites in activating a transcription of CRE containing genes may suggest that AP2 interacts with CREB. Interestingly, using the proenkephalin promoter, it was shown that the AP2 site alone can not confer transcriptional activity but acts synergistically with the CRE to stimulate transcription (Comb et al, 1986). CREB was shown to be expressed ubiquitously whereas AP2 is restricted to certain cell types. AP2 activity is absent in the human hepatoma cell line Hep G2 and in undifferentiated human teratocarcinoma cell line NT2. However, the AP2 activity is induced upon differentiation of the NT2 cells with retinoic acid (Williams et al, 1988). In addition to AP2, CREB was shown to interact with other tissue-specific factors. For example, in case of alpha chorionic gonadotropin, CREB interacts with a protein binding to placental tissue specific element (TSE) adjacent to CRE sites in the promoter (Delegeane et al. 1987). All these studies indicate that CRE binding protein interacts with factor(s) binding to adjacent sites, resulting in efficient transcriptional activity. However, in

my study the results of in vitro transcription assays with RII (Fig. 5.3) indicate that the effect of NF1 II/III and adjacent CRE sites on the expression of JCV_{μ} is additive and that the interaction of these factors is unlikely. Most probably, each of these factors stimulate JCV, expression by different mechanisms. Support for this suggestion are results of experiments with NF1 and CRE mutants (Figs. 5.1, 5.3 and 5.6). While the mutations in NF1 II/III greatly reduced the activity in P19 glial cells, a substantial amount of in vivo activity was retained for FSK- or cAMP-treated cells (Fig. 5.1). Moreover, a substantial activity was retained when extract from FSK-treated cells was used for in vitro transcription (Fig 5.3, mRII). In addition, the CRE sequence placed upstream of TK promoter of pBLcat2 exhibited in vivo activity in the presence of either FSK or cAMP (Fig. 5.7). Also, in vitro activity was observed in the presence of extracts from FSKtreated but not untreated P19 RA cells in in vitro transcription assays (Fig. 5.8). This confirms that CRE along can enhance the basal activity of JCV early promoter in glial cells. Overall, the CRE and NF1 II/III sites clearly have a combinatorial effect on the expression of JCV, and the presence of CRE adjacent to NF1 II/III binding site in the JCV regulatory region further increases its expression in glial cells. This is consistent with the recent speculation that the glial cell-specific expression of JCV early promoter is

regulated by the combinatorial action of transcription factors binding to their cognate sequences, in particular the factors binding to CRE and NF1 sites of JCV enhancer (Henson, 1994).

Brain-specific expression of the $JCV_{\rm g}$ may be tightly regulated, based on the physiological status of the cell. The CREB protein interacting with CRE motif under conditions with elevated CAMP levels might bind adjacent to the NFI protein binding to NFI II/III. This would result in the enhanced expression of JCV early promoter-enhancer. Such a switching mechanism may be regulated by phosphorylation of transcription factors. These factors could tightly regulate $JCV_{\rm g}$ expression in the NFI site-dependent, glial cell-specific system . Such a mechanism has been proposed for liver specific gene expression (Roesler et al, 1993).

Glial cell-specific expression of JCV appears to be regulated by both inducible (CREB) and constitutively-produced (NF1) transcription factors. In addition, a motif with extensive homology to the NF-kB sequence of HIV-1 is located outside the regulatory region of JCV. This transcriptional element stimulated the expression of JCV late promoter in glial cells and interacted with PMA inducible and noninducible nuclear proteins from glial cells (Ranganathan and Khalili, 1993). The CRE and NF-kB binding proteins that interact with CRE and NF-kB are coupled to different signal transduction systems via FKA and FKC, respectively. The enhancer-binding factors that respond to various signal transduction systems may have evolved to couple the transcription of cellular genes to changes in the environment. These changes affect the proliferative state of mammalian cells. Not surprisingly, viruses use the same transcription factors to regulate the expression of their genes, as their life cycles are dependent on the proliferative status of their infected hosts. Thus viruses can respond to different environmental cues by virtue of possessing distinct inducible transcriptional elements in their genome.

NF-kB is sequestered in the cytoplasm by the IkB inhibitor and is released by phosphorylation of IkB by protein kinases such as PKC (Baeuerle and Baltimore, 1988). Cyclic AMP may act as another second messenger leading to NF-kB activation through the activation of PKA (Shirakawa <u>et al</u>, 1989). This might result in the elevation of intracellular cAMP levels, resulting in simultaneous activation of CREB and NF-kB. These would in turn bind to their cognate sequences in the JCV genome, leading to increased transcription of JCV₄ and JCV₄. Alternatively, since CREB and NF-kB are activated by two different signal transduction pathways, transcription factors that respond to more than one stimulus may cause a more continuous transcriptional response than those that respond to a single stimulus. This would give the virus a greater advantage of having transcription elements for response to diverse signal transduction pathways. The identification of the transcription factors that mediate such diverse actions should further our understanding of gene regulation.

CHAPTER 6

FUTURE DIRECTIONS

Tissue-specific gene expression is mainly regulated at the level of transcription. The transcription factors that govern the restricted cell-specific expression of genes are limited to such cells. In chapter 1, I described in detail the transcriptional regulation of cell-specific gene expression. The brain is a complex organ with a heterogeneous population of cells and certain cell types such as glial cells and neurons, allow certain genes to be expressed. This restricted cell-specific gene expression is mainly regulated positively in the cells that are expressed. Expression is negatively regulated in cells in which these genes are not normally expressed.

The understanding of brain-specific gene expression is difficult because of its complex nature. The human JCV polyoma virus is a neurotropic virus and its expression is strictly restricted to glial cells. The regulatory region of JCV contains 98 bp tandem repeats which play a key role in the restricted cell-specific expression. The promoter-enhancer region of JCV contains binding sites for several transcription factors such as nuclear factor 1 (NF1) motifs, pentanucleotide region, polypyrimidine tract and cyclic AMP (cAMP) response element (Fig. 1.2). Several studies used <u>in vitro</u> binding assays and concluded that the NF1 binding sites may play a role in the glial cell-specific expression of JCV. However, no functional studies were done. My studies presented in chapter 3, clearly demonstrate the importance of NFI sites located within the repeats in the glial cell-specific expression of JCV. The importance of NFI binding sites in cell-specific expression of JCV was assessed with JCV promoter-linked reporter genes. In order to understand the effect of mutations in NFI binding sites in JCV life cycle, it would be important to reconstruct NFI mutants in JCV whole genome and test their activity in primary human fetal glial (PHFc) cells.

Understanding transcriptional regulation of neurotropic JCV also facilitates the understanding of brain-specific gene regulation. The cDNA encoding the factor binding to the NFI site in the repeats supported the expression of JCV in nonglial cells, further confirming the importance of NFI II/III in glial cell-specificity. My studies did not delineate the DNA binding and transactivating domains of the NF1. This can be further studied in the future by functional analysis of exonuclease III deletions of the NF1 cDNA that I isolated. These analyses of the cDNA would also help in understanding the developmentally regulated expression of NF1 proteins in the brain that are important for tissue-specific gene expression, such as the myelin basic protein (MEP) of CNS and the NF1 proteins that activate transcription of liver- and adipocyte-specific gene expression. Whether the gene for the isolated cDNA is developmentally regulated will be important, because many brain-specific genes contain the NF1 motif (Amemiya et al, 1992). This can be done by Northern blot analysis and RNase protection assays for DMSO- and RAdifferentiated P19 cells and for various mouse tissues.

JCV remains latent in kidneys (Frisque and White, 1992) and JCV is capable of replicating in B-lymphocytes (Major <u>et</u> <u>al</u>, 1990). JCV appears to undergo brain-specific types of rearrangements in the lymphocytes, as an intermediate between the kidney and brain. Hence, it will be interesting to study the developmental regulation of NFI in kidney cells and lymphocytes. Joth the MAD strains and archetype strains of JCV can be compared in brain, lymphocytes and kidney tissues.

Replication of the archetype JCV is restricted to the kidney. The hypothesis is that rearrangements in the regulatory region of archetype JCV results in the generation of the brain form of JCV (Ault and Stoner, 1993). Another hypothesis is that JCV remains latent in B lymphocytes and these JCV-infected cells reach the brain, resulting in PML (Dorries <u>et al</u>, 1994). These two possibilities can be tested by looking at the expression of archetype and prototype JCV strains in kidney, B lymphocytes, and brain cells. The site of rearrangements can be checked by Southern blots of DNA isolated from these tissues. This should determine whether the rearrangements in the archetype regulatory region occur in kidney, in B-lymphocytes, or in brain.

Recently the role of coactivators in the tissuespecific gene expression has gained more attention. For example, the lymphoid cell restricted oct-2, but not the ubiquitously expressed oct-1, was thought allow B-cellspecific gene expression (Gerster et al, 1990). However, recent findings have raised questions about these suggestions. An IqH promoter-specific, octl factor-specific and B-cellspecific coactivator, OCA-B, supports the expression of IgH promoter in vitro in the presence of oct-1 but not oct-2 protein (Luo et al, 1992). A coactivator leads to activated transcription by mediating dimerization of liver-specific transcription factor, HNF1 (Mendel et al, 991). A coactivator has also been suggested to help in the communication of basic region of Myo D with its activation domain (Lin and Olson, 1991). Coactivators that support the activated levels of transcription by gene specific regulators such as, Spl and CTF/NF1 have also been reported (Pugh and Tjian, 1990). Overall, these observations suggest the role of coactivators in the transcriptional regulation of tissue-specific transcription. Therefore, it is tempting to speculate the requirement for coactivation by an NF1 II/III specific and glial cell-specific coactivator in the glial cell-specific expression of JC virus. Isolation of such a coactivator would also help in the identification of brain-specific coactivators that participate in activated transcription of brain-specific genes. Affinity chromatography, a powerful tool to identify protein-protein interactions, can be used to isolate the coactivator as described (Luo <u>et al</u>, 1992).

Interestingly, no transcription from the myelin basic protein (MBP) gene was observed in the presence of TFIID isolated from HeLa cells <u>in vitro</u>. However, TFIID extracted from brain cells supported the <u>in vitro</u> transcription of MBP (Tamura <u>et al</u>, 1990a). Therefore, there may be tissue-specific TFIID factors which allow basal level gene expression. The role of such a tissue-specific TFIID in glial cell-specific expression of JCV is an attractive possibility. This can be examined by an affinity assay of extract from P19 cells on an affinity column.

JCV late promoter is down-regulated by a protein of 56 kBa that interacts with pentanucleotide repeat region located adjacent to NFI II/III (Tada <u>et al</u>, 1991). However, JCV large T-antigen transactivates the late promoter in glial cells. My results in chapter 4 showed that JCV T-antigen facilitates increased binding of NFI II/III and thereby activates the late promoter. The results described in chapter 4 lead me to propose a model wherein the T-antigen prevents the binding of a repressor to pentanucleotide repeat region. This would then facilitate the binding of NF1 which is important for

216

expression of JCV late promoter-enhancer. The isolation of a repressor protein or CDNA encoding this protein would allow this model to be tested. The cDNA library which I made from P19 RA cells and the screening procedure which I used to isolate cDNA encoding NF1 should be of great help. The cDNAs encoding NF1 and repressor can be expressed in E.coli as recombinant proteins and used <u>in vitro</u> for determining their interaction with T-antigen. The isolated NF1 and repressor cDNAs will also be of great help in understanding proteins interacting with one another. This can be achieved by interaction cloning using the yeast two hybrid system (Fields and Song, 1989). Since coactivators form a bridge between gene-specific activators and TBP, the yeast two hybrid system can be used to clone the coactivator.

The adenovirus early gene product, Ela, has been shown to be a potent transactivator (reviewed in Flint and Shenk, 1990). Ela also represses the expression of certain viral and cellular genes (Timmers <u>et al</u>, 1989). For example, Ela blocks the differentiation of muscle cells by repressing the transcriptional activating functions of muscle cell-specific factors such as MyoD and Myf-5 (Braun <u>et al</u>, 1992). I feel that the JCV T-antigen also has a repressor property, analogous to that of Ela. This is based on my observation that JCV T-antigen transactivates JCV late promoter in glial cells, whereas, it represses the same promoter in nonglial cells such as P19 muscle cells (Fig. 4.2 and 4.3).

Transgenic mice expressing JCV large T-antigen showed regions of demyelination in brain and these regions expressed large T-antigen of JCV. Therefore, my hypothesis is that Tantigen down-regulates the myelin basic protein (MBP) gene leading to demyelination of brain tissue that is observed in PML. Since MBP also contains NF1 binding sequences that are important in its transcription, JCV T-antigen could repress MBP expression indirectly by binding to the MBP promoter through protein-protein interactions. This can be tested by estimating MBP RNA levels by RNase protection assays using RNA from MBP-expressing cells, with and without transfecting Tantigen expression plasmid. If the role of T-antigen in down regulation of MBP is established, regions of the MBP promoter through which T-antigen exerts its repressing effect can be mapped, Another possible mechanism for repression is that Tantigen blocks the differentiation of oligodendrocvtes which synthsize myelin. This would be analogous to adenovirus Ela blocking of muscle differentiation and can be similarly tested (Braun et al. 1992).

SV40 small t-antigen has been shown to be involved in enhancing the transcription and transformation capacity of lurge T-antigen under limiting concentrations of large Tantigen (Bikel <u>et al</u>, 1987). JCV small t-antigen bears high homology to BKV and SV40 small t-antigens. Experiments can be designed to unravel the role of JCV small t-antigen in the transcription and transformation abilities of JCV.

In chapter 5, I described the identification and characterization of CRE and its functional significance in glial cell-specific expression of JCV. Studies with the BK CRE have shown that CRE plays a role in transformation and multiplication of the virus. I did not perform experiments to determine the importance of JCV CRE in activities other than transcriptional regulation of JCV. Hence, future experiments can be analogously designed to determine whether CRE plays any role in the transformation and multiplication of JCV. In addition, it has been shown previously that NF1 plays a role in the replication of JCV (Sock et al, 1991). My studies have shown that NF1 and CRE binding proteins have an additive effect on transcriptional activity of JCV in glial cells (chapter 5). The possibility that NF1 and CRE binding proteins function in an analogous manner in the replication of JCV remains to be investigated.

Finally, CRE binding proteins are a large family of proteins ranging from 39 to 120 kBa. Since I did not observe CAMP induction of JCV promoter-enhancer in undifferentiated and DMSO-differentiated muscle P19 cells, the protein interacting with JCV CRE probably is a RA P19 cell-specific factor. This factor can now be isolated and characterized by screening the cDNA library from RA-differentiated P19 cells that I have constructed with Southwestern blots with CRE oligonucleotide.

The RA-differentiated P19 cells contain heterogeneous population of neuronal cells. Since JCV expression is restricted to glial cells only, it is essential to measure the glial cell population in P19 RA cells by using glial cell-specific markers in double immunoflourescence or in situ hybridization techniques. It is interesting to note that RA inhibits nural induction in embryo. However, treatment with 300 nM RA of P19 EC cells induce neural cells in culture. In addition to RA, presence of other factors in whole embryo, but not in RA-treated cells may account for this difference.

REFERENCES

Abmeyr, S.M., J.L. Workman, and R.G. Roeder. 1988. The Besudorables immediate early protein stimulates in vitro transcription by facilitating TFIID:promoter interactions. Genes Dev 2, 542-553.

Ahmed, S., J. Rappaport, H. Tada, D. Kerr, and K. Khalili. 1990. A nuclear protein derived from brain cells stimulates transcription of the human neurotropic virus promoter, JCV_{e_i} in vitro, J. Biol. Chem. 265, 13899-13905.

Aksamit, A., and J. Proper. 1988. JC virus replicates in primary adult astrocytes in culture. Ann. Neurol. 24, 471-476.

Allore, R.J., W.C. Friend, D. O'Henlon, K.H. Neilson, R. Baumal, R.J. Dunn, and A. Marks. 1990. Cloning and expression of the human S100 & gene. J. Biol. Chem. 265, 15537-15543.

Ameniya, K., R. Traub, L. Durham, and E.O. Major. 1989. Interaction of a nuclear factor-1-like protein with the regulatory region of the human polyomavirus JC virus. J. Biol. Chem. 264, 7025-7032.

Asemiya, K., R. Traub, L. Durham, and E.O. Major. 1992. Adjacent nuclear factor-1 and activator protein binding sites in the enhancer of the neurotropic JC virus. J. Biol. Chem. 267, 14204-14211.

Andrews, C.A., R.W. Daniel, and K.V. Shah. 1983. Serological studies of papovavirus infections in pregnant women and renal transplant recipients, in Polyonaviruses and Human Neurological Disease. Sever, J.J. and D.L. Madden, eds., Alan R. Liss, Now York, pp. 133-141.

Andrews, C.A., K.V. Shah, R.W. Daniel, M.S. Hirsch, and R.H. Rubin. 1988. A serological investigation of BK virus and R.H. C virus infections in recipients of renal allografts. J.Infect. Dis. 15%, 176-181.

Acycas, A., T. Tamura, and K. Mikoshiba. 1990. Regulation of brain specific transcription of the mouse meelin basic protein gene: function of the NF-1 binding site in the distal promoter. Biochem. Biophys. Res. Commun. 157, 648-653.

Apt, D., T. Chong, Y. Liu, and H.-U. Bernard. 1993. Nuclear factor I and epethelial cell-specific transcription of human papillomavirus type 16. J. Virol. 67, 4455-4463. Arthur, R.R., K.V. Shah, Z. Charache, and R. Saral. 1988. BK and JC virus infections in recipients of bone marrow transplants. J. Infect. Dis. 158, 563-569.

Arthur, R.R., S. Dagostin, and K.V. Shah. 1989. Detection of BK virus and JC virus in urine and brain tissue by the polymerase chain reaction. J.Clin. Microbiol. 27, 1174-1179.

Aso, T; H.A. Vasavada, T. Kawaguchi, F.J. Germino, S. Ganguly, S. Kitajima, S.M. Weissman, and Y. Yasukochi. 1992. Characterization of cDNA for the largest subunit of the transcription initiation factor TFIIF. Nature 355, 461-464.

Assouline, J.G., and E.O. Major. 1991. Human fetal Schwann cells support JC virus multiplication. J. Virol. 65, 1002-1006.

Astrom, K.E., E.L. Mancall, and E.P. Richardson, Jr. 1958. Progressive multifocal leukoencephalopathy: A hitherto unrecognized complication of chronic lymphatic leukemia and Hodgkin's disease. Brain 81, 93-111.

Ault, G.S, and Stoner, G.L. 1993. Human polyomavirus JC promoter/enhancer rearrangement priterns from progressive multifocal leukoencephalopathy brain are unique derivatives of a single archetypal structure. J. Gen. Virol. 74, 1499-1507.

Auwerr, J., and P. sassone-Corsi. 1991. IP-1:A dominant inhibitor of Fos/Jun whose activity is modulated by phosphorylation. Cell 64, 983-993.

Bacusrie, P.A., and D. Baltimore. 1988. Activation of DNAbinding activity in an apparently cytoplasmic precursor of the NF-KB transcription factor. Cell 53, 211-217.

Beach, K.D., M.S. Lashgari, and K. Khalili. 1990. Myelin basic protein gene transcription:identification of proximal and distal cis-acting regulatory elements. J. Biol. Chem. 265, 1330-13835.

Beato, M. 1989. Gene regulation by steroid hormones. Cell 56, 335-344.

Beckman, A.M., and K.V. Shah. 1983. Propogation and primary isolation of JCV and BKV in urinary epethelial cell cultures, Polyomaviruses and Human Neurological Disease. Sever, J.L. and D.L. Madden, eds., Alan R. Liss, New York, pp. 3-14.

Beckman, A.M., K.V. Shah, and B.L. Padgett. 1982. Propogation

and primary isolation of papovavirus JC in epethelial cells derived from human urine. Infect. Immun. 38, 774-777.

Belaguli, N.S., N.N. Pater, and A. Pater. 1992. Nucleotide 880 splice donor site required for efficient transformation and RNA accumulation by human papilloma virus type 16 E7 gene. J. Virol. 66, 2724-2730.

Benesra, R., R.L. Davis, D. Lockshon, D.L. Turner, and H. Weintraub. 1990. The protein Id:a negative regulator of helixloop-helix DNA binding proteins. Cell 61, 49-59.

Berger, J.R., B. Kassovits, M.J. Post, and G. Dickinson. 1987. Progressive multifocal leukoencephalopathy associated with human immunodeficiency virus infection. A review of the literature with a report of sixteen cases. Ann. Intern. Med. 107, 78-87.

Besnard, F., M. Brenner, Y. Nakatani, R. Chao, H.J. Purohit, and E. Freese. 1991. Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein. J. Biol. Chem. 266, 18877-18883.

Bikel, I., X. Montano, M.E. Agha, M. Brown, M. McCormack, J. Biltax, and D.M. Livingston. 1987. SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large T antigen. Cell 48, 321-330.

Blackwell, T.K., and H. Weintraub. 1990. A new binding-site selection technique reveals differences and similarities between MyOD and E2A DNA binding specificities. Science 250, 104-110.

Bollag, B., W.-F. Chuke, and R.J. Frisque. 1989. Hybrid genomes of the polyomaviruses JC virus, BK virus, and simian virus 40: Identification of sequences important for efficient transformation. J. Virol. 63, 863-872.

Borgmeyer, U., J. Nowock, and A.E. Sippel. 1984. The TGGCAbinding protein: a eukaryotic nuclear protein recognizing a symmetrical sequence on double-stranded linear DNA. Nucleic Acids Res. 12, 4295-4311.

Borrelli, B., J.-P. Montmayeur, N.S. Foulkes, and P. Sassone-Corsi. 1992. Signal transduction and gene control: The cAMP pathway. Crit. Rev. Onco. 3, 321-338.

Bouck, N., N. Beales, T. shenk, P. Berg, and G. di Mayorca. 1978. New region of the simian virus 40 genome required for
efficient viral transformation. Proc. Natl. Acad. Sci. USA. 75, 2473-2477.

Boyle, W.J., T. Smeel, L.H.K. Defise, P. Angel, J.R. Woodgett, N. Karin, and T. Hunter. 1991. Activation of protein kinase C decreases phosphorylation of c-jun at sites that negatively regulates its DNA-binding activity. Cell 64, 573-584.

Bradford, N.N. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-Dye binding. Analytica_ Biochem. 72, 248-254.

Braun, T., G. Buschhausen-Denker, E. Bober, E. Tannich, and H.H. Arnold. 1989. A novel human muscle factor related to but distinct from MyoDl induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 8, 701-709.

Braun, T., E. Bober, B. Winter, N. Rosenthal, and H.H. Arnold. 1990. Nyf-6, a new member of the human gene family of myogenic determination factors:evidence for a gene cluster on chromosome 12. EMBO J. 9, 821-831.

Braun, T., E. Bober, and H.H. Arnold. 1992. Inhibition of muscle differentiation by the adenovirus Ela protein: repression of the transcriptional activating function of the HLH protein Myf-5. Genes Dev. 6, 888-902.

Brentano, S.T., J.P. Leonard, S.H. Mellon, C.C.D. Mocre, and W.L. Miller. 1990. Tissue-specific, cyclic adenos: ne 3', 5'monophosphate-induced, and phorbol ester-repressed transcription from the human P450cl7 promoter in mouse cells. Mol. Endocrinol. 4, 1972-1979.

Cassill, J.A., K.L. Deyerle, and S. Subramani. 1989. Unidirectional deletion and linker scan analysis of the late promoter of the human virus papova virus BK virus. Virology 169, 172-181.

Chesters, P.M., J. Heritage, and D.J. McCance. 1983. Persistence of DNA sequences of BK virus and JC virus in normal human tissues and in diseased tissues. J. Infect. Dis. 147, 676-682.

Chiang, C.-W., H. Ge, Z. Wang, A. Hoffman, and R.G. Roeder. 1993. Unique TATA-binding protein-containing complexes and cofactors involved in transcription by RNA polymerases II and III. EMBO J. 12, 2749-2762. Chirgwin, J.M., A.E. Prsybyla, R.C. MacDonald, and W.J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 5294-5299.

Chiu, R., M. Imagawa, R.J. Imbra, J.R. Buckoven, and M. Karin. 1987. Multiple cis- and trans-acting elements mediate the transcriptional response to phorbol esters. Nature 329, 648-651.

Chodosh, L.A., R.W. Carthew, and P.A. Sharp. 1986. A single polypeptide possesses the binding and transcription activities of the adenovirus major late transcription factor. Mol. Cell. Biol. 12, 4723-4730.

Chodosh, L.A., J. Oleson, S. Hahn, A.S. Baldwin, L. Guarente, and P.A. Sharp. 1988. A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell 53, 25-35.

Chowdhury, M., J.P. Taylor, H. Tada, J. Rappaport, P. Wongstaal, S. Amini, and K. Khalili. 1990. Regulation of the human neurotropic virus promoter by JCV T antigen and HIV-tat protein. Oncogene 5, 1737-1742.

Chrapkiewics, N.B., E.G. Beale, and D.K. Granner. 1982. Induction of the messenger ribonucleic acid coding for phosphoenolpyruvate carboxykinase in H4-II-E cells. J. Biol. Chem. 257, 14428-14432.

Chrivia, J.C., R.P.S. Kwok, N. Lamb, M. Hagiwara, M.R. Montminy, and R.H. Goodman. 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365, 855-859.

Chuke, W.-F.O, D.L. Walker, L.B. Poitzman, and R.J. Frisque. 1986. Construction and characterization of hybrid polyomavirus genomes. J. Virol. 60, 960-971.

Cimbala, N.A., W.H. Lamers, K. Nelson, J.E. Monahan, H. Yoo-Warren, and R.W. Hanson. 1982. Rapid changes in the concentration of phosphoenolpyruvate carboxykinase mRNA in rat liver and kidnew. J. Biol. Chem. 257, 7629-7636.

Cohan, D.R., P.C.F. Ferreira, R. Gentz, B.R. Franza, Jr, and T. Curran. 1989. The product of a fos-related gene, fra-1, binds cooperatively to the AP-1 site with junitranscription factor AP-1 is comprised of multiple protein complexes. Genes Dev. 3, 173-184. Coleman, D.V., M.R. Wolfendale, R.A. Daniel, M.K. Dhanjal, 8.D. Gardnar, P.B. Gibson, and A.M. Feild. 1980. A prospective study of human polyomavirus infection in pregnancy. J. Infect. Dis. 142, 1-8.

Colesan, D.V., S.D. Gardner, C. Kulholland, V. Fridikadottir, A.N. Forter, R. Lilford, and H. Valdimarsson. 1983. Human polyomavirus in pregnancy. A model for the study of defence mechanisms to virus reactivation. Clin. Exp. Immunol. 53, 289-286.

Comai, L., N. Tanese, and R. Tjian. 1992. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68, 965-976.

Comb, M., N.C. Birnberg, A. Seasholtz, E. Hrerbert, and H.M. Goodman. 1986. A cyclic-AMP and phorbol ester inducible DNA element. Nature 323, 353-356.

Comb, H., N. Mormod, S.E. Hyman, J. Pearlberg, M.E. Ross, and H.M. Goodman. 1988. Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMPG J. 12, 3793-3805.

Cormack, B.P; M. Strubin, A.S. Ponticelli, and K. Struhl. 1991. Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell 65, 341-348.

Cortes, P.O; O. Flores, and D. Reinberg. 1992. factors involved in specific transcription by mammalian RNA polymerase II: Purification and analysis of transcription facto. IIA and identification of factor IIJ. Mol. Cell. Biool. 12, 413-421.

Coulombe, B; M. Killeen, P. Liljelund, B. honda, H. Xiao, C.J. Ingles, andJ. Greenblatt. 1992a. Identification of three mammalian proteins that bind to the yeast TATA box protein TFILD. Gene Expression 2, 99-110.

Coulombe, J., L. Berger, D.B. Smith, R.K. Hehl, and A.G. Wildeman. 1992b. Activation of simian virus 40 transcription in vitro by T antigen. J. Virol. 66, 4591-4596.

Croston, G.E., L.A. Kerrigan, L.H. Lira, D.R. Marshak, and J.T. Kadonaga. 1991. Sequence-specific antirepression of Histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 151, 643-649.

Daniel, R., K. Shah, D. Madden, and S. Stagno. 1981. Serological investigation of the possibility of congenital transmission of papovavirus JC. Infect. Immun. 33, 319-321.

Daniel, A.M., and R.J. Frisque. 1993. Transcription initiation sites of prototype and variant JC virus early and late messenger RNAs. Virology 194, 97-109.

Davis, R.L., H. Weintraub, and A.B. Lassar. 1987. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987-1000.

Davis, R.L., P.-F. Cheng, A.B. Lassar, and H. Weintraub. 1990. the MyoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60, 733-746.

De Jong, J; and R.G. Roeder. 1993. A single cDNA, hTFIIA/ α , encodes both the p35 and p19 subunits of human TFIIA. Genes Dev. 7, 2220-2234.

De Vries, E., W. van Driel, M. Tromp, J. van Boom, and P.C. van der Vilet. 1985. Adenovirus DNA replication in vitro:sitedirected mutagenesis of the nuclear factor I binding site of the Ad2 origin. Nucleic Acids res. 13, 4935-4952.

Delegeane, A., L. Ferland, and P.L. Mellon. 1987. Tissue specific enhancer of the human glycoprotein hormone α subunit gene:Dependence on cyclic AMP-inducible elements. Mol. Cell Biol. 7, 3994-4002.

Deverle, K.L., and S. Subramani. 1988. Linker scan analysis of the early regulatory region of human papovavirus BK. J. Virol. 62, 3378-3387.

Diamond, M.I., J.N. Miner, S.K. Yoshinaga, and K.R. Yamamoto. 1990. Transcription factor interactions:selectors of positive or negative regulation from a single DNA element. Science 249, 1266-1272.

Dorries, X. 1984. Progressive multifocal leukoencephalopathy:analysis of JC virus DNA from brain and kidney tissue. Virus Res. 1, 25-38.

Dorries, K., E. Vogel, S. Gunther, and S. Czub. 1994. Infection of human polyoma viruses JC and BK in peripheral blood leukocytes from immunocompetent individuals. Virology 198, 59-70.

Dostani, N., P.F. Lambert, R. Sousa, J. Ham, P.M. Howley, and N. Yaniv. 1991. The functional BPV-1 E2 trans-activating protein can act as a represensor by preventing formation of the initiation complex. Genes Dev 5, 1657-1671.

Drapkin, R., A. Merino, and D. Reinberg. 1993. Regulation of RNA polymerase II transcription. Curr. Opin. Cell. Biol. 5, 469-476.

Dyplacht, B., R. Weinsierl, A. Admon, and R. Tjian. 1993. The dTAFII80 subunit of drosophila TFIID contains beta-transducin repeats. Nature 363, 176-179.

Dyson, N., K. Buchkovich, P. Whyte, and E. Harlow. 1987. Also cellular 107K protein that binds to adenovirus BEA Theo associates with the large T antigens of SV40 and JC virus. Cell 58, 249-255.

Dyson, N., R. Bernards, S.H. Friend, L.R. Gooding, J.A. Hassel, E.O. Major, J.H. Pipas, T. Vandyke, and E. Harlow. 1990. Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J. Virol. 64, 1353-1356.

Edmondson, D.G., and E.N. Olson. 1989. A gene with homology to the myc similarity region of MyODI is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3, 628-640.

Eiguru, Y., K. Sakihama, Y. Minamishima, T. Hayashi, and A. Sumiyoshi. 1993. Re-evaluation of a case of progressive multifocal leukoencephalopathy previously diagnosed as simian virus 40 (SV40) etiology. Acta Pathol. Jpn. 43, 327-332.

Fanning, E. 1992. Simian virus 40 large T antigen: the puzzle, the pieces, and the emerging picture. J.Virol. 66, 1289-1293.

Faread, G.C; K.K. Takasoto, and M.A. Gimbrone,JT. 1978. Interaction of simian virus 40 and human papovaviruses, BK and JC, with human vascular endothelial cells. In Microbiology, ed D. Shlessinger. American society for Microbiology, Washington, D.C. p. 427-431.

Feigenbaum, L., K. Khalili, E. Major, and G. Khoury. 1987. Regulation of the host range of human papovavirus JCV. Proc. Natl. Acad. Sci. USA. 84, 3655-3698.

Feldhaus, A.L., C.A. Klug, K.L. Arvin, and Harinder Singh. 1993. Targeted disruption of the Oct-2 locus in a B cell provides genetic evidence for two distinct cell type-specific pathways of octamer element-mediated gene activation. EMBO J. 12, 2763-2772. Fields, 5; and O.-K. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature 340, 245-246.

Finkelstein, A; C.F. Kostrub, J. Li, D.P. Chavez, B.Q. Wang, S.M. Fang, J. Greenblatt, and S.F. Burton. 1992. A CDNA encoding RAP74, a general initiation factor for transcription by RNA polymerase II. Nature 355, 464-467.

Flanagan, P.M., R.J. Kelleher III, M.H. Sayre, H. Tschochner, and R.D. Kornberg. 1991. A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350, 436-438.

Flint, J., and T. Shenk. 1990. Adenovirus Ela protein, a paradigm viral trans-activator. Annu. Rev. Genet. 23, 141-161.

Plores, O., H. Lu, and D. Reinberg. 1992. Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J. Biol. Chem. 267, 2786-2793.

Foulkes, N.S., E. Borrelli, and P. Sassone-Corsi. 1991. CREM gene:Use of alternative DNA binding domains generates multiple antagonists of cAMP-induced expression. Cell 64, 739-749.

Franklin, A.A., M.F. Kubik, M.N. Uittenbogaard, A. Brauweiler, P. Utaisincharcen, M.A.H. Matthews, W.S. Dynar, J.P. Hoeffler, and J.K. Nyborg. 1993. Transactivation by the human T-cell leukemia virus tax protein is mediated through enhanced binding of activating transcription factor-2 (ATF-2) ATF-2 response and cAMP element-binding protein (CREB). J.Biol. Chem. 260, 21225-21231.

Friegue, R.J., J.D. Martin, B. Padgett, and D. Walker. 1979. Infectivity of the DNA from four isolates of JC virus. J. Virol. 32, 476-482.

Frisque, R.J., D.B. Rifkin, and W.C. Topp. 1980. Requirement for the large T and small T proteins of SV40 in the maintainance of the transformed state. Cold Spring harbor Synp. Quant. Biol. 44, 325-331.

Frisque, R., G. Bream, and M. Cannella. 1984. Human polyomavirus JC virus genome. J. Virol. 51, 458-469.

Frisque, R.J., and F.A. White III. 1992. The molecular biology of JC virus, causative agent of progressive multifocal leukoencephalopathy. In "Molecular Neurovirology" (R.P. Roos, Rd.), pp. 25-158. Humana Press, Totowa, NJ. Gardner, S.D., A.N. Feild, D.V. Coleman, and B. Hulme. 1971. New human papovavirus (BK) isolation from urine after renal transplantation. Lancet 1,1253-1257.

Gardmer, S.D. 1977. The new human papovaviruses: Their nature and significance, in Recent Advances in Clinical Virology. Waterson, A.P.,ed., Churchill Livingstone, Edinburgh, pp. 93-115.

Gardner, S.D., E.F. MacKensie, C. Smith, and A.A. Porter. 1984. Prospective study of the human polyonaviruses BK and JC and cytomegalovirus in renal transplant recipients. J. Clin. Pathol. 37, 578-586.

Gendelman, H., W. Phelps, L. Feigenbaum, J. Ostrove, A. Adachi, P. Howley, G. Khoury, H. Ginsberg, and M. Martin. 1986. Trans-activation of the human immunodeficiency virus long terminal repeat by DNA viruses. Proc. Natl. Acad. Sci. USA 83, 9759-9763.

Gerster, T., C.-G. Balmaceda, and R.G. Roeder. 1990. The celltype specific octamer transcription factor OTF-2 has domains required for the activation of transcription. EMBO J. 9,1635-1643.

Gibson, P.E., A.M. Feilds, S.D. Gardner, and D.V. Coleman. 1981. Serological investigation of the possibility of congenital transmission of papovavirus JC. Infect. Immun. 33, 319-321.

Gill, G., E. Pascal, S.H. Tseng, and R. Tjian. 1994. A glutamine-rich hydrophobic patch in transcription factor Spl contacts the dTAF₁₁10 component of the drosophila TFIID complex and mediates transcriptional activation. Proc. Natl. Acad. Sci. USA. 91, 192-196.

Glass, C.K., J.M. Holloway, O.V. Devary, and M.G. Rosenfeld. 1988. The thyroid hormone receptor binds with opposite transcriptional effects to a common sequence motif in thyroid hormone and estrogen response elements. Cell 54, 313-323.

Glass, C.K., S.H. Lipkin, O.V. Devary, and and M.G. Rosenfeld. 1989. Positive and negative regulation of gene transcription by a retinoic acid-thyroid hormone receptor heterodimer. Cell 59, 697-708.

Glass, C.K., O.V. Devary, and M.G. Rosenfeld. 1990. Multiple cell type-specific proteins differentially regulate target sequence recognition by the a retinoic acid receptor. Cell 63, 729-738.

Gonsales, G.A., and M.R. Montminy. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59, 675-680.

Gonsales, G.A., K.K. Yamamoto, W.H. Fischer, K. Karr, P. Mensel, W. Briggs III, W.W. Vale, and M.R. Montminy. 1989. A cluster of phosphorylation sites on the cAMP-regulated nuclear factor CREB predicted by its sequence. Nature 337, 749-752.

Goodrich, J., T. Hoey, C. Thut, A. Admon, and R. Tjian. 1993. Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75, 519-530.

Gorman, C.H., L.F. Moffat, and B.H. Howard. 1982. Recombinant genomes which express chloromphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2, 1044-1051.

Graham, F.L., and A.J. van Der Eb. 1973. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52, 456-467.

Greenblatt, J. 1991. RNA polymerase associated transcription factors. TIBS. 16, 408-411.

Gribble, D.H., C.C. Haden, L.W. Schwartz, and R.V. Henrickson. 1975. Spontaneous progressive multifocal leukoencephalopathy (PML) in macaques. Nature 254, 602-604.

Grinnell, B.W., J.D. Martin, B.L. Padgett, and D.L. Walker. 1982. Is progressive multifocal leukoencephalopathy a chronic disease because of defective interfering particles or temperature-sensitive mutants of JC virus? J. Virol. 43, 1143-1150.

Grinnell, B.W., B.L. Padgett, and D.L. walker. 1983. Comparision of infectious JC virus DNAs cloned from human brain. J. Virol. 45, 299-308.

Gruda, M.C., J.M. Zabolotny, J.H. Xiao, I. Davidson, and J.C. Alvine. 1993. Transcriptional activation by simian virus 40 large T antigen:Interactions with multiple components of the transcription complex. Mol. Cell. Biol. 13, 961-969.

Grueneberg, D.A., S. Nateshan, C. Alexandre, and M.Z. Gilman. 1992. Human and drosophila homeodomain proteins that enhance the DNA-binding activity of serum response factor. Science 257, 1089-1095.

Guarino, L.A., and M. Smith. 1992. Regulation of delayed-early gene transcription by dual TATA boxes. J. Virol. 66, 3733-3739.

Ha, I; W.S. Lane, and D. Reinberg. 1991. Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 352, 689-693

Habener, J. 1990. Cyclic AMP response element binding proteins: A cornucopia of transcription factors. Mol. Endocrinol. 4, 1087-1094.

Hagemeier, C., A.J. Bannister, A. Cook, and T. Kouzarides. 1993. The activation domain of transcription factor FU.1 binds the retinoblastoma (RB) protein and the transcription factor TFIID in vitro:RB shows sequence similarity to TFIID and TFIIB. Proc. Natl. Acad. Sci. 90, 1580-1584.

Haggerty, S., D.L. Walker, and R.J. Frieque. 1989. JC virussimian virus 40 genomes containing heterologous regulatory signals "and chimeric early regions: Identification of regions restricting transformation by JC virus. J. Virol. 63, 2180-2190.

Harlow, E., and D. Lane. 1988. Immunoblotting. In Antibodies: A laboratory manual, pp. 471-510. CSH Laboratory, Cold spring harbor, New York.

Hashimoto, S., W. Shmid, and G. Shutz. 1984. Transcriptional activation of the rat liver tyrosine aminotransferase gene by cAMP. Proc. Natl. Acad. Sci. USA. 81, 6637-6641.

Hawley, S; and R.G. Roeder. 1985. Separation and partial characterization of three functional steps in transcription initiation by human RNA polymerase II. J. Biol. Chem. 260, 8163-8172

Hayakawa, Y., K.-I. Obata, N. Itoh, N. Yanaihara, and H. Okauoto. 1984. Cyclic AMP regulation of pro-vasoactive intestinal polypeptide/PHM-27 synthesis in human neuroblastoma cells. J. Biol. Chem. 259, 9207-9211.

Hennighausen, L., U. Siebenlist, D. Danner, P. Leder, D. Ravins, P. Rosenfeld, and T. Kelley, Jr. 1985. High-affinity binding site for a specific nuclear protein in the human IgM gene. Nature 314, 289-292. Hennighausen, L., and B. Pleckenstein. 1986. Nuclear factor 1 interacts with five DNA elements in the promoter region of the human cytomegalovirus major immediate early gene. EMBO J. 5, 1367-1371.

Hennighausen, L., and H. Luban. 1987. Interaction of protein with DNA. Methods Enzymol. 152, 721-735.

Henson, J., M. Rosenblum, and H. Furneaux. 1991. A potential diagnostic test for PML: PCR analysis of JC virus DNA. Neurology 41 (Suppl.): 338.

Henson, J., J. Saffer, and H. Purneaux. 1992. The transcription facotr Sp1 binds to the JC virus promoter and is selectively expressed in glial cells in human brain. Ann. Neurol. 32, 72-77.

Henson, J.W. 1994. Regulation of the glial-specific JC virusearly promoter by the transcriptionfactor Spl. J. Biol. Chem. 269, 1046-1050.

Hernandes, N. 1993. TBP, a universal eukaryotic transcription factor? Genes Dev. 7, 1291-1308.

Hisatake, K., S. Hasekawa, R. Takada, Y. Nakatani, M. Horikoshi, and R. Roeder. 1993. The p250 subunit of native TATA-binding factor TFIID is the cell-cycle regulatory protein CCG1. Nature 362, 179-181.

Hoeffler, J.P., T.E. Heyer, Y. Yun, J.L. Jameson, and J.F. Habener. 1988. Cyclic AMP-responsive DNA-binding protein:Structure based on a cloned placental cDNA. Science 242, 1430-1433.

Hoey, T., and M. Levine. 1988. Divergent homeobox proteins recognize similar DNA sequences in drosophila. Nature 332, 858-861.

Hoey, T., R.O.J. Weinzierl, G. Grace, J.L. Chen, B.D. Dynlacht, and R. Tjian. 1993. Molecular Cloning and functional analysis of drosophila TAF110 reveal properties expected of activators. Cell 72, 247-260.

Hoffman, A., E. Sinn, T. Yamamoto, J. Wang, A. Roy, M. Horikoshi, and R.G. Roeder. 1990. Highly conserved core domain and unique N terminus with presumptive regulatory motifs in a human TATA factor (TFIID). Nature 346, 387-390. Hogan, T.F., E.C. Borden, J.A. McBain, B.L. Padgett, and D.L. Walker. 1980a. Human polyomavirus infections with JC virus and BK virus in renal transplant patients. Ann. Intern. Med. 92, 373-378.

Hogan, T.F; B.L. Padgett, D.L. Walker, E.C. Bordon, and J.A. MoBain. 1980b. Rapid detection and identification of JC virus and BK virus in human urine by using immunofluorescence microscopy. J. Clin. Microbiol. 11, 178-183.

Hogan, T.F., B.L. Padyett, D.L. Walker, E.C. Borden, and S. Prias. 1983. Survey of human polyomavirus (JCV, BKV) infections in 139 patients with lung cancer, breast cancer, melanoma, or lymphoma, in Polyomaviruses and Human Neurological disease. Sever, J.L. and D.L. Madden, eds., Alan R. Liss, New York, pp. 311-324.

Holmberg, C.A., D.H. Gribble, K.K. Takemoto, P.H. Howley, C. Bepane, and C.I. Osburn. 1977. Isolation of similar virus 40 from rhesus monkeys (Macaca mulatta) with spontaneous progressive multifocal leukoencephalopathy. J.Infect. Dis. 136, 593-596.

Horikoshi, M., T. Hai, Y.-S. Lin, M.R. Green, and R.G. Roeder. 1988a. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54, 1033-1042.

Horikoshi, M., M.F. Carey, H. Kakidani, and R.G. Roeder. 1988b. Mecahanism of action of a yeast activator:Direct effect of Gal4 derivatives on mammalian TFIID-promoter interactions. Cell 54, 665-669.

Horikoshi, M., C. Bertuccioli, R. Takada, J. Wang, T. Yamamoto, and R.G. Reeder. 1992. Transcription factor IID induces DNA bending upon binding to the TATA elemon. Proc. Natl. Acad. Sci. USA. 89, 1060-1064.

Houff, S.A., R.O. Major, D. Kats, C. Kufta, J. Sever, S., Pittaluga, J. Roberts, J. Givt, N. Saini, and W. Lux. 1988. Involvement of JC virus-infected mononuclear cells from the bone marrow and spleen in the pathogenesis of progressive multifocal leukoencephalopathy. N. Engl. J. Med. 318, 301-305.

Howley, P.M., G. khoury, K.K. Takemoto, and M.A. Martin. 1976. Polynucleotide sequences common to the genomes of similar virus 40 and the human papovaviruses JC and BK. Virology 73, 303-307. Ida, T., T. Kitamura, J. Guo, F. Taguchi, Y. Año, K. Magabham, and Y. Yogo. 1993. Origin of JC polyoma virus variants associated with progressive multifocal leukoencephalopathy. Proc. Natl. Acad. Sci. USA 90, 5052-5065.

Inostroma, J.A., F.H. Mermelstein, I. Ha, W.S. Lane, and D. Reinberg. 1992. Drl, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70, 477-489.

Ishiguro, H., K.T. Kim, T.H. Joh, and K.-S. Kim. 1993. Neuronspecific expression of the human dopamine β -hydroxylase gene requires both the cAMP-response element and a silencer region. J. Biol. Chem. **268**, 17987-17994.

Jackson, D.A., K.E. Rowades, K. Stevens, C. Jiang, P. Molos, and K.S. Saret. 1993. Modulation of liver-specific transcription by interactions between hepatocyte nuclear factor 3 and nuclear factor 1 binding DNA in close apposition. Mol. Cell. Biol. 13, 2401-2410.

Jeang, K.T., D.R. Rawlins, P.J. Rosenfeld, J.H. Shero, T.J. Kelly, and G. Hayward. 1987. Multiple tandemly repeated binding sites for cellular nuclear factor 1 that surround the major immediate-early promoters of similan and human cytomegalovirus. J. Virol. 61, 1559-1570.

Johnson, W.A., and J.A. Hirsch. 1990. Binding of a drosophila POU-domain ptotein to a sequence element regulating gene expression in specific dopaminergic neurons. Nature 342, 467-470.

Jonat, G., H.J. Rahmsdorf, K.-K. Park, A.C.B. Cato, S. Gebel, H. Ponta, and P. Herrlich. 1990. Antitumor promotion and antiinflammation:down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62, 1189-1204.

Jones, K.A., J.T. Kadonaga, P.J. Rosenfeld, T.J. Kelly, and R. Tjian. 1987. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 46, 79-89.

Jones-Villeneuve, E.N.V; M.A. Rudnicki, J.F. Harris, and M.W. MCBurney. 1983. Retinoic acid-induced neural differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 3, 2271-2279.

Kapiloff, M.S., J.H. Mathis, C.A. Nelson, C.R. Lin, and M.G. Rosenf-1d. 1991. Variable effects of phosphorylation of Pit-1 dictated by the DNA response elements. Science 253, 786-789. Karin, M., J.-L. Castrillo, and L.E. Theill. 1990. Growth hormone gene regulation: a paradigm for cell-type-specific gene activation. ITG 6, 92-96.

Kashanchi, F., G. Piras, M.F. Radonovich, J.F. Duvall, A. fattaey, C.-M.Chiang, R.G. Roeder, and J.N. Brady. 1994. Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature 367, 295-299.

Kasinadhuni, S. 1994. Thesis submitted to Memorial University of Newfoundland.

Kato, K., and S. Kimura. 1985. $S100_0$ ($\alpha\alpha$) protein is mainly located in the heart and striated muscles. Biochim. Biophys. Acta 842, 146-150.

Kelleher, R.J. III., P.H. Flanagan, and R.D. Kornberg. 1990. A novel mediator between activator proteins and the RNA polymerase II transcription apparatus. Cell 61, 1209-1215.

Kenney, S., V. Matarajan, V. Strika, G. Khoury, and N.P. Salaman. 1984. JC virus enhancer-promoter active in human brain cells. Science 226, 1337-1339.

Kenney, S., V. Natarajan, G. Selser, and N.P. Salzman. 1986a. Mapping 5' termini of JC virus early RNAs. J. Virol. 58, 651-654.

Kenney, S., V. Natarajan, and N.P. Salzman. 1986b. Mapping 5' termini of JC virus late RNA. J. Virol. 58, 216-219.

Kerr, D., and K. Khalili. 1991. A recombinant cDNA derived from human brain encodes a DNA binding protein that stimulates transcription of the human neurotropic virus JCV. J. Biol. Chem. 266, 15876-15881.

Khalili, K., L. Feigenbaum, and G. Khoury. 1987. Evidence for a shift in 5'-termini of early viral RNA during the lytic cycle of JC virus. Virology 158, 469-472.

Khalili, K., J. Rappaport, and G. Khoury. 1988. Nuclear factors in human brain cells bind specifically to the JCV regulatory region. EMBO J. 7, 1205-1210.

Kim, J.L; D.B. Nikolov, and S.K. Burley. 1993a. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520-527.

Kim, Y.-C; J.H. Geiger, S. Hahn, and P.B. Sigler. 1993b.

Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512-520.

Kim, K.-S., M.K. Lee, J. Carroll, and T.H. Joh. 1993C. Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a CAMP response element. J. Biol. Chem. 266, 15689-15695.

Kitamura, T., Y.Aso, N. Kuniyoshi, K.Hara, and Y.Yogo. 1990. High incidence of urinary JC virus excertion in nonimmunocompromised older patients. J. Infect. Dis. 161, 1128-1133.

Kitamura, T., K.-I, Satoh, T. Tominaga, F. Taguchi, A. Tajima, K. Susuki, Y. Aso, and Y. Yogo. 1994. Alteration in the JC polyoma virus genome is enhanced in immunosuppressed renal transplant patients. Virology 198, 341-345.

Klock, G., U. Struhle, and G. schutz. 1987. Estrogen and glucocorticoid responsive elements are closely related but distinct. Nature 329, 734-739.

Kokubo, T., D.-W Gong, R.G. Roeder, M. Horikoshi, and Y. Nakatani. 1993. The drosophila 11C-kba transcription factor TFIID subunit directly interacts with the N-terminal region of the 230-kba subunit. Proc. Natl. Acad. Sci. USA 90, 5896-5900.

Konig, H., H. Ponta, H.J. Rahmsdorf, and P. Herrlich. 1992. Interference between pathway-specific transcription factors: glucocorticolds antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. EMBO J. 11, 2241-2246.

Kraner, S.D., J.A. Chong, H.-J. Tsay, and G. Mandel. 1992. Silencing the type II sodium channel gene: A model for neuralspecific gene regulation. Neuron 9, 37-44.

Kristie, T.H., and and P.A. Sharpe. 1990. Interaction of the Oct-1 POU subdomains with specific DNA sequences and with the HSV a-trans-activator protein. Genes Dev. 4, 2383-2396.

Krupp, L.B., R.B. Lipton, M.L. Swerdlow, N.E. Leeds, and J. Liena. 1985. Progressive multifocal leukoencephalopathy: clinical and radiographic features. Ann. Neurol. 17, 344-349.

Kumar, G., D.K. Srivastava, A.K. Sharma, W. Tefera, and D. Patel. 1992. Evidence that AGGGA domain, in its natural context, is involved in the positive transcriptional regulation of JC virus early promoter. J. Cell. Biochem. (Suppl.) 16E, 165.

Kumar, V., and P. Chambon. 1988. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 25, 145-156.

Nutch, R., P-B. Stromstedt, and L. Poellinger. 1992. Functional interference between the ubiquitous and constitutive octamer transcription factor 1 (OTF-1) and the glucocortocoid receptor by direct protein-protein interaction involving the homeo subdomain of OTF-1. Mol. Cell. Biol. 12, 4560-4959.

Lai, E., and E. Darnell, Jr. 1991. Transcriptional control in hepatocytes: a window on development. TIBS. 427-430.

Landschulz, W.H., P.F. Johnson, and S.L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-1764.

Lashgari, M.S., H. Tada, S. Amini, and K. Khalili. 1989. Regulation of JCV, promoter function:transactivation of JCV, promoter by JCV and SV40 early proteins. Virology **170**, 292-295.

Laybourn, P.J., and J.T. Kadonaga. 1991. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254, 238-245.

Laybourn, P.J., and J.T. Kadonaga. 1992. Threshold phenomena and long-distance activation of transcription by RNA polymerase II. Science 257, 1682-1685.

Lee, W.S., C.C. Kao, G.O. Bryant, X. Liu, and A.J. Berk. 1991. Adenovirus ElA activation domain binds the basic repeat in the TATA box transcription factor. Cell 67, 365-376.

Leegwater, P.A.J., W. Van Driel, and P.C. Van der Vliet. 1985. Recognition site of rate factor I, a sequence-specific DNA binding protein from HeLa cells that stimulates adenovirus DNA replication. EMBO J. 4, 1515-1521.

Levine, A.J. 1992. The p53 tumor suppressor gene and product. Cancer surveys 12, 59-79.

Li, W-3., and F. Sheiman. 1991. Two types of TATA elements for the CYC1 gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 666-676. Li, L., and B.N. Olson. 1992. Regulation of muscle cell growth and differentiation by the MyoD family of helix-loop-helix proteins. Adv. Cancer. Res. 58, 95-119.

Liebermann, P.M., and A.J. Berk. 1991. The Zta trans-activator protein stabilizes TFIID association with p.umoter DNA by direct protein-protein interaction. Genes Dev 5, 2441-2454.

Lin, Y.-S, and N.R. Green, 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64, 971-991.

Loeber, G., and K. Dorries. 1988. DNA rearrangements in organspecific variants of polyomavirus JC strain G5. J.Virol. 62, 1730-1735.

London, W.T., S.A. Houff, D.L. Madden, D.A. Fuccillo, M. Gravell, W.C. Wallen, A.E. Palmer, J.L. Sever, B.L. Padgett, D.L. Walker, G.H. ZuRhein, and T. Okashi. 1978. Brain tumors in owl monkeys inoculated with a human polyomavirus (JC virus). Science 201, 1246-1249.

Lu, H; I. Zawel, L. Fisher, J.M. Egly, and D. Reinberg. 1992. Human general transcription factor IIH phosphorylates the Cterminal domain of RNA polymerase II. Nature 358, 641-645.

Luo, Y., H. Fujii, T. Gerster, and R.G. Roder. 1992. A novel B cell-derived coactivator potentiates the activation of immunoglobulin promoter 19 H by octamer-binding transcription factors. Cell **71**, 231-241.

Lynch, K.J, and R.J. Frisque. 1991. Factors contributing to the restricted DNA replicating activity of JC virus. Virology 180, 306-317.

Ne, D; H. Matanabe, F. Mermelstein, A. Admon, K. Oguri, X. Sun, T. Wada, T. Imani, T. Shiroya, D. Reinberg, and H. Handa. 1993. Isolation of a CDNA encoding the largest subunit of TFIIA reveals functions important for activated transcription.Genes Dev. 7, 2246-2257.

Naguire, H.F., J.P. Hoeffler, and A. Biddigui. 1991. HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions. Science 752, 842-844.

Kajor, E.O., A.E. Miller, P. Mourrain, R. Traub, E. De widt, and J.L. Sever. 1985. Establishmett of a line of human glial cells that supports JC virus mult_plication. Proc. Natl. Acad. Sci. USA. 82, 1257-1261. Najor, E.O., D.A. Vacante, R.G. traub, W.T. London, and J.L. Saver. 1987. Owl monkey astrocytoma cells in culture spontaneously produce infectious JC virus which demonstrates altered biological properties. J.Virol. 61, 1435-141.

Major, E.O., and D.A. Vacante. 1989. Human fetal astrocytes in culture support the growth of the neurotropic human polyomavirus, JCV. J. Neuropathol. Exp. Neurol. 48, 425-436.

Major, B.O., J. Ameniya, G. Elder, and S.A. Houff. 1990. Glial cells of the human developing brain and B cells of the immune system share a common DNA binding factor for recognition of the regulatory sequences of the human polyomavirus, JCV. J. Neurosci. Res. 27, 461-471.

Hajor, E.O., K. Ameniya, C.S. Tornatore, S.A. Houff, and J.R. Berger. 1992. Pathogenesis and mollecular biology or progressive multifocal leukoencephalopathy, the JC virusinduced demyelinating disease of the human brain. Clin. Microbiol. Rev. 5, 49-73.

Mandel, G., and D. McKinnon. 1993. Molecular basis of neuralspecific gene expression. Annu. Rev. Neurosci. 16, 323-345.

Handl, C.W., and R.J. Frisque. 1986. Characterization of cells transformed by the human polyomavirus JC virus. J.Gen.Virol. 67, 1733-1739.

Mandl, C., D.L. Walker, and R.J. Frisque. 1987. Derivation and characterization of FOJ cells, transformed fetal glial cells that retain their permissivity for JC virus. J. virol. 61, 755-763.

Maniatis, T., S. Goodbourn, and J.A. Fischer. 1987. Regulation of inducible and tissue-specific gene expression. Science 236, 1237-1245.

Markowits, R.B., Thompson, H.C., Mueller, J.F., Cohen, J.A, and Dynam, W.B. 1993. Incidence of BK virus and JC virus viruria in human immunodeficiency virus-infected and -uninfected subjects. J.Infect. Dis. 167, 13-20.

Martin, G.R. 1980. Teratocarcinomas and mammalian embryogenesis. Science 209, 768-776.

Martin, J.D., R.J. Frisque, B.L. Padgett, and D.L. walker. 1979. Restrictive endonuclease cleavage map of the DNA of JC virus. J.Virol. 29, 846-855. Martin, J.D., B.L. Padgett, and D.L. Walker. 1983. Characterization of tissue culture-induced heterogenicity in DNAs of independent isolates of JC virus. J. Gen. Virol. 64, 2271-2280.

Martin, J.D., D.M. King, J.M. Slauch, and R.J. Frisque. 1985. Differences in regulatory sequences of naturally occuring JC virus variants. J. Virol. 53, 306-311.

Martin, J.D. 1990. A comparision of BKV, JCV, and SV40 transcriptional enhancers in primate cells. Application of the two-phase partition assay for chloromphenicol acetyl transferase (CAT). Arch. Virol. 113, 183-193.

Martin, J.D., and P. Li. 1991. Enhamore activities of regulatory regions of representative JC virus isolates. Arch Virol. 120, 305-311.

Matsuda, N., K. Yasui, K. Nagashima, and W. Mori. 1987. Genetic characterization of JC virus Tokyo-1 strain, a variant oncogenic in rodents. Virus Res.7, 159-168.

Maue, R.A., B.D. Kraner, R.H. Goodman, and G. Mandel. 1990. Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements. Neuron 4, 223-231.

McBurney, N.W.K.R. Reuhl, A.I. Ally, S. Nasipuri, J.C. Bell, and J. Craig. 1988. Differentiation and maturation of embryonal carcinoma-derived neurons in cell culture. J. Neuro. Sci. 8, 1063-1073.

McBurney, M.W. 1993. P19 embryonal carcinoma cells. Int. J. Dev. Biol. 37, 135-140.

Neisterernst, N., A.L. Roy, H.M. Lieu, and R.G. Roeder. 1991. Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66, 981-9993.

Neisterernst, N., and R.G. Roeder. 1991. Family of proteins that interact with TFIID and regulate promoter activity. Cell 67, 557-567.

Nendel, D.B., P.A. Khavari, P.B. Conley, M.K. Graves, L.P. Hansen, A. Admon, and G.R. Crabtree. 1991. Characterization of a cofactor that regulates dimerization of a mammalian homeodomain protein. Science 254, 1762-1767.

Merino, A., L. Buckbinder, F.H. Mermelstein, and D. Reinberg.

1989. Phosphorylation of cellular proteins regulates their binding to the CAMP response element. J. Biol. Chem. 264, 21266-21276.

Milner, J. 1991. A conformation hypothesis for the suppressor and promoter functions of p53 in cell growth control and in cancer. Proc. R. Soc. Lond. 245, 139-145.

Miner, J.H., and B. Old. 1990. Herculin, a fourth member of the MyoD family of myogenic regulatory regions. Proc. Natl. Acad. Sci. USA. 87, 1089-1033.

Kitchell, P.J., C. Wang, and R. Tjian. 1987. Positive and negative regulation of transcription in vitro: enhancerbinding protein AP-2 is inhibited by SV40 T-Ag. Cell 50, 847-861.

Mitchell, P.J., and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371-378.

Hiyamura, T., A. Furuno, and K. Yoshika. 1985. DNA rearrangement in the control region of early transcription in a human polyomavirus JC host range mutant capable of growing in human embryonic kidney cells. J. Virol. 54, 750-756.

Noens, U., A. Sundsfjord, T. Flaegstad, and T. Traavik. 1990. BK virus early RNA transcripts in stably transformed cells:enhanced levels induced by dibutyryl cyclic AMP, forskolin and 12-0-tetradecanoylphorbol-13-acetate treatment. J. Gen. Virol. 71, 1461-1471.

Montminy, M.R., and L.M. Bilesikjian. 1987. Binding of a nuclear protein to the cAMP responsive element of the somatostatin gene. Nature 328, 175-178.

Montminy, M.R., G.A. Gonzalez, and K.K. Yamamoto. 1990. Regulation of cAMP inducible genes by CREB. Trends. Neuro. Sci. 13, 184-188.

Mori, N., R. Steim, O. Sigmund, and D. Andersen. 1990. A cell type-preferred silencer element that controls the neuralspecific expression of the SCG10 gene. Neuron 4, 583-594.

Mori, N., C. Schoenherr, D.J. Vandenbergh, and D.J. Anderson. 1992. A common silencer element in the SCG10 and type II Na^{*} channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9, 45-54. Nurre, C., P.S. McCaw, H. Vaessin, N. Caudy, L.Y. Jan, Y.N. Jan, C.V. Cabrera, J.N. Buskin, S.D. Hauschka, A.B. Lassar, H. Weintraub, and D. Baltheore. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58, 537-544.

Nagashima, K., K. Yasui, J. Kimura, M. Washizu, K. Yamaguchi, and W. Mori. 1984. Induction of brain tumors by a newly isolated JC virus (Tokyo-1 strain). Am. J. Path. 116, 455-465.

Nakabeppu, Y., K. Ryder, and D. Nathans. 1988. DNA binding activities of three murine Jun proteins:stimulation by Fos. Cell 55, 907-915.

Nakahira, K., K. Ikonaka, K. Wada, T. Tamura, T. Juruichi, and K. Mikoshiba. 1990. Structure of the 68 KDa neurofilament gene and regulation of its expression. J. Biol. Chem. 265, 19786-19791.

Nakshatri, H., M.N. Pater, and F. Pater. 1988. Functional role of BK virus tumor antigens in transformation. J. Virol. 62, 4613-4621.

Nakshatri, H., A. Pater, and M.H. Pater. 1990a. Activity and enhancer binding factors for JC virus regulatory elements in differentiating embryonal carcinoma cells. Virology 177, 784-789.

Nakahatri, H; M.N. Pater, and A. Pater. 1990b. Ubiquitous and cell-type-specific protein interactions with human papillomavirus type 16 and 18 enhancers. Virology 178, 92-103.

Nakshatri, H., A. Pater, and N.M. Pater. 1991. Activity and enhancer binding factors for BK virus regulatory elements in differentiating embryonal carcinoma cells. Virology 183, 374-380.

Narr, A., J.-H. Boutin, S.H. Lipkin, V.C. Yu, J.H. Holloway, C.K. Glass, and N.G. Rosenfeld. 1991. The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65, 1267-1279.

Nave, K.A., and G. Lenke. 1991. Induction of the myelin proteolipid protein (PLP) gene in C6 glioblastoma cells:Functional analysis of the PLP promotor. J. Neur. Sci. 13, 3060-3069.

Nikolov, D; S.H. HU, J. Lin, A. Gasch, A. Hoffman, M.

Horikoshi, N.H. Chua, R. Roeder, and S. Burley. 1992. Crystal structure of TFIID TATA-box binding protein. Nature 360, 40-46.

Hishio, Y., H. Tashiki, T. Kishimoto, and S. Akira. 1993. A nuclear factor for interleukin-6 expression (NF-II.6) and the glucocorticoldreceptor synergistically activate transcription of the rat al-acid glycoprotein gene via direct protein protein interaction. Wol. Cell. Biol. 13, 1854-1862.

Nowock, J., U. Borgmeyer, A.W. Puschel, R.A.W. Rupp, and A.E. Sippel. 1985. The TGGCA protein binds to the MMTV-LNR, the adenovirus origin of replication, and the BK virus enhancer. Nucleic Acids Res. 13, 2045-2061.

O'Neill, F.J; L. Rensetti, T.H. Miller, and R. Stevens. 1988. Transformation of human cells by a polyoma virus containing complementing JCV and RFV genomes. Virus Res. 11, 109-125.

Ohkuma, Y; H. Sumimoto, A. Hoffman, S. Shimasaki, M. Horikoshi, and R.G. Reeder. 1991. Structural motifs and potential sigma homologies in the largest subunit of human general transcription factor TFIIE. Nature 354, 398-401.

Ohkuma, Y; and R.G. Roeder. 1994. Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Nature 369, 160-163.

Dison, E.N. 1990. MyoD family: a paradigm for development? Genes Dev 4, 1454-1461.

orkin, S.H. 1990. Globin gene regulation and switching: Circa 1990. Cell 63, 665-672.

Osborn, J.E., S.H. Robertson, B.L. Padgett, G.H. Zu Rhein, D.L. Walker, and B. Weisblum. 1974. Comparision of JC and BK viruses with simian virus 40 restriction endonuclease digestion and gel electrophoresis of resultant fragments. J. Virol. 13, 614-622.

Padgett, B.L., D.L. Walker, G.M. Zu Rhein, R.J. Eckroade, and B.H. dessel. 1971. Cultivation of a papova-like virus frojm human brain with progressive multifocal leukoencephalopathy. Lancet i, 1257-1260.

Padgett, B.L, and D.L. Walker. 1973. Prevalence of antibodies in human sera against JC virus, an isolate from a case of progressive multifocal leukoencephalopathy. J.Infect. Dis. 127, 467-470. Padgett, B.L., C.N. Rogers, and D.L. valker. 1977. JC virus, a human polyoma virus associated with progressive multifocal leukoencephalopathy: Additional biological characteristics and antiquenic relationships. Infect. Immun. 15, 656-662.

Pater, A; and M.M. Pater. 1988. Expression of the control elements of BK and SV40 viruses in human cells exhibiting different transformed phenotypes. Virology 163, 625-628.

Peter, X.M., G.A. Hughes, D.E. Syslop, H. Nakshatri, and A. Peter. 1988. Glucocorticoid-dependent concogenic transformation by type 16 but not type 11 human papilloma virus DNA. Nature 335, 832-835.

Pfeifer, K., T. Presant, and L. Guarente. 1987. Yeast HAP1 activator binds to two upstream activation sites of different sequence. Cell 49, 19-27.

Ptashne, M. 1988. How eukaryotic transcription activators work. Nature 335, 683-689.

Ptashne, M., and A.A. Gann. 1990. Activators and targets. Nature 346, 329-331.

Ptashne, M. 1992. Protein-DNA interactions and gene control. In "A genetic switch" pp 33-48. Cell press, Cambridge, Massachusetts.

Pugh, B.F., and R. Tjian. 1990. Mechanism of transcriptional activation by Spl:Evidence for coactivators. Cell 61, 1187-1197.

Quinlivan, E.B., Norris, H., Bouldin, T.W., Susuki, K., Meeker, R., Smith, M.S. Hall, C, and Kenney, S. 1992. Subclinical central nervous system infection with JC virus in patients with AIDS. J.Infect. Dis. 166, 80-85.

Rangamathan, P., and K. Khalili. 1993. The transcriptional enhancer element, kappaB, regulates promoter activity of the human neurotropic virus, JCV, in cells derived from the CNS. Nucseic Acids Res. 21, 1959-1964.

Reddy, Pr and S. Hahn. 1991. Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region. Cell 65, 349-357.

Reinberg, D; N. Horikoshi, and R.G. Roeder. 1987. Factors involved in specific transcription in mammalian RNA polymerase II. J. Biol. Chem. 252, 3322-3330. Reith, K.G., G. Dichiro, W.T. London, J.L. Sever, S.A. Houff, P.L. Kornbitth, P.B. KoKsever, C. Buonomo, B.L. Padgett, and D.L. Walker. 1980. Experimental glioma in primates:a computed tomography model. J. Comput. Assist. Tomogr. 4, 285-290.

Rosssler, W.J., G.R. Vandenbark, and R.W. Hansen. 1988. Cyclic AMP and the induction of eukaryotic gene transcription. J. Biol. Chem. 263, 9063-9066.

Resler, W.J., P.J. Morie, and D.M. Puttick. 1993. Evidence for the involvement of at least two distinct transcription factors, one of which is liver-emriched, for the activation of the phosphoenolpyruvate carboxykinase gene promoter by cAMP. J. Biol. Chem. 268, 3791-3796.

Rudnicki, M.A., and N.W. McBurney. 1987. Cell culture methods and induction of differentiation of embryonal carcinoma cells. In "Teratocarcinoma and embryonic stem cells:A practical approach", pp. 19-49. (Ed. E.J. Robertson). IRL press, Oxford.

Ruppert, S., E.H. Wang, and R.Tjian. 1993. Cloning and expression of human TAP250: A TBP- associated factor implicated in cell cycle regulation. Nature 362, 175-179.

Saffer, J.D., S.P. Jackson, and M.B. Annarella. 1991. Developmental expression of Spl in the mouse. Mol. Cell. Biol. 11, 2189-2199.

Sambrook, J., E.F. Pritsch, and T. Maniatis. 1989. Molecular Cloning: A laboratory manual. CSH press, cold spring harbor, New York.

Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463-5467.

Santoro, C., N. Mermod, P.C. Andrews, and R. Tjian. 1988. A family of human CCAAT-box-binding proteins active in transcription and DNA replication: cloning and expression of multiple CDNAs. Nature 334, 218-224.

Sartorelli, V., K.A. Webster, and L. Kedes. 1990. Musclespecific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1. Genes Dev. 4, 1811-1822.

Schaeffer, L; R. Roy, S. Humbert, V. Moncollin, W. Vermeulan, J.E.J. Hoeijmakers, P. Chambon, and J.M. Egly. 1993. DNA repair helicase: A common component of BTF2 (TFIIM) basic transcription factor. Science 260, 58-63.

Scherneck, S., E. Geissier, W. Janisch, M. Rudolph, F. Vogel, and W. Simmermann. 1981. Isolation of a SV40-like virus from a patient with progressive multifocal leukoencephalopathy. Acta Virol. 25, 191-198.

Scholer, H.R., T. Ciesiolka, and P. Gruss. 1990. A nexus between oct-4 and Ela:Implications for gene regulation in embryonic stem cells. Cell 56, 291-304.

Schule, R., K. Umesono, D.J. Mangelsdorf, J. Bolado, J.W. Pile, and R.M. Evana. 1990. Jun-Fos and receptors for vitamis A and D recognize a common response element in the human osteocalcin gene. Cell 61, 497-504.

Sen, R., and D. Baltimore. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705-716.

Sharma, A.K., and G. Kumar. 1991. A 53 kDa protein binds to the negative regulatory region of JC virus early promoter. FEBS. 281, 272-274.

Sharp, 3.D., and Cao, Z. 1990. Regulation of cell-typespecific transcription and differentiation of the pituitary. BioEssays 12, 80-85.

Sheng, N., G. McFadden, and M.E. Greenberg. 1990. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4, 571-582.

Shirakawa, F., M. Chedid, J. Suttles, B.A. Pollok, and S.B. Misel. 1989. Interleukin 1 and cyclic AMP induce k immunoglobulin light-chain expression via activation of an NFkB-like DNA-binding protein. Mol. Cell. Biol. 9, 959-964.

Siebenlist, U., L. Hennighausen, J. Battey, and P. Leder. 1984. Chromatin structure and protein binding in the putative regulatory region of the c-myc gene in BurkittLymphoma. Cell 37, 381-391.

Silverman, L, and L.J. Rubinstein. 1965. Electronic microscopic observations on a case of progressive multifocal leukoencephalopathy. Acta Neuropathol. 5, 215-224.

Sima, A.A.F., S.D. Findelstein, and D.R. McLachlin. 1983. Multiple malignant astrocytomas in a patient with spontaneous progressive multifocal leukoencephalopathy. Ann.Neurol. 14, 183-187.

Simone, V.D., and R. Cortese. 1991. Transcriptional regulation of liver-specific gene expression. Curr. Opin. Cell. Biol. 3, 960-965.

Simone, V.D., and R. Cortese. 1992. Transcription factors and liver-specific genes. Biochim. Biophys. Acta. 1132, 119-126.

Singh, H; J.H. LeBowits, A.S. Beldwin Jr, and P.A. Sharp. 1988. Molecular cloning of an enhancer binding protein: Isolation by screening of an expression library with a recognition site DNA. Cell 52, 415-423.

SinoHara, T., M. Matsuda, K. Yasui, and K.Yoshike. 1989. Host range bias of the JC virus mutant enhancer with DNA rearrangement. Virology 170, 261-263.

Sleigh, M.J., W.C.Topp, R.Hanish, and J.A. Sambrook. 1978. Mutants of SV40 with an altered small t protein are reduced in their ability to transform cells. Cell 14, 79-88.

Smale, S.T., and D. Baltimore. 1989. The "initiator" as a transcription control element. Cell 57, 103-113.

Small, J.A., G.A. Scangos, L. Cork, G. Jay, and G. Khoury. 1986. The early region of human papovavirus JC induces dysmyelination in transgenic mice. Cell 46, 13-18.

Sock, E., M. Wagner, and F. Grummt. 1991. DNA replication of human polyomavirus JC is stimulated by NF-1 in vivo. Virology 162, 298-308.

Starr, D.B., and D.K. Hawley. 1991. TFIID binds in the minor groove of the TATA box. Cell 67, 1231-1240.

Staudt, L.N., and M.J. Lenardo. 1991. Immunoglobulin gene transcription. Annu. Rev. Immunol. 9, 373-398.

Stern, S., Tanaka, M, and W. Herr. 1989. The Oct-1 homeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature 341, 624-630.

Stringer, K.F., C.J. Ingles, and J. Greenblatt. 1990. Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345, 783-786.

Struhl, K. 1989. Molecular mechanism of transcriptional

regulation in yeast. Annu. Rev. Biochem. 58, 1051-1077.

Struthers, R.S., W.W. Vale, C. Arias, P.E. Sawohenko, and M.R. Nontainy. 1991. Somatotrophs hypoplasia and dwarfism in transgenic mice expressing a non-phosphorylatable CREB mutant. Nature 350, 622-624.

Subramanian, T., M.L. Regina, and G. Chinnadurai. 1989. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of Ela protein. Oncogene 4, 415-420.

Sugimoto, C., K. Hara, F. Taquobi, and Y. Yogo. 1989. Growth efficiency of naturally occuring BK virus variants in vivo and in vitro. J. Virol. 63, 3195-3199.

Suminoto, H; Y. Ohkuma, E. Sinn, H. Kato, S. Shimasaki, M. Borikophi, and R.G. Roeder. 1991. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE. Nature 354, 401-404.

Sundseth, R., and U. Hansen. 1992. Activation of RNA polymerase II transcription by the specific DNA-binding protein LSF. Increased rate of binding of the basal promoter factor TFIB. J. Biol. Chem. 257, 7845-7855.

Sung, P; V. Bailly, C. Weber, L.H. Thompson, L. Prakash, and S. Prakash. 1993. Human xeroderma pigmentosum group D gene encodes a DNA helicase. Nature 365, 852-855.

Swadogo, M; and R.G. Roeder, 1984. Energy requirement for specific transcription initiation by the human RNA polymerase II system. J. Biol. Chem. 259, 5321-5326.

Swadogo, N., and R.G. Roeder. 1985. Interaction of a gene specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43, 165-175.

Swadogo, M., and A. Sentenac. 1990. RNA polymerase B (II) and general transcription factors. Annu. Rev. Biochem. 59, 711-754.

Teda, H., M. Lambgari, J. Rappaport, and K. Khalili. 1989. Coll type-specific expression of JC virus early promoter is determined by positive and negative regulation. J. Virol. 63, 463-466.

Tada, H., J. Rappaport, M. Lashgari, S. Amini, F. Wong-Staal, and K. Khalili. 1990. Trans-activation of the JC virus late promoter by the tat protein of type 1 human immunodeficiency virus in glial cells. Proc. Natl. Acad. Sci. USA. **87**, 3479-3483.

Tada, E. M.S. Lashgari, and K. Khalili 1991. Regulation of JCV promoter function:Evidence that a pentanucleotide "silencer" repeat sequence AGGGAAGGA down-regulates transcription of the JC virus late promoter. Virology 180, 327-338.

Tada, H., and R. Khalili. 1992. A novel sequence-specific DNAbinding protein, LCP-1, interacts with single-stranded DNA and differentially regulates early gene expression of the human neurotropic JC virus. J. Virol. 66, 6885-6892.

Taguchi, F., J. Kajioka, and T. Hiyamura. 1982. Prevalence rate and age of acquisition of antibodies against JC virus and BK virus in human sera. Microbiol. Immunol. 26, 1057-1064.

Takahashi, Y. 1992. Gene expression in cells of the central nervous system. Progress in Neurobiol. 38, 523-569.

Tamura, T., K. Sumita, S. Hirose, and K. Mikoshiba. 1990a. Core promoter of the mouse myelln basic protein gene governs brain-specific transcription in vitro. EMBO J. 9, 3101-3108.

Tamura, T., A. Acyama, T. Incus, M. Miyura, and K. Mikoshiba. 1990b. A new transcription element in the JC virus enhancer. J. Gen. Virol. 71, 1829-1833.

Tanaka, N., and W. Herr. 1990. Differential transcriptional activation by Oct-1 and Oct-2: independent activation domains induce Oct-2 phosphorylation. Cell 60, 375-386.

Tanese, N., B.F. Pugh, and R. Tjian. 1991. Coactivators for a proline rich activator purified from the multisubunit human TFID. Genes Dev. 5, 2212-2224.

Tapscott, S.J., and H. Weintraub. 1991. MyoD and the regulation of myogenesis by helix-loop-helix proteins. J. Clin. Invest. 87, 1133-1138.

Tasset, D., L. Tora, C. Fromental, E. Scheer, and P. Chambon. 1990. Distinct classes of transcriptional activating domains function by different mechanisms. Cell 62, 1177-1187.

Telenti, A., A.J. Aksamit, J. Proper, and T.F. Smith. 1990. Detection of JC virus DNA by polymerase chain reaction in patients with progressive multifocal leukoencephalopathy. J. Infect. Dis. 162, 858-861.

Timmers, H.T.M., H. Van Dam, G.J. Pronk, J.L. Bos, and A.J. van der Eb. 1989. Adenovirus Ela represses transcription of the cellular JE gene. J. Virol. 63, 1470-1473.

Tominaga, T., Y. Yogo, T. Kitamura, and Y. Aso. 1992. Persistence of archetypal JC virus DNA in normal renal tissue derived from tumo-bearing patients. Virology 186, 736-741.

Tornatore, C., J.R. Berger, S.A. Houff, B. Curfman, K. Neyers, D. Winfield, and E.O. Major. 1992. Detection of JC virus NA in peripheral lymphocytes from patients with and without progressive multifocal leukoencephalopathy. Ann. Neurol. 31, 454-462.

Treacy, H.N., Z. He, and H.G. Rosenfeld. 1991. I-POU:a POU domain protein that inhibits neuron-specific gene activation. Nature 350, 577-584.

Truant, R., H.Xiao, C.J. Ingles, and J. Greenblatt. 1993. Direct interaction between the transcriptional activation domain of p53 and the TATA box-binding protein. J. Biol. Chem. 269, 2284-2287.

Teal, S.Y., J. Carlstodt-Duke, N.L. Weigel, K. Dahlman, J. -A. Gustafsson, M.-J. Teal, and B.W. O'Halley. 1988. Molecular interactions of steroid hormone receptor with its enhancer element:evidence for receptor dimer formaticn. Cell 55, 361-369.

Umesono, K., K.K. Murakami, C.C. Thompson, and R.H. Evans. 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65, 1255-1266.

Vacante, D.A., R. Traub, and E.O. Major. 1989. Extension of JC virus host range to monkey cells by insertion of a simian virus 40 enhancer into the JC virus regulatory region. Virology 170, 353-361.

Varakis, J.N., G.M. Zu Rhein, B.L. Padgett, and D.L. Walker. 1978. Induction of the propheral neurophysical straight and hamsters after injection as neonates with JC virus, a human polyoma virus. Cancer Res. 38, 1718-1722.

Vinson, C., K. LaMarco, P. Johnson, W. Landschulz, and S. McKnight. 1988. In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage.

Genes Dev. 2, 801-806.

Wagner, S., and M.R. Green. 1993. HTLV-1 Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization. Science 262, 395-399.

Walker, D.L., B.L. Padgett, G.M. ZuRhein, A.E. Albert, and R.F. Marsh. 1973. Human papovavirus (37C): induction of brain tumors in hamsters. Science 181, 674-676.

Walker, D.L; and B.L. Padgett. 1978. Biology of JC virus, a human papova virus. In Microbiology, ed D. Shlessinger. American society for Microbiology, Jashington, D.C.pp. 432-434.

Walker, D.L, and B.L. Padgett. 1983. The epidemiology of human papovaviruses, in Polyomaviruses and Human Neurological Disease. Sever, J.L. and D.L. Madden, eds., Alan R.Liss, New york, pp. 99-106.

Walker, M.D., C.W. Park, A. Rosen, and A. Aronheim. 1990. A tolla from a mouse pancreatic β cell encoding a putative transcription factor of the insulin gene. Nucleic Acids Res. 148, 1159-1166.

Wang, E.H; and R. Tjian. 1994. Promoter-selective transcriptional defect in cell cycle mutant ts 13 rescued by hTAF, 250. Science 263, 811-814.

Watanabe, S., and K. Yoshilke. 1989. Inefficient expression in rat cells of transforming gene of BK virus with 68-bp tandem repeats in the viral promoter-enhancers. Virology 169, 204-212.

Wegner, M., D.W. Drolet, and M.G. Rosenfeld. 1993. Regulation of JC virus by the POU-domain transcription factor TsT-1: Implications for progressive multifocal leukoencephalopathy. Proc. Natl. Acad. Sci. USA 30, 4743-4747.

Weiner, L.P., R.M. Herndon, and O. Naryan. 1972. Isolation of virus related to SV40 from patients with progressive multifocal leukoencephalopathy. N.Engl.J.Med. 286, 385-390.

Weintraub, H., R. Davis, S. Tapscott, M. Thayer, M. Krause, R. Benezrs, T.K. Blackwell, D. Turner, R. Rupp, S. Hollenberg, Y. Zhuang, and A. Lassar. 1991. The MyoD gene family:nodal point during specification of the muscle cell lineage. Science 251, 761-766. Weinsierl, R.O.J., B.D. Dynlacht, and R. Tjian. 1993. The largest subunit of drosophila TFIID directs assembly of a complex containing TBF and a coactivator. Nature 362, 511-517.

White III, F.A., M. Ishaq, G.L. Stoner, and R.J. Frisque. 1992. JC virus DNA is present in many human brain samples from patients without progressive multifocal leukoencephalopathy. J. Virol. 66, 5726-5734.

Williams, T., A. Admon, B. Luscher, and R. Tjian. 1988. Cloning and expression of AP-2, A cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 2, 1557-1569.

Workman, J.L., I.C. Taylor, R.E. Kingston, and R.G. Roeder. 1991. Control of class II gene transcription during in vitro nucleosome assembly. Metods-Cell-Biol. 35, 419-447.

Wroblewska, 2., M. Wellish, and D. Gliden. 1980. Growth of JC virus in adult human brain cell cultures. Arch. Virol. 65, 141-148.

Yamamoto, K.K., G.A. Gonzalez, W.H. Biggs, and M.R. Montminy. 1988. Phosphorylation-induced binding and transcriptional efficacy of nuclear factor CREB. Nature 334, 494-498.

Yogo, Y., T. Kitamura, C. Sugimoto, T. Ueki, Y. Aso, K. Hara, and F. Taguchi. 1990. Isolation of a possible archetypal JC virus DNA sequence from immunocompromised individuals. J. Virol. 64, 3139-3143.

Yokomori, K; A. Admon, J.A. Goodrich, J.-L. chen, and R. Tjian. 1993a. Drosophila TFIIA-L is processed into two subunits that are associated with the .BP/TAF complex. Genes Dev. 7, 2235-2245.

Yokomori, K., J.L. Chen, A. Admon, S. Shou, and R. Tjian. 1993b. Molecular Cloning and characterization of dTAF₁₃0 α and dTAF₁₃0 β : two small subunits of drosophila TFIID. Genes Dev. 7, 2587-2597.

Yoshiike, E., T. Hiyamura, H.W. Chan, and K.K. Takemoto. 1982. Two defective DNAs of human polyomavirus JC adapted to growth in human embryonic kidney cells. J. Virol. 42, 395-401.

Sawel, L., and D. Reinberg. 1993. Initiation of transcription by RNA polymerase II:A multi-step process. Prog Nucleic acid Res Mol Biol. 44, 67-108. Zhou, Q: P.M. Lieberman, T.G. Boeyer, and A.J. Berk. 1992. Holo-TFIID supports transcriptional stimulation by diverse activators and from TATA-less promoters. Genes Dev. 6, 1964-1974.

ZuRhein, G.N, and S.-N. Chou. 1965. Particles resembling papovaviruses in human cerebral demyelination disease. Science 148, 1477-1479.

ZuRhein, G.H., and J.N. Varakis. 1979. Perinatal induction of meduloblastomas in syrian golden hamster by a human polyoma virus (JC). Nath. Cancer Inst. Monogr. 51, 205-208.

ZuRhein, G.M. 1983. Studies of JC virus-induced nervous system tumors in the syrian hamster. A review. Prog. clin. biol. Res. 105, 205-221.

