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Abstract

The main objective of this thesis is to study the time evolutionary behaviour of a dy-

namical black hole horizon characterized by a marginally outer trapped tube (MOTT),

a quasi-local model of a black hole horizon defined as a 3-dimensional hypersurface

foliated by marginally outer trapped surfaces (MOTS). Motivated by numerical sim-

ulations of a binary black hole merger which predict that during the time evolution

of the system a MOTT will suddenly appear or disappear and exhibit non-smooth

evolutionary behaviour, we work in a spherically symmetric setting and build on es-

tablished results about the existence of MOTTs based on a stability criteria and derive

a local geometric condition which will allow us to distinguish the type of evolution

and identify MOTTs with the same behaviour as the numerical model.
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Lay summary

In general relativity (GR), a black hole can be defined as a region of spacetime from

which nothing can escape. This definition satisfies our intuition for what a black hole

should be, however it is teleological and requires a complete understanding of the

time development to actually classify black holes. We instead characterize black holes

by more local geometric objects called marginally outer trapped surfaces (MOTS).

If we take a snapshot of the spacetime at a single instant of time then a MOTS is

a 2-surface in the snapshot that we can identify as the boundary of a region from

which light can’t escape. This characterization provides a framework to study the

time evolution of dynamical black holes, an active area of research in GR.

Recent numerical works simulating binary black hole mergers and collisions have

observed that as two disjoint MOTSs corresponding to distinct black holes get closer,

they influence each other and cause bizarre phenomena such as the MOTSs merging

or the sudden appearance of a common outer horizon enclosing the original MOTSs.

Although such behaviour has been observed numerically, it corresponds to non-smooth

evolutions of the MOTS and is not well understood analytically.

In this thesis, while working in the context of a spherically symmetric spacetime, a

spacetime with some convenient symmetries, we will construct a geometric condition

which only relies on quantities dependant on the choice of the snapshot and the MOTS

that will allow us to distinguish such non-smooth evolutions.
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Chapter 1

Introduction

1.1 General Relativity and Black Holes

The field of general relativity formally began in 1915 when Albert Einstein published

the historic papers [11, 12] in which he developed the mathematical and physical

framework to determine the gravitational effects of astronomical bodies to a much

higher degree of accuracy then could be obtained using Newton’s law of universal

gravitation.

In his theory, Einstein proposed that spacetime is described by a pseudo-Riemannian

metric. This spacetime metric need not be flat as in special relativity, and in fact the

curvature accounts for the physical effects normally attributed to a gravitational field.

Einstein postulated that curvature was related to the matter distribution of the space-

time, represented by an energy-momentum tensor, by a tensorial equation called the

Einstein Field Equation (EFE).

The first non-trivial solution of the EFE was found in 1916 by Karl Schwarzschild

[28]. The Schwarzschild metric describes the spacetime around a static, uncharged,

spherically symmetric body in a vacuum. The Schwarzschild solution is important to

the theory of general relativity as it is the simplest black hole solution, and by a result

called Birkhoff’s theorem, any spherically symmetric vacuum solution is isometric to

the Schwarzschild metric [26].

Although the Schwarzschild metric is simple and elegant, it is hardly perfect. In

the general spherical form originally expressed by Schwarzschild given by (4.1), there
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is a supposed singularity when r = 2M , where r is a radial coordinate andM is a real

parameter representing the mass of the black hole. Performing a coordinate transfor-

mation on the metric however reveals that it was merely a coordinate singularity and

that the original coordinates didn’t cover the entire manifold.

While this apparent singularity in the Schwarzschild metric isn’t a physical singu-

larity like the one at r = 0 which can’t be eliminated through re-parameterization, it

indicates the presence of something on the surface r = 2M causing the breakdown.

That something is a black hole, in particular the surface r = 2M acts as a bound-

ary separating the black hole and the rest of spacetime. The world tube developing

from this surface is called the event horizon. We can define a black hole as a region

of spacetime from which no signal can ever escape. Although this definition works

intuitively, it’s teleological and not physically reasonable for identifying black holes

as it requires an observer to know the complete time development of the black hole

to make sure that anything that falls in never escapes. For obvious reasons, such

a global understanding can only be obtained by an omniscient observer, so we need

a more local definition. We instead use a quasi-local geometric characterization in

the form of trapped surfaces, in particular marginally outer trapped surfaces (MOTS).

One can think of a MOTS as a closed 2-dimensional submanifold embedded in the

spacetime such that the area of a light sphere emanating outward from the surface

doesn’t increase.

Along with allowing us to use geometric tools in our analysis, MOTS also allow

us to study black holes through the perspective of an initial value formulation as they

are contained in constant time slices of the spacetime. Results from [1] have shown

that if a MOTS satisfies some stability criteria, then the MOTS will evolve smoothly

into a marginally outer trapped tube (MOTT), a 3-dimensional manifold foliated by

MOTSs. The result was generalized in [3], showing that if the MOTS only satisfied a

weaker stability condition but also satisfied a proposed genericity condition, then the

MOTS will also evolve smoothly into a MOTT, tangent to the time slice containing

the MOTS. The MOTT being tangent to the time slice allows for some interesting

behaviour. For example, it would be possible for the MOTT to exist entirely in

the future of the time slice or only in the past. Although the result allows for such

possibilities, the original statement doesn’t mention a local way to distinguish them.

One of the objectives in this thesis is to derive a local geometric condition which
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Figure 1.1: At time T = 0, there are two distinct MOTSs corresponding to the two
black holes, then at Tbifurcate, a new MOTS surrounding the original two forms and
immediately bifurcates into the future. Figure from [25].

will give us the ability to distinguish the behaviour. The need for such a condition

is motivated by recent numerical simulations of the merger of binary black holes [25].

As seen in fig. 1.1, the spacetime initially contains two disjoint MOTS corresponding

to distinct black holes, however on the time slice Tbifurcate, a new MOTS enveloping

the original two forms. The new MOTS evolves smoothly into a MOTT existing in

the future of the time slice.

1.2 Outline

In chapter 2, we begin by describing the geometric structure of spacetime and defining

the relevant notation. We discuss the postulates of general relativity as proposed by

Einstein, from which we construct the initial value problem for general relativity.

Following that, we discuss a geometric characterization of a black hole in the form of

trapped surfaces and their world tubes, introducing the stability problem which serves

as a basis for the work done in this thesis. The chapter ends with a brief discussion

regarding results about the existence of trapped surface world tubes depending on a

stability condition.
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In chapter 3, we give the construction for a spherically symmetric spacetime and

discuss how the symmetries simplify the variations defining the stability condition in

chapter 2. Utilizing the simplifications to the stability criteria, we obtain analogous

statements to the existence results in the context of spherical symmetry which are

more restrictive in that they require certain metric symmetries, however one of which

becomes a stronger result compared to the general statement.

In chapter 4, we study an example of a spherically symmetric spacetime contain-

ing a dynamical black hole, namely the Vaidya spacetime. Using the construction

from chapter 2, we identify a MOTS in Vaidya satisfying our stability criteria, then

apply the result we obtained in chapter 3 to show the existence of a MOTT passing

through it. Following this, we state and prove one of the main results of the thesis

theorem 4.2.1, concluding with a few examples.



Chapter 2

Preliminary Information

Over the course of this thesis, we will consider a quasi-local geometric characterization

of black holes using the notion of trapped surfaces originally defined by Penrose in

[21], in particular we will be investigating their time evolution and how it relates to

the evolution of a dynamical black hole. Before considering any results regarding

the evolution of black holes and trapped surfaces, we must first discuss and introduce

some notation and background information on the theory of black holes. The following

discussions are motivated in large part by [8, 14, 15, 17, 20, 24, 31].

2.1 Notation

2.1.1 Spacetime

We denote a spacetime by a pair (M, g) where M is a 4-dimensional smooth manifold

and g is a metric with Lorentzian signature. At a point p ∈ M, non-zero tangent

vectors X ∈ TpM are classified by the metric into one of three groups depending on

the sign of g(X,X):

1. Timelike if g(X,X) < 0

2. Spacelike if g(X,X) > 0

3. Null if g(X,X) = 0.
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Definition 2.1.3 ([20]). Given a spacetime (M, g), we say that a smooth hypersurface

Σ is a Cauchy hypersurface if every inextendible causal curve must pass through

Σ exactly once. A spacetime containing a Cauchy hypersurface is called globally

hyperbolic.

In definition 2.1.3, we refer to an inextendible causal curve γ : I → M as one that

can’t be extended to a causal curve on a larger domain. The hypothesis of global

hyperbolicity plays a role in spacetime geometry similar to that of completeness in

Riemannian geometry [20].

Proposition 2.1.4 ([16, 20]). If Σ is a Cauchy hypersurface in (M, g), then there ex-

ists a homeomorphism between M and R×Σ that provides a foliation of M by Cauchy

hypersurfaces. Moreover, any Cauchy hypersurface in M must be homeomorphic to

Σ.

2.1.2 Curvature

As we just saw, the path of test particles is determined by the spacetime data (M, g).

In particular, the infinitesimal geometry of the manifold is described by the curvature

or Riemann tensor. The Riemann tensor is a way of capturing a measure of the

intrinsic curvature of a manifold. It captures the failure of second covariant derivatives

to commute.

Definition 2.1.5 ([20, 31]). The Riemann curvature tensor of a connection ∇ is a

rank-4 tensor defined by

R ν
αβµ ων = (∇α∇β −∇β∇α)ωµ (2.1)

for any 1-form ωµ.

The Ricci tensor is a symmetric rank-2 tensor defined as the trace of the Riemann

tensor over its first and third or second and fourth indices:

Rαβ = Rµ
αµβ = Rβα. (2.2)
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The scalar curvature is defined as the trace of the Ricci tensor:

R = gαβRαβ. (2.3)

Locally, the scalar curvature measures the deviation of the volume of infinitesimally

small geodesic balls from the volume of balls in Euclidean space.

In the context of general relativity, the Einstein field equations relate the local

spacetime curvature, expressed using the Ricci and scalar curvature, with the local

matter distribution, expressed by the stress-energy tensor.

Definition 2.1.6 ([24]). The distribution of matter in a spacetime is modelled by

the stress-energy tensor Tαβ, as such it must satisfy certain energy conditions which

attempt to capture the belief that “energy should be positive.” The energy conditions

are:

Weak The energy density for any matter distribution, as measured by an observer in

spacetime, must be non-negative. For any future-directed timelike vector field

vα, we must have

Tαβv
αvβ ≥ 0. (2.4)

Null For any future-directed null vector field kα, we must have

Tαβk
αkβ ≥ 0. (2.5)

Strong For any future-directed timelike vector field vα,

(

Tαβ −
1

2
Tgαβ

)

vαvβ ≥ 0. (2.6)

Dominant In addition to the weak energy condition holding, for every future-directed

causal vector field Xα, the vector field −T αβXβ must be a future-directed causal

vector.

Remark 2.1.1. If the stress-energy tensor is that of a perfect fluid, then there are

some implications among the energy conditions. In particular, the dominant energy

condition implies the weak form which in turn implies the null form. In addition, the

strong energy condition also implies the null form, however it should be noted that

the strong energy condition does not imply the weak form.
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2.1.3 Field Equations

The general theory of relativity, as proposed by Einstein, can be presented as four

postulates regarding the structure of spacetime [17].

Postulate 1: Spacetime is modelled by the pair (M, g) whereM is a four-dimensional

differentiable manifold equipped with Lorentzian metric g which provides a Levi-

Civita connection.

Postulate 2: Free particles travel along non-spacelike geodesics.

Postulate 3: The energy, momentum, and stresses of the matter content of the space-

time are described by a symmetric tensor Tαβ called the stress-energy tensor that

is conserved: ∇αTαβ=0.

Postulate 4: The curvature of spacetime is related to the stress-energy tensor by

way of the Einstein field equation:

Gαβ ≡ Rαβ −
1

2
Rgαβ =

8πG

c4
Tαβ. (2.7)

We choose units such that G = c = 1. The field equations (2.7) are a set of ten coupled

non-linear PDEs in the metric and its first and second derivatives. The covariant

divergence of both sides vanish identically, thus the field equations are really only six

independent differential equations for the metric. Einstein later published a correction

to the field equations in the form

Gαβ + Λgαβ = 8πTαβ (2.8)

where Λ is the cosmological constant. For our purposes, we will only be considering

the case Λ = 0.

If in some region of spacetime the stress-energy tensor vanishes, then the field

equations are called the vacuum field equations and can be written as

Gαβ = 0, (2.9)

solutions of which are called vacuum solutions. Due to the form of the Einstein tensor,
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(2.9) is equivalent to

Rαβ = 0. (2.10)

Examples of vacuum solutions include flat Minkowski space, the Schwarzschild solu-

tion, and the Kerr solution.

2.2 Initial Data Formulation

Due to the complexity of the Einstein equations, solutions can be difficult to derive.

As a result, it is natural to consider an initial value problem for the vacuum Einstein

equations (2.9), that is, given information about the metric at a fixed time, we would

like to know how the system evolves with time. It turns out that general relativity

admits a well posed initial value formulation. The problem amounts to specifying the

metric on a fixed spacelike hypersurface of the spacetime and its “time derivative.”

We will be following the construction of [20, 24, 26, 31] in our discussion.

We denote the ambient spacetime by the triple (M, gαβ,∇α) where ∇α denotes

the Levi-Civita connection on M and we use Greek letters {α, β, γ, . . . } as abstract

indices on M. We will similarly use lower-case Latin letters {a, b, c, . . . } as abstract

indices on 3-dimensional hypersurfaces Σ embedded inM and upper-case Latin letters

{A,B,C . . . } on 2-dimensional surfaces S embedded in Σ.

Definition 2.2.1. In a 4-dimensional spacetime manifold, a hypersurface is a 3-

dimensional submanifold that is locally described by an equation of the form:

Φ(xα) = 0. (2.11)

A hypersurface can be either spacelike or timelike depending on the causality of its

normal, nα = ∇αΦ. That is, the hypersurface is spacelike if its normal is everywhere

timelike and vice-versa.

As we will be talking about tensors in different coordinate charts, we need a way to

transform between them. Let e denote the pullback operator with indices indicating

the spaces being operated on. For example, if we wish to change coordinate charts in

a hypersurface defined by the parametric equations

xα = xα(ya) (2.12)
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where ya (a = 1, 2, 3) are coordinates intrinsic to the hypersurface, then the pull-

back/pushforward operator is

eαa =
∂xα

∂ya
. (2.13)

Let (M, g) be a globally hyperbolic spacetime. The objective is to perform a 3+1

decomposition, splitting the spacetime into a sequence of “time slices.” By proposi-

tion 2.1.4, we can foliate M by Cauchy surfaces Σt, parameterized by a global time

function t. Denote by (Σ, hab,Da) a 3-dimensional spacelike hypersurface embedded

in the spacetime with unit timelike normal nα and metric connection Da. The metric

hab on each Σt is induced by the spacetime metric gαβ and takes the form

hab = eαae
β
bgαβ. (2.14)

Taking the inverse of this metric and pushing forward to M, we obtain the transverse

projection tensor, taking the form

hαβ = gαβ + nαnβ

= gαµgβνe
µ
ae
ν
bh
ab.

(2.15)

To work with arbitrary tensor fields, we introduce some additional notation:

eaα = gαβh
abeβb. (2.16)

The projection operator projects an arbitrary (p, q) tensor field T on M down to the

hypersurface such that only its components tangential to Σt survive

T̂ b1...bp
a1...aq

= eα1
a1
. . . eαq

aqe
b1
β1
. . . e

bp
βp
T β1...βp
α1...αq

. (2.17)

In particular, for any vector field V on M, it can be decomposed into components

tangential and normal to Σt:

V α = hαβV
β − nαnβV

β

= eαaV̂
a − Vnn

α
(2.18)

for V̂ on Σt and Vn ∈ R.

Let T α be a vector field on M such that T α∇αt = 1, that is, T α is the vector
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• Kab =
1
2
(Lngαβ)e

α
ae
β
b: the rate of change of the geometry if Σ is evolved along

n;

• Kab = eαae
β
b∇βnα: the rate of change of n when moved around Σ.

Using the decomposition of T α (2.19), it turns out that the extrinsic curvature tensor

can be expressed in the form

Kab =
1

2f
(∂thab −DaNb −DbNa), (2.23)

thus giving us our “time-derivative” of hab.

From the above, it appears that appropriate initial data should consist of the triple

(Σ, hab, Kab) where Σ is a 3-dimensional manifold, hab is a Riemannian metric on Σ,

and Kab is a symmetric rank-2 tensor field on Σ. An important result due to Choquet-

Bruhat and Geroch has shown that given such initial data, subject to certain initial

value constraints, there exists a globally hyperbolic spacetime (M, gαβ) satisfying the

field equations which possesses a Cauchy surface diffeomorphic to Σ on which the

induced metric is hab and the induced extrinsic curvature is Kab; see theorem 2.2.2.

So far, we have seen that the spacetime metric gαβ induces a Riemannian metric

hab on Σ which uniquely determines an intrinsic derivative operator denoted by Da.

In addition, this derivative operator defines a purely intrinsic curvature tensor by the

relation

DaDbωc −DbDaωc = R d
abc ωd (2.24)

for a 1-form ω. Just as the intrinsic derivative was related to the spacetime covariant

derivative, we can similarly obtain a relation between the curvature of Σ and the

spacetime curvature by way of the Gauss–Codazzi equations. For a general rank-2

tensor field Tab on Σ,

DaTbc = eαae
β
ce
γ
c∇αTβγ = eαae

β
be
γ
c∇α(e

i
βe

j
γTij). (2.25)

A brief calculation gives us

DaDbωc = eαae
β
be
γ
c∇α∇βωγ −Kab(e

γ
cn

µ∇µωγ) +KacK
i
b ωi. (2.26)
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We thus obtain the Gauss relation

Rabcd = eαae
β
be
µ
ce
ν
dRαβµν +KbcKad −KacKbd. (2.27)

A similar calculation gives us the Codazzi relation

DaK
a
b −DbK

a
a = eαaRαµn

µ. (2.28)

The Gauss–Codazzi equations (2.27) and (2.28) can be written in a contracted

form in terms of the Einstein tensor Gαβ = Rαβ − RM

2
gαβ. We can express the

spacetime Ricci tensor in the form

Rαβ = gµνRµανβ

= (hmneµme
ν
n − nµnν)Rµανβ

(2.29)

and the Ricci scalar as

RM = gαβRαβ

= (habeαae
β
b − nαnβ)(hmneµme

ν
n − nµnν)Rµανβ

= habhmneµme
α
ae
ν
ne
β
bRµανβ − 2habeαae

β
bn

µnνRµανβ

= habhmn(Rmanb +KmnKab −KmbKan)− 2Rµνn
µnν

= ( RΣ +K2 − ‖K‖2)− 2Rµνn
µnν

(2.30)

using the Gauss relation in the second last line. From the form of the Einstein tensor,

we find that
RM + 2Rµνn

µnν = RM + 2Gµνn
µnν + RM gµνn

µnν

= 2Gµνn
µnν

(2.31)

thus the contracted Gauss relation takes the form:

2Gµνn
µnν = RΣ +K2 − ‖K‖2. (2.32)

Similarly, the Codazzi relation takes the form:

eαaGαβn
β = DaK

a
b −DbK. (2.33)
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Equations (2.32) and (2.33) are called the Hamiltonian constraint and the momen-

tum constraint respectively and they form the basis of the initial value problem in

general relativity. In particular, the Hamiltonian constraint reveals that the intrinsic

curvature on Σ must be related to the matter distribution by way of (2.32) so we’re

not free to arbitrarily specify hab and Kab.

To summarize, the initial value problem of general relativity starts with the se-

lection of a spacelike hypersurface Σ representing a ‘moment of time’, on which we

specify initial data consisting of the triple (Σ, hab, Kab) where hab is the pull-back of

the spacetime metric to Σ and Kab is a symmetric rank-2 tensor which carries infor-

mation about the derivative of the metric in the direction normal to Σ. By Einstein’s

equations, these tensors must satisfy the constraint equations (2.32) and (2.33). We

then have the following fundamental result by Choquet-Bruhat and Geroch:

Theorem 2.2.2 ([10]). Let (Σ, hab, Kab) be an initial data set satisfying the vacuum

Hamiltonian and momentum constraints (i.e. letting Gαβ = 0 in (2.32) and (2.33)).

Then there exists a unique (up to diffeomorphism) spacetime (M, gαβ), called the

maximal Cauchy development of (Σ, hab, Kab) such that:

1. (M, gαβ) satisfies the vacuum Einstein equation (2.9);

2. (M, gαβ) is globally hyperbolic with Cauchy surface Σ;

3. the induced metric and extrinsic curvatures of Σ are hab and Kab respectively;

4. any other spacetime satisfying the above conditions is isometric to a subset of

(M, gαβ).

Building on the work above, a similar construction can be established in the non-

vacuum case, however it will be omitted here.

Let (S, qAB, ∂̊A) be a closed 2-dimensional spacelike surface embedded in Σ with

unit spacelike normal sa and connection ∂̊A. The metric qAB is induced by the ambient

spacetime metric and takes the form

qAB = eαAe
β
Bgαβ = eaAe

b
Bhab. (2.34)
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2.3 Trapped Surfaces

Following the construction above, we have a spacelike 2-surface S embedded in a

spacetime (M, g) and at any point p on S, there are two distinct future pointing,

outward and inward directed unit null normals denoted ℓ±.

Definition 2.3.1. The null expansion scalars of S, Θ(±), are defined as the divergence

of light rays emanating orthogonally from S and are of the form

Θ(±) = divS ℓ± (2.38)

The null expansions can be expressed in terms of the initial data as

Θ(±) = trqK ± J (2.39)

where trqK is the trace of the extrinsic curvature tensor Kab with respect to q, the

induced metric on S, viewed as a tensor on Σ, and J is the mean curvature of S.
Remark 2.3.1. For a 2-sphere in Minkowski space, a short calculation reveals that

Θ(−) < 0 and Θ(+) > 0 which we interpret to mean light rays emanating outward

from S expand while those travelling inward contract.

The Minkowski case agrees with our intuition, however there are cases where both

Θ(±) < 0 and the light rays are said to be trapped. In such cases, we call S a trapped

surface, and below we further classify S based on the signs of Θ(±).

Definition 2.3.2 ([21]). A trapped surface is a closed spacelike 2-surface such that

Θ(±) < 0. If there is a consistent notion of an ‘outward’ direction, say along ℓ+, then

we call S outer trapped if Θ(+) < 0 with no additional constraint on Θ(−). We can

further classify S by:

• weakly outer trapped if Θ(+) ≤ 0,

• marginally outer trapped if Θ(+) = 0.

The inequalities must hold on all of S.

Remark 2.3.2. Trapped surfaces describe the interior of the event horizon for station-

ary spacetimes, a region from which light cannot escape. The same can not be said

in the case of dynamical black hole spacetimes; see [5, 6]. The idea of a trapped
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surface is that the ingoing and outgoing congruences of light rays emanating from S
are converging, meaning that any signal originating from the surface is trapped inside

a shrinking region.

Remark 2.3.3. Considering the initial data form of the null expansions (2.39), in the

case of time symmetric spacetimes where Kab = 0 like in Minkowski, then marginally

outer trapped surfaces have vanishing mean curvature. Such surfaces are called min-

imal surfaces.

Definition 2.3.3 ([24]). We call any hypersurface Σ with vanishing extrinsic curva-

ture Kab = 0 a moment of time symmetry in spacetime. Since the extrinsic curvature

is essentially the ‘time derivative’ of the metric, a moment of time symmetry cor-

responds to a turning point of the metric’s evolution at which its ‘time derivative’

vanishes.

The following theorem from Penrose [21] states that if S is a trapped surface, then

the ambient spacetime M is future null geodesically incomplete, meaning that there

exists a null geodesic that is of finite length and cannot be extended. Null geodesics

represent light rays so this statement is saying that after some finite time or affine

parameter, the light ray abruptly ends and cannot be extended.

Theorem 2.3.4 ([14, 21]). Let (M, g) be a globally hyperbolic spacetime containing

a non-compact Cauchy hypersurface and satisfies the null energy condition. If M
contains a trapped surface S, then (M, g) is future null geodesically incomplete.

In this thesis, we will exclusively consider outer trapped surfaces, thus the following

variant of the singularity theorem is more useful for us.

Theorem 2.3.5 ([14]). Let (M, g) be a globally hyperbolic spacetime satisfying the

null energy condition, with smooth spacelike Cauchy surface Σ. Let S be a smooth

closed hypersurface in Σ which separates Σ into an “inside” U and an “outside” V ,

i.e. U, V ⊂ Σ are connected disjoint sets such that Σ \ S = U ∪ V . Suppose that V̄ is

non-compact. If S is outer trapped, then (M, g) is future null geodesically incomplete.

Through the singularity theorem, Penrose proved that provided a spacetime sat-

isfied some causality and energy condition, then once the gravitational field becomes

strong enough to cause the appearance of trapped surfaces, the spacetime must come
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to an abrupt end in the future, signalling the presence of a singularity in the space-

time, a point where the metric breaks down. The existence of naked singularities [22],

singularities visible to observers in the spacetime, suggests a failure of the Einstein

equations as a physical theory as the presence would make the spacetime unpre-

dictable. To attempt to rectify this problem, Penrose [23] proposed the weak cosmic

censorship hypothesis, expressed informally as:

Conjecture 1 ([23, 31]). The complete gravitational collapse of a body always results

in a black hole rather than a naked singularity, i.e. all singularities of gravitational

collapse are “hidden” within black holes where they can’t be seen by observers at I +,

future null infinity.

Although weak cosmic censorship has not been proven, some evidence in favour of

the hypothesis is that outer trapped surfaces also signal the existence of black holes,

as seen in the following:

Proposition 2.3.6 ([17]). Let (M, g) be a regular predictable space developing from

a partial Cauchy surface Σ satisfying the null energy condition. Then an outer

trapped surface S in D+(Σ), the future Cauchy development of Σ, does not inter-

sect J−(I +,M̄), the event horizon.

Definition 2.3.7 ([17, 20]). Suppose the spacetime (M, g) is conformally compacti-

fiable, that is there is a spacetime (M̃, g̃) into which (M, g) is conformally embedded

as a manifold with boundary where the boundary ∂M consists of two null surfaces

I ± which represent future and past null infinity.

We say that spacetime is strongly future asymptotically predictable from a partial

Cauchy surface Σ if I + is contained in the closure of D+(Σ) in M̄, and J+(Σ) ∩
J̄−(I +,M̄) is contained in D+(Σ).

(M, g) is called a regular predictable space if it is strongly future asymptotically

predictable from a partial Cauchy surface Σ and satisfies the following conditions:

• Σ ∩ J̄−(I +,M̄) is homeomorphic to R
3;

• Σ is simply connected;

• for sufficiently large t, Σt ∩ J̄−(I +,M̄) is contained in J̄+(I −,M̄).
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Proposition 2.3.6 states that an outer trapped surface in an asymptotically flat,

globally hyperbolic spacetime satisfying the null energy condition can’t intersect the

domain of outer communication, meaning it can’t be seen by observers at I+, and

hence must be contained in a black hole.

2.4 Stability of Marginally Outer Trapped Surfaces

Definition 2.4.1 ([20]). A minimal surface is defined as a 2-surface with everywhere

vanishing mean curvature, however it can equivalently be characterized as a critical

point of the volume functional.

Remark 2.4.1. Despite the terminology, a minimal surface need not be a local mini-

mum of the volume functional.

Definition 2.4.2 ([20]). A minimal surface S is called stable if its second variation of

volume is non-negative for all deformations and strictly stable if the second variation

is strictly positive.

Definition 2.4.3 ([1]). A MOTS S is called locally outermost in Σ if and only if

there exists a two-sided neighbourhood U of S such that the part of U outside of S
does not contain any weakly outer trapped surfaces.

To verify when S is locally outermost, we need to examine how the value of

Θ(+) changes just outside of it. To do this, we consider a one-parameter family of

deformations of S denoted by

St = {exp(tψs)} (2.40)

where exp is the exponential map of Σ. This family of deformations is depicted in

fig. 2.5. Let Θ(t) denote the null expansion of St with respect to ℓt = n + st. To

observe how Θ(+) changes on this family of surfaces, we consider the variation

∂

∂t

∣

∣

∣

∣

t=0

Θ(t) = Lψ (2.41)
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where L : C∞(S) → C∞(S) is a second-order linear elliptic operator defined by

Lψ = −∆Sψ + 2q(ω, ∂̊ψ) +

(

RS

2
−G(n, ℓ+)−

1

2
‖χ+‖2 + divS ω − ‖ω‖2

)

ψ. (2.42)

In the above, ∆S , ∂̊, and divS are respectively the Laplacian, gradient, and divergence

on S, ‖·‖ is the point-wise norm induced by q, ω is the vector field on S dual to the

one-form K(s, ·)|S , RS is the scalar curvature of S, χ+ is the null second fundamental

form of S with respect to ℓ+, that is, χ+
AB = eαAe

β
B∇αℓ

+
β , and finally G is the

Einstein tensor of the spacetime (M, g). The operator L is called the MOTS stability

operator and in the time-symmetric case where the extrinsic curvature of Σ vanishes,

it reduces to the usual stability operator for minimal surfaces [15]. See appendix A

for a derivation of the operator in index form.

Let us now consider the eigenvalue problem

Lψ = λψ. (2.43)

In general, L is not self-adjoint with respect to the L2 inner product due to the

presence of its first-order term, and so λ ∈ C. It turns out however that at least one

λ will be real.

Definition 2.4.4 ([13]). The principal eigenvalue λp for the operator L is an eigen-

value such that for any other eigenvalue λ ∈ C of L,

Re(λ) ≥ Re(λp). (2.44)

Lemma 2.4.5 ([1]). The principal eigenvalue λp of L is real and simple. Moreover, the

corresponding principal eigenfunction ψp is either everywhere positive or everywhere

negative.

If we use the principal eigenfunction ψp to define the variation, then we obtain

from (2.41)
∂

∂t

∣

∣

∣

∣

t=0

Θ(t) = λpψp. (2.45)

For S to be locally outermost, we require ∂Θ
∂t
|t=0 ≥ 0 for small t > 0, so from (2.45),

this condition is satisfied provided λp ≥ 0.

Definition 2.4.6 ([1, 2]). A MOTS S is called stable if λp ≥ 0 and strictly stable if
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matter fields are time-independent. As defined, an isolated horizon provides a quasi-

local characterization of a black hole which has reached equilibrium, and a dynamical

horizon represents an evolving black hole. There is a general expectation that under

physically reasonable conditions, dynamical horizons ‘settle down’ to isolated horizons

in asymptotic future. One does not associate a timelike membrane with the surface

of a black hole even quasi-locally.

Definition 2.5.1 ([17]). A set V is said to be achronal if I+(V) ∩ V = ∅, in other

words if there are no two points of V with timelike separation.

Definition 2.5.2 ([4]). A dynamical horizon H is said to be regular if:

1. H is achronal;

2. H satisfies a “genericity condition” that W = ‖χ+‖2 + Tαβℓ
α
+ℓ

β
+ never vanishes

on H .

Since dynamical horizons are spacelike, H is automatically locally achronal, the

regularity condition however requires H to be globally achronal.

The proposed genericity condition is obtained from L−Θ(+), that is the directional

derivative of Θ(+) along the inward pointing null normal ℓ−. In particular, the gener-

icity condition is satisfied if L−Θ(+) < 0 which encodes the idea that H is “outer”

as deformations along the inward normal ℓα− make the 2-surface trapped.

Following the construction of [9], let Xα be a vector field that:

1. is tangential to H ;

2. is everywhere orthogonal to the foliation by MTSs;

3. generates a flow which preserves the foliation.

For some smooth function C on H , we can express the tangent vector as

Xα = ℓα+ − Cℓα−. (2.46)

The causal character of H is dependent on the sign of C; in particular, H is null,

spacelike, or timelike if C is respectively zero, positive, or negative. We know that
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Θ(+) vanishes everywhere on the horizon, giving us

0 = LXΘ(+)

= L+Θ(+) − CL−Θ(+)

L−Θ(+) = − 1

C
(‖χ+‖2 +Rαβℓ

α
+ℓ

β
+) (2.47)

where in the last line we used the Raychaudhuri equation for a null congruence [24].

As shown by Hayward [18], if the null energy condition holds, then a dynamical

horizon H satisfies the genericity condition if and only if it’s a future outer trapping

horizon (FOTH).

Acronym Name Dimension Θ(−) L−Θ(+) Other
MOTS Marginally outer trapped surface 2 closed topology
MOTT Marginally outer trapped tube 3 foliated by MOTSs
MTS Marginally trapped surface 2 < 0 closed topology
MTT Marginally trapped tube 3 < 0 foliated by MTSs
TH Trapping horizon 3 6= 0 6= 0 foliated by MOTSs

FOTH Future outer trapping horizon 3 < 0 < 0 foliated by MTSs
DH Dynamical horizon 3 < 0 foliated by MTSs

Table 2.1: Summary of quasi-local horizons with Θ(+) = 0 and their definitions. From
[8].

Let (M, g) be a spacetime foliated by spacelike hypersurfaces Σt. On some initial

hypersurface Σ0, we let S be a closed, spacelike 2-surface with Θ(+) = 0; that is, S
is a MOTS. A technique used in the study of dynamical black holes is to study the

evolution of a MOTS over time. This motivates the idea of a marginally outer trapped

tube (MOTT), a hypersurface H foliated by MOTSs. When given a spacetime foli-

ation, we can define the MOTT adapted to the foliation by letting the leaves of H

be the intersection of H with the spacetime slices, that is, St = H ∩ Σt. Although

this definition is fine for most cases, a problem arises in cases where the intersection

H ∩ Σt has multiple components as is found in [25].

An alternative definition is to let H be a hypersurface foliated by surfaces Sκ such
that each Sκ lies inside a time slice Sκ ⊂ Σt(κ) and is a MOTS. This would mean that

H =
⋃

κ Sκ and Sκ ⊂ H ∩ Σt(κ). The difference between the two definitions occurs

when t(κ) is not monotone such as in fig. 4.1.
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2.6 AMMS Results

A MOTS is a useful tool in studying the behaviour of a black hole in a single hyper-

surface corresponding to an instant in time, however as seen in section 2.5, they can

also be used in the study of dynamical black holes. In numerical relativity, dynamical

black holes can be studied by tracking the evolution of a MOTS in an initial data set,

then if the MOTS evolves smoothly in time, one can consider the smooth hypersur-

face H formed by tracing the MOTSs in successive time slices. Although MOTSs

are a useful tool in studying properties of black hole spacetimes, there is a level of

uncertainty about their behaviour under time evolutions as they have been found to

exhibit non-smooth evolutions such as the sudden creation or annihilation of a pair

of MOTS. In [17], Hawking and Ellis proposed the well known “pair of pants” model

of the merger of two black holes, depicted in fig. 2.6, which details the merger of

two distinct event horizons into a single one encompassing the originals. Adapting to

the language of outer trapped surfaces, the model for the merger of two MOTSs was

established numerically in [25]. The model initially considered two disjoint MOTSs

corresponding to the two approaching black holes, then when the black holes were suf-

ficiently close, it was observed that a common MOTS enclosing the original MOTSs

was formed and then immediately bifurcated into an outer and inner component. Be-

fore the MOTSs could make contact, the formation of the common horizon caused

the apparent horizon to jump discontinuously, as observed in fig. 2.7.

The authors of [1] set out to develop tools to study evolutions of black hole space-

times analytically. The situation modelled in [25] and other non-smooth evolutions

occasionally occur in numerical simulations, motivating the need to study the evolu-

tions analytically.

Theorem 2.6.1 ([1, 2]). Let (M, g) be a spacetime foliated by spacelike hypersurfaces

Σt. Assume that in some leaf Σ0, there is a MOTS S. If S is strictly stable, then S
is part of a horizon H whose marginally outer trapped leaves lie in Σt.

To prove the existence of H , the authors use the strict stability condition on S
considered in section 2.4, making the stability operator L invertible. Then the implicit

function theorem for Banach spaces [19] proves the local existence of a horizon H

such that St = H ∩Σt near S are MOTS. Since the result uses the implicit function

theorem to prove the existence of the horizon H , L being invertible is a sufficient
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Figure 2.6: The “pair of pants” model for the merger of two black holes proposed by
Hawking and Ellis in [17]. At time τ1, there are apparent horizons ∂T1, ∂T2 inside the
event horizons ∂B1, ∂B2 respectively. By time τ2, the event horizons have merged
to form a single event horizon; a third apparent horizon has now formed surrounding
both the previous apparent horizons.

Figure 2.7: At time T = 0, there are two distinct MOTSs corresponding to the two
black holes, then at Tbifurcate, a new MOTS surrounding the original two forms and
immediately bifurcates into the future. Figure from [25].
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condition. The constraint that S is strictly stable guarantees that no eigenvalue of L

vanishes, hence proving L is invertible.

The above result only accounts for the case when S is strictly stable, however in

[3], a similar result is proven in the case when S is only marginally stable and is stated

in the following.

Theorem 2.6.2 ([3]). Similar to before, let (M, g) be a spacetime, satisfying the

null energy condition, foliated by spacelike hypersurfaces (Σt, ht, Kt) and assume that

S ⊆ Σ0 is a marginally stable MOTS satisfying the genericity assumption

W = ‖χ+‖2 +Rαβℓ
α
+ℓ

β
+ 6≡ 0. (2.48)

Then there exists a spacelike MOTT H containing S which is tangent to Σ0 at S.
For some neighbourhood U of S, all MOTS in U ∩ Σt are contained in H .

The genericity condition in consideration is precisely (2.47), so the above result

can be summarized as saying that provided the variation of the outer null expansion

along the null normal ℓ− doesn’t vanish identically, then the marginally stable MOTS

S will evolve into a MOTT H tangent to Σ0 at S. Since the MOTT is tangent to the

time slice, it’s possible for the MOTT to exist entirely to the future of Σ0, in which

case H bifurcates into two distinct horizons, the situation observed in fig. 2.7. In

fact, it’s even possible for the MOTT to lie entirely inside Σ0; see example 4.1.1.



Chapter 3

Spherically Symmetric Spacetimes

Having introduced and defined most of the notation and concepts we’ll need for our

analysis in chapter 2, we are now ready to discuss some of the main results of the

thesis. We begin with the construction of a spherically symmetric spacetime and

show how variations and the stability problem are simplified due to symmetries of the

spacetime.

3.1 General Spherical Spacetimes

A spacetime is spherically symmetric if its metric is invariant under rotations, that

is it has an isometry group containing a subgroup isomorphic to SO(3), the group

of 3-dimensional rotations. In the usual spherical coordinates, a general spherically

symmetric spacetime can be paired with a metric of the form

ds2 = −F (r, t)dt2 + 2G(r, t)dtdr +H(r, t)dr2 +R2(r, t)dΩ2 (3.1)

where F,G,H are arbitrary functions, R is the areal function, and dΩ2 is the metric

on the unit 2-sphere.

Given a spacetime M foliated by spacelike hypersurfaces Σt with spherically sym-

metric initial data sets (Σt, ht, Kt), the 2-sphere of constant coordinate radius r em-

bedded in Σt has constant outward null expansion which we represent by the function

Θ : (0,∞) × R → R. In the time slice Σt0 , the sphere of radius r0 is a MOTS if
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Θ(r0, t0) = 0. This construction provides us with the natural characterization of a

MOTT as the zero set of Θ(r, t). If the MOTT is smooth, we can also character-

ize it as a disjoint union of smooth curves (r(s), t(s)) in the (r, t)−plane such that

Θ(r(s), t(s)) = 0 for all s.

Because the initial data set is spherically symmetric, the first order term in the

MOTS stability operator (2.42) drops out and L becomes self-adjoint. We however

don’t need the explicit form of the stability operator to determine whether the MOTS

satisfies the stability condition. As we will see in theorem 3.1.1, due to spherical

symmetry, constant speed variations simplify to taking partial derivatives, and in

particular, the constant speed variation along the normal used to define the stability

operator simplifies to a radial derivative. The MOTS stability condition therefore

reduces to a simple sign condition on the first derivative of the null expansion.

Theorem 3.1.1. Let S be a spherical MOTS in a spherically symmetric spacetime

M. Then the normal variation of the null expansion Θ with respect to a constant

speed deformation corresponds to a radial partial derivative. Moreover, the principal

eigenvalue of the stability operator for S and ∂rΘ differ by a positive constant.

Proof. It was previously mentioned that in a spherically symmetric background, the

MOTS stability condition reduced to a sign condition on the first derivative of the null

expansion. To see where this comes from, we recall a MOTS (r0, t0) is called stable

when the principal eigenvalue of the stability operator L is non-negative, that is λp ≥
0. Due to spherical symmetry, it turns out that L is a self-adjoint operator, from which

we immediately know that the eigenvalues are all real [13]. Moreover, the eigenvalue

problem for L is simply a Helmholtz equation and the corresponding eigenvalues are

simply the usual eigenvalues of the Laplacian, given by λℓ = ℓ(ℓ+1) for ℓ = 0, 1, 2, . . . ,

shifted by a constant. This tells us that the eigenvalues have multiplicity 2ℓ+ 1 with

the principal eigenvalue being simple and that the corresponding eigenfunctions will be

linear combinations of spherical harmonics. In particular the principal eigenfunction

is just a positive constant on the sphere.

Denote by S the MOTS (r0, t0) corresponding to a 2-sphere of radius r0. We let

Sµ denote the 1-parameter family of constant speed deformations of S an amount aµ

in the outward normal direction ν, that is Sµ are 2-spheres of radius r(µ) = r0 + aµ

where we choose a(r0, t0) = H(r0, t0)
−1/2 so that the deformation has unit speed.

Then since the deformation has unit speed, we find that the first variation of the null
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expansion is given by

L(1) =
∂

∂µ
Θ(r(µ), t)

∣

∣

∣

∣

µ=0,t=t0

=
∂Θ

∂r

dr(µ)

dµ

∣

∣

∣

∣

µ=0,t=t0

= a(r0, t0)∂rΘ(r0, t0).

(3.2)

From the form of the above, it’s clear that a(r0, t0)∂rΘ(r0, t0) is an eigenvalue of L with

constant associated eigenfunction. To see that it is actually the principal eigenvalue,

we know that the only constant spherical harmonic is when ℓ = 0, hence the eigenvalue

with associated constant eigenfunction is simple and therefore the principal eigenvalue.

Remark 3.1.1. We saw how the normal variation with respect to a constant speed

deformation corresponded to a partial derivative in the radial coordinate, however it

remains to be seen what the variation along the timelike normal looks like. To do this,

we borrow the notation of variations from [1], defining the variation of the geometric

object ν on a surface T in the direction pα by δpν = ∂ν
∂τ

for any one-parameter family

of surfaces Tτ with T0 = T and where pα∂xα = ∂
∂τ
|τ=0. In particular, δψsΘ(+) = Lψ

for a function ψ on S.

Recalling from (2.47), the Raychaudhuri equation tells us

δℓ+Θ(+) = −(‖χ+‖2 +Rαβℓ
α
+ℓ

β
+) = −W. (3.3)

Since ℓ+ = n+ s, we can use the additive property of variations to find

−W = δℓ+Θ(+)

= (δn + δs)Θ(+)

= δnΘ(+) + L(1)

= δnΘ(+)

(3.4)

then using the ADM decomposition, assuming ( ∂
∂t
)α = fnα is normal to the Σt where

f is the lapse function, we have

∂

∂t
Θ(+) = −fW. (3.5)
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As described in section 2.6, the authors of [1–3] proved results about the existence

of MOTTs in a spacetime satisfying an appropriate energy condition dependent on

the stability of a MOTS living on a leaf of the spacetime foliation, and in the general

case, a genericity condition constructed from the variation of the null expansion along

the inward null normal of the MOTS. While these results are useful, they don’t show

the full picture. Recalling the merger of distinct MOTS as depicted in fig. 1.1, at

time Tbifurcate, a new MOTS suddenly appears enclosing the original surfaces, then it

bifurcates into an inner and outer branch as the data is evolved. This situation is

an example of theorem 2.6.2, however the original statement of the theorem doesn’t

specify a way to distinguish whether the MOTT will correspond to a creation, an

annihilation, or even something degenerate. We’re interested in extending this result

by deriving a geometric condition local to the MOTS which will give us the tools to

characterize the evolutionary behaviour of the MOTT. Let us start by stating results

analogous to theorems 2.6.1 and 2.6.2 under the assumption of spherical symmetry.

Theorem 3.1.2. Let (M, g) be a spherically symmetric spacetime foliated by spacelike

hypersurfaces Σt. Assume that in some leaf Σ0, a 2-sphere denoted (r0, t0) is a MOTS.

If ∂Θ
∂r
(r0, t0) 6= 0, then (r0, t0) is contained in a MOTT (r(t), t) where r(t) is a smooth

function defined on a neighbourhood of t0 with r(t0) = r0.

This result tells us that the MOTS (r0, t0) with non-vanishing principal eigenvalue

is contained in a MOTT of the form (r(t), t) which (at least locally) evolves smoothly

through time.

Proof. Since (r0, t0) is a MOTS, it necessarily satisfies Θ(r0, t0) = 0 and by hypoth-

esis it has non-vanishing normal variation ∂rΘ(r0, t0) 6= 0. By the implicit function

theorem, there is an open neighbourhood V of t0 and a smooth function r(t) with

r(t0) = r0 such that Θ(r(t), t) = 0 for all t ∈ V .

Remark 3.1.2. Theorem 3.1.2 is an analogue of the MOTT existence result considered

in [1, 2]. This result is more restrictive than the original result as it requires spherical

symmetry, however in a spherical setting, it turns out to be a much stronger result. We

recall that the original result proved the existence of a MOTT which evolved smoothly

provided the MOTS stability operator L was invertible. In the spherically symmetric

case however, we only required that the principal eigenvalue was non-vanishing with

no further constraints on higher eigenvalues.
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Let us now state an analogue of theorem 2.6.2, again restricted to the setting of

spherical symmetry.

Theorem 3.1.3. Suppose (r0, t0) is a MOTS with ∂rΘ(r0, t0) = 0 and ∂tΘ(r0, t0) 6= 0.

We then have the following results:

1. The MOTS (r0, t0) is contained in a MOTT (r, τ(r)) where τ(r) is a smooth

function defined on a neighbourhood of r0 such that τ(r0) = t0 and τ ′(r0) = 0.

2. Letting λp(r) denote the principal eigenvalue of the MOTS foliating the MOTT,

λ′p(r0) has the same sign as ∂2rΘ(r0, t0).

3. Further assuming the spacetime satisfies the null energy condition, τ ′′(r0) has

the same sign as ∂2rΘ(r0, t0).

Proof. (1) Since ∂tΘ(r0, t0) 6= 0, the implicit function theorem tells us that there is

an open neighbourhood U of r0 and a smooth function t = τ(r) with τ(r0) = t0 such

that

Θ(r, τ(r)) = 0 (3.6)

for all r ∈ U , hence (r0, t0) is contained in a MOTT of the form (r, τ(r)). Taking a

derivative of (3.6) and evaluating at (r0, t0), we find that

∂rΘ(r0, t0) + ∂tΘ(r0, t0)τ
′(r0) = 0

τ ′(r0) = −∂rΘ
∂tΘ

(r0, t0)

= 0.

(3.7)

This result tells us that the MOTT is tangent to the time slice Σt0 at the MOTS,

precisely the result from [3].

(2) Let λp(r) denote the principal eigenvalue of the MOTS (r, τ(r)) such that

λp(r0) = 0. We recall from theorem 3.1.1 that the principal eigenvalue is related to

the first variation of the null expansion by

λp(r) = a(r, τ(r))
∂Θ

∂r
(r, τ(r)). (3.8)
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Taking a derivative, we obtain

λ′p(r0) =
(

∂ra(r0, t0) + ∂ta(r0, t0)τ
′(r0)

)∂Θ

∂r
+ a(r0, t0)

(∂2Θ

∂r2
(r0, t0) +

∂2Θ

∂r∂t
(r0, t0)τ

′(r0)
)

= a(r0, t0)
∂2Θ

∂r2
(r0, t0). (3.9)

As a result, λ′p(r0) has the same sign as ∂2rΘ(r0, t0).

(3) Since the MOTT has a critical point, the next step is to consider the second

variation to determine the type of critical point. Taking a second derivative of (3.6),

we obtain

0 =
(

∂2rΘ+ 2∂r∂tΘτ
′(r0) + ∂2tΘ(τ ′)2(r0) + ∂tΘτ

′′(r0)
)

(r0, t0)

τ ′′(r0) = −∂
2
rΘ+ 2∂r∂tΘτ

′ + ∂2tΘ(τ ′)2

∂tΘ
(r0, t0)

= −∂
2
rΘ

∂tΘ
(r0, t0).

(3.10)

We recall that ∂tΘ(r0, t0) = −fW . Since we assume the spacetime satisfies the

null energy condition, we know that W ≥ 0. Taking the lapse f > 0, we have

∂tΘ(r0, t0) < 0 (since ∂tΘ(r0, t0) 6= 0 by hypothesis) and so the above tells us that

τ ′′(r0) has the same sign as ∂2rΘ(r0, t0), and hence the type of critical point becomes

a sign condition on the second derivative of the function τ(r).

Remark 3.1.3. The results of theorem 3.1.3 can be summarized as follows:

1. A MOTS satisfying ∂rΘ = 0 (marginally stable) and ∂tΘ 6= 0 (the genericity

condition) is contained in a MOTT, expressed as the graph (r, τ(r)), tangent to

the time slice, precisely the case from theorem 2.6.2

2. Thinking of the principal eigenvalue as a function of r, it turns out that its first

derivative is proportional to the second variation of Θ(+) at the MOTS.

3. The second derivative of τ(r) being proportional to the second variation of Θ(+)

at the MOTS means that the evolutionary behaviour of the MOTT is dependent

on the sign of a smooth function defined on a neighbourhood of the MOTS. In

particular, whether the MOTT corresponds to a creation, an annihilation, or

something degenerate depends on the sign of ∂2rΘ(r0, t0).
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variation, we again find that

τ ′(r0) = −∂rΘ
∂tΘ

(r0, t0) = 0. (3.12)

The MOTT is once again tangent to the hypersurface Σt0 , however since the second

normal variation of Θ(r, t) vanishes, we need to consider higher variations. Using the

hypothesis that the first (m− 1) variations vanish, we obtain

τ ′′(r0) = −∂
2
rΘ

∂tΘ
(r0, t0) = 0

τ (3)(r0) = −∂
3
rΘ

∂tΘ
(r0, t0) = 0

...

τ (m−1)(r0) = −∂
m−1
r Θ

∂tΘ
(r0, t0) = 0

τ (m)(r0) = −∂
m
r Θ

∂tΘ
(r0, t0), (3.13)

hence τ (m)(r0) has the same sign as ∂mr Θ(r0, t0) since ∂tΘ(r0, t0) < 0 by the genericity

condition.

Remark 3.1.4. We can interpret the above result in terms of the derivative test from

calculus. There are two main cases to consider:

1. If m is even and τ (m)(r0) < 0 (> 0), then (r0, t0) is a local maximum (minimum)

of the MOTT.

2. If m is odd and τ (m)(r0) < 0 (> 0), then (r0, t0) is a strictly decreasing (increas-

ing) point of inflection.

In the same way as before, we let λp(r) denote the principal eigenvalue of (r, τ(r))
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such that λp(r0) = 0. Taking derivatives again, we obtain

λ′p(r0)ψ =
∂2Θ

∂r2
(r0, t0) = 0

λ′′p(r0)ψ =
∂3Θ

∂r3
(r0, t0) = 0

...

λ(m−2)
p (r0)ψ =

∂m−1Θ

∂rm−1
(r0, t0) = 0

λ(m−1)
p (r0)ψ =

∂mΘ

∂rm
(r0, t0),

(3.14)

and once again, the (m − 1) derivative of λp(r0) has the same sign as ∂m−1
r Θ(r0, t0)

and hence τ (m)(r0).

3.2 Intersections of Marginally Outer Trapped Tubes

In the previous section, we introduced two characterizations of a spherical MOTT:

either as the zero set of the null expansion, or as the disjoint union of smooth curves

in the (r, t)−plane such that Θ(r(s), t(s)) = 0 for all s. If the MOTT is smooth,

these characterizations are equivalent, however a breakdown occurs when the zero set

of Θ(r, t) contains intersections. In chapter 4 we will consider a specific example of

a spherically symmetric spacetime in which this situation can be ruled out entirely,

however the same can’t be said in the general case. In this section, we will construct

a spherically symmetric spacetime satisfying an appropriate energy condition that

produces a null expansion Θ(r, t) whose zero set contains intersections.

It should be noted that the intersections of MOTTs currently being discussed

should not be confused with the self-intersecting MOTS discussed in [25].

To begin, let us consider a general spherically symmetric spacetime with metric

gαβdx
αdxβ = −A(r, t)dt2 + 2B(r, t)dtdr +D(r, t)dr2 + P 2(r)dΩ2 (3.15)

where A,B,D, P are smooth functions. In this spacetime, we consider the spacelike
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hypersurface Σ with unit timelike normal

nαdx
α = −

√

B2 + AD

D
dt = −

√

F

D
dt (3.16)

where we let F = B2 + AD to simplify notation. The induced metric on this slice is

habdx
adxb = Ddr2 + P 2dΩ2 (3.17)

and the extrinsic curvature is

Kabdx
adxb =

(B∂rD +D∂tD − 2D∂rB)dr2 − 2BPP ′dΩ2

2
√
DF

. (3.18)

We now consider the spacelike 2-sphere S embedded in the spacetime with unit

spacelike normal

sαdx
α =

B√
D
dt+

√
Ddr (3.19)

and induced metric

qABdx
AdxB = P 2dΩ2. (3.20)

The extrinsic curvature of this 2-surface is given by

JAB dx
AdxB =

PP ′

√
D
dΩ2, (3.21)

and the mean curvature is hence

J =
2∂rP

P
√
D

=
2P ′

P
√
D
.

(3.22)

We let the null normals to the 2-surface be

ℓ±αdx
α =

±B −
√
F√

D
dt±

√
Ddr (3.23)
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Finally, the outward null expansion scalar of the 2-surface is given by

Θ(+) = qαβ∇αℓ
+
β

=
2(F − B

√
F )P ′

FP
√
D

.
(3.24)

Let us verify the null energy condition using the null normals found above. We

again simplify the notation by letting

G = 2∂rB − ∂tD

Q = A∂rD +D∂rA.

We then obtain

Rαβℓ
α
+ℓ

β
+ =

1

PDF 2

{

−4P ′′B4 +

[

4P ′′
√
F + 2P ′G

]

B3

+ 2

[

P ′

(

Q−G
√
F
)

− 3AP ′′D

]

B2

+

[

P ′

(

AD
(

G− 2∂tD
)

−D2∂tA− 2Q
√
F
)

+ 4P ′′AD
√
F

]

B

+

[

P ′

(

Q+ 2D∂tB + 2
√
F∂tD

)

− 2P ′′AD

]

AD

}

.

(3.25)

Looking at the form of Θ(+), we know that the surface S is a MOTS if
√
F = B,

that is, if AD = 0. We next want to see when the MOTS is marginally stable, so
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taking the r derivative and evaluating on S, we obtain

∂rΘ(+)|S =
2P ′

B2P
√
D

(

∂rF −
√
F∂rB − B∂rF

2
√
F

)

=
2P ′

B2P
√
D

(

2B∂rB + A∂rD +D∂rA− B∂rB

− 2B∂rB + A∂rD +D∂rA

2

)

=
P ′(A∂rD +D∂rA)

B2P
√
D

=
QP ′

B2P
√
D
,

(3.26)

so we see that S is a marginally stable MOTS if

AD = 0 (3.27)

A∂rD +D∂rA = 0. (3.28)

Applying these conditions to (3.25), we find that it reduces to

Rαβℓ
α
+ℓ

β
+ = −DP

′∂tA

PB3
, (3.29)

and thus if the null energy condition holds, then we must have

P ′D∂tA

PB3
≤ 0 (3.30)

on S, so we gain the new condition ∂tA ≤ 0 on S.

To this point, our conditions on the metric functions are

A(0, 0) = ∂rA(0, 0) = ∂tA(0, 0) = 0 (3.31)

∂tA(r, t) ≤ 0. (3.32)

To satisfy the condition that gαβ is a Lorentzian metric, we require the metric functions

to satisfy

det g = −(AD +B2)P 4 sin2 θ < 0. (3.33)

In a local neighbourhood of S, we let D = 1, A be bounded, and we let B2 be large



41

enough to satisfy the Lorentzian signature of gαβ.

In this spacetime, the zero set of Θ(r, t) is equivalent to the zero set of A(r, t),

so the MOTT has intersections if the zero set of A(r, t) has intersections. To satisfy

the null energy condition we also require that ∂tA(r, t) ≤ 0. A function that satisfies

these conditions is

A(r, t) = −t(r − r0)
2. (3.34)

We have thus obtained a physically reasonable and spherically symmetric spacetime

containing a marginally stable MOTS S that evolves into a intersecting MOTT of the

form {r = r0} ∪ {t = 0} as desired.



Chapter 4

Vaidya Spacetime

In chapter 3, we reviewed the basic construction of a spherically symmetric spacetime

and remarked on the simplifications the symmetry provides to variations, and as a

result, the MOTS stability condition. In this chapter, we will apply the results from

the previous chapter using the Vaidya spacetime, the simplest example of a spherically

symmetric, dynamical spacetime.

4.1 Finding MOTTs in Vaidya

4.1.1 Construction of Vaidya spacetime

The static spherically symmetric spacetime that solves the vacuum Einstein equations

is the Schwarzschild spacetime with metric

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2 (4.1)

where f(r) = 1− 2m
r

and dΩ2 is the metric on the 2-sphere. In fact, there is a result

called Birkhoff’s theorem which states that any spherically symmetric solution to the

vacuum Einstein equations must be static and asymptotically flat, thus its exterior

solution must be given by the Schwarzschild metric [24].

The Schwarzschild metric is static, meaning it has a timelike Killing vector field ξα

and there is a spacelike hypersurface Σ that is hypersurface orthogonal to the orbits
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of the isometry, or by Frobenius’s theorem, ξα satisfies

ξ[α∇βξγ] = 0, (4.2)

or using the notation of forms [31]

ξ ∧ dξ = 0. (4.3)

As one may notice, the Schwarzschild metric has a singularity at r = 2m; this

however is simply a coordinate singularity and it can be eliminated through a coor-

dinate transformation adapted to radial null geodesics. We introduce the so-called

tortoise coordinate

r∗ = r + 2m log

∣

∣

∣

∣

r

2m
− 1

∣

∣

∣

∣

. (4.4)

As seen from the above construction, the tortoise coordinate will go off to −∞ as

the radial coordinate r approaches the supposed singularity at 2m. Although we can

choose coordinates that make the metric well-behaved at r = 2m, the surface is still of

interest. If we transform the metric into coordinates adapted to radial null geodesics

such that the metric is regular at r = 2m, it turns out that for r < 2m every radial

null geodesic has decreasing r and reaches the curvature singularity r = 0 in finite

affine parameter. Since the tangent vector to timelike curves lie inside null cones, then

observers travelling along radial timelike curves will also reach r = 0. It turns out

that the same result holds for any timelike or null curve in r < 2m, hence no signal

can be sent from r < 2m to r > 2m. The surface r = 2m therefore acts as a barrier,

preventing any observer in the region r > 2m from seeing what happens in r < 2m,

hence r = 2m is the black hole event horizon.

In the standard Schwarzschild coordinates, as an observer approaches the event

horizon at r = 2m, its coordinate velocity will continually slow down, and will in fact

never reach the surface in finite Schwarzschild time. We can fix this behaviour by

introducing the ingoing Eddington-Finkelstein coordinate v = t + r∗ and replacing

the original Schwarzschild time coordinate t [26]. Under this transformation, signals

travelling into the black hole along radial null geodesics will have constant coordinate

velocity, and will be able to cross the event horizon.
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We can then write the Schwarzschild metric in ingoing Eddington-Finklestein co-

ordinates (v, r, θ, φ) giving us

ds2 = −
(

1− 2m

r

)

dv2 + 2dvdr + r2dΩ2. (4.5)

The Vaidya metric is the simplest non-static generalization of Schwarzschild origi-

nally introduced in [30]. It describes the non-empty exterior spacetime of a spherically

symmetric mass which is either emitting or absorbing null dust. To obtain the ingoing

Vaidya metric, we begin with the metric (4.5) and find that it is physically reasonable

to extend the constant mass parameter to a function of the null coordinate v. The

ingoing Vaidya metric is thus given by

gαβdx
αdxβ = −

(

1− 2m(v)

r

)

dv2 + 2dvdr + r2dΩ2 (4.6)

[29]. The ingoing Vaidya metric is a solution to the Einstein equations with stress-

energy tensor

Tαβ =
m′(v)

4πr2
kαkβ (4.7)

where kα = −dv is tangent to ingoing null geodesics and a prime denotes a derivative

with respect to v [24]. This spacetime satisfies the null energy condition provided the

mass function is non-decreasing.

4.1.2 MOTS in Vaidya

We consider a spacelike hypersurface Σ of constant T ≡ v − r. Such a hypersurface

will have unit timelike normal

nαdx
α = −

√

r

r + 2m(v)
(dv − dr) (4.8)

and induced metric

habdx
adxb =

r + 2m(v)

r
dr2 + r2dΩ2. (4.9)

As a tensor on M, the induced metric takes the form

hαβdx
αdxβ =

4m2(v)

r(r + 2m(v))
dv2 +

4m(v)

r + 2m(v)
dvdr +

r

r + 2m(v)
dr2 + r2dΩ2. (4.10)
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The extrinsic curvature tensor for this hypersurface is

Kabdx
adxb =

2m2(v) + 2rm(v)− r2m′(v)

r5/2
√

r + 2m(v)
dr2 − 2

√
rm(v)

√

r + 2m(v)
dΩ2. (4.11)

Next we let the closed 2-surface S that bounds Σ be the 2-sphere of constant r.

The unit normal to this surface (in M) is

sαdx
α =

√

r

r + 2m(v)

(

2m(v)

r
dv + dr

)

, (4.12)

or in Σ

sadx
a =

√

1 +
2m(v)

r
dr. (4.13)

The induced metric on S is

qABdx
AdxB = r2dΩ2. (4.14)

The extrinsic curvature tensor for S in Σ is

JAB dx
AdxB =

r3/2
√

r + 2m(v)
dΩ2. (4.15)

The mean curvature (trace of the extrinsic curvature) of S is then

J = qABJAB =
2

√

r(r + 2m(v))
(4.16)

and the trace of the extrinsic curvature on Σ with respect to the metric q is

trqK = qabKab = − 4m(v)

r3/2
√

r + 2m(v)
(4.17)

where qab = hab − sasb.

From the two normals we’ve so far computed, we construct future-directed outward

and inward pointing unit null normals to S:

ℓ± = n± s. (4.18)
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In our coordinate chart, they are given by

ℓ±αdx
α =

√

r

r + 2m(v)

(

±2m(v)− r

r
dv + (1± 1)dr

)

. (4.19)

Using the null normals, we can decompose the extrinsic curvature tensor of S into

two null second fundamental forms χ±

αβ = ∇αℓ
±

β . The null expansion scalar is defined

as Θ(±) = qαβ∇αℓ
±

β , or equivalently by Θ(±) = qabKab ± qABJAB . The components of

χ+
αβ tangent to S (evaluated on S) are

χ+
θθ =

√
r(r − 2m(v))
√

r + 2m(v)

χ+
φφ =

√
r(r − 2m(v))
√

r + 2m(v)
sin2 θ.

The norm of this tensor is given by

‖χ+‖2q = qαµqβνχ+
αβχ

+
µν

=
2(r − 2m(v))2

r3(r + 2m(v))
.

When evaluated on S, we find that the outer null expansion is

Θ(+) =
2(r − 2m(v))

r3/2
√

r + 2m(v)
(4.20)

which vanishes when r = 2m(v), implying the 2-sphere r = 2m(v) is a MOTS.

4.1.3 Mass of Vaidya Black Hole

Before we start discussing the stability of the MOTS S, let us first talk about the

mass of the spacetime.

As in [24], we define by M the gravitational mass of an asymptotically-flat space-

time when St is a 2-sphere taken to infinity:

M = − 1

8π
lim

St→∞

∮

St

(k − k0) dS (4.21)
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where dS =
√
det qd2x is the surface element on St, k is the trace of the extrinsic

curvature of St embedded in the time slice Σt, and k0 is the trace of the extrinsic

curvature of St embedded in flat space.

In the case of Vaidya, we recall that the extrinsic curvature of the 2-sphere S(t, R)
embedded in Σt is given by (4.16) and takes the form

k =
2

R

(

1 +
2m(v)

R

)−1/2

=
2

R

(

1− m(v)

R
+O(R−2)

)
(4.22)

where R ≫ 2m(v) and we used the binomial approximation in the second line. As

a sphere embedded in flat space, S(t, R) has extrinsic curvature k0 =
2
R
. Taking the

difference of the extrinsic curvatures, we obtain

k − k0 = −2m(v)

R2
+O(R−3). (4.23)

Putting everything together, we find that the gravitational mass for Vaidya looks like:

M = lim
St→∞

(

− 1

8π

∮

St

(

−2m(v)

R2
+O(R−3)

)

R2 sin θ d2x

)

= lim
St→∞

[m(v) +O(R−1)].

(4.24)

The mass was defined as the result of the integral taking the limit of St to infinity,

however there are several ways of reaching infinity. The first we will discuss is spatial

infinity, which we get when we keep t constant and take the limit R → ∞. In this

case, the mass given by (4.21) is called the ADM mass and it represents all of the

mass contained in the spacetime. For Vaidya, the ADM mass will look like

MADM(t) = lim
R→∞

[m(R + t) +O(R−1)]

= m(∞).
(4.25)

Let us now take the limit of St to null infinity. The new limiting procedure

corresponds to a distinct notion of mass called the Bondi-Sachs mass [7, 27]. To define

the notion of null infinity, we must use the null coordinates u = t− r (outgoing) and
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v = t+ r (ingoing). In this case, the 2-surface becomes a surface of constant u and v

which we denote S(u, v). Null infinity corresponds to taking the limit v → ∞ while

keeping u fixed. The Bondi-Sachs mass can be interpreted as the mass remaining in the

spacetime at outgoing time u after emission of gravitational radiation. The physical

significance of the Bondi-Sachs mass comes from the fact that when an isolated body

emits radiation, the rate of change of MBS(u) is directly related to the outward flux

of radiated energy. Letting F denote the flux, the Bondi-Sachs mass satisfies

dMBS

du
= −

∮

S(u,v→∞)

F
√

det q d2x. (4.26)

As found in the original work by Bondi, van der Burg, and Metzner in [7], the flux is

manifestly non-negative, that is F ≥ 0. Hence the Bondi-Sachs mass decreases with

time.

In the case of a Vaidya black hole, we find that the Bondi-Sachs mass is

MBS = m(∞) (4.27)

which is precisely the ADM mass. This is expected since the ingoing Vaidya metric

describes the spacetime containing a black hole that is absorbing null dust and is not

emitting any radiation, hence the outward flux of radiated energy will be zero and no

energy leaves the spacetime.

4.1.4 Stability of MOTS in Vaidya

Now that we know S is a MOTS if r = 2m(v), our next step is to verify if it’s stable.

Since Vaidya is spherically symmetric, the stability operator is once again self-adjoint,

simplifying things considerably. Using the result from theorem 3.1.1, we know that in

spherical symmetry, variations reduce to simple partial derivatives and in particular

the principal eigenvalue of the stability operator takes the form

λp = a
∂Θ

∂r

∣

∣

∣

∣

S

(4.28)

for a positive function a on S.
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We find that the principal eigenvalue of L up to a constant scale factor is given by

∂Θ

∂r

∣

∣

∣

∣

r=2m(v)

=
1

r3/2
√

r + 2m(v)

(

2(1− 2m′(v))− 3(r − 2m(v))

r

− (r − 2m(v))(1 + 2m′(v))

(r + 2m(v))

)

∣

∣

∣

∣

∣

r=2m(v)

=
(1− 2m′(v))

√
2

4m2(v)

(4.29)

where a prime denotes a derivative with respect to v. From the above expression,

we can say that the MOTS r = 2m(v) is stable when m′(v) ≤ 1
2
where equality

implies the MOTS is only marginally stable. Recall from (4.7) that the typical energy

conditions are satisfied when m′(v) ≥ 0 for all v. The results we’re trying to derive

are for a marginally stable MOTS in the initial data set, so we require m′(v0) = 1/2

in the constant v0 = r0 + t0 slice.

When S is marginally stable, we know that the principal eigenvalue, and hence

the first derivative of the null expansion, vanishes. This tells us that S corresponds to

a critical point of a curve in the (r, t)-plane (because of spherical symmetry) which is

a MOTT. Since S is a critical point of the MOTT, our next step is to find out what

the MOTT looks like nearby, so we take a second derivative. When evaluated at the

marginally stable MOTS (r0, t0), i.e. r = 2m(r+ t) and m′(r0 + t0) = 1/2, the second

derivative of Θ(r, t) takes the form

∂2Θ

∂r2
(r0, t0) =

−4m′′(r0 + t0)

r
3/2
0

√

r0 + 2m(r0 + t0)
. (4.30)

We now have three possible cases:

1. If m′′(r0 + t0) < 0 then the MOTS (r0, t0) is a local maximum and corresponds

to a past bifurcation, i.e. an annihilation;

2. If m′′(r0 + t0) > 0 then the MOTS (r0, t0) is a local minimum and corresponds

to a future bifurcation, i.e. a creation;

3. If m′′(r0 + t0) = 0 then the MOTS (r0, t0) is a degenerate case and we require

higher order derivatives to characterize the MOTT.
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The initial data set the MOTS S lies in is a hypersurface of constant t = v − r.

We can express the null expansion as

Θ(r, t) =
F (r, t)

G(r, t)
(4.31)

where F (r, t) = 2(r − 2m(r + t)) and G(r, t) = r3/2
√

r + 2m(r + t). Since (r0, t0) is

a marginally stable MOTS, we know that F (r0, t0) = 0 and m′(r0 + t0) = 1
2
. The

differential of Θ(r, t) at (r0, t0) is then

DΘ(r0, t0) =
1

G(r0, t0)

[

∂rF (r0, t0) ∂tF (r0, t0)
]

=
1

G(r0, t0)

[

2(1− 2m′(r0 + t0)) −4m′(r0 + t0)
]

=
1

G(r0, t0)

[

0 −2
]

.

(4.32)

Since the ∂rΘ(r0, t0) = 0 and ∂tΘ(r0, t0) 6=, we see from theorem 3.1.3 there is a

smooth function τ(r) such that the graph (r, τ(r)) is a MOTT containing the MOTS

(r0, t0), and since τ ′(r0) = 0, we know the MOTT is tangent to (r0, t0).

4.1.5 Results about MOTTs

In chapter 3, we mentioned how the MOTT passing through r = 2m(v) in the Vaidya

spacetime doesn’t contain any intersections. Let us now prove that result.

Theorem 4.1.1. The zero level set of Θ(r, t) does not contain any intersections, that

is the zero set does not contain any curves that intersect at a point.

Proof. (r(s), τ(s)) being a MOTT means that Θ(r(s), τ(s)) = 0 for all s in a neigh-

bourhood of s0 where (r(s0), τ(s0)) = (r0, t0) which is a MOTS. For Vaidya, the

differential of Θ never vanishes, meaning Θ has no critical points. This means that

the implicit function theorem always applies and so we can always find a unique

smooth curve r(t) or τ(r) passing through a MOTS, hence the neighbourhood of any

point in the zero set is always a smooth curve. As a result, the zero set is a disjoint

union of smooth curves, and thus there are no intersections.

Theorem 4.1.2. The zero level set of Θ(r, t) does not contain any closed loops.
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Proof. Suppose the zero set of Θ(r, t) contains a closed loop and suppose Θ > 0 inside

the loop. Since the region bounded by the loop is compact and Θ is continuous,

the extreme value theorem states that Θ must achieve a local max and min in the

loop, that is it must have a critical point somewhere in the loop, however as in the

previous proof, the differential of Θ never vanishes and thus it has no critical points,

a contradiction. Therefore the zero set can’t contain any closed loops.

Example 4.1.1. Finally, let us consider an example of a MOTT that lies entirely

in the hypersurface, one of the possibilities allowed by theorem 2.6.2. We consider a

Vaidya spacetime with linear mass function m(v) = 1
2
v + c for some constant c ∈ R.

Considering the MOTS equation r = 2m(r + t0), we see that it reduces to

t0 + 2c = 0. (4.33)

Since r cancels, we see that if (4.33) is satisfied, there are infinite solutions for r,

whereas if the condition is not satisfied, there are zero solutions. In the case where

c = −1
2
t0, every 2-sphere of radius r > 0 is a (marginally stable) MOTS in the

hypersurface Σt0 , so since the genericity condition always holds for a marginally stable

MOTS in Vaidya, the implicit function theorem tells us that there exists a smooth

function τ(r) such that Θ(r, τ(r)) = 0 for all r. Since every value of r corresponds

to a MOTS in the time slice t0, the function τ(r) ≡ t0, hence the MOTT denoted by

(r, τ(r)) lies entirely in Σt0 .

4.2 Physically reasonable Vaidya spacetime with

prescribed MOTTs

In the previous section, it was observed that for any MOTS in Vaidya, since both

variations of the null expansion never vanished identically, we could always use the

implicit function theorem to find a MOTT of the form (r(s), τ(s)) containing the

MOTS. In particular, a marginally stable MOTS is contained in a MOTT of the form

(r, τ(r)), with the bifurcation condition of the MOTS reducing to a derivative test of

τ(r). The goal then is to construct a MOTT exhibiting interesting behaviour, however

we have to determine whether such a MOTT could actually exist in a physically

reasonable Vaidya spacetime. It turns out that if τ(r) is a smooth function that
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satisfies a condition on its first derivative, we can find a mass function corresponding

to a physically reasonable Vaidya spacetime for which (r, τ(r)) is a MOTT.

Theorem 4.2.1. If τ(r) is smooth with τ(0) = 0 and τ ′(r) > −1, then there exists an

m(v) with m′(v) > 0 for all v and m(v) > 0 for all v > 0 such that (r, τ(r)) represents

a MOTT in the Vaidya spacetime with mass function m(v).

Proof. The graph (r, τ(r)) represents a MOTT in the Vaidya spacetime with mass

function m(v) if and only if (4.34) is satisfied

r = 2m(r + τ(r)). (4.34)

Define v(r) = r + τ(r) and take a derivative to obtain

v′(r) = 1 + τ ′(r) > 0 (4.35)

since τ ′(r) > −1 for all r by hypothesis. Since τ(r) is smooth, v(r) must also be

smooth, and since it has non-zero derivative, the inverse function theorem applies,

telling us that v(r) is invertible and has smooth inverse with derivative

(

v−1
)′

(r + τ(r)) =
1

v′(r)
> 0 (4.36)

for all r.

Now, since τ(0) = 0, we must have

v(0) = 0, (4.37)

and thus by a property of inverses, we also have

v−1(0) = 0. (4.38)

Since v−1(0) = 0 and v−1 is increasing for all v, we must have that v−1 > 0 for all

v > 0.

Returning to (4.34), we identify

v−1(r + τ(r)) = 2m(r + τ(r)), i.e. m =
1

2
v−1, (4.39)
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derivative at R, giving us

τ ′(r) =
−2b

(ℓ+ 1)R
r2 + 2br + c

0 =
2k2R

ℓ+ 1
− 2k2R + c

c =
2k2ℓR

ℓ+ 1
.

(4.42)

So far, our cubic MOTT takes the form

τ(r) =
2k2

3(ℓ+ 1)R
r3 − k2r2 +

2k2ℓR

ℓ+ 1
r. (4.43)

By the hypothesis of theorem 4.2.1, there is a mass function m(v) for a physically

reasonable spacetime such that (r, τ(r)) is a MOTT provided τ ′(r) > −1. Computing

the derivative, we obtain the expression

τ ′(r) =
2k2

(ℓ+ 1)R
r2 − 2k2r +

2k2ℓR

ℓ+ 1
. (4.44)

To get a condition on k2 that makes (4.44) greater than−1, we look at the discriminant

of the quadratic τ ′(r) + 1 and see where it’s negative.

When simplified, the discriminant of the quadratic reduces to

∆ = 4k2
k2R(ℓ− 1)2 − 2(ℓ+ 1)

R(ℓ+ 1)2
(4.45)

which is negative provided

k2 =
(2− ε)(ℓ+ 1)

R(ℓ− 1)2
(4.46)

for some ε ∈ (0, 2).

Thus provided k2 is of the form (4.46), the cubic MOTT (4.43) is contained in a

physically reasonable Vaidya spacetime. Figures 4.2a to 4.2c depict the MOTT for

different values of ℓ where we vary ε to observe how the MOTT changes for different

values of k2.

We can repeat the procedure for higher degree polynomials as well.

Example 4.2.2. Suppose we want a quartic MOTT with two future bifurcations at
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(a) τ(r) with ℓ = 2 (b) τ(r) with ℓ = 3 (c) τ(r) with ℓ = 4

Figure 4.2: A cubic MOTT in Vaidya

r = R and r = mR and a single past bifurcation at r = ℓR where m > ℓ. We start

with a MOTT of the form

τ(r) = ar4 + br3 + cr2 + dr. (4.47)

Using the fact that the derivative vanishes at the points of bifurcation, we can express

the metric functions as

a = − d

4ℓmR3

b =
d(1 + ℓ+m)

3ℓmR2

c = −d(ℓ+m+ ℓm)

2ℓmR
.

(4.48)

Since r = R corresponds to a future bifurcation, we recall that τ ′′(R) > 0, which is

satisfied provided d < 0 thus we let d = −k2. We must now obtain a condition on k2

that guarantees that τ ′(r) > −1 for all r > 0. In this case, τ ′(r) is a cubic translated

by −k2, so to satisfy the condition we simply require k2 < 1.

Putting everything together, we find that the MOTT takes the form

τ(r) = (1− ε)

(

1

4ℓmR3
r4 − (1 + ℓ+m)

3ℓmR2
r3 +

(ℓ+m+ ℓm)

2ℓmR
r2 − r

)

. (4.49)

Figure 4.3 depicts the MOTT (4.49) for varying ε.

4.3 Vaidya MOTT with glued Schwarzschild ends

From theorem 4.2.1, provided a smooth function τ(r) satisfied some conditions, we

could always find a mass function such that the Vaidya spacetime with mass function
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Figure 4.3: τ(r) with ℓ = 3 and m = 5

m(v) contains the MOTT characterized by τ(r). As seen in the cubic and quartic

examples studied in section 4.2, this mass function becomes negative for v < 0 leading

to the question of whether the spacetime is actually physically reasonable. However,

since we’re only interested in the local behaviour around v > 0, we can simply cut

the portion we don’t like and instead ‘glue’ a constant MOTT from Schwarzschild

to the end points. Working in this direction, we can define the mass function as the

piece-wise continuous function

m(v) =



















M−, v ≤ v−

M(v), v− < v < v+

M+, v ≥ v+

(4.50)

where M(v) increases smoothly from M− to M+. This mass function describes a

Schwarzschild spacetime with mass M−, which between null times v− and v+ is ac-

creting mass from in-falling shells of null dust, and then eventually settles down to a

Schwarzschild black hole of mass M+, which is the ADM mass of the black hole. As

depicted in fig. 4.4, the MOTT weaving through spacetime is obtained from ‘gluing’

solutions from different regimes.





Chapter 5

Conclusion

In this thesis, we have studied the time evolution of black hole horizons by way

of quasi-local characterizations in the form of MOTTs. In particular, we looked at

established results on the existence of MOTTs dependent on the stability of a MOTS

in an initial data set, and motivated by recent numerical models of the collision and

merger of binary black holes, we set out to derive a local geometric condition to

distinguish the evolutionary behaviour of a MOTT tangent to a marginally stable

MOTS. We started in chapter 3 with a discussion on general spherically symmetric

spacetimes in which we proved that normal variations with constant speed reduced

to partial derivatives, greatly simplifying the MOTS stability condition, and then we

stated and proved existence results for MOTTs in spherical symmetry analogous to the

established results. It turned out that for the strictly stable case, although restricted

to a spherically symmetric setting, yielded a slightly stronger result than the original.

In the marginally stable case, we used an implicit function theorem argument to prove

the existence of a MOTT given by the graph of a smooth function. It was found that

the second variation of the null expansion scalar had the same sign as the second

derivative of the smooth function, giving us the desired local geometric condition to

distinguish the evolutionary behaviour. Furthermore, it was found that if the MOTT

bifurcated, then one branch was strictly stable while the other was unstable. The

chapter concluded with a brief discussion on the possibilities of intersecting MOTTs

in spherically symmetric spacetimes. Writing the metric in the standard form with

a cross term, it was found that an intersecting MOTT existed if the zero set of the

metric coefficient of the timelike coordinate had intersections.
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In chapter 4 we considered the Vaidya spacetime as an example of a spherically

symmetric spacetime containing a dynamical black hole. We observed that for a

marginally stable MOTS, the evolutionary behaviour was controlled by the second

derivative of the mass function for the spacetime. In particular, we considered an

example of Vaidya with a linear mass function, finding that the MOTT evolving from

a marginally stable MOTS must lie entirely in the initial hypersurface. The connection

between the mass function and the MOTT led to the main result of the chapter which

stated that for any smooth function whose first derivative had a lower bound of −1, we

could find a corresponding mass function such that a Vaidya spacetime with the mass

function would be physically reasonable and contain a MOTT given by the graph of

the smooth function.

The work done in this thesis can be extended and further developed in a number

of interesting ways. The obvious next step would be to generalize the existence result

for the marginally stable case to an arbitrary spacetime and obtain a general form of

the MOTS bifurcation parameter. Keeping with the spherically symmetric setting, an

interesting next problem would be to consider other examples of spacetimes containing

dynamical black holes such as the Tolman-Bondi solution and see if a result similar

to theorem 4.2.1 is possible.



Appendix A

Derivation of MOTS Stability

Operator

The goal is to determine how the null expansion Θ(+) changes as the surface S is

varied arbitrarily. The variation is defined by a smooth spacetime vector field X

defined along S. Specifically, there is a smooth Φ : (−ε, ε) × S → M such that

for fixed µ, Φµ is an immersion and for fixed p ∈ S, Φ(µ, p) is a family of curves

labelled by µ with tangent vector ∂
∂µ
|p. Define the one-parameter family of deformed

surfaces Sµ ≡ Φµ(S). Considering only deformations normal to the surface, we let
(

∂
∂µ

)a

= ψsa ≡ Xa where ψ is a smooth function on S controlling the size of the

deformation. By definition, dµ(X) = 1, thus (dµ)a =
1
ψ
sa ≡ Ya.

By the torsion-free condition of the metric connection,

DbYa = Db(dµ)a = DbDaµ = DaDbµ

= DaYb.
(A.1)

Then

saDasb = saDa(ψYb)

= (saDaψ)Yb + ψsaDaYb

=
1

ψ
sbs

aDaψ + ψsaDb
1

ψ
sa
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=
1

ψ
sbs

aDaψ + ψsasaDb
1

ψ
+ saDbsa

=
1

ψ
sbs

aDaψ − 1

ψ
Dbψ

=
1

ψ
(sasb − hab)Daψ

= − 1

ψ
qabDaψ

= − 1

ψ
∂̊bψ. (A.2)

Recall that the null expansion can be expressed in terms of quantities on S as

given by (2.39). Then to compute the variation, we start with the mean curvature

term, J = qabDasb:

dJ

dµ
= XcDc(q

abDasb) (A.3)

= ψscDc([h
ab − sasb]Dasb)

= ψhabscDcDasb (A.4)

where in (A.4), we used the fact that saDbsa = 0 to eliminate the second term. Then

by the Ricci identity, we find

dJ

dµ
= ψhabsc(Rcabds

d +DaDcsb)

= −ψRcds
csd + ψhabscDaDcsb. (A.5)

Considering the second term of (A.5), we have

habscDaDcsb = (qab + sasb)scDaDcsb (A.6)

= qabscDaDcsb + sasbscDaDcsb

= qabDa(s
cDcsb)− qab(Das

c)(Dcsb) + sascDa(s
bDcsb)− sasc(Das

b)(Dcsb)

= qabDa(s
cDcsb)− (hab − sasb)(Das

c)(Dcsb)− sasc(Das
b)(Dcsb)

= qabDa

(

− 1

ψ
∂̊bψ

)

− (Dbsc)(Dcsb)− (saDas
b)(scDcsb) (A.7)

= qab
(

− 1

ψ
Da∂̊bψ +

1

ψ2
Daψ∂̊bψ

)

− (Dbsc)(Dcsb)−
(

− 1

ψ
∂̊bψ

)(

− 1

ψ
∂̊bψ

)
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= − 1

ψ
∂̊b∂̊bψ +

1

ψ2
∂̊bψ∂̊bψ − 1

ψ2
∂̊bψ∂̊bψ − (Dbsc)(Dcsb)

= − 1

ψ
∆qψ − (Dbsc)(Dcsb) (A.8)

where ∆q is the Laplacian on S and using (A.2) in (A.7). Recall that the extrinsic

curvature of S is given by Jab = q c
a Dcsb, therefore

JabJ
ab = q c

a Dcsbq
adDds

b

= (h c
a − sas

c)(had − sasd)DcsbDds
b

= (hcd − scsd − sdsc + scsd)DcsbDds
b

= qcdDcsbDds
b. (A.9)

Note that

JabJ
ab = Jabe

a
Ae

b
BJ

AB

= JAB J
AB.

Thus we have from (A.5)

dJ

dµ
= −∆qψ − JAB J

ABψ − ψRabs
asb. (A.10)

Recalling the Gauss relation (2.27):

RΣ = hachbdRabcd

= (qACeaAe
c
C + sasc)(qBDebBe

d
D + sbsd)Rabcd

= qACqBDeaAe
b
Be

c
Ce

d
DRabcd + 2sbsdRabcdq

ACeaAe
c
C

= qACqBD(RABCD + JADJBC − JAC JBD ) + 2sbsdRbd

= RS − J2 + JAB J
AB + 2Rbds

bsd

Rbds
bsd =

1

2
( RΣ − RS + J2 − JAB J

AB)

(A.11)

where RΣ is the scalar curvature of Σ and RS is the scalar curvature of S. Then

combining terms, we find that the first variation of the mean curvature of S is given
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by
dJ

dµ
= −∆qψ − ψJAB J

AB − 1

2
( RΣ − RS + J2 − JAB J

AB)ψ

= −∆qψ − 1

2
( RΣ − RS + J2 + JAB J

AB)ψ.

(A.12)

The next term we must consider is the variation of trqK, the trace of Kab over S.

d(trqK)

dµ
= ψscDc

(

K −Kabs
asb
)

(A.13)

= ψ
(

scDcK − scDcKabs
asb
)

= ψ
(

scDcK − sasbscDcKab −Kabs
ascDcs

b −Kabs
bscDcs

a
)

= ψ
(

scDcK − sa(hab − qab)DcKab − 2Kabs
ascDcs

b
)

= ψsc
(

DcK −DbK
b
c

)

+ ψsaqbcDcKab − 2ψKabs
a

(

− 1

ψ
∂̊bψ

)

= −ψGαβs
αnβ + ψ

(

qbcDcKabs
a − qbcKabDcs

a
)

+ 2qbaKbcs
c∂̊aψ (A.14)

= −ψGαβs
αnβ + ψqbc

[

Dc(q
d
b + sbs

d)Kads
a −Kab(q

a
d + sds

a)Dcs
d
]

+ 2ωC ∂̊Cψ

= −ψGαβs
αnβ + ψ∂̊Cω

C − ψKABJ
AB + ψ(Kabs

asb)J + 2ωC ∂̊Cψ (A.15)

where
ωA = eβAs

α∇αnβ

= eβAKβαs
α

(A.16)

is a one-form on Σ pulled back to S. In (A.14), we used the momentum constraint

(2.33).

Our interest is in quantities on S, in particular we want to isolate the purely

transverse component of the extrinsic curvature tensor:

K̃ab = qcaq
d
bKcd

= (hca − scsa)(h
d
b − sdsb)Kcd

= Kab − sdKadsb − scKcbsa + scsdKcdsasb

(A.17)

and so the extrinsic curvature tensor can be decomposed into its transverse and lon-

gitudinal components as

Kab = K̃ab +Kads
dsb +Kcbs

csa −K(s, s)sasb (A.18)
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where K(s, s) = Kabs
asb. Furthermore, the transverse component can be decomposed

into its irreducible components:

K̃ab =
trq K̃

2
qab + σab (A.19)

where σab is the symmetric trace-free component. Taking the trace of (A.18), we

obtain
habKab = hab

(

K̃ab +Kads
dsb +Kcbs

csa −K(s, s)sasb

)

= habK̃ab + 2K(s, s)−K(s, s)

= trq K̃ +K(s, s)

= trK.

(A.20)

Recalling the Hamiltonian constraint, we need KabK
ab and K2:

KabK
ab = hachbdKabKcd

= (qac + sasc)(qbd + sbsd)KabKcd

= (qacqbd + 2qacsbsd + sascsbsd)KabKcd

= ‖K̃‖2 + 2ωaKabs
b +K(s, s)2

= ‖K̃‖2 + 2eaAω
AKabs

b +K(s, s)2

= ‖K̃‖2 + 2‖ω‖2 +K(s, s)2

(A.21)

K2 = (trq K̃)2 + 2(trq K̃)K(s, s) +K(s, s)2. (A.22)

The Hamiltonian constraint thus takes the form:

RΣ = KabK
ab −K2 + 2Gαβn

αnβ

= ‖K̃‖2 + 2‖ω‖2 − (trq K̃)2 − 2(trq K̃)K(s, s) + 2Gαβn
αnβ.

(A.23)

Returning to (A.12), we have

dJ

dµ
= −∆qψ +

1

2
( RS − J 2 − ‖J‖2)ψ

− 1

2
(‖K̃‖2 + 2‖ω‖2 − (trq K̃)2 − 2(trq K̃)K(s, s) + 2Gαβn

αnβ)ψ.

(A.24)
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We recall that Θ(+) = trqK + J , so combining (A.12) and (A.15), we obtain

dΘ(+)

dµ
=

dJ

dµ
+

d(trqK)

dµ
(A.25)

= −∆2
qψ + 2ωA∂̊Aψ +

1

2
( RS − J 2 − ‖J‖2)ψ

− 1

2

(

‖K̃‖2 + 2‖ω‖2 − (trq K̃)2 − 2(trq K̃)K(s, s) + 2Gαβn
αnβ
)

ψ

−
(

Gαβr
αnβ − ∂̊Aω

A + K̃ABJ
AB − JK(s, s)

)

ψ (A.26)

= −∆qψ + 2ωA∂̊Aψ +
( RS

2
− ‖ω‖2 −Gαβℓ

αnβ + ∂̊Aω
A
)

ψ

+ (trq K̃ + J )K(s, s)ψ

− 1

2

(

2K̃ABJ
AB + J2 + ‖J‖2 + ‖K̃‖2 − (trq K̃)2

)

ψ (A.27)

= −∆qψ + 2ωA∂̊Aψ +
( RS

2
− ‖ω‖2 −Gαβℓ

αnβ + ∂̊Aω
A
)

ψ

+Θ(+)K(s, s)ψ +
1

2

(

(trq K̃)2 − J2
)

ψ − 1

2
‖K̃ + J‖2ψ (A.28)

= −∆qψ + 2ωA∂̊Aψ +
( RS

2
− ‖ω‖2 −Gαβℓ

αnβ + ∂̊Aω
A − 1

2
‖K(ℓ)‖2

)

ψ

+Θ(+)

(

K(s, s) +
Θ(−)

2

)

ψ (A.29)

where in (A.28) we used the definition of the null expansion to re-write the trq K̃ + J

term, then in (A.29) we used

(trq K̃)2 − J2 = (trq K̃ + J )(trq K̃ − J ) = Θ(+)Θ(−). (A.30)

Furthermore,

(K̃ab + Jab )(K̃
ab + Jab) = K

(ℓ)
ab K

(ℓ)ab

= K
(ℓ)
ABK

(ℓ)AB
(A.31)

where K(ℓ) is the null second fundamental form of S with respect to ℓ+. Similar to

K̃, K(ℓ) can be decomposed into its irreducible components:

K
(ℓ)
AB =

trK(ℓ)

2
qAB + σ

(ℓ)
AB

=
Θ(+)

2
qAB + σ

(ℓ)
AB

(A.32)
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where σ
(ℓ)
AB is the trace-free symmetric component. Then

‖K(ℓ)‖2 = (Θ(+))
2

2
+ ‖σ(ℓ)‖2, (A.33)

so we find that the first variation of the null expansion is

dΘ(+)

dµ
= −∆qψ + 2ωA∂̊Aψ +

( RS

2
− ‖ω‖2 −Gαβℓ

αnβ + ∂̊Aω
A − 1

2
‖σ(ℓ)‖2

)

ψ

+
(

K(s, s)Θ(+) +
Θ(+)Θ(−)

2
− (Θ(+))

2

4

)

ψ. (A.34)

If S is a MOTS then we necessarily have Θ(+) = 0 and hence

dΘ(+)

dµ

∣

∣

Θ(+)=0
= −∆qψ + 2ωA∂̊Aψ

+
( RS

2
− ‖ω‖2 −Gαβℓ

αnβ + ∂̊Aω
A − 1

2
‖σ(ℓ)‖2

)

ψ. (A.35)
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