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Abstract 

A passive brain-computer interface (pBCI) is a system that continuously adapts a human-computer 

interaction to the user’s mental state. An example would be a system that aims to prevent traffic 

accidents by sending alerts to a truck driver when a state of drowsiness is detected. Key to the 

efficacy of such a system is the reliable estimation of the user’s state via neural signals, acquired 

through non-invasive methods like electroencephalography (EEG). Typically, in pBCI studies, the 

state being explored (e.g., fatigue, frustration, boredom, attention) is considered in isolation, and 

no other aspect of the user’s state is taken into account. In real-life scenarios, however, different 

aspects of the user’s state are likely to be changing simultaneously - for example, their cognitive 

(e.g., level of mental workload) and affective (e.g., level of stress/anxiety) states. This inevitable 

confounding of different states needs to be accounted for in the development of state detection 

algorithms in order for them to remain effective when taken outside the lab.  

In this work, simultaneous classification of two mental states via EEG is investigated for the first 

time. Specifically, mental workload and stress are explored since detection of both of these states 

would be useful in a variety of applications, including for improving safety in high risk work 

environments. Individually, both mental workload and stress have been studied extensively in the 

passive BCI literature, however in real-life scenarios they often vary concurrently within an 

individual. First, the effect of varying each state on classification of the other state was investigated 

to indicate if/how mental workload and stress confound one another. Then, different classification 

algorithms were proposed and evaluated to mitigate the confounding effects of variation in mental 

workload on the detection of stress and vice versa. Finally, a processing pipeline suitable for 

realizing an online BCI for simultaneous detection of mental workload and affective state was 
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investigated. This work represents a step toward the ultimate goal of realizing a functional, reliable, 

and robust passive BCI capable of detecting both mental workload and stress. 
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General Summary  

Brain-computer interface (BCI) technologies aim to allow the control of external devices based on 

the brain activity of the user. Initially, the motivation of BCI research was the development of a 

movement-free means of communication and environmental control for people with severe 

physical disabilities. However, due to the considerable advancements in BCI algorithms achieved 

through decades of research, the potential of using BCIs in new applications, even for healthy 

users, has become highly interesting. One emerging area of BCI research, which has a wide range 

of potential applications for all users, are passive BCIs. Passive BCIs do not aim in the active 

control of devices, rather, the BCI is programmed to recognize different mental states of interest 

in the user (e.g., cognitive or emotional) from brain activity that arises naturally during the task at 

hand. An example would be a BCI that detects states of drowsiness and provides alerts to a truck 

driver, helping to increase safety by avoiding potential accidents. 

In this research, two different mental states that are of particular importance in high risk work 

environments, mental workload level and stress, were investigated. Specifically, the ability to 

detect these two states in a user at the same time, using a non-invasive functional imaging 

technology called electroencephalophrahy (EEG), was explored. These states have been 

investigated before in other research studies, but always individually. The long term goal of this 

research is the realization of a functional, reliable, and robust passive BCI capable of detecting 

both the mental workload level and stress level of the user simultaneously, since having this more 

detailed information would provide a better picture of the user’s mental state, and their risk of 

error. Such a system could have significant impact by helping to prevent industrial accidents and 

their associated human, economic, and environmental costs. 
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Chapter 1 : Introduction 

1.1 Brain Computer Interfaces (BCIs) 

 

Brain-computer interface technologies aim to provide a method of communication between a 

human and a device that is based solely on neural signals measured from the brain [1, 2]. Initially, 

the motivation of BCI research was the development of a movement-free means of communication 

and environmental control for people with severe physical disabilities, and specifically those with 

late-state amyotrophic lateral sclerosis (ALS) who may retain no residual volitional motor control, 

in any part of their body, with which they could operate more conventional interfaces (e.g., 

keyboard, mouse, pushbutton, etc.) [1, 3]. In such a BCI, a user would initiate different commands 

by intentionally generating specific patterns of activity in their brain. Typically, this would be done 

either by selectively focusing on different external stimuli (in a so-called “reactive” BCI), or by 

performing different mental tasks (in a so-called “active” BCI), that would each be associated with 

a different command. The BCI system would detect which stimuli the user was observing, or which 

task they were performing, based on neural signals measured via one of a number of possible 

imaging modalities, and output the appropriate command to the connected device. For example, 

imagining movement of the right hand might translate to a “move cursor right” command, and 

imagining movement of the left hand might translate to a “move cursor left” command. 

Reactive/active BCI research has been ongoing since the late 1980s/early 1990s [4, 5, 6], and the 

interested reader is referred to [7-9] for a recent review of this literature.  

Recently, the field of BCI research has started to branch in new directions. Due to the considerable 

advancements in BCI algorithms achieved through decades of research, the potential of using BCIs 
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in new applications, even for healthy users, has become highly interesting [1]. In particular, 

research in the area of “passive BCIs” has grown significantly since the concept was introduced 

approximately a decade ago [10]. Rather than deriving its outputs from brain activity which is 

directly and consciously controlled by the user for the purpose of controlling a device, a passive 

BCI is one that is designed to recognize different mental states of interest (e.g., cognitive or 

emotional) that arise naturally during the task at hand, and use this implicit information to adapt 

the environment in a useful way. An example application would be a BCI that provides alerts to a 

truck driver when a state of drowsiness is detected, helping to increase safety by avoiding potential 

traffic accidents, or a BCI that adjusts the difficulty level of a video game based on neurally-

derived measures of boredom and frustration in the player. The original research described in this 

thesis falls within the category of passive BCI research. 

1.2 BCI design 

Generally, a BCI, whether active or passive, consists of a variety of intermediary components that 

perform specific functions in first detecting the user’s mental state and then issuing an appropriate 

command to the connected device or application. Figure 1.1 illustrates a block diagram of the main 

functional elements of a BCI and their principal interactions. Typically, a BCI model consists of 

the six main components of signal acquisition, signal pre-processing, feature extraction, feature 

selection, classification, and feedback, each of which will be explained in the following sections 

[11]. In Figure 1.1, the whole process is comprised of two consecutive phases: the 

training/calibration phase and the testing/use phase. In the training/calibration phase, labeled 

samples of neural data from a set of pre-defined mental states are successively processed by the 

different modules to train a classifier capable of discriminating amongst the mental states. Then, 

in the testing/use phase, unlabeled samples of neural data are identified by the classifier and 
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translated into a command to control an external electronic device (e.g., to operate a wheelchair in 

the case of an active BCI, or to change/adapt, in some useful way, the behavior of the interface 

that the user is interacting with in the case of a passive BCI). Note that the feature selection step 

is only used in the calibration phase to identify the most discriminatory signal features to use in 

the classifier; these selected features are then used directly in the testing/use phase. 

 

Figure 1.1: The block diagram of a typical BCI system  

 

1.2.1 Physiological phenomenon and signal acquisition 

Electroencephalography (EEG), which measures the electrical activity of the brain via electrodes 

placed on the scalp, is the most prevalent method of signal acquisition used in passive BCI research 

due to its non-invasiveness, portability, high temporal resolution, relative low cost, and suitability 

for use in real-life scenarios [11]. Table 1.1 provides a comparison of some other functional 



4 
 

imaging modalities and their relative advantages and disadvantages for passive BCI applications 

[9]. Hereafter, this thesis will focus on the discussion of EEG-based BCI technologies. 

The electrical activity measured by EEG originates primarily in the neurons of the cerebral cortex 

(the outer surface of the brain), and thus reflects various higher level mental processes such as 

consciousness, thought, emotion, reasoning, language, sensory processing, motor control, and 

memory [12]. The cerebral cortex is divided into four lobes (frontal, temporal, parietal, and 

occipital), each of which is associated with different functions. EEG signals do not reflect the 

activity of individual neurons, but rather they measure the electric fields resulting from the 

summation of the synchronous activity of thousands or millions of neurons that have similar spatial 

orientation. Pyramidal neurons of the cerebral cortex are thought to contribute the most to the 

measured EEG signal because they are well-aligned and fire together [13]. EEG is thus a direct 

measure of neural activity and has excellent time resolution in the range of milliseconds suitable 

to examine real-time and ultra-fast neurodynamics and information processing, however its spatial 

resolution is relatively poor. Because the EEG electrodes are separated from the neural signal 

sources within the cortex by the meninges, cerebrospinal fluid, skull, and scalp, this results in the 

smearing of electrical potentials. More specifically, the EEG signal obtained at any given electrode 

will not reflect activity exclusively from the cortical area directly around that electrode, but will 

be a mix of signals originating from neurons at different spatial locations from different sources 

[14]. EEG has seen widespread use in numerous fields since its discovery by Hans Berger in the 

1920’s [15], therefore the techniques and technology of signal acquisition through this method are 

well-understood, and have been standardized [16]. 
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Table 1.1: Neural/brain activity measures 

Methods Advantage Disadvantage 

EEG  Excellent temporal resolution 

 No real safety restrictions 

 Cost efficient 

 Low spatial resolution 

 

fMRI  Excellent spatial resolution  Indirect measure of neural activity 

 High latency 

 Not portable 

 Not practical for real-life scenarios 

 Expensive 

fNIRS  Good spatial resolution 

 Portable 

 Suitable for real-life scenarios 

 Indirect measure of neural activity 

 High temporal latency of measured 

response 

 Relative high cost 

MEG  Both excellent temporal and spatial 

resolution 

 Not portable 

 Not practical for real-life scenarios 

 Expensive 

PET  High spatial resolution  Indirect measure of neural activity 

 Low temporal resolution 

 Expensive 

 Significant safety restrictions 

ECoG  Excellent signal-to-noise (SNR)  Invasive, so unsuitable for passive BCI 

applications  

 

In conventional EEG, the recording is obtained by placing one or more electrodes on the head, and 

using a conductive gel or paste to reduce impedance with the scalp and maximize signal-to-noise 

ratio. For ease of electrode placement, multi-channel/multi-electrode EEG systems typically use 

caps or nets into which electrodes are embedded and secured to the head. Electrode placement 

typically follows the “International 10/20 System” [16] as shown in Figure 1.2a. The "10" and "20" 

refer to the fact that the distances between adjacent electrodes are either 10% or 20% of the total 

front–back or right–left distance of the skull. For higher density systems, it is also common to use 

a variant of the 10/20 system that fills in the spaces between the electrodes with additional 

electrodes (e.g., the “10/10 System”, Figure 1.2b) [17].  
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Figure 1.2: a) International 10/20 system. b) International 10/10 system.  

 

1.2.2 Signal pre-processing  

Once the EEG data is acquired, it then usually undergoes pre-processing. This typically involves 

the removal of artifacts from the data so that the resulting signals more accurately reflect the true 

underlying neural activity. 

EEG artifacts are electrical signals that are recorded at the electrodes but that were not generated 

by neural activity. There are two main types of artifacts: electrophysiological artifacts such as 

electrooculography (EOG; movement of the eyes), electrocardiography (ECG; cardiac activity), 

and electromyography (EMG; muscle activity) originate from the body of the user, while non-

physiological artifacts originate from the environment and may include things like motion artifacts 

caused by the movement of the electrodes, power line noise (50 or 60 Hz), or high frequency noise 

caused by poor connection of the electrode with the scalp. Artifact rejection can be done either 
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manually by simply looking at the data (the most serious artifacts tend to have recognizable 

patterns) and removing the contaminated sections of the signals, through automated artifact-

removal algorithms, or a combination of both. When EEG data is to be analyzed “offline” (i.e., 

using data that has been previously recorded and stored) as is common in preliminary BCI studies, 

then either manual or automated approaches are feasible. However, for “online” analysis (i.e., 

where the data is analyzed in real-time as soon as it is recorded) automated algorithms are required. 

Practical BCI systems, which analyze the user’s brain activity and predict their mental state in real-

time, require automated pre-processing techniques, and a balance must be struck between the 

effectiveness of the chosen techniques for removing the unwanted artifacts, and the 

speed/complexity of the algorithms. There is no universally adopted EEG pre-processing pipeline 

in BCI research, and researchers typically exercise some freedom in choosing the most appropriate 

techniques to use for their given dataset and application.  

1.2.3 Feature extraction  

Feature extraction aims to reduce the amount of resources needed to describe a large dataset 

accurately while at the same time minimizing the loss of important information embedded in the 

data [18]. Therefore, after the pre-processing phase, different features of the EEG signals that are 

thought or known to capture underlying cognitive processes and therefore might be useful in 

identifying the target mental states, are calculated. In EEG-based BCI design, there are three main 

types of information that are typically targeted when extracting features [19].  

 Spatial information: This describes where the relevant signal comes from. In practice, this 

means selecting only specific EEG electrodes that are more relevant for a particular mental 

state discrimination task, or focusing more on some than on others. Some BCI systems use 
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spatial filtering algorithms to combine several sensors, generally through linear 

combination, in order to form a new (virtual) sensor from the extracted features. This is 

useful not only because it reduces the number of original sensors to a small number of 

spatially filtered signals, but also because it has a neurophysiological meaning. Indeed, as 

discussed in section 1.2.1, EEG signal obtained at any given electrode will not reflect 

activity exclusively from the cortical area directly around that electrode, but will be a noisy 

mix of signals originating from neurons at different spatial locations from different sources. 

Therefore, spatial filtering makes it possible to help recover the original signal by gathering 

relevant information that was scattered over different sensors [19]. One of the most 

successful and well-known methods widely used for feature extraction in EEG-based BCI 

is the common spatial pattern (CSP). The CSP algorithm is used to enhance the spatial 

resolution of EEG and maximize the discriminability of two classes [19].  

 Spectral/frequency information: This describes how the power of the EEG signal varies in 

some specific frequency bands. In practice, this is equivalent to using signal band power 

as features.  

 Temporal information: This describes how EEG signals vary over time. In practice, this 

means using the values of EEG signals for different specific time intervals or different time 

windows. Temporal features are typically used in “reactive BCIs” where the relevant neural 

signal is time-locked to a known stimulus, but are less commonly used in active and passive 

BCIs. 

Among different features which have been investigated in EEG-based BCI studies, signal power 

over frequency bands of interest, and at different spatial locations, are most commonly used in 

BCI studies [20].  
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1.2.3.1 EEG frequency bands 

EEG signals are typically divided into several frequency bands as shown in Figure 1.3. A majority 

of BCI research focuses on the alpha band (8-13 Hz) and the beta band (14-30 Hz) [10]. The beta 

band is sometimes considered to have an extended range of up to 60 Hz with the gamma band 

indicating all signals greater than 30 Hz. 

 

Figure 1.3: EEG frequency bands  

 

1.2.4 Feature selection 

The feature selection process plays an important role in the performance of the BCI algorithm by 

eliminating redundant and irrelevant features from the overall feature pool that was calculated, and 
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selecting a small set of the most discriminative features (i.e., the features that most clearly 

distinguish between the different mental states of interest). When considering a large number of 

features, reducing the feature set is important because of the phenomenon called the “curse of 

dimensionality” which states that the number of training samples needed to properly describe the 

different classes increases exponentially with the dimension of the feature vector (i.e. the number 

of features used) [21-23]. It has been recommended to use from 5 to 10 times as many training 

examples per class as the size of the feature vector [24]. 

Feature selection techniques are categorized in two main groups: filter methods and wrapper 

methods [25]. Filter methods involve evaluating the effectiveness of individual features, or 

combinations of features, for discriminating the states to be classified based on some pre-defined 

measure that is independent from the classification algorithm that is to be applied (e.g., correlation-

based feature selection (CFS), ReliefF, minimum redundancy-maximum relevance (mRmR)) [26]. 

Wrapper methods, on the other hand, use the resulting performance of the classification algorithm 

(e.g., accuracy) in discriminating the target states to evaluate the effectiveness of individual 

features, or combinations of features [27]. 

Feature selection is only done in the calibration/training phase of the BCI algorithm. In the 

testing/use phase the features selected in the calibration phase are used directly in the classifier. 

1.2.5 Classification  

Machine learning techniques are employed to predict the user’s mental state based on their neural 

signals. The selected features are passed to a classifier which use them to predict which of a pre-

defined set of target mental states the user is experiencing. There are numerous types of linear and 

non-linear classification algorithms, such as linear discriminant analysis (LDA), logistic 
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regression, naïve Bayes, support vector machines (SVM), k-nearest neighbor (KNN), random 

forest, and artificial neural networks [28]. As is the case in most machine learning applications, 

there is no “ideal” classification algorithm for use in BCI systems. As always, the aim when 

selecting a classification algorithm is to maximize performance and practicability for the chosen 

application.  

Three classification algorithms commonly used in BCI research - LDA, SVM and KNN - are 

briefly described below.  

1.2.5.1 Linear discriminant analysis (LDA) 

Linear discriminant analysis seeks to separate two or more classes by using hyperplanes, which is 

obtained by searching for the projection that maximizes the distance between the class means and 

minimizes the interclass variance as shown in Figure 1.4. This technique has a very low 

computational requirement and is relatively simple to use [29]. LDA has been used with success 

in various types of passive BCI systems such as cognitive workload recognition [e.g., 30-36], 

mental stress detection [e.g., 37-39], and fatigue/drowsiness detection [e.g., 40-46].  
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Figure 1.4: The basic illustration of the LDA classifier used for a binary classification problem. Samples from Class 

1 are represented by red triangles and samples from Class 2 are represented by yellow squares. 𝑥1and 𝑥2 are features 

of the EEG signal being used in the classifier. 

 

1.2.5.2 Support vector machines (SVM)  

The support vector machine algorithm is similar to LDA in that it exploits a discriminant 

hyperplane to predict classes. However, in the case of SVM, the selected hyperplane is the one 

that maximizes the distance between the nearest training points of the different classes. This 

optimal hyperplane is described by the vectors which lie on the margin, which are called support 

vectors (see Figure 1.5). SVM can be easily extended to complex instances that are not linearly 

separable. This is done by mapping the original input space to a higher-dimensional space where 

they become linearly separable by the use of kernel functions on training sets. SVM is known to 

have good generalization properties and to be insensitive to over-training and to the curse-of-

dimensionality [29].  
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Figure 1.5: The basic illustration of the SVM classifier used for a binary classification problem. Samples from Class 

1 are represented by red triangles and samples from Class 2 are represented by yellow squares. 𝑥1and 𝑥2 are features 

of the EEG signal being used in the classifier. 

 

1.2.5.3 K-nearest neighbors (KNN) 

In the K-nearest neighbor algorithm, a test sample is assigned to the majority class among its K 

nearest neighbors (as determined by a distance metric) within the training set. Figure 1.6 shows 

the basic illustration of KNN classification for a binary classification problem. In the figure, if 

K=3, the test sample is labeled as Class 1 (indicated by red triangles) and if K=5, the test sample 

is labeled as Class 2 (indicated by yellow squares). KNN is a non-linear classifier. The KNN 

algorithm’s main advantage is its simplicity [29]. However, sensitivity to the curse-of-

dimensionality is considered the main drawback that affects its performance in BCI systems [29].  
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Figure 1.6: The basic illustration of KNN classification used for a binary classification problem. Samples from Class 

1 are represented by red triangles and samples from Class 2 are represented by yellow squares. 𝑥1and 𝑥2are features 

of the EEG signal being used in the classifier. If K=3, the test sample is labeled as Class 1 and if K=5, the test sample 

is labeled as Class 2. 

 

1.2.6 Feedback  

Based on the predicted mental state, commands are sent to change/adapt, in some useful way, the 

behavior of the interface that the user is interacting with. For example, in the case of drowsiness 

detection this might be the activation of an alarm to alert and arouse the driver. This feedback in 

turn affects the user’s mental state, thus closing the control loop.  

1.2.7 BCI performance evaluation 

1.2.7.1 Performance metrics 

Many metrics have been proposed for quantifying the performance of BCI systems [47]. However, 

the most widely reported metric is accuracy, calculated as the percentage of the total test samples 

that are correctly classified (Equation 1.1).   
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
   , (1.1)  

where: 

 Tp is the number of true positives classified by the model, (i.e., the number of samples 

from the positive class that are correctly predicted as being positive). 

 Tn is the number of true negatives classified by the model, (i.e., the number of samples 

from the negative class that are correctly predicted as being negative). 

 Fp is the number of false positives classified by the model, (i.e., the number of samples 

from the negative class that are incorrectly predicted as being positive). 

 Fn is the number of false negatives classified by the model (i.e., the number of samples 

from the positive class that are incorrectly predicted as being negative). 

Accuracy is intuitive and easily interpretable, and is informative as a BCI performance metric as 

long as two conditions are met: first, the data must be balanced amongst all classes, and second, 

the decisions of the BCI must be unbiased (i.e. approximately equal performance should be 

achieved for each class). When these conditions are not met then the accuracy can be biased, and 

the 𝐹1-score is a good alternative BCI performance metric.  

The 𝐹1-score (Equation 1.2) is defined as the harmonic mean of the model’s precision and recall, 

where precision (Equation 1.3) is the fraction of true positive samples among the samples that the 

model classified as positive, and recall (Equation 1.4) is the fraction of examples classified as 

positive among the total number of positive examples. 
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𝐹1-𝑠𝑐𝑜𝑟𝑒 =  
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  

1
𝑅𝑒𝑐𝑎𝑙𝑙

= 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=  

𝑇𝑝

𝑇𝑝 +
1
2 (𝐹𝑝 + 𝐹𝑛)

    , (1.2) 

where: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
    , (1.3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
    . (1.4) 

 

The highest possible value of an 𝐹1-score  is 1.0, indicating perfect precision and recall, and the 

lowest possible value is 0, if either the precision or the recall is zero. 

1.2.7.2 Training and testing schemes 

An important question when discussing BCI performance evaluation is the way in which the data 

are handled. With a pre-recorded dataset (i.e., when doing offline analysis), the whole dataset is 

divided into two groups: the training set and the test set. The training set is used to select the 

features and train the classifier, and the test set is used to evaluate the performance of the classifier. 

One very common strategy of dividing the data set into the training and test sets for offline analysis 

is called “k-fold cross-validation”. In this approach, the data set is randomly divided into k subsets 

of approximately equal size, ideally with classes balanced within each subset. In each step, 𝑖, of 

the procedure, the 𝑖𝑡ℎ subset is held out as the test set, and the training set is comprised of the 

remaining 𝑘 − 1 subsets. The performance of the classifier in the 𝑖𝑡ℎ step is estimated using an 

appropriate metric. This is repeated for 𝑘 steps, until each of the 𝑘 subsets has been used as the 

test set exactly once. Finally, the overall classifier performance is estimated as the average of the 
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𝑘 performance estimates from each step. Figure 1.7 clarifies the k-fold cross-validation procedure. 

k-fold cross-validation is a popular approach in applied machine learning as it generally results in 

a less biased and more generalizable estimate of the classifier performance than other methods, 

such as a simple train/test split. The process can be repeated, and the performance averaged, for 

multiple “runs” of the k-fold cross-validation in order to further reduce variability. A common 

issue that often appears with cross-validation is called data leakage. Data leakage refers to a 

problem where information about the holdout dataset, such as a test or validation set, is made 

available to the model in the training set. This results in unrealistically high levels of performance 

of the model on the test set, because that model is being developed on data that it had already seen 

in some capacity in the training set. When such a model is then used on truly unseen data, the 

performance of that model will be much lower than expected. There are different examples of the 

data leakage in machine learning applications; however, a common example with EEG-based BCI 

systems is the data leakage due to the EEG epoching. More clearly, when EEG data is epoched 

using sliding windows, neighboring samples/epochs may have some data leakage in them which 

results in the unreliable prediction outcome after model development. 

When doing online BCI classification, a sufficient amount of data from each of the mental states 

to be classified must be collected in a calibration session, and used to train the classifier. Then, the 

classifier is used to predict the mental state of the user based on their EEG signals collected and 

processed in real-time (in the testing/use phase).  
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Figure 1.7: k-fold cross-validation. The division of data into training and test sets for k-fold cross-validation, shown 

here for k=5. In each step, the training set is composed of the grey subsets, and the blue subset is the test set. 

 

1.3 Mental state classification for passive BCI 

As is clear from section 1.2, the first and most crucial step in realizing a BCI is developing methods 

(e.g., identifying useful EEG features, classification algorithms, etc.) for the accurate classification 

of the mental states of interest based on neural signals. This is true of both active and passive BCIs, 

but the task is arguably more challenging in passive BCI systems. Rather than having a specific, 

discrete set of target states that are consciously controlled by the user, as is the case in active BCI, 

in passive BCI the states being detected are spontaneously occurring during naturalistic scenarios, 

and therefore by nature have much more variability and are less well-defined.  

To date, many studies have investigated the possibility of classifying different cognitive or 

emotional states for the ultimate purpose of realizing passive BCI systems. States that have been 

investigated include fatigue/drowsiness [e.g., 40-46], sustained attention [e.g., 48, 49], task 

engagement [e.g., 50], expertise/skill acquisition [e.g., 34, 51-53], various emotions [e.g., 54-56], 
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cooperation in a team [e.g., 57, 58], and perception of advertisements [e.g., 41, 59-62]. Common 

application domains include driving [e.g., 43, 49, 54, 63-68], aviation including piloting and air-

traffic control [e.g., 33, 40, 69-72], surgery [e.g., 73], education [e.g., 48], and neuromarketing 

[e.g., 60-62, 74].  

Two other states that are, because of their relevance to a wide variety of real-life applications, 

among the most commonly studied for passive BCI applications are mental workload, and stress.  

These states are the focus of this thesis research. 

1.3.1 Mental workload detection 

The detection of mental workload has received particular attention in the pBCI literature in a 

variety of application domains, but particularly for improving safety in high risk occupations like 

airplane pilots and air-traffic controllers. The overarching goal of such a pBCI is to derive a 

continuous, objective estimation of the cognitive load on an individual based on neural signal 

variables, so that appropriate adaptation strategies can be engaged to reduce the potential for error 

during periods of extreme demand or overload. Mental workload recognition has been applied to 

various domains, such as education (e.g., students learning online [75] and web browsing [76]), 

public transport (e.g., driving vehicle [77], airplane [35], air traffic management [33]), health care 

[78], and other safety critical occupations (e.g., engineers of nuclear power plants [79]).  

1.3.1.1 Typical experimental paradigms 

Mental workload is defined as the perceived relationship between an individual’s total mental 

processing capability and the amount required by the task at hand; the closer the requirements are 

to the actual capabilities, the higher is the perceived workload [80]. Therefore, a common strategy 

for workload manipulation in pBCI research is the variation of task difficulty. Often, the paradigms 
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used to induce mental workload experimentally are just simple cognitive tasks that are often 

borrowed from cognitive research (e.g., n-back working memory task [81], Sternberg working 

memory task [31], mental arithmetic tasks [82, 83], IQ test [84], silent reading [85], and visual 

degradation task [86]), where the level of mental workload can be fairly reliably modulated. Many 

other studies employ more realistic, multi-faceted tasks specific to the target application domain, 

often performed in simulated environments, to induce different levels of workload. Common 

examples include the Air Traffic Management (ATM) task [87], driving simulation tasks [84], 

flight simulation tasks [35, 88-90], and complex operation multi-tasks such as the NASA Multi-

Attribute Task Battery (MATB) [91, 92] and the automation-enhanced Cabin Air Management 

System (aCAMS) [93].  

The number of mental workload levels investigated in a single study has ranged from two to seven, 

though the majority of studies attempt to induce/classify between two and four workload levels 

[31, 32, 35, 82, 83, 88, 89, 94-109]. 

1.3.1.2 EEG markers of mental workload 

Several studies have revealed associations between varying workload levels and power alterations 

in EEG frequency bands. It has been shown that the most prominent event was the increase of the 

EEG power spectrum in the theta frequency band over the prefrontal cortex, and the decrease of 

the EEG power spectrum in the alpha frequency band [20, 42, 89, 110-119]. Studies reported the 

increase of the theta power at parietal areas in response to an increased task demand [120], at the 

frontal cortex in relation to an increase of focused attention during the task [121], at the frontal 

and central brain areas during a time pressure task [122], and at the prefrontal cortex in flight and 

air-traffic control simulations tasks [110, 112, 113]. Besides alpha and theta bands, powers in the 

delta, beta, and gamma bands have been reported to associate with varying workloads [94, 123, 
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124]. In a related study, a decrease of the EEG power spectrum in the delta frequency band was 

found in response to increasing workload in a silent reading task [123].  

1.3.1.3 Classification Methods  

A classification or a regression model can be designed to detect mental workload. The output of a 

classifier is a discrete value, whereas the output of a regressor is a continuous variable. Since the 

majority of pBCI studies aim to induce/detect discrete workload levels (e.g., high vs. low), this 

section focuses on classification problems. 

In terms of analytical methods, the cognitive workload recognition studies can be divided into 

those using classical machine learning models and those using deep learning models. The classical 

machine learning models use steps including data preprocessing, feature extraction, feature 

selection, classification, and performance evaluation. Different studies employed different 

algorithms/methods for the mentioned steps. However, frequency domain features along with 

SVM [86, 105, 125-131] and LDA [30-34, 83] classifiers were mostly used in the literature. Some 

other classifiers used in cognitive workload recognition, include KNN [97] and the Bayes-based 

model [101, 102, 132]. 

In contrast to the classical machine learning models, which typically extract features from the 

temporal and spectral views separately, deep learning can learn to acquire complex information of 

multiple domains simultaneously [133, 134]. Therefore, mental workload researchers have begun 

using deep learning (e.g., Convolution Neural Network [77, 133, 135], Recurrent Neural Network 

[136, 137], Denoising Auto-Encoder [93, 138-140], and Deep Belief Network [141, 142]) to learn 

robust EEG representations. It is worth nothing that while the deep learning models might improve 

the evaluation performance of multi-class classification through powerful nonlinear feature 
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representation, they require large amounts of training data and more training time to tune the 

structure and parameter [134].  

In terms of performance evaluation strategies, a majority of studies have used offline analysis, 

with k-fold cross-validation being mostly employed when doing subject-specific mental workload 

detection (i.e., the BCI classifier is trained specifically for use by one individual, based on their 

own training data) [30-32, 35, 36, 58, 81, 86, 102, 125, 126, 128-130, 132, 137, 140, 143-147], 

and leave-one-subject-out cross-validation being most commonly used when doing subject-

independent mental workload detection (i.e., the BCI classifier is trained for use by any user, based 

on training data collected from a number of other individuals) [82, 94, 95, 104, 133, 135, 136, 142, 

148-150]. In online studies, of which there have been significantly fewer [32, 151-153], the 

experiment of real-time workload detection generally consists of two consecutive or separated 

sessions: first a calibration session to collect training data with which to train the BCI classifier, 

and a second “online” session where the classifier is then used to detect the mental workload level 

of the user in real-time. In the online session, the classifier has been used to detect mental workload 

either in the same tasks that were used in the calibration session [32, 151, 152], or in different tasks 

[153].  

Generally, there is a wide range of classification results reported, and it is difficult to compare one 

study to the next due to differences in the experimental (e.g., type of task, number of workload 

levels, difference between workload level conditions, number of electrodes, offline or online) and 

analytical (e.g., pre-preprocessing techniques, EEG features, feature selection and classification 

algorithms) methods employed [154]. That said, typically a majority of mental workload detection 

studies in recent years have produced classification results at or above 80% [31, 32, 35, 75, 77, 80, 

82, 93-95, 98-102, 123, 125-127, 129, 133-137, 139-141, 143, 145-151, 155], which is promising. 
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Further research on the application of pBCI in ecologically-valid scenarios will be needed to 

determine whether this performance is transferable to real-life applications, and then whether it is 

sufficient so as to be effective in meeting the objectives of the BCI in a given application (e.g., to 

reduce the number of errors due to cognitive overload committed by an operator). 

1.3.2 Stress detection 

Another application that has received a lot of interest in the pBCI research area is the monitoring 

of the user’s affective state, particularly stress/anxiety. Stress is known to negatively impact 

cognitive efficiency and performance [156] as well as decision-making (especially when 

performing unfamiliar tasks) [157], thus a pBCI designed to detect the user’s stress level could 

initiate appropriate task or environmental adaptation strategies to mitigate these potential negative 

effects. 

1.3.2.1 Typical experimental paradigms 

There are many techniques that have been used to induce levels of stress in lab settings. A detailed 

review of the experiments to elicit stress is given in [158]. However, the most widely used 

paradigms to induce mental stress are the Stroop Color-Word Test (SCWT) [159-161], the Trier 

Social Stress Test (TSST) [162, 163], and the Montreal Imaging Stress Task (MIST) [37, 164-

170], as well as various mental arithmetic tasks [171-175], music videos [176-178], and exam 

stress [179]. 

In different studies, the TSST, MIST and SCWT paradigms have been modified to meet the 

specific needs of the research; however, a brief review of their original versions is as follows. 

The TSST generally consists of three steps [162]. Stress induction begins with the participant being 

taken into a room where a panel of judges are waiting, along with a video-camera and audio 
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recorder. The first 10-minute step is the anticipatory stress phase, during which the judges ask the 

participant to prepare a 10-minute presentation. In most studies this presentation is framed as part 

of a job interview or a general public speaking task. During the 10-minute presentation step, the 

judges observe the participant without comment or other feedback, to increase anxiety. The 

presentation is then followed by a verbal mental arithmetic task. 

The Montreal Imaging Stress Task (MIST) consists of a series of mental arithmetic tasks, along 

with social evaluative threat components that are built into the program or presented by the 

investigator [180]. The MIST has three test conditions of rest, control and experiment. In the rest 

condition, subjects look at a static computer screen on which no tasks are shown. In the control 

condition, a series of mental arithmetic tasks are displayed on the computer screen, and subjects 

submit their answers by means of a response interface. In the experimental condition, the difficulty 

and time limit of the tasks are manipulated to be just beyond the individual’s mental capacity. 

Along with the time limitation in the task, social evaluative threat components such as negative 

feedback when answering incorrectly or failing to answer each question within the time limit, or 

performance evaluation strategies, are added to further increase the stress experienced by the 

participants. 

In the most common version of the Stroop Color-Word Test (SCWT), subjects are presented with 

color words (i.e., the words “red”, “green”, “blue”, etc.) displayed in matching and non-matching 

font colors [181]. Subjects are required to read three different tables as fast as possible. Two of 

them represent the “congruous condition” in which participants are required to 1) read names of 

colors printed in black ink, and 2) name the color of different colored patches. In the third table, 

named the “color-word condition”, color words are printed in an inconsistent colored ink (e.g., the 

word “red” printed in green ink). In this “incongruent condition", participants are required to name 
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the color of the ink instead of reading the word. This condition is quite difficult, and induces mental 

stress in the participant. 

It is worth noting that the SCWT, MIST and mental arithmetic tasks are mental stress-inducing 

tasks that also induce mental workload, whereas psychological tasks such as viewing music videos, 

or the anticipation phase of an exam or public speaking task, induce the stress state while not 

affecting mental workload.  

There are a wide range of studies that aimed to simply detect the state of stress as compared to a 

relaxed/rest/control condition [37, 161, 166-168, 170, 172-177, 182-187], whereas others aimed 

to induce/recognize different levels of stress (two to four levels) [39, 160, 169, 188-192].  

1.3.2.2 EEG markers of stress 

Many studies have explored power spectrum, or relative power, indices to assess the behavior of 

the human brain in emotional stressed states, with various patterns reported. Many of the reviewed 

studies have reported a decrease of the EEG power spectrum in the alpha frequency band during 

the stressful conditions compared to the relaxed conditions [170, 193, 194, 195]. Regarding the 

beta band, studies have reported high beta activity as a result of stress [168, 193, 196]. The 

prefrontal relative gamma (RG) power has also been suggested as a marker for stress assessment, 

since the RG was shown to be more discriminative between stress levels than alpha asymmetry, 

theta, alpha, beta, and gamma power in the prefrontal cortex, with a positive correlation with stress 

level [197]. In [198], an increase in the ratio of the power of the beta waves over the alpha waves 

as a results of stress were found. In another study, the change in the ratio of the slow waves over 

fast waves was detected for both delta/beta and theta/beta configurations among states of relaxed 

and stressed [199]. 
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EEG has been shown to be sensitive to localized brain activity in areas responsible for the stress 

response [200]. According to [169], the most dominant cortical structure that is involved in stress 

detection is the right prefrontal cortex. Furthermore, studies also reported higher right prefrontal 

activity in stressful contexts, compared to left prefrontal activity [169, 179, 201-203]. 

1.3.2.3 Classification results 

Like the mental workload detection studies, mental stress detection studies have varied 

significantly in terms of the experimental and analytical methods used, including the number of 

subjects, number of EEG channels, type of stressors, amount of data collected, pre-processing 

methods, feature extraction mechanisms, and types of classifier.  

While various types of classifiers have been used to assess mental stress, the most common and 

significant classifiers are SVM [38, 39, 160, 163, 165-170, 174, 183-185, 187, 188, 190, 192, 204, 

205], KNN [38, 39, 160, 176, 177, 183, 184, 190], LDA [37-39], naive Bayes (NB) [167, 192, 

206] and convolutional neural network (CNN) [161, 191]. Most of the reviewed studies conducted 

offline experiments and only a few studies focused on real-time mental stress detection algorithms 

[164, 207]. It is again difficult to compare the results of different mental stress detection studies 

due to the diversity of methods used, however regardless of the task environments and system 

setups, the mean accuracies obtained are at or above 80% in most studies [37, 38, 161, 163, 166-

170, 173, 175, 183, 184, 185-188, 189, 191, 208-210]. 

1.4 Practical challenges with passive BCI research 

Passive BCI research has been growing rapidly in recent years. However, this promising field is 

still in its infancy and there is still a long way to go due to some significant challenges that limit 

transferability of research from lab to real life applications. Two such challenges are: 



27 
 

 Amount of calibration data needed: Most preliminary studies that investigate the ability to 

classify different mental states are done offline, with the classification accuracy estimated 

using cross-validation. As mentioned, cross-validation reduced the bias of the performance 

estimate as compared to a single train/test split, and provides a more accurate estimate of 

how the classifier will perform in general when used to predict the class of new/unseen 

data. It usually takes several hours to collect the whole dataset in a single experimental 

session, and typically at least 80% of the data is used in the training set in each step of the 

cross-validation (i.e., k-fold cross-validation where k ≥ 5). Moreover, most studies use 

“subject-specific” classifiers; that is, the training and testing data all come from the same 

person, usually collected in a single session. While this approach is reasonable and 

informative for initial offline analysis, it is not directly transferable for implementation in 

real, online BCI applications since long calibration sessions would be required to collect 

comparable amounts of training data from the user to calibrate the system each time they 

wish to use it. Being able to use subject-independent classifiers where the system would be 

pre-trained using data collected from a separate group of individuals, or even subject-

specific classifiers where the calibration data is pre-collected on a different day, would 

mitigate this issue. However, due to significant inter-subject differences in EEG signals 

and in the neural responses to different tasks and stimuli, and even inter-session differences 

within the same individual, it is much more challenging to achieve sufficient BCI 

performance this way. In fact, the underlying EEG sensor signals are always non-stationary 

if they are sampled from different experimental sessions or subjects [211, 212]; which 

results in the deterioration of the classification performance. Therefore, it is often not 

possible to reliably classify EEG patterns across subjects with conventional classifier 
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approaches used in offline BCI studies. To mitigate the adverse effects of the non-

stationarity of EEG sensor signals, the use of transfer learning approaches has been 

proposed [213]. In general, transfer learning algorithms allow knowledge learned in one 

domain (e.g., data collected from one group of subjects) to be transferred into a different 

but related domain (e.g., data collected from another subject) [213]. There are two main 

advantages of transfer learning in EEG signal analysis. 1) Match individual difference: 

When collected from different subjects or from the same subject on different days, the 

difference between the training and testing data is huge [214], which increases the 

difficulty in analysis as explained before. Transfer learning can make adjustments so that 

the model flexibly matches the data collected from different individuals and/or through 

different tasks. There have been several recent BCI studies proposing such algorithms that 

are adaptive to different subjects and individuals [215, 216]. 2) Reduce data requirement: 

In EEG signal analysis, problems of data scarcity and insufficient labeling hinder the 

learning of the target task [217, 218]. Transfer learning methods learn the target task 

according to a priori knowledge learnt in a similar domain enhanced by a small amount of 

data in the target domain to adjust the classifier, which reduces the requirements for 

available data. Different transfer learning models are proposed to solve the problem of 

small training datasets in various applications [219, 220]. There are four transfer learning 

methods commonly used in EEG signal analysis called: 1) domain adaptation, 2) improved 

common spatial patterns algorithms, 3) deep neural networks, and 4) subspace learning. 

For a throughout review of each method see [213].  

 Moving from controlled to uncontrolled environment: Another very significant challenge 

in transferring passive BCI research from the lab to real-life scenarios is related to the 
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introduction of potentially confounding factors that are typically absent in the experimental 

condition but cannot be controlled in real environments. For example, most passive BCI 

experiments are done in controlled environments and involve very specific and prescribed 

tasks or situations, whereas in real-life scenarios the range of activities in which the BCI 

user may be engaged is much more variable. Another example is that in most experiments, 

participants are shielded (at least to a certain extent) from environmental noise and other 

distractions and are very limited in their task-unrelated talking and moving; this would not 

be the case in a natural setting. The addition of these different factors that were not 

accounted for in the experiments will almost certainly affect the individual’s neural signals, 

and therefore negatively impact the transferability of the experimental results.  

1.5 Motivation for the proposed work 

As mentioned, a significant challenge exists in transferring passive BCI research from the lab, 

where conditions are typically very controlled, to practical applications where they are much more 

variable. Another important example of this is that typically in pBCI studies, the mental states of 

interest are considered in isolation, which is very different from real-life situations where there 

could be the simultaneous coexistence of many mental and emotional states.  In real life, different 

aspects of the user’s state are likely to be changing simultaneously - for example, their cognitive 

state (e.g., level of mental workload) and affective state (e.g., level of stress/anxiety). This 

inevitable confounding of different states needs to be accounted for in the development of state 

detection algorithms in order for them to remain effective when taken outside the lab. This would 

be of particular concern for mental workload and stress, since these two states are both highly 

relevant for many situations for which passive BCIs would be useful, such as high risk work 

environments where individuals often perform duties in stressful situations that carry a high cost 
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of error, and also because they are known to be highly related to one another.  It has been discussed 

in sections 1.3.1.2 and 1.3.2.2 that EEG is sensitive to both mental workload and stress, thus the 

simultaneous experience of these states by the user could affect the distribution of the 

physiological variables on which the individual mental workload and stress classification 

algorithms are based. If the mental state detection algorithms are developed considering each state 

alone, the performance could potentially suffer when taken outside the lab where other mental 

states cannot be controlled. 

Indeed, the only study specifically investigating the effect of stress state on automatic mental 

workload detection found that resulting classifiers failed to generalize well across different stress 

conditions. Muhl et al. investigated the effect of stress on mental workload detection and found 

that classification performance suffered when training and testing data came from different stress 

conditions [117]. Also, more recently, Grissmann et al. assessed the impact of affective valence 

(i.e., positive or negative emotion) on the classification of working memory load (WML) [221]. 

Their results indicated that even though WML could be automatically detected with good 

classification accuracies over 70% in presence of contextual changes, the affective context could 

significantly affect classification accuracy. These findings suggest a need to develop mental 

workload detection algorithms that are robust to affective state. The impact of varying mental 

workload level on automatic stress detection has not yet been investigated.   

While detection of both task difficulty and stress level [117, 221] from neural signals has been 

attempted before on an individual basis, estimating both states simultaneously, with each 

confounding the other, is a challenge that has not yet been addressed. I aim to address this research 

gap in my thesis. The long term goal of this work is the realization of a functional, reliable, and 

robust passive BCI capable of detecting both the mental workload level and stress level of the user 
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simultaneously, since having this more detailed information would provide a better picture of the 

user’s mental state, and their risk of error. Such a system could have significant impact by helping 

to prevent industrial accidents and their associated human, economic, and environmental costs. 

1.6 Research objectives 

The motivation of this research is to work toward the development of an online EEG-based passive 

BCI that is able to accurately detect both the level of difficulty of the task the individual is 

performing and their stress/anxiety level simultaneously. To this end, the main objectives of this 

thesis are to: 

1) Investigate if/how mental workload (as modulated by task difficulty) and stress confound 

one another, and the implications for the development of reliable automatic detection 

algorithms for each state using EEG. Specifically, a) the effect of varying stress level on 

the ability to classify mental workload, and b) the effect of varying mental workload on the 

ability to classify stress, are explored. 

2) Investigate classification techniques to mitigate any confounding effects of variation in 

mental workload on the detection of stress, and vice versa, thus making classification of 

each state more robust. 

3) Develop a classification pipeline for the simultaneous classification of mental workload 

and affective state that is suitable for an online BCI.  

1.7 Thesis organization 

The current chapter has presented relevant background information on brain-computer interface 

development. Chapters 2 through 4 of this thesis each represent a version of an independent 

manuscript that has been published in a peer-reviewed journal. Each details a distinct study that 
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addresses one of the three thesis objectives and associated research questions, as noted in section 

1.6.  

Chapter 2 has been published in the Journal of Neural Engineering. This study investigated 

whether the ability to detect one mental state via EEG signals is affected by variation in another 

state. Specifically, the effect of varying affective state on the automatic classification of mental 

workload, and the effect of varying mental workload on the automatic classification of affective 

state, was explored. This chapter addresses research objective 1 from section 1.6.  

Chapter 3 has been published in the journal Brain Computer Interfaces. This study investigated 

different classification approaches to improve the performance of 1) EEG-based mental workload 

detection in the presence of variation in affective state and 2) EEG-based affective-state detection 

in the presence of variation in mental workload level by explicitly considering this variation in the 

development of the classification algorithms. This chapter addresses research objective 2 from 

section 1.6. 

Chapter 4 has been published in the journal Sensors. This study investigated the ability to classify 

both mental workload level and affective state simultaneously using methods appropriate for 

implementation in an online BCI. This chapter addresses research objective 3 from section 1.6.  

The final chapter, Chapter 5, summarizes the major original contributions of this thesis and 

discusses potential avenues for future work. 

Because this thesis takes the manuscript-style of presentation the introduction and/or methods 

sections of some chapters may contain repeated information that the reader may wish to skip as 

they see fit. Permission to reproduce articles in this thesis was obtained as necessary. 
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Chapter 2 : EEG-based detection of mental workload 

level and stress: the effect of variation in each state on 

classification of the other 

Co-authorship statement. A version of this chapter has appeared in the Journal of Neural 

Engineering as the article titled “EEG-based detection of mental workload level and stress: the 

effect of variation in each state on classification of the other” in October 2020. The author, Mahsa 

Bagheri, carried out the study design, data collection and data analysis. Mahsa Bagheri also 

prepared the first draft of the manuscript and subsequently revised the manuscript based on the co-

author’s feedback as well as the comments received from the peer review process. The co-author, 

Dr. Sarah Power provided guidance on study design, data collection and data analysis. Dr. Power 

also helped in reviewing, editing and revising the manuscript. All authors read and approved the 

final draft. 

2.1 Abstract 

Objective. A passive brain-computer interface (pBCI) is a system that continuously adapts human-

computer interaction to the user’s state. Key to the efficacy of such a system is the reliable 

estimation of the user’s state via neural signals, acquired through non-invasive methods like 

electroencephalography (EEG) or function near-infrared spectroscopy (fNIRS). Many studies to 

date have explored the detection of mental workload in particular, usually for the purpose of 

improving safety in high risk work environments. In these studies, mental workload is generally 

modulated through the manipulation of task difficulty, and no other aspect of the user’s state is 

taken into account. In real-life scenarios, however, different aspects of the user’s state are likely 
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to be changing simultaneously - for example, their cognitive state (e.g., level of mental workload) 

and affective state (e.g., level of stress/anxiety). This inevitable confounding of different states 

needs to be accounted for in the development of state detection algorithms in order for them to 

remain effective when taken outside the lab. Approach. In this study we focused on two different 

states that are of particular importance in high risk work environments, specifically mental 

workload and stress, and explored the effect of each on the ability to detect the other using EEG 

signals. We developed an experimental protocol in which participants performed a cognitive task 

under two different levels of workload (low workload and high workload) and at two levels of 

stress (Relaxed and Stressed) and then used a linear discriminant classifier to perform classification 

of workload level and stress level independently. Main results. We found that the detection of 

both mental workload level (e.g., low workload vs. high workload) and stress level (e.g., Stressed 

vs. Relaxed) were significantly diminished if the training and test data came from different as 

opposed to the same level of the other state (e.g., for mental workload classification, training on 

data from a Relaxed condition and testing on data from a Stressed condition, rather than both 

training and testing on the Relaxed condition). The reduction in classification accuracy observed 

was as much as 15%. Significance. The results of this study indicate the importance of considering 

multiple aspects of a user’s state when developing detection algorithms for pBCI technologies. 

2.2 Introduction 

2.2.1 Problem statement 

A passive brain-computer interface (pBCI) is a system that enriches human-machine interaction 

by providing implicit information on a user’s mental (e.g., cognitive, affective) state and adapting 

the environment accordingly [1]. One potential application that has received particular attention in 

the pBCI research community is the monitoring of mental workload [20, 40, 88, 94, 95, 114, 144, 
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155, 222-224], particularly for safety-critical occupations like pilots, air-traffic controllers, and 

other industrial operators. The overarching goal of a pBCI, then, is to derive a continuous, 

objective estimation of the cognitive load on an individual from neural signal variables, so that 

appropriate adaptation strategies can be engaged to reduce the potential for error during periods of 

extreme demand or overload. Such a technology could have significant industrial and economic 

impact by preventing accidents related to operator error, and their associated human, economic, 

and environmental losses. Mental workload detection also has great potential value in other 

domains, including gaming [225], adaptive training [99, 226], and user interface design [227], to 

enhance and personalize user experience.  

The first step in realizing such a technology is developing methods for the accurate detection of 

mental workload derived from neural signals. While functional magnetic resonance imaging 

(fMRI) is the gold standard in functional imaging, the high cost, along with the practical limitations 

of the imaging process, make it unsuitable for use in pBCI technologies, which demand that the 

sensing technology be relatively inexpensive, highly portable and non-intrusive. Therefore, 

because of their practical advantages, both electroencephalography (EEG) and function near-

infrared spectroscopy (fNIRS) have emerged as the leading neural imaging modalities used in 

pBCI research, and indeed in BCI research generally [228-232].  

Mental workload is defined as the perceived relationship between an individual’s total mental 

processing capability and the amount required by the task at hand [233]. The closer the 

requirements are to the actual capabilities, the higher is the perceived workload. Therefore, a 

common strategy for workload manipulation is the variation of task difficulty. There have been 

many studies to date investigating the ability to detect mental workload levels due to the 

performance of tasks of varying difficulty using EEG [34, 69, 81, 83, 89, 90, 94, 105, 106, 116, 
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234] and NIRS [235]. Though results vary across studies depending on the specifics of the tasks 

investigated (e.g., n-back task [81, 224], mental arithmetic [83, 235], flight simulator task [89, 90], 

air traffic control task [34, 69, 116]), and the classification methods used (e.g., type and number 

of features, duration of signal used, type of classifier, size of data set, etc.) generally they are, in 

aggregate, quite promising, with two or more levels of workload consistently being classified with 

accuracies significantly exceeding chance.  

Studies on mental workload detection generally consider workload exclusively in terms of task 

demands as manipulated through the variation of task difficulty. However, precise estimation of 

mental workload is not possible when exclusively considering the properties of the task because 

individual factors will affect the mental effort needed to perform the task [236]. We argue that the 

individual’s affective state, and particularly stress/anxiety, is of particular relevance in mental 

workload detection, particularly those aimed at safety-critical occupations where individuals often 

perform duties in stressful situations that carry a high cost of error. According to the Processing 

Efficiency Theory [237], stress reduces the storage and processing capacity of the working 

memory system, and necessitates an increase in on-task effort to maintain performance. Thus, a 

task performed under stress may require considerably more effort to achieve a certain performance 

than it would under relaxed conditions (i.e., performance effectiveness may be maintained, but at 

the expense of reduced cognitive efficiency). 

Physiologically, EEG and NIRS have both been shown to be sensitive to emotion [238, 239]; thus, 

anxiety could impact not only the level of mental workload experienced by the user during task 

performance, but also the distribution of the physiological variables on which the mental workload 

classification algorithms are based, suggesting that performance of detection algorithms developed 

considering task difficulty alone will suffer outside the lab where affective context cannot be 
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controlled. Indeed, the only study specifically investigating the effect of affective state on 

automatic mental workload detection found that classification performance suffered when training 

and testing data came from different stressed conditions [117]. This suggests a need to develop 

mental workload detection algorithms that are robust to affective state. Beyond addressing the 

technical implications for workload detection, however, we argue that having an objective, real-

time measure of the affective state of the individual would in itself be very valuable. Stress is 

known to negatively impact cognitive efficiency and performance [156] as well as decision-

making (especially when performing unfamiliar tasks) [157], thus having information about the 

individual’s stress level would be valuable when determining the adaptation strategies to be 

initiated by the pBCI. While detection of both task difficulty and stress level [167, 194] from neural 

signals has been attempted before on an individual basis, estimating both states simultaneously, 

with each confounding the other, is a challenge that has not yet been addressed.  

This study represents the first step toward the long term objective of developing a pBCI that 

performs simultaneous detection of mental workload and stress level. In this work, we investigate 

if/how each of the two states confounds the other, and the implications for the development of 

reliable automatic state detection algorithms. Specifically, the objective here is to investigate: 1) 

the effect of varying stress level on the ability to classify mental workload 2) the effect of varying 

mental workload level on the ability to classify stress. For this purpose, EEG signals were used 

due to the excellent temporal resolution and relatively low cost as compared to other methods such 

as fNIRS, which has high temporal latency of the measured response and higher cost. 
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2.3 Background 

2.3.1 EEG correlates of mental workload 

 Mental workload is defined as the interaction between task demands and the capacity of the 

operator [80]. The Multiple Resources Theory [240, 241] posits that performing different tasks 

necessitates a subject to tap into a set of separate resources, which are both limited in capacity and 

allocatable amongst different tasks. These resources are defined along four dimensions: the 

information processing stage (perception or cognition vs. response), the processing code (verbal 

vs. spatial), the input modality (visual vs. auditory), and the visual channel (focal vs. ambient) 

[241, 242].     

Mental workload arises from the interaction of a number of factors including the properties of a 

task, the task environment, and the individual characteristics and abilities of the individual [243]. 

More specifically, it involves the interaction between 1) the requirements of a task such as task 

difficulty, 2) the circumstances under which it is performed such as environmental noises and 

distractions, and 3) the skills, behaviors and perceptions of the operator such as emotional 

instability, fatigue and motivation [243]. Therefore, mental workload can be modulated by 

adjusting a subgroup of these factors while controlling for the rest [224]. 

 Most studies of mental workload based on brain function have used electroencephalography 

(EEG) as the imagine modality [244]. The sensitivity of the human EEG to changes in mental 

effort has been known since Hans Berger (1929) reported a decrease in the amplitude of the alpha 

rhythm of the EEG during mental arithmetic. Due to its very high time resolution, subtle changes 

in mental states like alertness, attention and workload can be accurately captured via EEG. Many 

studies conducted in laboratory, simulation and operational environments have demonstrated 
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significant correlations between EEG indices of cognitive state changes and performance [107, 

245-250]. 

EEG spectral power at different channel locations has been investigated in many studies of mental 

workload [108, 236, 251-257]. For example, theta band power changes at the frontal midline 

channels have been found to be linked to the development of mental workload [255, 256]. Alpha 

band power changes over the centro-parietal and parietal areas have been shown to be sensitive to 

mental workload, and mental effort in attentive stimulus processing and expectancy [49, 51, 119, 

257-259]. Various indices based on beta band power and/or the ratio of beta band power to either 

alpha or theta band power have also been investigated [260]. Among these studies, the majority 

used a classical cognitive paradigm with repetitive stimuli [258, 49, 260-262] which while useful 

for facilitating subsequent data analysis (e.g., event related potential (ERP) analysis [108, 263]), 

limit their applicability to the investigation of intrinsic dynamics of mental factors in real-world 

tasks.  

Alternatively, real-world task situations (e.g., driving, aircraft landing and takeoff, etc.) varying in 

levels of difficulty or load have been employed in some studies [46, 68, 69, 236, 250-252, 263, 

264]. 

2.3.2 EEG correlates of stress 

 Hans Selye popularized stress as a medical scientific idea in 1926, but the way in which the term 

stress has been used in the literature has not been consistent [265]. Cohen defined it as “a process 

in which environmental demands tax or exceed the adaptive capacity of an organism, resulting in 

psychological and biological changes” [266]. In practice, it is a general term referring to a wide 

range of negative emotional states including unhappiness, anxiety, agitation, frustration, 



40 
 

irritability, anger, and overstimulation. While some studies suggest there may be some positive 

effects of stress [267] that may vary based on individual characteristics [268], in general, it can be 

said that stress is a state of negative valence and positive arousal. From a biological perspective, 

stress is a physiological reaction that occurs in response to a stressor, i.e., a perceived harmful 

event, attack, or threat to survival [269]. Bodily changes such as increased heart rate, blood 

pressure, breathing rate, and perspiration are symptoms of what is called the “stress response”, 

which helps the body to adapt to the stressor [270]. In general, although many parts of the body 

are affected by stress, the hippocampus [271], the amygdala, and the prefrontal cortex [272] are 

the main brain regions with a critical involvement in the stress response. 

EEG is a reliable tool reflecting upper cognitive functions and mental or psychological states. EEG 

has been shown to be sensitive to localized brain activity in areas responsible for the stress 

response, or activity associated with increased arousal or specific psycho-emotional states [200]. 

The left anterior region of the brain appears to be involved in the expression and experience of 

approach-related emotions and the right anterior region appears to be involved in the expression 

and experience of avoidance-related emotions [273]. Lewis et al. reported a shift from greater left 

frontal activity during low stress to greater right frontal activity during high stress [179]. Moreover, 

studies show that positive moods or reactions are related to relatively greater left prefrontal 

activity, whereas, negative moods or reactions are related to relatively greater right prefrontal 

activity [203]. Seo et al. reported higher right prefrontal activity in stressful contexts, compared to 

left prefrontal activity [202]. 

 Many studies have explored power spectrum or relative power indices to assess the behavior of 

the human brain in emotional stressed states [56, 184, 204-206]. Higher spectral activity has been 

correlated with arousal, cognitive processing or emotional activity [178]. Many studies 
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investigating the effect of stress on EEG power reported a decrease in the alpha power and an 

increase in the beta power in the presence of stressors [45, 168, 169, 193, 195-197]. The 

frontal/prefrontal cortex appears to play a significant role in emotional processing, presenting 

increased prefrontal theta activity in reduced anxiety states [174]. Minguillon et al. [197] suggest 

that relative gamma power is more discriminative between stress levels than alpha asymmetry, 

theta, alpha, beta, or gamma power in the prefrontal cortex, with a positive correlation with stress 

level. More recent studies suggest that EEG correlates of stress may display even greater 

frequency-specificity. Alonso et al. [193] utilized two different stressors, the Stroop test and sleep 

deprivation to assess stress using EEG. They found a decrease in high alpha (11 to 12 Hz) power 

and an increase in high beta (23 to 36 Hz) power for both stressors, whereas the low alpha (7.5 to 

10.5 Hz) indicated an increase of attention and alertness for the Stroop test and a decrease for the 

sleep deprivation. The theta activity clearly increased for the sleep deprivation case but no 

significant changes were obtained for the Stroop test [193]. 

2.3.3 Relation to previous work 

The influence of mental state changes during training and testing on active BCI (i.e., BCI in which 

mental states are intentionally generated by the user for the purpose of controlling an external 

device) performance has been examined in some studies. Surprisingly, Reuderink et al. reported a 

significant performance increase during frustrating vs. relaxed periods when using a BCI based on 

event-related desynchronization (ERD) [275]. A study investigating the effects of fatigue on EEG 

signal characteristics and workload classification performance reported a decline in classification 

performance with increasing fatigue [44]. To date only a few studies have investigated the 

influence of mental state on BCI performance, however, it has been found that BCIs are susceptible 

to changes in task-unrelated mental states (e.g., attention, fatigue or mood) during classification. 
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Also, it is generally accepted that one of the most challenging issues in brain computer interface 

development is the non-stationarity of brain signals due to internal sources of variability such as 

task-unrelated mental states [117, 211].   

One previous study has specifically investigated the effect of stress on the automatic detection of 

mental workload via EEG. In their paper, Muhl et al. [117] designed a study in which 24 

participants performed trials of a visual n-back task at two different levels of difficulty 

(specifically, 0-back and 2-back) in both a relaxed and a stressed condition. They found that the 

accuracy with which they could classify the workload levels was affected by whether the training 

and testing data came from the same or different stressed conditions. When the classifier was 

trained on data from the relaxed (stressed) condition and tested on data from the relaxed (stressed) 

condition – i.e., the “within-state” case - mean accuracy was approximately 72%. However, when 

the classifier was trained on data from the relaxed (stressed) condition and tested on data from the 

stressed (relaxed) condition – i.e., the “across-state” case - the mean accuracy dropped to 

approximately 69%. It was found that this effect could be mitigated to some extent by including 

data from both stressed conditions in the training set. The results summarized here were for 

frequency domain EEG signal features, but they observed similar trends for time-domain features 

(i.e., ERPs) as well. 

The study by Muhl et al. provided a thorough and rigorous investigation of the effect of stressed 

condition on the classification of mental workload using EEG signal features, but did not include 

a similar analysis of the effect of mental workload condition on the classification of stress. Like 

mental workload, the automatic detection of stress based on neural and physiological (e.g., ECG) 

signals is a very active research area (for a thorough review, see [276]). Some studies use 

emotionally salient music [208], videos [183], or pictures [209, 210] to induce stress under a no-
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task condition. Such studies do not consider that when the proposed stress detection system is 

taken outside the lab for use in real-life scenarios, the user would likely be performing different 

tasks and activities, and experiencing the associated changes in cognitive load, which could reduce 

the reliability of the stress detection algorithm developed under a single workload (or no load) 

context. We aim to address this research gap in the current study. 

Another limitation noted in [117] was that the stress induction paradigm manipulated affective 

context only once; that is, one block of workload trials was completed under one affective context, 

followed by a second block of trials completed under the other affective context. Therefore, the 

stress manipulation was synonymous with a change in time, and the possibility that the observed 

results were due simply to time-related signal changes cannot be excluded. The non-stationarity of 

EEG is indeed a well-documented phenomenon [211, 212]. To ensure the validity of the results, 

the experiment needs to be repeated using interleaved stressed conditions. For the present study, 

we devised a stress induction protocol that was similar to that used in [117], but that incorporated 

this counterbalancing of the stressed conditions, allowing us to rule out the possibility that the 

results were merely due to the effect of time. 

2.4 Material and methods 

2.4.1 Participants 

Eighteen right-handed subjects (mean age: 26 ± 8 years; 7 females) participated in this study. 

Participants were excluded if they 1) were not between the ages of 18 and 65 years; 2) had a history 

of neurological disease, disorder or injury, or cognitive impairment; 3) did not have normal or 

corrected-to-normal vision and hearing. Subjects were asked to refrain from exercise, smoking, or 

consuming caffeine or alcohol for at least 4 hours prior to the session. Informed consent was 
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obtained from the participants and documented in writing prior to the experiment. The study was 

approved by the Interdisciplinary Committee on Ethics in Human Research (ICEHR) at Memorial 

University of Newfoundland (approval #20190461-EN, Appendix 1). 

2.4.2 Physiological signal acquisition 

EEG data was recorded via a 64-channel electrode system (ActiCHamp, Brain Products, GmBH). 

The position of the electrodes on the scalp was based on the International 10-20 system for EEG 

electrode placement. The reference electrode was at FCz. The impedance of recording electrodes 

was monitored for each subject prior to data collection and was kept below 10 kΩ. 

Electrocardiogram (ECG) data was collected using three electrodes connected to an auxiliary 

channel of the EEG amplifier. Both the EEG and ECG signals were recorded at a sampling rate of 

500 Hz.  

2.4.3 Experimental procedure 

A protocol was designed in which subjects performed a cognitive task at two different levels of 

mental effort (Easy and Difficult), each under two different affective contexts (Relaxed and 

Stressed). The workload task was designed in the MatLab Cogent2000 toolbox. The structure of 

the experimental session is depicted in Figure 2.1. 

The experiment consisted of four main blocks, which alternated between a “Relaxed” and a 

“Stressed” condition. For half of the participants the order of the blocks was R1-S1-R2-S2 while 

for the remainder the order was S1-R1-S2-R2. At the beginning of each block, an affective state 

induction protocol was performed to induce the desired state, and the participant’s subjective rating 

of their stress level was then captured via form Y-1 of the State-Trait Anxiety Inventory (STAI) 

questionnaire [277]. Each block then consisted of 10 trials: four eyes-open “Baseline” trials, three 
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“Easy” arithmetic trials, and three “Difficult” arithmetic trials. Trials within a block were in 

pseudo-random order (blocks always began with a Baseline trial, and no two consecutive trials 

were of the same type), and the order was different for each block. After each trial, subjects were 

asked to rate the level of mental effort required to perform the trial via a modified version of the 

Rating Scale of Mental Effort (RSME) [278] (see Figure 2.1). All trials were approximately 67 

seconds in duration. Other than the stress induction measures, there was no difference between the 

four blocks in terms of the workload trials. To capture any change in the perceived affective state 

over the course of the workload trials, the participant again completed form Y-1 of the STAI 

questionnaire at the end of each block. 

 At the beginning of the experiment (i.e., before Block #1), an eyes-closed baseline trial of 67 

seconds duration was collected.  



46 
 

 

Figure 2.1: Structure of the experimental session. 

 

2.4.3.1 Workload trials  

For the Baseline trials, participants were asked to focus their eyes on a cross that appeared in the 

centre of the screen and to sit quietly for the duration of the trial. No arithmetic task was performed. 

 Both the Easy and Difficult arithmetic trials involved answering math equations in the form 

“num1 modulus num2 = num3”. When each trial began, a single equation in this form appeared 

on the screen and participants were asked to indicate if the equation was correct or incorrect by 

pressing one of two keyboard buttons (the buttons were the same for every trial). The equation 

stayed on the screen until the participant responded with a key press, then a different equation 
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would appear. No time restriction was put on the participant’s response, because time pressure is 

known to elicit stress [169, 279] and we wanted to decouple stress induction and workload 

induction as much as possible. The subject’s performance (% correct = # correct/# completed) was 

displayed in the right corner of the screen and updated after each response. The number of 

equations completed in a given trial varied based on how quickly the participant responded to the 

questions. No equation was presented more than once during the experimental session (i.e., all 

equations from all trials were unique).  

For the Easy arithmetic trials, num2 in the equation above was restricted to either 2, 5 or 10 (e.g., 

“20 mod 5 = 0” would be correct, “32 mod 2 = 1” would be incorrect), since division by 2, 5, and 

10 is relatively simple and intuitive for most people. For the Difficult arithmetic trials, num2 was 

either 3, 4, 6 or 9 since division by these numbers is generally quite difficult in comparison to the 

“Easy” condition. The “Easy” and “Difficult” trials represent the “low workload” and “high 

workload” conditions, respectively. 

2.4.3.2 Induction of affective states 

The stress induction protocol used in [117] was based on the Trier Social Stress Task (TSST) 

[162], and they induced the relaxed state by having participants either relax in silence or while 

listening to calming music. The TSST is a very effective and reliable method of inducing stress 

and anxiety [280, 281], however it includes only one instance of the stressed condition. As 

previously mentioned, it is critical for the research questions we are attempting to answer in this 

work that the stressed conditions be interleaved. We thus developed a stress induction protocol, 

also based on the TSST, which allowed us to introduce the Stressed conditions twice, while 

allowing participants to return to the Relaxed state in between.  
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At the beginning of the session, the participant was not given specific information about the tasks 

they would have to perform during the experiment but rather were just informed that they would 

have to perform a series of different tasks, some of which were meant to be relaxing and others 

stressful. As will be explained, the protocol involved some deception and this vagueness was 

intentional, so that the participant would not be able to predict what would happen later in the 

session.  

To induce a Relaxed state prior to the Relaxed Blocks, participants sat comfortably and watched a 

2-minute video with relaxing imagery and music. They were then told that they would have to 

perform a series of arithmetic trials of varying difficulty. Before beginning the workload trials, the 

participant was told that while they should try to perform the arithmetic task as well as possible, 

their performance would not be saved or compared to other participants. The same protocol was 

followed for both Relaxed Blocks #1 and #2.  

To induce a Stressed state for Stressed Block #1, the subjects were told that the first task would be 

to perform a series of arithmetic trials at varying levels of difficulty, and that their performance 

during the arithmetic trials was extremely important to the study results and would be recorded 

and compared to other participants. They were then told that following the arithmetic task, they 

would have to do a public speaking task. They were told that this task involved giving a 10-minute 

presentation on a topic of the experimenter’s choosing to a small panel of evaluators (the study’s 

principal investigator and some of her colleagues), one of whom was a body language expert. They 

were told that they would be given five minutes to prepare, and that they could use the internet to 

research the topic and could make notes. They were also told that their presentation might be video 

recorded for future analysis. To increase anxiety, the experimenter made a “fake” phone call to the 

principal investigator letting her know that the arithmetic task was about to begin and that the panel 
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would be needed in about 15 minutes. After completing the STAI questionnaire, the participant 

completed the arithmetic trials for Stressed Block #1. Thus in this protocol, it was the anticipation 

of having to perform the public speaking task that induced stress during the arithmetic trials. 

So that the experimental session was not impractically long (and since, again, it was the 

anticipation of the public speaking task that induced the Stressed state) we did not require the 

participant to actually do the public speaking task. After completing the workload trials of Stressed 

Block #1 and completing the STAI questionnaire, participants were told that “based on their 

physiological data and their performance during that block”, we did not require them to do the 

public speaking task after all. This allowed them to return to a Relaxed state for the next block 

(which was either Relaxed Block #1 or #2, depending on the participant’s block order).  

At the beginning of Stressed Block #2, the participant was again told that they would have to do 

the more stressful arithmetic task (where their performance was highly important to the study 

outcome, and would be monitored and compared with others) followed by the public speaking 

task, but this time they were told that we needed the data from this task regardless of their 

performance/data in the arithmetic task. Because of the deception used in Stressed Block #1, there 

was a risk that the stress induction would be less effective for Stressed Block #2 due to the 

participant doubting our truthfulness. To increase believability, this time the experimenter made a 

“real” phone call to the principal investigator, and spoke to her on speaker phone so that the 

participant could hear the arrangements regarding the panel being made. After completing the 

arithmetic trials for Stressed Block #2 and completing the STAI questionnaire, the participant was 

again told that they would not actually have to do the public speaking task, and it was explained 

why the deception used was necessary for the objectives of the study.   
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Note that for both Stressed Blocks #1 and #2, the STAI questionnaire was completed immediately 

after the participant was told about the public speaking task, and then again before they were told 

they did not actually have to do it (see Figure 2.1). 

2.4.4 Data analysis 

2.4.4.1 Validation of affective state induction protocol  

In order to validate the affective state induction protocol, we analyzed both subjective data (via 

the STAI questionnaire), and objective data (via the participant’s heart rate calculated from the 

collected ECG signals). Our hypothesis was that if our protocol was effective, both the heart rate 

and STAI questionnaire scores would be significantly higher for the Stressed Blocks than the 

Relaxed Blocks. 

Heart rate was calculated for each trial from the ECG signals. We performed a two-way repeated 

measures ANOVA with within-subject main factors of affective state (two levels: Relaxed and 

Stressed) and workload (two levels: Easy and Difficult) for the averaged-over-condition heart 

rates. We also considered the interaction of the main effects.  

Unlike the other measures, the STAI scores were only available for each block, rather than for 

each trial, and so we could only test the effect of the affective state (not workload) on this variable. 

To make sure that the protocol was effective for inducing stress in both Stressed Block #1 and 

Stressed Block #2, we performed a two-way repeated measures ANOVA with within-subject main 

factors of affective state (two levels: Relaxed and Stressed) and block (levels: Block #1 and Block 

#2). 
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2.4.4.2 Validation of workload level induction 

Similarly, in order to validate that our arithmetic task induced different levels of workload, we 

analyzed both subjective data (via the RSME ratings), and objective data (via the participants’ 

performance in the arithmetic trials, specifically their response times and response accuracies). 

Our hypothesis was that if our protocol was effective, the RSME ratings and reaction times would 

be significantly higher, and the response accuracies significantly lower, for the Difficult arithmetic 

trials than the Easy arithmetic trials.  

We performed two-way repeated measures ANOVAs with within-subject main factors of affective 

state (two levels: Relaxed and Stressed) and Workload (two levels: Easy and Difficult) for the 

averaged-over-condition RSME ratings, response times, and response accuracies. We also 

considered the interaction of the main effects. 

2.4.4.3 EEG-based classification of mental workload and affective state 

We aim to classify the level of mental workload as well as the affective state, and determine the 

effect of each on the other. First, we investigated the effect of variation in affective state on the 

ability to classify levels of mental workload (i.e., Easy vs. Difficult). We considered three different 

classifier training paradigms: 1) within-affective-state classification (classifiers were trained and 

tested on data from the same affective state), 2) across-affective-state classification (classifiers 

were trained on data from one state and tested on data from another state), and 3) combined-

affective-state classification (classifiers were trained on data from both states combined but tested 

on data from a single state). All possible combinations of training and test data for each training 

paradigm were investigated. 
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Next, classification of affective state (i.e., Relaxed vs. Stressed) was examined for three different 

classifier training paradigms: 1) within-workload-level classification (classifiers were trained and 

tested on data from the same workload level, 2) across-workload-level classification (classifiers 

were trained on data from one workload level and tested on data from the other workload level) 

and 3) combined-workload-level classification (classifiers were trained on data from both 

workload levels combined, but tested on data from only one level). All possible combinations of 

training and test data for each training paradigm were investigated. Please note that in all cases, 

within-subject classification was performed. 

For each classification problem of interest, the following steps had to be taken prior to 

classification: preprocessing, feature extraction, feature selection, and classification. Then 

statistical analysis was performed on the results.  

2.4.4.3.1 EEG pre-processing  

Since EEG signals contain noise and artifacts from several sources such as the subject’s body 

movements, eye blinks, cardiac signals or muscle contractions, pre-processing methods need to be 

applied to remove these artifacts and produce clean data. First, we applied a band-pass filter with 

a low cut-off frequency of 1 Hz to remove the DC components of the signals and also the drifts, 

and a high cut-off frequency of 50 Hz. In the next step, EMG and motion artifact contaminated 

segments of the signals were manually rejected. Finally, independent component analysis (ICA) 

[282] was applied and artifact components such as eye blinks and saccades were identified and 

removed. Next, the data was down sampled from 500 Hz to 256 Hz. Pre-processing steps including 

ICA were applied using the MatLab Toolbox EEGLAB [283, 284]. “Runica” was selected for the 

ICA type and it was applied to all of a subject’s data, which is approximately 45 minutes in length. 
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2.4.4.3.2 EEG signal feature calculation 

Feature extraction aims to minimize the loss of important information embedded in the data and 

simplify the amount of resources needed to describe a large dataset accurately [18]. Here, 

frequency domain features of the EEG signals were calculated, specifically the signal power in 

seven common EEG frequency bands.  Frequency bands were calculated with respect to each 

participant’s individual alpha frequency (IAF) [285] as follows: delta from (IAF – 8) Hz to (IAF - 

6) Hz; theta from (IAF – 6) Hz to (IAF – 4) Hz; alpha1 from (IAF – 4) Hz to (IAF - 2) Hz; alpha2 

from (IAF – 2) Hz to (IAF) Hz; alpha3 from (IAF) Hz to (IAF + 2) Hz; beta from (IAF + 2) Hz to 

(IAF + 20) Hz; gamma from (IAF + 20) Hz to (IAF + 30) Hz. The IAF for each participant was 

determined using the eyes-closed baseline trial. Specifically, the frequency with the maximum 

signal power for the eyes-closed baseline was taken as the IAF. Power signals for each frequency 

band were obtained via the filter-Hilbert method [286].  

To make sure that the workload-level classification was based on differences in neural activity 

related to the workload levels and not to the incidental differences in the motor requirements of 

the Easy and Difficult conditions (since response frequency was greater for the Easy condition), 

we excluded the electrodes over the motor and sensorimotor brain regions for the Easy vs. Difficult 

classification problems. Specifically, the seven central and seven centro-parietal electrodes (Cz, 

C1-C6, CPz, CP1-CP6) were excluded. This was not a concern for the Stressed vs. Relaxed 

classification problems since there was no difference in the motor requirement in the Relaxed and 

Stressed conditions, and so the central and centro-parietal electrodes were not excluded. This 

resulted in a total of 63 electrodes x 7 frequency bands = 441 features for affective-state 

classification problems and a total of 49 electrodes x 7 frequency bands = 343 features for 

workload-level classification problems. 
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Each of the four blocks consisted of three 67-second trials of the Easy, and Difficult workload 

conditions, for a total of 402 seconds per workload level/stress state combination (i.e., 2 blocks 

per affective state x 3 trials per workload level per block x 67 seconds per trial = 402 seconds). 

Epochs of 4 seconds in length were calculated for each electrode and frequency band via a sliding 

window with 50% overlap. This resulted in a total of (approximately, depending on data loss from 

artifacts) n=200 epochs (or samples) per workload level/stress state combination. 

2.4.4.3.3 Feature selection 

To have a successful classification algorithm, it is necessary to eliminate redundant and irrelevant 

features and select a small set of informative features. A greedy forward selection search algorithm 

was used to select an optimized ten-dimensional feature set. The Fisher score [28, 287] served as 

the fitness criterion.  

2.4.4.3.4 Classification 

The ten selected power features were used to train a linear discriminant classifier. The performance 

of the classifier was assessed using five runs of six-fold cross-validation, performed separately for 

each participant. In each “fold” of the cross-validation, no test data was used in either feature 

selection or classifier training. 

For the “within-affective-state” and “within-workload-level” classification cases, the conventional 

cross-validation method was applied. For the “across” and “combined” cases, however, it is not 

possible to do normal cross-validation, since the training and test data come from completely 

different datasets. For these cases a “pseudo-cross-validation” technique was applied, as described 

in Figure 2.2. Note that in the “combined” case, the size of the dataset used for analysis was made 

equal to the “within” and “across” cases via random sampling of the full dataset. 
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For all classification paradigms, the classifier performance was estimated as the average 

classification accuracy across all runs of the cross-validation.  

2.4.4.3.5 Statistical analysis  

In terms of workload detection, a two-way repeated measures ANOVA was performed considering 

within-subject main factors of affective state of the test data (two levels: Relaxed and Stressed) 

and classifier training paradigm (three levels: within-affective-state, across-affective-state, and 

combined-affective-states). Post-hoc Tukey-Cramer tests were performed to compare each pair of 

conditions. 

In terms of stress detection, for the Relaxed vs. Stressed classification problem, a two-way repeated 

measures ANOVA was performed with within-subject main factors of workload level of test data 

(two levels: Easy and Difficult) and classifier training paradigm (three levels: within-workload-

level, across-workload-level, and combined-workload-levels). Post-hoc Tukey-Cramer tests were 

performed to compare each pair of conditions. 

2.5 Results 

2.5.1 Validation of affective state induction protocol 

The ANOVA results indicated a significant main effect of affective context on heart rate (𝐹(1,17) =

 4.43; 𝑝 = 0.05), with the heart rate being higher in the Stressed condition (mean of 84.6 bpm) 

than the Relaxed condition (mean of 82.2 bpm). There was no significant difference in heart rate 

between the Easy and Difficult conditions (𝐹(1,17) = 0.3; 𝑝 = 0.58), nor was there a significant 

interaction effect (𝐹(1,17) = 0.25; 𝑝 = 0.62). 
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Figure 2.2: Illustration of the six-fold cross-validation techniques used in the “within”, “across” and “combined” 

classifier training paradigms. The example shown is for the “Easy vs. Difficult” classification problem, for test data 

from the “Relaxed” condition. 

 

The ANOVA results for the STAI scores also showed a significant difference between the 

participants’ perception of the affective states between the Relaxed and Stressed states (𝐹(1,17) =

 14.66; 𝑝 = 0.001), with the STAI score being higher in the Stressed condition (mean of 36.8) than 

the Relaxed condition (mean of 28.4). There was no significant effect of Block (𝐹(1,17) = 3.63; 

𝑝 = 0.07) on STAI score, nor was there a significant interaction effect (𝐹(1,17) = 0.03; 𝑝 = 0.86). 

2.5.2 Validation of workload level induction 

The ANOVA results indicated a significant main effect of workload level on RSME score 

(𝐹(1,17) = 82.14; 𝑝 < 0.001 ), with the RSME score being significantly higher in the Difficult 

condition (mean of 2.7) than the Easy condition (mean of 1.2). There was no significant main 
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effect of affective state on the RSME scores (𝐹(1,17) = 0 ; 𝑝 = 0.95 ), nor was there a significant 

interaction effect (𝐹(1,17) = 0.12 ; 𝑝 = 0.73 ). 

The ANOVA results also indicated a significant main effect of workload level on response time 

(𝐹(1,17) = 21.33; 𝑝 < 0.001 ), with the response time being significantly higher in the Difficult 

condition (mean of 7.6 seconds) than the Easy condition (mean of 4.0 seconds). There was no 

significant main effect of affective state on the response time (𝐹(1,17) = 2.54; 𝑝 = 0.1292). There 

was a significant interaction effect (𝐹(1,17) = 5.67; 𝑝 = 0.0292), indicating that the difference in 

response time between the Easy and Difficult conditions was more pronounced in the Stressed 

condition than the Relaxed condition.  

The ANOVA results also indicated a significant main effect of workload level on response 

accuracy (𝐹(1,17) = 16.07; 𝑝 =<0.001), with the response accuracy being significantly lower in the 

Difficult condition (mean of 92.5%) than the Easy condition (mean of 97%). There was no 

significant main effect of affective state on the response accuracy (𝐹(1,17) = 0.03; 𝑝 = 0.87). There 

was a significant interaction effect (𝐹(1,17) = 5.28; 𝑝 = 0.03), indicating that the difference in 

response accuracy between the Easy and Difficult conditions was more pronounced in the Stressed 

condition than the Relaxed condition. 

2.5.3 EEG-based classification 

Table 2.1 shows the detailed workload level classification results (averaged across participants). 

The results are given for each classifier training paradigm, and for test data from each affective 

state, separately. 
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Table 2.2 shows the detailed affective state classification results (averaged across participants). 

The results are given for each classifier training paradigm, for test data from each workload level 

separately.  

The confidence limits of “chance” depends on the number of trials per class, with the upper 

confidence limit for a significance level of α=5% and n=200 samples per class being approximately 

54.3% by the binomial test. The classification results in Tables 2.1 and 2.2 thus show above chance 

accuracies for all cases. 

In terms of workload classification, the ANOVA results indicated that there was a significant effect 

of “classifier training paradigm” on classification accuracy (𝐹(2,34) = 151.67; 𝑝 < 0.001). Post 

hoc Tukey-Kramer tests indicated that there were significant differences between all pairwise 

combinations of the three classifier training paradigms (𝑡(34) >  7.63; 𝑝 < 0.001). There was no 

significant effect of “affective state of the test set” on the classification accuracy (𝐹(1,17) = 0.62; 

𝑝 = 0.44). There was also a slightly significant interaction effect (𝐹(2,34) = 3.49; 𝑝 = 0.04), with 

the difference in classification accuracy among the three classifier training paradigms being 

slightly larger when test data came from the Stressed condition as compared to the Relaxed 

condition.  

In terms of affective state classification, the ANOVA results revealed a significant main effect of 

“classifier training paradigm” on the classification accuracy for Relaxed vs. Stressed (𝐹(2,34) =

 39.36; 𝑝 < 0.001). Post hoc Tukey-Kramer tests indicated that there were significant differences 

between all pairwise combinations of the three classifier training paradigms (𝑡(34) > 4.84; 𝑝 <

0.001). There was no significant main effect of “workload level of the test set” on the classification 



59 
 

accuracy (𝐹(1,17) = 0.16; 𝑝 = 0.70), nor was there a significant interaction effect (𝐹(2,34) = 2.9; 

𝑝 = 0.07). 

Table 2.1: Workload level classification results (averaged over all participants) for different classifier training 

paradigms. For the training set composition, “same affective state” and “other affective state” are relative to the test 

set composition. 

  
Mental workload classification results: Easy vs. Difficult 

  
Training set composition 

  Same affective state only 

(“within” paradigm) 

Other affective state only 

(“across” paradigm) 

Both affective states 

(“combined” paradigm) 

Test set 

Compos 

Relaxed 71.4 ± 5.2 56.4 ± 6 67.1 ± 5.4 

Stressed 73.8 ± 5.5 56.3 ± 5.5 66.8 ±5.7 

Mean: 72.6 56.3 66.9 

 

Table 2.2: Affective state classification results (averaged over all participants) for different classifier training 

paradigms. For the training set composition, “same affective state” and “other affective state” are relative to the test 

set composition. 

  
Affective state classification results: Relaxed vs. Stressed 

  
Training set composition 

  Same workload level only 

(“within” paradigm) 

Other workload level only 

(“across” paradigm) 

Both workload levels states 

(“combined” paradigm) 

Test set 

Compos 

Easy 85.8 ± 6.9 75.0 ± 9 82.3 ± 7.3 

Difficult 84.8 ± 6.6 72.6 ± 8.4 82.6 ± 7 

Mean: 85.3 73.8 82.4 

 

 

2.5.4 Feature analysis 

In order to get insight on the source of the class differentiability, we investigated the features 

selected from each frequency band and each brain region via the automatic feature selection 

algorithm for the “within” classification training paradigm. Figures 2.3 and 2.4 show the 

percentage of selected features coming from each considered a) brain region, and b) frequency 

band, for the mental workload and affective state classification problems, respectively. Given that 

we performed 5 runs of 6-fold cross-validation, and in each fold ten features were selected, the 
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percentages given for each classification problem are out of a total of 300 selected features. Recall 

that the central and centro-parietal electrodes were excluded for the mental workload classification 

problems. 

 

Figure 2.3: Feature analysis for the mental workload classification problem (i.e., Easy vs. Difficult) for the “within-

affective-state” classifier training paradigm. Percentage of all features selected (over 5 runs of 6-fold cross-validation) 

that came from a) each brain region considered, and b) each frequency band considered. 
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Figure 2.4: Feature analysis for the affective state classification problem (i.e., Relaxed vs. Stressed) for the “within-

workload-level” classifier training paradigm. Percentage of all features selected (over 5 runs of 6-fold cross-

validation) that came from a) each brain region considered, and b) each frequency band considered. 

 

2.6 Discussion 

The main objective of this study was to investigate the effect of varying affective state on the 

automatic classification of mental workload, and the effect of varying mental workload on the 

automatic classification of affective state (specifically stress or no stress), via EEG signals. For 

this, we designed an experimental protocol that required participants to perform a task at two levels 

of difficulty (Easy and Difficult), each under two different affective states (Relaxed and Stressed).  

Subjective and objective measures were used to validate our workload and affective state induction 

protocols. The results of statistical tests comparing both the heart rate and the STAI scores between 

the Relaxed and Stressed Blocks indicate that our protocol was effective in inducing the desired 

affective states. Given the novelty of our protocol in terms of interleaving the Relaxed and Stressed 

Blocks, we were concerned that the second instance of the stress induction protocol (Stressed 
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Block #2) might be ineffective (or less effective) in inducing stress, so to test this we performed a 

two-way ANOVA with “block” (two levels: Block #1 and Block #2) included as a main effect. 

The test revealed no statistically significant main effect of block on the STAI scores, and no 

interaction effect of block and affective state, indicating that in general stress induction was equally 

effective in both the first and second Stressed Blocks.  

Similarly, statistical comparison of the participants’ response times, response accuracies and 

RSME ratings among the different task difficulties indicate that distinct levels of mental 

workload/effort were induced in the Easy (“low workload”) and Difficult (“high workload”) trials. 

It is interesting that the reaction times in particular were on average almost twice as long for the 

Difficult trials as for the Easy trials. Significant interaction effects indicated that the difference in 

both response accuracy and response time between the Easy and Difficult conditions was more 

pronounced in the Stressed condition than the Relaxed condition. The fact that cognitive 

performance is impaired under anxiety is well-reported [288-290]. These results provide further 

support that our stress induction protocol was effective.  

It is worth noting that while the difference in the RSME ratings between the Easy and Difficult 

conditions was statistically significant, it was not very large (1.2 vs. 2.7 on a scale from 1 to 9). 

This was not unexpected, and was due to the fact that when designing our task workload levels, 

we really prioritized the need to not induce stress in the high workload condition. It was imperative 

for the objectives of this work that we induce mental workload and stress as independently of one 

another as possible. Therefore, we endeavored to make the high workload task as different from 

the low workload task as possible in terms of difficulty while keeping it manageable enough that 

the participants would not feel any additional stress due to the task. This is the reason (as mentioned 

in the section 2.4.3.1) that we did not put any time limit on the task, for example. Given the 
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unfamiliar scenario of participating in a research study, we were concerned that pushing the 

difficult condition too high would result in our participants feeling task-related stress. Because of 

this, we were relatively conservative in the design of our high workload condition. The fact that 

the EEG classification results are well above chance and in line with other similar studies in the 

literature [117], combined with the difference in the task performance measures, is indicative that 

distinct workload levels were indeed induced in the Easy and Difficult conditions, and we felt that 

this was sufficient to meet the objectives of this research, i.e., to investigate the effect of variation 

in stress on the ability to classify mental workload (and vice versa). 

To test how a workload classifier would be effected by variability due to changes in affective state, 

we considered three different classifier training paradigms: 1) “within-affective-state” 

classification (classifiers were trained and tested on data from the same affective state), 2) “across-

affective-state” classification (classifiers were trained on data from one state and tested on data 

from the other state), and 3) “combined-affective-state” classification (classifiers were trained on 

data from both states combined but tested on data from a single state). The results showed that in 

the “within-affective-state” classification paradigm, the Easy and Difficult conditions could be 

distinguished from one another with accuracies significantly exceeding chance, about 71% in the 

Relaxed condition, and 74% in the Stressed condition. We found that regardless of whether the 

test data were from the Relaxed or Stressed condition, the “across-affective-state” classifier 

training paradigm resulted in quite significantly reduced classification accuracies – around 15-

17% lower than the “within-affective-state” case.   These results support those reported in [117], 

where they also observed a reduction in classification accuracy for the across-affective-state as 

compared to the within-affective-state training paradigm, however our observed effect is much 

larger (they observed an approximately 3% reduction in accuracy for low vs. high workload 
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classification). This discrepancy could be due to the different experimental protocols used. In [117] 

the participants were told about a public speaking task, and then actually had to go through with 

the task prior to performing the workload trials. Likely, the participants’ stress level was at a peak 

during the performance of the public speaking task, and then reduced drastically once it was 

finished, prior to the workload trials. In our paradigm, we told the participants about the upcoming 

public speaking task, and then they completed the workload trials under the anticipation of this 

imminent, very stressful situation. It is possible that our paradigm was more effective in inducing 

stress during the workload trials, and this is why we observed a larger effect of the “across-

affective-state” training paradigm. The observed difference could also be due to the fact that we 

used a different workload task than was used in 117]. 

For the Easy vs. Difficult problem, including data from both the Relaxed and Stressed conditions 

in the training set – as in the “combined-affective-state” training paradigm – significantly 

improved the classification as compared to the “across-affective-state” paradigm, but does not 

increase it to the level of the optimal, “within-affective-state” paradigm.  

Similar results were observed when investigating the effect of varying workload on the 

classification of affective state. When performing classification of Relaxed vs. Stressed, the 

“within-workload-level” training paradigm yielded an accuracy of 85%, which was significantly 

reduced to 74% on average for the “across-workload-level” training paradigm. When data from 

both workload levels were included in the training set (the “combined-workload-level” training 

paradigm), the accuracy was significantly improved to approximately 82%, but again did not reach 

the level of the optimal (“within-workload-level”) paradigm. 
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Our classification results for the Easy vs. Difficult condition (for the “within-affective-state” 

training paradigm) are comparable to other results reported in the literature, including those in 

[117] which are approximately equal, on average, to ours.  

For the mental workload classification, Figure 2.3a indicates that a majority of the selected features 

came from the frontal and parietal lobes. This is in line with other studies that have shown these 

regions to be associated with mental workload [116, 291-300]. In terms of frequency bands, Figure 

2.3b indicates that approximately 56% of features selected were from lower frequency bands (i.e. 

delta, theta and alpha) and approximately 44% from high frequency bands (i.e. beta and gamma). 

Some studies have suggested that high frequency bands can be contaminated with EMG from the 

frontalis and/or temporalis muscles [301]. Since many people tend to contract the frontalis muscle 

when concentrating, it seemed possible that there could potentially have been more such EMG 

activity during the Difficult than the Easy task, and that this could have contributed to the 

differentiability of these conditions. Indeed, [302] found EMG of the frontalis muscle to be 

sensitive to variation in cognitive load. To make sure that the classification was indeed based 

primarily on neural activity rather than muscle activity, we repeated the “within-affective-state” 

classification with the high frequency bands of beta and gamma excluded from the feature pool. 

With the high frequency bands excluded, the classification accuracy for Easy vs. Difficult 

decreased by approximately 4% on average, from about 72.6% to 68.3%. These results are still 

well in excess of chance, indicating that the workload classifier does rely primarily on neural 

information from low frequency bands. If frontalis muscle activity did indeed contribute minimally 

to the classifier, however, we argue that this would not necessarily be a negative. The application 

of mental workload detection is for able-bodied users so there are no concerns that the results 

would not transfer to the target population as is often a concern in active BCI. Furthermore, many 
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studies investigating mental workload detection incorporate other physiological signals like ECG, 

GSR, and pupil dilation [303] to improve results. We argue that it would be in a similar vein to 

incorporate information from EMG activity generated due to workload-induced contraction of the 

frontalis muscle.  

For affective state classification, Figure 2.4 indicates that while features from all brain regions and 

frequency bands were selected with some frequency, a majority of selected features came from the 

frontal, parietal and central brain regions and from the higher frequency (gamma and beta) bands. 

These findings are in line with results reported in the literature [197]. The gamma band has been 

reported to be more discriminative between stress levels than lower bands, and it has been 

suggested that both low and high frequency bands should be considered in order to assess stress 

level [197]. 

The results of this study confirm those reported in [117] that affective state can have a very 

significant effect on the classification of workload levels via EEG. In the present study, there is no 

possibility that the observed effect is simply due to time-related changes in the signals since the 

Stressed and Relaxed conditions in our experimental protocol were interleaved. Our results further 

suggest that workload level can have a similar effect on the classification of affective state. In 

order for stress and workload detection algorithms to be useful outside the lab where users are 

likely to experience changes in both their cognitive load and stress level as they perform tasks in 

real life scenarios, these confounding effects must be considered and accounted for. These results 

suggest that including samples from both affective states in the training data for mental workload 

detection, and including samples from different workload levels in stress detection, will make the 

algorithms somewhat more robust, however it is not an optimal solution.  
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Now that we have identified this issue, the next steps of this work will be to try to improve the 

concurrent classification of mental workload and stress by incorporating techniques such as 

hierarchical classification strategies and transfer learning methods. Future work will also 

investigate mental workload and stress at the highest end of workload, where the two are often 

(though not necessarily) highly correlated. While in many scenarios the induction of mental 

workload and stress may be inextricably linked, we hope to determine if detection of the states can 

still be done independently. 

2.7 Conclusion  

In this study, we investigated whether the ability to detect one mental state via EEG signals is 

affected by variation in another state. Specifically, we looked at the confounding effects of mental 

workload and stress. We found that detection of both states is significantly diminished in the 

presence of variation of the other state. In order to be effective in real-life scenarios where 

simultaneous variation of both mental workload and stress is inevitable, this effect will have to be 

accounted for in the development of the EEG-based state detection algorithms. 
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Chapter 3 : Investigating hierarchical and ensemble 

classification approaches to mitigate the negative effect 

of varying stress state on EEG-based detection of 

mental workload level - and vice versa 

Co-authorship statement. A version of this chapter has appeared in the journal Brain Computer 

Interfaces as the article titled “Investigating hierarchical and ensemble classification approaches 

to mitigate the negative effect of varying stress state on EEG-based detection of mental workload 

level - and vice versa” in August 2021. The author, Mahsa Bagheri, carried out the study design, 

data collection and data analysis. Mahsa Bagheri also prepared the first draft of the manuscript and 

subsequently revised the manuscript based on the co-author’s feedback as well as the comments 

received from the peer review process. The co-author, Dr. Sarah Power provided guidance on 

study design, data collection and data analysis. Dr. Power also helped in reviewing, editing and 

revising the manuscript. All authors read and approved the final draft.  

The same dataset is used in this study as was described in Chapter 2. 

3.1 Abstract 

Research studies on EEG-based mental workload detection generally consider workload 

exclusively in terms of task demands, as manipulated through the variation of task difficulty. 

However, mental workload cannot be estimated precisely with the properties of the task alone 

because different aspects of the user’s state could affect the mental effort needed to perform the 

task. We argue that affective state, specifically stress/anxiety, is of particular relevance. Thus the 
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overall objective of this work is to develop a passive brain-computer interface that detects mental 

workload and affective state simultaneously. In the study described in Chapter 2, we found that 

variation in affective state negatively effects the EEG-based classification of mental workload, and 

vice versa. Thus, such variation should be explicitly considered when developing detection 

algorithms that will remain effective outside the lab. In the work described in this chapter, we 

investigated five classification approaches for detecting mental workload and affective state which 

explicitly consider variation in the other state. Significant improvements in classification accuracy 

were achieved for both states.  

3.2 Introduction 

Passive brain-computer interfaces (BCI) are systems that aim to monitor the mental state of the 

user and use the information to enhance an ongoing human-machine interaction [1, 10]. 

Information on the mental state is derived from neural signals obtained through an appropriate 

functional imaging technology. Due to its portability, relatively low cost, and excellent temporal 

resolution, electroencephalography (EEG) has emerged as perhaps the most promising modality. 

One highly impactful potential application of passive BCI is the monitoring of mental workload 

[20, 40, 88, 94, 95, 114, 144, 155, 222-224] in high risk and safety critical occupations like air 

traffic controllers, pilots, and other industrial operators, where the consequences of human error 

can be severe. The system would detect potentially dangerous states of high cognitive demand or 

overload and take measures to help mitigate the risk of error. 

 Mental workload is defined as the perceived relationship between an individual’s total mental 

processing capability and the amount required by the task at hand [80]. The closer the task 

requirements are to the individual’s capability, the higher is the perceived workload. Mental 

workload arises from the interaction of several factors including the properties of the task being 
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performed (e.g., difficulty), the characteristics of the individual performing the task (e.g., cognitive 

capacity, level of training in the task, mood), and the task environment (e.g., noisy, distracting) 

[243].  

Mental workload detection via EEG (sometimes in combination with other physiological variables 

such as electrocardiogram or pupil dilation) is a very active and growing field, with a large number 

of published studies [e.g., 34, 36, 69, 81-83, 89, 90, 105, 106, 109, 116, 117, 134, 147, 234, 304, 

305]. Such studies generally consider workload exclusively in terms of task demands, as 

manipulated through the variation of task difficulty. However, while this is certainly a major factor, 

precise estimation of mental workload is not possible when exclusively considering the properties 

of the task because, as mentioned above, other factors will affect the mental effort needed to 

perform the task [236]. We argue that the potential effect of the user’s affective state, and 

specifically their stress/anxiety level, is of particular relevance, especially in passive BCI 

applications aimed at safety-critical occupations where individuals often perform duties in stressful 

situations that carry a high cost of error. According to the Processing Efficiency Theory, stress 

reduces the storage and processing capacity of the working memory system, and necessitates an 

increase in on-task effort to maintain the same level of performance [237, 306]. So the full picture 

regarding the cognitive state of the individual that is relevant to their performance of the task at 

hand and their potential for error - which is the information the passive BCI is intended to provide 

– should include a combination of the difficulty of the task they are performing, and their level of 

anxiety/stress. It would be useful to know, for example, if the individual is performing a difficult 

task very calmly or with significant anxiety. The latter may be a much riskier situation, and thus 

the environmental adaptation strategies that should be implemented by the passive BCI should be 

much different in these two scenarios. Thus, the overall aim of this research is to develop a passive 
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BCI that is able to detect both the difficulty of the task the individual is performing and their 

stress/anxiety level simultaneously, in a sort of “two-dimensional” measure of cognitive load.  

While detection of both task difficulty and stress/anxiety from EEG signals have been attempted 

before on an individual basis, estimating both simultaneously, with each state confounding the 

other, is a technical challenge that has only recently been addressed. In our recent study [304], we 

found that while both states (i.e., stress, and mental workload due to task difficulty) could be 

simultaneously classified at levels significantly exceeding chance, variation in each state had 

deleterious effects on the classification of the other by EEG. We found that the accuracy with 

which workload levels (as defined exclusively in terms of task difficulty) could be classified was 

affected by whether the classifier training and testing data were collected under the same or 

different affective states. When the classifier was trained on data from a relaxed (stressed) 

condition and tested on data from a relaxed (stressed) condition – i.e., the “within-affective-

context” classification paradigm - mean classification accuracy across 18 participants for the 

“Easy” vs. “Difficult” task conditions was approximately 73%. However, when the classifier was 

trained on data from the relaxed (stressed) condition and tested on data from the stressed (relaxed) 

condition – i.e., the “across-affective-context” classification paradigm - the mean accuracy 

dropped to approximately 56%. This suggests that in a real passive BCI system, if the mental 

workload detection algorithm were to be trained using data collected during a calibration session 

where the individual experienced a single - likely relaxed - affective state, performance could 

deteriorate significantly when applied to real-life scenarios which are likely to induce varying 

levels of stress in the user. It was found that including data from both the stressed and relaxed 

states in the training set (i.e., the “combined-affective-context” classification paradigm) improved 

the classifier performance to approximately 67% - significantly higher than in the “across-
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affective-context” case, but still significantly below the ideal “within-affective-context” case. 

These results were in line with the results reported in [117]. Furthermore, we found in [304] that 

variation in the difficulty level of the task that the individual was performing had similarly negative 

effects on the performance of algorithms classifying affective state. The mean classification 

accuracy for the “Relaxed” vs. “Stressed” conditions across 18 participants was approximately 

85% and 74% for the “within-workload-level” and “across-workload-level” classification 

paradigms, respectively. Including data from both workload conditions in the training set (i.e., the 

“combined-workload-level” classification paradigm) resulted in an accuracy of 82%, which was 

again significantly better than the “across-affective context” paradigm, but still significantly below 

the ideal “within-workload-level” classification paradigm. 

In this paper, we expand on our earlier work and investigate ways to improve the classification of 

each state (i.e., mental workload and stress) in the presence of variation in the other state. 

Specifically, we consider four classification approaches that, based on our previous results, we 

hypothesized would improve accuracy of classification as compared to the “combined-affective-

context” and “combined-workload-level” paradigms reported in [304]. The total of five 

approaches we investigated are described below for the case of mental workload classification (the 

same approaches were taken for affective state classification).  

1) Combined approach – Each test sample is classified using a mental workload 

classifier trained on data from both affective states combined. 

2) Hierarchical (without thresholding) approach – For each test sample, the 

individual’s affective state is predicted first, then mental workload is predicted 

based on a “stress-state-specific” workload classifier trained only on data from the 

predicted stress state. 
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3) Hierarchical (with thresholding) approach – This is the same as the first approach, 

except the use of the “stress-state-specific” workload classifier is predicated on the 

confidence of the affective state prediction. 

4) Posterior probability-based approach – Each test sample is classified using two 

different mental workload classifiers, independently: one trained on data from the 

relaxed state only, and one trained on data from the stressed state only. The final 

classification result is that of the classifier with the highest posterior probability 

associated with the prediction. 

5) Majority vote-based approach – Each test sample is classified using three different 

mental workload classifiers, independently: one trained on data from both stress 

states, one trained on data from the relaxed state only, and one trained on data from 

the stressed state only. The final classification result is based on majority vote of 

the three classifiers. 

In the following sections we describe our experimental methods, provide more details about the 

classification approaches, and report and discuss our findings. 

3.3 Material and methods 

3.3.1 Experimental methods 

The experimental methods, including participants, physiological data acquisition, experimental 

procedure and validation of stress and workload induction, are the same in this study as were 

described in Chapter 2. Please refer to section 2.4.1 for information on participants, section 2.4.2 

for physiological data acquisition, section 2.4.3 for experimental procedure, and sections 2.4.4.1, 

2.4.4.2, 2.5.1 and 2.5.2 for information on validation of stress and workload induction. 
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3.3.2 Data analysis 

3.3.2.1 EEG-based classification 

In this paper, we investigate five classification schemes to improve mental workload classification 

(i.e., Easy vs. Difficult) in the presence of varying affective-state, and affective-state classification 

(i.e., Relaxed vs. Stressed) in the presence of varying workload level. The classification analysis 

was performed separately for each subject. 

For each classification problem of interest, the following steps had to be taken prior to 

classification: preprocessing, feature extraction, and feature selection. 

3.3.2.1.1 EEG pre-processing 

EEG signals contain artifacts from sources such as movement of the electrodes, eye blinks and eye 

movements (electrooculography, EOG), cardiac signals (electrocardiography, ECG), and muscle 

activity (electromyography, EMG), therefore pre-processing techniques must be applied to remove 

them. We first applied a 1-50 Hz band-pass filter to remove signal components outside of our 

frequency range of interest. Next, signal segments contaminated by movement artifacts and EMG 

were manually rejected. Then, independent component analysis (ICA) [282] was applied and 

signal components related to eye blinks and saccades were identified and removed. Finally, the 

data was down sampled from 500 Hz to 256 Hz. Pre-processing steps including ICA were applied 

using the MatLab Toolbox EEGLAB [283, 284]. “Runica” was selected for the ICA type and it 

was applied to all of a subject’s data, which is approximately 45 minutes in length. 
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3.3.2.1.2 EEG signal feature calculation 

To make sure that the workload level classification was based on differences in neural activity 

related to the workload levels and not to any incidental differences in motor activity (since the 

response frequency was higher for the Easy as compared to the Difficult condition), we did not 

include the electrodes over the motor and sensorimotor brain regions for the mental workload 

classification problem. Specifically, the seven central and seven centro-parietal electrodes (Cz, 

C1-C6, CPz, CP1-CP6) were excluded. These electrodes were not excluded for the affective state 

classification problem since there was no difference in the motor requirement in the Relaxed and 

Stressed conditions. A total of 49 electrodes were considered for the mental workload 

classification, and 63 for the affective state classification. 

Frequency domain features of the EEG signals were calculated. Specifically, the signal power in 

seven common EEG frequency bands were calculated with respect to each participant’s individual 

alpha frequency (IAF) [285] as follows: delta from (IAF – 8) Hz to (IAF - 6) Hz; theta from (IAF 

– 6) Hz to (IAF – 4) Hz; alpha1 from (IAF – 4) Hz to (IAF - 2) Hz; alpha2 from (IAF – 2) Hz to 

(IAF) Hz; alpha3 from (IAF) Hz to (IAF + 2) Hz; beta from (IAF + 2) Hz to (IAF + 20) Hz; gamma 

from (IAF + 20) Hz to (IAF + 30) Hz. The IAF for each participant was determined using the eyes-

closed baseline trial collected at the beginning of the session. Specifically, the frequency with the 

maximum signal power for the eyes-closed baseline was taken as the IAF. Power signals for each 

frequency band were obtained via the Filter-Hilbert method [286]. Then, average power was 

calculated over non-overlapping 2-second epochs. The power features were calculated for each 

electrode individually. 

For the affective-state (Stressed vs. Relaxed) classification problem, measures of relative gamma 

(RG) activity were also computed [307] as follows: the power spectral distribution was computed 
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on the z-transformed EEG in each of the 4-second windows. This distribution was averaged 

through all electrodes. The RG was computed as the power ratio between gamma and other 

rhythms (i.e, gamma/delta, gamma/theta, gamma/alpha1, gamma/alpha2, gamma/alpha3 and 

gamma/beta). The inverse of each frequency band (i.e., 1/delta, 1/theta, 1/alpha1, 1/alpha2, 

1/alpha3, 1/beta and 1/gamma) were also computed [197]. 

This resulted in a total of 49 electrodes x 7 frequency bands = 343 features for the mental workload 

classification problem and a total of 63 electrodes x 7 frequency bands + 13 RG features = 454 

features for the affective state classification problem. There were approximately 400 seconds of 

data collected for each combination of workload level and affective state (2 blocks per stress 

condition x 3 trials per workload level per block x 67 seconds per trial), which with 2-second 

epochs yielded approximately n=200 samples (i.e., epochs) per workload level/affective state 

combination. 

Finally, each feature was normalized to a range between 0 and 1. 

3.3.2.1.3 Classification algorithm 

In each of the classification approaches investigated, any individual binary classifications were 

done using a regularized linear discriminant analysis (LDA) classifier [308] from the MatLab 

Toolbox BCILAB [284, 309]. 

3.3.2.1.4 Classification approaches 

For both the workload level classification and the affective state classification, five classification 

approaches were investigated, as described below. In the following explanations, we will refer to 

the state to be classified (either mental workload or affective state) as “State A”, and the other state 

as “State B”. So the goal of the classification analyses is to predict the level of State A in the 
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presence of variation in the level of State B. See Figure 3.1 for flowchart representations of each 

approach. 

a) “State-B-combined” approach: The level of State A is predicted using a classifier 

trained using data from both levels of State B. This is the same as the “combined-

workload-level” and “combined-affective-state” classification paradigms reported 

in [304]. The performance of the remaining approaches will be evaluated against 

this approach. 

b) Hierarchical (without thresholding) approach: First, the level of State B is 

predicted, then based on that result, the appropriate State-B-specific classifier (i.e., 

one trained on data coming from only the predicted level of State B) is used to 

predict the level of State A. The State B classifier used in the “first stage” of the 

classifier is trained using data from both levels of State A (i.e., it is a “State-A-

combined” State B classifier). The rationale for investigating this approach was our 

previous finding that for both mental workload and affective state, classification 

accuracy was higher when training data came exclusively from the same level of 

the “other” state as the sample to be classified.  

c) Hierarchical (with thresholding) approach: First, the level of State B is predicted, 

then if there is sufficient confidence in that prediction (specifically, if the posterior 

probability of the predicted class is greater than or equal to 0.8), an appropriate 

State-B-specific classifier is used to predict the level of State A. If the confidence 

in the State B prediction is not sufficient, the “State-B-combined” classifier is used 

to predict the level of State A.  
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d) Posterior probability-based approach: Two separate “State-B-specific” State A 

classifiers were trained, one for each level of State B. The final prediction for the 

level of State A was taken to be the output of the classifier with the highest posterior 

probability.  

e) Majority vote-based approach: Three separate State A classifiers were trained – a 

“State-B-combined” State A classifier and two “State-B-specific” State A 

classifiers, one for each level of State B. The final prediction for the level of State 

A was determined through majority vote of these three classifiers. 

The performance of the all classification approaches was assessed using the average accuracy 

across five runs of six-fold cross-validation. In each “fold” of the cross-validation, no test data was 

used in either feature selection or classifier training. 
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Figure 3.1: Classification approaches. For the ith test sample: xi represents the EEG feature vector; yAi and  yBi 

represent the true class labels for State A and State B, respectively; ỹAi and ỹBi represent the predicted class labels for 

State A and State B, respectively. 
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3.3.2.1.5 Statistical analysis 

One-way repeated measures ANOVA with post-hoc Tukey-Kramer tests was performed to 

compare the performance of the five different classification approaches. Cohen’s d values were 

calculated to indicate the effect sizes of each classification approach compared to the “State-B-

combined” approach. 

3.4 Results 

3.4.1 EEG-based classification 

Table 3.1 shows the results of workload level classification (Easy vs. Difficult) for all participants 

for the five classification approaches. The hierarchical classification, with and without the 

thresholding, and the majority-vote-based classification approaches gave the best results with 

increases of 2.7%, 1.8%, and 2.5%, respectively, over the combined-affective-state approach. Post-

hoc Tukey-Kramer tests indicated that these increases were all significant (|𝑡(68)| > 5.49; 𝑝 <

.001). The result for hierarchical classification with thresholding was significantly higher than that 

without thresholding (𝑡(68) = 2.88; 𝑝 = .04), but there were no other significant differences 

among these three best approaches (|𝑡(68)| < 2.19; 𝑝 > .19). The posterior-probability-based 

classification approach had a significantly lower accuracy than the affective-state-combined 

approach (𝑡(68) = 5.42; 𝑝 < .001). 

 

 

 



81 
 

 

Table 3.1: Workload-level classification results for all participants for the five different classification approaches. 

Mean accuracies that are significantly (α=0.05) higher than that of the “affective-state-combined” approach are 

indicated by *. Cohen’s d values are given to indicate effect sizes in these cases. A Cohen’s d value of 0.2 indicates a 

small effect, while a value of 0.5 indicates a medium effect [310]. 

 

Table 3.2 shows the results of affective-state classification (Relaxed vs. Stressed) for all 

participants for the five classification approaches. The best results came from the majority-vote-

based classification approach with average accuracy of 86.3%.  This result exceeded the accuracy 

for the combined approach by 2.1%, however a post-hoc Tukey-Kramer test revealed that this 

difference just reached significance (|𝑡(68)| = 2.8; 𝑝 = .0499). All of the other classification 

approaches yielded results very similar to, or lower than, that of the combined approach.  

 

   

Mental Workload Classification Results (Easy vs. Difficult) 

Subjects 
Affective-state-

combined 

Hierarchical (with 

thresholding) 

Hierarchical 

(without 

thresholding) 

Posterior-

probability-based 

Majority-vote-

based 

1 68.5 71.8 71.2 66.6 70.9 

2 59 60.3 59.2 56.8 60.2 

3 66 70.2 69.5 64.3 63.2 

4 71.6 72.6 72.1 68.2 72.5 

5 61.9 64.6 62.9 62.3 64.3 

6 69.3 71.4 69.9 67.3 72.2 

7 63.7 67.9 67.6 64.7 66.4 

8 61.3 63 63.5 59.9 63 

9 67.5 71 71 67.1 70.4 

10 71.4 75.1 74.4 71 74.9 

11 69.8 72.1 71.9 68.6 71.7 

12 63.9 68.7 66.8 64.7 69.5 

13 77 79.5 77.5 75.8 79.2 

14 79 80.9 78.3 72.6 81 

15 75.2 77.6 77 72.8 77.7 

16 67.3 70.8 70.5 64.7 69 

17 73 73.4 72.7 68.7 75.6 

18 66.6 68.5 67 65.2 67.8 

Mean: 68.4 ± 5.4 71.1 ±5.3* 70.2 ±5.1* 66.7 ±4.6 70.9 ±5.5* 

Cohen’s d --- 0.49 0.32 --- 0.44 
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Table 3.2: Affective-state classification results for all participants and different classification approaches. Mean 

accuracies that are significantly (α=0.05) higher than that of the “workload-level-combined” approach are indicated 

by *. Cohen’s d values are given to indicate effect sizes in these cases. A Cohen’s d value of 0.2 indicates a small 

effect, while a value of 0.5 indicates a medium effect [310]. 

 

Note that for both mental workload and affective state classification, the “State-B-combined” State 

A classification results were a bit higher than those reported in [304], and referenced in the 

introduction section of this paper. This is due in part to the fact that in the previous paper the 

amount of data used for the classification analysis was balanced across the different classifier 

training paradigms in order to allow fair comparison, which resulted in half the amount of data 

being used for classification in the “combined” case. Here, the full dataset is used in each of the 

classification approaches investigated and, unsurprisingly, the significant increase in the amount 

of data resulted in an increase in the classification accuracy. Also, slightly different classification 

techniques were used here (specifically, 2 s non-overlapping epochs instead of 4 s overlapping 

epochs, and regularized LDA instead of LDA without regularization). 

Affective State Classification Results (Relaxed vs. Stressed) 

Subjects 
Workload-level-

combined 

Hierarchical (with 

thresholding) 

Hierarchical 

(without 

thresholding) 

Posterior-

probability-based 

Majority-vote-

based 

1 84.2 84.5 79.9 85.2 87.1 

2 76.7 75.7 75.2 79 79 

3 82.9 82.7 81 82 86 

4 88.7 88.1 86 89.7 90.2 

5 69.2 70.3 69.6 71.2 71.1 

6 86.3 86.6 85.1 86.1 87.6 

7 86.5 85.6 84.7 88.4 88.5 

8 83.7 83.1 81.6 83.8 85.5 

9 76.6 75.6 73.8 76 77.8 

10 97.7 98.2 96.5 98.3 98.4 

11 83.7 84.7 83.7 86.5 86.1 

12 80 79.3 76.2 80.3 82.2 

13 85.5 88.8 88.8 88 90.5 

14 81 80.9 78.9 82.6 82.8 

15 98.1 98.2 98.4 80.3 98.9 

16 87.1 85.7 84.8 87.2 90.2 

17 85.8 87.7 84.8 88 89.2 

18 82.3 80.6 77.3 81.5 82.1 

Mean: 84.2±6.8 84.2±7 82.6±7.3 84.1±5.9 86.3±6.7* 

Cohen’s d --- --- --- --- 0.30 
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3.5 Discussion 

The overall aim of this research is to develop a passive BCI that is able to detect both the difficulty 

of the task the individual is performing and their stress/anxiety level simultaneously, in a sort of 

“two-dimensional” measure of cognitive load. In our recent study [304], we found that while both 

stress and mental workload (due to task difficulty) could be simultaneously classified at levels 

significantly exceeding chance, variation in each state had quite significant negative effects on the 

classification of the other by EEG when this variation was not considered in the development of 

the classification algorithms. It was found that for both mental workload classification and 

affective state classification, including data from both levels of the “other state” helped, but 

accuracies were still significantly below the “ideal case” of no variation in the state. 

The main objective of this study was to investigate different classification approaches to improve 

the performance of 1) EEG-based mental workload detection in the presence of variation in 

affective state and 2) EEG-based affective-state detection in the presence of variation in mental 

workload level (as modulated by task difficulty), by explicitly considering this variation in the 

development of the classification algorithms. We considered four different classification 

approaches that were based on hierarchical and ensemble methods and compared them to the 

approach of simply combining both levels of the “other state” in the training set. For the mental 

workload classification problem, the hierarchical approach with thresholding and the majority 

vote-based approaches significantly improved the classification accuracy as compared to the 

“combined” approach, with increases of 2.7% and 2.5%, respectively on average across the 18 

participants. In an individual participant basis, these methods either made no difference or 

improved the classification accuracy as compared to the “combined” approach for all participants. 

For the affective state classification, only the majority vote-based approach resulted in a 
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statistically significant improvement (2.1 %). It is unsurprising that the hierarchical approach was 

effective for the mental workload classification but not the affective state classification, since the 

first stage of this approach is based on classification of the other state using the “combined 

approach”, and the performance of the affective-state-combined mental workload classifier is 

much higher than the workload-level-combined affective state classifier (68.4% vs. 84.2%). This 

suggests that the hierarchical approach will be more effective in cases where the first stage of the 

classification (i.e., the “State B classifier”) is sufficiently accurate. Even in the case of mental 

workload, though, the hierarchical classification approach performed as least as well as the 

“combined” approach. Given that no method outperformed the majority vote approach in either 

the mental workload or the affective state classification, the results suggest that this may be the 

most reliable approach.  

Though the increases were modest, we did identify classification approaches that significantly 

improved classification of mental workload in the presence of variation on affective state, and 

classification of affective state in the presence of variation in mental workload. It is worth noting 

that there was a limit on how much the accuracies could be improved, at least with this dataset, 

since the accuracy of the “ideal” (and not practically feasible) case of using a “State-B-specific” 

classifier that precisely matches the true state of the test sample 100% of the time is only 72.6% 

for mental workload classification and 85.3% for affective state classification. Despite the modest 

increases seen, we have shown the potential efficacy of these approaches, and it is possible that 

the improvements could be more substantial in other datasets. Furthermore, the approaches 

investigated here for use in the simultaneous detection of mental workload and affective state could 

be useful when applied to other mental states. 
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For the affective-state (Stressed vs. Relaxed) classification problem, measures of relative gamma 

(RG) activity were computed and added to the feature pool as they have been previously shown to 

be effective for stress detection [197, 307]. In order to investigate the contribution of these features 

to the classification performance, we repeated the classification of affective state, using the 

combined classification approach, with the RG features excluded from the feature pool and found 

a statistically significant decrease of approximately 1% in the average accuracy over 18 subjects 

(F = 11.28, p = .004). 

To the best of our knowledge at the time of writing, the studies reported in this and our earlier 

paper [304] represent the first attempts to perform simultaneous classification of mental workload 

and stress, though there are many studies that have looked at one or the other condition 

individually. Generally, there is a wide range of classification results reported, and it is difficult to 

compare one study to the next due to differences in the experimental (e.g., type of task, difference 

between high/low workload conditions, number/length of trials) and analytical (e.g., pre-

preprocessing techniques, EEG features used, feature selection and classification algorithms) 

methods employed. For example, studies aimed at stress detection use a wide variety of stress 

induction techniques including cognitive tasks like mental arithmetic (the Montreal Imaging Stress 

Task, MIST) [167, 168], exposure to emotionally salient pictures/videos [177] or music [208], or 

the Stroop task [160, 188]. In the studies cited, classification accuracies ranged from 73.3 to 94.6 

%. In [163], the Trier Social Stress Test was used to induce stress, and a maximum accuracy of 

91.2% was achieved; this is higher but comparable to our result, despite our data including 

variation due to workload, and our use of a significantly modified version of the TSST. Our 

classification results for the Easy vs. Difficult condition are also comparable to other results 
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reported in the literature, including those in [117] which are approximately equal, on average, to 

those reported herein.  

Future work will involve realizing the mental workload and stress detection algorithms online and 

evaluating them in more realistic, ecologically-valid scenarios in which users experience different 

levels of workload and affective-state. Incorporating multi-label classification models will also be 

considered. 

3.6 Conclusion 

The overall aim of this research is to develop a passive BCI that is able to detect both the difficulty 

of the task the individual is performing and their stress/anxiety level simultaneously, as both of 

these factors will influence the user’s performance and potential for error. Previous studies, 

including by the authors, have shown that the performance of EEG-based mental workload 

classifiers deteriorate in the presence of varying affective state, and vice versa. Since the aim of 

passive BCIs is to monitor an operator’s workload in real-world scenarios which are likely to vary 

from relaxing to stressful or from a low level of workload to a high level, this is a significant issue. 

To ensure the reliability and generalizability of the classification algorithms detecting each state, 

variation in the “other” state must be considered. In this paper, we investigated four classification 

approaches with potential to improve 1) mental workload-level detection in the presence of varying 

affective-state and 2) affective-state detection in the presence of varying workload-level as 

compared to the case of the “combined” classification approach that was investigated/introduced 

in Chapter 1. Statistically significant improvements in classification accuracy were observed for 

both mental workload and affective state classification using some of the proposed methods. 
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Chapter 4 : Simultaneous classification of both mental 

workload and stress level suitable for an online passive 

brain-computer interface 

Co-authorship statement. A version of this chapter has appeared in the journal Sensors as the article 

titled “Simultaneous classification of both mental workload and stress level suitable for an online 

passive brain-computer interface” in January 2022. The author, Mahsa Bagheri, carried out the 

study design, data collection and data analysis. Mahsa Bagheri also prepared the first draft of the 

manuscript and subsequently revised the manuscript based on the co-author’s feedback as well as 

the comments received from the peer review process. The co-author, Dr. Sarah Power provided 

guidance on study design, data collection and data analysis. Dr. Power also helped in reviewing, 

editing and revising the manuscript. All authors read and approved the final draft. 

The same dataset is used in this study as was described in Chapter 2. 

4.1 Abstract 

Research studies on EEG-based mental workload detection for a passive BCI generally focus on 

classifying cognitive states associated with the performance of tasks at different levels of 

difficulty, with no other aspects of the user’s mental state considered. However, in real-life 

situations, different aspects of the user’s state such as their cognitive (e.g., level of mental 

workload) and affective (e.g., level of stress/anxiety) states will often change simultaneously, and 

performance of a BCI system designed considering just one state may be unreliable. Moreover, 

multiple mental states may be relevant to the purposes of the BCI—for example both mental 

workload and stress level might be related to an aircraft pilot’s risk of error—and the simultaneous 
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prediction of states may be critical in maximizing the practical effectiveness of real-life online BCI 

systems. In this study we investigated the feasibility of performing simultaneous classification of 

mental workload and stress level in an online passive BCI. We investigated both subject-specific 

and cross-subject classification approaches, the latter with and without the application of a transfer 

learning technique to align the distributions of data from the training and test subjects. Using cross-

subject classification with transfer learning in a simulated online analysis, we obtained accuracies 

of 77.5 ± 6.9% and 84.1 ± 5.9%, across 18 participants for mental workload and stress level 

detection, respectively. 

4.2 Introduction 

Passive brain-computer interfaces (BCI) are systems that aim to monitor the mental state (either 

cognitive or affective) of a user and exploit this information to adapt an ongoing human-machine 

interaction in some useful way [1, 10]. For example, a passive BCI could improve road safety by 

first detecting states of extreme fatigue or drowsiness in the driver of a car or transport truck and 

then using this information to initiate alarms or other safety measures to help avoid an accident. In 

passive BCI systems, information on the user’s state is extracted from neural signals collected 

using an appropriate functional imaging modality. Electroencephalography (EEG), which 

measures the electrical activity of the brain, is considered perhaps the most promising modality 

given its portability, high temporal resolution, non-invasiveness, and relatively low cost [311].  

One highly impactful potential application of passive BCI is the monitoring of mental workload 

in high risk and safety critical occupations like air traffic controllers, pilots, and other industrial 

operators, where incidents of human error can have severe consequences. Such a system would 

detect potentially dangerous states of high cognitive demand or overload and initiate measures to 

help mitigate the risk of error (e.g., have the system temporarily automate some tasks). Mental 
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workload detection also has potential value in other domains, including gaming [225], adaptive 

training/learning [99, 226, 312], and user interface design applications [227], to enhance and 

personalize user experience. Because of its potential usefulness in a range of applications, mental 

workload detection via EEG is a very active and expanding field, with a large number of published 

studies [e.g., 34, 36, 69, 81-83, 89, 90, 105, 106, 109, 116, 117, 134, 147, 234, 304, 305, 313].  

Mental workload is defined as the perceived relationship between an individual’s total mental 

processing capability and the amount required by the task at hand; perceived workload is higher 

when the task requirements are closer to the individual’s capability [80]. Mental workload is 

influenced by a number of factors including the properties of the task being performed (e.g., 

difficulty), the task environment (e.g., noisy, distracting), and the characteristics of the individual 

performing the task (e.g., cognitive capacity, level of training in the task, mood) [243]. Despite 

this, studies of EEG-based mental workload detection generally consider workload exclusively in 

terms of the task demands as manipulated through the variation of task difficulty, and do not 

consider any other factors. We argue that consideration of the user’s affective state, and 

specifically their stress/anxiety level, is of particular importance. Stress is known to negatively 

impact cognitive efficiency and performance [156] as well as decision-making, especially when 

performing unfamiliar tasks [157]. Thus, a more complete picture of the user’s cognitive state as 

it relates to their potential task performance and risk for error would include a combination of both 

the difficulty of the task they are performing, and their level of anxiety/stress. An individual 

performing a difficult task very calmly versus while experiencing a significant amount of anxiety 

are two very different scenarios with very different associated risk, and the environmental 

adaptation strategies implemented by the passive BCI should be much different in these cases. 

Thus, we argue that it is very important to develop a passive BCI that is able to detect both the 
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difficulty of the task the individual is performing and their stress/anxiety level simultaneously, in 

a sort of “two-dimensional” measure of cognitive load. Detecting two mental states simultaneously 

via EEG, with each state confounding the other, is a challenge that had not previously been 

addressed in the literature. 

In our previous work, we found that while both states (i.e., stress, and mental workload due to task 

difficulty) could indeed be simultaneously classified at levels significantly exceeding chance, 

variation in each state negatively affected the classification of the other by EEG [304]. Expanding 

on this work, we aimed to improve the classification of each of the two states in the presence of 

variation in the other state; we proposed a majority vote-based approach that modestly but 

significantly increased the classification accuracy of each state [313]. While the results of these 

studies were promising, the preliminary analyses were done offline and not in a manner suitable 

for real-time classification. It is therefore not clear how the results will translate to a practical, 

online passive BCI system for the simultaneous monitoring of mental workload level and stress. 

In this paper, we advance our previous work by implementing simultaneous classification of 

mental workload level and stress using analysis techniques entirely compatible with online 

classification. We investigate both entirely subject-specific and cross-subject (i.e., using training 

data from subjects other than the test subject) classification approaches. In the latter case, a transfer 

learning technique recently proposed by [314] is employed to improve classification accuracy. 

Because of restrictions on research involving human participants arising due to the Covid-19 

global pandemic, we were unable to conduct a separate experiment for this work, and instead used 

the data previously collected and reported in [304] and [313]. While the analysis for the current 

paper was by necessity performed offline, the methods used simulate exactly an online 

classification scenario and are completely suitable for direct online implementation. 
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In the following sections we describe our experimental methods, provide more details about the 

classification approaches investigated, and report and discuss our findings. 

4.3 Materials and methods 

4.3.1 Experimental Methods 

The experimental methods including participants, physiological data acquisition, experimental 

procedure and validation of stress and workload induction are the same as Chapter 2. Please refer 

to section 2.4.1 for information on participants, section 2.4.2 for physiological data acquisition, 

section 2.4.3 for experimental procedure, and sections 2.4.4.1, 2.4.4.2, 2.5.1 and 2.5.2 for 

information on validation of stress and workload induction. 

4.4 Data analysis 

4.4.1 EEG-based classification of mental workload level and affective state 

In this paper, we performed simultaneous EEG-based classification of mental workload level (i.e., 

“Easy” vs “Difficult”) and affective state (i.e., “Relaxed” vs. “Stressed”) using methods directly 

transferable to an online BCI. The classification was performed separately on each participant’s 

data.  

An entirely subject-specific as well as two cross-subject methods were investigated. In the entirely 

subject-specific case, the training data consisted of the first two blocks of data (one Relaxed and 

one Stressed) from the test participant, and the test data consisted of their final two blocks of data 

(one Relaxed and one Stressed). In the cross-subject cases, the training data consisted of the first 

two blocks of data from the test participant as well as all data from the 17 other subjects, while the 

test data again consisted of the final two blocks of data from the test participant. In the second 

cross-subject case, a transfer learning (TL) method recently proposed by [314] was used to match 
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the distributions of the training and test data. In all cases, the “baseline” trials were omitted from 

analysis. 

Prior to classification, the following preprocessing and feature extraction steps were applied to the 

training and test data. 

4.4.2 EEG pre-processing 

First, a band-pass filter was employed with low and high cut-off frequencies of 1 Hz and 50 Hz. 

The data were then downsampled from 500 Hz to 256 Hz, and Artifact Subspace Reconstruction 

(ASR) was used to reject signal segments containing EMG and motion artifacts. 

To simulate an online application of the system, these preprocessing steps were applied to 

individual windowed segments (4 s length, 50% overlap) of the test data, in the order in which 

they were collected (i.e., chronological order). Specifically, each raw segment passed through all 

steps of the preprocessing, feature calculation, and classification, and predictions for both mental 

workload and stress level were made for that segment, before the next segment was processed. 

This is different from offline processing, where, typically, each step of the analysis (preprocessing, 

feature calculation, and classification) are performed on all test samples before proceeding to the 

next step. The analysis was performed on the same PC on which the pre-recorded EEG data were 

stored. 

4.4.3 EEG signal feature calculation 

Frequency domain features were computed to represent the characteristics of the EEG signals. 

Power signals in seven common frequency bands were extracted via the filter-Hilbert method 

[286], and average power was calculated over 4-s epochs with a sliding window with 50% overlap. 
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The individual alpha frequency (IAF) [285] was calculated using the one-minute eyes-closed 

baseline trial collected at the beginning of the experimental session and used to define the seven 

EEG frequency bands for each participant as follows: Delta (IAF-8 to IAF-6), Theta (IAF-6 to 

IAF-4), Alpha1 (IAF-4 to IAF-2), Alpha2 (IAF-2 to IAF), Alpha3 (IAF to IAF+2), Beta (IAF+2 

to IAF+20), and Gamma (IAF+20 to IAF+30). 

For the affective state classification problem (Stressed vs. Relaxed) all EEG channels were 

included, which resulted in a total of 63 electrodes × 7 frequency bands = 441 features. For the 

workload level classification problem (Easy vs. Difficult), since response frequency was greater 

for the Easy condition, we excluded the electrodes over the motor and sensorimotor brain regions 

(Cz, C1–C6, CPz, CP1–CP6) to ensure that incidental differences in the motor requirements of the 

Easy and Difficult conditions did not contribute to the classification. This resulted in a total of 49 

electrodes × 7 frequency bands = 343 features for the workload level classification. 

4.4.4 Classification 

For both the mental workload level classification and the affective state classification, three 

classification paradigms were investigated and compared, as described below. 

1. Subject-specific paradigm: For each target subject, the classifier was trained on the 

subject’s first two blocks of data and tested on the subject’s final two second blocks. 

A regularized Linear Discriminant Analysis (LDA) algorithm was used for 

classification [308]. 

2. Cross-subject without TL paradigm: For each target subject, the classifier was 

trained on the subject’s first two blocks of data combined with all data from the 

other 17 subjects, and tested on the subject’s final two blocks of data. No transfer 
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learning algorithm was applied. A regularized LDA algorithm was used for 

classification [308]. 

3. Cross-subject with TL paradigm: For each target subject, the classifier is trained on 

the subject’s first two blocks of data combined with all data from the other 17 

subjects, and tested on the subject’s final two second blocks of data. The 

InstanceEasyTL transfer learning method was applied to reject the differences 

between data coming from different subjects; this method was originally proposed 

in [314] and is described in detail in the section below. 

For each of the above classification problems, a majority vote-based approach proposed in our 

previous work to improve the classification of each state in the presence of the other was employed 

[313]. Specifically, in each case three classifiers were trained and the final predicted class was the 

result of a majority vote among the three. For the case of mental workload level classification, the 

first classifier was trained on data from the Relaxed state only, the second classifier was trained 

on data from the Stressed state only, and the third classifier was trained on data from both states. 

Similarly, for the affective state classification, the first classifier was trained on data from the Easy 

condition only, the second classifier was trained on data from the Difficult condition only, and the 

third classifier was trained on data from both conditions.  

Note that the final two blocks of data consist of 12 trials, each of duration 67 seconds, for a total 

of 804 seconds of data. With 4 second epochs with 50% overlap, this yielded a classification every 

2 seconds, for a total of 402 test samples per subject.  
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4.4.4.1 InstanceEasyTL algorithm 

EEG-based mental state classification typically requires a large amount of labeled data for training. 

Given the non-stationarity of EEG data within a subject, as well as significant inter-subject 

variation, using data previously collected from other subjects, or even from the same subject on a 

previous day, often leads to poor classification accuracy [211, 212]. This is a challenge for 

developing real-world online BCI systems since impractically long calibration sessions are needed 

in order to gather sufficient data from the user to train the classifiers immediately before each use. 

Recently, transfer learning (TL) methods have been applied to mitigate this issue [213]. TL models 

are efficient methodologies that aim at transferring the previously extracted features from a labeled 

domain to a similar but different domain with limited or no labels, to perform some specific 

decision task on the different domain [315-318]. With such methods, for a given mental state 

classification task, EEG signals previously recorded from a set of subjects can be used to train a 

BCI system that will be suitable for any user, whether their data is in the training set or not. This 

is called cross-subject classification.  

In this paper, we apply the InstanceEasyTL method, which was recently proposed in [314] to 

improve cross-subject EEG-based fatigue detection, to our objective of simultaneous classification 

of both mental workload level and stress. InstanceEasyTL is based on the EasyTL method [317] 

which was developed for image classification applications, but is adapted to work on EEG data, 

where there are often much larger differences in the target (test subject) and source (training 

subjects) domain distributions. Indeed, in [314], this method led to an increase of more than 15% 

compared to other existing transfer-learning methods such as transfer component analysis (TCA) 

[319], geodesic flow kernel (GFK) [320], and domain-adversarial neural networks (DANN) [321]. 

InstanceEasyTL is based on a “strategy of alignment with certain weights to align EEG samples 
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collected from both source and target domains” [314]. To do this, InstanceEasyTL takes some 

EEG samples from the target domain Ω𝑡 (i.e., the test subject’s data) and combines it with all data 

from the original source domain Ω𝑠 (i.e., the training subjects’ data) to form a new source domain 

for training. This increases the amount of data available for training without increasing the amount 

of time needed for calibration prior to BCI use. As shown in Figure 4.1, the test subject’s data (the 

initial target domain, Ω𝑡) is divided into two parts: 𝑆 and 𝑇𝑡𝑑; 𝑇𝑡𝑑 is added to the training subjects’ 

data (the initial source domain, Ω𝑠, also called 𝑇𝑠𝑑 here) to form the new source domain Ω𝑠
′ , and 𝑆 

is the data from the test participant that ultimately undergoes classification (i.e., the new target 

domain, Ω𝑡
′ ). 

For our data set, we take the first 50% of the test subject’s data (coming from the first two blocks) 

as 𝑇𝑡𝑑 and combine it with the other 17 subjects’ data (Ω𝑠) to create the new source domain Ω𝑠
′ , 

which is used for training the classifier. We then take the final 50% of the test subject’s data 

(coming from the final two blocks) as 𝑆, the test data. 
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Figure 4.1: The original and new source and target domains. Ω𝑠 and Ω𝑡 are the original source and target domains, 

while Ω𝑠
′  and Ω𝑡

′  represent the new source and target domains used in the EasyInstanceTL algorithm. Figure adapted 

from [314]. 

 

A complete mathematical description of InstanceEasyTL algorithm was first proposed in [314]; 

for the convenience of the reader the main steps are summarized below. 

First based on the method proposed in [317], intra-programming builds a classifier model by 

proposing a Probability Annotation Matrix W as in Equation 4.1, the rows of W denote the class 

label 𝑐 ∈ {1, 2, … , 𝐶}, and the column 𝑥𝑗
𝑡 represents the target samples. The element 𝑊𝑐𝑗 indicates 

the annotation probability of 𝑥𝑗
𝑡 belonging to class c. Based on the matrix W, the class of target 

samples are predicted. Note that the class labels of the target sample 𝑥𝑗
𝑡 that we choose are the 

corresponding ones with the maximum of {𝑊𝑐𝑗}, 𝑗 ∈ {1, 2, … , 𝑛𝑡}. For instance, if we have a 

Probability Annotation Matrix as in Equation 4.2, the class label of 𝑥1
𝑡 will belong to class 𝐶1 since 

it has the maximum probability of 0.7 among all elements {𝑊11, 𝑊21} with the probabilities of 

{0.7, 0.3}, respectively. 
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𝑊 = [
𝑃(𝑥1   

𝑡 |𝑐 = 𝐶1)

𝑃(𝑥1   
𝑡 |𝑐 = 𝐶2)

    𝑃(𝑥2   
𝑡 |𝑐 = 𝐶1)    

  𝑃(𝑥2   
𝑡 |𝑐 = 𝐶2)   

𝑃(𝑥3   
𝑡 |𝑐 = 𝐶1)

𝑃(𝑥3   
𝑡 |𝑐 = 𝐶2)

  …  
𝑃(𝑥𝑛𝑡   

𝑡 |𝑐 = 𝐶1)

𝑃(𝑥𝑛𝑡   
𝑡 |𝑐 = 𝐶2)

] (4.1) 

𝑊 = [
0.7  
0.3   

0.4   
0.6   

0.8
0.2

  …  
0.3
0.7

] (4.2) 

For the first iteration, 𝑡, of the InstanceEasyTL algorithm, initial weights are assigned to the data 

from both the training source domain, 𝑇𝑠𝑑, and training target domain, 𝑇𝑡𝑑, (both from Ω𝑠
′ ) via 

Equation 4.3 [314] 

𝑊𝑠𝑑
1 =  ⋃ 𝑤𝑠𝑑

𝑖
𝑛𝑠

𝑖=1
 

  𝑊𝑡𝑑
1 =  ⋃ 𝑤𝑡𝑑

𝑖
𝑛𝑠+𝑚

𝑖=𝑛𝑠+1
 

𝑊1 = 𝑊𝑠𝑑
1 ∪ 𝑊𝑡𝑑

1  

(4.3)  

here, 𝑛𝑠 and 𝑚 are the number of samples in 𝑇𝑠𝑑 and 𝑇𝑡𝑑, respectively and 𝑤𝑠𝑑
𝑖  and 𝑤𝑡𝑑

𝑖  are the 

weights for the 𝑖-th sample from 𝑇𝑠𝑑  and 𝑇𝑡𝑑, respectively. 𝑊𝑠𝑑
1 , 𝑊𝑡𝑑

1  and 𝑊1 are the sets of weights 

after one iteration. 

Next, the assigned weights for both 𝑇𝑠𝑑 and 𝑇𝑡𝑑 are divided by the summation of all weights and 

stored as 𝑝𝑡, as shown in Equation 4.4 [314] 

𝑠𝑢𝑚𝑡 =  ∑ 𝑤

𝑤∈𝑊𝑡

 

𝑝𝑡 = {
𝑤

𝑠𝑢𝑚𝑡
 ; 𝑤 ∈ 𝑊𝑡} 

(4.4) 

After 𝑡 ∈ {1, 2, … , 𝑁} iterations (N is the maximum number of iterations), 𝑤, 𝑊𝑡 and 𝑠𝑢𝑚𝑡 

represent the weight of one sample, the set of weights of all samples, and the sum of 𝑤 in Ω𝑠
′ , 

respectively, and 𝑝𝑡 means the set of the weight 𝑤 of each sample in Ω𝑠
′  in proportion of 𝑠𝑢𝑚𝑡. 

The training sample set 𝑇 = 𝑇𝑠𝑑 ∪ 𝑇𝑡𝑑 in Ω𝑠
′ , 𝑝𝑡, and the test set 𝑆 in Ω𝑡

′  are taken as input to the 
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InstanceEasyTL algorithm (though note that 𝑆 is not used for the updating of weights in each 

iteration of the algorithm, but rather just for determining the predicted class labels in the final 

iteration) and the expected class label of ℎ𝑡 is calculated based on the intra-domain programming 

method (also called EasyTL) first detailed in [317].  

Next, the error, 𝜖𝑡, between the predicted class labels, ℎ𝑡, and the real class labels, 𝑦(𝑥), is 

calculated via Equation 4.5 [314] 

𝜖𝑡 =  
1

𝑊𝑡
∗  ∑ 𝑤𝑥|ℎ𝑡(𝑥) − 𝑦(𝑥)|

𝑥 ∈𝑇𝑡𝑑

𝑤𝑥∈𝑊𝑡𝑑
𝑡

 
(4.5)  

The weights of 𝑇𝑠𝑑 and 𝑇𝑡𝑑 are updated by the 𝛽𝑡-based function through Equation 4.6, detailed in 

[318] 

𝛽𝑡 =  𝜖𝑡/(1 − 𝜖𝑡) 

             𝛽 = 1/(1 + (2 ln 𝑛𝑠/𝑁) 
1
2) 

(4.6)  

The weights are then updated via Equation 4.7 [314] 

𝑊𝑡+1 =  ⋃ 𝑤𝑥𝛽|ℎ𝑡(𝑥)−𝑦(𝑥)|

𝑥∈𝑇𝑠𝑑

𝑤𝑥∈𝑊𝑠𝑑
𝑡

 ∪  ⋃ 𝑤𝑥𝛽|ℎ𝑡(𝑥)−𝑦(𝑥)|

𝑥∈𝑇𝑡𝑑

𝑤𝑥∈𝑊𝑡𝑑
𝑡

 
(4.7)  

These steps (Equations 4.4 through 4.8) are repeated for 𝑁 iterations. When 𝑡 = 𝑁, the predicted 

class labels, ℎ𝑓(𝑥), for the data in the test set, 𝑆, are calculated by Equation 4.8 [314] 

ℎ𝑓(𝑥) =  {
1, ∏ 𝛽𝑡

−ℎ𝑡[𝑥]
𝑁

𝑡=⌈𝑁/2⌉
 ≥  ∏ 𝛽𝑡

−1/2
𝑁

𝑡=⌈𝑁/2⌉

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 (4.8)  
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4.5 Results 

Table 4.1 shows the results of the mental workload level classification (Easy vs. Difficult) for all 

participants for the three classification paradigms. The cross-subject with transfer learning 

approach produced the best results with an average accuracy of 72.2% ± 5.3. This was 12.3% and 

15.11% higher than the subject-specific and cross-subject without TL approach, respectively. A 

one-way ANOVA revealed a significant effect of classification approach (𝐹2,34 = 278.86; 𝑝 <

.001), and post-hoc Tukey-Kramer tests indicated these increases were both significant (|𝑡(68)| >

18.06; 𝑝 < .001). The result for the subject-specific approach was significantly higher than for 

the cross-subject without TL approach (𝑡(68) = 4.14; 𝑝 < .001).  

Table 4.1: Mental workload level classification results 

 Mental Workload Level Classification Results (Easy vs. Difficult) 

 Subject-Specific Cross-Subject without TL Cross-Subject with TL 

Subjects Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score 

1 66.7 0.66 58.2 0.58 73.5 0.73 

2 49.3 0.51 47.2 0.48 64.2 0.65 

3 64 0.63 59.7 0.59 74.8 0.74 

4 65.8 0.65 59 0.6 75.0 0.75 

5 53.0 0.54 51.3 0.52 65.9 0.66 

6 52.5 0.53 53.8 0.53 68.8 0.67 

7 56.4 0.56 50.5 0.5 66.5 0.65 

8 58.1 0.57 50.9 0.5 63.4 0.63 

9 57.7 0.58 58.6 0.58 73.5 0.74 

10 66.5 0.66 59.7 0.59 77.2 0.76 

11 59.2 0.6 56.8 0.55 71.6 0.72 

12 57.6 0.57 55.9 0.56 69.5 0.68 

13 66.6 0.66 65.5 0.66 79.8 0.79 

14 67.7 0.67 67.7 0.67 81.4 0.81 

15 60.3 0.61 61.3 0.62 80.5 0.8 

16 60.8 0.6 56.0 0.56 72.3 0.71 

17 58.8 0.58 58.5 0.58 72.7 0.72 

18 57.7 0.57 57.3 0.57 69.6 0.7 

Mean: 59.9 ± 5.3 0.59 ± 0.04 57.1 ± 5.1 0.56 ± 0.05 72.2 ± 5.3 0.71 ± 0.05 

 

Table 4.2 shows the results of affective-state classification (Relaxed vs. Stressed) for all 

participants for the three classification paradigms. The best results again came from the cross-

subject with transfer learning approach with an average accuracy of 74.2% ± 5.1, which exceeded 
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the accuracy for the subject-specific approach by 9.78% and for the cross-subject without TL 

paradigm by 15.91%.  A one-way ANOVA revealed a significant effect of classification approach 

(𝐹2,34 = 154.95; 𝑝 < .001) and post-hoc Tukey-Kramer tests revealed that these differences were 

both significant (|𝑡(68)| > 10.72; 𝑝 < .001). The result for subject-specific was significantly 

higher than cross-subject without TL approach (𝑡(68) = 6.73; 𝑝 < .001).  

Since the classes are balanced for both the mental workload level classification and the affective 

state classification problems, the accuracy should be a valid measure of the classifier performance; 

however, the F1 score is given in Tables 4.1 and 4.2 as well (please refer to Appendix 1 for more 

detail on F1 score). 

Table 4.2: Affective state classification results 

 Affective State Classification Results (Relaxed vs. Stressed) 

 Subject-Specific Cross-Subject without TL Cross-Subject with TL 

Subjects Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score 

1 68.8 0.69 65.1 0.64 78.6 0.78 

2 60.0 0.59 47.7 0.47 67.4 0.66 

3 61.6 0.61 62.4 0.61 79.0 0.78 

4 64.4 0.64 64.2 0.63 80.0 0.79 

5 60.8 0.61 51.4 0.52 71.5 0.73 

6 65.5 0.65 50.9 0.51 68.4 0.68 

7 60.5 0.6 54.8 0.54 67.8 0.67 

8 60.6 0.61 56.5 0.56 66.9 0.67 

9 64.4 0.64 56.1 0.56 74.2 0.75 

10 64.0 0.63 64.9 0.63 78.5 0.77 

11 59.0 0.59 57.6 0.56 71.3 0.71 

12 65.3 0.64 56.0 0.56 69.9 0.7 

13 72.8 0.71 65.0 0.64 81.9 0.81 

14 73.6 0.74 66.1 0.67 79.0 0.78 

15 67.2 0.67 58.7 0.58 80.2 0.81 

16 62.3 0.62 59.2 0.58 77.0 0.78 

17 66.8 0.66 57.2 0.57 74.3 0.74 

18 62.7 0.63 56.1 0.56 70.3 0.71 

Mean: 64.5 ± 4.1 0.64 ± 0.04 58.3 ± 5.4 0.57 ± 0.05 74.2 ± 5.1 0.74 ± 0.05 
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By the binomial test [322], the lower limit for statistical significance in a binary classification 

problem with 𝑛 = 402, 𝑝 = 0.5 and α=0.05 is 54.2%. For the cross-subject with TL approach, 

accuracies for all subjects, for both classification problems, exceed this value by at least 9.2%. 

To further improve online classification accuracy by reducing incorrect predictions resulting from 

sudden changes in the EEG signals, we applied a sliding window classification in which the final 

predicted class for each sample was determined by majority vote of the output of the 

InstanceEasyTL classifier (i.e., the cross-subject with TL approach) for that sample and the two 

previous samples. This method results in a prediction every 2 seconds, same as before. Using this 

sliding window classification method for the cross-subject with TL paradigm, the average accuracy 

for the Easy vs. Difficult classification significantly increased by 5.3% to 77.5% ± 6.9 (𝑡17 =

−10.12; 𝑝 < .001) and the average accuracy for Relaxed vs. Stressed classification significantly 

increased by 9.9% to 84.1% ± 5.9 (𝑡17 = −16.98; 𝑝 < .001) over all subjects. Figure 4.2 shows 

the classification accuracies using one-sample prediction as compared to the sliding window 

classification for all subjects. 
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Figure 4.2: Classification accuracy of the cross-subject with TL approach with and without the application of sliding 

window classification. 

 

Figure 4.3 shows a simulation of online classification for one participant (Subject #15) for both 

the workload level and affective state classification problems. The figure shows the predicted class 
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output using the sliding window classification every 2 seconds (recall classification was done over 

4 second epochs with a sliding window with 50% overlap) for the final two blocks of the session. 

The classifier for each individual sample was trained using the cross-subject with TL approach. 

As can be seen in the figure, the predicted classes follow the actual class labels with high accuracy 

- 91.6% and 93.4% for workload level and affective state classification problems, respectively. 
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Figure 4.3: Simulated online output of the system for Subject 15 for both the Easy vs. Difficult and Relaxed vs. 

Stressed classification problems. After training the classifier on the first two blocks of data (combined with the data 

from all other subjects), consecutive samples from the final two blocks were classified (epochs were of length 4 s, 

with 2 s overlap). Classification was done using the cross subject with TL approach, with a sliding window 

classification over three samples. The shaded intervals indicate the actual mental state, while the black dots indicate 

the predicted state. 
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4.6 Discussion 

The main objective of this study was to investigate the feasibility of performing simultaneous 

classification of mental workload and stress level in an online passive BCI. We investigated both 

subject-specific and cross-subject classification approaches, the latter with and without the 

application of a transfer learning technique called InstanceEasyTL [314] to align the distributions 

of data from the training and test subjects. In the subject-specific case, the first 50% of the 

individual’s data was used to train a regularized LDA classifier, and the final 50% of data was 

used as test data. For the cross-subject cases, the data from the 17 other participants was also added 

to the training set. Though done offline, all steps of the analysis - including pre-processing, feature 

selection and classification - were done in a manner completely compatible with online 

implementation. 

Our results showed that mental workload level (Easy vs. Difficult) and affective state (Relaxed vs. 

Stressed) could be classified in manner suitable for online implementation with accuracies of 

77.5% ± 6.9 and 84.1% ± 5.9 respectively, across 18 participants. Accuracies significantly 

exceeded chance (54.2% in this case) for all participants, for both classification problems. These 

results were achieved using cross-subject classification with transfer learning, which gave 

significantly better results than the other methods (i.e., entirely subject-specific or cross subject 

without TL applied, with the same amount of training data taken from the test subject). 

To the best of our knowledge at the time of writing, this study represents the first attempt to 

perform simultaneous classification of mental workload level and stress in an online passive BCI, 

though there are many studies that have looked at one or the other condition individually through 

offline applications. Actually, online BCI studies are generally rather scarce. Recently, [323] 

presented an EEG-based classification of four mental states (fatigue, workload, distraction, and 
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the normal state) for seven pilots in both offline and pseudo-online analyses. They proposed a 

multiple feature block-based convolutional neural network (MFB-CNN) with spatio-temporal 

EEG filters to recognize the pilot's current mental states. In the pseudo-online analysis, they 

conducted an evaluation between one of the mental states (fatigue, workload and distraction) and 

rest states and obtained the detection accuracy of 72%, 72%, and 61% for fatigue, workload, and 

distraction, respectively. In [324], a novel strategy named adaptive subspace feature matching 

(ASFM) for cross-domain EEG-based emotion recognition was proposed. ASFM integrates both 

the marginal and conditional distributions. Both offline and online evaluations were performed 

and, the average classification accuracy of 75.1% ± 7.6 was achieved in the subject-to-subject 

evaluation for 15 subjects for the online analysis. It is worth mentioning that we employed the 

ASFM transfer learning algorithm to our data as well but did not achieve promising results. Even 

though it is difficult to directly compare our study to [323] and [324] due to differences in the 

experimental (e.g., type of task, number/length of trials) and analytical (e.g., pre-preprocessing 

techniques, EEG features used and classification algorithms) methods employed, the accuracies 

obtained are similar. And the fact that our study involved a potentially much more complex 

scenario – that is, simultaneous classification of two states, where both states were confounding 

one another – makes our results even more encouraging. 

Note that the InstanceEasyTL algorithm allowed us to achieve satisfactory classification 

accuracies despite a relatively small amount of training data taken from the test subject 

immediately prior to “online” classification. To simulate an online application of the system, the 

classifier was trained on the target subject’s first two blocks of data and tested on the subject’s 

final two blocks, to keep the data continuity in time. Therefore, about 14.5 minutes (12 trials x 67 

seconds/trial + 67-second eye-closed baseline trial for extracting IAF) of training data was used 
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from the test subject; that is a fairly reasonable length of time for system calibration prior to use. 

In the simulated online testing, about 402 epochs were tested one by one as time progressed. The 

time taken for data preprocessing, feature extraction and classification of each 4-second epoch was 

0.22, 0.59 and 0.03 seconds, respectively, for a total of less than 1 second (0.84 second) per epoch. 

All the algorithms were done using MATLAB R2019b with an Intel core i7-8th Gen processor.  

Due to restrictions on research involving human participants arising due to the Covid-19 global 

pandemic, we were unable to conduct a separate experiment for online implementation and instead 

used the data previously collected and reported in [304] and [313] to simulate exactly an online 

classification scenario completely suitable for direct online implementation. Future work will 

involve realizing the cross-subject mental workload level and stress detection algorithms in an 

actual online application, and evaluating them in more realistic, ecologically-valid task scenarios 

in which users experience different levels of workload and affective-state. 

4.7 Conclusions 

In this study, we investigated the ability to classify both mental workload level and affective state 

simultaneously using methods appropriate for implementation in an online BCI. Using the 

InstanceEasyTL transfer learning algorithm proposed in [314], we achieved accuracies of 77.5% 

and 84.1% for mental workload level and affective state classification, respectively, using a 

database of “previous” subjects and just 13.5 minutes of training data from the test subject. 

Classification was performed every two seconds. These results are very promising, and support 

the feasibility of developing a practical, online passive BCI for use in realistic scenarios where 

both the cognitive and affective state of the user will be changing over time. 

 



110 
 

4.8 Acknowledgments 

The authors acknowledge with gratitude the support of the Natural Sciences and Engineering 

Research Council of Canada (NSERC). 

 

 

 

 

 

 

 

 

 

 

 



111 
 

Chapter 5 : Conclusion 

5.1 Summary of contributions 

This thesis makes several original contributions to the fields of biomedical engineering, and 

specifically to the domain of passive brain-computer interfacing. 

Specifically, in this thesis I have: 

1. Developed an experimental paradigm for the simultaneous and independent induction of 

mental workload and stress. 

2. Found that while two mental states (i.e., stress, and mental workload due to task difficulty) 

could be simultaneously classified at levels significantly exceeding chance, variation in 

each state had deleterious effects on the classification of the other by EEG; and detection 

of both states is significantly diminished in the presence of variation of the other state.  

3. Found that the accuracy with which workload levels (as defined exclusively in terms of 

task difficulty) could be classified was affected by whether the classifier training and 

testing data were collected under the same or different affective states. When the classifier 

was trained on data from a relaxed (stressed) condition and tested on data from a relaxed 

(stressed) condition – i.e., the “within-affective-context” classification paradigm – the 

mean classification accuracy across 18 participants for the “Easy” vs. “Difficult” task 

conditions was approximately 73%. However, when the classifier was trained on data from 

the relaxed (stressed) condition and tested on data from the stressed (relaxed) condition – 

i.e., the “across-affective-context” classification paradigm - the mean accuracy dropped to 

approximately 56%. This suggests that in a real passive BCI system, if the mental workload 

detection algorithm were to be trained using data collected during a calibration session 
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where the individual experienced a single - likely relaxed - affective state, performance 

could deteriorate significantly when applied to real-life scenarios which are likely to induce 

varying levels of stress in the user. It was found that including data from both the stressed 

and relaxed states in the training set (i.e., the “combined-affective-context” classification 

paradigm) improved the classifier performance to approximately 67% - significantly higher 

than in the “across-affective-context” case, but still significantly below the ideal “within-

affective-context” case (i.e., where there is no variation in affective state). 

4. Found that variation in the difficulty level of the task that the individual was performing 

had similarly negative effects on the performance of algorithms classifying affective state. 

The mean classification accuracy for the “Relaxed” vs. “Stressed” conditions across 18 

participants was approximately 85% and 74% for the “within-workload-level” and “across-

workload-level” classification paradigms, respectively. Including data from both workload 

conditions in the training set (i.e., the “combined-workload-level” classification paradigm) 

resulted in an accuracy of 82%, which was again significantly better than the “across-

affective context” paradigm, but still significantly below the ideal “within-workload-level” 

classification paradigm (i.e., where these is no variation in mental workload). 

5. Proposed and compared five classification approaches to improve 1) mental workload-

level detection in the presence of varying affective-state and 2) affective-state detection in 

the presence of varying workload-level. Statistically significant improvements in 

classification accuracy were observed for both mental workload and affective state 

classification using some of the proposed methods. 

6. Showed that mental workload level (Easy vs. Difficult) and affective state (Relaxed vs. 

Stressed) could be simultaneously classified in a manner suitable for online implementation 
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with accuracies of 77.5% ± 6.9 and 84.1% ± 5.9 respectively, across 18 participants. 

Accuracies significantly exceeded chance (54.2% in this case) for all participants, for both 

classification problems. These results were achieved using cross-subject classification with 

transfer learning, which gave significantly better results than the other investigated 

methods (i.e., entirely subject-specific or cross subject without TL applied, with the same 

amount of training data taken from the test subject). 

Collectively, this research study represents the first attempt to perform simultaneous classification 

of mental workload level and stress in the pBCI literature. Such a technology could have significant 

industrial and economic impact by preventing accidents related to operator error, and their 

associated human, economic, and environmental losses during unsafe mental states, such as high 

mental workload and stress. The results from this study will help not only in simultaneous 

detection of mental workload level and affective state but perhaps other mental states as well. The 

ultimate goal of this research is to make passive BCIs closer to being integrated into daily life 

applications.  

5.2 Study limitations and future work  

The idea that stress and workload are linked was the main and first motivation to pursue this work. 

In the current study, it was found that the two states indeed confound each other and variation in 

one state negatively affects the classification of the other state, and that is why the subject’s 

affective state should be considered when classifying workload level (and vice versa, the subject’s 

workload level should be considered when classifying affective state) for a BCI to be effective in 

real-life scenarios. However, it was imperative for the purpose of this research to induce mental 

workload and stress as independently of one another as possible so that I would be able to 

investigate the effect of variation in each state on the classification of the other state. In other 
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words, I wanted to make sure the workload induction protocol, by itself, didn’t inadvertently 

induce stress, and that the stress induction protocol, by itself, didn’t inadvertently induce workload. 

Therefore, I tried to make the high workload task as different from the low task as possible in terms 

of difficulty while keeping it manageable enough that the participants would not feel any additional 

stress due to the task itself in this condition. Similarly, I opted for a stress induction protocol that 

would not directly add workload to the task (for example, adding any time limit on the task to 

induce stress may require more mental effort). However, future work will also investigate mental 

workload and stress at the highest end of workload, where the two are often (though not 

necessarily) highly correlated. While in many scenarios the induction of mental workload and 

stress may be inextricably linked, there is a need to determine if detection of the states can still be 

done independently but simultaneously. 

In addition, in this work, two levels of mental workload (i.e. Easy/Low and Difficult/High) and 

two levels of stress (i.e. Relaxed and Stressed) were considered, future work will involve 

increasing the number of workload and affective state levels, and investigating the effect of 

variation in each state on classification of the other states. In a real application, when the user is 

experiencing different levels of workload while his/her affective state is changing simultaneously 

and continuously, a BCI must be able to decide the user’s affective state and operate based on that 

trying to increase the performance of the system.  

Due to restrictions on research involving human participants arising due to the Covid-19 global 

pandemic, I was unable to conduct a separate experiment for online implementation and instead 

used the data previously collected to simulate exactly an online classification scenario completely 

suitable for direct online implementation (reported in Chapter 5). Future work will involve 

realizing the cross-subject mental workload level and stress detection algorithms in an actual 
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online application, and evaluating them in more realistic, ecologically-valid task scenarios. In fact, 

BCIs should be evaluated and tested in circumstances like those of real-life applications. This 

testing can reveal how well the BCI adapts to spontaneous variation in the signal features when it 

does not have the advantage of knowing what the output is supposed to be. In this study, 

precautions were taken in designing affective state induction protocol so that stress can be induced 

by a real life scenario (i.e. public speaking task). However, future work will investigate different 

affective state induction protocols and workload tasks applicable in real life scenarios to determine 

if the proposed detection algorithms remain effective. 

Furthermore, users are likely to differ greatly over time in the prominence and stability of specific 

signal features related to the mental states of interest. Those few research programs that have 

acquired long-term data have found that marked variations in performance typically occur over 

minutes, hours, days, weeks, and months. In the current study, the Stressed and Relaxed conditions 

in our experimental protocol were interleaved twice allowing to rule out the possibility that the 

results were merely due to the effect of time. However, it is suggested to gather and analyze data 

from each user many times, over substantial periods. The result obtained over a short session 

experiment, while encouraging, is not sufficient to be confident that the classification algorithm 

will remain stable across a longer session/across sessions.  

Further work should also involve the investigation, or incorporation, of additional mental states. 

5.3 Resulting publications 

1. M. Bagheri, and S. Power, “EEG-based detection of mental workload level and stress: the 

effect of variation in each state on classification of the other,” Journal of Neural 

Engineering, vol. 17, 2020. 
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2. M. Bagheri, and S. Power, “Investigating hierarchical and ensemble classification 

approaches to mitigate the negative effect of varying stress state on EEG-based detection 

of mental workload level - and vice versa,” Brain Computer Interfaces, vol. 8, no. 1-2, 

2021. 

3. M. Bagheri, and S. Power, “Simultaneous classification of both mental workload and stress 

level suitable for an online passive brain-computer interface,” Sensors, vol. 22, no. 2, Jan 

2022. 
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