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ABSTRACT

The total synthesis of the i (+)-longil by an i
Diels-Alder cycloaddition strategy is described. The route utilized an addition
initiasted ring closure involving methyllithium and epoxyfulvene 80. The
cyclopentadienyl anion 81 that resulted cyclized in an exo-tet manner to generate a
substituted spiro[2.4]hepta-4,6-diene 82 in which the cyclopropane ring blocked the
1,5-sigmatropic rearrangement and acted as a latent methylene group. Oxidation
with active MnO, afforded cyclopropyl aldehyde 83, which was condensed with the
anion derived from methyl 3,3-dimethylacrylate 97 in the presence of cadmium

chloride. These conditions resulted in selective y substitution and were a

of i ization to the i most favored product. This
procedure was shown to be general for related systems.
The resulting alcohol-protected triene 100 was cyclized directly to tetracyclic

adduct 103 under thermal itions in a mi oven, ification of the

functional groups gave cyclopropyl ketone 118, which opened to the longifolene
ring system by lithium/ammonia reduction.

The route to optically active material followed a different pathway which
involved the Lewis acid catalyzed addition of methanol to the optically active
spirocyclopropane-cyclopentadiene 134. The product 137 was capable of rapid
sigmatropic rearrangement, which in principle could give rise to several different
Diels-Alder adducts. In practice, because of the constrained nature of the cyclic
dienophile, the lowest energy path led to the adduct 138 with the tricyclic nucleus
required for (+)-longifolene. This was the only product isolated and represented the

first successful synthesis of a cycloheptane directly from a cyclopentadiene in a



)

iv
carbocyclic precursor. In order to complete the synthesis the lactone 138 was
reduced and the primary alcohol converted selectively to its acetate 144,
Sequential removal of the secondary hydroxyl functions was accomplished under
free radical conditions. Pyrolysis of the acetate 146 at 525°C provided

(+)-longifolene.
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PART I
INTRODUCTION



CHAPTER 1 BACKGROUND

11 Structure Elucidation

In 1920 Simonsen demonstrated that the tricyclic sesquiterpene,
(+)-longifolene, occurred in the essential oil of Pinus longifolia?  The
(+)-enantiomer is known to ‘occur in higher plants, mainly Gymnospermae,® while

its antipode has been found in liverworts.*

The structure of longi was first elucidated in 1923 by Si etal’
At that time their identification was limited to the tricyclic ring system, vinyl
group, tertiary methyl group and geminal dimethyl groups established chemically
by degradation. Structures 1 and 2 (Scheme 1) were suggested for longifolene
according to its molecular formula, CysHpy, the isoprene rule and the results of

these chemical investigations.

Scheme 1

The comect structure of longifolene, long an unsolved and complicated
chemical problem, was revealed in 1953 by Ourisson and Naffa on the basis of

an X-ray ic study of i h; loride 6 by Moffet and




3
Rogers,” and the chemical evidence that upon treatment with hydrogen chloride,

3 a Wagn i 0

hydrochloride 6 (Scheme 2).

R

3 4 5

A

»

"
Q

Scheme 2

Further studies on the molecular rotation of derivatives of longifolene

suggested that the proposed structure 3 also the absolute

of (+)-longifolene.® This has since been confirmed by several total syntheses.



1.2 Biosynthesis

It has been established that the actual isoprene unit utilized in the terpene
biosynthesis is mevalonic acid 7 (or an appropriately activated simple
derivative),%1011 three of these self-condense with decarboxylation to famesol 8a

and 8b, the simplest acyclic sesquiterpene (Scheme 3).

OH

S X x
OH
COOH 8a »(rmS)
—
COOH
OH
7 X X AN
8b (cis)
Scheme 3

It is now clear that cis-famesol or trans-farnesol are the precursors for the
cyclization to all the cyclic sesquiterpenes.
The biosynthesis of longifolene!2!* (Scheme 4) starts with the cyclization of

cis-farnesol - pyrophosphate 9 to give an eleven-membered ring carbocation 11 via



Scheme 4



6
species 10. The “inside" hydrogen at C-1 of 11 undergoes a 1,3-hydride shift.
The conformation of 12, as shown 12a, provides considerable overlap of the
m-electrons at C-6 with those of the allylic ion at C-1, so that facile collapse
gives rise to the cis-fused bicyclic ion 13. The geometry of 13 ensures the
close proximity of C-7 to the double bond at C2-C3 and the formation of a C3-C7
bond to give tricyclic carbocation 14, equivalent to 14a. This carbocation
undergoes a 1, 2-carbon migration to give 15, which affords longifolene 3 by
deprotonation,

It should be moted that the mechanism and the intermediates shown in
Scheme 4 do not necessarily represent the actual enzymatic processes, but they do

provide a useful framework for the rationalization of the biosynthesis process.

16 17
Scheme §
Arigoni and his k have i i g the
of two antinodal forms of i and develop: ical models based

on their results.  Reasonable incorporation of activity (0.1-0.2 %) from

radiolabelled mevalonates into (+)-longifolene were achieved using cuttings of the



7
Pinus ponderosa tree (Scheme 5, also ¢f. Scheme 4). A 1,2 carbon migration
was observed and a labelled hydrogen moved from C-1 to C-10 by 1,3 shift. The
mevalonoid  (5-pro-R)-hydrogen and the (5-pro-S)-hydrogen migrate in the
ively.15

of (- i and (-): P!
1.3 Addition Initiated Ring Closure

Conjugated addition (Michael) initiated ring closure is an important synthetic
strategy although few fulvene examples are known. It includes the nucleophilic

addition to an o, B-unsaturated carbonyl compound to produce an enolate anion

which an i ring closure'® 1. This type of
reaction was tenued MIRC (Michael Initiated Ring Closure) by Little,)®  who
showed that three, five, six and seven membered rings could be formed by this

method.  However, the izati were usually ied by some direct Sy2

displacement. This is illustrated in Scheme 6.

Nu X X
E ks E K k
= - =/ Sk >C>—E
1
9 Nu Nu
i 20 21
18
N®
E=COR

Scheme 6
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The ratio of the MIRC reaction product formed is clearly dependent upon
the concintration of the enolate as well as the rate constant for ring closure, k..
The concentration of the enolate depends on K which is related to the relative
stabilities oi the conjugate acid of the nucleophile and the enolate. Therefore, if
Keq<1, 2 MIRC reaction should occur only when k, is sufficiently large to
compensate for the low enolate concentration. The rate of ring closure to three is
faster than closure to five or six membered rings. Thus, it is not too surprising

that the MIRC reaction has been used more often to construct the cyclopropane

ring. , even when idering closure to a the MIRC

and Sy2 reactions are competitive. It has been shown!® that both the solvent and
the nature of the intermediate generated from different nucleophiles exert a

remarkable effect on the course of the reaction.

14  Diels - Alder Reaction

The Diels-Alder reaction has become one of the most useful methods
available to the synthetic organic chemist since its discovery more than 60 years
2go.2% The ability to generate simultaneously up to four chiral centers in a highly
stereoselective and largely predictable fashion has resulted in its application to
numerous synthetic targets.2: 22 The intramolecular version has become popular
more recently and has also .bcen employed in the construction a variety of
polycyclic ring systems in the past fifteen years® Scheme 7 shows a simple
example of the intramolecular Diels-Alder reaction. Of the two possible modes of
addition, the fused mode usually predominates except with long chain lengths. If
the reacting molecules are themselves cyclic, and / or have ring substituents,
complex multicyclic compounds sre formed in a single step. The Diels-Alder

reaction provides a powerful tool for natural product synthesis because these



9
multicyclic ~ structures are contained in drugs and natural products and the
construction of these molecules are often more difficult and lengthy by other

Toutes.

= and/or

Fused Bridged

Scheme 7

The Diels-Alder reaction proceeds through a highly ordered transition s:ate.2
In the intramolecular Diels-Alder 1eaction some of the ordering has been achieved
by joining the reacting functionalities in the same molecule. This leads to
increased reaction rates under mild conditions and successful reactions that would

fail even under forcing in the i version. The ints on

the diene and dienophile imposed by the connecting chain generally facilitate the

of regio- and ivif Side reactions such as dimerization or

polymerization can generally be efficiently avoided by using high dilution. All of
these advantages account for the great interest in the study and applications of the
intramolecular Diels-Alder reaction and suggest that this reaction should be first

considered for any synthesis of a molecule containing a six-membered ring fused



to other rings.?5 %

A number of Lewis-acid caalyzed Diels-Alder reactions have also been
reported.?’ The main problem with Lewis-acid catalysts is that the; may also
cause side reactions. Diels-Alder reactions have large negative activation volumes
and in general can be accelerated under high pressure. Some Diels-Alder reactions
have also been carried out in the gas phase, under either static or flow conditions.
28 However, it is not possible to compare their advantages because the
corresponding solution reactions are lacking.

The Diels-Alder reaction has been reviewed frequently2l: 23:26. 2937 Thig
indicates the worldwide interest. However, some facets are still imperfectly
understood and as our knowledge increases, this cycloaddition will be even more

widely employed for synthetic design and methodology.

15  Brieger’s Work

In principle the complex carbon skeleton of longifolene could be built by
an intramolecular Diels-Alder reaction between a cyclopentadiene and an
appropriate side-chain. As ecarly as 1963, Brieger attempted to utilize this strategy

to i ifolene® In his investigation, chloride 22, obtained from the

addition of hydrochloric acid to geranyl acetate, was treated with excess
cyclopentadienyl magnesium bromide. The resulting product, actually a mixture of
cyclopentadiene isomers 23 - 25, was heated in refluxing pseudocumene (bp 176°C)
(Scheme 8).

He hoped that thermal equilibration of these isomers would cause the
5-substituted cyclopentadiene 24 to undergo an intramolecular Diels-Alder
cycloaddition to give the desired alcohol 27. However, the reaction gave a nearly

quantitative yield of alcohol 26, which corresponded to the cyclization via the



Scheme 8



1-substituted cyclopentadiene 23,

This result showed that the

a facile

1,5-si i and the i Diels-Alder adduct of the

1-substituted isomer 23 was thermodynamically stable. In addition, it was clear

that ition to yield a from a C-1

was preferred to the ing pathway to a studies

have confirmed this behavior and C-5 products arise only when the side-chain is
shortened to two linking atoms, as other transition states are extremely strained
(¢f. Grubbs' work discussed below).

In spite of the lack of success of Brieger’s synthesis of longifolene, the
synthetic plan was concise, and it was possible that the target molecule could be

realized with some modifications in the approach.

16  Cyclization of i Cy i

Cyclopentadiene is useful for the formation of bicyclo[2.2.1]heptane
compounds for natural product syntheses.2> Considerable research work has been

done to study the of i i 3941 gnd

petitive Diels-Ald itions.4243 It has been established,
as mentioned above, that the 1, 5-sigmatropic rearrangement occurs under very mild
conditions and a mixture of isomers was usually observed even when the pure C-5
isomer was used initially,  The composition of the isomeric mixture depends in
part on the nature of the substituent and not on the method of the synthesis.4!
The intramolecular Diels-Alder reaction of substituted cyclopentadienes has been
carefully examined by Grubbs and Still% They employed cyclopentadiene

compounds tethered to an o, B ester ionali as the Diels-Ald
B

reaction Several i i i were prepared with



| (CHY;
29
‘CngCl
—E s
o= O = O
3 3 32

5 R &

33

n=2 n=3,4

E=COR

Scheme 9



different  tether  lengths. These readily
Diels-Alder reaction at mild temperatures (Scheme 9). They showed that the
cycloaddition proceeded favorably from a transition state in which the tether
formed five- or six-membered rings, but products of type 35 were energetically

disfavored.

17  Fallis’> Work

It is apparent that a successful intramolecular Diels-Alder approach to a
tricyclic skeleton from a 5-substituted cyclopentadiene requires either blocking the
1,5-sigmatropic rearrangement or arranging for the cycloaddition to compete

with the ! it has been found that even

chlorine does not block the sigmatropic rearrangement and it migrates before the
cyclization#® This means the "blocking” is not necessarily straightforward. Based
on this realization a successful approach has been developed in our research group,
as shown in Scheme 10. It employs a suitable spiro[2.4]heptadiene of type A to
form the desired Diels-Alder adduct of type B. The cyclopropane unit blocks the
1, 5-sigmatropic rearrangement and, after the selective cyclopropane ring opening,
also serves as latent functionality to provide several types of natural products.

This strategy has been successfully applied to the total synthesis of
sinularene.’>  Related studies revealed an oxygen substituent (X group) in the
sidechain at the carbon adjacent to the cyclopropyl ring was essential for a

successful cyclization.*s



>
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Scheme 10




CHAPTER 2
LONGIFOLENE: PREVIOUS SYNTHESES

The intricate molecular construction of longifolene has attracted a good deal
of attention in the past three decades and served as a challenging test for synthetic
principles and methods, especially with respect to the construction of ring systems
and carbon networks. To date there have been six published total syntheses of
longifolene and at least nine unsuccessful attempts.

A brief survey of the reported syntheses of longifolene reveals that each
approacis employed different strategies and methods for the construction of the

tricycloundecane carbon skeleton,

21  Corey’s Synthesis
The first, well-known, total synthesis of longifolene was reported in 1964
by Corey eral®” The bridged ring system was constructed by an intramolecular

Michael ization of a homodecalil ivative 39, as shown in Scheme 11.

The Wieland-Miescher ketone 36 was employed as a starting material and

converted via tosylate 37 and a pinacol rearrangement, resultng in a ring

to the required in 39 (41-48%).

Precedent for intramolecular Michael reaction of this type existed in the
base-catalyzed cyclization of santonin to santonic acid. Although the
transformation of santonin to santonic acid was smooth, the corresponding
cyclization of homodecalin 39 to the tricyclodiketone 40 proved to be much less
facile and yields of only 10-20% were obtained.



1. HOCH,CH,OH \ Y
o i) 0 0 5. b
2 GHyCHsPPhy LICIO,, CaCOy
—
3.0504
4. NaHSOyPy THF, 50°C, 60h
36 5.TsCl, CHCLyPY ( OH 37 38
l 2NHCI
EOH
0 o %
9 PhyCONa® § Et5N, HOCH,CH,
pe—— - 0O
] . CHyl, E,0 ‘. sealed tube
225°C, 24h
“ 40 39
CH,CHSHCHSHCH,
BF3ELO

S ’k‘ 1. LIAH,
2. H;NNH,, Na
g s HOCH,CH,0H g _
— = A
190 195°C
177 e ‘. A1

ﬁé?

Scheme 11
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After the construction of the diketone 40, the o-methylation of the enolate
derived from 40 afforded the diketone 41. The cycloheptane carbonyl was reduced
by the combination of hydride reduction and Wolff-Kishner reaction of the
thio-ketal 42, followed by chromic acid oxidation to give longicamphenylone 43.
Addition of methyllithium to 43 followed by dehydration of the resulting tertiur;
alcohol 44 gave racemic longifolene.

To prepare the optically active product, intermediate 41 was treated with
L-(+)-2,3-5utanedithiol and the formed diastereomers were resolved. The optically

active thiol 42 was then converted to optically active (+)-longifolene 3.

2.2 McMurry’s Synthesis
The second synthesis of longifolene was reported in 1972 by McMurry and

Isser® They utilized the same starting material as Corey, but their approach was

to form the tricyclic carbon skeleton of i via i ion of
a bicyclic keto epoxide as outlined in Scheme 12.

The Wieland-Miescher ketone 36 was converted to the keto epoxide 45,
whose enolate underwent an intramolecular epoxide opening to provide the tricyclic
keto alcohol 46 in high yield (93%).

Completion of the synthesis required addition of a further methyl group

after ring ion to form the di ring of the natural product.

Therefore, the alcohol 46 was dehydrated to give the endocyclic olefin 47 which

was then treated with and butoxide, and the dibromo

cyclopropane adduct 48 was obtained as the only isomer. Ring expansion was
accomplished by solvolysis of 48 with silver perchlorate to yield allylic alcohol 49
quantitatively and 49 was immediately oxidized to give the enedione 50.

Introduction of the methyl group by conjugate addition of lithium dimethylcuprate to



1. HylPd o o o
H
2. CHaMgl R i
— + —_—
3.50% 1 7 o
H,S0, H H 0" u
31:69 %
NaH
DMSO
Br HO
Br
CHBry g 50%H;S0, [\
- -—
+BUOK ‘. 7177
48 47 46
AgCIO,
Br Br
o
OH Cr0s Py Me,Culi
A T A T
OH
49 50 51
1. NaBH,
2.MsCl,
Et5N, CH,Cl

1. Hy, RhCKPPhg)y H
+-BuOK 5
2. MeLi £ OMs
3. SOCl, Py ~
H
3 53 52

Scheme 12
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attack

enedione 50 resulted in ic ketone 51, by
of the enolate generated after conjugate addition. The tricyclic system was
regenerated by base catalyzed rearrangement of mesylate 52 to give enone 53

which was easily converted to longifolene.

2.3 Johnson’s Synthesis

The third synthesis of longifolene, reported in 1975 by Johnson er al,*
utilized the acid-catalyzed rearrangement of an acetylene cyclopentenol to construct
the tricyclic ring system of longifolene.

The enol acetate 55 was obtained from conjugate a. iition of the cuprate
derived from 1-iodo-4-hexyne to enone 54 followed by trapping the resulting
enolate with acetyl chloride, Further manipulation of this acetate yielded alcohol
56. Treatment of alcohol 56 with trifluoroacetic acid gave the rcarranged tricyclic
alcohol 57 which constituted a rapid entry to the longifolene framework.

In the presence of acid, the olefin 58 readily isomerized to the exocyclic
olefin 59. The ketone 43, an intermediate in both Corey’s and McMurry’s

syntheses, was obtained by oxidation and ion of 59.

addition and dehydration of 43 provide racemic longifolene in eleven steps from

54, as shown in Scheme 13.

2.4 Oppolzer’s Synthesis
The fourh synthesis of longifolene was reported in 1977 by Oppolzer and
Godel 5! In this synthesis an i 2 + 2] pt Idol

reaction sequence (deMayo reaction) was used to construct the complex longifolene

skeleton, as shown in Scheme 14,



H 1. MeLl “
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Scheme 13
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The key intermediate, enol acetate 63, was obtained from condensation of
1-morpholino-1-cyclopentene 60 with an optically active acid chloride 61 followed
by acylation of the resulting diketone 62. Irradiation of 63 gave the cyclobutane 64
which upon hydrogenolysis of the protecting group underwent a spontancous
retroaldol reaction to afford diketone 65. This procedure incorporated the required
stereochemistry without disturbance of the chiral center.

Crystallization gave the diketone 65 in 100 % optically purity. Introduction

of the gem-dimethyl group was i via Wittig ion of the more
reactive  cycloheptanone  carbonyl,  Simmons-Smith  cyclopropanation  and
hydrogenolysis to yield ketone 66, the same intermediate as in the previous
syntheses, which was then converted to (+)-longifolene by the literature procedure.

The overall yield was 24 % from the chiral acid chloride 61.

2.5  Schultz’s Synthesis
The fifth synthesis of longifolene was reported in 1985 by Schultz and

Puig®  They used an i di by

the synthetic

equivalent of an intramolecular Diels-Alder reaction between a diene and a

carbene, as the key step for jon of the longifol ring,
as shown in Scheme 15.

Cyclohexadiene 67 was prepared by Birch reduction—alkylation of methyl
2-methoxybenzoate and  alkylated with the dimethyl acetal of
2,2-dimethyl-5-icdopentanal. ~ Conversion of 67 to the key intermediate 69a was
accomplished by (1) Treatment of 67 with N-bromoacetamide in methanol to give a

diastereomeric mixture of 68, (2) inati followed ketal

ydrolysis during silica gel and (3) acetal exchange. The aziridinyl

imide 69b generated by reaction of 69a with 1-amino-trans-2,3-diphenylaziridine,
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CHO CHO ocH; .
1, DBU
2 Me,CO,
. TsOH X p
67 a: X =CHO 9
b. X = CHN-NCHPh-CHPh
—_

Xylene,
reflux
b MAC 1. HyP4/CEOH
i 2 KOH.MeOH/H,o
3. socx,_ -
o
(-)-Longifolene w
E=CO,CH;
R = CH(OCHj),

Scheme 15
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on thermolysis gave tricyclic keto-ester 70. The tricyclic compound 70 was
converted to 66, an intermediate in Oppolzer's synthesis, by olefin hydrogenation
and decarboxylation. Transformation of 66 to racemic longifolene followed the
literature procedure.

An enantiospecific synthesis of (-)-longifolene was also achieved, via Birch
reduction-akylation of a chiral benzoic acid derivative to give the chiral
cyclohexadiene 67.

2.6  Money’s Synthesis

The sixth and the most recent synthesis of longifolene was reported in 1986
by Money and Kuo’3 In their synthesis, (+)-camphor was employed as the chiral
starting material and a titanium tetrachloride promoted cyclization provided the
tricyclic intermediate 74 which served as the synthetic precursor of (+)-longifolene.

This enantioselective synthesis began with the conversion of (+)-camphor 71
to (+)-8-bromocamphor 72. The bicyclic trimethylsilyl ether 73, derived from 72
after nine i steps, facile i ization when

treated with titanjum tetrachloride to give a mixture of diastereomeric
methoxyketones 74a and 74b. Subsequent reactions provided the ketone 75 and
the acctate 76 with the required geminal dimethyl group. Reductive removal of
the acetate and oxidation gave (+)-longicamphor 77, which was converted into

isolongiborneol 78 by lithium aluminum hydride reduction. Dehydration of 78

yielded (+)- i 3 via a Wag i to complete the

synthesis.
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CHAPTER 3
SYNTHETIC PLAN

It is fashionable to analyze a target structure by retrosynthetic bond
breaking sequences. However, the direct simplistic application of this idea often
leads to long, unimaginative synthetic sequences. As described above the direct
double disconnection is not suitable, as Brieger discovered due to the dominance of
the 1,5-sigmatropic rearrangement and the preferred cyclization to 26 (see Scheme
8)38  Frequently creating a new bond in a target structure allows one to generate
a new species which is more amenable to direct synthesis. Longifolene represents
such a case. Creation of a new bond (arrow) in i (Scheme 17) leads to a new
tetracyclic species A. A double disconnection of this synthon leads to the part
structure B which can be transformed into a triene C which contains the required
functionality for the reverse of the retrosynthetic step via a Diels-Alder cyclization.

To reduce these ideas based on the cyclopropyl concept™ to practice the
strategy outlined in Scheme 18 was envisaged which possesses several interesting
synthetic features.

(1) The cyclopropane ring present in the spiro[2.4]heptatriene iii will block

the generally dominant 1,5-si i of it under

Diels-Alder reaction iti This unit a latent

group and subsequently undergoes a seleciive cleavage of the interior cyclopropane
bond to provide the tricyclo[5.4.017.05!%undecane ring system possessed by

longifolene.
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(2) The Diels-Alder adduct ii possesses all of the fifteen carbon atoms
required and suitable ionality to allow the i ion of the lic double

24

bond of longifolene.
(3) Based on the experience gained from the sinularene synthesis, a bulky
C-5 oxygen substituent is essential to ensure that the desired intramolecular

cycloaddition will proceed as required.*® In a ic sense, the

of structure iii (3-hydroxy a,B-unsaturated ester) could arise from a selective
y-condensation of the spiro-aldehyde iv with an anion derived from methyl
3,3-dimethylacrylate.

(4) The spiro-aldehyde iv may be generated by oxidation of the
spiro-alcohol v. The latter can be obtained from an addition initiated ring closure
involving methyllithium and an epoxyfulvene vi, which in tum may be synthesized
from commercially available materials by known methods.'®

A further potential feature of this strategy arises from the geometric
constraints imposed by the Diels-Alder transition state. From Scheme 19, it is
apparent that only conformation Ia will permit the cyclization, while conformation
Ib will not undergo adduct formation because the dienophile is not aligned with
the diene as required for the cycloaddition. Therefore, if the cyclopropyl unit is
chiral, the stereochemistry of the asterisk carbon will control the cyclization to
lead to an optically active adduct, from which the chiral longifolene may be
synthesized. Interestingly, the chirality of this asterisk carbon will disappear after
reductive cyclopropane ring opening. To achieve the chiral heptatricne I, a single
enantiomer of spiro-alcohol v (Scheme 18) is necessary, which may be obtained
cither from a chiral starting material or by resolution (cf. Scheme 29 in Chapter
6).



vi

E = CO,CH;

vii

Scheme 18
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(+)-longifolene

Scheme 19
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In spite of the failure of the Brieger’s approach it might succeed without
resorting to a blocking group if direct cyclization from a C-5 substituted
cyclopentadiene was the most favorable pathway. In theory this might be
accomplished by confining the dienophile to a cyclic system in which the adducts

from the C-1 and C-2 i i are strained.  This

will be discussed in more detail below but structure D (Scheme 17) represents this
approach in which X is a functionality that will allow subsequent ring cleavage
after cycloaddition.  Molecular models reveal that cyclization of D should be
preferred over E due to the strain inherent in the cyclohexane adduct. It should
however be emphasized that no carbocyclic example of direct cycloheptane

formation is known.
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CHAPTER 4
INTRAMOLECULAR DIELS - ALDER REACTION

4.1  Epoxyfulvene Preparation
The epoxidation of methyl vinyl ketone under the basic condition in
methanol gave the racemic epoxide 79 (Equation 1) in reasonable yield (60 %).

The epoxide 79 is quite stable and can be stored in a refrigerator for several

months,
o o
H,0,/0H®
——
MeOH o
79
Equation 1

The condensation of epoxide 79 with freshly prepared cyclopentadiene was
conducted in the presence of a catalytic amount of pyrrolidine to give epoxyfulvene
80 (Equation 2) in a highly efficient manner. Other bases resulted in lower
yields and extensive decomposition.!®:3¢ The !Hnmr spectrum of 80 displayed a
characteristic four proton multiplet at §6.35 for the vinyl protons, a vinyl methyl
singletat 1.91, a multiplet at 2.82 for the methylene hydrogens, and a doublet of
doublets (/ = 1.5, 1 Hz) at 3.90 due to the methine hydrogen. These features
support the assigned structure.

This bright brown compound is very unstable at room temperature and
therefore was used for the next synthetic step as soon as possible. (It may be kept

below -20°C for up to 48 hours) In one case, a small explosion and production
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of a noxious smoke was observed when a large amount (ca. 20g) of frozen
epoxyfulvene 80 was allowed to warm to room temperature. The compound

became a black mass of polymer-like material. However, it is safe to use this

p i i after

N
H
d MeOH
o
79 80

Equation 2

42  Epoxyfulvene Cyclization

It is well established that the exocyclic double bound in fulvene is polarized
and of reactivity similar to a carbonyl group¥ This means, in principle, that
nucleophilic attack may occur at the exocyclic fulvene double bond or at either
end of epoxide in 80. Thus the nucleophilic attack could generate several different
products. However, the treatment of epoxyfulvene 80 with methyllithium at -78°C
resulted in the formation of spiro-alcohol 82 as the sole product (55%) and the
recovery of starting material 80 (35 %) after work-up and chromatography. The 'H
nmr spectrum of the product displayed two methyl singlets at 8 1.40 and 1.42, the
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cyclopropyl hydrogen as a triplet (/=7.5Hz) at 2.39, the methylene protons as a
doublet (J = 7.5 Hz) at 3.78, and the four cyclopentadienyl protons as three
overlapping multiplets at 6.30, 6.45 and 6.57, all of which were consistent with the
assigned structure. In this case the methyl anion preferentially attacked the C-6

fulvene centre to generate the i anion i i 81 which

cyclized to form the cyclopropane ring by exo-tet cleavage of the epoxide ring

(Equation 3).

OH
80 81 82

Equation 3

A mixture of product and starting material was always obtained even using

a large excess of methyllithium and longer reaction times.

4.3  Cyclopropyl Alcohol Oxidation

The cyclopryl alcohol 82 was sensitive to chromium based oxidizing
reagents.  The cyclopropyl aldehyde 83 was prepared with active manganese
dioxide oxidation in good yield (86 %) ( Equation 4). The 'Hnmr of 83 showed
the aldehyde proton as a doublet (J = 6 Hz) at §9.56, the disappearance of the
methylene protons at 3.78 and the change of the cyclopropyl hydrogen at 2.78
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from a triplet to a doublet (J=6Hz).

MnO, / charcoal
—_—
o  CHCl,reflux, 12h H

82 83

Equation 4

The method of preparation of the active manganese dioxide significantly
influenced the oxidation. The most effective manganese dioxide for our case was
obtained from the reduction of potassium permanganate by charcoals” In practice,
a large excess of charcoal was used to prepared the manganese dioxide and the
unreacted charcoal remained in the product mixture as a part of the reagent. It
was discovered that charcoal from different companies had different levels of
effectiveness. The charcoal from the J. T. Baker Company was the best one in our
work.

An altemative preparation of aldehyde 83 from alcohol 82, in excellent
yield (94 %), employed Swemn oxidation using oxalyl chloride and highly dried
dimethyl sulfoxide. However, with larger scale reactions (ca. 0.02 mole), the
manganese dioxide/charcoal oxidation was preferred due to the convenience of the

work-up and product separation.

44 o vs ¥ Condensation
To prepare a Diels - Alder precursor, such as structure iii (Scheme 18), we

required a reliable procedure to introduce directly a conjugated allyl unit to the



spiro-aldehyde 83. This a i ion of an
allyl anion with an aldehyde (Scheme 20).

OH
X aic- SN WP
_— @
base
\— < B ¥ Product
E base : OH
\ 5 RCHO
e R A
B E
o Product

Scheme 20

Literature methods are available to generate the a-product in a controlled
manner but only a few reports describe the regioseluctive preparation of the

y-product. The control of o ws y itution in bilized allylic

anions and resonance-stabilized enolates depends upon the complex interplay
between the nature of the atoms, charge delocalization, steric effects, solvation,
the type of electrophile, and the counter ion. These difficulties are compounded
by the observation that halides and carbonyl systems often exhibit opposite
regioselectivities.

Hudlicky and his rk found the regi ivity in the

reaction of ethyl 4-bromocrotonate with carbonyl substrates depended on the
polarity of solvents and the hardness of metal catalysts.®! We tested his modified
Reformatsky conditions using dry zinc and tetrahydrofuran. It worked well when
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either methyl 4 or methyl 3 2-by (Table 1,

entry 1, p41) were reacted with benzaldehyde and gave the y-product exclusively.
Unfortunately the reactions (Table 1, entries 5 and 6) with the spiro-aldeliyde 83
gave 60:40 and 40: 60 o/y mixtures (Scheme 21), presumably a consequence of
the hindered environment of the carbonyl group. Modification of the reaction
conditions using an ultrasonic bath or dimethoxyethane (DME) as the solvent

provided no significant improvement in the a./y ratio.

Various lithium anion-salt inati derived from 2 i 1,3-dithane
were examined (Scheme 22). Ziegler and Tam demonstrated earlier that allylation
of the lithium anion derived from 2-ethylidene-1,3-dithiane afforded the a-product
preferentially, while the corresponding copper derivative gave the y-product

exclusively.®® However, in the case of the cuprate derivative with spiro-aldehyde

83 a signil quantity of the a-prod was obtained (Table 1, entry 9), although
the y-product dominated. Added zinc salts did not influence the regioselectivity
and the o-product dominated in the presence of zinc chloride (Table 1, entry8).
Except for the reaction of organocadmium reagents with acid chloride,
organocadmium species have received relatively little attention.5 Pure, salt free
alkyl cadmiums do not react with carbonyl compounds but this reactivity can be
altered markedly by the addition of magnesium or lithium salts, 162 which means
that in situ cadmium reagents prepared from organolithium compounds or Grignard
reagents can be efficiently used to react with carbonyl compounds. Thus the
addition of cadmium chloride powder to the lithium anion at -78°C was examined
(Scheme 23). The appropriate carbonyl compound was added to this reagent and
the reaction was allowed to wam to 0°C followed by quenching with saturated
aqueous ammonium chloride. ~ As summarized in Table 1 all reactions of the

lithium anions with added cadmium chloride resulted in y condensation products
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