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ABSTRACT 

1 Introduction: Species density is perhaps the most sought-after measurement in ecological 

research because it has a key role in conservation management practices and species 

monitoring. One method to measure density is to implement camera traps in ecological 

environments that takes continuous photographs at short time intervals to create a time-

lapse, or records a video of animals throughout the night and day. Camera-trap data can be 

used to derive density estimates using the Random Encounter and Staying Time (REST) 

model for non-distinguishable individuals in a population.  

2 Methods: I mathematically recreate the REST model under the theoretical framework of 

ideal gas law physics. I use this as a basis to derive the mean and variance of the REST 

model using probability density functions and mathematical moments. I use three different 

detection zone areas, research periods, and animal speeds to see how it affects the accuracy 

and precision of the density estimates. 

3 Results: Assuming all assumptions of my model have been met, the REST model will give 

biased density estimates depending on the detection zone shape and the movement patterns 

of the species. The model’s density estimates become more precise for longer research 

periods and larger detection zones. Faster moving animals also produce more precise density 

estimates. The mean estimate remains a true reflection of the species density regardless of 

camera detection zone, research period, or animal speed.  

4 Synthesis and application: My work uses a combination of statistical distributions and 

mathematics to predict pre-emptively the precision and accuracy of the REST model without 

empirical data. This allows researchers to be able to change the REST model’s parameters, 

research period and detection zone area, in accordance with the species movement speeds to 
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have an idea about the expected results the REST model will provide. Given that our work 

relies strictly on theoretically reasoning, we believe that this allows for our work to be 

applicable to a broad range of species, compared to if we had used empirical evidence. 

Given the popularity of the REST model, our work is anticipated to be very relevant to many 

future research monitoring projects.  
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CHAPTER 1: GENERAL INTRODUCTION 1 

1.1 DENSITY BACKGROUND 2 

 Monitoring is the foremost practice upon which wildlife management depends. The 3 

number of animals within a given area – or species density – is of particular importance for 4 

species conservation and management practices. To successfully monitor density, methods 5 

should be accurate, where the estimated species density is unbiased to true species density, and 6 

precise, so that there is high certainty in the confidence of the estimates. Species density helps to 7 

determine the carrying capacity of habitats to be estimated, which in turn can be used to evaluate 8 

habitat productivity (Gaillard et al., 2010). Furthermore, it allows researchers to understand the 9 

distribution of animals across a landscape. For example, species that are highly concentrated in 10 

one area face greater risk of extinction due to the lower number of localities (Staude, Navarro 11 

and Pereira, 2020). If that environment changes, animals must either acclimate, adapt, or they 12 

will be extirpated. Extirpations are often considered a prelude to species extinctions (Ceballos, 13 

García and Ehrlich, 2010). Currently, the world is facing its sixth Biodiversity Extinction Crises 14 

(Ceballos, García and Ehrlich, 2010) and hence there is a dire need to monitor populations of 15 

animals to help protect the biodiversity of the planet.  16 

Camera traps provide an innovative way to monitor mobile species density. They have 17 

been gaining traction because they are non-invasive, comparatively inexpensive, and versatile in 18 

a variety of environments. Typically, camera traps use heat-sensitive infrared sensors to detect 19 

animals in front of the camera, in the detection zone. Once an animal is detected, the camera 20 

snaps a photograph of the individual using time-lapse photographs. Faster times between 21 

photographs yield higher sampling effort. Camera traps use white or infrared flash to capture 22 
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animals during the night and can monitor species unattended 24 hours/day for months without 23 

maintenance. Higher quality cameras will have higher sensitivity, faster trigger time, longer 24 

battery life, and be more durable (Caravaggi et al., 2017). One of the main issues that users face 25 

with camera trap monitoring is image classification (Glover-Kapfer, Soto-Navarro and Wearn, 26 

2019). Camera traps have high rate of false positive detections (Newey et al., 2015) and capture 27 

species that enter the detection zone regardless of their relevance to the study. The data must be 28 

sorted through using either trained technicians, computational software (Delisle et al., 2021), or 29 

citizen science helpers (Glover-Kapfer, Soto-Navarro and Wearn, 2019). Theft and vandalism 30 

are other key issues that cameras face. The average price of a camera ranges from anything 31 

between $50 to $1000, however most mid-range cameras are suitable for species monitoring, 32 

costing approximately $300-$500 (Rovero et al., 2013; LaFleur and Pebsworth, 2017). Managers 33 

often choose to buy less expensive cameras to maximize replication and spatial coverage 34 

assuming that they will perform adequately (Newey et al., 2015). The diversity of species, 35 

topics, and ecoregions that camera traps are used for has been increasing steadily since 1995 36 

(Delisle et al., 2021).  37 

Finding a way to use camera trap data for determining density of a species increases the 38 

versatility of cameras, however determining species density using camera trap data is complex. 39 

While the number of pictures can work as an index to show trends in the number of animals in 40 

the area over time, it does not estimate the number of individuals in an area since it does not 41 

consider animal movement patterns and detection probability. Indices are only useful as a proxy 42 

and consequently can only be used if estimating density is not necessary, which is rarely the 43 

case. For instance, for animals experiencing highly variable population dynamics or risk going 44 

extinct, accurate density estimates are necessary. The first analytical approach to come out that 45 
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gave an estimate of true species density was the capture-recapture model (Karanth, 1995). Used 46 

many times in field experiments, the capture recapture model estimates density by identifying the 47 

reoccurrence of identifiable individuals within a resample episode. The ratio of the marked 48 

individuals at the resampled time represents the size of the population. With cameras, samples 49 

are taken over a time where individuals are captured within the camera detection zone. Of 50 

course, this only applies to species that have unique characteristics that identify the individuals 51 

for humans, such as coat colour or markings. This method has been used for tigers in Nagarahole 52 

National Park (Karanth, 1995) and bobcats in the southern California (Alonso et al., 2015), 53 

however it is not a popular method due to the limited number of species it can be used for.  54 

To date there are eight models in the literature that estimate species density and do not 55 

require individual recognition (reviewed in details below). The N-mixture model (Royle, 2004) 56 

was the first paper to come out, and due to its seniority, it has had the most exposure to various 57 

field tests in ecological environments. Shortly after, Rowcliffe et al. (2008) used a new approach, 58 

the Random Encounter Model (REM) to estimate density using ideal gas physics laws, however, 59 

it requires accurate measurements of animal speed and group size, parameters that are difficult to 60 

measure using camera traps. Nakashima Yoshihiro, Fukasawa Keita (2018) used similar methods 61 

as the REM to create the random encounter and staying time (REST) model that does not require 62 

animal speed or group size. In this way, they argue the model is more versatile and easy to apply 63 

to populations than it’s precessor, the REM. At the same time as the REST was derived, Moeller, 64 

Lukacs and Horne (2018) derived three additional methods, each one a modification to the last: 65 

the time-to-event method; the space-to-event method; and the instantaneous sampling method. 66 

Similar to the REM, the time-to-event model requires animal speed to account for movement 67 

patterns that affect the time elapsed before an animal is detected in the camera detection zone. 68 
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The space-to-event model was created to eliminate this parameter by using space instead of time 69 

as it’s measurement. The instantaneous sampling method uses the same the framework of the 70 

first two models to estimate density, however, can be used for a single moment in time. Two 71 

different methods, the distance sampling using camera traps method (Howe et al., (2017) and 72 

spatial capture-recapture model (Chandler and Andrew Royle, 2013) use traditional methods 73 

already utilized with species in the field, however explain how to use camera traps instead of 74 

observers. The distance sampling using camera traps method states that a camera is considered 75 

an observer and the distance between the camera and the animal must be accurately measured. 76 

The unmarked spatial capture-recapture model is a modified version of the capture-recapture 77 

model. 78 

1.2 SURVEY OF AVAILABLE MODELS THAT estimate DENSITY FROM CAMERA 79 

TRAPS 80 

The N-mixture Model  81 

 The N-mixture model (Royle, 2004) is a model that uses spatially replicated count data at 82 

multiple surveys to obtain a density estimate for each camera trap. Assuming that an interaction 83 

between an animal and a camera can be considered an independent event, a Poisson distribution 84 

is used to model the encounter rate between an individual and a camera, and a binomial 85 

distribution is used to determine the probability of detection. There have been nine variations of 86 

the model that have emerged (see Dénes, Silveira and Beissinger, (2015) for an overview). The 87 

variations of the basic N-mixture model include the Royle-Nichols, zero-inflated, temporary 88 

emigration, beta-binomial, generalized open-population, spatially explicit, single visit and 89 
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multispecies models. These variations incorporate detection error and variation in population size 90 

to make the N-mixture model more adaptable. 91 

The N-mixture model assumes population closure, all individuals have an equal 92 

probability of being detection, that there are no false positive detections, detections remain 93 

independent at a camera throughout space and time, and that cameras are spaced far enough apart 94 

that the effective sampling area of a camera does not overlap other camera traps. Unlike many 95 

camera trap models, the N-mixture does not require random camera placement, and cameras can 96 

be baited to attract higher contact rates with the animals (Stewart, Volpe and Fisher, 2019). 97 

One of the main draws of the N-mixture model is that is has been tested in a wide variety 98 

of ecological settings (Belant et al., 2016; Shamoon, Saltz and Dayan, 2017). However, the N-99 

mixture is sensitive to assumption violations. For instance, (Link et al. (2018) demonstrates that 100 

a 2% detection rate error can produce a bias that is greater than 20%. 101 

Random Encounter Model 102 

 The random encounter model (REM) (Rowcliffe et al., 2008) treats individuals like gas 103 

particles moving through space, using animal movement patterns to estimate the number of 104 

contacts that occur between an individual and a camera traps detection zone. The REM requires 105 

measurements of the camera detection radius and the horizontal angle of view, and an accurate 106 

estimate of animal speed and animal group size to be calculated (see Rowcliffe et al. (2008) for 107 

ways to do this). The REM estimates density within the sampling frame - the collective viewshed 108 

of the cameras.  109 
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The REM assumes random placement of the cameras, animals conform adequately to the 110 

ideal gas model used to describe the detection process, the detection zone is determined using 111 

appropriate methods, the population does not experience any immigration, emigration, births, or 112 

death during the study (closed population), and that animals move independently of the cameras. 113 

The REM has been criticized for having restrictive assumptions (see Foster and Harmsen 114 

(2012)), specifically having animals move randomly and independently from each other (ballistic 115 

movement) and having random camera placement. Rowcliffe et al. (2013) clarifies that these 116 

assumptions do not need to be met if animals move randomly with respect to the cameras. This 117 

means cameras must be placed in a way that is representative of the sampling study, without 118 

targeting or avoiding features in the landscape. Some sampling distributions that meet these 119 

criteria are random sampling, or stratified sampling distributions. 120 

One of the main disadvantages to the REM is the number of additional parameters 121 

required for the model (but see (Rowcliffe et al., 2016)). Specifically, estimating animal speed 122 

and group size can prove difficult to obtain without additional data collected, and incorrect 123 

parameterization impacts the accuracy of the density estimate (Cusack et al., 2015). The REM is 124 

sensitive to inaccurate estimates of group size (Chauvenet et al., 2017), animal speed (Manzo et 125 

al., 2012), and non-random animal movement patterns with respect to camera traps (Cusack et 126 

al., 2015). The REM has given imprecise density estimates in some ecological settings (Cusack 127 

et al., 2015; Balestrieri et al., 2016; Chauvenet et al., 2017) and precise estimates in others 128 

(Rowcliffe et al., 2008; Zero et al., 2013; Caravaggi et al., 2016; Schaus et al., 2020). For 129 

instance, the REM was successfully used to estimate the European pine marten (Manzo et al., 130 

2012), the first application of the REM on a wild carnivore population, following the testing of 131 

the REM estimating three out of four species with known densities in an enclosed area correctly 132 
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(Rowcliffe et al., 2008). When the REM does incorrectly estimate density, possible confounding 133 

variables could be animals not moving randomly throughout the environment (Cusack et al., 134 

2015) which could occur for very social species (Chauvenet et al., 2017). The model estimates 135 

are optimized when the number of cameras deployed and the number of days is increased 136 

(Caravaggi et al., 2016). Rowcliffe et al. (2008) recommends the research period be long enough 137 

to obtain at least 10 photographs and at least 20 camera locations should be deployed, with 40 138 

being preferable. An extension has been developed for acoustic detectors (Lucas et al., 2015) 139 

potentially broadening versatility of the model to species such as songbirds. 140 

Time-To-Event Method, Space-To-Event Method, and Instantaneous Sampling Method 141 

 The time-to-event (TTE) method (Moeller, Lukacs and Horne, 2018) determines the 142 

amount of time prior to an individual being detected to calculate the rate of individuals in a given 143 

area. The model assumes animals rate of contact is Poisson distributed and the time between 144 

each interaction follows an exponential random distribution. The TTE method accounts for faster 145 

moving animals contacting the detection zone more frequently using animal speed to derive the 146 

length of the sampling period. In this way, higher contact rates for faster moving animals do not 147 

inflate density estimates. 148 

The space-to-event (STE) method (Moeller, Lukacs and Horne, 2018) is an extension of 149 

the TTE method. The STE method uses space until first detection instead of the amount of time 150 

until first detection, as in the TTE method. It does this by setting all cameras to go off at 151 

continuous time intervals occurring simultaneously, where each trigger is considered a sampling 152 

period. The cameras are then checked at each sampling period until an individual is spotted. The 153 

order in which cameras are checked for each sampling period is randomized. In this way, rate of 154 
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space use can be used to determine the rate of individuals in the area, or density of the species. 155 

This extension was derived to eliminate the requirement for animal speed, which is difficult to 156 

measure and has the potential to bias density results. 157 

The instantaneous sampling (IS) method (Moeller, Lukacs and Horne, 2018) is a 158 

simplified version of the TTE method and the STE method. It uses a fixed area counts of animals 159 

captured on camera over the total research period and over the space use of all cameras to 160 

determine density. The cameras are set up to do repeated instantaneous triggers occurring at the 161 

same time over repeated intervals in the same manner as the STE method. 162 

All three models work under the same four assumptions: random camera placement, 163 

population closure, independent observations of animals, and perfect detectability of animals. 164 

Due to the trigger rate following set intervals for the STE and IS methods, assuming perfect 165 

detection is realistic. However, the TTE method depends on perfect detection of all animals that 166 

cross the detection area. The STE and TTE methods have the additional assumption that animals 167 

contacting a camera follows a Poisson distribution. Moeller, Lukacs and Horne (2018) 168 

acknowledge that this assumption will not work in heterogenous environments where animals 169 

might clump due to landscape features. 170 

Due to the three methods’ novelty, none has yet been rigorously tested. Moeller, Lukacs 171 

and Horne (2018) found that the methods gave comparable density estimates to aerial surveys. 172 

Movement rate parameterization can compromise the overall density estimate for the TTE 173 

method (Loonam et al., 2021). All methods require further testing for their applicability in 174 

various field settings.  175 
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Distance Sampling Using Camera Traps 176 

 Distance sampling using camera traps (CT-DS) (Howe et al., 2017) uses the distance an 177 

animal is from the camera to obtain an estimate of density. The CT-DS method is a modification 178 

of traditional distance sampling (Buckland et al., 1993), where an observer walks a 179 

predetermined area and counts the number of animals and the distance between themselves and 180 

the individual. Animals further away will have a decreased probability of detection. A detection 181 

function fits the frequency of occurrences which is then used to estimate density (Buckland et 182 

al,, 1993). The CT-DS method uses this framework but instead determines the frequency of 183 

snapshots of animals triggering the camera, and the area covered is the cumulative detection 184 

zones of the cameras (Howe et al., 2017). 185 

The CT-DS method assumes that animal’s locations are independent of each other and 186 

the camera, that cameras are placed randomly, that animals at distance 0 are detected perfectly, 187 

animals are detected at their initial location prior to any movement and distance between the 188 

camera, population closure, and the individual is measured accurately. To meet the last criteria, 189 

one must measure each individual camera’s view shield, the temporal sampling effort across all 190 

cameras, and the distance of each individual detected independently.  191 

While distance sampling has been used extensively (Jathanna, Karanth and Johnsingh, 192 

2003; Ruette, Stahl and Albaret, 2003), CT-DS is still considered a novel method. To date, CT-193 

DS has been used for antelopes (Amin et al., 2021), bharal and musk deer (Pal et al., 2021), 194 

mountain hares (Bedson et al., 2021), chimpanzees (Cappelle et al., 2019), marmots (Corlatti et 195 

al., 2020), and bighorn sheep (Harris et al., 2020). The computational requirements are high for 196 

CT-DS (Thomas et al., 2010), mainly because of the goodness-of-fit testing and model selection. 197 
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For this reason, the CT-DS might be best used for species of low abundance to reduce the time 198 

constraints and computational effort. 199 

Unmarked Spatial Capture-Recapture Model 200 

 The unmarked spatial capture-recapture (USCR) model, also known as spatial count (SC) 201 

model (Chandler and Royle, 2013) uses the spatial correlation of animal movement patterns 202 

between traps to estimate the activity centers (loosely defined as the centroid of the the animal’s 203 

home range, and can change based on the biology of the species) of the animals. The activity 204 

centers give the probability distribution of an individual being detected by a camera, where a 205 

scale parameter must be defined for the encounter rate of animal’s detection probability 206 

decreasing with increasing distance from their activity centers. Density is thus defined as the 207 

number of activity centers divided by the area of the sampling regime. 208 

The USCR assumes that the activity centers do not move, cameras do not attract or repel 209 

the animals, animals further from their activity centers will be spotted less frequently, and the 210 

sampling frame contains all activity centers. The model also assumes no false positive or 211 

negative photographs are taken. The model requires that cameras are spaced close enough 212 

together that individuals are spotted at multiple cameras. The USCR model may not be a viable 213 

choice for animals that do not exhibit territorial behaviours since animals are detected less 214 

frequently as the distance between the activity center and the camera increases and that the 215 

sampling frame contains all the activity centers of the animals detected by cameras. Further, due 216 

to the USCR requiring individuals to be spotted at multiple cameras, cryptic or low-density 217 

species might not meet this criterion.  218 
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One prevailing advantage is that the USCR has a clearly defined area, which is quantified 219 

as the area that includes all activity centers. However, the USCR is highly sensitive to the 220 

parameterization of the scale parameter (Sun, Fuller and Royle, 2014), and cameras must be 221 

placed strategically to accommodate all the assumptions. Lastly, the model is restrictive to 222 

Bayesian frameworks and is computationally expensive (Gilbert et al., 2021). Generally, the 223 

USCR has not been used in many research studies (but see Sollmann et al. (2013)), has given 224 

imprecise results (Augustine et al., 2019), and should be used with caution (Gilbert et al., 2021). 225 

Random Encounter and Staying Time Model 226 

 The random encounter and staying time (REST) model (Nakashima, Fukasawa, and 227 

Samejima 2018) is a novel model that is gaining traction due to its feasibility and utility (Gilbert 228 

et al., 2021). Already, a variation of the REST model is being used by the Alberta Biodiversity 229 

monitoring institute (ABMI, 2020), and in multiple survey programs (Warbington and Boyce, 230 

2020; Becker et al., 2021; Laurent et al., 2021). In simplistic terms, the model states that density 231 

will be equal to the cumulative time all the individuals within a species spend within a detection 232 

zone, divided by the observation period and the detection zone area (i.e., the sampling effort). 233 

The size of the detection zone area and the length of the observation period are determined by 234 

the researcher, and motion-triggered photos are used to measure the cumulative time of animals 235 

within the detection zone. The REST model is often considered a variation to the REM since the 236 

model was derived using similar assumptions about animal movement patterns (Gilbert et al., 237 

2021), however, it does not require the auxiliary parameters of animal speed and group size. 238 

The model has all the same assumptions as the REM that were created from the ideal gas 239 

law (Rowcliffe et al., 2008; Nakashima Yoshihiro, Fukasawa Keita, 2018). It assumes 1) perfect 240 
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detection within the camera focal area 2) animal density remains constant (no immigration, 241 

emigration, births, or deaths) during the research study period 3) animals are neither attracted nor 242 

repelled by the camera traps 4) cameras are randomly placed with respect to species movement 243 

and 5) observations of individuals must be independent events. Further, it assumes 6) the 244 

cumulative staying time in the focal area must represent a good fit for the distribution that animal 245 

movements follow and 7) the observed cumulative time must follow a given parametric 246 

distribution. Some cameras have a delayed trigger period after an initial shot, which may violate 247 

assumption 1 (Nakashima, Yajima and Hongo, 2021). Further, camera trap placing should be 248 

carefully designed to meet assumption 4. For instance, camera trap placement should follow a 249 

stratified or random distribution (Rowcliffe et al., 2013) and one should account for imperfect 250 

detection (Yajima and Nakashima, 2021), either by testing cameras beforehand and omitting 251 

pictures in which animals react to the camera (Nakashima, Yajima and Hongo, 2021). 252 

The REST model works best for species in high abundance since the sampling effort 253 

must be high enough to represent animal distribution. Further, the REST model can be used to 254 

accommodate spatial variation of animals over environmental variation using covariates 255 

(Nakashima, Hongo and Akomo-Okoue, 2020). The REST model has provided consistent 256 

measures of density to estimate blue duikers compared to classic line surveys (Nakashima 257 

Yoshihiro, Fukasawa Keita, 2018). Further, the REST model gave an accurate, yet imprecise 258 

estimate of lynx density (Doran-myers, 2018). Nakashima, Fukasawa, and Samejima (2018) 259 

shows empirically and using simulations that increasing the duration of the study, the number of 260 

cameras, and the number of locations makes the density estimates more precise. At least 25 261 

camera locations should be used, and empirical estimates of duikers becomes more precise at 20-262 

day research periods. Garland (2019) expanded on this work to quantify how movement patterns 263 
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affect the density estimates of the REST model. Long periods of inactivity produce less precise 264 

estimates than individuals that move constantly. 265 

Despite its growing popularity, the math behind the REST model remains mostly 266 

unexplored. That it provides unbiased estimates was theoretically argued based on verbal 267 

arguments with no formal model (Nakashima, Fukasawa and Samejima (2018)). Furthermore, 268 

the expected variance of REST estimates is unknown, and users are left without any practical 269 

tools to anticipate the accuracy or the precision of their survey given their design. Understanding 270 

the REST model’s accuracy and precision helps utilize the REST model to its full capabilities. 271 

Thesis Objectives 272 

 My thesis chapter uses mathematics and statistics to derive the REST model. Currently, 273 

the REST model is derived using theoretical thought processes based on the rate of a population 274 

encountering a camera detection zone area. Theoretically, the expected number of contacts 275 

between two objects can be modelled based on their velocities (or simply speed, if the direction 276 

of travel is assumed randomly distributed and constant), their effective radii (the distance 277 

between the point objects at which contact occurs), the time span, and the density of objects. In 278 

our ecological setting, these correspond to the speed of the animals, the radius of the camera’s 279 

detection zone, the time period over which the camera was active and ready to detect the animal, 280 

and the density of animals (the quantity we are trying to estimate) and cameras. Using these 281 

ideas, I derive a modified REST model that builds off of the work done by Nakashima, 282 

Fukasawa and Samejima (2018). In biological settings, animal speed, research period length, and 283 

detection zone size will vary depending on the ecological system being studied and the design 284 

set-up. These parameters influence the precision and accuracy of the REST model’s density 285 
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results by affecting the number of individuals entering a detection zone area. I use mathematical 286 

moments to derive the mean and variance of the REST model’s density estimates using 287 

biologically realistic animal speeds (0.1 m/s, 1 m/s, 5m/s), detection zone radii (5m, 10 m, 15 m), 288 

and research periods (1 month, 3 months, 1 year). I then use the method of moments to find the 289 

95% confidence intervals surrounding the mean density estimate. Precise results reduce the 290 

uncertainty surrounding the estimates and increases repeatability of the results over time. 291 

Accurate results can be replicated over spatiotemporal variation and consequently can be applied 292 

to a variety of terrestrial environments. This is, to my knowledge, the first paper that uses an 293 

interdisciplinary approach to derive the REST model and find the precision and accuracy of the 294 

REST model from mathematics.   295 
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CHAPTER 2: RECONSTRUCTING THE RANDOM ENCOUNTER AND 444 

STAYING TIME MODEL TO FIND THE MEAN AND VARIANCE OF 445 

SPECIES DENSITY  446 

2.1 INTRODUCTION 447 

Precise and accurate population density estimates are integral for management practices; 448 

however, estimating population density of mobile species has been a long-standing challenge in 449 

wildlife ecology and management. While measuring density appears to be straightforward, 450 

tracking spatial and temporal changes is usually constrained by the amount of time (Palomares 451 

2001), money (Tear et al. 2005; Wilhere 2008), and labour efforts that are available (Hein 1997). 452 

Although traditional methods sometimes provide robust estimates (e.g. aerial surveys, quadrat 453 

and transect methods, mark-recapture sampling, distance sampling; (Hone 1988; Robson and 454 

Regier 1964), recent research advancements have used probability and likelihood functions to 455 

estimate density using camera trapping data. Cameras were initially being used as a way to 456 

measure species occupancy (presence/absence) data (Galvez et al. 2016) and to a lesser extent 457 

animal behaviour (Caravaggi et al. 2017). Cameras have become popular with agencies and 458 

researchers (Caravaggi et al. 2017; Moeller, Lukacs, and Horne 2018; Royle 2004; Chandler and 459 

Royle 2013; Rowcliffe et al. 2008; Nakashima Yoshihiro, Fukasawa Keita 2018; Howe et al. 460 

2017). Camera traps’ ability to monitor species over different landscapes is advantageous in 461 

situations where species are cryptic or in remote locations (Carbone et al. 2001), the species is 462 

small, (Villette et al. 2016) or when evaluating population changes over time (Caravaggi et al. 463 

2017). Additionally providing density estimates broadens the camera traps’ applicability and 464 

makes it a useful alternative monitoring tool for large-animal research practices.  465 
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Nine working models currently are in use applying camera trap data to estimate density 466 

(Howe et al. 2017; Nakashima, Fukasawa, and Samejima 2018; Rowcliffe et al. 2008; Chandler 467 

and Royle 2013; Royle 2004; Moeller, Lukacs, and Horne 2018; Burton et al. 2015; Karanth 468 

1995). Within these, eight models do not require individual recognition (Table 1). For example, 469 

the Random Encounter and Staying Time (REST), proposed by Nakashima, Fukasawa, and 470 

Samejima (2018), estimates density using the likelihood of an individual entering a camera 471 

detection zone area based on its movement rates and the camera’s viewshed. Despite the model’s 472 

novelty, the REST model has been used to study multiple species, including blue duikers, 473 

sitatunga (Warbington and Boyce 2020), moose (Becker et al. 2021), and white-tailed deer 474 

(Laurent et al. 2021) and is expected to gain popularity quickly due to its feasibility and utility 475 

(Gilbert et al., 2021). The REST model assumes that (1) cameras are placed randomly with 476 

respect to the spatial distribution of animals (2) cameras have perfect detection of animals within 477 

the focal area (3) population closure of the study period (4) animal movement and behaviour are 478 

not affected by camera traps (5) observations are independent events. Two protocols 479 

(Nakashima, Yajima, and Hongo 2021; Hongo, Nakashima, and Yajima 2021) have been 480 

developed that address these assumptions and proper procedures to follow to obtain the best 481 

density estimates for a population. Further, Nakashima, Hongo, and Akomo-Okoue (2020) 482 

extended the model to incorporate environmental covariates to estimate habitat-density 483 

relationships. The REST model has been shown to give accurate and precise results in most 484 

instances (Garland 2019; Doran-myers 2018), showing the REST model to have promise to be a 485 

functional and easily applicable model.  486 

The theoretical framework, (modified from Nakashima, Fukasawa, and Samejima (2018)) 487 

states that, given a population of density 𝜌, the instantaneous expected number of individuals 488 
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within a camera’s detection zone 𝑎 can simply be written as 𝜌 ∙ 𝑎. If the research period 𝑇 is 489 

sufficiently long, then the product, 𝜌 ∙ 𝑎 ∙ 𝑇, is equal to the cumulative time a species spends in 490 

front of the camera ∑ 𝑡! (where 𝑖 indexes an encounter event between a camera and an 491 

individual). Rearranging for 𝜌, it is seen that density can be expressed as a function of time an 492 

animal spends in front of the detection zone, the size of the detection zone, and research time. 493 

𝜌 =
∑ 𝑡!
𝑇 ∙ 𝑎 494 

The REST model builds upon its predecessor, the Random Encounter Model (REM). 495 

REM applies a similar framework, where individuals move autonomously throughout an 496 

environment, independent of camera placements and conspecifics. Although the two models 497 

work under similar assumptions, the REM requires approximations for the average daily 498 

movement rates for a species (Rowcliffe et al. 2008). The REST model instead uses cumulative 499 

time an animal spends in front of a detection zone, an easily measurable and therefore more 500 

ecologically functional parameter. 501 

Nakashima, Fukasawa, and Samejima (2018) created a density model grounded on 502 

theoretical reasoning and logic. We show REST is consistent with a mathematical model 503 

grounded on ideal gas law physics. We then use our model to derive the expected variance of the 504 

REST-density estimates. We thus provide theoretical limits on the usefulness of REST estimates, 505 

given the sampling effort. 506 

2.2 METHODS 507 

The REST model relies on an empirical measure of the cumulative time an animal spends 508 

inside of a detection zone, ∑𝑡!. Note that ∑𝑡! = 𝑛 ∙ 𝐸(𝑡) where 𝑛 is the number of encounters 509 
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between a species and a detection zone and 𝐸(𝑡) is the average time individuals spend within the 510 

detection zone. The derivations of each separate part of this simple equation provide a 511 

straightforward way to recreate the REST model mathematically. 512 

Statistical moments for the time it will take an individual to travel through the detection 513 

zone 514 

Imagine an animal travelling along a straight trajectory in which it traverses a circular 515 

camera field of view at a constant speed, s. Note that we are assuming the field of view is 516 

circular here for mathematical simplicity (we shall review this assumption in chapter three). As 517 

the animal’s heading is random relative to the camera, it may enter the field of view at any angle 518 

between 0 and π (see Fig. 1 for more details, note that due to symmetry, the circle is cut in half, 519 

however it does not affect the final answer). The time spent traveling through the camera’s field 520 

of view, t, is a random variable of the uniformly distributed angle of entry, 𝜃, and can be 521 

expressed as 522 

𝑡 = "∙$∙%&'	(*)
'

                    (1) 523 

where 𝑟 is the radius of the detection zone. The cumulative distribution function of time 𝑡 is Eq. 524 

1, rearranged for the probability of an angle 𝜃 being below or equal to a time 𝑡 of the animal and 525 

a radius 𝑟 of the camera detection zone, 526 

𝐹,(𝑡) = 1 − 2"
-
∙ 𝑐𝑜𝑠./ 6'∙0

"∙$
78                    527 

(2) 528 
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is used to determine the probability of a random value being less than or equal to a 529 

random value in question. Probability density functions are the derivative of the cumulative 530 

density function. They describe the probability of a continuous value falling within a range of 531 

values. The probability density function for time spent inside the detection zone can be written 532 

as: 533 

𝑓,(𝑡) =
"
-
∙ '
1("∙$)!.(0∙')!

                (3) 534 

Probability functions have the further use in that they are a simple way to find a 535 

function’s moments (see appendix 1 for the structure of raw and central moments). Moments are, 536 

in essence, a way to characterise a distribution of a random variable. The first moment gives the 537 

mean of the function and the second moment gives the variance of the function (higher moments, 538 

not derived in this paper, are the skewness and kurtosis). 539 

The first moment, the average time an animal is expected to spend inside the camera 540 

detection zone, 𝐸(𝑡), is calculated as the PDF, 𝑓0(𝑡) (Eq. 3), multiplied by 𝑡, and integrated over 541 

all possible values for 𝑡. In other words, the mean of the distribution is given by a weighted 542 

average of all possible values, where weights are given by the probability of each value 543 

occurring under this distribution. The resulting integral is bounded between 0 (given that time 544 

exists on a positive continuum) and "$
'

 (as seen in Fig. 2).  545 

𝐸(𝑡) = ∫ "
-
∙ '
1("∙$)!.(0∙')!

!∙#
$

2 𝑑𝑡 = 3∙$
-∙'

                (4) 546 

The second raw moment is calculated using similar methods, except that 𝑡 is transformed 547 

to 𝑡" within the integral. Raw moments are considered standard for the mean (first moment), 548 
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however second moments are central by nature. The variance is thus adjusted about the mean by 549 

subtracting the first moment squared (3$
-'
)" from the integrated second raw moment, 550 

𝐸[𝑡"] = ∫ "
-
∙ '!

1("∙$)!.(0∙')!

!∙#
$

2 𝑑𝑡 = 𝟐∙$!

'!
                          (5) 551 

𝑉𝑎𝑟[𝑡] = 𝐸[𝑡"] − 𝐸[𝑡]" = 𝟐∙$!

'!
− 63∙$

-∙'
7
"
              (6) 552 

We see that the mean, 𝐸(𝑡), and variance, 𝑉𝑎𝑟(𝑡), are both functions of the ratio between 553 

the radius of the detection zone (the square root of the effective area) and speed of the animal, 554 

where a larger radius increases the parameter’s values and the faster the individuals move 555 

through the camera view decreases both parameter’s values.  556 

Moments for the number of encounters between individuals and a detection zone 557 

The ideal-gas law is used by physicists to describe the rate of collisions between gas 558 

particles moving at constant random velocities. It has been adapted by biologists to model 559 

predator-prey dynamics (Vander Vennen et al. 2016), fertilization kinetics (Randerson and Hurst, 560 

2001), and movement patterns (Rowcliffe et al., 2008). The ideal-gas law assumes that gas 561 

particles move in a random yet constant direction and speed (coined ‘ballistic movement’ in 562 

ecology) in a confined space (so that particle density is constant), large enough to make any 563 

boundary effects (collisions with the walls of the domain) negligible. Under these assumptions, 564 

the expected number of encounters between a focal gas particle (or random point in space) and 565 

all other gas particles, 𝑛, is equal to the area of travel, the product of the length of the particle 2 ∙566 

𝑟 by the distance it traverses, multiplied by the density of particles 𝜌. Distance is the speed of the 567 

particle 𝑠 multiplied by time 𝑇,  568 
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𝑛 = 2 ∙ 𝑟 ∙ 𝑇 ∙ 𝑠 ∙ 𝜌                         (7) 569 

In an ecological setting, 𝑛 is the number of encounters between individual animals and a 570 

circular detection zone with radius 𝑟, 𝑠 is the speed of the animal, 𝑇 is the research period, and 𝜌 571 

is the density of animals. 572 

The Poisson point process is used for determining the probability distribution of a 573 

specified number of encounters 𝑛 an animal has with a detection zone within the research period 574 

𝑇. Poisson distributions are appropriate when events are discrete, independent, and the encounter 575 

rate is constant. The Poisson point process’s PMF,  576 

𝑃(𝐾 = 𝑘) = 5%∙6&'

7!
                  (8) 577 

describes the probability of observing 𝑘 events in a set time frame given that expected value 578 

(also called the ‘Poisson intensity’) is 𝜆. In this case, 𝜆 is given by Eq. 7, the expected number of 579 

encounters between ballistically travelling animals and a single camera detection zone. 580 

The first and second moments of a Poisson PMF are given by 𝜆: 581 

𝐸(𝑛) = 𝑉𝑎𝑟(𝑛) = 𝜆 = 2 ∙ 𝑟 ∙ 𝑇 ∙ 𝑠 ∙ 𝜌                (9) 582 

Notably, since both parameters are identical, the mean and variance are influenced by the same 583 

ecological factors and change at the same rate over time. 584 

Statistical moments for the expected density  585 

As long as the probability of an encounter is independent of the movement direction (and 586 

hence the time spent crossing the detection zone), the expected time animals spend inside a 587 
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single camera’s detection zone is modelled as 𝐸(∑ 𝑡!) = 𝐸(𝑛) ∙ 𝐸(𝑡). Using Eq. 4 and Eq. 9 588 

above for 𝐸(𝑛) and 𝐸(𝑡), 589 

𝐸(∑ 𝑡!) = (2 ∙ 𝑟 ∙ 𝑇 ∙ 𝑠 ∙ 𝜌) ∙ 63∙$
-∙'
7 = 9∙$!∙,∙:

-
= 9∙;∙,∙:

-!
            (10) 590 

where 𝑎 is the area of the circular detection zone (𝑎 = 𝜋 ∙ 𝑟"). 591 

Rearanging Eq. 10 we obtain the strutural backbone of the REST model, demonstrating 592 

that the mean time spent inside a detection zone, 𝐸(∑ 𝑡!), is a consistent estimator of animal 593 

density, 𝜌: 594 

𝜌 = <(∑ 0()
,∙;

∙ -
!

9
                 (11) 595 

In other words, if 𝑇 and 𝑎 are known, and the model’s assumptions are not violated, knowledge 596 

of 𝐸(∑ 𝑡!) is equivalent to knowledge of 𝜌.  597 

Following product distribution laws of the two independent random variables 𝑛 and 𝑡, the 598 

variance of the cumulative time a species is within a detection zone 𝑉𝑎𝑟(∑ 𝑡!) (appendix 1): 599 

𝑉𝑎𝑟(∑ 𝑡!) = E63∙$
-∙'
7
"
∙ 2 ∙ 𝑟 ∙ 𝑇 ∙ 𝑠 ∙ 𝜌F + H(2 ∙ 𝑟 ∙ 𝑇 ∙ 𝑠 ∙ 𝜌)" ∙ E"∙$

!

'!
− 63∙$

-∙'
7
"
FI +600 

HE"∙$
!

'!
− 63∙$

-∙'
7
"
F ∙ 2 ∙ 𝑟 ∙ 𝑇 ∙ 𝑠 ∙ 𝜌I = 3∙:∙$)∙,("∙(-!.9)∙:∙>∙?∙@AB!)

B!∙?
         (12) 601 

Substituting 𝑉𝑎𝑟(∑ 𝑡!) into the REST model, the variance for the density measurements 602 

𝑉𝑎𝑟(𝜌) simplifies to: 603 

𝑉𝑎𝑟(𝜌) =
4∙𝜌∙𝑟3∙𝑇(2∙(𝜋2−8)∙𝜌∙𝑟∙𝑠∙𝑇+𝜋2)

𝜋2∙𝑠

,!∙;!
∙ -

!

9
                    (13) 604 
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To our knowledge, Eq. 13 is the first analytical approximation of the expected variation 605 

in density estimates under the REST model. We will later use it to demonstrate the usefulness of 606 

the model under different sampling scenarios.  607 

Deriving the REST model: Part II 608 

Above, we derived the REST model by envisioning the time it would take an animal to 609 

cross a camera trap given the size of the camera trap’s detection zone, the trajectory of the 610 

animal, and the animal’s speed. We can recreate the same equation using the same ideal gas law 611 

principles as before, however without determining distance an animal moves within the detection 612 

zone area or number of contacts between a population and the detection zone area. Despite these 613 

differences, we obtain the same mathematical expression.  614 

Density of a species, using the ideal-gas law (Eq. 7, rearranged), is modelled as the 615 

encounters between a species and a detection zone per: radius of the detection zone, research 616 

period, and speed of the animal. 617 

𝜌 = C
"∙$∙,∙'

                  (14) 618 

Although the ideal gas law’s density measurement uses parameters that the REST model 619 

does not, the two models are, in fact, synonymous to each other. Here, we will derive the REST 620 

model in a second way and further recall the same REST model (Eq. 11). 621 

Changing speed into the average distance an individual moves in the detection zone 𝐸(𝑑) 622 

per the average time a species spends in front of a detection zone 𝐸(𝑡): 623 

𝜌 = C

"∙$∙,∙D*(,)*(.)E
= C∙<(0)

"∙$∙,∙<(F)
               (15) 624 
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Further changing cumulative time ∑ 𝑡! = 𝑛 ∙ 𝐸(𝑡) and radius into area, 𝑎%!$%G6 = 𝜋 ∙ 𝑟", 625 

𝜌 = ∑0(∙-∙$
"∙;∙,∙<(F)

                 (16) 626 

The simple relationship, 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑡𝑖𝑚𝑒 × 𝑠𝑝𝑒𝑒𝑑 solves for the average distance 𝐸(𝑑), 627 

where average time is derived as 𝐸(𝑑) = 𝐸(𝑡) ∙ 𝑠, (𝐸(𝑡) derived in Eq. 4) 628 

𝐸(𝑑) = 3∙$
-∙'
∙ 𝑠 = 3∙$

-
                (17) 629 

The equation is recreated as 630 

𝜌 = ∑ 0(∙-∙$

"∙;∙,∙D/∙#0 E
= ∑ 0(

,∙;
∙ -

!

9
               (18) 631 

The REST model eliminates variables that are difficult to measure, such as the speed of 632 

the animal 𝑠 and number of encounters an animal has with a detection zone 𝑛.  633 

Visualising the results 634 

Using the method of moments, we fit our derived mean from equation 11 and variance 635 

from equation 13 to the log-normal, Weibull, and gamma distributions to determine the 95% 636 

confidence intervals for the estimates (see appendix 3). The distributions were appropriate given 637 

that they all meet the criteria of being positive, continuous distributions. We compute these 638 

confidence intervals nine times, where, for each graph, we choose different biologically relevant 639 

research periods (one month, three months, and one year) and camera detection zone radii (five 640 

meters, ten meters, and fifteen meters) for an animal speed of 0.1 m/s (Table 2). We repeat his 641 

process for an animal speed of 1 m/s (Table 3) and 5 m/s (Table 4). The distributions give 642 
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comparable results (appendix 4), and we focus on the log-normal distribution for our result 643 

analysis. 644 

Density is a crucial parameter for species conservation and management practices. While 645 

the REST model by itself has been used to estimate density, deriving the mean, variance, and 646 

confidence intervals allows the researchers to determine the certainty and repeatability of the 647 

estimates. The mean, being always equal to the true density, shows consistency in the REST 648 

models estimates. The 95% confidence intervals, created using the variance derivation, show the 649 

certainty of the density estimates. 650 

2.3 RESULTS 651 

We derived two different sets of equations for a density estimate of the REST model 652 

using two different methods. We then created confidence intervals that show the precision and 653 

accuracy of the REST model’s density estimates using an explicitly stated detection zone area to 654 

derive the staying time of an individual in front of a camera. In our second derivation, we used 655 

detection zone area to determine the contact rate between an individual and camera traps. The 656 

incorporation of detection zone area into our methods results in a modified REST model 657 

equation estimates density -
!

9
 times greater (equation 18) than the model created by Nakashima, 658 

Fukasawa, and Samejima (2018). In other words, our derivation indicates that the ratio ∑0(
,∙;

 659 

should provide a consistently biased (by a factor of ~1.23) estimate of density. 660 

As the density of the species increases, the margin of error around the mean also 661 

increases, broadening the confidence intervals. The variables 1) research period and 2) detection 662 

zone radius (both under the control of the researcher) have different effects on the certainty of 663 
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the estimates for species at high densities compared to the species that exist at low densities. For 664 

rare species, lengthening the research period and creating a large detection zone (e.g., by placing 665 

more cameras) improves the accuracy of the estimate (reduces the confidence intervals). In these 666 

cases, the confidence intervals tend towards a normal distribution about the mean and the upper 667 

and lower bounds become narrower. For short research periods and small detection zones, the 668 

confidence intervals are skewed above the mean such that there is a larger range of values that 669 

overestimate density with 95% certainty. When species density is high, changing the research 670 

period and detection zone does not influence the confidence range. 671 

The animals speed also influences the confidence range. At low densities, the faster the 672 

speed of the animal, the more accurate the density estimates. Like research period and detection 673 

zone area, at high densities, the speed’s effect on the size of the confidence intervals is 674 

negligible. Note that the speed does not influence the mean density estimate, which will always 675 

be equal to the true density of the species. 676 

2.4 DISCUSSION 677 

We showed that the REST model produces animal density estimates that are unbiased to 678 

true animal density. Our derivation shows that it is important to take the shape of the detection 679 

zone area into account, which the traditional REST model by Nakashima, Fukasawa, and 680 

Samejima (2018) does not account for. In this way, our estimates will estimate density to be -
9
 681 

times higher than the traditional density model. The precision of the estimates varies with species 682 

speed, camera trap detection zone area and research period. While animal speed is typically 683 

outside of the observer’s control, camera detection zone area and research period can be 684 

manipulated to produce more precise density estimates. In fact, one simple approach to increase 685 
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both a and T is to add more cameras. If the cameras can be reasonably considered independent, 686 

the larger the number of cameras, the larger the area that is being observed, and hence the higher 687 

the precision of the estimates will be. In homogenized environments, the summation of all 688 

independent camera trap’s detection zone areas and research periods gives a density estimate for 689 

the entire sampling area. 690 

The mean density is an unbiased estimator of the species true population density. 691 

Unbiased estimators work regardless of the spatiotemporal variation throughout the study site or 692 

the sampling equipment used (Carstensen and Lindegarth 2016), and consequently the REST 693 

model can be applied to a variety of terrestrial environments. While often sought after, unbiased 694 

results are not always necessary; indices such as number of photographs taken can be used as 695 

proxies to monitor changes in population abundance (Bengsen et al. 2011; Foster and Harmsen 696 

2012; Palmer et al. 2018), where the relationship between number of photographs and animal 697 

density is oftentimes biased, and non-linear (Gibbs 1999). Comparatively, camera trap density 698 

models are often assumed to produce unbiased estimates of true animal density, due to the 699 

models accounting for the system’s behaviour. Our findings are further supported by other 700 

studies; while the REST model is still new, it has been shown to produce unbiased density 701 

estimates when: used in simulations (Nakashima, Fukasawa, and Samejima 2018), controlled 702 

human trials (Garland 2019), and produces similar estimations of density as the spatial mark-703 

resight (SMR) and spatial-capture-mark-resight (SCMR) models in field studies where the true 704 

species density remains unknown (Doran-myers 2018). While capture-recapture and spatial 705 

capture-recapture methods are most commonly used to estimate density from camera traps (CR – 706 

54.8%, SCR – 33% of camera trap studies) (Burton et al. 2015), the methods have been known to 707 

produce biased results (Foster and Harmsen 2012). Due to its unbiasedness, we expect the REST 708 
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model to end up being used more frequently, especially when obtaining unbiased density 709 

estimates is crucial, such as with endangered or low-density species. 710 

Animal speed, research period, and detection zone area influenced the precision of our 711 

derived REST model density. Faster moving animals produced more precise results. Similarly, 712 

lengthening the research period or enlarging the detection zone area yielded precise density 713 

estimates. Precision is always desired in field studies; it reduces the uncertainty surrounding the 714 

estimates and increases repeatability of the results over time (Hellmann and Fowler 1999). While 715 

high-end camera traps are able to take up to 50,000 pictures without maintenance and capture 716 

photographs up to 30 m away from the lens under optimal conditions (Reconyk 2013), using 717 

these as research periods and detection zone areas are impractical. To meet the assumptions of 718 

perfect detection, a smaller detection zone area should be used (Rowcliffe et al. 2008), and 719 

shorter time periods could be used to meet the assumption of population closure (such that there 720 

is assumed to be no births, deaths, immigration or emigration within the research period time 721 

frame (Tobler and Powell 2013)). Further, there might be cost and labour restrictions that need to 722 

be accounted for (Palomares 2001; Hein 1997). While the most common research period for 723 

camera trap density studies is 8 months (n = 211), it varies considerably (between <a month to 724 

over 13 years), and oftentimes was left unspecified (Burton et al. 2015). Given that the design of 725 

the study has such an influence on the REST model precision, we recommend that researchers 726 

remain transparent and detailed about their designs. Each study system will have to find a 727 

balance between reducing the uncertainty of the estimates and accounting for the functional and 728 

theoretical limitations of the camera-trap REST model. 729 

Under our mathematical assumptions, the REST model precision will only be influenced 730 

by research period, detection zone area and animal speed. However, animals do not behave like 731 
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gas particles, and consequently the assumption of ballistic movement will be violated. While 732 

Rowcliffe et al. (2013) provides insight about how animals only need to move randomly and 733 

independently from the camera traps to not bias the results – proven mathematically (Hutchinson 734 

and Waser 2007) and in field studies (Rowcliffe et al. 2008) – non-ballistic movement has been 735 

proven to produce less precise results for the REST model in controlled human trials (Garland 736 

2019). In field studies, the REST model produces the least precise results when compared to 737 

other models such as the REM, Formozov-Malyshev-Perelishin Formula, spatially explicit 738 

capture-recapture, spatial capture-mark-resight, and spatial mark-resight (Garland 2019). 739 

Consequently, for long-term monitoring programs, the REST model should be used with caution, 740 

and only for systems that consider the REST model’s limitations. 741 

Despite the shortcoming of ballistic movement our methods pre-emptively showed the 742 

level of uncertainty of the estimates, compared to ad hoc methods of measuring uncertainty used 743 

for most camera trap models. Further, they demonstrated under which systems and experimental 744 

set up the model will work best. As such, our results give insight as to which circumstances the 745 

REST model should be used for accurate, precise density estimates. For instance, the REST 746 

model gave low levels of variability compared to transect line surveys when measuring blue 747 

duikers (Nakashima, Fukasawa, and Samejima 2018) and, further, gives the lowest variability 748 

when at high sampling efforts (Garland 2019). Given that the REST model’s estimates are 749 

unbiased, we argue that the REST model could be a superior model to other current working 750 

models under the right circumstances, however further research should be done before the REST 751 

model is used broadly. 752 

Our paper has shown that the REST model can be used as an unbiased estimator for 753 

population density. The mathematical equations we derived reiterates the work done by 754 
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Nakashima, making the REST model an appealing model as it allows ecologists to be confident 755 

in its ability to measure species density. Further, we have outlined the situations in which the 756 

model should be used, given the anticipated variance around the mean density estimate. The 757 

REST model’s ability to provide unbiased density estimates depends on the parameters of the 758 

model: researcher period, camera detection zone, and animal speed. If used correctly, the REST 759 

model could become a competitive method to estimate animal density, which is essential for 760 

animal conservation and management strategies.  761 

  762 
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Table 3- A comparative chart of the assumptions and requirements of the eight working models that use camera trap data to 763 

determine density, without the need for individual detection of the animals. The models are as follows: the spatial count (SC) 764 

model, random encounter and staying time (REST) model, random encounter model (REM), N-mixture (N-mix) model, distance 765 

sampling (DS) model, time-to-event (TTE) model, space-to-event (STE) model, and instantaneous sampling (IS) model. 766 
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Table 2 – 95% confidence intervals using the log-normal distribution of the expected range for the density estimates to fall, with 

the middle line being the mean estimate of density (which is the same as true density). These estimates were derived for one 

month, three months, and one year at three different radius sizes at the speed of 0.1 m/s 
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Table 3 – 95% confidence intervals using the log-normal distribution of the expected range for the density estimates to fall, with 

the middle line being the mean estimate of density (which is the same as true density). These estimates were derived for one 

month, three months, and one year at three different radius sizes at the speed of 1 m/s 
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Table 4 – 95% confidence intervals using the log-normal distribution of the expected range for the density estimates to fall, with 

the middle line being the mean estimate of density (which is the same as true density). These estimates were derived for one 

month, three months, and one year at three different radius sizes at the speed of 5 m/s 

 

 

 

 

 

 

 

 

 

 

  



  50 

 

 

Figure 2 – Derivation of equation 3 and schematic figure showing theoretical framework of the camera trap. A camera is facing 

forward around a detection zone area (grey line). An animal enters the detection zone area at angle 𝜃, travels distance d (orange 

line) and exits the detection zone. The detection zone is made to be circular for the derivations of the REST model, however, 

since a circle is symmetrical, choosing any line crossing a semi-circle and using the sine law gives the distance travelled across 

the circle.  The derivations of the distance d the animal travels use sin laws to solve.
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Figure 2 – Probability density function of the time that an individual spends within the detection zone, given that the radius r is 

set at a specified value. The time an individual spends is distance travelled divided by speed of the animal, and in this graph 

increases at an interval of 0.5 from 0 to 2. As seen, the indefinite integral is bound between 0 and 2*r time units spent in front of 

the camera. 
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CHAPTER 3: SUMMARY AND CONCLUSIONS 

3.1 RECAP 

As extinction rates accelerate causing a rapid decline in biodiversity, there is a universal 

agreement from scientists that the world is facing the world’s sixth mass extinction (Stork, 

2010). Causes for this extinction include habitat loss, climate changes, and overexploitation. 

Currently, the most recent Living Planet Index (LPI) has estimated that wildlife abundance on 

the planet decreased by as much as 58% between 1970 and 2012 (Almond, Grooten and 

Petersen, 2016). For species that are unable to adapt to these changes, conservation strategies 

must be implemented to aid in species survival and preserving natural ecosystems. Camera traps 

are one method used to monitor and gather information about a population of interest. For my 

thesis, I (1) mathematically recreate a Random Encounter and Staying time (REST) model that 

derives species density from camera trap data. The REST model has been used in numerous 

surveys to monitor a broad range of species for conservation purposes (Warbington and Boyce, 

2020; Becker et al., 2021; Palencia et al., 2021). For optimal conservation efforts, accurate and 

precise density estimates must be obtained, however this is not always easy to do (Belant et al., 

2019). For instance, the REST model did not give accurate and precise density estimates for 

domestic dogs when using Ltl-Acorn cameras (Yajima and Nakashima, 2021) due to the camera 

failing to meet the assumption of perfect detectability. For the second part of my thesis, I (2) 

used mathematics to determine how the precision and accuracy of the density results are 

influenced from the model parameters (animal speed, research period, detection zone area).  

I found that the latest model from the camera trap literature, the REST model, will only 

estimate density correctly only if the model is revised using the equations I have shown about to 
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account for the shape and size of the detection zone area. For a circular detection zone, using a 

correction factor of pi/8 will give unbiased density estimates. Otherwise, the density estimates 

will likely estimate true density to be lower than it truly is. The revised REST model shown in 

equation 18 will produce unbiased density estimates for true species density for circular 

detection zones. The REST model provides the most precise results when the research period is 

long, the detection zone area is large, and when it is used for fast moving animals. The accuracy 

of the results is true to species density regardless of camera detection zone area, animal speed, or 

research period. I assumed that 1) detection zone is circular and 2) animals moved ballistically, 

at a constant speed and same direction. All other assumptions of the REST model, outlined by 

Nakashima, Fukasawa, and Samejima (2018) hold true: 3) animals are not attracted nor repelled 

by the cameras, 4) cameras are placed randomly with respect to animal movement, 5) species 

density does not change within the research period, 6) inside the detection zone area there is 

perfect detection, 7) the distribution of staying time within the detection area represents the 

distribution of animal movements, 8) observations are independent events and 9) the staying time 

is modelled using an appropriate distribution. These assumptions could constrain the REST 

model’s applicability if they are properly addressed, thus my work provides insight on the best 

practices for this model. 

3.2 A HINDSIGHT REVIEW OF THE REST MODEL’S ASSUMPTIONS  

The ideal-gas law is a model to determine rates of collision between gas molecules within 

an enclosure. Ecologists have repeatedly used the model to determine the collision rate of 

ecological processes such as mate finding (Crowley et al., 1991), fertilization kinetics 

(Randerson and Hurst, 2001), and predator-prey dynamics (Vander Vennen et al. 2016). 

Rowcliffe et al. (2008) uses the ideal gas law to model animal movement patterns for the REM 
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and similarly I use it to describe the rate that an animal will enter the camera trap detection area 

for the REST model. Following the gas law’s formula, the REST model’s expected trapping rate 

is a function of animal speed, camera detection zone area, research period, and species density. 

However, an animal’s movement patterns depend on its internal state, physiological constraints 

and environment (Fleming et al., 2014). Consequently, animals do not move ballistically as they 

are assumed to do in the model. Hutchinson and Waser (2007) proved analytically that even 

when breaking this assumption, the mean number of encounter rates remains the same as it 

would for ballistically moving animals, however some of those encounters will be the same 

individual re-entering the camera trap. The REST model gives unbiased density estimates 

irrespective of the number of individuals encountering the detection zone since it does not 

require individual identification and consequently the staying time will not be affected. 

Another assumption I relied on here is that camera trap detection zones are circular. The 

circularity assumption was used to simplify the mathematics involved in deriving the REST 

model, however it is logistically unrealistic. Camera detection zones are shaped as a segment of a 

circle and by changing the detection zone shape, the correction factor would also change, and 

bias the estimates. While it is possible to map out a circular detection zone area, this would be 

logistically difficult. It is therefore my recommendation that future work recreate the derivations 

of the REST model in my thesis using a circular sector detection zone area. It is worth noting 

that many researchers are now shifting to placing their camera high above the ground, facing 

down, effectively creating a circular detection zone.  

The REST model assumes that the cameras are not attracting or repelling individuals. 

While cameras have a longstanding history of being considered non-invasive compared to other 

methods, there have been numerous examples of animals detecting and investigating cameras 
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(Sequin et al., 2003; Wegge, Pokheral and Jnawali, 2004; Schipper, 2007). Cameras can carry 

human scent, emit sound, and have a tangible presence within the environment (Caravaggi et al., 

2020) causing behavioural responses towards cameras that may affect detection probabilities 

(Meek et al., 2014) and bias the REST model’s density estimates. Almost all the density models 

(REST model, REM, TTE method, STE method, IS method, USCR, distance sampling using 

camera traps) depend on this assumption being met. One possible solution is to habituate the 

animals to the camera traps and truncate the data for when an animal has no behavioural 

responses to the camera (Caravaggi et al., 2020), and to only use flash photography when 

necessary. If animals are reacting to cameras, it would be advisable to use a depression-angle 

layout for the camera traps, where cameras are situated high up (100-120 cm above the ground) 

so that the animals are less aware of their presence. In this way, the animal is less likely to 

become aware and react to the camera trap.  

The study design should be carefully set up to meet assumptions 4 and 8. Cameras should 

be spaced far enough apart that there is independence between the cameras. Further, camera trap 

survey designs should not target or avoid features but be placed randomly throughout the area. 

Some designs that meet this criterion are the random distribution and systemic distribution. 

Random placement designs randomly place cameras within the survey area which do not target 

or avoid features. However, this survey design can potentially place cameras in inaccessible 

locations. Systemic survey designs, on the other hand, place cameras at evenly spaced sections. 

This design is not suitable for landscapes that have man-made structures built at equally spaced 

intervals, such as roads or logging areas. These two designs can be combined by having cameras 

randomly placed within a stratified grid, a design called stratified-random placement 
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(Nakashima, Yajima and Hongo, 2021). This would reduce the labour efforts that could 

potentially arise from random placement designs while still giving unbiased density estimates.  

There should not be any births, deaths, immigration, or emigration occurring throughout 

the research period, however I have shown that having a longer research period give more 

precise REST density estimates. This results in a bias-precision trade-off, where each ecological 

system studied must balance meeting assumption 5 and optimizing the precision of the density 

estimates. For slow-living species, having a longer sampling period will increase the precision of 

the estimates without compromising bias in the estimates, however, fast-living species have high 

fecundity and a shorter lifespan (Dupont et al., 2019). Individual traits such as an individual’s 

sex (Clutton-Brock et al., 2002), age, and behaviour influence its likelihood of immigrating, 

emigrating, or mortality. Closure violations have been shown to affect occupancy models (Rota 

et al., 2009), capture-recapture models (Kendall, 1999), and in some instances spatial capture-

recapture models (Dupont et al., 2019). For instance, in a 3-week period, 71% of species 

investigated in Montana showed violation of closure (Rota et al., 2009). Closure violations 

should be avoided, in particular for rare or declining species, where precise density estimates are 

essential.  

Perfect detection within the detection area is a critical assumption necessary to achieve a 

correct staying time. Camera sensitivity is improving rapidly, with higher quality cameras having 

faster trigger times and greater detection zones. However, animal size (McIntyre et al., 2020), 

movement patterns, and environmental conditions will cause detection probability to be < 1 

(Yajima and Nakashima, 2021). This is an issue because most camera trap models require perfect 

detection for species density estimates. Without accounting for these issues, camera traps have 

been shown to miss animals by 3-40%, heavily biasing the density estimates (Nakashima et al., 
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2022), and low quality Ltl-Acorn cameras missed about half the individuals (Yajima and 

Nakashima, 2021). Further, there is variation in detection between cameras. Researchers should 

note that higher placement of cameras decreases detection probability (McIntyre et al., 2020), as 

well as cameras facing downwards (Yajima and Nakashima, 2021). To account for this, an 

‘independent double-observer approach’ has been shown to be effective if camera traps detect 

animals nearly independently from one another (Nakashima et al., 2022). In this method, 

multiple cameras each take pictures of the same area, and the detection probability is determined 

through the matched or mismatched observation records. This method is more costly as it 

requires more cameras to be installed. Another method to account for imperfect detection is to 

account for the effective detection distance (EDD) (Hofmeester, Rowcliffe and Jansen, 2017). 

The EDD is the distance at which the number of animals detected further away equals the 

number of animals missed nearer by, which will correct for imperfect detection within the 

camera trap frame of view. However, the EDD must be calculated for each camera trap and the 

distance between an individual and the camera must be measured using markers.  

Understanding animal movement patterns is critical to meet assumption 7. Many animals 

regulate their activity patterns over a 24-hour sleep-wake cycle which corresponds to periods of 

inactivity and activity. During phases of activity, an animal will choose its movement patterns to 

meet its psychological needs: to mate, forage for food, or evade predators. These activity peaks 

occur during the day, night or in twilight hours, and are followed by phases of inactivity, when 

an animal is resting. Rest is a critical evolutionary behaviour to aid in energy conservation, 

memory retention and acquisition, and improved alertness (Roth, Rattenborg and Pravosudov, 

2010). During phases of inactivity when an animal is sleeping, the probability of a camera trap 

detecting an animal is zero due to the animal’s immobility (Nakashima, Yajima and Hongo, 
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2021). The REST model requires animal movements to represent the staying time of an animal’s 

activity phases and consequently these periods of inactivity will bias the REST model’s density 

estimates. A solution to this is to simply censor the research period to not include phases when 

an animal is inactive if the movement patterns of the species can be determined. Recently, 

Rowcliffe et al., (2013) has used camera trap time-of-detection data to obtain species activity 

level. This model assumes that all individuals are active at the peak of the daily activity cycles 

which is true for only some species.  

3.3 CONSIDERATIONS WHEN USING THE REST MODEL 

 The REST model is likely to become a popular model for field work surveys. There have 

been two protocols that have been created to give practical application for the REST model 

(Hongo, Nakashima and Yajima, 2021; Nakashima, Yajima and Hongo, 2021). Here, I outline 

key questions to consider when choosing the REST model for ecological research: 

Is the REST model the correct model to use? There are seven additional models that do not 

require individual identification (N-mixture model, TTE method, STE method, IS method, 

USCR model, CT-DS, and REM) and one that uses individual identification (capture-recapture 

model). Make sure that the REST model is the best suited model for the ecological environment 

and study species. Low density species do not provide adequate staying times to obtain accurate 

REST model density estimates. Alternatively, the N-mixture model is better suited to target 

certain features, the STE method and IS method account for imperfect detection probability, and 

capture-recapture models produce better density estimates for species that have identifiable 

markings. 
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What should the design set-up be? Once you have chosen the REST model, choose one of the 

three design set-ups (stratified placement, random placement, and stratified-random placement) 

that are suitable. Cameras should be set up to optimize detection probability and be discrete in 

the environment. Do not use any equipment that does not match the natural environment.  

How long and how many cameras? The camera model should take continuous time-lapse 

photographs or videos and be resilient to environmental conditions. There must be enough 

cameras purchased to cover the entire sampling frame and the coefficient of variation should be 

less than 10% (Nakashima, Yajima and Hongo, 2021). Based on simulations, between 25-100 

cameras should be deployed, depending on the rarity of the species (Nakashima, Fukasawa, and 

Samejima 2018). Each camera’s battery life should be powerful enough to allow the cameras to 

be left unattended for the duration of the research period to reduce labour efforts. The research 

period can be decided based on the desired precision of the density estimates and the life-history 

of the species in question. Nakashima, Yajima and Hongo (2021) recommends the Browning's 

camera as a camera that is both cheap and effective.  

How should I analyze the data? Cameras can gather a lot of information. There have been 

multiple computer programs that sort out false-positive detections and organize the camera trap 

data (Norouzzadeh et al., 2018; Willi et al., 2019). The staying time of the species, the research 

period and the detection zone area must be calculated. Environmental covariates can be 

incorporated to measure species density at landscape scales (Nakashima, Hongo and Akomo-

Okoue, 2020).  
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3.4 CONCLUSION  

 Camera traps are becoming more widespread as a non-invasive way to study species. The 

REST model is a relatively new model that uses camera trap data to estimate species density. My 

work adds to our collective understanding of how the REST model works, and consequently 

allows it to be used with confidence to estimate species density.  
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APPENDIX 1: MATHEMATICAL MOMENTS 

Moments 

Moments is a quantitative measure of the shape of the function used to determine the 

mean, variance, and skewness. There are two types of moments, raw moments, and central 

moments. Central moments are centered around the mean whereas raw moments are centered 

around zero. Generally, the mean, E(x) (1st moment) is derived as a raw moment and the 

variance Var(x) (2nd moment) is derived as a central moment.  

Raw moments 

The nth raw moment 𝐸[𝑋C], where X is the parameter in question and f(x) and p(x) are 

the probability functions for continuous and discrete random variables (see appendix 2), 

respectively, is 

𝜇H[𝑋C] = 𝐸[𝑋C] =

⎩
⎪
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n=1 gives the mean or average of the function. 

Central moments 

The nth central moment 𝜇[𝑋C], where 𝜇 denotes the mean, is 

𝜇[𝑋C] = 𝐸[(𝑋 − 𝜇)C] =
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When n=2 it gives the variance of the function. Alternatively, the central variance is 

equal to 𝑉𝑎𝑟(𝑋) = 𝐸[𝑋"] − (𝐸[𝑋])", based on Pascal’s triangle rules. 

Joint moments 

Two independent random variables can be combined to give multivariant moments. 

Given random parameters X and Y, the joint mean is given as 

𝐸(𝑋𝑌) = 𝐸(𝑋) ∙ 𝐸(𝑌) 

and the variance is given as 

 𝑉𝑎𝑟(𝑋𝑌) = [𝐸(𝑋)]" ∙ 𝑉𝑎𝑟(𝑌) + [𝐸(𝑌)]" ∙ 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑋) ∙ 𝑉𝑎𝑟(𝑌) 
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APPENDIX 2: PROBABILITY DISTRIBUTIONS 

Probability distributions 

Probability distributions are used to determine the probability that a random event occurs 

x times. There are two types of distributions, probability density functions and probability mass 

functions. Probability density functions are used for continuous variables and probability mass 

functions are used for discrete variables.  

Poisson distribution 

The Poisson distribution is a specific probability mass density describing the probability 

of the rate of occurrence of an event in each time frame, where 𝜆 is the average rate E(x) and k is 

the number of events within the interval. The variance of the Poisson distribution is the same as 

the average, set equal to 𝜆.	𝐸(𝑥) = 𝑉𝑎𝑟(𝑥) = 𝜆. Poisson distributions are appropriate to use 

when the event occurrence rate is discrete, random, and constant. 

𝑃𝑀𝐹J&!' = 𝑃(𝑋 = 𝑘) =
𝜆7 ∙ 𝑒.5

𝑘!  
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APPENDIX 3: METHOD OF MOMENTS 

Gamma distribution 

Based on method of moments, it can be shown that in terms of 𝐸[𝑋] and 𝑉𝑎𝑟[𝑋] 

𝐸[𝑋] =
𝛼
𝛽 

𝑉𝑎𝑟[𝑋] =
𝛼
𝛽" 

If the mean 𝐸[𝑋] and variance 𝑉𝑎𝑟[𝑋] for the gamma distributions are given, then the 

corresponding 𝛼 and 𝛽 for the gamma distribution are given by  

𝛼 = <[L]!

N;$[L]
  

𝛽 =
𝐸[𝑋]
𝑉𝑎𝑟[𝑋] 

We use these parameters for determining the 95% quantile (also known as the inverse 

cumulative distribution function) of the distribution. Quantiles specify the value of the random 

variable such that the probability of the variable being less than or equal to the value equals the 

given probability.  

Weibull distribution 

Based on method of moments, it can be shown that in terms of E[X] and 𝑉𝑎𝑟[𝑋] 

𝐸[𝑋] = 𝛼Γ E1 +
1
𝛽F 
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𝑉𝑎𝑟[𝑋] = 𝜆" bΓ E1 +
2
𝛽F − cΓE1 +

1
𝛽Fde

"

 

𝛽 can be determined using computational functions to determine the optimal 𝛽 that will 

complete the equation 

𝑙𝑛Γ E1 +
2
𝛽F − 2𝑙𝑛Γ E1 +

1
𝛽F − ln

(𝑉𝑎𝑟[𝑋] + 𝐸[𝑋]") + 2 lnh𝐸(𝑋)i = 0 

And the corresponding 𝛼 is given by given by  

𝛼 =
𝐸[𝑋]

Γ E1 + 1
𝛽F

 

We use these parameters for determining the 95% quantile (also known as the inverse 

cumulative distribution function) of the distribution. Quantiles specify the value of the random 

variable such that the probability of the variable being less than or equal to the value equals the 

given probability.  

Log-normal distribution 

It can be shown that in terms of 𝐸[𝑋] and 𝑉𝑎𝑟[𝑋] 

𝐸[𝑋] = 𝑒OA
P!
"  

𝑉𝑎𝑟[𝑋] = 𝑒"∙OAP! ∙ h𝑒P! − 1i 

If the mean 𝐸[𝑋] and variance Var[X] for the lognormal distributions are given, then the 

corresponding 𝜇 and 𝜎" for the log-normal distribution are given by  
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𝜇 = log H
𝐸[𝑋]"

n𝑉𝑎𝑟[𝑋] + 𝐸[𝑋]"
I 

𝜎" = log E
𝑉𝑎𝑟[𝑋]
𝐸[𝑋]" + 1F 

We use these parameters for determining the 95% quantile (also known as the inverse 

cumulative distribution function) of the distribution. Quantiles specify the value of the random 

variable such that the probability of the variable being less than or equal to the value equals the 

given probability. 
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APPENDIX 4: WEIBULL AND GAMMA CONFIDENCE INTERVALS 
 
Gamma Distribution 

Table – 95% confidence intervals using the gamma distribution of the expected range for the density estimates to fall, with the middle line being the mean estimate of density 

(which is the same as true density). These estimates were derived for one month, three months, and one year at three different radius sizes at the speed of 0.1 m/s. 
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Table – 95% confidence intervals using the gamma distribution of the expected range for the density estimates to fall, with the middle line being the mean estimate of density 

(which is the same as true density). These estimates were derived for one month, three months, and one year at three different radius sizes at the speed of 1 m/s. 
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Table – 95% confidence intervals using the gamma distribution of the expected range for the density estimates to fall, with the middle line being the mean estimate of density 

(which is the same as true density). These estimates were derived for one month, three months, and one year at three different radius sizes at the speed of 5 m/s. 
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Weibull Distribution 

Table – 95% confidence intervals using the Weibull distribution of the expected range for the density estimates to fall, with the middle line being the mean estimate of density 

(which is the same as true density). These estimates were derived for one month, three months, and one year at three different radius sizes at the speed of 0.1 m/s. 
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Table – 95% confidence intervals using the Weibull distribution of the expected range for the density estimates to fall, with the middle line being the mean estimate of density 

(which is the same as true density). These estimates were derived for one month, three months, and one year at three different radius sizes at the speed of 1 m/s. 
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Table – 95% confidence intervals using the Weibull distribution of the expected range for the density estimates to fall, with the middle line being the mean estimate of density 

(which is the same as true density). These estimates were derived for one month, three months, and one year at three different radius sizes at the speed of 5 m/s. 

 

 

 

 

 

 

 
 


