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ABSTRACT 

Shear strength of soils might decrease with an increase of shear strain, which is called 

“strain-softening.” The degradation of strength occurs in different types of soils (e.g., loose sand 

and sensitive clay) and under different loading conditions (e.g., drained or undrained). 

Strain-softening plays a major role in a wide range of geotechnical problems, including catastrophic 

failures (e.g., large-scale landslides) and laboratory tests (e.g., biaxial tests). While physical 

modeling and laboratory testing provide an overall or macro-scale response, numerical analysis 

could contribute insights into the mechanisms for a wide range of conditions. Unfortunately, 

numerical simulation of problems involving strain-softening materials is equally challenging, and 

the challenges include strain localizations, mesh sensitivity and large deformation. Several methods 

have been proposed and implemented in traditional Lagrangian-based finite element (FE) programs 

to overcome mesh sensitivity and localization issues. However, the suitability of these methods for 

large deformation problems has been verified in limited studies. While the soil types and loading 

conditions might be different, the geotechnical problems involved in softening could be analyzed 

developing a common framework. Therefore, the aim of the present study is to develop 

large-deformation FE modeling techniques for minimizing mesh sensitivity and simulating 

large-scale landslides. 

Nonlocal regularization methods were previously proposed to solve the mesh dependency 

issues in modeling strain localization. These methods relate the strength reduction of the local 

element to the strains of neighbouring elements by using weight functions. However, their 

applications for a large-deformation FE are limited. In the present study, several numerical 
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algorithms are developed, successfully implemented in a Eulerian-based FE program, and validated 

against previous numerical studies with three nonlocal regularization methods. Simplification and 

optimization are applied to reduce the computational costs. The performance of the three nonlocal 

methods is evaluated by simulating a biaxial test, and one of them is found to be relatively more 

effective and thus used for further in-depth study of strain regularization. 

Shear bands in local and nonlocal models are usually much thicker than in real soil, and 

their thickness increases with an increase in shear displacement. Softening scaling is effective to 

model the macroscopic force−displacement behaviour without modeling the thin shear band that 

develops in real soil. Softening scaling in a local model can also function as a regularization tool, 

which is usually called “element size scaling.” The element size scaling method and the nonlocal 

method show comparable effects in strain regularization in a biaxial compression test simulation 

and a slope failure analysis with Eulerian-based FE program. However, a significantly larger 

computational time is required for a nonlocal analysis and some interaction between two 

neighbouring shear bands might occur. Therefore, the element size scaling method is chosen in the 

analysis of a large-scale slope failure. 

Finally, the large-scale flow slide failure of the Lower San Fernando Dam is modeled using 

the techniques developed in a Eulerian-based FE program. Simplified constitutive models are 

developed to simulate the strain-softening behaviour of different soil layers. The seepage is 

modeled by developing a new technique based on the thermal−fluid analogy, which is incorporated 

in the in-situ stress calculations. Eulerian-based FE simulations show a similar failure pattern 

observed in post-slide investigations and also explain potential failure processes. 
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CHAPTER 1 

Introduction 

1.1 Background and motivation 

Shear bands are localized regions that undergo large plastic shear strains, and the 

phenomenon is known as strain localization. Strain localization can be observed in both a 

laboratory-scale test (e.g., a plane strain test on an overconsolidated clayey material (Fig. 1.1(a))) 

and a large-scale failure (e.g., a landslide, like the famous failure of the Lower San Fernando Dam 

in 1971 (Fig. 1.1(b))). The consequences of such a failure can be catastrophic. The deaths caused 

by landslides per year have been more than one thousand on average, and the annual economic 

losses have been estimated to be tens of billions dollars worldwide (Brabb 1991). During the failure 

of the Lower San Fernando Dam, a large portion of the dam crest slid into the reservoir, and the 

reservoir water almost overtopped the remaining crest (Fig. 1.1(b)), which nearly induced a dam 

breach. About 80, 000 people living downstream had to be evacuated until the reservoir water was 

drawn down to a safe level (Seed et al. 1973). 

Strain localization can occur in strain-softening soils. Various types of soils show 

strain-softening behaviour under different loading conditions (e.g., drained and undrained) (Hsu 

and Liao 1988; Chu and Wanatowski 2009; Gylland et al. 2014; Mesri et al. 2021). For example, 

the failure of the Lower San Fernando Dam occurred about 30 seconds after a major earthquake in 

1971 (Seed et al. 1973). Given that the initiation of failure and the post-failure process occurred 

over a short period, the submerged loose sandy layer is considered undrained with strain-softening 

behaviour. However, the dense sandy soil well above the phreatic line showed a drained 
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strain-softening behaviour. Multiple shear bands were observed in the failure of the Lower San 

Fernando Dam, and the shear displacement was extremely large (e.g., more than 30 m at the 

upstream toe area, Fig. 1.1(b)). 

 

 

 

Figure 1.1 Shear band formation: (a) a plane strain test (Marello 2004); and (b) the Lower San 

Fernando Dam failure (Castro et al. 1992) 

Seepage can significantly influence the stress distribution and therefore the strain 

localization in soils. Seepage forces on the soil skeleton affect the effective stresses and driving 

forces for a landslide. In other words, seepage forces can influence both the shear stress and shear 

resistance in the soil, which can potentially affect the development of shear bands. Li and Ming 

(2004) conducted finite element analyses of the Lower San Fernando Dam with and without 

Shear band 

Multiple shear bands 

(a) 

(b) 
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seepage forces. Although the shear bands were not directly shown from their analyses, different 

deformation was observed in the absence of seepage forces, and the difference increased with time. 

However, the analyses only showed the results until t = 40 s, when the horizontal velocity of the 

upstream toe was still high, (0.66 m/s without seepage forces and 0.38 m/s with seepage forces). 

The shear band thickness (ts) is extremely small in real soils and is usually related to the 

mean particle size of granular materials, d50, as summarized by Guo (2012). The typical range of ts 

is 10 to 20 d50 for different types of sand, based on the data collected by Marcher (2003), though a 

slightly wider range was shown by Maier (2003) and Finno et al. (1997). In other words, the ts in 

sand can be millimeters to centimeters. However, the shear band thickness was reported to be 2 to 

4 millimeters for sensitive clay, based on a set of biaxial plane strain tests (Thakur 2007). The shear 

band thickness is not a constant in the loading process. The shear band thickness observed by 

Thakur (2007) increases with the increase of shear strain. Similarly, Sadrekarimi and Olson (2010) 

showed that the shear band thickness in sand also increased with the shear loading in ring shear 

tests. 

Numerical modeling is an important tool to analyze soil failures and provide guidance for 

geotechnical engineering design. Without special treatments, mesh dependency (i.e., the solution 

depends on the mesh size) occurs in a numerical model (de Borst et al. 1993). The shear band 

thickness in a numerical model is dependent on the mesh size (Pietruszczak and Mroz 1981; Galavi 

and Schweiger 2010). This shear band thickness is usually significantly larger than that of the real 

soil, because an extremely fine mesh is required to model the real one, which is computationally 

very expensive. Furthermore, when modeling large strains of shear bands, a traditional FE program 
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can encounter numerical issues (Griffiths and Lane 1999). 

 

1.2 Focus of the research 

Large-deformation analyses are pivotal to understand the post-failure mechanism and 

potential consequences of many soil failure problems, e.g., landslides. Though numerous studies 

have been done previously to numerically model these problems, many of them used the traditional 

Lagrangian-based finite-element (FE) method which encounters excessive mesh distortion under 

large deformation (e.g., Griffiths and Lane 1999). The Coupled Eulerian−Lagrangian (CEL) 

method that is mesh distortion-free (Benson 1992) has been proved effective in modeling 

large-deformation geotechnical engineering problems (e.g., Qiu et al. 2011; Dey et al. 2015; 

Hamann et al. 2015) and is therefore selected for this study. When the analyses do not involve 

interaction with Lagrangian bodies, and the soil is modeled with Eulerian elements, the CEL is 

referred to herein as Eulerian-based FE. 

Multiple challenges are encountered when modeling shear bands for large deformation 

instead of small deformation problems. The following areas are the focus of the present study: 

• Various types of soil can present strain-softening behaviour under certain loading 

conditions (e.g., drained and undrained). While many constitutive models have been 

applied to model strain-softening behaviour in Lagrangian-based FE, the implementation 

was typically limited to a relatively small range of deformation (e.g., Gu et al. 1993; 

Griffiths and Lane 1999). Appropriate constitutive models for strain-softening soils are 

necessary to address the strain localization in a large deformation failure (e.g., the failure 
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of the Lower San Fernando Dam). 

• Mesh dependency issues arise when modeling strain-softening soils (de Borst et al. 1993). 

To overcome the mesh dependency effect, several strain regularization techniques have 

been developed previously, such as element size scaling (Pietruszczak and Mroz 1981) and 

the nonlocal method (Eringen 1981; Bažant and Lin 1988). However, the implementation 

of strain regularization techniques in a numerical modeling framework that can 

accommodate large soil deformation without mesh distortion issues is limited (e.g., 

Burghardt et al. 2012; Zhang et al. 2017; Monforte et al. 2019), and most of these 

implementations used an in-house solver. Existing regularization methods need to be 

applied and compared to establish best practices in a more attainable large-deformation 

analysis code, e.g., Eulerian-based FE that is commercially available. 

• An extremely fine mesh is required to capture the thin shear bands existing in the soil, 

increasing the computational costs dramatically for a large-scale problem, e.g., landslides. 

To model a thicker shear band with the same macroscopic behaviour, the “softening scaling” 

technique has been used in local and nonlocal methods (e.g., Pietruszczak and Mroz 1981; 

Brinkgreve 1994). Soil strength decreases with local strains in the former while it varies 

with nonlocal strains (e.g., weighted average deviatoric plastic strain) in the latter methods. 

The effectiveness of softening scaling for both methods needs to be evaluated to provide 

guidance to the modeling practice. 

• The shear band thickness increases with the increase of shear displacement in real soils 

(Thakur 2007; Sadrekarimi and Olson 2010), and Mallikarachchi and Soga (2020) showed 
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a similar trend using a nonlocal model in FE. However, the shear band thickness remains 

constant in the shear loading process, based on the equation proposed by Brinkgreve (1994) 

and the results of many other FE modeling studies (e.g., Maier 2003; Galavi and Schweiger 

2010). Considering that all these FE analyses were limited to a relatively small deformation, 

the potential variation of shear band thickness under a larger deformation can be 

investigated in a Eulerian-based FE program. 

• Seepage needs to be incorporated in large-deformation FE models, due to its remarkable 

influence on effective stresses and driving forces. However, the available elements in 

Eulerian-based FE are only single-phase, and cannot be used to model the seepage directly. 

An innovative approach is therefore needed so that the seepage can be modeled, and its 

induced seepage forces can be applied to the submerged Eulerian elements. The in-situ 

stresses under seepage can then be established. 

• The famous failure of the Lower San Fernando Dam in 1971 was triggered by an earthquake 

of 6.6 magnitude (Seed et al. 1973). The failed soil in the upstream slope moved more than 

30 meters. Most of previous numerical studies focused on the triggering mechanism of the 

failure and were restricted to relatively small deformation (e.g., Ming and Li 2003; Khoei 

et al. 2004; Blázquez and López-Querol 2007). A large-deformation analysis is required to 

understand the post-failure mechanisms. 
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1.3 Objectives 

To include the post-failure deformation in a numerical model, a large-deformation analysis 

is required. This poses new challenges for numerical modeling techniques. The main purpose of 

this study is to address these challenges and provide guidance to the modeling practice. The 

findings are implemented in simulating the Lower San Fernando Dam failure, where various strain-

softening soil layers were present. New algorithms are developed for soil constitutive modeling, 

strain regularization, and the consideration of seepage forces in Eulerian-based FE. The main 

objectives of this research are listed below: 

• Develop simplified constitutive models that can capture the large-deformation behaviour 

of various types of strain-softening soils. 

• Develop algorithms and write user-subroutines to implement three nonlocal regularization 

methods in Eulerian-based FE program. Simplify and optimize the algorithms to reduce the 

computational costs. Calibrate the algorithms with the results of biaxial tests from two other 

nonlocal FE programs. 

• Evaluate the effectiveness of the three nonlocal methods in addressing the mesh 

dependency in Eulerian-based FE. Identify the most effective nonlocal method and explain 

the findings from a theoretical view. 

• Evaluate the performance of softening scaling with local and nonlocal methods in modeling 

shear bands in Eulerian-based FE. Discuss the mutual influence between two shear bands 

for both methods. Note that the softening scaling in a local model is also a strain 

regularization tool, i.e., the element size scaling. Its efficacy in addressing mesh 
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dependency is compared with the nonlocal method. 

• Implement an energy theory to explain the variation of shear band thickness in the loading 

process when using local and nonlocal methods in Eulerian-based FE. Discuss the 

limitations of a previous analytical solution for the shear band thickness. 

• Develop a technique to model seepage in Eulerian-based FE using the thermal-fluid 

analogy. Calculate seepage forces and establish initial effective stresses based on the result 

of the seepage analysis. Calibrate the results with a widely used FE solver. 

• Conduct a large-deformation analysis of the Lower San Fernando Dam failure in 1971 in 

Eulerian-based FE. Model the seepage and simulate the strain-softening behaviour of 

multiple soil layers. Compare the numerical results with the field observation for calibration 

and perform a parametric study to understand the relative influence of several important 

factors. 

 

1.4 Outline of thesis 

This thesis is prepared in manuscript format. The outcome of this study is presented in six 

chapters and two appendices. 

• The first chapter provides the background information, research focus, objectives, and 

contributions of this study. 

• Chapter 2 presents a short literature review. However, the problem-specific literature 

reviews are considered in Chapter 3–5 and Appendices I–II, as this thesis is in a manuscript 

format. 
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• Chapter 3 presents the algorithms to implement three nonlocal methods and the validation 

process into Eulerian-based FE. Simplification and optimization of the algorithms are 

performed to reduce the computational cost. The effectiveness of the three nonlocal 

methods is evaluated and compared in biaxial compression tests. This chapter will be 

submitted to a journal as a technical paper for review. 

• Chapter 4 presents the effectiveness of the softening scaling in local and nonlocal methods 

in Eulerian-based FE, in terms of mesh dependency, macroscopic modeling, mutual 

influence between two shear bands, shear band thickness, and computational cost. In 

addition, the variation of shear band thickness under shearing is discussed based on an 

energy theory. This chapter will be submitted to a journal as a technical paper for review. 

A part of this study has been published on the 4th International Symposium on Frontiers in 

Offshore Geotechnics, ISFOG 2020. (Appendix-I).  

• Chapter 5 presents the large-deformation analysis of the famous failure of the Lower San 

Fernando Dam in 1971. A technique is developed to model the seepage and establish the 

in-situ stresses under the steady-state seepage. Simplified soil models are developed for the 

strain-softening behaviour of different soil layers. Furthermore, the results are compared 

with the field, and a parametric study is conducted. This chapter will be submitted to a 

journal as a technical paper for review. A part of this study has been published for the 72nd 

Canadian Geotechnical Conference, Geo St. John’s 2019 (Appendix-II). The author of this 

thesis also co-authored another journal paper that adopted the seepage modeling technique 

presented in this chapter (Wang et al. 2021). For that paper, the author of this thesis is the 
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principal contributor for the development of the seepage modeling technique in Eulerian-

based FE based on the thermal-fluid analogy. 

• Chapter 6 presents the general conclusions and recommendations for future research. The 

problem-specific conclusions are presented at the end of Chapter 3–5 and Appendices I–II. 

The references cited in Chapters 1 and 2 are listed in the References section at the end of 

the thesis. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

A large-deformation analysis is pivotal to provide a deeper insight into the failure 

mechanisms and potential risks of catastrophic damages of soil failure problems (e.g., landslides). 

However, the numerical simulation of strain localization for large-deformation analyses present 

significant challenges. An effective numerical tool should be robust for modeling 

large-deformation behaviour. Furthermore, mesh dependency, macroscopic modeling, shear band 

thickness, influences of multiple shear bands, as well as soil constitutive models and seepage 

modeling, are among the most important topics that should be addressed for a large-deformation 

analysis. 

As the thesis is written in manuscript format, a problem specific literature review is 

presented in Chapters 3–5 and Appendices A–B. The main purpose of this chapter is to provide 

additional critical review of previous research work relevant to the present study. This literature 

review chapter is organized as follows:  

• A brief introduction to numerical modeling techniques comprises Section 2.2. The reasons 

for selecting Eulerian-based FE are presented in this section.  

• The cause of the mesh dependency problem and the necessity to address it are discussed in 

Section 2.3. 

• Existing regularization tools to reduce mesh dependence are introduced, and the selections 

of regularization tools for this study are then justified in Section 2.4.  
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• In Section 2.5, a more specific literature review on various nonlocal regularization methods 

is presented. Multiple technical gaps are identified. At the end of this section, a brief 

literature review of the softening scaling law is also presented, considering that it was 

commonly implemented in both nonlocal and local models. 

• The necessity and technical gap in seepage modeling in Eulerian-based FE are discussed in 

Section 2.6.  

• Finally, previous studies on the famous failure of the Lower San Fernando Dam are 

discussed in Section 2.7. Technical gaps are identified from the discussions. 

 

2.2 Numerical modeling in geotechnical engineering 

A variety of numerical modeling techniques has been used for geotechnical engineering 

analyses. Those under the scope of continuum mechanics can be divided into two main categories: 

(a) mesh-based and (b) mesh-free techniques (Soga et al. 2016). Mesh-based approaches include 

traditional Lagrangian-based FE (e.g., Griffiths and Lane 1999), finite-difference method (FDM) 

(e.g., Chowdhury et al. 2019), arbitrary Lagrangian Eulerian method (ALE) (including the 

Remeshing and interpolation technique with small strain, RITSS) (e.g., Wang et al. 2013), and the 

coupled Eulerian–Lagrangian method (CEL) (e.g., Qiu et al. 2011). Note that CEL becomes a 

Eulerian-based FE when no Lagrangian element is present. The mesh-free category contains the 

material point method (MPM) (e.g., Soga et al. 2016), smooth particle hydrodynamics (SPH) (e.g., 

Bui and Nguyen 2017), particle finite-element method (PFEM) (e.g., Zhang et al. 2017), 

finite-element method with Lagrangian integration points (FEMLIP) (e.g., Cuomo et al. 2013), and 
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the element-free Galerkin (EFG) method (e.g., Kumar and Dodagoudar 2009). 

The traditional Lagrangian-based FE cannot handle large-deformation problems, due to 

excessive mesh distortion (Griffiths and Lane 1999). A large-deformation analysis is usually 

conducted using RITSS, CEL (including Eulerian-based FE), and mesh-free techniques. Among 

them, CEL, along with Eulerian-based FE, are commercially available, while most of the other 

large-deformation techniques are in-house programs. Furthermore, Eulerian-based FE has been 

successfully implemented to simulate various types of landslides in sensitive clays (Dey et al. 2015; 

Wang et al. 2020). Therefore, Eulerian-based FE is selected for the present study. 

 

2.3 Ill-posed boundary value problem 

Strain localization refers to the occurrence of narrow bands in a strain-softening material 

where any additional deformation concentrates, with the remaining areas loading and unloading in 

a near-rigid manner. This destructive phenomenon can induce large-scale failures, for example, a 

landslide. 

Numerous studies have modeled shear bands and other strain localization problems. 

However, in those early attempts, the results were highly influenced by the fineness and direction 

of the discretization, due to a dramatic change of characters of the governing equations at the 

emergence of shear bands (de Borst 2001). The governing equations lose ellipticity in a static or 

quasi-static model. Additionally, in a dynamic problem, the initial boundary value problem loses 

hyperbolicity (Sluys 1992). For both static and dynamic problems, the boundary value problem 

becomes ill-posed (de Borst 2001). Therefore, a unique stress–strain response and shear band 
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thickness cannot be obtained from models with different discretization of the domain. 

As aforementioned, the discretization sensitivity is caused by the change of characters of 

the governing equations, which is essentially a mathematical problem instead of a numerical issue 

for a numerical modeling tool (de Borst and Verhoosel 2017). Therefore, the discretization 

sensitivity can occur in both mesh-based and mesh-free methods, and it can be called “mesh 

dependency” for a mesh-based method. An example is shown in Fig. 2.1, which presents the load–

displacement curves of a one-dimensional tensile bar for different discretization with the 

element-free Galerkin (EFG) method. The post-peak force is significantly dependent on the number 

of nodes in the EFG model. 

 

Figure 2.1 Load–displacement diagram for a one-dimensional tensile bar composed of a 

strain-softening elastoplastic material with an imperfection in the centre. An element-free 

Galerkin method was used without regularization (Pamin et al. 2003) 
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2.4 Regularization techniques 

In order to address the mesh dependency (or discretization sensitivity), multiple 

regularization techniques have been developed previously; for example, element size scaling 

(Pietruszczak and Mroz 1981), nonlocal method (Eringen 1981; Bažant and Lin 1988), gradient-

dependent method (de Borst et al. 1993; de Borst and Mühlhaus 1992; Toupin 1962), rate-

dependent or viscoplastic modeling (Perzyna 1963; Needleman 1988; Loret and Prevost 1990; 

Prevost and Loret 1990), and the Cosserat method (Cosserat and Cosserat 1909; Muhihaus and 

Vardoulakis 1987; de Borst and Mühlhaus 1992). The concepts and features of these methods are 

summarized in Table 2.1. 

Regularization methods have been implemented in both small-deformation numerical 

techniques (e.g., traditional Lagrangian-based FE, Summersgill et al. 2017a), and 

large-deformation numerical techniques (e.g., MPM, Burghardt et al. 2012; Goodarzi and Rouainia 

2017,)). Due to a shorter history of the large-deformation techniques, more applications of 

regularization methods have been seen in small-deformation numerical programs, especially in a 

variety of traditional Lagrangian-based FE codes. 

In recent years, several regularization methods have been implemented in a limited number 

of large-deformation techniques, as summarized in Table 2.2. Among these regularization methods, 

the element size scaling and nonlocal methods are the most popular, because each of them has been 

implemented in at least three different large-deformation techniques, as presented in Table 2.2. 

However, the nonlocal methods have not been used in Eulerian-based FE, and no comparison has 

been made between two regularization methods in a large-deformation code. More research can be 
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done to provide guidance to the implementation and selection of regularization methods in 

large-deformation techniques. 

In the present study, algorithms are developed to implement nonlocal methods in Eulerian-

based FE. In addition, the effects of the element size scaling and nonlocal methods are discussed 

and compared based on modeling results. 
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Table 2.1 Overview of regularization methods 

Regularization 

methods 
Concepts Remarks References 

Element size 

scaling 

modeling 

This method assumes that the post-peak 

softening modulus is proportional to the 

element size. It is also called as the “crack 

band model” or “fracture energy trick.” 

A mesh-independent load–displacement 

response can be obtained, while the shear 

band thickness is still dependent on the mesh 

size. 

Pietruszczak and 

Mroz 1981; Moore 

and Rowe 1988; 

Bažant and Jirásek 

2002; Jirásek and 

Bauer 2012; Dey et al. 

2015  

Nonlocal 

modeling 

The strain (or another internal state 

variable in a constitutive model) at one 

integration point is determined by the 

weighted average of its neighbouring 

points. The covering area of neighbouring 

points is calculated by introducing an 

internal length. 

This approach has been successfully 

implemented in many mesh-based and mesh-

free techniques. Various nonlocal weight 

functions are available, and detailed 

comparison of them was only available for 

very few numerical techniques. 

Bažant and Lin 1988; 

Brinkgreve 1994; 

Bažant and Jirásek 

2002; Galavi and 

Schweiger 2010; 

Summersgill et al. 

2017a 

Gradient 

dependent 

modeling 

The gradients (or spatial derivatives) of 

internal state variables, rather than the 

internal state variables themselves, are 

used in the constitutive description. 

Usually, strain gradients are adopted. 

Gradient-dependent models also fall into the 

nonlocal category, as the gradients are used to 

reflect the nonlocal effects at the microscopic 

level. An internal length can be introduced 

implicitly by each gradient term. However, 

the computational complexity increases by 

performing extra numerical derivation. It is 

challenging to handle the gradients at the 

boundary. 

Toupin 1962; de Borst 

and Mühlhaus 1992; 

de Borst et al. 1993; 

Jirásek and Rolshoven 

2009 
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Regularization 

methods 
Concepts Remarks References 

Rate dependent 

(or viscoplastic) 

modeling 

The material behaviour is time dependent 

in a rate-dependent or viscoplastic model. 

The time-dependency can be modeled with 

a rate-independent yield function by taking 

the “overstress” effect into account. 

Another type of rate-dependent model 

utilizes a rate-dependent yield function to 

make the shear strength degradation rate 

dependent on the strain rate. 

This category of methods also implicitly 

introduces an internal length. Mesh 

independent results were reported from 

previous research, while the mesh sensitivity 

can be affected by the value of viscosity. 

Heeres et al. 2002; 

Loret and Prevost 

1990; Needleman 

1988; Perzyna 1963; 

Prevost and Loret 

1990 

Cosserat 

continuum 

modeling 

Rotational degrees-of-freedom are added 

to the traditional translational degrees-of-

freedom in a Cosserat continuum model. 

The independent rotations, curvatures, 

together with coupled stresses, are 

implemented in the constitutive 

descriptions. 

The use of this approach is relatively 

straightforward. However, it is indicated that 

the rotational degrees-of-freedom, along with 

the micro-curvatures and coupled stresses, 

are activated only under shearing, rather than 

pure tension. 

de Borst and 

Mühlhaus 1992; 

Cosserat and Cosserat 

1909; Muhihaus and 

Vardoulakis 1987 
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Table 2.2 Implementations of regularization methods in geotechnical engineering with large-deformation numerical techniques 

References Modeled problems Numerical methods Regularization methods 

Dey et al. 2015; 

Islam et al. 2019 
Large-scale landslides CEL/Eulerian-based FE Element size scaling 

Burghardt et al. 

2012 
Biaxial tests; slope failures Material point method (MPM) Nonlocal method 

Tran and Sołowski 

2019 
Large-scale landslides Material point method (MPM) Element size scaling 

Zhang et al. 2019 Retrogressive landslides 

Remeshing and interpolation 

technique with small strain 

(RITSS) 

Element size scaling 

Singh et al. 2021 
Biaxial tests; buried pipe uplift; 

cyclic T-bar penetration 

Remeshing and interpolation 

technique with small strain 

(RITSS) 

Nonlocal method 

Monforte et al. 

2019 

Biaxial tests; Indentation of 

rigid strip footing 

Particle finite element method 

(PFEM) 
Nonlocal method 

Zhang et al. 2017 
Collapse of soil column; 

retrogressive landslides 

Particle finite element method 

(PFEM) 
Viscoplastic model 
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2.5 Nonlocal methods and their applications 

2.5.1 The nonlocal model 

Shear band propagation is not only determined by the stress and strain in the elements of 

the highest strain but is also influenced by its energy dissipation to and from neighbouring elements. 

A nonlocal method provides a means of regulating strain calculations to avoid excessive softening 

and relates strain-softening to the surrounding area. Therefore, energy dissipation can also occur in 

the neighbouring elements. This reduces the mesh dependency and potential numerical 

convergence issues associated with strain-softening analyses. A nonlocal model calculates the 

strain (or another internal state variable in a constitutive model) at each local integration point by 

conducting a weighted average of its neighbouring points in the area defined by an internal length 

(Bažant and Jirásek 2002).  

A fully nonlocal model will treat both stress and strain as nonlocal components (Eringen 

1981). However, as a regularization tool, usually only the softening component is chosen for 

nonlocal calculation (Galavi and Schweiger 2010). The nonlocal strain is calculated as a softening 

parameter to evaluate the strength degradation, or material softening, at the local integration point. 

This makes it relatively convenient to be implemented in an existing FE code. Three commonly 

used nonlocal methods, the original nonlocal, the G&S nonlocal, and the over-nonlocal methods, 

are introduced below. 
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2.5.1.1 Original nonlocal method 

The formulation for a three-dimensional nonlocal strain model was presented by Eringen 

(1981), for a strain-hardening problem. A nonlocal strain-softening model was proposed by Bažant 

et al. (1984). Equations (2.1) and (2.2) were used to calculate the nonlocal strain. 

𝑑εeq(NL)

p (𝐱n) =
1

𝑉w
∭[ωo(𝐱n

′ )𝑑εeq
p (𝐱n

′ )]𝑑𝑥′𝑑𝑦′𝑑𝑧′ (2.1) 

𝑉w = ∭ ωo(𝐱n
′ )𝑑𝑥′𝑑𝑦′𝑑𝑧′ (2.2) 

where 𝑑εeq(NL)

p (𝐱n) is the nonlocal equivalent plastic shear strain increment of the integration point 

at location 𝐱n, and the subscript n denotes the dimension of the model; 𝑑εeq
p (𝐱n

′ )  is the equivalent 

plastic shear strain increment at location 𝐱n
′  which refers to all the reference integration points for 

the location 𝐱n; ωo(𝐱n
′ ) is a Gaussian-type weight function that is centered at the point 𝐱n, and 

defines the weight of all the reference points 𝐱n
′  in the calculation of 𝑑εeq(NL)

p (𝐱n); and 𝑉w is the 

reference volume, where 𝑥′, 𝑦′ and 𝑧′ are the three dimensions. 

In the “original nonlocal method” by Summersgill et al. (2017a), a Gaussian type of 

distribution, Eq. (2.3), is adopted as the weight function ωo(𝐱n
′ ). 

ωo(𝐱n
′ ) =

1

𝑙√π
exp [−

|𝐱n
′ − 𝐱n|2

𝑙2
] (2.3) 

where l is an internal length parameter that is related to the shear band width. 

Another Gaussian-type weight function, Eq. (2.4), was proposed by (Bažant and Lin 1988). 

In the presented study, both Eqs. (2.3) and (2.4) are considered as the “original nonlocal method”. 

ωo(𝐱n
′ ) = exp [−

𝑘|𝐱n
′ − 𝐱n|2

𝑙2
] (2.4) 
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where 𝑘 = √𝜋 for 1D conditions; 𝑘 = 2 for 2D conditions; 𝑘 = (6√𝜋)
1 3⁄

 for 3D conditions. 

As shown in Fig. 2.2, the original method can significantly reduce mesh dependency in 

comparison to the local method (Summersgill et al. 2017a); however, a small gap can still be 

observed from the results using different mesh sizes (Fig. 2.2(b)). The main reason is that the local 

point still provides the greatest contribution to the nonlocal strain and the strength degradation, by 

using Eq. (2.3). 

 

Figure 2.2 Load vs. displacement results for undrained analyses (Summersgill et al. 2017a) 

 

2.5.1.2 G&S nonlocal method 

To avoid the shortcoming shown in the original method, another weight function, ωg(𝐱n
′ ), 

as presented in Eq. (2.5), was developed by Galavi and Schweiger (2010). A nonlocal method that 

adopts this weight function can be called the G&S nonlocal method (Summersgill et al. 2017a). 
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ωg(𝐱n
′ ) =

|𝐱n
′ − 𝐱n|

𝑙2
exp [−

|𝐱n
′ − 𝐱n|2

𝑙2
] (2.5) 

This weight function recognized that the formation of the shear band is directly determined 

by the areas surrounding the strain localization and not influenced by the local strain. A comparison 

has been made between the Gaussian-type weight function and the G&S weight function by Galavi 

and Schweiger (2010), as presented in Fig. 2.3. The lowest contribution of strains is observed at 

the centre of the G&S weight function, while the highest is seen at the same location as the 

Gaussian-type distribution. This indicates that a larger portion of the concentrated local strain can 

be distributed to the neighbouring zone by using the G&S nonlocal method. From the research 

conducted by Summersgill et al. (2017a), the G&S method provided an improved 

mesh-independent result compared to the original nonlocal method (Fig. 2.2). Note that no new 

parameters need to be introduced in the G&S nonlocal method. 

 

 

Figure 2.3 Comparison between a Gaussian-type and the G&S weight function  

(Galavi and Schweiger 2010) 
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2.5.1.3 Over-nonlocal method 

The over-nonlocal method was proposed by Brinkgreve (1994). Similar to the G&S 

nonlocal method, the over-nonlocal strain weight function was designed to prevent the formation 

of a concentrated peak at the local integration point. A new parameter, α, was implemented to 

change the distribution of a Gaussian-type weight function. The nonlocal strain is calculated as 

shown in Eq. (2.6). 

𝑑εeq(NL)
p (𝐱n) = (1 − α)𝑑εeq

p (𝐱n) +
α

𝑉w
∭[ωo(𝐱n

′ )𝑑εeq
p (𝐱n

′ )]𝑑𝑥′𝑑𝑦′𝑑𝑧′ (2.6) 

where ωo(𝐱n
′ ) is a Gaussian-type weight function (e.g., Eqs. (2.3) and (2.4)). Note that Eq. (2.3) 

was adopted by Brinkgreve (1994) and Summersgill et al. (2017a), while Eq. (2.4) was used by 

Burghardt et al. (2012). 

An over-nonlocal model has to adopt α > 1, as it becomes an original nonlocal method when 

α = 1. A higher value of α leads to a lower strain contribution from the local integration point 

(Brinkgreve 1994). The over-nonlocal method is more capable of distributing strains to the 

neighbourhood than the original method (Fig. 2.4). Figure 2.4 shows that the strain at the centre is 

even smaller in the over-nonlocal model (α = 2), in comparison to the G&S nonlocal model. In 

other words, the over-nonlocal model is theoretically more effective than the G&S nonlocal model 

to regulate the strains. However, the stability of the over-nonlocal method was challenged when a 

large value of α was adopted (Fig. 2.2) (Summersgill et al. 2017a), and the G&S nonlocal method 

was adopted for further study in a traditional Lagrangian-based FE (Summersgill et al. 2017b).  

Based on the findings of these studies, several issues need to be investigated further:  
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• Does the over-nonlocal become unstable with a larger α due to the use of a traditional 

Lagrangian-based FE (Summersgill et al. 2017a)?  

• If the instability issue can be resolved, will the over-nonlocal method provide the best 

performance? 

To answer these questions, previous applications of nonlocal methods are reviewed in the 

next section. 

 

Figure 2.4 Schematic distributions of local and nonlocal strains: (a) after initiation of softening; 

(b) at later stage (Galavi and Schweiger 2010) 

 

 

Local model 

G&S nonlocal 

Original nonlocal 

Over-nonlocal 
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2.5.2 Previous applications of nonlocal methods 

The nonlocal models have been implemented in various numerical modeling techniques as 

a strain regularization tool. In geotechnical engineering, the applications of various nonlocal 

methods (e.g., original, G&S, and over-nonlocal) have been implemented to model biaxial tests, 

strip footings, slope failures, etc. (e.g., Brinkgreve 1994; Maier 2003; Summersgill 2014; 

Summersgill et al. 2017a). A summary is presented in Table 2.3. 

 

2.5.2.1 Choices of nonlocal methods (or weight functions) 

The G&S nonlocal method was believed to be more effective than the original nonlocal and 

over-nonlocal methods for regularization, from the studies by Summersgill et al. (2017a). The 

over-nonlocal method was not recommended due to the numerical issue found when using a large 

α, as mentioned in Section 2.5.1.3. Following their conclusion, several studies adopted the G&S 

nonlocal method for various numerical techniques (Mánica et al. 2018; Monforte et al. 2019; 

Mallikarachchi and Soga 2020; Singh et al. 2021). However, numerical issues were not reported 

from other applications of the over-nonlocal method (Brinkgreve 1994; Burghardt et al. 2012; Lu 

et al. 2012; D’Ignazio et al. 2017), even when an extremely large α (= 6.763) was used (Brinkgreve 

1994). Therefore, the effectiveness and robustness of the over-nonlocal method should be 

re-evaluated. When both the G&S nonlocal and over-nonlocal methods are robust in a numerical 

modeling technique, a comparison between them can be valuable. 

Note that some researchers also used the original nonlocal method for geotechnical analyses 

(Maier 2003; Troncone 2005; Conte et al. 2010; Summersgill et al. 2017a), showing only a small 
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gap between the results from different mesh sizes (Maier 2003; Summersgill et al. 2017a). 

Therefore, the original nonlocal method is also discussed in this study. 

 

2.5.2.2 Choices of α in the over-nonlocal method 

By increasing the value of α, a lower nonlocal strain is obtained at the local integration 

points, while a higher nonlocal strain is present in the neighbouring integration points (Brinkgreve 

1994). This was illustrated in Fig. 2.5 by Summersgill et al. (2017a). More energy can be dissipated 

in the neighbouring area using a larger α. As a result, with the increase of α, the shear band thickness 

also increases (Brinkgreve 1994). 

A value of α = 2 was adopted in several studies (Brinkgreve 1994; Lu et al. 2012; Burghardt 

et al. 2012; D’Ignazio et al. 2017) without providing a comparison with varying values of α. A 

comparison was conducted by Summersgill et al. (2017a) to explore the effect of α on mesh 

convergence. However, as aforementioned, the result became unstable for a fine mesh when using 

a relatively large α, e.g., α = 2.0. This numerical issue needs to be addressed so that the effectiveness 

of larger α can be explored in the analysis. 

 



42 

 

Figure 2.5 The effect of α on nonlocal strain 

 

2.5.2.3 Applications of nonlocal methods in traditional Lagrangian-based FE 

A traditional Lagrangian-based FE was adopted by most of the applications listed in Table 

2.3. The strain range of these applications was relatively small. For example, only the early stage 

of a progressive failure, rather than the whole failure process that includes large movement of 

failure mass, has been modeled (Troncone 2005; Conte et al. 2010). Therefore, they could not 

determine whether the nonlocal methods are applicable at the large-deformation stage. 

 

2.5.2.4 Applications of nonlocal methods in large-deformation analysis codes 

Nonlocal methods have been applied in large-deformation analyses (Burghardt et al. 2012; 

Monforte et al. 2019; Singh et al. 2021); as mentioned in Section 2.5.2.1 and Table 2.3, only one 

type of nonlocal method was implemented in each of these studies. A comprehensive comparison 

of the three nonlocal methods in a large-deformation code is identified as a research gap. In addition, 
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none of the nonlocal methods were implemented in Eulerian-based FE. Hence, an investigation of 

the applicability of nonlocal methods in Eulerian-based FE is necessary. 

 

2.5.2.5 Softening scaling 

Due to the limited capacity of computing resources, the adopted element size in a numerical 

model is usually significantly larger than the real shear band thickness in soils. The shear band 

thickness in a nonlocal model has to be larger than the element size (Summersgill et al. 2017a). 

Therefore, it is difficult to model the real shear band thickness in a nonlocal model with 

conventional computational resources. Softening scaling has been implemented by many 

researchers to model a thick shear band while successfully displaying the macroscopic behaviour 

of soils (e.g., Brinkgreve 1994; Maier 2003; Galavi and Schweiger 2010). Soil strength decreases 

with local strains in a local model while it varies with nonlocal strains (e.g., weighted average 

deviatoric plastic strain) in a nonlocal model. In a local model, softening scaling is also referred to 

as the element size scaling technique, proposed by Pietruszczak and Mroz (1981). However, the 

internal length, instead of the element size, is used as the scaling parameter to determine the 

strength degradation rate for a nonlocal method. The effectiveness of the softening scaling for 

nonlocal methods in Eulerian-based FE needs to be investigated. Furthermore, a comparison 

between the nonlocal method and the element size scaling method is necessary to understand their 

effectiveness in addressing mesh dependency. Thereafter, the practical guidelines can be provided 

for strain regularization and softening scaling in large-deformation modeling. 
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Table 2.3 A summary of applications of nonlocal methods in geotechnical engineering 

References 
Modeled 

problems 
Numerical methods 

Types of nonlocal 

methods 
Remarks 

Brinkgreve 

1994 

1D tension bar; 

biaxial test; 

slope failure 

Lagrangian-based 

FE 
Over-nonlocal 

α = 2.0, 5.0, 6.763, etc. No numerical issues 

were reported. 

Maier 2003 
Biaxial test; 

strip foundation 

Lagrangian-based 

FE 
Original nonlocal 

The ill-posed boundary value problem was 

addressed as only a very small gap was 

observed from the load–displacement curves 

with different mesh sizes. 

Troncone 2005 Slope failure 

Lagrangian-based 

FE 

(TOCHNOG) 

Original nonlocal 
The early stage of a progressive failure was 

successfully modeled. 

Galavi and 

Schweiger 

2010 

Biaxial test; 

tunnel 

excavation 

Lagrangian-based 

FE 
G&S nonlocal 

The G&S nonlocal model was proposed by 

these authors. No numerical issues were 

reported. 

Conte et al. 

2010 
Slope failure 

FE with mesh 

refinements 

(TOCHNOG) 

Original nonlocal 
The early stage of a progressive failure was 

successfully modeled. 

Burghardt et al. 

2012 

Biaxial test; 

slope failure 

Material point 

method (MPM) 
Over-nonlocal method 

α = 2.0 was applied. 

A nonlocal iteration scheme is implemented 

in each time increment of an explicit MPM. 

Lu et al. 2012 Biaxial test 
Lagrangian-based 

FE 
Over-nonlocal method 

α = 2.0 was applied. 

No numerical issues were reported from the 

over-nonlocal model. 
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References 
Modeled 

problems 
Numerical methods 

Types of nonlocal 

methods 
Remarks 

Summersgill 

2014; 

Summersgill et 

al. 2017a; b 

Biaxial test; 

slope failure 

Lagrangian-based 

FE 

(Imperial College 

finite-element 

program, ICFEP) 

Original nonlocal, G&S 

nonlocal, and over-

nonlocal 

G&S nonlocal method provided the best 

overall performance as the over-nonlocal was 

unstable using a larger α 

D’Ignazio et al. 

2017 
Slope failure 

Lagrangian-based 

FE 

(Plaxis 2D) 

Over-nonlocal 
α = 2.0 was applied. 

No numerical issues were reported. 

Mánica et al. 

2018 
Biaxial test 

Lagrangian-based 

FE 

(Plaxis) 

G&S nonlocal 

The G&S nonlocal method was selected 

based on the results from Summersgill et al. 

(2017a) 

Monforte et al. 

2019 

Biaxial test; 

Indentation of 

rigid strip 

footing 

Particle finite 

element method 

(PFEM) 

G&S nonlocal method 

The G&S nonlocal method was selected 

based on the results from Summersgill et al. 

(2017a) and Mánica et al. (2018).  

Mallikarachchi 

and Soga 2020 
Biaxial test 

Lagrangian-based 

FE 

(Abaqus/Standard) 

G&S nonlocal 

The G&S nonlocal method was selected 

based on the results from Summersgill et al. 

(2017a). Numerical convergence issues were 

reported when adopting a small ratio of the 

internal length to the mesh size 

Singh et al. 

2021 

Biaxial test; 

buried pipe 

uplift; cyclic T-

bar penetration 

Remeshing and 

interpolation 

technique with small 

strain (RITSS) 

G&S nonlocal method 

The G&S nonlocal method was selected 

based on the results from Summersgill et al. 

(2017a).  
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2.6 Seepage modeling 

Seepage is an important factor in a geotechnical engineering analysis as it directly 

influences the effective stresses and driving forces and thus affects the strain localization. For 

example, the initial stress state of the Lower San Fernando Dam was significantly influenced by 

steady-state seepage forces (Li and Ming 2004). Different sliding displacements were observed 

with and without modeling the seepage forces (Li and Ming 2004). To establish the initial effective 

stresses in an FE code, the seepage forces and the buoyancy forces need to be applied to each 

submerged element. However, the Eulerian element (EC3D8R) available in Eulerian-based FE 

program in Abaqus/Explicit is designed to model single-phase materials. A seepage problem cannot 

be simulated with this element. 

Hamann et al. (2015) proposed a technique to model the soil as a two-phase material using 

the thermally coupled Eulerian element (EC3D8RT) by implementing the thermal−fluid analogy 

theory, that is, to model the pore fluid flow as a heat transfer problem. The problem of pile jacking 

in fully saturated sand was investigated, and a hypoplastic sand model was implemented using a 

VUMAT user-subroutine in Abaqus. The dissipation of excess pore water pressure was successfully 

simulated (Hamann et al. 2015). However, this approach cannot be used directly to model seepage 

and establish in-situ stresses of a slope or embankment under seepage. Therefore, further 

developments are needed to simulate the seepage, and calculate and then incorporate seepage forces 

and buoyancy forces for in-situ stress modeling. 
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2.7 The failure of the Lower San Fernando Dam 

A major flow slide occurred in the Lower San Fernando Dam in California due to the 1971 

San Fernando earthquake (Seed et al. 1973). The cross section through the failed dam and its 

reconstruction are shown in Fig. 2.6. A large number of experimental, analytical and numerical 

studies were conducted to investigate this famous failure (e.g., Seed et al. 1973; Lee et al. 1975; 

Seed 1979; Castro et al. 1989; Gu et al. 1993; Olson and Stark 2001; Ming and Li 2003). They 

provided extensive data for the large-deformation analysis of the Lower San Fernando Dam. The 

Lower San Fernando Dam was subject to steady-stage seepage before the earthquake, thus being a 

good example to benchmark the proposed seepage and in-situ stress modeling technique. Note that 

the nonlocal regularization is not used for the large-deformation analysis of this dam in the current 

study, due to its limitation in modeling multiple soil layers and in computational efficiency. 

 

 

Figure 2.6 The cross section of the failed dam (a) condition after the earthquake-induced failure; 

(b) schematic drawing of the reconstructed cross section (Castro et al. 1992) 
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2.7.1 Numerical modeling techniques 

The LE method has been widely used for the analysis of the Lower San Fernando Dam 

failure (e.g., Seed et al. 1973; Seed 1979; Castro et al. 1989; Olson and Stark 2001). This method 

has been mainly implemented to evaluate of the stability of slopes. The factor of safety can be 

calculated from an LE analysis (Fig. 2.7). Normally, only the initial slip surface can be determined 

from the LE method. A plausible attempt has been made to calculate the secondary slip surface of 

the Lower San Fernando Dam failure (Seed 1979), as shown in Fig. 2.7(b). Though this could 

explain the occurrence of multiple shear bands in the central area of the dam (Fig. 2.6), the whole 

post-failure process of the Lower San Fernando Dam cannot be handled by the LE method.  

The FE method is a powerful tool to analyze a slope stability problem. A number of 

traditional Lagrangian-based FE analyses have been conducted to simulate the failure of the Lower 

San Fernando Dam (e.g., Gu et al. 1993; Jitno 1995; Ming and Li 2003). For example, this famous 

failure has been modeled using a two-dimensional Lagrangian-based FE procedure, SUMDES2D, 

as shown in Fig. 2.8 (Ming and Li 2003). Generally, the initiation of the dam failure can be 

successfully simulated using a traditional Lagrangian-based FE method; however, as 

aforementioned, mesh distortion can occur when the elements are subject to large deformation. 

This could cause inaccuracy and convergence issues (Mánica et al. 2018). Therefore, traditional 

Lagrangian-based FE analyses failed to disclose the whole post-failure process. To explore the full 

failure process, a numerical technique that is capable of modeling large-deformation behaviour is 

needed. 
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Figure 2.7 The slip surface and factor of safety from an LE analysis: (a) primary slip surface; (b) 

primary and secondary slip surface (Seed 1979) 

 

Figure 2.8 The deformed mesh 40 s after the start of earthquake (Ming and Li 2003) 

The only large-deformation numerical technique used for modeling the Lower San 

Fernando Dam failure was the MPM (Huang et al. 2020; Feng et al. 2021). The nonlinear 

mechanism during the earthquake and the post-failure large deformation were modeled. Figure 2.9 

shows the comparison between the field observation and the MPM modeling results. The final 

(a) 

(b) 
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deformation is similar to the fields, while the slip surfaces and failure blocks observed in the field 

were unclear in the MPM model. A more effective numerical technique is needed to clearly show 

the shear bands and failure blocks so that the post-quake failure mechanism can be appropriately 

explained. 

 

Figure 2.9 Comparison between the field observation and MPM modeling result of the Lower 

San Fernando Dam failure (a) cross-section in the field; (b) deformation pattern with material 

zonation; (c) deviatoric strain (Huang et al. 2020) 

Eulerian-based FE method is capable of modeling large-deformation problems and has been 

used for large-scale landslide analyses (e.g., Dey et al. 2015; Islam et al. 2019). Slip surfaces and 

failure blocks can be clearly presented in a Eulerian-based FE analysis, as shown in Fig. 2.10. This 

makes Eulerian-based FE a competitive tool for the analysis of post-failure large deformation. The 

Lower San Fernando Dam was under a steady-state seepage before the earthquake. The seepage, 
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seepage forces and in-situ stresses can be computed in Eulerian-based FE with the new technique 

proposed in this study. 

 

Figure 2.10 Large-deformation modeling of landslide in Eulerian-based FE (Dey et al. 2015) 

2.7.2 Soil behaviour and constitutive models 

As shown in Fig. 2.6, the Lower San Fernando Dam mainly consisted of silty sand hydraulic 

fill, clayey core, rolled fill, ground shale hydraulic fill, berm, and alluvium. For simplicity, the silty 

sand hydraulic fill is called the hydraulic fill, and the ground shale hydraulic fill is called the ground 

shale, in this study. In a large-deformation numerical analysis, an appropriate constitutive model 

that is still effective under large strain is required for each of the soil layers. As the large 

deformation occurred at the post-failure stage, the seismic behaviour of the soil is not our main 

focus at this stage. 

 

2.7.2.1 Hydraulic fill  

Based on the field investigation by Castro et al. (1989), the bottom layer of the hydraulic 

fill is loose, while the upper part is medium dense to dense. For loose sand, contractive behaviour 

commences when shearing. Under an undrained loading, this contractive tendency leads to the 

generation of excess pore water pressure, thus reducing the effective stress and inducing a 
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strain-softening behaviour. As shown by Olson (2001) (Fig. 2.11), an undrained strain-softening 

behaviour could be initiated under monotonic or cyclic loads. Gu et al. (1993) also showed the 

schematic strain-softening behaviour of undrained loose sand under monotonic and cyclic loads, 

respectively (Figs. 2.12(a) and 2.13(a)). 

 

Figure 2.11 Schematic undrained response of a saturated, contractive sandy soil 

(cited from Olson (2001)) 

Medium dense to dense sand usually presents a dilative behaviour during shearing. This 

leads to the generation of negative excess pore water pressure under undrained loading and thus 

increases the effective stress and shear strength (Figs. 2.12(b) and 2.13(b)). In other words, a 

strain-hardening behaviour is present for the undrained medium dense to dense sand, and the 

undrained shear strength is significantly larger than the drained strength. However, drainage could 

occur. The strength can then gradually decrease to its drained value, which is similar to the 

behaviour of the dense sandy toe dike shown in Fig. 2.14 (Castro et al. 1989). 
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(a) 

 

(b) 

 

Figure 2.12 Idealized undrained behaviour of sands under monotonic load: 

(a) contractive; (b) dilative (Gu et al. 1993) 
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(a) 

 

(b) 

 

Figure 2.13 Idealized undrained behaviour of sands under cyclic load: 

(a) contractive; (b) dilative (Gu et al. 1993) 
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Figure 2.14 Qualitative driving and resisting forces at initiation of slide (Castro et al. (1989)) 

 

2.7.2.2 Clayey core 

The clayey core mainly consisted of a silty clay with about 20% of sandy layers ranging 

from about 25.4 to 762 mm thick (Castro et al. 1989). The permeability of a sand-clay mixture 

layer is governed by the clayey fraction (Dafalla et al. 2020), which means the clayey core presents 

undrained behaviour under a quick loading, e.g., landslides. Based on Fig. 2.14, an undrained 

strain-softening behaviour was present in the clayey core during the Lower San Fernando Dam 

failure; however, the strength degradation rate was remarkably smaller than for the loose hydraulic 

sandy fill. 

Triggering 

Strong shaking 

complete 
Start of major 

slide 

~ 14 s ~ 26 s ~ 50 s 

Slide duration 

Total available resisting force 

Total driving force 

Loose layer of hydraulic fill 

Clayey core 

Toe dike 

Embankment cap 

Undrained 

Undrained 

Undrained 

~ Drained 

Undrained → drained 

to 1046 kN 

to 668 kN 

to 159 kN 

199 kN 

to 20 kN 
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2.7.2.3 Other soils 

Castro et al. (1989) showed that the ground shale layer was mainly composed of widely 

graded sand and silty sand. SPT test results indicate that this layer was in a dense condition (Castro 

et al. 1989). The rolled fill at the top was a mixture of heavy clay and gravel (Seed et al. 1973). 

Also, this layer was in a dense condition, based on SPT results (Castro et al. 1989). Its behaviour 

was assumed to be strain-softening, as clear shear bands were observed in the field. The berm also 

consisted of rolled fill. Furthermore, the alluvium consisted primarily of stiff clay with lenses of 

sand and gravel. However, slip surfaces were not observed in this layer. 

 

2.7.2.4 Constitutive models 

Several constitutive models have been implemented in the numerical analysis of the Lower 

San Fernando Dam failure (e.g., Gu et al. 1993; Huang and Zienkiewicz 1998; Ming and Li 2003; 

Khoei et al. 2004). Most of them have been developed to model the dynamic response of the soil 

so that the deformation and failure mechanism at the co-seismic stage can be analyzed. Gu et al. 

(1993) has adopted a simplified undrained model for the post-failure behaviour of liquefiable soils 

(Fig. 2.15). The strain-softening behaviour was modeled by using a hyperbolic stress−strain 

relationship. This model was implemented to show the post-failure deformation of the Lower San 

Fernando Dam failure by successfully modeling a stress redistribution process. However, the whole 

post-failure stage was not fully addressed. One possible reason could be that a traditional 

Lagrangian-based FE was used, and a convergence issue occurred under a certain level of 

deformation. 
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Figure 2.15 Simplified undrained model for liquefiable soils (Gu et al. 1993) 

Besides the simulation by Gu et al. (1993), the deformation was mostly limited to a 

relatively small range in previous numerical studies of the Lower San Fernando Dam failure. Their 

constitutive models were not tailored for a large-deformation analysis. Therefore, appropriate 

constitutive models that are capable of large-deformation analysis need to be selected or proposed 

for this study. 

 

2.8 Summary 

The literature review presented in this chapter shows that the modeling of strain localization 

in a large-deformation FE program needs further research. Many geotechnical failures are of the 

progressive type, always accompanied by the strain-softening behaviour of soils. However, when 
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incorporating the strain-softening behaviour in a finite element code, mesh dependency issues 

occur, leading to an unreliable result. Researchers have proposed varieties of regularization 

techniques to address the mesh dependency issues, and element size scaling and the nonlocal 

method are among them. Nevertheless, very few publications discussed the capability of various 

regularization techniques for a large-deformation numerical technique. A comparison between 

different regularization techniques is needed to guide their implementations in large-deformation 

programs. Only the element size scaling technique has been implemented in Eulerian-based FE so 

far. Other regularization techniques need to be implemented to understand which is the best of 

practice for Eulerian-based FE. Softening scaling is a method to reduce the computational cost of 

shear band modeling. The effectiveness of softening scaling for local and nonlocal methods needs 

to be examined. Seepage modeling is another important topic for a large-deformation geotechnical 

engineering analysis. While the available Eulerian elements are single-phase, an innovative 

approach will be required to model the seepage and establish the in-situ stresses in Eulerian-based 

FE. 

A large number of studies investigated the failure of the Lower San Fernando Dam in 1971. 

While the LE and FE methods can address the early stage of the failure, a large-deformation 

analysis is still needed to help us understand the post-failure mechanisms. Appropriate soil 

constitutive models capable of large-deformation modeling need to be implemented or developed 

to model the strain-softening behaviour of the multiple soil layers in this dam. This famous dam 

failure is also a great case for the calibration of the seepage modeling technique in Eulerian-based 

FE. 
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CHAPTER 3 

A novel nonlocal Eulerian-based finite-element approach for strain-softening materials 

 

Co-Authorship: This chapter will be submitted as a technical paper for publication in a journal as: 

Chen, J., Hawlader, B., Roy, K. and Pike, K., “A novel nonlocal Eulerian-based finite-element 

approach for strain-softening materials”. 

Most of the research work presented in this chapter was conducted by the first author. He also 

prepared the draft manuscript. The other authors supervised the research and reviewed the 

manuscript. 

 

3.1 Abstract 

The dependency of finite element (FE) results on mesh size is a major concern for the 

numerical analysis of strain-softening materials. The local methods of strain regularization rely on 

the shear strains of a solitary point. However, the nonlocal methods incorporate strain-softening, 

including the strain in surrounding soil elements which show less mesh dependency. Previously, 

nonlocal methods were mostly implemented in Lagrangian-based FE programs and simulated the 

response for small to moderate strain levels. However, many geotechnical problems, such as large-

scale landslides in sensitive clays, involve extremely large deformation. This study presents the 

implementation of the original and two modified nonlocal methods in a Eulerian-based large 

deformation FE program using a relatively simplified approach where simple soil models such as 

von-Mises criteria for undrained behaviours can be used. Two biaxial compression tests are 
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simulated by using the nonlocal Eulerian-based FE program, and the results are compared with a 

nonlocal Lagrangian-based FE analysis and a nonlocal Material Point Method (MPM) of 

simulation, respectively. Among the three, the modified nonlocal methods, especially the over-

nonlocal method, show a better performance in mesh convergence analysis. Several approaches 

have been proposed to minimize the computational costs, as nonlocal modeling is generally 

computationally expensive. 

 

3.2 Introduction 

Strain-softening of soil occurs on many occasions, depending upon soil type and loading 

conditions; for example, drained loading of dense sand, highly overconsolidated or structured clay, 

and undrained loading of loose sand and sensitive clays. The strain-softening would not be a major 

concern if the shear stress under the working load were below the peak shear strength. However, 

in many geotechnical problems (e.g., landslides in sensitive clay, flow slides in loose sand), the 

post-peak strength degradation governs the response. The failure planes in strain-softening 

materials generally develop by progressive formation of shear bands. Numerical modeling of such 

progressive failure is challenging because the solution might be significantly dependent on the 

finite-element (FE) mesh size.  

Mesh convergence analysis is generally performed in FE analysis to identify the optimum 

global mesh size, below which the reduction of mesh size does not significantly change the 

simulation results. However, strain-softening soil behaviour could turn the governing differential 

equations from a hyperbolic (in non-softening materials) into an elliptical nature, which could lead 
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to an ill-posed initial boundary value problem for a dynamic case (Bažant and Belytschko 1985), 

while ellipticity of governing differential equations is lost for a static or quasi-static problem (de 

Borst and Verhoosel 2017). Therefore, despite the global mesh convergence analysis, the FE results 

can still significantly depend on the mesh size, especially for strain-softening materials. 

To address the issues related to mesh dependency, various strain regularization approaches 

have been developed and implemented in numerical techniques, such as element size scaling 

(Anastasopoulos et al. 2007), nonlocal methods (Bažant and Lin 1988; Brinkgreve 1994; Conte et 

al. 2010; Galavi and Schweiger 2010; Summersgill 2014), viscoplastic models (Loret and Prevost 

1990), strain gradient models (de Borst and Mühlhaus 1992), polar models or Cosserat continuum 

models (de Borst et al. 1993; Tejchman and Bauer 1996). Most of these studies were restricted to 

small strain FE analyses. However, convergence issues or excessive mesh distortions could occur 

in a conventional small-strain Lagrangian-based FE analysis. Therefore, a large-deformation 

problem, like landslides, could not be modeled using such programs. 

Strain regularization has been discussed in several studies using large-deformation analysis 

techniques that do not experience convergence or mesh distortion issues. For example, the Smooth 

Particles Hydrodynamics (SPH) method is proven to be an inherently nonlocal method, though a 

certain value of smoothing length is required to address the spatial resolution dependency 

(Vignjevic et al. 2014). Chen and Qiu (2014) also showed that sensitivity to spatial resolution is 

still significant in a slope failure analysis using SPH without a regularization technique. A 

viscoplastic constitutive model was implemented in another large-deformation analysis technique, 

the Point Finite Element Method (PFEM), and a mesh independent solution was presented from a 
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1D extension test and a collapse test of a sensitive clay column (Zhang et al. 2017). However, 

Thakur (2007) recognized that unusually high viscosity values are needed for a mesh size 

independent solution. Nonlocal formulations were implemented in PFEM (Monforte et al. 2019), 

Remeshing and Interpolation Technique with Small Strain (RITSS) (Singh et al. 2021), and in 

MPM (Burghardt et al. 2012; Goodarzi and Rouainia 2017). In other words, limited applications 

of nonlocal methods for large-deformation problems are available in the literature, and most of 

them have used in-house computer codes. The implementation of different nonlocal methods in a 

commercial large-deformation FE program and comparison of their performance will be beneficial 

for future researchers and engineering practice. In the present study, three nonlocal methods are 

implemented in the commercial Eulerian-based FE solver of Abaqus, which is capable of modeling 

large-deformation geotechnical engineering problems (Dey et al. 2015; Qiu et al. 2011). 

The chapter has been organized in the following way. First, some fundamental concepts of 

Eulerian-based FE analysis and different types of nonlocal methods are introduced. Second, the 

algorithms to implement the nonlocal Eulerian-based FE model in the software are presented. 

Third, the results of two biaxial loading cases in the nonlocal Eulerian-based FE are benchmarked 

with a nonlocal Lagrangian-based FE program and a nonlocal MPM program. Finally, the 

effectiveness of three nonlocal methods and the computational cost of both local and nonlocal 

models are discussed. 
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3.3 Eulerian-based finite-element method 

In the conventional Lagrangian-based FE analyses, nodes move with the material, and mesh 

deforms as the material deforms. The Lagrangian-based FE elements are filled with a single 

material. Therefore, the material boundary coincides with the boundary of the mesh. Due to these 

features, excessive mesh distortion or convergence issues occur in the large deformation modelling. 

However, in a Eulerian-based FE analysis, the mesh is permanently fixed, and the deformation can 

be viewed as material flow through the fixed mesh. In other words, the mesh distortion can be 

avoided in a Eulerian-based FE analysis. 

An operator splitting algorithm is used in Abaqus/Explicit for Eulerian-based FE 

formulations. Equation (3.1) shows the general form of the governing equations, which is divided 

into two steps, a Lagrangian step (Eq. (3.2)) followed by a Eulerian step (Eq. (3.3)) (Benson and 

Okazawa 2004). As shown in Fig. 3.1, the Lagrangian step is the same as in the conventional 

Lagrangian formulation except for the use of the spatial time derivative instead of the material time 

derivative (Benson and Okazawa 2004). In the Eulerian step, the solution variables, which are 

calculated from the Lagrangian step, are remapped on the permanently fixed mesh using a second-

order advection algorithm proposed by Van Leer (1977). As a result of this operator splitting 

algorithm, Eulerian-based finite-element analysis does not suffer from any mesh distortion when 

dealing with a large deformation problem. 

 
𝜕ϕ

𝜕𝑡
+ ∇ ∙ 𝚽 = 𝐒     (3.1) 

 
𝜕ϕ

𝜕𝑡
= 𝐒    (3.2) 
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𝜕ϕ

𝜕𝑡
+ ∇ ∙ 𝚽 = 0 (3.3) 

where ϕ is the arbitrary solution variable; /t is the spatial time derivative of ϕ; Φ is the flux 

function, and S is the source term. An explicit central difference method is adopted to advance the 

solution in time as: 

 𝐚n = 𝐌−1(𝐅ext−𝐅int)     (3.4) 

 𝐯n+1/2 = 𝐯n−1/2 + ∆𝑡𝐚n    (3.5) 

 𝐱n+1 = 𝐱n + ∆𝑡𝐯n+1/2 (3.6) 

where a is the spatial acceleration; M is the diagonal lumped mass matrix; Fint is the internal force 

vector; Fext is the external force vector, and x is the position vector. The superscript n denotes the 

number of time increments, and n ± 1/2 represents the center of each time increment. 

 

 

Figure 3.1 The operator splitting for Eulerian-based finite-element method 

 

3.4 Nonlocal strain regularization 

Several studies showed that, of the available regularization techniques, the nonlocal 

methods provide a viable solution, including post-localization in the shear band for different 
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applications and strain levels considered (e.g., Sluys 1992; de Borst et al. 1993; Summersgill et al. 

2017a; Mallikarachchi and Soga 2020). Various nonlocal methods have been proposed and 

implemented, such as the original nonlocal method (Eringen 1981; Bažant et al. 1984), the G&S 

nonlocal method (Galavi and Schweiger 2010), and the over-nonlocal method (Brinkgreve 1994). 

These three nonlocal methods have been implemented in the Imperial College finite-element 

program (ICFEP) (Summersgill 2014; Summersgill et al. 2017a; b). Summersgill (2014) also stated 

that a conventional Lagrangian-based FE has inherent difficulty in handling large displacement 

slope failure due to ‘severe distortion of elements within a continuum mesh.’ For example, a 

nonlocal Lagrangian-based FE analysis of a biaxial test was terminated at a relatively small vertical 

displacement (4.6 mm) due to the convergence issue (Mánica et al. 2018). In other words, many 

applications of nonlocal methods, as they were implemented with a conventional Lagrangian-based 

FE, are not suitable for significantly large deformation problems. In the present study, the original 

nonlocal, G&S nonlocal, and over-nonlocal methods are applied to Eulerian-based FE code, which 

is free from mesh distortion and convergence issues. 

 

3.4.1 The original nonlocal method 

The nonlocal strain increment of the original nonlocal method (Bažant et al. 1984; Eringen 

1981) is calculated from Eqs. (3.7–3.9). 

𝑑εq(NL)

p (𝐱n) =
1

𝑉w
∭[ωo(𝐱n

′ )𝑑εq
p(𝐱n

′ )]𝑑𝑥′𝑑𝑦′𝑑𝑧′ (3.7) 

ωo(𝐱n
′ ) =

1

𝑙√π
exp [−

|𝐱n
′ − 𝐱n|2

𝑙2
] (3.8) 
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𝑉w = ∭ ωo(𝐱n
′ )𝑑𝑥′𝑑𝑦′𝑑𝑧′ (3.9) 

where 𝑑εq(NL)

p (𝐱n) is the nonlocal equivalent plastic shear strain increment at the integration point 

at location 𝐱n  where the subscript n denotes the dimension of the model; 𝑑εq
p(𝐱n

′ )  is the 

equivalent plastic shear strain increment at location 𝐱n
′  which refers to all the reference integration 

points for location 𝐱n; ωo(𝐱n
′ ) is a Gaussian-type weight function that is centered at the point 

𝐱n, defining the weight of all the reference points 𝐱n
′  in the calculation of 𝑑εq(NL)

p (𝐱n); l is an 

internal length parameter that is related to the shear band width; 𝑉w is the reference volume, where 

𝑥′, 𝑦′ and 𝑧′ are the three dimensions. Figure 3.2(a) shows the included reference integration 

points for the nonlocal strain calculation for one Eulerian element. The radius of influence (rinf) 

specifies the range of the reference integration points. The nonlocal equivalent plastic shear strain 

value remains constant when rinf > 3l (Summersgill et al. 2017a). 

The variation of weighting function with distance from the calculation point for the original 

nonlocal method (l = a) with different mesh sizes (tFE) is shown in Fig. 3.2(b). The gap between 

the distribution function and FE discretized segments is smaller for a finer mesh. In other words, 

an adequately fine mesh is required to capture the shape of the weighting function of the nonlocal 

methods. 
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Figure 3.2 (a) Reference integration points for nonlocal calculation; (b) the variation of weighting 

function 

 

3.4.2 The G&S nonlocal method 

The G&S nonlocal method is proposed by Galavi and Schweiger (2010). A different 

weighting function, ωg(𝐱n
′ ) (Eq. (3.10)), substitutes the original nonlocal weight function, ωo(𝐱n

′ ), 

in Eqs. (3.7) and (3.9) to calculate the nonlocal equivalent plastic shear strains. 

ωg(𝐱n
′ ) =

|𝐱n
′ − 𝐱n|

𝑙2
exp [−

|𝐱n
′ − 𝐱n|2

𝑙2
] (3.10) 
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3.4.3 The over-nonlocal method 

The over-nonlocal method  adopted a new formulation (Eq. (3.11)) to calculate the 

nonlocal equivalent plastic shear strain increment, 𝑑εq(NL)

p
 (Brinkgreve 1994). 

𝑑εq(NL)
p (𝐱n) = (1 − α)𝑑εq

p(𝐱n) +
α

𝑉w
∭[ωo(𝐱n

′ )𝑑εq
p(𝐱n

′ )]𝑑𝑥′𝑑𝑦′𝑑𝑧′ (3.11) 

where  is the amplification factor, which was introduced to reduce the contribution of the local 

strain to the nonlocal strain; ωo(𝐱n
′ ) can be calculated from a Gaussian-type formulation (e.g., Eq. 

(3.8)); 𝑉w is calculated using Eq. (3.9).  should be larger than 1.0 when using the over-nonlocal 

method (Brinkgreve 1994). However, the value for  has to be determined based on a ‘trial-and-

error’ process (Summersgill et al. 2017a). Note that when  = 0, it turns to the local method where 

no regularization is applied; when  = 1.0, Eq. (3.11) changes into Eq. (3.7), the original nonlocal 

formulation.  

The weighting function of the over-nonlocal method, ωov(𝐱n
′ ), can be deduced from Eq. 

(3.11), by combining a concentrated weight function, ωloc(𝐱n
′ ), and the original nonlocal weight 

function, ωo(𝐱n
′ ), as shown in Eqs. (3.12) and (3.13). 

ωov(𝐱n
′ ) = (1 − α) ∙ ωloc(𝐱n

′ ) ∙ 𝑉w + α ∙ ωo(𝐱n
′ ) (3.12) 

ωloc(𝐱n
′ ) = {𝑡FE

−dim,  for the centre element

0,  for other elements
 (3.13) 

where tFE is the element size; dim is the dimension of the problem (e.g., dim = 1 for one-

dimensional problem). The main advantage of this over-nonlocal weight function (Eq. (3.12)) is to 

enable a direct comparison with original and G&S nonlocal weight functions (Fig. (3.3)). Figure 
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3.3 shows the three weight functions for a one-dimensional condition, where Vw equals 1. Note that 

the ωo(𝐱n
′ ) here for the over-nonlocal method is computed from Eq. (3.8). Figure 3.3 shows that 

the original nonlocal weight function has its peak at the center, which means that the nonlocal strain 

of one integration point is still largely dependent on its local strain and thus could possibly lead to 

an undesirable effect on strain regularization. However, both over-nonlocal and G&S nonlocal 

weight functions present a low weight at the center, which facilitates more plastic energy diffusion 

outside the shear localization zone. Further discussions on the three nonlocal methods are provided 

in later sections with evidence from numerical tests. 

 

Figure 3.3 Comparison of the three nonlocal weight functions 

(l = 0.1 m;  = 2.0 for over-nonlocal method) 
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3.5 Implementation of nonlocal methods in Eulerian FE code 

The mathematical formulations used to implement the nonlocal method are presented in 

this section. The von Mises yield criterion with undrained strain softening is adopted. Note, 

however, that a similar algorithm can be used for other constitutive models of soil with necessary 

changes in appropriate locations. 

3.5.1 The von Mises failure criterion with strain-softening 

The radial return algorithm (Wilkins 1964) is adopted to compute the equivalent plastic 

strain increment 𝑑εq
p
 for each time increment (Fig. 3.4). As shown in Eq. (3.14), the difference 

between the yield strength at the end of each time increment, σy
(2)

, and the yield strength at the 

beginning of each time increment, σy
(1)

, are the product of hardening modulus, H, and the 

equivalent plastic strain increment, 𝑑εq
p
. In a strain-softening scenario, H is negative, and σy

(2)
is 

less than σy
(1)

 (as shown in Fig. 3.4). 

σy
(2)

= σy
(1)

+ 𝐻𝑑εq
p
 (3.14) 

σy
(2)

 and 𝑑εq
p
 remain unknown at the beginning of each time increment; thus, as seen in 

Eqs. (3.15–3.17), a trial stress, 𝛔t, is introduced to build another equation that contains σy
(2)

 and 

𝑑εq
p
 so that their values can be calculated from a system of linear equations with two unknowns. 

𝛔t = 𝛔(1) + 𝐂𝑑𝛆 = 𝛔(1) + 𝐂(𝑑𝛆𝐞 + 𝑑𝛆𝐩) = 𝛔(2) + 𝐂𝑑𝛆𝐩 (3.15) 

where 𝛔(1) is the stress tensor at the beginning of each time increment. 
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Figure 3.4 The return method for the von Mises softening model 

 

From Eq. (3.15), we can derive that: 

σv
t = σy

(2)
+ 3𝐺𝑑εq

p
 (3.16) 

where σv
t , the von Mises stress at the trial state, is calculated from Eq. (3.17). In this equation, 𝐬t 

is the deviatoric stress tensor of the trial stress. 

σv
t = √

3

2
𝐬t: 𝐬t (3.17) 

Based on Eqs. (3.14) and (3.16), 𝑑εq
p
 can be calculated from Eq. (3.18). 
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𝑑εq
p

=
σv

t − σy
(1)

𝐻 + 3𝐺
 (3.18) 

where G is the shear modulus. 

σy
(2)

 can be computed from Eq. (3.16), after 𝑑εq
p

 is calculated. Equation (3.19) is then 

established to calculate the deviatoric stress tensor at the end of the time increment, 𝐬(2). Further 

details of the calculation of 𝐬(2), are shown in Eq. (3.20) and Fig. 3.4. Note that 𝐬(2) here is the 

deviatoric stress tensor without any implementation of strain regularization, as only the local strains 

are used at this point. 

𝐬(2)

σy
(2)

=
𝐬t

σv
t
 (3.19) 

𝐬(2) =
𝐬t

σv
t

∙ σy
(2)

=
𝐬t

σv
t

∙ (σv
t − 3𝐺 ∙ 𝑑εq

p
) = 𝐬t ∙

σy
(2)

σy
(2)

+ 3𝐺 ∙ 𝑑εq
p

= 𝐬t ∙
σy

(1)
+ 𝐻𝑑εq

p

σy
(1)

+ 𝐻𝑑εq
p

+ 3𝐺 ∙ 𝑑εq
p
 

(3.20) 

 

3.5.2 Nonlocal implementation for the von Mises criterion 

The nonlocal equivalent plastic strain (𝑑εq(NL)
p

) is calculated from Eqs. (3.7–3.11) based on 

the local equivalent plastic strain increment (𝑑εq
p

). The yield strength at the end of the time 

increment with the nonlocal strain ( σy(NL)
(2)

) is then computed using Eq. (3.21). Thereafter, 

substituting σy
(2)

 with σy(NL)
(2)

 in Eq. (3.20), Eq. (3.22) can be obtained, which is used to calculate 

the deviatoric stress tensor at the end of the time increment with the nonlocal strain regularization, 

𝐬(NL)
(2)

. 
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σy(NL)
(2)

= σy
(1)

+ 𝐻𝑑εq(NL)
p

 (3.21) 

𝐬(NL)
(2)

=
𝐬t

σv
t

∙ σy(NL)
(2)

= 𝐬t ∙
σy

(1)
+ 𝐻𝑑εq(NL)

p

σy
(1)

+ (𝐻 + 3𝐺) ∙ 𝑑εq
p
 (3.22) 

Considering the high computational cost in large-deformation analyses, the local strains of 

the previous time increment are used to calculate the current nonlocal equivalent plastic strain, 

𝑑εq(NL)
p

, without an iteration for each time increment. Note that previous studies also avoided such 

iterative processes (Tvergaard and Needleman 1995; Galavi and Schweiger 2010; Summersgill 

2014). The time increment should be small enough to have a reliable solution (Tvergaard and 

Needleman 1995). As an explicit approach is used in this study, the time increments are naturally 

minimal; therefore, a non-iterative nonlocal calculation is acceptable. Further validation of the 

developed numerical technique is presented in later sections. The computational procedure is 

shown in Algorithm 3.1. 

In the present study, the nonlocal regularization together with the von Mises model is 

implemented in the Eulerian FE code available in Abaqus/Explicit. Fortran codes are developed 

using user subroutines VUMAT, VEXTERNALDB, and VUSDFLD. Note that nonlocal methods 

have also been implemented previously in this software; for example, in Abaqus/Standard for 

drained and undrained behaviour of dense sand adopting the NorSand critical state model 

(Mallikarachchi and Soga 2020) and in Arbitrary Lagrangian Eulerian (ALE) code in 

Abaqus/Explicit for metal softening (Zhu 2017). However, the implementation in the Eulerian 

approach is different, because there are a limited number of options available in the element library, 
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and the mesh is fixed. An efficient algorithm, with the capability of parallel computing, needs to 

be developed, as the Eulerian FE can be computationally very expensive for a large-scale problem.  

Algorithm 3.1 Implementation of nonlocal methods with von Mises yield criterion 

 

 

 

 

When an integration point is near the material boundary, its nonlocal weight function covers 

a certain area of the void, in which no soil exists (i.e., EVF = 0). In that case, the void area is not 

included in the calculation of Vw, reference volume (Eq. (3.9)), and thus 𝑑εq(NL)
p

, the nonlocal 

equivalent plastic strain increment (Eq. (3.7) or (3.11)). In the subroutine, EVF is called and stored 

as a state variable which is then used to identify the zone of void in the reference volume. 

do loop for integration points k = 1: NOEL, where NOEL = number of elements 

   - Compute trial stress, 𝛔t [Eq. (3.15)] 

   - Compute σv
t  [Eq. (3.16)] 

   - Obtain 𝑑εq(NL)

p
 from the Fortran module 

   - Update H based on constitutive relationship and σy
(1)

 

   - Update σy(NL)
(2)

 [Eq. (3.21)] 

   if σv
t > σy

(1)
 then 

      - Compute  𝑑εq
p
 [Eq. (3.18)] and pass it to the module 

      - Update stress components [Eq. (3.22)] 

   else 

      - Update stress components using 𝛔t from Eq. (3.15) 

   end if 

   - Calculate x(k) and y(k) [Eqs. (3.23) & (3.24)] 

   - Store x(k) and y(k) in the module 

end do loop 

- Compute 𝑑εq(NL)

p
 [Eq. (3.7) or Eq. (3.11)] using Algorithm 3.2 or Algorithm 3.3 

- Update 𝑑εq(NL)

p
 in the Fortran module  
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Figure 3.5 is a flowchart that explains the main components of the implementation of 

nonlocal methods. At the beginning of each time increment, the stress and strain tensors of the 

previous time increment are obtained as inputs from the VUMAT. As shown in Fig. 3.6, the 

information of the elements in the reference volume around the element of interest (element X) is 

needed for nonlocal implementation. In other words, element numbers are required, but are 

available in the VUMAT subroutine. Therefore, following the work of Zhu (2017), a subroutine 

VUMATXTRARG is developed where all the information from VUMAT is passed, and the 

element number is called. Essentially, a major part of the program is written in this subroutine. In 

the software, the coordinates of the integration point (the center of each element) cannot be called 

directly from the VUMAT subroutine; therefore, they are calculated from the element number in 

the VUMATXTRARG subroutine.  

Efficiently searching the elements in the control volume (within the circle in Fig. 3.6) is 

very important because it significantly influences the computational cost. In the present study, a 

structured mesh of uniform cubical elements is used. Instead of element numbers being 

auto-generated by the software, the element numbers are given in a sequence, as illustrated in Fig. 

3.6 with a few elements. This definition helps find the elements in control volume easily instead of 

searching the whole domain based on coordinates of the integration points. As shown in the left 

part of Fig. 3.6, the element number increases by one in the vertical direction and then continues 

in the same way in the next column. Therefore, the coordinates of the integration point of kth 

element (x(k), y(k)) are: 
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𝑥(𝑘) = 𝑡FE ∙ ⌊(𝑘 − 1) 𝑁𝑦⁄ ⌋ + 𝑡FE 2⁄  (3.23) 

𝑦(𝑘) = 𝑡FE ∙ mod[(𝑘 − 1), 𝑁𝑦] + 𝑡FE 2⁄  (3.24) 

where the ‘ ’ are the floor brackets, Ny means the total number of rows of elements, ‘mod’ is the 

remainder calculator. 

 

 

Figure 3.5 Implementation of nonlocal von Mises model in Eulerian-based FE 
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Figure 3.6 The nonlocal searching algorithm for Eulerian-based FE 

 

The variables are called or calculated in a subroutine and then made available in the other 

subroutines using state variables. For example, the equivalent plastic shear strain (𝑑εq
p

) that is 

computed in VUMAT, the EVF that is obtained in VUSDFLD, together with the coordinates of 

integration points, are stored in global variables and passed to VEXTERNALDB for the calculation 

of the nonlocal equivalent plastic strain increments, 𝑑εq(NL)
p

, to determine the amount of shear 

strength reduction. The new stress tensors are then updated based on Eq. (3.22). 

 

3.5.3 Attempts to improve computational efficiency 

Without any optimization, the computational cost of this nonlocal program can be 

extremely high, as the nonlocal averaging occurs at every element for every time increment. This 
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process requires calling the global arrays for NOEL2 times in each time increment (Algorithm 3.2). 

Moreover, the existing versions of Abaqus/Explicit support only linear brick elements with reduced 

integration, which means that there is only one integration point in each element. Therefore, to 

incorporate a sufficient number of elements around the thin shear band, an adequately small mesh 

needs to be used. This increases the computational cost further. For example, if 100,000 Eulerian 

elements are used to model a large-scale landslide, a global array (e.g., the coordinates of an 

integration point) will be called for 100,000  “total number of time increments” times. The total 

number of time increments is generally large (i.e., minimal time increment) in an explicit FE 

analysis, and calling global arrays is generally expensive. This computational cost can easily be far 

beyond the capability of conventional computational resources. Therefore, special treatments of 

the nonlocal algorithm are conducted to reduce the computational time, and especially for large 

problems such as landslides. In this study, the following steps are taken. 

Algorithm 3.2 Calculation of nonlocal strains without optimization 

 

 

 

 

 

 

 

 

 

 

do loop for i = one : NOEL 

   do loop for k = one : NOEL 

      - Compute |𝐱n
′ (𝑘) − 𝐱n(𝑖)| 

      if |𝐱n
′ (𝑘) − 𝐱n(𝑖)| ≤ 𝑟inf then 

        - Compute ωo(𝐱n
′ (𝑘)) or ωg(𝐱n

′ (𝑘)) [Eq. (3.8) or (3.10)] 

        - Obtain 𝑑εq
p
(𝐱n

′ (𝑘)) in the VUMAT from the module 

        - Compute ωo(𝐱n
′ (𝑘))𝑑εq

p(𝐱n
′ (𝑘)) or ωg(𝐱n

′ (𝑘))𝑑εq
p(𝐱n

′ (𝑘)) 

      end if 

   end of do loop 

   - Calculate 𝑑εq(NL)

p (𝐱n(𝑖)) [Eq. (3.7) or (3.11)] 

end do loop 
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Step 1: Nonlocal strains were calculated only for the elements filled with soil. As shown in 

Algorithm 3.3 (2nd and 3rd lines), all the void elements (EVF = 0) are excluded from the search; 

instead, a zero nonlocal strain increment is given. 

Algorithm 3.3 Calculation of nonlocal strains with optimization 

Run the calculations below only when mod (a, m) = 0, otherwise, 𝑑εq(NL)

p (𝐱n) 

equals its value at the end of the previous time increment, a – 1. (a is the current 

number of time increments) 

 

do loop for i = one : NOEL 

   if EVF(i) = zero, then 

     - 𝑑εq(NL)

p (𝐱n(𝑖)) = 0 

   else 

   - lower = max[(i - Ny  rinf/l), one] 

   - upper = min[(i + Ny  rinf/l), NOEL] 

   do loop for k = lower : upper 

      - Compute |𝐱n
′ (𝑘) − 𝐱n(𝑖)| 

      if |𝐱n

′
(𝑘) − 𝐱n(𝑖)| ≤ 𝑟inf, then 

        - Compute ωo(𝐱n
′ (𝑘)) or ωg(𝐱n

′ (𝑘)), from Eq. (3.8) or (3.10) 

        - Obtain 𝑑εq
p
(𝐱n

′ (𝑘)) from the VUMAT using the module 

        - Compute ωo(𝐱n
′ (𝑘))𝑑εq

p(𝐱n
′ (𝑘)) or ωg(𝐱n

′ (𝑘))𝑑εq
p(𝐱n

′ (𝑘)) 

      end if 

   end do loop 

   - Calculate 𝑑εq(NL)

p (𝐱n(𝑖)), from Eq. (7) or (11) 

   end if 

end do loop 
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Step 2: This step is to reduce the time of each sub-loop (4th to 14th lines in Algorithm 3.3) 

which is used for the nonlocal averaging. Only the distances to a certain range of integration points 

that are defined with lower and upper bounds in the 5th and 6th lines (shown schematically by the 

shaded area in Fig. 3.6), rather than to all the integration points, are calculated to decide the 

included integration points in the nonlocal calculation for each integration point. By identifying 

the number of each element with the lower and upper bounds, most of the elements are excluded 

in each sub-loop, which means only the information of these shaded columns of elements that cover 

the control volume (radius of rinf, in Fig. 3.6) are called. This approach significantly reduces the 

computational cost. 

Step 3: For an explicit FE program, the nonlocal averaging can be performed once for every 

10 to 100 time increments rather than doing it for every time increment (e.g., Wisselink and Huetink 

2009). As shown in the 1st line in Algorithm 3.3, the same approach is implemented in the nonlocal 

Eulerian-based FE, where the nonlocal averaging is conducted every m-th time increment. This 

could also largely reduce the computational cost because the nonlocal averaging accounts for the 

major portion of total computational time. In the present study, the first benchmarking program 

(Case I) does not include this technique (m = 1 is used). Comparing it with the second benchmark 

solution (Case II), the accuracy and computational cost are examined for varying m. Further details 

are provided in the next sections. 

In addition, CPU parallel computing is used to boost computational efficiency. However, 

with the default setting of parallel computing in Abaqus/Explicit, each process cannot access the 

global arrays that are stored in other processes. This can cause a significant inaccuracy of the results 
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when the needed information of neighbouring elements needs to be collected from other processes. 

To solve this problem, a Message Passing Interface (MPI) routine, MPI_Allreduce, is implemented 

to collect global arrays from all processes and distribute the result back to all processes. 

 

3.6 Numerical simulation 

The effectiveness of implemented nonlocal methods in Eulerian-based FE program (NL-

EFE) is shown by simulating the following two biaxial loading cases (Figs. 3.7(a) and 3.7(b)). The 

NL-EFE simulation results are compared with nonlocal methods previously implemented into two 

numerical techniques: (a) Lagrangian-based FE program ICFEP (NL-ICFEP) (Summersgill et al. 

2017a), and (b) Material Point Method (NL-MPM) (Burghardt et al. 2012). Note that the latter 

approach can handle large deformation. However, it is not commercially available. 

Case I: Biaxial compression tests have been used in previous studies to show the 

performance of numerical techniques (Brinkgreve 1994; Lu et al. 2012; Summersgill et al. 2017a). 

In some studies, the simulations were performed without any initial confining pressure (Brinkgreve 

1994; Lu et al. 2012), while Summersgill et al. (2017a) simulated softening due to drained and 

undrained loading after applying 100 kPa and 50 kPa initial pressure on the lateral and vertical 

directions, respectively. In case I of the present study, the simulation is performed without any 

initial confining pressure. Note that the confining pressure should not affect the assessment of the 

performance of NL-EFE simulation for undrained loading because the mobilized undrained shear 

strength is independent of confining pressure. 
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Case II: Implementing nonlocal methods in MPM, Burghardt et al. (2012) modelled the 

failure of a block of gravityless hypothetical material having strain-softening behaviour in plane 

strain condition (Fig. 3.7(b)). The same problem is modelled using the present NL-EFE. A 4 m  

5 m block, which has a weaker zone (1 m  1 m) at the bottom left corner, is modelled. 

 

3.6.1 FE model development 

The Coupled Eulerian-Lagrangian (CEL) approach available in Abaqus/Explicit FE 

software is used. In this software, the Eulerian approach has been implemented only for three-

dimensional elements. Therefore, the analyses are performed with only one element length in the 

out-of-plane direction to simulate the plane strain condition. Eulerian domains of 1.2 m  1.1 m 

and 5.0 m  5.1 m in plane are created first for case I and case II, respectively (Figs. 3.7(a) and 

3.7(b)). The domains are discretized into 0.1 m, 0.05 m, 0.025 m, and 0.0125 m cubical eight-node 

linear brick elements (EC3D8R in the software) for Case I and 0.25 m, 0.125 m, and 0.0625 m 

cubical EC3D8R for Case II. The EVF is used to define the material; EVF = 1 for the elements 

filled with material (1.0 m  1.0 m soil block in case I and 4 m  5 m in case II), while the rest of 

the domain is void (EVF = 0). The loading caps at the top (Figs. 3.7(a) and 3.7(b)) are first 

discretized using Lagrangian elements and then transferred to a rigid body.  

Zero velocity boundary conditions are applied normal to the bottom and out-of-plane 

directions. For Case I, vx = 0 is applied at the (symmetrical) left vertical face while no boundary 

condition is applied to the right vertical face, to ensure that the Eulerian material (soil) can move 

into the void when loaded. For case II, no boundary condition is applied to the left and right vertical 
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face, and therefore the Eulerian material can move to the void on both sides. The rigid cap is 

displaced downward at a uniformly vertical velocity of 0.01 m/s and 7.5 m/s for case I and case II, 

respectively, maintaining a quasi-static condition. Rough and smooth interface conditions between 

soil and rigid cap are used for case I and case II, respectively. 

 

Figure 3.7 (a) Geometry and boundary conditions of Case I; (b) geometry and boundary 

conditions of Case II; (c) stress-strain curve for the soil 
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3.6.2 Modeling of soil 

A bi-linear post-peak strength degradation relation is used (Fig. 3.7(c)). In this figure, εq
p

  

is the equivalent plastic shear strain that represents the integration of the plastic deviatoric strain 

rate tensor (ε̇ij
p
) over the period of analysis (t): εq

p
= ∫ √

2

3
ε̇ij

p
: ε̇ij

p
𝑑𝑡

𝑡

0
. The shear strength reduces 

from the peak (p) to the residual (r) at εqr
p

 and then remains constant. The linear elastic pre-post 

behaviour is governed by Young’s modulus (E) and Poisson’s ratio (). Note that Case I represents 

an undrained loading; therefore, undrained geotechnical properties are used. However, Case II is 

for a hypothetical material (Burghardt et al. 2012) and the material properties may not represent 

typical soil properties. Nevertheless, they are used to validate the numerical modelling technique 

through direct comparison with NL-MPM simulation results. For non-local methods, an internal 

length parameter l of 0.1 m is used. 

The parameters used in these simulations are listed in Table 3.1, which are similar to those 

used by Summersgill et al. (2017a) and Burghardt et al. (2012). This ensures that the performance 

of the present Eulerian modelling is directly comparable to their studies. The Tresca failure 

criterion was used by Summersgill et al. (2017a), while the von Mises criterion is adopted in the 

present study. Therefore, the strengths shown in the second column of Table 3.1 for Case I are 

√3/2 times of the value they used. Also, Summersgill et al. (2017a) used the deviatoric plastic 

strain invariant, which is 1/√3 times of the equivalent plastic shear strain used in this study. The 

von Mises criterion was used by Burghardt et al. (2012) but with slightly different constitutive 

equations. The parameters in the column for Case II are converted from the values adopted by 

Burghardt et al. (2012) to ensure the similarities between the two materials. 
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Table 3.1 Parameters used in CEL analyses 

 

 

 

 

 

 

 

 

 

 

 

3.7 Results 

3.7.1 Case I simulation results 

Figure 3.8 shows the development of the equivalent plastic shear strain (εq
p
) for a vertical 

displacement (v) of 50 mm. For the purpose of discussion, the zone of local εq
p

≥ εqr
p

 is 

considered as the shear band. In the analyses without regularization, strain localization primarily 

occurs within 3–5 rows of elements in the diagonal direction, and the thickness of the shear band 

(tsb) decreases with decreasing element size (Fig. 3.8(a)). Note that, although a defined square shape 

was used in the model, the top right corner (e.g., Fig. 3.8(a)) shows a slightly curved surface 

because of EVF manipulation in the software for contour generation. When nonlocal regularization 

Parameter Case I Case II 

Young’s modulus (MPa) 50  70,000 

Poisson’s ratio 0.49 0.346 

Peak shear strength, p (kPa) 86.6 692,800 (649,500) 

Residual shear strength r (kPa) 43.3 346,400 (324,750) 

Equivalent plastic shear strain requires for strength 

degradation to residual, εqr(NL)
p

(%) 

8.66 10.0 

Internal length parameter, l (m) 0.1 0.5 

Parameter  for over-nonlocal model 1.5, 2.0 2.0 
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methods are used (Figs. 3.8(b)−(e)), the tsb still decreases with the decrease in element size. As 

shown in the first column, a significantly thick shear band forms for 0.1-m mesh. However, for the 

smaller mesh (0.0125–0.05 m), the change in tsb with mesh size is not very significant. Further 

discussions on tsb are presented in Chapter 4. 

Figure 3.9 shows the load−displacement curves for different mesh sizes without 

regularization and with regularization using three nonlocal methods. For comparison, the results 

presented by Summersgill et al. (2017a) using nonlocal ICFEP are also shown in this figure. In 

these figures, the vertical stresses of Summersgill et al. (2017a) are shown by subtracting 50 kPa 

because they used 50 kPa initial confining pressure, while the present simulations are performed 

without confining pressure. As shown in this figure, the nonlocal CEL models with 0.05-m, 0.025-

m, and 0.0125-m mesh are nearly identical with the nonlocal ICFEP using 0.1-m, 0.05-m, and 

0.025-m mesh, respectively, which is because each element has four integration points in ICFEP, 

while only one integration point exists in each Eulerian element in the present CEL modelling. This 

implies that the nonlocal CEL and nonlocal ICFEP present comparable results when the density of 

integration points is the same. However, an exception is shown in Fig. 3.9(e) when α = 2.0 is 

adopted for the over-nonlocal method. A large discrepancy was observed between two curves 

(0.05-m and 0.025-m mesh) from the nonlocal ICFEP, while a mesh-independent solution was 

found in the nonlocal CEL modeling. A large accumulated plastic shear strain, (> 200%), 

developed in the shear zone for 0.025-m mesh and α = 2.0 (Summersgill et al. 2017a), which can 

cause a significant mesh distortion in the analysis using ICFEP with Lagrangian elements. 

However, mesh distortion is not an issue in the present analysis. Therefore, it can be concluded 
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that present nonlocal CEL analysis can simulate the force−displacement response better, even for 

a large strain level. The nonlocal CEL shows some fluctuations in load−displacement curve, due 

to the inherent nature of an explicit FE with contacts between Lagrangian and Eulerian elements. 

 

Figure 3.8 Local equivalent plastic shear strain distribution with different mesh sizes after 50 mm 

vertical displacement 
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Figure 3.9 Load–displacement curves: (a) local model; (b) original nonlocal; (c) G&S nonlocal; 

(d) over-nonlocal ( = 1.5); (e) over-nonlocal ( = 2.0) 

 

3.7.2 Case II simulation results 

Figure 3.10 shows the mesh convergence study for Case II. Figure 3.10(a) shows the 

relationship between applied stress and the apparent axial strain (percent change in height of the 

block) for both the nonlocal CEL and nonlocal MPM models (Burghardt et al. 2012). The applied 

stress is computed as the cap reaction force divided by the initial cross-sectional area. In the 

nonlocal MPM model, Burghardt et al. (2012) used three mesh sizes of 0.25-m, 0.125-m and 
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0.0625-m, and found that the finer two meshes give almost identical results. For clarity, only the 

results with the 0.0625-m mesh in the nonlocal MPM simulations are shown in Fig. 3.10(a). 

Considerable oscillation in stress−strain occurred in the MPM simulation of Burghardt et al. (2012). 

The nonlocal CEL model predicts mesh-independent stress−strain curves for 0.125-m, 0.0625-m, 

and 0.06125-m mesh (Fig. 3.10(a)), and they are comparable with the result from the nonlocal 

MPM of Burghardt et al. (2012). Also, Figs. 3.10(b−d) show the same location of shear bands with 

three different mesh sizes. Note that, following the work of Burghardt et al. (2012), in the 

simulations with the over-nonlocal method, ωo(𝐱n
′ ) = exp[− 4|𝐱n

′ − 𝐱n|2 𝑙2⁄ ]  is used for CEL, 

rather than Eq. (3.8), to calculate nonlocal strains using Eq. (3.11). 

 

Figure 3.10 Simulation results for case II: (a) comparison of axial stress−strain curves for 

nonlocal CEL and nonlocal MPM; (b, c, d) plastic shear strains for 0.125-m, 0.0625-m, and 

0.03125-m meshes 
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The nonlocal plasticity algorithm presented by Burghardt et al. (2012) for the MPM requires 

iterations for each time increment. This involves updating the plastic multiplier (∆λp
𝑘) in the k-th 

iteration, by solving a fixed-point equation based on the updated nonlocal state variables, until 

|∆λp
𝑘 − ∆λp

𝑘−1| is less than the predefined tolerance. The algorithm requires calculating nonlocal 

strains from the strains of the current time increment, which is a challenging task with Abaqus user-

subroutines. This type of algorithm will significantly increase the computational cost because the 

nonlocal averaging can be conducted several times for every element at every time increment. As 

aforementioned, the algorithm developed in the present study does not include any iteration within 

each time increment. Instead, the nonlocal equivalent plastic strain increment (∆q(NL)
p

) that is equal 

to the plastic multiplier (∆λp) for this algorithm is computed from strains of the previous time 

increment. As shown in Figs. 3.9 and 3.10, mesh-independent results are displayed in the present 

nonlocal CEL modelling, which proves that the mesh-independent solution can be correctly 

obtained without iteration for each time increment. 

 

3.8 Discussions 

3.8.1 Comparison of performance of nonlocal methods 

Jostad and Grimstad (2011) found that the over-nonlocal method is more robust than the 

G&S nonlocal method, based on their simulations using the commercial FE program PLAXIS. 

However, Summersgill et al. (2017a) showed that the G&S nonlocal method provides the best 

compromise between low mesh dependency and consistency of results, while the solution becomes 

unstable for the high value of α and fine meshes in the over-nonlocal method. As a result, several 
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studies selected the G&S nonlocal method for various FE programs (Mallikarachchi and Soga 2020; 

Mánica et al. 2018; Monforte et al. 2019; Singh et al. 2021). Nevertheless, the present nonlocal 

CEL model shows no unstable behaviour in the over-nonlocal method, even for the finest mesh 

(0.0125 m) and high α-value (2.0). Figures 3.9(d) and 3.9(e) show no significant difference in 

load−displacement curves in the present CEL analysis with the over-nonlocal method for 0.05-m 

and 0.025-m meshes and α = 1.5 and 2.0. For the G&S method, a considerably different load–

displacement curve is found for the coarse mesh (0.1 m) than for the finer mesh (Fig. 3.9(c)), which 

is because of insufficient integration points in the reference volume, as explained below. In 

summary, the present study shows that the over-nonlocal method produces a better performance in 

mesh regularization than the G&S nonlocal method. 

In addition to the variation of the weight function in different nonlocal methods, capturing 

its shape by discretized integration points is equally important for a better solution. The shape of 

the weight function can be better captured with denser mesh (or integration points) but leads to an 

increased computational cost. The solid lines in Figs. 3.11(a) and 3.11(b) show the distribution of 

the weight functions () of the G&S nonlocal (Eq. (3.10)) and over-nonlocal (Eq. (3.12)) methods, 

respectively, while the dashed lines show the FE approximated , which has been drawn for an 

internal length parameter (l) of 0.1 m and 0.1-m mesh. The symbols ‘+’ and ‘-’ in these figures 

denote an overestimation and an underestimation of the weight functions, respectively, by FE 

discretization. As shown in Fig. 3.11(a), the FE approximation of the G&S weight function at the 

center element area (G1) significantly underestimates the weight function, as the weight is equal 

to zero for the whole element. In the adjacent element area (G2), the FE approximation 
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overestimates the weight function because the ‘+’ area is larger than the ‘-’ area. Finally, in G3, FE 

slightly underestimates the weight function. However, the weight of this area is relatively small, 

and thus only has a minor influence on the result. For a smaller mesh (e.g., 0.05 m and 0.025 m), 

the FE can approximate the G&S weight function better, while it will always give a zero weight at 

the center element and thus still underestimates the weight function curve. The inaccuracy induced 

by this underestimation of the weight at the center (e.g., G1) and the overestimation at its adjacent 

elements (e.g., G2), can be amplified due to a high concentration of shear strain at the shear band, 

when calculating the nonlocal plastic shear strain using Eq. (3.10). In comparison, the FE 

approximation of the over-nonlocal weight function with the same mesh can better represent the 

weight function (Fig. 3.11(b)). At the O1 area, the weight in the Eulerian element is only marginally 

higher than the actual weight. The FE approximated weight at O2 is close to the averaged weight 

at this area, as the highest value of the weight function is always at the edge of the O2 (or the center 

element), which provides that the areas of ‘+’ and ‘-’ of O2 are nearly equivalent. This feature of 

the over-nonlocal method enables it to provide a more accurate nonlocal averaging calculation, and 

a more mesh-independent result is thus expected. Note that, although the over-nonlocal method 

with α = 1.5 and 2.0 shows an effective regularization in the present biaxial compression test 

simulations, further investigations of the effect of  are discussed in Chapter 4. 

Previously, the comparison of the performance of different nonlocal methods was restricted 

to a relatively small strain problem. With the implementation of nonlocal methods in a large-

deformation FE solver, the comparison of various nonlocal methods for a large-strain level 

becomes possible. The authors are aware that the researchers also used other Gaussian-type 
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functions, instead of Eq. (3.8), for the over-nonlocal method (e.g., Burghardt et al. 2012). Further 

research can be conducted to identify the most effective Gaussian function for the over-nonlocal 

method. 

 

Figure 3.11 Schematic distribution of weight functions and their approximation in Eulerian-based 

FE 

 

3.8.2 Computational cost 

Considering that the ultimate purpose of this nonlocal Eulerian-based FE could be the 

simulation of large-scale problems (e.g., large-scale landslides), optimizations to the algorithm 
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have been made to reduce the computational cost (as mentioned in previous sections). The 

effectiveness of those approaches is presented below. 

As shown in Algorithm 3.3, several optimization efforts are made to reduce the 

computational costs. To show their effectiveness, a set of simulations of the biaxial compression 

test (Case I) is performed with the over-nonlocal method, with  = 1.5 and l = 0.5 for different 

values of m (m = 1, 10, 100, and 1000). m represents the increment interval when the nonlocal 

calculations are performed, among which m = 10 means that the nonlocal calculation is done for 

every 10 increments. These factors are used for Algorithm 3.3 to investigate their influence on the 

load–displacement curves and the computational cost. 

Figure 3.12 shows the stress–displacement curves for different values of m in the 

simulations with 0.0125-m mesh. All the five curves in this figure overlap with each other, which 

means higher values of m, (e.g., 10, 100, and 1000) do not cause any noticeable error. In these 

analyses, the total number of time increments is ~200,000, which implies that the nonlocal 

averaging is performed ~200 times (= 200,000/1,000) when m = 1000 is used. Note, however, that 

the effects of m on simulation results are not the same for every scenario, and instead depend on 

the type of problem analyzed. It is recommended that a sensitivity analysis similar to Fig. 3.12 is 

performed at the beginning to identify an acceptable value of m. 

Figure 3.13 shows the relative computational time, tc /tc-L, where tc is the CPU time of each 

model, and tc-L represents the CPU times for local modelling. A higher value of m significantly 

decreases the computational cost. For example, computational costs of nonlocal modeling are 10.27 

and 1.33 times that of local modeling for m = 1 and m =1000, respectively, for the mesh size of 
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0.0125 m (8448 elements in total). When no optimization is done (i.e., nonlocal averaging of the 

whole model is performed for every element at every time increment (m = 1)), tc is more than 84 

times of tc-L, which clearly shows the importance of optimization, as performed in this study. 

The inset of Fig. 3.13 shows the comparison of the computational cost (tc /tc-L) for different 

mesh sizes. The nonlocal model without optimization (using Algorithm 3.2) is not shown here as 

its computational cost is too large compared with others, which could make the gap between other 

rows difficult to identify. As shown, tc /tc-L is almost the same in the analyses with 132 elements. 

However, the solution may not be correct with such a coarse mesh. The nonlocal modelling 

becomes more expensive with fine mesh. Moreover, a sufficiently large value of m (e.g., m = 10) 

can reduce the computational costs considerably as compared to that with m = 1. 

 

Figure 3.12 Stress−displacement curves of Case I with and without optimization  

(tFE = 0.0125 m,  = 1.5)  

 



96 

 

Figure 3.13 Computational cost of Case I with local and over-nonlocal ( = 1.5) methods 

Most of the previous studies found that the application of nonlocal averaging is more 

computationally expensive than the local modelling (e.g., Summersgill 2014). The present 

simulation with a Eulerian-based FE shows a similar trend. However, in a recent study, Singh et al. 

(2021) found no significant difference in computational cost between the nonlocal and local 

modeling. One possible reason behind this might be their Remeshing and Interpolation Technique 

with Small Strains (RITSS) where the computational cost of the nonlocal calculations is offset by 

a faster convergence in its implicit algorithm, due to a smoother strain distribution (Singh et al. 

2021). Overall, the computational cost is significantly reduced with the optimization approaches 

presented in this study. Further discussion on computational cost is also presented in Chapter 4. 
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3.9 Conclusions 

The capability of nonlocal methods to minimize mesh sensitivity has been discussed in 

several previous studies. However, most of these studies implemented nonlocal methods in 

computer programs that can handle limited deformations. In the present study, nonlocal methods 

have been implemented in a Eulerian-based FE program, which can be used for large deformation 

problems. Innovative approaches to develop user subroutines using the existing platforms of the 

software and the algorithms used for model implementation are presented. The performance of the 

newly developed computer programs is shown by simulating two biaxial compression tests and 

comparing the results with similar analyses conducted in previous studies.  

Three nonlocal methods are incorporated adopting the von Mises failure criterion, where 

the post-peak shear strength degradation occurs linearly. The force–displacement relationships in 

the biaxial compression test simulations using the present Eulerian-based FE are very similar to 

those reported in the previous FE analysis using an implicit time integration scheme and the 

Material Point Method (MPM). All three nonlocal methods are found to be effective for mesh-size 

regularization. However, better performance is shown by the over-nonlocal method, potentially 

because of better capturing of nonlocal averaged values that are less sensitive to the mesh size, 

especially when a uniform mesh is used for the whole domain. 

Compared to the local method, the nonlocal modeling can be computationally very 

expensive. In the present study, several techniques are proposed to reduce the computational costs, 

including performing nonlocal averaging only for elements with EVF > 0, narrowing down the 

searching area for nonlocal averaging, and conducting nonlocal averaging for every m-th time 
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increment. The proposed optimization efforts show excellent performance in significantly reducing 

the computational time without sacrificing the accuracy of the solution. In addition, parallel 

computing is enabled for the nonlocal Eulerian-based FE by using an MPI routine. 
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Notations 

   amplification factor 

p   peak shear strength 

r   residual shear strength  

εq(NL)

p
  nonlocal equivalent plastic shear strain  

εq
p
   equivalent plastic shear strain 

εqr(NL)

p
  nonlocal equivalent plastic shear strain requires for residual strength 

∆λp
𝑘   plastic multiplier 

v   Poisson’s ratio 

𝛔(1)   stress tensor at the beginning of each time increment 

𝛔t   trial stress 
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σv
t    von Mises stress at the trial state 

σy
(1)

   yield strength at the beginning of each time increment 

σy
(2)

   yield strength at the end of each time increment  

σy(NL)
(2)

  yield strength at the end of the time increment with nonlocal method 

ϕ   arbitrary solution variable 

Φ   flux function  

ωg()  G&S weight function 

ωloc()  concentrated weight function 

ωo()  Gaussian-type weight function 

ωov()  weighting function of the over-nonlocal method 

a   spatial acceleration 

dim   dimension of the problem 

E   Young’s modulus 

EVF  Eulerian volume fraction 

Fext   external force vector 

Fint   internal force vector 

G   shear modulus 

H   hardening modulus 

l   internal length parameter 

M   diagonal lumped mass matrix 

m   number of time increments covered by one calculation of nonlocal strain 
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NOEL  number of elements 

Ny   total number of rows of elements 

rinf   radius of influence 

S   source term 

𝐬(NL)
(2)

  the deviatoric stress tensor at the end of the time increment with nonlocal method  

𝐬(2)   deviatoric stress tensor at the end of the time increment 

𝐬t   deviatoric stress tensor of the trial stress 

tc   CPU time of each model 

tc-L   CPU times for local modelling 

tFE   element size 

tsb   thickness of the shear band 

Vw   reference volume 

x   position vector 

x(k), y(k) horizontal and vertical coordinates of the integration point of kth element  
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CHAPTER 4 

Effectiveness of softening-scaling rules of local and nonlocal methods in Eulerian-based 

large deformation finite element modeling 

Co-Authorship: This chapter will be submitted as a technical paper for publication in a journal as: 

Chen, J., Hawlader, B., Roy, K. and Pike, K., “Effectiveness of softening-scaling rules of local and 

nonlocal methods in Eulerian-based large deformation finite element modeling.” 

Most of the research work presented in this chapter was conducted by the first author. He also 

prepared the draft manuscript. The other authors supervised the research and reviewed the 

manuscript. 

 

4.1 Abstract 

The finite element method can suffer from mesh dependency, especially during the 

development of shear bands, in the order of a few millimeters to centimeters, in strain-softening 

soils. An unrealistically fine mesh is required to capture such thin shear bands, which could 

dramatically increase the computational costs, especially for large-scale problems, such as 

retrogressive landslides. To address these problems, softening-scaling rules were implemented in 

local and nonlocal methods. Soil strength decreases with local shear strains in the former, while it 

varies with nonlocal strains (e.g., weighted average deviatoric plastic strain), in the latter methods. 

In the present study, the performance of softening-scaling in local and nonlocal approaches is 

compared, with a specific focus on large deformation. Numerical analyses are performed using a 

Eulerian-based FE program, which can model large strains in the shear band without any numerical 
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issues. Implementing strain-softening behaviour and a nonlocal method in this generalized FE 

program, two idealized cases are simulated: (1) biaxial compression test, (2) slope failure due to 

surface loading. FE results show that the shear band thickness increases with an increase in 

deformation after the peak loading conditions. The thickness of the shear band varies with element 

size in the local method, while it depends on ‘internal length’ in the nonlocal method. With 

softening scaling, both local and nonlocal methods give consistent and comparable 

load−displacement curves. For large deformation, the rate of increases in shear band thickness with 

loading is explained using energy concepts. 

 

4.2 Introduction 

Strain-softening occurs in many types of soils under drained or undrained loading 

conditions. The strain-softening of soil causes the progressive formation of thin shear bands (slip 

surfaces) in many engineering problems, e.g., sensitive clay landslides, which cannot be examined 

using the traditional limit equilibrium methods that are commonly used in geotechnical analysis. 

Finite element (FE) analysis can simulate the progressive formation of shear bands. However, mesh 

dependence is one of the main issues in FE modeling of a strain-softening material. 

In the dynamic FE analysis, the mesh-dependency issues arise due to the ill-posed boundary 

value problem that converts the governing differential equations from hyperbolic into elliptical 

form. However, for static or quasi-static analysis, the mesh-dependency issue is caused by an ill-

posed boundary value problem that loses ellipticity. For example, the dynamic equation for a 
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one-dimensional problem is hyperbolic for no softening conditions (Eq. (4.1)) while it is elliptical 

in the case of softening (Eq. (4.2)) (Bazant and Belytschko 1985; Chen et al. 1999). 

𝐸

ρ
∙

𝜕2𝑢

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑡2
= 0 (4.1) 

𝐸′

ρ
∙

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑡2
= 0 (4.2) 

where E is the elastic modulus,  is the mass density, u is the displacement, x is the length 

coordinate, t is time, and 𝐸′ is the softening modulus. For the static or quasi-static conditions, the 

governing equations before (Eq. (4.3)) and after (Eq. (4.4)) softening are: 

𝐸 ∙
𝜕2𝑢

𝜕𝑥2
= 0 (4.3) 

𝐸′ ∙
𝜕2𝑢

𝜕𝑥2
= 0 (4.4) 

To minimize mesh-dependency of the FE solutions, several strain regularization techniques 

were proposed previously, e.g., an element size scaling method (Anastasopoulos et al. 2007; 

Pietruszczak and Mroz 1981), nonlocal method (Bažant and Lin 1988; Brinkgreve 1994; Conte et 

al. 2010; Galavi and Schweiger 2010), strain gradient method (de Borst and Mühlhaus 1992), and 

viscoplastic model (Prevost and Loret 1990). The element size scaling method in a local model 

considers the softening modulus proportional to the thickness of the finite element. In nonlocal 

regularization, the shear strength of an element is related to a weighted average value of strains of 

its surrounding elements. Both of these regularization techniques have been implemented in FE 

programs in previous studies (e.g., Anastasopoulos et al. 2007; Brinkgreve 1994; Galavi and 

Schweiger 2010; Pietruszczak and Mroz 1981). However, in-depth comparisons of the 
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performance of these two methods, especially for large-deformation geotechnical problems, are 

very limited.  

Dey et al. (2015) used the element size scaling method; a Eulerian-based FE code was used 

to simulate large-scale landslides. A similar approach based on the size of the grid cell was also 

used in the Material Point Method (MPM) for large-deformation analysis (Tran and Sołowski 

2019). In recent years, the trend of using nonlocal methods in different types of numerical codes 

has increased, such as in MPM (Burghardt et al. 2012), Point Finite Element Method (Monforte et 

al. 2019), and Eulerian-based FE (Chapter 3).  

The shear band is extremely thin in real soil (Guo 2012). The computational costs to model 

an actual shear band in FE can be unrealistically high (Brinkgreve 1994). Previous studies showed 

that the shear band thickness is proportional to the element size and an internal length parameter 

in the local and nonlocal models, respectively (Anastasopoulos et al. 2007; Brinkgreve 1994; 

Galavi and Schweiger 2010). To obtain the same macroscopic response from modeling of a thicker 

shear band in FE analysis, a softening-scaling rule needs to be used for both local and nonlocal 

models. The softening-scaling rule in the nonlocal method defines the softening modulus 

proportional to the internal length parameter, similar to the element size in the local model 

(Brinkgreve 1994). Therefore, the element size scaling method can also be viewed as 

softening-scaling from the local modeling perspective. 

Various approaches were used to define the shear band thickness, such as incremental 

displacement (Galavi and Schweiger 2010), and the distribution of the deviatoric strain rate (Maier 

2003). A wide variation in FE calculated shear band thickness (tsFE) was reported in the past; for 
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example, 1–7 times of the internal length in the nonlocal simulations of biaxial tests (Galavi and 

Schweiger 2010; Maier 2003). Mallikarachchi and Soga (2020) showed that the shear band 

thickness increases with loading. However, they did not continue the simulation over large 

displacements, potentially due to mesh distortion issues in their Lagrangian-based FE program. In 

addition, multiple shear bands might form in large-deformation problems (e.g., landslides). The 

interaction between them while calculating the weighted average nonlocal shear strains can also 

affect the simulation results. In summary, the following are the key questions related to strain 

regularization and large-deformation modeling: 

(a) Does element size scaling in local and softening scaling in nonlocal methods give 

comparable results, as they are conceptually similar to some extent? 

(b) What are the limitations of these methods and challenges in numerical modeling? At least 

it is known that most of the publicly available computer programs do not have built-in 

methods for nonlocal modeling. Also, computational costs can be an important factor. 

(c) How applicable are these regularization techniques for large-deformation problems? 

The present study aims to answer these questions through simulations of two idealized 

cases. This paper is organized as follows. First, an overview of Eulerian-based FE modeling and 

nonlocal methods is presented. Second, the softening-scaling rules in local and nonlocal 

simulations are discussed. Finally, a biaxial compression test and a slope failure are analyzed to 

compare both local and nonlocal softening-scaling methods. 
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4.3 Eulerian-based finite-element method 

Traditional Lagrangian-based FE programs are not capable of modeling very large 

deformation in geotechnical problems, due to the significant mesh distortion around the failure 

planes and its resulting numerical instabilities (e.g., Griffiths and Lane 1999). In the present study, 

Eulerian-based FE method available in Abaqus/Explicit FE software is used. The soil is modeled 

as a Eulerian material that can ‘flow’ through the fixed mesh without causing numerical issues 

related to mesh distortion. Further details of the mathematical formulations of Eulerian-based FE 

approach and its applications to large-deformation quasi-static/dynamic problems are available in 

previous studies (Benson and Okazawa 2004; Dey et al. 2015). However, the software does not 

have any built-in technique for nonlocal regularization. 

 

4.4 Nonlocal methods 

Several studies show that the nonlocal method can better address mesh-dependency 

problems (de Borst et al. 1993; Sluys 1992), as the well-posedness of the boundary value problems 

can be restored (Bažant and Jirásek 2002). Various integral-type nonlocal methods have been 

proposed and implemented in FE programs. Among them, the original nonlocal method (Eringen 

1981), the over-nonlocal method (Brinkgreve 1994), and the G&S nonlocal method (Galavi and 

Schweiger 2010) were widely used and validated (e.g., Conte et al. 2010; Jostad and Grimstad 

2011; Mallikarachchi and Soga 2020). These three nonlocal methods have been implemented in 

conventional Lagrangian-based FE programs to simulate a biaxial compression test by 

Summersgill et al. (2017). An unstable response was observed when using the over-nonlocal 
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method with a fine mesh and the amplification factor, α ≥ 2.0, and the G&S nonlocal method was 

considered to be the most advantageous among the three. Although it was not explicitly mentioned, 

the instability could be caused by an excessive distortion of the Lagrangian elements, as large shear 

strains were generated in the shear band (Summersgill et al. 2017). However, Jostad and Grimstad 

(2011) showed that the over-nonlocal method is a preferable option for strain regularization. 

The author developed algorithms and implemented these three nonlocal methods in 

Eulerian-based FE program in Abaqus software using user-defined subroutines. The details of the 

implementation are presented in Chapter 3. Similar to the work of Jostad and Grimstad (2011), the 

over-nonlocal method shows a better performance. Therefore, in this chapter, all the analyses are 

performed with the over-nonlocal method for further investigation of the effectiveness of this 

regularization, which is referred to as the nonlocal method only in this chapter. The governing 

equations for the over-nonlocal method are: 

𝑑εd(NL)
p (𝐱n) = (1 − α)𝑑εd

p
(𝐱n) +

α

𝑉w
∭[ω(𝐱n

′ )𝑑εd

p
(𝐱n

′ )]𝑑𝑥′𝑑𝑦′𝑑𝑧′ (4.5) 

ω(𝐱n
′ ) =

1

𝑙√π

exp [−
|𝐱n

′ − 𝐱n|2

𝑙2
] (4.6) 

𝑉w = ∭ ω(𝐱n
′ )𝑑𝑥′𝑑𝑦′𝑑𝑧′ (4.7) 

where 𝑑εd(NL)

p (𝐱n) is the nonlocal deviatoric plastic shear strain increment at location 𝐱n, where 

the subscript n denotes the dimension of the model;  is the amplification factor to reduce the 

contribution of local strain to the nonlocal strain; 𝑑εd
p
(𝐱n

′ ) is the deviatoric plastic strain increment 

at location 𝐱n
′  which refers to the integration points in the radius of influence, as discussed later, 
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for the location 𝐱n , and εd
p

   is the deviatoric plastic strain (invariant), εd
p

=

√(εp1 − εp2)
2

+ (εp2 − εp3)
2

+ (εp3 − εp1)
2
, where p1, p2 and p3 are the principal components 

of plastic strains; ω(𝐱n
′ ) is a Gaussian-type weight function that is centered at the point 𝐱n that 

defines the weight of all the reference points 𝐱n
′  in the calculation of 𝑑εd(NL)

p (𝐱n); l is an internal 

length parameter that is related to the shear band thickness; 𝑉w is the reference volume, where 𝑥′, 

𝑦′ and 𝑧′ are the three dimensions. The shape of an over-nonlocal weight function is shown in 

Fig. 4.1(a). The radius of influence (rinf) is introduced to define the area of neighbour integration 

points to be considered for the nonlocal averaging of each element, as shown in Fig. 4.1(b). 
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Figure 4.1 The over-nonlocal method in Eulerian-based FE: (a) schematic plot of the weight 

function; (b) the influencing area 

 

 

 

(a) 

(b) 
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4.5 Softening-scaling rule 

Shear band thickness in an FE model (tsFE), irrespective of local or nonlocal simulation, is 

usually larger than the real conditions. Therefore, the softening-scaling rule was introduced to FE 

programs to model the same macroscopic behaviour when the shear band thickness is significantly 

greater than the real condition (Anastasopoulos et al. 2007; Brinkgreve 1994; Pietruszczak and 

Mroz 1981). The main objective of the softening-scaling rule is to determine the post-peak shear 

strength reduction based on a scaled shear strain increment for the FE model, because a higher 

strain develops in a thinner shear band under the same shear displacement. Therefore, the scaled 

deviatoric plastic shear strain increment (∆εdFE
p

) can be calculated as: 

∆εdFE
p

= ∆εds
p

∙
𝑡s

𝑡sFE
 (4.8) 

where ∆εds
p

 is the deviatoric plastic shear strain increment in the shear band in real conditions; 𝑡s 

is the shear band thickness in real conditions; 𝑡sFE is the shear band thickness in the FE model. 

In a local model, the strength reduction is determined by the local deviatoric plastic shear 

strain increment, ∆εd(L)
p

 (i.e.,  ∆εdFE
p

= ∆εd(L)
p

). Also, 𝑡sFE  is equal to the finite element size 

(𝑡FE), assuming a simple shear condition (Anastasopoulos et al. 2007; Dey et al. 2015). Therefore, 

Eq. (4.8) can be written as Eq. (4.9), which is also called “element size scaling” in local models. 

∆εd(L)
p

= ∆εds
p

∙
𝑡s

𝑡FE
 (4.9) 

Eulerian-based FE model is well-suited for the use of the element size scaling method. The 

mesh is fixed in a Eulerian-based FE model, which means that the 𝑡FE remains the same at any 
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time point for each element. Therefore, any inaccuracy in the calculation of 𝑡FE, and therefore 

∆εd(L)
p

, can be avoided. If a uniform element size is used for the whole model (e.g., Dey et al. 2015), 

𝑡FE is a constant for every element. This makes the calculation of the ∆εd(L)
p

 more consistent using 

Eq. (4.9). In contrast, for a traditional Lagrangian-based FE model, the element size and the shape 

change when the soil deforms, leading to difficulties in computing 𝑡FE  and thus causing 

inaccuracy of ∆εd(L)
p

. 

In a nonlocal model, the degradation of shear strength is proportional to the nonlocal 

deviatoric plastic shear strain increment (∆εd(NL)
p

). However, the softening-scaling rule is based on 

the internal length parameter, instead of the element size, for the nonlocal methods (Brinkgreve 

1994; Galavi and Schweiger 2010; Marcher 2003). Similar to Eq. (4.8), the softening-scaling rule 

for a nonlocal method can be written as: 

∆εd(NL)
p

= ∆εds
p

∙
𝑙s

𝑙
 (4.10) 

where ls and l are the internal length parameters of the soil and nonlocal FE model, respectively 

(Maier 2003; Galavi and Schweiger 2010). A detailed methodology on how the internal length 

parameter in the nonlocal methods contributes to the softening-scaling can be found in Chapter 3. 

 

4.6 Numerical simulations 

The implementation of nonlocal methods in Eulerian-based FE and the comparison of its 

performance with other local methods have been presented in Chapter 3. Note that, in Chapter 3, 

the von Mises criterion is adopted while the analyses in the current chapter are performed by 
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adopting the Tresca failure criterion. The implementation techniques, including the algorithms, are 

very similar for both failure criteria; therefore, the details of numerical implementation are not 

repeated here. The following two cases are considered to show the effectiveness of the local and 

nonlocal models, with the use of softening scaling, for strain regularization and the modeling of 

macroscopic behaviour. 

Case 1: Several studies simulated biaxial compression tests to show the effectiveness of 

strain localization, because the shear band formation occurs in a similar pattern, independent of the 

mesh size (Brinkgreve 1994; Lu et al. 2012; Summersgill et al. 2017). In some studies, a small 

zone or an element of weaker material is incorporated to induce shear band formation and 

propagation (e.g., Burghardt et al. 2012; Mánica et al. 2018). In case 1 of the present study, a 

weightless soil block of 4 m  5 m in-plane is modelled, where a weaker zone of 1 m  1 m at the 

bottom left corner is considered, from which shear band formation is triggered (Fig. 4.2(a)). The 

dimension of the block is similar to that used by Burghardt et al. (2012) who implemented nonlocal 

MPM to simulate the failure. 

Case 2: In this case, the failure of the sensitive clay slope (2H:1V) due to upslope loading 

is modeled (Fig. 4.2(b)). The main purpose of this case is to examine the effects of a stress state 

along a curved shear band, such as in the direction of principal stresses. 
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Figure 4.2 (a) Geometry and boundary conditions of case 1; (b) geometry and boundary 

conditions of case 2; (c) stress–strain curve of soil 

 

4.6.1 FE model development 

The numerical analysis is performed using the Coupled Eulerian−Lagrangian (CEL) 

approach available in Abaqus/Explicit FE software. In this software, the Eulerian approach has 

been implemented only for three-dimensional elements. Therefore, the analyses are performed with 

only one element length in the out-of-plane direction to simulate the plane strain condition. 
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Eulerian domains of 5.0 m  5.1 m and 8.0 m  28.0 m in-plane are created for case 1 and case 2, 

respectively (Fig. 4.2). The domains of both cases are discretized into 0.25 m, 0.125 m, and 0.0625 

m cubical eight-node linear brick elements (EC3D8R in the software). The Eulerian volume 

fraction (EVF) is used to define the material; EVF = 1 and 0 ≤ EVF ≤ 1 mean the elements are fully 

and partially filled with soil, respectively, while the rest of the domain is void (EVF = 0). The 

loading caps at the top (Figs. 4.2(a) and 4.2(b)) are first discretized using Lagrangian elements and 

then transferred to a rigid body. 

 

4.6.2 Modeling of soils 

Analyses are performed for both case 1 and case 2 for three scenarios: (i) without mesh 

regularization, (ii) with element size scaling, and (iii) with the nonlocal method of regularization. 

A linear post-peak degradation of undrained shear strength (su) with deviatoric plastic strain (εd
p
) 

is used (Fig. 4.2(c)). The pre-peak stress–strain behaviour is modeled as linear elastic materials 

using the undrained Young’s modulus (Eu) and Poisson’s ratio (u).  In case 1, su decreases 

linearly from the peak value (sup) of 100 kPa to the residual value (sur) of 50 kPa at εd
p

= εdr
p

. For 

nonlocal modeling, εd
p
 = εd(NL)

p
, (Eq. (4.5)) is used for su degradation, as shown in Fig. 4.2(c), 

while for local modeling, it is calculated based on the local εd
p
 (εdr(L)

p
). This implies that strength 

degradation occurs slowly in the shear bands for the nonlocal method, as compared to the local 

method, because εd(NL)
p

 includes the effects of lower strains in the surrounding soil elements of 

the element in the shear band. In the nonlocal method, the internal length parameter (l) primarily 

controls the thickness of the shear band (tsFE). In the first set of analyses, l = 0.25 m is used (Table 
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4.1). A set of nonlocal analyses with l = 0.25 m and local analyses with 0.25-m mesh are found to 

result in a similar post-peak load–displacement curve for the biaxial test (case 1) when εdr(L)
p

 for 

local analysis is approximately 2εdr(NL)
p

. The shear band thickness is almost independent of mesh 

size in the nonlocal analysis for a given l. However, it is almost proportional to mesh size in the 

local method. Therefore, εdr

p
 for local (element size scaling) analysis for varying mesh sizes can 

be estimated as: 

εdr(L)
p

= 2εdr(NL)
p

(
𝑙

𝑡FE
) (4.11) 

Analyses are also performed without element size scaling, where εdr(L)
p

= 2εdr(NL)
p

is used. 

The peak and residual shear strength of the soil in the weaker corner are 50 kPa and 25 kPa, 

respectively. However, it follows the similar strain-softening behaviour of the soil in the other part. 

For case 2, the peak and residual shear strengths increase with depth (z, in meter, measured from 

the ground surface) as 15 + 1.8z and 6 + 0.72z, respectively. For case 1, εdr(NL)
p

= 15% is used, 

following Summersgill et al. (2017). A slightly more brittle soil is used for case 2 (i.e., εdr(NL)
p

= 

10%). Table 4.1 shows the mesh size and the soil parameters used in FE simulations. The internal 

length parameter in a nonlocal analysis should not be less than the element size (Summersgill et al. 

2017) and therefore, l = 0.25 m is used in the first set of analyses, which equals the largest element 

size in this study. Analyses are performed for amplification factors () of 1.2, 1.5, 2.0, 2.5, and 3.0, 

for case 1, to show its effects on the simulation results. For case 2,  = 2.0 is used, as it shows 

better performance in case 1 simulation and was also suggested by previous authors (Jostad and 

Grimstad 2011; Vermeer and Brinkgreve 1994). 
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Table 4.1 Parameters used in FE simulations 

 case 1 case 2 

Element size, tFE (m) 0.25, 0.125, 0.0625 0.25, 0.125, 0.0625 

Young’s modulus, Eu (GPa) 50 7.5 

Poisson’s ratio, u 0.495 0.495 

Peak undrained shear strength, sup (kPa) 100 (50*) 15 + 1.8z 

Residual undrained shear strength, sur (kPa) 50 (25*) 6 + 0.72z 

Residual deviatoric plastic strain for nonlocal 

analysis, εdr(NL)
p

 (%) 

15 10 

Internal length parameter, l (m) 0.25 0.25 

Amplification factor,  1.2, 1.5, 2.0, 2.5, 3.0 2.0 

Note: *values in () are for the weak zone in case 1 

Table 4.2 shows the soil parameters used to examine the efficacy of softening scaling in the 

nonlocal method. The analysis with l = 0.25 m and εdr(NL)

p
 = 15% is considered for the base case. 

To reproduce the same macroscopic behaviour, different values of εdr(NL)

p
 are selected for each 

internal length parameter based on the softening-scaling rule, as listed in Table 4.2. For 

comparison, internal length parameters l = 0.125 m and 0.0625 m are implemented without 

softening scaling for case 1. This is to adopt the same εdr(NL)
p

 while different internal length 

parameters are implemented, as shown in Table 4.2. As previously discussed, the value of  is 

chosen to be 2.0. The element size 0.0625 m is used for all the nonlocal models. The other 

parameters remain the same as in Table 4.1. 
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Table 4.2 Input data for the study of softening scaling for the over-nonlocal method 

 
Case 1 Case 2 

No softening scaling Softening scaling Softening scaling 

Residual plastic deviatoric 

strain, εdr(NL)
p

 (%) 
15 3.75/l 2.5/l 

Internal length parameter, l (m) 
0.0625, 0.125 0.0625, 0.125, 

0.25, 0.5, 1.0 

0.0625, 0.125, 

0.25 

 

4.6.3 Results 

4.6.3.1 Mesh convergence in case 1 simulations 

The advantages and limitations of the three methods (no regularization, element size 

scaling, and nonlocal) are discussed based on failure patterns (Fig. 4.3) and load−displacement 

curves (Fig. 4.4). Figure 4.3 shows the local deviatoric plastic strains (εd(L)
p

) in the soil block for 

0.2-m vertical displacement of the loading cap (v). The failure initiates through strain 

concentration at the bottom right corner of the weaker soil (point P in Fig. 4.2(a)). Two shear bands 

form in all cases, a shorter one at the lower-left corner in the weaker soil and a longer one through 

the other soil. The locations of the shear bands are mesh-dependent when no regularization is 

applied (Fig. 4.3(a)). The left shear band becomes longer, and the length of the right shear band 

decreases with a decrease in the mesh size. A possible reason could be that the shear strength drops 

at a faster rate under the same shear displacement with a finer mesh. This could induce a smaller 

energy dissipation (Mánica et al. 2018) and a different stress redistribution. Note that the dissipated 

energy equals the external work in this quasi-static problem (i.e., the area under the 

load−displacement curve). Previous studies also showed that the location and thickness of the shear 
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band can be mesh-dependent in a local model without strain regularization (e.g., Summersgill et 

al. 2017; Liu and Li 2019). A more brittle load−displacement curve is found with a finer mesh (Fig. 

4.4(a)). This is also a piece of evidence for less energy dissipation (Mánica et al. 2018). 

The element size scaling and nonlocal methods give mesh independent shear band locations 

(Figs. 4.3(b)−4.3(g)). Note that the shear band thickness is still dependent on the mesh size when 

using element size scaling (Fig. 4.3(b)). This is in line with the observation of many other studies 

(e.g., Anastasopoulos et al. 2007; Dey et al. 2015). As mentioned in Section 4.5, the shear band 

thickness is dependent on the internal length parameter in a nonlocal model. The mesh dependence 

of shear band thickness becomes marginal in nonlocal methods (Figs. 4.3(c)−4.3(g)). However, the 

shear band thickness in the nonlocal model is too large compared to real situations. Figures 

4.3(c)−4.3(g) also show that the shear band thickness is larger for higher values of  because of 

increasing nonlocal strains outside of the central area of the shear band, while its value decreases 

in the central part (Summersgill et al. 2017).  

The mesh dependency and the effect of α are further explored with the load−displacement 

curves. Figure 4.4(b) displays the load−displacement curves with element size scaling, and Figs. 

4.4(c)−4.4(g) show the load−displacement curves of different mesh sizes with α = 1.2, 1.5, 2.0, 2.5 

and 3.0. The load−displacement curves are mostly mesh independent for both the element size 

scaling and nonlocal methods (Figs. 4.4(b)−4.4(g)). Note that the load−displacement curves and 

energy dissipation become mesh independent by adjusting the softening modulus for each mesh 

size in the element size scaling method, and by implementing the internal length parameter in the 

nonlocal method. The load−displacement behaviour becomes more ductile with a larger value of 



124 

, due to a smaller increase rate of nonlocal strain (Eq. (4.5)) and thus causes a slower strength 

reduction at the central part of the shear band. Figure 4.4(h) presents the load−displacement curves 

of the nonlocal models with different values of α and the local models of 0.25-m mesh with εdr(L)
p

 

= 15% and 30%. The load−displacement curve of εdr(L)
p

 = 30% of the local model is close to the 

curves of α = 2.0, 2.5, and 3.0 of the nonlocal models with εdr(NL)
p

 = 15% (Fig. 4.4(h)). This is in 

line with Eq. (4.11) which is used for the comparison between the local and nonlocal methods. 

 

Figure 4.3 Local deviatoric plastic strain contours from three methods with different mesh sizes 

(case 1): (a) local model; (b) element size scaling; (c–g) nonlocal ( = 1.2–3.0) 
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Figure 4.3 continued 
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Figure 4.4 Load–displacement curves with three mesh sizes (case 1): (a) local model; (b) element 

size scaling; (c–g) nonlocal ( = 1.2–3.0); (h) comparison between nonlocal and local analyses 
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4.6.3.2 Effects of softening scaling for case 1 

The softening-scaling rule allows modeling of macroscopic behaviour while using larger 

mesh and also internal length parameters in a nonlocal model. The deviatoric plastic strain contours 

(Figs. 4.3(b) and 4.5) and the load−displacement curves (Figs. 4.4(b) and 4.6) are used to validate 

the efficacy of the softening-scaling rule for the local and nonlocal methods. 

For local models, Figs. 4.3(b) and 4.4(b) show that the shear band location and the 

load−displacement curves do not change with the element size. However, they are different for 

different mesh sizes when the softening-scaling rule is not used (Figs. 4.3(a) and 4.4(a)). Also, for 

nonlocal models, analyses are performed with and without the softening rule for varying internal 

lengths (Table 4.2). Figure 4.5 shows the local deviatoric plastic strain contours of these models at 

the vertical displacement of 0.2 m. The location of the shear band remains nearly unchanged for 

all the models (with or without softening scaling), and the shear band thickness is dependent on the 

internal length parameter. In addition, Fig. 4.6 presents the load−displacement curves of the 

nonlocal models with softening scaling. This figure shows that similar macroscopic behaviour can 

be simulated when the softening scaling rule is used in a nonlocal model. Therefore, the softening-

scaling rule is effective for the nonlocal method in Eulerian-based FE. However, it is worth noting 

that the shear band thickness in Fig. 4.5(g) is slightly larger than Fig. 4.5(e). Both figures show 

nonlocal models with an internal length parameter of 0.0625 m, while no softening scaling is 

implemented for the model of Fig. 4.5(g), which means the εdr(NL)
p

 for Fig. 4.5(g) is only a quarter 

of the value for Fig. 4.5(e). Further discussion on shear band thickness is provided in Section 4.7.1.  
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In the local model, tFE does not exceed 0.25 m, to maintain a sufficient number of elements 

in the strain concentrated zones. In the nonlocal models, a large value of l (e.g., 0.5 m, 1.0 m) is 

also unacceptable due to an extremely thick shear band (Figs. 4.5(a) and 4.5(b)). Furthermore, in a 

nonlocal model with multiple shear bands, such thick shear bands may influence each other 

profoundly, leading to a questionable failure pattern. More details of this influence are discussed 

in Section 4.6.3.4. 

 

Figure 4.5 Local deviatoric plastic strain contours for nonlocal models (tFE = 0.0625 m): (a) l 

= 1.0 m; (b) l = 0.5 m (softening scaling); (c) l = 0.25 m (base); (d) l = 0.125 m (softening 

scaling); (e) l = 0.0625 m (softening scaling); (f) l = 0.125 m (no softening scaling); (g) l = 

0.0625 m (no softening scaling) 
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Figure 4.6 Load–displacement for nonlocal models with softening scaling (tFE = 0.0625 m) 

Figure 4.7 shows the load−displacement curves with various element sizes (tFE) for the local 

models and various internal length parameters (l) for nonlocal models when softening scaling is 

not adopted. That means, εdr(NL)
p

= 15% and εdr(L)
p

= 30% for the nonlocal and local models, 

respectively, are used for all the mesh sizes. This figure aims to further validate Eq. (4.11) and 

show an analogy between local and nonlocal methods. This figure shows that the 

load−displacement curves from local and nonlocal models are comparable when satisfying Eq. 

(4.11). The post-peak curves have a similar slope before the reaction loads reach the residual state. 

However, Fig. 4.7 also shows a gap between the residual reaction loads of the local and nonlocal 

models, which might be attributed to the different nature of local and nonlocal models. In a local 

model, the tFE is used for both strain regularization and macroscopic behaviour modeling; 

nevertheless, l is only used for macroscopic modeling for the nonlocal method. Therefore, the 

influence of tFE can be excluded in a nonlocal model. 
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Figure 4.7 Load–displacement curves of local and over-nonlocal models without scaling 

 

4.6.3.3 Mesh convergence in case 2 

In the biaxial tests (case 1), primarily only one linear shear band forms. However, in real 

life, multiple shear bands might form, and the shear band can be a curved shape. Therefore, strain 

accumulation around one shear band might affect another one. In addition, the stress state varies 

along the curved shear band. For example, a segment of the shear band might be in plane strain 

compression conditions while some segments can be in direct simple shear or other conditions. 

These factors are examined from the simulation results of case 2. 

Figure 4.8 shows the failure pattern when the loading block moves 0.2 m vertically. The 

major shear band propagates from the lower-left corner of the rigid block and ends at the toe of the 

slope. Another shear band starts from the lower right corner of the rigid block and finally reaches 

the major shear band during the failure process. The size and shape of the sliding blocks are similar 

with or without strain regularization. The deviatoric plastic strain, and thereby the strength 

reduction, are higher for finer mesh in the simulations without regularization (Figs. 4.8(a)−4.8(c)), 

which is due to a rapid increase in shear strain in finer mesh for the same shear displacement. 
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Similar to biaxial test simulations, as discussed in Section 4.6.3.1, the shear band thickness (tsFE) 

increases with mesh size (tFE) in these local models (Figs. 4.8(a)−4.8(f)). In addition, tsFE varies 

with an inclination of the failure plane, and tsFE is minimal at the bottom of the sliding surface, 

where the failure occurs along a horizontal plane under direct simple shear conditions (e.g., point 

Q in Fig. 4.8(d)). At this segment of the failure plane, the convection of material in the Eulerian 

step mainly occurs in a single row of elements with a limited amount of strain remapping to 

surrounding rows of elements. However, in the other inclined segments of the shear band, larger 

convection of the Eulerian material (soil) widens the shear band (e.g., points P and R in Fig. 4.8(d)). 

The failure pattern with element size scaling (Figs. 4.8(d)−4.8(f)) is similar to that simulated 

without regularizations (Figs. 4.8(a)−4.8(c)). However, the generated strains are different (e.g., in 

Figs. 4.8(b) and 4.8(e)). The effects of strain variation within the shear band affect the load–

displacement curves, as discussed later (Fig. 4.9). In comparison, the shear band thickness in the 

nonlocal model barely changes with different mesh sizes and shear modes for given values of  (= 

2.0) and l (=0.25 m) (Figs. 4.8(g)−4.8(i)). The influence of the shear mode on strain accumulation 

and shear band thickness is further discussed in Section 4.7.1.4. 
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Figure 4.8 Local deviatoric plastic strain contours of three methods with different mesh sizes 

 

Figure 4.9 shows the variation of average vertical pressure on the soil from the rigid block 

with its displacement. The load–displacement curve shows a significant mesh dependency near the 

peak and post-peak degradation when no regularization is used (Fig. 4.9(a)). For a finer mesh, the 

reaction load reaches a lower peak and drops more rapidly after the peak. Again, it is due to a quick 

decrease in strength with increasing plastic shear strain for a finer mesh. This could even lead to a 

temporary zero reaction load before reaching the residual state for the finest mesh (Fig. 4.9(a)), 

which is due to a slower movement of the loading cap than the sliding soil block. However, if strain 

regularization is used, the load–displacement curves become independent of mesh size (Figs. 4.9(b) 

and 4.9(c)). Both element size scaling and nonlocal methods can reduce mesh sensitive issues 
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significantly. Moreover, the load–displacement curves are comparable for the analyses using both 

regularization methods, with a minor difference between their residual resistance (Fig. 4.9(d)). A 

possible reason for this gap at large displacement can be the slight difference in the shape of the 

sliding block. A horizontal segment forms at the bottom of the major shear band in the local models 

(Figs. 4.8(a), 4.8(b) and 4.8(d)−4.8(f)). This can produce a higher resistance than the curved slip 

surface shown in the nonlocal model (Figs. 4.8(g)−4.8(i)). In the model with 0.0625-m mesh in the 

local model without regularization ((Fig. 4.8(c)), the horizontal segment is neglectable. The 

residual reaction load of this model is nearly identical to the nonlocal model (Fig. 4.9(d)). This can 

be evidence of the influence of the horizontal segment on the reaction load. 

 

Figure 4.9 Load–displacement curves: (a) local model; (b) element size scaling; (c) over-

nonlocal; (d) comparison of three methods with tFE = 0.0625 m 
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4.6.3.4 Effect of softening scaling for case 2 

The softening scaling in a local model (i.e., element size scaling) is proven to be effective 

in strain regularization, as shown in Figs. 4.8(d)−4.8(f) and 4.9(b). In other words, the macroscopic 

load–displacement behaviour can be modeled by using a coarse mesh (e.g., 0.25-m mesh for case 

2). This can reduce the computational cost significantly. 

As shown in Figs. 4.8(g)−4.8(i), the shear band of the nonlocal models is very thick, which 

is significantly larger than the real condition. The effectiveness of the nonlocal model becomes in 

doubt as the shear band is too thick (e.g., Figs. 4.5(a) and 4.5(b)). Therefore, only three internal 

lengths, 0.25 m, 0.125 m, and 0.0625 m are chosen for three over-nonlocal models with the εdr(NL)

p
 

= 10%, 20%, and 40%, respectively, based on the softening scaling so that different thicknesses of 

the shear band can be modeled. A uniform mesh size of 0.0625 m is adopted in all three models. 

Figure 4.10 shows that the shear band thickness decreases almost proportionally to the decrease of 

the internal length parameter, while the locations of the shear bands and the shape of the sliding 

blocks remain unchanged. In addition, the load−displacement curves are nearly identical for the 

three cases (Fig. 4.11). Therefore, the softening scaling is also effective for modeling the 

macroscopic behaviour with the nonlocal method for case 2. 

 

Figure 4.10 Local deviatoric plastic strain contours of over-nonlocal models with softening 

scaling: (a) l = 0.25 m; (b) l = 0.125 m; (c) l = 0.0625 m 
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Figure 4.11 Load–displacement curves of over-nonlocal models with softening scaling 

 

Multiple shear bands might form in a landslide—for example, progressive failure of several 

soil blocks occurs in a spread in a sensitive clay slope (Dey et al. 2015). The direction of shear 

band propagation can affect failure patterns due to the progressive nature of the failure. Therefore, 

the effects of local and nonlocal models on the propagation of multiple shear bands need to be 

examined. The scenario of two shear bands existing in case 2 is discussed in this study. 

For a nonlocal model, the shear strength of soil near a shear band is reduced by the nonlocal 

averaging, and the energy can be distributed outside of the shear band. In other words, two shear 

bands can affect each other when they are close enough. Figure 4.12(a) shows the local deviatoric 

plastic shear strain of the local model and Figs. 4.12(b) and 4.12(c) present the nonlocal deviatoric 

plastic shear strains of the nonlocal models with internal length parameters of 0.25 m and 0.125 m. 

The strength reduction can be reflected from these figures because the local strain and nonlocal 

strain control the shear strengths in the local and nonlocal models, respectively. With the increase 

of vertical displacement of the loading cap, an excessive reduction of strength can be eventually 

seen at the lower end of the minor shear band (which is adjacent to the intersection between the 
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minor and major shear bands) in the nonlocal models (Figs. 4.12(b) and 4.12(c)). This is not 

observed in the local model (Fig. 4.12(a)). As a result, a more significant deformation occurs at the 

intersection area in the nonlocal models, and the larger the internal length parameter is, the higher 

local deviatoric plastic shear strain can be observed at this area (Fig. 4.13). Further research needs 

to be conducted to understand this effect for larger-scale problems, such as a spread-type sensitive 

clay landslide, where many shear band formations at different inclinations are expected. 

 

Figure 4.12 Shear band formation and propagation in local and nonlocal models (Note: local 

deviatoric plastic shear strain contour is presented for (a), and nonlocal deviatoric plastic shear 

strain contour is shown for (b) and (c)) 
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Figure 4.13 Shear band formation and propagation (local deviatoric plastic shear strain contour) 

 

4.7 Discussions 

4.7.1 Discussion on the shear band thickness 

4.7.1.1 Shear band thickness with the over-nonlocal method 

Comparable shear band thickness (𝑡sFE), independent of the mesh size, is reported to be one 

of the main advantages of nonlocal regularization (Mallikarachchi and Soga 2020; Mánica et al. 

2018; Singh et al. 2021; Summersgill et al. 2017). However, these studies showed that 𝑡sFE 

depends on the selection of the internal length parameter (l) and also on  in the over-nonlocal 

method. Summersgill et al. (2017) reported that while 𝑡sFE is comparable for different mesh sizes, 

a thinner shear band is formed in a fine mesh for the over-nonlocal method with  = 2, resulting in 
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excessively high plastic shear strain up to 200%. Mánica et al. (2018) compared 𝑡sFE in a 60-mm 

 100-mm block under biaxial loading. However, their numerical analyses were stopped after 4.6-

mm vertical displacement due to the convergence problem. Similarly, 300−400% plastic shear 

strain in the shear band was calculated by Mallikarachchi and Soga (2020). In summary, the 

Lagrangian-based analyses could not be continued to a large-strain level, or encountered significant 

mesh distortion that might give misleading results. As the mesh distortion is not an issue in the 

present Eulerian-based FE model, the shear band thickness is examined even for a large strain. 

Note that in the field, for example, in a landslide, large deformation behaviour is required. 

Figure 4.14 shows the shear band thickness normalized by the internal length parameter 

(𝑡sFE/𝑙) for different values of  at v = 0.2 m. Note that 𝑡sFE also depends on v, as discussed in 

the later sections. All the simulations shown in this figure were conducted using 0.0625-m mesh 

and with nonlocal regularization. All the analyses of case 1 with parameters listed in Table 4.1 and 

Table 4.2, except for l = 1.0 m, are also shown in Fig. 4.14. In addition, the analysis of l = 0.5 m 

without softening scaling is performed to provide more data. The parameter  is also varied in 

these analyses. For  = 2, the thickness of the shear band is 1.8 m, 0.9 m, 0.5 m, and 0.2 m for the 

internal lengths of 0.5 m, 0.25 m, 0.125 m, and 0.0625 m, respectively, with softening scaling. 

Such a trend of decreasing 𝑡sFE with decreasing internal length parameter has also been reported 

in previous studies (e.g., Galavi and Schweiger 2010).  
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Figure 4.14 Normalized shear band thickness (𝑡sFE 𝑙⁄ ) vs.  

 

Figure 4.14 shows that when softening scaling is used, for a given , the normalized shear 

band thickness (𝑡sFE/𝑙) is almost independent of internal length parameters (l). However, 𝑡sFE/𝑙 

increases with . Brinkgreve (1994) proposed an analytical solution (Eq. (4.12)) for a one-

dimensional necking problem to calculate its localization zone length. This analytical solution has 

also been used for estimating the shear band thickness for two-dimensional applications 

(Brinkgreve 1994; D’Ignazio et al. 2017). 

𝑡sFE =
𝜋𝑙

√ln(α) − ln (α − 1)
 (4.12) 

The FE calculated 𝑡sFE/𝑙 for case 1 is comparable to the analytical solution, Eq. (4.12) 

(Fig. 4.14). For further comparison, 𝑡sFE/𝑙 of a soil block (without a weaker zone at the bottom 

left corner) under biaxial undrained loading in Chapter 3, and the nonlocal ICFEP (Summersgill et 

al. 2017), are shown in Fig. 4.14, which also shows a similar trend. 
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Based on computational cost and accuracy, previous studies recommended  = 2 for the 

problem they considered (Jostad and Grimstad 2011; Vermeer and Brinkgreve 1994), which leads 

to tsFE = 3.77l from Eq. (4.12). Note that, even with the finer mesh, the FE calculated tsFE is much 

larger than an actual shear band typically observed in a laboratory and field (Guo 2012; Islam et 

al. 2019). An extremely small value of l and tFE might capture such a shear band. However, it will 

be computationally impractical. Further discussion on the computational cost can be seen in Section 

4.7.2. 

A wide variation of 𝑡sFE/𝑙 exists when the softening scaling is not used in case 1, as shown 

for  = 2.0 (Fig. 4.14). The softening scaling brings the data points closer and approximately 

follows a similar pattern with the results from Eq. (4.12). However, as will be discussed in later 

sections, the shear band thickness is also dependent on the vertical displacement, which was not 

explicitly discussed by Brinkgreve (1994). That means Eq. (4.12) may not be the right solution for 

every scenario. This is explained in the next sections. 

 

4.7.1.2 Variation of shear band thickness based on energy theory 

In addition to the internal length and , an increase in shear strain/deformation increases 

the thickness of the shear band. For example, Mallikarachchi and Soga (2020) found 𝑡sFE  2.0l 

and 𝑡sFE  2.2l during softening and the critical state, respectively, for an undrained shearing of 

dense sand. Note that the type of element (shape, size, number of nodes and integration points) and 

material model can also have some effects on 𝑡sFE (Galavi and Schweiger 2010; Mallikarachchi 

and Soga 2020; Summersgill et al. 2017; Vermeer and Brinkgreve 1994), which is not investigated 
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in the present study, primarily because the existing Eulerian formulation of the software does not 

have sufficient flexibility in using different types of elements. In these studies, the simulations were 

limited to a certain level of deformation. In the present study, the simulations can continue even 

when significant strains develop in the shear band. Therefore, the mechanisms of enlarging shear 

band thickness at large strains are explored using an energy balance approach. Note that the 

enlargement of shear band thickness can have a significant practical implication, especially in the 

problems where multiple shear bands form, and the reduction of strength in such an enlarged zone 

can interfere with other shear band formations (e.g., retrogressive landslides). This has been 

explained using a simplified example in Section 4.6.3.4. 

In a quasi-static analysis, the kinetic energy is negligible, which means the internal energy 

of the whole model is approximately equal to the external work (We). At large strains, the major 

portion of the internal energy is the dissipated plastic energy (Ed). Therefore, the energy balance in 

incremental form can be written as: 

∆𝑊e ≈ ∆𝐸d (4.13) 

As mentioned earlier, the shear band is defined as the zone where the shear strength reduces 

to the residual state. In other words, there will be at least a thin band of residual strength from 

where expansion occurs. At this stage, the mobilized shear strength in the shear band equals the 

residual shear strength, which implies that the force F is almost constant at the residual state (Fr) 

(Fig. 4.15(a)). Therefore, 
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∆𝑊e = 𝐹r∆δv (4.14) 

 

Figure 4.15 Schematic view of (a) external work increment; (b) dissipated plastic energy per 

cubic meter  

 

∆𝐸d has two components: (a) energy dissipation due to expansion of the shear band (∆𝐸d
′ ), 

and (b) energy dissipation due to an increase of shear strain in the shear band with loading (∆𝐸d
′′). 

∆𝐸d = ∆𝐸d
′ + ∆𝐸d

′′ (4.15) 



143 

The energy dissipation per unit volume due to shear band expansion (𝑒d
′ ) and shear strain 

increase (∆𝑒d
′′) are the area of the trapezoid and rectangle, respectively, of the strength degradation 

curve (Fig. 4.15(b)). Now, multiplying ∆𝑒d
′′  and 𝑒d

′  by the volume of the shear band and its 

increment, respectively, ∆𝐸d
′′ and ∆𝐸d

′  can be calculated as: 

∆𝐸d
′ = [0.5(𝑠up + 𝑠ur)εdr

p
] × (∆𝑡sFE𝐿sFE) (4.16) 

∆𝐸d
′′ = [𝑠ur∆d

p
] × (𝑡sFE𝐿sFE) (4.17) 

The terms in parentheses (.) in Eqs. (4.17) and (4.16) represent the volume of the elements 

in the shear band and its change of unit thickness in the out-of-plane direction, where LsFE is the 

length of the shear band and tsFE is the increase in thickness of the shear band with loading. 

Assume that for a given v, the percentage of external work that dissipates for the increase 

in shear band thickness is 

∆𝐸d
′ = 𝑐1 ∙ ∆𝑊e (4.18) 

where the value of c1 could vary between 0 and 1.0. At this stage, c1 is not known, which will be 

examined through FE results. Now, inserting ∆𝐸d
′  from Eq. (4.18) into Eq. (4.16) and replacing 

We by Eq. (4.14) and then rearranging, the increase in shear band thickness for a given v can 

be calculated. 

∆𝑡sFE

∆δv
= [

2𝐹r

(𝑠up + 𝑠ur)𝐿sFE

]
𝑐1

εdr
p  

(4.19) 
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For the cases analyzed in this study, the length of the shear band (LsFE) and residual reaction 

force do not change significantly once a complete shear band is formed. Therefore, the term in the 

square bracket is almost constant. The left side of Eq. (4.19) shows the slope of the tsFE–v curve. 

Now, obtaining tsFE for varying v from FE results, the variation of c1 and the shear band thickness 

increases pattern can be examined. 

 

4.7.1.3 Shear band thickness in case 1 

Figure 4.16 shows the variation of tsFE with δv for different mesh sizes (tsFE = 0.0625 m, 

0.125 m and 0.25 m) and internal length parameters (l = 0.0625 m, 0.125 m and 0.25 m) for the 

local and nonlocal models, respectively. The residual shear strength in these simulations is half of 

the peak shear strength, as shown in Table 4.1. The higher the internal length is, the larger the shear 

band thickness. Moreover, tsFE increases with vertical loading and is more than 1.0 m for a higher 

value of l (= 0.25 m) at δv > 0.3 m (Fig. 4.16(a)). For the local analyses, the shear band thickness 

is almost proportional to the element size (tFE). For example, tsFE is 1 m and 0.5 m for tFE of 0.125 

m and 0.25 m, respectively, at v = 0.8 m (Fig. 4.16(a)). The shear band thickness is defined as the 

width of the zone that reached the residual strength in this study. The shear band thicknesses of the 

“×” and “+” points are also calculated based on local strain for a calibration purpose. Both methods 

of calculation show a comparable result. However, the former one is selected for further discussion. 

This can facilitate a direct comparison with Eq. (4.19) where the definition of the shear band 

thickness is identical. Furthermore, the upward trend of shear band thickness observed with the 

increase of δv, is contrary to the analytical solution, Eq. (4.12) (Brinkgreve 1994), where the shear 
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band thickness is a constant for each analysis. This analytical solution was derived for a one-

dimensional tension bar, and the nonlocal strain rate was assumed to be constant within the 

localization zone, which is not valid in the current biaxial test model. 

Figure 4.16(a) shows a wide variation in tsFE. Therefore, some normalizations are performed 

in this section for a better presentation of the results. Except for εdr
p

 and c1, the right-hand side of 

Eq. (4.19) is identical for all the analyses in case 1. Figure 4.16(b) shows the variation of tsFE with 

δv/εdr
p

, which brings the slopes of data points closer compared to that shown in Fig. 4.16(a). This 

implies that the c1 could be nearly the same for all analyses of this biaxial test. As discussed before, 

the thickness of the shear band depends on tFE and l for the local and nonlocal models, respectively. 

Therefore, the parameters in the vertical and horizontal axes in Fig. 4.16(b) are further normalized 

by tFE and l for the local and nonlocal models, respectively, and then tsFE/l vs. δv/(εdr
p

𝑙) and 

tsFE/tFE vs. δv/(εdr
p

𝑡FE) are plotted in Fig. 4.16(c). The data points are closer in this figure than 

those in Figs. 4.16(a) and 4.16(b) and spread over the same normalized vertical displacement. From 

Fig. 4.16(c), the increase rate of the normalized shear band thickness of local and nonlocal models 

is comparable. This further proved that the values of c1 for both models are close, indicating that a 

similar percentage of external work dissipates for the increase of shear band thickness. This is 

contrary to the general understanding that energy cannot be dissipated outside of the shear band in 

a local model. A possible reason can be that energy is dissipated in the convection process in the  
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Figure 4.16 Variation of shear band thickness: (a) 𝑡sFE vs. δv; (b) 𝑡sFE vs. δv
p

/εqr
p

; (c) 

Normalized shear band thickness vs. normalized vertical displacement (𝑡sFE 𝑡FE⁄  vs. 

δv
p

(εqr
p

∙ 𝑡FE)⁄  for local model, and 𝑡sFE 𝑙⁄  vs. δv
p

(εqr
p

∙ 𝑙)⁄  for nonlocal model) 

(Note: 1% local deviatoric plastic shear strain is used for the NL_025 (local strain) case, and 25% 

local deviatoric plastic shear strain is used for the NL_00625_scaling (local strain) case, to 

calculate the shear band thickness.) 
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Eulerian step. The energy dissipation in a nonlocal model is mainly controlled by the internal length 

parameter. To further understand the energy dissipation in both models, the shear bands with 

different stress states are analyzed in the next section. 

 

4.7.1.4 Shear band thickness in case 2 

Unlike case 1, the direction of the principal stresses varies along the slip surface in case 2. 

Therefore, the normalized shear band thicknesses at three locations in the slip surface, representing 

plane strain compression (PSC), direct simple shear (DSS), and plane strain extension (PSE), are 

investigated (Fig. 4.17). A similar trend of increasing normalized shear band thickness is found for 

all three loading conditions. While the rate of increase in normalized shear band thickness in PSC 

is comparable for the local and nonlocal models (Fig. 4.17(a)), a larger difference is found in the 

other two modes (DSS and PSE) (Figs. 4.17(a)−4.17(c)). In other words, the shear band thicknesses 

in local models are more dependent on the direction of the principal stresses. A possible reason can 

be the convection process of the Eulerian materials, as discussed before. When the shear band is 

parallel to the mesh orientation, the plastic strain of the local element is not significantly distributed 

to the neighbouring rows of elements that are not in the shear band, which gives a narrower shear 

band in the local model. This also explains why the shear band is only one element thick in the 

DSS model, even at large displacements, (Fig. 4.17(b)). However, when the shear band forms at 

an oblique angle to the mesh orientation, the remapping of solution variables can transfer the plastic 

strains to the neighbouring elements more easily. Therefore, a thicker shear band is observed under 
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the plane strain compression and extension conditions in the local models (Figs. 4.17(a) and 

4.17(c)).  

 

 

 

Figure 4.17 Normalized shear band thickness vs normalized vertical displacement (a) plane strain 

compression; (b) direct simple shear; (c) plane strain extension 
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4.7.2 Computational costs 

The computational costs of FE analysis with nonlocal regularizations are generally higher 

than those of local methods (Summersgill 2014), although Singh et al. (2021) reported that the 

nonlocal method does not increase the computational costs significantly, even with very fine mesh, 

using their RITSS. Such inconsistent conclusions can be attributed to the algorithms of numerical 

modeling techniques. The nonlocal method reduces the gradient of shear strain in the localized 

zone, which can lead to a faster rate of convergence in an implicit FE analysis, as used by Singh et 

al. (2021). However, an explicit method is adopted by Eulerian-based FE method, and therefore, 

convergence is not a concern as in the implicit method. 

 

4.7.2.1 Computational costs of case 1 

Figure 4.18 shows the CPU time required to simulate the biaxial test using the local 

(element size scaling) and nonlocal methods. The element sizes are 0.25 m, 0.125 m, and 0.0625 

m for both methods. In addition, l = 0.25 m and  = 2.0 are used for the nonlocal method. The other 

parameters are the same as in Table 4.1. Chapter 3 introduced a technique to reduce the 

computational cost by calculating the nonlocal strains once in every m time increment. The CPU 

time for different m (m = 1, 10, 100) are shown in Fig. 4.18, which clearly shows that the nonlocal 

method costs more CPU time than the local method, and this gap increases when a finer mesh is 

used. A larger value of m (e.g., m = 100) can reduce the CPU time of the nonlocal method 

significantly. 
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Figure 4.18 Computational costs of the biaxial test with local (element size scaling) and over-

nonlocal methods 

 

Figure 4.19 Modeling of comparable shear band thickness in local and nonlocal models 

(schematic) 

Although a higher value of m can help the nonlocal method reach a closer computational 

cost to the local method, the shear band is still much thicker in the nonlocal model. To model a 

comparable shear band thickness in both methods, a smaller mesh size is required for the nonlocal 
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method, as schematically shown in Fig. 4.19. The computational costs increase rapidly in the 

nonlocal method for the finest mesh (0.0625 m). 

 

4.7.2.2 Computational costs of case 2 

In engineering practice, a larger model than a biaxial test is usually simulated. Similar to 

the biaxial test in case 1, the nonlocal method is computationally more expensive than the local 

(element size scaling) method in FE modeling of slope failure (case 2). As an example, with a 

0.0625-m mesh, the analysis took ~3 hours CPU time for nonlocal (with an internal length, l = 

0.0625 m, and m = 10) while it took only 40 minutes with element size scaling using a 3.4 GHz 

Intel Core i7-6700 CPU (8 processors) and 16 GB RAM. Compared to case 1, the difference 

between the computational costs for local and nonlocal regularizations is significantly higher in 

case 2, although the calculation of ∆εd(NL)
p

 only occurs once for every 10-time increment (m = 10). 

This is mainly caused by a larger number of elements than for the biaxial test, which is in line with 

the trend shown in Fig. 4.18. Similar to the biaxial test, the shear band of this slope is thicker in the 

nonlocal model when the same element size is used, as explained in the last section. To model the 

identical shear band thickness with the nonlocal method, even higher computational costs are 

expected, as a finer mesh has to be used. 

When modeling a large-scale landslide, the size of the model can be many times larger than 

that of the present slope analysis; e.g., the failed soil can travel more than 100 km after a submarine 

landslide (Hampton et al. 1996). The nonlocal algorithm can be extremely expensive for that 
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scenario. The failed soil moves fast through the fixed mesh to create a remarkable difference 

between two neighbouring time increments. The calculation of nonlocal strains can be required 

more frequently (a smaller m) due to the highly dynamic nature of a landslide, thus leading to a 

significantly higher computational cost. Moreover, as discussed in Chapter 3, to model a large-

scale problem, the number of elements increases dramatically, which will further increase the 

computational costs of the nonlocal averaging. 

 

4.8 Practical implications 

Both the local and the nonlocal Eulerian-based FE models can be implemented for large-

deformation problems. The softening-scaling rule is an effective way to control the shear band 

thickness and thus reduces the computational cost for both local and nonlocal models. The shear 

band thickness is influenced by the mesh orientation in the local mode. Nonlocal models are 

generally computationally expensive. Further advancement of numerical techniques might provide 

better results. Potential issues and possible solutions are listed below. 

1. In the present study, all the analyses are performed under a pseudo-static condition. Further 

research is required to understand the efficacy of the local method and the nonlocal method, 

coupled with softening scaling, on strain regularization and macroscopic modeling for a 

dynamic problem. Also, the expansion of the shear band should be addressed for a dynamic 

problem, as it may not be in line with Eq. (4.19), where a quasi-static condition is assumed.  

2. The scenario of multiple shear bands for nonlocal models should be further explored (e.g., 

modeling of a spread failure in sensitive clays). As aforementioned, a large internal length 
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parameter can affect the shear band propagation when two shear bands interact, while a 

smaller internal length parameter requires a finer mesh and thus has a high computational 

cost. Therefore, a proper internal length parameter needs to be determined with caution so 

that the interactions between shear bands are reasonable, while the computational expense 

is still acceptable.  

3. The Tresca failure criterion is used for this study. Advanced soil constitutive models can be 

implemented with the current framework to handle more complex soil behaviours.  

4. The shear band thickness of real soil depends on soil properties; for example, size, shape 

and orientation of particles for granular materials, and also on pore pressure generation and 

dissipation. Therefore, further studies are needed to identify the association between 

internal length and soil properties, such that the macroscopic behaviour can be correctly 

modeled when softening scaling is used. 

 

4.9 Conclusions 

Both local and nonlocal models, coupled with the softening-scaling rule, can be used for a 

large-deformation FE analysis. An evaluation of both models is needed so that the best practice 

can be proposed. In this study, a comparison between the two models was performed, in terms of 

their mesh dependency, macroscopic modeling, shear band thickness, and computational cost, by 

modeling two idealized cases, namely a biaxial test and a slope failure analysis. User subroutines 

were developed to implement the Tresca failure criteria with the over-nonlocal method in Eulerian-



154 

based FE. In addition, the expansion of shear band thickness was investigated by using the energy 

theory and further studied with numerical modeling results for both local and nonlocal models. 

1. Both the local (element size scaling) and the nonlocal methods present a mesh independent 

solution of the two cases with a slightly different variation of post-peak reaction, and the 

shear band thickness of the element size scaling method is still mesh dependent. 

2. The shear band thickness in the FE program is usually too large compared to the real 

condition. The softening-scaling rule is proven effective to model the macroscopic strain-

softening behaviour with both local and nonlocal methods. 

3. The interactions between two shear bands can become unrealistic in a nonlocal model, as 

their nonlocal averaging can affect each other. An appropriate internal length parameter 

needs to be determined to avoid this undesirable interaction. 

4. The shear band thickness increases proportionally with the loading displacement, which is 

contrary to the analytical solution proposed by Brinkgreve (1994), where the shear band 

thickness is a constant. This finding is demonstrated by the energy theory and modeling 

results for both local and nonlocal models. Note that the shear band thickness is influenced 

by the mesh orientation and the direction of principal stress in a local model. 

5. The computational cost of the nonlocal method is significantly higher than the local method 

in Eulerian-based FE. This can be disadvantageous for the nonlocal method to model a 

large-scale problem, e.g., retrogressive landslides. 
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Notations 

  amplification factor 

  mass density 

u  Poisson’s ratio 

v  vertical displacement of the loading cap 

εd(L)
p

 local deviatoric plastic shear strain 

εd(NL)
p

 nonlocal deviatoric plastic shear strain 

εdFE
p

 scaled deviatoric plastic shear strain 

εd

p
  deviatoric plastic strain 

εdr(NL)

p
 nonlocal deviatoric plastic strain requires for residual strength  

εds
p

  deviatoric plastic shear strain of the shear band in real conditions 

εp1, εp2, εp3 principal plastic strains 

ω()  Gaussian-type weight function 

𝐸′  softening modulus 

𝐸d
′   energy dissipation due to expansion of the shear band 
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𝐸d
′′  energy dissipation due to increase of shear strain in the shear band 

𝑒d
′   energy dissipation per unit volume due to shear band expansion  

𝑒d
′′  energy dissipation per unit volume due to shear strain increase 

𝑙s  internal length parameter of soil 

𝑡s  shear band thickness in a real condition 

E  elastic modulus  

Ed  the dissipated plastic energy 

Eu  undrained Young’s modulus 

EVF Eulerian volume fraction 

F  loading force from the cap 

Fr  the residual value of F 

l  internal length parameter of the nonlocal model 

LsFE  length of the shear band 

m  number of time increments covered by one calculation of nonlocal strain 

rinf  radius of influence 

su  undrained shear strength 

sup  peak undrained shear strength 

sur  residual undrained shear strength 

t  time 

tFE  element size 

tFE_R reference FE element size 
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tsFE  shear band thickness in a FE model 

u  displacement 

𝑉w  reference volume 

We  external work 

x  length coordinate 

z  depth measured from the crest of the slope (m) 
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CHAPTER 5 

Large Deformation Finite-Element Modeling of the Lower San Fernando Dam 

Failure in 1971 

 

Co-Authorship: This chapter will be submitted as a technical paper for publication in a journal as: 

Chen, J., Hawlader, B., Roy, K. and Pike, K. “Large deformation finite-element modeling of the 

Lower San Fernando Dam failure in 1971.” 

Most of the research work presented in this chapter was conducted by the first author. He also 

prepared the draft manuscript. The other authors supervised the research and reviewed the 

manuscript. 

 

5.1 Abstract 

The Lower San Fernando dam failure in 1971 is one of the major earthquake-triggered slope 

failures where the failed soil in the upstream slope displaced several meters. In addition to post-

slide investigations, conceptual, analytical, and numerical studies were conducted to understand 

the potential failure mechanisms. However, most of the numerical studies focused on the triggering 

mechanism of the failure, and analyses were limited to relatively small deformations. This paper 

presents a large deformation finite-element (FE) modeling of failed soil that occurred in the post-

quake stage. The simulations are performed using a Eulerian FE modeling technique, avoiding any 

mesh distortion issues. A new technique is developed in the Eulerian FE program to establish an 

initial steady-state seepage condition in the dam. The calculated seepage forces, together with 

gravity and buoyancy, are used to define the in-situ stresses. The failure is triggered by a 

pseudostatic loading over a period, which causes the progressive formation of the failure planes in 

the post-quake stage. The failure initiates first in the lower part of the hydraulic fill and then 



163 

propagates through the upper soil layers. This mechanism causes the upstream slope failure in the 

form of several soil blocks, which is similar to the post-failure configuration reported in the 

literature. The roles of strain-softening and apparent cohesion during partially drained shearing in 

the failure process are also discussed. 

 

5.2 Introduction 

The Lower San Fernando Dam was constructed on an approximately 11-m thick natural 

alluvium soil layer of primarily stiff clay with layers or lenses of sand and gravel (Castro et al. 

1992). The maximum height of the dam was about 43 m. The major part of the dam was constructed 

between 1912–1915, primarily by the hydraulic filling of soil, ranging from coarse silty sand at the 

edge to clay core at the center of the dam (Lee et al. 1975). On February 9, 1971, a flowslide was 

triggered in the upstream side of the dam approximately 30 s after an earthquake of 6.6 magnitude. 

Comprehensive post-failure investigations were carried out to understand the failure mechanisms. 

Figures 5.1(a) and 5.1(b) show the reconstructed cross-sections of the failed dam (Seed et al. 1973). 

The following are the key observations. First, several large longitudinal cracks were formed near 

the crest. Second, the failure occurred by the formation of a number of curved slip surfaces. 

However, the failure was different from typical flowslides, where the rotational failure of a soil 

block occurs after sufficient downslope displacement of previously failed soil blocks. In this case, 

a large soil block was pushed upward near the toe of the slope (block #7 in Fig. 5.1), which is an 

indication of providing thrust provided by the soil blocks in the upslope area (blocks #1 to #5). 

Such a thrust could generate if the downslope movement of the #7 block was slower than that of 

#1 to #5 blocks. In that case, the failure might have been triggered by the formation of an 

approximately horizontal sliding plane that extended up to the bottom of the #1 to #5 blocks, with 

curved sliding surfaces then being formed (Fig. 5.1). Cyclic loading during the earthquake could 
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have generated excess pore water pressure that reduced the shear strength of the soil, especially the 

loose sand, referred to as the liquefied zone (Fig. 5.1(b)). The horizontal failure plane might have 

formed through this zone, and then progressive failure of the slope would have occurred. 

 

Figure 5.1 Cross-Section through the Lower San Fernando Dam: (a) after 1971 earthquake; (b) 

reconstruction of failed cross-section (Seed et al. 1973) 

 

Figures 5.1(a) and 5.1(b) show that the maximum displacement of the debris from the toe 

was about 45.7 m (Castro et al. 1989). The freeboard dropped from 10.7 m to 1.5 m after the failure 

(Seed et al. 1973), which implies 9.2 m of settlement near the crest. Such a large deformation 

cannot be modeled using a typical Lagrangian-based finite element (FE) program because of 

numerical issues due to mesh distortion. Also, the typical limit equilibrium methods are not suitable 

for modeling progressive failure of the slope. 

Post-slide studies include field and laboratory investigations, which include excavation of 

trenches through the slide area, borehole drilling, in-situ testing, and laboratory testing for 

monotonic and cyclic behaviour of soil (Seed et al. 1973; Lee et al. 1975; Castro et al. 1989). Olson 
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(2001) attempted to develop the yield strength ratio (𝑠u(yield)/σv0
′ ) and liquefied strength ratio 

(𝑠u(liq)/σv0
′ ), where 𝑠u(yield) and 𝑠u(liq) are the shear strength at the peak that mobilized at large 

deformation after flow liquefaction, and σv0
′  is a pre-failure vertical effective stress. These 

strength ratios were used to examine liquefaction triggering and subsequent flow failure of the 

Lower San Fernando Dam (Olson 2001). To identify the failure pattern using 𝑠u(liq)/σv0
′ , 

simplified kinetics analyses were performed for the soil above the failure plane, assuming that the 

strength of all the soil elements along the failure surface was mobilized to 𝑠u(liq) . However, 

recognizing the inaccuracies in then estimated unique value of 𝑠u(liq), due to the involvement of 

different soil layers (e.g., rolled fill and ground shale), the strength was adjusted simply based on 

possible length of the predefined slip surface in different materials, which gives a reasonable 

displacement of the center of gravity of the failed soil mass (5.2 m vertically and 25.9 m 

horizontally). 

Table 5.1 shows a summary of several representative modeling efforts of the Lower San 

Fernando Dam failure, which can be primarily categorized into two groups: (a) the initiation of the 

failure, and (b) both the initiation and post-quake deformation analysis. The first group analyzed 

the stability of the dam based on the limit equilibrium (LE) analysis (e.g., Seed et al. 1973; Seed 

1979; Castro et al. 1989; Olson 2001; Olson and Stark 2001, 2002). A pseudostatic load, instead 

of a seismic load, has been applied to the dam to determine the location of the slip surface and the 

factor of safety (e.g., Seed et al. 1973; Seed 1979; Castro et al. 1989). Some of them conducted 

dynamic FE analyses to identify the liquefaction zone before the calculation of the factor of safety 

(Seed et al. 1973; Seed 1979). However, this type of progressive failure cannot be modeled using 

the LE method alone, even with the steady-state strength for the initial liquefied zone (Gu et al. 

1993), because the liquefied zone will be significantly enlarged, due to stress redistribution after 
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the initial liquefaction in an earthquake. Furthermore, the displacement of the failed soil mass 

cannot be simulated using the LE method. The second group extended their work from initiation 

to a limited post-quake failure stage (e.g., Gu et al. 1993; Jitno 1995; Huang and Zienkiewicz 1998; 

Beaty and Byrne 2000; Ming and Li 2003; Khoei et al. 2004; Blázquez and López-Querol 2007; 

Khoei and Haghighat 2011; Huang et al. 2020). The failure was primarily triggered in two different 

ways: (a) without modeling the earthquake (e.g., Gu et al. 1993; Jitno 1995), and (b) dynamic 

analysis with post-seismic deformation modeling (e.g., Beaty and Byrne 2000). In group (a), Gu et 

al. (1993) reduced the shear strength of two elements at the bottom of the upstream hydraulic fill 

to initiate the failure. Jitno (1995) adopted a pseudo-dynamic FE approach, where the slide is 

triggered by reducing the shear modulus of the liquefied soil, clay core and shell, to model the post-

earthquake displacement. However, the two methods could not consider any shear band that was 

generated during the earthquake. In group (b), the formation of shear bands during the seismic 

loading process has been addressed by some studies (e.g., Chowdhury et al. 2019; Huang et al. 

2020). Nevertheless, none of them reproduced the whole process of post-earthquake deformation. 

A possible reason could be that the constitutive models or the numerical modeling technique were 

not capable of modeling large strains. 
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Table 5.1 Numerical modeling techniques for the Lower San Fernando Dam 

References 
Numerical 

technique 
Stage(s) analyzed Remarks 

Seed et al. (1973) 

Limit equilibrium 

(LE) & finite-

element (FE)  

Initiation of failure Pseudostatic and dynamic analysis 

Castro et al. (1989) LE  Initiation of failure 
Newmark method to estimate the strain and strain-

induced strength reduction 

Olson (2001); Olson 

and Stark (2001, 2002) 
LE  Initiation of failure 

A flow failure susceptibility analysis, a liquefaction 

triggering analysis, and a flow failure stability analysis 

Seed (1979) LE and FE  Initiation of failure Pseudostatic and dynamic analysis 

Gu et al. (1993) FE  
Initiation and post-quake 

deformation 

Reduce the su of two elements to liquefaction state to 

trigger the failure 

Jitno (1995) FE  
Initiation and (limited) post-

quake deformation  

Extended Newmark method; 

zero inertia force; the predicted displacement is too 

small 

Huang and Zienkiewicz 

(1998) 
FE  

Initiation and (limited) post-

quake deformation 
Dynamic analysis 

Ming and Li (2003) FE  
Initiation and (limited) post-

quake deformation 
Dynamic analysis 

Khoei et al. (2004) FE  
Initiation and (limited) post-

quake deformation 
Dynamic analysis 
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References 
Numerical 

technique 
Stage(s) analyzed Remarks 

Blázquez and López-

Querol (2007) 
FE  

Initiation and (limited) post-

quake deformation 
Dynamic analysis 

Khoei and Haghighat 

(2011) 
Extended FE  

Initiation and (limited) post-

quake deformation 
Dynamic analysis 

Beaty and Byrne (2000) 
Finite-difference 

(FD)  

Initiation and (limited) post-

quake deformation  
Dynamic analysis 

Chowdhury et al. 

(2019) 
FD 

Initiation and (limited) post-

quake deformation 
Dynamic analysis 

Huang et al. (2020); 

Feng et al. (2021) 

Material Point 

Method 

Initiation and (limited) post-

quake deformation 
Dynamic analysis, large-deformation analysis 

Tjung and Soga (2021) 
Material Point 

Method 
Post-quake deformation No seismic loading, large-deformation analysis 
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FE modeling of post-quake sliding over a large distance, as observed in the field, is very 

limited. Some decoupled analyses were performed without modeling the formation of additional 

slip surfaces within the failed soil block during downslope displacement. Olson (2001) calculated 

the displacement from simplified kinetics analysis, as mentioned above. Two important aspects 

need to be considered in the post-quake analysis: 

First, the constitutive model of the soil should be carefully selected to ensure that it can 

capture the behaviour at large deformation as observed in the field (e.g., the liquefied zone where 

the failure plane is generated). The majority of FE studies focused on the cyclic behaviour during 

the seismic event rather than the strain-softening behaviour during the event and the post-failure 

stages (e.g., Blázquez and López-Querol 2007). Gu et al. (1993)used a hyperbolic stress-softening 

model for loose sand to examine the progressive failure during the post-quake stage. However, 

their FE analyses were limited to a small displacement level.  

Second, a large shear strain generates around the failure planes. Most FE programs that can 

be used for coupled hydraulic–mechanical analysis cannot handle a large deformation, as occurred 

in the San Fernando Dam failure (Fig. 5.1(a)), due to mesh distortion. Several studies used the 

material point method (MPM) which can theoretically model large deformation (Huang et al. 2020; 

Feng et al. 2021; Tjung and Soga 2021). However, they conducted preliminary analyses in which 

the failure patterns were still remarkably different from the field observation. 

In summary, although several studies were dedicated to modeling the failure of this dam, 

complete modeling of the delayed slide incorporating large deformation, which has been done in 

this study, is very limited. This paper is organized in the following way: First, a brief description 
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of a large-deformation FE modeling technique in a Eulerian-based framework is presented. Second, 

new techniques for modeling seepage and in-situ stresses are presented. These two factors could 

significantly affect the failure. Third, simplified constitutive models for liquefiable and non-

liquefiable soils are introduced. The estimation of geotechnical parameters is also presented in 

these sections. Fourth, the simulation results of the Lower San Fernando Dam failure, including 

the formation of failed soil blocks, their displacements, and comparison with the field observation, 

are shown. Finally, a parametric study is performed to explore the effect of several factors on the 

failure. 

 

5.3 FE Modeling 

Numerical analysis is conducted using Eulerian-based approach in Abaqus/Explicit FE 

software. Unlike a Lagrangian-based FE analysis, the mesh remains fixed, and the Eulerian 

material (soil) flows through the mesh. Therefore, the simulation can be continued over a large 

distance without any numerical issues due to mesh distortion, as commonly occurred in the 

Lagrangian-based FE analyses. Eulerian-based FE methods have already been adopted to analyze 

various geotechnical engineering problems (Qiu et al. 2011; Dutta et al. 2014; Hamann et al. 2015; 

Dey et al. 2015). The performance of the Eulerian-based FE modeling technique in geotechnical 

applications has been examined previously by comparing the results with other numerical modeling 

techniques, e.g., Remeshing and Interpolation Technique with Small Strain (RITSS) (Wang et al. 

2013), Computational Fluid Dynamics (Saha et al. 2018), and also calibrated against field and 

centrifuge test data (Qiu et al. 2011; Zheng et al. 2017). 
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5.3.1 Model geometry and boundary conditions 

Figure 5.2 shows the model geometry of the dam before the earthquake. Eulerian-based FE 

in Abaqus only supports three-dimensional modeling; therefore, the plane strain condition is 

modeled with one element length in the out-of-plane direction. The whole domain is discretized 

with 8-node linear brick (EC3D8RT) elements of uniform 0.5 m cubes. The FE model consists of 

10 parts: rolled fill, ground shale, loose and medium to dense zones of upstream hydraulic fill, 

loose and medium to dense zones of downstream hydraulic fill, clayey core, berm, alluvium, and 

void (Fig. 5.2). The void and different parts of the soil are defined by the volume fraction tool in 

the software. EVF = 0, 0 < EVF <1.0 and EVF = 1.0 represent the elements without soil (void), 

partially and completely filled with soil, respectively. 

 

Figure 5.2 Eulerian-based FE model of the Lower San Fernando Dam 

 

5.3.2 Triggering the slide 

A pseudostatic analysis is commonly performed for the seismic stability of slopes using the 

limit equilibrium methods in which the earthquake load is given in the form of acceleration of the 

sliding soil mass (Khg), where Kh is the seismic coefficient, and g is the gravitational acceleration. 

Note that Khg is generally well below the peak accelerations (Kramer 1996). For the Lower San 
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Fernando Dam, Seed (1979) calculated the factor of safety of 1.3 with his best possible 

approximation of Kh of 0.15, which means the failure should not have occurred unless there were 

some other factors in the post-slide stage (e.g., stress redistribution and strain-softening). The 

original pseudostatic method does not provide the displacement of the soil block, which can be 

obtained from the rigid sliding block analysis (Newmark 1965). Sarma (1975) extended the 

Newmark sliding block theory for seismic stability of an earth dam and soil displacement due to 

an earthquake. Rectangular, triangular, and half-sine pulses with the maximum earthquake 

acceleration of Kmg were applied for half of the predominant period of the earthquake (T0) to initiate 

displacement of the soil. For the cases they studied, the triangular pulse better modeled the strong 

earthquake scenarios. A simplified pseudo-dynamic FE approach, which is essentially an extension 

of Newmark’s method, was developed in a Lagrangian-based framework to calculate the 

displacements of the Lower and Upper San Fernando Dams (e.g., Byrne et al. 1992; Jitno 1995). 

However, their method cannot simulate the formation of failure planes during downslope 

movement, as discussed above. Tan and Sarma (2008) also used a pseudostatic approach in FE 

modeling to determine the critical acceleration that causes the failure of a slope; however, they did 

not study post-slide displacement of the failed soil. 

The major slide of the Lower San Fernando Dam started approximately 30 seconds after 

the earthquake ceased (Seed 1979). That means the flowslide occurred at the post-seismic stage 

due to gravitational loading and strain softening, rather than from the inertial force during the 

earthquake. However, strain-softening might have also occurred in some zones during the 

earthquake. Therefore, in this study, sliding is triggered by pseudostatic loading with a triangular 
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pulse of horizontal acceleration, as suggested by Sarma (1975), which allows the simulation of 

weakening of the soil even during the earthquake. 

 

5.3.3 Modeling seepage 

The seepage plays a major role in slope failure. Prior to the earthquake, the slope was in a 

steady-state seepage condition. Therefore, steady-state seepage modeling is performed first to 

establish in-situ stresses in the soil. The Eulerian-approach of the software can handle only 

single-phase material and does not have any built-in technique for modeling seepage. The 

following technique has been developed for seepage analysis.  

The governing differential equation for two-dimensional seepage in saturated soil is 

𝜕

𝜕𝑥
(𝑘x

𝜕𝐻

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘y

𝜕𝐻

𝜕𝑦
) + 𝑄 = 𝑚vγw

𝜕𝐻

𝜕𝑡
 (5.1) 

where 𝐻 = total head; 𝑘x and 𝑘y = hydraulic conductivity in the x and y directions, respectively; 

𝑄  = applied boundary flux (usually equal to 0 in an earth dam); mv = coefficient of volume 

compressibility; γw = the unit weight of water; and 𝑡 = time. 

The pore water flow through Eulerian material is modeled using the thermal–hydraulic 

analogy, as used by Hamann et al. (2015) for pile installation. The governing equations for the 

seepage (Darcy’s law) and heat conduction are 

𝐪 =
𝐤

γw

(−∇𝑝w) (5.2) 

𝐟 = 𝛋(−∇𝑇) (5.3) 
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where 𝐪 = Darcy velocity in porous media; 𝐤 = hydraulic conductivity (a diagonal matrix of 

which 𝑘x and 𝑘y lie on the main diagonal, where 𝑘x and 𝑘y are the hydraulic conductivity in the 

x and y direction, respectively); 𝑝w = pore water pressure; ρw = density of water; 𝐟 = heat flux; 

𝛋 = thermal conductivity; and 𝑇 = temperature. Equations (5.2) and (5.3) show that pw, q and k/γw 

in seepage analysis are analogous to T, f and  in heat transfer analysis, respectively. 

The coefficient of volume compressibility (Eq. (5.4)) is similar to c in heat transfer 

analysis (Eq. (5.5)). 

𝑚v =
∆θv

∆𝑝w
 (5.4) 

𝑐𝜌 =
∆𝐸

∆𝑇
 (5.5) 

where 𝑐 = specific heat capacity;  = density of the soil; θv = 𝑉w 𝑉wet⁄  is the volumetric water 

content (where 𝑉w is the volume of water, and 𝑉wet is the total volume of the wet soil); E = 

thermal energy. In saturated soil, ∆θv = ∆𝑉w 𝑉wet⁄  is the increment of the water volume in a unit 

volume of soil, caused by a small increment of pore water pressure (∆𝑝w). In a seepage problem, 

the energy redistribution progresses with the water flow and leads to the change of θv. Therefore, 

∆θv in Eq. (5.4) is analogous to ∆𝐸 in Eq. (5.5). Here, E is the increment of thermal energy (heat) 

due to a small increment in temperature (∆𝑇). In other words, c is analogous to mv. Now, using 

the analogous parameters, heat transfer analysis is performed. In the present study, EC3D8RT 

elements are used, which are 8-noded thermally coupled linear brick, multi-material, and include 

reduced integration with hourglass control elements that allow heat transfer (conduction) analysis 

using thermal conductivity and specific heat capacity. In other words, seepage is modeled by heat 
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transfer analysis, where the initial hydraulic conditions (e.g., water pressure at the upstream surface 

of the dam) is defined by temperature, hydraulic conductivity by thermal conductivity, and the 

coefficient of volume compressibility by the product of specific heat capacity and soil density. 

Further discussion on seepage modeling parameters is provided in Section 5.4.6. 

 

5.3.4 In-situ stress under steady-state seepage 

In-situ stress, and especially the deviatoric stress, plays a major role in triggering slope 

failure. Therefore, the in-situ stresses need to be established properly, incorporating the effects of 

seepage, before slope stability analysis. 

Based on the results of the steady-state seepage, the seepage forces can be calculated as 

𝑭 = γw𝒊𝑉 (5.6) 

where F is the seepage force on a cubical element; i is the hydraulic gradient; V is the volume of a 

cubical element. A computer program is written in Matlab to calculate the seepage force in the 

horizontal and vertical directions for the elements under the phreatic line. In the Matlab program, 

i is calculated from the temperature distribution and coordinates of the element (ix =T/x and iy 

=T/y). The in-situ effective stresses are established by two-step loadings. In the first step, the 

initial stress fields (before filling the reservoir) are established by increasing gravitational 

acceleration to 9.81 m/s2. In the second step, the seepage forces (Eq. (5.6)) and buoyancy forces 

are added to the elements under the phreatic line.  
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5.4 Modeling of soil 

Earthquake-induced slope failure can be divided into three stages (Ambraseys and Srbulov 

1995). Castro et al. (1989) proposed a similar concept for the failure of the Lower San Fernando 

Dam (Fig. 5.3), where the duration of co-seismic, post-seismic (before the major slide), and sliding 

phases are shown. The main purpose of the present study is to simulate the large-deformation 

behaviour of the slide; therefore, the sliding stage (Phase-III in Fig. 5.3) is the main focus in this 

study. 

 

Figure 5.3 Schematic diagram of the phases of the failure of the Lower San Fernando Dam 

(adapted from Castro et al. 1989) 

The geotechnical properties used in FE analysis are listed in Table 5.2. Further details on 

the selection of these model parameters are discussed below. 

 

5.4.1 Hydraulic fill 

Each of the upstream and downstream hydraulic fills is divided into a loose zone and a 

medium to dense zone in the model. As shown in Fig. 5.2, the loose zones are located at the bottom 

of the hydraulic fill (below the dashed lines). This assumption is based on the SPT tests conducted 

by Castro et al. (1989), where smaller blow counts occurred at the bottom of the hydraulic fill. The 

rest of the sandy hydraulic fill (above dashed lines) is assumed to be medium to dense, as larger 
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blow counts were reported (Seed et al. 1973; Castro et al. 1989). The following approaches are 

used to model hydaulic fills. 

Table 5.2 Soil parameters used in FE analysis 

Parameter 
Rolled 

fill 
Berm Ground shale Clayey Core Hydraulic fill (loose) 

Hydraulic fill 

(medium to 

dense) 

Alluvium 

 (kg/m3) 2146 2146 1954 1954 2017 2017 2082 

E (kPa) 2.0104 2.0104 2.0104 2.0104 2.0104 2.0104 1.0106 

 0.35 0.4 0.35 0.48 0.48 0.48 0.48 

p () 45 50 45 - - 37 - 

c () 35 40 35 - - 30 - 

p () 12.5 12.5 12.5 - - 8.75 - 

c () 0 0 0 - - 0 - 

cp (kPa) 2 2 20 (2, 50) - - 60 (2, 20, 100) - 

cr (kPa) 2 2 2 - - 2 - 

𝑠u(yield) 

(kPa) 

- - - 0.3σvo
′  0.281σvo

′  - - 

𝑠u(liq) 

(kPa) 

- - - 0.1σvo
′  0.056σvo

′  (0.112σvo
′ ) - - 

εr
p

 30% 30% 30% (60%) 30% (60%) 8% 30% (60%) - 

Note: Parameters in parenthesis are used for parametric study. 
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(a) Loose hydraulic fill 

The generated excess pore water pressure due to the earthquake (Fig. 2.13(a)) could liquefy 

the loose soil, which was considered the potential cause of triggering the failure (Seed et al. 1973). 

In a simplified way, Gu et al. (1993) reduced the shear strength of two elements in this zone to 

trigger the failure. Note, however, that a zone of soil might have been weakened due to the 

earthquake, although a global failure of the slope did not occur. Such an incomplete failure (i.e., 

formation of shear bands) is modeled in this study by applying a pseudostatic load. 

In the present study, an undrained strength analysis (USA) approach (Ladd 1991) is adopted 

to model the loose part of the hydraulic fill. The USA was originally proposed for modeling 

undrained behaviour of clay (Ladd 1991). However, the failure of the loose hydraulic fill in this 

case occurred in a short period; and therefore, the dissipation of pore water pressure was limited. 

In addition, the failed soil block continuously displaced over the failure plane formed through this 

soil (Fig. 5.1), which implies that rapid shearing occurred along the failure planes through the loose 

hydraulic fill during the whole period of failure. Therefore, an undrained condition is used for this 

soil. The peak undrained shear strength (su(yield) in Table 5.2) is defined as a function of initial 

effective vertical pressure (σv0
′ ) that has been calculated considering the seepage-induced pore 

water pressure, as discussed above. Note that although the undrained shear strength is defined in 

terms of effective stresses, the total stress analysis is performed without calculating the excess pore 

pressure and effective stress. In this study, the total stress represents the stress without initial pore 

water pressure, which is equal to the initial effective stress plus the shear-induced excess pore water 
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pressure. Following the work of Olson and Stark (2001), 𝑠u(yield) = 0.281σv0
′  is used for the 

representative case analysis (Table 5.2). 

The undrained behaviour of the loose hydraulic fill in triaxial compression condition is 

shown schematically in Figs. 5.4(a) and 5.4(b). These figures are used only to explain the 

mechanisms, including stress–strain behaviour, excess pore water pressure (u), total stress path 

(TSP) and effective stress path (ESP). However, the numerical simulations are performed using the 

undrained shear strength. Figure 5.4(b) shows that the deviatoric stress (q) increases to point B 

and then gradually decreases to the minimum value (point C) as the effective stress decreases due 

to the generation of excess pore water pressure. This minimum strength is called the undrained 

steady-state shear strength or the liquefied shear strength (su(liq)). In the present study 𝑠u(liq) =

0.056σv0
′  is used, which is in the range between the lower bound and upper bound values reported 

by Olson and Stark (2002). A larger 𝑠u(liq) of 0.112σv0
′ , suggested by Olson and Stark (2002) to 

consider kinetics of failure, is used in the parametric study.  

During the earthquake, excess pore water pressure might have developed due to cyclic 

loading, which could have brought the stress state of a soil element to any point on ABC in Fig. 

5.4(a). Also, a considerable shear displacement occurred before the major slide (Fig. 5.3). As 

mentioned above, Phase-I and Phase-II are not simulated, as the focus of the present study is to 

model the large displacements in Phase-III. For simplicity, the calculation starts from the initial 

state of the soil element (point A) and then deforms elastically (path AB) until it reaches the yield 

envelope during pseudo-static loading and subsequent failure. After that, the undrained shear 

strength decreases with shear strain, which is modeled using a tri-linear line (Fig. 5.4(b)). The shear 
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stress reaches the peak undrained shear strength elastically, from where the plastic shear strain (p) 

starts to develop. Subsequently, su decreases linearly to su(liq) at εr
p
 and then remains constant. 

 

 

 

Figure 5.4 Schematic behaviour of the sandy hydraulic fill: (a) undrained stress path of loose 

sand; (b) stress–strain behaviour; (c) stress paths of medium to dense sands; (d) stress–strain 

behaviour 
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(b) Medium and dense hydraulic fills 

The medium to dense hydraulic fills over the loose hydraulic fill are not expected to liquefy 

due to cyclic loading during an earthquake; instead, the soil will have the tendency to expand, 

which will generate negative excess pore water pressure (Fig. 2.13(b)). Castro et al. (1989) also 

recognized the effects of this dilative tendency in the toe dike of the San Fernando dam. 

Figures 5.4(c) and 5.4(d) show schematically the total and effective stress path and 

stress−strain curve that might be followed by a soil element in the medium and dense fill under 

triaxial loading conditions. Positive pore pressure might be generated during the earthquake 

(Phase-I) and then soil might follow the yield line in both Phase-I and Phase-II loading stages, and 

finally reach point B in Fig. 5.4(c) at the end of Phase-II. The stress state of some soil elements 

might move to point B, also due to monotonic shearing in Phase-II. At this stage, the total stress 

in the soil element is at point B, which is above the effective stress yield envelope. In other words, 

the soil gained some strength because of negative excess pore pressure generation. As mentioned 

before, the objective of this study is to simulate large deformation behaviour in Phase-III, without 

simulating Phases-I and II. Therefore, the shear strength at the start of the calculation should be 

defined considering the strength gain due to negative pore pressure generation during Phases-I and 

II. 

Phase-III failure is relatively slower, at least compared to that in the earthquake loading 

stage. Therefore, partial drainage is expected along the shear plane, at least locally. Note that, 

unlike the loose fill over which the failed soil displaces, the overlying medium and dense sands 

might get more time for partial local drainage as they move as an intact block unless there is a shear 
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band formation, as described in later sections. Therefore, modeling of these medium to dense fills 

is more complicated because the shear strength reduces due to two interrelated processes: 

(i) time-dependent reduction of suction that develops during Phases-I and II, which is 

related to local drainage, and 

(ii) the reduction of angles of internal friction and dilation due to accumulated plastic 

shear strains (Castro et al. 1989; Han and Vardoulakis 1991). 

In addition, the software used in this study allows the simulation only for single-phase 

material. This means excess pore pressure and effective stress cannot be calculated as in a coupled 

analysis. Therefore, the Mohr–Coulomb model of total stress is used to define the soil behaviour, 

using an apparent cohesion (c) and friction angle (). The apparent cohesion in total stress analysis 

was used in previous studies (Bishop and Eldin 1950; Idinger and Wu 2019). Seed et al. (1973) 

conducted undrained triaxial compression tests on the hydraulic fill used for this dam and showed 

the peak apparent cohesion (cp) of 60 kPa in some cases; however, it is negligible (~ 2 kPa) at large 

strains. In the present study, cp = 60 kPa is used for the base case analysis, while it varies between 

2 kPa and 100 kPa in the parametric study. Similarly,  at the peak (p) and critical state (c) are 

assumed to be 37 and 30, respectively, based on laboratory test data presented by Seed et al. 

(1973) and Castro et al. (1989). The maximum dilation angle (p) is 8.75, which reduces linearly 

to zero at εr
p
. The friction and dilation angles are decreased linearly, as shown in Fig. 5.4(d). 

Similar to the loose hydraulic fill modeling, the Phase-I and Phase-II are not simulated in 

this medium to dense hydraulic fill; instead, the effects of those two phases are incorporated by 

defining a higher strength above the yield envelope using cp and p. The soil elements reach the 
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peak strength envelope due to undrained elastic deformation. With further shear deformation, the 

shear strength parameters diminish gradually from p to c and p to zero (Fig. 5.4(d)). 

In finite element program, a user-subroutine VUSDFLD is used to define the material 

properties. The peak shear strength (su(yield))/parameters (p and p) are calculated using the initial 

stresses. The plastic shear strain is called in each time increment, which is then used to calculate 

the mobilized su for loose fill (Fig. 5.4(b)) and c and  for medium and dense fill (Fig. 5.4(d)). 

 

5.4.2 Clayey core 

Castro et al. (1989) showed that the core was mainly composed of a silty clay with about 

20% of sandy layers ranging from about 25.4 to 762 mm thick. About 70% sandy layers and 30% 

clayey layers were seen in the transition zone between the clayey core and the sandy hydraulic fill. 

Dafalla et al. (2020) indicated that the hydraulic conductivity of sand-clay mixtures is governed by 

the clayey fraction, which leads to an undrained condition during the dam failure. The clayey core 

is expected to have a strain-softening behaviour under undrained conditions. In the present study, 

a bilinear stress−strain behaviour is adopted again. The 𝑠u(yield) σv0
′⁄  is chosen to be 0.3, which is 

in line with 𝑠u(yield) σv0
′⁄  = 0.2–0.3 that was presented for the clayey core by Castro et al. (1989). 

Liquefied sand filled the failure cracks in the clayey layers (Seed et al. 1973); therefore, the residual 

strength of the clayey core is highly dependent on the liquefied sand, and the 𝑠u(liq) σv0
′⁄  is 

assumed to be 0.1 for the representative case, based on the stress−strain curve proposed by Castro 

et al. (1989). εr
p
 is assumed to be 30% in the representative analysis. Considering the uncertainty 

of εr
p
, 60% is used for the parametric study. 
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5.4.3 Rolled fill and ground shale 

The ground shale layer was mainly composed of widely graded sand and silty sand (Castro 

et al. 1989). The rolled fill was a mixture of shale and gravelly material (Castro et al. 1989). Both 

the rolled fill and ground shale layer were in a dense condition, based on SPT results (Castro et al. 

1989). The critical state friction angle of 35 is used for both layers, following the work of Castro 

et al. (1989). The peak friction angle is assumed to be 45 for these two dense layers. Based on 

Bolton (1986), the dilation angles at the peak and critical state are 12.5 and 0, respectively. The 

peak cohesion (cp) and residual cohesion (cr) are assumed to be 20 kPa and 2 kPa, respectively, for 

the ground shale, to consider the effects of induced suction. The drained condition with a constant 

cohesion of 2 kPa (to avoid numerical issues) is adopted for the rolled fill, as it is well above the 

phreatic line. Different values of apparent cohesion are also used in the parametric study to 

investigate its effects on failure. The same bilinear stress–strain curve is adopted for both soils and 

εr
p
 is assumed to be 30%. Considering the uncertainty of εr

p
, analyses are also performed with εr

p
 

= 60% in the parametric study. The reduction of the friction angle and dilation angle are modeled 

using a modified Mohr–Coulomb model, by developing a user-subroutine VUSDFLD. 

 

5.4.4 Berm 

The berm was essentially rolled fill, and most of it was above the phreatic line before the 

slide. Based on Castro et al. (1989), the critical state friction angle of 40 is used. The peak friction 

angle is assumed to be 50 for this dense soil. Based on Bolton (1986), the peak dilation angle and 

the residual dilation angle are 12.5 and 0, respectively. εr
p
 is assumed to be 30%. 
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5.4.5 Alluvium 

The alluvium consisted of stiff clay with lenses of dense sandy material (Castro et al. 1989). 

As no failure occurred through this soil layer, an elastic model is used to model the alluvium. 

 

5.4.6 Seepage parameters 

Isotropic hydraulic conductivity (k = kx = ky) is assumed in the simulation of the steady-

state seepage of the Lower San Fernando Dam (Table 5.3). The seepage parameters are selected 

following Ming and Li (2003). Those seepage parameters listed in Table 5.3 are transferred to 

thermal parameters in Eulerian-based FE, based on the theory introduced in Section 5.3.4. The total 

heads of upstream and downstream are 338.0 m and 309.5 m, respectively, and they are transferred 

to a temperature boundary in this model. 

 

Table 5.3 Soil parameters used in seepage analysis 

Parameters Rolled fill 

Berm Ground 

shale 

Clayey 

Core 

Hydraulic 

fill 

Alluvium 

Density,  (kg/m3) 2146 2146 1954 1954 2017 2082 

Hydraulic conductivity, k (m/s) 5.010-6 1.010-4 1.010-4 5.010-6 1.010-4 1.010-5 

Coefficient of volume 

compressibility, mv (MPa-1) 

0.3 0.02 0.02 0.3 0.02 0.3 
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5.4.7 Pseudostatic load 

In the 1971 earthquake, the predominant period (T0) was 0.5 s, and the peak acceleration 

(Kmg) was 0.6g (Chang 1976). Now, following the recommendations of Sarma (1975), a triangular 

impulse of 0.25 s duration (i.e., T0/2) and a horizontal maximum acceleration (Kmg) of 0.6g are 

applied to the upstream side. The effects of T0 and Km on failure are discussed in the parametric 

study. Analyses are also performed for the rectangular pulse for earthquake loading (Sharma 1975) 

and pseudostatic loading in the downstream direction. 

 

5.5 Results 

5.5.1 Steady-state seepage 

The seepage analyses are conducted in Eulerian-based FE, as discussed above, and the 

results are compared with SEEP/W (GEOSLOPE International Ltd 2012) analysis. Figures 5.5 and 

5.6 show the total head distributions at t = 1 day and at the steady state, respectively. Eulerian-

based FE simulation (banded contours) produced similar results as the SEEP/W analysis (the 

equipotential lines). At the initial stage of the analysis (t = 1 day), the total head at the central and 

the downstream part is significantly lower than the steady state, indicating a transient state at that 

time. The change of the total head with time at point A (as shown in Fig. 5.2) is shown in Fig. 5.7. 

The total head increases rapidly in the first 4 days and reaches a plateau at around 6 days, and a 

very small difference is found for the two numerical techniques. In summary, the developed 

numerical techniques of the Eulerian-based FE method can simulate the seepage properly. 
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Figure 5.5 Total head distribution 1 day after reservoir filling 

 

Figure 5.6 Total head distribution at the steady state 

 
Figure 5.7 Total head variation with time at point A in Fig. 5.2 
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5.5.2 Initial stress 

Based on the steady-state seepage, the seepage forces and buoyancy for each element are 

calculated and applied to the submerged Eulerian elements. At this stage only, the materials are 

assumed to be elastic to establish the in-situ stresses. A highly elastic modulus is used to ensure a 

minimal deformation. 

To validate the proposed in-situ stress modeling technique in Eulerian-based FE, simulation 

is also performed using SIGMA/W (GEOSLOPE International Ltd 2013). Figure 5.8 presents the 

deviatoric stresses from Eulerian-based FE and SIGMA/W. Minimal difference is seen in the two 

models, proving the effectiveness of the proposed technique in modeling the in-situ stress of the 

Lower San Fernando Dam. 

 

 

Figure 5.8 Deviatoric stress in Eulerian-based FE and SIGMA/W 

 

5.5.3 Progressive failure of the Dam 

A representative analysis with the soil parameters in Table 5.2 is conducted to show the 

failure mechanisms and the failure pattern. To validate the proposed modeling technique, the FE 
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simulated failure pattern is compared to the field observation reported in previous studies. The 

deviatoric plastic strain contours are used to show the failure surfaces (Fig. 5.9). 

As mentioned above, the failure is triggered by pseudostatic analysis, instead of simulating 

the earthquake shaking. At the end of the pseudostatic loading, a shear band (f1) is initiated from 

the upstream toe and propagates towards the clayey core along the interface between the upstream 

hydraulic fill and the alluvium (Fig. 5.9(a). The location of the shear band (f1) is similar to the 

liquefaction zone observed in the field (Fig. 5.1). This indicates that a comparable triggering effect 

is simulated from this numerical model. Also, the slide does not occur during this loading process, 

which is consistent with the field condition; the slide occurred after the earthquake (Seed et al. 

1973). 
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Figure 5.9 Deviatoric plastic strain contours of the representative case 
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As the shear band f1 reaches the core area, two curved shear bands f2 and f3 start to form 

from the right end of f1 as the lateral resistance decreases (Fig. 5.9(b)). With the strain-softening 

process and its induced stress redistribution, the shear band f2 propagates up towards the 

downstream surface of the dam, and f3 diverges into two shear bands approaching the crest of the 

dam (Fig. 5.9(c)). Close to the f2 and f3, a couple of almost parallel minor shear bands are generated 

almost parallelly. These shear bands, together with f2 and f3, present a similar pattern to the multiple 

parallel shear bands observed in the field (Fig. 5.1). 

With further development of the shear band f3, a rotational slide of a soil block (M1) starts 

to move towards the upstream direction along the failure plane formed by shear bands f1 and f3 

(Fig. 5.9(c)). A failure plane is not fully developed through the shear band f2; however, the length 

and shear strain of this shear band increase with the movement of this major slide. This is in line 

with the explanation by Seed (1979), who showed that the factor of safety of the backscarp was 

1.03 following the major slide. Nevertheless, this retrogressive nature was not successfully 

captured in any numerical analysis. 

Furthermore, a shear band (f4) forms in the downstream hydraulic fill and propagates 

towards dam crest; however, a downstream slope failure does not fully develop (Fig. 5.9(c)). The 

occurrence of the f4 was validated by field investigations (Castro et al. 1989; Seed et al. 1973). The 

absence of a downstream slide can be explained with a higher shear resistance added by the berm 

(Ming and Li 2003), or the unloading effect caused by the upstream slide (Castro et al. 1989). 

As the failure block M1 displaces further towards the upstream direction, new shear bands 

(f5 and f6) occur to divide M1 into three failure blocks, M2, M3 and M4, at around 5 s (Fig. 5.9(d)). 
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Among them, M2 is a “-shape” block, and M3 is a “-shape” block. With further displacement of 

the slide, the failure block M2 moves further than other blocks, leaving a shallower zone between 

them (Figs. 5.9(e)–5.9(g)). This can explain the occurrence of block 9 and the separation of blocks 

7 and 10 in the field (Fig. 5.1(b)). 

Another shear band (f7) forms with further settlement of the failure mass. This divides the 

M4 into a trapezoid block, M5, and a “-shape”, M6. M5, which is nearly a “-shape” block, can 

be identified as block 7 in the field, while M6 is similar to block 5, observed by comparing Fig. 

5.9(g) and Fig. 5.1. Note that these blocks are similar to horsts and grabens, which were commonly 

observed in a spread type of sensitive clay landslide (Dey et al. 2015). Though a spread failure was 

not present in the failure of the Lower San Fernando Dam, the occurrence of horsts and grabens 

can still be generated in a rotational slide (Zhang et al. 2020). 

 

5.6 Parametric studies 

The results of a parametric study are presented in this section. However, the purpose is not 

to provide a comprehensive set of results; instead, the focus is to examine the effects of the 

following parameters: (i) apparent cohesion, (ii) rate of strength degradation, (iii) residual strength 

of liquefiable soil, and (iv) pseudostatic load. The relative influence of these parameters on the 

failure patterns and the displacement of soil are investigated. 
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5.6.1 Effects of the apparent cohesion 

The value of apparent cohesion of the ground shale and the medium to dense hydraulic fill 

depends on dissipation of pore water pressure. In the field, their drainage condition is expected to 

be somewhere between drained and undrained conditions, and it is difficult to estimate from 

available data. Therefore, a parametric study is performed with different values of cohesion to 

understand its influence on failure. First, the drained condition is modeled in Case A, where the 

cohesion is a constant, 2 kPa, for both the ground shale and the medium to dense hydraulic fill. In 

Case B, cp = 50 kPa and cr = 2 kPa are used for the ground shale, while the parameters of the rest 

of the soil remain identical in the representative study. Furthermore, cp = 20 kPa and cr = 2 kPa are 

adopted for both the ground shale and the medium to dense hydraulic fill in Case C. In Case D, 

larger peak cohesions (cp = 100 kPa) are used for the medium to dense hydraulic fill, assuming a 

higher suction in this soil, while the peak cohesion remains 20 kPa for the ground shale in this case. 

Figure 5.10 shows the deviatoric plastic strain distributions at the end of the failure for different 

sets of apparent cohesions, from Case A to Case D. The failure patterns of Cases A–D (Figs. 

5.10(a)–5.10(d)) are not remarkably divergent from the representative case (Fig. 5.9(g)), as all of 

them show a similar location of main shear bands (e.g., f1, f2, f3, f4, f6 and f7) and failure blocks 

(e.g., M3, M5 and M6). Nevertheless, the size of these failure blocks varies from case to case. This 

could be attributed to the selection of apparent cohesions. A smaller apparent cohesion generally 

leads to a lower shear strength and thus larger area of plastic zone, which reduces the size of blocks. 

For example, the upstream toe area is mostly in the residual state in Case A (Fig. 5.10(a)) due to a 

low value of apparent cohesion (cp = cr = 2 kPa) for the medium to dense hydraulic fill. Even when 
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cp = 20 kPa and cr = 2 kPa are adopted for this soil in Case C, the toe block, M2, in the representative 

case (Fig. 5.9(g)) and Case D (Fig. 5.10(d)) cannot be observed (Fig. 5.10(c)); instead, two small 

blocks and a larger residual zone are shown at the same area. This is consistent with the field 

observation; two blocks (10 and 11) existed at the toe (Fig. 5.1), indicating that the value of the 

peak apparent cohesion in the field might not be as high as we assumed in the representative study 

(cp = 60 kPa). The apparent cohesion also affects the size of M5 and M6, due to different locations 

of f7 (Figs. 5.10(a)–5.10(d)). Note that other factors which can also affect the formation of the 

failure blocks, e.g., the influence of the viscosity and inertia of the reservoir water on the flowslide 

motion (Stoecklin et al. 2020), are not considered in this study. 
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Figure 5.10 Deviatoric plastic strain contours for different apparent cohesions: (a) Case A: both 

ground shale and medium to dense hydraulic fill: cp = cr = 2 kPa; (b) Case B: ground shale: cp = 

50 kPa and cr = 2 kPa; medium to dense hydraulic fill: cp = 60 kPa and cr = 2 kPa; (c) Case C: 

both ground shale and medium to dense hydraulic fill: cp = 20 kPa and cr = 2 kPa; (d) Case D: 

ground shale: cp = 20 kPa and cr = 2 kPa, medium to dense hydraulic fill: cp = 100 kPa and cr = 2 

kPa 
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5.6.2 Effects of the residual shear strength of the liquefiable soil 

Figure 5.11 shows the failure patterns of Case E where 𝑠u(liq) = 0.112σvo
′  is used for the 

loose hydraulic fill. In comparison with the representative case (Fig. 5.9), where 𝑠u(liq) =

0.056σvo
′ , a higher value of 𝑠u(liq) influences the failure pattern in several ways. In Case E, a 

significantly smaller runout distance (15.5 m) than the representative case (40 m) is observed, and 

the failure mass movement ceases at around 14 s, which is 8.5 s earlier than the representative case. 

This gap can be explained with their difference in the shear resistance. For the same reason, the 

failure blocks are more intact, as a smaller plastic zone is shown in Case E. The failure still causes 

formation of horsts and grabens, similar to the representative case. A similar effect was reported 

by Olson (2001), and therefore su(liq) was adjusted to match the field results. However, his 

simplified approach cannot simulate the formation of soil blocks. 

 

Figure 5.11 Deviatoric plastic strain of Case E: 𝑠𝑢(𝑙𝑖𝑞) = 0.112𝜎𝑣𝑜
′  for loose hydraulic fill 

 

5.6.3 Effects of shear strength degradation rate 

The effects of the rate of degradation are investigated by using different εr
p

. The toe 

movement (38 m) only decreases 2 m, compared to the representative case, while the strength 

degradation rate decreases by 50% for the ground shale alone in Case F (Fig. 5.12(a)). In contrast, 
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as shown in Case G and F (Figs. 5.12(b) and 5.12(c)), the decrease of the strength degradation rate 

of the clayey core and medium to dense hydraulic fill, respectively, poses a more noticeable effect 

on the mass movement, because their run-out distances are 5.5-m and 10.5-m less than the 

representative case, respectively. However, the failure patterns of the representative case, Case-F, 

Case-G, and Case-H are still similar. That is to say, the effect of the strength degradation rate on 

the failure pattern is not significant. 

5.6.4 Effects of the pseudostatic load 

As mentioned in Section 5.4.7, various sets of pseudostatic loads (Case I to Case N as presented in 

Table 5.4) are implemented in Eulerian-based FE model. Figure 5.13 shows the failures that are 

triggered by different pseudostatic loads. The toe displacement increases when using a larger 

acceleration or (and) there is a longer loading duration towards the upstream direction (Figs. 

5.13(a)–5.13(e)), while the failure patterns remain similar. Therefore, different intensities of the 

pseudostatic loads do not influence the sliding process significantly. This gives more confidence 

when determining the pseudostatic load, as its uncertainty can be accommodated to some extent. 

Nevertheless, an upstream progressive failure is triggered with a remarkably different failure 

pattern by applying a pseudostatic load towards the downstream direction, as shown in Fig. 5.13(f). 

A possible reason is that this reversed pseudostatic load led to a different location of the initial slip 

surface and size of the initial sliding block. Therefore, the following sliding process is altered as 

the driving force is directly linked to the size and shape of the failure block, especially the initial 

block. 
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Figure 5.12 Deviatoric plastic strain contours for different strength degradation rates: (a) Case F: 

ground shale: 𝜀𝑟
𝑝
 = 60%; (b) Case G: clayey core: 𝜀𝑟

𝑝
 = 60%; (c) Case H: medium to dense 

hydraulic fill: 𝜀𝑟
𝑝

 = 60% 
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Figure 5.13 Deviatoric plastic strain contours for different pseudostatic loads: 

(a) Case I; (b) Case J; (c) Case K; (d) Case L; (e) Case M; (f) Case N 
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5.7 Conclusions 

A flow slide occurred at the Lower San Fernando Dam about 30 seconds after a major 

earthquake (M = 6.6) in 1971. Numerous studies were conducted to investigate this famous failure. 

However, the post-earthquake sliding process was not adequately addressed, due to the limitations 

of the analysis tools. A traditional Lagrangian-based FE cannot be used for large-deformation 

modeling due to mesh distortion. Eulerian-based FE, which is free of mesh distortion, is adopted 

in this study to simulate the entire process of the flowside of the Lower San Fernando Dam. 

A technique is proposed to model transient and steady-state seepage based on the thermal–

fluid analogy theory by using thermally coupled Eulerian elements. Based on the seepage analysis, 

the in-situ stress of the Lower San Fernando Dam is established in Eulerian-based FE analysis. In 

addition, simplified constitutive soil models are implemented to account for the large-deformation 

behaviour of the soil layers. A pseudo-static load is chosen to produce a similar liquefaction zone 

as the field observation and thus trigger the flow slide. 

A representative study is conducted first to show the failure mechanism of the slide during 

the post-earthquake stage. The final failure pattern, e.g., the location of shear bands and failure 

blocks, is close to the field observation. Moreover, the development of shear bands and failure 

blocks is successfully explained, based on the complete post-failure process modeled in Eulerian-

based FE model, which cannot be explained from the field investigations and previous studies. 

A parametric study is performed to investigate the influence of several parameters on the 

failure pattern. The overall post-failure mechanism is not significantly affected by the value of 

apparent cohesion, while the intactness of the upstream toe area increases with a higher apparent 
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cohesion. The run-out distance can decrease when the residual shear strength of the loose hydraulic 

fill increases. In addition, the change of degradation rate of shear strength of ground shale, clayey 

core, and medium to dense hydraulic fill poses a marginal difference on the run-out distance and 

the failure pattern. Furthermore, the overall failure pattern is not greatly influenced by the value 

and duration of the pseudo-static load. However, the direction of this load can produce a significant 

effect on the location of the shear bands and failure blocks. 

In this study, the reservoir water is not modeled. Instead, its effect is applied on the dam 

via the seepage forces and buoyancy. Future development is needed to model the soil–reservoir 

water interaction behaviour. Furthermore, advanced soil constitutive models that can address the 

co-seismic stage of the failure can be used to better simulate the triggering process. However, this 

would require a significant effort to calibrate the soil parameters, as these constitutive models 

usually consist of a larger number of equations and parameters. Due to the limited data from the 

previous geotechnical investigations, this calibration process can become considerably 

challenging. 

 

Notations 

εr
p
  residual deviatoric plastic strain  

θv  volumetric water content 

𝛋  thermal conductivity 

𝑣  Poisson’s ratio 

  density of the soil 
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ρw  density of water 

σv0
′   pre-failure vertical effective stress 

c  critical state friction angle 

p  peak friction angle 

p  peak dilation angle 

c  critical state dilation angle 

𝑐  specific heat capacity 

cp  peak apparent cohesion  

cr  residual apparent cohesion 

E  thermal energy 

E  Young’s modulus 

𝐟  heat flux 

F  seepage force 

g  gravitational acceleration 

𝐻  total head 

i  hydraulic gradient 

𝐤  hydraulic conductivity 

Kh  seismic coefficient 

Km  maximum acceleration/g at the record 

mv  coefficient of volume compressibility 

𝑝w  pore water pressure 
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𝐪  Darcy velocity in porous media 

𝑄  applied boundary flux 

𝑠u(liq) liquefied shear strength 

𝑠u(yield) peak shear strength 

𝑇  temperature 

T0  predominant period of the earthquake 

𝑡  time 

V  volume of an element 

𝑉w  volume of water 

𝑉wet total volume of the wet soil 
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CHAPTER 6 

Conclusions and Recommendations for Future Research 

6.1 Conclusions 

The failure of strain-softening materials (e.g., loose sand under undrained loading) during 

the formation and propagation of shear bands or slip surfaces is essentially strain localization. The 

present study addressed several challenges in modeling strain localization of a large-deformation 

failure. The conclusions below are the general overview of the entire thesis. Problem specific 

conclusions and appendices were shown at the end of each chapter (Chapters 3–5). 

In the present study, a framework and multiple algorithms are developed to implement three 

nonlocal methods in Eulerian-based FE program, which is free from mesh distortion and 

convergence issues. Several techniques are developed to reduce the computational costs of the 

nonlocal Eulerian-based FE analyses. The results of a biaxial test simulation are benchmarked with 

the nonlocal version of ICFEP (Imperial College Finite Element Program). Almost identical results 

have been obtained from both programs; however, the numerical issues encountered in the 

over-nonlocal method in the ICFEP are avoided in the present Eulerian-based FE analyses. 

Furthermore, the over-nonlocal method is proved to be more advantageous than the G&S nonlocal 

method when an appropriate value of α is selected. Thereafter, another biaxial test simulation is 

conducted using the present Eulerian-based FE technique with the over-nonlocal method. The 

results are compared with the same test simulation that is performed in nonlocal MPM, and an 

identical response is obtained. 

The effectiveness of softening scaling on local and nonlocal models is investigated. An 

algorithm is developed to implement the over-nonlocal method with the Tresca failure criteria in 

Eulerian-based FE program. Thereafter, a biaxial test and a slope failure are simulated using the 

developed local and nonlocal Eulerian-based FE with softening scaling. Softening scaling was 
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effective in controlling the shear band thickness and modeling the macroscopic behaviour. Both 

the local scaling (element size scaling) and nonlocal methods provided a mesh-independent result. 

However, the latter was more computationally expensive, being disadvantageous to model a 

large-scale problem, e.g., retrogressive landslides, using conventional computational resources. In 

addition, an in-depth investigation was performed on the shear band thickness for both local and 

nonlocal methods. The shear band thickness increases, rather than remaining constant, with the 

increase of shear displacement. The mechanisms involved in this process are explained based on 

an energy-based approach. 

A modeling technique for seepage is developed in Eulerian-based FE program by adopting 

the thermal–fluid analogy. The transient and steady-state seepage are successfully simulated and 

calibrated against commonly used SEEP/W software. In addition, the in-situ stresses under the 

steady-state seepage are modeled by applying the seepage forces and buoyancy forces. 

The failure of the Lower San Fernando Dam in 1971 has been extensively investigated in 

the past. However, the post-failure deformation was underexplored. Eulerian-based FE is 

implemented to model this failure with the focus on the post-failure large deformation behaviour. 

The proposed seepage modeling technique is used to establish the in-situ effective stress of the 

dam. Simplified constitutive models are developed and implemented for the different 

strain-softening soil layers, and the soil properties are determined based on previous site 

investigations and laboratory test results. A pseudostatic load is applied to trigger the failure. The 

formation of clear shear bands, and detachment and downslope displacements of several soil blocks 

in FE simulation, are similar to the post-slide field observation. Furthermore, a parametric study is 

conducted to show the effects of several parameters on the modeling results. 
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6.2 Recommendations for future research 

Although many advances are presented in the numerical modeling of strain localization 

with Eulerian-based FE program, this study has some limitations. Some of the limitations were 

discussed in Chapters 3–5. In addition, some of the following issues could be addressed in the 

future: 

(1) With the development of computational power in the future, the simulation of a large-scale 

soil failure problem, e.g., a landslide might become efficient by using a nonlocal method in 

Eulerian-based FE program. Also, further comparison between the local and nonlocal 

methods for softening-scaling materials can be performed for large-scale landslide 

modeling. 

(2) More research is required to understand the effectiveness of the nonlocal Eulerian-based 

FE analysis on progressive slope failures where multiple shear bands are present, e.g., how 

the value of internal length will affect the failure patterns. Also, the use of nonlocal methods 

in the large deformation of multiple soil layers needs more investigation. Due to the 

aforementioned computational cost issue, the nonlocal method is not used for the modeling 

of Lower San Fernando Dam failure in this study. 

(3) A framework is proposed to implement three nonlocal methods in Eulerian-based FE 

program. The nonlocal methods are successfully applied to the von Mises and Tresca failure 

criteria. In the future, more advanced constitutive models can be implemented with nonlocal 

methods by using the presented framework for modeling a wide range of geotechnical 

problems involved strain-softening behaviour. 

(4) In the future, the co-seismic stage of the Lower San Fernando Dam failure should be 

analyzed along with the post-failure large-deformation analysis so that the effects of the 

triggering process can be more realistically reflected. Advanced constitutive models need 
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to be incorporated in Eulerian-based FE program to handle both the seismic and 

large-deformation behaviour of the soils. In addition, uncertainties in determining soil 

parameters for these models need to be further discussed. 

Finally, although the analyses (both local and nonlocal) are performed for some idealized 

problems with simplified soil constitutive models, the techniques developed in the present study 

could be extended further for other geotechnical problems with different geometries, loading 

conditions, and soil behaviours.  
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ABSTRACT 

 

Strain-softening behaviour of soil poses a significant challenge in finite element (FE) modeling of 

many offshore and onshore geotechnical problems. The FE results are mesh size dependent; 

therefore, several mesh regularization techniques have been proposed. FE modeling becomes 

more difficult for large deformation problems, such as submarine landslides and penetration of 

surface laid pipelines in deepwater. In the present study, FE analyses are performed for two 

idealized problems to show the performance of two regularization techniques: (i) element size 

scaling, and (ii) nonlocal method. Both approaches are implemented in a Eulerian-based FE 

modeling technique that can handle large deformation without causing numerical issues related 

to mesh distortion. Conducting analyses for the undrained loading condition, advantages and 

limitations of these approaches are presented.   

 

Keywords: Strain-softening, large deformation, Eulerian-based finite-element, strain localization 

 

INTRODUCTION 

 

Many geotechnical problems in offshore and onshore environments involve large deformation. 

For example, large-scale submarine landslides generally initiate through a weak soil layer and 

the failed soil mass displaces a large distance over the failure planes. In some cases, the failed 

soil mass moves over the continental slope and then displaces downslope several hundred 

kilometers and might cause a tsunami. Similarly, the installation of offshore piles, suction caissons, 

and penetration and lateral displacement of surface-laid pipelines in deepwater offshore 

environments also involve large deformation. The large displacement of soil also creates 

extremely large shear strain, especially around the failure planes. Post-peak degradation of shear 

strength occurs with accumulated plastic shear strain (strain-softening), which is observed both 

in clay and sand for undrained and drained loadings, although the causes of the strength reduction 

are different. In the present study, numerical modeling is performed for undrained loading 

condition. 

Finite element (FE) modeling is widely used for numerical modeling of many geotechnical 

problems. Most of the FE programs have been developed in a Lagrangian framework that cannot 

handle a very large deformation because of mesh distortion. In recent years, several numerical 

techniques have been developed to simulate very large deformations, such as Remeshing and 

Interpolation Technique using Small Strain (Hu and Randolph, 1998) and Material Point Method 

(Burghardt et al., 2012) and Eulerian-based FE modeling. 

Mesh convergence analyses are essential for any FE analysis to ensure that the results are not 

dependent on the mesh size. Various regularization techniques have been developed to 

overcome this issue, such as element size scaling (Anastasopoulos et al., 2007), nonlocal 
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methods (Eringen, 1981; Bažant et al., 1984; Brinkgreve, 1994; Galavi and Schweiger, 2010), 

viscoplastic models (Loret and Prevost, 1990), strain gradient models (de Borst and Muhlhaus, 

1992), polar models or Cosserat continuum models (de Borst, 1993). Most of these studies show 

the success and limitations of these approaches for small strain finite-element analysis. Some of 

these techniques are mathematically complex and computationally expensive, which are primarily 

applicable to simple problems and might be used for academic exercise.  

This study aims to present the comparison of the performance of two mesh regularization 

techniques by conducting Eulerian FE analysis of two simplified cases: (i) axial compression of a 

block (Case 1), and (ii) failure of a sensitive clay slope due to upslope loading (Case 2). Analysis 

is performed using a Eulerian-based FE modeling technique. The long-term objective of this 

research is to identify a relatively simple, yet can capture strain localization reasonably, for FE 

modeling of large-deformation problems, such as large-scale landslides, using currently available 

computational facilities. 

 

NUMERICAL MODELING TECHNIQUE 

Eulerian-based finite-element method 

Typical Lagrangian-based finite-element programs cannot simulate very large deformation that 

occurs in many geotechnical problems, such as landslides, due to the significant mesh distortion 

around the failure plane and resulting numerical instabilities (Griffiths and Lane, 1999). Eulerian-

based finite-element method available in Abaqus/Explicit FE software is used in this study for 

numerical modeling. In this approach, the Eulerian material flows through the fixed mesh without 

causing numerical issues related to mesh distortion. Further details of the mathematical 

formulations of Eulerian-based FE approach and its applications to large-deformation problems 

(e.g., landslides) are available in previous studies (Benson and Okazawa, 2004; Dey et al., 2015). 

The general purpose Abaqus software does not have a direct option for modeling strain 

localization. In this study, the following two mesh-size regularization techniques are implemented 

in Abaqus using user subroutines. 

Shear strain regularization 

The following two mesh regularization techniques are used in this study: (i) element size scaling, 

and (ii) the nonlocal method. 

 

1) Element size scaling 

A simple approach for reducing mesh sensitive issues is to use the element size scaling rule 

(Pietruszczak and Mróz, 1981; Anastasopoulos et al., 2007). For a given shear displacement (), 

the shear strain of a soil element () is inversely proportional to the thickness of the finite element 

(tFE) as γ = δ/t
FE

 if the element deforms as simple shear condition. Therefore, in FE modeling, 

the rate of reduction of shear strength with  is given as a function of 1/tFE. In other words, the 

smaller the size of the mesh the larger the shear strain requires to reduce the strength. This 

approach has been used in many studies, including in the simulation of large-scale landslides 

(Dey et al. 2015). 

2) Nonlocal method 

This approach has been developed aiming to calculate the reduction of shear strength of the soil 

elements in the shear band by distributing the highly localized shear strain to the surrounding 
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elements using some mathematical functions. Different types of nonlocal methods have been 

proposed, such as original nonlocal method (Eringen, 1981; Bažant et al., 1984), over-nonlocal 

method (Brinkgreve, 1994) and G&S nonlocal method (Galavi and Schweiger, 2010). The main 

difference between these approaches is the use of the weight function to calculate the nonlocal 

shear strain. These approaches have been implemented in Lagrangian-based FE programs 

(Summersgill, 2014) and proved to be able to reduce the mesh sensitivity and maintain the shear 

band thickness independent of mesh size when the mesh size is sufficiently small. Attempts have 

also been taken to implement a nonlocal method in the Material Point Method (MPM) (Burghardt 

et al., 2012; Goodarzi and Rouainia, 2017), while Smoothed-Particle Hydrodynamics (SPH) is 

demonstrated to be inherently nonlocal (Vignjevic et al., 2014). 

In the present study, the original nonlocal method (Eqs. (1–3)) is implemented in Eulerian-based 

approach available in Abaqus/Explicit FE software. A user-subroutine is developed to implement 

the nonlocal method. 

εq(eq)
p (𝑥n) =

1

𝑉ω
∭[ω(𝑥n

′ )εq
p
(𝑥n

′ )]𝑑𝑥1
′ 𝑑𝑥2

′ 𝑑𝑥3
′               (1) 

ω(𝑥n
′ ) =

1

𝐷𝐿√π
exp [−

(𝑥n
′ −𝑥n)

𝑇
(𝑥n

′ −𝑥n)

𝐷𝐿2 ]        (2) 

𝑉ω = ∭ ω(𝑥n
′ )𝑑𝑥1

′ 𝑑𝑥2
′ 𝑑𝑥3

′           (3) 

 

where εq
p
 is accumulated equivalent plastic shear strain; εq(eq)

p
is the nonlocal equivalent plastic 

shear strain to calculate the shear strength after strain softening; and 𝑥n is the point at which the 

calculation of the εq(eq)
p

is required; 𝑥n
′  refers to the reference integration points; εq

p
(𝑥n

′ ) means 

the reference strain at the reference points; ω(𝑥n
′ ), the weight function that is centered at the 

location 𝑥n to define the weight of all the reference points 𝑥n
′  in the calculation of εq(eq)

p
. Finally, 

DL is the internal length which decides the range of weighting distribution; 𝑉ω is the reference 

volume, where 𝑥1
′ , 𝑥2

′  and 𝑥3
′  are the three dimensions. 

 

CASE 1: AXIAL COMPRESSION 

Problem definition 

The failure of a rectangular block of a weightless hypothetical material having strain-softening 

behaviour in plane strain condition is simulated first (Fig. 1). The model geometry is similar to that 

used by Burghardt et al. (2012) to show the performance of simulations using Material Point 

Method. 

To initiate the failure, the yield strength of the material of a 1 m x 1 m weak block is assumed to 

be very small (1.0 kPa). In addition, a rigid cap is placed at the top surface and displaced 

downward at a constant velocity (vy = 0.01 m/s). In the simulation vy is sufficiently small that 

maintains a quasi-static loading condition, which has been verified from low kinetic energy during 

analysis. A rigid cap is used to obtain axial load on the top. Meanwhile, zero velocity in the vertical 

direction (vy = 0) is used for the bottom boundary, while no boundary condition is given in the 

lateral direction, which allows it to deform laterally. A smooth interface condition is used between 

the rigid body and rectangular block.  

The Coupled Eulerian-Lagrangian (CEL) approach in the software is used. The loading cap is 

discretized using Lagrangian elements and then transferred to a rigid body. The loaded block is 
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modeled as a Eulerian material by discretizing it using cubical EC3D8R, which are 8-noded linear 

brick elements with reduced integration and hourglass control. Only 3D elements can be used in 

the present Eulerian-based finite-element software; therefore, to model the plane strain condition 

(i.e., the block is one element thick).  

A bi-linear post-peak strength degradation relation (softening) is used, as shown in the inset of 

Fig. 1. The peak yield strength (yp) of the material is 40 kPa, which reduces linearly to a residual 

value (yr) of 10 kPa at an accumulated plastic shear strain at residual (εq(r)
p

) of 10% (i.e., εq(r)
p

= 

0.1) for the 0.5-m mesh size. In the simulations with element size scaling, εq(r)
p

 is 0.2, 0.4 and 0.5 

and 0.8 for mesh size (tFE) of 0.25 m, 0.125 m, 0.1 m and 0.0625 m, respectively. In other words, 

the post-peak plastic shear strain required to mobilize a shear strength is inversely proportional 

to the thickness of the finite element. The von Mises criterion is adopted. Prior to the plastic 

deformation, the material behaviour is modeled as elastic using Young’s modulus of 7.5 MPa and 

Poisson’s ratio of 0.495. In the simulations with nonlocal method, the internal length DL of 0.5 m 

is used. 

 

 
Figure 1 Geometry and boundary conditions for Case 1 simulations 

 

Results 

Figure 2 shows the development of failure planes at 0.5 m vertical displacement of the rigid block. The 

top row (Figs. 2(a)–(d)) the shows results for four mesh sizes without any mesh regularization (i.e., 

εq(r)
p

= 0.1 for all four analyses). The following key observations are noted: (i) the failure pattern 

changes with mesh size; (ii) higher plastic shear strains generate in the shear band for a smaller 

mesh; and (iii) the width of the shear band decreases with decrease in element size. When 

element size scaling rule is used, only one failure plane is generated, emanating from the corner 

of the weak block, irrespective of the mesh size. However, the shear band is wider for larger 

element size (e.g., compare Figs. 2(e) & 2(h)). 
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Figures 2(i–l) show the failure planes in the simulations with the nonlocal method for regularization. 

As the width of the shear band is somehow controlled using the parameter DL, unlike Figs. 2(e–

h), the shear band width does not change significantly with mesh size when it is smaller than 

0.125 m. However, the shear band width is considerably large for 0.25 m mesh (Fig. 2(i)). Note 

however that, although the mesh size effect is significantly reduced in the simulations with 

regularization technique, overall strains in the shear band is generally higher in the simulation 

with smaller mesh. 

 
Figure 2 Plastic shear strain at 0.5 m displacement of the loading cap  

(strains in 1 m  1 m weak block are not shown)  

 

Mesh size effects can be better explained using the force–displacement behaviour (Fig. 3). The 

displacement of the loading cap is directly related to the strain in the shear band and thus the 

mobilized shear strength and axial force. Therefore, the closeness of the force–displacement 

curves represents that similar strain is generated in the shear band for a given load. 

A very different load–displacement response is found for different mesh sizes if the regularization 

is not used (Fig. 3(a)). The post-peak reduction of the force is slower for a larger mesh. However, 

if the element size scaling is used, the force–displacement curves are almost similar. 

Figure 3(c) shows that force–displacement curve is almost identical for nonlocal method except 

for the simulation with largest mesh size (0.25 m). This implies that nonlocal method can 

significantly reduce the mesh sensitive issue if sufficiently small mesh is used. 

Figure 3(d) shows the comparison between force–displacement curves with nonlocal and element 

size scaling regularization for 0.0625 m mesh. Both curves are very similar when regularization 

is used. However, a very different force–displacement curve is obtained when regularization is 

not used. 

In summary, both mesh size scaling and nonlocal methods reasonably reduce the mesh sensitive 

issues for the presented quasi-static axial compression of a block. 
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Figure 3 Load–displacement behaviour for Case 1 

 

CASE 2: SLOPE FAILURE BY UPSLOPE LOADING 

Problem definition 

Figure 4 shows the geometry of a sensitive clay slope analyzed to show the performance of the 

above-mentioned mesh regularization techniques. A similar model was examined by D’Ignazio 

and Länsivaara (2015). The failure is triggered by a surcharge on the upslope area. A 4-m wide 

rigid block is pushed downward at constant velocity of 0.01 m/s maintaining quasi-static condition. 

Similar to Case 1, the CEL approach in Abaqus is used for the numerical analysis. The domain is 

discretized into 0.0625-m to 0.25-m mesh. 

Zero velocity boundary condition is applied normal to the bottom and all vertical faces. The strain-

softening behaviour is modeled using linearly decreasing undrained shear strength as shown in 

the inset of Fig. 4. The initial (peak) undrained shear strength (𝑠𝑢
𝑝
) increases linearly with depth. 

The other soil parameters used in the analysis are shown in Table 1.  

(a) No regularization (b) Element size scaling 

(c) Nonlocal (d) 0.0625-m mesh 
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Figure 4 Geometry of the slope (Case 2) 

 

Table 1 Soil parameters used for slope stability analysis 

Soil parameters No regularization  Element size scaling Nonlocal 

Undrained Young’s modulus 

E (MPa) 
7.5 7.5 7.5 

Undrained Poisson’s ratio  0.495 0.495 0.495 

Peak undrained shear 

strength 𝑠u
p
 (kPa) 

25+3z 25+3z 25+3z 

Residual undrained shear 

strength 𝑠u
r (kPa) 

10+1.2z 10+1.2z 10+1.2z 

Sensitivity St 2.5 2.5 2.5 

Equivalent plastic shear 

strain at residual strength εq
r  

10% 

20% for 0.25-m mesh 

40% for 0.125-m mesh 

80% for 0.0625-m mesh 

10% 

Internal length DL (m) - - 0.5 

Note: z is the depth from the ground surface 

 

Results 

Figure 5 shows the failure plane when the rigid block is displaced vertically to 0.1 m. The failure 

plane develops progressively starting from the left side of the rigid block and ends at the toe. The 

size of the sliding blocks is similar when mesh regularization is used. When mesh regularization 

is not used, additional failure planes generate in the failed soil mass for the finer mesh. This is 

primarily due to rapid reduction of shear strength with plastic shear strain.  

Figure 6 shows the variation of force applied to the soil from the rigid block with its displacement. 

The force–displacement curve significantly depends on mesh size if mesh regularization is not 

used (Fig. 6(a)). For the smaller mesh, the force dropped rapidly immediately after the peak, which 

occurs when the failure plane is fully formed. Again, it is because of quick decrease in strength 

with plastic shear strain for finer mesh. However, if mesh regularization is used, the force–

displacement curves are very similar. Moreover, the force–displacement curves are comparable 

for the analyses with element size scaling and nonlocal methods (Figs. 6(b)–6(d)). In other words, 

both regularization techniques could reduce mesh sensitive issues significantly. 



 

230 

 
Figure 5 Failure pattern at 0.1 m vertical displacement of rigid block 

 

It is worth to mention that the nonlocal method is computationally very expensive. As an example, 

for 0.0625-m mesh, the analysis took ~11 hours for nonlocal while it took only 20 minutes with 

element size scaling using a 3.4 GHz Intel Core i7-6700 CPU (8 processors) and 16 GB RAM. 

Significantly higher computational cost in the nonlocal method results from the calculation of εq(eq)
p

 

which requires searching of variables in neighbouring elements. 

CONCLUSIONS 

 

The performance of two mesh regularization techniques is presented in this study with an aim to 

use a large deformation finite element modeling technique to simulate extremely large 

deformation problems, such as large-scale landslides. Two idealized problems are modeled which 

has been modeled in previous studies to show the effectiveness of mesh regularization 

techniques using different numerical techniques, such as MPM and Lagrangian FE modeling. The 

present study shows that the element size scaling could reduce the mesh sensitivity issues, while 

the nonlocal method shows a better performance including mesh size independent shear band 

thickness. However, the nonlocal method is computationally very expensive. In terms of practical 

applications, the modeling of large-scale problems using a Eulerian-based FE approach is 

inherently computationally expensive. Therefore, with nonlocal method, the computational cost of 

a Eulerian-based FE model might increase to a much higher level, depending upon the size of 

the problem and availability of computing facility. 

In recent years, Eulerian-based FE approaches (e.g., Abaqus Coupled Eulerian-Lagrangian (CEL) 

approach) have been used for modeling many offshore geotechnical problems, such as 

penetration and lateral displacement of surface-laid pipelines, jacking of pile and spudcan 
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foundations, and large-scale landslides. Most of these cases, the soil has strain-softening 

behaviour and therefore mesh sensitivity in FE analyses is expected. While CEL approach can 

handle large deformation, the present study will provide a better understanding in FE modeling to 

reduce mesh sensitivity. 

One of the limitations of this study is that the simulations are performed only for idealized cases. 

Comparisons with other numerical approaches for modeling large deformation problems are 

required.  

 

   

   
Figure 6 Variation of force with displacement of the rigid block in the upslope area 

 

  

(a) No regularization (b) Element size scaling 

(c) Nonlocal (d) 0.0625-m mesh 
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Modeling of Seepage Using a Eulerian-based Finite Element Method 
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ABSTRACT 
Seepage plays a significant role in many geotechnical problems such as the stability of earth dams and riverbanks. In addition, 
the large-deformation behaviour of soil is equally important in many cases, including progressive failure of slopes, and 
landslides in sensitive clays. The large-deformation can be successfully simulated using Eulerian-based finite-element (FE) 
modeling techniques. In the present study, a technique is developed for a Eulerian-based FE analysis using Abaqus FE 
software to simulate both transient and steady-state seepage through an earth dam. The FE simulation results, including the 
seepage, in-situ stresses and slip surface in slope stability analysis, are compared with the analyses using the GeoStudio 
software package. In terms of practical implication, the developed seepage model could be coupled with the large-deformation 
FE technique in Abaqus to simulate the progressive failure of a riverbank. 

 
RÉSUMÉ 
Les infiltrations jouent un rôle important dans de nombreux problèmes géotechniques tels que la stabilité des barrages en terre 
et des berges des rivières. De plus, le comportement du sol en grandes déformations est tout aussi important, y compris la 
rupture progressive des pentes et les glissements de terrain dans les argiles sensibles. Les grandes déformations peuvent 
être simulées avec succès à l’aide de techniques de modélisation par éléments finis (FE) basées sur Eulerian. Dans la présente 
étude, une technique est développée pour une analyse FE basée sur Eulerian utilisant le logiciel Abaqus FE pour simuler des 
infiltrations transitoires et stables à travers un barrage en terre. Les résultats de la simulation FE, y compris l'infiltration, les 
contraintes in situ et la surface de glissement dans l'analyse de la stabilité des pentes, sont comparés aux analyses effectuées 
à l'aide du logiciel GeoStudio. En termes d’implication pratique, le modèle de suintement développé pourrait être associé à la 
technique d’évaluation à grande déformation d’Abaqus pour simuler la défaillance progressive d’une rive. 
 
 
 
1 INTRODUCTION 
 
Seepage of water through soil could be a potential cause of 
slope failure. Seepage could alter both effective and total 
stresses in soil elements and thereby, the shear resistance. 
In addition, seepage force increases the driving force that 
could fail a slope which might be stable without seepage. For 
example, a high artesian groundwater condition along the 
Savail River in Quebec was recognized as one of the main 
causes of the 2010 St. Jude Landslide (Locat et al., 2011). 
The artesian groundwater condition and resulting seepage 
increased the pore water pressure, and thus reduced the 
effective stress and the shear strength of soils to nearly zero 
near the bottom of the river. This might have caused a small 
slide near the toe of the riverbank. Because of the stress 
redistribution, the failure then propagates further through the 
sensitive clays resulting in the large-scale St. Jude landslide 
on May 10, 2010. Note that seepage is not the only cause of 
a large-scale landslide. Many other factors are also involved 
in this process, e.g., in-situ stress condition, shear strength 
reduction, natural and human activities. In the present study, 
the role of seepage is primarily discussed. 

Several methods have been developed in the past to 
conduct the slope stability analyses with seepage effects, 
e.g., limit equilibrium (LE), finite-element (FE). Among these 

methods, the LE method is widely used in the industry to 
assess the factor of safety (FOS) of the slope. By applying 
the precalculated seepage forces to the LE model, the FOS 
under steady-state seepage can be calculated. Locat et al. 
(2011) used the SLOPE/W software (GeoStudio, 2007), 
which is based on the LE theory, to conduct the slope stability 
analysis of the 2010 St. Jude Landslide. Prior to the LE 
analysis for stability, the groundwater condition was 
evaluated through a steady-state seepage modeling using 
SEEP/W software (GeoStudio, 2007). The LE analysis shows 
a similar first slip surface as observed in the field. However, 
the LE method failed to explain the formation of the horizontal 
shear plane, the horsts, and grabens. 

The FE method has also been used for analyzing slope 
stability under seepage effects (Lane and Griffiths, 2000). 
The traditional Lagrangian-based FE method can capture the 
post-peak softening behaviour of sensitive clay and strain 
localization in a slope stability analysis. However, a 
significant mesh distortion occurs during the large 
deformation and therefore, the traditional Lagrangian-based 
FE analysis cannot handle the large-deformation behaviour 
of the slope failure, e.g., the progressive failure in a spread 
type of landslide. 

Eulerian-based FE approach has been used in the past 
for the large-deformation analysis of sensitive clay slope 
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failures (Dey et al., 2015; 2016). The progressive failure of 
sensitive clay landslides was successfully modeled by using 
Eulerian-based FE method. Comparison between FE and LE 
analysis of the failure of the first soil block for an undrained 
loading condition has been performed in Saha et al. (2014). 
However, in these studies, the effects of seepage were not 
considered. Hamann et al. (2015) showed that the partially 
drained condition (transient seepage), for pile jacking into a 
fully saturated soil, can be simulated in a Eulerian-based FE 
approach where the pore water pressure was simulated with 
the thermal–hydraulic analogy theory. However, the seepage 
condition in a slope has not been modeled to establish the in-
situ stresses for a Eulerian-based FE code.  

In the present study, a methodology based on the 
thermal–hydraulic analogy theory is proposed for the 
seepage modeling in a slope with a Eulerian-based FE code. 
The results are benchmarked with SEEP/W analysis. 
Furthermore, the in-situ stresses under the influence of the 
steady-state seepage are simulated by SIGMA/W and 
Eulerian-based FE code, respectively. Finally, the strength 
reduction method is implemented to trigger the slope failure 
in Eulerian-based FE code to compare with the LE results 
from SLOPE/W. 

 
2 NUMERICAL MODELING TECHNIQUE 
 
For numerical analyses, GeoStudio software package 
(SEEP/W, SIGMA/W, and SLOPE/W) and Eulerian-based FE 
code available in Abaqus FE software are adopted for the 
seepage, in-situ stress and slope failure modeling. 
 
2.1 GeoStudio 
 
SEEP/W is a finite element software product, available in 
GeoStudio package, for modeling groundwater flow in porous 
media (soils). SEEP/W is capable of modeling both steady-
state and transient seepage problems. Therefore, it has been 
widely applied in the analysis and design process of 
geotechnical engineering (Ng and Pang, 2000; Oh and 
Vanapalli, 2010).  

SIGMA/W is also based on the finite element method. 
This software product can model stress and deformation in 
geotechnical problems with different constitutive models to 
represent a wide range of soils or structural materials (Oh and 
Vanapalli, 2011; Qi and Vanapalli, 2015).  

SLOPE/W, which is based on limit equilibrium (LE) 
theories, is also one component in a complete suite of 
GeoStudio. It can model a variety of stability problems with 
different slip surface shapes, pore water pressure conditions, 
soil properties and loading conditions (Ng and Pang, 2000; 
Oh and Vanapalli, 2010). 

 
2.2 Eulerian-based FE Method 
 
Eulerian-based FE method available in Abaqus/Explicit FE 
software is used in the present study for numerical analysis. 
Note that typical FE programs developed in a Lagrangian 
framework cannot simulate very large deformation in a large-
scale landslide because the significant mesh distortion 
around the failure plane causes numerical instabilities and 
non-convergences of the solutions (Griffiths and Lane, 1999). 
In the numerical technique used in the present study, the soil 

is modeled as a Eulerian material which can ‘flow’ through the 
fixed mesh without causing numerical issues related to mesh 
distortion. Further details of the mathematical formulations of 
Eulerian-based FE approach and its applications to large-
deformation quasi-static/dynamic problems (e.g., onshore 
and offshore landslides) are available in previous studies 
(Benson, 1992; Benson and Okazawa, 2004; Dey et al., 
2015, 2016; Islam et al., 2018). 

In the present study, Eulerian-based FE code is used to 
simulate both the transient and steady-state seepage. 
Currently, built-in coupled pore pressure-stress elements are 
not available in Eulerian-based FE code in Abaqus to model 
the seepage. Therefore, thermal–hydraulic analogy theory is 
implemented in this study, to model the seepage with 
thermally coupled Eulerian elements (EC3D8RT, eight-node 
thermally coupled linear brick elements with reduced 
integration and hourglass control) available in Abaqus. Based 
on the analogy theory (Section 2.3), the total water pressure 
and pore pressure can be successfully calculated from the 
temperature. 

 
2.3 Thermal–hydraulic Analogy 
 

Hamann et al. (2015) simulated pile jacking into a fully 
saturated soil under partially drained conditions using Abaqus 
CEL. They modelled the soil as a two-phase medium with the 
thermally coupled Eulerian elements by considering the fluid 
flow analogous to heat transfer. In other words, an analogy 
exists between the Darcy’s law for fluid flow (Eq. (1)) and heat 
conduction in a medium (Eq. (2)), which are the governing 
equations for the Darcy’s law and heat conduction, 
respectively. 

 𝐪 =
κ

μw

(−∇𝑝w) (1) 

 
 

𝐟 = 𝑘(−∇θ) (2) 

where 𝐪 = Darcy flux or Darcy velocity in porous media; κ = 

intrinsic permeability; μw  = dynamic viscosity; 𝑝w  = pore 

water pressure or total head pressure; 𝐟 = heat flux; 𝑘 = 

thermal conductivity; and θ = temperature. From Eqs. (1) 

and (2), it can be concluded that 𝑝w :: θ, 𝐪 :: 𝐟, κ/μw :: 𝑘 

(“::” is a symbol of analogy). Therefore, the relationship 
between the thermal parameters and the seepage 
parameters can be developed as Eqs. (3–5) (Hamann et al., 
2015). 

 𝑘 ∷
κ

μw
=

𝐾μw γw⁄

μw
=

𝐾

γw
 (3) 

 𝑐ρ ∷
1

𝑄
 (4) 

 ρ = (1 − 𝑛)ρs + 𝑛ρw (5) 

where 𝐾 = hydraulic conductivity; γw = specific weight (unit 

weight) of water; 𝑐 = specific heat; 𝑄 = bulk modulus of the 

mixture of fluid and soil particles;  = density of the soil; 𝑛 = 

porosity of the soil; ρs = density of the solid grains; ρw = 
density of water.  
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To describe the behaviour of the fluid phase in a porous 
media, a continuity equation (Eq. (6)) is applied by Lewis and 
Schrefler (1998): 

 
𝑑𝑖𝑣 {

κ

μw

[−∇𝑝w − ρw(𝐚ws + 𝐚s) + ρw𝐛]}

+ αbiot𝐦𝛆̇s +
𝑝̇w

𝑄
= 0 

(6) 

where 𝐚ws  = relative acceleration of the fluid phase with 

respect to the soil skeleton; 𝐚s  = acceleration of the soil 

skeleton; 𝐛 = body force per unit mass; 𝐦 = second order 

unit tensor; 𝛆̇s = strain rate of the solid skeleton. The first term 
of Eq. (6), meaning the diffusion of pore water, is solved by 
heat conduction within the temperature–displacement 
analysis procedure of Abaqus (𝐚ws is small and thus being 

neglected (Zienkiewicz et al., 1999); 𝐚s  remains zero when 
simulating the steady-state seepage); and the second term, 
meaning the change of pore pressure due to volumetric 
straining of the solid skeleton αbiot𝐦𝛆̇s, is not necessary to be 
calculated for the purpose of simulating initial steady-state 
seepage. 

SEEP/W also neglected the change of pore pressure due 
to the volumetric strain of the solid skeleton. The governing 
differential equation used in SEEP/W finite element 
formulation is: 

 
𝜕

𝜕𝑥
(𝐾x

𝜕𝐻

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾y

𝜕𝐻

𝜕𝑦
) + 𝐹 = 𝑚wγw

𝜕𝐻

𝜕𝑡
 (7) 

where 𝐻 = total head; 𝐾x and 𝐾y: hydraulic conductivity in 

the x and y directions, respectively; 𝐹 = applied boundary 
flux (usually equals to 0); 𝑚w = slope of the storage curve 

(𝜕θv = 𝑚w𝜕𝑝w , θv  = volumetric water content, and 𝑝w  = 

pore water pressure or total head pressure); γw = the unit 

weight of water; and 𝑡 = time. In the saturated region, 𝑚w 

becomes equivalent to 𝑚v , the coefficient of volume 
compressibility (Krahn, 2004). Equation (7) is the same 
equation of Eq. (6) ignoring the term αbiot𝐦𝛆̇s, and 𝑚w is 

equivalent to 1/𝑄 . Therefore, the same results should be 
obtained when simulating the same seepage problem by 
using Eulerian-based finite element model (with thermal-fluid 
analogy) and SEEP/W. Note that K and mv in SEEP/W, and 
k and c in Abaqus influence only the transient state of 
analysis.  
 
3 PROBLEM DEFINITION  
 
An embankment consisted of sandy soil is studied. The 
geometry of the embankment is shown in Fig. 1. The 
embankment is 12 m high, 52 m base width, and an 8-m 
drainage is located at the toe of the downstream of the 
embankment. A rapid fill in the reservoir is considered. The 
water level of the reservoir is assumed to raise from 0 m to 
11 m instantaneously (Fig. 1). Note that this assumption may 
not be able to reflect a realistic scenario. The transient 
seepage inside the embankment within 8 hours is studied 
using both Eulerian-based FE method and SEEP/W. The 
results of the two methods are compared including the 
variation of the total water head distribution with time, the 
effective stresses distribution and factor of safety of the 
embankment. Furthermore, the progressive failure with 
strength reduction method is simulated using the Eulerian 
analysis. 

 

Figure 1. Geometry of rapid reservoir fill 

4 FINITE ELEMENT MODELING 
 
4.1 Load and Boundary Conditions 
 
To simulate the rapid fill of the reservoir in SEEP/W analysis, 
a total head of 11 m is applied to the upstream surface of the 
embankment in an infinitely small time interval (blue line in 
Fig. 2(a)), and a total head of 0 m is applied to the drainage 
at the bottom of the embankment at downstream area (red 
line in Fig. 2(a)). On the other hand, adopting the fluid-thermal 
analogy, temperature boundary conditions are applied to the 
Eulerian model. A temperature boundary condition of 107910 

C (gh = 10009.8111) is applied to the upstream of the 
embankment representing an 11 m total head (blue line in 

Fig. 2(b)), and a 0 C boundary condition is applied to the 
area of the drainage (red line in Fig. 2(b)). The transient 
seepage analysis and transient thermal analysis for an 8-h 
time period are performed in SEEP/W and Abaqus CEL, 
respectively.  

Based on the steady-state seepage results, the in-situ 
stresses are established in SIGMA/W and Eulerian-based FE 
code, respectively. The gravity load is applied to the soils for 
both models. Zero displacement and zero velocity are 
implemented on the bottom of both SIGMA/W and Eulerian-
based FE code, respectively. 

 
(a) SEEP/W model 

 

 
(b) Abaqus CEL model 

Figure 2. Load and boundary conditions used for the 
embankment 

 
Eulerian-based FE code can model only three-

dimensional condition. Therefore, the plane strain condition 
is simulated using the model thickness of one element in the 
out of plane direction. A uniform mesh size (0.25 m x 0.25 m 
x 0.25 m) is used for all Eulerian-based FE analyses. 
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4.2 Soil Parameters 
 
The soil parameters used in the GeoStudio and Eulerian-
based FE code are shown in Table 1. Medium dense sand is 
assumed as the filling material of the embankment. The soil 
is modeled using the Mohr-Coulomb model and the analyses 
are performed for the drained condition. The soil density, ρ is 
calculated from Eq. (5). The thermal parameters for the 
Eulerian analysis, i.e., thermal conductivity,  𝑘  and specific 

heat, 𝑐, are calculated using Eqs. (3) and (4), respectively. 
 
Table 1. Soil parameters used in numerical analyses 

Young’s modulus, E (MPa) 50 

Poisson’s ratio,  0.25 

Porosity, 𝑛 0.35 

1/𝑄 or 𝑚v, (MPa-1) 0.02 
Density of soil, ρ (kg/m3) 2076 

Hydraulic conductivity, 𝐾 
(m/s) 

110-5 

Cohesion, 𝑐 (kPa) 1 

Effective friction angle,  () 
(Eulerian model) 

40 to 28.5 

Dilation angle,  () 
(Eulerian model) 

15 to 0.625 

Effective friction angle,  () 
(SLOPE/W) 

40 and 28.5 

Note: The dilation angle  is calculated from ′ − 
c
′ = 0.8 

(Bolton, 1986), where the 
c
′ (the critical state friction angle) 

is assumed to be 28. 
 
5 FINITE ELEMENT RESULTS 
 
5.1 Seepage Analysis  
 
Both SEEP/W and Eulerian-based FE models reached 
steady-state within 4 h, based on the total head distribution. 
The total head distributions inside of the embankment at 0.5 
h and 4 h in SEEP/W are shown in Figs. 3(a) and 4(a), 
respectively. The temperature distributions at 0.5 h and 4 h in 
Eulerian-based FE model are shown in Figs. 3(b) and 4(b), 

respectively. Note that, the temperature 9810 C is equivalent 
to 1 m total head, based on the thermal–hydraulic analogy. 
To better compare the results of SEEP/W and Eulerian-based 
FE model, the equivalent total head at point B (midpoint of 
the bottom of the embankment, as shown in Fig. 1) with time 
is plotted in Fig. 5. As can be observed in Figs. 3-5, the results 
from Eulerian-based FE model perfectly matches the 
SEEP/W results. The comparison strongly supports the 
effectiveness of the thermal–hydraulic analogy in the present 
Eulerian-based FE model. Also, the relationships between 
thermal and seepage parameters (Eqs. (3–5)) are validated. 

 

a) Total head at t = 0.5 h in SEEP/W (unit: m) 

 

b) Temperature distribution or total head pressure at t = 0.5 h 

in Eulerian-based FE model (unit: C or Pa) 

Figure 3. (Equivalent) Total head distribution after 0.5 h 
 
 

 

(a) Total head at t = 4 h in SEEP/W (unit: m) 

 

 

(b) Temperature distribution or total head pressure at t = 4 h 

in Eulerian-based FE model (unit: C or Pa) 

Figure 4. (Equivalent) Total head distribution in the 
embankment at 4 h 

 
Fig. 5 shows that the total head becomes a constant after 

t ~ 4 h. At the same time, not only point B reaches a constant 
total head, but also other parts of the embankment come to 
the steady state. For the in-situ situation, the seepage 
condition usually remains steady-state when the boundary 
conditions do not change significantly in a short period. 
Therefore, only the steady-state seepage is considered for in-
situ stresses modeling. 
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Figure 5. (Equivalent) Total head at point B 

 
 

5.2 In-situ Stresses 
 

The distribution of in-situ stresses can directly influence the 
location of the critical slip surface. Therefore, it is important 
to accurately establish the in-situ stresses, in order to 
effectively analyze slope stability. 

Based on the results of the equivalent total head, the 
seepage forces can be calculated and then applied to the 
Eulerian elements under the phreatic line. Coupled with the 
gravity load, the in-situ stresses under the seepage condition 
are modeled using Eulerian-based FE code. The vertical, 
horizontal, and deviatoric (von Mises) stresses obtained from 
Eulerian-based FE modeling are presented in Figs. 6(a), 7(a) 
and 8(a), respectively. For comparison, the in-situ stresses 
calculated from SIGMA/W, together with seepage analysis 
results from SEEP/W, are shown in Figs. 6(b), 7(b) and 8(b).  

From the comparison, the in-situ stress distributions are 
found to be quite similar between Eulerian-based FE and 
SIGMA/W analyses. The maximum vertical stresses in 
SIGMA/W and Eulerian-based FE code are 136.2 kPa and 
137.1 kPa, respectively (Fig. 6). Furthermore, SIGMA/W and 
Eulerian-based FE code calculate the maximum horizontal 
stress of 48.2 kPa and 44.9 kPa, respectively (Fig. 7). For the 
maximum deviatoric stress, the values are 97.6 kPa and 
100.5 kPa in SIGMA/W and Eulerian-based FE, respectively 
(Fig. 8). This slight difference is potentially due to the solution 
algorithms used in these software packages. 

 
5.3 Slope Stability and Deformation Analysis 

 
In the present study, the strength reduction method is used 
to trigger the failure of the slope and find the slip surface from 
Eulerian-based FE analysis. To conduct the strength 

reduction, the effective friction angle () is decreased from 

40 to 28.5. The dilation angle () is also reduced 
accordingly as   = (′ − 

𝑐
′)/0.8  (Bolton, 1986). 

Furthermore, the slope stability analysis is conducted with the 
limit equilibrium method using SLOPE/W, based on the in-
situ stresses from SEEP/W (considering seepage result). The 

Spencer method is selected for the calculation of factor of 
safety and slip surfaces in SLOPE/W. 

 

 
a) Eulerian-based FE (unit: Pa) 

 

 
b) SIGMA/W (unit: kPa) 

Figure 6. Vertical stress under steady-state seepage 
 

 
a) Eulerian-based FE (unit: Pa) 

 

 
b) SIGMA/W (unit: kPa) 

Figure 7. Horizontal stress under steady-state seepage 
 

 

 
a) Eulerian-based FE code (unit: Pa) 
 

 
b) SIGMA/W (unit: kPa) 

Figure 8. Deviatoric stress under steady-state seepage 
 
The accumulated plastic shear strain in the Eulerian FE 

analysis for different friction angles ( = 40, 30 and 28.5) 
is shown in Figs. 9(a), 9(b) and 9(d), respectively. The slope 
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is stable, and no plastic shear strain develops in the soil 

elements for  = 40 (Fig. 9(a)).  The failure plane does not 
form instantaneously rather the failure starts from the toe of 
the slope and gradually progresses to the left and up (Fig. 
9(b)). As shown in Fig. 9(d), a complete failure plane forms 

when the shear strength is reduced significantly (e.g.,  = 

28.5).  Figure 9(c) shows the instantaneous velocity vector 
of the soil elements above the failure plane.  

For comparison, the critical slip circles and factor of safety 

for these values of   obtained from SLOPE/W analysis are 
also shown in Fig. 9. The slight difference between the 
location of the critical circle in SLOPE/W and high shear 
strain zone in FE analysis is potentially due to the progressive 
formation of the failure plane and displacement of the failed 

soil mass in the latter one. The FOS ~ 1.0 for  = 28.5 (Fig. 
9(d)). 

      

 
 

 
 

 
 

 

Figure 9. Plastic shear strain and instantaneous velocity 
vectors in slope stability analysis 

 
5.4 Influence of Seepage Forces on Slope Failure 
 

If the seepage force is not considered in the model, the 
failure pattern is usually different. To demonstrate it, the 
same problem as presented in Section 5.3 is analyzed using 
the Eulerian FE approach. In this case, the seepage force is 
not added to the soil elements; however, the buoyancy is still 
applied to the soil elements below the phreatic line. Figure 10 
shows that the in-situ deviatoric stress is very different from 
the values obtained with seepage effects (compare Figs. 8(a) 
and 10).  

Using the same strength reduction approach presented in 
Section 5.3, the stability of the slope is checked without 
considering the seepage. The slope remains stable in this 

case (i.e., without seepage) even for  = 28.5 while it fails 

when the seepage force is considered (Fig. 9(d)). In other 
words, seepage force significantly influences the result of 
slope stability analysis because of the change in in-situ 
effective stresses. 

In a large-scale landslide modeling, the in-situ seepage 
conditions might be important, especially in triggering of the 
landslide by the failure of the first soil block. 
 

 

Figure 10. Deviatoric stress in Eulerian-based FE analysis 
without seepage forces 

 
 
6 CONCLUSIONS 

 
In this study, a technique is developed to model the seepage 
for finite element modeling of slope failures using Eulerian-
based FE code. Both transient and steady-state seepage 
conditions are modeled based on the thermal–hydraulic 
analogy. The FE results are comparable to those obtained 
from SEEP/W analysis. The in-situ stresses at the steady-
state seepage condition are modeled in both Eulerian-based 
FE model and SIGMA/W. The two methods give nearly 
identical results. Furthermore, the location of the critical 
failure plane inferred from Eulerian-based FE analysis and 
obtained from SLOPE/W is similar. However, the SLOPE/W 
could not handle the post-failure process while Eulerian-
based FE model can simulate the complete failure 
mechanisms. 

In conclusion, the technique developed in the present 
study is applicable to slope stability analysis considering the 
seepage effects in Eulerian-based FE code. Coupled with its 
advantage to handle large deformation analysis, the 
progressive landslides, e.g., the 2010 St. Jude Landslide, can 
be modeled with the consideration of both seepage effects 
and large deformation. Note that the simulation results 
presented in this study is only for idealized soil properties and 
boundary conditions; however, the developed technique 
could be used case specific scenarios.    
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