Evolutionary trajectory of the enzyme activation-induced cytidine deaminase (AID) within the Gadiformes lineage

By Atefeh Ghorbani

A thesis submitted to the School of graduate studies in partial fulfillment of the requirements for the degree of Ph.D., Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland

May 2021
St. John's, Newfoundland and Labrador

Abstract

Activation-induced cytidine deaminase (AID) is a DNA-mutating enzyme that initiates secondary antibody diversification process upon immune stimulation. One outcome of this diversification is the generation of antibodies with higher affinity for the cognate antigen. In human and mouse models, functional deficiency of AID leads to hyper IgM syndrome type II, exhibiting lack of secondary antibody diversification. Despite the central role of AID in instigating this diversification process, its off-targeting activity has been attributed to the initiation and progression of various type of cancers. The emergence of AID and, therefore, secondary antibody diversification process have been dated back to the common ancestor of jawed vertebrates. However, several studies investigating the Atlantic cod (Gadus morhua) immune responses revealed lack of high affinity antibodies and robust humoral response in this species. Moreover, genomic sequence of several Gadiformes species, including Atlantic cod, uncovered the loss of histocompatibility complex class II (mhc II), cluster of differentiation 4 (cd4), and invariant chain (Ii) genes in their common ancestor. These genes are involved in B cell activation in the mammalian model of immune system. Since AID is responsible for generation of high affinity antibodies in other vertebrates, we sought to examine the genetics, expression, and function of Atlantic cod AID. We also investigated the evolutionary trajectory of AID within Gadiformes species to shed light on the extent of immune system remodeling in this lineage. In chapter two, we showed that the AID gene synteny and transcript expression were conserved in Atlantic cod in comparison with other studied vertebrates. Interestingly,

we identified two distinct AID transcripts, one of which encoded a full-length AID, whilst the other one lacked the first exon. In chapter three, we synthesized, expressed, and purified Atlantic cod AID (Gm-AID) and examined its biochemical properties. Our results showed that despite having a similar DNA binding ability, Gm-AID exhibited extremely low catalytic efficiency compared with other studied vertebrates. In chapter four, we synthesized, expressed, and purified 36 AID homologs within and outside of the Gadiformes lineage. Previous studies have shown a drastic re-modeling of the Gadigormes' immune system where the loss of genes involved in antibody responses has coincided with an expansion of innate and cell-mediated immune genes. Our biochemical analyses revealed a vast diversity in the enzymatic properties of AID homologs. Remarkably, two Gadifomes AID homologs examined here did not exhibit any cytidine deaminase activity. By predicting and resurrecting the ancestral AIDs within and outside of Gadiformes lineage, we showed that the functional impairment of AID most likely has happened in the ancestor of Gadidae group. Since Gadidae species have successfully populated their natural habitats, the functional impairment of their AID enzyme did not hamper their fitness. This is most likely duet to the compensatory mechanisms such as the expansion of innate and cell-mediated immune systems. Our findings of the first example of a vertebrate species with a dysfunctional AID and secondary antibody diversification challenge the longstanding immunological concept that the loss of AID activity leads to immunodeficiency.

Acknowledgements

During my Ph.D. study, I was fortunate to be surrounded by many kind and supportive people. Here, I would like to thank my family, especially my parents, whose encouragement made it possible to overcome the obstacles. I would also like to thank my supervisor, Dr. Larijani, whose guidance and advise shaped me to be a better scientist. I would like to thank my committee members, Drs. Grant and Paterno, and collaborators Drs. Jentoft and Rise for their continued support and guidance. Also, I would like to acknowledge my friends, especially S. J. Khataeipour, Y. Menesses, K. D. Joris, C. D. Collins, A. Bakhshi, and B. N. Bolt and my colleagues at Memorial University, Ocean Sciences Center, and University of Oslo without whom this journey would not have been joyful. Finally, I would like to thank Pashmak and Fesgheli, my cats, for distracting me while I was writing my thesis. Thank you all for being an essential part of my academic and personal life in Canada.

Table of Contents

Abstract ii
Acknowledgements iv
Table of Contents v
List of Tables xiii
List of Figures xv
List of Abbreviations xix
List of Appendices XXX
Author contributions xxxi
Peer-reviewed publications xxxiii

1. Chapter 1: Introduction 1
1.1 Overview 2
1.2 Innate immune system 2
1.2.1 Overview of innate cellular immunity 3
1.2.2 Pattern recognition receptors 4
1.2.2.1 Toll-like receptors 5
1.2.2.2 Other types of pattern recognition receptors 9
1.2.3 The innate immune cells 10
1.3 Adaptive immune system 12
1.3.1 Overview of T cells 13
1.3.1.1 T cell activation 13
1.3.1.2 Cytotoxic T lymphocytes 14
1.3.1.3 Helper T cell. 15
1.3.2 Overview of B cells 17
1.3.2.1 B-1 and marginal zone B cells 18
1.3.2.2 B-2 cells 21
1.3.2.3 Immunoglobulin protein structure and gene organization 22
1.3.2.4 $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination 25
1.3.2.5 Immunoglobulin isotypes 27
1.3.2.6 B cell activation 29
1.3.2.6.1 T cell-independent B cell activation 29
1.3.2.6.2 T cell-dependent B cell activation 31
1.4 Diversification of the antibody repertoire 34
1.4.1 Primary antibody diversification 35
1.4.2 Secondary antibody diversification 36
1.4.3 Cellular basis of antibody affinity maturation 37
1.5 Activation-induced cytidine deaminase and antibody diversification 40
1.5.1 AID structure 45
1.5.1.1 Conserved structural features of AID 49
1.5.1.2 The primary and secondary catalytic residues of AID 51
1.5.1.3 DNA and RNA binding groove(s) of AID 53
1.5.2 Biochemical and enzymatic properties of AID 55
1.5.3 Co-evolution of AID substrate specificity with $I g$ genes 58
1.5.4 AID transcript and expression pattern 59
1.5.5 AID regulation and targeting 62
1.6 Evolution of the AID/APOBEC family 67
1.7 Evolution of antibody maturation within the vertebrate class 69
1.8 The genetically altered immune system of Gadiformes lineage 71
1.9 Research hypothesis and objectives 73
2. Chapter 2: Characterization of aicda gene structure, synteny, and
expression in Atlantic cod (Gadus morhua) 76
2.1 Abstract 77
2.2 Introduction 79
2.3 Methods 83
2.3.1 \quad Synteny analysis of aicda 83
2.3.2 Animals 83
2.3.2.1 Immune stimulated spleen tissues 84
2.3.2.2 Sampling for tissue panel experiment 84
2.3.2.3 Sampling for developmental experiments 85
2.3.3 Macrophage isolation and immune stimulation 86
2.3.4 Total RNA extraction and purification 87
2.3.5 cDNA synthesis 88
2.3.6 Characterization of Gm-aicda transcript(s) 89
2.3.6.1 Preliminary validation of Gm-aicda transcript expression 89
2.3.6.2 Identification of the full-length Gm-aicda mRNA(s) 90
2.3.7 Delineation of Gm-aicda transcripts expression in adult tissues, embryonic,
and early larval life stages. 92
2.3.8 Immune responsiveness of Gm-aicda transcript levels 93
2.3.9 Protein Structure prediction 98
2.4 Results 100
2.4.1 Genomic features of Atlantic cod aicda locus 100
2.4.2 Aicda transcript(s) expressed in adult Atlantic cod immune tissues 106
2.4.3 The Atlantic cod aicda expression profile in adult tissues, embryonic, and early
larval life stages 114
2.4.4 Atlantic cod aicda expression in response to immune stimulation. 116
2.4.5 Predicted structural features of Atlantic cod AID protein 118
2.5 Discussion: 125
3. Chapter 3: Impairment of the enzymatic function of activation induced cytidine deaminase (AID) in Atlantic cod (Gadus morhua) 133
3.1 Abstract 134
3.2 Introduction 136
3.3 Methods 141
3.3.1 AID expression and purification 141
3.3.2 Substrate preparation. 143
3.3.3 pH buffer preparation 144
3.3.4 Biochemical analysis of purified GST-AID 146
3.3.5 Data collection and quantification 151
3.3.6 PCR-based AID activity assay 151
3.3.7 Structure prediction and AID-DNA binding simulations 154
3.3.8 Characterization of the Atlantic $\operatorname{cod} \operatorname{Ig} V_{H}$ region and 155
3.3.9 WRC/GYW and WGCW motif analysis 156
3.3.10 Atlantic cod AID extreme cold adaptation and lethargic activity 158
3.3.11 Atlantic cod AID activity on methylated cytidine 170
3.3.12 The basis of Atlantic cod AID lethargy 172
3.3.13 Potentially different substrate binding strategy in bony fish AIDs. 181
3.3.14 Atlantic cod AID sequence specificity and co-evolution with Ig genes 185
3.4 Discussion 193
4. Chapter 4: Evolutionary trajectory of activation induced cytidine
deaminase (AID) within Gadiformes lineage 200
4.1 Abstract 201
4.2 Introduction 202
4.3 Methods 206
4.3.1 Ancestral sequence reconstruction (ASR) 206
4.3.1.1 Selecting extant species 206
4.3.1.2 Creating a multiple sequence alignment 206
4.3.1.3 Computing a phylogenetic tree 207
4.3.1.4 Reconstructing ancestral sequences 208
4.3.2 \quad AID expression and purification 209
4.3.3 Substrate preparation 214
4.3.4 pH buffer preparation 214
4.3.5 Biochemical analysis of purified GST-AID. 214
4.3.6 Enzyme assay data collection and quantification 217
4.3.7 Correlation analyses of biochemical properties of extant AID homologs

\qquad218
4.3.8 Calculating the predicted protein stability curve of AID homologs 220
4.3.9 WRC and WGCW motif analyses of other Gadidae species 221
4.4 Results 222
4.4.1 Biochemical properties of the extant Gadiformes AIDs 222
4.4.1.1 Selected extant AID homologs for biochemical analyses. 222
4.4.1.2 Examining the optimal temperature of extant Gadiformes AIDs 225
4.4.1.3 Examining the optimal pH of extant Gadiformes AIDs 234
4.4.1.4 Examining the catalytic properties of extant Gadiformes AIDs 239
4.4.2 Co-evolution of Gadidae $I g$ genes with their nearly inactivated AID 254
4.4.3 Resurrecting Gadiformes ancestral AIDs 258
4.4.3.1 Selected extant species for ancestral sequence reconstruction analyses 258
4.4.3.2 Gene tree $v s$. species tree 265
4.4.3.3 Predicting ancestral AID sequences 269
4.4.3.4 Biochemical properties of the predicted ancestral AIDs 278
4.4.4 The potential functional effects of AID's ancestral amino acid mutations

\qquad282
4.5 Discussion 286
5. Chapter 5: Discussion 294
5.1 Overview 295
5.2 Findings and significance. 301
5.2.1 Summary of findings 301
5.2.2 Significance and future directions. 306
References 312
Appendices. 359

List of Tables

Table 1-1: Characteristics of mammalian Toll-like receptors (TLRs) 7
Table 2-1: The sequence of primers used in this chapter. 96
Table 2-2: APOBEC and AID structures used as templates for homology modeling 99
Table 2-3: Comparison of aicda locus amongst different species 102
Table 2-4: Genomic regions used in synteny analysis 103
Table 2-5: Characteristics of identified aicda transcripts predicted by ATGpr website . 111
Table 2-6: Comparison of AID amino acid identity and similarity amongst different species123
Table 3-1: pH solutions used in this thesis 145
Table 3-2: Deamination-specific primers used in this chapter 153
Table 3-3: Michaelis-Menten kinetics parameters measured for each AID homolog 169
Table 3-4: Comparison of DNA interaction with substrate binding grooves on the surface
of AID homologs 179
Table 3-5: Comparison of $\mathrm{Gm}-\mathrm{AID}^{\mathrm{H} 136}$ residue in interaction with -1 position nucleotideupstream of the target dC and total interactions with substrate to its equivalent residue inother AID homologs179
Table 3-6: Michaelis-Menten kinetics parameters measured for Gm-AID mutants 180
Table 3-7: AID hotspot enrichment in $\operatorname{Ig} V_{H}$ genes of various vertebrate species 191
Table 3-8: AID hotspot enrichment in the entire $\operatorname{Ig} V_{H}$ genes and GC content of annotated
complete protein coding genes (CDSs) of various vertebrate species 192

Table 4-1: Name and abbreviations of the extant AID homologs studied in this chapter. .211

Table 4-2: Amount of NaCl added to 1 Kg of water to establish below $0{ }^{\circ} \mathrm{C}$ incubation temperatures... 216

Table 4-3: Predicted thermodynamic quantities of Pt-AID and Tsu-AID using SCooP server.. 232

Table 4-4: The enzymatic parameters measured for extant AID homologs examined in this thesis .247

Table 4-5: AID hotspot enrichment in $I g V_{H}$ genes of various Gadidae and vertebrate species .256

Table 4-6: AID hotspot enrichment in the entire $\operatorname{Ig} V_{H}$ genes and GC content of annotated complete protein coding genes (CDSs) of various Gadidae and vertebrate species .257

Table 4-7: Predicted ancestral sequences using MrBayes package and the species tree as the starting tree. .273

Table 4-8: Predicted ancestral sequences using RAxML package and the aicda gene tree .274

Table 4-9: Predicted ancestral sequences using RAxML package and the previously published species tree .. 275

Table 4-10: Predicted ancestral sequences using RrotASR package, our computationally predicted Gm-AID 3D structure, and the previously published species tree................... 276

Table 4-11: The enzymatic parameters measured for predicted ancestral AIDs 281
Table 4-12: The enzymatic parameters measured for Gm-AID ancestral mutants 285

List of Figures

Figure 1-1: Schematic representation of V(D)J recombination... 26
Figure 1-2: Overview of the canonical Base excision repair (BER) and mismatch repair (MMR), the error-prone BER and MMR during SHM, and the error-prone BER and MMR
\qquad
Figure 1-3: General structural features of human AID (Hs-AID) 47
Figure 2-1: Comparison of the aicda genomic structure amongst vertebrates 101
Figure 2-2: Comparison of the aicda synteny amongst vertebrates 104
Figure 2-3: Aicda gene synteny ... 105
Figure 2-4: Identification and characterization of Atlantic cod aicda transcript(s)......... 108
Figure 2-5: Sequence of the identified Atlantic cod aicda mRNA transcripts 110
Figure 2-6: Alignment of splicing sites of aicda transcripts in different species 112
Figure 2-7: Confirmation of the presence of both aicda transcripts in several Atlantic cod individuals through RT-PCR 113

Figure 2-8: Atlantic cod aicda expression profile in adult tissues and embryonic stages

Figure 2-9: Analysis of Atlantic cod aicda transcripts upon immune stimulation.......... 117
Figure 2-10: General structural features of Atlantic cod AID .. 122
Figure 2-11: Potential conformational changes induced by H136 in Atlantic cod AID compared to the corresponding glutamic acid (E) in other AID homologs 124

Figure 3-1: Experimental scheme for standard alkaline cleavage assay.......................... 147

Figure 3-2: AID purification in prokaryotic and eukaryotic expression systems............ 159
Figure 3-3: Functional analysis of purified Atlantic cod AID ... 160

Figure 3-5: Bona fide cytidine deaminase activity of Atlantic cod AID 164
Figure 3-6: Comparison of the catalytic rate of Atlantic cod AID with other AID homologs

Figure 3-7: Atlantic cod AID activity on 5-mC... 171
Figure 3-8: Basis of Atlantic cod AID lethargy... 176
Figure 3-9: AID ssDNA binding modes .. 178
Figure 3-10:The role of positively-charged amino acid at the mouth of AID's catalytic pocket in its activity ... 184

Figure 3-11: Atlantic cod AID sequence specificity.. 188
Figure 3-12: The statistical analyses of the difference observed between substrate relative deamination efficiency of various AID homologs.. 189

Figure 3-13: Co-evolution of Atlantic cod AID substrate specificity with Atlantic cod Ig genes 190

Figure 4-1: Protein alignment of extant AID homologs the enzymatic properties of which were characterized in this chapter .224

Figure 4-2: Temperature profile of extant AID homologs.. 229
Figure 4-3: Predicted 3D structure of Pt-AID vs. Tsu-AID.. 230
Figure 4-4: Main thermal adaptation strategies employed by proteins........................... 231
Figure 4-5: Predicted stability curves for Pt-AID and Tsu-AID...................................... 233
Figure 4-6: pH profile of extant AID homologs 237
Figure 4-7: Optimal $\mathrm{pH} v s$. optimal temperature of extant AID homologs 238
Figure 4-8: Time-course experiment 241
Figure 4-9: Comparison of the catalytic rate of Gadiformes AIDs with other AID homologs245
Figure 4-10: Relative catalytic efficiency of all AID homologs examined here 246
Figure 4-11: The relationship between optimal temperature and logKcat of extant AID
homologs studied here 250
Figure 4-12: Clustering of extant AIDs based on their optimal temperature using machine
learning algorithm of K-means clustering 251
Figure 4-13: Clustering of extant AIDs based on their optimal temperature and optimal pHusing machine learning algorithm of K-means clustering ... 252Figure 4-14: Clustering of extant AIDs based on their optimal pH using machine learningalgorithm of K-means clustering253
Figure 4-15: Co-evolution of AID activity with $\operatorname{Ig} V_{H}$ gene sequences in Gadidae species255
Figure 4-16: Amino acid alignment of extant genes used for ASR analyses 263
Figure 4-17: Amino acid conservation of extant AID homologs used in ASR analyses. 264
Figure 4-18: The best ML tree obtained in this thesis 267
Figure 4-19: Previously published species tree used in this thesis 268
Figure 4-20: Amino acid alignment of the predicted ancestral AIDs using four different
methods 272

Figure 4-21: Amino acid alignment of the expressed ancestral AIDs
Figure 4-22: Biochemical properties of resurrected ancestral AIDs and their variants ... 279 Figure 4-23: Comparison of the catalytic rate of predicted ancestral AIDs and their variants
\qquad
Figure 4-24: Biochemical properties of Atlantic cod AID mutants .284

Figure 5-1: Comparison of catalytic rate of Gadiformes AIDs .305

Figure 5-2: Model of a uniquely but successful compartmentalized immune system in Atlantic cod 308

List of Abbreviations

3'-UTR: Untranslated region at the 3^{\prime} end of RNA transcript
5-mC: 5-methylcytidine
5'-UTR: Untranslated region at the 3 ' end of RNA transcript
A3A: APOBEC3A

A3G: APOBEC3G
$\mathrm{Ab}-\mathrm{Ag}$: Antibody-antigen complex
ADARs: Adenosine deaminases acting on RNA
ADCC: Antibody-dependent cell-mediated cytotoxicity
Ag-AID: Arctogadus glacialis AID
aicda: Activation induced cytidine deaminase gene
AID: Activation induced cytidine deaminase
AIM2: Absent in melanoma 2
ALR: Absent in melanoma 2-like receptor
AM: Antibody affinity maturation
APE: Apurinic/apyrimidinic endonuclease
APOBEC: Apolipoprotein B-mRNA editing enzyme catalytic polypeptide-like complex family of cytidine deaminases

ASAL: Formalin-killed typical A. salmonicida
ASR: Ancestral Sequence Reconstruction
atps: ATP synthase $\mathrm{H}+$ transporting, mitochondrial Fo complex, subunit F2

BAFF: B cell activating factor
B-ALL: B cell acute lymphoblastic leukemia
Bb-AID: Brosme brosme AID

BCR: B cell receptor
BER: Base excision repair
Bm-AID: Bathygadus melanobranchus AID
bNABs: Broadly neutralizing antibodies
bp: Base pair
Bs-AID: Boreogadus saida AID
B-T zone: B and T cell zone boundary
C: Immunoglobulin constant domain
Ccap: C terminus of an α-helix
CD: Cluster of differentiation
CDR: Complementarity determining region of antibodies
cGAS: Cytosolic DNA sensor
C_{H} : Heavy chain constant gene
CLL: Chronic lymphoid leukemia
CLR: C-type lectin receptor
CML: Chronic myeloid leukemia
CR: Complement receptor
Cr-AID: Cyttopsis roseus AID
CSR: Class switch recombination

CTL: Cytotoxic T cell
D: Immunoglobulin diversity segment
DAMP: Damage-associated molecular patterns
DC: Dendritic cell
dC: Deoxycytidine
Del: deletion
DLBCL: Diffuse large B cell lymphomas
DNA: Deoxyribonucleic acid
DNP-KLH: 2,4-dinitrophenyl-keyhole limpet hemocyanin
DNTT: DNA nucleotidylexotransferase
DPF: Days post fertilization
Dr-AID: Dani rerio AID
ds: Double-stranded
DSBs: Double-stranded breaks in DNA
dT: Deoxythymidine
dU: Deoxyuridine
DZ: Dark zone
EBI2: Epstein-Barr virus-induced receptor 2
eEF1 α : Translation elongation factor 1α
EMSA: Electrophoretic mobility shift assay
FasL: Fas ligand
FDCs: Follicular DCs

FITC-KLH: Fluorescein isothiocyanate (FITC) conjugated to keyhole-limpet hemocyanin FL: Fetal liver

FRs: Antibody framework regions
G4: G-quadruplex
Ga-AID: Gadiculus argenteus AID
GC: Germinal center
Gd-ANC: Gadidae ancestral AID
Gds-ANC: Gadidae sister group ancestral AID
Gf-ANC: Gadiformes ancestral AID
Gg-AID: Gallus gallus domesticus AID
GIALT: Gill-associated lymphoid tissue
Gm-AID: Gadus morhua AID
GSP: Gene-specific primers
GST: Glutathione S-transferase
GTR: General time reversible model

GTRCAT: General time reversible model with the CAT model of rate heterogeneity
HIGM: Hyper-IgM syndrome
HIV: Human immunodeficiency virus
HPI: Hours post injection
HR: Homologous recombination
Hs-AID: Homo sapiens AID
HSCs: Hematopoietic stem cells

IFN: Interferon

Ig: Immunoglobulin
IGC: Immunoglobulin gene conversion
IgH: Immunoglobulin heavy chain
IgL: Immunoglobulin light chain
IgNAR: Immunoglobulin new antigen receptor
IgSF: Immunoglobulin superfamily
Ii: Invariant chain

IL: Interleukin
ILC: Innate lymphoid cell
IMC: Innate myeloid cell
Ip-AID: Ictalurus punctatus AID
iPS: Pluripotent stem cells
IPTG: Isopropyl β-d-1-thiogalactopyranoside
IRF: Interferon regulatory factor
IS: Isotype switching
ISP: Isoform-specific primers
J: Immunoglobulin joining segment
K_{d} : Dissociation constant

1: Loop
Lla-AID: Laemonema laureysi AID
Llo-AID: Lota lota AID

LPS: Lipopolysaccharides
LTi: Lymphoid tissue inducer cell
LZ: Light zone
Ma-AID: Melanogrammus aeglefinus AID
MALT: Mucosa-associated lymphoid tissues

MAPK: Mitogen-activated protein kinase
Mb-AID: Macrourus berglax AID

MHC: Histocompatibility complex
mIgM: Membrane-bound IgM
ML: Maximum likelihood

MM: Michaelis-Menten
Mma-AID: Muraenolepis marmoratus AID

MMC: Melano-macrophage cluster
Mm-AID: Mus musculus AID

Mmerla-AID: Merlangius merlangus AID
Mmerlu-AID: Merluccius merluccius AID
Mmol-AID: Molva molva AID

Mmor-AID: Mora mora AID
MMR: Mismatch repair

Mo-AID: Malacocephalus occidentalis AID
MQ: Macrophage
mRNA: messenger RNA

MSA: Multiple sequence alignment
MyD88: Myeloid differentiation factor 88
MZ: Marginal zone
Mz-AID: Melanonus zugmayeri AID
nABs: Natural antibodies
NBH: B cell helper neutrophils
Ncap: N terminus of an α-helix
NER: Nucleotide excision repair
NES: Nuclear export signal
NET: Neutrophil extracellular trap
NF-кB: Nuclear factor kappa-light-chain-enhancer of activated B cells
NHEJ: Non-homologous end-joining
NK: Natural killer cell
NKT: Natural killer T cell
NLR: Nucleotide oligomerization domain-like receptor
NLS: Nuclear localization sequence
NLS: Nuclear localization signal
NMR: Nuclear magnetic resonance
NOD: Nucleotide oligomerization domain
Ol-AID: Oryzias latipes AID
ORF: open reading frame
PAMP: Pathogen-associated molecular pattern
pAPC: Professional antigen presenting cell
Pb-AID: Phycis blennoides AID
PBS: Phosphate-buffered saline
PCR: Polymerase chain reaction
PDB: Protein databank
pIC: Polyinosinic:polycytidylic acid
Pj-AID: Polymixia japonica AID
PKA: Protein kinase A
Pm-CDA1: Petromyzon marinus cytidine deaminase 1
Pp-AID: Phycis phycis AID
PRR: Pattern recognition receptor
Pt-AID: Percopsis transmontana AID
Pv-AID: Pollachius virens AID
Pw-AID: Pleurodeles waltl AID
RACE: Rapid amplification of cDNA ends
RAG: Recombination-activating gene
RIG: Retinoic acid-inducible gene
RLR: Retinoic acid-inducible gene-I-like receptor
RNA: Ribonucleic acid
RPA: Replication protein A
rplp1: 60S acidic ribosomal protein P1
RSS: Recombination signal sequences

RT: Reverse transcriptase
RT-PCR: Reverse transcription polymerase chain reaction
S: Immunoglobulin switch region
Sc-AID: Stylepnorus chordatus AID
SCS: Subcapsular sinus
SHM: Somatic hypermutation
SLC: Surrogate light chain
ss: Single-stranded
Ss-AID-1: Salmo salar AID variant 1
Ss-AID-2: Salmo salar AID variant 2 (Ss-AID-1 ${ }^{\text {V41G }}$)
SSBs: Single-stranded breaks in DNA
ssDNA: Single-stranded DNA
ssRNA: Single-stranded RNA
STING: Stimulator of interferon genes
SV: Chromosomal structural variation
T1 B cell: Transitional 1 B cell
T2 B cell: Transitional 2 B cell

TADs: tRNA deaminases
TCR: T cell receptor
TD: T cell-dependent
TDG: Thymidine DNA glycosylase
TdT: Terminal deoxynucleotidyl transferase

TFH: Follicular TH
TGF- β : Transforming growth factor-beta
T-Gm-AID: Gadus morhua AID truncated isoform
TI: T cell-independent
TI-1: T cell-independent antigens 1
TI-2: T cell-independent antigens 2
TLR: Toll-like receptor
Tmi-AID: Trisopterus minutus AID
Tmu-AID: Trachyrincus murrayi AID
TNF: Tumor necrosis factor
Tr-AID: Takifugu rubripes AID
TREG: Peripheral regulatory TH
TRIF: TIR domain-containing adaptor-inducing IFN- β factor
Tsc-AID: Trachyrincus scabrus AID
TSS: Transcription start site
Tsu-AID: Typhlichthys subterraneus AID
TS-WGD: Teleost-specific whole-genome duplication
UDG: Uracil-DNA glycosylase enzyme
UNG: Uracil-N-glycosylase
V: Immunoglobulin variable domain
V_{H} : V region heavy chain
V_{L} : V region light chain

XI-AID: Xenopus laevis AID
Zf-AID: Zeus faber AID
Zf-ANC: Zeiogadaria ancestral AID
α : α-helix
$\Psi:$ Pseudogenes

List of Appendices

Appendix 1: GenBank accession number of the $I g$ genes used in this thesis to identifyAtlantic cod IgH locus as well as WRC analysis... 359Appendix 2: Pairwise Comparisons of substrate specificity of Hs-AID using independentsamples Kruskal-Wallis test... 386
Appendix 3: Pairwise Comparisons of substrate specificity of Dr-AID using independent samples Kruskal-Wallis test 387
Appendix 4: Pairwise Comparisons of substrate specificity of Ip-AID using independent
samples Kruskal-Wallis test 388
Appendix 5: Pairwise Comparisons of substrate specificity of Gm-AID using independent
samples Kruskal-Wallis test 389
Appendix 6: List of bony fish species studied in this thesis. Basic habitat information was retrieved from FishBase database (www.fishbase.se) 390
Appendix 7: Nucleotide sequence of aicda homologs examined in this thesis 393
Appendix 8: Our computationally predicted 3D structure of Gm-AID used to guide amino
acid alignment and as the structure template in ProtASR analyses 405
Appendix 9: RaxML scripts 472
Appendix 10: MrBayes input files. 474
Appendix 11: ProtASR setting and input files 495
Appendix 12: Ancestral AID sequences predicted in this thesis 510

Author contributions

Chapter 2: I designed the research proposal, performed the experiments, analyzed the data, and wrote the manuscript. I conducted these experiments at Dr. Rise's lab at Ocean Sciences Center, Memorial University, NL, Canada. K. Eslamloo assisted with fish dissection, RNA extraction, and qPCR analyses. M. Rise provided guidance in qPCR analyses and edited the manuscript. M. Larijani was the principal investigator.

Chapter 3: I designed the research proposal, performed the experiments, analyzed the data, and wrote the manuscript. I conducted these experiments at Dr. Larijani's lab at Health Sciences Center (HSC), Memorial University, NL, Canada. D. N. Hubert, K. X. N. Hernandez, and I performed computational modeling and DNA/protein docking. M. H. Solbakken characterized the Atlantic cod $I g$ loci at the Center for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway. I conducted the gene synteny analyses. S. J. Khataeipour and I performed WRC analyses. S. Jentoft provided guidance for characterizing the Atlantic cod Ig loci and edited the manuscript. M. Larijani was the principal investigator.

Chapter 4: I designed the research proposal, performed the experiments, analyzed the data, and wrote the manuscript. I conducted the biochemical characterization of AID homologs at Dr. Larijani's lab at HSC. I performed the AID gene identification and ancestral sequence reconstruction analyses at CEES. S. J. Kataeipour and I performed the machine learning analyses. S. J. Khataeipour contributed to the writing of the manuscript.
C. D. Collins assisted in protein purification and biochemical analyses. M. Larijani was the principal investigator.

Peer-reviewed publications

Branton S. A., Ghorbani A., Bolt B. N., Fifield H., Berghuis L. M., and Larijani M., "Activation-induced cytidine deaminase can target multiple topologies of doublestranded DNA in a transcription-independent manner". The FASEB Journal, 34 (7), 92459268 (2020)

Eslamloo K., Ghorbani A., Xue X., Inkpen S. M., Larijani M., and Rise M. L., "Characterisation and expression analyses of Atlantic cod viperin". Frontiers in Immunology, 10:311 (2019)

Abdouni H.S., King J.J., Ghorbani A., Fifield H., Berghuis L., and Larijani M., "DNA/RNA hybrid substrates modulate the catalytic activity of purified AID". Molecular Immunology, 93, 94-106 (2018)

Daliri K., Aref-Eshghi E., Taranejoo S., Modarresi S., Ghorbani A., Nariman A., Savaie M., Falasiri S. M. M., Akhondi-Kharangh F., and Askari H., "Emerging cytokines in allergic airway inflammation: A genetic update". Current Immunology Reviews, 12(1), 4-9 (2016)

Naghavi F. S., Hanachi P., Soudi M. R., Saboora A., and Ghorbani A., "Evaluation of the relationship between the incubation time, and carotenoid production in Rhodotorula slooffiae and R. mucilaginosa isolated from leather tanning wastewater". Iranian Journal of Basic Medical Sciences, 16(10), 1114-1118 (2013)

Ghorbani A., Solbakken M. H., Huebert D. N., Eslamloo K., Berghuis L. M., Jentoft S., Rise M. L., and Larijani M., "Evolutionary trajectory of activation-induced
cytidine deaminase (AID) in the extant and ancestral Gadiformes species". This paper contains the results of chapter 2, and most of chapter 3, and 4. Manuscript in preparation.

Ghorbani A.*, Quinlan E. M.*, and Larijani M., "Evolutionary comparative analyses of DNA-editing enzymes of the immune system: 5-dimensional structures, immunological insights, and applications to protein engineering". This review paper contains materials from chapter 1 and 5. Manuscript under revision in the journal of Frontiers in Immunology.
*Denotes joint-first authorship.
Ghorbani A., King J. J., and Larijani M., "DNA-binding residues proximal to its catalytic pocket regulate pH sensitivity of activation-induced cytidine deaminase (AID)". This paper contains some of the findings from chapter 3. Manuscript in preparation.

Chapter 1:

Introduction

1.1 Overview

The immune system, which is the species' defense mechanism against pathogens and abnormal self, is comprised of two major arms that recognize a wide variety of antigens: innate and adaptive immunity. Innate immunity is the first line of defense that reacts quickly but non-specifically to a wide variety of pathogens. Adaptive immunity is highly antigen-specific but requires a longer time (days to weeks) to develop to its full measure and effectiveness. The innate immune system consists of physical and chemical barriers, such as epithelial layers, stomach acid, lysozyme, etc., and cellular component that includes pattern recognition receptors (PRRs) and innate immune cells. In jawed vertebrates, B and T lymphocytes are the evolutionarily conserved major cell types involved in adaptive immunity, mediating antibody (humoral) and cell-mediated immunity, respectively (Owen, 2019). The innate and adaptive immune systems protect the host against pathogens by working individually and in collaboration with each other.

1.2 Innate immune system

Upon exposure to a pathogen, innate immunity components are effective immediately or rapidly induced. The physical and chemical barriers of the innate immune system are the body's first defensive structures. Physical barriers include the epithelial layer that isolates the body's interior from the outside world. Chemical barriers consist of any substances that exert antibacterial activity, such as stomach acid, fatty acids in sebum, mucus, proteins, peptides, etc. Lysozyme, lactoferrin, surfactant proteins, S100 proteins, defensins, cathelicidin, histatins, and dermcidin are some examples of innate antimicrobial proteins and peptides (Owen, 2019).

If the pathogen manages to overcome these physical and chemical barriers, then the cellular component of the innate immune system is quickly induced. Myeloid cells, such as macrophages and granulocytes, and the innate lymphoid cells (ILCs), such as natural killer cells (NKs), are the main cell types of the innate cellular response. The cellular components of the innate immune response are triggered when PRRs, expressed by the immune cells, interact with pathogen-associated molecular patterns (PAMPs), or damageassociated molecular patterns (DAMPs) released by the host's damaged or dying cells (Owen, 2019; Roh \& Sohn, 2018). The activation of cellular modules results in the release of antimicrobial molecules, cytokines, and chemokines, as well as the induction of the phagocytic and killing activity of immune cells (Owen, 2019). ${ }^{\text {a }}$ Innate cellular responses constitute the host's second line of defense against pathogen invasion.

1.2.1 Overview of innate cellular immunity

The essential step in initiating an innate cellular response is the recognition of PAMPs and DAMPs by PRRs. PAMPs are the unique antigenic structures specific to a group of pathogens (Owen, 2019; Rajaee et al., 2018). Lipopolysaccharides (LPS), lipoproteins, peptidoglycans, lipoteichoic acid, flagellin, unmethylated CpG dinucleotides, and rRNA are some examples of the bacterial PAMPs (Kumar et al., 2011; S. Kumar et al., 2013; Owen, 2019; Rajaee et al., 2018). Some of the known viral PAMPs are singlestranded (ss) and double-stranded (ds) RNA and coat proteins, such as the fusion protein of respiratory syncytial virus and the G glycoprotein of vesicular stomatitis virus. Zymosan

[^0](β-glucan) and mannans are widely considered the predominant fungal PAMPs (Goyal et al., 2018; Kumar et al., 2011; Owen, 2019). Glycosylphosphatidylinositolanchored mucin-like glycoproteins and hemozoin are examples of the parasite-related PAMPs (Kawai \& Akira, 2011). DAMPs are the host's endogenous danger signals that originate either from the extracellular matrix or intracellular compartments as the result of cell and tissue injury. Biglycan, tenascin C , and fibrinogen are derived from the extracellular matrix, while S100 proteins, heat shock proteins, F-actin, ATP, histones, and mitochondrial DNA are some of the DAMPs formed from intracellular content (Roh \& Sohn, 2018). Since PAMPs and DAMPs are not specific to individual pathogens, the specificity of the innate immune response is limited (Owen, 2019).

1.2.2 Pattern recognition receptors

PRRs are membrane-bound or cytosolic proteins which include six protein families:
(1) Toll-like receptors (TLRs), (2) C-type lectin receptors (CLRs), (3) nucleotide oligomerization domain (NOD)-like receptors (NLRs), (4) absent in melanoma 2 (AIM2)like receptors (ALRs), (5) retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), and (6) cytosolic DNA sensors (i.e., cyclic GMP-AMP synthase [cGAS], and stimulator of interferon genes [STING]) (Owen, 2019; Thompson et al., 2011). PRR engagement with PAMPs and DAMPs commences a series of complex signaling pathways that activate the innate immune cells to induce the proper effector mechanisms (Jain \& Pasare, 2017). ${ }^{\text {a }}$ It

[^1]must be emphasized that although individual PRRs are strong immunomodulators, the simultaneous engagement of multiple PRRs is required to mount a robust adaptive immune response (Jain \& Pasare, 2017). In essence, the diversity in the host's arsenal of PRRs is an evolutionary strategy to tailor the immune response to a specific group of pathogens.

1.2.2.1 Toll-like receptors

Thus far, the best characterized PRRs are TLRs. TLRs are type I transmembrane proteins found either on the plasma membrane, which recognize PAMPs on the outside of pathogens, or on the endosomal/lysosomal membrane that detect the released PAMPs during endosomal/lysosomal degradation of pathogens (Owen, 2019; Thompson et al., 2011). The mammalian TLR family consists of 13 members of which ten members are found in humans (TLR1 to 10), and 12 of which have been discovered in mice (TLR1 to 9 and TLR 11 to 13) (Takeda \& Akira, 2015). Table 1-1 compares some of the TLRs' characteristics, ligands, and expression pattern across various immune cell types (Doan, 2013; Koblansky et al., 2013; Owen, 2019; Shi et al., 2011; Takeda \& Akira, 2015). ${ }^{\text {a }}$ Interaction with its cognate ligand facilitates TLR dimerization into either a heterodimer or a homodimer. Two key adaptor proteins which associate with the cytoplasmic domain of dimerized TLRs are MyD88 (myeloid differentiation factor 88) and TRIF (TIR domaincontaining adaptor-inducing IFN- β factor) (Takeda \& Akira, 2015). ${ }^{\text {b }}$ A shared component of all TLR signaling pathways is the activation of the NF-кB (nuclear factor kappa-light-

[^2]chain-enhancer of activated B cells) transcription factor (Owen, 2019). TLR-induced signaling pathways result in the secretion of cytokines, chemokines, and antimicrobial proteins.

The MyD88-dependent pathway generally activates three transcription factors: NF$\kappa \mathrm{B}$, activator protein 1 (AP-1, through mitogen-activated protein kinase [MAPK] pathway), and IRF7 (interferon regulatory factor 7, only in the case of TLR7 to 9). TLR 7 to 9 are lysosomal and bind microbial nucleic acids. IRF7 activation guarantees the expression of potent antiviral interferon genes downstream of TLRs that detect viral components. TRIF-dependent signaling, however, triggers the expression of type I interferons (i.e., IFN- α and IFN- β) through the activation of IRF3 and induces delayed activation of NF-кB (Owen, 2019; Takeda \& Akira, 2015). The abovementioned variations in the TLR signaling pathway enable tailoring of the innate cellular immune response to the specific group of pathogens detected by TLRs.

Table 1-1: Characteristics of mammalian Toll-like receptors (TLRs)

	Ligands	Microbes	Dimerization	Location	Organism found in	Expressed on
TLR1	Triacyl lipopeptides	Mycobacteria Gram-negative bacteria	TLR2/1	Plasma membrane	Human Mouse	Monocytes/macrophages Dendritic cell subset B lymphocytes
TLR2	Peptidoglycans lipoteichoic acid Lipomannan, lipoproteins GPI-anchored proteins Zymosan Phosphatidylserine	Gram-positive bacteria Gram-positive bacteria Other bacteria Mycobacteria Trypanosomes Yeast and other fungi Schistosomes	$\begin{aligned} & \text { TLR2/1 } \\ & \text { and } \\ & \text { TLR2/6 } \end{aligned}$	Plasma membrane	Human Mouse	Monocytes/macrophages Subset of dendritic cells Mast cells
TLR3	Double-stranded RNA	Viruses	Homodimer	Endosomal membrane	Human Mouse	Dendritic cell B lymphocytes
TLR4	LPS F protein Envelope glycoprotein G glycoprotein Mannans Heat shock proteins Extra domain A (EDA) Hyaluronic acid	Gram-negative bacteria Respiratory syncytial virus Mouse mammary tumor virus Vesicular stomatitis virus Fungi	Homodimer	Plasma membrane Endosomal membrane	Human Mouse	Monocytes/macrophages Dendritic cell subset Mast cells Intestinal epithelium
TLR5	Flagellin	Bacteria	Homodimer	Plasma membrane	Human Mouse	Monocytes/macrophages Dendritic cell subset Intestinal epithelium
TLR6	Peptidoglycans Diacyl lipopeptides	Gram-positive bacteria Gram-negative bacteria	TLR2/6	Plasma membrane	Human Mouse	Monocytes/macrophages Mast cells

	Ligands	Microbes	Dimerization	Location	Organism found in	Expressed on
	Zymosan	Mycobacteria Yeast and other fungi				B lymphocytes
TLR7	G-/U-rich ss RNA Imidazoquinoline	Viruses	Homodimer	Endosomal membrane	Human Mouse	Monocytes/macrophages Dendritic cell subset B lymphocytes
TLR8	ssRNA Imidazoquinoline	Viruses	Homodimer	Endosomal membrane	Human Mouse	Monocytes/macrophages Dendritic cell subset Mast cells
TLR9	CpG unmethylated dinucleotides Dinucleotides Herpesvirus components Hemozoin	Bacterial DNA Some herpesviruses Malaria parasite heme by-product	Homodimer	Endosomal membrane	Human Mouse	Monocytes/macrophages Dendritic cell subset B lymphocytes
TLR10	Unknown	Unknown	Homodimer	Plasma membrane	Human	Monocytes/macrophages B lymphocytes
TLR11	Unknown Profilin Flagellin	Uropathogenic bacteria Toxoplasma gondii Salmonella typhimurium	Homodimer and TLR11/12	Plasma membrane	Human (non- functional) Mouse	Macrophages Liver epithelial cells Kidney epithelial cells Bladder epithelial cells
TLR12	Profilin	Toxoplasma gondii	Homodimer and TLR11/12	Plasma membrane	Mouse	Macrophages Dendritic cell subset
TLR13	rRNA Unknown	Bacteria Vesicular stomatitis virus	Homodimer	Plasma membrane	Mouse	Macrophages Dendritic cell subset

1.2.2.2 Other types of pattern recognition receptors

The myeloid C-type lectin receptors (CLRs) are also involved in PAMPs recognition by the immune system. CLRs are type I or type II transmembrane proteins, characterized by exoplasmic space-located N -terminal or C-terminal domains, respectively (Brown et al., 2018; Cao, 2018; Mayer et al., 2017). The myeloid CLRs, expressed on the surface of monocytes, macrophages (MQs), dendritic cells (DCs), and neutrophils, engage with carbohydrates PAMPs, on the surface of extracellular pathogens, in a Ca^{2+}-dependent manner (Brown et al., 2018; Mayer et al., 2017; Owen, 2019). ${ }^{\text {a }}$ CLRs engagement with the corresponding ligand triggers various antimicrobial effector mechanisms such as the respiratory burst and the formation of neutrophil extracellular traps (NETs). It also stimulates the expression of different cytokines, chemokines, and immunomodulatory lipids (e.g., eicosanoids) (Brown et al., 2018).

Unlike TLRs and CLRs, other PRRs are cytosolic receptors. NLRs respond to various PAMPs and DAMPs, and their functions can be divided into inflammasome formation, signaling transduction, transcription activation, and autophagy (Kim et al., 2016; Yang et al., 2019). Association of cytosolic bacterial and viral DNA by ALRs leads to inflammasome formation and subsequent cytokine maturation and pyroptotic cell death (Wang et al., 2019). An antiviral response ${ }^{\mathrm{b}}$ is mounted when the RLRs detect the presence of viral RNA in the cytoplasm and begin signaling pathways resulting in NF-кB and IRF

[^3](mainly IRF3 and IRF7) activation (Barik, 2016). The non-self DNA and dinucleotides can be sensed through cGAS and STING. This association prompts the activation of NF-кB and IRF3 initiating type I IFN and cytokine synthesis (Owen, 2019).

1.2.3 The innate immune cells

The innate immune cells are the major players in the cellular response of innate immunity. These cells divide into two main groups: the innate myeloid cells (IMCs) and the innate lymphoid cells (ILCs). IMCs include granulocytes (i.e., neutrophils, eosinophils, basophils, and mast cells), monocytes, MQs, and DCs (Palgen et al., 2018). IMCs are the first cells to respond to pathogen invasion. Their activation, through PRR engagement with PAMPs and/or DAMPs, triggers the secretion of antimicrobial molecules, cytokines, and chemokines and stimulates the phagocytosis of the pathogens or the infected cells (only in the case of phagocytic cells) (Owen, 2019). Moreover, monocytes, MQs, and DCs are also considered professional antigen-presenting cells (pAPCs). These pAPCs present exogenous antigens in the context of major histocompatibility complex type II (MHC II) to helper $\mathrm{T}\left(\mathrm{T}_{\mathrm{H}}\right)$ cells to activate the adaptive immune system (Owen, 2019; Palgen et al., 2018).

Amongst APCs, DCs are unique in that they are activated (also referred to as licensed) when their PRRs interact with PAMPs or DAMPs, which causes DCs to uptake pathogens and then break them down into short peptide fragments to load onto their MHC I or II (depending on the nature of the pathogen) molecules (Owen, 2019; Reis e Sousa, 2004). Alternatively, the licensing process happens when an activated $\mathrm{CD} 40 \mathrm{~L}^{+}$helper T cell (e.g., $\mathrm{T}_{\mathrm{H}} 1$) engages with the MHC II-peptide complex found on a DC's surface (Owen,
2019). Consequently, they begin to express costimulatory receptors and secrete cytokines that are essential for the activation of naïve T cells. Due to these activation events, DCs are the only APCs capable of activating naïve T cells (Owen, 2019; Reis e Sousa, 2004). Therefore, DC activation is an essential event that interlinks the innate and adaptive immune systems.

Generally, ILCs are functionally parallel to the T cell grouping and secret similar cytokine profiles. However, they lack antigen-specific receptors and mainly reside in peripheral tissues, specifically at barrier surfaces, except for the NK cells that circulate in the bloodstream (Kotas \& Locksley, 2018; Mjosberg \& Spits, 2016; Vivier et al., 2018). ILCs are activated through cytokines and stress signals generated from mucosal stromal and myeloid cells (Mjosberg \& Spits, 2016). The International Union of Immunological Societies (IUIS) has divided ILCs based on their secreting cytokine profile, required transcription factors, and development into five subsets: NK cells, ILC1s, ILC2s, ILC3s, and lymphoid tissue inducer (LTi) cells (Colonna, 2018; Vivier et al., 2018).

NK cells are efficient cell killers and the most studied ILCs. They possess various types of receptors that are either inhibitory or activating in nature (Mandal \& Viswanathan, 2015). For example, they express inhibitory receptors for self MHC I. When infected cells downregulate the surface expression of MHC I, they are targeted by NK cells. NK cells also express surface receptors for the F_{c} fragment of antibodies (i.e., F_{c} receptor). Through these receptors, they can pick up antibodies and attack infected cells or bind antibodies attached to infected cells in an antigen-specific manner. This mechanism is called antibodydependent cell cytotoxicity (ADCC) (Owen, 2019). Remarkably, the NK cell population
exhibits a significant heterogeneity due to the ability of different NK cells to express various combinations of activating and inhibitory receptors (Mandal \& Viswanathan, 2015).

ILC1s, ILC2s, and ILC3s are functionally reminiscent of CD4 ${ }^{+}$T helper type 1 cells ($\mathrm{T}_{\mathrm{H}} 1$), $\mathrm{T}_{\mathrm{H} 2}$, and $\mathrm{T}_{\mathrm{H}} 17 / 22$ subsets of adaptive immune cells, respectively (Kotas \& Locksley, 2018; Mjosberg \& Spits, 2016). ILC1s react to viruses and tumors, while ILC2s defend against large extracellular parasites and allergens, and ILC3s fight extracellular microbes (Vivier et al., 2018). During fetal development, LTi cells play a central role in lymphoid organogenesis (Mjosberg \& Spits, 2016; Vivier et al., 2018; Zhong et al., 2018). Although our knowledge of ILCs is still growing, the important role of innate immune cells in protecting our body is apparent.

1.3 Adaptive immune system

In jawed vertebrates, innate immunity plays another important role beyond initiating immediate defense; it activates the more efficient long-standing adaptive immune response. T cell and B cells are the main adaptive lymphoid cells. T cells are divided into two cell types based on the CD4 or CD8 surface expression. $\mathrm{CD} 4^{+} \mathrm{T}$ cells are called T helper cells $\left(\mathrm{T}_{\mathrm{H}}\right)$ that "help" the activation and regulation of the other effector immune cells. $\mathrm{CD}^{+} \mathrm{T}$ cells, natural killer T cells (NKT), and NKs are cytotoxic effector cells that establish cell-mediated immunity. They induce cell death by triggering apoptosis in their target cells (Owen, 2019). On the other hand, activated B cells, known as plasma cells, mount the humoral immune response by secreting antibodies and are the only non-myeloid
pAPC (Owen, 2019). Thus, T/NK/B cell-mediated cellular and humoral immunity constitute the adaptive immune system in all studied jawed vertebrates.

1.3.1 Overview of T cells

T cells are one of the main adaptive immune cells. Their development occurs in the thymus where they rearrange one of their T cell receptor (TCR) subtypes (i.e., $\alpha \beta$ or $\gamma \delta$), undergo positive and negative selections to acquire MHC restriction and self-tolerance, respectively, and commit to either $\mathrm{CD} 4^{+}$helper or CD^{+}cytotoxic lineages. The cells that complete their development successfully enter the bloodstream as naïve T cells (Owen, 2019). The CD4 ${ }^{+}$helper T cells engage with the MHC II-peptide complex, presented only by APCs, while the CD^{+}cytotoxic T cells recognize peptides in the context of MHC I molecules, expressed by all nucleated cells (Owen, 2019). Upon activation, naïve T cells give rise to effector and memory T cells. $\mathrm{CD} 8^{+}$effector T cells are called cytotoxic T lymphocytes (CTLs). However, the naïve $\mathrm{CD}^{+} \mathrm{T}_{\mathrm{H}}$ cells can differentiate into different effector subtypes such as $\mathrm{T}_{\mathrm{H}} 1, \mathrm{~T}_{\mathrm{H}} 2, \mathrm{~T}_{\mathrm{H}} 9, \mathrm{~T}_{\mathrm{H}} 17, \mathrm{~T}_{\mathrm{H}} 22$, follicular $\mathrm{T}_{\mathrm{H}}\left(\mathrm{T}_{\mathrm{FH}}\right)$, and peripheral regulatory $\mathrm{T}_{\mathrm{H}}\left(\mathrm{T}_{\mathrm{REG}}\right)$ cells (Kmiec et al., 2017; Owen, 2019; Takeuchi \& Saito, 2017). ${ }^{\text {a }}$

1.3.1.1 T cell activation

An adaptive immune response is initiated when naïve T cells are activated through three signals, a process known as the three-signal paradigm (Jain \& Pasare, 2017). The first signal is the formation of an immune synapse between a naïve T cell and a licensed DC .

[^4]The immune synapse is established between the T cell receptor (TCR) on the naïve T cell and the MHC-peptide complex presented on the licensed DC. The concurrent interaction of T cell CD8 or CD4 coreceptors with DC MHC I or II, respectively, strengthens the immune synapse. Following this, the interaction between the constitutively expressed CD28 costimulatory receptor on the naïve T cell and its ligands on the DC (i.e., CD80 and CD86, expressed only upon activation through PRR/PAMPs engagement) provides the second signal. The local cytokines deliver the third signal when they bind to their receptors located on naïve T cells (Jain \& Pasare, 2017; Owen, 2019).

Amongst the local cytokines, IL-2 is essential for optimal activation and proliferation of all T cell subtypes. Therefore, upon receiving the first two signals, the T cell begins to secrete IL-2 and express the high-affinity IL-2 receptors on its surface (Owen, 2019). On the other hand, a subset of local cytokines known as polarizing or priming cytokines dictates the specific fate of the activated T cell (Jain \& Pasare, 2017; Owen, 2019). Although non-immune cells can contribute to the production of some cytokines such as IL-1 related cytokines, polarizing cytokines are exclusively secreted by immune cells (Jain \& Pasare, 2017). Thus, the abovementioned three signals initiate a network of signaling pathways that culminate in cell survival, proliferation, and differentiation of naïve T cells into specific effector T cell subsets.

1.3.1.2 Cytotoxic T lymphocytes

The naïve CTLs, also referred to as CTL precursors, are a subset of the T lymphocytes that express CD8 receptor and, thus, recognize foreign antigens in the context of MHC I molecules (Owen, 2019; Williams \& Bevan, 2007). Since all nucleated cells
express MHC I on their surface, CTLs identify and eliminate altered self-cells (e.g., a virusinfected or a cancerous cell) by mounting a cytotoxic reaction and lysing the target cell (Owen, 2019). Activated CTLs form conjugates with the target cells followed by membrane attack, CTL dissociation, and target cell destruction (Owen, 2019). Secretion of perforin and granzymes from CTLs initiates the target cell destruction through pore formation in the cell membrane and genomic DNA fragmentation, respectively. Some CTLs that lack perforin and granzymes express Fas ligand (FasL) on their membrane and deliver a death signal to the target cell through Fas/FasL interaction. Both granzymes and Fas/FasL interaction activate an initiator caspase, initiating death pathways within the target cell (Owen, 2019).

1.3.1.3 Helper T cell

The secreted IL-12 and IFN- γ, in response to intracellular pathogens, induce differentiation of naïve CD^{+}helper T cells into $\mathrm{T}_{\mathrm{H}} 1$ cells, which subsequently secrete IFN- γ and tumor necrosis factor (TNF) (Kmiec et al., 2017). $\mathrm{T}_{\mathrm{H}} 1$ IFN- γ enhances the APC activity of MQs, antibody class switching to IgG classes in B cells, ${ }^{a}$ and promotes CTL differentiation and activation (Owen, 2019). Hence, $\mathrm{T}_{\mathrm{H}} 1$ promotes cell-mediated immunity. In response to extracellular microbes, IL-4 is secreted, driving the differentiation of $\mathrm{T}_{\mathrm{H}} 2$ cells (Kmiec et al., 2017). Effector $\mathrm{T}_{\mathrm{H}} 2$ cells secrete various cytokines, including IL-4, IL-5, and IL-13. By activating B cells, eosinophils, and MQs,

[^5]inducing IgE antibody class switching, and inhibiting $\mathrm{T}_{\mathrm{H}} 1$ development, $\mathrm{T}_{\mathrm{H}} 2$ cells protect against parasitic worms (Kmiec et al., 2017; Owen, 2019).
$\mathrm{T}_{\mathrm{H}} 9$ development requires a combination of IL-4 and transforming growth factorbeta (TGF- β). $\mathrm{T}_{\mathrm{H}} 9$ cells produce IL- 9 that contributes to protection against worm infections and possibly cancer (Kmiec et al., 2017; Owen, 2019). $\mathrm{T}_{\mathrm{H}} 17$ subtype is divided into antiinflammatory and pro-inflammatory subsets. Anti-inflammatory (also known as nonpathogenic) $\mathrm{T}_{\mathrm{H}} 17$ cells are developed in response to TGF- β and IL-6, secrete immunosuppressive cytokine IL-10, and inflammatory cytokine IL-17 and IL-21. Proinflammatory (also known as pathogenic) $\mathrm{T}_{\mathrm{H}} 17$ cells are established in the presence of TGF- β, IL-6, and IL-23 and produce only inflammatory cytokines IL-17, IL-21, and IL-22 (Wu et al., 2018). Although pro-inflammatory $\mathrm{T}_{\mathrm{H}} 17$ enhances protection against bacterial and fungal infections at mucosal barriers, it can also result in chronic inflammatory and autoimmune diseases (Lee, 2018; Owen, 2019; Wu et al., 2018). IL-6, TNF, and IL-23 induce $\mathrm{T}_{\mathrm{H}} 22$ differentiation. These cells secrete IL-13 and IL-22, contribute to wound repair, and protect against infections at epithelial surfaces (Owen, 2019; Wu et al., 2018).
T_{FH} cells are produced in response to IL-6 and IL-21, which are secreted by activated APCs. They induce differentiation of B cells into plasma cells and are vital for the germinal center (GC) formation and antibody affinity maturation (Kmiec et al., 2017; Owen, 2019). T_{FH} cells are unique in that they require signals from both coreceptor CD 28 and ICOS to fully develop. These cells secrete IL-4 and IL-21 and express high levels of surface CD40L, all of which are necessary for B cell activation. They also express the
chemokine CXCR5 that enables them to move to B cell follicles to establish germinal centers (Kmiec et al., 2017; Owen, 2019). Thus, T_{FH} cells promote humoral immunity.
$\mathrm{T}_{\text {REG }}$ cells play an important negative regulatory role in preventing autoimmune and chronic inflammatory diseases by negatively regulating immune responses and maintaining peripheral tolerance. In the periphery, TGF- β drives $T_{\text {REG }}$ differentiation in the absence of proinflammatory cytokines (Kmiec et al., 2017; Lee, 2018). Beside these periphery-derived $\mathrm{T}_{\text {REG }}$ cells ($\mathrm{p} \mathrm{T}_{\mathrm{REG}}$), $\mathrm{T}_{\text {REG }}$ cells can also arise during thymic development ($\mathrm{t}_{\mathrm{REG}}$) when the developing T cell receives a strong TCR stimulation by self-antigenMHC complexes presented on thymic APCs (Kmiec et al., 2017; Lee, 2018; Owen et al., 2019). These cells secrete potent anti-inflammatory cytokines of IL-10 and TGF- β, which suppress the activity of immune cells (Kmiec et al., 2017; Lee, 2018; Owen, 2019). Differentiation of naïve T_{H} cells into distinct subsets of effector T_{H} cells is one of the host's adaptive immune system's main regulatory mechanisms.

1.3.2 Overview of B cells

Humoral immunity fights off a wide range of pathogens, and its activation is the basis of most vaccines (Dickinson et al., 2015). B cells mediate humoral immunity by secreting antibodies that neutralize and/or opsonize the pathogens and/or toxins. There are four distinct subsets of mature B cells ${ }^{\text {a }}$ that differ in terms of development, location, and function: marginal zone (MZ), B-1a, B-1b, and conventional B-2 cells (Dickinson et al.,
${ }^{\text {a }}$ Other minor B cell subtypes with innate-like functions have been detected such as innate response activator B cells, T-bet ${ }^{+}$B cells, natural killer-like B cells, IL-17-producing B cells, and human self-reactive $\mathrm{V}_{\mathrm{H}} 4$-34expressing B cells. For more information refer to Tsay and Zouali, 2018.

2015; Ghosn et al., 2019; Haas, 2015; Montecino-Rodriguez et al., 2006). ${ }^{\text {a }}$ In general, B-1 and MZ B cells are involved in T cell-independent humoral immunity, while B-2 cells mediate the T cell-dependent antibody responses (Dickinson et al., 2015; Owen, 2019). Regardless of their differences, all B cells undergo DNA recombination events to create their B cell receptor (BCR; i.e., membrane-bound antibody), and they all secrete antibodies to fight pathogens. Despite the developmental, distributional, and functional differences amongst B cell subtypes, they all play important roles in the host's humoral immunity.

1.3.2.1 $B-1$ and marginal zone B cells

In mice, B-1a cells reside in the spleen and the pleural and peritoneal cavities, where the pre-existing B-1a cells divide to regenerate new ones (Ghosn et al., 2019; Haas, 2015; Wong et al., 2019). ${ }^{\text {b }}$ B-1a cells predominantly rearrange some specific heavy and light chain gene fragments and minimally express the enzyme terminal deoxynucleotidyl transferase (TdT) that generates junctional diversity during $I g$ gene recombination. Consequently, the B-1a cell antibody repertoire has limited diversity, especially in their heavy chain complementarity determining region 3 (CDR3) (Owen, 2019; Wong et al., 2019). Additionally, their antibodies (mainly recognize carbohydrate and lipid antigens) are polyreactive, cross-react between self and microbial antigens, and are secreted spontaneously in the absence of the cognate antigen and T_{H} assistance (Haas, 2015; Owen,

[^6]2019; Palma et al., 2018). ${ }^{\text {a }}$ Therefore, B-1a cells are considered innate-like cells. B-1a antibodies, known as natural antibodies (nABs), ${ }^{\text {b }}$ support the immune system by providing fast protection against bacterial, viral, and parasitic infections (Haas, 2015; Hillion et al., 2019; Palma et al., 2018; Wong et al., 2019). ${ }^{\text {c }}$ Moreover, the self-reactive properties of nABs assist in tissue homeostasis by clearing the dead cells and debris (Palma et al., 2018). ${ }^{\text {d }}$ The natural IgM may also contribute to immune system homeostasis by removing autoreactive B cells during B cell development in the bone marrow ${ }^{(N g u y e n ~ e t ~ a l ., ~ 2015) ~ e ~}{ }^{\text {e }}$

Although B-1b cells inhabit similar anatomical sites as B-1a cells, they are developmentally and functionally distinct (Baumgarth, 2011; Dickinson et al., 2015; Ghosn et al., 2019). In adult mice, their cell pool is maintained by self-renewal of preexisting B-1b cells (Baumgarth, 2011). ${ }^{\mathrm{f}}$ Unlike B-1a cells, B1-b cells undergo clonal selection and secrete antibodies with a diversity comparable to that of B-2 cell antibodies (Dickinson et al., 2015). Only upon pathogen exposure, but without T_{H} assistance, $\mathrm{B}-1 \mathrm{~b}$ cells are activated and secrete antibodies (Dickinson et al., 2015). B-1b antibodies detect

[^7]bacterial proteins, polysaccharides, and synthetic hapten. For example, B-1b cells mount specific antibody responses towards capsular polysaccharide antigens (also known as type2 T cell independent [TI-2] antigens) of Streptococcus pneumoniae, Salmonella enterica, and Enterobacter cloacae (Dickinson et al., 2015). B-1b cells also produce IgA in response to mucosal pathogens (Tsay \& Zouali, 2018). More importantly, activated B-1b cells can form memory cells and generate a lasting antibody response against pathogens such as Borrelia hermsii and S. pneumoniae (Haas, 2015). Thus, B-1a cells play a valuable role in early response against pathogens, while $\mathrm{B}-1 \mathrm{~b}$ cells participate in long-lasting protective humoral immunity.

MZ B cells inhabit the splenic marginal zone, but they self-renew in the periphery (Owen, 2019). MZ B cells not only contribute to the first line of defense against bloodborne pathogens ${ }^{\mathrm{a}}$ by responding rapidly and efficiently to their antigens, but they also establish the primary antibody response towards TI-2 antigens (Owen, 2019; Zandvoort \& Timens, 2002). These B cells respond to protein and carbohydrate antigens with or without T cell help (Dickinson et al., 2015). MZ B cells are generated from transitional 2 (T2) B cells when their BCR binds to a self-antigen with strong affinity and also receives signaling through the Notch2 pathway (Owen, 2019). MZ B cells have formed memory cells against some pathogens such as Ehrlichia muris (Zandvoort \& Timens, 2002). Similar to B-1a cells, they express natural antibodies that are both self-reactive and polyreactive

[^8](Zandvoort \& Timens, 2002). MZ B cell activation through commensal TI antigens may result in the initiation of the secondary antibody diversification and consequent class switching into IgG and IgA independent of GCs. Alternatively, T cell-dependent activation of these B cells may induce their migration into the B cell follicles, where they possibly contribute to GC formation and undergo secondary antibody diversification (Grasseau et al., 2019). Although B-1 and MZ B cells are considered innate-like B cells due to the property of their antibodies and their independence from T cell assistance, their vital contribution to humoral immunity is indisputable.

1.3.2.2 B-2 cells

B-2 cells, the prevalent B cell subtype in blood, arise from hematopoietic stem cells (HSCs) in the bone marrow and recirculate between blood and lymphoid organs (Outters et al., 2015; Owen, 2019; Yam-Puc et al., 2018). These cells are responsible for generating high-affinity, antigen-specific, antibody responses towards protein antigens with the T_{FH} cell assistance (Owen, 2019). Their development begins in the bone marrow, where HSCs give rise to immature B cells by enduring stepwise processes of immunoglobulin heavy and light chain ($I g H$ and IgL) recombination, allelic exclusion, ${ }^{\text {a }}$ and central tolerance (Outters et al., 2015; Owen, 2019; Yam-Puc et al., 2018). ${ }^{\text {b }}$ Following these steps, the immature B cells (also known as transitional 1 [T1] B cells) migrate to the spleen, where

[^9]they undergo negative and positive selections to become mature conventional B-2 cells (Outters et al., 2015; Owen, 2019). ${ }^{\text {a }}$ Since conventional B-2 cells are the major B cell subtype in humans and mice, they will be referred to as B cells hereafter. These mature, but naïve, B cells join the bloodstream and recirculate between blood and the lymphoid organs, where they enter B cell follicles to search for the cognate antigen (Owen, 2019). ${ }^{\text {b }}$ Only $1-10 \%$ of the newly formed B cells survive and join the peripheral B cell pool (Granato et al., 2015). Antigen detection through their BCR activates these cells and culminates in their differentiation into either IgM secreting plasma cells or GC precursor cells to start GC formation (Outters et al., 2015; Owen, 2019; Yam-Puc et al., 2018). The B-2 cell activation initiates the adaptive humoral response against the cognate antigen.

1.3.2.3 Immunoglobulin protein structure and gene organization

Immunoglobulins are a member of the immunoglobulin superfamily (IgSF) characterized by their immunoglobulin (Ig) domain. This domain consists of two amphipathic β sheets (made from three to six β strands), hydrophobic sides of which are held together by hydrophobic forces (Owen, 2019; Schroeder \& Cavacini, 2010). An intrachain disulfide bond connecting the two β sheets stabilizes this β-sheet-sandwich structure. Two heavy and two light chains create an antibody molecule with two distinct domains: the variable (V) domain that binds the antigen and the constant (C) domain that

[^10]determines the class of antibody and, therefore, its effector function (Schroeder \& Cavacini, 2010). Within each immunoglobulin domain, loops, the loosely folded polypeptide chains, link each β strand with the adjacent ones (Owen, 2019; Schroeder \& Cavacini, 2010). In the V domain, loops form the antigen-binding region (i.e., CDR), ${ }^{\mathrm{a}}$ while the β-sheet-sandwich structure creates a stable framework. Three functionally distinctive hypervariable regions make up CDR: CDR1, 2, and 3. The V region of both light and heavy chains $\left(\mathrm{V}_{\mathrm{L}}\right.$ and $\left.\mathrm{V}_{\mathrm{H}}\right)$ contributes to each CDR conformation (Mix et al., 2006; Owen, 2019; Schroeder \& Cavacini, 2010).

In humans and mice, the immunoglobulin gene family consists of one heavy and two light chain loci (i.e., kappa $[\kappa]$ and lambda $[\lambda]$) located on separate chromosomes (Owen, 2019; Schroeder \& Cavacini, 2010; Tomlinson, 1998). At the DNA level, separate gene fragments of the variable (V), diversity (D, only in the heavy chain), and joining (J) segments are joined to create the antibody V region. However, one constant exon encodes the antibody's constant region. In humans, the heavy chain locus contains three separate clusters of approximately 45,23 and 6 V , D, and J segments, respectively, followed by nine constant (C) exons (i.e., $\mathrm{C}_{\mu}, \mathrm{C}_{\delta}, \mathrm{C}_{\gamma} 3, \mathrm{C}_{\gamma} 1, \mathrm{C}_{\alpha} 1, \mathrm{C}_{\gamma} 2, \mathrm{C}_{\gamma} 4, \mathrm{C}_{\varepsilon}, \mathrm{C}_{\alpha} 2$) (Owen, 2019; Schroeder \& Cavacini, 2010). The genomic structure of κ light-chain consists of a V cluster that roughly contains 41 functional V fragments and a J cluster that consists of five segments followed by one constant exon (i.e., C_{k}). However, the gene organization within

[^11]the λ gene locus is slightly different, where a cluster of nearly 33 V gene segments precedes multiple paired J and C segments (about five pairs) (Owen, 2019; Schroeder \& Cavacini, 2010). During B cell development, both heavy and light chain loci undergo DNA recombination events, known as $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination, to randomly join their gene fragments to create a functional V region. After the $I g$ gene transcription, the mRNA splicing process connects the functional V region to the C region.

1.3.2.4 V(D)J recombination

$\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination is a lymphocyte-specific DNA rearrangement event during which V, D (only in the case of the heavy chain), and J segments are assembled to form the variable region of the antibody. The main enzyme complex of the lymphoid-specific recombination-activating gene 1 and $2(\mathrm{RAG1} / 2)$ is responsible for $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination. First, this enzyme complex recognizes the recombination signal sequences (RSS) that flank each V, D, and J segment. RSS consists of a conserved heptamer and nonamer fragments separated by 12 or 23 nucleotides. The recombination occurs only when the RAG1/2 endonuclease complex binds to two RSSs with different lengths (12/23 role). This role will ensure the attachment of V(D)J fragments in the correct order. ${ }^{\text {a }}$ Following binding to RSSs, the RAG1/2 complex introduces double-strand breaks (DSBs) at the RSS sites. The repair of these breaks with the help of the non-homologous end-joining (NHEJ) DNA repair system results in the ligation of the two gene segments (e.g., V_{L} and J_{L}; Figure 1-1) (Johnson et al., 2009; Malu et al., 2012; Musat et al., 2019; Owen, 2019; Roth, 2000; Roth, 2014; Schroeder \& Cavacini, 2010; Seifert et al., 2019).

[^12]

Figure 1-1: Schematic representation of V(D)J recombination. In the first step, RAG1/2 complex binds the RSS of different sizes (12/23 rule). Then, RAG1/2 complex introduces DSBs at the RSSs. In the last step, NHEJ repairs the DSBs, joining the coding and the signal ends together. Modified from Roth D. B., 2000. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited (https://www.biomedcentral.com/about/policies/reprints-and-permissions).

B cells begin with the joining of D and J_{H} fragments, followed by recombination between V_{H} and the $\mathrm{D}-\mathrm{J}_{\mathrm{H}}$ segment. The B cell then expresses its $I g H$ gene in combination with the surrogate light chain to test the functionality of the newly recombined heavy chain (Malu et al., 2012; Owen, 2019; Winkler \& Martensson, 2018). ${ }^{\text {a }}$ If the heavy chain rearrangement is successful, the B cell initiates light chain recombination at $\operatorname{Ig} \lambda$ or $\operatorname{Ig} \kappa$ loci. Following the light chain recombination, the complete BCR is expressed ${ }^{\mathrm{b}}$ and examined for its reaction with self-antigens (Schroeder \& Cavacini, 2010). The elimination of these self-reactive B cells contributes to the B cell central tolerance. ${ }^{c}$ In humans, both λ and κ light chains contribute to the circulating B cell pool, where 60% of mature B cells carry a rearranged λ light chain (Owen, 2019).

1.3.2.5 Immunoglobulin isotypes

In humans and mice, $\operatorname{IgM}, \operatorname{IgD}, \operatorname{IgG}, \operatorname{IgE}$, and IgA are the five main classes of antibodies based on their constant regions of $\mathrm{C} \mu, \mathrm{C} \delta, \mathrm{C} \gamma, \mathrm{C} \varepsilon$, and $\mathrm{C} \alpha$, respectively. ${ }^{\mathrm{d}}$ The membrane-bound form of $\operatorname{IgM}(\mathrm{mIgM})$ is the first BCR expressed during B cell development (Aziz \& Iheanacho, 2019). Fully matured B cells express high levels of mIgD and low levels of mIgM. However, antigen-stimulated mature B cells cease mIgD expression and secrete IgM during the primary antibody response, where it mainly

[^13]functions as an opsonin (coating agent) to enhance phagocytosis (Schroeder \& Cavacini, 2010). IgG is the prevalent class of antibody in the serum during the secondary humoral response (Aziz \& Iheanacho, 2019). Generally, IgGs mediate complement fixation, toxin neutralization, and bacterial opsonization (Aziz \& Iheanacho, 2019; Schroeder \& Cavacini, 2010). Different subclasses of IgG function differently; therefore, they are produced in response to different antigens. ${ }^{\text {a }}$ Protein antigens stimulate $\operatorname{IgG1}$ and $\operatorname{IgG3}$ production while polysaccharide antigens trigger class switching to IgG2 and IgG4 (Schroeder \& Cavacini, 2010).
IgA is the main antibody at the mucosal surfaces and in secretions where it either directly neutralizes toxins, viruses, and bacteria, or prevents their binding to the body surfaces (Aleyd et al., 2015; Aleyd et al., 2014; Heineke \& van Egmond, 2017). ${ }^{\text {b }}$ IgA1 structurally, and consequently functionally, differs from $\operatorname{IgA} 2$. IgA2 is more resistant to bacterial proteases and dominates the mucosal secretions, while IgA1 is mainly present in the serum (Schroeder \& Cavacini, 2010). Since IgE is a very potent antibody due to its ability to activate granulocytes and Langerhans cells (Schroeder \& Cavacini, 2010), it has the lowest serum concentration. ${ }^{\text {c }}$ This antibody is involved in allergic reactions and protection against worm infections (Schroeder \& Cavacini, 2010). Attributable to the abovementioned functional differences amongst classes of antibodies, the host immune

[^14]system must activate the expression of the proper antibody isotype during immune responses.

1.3.2.6 B cell activation

Except for the nABs , all B cell responses require the presence of antigens. These B cell responses are triggered by B cell activation upon antigen contact and result in antibody secretion. The B cell activation is achieved with or without the T_{H} cell assistance, referred to as T cell-dependent (TD) and T cell-independent (TI) B cell activation, respectively. Generally, B-2 cell activation occurs through TD pathway in response to protein antigens, while the TI pathway mostly activates non-conventional B cells in response to multivalent or highly polymerized antigens (Eibel et al., 2014; Owen, 2019; Pieper et al., 2013). T_{H} participation in B cell activation improves B cell proliferation, enhances memory cell development, and induces the secondary antibody diversification process (Eibel et al., 2014; Pieper et al., 2013). Consequently, B-2 cells are the primary source of the highaffinity antigen-specific humoral responses while other B cells constitute the early innatelike, low-affinity polyreactive antibody responses.

1.3.2.6.1 T cell-independent B cell activation

In the early stages of an infection, a rapid low-affinity IgM response is mounted by non-conventional B cells (i.e., $\mathrm{B}-1$ and MZ B cells) towards antigens that contain polyvalent or repeating determinants and are shared among microbial groups (Owen, 2019; Pieper et al., 2013). The antigen neutralization and opsonization with these early antibodies not only inhibit initial pathogen replication but also boost the ensuing antigen-specific B2 cell response by enhancing follicular DCs (FDCs) antigen retention (Baumgarth, 2011;

Kranich \& Krautler, 2016). ${ }^{\text {a }}$ The antigens capable of eliciting TI-B cell responses are referred to as TI antigens. The TI antigens are further divided into two groups: TI-1 and TI-2 antigens (Owen, 2019).

TI-1 antigens, such as LPS, are multivalent and mitogenic to all B cells including immature and B-2 cells (Mond et al., 1995; Owen, 2019). These antigens bind to the innate immune receptors (e.g., PRRs) on all B cells. High levels of TI-1 antigens cause receptor cross-linking, leading to B cell activation and subsequent antigen secretion (Owen, 2019). Since B cell stimulation through TI-1 antigens occurs through innate immune receptors and independent of BCR specificity, high levels of TI-1 antigens mount polyclonal antibody responses. However, at a lower level, B cell activation occurs when the antigen binds PRR and BCR simultaneously, resulting in PRR/BCR cross-linking and subsequent B cell activation (Coutinho et al., 1974; Owen, 2019). In this case, only B cells bearing BCR capable of detecting the antigen are induced. Therefore, the TI-1 antibody reaction in response to lower levels of antigen is oligoclonal.

TI-2 antigens, such as bacterial capsular polysaccharides and flagellin, are highly polymerized and mainly stimulate B cells through their BCR. The repetitive nature of these antigens facilitates BCR cross-linking and subsequent B cell activation. Opsonized TI-2 antigens by complement system (i.e., C3d and C3dg fragments) also interact with complement receptor 2 (CR2, also known as CD21) on B cells. MZ B cells express high levels of CD21 on their surface and constitute the main TI-2 responding B cell subtype
${ }^{\text {a }}$ FDCs, located in primary and secondary B cell follicles, play an important role in retaining and presenting native antigens to the B cells by capturing the antibody-antigen complexes through their Fc receptors.
(Mond et al., 1995; Owen, 2019; Zandvoort \& Timens, 2002). Full TI-2-mediated B cell activation requires help from other cells, such as monocytes, neutrophils, MQs, and DCs (Hendricks et al., 2018). These cells secrete BAFF, which induces B cell survival, maturation, and antibody secretion (Dickinson et al., 2015; Owen, 2019).

Humoral responses towards TI antigens mainly consist of low-affinity IgM. However, TI-activated B cells may also undergo a limited degree of secondary antibody diversification process and form long-lasting memory cells (Haas, 2015; Zandvoort \& Timens, 2002). For example, it was shown that neutrophil assistance resulted in production of higher affinity IgG or IgA responses by TI-2-activated MZ B cells (Hendricks et al., 2018). ${ }^{\text {a }}$

1.3.2.6.2 T cell-dependent B cell activation

The TD B cell responses constitute the adaptive humoral immunity, which is mediated exclusively by B-2 cells (Owen, 2019). When the B-2 cells complete their development in the spleen, they join the bloodstream and recirculate between blood and lymphoid organs (Owen, 2019; Pieper et al., 2013). These naïve cells enter the B cell follicles of the secondary lymphoid organs in search of their cognate antigen (Owen, 2019; Pieper et al., 2013). ${ }^{\mathrm{b}}$ Inside these follicles, naïve B-2 cells browse the antigen pool using

[^15]their BCR (Yam-Puc et al., 2018). ${ }^{\text {a }}$ Antigen-activated B-2 cells briefly spread their membrane over the antigen bearing cell to obtain most antigens. The ensuing B-2 cell membrane contraction results in BCR clustering, also known as antigen-induced BCR oligomerization, during which the BCR complex moves transiently into the lipid rafts (Harwood \& Batista, 2010; Owen, 2019; Varshney et al., 2016). ${ }^{\text {b }}$ Through these changes in the membrane, the B-2 cell forms an immunological synapse with the antigen presenting cell (Harwood \& Batista, 2010).

In addition to BCR, coreceptors, cytokine, and BAFF receptors are also involved in the immunological synapse (Pieper et al., 2013). Within B-2 cells, the formation of this synapse stimulates BCR-mediated signaling, antigen uptake, and antigen presentation on MHC II (Owen, 2019). ${ }^{\text {c }}$ The BCR-mediated signaling induces two vital changes in the B2 cell. First, it alters the B-2 cell chemokine receptor profile causing the B-2 cell migration to the boundary of the B- and T-cell zones (B-T zone) within the follicle. ${ }^{\text {d }}$ Second, it upregulates the B-2 cell surface costimulatory CD80, CD86, and CD40 molecules, which significantly enhance the subsequent interaction between the B-2 cell and the cognate T_{H} cell (Owen, 2019; Seifert et al., 2019; Yam-Puc et al., 2018). Hence, the instigated

[^16]signaling pathways through the immunological synapse provide the first signal in B cell activation. ${ }^{\text {a }}$

In the B-T zone, the antigen-stimulated B-2 cells engage with their conjugate T_{H} cells through their peptide-MHC II complex and coreceptors (i.e., CD40, CD80, and CD86) (Mesin et al., 2016). ${ }^{\text {b }}$ These interactions form a synapse between the B cell and the cognate T_{H} cell, which constitutes the second signal required for TD B cell activation. The formation of this synapse stimulates the T_{H} cell to secrete cytokines such as IL-4 and IL21 into the synaptic cleft to help the B cell differentiation to proceed (Mesin et al., 2016; Owen, 2019). These cytokines provide the third signal for B cell activation. The B cell, in return, increases its surface expression of receptors for these cytokines (Mesin et al., 2016; Owen, 2019).

Following this stage, the activated B cells remodel their surface chemokine receptor profile and follow one of the two paths (Gars et al., 2019; Owen, 2019; Yam-Puc et al., 2018). B cells that undergo a strong initial interaction with the antigen enter the splenic red pulp or the lymph node medullary cords. These cells form primary foci and differentiate into plasmablasts that secrete unmutated, mainly IgM antibodies, and form the early TD humoral responses (Gars et al., 2019; Yam-Puc et al., 2018). ${ }^{\text {c }}$ These low-affinity antibodies are efficient opsonins but cannot effectively neutralize pathogens and toxins (Zhang et al.,

[^17]2016). B cells with higher affinity BCR enjoy a longer B-T interaction and are more likely to become pre-GC B cells (Yam-Puc et al., 2018). ${ }^{\text {a }}$ These cells return to the interior regions of the B cell follicle, where they contribute to GC formation and differentiate into GC B cells (Owen, 2019; Yam-Puc et al., 2018). These B cells undergo the secondary antibody diversification process and are responsible for the production of high affinity antibodies (mainly IgG) later in the immune response and generation of memory B cells (Gars et al., 2019; Owen, 2019; Pieper et al., 2013; Yam-Puc et al., 2018).

1.4 Diversification of the antibody repertoire

The diversification of the antibody repertoire is a vital step in the arms race between the host's antibody response and pathogens. This diversification happens in two steps. The primary diversification, which gives rise to the naïve BCR repertoire, occurs during the B cell development. The naïve BCR repertoire is responsible for detecting antigens upon first exposure. The secondary antibody diversification is initiated when the B cell binds the cognate antigen (Maul \& Gearhart, 2010; Owen, 2019). As a result of the secondary antibody diversification, the activated B cells, expressing low-affinity IgM, give rise to the B cells secreting high affinity IgG for the cognate antigen (Meffre et al., 2001). Thus, the primary and secondary antibody diversifications are essential in the initial recognition of an antigen by naïve B cells and the efficient neutralization of the cognate antigen by the activated B cells, respectively.

[^18]
1.4.1 Primary antibody diversification

The main primary antibody diversification occurs during $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination of Ig genes (Briney \& Crowe, 2013; Maul \& Gearhart, 2010; Owen, 2019). ${ }^{\text {a }}$ Several mechanisms contribute to this diversification. First, there are multiple gene segments in the V , D , and J clusters from which novel random combinations are selected to create the variable coding sequences. Second, since both V_{H} and V_{L} regions participate in the formation of antigen-binding domain, different combinations of heavy and light chain pairs provide further BCR diversity. Third, the enzyme activity of Artemis, terminal deoxynucleotidyl transferase (TdT), ${ }^{\text {b }}$ and exonuclease increase junctional diversity by palindromic (p) and non-templated (n) nucleotide addition or deletion, respectively (Johnson et al., 2009; Malu et al., 2012; Owen, 2019; Patel et al., 2018; Schroeder \& Cavacini, 2010; Thomson et al., 2020). The primary antibody diversification can create up to 5×10^{13} unique BCRs in humans and mice (Granato et al., 2015; Malu et al., 2012; Pieper et al., 2013).

Immunoglobulin gene conversion (IGC) is another approach to expand the naïve B cell repertoire in some avian and mammalian species, such as chicken, turkey, cattle, and rabbit (Haakenson et al., 2018; Lundqvist et al., 2006; Tang \& Martin, 2007; Walther et al., 2016). Their Ig loci contain one or a very limited number of functional V, D, and J segments, hence the $\mathrm{V}(\mathrm{D}) \mathrm{J}$ rearrangement leads to a limited primary antibody repertoire

[^19](Leighton et al., 2018). These species mainly utilize the IGC as a mechanism to heighten the versatility of their primary antibody repertoire during B cell development (Bastianello \& Arakawa, 2017; Leighton et al., 2018). ${ }^{\text {a }}$ The first step in IGC involves introducing mutations, causing single-strand breaks (SSBs) in the pre-rearranged V fragment, which are then resolved by the homologous recombination (HR) system. The HR uses the upstream pseudogenes (ψ) as a template and incorporate their sequence into the functional, pre-rearranged V segment, which increases the diversity of the primary antibody repertoire (Frieder et al., 2006; Leighton et al., 2018). ${ }^{\text {b }}$

1.4.2 Secondary antibody diversification

After exposure to an antigen, the subsets of naïve B cells bearing a BCR that recognizes the antigen become activated. In the GC, the antigen-activated B cells undergo secondary antibody diversification (Maul \& Gearhart, 2010; Owen, 2019). In humans and mice, the secondary antibody diversification includes two processes: antibody affinity maturation (AM) and isotype switching (IS). At the molecular level, AM and IS are achieved through somatic hypermutation (SHM) and class switch recombination (CSR), respectively (Briney \& Crowe, 2013; Chi et al., 2020; Maul \& Gearhart, 2010). ${ }^{\text {c }}$ AM increases the affinity of the antibody for the cognate antigen, whilst IS changes the class of antibody from IgM into other isotypes (i.e., $\operatorname{IgG}, \operatorname{IgA}$, or IgE).

[^20]Affinity maturation is achieved by introducing point mutations in the rearranged $\mathrm{V}(\mathrm{D}) \mathrm{J}$ fragment, particularly in regions directly contacting the antigen (e.g., CDRs). The activated B cells that express mutated antibodies undergo clonal selection, resulting in a gradual rise in the affinity of the antibodies in the course of an immune response (Maul \& Gearhart, 2010; Owen, 2019). During CSR, double-stranded breaks in the intronic regions, known as switch (S) regions, initiate an NHEJ event resulting in the replacement of $\mathrm{C}_{\mathrm{H}} \mu$ with other C_{H} isotypes that changes the antibody's function (Maul \& Gearhart, 2010; Owen, 2019). S regions, which are highly repetitive and GC-rich, flank the heavy chain constant $\left(\mathrm{C}_{\mathrm{H}}\right)$ genes and are considered as CSR sites (Yu \& Lieber, 2019).

Although AM is mainly restricted to TD-activated GC B cells and happens later in the immune response, CSR occurs early before the GC formation and can also be stimulated by TI antigens with the help of other immune cells, such as APCs and neutrophils (Owen, 2019). Nevertheless, the outcome of conventional secondary antibody diversification is the production of different isotypes of antibodies with a higher affinity (as much as a 1000-fold increase) for the cognate antigen (Magor, 2015).

1.4.3 Cellular basis of antibody affinity maturation

The structure of the GC is an ideal place for the secondary antibody diversification process. GC consists of two histologically and functionally distinct regions. The rapidly dividing activated B cells (known as centroblasts) establish the dark zone (DZ), where they undergo SHM ($\sim 10^{-4}$ to 10^{-3} per base per generation compared to 10^{-9} genomic basal mutation frequency) in their $I g$ V region genes (mainly CDR3) (Gars et al., 2019; Melchers, 2015; Qiao et al., 2017; Wong \& Germain, 2018). The GC light zone (LZ) is enriched with

FDCs and contains a limited but crucial pool of the cognate antigen-activated T_{FH} cells (Gars et al., 2019; Melchers, 2015). The clonal selection of the B cells expressing mutated antibodies with a higher affinity for the cognate antigen occurs within the LZ (Melchers, 2015). ${ }^{\text {a }}$ The LZ B cells are referred to as centrocytes. The activated B cells constantly change their surface chemokine receptor profile to move back and forth between DZ and LZ, a model known as cyclic re-entry (Mesin et al., 2016; Yam-Puc et al., 2018). The affinity of the antibody pool for the cognate antigen gradually rises as a result of the iterative processes of SHM, proliferation, and clonal selection.

Following the introduction of SHM in the DZ, B cells enter the LZ where they go through an elegant selection process. In the LZ, FDCs present naïve antigens to the GC B cells primarily in the form of immune complexes (i.e., antigen-antibody or antigencomplement complexes). When the B cells re-enter the LZ, they browse FDCs to test their mutated BCR. B cells are required to uptake antigen and present it on their MHC II molecules to receive "help" from T_{FH} cells (Maul \& Gearhart, 2010; Mesin et al., 2016; Owen, 2019). The B cells that successfully received "help" from T_{FH} cells are programmed to suppress the MHC II expression and re-enter the DZ for further SHM. ${ }^{\text {b }}$

The affinity of the antibody in the immune complex is an indirect measurement for the affinity of the newly mutated BCR (Mesin et al., 2016). For the B cells to acquire enough antigen to present to the T_{FH}, the affinity of their BCR must be high enough to
${ }^{\text {a }}$ GC B ells are highly prone to apoptosis unless they receive survival signals from their environment. In the LZ, B cells compete to receive survival signals from T_{FH} cells. The limited number of T_{FH} cells guarantees that only B cells bearing BCR with the highest affinity for the cognate antigen receive survival signals.
${ }^{\mathrm{b}}$ Only $10-30 \%$ of the B cells successfully get permission to re-enter the DZ. These cells are required to halt their MHC II expression to avoid carrying over any antigen to the next round of selection in the LZ.
break the interaction between the antigen and the antibody-complement in the immune complex. The cells that succeed in stripping the antigens from FDCs express the peptideMHC II complexes on their surface and subsequently receive survival signals from T_{FH} (Maul \& Gearhart, 2010; Mesin et al., 2016; Owen, 2019). The B cells with mutated BCR that can no longer bind the cognate antigen are eliminated by apoptosis. The higher the affinity of mutated BCR for the cognate antigen, the higher the densities of peptide-MHC II on the B cell. This increase in peptide-MHC II surface expression greatly improves the chances and the length of B cell interaction with the limited number of T_{FH} (Mesin et al., 2016; Owen, 2019). Therefore, the B cells expressing BCR with a higher affinity for the cognate antigen will outcompete the lower affinity B cells.

While some of the B cells return to the LZ for more rounds of mutations and selection, some B cells expressing high affinity BCR differentiate into plasma cells and begin to secrete antibodies. These secreted antibodies replace the old antibodies in the immune complexes of the FDCs. This replacement increases the selection threshold of the newly mutated antibodies by decreasing the B cell accessibility to the antigens. Subsequently, the overall affinity of serum antibodies gradually rises (Mesin et al., 2016; Wong \& Germain, 2018). ${ }^{\text {a }}$ It should be emphasized that some of the high affinity GC B cells differentiate into memory cells, which drive the faster and more robust humoral

[^21]immunity upon re-exposure to the same antigen (i.e., the secondary antibody response) (Good-Jacobson, 2018; Kuraoka et al., 2009; Owen, 2019).

1.5 Activation-induced cytidine deaminase and antibody diversification

Activation-induced cytidine deaminase (AID) is the enzyme responsible for initiation of secondary antibody diversification process (Muramatsu et al., 2000; Revy et al., 2000). In the first step of IGC, SHM, and CSR, AID introduces a high frequency of mutations in the $I g$ genes. AID converts deoxycytidine (dC) into deoxyuridine (dU) on single-stranded DNA (ssDNA) in any sequence, with a several fold (2-6 fold) preference for deaminating dC in the context of $\mathrm{WRC}(\mathrm{W}=\mathrm{A} / \mathrm{T} ; \mathrm{R}=\mathrm{A} / \mathrm{G})$ motifs, known as AID "hotspots" (Bransteitter et al., 2003; Bransteitter et al., 2006; Frieder et al., 2006; Kolar et al., 2007; Larijani, Frieder, Basit, et al., 2005; Meffre et al., 2001; Muramatsu et al., 2000; Muto et al., 2000; Nagaoka et al., 2002). However, the recent crystal structure of AID revealed that in the S regions, the G-quadruplex (G4) substrates might override the AID specificity for WRC motifs (Qiao et al., 2017). ${ }^{\text {a }}$ Nevertheless, if the DNA replication occurs before DNA repair or in the absence of the dU:dG mismatch sensors (see the fallowing paragraphs), the $\mathrm{dU}: \mathrm{dG}$ mismatches cause $\mathrm{G}: \mathrm{C} \rightarrow \mathrm{T}: \mathrm{A}$ transversion mutations. Otherwise, the dU:dG mismatches recruit DNA repair systems where either base excision repair (BER) or mismatch repair (MMR) attempts to repair the DNA. However, a unique feature of SHM is the recruitment of the non-canonical (i.e., error-prone) version of BER and MMR which results in introducing more mutations other than $\mathrm{G}: \mathrm{C} \rightarrow \mathrm{T}: \mathrm{A}$ transversion

[^22]and creating double-stranded breaks (DSBs) required for CSR (Figure 1-2) (Chi et al., 2020; Di Noia \& Neuberger, 2007; Maul \& Gearhart, 2010; Saribasak et al., 2012; Wilson et al., 2005).

Specifically, when the BER is recruited, the enzyme uracil-N-glycosylase (UNG) acts as the $\mathrm{dU}: \mathrm{dG}$ mismatch sensor and removes the dU generating an abasic site, which is successively cleaved by the apurinic/apyrimidinic endonuclease I (APE I). This nick is then processed and filled with error-prone DNA polymerases that introduce more mutations. Either this abasic site can serve as a non-informative template for DNA synthesis or initiate a version of long-path BER which generates a DNA gap that is filled with error-prone DNA polymerases (Methot \& Di Noia, 2017). The specialized DNA polymerase REV1 can bypass the abasic site by inserting a dCMP across it, causing transversion mutations at $\mathrm{C}: \mathrm{G}$ pairs, and the error-prone DNA Pol η (and to lesser extent DNA Pol ζ, Polк, and Polt) can fill out the generated gap, introducing mutations at A:T pairs (Di Noia \& Neuberger, 2007; Faili et al., 2009; Maul \& Gearhart, 2010; Maul et al., 2016; Methot \& Di Noia, 2017; Saribasak et al., 2012; Wilson et al., 2005; Zanotti \& Gearhart, 2016). In the case of MMR, Msh2 and Msh6 enzymes form the MutS α complex, which acts as the dU : dG mismatch sensor. An endonuclease then cleaves the dU-containing strand at 5^{\prime} end, creating the necessary nick for the $5^{\prime} \rightarrow 3^{\prime}$ exonuclease enzyme to remove the damaged base and its surrounding bases. Similar to the BER pathway, an error-prone DNA polymerase (such as DNA Pol η) then fills the gap and introduces more mutations (Figure 1-2) (Methot \& Di Noia, 2017).

Figure 1-2: Overview of A) the canonical Base excision repair (BER) and mismatch repair (MMR), B) the error-prone BER and MMR during SHM, and C) the error-prone BER and MMR involved in CSR. For more details, refer to the text. Adapted from Chi X, et al., 2020 with permission.

At the molecular level, the transcriptomics of centroblasts differs significantly from that of centrocytes. In the DZ, the highly proliferative GC B cells express high levels of AID and the error-prone DNA polymerase eta (DNA pol η), indicative of SHM occurrence (Mesin et al., 2016). Remarkably, the presence of dU in the V and S regions of $I g$ genes were detected as early as 24 hours after B cell stimulation (Maul et al., 2011). However, when the B cells enter the LZ, they suppress AID expression and display an activated phenotype characterized by the expression of activation markers, such as CD86, and genes involved in CD40 and BCR signaling pathways (Mesin et al., 2016). ${ }^{\text {a }}$

The introduction of the AID-mediated mutations also initiates CSR to change the effector function of antibodies. ${ }^{\text {b }}$ Preceding each C_{H} exon (except for C_{δ}), there is a G-rich, repetitive stretch of DNA known as the switch (S) region (Owen, 2019; Schroeder \& Cavacini, 2010; Wong \& Germain, 2018). The S region is comprised of repetitive tandem sequences containing the AID hotspot, where mutations occur in close proximity. ${ }^{\text {c }}$ Due to the proximity of these mutations, the BER or MMR attempts to resolve the lesions lead to the formation of DSBs in the donor and acceptor S regions (Maul \& Gearhart, 2010; Wong \& Germain, 2018). These DSBs are then resolved using classical or alternative NHEJ pathways, joining the two broken S regions through a loop-out deletion, which results in changing the effector function of the antibody. Local cytokines dictate the new antibody

[^23]isotypes synthesized by initiating the transcription of the donor and acceptor C regions, making the DNA accessible to AID (Owen, 2019; Pieper et al., 2013; Wong \& Germain, 2018). ${ }^{\text {a }}$

The absolute requirement of AID for secondary antibody diversification is apparent in the case of hyper IgM syndrome type II (HIGM II) patients. In these patients, a deficiency in the AID gene leads to the abolition of AID-mediated mutations, and consequently, the lack of AM and IS (Minegishi et al., 2000; Revy et al., 2000). Therefore, AID is essential in generating a robust humoral immune response by increasing affinity and diversifying the functional specificities of antibodies.

AID is also involved in diversifying the primary antibody repertoire (i.e., before the antigen contact) by introducing somatic mutations in pre-rearranged V regions. The first evidence of these mutations was observed in chickens where the deletion of the $\psi \mathrm{V}$ genes, or disruption of genes involved in recombination repair pathway, caused a shift from IGC to AID-mediated somatic mutations at G/C bases (Buerstedde \& Arakawa, 2006). Studies on cattle also revealed the contribution of AID-mediated somatic mutations in the formation of the primary antibody repertoire in these species (Haakenson et al., 2018; Zhao et al., 2006). ${ }^{\text {b }}$ It has been suggested that the limited germline-encoded combinatorial

[^24]diversity observed in the $I g$ loci of some species, such as sheep, prairie vole (Microtus ochrogaster), and the guinea pig (Cavia porcellus), might be an indication of IGC and/or AID-mediated somatic mutation involvement in the production of the initial B cell repertoire in these species (Guo et al., 2012; Qin, Liu, et al., 2015; Qin, Zhao, et al., 2015).

Interestingly, AID expression and some levels of somatic mutations were detected in the immature T1 B cells in patients with hyper IgM syndrome type I (HIGM I) (Kuraoka et al., 2009). A deficiency in CD40 ligand (CD40L; also known as CD154), typically found on the activated T cells, causes HIGM I, which is characterized by normal to elevated levels of serum IgM, lack or minimum levels of IgG , and the absence of GC, SHM, CSR, and memory cells (Hirbod-Mobarakeh et al., 2014). Unlike the conventional SHM that happens in GC, the observed mutations in HIGM I patients showed no evidence of antigen-driven selection. ${ }^{\text {a }}$ This mechanism of antibody diversification in HIGM I patients is reminiscent of the primary antibody diversification in chicken and cattle (Buerstedde \& Arakawa, 2006; Haakenson et al., 2018; Zhao et al., 2006). These findings lead to the hypothesis that most or even all vertebrates might share the observed AID expression and SHM during B cell development (Kuraoka et al., 2009).

1.5.1 AID structure

AID is a small, positively charged, globular protein displaying high binding affinity (~nM-range) for its negatively charged ss-DNA substrate (Larijani et al., 2007). Despite

[^25]the extensive effort in the past two decades, AID's molecular structure is not fully understood yet. Due to highly charged surface, extensive non-specific proteinprotein/DNA/RNA interactions, polydisperse oligomerization, and genotoxicity for the host cell, elucidation of native AID structure by means of X-ray crystallography and nuclear magnetic resonance (NMR) has been a challenge (King \& Larijani, 2017; Pham et al., 2016). Hence, to enhance the solubility and/or crystallization of AID, substantial alterations including mutations, deletions, and truncations have been made to the only two available X-ray structures of AID (Pham et al., 2016; Qiao et al., 2017). Figure 1-3 is a representative computational model of human AID (Hs-AID). This model was generated through homology modeling of available partial X-ray structures of AID.

Figure 1-3: General structural features of human AID (Hs-AID). A) Sequence of Hs-AID. The approximate secondary structure of α-helical (α), β-strand (β), and loop (l) regions are shown. Residues are colored according to chemical properties of the side chain. B) Representative ribbon model of predicated Hs-AID structure. In the model, blue to red color change indicates N to C terminus progression. The catalytic residues and zinc ion are shown in purple. Loops, β-strands, and α-helices are labeled. C) Predicted surface topology of Hs-AID. Catalytic pocket is shown in purple.

Before the availability of the X-ray structure of AID, homology modeling of wildtype AID based on the solved structures of the related APOBECs by X-ray or NMR revealed important aspects of AID structure-function relationship including AID's nuclear localization signal, substrate specificity loop, surface charge/topology, DNA binding grooves, secondary catalytic residues, and catalytic pocket dynamics (i.e., Schrodinger's CATalytic pocket) (Abdouni et al., 2013; Carpenter et al., 2010; Dancyger et al., 2012; King \& Larijani, 2017; King et al., 2015; Kohli et al., 2009; Larijani \& Martin, 2012; Patenaude et al., 2009; Prochnow et al., 2007). The hallmark of this approach was the birth of the "computational-evolutionary-biochemical" method in which the computational models and biochemical analyses of various AID homologs were compared. Through this novel approach, AID's DNA binding groove 1 and 2, secondary catalytic restudies, and catalytic pocket opening and closure dynamic were discovered (King \& Larijani, 2017; King et al., 2015), most of which were later confirmed through X-ray or NMR structure of AID and other APOBECs (Hou et al., 2019; Qiao et al., 2017; Shi et al., 2017). These findings are further described in the following sections.

In 2017, the most native X-ray crystal structure of AID was published (PDB: $5 \mathrm{~W} 1 \mathrm{C}, 5 \mathrm{~W} 0 \mathrm{U}, 5 \mathrm{~W} 0 \mathrm{R}$, and 5 W 0 Z) which included 10 point mutations and N - and Cterminal truncations (AID.crystal: Hs-AID ${ }^{\Delta 5-N 7 D-R 8 P-R 9 A-K 10 T-L 12 T-F 42 E-H 130 A-R 131 E-F 141 Y-Y 145 E-~}$ ${ }^{181 \Delta}$) (Qiao et al., 2017). This "near native X-ray crystal structure" of AID confirmed the presence of DNA binding groove 1 and also elucidated some aspects of its substrate specificity, such as its preference for the G4 structure and its lack of activity on dU and RNA. AID's preference for the G4 structure is due to its bifurcated substrate-binding
surface where the negatively charged amino acids of loop 8 (l8) wedges the two positively charged substrate channel and assistant patch (i.e., $\alpha 6$) (Qiao et al., 2017). Based on this model, one ssDNA overhang interacts with the substrate channel (i.e., DNA binding groove 1) and the active site while the other one binds the assistant patch and improves the binding affinity (Qiao et al., 2017). Thus, the disruption of the assistant patch compromises the CSR without significant impact on SHM.

The AID crystal structure revealed that H56, W84, and Y114 hold cytidine in place while S85 and T27 hydrogen bond with the atom N4 and O2 of cytidine, respectively. The replacement of cytidine N 4 with an O 4 in uracil interrupts the formation of the stabilizing hydrogen bond with S85 (Qiao et al., 2017). Moreover, in the AID/dCMP crystal structure, R25 interacts with 5^{\prime} phosphate, N51 hydrogen bonds with the $3^{\prime}-\mathrm{OH}$, and Y114 interacts with O^{\prime}. Replacing RNA with DNA creates steric clashes between R25 and the $2^{\prime}-\mathrm{OH}$ in ribose, AID therefore binds RNA but cannot act on it. This suggests that the proper interaction with 5^{\prime} phosphate is essential in placing the dC in the catalytic pocket for efficient AID activity (Qiao et al., 2017). ${ }^{\text {a }}$

1.5.1.1 Conserved structural features of AID

AID has several functional regions that appear to have conserved structure-function relationships within the vertebrate class (Barreto \& Magor, 2011). Among these wellestablished functional domains are the catalytic domain, the secondary catalytic residues, the substrate-binding groove(s), the conformational classical nuclear localization signal

[^26](NLS), the nuclear export signal (NES), the cytoplasmic retention residues, and the putative phosphorylation sites (Barreto \& Magor, 2011; King et al., 2015; Qiao et al., 2017). Collectively, these motifs greatly impact the outcome of AID expression by regulating its activity, substrate specificity, and subcellular trafficking.

The catalytic domain and the secondary catalytic residues catalyze the deamination reaction and stabilize the dC in the active site, respectively (refer to section 1.5.2.2 for further details) (Barreto \& Magor, 2011; Conticello, 2008; Harris et al., 2002; King et al., 2015). The residues forming the substrate-binding groove(s) interact with the adjacent nucleotides; therefore, they establish the substrate specificity and hotspot motif (refer to section 1.5.1.3 for further details) (Qiao et al., 2017). The NLS, NES cytoplasmic retention residues regulate AID activity through modulating its nucleocytoplasmic shuttling (Brar et al., 2004; Hu et al., 2013; Ito et al., 2004; McBride et al., 2004; Patenaude et al., 2009). Specifically, the residues 19-RWAK-22, N51, and N53 generate a conformational classical NLS, while R8, K16, R19, and R171, revealed by mutational screening, are the most likely residues impacting human AID (Hs-AID) entry to nucleus and nucleoli (Hu et al., 2013; Patenaude et al., 2009). The last 16 residues at C-terminus of Hs-AID are essential for nuclear export and cytoplasmic retention (Brar et al., 2004; Hu et al., 2013; Ito et al., 2004; McBride et al., 2004; Patenaude et al., 2009). Similar to many other proteins and enzymes, phosphorylation is a post-translational mechanism that alters AID activity. Protein kinase A (PKA) phosphorylates AID at serine-38 (S38), mediating its interaction with the endonuclease APE1, which is necessary for CSR (Vuong et al., 2013). Phosphorylation of S3 (by PKC) inhibits SHM and CSR, while phosphorylated threonine-140 (T140) promotes
their occurrence (Chandra et al., 2015; Vaidyanathan et al., 2014). Considering the importance of these motifs in AID activity and regulation, it is reasonable to assume that these motifs/residues would be subject to high conservation throughout AID evolution.

1.5.1.2 The primary and secondary catalytic residues of AID

Like other zinc-dependent deaminases, four evolutionarily conserved amino acid residues within the $\mathrm{H}(\mathrm{A} / \mathrm{V}) \mathrm{Ex}_{(24-36)} \mathrm{PCxxC}$ motif form the catalytic core of AID where the two cysteines, the histidine (in Hs-AID: C87, C90, and H56), and a water molecule coordinate the Zn^{2+} ion while the catalytic glutamate (in Hs-AID: E58) donates a proton (Figure 1-3) (Barreto \& Magor, 2011; Conticello, 2008; Harris et al., 2002; Holden et al., 2008; King et al., 2015; Qiao et al., 2017; Silvas \& Schiffer, 2019). The deamination reaction occurs when the Zn^{2+}-activated water molecule (in the form of Zn -hydroxide) performs a direct nucleophilic attack at the amine group (i.e., $-\mathrm{NH}_{2}$ on the C 4) of the dC pyrimidine ring (Conticello, 2008; Holden et al., 2008; Silvas \& Schiffer, 2019). The interaction between the glutamate side chain and the N 3 of the pyrimidine ring (i.e., protonation of N3 nitrogen by the carboxyl group of catalytic glutamate [OE1]) facilitates this attack (Qiao et al., 2017; Silvas \& Schiffer, 2019). This glutamate also transfers the proton from the Zn -hydroxide group to the leaving NH_{3} molecule (ammonia) through its side chain (OE2). The result is the replacement of the amine group with oxygen (creating a carbonyl group $[\mathrm{C}=\mathrm{O}]$) on the C 4 of the pyrimidine ring, which converts dC to dU . Protonation of the catalytic glutamate carboxyl group by a new water molecule that coordinates the Zn^{2+} ion to regenerate the Zn -hydroxide group resets the catalytic site (Silvas \& Schiffer, 2019).

The proper positioning of dC inside the active site is necessary for efficient deamination activity. Prior to solving the crystal structure of AID, the computational modeling and DNA:protein docking revealed a network of amino acid residues that either contact and/or stabilize the dC in catalytic pocket (King et al., 2015). This network of amino acids was named secondary catalytic residues and consist of G23, R24, R25, E26, T27, L29, N51, K52, N53, G54, C55, V57, T82, W84, S85, P86, D89, Y114, F115, C116, and E122 in Hs-AID (King et al., 2015). ${ }^{\text {a }}$ These residues form the "walls" and "floors" of the catalytic pocket and interact with substrate dC in several predicted protein conformations through hydrogen bonding, electrostatic interactions, and aromatic base stacking (King et al., 2015). Remarkably, the importance of direct interactions between some of the secondary catalytic residues and substrate DNA was validated when the crystal structure of AID was published. Among these are R24, R25, T27, N51, K52, W84, S85, Y114, and F115 (Qiao et al., 2017). The nature of these interactions is outlined in the following section. Additionally, Y114 and F115 may play a significant role in shaping the catalytic pocket and defining the substrate specificity of AID (Gajula et al., 2014). Nonetheless, the primary and secondary catalytic residues are both vital in effective enzymatic activity of AID.

[^27]
1.5.1.3 DNA and RNA binding groove(s) of AID

Multiple ssDNA and ssRNA binding grooves have been identified on the surface of AID (King \& Larijani, 2020). Prior to the "near native X-ray crystal structure" of AID, DNA binding groove 1 and 2 were identified through "computational-evolutionarybiochemical" approach (King et al., 2015). The DNA binding groove 1 is mainly formed by $\alpha 1-\beta 1, \beta 2-\alpha 2$, and $\beta 4-\alpha 4$ loops ($\ell 2$, $\ell 4$, and $\ell 8$, respectively). This DNA binding groove is positively charged and starts at the junction of $\ell 2$ and $\ell 4$, passes over the catalytic pocket, travels along $\ell 2$, and ends at the junction of $\ell 2$ and $\ell 8$. The $\ell 2$ interacts with the +1 position, while the $l 8$ interacts with the bases at the -1 and -2 positions (with respect to the dC) and defines the substrate specificity in the AID/APOBEC family (Gajula et al., 2014; Iyer et al., 2011; Kohli et al., 2009). Notably, through DNA:protein docking, the presence of the DNA binding groove 2 has been predicted to start at the junction of $\ell 2$ and $\ell 4$, to pass over the catalytic pocket, but to continue along the valley between the $\alpha 2$ and $\alpha 3$ (King et al., 2015).

The recent crystal structure of AID revealed the presence of a bifurcated substratebinding surface that consists of the substrate channel and the assistance patch (Qiao et al., 2017). The substrate channel is identical to the previously identified DNA binding groove 1 , while the assistant patch is a separate collection of positively-charged amino acids of $\alpha 6$ (Qiao et al., 2017). Mutating the assistant patch affected AID activity only on structured ssDNA and G4-containing substrates (Qiao et al., 2017).

Two putative RNA binding domains have also been identified on the surface of AID by mutagenesis and biochemical-computational approaches (King \& Larijani, 2020). One RNA binding groove is predicted to be formed by amino acids 130 to 138 (in mouse AID) based on the homology with the G4 RNA binding domain of the RNA helicase associated with AU-rich element (RHAU) protein (Creacy et al., 2008; Vaughn et al., 2005; Zheng et al., 2015). ${ }^{\text {a }}$ Interestingly, a single mutation in this region (i.e., G133V) was found in HIGM patients manifesting lack of CSR (Mahdaviani et al., 2012). A second RNA binding groove was also predicted which overlaps with the first RNA binding groove but also includes amino acid residues from $\alpha 7$ (Abdouni et al., 2018). The second RNA binding groove was suggested to be involved in AID activity in the context of DNA/RNA hybrids (Abdouni et al., 2018). Although AID has no catalytic activity on pure RNA, its RNA binding grooves are thought to facilitate attraction of AID to R-loops or DNA/RNA hybrid structures which are abundant at the $I g$ loci during SHM and CSR (King \& Larijani, 2020). Interestingly, the ability of AID to target dC in the context of diverse structures (i.e., ssDNA bubbles, DNA/RNA hybrids, stem loops, and G4 structures) was attributed to the combinatorial usage of its multiple substrate binding motifs (King \& Larijani, 2020). Previous studies have shown that the abovementioned structures are abundant at the AIDtargeted $\operatorname{Ig} V$ and $\operatorname{Ig} S$ regions (Chaudhuri \& Alt, 2004; Chaudhuri et al., 2003; Roy et al., 2008; Yu et al., 2003). Therefore, the presence of multiple substrate binding motifs was

[^28]suggested as an evolutionary feature of AID structure to regulate its activity at various loci (King \& Larijani, 2020).

1.5.2 Biochemical and enzymatic properties of AID

Previous studies estimated that the AID catalytic turnover rate was 1 to 4 minutes per reaction, defining AID as a lethargic enzyme compared with most other enzymes (King et al., 2015). The strong affinity of AID for ssDNA contributes to the long half-life of the AID-ssDNA complex (approximately eight minutes), resulting in the slow catalytic rate and high enzymatic processivity of AID (Choudhary et al., 2018; Larijani et al., 2007; Mak et al., 2013). Single-molecule resolution experiments revealed a random bidirectional short slides/hops movement where 80% of AID molecules remained bound to ssDNA for 25 s to 10 min (with an average time of $270 \pm 30 \mathrm{~s}$) (Senavirathne et al., 2015). AID is capable of forming a multimer complex, a characteristic that is critical for CSR but not SHM, potentially due to promoting a clustered mutation pattern. Interestingly, substrates forming G4 structures that resemble the structure of the mammalian $\operatorname{Ig} \mathrm{S}$ regions proved to be the preferred substrate and induced the cooperative oligomerization of AID (Choudhary et al., 2018; Qiao et al., 2017).

A catalytic pocket occlusion was suggested as an internally built-in mechanism to regulate AID/APOBEC activity (King \& Larijani, 2017). Using a combined computational-evolutionary-biochemical approach, this novel regulator of AID/APOBEC activity was described, where the catalytic pocket could transition between a closed (i.e., catalytically inactive) and an open (i.e., catalytically active) state due to the flexibility of the component loops (King \& Larijani, 2017; King et al., 2015). This catalytic pocket
duality was termed "Schrodinger's CATalytic pocket". Based on this regulatory mechanism, the majority of Hs-AID conformations ($\sim 75 \%$) at any given time contain catalytic pockets that are closed and inaccessible for accommodating a dC. Furthermore, the majority of ssDNA:AID docking events resulted in non-productive binding modes (i.e., the conformations where the substrate does not pass over the catalytic pocket) due to the highly positively charged surface of AID (King \& Larijani, 2017; King et al., 2015). ${ }^{\text {a }}$ Therefore, the frequent catalytic closure and sporadic ssDNA binding are significant bottlenecks for AID activity, such that $<1 \%$ of all ssDNA:AID binding events translate into a cytidine deamination event (King \& Larijani, 2017; King et al., 2015).

Nevertheless, the enzymatic robustness of AID catalytic activity is an important determinant of SHM and CSR efficiency (Larijani \& Martin, 2012; Wang et al., 2009). Studying AID from different species demonstrated that its biochemical characteristics, such as catalytic rate and optimal temperature, vary significantly amongst different species (Dancyger et al., 2012; King et al., 2015). In general, the mutator activity of mammalian and avian AID is higher at $37^{\circ} \mathrm{C}$, while the amphibian and bony fish AIDs are more active at lower temperatures. More importantly, various AIDs at their optimal temperature exhibit significantly different catalytic rates (Barreto et al., 2005; Conticello et al., 2005; Dancyger et al., 2012; Ichikawa et al., 2006; Wakae et al., 2006). For example, at their optimal temperature, zebrafish (Danio rerio) AID (Dr-AID) is catalytically more robust than HsAID, which is more active than I. punctatus AID (Ip-AID) (Abdouni et al., 2013; Dancyger
${ }^{\text {a }}$ Hs-AID has the surface charge of +10.25 at pH 7 , which is the highest positive surface charge amongst AID/APOBECs members.
et al., 2012; King et al., 2015). Since AID is the key enzyme initiating the secondary antibody diversification process, the biochemical properties of AID may greatly delineate the outcome of the humoral immune response.

Intriguingly, previous studies showed that AID might also deaminate 5-methyl dC (5m-C) although less efficiently than dC. Based on this observation, it was suggested that AID might play a role in epigenetics and genetic reprogramming. For example, AIDmediated deamination of $5-\mathrm{mC}$ has been reported in induced pluripotent stem (iPS) cells, primordial germ cells, B cells, cancerous cell lines, and bovine and zebrafish embryo (Ao et al., 2016; Bhutani et al., 2013; Dominguez et al., 2015; R. Kumar et al., 2013; Moon et al., 2016; Munoz et al., 2013; Popp et al., 2010; Rai et al., 2008). However, this hypothesis has been challenged by a growing body of evidence (Habib et al., 2014; Hogenbirk et al., 2013; Kunimoto et al., 2017; Ramiro \& Barreto, 2016; Shimamoto et al., 2014; Shimoda et al., 2014). Besides these in vivo evidence, some in vitro studies have claimed that HsAID efficiently deaminates $5-\mathrm{mC}$, while others showed that it was inefficient (Abdouni et al., 2013; Larijani, Frieder, Sonbuchner, et al., 2005; Morgan et al., 2004; Nabel et al., 2012; Wijesinghe \& Bhagwat, 2012). For instance, it was previously shown that Dr-AID, Hs-AID, and Ip-AID have different deamination efficiency ratio of $\mathrm{dC} / 5 \mathrm{~m}-\mathrm{C}$ substrates. While Dr-AID is the most robust enzyme on $5 \mathrm{~m}-\mathrm{C}(2 / 1)$, Hs- and Ip-AIDs were not efficient in deaminating 5m-C (Abdouni et al., 2013). In general, all AIDs studied from various species thus far showed less activity on $5 \mathrm{~m}-\mathrm{C}$ compared with dC . This observation led to the suggestion that methylation protects dC from AID targeting, this protection, however, is more restricted in humans compared with zebrafish due to the enzymatic
differences between their AIDs (Abdouni et al., 2013; Larijani, Frieder, Sonbuchner, et al., 2005).

1.5.3 Co-evolution of AID substrate specificity with Ig genes

Sequencing analyses of $I g V$ genes and biochemical studies of AID from different species have defined the WRC motif as its favored target motif (Dancyger et al., 2012; Gajula et al., 2014; Hackney et al., 2009; Larijani, Frieder, Basit, et al., 2005; Larijani \& Martin, 2007; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Yang et al., 2006). ${ }^{\text {a }}$ Specifically, in vivo analyses revealed that AGCT is the AID preferred motif in $\operatorname{Ig} V$ genes, and WRCH/DGYW motifs are mildly enriched in mammalian $I g V$ regions (Hackney et al., 2009). Since the frequency of SHM is correlated with the recurrence of the AID hotspot in the $I g V$ regions, a co-evolution between AID substrate specificity and the $I g$ gene sequences were proposed (Choudhary et al., 2018). This co-evolution has been observed in mammals, birds, amphibians, as well as bony and cartilaginous fish (Conticello et al., 2005; Detanico et al., 2016; Golub \& Charlemagne, 1998; Jolly et al., 1996; Oreste \& Coscia, 2002; Wagner et al., 1995; Wei et al., 2015). The analysis of the human IGHV3$23 * 01$ region revealed an accumulation of overlapping AID (especially AGCT) and Pol η (WA) hotspots in the CDR1 and 2 compared to the framework (FRs) regions, suggestive of a co-evolution between $I g V$ sequence and the SHM machinery (Wei et al., 2015). ${ }^{\text {b }}$ Using deep sequencing, it has been shown that the replacement of the hotspots with neutral or

[^29]coldspots reduced mutation frequency in the CDR1 and 2 as well as the entire $\operatorname{Ig} V$ region (Wei et al., 2015). Additionally, when dividing serine codons into AGY (WRC) and TCN (non-WRC), a clear preference for AGY over TCN was observed in IgV CDRs vs. FRs (Detanico et al., 2016; Golub \& Charlemagne, 1998; Jolly et al., 1996; Wagner et al., 1995). Moreover, analyses of the antibody-antigen (Ab-Ag) crystal structure of human and mouse revealed that somatic mutations in AGY codons in CDRs are responsible for generating 4 out of 7 of the most abundant residues involved in $\mathrm{Ab}-\mathrm{Ag}$ interactions (Detanico et al., 2016). Additionally, the WGCW motifs, which contain AID hotspots on both strands, have been suggested to attract AID to the $\operatorname{Ig} V$ regions (Hwang et al., 2017; Ohm-Laursen \& Barington, 2007; Wei et al., 2015; Yeap et al., 2015). The analyses of WGCW distribution revealed these overlapping motifs as a key evolutionary feature of $\operatorname{Ig} V_{H}$ genes in human (Tang et al., 2020). This apparent co-evolution of AID substrate specificity and the sequence of $I g$ genes may play a significant role in targeting AID activity towards $I g$ genes.

1.5.4 AID transcript and expression pattern

Thus far, there have been reports of alternative AID transcripts and isoforms in several, but not all, studied vertebrates. In bony fish, no AID alternative splice variant has been reported in I. punctatus nor D. reiro (Saunders \& Magor, 2004; Zhao et al., 2005). In amphibians, cloning of the Pleurodeles waltl (Iberian ribbed newt) AID cDNA revealed the presence of three potential poly-A sites and two isoforms, one of which is missing the first exon (Bascove \& Frippiat, 2010). Two different AID transcripts were found in X. laevis spleen (2 and 1.3 kb) (Marr et al., 2007). Only one AID transcript was reported in dogs (Canis lupus familiaris) and cows (Bos taurus) while two AID transcripts were
identified in a murine B cell line (CH12F3-2), both containing full-size AID ORF but utilizing different poly-A sites (Muramatsu et al., 1999; Ohmori et al., 2004; Verma et al., 2010). In humans, five different splice variants of AID have been detected: Full-length AID (AID-FL), exclusion of the beginning of exon 4 (AID- $\Delta \mathrm{E} 4 \mathrm{a}$), exclusion of exon 4 (AID- $\Delta \mathrm{E} 4$), exon 3 and 4 exclusion (AID- $\triangle \mathrm{E} 3 \mathrm{E} 4$), and inclusion of intron 3 containing a stop codon (AID-ivs3) (Albesiano et al., 2003; Babbage et al., 2004; Greeve et al., 2003; McCarthy et al., 2003; Noguchi et al., 2001; Oppezzo et al., 2003; Wu et al., 2008). Noteworthy, individual human B cells only express one of the AID splice variants (Wu et al., 2008). Since Hs-AID splice variants have different functional properties in carrying SHM or CSR, it was suggested that differential splicing of AID in normal and malignant B cells might play a crucial role in antibody maturation regulation and tumor suppression (Wu et al., 2008).

AID expression can be induced during B cell activation, either through interaction of peptide-MHC II complex and CD40 on B cells with TCR and CD40L on T_{H} cells (i.e., TD B cell activation), or through dual engagement of B cell receptor and TLRs on B cells with antigens such as LPS (i.e., TI B cell activation) (DeFranco, 2016; Hou et al., 2011; Kasturi et al., 2011; Pone et al., 2012; Stavnezer \& Schrader, 2014). Importantly, the effect of TI activation of B cells in AID expression and CSR induction is comparable with that induced by the TD pathway. AID induction through the TI pathway peaked between 24 to 48 hours (100-fold increase) in stimulated murine B cells (Pone et al., 2012). Therefore, although both pathways lead to comparable AID expression, the latter pathway takes place early in immune response when T_{H} cell assistance is not yet available (Pone et al., 2012).

Consistent with its role in secondary antibody diversification, all studies conducted on vertebrates have identified lymph node and spleen (where TD B cell activation occur) as the main AID expressing tissues (Bascove \& Frippiat, 2010; Marr et al., 2007; Muramatsu et al., 1999; Muto et al., 2000; Ohmori et al., 2004; Saunders \& Magor, 2004; Verma et al., 2010). AID is mainly expressed in activated GC B cells (Muramatsu et al., 1999). Canonical GCs in the lymph node of mammals and spleen of birds are the main sites of TD B cell activation. Although reptiles and amphibians lack the conventional GC, TD activation of B cells occurs in their spleen (Boehm et al., 2012). A previous study on I. punctatus identified melano-macrophage clusters (MMCs) as the main site of AIDexpressing B cells in early gnathostome vertebrates (Saunders et al., 2010). In most fish species, these clusters exist in the spleen and posterior kidney, and they contain large macrophage aggregates and pigment-containing cells (Agius \& Roberts, 2003). MMCs have been suggested as the antigen-trapping sites where the antigens may persist for a longterm similar to the birds' and mammalian germinal centers (Ellis, 1980; Lamers, 1986). Therefore, these clusters have been suggested as the primitive analogues of the germinal centers in fish (Agius \& Roberts, 2003). However, lower and variable levels of AID expression have also been reported in thymus, pancreas, kidney, liver, and lungs of mammals (Muto et al., 2000; Ohmori et al., 2004; Verma et al., 2010). Likewise, low levels of AID expression have been observed in the brain, intestine, kidney, liver, and lungs of amphibians, and in the intestine, fin, posterior, and anterior kidney of fish (Bascove \& Frippiat, 2010; Marr et al., 2007; Saunders \& Magor, 2004).

A controversial role for AID in epigenetics reprogramming has been suggested through the deamination $5-\mathrm{mC}$ leading to the CpG motif demethylation (Bhutani et al., 2013; Dominguez et al., 2015; Moon et al., 2016; Popp et al., 2010; Rai et al., 2008). Thus far, Dr-AID is the only AID homolog that efficiently deaminates 5m-C (Abdouni et al., 2013; Larijani, Frieder, Sonbuchner, et al., 2005; Nabel et al., 2012; Wijesinghe \& Bhagwat, 2012). Interestingly, AID expression was reported during most embryonic stages in zebrafish, where AID knockdown by morpholinos caused loss of neurons (Rai et al., 2008). However, these findings were reported to be unreproducible in a later publication (Shimoda et al., 2014). AID expression was also observed in the early stages of embryogenesis in Iberian ribbed newt (Pleurodeles waltl) and early larval stages in African clawed frog (Bascove \& Frippiat, 2010; Marr et al., 2007).

1.5.5 AID regulation and targeting

Despite the central role of AID in humoral immune responses, its off-target activity would be costly for the cells (Choudhary et al., 2018; Lindley et al., 2016; Silvas \& Schiffer, 2019). Therefore, AID expression and activity is highly regulated and mostly directed towards $I g$ genes. Many mechanisms have been identified that regulate AID expression and activity. Aicda expression and AID shuttling to the nucleus are mainly restricted to activated B cells in the DZ of GC (de Yebenes \& Ramiro, 2006; Mai et al., 2010; Owen, 2019). In these cells, aicda expression is regulated through cis- and trans-
acting factors, such as Stat6, Smad3 and 4, Pax5, E2A, BATF, NF-кB, HoxC4, ${ }^{\text {a }}$ Myb, and E2F transcription factors, ${ }^{\mathrm{b}}$ and the stability of its mRNA is governed through micro-RNAs, such as miR-155, miR-181b, and miR-93 (Zan \& Casali, 2013). ${ }^{\mathrm{c}}$ In the cytoplasm, AID protein exists in a high molecular mass complex with other proteins, such as Hsp90 and translation elongation factor $1 \alpha(\mathrm{eEF} 1 \alpha)$ to prevent its degradation and regulate its entry into the nucleus (Häsler et al., 2012). Moreover, it was demonstrated that phosphorylation of $\mathrm{AID}^{\mathrm{S38}}$ by PKA permits its association with replication protein A (RPA), which enhances AID activity (Basu et al., 2005; Basu et al., 2008; Chaudhuri \& Alt, 2004; Methot \& Di Noia, 2017). ${ }^{\text {d }}$ Also, the inefficiency of AID to deaminate dC even at preferred hotspot motifs ($\sim 3 \%$) contributes to protecting genomic DNA from excessive AID-mediated mutations. This phenomenon is mostly due to its lethargic catalytic rate and extremely high substrate binding affinity (Chi et al., 2020; King \& Larijani, 2017; Larijani \& Martin, 2012; Mak et al., 2013). These various levels of regulation are crucial to prevent off-target activity of AID.

Beside regulation of AID expression and activity, numerous studies examined the molecular basis of AID targeting towards $I g$ genes. Many factors have been proposed to

[^30]define the selectivity of AID targeting towards $I g$ genes, such as the target sequence, transcription, and protein co-factors (Choudhary et al., 2018). Studies have suggested that Ig gene primary sequence may direct AID activity towards CDRs and S regions (Choudhary et al., 2018; Conticello et al., 2005; Detanico et al., 2016; Golub \& Charlemagne, 1998; Hackney et al., 2009; Jolly et al., 1996; Oreste \& Coscia, 2002; Wagner et al., 1995; Wei et al., 2015). As described in section 1.5.3, a co-evolution of AID substrate specificity with $\operatorname{Ig} V$ primary sequence has been previously proposed (Choudhary et al., 2018). S regions are also moderately enriched with WRC motifs, AID's hotspots. However, replacement of $\operatorname{Ig} V$ and S regions with heterogenous sequences would not diminish SHM and CSR (de Yebenes \& Ramiro, 2006). Also, not all hotspots are targeted equally which means that some other local sequences or higher-order structures are also involved. Recently, the plasticity in AID's substrate choice, due to containing multiple substrate binding motifs on its surface, has also been proposed as a regulatory mechanism of its activity at various loci (refer to section 1.5.1.3) (King \& Larijani, 2020). Therefore, it seems that WRC enrichment and higher abundance of structured substrates (e.g., ssDNA bubbles, R-loops, DNA/RNA hybrids, and G4) at the AID-targeted $\operatorname{Ig} V$ and IgS regions may contribute to AID targeting towards Ig genes (Chaudhuri \& Alt, 2004; Chaudhuri et al., 2003; Roy et al., 2008; Yu et al., 2003).

Previous studies have shown that active transcription of $I g$ genes is required for both SHM and CSR (Betz et al., 1994; de Yebenes \& Ramiro, 2006; Fukita et al., 1998; Goyenechea et al., 1997; Mandler et al., 1993; Peters \& Storb, 1996; Pinaud et al., 2001; Rothenfluh et al., 1993; Storb et al., 1998; Xu et al., 1993; Zhang et al., 1993). Unique
transcription dynamic features, such as strong enhancers and bi-directional transcription at Ig loci (Meng et al., 2014; Qian et al., 2014) have emerged as features that explain AID's genome targeting patterns and preference for targeting $I g$ loci. Facilitation of AID targeting through transcription may happen through de-chromatinization of DNA (Kodgire et al., 2012; Kodgire et al., 2013; Shen et al., 2009) and generation of ssDNA in the context of AID-preferred structured substrates (e.g., ssDNA bubbles, R-loops, DNA/RNA hybrids, and G4) (Branton et al., 2020; Fugmann \& Schatz, 2003; Kim \& Jinks-Robertson, 2012; Yu et al., 2003; Yu et al., 2005).

Many studies also considered that in addition to ssDNA generation, another way transcription might facilitate AID targeting is through association of AID with the RNAP complex and/or transcription machinery-associated protein co-factors. Thus far, many protein cofactors have been proposed to recruit AID to Ig genes. Example of these proposed co-factors are: RNAPII (Nambu et al., 2003), the ssDNA binding protein Replication protein A (RPA) (Chaudhuri et al., 2004), the transcription elongation factor Spt5 (Pavri et al., 2010), RNAPII associated factor I (PAF1) (Willmann et al., 2012), spliceosomeassociated factor CTNNBL1 (Conticello et al., 2008), RNA binding heterogeneous nuclear ribonucleoproteins (hnRNP) (Hu et al., 2015), splicing regulator polypyrimidine tract binding protein 2 (PTBP2) (Nowak et al., 2011), splicing factor SRSF1-3, (Kumar Singh et al., 2019), and the chromatin-associated SUV4-20H2 (Rodríguez-Cortez et al., 2017). Though in different instances some of these co-factors may be involved in guiding AID to a specific target, none could fully explain preferential targeting of AID to the $I g$ loci while at the same time accounting for its genome-wide targeting and lack of specificity.

Additionally, the distribution of the proposed co-factors at the $I g$ genes, the small size of AID (only 198 amino acids in human), and its highly positively charged surface were used to dispute the role of co-factors in targeting AID (King \& Larijani, 2017). Recently, the earlier observation that AID can indeed act efficiently on supercoiled dsDNA in the absence of transcription was confirmed using an unbiased PCR-based assay. Furthermore, it was shown that AID can also act on relaxed linear dsDNA in the absence of transcription, and that even the most optimal transcription conditions only modestly enhances AID activity on supercoiled dsDNA (Branton et al., 2020). Based on these findings, it was suggested that the association between transcription and AID targeting may indeed be due to transcription being a corollary of de-chromatinized naked loci rendered accessible for AID to target breathing ssDNA regions naturally found in supercoiled dsDNA, as well as transcription being a direct generator of ssDNA (Branton et al., 2020).

Nevertheless, despite the tight regulation of AID expression and activity, AID may off-target oncogenes resulting in somatic mutations, chromosomal translocation, and subsequent cell transformation and tumor development (Choudhary et al., 2018; Lindley et al., 2016; Silvas \& Schiffer, 2019). ${ }^{\text {a }}$ Indeed, a source of genome instability and mutations in B cells is the mis-targeted activity of AID (Choudhary et al., 2018). For instance, AID expression and activity have been suggested as a main contributing factor in $\mathrm{IgH}-\mathrm{cMyc}$ translocations manifested in the patients with Burkitt's lymphomas (Takizawa et al., 2008). AID-mediated mutations are also identified in serous ovarian adenocarcinoma and chronic
${ }^{\text {a }}$ AID off-targets other genes such as $c d 95, c d 79 a, c d 79 b$, pim1, c-myc, rhoh, and pax5 genes.
lymphocytic leukemia (CLL) (Burns et al., 2017; Lindley et al., 2016). In patients with chronic myeloid leukemia (CML), AID-mediated hypermutation of tumor repressor and DNA repair genes have been associated with progression into fatal B lymphoid blast crisis and Imatinib-resistance phenotype (Klemm et al., 2009). In diffuse large B cell lymphomas (DLBCL), somatic hypermutation (SHM) off-targeting has been reported in protooncogenes (Seifert et al., 2019). There has also been evidence of AID-mediated carcinogenesis in GC B cells as the result of Epstein-Barr virus (EBV)-induced AID expression (Mohri et al., 2017). Interestingly, under strong inflammatory stimuli, the premature expression of AID during B-cell development creates an opportunity for cooperation between RAG and AID to drive the clonal evolution of childhood B cell acute lymphoblastic leukemia (B-ALL) (Swaminathan et al., 2015). It was proposed that aberrant AID-mediated mutations in CpG islands would create $\mathrm{T}: \mathrm{G}$ mismatches which would attract RAG complex activity, causing genome instabilities. AID- and APOBEC3-mediated mutations have been observed in many types of cancers, such as breast, ovarian, and lung cancers, as the driving mutation and potentially cancer-progression associated signatures (Leonard et al., 2013; Lindley et al., 2016; Ruder et al., 2019; Sasaki et al., 2014; Zou et al., 2017). Taken together, AID which is used by the adaptive immune system towards antigen receptor diversification, also mediates considerable collateral mutation and damage to the host cell's genome, and is therefore aptly considered to be a double-edged sword.

1.6 Evolution of the AID/APOBEC family

AID belongs to the vertebrate-specific polynucleotide cytidine deaminase family of the apolipoprotein $B m R N A$ editing enzyme catalytic polypeptide (APOBEC) (Methot
\& Di Noia, 2017). Controversial to this, BLAST search results revealed the presence of the AID/APOBEC-like deaminases in Wolbachia endosymbiont (parasitic bacteria), nematodes, and distantly related algal lineages (Iyer et al., 2011). Nevertheless, the AID/APOBEC family contains 11 members in humans: AID, APOBEC1, APOBEC2, the APOBEC3 sub-branch (A-H, excluding E), and APOBEC4. AID and APOBEC3s act on DNA and are involved in antibody maturation and viral protection, respectively. APOBEC1 participates in lipid transport by editing the apolipoprotein B mRNA, while the roles of APOBEC2 and 4 are still unknown (Conticello, 2008; Silvas \& Schiffer, 2019). ${ }^{\text {a }}$

In a comprehensive phylogenetic analysis, a bacterial toxin deaminase, capable of binding metal ions and a nucleotide or a related molecule, was suggested as the ancestor of all deaminases from which two deaminase divisions of the C-terminal hairpin and the Helix- 4 were derived. The β sheet four ($\beta 4$) and $\beta 5$ are anti-parallel in the C -terminal hairpin division while the presence of the intervening α-helix four ($\alpha 4$) causes $\beta 4$ and $\beta 5$ to be parallel in the Helix-4 division, including all tRNA deaminases (TADs), adenosine deaminases acting on RNA (ADARs), and the AID/APOBEC family (Iyer et al., 2011). ${ }^{\text {b }}$

It is suggested that, at the beginning of the vertebrate radiation, the AID/APOBECs family has evolved from the tRNA adenosine deaminases containing the consensus motif $(\mathrm{C} / \mathrm{H}) \mathrm{xEx}_{\mathrm{n}} \mathrm{PCxxC}(\mathrm{x}$ is any given amino acid) as their catalytic domain (Conticello, 2008; Torres et al., 2014). The shift in substrate specificity from adenine to cytidine during the

[^31]divergence of the AID/APOBEC family from Tad2/TadA deaminases has been attributed to the expansion of the $\alpha 4-\beta 4$ loop (i.e., $\ell 8$) and a conserved tyrosine in this loop. The larger l8 decreases the size of the substrate-binding pocket, and the conserved tyrosine could participate in base-stacking interactions (Iyer et al., 2011). Moreover, the $\mathrm{HxEx}_{\mathrm{n}} \mathrm{PCxxC}$ motif is the conserved catalytic domain shared by the AID/APOBEC family in which the glutamate (E) acts as a proton donor and the histidine (H) with two cysteines (C) coordinate $a \mathrm{Zn}^{2+}$ ion with the help of a water molecule (Qiao et al., 2017; Silvas \& Schiffer, 2019).

The evolution of the AID/APOBEC family within the vertebrate class starts with the divergence of AID-like and the APOBEC4-like clades where the fourth Zn^{2+} coordinating agent is a water molecule or a cysteine residue (located between $\beta 2$ and $\alpha 2$), respectively (Iyer et al., 2011; Qiao et al., 2017). In jawless vertebrate, the AID-like branch then gave rise to PmCDA1 and PmCDA2. In jawed vertebrates, this branch has further diverged into AID and APOBEC2 (at the base of jawed vertebrates), APOBEC3 (in tetrapod) and APOBEC1 (in mammals) (Iyer et al., 2011). Interestingly, the involvement of PmCDA1 in diversifying the lamprey's immune receptors and the continuing of a similar role for AID in the jawed vertebrates indicates that the acquisition of this role by the AIDlike branch had already occurred before the further divergence of this branch within vertebrates (Emma M. Quinlan, 2017; Iyer et al., 2011).

1.7 Evolution of antibody maturation within the vertebrate class

Functional and genomic analysis of antibody repertoires in various vertebrates revealed the emergence of the antibody affinity maturation process as early as cartilaginous fish (Betz et al., 1993; Bromage et al., 2006; Cain et al., 2002; Diaz et al., 1999; Dooley \&

Flajnik, 2005; Dooley et al., 2006; Hsu, 2016; Jenne et al., 2003; Kaattari et al., 2002; Lee et al., 2002; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Mehr et al., 2004; Wilson et al., 1992; Yang et al., 2006). Specifically, AID-mediated mutations were identified in the CDRs of Ig genes in studied poikilotherms. In one study on Xenopus (frog), a five to 10 -fold increase in antibody affinity was observed four weeks after immunization with 2,4-dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH). DNP-KLH is a highly immunogenic TD antigen that can be used to study the T cell-dependent immune response in animals (Kojima et al., 2013). In the same study, point mutations were detected in the $V_{H} 1$ region with 4 to 7 -fold lower frequency than that reported for mice (Wilson et al., 1992). In Oncorhynchus mykiss (rainbow trout), a 2 to 3 -fold increase in antibody affinity by week 14 after immunization with TD antigen (FITC-KLH) was reported (Cain et al., 2002). In a more detailed study in the same species, Kaattari et al. discovered the emergence of higher affinity antibodies later in the immune response, which suggests the presence of antibody affinity maturation process (Kaattari et al., 2002). G to A and C to T mutations in RGYW motifs were observed in I. punctatus CDR regions, however analyzing synonymous $v s$. nonsynonymous mutations showed no evidence of antigen-driven B cell selection (Yang et al., 2006). In 2011, the contribution of AID-mediated mutations in antibody diversification of D. rerio was confirmed by mutational analysis of the $I g L$ cDNA library from a healthy individual. In this study, WRCH/DGYW motifs were described as the primary target of mutations in CDR regions (Marianes \& Zimmerman, 2011). High frequency of somatic mutations has also been reported in nurse shark (Ginglymostoma cirratum) Ig genes. These somatic mutations could increase antibody affinity up to 10 -fold
(Dooley et al., 2006). Therefore, while the extent of AM varies among studied vertebrates, the occurrence of SHM in their Ig genes and its contribution to AM seems to be somewhat conserved.

1.8 The genetically altered immune system of Gadiformes lineage

Ray-finned fishes (class Actinopterygii), with 33792 validated extant species, is the largest group of vertebrates and they inhabit every marine and freshwater habitat. Within the Actinopterygii class, the vast majority of species belong to the teleost lineage (Ron Fricke; Sallan, 2014; Solbakken et al., 2017). The recent genomic sequence of non-model fish species revealed a remarkable heterogenicity in the teleost's innate and adaptive immune systems, particularly within Gadiformes order. These variabilities include gene losses and/or expansions of $t l r s, m h c I$ and $I I, c d 4$, invariant chain (also known as $c d 74$), and Myxovirus resistance (Mx) genes (Malmstrom et al., 2016; Solbakken, Rise, et al., 2016; Solbakken, Torresen, et al., 2016; Solbakken et al., 2017). Although the functional consequences of these gene losses and expansions are still unclear, alternative immune strategies might have successfully replaced the classical immune system in Gadiformes species.

Past environmental changes are powerful evolutionary factors diversifying the vertebrates' immune system (Solbakken et al., 2017). In a series of publications, Solbakken and colleagues showed that the immune gene losses and expansions in teleost lineage overlap with major paleoclimatic and geological events. They associated the loss of $M x$ gene in the Gadiformes and Stylephorus chordates ancestor, and the loss of mhc II gene in the common ancestor of Gadiformes with the first (~ 120 million years ago [Ma]) and the
second global anoxia events ($\sim 95 \mathrm{Ma}$), respectively (Solbakken, Rise, et al., 2016). They also showed that the tlr expansions within teleost correlate with latitudinal distribution and the maximum depth, while tlr losses in the order of Gadiformes reflects the global ocean anoxia and the geography of the Atlantic Ocean in the past (Solbakken et al., 2017). It was suggested that the adaptability of the teleosts' immune system in response to the major changes in their habitat played a crucial role in their successful radiation and speciation (Malmstrom et al., 2016; Solbakken et al., 2017).

Intriguingly, the functional analyses of the Atlantic cod (Gadus morhua; a member of Gadiformes group) humoral responses showed high levels of low-affinity IgM and lack of robust antigen-specific antibody response upon immunization (Arnesen et al., 2002; Magnadottir et al., 1999; Magnadottir et al., 2001; Solem \& Stenvik, 2006). Yet other studies claimed that Atlantic cod antibody response to Aeromonas salmonicida was comparable to that in salmon, and Atlantic cod produced specific antibody responses against Francisella and different Vibrio anguillarum serotypes (Lund et al., 2008; Lund et al., 2006; Schroder et al., 2009). However, antibodies measured in these studies were mainly LPS-specific with some of the serum pools reacting towards O-polysaccharide, which indicates the B cell activation through the TI pathway. Despite the loss of central genes required for TD B cell activation, evidence of TI B cell activation has been reported in this species (Malmstrom et al., 2013; Solbakken, Jentoft, Reitan, Mikkelsen, Gregers, et al., 2019; Solbakken, Jentoft, Reitan, Mikkelsen, Jakobsen, et al., 2019). Generally, the TD activated B cells almost exclusively secrete the highly pathogen-specific antibodies. The lack of TD pathway is consistent with the drastic re-modeling of immune genes in this
species. Taken together with the genetic re-modeling of the immune system, it appears that the Atlantic cod immune system has a unique gene structure and tactics which require a more detailed investigation.

1.9 Research hypothesis and objectives

AID is the functional initiator and master switch without which antibody affinity maturation is genetically not possible. The collective functional and genetic evidence is highly suggestive that the Atlantic cod humoral immune response is less robust than other studied bony fish. This phenomenon is most likely due to little or lack of antibody affinity maturation in this species. The sequencing of the Atlantic cod genome revealed the presence of a putative AID gene. However, it is not clear whether this gene expresses a functional enzyme during an immune response. Also, there has been a drastic remodeling of the immune system in the cod-like lineage of Gadiformes. Given the unique antibody responses of the Atlantic cod and the lack of robust AM, we asked whether its AID enzyme, the master switch for initiation of the molecular events of AM, may also be involved. Therefore, this thesis aims to shed light on the evolutionary plasticity of AID within the Gadiformes group, with an emphasis on Atlantic cod. By combining state-of-the-art in vivo, in vitro, and in silico analyses, we attempted to comprehensively examine the genetics, expression, and function of AID in Atlantic cod and address the evolutionary trajectory of this enzyme within the Gadiformes group. Therefore, this thesis has three specific objectives that are addressed in the three following chapters.

In chapter 2, we examined the AID gene structure, synteny, expression, and immune responsiveness. Specifically, we compared the genetic structure of AID and its
gene synteny with other studied vertebrates. We then characterized Atlantic cod AID mRNA and its expression pattern in a panel of different tissues. We also examined its expression upon immune stimulation in adult Atlantic cod individuals and during Atlantic cod embryogenesis. We concluded that Atlantic cod AID showed a conserved gene structure and transcript expression as compared with the previously studied species such as channel catfish and zebrafish.

In chapter 3, we examined the enzymatic properties of Atlantic cod AID. Since the Atlantic cod AID expression profile was similar to that of other studied species, we sought to assess its catalytic activity in comparison with AID from other species. For the first time, we reported that this enzyme has evolved to become nearly inactive in Atlantic cod, mirroring its lack of affinity matured antibodies. Correspondingly, we observed a significantly lower level of AID target sequences in the Atlantic cod Ig loci compared to other vertebrates. This phenomenon indirectly confirms the functional impairment of Atlantic cod AID during evolution. We also used computational modeling and DNA:protein docking to pinpoint the underlying molecular reason(s) for the lethargic activity of Atlantic cod AID.

In chapter 4, we investigated the plasticity of AID function among Gadiformes species by measuring the catalytic activity of 36 species within and outside of the Gadiformes lineage. We then predicted the ancestral sequence of AIDs within the Gadiformes family using Ancestral Sequence Reconstruction (ASR)- a powerful bioinformatics method. By comparing the ancestral AIDs, we showed that the catalytic activity of AID was drastically reduced in the ancestor of the Gadidae while its sister group
had retained a functional AID. In this light, our findings suggest that the Gadidae ancestor may represent an instance in the evolution of immunity wherein AID has become nearly inactive to reflect lesser reliance on high-affinity antibody responses.

Chapter 2:

Characterization of aicda gene structure, synteny, and expression in Atlantic cod (Gadus morhua)

Abstract

2.1 Abstract

Activation-induced cytidine deaminase (AID; encoded by aicda gene) converts deoxycytidine (dC) into deoxyuracil (dU) at immunoglobulin (Ig) loci, initiating antibody affinity maturation. It was previously assumed that antibody affinity maturation existed in all jawed vertebrates. However, it was recently showed that the Atlantic cod was an exception since it lacks affinity-matured antibodies. Since AID is the key enzyme in generating a high affinity antigen-specific antibody response, we sought to examine the genetics and expression of aicda in Atlantic cod. Our data showed that Atlantic cod aicda locus conserved its synteny with other teleost species. In Atlantic cod immune-related tissues, we identified two aicda transcripts, one of which is missing the first exon. This truncated isoform, if translated, lacks the first 21 amino acids suggesting it is inactive as a cytidine deaminase. Comparison of the Atlantic cod AID amino acid sequence with that of other studied vertebrate species uncovered the presence of all AID's hallmark functional motifs. However, we noticed a potentially important difference in one of the predicted secondary catalytic residues in Atlantic cod AID's catalytic motif. Based on the structurefunction knowledge of AID's catalytic pocket, this difference would likely affect Atlantic cod AID's activity as a cytidine deaminase. We found that a highly evolutionary conserved amino acid residues of E122 in human AID (Hs-AID) is a histidine in Atlantic cod (H136). The important role of secondary catalytic residues in stabilizing dC in the catalytic pocket of AID, the conservation of this amino acid in all AIDs studied thus far, and the previously shown functional impairment of $\mathrm{Hs}-\mathrm{AID}^{\mathrm{E} 122 \mathrm{~A}}$ mutant, are highly suggestive that the enzymatic activity of AID might have been compromised during the evolution of Atlantic

cod species. These findings are consistent with the lack of affinity-matured antibodies in Atlantic cod.

2.2 Introduction

Functional analyses of immune responses have indicated the presence of antibody immune response and antibody affinity maturation prior to the divergence of cartilaginous and bony fish (Abos et al., 2018; Bromage et al., 2006; Cain et al., 2002; Covello et al., 2013; Davidson et al., 1997; Dooley \& Flajnik, 2005; Dooley et al., 2006; Hsu, 2016; Jenne et al., 2003; Kaattari et al., 2002; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Mehr et al., 2004; Wiens et al., 2003; Wilson et al., 1992; Yang et al., 2006; Zwollo et al., 2017). Specifically, a high frequency of somatic mutations resulting in antibody affinity maturation has been detected in IgM and the immunoglobulin new antigen receptor (IgNAR) of the immunized nurse shark (Ginglymostoma cirratum), improving affinity up to 10 -fold (Dooley \& Flajnik, 2005; Dooley et al., 2006). In rainbow trout (Oncorhynchus mykiss), the emergence of higher affinity antibodies (2- to 3-fold increase in affinity) by week 14 after immunization with T cell-dependent antigen (i.e., FITC-KLH; fluorescein isothiocyanate [FITC] conjugated to keyhole-limpet hemocyanin [KLH]) has been reported (Cain et al., 2002; Kaattari et al., 2002). In immunized Atlantic salmon (Salmo salar), it was observed that the antibody affinity increased less than 10 -fold (Solem \& Stenvik, 2006). In African clawed frog (Xenopus laevis), a 5- to 10 -fold increase in antibody affinity was detected four weeks after immunization with DNP-KLH (2,4Dinitrophenyl [DNP] hapten conjugated to KLH protein through lysine) (Wilson et al., 1992). These reports support the idea that antibody affinity maturation is an ancient process dating back to the ancestor of jawed vertebrates.

Antibody affinity maturation is initiated when the enzyme AID introduces somatic hypermutation (SHM) in immunoglobulin (Ig) genes (Bransteitter et al., 2003; Kolar et al., 2007; Larijani, Frieder, Basit, et al., 2005; Meffre et al., 2001; Muramatsu et al., 1999; Muto et al., 2000). AID is mainly expressed in activated B lymphocytes where it converts deoxycytidine (dC) to deoxyuridine (dU) in $I g$ variable (V) genes, preferentially in the context of WRC (W=A/T; R=A/G) motifs (Bransteitter et al., 2003; Emma M. Quinlan, 2017; Larijani, Frieder, Basit, et al., 2005; Meffre et al., 2001). Studies have shown that in the mammalian model, AID-mediated SHM can enhance the affinity of antibodies for the cognate antigen as high as 1000 -fold (Magor, 2015). Moreover, AID deficiency in mice and humans results in hyper IgM immunodeficiency characterized by a lack of affinity matured antibodies (Minegishi et al., 2000; Revy et al., 2000). AID-mediated SHM has also been reported in $\operatorname{Ig} V$ genes of immunized frog, channel catfish (Ictalurus punctatus), zebrafish (Danio rerio), and the nurse shark (Dooley et al., 2006; Hsu, 2016; Marianes \& Zimmerman, 2011; Mehr et al., 2004; Wilson et al., 1992; Yang et al., 2006). Point mutations were detected in the $\mathrm{V}_{\mathrm{H}} 1$ region of $I g$ genes in the frog (Xenopus) with 4- to 7fold lower frequency than that reported for mice (Wilson et al., 1992). In channel catfish, G-to-A and C-to-T mutations were observed in RGYW motifs of complementaritydetermining regions (CDRs) (Yang et al., 2006). Mutational analyses of the $I g L$ cDNA library from a healthy individual zebrafish confirmed the contribution of AID-mediated mutations in antibody diversification of this species. In this study, WRCH/DGYW motifs were the primary target of mutations in CDRs (Marianes \& Zimmerman, 2011). Taken together, while the extent of increase in antibody affinity during immune response varies
among studied vertebrates, the occurrence of AID-mediated SHM in $\operatorname{Ig} V$ regions appears to be a universal phenomenon that has been found in all vertebrate species in which it has been sought.

The Atlantic cod (Gadus morhua) antibody response has been shown to be different than that of other bony fish. Numerous studies have reported only low-affinity antibodies and a lack of a robust antigen-specific antibody response upon immunization, concluding that Atlantic cod has a weak humoral immune response (Arnesen et al., 2002; CorripioMiyar et al., 2007; Magnadottir et al., 1999; Magnadottir et al., 2001; Solem \& Stenvik, 2006). Intriguingly, previous studies have shown that the only antigen-specific antibody response detected in Atlantic cod, if any, is T cell-independent and mainly against LPS (Ellingsen et al., 2011; Espelid et al., 1991; Lund et al., 2008; Nymo et al., 2016). LPS induces a broad and evolutionary conserved B cell response that does not depend on the intricate processes of T-cell/B-cell interactions, specific antibody production, and antibody affinity maturation (AM) (Futoma-Kołoch, 2016; Uchiyama, 1982). Specifically, the antiLPS humoral response was detected during Atlantic cod infection with Brucella pinnipedialis, Francisella noatunensis, and Vibrio salmonicida (Ellingsen et al., 2011; Lund et al., 2006; Nymo et al., 2016). In line with these functional observations, the Atlantic cod's genome is unique in that it lacks several essential genes required for T-cell/B-cell interactions that initiate the antibody affinity maturation program in B cells. Notably absent from the Atlantic cod genome are major histocompatibility complex (mhc) class II, cluster of differentiation 4 (cd4; pseudogene), and invariant chain (Ii) genes. In contrast, its $m h c I$ and some Toll-like receptor ($(t r$) loci are significantly expanded relative
to other vertebrates (Malmstrom et al., 2016; Parham, 2015, 2016; Solbakken, Rise, et al., 2016; Solbakken, Torresen, et al., 2016; Star et al., 2011; Torresen et al., 2017).

Taken together, the collective functional and genetic evidence is highly suggestive that the Atlantic cod humoral immune response lacks the process of AM, making it potentially less specific and robust than that of other studied bony fish. Since AID is a key initiator of antibody affinity maturation, we sought to examine its gene synteny and expression in Atlantic cod. Here, we report that, like other studied vertebrates, Atlantic cod aicda locus synteny has been conserved during Teleostei evolution. Moreover, our gene expression analyses show that Atlantic cod aicda is expressed in immune-related tissues, and its splenic expression is upregulated in response to immune stimulations. We also find two aicda transcript isoforms in Atlantic cod, one of which lacks the first exon resulting in predicted truncation of the first 21 amino acids and possibly loss of function, if translated. However, the translation of the full-length Atlantic cod AID transcripts divulged a drastic change in a conserved amino acid (Gm-AID ${ }^{\mathrm{H136}}$) that may compromise its enzymatic activity compared to other studied AIDs.

2.3 Methods

2.3.1 Synteny analysis of aicda

The aicda gene synteny was assessed both manually and using the synteny database. The $1-\mathrm{Mb}$ regions containing aicda locus in Atlantic cod, three-spined stickleback (Gasterosteus aculeatus), Japanese pufferfish (Takifugu rubripes), zebrafish (Danio rerio), spotted gar (Lepisosteus oculatus), coelacanth (Latimeria chalumnae), green anole (Anolis carolinensis), chicken (Gallus gallus), mouse (Mus musculus), and human (Homo spiens) were derived using the assemblies from the Ensembl database (https://uswest.ensembl.org/index.html). In the case of the tropical clawed frog (X. tropicalis), the genomic region was retrieved from Xenbase database (http://www.xenbase.org/entry/). The annotated genes within this $1-\mathrm{Mb}$ region were then manually inspected to obtain Figure 2-2. Additionally, using the synteny database (http://syntenydb.uoregon.edu/synteny_db/) (Catchen et al., 2009). The chromosomal location of zebrafish AID (Dr-aicda) was compared to that of Japanese pufferfish, threespined stickleback, spotted gar, mouse, and human. Also, Hs-aicda synteny was compared to that of the mouse, spotted gar, and the tropical clawed frog.

2.3.2 Animals

All animal maintenance and sampling conducted for this study was approved by the Memorial University of Newfoundland's Institutional Animal Care Committee following the Canadian Council for Animal Care guidelines. Ten different families of passive integrated transponder-tagged Atlantic cod (juvenile life stage; $\sim 60 \mathrm{~g}$; ~ 30 fish per family) from the Atlantic cod Genomics and Broodstock Development Project (CGP)
year-class 3 (YC3) were transported to the Ocean Sciences Center of Memorial University of Newfoundland. Fish were obtained from the Huntsman Marine Science Center in St. Andrew's, New Brunswick in October of 2008 and kept in a 3000-L flow-through seawater tank at $10^{\circ} \mathrm{C}$ and $>90 \%$ oxygen saturation. During one month of acclimation, fish were fed to apparent satiation.

2.3.2.1 Immune stimulated spleen tissues

Samples used to investigate the Gm-aicda transcript response to the immune stimulation were collected for a previously published study (Hori et al., 2012; Hori et al., 2013). After one month of acclimation, the fish were divided between eight 500-L tanks at $10{ }^{\circ} \mathrm{C}$ and $>90 \%$ oxygen saturation. Approximately equal numbers of fish from each family was transferred into each tank (~ 36 fish per tank). After two weeks of acclimation in the 500-L tanks, fish were intraperitoneally injected with polyinosinic-polycytidylic acid (pIC; a synthetic dsRNA viral mimic) or formalin-killed typical A. salmonicida (ASAL) in sterile phosphate-buffered saline (PBS). The control group was injected with PBS alone. Fish were sacrificed 6 or 24 hours post-injection (HPI) by submersion in an anesthetic bath containing tricaine methanesulfonate (MS-222, $400 \mathrm{mg} \mathrm{L}^{-1}$, Syndel Laboratories, Canada). Spleen samples were collected in certified RNase-free 1.5 ml tubes, flash-frozen in liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$.

2.3.2.2 Sampling for tissue panel experiment

The Atlantic cod used for tissue expression and developmental experiments were kept in a $21 \mathrm{~m}^{3}$ flow-through tanks in the Dr. Joe Brown Aquatic Research Building (JBARB) of the Ocean Sciences Center (OSC, Memorial University of Newfoundland).

The tank provided the conditions of 5.2 to $6.4^{\circ} \mathrm{C},>95 \%$ oxygen saturation, and an ambient photoperiod. The fish $(2.29 \pm 0.42 \mathrm{~kg}[$ mean $\pm \mathrm{SE}])$ were fed a commercial diet (Skretting, BC, Canada; crude protein 50%, crude fat 18%, and crude fiber 1.5%) three times per week at 1% body weight per day.

To investigate the Gm-aicda tissue expression pattern, its mRNA expression was studied in 19 tissues extracted from four healthy-appearing individual adults (2 males and 2 females). The fish were not fed for 24 h before euthanizing with MS-222 (as described above). Dissection tools and surfaces were cleaned with RNase Away solution (Sigma). From each fish, 19 tissues were collected: blood, brain, eye, fin, gill, gonad, hindgut, midgut, heart, head kidney, posterior kidney, liver, dorsal muscle, ventral muscle, pyloric caecum, dorsal skin, ventral skin, spleen, and stomach. Samples were immediately flashfrozen in liquid nitrogen and kept at $-80^{\circ} \mathrm{C}$ until RNA extraction.

2.3.2.3 Sampling for developmental experiments

The Broodstock fish used in these experiments were kept in the same conditions as the tissue panel experiment except their diet. These fish were fed mackerel, herring, and squid diet supplemented with vitamins twice per week before and during the spawning season. To assess Gm-aicda transcript expression during embryogenesis and early larval development, a mixture of fertilized eggs and cleavage-stage embryos (1.4 L, 2-cell to 64cell embryos) were automatically collected after communal spawning. The collected floating fertilized eggs (0-days post-fertilization [DPF], i.e., day 0) were distributed into three $50-\mathrm{L}$ conical incubator tanks (350 ml of eggs per tank). The tanks were kept at 5.5 to $6.1^{\circ} \mathrm{C}$, with a $25 \mathrm{~L} \mathrm{~h}^{-1}$ flow rate, gentle aeration, and under an ambient photoperiod (Rise
et al., 2012). Using $500 \mu \mathrm{~m}$ Nitex, a mixture of ~ 180 eggs/embryos ($\sim 0.5 \mathrm{ml}$ of embryos or $\sim 0.4 \mathrm{ml}$ of larvae) were collected daily from each tank until the yolk-sac absorption stage (i.e., day 20; before active feeding). Samples were immediately flash-frozen using liquid nitrogen and kept at $-80^{\circ} \mathrm{C}$ for RNA extraction. The developmental stage of embryos was also examined every day (Hall et al., 2004). The blastula/gastrula stages were observed from day 1 to 6 . The segmentation period started on day 7 , and the golden eye stage was noticed on day 12 . On day 15 , hatching began and completed for all embryos on day 18 (Eslamloo et al., 2019).

2.3.3 Macrophage isolation and immune stimulation

The immune stimulated Atlantic cod macrophage samples were used as the negative control for aicda expression experiments (Eslamloo et al., 2018; Eslamloo et al., 2016). The macrophage-like cells were isolated from the head kidneys of 5 healthyappearing individual fish kept in the same condition as the ones used for the tissue panel experiments (Eslamloo et al., 2016). Throughout the experiment, the Leibovitz L-15 medium (Gibco, Carlsbad, CA) supplemented with 2 mM L-glutamine, 4.2 mM NaHCO 3 , 25 mM HEPES, 1.8 mM glucose, $100 \mathrm{U} \mathrm{ml}^{-1}$ penicillin, $100 \mu \mathrm{~g} \mathrm{ml}^{-1}$ streptomycin (Gibco) and 1% fetal bovine serum (FBS, Gibco) was used (L-15+). The blood was removed from the caudal vein of each fish after euthanizing with MS-222. The hematopoietic kidney (i.e., head kidney) was then dissected out. The cell suspension in $\mathrm{L}-15^{+}$culture medium was made by mincing the samples through a $100-\mu \mathrm{m}$ nylon cell strainer (Fisherbrand ${ }^{\mathrm{TM}}$, Thermo Fisher Scientific, Waltham, MA, USA). The macrophage-enriched interface was collected after a centrifugation step on a discontinuous 25/51 \% Percoll gradient (GE

Healthcare, Uppsala, Sweden) at $300 \times \mathrm{g}$ for 40 min at $4^{\circ} \mathrm{C}$. The isolated cells were then washed twice in $\mathrm{L}-15^{+}$and centrifuged at $300 \times \mathrm{g}$ for 15 min at $4^{\circ} \mathrm{C}$. Following this step, cells were suspended in the $\mathrm{L}-15^{+}$medium containing 1% fetal bovine serum (FBS; Gibco) and without heparin. Viability of $>96 \%$ was recorded for the isolated cells using a hemocytometer and a trypan blue (Sigma-Aldrich) exclusion test. These cells were then cultured in 6-well plates (Corning, Corning, NY) in L-15 5^{+}medium at the initial density of 3×10^{7} cells (in 2 ml of L- 15^{+}) per well. After overnight incubation at $10^{\circ} \mathrm{C}$, the wells were washed 3 times with $\mathrm{L}-15^{+}$to remove the non-adherent cells. 24 hours after harvesting, the cells were exposed to $50 \mu \mathrm{~g} \mathrm{ml}^{-1} \mathrm{pIC}$ (the stock solution was made in PBS [pH 7.2] at $10 \mathrm{mg} \mathrm{ml}^{-1}$ concentration) for 24 hours. At 24-hours post-stimulation (24 HPS), the media was removed, and $800 \mu 1$ of TRIzol (Invitrogen, Burlington, ON) was added into each well to lyse the cells. The TRIzol-lysed cell suspensions were kept at $-80^{\circ} \mathrm{C}$ until RNA extraction.

2.3.4 Total RNA extraction and purification

The total RNA was extracted from flash-frozen samples ($\sim 100 \mathrm{mg}$ of tissue samples) using TRIzol reagent following the manufacturer's protocol. Briefly, one ml of TRIzol was added to $\sim 100 \mathrm{mg}$ of tissue. To homogenize firm tissues (i.e., eye, gill, heart, stomach, pyloric caecum, midgut, hindgut, dorsal skin, ventral skin, dorsal muscle, ventral muscle, and fin) ceramic mortars and pestles, baked at $220^{\circ} \mathrm{C}$ for seven hours, were used, while disruption of other samples was accomplished using RNase-free disposable pellet pestles (Fisherbrand). Following sample disruption, the QIAshredder spin columns (QIAGEN, Mississauga, ON) were used to homogenize the sample according to the
manufacturer's protocol. For each sample, chloroform (0.2 ml) was then added to the collected supernatant, mixed, and incubated at room temperature for two to three minutes. After centrifuging the sample at $4{ }^{\circ} \mathrm{C}(15 \mathrm{~min}$ at $12000 \times \mathrm{g})$, the aqueous phase was transferred into a new tube. Isopropanol $(0.5 \mathrm{ml})$ was then mixed with the aqueous phase. After 10 min of incubation at room temperature, the sample was centrifuged for 10 min at $12000 \times \mathrm{g}$ and $4^{\circ} \mathrm{C}$. The RNA pellet was then washed using 75% ethanol (1 ml). After centrifugation for 5 min at $7500 \times \mathrm{g}$ at $4^{\circ} \mathrm{C}$ and removal of the supernatant, the RNA pellet was air-dried, then re-suspended in $100 \mu \mathrm{l}$ of RNase/DNase free water (Gibco). Liver samples were re-purified through standard phenol-chloroform extraction and ethanol precipitation. To remove any genomic DNA contamination, $30 \mu \mathrm{~g}$ of each extracted RNA sample was treated with DNase-I (6.8 Kunitz U, RNase-free DNase Set, Qiagen, Valencia, CA) following the manufacturer's protocol. The RNA was purified from salts, proteins, and nucleotides using the RNeasy MinElute clean-up kit (Qiagen) according to the kit instructions. The quality and quantity of the purified RNA were measured using NanoDrop spectrophotometry (ND-1000), and the RNA integrity was assessed by 1% agarose gel electrophoresis. RNA samples with A260/230 >2, A260/280 > 1.8, and tight 18 S and 28 S rRNA bands were used for further analyses.

2.3.5 cDNA synthesis

cDNA synthesis was performed on $1 \mu \mathrm{~g}$ or $5 \mu \mathrm{~g}$ of clean total RNA using either SuperScript III Reverse Transcriptase (SuperScript III-RT, Invitrogen) or M-MLV Reverse Transcriptase (M-MLV RT, Invitrogen) as recommended by the manufacturer's manuals. Specifically, 1 or $5 \mu \mathrm{~g}$ of total clean RNA was reverse transcribed at $50^{\circ} \mathrm{C}$ for 1 h using

SuperScript III RT (200 U) in a $20-\mu 1$ reaction containing 250 ng random hexamer primers (Invitrogen), $1 \mu 1$ of dNTPs (10 mM each), $1 \times$ first stand buffer, 40 U of RNaseOUT, and 5 mM DTT. The same conditions were used for M-MLV RT (200 U) except that reactions were incubated at $37^{\circ} \mathrm{C}$ for 50 min in the presence of 10 mM DTT. The cDNA was diluted $10 \times$ using RNase/DNase free water.

2.3.6 Characterization of Gm-aicda transcript(s)

Based on AID expression pattern studied thus far, GCs are the main site of AID expressing B cells in mammals and birds (Bascove \& Frippiat, 2010; Marr et al., 2007; Muramatsu et al., 1999; Muto et al., 2000; Ohmori et al., 2004; Saunders \& Magor, 2004; Verma et al., 2010). Previous studies have reported the melano-macrophage clusters in the spleen of fish as the alternative to the canonical germinal centers in mammals and birds. We, therefore, used the pIC-stimulated splenic total RNA to characterize the possible AID transcript(s) in Atlantic cod (Agius \& Roberts, 2003; Boehm et al., 2012; Saunders et al., 2010).

2.3.6.1 Preliminary validation of Gm-aicda transcript expression

To confirm the expression of Gm-aicda transcript(s), gene-specific primers (Table 2-1) were designed based on the predicted AID ORF sequence in the Atlantic cod genome project using Primer3web v4.0.0 (http://primer3.ut.ee/). SuperScript III-RT was used to synthesis first-strand cDNA from $1 \mu \mathrm{~g}$ of total RNA, as described in section 2.3.5. In a 25$\mu 1$ PCR reaction, $1 \mu 1$ of undiluted cDNA (equivalent to $\sim 100 \mathrm{ng}$ of initial total RNA) was amplified using 0.625 U of TopTaq DNA polymerase (QIAGEN), $0.2 \mu \mathrm{M}$ of each primer, 0.2 mM of each dNTP, $1 \times$ TopTaq PCR buffer, $1 \times$ CoralLoad, and $1 \times$ Q-solution. No-
template and no-RT reactions were included as well. Touchdown PCR cycling conditions were an initial denaturation step for 3 min at $94^{\circ} \mathrm{C}$ followed by 35 cycles of $\left[30 \mathrm{~s}\right.$ at $94{ }^{\circ} \mathrm{C}$; 30 s at $65^{\circ} \mathrm{C} \rightarrow 54.5^{\circ} \mathrm{C}$, decreasing $0.3^{\circ} \mathrm{C}$ per cycle; and 1 min at $\left.72{ }^{\circ} \mathrm{C}\right]$ and 10 min at $72{ }^{\circ} \mathrm{C}$. After examining the PCR products on a 1.5% agarose gel, the PCR band was gel extracted using the MinElute gel extraction kit (QIAGEN) following the manufacturer's instructions. The gel-extracted PCR products were then TA-cloned into the pCR 2.1-TOPO TA vector (TOPO TA Cloning Kit, Invitrogen, USA) as per the kit's recommended protocol. Briefly, in a $6-\mu 1$ reaction, $3 \mu 1$ of the extracted PCR band was mixed with $1 \mu 1$ of the vector and $1 \mu l$ of the salt solution. Reactions were incubated at room temperature (22 to $23{ }^{\circ} \mathrm{C}$) for 30 min . Performing chemical transformation protocol, $2 \mu \mathrm{l}$ of the TOPO cloning reaction was transformed into One Shot TOP10 competent cells (chemically competent E. coli, Invitrogen) following the kit's instructions. After overnight culture of transformed bacteria at $37^{\circ} \mathrm{C}$, 6 white colonies were picked and cultured in 5 ml of LuriaBertani (LB) broth medium containing $50 \mu \mathrm{~g} \mathrm{ml}^{-1}$ ampicillin (for $\sim 16 \mathrm{~h}$ at $37^{\circ} \mathrm{C}$ and 225 rpm). The cultured colonies were then purified using the QIAprep spin miniprep kit (QIAGEN) as per the manufacture's protocol. The purified TA-cloned plasmid preparations were Sanger sequenced (Macrogen, South Korea).

2.3.6.2 Identification of the full-length Gm-aicda mRNA(s)

To obtain full-length mRNA, rapid amplification of cDNA ends (RACE) PCR was performed. Sequencing results from the previous step were used to design gene-specific RACE-PCR primers (Table 2-1) using Primer3web v4.0.0 (http://primer3.wi.mit.edu). Splenic RNA extracted from pIC stimulated fish (24 HPI) was used, and RACE-PCR was
carried out using the SMARTer RACE cDNA amplification kit (Clontech, Takara Bio Company, USA). To obtain $3^{\prime} / 5^{\prime}-$ RACE-Ready cDNA, $1 \mu \mathrm{~g}$ of cleaned RNA was reverse transcribed. The produced cDNA was then diluted $3 \times$ in Tricine-EDTA buffer. For 3^{\prime} RACE and 5^{\prime}-RACE PCR, $2.5 \mu \mathrm{l}$ of diluted 3^{\prime} or 5^{\prime}-RACE-Ready cDNA (equivalent to \sim 75 ng of initial RNA) was amplified in a $50-\mu \mathrm{l}$ reaction containing $1 \times$ Advantage 2 polymerase mix (Clontech), $1 \times$ Advantage 2 PCR buffer, 0.2 mM of each dNTPs, $0.2 \mu \mathrm{M}$ of gene-specific primers, and $0.2 \mu \mathrm{M}$ of the Universal Primer A mix. A touch-down PCR program of 1 min at $95^{\circ} \mathrm{C}$; 5 cycles of $\left(94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 3 min$) ; 5$ cycles of (94 ${ }^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 70^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 72^{\circ} \mathrm{C}$ for 3 min$) ; 25$ cycles of $\left(94{ }^{\circ} \mathrm{C}\right.$ for $30 \mathrm{~s}, 6{ }^{\circ} \mathrm{C}$ for 30 s , $72{ }^{\circ} \mathrm{C}$ for 3 min); and a final extension cycle of $72^{\circ} \mathrm{C}$ for 10 min was conducted. These primary PCR products were then gel extracted using the MinElute gel extraction kit. For nested 3^{\prime}-RACE or 5^{\prime}-RACE, $5 \mu 1$ of $50 \times$ diluted primary PCR product $\left(\sim 400 \mathrm{pg}^{\prime} \mathrm{l}^{-1}\right)$ were re-amplified using the same conditions, except the Nested Universal Primer A mix, and nested gene-specific primers were used. The nested PCR program consists of 1 min at $95^{\circ} \mathrm{C}, 25$ cycles of $\left[30 \mathrm{sec}\right.$ at $94^{\circ} \mathrm{C} ; 30 \mathrm{sec}$ at $68^{\circ} \mathrm{C} ; 3 \mathrm{~min}$ at $\left.72^{\circ} \mathrm{C}\right]$, and 10 min at $72^{\circ} \mathrm{C}$. PCR bands were then gel extracted and sequenced as described above.

Sequencing data were assembled and analyzed using Lasergene 7 MegAlign software (DNASTAR, Inc., USA). The ATGpr website (https://atgpr.dbcls.jp/cgibin/atgpr.cgi) was used to identify the initiation codon, coding sequence (CDS), and the stop codon. The CDS with the highest reliability score was reported.

To confirm the presence of two Gm-aicda transcripts, nested RT-PCR was performed on splenic RNA extracted from 11 pIC-stimulated fish using the manually
designed isoform-specific primers (ISPs, Table 2-1). Using the SuperScript III-RT kit, 1 $\mu \mathrm{g}$ of clean total RNA was reverse transcribed as per section 2.3.5. In a $25-\mu \mathrm{l}$ reaction, the primary PCR was performed using $2.5 \mu 1$ of $10 \times$ diluted cDNA of pIC stimulated spleen samples (equivalent to 25 ng initial RNA), ISPs $(0.2 \mu \mathrm{M})$, and TopTaq DNA polymerase (0.625 U per reaction) following the manufacturer's recommended protocol. In the second round of PCR, $2.5 \mu \mathrm{l}$ of the first-round PCR reaction was further amplified in the same reaction condition as the first PCR except the nested ISPs were used. For the full-length Gm-aicda (Gm-aicda) isoform, both first and nested PCR reactions were incubated at 94 ${ }^{\circ} \mathrm{C}$ for 3 min , followed by 10 cycles of $\left[94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{sec} ; 55^{\circ} \mathrm{C} \rightarrow 50{ }^{\circ} \mathrm{C}$ for 30 sec , decreasing $0.5^{\circ} \mathrm{C}$ per cycle; $72{ }^{\circ} \mathrm{C}$ for 90 sec$]$ and 25 cycles of $\left[94^{\circ} \mathrm{C}\right.$ for $30 \mathrm{sec} ; 50^{\circ} \mathrm{C}$ for $30 \mathrm{sec} ; 72^{\circ} \mathrm{C}$ for 90 sec$]$ and $72^{\circ} \mathrm{C}$ for 10 min . For truncated Gm-aicda (T-Gm-aicda), 53 ${ }^{\circ} \mathrm{C}$ was used as the initial annealing temperature. PCR products were gel extracted, TAcloned, and 10 colonies for each spleen sample and isoform were sequenced as detailed in the previous paragraphs.

2.3.7 Delineation of Gm-aicda transcripts expression in adult tissues, embryonic, and early larval life stages

The transcript expression of the elongation factor 1- $\alpha(e f 1-\alpha)$ was studied alongside Gm-aicda isoforms as a normalizer gene (Inkpen et al., 2015). In these experiments, we also used splenic cDNA of immune challenged individual Atlantic $\operatorname{cod}(24 \mathrm{HPI})$ as a positive control for aicda transcript expression. Due to almost exclusive expression of aicda in activated B cells, RNA obtained from immune stimulated Atlantic cod macrophages (24 HPS, pIC) was used as a negative control (Eslamloo et al., 2016).

To investigate the Gm-aicda tissue expression pattern, 19 tissues from 4 healthy adult Atlantic cod (two males: 758 and 1260 gr ; two females: 1520 and 890 gr) were extracted as described in 2.3.2.2 section. To assess Gm-aicda transcripts expression during embryogenesis and early larval development, a mixture of fertilized eggs and cleavagestage embryos were collected after communal spawning and distributed into three incubators. A mixture of ~ 180 eggs/embryos was collected daily from each tank until embryos reach the yolk-sac absorption stage (section 2.3.2.3).

In both experiments, total RNA was extracted and cleaned as per section 2.3.4, and the cDNA was synthesized using $5 \mu \mathrm{~g}$ of clean total RNA and M-MLV kit (refer to section 2.3.5). Using TopTaq DNA polymerase kit, $2 \mu 1$ of $10 \times$ diluted cDNA was amplified in a $25-\mu 1$ reaction containing TopTaq DNA polymerase (0.625 U), $1 \times$ TopTaq PCR buffer, 1 \times CoralLoad, and $1 \times$ Q-solution, 0.2 mM of each dNTP, and $0.2 \mu \mathrm{M}$ of Gm-aicda ISPs or efl- α primers (Table 2-1). PCR cycling conditions were an initial denaturation step for 5 min at $94^{\circ} \mathrm{C}$ followed by 35 cycles of [30 sec at $94^{\circ} \mathrm{C}$; 30 sec at $54^{\circ} \mathrm{C}$; and 30 sec at 72 $\left.{ }^{\circ} \mathrm{C}\right]$ and 5 min at $72{ }^{\circ} \mathrm{C}$. Amplicons were then visualized on 2.5% agarose gel.

2.3.8 Immune responsiveness of Gm-aicda transcript levels

To measure the changes in aicda transcription in response to immune stimulation, reverse transcription - fluorescence-based quantitative real-time PCR (RT-qPCR) was performed. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines was followed to conduct, analyze, and report the RTqPCR results. In these series of experiments, splenic clean RNA extracted from pIC, ASAL, and PBS treated fish were used (6 HPI and 24 HPI ; 10 fish per treatment, section
3.2.1) (Hori et al., 2012; Hori et al., 2013). The flash-frozen tissues were stored in $-80^{\circ} \mathrm{C}$ for 3 years. For these experiments, the total RNA was isolated, DNase treated, and cleaned up from each frozen sample as detailed in section 2.3.4. M-MLV RT was used to synthesize cDNA from $5 \mu \mathrm{~g}$ of the clean total RNA (section 2.3.5). cDNA was stored at $-20^{\circ} \mathrm{C}$ and only thawed twice.

Prior to the qPCR assays, primer quality control was conducted using the splenic cDNA pool of pIC and ASAL stimulated samples. A 5 -point and $3 \times$ dilution standard curve of cDNA (starting from 10 ng of input RNA) was used to test the quality and efficiency of primer pairs (Table 2-1). Three fish per treatment and time point were used to select normalizers with stable expression. Two different sets of ISPs and four sets of normalizer primers were tested. The same ISPs, as described above, along with genespecific primers for 60S acidic ribosomal protein P1 (rplp1) (Eslamloo et al., 2016) and ATP synthase H^{+}transporting, mitochondrial Fo complex, subunit F2 (atps) (Hori et al., 2012), were qualified for qPCR analysis (Table 2-1). Two microliters of $10 \times$ diluted cDNA (10 ng input RNA) were amplified in a $13-\mu 1$ reaction containing $6.5 \mu 1$ of Power SYBR Green master mix (Applied Biosystems), and $0.52 \mu 1$ of each primer ($1.25 \mu \mathrm{M}$). Q-PCR was carried out on a ViiA7 System (Applied Biosystems, Burlington, Ontario). Cycling conditions were one cycle of [2 min at $50^{\circ} \mathrm{C}$; 10 min at $95^{\circ} \mathrm{C}$], 40 cycles of [15 sec at 95 ${ }^{\circ} \mathrm{C} ; 30 \mathrm{sec}$ at $55^{\circ} \mathrm{C} ; 1 \mathrm{~min}$ at $\left.60^{\circ} \mathrm{C}\right]$. The dissociation curves were created to confirm the homogeneity of the PCR products. The qPCR assays were performed in 384-well plates, and consistency of the assays between plates was checked using linker samples $\left(\mathrm{C}_{\mathrm{T}}\right.$ values
were <1 cycle between plates). All the samples, linkers, and no-template controls were carried out in triplicate.

To analyze the q -PCR results, ViiA 7 Software v1.2 was used. The expression of Gm-aicda isoforms (C_{T} values) was normalized to the expression level of rplpl and atps, with the incorporation of amplification efficiency of primer pair. Then, the relative quantity (RQ) of each transcript was calculated using a calibrator sample. For each transcript, the lowest expression sample was considered as the calibrator (RQ set as 1). Statistical analysis was conducted using IBM SPSS Statistics 20 software. The expression of Gm-aicda isoforms at each immune stimulated condition was compared to that of PBS injected control using a nonparametric T-test for independent samples.

Table 2-1: The sequence of primers used in this chapter

Gene		Direction	Primer sequence (5^{\prime} to 3^{\prime})	Amplification efficiency (\%)	R^{2}	Amplicon size (bp)	Application
Activation induced cytidine deaminase (aicda); Gm-aicda	$\stackrel{\rightharpoonup}{*}$	Forward	TAGTAAGCTAGACAGTGTGCTCTTGG	NA	NA	608	Detecting Gmaicda ORF
		Reverse	CATCTCTTAAATCTTCTGTTTCACATGG				
	$\begin{aligned} & N \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	Forward	CTCTGCTTCGTAGTAAAGAGAAGGC	NA	NA	473	
		Reverse	AGTTTTCTTGACAGACGCACATAATTGG				
Gm-aicda		Forward	GACTTCGGACACCTACGCAATCGCACTGGC	NA	NA	NA	3' RACE-PCR
		Reverse	CCTCAGGTCCCTCAAGCCCTCTACATGCGG				5' RACE-PCR
	J	Forward	CGCAATCGCACTGGCTGCCACGCAGAGCTG	NA	NA	NA	3' RACE-PCR
	\bigcirc	Reverse	GCCCTCTACATGCGGACTGCCCTCCAGGTC				5' RACE-PCR
Gm-aicda		Forward	GACTTTCAAAATGATTAGTAAGCTAGACAG	NA		$780^{\text {i }}$	Confirming Gmaicda isoforms
T-Gm-aicda		Forward	GAATGGTTGATGATTACAGACCC		NA		
Gm-aicda -3'UTR-r 1		Reverse	TTGGACTACATAGGCGGTTTCAC				
Gm-aicda		Forward	TAAGCTAGACAGTGTGCTCTTGG	NA	NA	$747^{\text {ii }}$	
T-Gm-aicda	\%	Forward	GATTACAGACCCTTACCGCAG				
Gm-aicda-3'UTR-r1	\%	Reverse	GGTTTCACAAAGTTCTACAGTTTGC				
Eukaryotic translation elongation factor 1 alpha (ef1$\alpha)^{\text {iii }}$		Forward	CCCTCCAGGACGTCTACAAG	NA	NA	150	Tissue and developmental panel (normalizer)
		Reverse	GAGACTCGTGGTGCATCTCA				

Gene	Direction	Primer sequence (5' to 3^{\prime})	Amplification efficiency (\%)	R^{2}	Amplicon size (bp)	Application
Gm-aicda	Forward	AGTAAGCTAGACAGTGTGCTC	101.57	0.989	125	Tissue and developmental panel; qPCR
	Reverse	CAGGTCCAAGCCTTCTCTT				
T-Gm-aicda	Forward	TTCTCTCCTATGTCTCAGTGTGC	100.47	0.989	133	
	Reverse	GGAATCAGGTCCAAGCCTTC				
60S acidic ribosomal protein P1(rplp1) ${ }^{\text {iii }}$	Forward	TCTGAAGCTAAGGCCCTCAA	104.8	0.998	141	qPCR (normalizers)
	Reverse	ATCGTCGTGGAGGATCAGAG				
ATP synthase $H+$ transporting, mitochondrial Fo complex, subunit F2 (atps) ${ }^{\text {iv }}$	Forward	ACATGGATAAATGGCTTTTTGC	99.43	0.994	155	
	Reverse	TTGAAGAAGTAGTGTGGCTGGA				

i. If used with Gm-aicda-3'UTR-r1
ii: If used with Gm-aicda-3'UTR-r2
iii: The primer sequences for these genes were previously published in Inkpen et al., (2015)
${ }^{\text {iv. }}$: The primer sequences for these genes were previously published in Hori et al., (2012)

2.3.9 Protein Structure prediction

Five APOBEC structures and a partial near-native AID structure were chosen as templates for homology modeling (Table 2-2) (Bohn et al., 2013; Byeon et al., 2013; Hayashi, 2009; Holden et al., 2008; Kitamura et al., 2012; Qiao et al., 2017). The template AID/APOBEC structures were obtained from the protein databank (http://www.rcsb.org) and visualized using PyMOL v1.7.6 (http://www.pymol.org/). The computational homology modeling of each AID homologs was done using the default parameters of ITASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) (Roy et al., 2010; Yang et al., 2015; Zhang, 2008). Ramachandran plots were created using Rampage and used to evaluate the quality of the proteins on an individual residue basis based on their stereochemical angles (Lovell et al., 2003). The catalytic pocket was defined by the indented space containing the Zn -coordinating and catalytic residues (Hs-AID: H56, E58, C87, and C90; Dr-AID: H60, E62, C99, and C102; Ip-AID: H59, E61, C98, and C101; Gm-AID: H60, E62, C100, and C103). The catalytically accessible models were defined by the accessibility of catalytic glutamate to the surface of the protein. The pKa values were calculated using PDB2PQR (http://apbs-resttest.westus2.cloudapp.azure.com/pdb2pqr or http://nbcr-222.ucsd.edu/pdb2pqr_2.0.0/) (Dolinsky et al., 2004; Olsson et al., 2011).

Table 2-2: APOBEC and AID structures used as templates for homology modeling

Species	AID/APOBEC	Method	PDB ID
Mouse	APOBEC2	NMR	2 RPZ
Human	APOBEC3A	NMR	2 M65
Human	APOBEC3C	X-ray	3 VOW
Human	APOBEC3F-CTD	X-ray	4 IOU
Human	APOBEC3G-CTD	X-ray	3E1U
Human	AID	X-ray	$5 \mathrm{~W} 1 \mathrm{C}, 5 \mathrm{W0R}, 5 \mathrm{W0U}$, and 5W0Z

2.4 Results

2.4.1 Genomic features of Atlantic cod aicda locus

Annotation of the Atlantic cod genome project revealed a putative aicda gene with a 5-exon genomic structure (Star et al., 2011; Torresen et al., 2017). Figure 2-1 and Table 2-3 illustrate the Atlantic cod aicda locus structure in comparison with other species. Previous studies, as well as our analysis of available sequencing data on NCBI and Ensembl genome browser 89, revealed that this genomic structure is conserved in all studied species except African clawed frog and tropical clawed frog in which exon 2 and 3 are fused (Bascove \& Frippiat, 2010). Based on the aicda genomic structure in Atlantic cod, the predicted five exons are $20,166,283,116$, and 54 bp in length and make up a 642nucleotide coding sequence (CDS) encoding a 213-aa protein. The size of the introns is reported as $412,206,2080$, and 146 bp ; however, the third intron is not fully sequenced, and our attempts to sequence this intron were unsuccessful as well.

To assess the conservation of the Gm-aicda chromosomal location in comparison with other vertebrates, we performed gene synteny analysis. We observed that aicda has a similar synteny within Teleostei and Mammalia (Figure 2-2 and Figure 2-3). Table 2-4 illustrates the regions which were used to generate these analyses.

Danio rerio (5174 bp on chromosome 16)

Ictalurus punctatus (3374 bp)

Xenopus laevis

Xenopus tropicalis

Gallus gallus (3982 bp on chromosome 1)

Mus musculus (10344 bp on chromosome 6)

Homo sapiens (10681 bp on chromosome 12)

Figure 2-1: Comparison of the aicda genomic structure amongst vertebrates. Proportional schematic of the aicda locus exon-intron structure. Exons and introns are shown as red boxes and blue lines, respectively. Discontinued lines represent introns or untranslated regions (UTRs) that are not fully sequenced.

Table 2-3: Comparison of aicda locus amongst different species

	Exons (bp)					Introns (bp)				UTRs (bp)	
	1	2	3	4	$5^{\text {a }}$	1	2	3	4	$5 '$	$3^{\text {b }}$
Dr-aicda	20	166	280	116	51	870	129	73	3235	44	190
Gm-aicda	20	166	283	116	57	412	206	-	146	27	162
T-Gm-aicda	NA	123	283	116	57	NA	206	-	146	151	162
Ip-aicda	17	166	280	116	51	839	545	998	122	51	189
Xl-aicda ${ }^{\text {c }}$	14	422	116	$54^{\text {a }}$	NA	4269	545	866	NA	-	-
$X t$-aicda ${ }^{\text {c }}$	14	422	116	$54^{\text {a }}$	NA	3452	-	332	NA	-	1475
Gg-aicda	8	148	271	116	54	2282	464	128	292	155	$64^{\text {d }}$
Mm-aicda	8	148	271	116	54	5561	1422	529	436	93	1706
Hs-aicda	8	148	271	116	54	5747	1379	292	469	79	2118

${ }^{\text {a }}$: including stop codon
${ }^{\mathrm{b}}$: excluding poly-A tail
${ }^{c}$: exon 2 and 3 are fused together in these species
d: no poly-A tail is reported in mRNA sequence
-: no sequencing data available

Table 2-4: Genomic regions used in synteny analysis

Species	Database	Gene ID	Location	Region shown (bp)
Gadus morhua	Ensemble	ENSGMOG00000004114.1	GeneScaffold_1960: 226,520-229,999-forward strand gadMor1:HE567552.1	$1-728260$
Gasterosteus aculeatus	Ensemble	ENSGACG00000010521.1	groupXX: 12,050,972-12,052,426-forward strand	$11551699-12551699$
Takifugu rubripes	Ensemble	ENSTRUG00000007079.2	Primary_assembly 7: 13,080,121-13,081,769-forward strand FUGU5:HE602541.1	$12580945-13580945$
Danio rerio	Ensemble	ENSDARG00000015734.9	Chromosome 16: 12,660,477-12,665,652-forward strand GRCz11:CM002900.2	$12163064-13163064$
Lepisosteus oculatus	Ensemble	ENSLOCG00000008158.1	Chromosome LG26: 13,213,594-13,215,049-reverse strand LepOcu1:CM001429.1	$12714321-13714321$
Latimeria chalumnae	Ensemble	ENSLACG00000009320.1	Scaffold JH127875.1: 411,538-412,095-reverse strand	$1-655812$
Xenopus tropicalis	Xenbase	XM_002941202.4	Chr07:662023-669842-forward strand	$165932-1165932$
Anolis carolinensis	Ensemble	ENSACAG00000017441.2	Chromosome 2: 81,518,110-81,535,131-forward strand AnoCar2.0:CM000938.1	$81026620-82026620$
Gallus gallus	Ensemble	ENSGALG00000014280.6	Chromosome 1: 75,632,084-75,637,754-reverse strand GRCg6a:CM000093.5	$75134919-76134919$
Mus musculus	Ensemble	ENSMUSG00000040627.14	Chromosome 6: 122,553,801-122,564,180-forward strand GRCm38:CM000999.2	$122043990-$ 123043990
Homo sapiens	Ensemble	ENSG00000111732.11	Chromosome 12: 8,602,170-8,612,867-reverse strand GRCh38:CM000674.2	$8107518-9107518$

Figure 2-2: Comparison of the aicda synteny amongst vertebrates. Approximately 1 Mb region surrounding the aicda locus (colored in yellow) was retrieved from Ensembl genome browser 89. Red diagonal striped lines represent regions of genomic DNA with no sequencing data available. Genes conserved in all vertebrates, or only in tetrapods, or in bony fish are colored blue, violet, or green, respectively. Genes colored different shades of orange represent those found in selected bony fish and amphibian species.

Figure 2-3: Aicda gene synteny. Aicda synteny analysis was performed using a synteny database based on Ensembl version 70 dataset. Dr-aicda chromosomal location was compared to that of the Japanese pufferfish (panel A), the three-spined stickleback (panel B), the spotted gar (panel C), mouse (panel D), and human (panel E). Also, Hs-AID synteny was compared to that of the mouse (panel F) and spotted gar (panel G), and the tropical clawed frog aicda synteny was compared with the human (panel H). Results showed a conserved micro-synteny across the vertebrate class.

2.4.2 Aicda transcript(s) expressed in adult Atlantic cod immune tissues

To confirm the expression of aicda gene in Atlantic cod, two sets of gene-specific primers (GSP) were designed based on the predicted aicda gene in the Atlantic cod genome project. Using these GSPs, RT-PCR was performed to detect the putative Atlantic cod aicda transcript(s) in splenic RNA samples extracted from pIC immune stimulated individuals (Figure 2-4 A). Sequencing confirmed a 473-nt fragment spanning position 97570 of the predicted Atlantic cod aicda gene.

To obtain the full-length mRNA, rapid amplification of cDNA ends (RACE) nested PCR was conducted using primers designed based on the aforementioned transcript sequence (Figure 2-4 B). Assembly of RACE-PCR sequencing revealed two distinct aicda transcripts. One transcript of 830-bp contains all five predicted exons and encodes for a full-length 642-bp ORF. The other transcript is 892 bp long and lacks the first exon encoding for a truncated 579-bp ORF (Figure 2-4 C).

The full-length and truncated versions, hereafter respectively referred to as Gmaicda (encodes Gm-AID) and T-Gm-aicda (potentially encodes T-Gm-AID), share the same 162-bp untranslated region at their 3^{\prime} end (i.e., 3^{\prime} 'UTR) in which the polyadenylation signal (AAUAAA) is observed 13 bp upstream of the poly-A tail. However, the two transcripts differ in their 5^{\prime}-UTR where a $27-$ bp and a 151-bp precede the ATG start codon in the Gm-aicda and T-Gm-aicda transcripts, respectively (Figure 2-5 and Table 2-5). Comparison of the Gm-aicda genomic region and the identified transcripts showed different transcription start site utilization among the two transcripts resulting in the absence of the first exon in the T-Gm-aicda isoform. Moreover, assessment of the exon-
intron boundaries revealed conserved sequences on these junctions in Atlantic cod compared with other vertebrate species (Figure 2-6). To further confirm the expression of both Gm-aicda transcripts, isoform-specific primers (ISP) were designed. PCR amplification and sequencing confirmed that both transcripts were indeed present in splenic cDNA of 11 Atlantic cod individuals (Figure 2-7).

Figure 2-4: Identification and characterization of Atlantic cod aicda transcript(s). A) Amplification of partial aicda CDS using splenic total RNA and two sets of primers. The + and - refer to the presence and absence of each component in the PCR reaction, respectively. B) Amplification of full-length aicda $m R N A(s)$ through RACE-PCR from splenic total RNA. C) Schematic representation of Atlantic cod aicda transcripts identified through RACE-PCR. Exons and introns are shown as boxes and lines, respectively.

5' TAC TGA AAC AAG CTC TCA GCT TCT CTC CTA TGT CTC AGT GTG CTC TTG GCC CAG AAA AAA TTC ATC TAC AAT 142

5' AGC TAC CTG GGG GCG CTG TGC CCG GGC CTC TGG GGC TGC GCA GAC GAC AGA AAC CGA AGA CTG AGC TAC TCC 358

5' GTC ACC TGG TTC TGC TCC TGG TCG CCC TGT GCC AAC TGT GCG ACC ACG CTG ACC CGG TTC CTG AGG CAG ACA 430

- ORF

5' GGC TTG AGG GAC CTG AGG AGG GCA GGG GTC CAG GTC AAA GTG ATG AGC TAC AAA GAC TAC TTC TAC TGC TGG 574

5' CAG ACC TTT GTA GCT CAC AGG CTG AGC CGC TTC AAG GCC TGG GAA GGG CTG CAT ACC AAT TAT GTG CGT CTG 646

5' TCA AGA AAA CTA AAC CGC ATC CTC CAG CCA TGT GAA ACA GAA GAT TTA AGA GAT GTT TTC AGA CTT TTT GGA 718

5' TTT TAA TGG TTG ATT AAG TAA ATA CAT AGC AAA CTG TAG AAC TTT GTG AAA CCG CCT ATG TAG TCC AAA AAA 862 Polyadenylation signal

5' TGC TAA TTT GTA ATA AAG TAC AAT TAA TGT AAA AAA AAA AAA AAA AAA AAA AAA AAA A
Figure 2-5: Sequence of the identified Atlantic cod aicda mRNA transcripts. Analyses of the sequencing data revealed two mRNA transcripts encoding a full-length aicda (A) and a truncated isoform (B).

Table 2-5: Characteristics of identified aicda transcripts predicted by ATGpr website

Isoform	\# of ATG from 5' end	Reliability score	Identity to Kozak rule A/GXXATGG	Start (bp)	Finish (bp)	ORF length (aa)	Stop codon found?
Gm-aicda	2						Protein sequence

Abbreviations: Gm-aicda: Atlantic cod aicda; T-Gm-aicda: Atlantic cod truncated aicda isoform.

Figure 2-6: Alignment of splicing sites of aicda transcripts in different species. The red arrows show the exon-intron boundaries.

Figure 2-7: Confirmation of the presence of both aicda transcripts in several Atlantic cod individuals through RT-PCR. ISP were used to amplify both transcripts in immune-stimulated splenic cDNA samples.

2.4.3 The Atlantic cod aicda expression profile in adult tissues, embryonic, and early larval life stages

The Atlantic cod aicda expression pattern of both isoforms was investigated in 19 different tissues using ISPs. The transcript expression of ef1- α was also assessed as a normalizer gene. Our RT-PCR analyses revealed that both Gm-aicda transcripts were expressed in immune-related tissues and no expression was detected in pIC-stimulated Atlantic cod macrophages (Figure 2-8 A). Gm-aicda showed a moderate level of transcript expression compared to efl- α in the spleen, head kidney, and gill. Gm-aicda was also expressed in the posterior kidney at moderate to a low level, and in blood and heart, at low levels. The T-Gm-aicda transcript was expressed only at low levels in some immunerelated tissues, notably spleen. Moreover, Gm-aicda transcripts were not expressed in any mucosa-associated lymphoid tissues (MALT) except for the gill-associated lymphoid tissue (GIALT) (Salinas, 2015). Interestingly, T-Gm-aicda but not Gm-aicda transcript was also detected in male but not female reproductive tissues.

In one other bony fish, the zebrafish, an epigenetic-regulatory role for AID has been suggested during embryogenesis (Abdouni et al., 2013; Rai et al., 2008). To assess the potential role of AID during Atlantic cod embryogenesis, the expression of both aicda transcripts was studied in fertilized eggs and early larval stages. Gm-aicda isoforms were amplified in total RNA samples extracted from 0-DPF until the yolk-sac absorption stage using RT-PCR and ISPs. The results showed no detectable expression of either aicda isoforms in Atlantic cod embryos (Figure 2-8 B).

Figure 2-8: Atlantic cod aicda expression profile in adult tissues and embryonic stages. A) Expression of Atlantic cod aicda transcripts was analysed in 19 different tissues extracted from two male and two female Atlantic cod individuals through RT-PCR. Transcript expression of Gm-aicda (top panel), and T-Gm-aicda (middle panel) were compared to efl- α (bottom panel). B) Gm-aicda transcripts expression during Atlantic cod embryogenesis. No aicda transcript expression was detected.

2.4.4 Atlantic cod aicda expression in response to immune stimulation

We then assessed the splenic expression of the Gm-aicda transcript in response to immune stimulation by viral (pIC) and bacterial (ASAL) antigens. Aicda expression can be induced during B cell activation, either through the interaction of peptide-MHC II complex and CD40 on B cells with T cell receptor and CD40L on CD4 ${ }^{+} \mathrm{T}$ helper (T_{H}) cells or through the dual engagement of B cell receptor and TLRs on B cells with antigens such as LPS (DeFranco, 2016; Hou et al., 2011; Kasturi et al., 2011; Pone et al., 2012; Stavnezer \& Schrader, 2014). Although both pathways lead to aicda expression, the latter pathway takes place early in immune response when T_{H} cell assistance is not yet available (Pone et al., 2012). Since the loss of $c d 4$ and $m h c$ II in the Atlantic cod genome are highly suggestive of impaired canonical T_{H} cell function, we sought to investigate Gm-aicda expression in early immune response (Solbakken, Jentoft, Reitan, Mikkelsen, Gregers, et al., 2019; Star et al., 2011; Torresen et al., 2017). In response to pIC and ASAL at 6 HPI, we observed approximately 3- and 2-fold higher expression of Gm-aicda transcript, respectively. However, this difference in expression was not detected at 24 HPI (Figure 2-9). In contrast, splenic expression of T-Gm-aicda did not significantly change in response to immune stimulation (Figure 2-9). These results indicate that splenic expression of Gm-aicda is immune-inducible.

Figure 2-9: Analysis of Atlantic cod aicda transcripts upon immune stimulation. Gm-aicda transcript expression was normalized to rplp1 and atps expression, and the sample with the lowest normalized expression was used as calibrator. Data are represented as mean \pm SEM ($n=10$). Asterisks represent a significant difference between an immune-challenged group and the corresponding PBS-injected control group. The expression fold-change values are shown below the figures. Gm-aicda and T-Gm-aicda expression were studied at 6 and 24 HPI with pIC or ASAL. Significantly higher expression was only observed at 6 HPI for Gm-aicda transcript ($n=10 ;{ }^{*}: p<0.05 ;{ }^{* *}: p<0.01$). Abbreviations: Gm-aicda: full-length Atlantic cod aicda transcript; T-Gmaicda: truncated aicda transcript identified in Atlantic cod.

2.4.5 Predicted structural features of Atlantic cod AID protein

Translation of identified Gm-aicda CDSs revealed that Gm-aicda encodes for a full-length AID protein homologous to AID of other bony fish, whilst T-Gm-AID is missing the N -terminal 21 amino acids (Figure 2-10 A). As expected, Gm-AID exhibited the highest identity and similarity with other bony fish AIDs (Table 2-6). Akin to the other bony fish, Gm-AID contains the bony fish-specific loop five inserts (bony fish insert), as well as an N-terminal extension (Figure 2-10 A and B) (King et al., 2015; Zhao et al., 2005). Unlike other bony fish AIDs, Gm-AID possess extra leucine (L) and threonine (T) amino acids at the C-terminus end making Gm-AID (213 aa) the longest AID identified thus far.

Amino acid alignment of AID homologs revealed that Gm-AID contains all of AID's hallmark functional motifs, including the Zn -coordinating and catalytic residues, secondary catalytic residues, nuclear localization signal, nuclear export signal, and phosphorylation sites (Figure 2-10 A) (Barreto \& Magor, 2011; Brar et al., 2004; Chandra et al., 2015; Hu et al., 2013; Ito et al., 2004; King et al., 2015; McBride et al., 2004; Patenaude et al., 2009). Within the AID/APOBEC family, the core catalytic motif is comprised of $\mathrm{H}[\mathrm{A} / \mathrm{V}] \mathrm{E}-\mathrm{X}[24-36]$-PCXXC motif in which the histidine (H) and the two cysteines (C) coordinate the catalytic Zn^{2+} and the glutamate (E) acts as proton donor in the deamination reaction (Conticello, 2008). We have previously presented a functional and native structure for Hs -AID using a combined computational-biochemical method, which has been confirmed by later-published X-ray crystal structures of Hs-AID (King \& Larijani, 2017; King et al., 2015; Qiao et al., 2017). Using the same methodology, we
generated a predicted structure of Gm-AID and carried out comparisons to Hs-AID, DrAID, and Ip-AID. We found that the overall structural architecture of Gm-AID was similar to that of other homologs (Figure 2-10 B). Also, Gm-AID was predicted to form a viable catalytic pocket with equivalent catalytic pocket residues (H60, E62, C100, and C103, equivalent to H56, C87, E58, and C90 in Hs-AID; Figure 2-10 C) (Barreto \& Magor, 2011; Brar et al., 2004; Chandra et al., 2015; Hu et al., 2013; Ito et al., 2004; King et al., 2015; McBride et al., 2004; Patenaude et al., 2009).

We previously demonstrated that Hs-AID's catalytic pocket accessibility is determined by 21 secondary catalytic residues that are located on flexible loops which form the walls and floor of the catalytic pocket (King et al., 2015). These amino acids are G23, R24, R25, E26, T27, L29, N51, K52, N53, G54, C55, V57, T82, W84, S85, P86, D89, Y114, F115, C116, and E122 in Hs-AID. In addition to the four core catalytic residues which carry out the enzymatic reaction of deamination, these secondary catalytic residues function in a supporting role to stabilize the target dC in catalytic pocket (King et al., 2015). Although most secondary catalytic residues are highly conserved amongst studied species, we noted that Hs-AID ${ }^{\mathrm{E} 122}$ is different in Gm-AID (i.e., H136). Moreover, our computational modeling divulged a potential local conformational change around the catalytic pocket of Gm-AID where we noticed that Y127 could potentially protrude into the catalytic pocket of Atlantic cod AID and block the dC entrance by closing the catalytic pocket (Figure 2-11). If confirmed, this conformational change could hamper catalytic activity of Gm-AID. However, ssDNA:AID docking simulation and characterizing the
biochemical properties of purified wild type and mutant $\mathrm{Gm}_{\mathrm{AID}}{ }^{\mathrm{H} 136 \mathrm{E}}$ is required to confirm this hypothesis.

Our predicted models revealed that the protrusion of Y127 into Gm-AID catalytic pocket is most likely due to preferred T-shape interaction between the side chain of H136 and Y127. This tyrosine is located on AID/APOBECs' substrate specificity loop (i.e., l8) and is fully conserved amongst AID homologs as well as AID/APOBEC family members (Figure 2-10 A) (Abdouni et al., 2013; Iyer et al., 2011). Indeed, several previous studies have emphasized the importance of this tyrosine residue (Abdouni et al., 2013; Iyer et al., 2011; Wijesinghe \& Bhagwat, 2012). Interestingly, the substrate specificity transition from adenine to cytidine during the emergence of the AID/APOBECs from adenosine deaminases has been attributed to the expansion of $\ell 8$ and the base-stacking ability of the abovementioned conserved tyrosine (Iyer et al., 2011). Remarkably, in APOBEC3A, the greater distance of this tyrosine' side chain (i.e., Hs-A3A ${ }^{\mathrm{Y} 130}$) from the catalytic pocket compared with that of $\mathrm{Hs}-\mathrm{AID}^{\mathrm{Y} 114}$, was postulated as the basis of $\mathrm{Hs}-\mathrm{A} 3 \mathrm{~A}$ ability to efficiently deaminate 5m-C (Wijesinghe \& Bhagwat, 2012). Additionally, when modeled based on NMR structure of APOBECs, this tyrosine was noted to rotate $\sim 180^{\circ}$ and shifted away from the catalytic pocket in Hs-AID and Dr-AID (Abdouni et al., 2013). In the "away" conformation, the steric hindrance between the side chain of this tyrosine and 5mC would be eliminated. Since, compared to Hs-AID, $\ell 8$ in Dr-AID has an extra negatively charge amino acid (E130) and, therefore, it is more flexible, it was suggested that the "away" conformation of this tyrosine in Dr-AID may occupy a lower energy state
compared to that of Hs-AID ${ }^{\mathrm{Y} 114}$, explaining the higher efficiency of Dr-AID in deaminating 5m-C compared with that of Hs-AID (Abdouni et al., 2013).

Figure 2-10: General structural features of Atlantic cod AID. A) Sequence alignment of Gm-AID and T-GmAID with representative AID homologs from different classes of vertebrates. The approximate secondary structure of α-helical, β-strand, and loop regions are shown. Residues which comprise well-established AID functional domains are labelled with asterisks: main $\mathrm{Zn} 2+$-coordinating and catalytic residues (purple), secondary catalytic residues (yellow), nuclear localization signal (blue), nuclear export signal (red), and phosphorylation sites (green) are labeled with asterisks. Residues are colored according to chemical properties of the side chain. B) Representative ribbon model of predicated Gm-AID structure with that of solved Hs-AID structure and predicted structures of two other bony fish (Dr-AID and Ip-AID). In each model, blue to red color change indicates N to C terminus progression and the catalytic pocket zinc is shown in purple. Loops, β-strands, and α-helices are labeled in the Hs-AID model. The bony fish insert is shown in a red box in predicted models of bony fish AIDs. The first 21 amino acid-long motif missing from T-Gm-AID is transparently shown (last right panel). Comparison of predicted structure of Gm-AID with that of other AID homologs revealed no major differences in overall structural architecture. C) AID core catalytic motif. Comparison of this motif amongst different AID homologs revealed that Gm-AID forms a classical and potentially viable AID catalytic pocket. Abbreviations: Gm-AID: Atlantic cod AID; T-Gm-AID: truncated isoform of Atlantic cod AID; Dr-AID: zebrafish AID; Ip-AID: channel catfish AID; Xl-AID: South African clawed toad AID; Pw-AID: the Iberian ribbed newt AID; Gg-AID: chicken AID; Mm-AID: mouse AID; HsAID: human AID.

Table 2-6: Comparison of AID amino acid identity and similarity amongst different species
Identity

	Gm-AID	Dr-AID	Ip-AID	Xl-AID	Pw-AID	Gg-AID	Mm-AID	Hs-AID
Gm-AID		77%	73%	62%	60%	60%	61%	60%
Dr-AID	83%		78%	63%	63%	62%	67%	63%
Ip-AID	82%	88%		61%	61%	59%	60%	60%
Xl-AID	72%	73%	74%		71%	67%	69%	68%
Pw-AID	69%	74%	75%	86%		77%	72%	77%
Gg-AID	68%	73%	71%	84%	88%		88%	90%
Mm-AID	70%	75%	73%	86%	91%	94%		92%
Hs-AID	68%	74%	73%	85%	87%	94%	95%	

Similarity
Abbreviations: Gm-AID: Atlantic cod AID; Dr-AID: zebrafish AID; Ip-AID: channel catfish AID; Xl-AID: South African clawed toad; Pw-AID: the Iberian ribbed newt AID; Gg-AID: chicken AID; Mm-AID: mouse AID; Hs-AID: human AID.

Figure 2-11: Potential conformational changes induced by $H 136$ in Atlantic cod AID compared to the corresponding glutamic acid (E) in other AID homologs. A) Representative surface model of predicated AID structures based on solved Hs-AID structure, showing the closed catalytic pocket of GmAID due to protrusion of Y127 into the pocket. B) zoomed out and C) zoomed in detailed conformational changes induced by Gm-AID ${ }^{H 136}$ vs. its corresponding amino acid in other AID homologs (Hs-AID ${ }^{E 122}$, Dr-AID ${ }^{E 135}$, Ip-AID ${ }^{E 134}$, and Gm-AID ${ }^{H 136 E}$). In each model, the catalytic pocket zinc and the core catalytic motif residues are shown in purple. In all models, the amino acids in $4 A^{\circ}$ radius of Gm-AID ${ }^{H 136}$, Gm-AID ${ }^{Y 127}$, and both residues or the corresponding amino acids in other AID homologs are colored in cyan, pink, and orange. In all models, the Gm-AID ${ }^{H 136}$ and Gm-AID ${ }^{Y 127}$ or their corresponding amino acids in other AID homologs are within $4 A^{\circ}$ distance of each other. In all AID models, the Gm-AID ${ }^{\text {Cloo }}$ or its corresponding amino acid in other AID homologs is within $4 A^{\circ}$ distance from Gm-AID ${ }^{H 136}$. In all AID models except Ip-AID, the Gm-AID ${ }^{C 100}$ or its corresponding amino acid in other AID homologs is within $4 A^{\circ}$ distance from Gm-AID ${ }^{Y 127}$. Only in Gm-AID, H60 is within $4 A^{\circ}$ distance of Gm-AID ${ }^{Y 127}$. In Dr-AID, W96 is within $4.5 A^{\circ}$ distance of Dr-AID ${ }^{Y 126}$. H136E mutation in Gm-AID can reverse the Y127 protrusion into the catalytic pocket.

2.5 Discussion:

Antibody affinity maturation has been observed across vertebrates (Bromage et al., 2006; Cain et al., 2002; Dooley \& Flajnik, 2005; Dooley et al., 2006; Hsu, 2016; Jenne et al., 2003; Kaattari et al., 2002; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Mehr et al., 2004; Wilson et al., 1992; Yang et al., 2006). Among studied bony fish, the Atlantic cod has emerged as a unique species that lacks antigen-specific antibody affinity maturation (Arnesen et al., 2002; Lund et al., 2008; Lund et al., 2006; Magnadottir et al., 2001; Schroder et al., 2009; Solem \& Stenvik, 2006). Since AID is the initiator of secondary antibody diversification, we explored Atlantic cod aicda tissue expression pattern, expression during embryogenesis, and transcript expression in early immune response (Sernandez et al., 2008; Wang et al., 2009). Here, we show that the chromosomal location of Atlantic cod aicda locus has a conserved synteny compared to other Teleostei aicda. We also report that Atlantic cod expresses two distinct aicda transcripts one of which is missing the first exon. Although both transcripts are predominantly expressed in immune-related tissues with no detectable expression during embryogenesis, only expression of the full-size transcript increases in the context of immune stimulation. Our computational protein modeling also reveals that the full-length Atlantic cod AID protein contains all the conserved structural properties of other studied AID homologs. However, we noticed a drastic change in one of the secondary catalytic residues in Atlantic cod (i.e., Gm-AID ${ }^{\mathrm{H} 136}$ equivalent to $\mathrm{Hs}-\mathrm{AID}^{\mathrm{E} 122}$) which, if confirmed, could impair the enzymatic activity of Gm-AID.

Our synteny analyses revealed a conserved synteny for aicda locus among Teleostei species suggesting the possibility of similar expression and gene regulation compared to other teleost species. Lack of complete genomic sequence of earlier Sarcopterygii species (i.e., coelacanth [Latimeria chalumnae]) along with the previously reported potential loss of aicda gene from lungfish (Protopterus dolloi and P. annectens; Sarcopterygii: Dipnoi) impeded a definitive conclusion whether aicda synteny was conserved in the entire Sarcopterygii class (Tacchi et al., 2015). Nevertheless, these results suggest that during the teleost-specific whole-genome duplication (TS-WGD) event, a different copy of the aicda has been retained in teleost species compared to the tetrapod group (Glasauer \& Neuhauss, 2014).

Previous studies have reported the presence of different aicda isoforms in several vertebrate species but not in the two bony fish (channel catfish and zebrafish) whose aicda transcripts have been well-studied (Saunders \& Magor, 2004; Zhao et al., 2005). In Iberian ribbed newt (Pleurodeles waltl), three potential poly-A sites and two aicda isoforms, one of which, like the T-Gm-aicda, is missing the first exon, have been described (Bascove \& Frippiat, 2010). In African clawed frog, two different aicda transcripts of 2 and 1.3 kb length were found (Marr et al., 2007). In dogs (Canis lupus familiaris) and cows (Bos taurus) only one aicda transcript was reported while in mice two aicda transcripts containing complete aicda CDS but utilizing different poly-A sites were identified (Muramatsu et al., 1999; Ohmori et al., 2004; Verma et al., 2010). In human, five different splice variants of aicda have been detected where individual human B cells only express one of the aicda splice variants. These splice variants are: Full-length AID (AID-FL),
exclusion of the beginning of exon 4 (AID- $\Delta \mathrm{E} 4 \mathrm{a}$), exclusion of exon 4 (AID- $\Delta \mathrm{E} 4$), exon 3 and 4 exclusion (AID- $\triangle \mathrm{E} 3 \mathrm{E} 4$), and inclusion of intron 3 containing a stop codon (AIDivs3) (Albesiano et al., 2003; McCarthy et al., 2003; Wu et al., 2008). In this chapter, we found two aicda isoforms one of which is missing the first exon. Unlike Hs-aicda, Gmaicda isoforms are the result of different transcription start site usage rather than alternative splicing, suggesting involvement of different transcription factors.

Previous studies conducted on vertebrates have identified lymph node and spleen as the main aicda-expressing tissues (Bascove \& Frippiat, 2010; Marr et al., 2007; Muramatsu et al., 1999; Muto et al., 2000; Ohmori et al., 2004; Saunders \& Magor, 2004; Verma et al., 2010). Lower and variable levels of aicda expression have also been reported in thymus, pancreas, kidney, liver, and lung of mammals (Muto et al., 2000; Ohmori et al., 2004; Verma et al., 2010). Likewise, low levels of aicda expression have been observed in the brain, intestine, kidney, liver, and lung of amphibians, and the intestine, fin, posterior and anterior kidney of fish (Bascove \& Frippiat, 2010; Marr et al., 2007; Saunders \& Magor, 2004). In this chapter, we identified the immune-related tissues (i.e., spleen, head kidney, and gill) as the main site of Gm-aicda expression. This is consistent with the previous study where the melano-macrophage clusters have been identified as the main site of aicda-expressing B cells in early gnathostome vertebrates (Saunders et al., 2010). In most fish species, these clusters mainly exist in the spleen and kidney and to lesser extent in the liver and intestine (Agius \& Roberts, 2003; Arciuli et al., 2017; Diaz-Satizabal \& Magor, 2015). Compared to Gm-aicda transcript, T-Gm-aicda transcript was only expressed at low levels and mainly in the spleen that suggests that Gm-aicda is the main
aicda transcript in Atlantic cod. Therefore, we concluded that aicda transcripts were mostly but not exclusively expressed in immune-related tissues in adult fish.

Interestingly, we detected low levels of T-Gm-aicda isoform transcript in male gonad. Gm-aicda is located on Linkage Group (LG) 11 which has recently been proposed to contain the majority of the Atlantic cod sex-locus (Star et al., 2016). One possible explanation is that aicda expression in male gonad tissue could partly be due to its proximity to the sex-locus. In this scenario, its expression as T-Gm-aicda isoform, which most likely lacks catalytic activity, might be due to lack of proper transcription factor(s) and it could be a safeguard to protect the genome in male gonad tissue. Also, since aicda transcript and protein expression, and apobec 4 transcript expression have been detected in human spermatocytes and testis, respectively, T-Gm-aicda transcript expression in male gonad might be a remnant of an ancient unknown role of AID (Marino et al., 2016; Rogozin et al., 2005; Schreck et al., 2006).

Besides the established role of AID in antibody affinity maturation, a controversial role for AID was suggested in embryonic development in zebrafish (Rai et al., 2008; Shimoda et al., 2014). Aicda expression was also observed in the early stages of embryogenesis in Iberian ribbed newt and early larval stages in African clawed frog (Bascove \& Frippiat, 2010; Marr et al., 2007). In this study, we observed no aicda expression during Atlantic cod embryogenesis. Therefore, we concluded that aicda transcripts were unlikely to play a role during embryogenesis.

AID expression can be induced during both T cell-dependent and T cellindependent B cell activation (TD and TI pathways, respectively). During TD B cell
activation, peptide-MHC II complex and CD40 on B cells interact with TCR and CD40L on T helper cells (i.e., T_{H} cell), while the dual engagement of B cell receptor and TLRs on B cells with antigens such as LPS activate B cell without T_{H} cell assistance (DeFranco, 2016; Hou et al., 2011; Kasturi et al., 2011; Pone et al., 2012; Stavnezer \& Schrader, 2014). The lack of key genes involved in T-cell/B-cell interactions from Atlantic cod genome, may have compromised the aicda expression through TD pathway. Therefore, we investigated Gm-aicda expression during the early immune response (i.e., TI pathway). It should be noted that a previous study has shown aicda expression in murine B cells through both pathways where expression through the TI pathway peaked at 24 to 48 hours post immune challenge (100 -fold increase) (Pone et al., 2012). We observed a moderate increase (2- to 3-fold) in Gm-aicda transcript expression only in early response to pIC and ASAL stimulation (6 HPI). This observed higher expression of Gm-aicda upon immune stimulation could be due to upregulation of its expression and/or increased number of activated B cells that express aicda. To distinguish between these two scenarios, further studies are required. Importantly, the expression of T-Gm-aicda was not affected during this time frame which indicates the lack of immune-related role for the truncated isoform. Nevertheless, the conserved Gm-aicda gene synteny compared to other teleosts and the observed increase in Gm-aicda transcript expression upon immune stimulation could indicate that the regulation and transcript expression of aicda might be evolutionary conserved in Atlantic cod.

T-Gm-AID, if translated, lacks the first 21 amino acid residues compared to GmAID. These residues are involved in stabilization of the core of the enzyme, stabilization
of the surface DNA binding residues, and contains potential DNA binding residues (King \& Larijani, 2017; King et al., 2015). Moreover, truncation of the first 10 or 20 amino acids from Hs-AID impaired its nuclear import by reducing its affinity for importin- $\alpha 3$ (Hu et al., 2013; Patenaude et al., 2009). Due to the importance of the AID N-terminal amino acids in AID activity, we predicted that T-Gm-AID, if translated, was inactive and would not localize into the nucleus.

Although we confirmed the presence of all AID's well-known functional motifs in Gm-AID, we detected a drastic change from glutamic acid (E) to histidine (H) in one of the secondary catalytic residues. These residues function in a supporting role to stabilize the target dC in catalytic pocket (King et al., 2015). Moreover, Hs-AID ${ }^{\mathrm{E} 122}$ resides in the substrate-specificity loop (l8), a motif that has previously been shown to be critical regulator of cytidine deamination activity and DNA targeting specificity across all AID/APOBEC family members (Gajula et al., 2014; Iyer et al., 2011; Kohli et al., 2009). In Hs-AID, E122 stabilizes other secondary catalytic residues (residues from the N -termini of $\ell 8$ and conserved residues from l6) and plays a role in stabilizing dC and neighboring ssDNA in AID:DNA complexes. Accordingly, perturbation of this residue in Hs-AID resulted in a drastic reduction in activity, consistent with its role in regulation of catalytic pocket dynamics (Gajula et al., 2014).

Our computational modeling revealed that due to the proximity of Hs-AID ${ }^{\mathrm{E} 122}$ to $\mathrm{Hs}-\mathrm{AID}^{\mathrm{Y} 114}$, its replacement with histidine in Gm-AID (i.e., H136) could cause a protrusion of Y127 into the catalytic pocket, thereby blocking the catalytic pocket and potentially producing a catalytically inaccessible conformation (i.e., closed conformation).

Similar conformations of the Gm-AID ${ }^{\mathrm{Y} 127}$ equivalent residue in Hs-AID (i.e., Y114) were shown to restrict the catalytic pocket (King et al., 2015). Additionally, the recent AID crystal structure has shown that Y114 assisted in holding cytidine in place by interacting with dC O5' and the interactions between Y114 and F115 contributed to shape the catalytic pocket and defining the substrate specificity of AID (Gajula et al., 2014).

Due to the dissimilar chemical properties of histidine and glutamic acid, the replacement of Hs-AID ${ }^{\mathrm{E} 122}$ with $\mathrm{Gm}-\mathrm{AID}^{\mathrm{H} 136}$ could lead to significant conformational changes. E is a negatively charged amino acid while H is mostly neutral at the physiological pH . Previous studies have shown that the $\pi-\pi$ interactions between H and the aromatic amino acids contributes significantly in protein stability and reduces the protein solubility (Hou et al., 2018). The optimum imidazole-benzene interactions are in a T-shaped conformation (Kumar et al., 2018; Schaeffer, 2008; Trachsel et al., 2015). Histidine is capable of forming both $\mathrm{N}-\mathrm{H} \ldots \pi$ and $\mathrm{C}-\mathrm{H} \ldots \pi$ interactions with aromatic amino acids where the $\mathrm{N}-\mathrm{H} \ldots \pi$ is more stable than $\mathrm{C}-\mathrm{H} \ldots \pi$ interactions ($-14.0 \mathrm{kcal} \mathrm{mol}^{-1} v s .-11.5$ $\mathrm{kcal} \mathrm{mol}^{-1}$) presumably due to the increased polarity of the $\mathrm{N}-\mathrm{H}$ bond (Kumar et al., 2018; Trachsel et al., 2015). However, data-mining studies uncovered a $4: 1$ ratio of $\mathrm{C}-\mathrm{H} \ldots \pi$ to $\mathrm{N}-\mathrm{H} \ldots \pi$ interactions in the T-shaped interactions (Trachsel et al., 2015). On the other hand, the positively charged edge of an aromatic ring can interact with an anion to form an anion $-\pi$ interaction. These edgewise interactions can produce stabilizing interactions with -2 to $-7.3 \mathrm{kcal} \mathrm{mol}^{-1}$ contributing to the overall structural stability of the proteins (Chakravarty et al., 2018; Newberry \& Raines, 2019; Philip et al., 2011). Many of these
anion $-\pi$ interactions were also involved in the nearby $\pi-\pi$ interactions, creating anion $-\pi-\pi$ triads (Philip et al., 2011).

Hs-AID ${ }^{\mathrm{E} 122}$, Dr-AID ${ }^{\mathrm{E} 135}$, and Ip-AID ${ }^{\mathrm{E} 134}$ could potentially participate in an anionπ interaction with $\mathrm{Hs}-\mathrm{AID}^{\mathrm{Y} 114}$, Dr-AID ${ }^{\mathrm{Y} 126}$, and $\mathrm{Ip}^{2} \mathrm{AID}^{\mathrm{Y} 125}$, respectively (Figure 2-11). In these interactions, the preferred orientation is when the carboxyl group of E is in a close-to-parallel conformation with respect to the interacting aromatic plane (Lucas et al., 2016). Therefore, tyrosine is positioned out of the respective catalytic pocket. However, in GmAID, Propka analyses showed the pKa of 5.63 for H136, leaving it mostly neutral at pH 7 (Dolinsky et al., 2004; Olsson et al., 2011). In this case, H136 side chain (imidazole ring) can potentially participate in $\pi-\pi$ interactions with Y127 in a T-shaped conformation, causing the protrusion of Y127 into the catalytic pocket. However, more studies are required to assess the potential impact of this drastic change (i.e., $\mathrm{Hs}^{-\mathrm{AID}^{\mathrm{E} 122} \text { to } \mathrm{Gm}-}$ AID ${ }^{\mathrm{H} 136}$) in the enzymatic activity of Atlantic cod AID.

In summary, here for the first time, we showed that although Atlantic cod has lost MHC II pathway, it increases aicda expression in the context of innate immune system in response to immune stimulation. These results indicate that likely, aicda expression but maybe not its function, have been conserved during the evolution of Atlantic cod.

Chapter 3:

Impairment of the enzymatic function of activation induced cytidine deaminase (AID) in Atlantic cod

> (Gadus morhua)

Abstract

3.1 Abstract

In vertebrates, the enzyme activation-induced cytidine deaminase (AID, encoded by the aicda gene) introduces somatic mutations at the immunoglobulin (Ig) loci to instigate the process of antibody affinity maturation, generating high affinity antibodies. Unlike other studied bony fish, the Atlantic cod (Gadus morhua) humoral response lacks affinity-matured antibodies. In the previous chapter, we showed that the Atlantic cod aicda gene locus is conserved compared to other studied teleost species and that it encodes two transcripts which are expressed in immune-related tissues. Here we sought to investigate the enzymatic properties of the Atlantic cod AID protein (Gm-AID) to shed light on the molecular basis responsible for the lack of antibody affinity maturation in this species. Our biochemical analyses of the purified Gm-AID proteins showed that the truncated isoform is inactive and the full-length Gm-AID, despite the ability to bind DNA like other AID homologs, is two to three orders of magnitude less catalytically active, exhibiting barely detectible enzymatic activity. Gm-AID also exhibits the coldest temperature adaptation of any purified vertebrate DNA/RNA-editing enzyme studied to date, with an optimal activity range of 4 to $8{ }^{\circ} \mathrm{C}$. AID preferentially mutates $\mathrm{WRC}(\mathrm{W}=\mathrm{A} / \mathrm{T}, \mathrm{R}=\mathrm{A} / \mathrm{G})$ motifs. Accordingly, the complementarity determining region (CDR) of $I g$ variable genes ($I g V$) of mammals and fish are enriched in WRC motifs, reflecting substrate:enzyme co-evolution. We found that the Atlantic cod Ig gene CDRs exhibit a reduced level of WRC enrichment, consistent with compromised Gm-AID functionality. Taken together, our findings suggest that the Atlantic cod may represent a unique instance in evolution of immunity wherein

AID has become nearly inactive to reflect lesser reliance on high affinity antibody responses.

3.2 Introduction

Activation induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (AID/APOBEC) family of proteins. AID mutates deoxycytidine (dC) to deoxyuridine (dU) on single-stranded DNA (ssDNA), preferentially in the context of WRC ($\mathrm{W}=\mathrm{A} / \mathrm{T} ; \mathrm{R}=\mathrm{A} / \mathrm{G}$) motifs (Bransteitter et al., 2003; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani, Frieder, Basit, et al., 2005; Larijani et al., 2007; Meffre et al., 2001). AID is mainly expressed in mature activated B lymphocytes where it introduces mutations in the antibody gene V and C regions, thereby mediating somatic hyper-mutation (SHM) and class switch recombination (CSR) of antibody genes, leading to secondary antibody diversification (Bransteitter et al., 2003; Bransteitter et al., 2006; Frieder et al., 2006; Kolar et al., 2007; Larijani, Frieder, Basit, et al., 2005; Meffre et al., 2001; Muramatsu et al., 2000; Muramatsu et al., 1999; Muto et al., 2000; Nagaoka et al., 2002). The absolute requirement of AID for secondary antibody diversification is apparent in the case of hyper IgM syndrome type II (HIGM II) patients manifesting lack of SHM and CSR caused by deficiency in AID gene (Minegishi et al., 2000; Revy et al., 2000).

AID is a small positively charged protein that binds its ssDNA substrate with $\sim \mathrm{nM}-$ range binding affinity (Larijani et al., 2007). Previous studies using a computational-evolutionary-biochemical approach as well as the X-ray crystal structure of AID revealed the presence of three DNA-binding grooves on AID's surface (King \& Larijani, 2020). Amongst these grooves, the DNA-binding groove 1 and the assistance patch create AID's bifurcated substrate-binding surface, explaining AID's preference for the G-quadruplex
(G4) substrate (Qiao et al., 2017). Since the residues forming the substrate-binding groove 1 directly interact with ssDNA, they establish AID's substrate specificity (Qiao et al., 2017). The presence of the DNA-binding groove 2 was predicted through DNA:protein docking simulations (King et al., 2015). Although the DNA-binding groove 1 seems to be the main substrate binding domain, the ssDNA bound into the DNA-binding groove 2 also passes over the catalytic pocket, potentially positioning the dC properly in the catalytic pocket (King \& Larijani, 2020; King et al., 2015).

Within AID, the conserved catalytic domain of $\mathrm{H}(\mathrm{A} / \mathrm{V}) \mathrm{EX}_{(24-36)} \mathrm{PCXXC}$ and the secondary catalytic residues are responsible for catalyzing the deamination reaction and stabilizing the dC in the active site, respectively (Barreto \& Magor, 2011; Conticello, 2008; Harris et al., 2002; King et al., 2015). Despite the conserved overall arrangement of catalytic residues, AID's catalytic rate varies significantly between different species, potentially due to subtle breathing dynamics of the catalytic pocket (Barreto et al., 2005; Conticello et al., 2005; Dancyger et al., 2012; Ichikawa et al., 2006; Wakae et al., 2006). Thus far, studies have shown that zebrafish (Danio rerio) AID (Dr-AID) is catalytically the most robust AID and Hs-AID is more active than channel catfish (Ictalurus punctatus) AID (Ip-AID) (Abdouni et al., 2013; Dancyger et al., 2012; King et al., 2015). Besides activity on dC, Dr-AID is also uniquely capable of efficiently deaminating 5-methyl dC (5mC), potentially underling a unique role for Dr -AID in epigenetic remodeling through demethylation of CpG motifs during embryogenesis (Abdouni et al., 2013; Rai et al., 2008). While Dr-AID is the most robust enzyme on 5m-C (2/1), Hs-AID and Ip-AID are not efficient in deaminating 5m-C (Abdouni et al., 2013). Nevertheless, since all AIDs
studied thus far showed less activity on $5 \mathrm{~m}-\mathrm{C}$, it has been suggested that methylation protects dC from AID targeting (Abdouni et al., 2013; Larijani, Frieder, Sonbuchner, et al., 2005).

In addition to catalytic rate and activity on $5-\mathrm{mC}$, AID homologs from different species show different optimal temperature and substrate specificity (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; King et al., 2015; Larijani, Frieder, Sonbuchner, et al., 2005; Nabel et al., 2012). Mammalian and avian AIDs exhibit the highest deamination activity at higher temperatures (i.e., around $37^{\circ} \mathrm{C}$), while AIDs from amphibians and bony fish are more active at lower temperatures like $18^{\circ} \mathrm{C}$ (Barreto et al., 2005; Conticello et al., 2005; Dancyger et al., 2012; Emma M. Quinlan, 2017). Sequencing analyses of $\operatorname{Ig} V$ genes and biochemical studies have defined the WRC motif as AID's favored target motif (Dancyger et al., 2012; Gajula et al., 2014; Hackney et al., 2009; Larijani, Frieder, Basit, et al., 2005; Larijani \& Martin, 2007; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Yang et al., 2006). However, more distant homologs such as cartilaginous fish and lamprey AID exhibit divergent patterns of sequence specificity, sometimes favoring non-WRC motifs (Emma M. Quinlan, 2017). WRC enrichment in the complementary-determining regions (CDRs) of the $I g$ genes of mammals, birds, amphibians, bony fish, and cartilaginous fish has been observed (Conticello et al., 2005; Detanico et al., 2016; Golub \& Charlemagne, 1998; Jolly et al., 1996; Oreste \& Coscia, 2002; Wagner et al., 1995; Wei et al., 2015). This co-evolution of AID substrate specificity and the sequence of $I g$ genes may play a significant role in ensuring efficient AID activity at $I g$ genes.

Unlike other studied vertebrates, functional analyses of the Atlantic cod humoral immune responses revealed no evidence of antibody affinity maturation. Specifically, many studies have shown high levels of low affinity serum IgM in Atlantic cod, and a lack of robust antigen-specific antibody responses upon immunization (Arnesen et al., 2002; Magnadottir et al., 1999; Magnadottir et al., 2001; Solem \& Stenvik, 2006). Moreover, full sequencing of the Atlantic cod genome revealed a unique gene structure of its immune system, namely loss of $m h c I I, c d 4$, invariant chain (Ii), tlr $1 / 2 / 5 / 21 \beta$, and $M x$ genes and expansion of $m h c I$ and $t l r 7 / 8 / 9 / 22 / 25$ (Malmstrom et al., 2016; Solbakken, Rise, et al., 2016; Solbakken, Torresen, et al., 2016; Star et al., 2011; Torresen et al., 2017). In line with the loss of central genes required for T cell-dependent B cell activation, thus far only T cell-independent B cell activation has been reported in this species (Malmstrom et al., 2013; Solbakken, Jentoft, Reitan, Mikkelsen, Gregers, et al., 2019).

In the previous chapter, we showed that the putative aicda gene locus (encodes AID protein) in Atlantic cod exhibits conserved synteny with other teleosts species. We also found that the Atlantic cod aicda transcript is expressed mostly in immune-related tissues in the form of two distinctive isoforms. The main mRNA transcript encodes for a fulllength AID protein (i.e., 213 amino acids; Gm-AID) while the second mRNA encodes a truncated isoform (i.e., 192 amino acids; T-Gm-AID). We also found that the expression of full-length transcript is increased during immune stimulation with viral or bacterial mimics. However, the expression of the truncated transcript is unresponsive to immune stimulation. In this chapter, we sought to explore the functional enzymatic properties of Atlantic cod AID isoforms to pinpoint the molecular basis behind the lack of antibody
maturation in this species. Here, we report that, the T-Gm-AID, if translated, is an inactive cytidine deaminase. In contrast, Gm-AID is a bona fide cytidine deaminase with the coldest optimal temperature reported for any AIDs thus far. However, we found that the enzymatic activity of AID is drastically reduced in Atlantic cod and we did not observe WRC enrichment in Atlantic cod CDRs to levels found in other vertebrates.

3.3 Methods

3.3.1 AID expression and purification

Gm-AID was expressed along with human AID (Hs-AID), zebrafish AID (DrAID), channel catfish AID (Ip-AID) for biochemical analyses. Prokaryotic expression and purification of glutathione S-transferase (GST)-AID were performed as described in a wellestablished protocol (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani et al., 2007). The GST-AID expression vector was constructed by inserting the coding sequence of each AID homolog into the pGEX-5x-3 vector (GE Healthcare, Waukesha, WI, USA) using the EcoRI enzyme restriction site located in the multiple cloning site downstream of the GST-encoding sequence. Site-directed mutagenesis and PCR-based manipulations were conducted to create single point mutants and T-Gm-AID, respectively. For each GST-AID construct, between two to six independent protein preparations were purified from E. coli B121(DE3) cells (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani et al., 2007). A 500-ml culture of DE3 cells containing GST-AID expression vector was grown at $37^{\circ} \mathrm{C}$ and 225 rpm in the presence of $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin. When the culture reached the log phase (an OD of 0.6), 1 mM of Isopropyl β-d-1-thiogalactopyranoside (IPTG) and $100 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin were added. Bacterial cultures were then incubated at $16^{\circ} \mathrm{C}$ and 225 rpm for 16 h . The bacterial culture was centrifuged, and the pellet was resuspended in 20 ml of phosphate-buffered saline (PBS, Sigma) pH 7.5. Cells were lysed by a French Pressure cell and centrifuged to collect the supernatant. GST-AID was then column-purified from the supernatant of lysed cells using Glutathione Sepharose high-performance beads (Amersham) as per manufacturer's
recommendations. Briefly, the supernatant was applied twice to a purification column, and washed with 50 ml of PBS, pH 7.5 . GST-AID was eluted with elution buffer (50 mM Tris [pH 8.0] and 10 mM L-Glutathione reduced) into $0.5-\mathrm{ml}$ fractions. The quantity of protein in each fraction was measured using NanoDrop spectrophotometry (ND-1000) and between four to five fractions containing $>0.5 \mathrm{mg} / \mathrm{ml}$ total protein were dialyzed overnight at $4{ }^{\circ} \mathrm{C}$ into the final storage buffer $(20 \mathrm{mM}$ Tris $\mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{NaCl}$, and 1 mM dithiothreitol). Purified GST-AID was aliquoted into $50-$ to $100-\mu 1$ aliquots, flash frozen, and stored at $-80^{\circ} \mathrm{C}$. Moreover, eukaryotic expression of Gm-AID in HEK293T cells was also carried out (Abdouni et al., 2018). Briefly, GST-AID fragment was inserted into pcDNA3.1-V5-6xHis-Topo vector and $5 \mu \mathrm{~g}$ of plasmid per plate was transfected into 10 cm plates of HEK 293T cells (seeded with 5×10^{5} cells) using Polyjet transfection reagent (FroggaBio). Fifty plates were transiently transfected per GST-AID homolog. Following 48 h incubation at $37^{\circ} \mathrm{C}$, cells were resuspended in PBS (pH 7.5) containing $50 \mu \mathrm{~g} / \mathrm{ml}$ RNase A (Invitrogen) and 0.2 mM phenylmethylsulfonyl fluoride (PMSF, Sigma). Cells were then lysed using a French Pressure cell. Samples were run through the French Pressure cell three times with a $30-\mathrm{min}$ incubation at room temperature before the last run to allow the RNase A time to act. GST-AID was then purified from supernatant using Glutathione Sepharose high-performance beads (Amersham). Briefly, the supernatant was applied to the purification column twice, and washed with 50 ml of PBS (pH 7.5) containing 0.2 mM PMSF. GST-AID was eluted off the beads using 50 mM Tris (pH 8) and 10 mM L-Glutathione reduced. $0.25-\mathrm{ml}$ fractions were collected and analyzed by SDSPAGE and stained with Coomassie blue. Fractions containing the band of interest (~ 48
kDa) were combined. Then, 5% glycerol and $50 \mu \mathrm{~g} / \mathrm{ml}$ of bovine serum albumin (BSA, Invitrogen) were added before dialyzing the fractions overnight at $4{ }^{\circ} \mathrm{C}$ into the final storage buffer (20 mM Tris $\mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{NaCl}, 5 \%$ glycerol, and 1 mM dithiothreitol). Purified GST-AID was aliquoted into $50-$ to $100-\mu 1$ aliquots, flash frozen, and stored at $80^{\circ} \mathrm{C}$. Alternatively, beads with bound GST-AID were washed with PBS (pH 7.5) and stored in AID storage buffer as bead-bound AID. The quality and quantity of the purified prokaryotic and eukaryotic AID preparations were assessed using coomassie staining and western blotting, respectively. In western blot analyses, anti-GST (SantCruz) antibodies and Goat anti-Rabbit IgG (SantaCruz) were used as the primary and secondary antibodies.

3.3.2 Substrate preparation

Partially single-stranded bubble substrates containing a WRC or a non-WRC motif (i.e., WRCbub7 or non-WRCbub7) were used to determine the enzymatic properties of GST-AID homologs (Abdouni et al., 2013; Dancyger et al., 2012; King et al., 2015; Larijani \& Martin, 2007; Larijani et al., 2007). 2.5 pmol of the target strand (synthesized by IDT) was 5 '-radiolabeled with $\left[\gamma-{ }^{32} \mathrm{P}\right]$ dATP using polynucleotide kinase enzyme (PNK, New England BioLabs) at $37{ }^{\circ} \mathrm{C}$ for one hour. To remove the excess free $\left[\gamma-{ }^{32} \mathrm{P}\right]$ dATP, reactions were purified through mini-Quick spin DNA columns (Roche, Indianapolis, IN, USA). To generate partially single-stranded bubble substrate, the radiolabeled oligo was then annealed to three-fold excess of its partially complementary strand in the presence of 100 mM KCl . Samples were subjected to slow cooling (i.e., $1^{\circ} \mathrm{C} / \mathrm{min}$) starting from $96^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$.

3.3.3 $\mathbf{p H}$ buffer preparation

100 mM Phosphate buffer with different pH ranging from 5.8 to 8 with 0.1 intervals were prepared using 0.2 M sodium phosphate monobasic (Sigma) and 0.2 M sodium phosphate dibasic (Sigma) solutions. All solutions were made in RNase/DNase free water (Gibco) and filter-sterilized ($0.2 \mu \mathrm{~m}$) afterward. To determine the effective pH in the final alkaline cleavage reaction assay, phosphate buffer, TE buffer (used in substrate preparation), and AID storage buffer (used in GST-AID purification) were mixed to their final ratio of 6:1:3 and final pH was measured. Table 3-1 illustrates the pH solutions used in this thesis.

Table 3-1: pH solutions used in this thesis

	In 50 ml final solution		pH		
	Sodium phosphate monobasic (ml)	sodium phosphate dibasic (ml)	Aim	Measured stock	Measured effective
1	23.375	1.625	5.7	5.65	5.94
2	23	2	5.8	5.81	6.02
3	22.5	2.5	5.9	5.90	6.10
4	21.925	3.075	6.0	6.00	6.13
5	21.25	3.75	6.1	6.10	6.25
6	20.375	4.625	6.2	6.20	6.33
7	19.375	5.625	6.3	6.31	6.42
8	18.375	6.625	6.4	6.40	6.50
9	17.125	7.875	6.5	6.50	6.59
10	15.625	9.375	6.6	6.61	6.70
11	14.125	10.875	6.7	6.70	6.79
12	12.75	12.25	6.8	6.81	6.89
13	11.25	13.75	6.9	6.92	6.99
14	9.75	15.25	7.0	7.03	7.10
15	8.25	16.75	7.1	7.13	7.21
16	7	18	7.2	7.25	7.33
17	5.75	19.25	7.3	7.36	7.45
18	4.75	20.25	7.4	7.47	7.56
19	4	21	7.5	7.56	7.66
20	3.25	2.625	22.75	7.6	7.66
21	2.125	22.875	7.7	7.77	7.77
22	1.75	23.25	7.8	7.89	7.89
23	1.325			7.9	7.97
24				8.9	8.12

3.3.4 Biochemical analysis of purified GST-AID

To investigate the full spectrum of the biochemical properties of purified wild type and mutant Gm-AID, optimal temperature, optimal pH , time course, substrate specificity, enzyme kinetics, global ssDNA binding, and activity on 5-methylated cytidine ($5-\mathrm{mC}$) were explored using established assays (Abdouni et al., 2013; Dancyger et al., 2012; Larijani et al., 2007). Experiments were done using standard alkaline cleavage assay where between three to four independent protein preparations of GST-AID homologs and mutants were tested in one to four replicates. This assay is an effective tool to examine various biochemical properties of wildtype and mutant AIDs in a time-efficient manner.

In the standard alkaline cleavage assay (Figure 3-1), the radiolabeled substrate was incubated with purified GST-AID protein in phosphate buffer (Abdouni et al., 2013; Abdouni et al., 2018; Dancyger et al., 2012; Emma M. Quinlan, 2017; King et al., 2015; Larijani \& Martin, 2007). Reactions were incubated at the AID's optimal temperature and pH for different time length depending on the activity of each GST-AID homologs. To halt the GST-AID activity, samples were incubated at $85^{\circ} \mathrm{C}$ for 20 min . To remove AIDgenerated uracil from substrate, Uracil-DNA glycosylase enzyme (UDG, NEB) and its corresponding buffer were added to each reaction followed by incubation at $37^{\circ} \mathrm{C}$. The remaining abasic site was cleaved by incubating the reactions at $96^{\circ} \mathrm{C}$ for 10 min in the presence of 100 mM NaOH . To separate the substrate from product, reactions were electrophoresed on a 14% denaturing acrylamide gel. To visualize the result, gels were exposed to a Kodak Storage Phosphor Screen GP (Bio-Rad Laboratories, Inc.) and imaged using a PhosphorImager (Bio-Rad, Hercules, CA, USA).

Figure 3-1: Experimental scheme for standard alkaline cleavage assay. TGCbub7 denotes a substrate bearing the WRC motif TGC located in a seven-nucleotide-long bubble region. The right panel shows the scheme for the standard alkaline cleavage assay. The left panel shows a representative denaturing acrylamide gel. The AID activity is reported as the percentage of initial substrate which was converted into product.

To determine the optimal temperature of Gm-AID, $3 \mu 1$ of purified GST-AID was incubated with 25 fmol of ${ }^{32} \mathrm{P}$-labelled TGCbub7 substrate at various temperature points (4 ${ }^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$) in phosphate buffer with effective pH of 7.3. Ip-AID, Dr-AID and Hs-AID were tested alongside as controls. A time course experiment was also performed at three temperatures (low, optimal, high) for Gm-AID $\left(4^{\circ} \mathrm{C}, 8{ }^{\circ} \mathrm{C}\right.$ and $18{ }^{\circ} \mathrm{C}$; 12 time points; 30 min to 73 h$)$, Hs -AID $\left(8^{\circ} \mathrm{C}, 31^{\circ} \mathrm{C}\right.$ and $40^{\circ} \mathrm{C}$; 19 time points; 1 min to 70 h$)$, and Dr-AID $\left(4^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}\right.$ and $37^{\circ} \mathrm{C}$; 19 time points, 30 sec to 48 h$)$ to confirm the results.

To assess the optimal pH of each GST-AID homolog and mutants, 25 fmol of ${ }^{32} \mathrm{P}-$ labelled TGCbub7 substrate was incubated with $3 \mu \mathrm{l}$ of GST-AID preparation in $6 \mu \mathrm{l}$ of phosphate buffer with effective pH ranging from 5.9 to 8.2 (24 or 12 pH points) in final volume of 10μ. Depending on the activity of each GST-AID, reactions were incubated at optimal temperature for different time length ranging from 40 min to 96 h .

To investigate substrate sequence specificity of Gm-AID, ${ }^{32} \mathrm{P}$-labelled WRCbub7 (TGC, TAC, and AGC) or ${ }^{32} \mathrm{P}$-labelled non-WRCbub7 substrates (GGC, GTC, and GAC) were incubated with $3 \mu 1$ of GST-AID homologs at their optimal temperature and pH . GmAID, Ip-AID, Dr-AID, and Hs-AID were incubated for $96 \mathrm{~h}, 10 \mathrm{~h}, 20 \mathrm{~min}$, and 3 h , respectively. To investigate the effect of temperature on substrate specificity, Gm-AID and Hs-AID were incubated at a lower and a higher temperature than their optimal point as well. To explore any possible enzymatic role of Gm-AID in epigenetics, the activity of Gm-AID on the substate containing 5 -methylcytosine ($5-\mathrm{mC}$) was compared to that of other AID homologs. Deamination activity of GST-AID on $5-\mathrm{mC}$ was studied using ${ }^{32} \mathrm{P}$ labelled $\mathrm{TG}(\mathrm{mC})$ bub7, $\mathrm{AG}(\mathrm{mC})$ bub7, and $\mathrm{GG}(\mathrm{mC})$ bub7 which are substrates that contain
a target 5-mC rather than dC (Abdouni et al., 2013; Larijani \& Martin, 2007; Sohail et al., 2003). In the case of substrate containing $5-\mathrm{mC}$, AID activity would generate thymidine (dT). Briefly, 50 fmol of substrate was incubated with $3 \mu \mathrm{l}$ of GST-AID in phosphate buffer in the final volume of $10 \mu \mathrm{l}$ at their optimal temperature and pH for different times depending on the activity of each AID homologs. Reactions were then incubated at $85^{\circ} \mathrm{C}$ for 20 min to halt AID activity. To create a G:T mismatch double-stranded substrate, 40fold excess of a fully complementary strand was added to each reaction in the presence of 50 mM KCl . Samples were then annealed by incubation at $96^{\circ} \mathrm{C}$ for 5 min followed by slow cooling (i.e., $1{ }^{\circ} \mathrm{C} / \mathrm{min}$) starting from $96^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$. To excise the dT from the $\mathrm{G}: \mathrm{T}$ mismatch, one unit (U) of Thymine-DNA glycosylase (TDG, Trevigen, UK) and its corresponding buffer was added to each reaction followed by overnight incubation at 65 ${ }^{\circ} \mathrm{C}$. The incubation of the reactions at $96{ }^{\circ} \mathrm{C}$ in the presence of 100 mM NaOH was done to cleave the abasic site. Samples were electrophoresed on a 14% denaturing gel and the results was visualized as described for the standard alkaline cleavage assay. AID activity on the corresponding standard substrates (i.e, containing dC) was carried out alongside as controls. The results were reported as the ratio of AID activity on the standard substrate compared with methylated ones.

To compare the catalytic rate of AID homologs and mutants through MichaelisMenten kinetics, $3 \mu \mathrm{l}$ of purified GST-AID were incubated with a $0.03125-600 \mathrm{fmol}$ range (18 points) of ${ }^{32} \mathrm{P}$-labelled TGCbub7 substrate at their optimal temperature and pH . The results of the time course experiments were used to estimate the proper incubation time for each AID homolog and mutant to ensure that the AID activity was within its initial velocity.

Enzymatic velocity (fmol of deaminated product/min of incubation $/ \mu \mathrm{g}$ of AID) were plotted against substrate concentration (nM). To estimate $\mathrm{K}_{\mathrm{cat}}, \mathrm{K}_{\mathrm{m}}$ and $\mathrm{V}_{\max }$ parameters, the data was fitted into $\mathrm{Y}=\mathrm{Et} \times \mathrm{K}_{\text {cat }} \times \mathrm{X} /\left(\mathrm{K}_{\mathrm{m}}+\mathrm{X}\right)$ equation. This equation is a modified version of Michaelis-Menten kinetics where the $\mathrm{K}_{\mathrm{cat}}$ can be calculated as well. In this equation, Y is the enzyme velocity, X is the substrate concentration, Et is the concentration of enzyme catalytic sites, $\mathrm{K}_{\mathrm{cat}}$ is the number of times each enzyme site converts substrate to product per unit time (i.e, the turnover number), and K_{m} (i.e., the Michaelis-Menten constant) is the substrate concentration needed to achieve a half-maximum enzyme velocity (i.e., $\mathrm{V}_{\max }$). Since AID has one catalytic pocket, its Et is equal to the concentration of enzyme used in the experiment. To estimate the Et, the molecular weight of the GST-AID homologs and mutants were calculated using Protein Molecular Weight web-based application (https://www.bioinformatics.org/sms/prot_mw.html).

Global ssDNA binding affinity of Gm-AID isoforms were compared to other AID homologs using electrophoretic mobility shift assay (EMSA) (Larijani et al., 2007). A $0.025-2.5 \mathrm{nM}$ range of ${ }^{32} \mathrm{P}$-labelled TGCbub7 was incubated with $0.9 \mu \mathrm{~g}$ of purified GSTAID in binding buffer ($50 \mathrm{mM} \mathrm{MgCl} 2,50 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ DTT in 100 mM Phosphate buffer pH 7.21) for 1 h at their optimal temperature. Samples were then UV cross-linked on ice and electrophoresed on an 8% acrylamide native gel at $4{ }^{\circ} \mathrm{C}$. Results were plotted as fmol bound substrate against nM of free substrate. To estimate half-saturation values, data was fitted into $Y=B_{\max } \times X /\left(K_{d}+X\right)$ equation where Y is the concentration of bound fraction, X is the concentration of free fraction, $\mathrm{B}_{\max }$ is the maximum concentration of bound fraction and K_{d} is the binding affinity of GST-AID for the substrate.

3.3.5 Data collection and quantification

Quantification was done using Image Lab software (version 6.0 .1 build 34, Standard Edition, Bio-Rad Laboratories, Inc.) to perform densitometry. Data were plotted as the arithmetic mean using GraphPad Prism 5 software (version 5.00, GraphPad Software, Inc., USA) and error bars were set to represent standard error (SEM). Each point on an enzyme assay plot corresponds to the arithmetic mean of 4 to 12 data points. Where appropriate, maximum percentage of deamination activity was calculated by dividing each data point by the maximum absolute value for each data set to simplify the comparison between AID homologs with different deamination activity. The statistical significance of the qPCR results was analyzed using one-way ANOVA (IBM SPSS Statistics 20, IBM Corp.). For WRC specificity, the statistical significance of the results was analyzed using nonparametric independent samples test (IBM SPSS Statistics 20, IBM Corp.).

3.3.6 PCR-based AID activity assay

To compare the deamination activity of AID homologs on various DNA sequence and secondary structure, a deamination-specific PCR-based assay was conducted (Emma M. Quinlan, 2017; Larijani, Frieder, Basit, et al., 2005). Briefly, 200 ng of the substrate plasmid was denatured at $98^{\circ} \mathrm{C}$ for 10 min in 100 mM phosphate buffer. Four microliters of purified AID and $1^{-3} \mathrm{U}$ of UDG inhibitor (UGI, New England Biolabs) were added to each reaction after snap-cooling in an ice bath (final volume of $10 \mu 1$). Samples were incubated for various time-points ranging from 1 to 16 h at optimal conditions of each AID homolog. To detect AID-mutated plasmids, nested-PCR using deamination-specific primers (Table 3-2) was performed on serially diluted reactions ($1 / 2$ to $1 / 1000000$). One $\mu \mathrm{l}$
of each dilution was amplified under an initial denaturation step for 3 min at $96^{\circ} \mathrm{C}$ followed by 30 cycles of [$30 \sec$ at $96^{\circ} \mathrm{C} ; 30 \mathrm{sec}$ at $58^{\circ} \mathrm{C}$; and 1 min at $\left.72^{\circ} \mathrm{C}\right]$ and 10 min at $72^{\circ} \mathrm{C}$. One μl of primary PCR product was then amplified under the same cycling conditions except for using $57{ }^{\circ} \mathrm{C}$ for the annealing step. PCR products were analyzed on a 1.2% agarose gel.

Table 3－2：Deamination－specific primers used in this chapter

Gene		Direction	Primer sequence（ 5 ＇to 3^{\prime} ）	Amplicon size（bp）
Deamination－ specific primers ${ }^{\text {i }}$	雨资	Forward	GGGATATAGGGGTTTTTTGAGGTTTGGTATTATTTAAAT	548
		Reverse	ACACAACCAACTTTCATTCCAACCACAAACTTTCAATA	
	$\begin{aligned} & \text { 気 } \\ & \text { 亿 } \\ & \text { Z } \end{aligned}$	Forward	CTTATCTTGGTTCTGTGGCAACCGACTGCCTGCTAACAGG	442
		Reverse	CCAACTTTCATTCCAACCACAAACTTTCAATAAATT	

${ }^{\text {i：}}$ The primer sequences for this gene are modified to specifically amplify heavily－C－to－U－mutated sequence

3.3.7 Structure prediction and AID-DNA binding simulations

We employed a similar structure prediction approach, as described in section 2.3.9 (King \& Larijani, 2017; King et al., 2015; Zhu et al., 2015). The recently published human AID crystal structure was chosen as template for homology modeling: MBP fused AID (PDB: 5W0Z), MBP fused AID in complex with cytidine (PDB: 5W0C), MBP fused AID in complex with dCMP (PDB: 5W0U), and MBP fused AID in complex with cacodylic acid (PDB: 5W0R) (Qiao et al., 2017). The template AID structures were obtained from the protein databank (http://www.rcsb.org) and visualized using PyMOL v1.7.6 (http://www.pymol.org/). Using the default parameters of I-TASSER (http://zhanglab.ccmb.med.umich.edu/I-TASSER/), 200 models were constructed for AID homologs of which the best open conformations (refer to section 1.5.6) were chosen (Roy et al., 2010; Yang et al., 2015; Zhang, 2008). Ramachandran plots were created using Rampage and used to evaluate the quality of the proteins on an individual residue basis based on their stereochemical angles (Lovell et al., 2003).

The catalytic pocket was defined by the indented space containing the Zn coordinating and catalytic residues (Hs-AID: H56, E58, C87 and C90; Dr-AID: H60, E62, C99 and C102; Ip-AID: H59, E61, C98 and C101; Gm-AID: H60, E62, C100, C103). The catalytically accessible models were defined by accessibility of catalytic glutamate to the surface of the protein. To simulate AID-DNA binding, DNA substrate was docked to each AID model using AutoDock Vina (Trott \& Olson, 2010). The substrate was constructed using ChemDraw Prime v.16.0 (http://www.cambridgesoft.com/software/overview.aspx) and Marvin Sketch v.5.11.5 (http://www.chemaxon.com/products/marvin/marvinsketch/),
while surface topology and docking parameters were generated using Swiss-Param (http://swissparam.ch) (Zoete et al., 2011). 5'-TTTGCTT-3' ssDNA was chosen as our substrate, since it has been shown to be the preferred substrate of human and bony fish AID (Emma M. Quinlan, 2017). For each AID homolgs, five models with open conformation were selected for DNA docking. For each model, 20 docking trials were conducted, producing 8 conformations in each trial. In docking trials, we restricted the ssDNA binding within $30 \times 30 \times 30 \AA$ ($\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates) from the Tryptophan of the Loop 6. Each model was docked with a substrate. UCSF chimera v.1.11.2 (https://www.cgl.ucsf.edu/chimera) was used to view the conformations of substrate, and its interactions with AID models (Pettersen et al., 2004). Deamination-conducive AID-DNA complexes were defined by the accessibility of the NH_{2}-group of dC to the catalytic Zn -coordinating and glutamic acid residues. To analyze the interaction of each nucleotide with AID model, PyMol was used to measure amino acid residues within $4 \AA$ of the nitrogenous base and the $1^{\text {st }}$ carbon of the deoxyribose sugar.

3.3.8 Characterization of the Atlantic $\operatorname{cod} I g V_{H}$ region and

A partial immunoglobulin heavy chain locus of the Atlantic cod has previously been characterized (GenBank identifier: AJ871288.1). This sequence was aligned with BLAST against the improved version of the Atlantic cod genome (gadMor2) using default parameters of blastn task in BLAST+ program (Torresen et al., 2017). Complete protein sequences for $\operatorname{IgM}, \operatorname{IgD}$, and IgZ from GenBank were extracted to perform tblastn against the gadMor2 genome (Appendix 1). Possible constant regions were identified manually from blast results, extracted from the genomic sequence, and a reciprocal blast was
performed towards GenBank (blastx) to verify annotation. All sequences extracted from AJ871288.1 and gadMor2 genome were compared, where the annotation from AJ871288.1 was preferred.

3.3.9 WRC/GYW and WGCW motif analysis

For WRC motif analysis, Japanese puffer fish $\operatorname{Ig} V_{H}\left(\operatorname{Tr-Ig} V_{H}\right)$, and nurse shark $\operatorname{Ig} V_{H}$ $\left(G c-I g V_{H}\right)$ sequences were obtained from NCBI (Appendix 6). The nurse shark complementarity-determining regions (CDRs) were mapped from Tr-Ig gene variable regions (Fu et al., 2017; Fu et al., 2015). $H s-I g V_{H}$, mouse $\operatorname{Ig} V_{H}\left(M m-I g V_{H}\right)$, chicken $\operatorname{Ig} V_{H}$ $\left(G g-I g V_{H}\right)$, South African toad $\operatorname{Ig} V_{H}\left(X l-I g V_{H}\right), \operatorname{Ip}-\operatorname{Ig} V_{H}$, salmon $\operatorname{Ig} V_{H}\left(S s-I g V_{H}\right)$, and Dr $\operatorname{Ig} V_{H}$ sequences were obtained from IMGT (the international ImMunoGeneTics information system) database (http://www.imgt.org/) (Giudicelli et al., 2005; Lefranc, 2001, 2003; Lefranc, Clement, et al., 2005; Lefranc et al., 2015; Lefranc et al., 1999; Lefranc et al., 2009; Lefranc, Giudicelli, et al., 2005; Ruiz et al., 2000). For these sequences, the CDRs and framework regions (FRs) were identified using IMGT database. In these analyses, the number of motifs were counted in each region using Python (Version 3.8) (Van Rossum \& Drake, 2009). For WRC/GYW motifs TGC, TAC, AGC, AAC, GCA, GTA, GCT, and GTT and for WGCW motifs AGCA, AGCT, TGCA, and TGCT were counted. Then, the sum of WRC/GYW or WGCW motifs for each region was divided to the number of nucleotides analyzed for that given region to normalize for the variation in the length of each region. The average of these normalized WRC/GYW or WGCW indexes were calculated for CDRs and FRs. The enrichment of the motifs in CDRs was estimated by dividing the average index of CDR 1 and 2 by the average index of FR 1, 2, and 3. Also,
the GC content of the coding sequences was retrieved from Codon and Codon-Pair Usage Tables (CoCoPUTs) server (Alexaki et al., 2019). This database is available on https://hive.biochemistry.gwu.edu/review/codon2.

3.4 Results

3.4.1 Atlantic cod AID extreme cold adaptation and lethargic activity

To investigate the functional properties of Gm-AIDs, we expressed and purified Gm-AID and T-Gm-AID as N-terminally tagged GST fusion proteins (Figure 3-2) (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani et al., 2007). We first sought to determine whether Gm-AID is an active cytidine deaminase using the standard alkaline cleavage assay. The seven nucleotide long partially single-stranded oligonucleotide bubble substrate TGCbub7 is the most favored substrate for all studied bony fish AIDs thus far (Emma M. Quinlan, 2017). Therefore, we tested Gm-AID activity on TGCbub7 substrate in the alkaline cleavage assay, which is the gold standard assay to measure AID/APOBEC cytidine deamination activity (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani et al., 2007). Following initial experiments with overnight incubation of Gm-AID with TGCbub7 at 18,25 , and $37{ }^{\circ} \mathrm{C}, \mathrm{Gm}$-AID appeared to lack enzymatic activity (Figure 3-3 A). Considering that bony fish AIDs vary in their optimal temperature, we incubated Gm-AID at a wider temperature range (10 to 40 ${ }^{\circ} \mathrm{C}$) for longer incubation periods (Figure 3-3 B). Since the temperature profile of Hs-AID and Ip-AID have been studied before, we also tested these AID homologs alongside of Gm-AID as controls (Figure 3-3 C). Since incubation time used in these experiments were longer than optimal for Hs-AID and Ip-AID, their temperature profiles obtained here are not consistent with their true temperature profile. Overall, these experiments revealed that Gm-AID was an active, but weak cytidine deaminase.

Figure 3-2: AID purification in prokaryotic and eukaryotic expression systems. A) Representative coomassiestained SDS protein electrophoresis gels. After expression of GST-AID in bacteria (E.coli) and purification of GST-AID protein through GST affinity column, purity and yield of GST-AID were assessed by coomassiestained SDS protein electrophoresis in comparison to BSA standards. B) A representative western blot. After expression of GST-AID in human embryonic kidney cells 293 (HEK239T) and purification of GST-AID protein through GST affinity batch binding, purity and yield of GST-AID were assessed using western blotting. AID was probed with anti-GST (SantCruz) antibodies, followed by the secondary detection by Goat anti-Rabbit IgG (SantaCruz).

Figure 3-3: Functional analysis of purified Atlantic cod AID. Gm-AID was expressed and purified alongside other AID homologs as a GST-fusion protein and tested for cytidine deamination activity using the standard alkaline cleavage assay. Deamination activity (\%) (\%) is presented below each lane. All experiments were done using ${ }^{32} P$-labelled TGCbub7 substrate in duplicate. A) Purified Gm-AID and Hs-AID were incubated with substrate at 18, 25 and $37^{\circ} \mathrm{C}$ for 16 h showing barely detectible deamination activity for Gm-AID. B) Sixteen-hour prolonged incubation of purified Gm-AID with substrate revealed a preference for lower temperatures. C) Hs-AID and Ip-AID activity on ${ }^{32} P$-labelled TGCbub7 substrate at various incubation temperature points were tested alongside of Gm-AID as controls.

We then examined the temperature and pH profile of Gm-AID. To determine the exact optimal temperature and pH of Gm-AID, it was incubated with TGCbub7 at fine temperature increments (4 to $40^{\circ} \mathrm{C}$) in phosphate buffer with pH of 7.3 . As controls, we tested Dr-AID, Ip-AID, and Hs-AID, whose temperature sensitivity profiles are well established (Dancyger et al., 2012; Emma M. Quinlan, 2017). As expected, Ip-AID, DrAID, and Hs-AID showed optimal temperature of 14,25 and $31^{\circ} \mathrm{C}$, respectively; however, Gm-AID was most active at $8{ }^{\circ} \mathrm{C}$. As expected, at $4^{\circ} \mathrm{C}$ Hs-AID is completely inactive, and the activity of Dr-AID and Ip-AID are significantly reduced, whilst Gm-AID strikingly maintains a near optimal activity level (Figure 3-4 A).

We then studied the optimal pH of AID homologs in buffer with effective pH ranging from 5.9 to 8.2 . We found the optimal pH of about $7.3,7.6,7.9$, and 8.1 for HsAID, Dr-AID, Ip-AID, and Gm-AID, respectively (Figure 3-4 B). These measured optimal temperature and pH were used in all the experiments hereafter. To further confirm the cold adaptation of Gm-AID, time course enzyme kinetics were carried at optimal, higher, and lower than optimal temperatures (Figure 3-4 C). Gm-AID activity continued to increase at $8{ }^{\circ} \mathrm{C}$ even after 72 hours, confirming $8{ }^{\circ} \mathrm{C}$ as the optimal temperature of this AID. The faster increase in deamination activity of Gm-AID in the beginning (the first 20 hours) at $18^{\circ} \mathrm{C}$ compared to $8^{\circ} \mathrm{C}$ and the plateau of the activity at $18^{\circ} \mathrm{C}$ after initial 24 hours suggest that Gm-AID is less structurally stable at $18^{\circ} \mathrm{C}$ than at $8^{\circ} \mathrm{C}$. The continuous increase in AID activity at $8{ }^{\circ} \mathrm{C}$ is consistent with this being the optimal temperature of Gm-AID. These results indicate that Gm-AID is a cold-adapted enzyme, exhibiting the coldest optimal temperature reported for a vertebrate DNA/RNA-editing enzyme.

Figure 3-4: Atlantic cod AID Optimal temperature and pH. A) Optimal temperature of Gm-AID was compared to that of other AID homologs at fine temperature increments (4 to $40^{\circ} \mathrm{C}$). Three to four independent protein preparations of each AID homolog were tested. Results are plotted as deamination activity percentage (left panel) and percentage of maximum deamination activity (right panel), revealing optimal temperature of $8,14,25$ and $31^{\circ} \mathrm{C}$ for Gm-AID, Ip-AID, Dr-AID, and Hs-AID, respectively. B) Optimal pH of Gm-AID was examined in phosphate buffer with effective pH ranging from 5.9 to 8.2. Results are plotted as deamination activity percentage (left panel) and percentage of maximum deamination activity (right panel). Results indicated that Gm-AID is the most basic-adapted AID reported in this chapter with the optimal pH of 8.1. The optimal pH of Hs-AID, Dr-AID, and Ip-AID were reported as about 7.3, 7.6, and 7.9. C) Time course enzyme kinetic assay was conducted at three temperature points (optimal, below, and above optimal) and corresponding optimal pH of each AID homolog. Three independent preparations of Gm-AID (30 min to 73 h), Hs- AID (1 min to 70 h), and Dr-AID (30 sec to 48 h) were tested in duplicate ($n=6$). Data is represented as mean \pm SEM

Since Gm-AID exhibited extremely weak cytidine deaminase activity only after unusually long incubation periods, we sought to verify that the weak activity was indeed bona fide cytidine deaminase catalytic activity. To this end, we generated two independent Gm-AID mutants lacking the catalytic glutamate (E62). Comparison of deamination activity of wildtype Gm-AID to that of $\mathrm{Gm}-\mathrm{AID}^{\mathrm{E} 62 \mathrm{G}}$ and $\mathrm{Gm}-\mathrm{AID}^{\mathrm{E} 62 \mathrm{Q}}$ showed that these mutations indeed abolished deamination activity of Gm-AID (Figure 3-5 A). We also tested T-Gm-AID using our standard alkaline cleavage (Figure 3-5 B) and the PCR-based deamination assays (Figure 3-6 B) and we did not observe any consistent cytidine deamination activity. This result was expected due to truncation of substantial portion of the enzyme (21 amino acids) from its N -terminus in T-Gm-AID.

These data were obtained with bacterially expressed and purified GST-AID. To verify that the obtained result is not due to bacterial expression system, we expressed GmAID in a eukaryotic expression system (293T cells), along with Dr-AID as a positive control (Figure 3-2 B). We confirmed that in eukaryotic expression system, Gm-AID exhibits no detectable cytidine deamination activity (Figure 3-5 C). In the eukaryotic expression system, even Dr-AID showed much less cytidine deaminase activity ($<20 \%$ within 16 h incubation at $18^{\circ} \mathrm{C}$) compared with the bacterially expressed Dr-AID ($\sim 40 \%$ within 40 min of incubation at $18{ }^{\circ} \mathrm{C}$). Taken together, these data indicate that Gm-AID, even in optimal conditions, is an ineffective cytidine deaminase.

Figure 3-5: Bona fide cytidine deaminase activity of Atlantic cod AID. A) To confirm that the unusually low activity of Gm-AID is bona fide cytidine deaminase activity, wild type Gm-AID catalytic activity was compared to that of two mutants targeting essential catalytic pocket cytidine deamination residues (E62G and E62Q). Two independent protein preparations of each mutant were tested at 4, 8, and $18{ }^{\circ} \mathrm{C}$ for 63 h . Ip-AID was tested as a positive control. B) To assess activity of T-Gm-AID, it was incubated with various substrates containing WRC or non-WRC motifs for 96h. Gm-AID was used as control. Two protein preparation of each AID homolog were tested in duplicate at three different temperature point (optimal, below, and above optimal; $n=6$). C) To exclude the effect of expression system in our analysis, we expressed AID in HEK 293 T cells. The cytidine deaminase activity of GST-AID expressed in this system was studied using alkaline cleavage assay. GST-AID was analyzed in the form of cell lysate, purified on GST beads, or eluted from GST beads. AIDs were incubated with TGCbub7 substrate for various time point at 8 or $18^{\circ} \mathrm{C}$.

Next, we sought to qualitatively compare the cytidine deaminase capability of GmAID to that of other AID homologs through two independent approaches. First, we used our standard alkaline cleavage assay for measuring cytidine deamination by AID/APOBECs to conduct standard Michaelis-Menten (MM) kinetics to compare the catalytic parameters of AID homologs. The MM kinetics describes the enzymatic reaction rate as a function of substrate concentration using the catalytic rate constant $\left(\mathrm{K}_{\mathrm{cat}}\right)$ and the Michaelis-Menten constant (K_{m}) (Berg et al., 2002; Choi et al., 2017; Roskoski, 2015). $\mathrm{K}_{\text {cat }}$ is the turnover number of an enzyme and is defined at the number of substrate molecules converted into product by an enzyme molecule in a unit time when the enzyme is fully saturated with substrate (Berg et al., 2002; Choi et al., 2017; Roskoski, 2015). The $\mathrm{K}_{\text {cat }}$ value for most enzymes is between 1 to $10^{4} \mathrm{~S}^{-1}$ (Berg et al., 2002). K_{m}, is an important characteristic of an enzyme and is equal to the substrate concentration at which the reaction rate is half of the maximum rate $\left(\mathrm{V}_{\max }\right) . \mathrm{V}_{\max }$ is reached when the enzyme's catalytic site(s) is saturated with substate (Berg et al., 2002; Choi et al., 2017; Roskoski, 2015). For most enzymes, K_{m} is between 10^{-1} to $10^{-7} \mathrm{M}$ (Berg et al., 2002). K_{m} value is determined for a given pair of enzyme and substrate and depends on the environmental conditions such as pH , temperature, and ionic strength. K_{m} provides a measure of the binding affinity of the enzyme for its substrate, and in the case of AID, because the enzyme has many noncatalytic bindings, the measure of the enzyme's catalytic pocket affinity for the substrate dC (Berg et al., 2002). The $\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ ratio is a measure of catalytic efficiency of an enzyme where a perfect enzyme has a $\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ of $10^{8}-10^{9} \mathrm{~s}^{-1} \mathrm{M}^{-1}$ (Berg et al., 2002; Newton et al., 2015; Roskoski, 2015). It is important to note that using $\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ to compare the catalytic
efficiency of two enzymes has limitations such as two enzymes with different $K_{\text {cat }}$ and K_{m} values could have the same $\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ (Newton et al., 2015). Therefore, all three values of K_{m}, $\mathrm{K}_{\mathrm{cat}}$, and $\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ should be considered when comparing different enzymes.

As a second independent method for assaying the relative enzymatic activity of Gm-AID, we used a PCR-based deamination assay which is a sensitive method for quantifying AID-mediated mutation levels on multi-kb-long DNA substrates (Emma M. Quinlan, 2017; Larijani, Frieder, Sonbuchner, et al., 2005). In this assay, a plasmid substrate was incubated with each purified GST-AID homolog/mutant at its corresponding optimal pH and temperature. The AID-treated plasmid substrate was then PCR amplified using deamination-specific primers to detect highly mutated plasmid substrate. To determine the relative amount of highly mutated DNA in each reaction, the AID activity assay reactions were serially diluted prior to being subject to deamination-specific PCR.

Consistent with previous findings (Barreto et al., 2005; Dancyger et al., 2012; King et al., 2015; Wakae et al., 2006), we observed that, under our experimental conditions, DrAID exhibited the highest catalytic rate, ~ 9-fold higher that Hs-AID, while the catalytic rate of Ip-AID showed ~ 13-fold lower activity than Hs-AID. The catalytic rate of Gm-AID, however, was orders of magnitude lower than all three: $\sim 3100,350$, and 25 -fold lower than Dr-AID, Hs-AID, and Ip-AID, respectively (Figure 3-6 A and Table 3-3).

As expected, no cytidine deamination activity was detected for T-Gm-AID and the catalytically-inactive mutants (i.e., Hs-AID ${ }^{\mathrm{C} 90 \mathrm{~F}}$ and $\mathrm{Gm}^{-\mathrm{AID}^{\mathrm{E} 62 \mathrm{G}} \text {), confirming the result of }}$ alkaline cleavage assay (King et al., 2015). Serial dilution analysis revealed Dr-AID to be 10-100-fold more active than Hs-AID, whilst Gm-AID supported 100- and 10,000 -fold
less mutation levels than Hs-AID and Dr-AID, respectively (Figure 3-6 B). These data provide independent confirmation of relative activity levels obtained in the alkaline cleavage assay.

Figure 3-6: Comparison of the catalytic rate of Atlantic cod AID with other AID homologs. A) The catalytic rate of Gm-AID was compared to that of other AID homologs through Michaelis-Menten kinetics. Three independent protein preparations of each of the AID homolog were incubated at their optimal temperature with 0.03125-600 fmol range of TGCbub7 substrate. Each reaction was carried out in duplicate. Results revealed that Gm-AID's catalytic rate was $\sim 3100,350$, and $25-$ fold lower than Dr-AID, Hs-AID, and Ip-AID, respectively. Data is represented as mean $\pm S E M$ ($n=6$). B) The relative catalytic activity of Gm-AID was confirmed through a PCR-based deamination assay using a single-stranded plasmid as the substrate. To assess AID activity on various ssDNA sequences and topologies, purified AID was incubated between 1 to 16 h with heat-denatured substrate plasmid. Each reaction was diluted up to $1 / 1000000$. PCR was performed using deamination-specific primers that only amplify AID-mutated plasmids. The experiment was repeated 4 times, and the presence of a PCR band in each independent experiment was recorded as a black dot below each lane in the representative gel. Consistent with lack of cytidine deaminase activity in the alkaline cleavage assay, no activity was detected for the catalytically dead AIDs (Hs-AID ${ }^{\text {C90F }}$, Gm-AID ${ }^{E 62 G}$ and T-Gm-AID). Comparison of the highest dilutions of the AID reaction in which a PCR band was detected showed that Gm-AID is approximately 100 and 10000-fold less active than Hs-AID and Dr-AID, respectively. No PCR band was detected in negative control reactions.

Table 3-3: Michaelis-Menten kinetics parameters measured for each AID homolog

	Temp (${ }^{\circ} \mathrm{C}$)	pH	$\begin{gathered} \mathrm{K}_{\mathrm{cat}} \\ \left(\mathrm{~min}^{-1}\right) \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{m}} \\ (\mathrm{nM}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\max } \\ (\mathrm{fmol} / \mathrm{min} / \mu \mathrm{g}) \end{gathered}$	Std. Error		R^{2}	$\begin{gathered} \mathrm{K}_{\mathrm{cat}} / \mathrm{Km}_{\left(\mathrm{min}^{-1} \mathrm{nM}^{-1}\right)} \end{gathered}$	Activity ratio
						$\mathrm{K}_{\mathrm{cat}}\left(\mathrm{min}^{-1}\right)$	$\mathrm{K}_{\mathrm{m}}(\mathrm{nM})$			
Gm-AID	8	8.08	$1.36 \mathrm{E}-06$	44.05	0.02585	$3.05 \mathrm{E}-08$	3.421	0.9735	$3.09 \mathrm{E}-08$	1.00
Ip-AID	14	7.89	$5.50 \mathrm{E}-05$	68.77	1.058	$1.62 \mathrm{E}-06$	6.52	0.9675	8E-07	25.87
Hs-AID	31	7.31	0.001448	133.8	28.13	$3.72 \mathrm{E}-05$	9.465	0.9815	$1.08 \mathrm{E}-05$	350.01
Dr-AID	25	7.56	0.002612	27.16	50.08	$8.31 \mathrm{E}-05$	3.104	0.9543	$9.62 \mathrm{E}-05$	3110.37

Abbreviations: Gm-AID: Atlantic cod AID; Ip-AID: channel catfish AID; Hs-AID: human AID; Dr-AID: zebrafish AID.

3.4.2 Atlantic cod AID activity on methylated cytidine

A controversial role for AID in epigenetics reprograming has been suggested through deamination of 5-methylated cytidine $(5-\mathrm{mC})$ leading to CpG motif demethylation (Bhutani et al., 2013; Dominguez et al., 2015; Moon et al., 2016; Popp et al., 2010; Rai et al., 2008). Studied AID homologs do not deaminate $5-\mathrm{mC}$ with significant efficiency with the exception of Dr-AID (Abdouni et al., 2013; Larijani, Frieder, Sonbuchner, et al., 2005; Nabel et al., 2012; Wijesinghe \& Bhagwat, 2012). We examined Gm-AID activity on substrate containing 5-mC instead of dC (Abdouni et al., 2013). As expected, TG(mC)bub7 was the most favorable methylated substrate for all studied AIDs (Figure 3-7). We found that unlike Dr-AID and Hs-AID, which could deaminate $5-\mathrm{mC}$ situated in different sequence motifs, Ip-AID and Gm-AID demonstrated activity only on TG(mC)bub7 (Figure 3-7 A). Exploring dC/5-mC deamination efficiency over time showed that for all tested AIDs, the ratio of deamination activity on $\mathrm{dC} v s .5-\mathrm{mC}$ improves over time (Figure 3-7 B). This phenomenon is due to the higher catalytic efficiency of AID on dC vs. $5-\mathrm{mC}$ (Abdouni et al., 2013). Although Gm-AID showed increased activity on $5-\mathrm{mC}$ over time (1.5% at 72 $\mathrm{h} v .3 .9 \%$ at 120 h), its activity on $5-\mathrm{mC}$ was 5 -fold and 2 -fold lower than on dC at 72 h and 120 h , respectively.

Figure 3-7: Atlantic cod AID activity on 5-mC. A) To examine AID deamination activity on methylated cytidine, activity of AID homologs on TGCbub7, AGCbub7, and GGCbub7 were compared to that of TGmCbub7, AGmCbub7, and GGmCbub7. Two independent protein preparations of each AID homolog were tested in duplicate at their corresponding optimal temperature (i.e., 31, 25, 14, and $8{ }^{\circ} \mathrm{C}$ for Hs -Aid, Dr-AID, Ip-AID, and Gm-AID, respectively). The incubation time was set as 30 min, $3 \mathrm{~h}, 10 \mathrm{~h}$, and 96 h for Dr-AID, Hs-AID, Ip-AID, and Gm-AID. Consistent with previous publications, Dr-AID showed the highest efficiency in deaminating $5-m C$; while, Ip-AID and Gm-AID showed low activity on $5-m C$, only on TGmCbub7 substrate. B) To confirm the result of the previous experiment, AID activity on TGmCbub7 substrate was studied over 3 various time points for each AID homolog corresponding to their catalytic activity robustness. As expected, the ratio of deamination activity on $d C v s$. 5-mC improved over time, consistent with the higher catalytic efficiency of AID enzyme on dC. Results confirmed that Gm-AID does not have significant activity on $5-m C$. Data is represented as mean $\pm \operatorname{SEM}(n=4)$.

3.4.3 The basis of Atlantic cod AID lethargy

As mentioned in the previous chapter (section 2.4.5), comparison of Gm-AID primary sequence and computational models with those of other AID homologs revealed similar overall structure and the presence of a viable catalytic pocket. In this chapter, we examined the surface of Gm-AID and its ssDNA binding affinity. Gm-AID has a charge of +10.41 (at pH 7) which, like Hs-AID (charge of +10.25 at pH 7), ought to enable it to efficiently bind negatively charged ssDNA (Figure 3-8 A). We previously showed that all studied jawed vertebrate AID homologs bind ssDNA substrate with nM-range affinity (Dancyger et al., 2012; Emma M. Quinlan, 2017). We evaluated Gm-AID and T-Gm-AID ssDNA binding affinity using electrophoretic mobility shift assay (EMSA) and observed that both bind ssDNA with the same high nM-range affinity (Figure 3-8 B). Therefore, the extremely low catalytic rate of Gm-AID is not due to global ssDNA binding impairment.

EMSA provides a measure of global surface ssDNA binding by AID but only a minor fraction of ssDNA bound on AID's surface passes over its catalytic pocket and can be deaminated (King \& Larijani, 2020; King et al., 2015). In other words, the majority of AID:ssDNA interactions result in catalytically non-productive enzyme:substrate complexes (King \& Larijani, 2020; King et al., 2015). To evaluate specific ssDNA binding over the catalytic pocket, we performed docking simulations as used previously to discern AID binding to ssDNA target (King \& Larijani, 2017; King et al., 2015). As has been shown for Hs-AID, here we observed two distinct ssDNA binding grooves on the surface of Gm-AID, Dr-AID, and Ip-AID (Figure 3-8 C and Figure 3-9) (Abdouni et al., 2018; Emma M. Quinlan, 2017; King et al., 2015; Qiao et al., 2017). However, we also noticed
alternative ssDNA:AID interactions in which substrate was highly solvent exposed. These alternative ssDNA binding modes resulted from involvement of $\alpha 4$ in interacting with ssDNA (Figure 3-8 C and Figure 3-9). Interestingly, we noted that the contribution of $\alpha 4$ in interaction with ssDNA was significantly increased in Gm-AID relative to other homologs: $21 \%, 6 \%, 6 \%$, and 8% for Gm-AID, Ip-AID, Dr-AID, and Hs-AID, respectively (Table 3-4).

Docking simulations suggested two potential residues responsible for this phenomenon. First, we noticed a positive residue on $\ell 2$ in $\mathrm{Hs}-\mathrm{AID}^{\mathrm{R} 25}$ and $\mathrm{Dr}-\mathrm{AID}^{\mathrm{H} 29}$ which was replaced with a polar uncharged residue in $\mathrm{Gm}_{\mathrm{A}} \mathrm{AID}^{\mathrm{N} 29}$ (Figure 3-8 D and E). This residue, located at the immediate surface perimeter or the "mouth" of the catalytic pocket, is important for efficient arching and positioning of dC into the catalytic pocket (Harjes et al., 2013; King \& Larijani, 2017; King et al., 2015; Shi et al., 2017). Interestingly, it was confirmed that, in the crystal structure of human AID bound to dCMP, R25 interacts with 5' phosphate of dC (Qiao et al., 2017). Second, we previously demonstrated that AID's catalytic pocket accessibility is determined by secondary catalytic residues that function as a supporting network to stabilize the target dC (King et al., 2015). In the previous chapter, we noted that although most secondary catalytic residues are conserved amongst AID homologs, Hs-AID ${ }^{\mathrm{E} 122}$ is uniquely different in $\mathrm{Gm}^{-A I D}{ }^{\mathrm{H} 136}$ (Figure 3-8 A, D and E). This glutamic acid to histidine change in Gm-AID may favor the aforementioned interaction of $\alpha 4$ with ssDNA. Docking simulations revealed a 3- to 8 -fold increase in interactions between $\mathrm{Gm}-\mathrm{AID}^{\mathrm{H} 136}$ and the -1 position nucleotide upstream of the target dC , relative to the conserved glutamic acid of other species (Table 3-5). It was previously suggested that
the interactions between $\ell 8$ and the bases at the -1 and -2 positions (with respect to the dC) define the substrate specificity in the AID/APOBEC family (Gajula et al., 2014; Iyer et al., 2011; Kohli et al., 2009). Therefore, increased interactions between the Gm-AID ${ }^{\mathrm{H136}}$ residue, which reside in $\alpha 4$, indirectly indicates that the interactions between Gm-AID l8 and the -1 position nucleotide may be disrupted. Notably, perturbation of Hs-AID ${ }^{\text {E122 }}$ results in a drastic reduction in activity consistent with its important role as a secondary catalytic residue and its conservation in AIDs (Gajula et al., 2014; King et al., 2015).

In the previous chapter, we also showed that Gm-AID ${ }^{\mathrm{H136}}$ could cause protrusion of Gm-AID ${ }^{\mathrm{Y} 127}$ into the catalytic pocket, leading to its closure. Interestingly, our computational modeling revealed that $\mathrm{Gm}_{\mathrm{AID}}{ }^{\mathrm{H} 136 \mathrm{E}}$ could prevent the Y 127 protrusion into the active site (refer to chapter two; section 2.4.5). Previously, our lab and others have suggested a significant role of Hs-AID ${ }^{\mathrm{Y} 114}$ in shaping the catalytic pocket and defining the substrate specificity of AID (Gajula et al., 2014; King et al., 2015). More recently, the crystal structure of human AID revealed that Y114 (equivalent to Gm-AID ${ }^{\mathrm{Y} 127}$) interacts with the O5'of dC and is involved in holding dC in the catalytic pocket (Qiao et al., 2017). Therefore, any amino acid change in this position may significantly hamper AID activity, consistent with its conservation amongst AID homologs. Close to Gm-AID ${ }^{\mathrm{H136}}$, another amino acid position also showed a noteworthy change of charge. Position 137 in Gm-AID is occupied by the non-polar amino acid of valine ($\mathrm{Gm}_{\mathrm{AID}}{ }^{\mathrm{V} 137}$) while the corresponding position in Dr-AID and Ip-AID is occupied by the positively-charged amino acid of arginine (Dr-AID ${ }^{\mathrm{R} 136}$ and $\mathrm{Ip}-\mathrm{AID}^{\mathrm{R} 135}$).

Taken together, the structural prediction and ssDNA docking analysis suggested that the lack of a critical positive residue on $\ell 2$ and the substitution of Hs-AID ${ }^{\mathrm{E} 122}$ with Gm-AID ${ }^{\text {H136 }}$ have created conditions where $\alpha 4$ involvement in substrate binding has increased 3- to 4-fold in Gm-AID. To test this hypothesis, we generated several Gm-AID mutants. We observed that all the mutants, except for Gm-AID ${ }^{\mathrm{H} 136 \mathrm{E}-\mathrm{V} 137 \mathrm{R}}$, showed a low to moderate increase in catalytic activity (i.e., $\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$) with Gm-AID ${ }^{\mathrm{N} 29 \mathrm{R}-\mathrm{H} 136 \mathrm{E}-\mathrm{V} 137 \mathrm{R}}$ exhibiting the highest improvement in catalytic activity (i.e., ~ 10-fold; Table 3-6). Therefore, we concluded these residues were partially responsible for the lethargic activity of Gm-AID.

Figure 3-8: Basis of Atlantic cod AID lethargy. A) Predicted surface topology of Gm-AID was compared to that of other AID homologs. Positive, neutral, and negative residues are colored blue, white, and red,
respectively. The putative catalytic pocket is colored in purple. Surface charge (at pH 7.00) is shown below each model. The end of $l 8$ and the beginning of $\alpha 4$ which are different in Gm-AID compared to other AID homologs are labelled with a green circle and residue names. B) EMSA was conducted to compare global ssDNA binding affinity of AID homologs. Purified AIDs were incubated with a 0.025 to 2.5 nM range of [substrate] for 1 h. Results were plotted as fmol bound substrate against nM free substrate. For each of the AID homolog, 2 to 3 protein preparations were tested in duplicate. Estimated K_{d} and upper limits show no significant difference amongst AID homologs. C) Docking of ssDNA on the surface of the Gm-AID model revealed the presence of the two main ssDNA binding groove 1 and 2 previously identified in Hs-AID, as well as alternative ssDNA binding mode which involve the $\alpha 4$ region. The contribution of different binding modes is shown for each of the AID homolog. D) Interactions between AID residues and ssDNA are shown as heatmaps. Amino acid residues interacting with substrate in $50-100 \%, 30-50 \%, 15-30 \%, 5-15 \%, 0-5 \%$, and 0% of docking events are shown in red, dark orange, light orange, yellow, sand and wheat colors, respectively. Shown with arrows are two potential amino acids that contribute to increasing the involvement of Gm-AID $\alpha 4$ and their counterparts in other AID homologs. E) Partial alignment of the AID homologs surrounding Gm-AID ${ }^{N 29}$, Gm-AID ${ }^{H 136}$, and Gm-AID ${ }^{V 137}$ residues. These residues were later altered to their Hs-AID or Dr-AID counterparts. Green box shows the end of $l 8$ which is different in bony fish AIDs compared to other AID homologs. F) The catalytic rate of Gm-AID mutants was compared to that of wildtype Gm-AID through Michaelis-Menten kinetics. Data is represented as mean $\pm \operatorname{SEM}(n=4)$.

Figure 3-9: AID ssDNA binding modes. Docking of ssDNA on the surface of the Hs-AID, Dr-AID, and IpAID revealed the presence of the main ssDNA binding groove 1 and 2, as well as alternative binding mode which involves AID $\alpha 4$ region. The contribution of different binding modes is shown for each AID homolog. Abbreviations: Dr-AID: zebrafish AID; Ip-AID: channel catfish AID; Hs-AID: human AID.

Table 3-4: Comparison of DNA interaction with substrate binding grooves on the surface of AID homologs

	Hs-AID (\%)	Dr-AID (\%)	Ip-AID (\%)	Gm-AID (\%)
ssDNA binding groove 1	75.53	38.71	54.22	48.39
ssDNA binding groove 2	7.45	29.03	30.12	16.13
ssDNA binding groove 1 and 2	7.45	19.35	8.43	14.52
Direct involvement of $\alpha 4$	8.51	6.45	6.02	20.97

Abbreviations: Gm-AID: Atlantic cod AID; Dr-AID: zebrafish AID; Ip-AID: channel catfish AID; Hs-AID: human AID.

Table 3-5: Comparison of Gm-AID ${ }^{H 136}$ residue in interaction with -1 position nucleotide upstream of the target $d C$ and total interactions with substrate to its equivalent residue in other AID homologs

	Interaction with G in TGC motif (\%)	Total interactions with substrate (\%)
Hs-AID ${ }^{\text {E122 }}$	5.319\%	18.685\%
Dr-AID ${ }^{\text {E135 }}$	3.226%	9.677\%
Ip-AID ${ }^{\text {E134 }}$	2.410\%	28.916\%
Gm-AID ${ }^{\text {H136 }}$	16.129\%	53.226\%

Abbreviations: Gm-AID: Atlantic cod AID; Dr-AID: zebrafish AID; Ip-AID: channel catfish AID; Hs-AID: human AID.

Table 3-6: Michaelis-Menten kinetics parameters measured for Gm-AID mutants

	Temp$\left({ }^{\circ} \mathrm{C}\right)$	pH	$\underset{\left(\mathrm{min}^{-1}\right)}{\mathrm{K}_{\mathrm{cat}}}$	$\begin{gathered} \mathrm{K}_{\mathrm{m}} \\ (\mathrm{nM}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{\max } \\ (\mathrm{fmol} / \min / \mu \mathrm{g}) \end{gathered}$	Std. Error		R^{2}	$\underset{\left(\mathrm{min}^{-1} \mathrm{nM}^{-1}\right)}{\mathrm{K}_{\mathrm{cat}} / \mathrm{Km}^{-1}}$	Activity ratio
						$\mathrm{K}_{\text {cat }}\left(\mathrm{min}^{-1}\right)$	$\mathrm{K}_{\mathrm{m}}(\mathrm{nM})$			
Gm-AID	8	8.08	$1.36 \mathrm{E}-06$	44.05	0.02585	$3.05 \mathrm{E}-08$	3.421	0.9735	$3.09 \mathrm{E}-08$	1.00
Gm-AID ${ }^{\text {N29H }}$	8	8.08	$4.87 \mathrm{E}-06$	119.8	0.09242	$1.47 \mathrm{E}-07$	10.31	0.9883	$4.07 \mathrm{E}-08$	1.32
Gm-AID ${ }^{\text {N29R }}$	8	7.89	$2.44 \mathrm{E}-05$	491.7	0.4619	$1.23 \mathrm{E}-06$	44.7	0.9944	$4.95 \mathrm{E}-08$	1.60
Gm-AID ${ }^{\text {H136E }}$	8	7.89	$2.64 \mathrm{E}-06$	26.13	0.05013	8.80E-08	3.206	0.9654	$1.01 \mathrm{E}-07$	3.27
Gm-AID ${ }^{\text {V137R }}$	8	7.99	$2.43 \mathrm{E}-06$	59.46	0.04616	8.58E-08	6.942	0.973	$4.09 \mathrm{E}-08$	1.32
Gm-AID ${ }^{\text {N29H-H136E }}$	8	7.99	7.68E-06	32.75	0.1458	$4.02 \mathrm{E}-07$	6.161	0.9241	$2.35 \mathrm{E}-07$	7.59
Gm-AID ${ }^{\text {N29H-V137R }}$	8	7.89	$1.01 \mathrm{E}-05$	143.7	0.1916	$4.09 \mathrm{E}-07$	15.7	0.9828	$7.04 \mathrm{E}-08$	2.28
Gm-AID ${ }^{\text {N29R-H136E }}$	8	7.77	$1.54 \mathrm{E}-05$	80.84	0.2921	$6.06 \mathrm{E}-07$	9.94	0.9718	$1.9 \mathrm{E}-07$	6.16
Gm-AID ${ }^{\text {N29R-V137R }}$	8	7.56	$3.78 \mathrm{E}-05$	241	0.7154	$1.83 \mathrm{E}-06$	26.76	0.9856	$1.57 \mathrm{E}-07$	5.07
Gm-AID ${ }^{\text {H136E-V137R }}$	8	7.89	6.73E-06	254.9	0.1277	$4.56 \mathrm{E}-07$	38.89	0.9733	$2.64 \mathrm{E}-08$	0.85
Gm-AID ${ }^{\text {N29H-H136E-V137R }}$	8	7.89	7.42E-06	36.38	0.1407	$2.28 \mathrm{E}-07$	3.979	0.9741	$2.04 \mathrm{E}-07$	6.60
Gm-AID ${ }^{\text {N29R-H136E-V137R }}$	8	7.77	$1.48 \mathrm{E}-05$	44.23	0.2812	$4.19 \mathrm{E}-07$	4.334	0.9789	$3.36 \mathrm{E}-07$	10.85

Abbreviation: Gm-AID: Atlantic cod AID.

3.4.4 Potentially different substrate binding strategy in bony fish AIDs

We noticed two important structural differences between bony fish and tetrapod AIDs studied in this chapter. First, the end of $\ell 8$ contains four negatively charged amino acids in Dr-AID ${ }^{129 \text { DEED132 }}$ and Ip-AID ${ }^{128 D E E D 131}$ (bony fish), creating a highly negative region close to $\alpha 4$. This region in X1-AID ${ }^{120 E E R N 123}$ (Xenopus laevis, the South African clawed toad, amphibian), Pw-AID ${ }^{117 E E Q N 120}$ (Pleurodeles waltl, Iberian ribbed newt, reptile), Gg-AID ${ }^{117 E D R K 120}$ (Gallus gallus domesticus, chicken, bird), Mm-AID ${ }^{117 E D R K 120}$ (Mus musculus, mouse, rodent), and Hs-AID ${ }^{117 \text { EDRK } 120 ~(H o m o ~ s a p i e n s, ~ h u m a n, ~ p r i m a t e) ~}$ contains only two negatively charged amino acids. Additionally, except for Pw-AID, other tetrapod AIDs studied in this report contain a positively charged amino acid (i.e., arginine) in this region (Figure 3-8 A [green circle] and E [green box]). Secondly, the amino acid position 25 in Hs-AID (R25) and its corresponding position in other tetrapod AIDs contains a positively charged amino acid (i.e., $\mathrm{Xl}-\mathrm{AID}^{\mathrm{H} 27}$, $\mathrm{Pw}-\mathrm{AID}^{\mathrm{H} 25},{\mathrm{Gg}-\mathrm{AID}^{\mathrm{R} 25} \text {, and } \mathrm{Mm}-~}_{\text {a }}$ $\left.\mathrm{AID}^{\mathrm{H} 25}\right)$.

The crystal structure of APOBEC3A (A3A; AID's close relative) has shown that the same position in A3A (i.e., H29) hydrogen bonds with the phosphate backbone of ssDNA substrate and stabilizes the substrate binding by contributing to the formation of the U-shaped DNA conformation that fits into the DNA binding groove (Shi et al., 2017). This amino acid is located at the mouth of the catalytic pocket in the AID/APOBEC enzymes and seems to act as an anchor for the substrate (Harjes et al., 2013; King \& Larijani, 2017; King et al., 2015; Pham et al., 2013; Shi et al., 2017). Interestingly, since the protonation state of histidine, and therefore the number of hydrogen bonds, varies at
different pH points, the acidic pH preference of the $\mathrm{A} 3 \mathrm{~A}^{\mathrm{H} 29}$ and $\mathrm{A} 3 \mathrm{G}^{\mathrm{H} 216}$ was attributed to this residue (Harjes et al., 2013; Pham et al., 2013; Shi et al., 2017). The same position in Hs-AID is occupied with an arginine (i.e., R25) and we have previously shown that this position is a part of secondary catalytic residues that stabilize the dC in the catalytic pocket (King \& Larijani, 2017; King et al., 2015). We also previously showed that arginine to alanine mutation in Hs-AID at this position reduced the conformations with dC docked in catalytic pocket by 40% compared with the wild type Hs-AID (King \& Larijani, 2017).

Based on the above-mentioned difference, we propose that bony fish AIDs might have evolved to utilize a different strategy to direct ssDNA into the substrate binding groove compared to tetrapods. It is possible that in bony fish AIDs, the repellent forces originated from negatively charged region of $\ell 8$ is an important contributing factor to substrate binding, especially in the bony fish AIDs lacking the highly positive amino acid at the mouth of catalytic pocket (e.g., Ip-AID ${ }^{\mathrm{N} 28}$ and Gm-AID ${ }^{\mathrm{N} 29}$). While, in tetrapods, it seems that the arching of ssDNA around the positively charged amino acid at the mouth of the catalytic pocket (i.e., Hs-AID ${ }^{R 25}$ and its equivalent in other species) might be the main strategy to position dC in the AID's catalytic pocket (Harjes et al., 2013; King \& Larijani, 2017; King et al., 2015; Shi et al., 2017).

We have compared three bony fish AIDs in this chapter. Dr-AID and Ip-AID both possess four negative residues in the end of their $l 8$ region (Dr-AID ${ }^{129 D E E D 132}$, IpAID ${ }^{128 \text { DEED131 }}$) while Gm-AID contains only two negative residues in this region (GmAID ${ }^{130 \operatorname{DLEG133}}$). However, Dr-AID is the only studied bony fish that contains a positively charged amino acid at the mouth of its catalytic pocket ($\mathrm{Dr}-\mathrm{AID}^{\mathrm{H} 29}$). Ip-AID and Gm-AID
both possess an N in this position (Ip-AID ${ }^{\mathrm{N} 28}$ and $\mathrm{Gm}^{2}-\mathrm{AID}^{\mathrm{N} 29}$). Based on our hypothesis presented here, the presence of the positively charged amino acid at the mouth of Dr-AID catalytic pocket (Dr-AID ${ }^{\mathrm{H} 29}$) and the lack of two negatively charged amino acids at the end of Gm-AID l8 could contribute to the higher and lower catalytic activity of Dr-AID and Gm-AID, respectively. To test the role of the positively-charged amino acid at the mouth of the catalytic pocket in AID's enzymatic activity, we generated Hs-AID ${ }^{\text {R25H }}, \mathrm{Hs}-\mathrm{AID}^{\mathrm{R} 25 \mathrm{~N}}$,
 compared their catalytic activity with that of their corresponding wildtype AIDs. Since previous reports have suggested an involvement of this position in regulating the pH preference of APOBECs, we examined the activity of these mutants in different pH points (Harjes et al., 2013; Pham et al., 2013; Shi et al., 2017). We observed that the histidine/arginine to asparagine/alanine/deletion mutations drastically decrease the catalytic activity while asparagine to histidine/arginine mutations can significantly improve the catalytic activity of AIDs (Figure 3-10). These results demonstrate that the presence of a positively charged amino acid at the "mouth" of AID's catalytic pocket could enhance its catalytic activity, and that the lack of this residue in Gm-AID could be a contributor to its lower activity. We suggest that this phenomenon could be due to improvement positioning of dC in the catalytic pocket. Further AID:ssDNA docking simulations are required to confirm this hypothesis.

Figure 3-10:The role of positively-charged amino acid at the mouth of AID's catalytic pocket in its activity. Hs-AID ${ }^{R 25}$ and its corresponding amino acid in other AID homologs was mutated to assess the impact of this positively-charged amino acid in AID activity. The activity of the purified wildtype and mutants was tested on TGCbub7 substrate using our standard alkaline cleavage assay. Dr-AID ($n=4$) and its mutant ($n=4$) were incubated at $25{ }^{\circ} \mathrm{C}$ for 20 min. Hs-AID ($n=8$) and its mutants $(n=4)$ were incubated at $31^{\circ} \mathrm{C}$ for 3 h . Ip-AID ($n=4$) and its mutant ($n=4$) were incubated at $14{ }^{\circ} \mathrm{C}$ for 10 h . GmAID ($n=2$) and its mutant ($n=2$) were incubated at $8{ }^{\circ} \mathrm{C}$ for 96 h. Data is represented as mean \pm SEM. Abbreviations: Gm-AID: Atlantic cod AID; DrAID: zebrafish AID; Ip-AID: channel catfish AID; Hs-AID: human AID.

3.4.5 Atlantic cod AID sequence specificity and co-evolution with Ig genes

Analysis of AID from different species have defined the WRC motif as the AID favored target motif (Dancyger et al., 2012; Gajula et al., 2014; Larijani, Frieder, Basit, et al., 2005; Larijani \& Martin, 2007; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Yang et al., 2006). However, more-distant homologs such as cartilaginous fish and lamprey AID, exhibit divergent patterns of sequence specificity (Emma M. Quinlan, 2017). To examine substrate specificity of Gm-AID, we compared its deamination activity on WRC and non-WRC motifs (Figure 3-11 A). Given its extreme cold adaptation, we also examined the dependence of substrate specificity on incubation temperature. As expected for Hs-AID, we observed clear WRC specificity which was not dependent on incubation temperature (Figure 3-11 B). Dr-AID and Ip-AID exhibited WRC preference, as did GmAID, favoring the two WRC motifs, TGC and AGC. The statistical analyses revealed that WRC specificity was more strict in Hs-AID compared to fish AIDs (Figure 3-12 and Appendix 2 to Appendix 5), consistent with previous findings (Dancyger et al., 2012; Emma M. Quinlan, 2017). Specifically, the distribution of each substrate was compared to that of all WRC and all non-WRC motifs. The distribution of all WRC and all non-WRC motifs were significantly different for all AID homologs tested here, indicating the AID specificity for WRC motifs. In the case of Hs-AID, the distribution of each WRC or nonWRC motif was significantly different from average of all non-WRC or WRC motifs, respectively. However, the distribution of TAC vs. all non-WRC motifs and GAC vs. all WRC motifs were not statistically different for any of the bony fish AID homologs studied here. This suggests that the specificity of bony fish AIDs is slightly different from that of

Hs-AID where GAC seems to be a better substrate than TAC. These results are consistent with high but not absolute conservation in the substrate specificity loop (l8) amongst the four studied homologs (Carpenter et al., 2010; Gajula et al., 2014; Wang et al., 2010).

Co-evolution of Ig variable (V) genes with AID WRC specificity has been observed in mammals, birds, amphibians, bony and cartilaginous fish (Conticello et al., 2005; Detanico et al., 2016; Golub \& Charlemagne, 1998; Jolly et al., 1996; Oreste \& Coscia, 2002; Wagner et al., 1995). In these studies, serine codons were divided into AGY and TCN and a clear preference for AGY (WRC) over TCN (non-WRC) was observed in $\operatorname{Ig} V$ CDRs vs. framework regions (FRs). Also, the WGCW motifs, which contain AID hotspots on both strands, have been suggested as an evolutionary feature of human $I g V_{H}$ genes (Tang et al., 2020) that attract AID to these loci (Hwang et al., 2017; Ohm-Laursen \& Barington, 2007; Wei et al., 2015; Yeap et al., 2015). We reasoned that if lack of a robust humoral immune response in Atlantic cod is indeed related to a severely compromised AID enzyme, there ought to have been a lower degree of evolutionary pressure to maintain enrichment of WRC motifs in CDR regions of Atlantic cod $\operatorname{Ig} V$ genes.

We annotated the IgH loci in the Atlantic cod genome and analyzed the pattern of WRC enrichment in its $I g V_{H}$ region (Figure 3-13 A). To characterize $I g H$ loci in the improved version of the Atlantic cod genome (gadMor2), previously published partial Atlantic cod IgH chain region (with GenBank identifier AJ871288.1) along with complete protein sequences for other bony fish $\operatorname{IgM}, \operatorname{IgD}$, and IgZ, extracted from GenBank, were searched against gadMor2 genome sequence. However, since this region was not fully assembled in gadMor2, we were not able to completely verify the J segment. Although two
potential regions for $I g H$ loci were characterized, we found that $I g H$ variable regions were more centralized in larger clusters in Linkage Group (LG) 02. Interestingly, our BLAST results revealed no evidence of $\operatorname{Ig} Z$ heavy chain in garMor2. Also, a scaffold containing various $I g V$ regions was identified (Figure 3-13 A).

The AID hotspot enrichment was calculated excluding CDR3 and FR4 since the VDJ recombination is responsible for forming CDR3 and we could not fully characterize the FR4 of all species (Table 3-7). Strikingly, amongst analyzed species, we found that Atlantic cod CDR 1 and 2 exhibited the lowest level of WRC/GYW and WGCW enrichment compared to FR 1, 2, and 3 (Figure 3-13 B and Table 3-7). To confirm the lack of enrichment is not due to a lower overall usage of WRC motifs in Atlantic cod $\operatorname{Ig} V_{H}$ genes, the abundance of WRC in the entire $I g V_{H}$ fragment was also compared (Table 3-8). Results showed that the abundance of WRC in the $\operatorname{Ig} V_{H}$ region of all examined species is comparable despite the higher GC content of the Atlantic cod CDSs (Table 3-8). Thus, the Atlantic $\operatorname{cod} \operatorname{Ig} V_{H}$ CDR regions exhibit a specific lack of AID hotspot motif enrichment, in accordance with relieved evolutionary pressure from its near inactive AID enzyme.

B

Figure 3-11: Atlantic cod AID sequence specificity. In these experiments, three independent protein preparations were tested for each AID homologs in duplicate $(n=6)$. Incubation time was selected based on catalytic robustness of each AID homolog. All studied AIDs revealed preference for WRC motifs. Since the absolute activity level on each substrate varies amongst AID homologs, relative deamination efficiency was used to enable comparison between AID homologs. Relative deamination efficiency was calculated by dividing the activity on each substrate to that of the average activity for all 6 studied substrates. Data is represented as mean \pm SEM. A) Gm-AID substrate preference was compared to that of other AID homologs. AID was incubated with various substrates containing $W R C$ (TGC, AGC, and TAC) or non-WRC (GGC, GTC, and GAC) motifs at their corresponding optimal temperature. B) Given Gm-AID extreme cold adaptation, Gm-AID substrate specificity was studied in different incubation temperature (optimal, below, and above optimal; right panel). Hs-AID was used as control (left panel). Abbreviations: Gm-AID: Atlantic cod AID; Dr-AID: zebrafish AID; Ip-AID: channel catfish AID; Hs-AID: human AID.

Figure 3-12: The statistical analyses of the difference observed between substrate relative deamination efficiency of various AID homologs. The statistical difference between AID homologs were calculated using the independent samples Rruskal-Wallis test. The null hypothesis was considered as the distribution is the same between each pair of samples ($n=6 ;{ }^{*}: p<0.05 ;{ }^{* *}: p<0.01$; ${ }^{* * *}: p<0.005 ; * * * *: p<0.001$). Abbreviations: Gm-AID: Atlantic cod AID; Dr-AID: zebrafish AID; Ip-AID: channel catfish AID; Hs-AID: human AID.

A

GmG20150304_scaffold_5016; 10801 bp
\vdash -

GmG20150304_LG02; 24054414 bp (11320000-12210000)

GmG20150304_scaffols: $1610,1774,4356,8602,8789,9102,9233,9445,9582,9595,9633$

Figure 3-13: Co-evolution of Atlantic cod AID substrate specificity with Atlantic cod Ig genes. A) To characterize IgH loci in the improved version of the Atlantic cod genome (gadMor2), previously published partial Atlantic cod IgH chain region (with GenBank identifier AJ871288.1; top panel) along with complete protein sequences for other bony fish IgM, IgD, and IgZ, were searched against gadMor2 genome sequence using default parameters of BLAST+ program. Two potential regions (second and third panel) and a centralized larger cluster in Linkage Group (LG) 02 were characterized as IgH loci. Also, a scaffold containing various IgV regions was identified (fourth panel). B) Since AID's WRC specificity has been suggested as an evolutionary pressure in elevating AID hotspot motifs in vertebrates IgV genes, AID hotspot enrichment in CDRs vs. FRs was studied in Ig V_{H} genes of Atlantic cod and several other vertebrate species. Abbreviations: Gm: Atlantic cod; Dr: zebrafish; Ss: Atlantic salmon; Ip: channel catfish; Tr: Japanese puffer fish; Gc: nurse shark; Xl: South African clawed toad; Gg: chicken; Mm: mouse; Hs: human.

Table 3-7: AID hotspot enrichment in Ig V_{H} genes of various vertebrate species

	FR1			CDR1			FR2			CDR2			FR3					
	\# AID hotspots		$\begin{aligned} & \stackrel{\diamond}{\bullet} \\ & . \Xi \end{aligned}$	0 0 0 0 0 0 0 \vdots $\#$		$\begin{aligned} & \stackrel{\times}{0} \\ & . \quad \end{aligned}$	słodsłoч GIV \#			0 0 0 0 0 0 \vdots $\#$ $\#$		$\begin{aligned} & \stackrel{\diamond}{\bullet} \\ & . \Xi \end{aligned}$	0 0 0 0 0 0 0 \vdots $\#$		$\begin{aligned} & \text { 㐅 } \\ & \text { D } \end{aligned}$	$$	$\begin{aligned} & \text { n } \\ & \underset{\sim}{z} \\ & 0 \\ & \dot{2} \end{aligned}$	n $\frac{2}{2}$ \sim \sim
$G m-I g V_{H}$	790	7837	0.10	435	2373	0.18	363	5610	0.06	174	1989	0.09	1955	12765	0.15	0.11	0.14	1.27
$I p-I g V_{H}$	652	7199	0.09	482	2709	0.18	662	5498	0.12	379	2360	0.16	1753	12381	0.14	0.12	0.17	1.44
Tr-Ig V_{H}	309	3675	0.08	219	1245	0.18	183	2361	0.08	268	1215	0.22	803	5517	0.15	0.10	0.20	1.94
Dr-Ig V_{H}	410	5234	0.08	307	1786	0.17	396	3774	0.10	220	1510	0.15	1127	9143	0.12	0.10	0.16	1.55
$S s-I g V_{H}$	2509	28445	0.09	1571	9215	0.17	2201	19629	0.11	1196	8333	0.14	6042	44363	0.14	0.11	0.16	1.40
$G c-I g V_{H}$	727	7407	0.10	578	3102	0.19	664	6579	0.10	569	3027	0.19	1284	14250	0.09	0.10	0.19	1.94
$X l-\operatorname{Ig} V_{H}$	88	902	0.10	50	292	0.17	67	611	0.11	33	252	0.13	192	1449	0.13	0.11	0.15	1.33
$G g-I g V_{H}$	1218	15455	0.08	995	5010	0.20	1391	10627	0.13	1011	5031	0.20	3903	24359	0.16	0.12	0.20	1.62
$M m-I g V_{H}$	3112	20493	0.15	1054	4209	0.25	689	11341	0.06	1730	13394	0.13	3907	25318	0.15	0.12	0.19	1.55
$H s-I g V_{H}$	3322	27855	0.12	1452	5900	0.25	932	15503	0.06	2424	19590	0.12	4328	38075	0.11	0.10	0.18	1.89

Abbreviations: Gm: Atlantic cod; Dr: zebrafish; Ss: Atlantic salmon; Ip: channel catfish; Tr: Japanese puffer fish; Gc: nurse shark; X1: South African clawed toad; Gg: chicken; Mm: mouse; Hs: human.

Table 3-8: AID hotspot enrichment in the entire Ig V_{H} genes and GC content of annotated complete protein coding genes (CDSs) of various vertebrate species

	$\operatorname{Ig} V_{H}$ gene analysis				Genomic analysis	
	\# AID hotspot	\# nt. analyzed	AID hotspots/nt. analyzed	\# transcripts	\# CDSs	GC\%
Gm-Ig V_{H}	3717	30574	0.1216	112	44330	59.53
Ip-Ig V_{H}	3928	30147	0.1303	109	47956	51.46
$T r-\operatorname{Ig} V_{H}$	1782	14013	0.1272	49	46294	54.11
Dr-Ig V_{H}	2460	21447	0.1147	76	57060	49.85
$S s-I g V_{H}$	13519	109985	0.1229	405	97576	55.12
$G c-I g V_{H}$	3822	34365	0.1112	129	1507	47.97
$X l-\operatorname{Ig} V_{H}$	430	3506	0.1226	44	49356	45.62
$G g-I g V_{H}$	8518	60482	0.1408	239	56680	50.23
$M m-I g V_{H}$	10492	74755	0.1404	420	88579	51.96
$H s-I g V_{H}$	12458	106923	0.1165	727	120426	51.02

Abbreviations: Gm: Atlantic cod; Dr: zebrafish; Ss: Atlantic salmon; Ip: channel catfish; Tr: Japanese puffer fish; Gc: nurse shark; Xl: South African clawed toad; Gg: chicken; Mm: mouse; Hs: human.

3.5 Discussion

Previous studies in various vertebrate species have pinpointed AID (encoded by aicda gene) as the enzyme responsible for introducing mutations in $I g$ genes, initiating the processes of antibody affinity maturation and class switch recombination (Bransteitter et al., 2003; Bransteitter et al., 2006; Frieder et al., 2006; Kolar et al., 2007; Larijani, Frieder, Basit, et al., 2005; Meffre et al., 2001; Muramatsu et al., 2000; Muramatsu et al., 1999; Muto et al., 2000; Nagaoka et al., 2002; Sernandez et al., 2008; Wang et al., 2009). Therefore, the emergence of ancestral AID at the base of vertebrate evolution has coincided with the presence of antibody maturation (Bromage et al., 2006; Cain et al., 2002; Dooley \& Flajnik, 2005; Dooley et al., 2006; Hsu, 2016; Jenne et al., 2003; Kaattari et al., 2002; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Mehr et al., 2004; Wilson et al., 1992; Yang et al., 2006). However, unlike other studied vertebrates, functional analyses of the Atlantic cod humoral responses revealed the absence of antigen-specific affinity-matured antibodies in this species (Arnesen et al., 2002; Lund et al., 2008; Lund et al., 2006; Magnadottir et al., 2001; Schroder et al., 2009; Solem \& Stenvik, 2006). In the previous chapter, we showed that two aicda transcripts are expressed mainly in Atlantic cod immune-related tissues. We also showed that Atlantic cod aicda transcript expression increases in response to immune stimulation. In this chapter, we sought to explore the functional properties of purified Atlantic cod AID proteins (Gm-AID). Remarkably, we found that the full-length Atlantic cod AID protein is a lethargic enzyme exhibiting the lowest optimal temperature reported for AIDs thus far. Intriguingly, the evolutionary ramification of this drastic decline in the activity of Gm-AID is evident in the sequence of
its $I g$ genes where we observed the lowest AID hotspot enrichment compared to other studied vertebrate species in this chapter.

The level of AID expression and activity are crucial determinants of SHM and CSR level (Sernandez et al., 2008; Takizawa et al., 2008; Wang et al., 2009). Previous studies unveiled significant variation in the biochemical properties of AID in bony and cartilaginous fish. Dr-AID is the most catalytically robust AID studied to date, possibly due to its requirement for epigenetic functions (Abdouni et al., 2013). However, other studied AID homologs, had catalytic rates lower or similar to that of Hs-AID, which only performs one deamination in several minutes (Abdouni et al., 2013; Emma M. Quinlan, 2017; Larijani et al., 2007). This rate is orders of magnitude lower than a typical enzyme (Larijani et al., 2007). Here, we showed that the catalytic rate of Gm-AID is orders of magnitude lower than that of other AID homologs. Even under its most optimal conditions (i.e., optimal pH , temperature, and substrate), we observed approximately $350-$ and $3000-$ fold less activity for Gm-AID compared to Hs-AID and Dr-AID, respectively; thus, making it unlikely to play a functional role as a cytidine deaminase in vivo. Also, we showed that T-Gm-AID lacks cytidine deaminase activity in our experimental conditions. The N terminal sequence, which is missing in T-Gm-AID, is involved in stabilization of the core of the enzyme, stabilization of the surface DNA binding residues, and contains potential DNA binding residues and NLS (Hu et al., 2013; King et al., 2015; Patenaude et al., 2009). Given the importance of the N-terminal amino acids, the lack of cytidine deaminase activity observed here is most likely a bona fide property of T-Gm-AID.

It was previously proposed that AID optimal temperature correlates with the ambient temperature of given species (Barreto et al., 2005; Conticello et al., 2005; Dancyger et al., 2012; Ichikawa et al., 2006; Wakae et al., 2006). Accordingly, we and others have previously shown that the activity of mammalian and bird AIDs at $37^{\circ} \mathrm{C}$ is higher than amphibian and bony fish counterparts and bony fish AIDs are more active at lower temperatures (16 to $25^{\circ} \mathrm{C}$) (Barreto et al., 2005; Dancyger et al., 2012; Emma M. Quinlan, 2017; Ichikawa et al., 2006; Wakae et al., 2006). Here, we identified 4 to $8{ }^{\circ} \mathrm{C}$ as the optimal temperature of Gm-AID, which also makes it not only the most cold-adapted AID/APOBEC family member (Hori et al., 2012; Petersen \& Steffensen, 2003), but the most cold-adapted vertebrate DNA/RNA-editing enzyme reported to date to the best of our knowledge. In the future, it will be interesting to investigate the structural basis of this cold adaptation.

Remarkably, we also noticed that bony fish AIDs might be employing a different strategy than tetrapod AIDs to position dC in the catalytic pocket. Here, we propose that the bony fish AIDs most likely utilize a repellent force originated from their highly negatively charged $l 8$ (i.e., ending region close to $\alpha 4$) to repel the ssDNA into DNA binding groove. However, it seems that tetrapod AIDs are more dependent on the arching of ssDNA around the positively charged amino acid positioned at the mouth of the catalytic pocket (i.e., Hs-AID ${ }^{\text {R25 }}$ and its corresponding amino acid in other tetrapod AIDs in this chapter) to locate the substrate into the DNA binding groove. In the case of Dr-AID, both negatively charged l8 and slightly positively charged amino acid at the mouth of catalytic pocket (Dr-AID ${ }^{\mathrm{H} 29}$) could assist with the proper positioning of the ssDNA/dC into the
substrate binding groove/catalytic pocket. Additionally, the lack of two negative amino acids on the Gm-AID $\ell 8$ (i.e., Gm-AID ${ }^{130 \mathrm{DLEG} 133}$) compared to the other bony fish AIDs examined in this chapter, might be a contributing factor in its slow catalytic activity. However, more mutational analysis is required to confirm this hypothesis.

Our computational modeling pinpointed three amino acid positions that may have contributed to the lethargic catalytic activity of Gm-AID (N29, H136, and V137). To test this hypothesis, we created Gm-AID mutants with single, double, and triple mutations where these amino acids were changed into their counterpart in Hs-AID or Dr-AID. We found that although Gm-AID ${ }^{\text {N29R-H136E-V137R }}$ showed a 10 -fold increase in catalytic rate, none of the variants rescued the catalytic rate of Gm-AID to levels comparable to the other AID homologs. These results indicate that other global residue changes in Gm-AID are responsible for its diminished catalytic activity (Gajula et al., 2014). This is highly suggestive of the presence of yet-to-be-identified restrictive mutation(s) or a lack of permissive mutation(s) in Gm-AID. Restrictive mutations mask the effect of causative key mutation(s) and permissive mutations are pre-requisite for causative ones to be effective (R. Merkl \& R. Sterner, 2016). Therefore, methods such as comparing extant sequences (horizontal approach) could fail in pinpointing causative mutations.

Sequencing of the Atlantic cod genome has revealed a unique loss of genes involved in adaptive immunity, including mhc II, invariant chain, and $c d 4$ genes (Buonocore \& Gerdol, 2016; Malmstrom et al., 2016; Solbakken, Rise, et al., 2016; Solbakken, Torresen, et al., 2016; Solbakken et al., 2017; Torresen et al., 2017). It has been suggested that the loss of these genes is correlated with immigration of cod to higher
latitudes where the cost of keeping these genes might have caused their loss (Solbakken, 2016; Solbakken, Rise, et al., 2016; Solbakken et al., 2017). Somatic hypermutation followed by clonal selection of B cells improves the affinity of antibodies. However, the majority of the B cells undergoing somatic hypermutation would be eliminated in the following clonal selection process; making antibody affinity maturation an expensive process (Wiens et al., 2001; Wiens et al., 1998). Remarkably, this has coincided with the expansion of $m h c I$ and $t l r$ genes, suggesting a re-modeling of Atlantic cod immune system to rely more on innate and cell-mediated immunity (Parham, 2015, 2016; Solbakken, 2016; Star et al., 2011). In addition to targeting $I g$ loci, AID is a genome-wide mutator known as a leading source of tumor-initiating double-strand breaks (Burns et al., 2017; Choudhary et al., 2017; Lindley et al., 2016; Steele, 2016). In this light, our finding of a potential loss of function for Atlantic cod AID is consistent with its lack of reliance on antibody affinity maturation, since in the absence of a critical requirement for a genome-damaging agent like AID, the evolutionary pressure to retain such an agent is absent.

Genomic analyses of Gadiformes species have dated the loss of MHC II pathway to their common ancestor (Malmstrom et al., 2016). Given the importance of MHC II pathway in the B cell activation and subsequent AID expression, it is interesting to know whether the functional impairment of AID is a phenomenon limited to the Atlantic cod or common in the Gadiformes lineage. Methods which take into account the evolutionary trajectory of a protein family such as ancestral sequence reconstruction (ASR, a vertical approach) could identify the evolutionary timepoint of AID functional impairment (Harms \& Thornton, 2010; R. Merkl \& R. Sterner, 2016). ASR could also assist in finding the
definitive structural basis of Gm-AID's extremely low catalytic activity (Harms \& Thornton, 2010; R. Merkl \& R. Sterner, 2016). In the later endeavor, computational studies of Gm-AID structure will also prove useful. Hs-AID is notoriously difficult to purify due partially to its highly positive surface charge of +10.25 mediating rampant non-specific protein:protein/DNA/RNA interactions; thus, the only available Hs-AID crystal structures are of heavily mutated and/or truncated versions (Pham et al., 2016; Qiao et al., 2017). To this end, we embarked on an alternative combined computational-evolutionarybiochemical approach to gain insights into functional and native structure of Hs-AID (King \& Larijani, 2017; King et al., 2015). Similar approaches may prove useful for Gm-AID since it has a surface charge of +10.41 that may also impede crystallography of the native protein.

In summary, here, we reported that Gm-AID is a lethargic deaminase adapted to cold temperatures. Since the gene synteny and transcript expression of Gm-AID seems to be conserved compared to other studied teleosts (refer to the previous chapter), we propose that the altered functionality of Atlantic cod AID is more likely a result of active selection aimed at some sort of end point, most likely inactivation in this case. It has been suggested that the chronological loss of the immune related genes in ancestor of Atlantic cod is correlated with immigration of the ancestral species to the higher latitude where the cost of keeping some immune genes might have caused the loss of them (Solbakken, Rise, et al., 2016; Solbakken, Torresen, et al., 2016; Solbakken et al., 2017). Remarkably, re-design of the Atlantic cod immune system has not significantly reduced its fitness in its natural habitat. Re-modeling of the Atlantic cod immune system might be an on-going process and
complete functional impairment of Gm-AID might be the next step. Nevertheless, the implication of this study in Atlantic cod vaccine strategies is evident where vaccines targeting cell-mediated immune response might be the more promising approaches in Atlantic cod aquaculture.

Chapter 4:

Evolutionary trajectory of activation induced cytidine deaminase (AID) within Gadiformes lineage

Abstract

4.1 Abstract

Unlike other jawed vertebrates, the humoral immune response of Atlantic cod does not generate antigen-specific high affinity antibodies. Previous studies revealed that in jawed vertebrates, the enzyme activation-induced cytidine deaminase (AID encoded by aicda gene) is responsible for the production of high affinity antibodies by converting deoxycytidine (dC) into deoxyuracil at immunoglobulin ($I g$) loci. In the previous chapters, we showed that although the aicda gene synteny was conserved in Atlantic cod, its purified AID enzyme lacks robust cytidine deaminase activity. Based on these observations, we concluded that the lack of high affinity antibody production in Atlantic cod is likely due to the functional impairment of its AID enzyme. In this chapter, we expanded our enzymatic investigations to 33 AID homologs from extant bony fish species and applied ancestral sequence reconstruction (ASR) to examine the evolution of AID in the phylogenetic branches leading to Atlantic cod (i.e., within the Gadiformes order). We found that the catalytic efficiency of AID enzyme was 15 -fold reduced in the ancestor of Gadiformes. Interestingly, we detected a more drastic decrease of 33-fold in the catalytic efficiency of Gadidae ancestor. We pinpointed five potential amino acid mutations involved in catalytic activity reduction of Gadidae ancestor. These observations suggest that the evolution of AID within the Gadiformes species is most likely directed towards its complete functional impairment. These findings are consistent with recent findings of drastic remodeling of other humoral immune genes in the Gadiformes order. In addition, our comprehensive evolutionary comparative approach marks the first application of ancestral reconstruction and functional analyses to an enzyme involved in immunity and cancer.

4.2 Introduction

In vertebrates, B cell activation leads to the expression of activation-induced cytidine deaminase (AID, encoded by the aicda gene), which initiates the secondary antibody diversification process (Maul \& Gearhart, 2010; Owen, 2019). Introduction of AID-mediated C to U mutations at the $I g$ genes results in production of antibodies with a higher affinity for cognate antigen (Maul \& Gearhart, 2010; Owen, 2019). This process is known as antibody affinity maturation (AM) (Maul \& Gearhart, 2010; Owen, 2019). Given the crucial role of AID in initiating AM, the rise of AID genes at the beginning of jawed vertebrate radiation was considered as the emergence of AM (Betz et al., 1993; Bromage et al., 2006; Cain et al., 2002; Diaz et al., 1999; Dooley \& Flajnik, 2005; Dooley et al., 2006; Hsu, 2016; Jenne et al., 2003; Kaattari et al., 2002; Lee et al., 2002; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Mehr et al., 2004; Wilson et al., 1992; Yang et al., 2006). However, functional analyses of the Atlantic cod (Gadus morhua) have proved the absence of AM in this species. Specifically, high levels of low affinity IgM and lack of robust antigen-specific antibody responses upon immunization were observed in this species (Arnesen et al., 2002; Magnadottir et al., 1999; Magnadottir et al., 2001; Solem \& Stenvik, 2006).

In the previous chapters, we sought to investigate the genetics, synteny, and enzymatic activity of AID in the Atlantic cod to uncover the molecular bases behind the lack of $A M$ in this species. We found that although the gene synteny and transcript expression of aicda in Atlantic cod is mainly conserved compared to other teleost species, Atlantic cod AID (Gm-AID) enzyme is a very lethargic cytidine deaminase, exhibiting

350- to 3000 -fold less activity than human and zebrafish AIDs, respectively. Therefore, we concluded that functional impairment of Gm-AID would contribute to the lack of affinitymatured antibodies in this species.

The teleost lineage of the ray-finned fishes (class Actinopterygii) is the largest and most diverse group of vertebrates (Ron Fricke; Sallan, 2014; Solbakken et al., 2017). Successful radiation and speciation within the Teleostei infraclass have been attributed to the adaptability of their immune system in response to major environmental changes (Malmstrom et al., 2016; Solbakken et al., 2017). The Atlantic cod is a member of the taxonomic order Gadiformes within Teleostei infraclass (Solbakken et al., 2017). It has been shown that immune gene losses and expansions in the Gadiformes overlap with major paleoclimatic and geological events (Solbakken, Rise, et al., 2016; Solbakken et al., 2017). Specifically, within Gadiformes order, the loss of key genes involved in adaptive humoral immunity (i.e., mhc II, cd4, and invariant chain [also known as $c d 74$]), and expansion of genes involved in innate immunity (i.e., tlrs), and cellular immunity (i.e., mhc I) indicate the probability of alternative immune strategies. Given the importance of AID in humoral immunity (Sernandez et al., 2008; Takizawa et al., 2008; Wang et al., 2009), our findings on the extremely lethargic activity of Atlantic cod AID, and the cod-like remodeling of immune genes in other Gadiformes, we sought to extend our studies to other Gadiformes species. We asked whether the functional impairment of AID is a phenomenon unique to Atlantic cod, or a wider trend within the Gadiformes group. In addition to extant species, we wished to examine the ancestral AIDs within and leading up to Gadiformes to decipher
the evolutionary points at which AID activity may have been shaped to its present extremely lethargic state in Atlantic cod.

Ancestral sequence reconstruction (ASR) is a tool to infer the sequence of ancestral proteins based on the contemporary gene sequences (Harms \& Thornton, 2010; R. Merkl \& R. Sterner, 2016; Yang, 2006). By studying the predicted ancestral proteins' biochemical and structural properties, significant novel insights have been gained regarding past environmental conditions (Akanuma, 2017), protein structure and functional evolution (Babkova et al., 2020; Holinski et al., 2017; Qiu et al., 2019; Wheeler et al., 2016; Yang et al., 2020), and the evolutionary history of a protein family (Gumulya \& Gillam, 2017; Harms \& Thornton, 2010; Laursen et al., 2020). Notable proteins to which this approach has been fruitfully applied include thioredoxins (Ingles-Prieto et al., 2013), 3isopropylmalate dehydrogenase (Furukawa et al., 2020; Groussin et al., 2015), haloalkane dehalogenases (Babkova et al., 2020), laccases (Gomez-Fernandez et al., 2020), postsynaptic density-95/Discs large/Zonula occludens (PDZ) 3 domain of Discs large (Laursen et al., 2020), cysteine-rich interactor of PDZ3 (Laursen et al., 2020), ribonuclease H (Lim et al., 2018), coagulation factor VIII (Zakas et al., 2017), short wavelengthsensitive type 1 UV pigment (Shi \& Yokoyama, 2003), Pax proteins (Sun et al., 2002), elongation factors of the Tu family (Gaucher et al., 2003), steroid receptors (Thornton, 2001; Thornton et al., 2003), and rhodopsins (Chang, 2003; Chang et al., 2002). The power of ASR and the noticeable increase in ancestral gene prediction has inspired the establishment of a database called Revenant (https://revenant.inf.pucp.edu.pe/) (Carletti et al., 2020). The Revenant database contains a hand-curated collection of ancestral genes
annotated with methodological, structural, and biochemical information (Carletti et al., 2020).

In this chapter, we applied the ASR methodology to gain inside into the timepoint when AID became nearly inactivated in the evolutionary branches leading to the Atlantic cod. Here, we report the presence of an unexpected functional plasticity within bony fish AIDs. Our results showed that the functional impairment of Atlantic cod AID, examined in the previous chapter, was not an exception compared to its closely related species. We identified catalytically inactivated AID homologs from two other Gadiform species. We also showed that during the evolution of Gadiformes lineage, two separate events resulted in the cold adaptation and catalytic impairment of ancestral AID. Based on our ASR results, we concluded that the aforementioned evolutionary events have occurred in the common ancestor of Gadiformes and Gadidae species, respectively. This is the first report characterizing completely/near-completely functionally inactivated AID enzymes within vertebrate class. Since AID deficiency causes immunodeficiency in humans and in mouse models, these findings could change our perspective regarding the vertebrates' immune system evolution.

4.3 Methods

4.3.1 Ancestral sequence reconstruction (ASR)

ASR methodology is comprised of five steps:

4.3.1.1 Selecting extant species

To infer the ancestral protein sequences of AID within and outside of the Gadiformes lineage, the homologous aicda sequences were retrieved from 66 teleost genomes sequenced previously (Malmstrom et al., 2016). The Atlantic cod aicda gene locus (Ensemble gene identifier: ENSGMOG00000004114) was BLAST aligned against the assembled and raw genomic data of each species (the European Nucleotide Archive (ENA) accession number: PRJEB12469 and the Dryad repository: doi:10.5061/dryad.326r8) using default parameters of blastn task in BLAST+ program (Malmstrom et al., 2016). The genomic region was then retrieved as the aicda locus. The aicda mRNA transcript was then predicted using the AUGUSTUS server (http://bioinf.unigreifswald.de/augustus/submission.php) (Stanke et al., 2006). The initiation codon, coding sequence (CDS), and the stop codon for identified aicda transcripts were confirmed using the ATGpr website (https://atgpr.dbcls.jp/) (Nishikawa et al., 2000). In total, the AID gene sequence from 73 species (74 gene sequences) was used to perform ASR analyses. The basic information and the AID nucleotide sequence of bony fish species selected for ASR analyses can be found in Appendix 6 and Appendix 7, respectively.

4.3.1.2 Creating a multiple sequence alignment

In this thesis, the amino acid multiple alignments were built based on our predicted structure of Gm-AID (Appendix 8) using the PROMALS3D web interface
(http://prodata.swmed.edu/promals3d/promals3d.php) (Pei et al., 2008). The generated amino acid alignment was then used to guide the nucleotide sequences alignment using the TranslatorX server (http://translatorx.co.uk) (Abascal et al., 2010). Since the accuracy of the multiple sequence alignment (MSA) impacts the ASR results (Vialle et al., 2018), the final nucleotide and amino acid alignments were manually inspected to assure the quality of the alignment.

4.3.1.3 Computing a phylogenetic tree

Another important factor contributing to the accuracy of ASR results is the topology of the phylogenetic tree (Groussin et al., 2015; R. Merkl \& R. Sterner, 2016; Vialle et al., 2018). We used RAxML package version 8.2 .9 to build the gene tree (Malmstrom et al., 2016). Appendix 9 contains all the scripts used for RAxML analyses. First the best substitution model was selected. The GTRCAT substitution model (i.e., the General Time Reversible model with the CAT model of rate heterogeneity) gave the highest ML in the model test runs. Then, the initial rearrangement settings (i.e., $-i$) and the number of categories (i.e., $-c$) were calculated. The best ML tree and bootstrap values were estimated using -i 10 and -c 55. However, our constructed gene tree did not fully agree with the previously published species tree. It was also shown that combining the information on the species phylogeny with the gene phylogenetic tree can improve the ASR results by predicting a more biochemically realistic and kinetically stable ancestral protein (Groussin et al., 2015). In this regard, we decided to use the previously estimated species tree for our dataset as the start tree in ASR calculations (Malmstrom et al., 2016). As an outgroup, Lampetra tridentata CDAl cytidine deaminase gene was used. In RAxML
analyses, ASR was performed based on both the AID's gene tree (constructed in this thesis), and the species tree previously published (Malmstrom et al., 2016).

4.3.1.4 Reconstructing ancestral sequences

We applied three approaches to predict the ancestral states (Appendix 9, Appendix 10, and Appendix 11). First, we used RAxML, which is based on the protein alignment and takes advantage of the ML algorithm (Stamatakis, 2014). Second, we used the ProtASR package to infer the ancestral sequences based on protein structure and ML algorithms (Arenas \& Bastolla, 2019; Arenas et al., 2017). Finally, we used MrBayes software to predict ancestral states based on the protein alignment and Bayesian statistics (Altekar et al., 2004; Ayres et al., 2012; Huelsenbeck \& Ronquist, 2001; Ronquist \& Huelsenbeck, 2003; Ronquist et al., 2012).

For RAxML package, ancestral sequences were predicted using the GTRCAT substitution model (refer to section 4.3.1.3), -i 10, -c 55, and the best ML tree obtained in this thesis or the species tree previously published (Malmstrom et al., 2016).

In ASR analyses using MrBayes version 3.2.7, we used the GTR model with Gamma distribution of rate variation. Additionally, the $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ nucleotide positions of a codon were unlinked. Each run was continued until the standard deviation of split frequencies of 0.01 or less was achieved, and the potential scale reduction factor (PSRF) for all parameters was reasonably close to 1.0 . The previously published species tree (Malmstrom et al., 2016) was used as the start tree for the MyBayes analyses. Proper tree topology constraints were defined to infer the ancestral sequence of the desired node. For
each ancestral node, analyses were run four independent times, summed up, and reported as the results.

In ASR analyses using ProtASR versions 2.0 and 2.2 (Arenas \& Bastolla, 2019; Arenas et al., 2017), we used our computationally predicted Gm-AID 3D structure (Appendix 8) and the previously published species tree. Since the length of the alignment was different from the length of the PDB file, we used version B of ProtASR. Unlike other ASR frameworks, ProtASR implements a structurally constrained substitution model of evolution called "Mean-field" (Arenas \& Bastolla, 2019; Arenas et al., 2017).

The results of RAxML, ProtASR, and MrBayes were compared. The consensus ancestral sequences were obtained with more weight on the MrBayes results since the previous studies concluded that Bayesian inference with rate variation model might outperform other methods (Appendix 12) (Joy et al., 2016; Randall et al., 2016). For any position with ambiguity above 0.2 , any predicted amino acid(s) with probability higher than 0.2 was also considered. For these positions, mutant versions of the predicted AID were made.

4.3.2 AID expression and purification

The abbreviations used for extant and ancestral AIDs are described in Table 4-1. Extant and ancestral AID homologs were expressed in the same pGEX5.3-based GSTfusion bacterial expression system and purified as described before in section 3.3.1 (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani et al., 2007). Briefly, the CDS of each extant and ancestral AID homolog was synthesized (Integrated DNA Technologies [IDT], Inc., USA) or built using site-directed mutagenesis.

The ORFs were then inserted into pGEX-5x-3 (GE Healthcare, Waukesha, WI, USA) vector using EcoRI-HF® and NotI-HF® enzymes (New England BioLabs). E. coli B121(DE3) cells were used as the host cells to express GST-AID proteins (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani et al., 2007). As the expression-inducing agent, Isopropyl β - α-1-thiogalactopyranoside (IPTG, 1 mM) was added to the bacterial culture containing a GST-AID expression vector followed by 16 h incubation at $16^{\circ} \mathrm{C}$. The GST-AID protein was purified from the lysed bacterial culture using Glutathione Sepharose high-performance beads (Amersham) and stored in 20 mM Tris-Cl $\mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{NaCl}, 1 \mathrm{mM}$ dithiothreitol. The quality and quantity of the purified GST-AID preparations were measured using the coomassie staining protocol.

Table 4-1: Name and abbreviations of the extant AID homologs studied in this chapter.

Phycis blennoides	Greater forkbeard	Pb-AID			
Malacocephalus occidentalis	Western softhead grenadier	Mo-AID	Macrourinae		
Macrourus berglax	Roughhead grenadier	Mb-AID			
Bathygadus melanobranchus	Vaillant's grenadier	Bm-AID	Bathygadinae		
Laemonema laureysi	Guinean codling	Lla-AID			
Mora mora	Common mora	Mmor-AID			
Trachyrincus murrayi	Roughnose grenadier	Tmu-AID			
Trachyrincus scabrus	Roughsnout grenadier	Tsc-AID			
Muraenolepis marmoratus	Marbled moray cod	Mma-AID	Muraenolepididae		
Melanonus zugmayeri	Arrowtail	Mz-AID	Melanonidae		
Merluccius merluccius	European hake	Mmerlu-AID	Merlucciidae		
Stylepnorus chordatus	Tube-eye	Sc-AID	Stylephoriformes		
Cyttopsis roseus	Rosy dory	Cr-AID			
Zeus faber	John dory	Zf-AID			
Typhlichthys subterraneus	Southern cavefish	Tsu-AID	Percopsiformes		

Percopsis transmontana	Sand roller	Pt-AID	
Polymixia japonica	Silver eye	Pj-AID	Polymixiiformes
Salmo salar paralog 1	Atlantic salmon	Ss-AID-1	Salmoniformes
Salmo salar paralog 2	Atlantic salmon	Ss-AID-2	
Danio rerio	Zebrafish (Zebra danio)	Dr-AID	Cypriniformes
Oryzias latipes	Medaka (Japanese rice fish)	Ol-AID	Beloniformes
Takifugu rubripes	Japanese pufferfish	Tr-AID	Tetraodontiformes
Ictalurus punctatus	Channel catfish	Ip-AID	Siluriformes
Homo sapiens	Human	Hs-AID	Hominidae

4.3.3 Substrate preparation

To assess the enzymatic properties of purified GST-AID proteins, a partially singlestranded bubble substrate containing a TGC (a WRC hotspot) motif (TGC strand) was synthesized by IDT. Previous studies have shown this substrate as the most favorite substrate for most AIDs studied thus far (Abdouni et al., 2013; Dancyger et al., 2012; King et al., 2015; Larijani \& Martin, 2007; Larijani et al., 2007). As described in section 3.3.2, the TGC strand was 5 '-radiolabeled with $\left[\gamma-{ }^{32} \mathrm{P}\right]$ dATP and purified through mini-Quick spin DNA columns (Roche, Indianapolis, IN, USA). Using slow cooling (i.e., $1{ }^{\circ} \mathrm{C} / \mathrm{min}$ from $96^{\circ} \mathrm{C}$ to $4^{\circ} \mathrm{C}$), the purified TGC strand was then annealed to three-fold excess of its partially complementary strand to generate partially single-stranded bubble substrate (TGCbub7).

4.3.4 $\mathbf{p H}$ buffer preparation

As described in the previous chapter (section 3.3.3), 100 mM Phosphate buffer with pH ranging from 5.8 to 8 were prepared in RNase/DNase free water (Gibco). The effective pH in the final reaction assay was measured by mixing phosphate buffer, TE buffer (used in substrate preparation), and AID storage buffer (used in GST-AID purification) to the ratio of 6:1:3.

4.3.5 Biochemical analysis of purified GST-AID

In this study, we explored the optimal temperature, pH , time course, substrate specificity, and enzyme kinetics of the purified GST-AID proteins (Abdouni et al., 2013; Dancyger et al., 2012; Larijani et al., 2007). For each experiment, at least two independent
protein preparation of GST-AID were tested in at least duplicate. All the experiments are described in more detail in chapter 3 in the Methods section.

All the enzymatic properties were examined using the previously published standard alkaline cleavage assay (Abdouni et al., 2013; Abdouni et al., 2018; Dancyger et al., 2012; Emma M. Quinlan, 2017; King et al., 2015; Larijani \& Martin, 2007). In the standard assay, purified GST-AID protein and the radiolabeled TGCbub7 were incubated in phosphate buffer at the corresponding pH , temperature, and time length for each AID homologs. The reactions were then halted at $85^{\circ} \mathrm{C}$ for 20 min . The enzyme Uracil-DNA glycosylase enzyme (UDG, NEB) was added to each reaction to remove the AID-mediated dU and create an abasic site, which was then alkaline cleaved at $96^{\circ} \mathrm{C}$. Using denaturing acrylamide gel electrophoresis, the cleaved TGC strands were separated, and the GST-AID activity was reported as the percentage of TGCbub7 which were cleaved.

The optimal temperature of purified GST-AID proteins was determined in phosphate buffer pH 7.3 . In these experiments, $3 \mu \mathrm{l}$ of AID protein preparation and 25 fmol of ${ }^{32} \mathrm{P}$-labelled TGCbub7 substrate were incubated at various temperature points $\left(4^{\circ} \mathrm{C}\right.$ to $50{ }^{\circ} \mathrm{C}$). In the case of more cold-adapted GST-AIDs, a colder range of temperature was selected (i.e., starting from $-4{ }^{\circ} \mathrm{C}$ or $-10{ }^{\circ} \mathrm{C}$ with $2{ }^{\circ} \mathrm{C}$ increments). To reach the colder temperatures than $0^{\circ} \mathrm{C}$, the reactions were incubated in different cooling baths containing a slush of aqueous NaCl solution. The freezing point depression formula (i.e., Blagden's Law) was used to calculate the required NaCl amount to create cooling baths with desired melting temperature points (Table 4-2) (Averill, 2011):

$$
\Delta \mathrm{T}_{f}=K_{f} m i
$$

where the K_{f} is the freezing point depression constant (i.e., cryoscopic constant; K_{f} water $\left.=1.86\right), m$ is the molal concentration of the solute, and i is the Van't Hoff factor:

$$
i=\frac{\text { moles of particles in the solution }}{\text { moles of formula units dissolved }}
$$

Table 4-2: Amount of NaCl added to 1 Kg of water to establish below $0^{\circ} \mathrm{C}$ incubation temperatures

Freezing point $\left({ }^{\circ} \mathrm{C}\right)$	-2	-4	-6	-8	-10
$\mathrm{NaCl}(\mathrm{g})$	31.42	62.84	94.26	125.68	157.1

The optimal pH of each GST-AID proteins was examined at their corresponding optimal temperature in a reaction containing 3μ l of GST-AID preparation, 25 fmol of ${ }^{32} \mathrm{P}$ labelled TGCbub7, and 6μ of phosphate buffer with effective pH ranging from 5.9 to 8.2 (8 pH points) in the final volume of $10 \mu \mathrm{l}$.

The maximum incubation time to retain the GST-AID activity within the initial velocity was estimated from a time-course experiment. In this experiment, $3 \mu \mathrm{l}$ of purified GST-AID was incubated with 25 fmol of radiolabeled TGCbub7 substrate at its corresponding optimal temperature and pH for various incubation time points. These results were used to estimate the proper incubation time for the Michaelis-Menten kinetics assay, which is essential to be done within the initial velocity of the enzyme activity.

The catalytic properties (i.e., $\mathrm{K}_{\mathrm{cat}}, \mathrm{K}_{\mathrm{m}}$ and $\mathrm{V}_{\max }$) were calculated through MichaelisMenten kinetics assay at the optimal temperature and pH and within the initial velocity of each GST-AID protein. Specifically, $3 \mu \mathrm{l}$ of purified GST-AID were incubated with a $0.03125-600 \mathrm{fmol}$ range (18 points) of ${ }^{32} \mathrm{P}$-labelled TGCbub7 substrate. The results were
plotted as velocity (fmol of deaminated product $/ \mathrm{min}$ of incubation $/ \mu \mathrm{g}$ of AID) against substrate concentration (nM). The Michaelis-Menten parameters were estimated according to $\mathrm{Y}=\mathrm{Et} \times \mathrm{K}_{\text {cat }} \times \mathrm{X} /\left(\mathrm{K}_{\mathrm{m}}+\mathrm{X}\right)$ equation where Y is the enzyme velocity, X is the substrate concentration, Et is the concentration of enzyme catalytic sites, $\mathrm{K}_{\mathrm{cat}}$ is the number of times each enzyme site converts the substrate to product per unit time (i.e., the turnover number), and K_{m} (i.e., the Michaelis-Menten constant) is the substrate concentration needed to achieve a half-maximum enzyme velocity (i.e., $\mathrm{V}_{\max }$). Since AID has one catalytic pocket, the concentration of enzyme used in the experiment was used as an estimated Et. The molecular weight of the GST-AID proteins was calculated using Protein Molecular Weight web-based application (https://www.bioinformatics.org/sms/prot_mw.html).

4.3.6 Enzyme assay data collection and quantification

As mentioned in the methods section of chapter 3, the alkaline cleavage results were quantified by performing densitometry using Image Lab software (version 6.0.1 build 34, Standard Edition, Bio-Rad Laboratories, Inc.). Data were plotted using GraphPad Prism 5 software (version 5.00, GraphPad Software, Inc., USA), and error bars were set to represent standard error (SEM). In each experiment, two to three independent protein preparations of extant, ancestral, and mutated GST-AIDs were tested in duplicate or triplicate. Therefore, each point on an enzyme assay plot corresponds to the arithmetic mean of four to nine data points.

4.3.7 Correlation analyses of biochemical properties of extant AID homologs

Here we sought to explore the correlation relationship of optimal temperature and/or pH with $\mathrm{K}_{\mathrm{cat}}$ or K_{m}. First, correlation coefficient was calculated in Microsoft Excel 365 using the following equation:

$$
r_{x y}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sqrt{\sum(x-\bar{x})^{2} \sum(y-\bar{y})^{2}}}
$$

where the \bar{x} and \bar{y} are the average value of each parameter. The correlation coefficient more than 0.9 (positive correlation) or less than -0.9 (negative correlation) were considered significant. Using this correlation coefficient, we only observed correlation relationship between optimal temperature and $\mathrm{K}_{\text {cat }}$.

Considering the relationship between optimal temperature and $\mathrm{K}_{\text {cat }}$, we sought to verify whether the optimal temperature can be used to cluster our dataset according to catalytic rate. We performed a clustering algorithm called K-means clustering (VanderPlas, 2016). K-means clustering is an unsupervised machine learning algorithm which clusters data points of a multidimensional dataset into n clusters with equal variance (VanderPlas, 2016). To divide a set of N samples X into K disjoint clusters C , the algorithm tries to minimize a criterion known as "inertia" or within-cluster sum-of-square errors which is defined as:

$$
\sum_{i=0}^{n} \min \left(\left\|x_{i}-\mu_{j}\right\|^{2}\right)
$$

where $\mu \mathrm{j} \in \mathrm{C}$.

To use this algorithm, first, the number of clusters, n, should be specified. Then, the algorithm chooses n random observations from the dataset and assigns them as the initial clusters' centroid. To assign the remaining data points to the nearest cluster, the algorithm calculates the distance between a given data point and the clusters' centroids and chooses the one with the smallest distance. When each data point is assigned to a cluster, then, the centroid of each cluster is updated by averaging the value of all instances in that cluster. Using the new clusters' centroids, the algorithm re-assigned all the datapoints to new clusters and updates the centroids. This process is repeated until the difference between the old and the new centroids do not change significantly (i.e., less than a threshold) (VanderPlas, 2016). Selecting the optimal number of clusters is challenging. Here, we applied a heuristic method known as "Elbow method" to determine the optimal number of clusters for our dataset (Kodinariya \& Makwana, 2013). The aim of this mathematical optimization method is to find the "elbow of a curve" where diminishing returns are no longer worth the additional cost. In our case, we first ran the K-means algorithm with default number of clusters (n _clusters $=8$) and plotted the "inertia" $v s$. "number of clusters" graph. In this graph, as the number of clusters increases, the inertia decreases, where initially the reduction is significant and slows down as the number of clusters increases. However, at a specific number of clusters, this reduction is not as sharp as before (i.e., there is a sudden change of slope). This point is referred to as the elbow point and specify the optimal number of clusters for our dataset.

To perform this analysis, Python (Version 3.8) (Van Rossum \& Drake, 2009) was used. Since $\mathrm{K}_{\mathrm{cat}}$ and K_{m} values of our dataset vary within wide ranges, we used $\log K_{\text {cat }}$
and $\log K_{m}$ for simplicity and better visualization of graphs. The K-means clustering was done using Scikit-learn library (Version 0.23.2) (Pedregosa et al., 2012) with default parameters except for the number of clusters, n, which was calculated using Elbow method. The predicted optimal number of clusters was then used to re-run the K-means clustering algorithm. We performed this analysis to divide the dataset based on the optimal temperature alone, optimal pH alone, and both optimal temperature and pH . Using the clustering results, we plotted the $\log K_{c a t} v s . \log K_{m}$ to assess the relationship between the enzymatic efficiency and optimal temperature and/or pH of extant AID homologs.

4.3.8 Calculating the predicted protein stability curve of AID homologs

In our dataset, we found two closely related AID homologs (Tsu-AID and Pt-AID) with a significant difference in their optimal temperatures $\left(20^{\circ} \mathrm{C}\right)$. We sought to compare their predicted stability curve using SCooP server (http://babylone.ulb.ac.be/SCooP) (Pucci et al., 2017; Pucci \& Rooman, 2014, 2016). SCooP is a fast and accurate tool to estimate the Gibbs-Helmholtz equation of folding process of a protein with known or modeled structure. It predicts the change in enthalpy and in heat capacity upon folding ($\Delta \mathrm{H}_{\mathrm{m}}$ and $\Delta \mathrm{C}_{\mathrm{p}}$, respectively), the melting temperature $\left(\mathrm{T}_{\mathrm{m}}\right)$, and the folding free energy at room temperature ($\Delta \mathrm{G}_{\mathrm{r}}$) (Pucci et al., 2017; Pucci \& Rooman, 2014, 2016). T_{m} measures the thermal stability while $\Delta \mathrm{G}_{\mathrm{r}}$ can be considered as a descriptor of thermodynamic stability of proteins (Pucci et al., 2014; Pucci et al., 2017; Pucci \& Rooman, 2014, 2016). We used 5 predicted computational models of each AID homologs to estimate all the thermodynamic quantities that characterize the folding transition (i.e., $\Delta \mathrm{H}_{\mathrm{m}}, \Delta \mathrm{C}_{\mathrm{p}}, \mathrm{T}_{\mathrm{m}}$, and
$\Delta \mathrm{G}_{\mathrm{r}}$). The final value for each parameter was reported as the arithmetic mean \pm standard error (SEM).

4.3.9 WRC and WGCW motif analyses of other Gadidae species

The Atlantic $\operatorname{cod} \operatorname{Ig} V_{H}$ sequences obtained in section 3.3.8 were used to extract and annotate the $\operatorname{Ig} V_{H}$ regions of other Gadidae species using the raw genomic data of each species (the European Nucleotide Archive (ENA) accession number: PRJEB12469 and the Dryad repository: doi:10.5061/dryad.326r8) (Malmstrom et al., 2016). A similar BLAST protocol to section 3.3.8 was used to obtain the $\operatorname{Ig} V_{H}$ regions of other Gadidae species. The WRC and WGCW analyses were exactly done as section 3.3.9 and the GC content of the coding sequences was retrieved from Codon and Codon-Pair Usage Tables (CoCoPUTs) server available at https://hive.biochemistry.gwu.edu/review/codon2 (Alexaki et al., 2019). In these analyses, for each parameter, the average of that parameter for Arctic cod (Ag), Polar cod (Bs), Haddock (Ma), Silvery pout (Ga), and Atlantic cod (Gm) were reported as the "Gadinae" group. Similarly, the average of Arctic cod (Ag), Polar cod (Bs), Haddock (Ma), Silvery pout (Ga), Atlantic cod (Gm), Burbot (Llo), and Forkbeard (Pp) were reported as the "Gadidae" group.

4.4 Results

4.4.1 Biochemical properties of the extant Gadiformes AIDs

4.4.1.1 Selected extant AID homologs for biochemical analyses

To study AID's evolutionary trajectory in the Gadiformes group, we synthesized and characterized the biochemical properties of 36 AID proteins from 35 extant species. Twenty-three of the included species belong to the Gadiformes taxonomic order of bony fish class. Selected non-Gadiformes species were used as comparison points. Figure 4-1 illustrates the protein alignment of these extant AID proteins. To examine the biochemical properties of the extant Gadiformes AIDs, we expressed and purified them as N-terminally tagged GST fusion proteins (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani et al., 2007). We compared their optimal temperature, optimal pH , and Michaelis-Menten kinetics parameters to that of non-Gadiformes AIDs using our alkaline cleavage assay (Abdouni et al., 2013; Dancyger et al., 2012; King et al., 2015; Larijani \& Martin, 2007; Larijani et al., 2007). In all assays, at least two independent protein preparations of each AID homolog were tested in duplicate. We tested all activity assays on the 7 nucleotide long partially single-stranded bubble substrate containing AID hotspot (TGCbub7). All bony fish AIDs studied thus far favor TGCbub7 as the optimal substrate (Abdouni et al., 2013; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani et al., 2007). Interestingly, we did not observe any cytidine deaminase activity for purified AID from B. saida (Bs-AID) and M. zugmayeri (Mz-AID) in our assays. Both Atlantic cod and B. saida, known as polar cod, belongs to Gadinae group of Gadidae (cods) family. However, M. zugmayeri, also known as arrowtail cod, belong to Melanonidae (pelagic
cods) family of the Gadidae sister group. There are only three amino acid differences between Gm-AID and Bs-AID: K13, R54, and L143 in Gm-AID vs. N13, H54, and P143 in Bs-AID, amongst which L143P seems to be the most drastic amino acid change. This amino acid resides in $\alpha 4$ in Gm-AID and its replacement with a proline in Bs-AID most likely causes a truncated $\alpha 4$.

Figure 4-1: Protein alignment of extant AID homologs the enzymatic properties of which were characterized in this chapter. The approximate secondary structure of α-helical (α), β-strand (β), and loop (l) regions are shown. Residues are colored according to chemical properties of the side chain. For abbreviations, refer to Table 4-1.

4.4.1.2 Examining the optimal temperature of extant Gadiformes AIDs

We first examined the optimal temperature of purified AIDs. Since our findings in the previous chapter revealed that Atlantic cod AID is a cold-adapted enzyme, we tested the activity of the purified AIDs in a wide range of -10 to $40^{\circ} \mathrm{C}$. The minimum and maximum incubation temperature as well as the incubation duration were decided based on the preliminary results (not shown). Gm-AID, Ip-AID, Dr-AID and Hs-AID, which have known temperature profile, were also tested as controls (Dancyger et al., 2012; Emma M. Quinlan, 2017).

As illustrated in Figure 4-2, the majority of extant Zeiogadaria AIDs are coldadapted enzymes. Particularly, Mmor-AID, Tmu-AID and Tsc-AID have an optimal temperature of $0{ }^{\circ} \mathrm{C}$ (Table 4-4). All the extant species studied in this thesis are marine species except for T. subterraneus, P. transmontane, D. rerio, O. latipes, and I. punctatus which are freshwater fish (www.fishbase.se; Appendix 6). Among the AID homologs from these species, Tsu-AID has the lowest optimal temperature of about $8^{\circ} \mathrm{C}$, very similar to most of the marine fish in this study. T. subterraneus, and P. transmontane both belong to the Percopsiformes family; however, their AIDs exhibited a substantial $\sim 20^{\circ} \mathrm{C}$ difference in their optimal temperature (Pt-AID $\sim 28^{\circ} \mathrm{C}$ and Tsu-AID $\sim 8^{\circ} \mathrm{C}$). These two AIDs have 19 amino acid differences which mostly reside within the $\alpha 3, \alpha 4$, and $\ell 11$ regions (T3S, H29N, N44D, I63L, E79Q, E84D, R85N, A101S, L105H, I110F, R112S, K135R, D138E, V146A, Q149H, F159Y, H168R, N172K, and D177E in Pt-AID vs. Tsu-AID; Figure 4-3).

It has been proposed by Nojima and colleagues that proteins may increase their thermoresistance using three main strategies. In the first strategy, the enthalpy change
$\left(\Delta \mathrm{H}_{\mathrm{s}}\right)$ measured at the temperature of maximum stability $\left(\mathrm{T}_{\mathrm{s}}\right)$ is more negative, causing $\Delta \mathrm{G}$ for all temperatures to decrease. This strategy can be seen as a curve to be shifted downward (Figure 4-4 A). The second strategy is to increase (less negative) the change in the heat capacity upon folding $\left(\Delta \mathrm{C}_{\mathrm{p}}\right)$ which causes T_{m} to increase. In this case, the stability curve would broaden (Figure 4-4 B). The third strategy is to increase T_{s} which shifts the curve to the right (Figure 4-4 C) (Nojima et al., 1978; Pucci \& Rooman, 2014; Razvi \& Scholtz, 2006). Proteins may apply one, two, or all of these strategies to improve their thermal resistance. For example, it was shown that Thermus thermophilus cytochrome c employed the first and third strategies while T. thermophilus phosphoglycerate kinase has achieved higher thermo stability by using the second strategy, with some contribution from the first strategy (Nojima et al., 1978; Nojima et al., 1977). In the case of Thermococcus kodakaraensis O^{6}-methyl-guanine-DNAmethylytransferase, all three strategies were used to enhance thermal stability (Shiraki et al., 2001).

To investigate the strategies used by Pt-AID to acquire higher optimal temperature compared with that of Tsu-AID, we used SCooP web interface to predict the stability curves of five computationally predicted models for each AID (Pucci et al., 2017; Pucci \& Rooman, 2014, 2016). The predicted thermodynamic parameters of Pt-AID and Tsu-AID are summarized in Table 4-3. Consistent with higher temperature of Pt-AID compared with that of Tsu-AID, the predicted folding free energy value at room temperature $\left(\Delta \mathrm{G}_{\mathrm{r}}\right)$ and the change in enthalpy upon folding $\left(\Delta \mathrm{H}_{\mathrm{m}}\right)$ for Pt-AID were lower than that of Tsu-AID (-6.52 ± 0.409 vs. -5.38 ± 0.132 for $\Delta \mathrm{G}_{\mathrm{r}}$ and -79.32 ± 2.039 vs. -74.72 ± 1.602 for $\left.\Delta \mathrm{H}_{\mathrm{m}}\right)$, suggesting more thermodynamic stability for Pt-AID. Although, the $\Delta \mathrm{C}_{\mathrm{p}}$ of Pt-AID was
less negative than that of Tsu-AID $(-1.176 \pm 0.1264 v s .-1.43 \pm 0.0498)$, the predicted T_{m} of Pt-AID was lower than that of Tsu-AID (64.72 ± 0.991 vs. 68.76 ± 0.289). As illustrated in Figure 4-5, the T_{s} of Pt-AID was also lower than that of Tsu-AID $\left(\sim 4^{\circ} \mathrm{C} v s . \sim 22^{\circ} \mathrm{C}\right)$. T_{s} is the temperature of maximum stability. Based on these observations, it seems that PtAID has only applied the first strategy to increase its thermoresistance compared with TsuAID. However further studies are required to pinpoint the mutation(s) responsible for PtAID thermoresistance.

Figure 4-2: Temperature profile of extant AID homologs. The optimal temperature of each AID was assessed using our standard alkaline cleavage assay and bub7TGC substrate. The incubation duration, minimum, and maximum temperature limits were tailored to the activity level of each purified AID obtained in the preliminary results. For better representation, results were graphed based on the AIDs' activity level. A through D show AIDs with low to high activity levels. Data is graphed as mean $\pm \operatorname{SEM}(n=4)$. For abbreviations, refer to Table 4-1.

Figure 4-3: Predicted 3D structure of Pt-AID (left) vs. Tsu-AID (right). Predicted surface topology of PtAID and Tsu-AID were compared. Panel A and B illustrate the front and the back view of their predicted surface topology, respectively. Positive, neutral, and negative residues are colored blue, white, and red, respectively. The putative catalytic pocket is colored in purple. C) Representative ribbon model of their predicated 3D structures. Positions containing different amino acids between the two AIDs are labeled. The purple circles show positions that are occupied with differently charged amino acids amongst these AIDs.

Figure 4-4: Main thermal adaptation strategies employed by proteins. Proteins can modify their thermoresistance through changing $\left.A) \Delta H_{s}, B\right) \Delta C_{p}$, and/or C) T_{s}. Graphs represent the stability curve of hypothetical mesostable (Meso) and thermostable (Thermo) proteins. Adapted from Pucci and Rooman, 2014. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Table 4-3: Predicted thermodynamic quantities of Pt-AID and Tsu-AID using SCooP server

	Optimal temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{H}_{\mathrm{m}}$ $(\mathrm{kcal} / \mathrm{mol})$	$\Delta \mathrm{C}_{\mathrm{p}}$ $(\mathrm{kcal} /(\mathrm{mol} \mathrm{K}))$	T_{m} $\left({ }^{\circ} \mathrm{C}\right)$	$\Delta \mathrm{G}_{\mathrm{r}}$ $(\mathrm{kcal} / \mathrm{mol})$
Pt-AID	28	-79.32 ± 2.039	-1.176 ± 0.1264	64.72 ± 0.991	-6.52 ± 0.409
Tsu-AID	8	-74.72 ± 1.602	-1.43 ± 0.0498	68.76 ± 0.289	-5.38 ± 0.132

Abbreviations: Pt-AID: sand roller (P. transmontane) AID; Tsu-AID: Southern cavefish (T. subterraneus) AID.

Figure 4-5: Predicted stability curves for A) Pt-AID and B) Tsu-AID. Five predicted models of each AID homolog were submitted to the SCooP server. Please note that the scales on both axes vary between panels. Abbreviations: Pt-AID: sand roller (P. transmontane) AID; Tsu-AID: Southern cavefish (T. subterraneus) AID.

4.4.1.3 Examining the optimal $\mathbf{p H}$ of extant Gadiformes AIDs

We then examined the pH profile of purified AIDs at their corresponding optimal temperature using phosphate buffer with effective pH ranging from 6.1 to 8.2 (Figure 4-6). The pH profile of Gm-AID, Ip-AID, Dr-AID, and Hs-AID were also tested as known controls. The optimal pH obtained for the controls here was consistent with the data from the previous chapter (section 3-4-1). Our results showed that AIDs with lower optimal temperature generally tend to have a higher optimal pH and vice versa (Figure 4-7 and Table 4-4). However, this trend is not absolute since we also observed AID homologs with similar optimal temperature but different optimal pH , such as Bb -AID, Ag-AID and MmolAID, and Mmerla-AID with optimal temperature of $4^{\circ} \mathrm{C}$ but optimal pH of 8.1, 7.9 , and 7.8 , respectively. Also, amongst the AID homologs with optimal temperature of $8{ }^{\circ} \mathrm{C}$, we found optimal pH of 8.2 (Pj-AID), 8.1 (Gm-AID, Mo-AID, and Llo-AID), 7.9 (Ma-AID, Tmi-AID, Pp-AID, Pb-AID, Bm-AID, Zf-AID, and Tsu-AID), 7.8 (Mmerlu-AID and TrAID), 7.7 (Pv-AID), and 7.6 (La-AID, Mma-AID, Sc-AID, and Cr-AID). The optimal temperature and pH of Ga-AID were measure at $12{ }^{\circ} \mathrm{C}$ and 8.2 , while the pH of Mb -AID and Ss-AID, which exhibited a similar optimal temperature, was measured at 7.9. We also found AID homologs with similar optimal pH exhibiting distinct optimal temperatures. For example, amongst AIDs with optimal pH of 8.1, we found AIDs with optimal temperature of $0{ }^{\circ} \mathrm{C}$ (Tsc-AID, Tmu-AID, and Mmor-AID), $4^{\circ} \mathrm{C}(\mathrm{Bb}-\mathrm{AID})$, and $8{ }^{\circ} \mathrm{C}(\mathrm{Gm}-\mathrm{AID}$, MoAID, and Llo-AID). The AID homologs with optimal pH of 7.9, revealed optimal temperature of $4{ }^{\circ} \mathrm{C}$ (Ag-AID and Mmol-AID), $8{ }^{\circ} \mathrm{C}$ (Ma-AID, Tmi-AID, Pp -AID, Pb AID, Bm-AID, Zf-AID, and Tsu-AID), $12{ }^{\circ} \mathrm{C}\left(\mathrm{Mb}-\mathrm{AID}\right.$ and Ss -AID), and $14^{\circ} \mathrm{C}$ (Ip-AID).

Additionally, although the optimal pH of Dr-AID, Pt-AID, and Ol-AID were measured at 7.6 , their optimal temperatures were estimated as $25^{\circ} \mathrm{C}, 28^{\circ} \mathrm{C}$, and $32^{\circ} \mathrm{C}$, respectively.

Figure 4-6: pH profile of extant AID homologs. The optimal pH of each AID was assessed using our standard alkaline cleavage assay and bub7TGC substrate in their corresponding optimal temperature. The incubation time for each AID homolog was decided based on its activity level. For better representation, results were graphed based on the AIDs' activity level. A through C show AIDs with low to high activity levels. Data is graphed as mean \pm SEM ($n=4$). For abbreviations, refer to Table 4-1.

Figure 4-7: Optimal pH vs. optimal temperature of extant AID homologs. For abbreviations, refer to Table 4-1.

4.4.1.4 Examining the catalytic properties of extant Gadiformes AIDs

To compare the catalytic activity of the Gadiformes AIDs to that of other extant species, we conducted standard Michaelis-Menten kinetics. In preparation for MichaelisMenten kinetics, we performed a time-course experiment to estimate the proper incubation time when the AID activity falls within the initial velocity. Gm-AID was tested alongside other extant AID homologs as a control. The time-course experiment was done in the corresponding optimal pH and temperature of each AID homolog (Figure 4-8).

Figure 4-8: Time-course experiment. Catalytic activity of each AID homolog over time was measured at its corresponding optimal pH and temperature. These results were used to estimate the incubation duration of the following Michaelis-Menten kinetics assay for each AID homolog. For better visualization, data is graphed based on the AIDs activity level. A through C correspond to AIDs with low, medium, and high activity levels, respectively. The error bars represent SEM ($n=4$). For abbreviations, refer to Table 4-1.

Using the time-course results, we conducted a standard Michaelis-Menten kinetics to quantitatively compare the enzymatic activity of extant Gadiformes AIDs (Figure 4-9 and Figure 4-10). At least, two independent protein preparations of each AID homolog were tested in duplicate on bub7TGC substrate. The biochemical properties of extant AID proteins examined in this thesis are summarized in Table 4-4. We measured the maximum velocity (i.e., maximum reaction rate that was achieved in reaction $\left[V_{\max }\right]$), the affinity of enzyme for its substrate (i.e., the Michaelis constant which is the substrate concentration at which the enzyme operates at one half of its maximum velocity $\left[K_{m}\right]$), the turnover number (i.e., the catalytic constant which is the number of catalytic cycles that each active site undergoes per unit time $\left[K_{c a t}\right]$), and the catalytic efficiency (i.e., the enzyme's overall ability to converts substrate to product $\left[K_{\text {cat }} / K_{m}\right]$). It should be noted that in the context of AID, K_{m} could be considered as a measure of target dC positioning in the catalytic pocket.

We found that, on average, the catalytic efficiency of the Gadinae species (1.77e07) is slightly less than the rest of Gadiformes lineage (2.71e-07). We also observed a strong positive correlation $\left(r_{\text {Temp. }, \log \left(K_{c a t}\right)}=0.95\right)$ between the optimal temperature and the $\log K_{\text {cat }}$ of the extant AIDs analyzed here (Figure 4-11). To confirm this correlation, we also applied K-means clustering, an unsupervised machine learning clustering algorithm, to divide the dataset into discrete groups based on their optimal temperature. We tested the scenarios where the dataset was divided into two to eight clusters. The Elbow methods revealed that three is the optimal number of the clusters for our dataset (Figure 4-12 A). We then categorized our dataset into three groups based on optimal temperature
using K-means clustering model (Figure 4-12 B). This clustering was used to group AID species in the $\log K_{\text {cat }}$ vs. $\log K_{m}$ plot (Figure 4-12 C). The analyses revealed that clustering based on optimal temperature was mostly successful in clustering AID homologs based on their enzymatic efficiency. We then examined whether considering the optimal pH of extant AIDs could improve the clustering results. Including the optimal pH in the clustering analyses did not affect the accuracy of $\log K_{\text {cat }}$ vs. $\log K_{m}$ graph obtained when only optimal temperature was considered (Figure 4-13). Moreover, considering optimal pH as the clustering parameter failed to properly divide the extant AIDs according to their catalytic efficiency (Figure 4-14). Therefore, we concluded that optimal pH is not a determining factor in catalytic efficiency of AIDs studied herein. These results, indirectly, further confirmed our previously observed strong positive correlation between optimal temperature and $\mathrm{K}_{\mathrm{cat}}$. These findings suggest that the two biochemical characteristics of low temperature adaptation and low catalytic rate might be associated in Gadiformes AIDs, and that perhaps while Gadifomes AIDs adapted to lower temperature, they experienced a significant reduction in their enzymatic efficiency.

Figure 4-9: Comparison of the catalytic rate of Gadiformes AIDs with other AID homologs. A) The catalytic rate of Gadiformes AIDs was compared to that of other AID homologs through Michaelis-Menten kinetics. At least two independent protein preparations of each AID homolog were incubated at their optimal pH and temperature with 0.03125-600 fmol range of TGCbub7 substrate. Each reaction was carried out in duplicate. For better visual representation, the data is graphed based on the AIDs' activity level. A through C show AIDs with low to high activity levels. Data is represented as mean \pm SEM ($n \geq 4$). For abbreviations, refer to Table 4-1.

Figure 4-10: Relative catalytic efficiency of all AID homologs examined here. For a better comparison, the catalytic efficiency (Kcat/Km) of AID homologs were reported relative to the value of this parameter for Ag-AID (AID with lowest non-zero catalytic efficiency). Therefore, the relative catalytic efficiency of $A g-A I D$ is set to 1 . We did not detect ant cytidine deaminase activity for Bs-AID and Mz-AID. For the list of abbreviations, please refer to Table 4-1.

Table 4-4: The enzymatic parameters measured for extant AID homologs examined in this thesis

Pp-AID	8	7.89	$2.05 \mathrm{E}-06$	17.77	0.039	4.15E-08	1.379	0.97	$1.15 \mathrm{E}-07$		
Pb -AID	8	7.89	$3.21 \mathrm{E}-06$	10.31	0.061	$7.02 \mathrm{E}-08$	0.9191	0.96	$3.11 \mathrm{E}-07$		
Mo-AID	8	8.08	$4.34 \mathrm{E}-06$	110.9	0.083	$1.23 \mathrm{E}-07$	9.595	0.98	$3.91 \mathrm{E}-08$		
Mb-AID	12	7.89	$1.09 \mathrm{E}-05$	19.12	0.209	$1.96 \mathrm{E}-07$	1.307	0.98	$5.71 \mathrm{E}-07$		
Bm-AID	8	7.89	$7.70 \mathrm{E}-06$	13.28	0.147	$1.72 \mathrm{E}-07$	1.169	0.94	$5.80 \mathrm{E}-07$		
Lla-AID	8	7.56	$1.81 \mathrm{E}-06$	18.92	0.034	5.15E-08	2.041	0.94	$9.59 \mathrm{E}-08$		
Mmor-AID	0	8.08	$1.19 \mathrm{E}-06$	7.585	0.023	$4.94 \mathrm{E}-08$	1.344	0.86	$1.56 \mathrm{E}-07$		
Tmu-AID	0	8.08	$1.02 \mathrm{E}-06$	4.274	0.020	$3.64 \mathrm{E}-08$	0.7125	0.88	$2.40 \mathrm{E}-07$		
Tsc-AID	0	8.08	$1.20 \mathrm{E}-06$	5.972	0.023	$4.21 \mathrm{E}-08$	0.9249	0.89	$2.02 \mathrm{E}-07$		
Mma-AID	8	7.56	$3.93 \mathrm{E}-06$	57.69	0.075	$1.33 \mathrm{E}-07$	6.495	0.95	$6.81 \mathrm{E}-08$		
Mz-AID	No detectable cytidine deaminase activity was observed in our assays.										
Mmerlu-AID	8	7.77	8.33E-06	18.6	0.159	$1.79 \mathrm{E}-07$	1.521	0.97	$4.48 \mathrm{E}-07$		
Sc-AID	8	7.56	$6.30 \mathrm{E}-06$	172.6	0.121	$3.17 \mathrm{E}-07$	22.18	0.96	$3.65 \mathrm{E}-08$		
Cr-AID	8	7.56	$2.30 \mathrm{E}-06$	61.05	0.044	7.60E-08	6.658	0.96	3.76E-08		
Zf-AID	8	7.89	$4.22 \mathrm{E}-06$	43.6	0.080	$9.69 \mathrm{E}-08$	3.475	0.97	$9.68 \mathrm{E}-08$		

Tsu-AID	8	7.89	$1.30 \mathrm{E}-05$	24.25	0.248	$3.18 \mathrm{E}-07$	2.202	0.96	$5.36 \mathrm{E}-07$
Pt-AID	28	7.56	0.002082	848.4	39.74	0.0001989	122.4	0.98	$2.45 \mathrm{E}-06$
Pj-AID	8	8.2	$1.86 \mathrm{E}-05$	34.27	0.355	$5.40 \mathrm{E}-07$	3.554	0.95	$5.44 \mathrm{E}-07$
Dr-AID	25	7.56	0.002612	27.16	50.08	$8.31 \mathrm{E}-05$	3.104	0.95	$9.62 \mathrm{E}-05$
Ss-AID-1	12	7.89	$1.24 \mathrm{E}-05$	52.73	0.238	$1.87 \mathrm{E}-07$	2.673	0.98	$2.36 \mathrm{E}-07$
Ss-AID-2	12	7.89	$2.12 \mathrm{E}-05$	51.92	0.405	$3.91 \mathrm{E}-07$	3.253	0.98	$4.07 \mathrm{E}-07$
Ol-AID	32	7.56	0.03874	1169	737.7	0.006819	285.2	0.97	$3.31 \mathrm{E}-05$
Ip-AID	14	7.89	$5.50 \mathrm{E}-05$	68.77	1.058	$1.62 \mathrm{E}-06$	6.52	0.97	$8.00 \mathrm{E}-07$
Tr-AID	8	7.77	$3.27 \mathrm{E}-06$	101.8	0.062	$1.07 \mathrm{E}-07$	9.85	0.97	$3.21 \mathrm{E}-08$
Hs-AID	31	7.31	0.001448	133.8	28.130	$3.72 \mathrm{E}-05$	9.465	0.98	$1.08 \mathrm{E}-05$

For abbreviations, refer to Table 4-1.

Figure 4-11: The relationship between optimal temperature and $\log K_{\text {cat }}$ of extant AID homologs studied here. For abbreviations, refer to Table 4-1.

Figure 4-12: Clustering of extant AIDs based on their optimal temperature using machine learning algorithm of K -means clustering. A) The optimal number of clusters was estimated as three according to the K-means clustering model and elbow method. The K-means error was calculated for a given number of clusters ($n=$ 2 to 8). On the error vs. number of clusters graph, the number of clusters where the "elbow" is bent was considered as the optimal number of clusters for the dataset. B) The dataset was divided into three distinct clusters based on the optimal temperature using K-means clustering model. The three clusters are colored cyan, violet, and yellow. C) The catalytic efficiency of the extant AID proteins was compared amongst the three clusters. The color scheme in B and C sections are the same. For abbreviations, refer to Table 4-1.

Figure 4-13: Clustering of extant AIDs based on their optimal temperature and optimal pH using machine learning algorithm of K-means clustering. A) The optimal number of clusters was estimated as three according to the K-means clustering model and elbow method. The K-means error was calculated for a given number of clusters ($n=2$ to 8). On the error vs. number of clusters graph, the number of clusters where the "elbow" is bent was considered as the optimal number of clusters for the dataset. B) The dataset was divided into three distinct clusters based on the optimal temperature and $p H$ using K-means clustering model. The three clusters are colored cyan, violet, and yellow. C) The catalytic efficiency of the extant AID proteins was compared amongst the three clusters obtained based on the optimal temperature and pH . The color scheme in B and C sections are the same. For abbreviations, refer to Table 4-1.

Figure 4-14: Clustering of extant AIDs based on their optimal pH using machine learning algorithm of Kmeans clustering. A) The optimal number of clusters was estimated as three according to the K-means clustering model and elbow method. The K-means error was calculated for a given number of clusters ($n=$ 2 to 8). On the error vs. number of clusters graph, the number of clusters where the "elbow" is bent was considered as the optimal number of clusters for the dataset. B) The dataset was divided into three distinct clusters based on the optimal pH using K-means clustering model. The three clusters are colored cyan, violet, and yellow. C) The catalytic efficiency of the extant AID proteins was compared amongst the three clusters obtained based on the optimal pH. The color scheme in B and C sections are the same. For abbreviations, refer to Table 4-1.

4.4.2 Co-evolution of Gadidae Ig genes with their nearly inactivated AID

As mentioned in sections 1.5.3 and 3.4.5, previous studies have revealed a coevolution between AID substrate specificity and the $I g$ variable (V) genes of vertebrate species (Conticello et al., 2005; Detanico et al., 2016; Golub \& Charlemagne, 1998; Jolly et al., 1996; Oreste \& Coscia, 2002; Wagner et al., 1995). Since we observed that the functional impairment of AID is a common phenomenon amongst Gadidae species, we sought to analyze their $I g$ gene sequences. The WRC and WGCW motif analyses of other Gadidae species revealed low/no AID hotspot enrichment in CDRs of Gadidae species (Figure 4-15 and Table 4-5) despite comparable abundance of WRC in their entire $I g V_{H}$ fragments and higher GC content of their CDSs (Table 4-6).

Figure 4-15: Co-evolution of AID activity with $I^{\prime} V_{H}$ gene sequences in Gadidae species. To assess the coevolution of AID activity with $\operatorname{Ig} V_{H}$ sequences in Gadidae species, enrichment of A) WRC motifs (AID hotspots on both strands) and B) WGCW motifs (overlapping AID hotspots on two strands) in CDRs of Gadidae species were compared to that of several other vertebrate species. Abbreviations: Bs: Polar cod; Ga: Silvery pout; Ag: Arctic cod; Ma: Haddock; Llo: Burbot; Pp: Forkbeard; Gm: Atlantic cod; Dr: zebrafish; Ss: Atlantic salmon; Ip: channel catfish; Tr: Japanese puffer fish; Gc: nurse shark; Xl: South African clawed toad; Gg: chicken; Mm: mouse; Hs: human.

Table 4-5: AID hotspot enrichment in IgV ${ }_{H}$ genes of various Gadidae and vertebrate species

	FR1			CDR1			FR2			CDR2			FR3					
	$\begin{aligned} & \stackrel{n}{0} \\ & 0 \\ & 0.0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \# \end{aligned}$		$\begin{aligned} & \stackrel{\bullet}{0} \\ & . \quad \end{aligned}$	$\begin{aligned} & \frac{n}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & \# \\ & \# \end{aligned}$		$\begin{aligned} & \stackrel{\times}{\oplus} \\ & . \quad \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0.0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & \# \end{aligned}$		$\begin{aligned} & \stackrel{\diamond}{\bullet} \\ & . \quad \end{aligned}$			$\stackrel{\diamond}{\stackrel{\bullet}{*}}$			$\begin{aligned} & \stackrel{x}{0} \\ & . \quad \end{aligned}$		$\begin{aligned} & \stackrel{\imath}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{2}{1} \\ & \\ & \\ & \hline 1 \end{aligned}$
$A g-\operatorname{Ig} V_{H}$	879	5905	0.15	224	1328	0.17	168	1863	0.09	114	1968	0.06	1186	7224	0.16	0.13	0.11	0.84
$B s-I g V_{H}$	405	2362	0.17	84	465	0.18	77	660	0.12	38	672	0.06	375	2201	0.17	0.15	0.12	0.78
$M a-\operatorname{Ig} V_{H}$	167	882	0.19	35	156	0.22	23	231	0.10	21	240	0.09	128	775	0.17	0.15	0.16	1.03
$\underline{\operatorname{Ga}-\operatorname{Ig} V_{H}}$	226	1603	0.14	74	422	0.18	63	645	0.10	36	729	0.05	407	2407	0.17	0.14	0.11	0.83
Llo-IgV ${ }_{\text {l }}$	345	1935	0.18	76	357	0.21	37	495	0.07	44	528	0.08	253	1566	0.16	0.14	0.15	1.07
$P \mathrm{Pr-Ig} V_{H}$	377	2207	0.17	107	450	0.24	40	623	0.06	56	670	0.08	356	2042	0.17	0.14	0.16	1.18
Gadinae	2467	18589	0.13	852	4744	0.18	694	9009	0.08	383	5598	0.07	4051	25372	0.16	0.12	0.12	1.01
Gadidae	3189	22731	0.14	1035	5551	0.19	771	10127	0.08	483	6796	0.07	4660	28980	0.16	0.13	0.13	1.02
$G m-\operatorname{Ig} V_{H}$	790	7837	0.10	435	2373	0.18	363	5610	0.06	174	1989	0.09	1955	12765	0.15	0.11	0.14	1.27
$\underline{\text { Ip-Ig } V_{H}}$	652	7199	0.09	482	2709	0.18	662	5498	0.12	379	2360	0.16	1753	12381	0.14	0.12	0.17	1.44
Tr-IgV ${ }_{H}$	309	3675	0.08	219	1245	0.18	183	2361	0.08	268	1215	0.22	803	5517	0.15	0.10	0.20	1.94
Dr-IgV ${ }_{H}$	410	5234	0.08	307	1786	0.17	396	3774	0.10	220	1510	0.15	1127	9143	0.12	0.10	0.16	1.55
Ss-IgV ${ }_{H}$	2509	28445	0.09	1571	9215	0.17	2201	19629	0.11	1196	8333	0.14	6042	44363	0.14	0.11	0.16	1.40
$G c-\operatorname{Ig} V_{H}$	727	7407	0.10	578	3102	0.19	664	6579	0.10	569	3027	0.19	1284	14250	0.09	0.10	0.19	1.94
$X 1-\operatorname{Ig} V_{H}$	88	902	0.10	50	292	0.17	67	611	0.11	33	252	0.13	192	1449	0.13	0.11	0.15	1.33
$G g-\operatorname{Ig} V_{H}$	1218	15455	0.08	995	5010	0.20	1391	10627	0.13	1011	5031	0.20	3903	24359	0.16	0.12	0.20	1.62
Mm-IgV ${ }_{H}$	3112	20493	0.15	1054	4209	0.25	689	11341	0.06	1730	13394	0.13	3907	25318	0.15	0.12	0.19	1.55
$H s-I g V_{H}$	3322	27855	0.12	1452	5900	0.25	932	15503	0.06	2424	19590	0.12	4328	38075	0.11	0.10	0.18	1.89

Abbreviations: Ag: Arctic cod; Bs: Polar cod; Ma: Haddock; Ga: Silvery pout; Llo: Burbot; Pp: Forkbeard; Gm: Atlantic cod; Dr: zebrafish; Ss: Atlantic salmon; Ip: channel catfish; Tr: Japanese puffer fish; Gc: nurse shark; X1: South African clawed toad; Gg: chicken; Mm: mouse; Hs: human.

Table 4-6: AID hotspot enrichment in the entire Ig V_{H} genes and GC content of annotated complete protein coding genes (CDSs) of various Gadidae and vertebrate species

	$I g V_{H}$ gene analysis				Genomic analysis	
	\# AID hotspot	$\begin{gathered} \text { \# nt. } \\ \text { analyzed } \end{gathered}$	AID hotspots/nt. analyzed	\# transcripts	\# CDSs	GC\%
$A g-I g V_{H}$	2571	18288	0.1406	87	8	60.35
$B s-I g V_{H}$	979	6360	0.1539	20	73	61.66
Ma-IgV ${ }_{H}$	374	2284	0.1637	7	44	54.80
Ga-Ig V_{H}	806	5806	0.1388	25	6	60.87
Llo-IgV ${ }_{H}$	755	4881	0.1547	15	32	59.19
Pp-IgV ${ }_{H}$	936	5992	0.1562	19	9	60.23
Gadinae	8447	63312	0.1334	251	NA	59.44
Gadidae	10138	74185	0.1367	285	NA	59.52
Gm-IgV ${ }_{H}$	3717	30574	0.1216	112	44330	59.53
$I p-I g V_{H}$	3928	30147	0.1303	109	47956	51.46
Tr-Ig V_{H}	1782	14013	0.1272	49	46294	54.11
Dr-IgV ${ }_{H}$	2460	21447	0.1147	76	57060	49.85
$S s-I g V_{H}$	13519	109985	0.1229	405	97576	55.12
$G c-I g V_{H}$	3822	34365	0.1112	129	1507	47.97
$X l-I g V_{H}$	430	3506	0.1226	44	49356	45.62
$G g-\operatorname{Ig} V_{H}$	8518	60482	0.1408	239	56680	50.23
$M m-I g V_{H}$	10492	74755	0.1404	420	88579	51.96
$H s-I g V_{H}$	12458	106923	0.1165	727	120426	51.02

NA: Since the number of analyzed $\operatorname{Ig} V_{H}$ transcripts was very low for Gadidae species other than Atlantic cod, we decided not to report this parameter for Gadidae and Gadinae groups.
Abbreviations: Ag: Arctic cod; Bs: Polar cod; Ma: Haddock; Ga: Silvery pout; Llo: Burbot; Pp: Forkbeard; Gm: Atlantic cod; Dr: zebrafish; Ss: Atlantic salmon; Ip: channel catfish; Tr: Japanese puffer fish; Gc: nurse shark; XI: South African clawed toad; Gg: chicken; Mm: mouse; Hs: human.

4.4.3 Resurrecting Gadiformes ancestral AIDs

To estimate the evolutionary point at which the functional alteration of AID begun within Gadiformes lineage and to infer the evolutionary trajectory of the functional alteration, we performed ASR analyses. The prediction of ancestral sequences requires four steps that are followed by the fifth step of resurrecting the ancestral proteins in the lab (R. Merkl \& R. Sterner, 2016). In the first step, homologous extant sequences are retrieved from various database. Then, a multiple sequence alignment (MSA) is created based on which a phylogeny tree would be constructed in the next step. In the last step of ASR analysis, ancestral sequences are predicted using the MSA and the phylogeny tree. A critical step in ASR is examining the biochemical and functional properties of the predicted ancestors in the lab (R. Merkl \& R. Sterner, 2016; Rainer Merkl \& Reinhard Sterner, 2016).

4.4.3.1 Selected extant species for ancestral sequence reconstruction analyses

We included the AID gene sequence form 73 bony fish species (Appendix 6 and Appendix 7) and used Lampetra tridentata CDA1 as the outgroup. The amino acid alignment was guided by the predicted 3D structure of Gm-AID (Appendix 8). Interestingly, we could not find a complete or partial aicda gene in the striped codlet (Bregmaceros cantori). The genomic sequencing also revealed the lack of many other important immune genes in this species (Malmstrom et al., 2016). In our dataset, the striped codlet represents the most basal Gadiformes species and is characterized by the complete absence of mhc I U, mhc II, cd4, cd8 and aicda genes (Malmstrom et al., 2016).

Previous studies have shown that factors such as the alignment algorithm, assumptions, and the rate of insertions and deletions impact the ASR results (R. Merkl \&
R. Sterner, 2016; Vialle et al., 2018). With the goal of creating a more accurate MSA, we decided to guide the alignment algorithm with the 3D structure. Given the potential stronger conservation of structure $v s$. sequence in protein evolution, previous studies have concluded that the structure-guided alignments can outperform sequence-alignments (Ingles-Prieto et al., 2013; Kim \& Lee, 2007). Here, we used our computationally predicted Gm-AID structure (Appendix 8) to guide MSA, which was manually inspected to verify the accuracy of the alignment such as the presence and the boundaries of the gaps (Figure 4-16).

We also noticed interesting amino acid differences mainly in the Gadiformes group compared to other bony fish species (Figure 4-17). The Aconthomorphata class has a conserved alanine (A) in position 11 , with the exception of L. guttatus which has a tyrosine (T); however, the entire Percomorphaceae group has a proline (P) in this position, with the exception of M. scorpius which has a glutamine (Q). In position 12, majority of Euacanthomorphacea AIDs contain a positively charged amino acid (i.e., R or K) while the rest of AIDs including Gadiformes mainly have a glutamine (Q) at this position. All Gadiformes species have an asparagine (N) amino acid at position 18 while the rest of extant species studied here contain a histidine (H). At position 29, we noticed that the entire Gadariae group, except for B. melanobranchus, contain asparagine (N) while the majority of other AIDs contain histidine (H) and some have cysteine (C) or asparagine (N). The position 67 in all Gadiformes AIDs is occupied with a serine (S) while the rest of extant species have the positively charged arginine (R). M. berglax and all non-Gadiformes AIDs contain an aromatic amino acid (phenylalanine [F] and tyrosine [T], respectively) at
position 79 while this residue has changed into cysteine (C) in the rest of Gadiformes species. In Gadiformes AIDs, position 82 has a mostly conserved aspartic acid (D), except for M. berglax and M. occidentalis which contain an alanine (A). This position is mostly occupied with an uncharged amino acid apart from L. guttauts, D. rerio, and A. mexicanus which also have an aspartic acid (D). At position 84, all Gadiformes species contain asparagine (N) apart from G. argenteus which has a serine (S). This position is mostly occupied with a negative residue (i.e., E/D) in Acanthopterygii AIDs. While Gadariae AIDs have a conserved alanine (A) at 104 position, all other bony fish AIDs in this report have a serine (S) except for A. luetkenii, D. rerio, and A. mexicanus which also contain an alanine (A). At position 106, all Gadariae species have tyrosine (T) whilst most of other species have the positively charged arginine (R). The conserved amino acid at position 109 in the entire Gadiformes group is arginine (R), while this position is occupied mostly with glutamine (Q) and to lesser extent with glutamic acid (E), aspartic acid (D), lysine (K), and histidine (H) in all other extant species. At position 112, while the entire Gadariae group have an arginine (R), the rest of the species contain serine (S), glycine (G), arginine (R), histidine (H), lysine (K), asparagine (N), alanine (A), or glutamine (Q). At position 135, the whole Gadariae species show proline (P) while the rest of the extant AIDs mostly have an arginine (R). Position 136 is occupied by a histidine (H) in the entire Gadiformes group, and the rest of extant AID proteins mostly contain glutamic acid (E) with a few showing aspartic acid (D) or alanine (A). Position 151 in the entire Gadidae AIDs is occupied with a lysine (K) while the rest of extant AIDs contain tyrosine (T) with a few showing isoleucine (I), asparagine (N), or serine (S) at this position. While leucine (L) is the
conserved amino acid at position 170 in all Gadiformes AIDs, the rest of extant AIDs studied here contain glutamine (Q), lysine (K), tyrosine (T), alanine (A), leucine (L), or asparagine (N). While the most of non-Gadiformes AIDs contain glutamine (Q) in their 181 position, tyrosine (T) is conserved at this position in the entire Gadiformes group. Position 209 is occupied with phenylalanine (F), isoleucine (I), and leucine (L) in Gadidae, the rest of Gadiformes, and non-Gadiformes AIDs, respectively. All Zeiogadaria AIDs, except for S. chordatus, have an extra leucine (L) in position 212. Additionally, the entire Gadiformes group contain an extra tyrosine (T) or serine (S) at the C-terminus, making Gadiformes AIDs the longest AIDs studied thus far. Taken together, it seems that Gadiformes AIDs contain lineage-specific amino acid changes compared to the rest of our dataset. However, understanding the functional ramification of these lineage-specific amino acid replacements require further studies.

Figure 4-16: Amino acid alignment of extant genes used for ASR analyses. Positions with significant amino acid conservation within or outside the Gadiformes group is labeled with red star. For detailed explanation refer to the text.

Figure 4-17: Amino acid conservation of extant AID homologs used in ASR analyses. Amino acid positions where a distinctive difference between various groups was observed are labeled. + sign emphasizes that a few members of other groups also contain the labeled amino acid at that position. - sign means that a few of the specified group are exceptions. \pm sign indicates that while a few members of the specified group are exception, a few members of other groups show the specified amino acid at the labeled position. Abbreviation: Acon: Acanthomorphata; Euac: Euacanthomorphacea; Perc: Percomorphaceae; Zeio: Zeiogadaria; Gada: Gadariae; Gadi: Gadiformes; non-Gadi: non-Gadiformes; Gadid: Gadidae.

4.4.3.2 Gene tree $\boldsymbol{v} \boldsymbol{v}$. species tree

The best ML gene tree calculated based on the AID extant sequences is illustrated in Figure 4-18. The previously published species tree was constructed based on the genomic sequence of these species (Figure 4-19) (Malmstrom et al., 2016). Previous studies revealed that the phylogenetic uncertainty and inaccuracy could impact the ASR results (Duchêne \& Lanfear, 2015; Groussin et al., 2015; R. Merkl \& R. Sterner, 2016; Vialle et al., 2018). Specifically, the phylogenetic uncertainty could lead to the overestimation of the evolutionary transitions in the large datasets (Duchêne \& Lanfear, 2015). In general, using a single tree to infer ancestral sequences assumes that the single tree demonstrates the true or close-to-true phylogenetic relationships amongst extant species (Joy et al., 2016; Pagel et al., 2004). Both ProtASR and RAxML accept a single input phylogenetic tree which would be used to deduce the phylogenetic relationships amongst the extant species (Arenas \& Bastolla, 2019; Arenas et al., 2017; Stamatakis, 2014). We decided to use the previously-published species tree for ASR calculation using ProtASR and RAxML packages for two reasons. First, the previously published species tree has higher bootstrapping value and confidence compared to the best ML tree constructed using our aicda gene sequences (Malmstrom et al., 2016). Second, employing species-aware gene tree has been shown to improve the ASR results (Groussin et al., 2015).

Of the three ASR methods used here, the Bayesian inference seems to integrate the uncertainty concerning the tree topology and the evolutionary model parameters more adequately (Ronquist \& Huelsenbeck, 2003; Ronquist et al., 2012). To predict the ancestral state of a given node, the MrBayes package can use a user-defined tree as the starting point
and combine the uncertainty regarding the tree topology of other nodes (i.e., excluding the node for which the ancestral sequence is being calculated) and all other evolutionary parameters (Ronquist \& Huelsenbeck, 2003; Ronquist et al., 2012). It is worth mentioning that to study the trait evolution, another Bayesian Markov chain Monte Carlo (MCMC) technique was developed where the uncertainty of the tree topology of both the given node and other ancestral nodes was taken into account (Pagel et al., 2004). This method sampled both better and worse trees to calculate the uncertainty about the existence of the ancestral node under study. Then, the estimated uncertainty was used to limit the confidence of the predicted ancestral state resulting in more realistic probability estimation (Pagel et al., 2004). However, this method was only used on a small dataset. Due to the size of our dataset, the availability of a high-confidence species tree for our dataset (which was used as the start tree in the MrBayes calculations), and the fact that the ancestral state in MrBayes package is calculated while integrating the uncertainty in all other parameters, including the topology of other parts of the tree, we decided to apply the ASR method implemented in MrBayes package. In other words, since the existence of the ancestral nodes studied in this thesis have been confirmed with genomic sequences and the fossil constraints in a previous study (Malmstrom et al., 2016), it is reasonable to assume that adding computationally intensive analyses to account for the uncertainty in the existence of these ancestral nodes was unnecessary.

Figure 4-18: The best ML tree obtained in this thesis. The numbers represent the bootstrapping values. The major differences between the gene tree and the species tree are highlighted in red.

Figure 4-19: Previously published (Malmstrom et al., 2016) species tree used in this thesis. AID proteins from species colored blue were synthesized in the lab to study their biochemical properties. Channel catfish and human AIDs were also purified and tested. We could not find any aicda gene in the genomic sequence of B. cantori (colored in red).

4.4.3.3 Predicting ancestral AID sequences

Currently, the two methods of maximum likelihood (ML) and Bayesian inference are the most popular algorithms used to calculate ancestral genes (R. Merkl \& R. Sterner, 2016). Amongst different ASR algorithms, the Bayesian methods incorporating rate variation model, seem to provide the most accurate results (Joy et al., 2016; Randall et al., 2016). We predicted the ancestral aicda gene sequence of Gadidae (Gd-ANC), its sister group (Gds-ANC), Gadiformes (Gf-ANC), and Zeiogadaria (Zg-ANC) using three different software packages: MrBayes, RAxML, and ProtASR.

MrBayes applies the Bayesian method to infer ancestral gene sequences from the extant protein alignment (Huelsenbeck \& Ronquist, 2001; Ronquist \& Huelsenbeck, 2003; Ronquist et al., 2012). The RAxML package was used to predict ancestral genes using the ML algorithm (marginal ML) and protein alignment (Stamatakis, 2014). ProtASR is an ML-based package that takes advantage of a structurally constrained substitution model called "Mean-field" (Arenas \& Bastolla, 2019; Arenas et al., 2017). Mean-field substitution model considers the unfolding and misfolding states of the protein under study which can outperform the empirical substitution models for data with larger sequence divergence (Arenas et al., 2015). ProtASR utilizes both marginal and joint maximum likelihood algorithms to predict ancestral sequences (Arenas \& Bastolla, 2019; Arenas et al., 2017). In the marginal ML algorithm, the ancestral sequence is assigned while taking into account only the immediate descendants of a given node (Joy et al., 2016). In contrast, the joint ML method attempts to assign the ancestral state at each given node by maximizing the likelihood of the data throughout the entire tree (Joy et al., 2016). Therefore, it is more
likely to find global optima using the joint ML method (Joy et al., 2016). Additionally, ProtASR calculates the statistical probabilities at both global and local levels (Arenas \& Bastolla, 2019; Arenas et al., 2017). Since the ancestral inference at the global level assumes that all sites evolve under a same evolutionary process, we decided to only consider the ASR results inferred using joint ML at the local level (i.e., considering heterogeneous evolutionary processes across sites).

Figure 4-20 and Table 4-7, 4-8, 4-9, and 4-10 illustrate the predicted ancestral sequences obtained from each method. The Gadidae sister group was not formed as a monophyletic group in our gene tree constructed based on the nucleotide sequence of the extant aicda genes. Only a monophyletic group shares a common ancestor. Therefore, RAxML package was not able to infer the Gds-ANC when our aicda gene tree was used.

Amongst the applied ASR methods in this thesis, previous studies have shown that ASR results obtained from Bayesian inference, especially the hierarchical Bayes approach (e.g., implemented in MrBayes package), outperform the results of other methods (Joy et al., 2016; Randall et al., 2016). Therefore, the predicted ancestral sequences were compared, and the consensus protein sequence for each ancestral node was predicted with a higher emphasis on MrBayes results. Figure 4-21 Shows the protein alignment of the predicted ancestral sequence. Variants of the ancestral AIDs were also generated if an amino acid position was predicted ambiguously (i.e., positions with a statistical uncertainty of 0.2 or higher) (Eick et al., 2017).

The predicted Gd-ANC and Gds-ANC differ in 4 amino acid positions, which are occupied with amino acids that are substantially different regarding their biochemical
properties. The positions $17,83,151$, and 209 are predicted to be occupied with an isoleucine (nonpolar aliphatic), an arginine (positively charged), a lysine (positively charged), and a phenylalanine (nonpolar aromatic) in Gd-ANC and a tyrosine (polar aromatic), a glutamic acid (negatively charged), a threonine/asparagine (polar aliphatic), and an isoleucine (nonpolar aliphatic) in Gds-ANC protein. Interestingly, amongst the predicted ancestral AIDs, Gds-ANC and Gf-ANC only differ in one amino acid position (I16M in Gds-ANC vs. Gf-ANC). In fact, position 16 in Gds-ANC was predicted with an ambiguity between I and M (Table 4-7). Zg -ANC was the most diverge ancestral AID compared with Gm-AID amino acid sequence and was predicted with more ambiguous amino acid sites compared to other predicted ancestral AIDs. Considering all the ASR methods, 4,2 , 5 , and 22 sites showed uncertainty level of 0.2 or higher in Gd-ANC, GdsANC, Gf-ANC, and Zg-ANC, respectively (Table 4-7 through Table 4-10).

Gd-ANC-MrBayes	116	NLI				VQVKV	YK		HRL	RF		LH	VRL	SRKLNRILQPCE	EDLRD		X acidic (-)
Gd-ANC-RAxML-I	116	NLRLRIFVA	RLYFCDLEG	HIE	LRDLRRA	cVQV	YKDYFYCWQ	FV	HRL	RFKA	WE	LHTN	VRL	RKLNRILQPCE	EDLRD	AFRLFGLL	Xaliphatic
Gd-ANC-RAxML-2	116	NLRLRIFVA	RLYFCDLEG	HIE	LRDLRRA	GVQVKVM	YKDYFYCWQ	FV	HRL	SFKA	WE	LHTN	VRL	RKLNRILQPCE	EDLRD	AFRLFGLL	X aliphatic (small)
Gd-ANC-ProtASR	116	NLRLRIFVA	RLYFCDLED	PHIE	LRDLRRA	cVavkvm	YKDYFYCTQ	FV	HRL	RFK	WE	LHTN	VRL	RKLNRILQPCE	IEDLRDA	AFRLFGLL	
Gdds-ANC-MrBayes	116	NLRLRIFVA	RLYFCDLED	HIE	LRDLRRA	cvQV	YKDYFYCWQ	FV	HRL	RFKA		LHTN	VRL	RKLNRILQPCE	TEDLRD	AFRLIGLL	X amide
Gds-ANC-RAxML-2	116	NLRLRIFVA	RLYFCDLED	HIEG	LRDLRRA	CVQV	YKDYFYCWQ	FV	HRL	RFKA	WE	LHTN	VRL	RKLNRILQPCE	TEDLRD	AFRLIGLL	X aromatic
Gds-ANC-Prota	116	NLRLRIFVA	RLYFCDLED	HIE	LRDLRRA	cvav	YKDYFYCWQ	FV	HRL	RFKA	WE	LH	VRL	RKLNRILQTCE	IEDLRDA	AFRLIGLL	X basic (+)
Gf-ANC-MrBayes	116	NLRLRIFVA	RLYFCDLED	HIE	LRDLRRA	GVQV VI	YKDYFYCWQ	FV	HRL	RFKA	WE	LHTN	VRL	RKLNRILQPCE	IEDLRD	AFRLICLL	Xydroxyl
Gf-ANC-RAxML-1	16	NLRLRIFVA	RLYFCDLED	HIE	LRDLRRA	VQV	YKDYFYCWQ	FV	HRL	SRFKA	WE	LHTN	VRL	RKLNRILQPCE	[EDLRD	FRLIGLT	X imino
Gf-ANC-RAxM	116	NLRLRIFVA	RLYFCDLED	HIE	LRDLRRA	VQV	YKDYFYCWQ	FV	HRL	RFK	WE	LH	VRL	RKLNRILQPCE	IEDLRDA	AFRLIGLL	
Gf-ANC-Prolasir	16	NLRLRIFVA	RLYF CDLED	HIE	LRDLRRA	VQV	YKDYFYCWQ	FV	HRL	RFKA		LH	VRL	RKLNRILQPCE	TEDLRD	AFRLIGLL	
Zg -ANC-MrBayes	116	NLRLRIFVS	RLYFCDLED	RERE	LRILKRA	VQITVM	YKDYFYCWQ	FC	HRQ	SFKA		LHQ	VRLA	ARKLNRILQPCE	EDLRD	FKLL 6 LL.	
Zg-ANC-RAxML-1	116	NLRLRIFVS	RLYYCDLED	RERE	LRILKRA	VQITVM	YKDYFYCWQ	FV	HRQ	rRFK		LHQ	VRLA	ARKLNRILQPCE	EDLRD	FKLL	
Zg-ANC-RAxML-2	116	NLRLRIFVS	RLYYCDLED	RERE	LRILKRA	VQI	YKDYFYCWQ	FV	HRQ	RFK		LHQ	VRLA	ARKLNRILQPCE	EDLRDA	FKLL	
\%g-ANC-Protask	116	NLRLRIFVS	RLYFCDLED	REREG	LRILKRA	VQI VM	YKDYFYCWQ	FV	HRQ	RFKA		LHQ	VRLA	ARKLNRILQPCE	ENLRD	FKLLGLL.	

Figure 4-20: Amino acid alignment of the predicted ancestral AIDs using four different methods. Only amino acids with highest probability are shown Predicted ancestors using MarBayes, RAxML, or ProtASR packages are labelled accordingly. In case of RAxML package, predicted ancestors using the AID gene tree or previously published species tree are labeled as 1 and 2, respectively. Amino acids are colored based on their chemical properties as indicated in the bottom right corner legends. Abbreviations: Gd-ANC: Gadidae ancestor; Gds-ANC: Gadidae sister group ancestor; Gf-ANC: Gadiformes ancestor; $\mathrm{Zg}-A N C$: Zeiogadaria ancestor.

Table 4-7: Predicted ancestral sequences using MrBayes package and the species tree as the starting tree

Ancestral node	Predicted amino acid (aa) sequence	Length (aa)	Positions with <0.8 certainty
Gd-ANC	MISKLDSVLLAQKKFIINYKNMRWAKGRNETYLCFVVKRRLGPD SLSFDFGHLRNRTGCHVELLFLSHLGALCPGLWGCGGDRNRRLS YSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLED SPHIEGLRDLRRAGVQVKVMSYKDYFYCWQTFVAHRLSRFKAW EGLHTNSVRLSRKLNRILQPCETEDLRDAFRLFGLLT.	213	133: D (71\%) G (29\%)
Gds-ANC	MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSHLGALCPGLWGCGGDENRRL SYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLE DSPHIEGLRDLRRAGVQVTVMSYKDYFYCWQTFVAHRLSRFKA WEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGLLT.	213	$\begin{aligned} & \text { 16: I (63\%) M (37\%) } \\ & \text { 151: T (79\%) N (21\%) } \end{aligned}$
Gf-ANC	MISKLDSVLLAQKKFMYNYKNMRWAKGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSHLGALCPGLWGCGGDENRRL SYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLE DSPHIEGLRDLRRAGVQVTVISYKDYFYCWQTFVAHRLSRFKAW EGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGLLT.	213	
Zg-ANC	MITKLDSVLLARKKFIYHYKNMRWAKGRHETYLCFVVKRRVGP DSLSFDFGHLRNRTGCHVELLFLRHLGALCPGLWGYGGAGERRL SYSVTWFCSWSPCANCSFRLAQFLRQTPNLRLRIFVSRLYFCDLE DSREREGLRILKRAGVQITVMSYKDYFYCWQTFCAHRQSSFKAW DGLHQNSVRLARKLNRILQPCETEDLRDAFKLLGLL.	212	$\begin{aligned} & \text { 12: R }(53 \%) \text { Q }(46 \%) \\ & \text { 83: G (73\%) D }(27 \%) \\ & \text { 172: S (62\%) R (34\%) } \end{aligned}$

Table 4-8: Predicted ancestral sequences using RAxML package and the aicda gene tree

Ancestral node	Predicted amino acid (aa) sequence	Length (aa)	Positions with <0.8 certainty
Gd-ANC	MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSYLGALCPGLWGCGGDRNRRL SYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLE GSPHIEGLRDLRRAGVQVKVMSYKDYFYCWQTFVAHRLSRFKA WEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLFGLLT.	213	22: M (71\%) I (29\%)
Gds-ANC*	NA		
Gf-ANC	MISKLDSVLLAQKKFMYNYKNMRWAKGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSHLGALCPGLWGCGGDENRRL SYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLE DSPHIEGLRDLRRAGVQVTVMSYKDYFYCWQTFVAHRLSRFKA WEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGLLT.	213	4: K (79\%) T (21\%)
Zg-ANC	MITKLDSVLLARKKFIYHYKNMRWAKGRNETYLCFVVKRRVGP DSLSFDFGHLRNRTGCHVELLFLRHLGALCPGLWGHGGADERRL SYSVTWFCSWSPCANCSFRLAQFLGQTPNLRLRIFVSRLYYCDLE DSREREGLRILKRAGVQITVMSYKDYFYCWQTFVAHRQTRFKA WDELHQNSVRLARKLNRILQPCETEDLRDAFKLLGFL.	212	```29: N (40\%) H (29\%) Y (26\%) 79: H (42\%) R (16\%) Y (14\%) Q (13\%) 84: E (60\%) D (36\%) 104: S (55\%) A (35\%) 105: F (40\%) S (21\%) L (20\%) P (11\%) 106: R (55\%) T (36\%) 112: G (56\%) R (42\%) 124: S (58\%) A (37\%) 135: R (47\%) P (29\%) 136: E (64\%) D (35\%) 144: K (62\%) R (38\%) 171: T (56\%) S (40\%) 177: D (54\%) E (32\%) 178: E (63\%) G (36\%) 181: Q (61\%) P (36\%) 187: A (49\%) S (38\%) 211: F (52\%) L (35\%)```

*: The extant species which belong to the Gadidae sister group did not form a monophyletic group in our aicda gene tree. Therefore, RAxML was unable to assign an ancestral state for this group.

Table 4-9: Predicted ancestral sequences using RAxML package and the previously published species tree

Ancestral node	Predicted amino acid (aa) sequence	Length (aa)	Positions with <0.8 certainty
Gd-ANC	MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSYLGALCPGLWGCGGDRNRRL SYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLE GSPHIEGLRDLRRAGVQVKVMSYKDYFYCWQTFVAHRLSRFKA WEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLFGLLT.	213	113: Q (71\%) K (14\%) L (12\%)
Gds-ANC	MISKLDSVLLAQKKFMYNYKNMRWAKGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSHLGALCPGLWGCGGDENRRL SYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLE DSPHIEGLRDLRRAGVQVTVMSYKDYFYCWQTFVAHRLSRFKA WEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGLLT.	213	
Gf-ANC	MISKLDSVLLAQKKFMYNYKNMRWAKGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSHLGALCPGLWGCGGDENRRL SYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLE DSPHIEGLRDLRRAGVQVTVMSYKDYFYCWQTFVAHRLSRFKA WEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGLLT.	213	$\begin{aligned} & \text { 16: M (75\%) I (25\%) } \\ & \text { 83: E (62\%) K (19\%) G (14\%) } \\ & \text { 151: T (70\%) N (21\%) } \\ & \text { 209: I (79\%) F (21\%) } \end{aligned}$
Zg-ANC	MITKLDSVLLARKKFIYHYKNMRWAKGRNETYLCFVVKRRVGP DSLSFDFGHLRNRTGCHVELLFLRHLGALCPGLWGHGGADERRL SYSVTWFCSWSPCANCSFRLAQFLGQTPNLRLRIFVSRLYYCDLE DSREREGLRILKRAGVQITVMSYKDYFYCWQTFVAHRQTRFKA WDELHQNSVRLARKLNRILQPCETEDLRDAFKLLGFL.	212	```29: N (40\%) H (30\%) Y (27\%) 79: H (38\%) R (14\%) Q (12\%) Y (12\%) 84: E (61\%) D (36\%) 103: S (60\%) A (37\%) 104: F (44\%) S (22\%) L (18\%) 105: R (57\%) T (35\%) 112: G (59\%) R (41\%) 128: Y (60\%) F (39\%) 135: R (55\%) P (31\%) 136: E (55\%) D (35\%) 144: K (63\%) R (36\%) 171: T (58\%) S (39\%) 177: D (55\%) E (33\%) 178: E (64\%) G (35\%) 181: Q (62\%) P (35\%) 187: A (51\%) S (29\%) T (11\%) 211: F (53\%) L (33\%)```

Table 4-10: Predicted ancestral sequences using RrotASR package, our computationally predicted Gm-AID 3D structure, and the previously published species tree

Ancestral node	Predicted amino acid (aa) sequence (Joint ML)	Length (aa)	Positions with <0.8 certainty ${ }^{*}$
Gd-ANC	MISKLDTVLLAQKKFIWNWKNMRWALGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSHLGALCPGLTGCGGDRNRRLP YSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLED SPHIEGLRDLRRAGVQVKVMSYKDYFYCTQTFVAHRLSRFKAWE GLHTNSVRLSRKLNRILQPCETEDLRDAFRLFGLLT.	213	83: R (29\%) G (24\%) E (23\%) S (21\%)
Gds-ANC	MISKLDSVLLAQKKFMYNYKNMRWAKGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSHLGALCPGLWGCGGDENRRL SYSVTWFCSWSPCANCAATLARFLRQTTNLRLRIFVARLYFCDLE DSPHIEGLRDLRRAGVQVTVMSYKDYFYCWQTFVAHRLSRFKA WEGLHTNSVRLSRKLNRILQTCETEDLRDAFRLIGLLT.	213	
Gf-ANC	MISKLDSVLLAQKKFIYNYKNMRWALGRNETYLCFVVKRRLGP DSLSFDFGHLRNRTGCHVELLFLSHLGALCPGLWGCGGDENRRL SYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLE DSPHIEGLRDLRRAGVQVTVMSYKDYFYCWQTFVAHRLSRFKA WEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGLLT.	213	$\begin{aligned} & \text { 83: E (56\%) G (32\%) } \\ & \text { 209: I (73\%) F (20\%) } \end{aligned}$
Zg-ANC	MITKLDSVLLAQKKFIYHYKNMRWAKGRHETYLCFVVKRRVGP DSLSFDFGHLRNRTGCHVELLFLRHLGALCPGLWGYGGAGERRL SYSVTWFCSWSPCANCSFRLAQFLGQTPNLRLRIFVSRLYFCDLE DSREREGLRILKRAGVQITVMSYKDYFYCWQTFVAHRQSRFKA WDELHQNSVRLARKLNRILQPCETENLRDAFKLLGLL.	212	$\begin{aligned} & \text { 12: Q (72\%) R (28\%) } \\ & \text { 112: G (51\%) S (} 43 \%) \\ & \text { 178: E (73\%) G (27\%) } \end{aligned}$

: Site-specifc (local level) probablities

Figure 4-21: Amino acid alignment of the expressed ancestral AIDs. Any amino acid positions with less than 0.8 probability were synthesized as mutants. Amino acids are colored based on their chemical properties as indicated in the bottom right corner legends. The arbitrary cut-off of 0.2 was used to generate variants of the predicted ancestral AIDs. Abbreviations: Gd-ANC: Gadidae ancestor; Gds-ANC: Gadidae sister group ancestor; Gf-ANC: Gadiformes ancestor; and Zg-ANC: Zeiogadaria ancestor.

4.4.3.4 Biochemical properties of the predicted ancestral AIDs

We then synthesized, expressed, and purified 13 predicted ancestral AIDs and their variants (Figure 4-21) as GST-tagged fusion proteins to examine their biochemical properties. Using the resurrected ancestral AIDs, we sought to explore the effect on optimal temperature, optimal pH, K_{m}, and $K_{\text {cat }}$ during Gadiformes’ evolution (Figure 4-22, Figure 4-23, and Table 4-11). We found that the optimal temperature of AID was reduced from $12{ }^{\circ} \mathrm{C}$ to $8^{\circ} \mathrm{C}$ in the Gadiformes common ancestor. At the same evolutionary time, the optimal pH of the AID was increased from 7.56 to 7.89 . We also observed another increase in AID's optimal pH in the ancestor of Gadidae species (from 7.89 to 8.08).

Our results showed a reduction of about 15 -fold in the catalytic rate $\left(\mathrm{K}_{\text {cat }}\right)$ of the Gadiformes ancestor compared to Zeiogadaria ancestor (1.90E-06 vs. $2.77 \mathrm{E}-05$; Table 4-11). A more considerable reduction in the catalytic rate of AID was observed in the predicted ancestor of Gadidae species ($\sim 35-$ and ~ 500 - fold reduction compared to Gadiformes and Zeiogadaria ancestor, respectively). We observed a 10 -fold improvement when the K_{m} of Gf-ANC was compared to that of Zf-ANC (12.41 vs. 124.5). However, we observed a decline (less than 4-fold) in the K_{m} of Gd-ANC compared to that of Gf-ANC (46.7 vs. 12.41). The changes in the $\mathrm{K}_{\text {cat }}$ and K_{m} of ancestral AIDs resulted in $\sim 30 \%$ and 99.5% reduction of catalytic efficiency $\left(\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}\right.$ ratio) in the Gadiformes and Gadidae ancestral AIDs compared with Zg-ANC, respectively. Taken together, these results suggest that the functional impairment of AID likely occurred in the common ancestor of Gadidae group.

Figure 4-22: Biochemical properties of resurrected ancestral AIDs and their variants. Optimal temperature (A), optimal pH (B), and time-course kinetic (C) of predicted ancestral AIDs were measured using our standard alkaline cleavage assay. Two independent protein preparations of each ancestral AID were tested in duplicate. Data is presented as Mean $\pm S E M$ ($n \geq 4$). Abbreviations: Gd-ANC: Gadidae ancestor; GdsANC: Gadidae sister group ancestor; Gf-ANC: Gadiformes ancestor; and $Z g-A N C$: Zeiogadaria ancestor.

Figure 4-23: Comparison of the catalytic rate of predicted ancestral AIDs and their variants. A) The catalytic rate of resurrected ancestral AIDs and their variants was measured through Michaelis-Menten kinetics. At least two independent protein preparations of each AID protein were tested at their optimal temperature and pH with 0.03125-600 fmol range of TGCbub7 substrate. Each reaction was carried out in duplicate. Data is represented as mean \pm SEM ($n \geq 4$). Due to difference in the catalytic activity of ancestral AIDs, each ancestral AID was plotted separately. Please note that the y-axes have different scales. B) For better comparison, the results for ancestral AIDs were plotted with Gm-AID. For each ancestral node, only the most probable AID protein was included. In the case of common ancestor of Gadidae, the variant (GdANC ${ }^{D 133 G}$) was used due to the extremely low activity of the Gd-ANC. Abbreviations: Gd-ANC: Gadidae ancestor; Gds-ANC: Gadidae sister group ancestor; Gf-ANC: Gadiformes ancestor; and $Z g-A N C$: Zeiogadaria ancestor.

Table 4-11: The enzymatic parameters measured for predicted ancestral AIDs

	言	$\stackrel{\rightharpoonup}{\sim}$	た	$\sum_{\Xi}^{\widehat{y}}$	$\begin{aligned} \stackrel{\times}{*} \\ \stackrel{y}{y} \\ > \end{aligned}$	Std. Error		\approx	$\underset{\sim}{\tilde{5}}$	
						$\underset{\sim}{4}$ - E	\checkmark			
Gd-ANC	8	8.08	5.72E-08	46.7	0.001	$2.56 \mathrm{E}-09$	3.969	0.98	$1.22 \mathrm{E}-09$	0.55
Gd-ANC ${ }^{\text {D133G }}$	8	8.08	3.58E-07	316.9	0.007	1.60E-08	29.55	0.99	$1.13 \mathrm{E}-09$	0.51
Gds-ANC	8	7.89	1.89E-06	43.82	0.036	5.56E-08	4.475	0.95	$4.31 \mathrm{E}-08$	19.39
Gds-ANC ${ }^{\text {T151N }}$	8	7.89	$1.73 \mathrm{E}-06$	12.33	0.032	5.33E-08	1.513	0.92	$1.40 \mathrm{E}-07$	63.05
Gf-ANC	8	7.89	$1.90 \mathrm{E}-06$	12.41	0.036	5.05E-08	1.084	0.96	$1.53 \mathrm{E}-07$	68.95
Zg-ANC	12	7.56	$2.77 \mathrm{E}-05$	124.5	0.527	1.05E-06	13.26	0.97	$2.22 \mathrm{E}-07$	100.00
Zg-ANC ${ }^{\text {R12Q }}$	12	7.56	1.97E-05	60.9	0.375	5.52E-07	5.636	0.97	3.23E-07	145.37
Zg-ANC ${ }^{\text {G83D }}$	12	7.56	$1.54 \mathrm{E}-05$	39.77	0.293	$4.29 \mathrm{E}-07$	3.895	0.96	$3.87 \mathrm{E}-07$	174.11
Zg-ANC ${ }^{\text {S172R }}$	12	7.56	$1.79 \mathrm{E}-05$	75.58	0.340	4.97E-07	6.649	0.97	$2.37 \mathrm{E}-07$	106.55
Zg-ANC ${ }^{\text {R12Q-G83D }}$	12	7.56	$1.82 \mathrm{E}-05$	47.62	0.347	$4.48 \mathrm{E}-07$	4.01	0.97	$3.83 \mathrm{E}-07$	172.22
Zg-ANC ${ }^{\text {R12Q-S172R }}$	12	7.56	$1.68 \mathrm{E}-05$	69.12	0.319	$4.45 \mathrm{E}-07$	5.911	0.97	$2.43 \mathrm{E}-07$	109.09
Zg-ANC ${ }^{\text {G83D-S172R }}$	12	7.56	$1.46 \mathrm{E}-05$	73.22	0.277	$5.04 \mathrm{E}-07$	7.633	0.96	$1.99 \mathrm{E}-07$	89.53
Zg-ANC ${ }^{\text {R12Q-G83D-S172R }}$	12	7.56	$1.85 \mathrm{E}-05$	84.3	0.350	3.82E-07	4.688	0.99	$2.19 \mathrm{E}-07$	98.40

[^32]
4.4.4 The potential functional effects of AID's ancestral amino acid mutations

Next, we explored the effect of the amino acid changes observed in the predicted ancestral AIDs. The ~ 35-fold reduction in the $\mathrm{K}_{\text {cat }}$ of the Gd-ANC compared with GdsANC was the result of four amino acid differences (i.e., I17Y, R83E, K151T, and F209I in Gd-ANC vs. Gds-ANC; Figure 4-21). In Gm-AID, these positions are the same as GdsANC except for position 17. Therefore, we changed the other three positions in Gm-AID into the corresponding amino acids in the Gds-ANC and studied their functional impact on the biochemical properties of AID. We explored optimal temperature, optimal $\mathrm{pH}, \mathrm{K}_{\mathrm{cat}}$, K_{m}, and enzymatic efficiency of the Gm-AID mutants (Figure 4-24 and Table 4-12).

All the mutants revealed a higher optimal temperature $\left(12{ }^{\circ} \mathrm{C}\right)$ compared with wildtype Gm-AID ($8{ }^{\circ} \mathrm{C}$, Figure 4-24 A). However, the effect on the optimal pH was minor and not consistent (Figure 4-24 B). Among the mutants, only Gm-AID ${ }^{\mathrm{F} 2091}$ and GmAID $^{\text {R83E-K151N }}$ exhibited higher $\mathrm{K}_{\text {cat }}$ than Gm-AID while Gm-AID ${ }^{\text {R83E }}$ and Gm-AID ${ }^{\text {K151T }}$ had similar $\mathrm{K}_{\text {cat }}$ to Gm-AID. All other mutants showed reduced $\mathrm{K}_{\text {cat }}$ (Table 4-12). The estimated K_{m} data showed that Gm-AID ${ }^{\mathrm{F} 2091}$, Gm-AID ${ }^{\text {R83E-F209I }}$, and Gm-AID ${ }^{\text {R83E-K151T-F209I }}$ positioned dC more efficiently in the catalytic pocket compared to the wildtype Gm-AID. Also, we observed that among three mutations studied here, K151T/N has the highest deteriorating effect on the substrate binding affinity (i.e., positioning dC in the catalytic pocket) of Gm-AID (Table 4-12). We concluded that the change of F209 to I might be responsible for the difference in the catalytic rate of Gd-ANC vs. Gds-ANC. This change only requires a T to A mutation in the first codon position (TTT and TTC encode F, and ATT and ATC encode I).

Figure 4-24: Biochemical properties of Atlantic cod AID mutants. To explore the functional impact of some ancestral mutations predicted during the evolution of AID within the Gadiformes lineage, we substituted amino acids in three positions in Gm-AID with that of corresponding predicted amino acid(s) in Gds-ANC. The optimal temperature (A), optimal $p H$ (B), time course kinetics (C), and the catalytic rate (MichaelisMenten kinetics; D) were compared to that of wildtype Gm-AID. At least two independent protein preparations of each AID were tested in duplicate ($n \geq 4$). Data is represented as Mean $\pm S E M$.

Table 4-12: The enzymatic parameters measured for Gm-AID ancestral mutants

	$\begin{gathered} \text { \#i } \\ \text { 응 } \end{gathered}$	\#	T	$\underset{\sim}{\underline{E}}$		Std. Error		\approx		
							$\approx \sum_{\Xi}$			
Gm-AID	8	8.08	$1.36 \mathrm{E}-06$	44.05	0.026	$3.05 \mathrm{E}-08$	3.421	0.97	$3.09 \mathrm{E}-08$	100.00
Gm-AID ${ }^{\text {R83E }}$	12	7.89	$1.28 \mathrm{E}-06$	51.95	0.024	$4.00 \mathrm{E}-08$	5.519	0.98	$2.46 \mathrm{E}-08$	79.44
Gm-AID ${ }^{\text {K151N }}$	12	7.89	$9.45 \mathrm{E}-07$	102	0.018	$4.35 \mathrm{E}-08$	13.9	0.97	9.26E-09	29.96
Gm-AID ${ }^{\text {K151T }}$	12	7.89	$1.46 \mathrm{E}-06$	293.9	0.028	$1.03 \mathrm{E}-07$	44.15	0.98	4.98E-09	16.11
Gm-AID ${ }^{\text {F2091 }}$	12	7.89	$1.93 \mathrm{E}-06$	40.22	0.037	8.89E-08	6.487	0.95	4.81E-08	155.52
Gm-AID ${ }^{\text {R83E-K151N }}$	12	7.89	$2.33 \mathrm{E}-06$	317.3	0.044	$2.14 \mathrm{E}-07$	60.75	0.96	7.34E-09	23.74
Gm-AID ${ }^{\text {R83E-K 151T }}$	12	8.08	$9.63 \mathrm{E}-07$	138.8	0.018	5.95E-08	23.39	0.96	6.94E-09	22.43
Gm-AID ${ }^{\text {R83E-F2091 }}$	12	8.08	8.95E-07	32.21	0.017	3.46E-08	4.481	0.95	$2.78 \mathrm{E}-08$	89.86
Gm-AID ${ }^{\text {K151N-F2091 }}$	12	8.08	$9.27 \mathrm{E}-07$	81.85	0.018	$4.33 \mathrm{E}-08$	11.91	0.96	$1.13 \mathrm{E}-08$	36.63
Gm-AID ${ }^{\text {K151T-F2091 }}$	12	8.08	6.69E-07	84	0.013	$2.88 \mathrm{E}-08$	11.22	0.97	7.96E-09	25.74
Gm-AID ${ }^{\text {R83E-K151N-F2091 }}$	12	7.89	$7.55 \mathrm{E}-07$	67.18	0.014	$3.51 \mathrm{E}-08$	10.12	0.96	$1.12 \mathrm{E}-08$	36.33
Gm-AID ${ }^{\text {R83E-K151T-F209I }}$	12	8.08	$4.49 \mathrm{E}-07$	39.47	0.008	$1.59 \mathrm{E}-08$	4.926	0.97	$1.14 \mathrm{E}-08$	36.78

[^33]
4.5 Discussion

Previous studies in jawed vertebrates have shown that during a humoral antibody response, activation of B cells leads to expression of the aicda gene (Maul \& Gearhart, 2010; Owen, 2019). The product of this gene, AID, introduces mutations in $I g$ genes, leading to generation of antibodies with higher affinity for cognate antigen (Betz et al., 1993; Bromage et al., 2006; Cain et al., 2002; Diaz et al., 1999; Dooley \& Flajnik, 2005; Dooley et al., 2006; Hsu, 2016; Jenne et al., 2003; Kaattari et al., 2002; Lee et al., 2002; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Mehr et al., 2004; Wilson et al., 1992; Yang et al., 2006). Interestingly, the humoral immune system of Atlantic cod differs from other studied vertebrates. This species lacks antigen-specific high affinity antibodies (Arnesen et al., 2002; Lund et al., 2008; Lund et al., 2006; Magnadottir et al., 2001; Schroder et al., 2009; Solem \& Stenvik, 2006). In previous chapters, we showed that despite the conservation of aicda gene synteny in Atlantic cod, the enzyme (Gm-AID) itself lacks robust catalytic efficiency compared with other examined AID homologs.

In this chapter, we sought to explore the evolutionary trajectory of AID's enzymatic properties leading to its functional impairment in Atlantic cod to ask three questions: first, is the deactivation of Gm-AID unique within the Gadiformes family? Second, if it is not unique, which other family members share this trait, and at what evolutionary point did the functional impairment of AID protein occur? Third, what are the amino acid changes responsible for AID functional impairment?

To answer these questions, we expressed, purified, and studied the biochemical properties of 36 extant homologs within and outside of the Gadiformes lineage.

Additionally, we applied ASR methodology to predict the AID sequence in the common ancestors of Gadidae, its sister group, Gadifomes, and Zeiogadaria species. We found that during adaptation of AID enzyme to the ambient temperature of the Gadiformes species, its catalytic efficiency was gradually reduced in the evolutionary branches leading to the Atlantic cod. Given the previously observed remodeling of immune system in the Gadiformes species where the loss of the main humoral immune genes coincided with the expansion of genes involved in the cell-mediated and innate immune systems, our findings suggests that the functional impairment of AID gene within Gadifomres is most likely a continuation of their immune system drastic remodeling.

Here we studied the biochemical properties of 36 extant AID homologs using our established alkaline cleavage assay (Abdouni et al., 2013; Abdouni et al., 2018; Dancyger et al., 2012; Emma M. Quinlan, 2017; King et al., 2015; Larijani \& Martin, 2007). Interestingly, we could not detect any cytidine deaminase activity for Bs-AID (polar cod) and Mz-AID (Arrowtail) in our assays. Also, amongst the studied extant species here, AgAID (arctic cod) is the only AID exhibiting significantly lower catalytic efficiency than Gm-AID (~ 8-fold less). There are only three amino acid differences between Bs-AID and Gm-AID: S3R, K13N, and L143P in Gm-AID vs. Bs-AID. Amongst these differences, it seems that the drastic change from leucine (L) to proline (P) at position 143 might be crucial in the absence of cytidine deaminase activity in Bs-AID. Gm-AID ${ }^{\text {L143 }}$ resides in the $\alpha 3$, and its replacement with a proline most likely resulted in a shorter $\alpha 3$ in Bs-AID. Considering the close phylogenetic relationship between Atlantic cod, polar cod, and arctic cod and their extremely low catalytic efficiencies (in Ag-AID and Gm-AID) or the lack of
cytidine deaminase activity (in Bs-AID), it seems that evolution in Gadidae family might be directed towards loss of AID activity. In line with these findings, we observed that the CDRs of Gadidae species exhibited no or lowest enrichments of AID hotspots compared with other vertebrates. Understanding the structural basis of the lack of cytidine deaminase activity of Bs-AID and Mz-AID requires more detailed computational and mutational analyses which was beyond the scope of this thesis.

We also discovered a cold adaptation of AID enzyme amongst species studied here which seemed to be governed by their habitat temperature as suggested before (Appendix 6) (Barreto et al., 2005; Conticello et al., 2005; Dancyger et al., 2012; Ichikawa et al., 2006; Wakae et al., 2006). For the first time, here, we showed that some AID homologs exhibit cytidine deaminase activity in the temperatures below $0{ }^{\circ} \mathrm{C}$. Tsc-AID, Tmu-AID, and Mmor-AID demonstrated optimal temperature of $0^{\circ} \mathrm{C}$ while maintaining more than 50% of their maximum catalytic activity at $-10^{\circ} \mathrm{C}$. T. scarbus, T. murrayi, and M. mora live in the deep-water (as low as 2000 m) and this might explain their lower optimal temperature (www.fishbase.se). Additionally, the result of our correlation and clustering analyses uncovered a strong positive relationship between optimal temperature and the catalytic efficiency of extant AIDs. In other words, unlike previously studied cold-adapted enzymes which retained their catalytic efficiency, it appears that AID enzyme has lost its catalytic efficiency as the result of adaptation to the colder temperatures. Another possible scenario is that the cold adaptation and low catalytic activity are not related but only occurred at a close evolutionary time.

Although the exact structural adjustments occurred during the evolution of the coldadapted enzymes are not fully understood, reducing thermal stability was proposed as the mechanism to increase catalytic efficiency at low temperatures (Pucci \& Rooman, 2017; Smalas et al., 2000). The reduced stability may be accomplished by structural changes such as intra-molecular hydrogen bonds and ion-pairs, proline-, methionine-, glycine-, or arginine content, surface hydrophilicity, helix stability, and core packing (Marshall, 1997; Smalas et al., 2000). Siddiqui and Cavicchioli reviewed what is known about cold adaptation and found seven strategies employed by cold-adapted enzymes: on the surface, cold-adapted enzymes tend to have more hydrophobic residues; more surface exposed negatively charged amino acids have been observed in cold-adapted enzymes; serine (S) can be replaced by an alanine (A) to reduce the intramolecular H-bonds in cold-adapted enzymes; reduced Arginine/Lysine ratio was also observed in some cold-adapted enzymes while this ratio was increased in some others; aromatic interactions and salt bridges may also be less in cold-adapted enzymes; generally, in the cold-adapted enzymes, the Ncap (N terminus) and the Ccap (C terminus) of the a-helix are more positively and negatively charged, respectively; in the loops of cold-adapted enzymes, the number of the prolines is less while the abundance of glycine residues is increased (Siddiqui \& Cavicchioli, 2006). In our dataset, we noticed an interesting 20-degree optimal temperature difference between AIDs of two closely related species of T. subterraneus and P. transmontana. Examining the amino acid differences amongst these two AIDs and our preliminary computational analyses (data not shown) did not reveal many significant structural adjustments as seen in previously studied cold-adapted enzymes. The only structural adjustment noticed here is
that Tsu-AID $\alpha 3$ has a more positive Ncap and less positive Ccap compared to that of PtAID (Pt-AID ${ }^{\text {A101-L105-I1 10-R112 }}$ vs. Tsu-AID ${ }^{\text {S101-H105-F110-S112 }}$). Further mutational and biochemical analyses are required to investigate the impact of this structural adjustment in their optimal temperature difference.

To explore the potential mechanism(s) employed by Pt-AID to improve its thermoresistance compared to Tsu-AID, we predicted their stability curve using SCooP server (Pucci et al., 2017; Pucci \& Rooman, 2014, 2016). We found that most likely the higher thermoresistance of Pt-AID is due to its more negative enthalpy change at the temperature of maximum stability $\left(\Delta \mathrm{H}_{\mathrm{s}}\right)$ which caused its $\Delta \mathrm{G}_{\mathrm{r}}$ to decrease as well. It is important to note that although pH has a significant influence on the evaluation of the thermodynamic parameters, the current version of SCooP predicts the stability curve only at pH 7 (Pucci et al., 2017; Pucci \& Rooman, 2014, 2016). Pt-AID showed an optimal pH of 7.6 while the optimal pH of Tsu-AID was measured at 7.9 in our assays. Therefore, measuring their stability curves at their corresponding optimal pH in the lab or developing a software capable of predicting the stability curve at a given pH is required to confirm these results.

In general, cold-adapted and temperate enzymes usually exhibit a similar catalytic efficiency at their corresponding optimal temperature (Marshall, 1997). This is usually accomplished by increasing the $\mathrm{K}_{\text {cat }}$ and decreasing the K_{m} during the process of cold adaptation. The increased catalytic activity of cold-adapted enzymes was attributed to optimization of electrostatic interactions at and around the active site which results in more flexibility around the active site (Siddiqui \& Cavicchioli, 2006; Smalas et al., 2000). The
higher local flexibility around the catalytic pocket usually results in higher $\mathrm{K}_{\text {cat }}$ and K_{m} (Siddiqui \& Cavicchioli, 2006). However, studies on A4-lactate dehydrogenase (A4-LDH) and cytosolic malate dehydrogenase (cMDH) showed that substrate affinity decreases during evolution of cold-adapted enzymes to increase catalytic rate efficiency (Fields et al., 2015). Importantly, in our dataset, we did not detect catalytic efficiency retention during cold adaptation process of AID enzyme. In other words, it seems that unlike metabolic enzymes that maintain their catalytic efficiency in the psychrophilic organisms, AID catalytic efficiency was reduced in Gadiformes species studied here. This may suggest that, in these species, the cost of antibody maturation may outcompete its benefit, eliminating the need to maintain an active AID enzyme.

By resurrecting the ancestral AIDs as old as 120 million years ago (Zg-AID), we successfully pinpointed the major AID's functional changes occurred during the evolution of Gadoformes species. The measured biochemical properties of the predicted ancestral AIDs confirmed the cold adaptation of AID enzyme while losing the catalytic efficiency. Specifically, we observed a four-degree reduction in the optimal temperature of Zg -ANC to Gf-ANC $\left(12{ }^{\circ} \mathrm{C}\right.$ to $\left.8{ }^{\circ} \mathrm{C}\right)$ while losing 30% of its catalytic efficiency. Although the optimal temperature of Gd-ANC was similar to that of Gf-ANC, its catalytic efficiency was significantly impaired (99.2\%) due to 97% reduction in $\mathrm{K}_{\text {cat }}$ and 376% increase in K_{m} values. These findings further confirmed the earlier suggested scenario where the cost of maintaining the antibody maturation process in Gadiformes, and especially Gadidae family, outcompeted its benefits. Also, these findings suggest that the first reduction in the catalytic activity of AID, occurred in the Gadiformes ancestor, could be due to adaptation
to the cold temperature while the second reduction in the catalytic efficiency, observed in the Gadidae ancestor, was independent of cold adaptation.

The $\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ ratio obtained for the Gds-ANC and its variant indicated two possible scenarios. If the Gds-ANC is the true ancestral AID at this node, $\mathrm{a} \sim 30 \%$ reduction in the catalytic efficiency has occurred during the evolution of AID in the common ancestor of Gadidae sister group. If Gds-ANC ${ }^{\text {T151N }}$ is the true ancestral AID at this node, then one can conclude that AID catalytic efficiency did not change during the evolution of the Gadidae sister group compared to that of Gf-ANC.

Comparison of amino acid sequence of Gf-ANC with Gd-ANC revealed five amino acid differences. These variations which are responsible for the 97% reduction in $\mathrm{K}_{\mathrm{cat}}$ and 376% increase in K_{m} values are: M16I, Y17I, E83R, T151K, ad I209F in Gf-ANC vs. GdANC. Since Gds-ANC which contains an isoleucine (I) in position 16 (similar to Gf-ANC) exhibited the same $\mathrm{K}_{\mathrm{cat}}$ as Gf-ANC $(1.89 \mathrm{E}-06 \pm 5.56 \mathrm{E}-08$ vs. $1.90 \mathrm{E}-06 \pm 5.05 \mathrm{E}-08$, respectively) but the same K_{m} as Gd-ANC $(43.82 \pm 4.475 v s .44 .05 \pm 3.421$, respectively), we concluded that position 16 could be responsible for the 376% increase in the K_{m} of the Gd-ANC compared with Gf-ANC. Therefore, all or a portion of the other remaining four amino acid differences have contributed to the 97% reduction of $\mathrm{K}_{\mathrm{cat}}$ in $\mathrm{Gd}-\mathrm{ANC}$ compared with that of Gf-ANC. Replacement of these amino acids in Gm-AID revealed a 1.5 -fold increase in $\mathrm{K}_{\mathrm{cat}}$. This slight improvement in the $\mathrm{K}_{\mathrm{cat}}$ of Gm -AID is far less than the 33 -fold improvement in the $\mathrm{K}_{\text {cat }}$ of Gf-ANC compared with Gd-ANC, suggesting the presence of epistatic mutations in Gm-AID which prevented the positive effect of causative mutation(s)
to be observed. Further mutational analyses are required to figure out the exact position(s) responsible for the drastic reduction in $\mathrm{Gd}-\mathrm{ANC} \mathrm{K}_{\text {cat }}$ value.

In summary, here we reported that a similar reduction in catalytic activity of AID, detected in Atlantic cod in the previous chapter, could also be observed in other species of Gadiformes order, especially within the Gadidae family. For the first time, here, we investigated the functional evolutionary trajectory of AID enzyme within the Gadiformes order. We found that while AID was evolved to adapt to the lower temperatures mirroring the ambient temperature of Gadiformes species, it lost its catalytic efficiency. However, the more drastic reduction of catalytic efficiency observed in Gadidae ancestor seems to be a purposeful event to inactivate AID in this family of fish. Reduced catalytic efficiency (specially in Gadidae species), lack of cytidine deaminase activity (Bs-AID and Mz-AID), and potential exclusion of aicda gene from the genome (B. cantori) are some of the variations found in this report. These variations could indicate the presence of a previously unknown vast plasticity in the humoral and adaptive immune system of bony fish. Our comprehensive evolutionary comparative approach applied here could be a powerful tool to unmask the potential plasticity in other biological settings.

Chapter 5:

Discussion

5.1 Overview

Diversification of the B cell antigen receptors (i.e., immunoglobulin genes $[I g]$) is a vital step in the arms race between the host's humoral immune response and pathogens. The $I g$ genes undergo primary and secondary diversifications to generate the naïve and activated B cell antigen receptor repertoires, respectively (Maul \& Gearhart, 2010; Owen, 2019). Ig gene secondary diversification is initiated when the enzyme activation-induced cytidine deaminase (AID, encoded by aicda gene) mutates deoxycytidine (dC) into deoxyuridine (dU) at Ig genes of activated B cells (Maul \& Gearhart, 2010; Methot \& Di Noia, 2017; Owen, 2019). As a result of secondary diversification, the affinity of the antibodies for the cognate antigen could increase as much as 1000 -fold, enhancing the efficient recognition and neutralization of the pathogen by activated B cells (Magor, 2015; Meffre et al., 2001).

The presence of the AID gene and the antibody maturation process have been reported in many jawed vertebrate species studied thus far (Abos et al., 2018; Bromage et al., 2006; Cain et al., 2002; Dooley \& Flajnik, 2005; Dooley et al., 2006; Hsu, 2016; Jenne et al., 2003; Kaattari et al., 2002; Malecek et al., 2005; Marianes \& Zimmerman, 2011; Mehr et al., 2004; Reynaud et al., 1991; Wiens et al., 2003; Wilson et al., 1992; Yang et al., 2006). Some examples of these species are nurse shark (Ginglymostoma cirratum) (Diaz et al., 1999; Dooley \& Flajnik, 2005; Dooley et al., 2006; Hsu, 1998, 2016; Lee et al., 2002; Malecek et al., 2005; Voss \& Sigel, 1972; Zhu \& Hsu, 2010), rainbow trout (Oncorhynchus mykiss) (Bromage et al., 2006; Cain et al., 2002; Kaattari et al., 2002; Ye et al., 2010), Atlantic salmon (Salmo salar) (Solem \& Stenvik, 2006), channel catfish
(Ictalurus punctatus) (Yang et al., 2006), zebrafish (Danio rerio) (Marianes \& Zimmerman, 2011), African clawed frog (Xenopus laevis) (Hsu, 1998; Wilson et al., 1992), rabbits (Mehr et al., 2004), chicken (Mehr et al., 2004), sheep (Reynaud et al., 1991), mouse (Betz et al., 1993; Chi et al., 2020; Owen, 2019; Rajewsky et al., 1987; Wiens et al., 2003; Yeap \& Meng, 2019), and human (Chi et al., 2020; Imkeller \& Wardemann, 2018; Owen, 2019; Yeap \& Meng, 2019). Based on these reports, the current consensus in immunology is that antibody affinity maturation is an ancient process, present in all vertebrate species, and dating back to the ancestor of jawed vertebrates.

Interestingly, the immune responses of Gadiformes species seems to differ from other studied vertebrate species. One of the most studied Gadiformes species is the Atlantic cod (Gadus mohua). This species is important for the marine ecosystems and the economy of many nations with coast lines in the North Atlantic Ocean (e.g., the eastern Canadian provinces and several Scandinavian countries) due to being harvested in commercial food fisheries and forming a vital link in the aquatic food chain. Disease outbreaks in Atlantic cod stocks resulting in high mortality rates have been reported in Newfoundland, Nova Scotia, New Brunswick, and along the east coast of the USA (Frenette et al., 2017; Grove et al., 2003; Gudmundsdottir et al., 2006; Hong, 2013; Samuelsen et al., 2006). Functional analyses of the Atlantic cod humoral responses revealed lack of antibody maturation in this species (Arnesen et al., 2002; Corripio-Miyar et al., 2007; Magnadottir et al., 1999; Magnadottir et al., 2001; Solem \& Stenvik, 2006). For example, immunization of Atlantic cod against Vibrio anguillarum did not generate any humoral response despite mounting protective immunity, suggesting the involvement of cell-mediated and/or other types of
immunity (Caipang et al., 2009; Gudmundsdóttir et al., 2009; Lund et al., 2007; Mikkelsen et al., 2011; Solbakken, Jentoft, Reitan, Mikkelsen, Jakobsen, et al., 2019). Also, in response to Brucella pinnipedialis, Francisella noatunensis, and Vibrio salmonicida infections, only a weak T-cell independent anti-LPS antibody response was detected in Atlantic cod (Ellingsen et al., 2011; Espelid et al., 1991; Lund et al., 2008; Lund et al., 2006; Nymo et al., 2016). Other than Atlantic cod, the vaccination of the gadoid haddock (Melanogrammus aeglefinus), another Gadiformes species, despite successful reduction in mortality, did not mount an antigen-specific antibody response (Corripio-Miyar et al., 2007).

The comparison of genomic sequences of 72 Gadiformes species to that of other bony fish revealed a unique absence of numerous genes that are central to humoral immune system (Malmstrom et al., 2016). These immune genes, involved in T-cell/B-cell interactions, include major histocompatibility complex (mhc) class II, cluster of differentiation 4 (cd4; pseudogene), and invariant chain (Ii) genes (Malmstrom et al., 2016; Star et al., 2011). In contrast, the mhc I and some Toll-like receptor (tlr) loci are significantly expanded in the Gadiformes fish compared to other teleost fish (Malmstrom et al., 2016; Parham, 2015, 2016; Solbakken, Rise, et al., 2016; Solbakken, Torresen, et al., 2016; Star et al., 2011; Torresen et al., 2017). Based on these observations and studies on the immune response of Atlantic cod, it was suggested that Gadiformes species may utilize alternative immune strategies to compensate for the lack of these genes including MHC I cross-presentation and T cell-independent activation of B cells (Malmstrom et al., 2013; Solbakken, Jentoft, Reitan, Mikkelsen, Gregers, et al., 2019).

Introducing AID-mediated somatic mutations in the $I g$ genes of the activated B cells is the initial step to generate antibodies with higher affinity for the cognate antigen (Bransteitter et al., 2003; Kolar et al., 2007; Larijani, Frieder, Basit, et al., 2005; Meffre et al., 2001; Muramatsu et al., 1999; Muto et al., 2000). Previous studies have shown WRC (W=A/T; R=A/G) motifs as AID's mutational hotspots (Bransteitter et al., 2003; Dancyger et al., 2012; Emma M. Quinlan, 2017; Larijani, Frieder, Basit, et al., 2005; Larijani et al., 2007; Meffre et al., 2001). Given the central role of AID activity in initiating antibody maturation process, a clear enrichment of WRC motifs was observed in the CDR portion of $I g$ genes of studied vertebrates (Conticello et al., 2005; Detanico et al., 2016; Golub \& Charlemagne, 1998; Jolly et al., 1996; Oreste \& Coscia, 2002; Wagner et al., 1995; Wei et al., 2015). The importance of AID substrate specificity co-evolution with the $I g$ gene sequence was validated when the replacement of these WRC motifs with AID coldspots reduced mutation frequency in $I g V$ region (Wei et al., 2015). Additionally, analyzing the crystal structure of the antibody-antigen complex showed that the majority of the antibody residues interacting with the antigen are subject to AID-mediated mutations (Detanico et al., 2016). It is important to note that although creating the diversity in the adaptive immune antigen receptors is crucial to protect the host, any deviation and mis-regulation of this genome-damaging system is costly.

The diversification of adaptive immune antigen receptors is a unique example of deliberate controlled self-DNA mutation and rearrangement in vertebrates. One source of structural variations (SV) of chromosomes and mutations in B cells is the mis-targeted activity of AID (Choudhary et al., 2018; Trancoso et al., 2020). For example, in patients
with chronic myeloid leukemia (CML), AID-mediated hypermutation of tumor repressor and DNA repair genes have been associated with progress into fatal B lymphoid blast crisis and an Imatinib-resistance phenotype (Klemm et al., 2009). In diffuse large B cell lymphomas (DLBCL), somatic hypermutation (SHM) has been reported in protooncogenes (Seifert et al., 2019). The IgH-cMYC translocation is observed in Burkitt lymphoma where the frequency of this translocation was correlated with AID activity level (Takizawa et al., 2008). AID-induced hypermutations have also been observed in chronic lymphoid leukemia (CLL) (Burns et al., 2017). There has also been evidence of AIDmediated carcinogenesis in germinal center B cells as the result of Epstein-Barr virus (EBV)-induced AID expression (Mohri et al., 2017). Moreover, AID-mediated mutations have been observed in ovarian cancer (Lindley et al., 2016). Interestingly, under strong inflammatory stimuli, the premature expression of aicda during B cell development could drive the clonal evolution of childhood B cell acute lymphoblastic leukemia (B-ALL) (Swaminathan et al., 2015). It was proposed that aberrant AID-mediated mutations in CpG islands would create $\mathrm{T}: \mathrm{G}$ mismatches which would cause SV (Swaminathan et al., 2015). Taken together, AID acts as a double-edged sword in immunity and cancer.

AID plays a central role in protecting vertebrate species by initiating the antibody affinity maturation process. Unlike other vertebrates, it seems that the antibody responses of Atlantic cod lack antibody maturation, exhibiting high levels of low affinity antibodies and lack of high affinity ones upon immunization (Arnesen et al., 2002; Magnadottir et al., 1999; Magnadottir et al., 2001; Solem \& Stenvik, 2006). This scenario struck us as being
similar to patient with hyper IgM syndrome type II (HIGM II) where lack of AID activity results in the absence of antibody maturation (Minegishi et al., 2000; Revy et al., 2000).

5.2 Findings and significance

In this thesis, we sought to identify the molecular basis behind the lack of antibody maturation in Atlantic cod. We applied a comparative molecular-biochemicalcomputational methodology to study the genetics, expression, function, and evolutionary trajectory of AID in Atlantic cod. Our objectives were to answer four main questions: 1) Is the gene synteny and transcript expression of aicda gene conserved in Atlantic cod compared with other studied vertebrates? 2) Is Atlantic cod AID a functional cytidine deaminase? 3) Is the Atlantic cod case an exception among Gadiformes species? 4) At what evolutionary point did the adaptation(s) resulting in the lack of antibody maturation in Atlantic cod occur? We attempted to answer the first two questions in chapter 2 and 3, respectively, and the last two questions in chapter 4.

5.2.1 Summary of findings

In chapter 2, we found that the gene synteny and transcript expression of Atlantic cod aicda gene is similar to those of other Teleostei species studied here. Specifically, the analyses of aicda locus revealed conserved synteny throughout the Teleostei infraclass. In addition to the primary transcript containing the full-size AID coding sequence (CDS), we also detected a truncated transcript (T-Gm-acida), in which the first exon was missing. Although various AID isoforms have been identified in tetrapods (Albesiano et al., 2003; Marr et al., 2007; McCarthy et al., 2003; Muramatsu et al., 1999; Ohmori et al., 2004; Verma et al., 2010; Wu et al., 2008), exclusion of the first exon has only been observed in the lizard Iberian ribbed newt (Pleurodeles waltl) (Bascove \& Frippiat, 2010), Moreover, no alternative aicda transcript isoform has been discovered in other bony fish species
studied thus far (Saunders \& Magor, 2004; Zhao et al., 2005). Similar to other studied vertebrates, Gm-aicda transcripts were mainly expressed in immune-related tissues (Bascove \& Frippiat, 2010; Marr et al., 2007; Muramatsu et al., 1999; Muto et al., 2000; Ohmori et al., 2004; Saunders \& Magor, 2004; Verma et al., 2010). Also, like other vertebrate species (Pone et al., 2012), we detected an increased overall expression of Gmaicda transcript in response to viral and bacterial mimic immune stimulations. Given these findings, we concluded that the genetics and expression of the Gm-aicda were mainly conserved compared to other teleost species.

In chapter 3, we synthesized, purified, and compared the enzymatic properties of Atlantic cod AID (Gm-AID) to human (Hs-AID) and several other fish AIDs. We found that despite having all the functional domains of the AID/APOBEC family, Gm-AID catalytic rate was orders of magnitude lower than any other studied AID homologs thus far. In line with the functional impairment of Gm-AID, we observed the lowest WRC and WGCW enrichment in the complementarity-determining regions (CDRs) of Atlantic cod Ig genes compared to other studied vertebrates. As expected, the optimal temperature of Gm-AID was estimated between 4 to $8{ }^{\circ} \mathrm{C}$, indicating evolutionary adaptation of AID enzyme to the Atlantic cod's ambient temperature. Computational simulations detected a significant increase in an alternative ssDNA binding mode in Gm-AID where the substrate did not fit in the classical DNA binding grooves previously identified in Hs-AID (King et al., 2015; Qiao et al., 2017). When the potential amino acid positions involved in the alternative binding mode in Gm-AID were replaced with their counterparts in Hs-AID or zebrafish AID (Dr-AID), the catalytic rate of the Gm-AID mutants was improved up to 10-
fold but still remained considerably lower than the other AID homologs examined. Based on these findings, two models became possible: either that the lack of antibody maturation in Atlantic cod is directly due to the functional impairment of its AID enzyme; or, alternatively, that because the Atlantic cod does not have the necessary mechanisms upstream of AID activity (e.g., T-cell/B-cell interaction receptors) to initiate antibody affinity maturation. Previous studies in which B cell activation upon immune stimulation in Atlantic cod was observed (Solbakken, Jentoft, Reitan, Mikkelsen, Gregers, et al., 2019; Solbakken, Jentoft, Reitan, Mikkelsen, Jakobsen, et al., 2019) and our findings here that Gm-aicda expression was increased upon immune stimulation indirectly support the former scenario. However, to clearly distinguish between these two scenarios, functional analyses of antibody responses of other Gadiformes species are required. Since the major reduction in AID catalytic efficiency has occurred in the Gadidae ancestor, lack of affinitymatured antibodies in non-Gadidae species would prove the latter scenario. However, presence of affinity-matured antibodies in Gadiculus argenteus, a Gadidae species with an active AID, would prove the former scenario.

In chapter 4, we expanded our biochemical analyses to 36 species within and outside of Gadiformes lineage to investigate the functional properties of other Gadiformes AIDs (Figure 5-1), in order to shed light on the "which came first? The chicken or the egg" nature of the loss of MHC II pathway and functional impairment of AID. Within this lineage, we found AID homologs with no detectable cysteine deaminase activity (i.e., BsAID and Mz-AID) and with catalytic efficiency lower than Gm-AID (i.e., Ag-AID). Using ancestral sequence reconstruction (ASR) methods, we pinpointed the cold adaptation (12
${ }^{\circ} \mathrm{C}$ to $8{ }^{\circ} \mathrm{C}$) and functional impairment (99.2% reduction in catalytic efficiency) of AID enzyme in the common ancestor of Gadiformes and Gadidae, respectively. The asynchronous cold adaptation and functional impairment in the ancestral AIDs suggest that the functional impairment of the AID enzyme is a purposeful event not a byproduct of cold adaptation. Since the loss of $m h c I I, c d 4$, and Ii genes has occurred in the common ancestor of Gadiformes (Malmstrom et al., 2016), while the functional impairment of AID enzyme was identified in the common ancestor of Gadidae group, it seems that most likely the inactivation of AID was a consequence of the loss of central genes involved in the necessary mechanisms upstream of AID activity (i.e., AM).

Figure 5-1: Comparison of catalytic rate of Gadiformes AIDs. Red to green color change indicates the low to high catalytic effeciency of AIDs. The $K_{\text {cat }} / K_{m}$ data from Table 4-4 is used to draw this figure. NA indicates species without aicda gene.

5.2.2 Significance and future directions

In this thesis, for the first time, we reported two vertebrate species with functionally impaired AID enzymes (B. saida and M. zugmayeri). In human and mouse models, deficiency in AID function leads to the hyper IgM syndrome type II (HIGM II) characterized by a lack of affinity matured antibodies (Minegishi et al., 2000; Revy et al., 2000). Patients with HIGM II are susceptible to recurrent bacterial and opportunistic infections in respiratory and gastrointestinal tracts, autoimmunity, lymphoproliferation, and malignancies (Qamar \& Fuleihan, 2014; Yazdani et al., 2019). However, Gadiformes species with functionally impaired AID, such as Atlantic cod, are healthy within their natural habitats (Parham, 2016).

It was suggested that the evolution of self-DNA-mutating enzymes such as AID has shaped the evolution of vertebrates' adaptive immune system where the invention of cellular machinery capable of introducing somatic mutations in the lymphocyte antigen receptors facilitated the evolution of the adaptive immune system (Trancoso et al., 2020). Interestingly, in the case of the Gadiformes lineage, it seems that the change in their common ancestor's habitat has altered their reliance on different branches of the immune system (Parham, 2016; Solbakken et al., 2017). Here, we proposed that the reduced dependency on humoral immunity, in return, has shaped the evolution of Gadiformes AID. In this scenario, the absence of strong reliance on the antibody response has eliminated the selective pressure to maintain AID functional, while the genome-wide collateral damage caused by AID off-target activity has formed a selective pressure to reduce/eliminate its activity.

Interestingly, we could not find evidence of the aicda gene in the striped codlet (Bregmaceros cantori) which also lacks $m h c$ I U, $m h c$ II, $c d 4$, and $c d 8$ genes (Malmstrom et al., 2016). These genes are central to cell-mediated and humoral immune systems. On the other hand, we found that the teleost fish Gouania willdenowi which lacks Ig genes (Mirete-Bachiller et al., 2019), has maintained its aicda gene. Although biochemical analyses are required to confirm the activity or inactivity of its AID enzyme, the presence of the aicda gene in the absence of $I g$ genes shows a deeper level of plasticity within the vertebrate immune system, especially amongst bony fish. These new findings along with the previous studies prove that the vertebrate immune system dynamic is more flexible than currently believed. It seems that in the right environmental conditions, alternative immune strategies where one branch of immune system is shrinking can be successful in protecting the host (Figure 5-2).

Typical vertebrate immune system compartments
Atlantic Cod immune system compartments

Figure 5-2: Model of a uniquely but successful compartmentalized immune system in Atlantic cod. Atlantic cod is genetically unique amongst all studied bony fish and vertebrates in that it is missing several genes that are essential for a robust secondary antibody response. On the other hand, it exhibits a unique expansion of other genes involved in cell-mediated and innate immunity. This alternative immune system is also present in other Gadiformes species.

Based on our current understanding of vertebrate immune system, the three branches of innate, cell-mediated, and humoral immunity are necessary to protect a species (Smith et al., 2019). However, the Gadiforms lineage is an exception where a drastic remodeling of their immune system has re-invented the interwoven interaction between different branches of immune system. The first evidence came to light when, unlike other vertebrate species, the functional analyses of the Atlantic cod immune system revealed a weak humoral immune response upon immune stimulation and infection (Arnesen et al., 2002; Magnadottir et al., 1999; Magnadottir et al., 2001; Solem \& Stenvik, 2006). The second line of evidence was provided when the genome of 72 teleost species, within and outside of Gadiformes lineage, were compared. This comparison uncovered a series of
gene losses and expansions unique to the Gadiformes lineage (Malmstrom et al., 2016; Solbakken, Rise, et al., 2016; Solbakken, Torresen, et al., 2016; Solbakken et al., 2017). For example, $m h c I I, c d 4$, and $c d 74$ (i.e., invariant chain) genes were lost in the common ancestor of Gadiformes (Solbakken, Rise, et al., 2016). These genes play crucial roles in antibody responses (Owen, 2019). Concurrent with these gene losses, mhc I and some of the $t l r$ genes were expanded in the common ancestor of Gadiformes lineage (Malmstrom et al., 2016; Solbakken, Rise, et al., 2016; Solbakken, Torresen, et al., 2016). These genes are involved in the cell-mediated and innate immunity, respectively (Owen, 2019). Interestingly, examining the binding domain and the sorting signaling sequence of the expanded mhc I genes in Atlantic cod showed novel signaling motifs similar to the ones involved in MHC II and cross-presentation pathways (Malmstrom et al., 2013). Based on these findings, it was suggested that the expansion and neofunctionalization of mhc I genes in Atlantic cod has led to generation of MHC II-like MHC I molecules (Malmstrom et al., 2013). However, the inactivation of Gadidae AIDs may suggest that the re-modeling of their immune system is moving towards shrinking the role of antibody response rather than converting other genes (e.g., mhc I) to play the role of the lost genes involve in antibody response (e.g., mhc II). It would be interesting to investigate these two scenarios in the future.

In addition to describing the novel insights on evolution of immunity, the findings presented in this thesis, are also significant from an enzyme structure:function perspective. The work presented in chapter 4 is the first endeavor to carry out full biochemical characterization on a large family of extant and ancestral versions of an enzyme involved
in human disease, and the first marriage of such evolutionary comparative enzymology with machine learning to shed light on structural and functional aspects of enzyme evolution. Since the discovery of AID and APOBECs, there has been hundreds of research papers investigating their evolution, regulation, structure, and function. Given the importance of these enzymes in human immunity and cancer, understandably, much of the research has been focused on human and to lesser extent to mouse counterparts. Studying the evolutionary trajectory of the current-day species is a powerful tool for understanding biology in the molecular, cellular, and organismal levels. In the comparative biology, exploring the differences between various species leads to discovering how natural selection has forced the evolution of the extant species (Martinez, 2018). Similarly, at the molecular level, comparative approaches can be used to study the enzymatic/biochemical properties of a protein. Comparative enzymology aims to discover the diversifying molecular mechanisms that altered enzymes' structure and function in response to the evolutionary pressures (Storey, 2016). Understanding these diversifying molecular mechanisms is an effective tool in understanding the proteins' structure-function relationship. To complement our comparative enzymology of chapter 4, future work should also focus on determination of the 3D structure of the AID homologs examined in chapter 4 by X-ray crystallography and NMR.

We have taken a comparative approach to study structure and function of AID. We hypothesized that since different AID homologs possess different enzymatic properties, examining their predicted structure side-by-side, would assist us in pinpointing the functional motifs of AID (Abdouni et al., 2013; Abdouni et al., 2018; Emma M. Quinlan,

2017; King \& Larijani, 2017; King et al., 2015). Moreover, our comparative approach would assist in a better understanding the biological variations in the immune system of other species. Since vertebrate's immune system and their DNA/RNA editing enzymes, such as AID, have strongly influenced each other's evolution (Trancoso et al., 2020), examining the biochemical properties and evolutionary trajectory of other vertebrates' AID would shed light on other possible alternative immune strategies within this class. This is an area of research that has been neglected and the higher frequency of disease emergence in animals, due to environmental changes (e.g., global warming) (Maslo et al., 2017), has created a strong need to put more effort into this type of research.

References

Abascal, F., Zardoya, R., \& Telford, M. J. (2010, Jul). TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res, 38(Web Server issue), W7-13. https://doi.org/10.1093/nar/gkq291

Abdouni, H., King, J. J., Suliman, M., Quinlan, M., Fifield, H., \& Larijani, M. (2013, May 01). Zebrafish AID is capable of deaminating methylated deoxycytidines. Nucleic Acids Res, 41(10), 5457-5468. https://doi.org/10.1093/nar/gkt212

Abdouni, H. S., King, J. J., Ghorbani, A., Fifield, H., Berghuis, L., \& Larijani, M. (2018, Jan). DNA/RNA hybrid substrates modulate the catalytic activity of purified AID. Mol Imтипol, 93, 94-106. https://doi.org/10.1016/j.molimm.2017.11.012

Abos, B., Estensoro, I., Perdiguero, P., Faber, M., Hu, Y., Diaz Rosales, P., Granja, A. G., Secombes, C. J., Holland, J. W., \& Tafalla, C. (2018). Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout. Front Immunol, 9, 1203. https://doi.org/10.3389/fimmu.2018.01203

Agius, C., \& Roberts, R. J. (2003, Sep). Melano-macrophage centres and their role in fish pathology. J Fish Dis, 26(9), 499-509. http://www.ncbi.nlm.nih.gov/pubmed/14575368

Akanuma, S. (2017, Aug 6). Characterization of Reconstructed Ancestral Proteins Suggests a Change in Temperature of the Ancient Biosphere. Life (Basel), 7(3). https://doi.org/10.3390/life7030033

Albesiano, E., Messmer, B. T., Damle, R. N., Allen, S. L., Rai, K. R., \& Chiorazzi, N. (2003, Nov 01). Activation-induced cytidine deaminase in chronic lymphocytic leukemia B cells: expression as multiple forms in a dynamic, variably sized fraction of the clone. Blood, 102(9), 3333-3339. https://doi.org/10.1182/blood-2003-05-1585

Alexaki, A., Kames, J., Holcomb, D. D., Athey, J., Santana-Quintero, L. V., Lam, P. V. N., Hamasaki-Katagiri, N., Osipova, E., Simonyan, V., Bar, H., Komar, A. A., \& KimchiSarfaty, C. (2019, Jun 14). Codon and Codon-Pair Usage Tables (CoCoPUTs): Facilitating Genetic Variation Analyses and Recombinant Gene Design. J Mol Biol, 431(13), 24342441. https://doi.org/10.1016/j.jmb.2019.04.021

Aleyd, E., Heineke, M. H., \& van Egmond, M. (2015, Nov). The era of the immunoglobulin A Fc receptor FcaRI; its function and potential as target in disease. Immunol Rev, 268(1), 123-138. https://doi.org/10.1111/imr. 12337

Aleyd, E., van Hout, M. W., Ganzevles, S. H., Hoeben, K. A., Everts, V., Bakema, J. E., \& van Egmond, M. (2014, Mar 1). IgA enhances NETosis and release of neutrophil
extracellular traps by polymorphonuclear cells via Fca receptor I. J Immunol, 192(5), 23742383. https://doi.org/10.4049/jimmunol. 1300261

Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., \& Ronquist, F. (2004, Feb 12). Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics, 20(3), 407-415. https://doi.org/10.1093/bioinformatics/btg427

Ao, X., Sa, R., Wang, J., Dao, R., Wang, H., \& Yu, H. (2016, Dec). Activation-induced cytidine deaminase selectively catalyzed active DNA demethylation in pluripotency gene and improved cell reprogramming in bovine SCNT embryo. Cytotechnology, 68(6), 26372648. https://doi.org/10.1007/s10616-016-9988-8

Arciuli, M., Fiocco, D., Fontana, S., Arena, M. P., Frassanito, M. A., \& Gallone, A. (2017, Sep). Administration of a polyphenol-enriched feed to farmed sea bass (Dicentrarchus labrax L.): Kidney melanomacrophages response. Fish Shellfish Immunol, 68, 404-410. https://doi.org/10.1016/j.fsi.2017.07.043

Arenas, M., \& Bastolla, U. (2019, 12/05). ProtASR2: Ancestral Reconstruction of Protein Sequences accounting for Folding Stability. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X. 13341

Arenas, M., Sánchez-Cobos, A., \& Bastolla, U. (2015, Aug). Maximum-Likelihood Phylogenetic Inference with Selection on Protein Folding Stability. Mol Biol Evol, 32(8), 2195-2207. https://doi.org/10.1093/molbev/msv085

Arenas, M., Weber, C. C., Liberles, D. A., \& Bastolla, U. (2017, Nov 1). ProtASR: An Evolutionary Framework for Ancestral Protein Reconstruction with Selection on Folding Stability. Syst Biol, 66(6), 1054-1064. https://doi.org/10.1093/sysbio/syw121

Arnesen, S. M., Schroder, M. B., Dalmo, R. A., \& Bogwald, J. (2002, Aug). Antigen uptake and immunoglobulin production in Atlantic cod (Gadus morhua L.) after intraperitoneal injection of Vibrio anguillarum. Fish Shellfish Immunol, 13(2), 159-170. http://www.ncbi.nlm.nih.gov/pubmed/12400865

Averill, B. a. E., P. (2011). General Chemistry: Principles, Patterns, and Applications.
Ayres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P. O., Huelsenbeck, J. P., Ronquist, F., Swofford, D. L., Cummings, M. P., Rambaut, A., \& Suchard, M. A. (2012, Jan). BEAGLE: an application programming interface and highperformance computing library for statistical phylogenetics. Syst Biol, 61(1), 170-173. https://doi.org/10.1093/sysbio/syr100

Aziz, M., \& Iheanacho, F. (2019). Physiology, Antibody. In StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/31536276

Babbage, G., Garand, R., Robillard, N., Zojer, N., Stevenson, F. K., \& Sahota, S. S. (2004, Apr 01). Mantle cell lymphoma with $t(11 ; 14)$ and unmutated or mutated VH genes expresses AID and undergoes isotype switch events. Blood, 103(7), 2795-2798. https://doi.org/10.1182/blood-2003-05-1632

Babkova, P., Dunajova, Z., Chaloupkova, R., Damborsky, J., Bednar, D., \& Marek, M. (2020, 2020/01/01/). Structures of hyperstable ancestral haloalkane dehalogenases show restricted conformational dynamics. Computational and Structural Biotechnology Journal, 18, 1497-1508. https://doi.org/https://doi.org/10.1016/j.csbj.2020.06.021

Barik, S. (2016). What Really Rigs Up RIG-I? J Innate Immun, 8(5), 429-436. https://doi.org/10.1159/000447947

Barreto, V. M., \& Magor, B. G. (2011, Sep). Activation-induced cytidine deaminase structure and functions: a species comparative view. Dev Comp Immunol, 35(9), 991-1007. https://doi.org/10.1016/j.dci.2011.02.005

Barreto, V. M., Pan-Hammarstrom, Q., Zhao, Y., Hammarstrom, L., Misulovin, Z., \& Nussenzweig, M. C. (2005, Sep 19). AID from bony fish catalyzes class switch recombination. J Exp Med, 202(6), 733-738. https://doi.org/10.1084/jem. 20051378

Bascove, M., \& Frippiat, J. P. (2010, Apr). Molecular characterization of Pleurodeles waltl activation-induced cytidine deaminase. Mol Immunol, 47(7-8), 1640-1649. https://doi.org/10.1016/j.molimm.2010.01.005

Bastianello, G., \& Arakawa, H. (2017, Jan 9). A double-strand break can trigger immunoglobulin gene conversion. Nucleic Acids Res, 45(1), 231-243. https://doi.org/10.1093/nar/gkw887

Basu, U., Chaudhuri, J., Alpert, C., Dutt, S., Ranganath, S., Li, G., Schrum, J. P., Manis, J. P., \& Alt, F. W. (2005, Nov 24). The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature, 438(7067), 508-511. https://doi.org/10.1038/nature04255

Basu, U., Wang, Y., \& Alt, F. W. (2008, 2008/10/24/). Evolution of PhosphorylationDependent Regulation of Activation-Induced Cytidine Deaminase. Mol Cell, 32(2), 285291. https://doi.org/https://doi.org/10.1016/j.molcel.2008.08.019

Baumgarth, N. (2011, Jan). The double life of a B-1 cell: self-reactivity selects for protective effector functions. Nat Rev Immunol, 11(1), 34-46. https://doi.org/10.1038/nri2901

Berg, J. M., Stryer, L., \& Tymoczko, J. L. (2002). Biochemistry. 5th edition. W. H. Freeman 2002. http://lib.ugent.be/catalog/ebk01:3450000000002008

Betz, A. G., Milstein, C., González-Fernández, A., Pannell, R., Larson, T., \& Neuberger, M. S. (1994, Apr 22). Elements regulating somatic hypermutation of an immunoglobulin kappa gene: critical role for the intron enhancer/matrix attachment region. Cell, 77(2), 239248. https://doi.org/10.1016/0092-8674(94)90316-6

Betz, A. G., Rada, C., Pannell, R., Milstein, C., \& Neuberger, M. S. (1993, Mar 15). Passenger transgenes reveal intrinsic specificity of the antibody hypermutation mechanism: clustering, polarity, and specific hot spots. Proc Natl Acad Sci U S A, 90(6), 2385-2388. http://www.ncbi.nlm.nih.gov/pubmed/8460148

Bhutani, N., Decker, M. N., Brady, J. J., Bussat, R. T., Burns, D. M., Corbel, S. Y., \& Blau, H. M. (2013, Mar). A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. FASEB J, 27(3), 1107-1113. https://doi.org/10.1096/fj.12-222125

Boehm, T., Hess, I., \& Swann, J. B. (2012, Jun). Evolution of lymphoid tissues. Trends Imтипol, 33(6), 315-321. https://doi.org/10.1016/j.it.2012.02.005

Bohn, M. F., Shandilya, S. M., Albin, J. S., Kouno, T., Anderson, B. D., McDougle, R. M., Carpenter, M. A., Rathore, A., Evans, L., Davis, A. N., Zhang, J., Lu, Y., Somasundaran, M., Matsuo, H., Harris, R. S., \& Schiffer, C. A. (2013, Jun 04). Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 Vif-binding domain. Structure, 21(6), 1042-1050. https://doi.org/10.1016/j.str.2013.04.010

Bransteitter, R., Pham, P., Scharff, M. D., \& Goodman, M. F. (2003, Apr 01). Activationinduced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A, 100(7), 4102-4107. https://doi.org/10.1073/pnas. 0730835100

Bransteitter, R., Sneeden, J. L., Allen, S., Pham, P., \& Goodman, M. F. (2006, Jun 23). First AID (activation-induced cytidine deaminase) is needed to produce high affinity isotype-switched antibodies. J Biol Chem, 281(25), 16833-16836. https://doi.org/10.1074/jbc.R600006200

Branton, S. A., Ghorbani, A., Bolt, B. N., Fifield, H., Berghuis, L. M., \& Larijani, M. (2020, Jul). Activation-induced cytidine deaminase can target multiple topologies of double-stranded DNA in a transcription-independent manner. FASEB J, 34(7), 9245-9268. https://doi.org/10.1096/fj.201903036RR

Brar, S. S., Watson, M., \& Diaz, M. (2004, Jun 18). Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J Biol Chem, 279(25), 26395-26401. https://doi.org/10.1074/jbc.M403503200

Briney, B. S., \& Crowe, J. E., Jr. (2013). Secondary mechanisms of diversification in the human antibody repertoire. Front Immunol, 4, 42. https://doi.org/10.3389/fimmu.2013.00042

Bromage, E. S., Ye, J., \& Kaattari, S. L. (2006, Jan). Antibody structural variation in rainbow trout fluids. Comp Biochem Physiol B Biochem Mol Biol, 143(1), 61-69. https://doi.org/10.1016/j.cbpb.2005.10.003

Brown, G. D., Willment, J. A., \& Whitehead, L. (2018, Jun). C-type lectins in immunity and homeostasis. Nat Rev Immunol, 18(6), 374-389. https://doi.org/10.1038/s41577-018-0004-8

Buerstedde, J. M., \& Arakawa, H. (2006). Immunoglobulin gene conversion or hypermutation: that's the question. Subcell Biochem, 40, 11-24. https://doi.org/10.1007/978-1-4020-4896-8_2

Buonocore, F., \& Gerdol, M. (2016, Jan). Alternative adaptive immunity strategies: coelacanth, cod and shark immunity. Mol Immunol, 69, 157-169. https://doi.org/10.1016/j.molimm.2015.09.003

Burns, A., Alsolami, R., Becq, J., Timbs, A., Bruce, D., Robbe, P., Vavoulis, D., Cabes, M., Dreau, H., Taylor, J., Knight, S. J. L., Mansson, R., Bentley, D., Beekman, R., MartinSubero, J. I., Campo, E., Houlston, R. S., Ridout, K. E., \& Schuh, A. (2017, Jun 06). Wholegenome sequencing of chronic lymphocytic leukaemia reveals distinct differences in the mutational landscape between IgHVmut and IgHVunmut subgroups. Leukemia. https://doi.org/10.1038/leu.2017.177

Byeon, I. J., Ahn, J., Mitra, M., Byeon, C. H., Hercik, K., Hritz, J., Charlton, L. M., Levin, J. G., \& Gronenborn, A. M. (2013). NMR structure of human restriction factor APOBEC3A reveals substrate binding and enzyme specificity. Nat Commun, 4, 1890. https://doi.org/10.1038/ncomms2883

Cain, K. D., Jones, D. R., \& Raison, R. L. (2002, Mar). Antibody-antigen kinetics following immunization of rainbow trout (Oncorhynchus mykiss) with a T-cell dependent antigen. Dev Comp Immunol, 26(2), 181-190. http://www.ncbi.nlm.nih.gov/pubmed/11696383

Caipang, C. M., Brinchmann, M. F., \& Kiron, V. (2009, Jul). Profiling gene expression in the spleen of Atlantic cod, Gadus morhua upon vaccination with Vibrio anguillarum antigen. Comp Biochem Physiol B Biochem Mol Biol, 153(3), 261-267. https://doi.org/10.1016/j.cbpb.2009.03.005

Cao, Y. (2018). Advances in Membrane Proteins: Part I: Mass Processing and Transportation. Singapore: Springer Singapore. https://doi.org/10.1007/978-981-13-0532$\underline{0}$

Carletti, M. S., Monzon, A. M., Garcia-Rios, E., Benitez, G., Hirsh, L., Fornasari, M. S., \& Parisi, G. (2020, Jan 1). Revenant: a database of resurrected proteins. Database (Oxford), 2020. https://doi.org/10.1093/database/baaa031

Carpenter, M. A., Rajagurubandara, E., Wijesinghe, P., \& Bhagwat, A. S. (2010, May 04). Determinants of sequence-specificity within human AID and APOBEC3G. DNA Repair (Amst), 9(5), 579-587. https://doi.org/10.1016/j.dnarep.2010.02.010

Catchen, J. M., Conery, J. S., \& Postlethwait, J. H. (2009, Aug). Automated identification of conserved synteny after whole-genome duplication. Genome Res, 19(8), 1497-1505. https://doi.org/10.1101/gr.090480.108

Chakravarty, S., Ung, A. R., Moore, B., Shore, J., \& Alshamrani, M. (2018, Mar 27). A Comprehensive Analysis of Anion-Quadrupole Interactions in Protein Structures. Biochemistry, 57(12), 1852-1867. https://doi.org/10.1021/acs.biochem.7b01006

Chandra, V., Bortnick, A., \& Murre, C. (2015, Sep). AID targeting: old mysteries and new challenges. Trends Immunol, 36(9), 527-535. https://doi.org/10.1016/j.it.2015.07.003

Chang, B. S. (2003, Aug). Ancestral gene reconstruction and synthesis of ancient rhodopsins in the laboratory. Integr Comp Biol, 43(4), 500-507. https://doi.org/10.1093/icb/43.4.500

Chang, B. S., Jönsson, K., Kazmi, M. A., Donoghue, M. J., \& Sakmar, T. P. (2002, Sep). Recreating a functional ancestral archosaur visual pigment. Mol Biol Evol, 19(9), 14831489. https://doi.org/10.1093/oxfordjournals.molbev.a004211

Chaudhuri, J., \& Alt, F. W. (2004, Jul). Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol, 4(7), 541-552. https://doi.org/10.1038/nri1395

Chaudhuri, J., Khuong, C., \& Alt, F. W. (2004, Aug 26). Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature, 430(7003), 992-998. https://doi.org/10.1038/nature02821

Chaudhuri, J., Tian, M., Khuong, C., Chua, K., Pinaud, E., \& Alt, F. W. (2003, Apr 17). Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature, 422(6933), 726-730. https://doi.org/10.1038/nature01574

Chi, X., Li, Y., \& Qiu, X. (2020, Feb 7). V(D)J recombination, somatic hypermutation and class switch recombination of immunoglobulins: mechanism and regulation. Immunology. https://doi.org/10.1111/imm. 13176

Choi, B., Rempala, G., \& Kim, J. K. (2017, 12/05). Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters. Sci Rep, 7. https://doi.org/10.1038/s41598-017-17072-z

Choudhary, M., Tamrakar, A., Singh, A. K., Jain, M., Jaiswal, A., \& Kodgire, P. (2017, Sep 21). AID Biology: A pathological and clinical perspective. Int Rev Immunol, 1-20. https://doi.org/10.1080/08830185.2017.1369980

Choudhary, M., Tamrakar, A., Singh, A. K., Jain, M., Jaiswal, A., \& Kodgire, P. (2018, Jan 2). AID Biology: A pathological and clinical perspective. Int Rev Immunol, 37(1), 3756. https://doi.org/10.1080/08830185.2017.1369980

Colonna, M. (2018, Jun 19). Innate Lymphoid Cells: Diversity, Plasticity, and Unique Functions in Immunity. Immunity, 48(6), 1104-1117. https://doi.org/10.1016/j.immuni.2018.05.013

Conticello, S. G. (2008). The AID/APOBEC family of nucleic acid mutators. Genome Biol, 9(6), 229. https://doi.org/10.1186/gb-2008-9-6-229

Conticello, S. G., Ganesh, K., Xue, K., Lu, M., Rada, C., \& Neuberger, M. S. (2008, Aug 22). Interaction between antibody-diversification enzyme AID and spliceosome-associated factor CTNNBL1. Mol Cell, 31(4), 474-484. https://doi.org/10.1016/j.molcel.2008.07.009

Conticello, S. G., Thomas, C. J., Petersen-Mahrt, S. K., \& Neuberger, M. S. (2005, Feb). Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Mol Biol Evol, 22(2), 367-377. https://doi.org/10.1093/molbev/msi026

Corripio-Miyar, Y., Mazorra de Quero, C., Treasurer, J. W., Ford, L., Smith, P. D., \& Secombes, C. J. (2007, Jul 15). Vaccination experiments in the gadoid haddock, Melanogrammus aeglefinus L., against the bacterial pathogen Vibrio anguillarum. Vet Imтипol Immunopathol, 118(1-2), 147-153. https://doi.org/10.1016/j.vetimm.2007.04.011

Coutinho, A., Gronowicz, E., Bullock, W. W., \& Möller, G. (1974, Jan 1). Mechanism of thymus-independent immunocyte triggering. Mitogenic activation of B cells results in specific immune responses. J Exp Med, 139(1), 74-92. https://doi.org/10.1084/jem.139.1.74

Covello, J. M., Bird, S., Morrison, R. N., Bridle, A. R., Battaglene, S. C., Secombes, C. J., \& Nowak, B. F. (2013, Mar). Isolation of RAG-1 and IgM transcripts from the striped trumpeter (Latris lineata), and their expression as markers for development of the adaptive
immune response. Fish Shellfish Immunol, 34(3), 778-788. https://doi.org/10.1016/j.fsi.2012.12.015

Creacy, S. D., Routh, E. D., Iwamoto, F., Nagamine, Y., Akman, S. A., \& Vaughn, J. P. (2008, Dec 12). G4 resolvase 1 binds both DNA and RNA tetramolecular quadruplex with high affinity and is the major source of tetramolecular quadruplex G4-DNA and G4-RNA resolving activity in HeLa cell lysates. J Biol Chem, 283(50), 34626-34634. https://doi.org/10.1074/jbc.M806277200

Dancyger, A. M., King, J. J., Quinlan, M. J., Fifield, H., Tucker, S., Saunders, H. L., Berru, M., Magor, B. G., Martin, A., \& Larijani, M. (2012, Apr). Differences in the enzymatic efficiency of human and bony fish AID are mediated by a single residue in the C terminus modulating single-stranded DNA binding. FASEB J, 26(4), 1517-1525. https://doi.org/10.1096/fj.11-198135

Davidson, G. A., Lin, S. H., Secombes, C. J., \& Ellis, A. E. (1997, Sep 19). Detection of specific and 'constitutive' antibody secreting cells in the gills, head kidney and peripheral blood leucocytes of dab (Limanda limanda). Vet Immunol Immunopathol, 58(3-4), 363374. http://www.ncbi.nlm.nih.gov/pubmed/9436279
de Yebenes, V. G., \& Ramiro, A. R. (2006, Sep). Activation-induced deaminase: light and dark sides. Trends Mol Med, 12(9), 432-439. https://doi.org/10.1016/j.molmed.2006.07.001

DeFranco, A. L. (2016). The germinal center antibody response in health and disease. F1000Res, 5. https://doi.org/10.12688/f1000research.7717.1

Detanico, T., Phillips, M., \& Wysocki, L. J. (2016). Functional Versatility of AGY Serine Codons in Immunoglobulin Variable Region Genes. Front Immunol, 7, 525. https://doi.org/10.3389/fimmu.2016.00525

Di Noia, J. M., \& Neuberger, M. S. (2007). Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem, 76, 1-22. https://doi.org/10.1146/annurev.biochem.76.061705.090740

Diaz-Satizabal, L., \& Magor, B. G. (2015, Jan). Isolation and cytochemical characterization of melanomacrophages and melanomacrophage clusters from goldfish (Carassius auratus, L.). Dev Comp Immunol, 48(1), 221-228. https://doi.org/10.1016/j.dci.2014.10.003

Diaz, M., Velez, J., Singh, M., Cerny, J., \& Flajnik, M. F. (1999, May). Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic
hypermutation. Int Immunol, 11(5), 825-833. http://www.ncbi.nlm.nih.gov/pubmed/10330287

Dickinson, G. S., Akkoyunlu, M., Bram, R. J., \& Alugupalli, K. R. (2015, Dec). BAFF receptor and TACI in B-1b cell maintenance and antibacterial responses. Ann N Y Acad Sci, 1362, 57-67. https://doi.org/10.1111/nyas. 12772

Doan, T. (2013). Lippincott's Illustrated Reviews: Immunology. http://meded.lwwhealthlibrary.com/book.aspx?bookid=777

Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., \& Baker, N. A. (2004, Jul 1). PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res, 32(Web Server issue), W665-667. https://doi.org/10.1093/nar/gkh381

Dominguez, P. M., Teater, M., Chambwe, N., Kormaksson, M., Redmond, D., Ishii, J., Vuong, B., Chaudhuri, J., Melnick, A., Vasanthakumar, A., Godley, L. A., Papavasiliou, F. N., Elemento, O., \& Shaknovich, R. (2015, Sep 29). DNA Methylation Dynamics of Germinal Center B Cells Are Mediated by AID. Cell Rep, 12(12), 2086-2098. https://doi.org/10.1016/j.celrep.2015.08.036

Dooley, H., \& Flajnik, M. F. (2005, Mar). Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum. Eur J Immunol, 35(3), 936-945. https://doi.org/10.1002/eji.200425760

Dooley, H., Stanfield, R. L., Brady, R. A., \& Flajnik, M. F. (2006, Feb 07). First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci U S A, 103(6), 1846-1851. https://doi.org/10.1073/pnas. 0508341103

Duchêne, S., \& Lanfear, R. (2015, Sep). Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods. J Exp Zool B Mol Dev Evol, 324(6), 517-524. https://doi.org/10.1002/jez.b. 22638

Eibel, H., Kraus, H., Sic, H., Kienzler, A. K., \& Rizzi, M. (2014, May). B cell biology: an overview. Curr Allergy Asthma Rep, 14(5), 434. https://doi.org/10.1007/s11882-014-04348

Eick, G. N., Bridgham, J. T., Anderson, D. P., Harms, M. J., \& Thornton, J. W. (2017, Feb 1). Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol, 34(2), 247-261. https://doi.org/10.1093/molbev/msw223

Ellingsen, T., Inami, M., Gjessing, M. C., Van Nieuwenhove, K., Larsen, R., Seppola, M., Lund, V., \& Schroder, M. B. (2011, Aug). Francisella noatunensis in Atlantic cod (Gadus morhua L.); waterborne transmission and immune responses. Fish Shellfish Immunol, 31(2), 326-333. https://doi.org/10.1016/j.fsi.2011.05.021

Ellis, A. E. (1980, 1980/09/01). Antigen-trapping in the spleen and kidney of the plaice Pleuronectes platessa L [https://doi.org/10.1111/j.1365-2761.1980.tb00425.x]. J Fish Dis, 3(5), 413-426. https://doi.org/https://doi.org/10.1111/j.1365-2761.1980.tb00425.x

Emma M. Quinlan, J. J. K., Chris T. Amemiya, Ellen Hsu and Mani Larijani. (2017). Biochemical regulatory features of AID remain conserved from lamprey to humans. Mol Cell Biol, 37(15). https://doi.org/10.1128/MCB.00077-17

Eslamloo, K., Ghorbani, A., Xue, X., Inkpen, S. M., Larijani, M., \& Rise, M. L. (2019). Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol, 10, 311. https://doi.org/10.3389/fimmu.2019.00311

Eslamloo, K., Inkpen, S. M., Rise, M. L., \& Andreassen, R. (2018, Jan). Discovery of microRNAs associated with the antiviral immune response of Atlantic cod macrophages. Mol Immunol, 93, 152-161. https://doi.org/10.1016/j.molimm.2017.11.015

Eslamloo, K., Xue, X., Booman, M., Smith, N. C., \& Rise, M. L. (2016, Oct). Transcriptome profiling of the antiviral immune response in Atlantic cod macrophages. Dev Coтр Imтипol, 63, 187-205. https://doi.org/10.1016/j.dci.2016.05.021

Espelid, S., Rodseth, O. M., \& Jorgensent, Ø. (1991). Vaccination experiments and studies of the humoral immune responses in cod, Gadus morhua L., to four strains of monoclonaldefined Vibrio anguillarum.

Faili, A., Stary, A., Delbos, F., Weller, S., Aoufouchi, S., Sarasin, A., Weill, J. C., \& Reynaud, C. A. (2009, May 15). A backup role of DNA polymerase kappa in Ig gene hypermutation only takes place in the complete absence of DNA polymerase eta. J Imтипol, 182(10), 6353-6359. https://doi.org/10.4049/jimmunol.0900177

Fields, P. A., Dong, Y., Meng, X., \& Somero, G. N. (2015, Jun). Adaptations of protein structure and function to temperature: there is more than one way to 'skin a cat'. J Exp Biol, 218(Pt 12), 1801-1811. https://doi.org/10.1242/jeb. 114298

Frenette, A. P., Eydal, M., Hansen, H., Burt, M. D., \& Duffy, M. S. (2017, Jan). Integrative Approach for the Reliable Detection and Specific Identification of the Microsporidium Loma morhua in Atlantic Cod (Gadus morhua). J Eukaryot Microbiol, 64(1), 67-77. https://doi.org/10.1111/jeu. 12339

Frieder, D., Larijani, M., Tang, E., Parsa, J. Y., Basit, W., \& Martin, A. (2006). Antibody diversification: mutational mechanisms and oncogenesis. Immunol Res, 35(1-2), 75-88. https://doi.org/10.1385/IR:35:1:75

Fu, X., Zhang, F., Watabe, S., \& Asakawa, S. (2017, Jan 18). Immunoglobulin light chain (IGL) genes in torafugu: Genomic organization and identification of a third teleost IGL isotype. Sci Rep, 7, 40416. https://doi.org/10.1038/srep40416

Fu, X., Zhang, H., Tan, E., Watabe, S., \& Asakawa, S. (2015, Mar). Characterization of the torafugu (Takifugu rubripes) immunoglobulin heavy chain gene locus. Imтипogenetics, 67(3), 179-193. https://doi.org/10.1007/s00251-014-0824-z

Fugmann, S. D., \& Schatz, D. G. (2003, May). RNA AIDS DNA. Nat Immunol, 4(5), 429430. https://doi.org/10.1038/ni0503-429

Fukita, Y., Jacobs, H., \& Rajewsky, K. (1998, Jul). Somatic hypermutation in the heavy chain locus correlates with transcription. Immunity, 9(1), 105-114. https://doi.org/10.1016/s1074-7613(00)80592-0

Furukawa, R., Toma, W., Yamazaki, K., \& Akanuma, S. (2020, Sep 23). Ancestral sequence reconstruction produces thermally stable enzymes with mesophilic enzyme-like catalytic properties. Sci Rep, 10(1), 15493. https://doi.org/10.1038/s41598-020-72418-4

Futoma-Kołoch, B. (2016, 06/24). Immune Response against Bacterial Lipopolysaccharide. Journal of Molecular Immunology, 1. https://doi.org/10.4172/jmi.1000e106

Gajula, K. S., Huwe, P. J., Mo, C. Y., Crawford, D. J., Stivers, J. T., Radhakrishnan, R., \& Kohli, R. M. (2014, Sep). High-throughput mutagenesis reveals functional determinants for DNA targeting by activation-induced deaminase. Nucleic Acids Res, 42(15), 99649975. https://doi.org/10.1093/nar/gku689

Gars, E., Butzmann, A., Ohgami, R., Balakrishna, J. P., \& O'Malley, D. P. (2019, Nov 13). The life and death of the germinal center. Ann Diagn Pathol, 44, 151421. https://doi.org/10.1016/j.anndiagpath.2019.151421

Gaucher, E. A., Thomson, J. M., Burgan, M. F., \& Benner, S. A. (2003, Sep 18). Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature, 425(6955), 285-288. https://doi.org/10.1038/nature01977

Ghosn, E., Yoshimoto, M., Nakauchi, H., Weissman, I. L., \& Herzenberg, L. A. (2019, Aug 1). Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development, 146(15). https://doi.org/10.1242/dev. 170571

Giudicelli, V., Chaume, D., \& Lefranc, M. P. (2005, Jan 1). IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res, 33(Database issue), D256-261. https://doi.org/10.1093/nar/gki010

Glasauer, S. M., \& Neuhauss, S. C. (2014, Dec). Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Genet Genomics, 289(6), 1045-1060. https://doi.org/10.1007/s00438-014-0889-2

Golub, R., \& Charlemagne, J. (1998, Feb 01). Structure, diversity, and repertoire of VH families in the Mexican axolotl. J Immunol, 160(3), 1233-1239. http://www.ncbi.nlm.nih.gov/pubmed/9570539

Gomez-Fernandez, B. J., Risso, V. A., Rueda, A., Sanchez-Ruiz, J. M., \& Alcalde, M. (2020, Jul 2). Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases. Appl Environ Microbiol, 86(14). https://doi.org/10.1128/aem.00778-20

Good-Jacobson, K. L. (2018, Jul). Strength in diversity: Phenotypic, functional, and molecular heterogeneity within the memory B cell repertoire. Immunol Rev, 284(1), 67-78. https://doi.org/10.1111/imr. 12663

Goyal, S., Castrillon-Betancur, J. C., Klaile, E., \& Slevogt, H. (2018). The Interaction of Human Pathogenic Fungi With C-Type Lectin Receptors. Front Immunol, 9, 1261. https://doi.org/10.3389/fimmu.2018.01261

Goyenechea, B., Klix, N., Yélamos, J., Williams, G. T., Riddell, A., Neuberger, M. S., \& Milstein, C. (1997, Jul 1). Cells strongly expressing $\operatorname{Ig}($ kappa a) transgenes show clonal recruitment of hypermutation: a role for both MAR and the enhancers. EMBO J, 16(13), 3987-3994. https://doi.org/10.1093/emboj/16.13.3987

Granato, A., Chen, Y., \& Wesemann, D. R. (2015, Apr). Primary immunoglobulin repertoire development: time and space matter. Curr Opin Immunol, 33, 126-131. https://doi.org/10.1016/j.coi.2015.02.011

Grasseau, A., Boudigou, M., Le Pottier, L., Chriti, N., Cornec, D., Pers, J. O., Renaudineau, Y., \& Hillion, S. (2019, Jun 10). Innate B Cells: the Archetype of Protective Immune Cells. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-019-08748-7

Greeve, J., Philipsen, A., Krause, K., Klapper, W., Heidorn, K., Castle, B. E., Janda, J., Marcu, K. B., \& Parwaresch, R. (2003, May 01). Expression of activation-induced cytidine deaminase in human B-cell non-Hodgkin lymphomas. Blood, 101(9), 3574-3580. https://doi.org/10.1182/blood-2002-08-2424

Groussin, M., Hobbs, J. K., Szollosi, G. J., Gribaldo, S., Arcus, V. L., \& Gouy, M. (2015, Jan). Toward more accurate ancestral protein genotype-phenotype reconstructions with the use of species tree-aware gene trees. Mol Biol Evol, 32(1), 13-22. https://doi.org/10.1093/molbev/msu305

Grove, S., Johansen, R., Dannevig, B. H., Reitan, L. J., \& Ranheim, T. (2003, Feb 27). Experimental infection of Atlantic halibut Hippoglossus hippoglossus with nodavirus: tissue distribution and immune response. Dis Aquat Organ, 53(3), 211-221. https://doi.org/10.3354/dao053211

Gudmundsdottir, B. K., Bjornsdottir, B., Gudmundsdottir, S., \& Bambir, S. H. (2006, Aug). A comparative study of susceptibility and induced pathology of cod, Gadus morhua (L.), and halibut, Hippoglossus hippoglossus (L.), following experimental infection with Moritella viscosa. J Fish Dis, 29(8), 481-487. https://doi.org/10.1111/j.13652761.2006.00741.x

Gudmundsdóttir, S., Magnadóttir, B., Björnsdóttir, B., Arnadóttir, H., \& Gudmundsdóttir, B. K. (2009, Apr). Specific and natural antibody response of cod juveniles vaccinated against Vibrio anguillarum. Fish Shellfish Immunol, 26(4), 619-624. https://doi.org/10.1016/j.fsi.2008.09.017

Gumulya, Y., \& Gillam, E. M. (2017, Jan 1). Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the 'retro' approach to protein engineering. Biochem J, 474(1), 1-19. https://doi.org/10.1042/bcj20160507

Guo, Y., Bao, Y., Meng, Q., Hu, X., Meng, Q., Ren, L., Li, N., \& Zhao, Y. (2012). Immunoglobulin genomics in the guinea pig (Cavia porcellus). PLoS One, 7(6), e39298. https://doi.org/10.1371/journal.pone. 0039298

Haakenson, J. K., Huang, R., \& Smider, V. V. (2018). Diversity in the Cow Ultralong CDR H3 Antibody Repertoire. Front Immunol, 9, 1262. https://doi.org/10.3389/fimmu.2018.01262

Haas, K. M. (2015, Dec). B-1 lymphocytes in mice and nonhuman primates. Ann N Y Acad Sci, 1362, 98-109. https://doi.org/10.1111/nyas. 12760

Habib, O., Habib, G., Do, J. T., Moon, S. H., \& Chung, H. M. (2014, Feb 01). Activationinduced deaminase-coupled DNA demethylation is not crucial for the generation of induced pluripotent stem cells. Stem Cells Dev, 23(3), 209-218. https://doi.org/10.1089/scd.2013.0337

Hackney, J. A., Misaghi, S., Senger, K., Garris, C., Sun, Y., Lorenzo, M. N., \& Zarrin, A. A. (2009). DNA targets of AID evolutionary link between antibody somatic hypermutation and class switch recombination. Adv Immunol, 101, 163-189. https://doi.org/10.1016/S0065-2776(08)01005-5

Hall, T. E., Smith, P., \& Johnston, I. A. (2004, Mar). Stages of embryonic development in the Atlantic cod Gadus morhua. J Morphol, 259(3), 255-270. https://doi.org/10.1002/jmor. 10222

Harjes, S., Solomon, W. C., Li, M., Chen, K. M., Harjes, E., Harris, R. S., \& Matsuo, H. (2013, Jun). Impact of H216 on the DNA binding and catalytic activities of the HIV restriction factor APOBEC3G. J Virol, 87(12), 7008-7014. https://doi.org/10.1128/JVI.03173-12

Harms, M. J., \& Thornton, J. W. (2010, Jun). Analyzing protein structure and function using ancestral gene reconstruction. Curr Opin Struct Biol, 20(3), 360-366. https://doi.org/10.1016/j.sbi.2010.03.005

Harris, R. S., Petersen-Mahrt, S. K., \& Neuberger, M. S. (2002, Nov). RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol Cell, 10(5), 12471253. http://www.ncbi.nlm.nih.gov/pubmed/12453430

Harwood, N. E., \& Batista, F. D. (2010). Early events in B cell activation. Annu Rev Imтипol, 28, 185-210. https://doi.org/10.1146/annurev-immunol-030409-101216

Häsler, J., Rada, C., \& Neuberger, M. S. (2012, Aug). The cytoplasmic AID complex. Semin Immunol, 24(4), 273-280. https://doi.org/10.1016/j.smim.2012.05.004

Hayashi, F., Nagata, T., Nagashima, T., Muto, Y., Inoue, M., Kigawa, T., Yokoyama, S., RIKEN (2009). Solution structure of the monomeric form of mouse APOBEC2. http://www.rcsb.org/pdb/explore/explore.do?structureId=2RPZ.

Heineke, M. H., \& van Egmond, M. (2017, Feb). Immunoglobulin A: magic bullet or Trojan horse? Eur J Clin Invest, 47(2), 184-192. https://doi.org/10.1111/eci.12716

Hendricks, J., Bos, N. A., \& Kroese, F. G. M. (2018). Heterogeneity of Memory Marginal Zone B Cells. Crit Rev Immunol, 38(2), 145-158. https://doi.org/10.1615/CritRevImmunol. 2018024985

Hillion, S., Arleevskaya, M. I., Blanco, P., Bordron, A., Brooks, W. H., Cesbron, J. Y., Kaveri, S., Vivier, E., \& Renaudineau, Y. (2019, Jun 1). The Innate Part of the Adaptive Immune System. Clin Rev Allergy Immunol. https://doi.org/10.1007/s12016-019-08740-1

Hirbod-Mobarakeh, A., Aghamohammadi, A., \& Rezaei, N. (2014, Jan). Immunoglobulin class switch recombination deficiency type 1 or CD40 ligand deficiency: from bedside to bench and back again. Expert Rev Clin Immunol, 10(1), 91-105. https://doi.org/10.1586/1744666X.2014.864554

Hogenbirk, M. A., Heideman, M. R., Velds, A., van den Berk, P. C., Kerkhoven, R. M., van Steensel, B., \& Jacobs, H. (2013). Differential programming of B cells in AID deficient mice. PLoS One, 8(7), e69815. https://doi.org/10.1371/journal.pone. 0069815

Holden, L. G., Prochnow, C., Chang, Y. P., Bransteitter, R., Chelico, L., Sen, U., Stevens, R. C., Goodman, M. F., \& Chen, X. S. (2008, Nov 6). Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature, 456(7218), 121-124. https://doi.org/10.1038/nature07357

Holinski, A., Heyn, K., Merkl, R., \& Sterner, R. (2017, Feb). Combining ancestral sequence reconstruction with protein design to identify an interface hotspot in a key metabolic enzyme complex. Proteins, 85(2), 312-321. https://doi.org/10.1002/prot. 25225

Hong, J. R. (2013, Feb 12). Betanodavirus: Mitochondrial disruption and necrotic cell death. World J Virol, 2(1), 1-5. https://doi.org/10.5501/wjv.v2.i1.1

Hori, T. S., Gamperl, A. K., Booman, M., Nash, G. W., \& Rise, M. L. (2012, Aug 28). A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intraperitoneal viral mimic injection. BMC Genomics, 13, 431. https://doi.org/10.1186/1471-2164-13-431

Hori, T. S., Gamperl, A. K., Nash, G., Booman, M., Barat, A., \& Rise, M. L. (2013, Oct). The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod (Gadus morhua) are stimulated with bacterial versus viral antigens. Genome, 56(10), 567-576. https://doi.org/10.1139/gen-2013-0090

Hou, B., Saudan, P., Ott, G., Wheeler, M. L., Ji, M., Kuzmich, L., Lee, L. M., Coffman, R. L., Bachmann, M. F., \& DeFranco, A. L. (2011, Mar 25). Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity, 34(3), 375-384. https://doi.org/10.1016/j.immuni.2011.01.011

Hou, Q., Bourgeas, R., Pucci, F., \& Rooman, M. (2018, Oct 2). Computational analysis of the amino acid interactions that promote or decrease protein solubility. Sci Rep, 8(1), 14661. https://doi.org/10.1038/s41598-018-32988-w

Hou, S., Silvas, T. V., Leidner, F., Nalivaika, E. A., Matsuo, H., Kurt Yilmaz, N., \& Schiffer, C. A. (2019, 2019/01/08). Structural Analysis of the Active Site and DNA Binding of Human Cytidine Deaminase APOBEC3B. Journal of Chemical Theory and Computation, 15(1), 637-647. https://doi.org/10.1021/acs.jctc.8b00545

Hsu, E. (1998, Apr). Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Imтипol Rev, 162, 25-36. http://www.ncbi.nlm.nih.gov/pubmed/9602349

Hsu, E. (2016, May 01). Assembly and Expression of Shark Ig Genes. J Immunol, 196(9), 3517-3523. https://doi.org/10.4049/jimmunol. 1600164

Hu, W., Begum, N. A., Mondal, S., Stanlie, A., \& Honjo, T. (2015, May 5). Identification of DNA cleavage- and recombination-specific hnRNP cofactors for activation-induced cytidine deaminase. Proc Natl Acad Sci U S A, 112(18), 5791-5796. https://doi.org/10.1073/pnas. 1506167112

Hu, Y., Ericsson, I., Torseth, K., Methot, S. P., Sundheim, O., Liabakk, N. B., Slupphaug, G., Di Noia, J. M., Krokan, H. E., \& Kavli, B. (2013, Jan 23). A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching. J Mol Biol, 425(2), 424-443. https://doi.org/10.1016/j.jmb.2012.11.026

Huelsenbeck, J. P., \& Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754-755. https://doi.org/10.1093/bioinformatics/17.8.754

Hwang, J. K., Wang, C., Du, Z., Meyers, R. M., Kepler, T. B., Neuberg, D., Kwong, P. D., Mascola, J. R., Joyce, M. G., Bonsignori, M., Haynes, B. F., Yeap, L. S., \& Alt, F. W. (2017, Aug 8). Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies. Proc Natl Acad Sci U S A, 114(32), 8614-8619. https://doi.org/10.1073/pnas. 1709203114

Ichikawa, H. T., Sowden, M. P., Torelli, A. T., Bachl, J., Huang, P., Dance, G. S., Marr, S. H., Robert, J., Wedekind, J. E., Smith, H. C., \& Bottaro, A. (2006, Jul 01). Structural phylogenetic analysis of activation-induced deaminase function. J Immunol, 177(1), 355361. http://www.ncbi.nlm.nih.gov/pubmed/16785531

Imkeller, K., \& Wardemann, H. (2018, Jul). Assessing human B cell repertoire diversity and convergence. Immunol Rev, 284(1), 51-66. https://doi.org/10.1111/imr. 12670

Ingles-Prieto, A., Ibarra-Molero, B., Delgado-Delgado, A., Perez-Jimenez, R., Fernandez, J. M., Gaucher, E. A., Sanchez-Ruiz, J. M., \& Gavira, J. A. (2013, Sep 3). Conservation of protein structure over four billion years. Structure, 21(9), 1690-1697. https://doi.org/10.1016/j.str.2013.06.020

Inkpen, S. M., Hori, T. S., Gamperl, A. K., Nash, G. W., \& Rise, M. L. (2015, May). Characterization and expression analyses of five interferon regulatory factor transcripts (Irf4a, Irf4b, Irf7, Irf8, Irf10) in Atlantic cod (Gadus morhua). Fish Shellfish Immunol, 44(1), 365-381. https://doi.org/10.1016/j.fsi.2015.02.032

Ito, S., Nagaoka, H., Shinkura, R., Begum, N., Muramatsu, M., Nakata, M., \& Honjo, T. (2004, Feb 17). Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc Natl Acad Sci U S A, 101(7), 1975-1980. https://doi.org/10.1073/pnas. 0307335101

Iyer, L. M., Zhang, D., Rogozin, I. B., \& Aravind, L. (2011, Dec). Evolution of the deaminase fold and multiple origins of eukaryotic editing and mutagenic nucleic acid deaminases from bacterial toxin systems. Nucleic Acids Res, 39(22), 9473-9497. https://doi.org/10.1093/nar/gkr691

Jain, A., \& Pasare, C. (2017, May 15). Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. J Imтипol, 198(10), 3791-3800. https://doi.org/10.4049/jimmunol. 1602000

Jenne, C. N., Kennedy, L. J., McCullagh, P., \& Reynolds, J. D. (2003, Apr 01). A new model of sheep Ig diversification: shifting the emphasis toward combinatorial mechanisms and away from hypermutation. J Immunol, 170(7), 3739-3750. http://www.ncbi.nlm.nih.gov/pubmed/12646640

Johnson, K., Reddy, K. L., \& Singh, H. (2009). Molecular pathways and mechanisms regulating the recombination of immunoglobulin genes during B-lymphocyte development. Adv Exp Med Biol, 650, 133-147. https://doi.org/10.1007/978-1-4419-02962_11

Jolly, C. J., Wagner, S. D., Rada, C., Klix, N., Milstein, C., \& Neuberger, M. S. (1996, Jun). The targeting of somatic hypermutation. Semin Immunol, 8(3), 159-168. https://doi.org/10.1006/smim.1996.0020

Joy, J. B., Liang, R. H., McCloskey, R. M., Nguyen, T., \& Poon, A. F. Y. (2016). Ancestral Reconstruction. PLOS Computational Biology, 12(7), e1004763. https://doi.org/10.1371/journal.pcbi. 1004763

Kaattari, S. L., Zhang, H. L., Khor, I. W., Kaattari, I. M., \& Shapiro, D. A. (2002, Mar). Affinity maturation in trout: clonal dominance of high affinity antibodies late in the immune response. Dev Comp Immunol, 26(2), 191-200. http://www.ncbi.nlm.nih.gov/pubmed/11696384

Kasturi, S. P., Skountzou, I., Albrecht, R. A., Koutsonanos, D., Hua, T., Nakaya, H. I., Ravindran, R., Stewart, S., Alam, M., Kwissa, M., Villinger, F., Murthy, N., Steel, J., Jacob, J., Hogan, R. J., Garcia-Sastre, A., Compans, R., \& Pulendran, B. (2011, Feb 24). Programming the magnitude and persistence of antibody responses with innate immunity. Nature, 470(7335), 543-547. https://doi.org/10.1038/nature09737

Kawai, T., \& Akira, S. (2011, May 27). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity, 34(5), 637-650. https://doi.org/10.1016/j.immuni.2011.05.006

Kim, C., \& Lee, B. (2007, Sep 20). Accuracy of structure-based sequence alignment of automatic methods. BMC Bioinformatics, 8, 355. https://doi.org/10.1186/1471-2105-8-355

Kim, N., \& Jinks-Robertson, S. (2012, Feb 14). Transcription as a source of genome instability. Nat Rev Genet, 13(3), 204-214. https://doi.org/10.1038/nrg3152

Kim, Y. K., Shin, J. S., \& Nahm, M. H. (2016, Jan). NOD-Like Receptors in Infection, Immunity, and Diseases. Yonsei Med J, 57(1), 5-14. https://doi.org/10.3349/ymj.2016.57.1.5

King, J. J., \& Larijani, M. (2017). A Novel Regulator of Activation-Induced Cytidine Deaminase/APOBECs in Immunity and Cancer: Schrodinger's CATalytic Pocket. Front Imтипol, 8, 351. https://doi.org/10.3389/fimmu.2017.00351

King, J. J., \& Larijani, M. (2020, Oct 21). Structural plasticity of substrate selection by activation-induced cytidine deaminase as a regulator of its genome-wide mutagenic activity. FEBS Lett. https://doi.org/10.1002/1873-3468.13962

King, J. J., Manuel, C. A., Barrett, C. V., Raber, S., Lucas, H., Sutter, P., \& Larijani, M. (2015, Apr 07). Catalytic pocket inaccessibility of activation-induced cytidine deaminase is a safeguard against excessive mutagenic activity. Structure, 23(4), 615-627. https://doi.org/10.1016/j.str.2015.01.016

Kitamura, S., Ode, H., Nakashima, M., Imahashi, M., Naganawa, Y., Kurosawa, T., Yokomaku, Y., Yamane, T., Watanabe, N., Suzuki, A., Sugiura, W., \& Iwatani, Y. (2012, Oct). The APOBEC3C crystal structure and the interface for HIV-1 Vif binding. Nat Struct Mol Biol, 19(10), 1005-1010. https://doi.org/10.1038/nsmb. 2378

Klemm, L., Duy, C., Iacobucci, I., Kuchen, S., von Levetzow, G., Feldhahn, N., Henke, N., Li, Z., Hoffmann, T. K., Kim, Y. M., Hofmann, W. K., Jumaa, H., Groffen, J., Heisterkamp, N., Martinelli, G., Lieber, M. R., Casellas, R., \& Muschen, M. (2009, Sep 8). The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell, 16(3), 232-245. https://doi.org/10.1016/j.ccr.2009.07.030

Kmiec, Z., Cyman, M., \& Slebioda, T. J. (2017, Mar). Cells of the innate and adaptive immunity and their interactions in inflammatory bowel disease. Adv Med Sci, 62(1), 1-16. https://doi.org/10.1016/j.advms.2016.09.001

Koblansky, A. A., Jankovic, D., Oh, H., Hieny, S., Sungnak, W., Mathur, R., Hayden, M. S., Akira, S., Sher, A., \& Ghosh, S. (2013). Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity, 38(1), 119-130. https://doi.org/10.1016/j.immuni.2012.09.016

Kodgire, P., Mukkawar, P., North, J. A., Poirier, M. G., \& Storb, U. (2012, May). Nucleosome stability dramatically impacts the targeting of somatic hypermutation. Mol Cell Biol, 32(10), 2030-2040. https://doi.org/10.1128/mcb.06722-11

Kodgire, P., Mukkawar, P., Ratnam, S., Martin, T. E., \& Storb, U. (2013, Jul 1). Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID. J Exp Med, 210(7), 1481-1492. https://doi.org/10.1084/jem. 20121523

Kodinariya, T., \& Makwana, P. R. (2013, 01/01). Review on Determining of Cluster in Kmeans Clustering. International Journal of Advance Research in Computer Science and Management Studies, 1, 90-95.

Kohli, R. M., Abrams, S. R., Gajula, K. S., Maul, R. W., Gearhart, P. J., \& Stivers, J. T. (2009, Aug 21). A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem, 284(34), 22898-22904. https://doi.org/10.1074/jbc.M109.025536

Kojima, F., Frolov, A., Matnani, R., Woodward, J. G., \& Crofford, L. J. (2013, Nov 15). Reduced T cell-dependent humoral immune response in microsomal prostaglandin E synthase-1 null mice is mediated by nonhematopoietic cells. J Immunol, 191(10), 49794988. https://doi.org/10.4049/jimmunol. 1301942

Kolar, G. R., Mehta, D., Pelayo, R., \& Capra, J. D. (2007, Mar 15). A novel human B cell subpopulation representing the initial germinal center population to express AID. Blood, 109(6), 2545-2552. https://doi.org/10.1182/blood-2006-07-037150

Kotas, M. E., \& Locksley, R. M. (2018, Jun 19). Why Innate Lymphoid Cells? Immunity, 48(6), 1081-1090. https://doi.org/10.1016/j.immuni.2018.06.002

Kranich, J., \& Krautler, N. J. (2016). How Follicular Dendritic Cells Shape the B-Cell Antigenome. Front Immunol, 7, 225. https://doi.org/10.3389/fimmu.2016.00225

Kumar, H., Kawai, T., \& Akira, S. (2011, Feb). Pathogen recognition by the innate immune system. Int Rev Immunol, 30(1), 16-34. https://doi.org/10.3109/08830185.2010.529976

Kumar, K., Woo, S. M., Siu, T., Cortopassi, W. A., Duarte, F., \& Paton, R. S. (2018, Mar 14). Cation-pi interactions in protein-ligand binding: theory and data-mining reveal different roles for lysine and arginine. Chem Sci, 9(10), 2655-2665. https://doi.org/10.1039/c7sc04905f

Kumar, R., DiMenna, L., Schrode, N., Liu, T. C., Franck, P., Munoz-Descalzo, S., Hadjantonakis, A. K., Zarrin, A. A., Chaudhuri, J., Elemento, O., \& Evans, T. (2013, Aug 01). AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature, 500(7460), 89-92. https://doi.org/10.1038/nature12299

Kumar, S., Ingle, H., Prasad, D. V., \& Kumar, H. (2013, Aug). Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol, 39(3), 229-246. https://doi.org/10.3109/1040841X.2012.706249

Kumar Singh, A., Tamrakar, A., Jaiswal, A., Kanayama, N., Agarwal, A., Tripathi, P., \& Kodgire, P. (2019, Dec). Splicing regulator SRSF1-3 that controls somatic hypermutation of IgV genes interacts with topoisomerase 1 and AID. Mol Immunol, 116, 63-72. https://doi.org/10.1016/j.molimm.2019.10.002

Kunimoto, H., McKenney, A. S., Meydan, C., Shank, K., Nazir, A., Rapaport, F., Durham, B., Garrett-Bakelman, F. E., Pronier, E., Shih, A. H., Melnick, A., Chaudhuri, J., \& Levine, R. L. (2017, Jan 11). Aid is a key regulator of myeloid/erythroid differentiation and DNA methylation in hematopoietic stem/progenitor cells. Blood. https://doi.org/10.1182/blood-2016-06-721977

Kuraoka, M., Liao, D., Yang, K., Allgood, S. D., Levesque, M. C., Kelsoe, G., \& Ueda, Y. (2009, Sep 01). Activation-induced cytidine deaminase expression and activity in the absence of germinal centers: insights into hyper-IgM syndrome. J Immunol, 183(5), 32373248. https://doi.org/10.4049/jimmunol. 0901548

Lamers, C. H. J. (1986, 1986/04/01). Histophysiology of a primary immune response against Aeromonas hydrophila in carp (Cyprinus carpio L.) [https://doi.org/10.1002/jez.1402380109]. Journal of Experimental Zoology, 238(1), 7180. https://doi.org/https://doi.org/10.1002/jez. 1402380109

Larijani, M., Frieder, D., Basit, W., \& Martin, A. (2005, Feb). The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung(-/-)msh2(-/-) mice. Immunogenetics, 56(11), 840-845. https://doi.org/10.1007/s00251-004-0748-0

Larijani, M., Frieder, D., Sonbuchner, T. M., Bransteitter, R., Goodman, M. F., Bouhassira, E. E., Scharff, M. D., \& Martin, A. (2005, Mar). Methylation protects cytidines from AIDmediated deamination. Mol Imтипol, 42(5), 599-604. https://doi.org/10.1016/j.molimm.2004.09.007

Larijani, M., \& Martin, A. (2007, Dec). Single-stranded DNA structure and positional context of the target cytidine determine the enzymatic efficiency of AID. Mol Cell Biol, 27(23), 8038-8048. https://doi.org/10.1128/MCB.01046-07

Larijani, M., \& Martin, A. (2012, Aug). The biochemistry of activation-induced deaminase and its physiological functions. Semin Immunol, 24(4), 255-263. https://doi.org/10.1016/j.smim.2012.05.003

Larijani, M., Petrov, A. P., Kolenchenko, O., Berru, M., Krylov, S. N., \& Martin, A. (2007, Jan). AID associates with single-stranded DNA with high affinity and a long complex half-
life in a sequence-independent manner. Mol Cell Biol, 27(1), 20-30. https://doi.org/10.1128/MCB.00824-06

Laursen, L., Čalyševa, J., Gibson, T. J., \& Jemth, P. (2020). Divergent evolution of a protein-protein interaction revealed through ancestral sequence reconstruction and resurrection. Mol Biol Evol. https://doi.org/10.1093/molbev/msaa198

Lee, G. R. (2018, Mar 3). The Balance of Th17 versus Treg Cells in Autoimmunity. Int J Mol Sci, 19(3). https://doi.org/10.3390/ijms19030730

Lee, S. S., Tranchina, D., Ohta, Y., Flajnik, M. F., \& Hsu, E. (2002, Apr). Hypermutation in shark immunoglobulin light chain genes results in contiguous substitutions. Immunity, 16(4), 571-582. http://www.ncbi.nlm.nih.gov/pubmed/11970880

Lefranc, M. P. (2001, Jan 1). IMGT, the international ImMunoGeneTics database. Nucleic Acids Res, 29(1), 207-209. http://www.ncbi.nlm.nih.gov/pubmed/11125093

Lefranc, M. P. (2003, Jan 1). IMGT, the international ImMunoGeneTics database. Nucleic Acids Res, 31(1), 307-310. http://www.ncbi.nlm.nih.gov/pubmed/12520009

Lefranc, M. P., Clement, O., Kaas, Q., Duprat, E., Chastellan, P., Coelho, I., Combres, K., Ginestoux, C., Giudicelli, V., Chaume, D., \& Lefranc, G. (2005). IMGT-Choreography for immunogenetics and immunoinformatics. In Silico Biol, 5(1), 45-60. http://www.ncbi.nlm.nih.gov/pubmed/15972004

Lefranc, M. P., Giudicelli, V., Duroux, P., Jabado-Michaloud, J., Folch, G., Aouinti, S., Carillon, E., Duvergey, H., Houles, A., Paysan-Lafosse, T., Hadi-Saljoqi, S., Sasorith, S., Lefranc, G., \& Kossida, S. (2015, Jan). IMGT(R), the international ImMunoGeneTics information system(R) 25 years on. Nucleic Acids Res, 43(Database issue), D413-422. https://doi.org/10.1093/nar/gku1056

Lefranc, M. P., Giudicelli, V., Ginestoux, C., Bodmer, J., Muller, W., Bontrop, R., Lemaitre, M., Malik, A., Barbie, V., \& Chaume, D. (1999, Jan 1). IMGT, the international ImMunoGeneTics database. Nucleic Acids Res, 27(1), 209-212. http://www.ncbi.nlm.nih.gov/pubmed/9847182

Lefranc, M. P., Giudicelli, V., Ginestoux, C., Jabado-Michaloud, J., Folch, G., Bellahcene, F., Wu, Y., Gemrot, E., Brochet, X., Lane, J., Regnier, L., Ehrenmann, F., Lefranc, G., \& Duroux, P. (2009, Jan). IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res, 37(Database issue), D1006-1012. https://doi.org/10.1093/nar/gkn838

Lefranc, M. P., Giudicelli, V., Kaas, Q., Duprat, E., Jabado-Michaloud, J., Scaviner, D., Ginestoux, C., Clement, O., Chaume, D., \& Lefranc, G. (2005, Jan 1). IMGT, the
international ImMunoGeneTics information system. Nucleic Acids Res, 33(Database issue), D593-597. https://doi.org/10.1093/nar/gki065

Leighton, P. A., Morales, J., Harriman, W. D., \& Ching, K. H. (2018). V(D)J Rearrangement Is Dispensable for Producing CDR-H3 Sequence Diversity in a Gene Converting Species. Front Immunol, 9, 1317. https://doi.org/10.3389/fimmu.2018.01317

Leonard, B., Hart, S. N., Burns, M. B., Carpenter, M. A., Temiz, N. A., Rathore, A., Vogel, R. I., Nikas, J. B., Law, E. K., Brown, W. L., Li, Y., Zhang, Y., Maurer, M. J., Oberg, A. L., Cunningham, J. M., Shridhar, V., Bell, D. A., April, C., Bentley, D., Bibikova, M., Cheetham, R. K., Fan, J. B., Grocock, R., Humphray, S., Kingsbury, Z., Peden, J., Chien, J., Swisher, E. M., Hartmann, L. C., Kalli, K. R., Goode, E. L., Sicotte, H., Kaufmann, S. H., \& Harris, R. S. (2013, Dec 15). APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res, 73(24), 7222-7231. https://doi.org/10.1158/0008-5472.CAN-13-1753

Lim, S. A., Bolin, E. R., \& Marqusee, S. (2018, Sep 11). Tracing a protein's folding pathway over evolutionary time using ancestral sequence reconstruction and hydrogen exchange. Elife, 7. https://doi.org/10.7554/eLife. 38369

Lindley, R. A., Humbert, P., Larner, C., Akmeemana, E. H., \& Pendlebury, C. R. (2016, Sep). Association between targeted somatic mutation (TSM) signatures and HGS-OvCa progression. Cancer Med, 5(9), 2629-2640. https://doi.org/10.1002/cam4.825

Lovell, S. C., Davis, I. W., Arendall, W. B., 3rd, de Bakker, P. I., Word, J. M., Prisant, M. G., Richardson, J. S., \& Richardson, D. C. (2003, Feb 15). Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins, 50(3), 437-450. https://doi.org/10.1002/prot. 10286

Lucas, X., Bauza, A., Frontera, A., \& Quinonero, D. (2016, Feb 1). A thorough anion-pi interaction study in biomolecules: on the importance of cooperativity effects. Chem Sci, 7(2), 1038-1050. https://doi.org/10.1039/c5sc01386k

Lund, V., Arnesen, J. A., Mikkelsen, H., Gravningen, K., Brown, L., \& Schroder, M. B. (2008, Dec 09). Atypical furunculosis vaccines for Atlantic cod (Gadus morhua); vaccine efficacy and antibody responses. Vaccine, 26(52), 6791-6799. https://doi.org/10.1016/j.vaccine.2008.10.012

Lund, V., Bordal, S., Kjellsen, O., Mikkelsen, H., \& Schroder, M. B. (2006). Comparison of antibody responses in Atlantic cod (Gadus morhua L.) to Aeromonas salmonicida and Vibrio anguillarum. Dev Comp Immunol, 30(12), 1145-1155. https://doi.org/10.1016/j.dci.2006.02.004

Lund, V., Bordal, S., \& Schroder, M. B. (2007, Oct). Specificity and durability of antibody responses in Atlantic cod (Gadus morhua L.) immunised with Vibrio anguillarum O2b. Fish Shellfish Immunol, 23(4), 906-910. https://doi.org/10.1016/j.fsi.2007.04.006

Lundqvist, M. L., Middleton, D. L., Radford, C., Warr, G. W., \& Magor, K. E. (2006). Immunoglobulins of the non-galliform birds: antibody expression and repertoire in the duck. Dev Comp Immunol, 30(1-2), 93-100. https://doi.org/10.1016/j.dci.2005.06.019

Magnadottir, B., Jonsdottir, H., Helgason, S., Bjornsson, B., Jorgensen, T. O., \& Pilstrom, L. (1999, Feb). Humoral immune parameters in Atlantic cod (Gadus morhua L.) I. The effects of environmental temperature. Comp Biochem Physiol B Biochem Mol Biol, 122(2), 173-180. http://www.ncbi.nlm.nih.gov/pubmed/10327607

Magnadottir, B., Jonsdottir, H., Helgason, S., Bjornsson, B., Solem, S. T., \& Pilstrom, L. (2001, Jan). Immune parameters of immunised cod (Gadus morhua L.). Fish Shellfish Imтиnol, 11(1), 75-89. https://doi.org/10.1006/fsim.2000.0296

Magor, B. G. (2015, Jul 31). Antibody Affinity Maturation in Fishes-Our Current Understanding. Biology (Basel), 4(3), 512-524. https://doi.org/10.3390/biology4030512

Mahdaviani, S. A., Hirbod-Mobarakeh, A., Wang, N., Aghamohammadi, A., Hammarström, L., Masjedi, M. R., Pan-Hammarström, Q., \& Rezaei, N. (2012, Aug). Novel mutation of the activation-induced cytidine deaminase gene in a Tajik family: special review on hyper-immunoglobulin M syndrome. Expert Rev Clin Immunol, 8(6), 539-546. https://doi.org/10.1586/eci.12.46

Mai, T., Zan, H., Zhang, J., Hawkins, J. S., Xu, Z., \& Casali, P. (2010, Nov 26). Estrogen receptors bind to and activate the HOXC4/HoxC4 promoter to potentiate HoxC4-mediated activation-induced cytosine deaminase induction, immunoglobulin class switch DNA recombination, and somatic hypermutation. J Biol Chem, 285(48), 37797-37810. https://doi.org/10.1074/jbc.M110.169086

Mak, C. H., Pham, P., Afif, S. A., \& Goodman, M. F. (2013, Oct 11). A mathematical model for scanning and catalysis on single-stranded DNA, illustrated with activationinduced deoxycytidine deaminase. J Biol Chem, 288(41), 29786-29795. https://doi.org/10.1074/jbc.M113.506550

Malecek, K., Brandman, J., Brodsky, J. E., Ohta, Y., Flajnik, M. F., \& Hsu, E. (2005, Dec 15). Somatic hypermutation and junctional diversification at Ig heavy chain loci in the nurse shark. $J \quad$ Immunol, 175(12), 8105-8115. http://www.ncbi.nlm.nih.gov/pubmed/16339548

Malmstrom, M., Jentoft, S., Gregers, T. F., \& Jakobsen, K. S. (2013). Unraveling the evolution of the Atlantic cod's (Gadus morhua L.) alternative immune strategy. PLoS One, 8(9), e74004. https://doi.org/10.1371/journal.pone. 0074004

Malmstrom, M., Matschiner, M., Torresen, O. K., Star, B., Snipen, L. G., Hansen, T. F., Baalsrud, H. T., Nederbragt, A. J., Hanel, R., Salzburger, W., Stenseth, N. C., Jakobsen, K. S., \& Jentoft, S. (2016, Oct). Evolution of the immune system influences speciation rates in teleost fishes. Nat Genet, 48(10), 1204-1210. https://doi.org/10.1038/ng. 3645

Malu, S., Malshetty, V., Francis, D., \& Cortes, P. (2012, Dec). Role of non-homologous end joining in $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination. Immunol Res, 54(1-3), 233-246. https://doi.org/10.1007/s12026-012-8329-z

Mandal, A., \& Viswanathan, C. (2015, Jun). Natural killer cells: In health and disease. Hematol Oncol Stem Cell Ther, 8(2), 47-55. https://doi.org/10.1016/j.hemonc.2014.11.006

Mandler, R., Chu, C. C., Paul, W. E., Max, E. E., \& Snapper, C. M. (1993, Nov 1). Interleukin 5 induces S mu-S gamma 1 DNA rearrangement in B cells activated with dextran-anti-IgD antibodies and interleukin 4: a three component model for Ig class switching. J Exp Med, 178(5), 1577-1586. https://doi.org/10.1084/jem.178.5.1577

Marianes, A. E., \& Zimmerman, A. M. (2011, Feb). Targets of somatic hypermutation within immunoglobulin light chain genes in zebrafish. Immunology, 132(2), 240-255. https://doi.org/10.1111/j.1365-2567.2010.03358.x

Marino, D., Perkovic, M., Hain, A., Jaguva Vasudevan, A. A., Hofmann, H., Hanschmann, K. M., Muhlebach, M. D., Schumann, G. G., Konig, R., Cichutek, K., Haussinger, D., \& Munk, C. (2016). APOBEC4 Enhances the Replication of HIV-1. PLoS One, 11(6), e0155422. https://doi.org/10.1371/journal.pone. 0155422

Marr, S., Morales, H., Bottaro, A., Cooper, M., Flajnik, M., \& Robert, J. (2007, Nov 15). Localization and differential expression of activation-induced cytidine deaminase in the amphibian Xenopus upon antigen stimulation and during early development. J Immunol, 179(10), 6783-6789. http://www.ncbi.nlm.nih.gov/pubmed/17982068

Marshall, C. J. (1997, Sep). Cold-adapted enzymes. Trends Biotechnol, 15(9), 359-364. https://doi.org/10.1016/s0167-7799(97)01086-x

Martinez, P. (2018, 2018-August-28). The Comparative Method in Biology and the Essentialist Trap [Perspective]. Frontiers in Ecology and Evolution, 6(130). https://doi.org/10.3389/fevo.2018.00130

Maslo, B., Gignoux-Wolfsohn, S. A., \& Fefferman, N. H. (2017). Success of Wildlife Disease Treatment Depends on Host Immune Response [10.3389/fevo.2017.00028].

Frontiers in Ecology and Evolution, 5, 28. https://www.frontiersin.org/article/10.3389/fevo.2017.00028

Maul, R. W., \& Gearhart, P. J. (2010). Chapter six - AID and Somatic Hypermutation. In F. W. Alt (Ed.), Adv Immunol (Vol. 105, pp. 159-191). Academic Press. https://doi.org/https://doi.org/10.1016/S0065-2776(10)05006-6

Maul, R. W., MacCarthy, T., Frank, E. G., Donigan, K. A., McLenigan, M. P., Yang, W., Saribasak, H., Huston, D. E., Lange, S. S., Woodgate, R., \& Gearhart, P. J. (2016, Aug 22). DNA polymerase 1 functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J Exp Med, 213(9), 1675-1683. https://doi.org/10.1084/jem. 20151227

Maul, R. W., Saribasak, H., Martomo, S. A., McClure, R. L., Yang, W., Vaisman, A., Gramlich, H. S., Schatz, D. G., Woodgate, R., Wilson, D. M., 3rd, \& Gearhart, P. J. (2011, Jan). Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nat Immunol, 12(1), 70-76. https://doi.org/10.1038/ni. 1970

Mayer, S., Raulf, M. K., \& Lepenies, B. (2017, Feb). C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol, 147(2), 223-237. https://doi.org/10.1007/s00418-016-1523-7

McBride, K. M., Barreto, V., Ramiro, A. R., Stavropoulos, P., \& Nussenzweig, M. C. (2004, May 03). Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J Exp Med, 199(9), 1235-1244. https://doi.org/10.1084/jem. 20040373

McCarthy, H., Wierda, W. G., Barron, L. L., Cromwell, C. C., Wang, J., Coombes, K. R., Rangel, R., Elenitoba-Johnson, K. S., Keating, M. J., \& Abruzzo, L. V. (2003, Jun 15). High expression of activation-induced cytidine deaminase (AID) and splice variants is a distinctive feature of poor-prognosis chronic lymphocytic leukemia. Blood, 101(12), 49034908. https://doi.org/10.1182/blood-2002-09-2906

Meffre, E., Catalan, N., Seltz, F., Fischer, A., Nussenzweig, M. C., \& Durandy, A. (2001, Aug 06). Somatic hypermutation shapes the antibody repertoire of memory B cells in humans. J Exp Med, 194(3), 375-378. http://www.ncbi.nlm.nih.gov/pubmed/11489956

Mehr, R., Edelman, H., Sehgal, D., \& Mage, R. (2004, Apr 15). Analysis of mutational lineage trees from sites of primary and secondary Ig gene diversification in rabbits and chickens. J Immunol, 172(8), 4790-4796. http://www.ncbi.nlm.nih.gov/pubmed/15067055

Melchers, F. (2015, Jun). Checkpoints that control B cell development. J Clin Invest, 125(6), 2203-2210. https://doi.org/10.1172/JCI78083

Meng, F. L., Du, Z., Federation, A., Hu, J., Wang, Q., Kieffer-Kwon, K. R., Meyers, R. M., Amor, C., Wasserman, C. R., Neuberg, D., Casellas, R., Nussenzweig, M. C., Bradner, J. E., Liu, X. S., \& Alt, F. W. (2014, Dec 18). Convergent transcription at intragenic superenhancers targets AID-initiated genomic instability. Cell, 159(7), 1538-1548. https://doi.org/10.1016/j.cell.2014.11.014

Merkl, R., \& Sterner, R. (2016, Jan). Ancestral protein reconstruction: techniques and applications. Biol Chem, 397(1), 1-21. https://doi.org/10.1515/hsz-2015-0158

Merkl, R., \& Sterner, R. (2016, 2016/12/01/). Reconstruction of ancestral enzymes. Perspectives in Science, 9, 17-23. https://doi.org/https://doi.org/10.1016/j.pisc.2016.08.002

Mesin, L., Ersching, J., \& Victora, G. D. (2016, Sep 20). Germinal Center B Cell Dynamics. Immunity, 45(3), 471-482. https://doi.org/10.1016/j.immuni.2016.09.001

Methot, S. P., \& Di Noia, J. M. (2017). Molecular Mechanisms of Somatic Hypermutation and Class Switch Recombination. Adv Immunol, 133, 37-87. https://doi.org/10.1016/bs.ai.2016.11.002

Mikkelsen, H., Lund, V., Larsen, R., \& Seppola, M. (2011, Jan). Vibriosis vaccines based on various sero-subgroups of Vibrio anguillarum O 2 induce specific protection in Atlantic cod (Gadus morhua L.) juveniles. Fish Shellfish Immunol, 30(1), 330-339. https://doi.org/10.1016/j.fsi.2010.11.007

Minegishi, Y., Lavoie, A., Cunningham-Rundles, C., Bedard, P. M., Hebert, J., Cote, L., Dan, K., Sedlak, D., Buckley, R. H., Fischer, A., Durandy, A., \& Conley, M. E. (2000, Dec). Mutations in activation-induced cytidine deaminase in patients with hyper IgM syndrome. Clin Immunol, 97(3), 203-210. https://doi.org/10.1006/clim.2000.4956

Mirete-Bachiller, S., Olivieri, D., \& Gambón Deza, F. (2019). Gouania willdenowi is a teleost fish without immunoglobulin genes. https://doi.org/10.1101/793695

Mix, E., Goertsches, R., \& Zett, U. K. (2006, Sep). Immunoglobulins--basic considerations. J Neurol, 253 Suppl 5, V9-17. https://doi.org/10.1007/s00415-006-5002-2

Mjosberg, J., \& Spits, H. (2016, Nov). Human innate lymphoid cells. J Allergy Clin Imтипol, 138(5), 1265-1276. https://doi.org/10.1016/j.jaci.2016.09.009

Mohri, T., Nagata, K., Kuwamoto, S., Matsushita, M., Sugihara, H., Kato, M., Horie, Y., Murakami, I., \& Hayashi, K. (2017, Jun). Aberrant expression of AID and AID activators of NF-kappaB and PAX5 is irrelevant to EBV-associated gastric cancers, but is associated with carcinogenesis in certain EBV-non-associated gastric cancers. Oncol Lett, 13(6), 4133-4140. https://doi.org/10.3892/ol.2017.5978

Mond, J. J., Lees, A., \& Snapper, C. M. (1995). T cell-independent antigens type 2. Annu Rev Immunol, 13, 655-692. https://doi.org/10.1146/annurev.iy.13.040195.003255

Montecino-Rodriguez, E., Leathers, H., \& Dorshkind, K. (2006, Mar). Identification of a B-1 B cell-specified progenitor. Nat Immunol, 7(3), 293-301. https://doi.org/10.1038/ni1301

Moon, S. Y., Eun, H. J., Baek, S. K., Jin, S. J., Kim, T. S., Kim, S. W., Seong, H. H., Choi, I. C., \& Lee, J. H. (2016, Oct). Activation-Induced Cytidine Deaminase Induces DNA Demethylation of Pluripotency Genes in Bovine Differentiated Cells. Cell Reprogram, 18(5), 298-308. https://doi.org/10.1089/cell.2015.0076

Morgan, H. D., Dean, W., Coker, H. A., Reik, W., \& Petersen-Mahrt, S. K. (2004, Dec 10). Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem, 279(50), 52353-52360. https://doi.org/10.1074/jbc.M407695200

Munoz, D. P., Lee, E. L., Takayama, S., Coppe, J. P., Heo, S. J., Boffelli, D., Di Noia, J. M., \& Martin, D. I. (2013, Aug 06). Activation-induced cytidine deaminase (AID) is necessary for the epithelial-mesenchymal transition in mammary epithelial cells. Proc Natl Acad Sci U S A, 110(32), E2977-2986. https://doi.org/10.1073/pnas. 1301021110

Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., \& Honjo, T. (2000, Sep 01). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell, 102(5), 553-563. http://www.ncbi.nlm.nih.gov/pubmed/11007474

Muramatsu, M., Sankaranand, V. S., Anant, S., Sugai, M., Kinoshita, K., Davidson, N. O., \& Honjo, T. (1999, Jun 25). Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem, 274(26), 18470-18476. http://www.ncbi.nlm.nih.gov/pubmed/10373455

Musat, M. G., Nitulescu, G. M., Surleac, M., Tsatsakis, A., Spandidos, D. A., \& Margina, D. (2019, Dec). HIV1 integrase inhibitors targeting various DDE transposases: Retroviral integration versus RAGmediated recombination (Review). Mol Med Rep, 20(6), 47494762. https://doi.org/10.3892/mmr.2019.10777

Muto, T., Muramatsu, M., Taniwaki, M., Kinoshita, K., \& Honjo, T. (2000, Aug 15). Isolation, tissue distribution, and chromosomal localization of the human activationinduced cytidine deaminase (AID) gene. Genomics, 68(1), 85-88. https://doi.org/10.1006/geno.2000.6268

Nabel, C. S., Jia, H., Ye, Y., Shen, L., Goldschmidt, H. L., Stivers, J. T., Zhang, Y., \& Kohli, R. M. (2012, Sep). AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nat Chem Biol, 8(9), 751-758. https://doi.org/10.1038/nchembio. 1042

Nagaoka, H., Muramatsu, M., Yamamura, N., Kinoshita, K., \& Honjo, T. (2002, Feb 18). Activation-induced deaminase (AID)-directed hypermutation in the immunoglobulin Smu region: implication of AID involvement in a common step of class switch recombination and somatic hypermutation. J Exp Med, 195(4), 529-534. http://www.ncbi.nlm.nih.gov/pubmed/11854365

Nambu, Y., Sugai, M., Gonda, H., Lee, C. G., Katakai, T., Agata, Y., Yokota, Y., \& Shimizu, A. (2003, Dec 19). Transcription-coupled events associating with immunoglobulin switch region chromatin. Science, 302(5653), 2137-2140. https://doi.org/10.1126/science. 1092481

Newberry, R. W., \& Raines, R. T. (2019, Aug 16). Secondary Forces in Protein Folding. ACS Chem Biol, 14(8), 1677-1686. https://doi.org/10.1021/acschembio.9b00339

Newton, M. S., Arcus, V. L., \& Patrick, W. M. (2015, Jun 6). Rapid bursts and slow declines: on the possible evolutionary trajectories of enzymes. J R Soc Interface, 12(107). https://doi.org/10.1098/rsif.2015.0036

Nguyen, T. T., Elsner, R. A., \& Baumgarth, N. (2015, Feb 15). Natural IgM prevents autoimmunity by enforcing B cell central tolerance induction. J Immunol, 194(4), 14891502. https://doi.org/10.4049/jimmunol. 1401880

Nishikawa, T., Ota, T., \& Isogai, T. (2000, Nov). Prediction whether a human cDNA sequence contains initiation codon by combining statistical information and similarity with protein sequences. Bioinformatics, 16(11), 960-967. https://doi.org/10.1093/bioinformatics/16.11.960

Noguchi, E., Shibasaki, M., Inudou, M., Kamioka, M., Yokouchi, Y., YamakawaKobayashi, K., Hamaguchi, H., Matsui, A., \& Arinami, T. (2001, Sep). Association between a new polymorphism in the activation-induced cytidine deaminase gene and atopic asthma and the regulation of total serum IgE levels. J Allergy Clin Immunol, 108(3), 382386. https://doi.org/10.1067/mai.2001.117456

Nojima, H., Hon-Nami, K., Oshima, T., \& Noda, H. (1978, Jun 15). Reversible thermal unfolding of thermostable cytochrome c-552. J Mol Biol, 122(1), 33-42. https://doi.org/10.1016/0022-2836(78)90106-7

Nojima, H., Ikai, A., Oshima, T., \& Noda, H. (1977, Nov 5). Reversible thermal unfolding of thermostable phosphoglycerate kinase. Thermostability associated with mean zero
enthalpy change. J Mol Biol, 116(3), 429-442. https://doi.org/10.1016/0022-2836(77)90078-x

Nowak, U., Matthews, A. J., Zheng, S., \& Chaudhuri, J. (2011, Feb). The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switchregion DNA. Nat Immunol, 12(2), 160-166. https://doi.org/10.1038/ni. 1977

Nymo, I. H., Seppola, M., Al Dahouk, S., Bakkemo, K. R., Jimenez de Bagues, M. P., Godfroid, J., \& Larsen, A. K. (2016). Experimental Challenge of Atlantic Cod (Gadus morhua) with a Brucella pinnipedialis Strain from Hooded Seal (Cystophora cristata). PLoS One, 11(7), e0159272. https://doi.org/10.1371/journal.pone. 0159272

Ohm-Laursen, L., \& Barington, T. (2007, Apr 1). Analysis of 6912 unselected somatic hypermutations in human VDJ rearrangements reveals lack of strand specificity and correlation between phase II substitution rates and distance to the nearest 3' activationinduced cytidine deaminase target. J Immипol, 178(7), 4322-4334. https://doi.org/10.4049/jimmunol.178.7.4322

Ohmori, K., Maeda, S., Okayama, T., Masuda, K., Ohno, K., \& Tsujimoto, H. (2004, Jun). Molecular cloning of canine activation-induced cytidine deaminase (AID) cDNA and its expression in normal tissues. J Vet Med Sci, 66(6), 739-741. http://www.ncbi.nlm.nih.gov/pubmed/15240955

Olsson, M. H., Sondergaard, C. R., Rostkowski, M., \& Jensen, J. H. (2011, Feb 8). PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. J Chem Theory Comput, 7(2), 525-537. https://doi.org/10.1021/ct100578z

Oppezzo, P., Vuillier, F., Vasconcelos, Y., Dumas, G., Magnac, C., Payelle-Brogard, B., Pritsch, O., \& Dighiero, G. (2003, May 15). Chronic lymphocytic leukemia B cells expressing AID display dissociation between class switch recombination and somatic hypermutation. Blood, 101(10), 4029-4032. https://doi.org/10.1182/blood-2002-10-3175

Oreste, U., \& Coscia, M. (2002, Aug 07). Specific features of immunoglobulin VH genes of the Antarctic teleost Trematomus bernacchii. Gene, 295(2), 199-204. http://www.ncbi.nlm.nih.gov/pubmed/12354654

Outters, P., Jaeger, S., Zaarour, N., \& Ferrier, P. (2015). Long-Range Control of V(D)J Recombination \& Allelic Exclusion: Modeling Views. Adv Immunol, 128, 363-413. https://doi.org/10.1016/bs.ai.2015.08.002

Owen, D. L., Sjaastad, L. E., \& Farrar, M. A. (2019, Oct 15). Regulatory T Cell Development in the Thymus. J Immunol, 203(8), 2031-2041. https://doi.org/10.4049/jimmunol. 1900662

Owen, J. A. (2019). Kuby immunology (Eighth edition.. ed.). New York : W.H. Freeman, Macmillan Learning.

Pagel, M., Meade, A., \& Barker, D. (2004, Oct). Bayesian estimation of ancestral character states on phylogenies. Syst Biol, 53(5), 673-684. https://doi.org/10.1080/10635150490522232

Palgen, J. L., Tchitchek, N., Elhmouzi-Younes, J., Delandre, S., Namet, I., Rosenbaum, P., Dereuddre-Bosquet, N., Martinon, F., Cosma, A., Levy, Y., Le Grand, R., \& Beignon, A. S. (2018, Feb 15). Prime and Boost Vaccination Elicit a Distinct Innate Myeloid Cell Immune Response. Sci Rep, 8(1), 3087. https://doi.org/10.1038/s41598-018-21222-2

Palma, J., Tokarz-Deptula, B., Deptula, J., \& Deptula, W. (2018). Natural antibodies - facts known and unknown. Cent Eur J Immunol, 43(4), 466-475. https://doi.org/10.5114/ceji.2018.81354

Parham, P. (2015, Sep). Co-evolution of lymphocyte receptors with MHC class I. Immunol Rev, 267(1), 1-5. https://doi.org/10.1111/imr. 12338

Parham, P. (2016, Sep 28). How the codfish changed its immune system. Nat Genet, 48(10), 1103-1104. https://doi.org/10.1038/ng. 3684

Patel, B., Banerjee, R., Samanta, M., \& Das, S. (2018, Jun). Diversity of Immunoglobulin (Ig) Isotypes and the Role of Activation-Induced Cytidine Deaminase (AID) in Fish. Mol Biotechnol, 60(6), 435-453. https://doi.org/10.1007/s12033-018-0081-8

Patenaude, A. M., Orthwein, A., Hu, Y., Campo, V. A., Kavli, B., Buschiazzo, A., \& Di Noia, J. M. (2009, May). Active nuclear import and cytoplasmic retention of activationinduced deaminase. Nat Struct Mol Biol, 16(5), 517-527. https://doi.org/10.1038/nsmb. 1598

Pavri, R., Gazumyan, A., Jankovic, M., Di Virgilio, M., Klein, I., Ansarah-Sobrinho, C., Resch, W., Yamane, A., Reina San-Martin, B., Barreto, V., Nieland, T. J., Root, D. E., Casellas, R., \& Nussenzweig, M. C. (2010, Oct 1). Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell, 143(1), 122-133. https://doi.org/10.1016/j.cell.2010.09.017

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., \& Louppe, G. (2012, 01/02). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12.

Pei, J., Kim, B. H., \& Grishin, N. V. (2008, Apr). PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res, 36(7), 2295-2300. https://doi.org/10.1093/nar/gkn072

Peters, A., \& Storb, U. (1996, Jan). Somatic hypermutation of immunoglobulin genes is linked to transcription initiation. Immunity, 4(1), 57-65. https://doi.org/10.1016/s1074-7613(00)80298-8

Petersen, M. F., \& Steffensen, J. F. (2003, Jan). Preferred temperature of juvenile Atlantic cod Gadus morhua with different haemoglobin genotypes at normoxia and moderate hypoxia. J Exp Biol, 206(Pt 2), 359-364. http://www.ncbi.nlm.nih.gov/pubmed/12477905

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., \& Ferrin, T. E. (2004, Oct). UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 25(13), 1605-1612. https://doi.org/10.1002/jcc. 20084

Pham, P., Afif, S. A., Shimoda, M., Maeda, K., Sakaguchi, N., Pedersen, L. C., \& Goodman, M. F. (2016, Jul). Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. DNA Repair (Amst), 43, 48-56. https://doi.org/10.1016/j.dnarep.2016.05.029

Pham, P., Landolph, A., Mendez, C., Li, N., \& Goodman, M. F. (2013, Oct 11). A biochemical analysis linking APOBEC3A to disparate HIV-1 restriction and skin cancer. J Biol Chem, 288(41), 29294-29304. https://doi.org/10.1074/jbc.M113.504175

Philip, V., Harris, J., Adams, R., Nguyen, D., Spiers, J., Baudry, J., Howell, E. E., \& Hinde, R. J. (2011, Apr 12). A survey of aspartate-phenylalanine and glutamate-phenylalanine interactions in the protein data bank: searching for anion-pi pairs. Biochemistry, 50(14), 2939-2950. https://doi.org/10.1021/bi200066k

Pieper, K., Grimbacher, B., \& Eibel, H. (2013, Apr). B-cell biology and development. J Allergy Clin Immunol, 131(4), 959-971. https://doi.org/10.1016/j.jaci.2013.01.046

Pinaud, E., Khamlichi, A. A., Le Morvan, C., Drouet, M., Nalesso, V., Le Bert, M., \& Cogné, M. (2001, Aug). Localization of the 3' IgH locus elements that effect long-distance regulation of class switch recombination. Immunity, 15(2), 187-199. https://doi.org/10.1016/s1074-7613(01)00181-9

Pone, E. J., Zhang, J., Mai, T., White, C. A., Li, G., Sakakura, J. K., Patel, P. J., Al-Qahtani, A., Zan, H., Xu, Z., \& Casali, P. (2012, Apr 03). BCR-signalling synergizes with TLRsignalling for induction of AID and immunoglobulin class-switching through the noncanonical NF-kappaB pathway. Nat Commun, 3, 767. https://doi.org/10.1038/ncomms1769

Popp, C., Dean, W., Feng, S., Cokus, S. J., Andrews, S., Pellegrini, M., Jacobsen, S. E., \& Reik, W. (2010, Feb 25). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature, 463(7284), 1101-1105. https://doi.org/10.1038/nature08829

Prochnow, C., Bransteitter, R., Klein, M. G., Goodman, M. F., \& Chen, X. S. (2007, Jan 25). The APOBEC-2 crystal structure and functional implications for the deaminase AID. Nature, 445(7126), 447-451. https://doi.org/10.1038/nature05492

Pucci, F., Dhanani, M., Dehouck, Y., \& Rooman, M. (2014). Protein thermostability prediction within homologous families using temperature-dependent statistical potentials. PLoS One, 9(3), e91659. https://doi.org/10.1371/journal.pone. 0091659

Pucci, F., Kwasigroch, J. M., \& Rooman, M. (2017). SCooP: an accurate and fast predictor of protein stability curves as a function of temperature. Bioinformatics, 33(21), 3415-3422. https://doi.org/10.1093/bioinformatics/btx417

Pucci, F., \& Rooman, M. (2014, Jul). Stability curve prediction of homologous proteins using temperature-dependent statistical potentials. PLoS Comput Biol, 10(7), e1003689. https://doi.org/10.1371/journal.pcbi. 1003689

Pucci, F., \& Rooman, M. (2016, May). Towards an accurate prediction of the thermal stability of homologous proteins. J Biomol Struct Dyn, 34(5), 1132-1142. https://doi.org/10.1080/07391102.2015.1073631

Pucci, F., \& Rooman, M. (2017, 2017/02/01/). Physical and molecular bases of protein thermal stability and cold adaptation. Curr Opin Struct Biol, 42, 117-128. https://doi.org/https://doi.org/10.1016/j.sbi.2016.12.007

Qamar, N., \& Fuleihan, R. L. (2014, Apr). The hyper IgM syndromes. Clin Rev Allergy Immunol, 46(2), 120-130. https://doi.org/10.1007/s12016-013-8378-7

Qian, J., Wang, Q., Dose, M., Pruett, N., Kieffer-Kwon, K. R., Resch, W., Liang, G., Tang, Z., Mathé, E., Benner, C., Dubois, W., Nelson, S., Vian, L., Oliveira, T. Y., Jankovic, M., Hakim, O., Gazumyan, A., Pavri, R., Awasthi, P., Song, B., Liu, G., Chen, L., Zhu, S., Feigenbaum, L., Staudt, L., Murre, C., Ruan, Y., Robbiani, D. F., Pan-Hammarström, Q., Nussenzweig, M. C., \& Casellas, R. (2014, Dec 18). B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell, 159(7), 1524-1537. https://doi.org/10.1016/j.cell.2014.11.013

Qiao, Q., Wang, L., Meng, F. L., Hwang, J. K., Alt, F. W., \& Wu, H. (2017, Aug 03). AID Recognizes Structured DNA for Class Switch Recombination. Mol Cell, 67(3), 361-373 e364. https://doi.org/10.1016/j.molcel.2017.06.034

Qin, T., Liu, Z., \& Zhao, H. (2015, Dec). Organization and genomic complexity of sheep immunoglobulin light chain gene loci. Immunol Lett, 168(2), 313-318. https://doi.org/10.1016/j.imlet.2015.10.010

Qin, T., Zhao, H., Zhu, H., Wang, D., Du, W., \& Hao, H. (2015, Aug). Immunoglobulin genomics in the prairie vole (Microtus ochrogaster). Immunol Lett, 166(2), 79-86. https://doi.org/10.1016/j.imlet.2015.06.001

Qiu, X., Duvvuri, V. R., \& Bahl, J. (2019, May 28). Computational Approaches and Challenges to Developing Universal Influenza Vaccines. Vaccines (Basel), 7(2). https://doi.org/10.3390/vaccines7020045

Rai, K., Huggins, I. J., James, S. R., Karpf, A. R., Jones, D. A., \& Cairns, B. R. (2008, Dec 26). DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell, 135(7), 1201-1212. https://doi.org/10.1016/j.cell.2008.11.042

Rajaee, A., Barnett, R., \& Cheadle, W. G. (2018, Feb/Mar). Pathogen- and DangerAssociated Molecular Patterns and the Cytokine Response in Sepsis. Surg Infect (Larchmt), 19(2), 107-116. https://doi.org/10.1089/sur.2017.264

Rajewsky, K., Forster, I., \& Cumano, A. (1987, Nov 20). Evolutionary and somatic selection of the antibody repertoire in the mouse. Science, 238(4830), 1088-1094. http://www.ncbi.nlm.nih.gov/pubmed/3317826

Ramiro, A. R., \& Barreto, V. M. (2016, Apr). Correction to: 'Activation-induced cytidine deaminase and active cytidine demethylation': [Trends in Biochemical Sciences, 40 (2015), 172-181]. Trends Biochem Sci, 41(4), 387. https://doi.org/10.1016/j.tibs.2015.12.005

Randall, R. N., Radford, C. E., Roof, K. A., Natarajan, D. K., \& Gaucher, E. A. (2016, Sep 15). An experimental phylogeny to benchmark ancestral sequence reconstruction. Nat Comтии, 7, 12847. https://doi.org/10.1038/ncomms12847

Razvi, A., \& Scholtz, J. M. (2006, Jul). Lessons in stability from thermophilic proteins. Protein Sci, 15(7), 1569-1578. https://doi.org/10.1110/ps. 062130306

Reis e Sousa, C. (2004, Feb). Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol, 16(1), 21-25. https://doi.org/10.1016/j.coi.2003.11.007

Revy, P., Muto, T., Levy, Y., Geissmann, F., Plebani, A., Sanal, O., Catalan, N., Forveille, M., Dufourcq-Labelouse, R., Gennery, A., Tezcan, I., Ersoy, F., Kayserili, H., Ugazio, A. G., Brousse, N., Muramatsu, M., Notarangelo, L. D., Kinoshita, K., Honjo, T., Fischer, A., \& Durandy, A. (2000, Sep 01). Activation-induced cytidine deaminase (AID) deficiency
causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell, 102(5), 565-575. http://www.ncbi.nlm.nih.gov/pubmed/11007475

Reynaud, C. A., Mackay, C. R., Müller, R. G., \& Weill, J. C. (1991, Mar 8). Somatic generation of diversity in a mammalian primary lymphoid organ: the sheep ileal Peyer's patches. Cell, 64(5), 995-1005. https://doi.org/10.1016/0092-8674(91)90323-q

Rise, M. L., Hall, J. R., Alcock, B. P., \& Hori, T. S. (2012, Nov 10). Dynamic expression profiles of virus-responsive and putative antimicrobial peptide-encoding transcripts during Atlantic cod (Gadus morhua) embryonic and early larval development. Gene, 509(2), 232246. https://doi.org/10.1016/j.gene.2012.08.017

Rodríguez-Cortez, V. C., Martínez-Redondo, P., Català-Moll, F., Rodríguez-Ubreva, J., Garcia-Gomez, A., Poorani-Subramani, G., Ciudad, L., Hernando, H., Pérez-García, A., Company, C., Urquiza, J. M., Ramiro, A. R., Di Noia, J. M., Vaquero, A., \& Ballestar, E. (2017, Aug 8). Activation-induced cytidine deaminase targets SUV4-20-mediated histone H4K20 trimethylation to class-switch recombination sites. Sci Rep, 7(1), 7594. https://doi.org/10.1038/s41598-017-07380-9

Rogozin, I. B., Basu, M. K., Jordan, I. K., Pavlov, Y. I., \& Koonin, E. V. (2005, Sep). APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis. Cell Cycle, 4(9), 1281-1285. https://doi.org/10.4161/cc.4.9.1994

Roh, J. S., \& Sohn, D. H. (2018, Aug). Damage-Associated Molecular Patterns in Inflammatory Diseases. Immииe Netw, 18(4), e27. https://doi.org/10.4110/in.2018.18.e27

Ron Fricke, W. E. a. J. D. F. Eschimeyer's catalog of fishes: species by family/subfamily. (2019).
 http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp

Ronquist, F., \& Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572-1574. https://doi.org/10.1093/bioinformatics/btg180

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., \& Huelsenbeck, J. P. (2012, May). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol, 61(3), 539-542. https://doi.org/10.1093/sysbio/sys029

Roskoski, R. (2015). Michaelis-Menten Kinetics. In. https://doi.org/10.1016/B978-0-12-801238-3.05143-6

Roth, D. B. (2000, 2000/08/02). From lymphocytes to sharks: V(D)J recombinase moves to the germline. Genome Biol, l(2), reviews1014.1011. https://doi.org/10.1186/gb-2000-1-2-reviews1014

Roth, D. B. (2014, Dec). V(D)J Recombination: Mechanism, Errors, and Fidelity. Microbiol Spectr, 2(6). https://doi.org/10.1128/microbiolspec.MDNA3-0041-2014

Rothenfluh, H. S., Taylor, L., Bothwell, A. L., Both, G. W., \& Steele, E. J. (1993, Sep). Somatic hypermutation in 5^{\prime} flanking regions of heavy chain antibody variable regions. Eur J Immunol, 23(9), 2152-2159. https://doi.org/10.1002/eji. 1830230916

Roy, A., Kucukural, A., \& Zhang, Y. (2010, Apr). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc, 5(4), 725-738. https://doi.org/10.1038/nprot.2010.5

Roy, D., Yu, K., \& Lieber, M. R. (2008, Jan). Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol, 28(1), 50-60. https://doi.org/10.1128/mcb.01251-07

Ruder, U., Denkert, C., Kunze, C. A., Jank, P., Lindner, J., Johrens, K., Kulbe, H., Sehouli, J., Dietel, M., Braicu, E., \& Darb-Esfahani, S. (2019, Apr). APOBEC3B protein expression and mRNA analyses in patients with high-grade serous ovarian carcinoma. Histol Histopathol, 34(4), 405-417. https://doi.org/10.14670/HH-18-050

Ruiz, M., Giudicelli, V., Ginestoux, C., Stoehr, P., Robinson, J., Bodmer, J., Marsh, S. G., Bontrop, R., Lemaitre, M., Lefranc, G., Chaume, D., \& Lefranc, M. P. (2000, Jan 1). IMGT, the international ImMunoGeneTics database. Nucleic Acids Res, 28(1), 219-221. http://www.ncbi.nlm.nih.gov/pubmed/10592230

Salinas, I. (2015, Aug 12). The Mucosal Immune System of Teleost Fish. Biology (Basel), 4(3), 525-539. https://doi.org/10.3390/biology4030525

Sallan, L. C. (2014, Nov). Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol Rev Camb Philos Soc, 89(4), 950-971. https://doi.org/10.1111/brv. 12086

Samuelsen, O. B., Nerland, A. H., Jorgensen, T., Schroder, M. B., Svasand, T., \& Bergh, O. (2006, Aug 30). Viral and bacterial diseases of Atlantic cod Gadus morhua, their prophylaxis and treatment: a review. Dis Aquat Organ, 71(3), 239-254. https://doi.org/10.3354/dao071239

Saribasak, H., Maul, R. W., Cao, Z., Yang, W. W., Schenten, D., Kracker, S., \& Gearhart, P. J. (2012, Jun 4). DNA polymerase zeta generates tandem mutations in immunoglobulin variable regions. J Exp Med, 209(6), 1075-1081. https://doi.org/10.1084/jem. 20112234

Sasaki, H., Suzuki, A., Tatematsu, T., Shitara, M., Hikosaka, Y., Okuda, K., Moriyama, S., Yano, M., \& Fujii, Y. (2014, May). APOBEC3B gene overexpression in non-small-cell lung cancer. Biomed Rep, 2(3), 392-395. https://doi.org/10.3892/br.2014.256

Saunders, H. L., \& Magor, B. G. (2004, Jun). Cloning and expression of the AID gene in the channel catfish. Dev Comp Immunol, 28(7-8), 657-663. https://doi.org/10.1016/j.dci.2004.01.002

Saunders, H. L., Oko, A. L., Scott, A. N., Fan, C. W., \& Magor, B. G. (2010, Jun). The cellular context of AID expressing cells in fish lymphoid tissues. Dev Comp Immunol, 34(6), 669-676. https://doi.org/10.1016/j.dci.2010.01.013

Schaeffer, L. (2008). Chapter 14 - The Role of Functional Groups in Drug-Receptor Interactions. In C. G. Wermuth, D. Aldous, P. Raboisson, \& D. Rognan (Eds.), The Practice of Medicinal Chemistry (Fourth Edition) (pp. 359-378). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-417205-0.00014-6

Schreck, S., Buettner, M., Kremmer, E., Bogdan, M., Herbst, H., \& Niedobitek, G. (2006, Sep). Activation-induced cytidine deaminase (AID) is expressed in normal spermatogenesis but only infrequently in testicular germ cell tumours. J Pathol, 210(1), 26-31. https://doi.org/10.1002/path. 2014

Schroder, M. B., Ellingsen, T., Mikkelsen, H., Norderhus, E. A., \& Lund, V. (2009, Aug). Comparison of antibody responses in Atlantic cod (Gadus morhua L.) to Vibrio anguillarum, Aeromonas salmonicida and Francisella sp. Fish Shellfish Immunol, 27(2), 112-119. https://doi.org/10.1016/j.fsi.2008.11.016

Schroeder, H. W., Jr., \& Cavacini, L. (2010, Feb). Structure and function of immunoglobulins. J Allergy Clin Immunol, $125(2$ Suppl 2), S41-52. https://doi.org/10.1016/j.jaci.2009.09.046

Seifert, M., Scholtysik, R., \& Kuppers, R. (2019). Origin and Pathogenesis of B Cell Lymphomas. Methods Mol Biol, 1956, 1-33. https://doi.org/10.1007/978-1-4939-9151-8_1

Senavirathne, G., Bertram, J. G., Jaszczur, M., Chaurasiya, K. R., Pham, P., Mak, C. H., Goodman, M. F., \& Rueda, D. (2015, Dec 18). Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution. Nat Commun, 6, 10209. https://doi.org/10.1038/ncomms10209

Sernandez, I. V., de Yebenes, V. G., Dorsett, Y., \& Ramiro, A. R. (2008). Haploinsufficiency of activation-induced deaminase for antibody diversification and chromosome translocations both in vitro and in vivo. PLoS One, 3(12), e3927. https://doi.org/10.1371/journal.pone. 0003927

Shen, H. M., Poirier, M. G., Allen, M. J., North, J., Lal, R., Widom, J., \& Storb, U. (2009, May 11). The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. J Exp Med, 206(5), 1057-1071. https://doi.org/10.1084/jem. 20082678

Shi, K., Carpenter, M. A., Banerjee, S., Shaban, N. M., Kurahashi, K., Salamango, D. J., McCann, J. L., Starrett, G. J., Duffy, J. V., Demir, O., Amaro, R. E., Harki, D. A., Harris, R. S., \& Aihara, H. (2017, Feb). Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol, 24(2), 131-139. https://doi.org/10.1038/nsmb. 3344

Shi, Y., \& Yokoyama, S. (2003, Jul 8). Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Natl Acad Sci U S A, 100(14), 8308-8313. https://doi.org/10.1073/pnas. 1532535100

Shi, Z., Cai, Z., Sanchez, A., Zhang, T., Wen, S., Wang, J., Yang, J., Fu, S., \& Zhang, D. (2011). A novel Toll-like receptor that recognizes vesicular stomatitis virus. J Biol Chem, 286(6), 4517-4524. https://doi.org/10.1074/jbc.M110.159590

Shimamoto, R., Amano, N., Ichisaka, T., Watanabe, A., Yamanaka, S., \& Okita, K. (2014). Generation and characterization of induced pluripotent stem cells from Aid-deficient mice. PLoS One, 9(4), e94735. https://doi.org/10.1371/journal.pone. 0094735

Shimoda, N., Hirose, K., Kaneto, R., Izawa, T., Yokoi, H., Hashimoto, N., \& Kikuchi, Y. (2014). No evidence for AID/MBD4-coupled DNA demethylation in zebrafish embryos. PLoS One, 9(12), e114816. https://doi.org/10.1371/journal.pone. 0114816

Shiraki, K., Nishikori, S., Fujiwara, S., Hashimoto, H., Kai, Y., Takagi, M., \& Imanaka, T. (2001, Aug). Comparative analyses of the conformational stability of a hyperthermophilic protein and its mesophilic counterpart. Eur J Biochem, 268(15), 4144-4150. https://doi.org/10.1046/j.1432-1327.2001.02324.x

Siddiqui, K. S., \& Cavicchioli, R. (2006). Cold-adapted enzymes. Annu Rev Biochem, 75, 403-433. https://doi.org/10.1146/annurev.biochem.75.103004.142723

Silvas, T. V., \& Schiffer, C. A. (2019, Sep). APOBEC3s: DNA-editing human cytidine deaminases. Protein Sci, 28(9), 1552-1566. https://doi.org/10.1002/pro. 3670

Smalas, A. O., Leiros, H. K., Os, V., \& Willassen, N. P. (2000). Cold adapted enzymes. Biotechnol Annu Rev, 6, 1-57. http://www.ncbi.nlm.nih.gov/pubmed/11193291

Smith, N. C., Rise, M. L., \& Christian, S. L. (2019). A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol, 10, 2292. https://doi.org/10.3389/fimmu.2019.02292

Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A., \& Bhagwat, A. S. (2003, Jun 15). Human activation-induced cytidine deaminase causes transcription-dependent, strandbiased C to U deaminations. Nucleic Acids Res, 31(12), 2990-2994. https://doi.org/10.1093/nar/gkg464

Solbakken, M. H. (2016). Evolutionary and functional insight into the teleost immune system- lessons learned from Atlantic cod and other teleosts [PhD thesis].

Solbakken, M. H., Jentoft, S., Reitan, T., Mikkelsen, H., Gregers, T. F., Bakke, O., Jakobsen, K. S., \& Seppola, M. (2019, Jun). Disentangling the immune response and hostpathogen interactions in Francisella noatunensis infected Atlantic cod. Comp Biochem Physiol Part D Genomics Proteomics, 30, 333-346. https://doi.org/10.1016/j.cbd.2019.04.004

Solbakken, M. H., Jentoft, S., Reitan, T., Mikkelsen, H., Jakobsen, K. S., \& Seppola, M. (2019, Sep). Whole transcriptome analysis of the Atlantic cod vaccine response reveals subtle changes in adaptive immunity. Comp Biochem Physiol Part D Genomics Proteomics, 31, 100597. https://doi.org/10.1016/j.cbd.2019.100597

Solbakken, M. H., Rise, M. L., Jakobsen, K. S., \& Jentoft, S. (2016, Dec 31). Successive Losses of Central Immune Genes Characterize the Gadiformes' Alternate Immunity. Genome Biol Evol, 8(11), 3508-3515. https://doi.org/10.1093/gbe/evw250

Solbakken, M. H., Torresen, O. K., Nederbragt, A. J., Seppola, M., Gregers, T. F., Jakobsen, K. S., \& Jentoft, S. (2016, Apr 29). Evolutionary redesign of the Atlantic cod (Gadus morhua L.) Toll-like receptor repertoire by gene losses and expansions. Sci Rep, 6, 25211. https://doi.org/10.1038/srep25211

Solbakken, M. H., Voje, K. L., Jakobsen, K. S., \& Jentoft, S. (2017, Apr 26). Linking species habitat and past palaeoclimatic events to evolution of the teleost innate immune system. Proc Biol Sci, 284(1853). https://doi.org/10.1098/rspb.2016.2810

Solem, S. T., \& Stenvik, J. (2006). Antibody repertoire development in teleosts--a review with emphasis on salmonids and Gadus morhua L. Dev Comp Immunol, 30(1-2), 57-76. https://doi.org/10.1016/j.dci.2005.06.007

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. https://doi.org/10.1093/bioinformatics/btu033

Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., \& Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res, 34(suppl_2), W435-W439. https://doi.org/10.1093/nar/gkl200

Star, B., Nederbragt, A. J., Jentoft, S., Grimholt, U., Malmstrom, M., Gregers, T. F., Rounge, T. B., Paulsen, J., Solbakken, M. H., Sharma, A., Wetten, O. F., Lanzen, A., Winer, R., Knight, J., Vogel, J. H., Aken, B., Andersen, O., Lagesen, K., ToomingKlunderud, A., Edvardsen, R. B., Tina, K. G., Espelund, M., Nepal, C., Previti, C., Karlsen, B. O., Moum, T., Skage, M., Berg, P. R., Gjoen, T., Kuhl, H., Thorsen, J., Malde, K., Reinhardt, R., Du, L., Johansen, S. D., Searle, S., Lien, S., Nilsen, F., Jonassen, I., Omholt, S. W., Stenseth, N. C., \& Jakobsen, K. S. (2011, Aug 10). The genome sequence of Atlantic cod reveals a unique immune system. Nature, 477(7363), 207-210. https://doi.org/10.1038/nature10342

Star, B., Torresen, O. K., Nederbragt, A. J., Jakobsen, K. S., Pampoulie, C., \& Jentoft, S. (2016, Aug 08). Genomic characterization of the Atlantic cod sex-locus. Sci Rep, 6, 31235. https://doi.org/10.1038/srep31235

Stavnezer, J., \& Schrader, C. E. (2014, Dec 1). IgH chain class switch recombination: mechanism and regulation. J Immunol, 193(11), 5370-5378. https://doi.org/10.4049/jimmunol.1401849

Steele, E. J. (2016, Sep). Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair (Amst), 45, 1-24. https://doi.org/10.1016/j.dnarep.2016.07.001

Storb, U., Peters, A., Klotz, E., Kim, N., Shen, H. M., Kage, K., Rogerson, B., \& Martin, T. E. (1998). Somatic hypermutation of immunoglobulin genes is linked to transcription. Curr Top Microbiol Immunol, 229, 11-19. https://doi.org/10.1007/978-3-642-71984-4_2

Storey, K. B. (2016, 2016/09/01/). Comparative enzymology—new insights from studies of an "old" enzyme, lactate dehydrogenase. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 199, 13-20. https://doi.org/https://doi.org/10.1016/j.cbpb.2015.12.004

Sun, H., Merugu, S., Gu, X., Kang, Y. Y., Dickinson, D. P., Callaerts, P., \& Li, W. H. (2002, Sep). Identification of essential amino acid changes in paired domain evolution using a novel combination of evolutionary analysis and in vitro and in vivo studies. Mol Biol Evol, 19(9), 1490-1500. https://doi.org/10.1093/oxfordjournals.molbev.a004212

Swaminathan, S., Klemm, L., Park, E., Papaemmanuil, E., Ford, A., Kweon, S. M., Trageser, D., Hasselfeld, B., Henke, N., Mooster, J., Geng, H., Schwarz, K., Kogan, S. C., Casellas, R., Schatz, D. G., Lieber, M. R., Greaves, M. F., \& Muschen, M. (2015, Jul).

Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia. Nat Immunol, 16(7), 766-774. https://doi.org/10.1038/ni. 3160

Tacchi, L., Larragoite, E. T., Munoz, P., Amemiya, C. T., \& Salinas, I. (2015, Sep 21). African Lungfish Reveal the Evolutionary Origins of Organized Mucosal Lymphoid Tissue in Vertebrates. Curr Biol, 25(18), 2417-2424. https://doi.org/10.1016/j.cub.2015.07.066

Takeda, K., \& Akira, S. (2015, Apr 1). Toll-like receptors. Curr Protoc Immunol, 109, 14 12 11-10. https://doi.org/10.1002/0471142735.im1412s109

Takeuchi, A., \& Saito, T. (2017). CD4 CTL, a Cytotoxic Subset of CD4(+) T Cells, Their Differentiation and Function. Front Immunol, 8, 194. https://doi.org/10.3389/fimmu.2017.00194

Takizawa, M., Tolarova, H., Li, Z., Dubois, W., Lim, S., Callen, E., Franco, S., Mosaico, M., Feigenbaum, L., Alt, F. W., Nussenzweig, A., Potter, M., \& Casellas, R. (2008, Sep 01). AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. J Exp Med, 205(9), 1949-1957. https://doi.org/10.1084/jem. 20081007

Tang, C., Bagnara, D., Chiorazzi, N., Scharff, M. D., \& MacCarthy, T. (2020). AID Overlapping and Pol η Hotspots Are Key Features of Evolutionary Variation Within the Human Antibody Heavy Chain (IGHV) Genes. Front Immunol, 11, 788. https://doi.org/10.3389/fimmu.2020.00788

Tang, E. S., \& Martin, A. (2007, Nov). Immunoglobulin gene conversion: synthesizing antibody diversification and DNA repair. DNA Repair (Amst), 6(11), 1557-1571. https://doi.org/10.1016/j.dnarep.2007.05.002

Thompson, M. R., Kaminski, J. J., Kurt-Jones, E. A., \& Fitzgerald, K. A. (2011, Jun). Pattern recognition receptors and the innate immune response to viral infection. Viruses, 3(6), 920-940. https://doi.org/10.3390/v3060920

Thomson, D. W., Shahrin, N. H., Wang, P. P. S., Wadham, C., Shanmuganathan, N., Scott, H. S., Dinger, M. E., Hughes, T. P., Schreiber, A. W., \& Branford, S. (2020, Feb 19). Aberrant RAG-mediated recombination contributes to multiple structural rearrangements in lymphoid blast crisis of chronic myeloid leukemia. Leukemia. https://doi.org/10.1038/s41375-020-0751-y

Thornton, J. W. (2001, May 8). Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proc Natl Acad Sci U S A, 98(10), 5671-5676. https://doi.org/10.1073/pnas. 091553298

Thornton, J. W., Need, E., \& Crews, D. (2003, Sep 19). Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science, 301(5640), 1714-1717. https://doi.org/10.1126/science.1086185

Tomlinson, I. M. (1998). Immunoglobulin Genes. In P. J. Delves (Ed.), Encyclopedia of Immunology (Second Edition) (pp. 1323-1328). Elsevier. https://doi.org/https://doi.org/10.1006/rwei.1999.0339

Torres, A. G., Pineyro, D., Filonava, L., Stracker, T. H., Batlle, E., \& Ribas de Pouplana, L. (2014, Nov 28). A-to-I editing on tRNAs: biochemical, biological and evolutionary implications. FEBS Lett, 588(23), 4279-4286. https://doi.org/10.1016/j.febslet.2014.09.025

Torresen, O. K., Star, B., Jentoft, S., Reinar, W. B., Grove, H., Miller, J. R., Walenz, B. P., Knight, J., Ekholm, J. M., Peluso, P., Edvardsen, R. B., Tooming-Klunderud, A., Skage, M., Lien, S., Jakobsen, K. S., \& Nederbragt, A. J. (2017, Jan 18). An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genomics, 18(1), 95. https://doi.org/10.1186/s12864-016-3448-x

Trachsel, M. A., Ottiger, P., Frey, H.-M., Pfaffen, C., Bihlmeier, A., Klopper, W., \& Leutwyler, S. $(2015,2015 / 06 / 25)$. Modeling the Histidine-Phenylalanine Interaction: The NH $\cdots \pi$ Hydrogen Bond of Imidazole•Benzene. The Journal of Physical Chemistry B, 119(25), 7778-7790. https://doi.org/10.1021/jp512766r

Trancoso, I., Morimoto, R., \& Boehm, T. (2020, Apr 27). Co-evolution of mutagenic genome editors and vertebrate adaptive immunity. Curr Opin Immunol, 65, 32-41. https://doi.org/10.1016/j.coi.2020.03.001

Trott, O., \& Olson, A. J. (2010, Jan 30). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31(2), 455-461. https://doi.org/10.1002/jcc. 21334

Tsay, G. J., \& Zouali, M. (2018). The Interplay Between Innate-Like B Cells and Other Cell Types in Autoimmunity. Front Immunol, 9, 1064. https://doi.org/10.3389/fimmu.2018.01064

Uchiyama, T. (1982). Modulation of immune response by bacterial lipopolysaccharide (LPS): roles of macrophages and T cells in vitro adjuvant effect of LPS on antibody response to T cell-dependent and T cell-independent antigens. Microbiol Immunol, 26(3), 213-225. https://doi.org/10.1111/j.1348-0421.1982.tb00173.x

Vaidyanathan, B., Yen, W. F., Pucella, J. N., \& Chaudhuri, J. (2014). AIDing Chromatin and Transcription-Coupled Orchestration of Immunoglobulin Class-Switch Recombination. Front Immunol, 5, 120. https://doi.org/10.3389/fimmu.2014.00120

Van Rossum, G., \& Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace.
VanderPlas, J. (2016). Python Data Science Handbook: Essential Tools for Working with Data (1st ed.). O'Reilly Media Inc.

Varshney, P., Yadav, V., \& Saini, N. (2016, Sep). Lipid rafts in immune signalling: current progress and future perspective. Immunology, 149(1), 13-24. https://doi.org/10.1111/imm. 12617

Vaughn, J. P., Creacy, S. D., Routh, E. D., Joyner-Butt, C., Jenkins, G. S., Pauli, S., Nagamine, Y., \& Akman, S. A. (2005, Nov 18). The DEXH protein product of the DHX36 gene is the major source of tetramolecular quadruplex G4-DNA resolving activity in HeLa cell lysates. J Biol Chem, 280(46), 38117-38120. https://doi.org/10.1074/jbc.C500348200

Verma, S., Goldammer, T., \& Aitken, R. (2010, Apr 15). Cloning and expression of activation induced cytidine deaminase from Bos taurus. Vet Immunol Immunopathol, 134(3-4), 151-159. https://doi.org/10.1016/j.vetimm.2009.08.016

Vialle, R. A., Tamuri, A. U., \& Goldman, N. (2018, Jul 1). Alignment Modulates Ancestral Sequence Reconstruction Accuracy. Mol Biol Evol, 35(7), 1783-1797. https://doi.org/10.1093/molbev/msy055

Vivier, E., Artis, D., Colonna, M., Diefenbach, A., Di Santo, J. P., Eberl, G., Koyasu, S., Locksley, R. M., McKenzie, A. N. J., Mebius, R. E., Powrie, F., \& Spits, H. (2018, Aug 23). Innate Lymphoid Cells: 10 Years On. Cell, 174(5), 1054-1066. https://doi.org/10.1016/j.cell.2018.07.017

Voss, E. W., Jr., \& Sigel, M. M. (1972, Oct). Valence and temporal change in affinity of purified 7S and 18S nurse shark anti-2,4 dinitrophenyl antibodies. J Immunol, 109(4), 665673. http://www.ncbi.nlm.nih.gov/pubmed/4561469

Vuong, B. Q., Herrick-Reynolds, K., Vaidyanathan, B., Pucella, J. N., Ucher, A. J., Donghia, N. M., Gu, X., Nicolas, L., Nowak, U., Rahman, N., Strout, M. P., Mills, K. D., Stavnezer, J., \& Chaudhuri, J. (2013, Nov). A DNA break- and phosphorylation-dependent positive feedback loop promotes immunoglobulin class-switch recombination. Nat Immunol, 14(11), 1183-1189. https://doi.org/10.1038/ni.2732

Wagner, S. D., Milstein, C., \& Neuberger, M. S. (1995, Aug 31). Codon bias targets mutation. Nature, 376(6543), 732. https://doi.org/10.1038/376732a0

Wakae, K., Magor, B. G., Saunders, H., Nagaoka, H., Kawamura, A., Kinoshita, K., Honjo, T., \& Muramatsu, M. (2006, Jan). Evolution of class switch recombination function in fish
activation-induced cytidine deaminase, AID. Int Immunol, 18(1), 41-47. https://doi.org/10.1093/intimm/dxh347

Walther, S., Tietze, M., Czerny, C. P., Konig, S., \& Diesterbeck, U. S. (2016). Development of a Bioinformatics Framework for the Detection of Gene Conversion and the Analysis of Combinatorial Diversity in Immunoglobulin Heavy Chains in Four Cattle Breeds. PLoS One, 11(11), e0164567. https://doi.org/10.1371/journal.pone. 0164567

Wang, B., Tian, Y., \& Yin, Q. (2019). AIM2 Inflammasome Assembly and Signaling. $A d v$ Exp Med Biol, 1172, 143-155. https://doi.org/10.1007/978-981-13-9367-9_7

Wang, M., Rada, C., \& Neuberger, M. S. (2010, Jan 18). Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. J Exp Med, 207(1), 141-153. https://doi.org/10.1084/jem. 20092238

Wang, M., Yang, Z., Rada, C., \& Neuberger, M. S. (2009, Jul). AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol, 16(7), 769-776. https://doi.org/10.1038/nsmb. 1623

Wei, L., Chahwan, R., Wang, S., Wang, X., Pham, P. T., Goodman, M. F., Bergman, A., Scharff, M. D., \& MacCarthy, T. (2015, Feb 17). Overlapping hotspots in CDRs are critical sites for V region diversification. Proc Natl Acad Sci U S A, 112(7), E728-737. https://doi.org/10.1073/pnas. 1500788112

Wheeler, L. C., Lim, S. A., Marqusee, S., \& Harms, M. J. (2016, Jun). The thermostability and specificity of ancient proteins. Curr Opin Struct Biol, 38, 37-43. https://doi.org/10.1016/j.sbi.2016.05.015

Wiens, G. D., Brown, M., \& Rittenberg, M. B. (2003, May 15). Repertoire shift in the humoral response to phosphocholine-keyhole limpet hemocyanin: VH somatic mutation in germinal center B cells impairs T15 Ig function. J Immunol, 170(10), 5095-5102. http://www.ncbi.nlm.nih.gov/pubmed/12734355

Wiens, G. D., Lekkerkerker, A., Veltman, I., \& Rittenberg, M. B. (2001, Aug 15). Mutation of a single conserved residue in VH complementarity-determining region 2 results in a severe Ig secretion defect. J Imтипol, 167(4), 2179-2186. http://www.ncbi.nlm.nih.gov/pubmed/11490003

Wiens, G. D., Roberts, V. A., Whitcomb, E. A., O'Hare, T., Stenzel-Poore, M. P., \& Rittenberg, M. B. (1998, Apr). Harmful somatic mutations: lessons from the dark side. Immunol Rev, 162, 197-209. http://www.ncbi.nlm.nih.gov/pubmed/9602365

Wijesinghe, P., \& Bhagwat, A. S. (2012, Oct). Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res, 40(18), 9206-9217. https://doi.org/10.1093/nar/gks685

Williams, M. A., \& Bevan, M. J. (2007). Effector and memory CTL differentiation. Annu Rev Immunol, 25, 171-192. https://doi.org/10.1146/annurev.immunol.25.022106.141548

Willmann, K. L., Milosevic, S., Pauklin, S., Schmitz, K. M., Rangam, G., Simon, M. T., Maslen, S., Skehel, M., Robert, I., Heyer, V., Schiavo, E., Reina-San-Martin, B., \& Petersen-Mahrt, S. K. (2012, Oct 22). A role for the RNA pol II-associated PAF complex in AID-induced immune diversification. J Exp Med, 209(11), 2099-2111. https://doi.org/10.1084/jem. 20112145

Wilson, M., Hsu, E., Marcuz, A., Courtet, M., Du Pasquier, L., \& Steinberg, C. (1992, Dec). What limits affinity maturation of antibodies in Xenopus--the rate of somatic mutation or the ability to select mutants? EMBO J, 11(12), 4337-4347. http://www.ncbi.nlm.nih.gov/pubmed/1425571

Wilson, T. M., Vaisman, A., Martomo, S. A., Sullivan, P., Lan, L., Hanaoka, F., Yasui, A., Woodgate, R., \& Gearhart, P. J. (2005, Feb 21). MSH2-MSH6 stimulates DNA polymerase eta, suggesting a role for A:T mutations in antibody genes. J Exp Med, 201(4), 637-645. https://doi.org/10.1084/jem. 20042066

Winkler, T. H., \& Martensson, I. L. (2018). The Role of the Pre-B Cell Receptor in B Cell Development, Repertoire Selection, and Tolerance. Front Immunol, 9, 2423. https://doi.org/10.3389/fimmu.2018.02423

Wong, H. S., \& Germain, R. N. (2018, Apr). Robust control of the adaptive immune system. Semin Immunol, 36, 17-27. https://doi.org/10.1016/j.smim.2017.12.009

Wong, J. B., Hewitt, S. L., Heltemes-Harris, L. M., Mandal, M., Johnson, K., Rajewsky, K., Koralov, S. B., Clark, M. R., Farrar, M. A., \& Skok, J. A. (2019, Oct 18). B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nat Commun, 10(1), 4768. https://doi.org/10.1038/s41467-019-12824-z

Wu, X., Darce, J. R., Chang, S. K., Nowakowski, G. S., \& Jelinek, D. F. (2008, Dec 01). Alternative splicing regulates activation-induced cytidine deaminase (AID): implications for suppression of AID mutagenic activity in normal and malignant B cells. Blood, 112(12), 4675-4682. https://doi.org/10.1182/blood-2008-03-145995

Wu, X., Tian, J., \& Wang, S. (2018). Insight Into Non-Pathogenic Th17 Cells in Autoimmune Diseases. Front Immunol, 9, 1112. https://doi.org/10.3389/fimmu.2018.01112

Xu, L., Gorham, B., Li, S. C., Bottaro, A., Alt, F. W., \& Rothman, P. (1993, Apr 15). Replacement of germ-line epsilon promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc Natl Acad Sci U S A, 90(8), 3705-3709. https://doi.org/10.1073/pnas.90.8.3705

Yam-Puc, J. C., Zhang, L., Zhang, Y., \& Toellner, K. M. (2018). Role of B-cell receptors for B-cell development and antigen-induced differentiation. F1000Res, 7, 429. https://doi.org/10.12688/f1000research.13567.1

Yang, F., Waldbieser, G. C., \& Lobb, C. J. (2006, Feb 01). The nucleotide targets of somatic mutation and the role of selection in immunoglobulin heavy chains of a teleost fish. J Immunol, 176(3), 1655-1667. http://www.ncbi.nlm.nih.gov/pubmed/16424195

Yang, G., Miton, C. M., \& Tokuriki, N. (2020, Aug). A mechanistic view of enzyme evolution. Protein Sci, 29(8), 1724-1747. https://doi.org/10.1002/pro. 3901

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., \& Zhang, Y. (2015, Jan). The I-TASSER Suite: protein structure and function prediction. Nat Methods, 12(1), 7-8. https://doi.org/10.1038/nmeth. 3213

Yang, X., Lin, G., Han, Z., \& Chai, J. (2019). Structural Biology of NOD-Like Receptors. Adv Exp Med Biol, 1172, 119-141. https://doi.org/10.1007/978-981-13-9367-9_6

Yang, Z. (2006, 01/01). Computational Molecular Evolution. Yang, Z. (2006) Computational molecular evolution. Oxford Series in Ecology and Evolution . Oxford University Press, Oxford, UK. ISBN 9780198566991. https://doi.org/10.1093/acprof:oso/9780198567028.001.0001

Yazdani, R., Fekrvand, S., Shahkarami, S., Azizi, G., Moazzami, B., Abolhassani, H., \& Aghamohammadi, A. (2019, Jan). The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol, 198, 1930. https://doi.org/10.1016/j.clim.2018.11.007

Ye, J., Bromage, E. S., \& Kaattari, S. L. (2010, Jan 15). The strength of B cell interaction with antigen determines the degree of IgM polymerization. J Immunol, 184(2), 844-850. https://doi.org/10.4049/jimmunol. 0902364

Yeap, L. S., Hwang, J. K., Du, Z., Meyers, R. M., Meng, F. L., Jakubauskaite, A., Liu, M., Mani, V., Neuberg, D., Kepler, T. B., Wang, J. H., \& Alt, F. W. (2015, Nov 19). SequenceIntrinsic Mechanisms that Target AID Mutational Outcomes on Antibody Genes. Cell, 163(5), 1124-1137. https://doi.org/10.1016/j.cell.2015.10.042

Yeap, L. S., \& Meng, F. L. (2019). Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Adv Immunol, 141, 51-103. https://doi.org/10.1016/bs.ai.2019.01.002

Yu, K., Chedin, F., Hsieh, C. L., Wilson, T. E., \& Lieber, M. R. (2003, May). R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Imтипol, 4(5), 442-451. https://doi.org/10.1038/ni919

Yu, K., \& Lieber, M. R. (2019, Aug). Current insights into the mechanism of mammalian immunoglobulin class switch recombination. Crit Rev Biochem Mol Biol, 54(4), 333-351. https://doi.org/10.1080/10409238.2019.1659227

Yu, K., Roy, D., Bayramyan, M., Haworth, I. S., \& Lieber, M. R. (2005, Mar). Finestructure analysis of activation-induced deaminase accessibility to class switch region Rloops. Mol Cell Biol, 25(5), 1730-1736. https://doi.org/10.1128/mcb.25.5.1730-1736.2005

Zakas, P. M., Brown, H. C., Knight, K., Meeks, S. L., Spencer, H. T., Gaucher, E. A., \& Doering, C. B. (2017, Jan). Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol, 35(1), 35-37. https://doi.org/10.1038/nbt. 3677

Zan, H., \& Casali, P. (2013, Mar). Regulation of Aicda expression and AID activity. Autoimmunity, 46(2), 83-101. https://doi.org/10.3109/08916934.2012.749244

Zandvoort, A., \& Timens, W. (2002, Oct). The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general first-line defense against blood-borne antigens. Clin Exp Immunol, 130(1), 4-11. https://doi.org/10.1046/j.1365-2249.2002.01953.x

Zanotti, K. J., \& Gearhart, P. J. (2016, Feb). Antibody diversification caused by disrupted mismatch repair and promiscuous DNA polymerases. DNA Repair (Amst), 38, 110-116. https://doi.org/10.1016/j.dnarep.2015.11.011

Zhang, J., Bottaro, A., Li, S., Stewart, V., \& Alt, F. W. (1993, Sep). A selective defect in IgG2b switching as a result of targeted mutation of the I gamma 2 b promoter and exon. EMBO J, 12(9), 3529-3537.

Zhang, Y. (2008, Jan 23). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40. https://doi.org/10.1186/1471-2105-9-40

Zhang, Y., Garcia-Ibanez, L., \& Toellner, K. M. (2016, Mar). Regulation of germinal center B-cell differentiation. Immunol Rev, 270(1), 8-19. https://doi.org/10.1111/imr. 12396

Zhao, Y., Jackson, S. M., \& Aitken, R. (2006). The bovine antibody repertoire. Dev Comp Imтипol, 30(1-2), 175-186. https://doi.org/10.1016/j.dci.2005.06.012

Zhao, Y., Pan-Hammarstrom, Q., Zhao, Z., \& Hammarstrom, L. (2005). Identification of the activation-induced cytidine deaminase gene from zebrafish: an evolutionary analysis. Dev Comp Immunol, 29(1), 61-71. https://doi.org/10.1016/j.dci.2004.05.005

Zheng, S., Vuong, B. Q., Vaidyanathan, B., Lin, J. Y., Huang, F. T., \& Chaudhuri, J. (2015, May 7). Non-coding RNA Generated following Lariat Debranching Mediates Targeting of AID to DNA. Cell, 161(4), 762-773. https://doi.org/10.1016/j.cell.2015.03.020

Zhong, C., Zheng, M., \& Zhu, J. (2018, Aug). Lymphoid tissue inducer-A divergent member of the ILC family. Cytokine Growth Factor Rev, 42, 5-12. https://doi.org/10.1016/j.cytogfr.2018.02.004

Zhu, C., \& Hsu, E. (2010, Nov 01). Error-prone DNA repair activity during somatic hypermutation in shark B lymphocytes. J Immunol, 185(9), 5336-5347. https://doi.org/10.4049/jimmunol. 1000779

Zhu, C., Tong, J., Yu, X., \& Guo, W. (2015, Aug). Comparative mapping for bighead carp (Aristichthys nobilis) against model and non-model fishes provides insights into the genomic evolution of cyprinids. Mol Genet Genomics, 290(4), 1313-1326. https://doi.org/10.1007/s00438-015-0992-z

Zoete, V., Cuendet, M. A., Grosdidier, A., \& Michielin, O. (2011, Aug). SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem, 32(11), 23592368. https://doi.org/10.1002/jcc. 21816

Zou, J., Wang, C., Ma, X., Wang, E., \& Peng, G. (2017). APOBEC3B, a molecular driver of mutagenesis in human cancers. Cell Biosci, 7, 29. https://doi.org/10.1186/s13578-017-0156-4

Zwollo, P., Hennessey, E., Moore, C., Marancik, D. P., Wiens, G. D., \& Epp, L. (2017, Sep). A BCWD-resistant line of rainbow trout exhibits higher abundance of $\operatorname{IgT}(+) \mathrm{B}$ cells and heavy chain tau transcripts compared to a susceptible line following challenge with Flavobacterium psychrophilum. Dev Comp Immunol, 74, 190-199. https://doi.org/10.1016/j.dci.2017.04.019

Appendices

Appendix 1: GenBank accession number of the Ig genes used in this thesis to identify Atlantic cod IgH locus as well as WRC analysis

ID	Description		Species
Protein queries (full-length IgM and IgD):	Siniperca chuatsi		
ACO88906.1	IgD	Takifugu rubripes	
BAD34541.1	IgD	Lutjanus sanguineus	
AIC33830.1	IgD	Epinephelus coioides	
AFI33218.1	IgD	Epinephelus coioides	
AAX78205.1	IgM	Paralichthys olivaceus	
BAB60868.1	IgM	Oreochromis niloticus	
A0A126CRL5	IgM	Gadus macrocephalus	
A0A0G3VMZ6	IgM	Species	
Full-length IgZ gene:	Lutjanus sanguineus		
ID	Description	Lutjanus sanguineus	
AIC33829.1	IgZ heavy chain transmembrane	Ctenopharyngodon idella	
AIC33828.1	immunoglobulin Z heavy chain	Ctenopharyngodon idella	
ADD82653.1	immunoglobulin Z heavy chain, partial	Ctenopharyngodon idella	
ADD82655.1	secretory IgZ		
ABY76180.1	membrane bound IgZ, partial		
IgV	genes:		

ID	Description	Species
AJ274705.1	partial mRNA for immunoglobulin heavy chain variable region clone 0997031136 (0936) Family I	Gadus morhua
AJ274706.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030733 (1233) Family I	Gadus morhua
AJ274707.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030741 (1241) Family I	Gadus morhua
AJ274708.1	partial mRNA for immunoglobulin heavy chain variable region clone 1997102105 (1905) Family II	Gadus morhua
AJ274709.1	partial mRNA for immunoglobulin heavy chain variable region clone 1997102107 (1907a) Family U	Gadus morhua
AJ274710.1	partial mRNA for immunoglobulin heavy chain variable region clone 1997111806 (1906) Family II	Gadus morhua
AJ274711.1	partial mRNA for immunoglobulin heavy chain variable region clone 0997031139 (1139) Family IV	Gadus morhua
AJ274712.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297021302 (1202a) Family IV	Gadus morhua
AJ274713.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297021409 (1209) Family IV	Gadus morhua
AJ274714.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030705 (1205b) Family IV	Gadus morhua
AJ274715.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297021305 (1205a) Family Ш	Gadus morhua
AJ274716.1	partial mRNA for immunoglobulin heavy chain variable region clone 0997021408 (0908) Family III	Gadus morhua
AJ274717.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297021402 (1202b) Family Ш	Gadus morhua
AJ274718.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297021408 (1208)	Gadus morhua
AJ274719.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297021411 (1211) Family III	Gadus morhua
AJ274720.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030702 (1202c) Family Ш	Gadus morhua
AJ274721.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030715 (1215) family III	Gadus morhua
AJ274722.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030722 (1222) Family III	Gadus morhua
AJ274723.1	partial mRNA for immunoglobulin heavy chain variable region clone 2096110714 (2014) Family III	Gadus morhua
AJ274724.1	partial mRNA for immunoglobulin heavy chain variable region clone 2096110629 (2029) Family III	Gadus morhua

| AJ274725.1 | partial mRNA for immunoglobulin heavy chain variable region clone 2096110631 (2031) Family III | Gadus morhua |
| :--- | :--- | :--- | :--- |
| AJ274726.1 | partial mRNA for immunoglobulin heavy chain variable region clone 0997021401 (0901) Family III | Gadus morhua |
| AJ274727.1 | partial mRNA for immunoglobulin heavy chain variable region clone 0997031130 (0930) Family III | Gadus morhua |
| AJ274728.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1998012302 (1902) Family III | Gadus morhua |
| AJ274729.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1297030732 (1232) Family III | Gadus morhua |
| AJ274730.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1297030745 (1245) Family III | Gadus morhua |
| AJ274731.1 | partial mRNA for immunoglobulin heavy chain variable region clone 0997031129 (0929) Family III | Gadus morhua |
| AJ274732.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1297021304 (1204) Family III | Gadus morhua |
| AJ274733.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1297030714 (1214) Family III | Gadus morhua |
| AJ274734.1 | partial mRNA for immunoglobulin heavy chain variable region clone 199711807 (1907b) Family
 LI | Gadus morhua |
| AJ274735.1 | partial mRNA for immunoglobulin heavy chain variable region clone 0997031143 (0943) Family III | Gadus morhua |
| AJ274736.1 | partial mRNA for immunoglobulin heavy chain variable region clone 0997031127 (0927) Family III | Gadus morhua |
| AJ274737.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1297030703 (1203b) family
 (II | Gadus morhua |
| AJ274738.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1997102101 (1901) Family III | Gadus morhua |
| AJ274739.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1498012214 (1414) Family III | Gadus morhua |
| AJ274740.1 | partial mRNA for immunoglobulin heavy chain variable region clone 0997031134 (0934) Family III | Gadus morhua |
| AJ274741.1 | partial mRNA for immunoglobulin heavy chain variable region clone 2098012010 (2010) Family III | Gadus morhua |
| AJ274742.1 | partial mRNA for immunoglobulin heavy chain variable region clone 0997031138 (0938) Family III | Gadus morhua |
| AJ274743.1 | partial mRNA for immunoglobulin heavy chain variable region clone 0997021404 (0904) Family III | Gadus morhua |
| AJ274744.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1297030706 (1206) Family III | Gadus morhua |
| AJ274745.1 | partial mRNA for immunoglobulin heavy chain variable region clone 1497103004 (1404) Family III | Gadus morhua |

AJ274746.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030728 (1228)	Gadus morhua
AJ274747.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297021303 (1203a) Family UI	Gadus morhua
AJ274748.1	partial mRNA for immunoglobulin heavy chain variable region clone 2098011603 (2003) Family III	Gadus morhua
AJ274749.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030710 (1210b) Family (II	Gadus morhua
AJ274750.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297030719 (1219) Family III	Gadus morhua
AJ274751.1	partial mRNA for immunoglobulin heavy chain variable region clone 0997021407 (0907) Family III	Gadus morhua
AJ274752.1	partial mRNA for immunoglobulin heavy chain variable region clone 1297021310 (1210a) Family WI	Gadus morhua
AJ274753.1	partial mRNA for immunoglobulin heavy chain variable region clone 0997031140 (0940) Family III	Gadus morhua
AJ274754.1	partial mRNA for immunoglobulin heavy chain variable region clone 1498020906 (1406) Family III	Gadus morhua
AJ274755.1	partial mRNA for immunoglobulin heavy chain variable region clone 2096110626 (2026) Family III	Gadus morhua
AJ274756.1	partial mRNA for immunoglobulin heavy chain variable region clone 2096102205 (2005) family III	Gadus morhua
AJ279353.1	partial mRNA for immunoglobulin heavy chain variable region clone 21	Gadus morhua
AJ279354.1	partial mRNA for immunoglobulin heavy chain variable region clone 34	Gadus morhua
AJ279355.1	partial mRNA for immunoglobulin heavy chain variable region clone 40	Gadus morhua
AJ279356.1	partial mRNA for immunoglobulin heavy chain variable region clone 49	Gadus morhua
AJ279357.1	partial mRNA for immunoglobulin heavy chain variable region clone 2	Gadus morhua
AJ279358.1	partial mRNA for immunoglobulin heavy chain variable region clone 14	Gadus morhua
AJ279359.1	partial mRNA for immunoglobulin heavy chain variable region clone 15	Gadus morhua
AJ279360.1	partial mRNA for immunoglobulin heavy chain variable region clone 29	Gadus morhua
AJ279361.1	partial mRNA for immunoglobulin heavy chain variable region clone 44	Gadus morhua
AJ279362.1	partial mRNA for immunoglobulin heavy chain variable region clone 19	Gadus morhua

AJ279363.1	partial mRNA for immunoglobulin heavy chain variable region clone 38	Gadus morhua
AJ279365.1	partial mRNA for immunoglobulin heavy chain variable region clone 39	Gadus morhua
AJ279366.1	partial mRNA for immunoglobulin heavy chain variable region clone 31	Gadus morhua
AJ279367.1	partial mRNA for immunoglobulin heavy chain variable region clone 25	Gadus morhua
AJ279368.1	partial mRNA for immunoglobulin heavy chain variable region clone 23	Gadus morhua
AJ279369.1	partial mRNA for immunoglobulin heavy chain variable region clone 263	Gadus morhua
AJ279370.1	partial mRNA for immunoglobulin heavy chain variable region clone 35	Gadus morhua
AJ279371.1	partial mRNA for immunoglobulin heavy chain variable region clone 33	Gadus morhua
AJ279372.1	partial mRNA for immunoglobulin heavy chain variable region clone 98	Gadus morhua
AJ279373.1	partial mRNA for immunoglobulin heavy chain variable region clone 9	Gadus morhua
AJ279374.1	partial mRNA for immunoglobulin heavy chain variable region clone 28	Gadus morhua
AJ279375.1	partial mRNA for immunoglobulin heavy chain variable region clone 127	Gadus morhua
AJ279376.1	partial mRNA for immunoglobulin heavy chain variable region clone 4	Gadus morhua
AJ279377.1	partial mRNA for immunoglobulin heavy chain variable region clone 11	Gadus morhua
AJ279378.1	partial mRNA for immunoglobulin heavy chain variable region clone 22	Gadus morhua
AJ279380.1	partial mRNA for immunoglobulin heavy chain variable region clone 264	Gadus morhua
AJ279381.1	partial mRNA for immunoglobulin heavy chain variable region clone 48	Gadus morhua
AJ279382.1	partial mRNA for immunoglobulin heavy chain variable region clone 109	Gadus morhua
AJ279383.1	partial mRNA for immunoglobulin heavy chain variable region clone 110	Gadus morhua
AJ279384.1	partial mRNA for immunoglobulin heavy chain variable region clone 45	Gadus morhua
AJ279385.1	partial mRNA for immunoglobulin heavy chain variable region clone 32	Gadus morhua

AJ279386.1	partial mRNA for immunoglobulin heavy chain variable region clone 244	Gadus morhua
AJ279387.1	partial mRNA for immunoglobulin heavy chain variable region clone 12	Gadus morhua
AJ279388.1	partial mRNA for immunoglobulin heavy chain variable region clone 20	Gadus morhua
AJ279389.1	partial mRNA for immunoglobulin heavy chain variable region clone 1	Gadus morhua
AJ279390.1	partial mRNA for immunoglobulin heavy chain variable region clone 30	Gadus morhua
AJ279391.1	partial mRNA for immunoglobulin heavy chain variable region clone 36	Gadus morhua
AJ279392.1	partial mRNA for immunoglobulin heavy chain variable region clone 82	Gadus morhua
AJ279393.1	partial mRNA for immunoglobulin heavy chain variable region clone 42	Gadus morhua
AJ279394.1	partial mRNA for immunoglobulin heavy chain variable region clone 8	Gadus morhua
AJ279395.1	partial mRNA for immunoglobulin heavy chain variable region clone 46	Gadus morhua
AJ279396.1	partial mRNA for immunoglobulin heavy chain variable region clone 17	Gadus morhua
AJ279397.1	partial mRNA for immunoglobulin heavy chain variable region clone 90	Gadus morhua
DQ230541.1	clone 1B07AVH1 CS3 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
DQ230547.1	clone 3B11AVH1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
DQ230550.1	clone 3D04AVH1 CS1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
DQ230551.1	clone 3D08AVH1 CS4 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
DQ230552.1	clone 3E09AVH1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
DQ230553.1	clone 3F02AVH1 CS3 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
DQ230555.1	clone 3G07AVH1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
DQ230557.1	clone 3G12AVH1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
DQ230558.1	clone 6E04AVH1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus

| DQ230560.1 | clone 6G04AVH1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| :--- | :--- | :--- | :--- |
| DQ230562.1 | clone 6H05AVH1 CS4 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| AY238358.1 | immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492547.1 | clone 15B02VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492548.1 | clone 15B03VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492549.1 | clone 15B04VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492550.1 | clone 15B05VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492551.1 | clone 15B06VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492558.1 | clone 15C08VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492557.1 | clone 15C07VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492554.1 | clone 15B12VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492555.1 | clone 15C02VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492553.1 | clone 15B10VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492587.1 | clone 19D12VH1PBL CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492591.1 | clone 15D01VH1AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492596.1 | clone 15D10VH1AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492595.1 | clone 15D07VH1AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492597.1 | clone 15D11VH1AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492590.1 | clone 15C11VH1AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492598.1 | clone 15D12VH1AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492594.1 | clone 15D06VH1AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |

EU492592.1	clone 15D02VH1AK immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492637.1	clone 15E01VH1SP immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492642.1	clone 15E07VH1SP immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492643.1	clone 15E09VH1SP immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492641.1	clone 15E06VH1SP immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492695.1	clone 15A01VH1GL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492696.1	clone 15A02VH1GL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492697.1	clone 15A04VH1GL CS3 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492698.1	clone 15A06VH1GL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492699.1	clone 15A07VH1GL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492700.1	clone 15A08VH1GL CS1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492701.1	clone 15A10VH1GL CS3 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492702.1	clone 15A11VH1GL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492733.1	clone 18D12VH1GL CS1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492763.1	clone 18C11VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds		Ictalurus punctatus
EU492734.1	clone 18E01VH1GL CS1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492746.1	clone 18C12VH1SK immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492747.1	clone 3F02AVH1 CS3 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492750.1	clone 19B04VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492751.1	clone 19B09VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds		Ictatus
EU492835.1	clone 19G12VH1I3 CS2 immunoglobulin heavy chain variable region mRNA, partial cds		
		Ict	

| EU492837.1 | clone 20B06VH1I3 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| :--- | :--- | :--- | :--- |
| EU492838.1 | clone 20B12VH1I3 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492840.1 | clone 20F07VH1I3 CS6 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492845.1 | clone 21D11VH1I3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492851.1 | clone 21H11VH1I3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492850.1 | clone 21H10VH1I3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492844.1 | clone 21D08VH1I3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492842.1 | clone 21D06VH1I3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492795.1 | clone 19A07VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492796.1 | clone 19A10VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492797.1 | clone 19A11VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492802.1 | clone 20A01VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492805.1 | clone 21C10VH1I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492806.1 | clone 21C11VH1I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492807.1 | clone 21D01VH1I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492808.1 | clone 21D03VH1I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492809.1 | clone 21D04VH1I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492813.1 | clone 19E02RevI2 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492816.1 | clone 15G05VH1I3 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492818.1 | clone 15H07VH1I3 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492819.1 | clone 15H11VH1I3 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |

| EU492820.1 | clone 15H12VH1I3 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| :--- | :--- | :--- | :--- |
| EU492843.1 | clone 21D07VH1I3 CS6 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492752.1 | clone 19B10VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492754.1 | clone 20A06VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492755.1 | clone 20A07VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230542.1 | clone 1B10AVH1 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230544.1 | clone 1F07AVH1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230548.1 | clone 3C11AVH1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| GU296460.1 | clone 5r21 immunoglobulin delta heavy chain membrane bound form mRNA, partial cds | Ictalurus punctatus |
| EU492836.1 | clone 19H09VH1I3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492834.1 | clone 19C10VH1I3 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492794.1 | clone 19A02VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230556.1 | clone 3G11AVH1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492552.1 | clone 15B07VH1PBL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492640.1 | clone 15E05VH1SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492761.1 | clone 21C07VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492759.1 | clone 21C05VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492762.1 | clone 21H01VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492815.1 | clone 15F08VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492756.1 | clone 20A10VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492757.1 | clone 20A11VH1SK CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |

| EU492764.1 | clone 15F02VH1I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| :--- | :--- | :--- | :--- |
| EU492765.1 | clone 15F06VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492766.1 | clone 15F07VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492767.1 | clone 15F11VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492768.1 | clone 15F12VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492769.1 | clone 15G02VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492770.1 | clone 15G03VH1I2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230559.1 | clone 6F04AVH1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| M58673.1 | Ig heavy chain mRNA V-region clone NG64 | Ictalurus punctatus |
| DQ230561.1 | clone 6G05AVH1 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492772.1 | clone 16F07VH2I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492773.1 | clone 16F08VH2I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492774.1 | clone 16F10VH2I2 CS7 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492776.1 | clone 16F12VH2I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230565.1 | clone 1D11AVH2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230567.1 | clone 2C05AVH2 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230568.1 | clone 2F06AVH2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230571.1 | clone 3B10AVH2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230572.1 | clone 3C07AVH2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230573.1 | clone 3C12AVH2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230574.1 | clone 3D09AVH2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |

| DQ230576.1 | clone 3D11AVH2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| :--- | :--- | :--- | :--- |
| DQ230577.1 | clone 6A03AVH2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230579.1 | clone 6D03AVH2 CS3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230580.1 | clone 6D06AVH2 CS3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230581.1 | clone 6E05AVH2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492749.1 | clone 18E03VH2SK CS3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492777.1 | clone 16G01VH2I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492704.1 | clone 16A01VH2GL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492648.1 | clone 16E04VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492649.1 | clone 16E05VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492650.1 | clone 16E07VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492651.1 | clone 16E08VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492652.1 | clone 16E09VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492653.1 | clone 16E10VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492655.1 | clone 16E12VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492656.1 | clone 16F01VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492657.1 | clone 16F02VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492658.1 | clone 16F03VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492585.1 | clone 20C02RevPBL CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492589.1 | clone 19E03VH2PBL CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492600.1 | clone 16D01VH2AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |

| EU492602.1 | clone 16D06VH2AK CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| :--- | :--- | :--- | :--- |
| EU492603.1 | clone 16D07VH2AK CS5 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492604.1 | clone 16D08VH2AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492605.1 | clone 16D09VH2AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492606.1 | clone 16D10VH2AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492607.1 | clone 16D11RevAK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492608.1 | clone 16D12VH2AK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492633.1 | clone 19E04VH2AK CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492638.1 | clone 15E03VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492639.1 | clone 15E04VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492647.1 | clone 16E03VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492659.1 | clone 16F04VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492660.1 | clone 16F05VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492691.1 | clone 20C04RevSP CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492692.1 | clone 20E01RevSP CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492705.1 | clone 16A02VH2GL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492706.1 | clone 16A03VH2GL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492708.1 | clone 16A05VH2GL CS9 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492709.1 | clone 16A06VH2GL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492710.1 | clone 16A07VH2GL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492711.1 | clone 16A09VH2GL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |

EU492712.1	clone 16A11VH2GL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492713.1	clone 16A12VH2GL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492735.1	clone 20F02VH2GL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
DQ230582.1	clone 6F06AVH2 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
DQ230583.1	clone 6G06AVH2 CS2 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
DQ230584.1	clone 6H06AVH2 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
AY238359.1	immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492559.1	clone 16B04VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492560.1	clone 16B06VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492561.1	clone 16B08VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492562.1	clone 16B10VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492563.1	clone 16B12VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492564.1	clone 16C01VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492565.1	clone 16C02VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492566.1	clone 16C03VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492821.1	clone 16H03VH2I3 CS1 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492568.1	clone 16C05VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492822.1	clone 16H09VH2I3 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492812.1	clone 20F03RevI2 CS8 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492736.1	clone 16A08RevI2 CS8 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	
EU492760.1	clone 21C06VH2SK immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus	

| EU492778.1 | clone 16G02VH2I2 CS9 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| :--- | :--- | :--- | :--- |
| EU492853.1 | clone 16H05VH2I3 CS5 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230570.1 | clone 3B05AVH2 CS4 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230575.1 | clone 3D10AVH2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| DQ230578.1 | clone 6B05AVH2 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492599.1 | clone 16C12VH2AK CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492654.1 | clone 16E11VH2SP immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492694.1 | clone 19E11VH2SP CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492758.1 | clone 20C09VH2SK immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492810.1 | clone 16G06RevI2 CS2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492823.1 | clone 16H10VH2I3 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492846.1 | clone 21H05VH2I3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492847.1 | clone 21H06RevI3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492849.1 | clone 21H09VH2I3 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492852.1 | clone 16H07RevI3 CS1 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| M58670.1 | Ig heavy chain mRNA V-region clone NG22 | Ictalurus punctatus |
| EU492779.1 | clone 16G04VH2I2 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| M58675.1 | Ig heavy chain mRNA V-region, clone NG77 | Ictalurus punctatus |
| EU492841.1 | clone 20G04VH2I3 CS6 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492780.1 | clone 16G08VH2I2 CS7 immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |
| EU492707.1 | clone 16A04VH2GL immunoglobulin heavy chain variable region mRNA, partial cds | Ictalurus punctatus |

EU492569.1	clone 16C06VH2PBL immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
EU492601.1	clone 16D04VH2AK CS6 immunoglobulin heavy chain variable region mRNA, partial cds	Ictalurus punctatus
AF273412.1	clone 01-09 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273415.1	clone 05-12 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273410.1	clone 04-09 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273411.1	clone 01-06 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273413.1	clone 01-10 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273414.1	clone 05-11 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273416.1	clone 08-06 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273417.1	clone 08-07 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273418.1	clone 10-11 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF269076.1	clone d27 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF269078.1	clone 09-10 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273398.1	clone 08-01 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273399.1	clone 08-10 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273396.1	clone 04-04 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273397.1	clone 07-02 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF269079.1	clone 02-04 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF269080.1	clone 02-10 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF269081.1	clone 06-07 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF269082.1	clone 09-04 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar

AF269083.1	clone 09-06 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273429.1	clone 07-04 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF269084.1	clone 09-14 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273425.1	clone 03-08 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273426.1	clone 10-08 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273419.1	clone 01-03 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273421.1	clone 08-05 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273422.1	clone 09-15 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273423.1	clone 09-12 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273424.1	clone 10-02 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273420.1	clone 07-01 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273427.1	clone 02-05 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273428.1	clone 03-06 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273430.1	clone 08-03 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273431.1	clone 09-03 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF273432.1	clone 10-10 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AF269085.1	clone 10-06 immunoglobulin heavy chain variable region (IgH) mRNA, partial cds	Salmo salar
AY646275.1	isolate 4-8.2.1 immunoglobulin zeta heavy chain mRNA, partial cds	Danio rerio
AY646273.1	isolate 4-3.2.1 immunoglobulin zeta heavy chain mRNA, partial cds	Danio rerio
AY646274.1	isolate 4-6.0.2 immunoglobulin zeta heavy chain mRNA, partial cds	Danio rerio
AY646252.1	isolate 4-8.3.5 immunoglobulin mu heavy chain mRNA, partial cds	Danio rerio

AY646251.1	isolate 4-6.5.5 immunoglobulin mu heavy chain mRNA, partial cds	Danio rerio
AY646250.1	isolate 4-6.4.2 immunoglobulin mu heavy chain mRNA, partial cds	Danio rerio
AF273884.1	clone VH124 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AF273876.1	clone VH101 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AF273877.1	clone VH103 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AF273878.1	clone VH119 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AF273882.1	clone VH23 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AF273885.1	clone VH88 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AF273880.1	clone VH114 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AF273886.1	clone VH350-6 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AF273889.1	clone VH350-3 immunoglobulin heavy chain variable region mRNA, partial cds	Danio rerio
AY646245.1	isolate 1-2.1.1 immunoglobulin mu heavy chain mRNA, partial cds	Danio rerio
DQ106021.1	isolate A variant immunoglobulin heavy chain variable region gene, partial cds	Danio rerio
AF273897.1	clone VHE1 immunoglobulin heavy chain variable region gene, partial cds	Danio rerio
DQ106019.1	isolate A immunoglobulin heavy chain variable region gene, partial cds	Danio rerio
AY646263.1	isolate 1-2.2.1 immunoglobulin zeta heavy chain mRNA, partial cds	Danio rerio
AY646264.1	isolate 1-1.2.1 immunoglobulin zeta heavy chain mRNA, partial cds	Danio rerio
AY646267.1	isolate 1-2.1.1 immunoglobulin zeta heavy chain mRNA, partial cds	Danio rerio
AY608342.1	isolate MaryM7 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608355.1	isolate MaryM33 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608358.1	isolate JosefM2 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
		D

AY608362.1	isolate JosefM7 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608373.1	isolate JosefM21 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608376.1	isolate JosefM27 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608386.1	isolate M17 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608392.1	isolate M29 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608397.1	isolate M34 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY609272.1	clone 72S immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY609265.1	clone 47S immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY609266.1	clone 49S immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359839.1	clone G5G2-13 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359840.1	clone G5G2-16 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359841.1	clone G5G2-17 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359843.1	clone G5G2-33 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359844.1	clone G5G2-9 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359845.1	clone G5G2-13-2 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359846.1	clone G5G2-B immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359832.1	clone G2G5-E11 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359857.1	clone G2G5-C2 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359856.1	clone G2G5-B9 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359858.1	clone G2G5-C6 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608337.1	isolate MaryM2 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum

AY608339.1	isolate MaryM4 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608340.1	isolate MaryM5 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608341.1	isolate MaryM6 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608346.1	isolate MaryM12 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608347.1	isolate MaryM13 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608349.1	isolate MaryM15 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608351.1	isolate MaryM17 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608353.1	isolate MaryM31 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608354.1	isolate MaryM32 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608356.1	isolate MaryM34 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608357.1	isolate JosefM1 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608361.1	isolate JosefM6 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608363.1	isolate JosefM11 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608364.1	isolate JosefM12 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608365.1	isolate JosefM13 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608366.1	isolate JosefM14 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608367.1	isolate JosefM15 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608368.1	isolate JosefM16 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608369.1	isolate JosefM17 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608370.1	isolate JosefM18 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608371.1	isolate JosefM19 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum

AY608372.1	isolate JosefM20 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608374.1	isolate JosefM22 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608375.1	isolate JosefM26 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608377.1	isolate M3 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608378.1	isolate M4 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608379.1	isolate M5 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608381.1	isolate M8 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608382.1	isolate M9 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608383.1	isolate M13 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608384.1	isolate M14 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608385.1	isolate M15 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608387.1	isolate M19 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608389.1	isolate M21 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608390.1	isolate M24 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608391.1	isolate M25 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608393.1	isolate M30 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608394.1	isolate M31 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608395.1	isolate M32 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608396.1	isolate M33 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608398.1	isolate M35 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608400.1	isolate M39 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymosa cirratum

AY608401.1	isolate M41 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608403.1	isolate M43 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY608404.1	isolate M47 immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY609249.1	clone 2S immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY609254.1	clone 21S immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359842.1	clone G5G2-31 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY609258.1	clone 27S immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ282627.1	clone G2G5-34 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY609264.1	clone 46S immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
AY609259.1	clone 29S immunoglobulin mu heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359827.1	clone G4G5-3 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359826.1	clone G4G5-17 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359833.1	clone G4G5-E30 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359828.1	clone G4G5-4 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359830.1	clone G4G5-39 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359829.1	clone G4G5-33 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359831.1	clone G4G5-66 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359835.1	clone G4G2-33 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359836.1	clone G4G2-41 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359834.1	clone G4G5-E35 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359837.1	clone G4G2-54 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum

AY609252.1	clone 15S	Ginglymostoma cirratum
GQ359848.1	clone G4G5-46 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359849.1	clone G4G5-76 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359850.1	clone G4G5-81 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359855.1	clone G4G5-A21 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359851.1	clone G4G5-88 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
JQ272797.1	clone 4-7 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272798.1	clone 4-21 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272799.1	clone 4-36 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272805.1	clone I7 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272806.1	clone I16 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272808.1	clone I29 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272809.1	clone I36 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272810.1	clone I53 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272812.1	clone I69 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272815.1	clone I-167 IgM G4 VDJ switch to G5 C-region mRNA sequence	Ginglymostoma cirratum
JQ272821.1	clone 61 IgM G5 VDJ switch to G4 C-region mRNA sequence	Ginglymostoma cirratum
GQ359852.1	clone G2G5-F27 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
GQ359853.1	clone G4G5-C33 immunoglobulin heavy chain variable region mRNA, partial cds	Ginglymostoma cirratum
JF507607.1	clone T0923W2J05 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds	Ginglymostoma cirratum
JF507611.1	clone T1023W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds	Ginglymostoma cirratum
		G

| JF507612.1 | clone T1123W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| :--- | :--- | :--- | :--- |
| JF507613.1 | clone T0419W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507614.1 | clone T0423W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507615.1 | clone T1323W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507616.1 | clone T0523W2J24 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507617.1 | clone T0123W2J24 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507620.1 | clone S1523W2J06 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507625.1 | clone S0916W2J08 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507627.1 | clone S2023W2J09 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507629.1 | clone S1823W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507637.1 | clone V1419W2J08 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507640.1 | clone V1319W2J08 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507646.1 | clone V1924W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507647.1 | clone V1724W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507648.1 | clone V2424W2J12 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507659.1 | clone V1219W2J24 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| JF507660.1 | clone V1424W2J25 IgWV TCR delta trans-rearrangement (TCRD) mRNA, partial cds | Ginglymostoma cirratum |
| KC920802.1 | clone V5 secreted IgW heavy chain mRNA, partial cds | Ginglymostoma cirratum |
| KC920803.1 | clone c1 secreted IgW heavy chain mRNA, partial cds | Ginglymostoma cirratum |
| AY524282.1 | clone 7 1-2 immunoglobulin IgW short mRNA complete cds | Ginglymostoma cirratum |
| AY524295.1 | clone L immunoglobulin IgW-like mRNA complete sequence | Ginglymostoma cirratum |

LC000730.1	IGHV2S19 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000729.1	IGHV2S18 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
AB125608.1	IgVH mRNA for immunoglobulin heavy chain variable region partial cds clone: F-m161	Takifugu rubripes
LC000719.1	IGHV2S7 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
AB125607.1	IgVH mRNA for immunoglobulin heavy chain variable region partial cds clone: F-m146	Takifugu rubripes
AB125606.1	IgVH mRNA for immunoglobulin heavy chain variable region partial cds clone: F-m118	Takifugu rubripes
AB217624.1	IgM mRNA for immunoglobulin mu heavy chain partial cds clone: IgM_36	Takifugu rubripes
XM_011621003.1	Ig mu chain C region membrane-bound form (LOC445921) mRNA	Takifugu rubripes
LC000729.1	IGHV2S18 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000728.1	IGHV2S17 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000724.1	IGHV2S12 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000720.1	IGHV2S8 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000719.1	IGHV2S7 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000718.1	IGHV2S6 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000717.1	IGHV2S1 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000721.1	IGHV2S9 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000722.1	IGHV2S10 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000723.1	IGHV2S11 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000726.1	IGHV2S15 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000727.1	IGHV2S16 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000730.1	IGHV2S19 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes

LC000731.1	IGHV2S20 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
AB217616.1	IgH mRNA for Immunoglobulin heavy chain partial cds clone: IgH_4	Takifugu rubripes
AB159481.1	IgD mRNA for immunoglobulin D complete cds	Takifugu rubripes
AB217618.1	IgH mRNA for immunoglobulin heavy chain partial cds clone: IgH_6	Takifugu rubripes
AB125605.1	IgVH mRNA for immunoglobulin heavy chain variable region partial cds clone: F-m116	Takifugu rubripes
AB217620.1	IgH mRNA for immunoglobulin heavy chain partial cds clone: IgH_20	Takifugu rubripes
AB125604.1	IgVH mRNA for immunoglobulin heavy chain variable region partial cds clone: F-m106	Takifugu rubripes
LC000713.2	IGHV1S17 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000716.1	IGHV1S21 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000700.1	IGHV1S4 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000714.1	IGHV1S18 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000711.1	IGHV1S15 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000710.1	IGHV1S14 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000708.1	IGHV1S12 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000704.1	IGHV1S8 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000703.1	IGHV1S7 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000699.1	IGHV1S3 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000698.1	IGHV1S2 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000697.1	IGHV1S1 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000715.1	IGHV1S19 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000700.1	IGHV1S4 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
		Ther\|

LC000709.1	IGHV1S13 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes
LC000712.1	IGHV1S16 gene immunoglobulin heavy chain partial sequence	Takifugu rubripes

Appendix 2: Pairwise Comparisons of substrate specificity of Hs-AID using independent samples Kruskal-Wallis test

Sample 1 vs. Sample 2	Test Statistic	Std. Error	Std. Test Statistic	Sig.	Adj. Sig. ${ }^{\text {a }}$
TGC vs. WRC	8.444	9.863	. 856	. 392	1.000
AGC vs. WRC	-5.222	9.863	-. 529	. 596	1.000
TAC vs. WRC	-3.222	9.863	-. 327	. 744	1.000
TGC vs. non-WRC	40.889	9.863	4.146	. 000	. 001
AGC vs. non-WRC	27.222	9.863	2.760	. 006	. 162
TAC vs. non-WRC	29.222	9.863	2.963	. 003	. 085
GGC vs. WRC	-40.222	9.863	-4.078	. 000	. 001
GTC vs. WRC	-31.889	9.863	-3.233	. 001	. 034
GAC vs. WRC	-25.222	9.863	-2.557	. 011	. 295
GGC vs. non-WRC	-7.778	9.863	-. 789	. 430	1.000
GTC vs. non-WRC	. 556	9.863	. 056	. 955	1.000
GAC vs. non-WRC	7.222	9.863	. 732	. 464	1.000
WRC vs. non-WRC	32.444	6.974	4.652	. 000	. 000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.
Asymptotic significances (2 -sided tests) are displayed. The significance level is .05 .
${ }^{\text {a }}$. Significance values have been adjusted by the Bonferroni correction for multiple tests.

Appendix 3: Pairwise Comparisons of substrate specificity of Dr-AID using independent samples Kruskal-Wallis test

Sample 1 vs. Sample 2	Test Statistic	Std. Error	Std. Test Statistic	Sig.	Adj. Sig. ${ }^{\text {a }}$
TGC vs. WRC	18.444	9.860	1.871	. 061	1.000
AGC vs. WRC	-. 889	9.860	-. 090	. 928	1.000
TAC vs. WRC	-17.556	9.860	-1.780	. 075	1.000
TGC vs. non-WRC	41.556	9.860	4.214	. 000	. 001
AGC vs. non-WRC	22.222	9.860	2.254	. 024	. 678
TAC vs. non-WRC	5.556	9.860	. 563	. 573	1.000
GGC vs. WRC	-37.889	9.860	-3.843	. 000	. 003
GTC vs. WRC	-33.222	9.860	-3.369	. 001	. 021
GAC vs. WRC	-. 889	9.860	-. 090	. 928	1.000
GGC vs. non-WRC	-14.778	9.860	-1.499	. 134	1.000
GTC vs. non-WRC	-10.111	9.860	-1.025	. 305	1.000
GAC vs. non-WRC	24.889	9.860	2.524	. 012	. 325
WRC vs. non-WRC	23.111	6.972	3.315	. 001	. 026

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.
Asymptotic significances (2 -sided tests) are displayed. The significance level is .05 .
${ }^{\text {a }}$. Significance values have been adjusted by the Bonferroni correction for multiple tests.

Appendix 4: Pairwise Comparisons of substrate specificity of Ip-AID using independent samples Kruskal-Wallis test

Sample 1 vs. Sample 2	Test Statistic	Std. Error	Std. Test Statistic	Sig.	Adj. Sig. ${ }^{\text {a }}$
TGC vs. WRC	14.556	9.629	1.512	. 131	1.000
AGC vs. WRC	2.556	9.629	. 265	. 791	1.000
TAC vs. WRC	-17.111	9.629	-1.777	. 076	1.000
TGC vs. non-WRC	36.778	9.629	3.819	. 000	. 004
AGC vs. non-WRC	24.778	9.629	2.573	. 010	. 282
TAC vs. non-WRC	5.111	9.629	. 531	. 596	1.000
GGC vs. WRC	-34.111	9.629	-3.542	. 000	. 011
GTC vs. WRC	-25.778	9.629	-2.677	. 007	. 208
GAC vs. WRC	-6.778	9.629	-. 704	. 482	1.000
GGC vs. non-WRC	-11.889	9.629	-1.235	. 217	1.000
GTC vs. non-WRC	-3.556	9.629	-. 369	. 712	1.000
GAC vs. non-WRC	15.444	9.629	1.604	. 109	1.000
WRC vs. non-WRC	22.222	6.809	3.264	. 001	. 031

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.
Asymptotic significances (2 -sided tests) are displayed. The significance level is .05 .
${ }^{\text {a }}$. Significance values have been adjusted by the Bonferroni correction for multiple tests.

Appendix 5: Pairwise Comparisons of substrate specificity of Gm-AID using independent samples Kruskal-Wallis test

Sample 1 vs. Sample 2	Test Statistic	Std. Error	Std. Test Statistic	Sig.	Adj. Sig. ${ }^{\text {a }}$
TGC vs. WRC	13.222	9.863	1.341	. 180	1.000
AGC vs. WRC	-2.444	9.863	-. 248	. 804	1.000
TAC vs. WRC	-10.778	9.863	-1.093	. 274	1.000
TGC vs. non-WRC	42.778	9.863	4.337	. 000	. 000
AGC vs. non-WRC	27.111	9.863	2.749	. 006	. 167
TAC vs. non-WRC	18.778	9.863	1.904	. 057	1.000
GGC vs. WRC	-42.444	9.863	-4.303	. 000	. 000
GTC vs. WRC	-27.111	9.863	-2.749	. 006	. 167
GAC vs. WRC	-19.111	9.863	-1.938	. 053	1.000
GGC vs. non-WRC	-12.889	9.863	-1.307	. 191	1.000
GTC vs. non-WRC	2.444	9.863	. 248	. 804	1.000
GAC vs. non-WRC	10.444	9.863	1.059	. 290	1.000
WRC vs. non-WRC	29.556	6.974	4.238	. 000	. 001

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.
Asymptotic significances (2 -sided tests) are displayed. The significance level is .05 .
${ }^{\text {a }}$. Significance values have been adjusted by the Bonferroni correction for multiple tests.

Appendix 6: List of bony fish species studied in this thesis. Basic habitat information was retrieved from FishBase database (www.fishbase.se).

Species	IUCN Red List Status	Habitat	Depth range (usual range) (m)	Temperature	Distribution	Comments
G. morhua	$\begin{gathered} \text { VU } \\ (1996) \end{gathered}$	Marine	$\begin{gathered} 0-600 \\ (150-200) \\ \hline \end{gathered}$	$0^{\circ} \mathrm{C}-15^{\circ} \mathrm{C}$	$83^{\circ} \mathrm{N}-35^{\circ} \mathrm{N} ; 95^{\circ} \mathrm{W}-86^{\circ} \mathrm{E}$	
T. chalcogramma	NE	Marine	$\begin{gathered} ?-1280 \\ (30-400) \\ \hline \end{gathered}$	Polar	$68^{\circ} \mathrm{N}-34^{\circ} \mathrm{N} ; 129^{\circ} \mathrm{E}-120^{\circ} \mathrm{W}$	
B. saida	NE	Marine	$0-400$	Polar $-2^{\circ} \mathrm{C}-8^{\circ} \mathrm{C}$	$87^{\circ} \mathrm{N}-52^{\circ} \mathrm{N} ; 180^{\circ} \mathrm{W}-180^{\circ} \mathrm{E}$	
A. glacialis	NE	Marine	0-1000	Deep-water	$87^{\circ} \mathrm{N}-69^{\circ} \mathrm{N} ; 130^{\circ} \mathrm{W}-150^{\circ} \mathrm{E}$	
M. merlangus	$\begin{gathered} \text { LC } \\ (2013) \\ \hline \end{gathered}$	Marine	$\begin{gathered} 10-200 \\ (30-100) \\ \hline \end{gathered}$	Temperate	$72^{\circ} \mathrm{N}-35^{\circ} \mathrm{N} ; 27^{\circ} \mathrm{W}-42^{\circ} \mathrm{E}$	
M. aeglefinus	$\begin{gathered} \text { VU } \\ (1996) \\ \hline \end{gathered}$	Marine	$\begin{gathered} 10-450 \\ (10-200) \\ \hline \end{gathered}$	Temperate	$79^{\circ} \mathrm{N}-35^{\circ} \mathrm{N} ; 76^{\circ} \mathrm{W}-52^{\circ} \mathrm{E}$	
P. virens	NE	Marine	37-364	Temperate	$77^{\circ} \mathrm{N}-33^{\circ} \mathrm{N} ; 76^{\circ} \mathrm{W}-35^{\circ} \mathrm{E}$	
G. argenteus	NE	Marine	100-1000	Temperate	$74^{\circ} \mathrm{N}-24^{\circ} \mathrm{N} ; 18^{\circ} \mathrm{W}-17^{\circ} \mathrm{E}$	
T. minutus	NE	Marine	$\begin{gathered} 1-440 \\ (15-200) \\ \hline \end{gathered}$	Temperate	$66^{\circ} \mathrm{N}-28^{\circ} \mathrm{N} ; 13^{\circ} \mathrm{W}-36^{\circ} \mathrm{E}$	
B. brosme	NE	Marine	$\begin{array}{r} 18-1000 \\ (18-549) \\ \hline \end{array}$	Temperate	$83^{\circ} \mathrm{N}-37^{\circ} \mathrm{N} ; 75^{\circ} \mathrm{W}-57^{\circ} \mathrm{E}$	
M. molva	NE	Marine	$\begin{aligned} & 100-1000 \\ & (100-400) \end{aligned}$	Temperate	$75^{\circ} \mathrm{N}-35^{\circ} \mathrm{N} ; 55^{\circ} \mathrm{W}-44^{\circ} \mathrm{E}$	
L. lota	$\begin{gathered} \hline \text { LC } \\ (2012) \\ \hline \end{gathered}$	Freshwater	1-700	Temperate $4^{\circ} \mathrm{C}-18^{\circ} \mathrm{C}$	$78^{\circ} \mathrm{N}-40^{\circ} \mathrm{N} ; 180^{\circ} \mathrm{W}-180^{\circ} \mathrm{E}$	The only member of Lotidae family which lives in freshwater.
P. phycis	$\begin{gathered} \text { LC } \\ (2015) \\ \hline \end{gathered}$	Marine	$\begin{gathered} 13-614 \\ (100-200) \\ \hline \end{gathered}$	Subtropical	$45^{\circ} \mathrm{N}-13^{\circ} \mathrm{N} ; 32^{\circ} \mathrm{W}-36^{\circ} \mathrm{E}$	
P. blennoides	NE	Marine	$\begin{gathered} 10-1200 \\ (100-450) \\ \hline \end{gathered}$	Temperate	$69^{\circ} \mathrm{N}-20^{\circ} \mathrm{N} ; 29^{\circ} \mathrm{W}-36^{\circ} \mathrm{E}$	
M. occidentalis	$\begin{gathered} \hline \text { LC } \\ (2009) \\ \hline \end{gathered}$	Marine	$\begin{aligned} & 140-1945 \\ & (300-500) \\ & \hline \end{aligned}$	Deep-water	$43^{\circ} \mathrm{N}-37^{\circ} \mathrm{S} ; 98^{\circ} \mathrm{W}-13^{\circ} \mathrm{E}$	In tropical and warm-temperate waters.
M. berglax	NE	Marine	$\begin{array}{r} 100-1000 \\ (300-500) \\ \hline \end{array}$	Temperate $0^{\circ} \mathrm{C}-4^{\circ} \mathrm{C}$	$82^{\circ} \mathrm{N}-37^{\circ} \mathrm{N} ; 95^{\circ} \mathrm{W}-61^{\circ} \mathrm{E}$	
B. melanobranchus	$\begin{gathered} \hline \text { LC } \\ (2012) \\ \hline \end{gathered}$	Marine	$\begin{gathered} 400-2600 \\ (700-1400) \\ \hline \end{gathered}$	Deep-water	$53^{\circ} \mathrm{N}-34^{\circ} \mathrm{S} ; 98^{\circ} \mathrm{W}-20^{\circ} \mathrm{E}$	

Species	IUCN Red List Status	Habitat	Depth range (usual range) (m)	Temperature	Distribution	Comments
L. laureysi	$\begin{gathered} \text { LC } \\ (2012) \\ \hline \end{gathered}$	Marine	$\begin{gathered} 200-618 \\ (300-?) \\ \hline \end{gathered}$	Deep-water	$8^{\circ} \mathrm{N}-8^{\circ} \mathrm{S} ; 13^{\circ} \mathrm{W}-12^{\circ} \mathrm{E}$	
M. mora	$\begin{gathered} \text { LC } \\ (2013) \\ \hline \end{gathered}$	Marine	450-2500	Deep-water	$64^{\circ} \mathrm{N}-51^{\circ} \mathrm{S} ; 77^{\circ} \mathrm{W}-174^{\circ} \mathrm{W}$	
T. murrayi	NE	Marine	$\begin{gathered} 0-1630 \\ (500-1630) \\ \hline \end{gathered}$	Temperate	$65^{\circ} \mathrm{N}-42^{\circ} \mathrm{N} ; 71^{\circ} \mathrm{W}-0^{\circ} \mathrm{E}$	
T. scabrus	$\begin{gathered} \hline \text { LC } \\ (2012) \\ \hline \end{gathered}$	Marine	395-1700	Deep-water	$55^{\circ} \mathrm{N}-27^{\circ} \mathrm{S} ; 26^{\circ} \mathrm{W}-36^{\circ} \mathrm{E}$	
M. marmoratus	NE	Marine	30-1600	Polar	$44^{\circ} \mathrm{S}-56^{\circ} \mathrm{S} ; 39^{\circ} \mathrm{E}-76^{\circ} \mathrm{E}$	
M. zugmayeri	$\begin{gathered} \text { LC } \\ (2012) \end{gathered}$	Marine	$99-3000$	Deep-water	$60^{\circ} \mathrm{N}-49^{\circ} \mathrm{S} ; 81^{\circ} \mathrm{W}-153^{\circ} \mathrm{W}$	In tropical and temperate waters; rare in the temperate northeast Atlantic
M. merluccius	$\begin{gathered} \hline \text { LC } \\ (2015) \\ \hline \end{gathered}$	Marine	$\begin{aligned} & 30-1075 \\ & (70-400) \\ & \hline \end{aligned}$	Temperate	$76^{\circ} \mathrm{N}-18^{\circ} \mathrm{N} ; 30^{\circ} \mathrm{W}-42^{\circ} \mathrm{E}$	
B. cantori	$\begin{gathered} \text { LC } \\ (2013) \end{gathered}$	Marine	$450-475$	Deep-water	Western Atlantic: Cariaco Trench, Venezuela, Gulf of Mexico to southern Brazil	
S. chardatus	$\begin{gathered} \hline \text { LC } \\ (2013) \\ \hline \end{gathered}$	Marine	300-800	Deep-water	Tropical to subtropical in all oceans.	
C. roseus	$\begin{gathered} \text { LC } \\ (2014) \\ \hline \end{gathered}$	Marine	$\begin{gathered} 150-730 \\ (330-690) \\ \hline \end{gathered}$	Deep-water		
Z. faber	$\begin{gathered} \text { DD } \\ (2013) \\ \hline \end{gathered}$	Marine	$\begin{gathered} 5-400 \\ (50-150) \\ \hline \end{gathered}$	Temperate	$75^{\circ} \mathrm{N}-49^{\circ} \mathrm{S} ; 17^{\circ} \mathrm{W}-177^{\circ} \mathrm{E}$	
T. subterraneus	$\begin{gathered} \text { NT } \\ (2012) \\ \hline \end{gathered}$	Freshwater		Temperate	$39^{\circ} \mathrm{N}-34^{\circ} \mathrm{N}$	
P. transmontana	$\begin{gathered} \text { LC } \\ (2012) \\ \hline \end{gathered}$	Freshwater		Temperate	$44^{\circ} \mathrm{N}-43^{\circ} \mathrm{N}$	
P. japonica	NE	Marine	160-628	Deep-water	$40^{\circ} \mathrm{N}-6^{\circ} \mathrm{N} ; 97^{\circ} \mathrm{E}-154^{\circ} \mathrm{W}$	
S. salar	$\begin{aligned} & \hline \text { LR/LC } \\ & (1996) \\ & \hline \end{aligned}$	Marine	$\begin{gathered} 0-210 \\ (10-23) \end{gathered}$	Temperate $2^{\circ} \mathrm{C}-9^{\circ} \mathrm{C}$	$72^{\circ} \mathrm{N}-40^{\circ} \mathrm{N} ; 80^{\circ} \mathrm{W}-61^{\circ} \mathrm{E}$	
D. rerio	$\begin{gathered} \text { LC } \\ (2009) \\ \hline \end{gathered}$	Freshwater		Tropical $18^{\circ} \mathrm{C}-24^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{N}-8^{\circ} \mathrm{N} ; 66^{\circ} \mathrm{E}-98^{\circ} \mathrm{E}$	
T. rubripes	NT	Marine		Temperate	$46^{\circ} \mathrm{N}-21^{\circ} \mathrm{N} ; 119^{\circ} \mathrm{E}-142^{\circ} \mathrm{E}$	

Species	IUCN Red List Status	Habitat	Depth range (usual range) (m)	Temperature	Distribution	Comments
	(2011)					
O. latipes	NE	Freshwater		Subtropical $18^{\circ} \mathrm{C}-24^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{N}-10^{\circ} \mathrm{N} ; 85^{\circ} \mathrm{E}-105^{\circ} \mathrm{E}$	

Species name	DNA sequence
Acanthochaenus luetkenii	ATGATTACAAAACTAGACCGTGTGCTTTTGGCCAAGGAAACGTTCATCTTCCATTATGAGAACATGCGCTGGGCAAAAGGTCGGCATGAGACATAC CTCTGCTTTGTAGTGAAGAGGCGGGTGGGGCCAGACTCCCTGTCCTTTGACTTTGGACACCTCCGCAACCGCACTGGCTGCCATGTAGAGCTGCTGT TCCTGCGCCACCTGGGAACCTTGTGCCCTGGACTGTGGGGGTACGGAGGCGCTGGAGAGAGGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCСTG GTCCCCCTGCGCTGACTGCGCCTTCAGAGTGGCCCAGTTAATCGGCCGGACGCCCAACCTCCGCCTCAGGATCTTCGTCTCTCGCCTCTACTTCTGCG ACCTGGAGGACAGCCGCGAGAGAGGGGGCCTGAGGTTGCTGAAGAAAGCTGGCGTGCAGATCACTGTCATGAGCTACAAAGACTTTTTCTATTGCT GGCAGACCTTTGTGGCTAATGGAGGGAGCAGCTTCAAGGCCTGGGACGAGATGCACCAAAACTCTGTTCGCCTGGCCAGCCAACTCAACCACATCC TGCAGCCATGTGATACAGAGGACTTAAGAGATGCATTCAAGCTTCTTGGTCTGTGA
Anabas testudineus	ATGATTACAAAGCTAGACAGTGTGCTTTTGCCCCGAAAGAAGTTTATCTACCATTACAAGAATGTGCGCTGGGCGAGGGGTCGTCATGAAACATAC CTCTGTTTCGTAGTGAAGAGGCGGGTGGGCCCAGACTCCTTGACCTTTGACTTTGGACACCTCCGCAATCGCAATGGCTGCCATGTGGAGATGCTGT TCTTGCGCTATCTGGGAGCCTTATGTCCTGGTATTTGGGGGTACGGAGGTGCTGGAGAGAAAAGGCTCAGTTACTCAATTACCTGGTTCTGTTCCTG GTCTCCTTGTGCCAACTGCTCCCTTAGGCTGACCCAGTTCCTCAGTCAGACCCCCAACCTCCGCCTCAGGATCTTTGTGTCCCGCCTTTACTTCTGTG ACATGGAGGACAGCCGCGAGCGGGAGGGTCTGAGGATACTGAAAAATGCTGGCGTGCAGATCACAGTCATGACTTACAAAGACTTCTTCTATTGCT GGCAGACCTTTGTGGATCGTAAACAGAGCAGCTTCAAAGCGTGGGATGAGCTGCACCAAAACTCTGTTCGCCTCACCAGAAAACTCTACCGCATCC TTCAGCCCTGTGAAATAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGGCTGTGA
Antennarius striatus	ATGATTACGAAGCTTGACAGCGTGCTTTTGCCCCGAAAAAAGTTCATCTACCATTATAAGAACATGCGCTGGGCGAGAGGCCGGTGTGAGACGTAC CTCTGCTTTGTAGTGAAGAGACGAGAGGGGCCAGACACCTTAACTTTTGACTTTGGACACCTCCGTAATCGCAATGGCTGTCATGTGGAGCTACTTT TCTTACGCTATCTGGGGGCCTTGTGCCCTGGATTGTGGGGCAGTGGGGGTACTGGGGAGAAGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGTTCCATCAGACAGTGTGAATTCCTGAGCCGAACGCCCAACCTTCGCCTCAGGATCTTTGTCTCTCGTTTGTACTTCTGCG ACCTGGAGGATAGCCGTGAAAGGGAAGGCCTAAGAATGCTGAAGAAAGCCGGCGTGCAGATCTCAGTCATGAGTTACAAAGACTTCTTCTACTGCT GGCAGACCTTTGTGGCTAGTAAACAAAGTAGTTTCAAGGCTTGGGAAGAGCTGCATCAAAATTCAGTACGCCTTGCCAGAAAACTGAACCGCATCC TCCAGCCGTGTGAAGCTGAAGATTTAAGAGATGCCTTTAAGCTTCTTGGACTGTGA
Arctogadus glacialis	ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAAAATAAATTCATCTACAATTACAAGAACATGCGATGGGCAAAAGGCCGCAACGAGACCTAT CTCTGCTTCGTAATGAAGAGAAGGCTTGGACCTGATTCCCTCTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGCAGAGCTGCTGT TCCTGAGCTACCTGGGGGCGCTGTGCCCGGGCCTCTGGGGCTGCGCAGACGACAGAAACCGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGACCCGGTTCCTGAGGCAGACACCAAACCTGCGACTCAGGATCTTCGTGTCTCGCCTCTACTTTTG TGACCTGGAGGGCAGTCCGCATGTAGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAAGACTACTTCTACT GCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTATGTGCGTCTGTCAAGAAAAAANCNAAACC GCATCCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACCTGA
Astyanax mexicanus	ATGACGAGCAAGCTGGACAGCATTCTGCTCACCCAGAAGAAGTTTATCTATCACTACAAGAACGTGCGCTGGGCTCGTGGGAGGCATGAGACTTAC CTCTGCTTCGTGGTGAAGAGGCGAATCGGACCAAACTCGCTGTCCTTCGACTTCGGGCACCTGCGCAACCGCTCCGGCTGCCACGTGGAGCTCCTCT TCCTGCGCTACCTGGGGGCACTGTGCCCGGGCCTGGGGGGTCTGGGTGTGGACGGAGTGAAGGTGGGCTACGCTGTGACCTGGTTCTGCTCATGGT CGCCCTGCTCTAACTGCGCCCAGCGAATCGCCCACATCCTGTCCCAGACGCCCAGCCTGCGACTCCGCATCTTCGTCTCCCGCCTGTACTTCTGCGAC AACGAGGACAGCCTGGAGCGGGAGGGGCTGCGGCACCTGCTGAGGGCAGGGGTGCAGATTACAGTCATGACGTATAAAGATTTTTTCTACTGTTGG CAGACGTTTGTGGCTCGCAGGGAGAGTCGCTTTAAAGCCTGGGACGGTCTTCACCAAAACTCTGTCAGACTGTCCCGCAAACTCAAACGCATCCTCC AGCCCTGTCAGACTGAAGATCTGAGGGACGTCTTCGCTCTGCTGGGTCTCTGA
Bathygadus melanobranchus	ATGATTAGTAAGCTCGACAGTGTGCTTTTGGCCCAGAAAAAATTCATGTACAATTACAAGAACGTGCGCTGGGCAAAAGGCCGCCACGAGACCTAC CTCTGCTTCGTAGTGAGGAGAAGGCTCGGACCAAATTCCCTGTCTTTTGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAGAGCTGCTGT TTCTGAGCCACCTGGGGGCGCTCTGCCCAGGCCTCTGGGGGTGCGTAGGTGATGACAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCAACTGTGCGGCCACACTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT

Benthosema glaciale
Beryx splendens
Boreogadus saida
Brosme brosme

GACCTGGAGGACAGTCCGAATATAGAGGGCTTGAGAGAGCTGAGGAGGGCAGGAGTCCAGGTCATCGTTATGAGCTACAAAGACTACTTCTACTG CTGGCAGACATTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGAGTTATTGGGCTGTTAAGCTGA
ATGATTACTAAACTAGACAGTGTGCTTTTGGGTCAGAAGAAGTTCCTCTTCCACTATAAGAACGTGCGCTGGGCGTGGGGTCGAAATGAAACGTAC CTCTGCTTTGTGGTGAAGAGGAGAGTAGGACCAAACTCCCTCTCCTTTGACTTTGGACATCTCCGCAACCGCTCCAGCTGCCACGCGGAGCTGCTGT TCCTTCGCCACCTGGGGGGCGCCCTGTGCCCTGGTCTGTGGGGCTACGGAGGTGACGGGGGAGAGGGGAGGTTCAACTACTCGGTCACCTGGTTCT GCTCGTGGTCTCCGTGCGCCGACTGTTCTCTGAGACTGGCCCAGTTCCTCAGCCGGACCCCCAACCTGCGCCTCCGCATCTTCGTCTCTCGCCTCTAC TTCTGTGACGCGGAGGACAGCCGGGAGAGGGAGGGTCTGAGGACGCTGAAAAGGGCAGGTGTACAGATCACCGTCATGAACTACAAAGACTACTA CTATTGTTGGCAGACCTTTGTGGCTCACAGACAGAGCAGCTTCAAGGCCTGGGCTGATCTGCACCAGAACTCTGTCCGTCTGGCCAGGAAACTCCAC CGCATCCTCCAGCCTTGTGAGACAGAGGATTTTAGAGACGCATTCAAGCTTCTTGGGTTGTGA
ATGATTACAAAACTAGACAGTGTGCTTTTGGCCAAGAAAAAGTTCATCTACCATTACAAGAACATGCGCTGGGCAAAGGGCCGGCATGAGACATAC CTCTGCTTTGTGGTGAAGAGGCGAGTGGGGCCAGACTCCCTGTCCTTCGACTTCGGACACCTCCGCAACCGCGCTGGCTGCCATGTAGAGCTGCTGT TCCTGCGCCACCTGGGAGCCCTGTGCCCTGGACTGTGGGGGCATGGAGGCAGCGGAGAGAGGAAGCTGAGTTACTCCATCACCTGGTTCTGCTCCT GGTCTCCCTGCGCTGACTGCTCCTTCAGACTGGCCCAGTTCCTCAACCGGACGCCCAACCTCCGCCTCAGGATCTTCGTCTCCCGCCTCTACTTCTGC GACCAGGAGGACAGCCGCGAGAGAGACGGCCTGAGGCTGCTGAAAAAGGCCGGCGTGAACATCACTGTCATGAGCTACAAAGACTTCTTCTACTG CTGGCAGACCTTTGTGGCTAACAGAACGAGCAGATTCAAGGCCTGGGATTTGCTGCACCAAAACTCTGTTCGCCTGGCCAGGAAACTCAACCGCAT CCTCCAGCCTTATGAGATAGAAGATTTAAGAGATGCCTTCAGACTTCTTGGTTTTTGA
ATGATTAGGAAGCTAGACAGTGTGCTCTTGGCCCAGAATAAATTCATCTACAATTACAAGAACATGCGATGGGCAAAAGGCCGCAACGAGACCTAT CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCTGATTCССTCTCTTTCGACTTCGGACACCTACACAATCGCACTGGCTGCCACGCAGAGCTGCTGT TCCTGAGCTACCTGGGGGCGCTGTGCCCGGGCCTCTGGGGCTGCGCAGACGACAGAAACCGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGACCCGGTTCCTGAGGCAGACACCAAACCTGCGACTCAGGATCTTCGTGTCTCGCCTCTACTTTTG TGACCTGGAGGGCAGTCCGCATGTAGAGGGCTTGAGGGACCCGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAAGACTACTTCTACT GCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTATGTGCNTCTGTCAAGAAAACTAAACCGCA TCCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACCTGA
ATGATCAGTAAACTAGACAGTGTTCTCCTGGCCCAGAAGAAGTTCCTCTTCCACTACAAGAACGTGCGCTGGGCCCGAGGACGACACGAGACGTAC CTGTGCTTCGTGGTGAAGAGGAGGGTGGGACCCGACTCGCTTACCTTCGACTTCGGACACCTGCGCAATCGCACCGGCTGCCACGTTGAGCTGCTGT TCCTGCGCCATCTAGGGGTGCTGTGTCCGGGCCTGTCGGCGTCTGGAGGTGCTGGAGGGGGCAGGGGGCTGAACTACTCCATCACCTGGTTCTGCTC ATGGTCCCCCTGCTTCGACTGCTCGGCCCGGCTGGCCCAGTTCCTGAGACGGACCCCCAACCTCAGGCTCCGCCTCTTCGTCTCCCGCCTCTACTTCT GTGACCCGGAGGACCGCCACGAGAGAGAGGGGCTCCGGGCGCTGAAGAGAGCCGGAGTCCACATCACCGTCATGAGCTATAAAGATTATTTTTACT GCTGGCAGACGTTTGTAGCTCACAGACAGAGGGCCTTCAAAGCCTGGGAAGATCTTCAGCAGAACTCCGTCCGCCTGGCCAGGAAGCTCAACAGCA TCCTGCTGCCCTGTGAGACGGAGGATCTGAGAGACCCGTTCAGGCTGCTTGGACTGTGA
ATGATGAGTAAGCTAGACAGTGTGCTCTTAGCCCAGAAGAAATTCATATACAATTACAAGAACCTGCGATGGGCAAAAGGCCGCAACGAGACCTA ССTCTGCTTCGTAGTGAAGAGAAGGCTCGGACCTGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGTACTGGCTGCCACGTAGAGCTGCTG TTTCTGAGCTACCTGGGGGCGCTGTGCCCAGGCCTCTGGGGGTGCGGTGGCGACAGAAACCAAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCACACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT GACCTGGAGGGCAGTCCGCATATAGAGGGCTTGAGGGACCTGAGGAGAGCAGGGGTCCAGGTCAAAGTTATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGACTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCAAGAGCTCTAAACCGCATC CTCCAGCCATGTGAAACAGAAGATTTAAGAGATCCTTTCAGACTTTTTGGACTGTTAACCTGA
ATGATTGCGAAACTAGACAGTGTACTTTTACCACGGAAAAAGTTCATCTACCATTTCAAGAACATGCGCTGGGCTAAGGGTCGGCATGAGACGTAC CTGTGCTTTGTGGTGAAGAGGCGAGTAGGGCCGGACTCGCTGTCCTTTGACTTTGGACACCTCCGCAATCGCAATGGCTGCCACGTAGAGCTACTGT TCTTACGCTACCTAGGAGCTTTATGCCCTGGACTGTGGGGCTGTGGGAATTCTGGACAGAGGTTGTGTTACTCCATCACTTTGTTCTGCTCTTGGTCC CCCTGTGCCAACTGTTCCGAGAGACTGGCCAAGTTCCTCGGCCGGACACCCAACCTTCGCCTCAGGATCTTTGTCTCTCGCCTCTACTTCTGCGACAT GGAAGACAGCCGTGAAAGAGAGGGTCTGAGGATGCTGAAAAATGCTGGCGTAAACATCACAGTCATGAGCTACAAAGACTATTTCTATTGCTGGC

Chaenocephalus aceratus

Cyttopsis roseus
Danio rerio
Gadiculus argenteus

AAACCTTTGTGGCTCGTGGCGCAAGCAACTTCAAAGCCTGGGATGGGCTGCAAGAGAATTCAATTCGCCTTGCCAGGAAACTCACCCACATCCTAC AGCCAGGTGAGACGGAAGATTTAAGGGACGCATTCAAACTTCTGGGTATGTGA
ATGACTGCCAAGCTAGACAGGGTCCTTTTGCCACGGAAAAAGTTCCTCTTCCATTACAAGAACGTGCGCTGGGCGAAGGGCCGCCACGAGACGTAC CTCTGCTTCGTGGTGAAGAGGCGAGTGGGTCCAGACTCCATGTCCTTTGACTTTGGACACCTCCGCAATCGCAGTGGCTGCCACGTAGAGCTCTTGT TCCTGCGCTACCTGGGAGCTCTGTGTCCTGGACTGTGGGGGTATGAAGGTTCTGGACAGAGGAGACTCAGCTACTCCATCACCTGGTTCTGCTCTTG GTCCCCGTGCGCCAACTGCTCGGAGCGACTCGCCCAGTTCCTCAATCGGACCCCCAACCTCCGCCTCAGGATCTTCGTCTCTCGCCTCTACTTCTGCG ACCTGGAGGACAGCCGTGAGAGGGAGGGCCTGAGGACGCTGGAGAAAGCTGGCGTGCACATCACCATCATGAGCTACAAAGACTATTTCTACTGC TGGCAAACCTTTGTGGCTTGTGGAACTTCAAAATTCAAAGCCTGGGATGAGCTCCACCAAAACACCACTCGTCTCAAGAGAAAACTGAATCGGATC CTCCAGCCATGTGAGACAGAAGATTTAAGGGACGCATTCAAACTTCTAGGGTTGCTGTGA
ATGATCACAAAGCTTGACAGCATGCTTTTGCCTCGAAAAAAGTTCATCTACCATTACAAGAACATGCGCTGGGCAAGGGGCCGGTGTGAGACATAC CTCTGCTTTGTAGTGAAGAGGCGGGTGGGACCAGACTCCTTAACCTTTGACTTCGGACACCTTCGCAATCGCAATGGCTGCCATGTAGAGATGCTGT TCCTGCGCTACCTGGACGCCCTGTGCCCTGGTCTGTTGGGATGTGAAGGTACTGGAGAGAAGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCCCCCTGTGCAAACTGCTCCATCAGGCTGTCCCAGTTCCTCAGCCAGACGCCCAATCTTCGCCTCAGGATCTTCGTCTCTCGTCTTTACTTCTGTG ACATGGAGAATAGCCCTGCAAGAGACGGCCTAATAATGCTGAAAAAAGCTGGCGTGCAGACTTCAGTCATGAGTTACAAAGACTTTTTCTATTGCT GGCATAACTTTGTGGATTGTAAACAGAGTAAATTCAAGCCATGGGAAGATCTGCACCAAAACTCTGTTCGCCTTGCCAGAAAACTCAAACGCATCC TTCAGCTGTGTGAAACTGAAGATTTGAGAGATGCCTTCAAGCTTCTTGGACTGTAA
ATGATTACAAAACTAGACAGTGTGCTTTTGCCACGGAAGAAGTTCATCTACCATTACAAGAACATGCGCTGGGCAAAGGGCCGGCACGAGACATAC CTCTGCTTTGTGGTGAAGAGACGAATGGGGCCAGACTCCCTGTCCTTTGATTTCGGACACCTCCGCAATCGCAACGGCTGCCATGTAGAGCTGCTGT TCCTGCGTTACCTGGGAGCCTTGTGCCCTGGTCTGTGGGGGTATGGAATTGCTGGAGAGAGGAAGCTTAGTTACTCCGTCACCTGGTTCTGCTCCTG GTCCCCCTGTGTCAACTGCTCCCTCAGACTGACACAGTTCCTCATGCAGACGCCTAATCTTCGCCTCAGGATCTTCGTCTCTCGCCTTTACTTCTGTG ATATGGAAGACAGCCGTGAGAGAGAAGGTCTGAGGATGCTGAAAAAAGCCGGCGTGCACATCACAGTGATGAGTTACAAAGACTTCTTCTACTGCT GGCAGACCTTTGTGGCTTGTAAAGAGAGCAAATTCAAGGCATGGGAGGCGCTGCACCAAAACTCTGTTCGTCTGGCTAGAAAGCTCAACCGCATCC TCCAGCCCTGTGAGACAGAAGACTTCAGAGATGCCTTCAAGCTTCTTGGACTGTGA
ATGATCACAAAACTCGACAGTGTGCTTTTGCCCCAGAAGAAGTTCATCTACCATTATAAGAACATGCGCTGGGCGAGAGGCCGCTGTGAGACGTAC CTCTGCTTCGTGATTAAGAAAAGAGCCGGTCCAGATTCTATATCCTTCGACTTCGGACATCTACGGAACCGCAACGGCTGCCATGTAGAGCTGCTGT TCCTGCGCTACCTGGGCGCCTTGTGTCCTGGTCTCTGGGGTTATGGACAGAACCGGATCAGCTACTCCATCACCTGGTTCTGCTCCTGGTCTCCCTGC GCTAACTGCTCCCTCAGACTGGCCCAGTTCCTGAACCAGACGCCCAACCTTCGTCTCCGGATCTTCGTCTCTCGGCTCTACTTCTGCGACATGGAGGA CAGCCGGGAGAGGGAAGGTCTGAGGATCCTGAAGAAGGCCGGCGTTAACATCACCGTCATGAGCTACAAAGACTACTTCTACTGCTGGCAGACCTT CGTGGCTCGGAGGCTGAGTAAGTTCAAACCGTGGGACGGGCTGCAACAGAACTACGTCCGTCTGTCCAGAAAACTGAACCGCATCCTGCAGCCCTG TGAGACTGAAGACTTTCGAGACGCCTTCAGGCTCCTTGGACTCTGA

IT СTCTGCTTCGTCGTCAAGAGAAGAGTTGGACCCGATTCCTTGTCCTTTGACTTTGGACACCTTCGCAATCGGACTGGCTGCCATGTAGAGCTCCTGTI TCTACGTCACCTGGGGGCCCTGTGCCCTGGACTGTGGGGACAAGGAGGCGCTGATGAAAGAAGGCTCAGTTACTCGGTCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCAACTGCTCCCTCAGACTGGTCCAATTCCTCGGGCAGACGCCCAACCTCCGTCTCAGGATCTTCGTCTCCCGTCTCTACTACTGTG ACCTTGAAGACAGCCGCGAGAGAGAGGGCTTAAGAACCCTGAAAAGAGCCGGAGTCCAAATCACAGTCATGAGCTACAAAGACTATTTCTATTGCT GGCAGACGTTCGTGGCTCGCCGACAGACCCGCTTCAAGGCGTGGGATGAGCTGCACCAAAACTCAGTTCGTCTGGCCAGGAAACTAAACCGCATCC TCCAGCCTTGTGAAACGGAAGATTTAAGAGATGCTTTCAAACTTCTCGGGTTCTTGTAA
GenBank: BC162573.1
ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATATACAATTACAATAACATGCGATGGGCAAAAGGCCGCAACGAGACCTAC CTCTGCTTCGTCGTGAAGAGAAGGCTTGGACCTGACTCCCTCTCCTTCGACTTCGGACACCTACGCAATCGCACCGGCTGCCACGCAGAGGTGCTGT TCCTGAGCTACCTCGGGGCACTGTGTCCGGGCCTCTGGGGCTGCGCAGGCGACAGAAGCCTAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTCGCTCGCCTCTACTTCTGTG ACCTGGAGGGCAGTCCGCATGTGGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTTATGAGCTACAAAGACTACTTCTACTGCT

GGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTGCGTCTGTCAAGGAAACTAAACCGCATCC TCCAGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACCTGA

Helostoma temminckii

Holocentrus rufus

Laemonema laureysi

Lampris guttauts

NCBI Reference Sequence: XM_030370988.1
ATGATTGCAAAGCTTGACAGTGTGCTTCTGCCCCGAAAAAAGTTCATCTACCACTACACGAACATGCGCTGGGCGAGGGGCCGACACGAGACTTAC CTCTGCTTTGTTGTGAAAAGGCGAGTGGGGCCGGATTCCTTGTCCTTCGACTTTGGACACCTGCGCAATCGCAGTGGCTGCCATGTCGAGTTGTTGTT CCTGCGCCACCTCGGAGCCTTGTGCCCTGGTTTCTTGGGTTGTGGAGACACCGGAGGGAGGAGGCTGAGTTACTCCATCACCTGGTTCTGCTCGTGG TCTCCCTGCGTAAACTGCTCCATCAGTCTGTCCCAGTTCCTCAGCCGGACGCCCAACCTCCGCCTCAGGATCTTCGTCTCTCGCCTTTACTTTTGTGAC ATGGAGAACAGTCGGGAAAGAGACGGCCTGAGAATGCTGAAAAAAGCTGGCGTGCAGGTCACAGTCATGAGTTACAAAGATTTCTTCTATTGCTGG CAGACTTTTGTAGATCGCAAACAAAGCCAGTTCAAGGCCTGGAAAGAGCTTCACCAAAACTCTGTTCGCCTTTCCAGAAAGCTCAAGCGCATCCTCC AGCCTTGTGAAACAGAAGATTTAAGGGATGCCTTCAAGCTGCTTGGACTGTGA
ATGATTACTAAACTAGACAGCATACTTATGGCCCAGAAGAAGTTCATCTTCCACTATAAGAACATGCGATGGGCCAAGGGTCGAAATGAGACACAC CTCTGCTTTGTGGTGAAGAGAAGGCTGGGACCAAACTCCCTGTCCTTTGACTTTGGACACCTGCGTAATCGCACTGGCTGCCATGTAGAGCTACTCT TCTTGCGCCACCTGGGATTCCTGTGCCCTGGCTTGTGGGGGTACGGAGAGCCAGGTGAAGGGAGGCTGAATTACTCTGTCACCTGGTTCTGCTCCTG GTCCCCCTGTGCAGATTGTTCCTTCACGCTGACCCACTTCCTCAGAGAGACTCCCAACCTCCGTCTTAGAATCTTTGTGTCTCGCCTCTACTTCTGTGA CGAGGAGGACAGCAGTGCAAGGGAAGGCCTGCGAATGTTGAAGAAAGCCGGTGTGAACATCACTGTCATGAGCTACAAAGACTACTTCTATTGCT GGAAGACCTTTGTGGCTCACAGACAAAGGAACTTCAAGGCCTGGGATGGGCTAGACCAGAACTCTGTTCACCTAGCCAGGAAACTCAGCCACATCC TCCAGCCCTGGGAAACAGCAGATTTAAGAGATGCCTTTAAACTTCTTGGACTGTGA
ATGATTACAAAGCTAGACAGTGTGCTTTTGCCCCGAAAAAAGTTCATCTACCATTACAAAAATGTGCGCTGGGCAAGGGGTCGGCATGAGACATAC CTCTGTTTTGTAGTGAAGAGGCGGGTGGGCCCAGACTCCTTGACCTTTGACTTTGGGCATCTCCGCAATCGCAATGGTTGCCATGTAGAGATGCTGT TCTTGCGATATCTGGGAGCTTTGTGCCCTGGACTTTGGGGGTGTGGAGGTACTGGAGAGAGAAGGCTCAGTTACTCTATTACCTGGTTCTGCTCCTG GTCTCCTTGTTCTAACTGCTCCCTTAGACTGGCCCAGTTCCTCAGTCAGACCCCAAACCTCCGCCTCAGGATCTTTGTGTCTCGCCTATACTTCTGTGA CATGGAGGACAGTCGCGAGAGGGAGGGTCTCAGGATCCTGAAAAACGCTGGAGTGCAGATCACAGTCATGAGTTACAAAGACTTCTTCTACTGCTG GCAGACATTTGTGGCACGTAAGCAGAGCAACTTCAAAGCATGGGAGGAGCTGCACCAAAACTCTGTTCGCCTTACCAGAAAACTCCATCGCATCCT TCAGCCTTGTGAAACAGAAGATTTAAGAGATGCTTTCAAGCTCCTTGGACTGTGA
ATGATTACAAAACTAGACAGTGTGCTTTTGGCCAAGAAAAAGTTCATCTACCATTATAAGAACTTGCGCTGGGCAAAAGGCCGGCATGAGACATAC CTCTGCTTTGTCGTGAAGAGGCGGGCGGGGCCGGACTCCATCGCCTTCGACTTTGGACACCTCCGCAACCGTGCTGGCTGCCATGTAGAGCTGCTAT TCCTTCGCTACCTGGGAGCCTTGTGCCCTGGACTGTGGGGCTACGGAGGAACTGGTGAGAGGAAGATGAGCTACTCCATCACATGGTTCTGCTCCTG GTCTCCTTGTGCCAACTGCTCCTACAGACTCGCCCAGTTCCTCAACCGGACGCCCAACCTCCGCCTCAGGCTCTTCGTCGCTCGCCTCTATTTCTGTG ACATCGAGGACAGCCGTGAGAGAGAGGGCCTGAGAATGCTGAAGAATGCCGGTGTGCACATCACTGTCATGAGCTACAAAGACTACTTCTACTGCT GGCAGACATTTGTGGCTCGTAAAACGAGCAACTTCAAGGCCTGGGATGGGCTGCACCAAAACTATGTTCGTCTGGCCAGGAAACTCAACCGCATCC TCCAGCCTTGTGAGACAGAAGATTTAAGAGATGCATTCAGGCTTCTTGGCTTGTGA
ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTTCAATTACAAGAACATGCGCTGGGCAAGAGGCCGCAACGAGACCTAC CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCCAATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACAGGCTGCCATGTAGAGCTGCTGT TTTTGAGCTATCTGGGGGCACTGTGCCCAGGCCTGTGGGGGTGCAGAGGCGACGAAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCATGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTG TGACCTGGAGGACAGTCCCCATATAGAGGGCTTGAGGGACCTGAGGAGAGCAGGGGTGCGGGTCACCGTTATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGGCTGTTAACCTGA
ATGATCAGCAAACTAGACAGTGTGCTTCTGACCCAGAAGAAGTTCCTCTACCATTATAAGAACGTGCGTTGGGCAAAAGGTCGGCATGAGACATAT СTСTGCTTTGTGGTGAAGAGGAGGGTGGGACCGGACTCCATGTCCTTCGATTTTGGACACCTCCGCAATCGAGCTGGCTGCCATGTAGAGCTGCTGT TCCTGCGCTACCTGGGGGCCCTGTGTCCTGGACTGTGGGGCTACGGGGACACCGGAGACAGGAGGCTCAGTTACTCGGTCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCAACTGCTCCTTCAGACTGGCCCAGTTCCTCCAAAGGACGCCCAACTTCCGCCTCAGGCTCTTTGTCTCCCGTCTGTACTTCTGTG ACATGGAGGACAGCAGTGAGAGGGACGGCCTGAGGTTGCTGAAAAACGCAGGGGTGCAGATCACCGTCATGAGCTACAAAGACTACTTCTATTGC

Lamprogrammus exutus
Lesueurigobius cf sanzoi
Lota lota
Macrourus berglax

TGGCAGACTTTTGTGGCTCACAGAAAGAGCAGTTTCAAGGCCTGGGATGGGCTGCACCAAAACACTGTTCGCTTGGCCCGGTTACTCAACCGCATCC TCCAGCCTTGTGAGGCAGAGGATTTGCGGGATGCGTTCAAACTTCTCGGGTTTTGA
ATGATTGCAAAACTAGACAGTGTGCTTTTGCCCCGCAAAAAGTTCATCTTCCATTACAAGAACATGCGCTGGGCTAAGGGTCGGCACGAGACATAC CTCTGCTTTGTAGTGAAGAGACGAGTGGGTCCAGACTCCCTGTCCTTTGACTTTGGACACCTCCGCAATCGCAATGGCTGCCATGTAGAGCTACTGT TCCTGCGCTACCTGGGAGCTCTATGCCCTGGACTGTGGGGGTGTGGAGGTTCTGGTGAGAGGAGACTCAGTTACTCCATCACCTGGTTCTGCTCTTG GTCCCCCTGTGCCAACTGCTCCCAGAGACTATCCCAATTCCTCAGCCAGACACCCAACCTTCGCCTCAGGATCTTTGTCTCTCGCCTCTACTTCTGTG ACATGGAGAACAGCCGTGAGAGAGAGGGCCTGAGGATGCTGAAAAATGCTGGTGTGCAAATCACAGTCATGAGCTACAAAGACTTTTTCTATTGCT GGCAAACCTTTGTGGCTTGTGGGAAAAGCAAATTCAAGGCCTGGGATGAGCTGCACCGAAACTCTGTTCGCCTCACCAGGAAACTGAACCGCATCC TCCAGCCATGGGAGACAGAAGATTTAAGAGATGCATTCAGACTTCTTGGATTTTGA
ATGATTACCAAGCTAGACAGTGTACTTTTACCAAAGAAGAAGTTTATCTTCCATTACAAGAACGTGCGCTGGGCGAAGGGTCGGCATGAGACGTAC CTCTGCTTTGTGGTCAAGAGGCGCGTGGGGCCAAATTCTATGTCCTTTGACTTTGGACATCTTCGCAATCGCAGCGGCTGCCATGTGGAGATTCTGTT CCTGCGTTACCTTGGTGCTCTGTGCCCTGGACTCTGGGGGGCTGGAGGCTCGGAGGAGAGGCGACTGAGTTACTCCATCACTTGGTTCTGCTCCTGG TCTCCATGCGCCAACTGCTCCACGAAACTGTCGCAGTTCCTCGCCAAAACCCCAAACTTGCGTCTGCGGATATTTGTCTCACGCCTTTACTTCTGCGA CCTGGAGGACAGCATAGAACGAGAGGGTCTGAGGATGCTAAAGAGAGCAGGCGTGCAGTTAACGGTCATGAAATACAAAGACTACTTTTACTGCT GGCACACGTTTGTGGCTCGAAACCAAAGCAACTTCAAGGCCTGGGAAGAGCTTCACCAAAACTCAGTGCGACTGACCAGGAAACTCAGTCGCATCC TTCAGCCATGTGAGACAGAGGATTTAAGAGATGCCTTCAGACTTCTTGGTTTGTGA
ATGATAAGTAAGCTAGACAGTGTGCTCTTAGCCCAGAAGAAATTCATATACAATTACAAGAACATAAGATGGGCAAAAGGCCGCAACGAGACCTA CCTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCTGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAGAGCTGCTG TTTCTGAGCTACCTGGGGGCGCTGTGCCCGGGCCTCTGGGGGTGCGGAGGCGACAGAAACCGAAGACTCAGCTACTCGGTCACCTGGTTTTGCTCCT GGTCTCCCTGTGCCAACTGTGCGGCTACACTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT GACCTGGAGGGCAGTCCGCATATAGAGGGCTTGAGGGACCTGAGGAGAGCCGGGGTCCAGGTCAAAGTTATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCATGGGAAGGGCTGCATACCAATTCGGTCCGTCTGTCAAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTTTTGGACTGCTAACCTGA
ATGATTAGTAAGCTTGACAGCATACTCTTGGCCCAGAAGAAATTCAAGTACAATTACAATAACATGCGATGGGCAAAGGGCCGCAACGAGACCTAC CTCTGCTTCGTAGTGAAGAGAAGGCTCGGACCCAATTCACTGTCCTTTGACTTCGGACACCTACGCAATCGTGCTGGCTGCCACGTAGAGCTGCTGT TTCTGAGCCACCTGGGGGCGCTGTGCCCGGGCCTGTGGGGCTTTGGAGGGGCAGAAAACATAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCAACTGTGCGGCCACACTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT GAACTGGCGGACAGTCCGCACTCAGAGGGCTTGAGGGAGCTGAGGAGAGCAGGGGTCCAGGTCAACGTTATGACCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCTCATC CTCCAGCCATGTGAAACAGAAGATTTAAGAGACGCTTTCAGACTTATTGGCCTGTTAACCTGA
ATGATTAGTAAGCTCGACAGCGTGCTCTTGGCCCAGAAGAAATTCATATACAATTACAAGAACATACGCTGGGCAAAGGGCCGCAACGAGACCTAC CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCCAATTCACTGTCCTTCGACTTCGGACACCTACGCAACCGCACTGGCTGCCATGTAGAGCTGCTGT TTCTGAGCTACTTGGGGGCGCTGTGCCCGGGCCTGTGGGGCTGTGGAGGTGCAGATAACAGAAGACTCAACTACTCGGTCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTTGTGGCTCGCCTCTACTTCTGC GACCTGGACGACAGTCCACACACAGAGGGCTTAAGGGAGCTGAGGAGAGCAGGGGTCCAGTTCACCGTAATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGGCTGTTATCCTGA
ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATCTACAATTACAAGAACATGCGATGGGCAAAGGGCCGCAACGAGACCTAT CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCTGATTCCCTCTCTTTCGACTTTGGACACCTACGCAATCGCACTGGCTGCCACGCAGAGCTGCTGT TCCTGAGCTACCTGGGGGCACTGTGCCCAGGCCTCTGGGGCTGTGCAGGCGACAGAAACCGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCTG GTCGCCCTGTGCCAACTGTGCGACCACGCTGACCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGTCTCGCCTCTACTTCTGT GACCTGGAGGGCAGTCCGCATGTAGAGGGCTTGAGGGATCTAAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAAGACTACTTCTACTG

CTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTATGTGCGTCTGTCAAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACCTGA
ATGATTAGTAACCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTACAAGAACATGCATTGGGCAAAAGGCCGCAACGCGACCTAC CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACACAATCGCACTGGCTGCCACGCAGAGCTGCTGT TTCTCAGCCACCTGGGGGCACTGTGCCCAGGCCTGTGGGGNTGCGGAGGCGACAAAAACAGAAGACTCAGCTATTCGGTTACCTGGTTCTGCTCCT GGTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGCTTTCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCGTCTACTTCTGT GAACAGGAGGACAGTCCGCATATAGAGGGCTTGAGGGATCTGAGGAGAGCAGGGGTCCAGGTCACCGTTATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGACCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGACTGTTAACCTGA
ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATCTACAATTACAAGAACATGCGGTGGGCAAAAGGCCGCAACGAGACCTAT CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCTGATTCCCTTTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGCAGAGCTGCTGT TCCTGAGCTACCTGGGGGCACTGTGCCCAGGCCTCTGGGGCTGCGCAGGCGACAGAAACCGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGAGCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGTCTCGCCTCTACTTCTG TGACCTGGAGGGCAGTCCGCATGTAGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAAGACTACTTCTACT GCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTATGTGCGTCTGTCAAGAAAACTAAACCGCA TCCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACCTGA
ATGATTAGTAAGCTCGACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTACAAGAACATGCGCTGGGCAAAAGGCCGCAACCAGACCTAC CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACACAATCGCACTGGCTGCCACGCAGAGCTGCTGT TCCTGAGCCACCTAGGGGCGCTGTGCCCGGGTCTGTGGGGGTGCGGAGGTGACGAAAACCGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGACTCACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT GACGTGGAGGACAGTCCGCACAGGGAGGGCTTGAGGAACCTGAGGAGAGCAGGGGTCCTGGTCAACGTTATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAACACTAAACCGCATC CTCCAGCCATGTGAAACAGAAGATTTAAGAGACGCTTTCAGACTTATTGGGCTGTTAACCTGA
ATGATTAGTAAGCTCGACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTACAAGAACATGCGCTGGGCAAAAGGCCGCAACCAGACCTAC CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACACAATCGCACAGGCTGCCACGCAGAGCTGCTGT TCCTGAGCCACCTAGGGGCGCTGTGCCCGGGTCTGTGGGGGTGCGGAGGTGACGAAAACCGAAGACTCAGCTACTCTGTCACCTGGTTCTGCTCCT GGTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGACTCACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT GACGTGGAGGACAGTCCGCACAGGGAGGGCTTGAGGAACCTGAGGAGAGCAGGGGTCCTGGTCAACGTTATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAACACTAAACCGCATC CTCCAGCCATGTGAAACAGAAGATTTAAGAGACGCTTTCAGACTTATTGGGCTGTTAACCTGA
ATGATTAGTAAGCTAGACAGTGTGCTCTTAGCCCAGAAGAAATTCATATACAACTACAAGAACATGCGATGGGCAAAAGGCCGCAATGAGACCTAC CTCTGCTTCGTAGTGAAGAGAAGGCTCGGACCTGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAGAGCTGCTGT TTCTGAGCTACCTGGGGGCGCTGTGCCCGGGCCTCTGGGGGTGCGGAGGCGACACTAACCGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCACACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTG ACCTGGAGGGCAGTCCGCATATAGAGGGCTTAAGGGACCTGAGGAGAGCAGGGGTCCAGGTCAAAGTTATGAGCTACAAAGACTACTTCTACTGCT GGCAGACCTTCGTAGCTCACAAGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTATGTCCGTCTGTCAAGAAAACTAAACCGCATCC TCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTTTTGGACTGTTAACCTGA
ATGATTACAAAACTAGACAGTGTGCTTTTGGCGCAGAAAAAGTTCATCTACCATTATAAGAACATGCGCTGGGCAAGGGGTCGGCATGAGACATAC CTCTGCTTTGTAGTGAAGAGGAGAGTGGGACCAGACTCCCTGTCCTTTGACTTTGGACACCTCCGCAATCGCTCTGGCTGCCATGTAGAGCTGCTGT TCCTGCGCCACCTGGGAGCCTTGTGCCCTGGACTGTGGGGGTATGGAGGCACTGGTGAGAGGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGCGCTGACTGCTCCTTTAGATTGGTCCAGTTCCTCGGCCGGACGCCCAACCTCCGCCTCAGGATCTTCGTCTCTCGCCTCTACTTCTGTG ACGTGGAGGACAGCCGCGAGAGACAGGGCCTGAGAATGCTGAAAAAAGCCGGCGTGCAAATCACTGTCATGAGCTACAAAGACTACTTCTATTGC

Mora moro
Muraenolepis marmoratus
Myoxocephalus scorpius
Myripristis jacobus

TGGCAGACCTTCGTGGCTCACAGACAGAGCAGTTTCAAGGCCTGGGATGAGCTGCACCAAAACTCTGTTCGCCTGGCCAGGAAACTCAACCGCATC CTCCAGCCTTGTGAGACAGAAGATTTAAGAGATGCGTTCAAGCTTCTTGGGTTGTGA
ATGATTAGTACACTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTACAAGAACATGCGTTGGGCAAAAGGCCGCAACGAGACCTAC CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAGAGCTGCTGT TTCTGAGCCACCTGGGGGCACTGTGCCCAGGCCTGTGGGGGTGCGGAGGCGATGAAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTATTTCTGT GACCTGGAGGACAGTCCGCATATAGAGGGCTTGAGGGACCTGAGGAGAGCAGGGGTGCAGGTCACTGTTATGAGCTACAAAGACTACTTCTACTGC TGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCGCATC CTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGGCTGTTAACCTGA
ATGATTAGCAAACTAGACAGTGTGCTCTTGGGCCAGAAGAAATTCATATACAATTACAAGAACATGCGTTGGGCAAAAGGCCGCAACGAGACCTAC CTCTGCTTCGTGGTGAAGAGAAGGCTCGGACCCGATTCCATGTCTTTCGACTTCGGGCACCTACGCAATCGCGCAGGCTGCCACGTGGAGCTGCTGT TTCTCAGCCACCTGGGGGCGCTGTGCCCGGGTCTGTGGGGTTGCGGAGGCGACGAGAACAGACGGCTCAGCTACTCGGTCACCTGGTTCTGCTCCTG GTCCCCCTGTGCCAACTGTGCCGCCACGCTGGCCCGGCTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCCCGCCTGTACTTCTGT GACCTGGAGGGCAGTCCGCACTCAGAGGGCCTGAGGGACCTGAGGAGGGCCGGGGTCCAGGTCAACGTTATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTTGTAGCGCACAGGGTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCGCAT CCTCCAGCCACGCGAAACAGACGATTTAAGAGATGCCTTCAGACTTATTGGTCTGTTAACCTAA
ATGATTACAAAGCTAGACAGTGTGCTATTGCAGCAAAAAAAGTTCATCTACCATTACAAGAACATGCGCTGGGCAAGGGGCCGACATGAGACTTAC CTCTGCTTTGTAGTGAAGAGGCGAGTGGGGCCAGACTCCTTATCCTTTGACTTTGGACACCTCCGCAATCGCACTGGCTGCCATGTAGAGCTGTTGT TCCTACGCTACCTGGGAGCCTTGTGCCCTGGTTTGTGGGGTTACGGAGGCACTGGAGAGAAGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGCATAAACTGCTCCATCAGTTTGTCCCAGTTCCTCAACCGGACGCCCAACCTTCGCCTCAGGATCTTTGTCTCTCGTCTTTACTTCTGTGA CAAGGAGAACAGCCGGGAAAGAGATGGCCTGAGAATGCTGAAAAATGCTGGCGTGCAGATCACAGTCATGAGTTACAAAGACTTCTTCTATTGCTG GCAGACATTTGTGGATCGCAAGAAAAGCAACTTCAAGGCCTGGGAAGAGCTGCACCAGAACTCTGTTCGCCTTGCCAGAAAACTCAACCGCATCCT CCAGCCTTGTGAAGCAGAAGATTTAAGGGATGCCTTCAAGCTTCTTGGACTGTGA
ATGATTACAAAGCTAGACAGCATGCTTTTGGCCAAGAAAAAGTTCATTTACCATTATAAGAACATGCGCTGGGCTAAAGGTCGGCATGAGACATAC CTGTGCTTTGTAGTGAAGAGACGAGTGGGGCCAGACTCCATGTCCTTTGACTTTGGACATCTCCGCAATCGTGCTGGCTGCCATGTAGAGCTGCTGT TCCTGCGCTACCTGGGAGCGCTTTGCCCTGGACTGTGGGGGTGTGGAGGCAACACTGAGAAGAAGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCGACTGCTCTTTCAGACTGGCCCAGTTCCTCAACCGGACGCCCAACCTCCGCCTCAGGATCTTTGTCTCTCGCCTCTATTTCTGCG ACCTGGAGGACAGCCGTGAGAGAGAGGGCCTGAGGATGCTGAAAAAAGCCGGCGTGCAAATCACTGTTATGAGTTACAAAGATTACTTCTATTGCT GGCAGACATTTGTGGCACATAGAATGAGCAGCTTCAAGGCTTGGGATGGGCTGCACCAAAACTATGTTCGCCTGGCCAGGAAACTCAACCGCATCC TCCAGGCTAGTGAGACAGAAGATTTAAGAGATGCATTCAAGCTTCTTGGATTGTGA
ATGATTACAAAGCTAGACAGTGTGCTTTTGGCCAAGAAAAAGTTCATCTACCATTATAAGAACTTGCGCTGGGCAAAAGGCCGGCATGAGACATAC CTCTGCTTTGTCGTGAAGAGGCGGGTGGGGCCAGACTCCATTGCCTTCGACTTTGGACACCTCCGCAATCGTGCTGGCTGCCATGTAGAGCTGCTAT TCCTTCGCTACCTGGGAGCCTTGTGCCCTGGACTGTGGGGGTATGGAGGAACTGGGGAGAGGAAGCTGAGTTACTCCATCACGTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGCTCCTTCAGACTCGCCCAGTTCCTCAACCGGACGCCCAACCTCCGCCTCAGGATCTTTGTCTCTCGCCTCTATTTCTGTG ACGTGGAGGACAGCCGTGAGAGAGAGGGCCTGAGAATGCTGAAAAATGCCGGCGTGCACATCACTGTTATGAGCTACAAAGACTACTTCTACTGCT GGCAGACATTTGTGGCTCGTAAAACGAGCAGCTTCAAGGCTTGGGATGGGCTGCACCAAAACTATGTTCGCCTGGCCAGGAAACTCAACCGCATCC TCCAGCCTTGTGACACAGAAGATTTAAGAGATGCATTCAGGCTTCTTGGATTGTGA
ATGATTGCAAAGCTAGACAGTATGCTTTTGCCCAGAAAAAAGTTCCTCTATCATTACAAGAATGTGCGCTGGGCGAGGGGCCGGAATGAAACATAC CTCTGTTTTGTAGTAAAAAGACGAGTAGGGCCTGACTCCTTGTCCTTTGACTTTGGACACCTCCGCAATCGCAATGGTTGCCACGTTGAGCTGCTGTT CCTGCGCCAACTTGGTACATTATGCCCTGGCCTGTCTGGGTATGGATTTCATGGGGAGAGGAGGGTCAGCTACTCCATCACCTGGTTCTGCTCCTGG TCTCCCTGTGCAAACTGCTCTTCCAGACTGGCCCAGTTCCTCAAACAGACACCCAACCTTCGCCTCAGGATCTTTGTCTCTCGTCTTTACTTCTGTGA CATGGAGGACAGTCGTGAAAGAGAGGGTCTCAGGCTGCTTAAAAAAGTCGGCGTGCACATCACAGTCATGAGTTACAAAGACTTCTTCTACTGCTG

	GGAGAATTTTGTGGCCCAGCAAAGCAAATTTAAGGCCTGGGAAGGTCTGCATCAAAACACAGTACGCCTGGCCAGAAAACTCAACCGCATCCTCCA GCCCTGTGACACAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGACTGTAA
Oryzias latipes	NCBI Reference Sequence: XM_020710629.2
Osmerus eperlanus	ATGATCAGTACGCTAGACGGCGTGCTTCTGGCCCAGAAGAAGTTCATCTACCACTACAAGAACATGCGCTGGGCCAGAGGTCGACACGAGACCTAC CTGTGCTTTGTGATCAAGAGGAGGGTTGGGCCCGACTCGCTCTCCTTTGACTTCGGACACCTGCGCAATCGCACCGGCTGCCATGTAGAGCTGCTGT TTCTACGCCACCTGGGGGCTCTGTGTCCCGGCCTGTGGGGTACGGGTGGTGCCGGTGGTGGGGTGAGGTTGAGCTACTCCATCACCTGGTTCTGCTC CTGGTCTCCCTGCTCCGCCTGCTCCCACAGGCTGTCTGACTTCCTCAGCCGGACCCCCAACCTCCGCCTCCGGATCTTCGTGTCTCGTCTCTACTTCTG CGACCCGGAAGACAGCCTGGAGAGGGAGGGGCTCCGTATGCTGAAGAGAGCCGGAGTAAACATCACTGTCATGAGTTATAAAGACTATTTCTACTG CTGGGAGACTTTTGTAGCTCGCAGAAAGACAGGCTTCAAGGCCTGGGACGGGCTTCACCACAACTCGGTTCGCCTGGCCAGGAAGCTCTACCGTAT CCTACAGCCTTGTGAGACAGAAGATCTGAGAGATGCTTTCACGCTGCTGGGACTGTGA
Parablennius parvicornis	ATGATTGCCAAGCTCGACAGTATGCTCCTGCCCAGAAAAAAGTTCATCTATCATTACAAGAACATGCGCTGGGCGAAGGGTCGGCATGAGACTTAC CTCTGCTTCGTGGTGAAGCGGCGACTGGGCCCAGACTCTTTGTCCTTTGACTTCGGGCATCTCCGAAATCGCAATGGTTGCCATGTAGAGTTGCTGTT CCTGCGCCACCTGGGGACTTTGTGCCCTGGTCTGTCGGGGTACGGAGTACATGGAGAAAAAAGGCTTAGCTACTCCATCACCTGGTTCTGCTCCTGG TCTCCCTGTTCCAACTGTTCTCACCGACTAGCCCAGTTCCTGAGCCGAACGCCCAACATTCGACTCAGAATCTTTGTCTCCCGCCTGTACTTCTGCGA CTTGGAGGACAGCCGCGAGAGAGAGGGTCTCCGGCTGCTGAAAAAAACTGGCGTGCATATCACGGTCATGAGCTACAAAGATTATTTCTATTGCTG GCAAACTTTTGTGGCAAGTAATCAGAGCAGGTTTAAGCCTTGGGATGAGCTGCAGCGAAACTCCATCCGCCTCACCAGAAAACTCAACCGCATCCT CCAGCCCTGCGAAACAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGACTCTGA
Parasudis fraserbrunne	ATGATTACTAATCTAGACAGTGTGCTTCTGGCCCAGAAGAAGTTCATCTACCATTACAAGAACATGCGGTGGGCAAGGGGCCGGCATGAGACTTAT CTCTGCTTTGTAGTGAAGAGAAGGTTGGGTCCAGACTCCTTGTCCTTCGACTTTGGACACCTTCGCAATCGCTCTGGCTGCCATGTAGAGCTGCTTTT CCTGCGTCACCTGGGCGCCCTTTGCCCTGGCCTGTGGGGATATGGAGGAGAGAAGAGGCTGAGCTACTCTGTCACCTGGTTCTGCTCCTGGTCGCCC TGCGCCGACTGCTCCACCAGACTGTCCCAGTTCCTCAGCAGGACGCCCAACCTCCGCCTGAGGATCTTCGTCTCGCGCCTCTACTTCTGCGACCTGG AGGACAGCCTCGCAAGAGAGGGCCTGAGGACACTGAAGAGAGTCGGCGTGCAGGTCACTGTCATGAGCTACAAAGACTACTTCTACTGCTGGCAG ACCTTCGTGGCTCGCAGACAGAGCAGCTTCAAGGCTTGGGATGGGCTGCAGCAGAACTCTGTCCGCCTGGCCAGGAAACTCAACCGCATCCTCCAG CCTTGTGAGACAGAAGACTTACGAGATGCATTCAAGCTTCTTGGACTGTGA
Perca fluviatilis	ATGATTACAAAGCTAGACAGTGTGCTTTTGCCCCGAAAAAAGTTCATCTACCATTACAAGAACATGCGCTGGGCAAGGGGTCGCCATGAGACATAT CTCTGCTTTGTAGTGAAGAGGCGAGTGGGGCCAGACTCCTTATCCTTTGACTTTGGACACCTCCGCAATCGCAATGGCTGCCATGTAGAGCTGCTGT TCCTGCGCTACATTGGAGCCTTGTGCCCTGGTTTGTGGGGATGCAGCGGTACTGGAGAGAGGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCСTTGTGCCAACTGCTCCATCAGACTGTCCCAGTTCCTCAGCCAGACGCCCAACCTTCGCCTAAGGATTTTCGTCTCTCGCCTTTACTTCTGTG ACACGGAGAACAGCCCTGAAAGAGACGGCCTAAGAATGCTGAAAAAAGCTGGCGTGCAGATCACAGTCATGAGTTACAAAGACTTCTTTTATTGCT GGCAGACCTTTGTGGATCGTAAGCAAAGCAACTTCAAGGCCTGGGAAGAGCTGCACTCAAACTCTGTTCGCCTTTCCAGAAAACTCAACCGCATCC TCCAGCCTTTTGAAACAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGACTGTGA
Percopsis transmontana	ATGATTACCAAGCTAGACAGTGTGCTTCTGGCGCAGAAGAAATTCATCTTCCACTACAAGAACATGCGCTGGGCAAGGGGTCGCCATGAGACATAT CTCTGCTTTGTCATTAAGAGGAGAGTGGGGCCAAACTCCCTGTCCTTTGACTTTGGACACCTCCGCAATCGCTCCGGTTGCCATGTAGAGATCCTGTT CCTGCGCCACTTGGGAGCGCTGTGCCCTGGACTGTGGGGAGAGGGGGGTACTGGTGAGAGAAGATTAAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGCTCCCTCAGACTGGCCCAGATCCTCAGACAGCTGCCCAACCTCCGCCTGAGGATCTTTGTGTCCCGCCTCTACTTCTGTG ACCTGGAGGACAGCAAAGAGAGAGATGGCCTCAGAATGCTGAAGAACGTGGGTGTGCAGATCACCGTCATGAGCTACAAAGACTATTTCTATTGCT GGCAGACCTTTGTAGCTCACAGAAAGAGTAACTTCAAAGCCTGGGACGGGCTGCACCAAAACTCTGTTCGCCTGGCTCGGAAACTCAACCGCATCC TCCAGCCTTGTGAGATAGAAGATTTAAGAGATGCCTTCAAACTTCTTGGGTTTTGA
Phycis blennoides	ATGATTAGTAAGCTAGACAGTGTGCTCTTAGCCCAGAAGAAATTCATATACAATTACAAGAACATACGATGGGCAAAAGGCCGCAACGAGACCTAC CTCTGCTTTGTAGTGAAGAGAAGGCTCGGACCCAATTCCCTGTCCTTCGACTTCGGTCACCTACGCAATCGCGCTGGCTGCCACGTAGAGCTGCTGT TTCTGAGCCACCTGGGGGCGCTGTGCCCGGGCCTCTGGGGGTGCGTGGATGACAGCAACAGGAGACTGAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTACGGATGACACCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT

	GACCTGGAGGACAGTCCGCATATTGAGGGCTTGAGGCACCTGAGGAGAGCAGGGGTTGAGGTCAAAGTTATGAGCTACAAAGACTACTTCTACTGT TGGCAGACCTTCGTAGCTCACAGGCTGAGTCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCAAGAAAACTAAACCGCATC CTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTTTTGGACTGTTAACCTGA
Phycis phycis	ATGATTAGTAAGCTAGACAGTGTGCTCTTAGCCCAGAAGAAATTCCTATACAATTACAAGAACATACGATGGGCAAAAGGCCGCAACGAGACCTTC CTCTGCTTTGTAGTGAAGAGAAGGCTCGGACCCAATTCCTTGTCCTTCGACTTCGGTCACCTACGCAATCGCGCTGGCTGCCACGTAGAGCTGCTGT TTCTGAGCCACCTGGGGGCGCTGTGCCCGGGCCTCTGGGGGTGCGTAGATGACAGCAACAGGAGACTGAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCATGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTCAGGATGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTG TGACCTGGAAGACAGTCCGCATATTGAGGGCTTGAGGCACTTGAGGAGAGCGGGGGTCGAGGTCAAAGTTATGAGCTATAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGTCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCAAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTTTTGGACTGTTAACCTGA
Poecilia formosa	ATGATTACAAAGCTAGACAGGGCACTATTACCCAGAAAAAAATTCATCTATCATTACAAGAACTTGCGCTGGGCAAGAGGTCGATGTGAGACGTAC CTCTGTTTTGTGGTGAAGAAGCGAGTGGGACCAGACTCCCTGTCCTTTGACTTTGGGCATCTCCGCAACCGCAACAACTGCCATGTGGAGCTGCTGT TCCTGCGCCACCTGGGAGCGTTGTGCCCTGGCCTGTGGGGTTATGGAGTCACTGGTGAAAGAAAAGTCAGCTACTCTGTCACCTGGTTTTGCTCCTG GTCTCCCTGTGCAAACTGCTCCATCCGACTGGCTCAGTTCCTCCACCAGACCCCCAACCTCCGCCTCAGGATCTTTGTATCCCGGCTTTATTTCTGCG ACTTGGAGGACAGCCGTGAAAGAGAGGGACTTAGAATACTGAAAAAAGCTGGCGTGCACATCACAGTCATGAGTTACAAAGATTACTTTTACTGCT GGCAGACCTTTGTGGCAAAAAGCCAAAGCAAGTTCAAGCCGTGGGATGGGCTGCACCAAAACTATATCCGGCTGTCAAGGAAACTCAACCGCATTC TTCAGCCATGTGAGACAGAAGATTTAAGAGATGCCTTCAGGCTTCTTGGACTGTGA
Pollachius virens	ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATCTACAATTACAAGAACATGCGATGGGCAAAAGGCCGCAACGAGACCTAT CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCTGATTCCCTCTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGCAGAGCTGCTGT TCCTGAGCTACCTGGGGGCGCTGTGCCCAGGCCTCTGGGGCTGCGCAGACGACAGAAACCGAAGACTAATTTACTCCGTCACCTGGTTCTGCTCCTG GTCGCCCTGTGCCAACTGTGCGACCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGTCTCGCCTCTACTTCTGT GACCTGGAGGGCAGTCCGCATGTAGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTATGTGCGTCTGTCAAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCGGACTTTTTGGACTGTTAACTTGA
Polymixia japonica	ATGATTACTAAACTAGACAGTGTGCTTTTGGCCCAGAAGAAATTCATCTACCATTATAAGAACATGCGCTGGGCGAAGGGTCGACACGAGACGTAT CTCTGCTTTGTAGTCAAGAGGAGGGTGGGACCGGACTCCATGTCCTTTGATTTTGGACACCTACGCAATCGCTCTGGCTGCCATGTAGAGCTGCTGT TCCTGCGCCACCTGGGGGCCTTGTGCCCTGGACTGTGGGGATACGGAGGTACTGGTGAGAAGAGGCTCAGTTACTCCGTCACCTGGTTCTGCTCCTG GTCGCCCTGCTCCAACTGCTCCTACAGACTGGCCCAGTTCCTCAGCCAGACGCCCAACCTCCGCCTCAGGATCTTCGTCTCTCGACTTTACTTCTGCG ACCTGGAGGACAGCCGGGAGCGAGACGGCCTCAGAATGCTCAAAAGGGCTGGAGTGCAAATCACAGTCATGACCTACAAAGACTACTTCTATTGCT GGCAGACCTTTGTGGCTCACAGAACAAGCAAGTTCAAGGCCTGGGATGAGCTGCACCGGAACTCTGTCCGCCTGTCCAGGATACTCAACCGCATCC TCCAGCCTTGTGAGACAGAAGATTTAAGAGATGCCTTCAGACTTCTTGGGTTGTGA
Pseudochromis fuscus	ATGATTGCAAAGCTTGACAGTGTGCTTTTGCCAAAAAAGAAATTCATCTTTCATTACAAGAACATGCGCTGGGCAAGGGGCCGACATGAGACATAC CTCTGCTTTGTGGTGAAAAGGCGAAGGGGCCCAGACTCTCTGTCCTTTGACTTTGGACATCTCCGCAATCGCAACGGCTGCCATGTAGAGCTGCTAT TCCTACGGTACCTGGGAGCCTTGTGCCCTGGTCTGTGGGGGTATGGGGCTACTGGGGCGAGCAGGCTCAGCTACTCCATCACGTGGTTCTGCTCCTG GTCTCCTTGTGCCAACTGCTCTTTCAGACTGGCCCAGTTCCTCAGCCAGACGCCCAATCTTCGCCTCAGGATCTTCGTCTCTCGCCTTTACTTTTGTGA CATGGAGGACAGCCGTGAAAGAGAGGGTCTAAGGCAGCTGAAAAAAGCCGGAGTGCACATCACAGTCATGAGTTACAAAGACTACTTCTACTGCT GGCAGACCTTTGTGGCTCGTAATCAAAGCAAATTCAAGCCCTGGGATGAATTGCACCAAAACTCTGTCCGCCTGTCCAGAAAACTCAACCGCATCCT CCAGCCTTGTGAGACAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGACTGTGA
Rondeletia loricata	ATGATTACAAAACTAGACAGTGTGCTTTTGGCCAAGAAAAAGTTCATCTACCATTATAAGAACATGCGCTGGGCAAGGGGTCGGCATGAGACATAC CTCTGCTTTGTAGTGAAGAGGCGAGTGGGGCCAGACTCCCTGTCCTTCGACTTTGGACACCTCCGCAACCGCACTGGCTGCCATGTAGAGCTGCTGT TCCTGCGCCACCTGGGAGCCTTGTGCCCTGGACTGTGGGGGCATGGAGGCACTGGAGAGAGGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGCGCTGACTGCTCCTTCAGACTGGCCCAGTTCCTCGGCCGGATGCCCAACCTCCGCCTCAGGATCTTCGTCTCTCGCCTCTACTTCTGCG ACCTGGAGGACAGCCGCGAGAGAGAGGGCCTGAGGTTGCTGAAAAAAGCCGGCGTGCAGATCACTGTCATGAGCTACAAAGACTTCTTCTATTGCT

	G
	T
Salmo salar 1	N
Salmo salar 2	N
Sebastes norvegicus	A
	C
	T
	G
	G
	T
Selene dorsalis	A

GGCAGACCTTTGTGGCTCATAGAAATTGCAGCTTCAAGGCCTGGGATGAGATGCATCAAAACTCTGTTCGCCTGGCCAGGAAACTCAACCGCATCC信

Selene dorsalis

Spondyliosoma cantharus

AT

 ACACG TGGCAGACATTTGTGGCTCGTAGGGCGAGCCAATTCAAGGCCTGGGAAGAGCTGCAACGTAACTCTGTTCGCCTTACCAGAAAACTGAACCGCATC CTCCAGCCCTGTGAAACAGAAGATTTAAGAGATGCCTTTAAGCTTCTTGGACTGTGAStylephorus chordatus
ATGATTGCAAAACTAGACAGTGTGCTTCTGGCCCGGAATAAATTCATCTACCATTATAAGAACATGCGCTGGGCGAAAGGGCGCAACGAGACCTAC CTCTGCTTTGTAGTGAAGAGAAGGGTTGGACCTGATTCCCTGGCTTTCGACTTTGGACACCTCCGCAATCGTACCGGTTGCCACGTAGAGCTCCTGTT CCTGCGCCACCTGGGGGCCCTGTGCCCTGGACTGTGGGGAGGTGCTGCTGGTGATAAAAGGCTCAGCTATTCAGTCACCTGGTTCTGCTCTTGGTCT CCCTGTGCCAACTGTGCTTCCACGCTGGCCCAATTCCTGAGACAGACGCCAAACCTCCGTCTCAGGCTCTTTGTGGCTCGTCTCTACTTCTGTGACCT GGAGGATAGTCCTGACAGAGAGGGCCTACGGATTTTGAGAAGAGCTGGGGTGCATATCACAGTTATGAGATACAAAGACTACTTCTACTGCTGGCA GACCTTTGTGGCTCACAACCAGAGCCGCTTCAAAGCCTGGGAAGGACTGCACCCAAACTCTGTCCGTTTGTCCAGAACATTAAACCGCATCCTCCAG CCTTGTGAAACAGAAGATTTAAGAGATGCTTTCAAACTCCTTGGATTGTAA

Takifugu rubripes
Tetraodon nigroviridis
ATGATTACTAAGCTAGACAGTGTGCTTTTGCCCCGCAAAAAGTTTATCTTCCATTACAAGAATGTGCGCTGGGCGAAGGGCCGGCATGAGACATAC CTCTGCTTTGTTGTGAAGAGACGAGTGGGCCCAGACTCCATGACTTTTGACTTTGGACACCTCCGCAATCGTAATGGCTGCCATGTAGAGATTCTGT TCCTGCGTTACCTTGGTGCCTTGTGTCCTGGTCTATGGGGTTATGGGGTTGGTGGAGAGAAGAGACTCAGTTACTCCATCACCTGGTTCTGCTCCTGG TCTCCCTGTGCCAACTGCTCCAGCAGGCTGGCCCAGTTCTTAAAGCAGACGCCCAACCTTCGCCTAAGGATCTTCGTTTCACGCCTTTATTTCTGTGA CTTGGAGGACAGCCAAGAGAGAGAGGGCCTGAGGATATTGAAAAAAGCTGGAGTGCACATAACAGTCATGACTTACAAAGACTTCTTCTATTGCTG GCAGACCTTTGTGGCTCGTAAACAGAGTAGCTTCAAAGCCTGGGATGAGCTGCACCAAAATTCTGTTCGTCTTGCTAGAAAACTTCAGCGTATCCTC CAGCCATGTGAAACAGAAGATTTGAGGGATGCCTTCAAACTTCTTGGACTGTGA
ATGATTACAAAGCTAGACAGTGTGCTTTTGCCTAAAAAAAAATTCATCTACCACTACAAGAATGTGCGCTGGGCAAGGGGCCGACATGAGACTTAC CTGTGCTTTGTAGTGAAGAGGCGAGTGGGGCCAGACACCTTAACCTTTGACTTCGGACACCTCCGCAATCGCAACGGCATCCATGTCGAGTTGCTGT TCCTGCGCTATCTGGGAGCCTTGTGCCCTGGTTTGTGGGGGTATGGAGGCACTGGAGAGAAGAGGCTGAGTTACTCTATCACCTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGCTCACTCAGACTGTGCCAGTTCCTCAGCCAGACTCCCAACCTTCGCCTTAGGATCTTCGTCTCTCGCCTCTACTTCTGTG AATGGAGGACAGCCGIGAAAGAGAGGGCCTAAGAATGCTGAAAAAAGCCGGCGTGCAGATCACAGTCATGAGTTACAAAGACTICTICTATIG CCCTGTGCCAACTGTGCTTCCACGCTGGCCCAATTCCTGAGACAGACGCCAAACCTCCGTCTCAGGCTCTTTGTGGCTCGTCTCTACTTCTGTGACCT ATGAATACAAAACTCGACAGCGTGCTTTTGCCACGAAAGAAGTTCATTTACCATTACAAGAACGTGCGCTGGGCAAGGGGCCGGCATGAGACATAC CTTTGCTTTGTAATCAAGAGACGGGTGGGGCCGGACACCTTAACCTTTGATTTTGGACACCTCCGCAATCGCAATGGCTGCCATGTAGAGCTGCTGT TCCTGCGCTACCTGGGGGCCTTGTGTCCTGGTTTATTGGGGTATGGAGGCGCCGGAGAGAAGAGGCTCAGCTACTCTATCACCTGGTTCTGCTCCTG GTCTCCATGCTCCAACTGCTCCACAATACTTTGCCAGTTCCTCAGTAAGATGCCCAACCTTCGCCTCCGGCTCTTCGTCTCTCGCCTTTACTTCTGTGA CATGGAGGATAGTCGTGAAAGAGAGGGCTTAAGAATGCTGAAAAAAGTCGGGGTGCAGATCACAATCATGAGTTACAAAGATTTCTTCTATTGTTG GCAGAAATTTGTGGCACGTAGGCAAAGCAACTTCAAGGCATGGGAAGAGCTGCACCAGAACTCTGTTCGTCTTTCCAGGAAACTCAACCGCATCCT ACAGCCCTGTGAAACAGAAGACTTGAGAGATGCGTTCAAGCTTCTTGGACTTTGA

NCBI Reference Sequence: XM_003966246.3

ATGATTACCAAGCTAGACAGTATGCTTTTGCCAAGAAAAAAGTTCCTCTACCATTACAAGAACGTGCGATGGGCGCGGGGCCGACACGAGACCTAC

NCBI Reference Sequence: XM_014151382.1
NCBI Reference Sequence: XM_014154598.1
ATGATTACAAAGCTAGACAGTGTGCTTTTGCCTCGAAAAAAGTTCATCTTCCATTACAAGAACATGCGCTGGGCAAGAGGCCGGCATGAGACATAC етCTGCTTCGTAGTGAAGAGGCGAGTGGGGCCAGACTCCTTAACCTTTGACTTTGGACACCTCCGCAATCGCAATGGCTGCCATGTAGAGCTGCTGI TCATGCGCTACCTGGGAGCCTTGTGCCCTGGTTTGTGGGGGCAGGGAGTCCCCGGAGAGAAGAGGCTCAGTTACTCCATCACCTGGTTTTGCTCCTG GTCTCCCTGCGTCAACTGCTCCGTCACACTGTCCCAGTTCCTCAGCAAAACGCCCAACCTTCGCCTCAGGATCTTCGTCTCTCGCCTTTACTTCTGTG ACATGGAGAACAGCCGTGAAAGAGATGGACTAAGAATGCTGAAAAAAGCTGGCGTGCAGATCTCAGTCATGAGTTACAAAGACTACTTCTATTGCT GGCAGACCTTTGTGGATCGGAAGCAGAGCAAGTTCAAGGCCTGGGATGAGATGCACCAAAACTCTGTTCGCCTTACCAGAAAACTCAGCCGCATCC TCCAGCCTAGTGAAACAGAAGATTTAAGGGATGCCTTCAAGCTTCTTGGACTGTGA

CTCTGCTTTGTTGTGAAGCGGAGAGTGGGCCCAGACACGCTAACCTTTGACTTCGGGCACCTCCGCAATCGCAACGGTTGCCACGTAGAGCTGCTCT

	TCCTGCGCTACCTGGGGGCCCTGTGCCCGGGTTTGTGGGGTTATGGCGCTGCCGGGGAGAAGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCCCCCTGCGCCAACTGCTCCATCCAACTTTCCCAGTTTCTGAGGAACACGCCCAACCTTCGCCTCAGAATCTTTGTCTCCCGCCTTTACTTCTGTG ACATGGAGGACAGCCTTGAACGGGAAGGCCTGAGGATGCTGTCCAGGGCCGGCGTGAGGATTTCAGTGATGAGCTACAAAGACTTTTTCTATTGCT GGCAGAAATTTGTGGATAGCAAAACGAGCAGCTTTAAAGCCTGGGAAGAGCTGCACCAGAACTCTGTACGCCTCACTCGAAAACTCAACCGCATTC TCCAGAGCTGGGATTTAGAAGATTTACGAGACGCCCTTAAGCTTCTTGGACTCTAA
Theragra chalcogramma	ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAAAAATTCATCTACAATTACAAGAACATGCGATGGGCAAAAGGCCGCAACGAGACCTAT CTCTGCTTCGTAGTGAAGAGAAGGCTTGGACCTGATTCCCTCTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGCAGAGCTGCTGT TCCTGAGCTACCTGGGGGCGCTGTGCCCGGGCCTCTGGGGCTGCGCAGACGACAGAAACCGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGACCCGGTTCCTGAGGCAGACACCCAACCTGCGACTCAGGATCTTCGTGTCTCGCCTCTACTTCTG TGACCTGGAGGGCAGTCCGCATGTAGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAAGACTACTTCTACT GCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTATGTGCGTCTGTCAAGAAAACTAAACCGCA TCCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACCTGA
Thunnus albacares	ATGATTACAAAACTAGACAGTGTGCTTTTGCCCCGGAAAAAGTTCATCTACCATTACAAGAACGTGCGCTGGGCAAGAGGACGGCATGAAACATAC CTCTGCTTTGTAGTGAAGAGGCGAGTGGGGCCAGACTCTTTATCCTTTGACTTTGGACACCTGCGCAATCGCAATGGCTGCCATGTAGAGCTGCTGT TCCTGCGATATCTGGGAGCCTTGTGCCCTGGTGTGTGGGGGTATGGAAATACTGGACAGAGGATCAGTTACTCCATCACCTGGTTCTGCTCTTGGTC TCCCTGTGCCAACTGCTCTCGCAGACTGGCCCAGTTCCTCAGCCAGGTACCCAACGTTCGCCTTAGGATCTTCGTATCACGCCTCTACTTTTGTGACT TGGAGGACAGCCGTGAGAGAGACGGCCTGAGGTTGCTAAAAAACGCCGGCGTGCAGATCACAGTCATGAGTTACAAAGACTTCTTCTACTGCTGGC AGACTTTTGTAGCTCGTAATCAGAGCAAATTCAAGGCCTGGGAAGAGCTGCACCGAAACTCTGTTCGCCTAACAAGAACACTCAACCGCATACTCC AGCCCTGTGACATTGATGATTTAAGAGATGCCTTCAAGCTTCTTGGGCTGTGA
Trachyrincus murrayi	ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATCTACAATTACAAGAACATGCGTTGGGCAAAAGGCCGCAACGAGACCTAC CTATGCTTTGTGGTGAAGAGAAGGCTTGGACCTGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCCTTGGCTGCCACGTAGAGCTGCTGTT TCTGAGCCACCTGGGGGCGCTGTGCCCGGGCCTGTGGGGGTGTGGAGGCGACGTAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT GACCTGGAGGACAGTCCGCATATAGAGGGCTTGAGGGATCTGAGGAGAGCAGGGGTCCAGGTCACCGTTATGAGCTACAAAGACTACTTCTACTGC TGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCGCATC CTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGACTGTTAACCTGA
Trachyrincus scabrus	ATGATAAGTAAGCTAGACAGTGTGCTCTTGGCTCAGAAGAAATTCATCTACAATTACAAGAACATGCGTTGGGCAAAAGGCCGGAATGAGACCTAC CTATGCTTTGTGGTGAAGAGAAGGCTTGGACCTGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCCTTGGCTGCCACGTAGAGCTGCTGTT TCTGAGCCACCTGGGGGCACTGTGCCCGGGCCTGTGGGGGTGCGGAGGCGACGAAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCAACTGTGCGGCCACACTGGCCCGGTTCCTGAGGCACACGCCCAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGT GACCTGGAGGACAGTCCGCATATAGAGGGCTTGAGGGATCTGAGGAGAGCAGGGGTCCAGGTCACTGTTATGAGCTACAAAGACTACTTCTACTGC TGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGAAAACTAAACCGCATC CTCCAGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGACTGTTAACCTGA
Trisopterus minutus	ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTTATATACAATTACAAGAACCTACGATGGGCAAAAGGACGCAACGAGACCTAC CTCTGCTACGTAGTGAAGAGGAGGCTCGGACCTGATTCCCTCTCCTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAGAGCTGCTGT TCCTCAGCTACCTTGGGGCACTATGCCCGGGCCTCTGGGGCTGCACCGATGACAGAAACCGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGTCGCCCGCCTCTACTTCTGC GACCTGGAGGGCAGTCCGCACATAGAGGGCTTGAGGCACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTCATGAGCTACAAAGACTACTTCTACTG CTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGTGCGTCTGTCAAGAAAACTAAACCGCAT CCTCCAGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCGGACTTTTTGGACTGTTAACCTGA
Typhlichthys subterraneus	ATGATTAGCAAGCTAGACAGTGTCCTTCTGGCGCAGAAGAAATTCATCTTCCACTATAAGAATATGCGCTGGGCAAGGGGGCGCAATGAGACATAT CTCTGCTTTGTCATTAAGAGGAGAGTGGGGCCGGACTCCCTGTCCTTTGACTTTGGACACCTCCGCAATCGCTCCGGCTGCCATGTAGAGCTGCTGTT CCTGCGCCACTTGGGGGCGCTGTGCCCTGGCCTGTGGGGACAGGGGGGTACAGGTGACAACAGACTCAGTTACTCCATCACCTGGTTCTGCTCCTGG

	TCCCCCTGTTCCAACTGCTCTCACAGACTGGCCCAGTTCCTCAGCCAGCTGCCCAACCTCCGCCTGAGGATCTTTGTGTCCCGTCTGTACTTCTGTGA CCTGGAGGACAGCAGGGAGAGAGAGGGCCTGAGAATGCTGAAGAATGCGGGCGTGCACATAACCGTCATGAGCTACAAAGACTATTACTATTGCT GGCAGACCTTTGTAGCTCGCAGAAAGAGTAAATTCAAAGCATGGGAAGGGCTGCACCAAAACTCTGTTCGCCTGGCCAGGAAACTCAACCGCATCC TCCAGCCGTGCGAGATAGAAGATTTAAGAGATGCCTTCAAACTTCTTGGGTTTTGA
Xiphophorus maculatus	ATGATTACAAAGCTAGACAGGGTACTATTACCCAAAAAAAAATTCATCTATCATTACAAGAACATGCGCTGGGCAAGAGGTCGATGTGAGACATAC CTCTGCTTTGTGGTGAAGAAGCGAGTGGGACCAGACTCCCTGTCCTTTGACTTTGGACATCTCCGCAACCGCAACAACTGTCATGTGGAGCTGCTGT TCCTGCGCCACCTGGGAGCGTTGTGCCCTGGCCTGTGGGGTTATGGAGTCACTGGTGAGAGAAAAGTCAGCTACTCCATCACCTGGTTTTGCTCCTG GTCTCCCTGTGCAAACTGCTCCTTCCGACTGGCTCAGTTCCTCCACCAGACCCCCAACCTCCGCCTCAGGATCTTTGTATCCCGGCTTTATTTCTGTG ACTTGGAGGACAGCCGTGAAAGAGAGGGACTTAGAATGCTGAAAAAAGCTGGCGTGCACATCACAGTCATGAGTTACAAAGATTACTTTTACTGCT GGCAGACCTTTGTGGCAAAAAGTCAAAGCAAGTTCAAGCCGTGGGATGGGCTGCACCAAAACTGTATCCGGCTGACAAGGAAACTCAACCGCATA CTTCAGCCATGTGAGACAGAAGATTTAAGAGATGCCTTCAGGCTTCTTGGACTGTGA
Zeus faber	ATGATAACTAAACTAGACAGTGTGCTTCTGGCTCGGAAGAAATTCATTTACCACTATAAGAACATGCGCTGGGCAAAAGGCCGCTGTGAGACGTAC СTCTGCTTTGTCGTCAAGAGGAGAGTTGGACCCAATTCCCTGTCCTTTGACTTTGGACACCTTCGCAATCGGACCGGCTGCCATGTAGAGCTCCTGTT TCTACGTCACCTGGGAGCCTTGTGCCCTGGACTGTGGGGACACGGAGGCCCCTATGGAGGGCGGCTCAGTTACTCAGTCACCTGGTTCTGCTCGTGG TCTCCCTGCGCCAACTGCTCCTTCAGACTGGCCCAATTCCTCGGGCAGACGCCCAACCTCCGCCTCAGGATCTTTGTCTCCCGCCTCTACTACTGCGA CCTTGAAGATAGCCGCGAGAGAGAGGGCTTACGGATCCTGAAAAGAGCCGGAGTCCAAATCACAGTCATGAGCTACAAAGACTACTTCTATTGCTG GCAAACCTTCGTGGCTCACAGACAGACCAGCTTCAAGGCGTGGGATGAGCTGCACCAAAACTCAGTTCGCCTGGCCAGGAAACTAAACCGCATCCT CCAGCCTTGTGAAACAGAAGATTTAAGAGATGCCTTCAAACTTCTTGGGTTCTTGTGA
Lampetra tridentata	ATGGCCAACGATGAGTACGTGAGAGTCGGCGATAAGTTGGACAGCTGCACGTTTAGGACGCAGTTTTTTAACTTTAAAAGATCCACGTCGCATATA TGCTGCGTTCTCTTTGAATTAAAACAGCAGGATAGCGTCGCTTTTTGGGGCTATGCTGTGAATAAACCACGGAGCAATGCAGACCTAGGAATTCACG CCGAAATTTTTTGCATTAAAAAAATCAGAGAGTACCTGCACGAAAACCCTGGAATATACACGATAAATTGGTACTCATCCTGGAGTTCGTGTGCAG ATTGCGCTGAAGAGATCTTAACATGGTATAAGAAGGAGGTGATGAAGATGGGCCACACTTTGAATATCTGGGCTTGCAAACTCTATTTCGAGAACA TTACGCGGAATCAAATTGGGTTGTGGAACCTCAGAAAAATCGGGGTTGGGTTGGAAATAATGCTTGGTGAACACTACCAATGGTGCTGGAACAACT ACATCCAAACGTTGGACAGCAATTTGAATGAAAATAGATGGCTTCAGAAGACTTCGAATCGAGCTCTTACACGACAGAACGAGTTGTCCATTATGA TTCAGGTAAAAAGACTCCACACCGCTAAGACTCCTGCTGTTTAG

Appendix 8: Our computationally predicted 3D structure of Gm-AID used to guide amino acid alignment and as the structure template in ProtASR analyses

M	N MET A	45.78676 .68964 .9911 .007 .26
ATOM	2 CA MET A	45.75977 .12863 .5931 .007 .26
TOM	3 HA MET A	45.60376 .25862 .9561 .007 .26
TOM	4 CB MET A	$44.601 \quad 78.122 \quad 63.380 \quad 1.007 .26$
ATOM	5 HB1 MET A	$44.60278 .442 \quad 62.3381 .007 .26$
AT	6 HB2 MET A	$44.77179 .001 \quad 64.0051 .007 .26$
ATOM	7 CG MET A	$43.213 \quad 77.55463 .713 \quad 1.007 .26$
ATOM	8 HG1 MET A	$43.22877 .183 \quad 64.7381 .007 .26$
ATOM	9 HG2 MET A	$43.00276 .708 \quad 63.060 \quad 1.007 .26$
ATOM	10 SD MET A	41.85378 .75563 .5921 .007 .26
AT	CE MET A	41.75179 .02061 .8011 .007 .26
AT	12 HE1 MET A	40.95979 .73961 .5901 .007 .26
AT	13 HE2 MET A	$42.69579 .40961 .420 \quad 1.007 .26$
ATOM	14 HE3 MET A	$41.51778 .082 \quad 61.3041 .007 .26$
ATOM	15 C MET A 1	47.06477 .79763 .1591 .007 .26
ATOM	16 O MET A 1	$47.34877 .866 \quad 61.9641 .007 .26$
ATOM	17 N ILE A 2	47.83478 .27364 .1411 .006 .71
AT	18 H ILE A 2	$47.48478 .131 \quad 65.078 \quad 1.006 .71$
ATOM	19 CA ILE A 2	49.17378 .83563 .9601 .006 .71
ATOM	20 HA ILE A 2	$49.27579 .188 \quad 62.932 \quad 1.0066 .71$
ATOM	21 CB ILE A 2	$49.423 \quad 80.038 \quad 64.9011 .006 .71$
ATOM	22 HB ILE A 2	49.29179 .71065 .9341 .006 .71
AT	23 CG2 ILE A 2	50.86880 .55064 .7351 .006 .71
AT	24 1HG2 ILE A 2	51.06481 .37465 .4191 .006 .71
ATOM	25 2HG2 ILE A 2	51.59279 .77064 .9751 .006 .71
ATOM	26 3HG2 ILE A 2	51.03480 .88863 .7111 .006 .71
ATOM	27 CG1 ILE A 2	$48.40381 .16664 .612 \quad 1.006 .71$
ATOM	28 1HG1 ILE A 2	47.39280 .76664 .6921 .006 .71
ATO	29 2HG1 ILE A 2	$48.54081 .526 \quad 63.5921 .006 .71$
AT	30 CD1 ILE A 2	48.48682 .35965 .5741 .006 .71
ATOM	31 HD1 ILE A 2	$47.65283 .03465 .381 \quad 1.006 .71$
ATOM	32 HD2 ILE A 2	48.42882 .01066 .6061 .006 .71
ATOM	33 HD3 ILE A 2	49.41482 .90965 .4241 .006 .71
ATOM	34 C ILE A 2	$50.19277 .721 \quad 64.1491 .006 .71$
AT	35 O ILE A 2	50.75677 .29563 .1581 .006 .71
ATOM	36 N SER A 3	50.38877 .18465 .3591 .006 .18
ATOM	37 H SER A 3	49.92677 .60066 .1531 .006 .18
ATOM	38 CA SER A 3	51.43276 .17665 .6391 .006 .18
ATOM	39 HA SER A 3	52.31276 .45665 .0591 .006 .18
ATOM	40 CB SER A 3	$51.88976 .231 \quad 67.098 \quad 1.006 .18$
ATOM	41 HB1 SER A 3	52.64075 .46067 .2801 .006 .18
ATOM	42 HB2 SER A 3	51.03976 .07567 .7631 .006 .18
ATOM	43 OG SER A 3	52.47277 .49667 .3381 .006 .18
ATOM	44 HG SER A 3	53.29977 .54266 .8121 .006 .18
ATOM	45 C SER A 3	51.12374 .73765 .1661 .006 .18
ATOM	46 O SER A 3	$51.42573 .73665 .821 \quad 1.006 .18$
ATOM	47 N LYS A 4	50.52274 .65663 .9781 .005 .46
ATOM	48 H LYS A 4	50.30375 .55163 .5561 .005 .46
ATOM	49 CA LYS A 4	50.55573 .52663 .0491 .005 .46
ATOM	50 HA LYS A 4	51.43872 .91463 .2411 .005 .46

ATOM	51 CB LYS A 4	49.27672 .65063 .1401 .005 .46
ATOM	52 HB1 LYS A 4	49.38071 .88462 .3691 .005 .46
ATOM	53 HB 2 LYS A 4	$48.41273 .262 \quad 62.872 \quad 1.005 .46$
ATOM	54 CG LYS A 4	48.92771 .90864 .4411 .005 .46
ATOM	55 HG1 LYS A 4	$48.49972 .608 \quad 65.1591 .005 .46$
ATOM	56 HG2 LYS A 4	$49.83271 .481 \quad 64.862 \quad 1.005 .46$
ATOM	57 CD LYS A 4	$47.91070 .78964 .108 \quad 1.005 .46$
ATOM	58 HD1 LYS A 4	$48.36070 .120 \quad 63.370 \quad 1.005 .46$
ATOM	59 HD2 LYS A 4	$47.02471 .242 \quad 63.6561 .005 .46$
ATOM	60 CE LYS A 4	$47.47269 .945 \quad 65.315 \quad 1.005 .46$
ATOM	61 HE1 LYS A 4	47.00070 .60366 .0491 .005 .46
ATOM	62 HE2 LYS A 4	48.36469 .50965 .7741 .005 .46
ATOM	63 NZ LYS A 4	46.53068 .86164 .9171 .005 .46
ATOM	64 HZ1 LYS A 4	46.26968 .26265 .6891 .005 .46
ATOM	65 HZ2 LYS A 4	45.65269 .23364 .5561 .005 .46
ATOM	66 HZ3 LYS A 4	$46.91368 .26764 .192 \quad 1.005 .46$
ATOM	67 C LYS A 4	50.66574 .05361 .5961 .005 .46
ATOM	68 O LYS A 4	49.87173 .68460 .7251 .005 .46
ATOM	69 N LEU A 5	51.50275 .06261 .3801 .005 .61
ATOM	70 H LEU A 5	52.19475 .24962 .1001 .005 .61
ATOM	71 CA LEU A 5	$51.57975 .86060 .151 \quad 1.005 .61$
ATOM	72 HA LEU A 5	51.65375 .18259 .2981 .005 .61
ATOM	73 CB LEU A 5	50.29876 .73260 .0131 .005 .61
ATOM	74 HB1 LEU A 5	50.43677 .67560 .5411 .005 .61
ATOM	75 HB2 LEU A 5	$49.46676 .22560 .501 \quad 1.005 .61$
ATOM	76 CG LEU A 5	49.85377 .02358 .5701 .005 .61
ATOM	77 HG LEU A 5	49.69976 .08058 .0441 .005 .61
ATOM	78 CD1 LEU A 5	48.52177 .78558 .5871 .005 .61
ATOM	79 1HD1 LEU A 5	48.23178 .04957 .5751 .005 .61
ATOM	80 2HD1 LEU A 5	47.75377 .16259 .0431 .005 .61
ATOM	81 3HD1 LEU A 5	48.62678 .69559 .1781 .005 .61
ATOM	82 CD2 LEU A 5	50.86277 .86157 .7841 .005 .61
ATOM	83 1HD2 LEU A 5	50.46678 .09456 .7971 .005 .61
ATOM	84 2HD2 LEU A 5	51.08178 .78458 .3201 .005 .61
ATOM	85 3HD2 LEU A 5	51.78477 .29657 .6521 .005 .61
ATOM	86 C LEU A 5	52.85276 .72460 .2071 .005 .61
ATOM	87 O LEU A 5	53.72376 .62459 .3481 .005 .61
ATOM	88 N ASP A 6	53.01877 .44761 .3191 .005 .08
ATOM	89 H ASP A 6	52.19477 .50961 .9041 .005 .08
ATOM	90 CA ASP A 6	54.28577 .53962 .0511 .005 .08
ATOM	91 HA ASP A 6	54.99678 .11461 .4571 .005 .08
ATOM	92 CB ASP A 6	$54.05478 .29463 .372 \quad 1.005 .08$
ATOM	93 HB1 ASP A 6	53.07478 .04563 .7681 .005 .08
ATOM	94 HB2 ASP A 6	54.06279 .36763 .1741 .005 .08
ATOM	95 CG ASP A 6	55.09977 .96564 .4381 .005 .08
ATOM	96 OD1 ASP A 6	56.29878 .15164 .1361 .005 .08
ATOM	97 OD2 ASP A 6	54.68077 .50165 .5251 .005 .08
ATOM	98 C ASP A 6	54.86476 .13362 .2561 .005 .08
ATOM	99 O ASP A 6	$54.15475 .181 \quad 62.592 \quad 1.005 .08$
ATOM	100 N SER A 7	56.15476 .00461 .9651 .004 .11
ATOM	101 H SER A 7	56.70176 .84861 .8741 .004 .11
ATOM	102 CA SER A 7	$56.77174 .746 \quad 61.5701 .004 .11$
ATOM	103 HA SER A 7	56.18973 .91561 .9701 .004 .11

ATOM	104 CB SER A 7	56.76174 .63060 .0451 .004 .11
ATOM	105 HB1 SER A 7	57.41475 .38759 .6081 .004 .11
ATOM	106 HB2 SER A 7	55.74774 .77859 .6711 .004 .11
ATOM	107 OG SER A 7	57.20873 .34459 .6791 .004 .11
ATOM	108 HG SER A 7	56.45572 .74159 .7811 .004 .11
ATOM	109 C SER A 75	$58.18674 .66062 .122 \quad 1.004 .11$
ATOM	110 O SER A 75	59.12275 .26261 .5961 .004 .11
ATOM	111 N VAL A 8	58.32573 .98563 .2641 .003 .62
ATOM	112 H VAL A 8	57.50673 .52063 .6221 .003 .62
ATOM	113 CA VAL A 8	59.40374 .28064 .2181 .003 .62
ATOM	114 HA VAL A 8	$59.60975 .348 \quad 64.122 \quad 1.003 .62$
ATOM	115 CB VAL A 8	58.94874 .09465 .6861 .003 .62
ATOM	116 HB VAL A 8	58.89973 .03065 .9211 .003 .62
ATOM	117 CG1 VAL A 8	$59.92074 .781 \quad 66.6591 .003 .62$
ATOM	118 1HG1 VAL A 8	60.92974 .38866 .5411 .003 .62
ATOM	119 2HG1 VAL A 8	59.93075 .85766 .4751 .003 .62
ATOM	$1203 \mathrm{HG1}$ VAL A 8	59.59974 .60167 .6841 .003 .62
ATOM	121 CG2 VAL A 8	$57.55974 .701 \quad 65.9461 .003 .62$
ATOM	122 1HG2 VAL A 8	57.31474 .64267 .0061 .003 .62
ATOM	123 2HG2 VAL A 8	57.53675 .74965 .6391 .003 .62
ATOM	124 3HG2 VAL A 8	56.78874 .15965 .4001 .003 .62
ATOM	125 C VAL A 8	$60.72773 .586 \quad 63.9051 .003 .62$
ATOM	126 O VAL A 8	61.13872 .68464 .6281 .003 .62
ATOM	127 N LEU A 9	61.35873 .98162 .8001 .002 .69
ATOM	128 H LEU A 9	60.87974 .67362 .2331 .002 .69
ATOM	129 CA LEU A 9	62.57573 .38662 .2371 .002 .69
ATOM	130 HA LEU A 9	62.26472 .50661 .6751 .002 .69
ATOM	131 CB LEU A 9	63.22474 .37061 .2451 .002 .69
ATOM	132 HB1 LEU A 9	64.14373 .91860 .8781 .002 .69
ATOM	133 HB2 LEU A 9	63.49675 .27361 .7931 .002 .69
ATOM	134 CG LEU A 9	62.37574 .77560 .0231 .002 .69
ATOM	135 HG LEU A 9	61.44575 .22560 .3631 .002 .69
ATOM	136 CD1 LEU A 9	63.13475 .81459 .1991 .002 .69
ATOM	137 1HD1 LEU A 9	62.51776 .13258 .3581 .002 .69
ATOM	138 2HD1 LEU A 9	63.35676 .68459 .8161 .002 .69
ATOM	139 3HD1 LEU A 9	64.06275 .39158 .8171 .002 .69
ATOM	140 CD2 LEU A 9	62.05173 .60759 .0931 .002 .69
ATOM	141 1HD2 LEU A 9	61.42273 .95858 .2741 .002 .69
ATOM	142 2HD2 LEU A 9	62.97373 .19758 .6821 .002 .69
ATOM	143 3HD2 LEU A 9	61.50472 .83559 .6311 .002 .69
ATOM	144 C LEU A 9	63.59772 .90063 .2841 .002 .69
ATOM	145 O LEU A 9	64.04173 .64764 .1581 .002 .69
ATOM	146 N LEU A 10	$63.96171 .621 \quad 63.1731 .002 .50$
ATOM	147 H LEU A 10	63.62371 .11362 .3621 .002 .50
ATOM	148 CA LEU A 10	64.84370 .91764 .0921 .002 .50
ATOM	149 HA LEU A 10	64.46271 .07865 .1001 .002 .50
ATOM	150 CB LEU A 10	64.80069 .40463 .7761 .002 .50
ATOM	151 HB1 LEU A 10	65.12569 .26362 .7441 .002 .50
ATOM	152 HB2 LEU A 10	63.76969 .05763 .8531 .002 .50
ATOM	153 CG LEU A 10	65.68668 .53464 .6961 .002 .50
ATOM	154 HG LEU A 10	66.68568 .94964 .7251 .002 .50
ATOM	155 CD1 LEU A 10	65.14668 .47366 .1291 .002 .50
ATOM	156 1HD1 LEU A 10	$65.75567 .807 \quad 66.7331 .002 .50$

ATOM	157 2HD1 LEU A 10	65.15169 .46366 .5781 .002 .50
ATOM	158 3HD1 LEU A 10	64.12168 .09766 .1091 .002 .50
ATOM	159 CD2 LEU A 10	65.87567 .10664 .2051 .002 .50
ATOM	160 1HD2 LEU A 10	66.76466 .68164 .6561 .002 .50
ATOM	161 2HD2 LEU A 10	$\begin{array}{lllllllllllll}65.041 & 66.497 & 64.520 & 1.00 & 2.50\end{array}$
ATOM	162 3HD2 LEU A 10	65.97067 .08263 .1211 .002 .50
ATOM	163 C LEU A 10	66.29171 .43664 .0251 .002 .50
ATOM	164 O LEU A 10	66.84171 .73662 .9661 .002 .50
ATOM	165 N ALA A 11	66.95371 .42265 .1821 .002 .57
ATOM	166 H ALA A 11	$66.44871 .175 \quad 66.0151 .002 .57$
ATOM	167 CA ALA A 11	$68.38371 .640 \quad 65.2851 .002 .57$
ATOM	168 HA ALA A 11	$68.59072 .63364 .880 \quad 1.002 .57$
ATOM	169 CB ALA A 11	$68.75471 .658 \quad 66.7731 .002 .57$
ATOM	170 HB1 ALA A 11	69.81671 .88166 .8841 .002 .57
ATOM	171 HB2 ALA A 11	$68.18172 .431 \quad 67.2881 .002 .57$
ATOM	172 HB3 ALA A 11	68.54170 .68967 .2251 .002 .57
ATOM	173 C ALA A 11	69.24570 .62664 .5051 .002 .57
ATOM	174 O ALA A 11	69.16869 .41264 .7141 .002 .57
ATOM	175 N GLN A 12	$70.16671 .148 \quad 63.6941 .002 .56$
ATOM	176 H GLN A 12	70.14472 .14463 .5361 .002 .56
ATOM	177 CA GLN A 12	71.07170 .36662 .8551 .002 .56
ATOM	178 HA GLN A 12	70.46769 .90162 .0731 .002 .56
ATOM	179 CB GLN A 12	72.01571 .34562 .1551 .002 .56
ATOM	180 HB1 GLN A 12	72.51771 .97062 .8961 .002 .56
ATOM	181 HB2 GLN A 12	71.40072 .00061 .5391 .002 .56
ATOM	182 CG GLN A 12	73.05770 .67261 .2521 .002 .56
ATOM	183 HG1 GLN A 12	73.07371 .19060 .2931 .002 .56
ATOM	184 HG2 GLN A 12	72.80069 .63161 .0541 .002 .56
ATOM	185 CD GLN A 12	74.43870 .75261 .8831 .002 .56
ATOM	186 OE1 GLN A 12	74.76670 .05562 .8331 .002 .56
ATOM	187 NE2 GLN A 12	$75.26771 .65961 .420 \quad 1.002 .56$
ATOM	188 1HE2 GLN A 12	74.92772 .33060 .7321 .002 .56
ATOM	189 2HE2 GLN A 12	$76.15571 .751 \quad 61.8681 .002 .56$
ATOM	190 C GLN A 12	$71.78069 .212 \quad 63.5821 .002 .56$
ATOM	191 O GLN A 12	71.67768 .06563 .1501 .002 .56
ATOM	192 N LYS A 13	72.39969 .47264 .7441 .002 .63
ATOM	193 H LYS A 13	$72.50670 .437 \quad 65.0131 .002 .63$
ATOM	194 CA LYS A 13	73.01868 .40865 .5551 .002 .63
ATOM	195 HA LYS A 13	73.83567 .97464 .9711 .002 .63
ATOM	196 CB LYS A 13	73.58768 .96366 .8681 .002 .63
ATOM	197 HB1 LYS A 13	73.69768 .13367 .5671 .002 .63
ATOM	198 HB2 LYS A 13	72.89669 .68667 .3041 .002 .63
ATOM	199 CG LYS A 13	74.96869 .60166 .6681 .002 .63
ATOM	200 HG1 LYS A 13	74.87870 .50166 .0571 .002 .63
ATOM	201 HG2 LYS A 13	75.61568 .88866 .1541 .002 .63
ATOM	202 CD LYS A 13	75.59369 .95068 .0251 .002 .63
ATOM	203 HD1 LYS A 13	75.54769 .07268 .6721 .002 .63
ATOM	204 HD2 LYS A 13	75.02870 .76068 .4891 .002 .63
ATOM	205 CE LYS A 13	77.05870 .36467 .8481 .002 .63
ATOM	206 HE1 LYS A 13	77.09571 .30967 .2991 .002 .63
ATOM	207 HE2 LYS A 13	77.56169 .60467 .2411 .002 .63
ATOM	208 NZ LYS A 13	77.74170 .48869 .1591 .002 .63
ATOM	209 HZ1 LYS A 13	78.70970 .75969 .0361 .002 .63

ATOM	210 HZ2 LYS A 13	77.28371 .18469 .7351 .002 .63
ATOM	211 HZ3 LYS A 13	77.71669 .60169 .6471 .002 .63
ATOM	212 C LYS A 13	$72.06767 .24065 .822 \quad 1.002 .63$
ATOM	213 O LYS A 13	72.39666 .09665 .5141 .002 .63
ATOM	214 N LYS A 14	70.85867 .53466 .3201 .002 .36
ATOM	215 H LYS A 14	70.58568 .50666 .3371 .002 .36
ATOM	216 CA LYS A 14	$69.831 \quad 66.51466 .5661 .002 .36$
ATOM	217 HA LYS A 14	$70.238 \quad 65.781 \quad 67.2641 .002 .36$
ATOM	218 CB LYS A 14	$68.55067 .12867 .161 \quad 1.002 .36$
ATOM	219 HB1 LYS A 14	67.69166 .52466 .8651 .002 .36
ATOM	220 HB2 LYS A 14	68.39968 .13066 .7631 .002 .36
ATOM	221 CG LYS A 14	68.58167 .19768 .6941 .002 .36
ATOM	222 HG1 LYS A 14	$67.84367 .931 \quad 69.0231 .002 .36$
ATOM	223 HG2 LYS A 14	$69.566 \quad 67.52569 .0271 .002 .36$
ATOM	224 CD LYS A 14	68.23065 .84069 .3261 .002 .36
ATOM	225 HD1 LYS A 14	68.89865 .06468 .9461 .002 .36
ATOM	226 HD2 LYS A 14	67.20465 .57869 .0611 .002 .36
ATOM	227 CE LYS A 14	68.36465 .92670 .8471 .002 .36
ATOM	228 HE1 LYS A 14	67.77366 .77171 .2141 .002 .36
ATOM	229 HE2 LYS A 14	69.41466 .11471 .0921 .002 .36
ATOM	230 NZ LYS A 14	67.90964 .67671 .4981 .002 .36
ATOM	231 HZ1 LYS A 14	68.17564 .62872 .4691 .002 .36
ATOM	232 HZ2 LYS A 14	$66.898 \quad 64.54471 .4421 .002 .36$
ATOM	233 HZ3 LYS A 14	$68.238 \quad 63.84071 .0181 .002 .36$
ATOM	234 C LYS A 14	69.53065 .71065 .3071 .002 .36
ATOM	235 O LYS A 14	69.55464 .47665 .3741 .002 .36
ATOM	236 N PHE A 15	$69.337 \quad 66.412 \quad 64.181 \quad 1.002 .18$
ATOM	237 H PHE A 15	$69.41967 .421 \quad 64.211 \quad 1.002 .18$
ATOM	238 CA PHE A 15	69.10665 .76062 .8921 .002 .18
ATOM	239 HA PHE A 15	68.16465 .21262 .9411 .002 .18
ATOM	240 CB PHE A 15	$68.97566 .80561 .761 \quad 1.002 .18$
ATOM	241 HB1 PHE A 15	69.72567 .57761 .8801 .002 .18
ATOM	242 HB2 PHE A 15	$68.011 \quad 67.30261 .8701 .002 .18$
ATOM	243 CG PHE A 15	69.10766 .27960 .3371 .002 .18
ATOM	244 CD1 PHE A 15	67.97466 .15159 .5141 .002 .18
ATOM	245 HD1 PHE A 15	66.99566 .40359 .8971 .002 .18
ATOM	246 CE1 PHE A 15	$68.111 \quad 65.70358 .188 \quad 1.002 .18$
ATOM	247 HE1 PHE A 15	$67.237 \quad 65.60957 .5691 .002 .18$
ATOM	248 CZ PHE A 15	$69.36965 .34057 .681 \quad 1.002 .18$
ATOM	249 HZ PHE A 15	69.46564 .98756 .6631 .002 .18
ATOM	250 CE2 PHE A 15	70.50265 .45758 .5011 .002 .18
ATOM	251 HE2 PHE A 15	$71.478 \quad 65.19258 .121 \quad 1.002 .18$
ATOM	252 CD2 PHE A 15	70.37465 .96559 .8041 .002 .18
ATOM	253 HD2 PHE A 15	$71.25966 .10960 .400 \quad 1.002 .18$
ATOM	254 C PHE A 15	70.18664 .72462 .6141 .002 .18
ATOM	255 O PHE A 15	69.84863 .57762 .3441 .002 .18
ATOM	256 N ILE A 16	71.46565 .08862 .7691 .002 .39
ATOM	257 H ILE A 16	71.68266 .03563 .0671 .002 .39
ATOM	258 CA ILE A 16	$\begin{array}{lllllllllll}72.553 & 64.156 & 62.458 & 1.00 & 2.39\end{array}$
ATOM	259 HA ILE A 16	$\begin{array}{lllllllllll}72.399 & 63.766 & 61.452 & 1.00 & 2.39\end{array}$
ATOM	260 CB ILE A 16	73.93364 .86562 .4961 .002 .39
ATOM	261 HB ILE A 16	$74.08265 .28963 .491 \quad 1.002 .39$
ATOM	262 CG2 ILE A 16	75.06963 .85562 .2211 .002 .39

ATOM	263 1HG2 ILE A 16	74.94463 .40961 .2331 .002 .39
ATOM	264 2HG2 ILE A 16	$\begin{array}{llllllllllllll}76.041 & 64.341 & 62.280 & 1.00 & 2.39\end{array}$
ATOM	265 3HG2 ILE A 16	75.06763 .06062 .9651 .002 .39
ATOM	266 CG1 ILE A 16	$\begin{array}{ll}73.998 & 66.01061 .455 ~ 1.00 ~ \\ 2.39\end{array}$
ATOM	267 1HG1 ILE A 16	$73.15466 .678 \quad 61.6011 .002 .39$
ATOM	268 2HG1 ILE A 16	$\begin{array}{lllllllllll}73.921 ~ & 65.593 & 60.450 & 1.00 & 2.39\end{array}$
ATOM	269 CD1 ILE A 16	$\begin{array}{llllllllll}75.259 & 66.879 & 61.539 & 1.00 & 2.39\end{array}$
ATOM	270 HD1 ILE A 16	$\begin{array}{llllllllll}75.150 & 67.733 & 60.869 & 1.00 & 2.39\end{array}$
ATOM	271 HD2 ILE A 16	$\begin{array}{llllllllllll}75.388 & 67.246 & 62.558 & 1.00 & 2.39\end{array}$
ATOM	272 HD3 ILE A 16	76.14066 .31561 .2371 .002 .39
ATOM	273 C ILE A 16	$\begin{array}{llllllllll}72.493 & 62.961 \quad 63.410 ~ 1.00 ~ & 2.39\end{array}$
ATOM	274 O ILE A 16	$72.57961 .813 \quad 62.9661 .002 .39$
ATOM	275 N TYR A 17	$\begin{array}{lllllllll}72.315 & 63.210 & 64.712 & 1.00 & 2.35\end{array}$
ATOM	276 H TYR A 17	72.19064 .16965 .0161 .002 .35
ATOM	277 CA TYR A 17	72.51462 .16565 .7151 .002 .35
ATOM	278 HA TYR A 17	$\begin{array}{llllllllll}73.456 & 61.655 & 65.513 & 1.00 & 2.35\end{array}$
ATOM	279 CB TYR A 17	72.60062 .80467 .1131 .002 .35
ATOM	280 HB1 TYR A 17	72.74162 .00667 .8421 .002 .35
ATOM	281 HB2 TYR A 17	71.64063 .27867 .3291 .002 .35
ATOM	282 CG TYR A 17	73.70563 .83967 .3381 .002 .35
ATOM	283 CD1 TYR A 17	$73.60064 .728 \quad 68.4281 .002 .35$
ATOM	284 HD1 TYR A 17	$\begin{array}{llllllllllllll}72.751 & 64.659 & 69.091 & 1.00 & 2.35\end{array}$
ATOM	285 CE1 TYR A 17	74.60065 .69368 .6671 .002 .35
ATOM	286 HE1 TYR A 17	$\begin{array}{lllllllllllllll}74.528 & 66.361 ~ 69.511 ~ & 1.00 & 2.35\end{array}$
ATOM	287 CZ TYR A 17	75.71965 .77267 .8131 .002 .35
ATOM	288 OH TYR A 17	$76.69666 .69468 .032 \quad 1.002 .35$
ATOM	289 HH TYR A 17	$77.42566 .50367 .4391 .00 \quad 2.35$
ATOM	290 CE2 TYR A 17	75.83764 .88266 .7271 .002 .35
ATOM	291 HE2 TYR A 17	$\begin{array}{llllllllllllll}76.691 & 64.931 & 66.068 & 1.00 & 2.35\end{array}$
ATOM	292 CD2 TYR A 17	74.83763 .92066 .4941 .002 .35
ATOM	293 HD2 TYR A 17	74.94963 .25565 .6521 .002 .35
ATOM	294 C TYR A 17	71.42161 .09965 .6231 .002 .35
ATOM	295 O TYR A 17	71.69759 .90065 .6951 .002 .35
ATOM	296 N ASN A 18	$70.18761 .538 \quad 65.382 \quad 1.002 .29$
ATOM	297 H ASN A 18	70.04862 .54265 .3081 .002 .29
ATOM	298 CA ASN A 18	69.02660 .67065 .3381 .002 .29
ATOM	299 HA ASN A 18	$69.18059 .83566 .017 \quad 1.002 .29$
ATOM	300 CB ASN A 18	67.80661 .47265 .8191 .002 .29
ATOM	301 HB1 ASN A 18	66.91560 .86365 .6681 .002 .29
ATOM	302 HB2 ASN A 18	67.69562 .38265 .2271 .002 .29
ATOM	303 CG ASN A 18	67.88061 .85167 .2911 .002 .29
ATOM	304 OD1 ASN A 18	68.91961 .91567 .9321 .002 .29
ATOM	305 ND2 ASN A 18	66.75162 .06267 .9171 .002 .29
ATOM	306 1HD2 ASN A 18	65.88262 .03967 .4191 .002 .29
ATOM	307 2HD2 ASN A 18	66.82562 .24468 .9131 .002 .29
ATOM	308 C ASN A 18	68.79360 .07463 .9441 .002 .29
ATOM	309 O ASN A 18	68.25658 .96863 .8691 .002 .29
ATOM	310 N TYR A 19	69.18860 .74562 .8561 .002 .22
ATOM	311 H TYR A 19	69.56561 .68562 .9421 .002 .22
ATOM	312 CA TYR A 19	69.10360 .17261 .5151 .002 .22
ATOM	313 HA TYR A 19	$68.29359 .44561 .511 \quad 1.002 .22$
ATOM	314 CB TYR A 19	68.78861 .20060 .4141 .002 .22
ATOM	315 HB1 TYR A 19	69.03460 .77559 .4411 .002 .22

ATOM	316 HB2 TYR A 19	$69.45462 .051 \quad 60.5211 .002 .22$
ATOM	317 CG TYR A 19	67.35661 .65760 .2491 .002 .22
ATOM	318 CD1 TYR A 19	67.15562 .98459 .8471 .002 .22
ATOM	319 HD1 TYR A 19	68.01463 .62959 .7571 .002 .22
ATOM	320 CE1 TYR A 19	$65.87063 .44859 .528 \quad 1.002 .22$
ATOM	321 HE1 TYR A 19	$65.70764 .47059 .2281 .00 \quad 2.22$
ATOM	322 CZ TYR A 19	64.77062 .57959 .6371 .002 .22
ATOM	323 OH TYR A 19	63.52663 .06859 .4291 .002 .22
ATOM	324 HH TYR A 19	62.84962 .44859 .7371 .002 .22
ATOM	325 CE2 TYR A 19	$64.96261 .236 \quad 60.0281 .002 .22$
ATOM	326 HE2 TYR A 19	64.11260 .57260 .0991 .002 .22
ATOM	327 CD2 TYR A 19	$66.25860 .771 \quad 60.3161 .002 .22$
ATOM	328 HD2 TYR A 19	66.39359 .73260 .5711 .002 .22
ATOM	329 C TYR A 19	70.33359 .37061 .0691 .002 .22
ATOM	330 O TYR A 19	70.28658 .79859 .9791 .002 .22
ATOM	331 N LYS A 20	$71.42559 .26161 .8371 .00 \quad 2.42$
ATOM	332 H LYS A 20	71.53259 .84762 .6591 .002 .42
ATOM	333 CA LYS A 20	72.52058 .38461 .4041 .002 .42
ATOM	334 HA LYS A 20	72.80958 .72360 .4071 .002 .42
ATOM	335 CB LYS A 20	$73.77458 .531 \quad 62.2931 .002 .42$
ATOM	336 HB1 LYS A 20	$73.61258 .03063 .2491 .00 \quad 2.42$
ATOM	337 HB2 LYS A 20	$73.97659 .586 \quad 62.4831 .00 \quad 2.42$
ATOM	338 CG LYS A 20	$74.99057 .917 \quad 61.5631 .002 .42$
ATOM	339 HG1 LYS A 20	$75.28158 .586 \quad 60.751 \quad 1.002 .42$
ATOM	340 HG2 LYS A 20	$74.70556 .96261 .122 \quad 1.002 .42$
ATOM	341 CD LYS A 20	$76.21157 .651 \quad 62.4551 .002 .42$
ATOM	342 HD1 LYS A 20	75.91856 .97363 .2571 .002 .42
ATOM	343 HD2 LYS A 20	76.57658 .58562 .8861 .002 .42
ATOM	344 CE LYS A 20	77.30157 .00661 .5831 .002 .42
ATOM	345 HE1 LYS A 20	77.78257 .77860 .9741 .002 .42
ATOM	346 HE2 LYS A 20	$76.83356 .30260 .890 \quad 1.002 .42$
ATOM	347 NZ LYS A 20	78.33256 .27662 .3591 .002 .42
ATOM	348 HZ1 LYS A 20	$\begin{array}{llllllllllll}78.971 & 55.828 & 61.690 & 1.00 & 2.42\end{array}$
ATOM	349 HZ2 LYS A 20	$78.93156 .896 \quad 62.8831 .002 .42$
ATOM	350 HZ3 LYS A 20	77.95155 .54462 .9411 .002 .42
ATOM	351 C LYS A 20	72.10156 .91761 .2971 .002 .42
ATOM	352 O LYS A 20	$\begin{array}{lllllllllll}71.91256 .228 ~ & 62.301 & 1.00 & 2.42\end{array}$
ATOM	353 N ASN A 21	72.03256 .43860 .0591 .002 .36
ATOM	354 H ASN A 21	72.16757 .10959 .3181 .002 .36
ATOM	355 CA ASN A 21	71.53755 .11759 .6651 .002 .36
ATOM	356 HA ASN A 21	$70.57954 .977 \quad 60.1471 .002 .36$
ATOM	357 CB ASN A 21	71.24455 .17058 .1631 .002 .36
ATOM	358 HB1 ASN A 21	70.60256 .02857 .9861 .002 .36
ATOM	359 HB2 ASN A 21	70.68254 .28157 .8741 .002 .36
ATOM	360 CG ASN A 21	72.45555 .27957 .2541 .002 .36
ATOM	361 OD1 ASN A 21	73.60755 .09457 .6251 .002 .36
ATOM	362 ND2 ASN A 21	72.21355 .61256 .0131 .002 .36
ATOM	363 1HD2 ASN A 21	71.25455 .79255 .7271 .002 .36
ATOM	364 2HD2 ASN A 21	72.96055 .55855 .3371 .002 .36
ATOM	365 C ASN A 21	72.40953 .90360 .0411 .002 .36
ATOM	366 O ASN A 21	72.21552 .81159 .5071 .002 .36
ATOM	367 N MET A 22	73.41154 .08260 .9051 .002 .51
ATOM	368 H MET A 22	73.48354 .97361 .3691 .002 .51

ATOM	369 CA MET A 22	74.38553 .03661 .1991 .002 .51
ATOM	370 HA MET A 22	$74.84152 .768 \quad 60.2451 .00 \quad 2.51$
ATOM	371 CB MET A 22	$75.51753 .561 \quad 62.0961 .002 .51$
ATOM	372 HB1 MET A 22	75.91554 .47361 .6541 .002 .51
ATOM	373 HB2 MET A 22	76.31852 .82062 .0991 .002 .51
ATOM	374 CG MET A 22	$75.12453 .84063 .551 \quad 1.002 .51$
ATOM	375 HG1 MET A 22	74.75652 .92064 .0041 .002 .51
ATOM	376 HG2 MET A 22	$74.32854 .58463 .581 \quad 1.002 .51$
ATOM	377 SD MET A 22	76.52454 .42264 .5411 .002 .51
ATOM	378 CE MET A 22	$75.84354 .235 \quad 66.212 \quad 1.002 .51$
ATOM	379 HE1 MET A 22	76.58454 .56466 .9411 .002 .51
ATOM	380 HE2 MET A 22	74.94254 .83866 .3191 .002 .51
ATOM	381 HE3 MET A 22	75.61053 .18666 .4011 .002 .51
ATOM	382 C MET A 22	73.72951 .77261 .7701 .002 .51
ATOM	383 O MET A 22	72.88251 .82362 .6601 .002 .51
ATOM	384 N ARG A 23	74.16450 .61061 .2751 .003 .46
ATOM	385 H ARG A 23	74.86350 .67660 .5511 .003 .46
ATOM	386 CA ARG A 23	73.58349 .28061 .5471 .003 .46
ATOM	387 HA ARG A 23	$\begin{array}{lllllllllllll}72.504 & 49.361 ~ & 61.392 & 1.00 & 3.46\end{array}$
ATOM	388 CB ARG A 23	74.15148 .29460 .5001 .003 .46
ATOM	389 HB1 ARG A 23	74.02548 .71959 .5031 .003 .46
ATOM	390 HB2 ARG A 23	$73.55247 .383 \quad 60.5281 .003 .46$
ATOM	391 CG ARG A 23	75.64647 .95660 .7241 .003 .46
ATOM	392 HG1 ARG A 23	76.00248 .43361 .6381 .003 .46
ATOM	393 HG2 ARG A 23	76.23948 .36059 .9021 .003 .46
ATOM	394 CD ARG A 23	75.89746 .44260 .8261 .003 .46
ATOM	395 HD1 ARG A 23	75.99146 .03059 .8191 .003 .46
ATOM	396 HD2 ARG A 23	75.04145 .95661 .2991 .003 .46
ATOM	397 NE ARG A 23	77.11646 .13761 .6041 .003 .46
ATOM	398 HE ARG A 23	77.98046 .03661 .0991 .003 .46
ATOM	399 CZ ARG A 23	77.17745 .91462 .9081 .003 .46
ATOM	400 NH1 ARG A 23	78.31845 .66963 .4851 .003 .46
ATOM	401 1HH1 ARG A 23	79.17345 .65362 .9591 .003 .46
ATOM	402 2HH1 ARG A 23	78.34345 .50964 .4781 .003 .46
ATOM	403 NH2 ARG A 23	76.12745 .93963 .6761 .003 .46
ATOM	404 1HH2 ARG A 23	75.22446 .21363 .3071 .003 .46
ATOM	405 2HH2 ARG A 23	76.21045 .74364 .6591 .003 .46
ATOM	406 C ARG A 23	73.75848 .72562 .9721 .003 .46
ATOM	407 O ARG A 23	73.74647 .51163 .1861 .003 .46
ATOM	408 N TRP A 24	74.04249 .60063 .9251 .003 .49
ATOM	409 H TRP A 24	74.01750 .57363 .6481 .003 .49
ATOM	410 CA TRP A 24	$74.39549 .297 \quad 65.3151 .003 .49$
ATOM	411 HA TRP A 24	73.86748 .39765 .6271 .003 .49
ATOM	412 CB TRP A 24	75.91249 .05965 .3861 .003 .49
ATOM	413 HB1 TRP A 24	$\begin{array}{llllll}76.421 ~ 50.025 ~ & 65.412 & 1.00 & 3.49\end{array}$
ATOM	414 HB2 TRP A 24	76.23748 .56564 .4711 .003 .49
ATOM	415 CG TRP A 24	$76.40548 .21066 .520 \quad 1.003 .49$
ATOM	416 CD1 TRP A 24	77.41948 .54367 .3501 .003 .49
ATOM	417 HD1 TRP A 24	$77.96549 .48167 .321 \quad 1.003 .49$
ATOM	418 NE1 TRP A 24	$\begin{array}{llllllllllll}77.671 & 47.503 & 68.220 & 1.00 & 3.49\end{array}$
ATOM	419 HE1 TRP A 24	78.38547 .54268 .9381 .003 .49
ATOM	420 CE2 TRP A 24	76.83446 .43467 .9911 .003 .49
ATOM	421 CZ2 TRP A 24	$\begin{array}{lllllllllllll}76.731 ~ & 45.161 & 68.567 & 1.00 & 3.49\end{array}$

ATOM	422 HZ2 TRP A 24	77.40544 .86069 .3571 .003 .49
ATOM	423 CH2 TRP A 24	
ATOM	424 HH2 TRP A 24	$75.63043 .301 \quad 68.5581 .003 .49$
ATOM	425 CZ3 TRP A 24	74.84944 .69267 .0981 .003 .49
ATOM	426 HZ3 TRP A 24	$74.06644 .018 \quad 66.7741 .003 .49$
ATOM	427 CE3 TRP A 24	$74.96945 .96966 .517 \quad 1.003 .49$
ATOM	428 HE3 TRP A 24	74.26746 .26365 .7491 .003 .49
ATOM	429 CD2 TRP A 24	75.97546 .87266 .9361 .003 .49
ATOM	430 C TRP A 24	73.93650 .42766 .2441 .003 .49
ATOM	431 O TRP A 24	74.53650 .71367 .2741 .003 .49
ATOM	432 N ALA A 25	72.86651 .11065 .8311 .003 .55
ATOM	433 H ALA A 25	$72.44750 .813 \quad 64.962 \quad 1.003 .55$
ATOM	434 CA ALA A 25	$\begin{array}{lllllllllll}72.273 & 52.303 & 66.430 & 1.00 & 3.55\end{array}$
ATOM	435 HA ALA A 25	$73.06153 .051 \quad 66.5261 .003 .55$
ATOM	436 CB ALA A 25	71.24352 .83065 .4191 .003 .55
ATOM	437 HB1 ALA A 25	70.71553 .68065 .8411 .003 .55
ATOM	438 HB2 ALA A 25	71.74553 .15264 .5081 .003 .55
ATOM	439 HB3 ALA A 25	70.51652 .05365 .1791 .003 .55
ATOM	440 C ALA A 25	71.65152 .16067 .8381 .003 .55
ATOM	441 O ALA A 25	70.73752 .91668 .1941 .003 .55
ATOM	442 N LYS A 26	72.12051 .19968 .6351 .003 .82
ATOM	443 H LYS A 26	$72.96250 .725 \quad 68.3321 .003 .82$
ATOM	444 CA LYS A 26	71.70551 .01670 .0231 .003 .82
ATOM	445 HA LYS A 26	70.65150 .74670 .0141 .003 .82
ATOM	446 CB LYS A 26	72.54749 .88370 .6481 .003 .82
ATOM	447 HB1 LYS A 26	73.54850 .26870 .8551 .003 .82
ATOM	448 HB2 LYS A 26	72.66049 .07369 .9261 .003 .82
ATOM	449 CG LYS A 26	71.96149 .31371 .9531 .003 .82
ATOM	450 HG1 LYS A 26	71.75850 .13272 .6431 .003 .82
ATOM	451 HG2 LYS A 26	72.70848 .66872 .4191 .003 .82
ATOM	452 CD LYS A 26	$70.67148 .49971 .752 \quad 1.003 .82$
ATOM	453 HD1 LYS A 26	$69.94549 .08471 .190 \quad 1.003 .82$
ATOM	454 HD2 LYS A 26	70.23648 .28472 .7301 .003 .82
ATOM	455 CE LYS A 26	$70.93447 .16471 .042 \quad 1.003 .82$
ATOM	456 HE1 LYS A 26	71.38146 .47571 .7661 .003 .82
ATOM	457 HE2 LYS A 26	71.64147 .29970 .2211 .003 .82
ATOM	458 NZ LYS A 26	69.67746 .58770 .5291 .003 .82
ATOM	459 HZ1 LYS A 26	69.71945 .57070 .4361 .003 .82
ATOM	460 HZ2 LYS A 26	68.92446 .65171 .2191 .003 .82
ATOM	461 HZ3 LYS A 26	69.33746 .98869 .6741 .003 .82
ATOM	462 C LYS A 26	71.85752 .33170 .7951 .003 .82
ATOM	463 O LYS A 26	72.84753 .04270 .6491 .003 .82
ATOM	464 N GLY A 27	$70.86052 .66071 .610 \quad 1.003 .51$
ATOM	465 H GLY A 27	70.07852 .03171 .7051 .003 .51
ATOM	466 CA GLY A 27	70.93253 .82472 .4901 .003 .51
ATOM	467 HA1 GLY A 27	71.96453 .97872 .8121 .003 .51
ATOM	468 HA2 GLY A 27	70.34553 .61073 .3841 .003 .51
ATOM	469 C GLY A 27	$\begin{array}{lllllllllllll}70.428 & 55.141 & 71.928 & 1.00 & 3.51\end{array}$
ATOM	470 O GLY A 27	70.55856 .16572 .5981 .003 .51
ATOM	471 N ARG A 28	$\begin{array}{llllllllll}69.848 & 55.162 & 70.718 & 1.00 & 2.53\end{array}$
ATOM	472 H ARG A 28	$69.85854 .32370 .151 \quad 1.002 .53$
ATOM	473 CA ARG A 28	69.23656 .40570 .2271 .002 .53
ATOM	474 HA ARG A 28	69.93757 .17570 .5151 .002 .53

ATOM	475 CB ARG A 28	69.14056 .44868 .6991 .002 .53
ATOM	476 HB1 ARG A 28	68.22855 .94068 .3831 .002 .53
ATOM	477 HB2 ARG A 28	69.99655 .91868 .2761 .002 .53
ATOM	478 CG ARG A 28	69.15657 .88768 .1401 .002 .53
ATOM	479 HG1 ARG A 28	$68.22258 .388 \quad 68.4011 .002 .53$
ATOM	480 HG2 ARG A 28	69.18957 .81867 .0541 .002 .53
ATOM	481 CD ARG A 28	70.35858 .74968 .5921 .002 .53
ATOM	482 HD1 ARG A 28	70.76459 .24667 .7191 .002 .53
ATOM	483 HD2 ARG A 28	$71.15358 .121 \quad 68.9971 .002 .53$
ATOM	484 NE ARG A 28	69.95159 .80369 .5391 .002 .53
ATOM	485 HE ARG A 28	69.39760 .55769 .1441 .002 .53
ATOM	486 CZ ARG A 28	70.18259 .89370 .8351 .002 .53
ATOM	487 NH1 ARG A 28	69.48360 .72271 .5441 .002 .53
ATOM	488 1HH1 ARG A 28	68.67961 .16071 .1041 .002 .53
ATOM	489 2HH1 ARG A 28	69.55560 .69872 .5401 .002 .53
ATOM	490 NH2 ARG A 28	71.06959 .17471 .4661 .002 .53
ATOM	491 1HH2 ARG A 28	71.64058 .53270 .9501 .002 .53
ATOM	492 2HH2 ARG A 28	71.11159 .17872 .4671 .002 .53
ATOM	493 C ARG A 28	67.96456 .80470 .9691 .002 .53
ATOM	494 O ARG A 28	67.78058 .00071 .1671 .002 .53
ATOM	495 N ASN A 29	67.20255 .80971 .4451 .002 .51
ATOM	496 H ASN A 29	67.59754 .89271 .3111 .002 .51
ATOM	497 CA ASN A 29	$65.98655 .798 \quad 72.290 \quad 1.002 .51$
ATOM	498 HA ASN A 29	65.54554 .80472 .1861 .002 .51
ATOM	499 CB ASN A 29	66.40955 .93073 .7631 .002 .51
ATOM	500 HB1 ASN A 29	65.50956 .02274 .3701 .002 .51
ATOM	501 HB2 ASN A 29	67.00456 .83373 .9001 .002 .51
ATOM	502 CG ASN A 29	67.19654 .73874 .2881 .002 .51
ATOM	503 OD1 ASN A 29	67.65653 .86373 .5681 .002 .51
ATOM	504 ND2 ASN A 29	67.37954 .66375 .5851 .002 .51
ATOM	505 1HD2 ASN A 29	67.02955 .37476 .1991 .002 .51
ATOM	506 2HD2 ASN A 29	67.86653 .85275 .9281 .002 .51
ATOM	507 C ASN A 29	$\begin{array}{lllllll}64.825 & 56.754 & 71.922 & 1.00 & 2.51\end{array}$
ATOM	508 O ASN A 29	63.65556 .44772 .1391 .002 .51
ATOM	509 N GLU A 30	65.13157 .90271 .3441 .002 .23
ATOM	510 H GLU A 30	66.11258 .12071 .2621 .002 .23
ATOM	511 CA GLU A 30	64.22758 .73870 .5741 .002 .23
ATOM	512 HA GLU A 30	63.31158 .88071 .1381 .002 .23
ATOM	513 CB GLU A 30	64.90260 .11170 .3411 .002 .23
ATOM	514 HB1 GLU A 30	$64.21160 .75969 .800 \quad 1.002 .23$
ATOM	515 HB2 GLU A 30	$65.78359 .960 \quad 69.7151 .002 .23$
ATOM	516 CG GLU A 30	65.33560 .83971 .6281 .002 .23
ATOM	517 HG1 GLU A 30	66.01960 .20872 .1971 .002 .23
ATOM	518 HG2 GLU A 30	64.45661 .01672 .2451 .002 .23
ATOM	519 CD GLU A 30	66.05462 .16571 .3331 .002 .23
ATOM	520 OE1 GLU A 30	$\begin{array}{lllllllllllll}67.182 & 62.149 & 70.788 & 1.00 & 2.23\end{array}$
ATOM	521 OE2 GLU A 30	65.55663 .26071 .6831 .002 .23
ATOM	522 C GLU A 30	63.88358 .10569 .2181 .002 .23
ATOM	523 O GLU A 30	64.56957 .21468 .7221 .002 .23
ATOM	524 N THR A 31	$62.86858 .664 \quad 68.5701 .001 .83$
ATOM	525 H THR A 31	$62.36959 .411 \quad 69.029 \quad 1.00 \quad 1.83$
ATOM	526 CA THR A 31	$62.50358 .441 \quad 67.1661 .001 .83$
ATOM	527 HA THR A 31	$63.36258 .031 \quad 66.6491 .001 .83$

ATOM	528 CB THR A 31	61.35757 .41867 .0441 .001 .83
ATOM	529 HB THR A 31	61.74956 .42967 .2841 .001 .83
ATOM	530 CG2 THR A 31	60.20757 .70868 .0041 .001 .83
ATOM	531 1HG2 THR A 31	59.38357 .02267 .8191 .001 .83
ATOM	532 2HG2 THR A 31	60.53657 .55469 .0291 .001 .83
ATOM	533 3HG2 THR A 31	59.87558 .73367 .8821 .001 .83
ATOM	534 OG1 THR A 31	$60.87557 .391 \quad 65.7191 .001 .83$
ATOM	535 HG1 THR A 31	59.96557 .01565 .7421 .001 .83
ATOM	536 C THR A 31	62.15759 .78666 .5661 .001 .83
ATOM	537 O THR A 31	61.80060 .68667 .3371 .001 .83
ATOM	538 N TYR A 32	$62.34259 .977 \quad 65.2481 .001 .68$
ATOM	539 H TYR A 32	62.49559 .20064 .6201 .001 .68
ATOM	540 CA TYR A 32	$\begin{array}{llllllllllll}62.298 & 61.339 & 64.728 & 1.00 & 1.68\end{array}$
ATOM	541 HA TYR A 32	61.78761 .98565 .4431 .001 .68
ATOM	542 CB TYR A 32	63.70761 .90764 .5551 .001 .68
ATOM	543 HB1 TYR A 32	$64.26161 .297 \quad 63.842 \quad 1.001 .68$
ATOM	544 HB2 TYR A 32	$\begin{array}{llllllllll}64.229 & 61.893 & 65.513 & 1.00 & 1.68\end{array}$
ATOM	545 CG TYR A 32	63.63663 .32464 .0501 .001 .68
ATOM	546 CD1 TYR A 32	62.98964 .31464 .8091 .001 .68
ATOM	547 HD1 TYR A 32	$62.63264 .101 \quad 65.8071 .001 .68$
ATOM	548 CE1 TYR A 32	62.74865 .57564 .2391 .001 .68
ATOM	549 HE1 TYR A 32	62.25566 .33864 .8141 .001 .68
ATOM	550 CZ TYR A 32	63.15065 .84962 .9131 .001 .68
ATOM	551 OH TYR A 32	$62.92967 .061 \quad 62.3451 .001 .68$
ATOM	552 HH TYR A 32	63.14367 .05561 .4101 .001 .68
ATOM	553 CE2 TYR A 32	$63.83064 .861 \quad 62.177 \quad 1.001 .68$
ATOM	554 HE2 TYR A 32	$64.128 \quad 65.05461 .161 \quad 1.001 .68$
ATOM	555 CD2 TYR A 32	64.07663 .60562 .7501 .001 .68
ATOM	556 HD2 TYR A 32	64.55562 .83462 .1711 .001 .68
ATOM	557 C TYR A 32	$61.46061 .391 \quad 63.471 \quad 1.001 .68$
ATOM	558 O TYR A 32	61.82860 .82062 .4481 .001 .68
ATOM	559 N LEU A 33	60.26461 .95263 .6061 .001 .67
ATOM	560 H LEU A 33	$60.031 \quad 62.453 \quad 64.4581 .001 .67$
ATOM	561 CA LEU A 33	59.20861 .72462 .6401 .001 .67
ATOM	562 HA LEU A 33	59.49560 .93161 .9541 .001 .67
ATOM	563 CB LEU A 33	$57.92461 .32563 .411 \quad 1.001 .67$
ATOM	564 HB1 LEU A 33	$\begin{array}{llllllllllllll}57.087 & 61.926 & 63.054 & 1.00 & 1.67\end{array}$
ATOM	565 HB2 LEU A 33	58.02961 .55964 .4721 .001 .67
ATOM	566 CG LEU A 33	57.51459 .85363 .2751 .001 .67
ATOM	567 HG LEU A 33	56.56959 .71563 .8011 .001 .67
ATOM	568 CD1 LEU A 33	$57.29859 .49261 .811 \quad 1.001 .67$
ATOM	569 1HD1 LEU A 33	56.71458 .57561 .7601 .001 .67
ATOM	570 2HD1 LEU A 33	56.76660 .30261 .3261 .001 .67
ATOM	571 3HD1 LEU A 33	58.24659 .34961 .2991 .001 .67
ATOM	572 CD2 LEU A 33	$58.54358 .90563 .872 \quad 1.001 .67$
ATOM	573 1HD2 LEU A 33	58.26257 .87463 .6521 .001 .67
ATOM	574 2HD2 LEU A 33	59.53459 .09363 .4801 .001 .67
ATOM	575 3HD2 LEU A 33	58.57359 .03664 .9481 .001 .67
ATOM	576 C LEU A 33	$58.97362 .97661 .817 \quad 1.001 .67$
ATOM	577 O LEU A 33	$58.66064 .025 \quad 62.4031 .001 .67$
ATOM	578 N CYS A 34	$59.04662 .837 \quad 60.481 \quad 1.001 .81$
ATOM	579 H CYS A 34	59.40261 .96960 .1031 .001 .81
ATOM	580 CA CYS A 34	$59.05264 .038 \quad 59.6361 .001 .81$

ATOM	581 HA CYS A 34	58.83064 .90560 .2601 .001 .81
ATOM	582 CB CYS A 34	60.45564 .28159 .0891 .001 .81
ATOM	583 HB1 CYS A 34	60.41564 .55458 .0361 .001 .81
ATOM	584 HB2 CYS A 34	61.05563 .39059 .2031 .001 .81
ATOM	585 SG CYS A 34	$61.231 \quad 65.60860 .0371 .001 .81$
ATOM	586 HG CYS A 34	$60.63266 .61759 .391 \quad 1.001 .81$
ATOM	587 C CYS A 34	$57.96364 .068 \quad 58.5631 .001 .81$
ATOM	588 O CYS A 34	58.02363 .40957 .5171 .001 .81
ATOM	589 N PHE A 35	56.91564 .81158 .8881 .002 .04
ATOM	590 H PHE A 35	56.98665 .46259 .6651 .002 .04
ATOM	591 CA PHE A 35	$55.591 \quad 64.53358 .3731 .002 .04$
ATOM	592 HA PHE A 35	55.56963 .52757 .9771 .002 .04
ATOM	593 CB PHE A 35	54.58864 .59459 .5461 .002 .04
ATOM	594 HB1 PHE A 35	53.75165 .24159 .2751 .002 .04
ATOM	595 HB2 PHE A 35	55.06165 .06260 .4091 .002 .04
ATOM	596 CG PHE A 35	54.02463 .25059 .9661 .002 .04
ATOM	597 CD1 PHE A 35	54.72962 .42560 .8621 .002 .04
ATOM	598 HD1 PHE A 35	55.67362 .75861 .2651 .002 .04
ATOM	599 CE1 PHE A 35	$54.188 \quad 61.18261 .251 \quad 1.002 .04$
ATOM	600 HE1 PHE A 35	54.70360 .55961 .9671 .002 .04
ATOM	601 CZ PHE A 35	52.96060 .74960 .7261 .002 .04
ATOM	602 HZ PHE A 35	52.55659 .78861 .0171 .002 .04
ATOM	603 CE2 PHE A 35	52.23761 .58959 .8651 .002 .04
ATOM	604 HE2 PHE A 35	51.27161 .27459 .5031 .002 .04
ATOM	605 CD2 PHE A 35	52.76862 .83659 .4871 .002 .04
ATOM	606 HD2 PHE A 35	52.20563 .48858 .8361 .002 .04
ATOM	607 C PHE A 35	55.17265 .51657 .2861 .002 .04
ATOM	608 O PHE A 35	55.36466 .74057 .4481 .002 .04
ATOM	609 N VAL A 36	54.58764 .94856 .2071 .002 .06
ATOM	610 H VAL A 36	54.48263 .93656 .2011 .002 .06
ATOM	611 CA VAL A 36	54.33165 .69454 .9721 .002 .06
ATOM	612 HA VAL A 36	54.38066 .75555 .2271 .002 .06
ATOM	613 CB VAL A 36	55.39265 .50053 .8741 .002 .06
ATOM	614 HB VAL A 36	55.29264 .50853 .4461 .002 .06
ATOM	615 CG1 VAL A 36	55.23566 .52952 .7481 .002 .06
ATOM	616 1HG1 VAL A 36	56.03666 .41752 .0171 .002 .06
ATOM	617 2HG1 VAL A 36	54.28766 .38452 .2391 .002 .06
ATOM	618 3HG1 VAL A 36	55.26367 .53353 .1651 .002 .06
ATOM	619 CG2 VAL A 36	56.81065 .66354 .4071 .002 .06
ATOM	620 1HG2 VAL A 36	57.52565 .57253 .5901 .002 .06
ATOM	621 2HG2 VAL A 36	56.91166 .64154 .8811 .002 .06
ATOM	622 3HG2 VAL A 36	57.02364 .88255 .1361 .002 .06
ATOM	623 C VAL A 36	52.93365 .49054 .4051 .002 .06
ATOM	624 O VAL A 36	52.70964 .66253 .5071 .002 .06
ATOM	625 N VAL A 37	52.01266 .27754 .9631 .002 .12
ATOM	626 H VAL A 37	52.31666 .91255 .6951 .002 .12
ATOM	627 CA VAL A 37	50.59566 .35254 .5981 .002 .12
ATOM	628 HA VAL A 37	50.25265 .33654 .4111 .002 .12
ATOM	629 CB VAL A 37	49.77066 .90055 .7711 .002 .12
ATOM	630 HB VAL A 37	50.10367 .91655 .9501 .002 .12
ATOM	631 CG1 VAL A 37	48.26666 .89155 .4561 .002 .12
ATOM	632 1HG1 VAL A 37	47.70567 .26756 .3091 .002 .12
ATOM	633 2HG1 VAL A 37	$48.04467 .53954 .611 \quad 1.002 .12$

ATOM	634 3HG1 VAL A 37	47.93765 .87755 .2291 .002 .12
ATOM	635 CG2 VAL A 37	$49.977 \quad 66.09357 .061 \quad 1.002 .12$
ATOM	636 1HG2 VAL A 37	51.03366 .04457 .3211 .002 .12
ATOM	637 2HG2 VAL A 37	$49.49066 .61257 .882 \quad 1.002 .12$
ATOM	638 3HG2 VAL A 37	49.56465 .09256 .9621 .002 .12
ATOM	639 C VAL A 37	50.34567 .15553 .3211 .002 .12
ATOM	640 O VAL A 37	50.81668 .28753 .1661 .002 .12
ATOM	641 N LYS A 38	49.58666 .56452 .3851 .002 .41
ATOM	642 H LYS A 38	49.30465 .59852 .5451 .002 .41
ATOM	643 CA LYS A 38	$49.461 \quad 67.083 \quad 51.020 \quad 1.002 .41$
ATOM	644 HA LYS A 38	49.63568 .15851 .0661 .002 .41
ATOM	645 CB LYS A 38	50.54566 .51350 .0851 .002 .41
ATOM	646 HB1 LYS A 38	50.31566 .84249 .0721 .002 .41
ATOM	647 HB2 LYS A 38	$50.521 \quad 65.42350 .0941 .002 .41$
ATOM	648 CG LYS A 38	51.95067 .01450 .4581 .002 .41
ATOM	649 HG1 LYS A 38	$52.21266 .615 \quad 51.4361 .002 .41$
ATOM	650 HG2 LYS A 38	51.93568 .10250 .5301 .002 .41
ATOM	651 CD LYS A 38	53.05466 .59949 .4741 .002 .41
ATOM	652 HD1 LYS A 38	53.16065 .51449 .5121 .002 .41
ATOM	653 HD2 LYS A 38	53.99767 .03649 .8071 .002 .41
ATOM	654 CE LYS A 38	52.79867 .01648 .0191 .002 .41
ATOM	655 HE1 LYS A 38	51.92666 .46847 .6491 .002 .41
ATOM	656 HE2 LYS A 38	53.65366 .71247 .4091 .002 .41
ATOM	657 NZ LYS A 38	52.56868 .47447 .8681 .002 .41
ATOM	658 HZ1 LYS A 38	53.36469 .03048 .1431 .002 .41
ATOM	659 HZ2 LYS A 38	$52.31068 .66746 .901 \quad 1.002 .41$
ATOM	660 HZ3 LYS A 38	51.75168 .77548 .3951 .002 .41
ATOM	661 C LYS A 38	48.09566 .94450 .3611 .002 .41
ATOM	662 O LYS A 38	47.68865 .84549 .9771 .002 .41
ATOM	663 N ARG A 39	47.39968 .07050 .1271 .002 .87
ATOM	664 H ARG A 39	47.82468 .97250 .3161 .002 .87
ATOM	665 CA ARG A 39	46.06667 .99549 .5041 .002 .87
ATOM	666 HA ARG A 39	$45.59067 .10249 .917 \quad 1.002 .87$
ATOM	667 CB ARG A 39	45.07569 .12349 .9041 .002 .87
ATOM	668 HB1 ARG A 39	44.58368 .83650 .8311 .002 .87
ATOM	669 HB2 ARG A 39	$44.282 \quad 69.14249 .155 \quad 1.002 .87$
ATOM	670 CG ARG A 39	45.60070 .55750 .0531 .002 .87
ATOM	671 HG1 ARG A 39	$44.827 \quad 71.25549 .7281 .002 .87$
ATOM	672 HG2 ARG A 39	46.45270 .67149 .3921 .002 .87
ATOM	673 CD ARG A 39	45.95870 .88551 .5141 .002 .87
ATOM	674 HD1 ARG A 39	46.56070 .06451 .9031 .002 .87
ATOM	675 HD2 ARG A 39	45.04570 .94552 .1121 .002 .87
ATOM	676 NE ARG A 39	46.76472 .11251 .6601 .002 .87
ATOM	677 HE ARG A 39	47.74771 .99651 .4341 .002 .87
ATOM	678 CZ ARG A 39	$46.41973 .29552 .127 \quad 1.002 .87$
ATOM	679 NH1 ARG A 39	47.32974 .19752 .3351 .002 .87
ATOM	680 1HH1 ARG A 39	48.30873 .96352 .1851 .002 .87
ATOM	681 2HH1 ARG A 39	47.10775 .07952 .7551 .002 .87
ATOM	682 NH2 ARG A 39	45.19173 .63952 .3761 .002 .87
ATOM	683 1HH2 ARG A 39	$44.45073 .00852 .127 \quad 1.002 .87$
ATOM	684 2HH2 ARG A 39	44.94674 .60152 .5291 .002 .87
ATOM	685 C ARG A 39	46.07267 .75847 .9901 .002 .87
ATOM	686 O ARG A 39	46.21668 .68147 .1951 .002 .87

ATOM	687 N ARG A 40	45.79766 .50447 .6251 .003 .49
ATOM	688 H ARG A 40	45.96465 .82248 .3561 .003 .49
ATOM	689 CA ARG A 40	44.78066 .08946 .6371 .003 .49
ATOM	690 HA ARG A 40	$44.666 \quad 65.017 \quad 46.792 \quad 1.00 \quad 3.49$
ATOM	691 CB ARG A 40	$\begin{array}{lllllllllllll}43.428 ~ & 66.763 & 46.966 & 1.00 & 3.49\end{array}$
ATOM	692 HB1 ARG A 40	43.35167 .72246 .4521 .003 .49
ATOM	693 HB2 ARG A 40	$43.387 \quad 66.96848 .0381 .003 .49$
ATOM	694 CG ARG A 40	42.21565 .87746 .6431 .003 .49
ATOM	695 HG1 ARG A 40	41.63665 .80747 .5561 .003 .49
ATOM	696 HG2 ARG A 40	$42.534 \quad 64.86846 .381 \quad 1.003 .49$
ATOM	697 CD ARG A 40	41.27066 .40645 .5591 .003 .49
ATOM	698 HD1 ARG A 40	41.76866 .37644 .5871 .003 .49
ATOM	699 HD2 ARG A 40	$41.026 \quad 67.44845 .7751 .003 .49$
ATOM	700 NE ARG A 40	$\begin{array}{lllllllllll}40.023 & 65.607 & 45.552 & 1.00 & 3.49\end{array}$
ATOM	701 HE ARG A 40	39.24965 .95346 .0961 .003 .49
ATOM	702 CZ ARG A 40	$39.828 \quad 64.45044 .942 \quad 1.00 \quad 3.49$
ATOM	703 NH1 ARG A 40	38.75663 .74845 .1711 .003 .49
ATOM	704 1HH1 ARG A 40	38.12064 .01545 .9171 .003 .49
ATOM	705 2HH1 ARG A 40	38.61062 .86544 .7151 .003 .49
ATOM	706 NH2 ARG A 40	$40.69963 .96644 .100 \quad 1.003 .49$
ATOM	707 1HH2 ARG A 40	41.52764 .50643 .9061 .003 .49
ATOM	708 2HH2 ARG A 40	40.55063 .08543 .6441 .003 .49
ATOM	709 C ARG A 40	$45.118 \quad 66.208 \quad 45.1731 .003 .49$
ATOM	710 O ARG A 40	44.33465 .72244 .3551 .003 .49
ATOM	711 N LEU A 41	46.25966 .81344 .8791 .005 .30
ATOM	712 H LEU A 41	46.80067 .21245 .6301 .005 .30
ATOM	713 CA LEU A 41	46.78066 .85043 .5351 .005 .30
ATOM	714 HA LEU A 41	$46.05266 .35842 .890 \quad 1.005 .30$
ATOM	715 CB LEU A 41	46.84968 .28742 .9541 .005 .30
ATOM	716 HB1 LEU A 41	47.21168 .21141 .9291 .005 .30
ATOM	717 HB2 LEU A 41	47.59268 .85143 .4891 .005 .30
ATOM	718 CG LEU A 41	45.57769 .16442 .8791 .005 .30
ATOM	719 HG LEU A 41	$45.83470 .04342 .292 \quad 1.005 .30$
ATOM	720 CD1 LEU A 41	$44.417 \quad 68.47542 .160 \quad 1.005 .30$
ATOM	721 1HD1 LEU A 41	$43.608 \quad 69.19142 .017 \quad 1.005 .30$
ATOM	722 2HD1 LEU A 41	$44.75268 .13541 .180 \quad 1.005 .30$
ATOM	723 3HD1 LEU A 41	$44.050 \quad 67.63042 .7351 .005 .30$
ATOM	724 CD2 LEU A 41	$45.07669 .67844 .229 \quad 1.005 .30$
ATOM	725 1HD2 LEU A 41	45.90870 .11644 .7821 .005 .30
ATOM	726 2HD2 LEU A 41	44.33770 .46044 .0581 .005 .30
ATOM	727 3HD2 LEU A 41	44.62368 .88544 .8121 .005 .30
ATOM	728 C LEU A 41	48.01465 .96043 .3431 .005 .30
ATOM	729 O LEU A 41	48.49765 .34544 .2951 .005 .30
ATOM	730 N GLY A 42	48.47765 .86242 .0991 .007 .28
ATOM	731 H GLY A 42	48.04566 .44941 .4031 .007 .28
ATOM	732 CA GLY A 42	$49.70765 .17341 .711 \quad 1.007 .28$
ATOM	733 HA1 GLY A 42	$49.491 \quad 64.48240 .8961 .007 .28$
ATOM	734 HA2 GLY A 42	50.11564 .60742 .5491 .007 .28
ATOM	735 C GLY A 42	50.76766 .17341 .2341 .007 .28
ATOM	736 O GLY A 42	51.84166 .22641 .8371 .007 .28
ATOM	737 N PRO A 43	50.41867 .08040 .2971 .006 .70
ATOM	738 CD PRO A 43	49.38166 .94439 .2741 .006 .70
ATOM	739 HD1 PRO A 43	48.45966 .51239 .6561 .006 .70

ATOM	740 HD2 PRO A 43	49.76566 .32738 .4611 .006 .70
ATOM	741 CG PRO A 43	49.10968 .35738 .7531 .006 .70
ATOM	742 HG1 PRO A 43	$48.32968 .83039 .352 \quad 1.006 .70$
ATOM	743 HG2 PRO A 43	48.83768 .35737 .6971 .006 .70
ATOM	744 CB PRO A 43	50.44269 .05838 .9971 .006 .70
ATOM	745 HB1 PRO A 43	50.34570 .14039 .0131 .006 .70
ATOM	746 HB2 PRO A 43	51.14868 .76738 .2181 .006 .70
ATOM	747 CA PRO A 43	50.89368 .46340 .3361 .006 .70
ATOM	748 HA PRO A 43	51.98268 .49140 .3851 .006 .70
ATOM	749 C PRO A 43	50.33369 .19941 .5761 .006 .70
ATOM	750 O PRO A 43	49.80568 .54342 .4641 .006 .70
ATOM	751 N ASP A 44	50.44870 .52941 .6641 .005 .72
ATOM	752 H ASP A 44	50.90470 .97940 .8761 .005 .72
ATOM	753 CA ASP A 44	$49.56371 .48242 .391 \quad 1.005 .72$
ATOM	754 HA ASP A 44	$50.13472 .40842 .482 \quad 1.005 .72$
ATOM	755 CB ASP A 44	$48.37571 .808 \quad 41.462 \quad 1.005 .72$
ATOM	756 HB1 ASP A 44	47.82672 .66541 .8561 .005 .72
ATOM	757 HB2 ASP A 44	47.70670 .94841 .4451 .005 .72
ATOM	758 CG ASP A 44	$48.80972 .121 \quad 40.026 \quad 1.00 \quad 5.72$
ATOM	759 OD1 ASP A 44	$48.11071 .655 \quad 39.1001 .005 .72$
ATOM	760 OD2 ASP A 44	49.89872 .72039 .8741 .005 .72
ATOM	761 C ASP A 44	49.07371 .16743 .8301 .005 .72
ATOM	762 O ASP A 44	48.08771 .71244 .3281 .005 .72
ATOM	763 N SER A 45	49.74770 .25444 .5151 .005 .78
ATOM	764 H SER A 45	50.51069 .83544 .0051 .005 .78
ATOM	765 CA SER A 45	49.17369 .42445 .5761 .005 .78
ATOM	766 HA SER A 45	$48.108 \quad 69.28845 .4051 .005 .78$
ATOM	767 CB SER A 45	49.83968 .04245 .5431 .005 .78
ATOM	768 HB1 SER A 45	49.43767 .50744 .6951 .005 .78
ATOM	769 HB2 SER A 45	49.59967 .47746 .4451 .005 .78
ATOM	770 OG SER A 45	51.24668 .11945 .3571 .005 .78
ATOM	771 HG SER A 45	51.38267 .85344 .4331 .005 .78
ATOM	772 C SER A 45	49.27670 .05546 .9491 .005 .78
ATOM	773 O SER A 45	50.06269 .59247 .7851 .005 .78
ATOM	774 N LEU A 46	48.53371 .15347 .1291 .004 .88
ATOM	775 H LEU A 46	47.96471 .43046 .3321 .004 .88
ATOM	776 CA LEU A 46	48.80272 .17148 .1391 .004 .88
ATOM	777 HA LEU A 46	49.61472 .73047 .6761 .004 .88
ATOM	778 CB LEU A 46	47.64973 .18848 .2591 .004 .88
ATOM	779 HB1 LEU A 46	46.84172 .75548 .8401 .004 .88
ATOM	780 HB2 LEU A 46	47.26073 .39147 .2591 .004 .88
ATOM	781 CG LEU A 46	48.05274 .53748 .8941 .004 .88
ATOM	782 HG LEU A 46	$48.44274 .35349 .892 \quad 1.004 .88$
ATOM	783 CD1 LEU A 46	49.11275 .30548 .0981 .004 .88
ATOM	784 1HD1 LEU A 46	49.26776 .29048 .5401 .004 .88
ATOM	785 2HD1 LEU A 46	50.06574 .78148 .1141 .004 .88
ATOM	786 3HD1 LEU A 46	48.78475 .43047 .0651 .004 .88
ATOM	787 CD2 LEU A 46	46.82375 .43949 .0031 .004 .88
ATOM	788 1HD2 LEU A 46	47.08976 .37549 .4981 .004 .88
ATOM	789 2HD2 LEU A 46	46.43575 .66548 .0081 .004 .88
ATOM	790 3HD2 LEU A 46	46.05074 .94249 .5851 .004 .88
ATOM	791 C LEU A 46	49.38671 .60749 .4331 .004 .88
ATOM	792 O LEU A 46	48.75670 .82950 .1621 .004 .88

ATOM	793 N SER A 47	50.65771 .94949 .6541 .004 .21
ATOM	794 H SER A 47	51.15572 .49848 .9721 .004 .21
ATOM	795 CA SER A 47	51.35671 .61650 .8831 .004 .21
ATOM	796 HA SER A 47	51.47870 .53550 .9441 .004 .21
ATOM	797 CB SER A 47	52.73572 .26650 .9561 .004 .21
ATOM	798 HB1 SER A 47	53.21871 .98851 .8951 .004 .21
ATOM	799 HB2 SER A 47	52.63373 .35350 .9161 .004 .21
ATOM	800 OG SER A 47	53.51771 .81749 .8691 .004 .21
ATOM	801 HG SER A 47	54.37872 .24449 .9461 .004 .21
ATOM	802 C SER A 47	50.50672 .07052 .0651 .004 .21
ATOM	803 O SER A 47	49.94473 .17052 .0001 .004 .21
ATOM	804 N PHE A 48	50.31171 .23053 .0811 .003 .35
ATOM	805 H PHE A 48	50.76370 .31953 .1141 .003 .35
ATOM	806 CA PHE A 48	49.46871 .62454 .1981 .003 .35
ATOM	807 HA PHE A 48	48.74672 .35953 .8541 .003 .35
ATOM	808 CB PHE A 48	48.60770 .47454 .7631 .003 .35
ATOM	809 HB1 PHE A 48	49.24569 .60254 .8681 .003 .35
ATOM	810 HB2 PHE A 48	$47.82270 .22854 .049 \quad 1.003 .35$
ATOM	811 CG PHE A 48	$47.97570 .79856 .120 \quad 1.003 .35$
ATOM	812 CD1 PHE A 48	47.27772 .00956 .3101 .003 .35
ATOM	813 HD1 PHE A 48	47.12972 .68555 .4841 .003 .35
ATOM	814 CE1 PHE A 48	$46.87272 .40057 .600 \quad 1.003 .35$
ATOM	815 HE1 PHE A 48	46.43673 .36757 .7641 .003 .35
ATOM	816 CZ PHE A 48	47.10571 .56758 .7041 .003 .35
ATOM	817 HZ PHE A 48	$46.82671 .885 \quad 59.7001 .003 .35$
ATOM	818 CE2 PHE A 48	47.78970 .35858 .5231 .003 .35
ATOM	819 HE2 PHE A 48	48.05469 .75859 .3841 .003 .35
ATOM	820 CD2 PHE A 48	$48.236 \quad 69.98757 .2451 .003 .35$
ATOM	821 HD2 PHE A 48	48.86069 .11057 .1671 .003 .35
ATOM	822 C PHE A 48	50.21872 .33955 .3111 .003 .35
ATOM	823 O PHE A 48	50.15173 .56155 .4341 .003 .35
ATOM	824 N ASP A 49	50.93371 .53956 .0711 .002 .80
ATOM	825 H ASP A 49	50.90870 .54355 .8991 .002 .80
ATOM	826 CA ASP A 49	51.94271 .91757 .0151 .002 .80
ATOM	827 HA ASP A 49	52.10572 .99556 .9831 .002 .80
ATOM	828 CB ASP A 49	51.50371 .53758 .4471 .002 .80
ATOM	829 HB1 ASP A 49	50.58072 .07658 .6661 .002 .80
ATOM	830 HB2 ASP A 49	52.25971 .89659 .1471 .002 .80
ATOM	831 CG ASP A 49	51.25670 .04058 .7301 .002 .80
ATOM	832 OD1 ASP A 49	$51.440 \quad 69.20157 .8151 .002 .80$
ATOM	833 OD2 ASP A 49	50.85869 .74459 .8841 .002 .80
ATOM	834 C ASP A 49	53.23871 .22456 .5511 .002 .80
ATOM	835 O ASP A 49	53.26570 .42355 .6061 .002 .80
ATOM	836 N PHE A 50	54.32571 .52357 .2411 .002 .55
ATOM	837 H PHE A 50	54.23172 .23957 .9481 .002 .55
ATOM	838 CA PHE A 50	55.28570 .48157 .5621 .002 .55
ATOM	839 HA PHE A 50	54.93869 .50857 .2061 .002 .55
ATOM	840 CB PHE A 50	56.67570 .78756 .9731 .002 .55
ATOM	841 HB1 PHE A 50	57.35369 .98757 .2701 .002 .55
ATOM	842 HB2 PHE A 50	$57.04271 .70157 .441 \quad 1.002 .55$
ATOM	843 CG PHE A 50	56.79770 .94755 .4631 .002 .55
ATOM	844 CD1 PHE A 50	57.65471 .93954 .9491 .002 .55
ATOM	845 HD1 PHE A 50	58.20472 .57955 .6251 .002 .55

ATOM	846 CE1 PHE A 50	57.81772 .09553 .5611 .002 .55
ATOM	847 HE1 PHE A 50	58.49172 .85153 .1831 .002 .55
ATOM	848 CZ PHE A 50	57.12271 .25652 .6751 .002 .55
ATOM	849 HZ PHE A 50	57.25771 .37151 .6101 .002 .55
ATOM	850 CE2 PHE A 50	56.26270 .26653 .1791 .002 .55
ATOM	851 HE2 PHE A 50	55.70969 .63952 .4981 .002 .55
ATOM	852 CD2 PHE A 50	56.11370 .09954 .5701 .002 .55
ATOM	853 HD2 PHE A 50	55.45169 .33554 .9511 .002 .55
ATOM	854 C PHE A 50	55.34370 .44359 .0741 .002 .55
ATOM	855 O PHE A 50	$55.15371 .475 \quad 59.7301 .002 .55$
ATOM	856 N GLY A 51	55.71369 .30059 .6331 .002 .73
ATOM	857 H GLY A 51	$55.84568 .45959 .082 \quad 1.002 .73$
ATOM	858 CA GLY A 51	56.11069 .34061 .0441 .002 .73
ATOM	859 HA1 GLY A 51	$55.23369 .190 \quad 61.6741 .002 .73$
ATOM	860 HA2 GLY A 51	56.55970 .30261 .2961 .002 .73
ATOM	861 C GLY A 51	$\begin{array}{llll}57.127 \quad 68.252 ~ 61.342 ~ 1.00 ~ & 2.73\end{array}$
ATOM	862 O GLY A 51	57.31067 .30060 .5691 .002 .73
ATOM	863 N HIS A 52	57.75968 .39362 .5041 .002 .53
ATOM	864 H HIS A 52	57.53069 .18263 .0931 .002 .53
ATOM	865 CA HIS A 52	$58.44367 .288 \quad 63.151 \quad 1.002 .53$
ATOM	866 HA HIS A 52	$58.29566 .398 \quad 62.5421 .002 .53$
ATOM	867 CB HIS A 52	$59.95867 .48763 .231 \quad 1.002 .53$
ATOM	868 HB1 HIS A 52	$60.31767 .88762 .282 \quad 1.002 .53$
ATOM	869 HB2 HIS A 52	60.39866 .50063 .3561 .002 .53
ATOM	870 CG HIS A 52	60.44768 .36064 .3621 .002 .53
ATOM	871 ND1 HIS A 52	$\begin{array}{lllllllllll}60.593 & 67.988 & 65.708 & 1.00 & 2.53\end{array}$
ATOM	872 CE1 HIS A 52	$61.04569 .080 \quad 66.342 \quad 1.002 .53$
ATOM	873 HE1 HIS A 52	61.22969 .14567 .4051 .002 .53
ATOM	874 NE2 HIS A 52	61.20870 .08765 .4711 .002 .53
ATOM	875 HE2 HIS A 52	61.43571 .05865 .6871 .002 .53
ATOM	876 CD2 HIS A 52	60.83769 .65464 .2231 .002 .53
ATOM	877 HD2 HIS A 52	$60.83770 .231 \quad 63.310 \quad 1.002 .53$
ATOM	878 C HIS A 52	57.82966 .97464 .4951 .002 .53
ATOM	879 O HIS A 52	$57.20467 .83265 .121 \quad 1.002 .53$
ATOM	880 N LEU A 53	$58.04265 .73764 .942 \quad 1.002 .39$
ATOM	881 H LEU A 53	58.53765 .07064 .3581 .002 .39
ATOM	882 CA LEU A 53	57.77065 .39066 .3341 .002 .39
ATOM	883 HA LEU A 53	57.94966 .27466 .9501 .002 .39
ATOM	884 CB LEU A 53	56.29564 .94366 .4611 .002 .39
ATOM	885 HB1 LEU A 53	56.23663 .94766 .9041 .002 .39
ATOM	886 HB2 LEU A 53	55.86964 .86265 .4651 .002 .39
ATOM	887 CG LEU A 53	55.41765 .90767 .2771 .002 .39
ATOM	888 HG LEU A 53	55.55466 .92866 .9271 .002 .39
ATOM	889 CD1 LEU A 53	53.94665 .53367 .0971 .002 .39
ATOM	890 1HD1 LEU A 53	$\begin{array}{lllllllllll}53.315 & 66.204 & 67.680 & 1.00 & 2.39\end{array}$
ATOM	891 2HD1 LEU A 53	53.66865 .63766 .0471 .002 .39
ATOM	892 3HD1 LEU A 53	53.77564 .50567 .4081 .002 .39
ATOM	893 CD2 LEU A 53	$55.76565 .841 \quad 68.7701 .002 .39$
ATOM	894 1HD2 LEU A 53	$55.091 \quad 66.49269 .3251 .002 .39$
ATOM	895 2HD2 LEU A 53	$\begin{array}{llllllllllll}55.668 & 64.817 & 69.135 & 1.00 & 2.39\end{array}$
ATOM	896 3HD2 LEU A 53	$56.78266 .196 \quad 68.9281 .002 .39$
ATOM	897 C LEU A 53	58.72464 .29166 .8241 .002 .39
ATOM	898 O LEU A 53	$59.36263 .556 \quad 66.0581 .002 .39$

ATOM	899 N ARG A 54	58.74864 .19868 .1551 .002 .22
ATOM	900 H ARG A 54	58.08464 .78568 .6381 .002 .22
ATOM	901 CA ARG A 54	$59.70463 .50369 .018 \quad 1.002 .22$
ATOM	902 HA ARG A 54	$\begin{array}{lllllllllll}60.225 ~ & 62.730 & 68.445 & 1.00 & 2.22\end{array}$
ATOM	903 CB ARG A 54	$60.72764 .566 \quad 69.5031 .002 .22$
ATOM	904 HB1 ARG A 54	60.22865 .53769 .5301 .002 .22
ATOM	905 HB2 ARG A 54	61.52464 .64568 .7611 .002 .22
ATOM	906 CG ARG A 54	61.35664 .39070 .8991 .002 .22
ATOM	907 HG1 ARG A 54	60.55564 .31071 .6351 .002 .22
ATOM	908 HG2 ARG A 54	61.91165 .29771 .1411 .002 .22
ATOM	909 CD ARG A 54	$62.321 \quad 63.20471 .0341 .002 .22$
ATOM	910 HD1 ARG A 54	$63.340 \quad 63.56270 .918 \quad 1.002 .22$
ATOM	911 HD2 ARG A 54	62.12562 .48470 .2381 .002 .22
ATOM	912 NE ARG A 54	$\begin{array}{lllllllllll}62.126 & 62.524 & 72.326 ~ 1.00 ~ & 2.22\end{array}$
ATOM	913 HE ARG A 54	61.38261 .83172 .3341 .002 .22
ATOM	914 CZ ARG A 54	$62.651 \quad 62.74773 .517 \quad 1.002 .22$
ATOM	915 NH1 ARG A 54	$62.061 \quad 62.24574 .561 \quad 1.002 .22$
ATOM	916 1HH1 ARG A 54	61.13861 .85274 .4101 .002 .22
ATOM	917 2HH1 ARG A 54	$62.428 \quad 62.36875 .4821 .002 .22$
ATOM	918 NH2 ARG A 54	63.71963 .45773 .7281 .002 .22
ATOM	919 1HH2 ARG A 54	64.28863 .67572 .9171 .002 .22
ATOM	920 2HH2 ARG A 54	$64.06563 .60474 .652 \quad 1.002 .22$
ATOM	921 C ARG A 54	$58.93362 .83870 .152 \quad 1.00 \quad 2.22$
ATOM	922 O ARG A 54	58.00163 .42870 .7001 .002 .22
ATOM	923 N ASN A 55	59.32061 .60770 .4911 .002 .25
ATOM	924 H ASN A 55	60.11961 .20170 .0301 .002 .25
ATOM	925 CA ASN A 55	$58.60860 .81671 .491 \quad 1.002 .25$
ATOM	926 HA ASN A 55	57.55660 .84771 .1961 .002 .25
ATOM	927 CB ASN A 55	58.99359 .32171 .4341 .002 .25
ATOM	928 HB1 ASN A 55	58.77858 .93470 .4401 .002 .25
ATOM	929 HB2 ASN A 55	58.36458 .77672 .1391 .002 .25
ATOM	930 CG ASN A 55	60.43458 .97971 .7531 .002 .25
ATOM	931 OD1 ASN A 55	61.28159 .84771 .8921 .002 .25
ATOM	932 ND2 ASN A 55	60.74557 .70771 .8561 .002 .25
ATOM	933 1HD2 ASN A 55	60.02357 .00471 .7361 .002 .25
ATOM	934 2HD2 ASN A 55	61.68957 .43972 .1111 .002 .25
ATOM	935 C ASN A 55	58.63961 .42372 .8941 .002 .25
ATOM	936 O ASN A 55	59.58162 .08973 .3151 .002 .25
ATOM	937 N ARG A 56	57.57161 .17873 .6361 .002 .51
ATOM	938 H ARG A 56	56.87460 .53773 .2571 .002 .51
ATOM	939 CA ARG A 56	57.37561 .65975 .0061 .002 .51
ATOM	940 HA ARG A 56	58.26362 .18175 .3641 .002 .51
ATOM	941 CB ARG A 56	56.17962 .63375 .0291 .002 .51
ATOM	942 HB1 ARG A 56	55.93862 .89676 .0601 .002 .51
ATOM	943 HB2 ARG A 56	$55.31162 .13874 .591 \quad 1.002 .51$
ATOM	944 CG ARG A 56	56.48763 .92574 .2461 .002 .51
ATOM	945 HG1 ARG A 56	56.91263 .67273 .2751 .002 .51
ATOM	946 HG2 ARG A 56	57.22764 .51474 .7901 .002 .51
ATOM	947 CD ARG A 56	55.24764 .78373 .9691 .002 .51
ATOM	948 HD1 ARG A 56	$54.49864 .16773 .467 \quad 1.002 .51$
ATOM	949 HD2 ARG A 56	55.54465 .58173 .2851 .002 .51
ATOM	950 NE ARG A 56	54.65665 .37975 .1861 .002 .51
ATOM	951 HE ARG A 56	55.03465 .09776 .0761 .002 .51

ATOM	952 CZ ARG A 56	53.66066 .25075 .2021 .002 .51
ATOM	953 NH1 ARG A 56	$53.19366 .717 \quad 76.3231 .002 .51$
ATOM	954 1HH1 ARG A 56	53.58466 .43477 .2051 .002 .51
ATOM	955 2HH1 ARG A 56	52.44067 .37976 .3071 .002 .51
ATOM	956 NH2 ARG A 56	$53.111 \quad 66.68174 .1041 .002 .51$
ATOM	957 1HH2 ARG A 56	53.47366 .35973 .2241 .002 .51
ATOM	958 2HH2 ARG A 56	$52.344 \quad 67.32374 .128 \quad 1.002 .51$
ATOM	959 C ARG A 56	$\begin{array}{lllllllllll}57.192 & 60.433 & 75.896 & 1.00 & 2.51\end{array}$
ATOM	960 O ARG A 56	57.16159 .30475 .4131 .002 .51
ATOM	961 N THR A 57	$\begin{array}{lllllllllll}57.102 & 60.652 & 77.200 & 1.00 & 3.44\end{array}$
ATOM	962 H THR A 57	$57.20561 .58877 .557 \quad 1.003 .44$
ATOM	963 CA THR A 57	56.93559 .58778 .1931 .003 .44
ATOM	964 HA THR A 57	$\begin{array}{llllllllll}57.852 & 58.999 & 78.217 & 1.00 & 3.44\end{array}$
ATOM	965 CB THR A 57	56.73360 .19679 .5891 .003 .44
ATOM	966 HB THR A 57	55.73660 .63179 .6641 .003 .44
ATOM	967 CG2 THR A 57	56.92359 .16780 .7011 .003 .44
ATOM	968 1HG2 THR A 57	56.78359 .64481 .6711 .003 .44
ATOM	969 2HG2 THR A 57	56.18458 .37280 .6011 .003 .44
ATOM	970 3HG2 THR A 57	57.92458 .73680 .6521 .003 .44
ATOM	971 OG1 THR A 57	57.68661 .21679 .8021 .003 .44
ATOM	972 HG1 THR A 57	57.67461 .43080 .7391 .003 .44
ATOM	973 C THR A 57	$\begin{array}{lllllllllllll}55.770 & 58.661 & 77.844 & 1.00 & 3.44\end{array}$
ATOM	974 O THR A 57	54.62659 .10377 .8141 .003 .44
ATOM	975 N GLY A 58	56.07157 .40277 .5091 .002 .96
ATOM	976 H GLY A 58	57.04357 .13577 .5001 .002 .96
ATOM	977 CA GLY A 58	$55.11456 .40577 .011 \quad 1.002 .96$
ATOM	978 HA1 GLY A 58	54.23456 .41177 .6571 .002 .96
ATOM	979 HA2 GLY A 58	55.56855 .41577 .0671 .002 .96
ATOM	980 C GLY A 58	54.63256 .62375 .5671 .002 .96
ATOM	981 O GLY A 58	54.52555 .67774 .7891 .002 .96
ATOM	982 N CYS A 59	54.35857 .87375 .1981 .002 .48
ATOM	983 H CYS A 59	54.41158 .57975 .9201 .002 .48
ATOM	984 CA CYS A 59	53.80658 .27473 .9101 .002 .48
ATOM	985 HA CYS A 59	53.05457 .53873 .6141 .002 .48
ATOM	986 CB CYS A 59	53.08659 .61974 .0771 .002 .48
ATOM	987 HB1 CYS A 59	52.64259 .89173 .1201 .002 .48
ATOM	988 HB2 CYS A 59	53.80460 .38374 .3701 .002 .48
ATOM	989 SG CYS A 59	51.77859 .49175 .3331 .002 .48
ATOM	990 HG CYS A 59	$51.23360 .70175 .170 \quad 1.002 .48$
ATOM	991 C CYS A 59	54.85158 .32872 .7881 .002 .48
ATOM	992 O CYS A 59	55.46359 .37472 .5291 .002 .48
ATOM	993 N HIS A 60	55.03857 .19072 .1161 .002 .13
ATOM	994 H HIS A 605	54.58756 .35772 .4661 .002 .13
ATOM	995 CA HIS A 60	$\begin{array}{llllll}55.819 & 57.093 & 70.885 & 1.00 & 2.13\end{array}$
ATOM	996 HA HIS A 60	56.82657 .39471 .1641 .002 .13
ATOM	997 CB HIS A 60	55.91055 .63270 .4141 .002 .13
ATOM	998 HB1 HIS A 60	55.27355 .50669 .5401 .002 .13
ATOM	999 HB2 HIS A 60	$55.52854 .97071 .191 \quad 1.002 .13$
ATOM	1000 CG HIS A 60	57.31355 .15670 .0861 .002 .13
ATOM	1001 ND1 HIS A 60	58.52655 .68170 .5701 .002 .13
ATOM	1002 CE1 HIS A 60	59.49254 .95269 .9821 .002 .13
ATOM	1003 HE1 HIS A 60	60.55355 .12670 .1031 .002 .13
ATOM	1004 NE2 HIS A 60	$58.95854 .011 \quad 69.1851 .002 .13$

ATOM	1005 HE2 HIS A 60	59.45853 .41268 .5471 .002 .13
ATOM	1006 CD2 HIS A 60	57.59454 .11869 .2491 .002 .13
ATOM	1007 HD2 HIS A 60	56.87753 .55568 .6701 .002 .13
ATOM	1008 C HIS A 60	55.36258 .09369 .8111 .002 .13
ATOM	1009 O HIS A 60	54.18258 .46569 .7011 .002 .13
ATOM	1010 N ALA A 61	$56.34058 .58969 .051 \quad 1.002 .10$
ATOM	1011 H ALA A 61	$57.22058 .091 \quad 69.0331 .002 .10$
ATOM	1012 CA ALA A 61	56.15359 .72268 .1441 .002 .10
ATOM	1013 HA ALA A 61	$55.78060 .567 \quad 68.722 \quad 1.002 .10$
ATOM	1014 CB ALA A 61	$57.50460 .11967 .552 \quad 1.002 .10$
ATOM	1015 HB1 ALA A 61	57.38260 .97566 .8861 .002 .10
ATOM	1016 HB2 ALA A 61	58.19960 .38468 .3441 .002 .10
ATOM	1017 HB3 ALA A 61	57.89759 .27766 .9851 .002 .10
ATOM	1018 C ALA A 61	55.12759 .46267 .0271 .002 .10
ATOM	1019 O ALA A 61	$\begin{array}{llllll}54.501 & 60.380 & 66.503 & 1.00 & 2.10\end{array}$
ATOM	1020 N GLU A 62	54.93458 .19566 .7041 .002 .14
ATOM	1021 H GLU A 62	$55.52057 .512 \quad 67.180 \quad 1.002 .14$
ATOM	1022 CA GLU A 62	54.00557 .68265 .7131 .002 .14
ATOM	1023 HA GLU A 62	54.09558 .27664 .8031 .002 .14
ATOM	1024 CB GLU A 62	$54.39756 .23065 .371 \quad 1.002 .14$
ATOM	1025 HB1 GLU A 62	53.75455 .90164 .5581 .002 .14
ATOM	1026 HB2 GLU A 62	54.18555 .58766 .2261 .002 .14
ATOM	1027 CG GLU A 62	55.87356 .03464 .9251 .002 .14
ATOM	1028 HG1 GLU A 62	56.08856 .74464 .1241 .002 .14
ATOM	1029 HG2 GLU A 62	55.96455 .03064 .5061 .002 .14
ATOM	1030 CD GLU A 62	56.91556 .18066 .0591 .002 .14
ATOM	1031 OE1 GLU A 62	56.50455 .98867 .2291 .002 .14
ATOM	1032 OE2 GLU A 62	$58.08756 .527 \quad 65.7831 .002 .14$
ATOM	1033 C GLU A 62	52.54757 .80066 .1881 .002 .14
ATOM	1034 O GLU A 62	51.66658 .21965 .4361 .002 .14
ATOM	1035 N LEU A 63	$52.31057 .53467 .477 \quad 1.002 .22$
ATOM	1036 H LEU A 63	53.10857 .29668 .0561 .002 .22
ATOM	1037 CA LEU A 63	$51.01957 .748 \quad 68.1361 .002 .22$
ATOM	1038 HA LEU A 63	50.23057 .29567 .5361 .002 .22
ATOM	1039 CB LEU A 63	$51.03957 .091 \quad 69.5351 .002 .22$
ATOM	1040 HB1 LEU A 63	$50.02557 .128 \quad 69.9361 .002 .22$
ATOM	1041 HB2 LEU A 63	51.66857 .69070 .1951 .002 .22
ATOM	1042 CG LEU A 63	51.54455 .63869 .6101 .002 .22
ATOM	1043 HG LEU A 63	$52.59355 .603 \quad 69.3151 .002 .22$
ATOM	1044 CD1 LEU A 63	51.43855 .12971 .0461 .002 .22
ATOM	1045 1HD1 LEU A 63	51.83254 .11571 .0991 .002 .22
ATOM	1046 2HD1 LEU A 63	52.02455 .76771 .7071 .002 .22
ATOM	1047 3HD1 LEU A 63	50.39755 .12971 .3691 .002 .22
ATOM	1048 CD2 LEU A 63	50.74254 .70768 .7061 .002 .22
ATOM	1049 1HD2 LEU A 63	51.06853 .67768 .8481 .002 .22
ATOM	1050 2HD2 LEU A 63	49.67954 .77668 .9371 .002 .22
ATOM	1051 3HD2 LEU A 63	50.90154 .97267 .6621 .002 .22
ATOM	1052 C LEU A 63	50.70659 .24368 .2951 .002 .22
ATOM	1053 O LEU A 63	$49.57359 .69768 .072 \quad 1.002 .22$
ATOM	1054 N LEU A 64	$51.73260 .021 \quad 68.6631 .002 .13$
ATOM	1055 H LEU A 64	$52.63559 .590 \quad 68.832 \quad 1.002 .13$
ATOM	1056 CA LEU A 64	51.59061 .47568 .7311 .002 .13
ATOM	1057 HA LEU A 64	$50.772 \quad 61.70369 .4141 .002 .13$

ATOM	1058 CB LEU A 64	$52.87662 .121 \quad 69.2741 .002 .13$
ATOM	1059 HB1 LEU A 64	$52.78563 .20369 .181 \quad 1.002 .13$
ATOM	1060 HB2 LEU A 64	$53.71861 .80168 .661 \quad 1.002 .13$
ATOM	1061 CG LEU A 64	53.15761 .77870 .7501 .002 .13
ATOM	1062 HG LEU A 64	$53.220 \quad 60.698 \quad 70.873 \quad 1.002 .13$
ATOM	1063 CD1 LEU A 64	$54.49262 .38571 .177 \quad 1.002 .13$
ATOM	1064 1HD1 LEU A 64	54.72462 .07572 .1941 .002 .13
ATOM	1065 2HD1 LEU A 64	$\begin{array}{lllll}55.282 & 62.01570 .5241 .00 ~ & 2.13\end{array}$
ATOM	1066 3HD1 LEU A 64	$\begin{array}{lllllllllll}54.456 & 63.47171 .105 & 1.00 & 2.13\end{array}$
ATOM	1067 CD2 LEU A 64	$52.081 \quad 62.323 \quad 71.6971 .002 .13$
ATOM	1068 1HD2 LEU A 64	$52.40062 .20572 .731 \quad 1.002 .13$
ATOM	1069 2HD2 LEU A 64	51.89463 .37671 .4881 .002 .13
ATOM	1070 3HD2 LEU A 64	51.15261 .76671 .5631 .002 .13
ATOM	1071 C LEU A 64	51.15562 .05067 .3811 .002 .13
ATOM	1072 O LEU A 64	50.19262 .82667 .3161 .002 .13
ATOM	1073 N PHE A 65	51.79261 .60966 .2941 .002 .20
ATOM	1074 H PHE A 65	$52.59260 .991 \quad 66.3861 .002 .20$
ATOM	1075 CA PHE A 65	51.36962 .04864 .9761 .002 .20
ATOM	1076 HA PHE A 65	51.22963 .12265 .0981 .002 .20
ATOM	1077 CB PHE A 65	52.44661 .93063 .9041 .002 .20
ATOM	1078 HB1 PHE A 65	52.07361 .28663 .1121 .002 .20
ATOM	1079 HB2 PHE A 65	53.34661 .47464 .3171 .002 .20
ATOM	1080 CG PHE A 65	52.78063 .30463 .3361 .002 .20
ATOM	1081 CD1 PHE A 65	54.02763 .90163 .5881 .002 .20
ATOM	1082 HD1 PHE A 65	$\begin{array}{lllllllllll}54.781 \quad 63.352 & 64.129 & 1.00 & 2.20\end{array}$
ATOM	1083 CE1 PHE A 65	54.29465 .20563 .1281 .002 .20
ATOM	1084 HE1 PHE A 65	55.25965 .65563 .3141 .002 .20
ATOM	1085 CZ PHE A 65	53.31365 .92062 .4191 .002 .20
ATOM	1086 HZ PHE A 65	53.51966 .91762 .0551 .002 .20
ATOM	1087 CE2 PHE A 65	52.06765 .32862 .1571 .002 .20
ATOM	1088 HE2 PHE A 65	51.31765 .86961 .5931 .002 .20
ATOM	1089 CD2 PHE A 65	51.80464 .02862 .6241 .002 .20
ATOM	1090 HD2 PHE A 65	50.84163 .58662 .4471 .002 .20
ATOM	1091 C PHE A 65	49.96961 .56464 .5571 .002 .20
ATOM	1092 O PHE A 65	49.21362 .36263 .9951 .002 .20
ATOM	1093 N LEU A 66	49.56360 .33964 .9181 .002 .34
ATOM	1094 H LEU A 66	$50.23759 .701 \quad 65.3301 .002 .34$
ATOM	1095 CA LEU A 66	$48.17159 .891 \quad 64.7581 .002 .34$
ATOM	1096 HA LEU A 66	$47.93859 .891 \quad 63.6931 .002 .34$
ATOM	1097 CB LEU A 66	47.99258 .45965 .3071 .002 .34
ATOM	1098 HB1 LEU A 66	$46.92758 .298 \quad 65.4861 .00 \quad 2.34$
ATOM	1099 HB2 LEU A 66	$48.48858 .380 \quad 66.270 \quad 1.00 \quad 2.34$
ATOM	1100 CG LEU A 66	$48.48257 .318 \quad 64.402 \quad 1.00 \quad 2.34$
ATOM	1101 HG LEU A 66	$49.55357 .401 \quad 64.2331 .00 \quad 2.34$
ATOM	1102 CD1 LEU A 66	48.19555 .97965 .0851 .002 .34
ATOM	1103 1HD1 LEU A 66	$48.60455 .17564 .481 \quad 1.002 .34$
ATOM	1104 2HD1 LEU A 66	48.67255 .95566 .0651 .002 .34
ATOM	1105 3HD1 LEU A 66	$47.11955 .841 \quad 65.2001 .002 .34$
ATOM	1106 CD2 LEU A 66	$47.765 \quad 57.335 \quad 63.053 \quad 1.00 \quad 2.34$
ATOM	1107 1HD2 LEU A 66	47.81156 .35962 .5801 .002 .34
ATOM	1108 2HD2 LEU A 66	46.72157 .59963 .2071 .002 .34
ATOM	1109 3HD2 LEU A 66	$48.225 \quad 58.07362 .4001 .002 .34$
ATOM	1110 C LEU A 66	$47.117 \quad 60.81665 .391 \quad 1.002 .34$

ATOM	1111 O LEU A 66	$46.071 \quad 61.042 \quad 64.7721 .002 .34$
ATOM	1112 N SER A 67	47.44061 .33466 .5871 .002 .45
ATOM	1113 H SER A 67	$48.32061 .03966 .989 \quad 1.002 .45$
ATOM	1114 CA SER A 67	$46.622 \quad 62.300 \quad 67.3531 .002 .45$
ATOM	1115 HA SER A 67	$45.60061 .925 \quad 67.417 \quad 1.002 .45$
ATOM	1116 CB SER A 67	$47.18462 .46268 .771 \quad 1.002 .45$
ATOM	1117 HB1 SER A 67	46.45763 .00369 .3781 .002 .45
ATOM	1118 HB2 SER A 67	48.10163 .05068 .7341 .002 .45
ATOM	1119 OG SER A 67	$47.47461 .223 \quad 69.3891 .002 .45$
ATOM	1120 HG SER A 67	$48.098 \quad 60.72368 .840 \quad 1.002 .45$
ATOM	1121 C SER A 67	46.56863 .71466 .7291 .002 .45
ATOM	1122 O SER A 67	$45.57664 .46066 .817 \quad 1.002 .45$
ATOM	1123 N TYR A 68	47.68764 .11466 .1151 .002 .51
ATOM	1124 H TYR A 68	$48.48563 .491 \quad 66.1041 .002 .51$
ATOM	1125 CA TYR A 68	$47.74665 .358 \quad 65.351 \quad 1.002 .51$
ATOM	1126 HA TYR A 68	$47.36566 .15465 .988 \quad 1.002 .51$
ATOM	1127 CB TYR A 68	49.21365 .67264 .9851 .002 .51
ATOM	1128 HB1 TYR A 68	49.32365 .69563 .9001 .002 .51
ATOM	1129 HB2 TYR A 68	49.86264 .87265 .3401 .002 .51
ATOM	1130 CG TYR A 68	$49.75266 .971 \quad 65.5581 .002 .51$
ATOM	1131 CD1 TYR A 68	49.68867 .20866 .9471 .002 .51
ATOM	1132 HD1 TYR A 68	$49.24966 .466 \quad 67.6051 .002 .51$
ATOM	1133 CE1 TYR A 68	$50.21368 .40067 .482 \quad 1.002 .51$
ATOM	1134 HE1 TYR A 68	50.17168 .59568 .5431 .002 .51
ATOM	1135 CZ TYR A 68	50.82769 .34966 .6361 .002 .51
ATOM	1136 OH TYR A 68	$51.30270 .50267 .177 \quad 1.002 .51$
ATOM	1137 HH TYR A 68	$51.60871 .147 \quad 66.5261 .002 .51$
ATOM	1138 CE2 TYR A 68	50.90869 .10265 .2481 .002 .51
ATOM	1139 HE2 TYR A 68	51.40469 .81164 .5971 .002 .51
ATOM	1140 CD2 TYR A 68	50.36367 .91964 .7131 .002 .51
ATOM	1141 HD2 TYR A 68	50.44367 .72663 .6491 .002 .51
ATOM	1142 C TYR A 68	46.85065 .30964 .1131 .002 .51
ATOM	1143 O TYR A 68	45.96966 .16663 .9841 .002 .51
ATOM	1144 N LEU A 69	$47.02364 .277 \quad 63.277 \quad 1.00 \quad 2.54$
ATOM	1145 H LEU A 69	47.74063 .60663 .5351 .002 .54
ATOM	1146 CA LEU A 69	$45.96463 .765 \quad 62.4051 .00 \quad 2.54$
ATOM	1147 HA LEU A 69	$45.660 \quad 64.50261 .6831 .002 .54$
ATOM	1148 CB LEU A 69	$46.44962 .48761 .672 \quad 1.00 \quad 2.54$
ATOM	1149 HB1 LEU A 69	$\begin{array}{llllllllllll}45.563 & 61.947 & 61.342 & 1.00 & 2.54\end{array}$
ATOM	1150 HB2 LEU A 69	46.95961 .84362 .3891 .002 .54
ATOM	1151 CG LEU A 69	47.34062 .66660 .4261 .002 .54
ATOM	1152 HG LEU A 69	46.81963 .30659 .7151 .002 .54
ATOM	1153 CD1 LEU A 69	$48.713 \quad 63.257 \quad 60.7231 .002 .54$
ATOM	1154 1HD1 LEU A 69	49.27863 .37759 .7991 .002 .54
ATOM	1155 2HD1 LEU A 69	$48.621 \quad 64.23661 .188 \quad 1.002 .54$
ATOM	1156 3HD1 LEU A 69	$49.25362 .591 \quad 61.3931 .002 .54$
ATOM	1157 CD2 LEU A 69	47.59761 .30959 .7621 .002 .54
ATOM	1158 1HD2 LEU A 69	$48.21060 .68360 .411 \quad 1.002 .54$
ATOM	1159 2HD2 LEU A 69	46.65460 .80959 .5801 .002 .54
ATOM	1160 3HD2 LEU A 69	$48.10761 .45558 .812 \quad 1.002 .54$
ATOM	1161 C LEU A 69	$44.74663 .431 \quad 63.2881 .002 .54$
ATOM	1162 O LEU A 69	44.80763 .34664 .4971 .002 .54
ATOM	1163 N GLY A 70	$43.578 \quad 63.336 \quad 62.7001 .003 .14$

ATOM	1164 H GLY A 70	$43.533 \quad 63.534 \quad 61.7151 .003 .14$
ATOM	1165 CA GLY A 70	$42.321 \quad 63.406 \quad 63.447 \quad 1.003 .14$
ATOM	1166 HA1 GLY A 70	$42.27962 .561 \quad 64.1351 .003 .14$
ATOM	1167 HA2 GLY A 70	$41.510 \quad 63.30762 .7381 .003 .14$
ATOM	1168 C GLY A 70	$42.041 \quad 64.680 \quad 64.2701 .003 .14$
ATOM	1169 O GLY A 70	40.87864 .88464 .6201 .003 .14
ATOM	1170 N ALA A 71	43.01765 .57664 .4891 .003 .09
ATOM	1171 H ALA A 71	43.98065 .29664 .3621 .003 .09
ATOM	1172 CA ALA A 71	42.72466 .98864 .7691 .003 .09
ATOM	1173 HA ALA A 71	41.65867 .16764 .6461 .003 .09
ATOM	1174 CB ALA A 71	$43.08067 .23666 .240 \quad 1.003 .09$
ATOM	1175 HB1 ALA A 71	$44.142 \quad 67.061 \quad 66.4021 .003 .09$
ATOM	1176 HB2 ALA A 71	$42.821 \quad 68.25466 .5241 .003 .09$
ATOM	1177 HB3 ALA A 71	$42.511 \quad 66.55366 .8691 .003 .09$
ATOM	1178 C ALA A 71	43.42767 .94963 .7951 .003 .09
ATOM	1179 O ALA A 71	43.82269 .04464 .2201 .003 .09
ATOM	1180 N LEU A 72	43.68667 .54662 .5471 .003 .16
ATOM	1181 H LEU A 72	$43.32766 .641 \quad 62.2251 .003 .16$
ATOM	1182 CA LEU A 72	44.62768 .27761 .7071 .003 .16
ATOM	1183 HA LEU A 72	45.22368 .81362 .4381 .003 .16
ATOM	1184 CB LEU A 72	45.73967 .41461 .0441 .003 .16
ATOM	1185 HB1 LEU A 72	45.90266 .56061 .6571 .003 .16
ATOM	1186 HB2 LEU A 72	46.63068 .03261 .1381 .003 .16
ATOM	1187 CG LEU A 72	45.64166 .98259 .5891 .003 .16
ATOM	1188 HG LEU A 72	45.42967 .84058 .9681 .003 .16
ATOM	1189 CD1 LEU A 72	47.00166 .46459 .1001 .003 .16
ATOM	1190 1HD1 LEU A 72	47.70567 .29759 .1321 .003 .16
ATOM	1191 2HD1 LEU A 72	47.33665 .66259 .7511 .003 .16
ATOM	1192 3HD1 LEU A 72	46.90666 .10058 .0871 .003 .16
ATOM	1193 CD2 LEU A 72	44.62065 .87459 .3271 .003 .16
ATOM	1194 1HD2 LEU A 72	44.95564 .93259 .7381 .003 .16
ATOM	1195 2HD2 LEU A 72	43.69066 .15359 .8121 .003 .16
ATOM	1196 3HD2 LEU A 72	44.45365 .77058 .2561 .003 .16
ATOM	1197 C LEU A 72	$44.14669 .43060 .848 \quad 1.003 .16$
ATOM	1198 O LEU A 72	$44.73670 .511 \quad 60.9131 .003 .16$
ATOM	1199 N CYS A 73	43.17269 .21759 .9621 .006 .69
ATOM	1200 H CYS A 73	$42.69768 .317 \quad 60.0031 .006 .69$
ATOM	1201 CA CYS A 73	43.28369 .86258 .6741 .00669
ATOM	1202 HA CYS A 73	$44.22270 .421 \quad 58.652 \quad 1.006 .69$
ATOM	1203 CB CYS A 73	43.41268 .84257 .5371 .006 .69
ATOM	1204 HB1 CYS A 73	42.54868 .82456 .9041 .006 .69
ATOM	1205 HB2 CYS A 73	43.52967 .83357 .9241 .006 .69
ATOM	1206 SG CYS A 73	44.89269 .19656 .5351 .006 .69
ATOM	1207 HG CYS A 73	$45.80469 .245 \quad 57.5131 .006 .69$
ATOM	1208 C CYS A 73	42.25171 .01558 .3481 .006 .69
ATOM	1209 O CYS A 73	41.05270 .71758 .5001 .006 .69
ATOM	1210 N PRO A 74	42.55472 .08457 .5901 .008 .59
ATOM	1211 CD PRO A 74	42.49871 .82056 .1551 .008 .59
ATOM	1212 HD1 PRO A 74	41.59972 .27955 .7871 .008 .59
ATOM	1213 HD2 PRO A 74	42.45970 .76555 .9481 .008 .59
ATOM	1214 CG PRO A 74	43.74572 .44455 .5661 .008 .59
ATOM	1215 HG1 PRO A 74	43.61272 .63754 .5031 .008 .59
ATOM	1216 HG2 PRO A 74	44.61571 .81355 .7171 .008 .59

ATOM	1217 CB PRO A 74	43.85873 .72056 .3721 .008 .59
ATOM	1218 HB1 PRO A 74	43.18474 .38655 .8861 .008 .59
ATOM	1219 HB2 PRO A 74	44.86974 .08156 .3671 .008 .59
ATOM	1220 CA PRO A 74	$43.38873 .345 \quad 57.7831 .008 .59$
ATOM	1221 HA PRO A 74	44.26972 .97458 .2841 .008 .59
ATOM	1222 C PRO A 74	42.89374 .36658 .7501 .008 .59
ATOM	1223 O PRO A 74	41.82174 .90758 .4931 .008 .59
ATOM	1224 N GLY A 75	43.71874 .75859 .7041 .009 .87
ATOM	1225 H GLY A 75	44.48374 .15659 .9201 .009 .87
ATOM	1226 CA GLY A 75	43.78476 .15460 .1341 .009 .87
ATOM	1227 HA1 GLY A 75	44.69176 .31260 .7161 .009 .87
ATOM	1228 HA2 GLY A 75	$42.90276 .375 \quad 60.722 \quad 1.009 .87$
ATOM	1229 C GLY A 75	43.81377 .08458 .9081 .009 .87
ATOM	1230 O GLY A 75	43.13478 .10458 .8781 .009 .87
ATOM	1231 N LEU A 76	44.50576 .65657 .8451 .0010 .57
ATOM	1232 H LEU A 76	45.06975 .83057 .9631 .0010 .57
ATOM	1233 CA LEU A 76	44.53077 .30956 .5381 .0010 .57
ATOM	1234 HA LEU A 76	44.66978 .36956 .7531 .0010 .57
ATOM	1235 CB LEU A 76	45.79276 .85255 .7721 .0010 .57
ATOM	1236 HB1 LEU A 76	45.66775 .82655 .4511 .0010 .57
ATOM	1237 HB2 LEU A 76	46.61676 .87756 .4731 .0010 .57
ATOM	1238 CG LEU A 76	$46.183 \quad 77.66254 .525 \quad 1.0010 .57$
ATOM	1239 HG LEU A 76	45.49977 .42853 .7091 .0010 .57
ATOM	1240 CD1 LEU A 76	46.21779 .17754 .7301 .0010 .57
ATOM	1241 1HD1 LEU A 76	45.21279 .55654 .9091 .0010 .57
ATOM	1242 2HD1 LEU A 76	$46.857 \quad 79.42955 .5741 .0010 .57$
ATOM	1243 3HD1 LEU A 76	46.59779 .66353 .8321 .0010 .57
ATOM	1244 CD2 LEU A 76	47.58577 .21654 .1011 .0010 .57
ATOM	1245 1HD2 LEU A 76	47.82877 .62953 .1231 .0010 .57
ATOM	1246 2HD2 LEU A 76	$48.323 \quad 77.57554 .820 \quad 1.0010 .57$
ATOM	1247 3HD2 LEU A 76	47.65076 .13354 .0751 .0010 .57
ATOM	1248 C LEU A 76	43.24077 .26655 .6941 .0010 .57
ATOM	1249 O LEU A 76	43.13077 .97454 .7061 .0010 .57
ATOM	1250 N TRP A 77	42.26176 .46156 .1041 .0010 .15
ATOM	1251 H TRP A 77	42.42075 .94956 .9581 .0010 .15
ATOM	1252 CA TRP A 77	40.91476 .30955 .5411 .0010 .15
ATOM	1253 HA TRP A 77	40.82776 .91754 .6421 .0010 .15
ATOM	1254 CB TRP A 77	40.53574 .86955 .1771 .0010 .15
ATOM	1255 HB1 TRP A 77	39.45274 .85755 .0741 .0010 .15
ATOM	1256 HB2 TRP A 77	40.75574 .24256 .0381 .0010 .15
ATOM	1257 CG TRP A 77	41.01674 .17353 .9261 .0010 .15
ATOM	1258 CD1 TRP A 77	40.61172 .92253 .6291 .0010 .15
ATOM	1259 HD1 TRP A 77	39.94172 .34154 .2511 .0010 .15
ATOM	1260 NE1 TRP A 77	$41.183 \quad 72.48452 .461 \quad 1.0010 .15$
ATOM	1261 HE1 TRP A 77	41.00571 .56152 .0931 .0010 .15
ATOM	1262 CE2 TRP A 77	41.90473 .48351 .8581 .0010 .15
ATOM	1263 CZ2 TRP A 77	42.57773 .54450 .6291 .0010 .15
ATOM	1264 HZ2 TRP A 77	42.57672 .69149 .9631 .0010 .15
ATOM	1265 CH2 TRP A 77	43.18074 .75150 .2421 .0010 .15
ATOM	1266 HH2 TRP A 77	43.64774 .84249 .2701 .0010 .15
ATOM	1267 CZ3 TRP A 77	$43.120 \quad 75.86251 .102 \quad 1.0010 .15$
ATOM	1268 HZ3 TRP A 77	43.54276 .80850 .7851 .0010 .15
ATOM	1269 CE3 TRP A 77	42.44975 .78152 .3381 .0010 .15

ATOM	1270 HE3 TRP A 77	42.34376 .67152 .9311 .0010 .15
ATOM	1271 CD2 TRP A 77	41.81974 .59052 .7661 .0010 .15
ATOM	1272 C TRP A 77	39.88376 .89256 .5451 .0010 .15
ATOM	1273 O TRP A 77	38.68776 .92856 .2671 .0010 .15
ATOM	1274 N GLY A 78	40.34077 .26457 .7481 .009 .88
ATOM	1275 H GLY A 78	41.34177 .38157 .8031 .009 .88
ATOM	1276 CA GLY A 78	39.73376 .92559 .0481 .009 .88
ATOM	1277 HA1 GLY A 78	39.22677 .81259 .4201 .009 .88
ATOM	1278 HA2 GLY A 78	40.53476 .68459 .7411 .009 .88
ATOM	1279 C GLY A 78	38.73775 .77159 .0891 .009 .88
ATOM	1280 O GLY A 78	37.74975 .84459 .8171 .009 .88
ATOM	1281 N CYS A 79	38.96874 .69758 .3371 .008 .59
ATOM	1282 H CYS A 79	39.83674 .65657 .8291 .008 .59
ATOM	1283 CA CYS A 79	38.17273 .49158 .4741 .008 .59
ATOM	1284 HA CYS A 79	37.11873 .74958 .3481 .008 .59
ATOM	1285 CB CYS A 79	38.56872 .46957 .4111 .008 .59
ATOM	1286 HB1 CYS A 79	38.28771 .47357 .7641 .008 .59
ATOM	1287 HB2 CYS A 79	39.64872 .47757 .2561 .008 .59
ATOM	1288 SG CYS A 79	37.69472 .80755 .8541 .008 .59
ATOM	1289 HG CYS A 79	36.46272 .64356 .3211 .008 .59
ATOM	1290 C CYS A 79	38.38172 .89359 .8891 .008 .59
ATOM	1291 O CYS A 79	$39.45072 .395 \quad 60.2181 .008 .59$
ATOM	1292 N ALA A 80	37.33072 .89360 .6871 .008 .18
ATOM	1293 H ALA A 80	36.52773 .44060 .4531 .008 .18
ATOM	1294 CA ALA A 80	$36.98771 .661 \quad 61.4021 .008 .18$
ATOM	1295 HA ALA A 80	37.89371 .15261 .7341 .008 .18
ATOM	1296 CB ALA A 80	36.13772 .01662 .6141 .008 .18
ATOM	1297 HB1 ALA A 80	36.66872 .72663 .2471 .008 .18
ATOM	1298 HB2 ALA A 80	35.19372 .46562 .3081 .008 .18
ATOM	1299 HB3 ALA A 80	35.91571 .13563 .2181 .008 .18
ATOM	1300 C ALA A 80	36.24270 .70760 .4031 .008 .18
ATOM	1301 O ALA A 80	36.02671 .04659 .2611 .008 .18
ATOM	1302 N ASP A 81	$35.85269 .522 \quad 60.9001 .006 .65$
ATOM	1303 H ASP A 81	35.90969 .40061 .8991 .006 .65
ATOM	1304 CA ASP A 81	36.03468 .27360 .1341 .006 .65
ATOM	1305 HA ASP A 81	35.93367 .46260 .8571 .006 .65
ATOM	1306 CB ASP A 81	34.97567 .98359 .0461 .006 .65
ATOM	1307 HB1 ASP A 81	34.98268 .77158 .2921 .006 .65
ATOM	1308 HB2 ASP A 81	33.98667 .94759 .5051 .006 .65
ATOM	1309 CG ASP A 81	35.25866 .62458 .3611 .006 .65
ATOM	1310 OD1 ASP A 81	34.86266 .39657 .1951 .006 .65
ATOM	1311 OD2 ASP A 81	35.86065 .73859 .0101 .006 .65
ATOM	1312 C ASP A 81	37.44468 .19859 .5821 .006 .65
ATOM	1313 O ASP A 81	37.71268 .51358 .4231 .006 .65
ATOM	1314 N ASP A 82	$38.32267 .77560 .492 \quad 1.003 .72$
ATOM	1315 H ASP A 82	37.95867 .45461 .3761 .003 .72
ATOM	1316 CA ASP A 82	39.77367 .82560 .4141 .003 .72
ATOM	1317 HA ASP A 82	$40.04668 .881 \quad 60.3831 .003 .72$
ATOM	1318 CB ASP A 82	40.34967 .21661 .7001 .003 .72
ATOM	1319 HB1 ASP A 82	39.64667 .32062 .5281 .003 .72
ATOM	1320 HB2 ASP A 82	41.23067 .79361 .9641 .003 .72
ATOM	1321 CG ASP A 82	40.74165 .74061 .5391 .003 .72
ATOM	1322 OD1 ASP A 82	39.83564 .87561 .4791 .003 .72

ATOM	1323 OD2 ASP A 82	41.95765 .45361 .4561 .003 .72
ATOM	1324 C ASP A 82	40.39567 .18759 .1701 .003 .72
ATOM	1325 O ASP A 82	41.61067 .15259 .0571 .003 .72
ATOM	1326 N ARG A 83	39.61566 .63758 .2481 .003 .24
ATOM	1327 H ARG A 83	$38.62066 .74058 .392 \quad 1.003 .24$
ATOM	1328 CA ARG A 83	$40.13765 .845 \quad 57.1451 .003 .24$
ATOM	1329 HA ARG A 83	41.17766 .13056 .9711 .003 .24
ATOM	1330 CB ARG A 83	40.10164 .35857 .5661 .003 .24
ATOM	1331 HB1 ARG A 83	39.89363 .72256 .7051 .003 .24
ATOM	1332 HB2 ARG A 83	39.28764 .20658 .2791 .003 .24
ATOM	1333 CG ARG A 83	$41.433 \quad 63.88258 .1731 .003 .24$
ATOM	1334 HG1 ARG A 83	41.77664 .58158 .9331 .003 .24
ATOM	1335 HG2 ARG A 83	$42.184 \quad 63.83657 .3851 .003 .24$
ATOM	1336 CD ARG A 83	41.27962 .49558 .8101 .003 .24
ATOM	1337 HD1 ARG A 83	42.26662 .10459 .0501 .003 .24
ATOM	1338 HD2 ARG A 83	$40.77961 .83758 .101 \quad 1.003 .24$
ATOM	1339 NE ARG A 83	$40.501 \quad 62.59260 .0471 .003 .24$
ATOM	1340 HE ARG A 83	$40.28863 .54460 .351 \quad 1.003 .24$
ATOM	1341 CZ ARG A 83	40.15761 .67460 .9251 .003 .24
ATOM	1342 NH1 ARG A 83	39.49262 .07661 .9661 .003 .24
ATOM	1343 1HH1 ARG A 83	39.39463 .09262 .0791 .003 .24
ATOM	1344 2HH1 ARG A 83	39.27261 .45862 .7161 .003 .24
ATOM	1345 NH2 ARG A 83	$40.444 \quad 60.40260 .811 \quad 1.003 .24$
ATOM	1346 1HH2 ARG A 83	40.98960 .06260 .0371 .003 .24
ATOM	1347 2HH2 ARG A 83	$40.24659 .766 \quad 61.5591 .003 .24$
ATOM	1348 C ARG A 83	39.50566 .00755 .7851 .003 .24
ATOM	1349 O ARG A 83	40.01465 .43554 .8211 .003 .24
ATOM	1350 N ASN A 84	38.42966 .77055 .6831 .003 .60
ATOM	1351 H ASN A 84	38.08867 .19856 .5341 .003 .60
ATOM	1352 CA ASN A 84	37.81267 .11554 .4051 .003 .60
ATOM	1353 HA ASN A 84	36.84467 .55654 .6531 .003 .60
ATOM	1354 CB ASN A 84	38.63068 .21553 .6971 .003 .60
ATOM	1355 HB1 ASN A 84	37.98968 .70452 .9661 .003 .60
ATOM	1356 HB2 ASN A 84	39.42367 .71053 .1571 .003 .60
ATOM	1357 CG ASN A 84	39.29669 .30154 .5391 .003 .60
ATOM	1358 OD1 ASN A 84	40.29569 .86154 .1121 .003 .60
ATOM	1359 ND2 ASN A 84	38.82569 .66955 .7111 .003 .60
ATOM	1360 1HD2 ASN A 84	$38.048 \quad 69.21356 .1611 .003 .60$
ATOM	1361 2HD2 ASN A 84	39.30870 .40756 .2051 .003 .60
ATOM	1362 C ASN A 84	37.49565 .88853 .5281 .003 .60
ATOM	1363 O ASN A 84	37.82565 .83152 .3391 .003 .60
ATOM	1364 N ARG A 85	36.85264 .88854 .1411 .003 .36
ATOM	1365 H ARG A 85	36.65765 .02555 .1241 .003 .36
ATOM	1366 CA ARG A 85	36.32063 .67853 .4911 .003 .36
ATOM	1367 HA ARG A 85	37.15463 .00053 .3171 .003 .36
ATOM	1368 CB ARG A 85	35.33663 .00654 .4761 .003 .36
ATOM	1369 HB1 ARG A 85	35.87862 .79555 .4001 .003 .36
ATOM	1370 HB2 ARG A 85	35.01062 .05254 .0601 .003 .36
ATOM	1371 CG ARG A 85	34.08763 .85954 .8101 .003 .36
ATOM	1372 HG1 ARG A 85	33.40963 .82853 .9581 .003 .36
ATOM	1373 HG2 ARG A 85	34.36664 .89954 .9801 .003 .36
ATOM	1374 CD ARG A 85	33.31163 .36456 .0341 .003 .36
ATOM	1375 HD1 ARG A 85	33.13262 .29355 .9251 .003 .36

ATOM	1376 HD2 ARG A 85	32.34763 .87756 .0571 .003 .36
ATOM	1377 NE ARG A 85	34.01963 .65057 .2971 .003 .36
ATOM	1378 HE ARG A 85	$34.591 \quad 64.49857 .3361 .003 .36$
ATOM	1379 CZ ARG A 85	$33.88063 .01358 .442 \quad 1.003 .36$
ATOM	1380 NH1 ARG A 85	34.60563 .33359 .4711 .003 .36
ATOM	1381 1HH1 ARG A 85	35.22264 .14659 .3831 .003 .36
ATOM	1382 2HH1 ARG A 85	$34.46262 .921 \quad 60.3681 .003 .36$
ATOM	1383 NH2 ARG A 85	33.00862 .05158 .5891 .003 .36
ATOM	1384 1HH2 ARG A 85	32.38861 .84557 .8291 .003 .36
ATOM	1385 2HH2 ARG A 85	$32.873 \quad 61.61359 .4791 .003 .36$
ATOM	1386 C ARG A 85	35.68564 .00252 .1301 .003 .36
ATOM	1387 O ARG A 85	34.80764 .86552 .0861 .003 .36
ATOM	1388 N ARG A 86	36.17763 .35851 .0601 .003 .32
ATOM	1389 H ARG A 86	36.88362 .66051 .2851 .003 .32
ATOM	1390 CA ARG A 86	35.96963 .56149 .5951 .003 .32
ATOM	1391 HA ARG A 86	35.79062 .58349 .1471 .003 .32
ATOM	1392 CB ARG A 86	$34.79564 .48249 .199 \quad 1.003 .32$
ATOM	1393 HB1 ARG A 86	34.84364 .67148 .1251 .003 .32
ATOM	1394 HB2 ARG A 86	$34.93065 .45049 .681 \quad 1.003 .32$
ATOM	1395 CG ARG A 86	$33.39763 .88949 .482 \quad 1.00 \quad 3.32$
ATOM	1396 HG1 ARG A 86	33.40663 .32950 .4171 .003 .32
ATOM	1397 HG2 ARG A 86	$33.13763 .19648 .681 \quad 1.003 .32$
ATOM	1398 CD ARG A 86	32.32464 .98849 .5751 .003 .32
ATOM	1399 HD1 ARG A 86	31.34564 .51849 .6921 .003 .32
ATOM	1400 HD2 ARG A 86	32.33365 .57648 .6551 .003 .32
ATOM	1401 NE ARG A 86	32.60765 .84550 .7381 .003 .32
ATOM	1402 HE ARG A 86	33.34965 .50751 .3391 .003 .32
ATOM	1403 CZ ARG A 86	32.13067 .02251 .0691 .003 .32
ATOM	1404 NH1 ARG A 86	32.66467 .65452 .0721 .003 .32
ATOM	1405 1HH1 ARG A 86	$33.46867 .24352 .522 \quad 1.003 .32$
ATOM	1406 2HH1 ARG A 86	32.30268 .53752 .3841 .003 .32
ATOM	1407 NH2 ARG A 86	31.14967 .57850 .4131 .003 .32
ATOM	1408 1HH2 ARG A 86	30.76667 .08149 .6301 .003 .32
ATOM	1409 2HH2 ARG A 86	$30.80068 .48850 .662 \quad 1.003 .32$
ATOM	1410 C ARG A 86	37.24664 .07148 .9101 .003 .32
ATOM	1411 O ARG A 86	37.38763 .96247 .6911 .003 .32
ATOM	1412 N LEU A 87	$38.19164 .62249 .672 \quad 1.003 .23$
ATOM	1413 H LEU A 87	37.99864 .76650 .6581 .003 .23
ATOM	1414 CA LEU A 87	39.56164 .83549 .2181 .003 .23
ATOM	1415 HA LEU A 87	39.54765 .13848 .1751 .003 .23
ATOM	1416 CB LEU A 87	40.21065 .97450 .0511 .003 .23
ATOM	1417 HB1 LEU A 87	41.25566 .07849 .7681 .003 .23
ATOM	1418 HB2 LEU A 87	40.20165 .68951 .1061 .003 .23
ATOM	1419 CG LEU A 87	39.57167 .37449 .9191 .003 .23
ATOM	1420 HG LEU A 87	38.61667 .39250 .4411 .003 .23
ATOM	1421 CD1 LEU A 87	40.49468 .43350 .5311 .003 .23
ATOM	1422 1HD1 LEU A 87	39.97469 .39050 .5751 .003 .23
ATOM	1423 2HD1 LEU A 87	40.78068 .14051 .5371 .003 .23
ATOM	1424 3HD1 LEU A 87	41.40268 .54049 .9361 .003 .23
ATOM	1425 CD2 LEU A 87	39.33067 .80048 .4681 .003 .23
ATOM	1426 1HD2 LEU A 87	38.92468 .81348 .4541 .003 .23
ATOM	1427 2HD2 LEU A 87	40.26667 .79247 .9171 .003 .23
ATOM	1428 3HD2 LEU A 87	38.59567 .14648 .0021 .003 .23

ATOM	1429 C LEU A 87	40.38763 .52649 .2751 .003 .23
ATOM	1430 O LEU A 87	39.88062 .43249 .5101 .003 .23
ATOM	1431 N SER A 88	41.69663 .63749 .0681 .003 .05
ATOM	1432 H SER A 88	$42.06564 .54848 .840 \quad 1.003 .05$
ATOM	1433 CA SER A 88	42.69062 .71049 .6061 .003 .05
ATOM	1434 HA SER A 88	42.31762 .33650 .5561 .003 .05
ATOM	1435 CB SER A 88	$42.93761 .52648 .667 \quad 1.003 .05$
ATOM	1436 HB1 SER A 88	43.90761 .07848 .8871 .003 .05
ATOM	1437 HB2 SER A 88	42.93161 .86347 .6301 .003 .05
ATOM	1438 OG SER A 88	$41.938 \quad 60.545 \quad 48.8731 .00 \quad 3.05$
ATOM	1439 HG SER A 88	41.08561 .01348 .9381 .003 .05
ATOM	1440 C SER A 88	43.99063 .46949 .8891 .003 .05
ATOM	1441 O SER A 88	44.24864 .46749 .2161 .003 .05
ATOM	1442 N TYR A 89	44.77863 .04150 .8831 .002 .52
ATOM	1443 H TYR A 89	44.46762 .22251 .3931 .002 .52
ATOM	1444 CA TYR A 89	45.61364 .01151 .6311 .002 .52
ATOM	1445 HA TYR A 89	45.64064 .95151 .0831 .002 .52
ATOM	1446 CB TYR A 89	44.87264 .28552 .9711 .002 .52
ATOM	1447 HB1 TYR A 89	45.51464 .04353 .8191 .002 .52
ATOM	1448 HB2 TYR A 89	$44.01463 .61753 .061 \quad 1.002 .52$
ATOM	1449 CG TYR A 89	$44.381 \quad 65.70853 .168 \quad 1.00 \quad 2.52$
ATOM	1450 CD1 TYR A 89	$43.022 \quad 65.96353 .442 \quad 1.002 .52$
ATOM	1451 HD1 TYR A 89	$42.318 \quad 65.14753 .5271 .002 .52$
ATOM	1452 CE1 TYR A 89	$42.57067 .28353 .6321 .00 \quad 2.52$
ATOM	1453 HE1 TYR A 89	41.53467 .46753 .8591 .002 .52
ATOM	1454 CZ TYR A 89	$43.47668 .36153 .546 \quad 1.00 \quad 2.52$
ATOM	1455 OH TYR A 89	$43.046 \quad 69.65053 .642 \quad 1.00 \quad 2.52$
ATOM	1456 HH TYR A 89	42.11069 .69453 .8941 .002 .52
ATOM	1457 CE2 TYR A 89	44.84768 .09453 .3471 .002 .52
ATOM	1458 HE2 TYR A 89	$45.551 \quad 68.90653 .392 \quad 1.00 \quad 2.52$
ATOM	1459 CD2 TYR A 89	$45.29766 .77553 .151 \quad 1.002 .52$
ATOM	1460 HD2 TYR A 89	46.35266 .57653 .0141 .002 .52
ATOM	1461 C TYR A 89	47.10163 .64251 .8761 .002 .52
ATOM	1462 O TYR A 89	47.71064 .21252 .7801 .002 .52
ATOM	1463 N SER A 90	47.66562 .70051 .1001 .002 .40
ATOM	1464 H SER A 90	47.10162 .41750 .3151 .002 .40
ATOM	1465 CA SER A 90	48.92461 .93651 .3301 .002 .40
ATOM	1466 HA SER A 90	48.60761 .08251 .9161 .002 .40
ATOM	1467 CB SER A 90	49.47561 .38250 .0081 .002 .40
ATOM	1468 HB1 SER A 90	$49.891 \quad 62.20349 .420 \quad 1.00 \quad 2.40$
ATOM	1469 HB2 SER A 90	48.65760 .93049 .4441 .002 .40
ATOM	1470 OG SER A 90	50.47760 .39650 .2191 .002 .40
ATOM	1471 HG SER A 90	50.16359 .74650 .8661 .002 .40
ATOM	1472 C SER A 90	50.05462 .60652 .1451 .002 .40
ATOM	1473 O SER A 90	50.35163 .77551 .9801 .002 .40
ATOM	1474 N VAL A 91	50.70661 .81553 .0001 .002 .05
ATOM	1475 H VAL A 91	50.56860 .82452 .8761 .002 .05
ATOM	1476 CA VAL A 91	51.27462 .17954 .2981 .002 .05
ATOM	1477 HA VAL A 91	51.35263 .24554 .4071 .002 .05
ATOM	1478 CB VAL A 91	50.30961 .74455 .4211 .002 .05
ATOM	1479 HB VAL A 91	50.19460 .66255 .4001 .002 .05
ATOM	1480 CG1 VAL A 91	$50.822 \quad 62.17656 .7921 .002 .05$
ATOM	1481 1HG1 VAL A 91	50.96063 .25656 .8111 .002 .05

ATOM	1482 2HG1 VAL A 91	50.11361 .88757 .5661 .002 .05
ATOM	1483 3HG1 VAL A 91	51.77661 .70557 .0001 .002 .05
ATOM	1484 CG2 VAL A 91	$48.916 \quad 62.36155 .2631 .002 .05$
ATOM	1485 1HG2 VAL A 91	$48.30362 .128 \quad 56.132 \quad 1.002 .05$
ATOM	1486 2HG2 VAL A 91	48.99363 .44355 .1631 .002 .05
ATOM	1487 3HG2 VAL A 91	48.41861 .96154 .3841 .002 .05
ATOM	1488 C VAL A 91	52.63761 .48554 .3991 .002 .05
ATOM	1489 O VAL A 91	52.71660 .37854 .9141 .002 .05
ATOM	1490 N THR A 92	53.72062 .03053 .8421 .001 .94
ATOM	1491 H THR A 92	53.62662 .94953 .4241 .001 .94
ATOM	1492 CA THR A 92	$\begin{array}{llllllllllll}55.053 & 61.421 ~ 54.101 ~ & 1.00 & 1.94\end{array}$
ATOM	1493 HA THR A 92	$\begin{array}{lllllllllll}54.973 & 60.365 & 53.880 & 1.00 & 1.94\end{array}$
ATOM	1494 CB THR A 92	56.19961 .95353 .2161 .001 .94
ATOM	1495 HB THR A 92	56.62362 .85353 .6571 .001 .94
ATOM	1496 CG2 THR A 92	57.32660 .93952 .9981 .001 .94
ATOM	1497 1HG2 THR A 92	58.01361 .31452 .2391 .001 .94
ATOM	1498 2HG2 THR A 92	57.89560 .78953 .9141 .001 .94
ATOM	1499 3HG2 THR A 92	56.92059 .98552 .6631 .001 .94
ATOM	1500 OG1 THR A 92	$\begin{array}{lllllllllll}55.725 & 62.247 & 51.920 & 1.00 & 1.94\end{array}$
ATOM	1501 HG1 THR A 92	55.13963 .00451 .9891 .001 .94
ATOM	1502 C THR A 92	55.41561 .50855 .6091 .001 .94
ATOM	1503 O THR A 92	54.74062 .22056 .3431 .001 .94
ATOM	1504 N TRP A 93	$56.43760 .79856 .101 \quad 1.001 .88$
ATOM	1505 H TRP A 93	56.88560 .15455 .4631 .001 .88
ATOM	1506 CA TRP A 93	$\begin{array}{llllllllll}56.822 & 60.655 & 57.508 & 1.00 & 1.88\end{array}$
ATOM	1507 HA TRP A 93	56.89961 .63857 .9201 .001 .88
ATOM	1508 CB TRP A 93	55.76860 .08358 .4631 .001 .88
ATOM	1509 HB1 TRP A 93	55.18560 .93958 .7851 .001 .88
ATOM	1510 HB2 TRP A 93	56.28859 .71559 .3381 .001 .88
ATOM	1511 CG TRP A 93	54.75459 .05658 .1061 .001 .88
ATOM	1512 CD1 TRP A 93	53.59659 .33757 .4871 .001 .88
ATOM	1513 HD1 TRP A 93	$\begin{array}{lllllllllllll}53.351 & 60.324 & 57.137 & 1.00 & 1.88\end{array}$
ATOM	1514 NE1 TRP A 93	$\begin{array}{llllllllllll}52.76158 .244 & 57.508 & 1.00 & 1.88\end{array}$
ATOM	1515 HE1 TRP A 93	$51.80558 .28057 .190 \quad 1.001 .88$
ATOM	1516 CE2 TRP A 93	53.30057 .23258 .2651 .001 .88
ATOM	1517 CZ2 TRP A 93	52.81455 .98758 .6821 .001 .88
ATOM	1518 HZ2 TRP A 93	51.85755 .62358 .3501 .001 .88
ATOM	1519 CH2 TRP A 93	53.58455 .22159 .5681 .001 .88
ATOM	1520 HH2 TRP A 93	53.23654 .24659 .8671 .001 .88
ATOM	1521 CZ3 TRP A 93	54.81355 .71260 .0381 .001 .88
ATOM	1522 HZ3 TRP A 93	$55.401 \quad 55.126 \quad 60.7291 .001 .88$
ATOM	1523 CE3 TRP A 93	$\begin{array}{lllllllllll}55.302 & 56.953 & 59.591 & 1.00 & 1.88\end{array}$
ATOM	1524 HE3 TRP A 93	56.25257 .32459 .9431 .001 .88
ATOM	1525 CD2 TRP A 93	54.57057 .73258 .6771 .001 .88
ATOM	1526 C TRP A 93	58.21660 .02357 .6791 .001 .88
ATOM	1527 O TRP A 93	58.38258 .81757 .8471 .001 .88
ATOM	1528 N PHE A 94	59.25360 .85657 .6031 .001 .89
ATOM	1529 H PHE A 94	59.05661 .82657 .3951 .001 .89
ATOM	1530 CA PHE A 94	60.65560 .45157 .6971 .001 .89
ATOM	1531 HA PHE A 94	$60.76159 .49457 .191 \quad 1.001 .89$
ATOM	1532 CB PHE A 94	61.55661 .43656 .9191 .001 .89
ATOM	1533 HB1 PHE A 94	62.57361 .04556 .9441 .001 .89
ATOM	1534 HB2 PHE A 94	$61.58762 .38657 .442 \quad 1.001 .89$

ATOM	1535 CG PHE A 94	61.19361 .74255 .4661 .001 .89
ATOM	1536 CD1 PHE A 94	60.22262 .71855 .1691 .001 .89
ATOM	1537 HD1 PHE A 94	59.71763 .22655 .9651 .001 .89
ATOM	1538 CE1 PHE A 94	59.93363 .07753 .8431 .001 .89
ATOM	1539 HE1 PHE A 94	$59.164 \quad 63.80353 .6311 .001 .89$
ATOM	1540 CZ PHE A 94	$\begin{array}{llllllllllllllll}60.673 & 62.521 & 52.792 & 1.00 & 1.89\end{array}$
ATOM	1541 HZ PHE A 94	60.48762 .83251 .7731 .001 .89
ATOM	1542 CE2 PHE A 94	61.68461 .59153 .0761 .001 .89
ATOM	1543 HE2 PHE A 94	62.27961 .20852 .2621 .001 .89
ATOM	1544 CD2 PHE A 94	61.92061 .17354 .4011 .001 .89
ATOM	1545 HD2 PHE A 94	$62.694 \quad 60.45154 .6081 .001 .89$
ATOM	1546 C PHE A 94	61.11360 .23559 .1661 .001 .89
ATOM	1547 O PHE A 94	61.50261 .19259 .8171 .001 .89
ATOM	1548 N CYS A 95	$60.99259 .00559 .681 \quad 1.001 .89$
ATOM	1549 H CYS A 95	60.61658 .33059 .0281 .001 .89
ATOM	1550 CA CYS A 95	61.26558 .41861 .0011 .001 .89
ATOM	1551 HA CYS A 95	60.73058 .97861 .7541 .001 .89
ATOM	1552 CB CYS A 95	60.70556 .98461 .0131 .001 .89
ATOM	1553 HB1 CYS A 95	$60.74856 .591 \quad 62.0321 .001 .89$
ATOM	1554 HB2 CYS A 95	61.32656 .35660 .3771 .001 .89
ATOM	1555 SG CYS A 95	58.99056 .86460 .4291 .001 .89
ATOM	1556 HG CYS A 95	59.15057 .41959 .2141 .001 .89
ATOM	1557 C CYS A 95	62.76058 .29561 .3471 .001 .89
ATOM	1558 O CYS A 95	$63.59957 .988 \quad 60.5021 .001 .89$
ATOM	1559 N SER A 96	63.12958 .32262 .6291 .001 .83
ATOM	1560 H SER A 96	62.46158 .61963 .3271 .001 .83
ATOM	1561 CA SER A 96	64.44657 .79963 .0141 .001 .83
ATOM	1562 HA SER A 96	$\begin{array}{lllllllllllll}65.208 & 58.156 & 62.317 & 1.00 & 1.83\end{array}$
ATOM	1563 CB SER A 96	64.83558 .26664 .4151 .001 .83
ATOM	1564 HB1 SER A 96	64.04857 .96065 .0931 .001 .83
ATOM	1565 HB2 SER A 96	64.93859 .34864 .4331 .001 .83
ATOM	1566 OG SER A 96	66.03757 .68264 .8661 .001 .83
ATOM	1567 HG SER A 96	$66.77158 .18364 .4741 .00 \quad 1.83$
ATOM	1568 C SER A 96	64.46756 .27263 .0041 .001 .83
ATOM	1569 O SER A 96	65.37355 .65262 .4451 .001 .83
ATOM	1570 N TRP A 97	63.44555 .67063 .6051 .002 .16
ATOM	1571 H TRP A 97	62.71056 .23664 .0041 .002 .16
ATOM	1572 CA TRP A 97	63.29054 .23563 .7721 .002 .16
ATOM	1573 HA TRP A 97	64.08053 .68563 .2621 .002 .16
ATOM	1574 CB TRP A 97	63.29453 .89365 .2691 .002 .16
ATOM	1575 HB1 TRP A 97	62.79252 .93565 .4011 .002 .16
ATOM	1576 HB2 TRP A 97	62.68454 .62665 .8001 .002 .16
ATOM	1577 CG TRP A 97	64.61453 .76365 .9581 .002 .16
ATOM	1578 CD1 TRP A 97	64.96554 .41967 .0831 .002 .16
ATOM	1579 HD1 TRP A 97	64.33455 .14467 .5861 .002 .16
ATOM	1580 NE1 TRP A 97	66.16253 .92867 .5601 .002 .16
ATOM	1581 HE1 TRP A 97	66.51554 .17068 .4721 .002 .16
ATOM	1582 CE2 TRP A 97	66.63152 .89966 .7711 .002 .16
ATOM	1583 CZ2 TRP A 97	67.73552 .04266 .8711 .002 .16
ATOM	1584 HZ2 TRP A 97	68.42352 .12967 .6941 .002 .16
ATOM	1585 CH2 TRP A 97	67.92451 .05265 .8921 .002 .16
ATOM	1586 HH2 TRP A 97	68.76250 .37365 .9571 .002 .16
ATOM	1587 CZ3 TRP A 97	67.00950 .92864 .8331 .002 .16

ATOM	1588 HZ3 TRP A 97	67.14950 .15164 .0921 .002 .16
ATOM	1589 CE3 TRP A 97	65.89751 .78764 .7491 .002 .16
ATOM	1590 HE3 TRP A 97	65.18551 .66963 .9481 .002 .16
ATOM	1591 CD2 TRP A 97	65.67752 .79365 .7141 .002 .16
ATOM	1592 C TRP A 97	61.93453 .81063 .2231 .002 .16
ATOM	1593 O TRP A 97	60.93554 .49663 .4331 .002 .16
ATOM	1594 N SER A 98	61.90352 .68462 .5181 .002 .32
ATOM	1595 H SER A 98	62.77752 .22062 .3041 .002 .32
ATOM	1596 CA SER A 98	60.65052 .10162 .0441 .002 .32
ATOM	1597 HA SER A 98	$60.15752 .865 \quad 61.4461 .002 .32$
ATOM	1598 CB SER A 98	60.94750 .89561 .1571 .002 .32
ATOM	1599 HB1 SER A 98	61.57451 .20560 .3241 .002 .32
ATOM	1600 HB2 SER A 98	60.01350 .49560 .7671 .002 .32
ATOM	1601 OG SER A 98	$61.62149 .89761 .892 \quad 1.002 .32$
ATOM	1602 HG SER A 98	61.11849 .70262 .6961 .002 .32
ATOM	1603 C SER A 98	59.70551 .68263 .1911 .002 .32
ATOM	1604 O SER A 98	60.18151 .25264 .2401 .002 .32
ATOM	1605 N PRO A 99	58.37251 .73163 .0041 .002 .38
ATOM	1606 CD PRO A 99	57.68451 .84761 .7171 .002 .38
ATOM	1607 HD1 PRO A 99	57.53150 .84961 .3041 .002 .38
ATOM	1608 HD2 PRO A 99	58.21852 .46660 .9971 .002 .38
ATOM	1609 CG PRO A 99	56.33152 .48762 .0141 .002 .38
ATOM	1610 HG1 PRO A 99	$\begin{array}{llllllllllll}55.562 & 52.171 & 61.310 & 1.00 & 2.38\end{array}$
ATOM	1611 HG2 PRO A 99	56.43753 .57262 .0091 .002 .38
ATOM	1612 CB PRO A 99	56.04452 .01863 .4331 .002 .38
ATOM	1613 HB1 PRO A 99	55.67450 .99063 .4181 .002 .38
ATOM	1614 HB2 PRO A 99	55.33452 .67663 .9341 .002 .38
ATOM	1615 CA PRO A 99	57.43252 .07964 .0761 .002 .38
ATOM	1616 HA PRO A 99	$57.62853 .12764 .311 \quad 1.002 .38$
ATOM	1617 C PRO A 99	57.41151 .35865 .4351 .002 .38
ATOM	1618 O PRO A 99	57.06651 .98466 .4311 .002 .38
ATOM	1619 N CYS A 100	57.68350 .05565 .4661 .002 .46
ATOM	1620 H CYS A 100	58.03349 .66964 .6051 .002 .46
ATOM	1621 CA CYS A 100	57.34349 .07566 .5131 .002 .46
ATOM	1622 HA CYS A 100	58.09148 .29066 .3871 .002 .46
ATOM	1623 CB CYS A 100	57.53949 .57167 .9611 .002 .46
ATOM	1624 HB1 CYS A 100	58.31950 .33467 .9891 .002 .46
ATOM	1625 HB2 CYS A 100	57.86148 .73668 .5821 .002 .46
ATOM	1626 SG CYS A 100	56.00050 .22868 .6681 .002 .46
ATOM	1627 HG CYS A 100	56.02951 .36867 .9501 .002 .46
ATOM	1628 C CYS A 100	55.99648 .37566 .2631 .002 .46
ATOM	1629 O CYS A 100	55.17948 .85565 .4831 .002 .46
ATOM	1630 N ALA A 101	55.76747 .22966 .9131 .002 .67
ATOM	1631 H ALA A 101	56.45746 .89467 .5661 .002 .67
ATOM	1632 CA ALA A 101	
ATOM	1633 HA ALA A 101	$54.55646 .131 \quad 65.6121 .002 .67$
ATOM	1634 CB ALA A 101	54.73945 .10967 .4801 .002 .67
ATOM	1635 HB1 ALA A 101	53.90144 .44367 .2691 .002 .67
ATOM	1636 HB2 ALA A 101	55.66144 .60467 .1921 .002 .67
ATOM	1637 HB3 ALA A 101	$54.75745 .32868 .549 \quad 1.002 .67$
ATOM	1638 C ALA A 101	53.24747 .09766 .9861 .002 .67
ATOM	1639 O ALA A 101	52.28547 .04566 .2141 .002 .67
ATOM	1640 N ASN A 102	$53.22047 .783 \quad 68.1241 .002 .54$

ATOM	1641 H ASN A 102	54.02547 .69068 .7341 .002 .54
ATOM	1642 CA ASN A 102	$52.06348 .481 \quad 68.6651 .002 .54$
ATOM	1643 HA ASN A 102	$51.20947 .80268 .682 \quad 1.002 .54$
ATOM	1644 CB ASN A 102	52.39848 .93770 .1061 .002 .54
ATOM	1645 HB1 ASN A 102	$51.48449 .31770 .561 \quad 1.002 .54$
ATOM	1646 HB2 ASN A 102	53.11249 .76070 .0761 .002 .54
ATOM	1647 CG ASN A 102	52.99947 .86971 .0191 .002 .54
ATOM	1648 OD1 ASN A 102	53.89847 .11970 .6691 .002 .54
ATOM	1649 ND2 ASN A 102	52.55547 .78272 .2471 .002 .54
ATOM	1650 1HD2 ASN A 102	51.83748 .39472 .5841 .002 .54
ATOM	1651 2HD2 ASN A 102	$52.99447 .09272 .831 \quad 1.002 .54$
ATOM	1652 C ASN A 102	$51.70949 .682 \quad 67.7821 .002 .54$
ATOM	1653 O ASN A 102	$50.56149 .826 \quad 67.3581 .002 .54$
ATOM	1654 N CYS A 103	$52.71250 .501 \quad 67.4531 .002 .33$
ATOM	1655 H CYS A 103	53.62850 .34467 .8501 .002 .33
ATOM	1656 CA CYS A 103	$52.52251 .660 \quad 66.5921 .002 .33$
ATOM	1657 HA CYS A 103	51.73352 .28367 .0111 .002 .33
ATOM	1658 CB CYS A 103	$53.81052 .488 \quad 66.5431 .002 .33$
ATOM	1659 HB1 CYS A 103	53.68953 .29765 .8231 .002 .33
ATOM	1660 HB2 CYS A 103	$54.63951 .858 \quad 66.222 \quad 1.002 .33$
ATOM	1661 SG CYS A 103	54.17153 .20668 .1671 .002 .33
ATOM	1662 HG CYS A 103	55.22453 .95967 .7881 .002 .33
ATOM	1663 C CYS A 103	52.11251 .27965 .1791 .002 .33
ATOM	1664 O CYS A 103	51.24151 .92464 .6051 .002 .33
ATOM	1665 N ALA A 104	52.69950 .21464 .6361 .002 .46
ATOM	1666 H ALA A 104	53.44749 .75565 .1451 .002 .46
ATOM	1667 CA ALA A 104	52.29649 .62963 .3701 .002 .46
ATOM	1668 HA ALA A 104	52.44050 .36962 .5831 .002 .46
ATOM	1669 CB ALA A 104	53.19148 .41963 .0821 .002 .46
ATOM	1670 HB1 ALA A 104	52.84347 .91862 .1821 .002 .46
ATOM	1671 HB2 ALA A 104	$54.22348 .73962 .942 \quad 1.002 .46$
ATOM	1672 HB3 ALA A 104	53.14647 .70563 .9011 .002 .46
ATOM	1673 C ALA A 104	$50.82349 .248 \quad 63.3811 .002 .46$
ATOM	1674 O ALA A 104	$50.08149 .688 \quad 62.5131 .002 .46$
ATOM	1675 N THR A 105	50.37648 .54064 .4181 .002 .57
ATOM	1676 H THR A 105	51.05248 .21165 .0991 .002 .57
ATOM	1677 CA THR A 105	48.96448 .17364 .5771 .002 .57
ATOM	1678 HA THR A 105	48.66447 .56263 .7261 .002 .57
ATOM	1679 CB THR A 105	$48.79147 .325 \quad 65.8501 .002 .57$
ATOM	1680 HB THR A 105	49.15147 .88066 .7141 .002 .57
ATOM	1681 CG2 THR A 105	$47.34546 .902 \quad 66.122 \quad 1.00 \quad 2.57$
ATOM	1682 1HG2 THR A 105	$\begin{array}{llllllllllllllll}47.331 & 46.201 & 66.957 & 1.00 & 2.57\end{array}$
ATOM	1683 2HG2 THR A 105	$46.74847 .77466 .382 \quad 1.00 \quad 2.57$
ATOM	1684 3HG2 THR A 105	$46.93546 .417 \quad 65.2351 .002 .57$
ATOM	1685 OG1 THR A 105	49.54046 .13565 .7381 .002 .57
ATOM	1686 HG1 THR A 105	50.48446 .34065 .8221 .002 .57
ATOM	1687 C THR A 105	48.04249 .38764 .6221 .002 .57
ATOM	1688 O THR A 105	47.00049 .38163 .9661 .002 .57
ATOM	1689 N THR A 106	48.39450 .44765 .3511 .002 .48
ATOM	1690 H THR A 106	49.24850 .43265 .9041 .002 .48
ATOM	1691 CA THR A 106	47.55651 .65665 .3821 .002 .48
ATOM	1692 HA THR A 106	$46.52351 .348 \quad 65.5451 .002 .48$
ATOM	1693 CB THR A 106	47.92652 .58766 .5461 .002 .48

ATOM	1694 HB THR A 106	$47.42953 .548 \quad 66.4161 .002 .48$
ATOM	1695 CG2 THR A 106	$47.49451 .992 \quad 67.8871 .002 .48$
ATOM	1696 1HG2 THR A 106	47.78152 .67468 .6881 .002 .48
ATOM	1697 2HG2 THR A 106	$46.412 \quad 51.862 \quad 67.9031 .002 .48$
ATOM	1698 3HG2 THR A 106	$47.985 \quad 51.03368 .0501 .002 .48$
ATOM	1699 OG1 THR A 106	49.31652 .78266 .6271 .002 .48
ATOM	1700 HG1 THR A 106	49.64453 .11065 .7821 .002 .48
ATOM	1701 C THR A 106	$47.54752 .446 \quad 64.0751 .002 .48$
ATOM	1702 O THR A 106	46.51653 .00763 .7201 .002 .48
ATOM	1703 N LEU A 107	48.65752 .46063 .3371 .002 .42
ATOM	1704 H LEU A 107	49.46651 .95763 .6881 .002 .42
ATOM	1705 CA LEU A 107	$48.80253 .142 \quad 62.0481 .002 .42$
ATOM	1706 HA LEU A 107	$48.38954 .146 \quad 62.1371 .002 .42$
ATOM	1707 CB LEU A 107	50.30453 .24861 .7191 .002 .42
ATOM	1708 HB1 LEU A 107	$50.43353 .37460 .642 \quad 1.002 .42$
ATOM	1709 HB2 LEU A 107	$50.77952 .312 \quad 62.0061 .002 .42$
ATOM	1710 CG LEU A 107	$51.00854 .417 \quad 62.4431 .002 .42$
ATOM	1711 HG LEU A 107	$50.60454 .512 \quad 63.4501 .002 .42$
ATOM	1712 CD1 LEU A 107	52.52054 .18762 .5741 .002 .42
ATOM	1713 1HD1 LEU A 107	52.87453 .49361 .8171 .002 .42
ATOM	1714 2HD1 LEU A 107	53.06155 .13062 .4831 .002 .42
ATOM	1715 3HD1 LEU A 107	52.73753 .76263 .5511 .002 .42
ATOM	1716 CD2 LEU A 107	$50.75255 .731 \quad 61.7051 .002 .42$
ATOM	1717 1HD2 LEU A 107	51.22155 .71260 .7301 .002 .42
ATOM	1718 2HD2 LEU A 107	49.68955 .89361 .5671 .002 .42
ATOM	1719 3HD2 LEU A 107	51.16056 .55962 .2871 .002 .42
ATOM	1720 C LEU A 107	$47.99152 .455 \quad 60.9391 .002 .42$
ATOM	1721 O LEU A 107	$47.25953 .098 \quad 60.1831 .002 .42$
ATOM	1722 N THR A 108	48.05751 .12960 .9451 .002 .63
ATOM	1723 H THR A 108	48.76050 .71561 .5501 .002 .63
ATOM	1724 CA THR A 108	$47.23450 .186 \quad 60.191 \quad 1.002 .63$
ATOM	1725 HA THR A 108	$47.41850 .325 \quad 59.125 \quad 1.002 .63$
ATOM	1726 CB THR A 108	$47.68948 .767 \quad 60.5731 .002 .63$
ATOM	1727 HB THR A 108	47.91648 .72861 .6371 .002 .63
ATOM	1728 CG2 THR A 108	46.67147 .67760 .2921 .002 .63
ATOM	1729 1HG2 THR A 108	46.24147 .81959 .3051 .002 .63
ATOM	1730 2HG2 THR A 108	47.16846 .71260 .3471 .002 .63
ATOM	1731 3HG2 THR A 108	45.88447 .69861 .0431 .002 .63
ATOM	1732 OG1 THR A 108	48.86148 .47959 .8531 .002 .63
ATOM	1733 HG1 THR A 108	49.11747 .56760 .0251 .002 .63
ATOM	1734 C THR A 108	45.73750 .37860 .4291 .002 .63
ATOM	1735 O THR A 108	44.97150 .51659 .4671 .002 .63
ATOM	1736 N ARG A 109	45.31050 .40661 .7031 .002 .73
ATOM	1737 H ARG A 109	$45.99450 .264 \quad 62.4411 .002 .73$
ATOM	1738 CA ARG A 109	$43.91450 .69562 .072 \quad 1.002 .73$
ATOM	1739 HA ARG A 109	43.25549 .98961 .5661 .002 .73
ATOM	1740 CB ARG A 109	43.69750 .57363 .5961 .002 .73
ATOM	1741 HB1 ARG A 109	42.72851 .01263 .8411 .002 .73
ATOM	1742 HB2 ARG A 109	44.46551 .14964 .1141 .002 .73
ATOM	1743 CG ARG A 109	$43.69949 .122 \quad 64.121 \quad 1.002 .73$
ATOM	1744 HG1 ARG A 109	44.63848 .64063 .8581 .002 .73
ATOM	1745 HG2 ARG A 109	42.88948 .56763 .6461 .002 .73
ATOM	1746 CD ARG A 109	43.50849 .07465 .6511 .002 .73

ATOM	1747 HD1 ARG A 109	$42.48849 .38865 .880 \quad 1.002 .73$
ATOM	1748 HD2 ARG A 109	$44.20049 .78366 .111 \quad 1.002 .73$
ATOM	1749 NE ARG A 109	$43.77347 .726 \quad 66.210 \quad 1.002 .73$
ATOM	1750 HE ARG A 109	44.38347 .13965 .6651 .002 .73
ATOM	1751 CZ ARG A 109	$43.377 \quad 47.235 \quad 67.378 \quad 1.002 .73$
ATOM	1752 NH1 ARG A 109	43.78646 .05667 .7701 .002 .73
ATOM	1753 1HH1 ARG A 109	$44.40645 .52067 .187 \quad 1.002 .73$
ATOM	1754 2HH1 ARG A 109	$43.52145 .691 \quad 68.668 \quad 1.002 .73$
ATOM	1755 NH2 ARG A 109	$42.58647 .89468 .182 \quad 1.002 .73$
ATOM	1756 1HH2 ARG A 109	$42.23348 .792 \quad 67.902 \quad 1.002 .73$
ATOM	1757 2HH2 ARG A 109	$42.29547 .498 \quad 69.0571 .002 .73$
ATOM	1758 C ARG A 109	43.48252 .07461 .5621 .002 .73
ATOM	1759 O ARG A 109	$42.40852 .20060 .981 \quad 1.002 .73$
ATOM	1760 N PHE A 110	44.33853 .08261 .6951 .002 .78
ATOM	1761 H PHE A 110	45.19452 .94362 .2181 .002 .78
ATOM	1762 CA PHE A 110	44.03554 .41961 .2241 .002 .78
ATOM	1763 HA PHE A 110	43.09554 .71061 .6961 .002 .78
ATOM	1764 CB PHE A 110	45.10455 .40561 .6971 .002 .78
ATOM	1765 HB1 PHE A 110	$45.95955 .378 \quad 61.021 \quad 1.002 .78$
ATOM	1766 HB2 PHE A 110	$45.45955 .10362 .682 \quad 1.002 .78$
ATOM	1767 CG PHE A 110	$44.59256 .823 \quad 61.8341 .002 .78$
ATOM	1768 CD1 PHE A 110	$43.89257 .198 \quad 62.9981 .002 .78$
ATOM	1769 HD1 PHE A 110	$43.69056 .467 \quad 63.7671 .002 .78$
ATOM	1770 CE1 PHE A 110	$43.50058 .53463 .190 \quad 1.00 \quad 2.78$
ATOM	1771 HE1 PHE A 110	$43.01058 .831 \quad 64.1071 .002 .78$
ATOM	1772 CZ PHE A 110	$43.79759 .498 \quad 62.2151 .002 .78$
ATOM	1773 HZ PHE A 110	$43.528 \quad 60.530 \quad 62.3871 .002 .78$
ATOM	1774 CE2 PHE A 110	$44.47659 .122 \quad 61.0431 .002 .78$
ATOM	1775 HE2 PHE A 110	$44.72659 .871 \quad 60.3131 .002 .78$
ATOM	1776 CD2 PHE A 110	$44.87357 .786 \quad 60.847 \quad 1.002 .78$
ATOM	1777 HD2 PHE A 110	$45.42957 .505 \quad 59.9651 .002 .78$
ATOM	1778 C PHE A 110	$43.80254 .50659 .712 \quad 1.002 .78$
ATOM	1779 O PHE A 110	42.84555 .16159 .2831 .002 .78
ATOM	1780 N LEU A 111	44.61853 .81658 .9061 .002 .78
ATOM	1781 H LEU A 111	45.41553 .33559 .3131 .002 .78
ATOM	1782 CA LEU A 111	44.38553 .71957 .4631 .002 .78
ATOM	1783 HA LEU A 111	$44.29954 .73357 .072 \quad 1.002 .78$
ATOM	1784 CB LEU A 111	45.59753 .04756 .7921 .002 .78
ATOM	1785 HB1 LEU A 111	45.75952 .06657 .2411 .002 .78
ATOM	1786 HB2 LEU A 111	46.47753 .65557 .0041 .002 .78
ATOM	1787 CG LEU A 111	45.47352 .86555 .2651 .002 .78
ATOM	1788 HG LEU A 111	44.76252 .06755 .0531 .002 .78
ATOM	1789 CD1 LEU A 111	$45.03654 .127 \quad 54.521 \quad 1.002 .78$
ATOM	1790 1HD1 LEU A 111	45.08653 .96253 .4451 .002 .78
ATOM	1791 2HD1 LEU A 111	$44.012 \quad 54.39154 .7741 .002 .78$
ATOM	1792 3HD1 LEU A 111	45.69354 .95154 .7921 .002 .78
ATOM	1793 CD2 LEU A 111	46.83352 .49254 .6911 .002 .78
ATOM	1794 1HD2 LEU A 111	46.72452 .25553 .6331 .002 .78
ATOM	1795 2HD2 LEU A 111	47.53653 .31554 .8051 .002 .78
ATOM	1796 3HD2 LEU A 111	47.21451 .61255 .2061 .002 .78
ATOM	1797 C LEU A 111	43.06753 .01057 .1371 .002 .78
ATOM	1798 O LEU A 111	42.21853 .56156 .4341 .002 .78
ATOM	1799 N ARG A 112	$42.85751 .827 \quad 57.722 \quad 1.002 .89$

ATOM	1800 H ARG A 112	43.60451 .45858 .3041 .002 .89
ATOM	1801 CA ARG A 112	41.62851 .02857 .5651 .002 .89
ATOM	1802 HA ARG A 112	$41.42050 .93856 .498 \quad 1.002 .89$
ATOM	1803 CB ARG A 112	41.92149 .59158 .1081 .002 .89
ATOM	1804 HB1 ARG A 112	40.99649 .01358 .0721 .002 .89
ATOM	1805 HB2 ARG A 112	42.21649 .67359 .1551 .002 .89
ATOM	1806 CG ARG A 112	43.01648 .77757 .3401 .002 .89
ATOM	1807 HG1 ARG A 112	43.92649 .37357 .2701 .002 .89
ATOM	1808 HG2 ARG A 112	42.65848 .59656 .3261 .002 .89
ATOM	1809 CD ARG A 112	$43.38947 .40957 .991 \quad 1.002 .89$
ATOM	1810 HD1 ARG A 112	42.46946 .83758 .1261 .002 .89
ATOM	1811 HD2 ARG A 112	43.80547 .61758 .9771 .002 .89
ATOM	1812 NE ARG A 112	44.35746 .58157 .1971 .002 .89
ATOM	1813 HE ARG A 112	44.34946 .72456 .2001 .002 .89
ATOM	1814 CZ ARG A 112	45.22845 .65957 .6371 .002 .89
ATOM	1815 NH1 ARG A 112	46.08045 .04856 .8591 .002 .89
ATOM	1816 1HH1 ARG A 112	46.12245 .22855 .8641 .002 .89
ATOM	1817 2HH1 ARG A 112	46.78644 .45357 .2991 .002 .89
ATOM	1818 NH2 ARG A 112	45.30145 .29458 .8851 .002 .89
ATOM	1819 1HH2 ARG A 112	44.69045 .70059 .5581 .002 .89
ATOM	1820 2HH2 ARG A 112	46.08444 .71559 .2051 .002 .89
ATOM	1821 C ARG A 112	40.35251 .67358 .1501 .002 .89
ATOM	1822 O ARG A 112	39.27451 .12157 .9521 .002 .89
ATOM	1823 N GLN A 113	40.45352 .83558 .8051 .002 .90
ATOM	1824 H GLN A 113	41.38953 .13859 .0311 .002 .90
ATOM	1825 CA GLN A 113	39.33753 .67759 .2831 .002 .90
ATOM	1826 HA GLN A 113	38.39353 .15559 .1231 .002 .90
ATOM	1827 CB GLN A 113	39.50653 .93560 .7921 .002 .90
ATOM	1828 HB1 GLN A 113	38.79354 .70061 .1031 .002 .90
ATOM	1829 HB2 GLN A 113	40.51154 .31660 .9811 .002 .90
ATOM	1830 CG GLN A 113	39.26152 .68861 .6551 .002 .90
ATOM	1831 HG1 GLN A 113	39.90651 .87261 .3331 .002 .90
ATOM	1832 HG2 GLN A 113	$38.22752 .366 \quad 61.5311 .002 .90$
ATOM	1833 CD GLN A 113	39.52552 .97063 .1311 .002 .90
ATOM	1834 OE1 GLN A 113	40.57552 .67663 .6841 .002 .90
ATOM	1835 NE2 GLN A 113	38.57953 .54363 .8451 .002 .90
ATOM	1836 1HE2 GLN A 113	37.70153 .79563 .4251 .002 .90
ATOM	1837 2HE2 GLN A 113	38.78653 .66864 .8191 .002 .90
ATOM	1838 C GLN A 113	39.23255 .01258 .5411 .002 .90
ATOM	1839 O GLN A 113	38.22255 .70358 .6811 .002 .90
ATOM	1840 N THR A 114	40.22955 .40057 .7451 .002 .88
ATOM	1841 H THR A 114	41.03554 .79457 .6401 .002 .88
ATOM	1842 CA THR A 114	40.26256 .72557 .1161 .002 .88
ATOM	1843 HA THR A 114	39.27257 .17157 .1751 .002 .88
ATOM	1844 CB THR A 114	$41.21757 .68657 .861 \quad 1.002 .88$
ATOM	1845 HB THR A 114	42.25257 .48057 .5861 .002 .88
ATOM	1846 CG2 THR A 114	40.87459 .13857 .5311 .002 .88
ATOM	1847 1HG2 THR A 114	41.55059 .78558 .0801 .002 .88
ATOM	1848 2HG2 THR A 114	40.99859 .32656 .4661 .002 .88
ATOM	1849 3HG2 THR A 114	$39.847 \quad 59.35557 .825 \quad 1.002 .88$
ATOM	1850 OG1 THR A 114	41.12757 .58859 .2631 .002 .88
ATOM	1851 HG1 THR A 114	41.61556 .78259 .4981 .002 .88
ATOM	1852 C THR A 114	40.63556 .64255 .6301 .002 .88

ATOM	1853 O THR A 114	41.71657 .09055 .2371 .002 .88
ATOM	1854 N PRO A 115	39.72656 .17354 .7541 .003 .14
ATOM	1855 CD PRO A 115	38.38955 .69455 .0921 .003 .14
ATOM	1856 HD1 PRO A 115	37.84856 .39555 .7271 .003 .14
ATOM	1857 HD2 PRO A 115	38.46854 .72555 .5891 .003 .14
ATOM	1858 CG PRO A 115	37.66055 .52553 .7631 .003 .14
ATOM	1859 HG1 PRO A 115	37.23056 .47953 .4541 .003 .14
ATOM	1860 HG2 PRO A 115	36.89154 .75453 .8171 .003 .14
ATOM	1861 CB PRO A 115	38.79055 .13952 .8151 .003 .14
ATOM	1862 HB1 PRO A 115	38.53455 .36451 .7791 .003 .14
ATOM	1863 HB2 PRO A 115	38.99654 .07252 .9211 .003 .14
ATOM	1864 CA PRO A 115	39.99655 .94153 .3301 .003 .14
ATOM	1865 HA PRO A 115	40.87555 .29753 .2631 .003 .14
ATOM	1866 C PRO A 115	40.30357 .17952 .4561 .003 .14
ATOM	1867 O PRO A 115	40.36857 .07451 .2311 .003 .14
ATOM	1868 N ASN A 116	40.54658 .33653 .0761 .003 .04
ATOM	1869 H ASN A 116	40.61558 .28254 .0811 .003 .04
ATOM	1870 CA ASN A 116	40.98259 .59452 .4591 .003 .04
ATOM	1871 HA ASN A 116	40.85059 .55151 .3751 .003 .04
ATOM	1872 CB ASN A 116	40.10460 .74153 .0151 .003 .04
ATOM	1873 HB1 ASN A 116	40.44461 .68352 .5831 .003 .04
ATOM	1874 HB2 ASN A 116	40.23460 .81554 .0941 .003 .04
ATOM	1875 CG ASN A 116	38.61860 .62652 .7071 .003 .04
ATOM	1876 OD1 ASN A 116	38.07861 .27051 .8251 .003 .04
ATOM	1877 ND2 ASN A 116	37.87859 .83053 .4451 .003 .04
ATOM	1878 1HD2 ASN A 116	38.29359 .28454 .1731 .003 .04
ATOM	1879 2HD2 ASN A 116	36.92459 .70553 .1551 .003 .04
ATOM	1880 C ASN A 116	42.47759 .90252 .7361 .003 .04
ATOM	1881 O ASN A 116	43.06360 .85252 .2011 .003 .04
ATOM	1882 N LEU A 117	43.11559 .09053 .5861 .002 .58
ATOM	1883 H LEU A 117	42.63458 .27653 .9571 .002 .58
ATOM	1884 CA LEU A 117	44.49959 .25653 .9971 .002 .58
ATOM	1885 HA LEU A 117	44.88760 .20153 .6191 .002 .58
ATOM	1886 CB LEU A 117	44.61559 .26055 .5311 .002 .58
ATOM	1887 HB1 LEU A 117	45.66859 .13655 .7891 .002 .58
ATOM	1888 HB2 LEU A 117	44.08358 .39355 .9271 .002 .58
ATOM	1889 CG LEU A 117	44.11060 .52756 .2421 .002 .58
ATOM	1890 HG LEU A 117	43.04360 .65456 .0631 .002 .58
ATOM	1891 CD1 LEU A 117	44.36160 .34957 .7341 .002 .58
ATOM	1892 1HD1 LEU A 117	44.07461 .24958 .2731 .002 .58
ATOM	1893 2HD1 LEU A 117	43.79059 .50058 .1091 .002 .58
ATOM	1894 3HD1 LEU A 117	$45.418 \quad 60.15157 .9021 .002 .58$
ATOM	1895 CD2 LEU A 117	44.84461 .79755 .8051 .002 .58
ATOM	1896 1HD2 LEU A 117	44.50962 .64856 .4011 .002 .58
ATOM	1897 2HD2 LEU A 117	45.92061 .67655 .9301 .002 .58
ATOM	1898 3HD2 LEU A 117	44.61862 .00954 .7641 .002 .58
ATOM	1899 C LEU A 117	45.37458 .15653 .4301 .002 .58
ATOM	1900 O LEU A 117	45.01556 .98453 .4251 .002 .58
ATOM	1901 N ARG A 118	46.54958 .55452 .9401 .002 .41
ATOM	1902 H ARG A 118	46.77459 .53553 .0171 .002 .41
ATOM	1903 CA ARG A 118	$47.50157 .675 \quad 52.2591 .002 .41$
ATOM	1904 HA ARG A 118	47.28756 .64552 .5591 .002 .41
ATOM	1905 CB ARG A 118	47.27257 .71550 .7241 .002 .41

ATOM	1906 HB1 ARG A 118	$48.06757 .155 \quad 50.2301 .002 .41$
ATOM	1907 HB2 ARG A 118	47.28858 .74650 .3671 .002 .41
ATOM	1908 CG ARG A 118	45.90857 .05150 .3941 .002 .41
ATOM	1909 HG1 ARG A 118	45.11957 .61250 .8891 .002 .41
ATOM	1910 HG2 ARG A 118	45.91756 .04350 .8121 .002 .41
ATOM	1911 CD ARG A 118	$\begin{array}{llllllllllllll}45.480 & 56.941 & 48.920 & 1.00 & 2.41\end{array}$
ATOM	1912 HD1 ARG A 118	46.30456 .50748 .3491 .002 .41
ATOM	1913 HD2 ARG A 118	$45.275 \quad 57.93648 .522 \quad 1.002 .41$
ATOM	1914 NE ARG A 118	44.28056 .07248 .7761 .002 .41
ATOM	1915 HE ARG A 118	$44.43655 .161 \quad 48.3761 .002 .41$
ATOM	1916 CZ ARG A 118	43.06056 .29049 .2541 .002 .41
ATOM	1917 NH1 ARG A 118	$42.17655 .33949 .362 \quad 1.002 .41$
ATOM	1918 1HH1 ARG A 118	$42.37654 .39849 .070 \quad 1.002 .41$
ATOM	1919 2HH1 ARG A 118	41.30055 .56349 .8141 .002 .41
ATOM	1920 NH2 ARG A 118	42.64957 .45949 .6461 .002 .41
ATOM	1921 1HH2 ARG A 118	43.17058 .29249 .4311 .002 .41
ATOM	1922 2HH2 ARG A 118	41.72257 .53750 .0441 .002 .41
ATOM	1923 C ARG A 118	48.90857 .97152 .7811 .002 .41
ATOM	1924 O ARG A 118	49.52558 .99852 .4741 .002 .41
ATOM	1925 N LEU A 119	49.30857 .10953 .7111 .002 .13
ATOM	1926 H LEU A 119	48.72356 .30353 .8721 .002 .13
ATOM	1927 CA LEU A 119	50.46457 .25454 .5931 .002 .13
ATOM	1928 HA LEU A 119	$50.64758 .30954 .802 \quad 1.002 .13$
ATOM	1929 CB LEU A 119	50.12556 .51055 .9051 .002 .13
ATOM	1930 HB1 LEU A 119	51.03456 .40656 .4891 .002 .13
ATOM	1931 HB2 LEU A 119	49.79855 .50355 .6451 .002 .13
ATOM	1932 CG LEU A 119	49.03557 .16356 .7861 .002 .13
ATOM	1933 HG LEU A 119	$48.20857 .48256 .152 \quad 1.002 .13$
ATOM	1934 CD1 LEU A 119	48.48356 .17957 .8181 .002 .13
ATOM	1935 1HD1 LEU A 119	47.70856 .66158 .4131 .002 .13
ATOM	1936 2HD1 LEU A 119	48.04555 .32257 .3091 .002 .13
ATOM	1937 3HD1 LEU A 119	49.27655 .82858 .4801 .002 .13
ATOM	1938 CD2 LEU A 119	49.54958 .37457 .5661 .002 .13
ATOM	1939 1HD2 LEU A 119	48.70658 .88458 .0321 .002 .13
ATOM	1940 2HD2 LEU A 119	50.22958 .05358 .3571 .002 .13
ATOM	1941 3HD2 LEU A 119	50.05259 .07256 .9041 .002 .13
ATOM	1942 C LEU A 119	51.73156 .65253 .9381 .002 .13
ATOM	1943 O LEU A 119	51.72855 .53753 .3781 .002 .13
ATOM	1944 N ARG A 120	52.81957 .42254 .0381 .002 .13
ATOM	1945 H ARG A 120	52.76158 .30554 .5381 .002 .13
ATOM	1946 CA ARG A 120	54.09857 .08353 .4111 .002 .13
ATOM	1947 HA ARG A 120	54.09356 .05853 .0331 .002 .13
ATOM	1948 CB ARG A 120	54.40558 .04952 .2421 .002 .13
ATOM	1949 HB1 ARG A 120	55.49058 .08952 .1321 .002 .13
ATOM	1950 HB2 ARG A 120	54.06659 .04952 .5101 .002 .13
ATOM	1951 CG ARG A 120	$53.84957 .72050 .852 \quad 1.002 .13$
ATOM	1952 HG1 ARG A 120	52.76257 .81550 .8481 .002 .13
ATOM	1953 HG2 ARG A 120	54.13656 .70950 .5761 .002 .13
ATOM	1954 CD ARG A 120	54.48458 .72149 .8651 .002 .13
ATOM	1955 HD1 ARG A 120	55.57058 .70049 .9821 .002 .13
ATOM	1956 HD2 ARG A 120	54.15059 .72650 .1311 .002 .13
ATOM	1957 NE ARG A 120	54.15258 .46748 .4491 .002 .13
ATOM	1958 HE ARG A 120	$53.45159 .06848 .049 \quad 1.002 .13$

ATOM	1959 CZ ARG A 120	54.74857 .61047 .6351 .002 .13
ATOM	1960 NH1 ARG A 120	$54.477 \quad 57.60346 .360 \quad 1.002 .13$
ATOM	1961 1HH1 ARG A 120) 53.85558 .29145 .9771 .002 .13
ATOM	1962 2HH1 ARG A 120	- $54.85656 .87945 .771 \quad 1.002 .13$
ATOM	1963 NH2 ARG A 120	55.61456 .72348 .0361 .002 .13
ATOM	1964 1HH2 ARG A 120) 55.82456 .61449 .0231 .002 .13
ATOM	1965 2HH2 ARG A 120) 56.03356 .08147 .3891 .002 .13
ATOM	1966 C ARG A 120	55.25657 .17554 .4181 .002 .13
ATOM	1967 O ARG A 120	55.79358 .25454 .6671 .002 .13
ATOM	1968 N ILE A 121	$\begin{array}{lllllllllll}55.669 & 56.043 & 54.969 & 1.00 & 1.99\end{array}$
ATOM	1969 H ILE A 121	55.24255 .18054 .6541 .001 .99
ATOM	1970 CA ILE A 121	$56.80855 .93555 .882 \quad 1.001 .99$
ATOM	1971 HA ILE A 121	56.79356 .78056 .5741 .001 .99
ATOM	1972 CB ILE A 121	56.78954 .60856 .6961 .001 .99
ATOM	1973 HB ILE A 121	57.25053 .81656 .1091 .001 .99
ATOM	1974 CG2 ILE A 121	57.65854 .77857 .9481 .001 .99
ATOM	1975 1HG2 ILE A 121	57.84853 .81358 .4131 .001 .99
ATOM	1976 2HG2 ILE A 121	58.61555 .23057 .7001 .001 .99
ATOM	1977 3HG2 ILE A 121	57.15855 .42458 .6591 .001 .99
ATOM	1978 CG1 ILE A 121	55.38854 .07957 .0101 .001 .99
ATOM	1979 1HG1 ILE A 121	54.96053 .73856 .0761 .001 .99
ATOM	1980 2HG1 ILE A 121	54.78054 .90057 .3641 .001 .99
ATOM	1981 CD1 ILE A 121	55.33552 .90657 .9991 .001 .99
ATOM	1982 HD1 ILE A 121	54.31452 .53758 .0651 .001 .99
ATOM	1983 HD2 ILE A 121	55.98052 .09757 .6591 .001 .99
ATOM	1984 HD3 ILE A 121	55.65253 .22458 .9911 .001 .99
ATOM	1985 C ILE A 121	58.13655 .88455 .1481 .001 .99
ATOM	1986 O ILE A 121	$58.38154 .98554 .321 \quad 1.001 .99$
ATOM	1987 N PHE A 122	59.04056 .77955 .5341 .002 .05
ATOM	1988 H PHE A 122	58.83157 .40656 .3081 .002 .05
ATOM	1989 CA PHE A 122	60.43856 .60555 .1551 .002 .05
ATOM	1990 HA PHE A 122	60.59755 .70254 .5651 .002 .05
ATOM	1991 CB PHE A 122	60.88457 .80954 .3001 .002 .05
ATOM	1992 HB1 PHE A 122	61.96657 .73954 .2101 .002 .05
ATOM	1993 HB2 PHE A 122	60.67058 .71654 .8651 .002 .05
ATOM	1994 CG PHE A 122	60.32358 .00452 .8751 .002 .05
ATOM	1995 CD1 PHE A 122	59.02357 .62952 .4621 .002 .05
ATOM	1996 HD1 PHE A 122	$58.34357 .14353 .122 \quad 1.002 .05$
ATOM	1997 CE1 PHE A 122	58.53957 .92251 .1771 .002 .05
ATOM	1998 HE1 PHE A 122	57.54757 .60250 .8961 .002 .05
ATOM	1999 CZ PHE A 122	59.31358 .68650 .2951 .002 .05
ATOM	2000 HZ PHE A 122	58.91358 .98849 .3381 .002 .05
ATOM	2001 CE2 PHE A 122	60.58959 .10250 .6971 .002 .05
ATOM	2002 HE2 PHE A 122	61.15959 .75850 .0541 .002 .05
ATOM	2003 CD2 PHE A 122	61.10858 .71051 .9461 .002 .05
ATOM	2004 HD2 PHE A 122	62.10159 .01752 .2291 .002 .05
ATOM	2005 C PHE A 122	61.18156 .42256 .4731 .002 .05
ATOM	2006 O PHE A 122	60.83857 .08657 .4541 .002 .05
ATOM	2007 N VAL A 123	62.12355 .47856 .5501 .002 .09
ATOM	2008 H VAL A 123	62.37454 .95055 .7211 .002 .09
ATOM	2009 CA VAL A 123	62.77855 .18857 .8481 .002 .09
ATOM	2010 HA VAL A 123	62.52055 .97058 .5601 .002 .09
ATOM	2011 CB VAL A 123	62.34453 .84958 .5011 .002 .09

	2012 HB VAL A 123	62.71353 .85559 .5281 .00
ATOM	2013 CG1 VAL A 123	60.82353 .73758 .5651 .002 .09
ATOM	2014 1HG1 VAL A 123	60.52652 .85559 .1271 .002 .09
ATO	2015 2HG1 VAL A 123	60.41454 .61959 .0531 .002 .09
ATOM	2016 3HG1 VAL A 123	60.41653 .65457 .5571 .002.
TO	2017 CG2 VAL A 123	62.86752 .56357 .8411 .002 .09
ATOM	2018 1HG2 VAL A 123	2051.69158 .312
A	2019 2HG2 VAL A 123	62.62152 .55756 .7821 .00
ATOM	2020 3HG2	63.94852 .49157 .9611 .00
ATOM	2021 C VAL A 123	64.27655 .23557 .7181 .002 .09
OM	2022 O VAL A 123	64.84154 .59656 .8291 .002 .09
A	2023 N SER A 124	64.93555 .95658 .6271 .002 .18
A	2024 H	64.43056 .56259 .2691 .002 .18
A	2025 CA SER A 124	66.39855 .92258 .6261 .002 .18
A	2026 HA SER A 124	66.72556 .00557 .5901 .002 .18
ATOM	2027 CB SER A 124	66.97857 .13659 .3451 .002 .18
ATOM	2028 HB1 SER A 124	$66.71957 .117 \quad 60.4041 .002 .18$
AT	2029 HB2 SER A 124	66.59158 .04858 .8881 .002 .18
AT	2030 OG SER A 124	68.37757 .07559 .1691 .002 .18
A	2031 HG SER A 124	68.80057 .90559 .4341 .002 .18
A	2032 C SER A 124	67.01054 .62159 .1501 .002 .18
ATOM	2033 O SER A 124	68.03154 .17558 .6341 .002 .18
ATOM	2034 N ARG A 125	$66.40153 .967 \quad 60.1461 .002 .05$
ATOM	2035 H ARG A 125	65.59954 .39660 .5931 .002 .05
AT	2036 CA ARG A 125	$66.87052 .666 \quad 60.6521 .002 .05$
ATOM	2037 HA ARG A 125	67.50052 .18259 .9031 .002 .05
AT	2038 CB ARG A 125	67.66552 .83061 .9641 .002 .05
ATOM	2039 HB1 ARG A 125	67.97651 .83562 .2841 .002 .05
ATOM	2040 HB2 ARG A 125	67.00653 .22762 .7341 .002 .05
AT	2041 CG ARG A 125	68.93553 .68861 .8871 .002 .05
AT	2042 HG1 ARG A 125	69.42853 .46960 .9431 .002 .05
	2043 HG2 ARG A 125	69.60953 .37962 .6871 .002 .05
A	2044 CD ARG A 125	68.68455 .20362 .0301 .002 .05
M	2045 HD1 ARG A 125	68.00555 .54261 .2621 .002 .05
ATOM	2046 HD2 ARG A 125	69.61055 .74761 .8811 .002 .05
ATOM	2047 NE ARG A 125	68.11055 .54663 .3371 .002 .05
ATOM	2048 HE ARG A 125	67.09855 .57463 .3831 .002 .05
	2049 CZ ARG A 125	68.77055 .70964 .4611 .002 .05
ATOM	2050 NH1 ARG A 125	68.10455 .76265 .5761 .002 .05
ATOM	2051 1HH1 ARG A 125	67.09255 .80065 .5281 .002 .05
ATOM	2052 2HH1 ARG A 125	68.56655 .82666 .4571 .002 .05
AT	2053 NH2 ARG A 125	70.07355 .80364 .4961 .002 .05
ATOM	2054 1HH2 ARG A 125	70.59455 .83563 .6261 .002 .05
	2055 2HH2 ARG A 125	70.56255 .91365 .3571 .002 .05
ATOM	2056 C ARG A 125	65.68651 .76160 .9401 .002 .05
ATOM	2057 O ARG A 125	64.61352 .21261 .3431 .002 .05
ATOM	2058 N LEU A 126	$\begin{array}{lllll}65.912 & 50.462 & 60.791 & 1.00 & 2.39\end{array}$
ATOM	2059 H LEU A 126	66.83650 .16460 .5331 .002 .39
ATOM	2060 CA LEU A 126	$64.90249 .438 \quad 60.9991 .002 .39$
ATOM	2061 HA LEU A 126	$63.91449 .886 \quad 60.911 \quad 1.002 .39$
ATOM	2062 CB LEU A 126	65.02848 .39159 .8831 .002 .39
ATOM	2063 HB1 LEU A 126	$\begin{array}{llllllllll}64.408 & 47.539 & 60.145 & 1.00 & 2.39\end{array}$
ATOM	2064 HB2 LEU A 126	66.06848 .06659 .8271 .002 .39

ATOM	2065 CG LEU A 126	64.56948 .91258 .5061 .002 .39
ATOM	2066 HG LEU A 126	64.88849 .94658 .3711 .002 .39
ATOM	2067 CD1 LEU A 126	65.18748 .08157 .3821 .002 .39
ATOM	2068 1HD1 LEU A 126	$64.89948 .50656 .422 \quad 1.002 .39$
ATOM	2069 2HD1 LEU A 126	66.27248 .10357 .4471 .002 .39
ATOM	2070 3HD1 LEU A 126	64.84447 .04957 .4361 .002 .39
ATOM	2071 CD2 LEU A 126	63.04748 .83258 .3611 .002 .39
ATOM	2072 1HD2 LEU A 126	62.75149 .25657 .4011 .002 .39
ATOM	2073 2HD2 LEU A 126	62.71347 .79558 .4161 .002 .39
ATOM	2074 3HD2 LEU A 126	62.56849 .39959 .1571 .002 .39
ATOM	2075 C LEU A 126	65.03448 .87862 .4071 .002 .39
ATOM	2076 O LEU A 126	65.99148 .18062 .7391 .002 .39
ATOM	2077 N TYR A 127	64.08149 .27663 .2431 .002 .35
ATOM	2078 H TYR A 127	63.32949 .82162 .8421 .002 .35
ATOM	2079 CA TYR A 127	63.88448 .79364 .6011 .002 .35
ATOM	2080 HA TYR A 127	64.82148 .88965 .1471 .002 .35
ATOM	2081 CB TYR A 127	$62.80649 .668 \quad 65.2681 .002 .35$
ATOM	2082 HB1 TYR A 127	61.83749 .38264 .8571 .002 .35
ATOM	2083 HB2 TYR A 127	62.98650 .70064 .9671 .002 .35
ATOM	2084 CG TYR A 127	62.67249 .68466 .7861 .002 .35
ATOM	2085 CD1 TYR A 127	$63.50448 .928 \quad 67.640 \quad 1.002 .35$
ATOM	2086 HD1 TYR A 127	64.27448 .29167 .2411 .002 .35
ATOM	2087 CE1 TYR A 127	63.34549 .00469 .0381 .002 .35
ATOM	2088 HE1 TYR A 127	63.97948 .42469 .6921 .002 .35
ATOM	2089 CZ TYR A 127	62.36849 .85969 .5931 .002 .35
ATOM	2090 OH TYR A 127	$62.23049 .94570 .942 \quad 1.002 .35$
ATOM	2091 HH TYR A 127	61.56050 .58471 .1951 .002 .35
ATOM	2092 CE2 TYR A 127	61.52850 .61468 .7441 .002 .35
ATOM	2093 HE2 TYR A 127	60.78351 .27369 .1631 .002 .35
ATOM	2094 CD2 TYR A 127	61.68450 .52067 .3481 .002 .35
ATOM	2095 HD2 TYR A 127	$61.04951 .101 \quad 66.692 \quad 1.002 .35$
ATOM	2096 C TYR A 127	$63.45147 .325 \quad 64.522 \quad 1.002 .35$
ATOM	2097 O TYR A 127	62.45446 .97863 .8841 .002 .35
ATOM	2098 N PHE A 128	64.23646 .48065 .1761 .002 .67
ATOM	2099 H PHE A 128	65.05446 .85565 .6321 .002 .67
ATOM	2100 CA PHE A 128	63.85245 .13965 .5781 .002 .67
ATOM	2101 HA PHE A 128	62.81044 .95565 .3201 .002 .67
ATOM	2102 CB PHE A 128	$64.74244 .081 \quad 64.922 \quad 1.002 .67$
ATOM	2103 HB1 PHE A 128	64.39343 .08865 .2091 .002 .67
ATOM	2104 HB2 PHE A 128	$65.76944 .198 \quad 65.2711 .002 .67$
ATOM	2105 CG PHE A 128	64.69044 .22663 .4291 .002 .67
ATOM	2106 CD1 PHE A 128	65.65445 .01462 .7801 .002 .67
ATOM	2107 HD1 PHE A 128	$66.47945 .438 \quad 63.3381 .002 .67$
ATOM	2108 CE1 PHE A 128	$65.47345 .366 \quad 61.4361 .002 .67$
ATOM	2109 HE1 PHE A 128	$66.18246 .03060 .961 \quad 1.002 .67$
ATOM	2110 CZ PHE A 128	64.31544 .95460 .7551 .002 .67
ATOM	2111 HZ PHE A 128	64.13245 .30159 .7481 .002 .67
ATOM	2112 CE2 PHE A 128	63.35744 .15761 .4061 .002 .67
ATOM	2113 HE2 PHE A 128	62.42943 .90060 .9171 .002 .67
ATOM	2114 CD2 PHE A 128	63.55243 .77662 .7391 .002 .67
ATOM	2115 HD2 PHE A 128	62.77843 .22763 .2601 .002 .67
ATOM	2116 C PHE A 128	64.00045 .11267 .0931 .002 .67
ATOM	2117 O PHE A 128	64.90445 .75667 .6311 .002 .67

ATOM	2118 N CYS A 129	63.10944 .42067 .7881 .003 .13
ATOM	2119 H CYS A 129	62.43843 .82967 .3231 .003 .13
ATOM	2120 CA CYS A 129	$63.19444 .383 \quad 69.232 \quad 1.003 .13$
ATOM	2121 HA CYS A 129	$63.42345 .385 \quad 69.5971 .003 .13$
ATOM	2122 CB CYS A 129	61.83843 .94769 .7981 .003 .13
ATOM	2123 HB1 CYS A 129	$61.73842 .861 \quad 69.7251 .003 .13$
ATOM	2124 HB2 CYS A 129	61.03844 .40369 .2211 .003 .13
ATOM	2125 SG CYS A 129	61.70244 .48171 .5301 .003 .13
ATOM	2126 HG CYS A 129	61.90345 .79171 .3411 .003 .13
ATOM	2127 C CYS A 129	$64.29843 .428 \quad 69.6761 .003 .13$
ATOM	2128 O CYS A 129	64.37342 .30769 .1841 .003 .13
ATOM	2129 N ASP A 130	65.07743 .82170 .6831 .004 .50
ATOM	2130 H ASP A 130	65.04144 .77371 .0181 .004 .50
ATOM	2131 CA ASP A 130	65.97242 .88871 .3761 .004 .50
ATOM	2132 HA ASP A 130	66.67942 .46970 .6571 .004 .50
ATOM	2133 CB ASP A 130	$66.76043 .64572 .452 \quad 1.004 .50$
ATOM	2134 HB1 ASP A 130	67.33742 .93573 .0461 .004 .50
ATOM	2135 HB2 ASP A 130	66.06644 .16073 .1191 .004 .50
ATOM	2136 CG ASP A 130	67.72844 .64371 .8321 .004 .50
ATOM	2137 OD1 ASP A 130	68.70044 .21471 .1691 .004 .50
ATOM	2138 OD2 ASP A 130	67.53145 .87071 .9921 .004 .50
ATOM	2139 C ASP A 130	65.23941 .70072 .0291 .004 .50
ATOM	2140 O ASP A 130	65.86940 .70972 .3861 .004 .50
ATOM	2141 N LEU A 131	63.91341 .80172 .1951 .006 .56
ATOM	2142 H LEU A 131	63.47242 .66571 .9291 .006 .56
ATOM	2143 CA LEU A 131	63.07440 .69972 .6541 .006 .56
ATOM	2144 HA LEU A 131	$63.59840 .22273 .483 \quad 1.006 .56$
ATOM	2145 CB LEU A 131	61.74041 .26673 .1781 .006 .56
ATOM	2146 HB1 LEU A 131	61.18041 .65872 .3291 .006 .56
ATOM	2147 HB2 LEU A 131	61.95642 .09373 .8561 .006 .56
ATOM	2148 CG LEU A 131	60.84940 .25073 .9231 .006 .56
ATOM	2149 HG LEU A 131	60.60239 .42273 .2601 .006 .56
ATOM	2150 CD1 LEU A 131	61.49439 .69775 .1981 .006 .56
ATOM	2151 1HD1 LEU A 131	60.78839 .05175 .7191 .006 .56
ATOM	2152 2HD1 LEU A 131	62.36639 .09874 .9331 .006 .56
ATOM	2153 3HD1 LEU A 131	61.80040 .51475 .8521 .006 .56
ATOM	2154 CD2 LEU A 131	59.53840 .93274 .3241 .006 .56
ATOM	2155 1HD2 LEU A 131	58.88240 .20574 .8031 .006 .56
ATOM	2156 2HD2 LEU A 131	59.73641 .75275 .0161 .006 .56
ATOM	2157 3HD2 LEU A 131	59.03941 .31773 .4361 .006 .56
ATOM	2158 C LEU A 131	62.86039 .60871 .5941 .006 .56
ATOM	2159 O LEU A 131	62.72538 .44771 .9671 .006 .56
ATOM	2160 N GLU A 132	62.81539 .97970 .3071 .004 .85
ATOM	2161 H GLU A 132	63.05440 .93870 .0951 .004 .85
ATOM	2162 CA GLU A 132	62.74639 .08069 .1451 .004 .85
ATOM	2163 HA GLU A 132	63.69638 .54369 .0891 .004 .85
ATOM	2164 CB GLU A 132	61.59438 .03769 .2461 .004 .85
ATOM	2165 HB1 GLU A 132	60.80938 .28068 .5331 .004 .85
ATOM	2166 HB2 GLU A 132	61.10838 .06770 .2191 .004 .85
ATOM	2167 CG GLU A 132	62.05636 .59568 .9741 .004 .85
ATOM	2168 HG1 GLU A 132	61.23935 .91469 .2251 .004 .85
ATOM	2169 HG2 GLU A 132	62.90536 .35469 .6181 .004 .85
ATOM	2170 CD GLU A 132	62.43136 .41067 .5011 .004 .85

ATOM	2171 OE1 GLU A 132	$\begin{array}{lllllll}61.500 & 36.27366 .678 ~ 1.00 ~\end{array}$ 4.85
ATOM	2172 OE2 GLU A 132	63.61936 .59367 .1561 .004 .85
ATOM	2173 C GLU A 132	$62.56139 .867 \quad 67.832 \quad 1.004 .85$
ATOM	2174 O GLU A 132	61.93440 .93467 .7921 .004 .85
ATOM	2175 N GLY A 133	$\begin{array}{lllllllllllll}63.008 & 39.275 & 66.723 ~ 1.00 ~ & 3.82\end{array}$
ATOM	2176 H GLY A 133	63.48138 .37966 .8331 .003 .82
ATOM	2177 CA GLY A 133	62.67839 .68265 .3631 .003 .82
ATOM	2178 HA1 GLY A 133	63.20139 .01864 .6761 .003 .82
ATOM	2179 HA2 GLY A 133	63.03340 .70065 .2041 .003 .82
ATOM	2180 C GLY A 133	61.17839 .63665 .0141 .003 .82
ATOM	2181 O GLY A 133	60.64140 .58764 .4141 .003 .82
ATOM	2182 N SER A 134	$\begin{array}{lllllllllll}60.518 & 38.543 & 65.425 & 1.00 & 3.24\end{array}$
ATOM	2183 H SER A 134	$61.06237 .821 \quad 65.8961 .003 .24$
ATOM	2184 CA SER A 134	$59.12638 .192 \quad 65.132 \quad 1.003 .24$
ATOM	2185 HA SER A 134	59.11437 .86064 .0941 .003 .24
ATOM	2186 CB SER A 134	58.64136 .98565 .9431 .003 .24
ATOM	2187 HB1 SER A 134	$58.76537 .165 \quad 67.0101 .003 .24$
ATOM	2188 HB2 SER A 134	59.23236 .11265 .6651 .003 .24
ATOM	2189 OG SER A 134	$\begin{array}{lllllllllll}57.279 & 36.728 & 65.648 & 1.00 & 3.24\end{array}$
ATOM	2190 HG SER A 134	$57.06235 .846 \quad 65.9631 .003 .24$
ATOM	2191 C SER A 134	$58.16139 .396 \quad 65.1751 .003 .24$
ATOM	2192 O SER A 134	57.62339 .77364 .1231 .003 .24
ATOM	2193 N PRO A 135	57.97740 .08766 .3211 .002 .97
ATOM	2194 CD PRO A 135	$58.63639 .883 \quad 67.6021 .002 .97$
ATOM	2195 HD1 PRO A 135	59.71539 .84867 .4911 .002 .97
ATOM	2196 HD2 PRO A 135	58.26938 .96868 .0671 .002 .97
ATOM	2197 CG PRO A 135	58.25041 .07968 .4661 .002 .97
ATOM	2198 HG1 PRO A 135	58.93341 .90868 .2691 .002 .97
ATOM	2199 HG2 PRO A 135	58.24540 .82769 .5261 .002 .97
ATOM	2200 CB PRO A 135	56.85441 .41967 .9491 .002 .97
ATOM	2201 HB1 PRO A 135	56.59742 .46368 .1331 .002 .97
ATOM	2202 HB2 PRO A 135	56.12440 .76468 .4281 .002 .97
ATOM	2203 CA PRO A 135	56.92441 .08666 .4541 .002 .97
ATOM	2204 HA PRO A 135	55.97440 .64266 .1531 .002 .97
ATOM	2205 C PRO A 135	$57.12442 .347 \quad 65.5971 .002 .97$
ATOM	2206 O PRO A 135	56.15242 .91565 .0921 .002 .97
ATOM	2207 N HIS A 136	$58.36342 .816 \quad 65.412 \quad 1.002 .61$
ATOM	2208 H HIS A 136	$59.14742 .283 \quad 65.7681 .002 .61$
ATOM	2209 CA HIS A 136	58.60144 .02364 .6021 .002 .61
ATOM	2210 HA HIS A 136	57.80944 .75064 .7951 .002 .61
ATOM	2211 CB HIS A 136	59.93244 .67665 .0041 .002 .61
ATOM	2212 HB1 HIS A 136	60.23145 .35964 .2071 .002 .61
ATOM	2213 HB2 HIS A 136	60.70443 .91065 .0871 .002 .61
ATOM	2214 CG HIS A 136	59.89445 .48466 .2881 .002 .61
ATOM	2215 ND1 HIS A 136	60.67846 .60966 .5291 .002 .61
ATOM	2216 CE1 HIS A 136	$60.40547 .023 \quad 67.7701 .002 .61$
ATOM	2217 HE1 HIS A 136	60.88647 .86468 .2531 .002 .61
ATOM	2218 NE2 HIS A 136	59.47746 .22668 .3251 .002 .61
ATOM	2219 HE2 HIS A 136	59.18646 .27569 .2941 .002 .61
ATOM	2220 CD2 HIS A 136	59.14445 .24867 .4081 .002 .61
ATOM	2221 HD2 HIS A 136	58.45944 .42567 .5551 .002 .61
ATOM	2222 C HIS A 136	58.52243 .75263 .1011 .002 .61
ATOM	2223 O HIS A 136	$57.95444 .570 \quad 62.3651 .002 .61$

ATOM	2224 N VAL A 137	59.01042 .58562 .6601 .002 .73
ATOM	2225 H VAL A 137	59.40841 .93163 .3301 .002 .73
ATOM	2226 CA VAL A 137	$58.84642 .143 \quad 61.2601 .002 .73$
ATOM	2227 HA VAL A 137	59.25842 .89760 .5901 .002 .73
ATOM	2228 CB VAL A 137	$59.63040 .82361 .071 \quad 1.002 .73$
ATOM	2229 HB VAL A 137	$59.38040 .142 \quad 61.8861 .002 .73$
ATOM	2230 CG1 VAL A 137	59.33740 .08359 .7591 .002 .73
ATOM	2231 1HG1 VAL A 137	58.31339 .71359 .7721 .002 .73
ATOM	2232 2HG1 VAL A 137	59.48740 .73758 .9061 .002 .73
ATOM	2233 3HG1 VAL A 137	59.99339 .21959 .6671 .002 .73
ATOM	2234 CG2 VAL A 137	61.13841 .11061 .1321 .002 .73
ATOM	2235 1HG2 VAL A 137	$61.40541 .845 \quad 60.3791 .002 .73$
ATOM	2236 2HG2 VAL A 137	61.40341 .49962 .1131 .002 .73
ATOM	2237 3HG2 VAL A 137	$61.70240 .191 \quad 60.9701 .002 .73$
ATOM	2238 C VAL A 137	57.37041 .98660 .8971 .002 .73
ATOM	2239 O VAL A 137	56.93242 .52259 .8731 .002 .73
ATOM	2240 N GLU A 138	56.57441 .32961 .7471 .002 .82
ATOM	2241 H GLU A 138	56.96940 .87962 .5711 .002 .82
ATOM	2242 CA GLU A 138	55.12241 .24561 .5251 .002 .82
ATOM	2243 HA GLU A 138	$54.96540 .868 \quad 60.517 \quad 1.002 .82$
ATOM	2244 CB GLU A 138	54.48140 .22462 .4841 .002 .82
ATOM	2245 HB1 GLU A 138	$54.66040 .547 \quad 63.511 \quad 1.002 .82$
ATOM	2246 HB2 GLU A 138	54.98139 .26462 .3481 .002 .82
ATOM	2247 CG GLU A 138	52.96040 .01662 .2951 .002 .82
ATOM	2248 HG1 GLU A 138	52.44140 .92762 .6031 .002 .82
ATOM	2249 HG2 GLU A 138	52.64139 .22462 .9761 .002 .82
ATOM	2250 CD GLU A 138	52.52939 .63660 .8641 .002 .82
ATOM	2251 OE1 GLU A 138	53.30938 .96960 .1471 .002 .82
ATOM	2252 OE2 GLU A 138	51.41239 .99860 .4341 .002 .82
ATOM	2253 C GLU A 138	54.41342 .60161 .5971 .002 .82
ATOM	2254 O GLU A 138	53.46542 .80160 .8561 .002 .82
ATOM	2255 N GLY A 139	54.88243 .57262 .3871 .002 .70
ATOM	2256 H GLY A 139	55.60943 .35763 .0591 .002 .70
ATOM	2257 CA GLY A 139	54.32044 .93062 .3211 .002 .70
ATOM	2258 HA1 GLY A 139	$54.77945 .531 \quad 63.1051 .002 .70$
ATOM	2259 HA2 GLY A 139	$53.24744 .88262 .5091 .00 \quad 2.70$
ATOM	2260 C GLY A 139	54.54445 .64060 .9861 .002 .70
ATOM	2261 O GLY A 139	53.61946 .23560 .4271 .002 .70
ATOM	2262 N LEU A 140	55.76145 .55260 .4391 .002 .65
ATOM	2263 H LEU A 140	$56.47745 .027 \quad 60.932 \quad 1.002 .65$
ATOM	2264 CA LEU A 140	56.05146 .10359 .1021 .002 .65
ATOM	2265 HA LEU A 140	55.79547 .16159 .0931 .002 .65
ATOM	2266 CB LEU A 140	$57.55945 .94358 .822 \quad 1.002 .65$
ATOM	2267 HB1 LEU A 140	57.74946 .08457 .7581 .002 .65
ATOM	2268 HB2 LEU A 140	57.85144 .92359 .0741 .002 .65
ATOM	2269 CG LEU A 140	58.43946 .93259 .6101 .002 .65
ATOM	2270 HG LEU A 140	58.10246 .98960 .6451 .002 .65
ATOM	2271 CD1 LEU A 140	59.89846 .47259 .6091 .002 .65
ATOM	2272 1HD1 LEU A 140	60.49747 .15960 .2091 .002 .65
ATOM	2273 2HD1 LEU A 140	59.96645 .48160 .0541 .002 .65
ATOM	2274 3HD1 LEU A 140	60.28446 .45158 .5891 .002 .65
ATOM	2275 CD2 LEU A 140	58.39248 .32858 .9881 .002 .65
ATOM	2276 1HD2 LEU A 140	59.04748 .99359 .5421 .002 .65

ATOM	2277 2HD2 LEU A 140	58.72448 .28857 .9511 .002 .65
ATOM	2278 3HD2 LEU A 140	57.37948 .72459 .0321 .002 .65
ATOM	2279 C LEU A 140	55.20945 .44258 .0061 .002 .65
ATOM	2280 O LEU A 140	54.66246 .14157 .1431 .002 .65
ATOM	2281 N ARG A 141	55.07544 .11158 .0701 .002 .80
ATOM	2282 H ARG A 141	55.56843 .63158 .8191 .002 .80
ATOM	2283 CA ARG A 141	54.16743 .33757 .2091 .002 .80
ATOM	2284 HA ARG A 141	$54.41943 .49356 .161 \quad 1.002 .80$
ATOM	2285 CB ARG A 141	54.31441 .83757 .5351 .002 .80
ATOM	2286 HB1 ARG A 141	53.43941 .29457 .1711 .002 .80
ATOM	2287 HB2 ARG A 141	54.34941 .71658 .6151 .002 .80
ATOM	2288 CG ARG A 141	55.56241 .21256 .8891 .002 .80
ATOM	2289 HG1 ARG A 141	56.31941 .98556 .7501 .002 .80
ATOM	2290 HG2 ARG A 141	55.29540 .83055 .9021 .002 .80
ATOM	2291 CD ARG A 141	56.21240 .08957 .7121 .002 .80
ATOM	2292 HD1 ARG A 141	56.67240 .53758 .5851 .002 .80
ATOM	2293 HD2 ARG A 141	57.00839 .64957 .1111 .002 .80
ATOM	2294 NE ARG A 141	55.27539 .05058 .1791 .002 .80
ATOM	2295 HE ARG A 141	54.47639 .34058 .7381 .002 .80
ATOM	2296 CZ ARG A 141	55.38437 .74558 .0671 .002 .80
ATOM	2297 NH1 ARG A 141	54.46836 .98758 .5781 .002 .80
ATOM	2298 1HH1 ARG A 141	53.73237 .46059 .1071 .002 .80
ATOM	2299 2HH1 ARG A 141	54.48735 .99658 .4631 .002 .80
ATOM	2300 NH2 ARG A 141	56.39837 .19957 .4651 .002 .80
ATOM	2301 1HH2 ARG A 141	57.07337 .81257 .0571 .002 .80
ATOM	2302 2HH2 ARG A 141	$56.40536 .22357 .192 \quad 1.002 .80$
ATOM	2303 C ARG A 141	52.70943 .75857 .3701 .002 .80
ATOM	2304 O ARG A 141	52.05443 .89656 .3451 .002 .80
ATOM	2305 N ASP A 142	52.17144 .02658 .5641 .002 .84
ATOM	2306 H ASP A 142	52.67843 .80459 .4171 .002 .84
ATOM	2307 CA ASP A 142	50.77044 .44458 .6271 .002 .84
ATOM	2308 HA ASP A 142	$50.29543 .885 \quad 57.825 \quad 1.002 .84$
ATOM	2309 CB ASP A 142	49.95244 .02559 .8561 .002 .84
ATOM	2310 HB1 ASP A 142	50.09544 .75760 .6541 .002 .84
ATOM	2311 HB2 ASP A 142	$50.30043 .056 \quad 60.2141 .002 .84$
ATOM	2312 CG ASP A 142	48.44443 .92259 .4851 .002 .84
ATOM	2313 OD1 ASP A 142	48.08143 .43358 .3821 .002 .84
ATOM	2314 OD2 ASP A 142	$47.57744 .297 \quad 60.2981 .002 .84$
ATOM	2315 C ASP A 142	50.51745 .90958 .2351 .002 .84
ATOM	2316 O ASP A 142	49.44946 .21357 .7151 .002 .84
ATOM	2317 N LEU A 143	51.48746 .81658 .3851 .002 .64
ATOM	2318 H LEU A 143	52.32246 .52758 .8851 .002 .64
ATOM	2319 CA LEU A 143	51.44048 .16557 .7831 .002 .64
ATOM	2320 HA LEU A 143	50.57248 .71758 .1371 .002 .64
ATOM	2321 CB LEU A 143	52.73148 .91758 .1691 .002 .64
ATOM	2322 HB1 LEU A 143	52.92649 .70457 .4371 .002 .64
ATOM	2323 HB2 LEU A 143	53.56748 .22158 .1141 .002 .64
ATOM	2324 CG LEU A 143	52.70649 .55159 .5661 .002 .64
ATOM	2325 HG LEU A 143	52.23248 .87360 .2721 .002 .64
ATOM	2326 CD1 LEU A 143	54.13749 .83460 .0281 .002 .64
ATOM	2327 1HD1 LEU A 143	54.12350 .31561 .0041 .002 .64
ATOM	2328 2HD1 LEU A 143	54.67648 .89360 .1181 .002 .64
ATOM	2329 3HD1 LEU A 143	54.64650 .47459 .3111 .002 .64

ATOM	2330 CD2 LEU A 143	51.94650 .87559 .5491 .002 .64
ATOM	2331 1HD2 LEU A 143	52.07551 .37160 .5051 .002 .64
ATOM	2332 2HD2 LEU A 143	52.32151 .52058 .7581 .002 .64
ATOM	2333 3HD2 LEU A 143	50.88450 .67759 .3921 .002 .64
ATOM	2334 C LEU A 143	51.34048 .11556 .2431 .002 .64
ATOM	2335 O LEU A 143	50.47848 .71955 .5691 .002 .64
ATOM	2336 N ARG A 144	52.24547 .30155 .7011 .002 .84
ATOM	2337 H ARG A 144	52.92446 .88056 .3301 .002 .84
ATOM	2338 CA ARG A 144	52.31246 .96254 .2931 .002 .84
ATOM	2339 HA ARG A 144	52.53347 .88053 .7471 .002 .84
ATOM	2340 CB ARG A 144	53.48145 .96654 .1441 .002 .84
ATOM	2341 HB1 ARG A 144	53.36445 .13854 .8291 .002 .84
ATOM	2342 HB2 ARG A 144	54.40046 .47754 .4351 .002 .84
ATOM	2343 CG ARG A 144	53.67445 .36652 .7501 .002 .84
ATOM	2344 HG1 ARG A 144	52.90144 .62652 .5691 .002 .84
ATOM	2345 HG2 ARG A 144	54.63744 .85852 .7011 .002 .84
ATOM	2346 CD ARG A 144	53.61946 .45551 .6891 .002 .84
ATOM	2347 HD1 ARG A 144	52.59346 .80451 .5851 .002 .84
ATOM	2348 HD2 ARG A 144	53.92846 .06050 .7251 .002 .84
ATOM	2349 NE ARG A 144	54.51247 .56652 .0301 .002 .84
ATOM	2350 HE ARG A 144	55.32947 .35652 .5721 .002 .84
ATOM	2351 CZ ARG A 144	54.47548 .70351 .4001 .002 .84
ATOM	2352 NH1 ARG A 144	55.60349 .34251 .2541 .002 .84
ATOM	2353 1HH1 ARG A 144	56.45148 .95151 .6401 .002 .84
ATOM	2354 2HH1 ARG A 144	55.69250 .04050 .5261 .002 .84
ATOM	2355 NH2 ARG A 144	53.35849 .11550 .8581 .002 .84
ATOM	2356 1HH2 ARG A 144	52.51148 .64351 .1281 .002 .84
ATOM	2357 2HH2 ARG A 144	53.28949 .86050 .1801 .002 .84
ATOM	2358 C ARG A 144	50.97546 .45553 .7591 .002 .84
ATOM	2359 O ARG A 144	$50.40847 .10152 .8821 .00 \quad 2.84$
ATOM	2360 N ARG A 145	50.44145 .37854 .3431 .003 .04
ATOM	2361 H ARG A 145	51.02044 .89255 .0231 .003 .04
ATOM	2362 CA ARG A 145	49.10644 .82154 .0611 .003 .04
ATOM	2363 HA ARG A 145	49.02344 .59752 .9951 .003 .04
ATOM	2364 CB ARG A 145	48.91843 .50454 .8381 .003 .04
ATOM	2365 HB1 ARG A 145	47.89443 .15654 .6961 .003 .04
ATOM	2366 HB2 ARG A 145	49.05643 .72755 .8951 .003 .04
ATOM	2367 CG ARG A 145	49.85342 .34954 .4291 .003 .04
ATOM	2368 HG1 ARG A 145	50.89042 .62654 .5941 .003 .04
ATOM	2369 HG2 ARG A 145	49.73342 .15653 .3631 .003 .04
ATOM	2370 CD ARG A 145	49.55941 .04255 .1941 .003 .04
ATOM	2371 HD1 ARG A 145	50.40740 .36755 .0621 .003 .04
ATOM	2372 HD2 ARG A 145	48.69140 .56954 .7311 .003 .04
ATOM	2373 NE ARG A 145	$49.26541 .25956 .632 \quad 1.003 .04$
ATOM	2374 HE ARG A 145	48.61742 .00156 .8661 .003 .04
ATOM	2375 CZ ARG A 145	49.76140 .64157 .6861 .003 .04
ATOM	2376 NH1 ARG A 145	49.31740 .95558 .8591 .003 .04
ATOM	2377 1HH1 ARG A 145	48.65041 .70958 .9471 .003 .04
ATOM	2378 2HH1 ARG A 145	49.85640 .62359 .6581 .003 .04
ATOM	2379 NH2 ARG A 145	50.69639 .74357 .6561 .003 .04
ATOM	2380 1HH2 ARG A 145	51.03839 .37256 .7871 .003 .04
ATOM	2381 2HH2 ARG A 145	51.10239 .49258 .5571 .003 .04
ATOM	2382 C ARG A 145	47.93845 .75254 .4021 .003 .04

ATOM	2383 O ARG A 145	46.79445 .44554 .0641 .003 .04
ATOM	2384 N ALA A 146	48.15946 .85155 .1151 .002 .99
ATOM	2385 H ALA A 146	49.07747 .02255 .4991 .002 .99
ATOM	2386 CA ALA A 146	47.14047 .86555 .3371 .002 .99
ATOM	2387 HA ALA A 146	$\begin{array}{lllllllllllll}46.161 & 47.393 & 55.365 & 1.00 & 2.99\end{array}$
ATOM	2388 CB ALA A 146	47.36148 .53956 .6951 .002 .99
ATOM	2389 HB1 ALA A 146	46.51649 .18856 .9281 .002 .99
ATOM	2390 HB2 ALA A 146	47.45447 .77657 .4641 .002 .99
ATOM	2391 HB3 ALA A 146	48.26849 .14056 .6851 .002 .99
ATOM	2392 C ALA A 146	47.07248 .89054 .2151 .002 .99
ATOM	2393 O ALA A 146	46.03849 .53454 .0381 .002 .99
ATOM	2394 N GLY A 147	48.16349 .01853 .4631 .002 .95
ATOM	2395 H GLY A 147	48.94948 .40453 .6401 .002 .95
ATOM	2396 CA GLY A 147	48.24049 .91652 .3171 .002 .95
ATOM	2397 HA1 GLY A 147	47.25550 .24751 .9901 .002 .95
ATOM	2398 HA2 GLY A 147	48.72249 .38151 .5291 .002 .95
ATOM	2399 C GLY A 147	49.12951 .11252 .5681 .002 .95
ATOM	2400 O GLY A 147	49.03152 .12451 .8771 .002 .95
ATOM	2401 N VAL A 148	49.99550 .99153 .5741 .002 .82
ATOM	2402 H VAL A 148	50.03650 .11654 .0851 .002 .82
ATOM	2403 CA VAL A 148	50.99552 .00353 .8711 .002 .82
ATOM	2404 HA VAL A 148	$50.61952 .98553 .581 \quad 1.002 .82$
ATOM	2405 CB VAL A 148	51.28952 .02855 .3891 .002 .82
ATOM	2406 HB VAL A 148	51.76751 .09355 .6811 .002 .82
ATOM	2407 CG1 VAL A 148	52.23053 .17855 .7411 .002 .82
ATOM	2408 1HG1 VAL A 148	52.47253 .15156 .8021 .002 .82
ATOM	2409 2HG1 VAL A 148	53.14853 .08455 .1691 .002 .82
ATOM	2410 3HG1 VAL A 148	51.76754 .13355 .5151 .002 .82
ATOM	2411 CG2 VAL A 148	50.03652 .22256 .2551 .002 .82
ATOM	2412 1HG2 VAL A 148	50.31052 .26657 .3081 .002 .82
ATOM	2413 2HG2 VAL A 148	$49.52753 .14455 .981 \quad 1.002 .82$
ATOM	2414 3HG2 VAL A 148	$49.36251 .37756 .125 \quad 1.002 .82$
ATOM	2415 C VAL A 148	52.26251 .70453 .1141 .002 .82
ATOM	2416 O VAL A 148	52.77350 .58753 .1821 .002 .82
ATOM	2417 N GLN A 149	52.77252 .70252 .3911 .002 .57
ATOM	2418 H GLN A 149	52.35853 .62552 .4671 .002 .57
ATOM	2419 CA GLN A 149	54.01852 .51951 .6341 .002 .57
ATOM	2420 HA GLN A 149	54.05151 .52051 .2161 .002 .57
ATOM	2421 CB GLN A 149	53.95653 .53150 .4791 .002 .57
ATOM	2422 HB1 GLN A 149	$54.00254 .54050 .881 \quad 1.002 .57$
ATOM	2423 HB2 GLN A 149	$52.98553 .41749 .992 \quad 1.002 .57$
ATOM	2424 CG GLN A 149	55.01353 .34049 .3881 .002 .57
ATOM	2425 HG1 GLN A 149	$54.663 \quad 53.81348 .4711 .002 .57$
ATOM	2426 HG2 GLN A 149	$55.12152 .27949 .181 \quad 1.002 .57$
ATOM	2427 CD GLN A 149	56.35853 .95549 .7371 .002 .57
ATOM	2428 OE1 GLN A 149	56.45155 .10450 .1481 .002 .57
ATOM	2429 NE2 GLN A 149	57.44953 .25949 .5291 .002 .57
ATOM	2430 1HE2 GLN A 149	57.37652 .36549 .0571 .002 .57
ATOM	2431 2HE2 GLN A 149	58.32853 .67549 .7721 .002 .57
ATOM	2432 C GLN A 149	55.18052 .72052 .6091 .002 .57
ATOM	2433 O GLN A 149	55.14553 .61753 .4391 .002 .57
ATOM	2434 N VAL A 150	56.18251 .84652 .5511 .002 .20
ATOM	2435 H VAL A 150	56.16551 .14751 .8271 .002 .20

ATOM	2436 CA VAL A 150	57.24551 .72153 .5541 .002 .20
ATOM	2437 HA VAL A 150	57.31352 .65054 .1191 .002 .20
ATOM	2438 CB VAL A 150	56.99850 .55954 .5491 .002 .20
ATOM	2439 HB VAL A 150	57.16549 .60854 .0421 .002 .20
ATOM	2440 CG1 VAL A 150	57.97550 .64755 .7281 .002 .20
ATOM	2441 1HG1 VAL A 150	57.77349 .84856 .4381 .002 .20
ATOM	2442 2HG1 VAL A 150	59.00150 .53855 .3771 .002 .20
ATOM	2443 3HG1 VAL A 150	57.87351 .60656 .2321 .002 .20
ATOM	2444 CG2 VAL A 150	55.57350 .51755 .1101 .002 .20
ATOM	2445 1HG2 VAL A 150	55.50849 .83055 .9541 .002 .20
ATOM	2446 2HG2 VAL A 150	55.26751 .51155 .4281 .002 .20
ATOM	2447 3HG2 VAL A 150	54.89650 .16554 .3381 .002 .20
ATOM	2448 C VAL A 150	58.54851 .48452 .8281 .002 .20
ATOM	2449 O VAL A 150	58.66950 .52852 .0581 .002 .20
ATOM	2450 N LYS A 151	59.49852 .37753 .0781 .002 .19
ATOM	2451 H LYS A 151	59.26853 .14453 .7041 .002 .19
ATOM	2452 CA LYS A 151	60.79552 .45152 .4041 .002 .19
ATOM	2453 HA LYS A 151	61.02551 .51851 .8891 .002 .19
ATOM	2454 CB LYS A 151	60.64053 .60551 .3921 .002 .19
ATOM	2455 HB1 LYS A 151	60.25054 .46851 .9381 .002 .19
ATOM	2456 HB2 LYS A 151	59.89153 .31350 .6581 .002 .19
ATOM	2457 CG LYS A 151	61.89154 .06450 .6311 .002 .19
ATOM	2458 HG1 LYS A 151	62.25453 .26749 .9811 .002 .19
ATOM	2459 HG2 LYS A 151	62.67054 .33251 .3401 .002 .19
ATOM	2460 CD LYS A 151	61.56455 .31649 .8061 .002 .19
ATOM	2461 HD1 LYS A 151	$60.95155 .98750 .411 \quad 1.002 .19$
ATOM	2462 HD2 LYS A 151	61.01255 .04248 .9061 .002 .19
ATOM	2463 CE LYS A 151	62.85756 .04849 .4471 .002 .19
ATOM	2464 HE1 LYS A 151	63.41855 .49448 .6901 .002 .19
ATOM	2465 HE2 LYS A 151	$63.47356 .10850 .349 \quad 1.002 .19$
ATOM	2466 NZ LYS A 151	62.57857 .42748 .9981 .002 .19
ATOM	2467 HZ1 LYS A 151	62.29257 .49348 .0381 .002 .19
ATOM	2468 HZ2 LYS A 151	61.89357 .85749 .6051 .002 .19
ATOM	2469 HZ3 LYS A 151	$63.395 \quad 58.02149 .1651 .002 .19$
ATOM	2470 C LYS A 151	61.87852 .74653 .4561 .002 .19
ATOM	2471 O LYS A 151	61.57953 .18854 .5711 .002 .19
ATOM	2472 N VAL A 152	63.14552 .51853 .0971 .002 .18
ATOM	2473 H VAL A 152	$63.32852 .117 \quad 52.1921 .002 .18$
ATOM	2474 CA VAL A 152	64.29153 .02553 .8801 .002 .18
ATOM	2475 HA VAL A 152	64.06952 .79954 .9231 .002 .18
ATOM	2476 CB VAL A 152	65.59652 .25453 .5901 .002 .18
ATOM	2477 HB VAL A 152	65.99552 .53752 .6161 .002 .18
ATOM	2478 CG1 VAL A 152	66.67152 .44154 .6761 .002 .18
ATOM	2479 1HG1 VAL A 152	67.52851 .81554 .4441 .002 .18
ATOM	2480 2HG1 VAL A 152	67.05753 .45554 .7221 .002 .18
ATOM	2481 3HG1 VAL A 152	66.27252 .16655 .6541 .002 .18
ATOM	2482 CG2 VAL A 152	65.28050 .74853 .6041 .002 .18
ATOM	2483 1HG2 VAL A 152	66.20850 .18953 .6221 .002 .18
ATOM	2484 2HG2 VAL A 152	64.70550 .48254 .4931 .002 .18
ATOM	2485 3HG2 VAL A 152	64.73150 .46552 .7071 .002 .18
ATOM	2486 C VAL A 152	64.33854 .57153 .8451 .002 .18
ATOM	2487 O VAL A 152	63.31455 .24553 .7131 .002 .18
ATOM	2488 N MET A 153	65.51255 .16553 .9501 .002 .28

ATOM	2489 H MET A 153	66.29154 .60354 .2661 .002 .28
ATOM	2490 CA MET A 153	$65.82056 .508 \quad 53.4831 .002 .28$
ATOM	2491 HA MET A 153	$65.03956 .87752 .817 \quad 1.002 .28$
ATOM	2492 CB MET A 153	65.98957 .47554 .6641 .002 .28
ATOM	2493 HB1 MET A 153	66.52858 .35954 .3221 .002 .28
ATOM	2494 HB2 MET A 153	66.57456 .99555 .4481 .002 .28
ATOM	2495 CG MET A 153	64.64057 .91755 .2351 .002 .28
ATOM	2496 HG1 MET A 153	64.06957 .02655 .4881 .002 .28
ATOM	2497 HG2 MET A 153	64.09758 .45954 .4611 .002 .28
ATOM	2498 SD MET A 153	64.72758 .95356 .7221 .002 .28
ATOM	2499 CE MET A 153	$65.42860 .48256 .041 \quad 1.002 .28$
ATOM	2500 HE1 MET A 153	66.39760 .27755 .5921 .002 .28
ATOM	2501 HE2 MET A 153	64.76660 .89055 .2791 .002 .28
ATOM	2502 HE3 MET A 153	$65.546 \quad 61.21456 .8421 .002 .28$
ATOM	2503 C MET A 153	67.13356 .37152 .7061 .002 .28
ATOM	2504 O MET A 153	68.08155 .72053 .1451 .002 .28
ATOM	2505 N SER A 154	67.15656 .92451 .5091 .002 .66
ATOM	2506 H SER A 154	66.32557 .41951 .2111 .002 .66
ATOM	2507 CA SER A 154	68.33457 .00550 .6541 .002 .66
ATOM	2508 HA SER A 154	69.06356 .24450 .9321 .002 .66
ATOM	2509 CB SER A 154	67.87856 .75749 .2091 .002 .66
ATOM	2510 HB1 SER A 154	67.37055 .79449 .1501 .002 .66
ATOM	2511 HB2 SER A 154	68.74756 .72848 .5501 .002 .66
ATOM	2512 OG SER A 154	66.99257 .77848 .7751 .002 .66
ATOM	2513 HG SER A 154	66.22357 .77849 .3731 .002 .66
ATOM	2514 C SER A 154	68.98958 .38850 .7551 .002 .66
ATOM	2515 O SER A 154	68.40859 .30851 .3311 .002 .66
ATOM	2516 N TYR A 155	70.14858 .59750 .1161 .002 .61
ATOM	2517 H TYR A 155	70.61857 .80549 .7021 .002 .61
ATOM	2518 CA TYR A 155	70.80259 .91850 .0581 .002 .61
ATOM	2519 HA TYR A 155	71.21060 .16451 .0331 .002 .61
ATOM	2520 CB TYR A 155	71.99859 .86849 .0821 .002 .61
ATOM	2521 HB1 TYR A 155	71.62959 .91548 .0571 .002 .61
ATOM	2522 HB2 TYR A 155	72.48958 .90049 .1961 .002 .61
ATOM	2523 CG TYR A 155	73.05960 .95449 .2691 .002 .61
ATOM	2524 CD1 TYR A 155	74.36760 .58849 .6501 .002 .61
ATOM	2525 HD1 TYR A 155	74.62259 .54849 .7911 .002 .61
ATOM	2526 CE1 TYR A 155	$\begin{array}{llllllllllll}75.358 & 61.573 & 49.8351 .00 ~ & 2.61\end{array}$
ATOM	2527 HE1 TYR A 155	76.36261 .29650 .1181 .002 .61
ATOM	2528 CZ TYR A 155	75.05062 .93649 .6581 .002 .61
ATOM	2529 OH TYR A 155	76.00563 .87349 .8951 .002 .61
ATOM	2530 HH TYR A 155	75.68964 .76749 .7471 .002 .61
ATOM	2531 CE2 TYR A 155	$73.75063 .30949 .252 \quad 1.002 .61$
ATOM	2532 HE2 TYR A 155	$73.51064 .35149 .101 \quad 1.002 .61$
ATOM	2533 CD2 TYR A 155	72.76962 .31849 .0391 .002 .61
ATOM	2534 HD2 TYR A 155	71.78962 .62348 .7051 .002 .61
ATOM	2535 C TYR A 155	69.84361 .06349 .6711 .002 .61
ATOM	2536 O TYR A 155	69.88762 .13150 .2771 .002 .61
ATOM	2537 N LYS A 156	68.94760 .84648 .6981 .002 .62
ATOM	2538 H LYS A 156	68.90559 .93048 .2761 .002 .62
ATOM	2539 CA LYS A 156	67.97661 .86948 .2821 .002 .62
ATOM	2540 HA LYS A 156	$68.51562 .79948 .091 \quad 1.002 .62$
ATOM	2541 CB LYS A 156	67.26761 .45046 .9831 .002 .62

ATOM	2542 HB1 LYS A 156	$66.431 \quad 62.13146 .8121 .002 .62$
ATOM	2543 HB2 LYS A 156	66.86960 .43847 .0861 .002 .62
ATOM	2544 CG LYS A 156	68.21261 .53045 .7721 .002 .62
ATOM	2545 HG1 LYS A 156	68.99960 .78245 .8711 .002 .62
ATOM	2546 HG2 LYS A 156	$68.671 \quad 62.52045 .7491 .002 .62$
ATOM	2547 CD LYS A 156	$67.46061 .30744 .452 \quad 1.002 .62$
ATOM	2548 HD1 LYS A 156	66.63562 .01944 .3861 .002 .62
ATOM	2549 HD2 LYS A 156	$67.060 \quad 60.29144 .4321 .002 .62$
ATOM	2550 CE LYS A 156	$68.413 \quad 61.52043 .2671 .002 .62$
ATOM	2551 HE1 LYS A 156	69.22460 .78843 .3361 .002 .62
ATOM	2552 HE2 LYS A 156	68.85862 .51743 .3571 .002 .62
ATOM	2553 NZ LYS A 156	67.71561 .39841 .9621 .002 .62
ATOM	2554 HZ1 LYS A 156	68.36261 .56741 .2001 .002 .62
ATOM	2555 HZ2 LYS A 156	$67.32460 .47241 .848 \quad 1.002 .62$
ATOM	2556 HZ3 LYS A 156	66.96362 .07341 .8951 .002 .62
ATOM	2557 C LYS A 156	66.94762 .23549 .3551 .002 .62
ATOM	2558 O LYS A 156	66.56163 .39849 .4501 .002 .62
ATOM	2559 N ASP A 157	66.55261 .26450 .1721 .002 .45
ATOM	2560 H ASP A 157	67.01160 .36750 .0951 .002 .45
ATOM	2561 CA ASP A 157	65.63461 .47751 .2951 .002 .45
ATOM	2562 HA ASP A 157	$64.79262 .09350 .971 \quad 1.002 .45$
ATOM	2563 CB ASP A 157	65.09260 .13051 .7961 .002 .45
ATOM	2564 HB1 ASP A 157	64.36760 .30952 .5901 .002 .45
ATOM	2565 HB2 ASP A 157	65.91059 .55452 .2301 .002 .45
ATOM	2566 CG ASP A 157	64.43359 .30350 .6981 .002 .45
ATOM	2567 OD1 ASP A 157	63.54159 .79349 .9811 .002 .45
ATOM	2568 OD2 ASP A 157	$64.82058 .12750 .518 \quad 1.002 .45$
ATOM	2569 C ASP A 157	66.33562 .17952 .4611 .002 .45
ATOM	2570 O ASP A 157	65.75863 .08053 .0641 .002 .45
ATOM	2571 N TYR A 158	67.59461 .82652 .7541 .002 .36
ATOM	2572 H TYR A 158	68.01261 .03652 .2721 .002 .36
ATOM	2573 CA TYR A 158	68.38862 .56053 .7421 .002 .36
ATOM	2574 HA TYR A 158	67.83262 .57354 .6791 .002 .36
ATOM	2575 CB TYR A 158	69.73161 .84454 .0001 .002 .36
ATOM	2576 HB1 TYR A 158	70.28562 .42654 .7371 .002 .36
ATOM	2577 HB2 TYR A 158	70.31361 .85553 .0781 .002 .36
ATOM	2578 CG TYR A 158	69.64860 .41054 .5201 .002 .36
ATOM	2579 CD1 TYR A 158	70.22959 .35353 .7911 .002 .36
ATOM	2580 HD1 TYR A 158	$70.75559 .56052 .881 \quad 1.002 .36$
ATOM	2581 CE1 TYR A 158	70.12958 .02154 .2351 .002 .36
ATOM	2582 HE1 TYR A 158	70.54357 .20853 .6581 .002 .36
ATOM	2583 CZ TYR A 158	69.45457 .73155 .4371 .002 .36
ATOM	2584 OH TYR A 158	69.35856 .43955 .8581 .002 .36
ATOM	2585 HH TYR A 158	68.82556 .35156 .6551 .002 .36
ATOM	2586 CE2 TYR A 158	68.91458 .79156 .1981 .002 .36
ATOM	2587 HE2 TYR A 158	68.41558 .58357 .1281 .002 .36
ATOM	2588 CD2 TYR A 158	69.02060 .12455 .7471 .002 .36
ATOM	2589 HD2 TYR A 158	68.60860 .92556 .3461 .002 .36
ATOM	2590 C TYR A 158	68.61564 .02753 .3421 .002 .36
ATOM	2591 O TYR A 158	68.47764 .92054 .1831 .002 .36
ATOM	2592 N PHE A 159	68.88564 .28552 .0581 .002 .55
ATOM	2593 H PHE A 159	69.01463 .49651 .4331 .002 .55
ATOM	2594 CA PHE A 159	68.97465 .63751 .5011 .002 .55

ATOM	2595 HA PHE A 159	69.71766 .19652 .0711 .002 .55
ATOM	2596 CB PHE A 159	$69.44665 .57750 .040 \quad 1.002 .55$
ATOM	2597 HB1 PHE A 159	68.82064 .87749 .4861 .002 .55
ATOM	2598 HB2 PHE A 159	70.47065 .20150 .0121 .002 .55
ATOM	2599 CG PHE A 159	69.39466 .93149 .3571 .002 .55
ATOM	2600 CD1 PHE A 159	70.36067 .90949 .6631 .002 .55
ATOM	2601 HD1 PHE A 159	71.17267 .67350 .3341 .002 .55
ATOM	2602 CE1 PHE A 159	$70.25069 .20349 .125 \quad 1.002 .55$
ATOM	2603 HE1 PHE A 159	70.98269 .95949 .3721 .002 .55
ATOM	2604 CZ PHE A 159	69.17069 .52648 .2851 .002 .55
ATOM	2605 HZ PHE A 159	$69.07070 .52947 .892 \quad 1.002 .55$
ATOM	2606 CE2 PHE A 159	68.20868 .55047 .9691 .002 .55
ATOM	2607 HE2 PHE A 159	67.36968 .81047 .3381 .002 .55
ATOM	2608 CD2 PHE A 159	68.32067 .25448 .5031 .002 .55
ATOM	2609 HD2 PHE A 159	67.55866 .51848 .2851 .002 .55
ATOM	2610 C PHE A 159	67.65966 .41351 .6141 .002 .55
ATOM	2611 O PHE A 159	67.66567 .55652 .0711 .002 .55
ATOM	2612 N TYR A 160	66.53365 .78851 .2511 .002 .50
ATOM	2613 H TYR A 160	66.60064 .86950 .8291 .002 .50
ATOM	2614 CA TYR A 160	65.20666 .38351 .4011 .002 .50
ATOM	2615 HA TYR A 160	65.16167 .29050 .7961 .002 .50
ATOM	2616 CB TYR A 160	$64.13765 .41050 .888 \quad 1.002 .50$
ATOM	2617 HB1 TYR A 160	64.22964 .45651 .4061 .002 .50
ATOM	2618 HB2 TYR A 160	$64.30165 .22749 .825 \quad 1.002 .50$
ATOM	2619 CG TYR A 160	62.73465 .94251 .0891 .002 .50
ATOM	2620 CD1 TYR A 160	62.19466 .84950 .1581 .002 .50
ATOM	2621 HD1 TYR A 160	62.75967 .12549 .2791 .002 .50
ATOM	2622 CE1 TYR A 160	60.92867 .42050 .3861 .002 .50
ATOM	2623 HE1 TYR A 160	60.51568 .13349 .6911 .002 .50
ATOM	2624 CZ TYR A 160	$60.21667 .10751 .561 \quad 1.002 .50$
ATOM	2625 OH TYR A 160	59.01067 .68051 .7971 .002 .50
ATOM	2626 HH TYR A 160	58.71067 .49052 .6871 .002 .50
ATOM	2627 CE2 TYR A 160	60.76066 .20252 .4961 .002 .50
ATOM	2628 HE2 TYR A 160	60.21965 .96653 .3971 .002 .50
ATOM	2629 CD2 TYR A 160	62.01265 .61052 .2531 .002 .50
ATOM	2630 HD2 TYR A 160	62.42864 .91752 .9751 .002 .50
ATOM	2631 C TYR A 160	64.92766 .79152 .8471 .002 .50
ATOM	2632 O TYR A 160	64.49667 .91153 .1031 .002 .50
ATOM	2633 N CYS A 161	65.21065 .90453 .7981 .002 .35
ATOM	2634 H CYS A 161	65.56964 .99653 .5261 .002 .35
ATOM	2635 CA CYS A 161	64.94266 .16655 .2041 .002 .35
ATOM	2636 HA CYS A 161	63.91266 .50355 .2831 .002 .35
ATOM	2637 CB CYS A 161	65.11864 .87156 .0061 .002 .35
ATOM	2638 HB1 CYS A 161	64.97465 .08557 .0671 .002 .35
ATOM	2639 HB2 CYS A 161	66.11764 .45755 .8511 .002 .35
ATOM	2640 SG CYS A 161	63.88163 .66655 .4881 .002 .35
ATOM	2641 HG CYS A 161	$64.427 \quad 63.40454 .2901 .002 .35$
ATOM	2642 C CYS A 161	65.82867 .26455 .7861 .002 .35
ATOM	2643 O CYS A 161	65.34968 .05956 .5931 .002 .35
ATOM	2644 N TRP A 162	67.09567 .33355 .3561 .002 .41
ATOM	2645 H TRP A 162	67.44366 .61354 .7341 .002 .41
ATOM	2646 CA TRP A 162	67.95468 .47855 .6411 .002 .41
ATOM	2647 HA TRP A 162	$68.078 \quad 68.56656 .7181 .002 .41$

ATOM	2648 CB TRP A 162	69.34768 .29155 .0331 .002 .41
ATOM	2649 HB1 TRP A 162	69.26068 .16453 .9561 .002 .41
ATOM	2650 HB2 TRP A 162	$69.77167 .36855 .431 \quad 1.002 .41$
ATOM	2651 CG TRP A 162	70.32269 .40555 .2971 .002 .41
ATOM	2652 CD1 TRP A 162	70.37670 .59554 .6511 .002 .41
ATOM	2653 HD1 TRP A 162	69.68470 .91653 .8831 .002 .41
ATOM	2654 NE1 TRP A 162	$\begin{array}{lllllllllll}71.438 & 71.342 & 55.127 & 1.00 & 2.41\end{array}$
ATOM	2655 HE1 TRP A 162	71.61772 .30954 .8541 .002 .41
ATOM	2656 CE2 TRP A 162	72.14870 .64956 .0851 .002 .41
ATOM	2657 CZ2 TRP A 162	$\begin{array}{lllllllllll}73.317 & 70.923 & 56.805 & 1.00 & 2.41\end{array}$
ATOM	2658 HZ2 TRP A 162	73.85171 .84056 .6361 .002 .41
ATOM	2659 CH2 TRP A 162	73.77469 .99957 .7591 .002 .41
ATOM	2660 HH2 TRP A 162	$74.67070 .208 \quad 58.3271 .002 .41$
ATOM	2661 CZ3 TRP A 162	73.04468 .82257 .9981 .002 .41
ATOM	2662 HZ3 TRP A 162	$\begin{array}{llllllllllllllllllll}73.374 & 68.127 & 58.759 & 1.00 & 2.41\end{array}$
ATOM	2663 CE3 TRP A 162	71.87568 .55457 .2611 .002 .41
ATOM	2664 HE3 TRP A 162	71.30667 .66257 .4581 .002 .41
ATOM	2665 CD2 TRP A 162	$71.416 \quad 69.438 \quad 56.2631 .002 .41$
ATOM	2666 C TRP A 162	67.29369 .76755 .1551 .002 .41
ATOM	2667 O TRP A 162	66.95570 .63655 .9501 .002 .41
ATOM	2668 N GLN A 163	67.02969 .85653 .8541 .002 .56
ATOM	2669 H GLN A 163	67.26869 .06753 .2601 .002 .56
ATOM	2670 CA GLN A 163	66.50771 .05653 .2131 .002 .56
ATOM	2671 HA GLN A 163	67.20971 .86753 .4051 .002 .56
ATOM	2672 CB GLN A 163	66.47470 .76451 .6971 .002 .56
ATOM	2673 HB1 GLN A 163	65.78069 .94251 .5131 .002 .56
ATOM	2674 HB2 GLN A 163	67.46670 .43351 .3861 .002 .56
ATOM	2675 CG GLN A 163	66.06871 .94050 .7961 .002 .56
ATOM	2676 HG1 GLN A 163	65.04372 .24151 .0131 .002 .56
ATOM	2677 HG2 GLN A 163	66.10071 .61149 .7571 .002 .56
ATOM	2678 CD GLN A 163	67.00073 .13650 .9481 .002 .56
ATOM	2679 OE1 GLN A 163	68.01673 .25650 .2851 .002 .56
ATOM	2680 NE2 GLN A 163	66.72274 .04651 .8551 .002 .56
ATOM	2681 1HE2 GLN A 163	65.92173 .91652 .4681 .002 .56
ATOM	2682 2HE2 GLN A 163	67.36574 .80951 .9431 .002 .56
ATOM	2683 C GLN A 163	65.13171 .51853 .7291 .002 .56
ATOM	2684 O GLN A 163	64.80172 .69653 .5781 .002 .56
ATOM	2685 N THR A 164	64.34370 .60354 .3071 .002 .57
ATOM	2686 H THR A 164	64.70069 .65654 .3171 .002 .57
ATOM	2687 CA THR A 164	62.88870 .75954 .4541 .002 .57
ATOM	2688 HA THR A 164	62.65071 .80054 .2391 .002 .57
ATOM	2689 CB THR A 164	62.11769 .92253 .4071 .002 .57
ATOM	2690 HB THR A 164	62.03068 .89353 .7601 .002 .57
ATOM	2691 CG2 THR A 164	60.71970 .46153 .1021 .002 .57
ATOM	2692 1HG2 THR A 164	60.33369 .99552 .1971 .002 .57
ATOM	2693 2HG2 THR A 164	60.04270 .23053 .9241 .002 .57
ATOM	2694 3HG2 THR A 164	60.76071 .53852 .9521 .002 .57
ATOM	2695 OG1 THR A 164	62.79369 .90152 .1661 .002 .57
ATOM	2696 HG1 THR A 164	63.41169 .16052 .2211 .002 .57
ATOM	2697 C THR A 164	62.34770 .52855 .8691 .002 .57
ATOM	2698 O THR A 164	61.17170 .78656 .1251 .002 .57
ATOM	2699 N PHE A 165	63.19570 .13056 .8241 .002 .37
ATOM	2700 H PHE A 165	$64.136 \quad 69.86256 .5691 .002 .37$

ATOM	2701 CA PHE A 165	62.81770 .09358 .2421 .002 .37
ATOM	2702 HA PHE A 165	$61.95470 .74258 .392 \quad 1.002 .37$
ATOM	2703 CB PHE A 165	62.40968 .68158 .6791 .002 .37
ATOM	2704 HB1 PHE A 165	61.94968 .74259 .6661 .002 .37
ATOM	2705 HB2 PHE A 165	63.31668 .08258 .7871 .002 .37
ATOM	2706 CG PHE A 165	61.45267 .95257 .7651 .002 .37
ATOM	2707 CD1 PHE A 165	61.93766 .87357 .0111 .002 .37
ATOM	2708 HD1 PHE A 165	$62.96566 .57657 .121 \quad 1.002 .37$
ATOM	2709 CE1 PHE A 165	$61.083 \quad 66.15656 .1641 .002 .37$
ATOM	2710 HE1 PHE A 165	61.46265 .32555 .5871 .002 .37
ATOM	2711 CZ PHE A 165	$\begin{array}{llllllllllll}59.722 ~ & 66.487 & 56.122 ~ 1.00 ~ & 2.37\end{array}$
ATOM	2712 HZ PHE A 165	59.06665 .89955 .5101 .002 .37
ATOM	2713 CE2 PHE A 165	$59.217 \quad 67.54856 .8931 .002 .37$
ATOM	2714 HE2 PHE A 165	$\begin{array}{llllllllllllll}58.162 & 67.787 & 56.864 & 1.00 & 2.37\end{array}$
ATOM	2715 CD2 PHE A 165	60.08768 .29457 .7091 .002 .37
ATOM	2716 HD2 PHE A 165	59.70869 .12358 .2921 .002 .37
ATOM	2717 C PHE A 165	63.88770 .59659 .2061 .002 .37
ATOM	2718 O PHE A 165	$63.57170 .746 \quad 60.3861 .002 .37$
ATOM	2719 N VAL A 166	65.12270 .86158 .7601 .002 .48
ATOM	2720 H VAL A 166	65.33470 .77857 .7741 .002 .48
ATOM	2721 CA VAL A 166	$66.16871 .405 \quad 59.6421 .002 .48$
ATOM	2722 HA VAL A 166	$65.86571 .20560 .668 \quad 1.002 .48$
ATOM	2723 CB VAL A 166	67.55470 .73759 .5181 .002 .48
ATOM	2724 HB VAL A 166	68.06670 .92460 .4631 .002 .48
ATOM	2725 CG1 VAL A 166	$67.436 \quad 69.22259 .421 \quad 1.002 .48$
ATOM	2726 1HG1 VAL A 166	$\begin{array}{lllllllllllllll}68.437 & 68.795 & 59.430 & 1.00 & 2.48\end{array}$
ATOM	2727 2HG1 VAL A 166	$\begin{array}{lllllllllllll}66.871 & 68.853 & 60.275 & 1.00 & 2.48\end{array}$
ATOM	2728 3HG1 VAL A 166	666.922 68.94058 .5061 .002 .48
ATOM	2729 CG2 VAL A 166	68.49971 .27458 .4321 .002 .48
ATOM	2730 1HG2 VAL A 166	$66 \quad 69.31471 .817 \quad 58.9061 .002 .48$
ATOM	2731 2HG2 VAL A 166	$\begin{array}{lllllllllllll} & 68.933 & 70.467 & 57.845 & 1.00 & 2.48\end{array}$
ATOM	2732 3HG2 VAL A 166	$\begin{array}{lllllllllll} & 67.983 & 71.958 & 57.7611 .00 & 2.48\end{array}$
ATOM	2733 C VAL A 166	66.30472 .91759 .5421 .002 .48
ATOM	2734 O VAL A 166	65.86573 .54158 .5791 .002 .48
ATOM	2735 N ALA A 167	$66.93473 .496 \quad 60.5581 .002 .62$
ATOM	2736 H ALA A 167	67.20372 .91561 .3431 .002 .62
ATOM	2737 CA ALA A 167	67.20274 .92460 .6501 .002 .62
ATOM	2738 HA ALA A 167	66.49275 .45360 .0131 .002 .62
ATOM	2739 CB ALA A 167	66.92675 .34662 .1041 .002 .62
ATOM	2740 HB1 ALA A 167	$\begin{array}{llllllllll}65.924 & 75.035 & 62.403 & 1.00 & 2.62\end{array}$
ATOM	2741 HB2 ALA A 167	67.65574 .88462 .7701 .002 .62
ATOM	2742 HB3 ALA A 167	66.99776 .43062 .1931 .002 .62
ATOM	2743 C ALA A 167	68.61075 .32660 .1731 .002 .62
ATOM	2744 O ALA A 167	$69.16576 .327 \quad 60.6331 .002 .62$
ATOM	2745 N HIS A 168	69.18074 .52459 .2671 .002 .88
ATOM	2746 CA HIS A 168	70.49874 .51458 .6391 .002 .88
ATOM	2747 CB HIS A 168	71.47773 .56759 .3541 .002 .88
ATOM	2748 CG HIS A 168	$72.64274 .185 \quad 60.102 \quad 1.002 .88$
ATOM	2749 ND1 HIS A 168	$\begin{array}{lllllllllll}73.991 & 73.969 & 59.806 & 1.00 & 2.88\end{array}$
ATOM	2750 CE1 HIS A 168	$74.68274 .631 \quad 60.7401 .002 .88$
ATOM	2751 NE2 HIS A 168	73.84375 .18061 .6361 .002 .88
ATOM	2752 CD2 HIS A 168	$72.54674 .920 \quad 61.251 \quad 1.002 .88$
ATOM	2753 C HIS A 168	$71.13875 .76258 .061 \quad 1.002 .88$

ATOM	2754 O HIS A 168	72.05575 .60757 .2781 .002 .88
ATOM	2755 N ARG A 169	70.70076 .98058 .3901 .003 .07
ATOM	2756 H ARG A 169	69.94576 .97659 .0681 .003 .07
ATOM	2757 CA ARG A 169	71.38978 .26658 .1321 .003 .07
ATOM	2758 HA ARG A 169	$70.62079 .038 \quad 58.122 \quad 1.003 .07$
ATOM	2759 CB ARG A 169	$\begin{array}{llllllllllll}72.330 & 78.579 & 59.318 & 1.00 & 3.07\end{array}$
ATOM	2760 HB1 ARG A 169	$\begin{array}{lllllllllllllll}72.812 & 79.541 & 59.136 & 1.00 & 3.07\end{array}$
ATOM	2761 HB2 ARG A 169	73.10577 .81259 .3681 .003 .07
ATOM	2762 CG ARG A 169	71.61078 .67060 .6741 .003 .07
ATOM	2763 HG1 ARG A 169	71.22377 .69260 .9541 .003 .07
ATOM	2764 HG2 ARG A 169	70.77679 .36960 .5891 .003 .07
ATOM	2765 CD ARG A 169	72.54679 .15661 .7871 .003 .07
ATOM	2766 HD1 ARG A 169	71.94679 .35362 .6781 .003 .07
ATOM	2767 HD2 ARG A 169	$73.01680 .088 \quad 61.4691 .003 .07$
ATOM	2768 NE ARG A 169	$\begin{array}{lllllllllllllll}73.565 & 78.141 & 62.113 & 1.00 & 3.07\end{array}$
ATOM	2769 HE ARG A 169	73.33177 .18261 .8681 .003 .07
ATOM	2770 CZ ARG A 169	$74.74278 .327 \quad 62.678 \quad 1.00 \quad 3.07$
ATOM	2771 NH1 ARG A 169	75.50577 .30062 .9091 .003 .07
ATOM	2772 1HH1 ARG A 169	($75.16376 .391 \quad 62.6181 .003 .07$
ATOM	2773 2HH1 ARG A 169	76.424 $77.411 \quad 63.2941 .003 .07$
ATOM	2774 NH2 ARG A 169	$75.18179 .506 \quad 63.0301 .003 .07$
ATOM	2775 1HH2 ARG A 169	($74.59580 .305 \quad 62.8701 .003 .07$
ATOM	2776 2HH2 ARG A 169	76.08779 .61163 .4421 .003 .07
ATOM	2777 C ARG A 169	72.11478 .43056 .7751 .003 .07
ATOM	2778 O ARG A 169	73.24578 .90756 .7291 .003 .07
ATOM	2779 N LEU A 170	71.48678 .02855 .6661 .003 .15
ATOM	2780 H LEU A 170	70.61477 .54655 .8141 .003 .15
ATOM	2781 CA LEU A 170	72.08777 .95654 .3151 .003 .15
ATOM	2782 HA LEU A 170	71.34377 .46653 .6861 .003 .15
ATOM	2783 CB LEU A 170	72.30679 .36553 .7141 .003 .15
ATOM	2784 HB1 LEU A 170	72.66479 .24652 .6911 .003 .15
ATOM	2785 HB2 LEU A 170	73.09279 .86954 .2771 .003 .15
ATOM	2786 CG LEU A 170	71.06580 .28053 .6791 .003 .15
ATOM	2787 HG LEU A 170	70.74580 .49754 .6991 .003 .15
ATOM	2788 CD1 LEU A 170	71.42981 .60153 .0001 .003 .15
ATOM	2789 1HD1 LEU A 170	70.56782 .26753 .0041 .003 .15
ATOM	2790 2HD1 LEU A 170	$\begin{array}{llllllllllll}72.241 & 82.080 & 53.546 & 1.00 & 3.15\end{array}$
ATOM	2791 3HD1 LEU A 170	71.74181 .42551 .9701 .003 .15
ATOM	2792 CD2 LEU A 170	69.88979 .67152 .9141 .003 .15
ATOM	2793 1HD2 LEU A 170	69.07580 .39452 .8551 .003 .15
ATOM	2794 2HD2 LEU A 170	70.19679 .40051 .9041 .003 .15
ATOM	2795 3HD2 LEU A 170	69.51778 .79053 .4361 .003 .15
ATOM	2796 C LEU A 170	73.32377 .03554 .1841 .003 .15
ATOM	2797 O LEU A 170	73.97677 .01153 .1361 .003 .15
ATOM	2798 N SER A 171	73.63076 .24655 .2131 .002 .98
ATOM	2799 H SER A 171	73.05876 .35056 .0431 .002 .98
ATOM	2800 CA SER A 171	74.43575 .02455 .1741 .002 .98
ATOM	2801 HA SER A 171	$\begin{array}{lllllllllll}75.403 & 75.288 & 54.751 & 1.00 & 2.98\end{array}$
ATOM	2802 CB SER A 171	74.69274 .50656 .5891 .002 .98
ATOM	2803 HB1 SER A 171	73.81273 .98756 .9671 .002 .98
ATOM	2804 HB2 SER A 171	74.92375 .34357 .2511 .002 .98
ATOM	2805 OG SER A 171	$\begin{array}{llllllllllll}75.793 & 73.623 & 56.563 & 1.00 & 2.98\end{array}$
ATOM	2806 HG SER A 171	$\begin{array}{lllllllllll}75.921 & 73.313 & 57.468 & 1.00 & 2.98\end{array}$

ATOM	2807 C SER A 171	73.81573 .95354 .2811 .002 .98
ATOM	2808 O SER A 171	72.62273 .95953 .9741 .002 .98
ATOM	2809 N ARG A 172	74.65373 .01853 .8371 .002 .83
ATOM	2810 H ARG A 172	$75.57272 .985 \quad 54.2651 .002 .83$
ATOM	2811 CA ARG A 172	$\begin{array}{llllllllll}74.320 & 72.011 & 52.827 & 1.00 & 2.83\end{array}$
ATOM	2812 HA ARG A 172	73.24071 .99152 .6751 .002 .83
ATOM	2813 CB ARG A 172	74.99772 .37351 .4941 .002 .83
ATOM	2814 HB1 ARG A 172	75.07371 .47650 .8761 .002 .83
ATOM	2815 HB2 ARG A 172	$76.01372 .72251 .691 \quad 1.002 .83$
ATOM	2816 CG ARG A 172	74.19773 .43050 .7041 .002 .83
ATOM	2817 HG1 ARG A 172	$\begin{array}{llllllllllll}73.427 & 73.885 & 51.328 & 1.00 & 2.83\end{array}$
ATOM	2818 HG2 ARG A 172	$73.69072 .92749 .880 \quad 1.002 .83$
ATOM	2819 CD ARG A 172	$75.07874 .545 \quad 50.1241 .002 .83$
ATOM	2820 HD1 ARG A 172	74.51675 .04649 .3331 .002 .83
ATOM	2821 HD2 ARG A 172	75.96974 .10249 .6771 .002 .83
ATOM	2822 NE ARG A 172	$\begin{array}{llllllllllll}75.420 & 75.547 & 51.154 & 1.00 & 2.83\end{array}$
ATOM	2823 HE ARG A 172	74.65575 .87351 .7371 .002 .83
ATOM	2824 CZ ARG A 172	76.58576 .11551 .4011 .002 .83
ATOM	2825 NH1 ARG A 172	76.66477 .02552 .3271 .002 .83
ATOM	2826 1HH1 ARG A 172	75.80277 .30052 .7881 .002 .83
ATOM	2827 2HH1 ARG A 172	77.52677 .48152 .5511 .002 .83
ATOM	2828 NH2 ARG A 172	77.67275 .81150 .7501 .002 .83
ATOM	2829 1HH2 ARG A 172	77.61775 .11450 .0331 .002 .83
ATOM	2830 2HH2 ARG A 172	78.53776 .26950 .9651 .002 .83
ATOM	2831 C ARG A 172	74.72670 .63653 .3371 .002 .83
ATOM	2832 O ARG A 172	75.85270 .45453 .7931 .002 .83
ATOM	2833 N PHE A 173	73.77669 .70253 .2681 .002 .76
ATOM	2834 H PHE A 173	72.88469 .97452 .8901 .002 .76
ATOM	2835 CA PHE A 173	73.85268 .36453 .8511 .002 .76
ATOM	2836 HA PHE A 173	73.71868 .44954 .9311 .002 .76
ATOM	2837 CB PHE A 173	72.70267 .50053 .2941 .002 .76
ATOM	2838 HB1 PHE A 173	72.71167 .57552 .2061 .002 .76
ATOM	2839 HB2 PHE A 173	71.75167 .90053 .6341 .002 .76
ATOM	2840 CG PHE A 173	72.78066 .02953 .6761 .002 .76
ATOM	2841 CD1 PHE A 173	72.54565 .62655 .0041 .002 .76
ATOM	2842 HD1 PHE A 173	$\begin{array}{llllllllllll}72.271 & 66.358 & 55.747 & 1.00 & 2.76\end{array}$
ATOM	2843 CE1 PHE A 173	72.68264 .27555 .3681 .002 .76
ATOM	2844 HE1 PHE A 173	72.50263 .96456 .3861 .002 .76
ATOM	2845 CZ PHE A 173	73.05663 .32254 .4081 .002 .76
ATOM	2846 HZ PHE A 173	73.16062 .28954 .7001 .002 .76
ATOM	2847 CE2 PHE A 173	73.28763 .71253 .0781 .002 .76
ATOM	2848 HE2 PHE A 173	$\begin{array}{llllllllllllll}73.581 & 62.981 & 52.335 & 1.00 & 2.76\end{array}$
ATOM	2849 CD2 PHE A 173	73.14665 .06452 .7151 .002 .76
ATOM	2850 HD2 PHE A 173	73.34565 .37051 .6981 .002 .76
ATOM	2851 C PHE A 173	75.19467 .65853 .5901 .002 .76
ATOM	2852 O PHE A 173	75.46467 .14352 .5011 .002 .76
ATOM	2853 N LYS A 174	76.01767 .56754 .6341 .003 .31
ATOM	2854 H LYS A 174	75.77268 .08055 .4681 .003 .31
ATOM	2855 CA LYS A 174	77.19666 .70654 .6571 .003 .31
ATOM	2856 HA LYS A 174	77.64066 .68353 .6601 .003 .31
ATOM	2857 CB LYS A 174	78.21767 .31455 .6361 .003 .31
ATOM	2858 HB1 LYS A 174	77.79767 .28456 .6431 .003 .31
ATOM	2859 HB2 LYS A 174	78.40268 .35955 .3761 .003 .31

ATOM	2860 CG LYS A 174	79.55066 .55255 .5991 .003 .31
ATOM	2861 HG1 LYS A 174	$80.133 \quad 66.87754 .7361 .003 .31$
ATOM	2862 HG2 LYS A 174	79.34665 .49555 .4731 .003 .31
ATOM	2863 CD LYS A 174	$80.37266 .74656 .882 \quad 1.003 .31$
ATOM	2864 HD1 LYS A 174	79.71966 .71957 .7561 .003 .31
ATOM	2865 HD2 LYS A 174	80.86067 .72156 .8461 .003 .31
ATOM	2866 CE LYS A 174	81.43265 .64457 .0191 .003 .31
ATOM	2867 HE1 LYS A 174	82.11165 .91157 .8341 .003 .31
ATOM	2868 HE2 LYS A 174	82.01465 .60356 .0931 .003 .31
ATOM	2869 NZ LYS A 174	80.80964 .32557 .2971 .003 .31
ATOM	2870 HZ1 LYS A 174	$81.49363 .58457 .292 \quad 1.003 .31$
ATOM	2871 HZ2 LYS A 174	80.35264 .32058 .2051 .003 .31
ATOM	2872 HZ3 LYS A 174	80.10064 .09556 .6011 .003 .31
ATOM	2873 C LYS A 174	76.81065 .27855 .0541 .003 .31
ATOM	2874 O LYS A 174	$76.504 \quad 65.02056 .218 \quad 1.003 .31$
ATOM	2875 N ALA A 175	76.91764 .35154 .1031 .002 .88
ATOM	2876 H ALA A 175	77.10464 .65953 .1621 .002 .88
ATOM	2877 CA ALA A 175	76.84162 .91254 .3471 .002 .88
ATOM	2878 HA ALA A 175	75.85062 .69354 .7461 .002 .88
ATOM	2879 CB ALA A 175	76.98962 .19253 .0031 .002 .88
ATOM	2880 HB1 ALA A 175	$\begin{array}{llllllllllll}76.911 & 61.112 & 53.140 & 1.00 & 2.88\end{array}$
ATOM	2881 HB2 ALA A 175	76.19862 .52052 .3321 .002 .88
ATOM	2882 HB3 ALA A 175	77.95762 .42452 .5561 .002 .88
ATOM	2883 C ALA A 175	77.87462 .41555 .3681 .002 .88
ATOM	2884 O ALA A 175	78.90863 .04755 .6271 .002 .88
ATOM	2885 N TRP A 176	$\begin{array}{lllllllllllll}77.610 & 61.23155 .913 & 1.00 & 2.77\end{array}$
ATOM	2886 H TRP A 176	76.78160 .73155 .6241 .002 .77
ATOM	2887 CA TRP A 176	78.43260 .62156 .9441 .002 .77
ATOM	2888 HA TRP A 176	$\begin{array}{llllllllllllll}79.377 & 61.155 & 57.030 & 1.00 & 2.77\end{array}$
ATOM	2889 CB TRP A 176	77.72760 .72758 .3011 .002 .77
ATOM	2890 HB1 TRP A 176	78.25560 .10159 .0211 .002 .77
ATOM	2891 HB2 TRP A 176	76.70660 .35158 .2181 .002 .77
ATOM	2892 CG TRP A 176	$\begin{array}{ll}77.712 & 62.128 \\ 58.829 & 1.00 \\ 2.77\end{array}$
ATOM	2893 CD1 TRP A 176	$76.698 \quad 63.01458 .7131 .002 .77$
ATOM	2894 HD1 TRP A 176	$\begin{array}{llllllllllll}75.743 & 62.807 & 58.242 & 1.00 & 2.77\end{array}$
ATOM	2895 NE1 TRP A 176	77.08964 .23959 .2201 .002 .77
ATOM	2896 HE1 TRP A 176	$76.49365 .05859 .191 \quad 1.002 .77$
ATOM	2897 CE2 TRP A 176	$\begin{array}{llllllllllllllll}78.392 & 64.211 & 59.662 & 1.00 & 2.77\end{array}$
ATOM	2898 CZ2 TRP A 176	$79.25065 .18560 .190 \quad 1.002 .77$
ATOM	2899 HZ2 TRP A 176	$\begin{array}{llllllllllll}78.892 & 66.193 & 60.351 & 1.00 & 2.77\end{array}$
ATOM	2900 CH2 TRP A 176	80.55864 .82360 .5541 .002 .77
ATOM	2901 HH2 TRP A 176	81.21865 .55061 .0111 .002 .77
ATOM	2902 CZ3 TRP A 176	80.99563 .49960 .3661 .002 .77
ATOM	2903 HZ3 TRP A 176	81.99263 .21460 .6831 .002 .77
ATOM	2904 CE3 TRP A 176	80.13062 .53059 .8191 .002 .77
ATOM	2905 HE3 TRP A 176	80.46861 .50759 .7061 .002 .77
ATOM	2906 CD2 TRP A 176	78.80662 .86159 .4541 .002 .77
ATOM	2907 C TRP A 176	78.75659 .18756 .5561 .002 .77
ATOM	2908 O TRP A 176	77.86958 .33656 .4641 .002 .77
ATOM	2909 N GLU A 177	80.06158 .94056 .3921 .002 .88
ATOM	2910 H GLU A 177	80.70159 .71256 .3541 .002 .88
ATOM	2911 CA GLU A 177	80.63357 .59556 .4601 .002 .88
ATOM	2912 HA GLU A 177	81.70657 .62256 .2711 .002 .88

ATOM	2913 CB GLU A 177	80.38857 .17057 .9421 .002 .88
ATOM	2914 HB1 GLU A 177	79.31157 .09258 .0881 .002 .88
ATOM	2915 HB2 GLU A 177	80.72457 .99458 .5761 .002 .88
ATOM	2916 CG GLU A 177	80.98155 .89858 .5601 .002 .88
ATOM	2917 HG1 GLU A 177	82.05456 .03258 .7121 .002 .88
ATOM	2918 HG2 GLU A 177	80.83055 .03257 .9181 .002 .88
ATOM	2919 CD GLU A 177	80.25855 .67859 .9011 .002 .88
ATOM	2920 OE1 GLU A 177	79.21854 .97659 .9391 .002 .88
ATOM	2921 OE2 GLU A 177	80.62556 .32760 .9011 .002 .88
ATOM	2922 C GLU A 177	79.98156 .68655 .4011 .002 .88
ATOM	2923 O GLU A 177	79.75557 .10754 .2671 .002 .88
ATOM	2924 N GLY A 178	79.60955 .46155 .7631 .003 .09
ATOM	2925 H GLY A 178	79.77955 .16956 .7151 .003 .09
ATOM	2926 CA GLY A 178	78.92154 .53454 .8801 .003 .09
ATOM	2927 HA1 GLY A 178	79.05753 .52155 .2591 .003 .09
ATOM	2928 HA2 GLY A 178	79.37454 .58253 .8891 .003 .09
ATOM	2929 C GLY A 178	77.43354 .78854 .7221 .003 .09
ATOM	2930 O GLY A 178	76.70453 .80854 .6571 .003 .09
ATOM	2931 N LEU A 179	76.97056 .04354 .6601 .002 .83
ATOM	2932 H LEU A 179	77.63656 .80054 .7861 .002 .83
ATOM	2933 CA LEU A 179	75.55056 .38454 .4721 .002 .83
ATOM	2934 HA LEU A 179	75.04956 .21855 .4261 .002 .83
ATOM	2935 CB LEU A 179	75.44957 .88154 .0991 .002 .83
ATOM	2936 HB1 LEU A 179	75.68557 .99353 .0401 .002 .83
ATOM	2937 HB2 LEU A 179	76.19558 .45454 .6451 .002 .83
ATOM	2938 CG LEU A 179	$74.07058 .50454 .381 \quad 1.002 .83$
ATOM	2939 HG LEU A 179	73.28557 .81454 .0701 .002 .83
ATOM	2940 CD1 LEU A 179	73.91458 .82555 .8711 .002 .83
ATOM	2941 1HD1 LEU A 179	72.92459 .24556 .0521 .002 .83
ATOM	2942 2HD1 LEU A 179	74.00657 .91456 .4631 .002 .83
ATOM	2943 3HD1 LEU A 179	$74.67659 .53556 .191 \quad 1.002 .83$
ATOM	2944 CD2 LEU A 179	73.91559 .80853 .5961 .002 .83
ATOM	2945 1HD2 LEU A 179	$\begin{array}{llllllllllll}72.931 & 60.23453 .791 ~ 1.00 ~ & 2.83\end{array}$
ATOM	2946 2HD2 LEU A 179	74.68260 .51953 .8941 .002 .83
ATOM	2947 3HD2 LEU A 179	74.00059 .61452 .5261 .002 .83
ATOM	2948 C LEU A 179	74.85655 .50953 .4161 .002 .83
ATOM	2949 O LEU A 179	73.83754 .87653 .6981 .002 .83
ATOM	2950 N HIS A 180	$\begin{array}{lllllllllll}75.460 & 55.420 & 52.225 & 1.00 & 2.86\end{array}$
ATOM	2951 H HIS A 180	76.30955 .95152 .0941 .002 .86
ATOM	2952 CA HIS A 180	74.96954 .58951 .1201 .002 .86
ATOM	2953 HA HIS A 180	73.91954 .82750 .9351 .002 .86
ATOM	2954 CB HIS A 180	75.75254 .92849 .8441 .002 .86
ATOM	2955 HB1 HIS A 180	76.81154 .71049 .9971 .002 .86
ATOM	2956 HB2 HIS A 180	75.65055 .99349 .6341 .002 .86
ATOM	2957 CG HIS A 180	75.26554 .16648 .6361 .002 .86
ATOM	2958 ND1 HIS A 180	73.98154 .24748 .0961 .002 .86
ATOM	2959 CE1 HIS A 180	73.96253 .38647 .0681 .002 .86
ATOM	2960 HE1 HIS A 180	73.10553 .21346 .4311 .002 .86
ATOM	2961 NE2 HIS A 180	75.15352 .77846 .9391 .002 .86
ATOM	2962 HE2 HIS A 180	75.38552 .09446 .2321 .002 .86
ATOM	2963 CD2 HIS A 180	75.99153 .25947 .9211 .002 .86
ATOM	2964 HD2 HIS A 180	77.01852 .97848 .1021 .002 .86
ATOM	2965 C HIS A 180	75.03653 .09051 .4231 .002 .86

ATOM	2966 O HIS A 180	74.08152 .36851 .1571 .002 .86
ATOM	2967 N THR A 181	76.12752 .59452 .0071 .002 .85
ATOM	2968 H THR A 181	76.88853 .21552 .2471 .002 .85
ATOM	2969 CA THR A 181	$\begin{array}{llllllllllll}76.307 & 51.157 & 52.276 & 1.00 & 2.85\end{array}$
ATOM	2970 HA THR A 181	76.13250 .61951 .3451 .002 .85
ATOM	2971 CB THR A 181	$\begin{array}{llllllllllll}77.741 & 50.865 & 52.747 & 1.00 & 2.85\end{array}$
ATOM	2972 HB THR A 181	77.81251 .07653 .8151 .002 .85
ATOM	2973 CG2 THR A 181	78.14949 .41452 .4931 .002 .85
ATOM	2974 1HG2 THR A 181	79.16049 .25052 .8671 .002 .85
ATOM	2975 2HG2 THR A 181	77.46248 .74053 .0011 .002 .85
ATOM	2976 3HG2 THR A 181	78.12349 .20251 .4231 .002 .85
ATOM	2977 OG1 THR A 181	$78.68451 .67752 .088 \quad 1.002 .85$
ATOM	2978 HG1 THR A 181	78.91451 .26351 .2501 .002 .85
ATOM	2979 C THR A 181	$75.31650 .61053 .311 \quad 1.002 .85$
ATOM	2980 O THR A 181	74.77349 .50553 .1751 .002 .85
ATOM	2981 N ASN A 182	75.07951 .41054 .3491 .002 .56
ATOM	2982 H ASN A 182	$75.56652 .30354 .362 \quad 1.002 .56$
ATOM	2983 CA ASN A 182	$74.08351 .19555 .382 \quad 1.002 .56$
ATOM	2984 HA ASN A 182	$\begin{array}{lllllllllll}74.211 & 50.213 & 55.826 & 1.00 & 2.56\end{array}$
ATOM	2985 CB ASN A 182	74.23952 .27956 .4641 .002 .56
ATOM	2986 HB1 ASN A 182	73.41052 .20757 .1671 .002 .56
ATOM	2987 HB2 ASN A 182	74.17853 .25355 .9801 .002 .56
ATOM	2988 CG ASN A 182	75.53052 .21757 .2641 .002 .56
ATOM	2989 OD1 ASN A 182	76.10151 .15157 .4891 .002 .56
ATOM	2990 ND2 ASN A 182	76.01853 .34057 .7411 .002 .56
ATOM	2991 1HD2 ASN A 182	75.49854 .20057 .5871 .002 .56
ATOM	2992 2HD2 ASN A 182	76.89053 .33358 .2431 .002 .56
ATOM	2993 C ASN A 182	72.68451 .22954 .7681 .002 .56
ATOM	2994 O ASN A 182	71.93850 .27954 .9771 .002 .56
ATOM	2995 N TYR A 183	72.35852 .23353 .9441 .002 .53
ATOM	2996 H TYR A 183	$73.00453 .00653 .830 \quad 1.002 .53$
ATOM	2997 CA TYR A 183	$71.10252 .27053 .180 \quad 1.002 .53$
ATOM	2998 HA TYR A 183	70.27752 .34753 .8901 .002 .53
ATOM	2999 CB TYR A 183	71.05853 .53752 .2971 .002 .53
ATOM	3000 HB1 TYR A 183	72.07453 .80552 .0151 .002 .53
ATOM	3001 HB2 TYR A 183	70.67554 .36252 .8981 .002 .53
ATOM	3002 CG TYR A 183	70.23753 .44451 .0141 .002 .53
ATOM	3003 CD1 TYR A 183	68.83053 .37251 .0651 .002 .53
ATOM	3004 HD1 TYR A 183	68.33053 .39052 .0231 .002 .53
ATOM	3005 CE1 TYR A 183	68.07953 .27449 .8751 .002 .53
ATOM	3006 HE1 TYR A 183	67.00353 .19549 .9091 .002 .53
ATOM	3007 CZ TYR A 183	$68.73253 .26148 .623 \quad 1.002 .53$
ATOM	3008 OH TYR A 183	68.00653 .22347 .4731 .002 .53
ATOM	3009 HH TYR A 183	68.56353 .18746 .6931 .002 .53
ATOM	3010 CE2 TYR A 183	70.14153 .32248 .5711 .002 .53
ATOM	3011 HE2 TYR A 183	$70.65253 .30447 .621 \quad 1.002 .53$
ATOM	3012 CD2 TYR A 183	70.88753 .40949 .7631 .002 .53
ATOM	3013 HD2 TYR A 183	71.96853 .44749 .7191 .002 .53
ATOM	3014 C TYR A 183	70.82751 .00652 .3541 .002 .53
ATOM	3015 O TYR A 183	69.71950 .47052 .3921 .002 .53
ATOM	3016 N VAL A 184	71.82850 .48251 .6401 .002 .87
ATOM	3017 H VAL A 184	72.69151 .01451 .5751 .002 .87
ATOM	3018 CA VAL A 184	71.68049 .24950 .8501 .002 .87

ATOM	3019 HA VAL A 184	70.79549 .34950 .2201 .002 .87
ATOM	3020 CB VAL A 184	$\begin{array}{ll}72.896 & 49.046\end{array} 49.9201 .002 .87$
ATOM	3021 HB VAL A 184	73.81449 .12950 .5041 .002 .87
ATOM	3022 CG1 VAL A 184	72.89047 .67949 .2191 .002 .87
ATOM	3023 1HG1 VAL A 184	73.71847 .62848 .5111 .002 .87
ATOM	3024 2HG1 VAL A 184	73.01746 .88049 .9481 .002 .87
ATOM	3025 3HG1 VAL A 184	71.94847 .54348 .6851 .002 .87
ATOM	3026 CG2 VAL A 184	72.91250 .11148 .8161 .002 .87
ATOM	3027 1HG2 VAL A 184	73.80750 .00348 .2041 .002 .87
ATOM	3028 2HG2 VAL A 184	72.02950 .01648 .1831 .002 .87
ATOM	3029 3HG2 VAL A 184	72.92051 .11149 .2491 .002 .87
ATOM	3030 C VAL A 184	71.45048 .02951 .7431 .002 .87
ATOM	3031 O VAL A 184	70.56447 .21851 .4531 .002 .87
ATOM	3032 N ARG A 185	72.21147 .88152 .8391 .002 .80
ATOM	3033 H ARG A 185	72.91748 .58853 .0311 .002 .80
ATOM	3034 CA ARG A 185	72.01246 .75953 .7831 .002 .80
ATOM	3035 HA ARG A 185	72.04845 .82653 .2251 .002 .80
ATOM	3036 CB ARG A 185	73.14646 .74454 .8291 .002 .80
ATOM	3037 HB1 ARG A 185	$\begin{array}{lllllllllllll}72.841 & 46.111 & 55.665 & 1.00 & 2.80\end{array}$
ATOM	3038 HB2 ARG A 185	73.32047 .75455 .2041 .002 .80
ATOM	3039 CG ARG A 185	74.44546 .16554 .2351 .002 .80
ATOM	3040 HG1 ARG A 185	74.79246 .78853 .4091 .002 .80
ATOM	3041 HG2 ARG A 185	74.21345 .18053 .8291 .002 .80
ATOM	3042 CD ARG A 185	75.57745 .98255 .2661 .002 .80
ATOM	3043 HD1 ARG A 185	76.12745 .07954 .9911 .002 .80
ATOM	3044 HD2 ARG A 185	75.15845 .80656 .2581 .002 .80
ATOM	3045 NE ARG A 185	76.54447 .10255 .2831 .002 .80
ATOM	3046 HE ARG A 185	$\begin{array}{lllllllllll}77.321 & 47.027 & 54.647 & 1.00 & 2.80\end{array}$
ATOM	3047 CZ ARG A 185	76.52448 .18156 .0451 .002 .80
ATOM	3048 NH1 ARG A 185	77.43749 .10055 .9421 .002 .80
ATOM	3049 1HH1 ARG A 185	78.21049 .00655 .3121 .002 .80
ATOM	3050 2HH1 ARG A 185	77.33649 .94156 .5001 .002 .80
ATOM	3051 NH2 ARG A 185	75.61248 .40756 .9431 .002 .80
ATOM	3052 1HH2 ARG A 185	74.85447 .76357 .0441 .002 .80
ATOM	3053 2HH2 ARG A 185	75.62149 .31157 .3981 .002 .80
ATOM	3054 C ARG A 185	70.62646 .76954 .4351 .002 .80
ATOM	3055 O ARG A 185	69.96945 .72854 .4981 .002 .80
ATOM	3056 N LEU A 186	70.15947 .94354 .8501 .002 .69
ATOM	3057 H LEU A 186	70.76048 .75554 .7391 .002 .69
ATOM	3058 CA LEU A 186	68.81648 .16055 .3731 .002 .69
ATOM	3059 HA LEU A 186	68.65347 .52256 .2411 .002 .69
ATOM	3060 CB LEU A 186	68.69449 .63855 .7981 .002 .69
ATOM	3061 HB1 LEU A 186	67.63849 .88755 .9051 .002 .69
ATOM	3062 HB2 LEU A 186	69.09350 .25454 .9931 .002 .69
ATOM	3063 CG LEU A 186	69.41150 .01857 .1081 .002 .69
ATOM	3064 HG LEU A 186	70.38649 .53357 .1541 .002 .69
ATOM	3065 CD1 LEU A 186	69.61651 .53157 .1761 .002 .69
ATOM	3066 1HD1 LEU A 186	70.09851 .79958 .1151 .002 .69
ATOM	3067 2HD1 LEU A 186	70.24951 .86256 .3551 .002 .69
ATOM	3068 3HD1 LEU A 186	68.65852 .04757 .1131 .002 .69
ATOM	3069 CD2 LEU A 186	68.58549 .59758 .3281 .002 .69
ATOM	3070 1HD2 LEU A 186	69.09449 .91659 .2371 .002 .69
ATOM	3071 2HD2 LEU A 186	67.60250 .06758 .2821 .002 .69

ATOM	3072 3HD2 LEU A 186	68.48148 .51358 .3441 .002 .69
ATOM	3073 C LEU A 186	67.74547 .82054 .3431 .002 .69
ATOM	3074 O LEU A 186	66.83847 .07154 .6651 .002 .69
ATOM	3075 N SER A 187	67.88348 .28353 .0991 .002 .78
ATOM	3076 H SER A 187	68.66048 .90752 .9091 .002 .78
ATOM	3077 CA SER A 187	66.91748 .03952 .0211 .002 .78
ATOM	3078 HA SER A 187	65.93048 .35652 .3561 .002 .78
ATOM	3079 CB SER A 187	67.26448 .84650 .7641 .002 .78
ATOM	3080 HB1 SER A 187	66.55048 .59849 .9761 .002 .78
ATOM	3081 HB2 SER A 187	68.26948 .59250 .4241 .002 .78
ATOM	3082 OG SER A 187	67.18550 .23451 .0221 .002 .78
ATOM	3083 HG SER A 187	$68.00550 .50951 .461 \quad 1.002 .78$
ATOM	3084 C SER A 187	66.79446 .56651 .6711 .002 .78
ATOM	3085 O SER A 187	$65.69446 .06951 .431 \quad 1.002 .78$
ATOM	3086 N ARG A 188	67.90845 .82551 .7201 .002 .98
ATOM	3087 H ARG A 188	68.79346 .29851 .8861 .002 .98
ATOM	3088 CA ARG A 188	67.88544 .36351 .6201 .002 .98
ATOM	3089 HA ARG A 188	67.29744 .08550 .7441 .002 .98
ATOM	3090 CB ARG A 188	69.32043 .83451 .4381 .002 .98
ATOM	3091 HB1 ARG A 188	69.30842 .74651 .5231 .002 .98
ATOM	3092 HB2 ARG A 188	69.95544 .23252 .2311 .002 .98
ATOM	3093 CG ARG A 188	69.91244 .20850 .0651 .002 .98
ATOM	3094 HG1 ARG A 188	69.87045 .28749 .9201 .002 .98
ATOM	3095 HG2 ARG A 188	69.32543 .73149 .2791 .002 .98
ATOM	3096 CD ARG A 188	71.37343 .74749 .9561 .002 .98
ATOM	3097 HD1 ARG A 188	71.39542 .66250 .0731 .002 .98
ATOM	3098 HD2 ARG A 188	71.94344 .20050 .7691 .002 .98
ATOM	3099 NE ARG A 188	71.98644 .12848 .6631 .002 .98
ATOM	3100 HE ARG A 188	$71.52644 .85648 .140 \quad 1.002 .98$
ATOM	3101 CZ ARG A 188	73.09043 .61748 .1381 .002 .98
ATOM	3102 NH1 ARG A 188	73.55744 .04546 .9951 .002 .98
ATOM	3103 1HH1 ARG A 188	73.04744 .72746 .4621 .002 .98
ATOM	3104 2HH1 ARG A 188	74.39543 .64746 .6041 .002 .98
ATOM	3105 NH2 ARG A 188	$73.76642 .67848 .742 \quad 1.002 .98$
ATOM	3106 1HH2 ARG A 188	73.43642 .31649 .6181 .002 .98
ATOM	3107 2HH2 ARG A 188	74.59042 .29048 .3151 .002 .98
ATOM	3108 C ARG A 188	67.18143 .70752 .8041 .002 .98
ATOM	3109 O ARG A 188	66.43542 .75252 .5791 .002 .98
ATOM	3110 N LYS A 189	67.36544 .21354 .0371 .002 .83
ATOM	3111 H LYS A 189	68.02544 .97354 .1621 .002 .83
ATOM	3112 CA LYS A 189	$66.57343 .73255 .181 \quad 1.002 .83$
ATOM	3113 HA LYS A 189	66.66642 .64655 .1451 .002 .83
ATOM	3114 CB LYS A 189	67.10744 .17456 .5561 .002 .83
ATOM	3115 HB1 LYS A 189	66.62145 .10056 .8681 .002 .83
ATOM	3116 HB2 LYS A 189	68.18644 .33456 .5091 .002 .83
ATOM	3117 CG LYS A 189	66.81143 .03357 .5551 .002 .83
ATOM	3118 HG1 LYS A 189	67.42342 .16957 .2891 .002 .83
ATOM	3119 HG2 LYS A 189	$65.76642 .74257 .451 \quad 1.002 .83$
ATOM	3120 CD LYS A 189	67.06043 .37059 .0291 .002 .83
ATOM	3121 HD1 LYS A 189	66.47444 .25359 .2701 .002 .83
ATOM	3122 HD2 LYS A 189	68.11843 .58459 .1901 .002 .83
ATOM	3123 CE LYS A 189	66.61642 .17259 .8951 .002 .83
ATOM	3124 HE1 LYS A 189	67.30041 .33859 .7101 .002 .83

ATOM	3125 HE2 LYS A 189	65.62041 .85659 .5691 .002 .83
ATOM	3126 NZ LYS A 189	$66.56742 .478 \quad 61.3491 .002 .83$
ATOM	3127 HZ1 LYS A 189	66.34341 .65061 .8861 .002 .83
ATOM	3128 HZ2 LYS A 189	67.44542 .84561 .6891 .002 .83
ATOM	3129 HZ3 LYS A 189	$65.84043 .167 \quad 61.5361 .002 .83$
ATOM	3130 C LYS A 189	65.06443 .96754 .9931 .002 .83
ATOM	3131 O LYS A 189	64.29043 .02355 .1401 .002 .83
ATOM	3132 N LEU A 190	64.66745 .17254 .5801 .002 .76
ATOM	3133 H LEU A 190	65.37745 .89154 .4961 .002 .76
ATOM	3134 CA LEU A 190	63.28745 .54854 .3001 .002 .76
ATOM	3135 HA LEU A 190	62.72245 .36955 .2141 .002 .76
ATOM	3136 CB LEU A 190	63.19047 .04953 .9741 .002 .76
ATOM	3137 HB1 LEU A 190	63.74547 .24553 .0561 .002 .76
ATOM	3138 HB2 LEU A 190	63.66647 .60754 .7781 .002 .76
ATOM	3139 CG LEU A 190	61.74747 .57453 .8031 .002 .76
ATOM	3140 HG LEU A 190	61.27647 .07652 .9561 .002 .76
ATOM	3141 CD1 LEU A 190	60.86647 .38655 .0421 .002 .76
ATOM	3142 1HD1 LEU A 190	59.89747 .85854 .8841 .002 .76
ATOM	3143 2HD1 LEU A 190	60.70246 .32555 .2251 .002 .76
ATOM	3144 3HD1 LEU A 190	61.34447 .83355 .9121 .002 .76
ATOM	3145 CD2 LEU A 190	61.80649 .07353 .5071 .002 .76
ATOM	3146 1HD2 LEU A 190	60.79849 .44753 .3401 .002 .76
ATOM	3147 2HD2 LEU A 190	62.25849 .61054 .3421 .002 .76
ATOM	3148 3HD2 LEU A 190	62.39249 .24652 .6051 .002 .76
ATOM	3149 C LEU A 190	62.64544 .67653 .2111 .002 .76
ATOM	3150 O LEU A 190	61.52944 .19853 .4071 .002 .76
ATOM	3151 N ASN A 191	63.35044 .37852 .1161 .002 .97
ATOM	3152 H ASN A 191	64.22144 .86751 .9441 .002 .97
ATOM	3153 CA ASN A 191	62.86243 .40251 .1431 .002 .97
ATOM	3154 HA ASN A 191	61.84043 .69150 .8891 .002 .97
ATOM	3155 CB ASN A 191	$63.68643 .41249 .832 \quad 1.002 .97$
ATOM	3156 HB1 ASN A 191	63.72342 .39749 .4351 .002 .97
ATOM	3157 HB2 ASN A 191	64.70643 .74250 .0241 .002 .97
ATOM	3158 CG ASN A 191	63.06744 .28248 .7371 .002 .97
ATOM	3159 OD1 ASN A 191	62.10244 .99848 .9271 .002 .97
ATOM	3160 ND2 ASN A 191	63.57544 .25847 .5241 .002 .97
ATOM	3161 1HD2 ASN A 191	64.35143 .66547 .2951 .002 .97
ATOM	3162 2HD2 ASN A 191	63.17544 .91346 .8751 .002 .97
ATOM	3163 C ASN A 191	62.68941 .98651 .7341 .002 .97
ATOM	3164 O ASN A 191	61.62941 .36951 .6031 .002 .97
ATOM	3165 N ARG A 192	63.69641 .50452 .4741 .003 .06
ATOM	3166 H ARG A 192	64.51542 .09852 .5731 .003 .06
ATOM	3167 CA ARG A 192	63.66540 .24853 .2551 .003 .06
ATOM	3168 HA ARG A 192	63.27739 .44852 .6241 .003 .06
ATOM	3169 CB ARG A 192	65.10939 .90953 .7021 .003 .06
ATOM	3170 HB1 ARG A 192	65.09939 .10454 .4381 .003 .06
ATOM	3171 HB2 ARG A 192	65.52840 .78354 .2001 .003 .06
ATOM	3172 CG ARG A 192	66.05539 .49352 .5621 .003 .06
ATOM	3173 HG1 ARG A 192	67.08139 .71652 .8601 .003 .06
ATOM	3174 HG2 ARG A 192	65.83640 .08451 .6731 .003 .06
ATOM	3175 CD ARG A 192	65.95137 .99852 .2101 .003 .06
ATOM	3176 HD1 ARG A 192	66.40837 .83751 .2321 .003 .06
ATOM	3177 HD2 ARG A 192	64.89537 .73152 .1191 .003 .06

ATOM	3178 NE ARG A 192	66.60237 .11353 .2101 .003 .06
ATOM	3179 HE ARG A 192	$65.98836 .66653 .872 \quad 1.003 .06$
ATOM	3180 CZ ARG A 192	67.88836 .79553 .2801 .003 .06
ATOM	3181 NH1 ARG A 192	68.31335 .87654 .1021 .003 .06
ATOM	3182 1HH1 ARG A 192	$\begin{array}{lllllllllllllll} & 67.655 & 35.365 & 54.666 & 1.00 & 3.06\end{array}$
ATOM	3183 2HH1 ARG A 192	69.287 35.63354 .1381 .003 .06
ATOM	3184 NH2 ARG A 192	68.77737 .38052 .5301 .003 .06
ATOM	3185 1HH2 ARG A 192	68.459 38.07951 .8841 .003 .06
ATOM	3186 2HH2 ARG A 192	69.742 37.10752 .5691 .003 .06
ATOM	3187 C ARG A 192	62.73740 .29254 .4851 .003 .06
ATOM	3188 O ARG A 192	62.82739 .41355 .3401 .003 .06
ATOM	3189 N ILE A 193	61.86141 .29254 .5881 .002 .91
ATOM	3190 H ILE A 193	61.92742 .02453 .8981 .002 .91
ATOM	3191 CA ILE A 193	60.86641 .45055 .6561 .002 .91
ATOM	3192 HA ILE A 193	$60.86040 .565 \quad 56.2931 .002 .91$
ATOM	3193 CB ILE A 193	61.24142 .67956 .5141 .002 .91
ATOM	3194 HB ILE A 193	61.67543 .43355 .8601 .002 .91
ATOM	3195 CG2 ILE A 193	60.04443 .35457 .2161 .002 .91
ATOM	3196 1HG2 ILE A 193	59.50042 .64457 .8341 .002 .91
ATOM	3197 2HG2 ILE A 193	60.37644 .18257 .8361 .002 .91
ATOM	3198 3HG2 ILE A 193	59.36743 .77556 .4761 .002 .91
ATOM	3199 CG1 ILE A 193	62.32542 .22857 .5081 .002 .91
ATOM	3200 1HG1 ILE A 193	63.08341 .64056 .9921 .002 .91
ATOM	3201 2HG1 ILE A 193	61.87741 .58458 .2621 .002 .91
ATOM	3202 CD1 ILE A 193	63.04043 .39858 .1741 .002 .91
ATOM	3203 HD1 ILE A 193	63.80643 .00358 .8381 .002 .91
ATOM	3204 HD2 ILE A 193	63.50644 .03557 .4251 .002 .91
ATOM	3205 HD3 ILE A 193	62.33643 .99558 .7471 .002 .91
ATOM	3206 C ILE A 193	59.45941 .56855 .0831 .002 .91
ATOM	3207 O ILE A 193	58.53640 .94155 .5961 .002 .91
ATOM	3208 N LEU A 194	59.30142 .30653 .9841 .003 .02
ATOM	3209 H LEU A 194	60.08342 .85353 .6431 .003 .02
ATOM	3210 CA LEU A 194	58.02342 .42953 .2951 .003 .02
ATOM	3211 HA LEU A 194	57.23042 .32854 .0371 .003 .02
ATOM	3212 CB LEU A 194	57.89343 .83852 .7041 .003 .02
ATOM	3213 HB1 LEU A 194	56.93143 .90552 .1951 .003 .02
ATOM	3214 HB2 LEU A 194	58.68443 .98951 .9671 .003 .02
ATOM	3215 CG LEU A 194	57.97644 .95453 .7711 .003 .02
ATOM	3216 HG LEU A 194	58.98044 .97854 .1891 .003 .02
ATOM	3217 CD1 LEU A 194	57.71846 .30553 .1061 .003 .02
ATOM	3218 1HD1 LEU A 194	58.47046 .47052 .3321 .003 .02
ATOM	3219 2HD1 LEU A 194	56.73246 .30052 .6551 .003 .02
ATOM	3220 3HD1 LEU A 194	57.79747 .10353 .8441 .003 .02
ATOM	3221 CD2 LEU A 194	56.98544 .80354 .9331 .003 .02
ATOM	3222 1HD2 LEU A 194	56.98145 .70955 .5391 .003 .02
ATOM	3223 2HD2 LEU A 194	55.98544 .61554 .5541 .003 .02
ATOM	3224 3HD2 LEU A 194	57.27843 .96855 .5681 .003 .02
ATOM	3225 C LEU A 194	57.73141 .29752 .3101 .003 .02
ATOM	3226 O LEU A 194	56.56941 .09651 .9831 .003 .02
ATOM	3227 N GLN A 195	58.73240 .51751 .8891 .003 .45
ATOM	3228 H GLN A 195	59.68740 .80352 .0711 .003 .45
ATOM	3229 CA GLN A 195	58.50539 .28051 .1331 .003 .45
ATOM	3230 HA GLN A 195	57.70339 .47650 .4391 .003 .45

ATOM	3231 CB GLN A 195	59.76639 .00450 .2901 .003 .45
ATOM	3232 HB1 GLN A 195	60.65038 .98150 .9251 .003 .45
ATOM	3233 HB2 GLN A 195	59.90539 .85049 .6161 .003 .45
ATOM	3234 CG GLN A 195	59.69937 .72549 .4361 .003 .45
ATOM	3235 HG1 GLN A 195	$\begin{array}{lllllllllll}60.323 & 37.862 & 48.554 & 1.00 & 3.45\end{array}$
ATOM	3236 HG2 GLN A 195	58.67537 .56649 .0951 .003 .45
ATOM	3237 CD GLN A 195	60.20436 .47650 .1561 .003 .45
ATOM	3238 OE1 GLN A 195	61.03436 .52151 .0501 .003 .45
ATOM	3239 NE2 GLN A 195	59.74235 .30249 .7881 .003 .45
ATOM	3240 1HE2 GLN A 195	59.00635 .22349 .0931 .003 .45
ATOM	3241 2HE2 GLN A 195	$60.11234 .501 \quad 50.267 \quad 1.003 .45$
ATOM	3242 C GLN A 195	58.03238 .04951 .9571 .003 .45
ATOM	3243 O GLN A 195	57.03437 .41751 .5881 .003 .45
ATOM	3244 N PRO A 196	58.69537 .66353 .0681 .004 .43
ATOM	3245 CD PRO A 196	59.87338 .28453 .6621 .004 .43
ATOM	3246 HD1 PRO A 196	59.68239 .31353 .9431 .004 .43
ATOM	3247 HD2 PRO A 196	60.71338 .23452 .9711 .004 .43
ATOM	3248 CG PRO A 196	60.20337 .46154 .9041 .004 .43
ATOM	3249 HG1 PRO A 196	59.59637 .79555 .7471 .004 .43
ATOM	3250 HG2 PRO A 196	61.26237 .48555 .1501 .004 .43
ATOM	3251 CB PRO A 196	59.77836 .06954 .4671 .004 .43
ATOM	3252 HB1 PRO A 196	59.64835 .39755 .3151 .004 .43
ATOM	3253 HB2 PRO A 196	60.52935 .66053 .7881 .004 .43
ATOM	3254 CA PRO A 196	58.48836 .34953 .6841 .004 .43
ATOM	3255 HA PRO A 196	58.40935 .60552 .8921 .004 .43
ATOM	3256 C PRO A 196	57.21936 .19754 .5431 .004 .43
ATOM	3257 O PRO A 196	57.19735 .42255 .5001 .004 .43
ATOM	3258 N CYS A 197	56.16136 .94854 .2511 .006 .71
ATOM	3259 H CYS A 197	56.24737 .53753 .4311 .006 .71
ATOM	3260 CA CYS A 197	54.80536 .49754 .5651 .006 .71
ATOM	3261 HA CYS A 197	54.78535 .90055 .4771 .006 .71
ATOM	3262 CB CYS A 197	$53.93337 .76054 .760 \quad 1.006 .71$
ATOM	3263 HB1 CYS A 197	$53.59938 .16053 .800 \quad 1.006 .71$
ATOM	3264 HB2 CYS A 197	54.51938 .53155 .2591 .006 .71
ATOM	3265 SG CYS A 197	52.48537 .40555 .7911 .006 .71
ATOM	3266 HG CYS A 197	51.92636 .48354 .9691 .006 .71
ATOM	3267 C CYS A 197	$\begin{array}{llllllllllllll}54.371 & 35.593 & 53.4211 .00 ~ & 6.71\end{array}$
ATOM	3268 O CYS A 197	54.41034 .36853 .5091 .006 .71
ATOM	3269 N GLU A 198	$\begin{array}{lllllllllll}54.182 & 36.219 & 52.2691 .00 ~ & 7.80\end{array}$
ATOM	3270 H GLU A 198	54.36337 .20952 .2191 .007 .80
ATOM	3271 CA GLU A 198	53.71335 .59951 .0471 .007 .80
ATOM	3272 HA GLU A 198	54.09234 .57851 .0001 .007 .80
ATOM	3273 CB GLU A 198	52.17235 .54350 .9601 .007 .80
ATOM	3274 HB1 GLU A 198	51.90935 .55349 .9011 .007 .80
ATOM	3275 HB2 GLU A 198	51.73236 .42951 .4091 .007 .80
ATOM	3276 CG GLU A 198	51.53334 .27051 .5601 .007 .80
ATOM	3277 HG1 GLU A 198	52.14633 .40751 .2861 .007 .80
ATOM	3278 HG2 GLU A 198	50.56434 .13651 .0731 .007 .80
ATOM	3279 CD GLU A 198	$\begin{array}{lllllllllll}51.290 & 34.279 & 53.085 & 1.00 & 7.80\end{array}$
ATOM	3280 OE1 GLU A 198	50.92733 .20453 .6201 .007 .80
ATOM	3281 OE2 GLU A 198	51.42235 .36453 .6991 .007 .80
ATOM	3282 C GLU A 198	54.34836 .37249 .9161 .007 .80
ATOM	3283 O GLU A 198	54.66737 .53550 .0991 .007 .80

ATOM	3284 N THR A 199	54.57635 .76448 .7541 .008 .80
ATOM	3285 H THR A 199	54.27534 .80848 .6181 .008 .80
ATOM	3286 CA THR A 199	55.32836 .45347 .6871 .008 .80
ATOM	3287 HA THR A 199	55.84937 .29748 .1121 .008 .80
ATOM	3288 CB THR A 199	56.44235 .53747 .1501 .008 .80
ATOM	3289 HB THR A 199	55.99734 .65646 .6871 .008 .80
ATOM	3290 CG2 THR A 199	57.41836 .18946 .1701 .008 .80
ATOM	3291 1HG2 THR A 199	57.79137 .12746 .5821 .008 .80
ATOM	3292 2HG2 THR A 199	58.25435 .51545 .9831 .008 .80
ATOM	3293 3HG2 THR A 199	56.92236 .38245 .2191 .008 .80
ATOM	3294 OG1 THR A 199	57.24535 .13348 .2391 .008 .80
ATOM	3295 HG1 THR A 199	56.64735 .00748 .9841 .008 .80
ATOM	3296 C THR A 199	54.42036 .96546 .5711 .008 .80
ATOM	3297 O THR A 199	54.85037 .76845 .7521 .008 .80
ATOM	3298 N GLU A 200	53.14536 .58546 .5921 .0010 .18
ATOM	3299 H GLU A 200	52.85835 .87847 .2471 .0010 .18
ATOM	3300 CA GLU A 200	$52.088 \quad 37.24245 .820 \quad 1.0010 .18$
ATOM	3301 HA GLU A 200	52.52937 .91745 .0891 .0010 .18
ATOM	3302 CB GLU A 200	51.28636 .20745 .0181 .0010 .18
ATOM	3303 HB1 GLU A 200	$50.363 \quad 36.66244 .6581 .0010 .18$
ATOM	3304 HB2 GLU A 200	51.03235 .36745 .6661 .0010 .18
ATOM	3305 CG GLU A 200	52.09735 .72643 .8031 .0010 .18
ATOM	3306 HG1 GLU A 200	53.09435 .41544 .1281 .0010 .18
ATOM	3307 HG2 GLU A 200	52.22336 .55743 .1041 .0010 .18
ATOM	3308 CD GLU A 200	51.41334 .54343 .1101 .0010 .18
ATOM	3309 OE1 GLU A 200	50.81834 .75242 .0311 .0010 .18
ATOM	3310 OE2 GLU A 200	51.50133 .44243 .6991 .0010 .18
ATOM	3311 C GLU A 200	51.20138 .13046 .6861 .0010 .18
ATOM	3312 O GLU A 200	
ATOM	3313 N ASP A 201	$51.183 \quad 37.95648 .0231 .0010 .69$
ATOM	3314 H ASP A 201	51.57137 .12948 .4381 .0010 .69
ATOM	3315 CA ASP A 201	51.07739 .15648 .8611 .0010 .69
ATOM	3316 HA ASP A 201	50.15639 .68048 .5931 .0010 .69
ATOM	3317 CB ASP A 201	51.02338 .91950 .3801 .0010 .69
ATOM	3318 HB1 ASP A 201	51.97638 .50350 .7051 .0010 .69
ATOM	3319 HB2 ASP A 201	50.23138 .20250 .6021 .0010 .69
ATOM	3320 CG ASP A 201	50.74840 .23051 .1601 .0010 .69
ATOM	3321 OD1 ASP A 201	49.63740 .78651 .0221 .0010 .69
ATOM	3322 OD2 ASP A 201	51.65640 .68751 .8931 .0010 .69
ATOM	3323 C ASP A 201	52.24740 .06548 .4931 .0010 .69
ATOM	3324 O ASP A 201	52.00441 .05647 .8631 .0010 .69
ATOM	3325 N LEU A 202	53.52339 .71348 .6481 .0010 .16
ATOM	3326 H LEU A 202	53.72138 .89049 .2061 .0010 .16
ATOM	3327 CA LEU A 202	54.65840 .58148 .2961 .0010 .16
ATOM	3328 HA LEU A 202	54.75041 .33849 .0731 .0010 .16
ATOM	3329 CB LEU A 202	55.98539 .81548 .2831 .0010 .16
ATOM	3330 HB1 LEU A 202	55.88239 .02047 .5681 .0010 .16
ATOM	3331 HB2 LEU A 202	56.09039 .37249 .2661 .0010 .16
ATOM	3332 CG LEU A 202	57.31740 .51247 .9141 .0010 .16
ATOM	3333 HG LEU A 202	58.09439 .83748 .2571 .0010 .16
ATOM	3334 CD1 LEU A 202	57.58840 .66246 .4131 .0010 .16
ATOM	3335 1HD1 LEU A 202	58.64440 .88046 .2591 .0010 .16
ATOM	3336 2HD1 LEU A 202	57.34139 .73445 .8991 .0010 .16

ATOM	3337 3HD1 LEU A 202	57.00941 .47845 .9901 .0010 .16
ATOM	3338 CD2 LEU A 202	57.55841 .85748 .5841 .0010 .16
ATOM	3339 1HD2 LEU A 202	58.59942 .15348 .4611 .0010 .16
ATOM	3340 2HD2 LEU A 202	56.92242 .61748 .1491 .0010 .16
ATOM	3341 3HD2 LEU A 202	57.33141 .78349 .6431 .0010 .16
ATOM	3342 C LEU A 202	54.52741 .28946 .9681 .0010 .16
ATOM	3343 O LEU A 202	54.88642 .44346 .8941 .0010 .16
ATOM	3344 N ARG A 203	54.04040 .65245 .9121 .0011 .14
ATOM	3345 H ARG A 203	53.79439 .67746 .0151 .0011 .14
ATOM	3346 CA ARG A 203	53.91841 .29944 .6121 .0011 .14
ATOM	3347 HA ARG A 203	54.72842 .00644 .4941 .0011 .14
ATOM	3348 CB ARG A 203	54.05440 .20343 .5211 .0011 .14
ATOM	3349 HB1 ARG A 203	53.18940 .21042 .8531 .0011 .14
ATOM	3350 HB2 ARG A 203	54.05739 .21643 .9731 .0011 .14
ATOM	3351 CG ARG A 203	55.32940 .33842 .6811 .0011 .14
ATOM	3352 HG1 ARG A 203	55.55239 .37542 .2191 .0011 .14
ATOM	3353 HG2 ARG A 203	56.16540 .61343 .3261 .0011 .14
ATOM	3354 CD ARG A 203	55.14241 .38141 .5711 .0011 .14
ATOM	3355 HD1 ARG A 203	54.70642 .28342 .0001 .0011 .14
ATOM	3356 HD2 ARG A 203	54.42740 .98940 .8451 .0011 .14
ATOM	3357 NE ARG A 203	56.42041 .68440 .8901 .0011 .14
ATOM	3358 HE ARG A 203	56.79740 .95940 .2991 .0011 .14
ATOM	3359 CZ ARG A 203	57.12642 .79341 .0211 .0011 .14
ATOM	3360 NH1 ARG A 203	58.27242 .89540 .4071 .0011 .14
ATOM	3361 1HH1 ARG A 203	58.82943 .72640 .4931 .0011 .14
ATOM	3362 2HH1 ARG A 203	58.60542 .14539 .8271 .0011 .14
ATOM	3363 NH2 ARG A 203	56.71443 .79541 .7531 .0011 .14
ATOM	3364 1HH2 ARG A 203	57.29044 .60841 .9021 .0011 .14
ATOM	3365 2HH2 ARG A 203	55.81743 .73342 .2051 .0011 .14
ATOM	3366 C ARG A 203	52.62542 .02944 .3711 .0011 .14
ATOM	3367 O ARG A 203	52.64242 .82943 .4371 .0011 .14
ATOM	3368 N ASP A 204	51.57641 .81545 .1641 .0011 .83
ATOM	3369 H ASP A 204	51.59941 .06845 .8541 .0011 .83
ATOM	3370 CA ASP A 204	50.35442 .60945 .0651 .0011 .83
ATOM	3371 HA ASP A 204	50.56043 .30444 .2601 .0011 .83
ATOM	3372 CB ASP A 204	49.12641 .80744 .6061 .0011 .83
ATOM	3373 HB1 ASP A 204	48.60641 .39745 .4731 .0011 .83
ATOM	3374 HB2 ASP A 204	49.45140 .98043 .9721 .0011 .83
ATOM	3375 CG ASP A 204	48.17742 .69343 .7801 .0011 .83
ATOM	3376 OD1 ASP A 204	$46.98842 .36543 .592 \quad 1.0011 .83$
ATOM	3377 OD2 ASP A 204	48.64343 .68743 .1731 .0011 .83
ATOM	3378 C ASP A 204	50.05343 .57746 .1971 .0011 .83
ATOM	3379 O ASP A 204	49.31644 .52546 .0261 .0011 .83
ATOM	3380 N VAL A 205	50.76043 .40847 .2881 .0011 .33
ATOM	3381 H VAL A 205	51.17442 .48647 .3701 .0011 .33
ATOM	3382 CA VAL A 205	51.21144 .35148 .2931 .0011 .33
ATOM	3383 HA VAL A 205	50.36745 .01448 .4831 .0011 .33
ATOM	3384 CB VAL A 205	51.50543 .56949 .5971 .0011 .33
ATOM	3385 HB VAL A 205	51.02142 .60049 .5211 .0011 .33
ATOM	3386 CG1 VAL A 205	52.98743 .30049 .8431 .0011 .33
ATOM	3387 1HG1 VAL A 205	53.10142 .54750 .6251 .0011 .33
ATOM	3388 2HG1 VAL A 205	53.42342 .93348 .9251 .0011 .33
ATOM	3389 3HG1 VAL A 205	$53.50544 .19950 .122 \quad 1.0011 .33$

ATOM	3390 CG2 VAL A 205	50.86244 .20250 .8211 .0011 .33
ATOM	3391 1HG2 VAL A 205	51.11743 .61851 .7051 .0011 .33
ATOM	3392 2HG2 VAL A 205	51.16945 .23850 .9191 .0011 .33
ATOM	3393 3HG2 VAL A 205	49.78244 .12750 .6971 .0011 .33
ATOM	3394 C VAL A 205	52.34545 .24147 .7751 .0011 .33
ATOM	3395 O VAL A 205	52.41746 .39748 .2121 .0011 .33
ATOM	3396 N PHE A 206	53.12344 .74846 .7781 .0011 .76
ATOM	3397 H PHE A 206	53.05643 .75546 .6171 .0011 .76
ATOM	3398 CA PHE A 206	54.02345 .52245 .9041 .0011 .76
ATOM	3399 HA PHE A 206	54.39446 .30846 .5021 .0011 .76
ATOM	3400 CB PHE A 206	55.24644 .80045 .3121 .0011 .76
ATOM	3401 HB1 PHE A 206	54.89744 .01644 .6531 .0011 .76
ATOM	3402 HB2 PHE A 206	55.77944 .38046 .1561 .0011 .76
ATOM	3403 CG PHE A 206	56.31045 .60244 .5611 .0011 .76
ATOM	3404 CD1 PHE A 206	57.65245 .49244 .9801 .0011 .76
ATOM	3405 HD1 PHE A 206	57.90244 .89145 .8441 .0011 .76
ATOM	3406 CE1 PHE A 206	58.68246 .13944 .2761 .0011 .76
ATOM	3407 HE1 PHE A 206	59.70446 .03744 .6111 .0011 .76
ATOM	3408 CZ PHE A 206	58.38046 .93343 .1581 .0011 .76
ATOM	3409 HZ PHE A 206	59.16447 .46742 .6371 .0011 .76
ATOM	3410 CE2 PHE A 206	57.04947 .05442 .7311 .0011 .76
ATOM	3411 HE2 PHE A 206	56.80547 .69041 .8891 .0011 .76
ATOM	3412 CD2 PHE A 206	56.02646 .36943 .4081 .0011 .76
ATOM	3413 HD2 PHE A 206	55.02446 .45543 .0221 .0011 .76
ATOM	3414 C PHE A 206	53.30146 .32444 .8411 .0011 .76
ATOM	3415 O PHE A 206	53.49947 .52944 .7431 .0011 .76
ATOM	3416 N ARG A 207	52.51645 .71043 .9701 .0013 .42
ATOM	3417 H ARG A 207	$52.34644 .71344 .052 \quad 1.0013 .42$
ATOM	3418 CA ARG A 207	51.88846 .46942 .8981 .0013 .42
ATOM	3419 HA ARG A 207	52.60147 .17042 .4631 .0013 .42
ATOM	3420 CB ARG A 207	51.43345 .46641 .8161 .0013 .42
ATOM	3421 HB1 ARG A 207	50.80844 .71342 .2931 .0013 .42
ATOM	3422 HB2 ARG A 207	52.30944 .94941 .4211 .0013 .42
ATOM	3423 CG ARG A 207	50.66446 .09440 .6351 .0013 .42
ATOM	3424 HG1 ARG A 207	51.37446 .61339 .9911 .0013 .42
ATOM	3425 HG2 ARG A 207	49.93446 .82140 .9911 .0013 .42
ATOM	3426 CD ARG A 207	49.91045 .03939 .8101 .0013 .42
ATOM	3427 HD1 ARG A 207	50.60344 .24739 .5201 .0013 .42
ATOM	3428 HD2 ARG A 207	49.53745 .51738 .9041 .0013 .42
ATOM	3429 NE ARG A 207	48.79644 .45340 .5821 .0013 .42
ATOM	3430 HE ARG A 207	49.00844 .12141 .5241 .0013 .42
ATOM	3431 CZ ARG A 207	$47.51844 .33940 .281 \quad 1.0013 .42$
ATOM	3432 NH1 ARG A 207	$46.69743 .82041 .142 \quad 1.0013 .42$
ATOM	3433 1HH1 ARG A 207	47.07443 .49642 .0471 .0013 .42
ATOM	3434 2HH1 ARG A 207	$45.72343 .69440 .978 \quad 1.0013 .42$
ATOM	3435 NH2 ARG A 207	47.04544 .73639 .1331 .0013 .42
ATOM	3436 1HH2 ARG A 207	47.68745 .13638 .4791 .0013 .42
ATOM	3437 2HH2 ARG A 207	$46.06844 .64238 .942 \quad 1.0013 .42$
ATOM	3438 C ARG A 207	50.72547 .30643 .4131 .0013 .42
ATOM	3439 O ARG A 207	50.84548 .53443 .4681 .0013 .42
ATOM	3440 N LEU A 208	49.64946 .65243 .8731 .0014 .00
ATOM	3441 H LEU A 208	49.63945 .63643 .8651 .0014 .00
ATOM	3442 CA LEU A 208	48.90047 .28344 .9451 .0014 .00

ATOM	3443 HA LEU A 208	48.77148 .33244 .6801 .0014 .00
ATOM	3444 CB LEU A 208	47.45546 .73445 .0951 .0014 .00
ATOM	3445 HB1 LEU A 208	46.91147 .38745 .7781 .0014 .00
ATOM	3446 HB2 LEU A 208	47.44645 .75145 .5491 .0014 .00
ATOM	3447 CG LEU A 208	46.65346 .63643 .7831 .0014 .00
ATOM	3448 HG LEU A 208	47.18446 .01843 .0621 .0014 .00
ATOM	3449 CD1 LEU A 208	45.29245 .99344 .0531 .0014 .00
ATOM	3450 1HD1 LEU A 208	44.71245 .93943 .1341 .0014 .00
ATOM	3451 2HD1 LEU A 208	$45.45144 .97744 .421 \quad 1.0014 .00$
ATOM	3452 3HD1 LEU A 208	44.74546 .56044 .8051 .0014 .00
ATOM	3453 CD2 LEU A 208	46.39948 .01143 .1541 .0014 .00
ATOM	3454 1HD2 LEU A 208	45.79547 .89542 .2551 .0014 .00
ATOM	3455 2HD2 LEU A 208	45.87348 .65443 .8581 .0014 .00
ATOM	3456 3HD2 LEU A 208	47.34648 .47142 .8741 .0014 .00
ATOM	3457 C LEU A 208	49.76447 .29946 .1831 .0014 .00
ATOM	3458 O LEU A 208	50.91146 .91246 .1471 .0014 .00
ATOM	3459 N PHE A 209	49.29848 .03347 .1581 .0014 .08
ATOM	3460 H PHE A 209	48.30248 .04247 .2281 .0014 .08
ATOM	3461 CA PHE A 209	50.01348 .92848 .0471 .0014 .08
ATOM	3462 HA PHE A 209	49.39049 .81748 .0971 .0014 .08
ATOM	3463 CB PHE A 209	$49.91248 .29949 .442 \quad 1.0014 .08$
ATOM	3464 HB1 PHE A 209	50.27849 .01450 .1751 .0014 .08
ATOM	3465 HB2 PHE A 209	50.56147 .42849 .4831 .0014 .08
ATOM	3466 CG PHE A 209	48.47647 .86149 .7961 .0014 .08
ATOM	3467 CD1 PHE A 209	47.34348 .61949 .4091 .0014 .08
ATOM	3468 HD1 PHE A 209	47.45449 .53648 .8521 .0014 .08
ATOM	3469 CE1 PHE A 209	46.04348 .20149 .7481 .0014 .08
ATOM	3470 HE1 PHE A 209	45.18948 .78749 .4381 .0014 .08
ATOM	3471 CZ PHE A 209	45.85547 .02550 .4901 .0014 .08
ATOM	3472 HZ PHE A 209	44.85746 .69850 .7441 .0014 .08
ATOM	3473 CE2 PHE A 209	46.96946 .28250 .9051 .0014 .08
ATOM	3474 HE2 PHE A 209	46.82445 .38051 .4811 .0014 .08
ATOM	3475 CD2 PHE A 209	48.26546 .70750 .5681 .0014 .08
ATOM	3476 HD2 PHE A 209	49.10846 .14550 .9161 .0014 .08
ATOM	3477 C PHE A 209	51.32849 .54547 .5731 .0014 .08
ATOM	3478 O PHE A 209	52.00050 .15548 .4131 .0014 .08
ATOM	3479 N GLY A 210	51.61249 .51846 .2481 .0014 .71
ATOM	3480 H GLY A 210	51.10448 .87145 .6661 .0014 .71
ATOM	3481 CA GLY A 210	52.69650 .21245 .5851 .0014 .71
ATOM	3482 HA1 GLY A 210	52.45451 .27145 .4941 .0014 .71
ATOM	3483 HA2 GLY A 210	52.88649 .79144 .5981 .0014 .71
ATOM	3484 C GLY A 210	53.93850 .07046 .4751 .0014 .71
ATOM	3485 O GLY A 210	54.47251 .09346 .8831 .0014 .71
ATOM	3486 N LEU A 211	54.27848 .83746 .9031 .0014 .96
ATOM	3487 H LEU A 211	53.70348 .08146 .5471 .0014 .96
ATOM	3488 CA LEU A 211	55.12948 .57648 .0551 .0014 .96
ATOM	3489 HA LEU A 211	54.54948 .85648 .9031 .0014 .96
ATOM	3490 CB LEU A 211	55.64047 .11648 .2511 .0014 .96
ATOM	3491 HB1 LEU A 211	56.07746 .79547 .3091 .0014 .96
ATOM	3492 HB2 LEU A 211	54.76446 .52148 .4651 .0014 .96
ATOM	3493 CG LEU A 211	56.66546 .67149 .3281 .0014 .96
ATOM	3494 HG LEU A 211	56.32446 .95350 .3141 .0014 .96
ATOM	3495 CD1 LEU A 211	56.72945 .14749 .2631 .0014 .96

	11	55.74944 .70949 .453
A	3498 3HD1 LEU A 211	57.06244 .83948 .274
ATO	3499 CD2 LEU A 211	58.11447 .14349 .1621 .00
ATOM	3500 1HD2 LEU A 211	58.19948 .20649 .3751 .00
ATOM	3501 2HD2 LEU A 211	58.76446 .62449 .869
OM	3502 3HD2 LEU A 211	58.46246 .93348 .1521 .0014 .96
O	3503 C LEU A 211	56.35749 .45748 .0181 .0014 .96
ATOM	3504 O LEU A 211	56.57750 .29448 .8961 .0014 .96
ATOM	3505 N LEU A 212	57.12649 .27346 .9511 .0015 .82
ATOM	3506 H LEU A 212	56.86048 .57346 .2771 .001
ATOM	3507 CA LEU A 212	58.06750 .28846 .5871 .00
ATOM	3508 HA LEU A 212	569 50.66147
A	3509 CB LEU A 212	.760
ATOM	3510 HB1	70750.62845 .255
ATOM	3511 HB2 LEU	58.65749 .31744 .7411 .00
OM	3512 CG LEU A	60.17248 .74746 .1531 .00
M	3513 HG LEU A 212	59.67147 .79946 .3341 .00
OM	3514 CD1 LEU A 212	61.28648 .53045 .1201 .0015 .82
ATOM	3515 1HD1 LEU A 212	61.95647 .74145 .4591 .0015
O	3516 2HD1 LEU A 212	60.86248 .24244 .1601 .00
M	3517 3HD1 LEU A 212	61.86249 .44744 .9871 .00
ATOM	3518 CD2 LEU	60.84749 .19647 .450
ATOM	3519 1HD2 LEU A 212	61.60348 .46647 .743
ATOM	3520 2HD2 LEU A 212	220 50.16
ATOM	3521 3HD2 LEU A 212	60.11449 .25248 .252
ATOM	3522 C LEU A 212	57.35451 .48845 .959
ATOM	3523 O LEU A 212	57.42252 .60546 .4671 .00
ATOM	3524 N THR A 213	56.65751 .20544 .8621 .0017 .40
AT	3525 H THR A 213	56.73150 .25544 .5351 .0017 .40
ATOM	3526 CA THR A 213	$\begin{array}{llllllllllll}55.602 & 51.98244 .2061 .00 ~ & 17.40\end{array}$
ATOM	3527 HA THR A 213	54.81252 .26544 .9041 .0017 .40
ATOM	3528 CB THR A 213	56.13953 .28143 .5691 .00
ATOM	3529 HB THR A 213	57.11453 .09543 .1181 .00
ATOM	3530 CG2 THR A 213	55.22753 .91742 .5161 .00
ATOM	3531 1HG2 THR A 213	55.63154 .88842 .2281 .00
AT	3532 2HG2 THR A 213	55.18953 .29241 .624
ATOM	3533 3HG2 THR A 213	54.22554 .05042 .922
ATOM	3534 OG1 THR A 213	56.26754 .26044 .578
ATOM	3535 HG1 THR A 213	56.75753 .82145 .2881 .00
ATOM	3536 C THR	54.97651 .09443 .124
M	3537	55.30149 .93842 .8551 .0017 .40

Appendix 9: RaxML scripts

Model test:

GTRGAMMA: (100 runs)
raxmlHPC-PTHREADS-SSE3 -s 60_teleosts_nt_aligned.fasta -p 76565454343434 -m GTRGAMMA -
N 20 -T 30 -n ModelTest
GTRCAT: (100 runs)
raxmlHPC-PTHREADS-SSE3 -s 60_teleosts_nt_aligned.fasta -p 1767656545454552 -m GTRCAT -N 20 -T 30 -n ModelTest_4

Initial rearrangement setting optimization: (20 runs each)
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -N 10 -T 60 -n FI_10
raxmlHPC-PTHREADS-SSE3 -f d -i 20 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -N 10 -T 60 -n FI_20
raxmlHPC-PTHREADS-SSE3 -f d -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t RAxML_parsTree -N
10 -T 60 -n AI6

Number of categories optimization: (20 runs each)
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 10 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -N 10 -T 60 -n C10
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 40 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -N 10 -T 60 -n C40
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 45 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -N 10 -T 60 -n C45
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 50 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -N 10 -T 60 -n C50
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 55 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -N 10 -T 60 -n C55

```
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 60 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -N 10 -T 60 -n C60
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 75 -m GTRCAT -s 60_teleosts_nt_aligned.fasta -t
RAxML_parsTree -T 40 -n C75
Finding the best-known likelihood tree (BKT):
raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 55 -p 767655454323 -m GTRCAT -s
60_teleosts_nt_aligned.fasta -N 10 -T 40 -n BT0
raxmlHPC-PTHREADS-SSE3 -f d -d -i 10 -c 55 -p 987700011127 -m GTRCAT -s
60_teleosts_nt_aligned.fasta -N 10 -T 40 -n BT10
raxmlHPC-PTHREADS-SSE3 -f o -i 10 -c 55 -p 443326776565000 -m GTRCAT -s
60_teleosts_nt_aligned.fasta -N 10 -T 40 -n BT20
raxmlHPC-PTHREADS-SSE3 -f o -d -i 10 -c 55 -p 44335000 -m GTRCAT -s
60_teleosts_nt_aligned.fasta -N 10 -T 40 -n BT30
```


Bootstrapping:

raxmlHPC-PTHREADS-SSE3 -f d -i 10 -c 55 -p 8121123 -m GTRCAT -s 60_teleosts_nt_aligned.fasta N 100 -b 76543434 -T 40 -n BS0
raxmlHPC-PTHREADS-SSE3 -f o -i 10 -c 55 -p 8776429 -m GTRCAT -s 60_teleosts_nt_aligned.fasta N 100 -b 81010101 -T 40 -n BS20

Ancestral sequence prediction:

Based on the calculated BKT:
raxmlHPC-PTHREADS-SSE3 -f A -t 60_teleost_BT_rooted_nt_newick.txt -s
60_teleosts_nt_aligned.fasta -m GTRCAT -i 10 -c 55 -n ASR_nt
Based on the species tree published previously:
raxmlHPC-PTHREADS-SSE3 -f A -t 73g_nucl_conc_fossils.combined_latinnames.nex -s
60_teleosts_nt_aligned.fas -m GTRCAT -i 10 -c 55 -n ASR_nt_species

```
#NEXUS
begin taxa;
        dimensions ntax=75;
        taxlabels
        Acanthochaenus_luetkenii
        Anabas_testudineus
        Antennarius_striatus
        Arctogadus_glacialis
        Astyanax_mexicanus
        Bathygadus_melanobranchus
        Benthosema_glaciale
        Beryx_splendens
        Boreogadus_saida
        Borostomias_antarcticus
        Brosme_brosme
        Brotula_barbata
        Carapus_acus
        Chaenocephalus_aceratus
        Chatrabus_melanurus
        Chromis_chromis
        Cyttopsis_roseus
        Danio_rerio
        Gadiculus_argenteus
        Gadus_morhua
        Lampetra_tridentata
        Gasterosteus_aculeatus
        Guentherus_altivela
        Helostoma_temminckii
        Holocentrus_rufus
        Laemonema_laureysi
        Lampris_guttauts
        Lamprogrammus_exutus
        Lesueurigobius_cf_sanzoi
        Lota_lota
        Macrourus_berglax
        Malacocephalus_occidentalis
        Melanogrammus_aeglefinus
        Melanonus_zugmayeri
        Merlangius_merlangus
        Merluccius_merluccius
    Merluccius_polli
    Molva_molva
    Monocentris_japonica
    Mora_moro
    Muraenolepis_marmoratus
    Myoxocephalus_scorpius
    Myripristis_jacobus
    Neoniphon_sammara
    Oreochromis_niloticus
    Oryzias_latipes
    Osmerus_eperlanus
```

```
Parablennius_parvicornis
Parasudis_fraserbrunneri
Perca_fluviatilis
Percopsis_transmontana
Phycis_blennoides
Phycis_phycis
Poecilia_formosa
Pollachius_virens
Polymixia_japonica
Pseudochromis_fuscus
Rondeletia_loricata
Salmo_salar_1
Salmo_salar_2
Sebastes_norvegicus
Selene_dorsalis
Spondyliosoma_cantharus
Stylephorus_chordatus
Symphodus_melops
Takifugu_rubripes
Tetraodon_nigroviridis
Theragra_chalcogramma
Thunnus_albacares
Trachyrincus_murrayi
Trachyrincus_scabrus
Trisopterus_minutus
Typhlichthys_subterraneus
Xiphophorus_maculatus
Zeus_faber
;
end;
begin characters;
dimensions nchar=711;
format datatype=dna missing=? gap=-;
matrix
Acanthochaenus_luetkenii
ATGATTACAAAACTA---------GACCGTGTGCTTTTGGCCAAGGAAACGTTCATCTTCCATTAT GAGAACATGCGCTGGGCAAAAGGTCGGCATGAGACATACCTCTGCTTTGTAGTGAAGAGGC GGGTGGGGCCAGACTCCCTGTCCTTTGACTTTGGACACCTCCGCAAC-------------------CGCACT GGCTGCCAT GTAGAGCTGCTGTTCCTGCGCCACCTG------GGAACCTTGTGCCCTGGACTGT GGGGGTACGGAGGCGCTGGAGAG---AGGAGGCTCAGTTACTCCATCACCTGGTTCTGC TCC TGGTCCCCCTGCGCTGACTGCGCCTTCAGAGTGGCCCAGTTAATCGGCCGGACG---------CCC AACCTCCGCCTCAGGATCTTCGTCTCTCGCCTCTACTTCTGCGACC TGGAGGACAGCCGCG AGAGAGGGGGCCTGAGGTTGCTGAAGAAAGCTGGCGTGCAGATCACTGTCATGAGCTACA AAGACTTTTTCTATTGCTGGCAGACCTTTGTGGCTAATGGAGGGAGCAGCTTCAAGGCCTG GGACGAGATGCACCAAAACTCTGTTCGCCTGGCCAGC---------CAA---CTCAACCACATCCTG CAGCCATGTGATACAGAGGAC TTAAGAGATGCATTCAAGCTTCTTGGTCTG TGA
Anabas_testudineus
ATGATTACAAAGCTA---------GACAGTGTGCTTTTGCCCCGAAAGAAGTTTATCTACCATTAC AAGAATGTGCGCTGGGCGAGGGGTCGTCATGAAACATACCTCTGTTTCGTAGTGAAGAGGC GGGTGGGCCCAGACTCCTTGACCTTTGACTTTGGACACCTCCGCAAT -CGCAAT GGCTGCCATGTGGAGATGCTGTTCTTGCGCTATCTG------GGAGCCTTATGTCCTGGTATTTG GGGGTACGGAGGTGCTGGAGAG---AAAAGGCTCAGTTACTCAATTACCTGGTTCTGTTCCTG
```

GTCTCCTTGTGCCAACTGCTCCCTTAGGCTGACCCAGTTCCTCAGTCAGACC----------CCCAAC CTCCGCCTCAGGATCTTTGTGTCCCGCCTTTACTTCTGTGACATGGAGGACAGCCGCGAGCG GGAGGGTCTGAGGATACTGAAAAATGCTGGCGTGCAGATCACAGTCATGACTTACAAAGA CTTCTTCTATTGCTGGCAGACCTTTGTGGATCGTAAACAGAGCAGCTTCAAAGCGTGGGATG AGCTGCACCAAAACTCTGTTCGCCTCACCAGA---------AAA---CTCTACCGCATCCTTCAGCCC TGTGAAATAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGGCTG--------------------Antennarius_striatus
ATGATTACGAAGCTT---------GACAGCGTGCTTTTGCCCCGAAAAAAGTTCATCTACCATTAT AAGAACATGCGCTGGGCGAGAGGCCGGTGTGAGACGTACCTCTGCTTTGTAGTGAAGAGAC GAGAGGGGCCAGACACCTTAACTTTTGACTTTGGACACCTCCGTAAT--------------------CGCAAT GGCTGTCATGTGGAGCTACTTTTCTTACGCTATCTG------GGGGCCTTGTGCCCTGGATTGTG GGGCAGTGGGGGTACTGGGGAG---AAGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGTTCCATCAGACAGTGTGAATTCCTGAGCCGAACG---------CCCAA CCTTCGCCTCAGGATCTTTGTCTCTCGTTTGTACTTCTGCGACCTGGAGGATAGCCGTGAAA GGGAAGGCCTAAGAATGCTGAAGAAAGCCGGCGTGCAGATCTCAGTCATGAGTTACAAAG ACTTCTTCTACTGCTGGCAGACCTTTGTGGCTAGTAAACAAAGTAGTTTCAAGGCTTGGGAA GAGCTGCATCAAAATTCAGTACGCCTTGCCAGA---------AAA---CTGAACCGCATCCTCCAGC CGTGTGAAGCTGAAGATTTAAGAGATGCCTTTAAGCTTCTTGGACTG-------------------TGA Arctogadus_glacialis
ATGATTAGTAAGCTA--------GACAGTGTGCTCTTGGCCCAAAATAAATTCATCTACAATTAC AAGAACATGCGATGGGCAAAAGGCCGCAACGAGACCTATCTCTGCTTCGTAATGAAGAGA AGGCTTGGACCTGATTCCCTCTCTTTCGACTTCGGACACCTACGCAAT--------------------CGCAC TGGCTGCCACGCAGAGCTGCTGTTCCTGAGCTACCTG------GGGGCGCTGTGCCCGGGCCTCT GGGGCTGCGCAGACGACAGAAAC---CGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGACCCGGTTCCTGAGGCAGACA--------CCAA ACCTGCGACTCAGGATCTTCGTGTCTCGCCTCTACTTTTGTGACCTGGAGGGCAGTCCGCAT GTAGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTATGTGCGTCTGTCAAGA---------AAAAA?C?AAACCGCATCCTCC AGCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACC------------TGA

Astyanax_mexicanus
ATGACGAGCAAGCTG---------GACAGCATTCTGCTCACCCAGAAGAAGTTTATCTATCACTAC AAGAACGTGCGCTGGGCTCGTGGGAGGCATGAGACTTACCTCTGCTTCGTGGTGAAGAGGC GAATCGGACCAAACTCGCTGTCCTTCGACTTCGGGCACCTGCGCAAC---------------------CGCTC GGCTGCCACGTGGAGCTCCTCTTCCTGCGCTACCTG------GGGGCACTGTGCCCGGGCCTGG GGGGTCTGGGTGTGGACGGAGTG------AAGGTGGGCTACGCTGTGACCTGGTTCTGCTCATG GTCGCCCTGCTCTAACTGCGCCCAGCGAATCGCCCACATCCTGTCCCAGACG---------CCCAG CCTGCGACTCCGCATCTTCGTCTCCCGCCTGTACTTCTGCGACAACGAGGACAGCCTGGAGC GGGAGGGGCTGCGGCACCTGCTGAGGGCAGGGGTGCAGATTACAGTCATGACGTATAAAG ATTTTTTCTACTGTTGGCAGACGTTTGTGGCTCGCAGGGAGAGTCGCTTTAAAGCCTGGGAC GGTCTTCACCAAAACTCTGTCAGACTGTCCCGC---------AAA---CTCAAACGCATCCTCCAGCC CTGTCAGACTGAAGATCTGAGGGACGTCTTCGCTCTGCTGGGTCTC-------------------TGA Bathygadus_melanobranchus
ATGATTAGTAAGCTC---------GACAGTGTGCTTTTGGCCCAGAAAAAATTCATGTACAATTAC AAGAACGTGCGCTGGGCAAAAGGCCGCCACGAGACCTACCTCTGCTTCGTAGTGAGGAGA AGGCTCGGACCAAATTCCCTGTCTTTTGACTTCGGACACCTACGCAAT--------------------CGCAC TGGCTGCCACGTAGAGCTGCTGTTTCTGAGCCACCTG------GGGGCGCTCTGCCCAGGCCTCT GGGGGTGCGTAGGTGATGACAAC---AGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGCGCCAACTGTGCGGCCACACTGGCCCGGTTCCTGAGGCAGACG---------CCCA ACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACCTGGAGGACAGTCCGAAT ATAGAGGGCTTGAGAGAGCTGAGGAGGGCAGGAGTCCAGGTCATCGTTATGAGCTACAAA

```
GACTACTTCTACTGCTGGCAGACATTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG
AAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA----------AAA----CTAAACCGCATCCTCCA
GCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGAGTTATTGGGCTGTTAAGC
TGA
    Benthosema_glaciale
ATGATTACTAAACTA---------GACAGTGTGCTTTTGGGTCAGAAGAAGTTCCTCTTCCACTAT
AAGAACGTGCGCTGGGCGTGGGGTCGAAATGAAACGTACCTCTGCTTTGTGGTGAAGAGGA
GAGTAGGACCAAACTCCCTCTCCTTTGACTTTGGACATCTCCGCAAC------------------------
AGCTGCCACGCGGAGCTGCTGTTCCTTCGCCACCTG---GGGGGCGCCCTGTGCCCTGGTCTG
TGGGGCTACGGAGGTGACGGGGGAGAGGGGAGGTTCAACTACTCGGTCACCTGGTTCTGCT
CGTGGTCTCCGTGCGCCGACTGTTCTCTGAGACTGGCCCAGTTCCTCAGCCGGACC-----------
CCAACCTGCGCCTCCGCATCTTCGTCTCTCGCCTCTACTTCTGTGACGCGGAGGACAGCCGG
GAGAGGGAGGGTCTGAGGACGCTGAAAAGGGCAGGTGTACAGATCACCGTCATGAACTAC
AAAGACTACTACTATTGTTGGCAGACCTTTGTGGCTCACAGACAGAGCAGCTTCAAGGCCT
GGGCTGATCTGCACCAGAACTCTGTCCGTCTGGCCAGG-----------AAA----CTCCACCGCATCCTC
CAGCCTTGTGAGACAGAGGATTTTAGAGACGCATTCAAGCTTCTTGGGTTG
TGA
    Beryx_splendens
ATGATTACAAAACTA--------GACAGTGTGCTTTTGGCCAAGAAAAAGTTCATCTACCATTAC
AAGAACATGCGCTGGGCAAAGGGCCGGCATGAGACATACCTCTGCTTTGTGGTGAAGAGG
CGAGTGGGGCCAGACTCCCTGTCCTTCGACTTCGGACACCTCCGCAAC------------------------
TGGCTGCCATGTAGAGCTGCTGTTCCTGCGCCACCTG------GGAGCCCTGTGCCCTGGACTGT
GGGGGCATGGAGGCAGCGGAGAG---AGGAAGCTGAGTTACTCCATCACCTGGTTCTGCTCC
TGGTCTCCCTGCGCTGACTGCTCCTTCAGACTGGCCCAGTTCCTCAACCGGACG----------CCC
AACCTCCGCCTCAGGATCTTCGTCTCCCGCCTCTACTTCTGCGACCAGGAGGACAGCCGCGA
GAGAGACGGCCTGAGGCTGCTGAAAAAGGCCGGCGTGAACATCACTGTCATGAGCTACAA
AGACTTCTTCTACTGCTGGCAGACCTTTGTGGCTAACAGAACGAGCAGATTCAAGGCCTGG
GATTTGCTGCACCAAAACTCTGTTCGCCTGGCCAGG-----------AAA----CTCAACCGCATCCTCCA
GCCTTATGAGATAGAAGATTTAAGAGATGCCTTCAGACTTCTTGGTTTT--------------------------
    Boreogadus_saida
ATGATTAGGAAGCTA--------GACAGTGTGCTCTTGGCCCAGAATAAATTCATCTACAATTAC
AAGAACATGCGATGGGCAAAAGGCCGCAACGAGACCTATCTCTGCTTCGTAGTGAAGAGA
AGGCTTGGACCTGATTCCCTCTCTTTCGACTTCGGACACCTACACAAT
-CGCAC
TGGCTGCCACGCAGAGCTGCTGTTCCTGAGCTACCTG------GGGGCGCTGTGCCCGGGCCTCT
GGGGCTGCGCAGACGACAGAAAC---CGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT
GGTCGCCCTGTGCCAACTGTGCGACCACGCTGACCCGGTTCCTGAGGCAGACA----------CCAA
ACCTGCGACTCAGGATCTTCGTGTCTCGCCTCTACTTTTGTGACCTGGAGGGCAGTCCGCAT
GTAGAGGGCTTGAGGGACCCGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAA
GACTACTTCTACTGCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG
AAGGGCTGCATACCAATTATGTGC?TCTGTCAAGA-----------AAA---CTAAACCGCATCCTCCAG
CCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACC
TGA
    Borostomias_antarcticus
ATGATCAGTAAACTA--------GACAGTGTTCTCCTGGCCCAGAAGAAGTTCCTCTTCCACTAC
AAGAACGTGCGCTGGGCCCGAGGACGACACGAGACGTACCTGTGCTTCGTGGTGAAGAGG
AGGGTGGGACCCGACTCGCTTACCTTCGACTTCGGACACCTGCGCAAT---------------------CGCA
CCGGCTGCCACGTTGAGCTGCTGTTCCTGCGCCATCTA------GGGGTGCTGTGTCCGGGCCTG
TCGGCGTCTGGAGGTGCTGGAGGGGGCAGGGGGCTGAACTACTCCATCACCTGGTTCTGCT
CATGGTCCCCCTGCTTCGACTGCTCGGCCCGGCTGGCCCAGTTCCTGAGACGGACC----------
CCAACCTCAGGCTCCGCCTCTTCGTCTCCCGCCTCTACTTCTGTGACCCGGAGGACCGCCAC
GAGAGAGAGGGGCTCCGGGCGCTGAAGAGAGCCGGAGTCCACATCACCGTCATGAGCTAT
AAAGATTATTTTTACTGCTGGCAGACGTTTGTAGCTCACAGACAGAGGGCCTTCAAAGCCT
GGGAAGATCTTCAGCAGAACTCCGTCCGCCTGGCCAGG----------AAG----CTCAACAGCATCCT
```

Brosme_brosme
-ATGAGTAAGCTA--------GACAGTGTGCTCTTAGCCCAGAAGAAATTCATATACAATT
GAACCTGCGATGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGA
GCTGCCACGTAGAGCTGCTGTTTCTGAGCTACCTG------GGGGCGCTGTGCCCAGGCCTCT
GGGTGCGGTGGCGACAGAAAC---CAAAGACTCAGCTACTCGGTCACCTGGTTCTG
GGTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCACACG--------CCCA
ACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACCTGGAGGGCAGTCCGCAT
AGAGGGCTTG
GACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGACTGAGCCGCTTCAAGGCCTGGG
AAGGGCTGCATACCAATTCTGTCCGTCTGTCAAGA--------GCT---CTAAACCGCATCCTCCAG
CCAT
Brotula_barbata
ATTGCGAAACTA--------GACAGTGTACTTTTACCACGGAAAAAGTTCATCTACCATTTC
GAACATGCGCTGGGCTAAGGGTCGGCATGAGACGTACCTGTGCTTTGTGGTGAAGAGGC
GAGTAGGGCCGGACTCGCTGTCCTTTGACTTTGGACACCTCCGCAAT----------------CGCAAT
GGCTGCCACGTAGAGCTACTGTTCTTACGCTACCTA------GGAGCTTTATGCCCTGGACTGTG
GGGCTGTGGGAATTCTGGACAG------AGGTTGTGTTACTCCATCACTTTGTTCTGCT
CCCCCTGTGCCAACTG
GCCTCAGGATC
GGTCT
TA
GCAAGAGAATTCAATTCGCCTTGCCAGG--------AAA---CTCACCCACATCCTACAG
GGTGAGACGGAAGATTTAAGGGACGCATTCAAACTTCTGGGTATG-------------------TGA Carapus acus
ATGACTGCCAAGCTA--------GACAGGGTCCTTTTGCCACGGAAAAAGTTCCTCTTCCATTAC
AAGAACGTGCGCTGGGCGAAGGGCCGCCACGAGACGTACCTCTGCTTCGTGGTGAAG
CGAGTGGGTCCAGACTCCATGTCCTTTGACTTTGGACACCTCCGCAAT----------------CGCAG
TGGCTGCCACGTAGAGCTCTTGTTCCTGCGCTACCTG-----GGAGCTCTGTGTCCTGGACTGT
GGGGGTATGAAGGTTCTGGACAG---AGGAGACTCAGCTACTCСATCACCT
GGTCCCCGTGCGCCAACTG
CGCCTCAGG
GAGGGCCTGAGGACG
ITCTACTGCTGGCAAACCTTTGTGGCTTGTGGA
AGCTCCACCAAAACACCAC
CCATGTGAGACAGAAGATTTA Chaenocephalus_aceratus
ATGATCACAAAGCTT---------GACAGCATGCTTTTGCCTCGAAAAAAGT
AAGAACATGCGCTGGGCAAGGGGCCGGTGTGAGACATACCTCTGCTTTGTAGTGAAGAGGC
GGGTGGGACCAGACTCCTTAACCTTTGACTTCGGACACCTTCGCAAT----------------CGCAAT
GGCTGCCATGTAGAGATGCTGTTCCTGCGCTACCTG------GACGCCCTGTGCCCTGGTCTGTT
GGGATGTGAAGGTACTGGAGAG---AAGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG
GTCCCCCTGTGCAAACTGCTCCATCAGGCTGTCCCAGTTCCTCAGCCAGACG--------CCCAA
TCTTCGCCTCAGGATCTTCGTCTCTCGTCTTTACTTCTGTGACATGGAGAATAGCCCTGCAA
GAGACGGCCTAATAATGCTGAAAAAAGCTGGCGTGCAGACTTCAGTC
TTTTCTATTGCTGGCATAA
TCTGCACCAAAACTCTGTTCGCCTTGCCAGA--------AAA---CTCAAACGCATCCTTCA
GTGTGAAACTGAAGATTTGAGAGATGCCTTCAAGCTTCTTGGACTG------------------TAA Chatrabus melanurus

[^34]GGTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACG--------CCCA ACCTGCGCCTCAGGATCTTCGTCGCTCGCCTCTACTTCTGTGACCTGGAGGGCAGTCCGCAT GTGGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTTATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTCTGTGCGTCTGTCAAGG--------AAA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACC
TGA
Gadus_morhua
ATGATTAGTAAGCTA---------GACAGTGTGCTCTTGGCCCAGAAAAAATTCATCTACAATTAC AAGAACATGCGATGGGCAAAAGGCCGCAACGAGACCTATCTCTGCTTCGTAGTAAAGAGA AGGCTTGGACCTGATTCCCTCTCTTTTGACTTCGGACACCTACGCAAT-----------------CGCAC TGGCTGCCACGCAGAGCTGCTGTTTTTGAGCTACCTG------GGGGCGCTGTGCCCGGGCCTCT GGGGCTGCGCAGACGACAGAAAC---CGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGACCCGGTTCCTGAGGCAGACA--------CCCA ACCTGCGACTCAGGATCTTCGTGTCTCGCCTCTACTTCTGTGACCTGGAGGGCAGTCCGCAT GTAGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTATGTGCGTCTGTCAAGA--------AAA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACC TGA

Lampetra_tridentata
ATGGCCAACGATGAGTACGTGAGAGTCGGCGATAAGTTGGACAGCTGCACGTTTAGGACGC AGTTTTTTAACTTTAAAAGATCCACGTCG---CATATATGCTGCGTTCTCTTTGAATTAAAACA GCAGGATAGCGTCGCT------------TTTTGGGGCTATGCTGTGAATAAACCACGGAGCAATGCA GACCTAGGAATTCACGCCGAAATTTTTTGCATTAAAAAAATC------AGAGAGTAC \qquad ------------CTGCACGAA---AACCCTGGAATATACACGATAAATTGGTACTCATCCTGGAGTTCG TGTGCAGATTGCGCTGAAGAGATCTTAACATGGTATAAGAAGGAGGTGATGAAGATGGGC CACACTTTGAATATCTGGGCTTGCAAACTCTATTTCGAGAACATT------ACGCGGAATCAAAT TGGGTTGTGGAACCTCAGAAAAATCGGGGTTGGGTTGGAAATAATGCTTGGTGAACACTAC CAATGGTGCTGGAACAACTACATCCAAACGTTGGACAGCAATTTGAATGAAAATAGATGGC TTCAGAAGACTTCGAATCGAGCTCTTACACGACAGAACGAG---TTGTCCATTATGATTCAG--

Gasterosteus_aculeatus
ATGATTGCAAAGCTT---------GACAGTGTGCTTCTGCCCCGAAAAAAGTTCATCTACCACTAC ACGAACATGCGCTGGGCGAGGGGCCGACACGAGACTTACCTCTGCTTTGTTGTGAAAAGGC GAGTGGGGCCGGATTCCTTGTCCTTCGACTTTGGACACCTGCGCAAT------------------CGCAGT GGCTGCCATGTCGAGTTGTTGTTCCTGCGCCACCTC------GGAGCCTTGTGCCCTGGTTTCTT GGGTTGTGGAGACACCGGAGGG---AGGAGGCTGAGTTACTCCATCACCTGGTTCTGCTCGTG GTCTCCCTGCGTAAACTGCTCCATCAGTCTGTCCCAGTTCCTCAGCCGGACG--------CCCAA CCTCCGCCTCAGGATCTTCGTCTCTCGCCTTTACTTTTGTGACATGGAGAACAGTCGGGAAA GAGACGGCCTGAGAATGCTGAAAAAAGCTGGCGTGCAGGTCACAGTCATGAGTTACAAAG ATTTCTTCTATTGCTGGCAGACTTTTGTAGATCGCAAACAAAGCCAGTTCAAGGCCTGGAAA GAGCTTCACCAAAACTCTGTTCGCCTTTCCAGA---------AAG---CTCAAGCGCATCCTCCAGCC TTGTGAAACAGAAGATTTAAGGGATGCCTTCAAGCTGCTTGGACTG------------------TGA Guentherus_altivela
ATGATTACTAAACTA---------GACAGCATACTTATGGCCCAGAAGAAGTTCATCTTCCACTAT AAGAACATGCGATGGGCCAAGGGTCGAAATGAGACACACCTCTGCTTTGTGGTGAAGAGA AGGCTGGGACCAAACTCCCTGTCCTTTGACTTTGGACACCTGCGTAAT------------------CGCAC TGGCTGCCATGTAGAGCTACTCTTCTTGCGCCACCTG------GGATTCCTGTGCCCTGGCTTGT GGGGGTACGGAGAGCCAGGTGAA---GGGAGGCTGAATTACTCTGTCACCTGGTTCTGCTCCT GGTCCCCCTGTGCAGATTGTTCCTTCACGCTGACCCACTTCCTCAGAGAGACT---------CCCA ACCTCCGTCTTAGAATCTTTGTGTCTCGCCTCTACTTCTGTGACGAGGAGGACAGCAGTGCA AGGGAAGGCCTGCGAATGTTGAAGAAAGCCGGTGTGAACATCACTGTCATGAGCTACAAA

```
GACTACTTCTATTGCTGGAAGACCTTTGTGGCTCACAGACAAAGGAACTTCAAGGCCTGGG
ATGGGCTAGACCAGAACTCTGTTCACCTAGCCAGG--------AAA---CTCAGCCACATCCTCCA
GCCCTGGGAAACAGCAGATTTAAGAGATGCCTTTAAACTTCTTGGACTG--------------------------
    Helostoma_temminckii
ATGATTACAAAGCTA--------GACAGTGTGCTTTTGCCCCGAAAAAAGTTCATCTACCATTAC
AAAAATGTGCGCTGGGCAAGGGGTCGGCATGAGACATACCTCTGTTTTGTAGTGAAGAGGC
GGGTGGGCCCAGACTCCTTGACCTTTGACTTTGGGCATCTCCGCAAT---------------------------
GGTTGCCATGTAGAGATGCTGTTCTTGCGATATCTG-----GGAGCTTTGTGCCCTGGACTTTG
GGGGTGTGGAGGTACTGGAGAG---AGAAGGCTCAGTTACTCTATTACCTGGTTCTGCTCCTG
GTCTCCTTGTTCTAACTGCTCCCTTAGACTGGCCCAGTTCCTCAGTCAGACC----------CCAAAC
CTCCGCCTCAGGATCTTTGTGTCTCGCCTATACTTCTGTGACATGGAGGACAGTCGCGAGAG
GGAGGGTCTCAGGATCCTGAAAAACGCTGGAGTGCAGATCACAGTCATGAGTTACAAAGA
CTTCTTCTACTGCTGGCAGACATTTGTGGCACGTAAGCAGAGCAACTTCAAAGCATGGGAG
GAGCTGCACCAAAACTCTGTTCGCCTTACCAGA--------AAA---CTCCATCGCATCCTTCAGCC
TTGTGAAACAGAAGATTTAAGAGATGCTTTCAAGCTCCTTGGACTG-----------------------
    Holocentrus_rufus
ATGATTACAAAACTA--------GACAGTGTGCTTTTGGCCAAGAAAAAGTTCATCTACCATTAT
AAGAACTTGCGCTGGGCAAAAGGCCGGCATGAGACATACCTCTGCTTTGTCGTGAAGAGGC
GGGCGGGGCCGGACTCCATCGCCTTCGACTTTGGACACCTCCGCAAC---------------------------
GGCTGCCATGTAGAGCTGCTATTCCTTCGCTACCTG-----GGAGCCTTGTGCCCTGGACTGTG
GGGCTACGGAGGAACTGGTGAG---AGGAAGATGAGCTACTCCATCACATGGTTCTGCTCCT
GGTCTCCTTGTGCCAACTGCTCCTACAGACTCGCCCAGTTCCTCAACCGGACG---------CCCA
ACCTCCGCCTCAGGCTCTTCGTCGCTCGCCTCTATTTCTGTGACATCGAGGACAGCCGTGAG
AGAGAGGGCCTGAGAATGCTGAAGAATGCCGGTGTGCACATCACTGTCATGAGCTACAAA
GACTACTTCTACTGCTGGCAGACATTTGTGGCTCGTAAAACGAGCAACTTCAAGGCCTGGG
ATGGGCTGCACCAAAACTATGTTCGTCTGGCCAGG--------AAA---CTCAACCGCATCCTCCA
GCCTTGTGAGACAGAAGATTTAAGAGATGCATTCAGGCTTCTTGGCTTG--------------------------
    Laemonema_laureysi
ATGATTAGTAAGCTA--------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTTCAATTAC
AAGAACATGCGCTGGGCAAGAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGA
AGGCTTGGACCCAATTCCCTGTCTTTCGACTTCGGACACCTACGCAAT-
```

\qquad

``` AGGCTGCCATGTAGAGCTGCTGTTTTTGAGCTATCTG------GGGGCACTGTGCCCAGGCCTGT GGGGGTGCAGAGGCGACGAAAAC---AGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCC TGGTCTCCATGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACG--------CCC AACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACCTGGAGGACAGTCCCCA TATAGAGGGCTTGAGGGACCTGAGGAGAGCAGGGGTGCGGGTCACCGTTATGAGCTACAA AGACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGG GAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA---------AAA---CTAAACCGCATCCTCC AGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGGCTGTTAACC
``` \(\qquad\)
``` -TGA
Lampris_guttauts
ATGATCAGCAAACTA---------GACAGTGTGCTTCTGACCCAGAAGAAGTTCCTCTACCATTAT AAGAACGTGCGTTGGGCAAAAGGTCGGCATGAGACATATCTCTGCTTTGTGGTGAAGAGGA GGGTGGGACCGGACTCCATGTCCTTCGATTTTGGACACCTCCGCAAT-------------------CGAGCT GGCTGCCATGTAGAGCTGCTGTTCCTGCGCTACCTG------GGGGCCCTGTGTCCTGGACTGTG GGGCTACGGGGACACCGGAGAC---AGGAGGCTCAGTTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGCGCCAACTGCTCCTTCAGACTGGCCCAGTTCCTCCAAAGGACG---------CCCA ACTTCCGCCTCAGGCTCTTTGTCTCCCGTCTGTACTTCTGTGACATGGAGGACAGCAGTGAG AGGGACGGCCTGAGGTTGCTGAAAAACGCAGGGGTGCAGATCACCGTCATGAGCTACAAA GACTACTTCTATTGCTGGCAGACTTTTGTGGCTCACAGAAAGAGCAGTTTCAAGGCCTGGG ATGGGCTGCACCAAAACACTGTTCGCTTGGCCCGG---------TTA---CTCAACCGCATCCTCCAG CCTTGTGAGGCAGAGGATTTGCGGGATGCGTTCAAACTTCTCGGGTTT------------------TGA
Lamprogrammus_exutus
```

[^35]TGGCTGCCATGTAGAGCTGCTGTTTCTGAGCTACTTG------GGGGCGCTGTGCCCGGGCCTGT GGGGCTGTGGAGGTGCAGATAAC---AGAAGACTCAACTACTCGGTCACCTGGTTCTGCTCC TGGTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACG--------CCC AACCTGCGCCTCAGGATCTTTGTGGCTCGCCTCTACTTCTGCGACCTGGACGACAGTCCACA CACAGAGGGCTTAAGGGAGCTGAGGAGAGCAGGGGTCCAGTTCACCGTAATGAGCTACAA AGACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGG GAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA--------AAA---CTAAACCGCATCCTCC AGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGGCTGTTATCC TGA

Melanogrammus_aeglefinus
ATGATTAGTAAGCTA---------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATCTACAATTAC AAGAACATGCGATGGGCAAAGGGCCGCAACGAGACCTATCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCTGATTCCCTCTCTTTCGACTTTGGACACCTACGCAAT---CGCAC TGGCTGCCACGCAGAGCTGCTGTTCCTGAGCTACCTG------GGGGCACTGTGCCCAGGCCTCT GGGGCTGTGCAGGCGACAGAAAC---CGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGACCCGGTTCCTGAGGCAGACG--------CCCA ACCTGCGCCTCAGGATCTTCGTGTCTCGCCTCTACTTCTGTGACCTGGAGGGCAGTCCGCAT GTAGAGGGCTTGAGGGATCTAAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTATGTGCGTCTGTCAAGA---------AAA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACC-
TGA
Melanonus_zugmayeri
ATGATTAGTAACCTA---------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTAC AAGAACATGCATTGGGCAAAAGGCCGCAACGCGACCTACCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACACAAT------------------CGCAC TGGCTGCCACGCAGAGCTGCTGTTTCTCAGCCACCTG------GGGGCACTGTGCCCAGGCCTGT GGGG?TGCGGAGGCGACAAAAAC---AGAAGACTCAGCTATTCGGTTACCTGGTTCTGCTCCT GGTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGCTTTCTGAGGCAGACG--------CCCA ACCTGCGCCTCAGGATCTTCGTGGCTCGCGTCTACTTCTGTGAACAGGAGGACAGTCCGCAT ATAGAGGGCTTGAGGGATCTGAGGAGAGCAGGGGTCCAGGTCACCGTTATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGACCTGGG AAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA---------AAA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGACTGTTAACCTGA

Merlangius_merlangus
ATGATTAGTAAGCTA---------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATCTACAATTAC AAGAACATGCGGTGGGCAAAAGGCCGCAACGAGACCTATCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCTGATTCCCTTTCTTTCGACTTCGGACACCTACGCAAT---CGCAC TGGCTGCCACGCAGAGCTGCTGTTCCTGAGCTACCTG------GGGGCACTGTGCCCAGGCCTCT GGGGCTGCGCAGGCGACAGAAAC---CGAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGAGCCGGTTCCTGAGGCAGACG--------CCCA ACCTGCGCCTCAGGATCTTCGTGTCTCGCCTCTACTTCTGTGACCTGGAGGGCAGTCCGCAT GTAGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTATGTGCGTCTGTCAAGA---------AAA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGATGTTTTCAGACTTTTTGGACTGTTAACC TGA

Merluccius_merluccius
ATGATTAGTAAGCTC---------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTAC AAGAACATGCGCTGGGCAAAAGGCCGCAACCAGACCTACCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACACAAT---CGCAC TGGCTGCCACGCAGAGCTGCTGTTCCTGAGCCACCTA------GGGGCGCTGTGCCCGGGTCTG

TGGGGGTGCGGAGGTGACGAAAAC---CGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTC CTGGTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGACTCACG--------CC CAACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACGTGGAGGACAGTCCGC ACAGGGAGGGCTTGAGGAACCTGAGGAGAGCAGGGGTCCTGGTCAACGTTATGAGCTACA AAGACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTG GGAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA---------ACA---CTAAACCGCATCCTCC AGCCATGTGAAACAGAAGATTTAAGAGACGCTTTCAGACTTATTGGGCTGTTAACC -TGA

Merluccius_polli
ATGATTAGTAAGCTC---------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTAC AAGAACATGCGCTGGGCAAAAGGCCGCAACCAGACCTACCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACACAAT---CGCAC AGGCTGCCACGCAGAGCTGCTGTTCCTGAGCCACCTA------GGGGCGCTGTGCCCGGGTCTG TGGGGGTGCGGAGGTGACGAAAAC---CGAAGACTCAGCTACTCTGTCACCTGGTTCTGCTCC TGGTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGACTCACG--------CCC AACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACGTGGAGGACAGTCCGCA CAGGGAGGGCTTGAGGAACCTGAGGAGAGCAGGGGTCCTGGTCAACGTTATGAGCTACAA AGACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGG GAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA--------ACA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGACGCTTTCAGACTTATTGGGCTGTTAACC TGA

Molva_molva
ATGATTAGTAAGCTA---------GACAGTGTGCTCTTAGCCCAGAAGAAATTCATATACAACTAC AAGAACATGCGATGGGCAAAAGGCCGCAATGAGACCTACCTCTGCTTCGTAGTGAAGAGA AGGCTCGGACCTGATTCCCTGTCTTTCGACTTCGGACACCTACGCAAT---CGCAC TGGCTGCCACGTAGAGCTGCTGTTTCTGAGCTACCTG------GGGGCGCTGTGCCCGGGCCTCT GGGGGTGCGGAGGCGACACTAAC---CGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCACACG--------CCCA ACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACCTGGAGGGCAGTCCGCAT ATAGAGGGCTTAAGGGACCTGAGGAGAGCAGGGGTCCAGGTCAAAGTTATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAAGCTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTATGTCCGTCTGTCAAGA---------AAA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTTTTGGACTGTTAACC
TGA
Monocentris_japonica
ATGATTACAAAACTA---------GACAGTGTGCTTTTGGCGCAGAAAAAGTTCATCTACCATTAT AAGAACATGCGCTGGGCAAGGGGTCGGCATGAGACATACCTCTGCTTTGTAGTGAAGAGG AGAGTGGGACCAGACTCCCTGTCCTTTGACTTTGGACACCTCCGCAAT------------------CGCTC TGGCTGCCATGTAGAGCTGCTGTTCCTGCGCCACCTG------GGAGCCTTGTGCCCTGGACTGT GGGGGTATGGAGGCACTGGTGAG---AGGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCT GGTCTCCCTGCGCTGACTGCTCCTTTAGATTGGTCCAGTTCCTCGGCCGGACG---------CCCAA CCTCCGCCTCAGGATCTTCGTCTCTCGCCTCTACTTCTGTGACGTGGAGGACAGCCGCGAGA GACAGGGCCTGAGAATGCTGAAAAAAGCCGGCGTGCAAATCACTGTCATGAGCTACAAAG ACTACTTCTATTGCTGGCAGACCTTCGTGGCTCACAGACAGAGCAGTTTCAAGGCCTGGGA TGAGCTGCACCAAAACTCTGTTCGCCTGGCCAGG--------AAA---CTCAACCGCATCCTCCAG CCTTGTGAGACAGAAGATTTAAGAGATGCGTTCAAGCTTCTTGGGTTG------------------TGA

Mora_moro
ATGATTAGTACACTA---------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTAC AAGAACATGCGTTGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACGCAAT --CGCAC TGGCTGCCACGTAGAGCTGCTGTTTCTGAGCCACCTG------GGGGCACTGTGCCCAGGCCTGT GGGGGTGCGGAGGCGATGAAAAC---AGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCC TGGTCTCCCTGTGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACG---------CCC

[^36]| | |
| :---: | :---: |
| | |
| GCCTTGTGACACAGAAGATTTAAGAGATGCATTCAGGCTTCTTGGATTG-------------------TGA | |
| ATGATTGCAAAGCTA--------GACAGTATGCTTTTGCCCAGAAAAAAGTTCCTCTATCATTAC | |
| AAGAATGTGCGCTGGGCGAGGGGCCGGAATGAAACATACCTCTGTTTTGTAGTAAAAAGAC | |
| T | |
| | |
| TGGGTATGGATTTCATGGGGAG---AGGAGGGTCAGCTACTCCATCACCTGGTTCTGCT | |
| CTCCCTGTGCAAACTGCTCTTCCAGACTGGCCCAGTTCCTCAAACAGACA--------CCCAA | |
| | |
| | |
| СТTСТTСTACTGCTGGGAGAATTTTGTGGCC---CAGCAAAGCAAATTTAAGGCCTGGGAAGG | |
| TCTGCATCAAAACACAGTACGCCTGGCCAGA--------AAA---CTCAACCGCATCCTCCAGCCC | |
| TGTGACACAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGACTG-------------------TAA | |
| TTACTAAGCTC--------GACAGTGTG | |
| | |
| | |
| | |
| CAACCGGACAG---GGAAGGGTCAGCTACTCCATCACCTGGTTTTGCTCTT | |
| | |
| | |
| | |
| | |
| | |
| CCATGTGAGACAGAAGATTTCAGAGATGCATTCAAGCTTCTTGGACTG-------------------TGA Osmerus eperlanus | |
| | |
| AAGAACATGCGCTGGGCCAGAGGTCGACACGAGACCTACCTGTGCTTTGTGATCAAGAGGA | |
| | |
| | |
| GTACGGGTGGTGCCGGTGGTGGGGTGAGGTTGAGCTACTCCATCACCTGGTTCTGCTCC | |
| | |
| | |
| AGGGAGGGGCTCCGTATGCTGAAGAGAGCCGGAGTAAACATCACTGTCATGAGTTATAAA | |
| - | |
| ACGGGCTTCACCACAACTCGGTTCGCCTGGCCAGG--------AAG---CTCTACCGTATCCTACA | |
| GTGAGACAGAAGATCTGAGAGATGCTTTCACGCTGCTGGGACTG--------------------TGA
 Parablennius parvicornis | |
| | |
| | |
| GAAGCGGC | |
| GACTGGGCCCAGACTCTTTGTCCTTTGACTTCGGGCATCTCCGAAAT-----------------CGCAAT | |
| CCTGCGCCACCTG-----GGGACTTTGTGCCCTGGTCTGTC | |
| GGGTACGGAGTACATGGAGAA---AAAAGGCTTAGCTACTCCATCACCTGGTTCTGCTCCTG | |
| | |
| TTCGACTCAGAATCTTTGTCTCCCGCCTGTACTTCTGCGACTTGGAGGACAGCCGCGAGA | |
| | |
| | |
| 㑑 | |
| CCTGCGAAACAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGACTC--------------------TGA | |
| | |
| | |

AAGAACATGCGGTGGGCAAGGGGCCGGCATGAGACTTATCTCTGCTTTGTAGTGAAGAGAA GGTTGGGTCCAGACTCCTTGTCCTTCGACTTTGGACACCTTCGCAAT------------------CGCTCT GGCTGCCATGTAGAGCTGCTTTTCCTGCGTCACCTG------GGCGCCCTTTGCCCTGGCCTGTG GGGATATGGAGGAGAG---------AAGAGGCTGAGCTACTCTGTCACCTGGTTCTGCTCCTGGTC GCCCTGCGCCGACTGCTCCACCAGACTGTCCCAGTTCCTCAGCAGGACG---------CCCAACCT CCGCCTGAGGATCTTCGTCTCGCGCCTCTACTTCTGCGACCTGGAGGACAGCCTCGCAAGA GAGGGCCTGAGGACACTGAAGAGAGTCGGCGTGCAGGTCACTGTCATGAGCTACAAAGAC TACTTCTACTGCTGGCAGACCTTCGTGGCTCGCAGACAGAGCAGCTTCAAGGCTTGGGATG GGCTGCAGCAGAACTCTGTCCGCCTGGCCAGG---------AAA---CTCAACCGCATCCTCCAGCC TTGTGAGACAGAAGACTTACGAGATGCATTCAAGCTTCTTGGACTG-------------------TGA Perca_fluviatilis
ATGATTACAAAGCTA---------GACAGTGTGCTTTTGCCCCGAAAAAAGTTCATCTACCATTAC AAGAACATGCGCTGGGCAAGGGGTCGCCATGAGACATATCTCTGCTTTGTAGTGAAGAGGC GAGTGGGGCCAGACTCCTTATCCTTTGACTTTGGACACCTCCGCAAT-----------------CGCAAT GGCTGCCATGTAGAGCTGCTGTTCCTGCGCTACATT------GGAGCCTTGTGCCCTGGTTTGTG GGGATGCAGCGGTACTGGAGAG---AGGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCT GGTCTCCTTGTGCCAACTGCTCCATCAGACTGTCCCAGTTCCTCAGCCAGACG--------CCCA ACCTTCGCCTAAGGATTTTCGTCTCTCGCCTTTACTTCTGTGACACGGAGAACAGCCCTGAA AGAGACGGCCTAAGAATGCTGAAAAAAGCTGGCGTGCAGATCACAGTCATGAGTTACAAA GACTTCTTTTATTGCTGGCAGACCTTTGTGGATCGTAAGCAAAGCAACTTCAAGGCCTGGGA AGAGCTGCACTCAAACTCTGTTCGCCTTTCCAGA---------AAA---CTCAACCGCATCCTCCAGC CTTTTGAAACAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGACTG------------------TGA

Percopsis_transmontana
ATGATTACCAAGCTA---------GACAGTGTGCTTCTGGCGCAGAAGAAATTCATCTTCCACTAC AAGAACATGCGCTGGGCAAGGGGTCGCCATGAGACATATCTCTGCTTTGTCATTAAGAGGA GAGTGGGGCCAAACTCCCTGTCCTTTGACTTTGGACACCTCCGCAAT-----------------CGCTCC GGTTGCCATGTAGAGATCCTGTTCCTGCGCCACTTG------GGAGCGCTGTGCCCTGGACTGTG GGGAGAGGGGGGTACTGGTGAG---AGAAGATTAAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGTGCCAACTGCTCCCTCAGACTGGCCCAGATCCTCAGACAGCTG--------CCCAA CCTCCGCCTGAGGATCTTTGTGTCCCGCCTCTACTTCTGTGACCTGGAGGACAGCAAAGAGA GAGATGGCCTCAGAATGCTGAAGAACGTGGGTGTGCAGATCACCGTCATGAGCTACAAAG ACTATTTCTATTGCTGGCAGACCTTTGTAGCTCACAGAAAGAGTAACTTCAAAGCCTGGGA CGGGCTGCACCAAAACTCTGTTCGCCTGGCTCGG---------AAA---CTCAACCGCATCCTCCAG CCTTGTGAGATAGAAGATTTAAGAGATGCCTTCAAACTTCTTGGGTTT-------------------TGA

Phycis_blennoides
ATGATTAGTAAGCTA---------GACAGTGTGCTCTTAGCCCAGAAGAAATTCATATACAATTAC AAGAACATACGATGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTTGTAGTGAAGAGA AGGCTCGGACCCAATTCCCTGTCCTTCGACTTCGGTCACCTACGCAAT---CGCGC TGGCTGCCACGTAGAGCTGCTGTTTCTGAGCCACCTG------GGGGCGCTGTGCCCGGGCCTCT GGGGGTGCGTGGATGACAGCAAC---AGGAGACTGAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTACGGATGACA--------CCCA ACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACCTGGAGGACAGTCCGCAT ATTGAGGGCTTGAGGCACCTGAGGAGAGCAGGGGTTGAGGTCAAAGTTATGAGCTACAAA GACTACTTCTACTGTTGGCAGACCTTCGTAGCTCACAGGCTGAGTCGCTTCAAGGCCTGGGA AGGGCTGCATACCAATTCTGTCCGTCTGTCAAGA---------AAA---CTAAACCGCATCCTCCAG CCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTTTTGGACTGTTAACC TGA

Phycis_phycis
ATGATTAGTAAGCTA---------GACAGTGTGCTCTTAGCCCAGAAGAAATTCCTATACAATTAC AAGAACATACGATGGGCAAAAGGCCGCAACGAGACCTTCCTCTGCTTTGTAGTGAAGAGA AGGCTCGGACCCAATTCCTTGTCCTTCGACTTCGGTCACCTACGCAAT------------------CGCGC TGGCTGCCACGTAGAGCTGCTGTTTCTGAGCCACCTG------GGGGCGCTGTGCCCGGGCCTCT GGGGGTGCGTAGATGACAGCAAC---AGGAGACTGAGCTACTCGGTCACCTGGTTCTGCTCCT

GGTCTCCATGCGCCAACTGTGCGGCCACGCTGGCCCGGTTCCTCAGGATGACG--------CCCA ACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACCTGGAAGACAGTCCGCAT ATTGAGGGCTTGAGGCACTTGAGGAGAGCGGGGGTCGAGGTCAAAGTTATGAGCTATAAA GACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGTCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTCTGTCCGTCTGTCAAGA---------AAA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTTTTGGACTGTTAACC
TGA
Poecilia_formosa
ATGATTACAAAGCTA---------GACAGGGCACTATTACCCAGAAAAAAATTCATCTATCATTAC AAGAACTTGCGCTGGGCAAGAGGTCGATGTGAGACGTACCTCTGTTTTGTGGTGAAGAAGC GAGTGGGACCAGACTCCCTGTCCTTTGACTTTGGGCATCTCCGCAAC-----------------CGCAAC AACTGCCATGTGGAGCTGCTGTTCCTGCGCCACCTG------GGAGCGTTGTGCCCTGGCCTGTG GGGTTATGGAGTCACTGGTGAA---AGAAAAGTCAGCTACTCTGTCACCTGGTTTTGCTCCTG GTCTCCCTGTGCAAACTGCTCCATCCGACTGGCTCAGTTCCTCCACCAGACC--------CCCAA CCTCCGCCTCAGGATCTTTGTATCCCGGCTTTATTTCTGCGACTTGGAGGACAGCCGTGAAA GAGAGGGACTTAGAATACTGAAAAAAGCTGGCGTGCACATCACAGTCATGAGTTACAAAG ATTACTTTTACTGCTGGCAGACCTTTGTGGCAAAAAGCCAAAGCAAGTTCAAGCCGTGGGA TGGGCTGCACCAAAACTATATCCGGCTGTCAAGG--------AAA---CTCAACCGCATTCTTCAG CCATGTGAGACAGAAGATTTAAGAGATGCCTTCAGGCTTCTTGGACTG------------------TGA

Pollachius_virens
ATGATTAGTAAGCTA---------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATCTACAATTAC AAGAACATGCGATGGGCAAAAGGCCGCAACGAGACCTATCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCTGATTCCCTCTCTTTCGACTTCGGACACCTACGCAAT------------------CGCAC TGGCTGCCACGCAGAGCTGCTGTTCCTGAGCTACCTG------GGGGCGCTGTGCCCAGGCCTCT GGGGCTGCGCAGACGACAGAAAC---CGAAGACTAATTTACTCCGTCACCTGGTTCTGCTCCT GGTCGCCCTGTGCCAACTGTGCGACCACGCTGGCCCGGTTCCTGAGGCAGACG--------CCCA ACCTGCGCCTCAGGATCTTCGTGTCTCGCCTCTACTTCTGTGACCTGGAGGGCAGTCCGCAT GTAGAGGGCTTGAGGGACCTGAGGAGGGCAGGGGTCCAGGTCAAAGTGATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTTGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTATGTGCGTCTGTCAAGA---------AAA---CTAAACCGCATCCTCCA GCCATGTGAAACAGAAGATTTAAGAGATGTTTTCGGACTTTTTGGACTGTTAACTTGA

Polymixia_japonica
ATGATTACTAAACTA--------GACAGTGTGCTTTTGGCCCAGAAGAAATTCATCTACCATTAT AAGAACATGCGCTGGGCGAAGGGTCGACACGAGACGTATCTCTGCTTTGTAGTCAAGAGGA GGGTGGGACCGGACTCCATGTCCTTTGATTTTGGACACCTACGCAAT-----------------CGCTCT GGCTGCCATGTAGAGCTGCTGTTCCTGCGCCACCTG------GGGGCCTTGTGCCCTGGACTGTG GGGATACGGAGGTACTGGTGAG---AAGAGGCTCAGTTACTCCGTCACCTGGTTCTGCTCCTG GTCGCCCTGCTCCAACTGCTCCTACAGACTGGCCCAGTTCCTCAGCCAGACG--------CCCAA CCTCCGCCTCAGGATCTTCGTCTCTCGACTTTACTTCTGCGACCTGGAGGACAGCCGGGAGC GAGACGGCCTCAGAATGCTCAAAAGGGCTGGAGTGCAAATCACAGTCATGACCTACAAAG ACTACTTCTATTGCTGGCAGACCTTTGTGGCTCACAGAACAAGCAAGTTCAAGGCCTGGGA TGAGCTGCACCGGAACTCTGTCCGCCTGTCCAGG---------ATA---CTCAACCGCATCCTCCAGC CTTGTGAGACAGAAGATTTAAGAGATGCCTTCAGACTTCTTGGGTTG------------------TGA Pseudochromis_fuscus
ATGATTGCAAAGCTT--------GACAGTGTGCTTTTGCCAAAAAAGAAATTCATCTTTCATTAC AAGAACATGCGCTGGGCAAGGGGCCGACATGAGACATACCTCTGCTTTGTGGTGAAAAGG CGAAGGGGCCCAGACTCTCTGTCCTTTGACTTTGGACATCTCCGCAAT------------------CGCAA CGGCTGCCATGTAGAGCTGCTATTCCTACGGTACCTG------GGAGCCTTGTGCCCTGGTCTGT GGGGGTATGGGGCTACTGGGGCG---AGCAGGCTCAGCTACTCCATCACGTGGTTCTGCTCCT GGTCTCCTTGTGCCAACTGCTCTTTCAGACTGGCCCAGTTCCTCAGCCAGACG---------CCCA ATCTTCGCCTCAGGATCTTCGTCTCTCGCCTTTACTTTTGTGACATGGAGGACAGCCGTGAA AGAGAGGGTCTAAGGCAGCTGAAAAAAGCCGGAGTGCACATCACAGTCATGAGTTACAAA

[^37]


```
12574):10.645187737723738,(Mora_moro:36.98188234682083,_Laemonema_laureysi:36.98188234682
083):23.5078484090443):1.939285897175786,(Muraenolepis_marmoratus:56.88453414344788,(Trachy
rincus_scabrus:12.07161490740776,Trachyrincus_murrayi:12.07161490740776):44.81291924285889):
5.5444825193190255):1.5272070992565432):3.576350340722499):3.4563542779281846):33.4718737
1263503,Stylephorus_chordatus:104.46080207824707):21.041643343019487,(Zeus_faber:32.85098531
341553,Cyttopsis_roseus:32.85098531341553):92.65146017112733):19.170966317129142,(Polymixia_
japonica:135.7494994041443,(Percopsis_transmontana:60.18133554153442,Typhlichthys_subterraneus
:60.18133554153442):75.56816387424469):8.923912356662754):6.211380692934995):7.56075037511
5873,Benthosema_glaciale:158.44554285736086):10.299416859668469,(Parasudis_fraserbrunneri:161.
78278560620342,Guentherus_altivela:161.78278560077345):6.962174173392896):25.78392385015487
8,(Osmerus_eperlanus:117.3724450843811,Borostomias_antarcticus:117.3724450843811):77.15643841
142654):17.481817657327667,(Salmo_salar_1:0.00662978935994194395,Salmo_salar_2:0.008576995
53333491141):212.0107011795044):11.760062609915053):10,Lampetra_tridentata:232);
end;
begin mrbayes;
    log start filename=log.out;
    charset 1st_pos=1-.\3;
    charset 2nd_pos=2-.\3;
    charset 3rd_pos=3-.\3;
    partition by_codon=3:1st_pos,2nd_pos,3rd_pos;
    set partition=by_codon;
    lset applyto=(all) nst=6 rates=gamma;
    unlink revmat=(all) statefreq=(all) shape=(all) ratemultiplier=(all);
    prset applyto=(all) ratepr=variable;
    constraint gadiformes = 323162640707141343637206894353355197211383053
52;
    prset applyto=(all) topologypr=constraints(gadiformes);
    report applyto=(all) ancstates=yes siterates=yes;
    outgroup 21;
    showmodel;
    taxastat;
    mcmcp samplefreq=5000 printfreq=5000 nruns=24 nchains=10 starttree=current nperts=4
nswaps=3 temp =0.01;
    mcmcp savebrlens=yes filename=asr_gadiformes_gtr_outgroup_tree ngen=6000000;
    sump;
    sumt;
End;
```


Appendix 11: ProtASR setting and input files

```
ProtASR setting file
####################################################################################
######################################
##### Settings file for ProtASR 2.0
##### Ancestral sequence reconstruction of proteins under structurally constrained substitution models
##### Miguel Arenas, David Liberles & Ugo Bastolla
##### (c) 2014-2015
##### Contact: miguelmmmab@gmail.com
#####
##### Parameters with an "*" are mandatory (must be specified)
##### Text with an "#" is not read. Parameter values must be introduced immediately after the "="
##########################################################################################
#######################################
####################################################
#### Alignment of amino acid sequences and tree ####
#####################################################
### Target alignment file with a rooted tree ### # nexus format with a rooted tree, see documentation and
examples
*NameOfNexusFile=60_teleosts.nex
#############################
### Settings for the ASR ###
#############################
# Substitution model: MEANFIELD (requires specification of settings in the following section),
Blosum62, cpREV64, Dayhoff, DayhoffDCMUT, G1974a, G1974c, G1974p, G1974v, Grantham, HIVb,
HIVw, JTT, JonesDCMUT, LG, Miyata, MtArt, MtMam, MtRev24, MtZoa, RtRev, VT, WAG
*SubsModel=MEANFIELD
# Consider frequencies from the model (+F) (0: No, 1: Yes)
*ModelFreqs=0
# Estimate (0) or fix (1) gamma shape parameter
*TypeG=1
# Gamma shape parameter value. Initial or fixed alpha, 0:infinity (constant rate)
*AlphaG=0
# Different alphas for genes, introduce a number
*Malpha=0
# Estimate (0) or fix (1) rho (correlation parameter)
*TypeRho=1
```

```
# Rho (correlation parameter). initial or fixed rho, 0:no correlation
*RhoCorr=0
######################################################################################
###########
### Settings to compute the substitution model based on the protein structure - MEANFIELD - ###
############################################################################################
###########
### Input files defining the protein ###
# PDB file (must be placed in the current directory)
*PDBfile=model3.pdb
# Chain of the PDB file
*CHAIN=A
### Thermodynamic model ###
# Temperature
*TEMP=0.5
# Configurational entropy per residue (unfolded)
*SU1=0.065
# Configurational entropy per residue (misfolded)
*SC1=0.065
# Configurational entropy offset (misfolded)
*SC0=0.0
# Use up to 1,2,3 moments of misfolding energy?
*REM=2
# Contacts map (must be placed in the ProtEvol directory)
*FILE_STR=structures.in
### Mean field model ###
# Number of substitutions to simulate data (0 by default, not required for ASR)
*TMAX=0
# LAMBDA~ NPOP*exp(-DELTA G/TEMP)
*LAMBDA_par=0.90
# Optimize LAMBDA? (0: No, 1: Yes, default)
OPT_LAMBDA=1
# Target value of DeltaG if OPT_LAMBDA
DG_OPT=-1
# Optimization criterion. Allowed: NAT ALL DG
```

```
*MODEL=ALL
### Mutation model ###
# Global matrix. Mean (0) or mean weighted by frequencies (1)
*GLOBALMATRIX=0
# Exchangeability. Allowed: MUT, EXCH, FLUX, RATE
*EXCHANGE=FLUX
# Rate matrix. Allowed: JTT, WAG
*MATRIX=JTT
# Get nucleotide frequencies from sequence? (0: Use input nucleotide frequencies, 1: Fit nucleotide
frequencies from prot sequences, 2: Fit amino acid frequencies from prot sequences)
*GET_FREQ=2
## DNA Parameters for model MUT ##
# Frequency for A
*fA=0.25
# Frequency for T
*fT=0.25
# Frequency for C
*fC=0.25
# Frequency for G
*fG=0.25
# Transition transversion ratio (Kappa, >1)
*TT_RATIO=1.3
# Ratio between 1-nuc and 2-nuc mutations (0-1)
*TWONUCMUT=0.25
#######################################################################################
#########################################
##### Settings file for ProtASR 2.2
##### Ancestral sequence reconstruction of proteins under structurally constrained substitution models
##### Miguel Arenas & Ugo Bastolla
##### (c) 2014-2018
##### Contact: miguelmmmab@gmail.com
#####
##### Parameters with an "*" are mandatory (must be specified)
##### Text with an "#" is not read. Parameter values must be introduced immediately after the "="
#####################################################################################
#######################################
#####################################################
#### Alignment of amino acid sequences and tree ####
```

```
#####################################################
### Target alignment file with a rooted tree ### # nexus format with a rooted tree, see documentation and
examples
*NameOfNexusFile=60_teleosts.nex
#############################
### Settings for the ASR ###
#############################
# Substitution model: MEANFIELD (requires specification of settings in the following section),
Blosum62, cpREV64, Dayhoff, DayhoffDCMUT, G1974a, G1974c, G1974p, G1974v, Grantham, HIVb,
HIVw, JTT, JonesDCMUT, LG, Miyata, MtArt, MtMam, MtRev24, MtZoa, RtRev, VT, WAG
*SubsModel=MEANFIELD
# Consider frequencies from the model (+F) (0: No, 1: Yes)
*ModelFreqs=0
# Estimate (0) or fix (1) gamma shape parameter
*TypeG=0
# Gamma shape parameter value. Initial or fixed alpha, 0:infinity (constant rate)
*AlphaG=0.5
# Different alphas for genes, introduce a number
*Malpha=0
# Estimate (0) or fix (1) rho (correlation parameter)
*TypeRho=1
# Rho (correlation parameter). initial or fixed rho, 0:no correlation
*RhoCorr=0
########################################################################################
###########
### Settings to compute the substitution model based on the protein structure - MEANFIELD - ###
########################################################################################
###########
### Input files defining the protein ###
# PDB file (must be placed in the current directory)
*PDBfile=Gadus_morhua.pdb
# Chain of the PDB file
*CHAIN=A
```

```
### Thermodynamic model ###
# Temperature
*TEMP=0.5
# Configurational entropy per residue (unfolded)
*SU1=0.065
# Configurational entropy per residue (misfolded)
*SC1=0.065
# Configurational entropy offset (misfolded)
*SC0=0.0
# Use up to 1,2,3 moments of misfolding energy?
*REM=2
# Coefficient of local interactions
*A_LOC=0
# Contacts map (must be placed in the ProtEvol directory)
*FILE_STR=structures.in
### Mean field model ###
# Number of substitutions to simulate data (0 by default, not required for ASR)
*TMAX=0
# LAMBDA~ NPOP*exp(-DELTA G/TEMP)
*LAMBDA_par=0.90
# Optimize LAMBDA? (0: No, 1: Yes, default)
OPT_LAMBDA=1
# Target value of DeltaG if OPT_LAMBDA
DG_OPT=-1
# Optimization criterion. Allowed: NAT ALL DG
*MODEL=ALL
# WildType model: No (0) or yes (1)
*WTmodel=1
### Mutation model ###
# Global matrix. Mean (0) or mean weighted by frequencies (1)
*GLOBALMATRIX=0
# Exchangeability. Allowed: MUT, EXCH, FLUX, RATE
*EXCHANGE=FLUX
# Rate matrix. Allowed: JTT, WAG
*MATRIX=JTT
```

```
# Get nucleotide frequencies from sequence? (0: Use input nucleotide frequencies, 1: Fit nucleotide
frequencies from prot sequences, 2: Fit amino acid frequencies from prot sequences)
*GET_FREQ=2
# Improve mutation parameters after selection?
*REMUT=0
## DNA Parameters for model MUT ##
# Frequency for A
*fA=0.25
# Frequency for T
*fT=0.25
# Frequency for C
*fC=0.25
# Frequency for G
*fG=0.25
# CpG transition ratio
*kCpG=2
# Transition transversion ratio (Kappa, >1)
*TT_RATIO=1.3
# Ratio between 1-nuc and 2-nuc mutations (0-1)
*TWONUCMUT=0.25
ProtASR input file
#NEXUS
[
Real data set from NCBI
PDBtaxa=Gadus_morhua
]
Begin data;
Dimensions ntax=74 nchar=217;
    Format datatype=protein gap=- missing=? matchchar=.;
    Matrix
Acanthochaenus_luetkenii
MITKLDRVLLAKETFIFHYENMRWAKGRHETYLCFVVKRRVGPDSLSFDFGHLRNRTGCHVE-
LLFLRHL--GTLCPGLWGYGGAGE-
RRLSYSITWFCSWSPCADCAFRVAQLIGRTPNLRLRIFVSRLYFCDLEDSRERGGLRLLKKAGVQ
ITVMSYKDFFYCWQTFVANGGSSFKAWDEMHQNSVRLASQLNHILQPCDTEDLRDAFKLLGL--
Anabas_testudineus
MITKLDSVLLPRKKFIYHYKNVRWARGRHETYLCFVVKRRVGPDSLTFDFGHLRNRNGCHVE-
MLFLRYL--GALCPGIWGYGGAGE-
KRLSYSITWFCSWSPCANCSLRLTQFLSQTPNLRLRIFVSRLYFCDMEDSREREGLRILKNAGVQI
TVMTYKDFFYCWQTFVDRKQSSFKAWDELHQNSVRLTRKLYRILQPCEIEDLRDAFKLLGL--
```

```
Antennarius_striatus
MITKLDSVLLPRKKFIYHYKNMRWARGRCETYLCFVVKRREGPDTLTFDFGHLRNRNGCHVE-
LLFLRYL--GALCPGLWGSGGTGE-
KRLSYSITWFCSWSPCANCSIRQCEFLSRTPNLRLRIFVSRLYFCDLEDSREREGLRMLKKAGVQI
SVMSYKDFFYCWQTFVASKQSSFKAWEELHQNSVRLARKLNRILQPCEAEDLRDAFKLLGL--
Arctogadus_glacialis
MISKLDSVLLAQNKFIYNYKNMRWAKGRNETYLCFVMKRRLGPDSLSFDFGHLRNRTGCHAE-
LLFLSYL--GALCPGLWGCADDRN-
RRLSYSVTWFCSWSPCANCATTLTRFLRQTPNLRLRIFVSRLYFCDLEGSPHVEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNYVRLSRK?NRILQPCETEDLRDVFRLFGL
LT
Astyanax_mexicanus
MTSKLDSILLTQKKFIYHYKNVRWARGRHETYLCFVVKRRIGPNSLSFDFGHLRNRSGCHVE-
LLFLRYL--GALCPGLGGLGVDGV--
KVGYAVTWFCSWSPCSNCAQRIAHILSQTPSLRLRIFVSRLYFCDNEDSLEREGLRHLLRAGVQI
TVMTYKDFFYCWQTFVARRESRFKAWDGLHQNSVRLSRKLKRILQPCQTEDLRDVFALLGL--
Bathygadus_melanobranchus
MISKLDSVLLAQKKFMYNYKNVRWAKGRHETYLCFVVRRRLGPNSLSFDFGHLRNRTGCHVE-
LLFLSHL--GALCPGLWGCVGDDN-
RRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLEDSPNIEGLRELRRAGV
QVIVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRVIGL
LS
Benthosema_glaciale
MITKLDSVLLGQKKFLFHYKNVRWAWGRNETYLCFVVKRRVGPNSLSFDFGHLRNRSSCHAE-
LLFLRHL-
GGALCPGLWGYGGDGGEGRFNYSVTWFCSWSPCADCSLRLAQFLSRTPNLRLRIFVSRLYFCD
AEDSREREGLRTLKRAGVQITVMNYKDYYYCWQTFVAHRQSSFKAWADLHQNSVRLARKLH
RILQPCETEDFRDAFKLLGL--
Beryx_splendens
MITKLDSVLLAKKKFIYHYKNMRWAKGRHETYLCFVVKRRVGPDSLSFDFGHLRNRAGCHVE-
LLFLRHL--GALCPGLWGHGGSGE-
RKLSYSITWFCSWSPCADCSFRLAQFLNRTPNLRLRIFVSRLYFCDQEDSRERDGLRLLKKAGV
NITVMSYKDFFYCWQTFVANRTSRFKAWDLLHQNSVRLARKLNRILQPYEIEDLRDAFRLLGF--
Boreogadus_saida
MIRKLDSVLLAQNKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLHNRTGCHAE-
LLFLSYL--GALCPGLWGCADDRN-
RRLSYSVTWFCSWSPCANCATTLTRFLRQTPNLRLRIFVSRLYFCDLEGSPHVEGLRDPRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNYV?LSRKLNRILQPCETEDLRDVFRLFGL
LT
Borostomias_antarcticus
MISKLDSVLLAQKKFLFHYKNVRWARGRHETYLCFVVKRRVGPDSLTFDFGHLRNRTGCHVE-
LLFLRHL--
GVLCPGLSASGGAGGGRGLNYSITWFCSWSPCFDCSARLAQFLRRTPNLRLRLFVSRLYFCDPE
DRHEREGLRALKRAGVHITVMSYKDYFYCWQTFVAHRQRAFKAWEDLQQNSVRLARKLNSIL
LPCETEDLRDPFRLLGL--
Brosme_brosme
MMSKLDSVLLAQKKFIYNYKNLRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHVE-
LLFLSYL--GALCPGLWGCGGDRN-
QRLSYSVTWFCSWSPCANCAATLARFLRHTPNLRLRIFVARLYFCDLEGSPHIEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRALNRILQPCETEDLRDPFRLFGL
LT
Brotula_barbata
MIAKLDSVLLPRKKFIYHFKNMRWAKGRHETYLCFVVKRRVGPDSLSFDFGHLRNRNGCHVE-
```

```
LLFLRYL--GALCPGLWGCGNSGQ--
RLCYSITLFCSWSPCANCSERLAKFLGRTPNLRLRIFVSRLYFCDMEDSREREGLRMLKNAGVNI
TVMSYKDYFYCWQTFVARGASNFKAWDGLQENSIRLARKLTHILQPGETEDLRDAFKLLGM--
Carapus_acus
MTAKLDRVLLPRKKFLFHYKNVRWAKGRHETYLCFVVKRRVGPDSMSFDFGHLRNRSGCHVE
-LLFLRYL--GALCPGLWGYEGSGQ-
RRLSYSITWFCSWSPCANCSERLAQFLNRTPNLRLRIFVSRLYFCDLEDSREREGLRTLEKAGVH
ITIMSYKDYFYCWQTFVACGTSKFKAWDELHQNTTRLKRKLNRILQPCETEDLRDAFKLLGLL-
Chaenocephalus_aceratus
MITKLDSMLLPRKKFIYHYKNMRWARGRCETYLCFVVKRRVGPDSLTFDFGHLRNRNGCHVE-
MLFLRYL--DALCPGLLGCEGTGE-
KRLSYSITWFCSWSPCANCSIRLSQFLSQTPNLRLRIFVSRLYFCDMENSPARDGLIMLKKAGVQ
TSVMSYKDFFYCWHNFVDCKQSKFKPWEDLHQNSVRLARKLKRILQLCETEDLRDAFKLLGL--
Chatrabus_melanurus
MITKLDSVLLPRKKFIYHYKNMRWAKGRHETYLCFVVKRRMGPDSLSFDFGHLRNRNGCHVE-
LLFLRYL--GALCPGLWGYGIAGE-
RKLSYSVTWFCSWSPCVNCSLRLTQFLMQTPNLRLRIFVSRLYFCDMEDSREREGLRMLKKAG
VHITVMSYKDFFYCWQTFVACKESKFKAWEALHQNSVRLARKLNRILQPCETEDFRDAFKLLG
L--
Chromis_chromis
MITKLDSVLLPQKKFIYHYKNMRWARGRCETYLCFVIKKRAGPDSISFDFGHLRNRNGCHVE-
LLFLRYL--GALCPGLWGYGQ----
NRISYSITWFCSWSPCANCSLRLAQFLNQTPNLRLRIFVSRLYFCDMEDSREREGLRILKKAGVNI
TVMSYKDYFYCWQTFVARRLSKFKPWDGLQQNYVRLSRKLNRILQPCETEDFRDAFRLLGL--
Cyttopsis_roseus
MITKLDSVLLARKTFIYHYKNMRWAKGRHETYLCFVVKRRVGPDSLSFDFGHLRNRTGCHVE-
LLFLRHL--GALCPGLWGQGGADE-
RRLSYSVTWFCSWSPCANCSLRLVQFLGQTPNLRLRIFVSRLYYCDLEDSREREGLRTLKRAGV
QITVMSYKDYFYCWQTFVARRQTRFKAWDELHQNSVRLARKLNRILQPCETEDLRDAFKLLGF
L-
Danio_rerio
MICKLDSVLMTQKKFIFHYKNVRWARGRHETYLCFVVKRRIGPDSLSFDFGHLRNRSGCHVE-
LLFLRHL--GALCPGLSASSVDGA--
RLCYSVTWFCSWSPCSKCAQQLAHFLSQTPNLRLRIFVSRLYFCDEEDSVEREGLRHLKRAGVQ
ISVMTYKDFFYCWQTFVARRERSFKAWDGLHENSVRLVRKLNRILQPCETEDLRDVFALLGL--
Gadiculus_argenteus
MISKLDSVLLAQKKFIYNYNNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHAE-
VLFLSYL--GALCPGLWGCAGDRS-
LRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLEGSPHVEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDVFRLFGL
LT
Theragra_chalcogramma
MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHAE-
LLFLSYL--GALCPGLWGCADDRN-
RRLSYSVTWFCSWSPCANCATTLTRFLRQTPNLRLRIFVSRLYFCDLEGSPHVEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNYVRLSRKLNRILQPCETEDLRDVFRLFG
LLT
Gadus_morhua
MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHAE-
LLFLSYL--GALCPGLWGCADDRN-
RRLSYSVTWFCSWSPCANCATTLTRFLRQTPNLRLRIFVSRLYFCDLEGSPHVEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNYVRLSRKLNRILQPCETEDLRDVFRLFG
LLT
```

```
Gasterosteus_aculeatus
MIAKLDSVLLPRKKFIYHYTNMRWARGRHETYLCFVVKRRVGPDSLSFDFGHLRNRSGCHVE-
LLFLRHL--GALCPGFLGCGDTGG-
RRLSYSITWFCSWSPCVNCSISLSQFLSRTPNLRLRIFVSRLYFCDMENSRERDGLRMLKKAGVQ
VTVMSYKDFFYCWQTFVDRKQSQFKAWKELHQNSVRLSRKLKRILQPCETEDLRDAFKLLGL--
Guentherus_altivela
MITKLDSILMAQKKFIFHYKNMRWAKGRNETHLCFVVKRRLGPNSLSFDFGHLRNRTGCHVE-
LLFLRHL--GFLCPGLWGYGEPGE-
GRLNYSVTWFCSWSPCADCSFTLTHFLRETPNLRLRIFVSRLYFCDEEDSSAREGLRMLKKAGV
NITVMSYKDYFYCWKTFVAHRQRNFKAWDGLDQNSVHLARKLSHILQPWETADLRDAFKLLG
L--
Helostoma_temminckii
MITKLDSVLLPRKKFIYHYKNVRWARGRHETYLCFVVKRRVGPDSLTFDFGHLRNRNGCHVE-
MLFLRYL--GALCPGLWGCGGTGE-
RRLSYSITWFCSWSPCSNCSLRLAQFLSQTPNLRLRIFVSRLYFCDMEDSREREGLRILKNAGVQI
TVMSYKDFFYCWQTFVARKQSNFKAWEELHQNSVRLTRKLHRILQPCETEDLRDAFKLLGL--
Holocentrus_rufus
MITKLDSVLLAKKKFIYHYKNLRWAKGRHETYLCFVVKRRAGPDSIAFDFGHLRNRAGCHVE-
LLFLRYL--GALCPGLWGYGGTGE-
RKMSYSITWFCSWSPCANCSYRLAQFLNRTPNLRLRLFVARLYFCDIEDSREREGLRMLKNAGV
HITVMSYKDYFYCWQTFVARKTSNFKAWDGLHQNYVRLARKLNRILQPCETEDLRDAFRLLG
L--
Laemonema_laureysi
MISKLDSVLLAQKKFMFNYKNMRWARGRNETYLCFVVKRRLGPNSLSFDFGHLRNRTGCHVE-
LLFLSYL--GALCPGLWGCRGDEN-
RRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLEDSPHIEGLRDLRRAGV
RVTVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGL
LT
Lampris_guttauts
MISKLDSVLLTQKKFLYHYKNVRWAKGRHETYLCFVVKRRVGPDSMSFDFGHLRNRAGCHVE
-LLFLRYL--GALCPGLWGYGDTGD-
RRLSYSVTWFCSWSPCANCSFRLAQFLQRTPNFRLRLFVSRLYFCDMEDSSERDGLRLLKNAGV
QITVMSYKDYFYCWQTFVAHRKSSFKAWDGLHQNTVRLARLLNRILQPCEAEDLRDAFKLLGF
--
Lamprogrammus_exutus
MIAKLDSVLLPRKKFIFHYKNMRWAKGRHETYLCFVVKRRVGPDSLSFDFGHLRNRNGCHVE-
LLFLRYL--GALCPGLWGCGGSGE-
RRLSYSITWFCSWSPCANCSQRLSQFLSQTPNLRLRIFVSRLYFCDMENSREREGLRMLKNAGV
QITVMSYKDFFYCWQTFVACGKSKFKAWDELHRNSVRLTRKLNRILQPWETEDLRDAFRLLGF
--
Lesueurigobius_cf_sanzoi
MITKLDSVLLPKKKFIFHYKNVRWAKGRHETYLCFVVKRRVGPNSMSFDFGHLRNRSGCHVE-
ILFLRYL--GALCPGLWGAGGSEE-
RRLSYSITWFCSWSPCANCSTKLSQFLAKTPNLRLRIFVSRLYFCDLEDSIEREGLRMLKRAGVQ
LTVMKYKDYFYCWHTFVARNQSNFKAWEELHQNSVRLTRKLSRILQPCETEDLRDAFRLLGL--
Lota_lota
MISKLDSVLLAQKKFIYNYKNIRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHVE-
LLFLSYL--GALCPGLWGCGGDRN-
RRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLEGSPHIEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLFGL
LT
Macrourus_berglax
MISKLDSILLAQKKFKYNYNNMRWAKGRNETYLCFVVKRRLGPNSLSFDFGHLRNRAGCHVE-
```

```
LLFLSHL--GALCPGLWGFGGAEN-
IRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCELADSPHSEGLRELRRAGVQ
VNVMTYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNLILQPCETEDLRDAFRLIGLL
T
Malacocephalus_occidentalis
MISKLDSVLLAQKKFIYNYKNIRWAKGRNETYLCFVVKRRLGPNSLSFDFGHLRNRTGCHVE-
LLFLSYL--GALCPGLWGCGGADN-
RRLNYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLDDSPHTEGLRELRRAGV
QFTVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGL
LS
Melanogrammus_aeglefinus
MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHAE-
LLFLSYL--GALCPGLWGCAGDRN-
RRLSYSVTWFCSWSPCANCATTLTRFLRQTPNLRLRIFVSRLYFCDLEGSPHVEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNYVRLSRKLNRILQPCETEDLRDVFRLFG
LLT
Melanonus_zugmayeri
MISNLDSVLLAQKKFMYNYKNMHWAKGRNATYLCFVVKRRLGPDSLSFDFGHLHNRTGCHA
E-LLFLSHL--GALCPGLWGCGGDKN-
RRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARVYFCEQEDSPHIEGLRDLRRAGV
QVTVMSYKDYFYCWQTFVAHRLSRFKTWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGL
LT
Merlangius_merlangus
MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHAE-
LLFLSYL--GALCPGLWGCAGDRN-
RRLSYSVTWFCSWSPCANCATTLSRFLRQTPNLRLRIFVSRLYFCDLEGSPHVEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNYVRLSRKLNRILQPCETEDLRDVFRLFG
LLT
Merluccius_merluccius
MISKLDSVLLAQKKFMYNYKNMRWAKGRNQTYLCFVVKRRLGPDSLSFDFGHLHNRTGCHA
E-LLFLSHL--GALCPGLWGCGGDEN-
RRLSYSVTWFCSWSPCANCAATLARFLRLTPNLRLRIFVARLYFCDVEDSPHREGLRNLRRAGV
LVNVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRTLNRILQPCETEDLRDAFRLIGL
LT
Merluccius_polli
MISKLDSVLLAQKKFMYNYKNMRWAKGRNQTYLCFVVKRRLGPDSLSFDFGHLHNRTGCHA
E-LLFLSHL--GALCPGLWGCGGDEN-
RRLSYSVTWFCSWSPCANCAATLARFLRLTPNLRLRIFVARLYFCDVEDSPHREGLRNLRRAGV
LVNVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRTLNRILQPCETEDLRDAFRLIGL
LT
Molva_molva
MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHVE-
LLFLSYL--GALCPGLWGCGGDTN-
RRLSYSVTWFCSWSPCANCAATLARFLRHTPNLRLRIFVARLYFCDLEGSPHIEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHKLSRFKAWEGLHTNYVRLSRKLNRILQPCETEDLRDAFRLFG
LLT
Monocentris_japonica
MITKLDSVLLAQKKFIYHYKNMRWARGRHETYLCFVVKRRVGPDSLSFDFGHLRNRSGCHVE-
LLFLRHL--GALCPGLWGYGGTGE-
RRLSYSITWFCSWSPCADCSFRLVQFLGRTPNLRLRIFVSRLYFCDVEDSRERQGLRMLKKAGV
QITVMSYKDYFYCWQTFVAHRQSSFKAWDELHQNSVRLARKLNRILQPCETEDLRDAFKLLGL
--
```

```
Mora_moro
MISTLDSVLLAQKKFMYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHVE
-LLFLSHL--GALCPGLWGCGGDEN-
RRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLEDSPHIEGLRDLRRAGV
QVTVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGL
LT
Muraenolepis_marmoratus
MISKLDSVLLGQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSMSFDFGHLRNRAGCHVE
-LLFLSHL--GALCPGLWGCGGDEN-
RRLSYSVTWFCSWSPCANCAATLARLLRQTPNLRLRIFVARLYFCDLEGSPHSEGLRDLRRAGV
QVNVMSYKDYFYCWQTFVAHRVSRFKAWEGLHTNSVRLSRKLNRILQPRETDDLRDAFRLIGL
LT
Myoxocephalus_scorpius
MITKLDSVLLQQKKFIYHYKNMRWARGRHETYLCFVVKRRVGPDSLSFDFGHLRNRTGCHVE-
LLFLRYL--GALCPGLWGYGGTGE-
KRLSYSITWFCSWSPCINCSISLSQFLNRTPNLRLRIFVSRLYFCDKENSRERDGLRMLKNAGVQI
TVMSYKDFFYCWQTFVDRKKSNFKAWEELHQNSVRLARKLNRILQPCEAEDLRDAFKLLGL--
Myripristis_jacobus
MITKLDSMLLAKKKFIYHYKNMRWAKGRHETYLCFVVKRRVGPDSMSFDFGHLRNRAGCHV
E-LLFLRYL--GALCPGLWGCGGNTE-
KKLSYSITWFCSWSPCADCSFRLAQFLNRTPNLRLRIFVSRLYFCDLEDSREREGLRMLKKAGV
QITVMSYKDYFYCWQTFVAHRMSSFKAWDGLHQNYVRLARKLNRILQASETEDLRDAFKLLG
L--
Neoniphon_sammara
MITKLDSVLLAKKKFIYHYKNLRWAKGRHETYLCFVVKRRVGPDSIAFDFGHLRNRAGCHVE-
LLFLRYL--GALCPGLWGYGGTGE-
RKLSYSITWFCSWSPCANCSFRLAQFLNRTPNLRLRIFVSRLYFCDVEDSREREGLRMLKNAGV
HITVMSYKDYFYCWQTFVARKTSSFKAWDGLHQNYVRLARKLNRILQPCDTEDLRDAFRLLG
L--
Oreochromis_niloticus
MIAKLDSMLLPRKKFLYHYKNVRWARGRNETYLCFVVKRRVGPDSLSFDFGHLRNRNGCHVE
-LLFLRQL--GTLCPGLSGYGFHGE-
RRVSYSITWFCSWSPCANCSSRLAQFLKQTPNLRLRIFVSRLYFCDMEDSREREGLRLLKKVGV
HITVMSYKDFFYCWENFVA-QQSKFKAWEGLHQNTVRLARKLNRILQPCDTEDLRDAFKLLGL-
-
Oryzias_latipes
MITKLDSVLLPKKKFIYHYKNMRWARGRHETYLCFVVKRRVGPESLSFDFGHLRNRNGCHVE-
LLFLRHL--SALCPGLWGYGATGQ-
GRVSYSITWFCSWSPCANCSFRLAQFLSQTPNLRLRIFVSRLYFCDLEDSREREGLRMLKKVGV
HITVMSYKDYFYCWQTFVARKQSKFKPWDGLHQNSVRLSRKLNRILQPCETEDFRDAFKLLGL
--
Osmerus_eperlanus
MISTLDGVLLAQKKFIYHYKNMRWARGRHETYLCFVIKRRVGPDSLSFDFGHLRNRTGCHVE-
LLFLRHL--
GALCPGLWGTGGAGGGVRLSYSITWFCSWSPCSACSHRLSDFLSRTPNLRLRIFVSRLYFCDPED
SLEREGLRMLKRAGVNITVMSYKDYFYCWETFVARRKTGFKAWDGLHHNSVRLARKLYRILQ
PCETEDLRDAFTLLGL--
Parablennius_parvicornis
MIAKLDSMLLPRKKFIYHYKNMRWAKGRHETYLCFVVKRRLGPDSLSFDFGHLRNRNGCHVE-
LLFLRHL--GTLCPGLSGYGVHGE-
KRLSYSITWFCSWSPCSNCSHRLAQFLSRTPNIRLRIFVSRLYFCDLEDSREREGLRLLKKTGVHI
TVMSYKDYFYCWQTFVASNQSRFKPWDELQRNSIRLTRKLNRILQPCETEDLRDAFKLLGL--
```

```
Parasudis_fraserbrunneri
MITNLDSVLLAQKKFIYHYKNMRWARGRHETYLCFVVKRRLGPDSLSFDFGHLRNRSGCHVE-
LLFLRHL--GALCPGLWGYGGE---
KRLSYSVTWFCSWSPCADCSTRLSQFLSRTPNLRLRIFVSRLYFCDLEDSLAREGLRTLKRVGVQ
VTVMSYKDYFYCWQTFVARRQSSFKAWDGLQQNSVRLARKLNRILQPCETEDLRDAFKLLGL-
-
Perca_fluviatilis
MITKLDSVLLPRKKFIYHYKNMRWARGRHETYLCFVVKRRVGPDSLSFDFGHLRNRNGCHVE-
LLFLRYI--GALCPGLWGCSGTGE-
RRLSYSITWFCSWSPCANCSIRLSQFLSQTPNLRLRIFVSRLYFCDTENSPERDGLRMLKKAGVQI
TVMSYKDFFYCWQTFVDRKQSNFKAWEELHSNSVRLSRKLNRILQPFETEDLRDAFKLLGL--
Percopsis_transmontana
MITKLDSVLLAQKKFIFHYKNMRWARGRHETYLCFVIKRRVGPNSLSFDFGHLRNRSGCHVE-
ILFLRHL--GALCPGLWGEGGTGE-
RRLSYSITWFCSWSPCANCSLRLAQILRQLPNLRLRIFVSRLYFCDLEDSKERDGLRMLKNVGV
QITVMSYKDYFYCWQTFVAHRKSNFKAWDGLHQNSVRLARKLNRILQPCEIEDLRDAFKLLGF
--
Phycis_blennoides
MISKLDSVLLAQKKFIYNYKNIRWAKGRNETYLCFVVKRRLGPNSLSFDFGHLRNRAGCHVE-
LLFLSHL--GALCPGLWGCVDDSN-
RRLSYSVTWFCSWSPCANCAATLARFLRMTPNLRLRIFVARLYFCDLEDSPHIEGLRHLRRAGV
EVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLFGL
LT
Phycis_phycis
MISKLDSVLLAQKKFLYNYKNIRWAKGRNETFLCFVVKRRLGPNSLSFDFGHLRNRAGCHVE-
LLFLSHL--GALCPGLWGCVDDSN-
RRLSYSVTWFCSWSPCANCAATLARFLRMTPNLRLRIFVARLYFCDLEDSPHIEGLRHLRRAGV
EVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLFGL
LT
Poecilia_formosa
MITKLDRALLPRKKFIYHYKNLRWARGRCETYLCFVVKKRVGPDSLSFDFGHLRNRNNCHVE-
LLFLRHL--GALCPGLWGYGVTGE-
RKVSYSVTWFCSWSPCANCSIRLAQFLHQTPNLRLRIFVSRLYFCDLEDSREREGLRILKKAGVH
ITVMSYKDYFYCWQTFVAKSQSKFKPWDGLHQNYIRLSRKLNRILQPCETEDLRDAFRLLGL--
Pollachius_virens
MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHAE-
LLFLSYL--GALCPGLWGCADDRN-
RRLIYSVTWFCSWSPCANCATTLARFLRQTPNLRLRIFVSRLYFCDLEGSPHVEGLRDLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNYVRLSRKLNRILQPCETEDLRDVFGLFG
LLT
Polymixia_japonica
MITKLDSVLLAQKKFIYHYKNMRWAKGRHETYLCFVVKRRVGPDSMSFDFGHLRNRSGCHVE
-LLFLRHL--GALCPGLWGYGGTGE-
KRLSYSVTWFCSWSPCSNCSYRLAQFLSQTPNLRLRIFVSRLYFCDLEDSRERDGLRMLKRAGV
QITVMTYKDYFYCWQTFVAHRTSKFKAWDELHRNSVRLSRILNRILQPCETEDLRDAFRLLGL--
Pseudochromis_fuscus
MIAKLDSVLLPKKKFIFHYKNMRWARGRHETYLCFVVKRRRGPDSLSFDFGHLRNRNGCHVE-
LLFLRYL--GALCPGLWGYGATGA-
SRLSYSITWFCSWSPCANCSFRLAQFLSQTPNLRLRIFVSRLYFCDMEDSREREGLRQLKKAGVH
ITVMSYKDYFYCWQTFVARNQSKFKPWDELHQNSVRLSRKLNRILQPCETEDLRDAFKLLGL--
Rondeletia_loricata
MITKLDSVLLAKKKFIYHYKNMRWARGRHETYLCFVVKRRVGPDSLSFDFGHLRNRTGCHVE-
LLFLRHL--GALCPGLWGHGGTGE-
```

```
RRLSYSITWFCSWSPCADCSFRLAQFLGRMPNLRLRIFVSRLYFCDLEDSREREGLRLLKKAGV
QITVMSYKDFFYCWQTFVAHRNCSFKAWDEMHQNSVRLARKLNRILQPCETEDLRDAFKLLG
L--
Salmo_salar_1
MINKFDSVLLAQKKFIYHYKNMRWAKGRHETYLCFVVKRRVGPNSLSFDFGHLRNRSGCHVE-
LLFLRLLEAGALCPGLWGYGAPDS-
VGLCYSVTWFCSWSPCSDCSYRLAQFLSQTPNLRLRIYVSRLYFCDPEDSSAREGLRMLQRAGV
QITVMNYEDYFYCWQTFVACRQRVFKAWDGLHQNSVQLARKLNDILQPGEAEDWGDAFELL
GL--
Salmo_salar_2
MINKFDSVLLAQKKFIYHYKNMRWAKGRHETYLCFVVKRRGGPNSLSFDFGHLRNRSGCHVE-
LLFLRLLEAGALCPGLWGYGAPDS-
VGLCYSVTWFCSWSPCSDCSYRLAQFLSQTPNLRLRIYVSRLYFCDPEDSSAREGLRMLQRAGV
QITVMNYEDYFYCWQTFVACRQRVFKAWDGLHQNSVQLARKLNDILQPGEAEDWGDAFELL
GL--
Sebastes_norvegicus
MITKLDSVLLPRKKFIFHYKNMRWARGRHETYLCFVVKRRVGPDSLTFDFGHLRNRNGCHVE-
LLFMRYL--GALCPGLWGQGVPGE-
KRLSYSITWFCSWSPCVNCSVTLSQFLSKTPNLRLRIFVSRLYFCDMENSRERDGLRMLKKAGV
QISVMSYKDYFYCWQTFVDRKQSKFKAWDEMHQNSVRLTRKLSRILQPSETEDLRDAFKLLGL
--
Selene_dorsalis
MITKLDSVLLPRKKFIFHYKNVRWAKGRHETYLCFVVKRRVGPDSMTFDFGHLRNRNGCHVE-
ILFLRYL--GALCPGLWGYGVGGE-
KRLSYSITWFCSWSPCANCSSRLAQFLKQTPNLRLRIFVSRLYFCDLEDSQEREGLRILKKAGVHI
TVMTYKDFFYCWQTFVARKQSSFKAWDELHQNSVRLARKLQRILQPCETEDLRDAFKLLGL--
Spondyliosoma_cantharus
MITKLDSVLLPKKKFIYHYKNVRWARGRHETYLCFVVKRRVGPDTLTFDFGHLRNRNGIHVE-
LLFLRYL--GALCPGLWGYGGTGE-
KRLSYSITWFCSWSPCANCSLRLCQFLSQTPNLRLRIFVSRLYFCDMEDSREREGLRMLKKAGV
QITVMSYKDFFYCWQTFVARRASQFKAWEELQRNSVRLTRKLNRILQPCETEDLRDAFKLLGL-
-
Stylephorus_chordatus
MIAKLDSVLLARNKFIYHYKNMRWAKGRNETYLCFVVKRRVGPDSLAFDFGHLRNRTGCHVE
-LLFLRHL--GALCPGLWG-GAAGD-
KRLSYSVTWFCSWSPCANCASTLAQFLRQTPNLRLRLFVARLYFCDLEDSPDREGLRILRRAGV
HITVMRYKDYFYCWQTFVAHNQSRFKAWEGLHPNSVRLSRTLNRILQPCETEDLRDAFKLLGL-
Symphodus_melops
MNTKLDSVLLPRKKFIYHYKNVRWARGRHETYLCFVIKRRVGPDTLTFDFGHLRNRNGCHVE-
LLFLRYL--GALCPGLLGYGGAGE-
KRLSYSITWFCSWSPCSNCSTILCQFLSKMPNLRLRLFVSRLYFCDMEDSREREGLRMLKKVGV
QITIMSYKDFFYCWQKFVARRQSNFKAWEELHQNSVRLSRKLNRILQPCETEDLRDAFKLLGL--
Takifugu_rubripes
MITKLDSMLLPRKKFIYHYKNVRWARGRHETYLCFVVKRRVGPDTLTFDFGHLRNRSGCHVE-
LLFLRYL--GALCPGLWGYGAAGE-
KRLSYSVTWFCSWSPCVNCSIQLCQFLNNTPNLRLRIFVSRLYFCDLEDSLEREGLRMLTKAGV
RISVMSYKDYFYCWQKFVDCKKSNFKAWEELHQNSVRLTRKLNRILQAWDLEDLRDALKLLG
F--
Tetraodon_nigroviridis
MITKLDSMLLPRKKFLYHYKNVRWARGRHETYLCFVVKRRVGPDTLTFDFGHLRNRNGCHVE
-LLFLRYL--GALCPGLWGYGAAGE-
```

```
KRLSYSITWFCSWSPCANCSIQLSQFLRNTPNLRLRIFVSRLYFCDMEDSLEREGLRMLSRAGVR
ISVMSYKDFFYCWQKFVDSKTSSFKAWEELHQNSVRLTRKLNRILQSWDLEDLRDALKLLGL--
Thunnus_albacares
MITKLDSVLLPRKKFIYHYKNVRWARGRHETYLCFVVKRRVGPDSLSFDFGHLRNRNGCHVE-
LLFLRYL--GALCPGVWGYGNTGQ--
RISYSITWFCSWSPCANCSRRLAQFLSQVPNVRLRIFVSRLYFCDLEDSRERDGLRLLKNAGVQI
TVMSYKDFFYCWQTFVARNQSKFKAWEELHRNSVRLTRTLNRILQPCDIDDLRDAFKLLGL--
Trachyrincus_murrayi
MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRLGCHVE-
LLFLSHL--GALCPGLWGCGGDVN-
RRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLEDSPHIEGLRDLRRAGV
QVTVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGL
LT
Trachyrincus_scabrus
MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRLGCHVE-
LLFLSHL--GALCPGLWGCGGDEN-
RRLSYSVTWFCSWSPCANCAATLARFLRHTPNLRLRIFVARLYFCDLEDSPHIEGLRDLRRAGV
QVTVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDAFRLIGL
LT
Trisopterus_minutus
MISKLDSVLLAQKKFIYNYKNLRWAKGRNETYLCYVVKRRLGPDSLSFDFGHLRNRTGCHVE-
LLFLSYL--GALCPGLWGCTDDRN-
RRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIFVARLYFCDLEGSPHIEGLRHLRRAGV
QVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSVRLSRKLNRILQPCETEDLRDVFGLFGL
LT
Typhlichthys_subterraneus
MISKLDSVLLAQKKFIFHYKNMRWARGRNETYLCFVIKRRVGPDSLSFDFGHLRNRSGCHVE-
LLFLRHL--GALCPGLWGQGGTGD-
NRLSYSITWFCSWSPCSNCSHRLAQFLSQLPNLRLRIFVSRLYFCDLEDSREREGLRMLKNAGVH
ITVMSYKDYYYCWQTFVARRKSKFKAWEGLHQNSVRLARKLNRILQPCEIEDLRDAFKLLGF--
Xiphophorus_maculatus
MITKLDRVLLPKKKFIYHYKNMRWARGRCETYLCFVVKKRVGPDSLSFDFGHLRNRNNCHVE-
LLFLRHL--GALCPGLWGYGVTGE-
RKVSYSITWFCSWSPCANCSFRLAQFLHQTPNLRLRIFVSRLYFCDLEDSREREGLRMLKKAGV
HITVMSYKDYFYCWQTFVAKSQSKFKPWDGLHQNCIRLTRKLNRILQPCETEDLRDAFRLLGL-
-
Zeus_faber
MITKLDSVLLARKKFIYHYKNMRWAKGRCETYLCFVVKRRVGPNSLSFDFGHLRNRTGCHVE-
LLFLRHL--GALCPGLWGHGGPYG-
GRLSYSVTWFCSWSPCANCSFRLAQFLGQTPNLRLRIFVSRLYYCDLEDSREREGLRILKRAGV
QITVMSYKDYFYCWQTFVAHRQTSFKAWDELHQNSVRLARKLNRILQPCETEDLRDAFKLLGF
L-
    ;
End;
BEGIN TREES;
    TREE part_1
=
((Astyanax_mexicanus:121.77122741279602,Danio_rerio:121.77122741279602):101.99953637657163,
((()(()(()(()((Gasterosteus_aculeatus:55.40747769565583,Myoxocephalus_scorpius:55.4074776956558
3):22.627589007329938,(Sebastes_norvegicus:71.41027871780396,Chaenocephalus_aceratus:71.41027
871780396):6.624787975823878):5.948298200333113,Perca_fluviatilis:83.98336487731933):27.23499
7279977804,((()Takifugu_rubripes:46.743550480651855,Tetraodon_nigroviridis:46.743550480651855)
```

:52.31449333152771,Antennarius_striatus:99.05804377441406):4.952094098567969,Spondyliosoma_c antharus:104.0101378944397):3.8940865391969623,Symphodus_melops:107.90422446670532):3.3141 37740588194):4.0983751179695105,(()(Oreochromis_niloticus:90.12568147794833,(Oryzias_latipes:69 .76327566986083,(Poecilia_formosa:18.384480726242064,Xiphophorus_maculatus:18.3844807262420 64):51.37879498329163):20.362405779966025):6.229750216332775,((Chromis_chromis:86.03637034 606933,Pseudochromis_fuscus:86.03637034606933):6.271233430540818,Parablennius_parvicornis:92. 30760380917813):4.047827894961586):15.657636823177327,((Helostoma_temminckii:64.1932831497 1924,Anabas_testudineus:64.19328314971924):42.49635722122191,Selene_dorsalis:106.68964036407 47):5.32342815576196):3.303668787118795):2.6957501523196754,(Thunnus_albacares:103.80823429 222107,Lesueurigobius_cf_sanzoi:103.80823429222107):14.204253155434131):5.149373299789431,C hatrabus_melanurus:123.16186078948975):4.574033951210964,((Lamprogrammus_exutus:66.9588872 9228973,Carapus_acus:66.95888729228973):23.925274275398266,Brotula_barbata:90.8841615993499 8):36.85173311395644):9.028980841016761,((Myripristis_jacobus:59.01862996520996,(Holocentrus_r ufus:14.652058449554444,Neoniphon_sammara:14.652058449554444):44.366571516036984):70.1287 3428974152,((Rondeletia_loricata:89.71703486652375,Acanthochaenus_luetkenii:89.71703486652375) :23.455124383091928,Beryx_splendens:113.17215923690796):15.97520504798888):7.6175112740576 2):3.0117428180396644,Monocentris_japonica:139.776618334198):7.268487315320982,Lampris_gutta uts:147.04510569152832):3.839686785376074,(()(()(Molva_molva:42.47743926963806,(Brosme_bros me:39.03891726341247,()(((Arctogadus_glacialis:5.222854929506778,Boreogadus_saida:5.222854929 506778):2.4513389710009097,(Theragra_chalcogramma:3.346329225230217,Gadus_morhua:3.346329 225230217):4.327864675396681):5.726030785477162,(Melanogrammus_aeglefinus:10.395505192184 448,Merlangius_merlangus:10.395505192184448):3.0047194936364896):4.48665917098522,Pollachiu s_virens:17.886883866405487):9.021208262825013,(Trisopterus_minutus:22.696635680580137,Gadic ulus_argenteus:22.696635680580137):4.211456434738636):12.130825152540204):3.43852200285792 97):3.19094077802896,Lota_lota:45.6683800485611):13.098774013638497,(Phycis_blennoides:16.400 560005474087,Phycis_phycis:16.400560005474087):42.366594044685364):12.221774325680741,((Me rluccius_merluccius:5.7998921918630600,Merluccius_polli:5.7998921924829485):61.73268190526217 ,(Melanonus_zugmayeri:63.95622381646633,(()(Macrourus_berglax:29.67249945344925,Malacocepha lus_occidentalis:29.67249945344925):20.17204357004166,Bathygadus_melanobranchus:49.844543035 12574):10.645187737723738,(Mora_moro:36.98188234682083,_Laemonema_laureysi:36.98188234682 083):23.5078484090443):1.939285897175786,(Muraenolepis_marmoratus:56.88453414344788,(Trachy rincus_scabrus:12.07161490740776,Trachyrincus_murrayi:12.07161490740776):44.81291924285889): $5.5444825193190255): 1.5272070992565432): 3.576350340722499): 3.4563542779281846): 33.4718737$ 1263503,Stylephorus_chordatus:104.46080207824707):21.041643343019487,(Zeus_faber:32.85098531 341553,Cyttopsis_roseus:32.85098531341553):92.65146017112733):19.170966317129142,(Polymixia_ japonica:135.7494994041443,(Percopsis_transmontana:60.18133554153442,Typhlichthys_subterraneus :60.18133554153442):75.56816387424469):8.923912356662754):6.211380692934995):7.56075037511 5873,Benthosema_glaciale:158.44554285736086):10.299416859668469,(Parasudis_fraserbrunneri:161. 78278560620342,Guentherus_altivela:161.78278560077345):6.962174173392896):25.78392385015487 8,(Osmerus_eperlanus:117.3724450843811,Borostomias_antarcticus:117.3724450843811):77.15643841 142654):17.481817657327667,(Salmo_salar_1:0.00662978935994194395,Salmo_salar_2:0.008576995 53333491141):212.0107011795044):11.760062609915053);

END;
BEGIN ASSUMPTIONS;
CHARSET span_1 $=1-217$;
END;

Appendix 12: Ancestral AID sequences predicted in this thesis

[^38][^39]```
VSRLYFCDLEDSREREGLRILKRAGVQITVMSYKDYFYCWQTFVAHRQSRFKAWDELHQNSVR LARKLNRILQPCETEDLRDAFKLLGLLT
```


[^0]:    ${ }^{\text {a }}$ Another important part of the innate immune response is the activation of the complement system through PAMP recognition by lectins.

[^1]:    ${ }^{\text {a }}$ Although the innate cell type impacts the exact consequence of PRR crosstalk, the general prompted effector mechanisms depend on the detected pathogen. For example, interferons (IFNs) are expressed against viral infection, while activated phagocytes target extracellular bacteria, and programmed cell death is induced in infected cells

[^2]:    ${ }^{a}$ The TLRs extracellular ligand-binding domain is made up of leucine-rich repeats (LRRs), and their intracellular domain is called the Toll/IL-1 receptor (TIR) domain due to shared structural similarity with the interleukin 1 (IL-1) receptor family.
    ${ }^{\mathrm{b}}$ MyD88 interacts with all TLRs except TLR3, while TRIF only associates with TLR3 and endosomal TLR4.

[^3]:    ${ }^{\text {a }}$ Dectin-1, dectin-2, macrophage inducible cytotoxic $T$ lymphocyte (Mincle), and dendritic cell-specific intercellular adhesion molecule3-grabbing non-integrin (DC-SIGN) are some examples of CLRs.
    ${ }^{\mathrm{b}}$ i.e., expression of interferons and inflammatory cytokines.

[^4]:    ${ }^{a}$ Note that the distinction between $\mathrm{T}_{\mathrm{H}}$ and CTLs is not absolute. Some CTLs may play a $\mathrm{T}_{\mathrm{H}}$ cell-like role by secreting a verity of cytokines to impact other cell types. Also, CD4 ${ }^{+}$T cells that secrete granzyme B and perforin can exert CTL-like cytotoxic activity.

[^5]:    ${ }^{a}$ IgG classes enhance phagocytosis and fixation of complement

[^6]:    ${ }^{\mathrm{a}}$ In mice, $\mathrm{B}-1$ cells consist of two subtypes of $\mathrm{CD} 5^{+} \mathrm{B}-1 \mathrm{a}$ and $\mathrm{CD} 5{ }^{-} \mathrm{B}-1 \mathrm{~b}$ cells.
    ${ }^{\mathrm{b}}$ In the mouse fetal liver (FL), the pro-B cells experience a lower level of IL7R/pSTAT signaling that causes concurrent rearrangement of $I g$ heavy and light chains. This phenomenon results in bypassing the conventional step of pairing the heavy chain with the surrogate light chain (SLC). Poor binding of SLC to autoreactive heavy chains contributes to the elimination of autoreactive $B$ cells. Consequently, this alternative B cell development in the FL promotes the formation of autoreactive B cells, which give rise to B1-a cell progenitors (Wong et al., 2019).

[^7]:    ${ }^{a}$ However, the presence of the $T_{H}$ cells can enhance their antibody secretion and mediate some degree of secondary antibody diversification. Secondary antibody diversification includes two processes: class switch recombination (CSR) and antibody affinity maturation (AM) to change the effector function of antibody and to increase the affinity of the antibody for cognate antigen, respectively. These events will be further discussed in the following sections. The T cell independent activation of non-conventional B cells results in the lack of or minimal secondary antibody diversification. This is a safeguard to avoid generation of highaffinity autoreactive antibodies.
    ${ }^{\mathrm{b}} \mathrm{nABs}$ are defined as antibodies that are secreted in normal conditions without antigen presence. These antibodies are highly cross-reactive and bind a wide range of antigens with low affinity. B-1 and MZ B cells mainly secrete these antibodies as an IgM isotype with a small fraction of $\operatorname{IgG}, \operatorname{IgA}$, and $\operatorname{IgE}$. nABs contribute to pathogen resolution, dead cell clearance, control of inflammation and autoimmune responses, and the regulation of B cell development and activation. The autoreactive nABs may participate in the pathogenic response of autoimmune disorders such as rheumatoid arthritis.
    ${ }^{\text {c }}$ Such as Streptococcus pneumoniae, Francisella tularensis, and influenza virus.
    ${ }^{\text {d }}$ B1-a cell antibodies recognize conserved self antigens such as phosphatidylcholine.
    ${ }^{\mathrm{e}}$ The process of removing autoreactive B cells in the bone marrow is called central tolerance.
    ${ }^{\mathrm{f}}$ A precursor cell in fetal liver and adult bone marrow can give rise to pre-existing B-1b cells.

[^8]:    ${ }^{\text {a }}$ Some characteristics of MZ B cells and their environment contribute to their ability to respond rapidly to the bloodborne pathogens. These characteristics include low blood flow in their microenvironment, low activation threshold, high surface expression of complement receptor 2 (CR2, also known as CD21), and polyreactive BCR .

[^9]:    ${ }^{\text {a }}$ Allelic exclusion happens after successful rearrangement of the $I g$ gene to ensure the expression of only one BCR per B cell. For more information regarding the regulation of this process, refer to Otters et al., 2015. ${ }^{\mathrm{b}}$ The elimination of self-reactive B cells in the bone marrow is called central tolerance. Upon successful expression of BCR, self-reactive B cells are eliminated through (1) BCR-induced apoptosis, (2) reactivation of the enzymatic machinery to edit their antibody light chain, or (3) development into anergic (unresponsive) $B$ cells.

[^10]:    ${ }^{a}$ In the T zone of spleen, self-reactive T1 B cells are eliminated through negative selection. The B cells that survive the negative selection migrate into the follicular zone as T 2 B cells. In the follicular zone, the tonic stimulation through BCR triggers B cell activating factor (BAFF) receptor expression. T2 B cells that succeed in expressing the BAFF receptor on their surface receive the required survival signal, hence are positively selected, and join the bloodstream as mature B cells. The negative selection in the spleen is essential for B cell peripheral tolerance.
    ${ }^{\mathrm{b}}$ The conventional B-2 cells are also known as the follicular B cells.

[^11]:    ${ }^{a}$ Many proteins with recognition and cell adhesion function contain the $\operatorname{Ig}$ domain. The flexibility of the loops ensures considerable amino acid adaptability. This phenomenon ensures the accommodation of a substantial variety of structures and sequences without disruption of the overall structure.

[^12]:    ${ }^{\text {a }}$ The $D_{H}$ fragment is flanked by the 12-base pair (bp) spacer while the $V_{H}$ and $J_{H}$ fragments contain 23-bp ones. The $V_{\kappa}$ and $J_{\lambda}$ contain 12-bp spacers whereas $V_{\lambda}$ and $J_{\kappa}$ have 23-bp ones.

[^13]:    ${ }^{\text {a }}$ This is the first checkpoint in B cell development. If the rearranged heavy chain-surrogate light chain complex generates a productive pre-BCR, the DNA rearrangement at the second $I g H$ allele is permanently shut down, and the light chain recombination event is initiated.
    ${ }^{\mathrm{b}}$ This is the second checkpoint in B cell development when the combination of the newly rearranged light chain with the previously rearranged heavy chain produces a functional BCR.
    ${ }^{c}$ This is the third checkpoint in B cell development.
    ${ }^{\mathrm{d}}$ There are four subclasses of $\operatorname{IgG}$ : $\operatorname{IgG} 1, \operatorname{IgG} 2$, $\operatorname{IgG} 3$, and $\operatorname{IgG} 4$. Similarly, $\operatorname{IgA}$ is further divided into two subtypes: $\operatorname{IgA1}$ and $\operatorname{Ig} A 2$.

[^14]:    ${ }^{\text {a }}$ Various IgG subclasses differ regarding serum levels, flexibility, functional affinity, and ability to fix complement.
    ${ }^{\mathrm{b}}$ At the mucosal barriers, neutrophils expressing IgA receptors can clear IgA-coated pathogens through inducing proinflammatory functions, such as ADCC, degranulation, production of reactive oxygen species, release of NETs, and cytokine and chemokine secretion.
    ${ }^{\text {c }}$ These cells express the high-affinity IgE receptor, also known as FceRI. Moreover, circulating IgE upregulates the expression of this receptor. Thus, IgE is a very potent antibody.

[^15]:    ${ }^{\text {a }}$ These neutrophils are referred to as B cell helper neutrophils $\left(\mathrm{N}_{\mathrm{BH}}\right)$, which colonize the splenic MZ and differ from circulating neutrophils.
    ${ }^{\mathrm{b}}$ MQs, DCs, and B cells can pick up the soluble antigens from the subcapsular sinus (SCS) region of the lymph node by extending their process into the system of conduit emanating from the SCS. Antigentransporting cells, such as MQs, DCs, and non-cognate B cells, can carry antigen-immune complexes (antigens associated with complement or antibodies) to the B cell follicles through their complement or Fc receptors.

[^16]:    ${ }^{\text {a }}$ Inside follicles, FDCs are the main antigen presenting cell type. In the spleen, MZ B cells participate in antigen presentation.
    ${ }^{\mathrm{b}}$ Lipid rafts are small, heterogeneous, dynamic, and highly ordered domains in the cell membrane that are enriched in cholesterol and sphingolipids. Since lipid rafts incorporate receptors and signaling proteins, they act as a signal transduction platform.
    ${ }^{\text {c }}$ B-2 cells acquire the cognate antigen in two different ways. 1) B-2 cells cleave the antigen from the antigen bearing cell by directly releasing lysosomal proteases into the synaptic junction. The cleaved antigen is either directly loaded onto the MHC II molecule or internalized with BCR into the endosomal pathway and enters the subsequent exogenous antigen presentation route. 2) If the BCR affinity for the cognate antigen is significantly high, the B-2 cell tugs the antigen from the antigen bearing cell and internalizes it with BCR.
    ${ }^{\text {d }}$ The chemokine receptors include CCR7, CXCR5, and Epstein-Barr virus-induced receptor 2 (EBI2), which interact with CCL19 and 21, CXCL13, and 7a,25-dihydroxycholesterol ( $7 \alpha, 25-\mathrm{OHC}$ ), respectively.

[^17]:    ${ }^{\text {a }}$ Note that several factors strongly impact the outcome of BCR-antigen engagement: 1) the maturation status of the activated B cell, 2) the magnitude and duration of immunological synapses, and 3) the involvement of coreceptors (such as CD21 and CD40), cytokine receptors (such as IL-4-R and IL-21R), and survival factor receptors (such as BAFF-R).
    ${ }^{\mathrm{b}}$ This engagement may last for a few minutes to several hours.
    ${ }^{\text {c }}$ During the early stages of primary humoral responses, some memory cells are also generated that express unmutated IgM.

[^18]:    ${ }^{\text {a }}$ The signaling through B cell CD40 and $\mathrm{T}_{\mathrm{FH}}$ cell CD 40 L is crucial for GC formation.

[^19]:    ${ }^{\text {a }}$ In humans, while $\mathrm{V}(\mathrm{D}) \mathrm{J}$ recombination is the main mechanism of primary antibody diversification, a less frequent mechanism of $\mathrm{V}(\mathrm{DD}) \mathrm{J}$ recombination (i.e., $\mathrm{D}-\mathrm{D}$ fusion) may also contribute to the diversification of naïve BCR repertoire.
    ${ }^{\mathrm{b}}$ TdT is also known as DNA nucleotidylexotransferase (DNTT).

[^20]:    ${ }^{\text {a }}$ It is suggested that IGC may have initially evolved in the common ancestor of mammals and birds and was later lost in the evolutionary branches leading to humans and mice.
    ${ }^{\mathrm{b}}$ The $\psi$ genes do not possess any promoter or RSS and usually contains 5' or 3' stop codons.
    ${ }^{\mathrm{c}}$ In humans, beside SHM, less frequent mechanisms of SHM-associated insertions and deletions, and affinity maturation and antigen contact by non-CDR regions of the antibody also contribute to affinity maturation of activated $B$ cells.

[^21]:    ${ }^{\text {a }}$ A chronic GC response could result in the generation of the potent broadly-neutralizing antibodies (bNABs) in response to viral infections, such as influenza and human immunodeficiency virus (HIV). Intriguingly, insertions and deletions are common aspects of these antibodies and they accumulate high levels of mutations in their CDRs as well as the framework regions (30-40 and >100 mutations in bNABs against influenza and HIV, respectively).

[^22]:    ${ }^{a}$ In the mammalian $S$ regions, the abundant tandem G repeats interspersed by AGCT (AID hotspot) develop G4 structure on the non-template strand, which stabilizes the R-loops formed during transcription.

[^23]:    ${ }^{\text {a }}$ The activated phenotype is a result of two signals. The first signal is received through BCR when it binds the antigen, while the second signal is delivered by interacting with the cognate $\mathrm{T}_{\mathrm{FH}}$.
    ${ }^{\mathrm{b}}$ Switching between $\operatorname{IgM}$ and $\operatorname{IgD}$ is the result of an alternative mRNA splicing event. However, switching to other antibody isotypes requires an irreversible DNA recombination event (e.g., CSR).
    ${ }^{\mathrm{c}} \mathrm{S} \mu$ contains the highest repetitive number of AID hotspots ( $5^{\prime}$-AGCT- $3^{\prime}$ ) amongst all S regions; therefore, S $\mu$ is the most common target of AID.

[^24]:    ${ }^{\text {a }}$ IL-4 promotes switching to IgG1 and IgE, while IL-5 enhances IgA production. The presence of TGF- $\beta$ stimulates IgA or IgG2b recombination, while IFN- $\gamma$ triggers $\operatorname{IgG} 2 \mathrm{a}$ and $\operatorname{IgG} 3$ production.
    ${ }^{\mathrm{b}}$ Ten percent of cattle antibodies have a unique ultralong CDR3 loop, which form a "stalk and knob" structure and is responsible for antigen recognition. In humans, a typical CDR3 is $8-16$ amino acid long, while the cow's ultralong CDR3 is 40 to 70 amino acids in length. $\operatorname{Ig}_{\mathrm{H}} \mathrm{D} 8-2$ gene segments encode the CDR3 of the bovine ultralong antibodies. An interesting feature of the ultralong antibodies is their structural diversity due to disulfide bonds. There are existing and potential cysteine codons in the $\mathrm{Ig}_{\mathrm{H}} \mathrm{D} 8-2$, which can form disulfide bonds within the CDR3. In $\mathrm{Ig}_{\mathrm{H}} \mathrm{D} 8-2,30$ of the codons that can be converted to cysteine with a single nucleotide mutation (i.e., potential cysteine codons) overlap with 19 AID hotspots. Thus, AID significantly contributes to structural diversification of the bovine ultralong antibodies.

[^25]:    ${ }^{\text {a }}$ Due to the lack of antigen-driven selection, mutations observed in HIGM I patients revealed a low replacement/silent mutation ratio, were widely dispersed within V regions, and were found in antibodies with different $\mathrm{V}_{\mathrm{H}}$ regions and potentially different specificities.

[^26]:    ${ }^{\text {a }}$ The AID crystal structure also showed that the binding of the substrate might induce or stabilize the F115 side chain to flip.

[^27]:    ${ }^{\text {a }}$ The substrate dC interacted with T27, N51, and W84 in $63 \%-75 \%$ of models. In $25 \%-50 \%$ of models, R25, V57, S85, P86, and Y114 also participated in these interactions. However, the interaction with R24, E26, K52, F115, G23, L29, N53, G54, C55, T82, D89, C116, and E122 were only noticed in $6 \%-18 \%$ of the models.

[^28]:    ${ }^{\text {a }}$ RHAU is also known as DHX36 or G4R1.

[^29]:    ${ }^{\text {a }}$ However, more distant homologs such as cartilaginous fish and lamprey AID exhibit divergent patterns of sequence specificity, often favoring non-WRC motifs (Quinlan et al., 2017).
    ${ }^{\mathrm{b}}$ CDR3 was excluded from the analyses.

[^30]:    ${ }^{\text {a }}$ Interestingly, it was shown that estrogen enhances antibody and autoantibody responses by increasing AID expression through inducing the expression of HoxC 4 , a critical aicda gene activator. This phenomenon was suggested to contribute to more robust antibody responses in females (Mai et al., 2010).
    ${ }^{\mathrm{b}}$ Among these transcription factors, Myb and E2F inhibit aicda expression, while others induce its expression.
    ${ }^{c}$ It was suggested that these micro-RNAs protect resting B cells and non-B cells against AID-mediated mutations by reducing AID protein level. Accordingly, Burkitt's lymphoma patients are deficient in miR155 and show high levels of somatic mutations and chromosomal translocations.
    ${ }^{d}$ Interestingly, given the importance of serine 38 phosphorylation in CSR, the lack of this serine residues in bony fish AIDs, and absence of CSR in bony fish, it was suggested that serine 38 and its phosphorylation are evolutionary adaptations to emergence of CSR in higher vertebrates (Basu et al., 2008).

[^31]:    ${ }^{\text {a }}$ The editing of apolipoprotein B mRNA by APOBEC1 results in a stop codon, producing a truncated apoB protein that is essential for lipid transport from the intestine to other organs.
    ${ }^{\mathrm{b}}$ All the proteins in the Helix-4 division share a HxE motif in their $\alpha 2$.

[^32]:    : The change in the catalytic efficiency was compared to the $\mathrm{K}^{2} \mathrm{~K}_{\text {o }}$ of g -ANC.
    Abbreviations: Gd-ANC: Gadidae ancestor; Gds-ANC: Gadidae sister group ancestor; Gf-ANC: Gadiformes ancestor; and Zg-ANC: Zeiogadaria ancestor.

[^33]:    *: The change in the catalytic efficiency was compared to the $\mathrm{K}_{\mathrm{cat}} / \mathrm{K}_{\mathrm{m}}$ of Gm-AID

[^34]:    AAGAACATGCGCTGGGCAAAGGGCCGGCACGAGACATACCTCTGCTTTGTGGTGAAGAGA CGAATGGGGCCAGACTCCCTGTCCTTTGATTTCGGACACCTCCGCAAT $\qquad$ CGGCTGCCATGTAGAGCTGCTGTTCCTGCGTTACCTG------GGAGCCTTGTGCCCTGGTCTGT GGGGGTATGGAATTGCTGGAGAG---AGGAAGCTTAGTTACTCCGTCACCTGGTTCTGCTCCT GGTCCCCCTGTGTCAACTGCTCCCTCAGACTGACACAGTTCCTCATGCAGACG---------CCTA ATCTTCGCCTCAGGATCTTCGTCTCTCGCCTTTACTTCTGTGATATGGAAGACAGCCGTGAG AGAGAAGGTCTGAGGATGCTGAAAAAAGCCGGCGTGCACATCACAGTGATGAGTTACAAA GACTTCTTCTACTGCTGGCAGACCTTTGTGGCTTGTAAAGAGAGCAAATTCAAGGCATGGG AGGCGCTGCACCAAAACTCTGTTCGTCTGGCTAGA---------AAG---CTCAACCGCATCCTCCA GCCCTGTGAGACAGAAGACTTCAGAGATGCCTTCAAGCTTCTTGGACTG--------------------TGA Chromis_chromis
    ATGATCACAAAACTC---------GACAGTGTGCTTTTGCCCCAGAAGAAGTTCATCTACCATTAT AAGAACATGCGCTGGGCGAGAGGCCGCTGTGAGACGTACCTCTGCTTCGTGATTAAGAAAA GAGCCGGTCCAGATTCTATATCCTTCGACTTCGGACATCTACGGAAC $\qquad$ CGCAAC GGCTGCCATGTAGAGCTGCTGTTCCTGCGCTACCTG------GGCGCCTTGTGTCCTGGTCTCTG GGGTTATGGACAG-------------AACCGGATCAGCTACTCCATCACCTGGTTCTGCTCCTGGTCTC CCTGCGCTAACTGCTCCCTCAGACTGGCCCAGTTCCTGAACCAGACG---------CCCAACCTTC GTCTCCGGATCTTCGTCTCTCGGCTCTACTTCTGCGACATGGAGGACAGCCGGGAGAGGGA AGGTCTGAGGATCCTGAAGAAGGCCGGCGTTAACATCACCGTCATGAGCTACAAAGACTAC TTCTACTGCTGGCAGACCTTCGTGGCTCGGAGGCTGAGTAAGTTCAAACCGTGGGACGGGC TGCAACAGAACTACGTCCGTCTGTCCAGA---------AAA---CTGAACCGCATCCTGCAGCCCTG TGAGACTGAAGACTTTCGAGACGCCTTCAGGCTCCTTGGACTC---------------------TGA Cyttopsis_roseus
    ATGATTACTAAACTA--------GACAGTGTGCTTCTGGCTCGGAAGACATTCATTTACCACTAT AAGAACATGCGCTGGGCAAAAGGCCGGCATGAGACATACCTCTGCTTCGTCGTCAAGAGA AGAGTTGGACCCGATTCCTTGTCCTTTGACTTTGGACACCTTCGCAAT -CGGAC TGGCTGCCATGTAGAGCTCCTGTTTCTACGTCACCTG------GGGGCCCTGTGCCCTGGACTGT GGGGACAAGGAGGCGCTGATGAA---AGAAGGCTCAGTTACTCGGTCACCTGGTTCTGCTCC TGGTCTCCCTGCGCCAACTGCTCCCTCAGACTGGTCCAATTCCTCGGGCAGACG---------CCC AACCTCCGTCTCAGGATCTTCGTCTCCCGTCTCTACTACTGTGACCTTGAAGACAGCCGCGA GAGAGAGGGCTTAAGAACCCTGAAAAGAGCCGGAGTCCAAATCACAGTCATGAGCTACAA AGACTATTTCTATTGCTGGCAGACGTTCGTGGCTCGCCGACAGACCCGCTTCAAGGCGTGG GATGAGCTGCACCAAAACTCAGTTCGTCTGGCCAGG---------AAA---CTAAACCGCATCCTCC AGCCTTGTGAAACGGAAGATTTAAGAGATGCTTTCAAACTTCTCGGGTTCTTG
    TAA
    Danio_rerio
    ATGATCTGCAAGCTG---------GACAGTGTGCTCATGACCCAGAAGAAATTCATCTTCCACTAT AAGAATGTGCGCTGGGCTCGAGGGAGACACGAAACCTACCTTTGTTTTGTAGTAAAGCGAC GCATCGGCCCTGATTCCCTCTCTTTTGACTTTGGACACCTGCGCAAT -------------------CGCTCC GGATGCCATGTAGAGCTTCTCTTTCTGCGTCACTTG------GGTGCGTTGTGTCCGGGCCTGAG CGCTTCCAGTGTGGACGGTGCA------AGATTGTGTTACTCAGTGACCTGGTTCTGCTCCTGGT CGCCCTGCTCTAAATGCGCTCAACAGCTCGCCCACTTCCTGTCACAGACG---------CCCAATC TGAGGCTGAGGATCTTTGTGTCACGCCTGTACTTCTGTGATGAAGAGGACAGCGTGGAGAG AGAAGGTCTGCGACACCTGAAGAGGGCAGGAGTTCAGATCTCGGTCATGACTTATAAAGAC TTTTTCTACTGCTGGCAAACGTTTGTTGCGAGGAGGGAGCGGAGTTTTAAAGCCTGGGATG GACTTCATGAAAACTCTGTCCGGCTTGTTCGG---------AAA---CTCAATCGGATTCTGCAGCCT TGCGAGACTGAGGATCTGAGGGATGTTTTTGCTCTTCTTGGGTTA---------------------TGA Gadiculus_argenteus
    ATGATTAGTAAGCTA---------GACAGTGTGCTCTTGGCCCAGAAGAAATTCATATACAATTAC AATAACATGCGATGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTCGTGAAGAGA AGGCTTGGACCTGACTCCCTCTCCTTCGACTTCGGACACCTACGCAAT---CGCAC CGGCTGCCACGCAGAGGTGCTGTTCCTGAGCTACCTC------GGGGCACTGTGTCCGGGCCTCT GGGGCTGCGCAGGCGACAGAAGC---CTAAGACTGAGCTACTCCGTCACCTGGTTCTGCTCCT

[^35]:    ATGATTGCAAAACTA---------GACAGTGTGCTTTTGCCCCGCAAAAAGTTCATCTTCCATTAC AAGAACATGCGCTGGGCTAAGGGTCGGCACGAGACATACCTCTGCTTTGTAGTGAAGAGAC GAGTGGGTCCAGACTCCCTGTCCTTTGACTTTGGACACCTCCGCAAT-------------------CGCAAT GGCTGCCATGTAGAGCTACTGTTCCTGCGCTACCTG------GGAGCTCTATGCCCTGGACTGTG GGGGTGTGGAGGTTCTGGTGAG---AGGAGACTCAGTTACTCCATCACCTGGTTCTGCTCTTG GTCCCCCTGTGCCAACTGCTCCCAGAGACTATCCCAATTCCTCAGCCAGACA---------CCCAA CCTTCGCCTCAGGATCTTTGTCTCTCGCCTCTACTTCTGTGACATGGAGAACAGCCGTGAGA GAGAGGGCCTGAGGATGCTGAAAAATGCTGGTGTGCAAATCACAGTCATGAGCTACAAAG ACTTTTTCTATTGCTGGCAAACCTTTGTGGCTTGTGGGAAAAGCAAATTCAAGGCCTGGGAT GAGCTGCACCGAAACTCTGTTCGCCTCACCAGG--------AAA---CTGAACCGCATCCTCCAGC CATGGGAGACAGAAGATTTAAGAGATGCATTCAGACTTCTTGGATTT-------------------TGA Lesueurigobius_cf_sanzoi
    ATGATTACCAAGCTA---------GACAGTGTACTTTTACCAAAGAAGAAGTTTATCTTCCATTAC AAGAACGTGCGCTGGGCGAAGGGTCGGCATGAGACGTACCTCTGCTTTGTGGTCAAGAGGC GCGTGGGGCCAAATTCTATGTCCTTTGACTTTGGACATCTTCGCAAT--------------------CGCAGC GGCTGCCATGTGGAGATTCTGTTCCTGCGTTACCTT------GGTGCTCTGTGCCCTGGACTCTG GGGGGCTGGAGGCTCGGAGGAG---AGGCGACTGAGTTACTCCATCACTTGGTTCTGCTCCT GGTCTCCATGCGCCAACTGCTCCACGAAACTGTCGCAGTTCCTCGCCAAAACC---------CCAA ACTTGCGTCTGCGGATATTTGTCTCACGCCTTTACTTCTGCGACCTGGAGGACAGCATAGAA CGAGAGGGTCTGAGGATGCTAAAGAGAGCAGGCGTGCAGTTAACGGTCATGAAATACAAA GACTACTTTTACTGCTGGCACACGTTTGTGGCTCGAAACCAAAGCAACTTCAAGGCCTGGG AAGAGCTTCACCAAAACTCAGTGCGACTGACCAGG---------AAA---CTCAGTCGCATCCTTCA GCCATGTGAGACAGAGGATTTAAGAGATGCCTTCAGACTTCTTGGTTTG---------------------TGA Lota_lota
    ATGATAAGTAAGCTA---------GACAGTGTGCTCTTAGCCCAGAAGAAATTCATATACAATTAC AAGAACATAAGATGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCTGATTCCCTGTCTTTCGACTTCGGACACCTACGCAAT---------------------CGCAC TGGCTGCCACGTAGAGCTGCTGTTTCTGAGCTACCTG------GGGGCGCTGTGCCCGGGCCTCT GGGGGTGCGGAGGCGACAGAAAC---CGAAGACTCAGCTACTCGGTCACCTGGTTTTGCTCC TGGTCTCCCTGTGCCAACTGTGCGGCTACACTGGCCCGGTTCCTGAGGCAGACG---------CCC AACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGACCTGGAGGGCAGTCCGCA TATAGAGGGCTTGAGGGACCTGAGGAGAGCCGGGGTCCAGGTCAAAGTTATGAGCTACAA AGACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCATGG GAAGGGCTGCATACCAATTCGGTCCGTCTGTCAAGA---------AAA---CTAAACCGCATCCTCC AGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTTTTGGACTGCTAACC--TGA

    Macrourus_berglax
    ATGATTAGTAAGCTT---------GACAGCATACTCTTGGCCCAGAAGAAATTCAAGTACAATTAC AATAACATGCGATGGGCAAAGGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGA AGGCTCGGACCCAATTCACTGTCCTTTGACTTCGGACACCTACGCAAT---------------------CGTGC TGGCTGCCACGTAGAGCTGCTGTTTCTGAGCCACCTG------GGGGCGCTGTGCCCGGGCCTGT GGGGCTTTGGAGGGGCAGAAAAC---ATAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCTCCCTGCGCCAACTGTGCGGCCACACTGGCCCGGTTCCTGAGGCAGACG---------CCCA ACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTACTTCTGTGAACTGGCGGACAGTCCGCAC TCAGAGGGCTTGAGGGAGCTGAGGAGAGCAGGGGTCCAGGTCAACGTTATGACCTACAAA GACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA---------AAA----CTAAACCTCATCCTCCAG CCATGTGAAACAGAAGATTTAAGAGACGCTTTCAGACTTATTGGCCTGTTAACC TGA

    Malacocephalus_occidentalis
    ATGATTAGTAAGCTC---------GACAGCGTGCTCTTGGCCCAGAAGAAATTCATATACAATTAC AAGAACATACGCTGGGCAAAGGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGA AGGCTTGGACCCAATTCACTGTCCTTCGACTTCGGACACCTACGCAAC

[^36]:    AACCTGCGCCTCAGGATCTTCGTGGCTCGCCTCTATTTCTGTGACCTGGAGGACAGTCCGCA TATAGAGGGCTTGAGGGACCTGAGGAGAGCAGGGGTGCAGGTCACTGTTATGAGCTACAA AGACTACTTCTACTGCTGGCAGACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGG GAAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA---------AAA---CTAAACCGCATCCTCC AGCCATGTGAAACAGAAGATTTAAGAGATGCTTTCAGACTTATTGGGCTGTTAACC -TGA

    Muraenolepis_marmoratus
    ATGATTAGCAAACTA---------GACAGTGTGCTCTTGGGCCAGAAGAAATTCATATACAATTAC AAGAACATGCGTTGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTGGTGAAGAGA AGGCTCGGACCCGATTCCATGTCTTTCGACTTCGGGCACCTACGCAAT-----------------CGCGC AGGCTGCCACGTGGAGCTGCTGTTTCTCAGCCACCTG------GGGGCGCTGTGCCCGGGTCTGT GGGGTTGCGGAGGCGACGAGAAC---AGACGGCTCAGCTACTCGGTCACCTGGTTCTGCTCCT GGTCCCCCTGTGCCAACTGTGCCGCCACGCTGGCCCGGCTCCTGAGGCAGACG--------CCCA ACCTGCGCCTCAGGATCTTCGTGGCCCGCCTGTACTTCTGTGACCTGGAGGGCAGTCCGCAC TCAGAGGGCCTGAGGGACCTGAGGAGGGCCGGGGTCCAGGTCAACGTTATGAGCTACAAA GACTACTTCTACTGCTGGCAGACCTTTGTAGCGCACAGGGTGAGCCGCTTCAAGGCCTGGG AAGGGCTGCATACCAATTCTGTCCGTCTGTCCAGA---------AAA---CTAAACCGCATCCTCCA GCCACGCGAAACAGACGATTTAAGAGATGCCTTCAGACTTATTGGTCTGTTAACC TAA

    Myoxocephalus_scorpius
    ATGATTACAAAGCTA---------GACAGTGTGCTATTGCAGCAAAAAAAGTTCATCTACCATTAC AAGAACATGCGCTGGGCAAGGGGCCGACATGAGACTTACCTCTGCTTTGTAGTGAAGAGGC GAGTGGGGCCAGACTCCTTATCCTTTGACTTTGGACACCTCCGCAAT-----------------CGCACT GGCTGCCATGTAGAGCTGTTGTTCCTACGCTACCTG------GGAGCCTTGTGCCCTGGTTTGTG GGGTTACGGAGGCACTGGAGAG---AAGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGCATAAACTGCTCCATCAGTTTGTCCCAGTTCCTCAACCGGACG--------CCCAAC CTTCGCCTCAGGATCTTTGTCTCTCGTCTTTACTTCTGTGACAAGGAGAACAGCCGGGAAAG AGATGGCCTGAGAATGCTGAAAAATGCTGGCGTGCAGATCACAGTCATGAGTTACAAAGA CTTCTTCTATTGCTGGCAGACATTTGTGGATCGCAAGAAAAGCAACTTCAAGGCCTGGGAA GAGCTGCACCAGAACTCTGTTCGCCTTGCCAGA---------AAA---CTCAACCGCATCCTCCAGC CTTGTGAAGCAGAAGATTTAAGGGATGCCTTCAAGCTTCTTGGACTG-----------------TGA

    Myripristis_jacobus
    ATGATTACAAAGCTA--------GACAGCATGCTTTTGGCCAAGAAAAAGTTCATTTACCATTAT AAGAACATGCGCTGGGCTAAAGGTCGGCATGAGACATACCTGTGCTTTGTAGTGAAGAGAC GAGTGGGGCCAGACTCCATGTCCTTTGACTTTGGACATCTCCGCAAT-----------------CGTGCT GGCTGCCATGTAGAGCTGCTGTTCCTGCGCTACCTG------GGAGCGCTTTGCCCTGGACTGTG GGGGTGTGGAGGCAACACTGAG---AAGAAGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGCGCCGACTGCTCTTTCAGACTGGCCCAGTTCCTCAACCGGACG---------CCCAA CCTCCGCCTCAGGATCTTTGTCTCTCGCCTCTATTTCTGCGACCTGGAGGACAGCCGTGAGA GAGAGGGCCTGAGGATGCTGAAAAAAGCCGGCGTGCAAATCACTGTTATGAGTTACAAAG ATTACTTCTATTGCTGGCAGACATTTGTGGCACATAGAATGAGCAGCTTCAAGGCTTGGGAT GGGCTGCACCAAAACTATGTTCGCCTGGCCAGG---------AAA---CTCAACCGCATCCTCCAGG CTAGTGAGACAGAAGATTTAAGAGATGCATTCAAGCTTCTTGGATTG-----------------TGA Neoniphon_sammara
    ATGATTACAAAGCTA--------GACAGTGTGCTTTTGGCCAAGAAAAAGTTCATCTACCATTAT AAGAACTTGCGCTGGGCAAAAGGCCGGCATGAGACATACCTCTGCTTTGTCGTGAAGAGGC GGGTGGGGCCAGACTCCATTGCCTTCGACTTTGGACACCTCCGCAAT-------------------CGTGCT GGCTGCCATGTAGAGCTGCTATTCCTTCGCTACCTG------GGAGCCTTGTGCCCTGGACTGTG GGGGTATGGAGGAACTGGGGAG---AGGAAGCTGAGTTACTCCATCACGTGGTTCTGCTCCT GGTCTCCCTGTGCCAACTGCTCCTTCAGACTCGCCCAGTTCCTCAACCGGACG---------CCCA ACCTCCGCCTCAGGATCTTTGTCTCTCGCCTCTATTTCTGTGACGTGGAGGACAGCCGTGAG AGAGAGGGCCTGAGAATGCTGAAAAATGCCGGCGTGCACATCACTGTTATGAGCTACAAA

[^37]:    GACTACTTCTACTGCTGGCAGACCTTTGTGGCTCGTAATCAAAGCAAATTCAAGCCCTGGG ATGAATTGCACCAAAACTCTGTCCGCCTGTCCAGA---------AAA---CTCAACCGCATCCTCCA GCCTTGTGAGACAGAAGATTTAAGAGATGCCTTCAAGCTTCTTGGACTG--------------------TGA Rondeletia_loricata
    ATGATTACAAAACTA--------GACAGTGTGCTTTTGGCCAAGAAAAAGTTCATCTACCATTAT AAGAACATGCGCTGGGCAAGGGGTCGGCATGAGACATACCTCTGCTTTGTAGTGAAGAGGC GAGTGGGGCCAGACTCCCTGTCCTTCGACTTTGGACACCTCCGCAAC-------------------CGCACT GGCTGCCATGTAGAGCTGCTGTTCCTGCGCCACCTG------GGAGCCTTGTGCCCTGGACTGTG GGGGCATGGAGGCACTGGAGAG---AGGAGGCTCAGTTACTCCATCACCTGGTTCTGCTCCTG GTCTCCCTGCGCTGACTGCTCCTTCAGACTGGCCCAGTTCCTCGGCCGGATG---------CCCAA CCTCCGCCTCAGGATCTTCGTCTCTCGCCTCTACTTCTGCGACCTGGAGGACAGCCGCGAGA GAGAGGGCCTGAGGTTGCTGAAAAAAGCCGGCGTGCAGATCACTGTCATGAGCTACAAAG ACTTCTTCTATTGCTGGCAGACCTTTGTGGCTCATAGAAATTGCAGCTTCAAGGCCTGGGAT GAGATGCATCAAAACTCTGTTCGCCTGGCCAGG---------AAA---CTCAACCGCATCCTGCAGC CTTGTGAGACAGAAGATTTAAGAGATGCGTTCAAGCTTCTTGGGTTG---------------------TGA

    Salmo_salar_1
    ATGATCAACAAATTT---------GACAGTGTTCTGTTGGCCCAGAAGAAGTTTATCTACCACTAT AAGAACATGCGCTGGGCCAAGGGCCGACACGAAACCTACCTGTGCTTCGTGGTCAAGAGG CGGGTGGGACCAAACTCACTCTCCTTCGACTTTGGACACCTGCGCAAC-------------------CGGTC CGGCTGTCATGTTGAGCTGCTGTTCCTGCGCCTCTTGGAAGCAGGCGCCCTGTGTCCAGGCC TGTGGGGTTATGGAGCTCCAGACAGT---GTGGGACTGTGTTACTCTGTCACCTGGTTCTGTTC CTGGTCCCCCTGCTCAGACTGCTCCTACAGGCTGGCCCAGTTCCTCAGCCAGACC---------CC CAACCTCCGCCTCAGGATCTACGTCTCCAGGCTCTACTTCTGTGACCCGGAGGACAGCAGT GCTAGAGAGGGTCTCCGCATGCTGCAGAGAGCCGGGGTGCAGATCACTGTCATGAACTATG AAGACTATTTCTACTGTTGGCAGACCTTTGTGGCTTGCAGACAGCGTGTTTTTAAGGCCTGG GATGGACTGCATCAGAACTCTGTTCAACTGGCTAGG---------AAA---CTTAACGACATCCTCC AGCCTGGAGAGGCAGAAGATTGGGGAGATGCTTTCGAGCTACTTGGACTG-
    TGA
    Salmo_salar_2
    ATGATCAACAAATTT---------GACAGTGTTCTGTTGGCCCAGAAGAAGTTTATCTACCACTAT AAGAACATGCGCTGGGCCAAGGGCCGACACGAAACCTACCTGTGCTTCGTGGTCAAGAGG CGGGGGGGACCAAACTCACTCTCCTTCGACTTTGGACACCTGCGCAAC -CGGT CCGGCTGTCATGTTGAGTTGCTGTTCCTGCGCCTCCTGGAAGCAGGCGCCCTGTGTCCAGGC CTGTGGGGTTATGGAGCTCCAGACAGT---GTGGGACTGTGTTACTCTGTCACCTGGTTCTGTT CCTGGTCCCCCTGCTCAGACTGCTCCTACAGGCTGGCCCAGTTCCTCAGCCAGACC---------CCAACCTCCGCCTCAGGATCTACGTCTCCAGGCTCTACTTCTGTGACCCGGAGGACAGCAGT GCTAGAGAGGGTCTCCGCATGCTGCAGAGAGCCGGGGTGCAGATCACTGTCATGAACTATG AAGACTATTTCTACTGTTGGCAGACTTTTGTAGCTTGCAGACAGCGTGTGTTTAAGGCCTGG GACGGACTGCATCAAAACTCTGTTCAACTGGCCAGG---------AAA---CTTAACGACATCCTCC AGCCTGGTGAGGCAGAAGATTGGGGAGATGCTTTCGAGCTACTTGGACTG-
    TGA
    Sebastes_norvegicus
    ATGATTACAAAGCTA---------GACAGTGTGCTTTTGCCTCGAAAAAAGTTCATCTTCCATTAC AAGAACATGCGCTGGGCAAGAGGCCGGCATGAGACATACCTCTGCTTCGTAGTGAAGAGG CGAGTGGGGCCAGACTCCTTAACCTTTGACTTTGGACACCTCCGCAAT-------------------CGCAA TGGCTGCCATGTAGAGCTGCTGTTCATGCGCTACCTG------GGAGCCTTGTGCCCTGGTTTGT GGGGGCAGGGAGTCCCCGGAGAG---AAGAGGCTCAGTTACTCCATCACCTGGTTTTGCTCCT GGTCTCCCTGCGTCAACTGCTCCGTCACACTGTCCCAGTTCCTCAGCAAAACG---------CCCA ACCTTCGCCTCAGGATCTTCGTCTCTCGCCTTTACTTCTGTGACATGGAGAACAGCCGTGAA AGAGATGGACTAAGAATGCTGAAAAAAGCTGGCGTGCAGATCTCAGTCATGAGTTACAAA GACTACTTCTATTGCTGGCAGACCTTTGTGGATCGGAAGCAGAGCAAGTTCAAGGCCTGGG ATGAGATGCACCAAAACTCTGTTCGCCTTACCAGA---------AAA---CTCAGCCGCATCCTCCA GCCTAGTGAAACAGAAGATTTAAGGGATGCCTTCAAGCTTCTTGGACTG---------------------TGA

[^38]:    ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTACAAGA ACATGCGTTGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGAAGGCT TGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAG AGCTGCTGTTTCTGAGCCACCTGGGGGCGCTGTGCCCGGGCCTGTGGGGGTGCGGAGGCGA CGAAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTGGTCTCCCTGCGCCAACT GTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGT GGCTCGCCTCTACTTCTGTGACCTGGAGGACAGTCCGCATATAGAGGGCTTGAGGGACCTG AGGAGAGCAGGGGTCCAGGTCACCGTTATGAGCTACAAAGACTACTTCTACTGCTGGCAGA CCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGT CCGTCTGTCCAGAAAACTAAACCGCATCCTCCAGCCATGTGAAACAGAAGATTTAAGAGAT GCTTTCAGACTTATTGGGCTGTTAACCTGA
    Gf-ANC:
    ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTACAAGA ACATGCGTTGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGAAGGCT TGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAG AGCTGCTGTTTCTGAGCCACCTGGGGGCGCTGTGCCCGGGCCTGTGGGGGTGCGGAGGCGA CGAAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTGGTCTCCCTGTGCCAACT GTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGT GGCTCGCCTCTACTTCTGTGACCTGGAGGACAGTCCGCATATAGAGGGCTTGAGGGACCTG AGGAGAGCAGGGGTCCAGGTCACCGTTATGAGCTACAAAGACTACTTCTACTGCTGGCAGA CCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGT CCGTCTGTCCAGAAAACTAAACCGCATCCTCCAGCCATGTGAAACAGAAGATTTAAGAGAT GCTTTCAGACTTATTGGACTGTTAACCTGA
    Zg-ANC:
    ATGATTACTAAACTAGACAGTGTGCTTCTGGCTCGGAAGAAATTCATTTACCACTATAAGA ACATGCGCTGGGCAAAAGGCCGCAATGAGACATACCTCTGCTTTGTCGTCAAGAGAAGAGT TGGACCCGATTCCCTGTCCTTTGACTTTGGACACCTTCGCAATCGGACCGGCTGCCATGTAG AGCTCCTGTTTCTACGTCACCTGGGGGCCCTGTGCCCTGGACTGTGGGGACACGGAGGCGC TGATGAAAGAAGGCTCAGTTACTCAGTCACCTGGTTCTGCTCCTGGTCTCCCTGCGCCAACT GCTCCTTCAGACTGGCCCAATTCCTCGGGCAGACGCCCAACCTCCGTCTCAGGATCTTTGTC TCCCGTCTCTACTACTGTGACCTTGAAGATAGCCGCGAGAGAGAGGGCTTACGGATCCTGA AAAGAGCCGGAGTCCAAATCACAGTCATGAGCTACAAAGACTACTTCTATTGCTGGCAGAC CTTCGTGGCTCACAGACAGACCCGCTTCAAGGCGTGGGATGAGCTGCACCAAAACTCAGTT CGTCTGGCCAGGAAACTAAACCGCATCCTCCAGCCTTGTGAAACAGAAGATTTAAGAGATG CTTTCAAACTTCTTGGGTTCTTGACCTAA
    Ancestral sequences predicted by MrBayes
    Gd-ANC:
    ATGATTAGTAAGCTAGACAGTGTGCTCTTAGCCCAGAAGAAATTCATAATCAATTACAAGA ACATGCGATGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGAAGGC TTGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTA GAGCTGCTGTTTCTGAGCCACCTGGGGGCGCTGTGCCCGGGCCTCTGGGGGTGCGGAGGCG ACAGAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTGGTCTCCCTGTGCCAAC TGTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCG TGGCTCGCCTCTACTTCTGTGACCTGGAGGACAGTCCGCATATAGAGGGCTTGAGGGACCT GAGGAGAGCAGGGGTCCAGGTCAAAGTTATGAGCTACAAAGACTACTTCTACTGCTGGCAG ACCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTG TCCGTCTGTCAAGAAAACTAAACCGCATCCTCCAGCCATGTGAAACAGAAGATTTAAGAGA TGCTTTCAGACTTTTTGGACTGTTAACCTGA
    Gds-ANC:
    ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATATACAATTACAAGA ACATGCGTTGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGAAGGCT TGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAG

[^39]:    AGCTGCTGTTTCTGAGCCACCTGGGGGCGCTGTGCCCGGGCCTGTGGGGGTGCGGAGGCGA CGAAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTGGTCTCCCTGTGCCAACT GTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGT GGCTCGCCTCTACTTCTGTGACCTGGAGGACAGTCCGCATATAGAGGGCTTGAGGGACCTG AGGAGAGCAGGGGTCCAGGTCACCGTTATGAGCTACAAAGACTACTTCTACTGCTGGCAGA CCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGT CCGTCTGTCCAGAAAACTAAACCGCATCCTCCAGCCATGTGAAACAGAAGATTTAAGAGAT GCTTTCAGACTTATTGGACTGTTAACCTGA
    Gf-ANC:
    ATGATTAGTAAGCTAGACAGTGTGCTCTTGGCCCAGAAGAAATTCATGTACAATTACAAGA ACATGCGTTGGGCAAAAGGCCGCAACGAGACCTACCTCTGCTTCGTAGTGAAGAGAAGGCT TGGACCCGATTCCCTGTCTTTCGACTTCGGACACCTACGCAATCGCACTGGCTGCCACGTAG AGCTGCTGTTTCTGAGCCACCTGGGGGCACTGTGCCCAGGCCTGTGGGGGTGCGGAGGCGA CGAAAACAGAAGACTCAGCTACTCGGTCACCTGGTTCTGCTCCTGGTCTCCCTGTGCCAACT GTGCGGCCACGCTGGCCCGGTTCCTGAGGCAGACGCCCAACCTGCGCCTCAGGATCTTCGT GGCTCGCCTCTACTTCTGTGACCTGGAGGACAGTCCGCATATAGAGGGCTTGAGGGACCTG AGGAGAGCAGGGGTGCAGGTCACCGTTATHAGCTACAAAGACTACTTCTACTGCTGGCAGA CCTTCGTAGCTCACAGGCTGAGCCGCTTCAAGGCCTGGGAAGGGCTGCATACCAATTCTGT CCGTCTGTCCAGAAAACTAAACCGCATCCTCCAGCCATGTGAAACAGAAGATTTAAGAGAT GCTTTCAGACTTATTGGGCTGTTAACCTGA Zg-ANC:
    ATGATTACTAAACTAGACAGTGTGCTTCTGGCCCGGAAGAAATTCATCTACCATTATAAGA ACATGCGCTGGGCAAAAGGCCGGCATGAGACATACCTCTGCTTTGTAGTGAAGAGGAGAGT TGGACCCGATTCCCTGTCCTTTGACTTTGGACACCTCCGCAATCGCACTGGCTGCCATGTAG AGCTGCTGTTCCTGCGCCACCTGGGGGCCCTGTGCCCTGGACTGTGGGGATACGGAGGCGC TGGTGAAAGGAGGCTCAGTTACTCAGTCACCTGGTTCTGCTCCTGGTCTCCCTGCGCCAACT GCTCCTTCAGACTGGCCCAATTCCTCAGGCAGACGCCCAACCTCCGCCTCAGGATCTTCGTC TCTCGCCTCTACTTCTGTGACCTGGAGGACAGCCGCGAGAGAGAGGGCCTAAGGATCCTGA AAAGAGCCGGAGTGCAAATCACAGTCATGAGCTACAAAGACTACTTCTATTGCTGGCAGAC CTTTTGTGCTCACAGACAGAGCAGCTTCAAGGCCTGGGATGGGCTGCACCAAAACTCTGTT CGCCTGGCCAGGAAACTAAACCGCATCCTCCAGCCTTGTGAAACAGAAGATTTAAGAGATG CTTTCAAACTTCTTGGGTTGTTGTGA
    Ancestral sequences predicted by ProtASR
    Gd-ANC:
    MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHVEL LLFLSHLEGGALCPGLWGCGGDENGRRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIF VARLYFCDLEDSPHIEGLRDLRRAGVQVKVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSV RLSRKLNRILQPCETEDLRDAFRLFGLLT
    Gds-ANC:
    MISKLDSVLLAQKKFMYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHVE LLLFLSHLEGGALCPGLWGCGGDENGRRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIF VARLYFCDLEDSPHIEGLRDLRRAGVQVTVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSV RLSRKLNRILQPCETEDLRDAFRLIGLLT
    Gf-ANC:
    MISKLDSVLLAQKKFIYNYKNMRWAKGRNETYLCFVVKRRLGPDSLSFDFGHLRNRTGCHVEL LLFLSHLEGGALCPGLWGCGGDENGRRLSYSVTWFCSWSPCANCAATLARFLRQTPNLRLRIF VARLYFCDLEDSPHIEGLRDLRRAGVQVTVMSYKDYFYCWQTFVAHRLSRFKAWEGLHTNSV RLSRKLNRILQPCETEDLRDAFRLIGLLT Zg-ANC:
    MITKLDSVLLAQKKFIYHYKNMRWAKGRHETYLCFVVKRRVGPDSLSFDFGHLRNRTGCHVE LLLFLRHLEGGALCPGLWGYGGTGEGRRLSYSVTWFCSWSPCANCSFRLAQFLSQTPNLRLRIF

