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Abstract 

Sprinting exercise is near maximal or maximal bouts of exercise interspersed with 

short recovery intervals. Sprinting exercise causes deterioration in performance (e.g., a 

decline in power output or velocity) due to a decrease in force and the development of 

neuromuscular fatigue (NMF). Studies have used sprinting exercises to study the 

interaction between fatigue and performance and have shown that NMF development could 

differ due to the specific task. For example, NMF development could occur during maximal 

running and leg cycling exercises at the same workload. This suggests that NMF appears 

to develop differently depending on the specific action of the muscles involved. To date, 

only one study has investigated the NMF in arm cycling in pronated versus supinated 

positions. This study indicated that supinated arm cycling sprints resulted in worse repeated 

sprint performance and greater NMF than pronated RSE. In sprint-like activities, a 

common way to quantify the development of NMF is to normalize the EMG of each sprint 

to the maximum EMG observed during the sprinting or to normalize EMG to the EMG 

recorded during a maximum voluntary contraction. However, to date, normalization 

processes for EMG during maximal effort sprinting activities are inconclusive across 

studies. Moreover, no research has applied the complete recorded EMG signals to interpret 

muscle activity throughout maximal arm cycling sprint. Therefore, this study aimed to use 

different EMG normalization methods to elbow flexors and extensors in supinated and 

pronated positions of arm cycling to examine which method shows better changes in NMF 

and forearm position. Statistical parametric mapping (SPM) Repeated measure (RM) 

ANOVA showed significant decreases (p<0.05) in muscle EMG activity of biceps brachii 

and brachioradialis from sprint 1 to 10 in all normalization methods, as well as a significant 

(p<0.05) decline in triceps brachii EMG activity in maximum sprint normalization method. 
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Moreover, SPM paired t-tests showed that MVC normalization detected the changes 

between pronated and supinated positions of biceps brachii and triceps brachii. This study 

improves our understanding of the best methods of EMG normalization to interpret muscle 

EMG activity in research and clinical EMG application.  
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1 Chapter 1: Introduction 

1.1 Overview 

Arm cycling is frequently applied in rehabilitation, research, and sports training. 

Arm cycling can be performed continuously over a long period of time at a moderate 

intensity (e.g.,  endurance exercises) (Bressel et al., 2001); or performed intermittently over 

a short period of time at a high intensity (e.g., sprinting exercises) (Pearcey et al., 2016). 

Studies have shown that neuromuscular fatigue in maximal intensity repeated sprint 

exercise causes a decrease in the capacity to produce the maximum power of skeletal 

muscles (Collins et al., 2018) due to the changes in the peripheral or central nervous 

systems (Enoka & Stuart, 1992).  

Muscle electromyography (EMG) signals can reflect the peripheral and central 

characteristics of the neuromuscular system (Farina et al., 2004). The EMG signal provides 

insight into the neuromuscular capacity of the muscle during a task and allows for a more 

reliable comparison between different individuals, muscles, and times (Sinclair et al., 

2015). However, there is uncertainty about the best EMG normalization methods in 

maximum cycling activities. Research has shown that in low-intensity activities, 

normalizing task-based EMG to a maximum voluntary isometric contraction (MVC) is 

preferable (Burden, 2010). However, during high-velocity and/or high-intensity dynamic 

tasks, using an MVC might not be the most appropriate method for normalization purposes. 

This is because there are many physiological (e.g., muscle fiber conduction velocity, firing 

rates, etc.),  and non-physiological (e.g., noise, crosstalk, etc.) factors that must be 

considered during high-intensity activities, which may impact the shape and magnitude of 

EMG signal (Ball & Scurr, 2013). As such, comparing the EMG from a high-intensity 
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dynamic motor output to a high-intensity tonic motor output is not ideal (Rouffet & 

Hautier, 2008). That is because of the differences in high-intensity isotonic vs. high-

intensity dynamic contraction (such as the proportion of fast twitch and slow twitch 

recruitment, or responding to reaction forces, etc.) (Enoka, 1995). In high-intensity 

dynamic activities, studies have normalized EMG activity to MVC, or muscle activity 

similar to the performed task (Ball & Scurr, 2013). However, the best EMG normalizing 

method for high-intensity sprinting activities remains inconclusive (A. M. Hunter et al., 

2002; Rouffet & Hautier, 2008).  

Recent studies have considered EMG waveforms as complex time-series signals 

describing the localized electrical activity of individual muscles (Robinson et al., 2015). 

This data is naturally spatiotemporally smooth within regular discrete bounds (e.g., 

anatomical boundaries) (Pataky, 2010). The smoothness of the data is not just because it is 

sampled above the Nyquist frequency but because of the inherent properties of biological 

data (e.g., sequential recruitment of muscle fiber and biological elasticity that cause a 

smooth muscle force) (De Luca, 1997; Pataky, 2010; Robinson et al., 2015). Smoothness 

is statistically non-trivial because it infers the correlation of the local data  (Pataky, 2010). 

Therefore, classical methods of EMG analysis that apply single-instant parameters and 

integrals cannot develop this time dependency and non-random temporal neighborhood 

covariance (Robinson et al., 2015). As a result, applying statistical parametric mapping 

(SPM) for the generalized analysis of EMG time-series is suggested (Pataky, 2010; 

Robinson et al., 2015). SPM is a statistical calculation that can modify the mentioned 

restrictions by applying a continuous statistical analysis framework in smooth bounded N-

dimensional fields (Pataky, 2010). By applying SPM, one may apply the entire muscle 
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EMG activity throughout the statistical calculation and interpretation of the muscle EMG 

profile. 
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1.2 Purpose 

This study examined different normalization methods in detecting changes in EMG 

activity of the elbow flexors and extensors during maximal arm cycling sprints in a 

pronated and supinated forearm positions. 

1.3  Research Hypotheses 

There are two main hypotheses for this study: 

1. Changes in EMG activities of the elbow muscles will occur following 10, 10-

second arm cycling sprints in both forearm positions (pronated and supinated). 

2. Repeated arm-cycling sprinting neuromuscular changes will be dependent on the 

EMG normalization technique. 
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2 Chapter 2: Literature Review 

2.1  Introduction 

Repeated sprint ability (RSA) is the ability to produce maximum or near-maximum 

sprint performance interspersed with short recovery intervals of complete rest or low-to-

moderate-intensity activity (Bishop et al., 2011; Spencer et al., 2008). In terms of sprint 

and rest duration, there are two types of exercises: intermittent and repeated sprint exercise. 

Intermittent sprint exercise is defined as a short period of repeated sprints (≤10 seconds) 

interspersed with recovery periods of 60–300 seconds which allows some recovery of 

sprint performance (Bishop & Claudius, 2005; Girard et al., 2011; Pearcey et al., 2016). In 

contrast, repeated sprint exercise (RSE) is characterized by a short recovery period (≤60 

seconds) between sprints (≤10 seconds) (Collins et al., 2018; Girard et al., 2011). Both 

intermittent and repeated sprinting results in deterioration of performance and fatigue 

development (Collins et al., 2018). Performance depends on the ability to recover from 

previous sprinting bouts (Billaut & Basset, 2007).  

Studies have illustrated some of the underlying muscular mechanisms responsible 

for fatigue development (Girard et al., 2013; Goodall et al., 2015; Monks et al., 2017a; 

Perrey et al., 2010). During a maximal sprint exercise, skeletal muscles need a high turn-

over rate of adenosine triphosphate (ATP). Due to limited intramuscular ATP storage, this 

energy source would be consumed in 1-2 seconds (Bishop & Claudius, 2005). Therefore, 

continuous ATP resynthesis is required for continuing the activity (Bishop & Claudius, 

2005). Phosphocreatine (PCr) breakdown and anaerobic glycolysis provide the energy 

required for ATP resynthesis in a short-duration, high-intensity exercise (Gaitanos et al., 

1993). However, this procedure leads to the accumulation of the by-products inorganic 
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phosphate and H ions, increasing of 𝐶𝑂2 and thus the respiratory quotient (Girard et al., 

2013). Moreover, the recruitment of muscle fibers increases extensively during intense 

muscle activity. In response to the mentioned changes in the intracellular environment, 

there are some adaptations in excitation-contraction coupling, the cytoskeleton (a dynamic 

network of interlinking protein filaments presents in the cytoplasm to preserve the cell’s 

shape) and the metabolic system. All these changes and adaptations in the intramuscular 

environment of muscle fibers are aligned with decreasing the skeletal muscles’ force-

producing ability (due to decline in the power-generating capacity of the skeletal muscle) 

(Green, 1997). Furthermore, there are neural mechanisms involved in fatigue development 

during RSE including peripheral and central mechanisms (Racinais et al., 2007). Peripheral 

mechanisms focus on the findings that explain the fatigue-induced deterioration in muscle 

function which start right away in a repeated sprint protocol (Perrey et al., 2010), while 

central fatigue occurs later in the RES protocols and is thought to act as a protection 

mechanism for the muscle from undergoing further peripheral fatigue (Racinais et al., 

2007). 

 Several studies have investigated neuromuscular fatigue (NMF) during RSE using 

arm and leg cycling (Girard et al., 2013; Goodall et al., 2015; Monks et al., 2017a; Pearcey 

et al., 2014, 2016; Perrey et al., 2010; Serpiello et al., 2011; Spencer et al., 2008) with the 

modification in the number of sprints, amount of resistive load, duration of the sprints, the 

work to rest ratio, and recovery time. The majority of studies have been conducted on leg 

cycling sprints. In some studies, EMG profiles from various muscles have been 

investigated to illustrate the effects of these neural factors on muscle activity (Arjunan et 

al., 2014; Bigland‐Ritchie & Woods, 1984; Chaytor et al., 2020; Hautier et al., 2000; Hug 
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& Dorel, 2009; Karlsson et al., 2003; Von Werder et al., 2015). Although several studies 

have examined EMG activity during RSE, their interpretations are often difficult to discern 

given the diversity of protocols used to study EMG. Reviews on evaluating and interpreting 

EMG during RSE are limited. 

Alterations in the factors such as energy supplies, ionic current concentration, and 

contractile proteins arrangement, perturbate the initial state of the neuromuscular system 

as soon exercise starts (Boyas & Guével, 2011). However, the effect of fatigue on the body, 

which is determined by the inability to preserve the desired contraction, which is known as 

“breakpoint” happens later on during performance of the task (Cooper et al., 1988). 

Therefore,  NMF is defined as a decrease in force-generating capacity with or without the 

ability to preserve the task performance in skeletal muscle(s) (Boyas & Guével, 2011; 

Collins et al., 2018). NMF studies examine potential mechanisms underlying changes in 

performance and clarify mechanisms at various levels including the brain, spinal cord, and 

muscle, or combination thereof (Collins et al., 2018). Most of NMF studies in RSE focus 

on different muscle groups of the lower limbs (Ball & Scurr, 2013; Girard et al., 2008; Hug 

& Dorel, 2009; Jorge & Hull, 1986; Laplaud et al., 2006; Mendez-Villanueva et al., 2008). 

NMF studies in RSE for the upper body has been relatively absent in the literature. 

There are some EMG analysis studies on  arm and leg cycling (Chaytor et al., 2020; 

Hug & Dorel, 2009). However, there are no reviews on profiling upper body muscle EMG 

during RSE and how this EMG relates to the development of fatigue and reduction in 

performance. This review will discuss:  1) some of the neural mechanisms thought to be 

involved in NMF development during RSE, 2) surface electromyography (sEMG) 

considerations in investigating muscle EMG activity patterns, 3) current literature on NMF 
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and performance in RSE and muscle EMG pattern in those studies, and 4) clinical and 

practical applications. 

2.2  Neural mechanisms involved in RSE 

2.2.1  Neuromuscular Fatigue Development 

NMF is defined as any exercise-induced decrease in power or velocity regardless 

of preserving the performance (Bigland‐Ritchie & Woods, 1984). NMF in maximal 

intensity RSE causes a decrease in the capacity of producing maximum power of skeletal 

muscles (Pearcey et al., 2014) due to changes in how the peripheral or central nervous 

system can drive these working muscles (Enoka & Stuart, 1992). 

Peripheral fatigue develops early and continues throughout RSE and plays a 

significant role in performance impairment (Collins et al., 2018; Decorte et al., 2012). 

Peripheral fatigue happens at the level of nerve axons and neuromuscular junction or within 

the muscle (Boyas & Guével, 2011). It signals a decline in the strength of muscle fiber 

contractile components and changes in the transmission mechanisms of action potentials 

(Gandevia et al., 1996). Perturbation of the internal environment equilibrium and the 

decrease in, or block of, excitation-contraction coupling are the proposed mechanisms for 

peripheral fatigue (Ament & Verkerke, 2009; Bishop & Claudius, 2005). During intense 

muscle activity, the intracellular environment changes due to by-product metabolites and 

generated heat (Ament & Verkerke, 2009). In sudden muscle activation, the changing from 

rest to intense activity is too fast to provide the immediate required energy by external 

supply, so internal energy stores are used. The muscle uses the internal energy stores, 

including creatine phosphate and glycogen via anaerobic glycolysis. The by-products of 

using this energy to producing the sprinting output include lactate, H ions, and inorganic 

phosphate (Bishop & Claudius, 2005). The reactions buffering the increased protons cause 
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an increase in 𝐶𝑂2 and the respiratory quotient. Accumulation of lactate and H ions and 

decrease in pH might slow down muscle relaxation as it decreases the rate of returning 

𝐶𝑎+2 to the sarcoplasmic reticulum (Ament & Verkerke, 2009).  Moreover, the 

accumulation of inorganic phosphate in the sarcoplasm impairs 𝐶𝑎+2 released by 

sarcoplasmic reticulum (Boyas & Guével, 2011). Excitation-contraction coupling is 

referred to a series of events leading to 𝐶𝑎+2 release in the sarcoplasmic reticulum and 

starting cross-bridge formation (Ament & Verkerke, 2009). Impairment in excitation-

contraction coupling could be a direct negative effect of H ion accumulation, or an 

inhibition of releasing or uptake of 𝐶𝑎+2 by the sarcoplasmic reticulum  (Y & A, 1972). 

The influx of sodium ions and efflux of potassium ions also effect 𝐶𝑎+2 release and 

excitation-contraction coupling (Spriet et al., 1985). All of these factors combined can lead 

to muscle fatigue and reduced RSE performance.  

Enoka (1995) explained that mechanisms underlying the aforementioned and 

developing muscle fatigue can change due the type of task, which is also known as task 

dependency of muscle fatigue. The task variables such as intensity and duration of the 

activity, speed and type of contraction can influence the mechanisms underlying a fatiguing 

contraction. Cycling at 70-80% of maximum oxygen consumption was highly correlated 

with glycogen depletion in vastus lateralis muscle and participants cycling at this intensity 

who were fed glucose could prolong the exercise (Hermansen et al., 1967).  However, this 

effect did not occur during exercise at lower intensity (less than 50% of maximum oxygen 

consumption). Enoka (1995) suggested the availability of glycogen as a determinant factor 

for improving endurance in high intensity exercise. In contrast in tasks with low- to- 
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moderate intensity, impairment in excitation-contraction coupling is more associated to 

fatigue development (Enoka, 1995). 

Central fatigue is defined as a progressive exercise-induced decline in voluntary 

activation or neural drive (Boyas & Guével, 2011; Taylor et al., 2006; Twomey et al., 

2017). Voluntary activation is the ability of central nervous system (CNS) to activate the 

muscle and produce force (Todd et al., 2003). Central fatigue in RSE happens later  during 

the exercise bout and occurs from brain to spinal cord (Goodall et al., 2015; Ross et al., 

2001). Central fatigue may act to restrict additional peripheral fatigue, potentially playing 

a safety role in preventing injury of the muscle (Collins et al., 2018). Studies have reported 

that during fatiguing muscle contractions there is a decrease in voluntary activation, 

alteration in motoneurons’ firing rate, increased fluctuation in force leading to more energy 

expenditure, and perturbation in performance accuracy, all of which indicate central fatigue 

(Bigland‐Ritchie & Woods, 1984; Gandevia et al., 1996; Gandevia, 2001). The 

combination of a decrease in voluntary activation and maximal voluntary contraction 

(MVC) infer that either a decline in supraspinal or spinal drive, or a combination thereof, 

would be involved in central fatigue (Collins et al., 2018). Fatigue can occur via various 

mechanisms at the spinal level including the motoneurons’ intrinsic behavior, recurrent 

inhibition (a negative-feedback system that prevents rapid, repeated firing of the same 

motor neuron), the reflex inputs relevant to α- and γ- motoneurons, and any other 

neuromodulators affecting motoneurons or spinal circuits play a role in central fatigue. 

Neuromodulators are a subset of neurotransmitters that are capable of modulating synaptic 

transmission, affecting the signal transmission between neurons. Neuromodulators like 

serotonin and norepinephrine are involved in NMF (S. K. Hunter, 2018). Supraspinal 
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factors include descending outputs to motoneurons from the brain and brainstem, and the 

factors that control these outputs (Collins et al., 2018; Gandevia, 2001).  

2.2.2  Neuromuscular fatigue measurement in studies 

Studies applied different methods such as the interpolated twitch technique, EMG, 

TMS (Transcranial magnetic stimulation), and TMES (transmastoid electrical stimulation) 

to assess NMF (Gandevia, 2001). The interpolated twitch technique is a technique for 

estimating voluntary activation and differentiating the level of volitional impairment that 

occurred proximal or distal to the motor axon (Herbert & Gandevia, 1999). In this method, 

extra stimulation of the CNS elicited by electrical stimulation during MVC could signify 

central fatigue. If the stimulation produces extra force during the maximal contraction, it 

infers that some motoneurons are either not recruited or is not firing fast enough to produce 

maximal muscle force (Herbert & Gandevia, 1999) and is a hallmark of central fatigue at 

the spinal or supraspinal level (Todd et al., 2003). TMS and TMES are applied to determine 

whether the central fatigue is predominantly at the supraspinal or spinal level, respectively 

or a combination thereof (Pearcey et al., 2014). The TMS-induced response during NMF 

development could be determined as a decrease in the size of the motor evoked potential 

(MEP) or increase in the silent period following the MEP (Todd et al., 2003). The change 

in the MEP could occur at the supraspinal, spinal, or muscle (Pearcey et al., 2014). Thus, 

TMS is used concomitantly with TMES to determine if the change in MEP is at the 

supraspinal or spinal level. TMES stimulates corticospinal tracts at cervicomedullary 

junction and produces cervicomedullary evoked potentials (CMEP) which is a short-

latency excitatory response. Combination of TMS and TMES is useful at determining the 

level of central fatigue (Pearcey et al., 2014).  To account for any change in CNS 

excitability that is not due to changes in the muscle itself, both MEP and CMEP amplitudes 



2-8 

 

are normalized to the maximal muscle compound action potential. After a fatigue-inducing 

activity if there is a decrease in CMEP and no change in MEP it could be interpreted as 

spinal excitability has been more involved in central fatigue. In contrast, if there is a 

decrease in MEP and no change in CMEP it could be interpreted as spinal excitability was 

more involved in central fatigue. Due to potential masking effects, differentiating between 

spinal and supraspinal excitability is not easy always (Collins et al., 2018). 

2.2.3 The role of sensory feedback in fatigue development  

Studies have also shown the role of mechanosensitive and metabosensitive group 

III/IV muscle afferents in fatigue development (Laurin et al., 2015).  These thin afferent 

fibres: 1) can have facilitatory or inhibitory effects on the activated muscle and other limb 

muscles (Pg et al., 2007), 2) can increase the excitability of α-motoneurons, the spinal 

reflex, and the motor cortex (Gandevia, 2001; Pg et al., 2007), 3) send sensory information 

that evokes autonomic responses to provide adequate blood flow/O2 for the active muscle 

(Amann et al., 2015), which is an essential mechanism for decreasing the rate of peripheral 

fatigue and optimizing performance (Amann et al., 2015), and 4) can facilitate central 

fatigue through inhibitory feedback on CNS, which decreases outputs from spinal 

motoneurons, and therefore decreases muscle activation (Amann et al., 2015). Sidhu et 

al.(2018) designed a study to determine the underlying mechanisms of fatigue-related 

feedback from group III/IV muscle afferents on corticospinal excitability. They used 

fentanyl (a powerful synthetic opioid) to block these afferents in one group and compared 

them with the control group. The authors found that, these thin group III/IV afferent fibers 

during fatiguing leg cycling exercise inhibit or disfacilitate the motor cortex. By comparing 

the paired cortical and spinal cord stimulations they suggested that this impact could be 

partially due to group III/IV mediated activation of inhibitory intracortical 𝐺𝐴𝐵𝐴𝑏  (2018). 
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2.3 Performance  

A general interpretation from fatigue is a deterioration in physical performance 

aligned with difficulty keeping the task performance (Boyas & Guével, 2011). By the late 

19th century, studies have documented muscle adaptation for performing different tasks 

(e.g., red and white fibers), and suggested that muscle performance could be restricted by 

the muscle itself and/or the involved neural apparatus driving the muscle activity (Edwards 

et al., 1995; Gandevia, 2001). Initial physiological studies compared the produced muscle 

voluntary activation with the muscle activity reproduced by external electrical stimulation. 

They suggested that the deviation of the task performance from the expected one (which 

was usually the deteriorative changes) was due to CNS influence (Gandevia, 2001). These 

studies concluded that changes in performance represent central factors that directly affect 

muscles’ peripheral function (Gandevia, 2001). Sprinting exercises cause deterioration in 

performance and the development of NMF, so they have been used to study the interaction 

between fatigue and performance. Pearcy et al.(2016) were the first to evaluate the effect 

of arm-cycling sprints on sprint performance. They reported decreases in power, MVC, 

potentiated twitch force and voluntary activation of the elbow flexors after 10 bouts of 10-

second maximal intensity sprint activity. They concluded that NMF development could be 

both due to peripheral and central factors. Based on the changes in MEP and CMEP 

amplitudes they suggested that motor cortex inhibition and disfacilitation caused a decrease 

in supraspinal excitability and an increase in spinal excitability. 

As mentioned previously, decreases in maximal sprint speed and power output are 

considered as indicators of fatigue. Fatigue Index, and percentage decrement score (𝑆𝑑𝑒𝑐) 

are frequently used to determine fatigue resistance during RSE (Bishop et al., 2011). 

Fatigue Index is the percentage of performance deterioration from the best to the worst 
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sprint performance: (Fatigue Index = 100 ∗  
𝑆𝑏𝑒𝑠𝑡−𝑆𝑤𝑜𝑟𝑠𝑡

𝑆𝑏𝑒𝑠𝑡
), S refers to sprint performance 

and can be calculated for either speed, work, or power scores. 𝑆𝑑𝑒𝑐  is calculated by 

comparing each performance to the ideal performance (the best performance): 𝑆𝑑𝑒𝑐= 1- 

𝑆1+𝑆2+𝑆3+⋯+𝑆𝑓𝑖𝑛𝑎𝑙

𝑆𝑏𝑒𝑠𝑡∗𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑟𝑖𝑛𝑡𝑠
∗ 100. 

Moreover, other indices such as total mechanical work/ sprint time should be 

considered together with  fatigue indices to evaluate repeated-sprint performance (Pyne et 

al., 2008). Other factors such as task-dependency or specificity, the time delay between the 

last sprint and fatigue measurement, methods of voluntary activation measurement, and 

type of repeated sprint exercise should be considered in interpretation of RSE induced 

NMF and decreased performance (Collins et al., 2018). 

Monks et al. (2017a) designed a study to evaluate the effects of different recovery 

times (30 and 180 seconds) on maximal intensity leg cycling exercise. Their results showed 

a significant decrease in peak power output and repeated sprint ability after 30 seconds and 

increased perceived pain compared to 180 seconds of rest time between the sprints. 

However, their recording from the maximal force, voluntary activation, and potentiated 

twitch revealed significant decreases in both recovery times with similar trends. Thus, 

peripheral and central NMF occurred irrespective of recovery time.   Hureau et al. (2016) 

also concluded better performance but no difference in NMF profile by increasing the 

recovery time between sprints. Both studies recorded the outcomes from isometric 

contractions after performing rhythmic sprint activities. In their review, Collins et al. 

(2018) mentioned that most of the NMF studies on RSE record their measuring during 

isometric MVC from some muscles after performing the test. They inferred that these 

records could represent NMF more precisely if they use task-specific testing procedures. 
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Some task-specific factors that can influence study outcomes include contraction 

intensity (maximal or submaximal), contraction mode (isometric or dynamic), duty cycle 

(intermittent or sustained contractions), index of fatigue used (endurance time or loss of 

force), and contraction type (voluntary or stimulated) (Twomey et al., 2017). Enoka and 

Duchateau (2008) suggested that different methods applied for quantifying fatigue, the 

specific impairment factors leading to fatigue, and not knowing enough about the 

mechanisms restricting the performance in studies as present issues of understanding the 

effects of fatigue on performance. According to the task-dependency principle, muscle 

fatigue is multifactorial, and the dominant mechanisms of task impairment are dependent 

on the specific task designed for the study (Enoka & Duchateau, 2008). 

2.3.1 Joint Position 

Joint position and the state of muscle (rest or contraction) are two other factors that 

may affect the quantification of NMF, especially in corticospinal excitability 

measurements (Collins et al., 2018). In the upper limb, studies have reported changes in 

corticospinal excitability of biceps brachii (Collins & Button, 2018; D. Forman et al., 

2014), forearm (D. A. Forman et al., 2016; Mitsuhashi et al., 2007), and hand (Ginanneschi 

et al., 2005) muscles following changes in joint position during isometric contractions. For 

example, Collins et al. (2018) investigated biceps brachii corticospinal excitability in 0° 

and 90° of shoulder flexion. These shoulder positions affected elbow flexors activity and 

force. They measured MEP, CMEP and 𝑀𝑚𝑎𝑥 at rest and during 10% of MVC, in 0° and 

90° of shoulder flexion and showed that biceps brachii CSE is affected by shoulder 

position, as well as by the state of the muscle (rest vs. 10% of MVC). More specifically, 

the trend of changes in MEP/𝑀𝑚𝑎𝑥 and CMEP/𝑀𝑚𝑎𝑥 via changing the shoulder position 

from 0° to 90° of shoulder position were in favour of increasing supraspinal excitability at 
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rest and decreasing in spinal excitability at 10% of MVC. Nuzzo et al. (2016) studied the 

effects of shoulder (abduction, rest, and flexion), and forearm (pronation, supination, and 

neutral) positions on corticospinal excitability. Their results showed while responses from 

the biceps brachii were influenced by both shoulder and forearm position, triceps brachii 

responses were only influenced by shoulder position. Furthermore, they suggested the 

changes in corticospinal excitability at each of these posture variations are mainly due to 

spinal excitability. Forman and colleagues (2016) also examined differences of neutral and 

pronated forearm handgrip position on biceps brachii excitability and compared arm 

cycling exercise with matched (i.e., matching joint angles and muscle activity prior to 

stimulation) tonic contractions of the elbow flexors. They reported that in both rhythmic 

(cycling) and tonic activity, increased excitability of the biceps brachii had both spinal and 

supraspinal origins and that in both arm cycling and tonic elbow flexion corticospinal 

excitability was higher during a neutral hand grip position.  

Several studies have demonstrated that CNS output is influenced by variations in 

muscle and joint position. During arm cycling sprinting, joint position of the forearms and 

wrists can be manipulated by altering the handgrip used to perform the sprinting. To date, 

only one study has examined how variations in handgrip, and thus changes in upper limb 

joint position, may alter NMF development of the elbow flexors (M. E. J. Lockyer et al., 

2020). The effects of altering handgrip on EMG activity from muscles involved in 

producing arm cycling, however, has not yet been examined. 

2.4 Electromyography 

Overall, the two methods used to record EMG are invasive and non-invasive 

methods. The invasive method records the signals directly by wires or needles inserted into 

the muscle fibers (Hug & Dorel, 2009). This method provides signals from a limited 
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number of muscle fibers and cannot precisely represent all muscle mass (Hug & Dorel, 

2009). In contrast, surface electromyography (sEMG) is a non-invasive method of signal 

recording by electrodes overlying on the skin surface of the desired muscle. The 

information is provided from a larger mass and is more correlated with muscles’ motor 

units and their discharge rate (Frigo & Shiavi, 2004; Reaz et al., 2006). In contrast, surface 

electromyography (sEMG) is a non-invasive method of signal recording by electrodes 

overlying the skin surface of the desired muscle. The information is provided from a larger 

mass and is more correlated with muscles’ motor units and their discharge rate (Frigo & 

Shiavi, 2004; Reaz et al., 2006). Finally, the self-adhesive electrodes of sEMG make it 

easily applicable in dynamic contractions (Hug & Dorel, 2009).  

sEMG records the electrical activity of skeletal musculature throughout the 

electrodes placed on the skin overlying the muscle (Medved & Cifrek, 2011; Reaz et al., 

2006). The sEMG signal contributes the sum of electrical currents made by muscle fiber 

action potentials from all muscle fibers of a single motor unit, known as motor unit action 

potential (MUAP) (Reaz et al., 2006). The action potential is a muscle fiber's membrane 

depolarization and repolarization. The depolarization–repolarization cycle makes a 

depolarization wave (electrical dipole) which passes through the muscle fiber's surface 

(Medved & Cifrek, 2011). MUAPs are different in shape and size based on fibers 

orientation within the muscle and the position of the electrodes towards the muscle fibers 

(Medved & Cifrek, 2011). In kinesiology studies, the MUAPs of active motor units are 

detected by electrodes and superimposed as a bipolar signal comprising symmetrical 

positive and negative amplitudes (Medved & Cifrek, 2011). Muscle fibers’ membrane 

properties and timing of the MUAPs impact the characteristics of sEMG signals such as 
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EMG amplitude and power spectrum. The power spectrum of a time series describes the 

distribution of power into frequency components composing that signal. Thus, the sEMG 

signal is comprised of both central and peripheral components of muscle contraction 

(Farina et al., 2004). However, for an appropriate interpretation of sEMG, the influencing 

factors on the signal should be considered. The main physiological factors include muscle 

fiber membrane’s properties (e.g., muscle fiber conduction velocity), motor unit properties 

(e.g., firing rates), as well as muscle tissue characteristics (e.g., fiber diameter and 

subcutaneous tissue). Non-physiological factors can include factors such as crosstalk 

(contamination of signal by other muscles’ electrical activity) (Reaz et al., 2006), noise 

(motion artifacts caused by electrodes or cables’ movement during recording the signal, 

inherent noise in electronics equipment, ambient noise caused by electromagnetic 

radiation), and inherent instability of signal (due to random nature of the EMG amplitude) 

(Hug & Dorel, 2009; Rau et al., 2004; Reaz et al., 2006). 

2.4.1 EMG Normalization  

The abovementioned factors can alter the raw EMG signal and decrease reliability 

and validity within an individual at different times and between individuals. Therefore, 

comparing raw EMG amplitudes at various timepoints and between individuals causes 

misinterpretation (Sinclair et al., 2015). As such, normalization procedures typically take 

place on raw EMG signals to account for the differences in EMG over time and between 

populations. In essence, normalization procedures rescale the raw EMG amplitude from 

millivolts to a percentage of a reference amplitude (reference value) attained through the 

standardized, repeatable condition (task EMG / reference EMG) × 100). Normalizing the 

EMG signal helps provide an insight into the neuromuscular capacity of the muscle during 

a task and allow for more reliable comparison between different individuals, muscles, and 
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times. Repeatability (between days and within days reliability), reliability (consistent, 

dependable, and free from error measurement), and sensitivity (ability to detect actual 

biological variations) are all factors that should be considered in the normalization 

(Albertus-Kajee et al., 2010; Sinclair et al., 2015).  

Burden (2010) in a review of normalization methods in low-intensity activities 

suggested normalizing the task-based EMG to a maximum voluntary isometric contraction 

(as a reference value) due to simplicity and reliability of applying this method. However, 

during high-velocity and/or high intensity dynamic tasks, using a MVC might not be the 

most appropriate method for normalization purposes. This is because there are many 

physiological (e.g., muscle fiber conduction velocity, firing rates, etc.),  and non-

physiological (e.g., noise, crosstalk, etc.) factors that must be considered during high-

intensity activities and that may impact the shape and magnitude of the EMG signal (Ball 

& Scurr, 2013). Muscle movement in relation to the electrodes, amplitude cancellation (De 

Luca, 1997), increasing the rate of motor unit recruitment and de-recruitment, reducing the 

time of crossbridge formation in high-velocity activities, and the type of motor units 

involved in the activity are all factors that must be considered (Ball & Scurr, 2013). As 

such, comparing the EMG from a high-intensity dynamic motor output to a high-intensity 

tonic motor output is not ideal. In sprint-like activities, another common normalizing 

method is to normalize the EMG of each sprint to the maximum EMG observed during the 

sprinting (Rouffet & Hautier, 2008). This method has been shown to be repeatable and 

functional (Rouffet & Hautier, 2008) and may better account for some of the 

aforementioned factors. However, to date, normalization processes for EMG during 
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maximal effort sprinting activities is inconsistent across studies (A. M. Hunter et al., 2002; 

Rouffet & Hautier, 2008). 

2.4.2 EMG application in muscle activity assessment 

De Luca (1997) proposed that a sEMG signal can indicate muscle activation 

initiation, determine the relationship between force and muscle activity, and be used as a 

fatigue index during muscle activity. The spectral variable fatigue index can be used to 

describe the performance of individual muscles (De Luca, 1997). EMG signals have been 

frequently analyzed in fatigue studies because the signal can detect time-dependent 

changes before the occurrence of any changes in force production. As a result, sEMG can 

be used to predict the onset of contractile fatigue (De Luca, 1997; Dimitrova & Dimitrov, 

2003). Raw EMG signals contain both electrophysiological data and noise, which should 

be considered in its analysis. The EMG signal analysis can be performed in different 

domains such as time domain, frequency domain, and a time-frequency domain (Naik, 

2012). However, the frequency domain is a better representative of muscle fatigue 

assessments (Al-Mulla et al., 2011). Mean frequency (MNF), and median frequency 

(MDF) are the most common frequency-domain analyses used in muscle fatigue studies 

(De Luca, 1997; Dimitrova & Dimitrov, 2003; Farina et al., 2004; Medved & Cifrek, 2011; 

Naik, 2012). In dynamic contraction, the effects of muscle force and joint angle on EMG 

signals receive more attention and the effect of these movements on MNF and MDF are 

still inconclusive in literature (Doheny et al., 2008; Naik, 2012; Phinyomark et al., 2012). 

2.4.3 EMG in Fatigue assessment 

To assess muscle fatigue and motor unit recruitment, studies have frequently used 

frequency-domain or spectral-domain EMG analysis (Oskoei & Hu, 2008). For these 

analyses, a Fourier transform of the autocorrelation function of the EMG signal is applied 
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to provide the power spectrum or the power spectral density and a modification of the EMG 

signal from the time-domain to the frequency-domain. Different methods can obtain power 

spectral density. However, the most applicable power spectral density estimator in the 

EMG signal analysis is periodogram. A periodogram is defined as the square of the 

absolute value of the Fourier transform of EMG signal divided by the signal length (Naik, 

2012). Among different kinds of statistical variables such as total power, mean power, and 

peak frequency, MNF and MDF are the two most frequently used variables of power 

spectral density (Naik, 2012). MNF is also called mean power frequency and is calculated 

using the function: 

𝑀𝑁𝐹 = ∑ 𝑓𝑗𝑃𝑗

𝑀

𝑗=1

/ ∑ 𝑃𝑗
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Here, 𝑓𝑗 is the frequency value of EMG power spectrum at the frequency bin𝑗, 𝑃𝑗 is 

the EMG power spectrum at the frequency bin𝑗, and M is the length of frequency bin. 

MDF is a frequency at which the EMG power spectrum is divided into two regions 

with equal amplitude(Oskoei & Hu, 2008) and calculated by: 
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Both features are two kinds of averages in statistics. However, MNF performance 

in each application is quite different compared to the performance of MDF. According to 

the skewed shape of the EMG power spectrum, MNF is always slightly higher than MDF 

(Knaflitz & Bonato, 1999). MDF is less affected by random noise, especially if the noise 

frequency is located in the high-frequency band of the EMG power spectrum (Naik, 2012). 

Moreover, it is less affected by signal aliasing and more sensitive to biomechanical and 
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physiological factors such as fatigue that happens during sustained contractions (De Luca, 

1997). 

The hypothesis of using MNF and MDF for fatigue assessment in static contraction 

is that the sEMG signal during isometric contractions might be stationary during short 

period intervals (0.5-2 seconds). For dynamic contractions, such as those involved in RSE, 

where EMG signals constantly change as a function of time, some studies have applied 

instantaneous MNF and MDF (Naik, 2012; Roy et al., 1998). Overall, the reason for using 

MNF and MDF to analyze fatigue in EMG features is that muscle fatigue causes a 

downward shift of the EMG signal frequency spectrum (Naik, 2012). Other changes 

reported in sEMG signal during muscle fatigue are a decrease in signal power at high-

frequency, a small increase in signal power at low-frequency, an increase in spectrum slope 

at high-frequency, and a decrease in spectrum slope at low-frequency (Naik, 2012). 

Possible explanations for these observations are changes in motor units’ firing rates, 

slowing of conduction velocity, and synchronization of the signals (De Luca, 1997). 

2.4.4 Stationarity assumption 

Classical methods of analyzing sEMG patterns have developed muscle-computer 

interfaces under the assumption of stationarity of sEMG signals (Bilodeau et al., 1997; 

Phinyomark et al., 2014). Stationarity is necessary for using the metric algorithm in time-

series signals such as EMG and (electroencephalogram) (Bilodeau et al., 1997; Blanco et 

al., 1995). Stationarity is defined as the signals’ properties that do not change over time 

(Phinyomark et al., 2014). However, it is almost impossible to satisfy stationary 

assumption in long-time EMG signal segments, so studies have used the weak stationarity 

assumption (Blanco et al., 1995). Under the stationary assumption, statistical parameters 

such as mean and standard deviation do not change with time (Cho & Kim, 2012), while 
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in the weak stationarity assumption, signal means and variances are not highly dependent 

on time differences (Phinyomark et al., 2014). Two approaches have been suggested for 

EMG pattern recognition systems, using the assumption of stationarity. Measured EMG 

signals could be considered stationary if (1) a whole short-time static or dynamic 

contraction is classified to be a single output, and (2) the static portions of a medium- or 

long-duration dynamic motion are classified as single outputs over a sufficiently short-time 

window (Phinyomark et al., 2014). However, developing an EMG signal as a short 

transient or a steady-state EMG signal could not completely interpret EMG features. 

Moreover, dynamic contractions, which are more common in daily activities, consist of 

transient and steady-state EMG components. Thus, considering both components as one 

motion would violate the stationarity assumption (Cho & Kim, 2012; Phinyomark et al., 

2014). 

2.4.5 Possible difficulties in analyzing EMG signals as time-series 

As mentioned before, frequency domain analysis of sEMG is applied to monitor 

EMG signal changes over time in muscle fatigue assessment (Dantas et al., 2010). Fourier 

analysis converts a signal from its original domain (e.g., time domain) to a representation 

in the frequency domain and vice versa. Fourier analysis assumption is signal stationarity 

(Beck et al., 2005; Dantas et al., 2010; Phinyomark et al., 2014). Due to concern about the 

stationarity of sEMG signals in dynamic contractions, recent studies have suggested other 

algorithms such as wavelet transform and short-time Fourier transform to estimate the 

power spectrum of non-stationary EMG signals (Beck et al., 2005; Phinyomark et al., 

2014). Although these solutions are reliable, recent studies on processing and analyzing 

the EMG data raised attention to the properties of the EMG signal as a biological time-

series (Robinson et al., 2015). They addressed that EMG time-series are highly correlated 
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and time dependent, however, scalar or qualitative analyses of EMG time-series fails to 

account for such dependencies (Pataky et al., 2013; Robinson et al., 2015). 

 Recent studies have considered EMG waveforms as complex time-series signals 

describing the localized electrical activity of individual muscles (Robinson et al., 2015). 

This biomechanical data is naturally spatiotemporally smooth within regular discrete 

bounds (e.g., anatomical boundaries) (Pataky, 2010). It means that the dimension (time 

dimension for EMG data) has certain smoothness that dictates how much adjacent time 

nodes are associated with each other. The smoothness of the data is not just because it is 

sampled above the Nyquist frequency, but because of the inherent properties of biological 

data (e.g., due to sequential recruitment of muscle fiber and biological elasticity that cause 

a smooth muscle force) (De Luca, 1997; Pataky, 2010; Robinson et al., 2015). Smoothness 

is statistically non-trivial because it infers the correlation of the local data (Pataky, 2010). 

Therefore, classical methods of EMG analysis that apply single-instant parameters and 

integrals cannot develop this time dependency and non-random temporal neighborhood 

covariance (Robinson et al., 2015). Therefore, applying statistical parametric mapping for 

the generalized analysis of EMG time-series is suggested (Pataky, 2010; Robinson et al., 

2015). 

2.4.6  Statistical Parametric Mapping (SPM) 

Statistical parametric mapping (SPM) is a statistical calculation that can modify the 

mentioned restrictions by applying a continuous statistical analysis framework in smooth 

bounded N-dimensional fields (Pataky, 2010). This method pertains to designing spatially 

extended statistical processes or maps that directly test a hypothesis (Friston, 1995). The 

primitive idea of construction voxel-specific (voxels are volume elements) statistical 

inferences by applying statistical parametric maps came up when it was not clear where 
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brain responses would be expressed in brain imaging (Penny et al., 2006). The original 

application of SPM was in the analysis of cerebral blood flow in functional MRI imaging, 

and after that, in biomechanics and human movement science (Serrien et al., 2019).  

Rather than performing separate inferential tests at different time points, which 

would increase the probability of Type_׀ error (rejecting the null hypothesis by mistake), 

SPM uses random field theory to evaluate statistical inferences (Serrien et al., 2019). 

Random field theory is a recent body of mathematics defining theoretical results for smooth 

statistical maps (Frackowiak et al., 2004). According to Taylor 2007, a “random field” has 

various implications. It simply is a stochastic process that takes values in a Euclidean space 

and defines a parameter space of dimensionality at least 1 (Adler, 2010). At each time 

sample, a P-value is calculated for a cluster of statistics that pass a critical threshold rather 

than a P-value at each sample time. The random field theory’s logic is that smooth random 

fields are expected to produce spatially broad clusters above the given threshold. However, 

very broad and/or very high clusters are expected to occur with low probability (Pataky, 

2010). Therefore, SPM’s P-value can be defined as the probability of producing a supra-

threshold cluster as broad as the observed cluster by the smooth statistical maps (Alizadeh 

& Mattes, 2019; Serrien et al., 2019). There are two presumptions for applying random 

field theory. The first is that the error fields are a reasonable lattice approximation to an 

underlying random field with a multivariate Gaussian distribution. The second is that these 

fields are continuous, with a twice differentiable autocorrelation function (Alizadeh & 

Mattes, 2019).  

In SPM critical threshold is often calculated with the Type I error α = 0.05. So, 

observing t-statistics time-series passes the threshold means the cluster has a p < 0.05. As 
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a result, the researcher directly rejects the null hypothesis H0 (no difference between the 

two time-series). In SPM, ꓑ-values introduce the probability of the data given that 𝐻0 is 

true without applying any alternative hypothesis (𝐻1), which is the classical frequentist 

approach of statistical interpretation (Serrien et al., 2019). Frequentist inference explains 

the data analysis based on the frequentist probability, which considers the probability in 

equivalent term to frequency and concludes from the sample data by means of indicating 

frequency or proportion of finding in the data. Frequentist probability determines an 

event’s probability as the limit of its relative frequency in many trials. However, there is 

uncertainty about the steady applying of frequentist methods in scientific inference 

(Goodman, 1999; Matthews, 2021). Based on frequentist inference, classical 

interpretations (classical definition of probability) answer the reverse question of what the 

researcher addressed to answer by implication of probability of frequencies by means of 

defining null and alternative hypotheses. In contrast, Bayesian inference (the statistical 

inference in SPM) uses the Bayesian theorem (the probability of an event, based on prior 

knowledge of conditions that might be related to the event) to update the probability for a 

hypothesis as evidence becomes available. In this inference, the concept of probability is 

firmly related to subjective probability (Bayesian probability), in which probability is 

interpreted as a reasonable expectation. Bayesian inference is particularly important in the 

dynamic analysis of the sequence of data (Cox, 1946). The use of statistical parametric 

mapping (SPM) for the generalized analysis of EMG time-series has been suggested 

(Pataky, 2010; Robinson et al., 2015). Yet, SPM analysis has never been used to quantify 

changes in EMG during repeated maximal arm cycling sprinting. 
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2.5 Clinical application and Conclusion 

Arm cycling has a variety of applications, from cardiovascular and sports 

rehabilitation to research and fitness (Bishop & Claudius, 2005; Bressel et al., 2001; 

Collins et al., 2017). In spinal cord injury and other disabilities that cause loss of motion in 

lower extremities, a sedentary lifestyle and reduction in physical work capacity increase 

the risk factors of obesity, stroke, and coronary heart disease. So in these disabilities, 

individuals need to preserve their regular physical activity as equal to or greater than non-

disabled individuals (DiCarlo et al., 1983). Research has shown that low to moderate arm 

cycling exercise improves 𝑉𝑂2max, pulmonary function, peak power output, and upper 

limb muscle strength (Valent et al., 2008). So, arm-cycling training accounts for a useful 

exercise training model in rehabilitation. 

Investigating NMF development and its influence on performance helps evaluate 

training development and design better interventions appropriate to clinical or sport aims 

(e.g., delaying the onset of fatigue, applying the optimum performance, etc.) (Robinson et 

al., 2015). Assessment of maximum arm cycling sprint extends our understanding of 

neuromuscular limits, capabilities, and the involved processes. Surface EMG is the most 

common direct method in assessing neuromuscular contribution across a variety of 

activities. A investigation of EMG normalizing methods and analyzing methods of EMG 

time-series would expand our understanding of muscle EMG profile (Ball & Scurr, 2013) 

and the development of NMF and performance decrements during a RSE. Since there is no 

conclusive evidence about how to best normalize EMG during maximal arm sprinting, the 

purpose of this thesis will be to examine muscle EMG activity of the elbow flexors during 

maximal arm cycling sprints and to examine which normalization method gives the better 

representation of muscle activity. 
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4.1 Abstract 

The aim of this study was to determine the best normalization method for detecting 

changes in electromyography (EMG) activity of elbow flexors (biceps brachii and 

brachioradialis) and elbow extensor (triceps brachii) during repeated maximum arm 

cycling sprints. Eleven recreationally active (~10 hours weekly activity) male participants 

(height 179.8 ± 7.6 cm, weight 87.3 ± 4.9 kg, age 25.7 ± 5.3 years) were recruited. Subjects' 

maximum voluntary isometric contraction (MVC) and EMG during the MVC from their 

biceps brachii, brachioradialis, triceps brachii, and EMG activity during 10 bouts of 10 

seconds maximum arm cycling sprints were measured in two sessions (one session forearm 

pronated and one in a forearm supinated position). For each muscle, EMG activity was 

normalized to MVC, maximum sprint value (max sprint), and the average of maximum 

EMG in all 10 sprints (average max sprints). Statistical analysis was performed in SPM 

(statistical parametric mapping) using SPM Repeated measure (RM) ANOVA to detect 

EMG changes throughout sprints 1, 5, and 10, and SPM paired t-tests to compare EMG 

changes between supinated and pronated positions. While SPM RM ANOVAs showed that 

in all three normalization methods there were significant decreases (p<0.05)  

in muscle EMG activity of biceps brachii and brachioradialis from sprint 1 to 10, only the 

maximum sprint normalization detected a decline in triceps brachii EMG activity. Post-

hoc analyses showed that the max. sprint normalization detected a more extensive range of 

changes in EMG activity from sprint 1 to 10 than the other methods. SPM paired t-tests 

showed that MVC normalization detected the changes between pronated and supinated 

positions of biceps brachii and triceps brachii. In conclusion, choosing the best 

normalization method might depend on the research question. While normalizing muscle 

EMG to the maximum performed sprint value was better in detecting the decline in EMG 
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activity during maximum arm cycling sprints, normalizing to MVC better detected the 

EMG changes in different forearm positions. 

Key Words: EMG normalization, repeated sprint exercise, statistical parametric 

mapping, neuromuscular fatigue  

 

4.2 Introduction 

Repeated sprint exercise (RSE) is repeated bouts of near maximal or maximal 

exercise interspersed with short recovery intervals of complete rest or low-to-moderate-

intensity activity (Girard et al., 2011; Monks et al., 2017b; Spencer et al., 2005). RSE 

causes a decrease in power output (e.g., cycling sprints) or velocity (e.g., running sprints) 

(Collins et al., 2018; Mendez-Villanueva et al., 2012) due, in part, to the development of 

neuromuscular fatigue (NMF). NMF can be defined as a decrease in force-generating 

capacity with or without the ability to preserve task performance (Boyas & Guével, 2011; 

Collins et al., 2018). There are peripheral and central nervous system mechanisms involved 

in NMF development during RSE (Racinais et al., 2007). Peripheral mechanisms include 

those that lead to fatigue-induced deterioration in muscle function (Perrey et al., 2010), 

while central fatigue mechanisms act to protect the muscle from further peripheral fatigue 

(Racinais et al., 2007). Several studies have investigated NMF during RSE such as arm and 

leg cycling sprints (Girard et al., 2013; Goodall et al., 2015; Monks et al., 2017a; Pearcey 

et al., 2014, 2016; Perrey et al., 2010; Serpiello et al., 2011; Spencer et al., 2008) with the 

modification in the number of sprints, amount of resistive load, duration of the sprints, the 

ratio of work to rest, and recovery time. Most of NMF studies in RSE are based on different 

muscle groups of the lower limbs (Ball & Scurr, 2013; Girard et al., 2008; Hug & Dorel, 

2009; Jorge & Hull, 1986; Laplaud et al., 2006; Mendez-Villanueva et al., 2008).   
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In sprint-like activities, a common way to quantify the development of NMF is to 

normalize the EMG of each sprint to the maximum EMG observed during the sprinting 

(Ball & Scurr, 2013; Sinclair et al., 2015). This method has been shown to be repeatable 

and functional (Rouffet & Hautier, 2008) and may better account for some of the 

aforementioned physiological and non-physiological factors. However, to date, the 

normalization processes for EMG during maximal effort sprinting activities are 

inconclusive across studies (A. M. Hunter et al., 2002; Rouffet & Hautier, 2008). Studies 

have suggested normalizing the task-based EMG to the EMG recorded during an isometric 

MVC (as a reference value) due to simplicity and reliability of applying this method 

(Burden, 2010). However, during high-velocity and/or high intensity dynamic tasks, using 

a MVC might not be the most appropriate method for normalization. That is because of the 

physiological and non-physiological factors that cause changes in size and shape of motor 

unit action potentials (MUAPs) in high-intensity activities (Ball & Scurr, 2013). As such, 

comparing the EMG from a high-intensity dynamic motor output to a high-intensity tonic 

motor output may not be the optimal approach because they are different tasks.  Evidence 

has shown (Rana, 2006) that MVC recruits slower motor units with longer action potentials 

than fast twitch motor units. In contrast, fast twitch muscle fibers contribute more to high-

intensity dynamic movements (Ball & Scurr, 2013). The other source of difference between 

high-intensity isotonic and high-intensity dynamic activity is the amount of involuntary 

force (e.g., to absorb the sprint ground contact) produced out of the necessity to complete 

the task without injury (Ball & Scurr, 2013).There are some EMG analysis reviews on 

lower limb muscles during sprinting to compare the EMG profile to neural mechanisms to 

see if they correspond to fatigue and performance (Hug & Dorel, 2009). However, the same 
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information on EMG during upper body sprinting has been absent in the literature  (Chaytor 

et al., 2020; Pearcey et al., 2016; Lockyer et al., 2021) and should be investigated. 

Recent studies have considered EMG waveforms as complex time-series signals 

describing the localized electrical activity of individual muscles (Robinson et al., 2015). 

This biomechanical data is naturally spatiotemporally smooth within regular discrete 

bounds (e.g., anatomical boundaries) (Pataky, 2010). It means that the dimension (time 

dimension for EMG data) has certain smoothness that dictates how much adjacent time 

nodes are associated with each other. The smoothness of the data is not just because it is 

sampled above the Nyquist frequency, but because of the inherent properties of biological 

data (e.g., due to sequential recruitment of muscle fiber and biological elasticity that cause 

a smooth muscle force) (De Luca, 1979; Pataky, 2010; Robinson et al., 2015). Smoothness 

is statistically non-trivial because it infers the correlation of the local data (Pataky, 2010). 

Therefore, classical methods of EMG analysis that apply single-instant parameters and 

integrals cannot develop this time dependency and non-random temporal neighborhood 

covariance (Robinson et al., 2015). In other words, a single observation during a time (like 

EMG activity) is not a single value like what we have from a body mass as the weight 

value. Therefore, while EMG activity is a 1-dimension data, the weight is a Zero-dimension 

one. The component of time is inside of the observation. The problem is that by reducing 

the data down towards the zero dimension of the variable (to avoid multiple testing and 

increasing the possibility of Type_׀ error (rejecting the null hypothesis by mistake)), there 

is a chance to lose real information about data.  

The use of statistical parametric mapping (SPM) for the generalized analysis of 

EMG time-series has been suggested (Pataky, 2010; Robinson et al., 2015). SPM is a 
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statistical calculation that can modify the mentioned restrictions by applying a continuous 

statistical analysis framework in smooth bounded N-dimensional fields (Pataky, 2010). 

This method pertains to designing spatially extended statistical processes or maps that 

directly test a hypothesis (Friston, 1995). Smoothing refers to estimating a smooth trend, 

usually by means of weighted averages of observations. The term smooth is used because 

such averages tend to reduce randomness by allowing positive and negative random effects 

to partially offset each other. Therefore, by smoothing the data, the temporal observations 

are reduced. Rather than performing separate inferential tests at different time points, 

which would increase the probability of Type_׀ error (rejecting the null hypothesis by 

mistake), SPM uses random field theory to evaluate statistical inferences (Serrien et al., 

2019). According to Taylor 2007, a “random field” has various implications. It simply is a 

stochastic process that takes values in a Euclidean space and defines a parameter space of 

dimensionality of at least 1 (Adler, 2010). So, based on the entire recorded data, a random 

field defines a certain level of smoothness (field) to which then the statistical tests are 

performed. In SPM, p-values introduce the probability of the data given that 𝐻0 is true 

without applying any alternative hypothesis (𝐻1), which is the classical frequentist 

approach of statistical interpretation (Serrien et al., 2019). Robinson et al. (2015), 

reanalysed a publicly available dataset of EMG gait data of young versus adult participants 

to contrast scalar and SPM vector-field analysis. While scalar analyses of EMG data 

between 35% and 45% stance phase showed no statistical differences between the young 

and adult groups, SPM vector-field analysis identified statistical differences within this 

time period. SPM analysis has never been used to quantify changes in EMG during 
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repeated maximal arm cycling sprinting and this method could reveal unique muscle 

activity changes not captured with discrete measures. 

Several studies have demonstrated that CNS output is influenced by variations in 

muscle and joint position (Doheny et al., 2008; Kleiber et al., 2015). During arm-cycling 

sprinting, joint position of the forearms and wrists can be manipulated by altering the 

handgrip used to perform the sprinting. To date, only one study has examined how 

variations in handgrip, and thus changes in upper limb joint position, may alter NMF 

development of the elbow flexors (Lockyer et al., 2021). The biceps brachii is the prime 

mover of elbow flexion in the supinated forearm position and is a synergist muscle for 

elbow flexion in a pronated position (Kleiber et al., 2015). Lockyer et al. (2021) reported 

that NMF of the elbow flexors is influenced by forearm position during arm cycling RSE. 

This means that the muscular activities of elbow muscles could be different in supinated 

vs. pronated position. However, there is no study about the effect of the EMG 

normalization method on representing these differences. The aim of this study was to 

determine if applying different EMG normalization methods to the elbow flexors and 

extensors would lead to different NMF profiles during repeated maximal arm cycling 

sprints. A second aim was to determine the effect of pronated versus supinated hand 

position on EMG. It was hypothesised that the different EMG normalization methods 

would lead to different EMG activity during repeated maximal upper body sprints and there 

would be greater changes in EMG during these repeated sprints when performed in 

supinated compared to pronated hand position.  

4.3 Methods 

A randomized cross-sectional within-subject study design was used to assess 

different EMG normalization methods on detecting neuromuscular fatigue of the elbow 
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flexors and extensor during repeated maximum arm cycling sprints in supinated and 

pronated forearm positions. 

4.3.1 Participants 

Eleven recreationally active (~10 hours weekly activity) male participants (height 

179.8 ± 7.6 cm, weight 87.3 ± 4.9 kg, age 25.7 ± 5.3 years) from the university population 

were recruited for this study. All participants were used to maximal bouts of exercise and 

had experience with performing arm cycling. All participants read and signed a written 

informed consent before participating in the study. They followed the Canadian Society 

for Exercise Physiology (CSEP 2003) preliminary instructions (no eating, drinking 

caffeine, smoking, or drinking alcohol for 2, 2, 2, or 6 h, respectively) before the start of 

testing. Participants were asked not to perform heavy exercise 24 hours before testing. The 

Memorial University of Newfoundland Interdisciplinary Committee on Ethics in Human 

Research approved the study (ICEHR # 20220648-HK) in accordance with the Tri-

Council guidelines in Canada with full disclosure of potential risks to participants. 

 

4.3.2 Arm-cycle ergometer sprint protocol 

Velotron ergometer (Dynafit Pro, RacerMate, Seattle, Washington), which was 

modified for arm cycling, was used for all arm-cycling sprints (Fig 1).  

The Velotron ergometer can only record data and apply a load when cycling is 

performed from the 3 o’clock to 9 o’clock direction. This meant that for the present study, 

participants could perform backward sprinting (in a counter-clockwise direction). Previous 

studies have mentioned that backward arm cycling represents a simple reversal from 

forward arm cycling, and similar patterns of EMG has been reported for both directions 
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(Zehr & Hundza, 2005). Therefore, the decision to cycle in a backward direction was 

justified for the current study. 

For all the cycling trials, participants were seated in a chair with their feet strapped 

to the floor. The Velotron ergometer was positioned so that the center of the crank was 

aligned horizontally with the participant’s acromion. Each sprint was preceded by 10 

seconds of cycling at 100 rpm. The sprint phase began immediately after the 10 seconds of 

slow-cycling (Fig. 1C). During all sprints, the mechanical brake applied a 5% torque factor. 

The 5% torque factor resulted in a resistance that was equal to 5% of the participant’s body 

weight. This was based on the work of Arpan et al. (2014). They suggested that this level 

of resistance resulted in the highest mean power output over 30 seconds in trained 

individuals. 

Participants were instructed to perform maximal intensity arm cycling sprints 

following the mechanical brake that happened immediately after the 10 seconds of slow 

cycling. They could see the countdown displayed on the Velotron Wingate Software 

version 1.0 (RacerMate, Seattle, Washington), and they could see the screen during the 

testing protocol. Participants were verbally encouraged to engage and perform each bout 

as fast as they could. Each sprint lasted 10 seconds and the sprint phase was followed by 

60 seconds of rest. This process was repeated ten times for a total of 10 sprints. 

4.3.3 Elbow flexors and extensors force 

For determination of elbow flexors isometric force participants sat in a chair in an 

upright position with the hips, knees, and elbows flexed at 90°. The upper torso rested 

against the backrest. The wrist of the dominant hand was inserted into a non-compliant 

padded strap containing a load cell (Omegadyne, Inc., Sunbury, Ohio, USA). The load cell 

detected forces, which were amplified (x2000) (MP-150, BIOPAC Systems Inc., Santa 



4-10 

 

Barbara, CA, USA) and displayed on a computer screen. The data was sampled at 2000 

Hz. During the performance of each MVC, participants were required to maintain positions 

of their head, neck, shoulder, and arm. Participants were instructed to perform a maximal 

voluntary contraction of their elbow flexors by maximally flexing the elbow against 

resistance prior to sprinting protocol (Fig. 1 A). Visual feedback and verbal encouragement 

were given to all participants during contractions. 

4.3.4 Electromyography 

EMG of biceps brachii (BIC), brachioradialis (BR) and triceps brachii (TR) 

muscles were recorded from the participant’s dominant arm prior to the sprint protocol 

using 3-11 BIOPAC data acquisition system (MP-150, Santa Barbara, CA, USA) and its 

associated software (AcqKnowledge 4.1). A bipolar configuration of disposable 10 mm 

Ag-AgCl surface EMG electrodes (MediTrace TM 130 Foam Electrodes with conductive 

adhesive hydrogel, Covidien IIC, Massachusetts, USA) were placed 2 cm apart (center-to-

center) over the mid-point of the muscle belly of BIC, lateral head of TR, and BR. A ground 

electrode was placed over the lateral epicondyle. Indelible ink was used to help identify the 

same position of electrodes for the latter session. To improve signal quality, thorough skin 

preparation for all electrodes was required, which included shaving hair over the desired 

area, abrading, and cleansing the skin with an isopropyl alcohol swab. EMG signals were 

differentially amplified (input impedance = 2 MΩ, common mode rejection ratio >110 dB 

min (50/60 Hz), gain × 1000, noise< 5µV) and filtered using a band-pass filter with cut 

off frequencies of 10 to 1000 Hz. Analog to digital conversion was processed using a 16-

bit convertor and EMG signals were sampled at 2000 Hz. For each maximum arm cycling 

sprint, the dominant hand was at the position of 12 o’clock position. 
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4.3.5 Experimental Protocol  

The experiment included three sessions: a familiarization session of about 20 

minutes and two experimental sessions of about 30 minutes. In the familiarization session, 

all participants became accustomed to maximal arm cycling sprints in a pronated and 

supinated forearm position in a backward direction. In the second and third experimental 

sessions, participants were randomly assigned to perform cycling in either forearm 

position; pronated and supinated. 

Once forearm position was determined during the first session, participants began 

each experimental session with a 4-min warm-up on a Monark ergometer (Monark 874E, 

Monark Exercise AB, Sweden) at a self-selected pace. After the warm-up, participants 

were positioned to perform a MVC of the elbow flexors and extensors. After the MVC, 

participants completed ten repetitions of 10-second sprints on the Velotron cycle 

ergometer.  

The second session of the experiment was performed with the same protocol as 

above, but in the forearm position that was not performed during their first sprinting 

session. There were at least 48 hours of rest between the two sprinting sessions to alleviate 

possible delayed onset muscle soreness that may have been caused by the arm cycling 

sprints. 

4.3.6 Data Analyses 

EMG signals were processed by using BIOPAC software (Acqknowledge 4.1). All 

MVC trials were filtered by digital FRI filter band pass between 10-1000 Hz for BIC, BR, 

and TR in supination and pronation, as well as in entire sprints. Then, the root mean square 

(RMS) for each trial was calculated with a 100-ms moving rectangular window based on 

the rectified EMG to determine the signal amplitude. The excel output of each graph was 
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stored for the rest of data analysis in MATLAB. Moreover, the maximum EMG amplitude 

of each MVC and the maximum amplitude of each maximum arm cycling sprint was 

recorded from the RMS outputs. By evaluating the maximum value of all 10 sprints of each 

experiment, the highest value recorded was considered the maximum sprint value. In the 

present study, three different normalization methods were calculated to investigate the 

effect of normalization methods on detecting neuromuscular changes following RSE: 1) 

normalization based on MVC, the maximum EMG amplitude during the MVC was 

considered as the reference value, 2) normalization based on maximum sprint, the 

maximum amplitude among 10 sprints was considered as the reference value, and 3) 

normalization based on average maximum sprints, the average of the maximum amplitude 

of 10 sprints were applied to normalize all time nodes (RMS EMG time nodes/ reference 

EMG) × 100). 

4.3.7 Statistical Analyses 

Matlab software R2021a was used for further analysis of SPM. The position of 12 

o’clock was detectable by the EMG sensor. In each participant for each sprint, EMG was 

collected from 12 o’clock to 12 o’clock position on the crank or 1 full revolution of 360 

for as many revolutions as there were in each sprint. Then an average for every degree 

throughout the revolution was calculated. Thus, each sprint from 1-10 were represented by 

1 averaged 360 revolution. The scalar output statistic, SPM-t, was calculated separately 

at each individual time node and is referred to as SPM. At this stage it is worth noting that 

SPM refers to the overall methodological approach, and SPM-t is the scalar trajectory 

variable. The calculation of SPM-t simply indicates the magnitude of the EMG amplitude 

per degree in each sprint, therefore with this variable alone we cannot accept or reject our 

null hypothesis. To test our null hypothesis, we next calculated the critical threshold at 
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which only α % (5%) of smooth random curves would be expected to traverse. This 

threshold is based upon estimates of trajectory smoothness via temporal gradients and, 

based on that smoothness (Penny et al., 2011), random field theory expectations regarding 

the field-wide maximum (Adler, 2010). Conceptually, a SPM correlation is similar to the 

calculation and interpretation of a scalar correlation test; if the SPM-t trajectory crosses the 

critical threshold at any time node, the null hypothesis is rejected. Typically, due to 

waveform smoothness and the interdependence of neighbouring points, multiple adjacent 

points of the SPM-t curve often exceed the critical threshold, we therefore call these “supra-

threshold clusters”. SPM then uses random field theory expectations regarding supra-

threshold cluster size to calculate cluster specific p-values which indicate the probability 

with which supra-threshold clusters could have been produced by a random field process 

with the same temporal smoothness (Adler, 2010). Entire EMG series of sprint 1,5, and 10 

considered as parametric maps representatives of starting, middle and end of the maximum 

arm cycling activity for BIC and BR, and TR in supinated and pronated position in the 

statistical analysis. 

Statistical parametric mapping (spm1d package (v0.4.3) (www.spm1d.org)) (Penny 

et al., 2006) was applied to statistically compare the effect of normalization methods on 

detecting the neuromuscular fatigue on maximum arm cycling sprints in entire cycling 

bouts, and to compare EMG activity of BIC, BR, and TR in different forearm positions 

(supination vs. pronation). Normality of the data was assessed by D’Agostino-Pearson𝐾2 

and H0 rejected. Since the data did not have the normal distribution the nonparametric 

SPM test was applied.   
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For each muscle (BIC, BR, and TR) two separate SPM repeated measures 

ANOVAs (F statistics) were performed (one in pronated and one in supinated position), to 

assess the effect of repeated sprinting on EMG. The tests were repeated in all three different 

normalization methods (MVC, max sprint, average max sprints) to evaluate their 

differences. When a significant sprint by- EMG activity profile interaction was present (α< 

0.05), post-hoc analysis comprised of the paired sample t-tests (Bonferroni correction α < 

0.05/3 < 0.016) were used to compare differences between the sprints. To evaluate the 

effect of position on muscle activity SPM paired t-tests were applied separately for sprint 

5 of each muscle (as the representative of an entire sprint activity) at supinated and pronated 

position. The test was repeated in all three normalization methods to evaluate their 

differences. SPM inference is reported at a threshold of p < 0.05, with family-wise error 

correction for multiple comparisons based on random field theory.  

Bonferroni post-hoc tests were used to determine where significant differences 

existed when significant main effects and/or interaction effects were found. F-ratios were 

considered statistically significant at the p < 0.05 levels. Descriptive statistics in text and 

Tables 1, 2, and 3 include mean ± SD and the figures include mean ± SE. Eta-squared (Ƞ2) 

measures indicating the if magnitude of changes associated with significant main effect 

were provided and reported as small (< 0.01), medium (≥ 0.06), and large (≥ 0.14). The 

entire statistical analyses were performed using MATLAB (v. 2020b, MathWorks, Inc., 

Natick, MA, USA) and SPM (spm1d package (v0.4.3)). 

4.4 Results 

4.4.1 Effect of repeated sprinting on EMG 

The mean and standard deviation of BIC, BR, and TR muscle activity for each 

normalization method in supinated and pronated positions are reported in table 1. The 
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results of the SPM RM one-way ANOVAs are illustrated in table 2. Fig 2 and Fig 3 show 

the average of BIC, BR, and TR EMG activities of each normalization method in supinated 

and pronated positions. 

For BIC in the supinated position the one-way repeated measures ANOVA analysis 

in all three normalization methods of time maps (each of the entire time-series  analyzed 

in SPM) showed significant changes in EMG activity from sprint 1 to sprint 10. The MVC 

normalization method revealed a significant change in EMG activity in 3 clusters (p=0.02). 

The post-hoc showed the main changes were between sprint 1 and sprint 10, in three 

clusters. Cluster 1, 0°-24°  (p<0.001), cluster 2, 191°-193° (p<0.001), and cluster 3, 324°-

359° (p <0.001) . In the first supra-threshold cluster the average EMG amplitude declined 

from 77.78% in sprint 1 to 55.03% in sprint 10. In cluster 2 the EMG declined from 15% 

in sprint 1 to 7.6% in sprint 10. In cluster 3 the EMG declined from 65% in sprint 1 to 

39.6% in sprint 10 (Fig 4, A). The second significant difference was between sprint 5 and 

10 with one supra-threshold cluster (10°-21°) (p<0.004), in which the EMG activity 

declined from 67.1% in sprint 5 to 57.3% in sprint 10.  (Fig 4, B). 

For BIC, changes in EMG activity following the sprints in maximum sprint 

normalization method was significantly meaningful (p=0.04, p=0.01). The post-hoc test 

showed significant changes between sprint 1 and 10 with 3 supra-threshold clusters. Cluster 

1 (p=0.004) was from 190° to 195°, in which the EMG activity declined from 10.7% in 

sprint 1 to 5.6% in sprint 10. Cluster 2 (p=0.004) was between 197° - 202°, in which the 

EMG activity declined from 8.6% in sprint 1 to 4.2% in sprint 10. Cluster 3 (p=0.005) was 

in the range of 259°- 268° of counter-clockwise arm cycle sprint, in which the EMG activity 

declined from 12.9% in sprint 1 to 6% in sprint 10 (Fig 5, A). The second significant 
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difference was between sprint 1 and 5 with one supra-threshold cluster (184°-206°) 

(p<0.001). The EMG activity declined from 10.3% in sprint 1 to 6.8% in sprint 5 (Fig 5, 

B). The third main difference was between sprint 5 and 10 with one cluster (297°-307°) 

(p=0.003), where EMG declined from 12.2% in sprint 5 to 9% in sprint 10 (Fig 5, C). 

For BIC, changes in EMG activity following the sprints with the average max 

sprints normalization method was significantly meaningful (p=0.01). The post-hoc test 

showed a significant difference between sprints 1 and 10 with 2 supra-threshold clusters. 

Cluster 1 (p<0.001) was between 0° to 30° with 25.9% and the EMG activity declined from 

53.6% in sprint 1 to 39.7% in sprint 10. Cluster 2 (p<0.001) was between 324°- 359° and 

the EMG activity declined from 38.2% in sprint 1 to 22.7% in sprint 10 (Fig 6, A). The 

post-hoc test revealed a significant difference between sprints 5 and 10 with 2 supra-

threshold clusters. Cluster 1 (p=0.002) was between 10°-24° and the EMG activity 

declined from 47.8% in sprint 5 to 40.6% in sprint 10. Cluster 2 (p=0.005) was between 

298°-302° and the EMG activity declined from 12.7% in sprint 5 to 9.5% in sprint 10 (Fig 

6, B). 

For triceps brachii in the forearm supinated position the one-way repeated measures 

ANOVA analysis was significant for only the max sprint normalization method. The max 

sprint normalization method revealed a significant change in muscle EMG activity in 3 

clusters (p=0.04, p=0.01, p=0.05). The post-hoc test showed the main changes was between 

sprints 1 and 5 in two supra-threshold clusters. Cluster 1 (p=0.008) was between 47°-48°, 

in which the EMG activity declined from 16.4% in sprint 1 to 14.6% in sprint 5. Cluster 2 

(p=0.002) was between 50°-61°, in which the EMG activity declined from 17.4% in sprint 

1 to 15.6% in sprint 5 (Fig 7). 



4-17 

 

BR EMG activity in forearm supination was not different (p>0.05) at any time for 

any of the normalization methods. 

For BR in the pronated position the one-way repeated measures ANOVA analyses 

were significant for all three normalization methods. The MVC normalization method 

revealed a significant change in muscle activity (p=0.03). The post-hoc test showed a 

significant difference between sprints 1 and 10 with 2 supra-threshold clusters. Cluster 1 

(p<0.001) was between 168°to 195° in which the EMG activity declined from 41.9% in 

sprint 1 to 28.9% in sprint 10. Cluster 2 (p=0.007) was between 339°- 341° in which the 

EMG activity declined from 11.2% in sprint 1 to 7.99% in sprint 10 (Fig 8).  

The max sprint normalization method revealed a significant change in EMG 

activity (p=0.01, p=0.02). The post-hoc test showed a significant difference between 

sprints 1 and 10 with 2 supra-threshold clusters. Cluster 1 (p<0.001) was between 169°to 

201° in which the EMG activity declined from 24.6% in sprint 1 to 16.2% in sprint 10. 

Cluster 2 (p=0.004) was between 311°-322° in which the EMG activity declined from 

7.3% in sprint 1 to 5.59% in sprint 10 (Fig 9).  

The average max sprints normalization method revealed a significant change in 

EMG activity (p=0.041, p=0.013, p=0.049). The post-hoc test showed a significant 

difference between sprints 1 and 10 with 2 supra-threshold clusters. Cluster 1 (p<0.001) 

was between 169° to 201° in which the EMG activity declined from 31.1% in sprint 1 to 

20.9% in sprint 10. Cluster 2 (p=0.002) was between 311° to 322° in which the EMG 

activity declined from 9.1% in sprint 1 to 7% in sprint 10 (Fig 10). 

4.4.2 Effect of Forearm position on muscle EMG activity 

The mean EMG activity of BIC and BR were higher during the supinated position, 

and the mean TR EMG activity was higher in the pronated position (table 3). The paired t-
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test SPM analysis showed a significant decrease in BIC EMG activity normalized with 

MVC from the supinated to pronated position. A supra-threshold cluster (4°-20°) exceeded 

the critical threshold calculated by SPM of (3.272) (p=0.01) as the EMG declined from the 

supinated position (66.1%) to the pronated position (29.5%) (Fig 11). The paired t-test 

SPM analysis for average max sprints normalization method in BIC exceeded the critical 

threshold (3.709) in the supra-threshold clusters of 3°- 14° (p=0.01) and (17°- 18°) 

(p=0.02) 37% and 31.4% of EMG activity decline in pronated compared to supinated 

position, respectively (Fig 12).  

The paired t-test SPM analysis for the MVC normalization method exceeded the 

critical threshold (3.274) in the supra-threshold clusters of (298°- 321°) as the TR EMG 

activity was significantly (p=0.01) increased from the supinated position (47%) to the 

pronated position (71%). (Fig 13). 

 

4.5 Discussion 

The present study aimed to investigate different EMG normalization methods for 

determining changes in muscle EMG activity during repeated maximum arm cycling 

sprints in supinated and pronated forearm positions. Overall, the average muscle activity 

of BIC and BR in all normalization methods (MVC, max sprint, average max sprints) was 

higher in a supinated than pronated forearm position. In contrast, TR EMG activity was 

higher in the pronated position compared with the supinated position. The main findings 

of the study were that the max sprint normalization method compared to the others better 

detected changes in EMG from sprint 1 to 10.  In contrast, the MVC method better detected 

changes in EMG changes in supinated versus pronated forearm positions. More 

specifically, there was a decrease in BIC EMG in the supinated position and BR EMG in 
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the pronated position from sprint 1 to 10. At the same time, there were no significant 

changes in the BIC EMG in the pronated position and BR EMG in the supinated position 

from sprint 1 to 10. Finally, the decline in EMG during repeated maximum arm cycling 

sprints may, in part, explain the decrease in average power output and fatigue index from 

sprint 1 to 10 in supinated and pronated forearm positions (data published in Lockyer et 

al., (2021)). These findings suggest that quantifying changes in EMG are normalization 

method-dependent and using these methods for quantifying muscle EMG changes during 

RSE may be a research question specific. 

4.5.1 Effect of repeated sprinting on EMG  

 Studies on RSE typically have measured changes in pre-RSE to post-RSE MVC 

EMG or median frequency of the EMG to help quantify neuromuscular fatigue. Pearcey et 

al. (2016) reported non-significant changes (p>0.05) for BIC and TR RMS EMG from pre 

to post sprint MVCs following ten sprints of arm cycling. Collins et al. (2018) discussed 

that the measurements of RSE-induced neuromuscular fatigue are often taken during an 

isometric contraction following the sprint(s). They explained that NMF is dependent on the 

performed task (Enoka & Duchateau, 2008; Enoka & Stuart, 1992), and this task 

dependency could be a methodological consideration of these studies (Collins et al., 2018).  

In the present study, we applied SPM to quantify muscle activity throughout each 

sprint for each arm-crank revolution so that we could compare changes in EMG that would 

be task specific. SPM statistical analysis demonstrated a significant decrease in EMG, and 

the post hoc showed the precise cycle crank position (counter-clockwise degree) of the 

ranges of decreases in EMG activity. Bic EMG in supinated position in all three 

normalization methods, BR EMG in pronated position in all three normalization methods, 

and TR EMG in Supinated position in max. sprint normalization decreased significantly 



4-20 

 

from sprint 1 to 10 (table 1). Robinson et al. (2015) analyzed a public data set with both 

SPM and scalar analysis to investigate differences in EMG data at 35–45% gait cycles for 

young and adults. The EMG time-series of the anterior tibialis, soleus, gastrocnemius 

medialis, and peroneus longus muscles were evaluated from their walking trials. While the 

t-test between the two samples in the scalar analysis showed no difference between young 

and adult EMG magnitude, the SPM t-test found a significant difference between the two 

groups. Their study highlighted that the two characteristics of inter-muscle dependence and 

time-dependence of EMG waveforms as complex time-series have failed to consider non-

directed hypothesis testing (null hypothesis) in scalar or qualitative analyses. Inter-muscle 

dependence is evidenced by inter-muscle covariance (Robinson et al., 2015), and it has 

been mostly explained by inter-muscle coactivation, multi-muscle synergy, and the like 

(Gribble & Ostry, 1998). In statistics, a variance is the spread of a data set around its mean 

value, while a covariance is the measure of the directional relationship between two 

random variables. While mean single muscle EMG time-series have inherent variability, 

inter-muscle time-series may also co-vary. For example, if the single-muscle variance was 

much larger than the inter-muscle (co-) variance, it is unlikely that scalar analysis would 

detect this (Robinson et al., 2015). So hypothesis testing methods that omit covariance are 

inherently biased because they fail to consider inter-muscle dependence (Robinson et al., 

2015).  

Moreover, Robinson et al.(2015) explained that time-dependence is evidenced by 

coordinated joint movements which are the consequence of smooth synergistic muscle–

tendon forces. Time-dependent activation of individual motor units causes smoothness of 

movement. Therefore, the smoothness of EMG time series as biological data is because 
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of the sequential recruitment of muscle fibers (de Luca et al., 1982), and the biological 

elasticity, which causes a production of a smooth force, and signal processing techniques 

to decrease the noise (Robinson et al., 2015). Smooth EMG time-series from a statistical 

perspective means non-random temporal neighborhood covariance (Pataky et al., 2013) 

and thus, hypothesis testing of single-instant parameters and integrals is biased because 

they disregard time-dependence (Pataky et al., 2013; Pincheira et al., 2020). Therefore, 

we used SPM to analyze EMG signals as time-series may be more precise.  

Using SPM, the main question in the present study was to evaluate which EMG 

normalization method would better represent neuromuscular changes following the 

maximal intensity arm cycling sprints. As mentioned, SPM uses a random field theory to 

detect a significant difference. By entering all data (in the present study, all EMG activity 

recorded from the experiment), SPM could define the T- value (the critical cut-off value) 

for the test. So, any supra-cluster (a cluster below or above this field) is detected as 

significant differences (p<0.05). In the present study, we used the entire EMG activity of 

sprints 1,5 and 10 in each normalization method in 1-way RM ANOVA, so the 

normalization method that could detect more numbers of clusters or the more extensive 

areas was considered the best normalization method for detecting the effects of 

neuromuscular changes due to high-intensity arm cycling sprints. The same was for 

detecting the better normalization method to understand muscle activity differences during 

supinated vs. pronated positions. Then the post-hocs could determine the significant 

changes between the sprints (1,5,10) and also in what crank position. Table 2 shows that 

the max sprint normalization method detected more differences in more extensive ranges 

between sprints than normalizing with MVC and average max sprints methods. Moreover, 
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table 1 shows that this normalization method (max sprint) normalized the EMG activities 

at lower percentages than the two other methods. These results suggest that normalizing to 

max sprint as a reference value could detect decreases in EMG activities throughout 

repeated maximal arm cycling sprints better than the others evaluated in this thesis. Burden 

(2010) suggested that the MVC normalization method is preferable in low-intensity 

activities due to its methodological simplicity, reliability, and ability to generate maximum 

EMG amplitudes. According to Ball and Scurr (2013), most studies on maximum muscle 

activity have suggested that normalization to the muscle of action (as the reference value) 

in a similar performed task, is more preferred in dynamic activities. That is because of the 

increased neuromuscular requirements in high-velocity maximal activities compared with 

submaximal activities.  

Sinclair et al. (2015) investigated different EMG normalization methods in leg 

cycling sprints in terms of evaluating the reliability and reference amplitude of each 

normalization method. They normalized the EMG activity of four muscles (rectus femoris, 

biceps femoris, gastrocnemius, and tibialis anterior) to MVC, max sprint (obtained from 

10 second of maximum sprint started from power output of 180 W) and peak dynamic 

sprint. For peak dynamic sprint participants were instructed to cycle at a constant workload 

of 180 W for 5 minutes and peak dynamic sprint was calculated from the last 10 seconds 

of each minute of that 5-minutes cycling. The protocol repeated after 30 minutes rest to 

measure pre and post values for each normalization methods to assess the reliability. They 

reported the highest EMG amplitude in normalizing obtained from MVC and Max sprint 

activity, and the highest levels of reliability was for the peak dynamic sprint method. 

Therefore, they suggested that the peak dynamic sprint method for cycling analysis may 
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be a more appropriate method for EMG normalization (Sinclair et al., 2015). Other studies 

have shown that normalizing to MVC is less reliable than normalizing to submaximal 

contractions (Albertus-Kajee et al., 2010; Mathur et al., 2005; Yang & Winter, 1984). It 

could be because some people can produce a MVC that is closer to maximal level of 

activation than others (Gandevia, 2001), one reason for the difference of this ability could 

be a general unfamiliarity of many people with performing a maximal contraction of an 

individual muscle (Ball and Scurr, 2013).  MVC is strongly dependent on the specific joint 

angles used during the maximum isometric voluntary activation (Fernández-Peña et al., 

2009). Felici (2006) suggested that a MVC represents a simplified version of movement 

and therefore may not be the best representation of muscle adaptation following athletes’ 

training. 

In contrast to Sinclair et al. (2015) who reported MVC and max sprint 

normalization methods both demonstrated high EMG amplitudes, the result of the present 

study showed that normalizing to MVC caused the highest EMG amplitudes while 

normalizing to max sprint caused the lowest EMG amplitude for all muscles in pronated 

and supinated positions (Fig 2 and 3). They also reported a significant main effect for the 

magnitude of the normalization amplitude as a function of both normalization technique 

and time. The differences between findings in the current study and Sinclair et al. (2015) 

could be attributed to the difference in statistical methods used and the fact that the present 

study applied the statistical methods throughout the EMG signal instead of a selected part 

of the EMG time series. Literature has reported that some studies of dynamic activities 

have reported EMG activity exceeding 100% of MVC (Kumar & Mital, 1996). Reporting 

a dynamic activity over 100% of MVC shows that the normalization technique for eliciting 
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the MVC reference has not recruited the muscle’s maximum activation capacity (Sinclair 

et al., 2015) and causes an increase in the systematic error and overestimation of muscle 

activity (Harms-Ringdahl et al., 1996). Moreover, in contrast to Sinclair et al.(2015), which 

suggested peak dynamic sprint as an appropriate normalizing method for cycling analysis, 

the present study results showed the best normalizing method might be different based on 

the research question. While our study's results could better detect the effects of NMF by 

the Max sprint normalization method, the differences of EMG activity in supinated and 

pronated positions were detectable by the MVC normalization method. In their review, 

Ball and Scurr (2013) explained that the optimal normalization methods might be muscle- 

and task-dependent. In high-intensity muscle activities, they explained that alternative 

dynamic methods of normalization where the muscle action is similar to that of the task 

are preferable to isometric methods (Ball & Scurr, 2013). 

4.5.2 Effect of Forearm position on muscle EMG activity 

The findings of this study in terms of the effect of position on muscle activity were 

that the average activity of BIC was higher in supinated than pronated forearm position 

during repeated maximal arm cycling sprinting. TR activity was higher in the pronated 

position. The differences were detected by the MVC normalization method.  

The present study's greater EMG activity of elbow flexors in the supinated position 

is consistent with other research (Chaytor et al., 2020). Bressel et al. (2001) evaluated the 

handgrip position (supinated, pronated, and neutral) on EMG activity of BIC, TR, and BR. 

Their results showed a significantly higher BR EMG activity in neutral compared with 

pronated and supination positions but no significant difference for BIC and TR. They 

contributed changes in BR EMG activity to the anatomic advantage of BR in producing 

elbow flexion in the neutral position. However, they justified that the insignificant results 
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of BIC EMG between supinated versus pronated positions might be due to different neural 

mechanisms that affect BIC EMG activity. The results of the present study, however, 

showed a consistent result of BIC EMG activity being significantly higher in a supinated 

position and TR EMG activity being significantly higher in a pronated position, whereas 

BR EMG activity did not change. Research has shown that counter-clockwise arm cycling 

depends more on the elbow flexors (Bressel & Heise, 2004; Langbein & Maki, 1995). 

These results could be related to the biomechanical advantage of BIC in a supinated 

position to act as the primary elbow flexor (Kleiber et al., 2015), and increasing TR EMG 

activity to stabilize the hand (Chaytor et al., 2020). The differences in our results and 

Bressel et al. (2001) could be due to different statistical methods. While they used the last 

5 seconds of each EMG bout, we calculated the EMG differences throughout all EMG 

sprints using SPM methods. Studies have shown that some EMG time-series changes might 

not be detected by applying scalar statistics (Pincheira et al., 2020; Robinson et al., 2015).  

Power output and fatigue index data for this study have been reported elsewhere 

(E. J. Lockyer et al., 2021). Lockyer et al. (2021) was the first study to show that elbow 

flexors’ NMF depends on forearm position. The study showed that irrespective of forearm 

position, repeated maximum arm cycling sprints causes a deterioration in sprint 

performance as the number of sprints increase. However, they reported that peak and mean 

power output and elbow flexors’ MVC force following pronated sprinting were 

significantly higher in a supinated forearm position. There was also a decrease in 

potentiated twitch force and they concluded that peripheral fatigue was greater when the 

forearm was in a supinated compared with a pronated position (E. J. Lockyer et al., 2021). 

In the present study, we used the SPM to evaluate the effects of the time (sprint 1 to 10) on 
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the muscle EMG profile of each muscle in each position. The results showed that BIC and 

TR EMG decreased during repeated maximal arm cycling sprints while cycling in a 

supinated position and this occurred over a larger range throughout the 360 degree 

revolution. In the pronated position only, BR EMG decreased but in a narrower range 

throughout the 360 degree revolution. This may indicate a higher amount of NMF when 

cycling in a supinated position. The change in EMG throughout the sprinting supports the 

development of NMF and reduction in peak and mean power outputs reported by Lockyer 

et al. (2021). 

The decrease in muscle EMG may be indicative of both central and peripheral 

nervous system fatigue. Pearcey et al. (2016) investigated the effect of arm-cycling sprints 

on neuromuscular performance. They reported a decline in power during the sprints and 

decreases in MVC force, potentiated twitch force, and voluntary activation of the elbow 

flexors following ten sprints. They also reported decreases in supraspinal but not spinal 

excitability of the BIC and suggested both central and peripheral fatigue occurred (Pearcey 

et al., 2016). In the present study, we did not measure supraspinal and spinal excitability. 

However, the pattern of changes in mean power output reported in Lockyer et al. (2021) 

was the same as Pearcey et al.(2016).  

4.5.3 Methodological considerations  

In the present study, there are some considerations when interpreting the results. 

First, participants were instructed to perform counter-clockwise arm cycling (the reverse 

direction). Previous studies compared forward and backward arm cycling and reported no 

difference in muscles’ oxygen consumption and only a minor kinematic difference in 

muscle activity  (Bressel & Heise, 2004) and subtle differences in general EMG patterns 

with equivalent cutaneous reflex patterns (Nippard et al., 2020; Zehr & Hundza, 2005) 



4-27 

 

between forward and backward crank directions. Therefore, it is possible that the results of 

the present study are not completely transferable to arm cycling in the forward direction. 

However, it is notable that in the current study, unlike the other studies, the entire EMG 

time-series was analyzed. 

Second, we wanted to determine the best EMG normalization method to quantify 

the effect of repeated maximal arm cycling sprinting on muscle EMG and between different 

forearm positions (pronated vs. supinated positions). Since one of the limitations of SPM 

is designing the two-way ANOVA, we analyzed each normalization method via a one-way 

repeated measures ANOVA and then considered the method that showed more clusters as 

the best normalization method. However, applying the entire biological data in SPM 

decreases the bias in testing the null-hypothesis (Pataky et al., 2013). 

Third, all MVC contractions were performed in the supination position in both 

supinated and pronated arm cycling sessions. Perhaps the isometric contractions should 

have been performed in the same forearm position as the arm cycling session. We used the 

same position for both arm cycling sessions to allow for a better comparison between 

sessions. 
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4.6 Conclusion 

This study revealed that choosing the best EMG normalization for the repeated 

maximal arm cycling sprinting method might depend on the research question. 

Normalizing the EMG values to the max sprint was better in detecting muscle EMG 

changes during maximal repeated arm cycling sprints while normalizing the EMG to MVC 

detected EMG changes in different forearm positions during the sprints. Moreover, by 

applying SPM, we could use all recorded EMG data in the analysis. We could examine 

precise changes in EMG activity for each muscle, throughout each cycle and how hand 

position would affect this EMG activity. For example, in BIC supinated position, EMG 

activity decreased the most between 180°-360° of arm cycling between sprint 1 and 10. 

This was the first study to analyze the entire recorded EMG profile of maximum arm 

cycling sprints. Further studies can examine changes in NMF development in neurological 

disorders or the effects of therapeutic or training protocols on muscle EMG activity by 

SPM. 
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4.8 LIST OF TABLES 

Table 1. Mean±SD of the average of sprint 1,5-, and 10-time nodes normalized to 360° 

in each normalization method in supinated and pronated positions in percent. Maximum 

(Max), Maximum Voluntary contraction (MVC), Average (Av), Normalization (Nl), Biceps 

Brachii (BIC), Brachioradialis (BR), Triceps Brachii. 

Muscle Nl Method Supinated (%) Pronated (%) 

BIC Av. Sprint 33.1±22.04 30.4±23.15 

 Max. Sprint 31.5±21.32 26.5±20.13 

 MVC. Sprint 46.6±31.43 29±22.30 

BR Av. Sprint 34±22.13 31.2±24.33 

 Max. Sprint 28.8±18.97 24.9±19.30 

 MVC. Sprint 43±28.22 37.9±29.87 

TR Av. Sprint 38.8±17.61 38±21.39 

 Max. Sprint 30.1±13.84 32.9±18.60 

 MVC. Sprint 38.4±17.93 47.2±26.71 
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Table 2. The effect of sprints on Muscle activities for each normalization method. The 

results of SPM RM ANOVA, and Post-hocs revealed whether or not each normalization method 

could detect differences between sprint 1,5, and 10 (EMG time series) in each normalization 

method for the supinated and pronated positions. Biceps Brachii (BIC), Brachioradialis (BR), 

Triceps Brachii (TR), Maximum (Max), average (Av), Sprint (Spt). 

Muscle Position Nl 

Method 

RM 

ANOVA 

Paired 

t-test 

(post-

hoc) 

Range Changes  

BIC Supinated MVC P<0.05 Spt1,10 

Spt1,10 

Spt1,10 

Spt5,10 

0°-24° 

191°-193° 

343°-359° 

10°-21 

−29.2%∗∗∗ 

−15.8%∗∗∗ 

−39%∗∗∗ 

−16%∗∗∗ 

BIC Supinated Max. Spt P<0.05 Spt1,10 

Spt1,10 

Spt1,10 

Spt5,10 

Spt1,5 

190°-195° 

197°-202° 

259°-268° 

297°-307° 

184°-206° 

−47.6%∗∗∗ 

−51%∗∗∗ 

−53.4%∗∗∗ 

−26%∗∗∗ 

−33.9%∗∗∗ 

BIC Supinated Av. Spt P<0.05 Spt1,10 

Spt1,10 

Spt5,10 

Spt5,10 

0°-30° 

324°-359° 

10°-24° 

298°-302° 

−25.9%∗∗∗ 

−40.5%∗∗∗ 

−15%∗∗∗ 

−25%∗∗∗ 
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BR Supinated MVC p>0.05  No Change  

BR Supinated Max. Spt p>0.05  No Change  

BR Supinated Av. Spt p>0.05  No Change  

TR Supinated MVC p>0.05  No Change  

TR Supinated Max. Spt P<0.05 Spt1,5 

Spt1,5 

47°-48° 

50°-61° 

−10.9%∗∗∗ 

−10.9%∗∗∗ 

TR Supinated Av. Spt p>0.05  No Change  

BIC Pronated MVC p>0.05  No Change  

BIC Pronated Max. Spt p>0.05  No Change  

BIC Pronated Av. Spt p>0.05  No Change  

BR Pronated MVC P<0.05 Spt1,10 

Spt1,10 

168°-195° 

339°-341° 

−31%∗∗∗ 

−28.6%∗∗∗ 

BR Pronated Max. Spt P<0.05 Spt1,10 

Spt1,10 

169°-201° 

311°-322° 

−34.1% ∗∗∗ 

−23.5% ∗∗∗ 

BR Pronated Av. Spt P<0.05 Spt1,10 

Spt1,10 

169°-201° 

311°-322° 

−32.7% ∗∗∗ 

−23% ∗∗∗ 

TR Pronated MVC p>0.05  No Change  

TR Pronated Max. Spt p>0.05  No Change  

TR Pronated Av. Spt p>0.05  No Change  

 

            

***Significantly different from EMG time-series 1 to 10 for p < 0.001.  
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Table 3. The effect of forearm position on muscle activities for each normalization 

method. The results of SPM RM ANOVA, and Post-hocs revealed whether or not each 

normalization method could detect differences between EMG time series in a supinated versus 

pronated position throughout sprint 5. Maximum (Max), Maximum Voluntary contraction (MVC), 

Average (Av), Normalization (Nl), Sprint (Spt), Biceps Brachii (BIC), Brachioradialis (BR), 

Triceps Brachii. 

Muscle NI Method Paired T-Test  

(Pronated Vs. 

Supinated) 

Range Percentage Change  

(From Supinated to 

pronated) 

BIC MVC P<0.05 4°-20° −55.5%∗ 

BIC Max. Spt p>0.05  No Change 

BIC Av. Spt P<0.05 3°-14° 

17°-18° 

−37%∗ 

−25%∗ 

BR MVC p>0.05  No Change 

BR Max. Spt p>0.05  No Change 

BR Av. Spt p>0.05  No Change 

TR MVC P<0.05 298°-321° +49.5%∗ 

TR Max. Spt P>0.05  No Change 

TR Av. Spt p>0.05  No Change 

 

*Significantly different between EMG time-series of a supinated vs. pronated position for 

p < 0.05.  
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4.9 List of Figures 

Figure 1. Experimental Setup.  

(A) Experimental set up for measuring brachioradialis, biceps and triceps brachii 

maximum voluntary contraction (MVC), and electromyography (EMG). (B) Experimental 

set up for the arm cycling sprints. The scaled circle (0°-360°) shows the equal degree to 

each clock positions, the arrows direction indicates the counter-clockwise direction of arm 

cycling. (C) Timeline for experimental protocol. The light grey bars represent submaximal 

intensity cycling that each participant performed prior to maximal intensity arm cycling. 

The maximal intensity arm cycling sprints are represented by the dark grey bars and the 

passive rest periods are represented by the white bars. The arrow pointing downward 

indicates when MVC was measured. 
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Figure 2. The average of A) BIC, B) BR, and C) TR EMG activities for each 

normalization method in a supinated position. 

The average EMG activity (%) in the supinated position throughout sprint 1-10 

for all participants in all normalization methods (MVC, max sprint, average max sprints). 

The yellow line shows MVC normalization, the orange is maximum sprint normalization, 

and the blue is average max. sprint normalization. 
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B) 
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C) 
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Figure 3. The average of A) BIC, B) BR, and C) TR EMG activities for each 

normalization method in a pronated position.  

The average EMG activity (%) in the pronated position throughout sprint 1-10 in 

all participants for all normalization methods (MVC, max sprint, average max sprints). The 

yellow line shows MVC normalization, the orange is maximum sprint normalization, and 

the blue is average max. sprint normalization. 
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B) 
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C) 
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Figure 4.  The post hoc graphs for SPM RM ANOVA for BIC EMG activity from sprint 1 

to sprint 10 in supination for the MVC normalization method (p<0.05). 

 

A) The post-hoc showed the main changes were between sprint 1 and sprint 10, in the range 

of 0°-24° (p<0.001), 191°-193° (p<0.001), and 324°-359° (p<0.001). B) The second significant 

difference was between sprint 5 and 10 with one supra-threshold cluster (10°-21°), p<0.004. 
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Figure 5. The post hoc graphs for SPM RM ANOVA for BIC EMG activity from sprint 1 

to sprint 10 in supination for the Max Sprint normalization method (p<0.05). 

A) The post-hoc showed the main changes were between sprint 1 and sprint 10, in the 

range of 190° to 195° (p=0.004), 197°-202° (p=0.004), and 259° - 268° (p=0.005). B) The 

second significant difference was between sprint 1 and 5 with one supra-threshold cluster (184°-

206°) p<0.001. C) The third significant difference was between sprint 5 and 10 with one supra-

threshold cluster (297°-307°), p=0.003. 
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Figure 6. The post hoc graphs for SPM RM ANOVA for BIC EMG activity from sprint 1 

to sprint 10 in supination for the average max sprints normalization method (p<0.05). 

A) The post-hoc showed the main changes were between sprint 1 and sprint 10, in the range 

of 0° to 30° (p<0.001), and 324°- 359° (p<0.001). B) The second significant difference was 

between sprint 5 and 10 with two supra-threshold clusters. Cluster 1 (p=0.002) was between 10°-

24°, and Cluster 2 (p=0.005) was between 298°-302°. 
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Figure 7. The post hoc graphs for SPM RM ANOVA for BIC EMG activity from sprint 1 

to sprint 10 in supination for the max sprint normalization method (p<0.05). 

The post-hoc showed the main changes were between sprint 1 and sprint 5, in range of 47°-

48°(p=0.008), and 50°-61° (p=0.002). 
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Figure 8 The post hoc graphs for SPM RM ANOVA for BIC EMG activity from sprint 1 

to sprint 10 in pronation for the MVC normalization method (p<0.05). 

 The post-hoc showed the main changes were between sprint 1 and sprint 10, in the range 

of 168°to 195° (p<0.001), and 339°- 341°(p=0.007). 
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Figure 9 The post hoc graphs for SPM RM ANOVA for BIC EMG activity from sprint 1 

to sprint 10 in pronation for the max Sprint normalization method (p<0.05). 

The post-hoc showed the main changes were between sprint 1 and sprint 10, in the range 

of 169°to 201°(p<0.001), and 311°-322° (p=0.004). 
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Figure 10.  The post hoc graphs for SPM RM ANOVA for BIC EMG activity from sprint 

1 to sprint 10 in pronation for the average max sprints normalization method (p<0.05). 

The post-hoc showed the main changes were between sprint 1 and sprint 10, in the range 

of 169° to 201° (p<0.001), and 311° - 322° (p=0.002). 
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Figure 11. The paired t-test SPM analysis normalized with the MVC method showed a 

significant decrease in BIC EMG activity, from the supinated to pronated position. 

 The blue line is related to EMG activity in supinated position, and the orange line shows 

EMG activity in the pronated position. A supra-threshold cluster (4°-20°) exceeded the critical 

threshold calculated by SPM of (3.272) (p=0.01). 
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Figure 12. The paired t-test SPM analysis normalized with the average max sprints 

method showed a significant decrease in BIC EMG activity, from supinated to pronated position. 

The blue line is related to EMG activity in the supinated position, and the orange 

line shows the EMG activity in the pronated position. The supra-threshold cluster 1 (3°- 

14°) exceeded the critical threshold calculated by SPM of (3.709) (p=0.01), the supra-

threshold cluster 2 (17°- 18°) exceeded the threshold with (p=0.02). 
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Figure 13. The paired t-test SPM analysis normalized with the MVC method showed a 

significant increase in TR EMG activity, from supinated to pronated position. 

The blue line is related to EMG activity in supinated position, and the orange line shows 

the EMG activity in the pronated position. A supra-threshold cluster (298°- 321°) exceeded the 

critical threshold calculated by SPM of (3.274) (p=0.01). 
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