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Abstract

Reconfigurable intelligent surfaces (RISs) have witnessed significant attention due to

their potential to improve the efficiency and coverage of wireless networks. RIS acts

as a smart mirror, which reconfigures the wireless propagation environment by tuning

the incoming waveform’s phase shift, amplitude, and polarization. To fully realize

the capabilities of RIS, the phase shifts should be efficiently optimized. Researchers

have considered optimization-based techniques to tackle the phase shift optimization

problem. However, such methods are complex in nature and are difficult to realize

for large-scale systems. To this end, deep reinforcement learning (DRL) has emerged

as a robust and powerful approach for optimizing wireless communication systems.

DRL learns from interacting with the environment without needing a labeled dataset,

enabling adapting to the dynamic changes in the communication environment. In

this work, we develop DRL frameworks to optimize full-duplex (FD) RIS-assisted

communication systems. FD communications are envisioned as one of the essential

technologies for future wireless communications. Incorporating RIS into FD systems

can efficiently establish a reliable communication system and resolve the co-channel

interference issue of FD systems.

To this end, this work first proposes a low-complexity DRL algorithm to optimize

the RIS phase shifts of a half-duplex (HD)-FD RIS-assisted communication system.

The proposed algorithm is the first of its kind, which tackles the optimization problem
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in the FD operating mode. It was shown that the proposed algorithm significantly

improves the rate compared to the non-optimized case in both operating modes and

reduces the computational complexity compared to the state-of-the-art algorithm

in the HD operating mode. Furthermore, the deployment of distributed RISs is

also investigated in this thesis. In particular, the preference of deploying single

or distributed RIS schemes is studied based on the links’ quality considering three

practical scenarios. The sum-rate maximization problem is considered subject to

transmit beamformers and RIS phase shifts of a FD RIS-assisted communication

system. To address the optimization problem, a two-step solution is proposed. First, a

closed-form solution is derived to optimize the beamformers. Second, a DRL algorithm

is proposed to optimize the RIS phase shifts. The proposed solution was shown to

efficiently outperform the conventional beamformers approximation and improve the

sum rate compared to the non-optimized RIS phase shifts. Finally, this work considers

a DRL approach for optimizing the discrete phase shifts of FD distributed RIS-assisted

system. The discrete phase shifts are considered to offer a feasible solution, since

the continuous phase shifts are infeasible to implement due to hardware limitations.

A deep Q-learning algorithm is developed to optimize the RIS phase shifts, along

with two mathematical beamformers derivations (i.e., closed-form and approximate).

The performance of the proposed algorithm is further assessed through extensive

simulations by considering two scenarios: the presence of the line-of-sight (LoS) link

and when it is blocked. It was shown that the proposed algorithm achieves promising

results compared to the ideal approach (the continuous baseline), which guarantees a

near-optimal performance. The complexity analysis for all proposed algorithms and

simulation results are provided to support these findings.
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Chapter 1

Introduction

1.1 Motivation and Background

As the sixth-generation (6G) mobile communications are advancing towards universal

standards, researchers are investigating the feasibility of deploying several future

services to fulfill the demands of wireless communications. The rapid growth of

connected devices has brought significant challenges to the capabilities of fifth-

generation (5G) wireless systems. 6G wireless networks are envisioned to provide

extreme data rates (peak data rates up to 1 tera bit per second (Tbps)), enhanced

spectral efficiency and coverage (the peak spectral efficiency can be increased up to 60

bps per Hertz (bps/Hz)), wide bandwidths (100 times the bandwidths in 5G networks),

ultra-low latency, and extremely high reliability to enable mission and safety-critical

applications [1, 2, 3]. To support such demands, new evolutionary technologies

are developed to support the next-generation of wireless communications. The

main potential technologies include reconfigurable intelligent surfaces (RISs), massive

multiple-input multiple-output (MIMO), cell-free massive MIMO, high-frequency based

technologies (i.e., terahertz band (THz) and visible light communications), full-duplex
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Fig. 1.1: 6G Spectrum decomposition and candidate applications. UM-MIMO and
D2D denote ultra massive MIMO and device-to-device technologies, respectively.

(FD) communication, and artificial intelligence [4, 1]. The spectrum decomposition,

its corresponding candidate applications for 6G networks are illustrated in Fig. 1.1.

Recently, RIS has emerged as a promising future transmission technique in wireless

communication systems. It consists of a two-dimensional array made up of low-

cost, nearly passive electromagnetic (EM) elements. It overcomes the probabilistic

nature of EM wave transmission. In particular, RISs provide an adaptive propagation

environment by tuning phase shift, amplitude, and polarization of the incoming

waveform. It enables controlling different characteristics of radio waves, such as

scattering, reflection, and refraction, which effectively enhances the signal quality and

boosts the wireless spectral efficiency by realizing a controllable environment. RISs
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have other unique features, such as providing an inherently full-duplex transmission

(not affected by receiver noise), having a full-band response, and operating with low

power consumption while providing relatively high energy efficiency. Moreover, RISs

are easy to deploy in diverse environments at a low-cost, which enables integrating

them into different application scenarios. For their above unique features, RISs are

envisioned as an important technology that plays a crucial role in 6G and beyond

wireless communications.

Figure 1.2 illustrates prospective use cases of RIS in future wireless networks. In

particular, RIS can be deployed to enhance the coverage and establish an improved

connection between the transmitter and the receiver when the direct link is blocked.

The RIS can also be deployed to enhance the physical layer security, where the reflected

signals can be added constructively at the legitimate receiver to improve its reception

power. The reflected signals can also be added destructively at the eavesdropper to

degrade the quality of its reception, which can potentially yield a secure transmission.

Furthermore, RIS can assist unmanned aerial vehicle (UAV) communications, where it

can be deployed on the ground or attached to UAVs to assist terrestrial communications

through exploiting the RIS reflection from the sky. RIS can be further deployed for

simultaneous wireless information and power transfer (SWIPT) applications, where

it tackles the low efficiency problem of the far-field power transfer and improves the

energy harvesting performance.

The current wireless systems use half-duplex (HD) communications through time

division duplex or frequency division duplex (FDD), in which the transmission and

reception are not performed simultaneously. On the other hand, FD communications

enable receiving a signal while also transmitting in the same frequency band. Due

to this fact, FD technology has the potential to double the spectral efficiency and

significantly increase the throughput of wireless communication systems [5]. FD

4
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Fig. 1.2: RIS sample use cases.

communications have a wide range of benefits in many use-cases such as bidirectional

communication, cooperative transmission, secure and cognitive radio applications [6].

The major challenge in FD is the residual self-interference (SI) from the transmit

antennas to the receive antennas. However, a wide range of SI mitigation techniques

were investigated and the FD feasibility has been experimentally demonstrated in

small-scale wireless communications environments. Another challenge that needs to

be addressed to successfully employ FD communications in 6G wireless systems is the

co-channel interference (CCI) [7].

With the aid of RISs, the FD communication systems can be realized as RISs achieve

high beamforming gain, suppress the CCI, and enhance multicasting performance.
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Recent studies have proven that FD-aided RIS systems always outperform the half-

duplex (HD) system despite the CCI. This is in sharp contrast with the conventional

system without RIS, where the FD operation is not always beneficial, especially when

the CCI is severe [8].

1.2 Literature Review

Due to the unique features of RIS, it has been thoroughly investigated in the recent

years from an optimization and performance analysis perspectives. The deployment

of RIS in various wireless applications has been considered including cognitive radio,

secure communications, sparse code multiple access, cell-free systems, and high-altitude

platform station (HAPS) [9, 10, 11, 12, 13, 14]. Most of the state-of-the-art works

focused on investigating the RIS capabilities in a HD operating mode [15, 16, 17].

However, incorporating RIS into FD communications is not well investigated, yet, and

is needed to fulfill the requirements of 6G applications. A number of existing works

have studied RIS-assisted FD wireless networks [18, 11, 19, 8]. In [18], the authors

developed a hybrid communication network which uses a FD decode-and-forward

relay and an RIS to assist the communication over wireless channels. The aim was

to maximize the minimum rate by optimizing the RIS phase shifts. To address the

optimization problem, a semi-definite relaxation approach was used. The results

proved that the SI at the relay is sufficiently suppressed due to the RIS deployment.

The authors in [11] investigated the resource allocation design for RIS-assisted FD

cognitive radio systems. To tackle the non-convex optimization problem, an iterative

block coordinate descent is used.

Furthermore, the work in [19] studied the beamforming optimization problem of an

RIS-assisted FD communication system. In particular, the sum-rate was maximized

6



by jointly optimizing the transmit beamforming and the RIS phase shifts using a

fast converging alternating optimization (AO) technique. The investigation of the

deployment of multi-RISs is studied in [8], where the authors considered the weighted

sum-rate maximization for multi-RIS-assisted FD system with hardware impairments.

An AO approach was proposed to obtain a sub-optimal solution, and the numerical

results clarified that multiple RISs can significantly improve the performance metric

under hardware impairments. The work in [20] further investigated the weighted sum

transmit power consumption minimization problem of an RIS-assisted FD system,

where an AO was proposed to solve the problem.

However, all the previous works on RIS-assisted FD communication systems used

AO-based approaches. Such approaches are generally complex and difficult to realize in

practical large scale systems. Moreover, AO approaches are considered sensitive to the

system parameters and it poses the need of prior relaxations requirements. To this end,

deep reinforcement learning (DRL) has emerged as a powerful and reliable approach

to optimize the RIS phase shifts by overcoming the practical implementation problems

of AO techniques. DRL algorithms enable addressing mathematically intractable

nonlinear problems directly based on learning via interaction with the environment.

In particular, the agent in DRL learns due to the feedback mechanism, where it gets

rewarded for the optimized actions and punished otherwise [21]. To this end, this

thesis focus on RIS-assisted FD communication systems, where DRL approaches are

proposed to tackle the formulated optimization problems.

1.3 Thesis Contributions and Outline

Motivated by the aforementioned discussions, this thesis contributes to the literature

by the following:
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• A low-complexity DRL algorithm is designed which optimizes the RIS phase

shifts, while significantly reducing the computational complexity for RIS-assisted

HD communication system [22].

• For the first time in the literature, DRL is considered to efficiently optimize the

RIS phase shifts in FD communication system. The proposed algorithm provides

a significant improvement in the rate compared to the non-optimized RIS phase

shifts [22].

• A closed-form solution is derived to optimize the transmit beamformers for single

and distributed RIS schemes, which provides a remarkable improvement in the

sum rate compared to state-of-the-art results [23].

• The RIS deployment problem is further studied in FD communication system

which answers the question of when the single RIS deployment scheme outperforms

the distributed RIS scheme, and vise versa [23].

• A practical DRL algorithm is proposed to optimize the discrete phase shifts

of a distributed RIS-assisted FD network, for the first time in the literature.

The proposed algorithm is shown to achieve promising results compared to the

continuous-baseline [24].

• The performance of the proposed algorithm is assessed through extensive

simulations, by considering two scenarios: the presence of the line-of-sight

(LoS) link and when it is blocked [24].

The rest of this thesis is organized as follows: Chapter 2 proposes a low-complexity

DRL algorithm for RIS-assisted wireless communication systems, where HD and FD

operating modes are considered. Chapter 3 investigates the RIS deployment schemes

(single versus distributed) in three practical FD scenarios and proposes a two-step

8



solution to solve the formulated optimization problem. Chapter 4 proposes a practical

DRL algorithm to optimize the RIS discrete phase shifts in distributed RIS-assisted

FD system. Finally, thesis conclusion and potential future developments are presented

in Chapter 5.
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Chapter 2

Deep Reinforcement Learning for

Optimizing RIS-Assisted HD-FD

Wireless Systems

2.1 Abstract

This chapter investigates the reconfigurable intelligent surface (RIS)-assisted multiple-

input single-output (MISO) wireless system, where both half-duplex (HD) and full-

duplex (FD) operating modes are considered together, for the first time in the literature.

The goal is to maximize the rate by optimizing the RIS phase shifts. A novel deep

reinforcement learning (DRL) algorithm is proposed to solve the formulated non-convex

optimization problem. The complexity analysis and Monte Carlo simulations illustrate

that the proposed DRL algorithm significantly improves the rate compared to the

non-optimized scenario in both HD and FD operating modes using a single parameter

setting. Besides, it significantly reduces the computational complexity of the downlink

HD MISO system and improves the achievable rate with a reduced number of steps
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per episode compared to the conventional DRL algorithm.

2.2 Introduction

Reconfigurable intelligent surfaces (RISs) have emerged as a promising paradigm to

fulfill the need of a smart and programmable wireless environment, and meet the

demands of future wireless networks [1, 2]. RIS consists of a two-dimensional array

of low-cost passive electromagnetic (EM) elements [3]. By overcoming the random

nature of EM wave propagation, RIS enables controlling different characteristics of

radio waves, such as scattering, reflection, and refraction. Consequently, it effectively

enhances the signal quality and boosts the wireless spectral efficiency by realizing a

controllable environment [4].

RIS-assisted multiple-input multiple-output systems have recently drawn significant

attention as a cost-effective solution to enhance the wireless transmission in both

half-duplex (HD) and full-duplex (FD) operating modes [5, 6, 7, 8, 9, 10]. In the

HD mode, systems require additional resources to receive and forward signals, which

results in a decreased spectral efficiency. In contrast, the FD mode has the potential

to significantly increase the throughput of wireless systems as it enables simultaneous

transmission and reception of signals in the same frequency band. However, this comes

at the cost of increased interference and implementation complexity. To this end, some

researchers are considering HD-FD transmission schemes that combine the advantages

of both HD and FD modes [11]. In [5] and [6], RIS-HD systems are optimized to

minimize the total transmit power. In [7], a joint optimization problem is considered

to maximize the achievable rate of an RIS-HD system. In [8] and [9], the sum-rate

and spectral efficiency of an RIS-FD system is maximized, respectively. In [10], the

weighted minimum rate is maximized for a multi-user RIS-FD system. Most of these
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works decoupled the optimization variables using alternating optimization algorithms,

which exhibit both loss of optimality and high computational complexity.

Deep learning has emerged as a powerful approach to optimize the RIS phase shifts

by tackling the practical implementation problems of the optimization techniques

[12, 13]. In particular, deep reinforcement learning (DRL) is a potential candidate

to optimize the RIS phase shifts without the need for offline training with a labeled

dataset. A few works have considered DRL approaches to optimize RIS-HD systems

[14, 15, 16]. The authors in [14] proposed an optimization-driven deep deterministic

policy gradient (DDPG) to minimize the access point’s transmit power. The sum-rate

maximization problem of a multi-user RIS-HD system was addressed in [15] using a

DRL algorithm. Furthermore, a conventional DRL algorithm is introduced in [16] to

maximize the received signal-to-noise ratio of the downlink RIS-HD multiple-input

single-output (MISO) system. To the best of the authors’ knowledge, utilizing DRL

for RIS-FD systems has not yet been discussed in the literature.

In this chapter, a novel DRL algorithm is proposed to optimize the phase shifts of

an RIS-assisted HD-FD MISO system. The contributions are summarized as follows:

• A DRL algorithm is proposed which achieves promising results in the HD and

FD operating modes without the need of additional parameters tuning.

• The proposed DRL algorithm provides a significant improvement in the rate

compared to the non-optimized RIS phase shifts in the HD and FD operating

modes.

• It significantly reduces the computational complexity, while providing a considerable

rate improvement with a reduced number of required steps for each episode,

compared to the conventional DRL in [16] for the HD mode.

• The complexity analysis and Monte Carlo simulations support the findings.
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The remainder of this chapter is organized as follows: Section 2.3 presents the

system model and problem formulation for the RIS-assisted HD-FD MISO system.

The proposed DRL algorithm is introduced in Section 2.4, and its computational

complexity is analyzed in Section 2.5. Simulation results and conclusions are presented

in Sections 2.6 and 2.7, respectively.

2.3 System Model and Problem Formulation

Consider an RIS-assisted HD-FD MISO system as illustrated in Fig. 2.1, where S1

and S2 represent the base station (BS) and user equipment (UE), respectively. Both

the BS and UE are equipped with M transmit antennas and one receive antenna. The

UE sometimes operates in a HD mode, where it only receives information from the

BS (i.e., downlink HD mode), while other times the UE and BS transmit and receive

information simultaneously in the same frequency band (i.e., FD mode). Henceforth,

Ω denotes the operating mode, where Ω ∈ {HD,FD}. The RIS is composed of N

programmable reflecting elements, which assists the communication between S1 and

S2 by optimizing the RIS phase shifts through an RIS controller. Given ī = 3 − i

∀ i = 1, 2, let HSīR ∈ CN×M , hH
RSi
∈ C1×N , and hH

SīSi
∈ C1×M denote the channel

coefficients of the Sī-RIS, RIS-Si, and Sī-Si links, respectively. The self-interference

(SI) channels, which are involved in the FD mode at the BS and UE are denoted by

hH
SiSi
∈ C1×M .

At the receiver-side, the signal is received from the direct and reflected links of the

BS and RIS, respectively. Thus, the noisy received signals of the downlink HD and

FD operating modes are respectively expressed as

yΩi =
(
hH
RSi

ΘHSīR︸ ︷︷ ︸
Reflected signal

+ hH
SīSi︸︷︷︸

Direct signal

)
wīxī + n, i = 2, Ω = HD, (2.1)
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and

yΩi =
(
hH
RSi

ΘHSīR︸ ︷︷ ︸
Reflected signal

+ hH
SīSi︸︷︷︸

Direct signal

)
wīxī + hH

SiSi
wixi︸ ︷︷ ︸

Residual SI

+n, i = 1, 2,Ω = FD, (2.2)

where n ∼ CN (0, σ2) denotes the additive white complex Gaussian noise with zero-

mean and variance σ2. The diagonal matrix Θ = diag
(
ejφ1 , · · · , ejφn , · · · , ejφN

)
∈

CN×N represents the phase shifts of the RIS, where φn ∈ [−π, π) is the phase shift

introduced by the n-th reflecting element. The source node, Si, employs an active

beamforming wi ∈ CM×1 to transmit the information signal, xi, with E{|xi|2} = 1,

where E{·} denotes the expectation operation. The third term in (2.2) represents the

SI introduced by the FD mode operation.

The achievable rate and sum-rate of the downlink HD and FD operating modes,

measured in bit per second per Hertz (bps/Hz), are respectively given as

RΩ = log2

1 +

∣∣∣(hH
RSi

ΘHSīR + hH
SīSi

)
wī

∣∣∣2
σ2

 , i = 2, Ω = HD, (2.3)

and

RΩ =
2∑

i=1

log2

1 +

∣∣∣(hH
RSi

ΘHSīR + hH
SīSi

)
wī

∣∣∣2
|hH

SiSi
wi|2 + σ2

 , Ω = FD. (2.4)

Here, the goal is to maximize the rate of the RIS-assisted HD-FD MISO system by

optimizing the RIS phase shifts. Thus, the resulting optimization problem can be

expressed as
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RIS

FD Mode

HD Mode

Fig. 2.1: RIS-assisted HD-FD MISO system.

(P1) max
φ

RΩ, Ω ∈ {HD,FD} (2.5a)

s.t. −π ≤ φn ≤ π, n = 1, · · · , N. (2.5b)

It is worth noting that the conventional DRL algorithm in [16] has been proposed

to solve the non-convex problem (P1) only when Ω = HD, and suffers from high

computational complexity. Moreover, the DRL for the FD operating mode has not yet

been investigated in the literature.

2.4 Proposed DRL Algorithm

This section proposes a novel DRL algorithm to solve (P1) for the RIS-assisted HD-FD

MISO system. To deal with (P1), the RIS phase shifts are optimized using the proposed

DRL algorithm. Then, for a given optimized Θ, the transmit beamformers, wī, are

optimized using a closed and semi-closed form solutions for the HD and FD operating
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modes, respectively. The optimization problem is solved in an iterative fashion until

the optimized Θ and wī converge.

2.4.1 Beamforming Design for a Given Θ

The optimal beamforming vector for the HD operating mode is calculated using the

maximum ratio transmission approach, whereas a semi-closed optimal solution of the

FD beamforming vectors is given in [8]. Consequently, for a given optimized Θ, the

optimal beamforming vectors of the HD and FD modes, wī, are respectively given as

w†
ī
=
√
Pmax

(
hH
RSi

ΘHSīR + hH
SīSi

)H∣∣∣∣∣∣(hH
RSi

ΘHSīR + hH
SīSi

)∣∣∣∣∣∣ , i = 2, Ω = HD, (2.6)

and

w†
ī
= (δhSīSī

hH
SīSī

+ v†I)−1B, i = 1, 2, Ω = FD, (2.7)

where Pmax is the maximum transmitted power of Sī, I is the identity matrix, and v†

is the optimal dual Lagrangian variable associated with the power constraint that is

found by performing a bisection search over the interval
[
0,
√
BTB/

√
Pmax

]
. Here, B

and δ are given as

B ≜
1

b̃i

(
1 +

bi
|hH

SīSī
w̃ī|2 + σ2

)
hīh

H
ī w̃ī, (2.8)

and

δ ≜
bi

(
|hH

ī w̃ī|2 + b̃i

)
b̃i

(
|hH

SīSī
w̃ī|2 + σ2

)2 , (2.9)

where bi ≜ |hH
i wi|2, b̃i ≜ |hH

SiSi
wi|2 + σ2, hī ≜ HH

SīR
ΘHhRSi

+hSīSi
, and w̃ī is a given

feasible point.
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2.4.2 Phase Shift Design Based on the Proposed DRL Algorithm

2.4.2.1 Problem Transformation

The RIS controller represents the DRL agent, while the RIS-assisted HD-FD MISO

communication system represents the DRL environment. Thus, the state space, action

space, and reward for the proposed DRL algorithm are defined as follows:

• State space: The state space at time step t, st ∈ R1×(N+1), includes φn∀ n =

1, · · · , N and the corresponding RΩ at time step t− 1, and is defined as

st =
[
RΩ,(t−1), φ

(t−1)
1 , · · · , φ(t−1)

n , · · · , φ(t−1)
N

]
. (2.10)

• Action space: Since (P1) aims to optimize the RIS phase shifts, the action space

at time step t, at ∈ R1×N , is expressed as

at =
[
φ
(t)
1 , · · · , φ(t)

n , · · · , φ
(t)
N

]
. (2.11)

• Reward: As the target of (P1) is to maximize RΩ, the reward is expressed as

rt = RΩ,(t), Ω ∈ {HD,FD}. (2.12)

At each time step t, the agent receives the current state st from the environment,

takes an action at based on a policy π̃, and receives a scalar reward rt. Then, a new

state st+1 is obtained. The return of a state is defined as the total discounted reward

from time step t onwards, and is given by Rt =
∑∞

k=t γ
k−tr(sk, ak), where γ ∈ (0, 1] is

the DRL discount factor. The goal is to learn a policy that maximizes the expected

cumulative discounted reward from the start state, as: J(π̃) = E [R1|π̃]. The DDPG,

which combines the benefits of value-based and policy-based approaches [17], is used to
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learn the optimal policy for a continuous at. In particular, the DDPG algorithm aims

at maximizing the Q-value of (s, a) pair by training a deep neural network (DNN),

defined as

Qπ̃θ(s, a) = Eπ̃θ

[
R1|s1 = s, a1 = a

]
, (2.13)

where θ represents the DNN parameters, as well as finding the optimal policy by

performing the gradient ascent of

∇θJ(π̃θ) = Eπ̃θ

[
Qπ̃θ(s, a)∇θlogπθ(a|s)

]
. (2.14)

The DDPG algorithm is based on the actor-critic technique, which consists of two

DNN models: actor and critic. The actor, µ(st|θµ), represents the policy network

that takes the state as an input for a given θµ and outputs at = µ(st|θµ) + ξ, where

ξ is a random process that is added to the actions for exploration. ξ is modeled as

complex Gaussian process with zero mean and variance 0.1. The critic, Q(st, at|θq),

represents the network that evaluates the actions. It takes st and at as an input for

a given θq, and outputs the Q-value. The DDPG algorithm utilizes the concept of

experience replay with memory D to reduce the correlation of the training samples

by randomly sampling minibatch transitions, NB. Moreover, target networks are

introduced to stabilize the learning process. The target networks are generated by

making a copy of the actor and critic evaluation NNs, µ′(st|θµ′) and Q′(st, at|θq′), and

are used to calculate the corresponding target values, yt in (2.15). The actor and

critic NN parameters, θµ and θq, are updated using the stochastic gradient descent

(SGD) from (2.16) and policy gradient from (2.17), respectively. Finally, the target

NN parameters are updated using a soft update coefficient, τ , based on (2.18) and

(2.19). After T steps of each episode, the agent’s performance saturates and it outputs
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Fig. 2.2: The proposed DRL algorithm structure.

the optimized Θ. The structure of the proposed DRL algorithm is illustrated in Fig.

2.2 and summarized in Algorithm 1.

2.4.2.2 Proposed DNN Design

As can be seen from Fig. 2.2, the proposed DRL algorithm contains four NNs (i.e.,

two NNs for the actor and two NNs for the critic). A novel design is proposed for

the four NNs, which consists of the input layer, two hidden layers and the output

layer. The two hidden layers are a combination of one convolutional layer and one

feed-forward (FF) layer with a flatten layer between them. The input layer of the

actor and critic networks contains N + 1 neurons (i.e., size of st) and 2N + 1 neurons

(i.e., concatenation of st and at), respectively. The output layer of the actor and critic

networks contains N neurons (i.e., size of at) and one neuron (i.e., scalar Q-value),

respectively. The convolutional hidden layer for each of the actor and critic networks

uses the ReLU activation function since it does not suffer from vanishing or exploding

gradient problems. In contrast, the FF hidden layer uses the softmax activation

function to obtain probabilistic values for all inputs.
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Algorithm 1 Proposed DRL algorithm.

Initialize: θµ and θq with random weights, D, γ, τ , and learning rate α;
Set: θµ′ ← θµ and θq′ ← θq;
1: repeat for K episodes:
2: Collect the channels of the k-th episode based on Ω;
3: Randomly initialize φn ∀ n = 1, · · · , N to obtain the initial state;
4: if Ω = HD then
5: Calculate wī using (2.6);
6: else
7: Calculate wī using (2.7);
8: end if
9: Initialize ξ ∼ CN (0, 0.1);
10: repeat for T steps:
11: Obtain at = µ(st|θµ) + ξ from the actor network and reshape it;
12: Repeat Lines #4-8;
13: Observe the new state, st+1, given at;
14: Store (st, at, rt, st+1) in D;
15: When D is full, sample a minibatch of NB transitions randomly

(sj, aj, rj, sj+1) from D;
16: Compute the target value using target networks:

yj = rj + γQ′(sj+1, µ
′(sj+1|θµ′)|θq′); (2.15)

17: Update the critic by minimizing the loss using SGD:

L =
1

NB

∑
j

(yj −Q(sj, aj|θq))
2 ; (2.16)

18: Update the actor using the policy gradient:

∇θµ =
1

NB

∑
j

∇aQ(s, a|θq)|s=sj ,a=µ(sj)∇θµµ(s|θµ)|sj ; (2.17)

19: Update the target NNs through soft update:

θq′ ←− τθq + (1− τ)θq′ , (2.18)

θµ′ ←− τθµ + (1− τ)θµ′ . (2.19)

Output: Optimal action that corresponds to the optimal Θ.
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2.5 Complexity Analysis

The computational complexity of the conventional DRL algorithm in [16] and the

proposed DRL algorithm for Ω = HD is derived in terms of the number of NN

parameters CP required to be stored, real additions CA, and real multiplications CM.

The conventional DRL algorithm uses two hidden FF layers, and its computational

complexity is given as

CP =
3∑

i=1

(ηi + 1)ηi+1, (2.20)

CM =
3∑

i=1

ηiηi+1, (2.21)

CA =
3∑

i=1

ηiηi+1 +
3∑

i=1

ηi+1, (2.22)

where ηi is the number of neurons of the i-th layer. For simplicity, each activation

function is considered to cost one real addition.

Based on the NNs design in Section 2.4.2.2, the complexity for the proposed DRL

algorithm is given as

CP = (ηFη3 + Fz + 1)Fn + (η4 + 1)η3 + η4, (2.23)

CM = (Fz + η3)ηFFn + η3η4, (2.24)

CA = (Fz + η3 + 1)ηFFn + (η4 + 1)η3 + η4, (2.25)

where ηF = ⌊η1−Fz

Fs
+ 1⌋, with ⌊·⌋ as the floor operation, Fz is the filter size, Fn is the

number of filters, and Fs is the stride. The complexity reduction of using the proposed
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Fig. 2.3: Simulation setup.

DRL algorithm over the conventional one for Ω = HD is

Reduction = 1−

{
CActor

χ + CCritic
χ

}
Proposed{

CActor
χ + CCritic

χ

}
Conventional

, χ ∈ {P ,A,M}. (2.26)

2.6 Simulation Results

This section evaluates the performance of the proposed DRL algorithm for the RIS-

assisted HD-FD MISO system. The simulation setup is shown in Fig. 2.3, where the

considered parameters are dv = 2m and d1 = 50m. The distances of the BS-RIS

and UE-RIS links are calculated as d2 =
√
d20 + d2v m and d3 =

√
(d1 − d0)2 + d2v m,

respectively. The path loss (PL) at distance dj, ∀j ∈ {1, 2, 3} is modeled as PL =

PL0− 10ζlog10

(
dj
Dr

)
[16], where PL0 is the PL at a reference distance Dr and ζ is the

PL exponent, in which PL0 = −30 dB and Dr = 1m. As in [16], the BS-UE channels

are modeled as Rayleigh fading (assuming a blocking element between S1 and S2),

while the rest of the channels are Rician with a factor of 10. The PL exponents of

the BS-UE, BS-RIS, and UE-RIS channels are set to ζBU = 3 and ζBR = ζUR = 2,

respectively. The PL of the SI channels for the FD mode is −95 dB. The total transmit

power is P = 5dBm, while the noise power is σ2 = −80 dBm [16]. The antenna gain

at the BS and UE is 0 dBi, while the RIS gain is 5 dBi. The penetration loss in the
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TABLE 2.1: DDPG Parameters.

Parameter Value

(Fn, Fz, Fs) (4, 3, 2)
ηFF hidden layer 60

(K, T ) (500, 800)
NB 16
α 10−3

γ 0.95
τ 0.005
D 50000

BS-UE and RIS-UE links is 10 dB.

The parameters of the proposed DRL algorithm are summarized in Table. 2.1.

Furthermore, the design of the NNs is explained in Section 2.4.2.2, and its parameters

are provided in Table. 2.1. The Adam optimizer is used to update the parameters

of the NNs. To assess the performance of the proposed algorithm, it is compared

with the non-optimized scenario, referred to as random phase shifts. The conventional

DRL algorithm in [16] with T = 1000 is also included to show the superiority of the

proposed DRL algorithm in the HD mode. It is worth noting that the current form of

the conventional DRL algorithm can not be used to optimize the RIS phase shifts in

the FD mode.

Figure. 2.4 studies the impact of the RIS location on the system performance. It

is shown that the proposed DRL algorithm significantly improves the rate for both

operating modes, compared to the random phase shifts and without-RIS scenarios,

especially when the RIS is located closer to either the BS or the UE. On the other

hand, the random phase shifts scenario does not improve the rate when the RIS is

located relatively far from both BS and UE, compared to the scenario without-RIS.

Consequently, a proper optimization for the RIS phase shifts is needed to achieve a

satisfactory performance. Since the RIS should be deployed near the BS or UE to best
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Fig. 2.4: RIS deployment investigation.

benefit from the RIS reflection links, it is considered that d0 = 1m for the rest of the

chapter.

Figure. 2.5 illustrates the effect of increasing N on the system performance. As

can be observed, RΩ increases as N increases for all algorithms. The proposed DRL

algorithm provides an improvement of 4.6 bps/Hz and 8.5 bps/Hz in the achievable

rate and sum-rate of the HD and FD modes, respectively, compared to the random

phase shifts scenario at N = 40. It is worth noting that the gain gap increases as N

increases for the proposed DRL algorithm.

In the HD operating mode, the proposed DRL algorithm improves the achievable

rate performance by 1.4 bps/Hz and 0.6 bps/Hz at N = 20 and N = 40, respectively,

when compared to [16], as depicted in Fig. 2.5. Moreover, as shown in Fig. 2.6, the

proposed DRL algorithm in the HD mode (with T = 800 steps) significantly reduces

the computational complexity of each NN in the range of 94% to 86% for the practical

case of N = 20 to 60, respectively, compared to conventional DRL in [16] (with

T = 1000 steps). The proposed algorithm achieves a significant complexity reduction
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Fig. 2.5: The impact of varying N on the system performance.

percentage through proposing a novel and simpler NN along with hyperparameter

tuning and optimized DRL configuration. Although the complexity reduction seems

to decrease as N increases, it saturates at 63% for a certain large value of N , as seen

from the asymptotic complexity bound in Fig. 2.7.

Finally, the proposed DRL algorithm provides a significant improvement in the

rate for both operating modes, compared with the random phase shifts scenario.

Besides, with a 20% reduction in the number of required steps when compared with

the conventional DRL algorithm, the proposed DRL algorithm guarantees a faster

convergence and improves the rate with lower computational complexity for each of

the four NNs.

2.7 Conclusion

This chapter considered DRL for the rate maximization problem of the RIS-assisted

HD-FD MISO system, for the first time in the literature. With a single parameter
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setting, the proposed DRL algorithm optimized the RIS phase shifts for both HD

and FD operating modes. A novel DNN structure was proposed to learn the optimal

policy of the proposed DRL algorithm. Compared to the non-optimized scenario, the

proposed DRL algorithm significantly improved the achievable rate and sum-rate for

the HD and FD operating modes, respectively. Compared to the conventional DRL

algorithm in HD mode, the proposed DRL algorithm saved 20% of the required steps

per episode and achieved up to 1.4 bps/Hz rate improvement with up to 94% reduction

in the computational complexity. Future works can consider extending the proposed

DRL algorithm to optimize the multi-user scenario.
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Chapter 3

Deep Reinforcement Learning for

RIS-Assisted FD Systems: Single or

Distributed RIS?

3.1 Abstract

This chapter investigates reconfigurable intelligent surface (RIS)-assisted full-duplex

multiple-input single-output wireless system, where the beamforming and RIS phase

shifts are optimized to maximize the sum-rate for both single and distributed RIS

deployment schemes. The preference of using the single or distributed RIS deployment

scheme is investigated through three practical scenarios based on the links’ quality.

The closed-form solution is derived to optimize the beamforming vectors and a novel

deep reinforcement learning (DRL) algorithm is proposed to optimize the RIS phase

shifts. Simulation results illustrate that the choice of the deployment scheme depends

on the scenario and the links’ quality. It is further shown that the proposed algorithm

significantly improves the sum-rate compared to the non-optimized scenario in both
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single and distributed RIS deployment schemes. Besides, the proposed beamforming

derivation achieves a remarkable improvement compared to the approximated derivation

in previous works. Finally, the complexity analysis confirms that the proposed DRL

algorithm reduces the computation complexity compared to the DRL algorithm in the

literature.

3.2 Introduction

Recently, the reconfigurable intelligent surfaces (RISs) technology has been proposed

as a key enabler to meet the demands of future technologies [1, 2]. RIS is a meta-

surface consisting of low-cost passive elements that can be programmed to turn the

random nature of wireless channels into a partially deterministic space to improve

the propagation of wireless signals [3]. In addition to the RIS technology, full-duplex

(FD) transmission has been regarded as a potential approach to increase the spectral

efficiency of wireless systems by enabling simultaneous transmission and reception

[4, 5].

Incorporating RIS into FD communications can provide new degrees of freedom,

facilitating ultra spectrum-efficient communication systems [6]. A number of existing

works have studied RIS-assisted FD wireless networks [7, 8, 9]. The works in [7, 8]

considered alternating optimization (AO) techniques to optimize the RIS phase shifts

in FD systems. The authors in [9] considered a multi RIS-assisted FD system to

maximize the weighted system sum-rate, where the non-convex problem was addressed

using the AO approach.

The above works that used AO techniques exhibit both loss of optimality and

high computational complexity. Deep reinforcement learning (DRL) has emerged as

a powerful approach to optimize the RIS phase shifts by overcoming the practical
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implementation problems of AO techniques. Furthermore, DRL approaches enable

addressing mathematically intractable nonlinear problems directly, without the need

for prior relaxations requirements. The work in [10] proposed a DRL algorithm to

maximize the rate, where both half-duplex and FD operating modes are considered

together. However, only a single RIS deployment was investigated. The rapid changes

in dynamic environments can obliterate/annihilate the RIS deployment benefits when

the corresponding link is blocked/weak. In such cases, deploying distributed power-

efficient RISs can cooperatively enhance the coverage of the system by providing

multiple paths of received signals. Moreover, the computational complexity can be

further reduced. To the best of the authors’ knowledge, this work is the first of its

kind, which utilizes DRL for investigating the performance of single and distributed

RIS deployment schemes in FD multiple-input single-output (MISO) systems in the

literature. Our contributions are summarized as follows:

• Three practical scenarios are considered to investigate the sum-rate performance

of deploying a single or distributed RIS in an FD-MISO system.

• A closed-form solution is derived to optimize the transmit beamformers, which

provides a remarkable improvement in the sum-rate compared to the state-of-

the-art approximated derivation in [10].

• An improved DRL algorithm is proposed to optimize the RIS phase shifts for both

deployment schemes, which achieves a significant improvement in the sum-rate

compared to the non-optimized scenarios.

• The proposed DRL algorithm provides a considerable reduction in the computational

complexity compared to the DRL algorithm in [10].

• The complexity analysis and Monte Carlo simulations support the findings.
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The rest of this chapter is organized as follows: Section 3.3 presents the system

model and problem formulation. The proposed DRL algorithm is introduced in

Section 3.4. Simulation results and conclusions are presented in Sections 3.5 and 3.6,

respectively.

3.3 System Model and Problem Formulation

Consider an RIS-assisted FDMISO system, where single and distributed RIS deployment

schemes are investigated. S1 and S2 represent the base station (BS) and user equipment

(UE), respectively. Both the BS and UE are equipped with M transmit antennas and

one receive antenna. The r-th RIS, Rr, consists of Nr programmable reflecting elements.

Note that the total number of elements for both deployment schemes is defined as

N = NrΛ to ensure the same number of RIS elements for all scenarios, where Λ is

the number of RISs. As illustrated in Fig. 3.1, three scenarios are investigated based

on the links’ quality. In the first scenario, the single and distributed RIS deployment

schemes have strong line-of-sight (LoS) components in all links. Scenarios 2 and 3

assume that the links R1-S2 and S1-R2 are weak due to obstacles, respectively. It is

worth noting that from a practical point of view, it is more probable that the longer

distance links (i.e., R1-S2 and S1-R2) may experience blockage since the short-distance

links are planned deployment links. It also ensures a fair comparison between the two

deployment schemes as the RIS benefits are embraced in all scenarios.

Given ī = 3− i ∀ i ∈ {1, 2}, let HSīRr ∈ CNr×M , hH
RrSi
∈ C1×Nr , and hH

SīSi
∈ C1×M

denote the channel coefficients of the Sī-Rr, Rr-Si, and Sī-Si links, respectively. The

self-interference (SI) channels of both the BS and UE are denoted by hH
SiSi
∈ C1×M .

Hence, the noisy received signal, yi, is
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(a) Scenario 1

Single Distributed
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Fig. 3.1: RIS-assisted FD MISO system.

yi =
(∑

r∈Λ

hH
RrSi

ΘrHSīRr︸ ︷︷ ︸
Reflected signal

+ hH
SīSi︸︷︷︸

Direct signal

)
wīxī + hH

SiSi
wixi︸ ︷︷ ︸

Residual SI

+n,

i = 1, 2, Λ =


1 Single RIS

2 Distributed RIS,

(3.1)

where n ∼ CN (0, σ2) denotes the additive white complex Gaussian noise with zero-

mean and variance σ2. The diagonal matrix Θr = diag
(
ejφr1 , · · · , ejφrn , · · · , ejφrNr

)
∈
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CNr×Nr represents the phase shifts of Rr, where φrn ∈ [−π, π) is the phase shift

introduced by the n-th reflecting element. The source node, Si, employs an active

beamforming wi ∈ CM×1 to transmit the information signal, xi, with E{|xi|2} = 1,

where E{·} denotes the expectation operation.

Based on (3.1), the received signal-to-interference plus-noise ratio, γi, and achievable

rate, Ri, measured in bit per second per Hertz (bps/Hz), are respectively given as

γi =

∣∣∣(∑r∈Λ h
H
RrSi

ΘrHSīRr + hH
SīSi

)
wī

∣∣∣2
|hH

SiSi
wi|2 + σ2

, i = 1, 2, Λ =


1 Single RIS

2 Distributed RIS,

(3.2)

and

Ri = log2 (1 + γi) . (3.3)

The objective is to maximize the sum-rate by optimizing the beamformers and RIS

phase shifts, and is formulated as

(P1) max
wi, Θ̄

2∑
i=1

Ri (3.4a)

s.t. −π ≤ φrn ≤ π, n = 1, · · · , Nr, (3.4b)

||wi||2 ≤ Pmax, i = 1, 2. (3.4c)

Here, Θ̄ = diag
(
Θ1,Θ2

)
is a block matrix whose diagonal entries contain the phase

shifts of the two RISs for the distributed RIS, and Θ̄ = diag
(
Θ1) when a single RIS is

considered. Pmax is the maximum transmitted power of Si.
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It is worth noting that (P1) is challenging to solve due to the non-convexity of

the objective function and constraints. Thus, an efficient solution is proposed which

decouples the problem into two sub-problems.

3.4 Proposed Solution

This section proposes a novel algorithm to solve (P1). First, a closed-form solution is

derived to optimize the transmit beamformers, w∗
i , for a fixed Θ̄. Then, the RIS phase

shifts, Θ̄, are obtained using the proposed DRL algorithm. This process is repeated

until Θ̄
∗
and w∗

i converge. In what follows, more details about the two-step solution

are provided.

3.4.1 Beamformers Optimization for a Given Θ̄

The mutual information I(s; y) with an arbitrary input probability distribution p(s)

for a channel with input s, output y, and a transition probability of p(y|s) is given by

I(s; y) = max
q(s|y)

E
[
log (q(s|y))− log (p(s))

]
, (3.5)

where the optimal q∗(s|y) is the posterior probability [8], and is expressed as q∗(s|y) =
p(s)p(y|s)

p(y)
≜ p(s|y). Based on (3.5), the achievable rate of Si is

Ri = max
q(si|yī)

E
[
log (q(si|yī))− log (p(si))

]
, (3.6)

where the input probability distribution p(si) is CN (0, 1) and the channel transition

probability p(yī|si) is obtained from (3.1). According to [11], p(si|yī) follows the

complex Gaussian distribution of CN (f ∗
ī yī,Σ

∗
ī ). Σ

∗
ī is defined as Σ∗

ī = 1− f ∗
ī bī, where

f ∗
ī and bī are respectively expressed as
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f ∗
ī =

bī
b2
ī
+ |hH

SīSī
wī|2

, (3.7)

and

bī =

∣∣∣∣∣
(∑

r∈Λ

hH
RrSī

ΘrHSiRr + hH
SiSī

)
wi

∣∣∣∣∣
2

. (3.8)

To this end, (3.4a) in (P1) can be re-expressed as

max
wi, Θ̄, fi,Σi

2∑
i=1

E
[
log(p(si|yī))− log(p(si))

]
. (3.9)

Let αī =
∑

r∈Λ hH
RrSī

ΘrHSiRr + hH
SiSī

and bī = |αīwi|2. The expectation term in (3.9)

is calculated as

E
[
log(CN (fīyī,Σī))− log(CN (0, 1))

]
= exp

(
fiyī +

Σī

2

)
− exp

(
1

2

)
= −1

2
fī|αīwi|2 +wi

(
fīαī + fih

H
SiSi

)
. (3.10)

Furthermore, let βī = fīαī + fih
H
SiSi

. Thus, (3.10) can be defined as a convex

quadratically constrained quadratic program:

− 1

2
fī|αīwi|2 +wiβī, (3.11)

where its solution can be derived as [12]

w∗
i = (v∗ + fīαīα

H
ī )

−1βī. (3.12)

Here, v∗ is the optimal dual Lagrangian variable associated with the power constraint

and is found by performing a bisection search over the interval

[
0,
√

βT
ī βī/

√
Pmax

]
[12].
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3.4.2 Phase Shift Optimization for a Given wi and wī

Model-free RL can be employed to address a decision-making problem by learning

the optimal solution in dynamic environments. Therefore, the RIS-assisted FD

MISO system represents the DRL environment and the RIS controller represents

the DRL agent. At each time step t, the agent observes the current state, st, from the

environment, takes an action, at, based on a policy, π̃, receives a reward, rt, of executing

at, and transitions to a new state st+1. The key elements of DRL are defined as follows:

The state space at time step t, includes φrn∀ n = 1, · · · , Nr and the corresponding∑2
i=1 Ri at time step t− 1, i.e., st=

[∑2
i=1R

(t−1)
i , φ

(t−1)
r1 , · · · , φ(t−1)

rn , · · · , φ(t−1)
rNr

]
. The

action space at time step t is expressed as at =
[
φ
(t)
r1 , · · · , φ

(t)
rn, · · · , φ(t)

rNr

]
, and the

reward at time step t is rt =
∑2

i=1R
(t)
i .

The goal of a RL agent is to learn a policy that maximizes the expected cumulative

discounted reward from the start state, as: J(π̃) = E [R1|π̃]. The policy gradient based

algorithms can be used to learn the optimal policy for continuous at. In particular, the

proposed algorithm aims at maximizing the return by training deep neural networks

(DNN) to approximate the Q-value function. It is based on the actor-critic approach,

which consists of two DNN models: actor, µ(st|θµ), and critic, Q(st, at|θq), where θ

represents the DNN parameters. The actor takes the state as an input and outputs

at = µ(st|θµ) + ξ, where ξ is a random process that is added to the actions for

exploration, representing the policy network. The critic takes st and at as an input

and outputs the Q-value, representing the evaluation network [13].

At the initialization stage, four networks are generated, i.e., target and evaluation

DNN. The target networks are generated by making a copy of the actor and critic

evaluation NNs, µ′(st|θµ′) and Q′(st, at|θq′). The experience replay with memory D

is built to reduce the correlation of the training samples. During each episode, all

the channel state information is obtained. Then, the agent takes at generated by the
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actor network, calculates the rt, and transitions to st+1. The experience is then stored

(st, at, rt, st+1) into D, and the critic evaluation network randomly samples a minibatch

transitions, NB, to calculate the target value yj, as

yj = rj + ρQ′(sj+1, µ
′(sj+1|θµ′)|θq′), (3.13)

where ρ ∈ (0, 1] is the discount factor. The actor and critic NN parameters, θµ and θq,

are updated using the stochastic gradient descent and policy gradient, respectively, as

L =
1

NB

∑
j

(yj −Q(sj, aj|θq))
2 , (3.14)

and

∇θµ =
1

NB

∑
j

∇aQ(s, a|θq)|s=sj ,a=µ(sj)∇θµµ(s|θµ)|sj . (3.15)

Finally, the target NN parameters are updated using a soft update coefficient, τ , as

θq′ ←− τθq + (1− τ)θq′ , (3.16)

and

θµ′ ←− τθµ + (1− τ)θµ′ . (3.17)

This process is repeated for K and T until convergence is reached. The structure of

the proposed DRL algorithm is illustrated in Fig. 3.2 and summarized in Algorithm 1.

3.4.3 Proposed DNN Design

The proposed DNN models are designed as feedforward fully connected NNs. The

proposed algorithm contains four NNs (actor and critic for each evaluation and target

network). Each NN has an input layer, two hidden layers and output layer, as shown
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Algorithm 1 Proposed DRL algorithm.

Initialize: θµ and θq with random weights, D, ρ, τ , learning rate ν, θµ′ ← θµ and
θq′ ← θq;

1: repeat for K episodes:
2: Collect the channels of the k-th episode;
3: Randomly initialize φrn ∀ n = 1, · · · , Nr;
4: Calculate wī using (3.12);
5: Initialize ξ ∼ CN (0, 0.1);
6: repeat for T steps:
7: Obtain at = µ(st|θµ) + ξ from the actor network and reshape it;
8: Repeat Line #4;
9: Observe the new state, st+1, given at;
10: Store (st, at, rt, st+1) in D;
11: When D is full, sample a minibatch of NB transitions (sj, aj, rj, sj+1)

randomly from D;

12: Compute the target value from (3.13);
13: Update the critic using (3.14);
14: Update the actor using (3.15);
15: Update the target NNs using (3.16) and (3.17);

Output: Optimal action that corresponds to the optimal Θ̄
∗
.

in Fig. 3.2. The input layer of the actor and critic networks contains N + 1 neurons

(i.e., size of st). The input of the actor is passed to two hidden layers, each having ψi

neurons, where ψi is the number of neurons of the i-th layer. On the other hand, the

input of the critic network is passed to the first hidden layer that is concatenated with

at (i.e., size of ψi +N), and then passed to the second hidden layer. The two hidden

layers for each of the actor and critic networks use the ReLU activation function

whereas the output layer of the actor network uses the tanh activation function. The

output layer of the actor and critic networks contains N neurons (i.e., size of at) and

one neuron (i.e., Q-value), respectively.
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Fig. 3.2: The proposed DRL algorithm structure.

3.4.4 Complexity Analysis

The computational complexity of the proposed DRL algorithm is analyzed in terms of

the number of NN parameters CP required to be stored, real additions CA, and real

multiplications CM. It is worth noting that, for simplicity, each activation function

is considered to cost one real addition. Henceforth, the complexity for the proposed

DRL algorithm based on the NNs design is given as

CP = 2

(
3∑

i=1

(ψA
i + 1)ψA

i+1 +
3∑

i=1

(ψC
i + 1)ψC

i+1

)
, (3.18)

CM = 2

(
3∑

i=1

ψA
i ψ

A
i+1 +

3∑
i=1

ψC
i ψ

C
i+1

)
, (3.19)

CA = 2

(
3∑

i=1

ψA
i ψ

A
i+1 +

3∑
i=1

ψA
i+1 +

3∑
i=1

ψC
i ψ

C
i+1 +

3∑
i=1

ψC
i+1

)
, (3.20)

where the actor and critic networks are expressed through the superscripts A and C,

respectively. The complexity reduction of using the proposed DRL algorithm over the
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Single

Distributed

Fig. 3.3: Simulation setup.

algorithm in [10], where the computational complexity is presented in (2.24-2.25), for

the single RIS-assisted FD system is

Reduction = 1−

{
CA

χ + CC
χ

}
Proposed{

CA
χ + CC

χ

}
[10]

, χ ∈ {P ,A,M}. (3.21)

3.5 Simulation Results

Figure 3.3 illustrates the simulation setup, where the considered parameters are: dv1 =

dv2 = 2m and d1 = 50m. The distances between the links are: d11 =
√
d201 + d2v1m,

d12 =
√
d202 + d2v2 m, d21 =

√
(d1 − d01)2 + d2v1 m, and d22 =

√
(d1 − d02)2 + d2v2 m.

The path loss (PL) at distance dir is modeled as PL = PL0 − 10ζlog10

(
dir
Dr

)
[14],

where PL0 is the PL at a reference distance Dr and ζ is the PL exponent, in which

PL0 = −35.6 dB andDr = 1m. The channels are modeled as Rayleigh fading whenever

a blocking element exists. Otherwise, the channels are modeled as Rician with a factor

of 10. The PL exponents of the S1-S2, S1-Rr, and S2-Rr channels are set to ζBU = 4,

ζBR = 2.1, and ζUR = 2.2, respectively [9]. The PL of the SI channels is −95 dB. The

total transmit power is P = 15 dBm, while the noise power is σ2 = −80 dBm [7].

The parameters of the proposed DRL are as follows: T = 800, K = 500, NB = 16,
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Fig. 3.4: RIS deployment investigation.

νA = 0.0001, νC = 0.0002, decaying rate = 0.0001, ρ = 0.99, τ = 0.001, and D = 50000.

Both actor and critic networks use the Adam optimizer for updating the parameters.

The number of neurons of the hidden layers are, ψ1 = 100 and ψ2 = 45.

To validate the performance of the proposed algorithm, it is compared with the

non-optimized scheme, referred to as random phase shifts. Furthermore, it is compared

with the algorithm in [10] for the single RIS-assisted FD system to show the superiority

of the proposed beamforming derivations over the approximated derivations in [10].

To ensure a fair comparison, it is assumed that N is the same for both deployment

schemes. Hence, each RIS in the distributed scheme has half the number of elements

of the single scheme.

Figure 3.4 studies the RIS deployment problem in both single and distributed

RIS-assisted FD system. In the single RIS scheme, the sum-rate gradually increases

when the RIS gets closer to S1 or S2. Generally, the RIS is deployed near the BS to

best benefit from the RIS reflection links, ensuring a strong LoS link between the RIS
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Fig. 3.5: The impact of varying N on the system performance.

and BS. Therefore, in the distributed RIS scheme, two cases are considered: varying

d01 when d02 = 49m and varying d02 when d01 = 1m. As both RISs get near the

ends or if one is fixed near S1 and the other is near S2, the sum-rate increases. It is

shown that when the RIS is located relatively far from both S1 and S2 in the single

RIS scheme, the distributed RIS scheme significantly improves the sum-rate. This is

because deploying distributed RISs enables providing alternative paths when the other

RIS experiences a poor quality link. For the rest of the chapter, it is considered that

d01 = 1m and d02 = 49m.

Figure 3.5 illustrates the effect of increasing N on the system performance. Three

practical scenarios are considered to investigate the preference of using single or

distributed RIS schemes. In Scenario 1, the distributed and single RIS schemes achieve

a similar performance due to the strong LoS components (i.e., good quality links),

and N is the same in both schemes. In Scenario 2, the results illustrate that the
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distributed RIS system significantly outperforms the single RIS system when the

R1-S2 link is blocked/weak. In this case, the distributed RIS scheme has a higher

sum-rate since it compensates for the poor quality link by providing an alternative

path. On the other hand, if the link between R2-S2 is blocked/weak, as in Scenario 3,

the single RIS scheme outperforms the distributed RIS since the former has double the

number of elements compared to the latter. It is also worth noting that the proposed

DRL algorithm provides a significant improvement in the sum-rate for the single and

distributed RIS schemes compared to the random RIS phase shifts in all scenarios. The

performance of the studied scenarios provides important insights into the preference of

each deployment scheme based on the link conditions. Scenario 1 further points that

the deployment cost should be considered if both schemes yield similar performance,

as the required channel state information of the single RIS scheme is less than that of

the distributed RIS scheme.
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Fig. 3.6: Complexity reduction percentage versus N .

In the single RIS scheme, the proposed beamforming derivation improves the
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sum-rate performance in all scenarios, when compared to [10], as depicted in Fig. 3.5.

Moreover, as shown in Fig. 3.6, the proposed DRL algorithm provides a complexity

reduction percentage up to 40% for the range of N from 20 to 60 compared to the

DRL presented in [10], and it saturates at 57% when N is very large.

3.6 Conclusion

This chapter optimized the beamformers and RIS phase shifts to maximize the sum-rate

for both single and distributed RIS deployment schemes. Three practical scenarios were

considered to investigate the preference of using single or distributed RIS deployment

schemes. A closed-form solution is derived to obtain the optimal beamformers, and a

novel DRL algorithm is considered for the RIS phase shifts optimization. It was shown

that the superiority of a deployment scheme depends on the links’ quality. Compared

to the non-optimized scenarios, the proposed algorithm significantly improved the sum-

rate for both deployment schemes. The proposed DRL algorithm achieved up to 57%

complexity reduction compared to the DRL algorithm in the literature. Future works

may consider generalizing the proposed DRL by jointly optimizing the beamformers

and RIS phase shifts for multi-user systems.
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Chapter 4

Distributed RIS-Assisted FD

Systems with Discrete Phase Shifts:

A Reinforcement Learning

Approach

4.1 Abstract

This chapter studies the sum-rate maximization problem of a distributed reconfigurable

intelligent surface (RIS)-assisted full-duplex wireless system, where the availability

of finite-resolution phase shifts at the RIS is considered. The aim is to optimize the

transmit beamformers and RIS phase shifts, subject to the practical discrete phase shift

and power constraints. The optimization problem is decoupled into two sub-problems;

transmit beamforming and RIS phase shifts optimization. The transmit beamforming

problem is mathematically addressed using approximate and closed-form solutions,

while the discrete RIS phase shifts are optimized using a reinforcement learning (RL)
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approach. The existence and absence of a strong direct line-of-sight is investigated to

show the effect of the phase shift optimization on the sum-rate. Simulation results

illustrate that the proposed RL for the discrete phase shifts optimization provides a

near-optimal performance with a small number of bits (i.e., b = 6) even for a large

number of RIS elements, while improving the sum-rate compared to the random

phase shift scenario and reducing the computational complexity compared to the

state-of-the-art works.

4.2 Introduction

Driven by the high data rate demands and rapid advancements of wireless communications,

next-generation wireless networks should support massive network capacity and

reliability [1, 2]. The reconfigurable intelligent surfaces (RISs) have recently attracted

significant attention not only for controlling the propagation environment but also

for offering a competitive low-cost solution [3, 4]. RIS is composed of a low-cost

nearly passive two-dimensional electromagnetic elements that enable operating with

low power consumption while providing relatively high energy efficiency. Therefore,

RIS is envisioned as an important technology that will play a crucial role in 6G and

beyond wireless communications.

With the aid of RIS, full-duplex (FD) communication systems have the potential to

effectively double the spectral efficiency [5]. Several works have exploited alternating

optimization (AO) algorithms for RIS-assisted FD systems [5, 6, 7, 8]. The work in

[6] proposed an AO algorithm for the discrete RIS phase shift optimization of two-

way device-to-device multi-pair orthogonal frequency division multiplexing systems.

Moreover, the authors in [7] studied the weighted system sum-rate of a multi RIS-

assisted FD system while considering an ideal phase shift model. The authors in
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[8] investigated the weighted minimum rate maximization problem for a multi-user

RIS-assisted FD system. However, utilizing AO techniques results in an increased

computational complexity and sub-optimal solution. Furthermore, as the complexity

of phase shift optimization increases (in large scale systems), such approaches become

less efficient [9].

In contrast, deep reinforcement learning (DRL) has emerged as an efficient and

stable framework in wireless communications [10, 11, 12]. In particular, the authors

in [11] considered the rate maximization problem of a half-duplex-FD RIS-assisted

system and proposed a DRL algorithm to solve it. Furthermore, [12] proposed a DRL

algorithm for single and distributed RIS deployment schemes. However, the existing

works on RIS-assisted FD systems assume an ideal phase shift model (i.e., continuous

values), which is infeasible to implement due to hardware limitations [13, 14, 15].

Therefore, this work considers optimizing the discrete RIS phase shifts utilizing an

efficient DRL approach.

It is worth mentioning that using DRL for optimizing the practical phase shifts

in distributed RIS-assisted FD multiple-input single-output (MISO) systems has not

been studied in the state-of-the-art works. The main contributions of our work are

summarized as follows:

• A DRL algorithm for optimizing the discrete phase shifts of a distributed RIS-

assisted FD network is proposed. The proposed algorithm is shown to achieve

promising results compared to the continuous-baseline in [12].

• A novel NN design to learn the Q-value of the proposed DRL algorithm is

designed and its complexity is investigated.

• Two mathematical solutions for optimizing the transmit beamformers are considered.

• The performance of the proposed DRL algorithm is assessed through extensive
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simulations, by considering two scenarios: the presence of the line-of-sight (LoS)

link and when it is blocked.

The rest of this chapter is organized as: Section 4.3 describes the system model

and problem formulation. Section 4.4 introduces the proposed algorithm. Sections 4.5

and 4.6 present simulation results and conclusions, respectively.

4.3 System Model and Problem Formulation

This chapter considers a distributed RIS-assisted FD MISO system. The RISs are used

to enhance the communication between S1 and S2 by optimizing their phase shifts via

an RIS controller, as illustrated in Fig. 4.1. S1 and S2 denote the base station (BS)

and user equipment (UE), respectively, and are equipped with M transmit antennas

and one receive antenna. Each RIS, Rr, contains Nr elements and the total number

of reflecting elements is denoted by N . For simplicity, it is assumed that we have

only two RISs, and each RIS contains the same number of elements (i.e., Nr = N/2,

r ∈ {1, 2}). Let k̄ = 3− k ∀ k ∈ {1, 2}. The channel coefficients of Sk̄-Rr, Rr-Sk, and

Sk̄-Sk links are represented as HSk̄Rr ∈ CNr×M , hH
RrSk

∈ C1×Nr , and hH
Sk̄Sk

∈ C1×M ,

respectively. Furthermore, hH
SkSk
∈ C1×M represents the self-interference (SI) channels

of S1 and S2. Hence, the signal is received from both the reflected and the LoS links,

and is expressed as
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yi =
( 2∑

r=1

hH
RrSk

ΘrHSk̄Rr︸ ︷︷ ︸
Reflected signal

+ ξhH
Sk̄Sk︸ ︷︷ ︸

Direct signal

)
wk̄xk̄ + hH

SkSk
wixi︸ ︷︷ ︸

Residual SI

+n,

k̄ = 3− k ∀ k ∈ {1, 2}, ξ =


0 No LoS

1 LoS,

(4.1)

where ξ is a factor that represents the LoS link condition, i.e., 0 means that the

LoS link does not exists and 1 otherwise, and n is the additive white complex

Gaussian noise with zero-mean and variance σ2, n ∼ CN (0, σ2). Let Θr =

diag
(
ejφr1 , · · · , ejφrn , · · · , ejφrNr

)
∈ CNr×Nr denote the diagonal matrix whose elements

are the phase shifts of Rr. The phase shift of each reflecting element is φrn ∈ [−π, π).

This chapter considers a practical phase shift model, where the discrete RIS phase

shifts are chosen from the following set

Υ = {0,∆φ, · · · ,∆φ(K − 1)},∆φ = 2π/K,K = 2b, (4.2)

where b is the number of quantization bits for each RIS phase shift. The sum-rate,

Rk, in bit per second per Hertz (bps/Hz) is expressed as

Rk = log2

1 +

∣∣∣(∑2
r=1 h

H
RrSk

ΘrHSk̄Rr + ξhH
Sk̄Sk

)
wk̄

∣∣∣2
|hH

SkSk
wk|2 + σ2

 ,

k̄ = 3− k ∀ k ∈ {1, 2}, ξ =


0 No LoS

1 LoS,

(4.3)
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Fig. 4.1: Distributed RIS-assisted FD MISO system.

where wk ∈ CM×1 denotes the beamforming for the information signal transmission,

xi. It is considered that E{|xk|2} = 1, where E{·} is the expectation operation. In

this chapter, the aim is to optimize the beamformers and practical RIS phase shifts to

maximize the sum-rate. The problem formulation is given as

(P1) max
wk, Θ̄

2∑
k=1

Rk (4.4a)

s.t. φrn ∈ Υ, r = 1, 2, n = 1, · · · , Nr, (4.4b)

||wk||2 ≤ Pmax, k = 1, 2. (4.4c)

Θ̄ is a matrix that contains the phase shifts of the two RISs (diag
(
Θ1,Θ2

)
), and Pmax

is the maximum transmitted power of the source node. Due to the non-convexity of

the objective function subjected to a discrete phase shift constraint, (P1) is challenging

to solve. Generally, there is no conventional algorithm to efficiently find the optimal

solution to (P1). The optimal solution can be found by performing a search over all

possible combinations of discrete phase shifts for all the elements. However, this results

in a significant computational complexity of the order of O(2bN), which is practically
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infeasible for large scale systems [16]. Thus, a two-step efficient solution is proposed

to solve such challenging problems.

4.4 Proposed Solution

A practical algorithm to solve (P1) is proposed in this section. A DRL algorithm

is proposed to efficiently optimize the discrete RIS phase shifts. For the transmit

beamformer, w∗
k, the solutions presented in [17] and [12] are used. The problem

is solved iteratively until convergence is reached. The details about the proposed

algorithm are provided below.

4.4.1 Beamformers Optimization

4.4.1.1 Approximate Solution

For a fixed Θ̄, the corresponding beamforming vector wk̄ can be obtained using an

approximate solution as detailed in [17]

w∗
k̄ = (δhSk̄Sk̄

hH
Sk̄Sk̄

+ v∗k)−1B, k ∈ {1, 2}. (4.5)

Here, B and δ are given as

B ≜
1

|hH
SkSk

wk|2 + σ2

(
1 +

|hH
k wk|2

|hH
Sk̄Sk̄

w̃k̄|2 + σ2

)
hk̄h

H
k̄ w̃k̄, (4.6)

and

δ ≜
|hH

k wk|2
(
|hH

k̄
w̃k̄|2 + |hH

SkSk
wk|2 + σ2

)
|hH

SkSk
wk|2 + σ2

(
|hH

Sk̄Sk̄
w̃k̄|2 + σ2

)2 , (4.7)
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where w̃k̄ is a given feasible point and hk̄ is expressed as

hk̄ ≜ HH
Sk̄Rr

ΘH
r hRrSk

+ hSk̄Sk
. (4.8)

4.4.1.2 Closed-form Solution

Based on probability theory, the optimal beamformers are derived in [12], where the

closed form solution is given as

w∗
k = (v∗ + fk̄αk̄α

H
k̄ )

−1βk̄, k ∈ {1, 2}, (4.9)

where αk̄, f
∗
k̄
, and βk̄ are respectively expressed as

αk̄ =
2∑

r=1

hH
RrSk̄

ΘrHSkRr + ξhH
SkSk̄

, (4.10)

fk̄ =
|αk̄wk|2

(|αk̄wk|2)2 + |hH
Sk̄Sk̄

wk̄|2
, (4.11)

and

βk̄ = fk̄αk̄ + fkh
H
SkSi

. (4.12)

In the above formulations, v∗ denotes the optimal dual Lagrangian coefficient. It

is found using the bisection search algorithm, where the search interval for the

approximate and closed form solutions are respectively given as
[
0, ||B||/

√
Pmax

]
and

[
0, ||βk̄||/

√
Pmax

]
.
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4.4.2 Discrete Phase Shift Optimization

4.4.2.1 Overview and DRL Problem Transformation

DRL approaches enable efficient learning of dynamic environments. In particular,

the RL agent learns the optimal solution based on experience, through a trial and

error approach. After gaining enough experience, the agent chooses the optimized

action that maximizes its reward in the environment. In this chapter, the distributed

RIS-assisted FD MISO system is regarded as the environment and the RIS controller

is the DRL agent. To this end, the problem transformation is given as follows

• State space: The state space at time step t, is the current configuration of the

environment. It includes φrn∀ n = 1, · · · , Nr and the corresponding
∑2

k=1 Rk

at time step t− 1, and is expressed as

st =

[
2∑

k=1

R(t−1)
k , φ

(t−1)
r1 , · · · , φ(t−1)

rn , · · · , φ(t−1)
rNr

]
. (4.13)

• Action space: The action space at time step t includes all the available discrete

RISs phase shifts, where φrn ∈ Υ. It is defined as

at =
[
φ
(t)
r1 , · · · , φ(t)

rn, · · · , φ
(t)
rNr

]
. (4.14)

• Reward: The goal is to train the agent to maximize the sum-rate,
∑2

k=1Rk.

Hence, the reward is expressed as

rt =
2∑

k=1

R(t)
k . (4.15)
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4.4.2.2 Deep Q-learning Algorithm

The deep Q-learning (DQL) algorithm is a powerful algorithm that is based on the

concept of Q-learning. The aim of the Q-learning agent is to learn the Q-values such

that it can always choose the action with the highest value (i.e., highest reward). In

particular, the Q-value defines the expected reward of each action at every step as [18]

Q(st, at) = r(st, at) + γmax
a
Q(st+1, at). (4.16)

Here, γ ∈ (0, 1] is the discount factor which controls the contribution of future rewards.

With experience, the Q-values converge to the optimal policy. In practical situations,

it can be updated iteratively as follows

Q(st, at) ← Q(st, at) + µ
[
rt+1 + γmax

a
Q(st+1, at)−Q(st, at)

]
, (4.17)

where µ is the learning rate. To this end, the optimal Q-values allow the agent to

choose the best action based on the current state. However, the main problem of

Q-learning is that it is only suitable for finite state environments and action spaces.

As the size of state and action spaces increases, the time required to explore each state

becomes unrealistic (i.e., similar to exhaustive search). Therefore, the DQL algorithm

is developed to solve this problem by approximating the Q-value of any state action

pair (s, a) using a deep neural network (DNN).

At the initialization stage, the Q-value DNN is generated. An experience replay

with capacity D is initialized to minimize the correlation of consecutive training

samples by storing/sampling the past experiences. In the beginning of each episode,

the entire channel state information is obtained. After that, the agent takes at via

exploration or exploitation. In particular, in the early stage of training, the agent
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Fig. 4.2: The proposed DQL algorithm structure.

chooses actions randomly more often due to the lack of experience. As the agent

becomes more experienced, the exploration rate, ϵ, is decreased to exploit the agent

knowledge (i.e., choosing at with the maximum Q-value from the DNN). Based on the

chosen action, the agent receives a reward, rt, and passes to the next state, st+1. The

experience (st, at, rt, st+1) is then stored into D, and the agent randomly samples a

minibatch transitions, NB, to calculate the target value yj, as

yj = rj + γmax
at+1

Q(st+1, at+1;θ). (4.18)

The NN parameters are updated using the gradient descent algorithm. The DQL

algorithm trains the agent for K episodes and T steps until achieving the convergence.

It is worth noting that γ, µ, ϵ, the exploration threshold, η, and exploration decay, ρ,

are all hyperparameters that are tuned for efficient convergence. The proposed DQL

algorithm is explained in Algorithm 1 and its structure is shown in Fig. 4.2.
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Algorithm 1 Proposed DQL algorithm.

Initialize: θ with random weights, D, µ, γ, ϵ, η, and ρ;
1: repeat for K episodes:
2: Collect the channel state information of the current episode;
3: Initialize φrn = 0 ∀ n = 1, · · · , Nr;
4: Calculate wk̄ using (4.5) or (4.9);
5: repeat for T steps:
6: if random ≤ ϵ then
7: Select a random action at ∈ Υ;
8: else
9:

at = max
a
Q(st, a;θ); (4.19)

10: end if
11: Repeat Line #4;
12: Calculate the reward rt and observe the new state, st+1, given at;
13: Store (st, at, rt, st+1) in D;
14: Sample a minibatch of NB transitions (sj, aj, rj, sj+1) randomly from D

when it is full;
15: if ϵ > η then
16: ϵ← ϵρ;
17: end if
18: Compute the target value from (4.18);
19: Perform a gradient descent algorithm step on (yj −Q(sj, aj;θ))2;
Output: Optimized Θ̄

∗
.

4.4.3 Proposed DNN Structure and Complexity Analysis

The proposed NN model contains three layers: the input layer, a hidden layer and

the output layer. The input layer has the size of st, and contains Γi neurons. The

hidden layer is modeled as gated recurrent unit (GRU). It contains Γh neurons and it

uses the ReLU activation function. The internal recurrent squashing function is the

Sigmoid function. The GRU uses two gates to control the flow of information: the

reset and update gates. These gates decide how much of the past information should

be passed to the output. In particular, the reset gate is responsible for short-term

memory, whereas the update gate is responsible for long-term memory. The output

layer, which contains Γ0 neurons, gives the approximated Q-value. The structure of
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the NN model is shown in Fig. 4.2.

The complexity of the proposed NN model is analyzed based on the number of

real additions, CA, and real multiplications, CM . Therefore, the complexity of the

proposed NN design is given as

CA = 3

(
Γi + Γh +

5

3

)
Γh + ΓhΓo, (4.20)

and

CM = 3 (Γi + Γh + 1)Γh + ΓhΓo. (4.21)

4.5 Simulation Results

Figure 4.3 shows the simulation setup and the distances between the Rr-Si links. We

assume that dv1 = dv2 = 2m, d1 = 50m. Generally, the RIS is deployed near the BS to

best benefit from the RIS reflection links, ensuring a strong LoS link between the RIS

and BS. Therefore, d01 is considered as 1m, and d02 as 49m. The path loss is given

as PL = PLr − 10ζlog10

(
dir
Dr

)
[10], where dir is the distance between the Rr-Si links,

PLr is the path loss at a reference distance Dr, and ζ is the path loss exponent. We

set PLr = −35.6 dB and Dr = 1m. The path loss exponents of the S1-S2, S1-Rr, and

S2-Rr links are ζBU = 4, ζBR = 2.1, and ζUR = 2.2, respectively, while the path loss of

the SI channels is −95 dB. The total maximum transmit power is Pmax = 15 dBm and

the noise power is σ2 = −80 dBm [12, 7]. The channels are modeled as Rician [12],

and are expressed as

h =
√
PL

(
K1

K1 + 1
h̄+

1

K1 + 1
h̃

)
, (4.22)

where h represents the channel and K1 is the Rician factor which is set to 10. h̃ is
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Fig. 4.3: Simulation setup.

the random component that contains independent and identical distributed CN (0, 1)

elements, while h̄ is the deterministic component.

The parameters of the DQL algorithm are set as follows: T = 1000, K = 500,

NB = 32, µ = 0.0001, decaying rate of 0.0001, γ = 0.95, ϵ = 1, η = 0.01, ρ = 0.995,

and D = 10000. The Adam optimizer is used to update the NN parameters. Finally,

the DNN model structure is defined as Γi = N + 1, Γh = 300, and Γo = 1.

To assess the performance of the discrete phase shift optimization, it is compared

with the optimization of the continuous phase shift model presented in [12], referred

to as cont. in the simulation results. Two beamforming mathematical derivations

are used to optimize the transmit beamformers, as discussed in Sec. 4.4.1, where the

approximate and closed-form solutions are referred to as appr. and exact, respectively.

The performance of the discrete phase shift optimization is also compared with the

non-optimized case, referred to as random. Furthermore, the results are shown for two

scenarios: No LoS (ξ = 0) and LoS (ξ = 1).

Figure 4.4 shows the average system reward versus training episodes when N = 40.

It can be seen that the average reward increases over time, indicating that the agent

is learning. In the early stages of the learning process, more fluctuations can be seen
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Fig. 4.4: Average reward performance versus number of episodes for N = 40 and
b = 6.
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Fig. 4.5: Complexity reduction percentage versus N .

due to the higher probability of randomness in choosing actions. However, as the

number of episodes increases, the learning of the agent is more stable, and it chooses

actions based on exploiting its own knowledge (i.e., choosing the action with the

highest Q-value). It can be observed that the average reward reaches convergence
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when K > 400.

Figure 4.5 illustrates the complexity reduction percentage of using the proposed

NN over the NN presented in [12], where its computational complexity is presented in

(3.19- 3.20), which is given as

Reduction = 1−
{Cχ}Proposed{
CA

χ + CC
χ

}
[12]

, χ ∈ {A,M}. (4.23)

where A and C denote the actor and critic networks used in [12]. It can be seen that

the proposed NN significantly reduces the computational complexity in the range of

78% to 52% for N = 20 to N = 100.

Figure 4.6 illustrates the sum-rate performance of the proposed algorithm versus

the number of quantization bits, b. The results are compared with the optimization

of the continuous phase shift model [12] (using the two beamforming mathematical

solutions) and the scenario where no RIS is deployed, referred to as no-RIS. The

results shows that as b increases, the proposed DRL algorithm almost achieves the
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upper bound (i.e., the continuous phase shift model), which testifies its practicality.

This is applicable for both beamforming solutions, i.e., approximate and closed-form

derivations. Besides, the simulation results show that there is a small gap in the

performance when ξ = 0 and ξ = 1, which emphasizes that the sum-rate improvement

is due to the RIS deployment. It is worth noting that when b = 2, only four phase

shift values are available for each RIS element,
(
i.e.,{−π,−π

2
, 0, π

2
}
)
. In this case, the

sum-rate performance would be far from the optimized solution as shown in the figure.

It can also be observed that the near-optimal solutions are obtained with only 6 bits.

Figure 4.7 illustrates the effect of varying N on the system performance when ξ = 1

and ξ = 0 for b = 6. It can be noted that for all algorithms, the sum-rate increases as

N increases. The results depict that the proposed algorithm achieves a near-optimal

performance even when the number of reflecting elements is large. In particular, the

gap in the sum-rate performance between the continuous and discrete phase shift

models decreases as N increases. It can also be observed that the proposed DQL

algorithm provides a remarkable sum-rate improvement compared to the random RIS

phase shifts scenario. Lastly, it can be seen that when ξ = 0, the sum-rate performance

is lower than that of ξ = 1. However, the results are almost similar due to the fact

that the improvement is mainly coming from the RIS deployment.

4.6 Conclusion

This chapter maximized the sum-rate of a distributed RIS-assisted FD MISO system,

considering a practical phase shift model (i.e., discrete values). The optimization

problem was addressed using a two-step solution: mathematical derivations to optimize

the transmit beamformers and a DRL approach to optimize the discrete phase shifts.

Two scenarios, namely the presence and the absence of the LoS link, were investigated
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to validate the performance of the proposed algorithm. The proposed DRL algorithm

achieved a near-optimal performance compared to the ideal phase shift model considered

in the literature (i.e., continuous values) in the two scenarios. It was further shown

that the algorithm provides a remarkable improvement over the non-optimized cases

while reducing the complexity in the range of 78% to 52% for N = 20 to N = 100.
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Chapter 5

Conclusions and Future Work

This chapter concludes the thesis by summarizing the main contributions. It further

discusses some of the promising upcoming research challenges that should be considered

in the future work.

5.1 Conclusions

RISs have recently emerged as a key enabler for beyond 5G communications to fulfill the

rapid increasing demands for wireless network capabilities. RISs are not only considered

to enhance the communication quality, but also to reduce the power consumption as

compared to the conventional wireless networks. This work considered incorporating

RIS into FD communication systems to offer new degrees of freedom, facilitating ultra

spectrum-efficient systems. In particular, FD communications allow transmitting and

receiving simultaneously in the same frequency band, which offer the potential to double

the spectral efficiency and increase the sum-rate of wireless communication systems

significantly. To fully exploit the RIS capabilities in FD communication systems,

the phase shifts should be efficiently optimized. Therefore, this work considers very

powerful DRL approaches, to solve the challenging optimization problems.
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To this end, Chapter 1 introduced the motivation, contributions and the outline

of this thesis. In Chapter 2, a low-complexity DRL is proposed to optimize the RIS

phase shifts in HD-FD RIS-assisted communication systems. It is worth noting that

DRL is exploited for FD communication systems for the first time in the literature.

The proposed algorithm was shown to significantly improve the rate compared to the

non-optimized RIS phase shifts in both operating modes (i.e., HD and FD). It further

significantly reduces the computational complexity as compared to the conventional

DRL algorithms of the HD mode. In Chapter 3, the single and distributed RIS

deployment schemes are investigated to answer the question of which deployment

scheme is preferred. Three practical scenarios based on the links’ quality are considered

to study the sum-rate performance of deploying a single or distributed RIS in an

FD-MISO system. A two-step solution was proposed, where a closed-form solution

is derived to optimize the transmit beamformers and an efficient DRL algorithm

is proposed to optimize the RIS phase shifts for both deployment schemes. The

proposed solution provides a remarkable improvement in the sum-rate compared to

the considered benchmark. Finally, the discrete phase shift optimization problem of

distributed RIS-assisted FD system is considered in Chapter 4. In this work, two

mathematical solutions (approximate and closed-form) for optimizing the transmit

beamformers are considered. The proposed algorithm is shown to achieve promising

results compared to the continuous-baseline (the DDPG algorithm). The proposed

algorithms can fit a wide range of practical applications as DRL approaches are

seen as a key enabler for future wireless application. The mathematical formulation,

complexity analysis for all proposed algorithms, and simulation results were provided

to support these findings.
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5.2 Future Research Directions

The work in this thesis identifies numerous exciting open challenges for FD RIS-aided

wireless networks, which include:

• Studying the sum-rate maximization problem for a multi-user FD RIS-assisted

communication system using DRL. Since DRL allows the user to learn from the

interactions with the environment, it allows extending the problem to cover large

scale practical systems efficiently compared with the traditional optimization

techniques.

• Developing a DRL approach for FD RIS-assisted cellular communications using

energy harvesting is a promising research direction. It allows the BS to dynamically

adapt to wireless environment by deciding the RIS phase shift configuration

using a neural network. In particular, besides optimizing the RIS phase shifts,

the RIS elements can be turned on or off, depending on the network performance

to further enhance the overall energy efficiency of the FD communication system.

• Adopting DRL for FD RIS-assisted system, where the integration of sensing and

communications is considered to offer efficient spectrum utilization.

• Investigating the sum-rate performance of different DRL approaches for a FD RIS-

assisted system, while assuming imperfect transceivers to study the robustness

and reliability of DRL in this context.

• Investigating the DRL approaches in the physical layer security and data

transmission for the underlay device-to-device networks, while considering the

RIS deployment and a FD jamming receiver for the robustness and security

enhancements of the system.
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In conclusion, investigating the performance of DRL approaches of various FD

RIS-assisted applications remains an open problem that needs to be investigated. DRL

can significantly improve the system throughput and enable the full exploitation of

the capabilities of the RIS technology in different application scenarios.
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