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Abstract 

As the technology node shrinks to the nanometer regime, the demand for new 

lithography methods with high resolution and low cost is increasing. Electron beam 

lithography (EBL) is one of the promising next-generation lithography (NGL) technologies 

that can tackle both challenges compared to the traditional lithography methods. Electron 

scattering, which causes pattern distortion in layout, is one of the main challenges for 

industry to widely adopt EBL in technologies below 22nm. Two major effects generated 

by electron scattering in EBL process are proximity effect and fogging effect. This thesis 

proposes a reinforcement-learning (RL) placement method that trains a neural network as 

an agent to effectively control the fogging and proximity effects in the EBL technologies. 

To speed up our method compared to other popular placement approaches (e.g., absolute 

coordinate based analytical placement, simulated annealing (SA) based placement, 

advantage actor critic (A2C) based placement), we benefit from the following innovations: 

using topological floorplan representation for manipulating our layouts during placement, 

and deploying an RL trained agent that can intelligently take actions. To more effectively 

tackle mixed-signal ICs, our method focuses on the sensitive analog devices, which are 

better protected from potential variations due to the fogging and proximity effects of other 

digital/analog portions. The experimental results show that our proposed placer is able to 

efficiently decrease the variation of the fogging and proximity effects among sensitive 
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devices in the analog portion up to 89.26% and 95.22% respectively, while it is 15, 4.3, 

and 5 times faster than the analytical RL-based placement, SA-based and A2C-based 

placement methods, respectively. In summary, our proposed approach has three main 

contributions: 1) to the best of our knowledge, our work is the first study that considers the 

fogging and proximity effects in analog portion of mixed-signal ICs, 2) we apply deep Q-

network (DQN) based placement to handle the fogging and proximity effects that improves 

the quality and speed of placement by intelligently choosing actions, and 3) we introduce 

a new RL placer in this study, which is based on a topological representation scheme 

resulting in much smaller configuration space and in turn faster placement operation. 
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Chapter 1     

Introduction 

 

1.1. Lithography in the Semiconductor Manufacturing 

Process 

As the modern semiconductor manufacturing process has to fabricate new 

technologies below 22nm, one of the designers' concerns is the high cost of masks in the 

traditional optical lithography, which is approximately four times more than that in the 

45nm technology [1]. The lithography, which transfers the pattern to a thin layer (e.g., 

metal layer or polysilicon layer) on the substrate, is one of the key operations in 

semiconductor fabrication. Therefore, any error or variation in this procedure results in a 

defect or even a malfunction in the manufactured electronic device.  

Based on the data shown in Fig. 1 as a demonstration of the Moore’s law, transistor 

density approximately doubles every two years. To make sure that this trend is still 

followed by industry, Intel introduced and reported a 10-nm technology node in 2017 that 

can increase the transistor density to about 100 million transistors per square millimetre 

[2]. This number is 2.7 times more than their previous announcement two years before, 

and shows that Moore’s law is still correct and trustable. In addition, this improvement in 
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Fig.  1. Transistor density trend [3]. 

transistor density means the size of the transistor must keep shrinking, and subsequently 

the patterning resolution requires to be further increased. Furthermore, the patterning 

process should meet the requirements of speed, cost and power, and address the challenges 

of the modern manufacturing procedure, which in turn makes the lithography process more 

complicated, complex and daunting. Therefore, the lithography method must be upgraded 

in order to let the technology nodes continue shrinking and improving.  

The traditional photolithography, which uses 193 nm wavelength, has been employed 

as one of the most popular techniques in the semiconductor fabrication industry for decades. 

However, as the technology node has shrunk, this method was not able to meet the demands 

and reach beyond its resolution limits. So, the resolution enhancement technologies (RET) 

method was introduced to solve this problem. The RET invented to increase the capability 

of photolithography includes phase shift mask, optical proximity correction (OPC), 
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immersion, modified or off-axis illumination (OAI), and multiple patterning [4]. One of 

the most popular RETs that has been suitable and applicable to semiconductor mass 

production in the industry is multiple patterning. The multi-patterning method (e.g., double 

patterning and triple patterning) enables the traditional photolithography to go beyond its 

resolution limits and have been used for many years in the industry.  

Currently, the 22 nm and 14 nm technology-node electronic devices are fabricated by 

multi-patterning immersion ArF (argon fluoride) lithography. However, as this method is 

used to manufacture devices with smaller feature size, major concerns and challenges 

appear. Using more mask to increase the resolution in the new technologies results in much 

higher mask cost and tighter overlay control [5]. So, utilizing multi-patterning as a 

lithography method in high volume manufacturing leads to a more expensive and 

sophisticated electronic device fabrication. As a matter of fact, one earlier investigation 

from Global Semiconductor Alliance in 2007 already showed that the major concern of 

designers in semiconductor device fabrication for moving from one technology node to a 

new one is the higher mask cost [1]. Traditional photolithography and its RET methods 

have reached their limitation and are no longer effective; so, a new lithography method is 

required to address such industry demands. 

Therefore, next-generation lithography (NGL) methods have been introduced to 

overcome these problems for further technology scaling. NGL methods mainly include 

electron-beam lithography (EBL), extreme ultraviolet lithography (EUVL), nanoimprint 

lithography (NIL), directed self-assembly (DSA), and focused ion beam lithography 
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(FIBL). Electron beam lithography (EBL) is one of the best among them, with higher 

accuracy in comparison to light-based technologies. EBL is a maskless lithography 

technology that prints feature patterns directly on the wafer with high resolution down to a 

few nanometers [6]. In EBL technology, in order to create a feature, electron beams are 

first emitted from the electron source. After going through a set of lenses and apertures, 

they directly write the pattern onto the resist-coated substrate. However, as EBL is a high-

resolution pattern formation method, some undesired exposures, which occur during the 

lithography, would result in a feature length change [7]. This critical dimension (CD) error 

is caused by electron scattering during the lithography, which results in a performance 

degradation or even malfunction. The two major concerns in EBL induced by this process 

variation are fogging effect and proximity effect. Therefore, these two challenges should 

be resolved to let the EBL be widely applied in the semiconductor fabrication industry. So, 

in this thesis we are motivated to concentrate on the impact of fogging effect and proximity 

effect on sensitive analog devices especially in the context of the surrounding digital 

portion in the mixed-signal ICs. In other words, we intend to minimize the impact of 

fogging effect and proximity effect on the performance of analog circuits. 

1.2. Structure of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 reviews the basics and previous 

works related to the fogging and proximity effects. Moreover, different analog placement 

methods, including topological-representation-based, absolute-coordinates-based, and AI-

based analog placement methods, are discussed. In Chapter 3, the energy distribution for 
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the fogging and proximity effects, and our variation models for controlling the electron 

scattering effects in the EBL technologies are proposed. Chapter 4 presents a B*-tree based 

placement methodology to control the fogging and proximity effects while still satisfying 

the other critical analog constraints. In Chapter 5, the experimental results of four different 

placement methods are discussed. In Chapter 6 we draw conclusions and point out future 

work for this research. 

1.3. Summary 

In this chapter, the basics and issues of the traditional lithography process in 

semiconductor manufacturing industry were discussed. Based on the Moore’s law, the 

transistor density doubles every two years. Therefore, the resolution of the lithography 

methods must be improved continuously to keep up with this trend. We reviewed the 

traditional photolithography and its limitations for the sub-22nm technology nodes. In 

addition, the solutions called RETs were presented to improve the resolution of 

photolithography. Finally, the next generation lithography (NGL) methods were 

introduced as effective methods for new technology nodes in semiconductor fabrication.  
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Chapter 2    Fundamentals and Literature Review  

 

As transistors are becoming increasingly smaller to form electronic integrated circuits 

(ICs) in a more compact area, the demands for high-resolution lithography methods have 

been increased. The traditional photolithography methods and their resolution 

enhancements technologies have reached their limitations and are not as effective and 

efficient for the technology nodes below 22nm. Therefore, the next generation lithography 

methods, which include extreme ultraviolet lithography (EUVL), nanoimprint lithography 

(NIL), directed self-assembly (DSA), and electron beam lithography (EBL), have been 

introduced.  

In this chapter, we discuss in detail the process, advantages, and disadvantages of these 

four NGL methods. EBL is one of the most popular NGLs that directly print the patterns 

on the wafer with a high-resolution down to a few nanometres. However, the scattering of 

electrons in EBL is the most challenging concern of designers, which leads to two effects: 

fogging effect, and proximity effect. In the following, we review the studies and 

publications on these two effects and the solutions to minimizing them. One of the most 

effective techniques to address these two effects is to minimize them during the chip 

placement stage. So in the last section of this chapter, we will present three different 
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placement approaches in the literature including: topological-representation-based 

placement, absolute-coordinates-based placement, and AI-based placement. 

2.1. Next Generation Lithography (NGL) Methods 

Lithography is the process of printing a pattern on the wafer, and lithography 

improvement is a major contribution to the continuation of the Moore’s law in the modern 

time. Photolithography has been the most popular lithography technique in semiconductor 

industry for several decades. This approach utilizes an optical-mechanical system 

including a set of lenses, masks, and light sources. To manufacture different circuits with 

specifically defined resolution, a special light source is applied. It might be krypton fluoride 

(KrF) excimer, ultraviolet, or argon fluoride (ArF) laser. The resolution of the 

photolithography system is calculated by the following equation [8]: 

 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑘1

𝜆

𝑁𝐴
  , (1) 

where 𝑘1 is a constant depending on the lithography process. Moreover, 𝜆 and 𝑁𝐴 are the 

light source wavelength and numerical aperture, respectively. In the common lithography 

process, 𝑘1 and 𝑁𝐴 are in the range of 0.5 to 0.8 and 0.5 to 0.6, respectively. In addition, 

𝜆  depends on the light source, while an argon fluoride (ArF) laser has the minimum 

wavelength of 193 𝑛𝑚. In the new semiconductor technologies, the associated feature size 

keeps shrinking nowadays. Thus, it always demands a lithography process with better 

resolution, which can print the patterns on the wafer with higher accuracy.  
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Based on the equation above, to improve the resolution we can decrease both 𝑘1 and 

𝜆 or increase 𝑁𝐴. Using imaging resist material can reduce 𝑘1 to less than 0.5. Moreover, 

the common way of resolution improvement is to use light sources with less wavelength. 

So, the argon fluoride (ArF) was applied as the light source, which has the minimum 

wavelength of 193 𝑛𝑚 compared to others. Moreover, complicated computer modeling has 

been applied to design an innovative optical system with increased 𝑁𝐴 lenses for new 

lithography processes [9]. In addition, the semiconductor industry has applied various 

resolution enhancement technologies (RETs) to increase the resolution of photolithography, 

among which multi-patterning is one of the most popular and effective approaches. 

However, photolithography, which has already reached its limit, is no longer economically 

effective for manufacturing sub-22  𝑛𝑚  technologies. Therefore, the next generation 

lithography methods have been introduced to overcome this challenge. The most popular 

NGLs include extreme ultraviolet lithography (EUVL), nanoimprint lithography (NIL), 

directed self-assembly (DSA), and electron beam lithography (EBL). 

The EUV lithography technology, which has high resolution used for sub-7 𝑛𝑚 

technology nodes, applies ultraviolet radiation for printing the patterns on wafer [10]. This 

method utilizes photons with wavelength of 13.5 𝑛𝑚, which are generated by a plasma 

source. As Fig. 2 shows, the EUV radiation is emitted by a 𝐶𝑂2 laser and then collected by 

an optical tool. Next, the light is controlled and projected to wafer by a set of optical 

elements called illuminator, reticle stage, and projection optics. EUVL has significantly 

reduced the semiconductor device manufacturing cost and increased the reliability of this 

process because of high resolution and throughput. However, since the EUV light is 
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absorbed by all tools and elements, such as collector, illuminator and projection optics, in 

the lithography system they must utilize the high-performance molybdenum–silicon 

multilayer mirrors. In addition, the entire optical path must be housed in a near-vacuum 

environment. Therefore, these two considerations in EUVL raise the complexity and 

startup cost of the lithography process. 

 

Fig.  2. Schematic of the EUVL process. 

Nanoimprint lithography (NIL) is a simple and high resolution (down to sub-3 𝑛𝑚) 

technology whose resolution is independent of area size being printed. Therefore, NIL has 

high throughput and accuracy that result in a low-cost mass production of semiconductor 

devices. This lithography approach is divided into four major categories: thermal NIL, UV-

NIL, laser-assisted NIL and electrochemical nanoimprints [11]. In NIL, the mold is used 

to extract the pattern on the resist or substrate by utilizing high pressure heating, UV 
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exposure, laser radiation, and electrical voltage in thermal NIL, UV-NIL, laser-assisted 

NIL and electrochemical nanoimprints, respectively. The NIL techniques have significant 

and valuable advantages in nanomanufacturing; however, the fabrication process of the 

mold for each specific topological pattern is time-consuming, which inevitably increases 

the cost of fabrication. 

The directed self-assembly (DSA) technique is one of the most promising NGLs that 

takes advantage of block copolymer materials to print the fine pattern shapes on the wafer 

with high resolution down to sub-10 𝑛𝑚. This method appeals to semiconductor device 

manufacturers thanks to its potential for efficient and cost-effective mass production of 

electronic nanometer devices. The DSA lithography process has two types: chemoepitaxy 

and graphoepitaxy, which apply chemical stripes or physical trenches to direct and define 

the block copolymer structures, respectively [12]. DSA has many advantages, such as low 

cost, high throughput and resolution, which make it as an excellent candidate for 

lithography in semiconductor industry. However, this technique has shown weaknesses in 

critical dimension (CD) control and line edge roughness (LER) compared to other NGLs. 

Moreover, it needs significantly long processing time and is designed for limited number 

of pattern shapes in comparison with the alternative NGLs. 

The last popular NGL technique is EBL, which utilizes electron beams to print the 

fine and accurate features on the wafer. This approach is fully described in the following 

section. 
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2.2. Electron Beam Lithography 

Various NGL approaches have been introduced to support technology node 

improvement and feature size shrinking. One of the most well-known and effective NGLs 

is electron beam lithography (EBL). EBL utilizes electron beams to directly print the 

pattern on the substrate. This maskless lithography method has high resolution and 

significantly decreases the manufacturing cost. The direct writing in EBL enables excellent 

controlling in lithography process that leads to fine and accurate patterns with high 

resolution down to 5 nanometers [13]. 

Fig. 3 illustrates the EBL system and the process of printing a pattern on the substrate by 

using this method. In this system, the electron gun is a source of electrons that generates, 

accelerates, concentrates and emits electron beams to resist-coated substrate. The electrons 

are generated by electron emitters or cathodes. Then, the electrons are accelerated by an 

electrostatic field that increases the kinetic energy of electrons to a specific level defined 

by the fabrication technology. The high-energy electron beam is controlled and focused by 

a set of instruments including lenses, deflectors and blanking plate. After passing through 

the guidance system, the e-beam is exposed onto the resist as one pixel and this sequence 

of tasks are repeated until the full pattern is printed on the substrate. In the next step, the 

projection is followed by etching and deposition to create the fine pattern on the substrate.  

The direct writing and eliminating the need for mask in lithography make the EBL as 

one of the best candidates for lithography in high-volume manufacturing of semiconductor 

devices. However, there are two major problems that increase the risk of using this method 
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in industry. The first one is the low throughput resulting in a low speed of manufacturing; 

so, it is not economically viable for mass production of electronic devices. The second 

challenge is the effects induced by electron scattering including fogging and proximity 

effects. 

 

Fig.  3. Electron beam lithography process. 

In the recent years, many researchers and laboratories have researched on EBL 

challenges. To speed up the EBL process and increase the throughput, a new method of 

parallel writing, which is called multiple e-beam direct write (MEBDW) lithography, was 

introduced [14]. In this technique, a bunch of parallel electron beams are emitted and 

projected to the wafer to directly print a pattern on the substrate, which has much higher 

speed than the single e-beam writing. So, now the low throughput and high lithography 

cost of EBL can be solved by using MEBDW in the industry. For the second challenge, 
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several promising studies and research work have been conducted to overcome the fogging 

and proximity effects in EBL.  In the following we first review these works and then 

presents the concept of our study for these two effects. 

2.3. Fogging and Proximity Effects 

Fogging and proximity effects are two major concerns from the designers in sub 22 

nm technology nodes that apply EBL as a lithography process. As Fig. 4(a) shows, a 

portion of electrons normally emitted from the primary electron beam scatters into resist 

and substrate after exposing the resist. These scattered ones may scatter again and generate 

back-scattered electrons. Such back-scattered electrons, if passing through substrate and 

resist, hit the bottom of the objective lens. They will produce the next-generation electrons 

called re-scattered electrons [15]. The effect induced by scattered and back-scattered 

electrons is called proximity effect, while the re-scattered electrons cause fogging effect. To 

be exact, there are two kinds of proximity effects. The first one called forward proximity 

effect is caused by scattered electrons (also called forward-scattered electrons), which have 

low angle deviation after exposing the resist and substrate. The back-scattered electrons 

(also called backward-scattered electrons in some papers and studies), which have a wider 

angle scattering and deviation, produce backward-proximity effect. These scattered 

electrons cause a non-desired exposure on resist resulting in a layout pattern distortion, 

which may cause critical dimension (CD) error up to several nanometers [16], as shown in 

Fig. 4(b). The CD error depends on the type of the resist applied in the lithography process. 

The electron scattering effects (i.e., the fogging and proximity effects) decrease the feature 
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size in the case of positive resist, while they increase it when the negative resist is applied. 

In both cases, these two effects change the layout pattern and subsequently the feature 

geometry; so, they may result in circuit performance degradation or even malfunction if 

they are not properly taken into account.  

 

Fig.  4. (a)Fogging and proximity effects induced by electron scattering. (b) Critical 

dimension error induced by electron scattering. 

When the re-scattered electrons hit the bottom of the lens, they expose the resist and 

substrate to show the fogging effect in a long distance from the primary e-beam, which 

belongs to the category of long-range effects. In contrast, the scattered and back-scattered 

electrons have low angle deviation that leads to short range proximity effect. In addition, 

the re-scattered electrons have several collisions with other particles at the moment of 

scattering. Subsequently they lose a great deal of kinetic energy in each collision, which 

results in the low intensity feature of the fogging effect. On the other hand, the scattered 

and back-scattered electrons have much fewer touches with other particles and thus lose 
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less energy, which leads to the high intensity feature of the proximity effect. Fig. 5 

illustrates the energy distribution of the proximity effect and fogging effect in Fig. 5(a) and 

Fig. 5(b), respectively. As shown, in contrast to the proximity effect being a short-range 

and high intensity effect, the fogging effect is a long range and low intensity effect. Fig. 

5(c) shows the energy distribution induced by the summation of both effects. 

 

Fig.  5. Range and intensity of (a) proximity effect, (b) fogging effect, and (c) both effects 

[15]. 

2.4. Previous Works 

2.4.1. Control of Fogging and Proximity Effects  

Some studies have been conducted on the minimization of the fogging and proximity 

effects for integrated circuits (IC). There are two major methodologies in the literature to 

minimize the fogging and proximity effects: 1) minimizing fogging and proximity effects 
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during the manufacturing process and 2) in the layout design stage. For the first category, 

Pease [17] introduced two approaches. To avoid scattering, the author suggested to use 

very thin substrate that minimizes the coefficient of electron back-scattering. In this 

technique, thin resists and very low abbreviation lenses are used in the EBL system to 

reduce scattering of electrons after exposing the resist and lens. Thus, this approach enables 

the designers to manufacture devices with feature sizes less than 10 nm. The second 

approach is to employ ion beam lithography, which uses ions instead of electrons. However 

reasonable these methods sound, in practice they are still not efficient and ready enough to 

be directly used for mass production in semiconductor industry.  

In another promising research work, Hudek et al. [15] applied the dose modulation 

method to control the critical dimension unity (CDU) of the layout. The optimized 

parameter for dose modulation was determined by convolution of pattern density and 

fogging effect function. However, this work could only control CDU within 8nm, and it 

required an exposure system that was able to work with a sufficient number of dose steps. 

In [18], Figueiro et al. presented a method to compensate the fogging effect based on 

pattern density. They verified and calibrated the fogging effect model based on several test 

patterns and then applied dose and/or geometric modulation to make up the fogging effect. 

While they used density map instead of actual pattern to reduce the computation cost, 

runtime of this method is still significantly large.  

In [19], Shimomura et al. used a plate containing electron holes in an electron beam 

system, which could absorb back-scattered electrons. The authors could successfully 
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reduce the critical dimension (CD) error down to 8nm with this method. Nevertheless, they 

were still not able to completely remove but just reduce the fogging effect in the EBL 

process. Morimoto et al. in [20] used a method to characterize and quantify the fogging 

effect. They measured the current flow generated by fogging electrons in the electrodes 

installed on the objective lens and specimen. Their experiments showed that the fogging 

effect is dependent on the objective lens materials. They indicated that using carbon for the 

objective lens could minimize the fogging effect in comparison to aluminum, copper or 

stainless steel. 

When it comes to proximity effect minimization during the manufacturing process, 

Kamikubo et al. in [21] introduced a novel formula for proximity effect minimization 

through dose correction. They used the expansion series to approximate the optimum 

correction dose. In comparison to the conventional formulas, they reduced the correction 

error to less than 1% and minimized the pattern dimensional errors down to ±4 nm. Fig. 6 

shows the comparison between their work and the conventional dose correction formula. 

To tackle the proximity effect in the fabrication process, Seo and Suh [22] took advantage 

of a thin film of silicon dioxide (𝑆𝑖𝑂2), which could minimize the electron scattering after 

exposure to resist and substrate. They added a thin layer of 𝑆𝑖𝑂2 on a bare substrate and 

then coat the surface with the resist. Their results showed that increasing the thickness of 

the 𝑆𝑖𝑂2 layer led to a decrease of the proximity effect and subsequently less CD error. 

However, adding the 𝑆𝑖𝑂2  layer and incrementing its thickness require extra steps in 

lithography to remove that layer, which might significantly raise the manufacturing cost 

and complexity. Fig. 7 presents the complete schematic of their scheme. 
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Fig.  6. Dimensional errors after dose correction by [21] and conventional methods. 

As for the second category of minimizing the fogging and proximity effects in the layout 

design stage, Chen et al. [23] tackled the fogging effect by using an analytical placement 

method, which is one of the first studies considering the fogging effect in the chip design 

process. They derived the fogging source model and then applied fast Gauss transform with 

Hermite expansion to estimate the fogging effect map of the target layout. Subsequently, 

this estimation scheme speeds up the fogging effect evaluation by approximately 30 times 

faster than the convolutional-based methods. Then they proposed an analytical placement 

method to minimize the fogging effect variation during global placement and improve 

placement quality through fogging-effect-based legalization and detailed placement. In 

comparison to their previous work [24], they improved the wirelength quality and running 

time, while minimizing the fogging effect variation by 35%. In addition to these two papers, 
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these authors introduced an innovative placement method in [25] to control both the 

fogging effect and proximity effect simultaneously in the digital layout design. They 

formulated the optimization problem, then applied a new algorithm called proximal group 

alternating direction method of multipliers (ADMM) to solve the problem, which can 

control the chip density and minimize the wirelength, fogging effect and proximity effect. 

Their approach was 1.65 times faster and could reduce the fogging effect and proximity 

effect by 13.4% and 21.4% lower than the previous work, respectively.  

 

Fig.  7. Schematic of back-scattering profile for method used in [22]. 

2.4.2. Analog Placement Methods 

It is observed that all the previous studies on the placement methods to minimize the 

fogging and proximity effects only focus on digital circuits. In this thesis, we are motivated 

to develop an electron-scattering-aware placement method for the analog part of a mixed-

signal IC. In the literature, there are different categories of analog placement approaches 

that use optimization algorithms to minimize the cost function by properly placing the 

devices in different positions. By nature, an analog placement method has to embed the 

following two indispensable factors: representation and search engine. The representation 
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refers to a way how the placement method describes the location of modules in a layout. It 

could be based on exact location or relative location. The search engine stands for an 

optimization scheme that the placement method uses to drive the evolution to an optimal 

state. We can classify those existing placement approaches into two categories: 1) in terms 

of representation and 2) in terms of search engine.  

2.4.2.1. Classification Criterion of Representation 

The analog placement methods apply different representation techniques to define the 

location of modules within the given layout. The representation methods can be divided 

into two main categories: topological and absolute-coordinate-based representations.  

The topological-representation-based placement (i.e., using topological floorplan 

representation for the layouts) is one common analog placement approach that often applies 

simulated annealing (SA) to minimize the cost function [26]. The most significant feature 

of the topological representations is their relative description of module locations in a 

layout. This type of placement schemes effectively considers the geometrical constraints, 

although the SA engine might be slow in solving some complicated placement problems, 

such as electron-scattering-effect-inclusive placement, because of random perturbations. 

There are two types of floorplans: slicing and non-slicing. Different representation 

methods have been introduced to describe the floorplan under each category. In the slicing 

floorplan, the slicing structure is achieved by repetitively cutting rectangles horizontally or 

vertically and dividing them to smaller rectangles, which are the representatives of the 
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modules in a layout. However, almost all real layouts cannot be sliced as mentioned; so, 

they are non-slicing floorplans per se. The most popular topological representation 

methods used for non-slicing floorplans include: sequence pair (SP) [27], O-tree [28], B*-

tree [29], and transitive closure graph (TCG) [30]. 

SP utilizes an ordered pair of module sequences (𝑎, 𝑏) to represent the placement of 

modules in the given layout. The time complexity of packing in this approach is 𝑂(𝑚2), 

where 𝑚 is the number of modules. When it comes to TCG, this representation scheme 

applies the transitive closure graph to represent the geometric relationships among modules. 

A transitive closure of the directed acyclic graph 𝐺 is shown as �́� = (𝑉, �́�), where 𝑉 and 

�́� are the sets of nodes and edges that connect the nodes, respectively. In this method, the 

floorplan is represented by two graphs: horizontal transitive closure graph 𝐶ℎ and a vertical 

transitive closure graph 𝐶𝑣 , which describe the horizontal and vertical geometrical 

relationship between the modules, respectively. A unique transitive closure graph �́� can be 

derived from a given layout placement. Each module 𝑎𝑖 is represented by a node 𝑛𝑖 with 

width (height) as its weight in 𝐶ℎ (𝐶𝑣). To create the TCG, if module 𝑎𝑖 is on the left side 

of 𝑎𝑗, we construct the directed edge (𝑛𝑖, 𝑛𝑗), which connects 𝑛𝑖 to 𝑛𝑗  by a directed array 

in 𝐶ℎ. In the same manner, the directed edge (𝑛𝑖, 𝑛𝑗) is created in 𝐶𝑣 from node 𝑛𝑖 to 𝑛𝑗  if 

𝑎𝑖 is on the top of 𝑎𝑗. Fig. 8 illustrates a floorplan and its corresponding transitive closure 

graph. 

O-tree and B*-tree are two kinds of topological representations, which benefit from 

the tree structures to show the module position relationship. These two methods are faster 
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and more efficient compared to the previous approaches. Moreover, B*-tree is even faster 

and required 60% less memory than O-tree. Given a layout, to create the corresponding 

tree, the first step is to generate an admissible placement of the layout. A placement is 

admissible if it is compact and no module inside can move to the left or bottom side. And 

then starting from the most bottom left module as the root of the B*-tree, the left child node 

is the right module and the right child node of the root is its top module.  

In all of topological-representation-based placement methods, the simulated annealing 

(SA) algorithm is most frequently applied to find the global optimum [31]. This 

optimization method emulates the annealing process in metallurgy and tries to approach 

the global minimum. This optimization method has faster convergence to global minimum 

compared to the brute-force methods or general heuristic methods, while it is able to avoid 

trapping in local minimums compared to other optimization methods (such as the conjugate 

gradient method). However, it applies random perturbation to optimize the objective 

function, which results in longer computation time. 

 

Fig.  8. The layout and its corresponding TCG. 
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Recently, different B*-tree-based analog placement approaches have been introduced 

to handle geometric constraints. In [26], the authors introduced QB-tree representation 

model to reduce the time complexity while considering different constraints. QB-tree is a 

hierarchical method that combines B*-tree and quadtree. To construct the QB-tree, they 

first repeatedly divide area to four sub-regions with a vertical and horizontal line crossing 

along with pre-placed modules’ boundaries. This process of subdividing will continue until 

a maximum of one preplaced module remains. These sub-regions are represented by child 

nodes in QB-tree, whose parents are the larger sub-region where they are located. Then the 

B*-trees representing the modules in each sub-region are constructed. The root of B*-tree 

is connected to the random leaf node of quadtree, which means those modules are placed 

in the corresponding sub-region. By using the QB-tree, this work could achieve linear time 

complexity for module packing. Therefore, this method gained better placement quality, 

faster running time, and more constraints to be handled. However, subdividing of layout 

may lead to cutting modules and put them in different sub-regions; so, handling this issue 

is challenging in QB-tree placement.  

In terms of representation, the second group of placement methods is based on 

absolute coordinates, which define the location of each module by its exact coordinates in 

the process of optimization [32]. This kind of placement methods has significantly large 

configuration space including infeasible placements. Therefore, the legalization and 

detailed placement, which can slow down the placement process and significantly increase 

the runtime, are required to eliminate the overlaps of modules and improve the placement 

quality. The absolute coordinate-based placement method proposed in [33] formulates the 
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placement problem as an exact and accurate mathematical modeling process in order to 

apply an optimization algorithm to minimize the cost function and find the optimum 

location of modules in the layout. In particular, the authors utilized the nonlinear analytical 

analog placement to handle layout dependent effects (LDE) including well proximity, 

length of oxide diffusion, and oxide-to-oxide spacing, which change the electrical 

characteristics of transistors and lead to performance degradation. In a global placement 

phase, they minimized the cost function by the nonlinear conjugate gradient technique to 

tackle LDEs, symmetry constraints, wirelength, and overlaps of modules. A new 

legalization called ILP-based method was introduced to determine the finger number of 

modules, since the non-integral finger number is not valid in analog placement. In detailed 

placement phase, the aim of placer is completely removing overlaps. However, after 

justification to minimize the overlaps, the other constraints should be considered in 

optimization. Therefore, the legalization and detailed placement parts significantly 

increase the running time. 

The absolute-coordinates-based placement methods are straightforward, accurate, and 

efficient for simple layouts. However, it is hard to achieve acceptable performance in a 

placement that requires to consider complex constraints during placement, especially when 

calculating or manipulating those constraints is time-consuming (such as fogging and 

proximity effects) for large circuits. This is mainly due to the extremely large configuration 

space that absolute coordinates may incur when being used as a representation method for 

describing layout. In practice, using exact coordinates of modules’ location in the 

placement optimization process not only leads to large configuration space, but also brings 
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about the messy overlaps among modules that require complex post-processing operations 

for legal final placement output. 

2.4.2.2. Classification Criterion of Search Engine  

The existing placement approaches in the literature can be also classified by their 

search engines applied for optimization. They can be categorized into three types: heuristic-

based (e.g., SA, genetic algorithm (GA), turbo search, particle swamp optimization, etc.), 

mathematical-programming-based (e.g., conjugate gradient), and artificial-intelligence-

based methods.  

Simulated annealing (SA) is a heuristic-based optimization algorithm, which is widely 

used in analog layout placement to find the global optimum. Lu et al. [34] proposed a new 

topological-representation-based placement method utilizing SA search engine to address 

different geometric constraints in FinFET technology. They used WB-tree to represent the 

placement of modules. The WB-tree representation method combines window mesh data 

structure and corner stitching compliant B*-tree (CB-tree) [35] to handle both traditional 

and FinFET related constraints. To construct the WB-tree, they first subdivide the given 

layout into identical windows, whose size is defined by the users. To create the window 

mesh, the adjacent nodes that correspond to window regions are connected to each other. 

Then, the CB-trees are generated for all modules and the root of each tree is randomly 

connected to one node in window mesh. Next, they use an SA algorithm to perturb the 

modules for reaching the best placement solution. WB-tree based placement is able to 

handle a variety type of geometrical constraints in a reasonable runtime. However, this 
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method applies corner stitching as a data structuring techniques that significantly increases 

the required memory space for this placement approach.  

The conjugate gradient (CG) is one of the most popular mathematical-programming-

based placement techniques, which is used as a search engine for analog placement 

optimization. In [70], the authors proposed a high-quality mixed-size analytical placer 

considering preplaced blocks and density constraints. They applied conjugate gradient (CG) 

to minimize the cost function in global placement stage. The cost function is comprised of 

density and wirelength, supported by a novel log-sum-exp wirelength model. Two major 

contributions in this study, which result in a significant speedup in the placement process, 

include using dynamic step-size control for CG and utilizing look-ahead legalization 

technique during the global placement. The experimental results of this work show better 

performance in terms of faster runtime and better wirelength minimization. 

Recently nonlinear optimization approaches have been used for layout placement in 

VLSI and showed significantly high performance. In [36], the authors introduced a novel 

nonlinear placer called elfPlace to optimize the wirelength and density constraint. This 

placer applies augmented Lagrangian method (ALM) for minimizing the cost function. As 

results show, their approach is better than four state of the art placers in wirelength 

minimization with shorter running time. In addition, elfPlace is able to optimize the 

routability and pin density, which noticeably improve the placement quality. 

Artificial intelligence (AI), which has been applied to many sub-areas of electronic 

design automation (EDA), was promoted to develop new methods for solving analog 
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placement problems. Gusmao et al. in [37] introduced a semi-supervised artificial neural 

network for analog IC placement. They used 125,574 different floorplans as the data set to 

train the artificial neural network. In the training process, they used mean squared error as 

the loss function for the first 100 epochs to minimize the cost function considering area, 

current flow, overlaps, and symmetry constraints. For the training in the next 1000 epochs, 

they applied a novel topological-loss function (TLF), which considers the geometric 

constraints. By utilizing this approach, the optimal placement of a layout is predicted in a 

few milliseconds. However, this method needs a huge number of data sets for training, 

which brings a barrier to general usage since providing such training data for the 

placements considering constraints is not always accessible. 

A new machine-learning-based placement was introduced in [38], which applies a 

transfer learning approach to automate and speed up the chip placement. Using transfer 

learning enables the placer to learn from the previous experience of placements, which 

leads to more accurate and faster placement for unseen circuit structures. These authors 

defined the placement optimization as a reinforcement learning problem and trained an 

agent to intelligently place the modules in the layout canvas to minimize the power and 

wirelength, and improve the performance. Their approach was able to find the optimal 

placement for an unseen circuit after 6 hours of training. However, this placer improves 

through the learning of previous placements; so, it can not be efficient for primary 

placements and it takes long time to achieve high performance quality. 
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Most recently, Ahmadi and Zhang [39] proposed an AI-based analog placement 

method that uses deep Q-learning to train an agent, and intelligently chooses the best action 

for each module. Their method is 77 times faster than the traditional analytical placement 

approaches while reaching approximately the same electrical performance and chip area. 

Nevertheless, the number of possible states in their environment of the reinforcement 

learning approach is quite high, which may slow down the placement process in more 

sophisticated layout designs. 

2.5. Our Contributions 

Different from the digital circuit domain with the studies of the fogging and proximity 

effects already undertaken, so far we have not seen similar research in the context of mixed-

signal or analog ICs. Therefore, we are mainly aimed to focus on the fogging and proximity 

effect control on the analog part within a mixed-signal circuit in this thesis. For this purpose, 

we have developed a reinforcement learning (RL) placement method using the topological 

representation. Such an artificial intelligence method cannot only facilitate the automation 

in the placement evaluation and action selection process without a need for human’s 

involvement, but also boost the search efficiency thanks to using a topological 

representation (i.e., B*-tree in our implementation). 

In our reinforcement learning placer, the RL environment is a B*-tree representing the 

module positions in a layout, while the RL agent is a deep neural network (DNN) with 

reward calculated by our specified cost function. Below we list the main contributions of 

our research conducted in this thesis work: 
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• We closely consider the impact of the fogging and proximity effects on analog 

portion of mixed-signal circuits. 

• We propose an RL-based placement method to minimize the variations of the 

fogging and proximity effects, which liberates the designers from their mandatory 

expertise or rough estimation. 

• We introduce a new RL placer in this study, which is based on a topological 

representation scheme resulting in much faster placement operation. 

2.6. Summary 

In this chapter, we reviewed the fundamentals of the next generation lithography 

methods and their challenges. In addition, we explained the fogging and proximity effects, 

which are two major concerns in the electron beam lithography. To review the previous 

works, the studies on the fogging and proximity effects were discussed in detail. Moreover, 

the previous works on different placement methods were reviewed in term of two 

classifications: representation methods and search engines. Absolute coordinate-based and 

topological representation were discussed for the first category, while simulated annealing, 

conjugate gradient and AI-based placement approaches were reviewed as the search engine 

category. In the next chapter, we will introduce the variation modelling of the fogging and 

proximity effects based on their energy distribution functions. 
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Chapter 3     

Modelling of the Fogging and Proximity Effects 

in Mixed-Signal ICs 

 

 

3.1. Introduction 

Since EBL as a next-generation lithography technology has been used to manufacture 

devices with sub-10nm feature size at lower cost, new effects like the fogging and 

proximity effects are commonly existent due to process variations. In the EBL technology, 

in order to create a feature, electron beams are first emitted from an electron source. After 

going through a set of lenses and apertures, they directly write the pattern onto resist-coated 

substrate. Then this exposure step is followed by etching and deposition process to make 

the desired feature patterns [40]. However, as EBL is a high-resolution pattern formation 

method, some undesired exposures, which occur during the lithography, would result in a 

feature dimension change [7]. Those undesired exposures, which are caused by electron 

scattering phenomenon that can deposit energy in resist, lead to pattern distortion and 

critical dimension (CD) errors.  

As described in Chapter 2, the group of scattered and back-scattered electrons 

produces the proximity effect while the re-scattered electrons result in the fogging effect. 
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These two effects cause uncertainty and errors in electronic device fabrication. Thus, they 

limit the capability of EBL to be used as a dominant lithography method in high volume 

manufacturing of semiconductor industry. Therefore, the researchers in academic 

laboratories and semiconductor fabrication companies have been researching into these 

two challenges to find a solution to minimizing or completely eliminating them. 

At the first step, the characteristics of the fogging and proximity effects should be 

studied to extract their mathematical models for correction and minimization of these 

effects by using any solutions. Based on previous studies, it is learned that the energy 

distribution model of the fogging and proximity effects is a Gaussian function with 

maximum intensity at the center of primary e-beam. Then, the analytical model of the 

fogging and proximity effects is extracted to be used in our specially designed placement 

algorithm in order to minimize the variation of these effects. Such a model can compute 

and estimate the variations of the fogging and proximity effects among the modules in 

sensitive devices of the analog circuits. In this way, we will seek to protect them from the 

fogging and proximity effects induced by other modules in both digital and analog parts of 

mixed-signal ICs. 

The remaining of this chapter is organized as follows. The energy distributions of the 

fogging effect and proximity effect are described in Sections 3.2 and 3.3, respectively. 

Section 3.4 discusses the fogging and proximity effects in the general mixed-signal ICs. In 

Section 5, our variation modelling of the fogging and proximity effects is introduced. 

Finally, Section 6 draws a conclusion of this chapter. 
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3.2. Energy Distribution of the Fogging Effect 

Some previous works studied the fogging effect modeling. Based on simulations and 

experiments that had been done, the energy distribution of the fogging effect was modeled 

as a Gaussian point spread function (PSF) for a given EBL process. There are some 

software programs and experiments to characterize the behavior of electrons when they 

emit from an electron gun and are exposed to resist and substrate there. Fig. 9 demonstrates 

the result of one simulation of electron beam lithography on CHARIOT [41], which is one 

popular Monte Carlo software. The figure obviously shows the scattering of electrons and 

their deviations after being exposed to resist and substrate. The blue lines are primary and 

scattered electrons, while the red ones are back-scattered electrons. As written on the 

bottom of the figure, the back-scattering coefficient is 0.08. Based on the simulation, the 

number of the scattered electrons resulting in the fogging effect is much less than the ones 

leading to the proximity effect, which actually causes the low intensity of the fogging effect 

in comparison to the proximity effect. However, the fogging effect is featured by its long 

range nature and the accumulative amount of this effect from all modules in the chip on 

one target point is still considerable and should be controlled in a better way.  
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Fig.  9. Simulation of electron beam lithography by CHARIOT. 

To model the energy distribution of the fogging effect during the simulation, the 

charging and absorbed energy in resist caused by the re-scattered electrons should be 

evaluated and modeled. However, there is a challenge in the simulation of the fogging 

effect that is caused by the long-range aspect of the effect. The software or experiment 

setup must be able to simulate the electron trajectories, which are in a long distance from 

the primary e-beam. The updated CHARIOT software is able to consider and evaluate the 

back-scattered electrons scattering far away from the center of beam, scattering of the 

electrons returning from the bottom of the lens, and paths of the re-scattered electrons after 

being exposed and scattering into the resist. 

The simulation above was done for a 2,500 square micrometer resist, which had 150 

nm thickness. The e-beam dose and voltage was 28 𝜇𝐶/𝐶𝑚2 and 50 kV, respectively [42]. 
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The charging and absorbed energy in the resist was evaluated for different working 

distances and resist depths. As Fig. 10 shows, the energy absorption in the regions near the 

surface of the resist is much higher than the places near the bottom of the resist, which has 

the coordinate of 0 on the resist depth axis. In contrast, the simulation results for the 

primary and back-scattered electrons illustrate even absorbed energy for different depths. 

It clearly suggests that the re-scattered electrons have much less energy than the forward 

and backward-scattered electrons; so, this observation demonstrates the low intensity of 

the fogging effect in EBL. In addition to intensity of the fogging effect, the simulation 

results for four different working distances (defined as the distance between the lens and 

resist) show that as the working distance decreases, the absorbed energy range of the 

fogging effect grows approximately in a linear style. 

The main purpose of those simulations is to model the energy distribution of the 

fogging effect. In Fig. 11(a), the absorbed energy in the resist, which is caused by the 

primary and re-scattered electrons in the EBL process, is shown. The maximum intensity 

that occurs in the center of the target point is caused by the primary exposure of electrons 

into the resist. However, Fig. 11(b) only demonstrates the energy absorption from the re-

scattered electrons, which can be approximated as a Gaussian form (shown in a red line). 

To accurately estimate the Gaussian parameter, several simulations and experiments were 

done for different working distances. Finally the Gaussian function of the fogging effect 

energy distribution is modelled as follows [43]: 

 
𝐸𝑓𝑜𝑔(𝑥, 𝑦) =

𝑎

𝑤√2𝜋
𝑒

−
√𝑥2+𝑦2

2𝑤2  , 
(2) 
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where E is the energy absorption in the resist at the point (𝑥, 𝑦), 𝑎 is a constant, 𝑤 is the 

fogging effect range, and √𝑥2 + 𝑦2 represents the distance of the target point from the 

center of the primary electron beam. 

 

Fig.  10. Energy absorption in different resist depths for different working distances [42]. 

The energy distribution model of the fogging effect, which is used in most of the previous 

works, is the Gaussian point spread function (PSF). It is extracted from Eq. (2) and 

expressed below [7]: 
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Fig.  11. The energy absorption in the resist. (a) the total absorbed energy (b) the 

absorbed energy caused by the re-scattered electrons [43]. 
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where 𝛾𝐹 and 𝑣𝐹 are the range and weight of the fogging effect, respectively, and r is the 

distance of target point from the center of the primary electron beam. Fig. 12 is the PSF of 

the fogging effect simulated in MATLAB. From the extracted information of the 

simulation results, it is estimated that the absorbed energy in the resist by undesired 

exposure of the re-scattered electrons is approximately 5% of the total energy absorption, 

which is reasonably significant. 

 

Fig.  12. The PSF simulation of the fogging effect in MATLAB. 

3.3. Energy Distribution of the Proximity Effect 

The EBL technology applies e-beams that can be focused down to 0.5 nm diameter 

[44]. So, it is assumed that the resolution of the electron beam lithography can reach a few 

nanometers. However, this is completely theoretical since there are always some process 

variations that may limit the resolution of EBL, especially in the new technology node 

where the feature size is significantly small and the pattern density is considerably high. 
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One of such major process variations is the proximity effect, which is caused by scattered 

and back-scattered electrons. As such, the proximity effect suffers from two kinds of 

scattering:  

• Forward scattering: electrons are transmitted from the electron gun as a 

focused e-beam in a diameter of about 0.5 nm. However, they experience a 

little deviation before reaching the resist surface and cause a wider e-beam, 

which  is due to the two phenomena of lens aberrations and electrostatic 

interactions between electric charges called Coulomb interaction. In addition, 

the electrons diverge at more angle after reaching and passing through resist 

and substrate by collision with other particles in the resist and substrate. The 

range of this scattering is approximately from 2 nm to 40 nm, which is related 

to lithography process characteristics such as lens aberration, e-beam dose, and 

the energy accelerating the electrons at the beginning of transmission from the 

source. This kind of electron deviation, which leads to a sever critical 

dimension (CD) error, is called forward scattering. 

• Backward scattering: The electrons entering the resist and substrate are 

attracted or forced back when getting close to an atom, which changes the 

trajectory of that electron. Some of these scattered electrons will go up toward 

the resist if they have enough kinetic energy. Therefore, they expose the resist 

from the bottom side with a distance of a few micrometers from the primary e-

beam exposure point. Moreover, there are interactions between the e-beam 

electrons and the electrons inside the substrate material. If the collision 
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between these two kinds of electrons provides enough energy, it causes the 

second-generation electrons, which are called secondary electrons. These 

electrons also can rise up and hit the bottom of the resist if they have enough 

energy. These two kinds of electron scatterings in EBL are called back-

scattering. 

These two kinds of scatterings would cause a noticeable variation in the EBL 

technology by changing the feature size or generally speaking CD error. The electrons 

expose the resist and deposit an undesired energy inside the resist, which leads to non-

uniform CD variation cross the chip after the etching process. Fig. 13 illustrates the energy 

distribution caused by the forward and backward scatterings in the resist; where 𝐸, 𝐷, and 

𝑇  are electron energy, e-beam diameter, and thickness of polymethyl methacrylate 

(PMMA) resist. As shown, the back-scattered electrons lead to a long range effect called 

backward proximity effect (BPE), while the forward-scattered electrons have lower angle 

deviation and subsequently result in a shorter range effect called forward proximity effect 

(FPE). The FPE has much higher intensity than BPE while the range of BPE is about double 

compared to that of FPE.  

As the proximity effect is originated from two sources, its energy distribution is the 

sum of those short and long range effects, which is expressed in Eq. (4): 

 𝐸(𝑥, 𝑦) = 𝑆ℎ𝑜𝑟𝑡𝑅𝑎𝑛𝑔𝑒(𝑥, 𝑦) + 𝐿𝑜𝑛𝑔𝑅𝑎𝑛𝑔𝑒(𝑥, 𝑦) . (4) 

      To apply the proximity effect constraints in our placement approach, there is a need for 

a model that can evaluate and estimate the proximity effect. From Fig. 13 and Fig. 14, it 

can be assumed that the proximity effect can be modeled by two Gaussian functions. The 
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most straightforward and accurate analytical model that approximates energy deposition 

function due to the proximity effect is defined as [45]: 

 
𝐸𝑝𝑟𝑜(𝑟) = 𝑐𝑓𝑒

−
𝑟2

𝐵𝑓
2

+ 𝑐𝑏𝑒
−

𝑟2

𝐵𝑏
2
 , 

(5) 

where 𝑐𝑓  and 𝑐𝑏  are two constants, 𝑟 is the target point distance from the center of the 

primary e-beam, and 𝐵𝑓  and 𝐵𝑏  are the range parameters of the forward and backward 

proximity effects, respectively.  

 

Fig.  13. Energy distributions by forward scattered electrons (FSE) and backward 

scattered electrons (BSE) [46]. 

However, some new studies utilized a PSF approximation function as a mathematical 

model to evaluate energy distribution related to the proximity effect. Based on different 

experiments and simulations by using some software programs, such as Monte Carlo, the 

point spread function (PSF) function of the proximity effect is given by [47] 



41 

 

 𝑓𝑝𝑟𝑜 =
1

𝜋(1+𝜂)
(

1

𝐵𝑓
2 𝑒

−
𝑟

𝐵𝑓
2

+
𝜂

𝐵𝑏
2 𝑒

−
𝑟

𝐵𝑏
2
) , 

(6) 

where 𝜂 is the ratio of back-scattered energy to forward-scattered one, and 𝐵𝑓 and 𝐵𝑏 are 

the range of FPE and BPE with the amounts of 0.06 𝜇𝑚 and 30 𝜇𝑚, respectively. Here Eq. 

(6) consists of two parts, the first one is due to PSF of the forward proximity effect and the 

second part is the contribution from the backward proximity effect.  

 

Fig.  14. The energy deposition distribution due to the proximity effect [48]. 

3.4. Fogging and Proximity Effects in Mixed-Signal 

ICs 

The mixed-signal integrated circuit is an IC that consists of both analog and digital 

portions fabricated on a single chip [49]. Nowadays these ICs are actually used in almost 
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all the electronic devices around us, such as smartphones, digital cameras, house appliances 

and healthcare digital instruments. In this regard, virtually a majority of modern digital 

devices need to enclose mixed-signal ICs because these devices need an interface to 

connect to the real world, where the signals are analog by nature. Therefore, it is 

indispensable to convert the analog signals to digital ones at the input end and vice versa 

at the output end. Obviously any manufacturing error and undesired variation in fabrication 

process may lead to characteristic deviation or malfunction of electronic components (e.g., 

transistors), and then in turn performance degradation or even failure of such mixed-signal 

ICs.  

In analog portion of the mixed-signal circuits, there are always some sensitive devices 

(e.g., differential pairs or matched current mirrors), in which any variation from the 

nominal values may lead to severe device characteristic deviation and in turn circuit 

performance degradation. In addition, some manufacturing process variations result in 

transistor parameter change. For example, one of the most important transistor parameter 

is the threshold voltage, which defines the characteristics and impacts on the performance 

of transistors. The variation of this parameter due to uncertainty in fabrication processes is 

given by  

 𝜎𝑉𝑡ℎ
= (

√4𝑞3𝜀𝑆𝑖∅𝐵
4

2
) (

𝑇𝑜𝑥

𝜀𝑜𝑥
) (

√𝑁𝑐ℎ
4

√𝑊𝑔𝑎𝑡𝑒𝐿𝑔𝑎𝑡𝑒
) , (7) 

where 𝑞, 𝜀𝑆𝑖 , ∅𝐵 , 𝑇𝑜𝑥 , 𝜀𝑜𝑥 , 𝑁𝑐ℎ  and 𝑊𝑔𝑎𝑡𝑒  are electron charge, silicon permittivity, bulk 

potential, gate oxide thickness, gate oxide permittivity, carrier density, and gate width, 

respectively. As expressed in the equation above, the threshold voltage largely depends on 
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𝐿𝑔𝑎𝑡𝑒, which is the length of the gate, among others. Based on the previous explanation 

about the fogging and proximity effects, these effects cause CD error that subsequently 

changes the transistor critical geometry sizes (such as gate length) non-uniformly in the 

chip. Therefore, it can be inferred that the proximity and fogging effects would surely cause 

variations in the performance of the mixed-signal ICs. Some countermeasure schemes have 

to be resorted to if one intends to protect the mixed-signal ICs from such scattering effects 

in the EBL technology.  

To address the challenges due to the fogging and proximity effects in the placement of 

the analog portion within a given mixed-signal circuit, we should analyze these effects 

separately in the context of analog performance. The effective range of the proximity effect 

normally is less than 30 𝜇𝑚 with high intensity [7]. In the mixed-signal circuits, the analog 

portion is often separated from the digital part to avoid signal/noise interference. Therefore, 

for the sake of simplicity, we can assume that the digital part would cause insignificant 

proximity effect on analog portion within a mixed-signal IC. That is to say, the proximity 

effect is considered as a local effect within the analog domain itself. So, in this work we 

will only consider the proximity effect of the modules from the analog portion in our 

mixed-signal placement method. 

However, the situation of the fogging effect is different. Although the intensity of the 

fogging effect is much less than that of the proximity effect, the fogging effect will become 

noticeable when the total e-beam dose exposed to the wafer is considerable. As a matter of 

fact, this is true in the industrial EBL manufacturing process, where the mixed-signal ICs 
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are fabricated together on the wafer. Due to this very reason, all of the previous studies on 

the fogging effect were focused on digital circuits. Similarly, when we consider an analog 

circuit as part of a mixed-signal IC, there are a huge number of fogging effect sources from 

both digital and analog blocks, which make this effect non-negligible [50]. Moreover, the 

fogging effect is a long range effect that can go up to one millimeter. Thus, we need to take 

into account the fogging effect originated from the digital blocks (e.g., standard cells) onto 

the modules in the analog portion of a mixed-signal IC. To examine and demonstrate the 

statements above, one experiment was done in [50], which applied EBL in a specimen 

chamber with a scanning electron microscope (JSM-35CF) and utilized a Faraday cup to 

measure the current induced by electron beams. Based on the experimental results, the 

exposure intensity distribution caused by the proximity and fogging effects could be 

calculated by using the equation below: 

𝐸𝐼𝐷(𝑟) =
1.2 × 10−2. 𝑟−2.43  ×  10−31. 𝑟−7

1.2 × 10−2. 𝑟−2.43  +  10−31. 𝑟−7
+ 4 × 1013. 𝑒𝑥𝑝 [− (

𝑟

2.3 × 10−6
)

2

] 

+ 
4×106.𝑟−0.25  × 1.7× 10−1.𝑟−4

4×106.𝑟−0.25 + 1.7× 10−1.𝑟−4  , 

(8) 

where 𝑟 is the distance from the electron primary beam exposure. Based on Eq. (8), for one 

electron beam emission the fogging effect has considerably low intensity compared to the 

proximity effect, which suggests that we might ignore it. However, another experiment was 

done to measure the fogging effect on a 100 𝜇𝑚2 area placed in the center of 100 𝑚𝑚2 

area, which is shown in Fig. 15. The entire space was irradiated by 100 𝜇𝐶 𝑐𝑚2⁄  dose 

electron beams except for the area in the center where we want to evaluate the fogging 

effect. The experimental results showed that the absorbed energy induced by the fogging 
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effect from the large area, which was considerable compared to the amount induced by the 

proximity effect, might have huge contribution to the CD error. Therefore, we draw a 

conclusion that we have to consider both the fogging effect and the proximity effect in our 

placement method to ensure the performance integrity of the mixed-signal circuits 

fabricated in the EBL technology. 

 

Fig.  15. The schematic of experiment in [50]. 

3.5. Our Variation Modelling of the Fogging and 

Proximity Effects  

One of the major concerns in the fogging and proximity effects studies is the critical 

dimension (CD) error caused by undesired exposure of scattered, back-scattered, and re-

scattered electrons. Moreover, analog circuits always contain sensitive devices, such as 
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symmetric transistors in differential pairs or matched current mirrors [51], which we want 

to protect from any process variations and then in turn characteristic differences. Therefore, 

in this work we aim to minimize the critical dimension variations between sensitive 

transistors induced by the fogging and proximity effects.  

The pattern density map 𝐼𝑑(𝑥, 𝑦) is convolved with the PSF of the fogging effect or 

proximity effect in order to evaluate the fogging effect or proximity effect over a layout, 

respectively. Thus, the fogging effect map 𝐼𝑓(𝑥, 𝑦) and proximity effect map 𝐼𝑝(𝑥, 𝑦) are 

computed with accurate approximation as follows: 

 𝐼𝑓(𝑥, 𝑦) = 𝐼𝑑(𝑥, 𝑦)⨂𝑓𝑓𝑜𝑔(𝑥, 𝑦) , (9) 

 𝐼𝑝(𝑥, 𝑦) = 𝐼𝑑(𝑥, 𝑦)⨂𝑓𝑝𝑟𝑜(𝑥, 𝑦) , (10) 

where ffog and fpro are PSF of fogging and proximity effects from Eq. (3) and (6), 

respectively. This computation is very time-consuming and takes large memory due to the 

convolution operation. To solve this problem, previous works used fast Gauss transform to 

estimate fogging effect over a layout with a highly accurate approximation [23] [24]. Based 

on this technique, the fogging effect can be calculated for every target point on the layout 

by summing up Gaussian distributions centered at the sources of the fogging effect, 

 
𝐺𝑡𝑖

𝑆 (𝑠) = ∑ 𝑞𝑗𝑒−
|𝑡𝑖−𝑠𝑗|

2

𝛿
𝑁𝑠
𝑗=1 , 

(11) 

where 𝛿  is a positive constant, and 𝑡𝑖  is a target point from the set of targets,  𝑇 =

{𝑡1,  𝑡2, … , 𝑡𝑁𝑡
}  on the layout where we want to calculate the fogging effect. In addition,  𝑠𝑖 

is a source of the fogging effect from the set of 𝑆 = {𝑠1,  𝑠2, … , 𝑠𝑁𝑠
}; 𝑞𝑗 is the weight of the 

fogging effect source, which is the pattern density of the source. Thus, a larger pattern area 
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would lead to a larger weight of the source. In addition, |𝑡𝑖 − 𝑠𝑗| is the distance between 

the target and source points. In the same way, the forward and backward proximity effects 

can be calculated by [25] 

 𝐺𝑡𝑖

𝐾(𝑘) = ∑ 𝑚𝑙𝑒−
|𝑡𝑖−𝑘𝑙|

2

𝛿
𝑁𝑘
𝑙=1 , (12) 

 
𝐺𝑡𝑖

𝐶(𝑐) = ∑ 𝑧𝑢𝑒−
|𝑡𝑖−𝑐𝑢|

2

𝛿
𝑁𝑐
𝑢=1 , 

(13) 

where 𝑘𝑙 and 𝑐𝑢 are the sources of forward and backward proximity effects from the set of 

𝐾 = {𝑘1,  𝑘2, … , 𝑘𝑁𝑘
}  and 𝐶 = {𝑐1,  𝑐2, … , 𝑐𝑁𝑐

} , respectively. In addition, 𝑚𝑙  and 𝑧𝑢  are 

the weights of the forward and backward proximity effects, respectively. Accordingly, as 

Eqs. (11), (12) and (13) indicate, the fogging and proximity effects on a target point 

depends on two factors: 1) the distance from other modules, and 2) the pattern density 

among them. 

Assume in an analog circuit we have a set of transistor pairs, 𝑃 = {𝑝1,  𝑝2, … , 𝑝𝑁}, with 

different sensitivities and that we want to minimize the variations of the fogging and 

proximity effects between two transistors in each pair. Therefore, this mathematical 

minimization formulation can contribute to less CD variation for each device pair, leading 

to less device characteristic deviation and in turn better circuit performance. The variation 

function of the fogging effect for each device pair can be expressed as: 

 𝐹𝑝𝑖
= | ∑ 𝑞𝑗𝑒− 

|𝑡𝑝𝑖1−𝑠𝑗|
2

𝛿

𝑁𝑠

𝑗=1

− ∑ 𝑞𝑗𝑒− 
|𝑡𝑝𝑖2−𝑠𝑗|

2

𝛿  

𝑁𝑠

𝑗=1

|, 

 

 

(14) 
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where {𝑠𝑖} in our placement methodology is all the devices of both analog and digital 

portions in mixed-signal circuits that cause the fogging effect on the given sensitive device. 

Moreover, 𝑝𝑖1 and 𝑝𝑖2 are two transistors in the sensitive pair 𝑖. Similarly, the variation 

functions of the forward and backward proximity effects can be calculated by using the 

following equations: 

 𝐹𝑃𝑝𝑖
= | ∑ 𝑚𝑙𝑒

− 
|𝑡𝑝𝑖1−𝑘𝑙|

𝛿

𝑁𝑘

𝑙=1

− ∑ 𝑚𝑙𝑒
− 

|𝑡𝑝𝑖2−𝑘𝑙|

𝛿  

𝑁𝑘

𝑙=1

|, 

 

 

(15) 

 

𝐵𝑃𝑝𝑖
= | ∑ 𝑧𝑢𝑒− 

|𝑡𝑝𝑖1−𝑐𝑢|

𝛿

𝑁𝑐

𝑢=1

− ∑ 𝑧𝑢𝑒− 
|𝑡𝑝𝑖2−𝑐𝑢|

𝛿  

𝑁𝑐

𝑢=1

|, 

 

 

(16) 

where {𝑘𝑙} and {𝑐𝑢} include only the modules in the analog portion of the given mixed-

signal circuits, which induce the forward and backward proximity effects on the sensitive 

module 𝑝𝑖1, respectively. 

Fig. 16 shows a pair of transistor modules (printed as blue rectangles) as two target 

points along with six other modules (displayed as red triangles) as fogging and proximity 

effects sources. To determine the variations of the fogging and proximity effects between 

these two target modules, we sum up the fogging and proximity effects induced by each of 

the seven other modules. The variation of the fogging and proximity effects is the 

difference between those two sum-ups. Therefore, the matched modules (e.g., symmetric 

ones) need to be placed as close as possible if we want to minimize the variation. However, 

in a circuit with many sensitive device pairs or matched module tuples, it is not always 
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possible to equivalently keep them close to each other to a great extent. So a better priority, 

which is the key to this very problem, should definitely go to the more sensitive modules. 

Therefore, our placement algorithm must be able to deal with this priority based on the 

sensitivity of modules in the analog circuits. As Eqs. (11), (12) and (13) show, two 

important factors define the fogging and proximity effects in each target point: the distance 

of the target point with other sources and the pattern density of the other sources, in other 

words, module locality. There are two ways to minimize the variations of the fogging and 

proximity effects between two modules in a sensitive pair: the first one is to place these 

modules in a shorter distance and as close as possible, while the second one is to locate 

them in a similar environment for better locality. 

 

Fig.  16. Fogging and proximity effects induced on two target point (two modules in a 

sensitive pair) with six other modules as the sources of fogging effect. 
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3.6. Summary 

In this chapter, the energy distribution functions for the fogging and proximity effects 

were reviewed and studied in the context of placement design for mixed-signal ICs. Then, 

we modeled those functions as a mathematical form called point spread function. Moreover, 

the fogging and proximity effects were discussed as a major concern in mixed-signal ICs 

fabricated in the EBL technology due to process variation. Finally, we proposed our 

modeling scheme for the variations of the fogging and proximity effects in the placement 

handling for mixed-signal ICs. 
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Chapter 4     

B*-tree Based Placement with Reinforcement 

Learning 

 

 

4.1. Introduction 

As artificial intelligence (AI) is becoming more popular in various industrial 

applications, new AI-based placement methods have been introduced into electronic design 

automation (EDA). Such placers in the integrated circuit (IC) layout design are more 

effective and much faster than the traditional methods, and this advantage becomes more 

significant in complex and time-consuming placements. The sophisticated placement 

schemes need to consider different constraints, which may take long time and large 

memory size in computation [52]. Such new constraints include the fogging and proximity 

effects, which have been deemed as one of the designers’ major concerns in the EBL 

technology, which is among the most promising next-generation lithography technologies 

good for feature sizes below 22nm [6]. 

Although a few previous works studied the fogging and proximity effects in the digital 

circuits, to the best of our knowledge, none of the existing research in the literature has 

considered the fogging and proximity effects in the design of mixed-signal or analog ICs. 
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In this study, we mainly aim to identify and evaluate the fogging and proximity effects on 

the analog portion of a mixed-signal circuit. To minimize the variations of such effects, we 

have developed a reinforcement learning (RL) placement method based on topological 

representation. Using an RL-based placer as an artificial intelligence (AI) method can help 

us eliminate the need for any special expertise from the designers. In addition, using a 

topological representation scheme (i.e., B*-tree in our implementation [53]) leads to 

significantly less states in the RL environment, which we believe is the major reason why 

our work is more effective and much faster than the previous works. In our reinforcement 

learning placer, the RL environment includes a B*-tree representing the module positions 

in a layout, while the RL agent is a deep neural network (DNN) with reward calculated by 

our specialized cost function. 

4.2. Topological-Based Placement Method for Control 

of the Fogging and Proximity Effects  

Given a set of modules with defined dimensions, the task of placement is to properly 

locate these modules in the chip area without any overlap (if not specified) and strive to 

reach the defined objectives while meeting any defined constraints. The common 

placement objectives include minimization of the occupied area and minimization of the 

interconnect wirelength, while the normal constraints include geometric constraints and 

electrical performance constraints. This process, which is also called rectangular packing 

problem, plays a critical role in IC physical design [54].  
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There are two kinds of representations indicating the status of layout placement: 1) 

absolute-coordinates-based representation and 2) topological representation. The absolute-

coordinates-based approach has been popular and widely used in different studies. 

However, this method, which applies the exact coordinates of each module in the 

placement operation, may result in a large configuration space. This is because the total 

number of the possible module coordinates is close to infinity if no resolution of the 

floating-point numbers for presenting coordinates is applied. Moreover, for some 

constraints (e.g., symmetry constraints), it is not easy to design efficient and valid 

operations if using the absolute coordinate representation in the placement methods [55]. 

In addition, to avoid overlaps among the modules in the placement methods, an extra step 

called detailed placement has to be resorted to in the absolute-coordinates-based placement 

methods, which would significantly increase the complexity and execution time of the 

placement process. Therefore, it is challenging to utilize this type of representation in the 

layout placement operations to deal with the constraint control of the fogging effect and 

proximity effect among others, since it is too time-consuming to deliver effective and 

efficient solutions. 

When it comes to the topological representation, it is a relative placement that 

indicates the topological relationship among the modules. Over the years, this 

representation has become more popular than the absolute-coordinates-based 

representation. Interestingly, most of the existing placement methods that use the 

topological representation selected to utilize simulated annealing as their optimization 

engine. In general, using the topological representation can improve the placement quality 
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and runtime efficiency, since it results in smaller configuration spaces and then in turn 

better search opportunities [34]. Moreover, recently different topological representation 

methods have been applied to tackle geometric constraints, such as symmetry [56] and 

proximity [35]. One of the most adopted topological representations is B*-tree, which is 

based on an ordered binary tree used for non-slicing floorplans [29]. 

4.2.1. B*-tree 

In our placement method, B*-tree is used as a representation method indicating the 

states in our RL environment. B*-tree is one of the fast, efficient, and simple topological 

representation methods. So we first review the B*-tree data structure for placement 

representation below. Given a set of modules 𝐵 = {𝑏1,  𝑏2, … , 𝑏𝑁𝑏
} , the B*-tree is an 

ordered binary tree representation of the compacted placement of 𝑁𝑏  modules. In 

compacted placement, no module is able to move further towards the bottom or the left 

side. To build a B*-tree, starting from the bottom left corner module, which is the root of 

the B*-tree, the right child of the parent node (𝑛𝑖) (representing module 𝑏𝑖) corresponds to 

the first module on top of that with the same horizontal coordinate. In addition, the left 

child of 𝑛𝑖 represents the lowest adjacent module on the right side of module 𝑏𝑖. 

To calculate the reward from the defined cost function in the RL environment, we need 

to calculate the bottom left coordinates (𝑥𝑖, 𝑦𝑖) of each module 𝑏𝑖 represented by node 𝑛𝑖. 

Given a B*-tree corresponding to a layout placement, the coordinates of modules can be 

calculated through a packing operation. Starting from the left subtree of the root node, with 

(0,0) bottom-left coordinates, for the right child 𝑛𝑗  of 𝑛𝑖, 𝑥𝑗 = 𝑥𝑖; for the left child 𝑛𝑘 of 



55 

 

𝑛𝑖, 𝑥𝑘 = 𝑥𝑖 + 𝑤𝑖, where 𝑤𝑖 is the width of the module 𝑏𝑖. In addition, the y coordinates of 

modules can be calculated by using contour structure [28]. After the left subtree of the root, 

we can go through the right subtree to calculate the coordinates of the remaining modules. 

Fig. 17 illustrates the placement of a layout and its corresponding B*-tree representation. 

 

Fig.  17. (a)The placement of a layout and (b) its corresponding B*-tree. 

4.2.2. Symmetry-Aware Placement 

In analog circuit design, there are typically some modules required to be placed 

symmetrically. Considering symmetry constraints in analog placement can noticeably 

reduce sensitivity to process variation, thermal gradient, and other mismatch effects (e.g., 

parasitics) [57]. Since topological representations are flexible and efficient to handle 

geometrical constraints, recently they have been widely applied to handle the placement of 

symmetric modules. In the previous studies, different symmetry-aware placements have 

been proposed, such as sequence pair (SP) [58] and transitive closure graph (TCG) [59]. In 

[53], a new placement technique is used to address the symmetry constraints. It uses B*-
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tree as the representation medium and simulated annealing as the search engine for the 

placement optimization.  

In symmetry-aware placement, one of the major challenges is to put symmetric 

devices as close as possible to each other. Variations of the fogging and proximity effects 

and electrical parameters of symmetric devices depend on the distance between two 

devices in the symmetry pair. Equations (14), (15) and (16) indicate such dependency for 

the fogging and proximity effects. Moreover, the error of electrical parameter 𝑃  for a 

transistor caused by mismatch can be calculated by the following equation [60]: 

 𝜎2(∆𝑃) =
𝐴𝑃

2

𝑊𝐿
+ 𝑆𝑃

2𝐷𝑥
2  , (17) 

where 𝐴𝑃 and 𝑆𝑃 are the constant factors, 𝑊 and 𝐿 are width and length of the transistor, 

respectively. As shown in the equation above, the mismatch error (𝜎) is directly dependent 

on 𝐷𝑥 , which is the distance between two modules. Therefore, to have a more reliable 

circuit with minimized mismatch, the symmetric modules should be kept close to each 

other. Thus, we can put these symmetric devices in the closest proximity as a group, which 

is called symmetric island. After creating the symmetric islands, we consider each of them 

as a module in the placement run. In such a process, the B*-tree data structure 

corresponding to the layout placement is constructed and manipulated, and the 

optimization algorithm is used to minimize the cost function, which is defined to evaluate 

the quality of placements. 
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4.2.3. Placement Algorithm 

Given a set of modules with specified constraints as inputs, the goal of our placement 

process is to identify the optimal position of modules that can minimize the area, wirelength, 

variations of the fogging and proximity effects while still handling the other analog 

constraints (e.g., symmetry constraints). Fig. 18 depicts the flowchart of the B*-tree-based 

placement scheme. In the first step called initialization phase, a B*-tree data structure is 

constructed based on the input file including the circuit netlist and analog constraints. Then, 

the optimization engine, which is simulated annealing (SA) in our implementation, begins 

to search for the minimum of the cost function. In more detail, it receives the initialized 

B*-tree, and does some perturbation to derive another B*-tree. Next, the new positions of 

the modules are computed by a packing operation from the new B*-tree data structure, 

which realizes a conversion from B*-tree to layout placement. Now, we can use module 

coordinates to calculate the cost function of the placement. In the next stage, if the 

predefined termination conditions are not met, another iteration begins to build a new 

placement after perturbing the current B*-tree by SA. This process will be repetitively done 

until the termination conditions are satisfied so that the placement optimization is 

completed. Therefore, at the end of the placement process, we can derive the optimal 

positions of all the modules, which can lead to minimum total area, wirelength, variations 

of the fogging and proximity effects while still meeting the required analog constraints 

(e.g., symmetry constraints). 
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Fig.  18. Flowchart of B*-tree-based placement algorithm. 

Simulated annealing is one of the most effective methods for finding the global 

optimum, which is inspired by the common cooling process of a metal. In SA, a random 

perturbation is used to reach a new configuration, then validity of the new placement is 

evaluated based on cost variation ∆𝐶. If the cost is reduced (∆𝐶 < 0), it means the new 

placement is acceptable and can be considered as the initial placement for the next iteration. 

However, when the cost is increased (∆𝐶 > 0), the new configuration still may be accepted. 

Unlike other optimization methods, SA accepts either uphill and downhill movements, 
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which can help avoid getting stuck in local minimums. The uphill movement is accepted 

by a probability, which is calculated based on current temperature 𝑇  and ∆𝐶 . The 

probability of the uphill movement will be calculated by 𝑃 = 𝑒−
∆𝐶

𝑇 , and then compared 

with a random number 𝑅, which is between 0 and 1. If the 𝑅 < 𝑃, the uphill movement is 

accepted. This process will be repeated for perturbations of each 𝑀 number of movements 

in temperature 𝑇. The temperature is then decreased by a user-defined rate 𝛼 until the cost 

variation is less than a small number specified by the users, which is the termination point 

of minimization. 

Perturbation is the process of generating a new structure of the B*-tree. In this 

procedure, three operations can be taken: 

• Operation 1: Rotate a module 

• Operation 2: Move a node to another position in the B*-tree 

• Operation 3: Swap two nodes 

To take these operations, two main actions are defined, including insertion and deletion. 

For example, Operation 2 requires one insertion and one deletion action while the 

Operation 3 needs two of each action. Moreover, in Operation 1, just the 𝑋  and 𝑌 

coordinates of the corresponding module will be exchanged. 

To evaluate the performance of the SA-based placement algorithm, a cost function is 

defined. The cost function consists of area, wirelength, variations of the fogging and 

proximity effects, as shown in the following equation: 
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 𝐶𝑜𝑠𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝛼𝐴 + 𝛽𝑊 + ∑ 𝛾𝑖

𝑁

𝑖=1

𝐹𝑝𝑖
+  ∑ 𝛿𝑖

𝑁

𝑖=1

(𝐵𝑃𝑝𝑖
+ 𝐹𝑃𝑝𝑖

)  , 

 

 

(18) 

where 𝛼, 𝛽, 𝛾 and 𝛿 are the user-defined weights for area, wirelength, variations of the 

fogging and proximity effects, respectively. 𝐹𝑝𝑖
, 𝐵𝑃𝑝𝑖

 and 𝐹𝑃𝑝𝑖
 are the variations of the 

fogging, backward proximity and forward proximity effects between two symmetric 

transistors in pair 𝑝𝑖. 

4.3. Reinforcement Learning  

Reinforcement learning (RL) is one of the most popular machine learning approaches, 

which trains a fully autonomous agent to identify an optimal policy to seek for a solution 

for decision-making problems in a variety of applications, such as EDA [61]. It is 

comprised of two basic components, RL agent and RL environment. The RL agent learns 

to decide intelligently and automatically through a learning process from experiences and 

action results given by the RL environment.  

4.3.1. Fundamentals of RL 

For better understanding of RL, the primary definitions are explained below: 

• Agent: An RL agent is responsible for taking the best actions. In other words, 

the agent is the algorithm applied in RL for decision making. In our study, the 

RL agent is the algorithm used to do the layout placement, which meets the 

desired specifications, such as minimum area, minimum wirelength, and 

minimum variations of the fogging and proximity effects.  
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• Action (𝐴): 𝐴 is the set of possible movements that the agent can take. It is 

considered as the way that the RL agent interacts with the RL environment. In 

the layout placement approach, the action is one possible movement of one 

electronic device (e.g., transistor) in the given layout. 

• State: The state shows the current representation and situation of the RL 

environment, which is the execution result of the action taken by the RL agent. 

In addition, it can be defined as the current position of the RL agent in our 

problem environment. For example, one state in our study represents the 

current layout placement, which reflects the module status after execution of 

the modules’ movements. 

• Reward: To train the RL agent, it is required to let it know if the action taken 

is a good decision or not as a feedback. The reward is the value that shows the 

result of the action taken by the RL agent. It might be functioning as a 

punishment or encouragement. In the domain of our layout placement problem, 

the reward is calculated based on the cost function as defined in Eq. (18).  

• Environment: The RL environment is the world and in particular the ambient 

surrounding which the RL agent interacts with to take actions. It means that 

the RL environment receives an action from the RL agent to be executed, then 

gives the corresponding reward of that action as well as the newly formed state 

back to the RL agent. In our layout placement application, the RL environment 

is the chip layout setting that represents the placement status of all the modules 

inside. 
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Fig. 19 depicts the flowchart of the RL method. As illustrated, action 𝐴𝑡 taken by the 

RL agent at time step 𝑡  is given to the RL environment. Next, the RL environment 

computes the reward of that action and sends reward 𝑟𝑡+1 and new sate 𝑠𝑡+1 to the RL 

agent. This process is repeated over and over again until the RL agent is well trained by 

the experiences received from the RL environment and is able to intelligently choose the 

best actions. 

 

Fig.  19. Flowchart of the RL method 

4.3.2. Deep Q-Network 

Machine learning (ML) techniques are used in the variety of applications to solve the 

real-life problems. Conventional ML methods were not able to take and process the raw 

form of natural data. That is to say, to train an agent or learn a subsystem for solving a 

specific problem, the designers had to put a lot of effort to transfer the raw data (such as an 

image, an audio file, or a text) to a recognizable form of features, which the agent or the 

learning system can accept and realize as a valid input [62]. Therefore, new innovative 

machine learning methods called representation learning were introduced, which enables 

the learning system to receive raw input data and recognize them as a suitable form for the 

learning process.  
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One of the most popular representation learning methods is deep neural network 

(DNN) or generally called deep learning, which uses several hidden layers for high level 

data abstraction. DNN consists of an input layer, an output layer, and multiple hidden layers 

including units called nodes, which can be connected. As Fig. 20 shows, the nodes of a 

layer can be connected to the nodes in the adjacent layers, and each connection has a weight. 

The summation of weighted inputs is calculated at each node and then an activation 

function is applied to transform the weighted summation to create the output of that node. 

The output is fed to the connected nodes in the next adjacent layer as an input. For example, 

in Fig. 20, the output of node 𝐴1 is calculated by applying activation function 𝜎 to the 

weighted summation of 𝑋1, 𝑋2 and 𝑋3, which are connected to 𝐴1 as input. So the output 

of 𝐴1 is 𝜎 (∑ 𝑊𝑖
(𝐴1)

𝑋𝑖
3
𝑖=1 ), where the 𝑊𝑖

(𝐴1)
 is the weight of connection between 𝑋𝑖 and 

𝐴1.The final output of the last layer is the result or called solution of the given problem, 

which includes 𝑌1 and 𝑌2 for the one as illustrated in Fig. 20. However, this result is not the 

correct answer yet, because the neural network is required to be trained in order to provide 

better and more accurate solutions [63]. For the learning process, the loss function, which 

is the difference between the output of neural network and the desired result, needs to be 

calculated. The network tries to update the weights based on the loss function in order to 

achieve a model, which is able to predict the solutions with high accuracy.  

Since DNNs significantly improved their performance after the researchers’ effort in 

the past years, they have been utilized in a variety of academic and industrial applications. 

Moreover, DNNs also made contributions to reinforcement learning to solve the problems 
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with big input data faster and more accurately. Thus, this leads to a new area in machine 

learning called deep reinforcement learning (DRL). One of the most popular and successful 

DRL approaches is deep Q-network (DQN), which was introduced in 2015 [64]. Moreover, 

many studies and research works have used DNN through the RL and the integration of 

these two methods goes back to 1996 [65] [66].  

 

Fig.  20. Schematic of a DNN 

The main purpose in reinforcement learning is to train an agent that takes the best 

actions to maximize the discounted accumulative reward, which is also called return (𝑅𝑡) 

as calculated below: 

 𝑅𝑡 = ∑ 𝛾𝑡 × 𝑟𝑡

∞

𝑡=0

  , 

 

 

(19) 
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where 𝛾 and 𝑟𝑡 are the discount factor and reward at time step 𝑡, respectively. The discount 

factor, which is normally between 0 and 1, is applied to define how much an agent should 

consider the uncertain rewards in distant future rather than immediate rewards. The ideal 

form in RL is to have an optimal action-value function (called Q function) that takes the 

best action in the present state resulting in the maximization of the return. By having the 

optimal Q function (𝑄∗), we can create a policy (𝜋) that intelligently chooses the best 

actions in each state, which is defined as below: 

 𝜋∗(𝑠) = argmax
𝑎

𝑄∗(𝑠, 𝑎)  , (20) 

where 𝑠 stands for current state and a refers to current action taken by the RL agent. 

However, we do not have access to the optimal Q function, whose attainment is not 

possible in reinforcement learning. But in [64], the DQN was introduced to apply deep 

neural network as a method to approximate the optimal action-value function for current 

state 𝑠 and action 𝑎, which is defined as follows: 

 𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥 𝐸[𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + ⋯ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] , (21) 

where 𝛾 is the discount factor, and 𝑟𝑡+𝑛 is the future reward at time step 𝑛 . Therefore, the 

DNN is considered as an intelligent agent that predicts the Q-values. However, in the 

beginning the neural network estimation is not good and it is required to be trained. Thus, 

an error function is introduced to DNN to allow the network to update the weights 

repeatedly until it can approximate the Q-values with high accuracy. The error function is 
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the difference between the optimal Q-value and the predicted one, which is the output of 

DNN. 

4.4. Our Reinforcement-Learning-Based Placement 

Methodology 

In this work, we develop a reinforcement learning placement method based on a 

topological representation (i.e., B*-tree in our implementation). In our reinforcement 

learning placer, the RL environment can accept a B*-tree data structure representing the 

module positions in a layout, while the RL agent is a deep neural network (DNN) with 

reward calculated by our specified cost function. Given a netlist, we locate the modules in 

a way that can lead to minimization of area, wirelength, and variation of the fogging and 

proximity effects among sensitive analog modules in the mixed-signal ICs.  

As Fig. 21 shows, in the operating process of our placement method, there is an 

initialization as the first step where an initial B*-tree representation of modules is formed 

based on the netlist of the circuit. Then, the nodes in the tree structure representing modules 

in the layout are moved in a controlled and organized way to minimize the cost function, 

resulting in a layout with the desired performance. In most of the previous placement 

algorithms, such as conjugate gradient or simulated annealing based methods, a greedy or 

random movement is used. In contrast, in this work an RL agent is trained to intelligently 

choose the best action for each node in B*-tree based on the prior generated states and their 

cost feedback. In the next step, the image of the layout is fed to the RL agent, which is a 
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DNN. Such an RL agent is trained to map the image of layout to proper actions that lead 

to the best node movement in the B*-tree structure. 

The neural network generates Q-values for each possible action of modules. The RL 

environment takes the action with the highest Q-value and executes it, resulting in a new 

RL state. Now, the cost function of the new RL state is calculated and fed to the RL agent. 

The biases and weights in the layers of DNN are updated based on the cost function, which 

is the reward for our RL agent. So the new Q-values are generated on the network's output 

based on the reward and new RL state on the input of DNN. This process continues to train 

the RL agent to choose the best action efficiently and intelligently for each module in the 

B*-tree data structure. 

 

Fig.  21. RL-based placement with B*-tree 

4.4.1. RL Agent 

In reinforcement learning, the purpose for the RL agent is to learn an optimal policy 

that maximizes the accumulative immediate rewards. The RL agent takes the best actions 
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based on the benefits and punishments received from previous actions. The RL agent in 

our work is a DNN with three hidden layers. The first two are conventional layers with 

Max pooling for downsampling, reducing the size of inputs by removing unnecessary data. 

On the output of the last layer, there are Q-values for each possible action of each module 

in the circuit. We define four actions for each module: swap, rotate, move, and no action. 

Therefore, the last layer is a dense layer with a size of four times the total number of 

modules. Thus, given a state to the neural network as an input, the RL agent tries to choose 

the optimal Q-value for each action. The optimal Q-value is calculated based on the 

following equation: 

 𝑄(𝑠𝑡, 𝑎𝑡) = 𝑟𝑡 + 𝛾 × 𝑚𝑎𝑥
∀𝑎∈𝐴𝑖

𝑄(𝑠𝑡+1 , 𝑎)  , (22) 

where 𝑟𝑡  is the instant reward of the previous action, 𝛾  is the discount factor. 

max
∀𝑎∈𝐴𝑖

𝑄(𝑠𝑡+1 , 𝑎) is the maximum expected future reward, given a new state and all possible 

actions for each module (𝐴𝑖) at the new state. The weights of the network are initially set 

by random numbers. To train our DNN, we use mean squared error. So in each iteration, 

the loss function is calculated, and the weights are updated to minimize that. The loss 

function of our DNN is: 

 𝐿𝑜𝑠𝑠 =
1

𝑛
∑(𝑄𝑖 − �́�𝑖)

2

𝑛

𝑖=1

 , (23) 

where 𝑛 is the number of output nodes, and 𝑄 and �́� are the optimal and predicted Q values, 

respectively. 
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4.4.2. RL Environment 

In the reinforcement learning method, the RL environment is responsible for taking 

action from the RL agent, executing it, calculating the reward, and then feeding the reward 

and new state back to the RL agent. This interaction between the RL agent and the RL 

environment leads to successful learning. In our placement method, the states are possible 

configurations of the B*-tree data structure. The RL environment executes the action by 

changing position of any nodes in the B*-tree structure, and then a new state is derived. 

For calculating the reward, the RL environment needs to do the module packing operation 

to have the exact coordinates of each module. Then the reward is generated based on the 

cost function of the new state and new placement. The cost function in our work is defined 

as: 

 𝜑 = 𝛼𝐴 + 𝛽𝑊 + ∑ 𝜆𝑖

𝑁

𝑖=1

𝐹𝑝𝑖
+  ∑ 𝜃𝑖

𝑁

𝑖=1

(𝐵𝑃𝑝𝑖
+ 𝐹𝑃𝑝𝑖

)  , (24) 

where 𝛼 and 𝛽 are the user-specified factors, 𝐴 is the chip area, and 𝑊 is the wirelength. 

For considering the fogging effect in our cost function, we use 𝐹𝑝𝑖
 from Eq. (14), i.e., the 

fogging effect variation between two modules in the sensitive device pair 𝑖. The weight of 

the fogging effect variation in pair 𝑖 is specified by 𝜆𝑖, which is related to the sensitivity 

level of the pair. The proximity effect variation is considered by two components 𝐵𝑃𝑝𝑖
 and 

𝐹𝑃𝑝𝑖
 from Eqs. (15) and (16). 𝜃𝑖 specifies the weight of proximity effect variation for pair 

𝑖. We take into account the sum of the fogging and proximity effects variations of all 𝑁 

sensitive pairs. In addition to those, the regular analog constraints (e.g., symmetry 
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constraints and boundary constraints) are similarly considered as those already published 

in the literature [67]. 

To generate the reward of a taken action and give it back to the RL agent for the 

training purpose, we define the rewards or punishments based on the cost function as 

follows: 

 𝑟𝑡 = {

+300                                   𝜑 <  𝐶𝑡ℎ         
+5                          𝐶𝑡ℎ < 𝜑 < 1.3 × 𝐶𝑡ℎ 
+2              1.3 × 𝐶𝑡ℎ < 𝜑 < 1.5 × 𝐶𝑡ℎ 
−1                                    𝑒𝑙𝑠𝑒                      

 , (25) 

where 𝐶𝑡ℎ is the cost threshold value defined by the users. 

4.5. Summary 

This chapter discussed our reinforcement-learning-based placement methodology that 

uses the B*-tree data structure as one topological representation. First of all, the 

fundamentals and basics of reinforcement learning, deep Q-learning, B*tree, and SA were 

explained. Then, we presented our placement approach that uses deep reinforcement 

learning as the optimization mechanism. In this placer, we utilized B*-tree data structure 

as the topological representation in the RL environment and applied the deep Q-network 

as the RL agent. Beyond the common objectives such as the chip area and wirelength, the 

fogging and proximity effects were taken into account in the cost function, which could be 

in turn reflected in the reward of the RL training process. Eventually they enabled the RL 

agent to intelligently choose the best actions in a significantly shorter time. 
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Chapter 5     

Experimental Results 

 

5.1. Introduction 

We implemented our scattering-effect-aware placement algorithm in Python by using 

Tensorflow [68] and Adam optimizer [69]. We evaluated our scattering-effect-aware 

placement method on three operational amplifier circuits within mixed-signal ICs in 18nm 

FinFet technology. As mentioned before, we are considering the placement for the analog 

part of a mixed-signal circuit. To take into account the fogging and proximity effect sources 

from the digital part modules, we assume a 1.5mm×1.5mm square that can be divided into 

the same standard cells with defined pattern density. In this section, we will make a 

comparison among four placement methods for minimization of the fogging effect and 

proximity effect as well as achieving the other optimization objectives with various analog 

constraints satisfied. The first method is the analytical RL placement method [39], which 

uses absolute coordinate representation and deep Q-learning. The second one is a simulated 

annealing (SA) based analog placement method using B*-tree as a topological floorplan 

representation [53]. The third placement method is based on advantage actor critic (A2C), 
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which is a new reinforcement learning approach. And the last one is our proposed method 

using RL as the optimization engine with the B*-tree topological representation. 

5.2. Evaluation of the Fogging and Proximity Effects  

        As mentioned in Chapter 3, two of the main concerns for the designers in the EBL 

technologies are the fogging and proximity effects. However, the fogging and proximity 

effects have not been considered in the analog designs in the previous studies. So, in this 

part we first do the experiment to evaluate the fogging and proximity effects in an analog 

circuit, which is part of a mixed-signal IC. We will analyze the fogging and proximity 

effect on the comparator part of a successive-approximation-register analog-to-digital 

converters (SAR-ADC). Based on [16], the gate length change caused by the fogging effect 

is about 10% of the critical dimension (CD) of the used technology process. Fig. 22 shows 

the schematic of the comparator circuit with two inputs on 𝑉1 and 𝑉2, and two outputs 

(OUTN and OUTP). We want to simulate fogging effect by changing the gate length by 

10% in transistor 𝑀1 that is considered as CD error induced by fogging effect. 

        When the voltage of 𝑉2 (or 𝑉1) is more than of 𝑉1 (or 𝑉2), the positive output called 

OUTP turns high (low). Therefore, at the time when the output voltage changes from high 

to low or vice versa, the difference between two input voltages must be zero and any error 

in this voltage difference leads to bit error in binary output of SAR-ADC. Fig. 23 illustrates 

the simulation result considering CD error variation in the symmetric differential pair 

caused by the fogging effect. The gate length change is 1.8 nm in this simulation, which 

occurs in transistor 𝑀1. The voltage error is specified in the figure, which is about 13.2 
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𝑚𝑉. To find out the result of this error on the output of the analog to digital converter, we 

can use the equation below: 

 ∆𝑉 =
𝑉𝐹𝑆𝑅

2𝑛  , (26) 

 

Fig.  22. Schematic of comparator circuit in Virtuoso 

where ∆𝑉 is the smallest voltage change that result in change of digital output of an 𝑛-bit 

ADC, which is also called the least significant bit (LSB) voltage. 𝑉𝐹𝑆𝑅 is the full scale input 

voltage range. Therefore based on Eq. (26), the fogging effect can result in at least two bits 

error on the output of the 10-bit SAR-ADC with 2 𝑉 of input voltage range. So, it can be 

seen that the fogging effect has a significant impact on the performance of a mixed-signal 

IC. In addition, when it comes to proximity effects, it has much higher intensity than the 

OUTPOUTN
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fogging effect while the range of that effect is much shorter. Thus, it can be inferred that 

the proximity effect would also result in a noticeable performance error of analog portion 

within a mixed-signal IC. If considering 10% of CD error induced by the proximity effect, 

the output of the SAR-ADC can also have at least two bits of error as the impact of the 

proximity effect if not being properly controlled.  

 

Fig.  23. The simulation result considering the fogging effect in the comparator circuit. 

The red, green, and blue graphs are OUTP, V2, and V1 voltages, respectively. 

5.3. Sensitivity Analysis 

The fogging and proximity effects cause different gate length errors in different 

symmetric pairs, which may degrade the CD uniformity in the chip. Moreover, the error in 

circuit performance vary for the mismatch of different symmetric pairs. This means one 

symmetric pair has its own sensitivity level, which might be different from that of the other 

Voltage error
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symmetric pair [70]. To demonstrate this point, we did a simulation for a folded-Cascode 

operational amplifier (opamp) to show dependency of circuit performance on gate length 

errors from different transistors. Fig. 24 and Fig. 25 depict the schematic of the circuit and 

simulation results in the Cadence Virtuoso environment, respectively.  

 

Fig.  24. Schematic of the folded-Cascode opamp  

The gains of the circuit are shown in Fig. 25 for different settings, in each of which only 

one transistor has its size changed. The gate length error is considered to be 1𝑛𝑚 that 

happens to just one of the two transistors in the symmetric pair, whose name is marked in 

the figure. Based on the results, the dc gain changes dramatically when there is a mismatch 
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between transistors PM0 and PM2; it may cause up to approximately 45 𝑑𝐵 error for just 

1𝑛𝑚 gate length error in PM0. Therefore, we have to implement our placement algorithm 

to prioritize the variation minimization due to process imperfection for different symmetric 

pairs based on their sensitivity analysis. 

 

Fig.  25. Simulation results showing gain change based on gate length error from 

different transistors 

5.4. Running and Training Time 

In Table 1, the running and training time of the four methods are compared for the two-

stage operational amplifier (opamp) circuit. It shows the average time needed for the 

analytical placement trained model, SA-based placer, A2C and our proposed RL placement 

method to minimize the cost function by using the user-defined threshold cost value. We 

considered 700 as the threshold cost value and used 50 episodes to train the models in our 

reinforcement learning technique. The optimal threshold cost value is achieved through the 
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experiments and simulations. Based on Table 1, the average running time for our proposed 

model in this work is 7.29 seconds, which is about 224 times faster than the analytical RL 

placement method, while the training time is 96 minutes which is approximately 15 times 

faster. The main reason for this improvement is the number of possible states in the RL 

environment that defines the search space. For the placement method in [39], the chip is 

considered as a square with 40 grid lines on each side, dividing the chip into 1,600 sub-

grids. The transistors are able to be only placed on the bottom left corner. Hence, if we 

have eight transistors and 1,600 possible placement positions for each one, there are 

approximately 4.2 × 1025 states in the RL environment. To calculate the possible states in 

our method which is equivalent to the number of structurally different B*-trees in our RL 

environment, we use the following equation: 

 𝑆(𝑛) = 𝐶𝑛 × 𝑛! × 4𝑛 , (27) 

where 𝑛 is the number of nodes in the B*-tree and 𝐶𝑛 is the Catalan number of 𝑛. The 𝐶𝑛 

represents the different configuration of a B*-tree with 𝑛 nodes [71]; in addition, the 𝑛! 

shows the different states generated by all possible allocations of 𝑛 modules to 𝑛 nodes. 

Moreover, the 4𝑛  in the equation above represents the states induced by rotating of 

modules in clockwise directions with 0, 90, 180, or 270 degrees. So based on Eq. (27), 

there are 3.7 × 1012  possible states as the representation of different layouts. The 

comparison between possible states in the two methods shows that the absolute-coordinate-

based placement method in [39] has about 8.8 × 1012 times more possible states. As a 

result, the search space of our model is much smaller than that of the analytical approach,  
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which contributes to faster training and running time. Moreover, the modules in a common  

 layout are preferably located close to each other, which makes a compact placement, if no 

special constraints are applicable. Therefore, a big portion of the possible states in the 

absolute-coordinate-based placement method in [39], which does not bring much benefit 

to the electrical and geometric performance, is not necessary by nature. 

When it comes to compare the efficiency of our proposed approach with the SA-based 

placement method, our placer is 4.3 times faster. In the SA-based placement method, we 

use random perturbations rather than a trained RL agent, which is able to intelligently 

perturb the modules. Based on our experimental results, the SA algorithm calculated the 

cost function for 6.6 × 1013  times during the optimization, where the fogging and 

proximity effects was evaluated in each iteration. However, the maximum states in our 

proposed method is 3.7 × 1012. Therefore, the SA-based method calculated the fogging 

Table 1. Average running time and training time for analytical RL placement, SA, 

A2C, and our work for the two-stage opamp circuit 

 

Technique Average Running Time 

(sec.) 

Training Time (min.) 

Analytical RL Placement 
1633.8 1446 

SA 
24875.6 - 

A2C 
38.57 435 

This work 
7.29 96 
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and proximity effects for the given placement at least 18 times more than our proposed RL 

method, which causes its slower operation and poorer performance. 

To compare the efficiency of the A2C-based placement method and our work, the 

running time and training time in our method are 5.3 and 4.5 times shorter. The A2C 

method applies two deep neural networks called actor and critic to implement the 

reinforcement learning algorithm [72]. So utilizing two neural networks, compared to our 

DQN method that has only one neural work, increases the complexity of the A2C method. 

This complexity gets even worse in the placement process considering the fogging and 

proximity effects that requires intensive computation. 

Table 2 presents the average running and training time of the four placement approaches 

for the folded-Cascode opamp circuit. Based on the results, the running and training time 

of the four placement methods increases significantly, if the size of the circuit gets bigger. 

However, our method shows slightly less growth in training time and rises to 117 min. 

Table 2. Average running time and training time for analytical RL placement, SA, A2C, 

and our work for the folded-Cascode opamp circuit 

Technique Average Running Time 

(sec.) 

Training Time (min.) 

Analytical RL Placement 
2546.3 2721 

SA 
46720 - 

A2C 
961.4 2270 

This work 
34.3 117 
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The training time of A2C, SA, and analytical RL placement takes too long for fully 

symmetric opamp and high gain opamp circuits since they are large circuits. Without any 

configuration to their original algorithms, the training time could take longer than four days. 

Therefore, we changed the configuration settings of those three approaches to reduce the 

training time. Table 3 and 4 summaries the running and training time of the four placement 

approaches for fully symmetric opamp and high gain opamp circuits, respectively. 

 

Table 3. Average running time and training time for analytical RL placement, SA, 

A2C, and our work for the fully symmetric opamp circuit 

 

Technique Average Running Time 

(sec.) 

Training Time (min.) 

Analytical RL Placement 
640.5 215 

SA 
21620 - 

A2C 
584.71 198 

This work 
259.06 545 

Table 4. Average running time and training time for analytical RL placement, SA, 

A2C, and our work for the high gain opamp circuit 

 

Technique Average Running Time 

(sec.) 

Training Time (min.) 

Analytical RL Placement 
961.47 328 

SA 
26590 - 

A2C 
750.37 245 

This work 
310 643 
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5.5. Performance Comparison 

To evaluate our proposed placement method for minimizing variation of the fogging 

and proximity effects, wirelength, and area, we did experiments on the two-stage opamp 

with 8 transistors, folded-Cascode opamp with 14 transistors, and a fully symmetric opamp 

with 22 transistors. Table 2 shows the results of the analytical placement scheme [34], the 

SA-based placement method [46], A2C-based placement method [73], and our proposed 

B*-tree RL placement method for the two-stage opamp. The total area and wirlength 

obtained by the analytical method are 4.5 and 3.9 times more than ours, respectively. 

However, the fogging effect variation minimizations of both methods are roughly the same, 

while the proximity effect variation minimization and DC gain from our method are 

approximately 7 % and 1 dB better than those obtained from the analytical RL method. In 

this experiment, our method is much faster with better area, wirelength, and proximity 

effect handling and a slightly better level of fogging effect minimization. To compute the 

DC gain in the simulation, the pattern distortion towards gate length change is taken into 

account. We consider that the fogging effect or the proximity effect has a linear relationship 

with the gate length change. And in the worst case, the gate length change is assumed to 

be 10% of the critical dimension (CD) by following the work reported in [16]. 

As Table 3 shows, our proposed method has significantly better performance than the 

SA-based placement method with 26 dB, 10%, and 35% better DC gain, fogging and 

proximity effect variations respectively, while our placement method outperforms the SA-
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based placement method in both area and wirelength optimization. Moreover, the A2C-

based placement approach shows weaker performance compared to ours in minimization 

of the fogging and proximity effect variations, which results in 10.7 dB less DC gain. 

Table 5. Comparison of the placement results among analytical RL, SA-based, A2C-

based, and our proposed B*-tree-based RL placement methods for the two-stage opamp 

Technique Analytical 

RL [39] 

SA [53] A2C [73] Our work 

Area (𝑛𝑚2) 
572.2 150.5 581.3 126 

Wirelength 

(𝑛𝑚) 354.5 104.7 364.96 90.11 

Fogging effect 

minimization 

(%) 

88.91 79.22 87.45 89.26 

Proximity effect 

minimization 

(%) 

88.25 60.2 83.01 95.22 

Gain (𝑑𝐵) 
64.43 39.4 54.72 65.49 

 

Table 4 lists the simulation results of the four abovementioned placement approaches 

for a folded-Cascode opamp. Our proposed method shows good performance in 

minimizing the fogging effect, which is 16.7%, 11.2% and 30.55% better than the 

analytical RL, A2C and SA-based methods, respectively. In addition, the proximity effects 

minimization in our method is 84.08% that is much better than the other comparison 

placement approaches. When it comes to performance improvement, our method has 44.16 

dB DC gain, which is 4.96 dB, 5.37 dB and 7.62 dB better than analytical RL, SA and 

A2C-based placement methods, respectively. 



83 

 

Table 6. Comparisons of the placement results among analytical RL, SA-based, A2C-

based and our proposed B*-tree-based RL placement methods for the folded-Cascode 

opamp 

Technique Analytical 

RL [39] 

SA [53] A2C [73] Our work 

Area (𝑛𝑚2) 
576 254.4 627 304 

Wirelength 

(𝑛𝑚) 695.32 179.71 620.67 247.38 

Fogging effect 

minimization 

(%) 

71.8 77.3 57.95 88.5 

Proximity effect 

minimization 

(%) 

81.9 76.4 58 84.08 

Gain (𝑑𝐵) 
39.2 38.79 36.54 44.16 

 

Table 5 lists the experimental results for the fully symmetric opamp circuits 

(including 22 transistors) as illustrated in Fig. 26. As shown in the table, our proposed 

placement approach has better fogging and proximity effects control compared to 

analytical RL method with 46.7% and 45.7% better minimization, respectively. In addition, 

the area and wirelength in our method are 3.5 and 3.7 times less than of those in analytical 

placement, while our work shows about 30 dB more in terms of DC gain. Moreover, our 

method has better performance compared to the A2C-based placement approach with 8.2 

dB more DC gain, 21% less fogging effect variation, and 11% less proximity effect 

variation.  



84 

 

 

Fig.  26. Schematic of the fully symmetric opamp with 22 transistors 

Table 7. Comparisons of the placement results among analytical RL, SA-based, A2C-

based and our proposed B*-tree-based RL placement methods for the fully symmetric 

opamp circuit illustrated in Fig. 26 

Technique Analytical 

RL [39] 

SA [53] A2C [73] Our work 

Area (𝑛𝑚2) 
2482 650.7 2518.5 704 

Wirelength 

(𝑛𝑚) 1242.88 263.7 1259.49 333.38 

Fogging effect 

minimization 

(%) 

40.84 61.5 66.6 87.55 

Proximity effect 

minimization 

(%) 

24.5 40.3 59.2 70.25 

Gain (𝑑𝐵) 
36.18 48.23 58.6 66.8 
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Table 6 illustrates the experimental results for the high gain opamp circuits (including 

22 transistors) with 10 symmetric pairs as illustrated in Fig. 27. Based on the information 

in the table, our proposed method shows satisfying performance with approximately 85% 

and 77 % minimization of fogging and proximity effects, respectively. Therefore, the gain 

achieved by our placement method with 64.6 is much better than other three approaches. 

 

Fig.  27. Schematic of the high gain opamp with 22 transistors 
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Table 8. Comparisons of the placement results among analytical RL, SA-based, A2C-

based and our proposed B*-tree-based RL placement methods for the high gain opamp 

circuit illustrated in Fig. 27 

Technique Analytical 

RL [39] 

SA [53] A2C [73] Our work 

Area (𝑛𝑚2) 
2520 610 2516 990 

Wirelength 

(𝑛𝑚) 1137.1 302.7 1257.82 449.64 

Fogging effect 

minimization 

(%) 

43.02 50.8 52.65 84.9 

Proximity effect 

minimization 

(%) 

24.37 44.58 40.16 77.09 

Gain (𝑑𝐵) 
25.44 40.3 42.29 64.6 

 

5.6. Summary 

This chapter presented and discussed the results of our experiments. In the first part, 

the fogging and proximity effects were evaluated in the context of mixed-signal ICs and 

the errors induced by those effects were discussed with regard to circuit performance. Then 

in terms of running and training time, we compared our proposed methodology with the 

other state-of-the-art placement methods, including simulated-annealing-based, absolute-

coordinate-based, and advantage-actor-critic-based placement methods. In addition, the 

performance of those approaches were presented and discussed for three different opamp 

circuits. In general, our proposed B*-tree RL-based placement method showed its better 
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performance on minimizing the variations of the fogging and proximity effects in 

significantly shorter time.  
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Chapter 6    Conclusions and Future Work 

 

6.1. Conclusions 

In this thesis, we introduced a reinforcement-learning-based placement method to 

minimize the variations of the fogging and proximity effects in the analog part of mixed-

signal ICs. In our method, we used deep Q-learning to train our RL agent so that it is able 

to intelligently choose the actions in less runtime. Instead of the popular absolute 

coordinate representation, we applied the topological representation in our placer that can 

contribute to smaller search space.  

Chapter 1 presented the principles and issues of traditional lithography methods. The 

traditional lithography approaches experience critical resolution issues for fabricating 

semiconductor devices in sub-22 nm technologies. In this chapter, the RET methods were 

discussed, which are applied to improve the resolution in photolithography. Finally, the 

next generation lithography (NGL) methods were introduced as effective methods for new 

technology nodes in semiconductor fabrication. 

In Chapter 2, the next-generation lithography techniques and their challenges were 

discussed. Then, we presented the basics and fundamental concepts of the fogging and 

proximity effects as two major challenges in electron beam lithography. In addition, we 

reviewed the previous studies about the fogging and proximity effects as well as the 
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methods for controlling them. In addition, the previous works on different placement 

methods were reviewed in terms of two classifications: representation methods and search 

engines. 

Moreover, the energy distribution and variation modeling of the fogging and 

proximity effects were proposed in Chapter 3. We reviewed and discussed the extraction 

of the mathematical modelling for the fogging and proximity effects called point spread 

function (PSF), which is achieved by energy distribution models of the effects. Finally, we 

proposed our modeling scheme for the variations of the fogging and proximity effects in 

the placement handling for mixed-signal ICs. 

Chapter 4 presented our B*-tree based RL placement method considering the fogging 

and proximity effects. First, we introduced the topological-based placement method, which 

is applied to control the variations of the fogging and proximity effects in the mixed-signal 

ICs. Then, we provided the fundamentals of reinforcement learning and deep Q-network. 

Finally, our innovative placement approach was proposed to apply deep reinforcement 

learning to handle the fogging and proximity effects in addition to wirelength and area. In 

this placer, we utilized B*-tree data structure as the topological representation in the RL 

environment and applied the deep Q-network as the RL agent.  

In Chapter 5, we presented the experimental results to show the significant electrical 

performance errors induced by the fogging and proximity effects in mixed-signal ICs. In 

addition, the running time, training time, and performance of our proposed method were 

compared with the other three state-of-the-art placement methods, including simulated 
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annealing (SA) based, absolute coordinate based, and advantage-actor-critic (A2C) based 

placement methods. The experimental results showed that our placer could efficiently 

minimize the variations of the fogging and proximity effects for the sensitive devices 

resulting in more desirable circuit performance, besides meeting chip area, wirelength and 

other common analog placement constraints. In addition, our proposed approach is 15, 4.3, 

and 5 times faster than the state-of-the-art analytical RL-based, simulated-annealing-based 

and A2C-based placement methods, respectively. Generally speaking, our proposed 

reinforcement learning method utilizes B*-tree and deep Q-network as the RL environment 

and the RL agent, respectively, which leads to noticeably speedup of our placer. Moreover, 

as the first study we considered the control of the fogging and proximity effects in the 

analog portion of mixed-signal ICs. 

6.2. Future Work 

As feature size is getting increasingly smaller in new semiconductor device fabrication 

technologies using EBL as the lithography method, the importance of the fogging and 

proximity effects increases. In analog placement, considering different constraints, such as 

the fogging and proximity effects, it is required to preserve the circuit electrical 

performance. However, computing the fogging and proximity effects is quite time-

consuming. Therefore, using efficient placement approaches with low running time would 

be crucial. Our proposed RL method has showed significant improvement in training and 

running time. However, our developed placement algorithm can be only used for a specific 

circuit; that is to say, for any unseen circuits, the machine learning model has to be re-
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trained from scratch. Therefore, utilizing the transfer learning technique might be able to 

contribute considerable benefit to this study. Such a technique can help transfer the trained 

model to the next training task so that it can decrease the training time for the optimization 

of the unseen circuits. In addition, as the placer will be trained for more unseen circuits, 

the accuracy and performance of the placer will be improved leading to placements with 

better quality. 

In addition to the fogging and proximity effects, there are some other major effects, 

which are induced by process variation and may lead to critical CD errors. One of the 

known long-range effects is develop loading, which results in a CD error two times more 

than fogging effect [16]. The process of development is applied in the lithography to 

remove the undesired resist after the exposure. However, the development inhibition occurs 

in high dense areas and results in a remaining undesired resist. This defect in development 

process is called develop loading, which is related to pattern density and has a long-range 

effect. Since develop loading induces significant CD errors, considering that in the 

placement can lead to circuit performance improvement. This is especially interesting for 

the analog integrated circuits, whose electrical performance is strongly dependent on the 

transistor sizes. Such CD errors, which used to be negligible for the circuits in the old 

technologies, are considerable for the smaller transistors (especially the gate length) in the 

advanced nanometer technologies. Therefore, as one of the promising future work, a placer 

should be developed to tackle the fogging, proximity and develop loading effects 

simultaneously within reasonable execution time for the analog portion in mixed-signal 

ICs. 
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