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Abstract 

Currently, except for circuit topology synthesis, all the other phases in the analog integrated circuit 

design procedure are equipped with electronic design automation (EDA) commercial tools to 

greatly facilitate the human laborious work and significantly improve the design productivity, even 

though they are still not as mature as digital EDA counterparts. This dissertation focuses on 

developing a circuit topology synthesis EDA tool for analog integrated circuits. In order to make 

the developed EDA tool commercializable, there are many challenges that have to be solved, 

including trustworthy solutions, innovative solutions, wide applicability, sound generalization 

capability, and affordable computation effort. This thesis proposes a graph-based generation 

method to automatically synthesize analog integrated circuits, which has partially solved some 

challenges. But one serious problem of this method is its unaffordable computation effort due to 

the time-consuming sizing process for a huge number of generated circuit structures. To address 

this problem, we propose a novel performance modeling method that can boost the sizing 

efficiency by more than 30 times with ignorable model building overhead, which is especially 

suitable for the circuit synthesis work that involves generating various circuit structures. With the 

assistance of the emerging machine learning advancement, EDA tools can be more efficient and 

effective. We have employed the deep reinforcement learning technique in this dissertation to 

synthesize analog integrated circuit structures. Its technical merits make it be able to address those 

pending challenges much better than the graph-based generation method. But it still suffers from 

a shortcoming, that is, the learning process has to be performed from scratch once the technology 

or design specification changes. In order to overcome this shortcoming, the transfer learning 

technique is applied to transfer the learned knowledge from a learning process to another in order 
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to largely save the learning effort. The experimental results exhibit strong efficacy and great 

applicability of our proposed methods.
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Chapter 1    Introduction                                                               

Due to continuous scaling of integrated circuit (IC) technologies and growing demands for 

high speed, small area, low power, and low cost, powerful electronic design automation (EDA) 

commercial tools are in great need in order to improve the design productivity for reduced time-

to-market, facilitate the human laborious work, and enhance the design accuracy.  

In the digital domain, the specifications of the digital circuits can be easily defined by using 

either Boolean functions or behavioral description in a hardware description language (e.g., VHDL 

or Verilog). Digital synthesis EDA tools can convert the behavioral level description to structural 

and subsequently to gate level descriptions. The validity of the design is checked through test 

platforms to ensure the satisfaction of the functional requirements specified by the system 

specifications as well as timing requirements. Then the layout tools map gate-level netlist to layout 

by performing floorplan, placement and routing, according to the specified technology. Finally, 

various verifications, including static timing analysis, functional equivalence checking, and 

physical design checking, are conducted along with certain iterations in the design flow as 

exhibited in Fig. 1.1(a) [1].  

Unlike the digital computer-aided design (CAD) tools, which have long found prosperous in 

the semiconductor industry, the efforts are still largely needed to devise their analog counterparts 

to reach the same level of usability and reliability. The main reasons for this include the 

knowledge-intensive and heuristic nature of the analog design, high complexity and nonidealities 

involved within the design procedure, and conflicting requirements for satisfying the design 

specifications. This gets even more challenging since all of these factors keep changing from 
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process to process. As a matter of fact, these challenges have motivated us to focus on the research 

of analog EDA tools. 

A widely accepted analog circuit design flow is illustrated in Fig. 1.1(b) [1]. As shown in this 

figure, after inputting the circuit specifications, the first stage is called “Topology Synthesis”. The 

output of this stage is a netlist that contains the connectivity information, geometry information, 

and electrical biases of the devices in the synthesized circuit. Device geometry, specifically in the 

CMOS technology, mainly refers to transistor width (W) and length (L) among others, and 

resistor/capacitor/inductor nominal values. The electrical bias may include circuit biasing voltage 

or current information. At this stage, the obtained device geometry and electrical biases can only 

guarantee that the synthesized circuit topologies meet the basic performance specification. Usually, 

designers have some special constraints and performance requirements, which are addressed in the 

“Sizing” stage. The objective of this stage is to determine the device geometries and electrical 

Digital Design Specifications

Behavioral HDL Description

Synthesis

Structural and Gate Level 

Simulations

Physical Layout Design and 

Extraction

Verification

Prepare for Fabrication

Analog/RF Design Specifications

Topology Synthesis

Sizing

Physical Layout Design

Parasitics Extraction

Verification

Prepare for Fabrication
 

                                      (a)                                                                  (b) 

Fig. 1.1. Circuit design flows. (a) Digital design flow. (b) Analog/RF design flow. 

 



3 

 

biases to let the circuit fully satisfy the target constraints and requirements. Both the topology 

synthesis and sizing operations are normally categorized into the circuit-level design, while the 

other stages (i.e., “Physical Layout Design”, “Parasitic Extraction”, and “Verification”) fall in the 

layout-level design [1]. 

Physical layout design, also called “Layout Synthesis”, is typically comprised of module 

generation, placement, and routing. All the devices or functional building blocks in an analog 

circuit are first converted to their corresponding module layouts. This process is called module 

generation, which is to produce primitive units for the consequent operations [2]. Digital circuits 

normally use standard cell libraries for their modular units, while analog/RF circuits need more 

sophisticated modules to be customized for their special functionality in the context of various 

analog constraints. The placement process is to locate all the primitive modules to proper spots 

under demanded constraints. The major placement constraints are layout area and analog 

constraints, including symmetry, common centroid, proximity, regularity, etc. [3]. Some works 

consider wirelength as another constraint to decrease the interconnect parasitic impact on circuit 

performance. The analog routing process is to connect electrical terminals of the primitive modules 

by using optimal paths to meet the routing constraints for reaching the best performance. The 

second last stage of the analog circuit design flow is parasitic extraction that derives the parasitics 

of the layout for both interconnects and devices. Since analog circuits suffer from parasitic effects, 

it is essential to verify the functionality of the final layout after parasitic extraction. Thus, this 

verification process checks whether the circuit specifications are satisfied in the presence of 

parasitics. If so, the layout is ready for fabrication. Otherwise, certain iterations in the design flow 

are needed to address the drawbacks of the design. 
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As one can see, the “Circuit Synthesis” stage is quite important as it may significantly reduce 

the number of iterations needed in the design flow, thus greatly reducing the design cycle for sound 

time-to-market. However, due to the ongoing lack of a well-organized and efficient synthesis tool, 

the circuit topology synthesis is often largely simplified by manually selecting a familiar circuit 

topology from a predefined library, which needs to consider the tradeoffs among power, 

performance, area, yield, etc. However, the following sizing process can only produce a result as 

good as the selected topology allows. In order to meet the target specifications, other topology 

choices in the library may also be tried, which always leads to an expensive iteration. If necessary, 

a novel circuit topology has to be manually designed and verified. Therefore, this topology 

selection requires strong involvement from analog designers in terms of design knowledge and 

experience. But learning analog circuit design is a process that normally takes years to get started 

and decades to become a master. Thus, it is highly desirable for EDA tools to help designers in 

synthesizing circuit topology.  

The rest of the thesis is organized as follows. Chapter 2 reviews the challenges that existed in 

the problem of analog circuit topology synthesis and the previous related works on this topic. 

Chapter 3 illustrates the graph-grammar-based topology synthesis method for analog integrated 

circuits. In Chapter 4, a performance modeling method that can boost the sizing efficiency by more 

than 30 times with ignorable model building overhead, which is especially suitable for the circuit 

synthesis work that involves generating various circuit structures, is explained. Chapter 5 describes 

a machine-learning-based method that utilizes the deep reinforcement learning technique to 

automatically synthesize analog integrated circuit topologies. Chapter 6 concludes this dissertation 

and discusses the future work.  
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Chapter 2    Automated Analog Circuit Topology 

Synthesis, Challenges and Solutions 

Success in the manual analog circuit design, which is heavily dependent on the experience 

and intuition of the designers, has become increasingly difficult due to the continuous scaling of 

integrated circuit (IC) technologies and growing demands for high-performance low-power 

solutions. Thus, efficient automated analog circuit design is in great need in order to improve 

design productivity, facilitate human laborious work, and enhance design accuracy. Currently, 

almost all the stages in the analog design flow are equipped with electronic design automation 

(EDA) tools, even though they are still not as mature as digital EDA counterparts [4]. However, 

due to the high design complexity involved, huge design space searched, substantial design 

expertise required, and conflicting constraints traded off, there are still no widely accepted 

solutions to automated analog circuit topology synthesis even at the research level. 

 

2.1. Challenges in Automated Analog Circuit Topology 

Synthesis 

In order to make the analog circuit topology synthesis EDA tool commercializable, there are 

some challenges that have to be solved, including wide applicability, strong generalization ability, 

and affordable computation effort. Currently, all the existing research works are not able to 

perfectly address the abovementioned challenges.  
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2.1.1. Wide Applicability 

Analog integrated circuits (ICs) mainly refer to integrated circuits that use analog circuits 

composed of capacitors, resistors, and transistors to process analog signals. The basic circuits of 

analog integrated circuits include current sources, single-stage amplifiers, filters, feedback circuits, 

current mirror circuits, etc. [5] The higher-level basic circuits composed of them are operational 

amplifiers and comparators, while the higher-level circuits include switched-capacitor circuits, 

phase-locked loop, ADC/DAC, etc. [6] According to the response relationship between the output 

and input signals, analog integrated circuits can be divided into two categories: linear integrated 

circuits and nonlinear integrated circuits [7]. In the linear ICs, the response between the output and 

input signals usually has a linear relationship. Thus, the shape of the output signal is similar to that 

of the input signal, but it is amplified or attenuated by a fixed coefficient. The response of the 

output signal in a nonlinear integrated circuit to the input signal has a nonlinear relationship, such 

as a square relationship, a logarithmic relationship, etc. So it is called a nonlinear circuit. Common 

nonlinear circuits include oscillators, timers, and phase-locked loop circuits. 

As explained above, the range of analog integrated circuits is so wide, including different 

levels of implementation in terms of basic circuit components. Although hierarchical approaches 

are widely applied to address the problem of synthesizing circuits with multiple hierarchy levels, 

solving such a complex problem is still quite challenging. Even for the analog ICs at the same 

hierarchy level, such as operational amplifier and comparator, they usually have different 

structural characteristics and performance specifications. For instance, operational amplifiers care 

about gain while comparators concern about propagation delay.  

Therefore, it is quite challenging to develop a circuit synthesizer that is able to synthesize such 

a wide range of analog ICs. Due to this reason, most of the existing works on this topic have only 
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focused on synthesizing either passive circuits or operational amplifiers. There is still a long way 

to go for the commercialization of circuit synthesis tools for analog ICs. 

2.1.2. Strong Generalization Capability 

As mentioned before, continuous scaling of integrated circuit technologies and growing 

demands for high-performance low-power solutions, which have led to increased difficulty in the 

design of analog ICs, are certainly also applied to circuit topology synthesis. In order to overcome 

these challenges, the developed circuit topology synthesizer has to have strong generalization 

capability, that is, it needs to be able to generalize to a new technology process and design 

specification from current ones with as little cost as possible. Here the design specification is 

composed of input-output specification and performance specification. However, due to their 

inherent natures, many existing works, such as rule-based methods, cannot guarantee that they can 

freely generalize to any technology processes or design specifications. Even though some 

methodologies, such as graph-based methods, has relatively better generalization capability, the 

cost for generalization is high. In addition, the developed synthesizer should have the capacity to 

freely generalize to synthesize large-size and innovative circuit topologies, which is one of the 

main shortcomings of manual analog circuit design due to the strong preference for known circuit 

structures. 

2.1.3. Affordable Computation Effort 

The most time-consuming part of circuit topology synthesis is to evaluate the feasibility of the 

produced circuit topologies within the synthesis process. Because the performance of a circuit not 

only depends on its topology (i.e., circuit structure) but also relies on its device sizes, a quite time-

consuming sizing process has to perform on each topology to be evaluated to check whether it can 
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meet the performance specification or not. This feasibility information would be used to drive the 

circuit topology synthesis process in the right direction within the design search space. 

Furthermore, there is a tradeoff among applicability range, generalization capability, and 

computation complexity. In general, the wider the applicability range and the stronger the 

generalization capability are, the more computation efforts are needed. For instance, compared 

with synthesizing small-size circuits, the synthesizers that are able to produce large-size circuits 

usually require larger design search space at the cost of more computation effort.  

There are two effective manners to reduce the computation effort. One way is to decrease the 

number of circuit topologies to be sized in the synthesis process. Another way is to speed up the 

sizing process. For the former scheme, except for the circuit topology synthesis algorithm itself, 

fast evaluation [8] and performance boundary exploration [9] are also widely used ways to reduce 

the number of circuit topologies to be sized. For the latter one, performance modeling [10] is 

proposed to substitute the computation-intensive and time-consuming SPICE simulator to reduce 

the sizing time, or some heuristic methods [11] are employed to shrink the sizing iterations. 

However, due to the high complexity of the problem itself, it is still challenging to find a solution 

that is able to efficiently synthesize circuit topologies. 

 

2.2. State-of-the-Art Analog Circuit Topology 

Synthesis Methods 

From the conceptual view, topology synthesis methods can be classified into three categories: 

1) topology selection; 2) topology generation; and 3) topology refinement. In the following sub-

sections, the methods in each category will be reviewed and discussed in detail. 
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2.2.1. Topology Selection Methods 

The pioneer research work in the field of topology synthesis started to utilize the topology 

selection methods. In early attempts, desired topologies might be selected by users, and the 

behavioral models, which are in-depth analytic equations, can also be extracted by human 

designers. A library of well-established circuit topologies along with the corresponding behavioral 

models is the common feature of these methods [12] [13]. In spite of certain differences in the 

following steps to complete the design, they are all the same in the topology synthesis part, where 

the human designers directly make the selection with no automation involved to decide on the 

optimal topology. Thus, for junior designers, it would still be difficult to make a decision about 

the right topology or they would have to repeat the trial and error process for a long time.  

Realizing the drawbacks above, the later methods have applied automation techniques mostly 

based on heuristic and design knowledge [14]. OASYS [15] manually creates templates of design 

styles in advance based on detailed design knowledge in order to facilitate its automated topology 

selection strategy. However, even though the selection process is done automatically, the time-

consuming manual template design is unaffordable and hard to be generalized. AMGIE [16] solves 

the drawback of OASYS by automatically establishing a database at runtime through a large 

number of SPICE simulations, and then its proposed elimination strategy is applied to choose 

topologies based on the database. Unfortunately, this method only supports a few types of 

topologies, and building the database takes substantial computational effort. Integer programming 

is also an alternative method in [17] where a mixed integer nonlinear programming (MINLP) is 

deployed to optimize a set of analytic equations, derived from a super-circuit and a set of associated 

integers, which can result in optimal circuit topologies. 
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In general, those automated analog circuit synthesis methods in the category of topology 

selection have to address their time-consuming library setup challenge and poor capacity of 

generalization. Due to its intractable shortcomings, the stream of the topology selection synthesis 

has phased out over the years. 

2.2.2. Topology Generation Methods 

Topology generation methods, as the name indicates, aim to generate a topology from scratch. 

Instead of selecting a definitive structure from a library, the algorithm creates new circuit 

topologies by connecting together the basic components and sub-circuits, often provided from a 

library of basic building blocks. Different strategies have been devised over the past two decades 

to tackle the topology generation problem, which can mainly be classified into three categories: 1) 

evolutionary-algorithm (EA)-based; 2) graph-based; and 3) hybrid-based. 

2.2.2.1. EA-based Topology Generation 

The EA-based methods have become popular due to their inherent characteristics of 

automation, which means more independent of human effort. They are typically realized through 

population-based meta-heuristic optimization algorithms, such as genetic algorithm and 

evolutionary algorithm. Evolutionary operators, such as mutation and crossover, are utilized to 

incorporate more appropriate circuit components and building blocks at each step during the 

evolution. Early open-ended work in this field, which failed to combine any or many of circuit 

rules in the evolution flow, were less helpful, due to an unreasonable amount of generated circuits 

mostly meaningless from the vantage point of an analog designer. Sizing is often an integral part 

of the EA-based methods. It means that the sizing is done concurrently with the topology 

generation and its results are utilized as an evaluation factor to decide on the upcoming changes to 



11 

 

the topology. In EA-based circuit topology synthesis methods, the circuit topologies are encoded 

in various forms, such as graph, tree, and string.  

Passive analog filters were synthesized in [18] by using a graph representation and clone 

selection algorithm, which is a type of EA. However, no active device synthesis can be considered 

in this work. Reference [19] followed a similar approach based on EA to generate multiple passive 

filters. Based on the fitness value, the best circuit was selected from each run and then three best 

fault-tolerant circuits were chosen. The outputs were combined by using a weighted summing 

function to help generate the robust ones. A similar EA-based method is utilized in [20] to 

synthesize a computational analog circuit for implementing cube root function with BJT transistors 

and resistors. The circuit is represented in a graph form and the information of the node connection 

and resistor parametric values is stored in the chromosomes, which are altered via EA operators in 

each generation. However, the method is quite open-ended with nothing mentioned about limiting 

of construction rules. It is believed that this method still needs some advanced techniques to handle 

the challenges of synthesizing more complex circuits. Similarly, Cohen et al. [21] proposed an 

open-ended GA-based method to simply combine circuit sub-units that were obtained by applying 

graph theory to a user-specified number of circuit components. For each circuit unit, two data 

including component position and its orientation need to be determined. Afterwards, GA is utilized 

to determine the optimal placement and routing among circuit units. Compared to the other works, 

this study tends to be based on some very basic rules of schematic-level analog circuit design. 

More advanced rules need to be appended to resolve the bottlenecks in the current analog EDA. 

Sripramong and Toumazou [22] proposed a tree-based bottom-up genetic programming 

approach to generate topology structures. A design optimization method called current-flow 

analysis was utilized to correct the structures in each step. The circuits in the first generation are 
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the result of an embryonic structure (varying from a single wire to a complete OpAmp) evolved 

with mutation operation, which is then sent through current flow analysis. A series of current flow 

lists is then created to describe the component connections based on the current flow in the circuit. 

Any correction rule, including altering component interconnects, removing isolated parts, and 

removing the parts without any effect on performance, is done within the current flow lists. The 

remaining circuits are then evaluated for fitness values. Upon unsatisfactory results, an iterative 

process of producing new generations continues until some desired results are obtained. Despite 

incorporating some sort of design knowledge in this work, not all the runs could lead to desired 

outcomes as observed by the authors. In addition, some problems exist even for the successful runs 

where the proposed method for identifying transistor operating regions is not effective enough to 

discriminate between triode and saturation regions. Reference [23] proposed a rule-based GA-

oriented method on top of a topology-reuse scheme, which took analog building blocks as inputs 

to generate an embryonic circuit. The evaluation of the generated circuits was done in two steps: 

a simple evaluation based on the behavioral models and a more precise simulation-based sizing. 

Although the method was examined on comparators, oscillators, and XOR logic gates, it had 

difficulty in dealing with some structures such as pass transistor logic, current bias input, and 

independent resistors. Generally speaking, this proposed method can just be applied to the circuits 

composed of only MOS transistors. 

In ANTIGONE [24] [25], an embryonic circuit is chosen based on a set of equations 

describing the functionality of the design. The performance of the design is calculated and fed into 

an evaluator, which determines the satisfaction level as a number between 0 and 1. A global 

satisfaction level is also defined to determine the best design in the population along with execution 

termination of the algorithm. If the optimization continues, the designs with low satisfaction levels 
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will be removed so that the population would be simplified. To improve the satisfaction level, a 

series of transformations can be applied both on the architecture and parameter values in the form 

of knowledge-based, equation-based or statistical transformations within a tree structure. This 

process continues until the desired results are achieved. However, the proposed method seems 

quite computationally expensive and the repeated optimization-evaluation stages would even 

lengthen the process to reach the final result. Moreover, the reported experiments only cover data 

converters at the system level. 

In [26] [27], the search space is a set of building blocks organized within predefined templates. 

Each point in this space is called an individual. These individuals are organized in a hierarchical 

way with a parameterized context free grammar as a vector tree of parameter values using genetic 

programming. These parameters are needed to instantiate the root block for choosing topology and 

setting specific device values. A method named ALPS (age-layered population structure) is 

utilized to prevent premature convergence due to stealth mutation. NSGAII is used in the sizing 

procedure of the problems with 2–3 objective functions and TAPAS [28] is utilized for the 

problems with more than 3 objective functions to preserve topology diversity. This approach 

results in a Pareto optimal set consisting of sized circuit topologies. There is no feedback process 

to repeatedly improve the results. Operational amplifiers were synthesized and no more than two 

stages were considered to avoid a low convergence rate for the algorithm. Nevertheless, the 

reported experimental results showed that the algorithm failed to reach a good convergence rate 

for more complicated structures. References [29] and [30] targeted delta-sigma modulators and 

determined the optimum topology as well as the specifications of the required building blocks such 

that the system specifications were satisfied for the lowest possible power consumption. The 

proposed methods were customized only for a single class of applications, namely, ADCs. 
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Reference [31] applies an open-ended GA method to construct linear passive filter topologies. 

A string representation, in which a circuit is mapped to a chromosome, namely an array of genes 

corresponding to circuit components, is used. The genes include information about component 

type and connection nodes. However, this method is only confined to passive circuits and suffers 

from lots of meaningless structures generated. In [32], circuit structures are constructed by using 

an automaton. The automaton is directed by a set of instructions, which identify the circuit 

components, i.e., resistors, capacitors, inductors, and transistors. These instructions are 

manipulated by GA and represented in the form of strings, containing both structure information 

and parameter values. Passive filters and active amplifiers consisting of BJT transistors are 

synthesized. However, the reported designs are not optimized in terms of structure. Analog genetic 

encoding (AGE) is another type of string-based genetic representation introduced in [33], which 

permits simultaneous synthesis of topology and component parameters. However, since no circuit 

connection rules are involved, this method is probably prone to excessive circuit generation. 

Reference [34] uses developmental encoding system introduced in [33] for encoding the 

generation process in GA. Each topology (i.e., candidate solution or chromosome) is represented 

by a dynamic data structure and the composed genes carry the information about components, their 

connections, and values. However, only passive filters can be generated by this work.  

2.2.2.2. Graph-based Topology Generation 

Graph-based topology synthesis methods use graphs for circuit representation. In this way, 

they can utilize graph theory concepts and techniques to tackle the topology synthesis problem. 

References [35] [36] [37] strive to generate a special class of circuits, e.g., wide-band low noise 

amplifiers (LNAs), within a bottom-up framework. Considering the transistors as voltage 

controlled current sources (VCCS), graph theory is applied to find any possible structure consisting 
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of only one or two VCCSs. Although some newly emerged structures were able to be successfully 

implemented on silicon, the only rule applied to generate the topology in this work is to identify 

and discard structures with dangling components. Therefore, many useless structures would be 

generated even with just two transistors. In addition, the proposed algorithm just generates the core 

topology, whereas biasing circuits and buffers have to be added by the users. Similar work in [38] 

demonstrated an indispensable need for embedding a source of analog design knowledge into the 

synthesis procedure. Otherwise, roughly connecting circuit components together would end up 

fruitlessly due to a huge number of structures generated by the algorithm. Therefore, in the later 

endeavors circuit design rules have been always embedded in the synthesis algorithms. 

Additionally, constructing a circuit at a higher level of abstraction is often desired as the 

increasingly larger topology justifies the introduction of hierarchy.  

In [39] and [40], a graph-based hierarchical top-down topology generation method based on 

a library of basic analog building blocks is proposed. These basic blocks are then utilized in an 

abstract form with specified terminal characteristics. Each abstract building block may represent 

several basic blocks, provided that all of these basic circuits share the same characteristics in their 

input and output terminals. Construction rules indicating the essential conditions to generate a 

meaningful structure are employed. The final topology would be generated in an abstract form, 

which is then expanded to its circuit level. Out of a huge number of generated circuits, symbolic 

analysis [41] is utilized as a preliminary estimation of circuit behavior in order to eliminate the 

less promising ones. Some improvements on symbolic analysis were proposed in [42] to more 

accurately discard the redundant topologies and hence boost the efficiency of the method. However, 

this approach generates lots of asymmetric circuits, which may not be favored by some analog 

circuits such as OpAmps. To address this issue, [43] considers the topology generation problem 
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with the possibility of expanding the topology in a symmetric way. This will also help reduce the 

size of the design space. Thus, when symmetric expansion is applied, the same abstract building 

block would not be expanded into two different basic blocks.  

The use of abstract building blocks instead of single transistors can greatly decrease the size 

of the design space, which is very helpful when dealing with large designs consisting of many 

transistors. To further deal with the downside of generating lots of duplicate structures, 

isomorphism is a method employed in [59] as a destructive method after topology expansion to 

eliminate the redundant structures. A thorough aggregation of the works above was presented in 

[44], which demonstrated the synthesis of an elliptic filter comprised of four OpAmp stages in a 

hierarchical way. Moreover, Ma et al. [45] introduced an even higher level of automation in which 

ASDex, a description language, was utilized to automate the generation of different information 

required for the circuit synthesis procedure, e.g., VHDL-AMS model, netlist template of target 

circuits, test-bench netlist, scripts for calculating properties, and simulation control files. However, 

the method for topology generation is the same as those in [46] [47].  

2.2.2.3. Hybrid-based Topology Generation 

The highly challenging nature of the topology synthesis problem and lack of definite solutions 

have urged the researchers to leverage the merits of different strategies by combining them together 

to overcome this puzzle.  

The contributions in [48] [49] are some examples in this respect. Das and Vemuri proposed a 

tree-based top-down approach for generating and sizing circuit topologies where an analog circuit 

was treated as a graph. The synthesis procedure starts with a top-level black box and goes through 

a step-by-step decomposition process. The method is different from other EA-based circuit 
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synthesis methods, which often start from an embryonic circuit and evolve to the final topology 

through a bottom-up approach by managing a lower level of abstraction. In this method, the library 

of building blocks is updated in each run and new blocks based on the results from the previous 

runs are added to the library. Despite adding diversity to the library and taking some precautionary 

solutions such as ranking the building blocks inside the library, since unknown topologies would 

be generated in each generation, there is no guarantee that a correct topology will be added to the 

library. Accordingly, it is probable that the library might be spoiled by some generated 

untrustworthy building blocks. One possible solution to avoid injecting incorrect elements into the 

library is to update it only after a trustworthy design is obtained rather than every time during the 

synthesis without verification. 

2.2.3. Topology Refinement Methods 

In most of the recent literature, topology selection is viewed as an inferior choice that has 

stalled since the beginning years due to its severe weakness (e.g., high computational effort and 

limited beneficiary applications). However, the ongoing lack of a well-organized and efficient 

synthesis tool, which can satisfy the expectations at an industrial level, has intrigued the 

researchers to further investigate into the topology selection methods. Topology refinement is 

aimed to modify an existing structure with alternative building blocks to improve the performance 

of the current topology. Usually the researchers, who are motivated to walk along this path, believe 

that the process of analog circuit design is more like a decision-making process rather than a 

generation procedure from scratch. They believe that the blackbox methods are not an appropriate 

approach for analog circuit design; instead in every single synthesis step the trade-off among 

circuit parameters must be taken into consideration to guide the synthesis process towards the right 
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and meaningful direction. In this dissertation, this concept is treated as a complementary stream to 

topology selection.  

Ferent and Doboli [50] [51] compared several circuits and extracted their common/different 

features to improve an existing design by incorporating useful features from other designs. To this 

end, a feature clustering method, called ordered node cluster representation (ONCR), is utilized. 

A library of circuits with common functionality is provided and their equivalent uncoupled 

building block behavioral (UBBB) models, which are actually directed signal flow graphs (SFG), 

are extracted. Therefore, each circuit is represented by a set of nodes and two sets of symbolic 

expressions to identify the poles and the couplings between nodes. Then the nodes are matched 

based on similar AC behavior considering the poles and the outgoing couplings. A simulated-

annealing-based scheme helps identify the classification curves through circuit nodes, which can 

offer the highest similarities. Clusters of the matched nodes from different circuits would be 

generated during this matching procedure. 

In [52] two low-voltage amplifiers are compared based on the concept of UBBB models. 

Following topology comparison, performance constraints of each circuit are extracted and 

analyzed. The transfer functions of common blocks are treated as constants and the impact of 

dissimilar blocks would be the criterion to analyze the different constraints. A knowledge base is 

tabulated and analyzed considering the trade-offs between different circuit specifications due to 

variations in small-signal parameters of the transfer function. The data gathered in the table, which 

is helpful in understanding the advantages and limitations of each circuit block, can be used in the 

topology refinement. Reference [53] offers almost the same reasoning-based concept by extracting 

behavioral models and in-depth reasoning to identify and address the design bottlenecks through 

proper alternatives. These alternatives are implemented in the design flow with a tree structure 



19 

 

description called concept structure, where nodes indicate topology solutions (modified circuits) 

and arcs state the constraints to be satisfied in the next level sub-trees (nodes). 

Reference [54] proposes a topology selection and refinement method based on the ONCR 

concept and a symbolic comparison method [55]. At the topology selection stage, based on the 

maximum amount of variance (maxdiff) from a reference circuit, the ONCR method is utilized to 

identify the proper topologies, which satisfy the maxdiff condition. The set of the selected circuits 

are then compared with the reference circuit and a trade-off profile will be generated to imply how 

structural differences affect the circuit performance. As a result, the candidates on the list are sorted 

to determine the most promising structure for improving the performance. At the topology 

refinement stage, the performance bottlenecks are identified through the trade-off analysis. The 

nodes, which are correlated to the specific devices that may cause bottlenecks, are recognized. 

Then the program tries to only locally modify the reference circuit to improve the bottlenecks. 

Jiao et al. in [56] also benefited from a reasoning flow regarding the nature of the starting idea, 

that is, an analog circuit designer chooses to initiate a design. The proposed method mainly consists 

of two steps: 1) a procedure to select the starting idea, 2) a reasoning-based procedure to obtain 

the proper design based on the starting idea. Failure to begin the process with an appropriate 

starting idea may lead to performance defects in the final synthesis results [57]. A knowledge-

mining technique over a library of 30 analog circuits is established to represent the analog circuit 

meta-knowledge [58], which continues and upgrades the main concepts of [55]. Different 

reasoning algorithms are considered for different starting ideas. This method is in the framework 

of divergent-convergent thinking expressed in cognitive sciences. They have grouped the synthesis 

flows into five categories based on the five starting ideas. Although these works are very appealing 

to revive the seemingly outdated topology selection methods, their proposed evaluation schemes 
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are more qualitative than quantitative, which may make it nontrivial for the readers to comprehend 

and reproduce the work. Moreover, little elaboration in these papers is provided to ensure the 

satisfaction of a design compared to the original specifications. 

The feature-extraction-based method in [56] was further upgraded in [59] where in addition 

to automatically finding topological isomorphism of basic blocks, overlapping of different 

building blocks as well as recognizing repetitive structures of similar blocks, e.g., several 

connected Cascoded current sources or level shifters, were addressed in order to cover circuit 

schematics more efficiently. However, the proposed method was only applied to a small data set 

of 34 analog circuits. Moreover, the algorithm performance on run time is not clear from the paper. 

The core idea of [56] forms the basics of [60], which employs a three-level learning scheme, i.e., 

feature-, concept-, and constraint-level learnings for synthesis. A sequence of circuits as possible 

circuit solutions is analyzed in the feature-level learning. As a result, similar capabilities and 

limitations of different designs are detected and associated to common and distinct features. The 

concept-level learning determines the similar and opposing effects that each block may have on 

specific performance. The results of the concept-level learning specify the necessity to utilize or 

avoid using a block in the topology under synthesis. A novel low-voltage low-power amplifier was 

synthesized in [61] based on the strategy proposed in [56] to use a combination of abstract and 

physical features as the starting ideas in the synthesis procedure. To this end, a hierarchical graph-

based knowledge structure at different abstraction levels including design features of low-voltage 

low-power OpAmps is utilized. Nevertheless, although good simulation results were achieved, the 

comparisons made in the paper show little fairness since simple simulation results in this work 

were compared with the results from some fabricated chips. 
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2.3. Summary 

In this chapter, we have first discussed the main challenges that exist in the automation of 

circuit topology synthesis for analog ICs in the advanced technology era. Then, the previous 

automated analog circuit topology synthesis methods have been reviewed with their advantages 

and limitations pointed out. As can be seen, currently all the existing research works are not able 

to perfectly address the abovementioned challenges, which means there is still a long way to go in 

this research area. 

In the next chapter, our proposed graph-grammar-based topology synthesis methodology will 

be detailed. It possesses not only wide applicability but also sound generalization capability, which 

can handle large-size and creative circuit topologies. 
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Chapter 3    Graph-Grammar-Based Topology 

Synthesis for Analog Integrated Circuits 

 

3.1. Introduction 

The challenges of the circuit topology synthesis lie on how to handle the following two key 

issues: 1) design space and 2) design expertise. As a matter of fact, the design space is so broad 

that exploring all the possibilities is impossible and unreasonable. Thus, shrinking the search space 

is extremely important. The design expertise is a double-edged sword. On the one hand, it is 

inevitably required to guide the synthesis process to meaningful directions within such a huge 

design space. On the other hand, an excessive amount of expert intervention would constrain the 

necessary exploration toward creative circuit topologies and obstruct the automation realization of 

the synthesis process. In this chapter, we propose a top-down hierarchical graph-construction-

based approach to synthesize circuits, which can effectively reduce the design space and balance 

the design expertise embedded in the topology synthesis process. 

The starting point of the top-down method is the final design, which is then decomposed into 

some appropriate sub-blocks until reaching the lowest level that contains only building blocks 

(BBs) [39] [48]. The abovementioned works treat resistors, capacitors, transistors, and subcircuits 

as BBs where only input–output terminal characteristics are known. The decomposition process is 

carried out by matching the input–output terminals of those BBs, which is guided by the defined 

decomposition rules. Because of utilizing BBs as the basic constructing components, the design 

space is largely reduced, the synthesis efficiency is greatly improved, and the synthesis result is 

more reliable. Similar to the other topology generation approaches [8], the proposed method also 
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experiences a common problem, that is, generating a huge number of un-sized circuit topologies 

as candidates, a large portion of which however does not actually satisfy the performance 

specification. This feature is beneficial for generating some novel topologies on the one hand, 

while it also shifts great computation burden and complex quality control to the subsequent 

evaluation process on the other hand. In order to efficiently evaluate the performance of these 

generated un-sized circuits, instead of directly applying the detailed sizing plus simulation to all 

of them, in this chapter we propose a novel fast evaluation method that can quickly filter the bad 

ones in terms of performance by trading accuracy for efficiency. 

In the proposed circuit synthesis framework as depicted in Fig. 3.1, the detailed sizing, which 

can be readily carried out by any available commercial tools, is deliberately separated from the 

circuit topology synthesis. Two colored blocks, i.e., circuit topology generation and circuit fast 

evaluation, are the main focuses of this chapter. The key contributions of this chapter are listed as 

follows: 

Specifications

Detailed Sizing

Circuit Fast Evaluation

Fast DC Gain Test

Linear Constraint Test

Further Evaluation

Graph-Grammar-Based 
Tree Structure Generation

Circuit Topology Generation

Tree Structure Level 
Isomorphism

Circuit Topology 
Level Isomorphism

Successful Sized, 
Transistor-Level Analog 

Circuit Schematics

Circuit Formation

Predefined Building 
Block Library

Fast Sizing

Performance 
Simulation Test

A Huge Number of 
Unique, Unsized

 Circuit Topologies

A Limited Number of 
Unique, Coarsely Sized 

Circuit Topologies

 

Fig. 3.1. Our proposed analog circuit synthesis framework. 
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 An analog circuit topology synthesis framework, which greatly facilitates the design of 

analog integrated circuits. 

 Graph-based circuit topology generator (GCTG). 

 A novel fast evaluation method for un-sized circuits. 

 Low-order symbolic transfer function generator (LTFG). 

The research conducted on this topic has been mainly published in IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems (TCAD) [J1], and presented in 2018 

IEEE International Symposium on Circuits and Systems (ISCAS) [C1] and 2019 IEEE 

International Symposium on Circuits and Systems (ISCAS) [C2]. 

 

3.2. Circuit Topology Generation 

3.2.1. Graph-Grammar-Based Tree Structure Generation 

(GTSG) 

In this section, generating circuit topologies is encoded as constructing graphs, with the 

construction process being controlled by the defined grammar. Formally, the graph grammar can 

be expressed as a 4-tuple GTSG = (NN, NT, NR, P), where the graph is composed of a finite set of 

normal nodes (NN), a finite set of terminal nodes (NT, NT  NN), and a root node (NR, NR  NN), 

while the grammar consists of a finite set of production rules (P) that guide the graph construction 

process. 

The graphs to be built by GTSG are actually trees, which are realized by iteratively splitting 

leaves starting from the root node. Each node in the tree, which can have up to two child nodes, 

represents a black block that is associated with only input and output terminals. The terminals can 
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be classified into two types, voltage terminals and current terminals. For the current terminals, the 

direction of current, which should be included in the presentation, depends on whether the bias 

current (rather than the signal current) flows into or out of the block. Fig. 3.2 depicts one example 

with some tree nodes. One can see that input terminals always lie on the left side of a block while 

output terminals always stay on the right side. I/fi or I/fo represents a current terminal with bias 

current flowing into or out of the block, while V represents a voltage terminal. Thus, block ① 

might possibly be a differential pair with all their terminals matched in between. In addition, the 

detailed implementation of any block does not necessarily contain devices (e.g., transistors) as 

long as the terminal types are matched, as shown by block ② in Fig. 3.2. 

Each tree structure contains a root node (NR) that symbolizes the input-output specification of 

the represented circuits, as shown by block ④ in Fig. 3.2. For instance, for a two-stage operational 

amplifier (OpAmp) with the input-output specification of two voltage inputs and one voltage 

output, the encoded root node (NR) would have two voltage input terminals on the left and one 

voltage output terminal on the right. If the terminals of the root node for tree-A match those of a 

non-root node within tree-B, tree-A can be treated as a sub-tree of tree-B. In this way, large and 

complex circuits can be divided into several components and then hierarchically implemented. 

GND

VDD

  
V

V

I/fi

I/fi

  
I/fo

  
I/fi
I/fo

V

I/fo

   
V
V

V

 

Fig. 3.2. Example of some tree nodes and their possible contents. 
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This is a major advantage of our proposed GTSG. The classification of normal nodes (NN) and 

terminal nodes (NT) is based on their functionality. Specifically, all the nodes in a tree structure 

are NN, while only the leaf nodes that can be mapped onto circuit building blocks are NT. It is worth 

noticing that not all the leaf nodes are necessarily NT in a tree structure, but only the tree structures 

whose leaves are all composed of terminal nodes can be successfully translated into circuit 

topologies. For the example in Fig. 3.2, three block nodes ①-③ are terminal nodes since their 

mapped circuit BBs might be current mirrors, differential pairs, etc. 

We have defined eight types of normal nodes in total. The names of these types are self-

explained. Fig. 3.3 illustrates an example of each type of normal nodes. Generally, each input or 

output terminal can be either voltage, bias-current-flow-into, or bias-current-flow-out. For all the 

convertor type block nodes, the input terminals must be current while the output terminal(s) must 

be voltage. For voltage-merger and voltage-splitter block nodes, both input terminals and output 

terminals must be voltages. We also have defined a set of production rules (P), which is composed 

of decomposition rule, structural symmetry rule, branch termination rule, deconstruction rule, and 

last-level constraint rule, to specify the way for constructing tree structures. 

I/fi I/fi V I/fo
V I/fo

V V
V

VV
V

 
                        (a)                             (b)                             (c)                             (d) 

I/fi V
I/fi

I/fi VI/fo
I/fi V
I/fi V

I/fi V
I/fo V

 
                        (e)                              (f)                             (g)                             (h) 

Fig. 3.3. Normal node examples: (a) One-signal-path block node. (b) Two-signal-paths block 

node. (c) Voltage-merger block node. (d) Voltage-splitter block node. (e) Identical-current-

convertor1 block node. (f) Distinct-current-convertor1 block node. (g) Identical-current-

convertor2 block node. (h) Distinct-current-convertor2 block node. 
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1) Decomposition Rule  

This rule guides how to split a leaf node into its leaf children, leading to a new tree structure. 

It consists of basic operations and optional operations. As mentioned in Section 3.1, the design 

space of the circuit topology generation problem is so huge that no method can explore all the 

possibilities. Therefore, we expect this decomposition rule to be an open rule, which means it is 

open for the users to add more reasonable optional operations to enhance the exploration for novel 

or specific interested circuit designs. In this regard, we have defined the following three basic 

decomposition operations, which are required to ensure reasonable construction of tree structures, 

and one optional operation for the listed different types of normal nodes as summarized in Table 

3.1. 

 Horizontal Decomposition 

As depicted in Fig. 3.4(a), the left child keeps all its parent’s input terminal(s), while the right 

child gets its parent’s output terminal(s). Whether the left child owns one or two output terminal(s) 

depends on the type of its parent node. Specifically, for one-signal-path and two-signal-paths block 

nodes, their left children have one and two output terminal(s), respectively; for voltage merger or 

voltage splitter block node, its left child could have one or two output terminal(s). Furthermore, 

Table 3.1. Allowed decompositions for different types of block nodes 

Type of Normal Node 
Type of Decomposition Operation 

Horizontal Semi-horizontal Vertical Voltage-division 

One-signal-path √   √ 

Two-signal-paths √  √ √ 

Voltage-merger √    

Voltage-splitter √    

Identical-current-convertor1 √ √   

Distinct-current-convertor1  √   

Identical-current-convertor2 √ √ √  

Distinct-current-convertor2  √   
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the output terminal(s) of the left child must be one-to-one paired with the input terminal(s) of the 

right child, as shown in Fig. 3.4(a). This pairing means that their terminals are physically connected. 

Such a pairing criterion encodes the reasonable connection rules between the two child block nodes, 

which requires that V must be paired with V, I/fi with I/fo, and vice versa. 

 Vertical Decomposition 

As depicted in Fig. 3.4(b), the first input and output terminals of the parent node are kept by 

the left child, while its second input and output terminals are reserved by the right child. 

V

V

I/fi
I/fi

V

V

I/fi
I/fi

I/fo
I/fo

I/fi
I/fi

V

V

I/fi
I/fi

V I/fi V I/fi

 
                                                        (a)                                                (b) 
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I/fi
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I/fi I/fi
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(c1) 

I/fi
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I/fo
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V

V
V

V
V

V
V

V
V V

V
V

V

V

V
 

                                            (d1)                                                (d2) 

Fig. 3.4. Decomposition operation examples: (a) Horizontal decomposition. (b) Vertical 

decomposition. (c1) Semi-horizontal decomposition case 1. (c2) Semi-horizontal decomposition 

case 2. (d1) Voltage-division decomposition for one-signal-path block nodes. (d2) Voltage-

division decomposition for two-signal-paths block nodes. 
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 Semi-horizontal Decomposition 

We have defined this operation to include the following two cases. As illustrated individually 

in Fig. 3.4 (c1) and (c2), the left child holds its parent’s one input terminal while the right child 

retains its parent’s other input terminal and output terminal(s) are the commonplace of these two 

cases. The difference between them is that the left child takes the first input terminal of the parent 

node in Fig. 3.4(c1) while the left child takes the second input terminal of the parent node in Fig. 

3.4(c2). Therefore, the output terminal of the left child is paired with the first input terminal of the 

right child in Fig. 3.4(c1) and the second input terminal of the right child in Fig. 3.4(c2). 

 Voltage-division Decomposition 

This is an optional operation that handles the situation of voltage division for exploring novel, 

complicated, or specific circuit designs. The voltage division may take place at one-signal-path or 

two-signal-paths block node with only voltage-type input(s) and output(s). For the one-signal-path 

case, it has only one child with identical input terminal and two duplicated output terminals of the 

parent node, as depicted in Fig. 3.4(d1). For the two-signal-paths situation, as shown in Fig. 3.4(d2), 

both the left child and the right child nodes have the same output terminals as the parent node, 

while the left child node keeps the first input terminal and the right child node maintains the second 

input terminal of the parent node. 

Different from the three basic decomposition operations, the voltage division affects not only 

the node to be decomposed, but also other leaf nodes in the current tree structure. As depicted by 

an example in Fig. 3.5, the tree structure before the occurrence of voltage division is shown by all 

the red block nodes. The terminals with the same color mean that they are either inherited from 

the parent node, connected, or symmetric. After node ① experiences a voltage division operation, 

two more output terminals (i.e., the output terminals of its right child) are created. In order to 
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receive these additional outputs, the leave(s) whose input(s) is (are) connected to them must also 

implement the operations that we call signal division, and so on until the last connected leaf. It is 

worthwhile to note that signal division is passively triggered by the incident of any voltage division 

for certain leaf nodes. Thus, we define that the signal division refers to the division operation that 

occurs to the triggered leaf nodes while the voltage division refers to the operation that only 

happens to the source leaf nodes.  

According to the location where signal division happens, the division can be classified into 

boundary signal division and internal signal division, which occur to the last triggered (e.g., node 

④) and the other triggered leaf nodes (e.g., nodes ② and ③), respectively. For one-signal-path 

block nodes, there are two possible cases to implement the internal signal division decomposition: 

the first case duplicates the parent’s input and output terminals on different child nodes; the second 
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Fig. 3.5. Voltage-division decomposition: (a) Example of tree structure construction with 

voltage division. (b1) The first case of internal signal division for one-signal-path block node. 

(b2) The second case of internal signal division for one-signal-path block node. (b3) Boundary 

signal division for one-signal-path block node. 
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case copies the parent’s input and output terminals twice to a two-signal-paths block child node, 

which are illustrated by the example of Fig. 3.5(b1) and Fig. 3.5(b2), respectively. When the 

internal signal division occurs to the other types of normal nodes, they have two child nodes whose 

input and output terminals are identical to their parent’s, just like the first case of one-signal-path 

block nodes. Similarly, the boundary signal division decomposition doubles the parent’ input 

terminals on the child node(s), but it keeps the number of the parent’ output terminals on the child 

node(s), as depicted by the decomposition of node ④ in Fig. 3.5(a) and the example of Fig. 3.5(b3). 

2) Structural Symmetry Rule 

This rule respects the necessary structural symmetry constraints (e.g., the first stage of 

OpAmps due to the preference of differential pairs) in the circuit design to reduce the chance of 

generating senseless circuit topologies [62]. Therefore, we require that when the vertical 

decomposition of a leaf node happens at the first stage, its two child nodes should be marked as 

symmetric. In order to track the stage depth during the tree structure construction process, we 

define that each leaf node owns an attribute of stage-depth, which is indicated by the appearance 

of current-to-voltage-convertor block nodes and updated during the tree construction. 

3) Branch Termination Rule 

This rule halts a branch to be further disassociated in the tree structure construction process, 

which avoids producing a huge number of meaningless tree structures or asymmetric circuit 

topologies at the very early stage. Specifically, once two leaves are marked as being symmetric to 

each other, both are not allowed to be disassociated due to the concern that further splitting them 

would break or be difficult to maintain the symmetry property. For the same reason, when semi-

horizontal decomposition happens at the first stage, the left child is forbidden to be further 

disassociated. It is worth noticing that this branch termination rule is only associated with the three 
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basic decomposition operations. In other words, when the optional voltage-division decomposition 

operation is applied, the branch termination rule would be disabled. 

4) Deconstruction Rule 

The decomposition process will never stop unless a termination constraint is applied. To avoid 

generating too many tree structures, the maximum number of leaves allowed in each tree structure 

can be controlled upon the user’s input as listed in Algorithm 3.1. Furthermore, after the 

decomposition process is halted, any tree structures should be discarded if their leaves are not 

composed of terminal-only nodes. 

5) Last-Level Constraint Rule 

In order to improve the efficiency of the proposed GTSG algorithm, we apply the last-level 

constraint to the tree structures whose number of total leaves is N-1, where N is the maximum 

allowed number of leaves. For those structures, if any leaf node, except for the one to be 

disassociated, is not a terminal node, they should be discarded. 

Algorithm 3.1 describes the whole tree structure generation, which is an explorative searching 

process. At each step, only one of the leaves is allowed to implement the decomposition. As 

explained in the decomposition operations, there are multiple possibilities to disassociate a leaf 

node. Each of these possibilities is treated as a forked version of the current structure and queued 

for further exploration. The defined decomposition rule (Line 13), structural symmetry rule (Line 

15), branch termination rule (Lines 12 and 14), deconstruction rule (Lines 6 and 19), and last-level 

constraint rule (Line 9) interact with each other to control the quality and efficiency of the 

generation process. 
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3.2.2. Tree Structure Level Isomorphism 

During the tree structure generation process, there exist lots of chances to produce duplicate 

circuit topologies. Removing those duplicates at tree structure level can largely release the burden 

of further busyness. For the example in Fig. 3.6, even though (a) and (b) have distinct tree structure 

formations, since their leaves and sequence (from left to right) are exactly the same, we still 

consider (a) and (b) are isomorphic at the tree structure level because they will eventually produce 

the same circuit topology. It is difficult to manually detect this kind of isomorphism. However, 

Algorithm 3.1: Graph-Grammar-Based Tree Structure Generation 

    Input: Input-output specification SIO; A PBB library; 

                Maximum count of leaf nodes N. 

    Output: Candidate Tree structures. 

  1. Build a block node nr that encodes SIO; 

2. Construct a tree structure Tinit that treats nr as root; 

3. Put Tinit onto an empty list Q; 

4. While (there is an un-fetched topology in Q) 

5.     T⟵fetch the first unvisited topology in Q; Mark T as fetched; 

6.     If (T’s leaf count n(T) ≤ N-1) 

7.         While (there is an un-visited leaf node in T) 

8.             leaf node V ⟵ extract the leftmost unvisited leaf of T; 

9.             If (n(T)==N-1 && any other leaf is a non-terminal node) 

10.               Delete T from Q; 

11.           Else 

12.               If (V is allowed to be decomposed) 

13.                   Decompose V; Mark V as visited; 

14.                   Determine the termination property of V’s children; 

15.                   Determine the symmetry property of V’s children; 

16.                   Update the connection information in T; 

17.                   Push each possible new topology Tnew into Q; 

 18.                   Restore T to the one before disassociation; 

19.           If (not all the leaves are terminal nodes) 

20.               Delete T from Q; 

21. Return Q; 
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with the tree representation, automatically discovering the isomorphism is quite simple, which is 

another major advantage of our proposed GTSG.  

Depth-first search (DFS) is a graph traversal algorithm with linear-time complexity. It is 

employed in our implementation to quickly extract the leaves from left to right. Once the extracted 

leaf sequences of two tree structures are exactly matched, the isomorphism at the tree structure 

level is confirmed, and then one of them has to be eliminated due to duplication. 

3.2.3. Circuit Formation 

The connection information and symmetry property among leaves are recorded and updated 

during the tree structure construction process. In addition, after applying the deconstruction rule, 

all the leaves of the generated tree structures should be terminal nodes that are able to be mapped 

to PBBs. With all the knowledge above, firstly the leaves of the tree structure are mapped to their 
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Fig. 3.6. An example of tree structure level isomorphism. 
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corresponding PBBs. Then transistor-level circuit topologies will be formed by connecting those 

PBBs according to the recorded connection information. 

When decoding a tree structure, its leaf block node may be able to map to several PBBs, which 

depends on how the PBB library is defined. All these possibilities are preserved as forked versions 

of the current circuit topology. It is worth noting that if two leaf nodes are symmetric, they should 

be mapped to the same PBB for each possible choice. Furthermore, simply swapping input pins of 

an analog circuit may affect its performance. Due to this reason, we treat the circuits, which have 

exactly the same structure but swapped input pins, as different circuit topologies. All the formed 

circuit topologies should create copies of themselves with swapped input pins. 

3.2.4. Circuit Topology Level Isomorphism 

Although the previously applied tree structure level isomorphism test is powerful to eliminate 

all the duplicates, the later decoding process may also have a big chance to produce new duplicates 

that cannot be detected by the previous isomorphism check. Two example circuits that can be 

generated with the maximum-number-of-leaves of five are depicted in Fig. 3.7(b1) and Fig. 3.7(b2). 

Intuitively both circuits of Fig. 3.7(b1) and Fig. 3.7(b2) should be isomorphic, whereas their 

corresponding tree structures Fig. 3.7(a1) and Fig. 3.7(a2), whose connected terminals of leaves are 

indicated by the same colors, are not isomorphic due to distinct last leaves. Therefore, another 

isomorphism check at the circuit topology level is demanded to eliminate those new duplicates. 

The basic idea of this isomorphism test for analog circuit topologies was borrowed from [44], [47], 

and [63]. 

In those isomorphism algorithms, all the devices and nets are associated with labels. Initially, 

the nets that connect to pins will get special labels. Distinct types of pins will cause different labels. 
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For those nets that do not connect to pins will get labels according to their connections. Devices 

will get initial labels according to their types (e.g., NMOS or PMOS). Then all the devices and 

nets are partitioned into subsets according to their labels. If some subsets only contain one element, 

they are called singletons. Once those singletons are not matched for two circuits, isomorphism is 
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Fig. 3.7. An example of circuit topology level isomorphism. 
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disapproved. If those singletons are matched, the labels of the devices and nets will be updated 

through a breath-first-search traversal. Then the newly generated singletons are compared. This 

process continues until all the subsets are matched singletons or isomorphism is disapproved. 

However, we find that those published algorithms are still not reliable enough. In the example 

circuits of Fig. 3.7(b1) and Fig. 3.7(b2), since the gates of M3 and M4 connect to different biases, 

M3 and M4 would result in different initial labels that lead to a wrong check result. Actually, it is 

too difficult to give reasonable indexes for all the bias pins. Therefore, we believe that the indexes 

of the bias pins should not make the connected terminals different. In other words, all the biases 

had better be considered as the same type of pin just like the power or ground pin. However, even 

though the constraints of bias pins are given as mentioned above, the algorithm from [44] and [47] 

still fails to detect the isomorphism of Fig. 3.7(b1) and Fig. 3.7(b2) because (M3, M4) and (Vb1, Vb2) 

will always get the same labels, which make them always stay in the same subsets, respectively. 

Then the algorithm enters an infinite loop. 

In this work, we have improved the existing algorithm as explained below. At each iteration 

of singleton-match checking, if there exist subsets that are not singletons, the device nodes (e.g., 

M3 and M4) from these subsets are first checked to see whether they have identical connections for 

all the terminals. If so, we consider their subset as singleton as long as the subset only contains 

these device nodes. Similarly, the net nodes (e.g., Vb1 and Vb2) from these subsets are also checked 

to see whether they connect to the same type of terminals (e.g., drain, gate, source, and body) and 

the connected devices have identical connections for all the terminals or not. If so, we also mark 

their subset as singleton as long as the subset only contains these net nodes. For those subsets that 

fail in the above check, the labels of the devices and nets in them would be updated again through 

the breath-first traversal and the algorithm continues to enter the next iteration of singleton-match 
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checking. In this way, the circuits, which contain the devices that have identical connections for 

all the terminals, can be distinguished by our improved circuit-level isomorphism check scheme. 

 

3.3. Fast Evaluation of Un-sized Circuits 

3.3.1. Preliminaries 

Our proposed work is based on Graph-Pair Decision Diagram (GPDD) algorithm [64] and 

GPDD-Reduction algorithm [65], a stream of the state-of-the-art symbolic analysis methods. To 

facilitate the understanding of our work, below we will give a brief review of both algorithms. Fig. 

3.8(a) is a common source amplifier, whose small-signal model is given in Fig. 3.8(b), and GPDD 

data structure is shown in Fig. 3.8(c). Once a GPDD is constructed [64], the transfer function can 

be obtained from its topology as follows: 

𝐻(𝑠) =
(𝑠𝐶𝑔𝑑 − 𝑔𝑚)(𝑔1 + 𝑠𝐶𝑙)

(𝑠𝐶𝑔𝑑 + 𝑔)(𝑔1 + 𝑠𝐶𝑙) + 𝑔1𝑠𝐶𝑙
,                                                (3.1) 

where g = gds + g2 = (Rds + R2) / (Rds · R2) since GPDD processes all the impedance elements in the 

immittance form and parallel impedance elements as a lumped immittance. 

If we just apply the GPDD algorithm to derive the I/O transfer function for even a simple 

analog circuit, the result is human unreadable since it contains a huge number of terms in both 

numerator and denominator. The GPDD-Reduction algorithm can largely reduce the number of 

terms through 0-operation and ∞-operation. In (3.1), there are two ways to eliminate g1 (i.e., 1/R1) 

from the expression. The first one is to let g1 = 0 (equivalently R1 = ∞), by which the expression 

can be simplified as 
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𝐻(𝑠)|𝑔1=0 =
𝑠𝐶𝑔𝑑 − 𝑔𝑚

𝑠𝐶𝑔𝑑 + 𝑔𝑑𝑠 + 𝑔2
.                                                      (3.2) 

The other one is by letting g1 = ∞ (equivalently R1 = 0), the symbolic transfer function becomes 

𝐻(𝑠)|𝑔1=∞ =
𝑠𝐶𝑔𝑑 − 𝑔𝑚

𝑠(𝐶𝑔𝑑 + 𝐶𝑙) + 𝑔𝑑𝑠 + 𝑔2
.                                               (3.2) 

Both above have equivalent operations, which are called 0-operation and ∞-operation, in the 

GPDD-Reduction algorithm. Fig. 3.8 (d) and (e) show the reduced GPDD after eliminating 

element g1 by 0-operation and ∞-operation, respectively. From these reduced GPDDs, the same 

symbolic transfer functions as shown by (3.2) and (3.3) can be extracted. 

The GPDD-Reduction algorithm contains two phases. In the first phase, it firstly evaluates the 
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Fig. 3.8. GPDD data structure examples. (a) Common source amplifier. (b) Its small-signal 

model. (c) Its GPDD data structure. (d) Reduced GPDD after 0-operation of g1. (e) Reduced 

GPDD after ∞-operation of g1. 
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removing error of each symbol by applying both 0-operation and ∞-operation. Then the smaller 

error in between will be used to indicate the significance of the symbol, and the corresponding 

removing operation will be recorded. After that, the algorithm ranks all the symbols according to 

the increasing order of their significance. In the second phase, it sequentially removes the first K 

(a user-defined parameter) symbols on the ranked list. 

3.3.2. Low-order Symbolic Transfer Function Generator 

Symbolic analysis aims to derive human-interpretable expressions of circuit behavior. 

However, the interpretability of full-scale transfer functions is difficult to achieve. Therefore, a 

low-order symbolic transfer function, which is human readable as well as accuracy guaranteed, is 

of great interest. Thanks to the sequential reduction, the GPDD-Reduction algorithm can eliminate 

a large number of small-signal elements that do not play dominant roles in circuit performance. 

However, we found that during the reduction process, there existed a high possibility that some 

inner connections of the circuit are removed, leading to no transfer function to be extracted. This 

issue causes no trouble to the original GPDD-Reduction algorithm [65] because it aims to generate 

macromodel instead of symbolic transfer function. But this is not the case for our work. 

Therefore, we have improved the algorithm to devise a robust low-order transfer function 

generator by adding invalidity and accuracy checking operations. In this regard, in order to avoid 

producing malfunction circuits, after ranking the significance of all the symbols, the ones with 

infinite removing errors should not be adopted in reduction [65]. Moreover, it is critical that the 

generated low-order transfer functions should bear an acceptable accuracy compared with the full-

scale ones. To achieve this goal, we require that at each sequential reduction iteration, if removing 

one symbol causes an error larger than a certain percentage (user-defined parameter), that symbol 
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should be preserved in the final simplified GPDD structure. Compared with the original GPDD-

Reduction algorithm, our improved reduction method in this work does not need to specify the 

number of symbols to be removed since it always keeps the minimum number of symbols under 

the requirement of certain accuracy. As a matter of fact, it is a tradeoff between degree of 

simplification and accuracy of the generated transfer function, which means if users require high 

accuracy, more complex symbolic transfer functions would have to be produced. 

Moreover, the original GPDD-Reduction algorithm ranks the significance of all the symbols 

only once (before the reduction process) based on the primitive GPDD structure. In the process of 

sequential reduction, the GPDD structure may largely change after gradually reducing symbols. 

So, it is beneficial for the significance of the remaining symbols to be re-evaluated based on the 

reduced GPDD structure instead of always the primitive one. Otherwise, the ranked list would be 

highly inaccurate. Therefore, compared to the static decision method used in the original GPDD-

Reduction algorithm, our proposed method dynamically determines which symbol has the least 

significance among the remaining symbols at each iteration when the GPDD structure is reduced. 

After the low-order transfer function has been automatically extracted from the simplified 

GPDD structure, further effort is still needed to simplify it in the hierarchical way to reach the flat 

form. In addition, the device characteristics (e.g., gm, gds, and intrinsic capacitances) of the 

symmetric transistors in some basic building blocks, such as differential pair, should have identical 

values. Thus, if those symmetric device characteristics are the common factors in both numerator 

and denominator, they should be eliminated from the final result. Through this post-processing 

operation, the final generated transfer function would be much cleaner and compacter. 
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3.3.3. Flow of Tests 

The unique un-sized circuit topologies generated by the proposed circuit topology synthesizer 

above will be fast evaluated through a flow of tests, each of which acts as a filter to eliminate the 

circuit topologies that do not satisfy the requirements. The first one is the linear constraint test, 

which models the biasing constraints, symmetry constraints, and common constraints from a 

circuit topology as the linear equality or inequality constraints in the form of a linear programming 

problem. Once the modeled problem has a feasible solution, the circuit topology passes the test. 

The survived circuit topologies will be further checked by the fast DC gain test. The DC gain 

of a circuit can be quickly numerically calculated through the GPDD algorithm [64], which 

requires the values of all the parameters in the small-signal model of the circuit as input. However, 

since the candidate circuits in our context are un-sized, it is impossible to get those values via 

SPICE simulation. What we know so far is that there exist value ranges for those small-signal 

model parameters in a certain technology. Therefore, after extracting such ranges for a specific 

technology, the center values of these ranges are employed to efficiently approximate the DC gain 

through the GPDD algorithm. In order to further speed up the operation, we employ a simplified 

small-signal model that only contains four parameters (gm, gds, Cgs, and Cgd) for each MOSFET 

transistor in the circuits. Our experimental result indicates that even though center values are 

applied, the accuracy is still acceptable compared to the scenario of being fed with detailed 

parameter values. In practice, we can also deliberately lower the criterion of DC gain somehow to 

ensure that only the circuits with very bad performance would be discarded at this stage. 

In order to further accurately evaluate the remaining un-sized circuits, we have proposed a 

new fast sizing method based on gm/ID (transconductance over drain current ratio) methodology. 

Recently the concept of gm/ID was employed in [66] to solve the parasitic-aware sizing problem. 
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The work of [67] further applied gm/ID and gds/ID (drain conductance over current ratio), which are 

only related to the node voltages of VGS, VDS, and VTH, to address the layout dependent effects 

during the analog sizing process. Moreover, the intrinsic parasitic capacitances Cij mostly depends 

on W * L, where W and L are transistor’s width and length, respectively; i and j are any of the drain, 

source, gate or bulk nodes of a transistor. It is known that ID is proportional to W/L, thus 

𝐶𝑖𝑗 𝐼𝐷⁄ =  𝐿2𝑓𝑜𝑡ℎ𝑒𝑟𝑠,                                                                      (3.4) 

where fothers means the other effects that mostly come from oxide capacitance Cox and gate overlap 

capacitance Cov. Thus, if L is fixed, Cij/ID is also independent of transistor sizes. 

As a summary of the explanation above, if L is fixed, gm/ID, gds/ID, and Cij/ID can be directly 

expressed by only transistor node voltages. The curve-fitting technique is applied to reflect the 

relationship among them in the form of symbolic expressions. In this regard, after a batch of 

numerical simulations are performed on unit MOSFET transistor, the output sample data are fitted 

into analytic functions as follow: 

(
𝑔𝑚
𝐼𝐷
,
𝑔𝑑𝑠
𝐼𝐷
,
𝐶𝑖𝑗

𝐼𝐷
) = 𝑓𝑘(𝑉𝐺𝑆, 𝑉𝐷𝑆)|𝐿 ,                                                     (3.5) 

where k means that gm/ID, gds/ID, and Cij/ID have different expressions. Moreover, the schematic-

level circuit sizing can be modeled as a nonlinear programming (NLP) problem in the gm/ID form, 

with the objective function expressed as 

𝑜𝑏𝑗 =  𝛼∑

(
𝑔𝑚𝑖

𝐼𝐷𝑖
) 𝐼𝑠𝑠

(𝑉𝐺𝑆𝑖 − 𝑉𝑇𝐻𝑖)
+ 𝛽𝐼𝑠𝑠𝑉𝑐𝑐 

𝑥

𝑖=1
,                                               (3.6) 

where α and β are the weighting factors for total device area and power consumption, respectively 

[68]. Furthermore, the center values of the parameter ranges mentioned in the fast DC gain test 
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above are further used here to produce the low-order transfer function by our proposed LTFG tool 

as follows, 

𝐻(𝑠) = ℎ (𝑔𝑚𝑖, 𝑔𝑑𝑠𝑖 , 𝐶𝑔𝑠𝑖
, 𝐶𝑔𝑑𝑖

) .                                                   (3.7) 

By inserting (3.5) into (3.6) and (3.7), both the objective function and low-order transfer 

function can be expressed only in terms of bias parameters (e.g., VGS, VDS, and ID). Nonlinear 

inequalities can be established between the transfer function and the predefined performance 

specifications. These nonlinear inequalities and the linear inequalities built in the previous test 

stages form the necessary constraints in our NLP model. 

In this way, the NLP only contains the bias parameters of each MOSFET in the circuit as 

variables. The bias information is derived once the NLP problem is solved. Then by using the gm/ID 

theory or the look-up table search approach [67], W/L of all the transistors in the circuit can be 

derived. Since L can be pre-defined in our quick sizing process, W of each transistor would be 

readily calculated. With the size and bias information obtained from the solution of NLP, the 

candidate circuits are further directly evaluated via SPICE simulation. Once the performance of 

any circuits satisfies the predefined specifications within an acceptable error margin, they pass the 

performance simulation test and will be listed as the qualified output. 

 

3.4. Experimental Results 

This section is divided into six sub-sections. Sub-section 3.4.1 introduces the predefined 

building blocks used in our experiments. Sub-section 3.4.2 analyzes the results of circuit topology 

generation. Sub-sections 3.4.3 and 3.4.4 highlight the merits of our proposed low-order symbolic 
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transfer function generator (LTFG) and un-sized fast evaluation method, respectively. Sub-section 

3.4.5 demonstrates that our proposed synthesis framework is able to synthesize innovative circuit 

topologies. Finally, our proposed work is compared with a state-of-the-art tool to show its 

advantages in Sub-section 3.4.6. 

The whole framework was mostly implemented in C++, with the linear constraint test done 

by an LP solver, the fast sizing realized by the OPTI toolbox solver in MATLAB, and performance 

simulation test carried out by Cadence SPICE simulation tool. Our experiments were run on an 

Intel X86 1.2-GHz Linux workstation that has 64 GB of memory and the experiment was based 

on a CMOS 65-nm process, which can be readily replaced by any other CMOS technologies. 

Table 3.2. PBB library 
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3.4.1. Predefined Building Block Library 

In GTSG, each terminal node can be mapped to at least one PBB. In this way, the tree 

structures comprised of terminal nodes can be decoded into the circuit topologies composed by 

basic BBs. As shown in Table 3.2, our defined PBB library contains 14 kinds of terminal nodes 

that can be mapped to 20 PBBs. Generally, each BB consists of nMOS/pMOS transistors, leading 

to distinct terminal types. Among them, one-output convertor and two-output convertor are two 

special PBBs due to only nets contained. Both have two kinds of terminal node correspondence, 

which is completely dependent on the order of the input terminals. 

3.4.2. Results of Circuit Topology Generation 

As illustrated in Fig. 3.1, our proposed GTSG algorithm takes input–output specification and 

PBB library as inputs. In our experiment, the input–output specification was defined as two voltage 

inputs and one voltage output with the PBB library provided as depicted in Table 3.2. Only the 

three basic decomposition rules were applied. Fig. 3.9 gives an example of synthesizing a three-

stage OpAmp. Specifically, Fig. 3.9(a) illustrates how GTSG works to generate its tree structure 

with the maximum-number-of-leaves of twelve, while Fig. 3.9(b) shows the formation of its 

decoded circuit topology by mapping terminals from the tree structure above to their corresponding 

PBBs. It can be observed that a wider range of circuit topologies would be formed if given a more 

complicated PBB library. 

In Fig. 3.9(a), leaves 0–6 belong to the first stage, leaves 7, 9, and 10 fall into the second stage, 

and leaves 8, 11, and 12 compose the third stage. As required by our symmetry constraint rule, 

leaf 5 is not allowed to be further split; otherwise, it is difficult to maintain the symmetry property 

of the first stage as depicted in Fig. 3.9(b). Since the parent of leaf 11 does not have this constraint, 
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it can be further disassociated. Moreover, the significance of the last-level constraint rule is 

demonstrated by the experimental results listed in Table 3.6. Compared with the case without the 

last-level constraint rule, the efficiency of our proposed GTSG algorithm was greatly improved 

when the leaf number is larger than 4. It can be inferred that such an improvement becomes more 

significant as circuits get larger, since more leaves need to be processed. 

The experimental results of the whole circuit topology synthesis are listed in Table 3.3. One 

can see that the tree structure level isomorphism is so powerful that a large number of duplicate 
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Fig. 3.9. An example of synthesis of a three-stage OpAmp. (a) Its tree structure. (b) Its circuit 

topology. 
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topologies are quickly filtered out, especially when the circuit size gets larger. When the 

maximum-number-of-leaves is 7, only 5.1% tree structures pass the check. Removing the 

duplicates at this level is of significance since it greatly reduces the subsequent workload of 

decoding and circuit level isomorphism, thus strongly improving the synthesis efficiency. As 

depicted in the PBB library, one terminal may be mapped to multiple PBBs. During the tree 

structure decoding process, all their combinations should be considered, while all the possibilities 

are treated as forked versions. Therefore, as shown in Table 3.3, the number of the generated circuit 

topologies after decoding is much larger than that of the tree structures. The circuit topology level 

isomorphism is also quite effective by eliminating at least half of the duplicated circuits at different 

circuit size levels. 

The whole generation time in our experimental results as listed in Table 3.3, which is 

composed of the time consumed in tree structure construction, circuit topology formation, and two 

levels of isomorphism checking, clearly demonstrates the high efficiency of our propose GCTG. 

In GCTG, the most time-consuming parts are two isomorphism checks that only compare a pair 

of circuit topologies each time. When the number of the test circuits increases to n, the time 

consumed by the two tests would be increased to O(n2). That is, the main reason when the circuit 

size gets larger, the whole generation time, as shown in Table 3.3, increases dramatically. 

Table 3.3. Results of Our Proposed Circuit Topology Synthesis Framework 

#Max 

Leaves 

Circuit Topology Generation Circuit Fast Evaluation 
Tree Structures Circuit Topologies 

Whole 

Generation 

Time 

LP Test 
DC Gain 

Test 

Total 

Time of 

LP and 

DC Gain 

Tests 

Performance 

Simulation 

Test 
Initially 

Generated 

Tree-Level 

Isomorphism 
Decoding 

Swap Input 

Pins 

Circuit-

Level 
Isomorphism 

# #Left %Pass #Generated #Generated #Left %Pass #Left %Pass #Left %Pass #Left %Pass 

3 4 4 100% 12 24 12 50% 8.6ms 12 100% 0 0% 0.8s - - 

4 12 8 66.7% 24 48 22 45.8% 27.9ms 22 100% 0 0% 1.6s - - 

5 52 24 46.2% 108 216 100 46.3% 136.7ms 100 100% 24 24% 7.8s 18 75% 

6 388 64 16.5% 336 672 292 43.5% 3.9s 292 100% 120 41.1% 25.8s 72 60% 

7 3460 176 5.1% 1572 3144 1310 41.7% 68.2s 1310 100% 584 44.6% 139.5s 280 48% 
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3.4.3. Evaluation of LTFG 

For the evaluation of LTFG, we report the experimental results through two circuit schematics, 

two-stage OpAmp and folded-Cascode OpAmp, which are depicted in Table 3.4. Since the tool of 

LTFG was originally developed for properly sized circuits, we first employed sized circuits to 

analyze the accuracy and efficiency of LTFG. Then, LTFG was fed with center parameter values 

to test the feasibility and accuracy of its application to un-sized circuits. 

After SPICE simulations were done on the sized circuits, the DC gain as well as small-signal 

model parameter values could be directly obtained. With those parameter values, the DC gain 

could be numerically calculated by using GPDD algorithm. In our experiments, it is slightly 

different (within 1dB) from the simulated results for both circuits due to the application of the 

simplified small-signal model. This result also exhibits the accuracy of our fast DC gain test. Then 

Table 3.4. Example Results of LTFG 
Two-Stage OpAmp Folded-Cascode OpAmp 

M5 M7

M2 M1

M3M4
M6

VBP

VIN-VIN+
VOUT

VDD

GND  

M1 M2

M3
M5M4

M6

M8

M10

VBP1

M7

M9

M11

VBP2

VBN1

VBN2

VOUT
VIN+ VIN-

VDD

GND  
Employing Values from Simulation Result (properly sized) Employing Values from Simulation Result (properly sized) 

Simulation DC Gain  DC Gain by GPDD  DC Gain Calculated by LTF  Simulation DC Gain  DC Gain by GPDD  DC Gain Calculated by LTF 

64.15dB 64.96dB 65.08dB 65.62dB 65.08dB 69.92dB 

Simplified 

Av 
𝐴𝑣 = −

𝑔𝑚1
(𝑔𝑑𝑠1 + 𝑔𝑑𝑠3)

∗
𝑔𝑚6

(𝑔𝑑𝑠6 + 𝑔𝑑𝑠7)
 Simplified Av 𝐴𝑣 = −

𝑔𝑚2 ∗ (𝑔𝑚9 + 𝑔𝑑𝑠9)

(𝑔𝑑𝑠2 + 𝑔𝑑𝑠11) ∗ 𝑔𝑑𝑠9
 

Employing Center Values Result (un-sized) Employing Center Values Result (un-sized) 

gm gds DC Gain by GPDD  DC Gain Calculated by LTF  gm gds DC Gain by GPDD  DC Gain Calculated by LTF  

0-200μS 0-2.5μS 63.98dB 64.08dB 0-200μS 0-2.5μS 66.65dB 70.21dB 

0-300μS 0-5μS 58.94dB 59.08dB 0-300μS 0-5μS 61.68dB 65.25dB 

0-400μS 0-10μS 51.83dB 52.04dB 0-400μS 0-10μS 54.68dB 58.28dB 

Simplified 

Av 
𝐴𝑣 = −

𝑔𝑚1
(𝑔𝑑𝑠1 + 𝑔𝑑𝑠3)

∗
𝑔𝑚6

(𝑔𝑑𝑠6 + 𝑔𝑑𝑠7)
 Simplified Av 𝐴𝑣 = −

𝑔𝑚2 ∗ (𝑔𝑚9 + 𝑔𝑑𝑠9)

(𝑔𝑑𝑠2 + 𝑔𝑑𝑠11) ∗ 𝑔𝑑𝑠9
 

Time Consumed to Generate LTF 0.27s Time Consumed to Generate LTF 0.34s 
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the parameter values were fed into LTFG to generate the low-order transfer functions. From Table 

3.4, one can see that the generated transfer functions for both circuits are highly simplified, 

whereas the accuracy is still maintained. The LTF generation time contains the time consumed in 

small-signal netlist generation, GPDD structure construction, GPDD structure reduction, and LTF 

extraction & post-processing. As depicted in Table 3.4, the LTF generation time for both circuits 

was within 0.4 seconds, which indicates high efficiency of our proposed LTFG. 

In order to verify the applicability and accuracy of LTFG for un-sized circuits, we used three 

different ranges of gm and gds with their center values fed to LTFG. As listed in Table 3.4 for both 

circuits, the generated low-order transfer functions (LTF) are the same not only for all three distinct 

ranges but also for the properly sized ones. This demonstrates the robustness and feasibility of 

LTFG for un-sized circuits. Compared with the DC gains calculated by the original GPDD, the 

ones calculated by LTF have at most 4dB difference for distinct ranges, which demonstrates the 

accuracy of LTFG for un-sized circuits. As discussed in Section 3.3, this accuracy can be fully 

controlled by the users through setting the allowed error margin (by default 10% in our experiment). 

3.4.4. Results of Un-Sized Circuit Fast Evaluation 

The experiment of un-sized circuit fast evaluation is the subsequent work after the earlier 

topology generation experiment. This part requires design performance specification in order to 

check the feasibility of those generated circuit topologies. In our experiment, only the performance 

attributes of DC gain and unit gain bandwidth are considered as the performance specification. 

Their requirements are listed in the top row of Table 3.5. 

The evaluation experimental results are given in Table 3.3. It is interesting to observe that all 

the generated unique circuits passed the LP test. Although the LP test seems to have no effect in 
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filtering out circuits, it actually provides initial bias condition from its feasible solution to the NLP 

problem. On the other hand, the DC gain test is powerful by filtering out over half of input circuit 

topologies. The results of the fast sizing method are demonstrated through a generated circuit, the 

folded-Cascode OpAmp as depicted in Table 3.4. After modeling the circuit as an NLP problem 

and running the NLP solver, the size and bias information of all the transistors was derived. 

Feeding those parameter values to the SPICE simulation would produce the performance results. 

As shown in Table 3.5, since its performance attributes were satisfied with reference to the 

predefined specifications, this circuit passed the performance simulation test. The results of the 

performance simulation test for all the other candidate circuits are given in Table 3.3 (the last two 

columns), which indicates that only a portion of the generated circuit topologies retained as the 

final results. 

Table 3.5. Result of fast sizing and performance simulation test of the folded-Cascode 

OpAmp and a creative circuit topology 

Performance Specification 

DC Gain 55 dB Unit Gain Bandwidth 10 MHz 

Folded-Cascode OpAmp 

Results of Fast Sizing 

 Width/Length  Width/Length 

M1, M2 32.15 M4, M5 15.75 

M6, M7 11.1 M8, M9 6.83 

M10, M11 44.25 M3 117.51 

Results of Performance Simulation Test 

DC Gain 63.59 dB Unit Gain Bandwidth 21.94 MHz 

Creative Circuit Topology 

Results of Fast Sizing 

 Width/Length  Width/Length 

M1, M2 10 M3 10 

M4, M5 11 M6, M7 11 

M8,M9 28.25 M10 31 

M11, M12 5 M13,M14 5 

Results of Performance Simulation Test 

DC Gain 70.31 dB Unit Gain Bandwidth 66.48 MHz 
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3.4.5. Innovative Circuit Topology Synthesis 

Technically, our proposed GCTG can exploit the following three means to potentially produce 

creative circuit topologies: 

1) by enriching PBB library with creative building blocks; 

2) by making creative connections among known building blocks; 

3) by combining the two means above. 
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Fig. 3.10. A synthesis example of a creative circuit. (a) Its tree structure. (b) Its circuit topology. 
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Fig. 3.10(b) depicts an innovative circuit topology that was synthesized by our GCTG with 

the maximum-number-of-leaves of eight. Its tree structure is shown in Fig. 3.10(a). In this creative 

circuit topology, there are six types of building blocks used, which are all known to us. But the 

creative connections of two differential pairs make this topology novel. As listed in Table 3.5, by 

applying our proposed fast sizing method and running SPICE simulation, the circuit passed the 

performance simulation test with the achieved DC gain and unit gain bandwidth of 70.31 dB and 

66.48 MHz, respectively, which indicates high efficacy of such a generated circuit topology. 

3.4.6. Comparison with State-of-the-Art Tool 

In this part, we compare our work with a state-of-the-art academic circuit synthesis tool, 

FEATS [44]. In comparison, our proposed GCTG has the following main advantages to favor a 

wider scope of circuit topologies with more controllability than FEATS. Firstly, GCTG features a 

simple and accurate way to handle the circuit topology symmetry constraints. It is quite easy to 

locate the symmetric block nodes in a tree structure since only the vertical decomposition operation 

would form symmetric block nodes. Moreover, with the depth-track method, we can limit the 

symmetry constraints to only take place at a certain stage, which is necessary for designing multi-

stage OpAmps. 

Secondly, our proposed GCTG addresses the situations of current division and voltage 

division that are not covered by FEATS. Current division is handled by our defined source-driven 

current splitter building block as depicted in the PBB library. With this current splitter and our 

proposed stage depth tracking method, the circuits, such as the three-stage OpAmp depicted in Fig. 

3.9(b) that cannot be generated by FEATS, can be synthesized by our GCTG. Besides the lack of 

defining any current splitters in the building block library, the fully symmetric expansion way 
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imposed by FEATS also impedes its generation of some circuits like the three-stage OpAmp, 

which only has symmetric relationship in certain stages. Voltage division is solved through our 

defined optional voltage-division decomposition operation. Fig. 3.11(a) describes how GCTG with 

the maximum-number-of-leaves of thirteen works with this operation to synthesize a nontrivial 
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Fig. 3.11. An example of synthesis of an analog circuit. (a) Its tree structure. (b) Its circuit 

topology. 
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analog circuit, which however cannot be generated by FEATS. In this figure, the terminals with 

the same color mean that they are either inherited from their parents, connected, or symmetric. The 

decoded circuit topology is depicted in Fig. 3.11(b). 

Thirdly, GCTG possesses open topology generation rules, which means expanding the amount 

of design expertise embedded in the synthesis process can be readily realized by enriching the 

production rules or the PBB library. The basic three decomposition operations are sufficient to 

produce the most typical OpAmps, while the optional decomposition rules can help GCTG try 

more exploration in the design space, thus synthesizing more creative, complicated, or specific 

analog circuits. As the last note, our proposed GCTG has relatively lower efficiency as observed 

from Table 3.6. Nevertheless, it still can generate 388 tree structures within 0.06 seconds. 

 

3.5. Summary 

In this chapter, we presented a new framework for automatic analog circuit topology synthesis, 

which features wide applicability by its nature. It can be utilized to synthesize both voltage-type 

and current-type operational amplifiers (i.e., operational transconductance amplifiers). Although 

our proposed fast evaluation method can be treated as part of the established circuit topology 

Table 3.6. Comparison between FEATS and GCTG 

# 

Max 

Leaves 

#Topologies 

Generated 

Before Decoding 

Time Consumed (μs) 

FEATS 

GTSG 

Without Last-level 

Constraint Rule 

With Last-level 

Constraint Rule FEATS GTSG 

3 4 4 1560 1158 1137 

4 8 12 3636 3062 2856 

5 28 52 4267 35920 6718 

6 84 388 13021 843990 54152 
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synthesis framework, they are actually not strongly coupled and can be deployed separately. 

Therefore, the proposed framework with certain adaptation can be also applied to synthesizing 

other analog circuits (e.g., analog comparators) or RF circuits (e.g., low-noise amplifiers (LNA)), 

followed by the symbolic-analysis-based fast evaluation of certain interested performance (e.g., 

propagation delay or noise figure). Our developed framework can significantly reduce the design 

time and provide fewer meaningful candidates for the designers to select. The final output circuit 

topologies would largely facilitate analog circuit design without intensive involvement of human 

designers in terms of design knowledge and experience. 

Although our proposed fast evaluation method can filter out a large percent of the generated 

circuit topologies, the number of the remaining ones to be sized is still large, especially when 

circuit size is large. To further improve the efficiency of the whole synthesis process, in the next 

chapter we will propose a novel performance modeling method that can boost the sizing efficiency 

by more than 30 times with ignorable model building overhead, which is especially suitable for 

the circuit synthesis work that involves generating various circuit structures. 
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Chapter 4    Efficient Performance Modeling for 

Automated Analog Circuit Synthesis 

 

4.1. Introduction 

The circuit sizing is normally formulated as a constrained nonlinear optimization problem and 

can be solved by well-developed optimization algorithms. The simulator-in-the-loop process has 

often been employed in those optimization algorithms, which directly utilize the SPICE simulation 

results to drive the optimization process. To improve the optimization efficiency, various 

performance modeling methods, which can estimate circuit performance significantly faster, have 

been proposed in the past two decades to replace the computation-intensive and time-consuming 

SPICE simulator. Although building performance models is generally difficult and time-

consuming, the well-built models would greatly reduce the time associated with the whole 

optimization process, especially for the optimization methods that require the computation of 

performance for a large number of alternative circuit sizes, such as simulated annealing (SA) and 

evolutionary algorithm (EA) [69]. 

A generic flow for the generation of performance models is provided as follows. The SPICE 

netlist of a circuit extracted from the schematic or physical design is the input to the modeling 

flow. At the first step, the circuit parameters (e.g., transistor length and width) and target 

characteristics or figures-of-merit are identified. The netlist is then parameterized for these 

parameters to obtain a parameterized netlist, and each of the characteristics will have a model. A 

sampling technique is employed to obtain discrete samples of the design parameters. Then the 

parameterized netlist is simulated through SPICE simulator for the target characteristics with the 
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sampled values of the design parameters. Finally, these collected sample points and their 

corresponding characteristics are utilized for the regression or fitting of performance models. In 

order to achieve sufficient accuracy, a suitable sampling scheme should be selected and a large 

number of simulations have to be conducted. More important, the complexity of this sampling 

process grows exponentially versus the dimension of the design parameters. A variety of modeling 

techniques have already been successfully applied to develop unbound performance models, such 

as equations [70], posynomials [71], polynomials [72], kriging methods [73], circuit matrix [74], 

support vector machine (SVM) [75], artificial neural network (ANN) [76], sparse regression [77], 

Gaussian process [78], Bayesian process, and genetic programming [79]. 

However, for the circuit electrical synthesis that involves circuit topology (i.e., structure) 

synthesis (such as [27]) rather than simply selecting a known topology among alternatives, the 

conventional performance modeling methods are no longer applicable since they all suffer from a 

common issue: expensive model building cost per circuit topology. In order to address this 

challenge, this chapter proposes a novel performance modeling method, which features ignorable 

model building overhead essential for variant topologies, yet still can efficiently and accurately 

estimate circuit performance. To the best of our knowledge, this is the first work that possesses 

this unique feature among others. 

The research conducted in this chapter has been published in IEEE Transactions on Very 

Large Scale Integration Systems [J2]. 
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4.2. Accurate Transistor Modeling 

The traditional square law transistor model provides a simple and coarse way to understand 

the characteristics of transistors. However, as the transistor channel length scales down, the 

second-order effects, such as body effect, channel length modulation, velocity saturation, and 

mobility degradation, affect the transistor characteristics and thus have to be seriously considered. 

These second-order effects derail the accuracy of the square law model and render it untruthful 

[80]. The curve-fitting technique was utilized to capture those second-order effects to generate 

more accurate transistor models [81]. Since even a small change in channel length would change 

the relationship between transistor characteristics and their dependent variables, this type of curve-

fitting modeling methods suffers from a difficult tradeoff: too loose division of channel length 

would cause the model less accurate, whereas too dense categories would drive the model to have 

extremely complex segments and corresponding expressions. 

In order to further improve the accuracy and address the common issues of the curve-fitting-

based transistor modeling method, in this chapter we apply artificial neural network (ANN) to 

model transistor behaviors, which can not only accurately capture the second-order effects, but 

also effectively avoid the complex segmentation issue. In recent years, ANN has been utilized to 

model the characteristics of FET devices thanks to the advancement of machine learning. Xu and 

Root surveyed the application of ANNs to measurement-based modeling of active devices [82]. 

They envisioned parallel training and implementation speedup as an area likely to yield significant 

future benefits. But this is less concerned in our work for analog circuit performance evaluation 

since the transistor modeling is just a one-time job for one specific technology. Most recently, 

Wang et al. proposed an ANN-based compact modeling methodology in the context of advanced 

FET modeling for design-technology-cooptimization and pathfinding activities [83]. Their focus 
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was to enhance the capabilities of ANN models (e.g., model retargeting and variability modeling) 

and to improve ANN training efficiency and SPICE simulation turn-around time. In contrast, our 

transistor modeling work in this chapter focuses on the MOSFET small-signal current-voltage and 

capacitance-voltage characteristics modeling for analog circuit performance analysis. In particular, 

we have developed various schemes below to improve the modeling accuracy of MOSFET small-

signal parameters. 

Our ANN-based model takes the values of a transistor’s four terminal potentials, length, and 

width as input, outputs the values of the transistor drain-source current and the small-signal model 

parameters. The relationship between the output and input can be expressed as follows: 

(𝐼𝐷𝑆, 𝑃𝑠𝑠) = 𝑔(𝑉𝐷 , 𝑉𝐺 , 𝑉𝑆, 𝑉𝐵, 𝐿,𝑊),                                                 (4.1) 

where IDS is the drain-source current; PSS represents a vector of transistor small-signal model 

parameters as depicted in Fig. 4.1; VD, VG, VS, and VB are the bias potentials for drain, gate, source, 

and bulk terminals, respectively; L and W are the length and width of a transistor, respectively. 

Among the small-signal model parameters, RS and RD in Fig. 4.1, which are parasitic resistances 

Cgd
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Cgb

gm gmbs gds

gbd

gbs

Cbd

Cbs

G

D

B

S

RD

RS

 

Fig. 4.1. Small-signal MOSFET model. 
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of metal routing wires to source and drain, are very small and thus ignored in our experimental 

implementation. 

4.2.1. Data Sampling and Preprocessing 

It is well known that a sufficient number of good quality training data are a necessary 

condition to produce an accurate regression model via ANN. The input and output pairs in (4.1) 

are sampled by performing SPICE simulation on MOSFET transistors within the design space. 

The piecewise uniform sampling scheme instead of the global uniform sampling scheme is applied 

in our work to collect data, considering the fact that transistor characteristics are more vulnerable 

when the channel length is short compared to the long channels. Therefore, for instance, if the 

SPICE simulations are carried out in a CMOS 65nm technology, more sampling points should be 

collected when the channel length is between 60nm and 200nm than that between 200nm and 

400nm. The sampling process above is performed on both NMOS and PMOS transistors, and it is 

a one-time job for a specified technology process. 

Since the values of input variables, as shown in (4.1), typically have very small units and quite 

different scales, we need to transform them to be in the same range and make them suitable as the 

input to neural network. Based on the requirements above, the values of each input variable are 

normalized as follows: 

𝑦 = (𝑥 − 𝑚𝑖𝑛)/(𝑚𝑎𝑥 −𝑚𝑖𝑛),                                              (4.2) 

where x and y refer to the value before and after normalization, respectively, min and max are the 

minimum and maximum values of this variable in the dataset collected in the sampling process, 

respectively. 
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However, the normalization method above is not suitable to process the output variables since 

their values have too large variation ranges. For instance, the value of IDS may vary from 10-9 to 

10-2 A, making the small values extremely hard to be accurately fit since they contribute almost 

nothing to the training process. In order to solve this problem, we process the output variables with 

the following two steps: 1) scale all their values to be larger than 1 by multiplying a certain constant; 

2) scale the output of Step-1 with logarithmic operation in order to largely shrink the variation 

range. The two steps above can be generally applied to the output variables whose values are 

always positive or negative. For the variables whose values could be both positive and negative, 

such as Cbs, their data has to be split into positive and negative sets, and then processed by the two 

steps above separately in each dataset. 

4.2.2. NN Design 

The mapping from input to output in (4.1) might be directly realized by building a neural 

network model, which contains 6 input variables and 11 output variables (i.e., IDS and 10 small-

signal model parameters as shown in Fig. 4.1). However, high accuracy is hard to achieve if so 

many output variables are fit simultaneously. In this work, we choose to fit them separately, which 

means one model just maps the inputs to one output variable. Since NMOS and PMOS transistors 

have distinct characteristics, two models will be built for each output variable of both transistor 

types, respectively. 

Multi-layer perceptron (MLP) is capable of approximating any continuous multivariate 

functions to desired accuracy. Therefore, in this work we built all the models with the same MLP 

structure (i.e., three-layer perceptron), whose hidden layers have different numbers of neurons. As 

depicted in Fig. 4.2, each of our NN models is comprised of one passthrough input layer, one 
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hidden layer, and one output layer. The activation functions in the hidden and output layers are 

given by the widely used sigmoid function and linear function, respectively. For model 

performance evaluation, we select mean square error (MSE), which is a typical metric for 

regression problems. The connection weights in MLP are adjusted through the back-propagation 

learning, aiming at minimizing the MSE. Among various back-propagation learning algorithms, 

the Levenberg-Marquardt (LM) algorithm is selected thanks to its high efficiency and reliability. 

4.2.3. Model Segmentation 

Some output variables are difficult to build uniform NN models with high accuracy. This is 

mainly due to: 1) hard tracking data distribution trend; 2) quite large output variation range. The 

first issue can be addressed by sampling more training data, while the second problem can be 

overcome by model segmentation. In this part, we will discuss in more detail how to segment 

models to achieve high accuracy. 

Segmentation of a model into several parts is an effective way to shrink the variation range of 

the output variables. For instance, if we segment the IDS parameter model into two by its dependent 
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input variable VGS from 0 to 0.6 V and from 0.6 V to 1.2 V, the variation range of IDS would 

decrease from [10-9A, 10-2A] to [10-9A, 10-4A] and [10-7A, 10-2A], respectively. According to our 

experimental studies, as long as the sampling data are sufficiently collected, a high level of 

accuracy tends to be readily achieved if a segmented model can limit the range of its associated 

IDS to the scope of 10-(i+5) to 10-i (where i is a natural number). Otherwise, more segments are still 

needed to further decrease the parameter scope. In our segmentation scheme, one model is 

segmented into several parts according to its most sensitive input variable. In order to figure out 

which input variable is the most sensitive one to the model’s output variable, sensitivity-analysis-

based simulation trials are carried out to check whether the output variable variation range can be 

narrowed when the input variable is segmented [84]. The one that can shrink the range the most is 

treated as the most sensitive input variable. 

 

4.3. DC Operating Point Computation 

Based on the accurate transistor models derived in Section 4.2, we are ready to go to the circuit 

level to study the DC operating point of a target circuit by utilizing the established transistor 

models. The computation of the circuit DC operating points contains two phases, preprocessing 

phase and computation phase. The job of the preprocessing phase is to sort out the following three 

questions: 1) which net potentials are unknown; 2) the relationships among these net potentials 

and their bounds; 3) the relationships of IDS among transistors. Learning these facts would greatly 

facilitate the work of the subsequent computation phase. 
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4.3.1. Circuit Preprocessing 

Certainly, the above-mentioned three questions can be answered through manual analysis of 

circuit netlists. However, we aim to automate this analytical process without human interaction, 

which is managed through the following two steps. 

First of all, when reading a circuit netlist, an undirected bipartite graph (UBG) is 

simultaneously constructed with device nodes represented by squares forming one set of vertices, 

and net nodes represented by circles forming another set of vertices. Those device nodes and net 

nodes are connected via five types of edges: D, G, S, B, and P, where D, G, S, and B represent the 

connections to the drain, gate, source, and bulk terminals of transistor-type devices respectively, 

while P refers to the connection to passive-type devices (i.e., resistors, capacitors, or inductors). 

Each node possesses an attribute V to indicate its value: for a transistor-type device node, it refers 

to size; for a passive-type device node, it refers to the corresponding resistance, capacitance, or 

inductance; and for a net node, it refers to potential. During the UBG construction process, each 

node will get a value for its attribute V except for some net nodes that do not connect to circuit 

input pins. In this way, the unknown net potentials, which are treated as variables, are discovered. 

An example circuit (i.e., folded-Cascode OpAmp (FCO)) and its UBG are depicted in Fig. 4.3(a) 

and Fig. 4.3(b), respectively. In this UBG, we create an extra net node N6’ that represents the same 

one as node N6 to solely facilitate display. It is worthwhile to note that the connection mechanism 

for the transistor bulk terminal may vary in different designs. In this example, the bulk terminal 

and source terminal of any transistor connect to the same net node. Moreover, the net nodes with 

unknown potentials, marked as variables V1, V2, etc., are colored to illustrate their difference. 

As the second step of the circuit preprocessing, the listed second and third questions above 

(i.e., relationships among the net potentials and among transistor IDS’s) are efficiently extracted 
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from the constructed UBG. Generally, analog circuits have to respect necessary symmetry 

constraints and biasing constraints in order to work properly and satisfy the design specifications. 

Among them, the symmetry constraints require that the symmetric transistors should have 

equivalent device characteristics (e.g., sizes, IDS, gm and intrinsic capacitances). Accordingly, from 
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Fig. 4.3. (a) The folded-Cascode OpAmp (FCO). (b) Its undirected bipartite graph (UBG) 

representation. 
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(1), we know that as long as two transistors are symmetric and their any three terminals 

correspondingly connect to equal-potential net nodes, the net nodes that connect to their fourth 

terminals should have equal potential, too. The equivalent variables are treated as one variable to 

reduce the number of total variables. For the example UBG depicted in Fig. 4.3(b), all pairs of 

symmetric transistors, which are (M1, M2), (M4, M5), (M6, M7), (M8, M9), and (M10, M11), are 

checked to see whether the condition above is met. Since all of them satisfy the condition, the 

equivalence of (V2, V5), (V3, V6), and (V4, V7) can be inferred. In this way, variables V5, V6, and V7 

can be removed so that only four independent variables (i.e., V1, V2, V3, V4) need to be solved in 

this circuit. 

The biasing constraints, which can be specified by the designers, limit the operating regions 

of the transistors in the circuit. In our implementation, by default, we require that none of 

transistors is allowed to work in the cut-off region. This means in general all the transistors should 

follow the constraints below: VDS > 0 and VGS > VTH for NMOS, and VSD > 0 and VSG > |VTH| for 

PMOS, where the magnitude relationships among variables and their bounds can be derived. Since 

the threshold voltage (VTH) of a transistor is determined by its size and biases that are still unknown, 

the transistors in the circuit might have distinct threshold voltages, which however are unclear 

before the detailed analysis. In order to address this issue, we uniformly assign a constant value to 

all transistors’ VTH, which is small enough to ensure to be less than the real various threshold 

voltages. Through breadth-first traversal (BFS) of the UBG starting from the net node connected 

to the power pin (e.g., node N1 in Fig. 4.3(b)), the upper and lower bounds of each variable can be 

efficiently confirmed by setting up the two inequalities above for all the visited transistor-type 

nodes. It is worth noticing that the bound of a variable could be another variable, which reflects 

the magnitude relationship between them. Learning this relationship can greatly help reduce the 
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search space of variables when they are being solved. For example, in Fig. 4.3(b), the relationships 

VDD > V2 > V3 > V4 > GND and VDD > V1 > V4 > GND can be derived by applying the Kirchhoff’s 

voltage law plus the constraint of VDS > 0. 

The relationships of IDS among transistors can also be efficiently discovered with the aid of 

UBG. Specifically, all the sequences of transistor-type device nodes from the source node (i.e., the 

net node connected to the power pin) to the destination node (i.e., the net node connected to the 

ground pin) can be easily figured out with the aid of the BFS traversal algorithm when only D type 

and S type of edges are allowed to be visited, with the direction from source to drain for PMOS 

and from drain to source for NMOS, respectively. If two successive transistors only exist in one 

path, there is an equal relationship of IDS between them. If more than one sequence contains the 

same transistor and the difference happens before or after such a transistor in the sequences, it 

means that there is a current mergence or current division occurring around that transistor. For 

instance, there are four sequences in total can be extracted from Fig. 4.3(b): M3 → M1 → M10, 

M3 → M2 → M11, M4 → M6 → M8 → M10, and M5 → M7 → M9 → M11. Since M4 → M6 

and M6 → M8 only exist in one path, IDS,4 = IDS,6 and IDS,6 = IDS,8 can be inferred. Since M3 appears 

in two sequences and the difference happens after it, there is surely a current division at M3. 

Similarly, since M10 and M11 also appear in two sequences and the differences happen before 

them, we can infer there are current mergences at M10 and M11. In this way, IDS,3 = IDS,1 + IDS,2, 

IDS,1 + IDS,8 = IDS,10, and IDS,2 + IDS,9 = IDS,11 can be derived. It is worth mentioning that if the 

variables involved in one equation are all removed (because of symmetry), this equation should be 

removed as well. For instance, IDS,5 = IDS,7, IDS,7 = IDS,9, and IDS,2 + IDS,9 = IDS,11 should be eliminated. 

Algorithm 4.1 illustrates the proposed performance modeling construction process, which 

takes circuit netlist and design constraints (e.g., symmetry and biasing) as inputs. Lines 1-10 depict 



69 

 

the circuit preprocessing for the input circuit while Line 11 describes the symbolic analysis model 

(i.e., GPDD structure) construction for performance estimation, which will be further explained in 

Section 4.5. Different from other performance modeling methods, our proposed performance 

model does not need developing or training time after it has been constructed. In other words, once 

the model is built, it is already a developed model. This unique characteristic makes our proposed 

performance modeling method feature ignorable model building overhead. 

4.3.2. Computation Methods 

To compute the values of those variables, the relationships of IDS among transistors, which are 

automatically extracted in the preprocessing phase, are utilized to build an equation set that 

involves all the variables. For the folded-Cascode OpAmp depicted in Fig. 4.3, since the equivalent 

Algorithm 4.1: Performance Model Construction 

Input: Circuit netlist N; Constraints C. 

Output: Developed performance model. 

  1.    Read N and construct its undirected bipartite graph (UBG); 

2.    According to UBG and C, extract { 

3.        the unknown net potentials Vi (i=1…n); 

4.        the relationships (RV) among these Vi variables; 

5.        the bounds (BV) of these variables; 

6.        the relationships of IDS (RI) among transistors; } 

7.    Reduce the number of the variables in Vi according to RV; 

8.    Build a polynomial equation set E of IDS according to RI; 

9.    Record the association of variables AV in each equation in E; 

10.  Set the Loss function of E; 

11.  Construct the GPDD structure according to the UBG;  

12.  Return Vi, RV, BV, AV, E, Loss, and GPDD; 
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variables are treated as one free variable, there are in total four variables (i.e., V1, V2, V3, V4), 

resulting in the following equation set: 

{
 

 
𝐼𝐷𝑆,3 = 2 ∙ 𝐼𝐷𝑆,1         

𝐼𝐷𝑆,4 = 𝐼𝐷𝑆,6               

𝐼𝐷𝑆,6 = 𝐼𝐷𝑆,8               

𝐼𝐷𝑆,8 + 𝐼𝐷𝑆,1 = 𝐼𝐷𝑆,10

  ,                                                         (4.3) 

where the subscript digits represent the transistor indexes in the circuit. If each transistor’s IDS has 

a symbolic expression, the solution is theoretically guaranteed since the number of variables is not 

greater than that of equations. However, our established transistor model for IDS is numerical not 

analytical, leading to the equation set not being able to be directly solved out. Instead, we have to 

search for the proper values of all the variables by a small interval within their bounds, aiming to 

find the ones that satisfy all the equations in the set.  

Nevertheless, no matter how small the interval is selected, it is almost impossible to always 

ensure to satisfy all these equations without fail. In order to address this issue, we define a loss 

function, which is the sum of the absolute difference between the left and right sides of all the 

equations in the set. Thus, the loss function for (4.3) can be defined as follows: 

𝐿𝑜𝑠𝑠 =  |𝐼𝐷𝑆,3 − 2 ∙ 𝐼𝐷𝑆,1| + |𝐼𝐷𝑆,4 − 𝐼𝐷𝑆,6| + 

                                               |𝐼𝐷𝑆,6 − 𝐼𝐷𝑆,8| + |𝐼𝐷𝑆,8 + 𝐼𝐷𝑆,1 − 𝐼𝐷𝑆,10| .                         (4.4) 

In this way, directly solving the equation set is transferred to a problem of searching the values of 

all the variables within their bounds to identify the exact DC point that features the minimal loss. 

In this regard, we have developed four deterministic methods to solve such a problem. 

1) Brute Force 

The most straightforward method is to follow a brute-force search flow, which explores the 

possible value combinations of all the variables with a predefined interval within their bounds. The 
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solution is the point (i.e., value combination of variables) with the global minimal loss. By 

applying this method, the solution is deterministic, but the computation complexity is as high as 

O(mn), given n variables and m search steps for each variable. For example, assuming a circuit has 

five variables and each variable has 50 steps to search, the number of the total checking points 

would be 505. 

2) Divide and Conquer 

Since solving an equation set means to deal with and satisfy all the equations altogether, the 

divide-and-conquer method is proposed aiming to shrink the search space of each variable by step-

by-step solving all the equations in an equation set. It typically contains three steps: divide, conquer, 

and combine.  

1) Divide: The original problem is divided into several sub-problems, each of which focuses on 

solving just one equation. In this way, the number of sub-problems is equal to the number of 

equations in the equation set. 

2) Conquer: Each sub-problem (i.e., an equation) is solved by applying the above-mentioned 

brute-force method, aiming to derive the points that satisfy the absolute difference between 

the left side and the right side of the equation less than a very tiny threshold T (i.e., a user-

defined constant). 

3) Merge: The solved points of each variable are merged and uniquified, resulting in greatly 

reduced search space for each variable. These derived search spaces are utilized to discover 

the point with the global minimal loss through the brute-force method. 

The detailed computation procedure of the folded-Cascode OpAmp is given in Fig. 4.4(a) by 

using the divide-and-conquer method. Firstly, in the divide step, the number of sub-problems is 
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confirmed to be four and each sub-problem one-to-one corresponds to an equation in (4.3). Then, 

in the conquer step, the sub-problems are separately solved by computing their corresponding 

inequalities (e.g., │IDS,3 - 2∙IDS,1│ < T and │IDS,4 - IDS,6│ < T). Finally, in the merge step, the 

satisfied points of variables (i.e., solution to each sub-problem) are combined and uniquified. 

Provided that all the variables have reduced point sets, the brute-force method is employed to find 

the point with global minimal loss. Compared with the straightforward brute-force method, the 

computation complexity of this method is lower, based upon two main reasons as follows. First of 
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Fig. 4.4. The process of solving the variables in the folded-Cascode OpAmp. 
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all, the number of variables involved in each sub-problem (i.e., equation) is less than that in the 

original problem. Secondly, in the merge step, the search space of variables is greatly reduced to 

derive the final solution. 

3) Quasi-Dynamic Programming 

The proposed quasi-dynamic programming method starts from solving one equation from the 

equation set that contains the least number of variables. But different from the divide-and-conquer 

method, the solved results are stored as tuples, each of which is a combination of the values of the 

involved variables. Then they are used to compute another equation that involves as few new 

variables as possible. This process continues until all the equations in the equation set are processed. 

The final resultant tuples, which should involve all the variables, will be used as search space to 

find the point with the global minimal loss (i.e., solution) of the entire circuit in the linear time. 

An exemplary quasi-dynamic programming process is illustrated in Fig. 4.4(b), which depicts 

a possible procedure to solve the variables in the folded-Cascode OpAmp. Firstly, it checks the 

association of variables in each equation (i.e., output AV from Algorithm 4.1), starting with solving 

an equation that involves the least number of variables (e.g., 2∙IDS,1 = IDS,3 that contains two 

variables, V1 and V4). Then, after checking the rest of the unsolved equations in the equation set in 

sequence, the solving process moves to an equation that involves a new variable (e.g., IDS,8 + IDS,1 

= IDS,10 and V3) based on already involved variables. This process continues until all the variables 

are included. After that, it would continue to solve any unsolved equations in the set in sequence 

until all of them are solved to further refine the resultant tuples. During the whole process, the 

resultant tuples at the previous steps are fed to solve the next involved equation. 

The computation complexity of the quasi-dynamic programming method is lower than the 

divide-and-conquer method, especially when the number of variables is large. The main reason for 
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this is the solved results at each step are stored as tuples instead of singletons, contributing to the 

fact that the global minimal loss is searched in the linear time at the last step. But in the divide-

and-conquer method, the global minimal loss has to be searched in the brute-force manner. 

4) Hybrid-Based Method 

This method is a hybrid of the divide-and-conquer method and the quasi-dynamic 

programming method, where the solving process is divided into several sub-processes and each of 

them is solved in the quasi-dynamic programming manner. Due to the characteristics of analog 

circuit structures, there always exist equations that contain only two variables (e.g., IDS,4 = IDS,6 in 

Fig. 4.3(a), IDS,18 = IDS,20 in Fig. 4.5(a), and IDS,5 = 2∙IDS,1 in Fig. 4.5(b)). The algorithm first 

identifies such equations, each of which is treated as the starting point of a sub-process for 

independent solving. Then the rest equations in the equation set are put onto an empty list Q. These 

equations would go through four levels of matching checks one after another. The first matching 

check examines whether the variables (V’s) contained in the equation to be checked are fully 

covered by the resultant tuples of one sub-process. If so, this equation will be solved along with 

the matched sub-process. The second matching check inspects whether V’s are fully covered by 

any two sub-processes. If so, these two sub-processes are merged after solving the matched 

equation with their resultant tuples. The third matching check verifies whether V’s contain one 

unvisited variable while the other variables are all in the resultant tuples of any sub-process. If so, 

this equation will be solved along with the matched sub-process. The fourth matching check 

discovers whether V’s contain an unvisited variable while the other variables are covered by any 

two sub-processes. If so, these two sub-processes are merged after solving the matched equation 

with their resultant tuples. If any equation fails in all these checks, it would be put to the end of 

list Q. Otherwise, this equation will be solved along with the matched sub-process(es). If this 
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equation is unsolvable (i.e., the resultant tuples are none), the algorithm terminates to indicate no 

proper DC operating point existing for the current circuit setting. Otherwise, this equation is 

removed from the list to indicate it has been solved. This process continues until list Q is empty. 

Fig. 4.4(c) give an example of the computation process by using this hybrid-based method for 

the folded-Cascode OpAmp. First of all, equations IDS,3 = 2∙IDS,1 and IDS,4 = IDS,6 are identified as 

the starting point of two independent sub-processes. Then equation IDS,6 = IDS,8 is found to fail in 

the first matching check but satisfy the second matching check. Thus, the two sub-processes above 
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are merged once this equation is solved with their resultant tuples. After that, equation IDS,8 + IDS,1 

= IDS,10 is identified to satisfy the first matching check. Thereby, this equation is solved along with 

the merged process. Since the variables associated with each equation (i.e., AV output from 

Algorithm 4.1) and each sub-process are known, these four levels of matching checks can be done 

efficiently. Compared with the quasi-dynamic programming method, the hybrid-based method is 

more efficient when circuit structures become complex, such as the high-gain OpAmp (HGO) 

circuit depicted in Fig. 4.5(a). Since the solving operation of the quasi-dynamic programming is 

just a single process, it can only find the optimal solving sequence (i.e., the most efficient way) 

constrained by its starting point. However, the hybrid-based method has multiple processes with 

distinct starting points, which makes it be able to find the global optimal solving sequence by 

mutual merging. Thereby, the hybrid-based method can solve all the easily addressed sub-

problems first and then extend the solving process step by step with minimal complexity increment, 

whereas the plain quasi-dynamic programming method cannot guarantee this smooth growth flow. 

4.3.3. Handling of Unsolvable Cases 

In Section 4.3.2, we only consider the situation where the DC operating point can be properly 

computed. As a matter of fact, any inappropriate combination of circuit biases and transistor sizes 

may cause the circuit to have improper DC operating points, further leading to abnormal 

performance results. In this part, we will complement our proposed DC operating point 

computation methods above by adding the handling of unsolvable cases. Once any of these cases 

are confirmed, the computation of the DC operating point should be terminated right away. 

Specifically, before starting the DC operating point computation, all circuit biases are checked 

to see whether any transistor is unexpectedly working in the region that violates the given biasing 
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constraints. If so, the circuit DC operating point is considered improper from the perspective of 

our proposed methods. Otherwise, a further check is needed to examine whether all the equations 

are satisfied, that is to say, whether there exist variable values to make the absolute difference 

between the left side and right side of each equation smaller than the threshold T. If any equation 

is unsatisfied, the DC operating point is treated improper. These two levels of checks can be easily 

integrated into the four deterministic computation methods presented in Section 4.3.2. 

Algorithm 4.2: Hybrid-Based Performance Evaluation 

Input: Output of Algorithm 4.1 (Vi, RV, BV, AV, E, Loss, and GPDD); 

            Circuit biases VB; Device values VD; Constraints C; 

            Transistor models MT. 

Output: Circuit performance. 

  1.   If (circuit biases VB do not satisfy C) 

2.       Return Zeros; 

3.   Else 

4.       Identify equations ei in E that contain the least variables; 

5.       Treat each of ei as the starting point of sub-process pi; 

6.       Solve each of ei based on VB, VD, BV, RV, and MT; 

7.       Store the resultant values as sets of tuples ST,i for each pi; 

8.       If any ST,i is empty, return Zeros; 

9.       Put the rest of unsolved equations onto an empty list Q;  

10.     While (Q is not empty) { 

11.         Fetch the first equation e in Q; 

12.         Apply the four levels of matching checks to e; 

13.         If e fails in all the checks, put it onto the end of Q; 

14.         Else if e is unsolvable, return Zeros; 

15.         Else, delete e from Q;} 

16.     Traverse the final resultant tuples to find the tuple T that has 

          the minimal loss; 

17.  End If; 

18.  Calculate the small-signal model parameter values according to 

       MT, circuit biases VB, device values VD, and the values in T; 

19.  Update the small-signal model parameter values in GPDD; 

20.  Calculate the circuit performance P with GPDD; 

21.  Return P; 
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Algorithm 4.2 illustrates the performance evaluation process with the integration of 

unsolvable case checking, which takes the output of Algorithm 4.1, well-trained transistor models, 

and circuit biases and sizes as inputs, and outputs the evaluated performance of the circuit. In this 

algorithm, the hybrid-based method is adopted to compute the DC operating point, which is 

described from Line 1 to Line 17. The checking of circuit biases is conducted before computing 

the DC operating points (Lines 1-2). Then, at each equation solving step, the resultant tuple set is 

checked to see whether it is empty (Line 8 and Line 14). If so, it means the DC operating point is 

improper and thus the computation should be terminated. Lines 18-20 present the performance 

evaluation via GPDD. It is worthwhile to note that in this algorithm, solving an equation means to 

find the combination values of the involved variables meeting the condition that the absolute 

difference between the left and right sides of the equation is less than a tiny threshold value. Setting 

this threshold value needs to consider the trade-off between reliability and efficiency. In general, 

a smaller threshold value would degrade the reliability as it can easily cause the equation 

unsatisfied. In the meantime, such a smaller threshold value would enhance the efficiency since 

the smaller the threshold value is, the narrower the search space of the variables involved in the 

equation to be solved would become. On the other hand, a larger threshold value would produce 

the opposite effects. 

 

4.4. Circuit Performance Evaluation 

Our proposed performance model takes the values of circuit biases and transistor sizes as input, 

and outputs the determined amounts of the circuit performance attributes. The relationship between 

the output and input can be expressed as: 
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𝑃 = 𝑓(𝑉𝑏𝑖𝑎𝑠1 …𝑉𝑏𝑖𝑎𝑠𝑥 , 𝐿1…𝐿𝑦,𝑊1…𝑊𝑦), (4.5) 

where L and W refer to the length and width of each transistor, respectively; Vbias is the voltage 

bias; P represents circuit performances. Here we assume in total there are x voltage bias inputs and 

y transistors in the circuit. 
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Fig. 4.6. Parameter mappings in our proposed performance evaluation flow. 

Fig. 4.6 depicts the successive parameter mappings in the proposed performance evaluation 

flow. As reflected by mapping ①, the values of small-signal model parameters (e.g., gm, gds, Cgd, 

Cgs) of each transistor in the circuit depend on its biases and sizes. Although the sizes of all the 

transistors have been provided as input, the biases of some transistors are still unknown. To solve 

those unknown biases, the relationship of IDS among transistors is utilized to facilitate the DC 

operating point computation. This process is illustrated by mapping ②. Once the values of small-

signal model parameters of all transistors have been derived, the circuit performance attributes 

(e.g., gain (Av), phase margin (PM), gain margin (GM), unity gain bandwidth (UGB), etc.) can be 

computed out by using the symbolic analysis technique. In Fig. 4.6, subscript i is between 1 and y. 

And Cgx,i covers Cgs,i, Cgd,i, and Cgb,i, while Cbx,i represents Cbs,i and Cbd,i. 
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As described in Sections 4.2 and 4.3, mapping ① and mapping ② are realized through the 

proposed transistor modeling method and circuit DC operating point computation methods, 

respectively. As a matter of fact, mapping ③ can be carried out by any symbolic analysis 

techniques, either in the formulation manner or in the graphic way (e.g., DDD and GPDD) [85]. 

In this work, we have selected GPDD as the symbolic analysis engine in our experimental 

implementation thanks to its sound efficiency and reliability. A GPDD is a bottom-up recursive 

computation data structure constructed upon the small-signal model of a circuit. Once it is 

constructed, the AC analysis can be performed for a given number of frequency points to derive 

circuit performance. Therefore, as listed in Algorithm 4.1, the model building overhead for a new 

circuit topology in our work is just the time used for circuit preprocessing and GPDD construction. 

By utilizing the undirected bipartite graph, the circuit preprocessing can be done very efficiently 

since most of the operations are completed in linear time. According to our experimental studies, 

the construction of GPDD is also very efficient, at most on the scale of seconds. However, for the 

other performance models as mentioned in Section 4.1, training or fitting a model typically needs 

some time of minutes. In addition, generally the sample data collection time would be significantly 

more than the training time. Therefore, our model building time is virtually ignorable compared to 

the other alternatives. 

 

4.5. Experimental Results 

This part is divided into four sub-sections. Sub-section 4.5.1 reports the evaluation of 

transistor modeling while Sub-section 4.5.2 compares the DC operating point computation 
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methods. Subsection 4.5.3 analyzes the proposed performance modeling, which is compared with 

the state-of-the-art methods in Sub-section 4.5.4. 

We implemented our proposed performance modeling method in C++ and Matlab. 

Specifically, the SPICE simulation was realized by running Cadence Spectre simulator. The 

transistor modeling was carried out by using the Matlab Neural Network Fitting tool and then 

translated into C++ through the Matlab Coder tool. The symbolic analysis was implemented by 

using the GPDD technique in C++. Our experiments were run on an Intel X86 1.2-GHz Linux 

workstation that has 64 GB of memory. The experiments were conducted in the CMOS 65nm and 

90nm technologies, which can be readily replaced by other similar CMOS technologies. 

4.5.1. Evaluation of Transistor Modeling 

Table 4.1. Applied Training Data Sampling Scheme for the CMOS 65nm Technology 

W 
Range 120nm – 500nm 1μm - 10μm 15μm – 80μm 

# Points 5 10 14 

L 
Range 60nm - 200nm 300nm – 1μm 

# Points 15 8 

VDS 
Range 0 – 1.2V (NMOS) / -1.2V – 0 (PMOS) 

# Points 25 

VGS 
Range 0 – 1.2V (NMOS) / -1.2V – 0 (PMOS) 

# Points 61 

Table 4.1 lists part of our devised sampling division for transistor modeling in the CMOS 

65nm technology, where every range is a closed interval with boundary points included. To mainly 

address the second-order effects that are hard to be accurately modeled in the previous works, in 

our experiments we focused more on the short channel transistors with transistor length varying 

from 60nm to 1μm and transistor width changing from 120nm to 80μm. The collected sampling 

data was processed with the preprocessing method discussed in Section 4.2.1, and then split into 

the training and testing datasets with the proportions of 80% and 20%, respectively. The transistor 
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modeling was conducted in both the CMOS 65nm and 90nm technologies. To simplify our 

presentation in the chapter, below we just discuss the modeling results obtained from the CMOS 

65nm technology, while the CMOS 90nm technology shows similar trends of the transistor 

modeling. 

The testing results of the well-trained unsegmented parameter models are listed in Table 4.2, 

which compares the predicted and real output values of the testing data with the relative errors 

indicated. As one can see, regardless of NMOS or PMOS type, the Cgd, Cgs, Cgb, gbd, and gbs models 

are highly accurate, which can achieve 95% and 99% accuracy for 100% and over 90% of their 

testing data respectively, whereas the other parameter models are not that accurate. From our 

observation of experiments, we found that the variation range of Cgd, Cgs, Cgb, gbd, and gbs are 

narrow enough, contributing to their high accuracy. For the other parameters, as mentioned in 

Section 4.2.3, the segmentation operation can help improve their modeling accuracy. Among them, 

Table 4.2. Testing Results of the Transistor Models (Percentages of the Testing Data that 

Achieved the Given Accuracy Levels) 
Unsegmented Transistor Models (CMOS 65nm Technology) 

Accuracy 

Level 
99% 97% 95% 90% 99% 97% 95% 90% 

Accuracy 

Level 
99% 97% 95% 90% 99% 97% 95% 90% 

Parameter NMOS (%) PMOS (%) Parameter NMOS (%) PMOS (%) 

IDS 77.96 98.96 99.93 100 84.73 99.52 99.94 100 Cgd 98.31 99.96 100 100 98.15 99.96 100 100 

gm 85.21 99.57 99.97 100 86.03 99.63 99.98 100 Cgs 99.56 99.97 100 100 99.85 100 100 100 

gds 66.58 97.78 99.72 99.99 64.08 95.9 99.22 99.99 Cgb 92.67 99.93 100 100 95.86 99.98 100 100 

gmbs 81.69 98.77 99.91 100 85.24 99.6 99.95 100 gbd 99.89 100 100 100 100 100 100 100 

Cbs 23.78 54.43 73.91 91.64 24.34 59.46 76.97 92.11 gbs 100 100 100 100 100 100 100 100 

Cbd 18.87 51.38 72.32 91.46 29.89 70.59 86.74 97.09  

Segmented Transistor Models (CMOS 65nm Technology) 

Accuracy 

Level 

99% 97% 95% 90% 99% 97% 95% 90% Accuracy 

Level 

99% 97% 95% 90% 99% 97% 95% 90% 

First Segment Second Segment 

Parameter 
NMOS (%) PMOS (%) 

Parameter 
NMOS (%) PMOS (%) 

0 < VGS ≤ 0.42V -0.5V ≤ VGS < 0 0.42V ≤ VGS ≤ 1.2V -1.2V ≤ VGS ≤ -0.5V 

IDS 99.8 100 100 100 99.72 100 100 100 IDS 99.99 100 100 100 99.65 100 100 100 

gm 99.57 100 100 100 99.87 100 100 100 gm 98.93 100 100 100 99.89 100 100 100 

gds 95.25 99.91 100 100 97.88 99.97 100 100 gds 88.08 99.5 99.94 100 83.12 99.51 99.97 100 

gmbs 99.8 100 100 100 99.69 100 100 100 gmbs 98.88 100 100 100 99.91 100 100 100 

Parameter 60nm ≤ L ≤ 200nm 60nm ≤ L ≤ 200nm Parameter 200nm ≤ L ≤ 1μm     200nm ≤ L ≤ 1μm     

Cbs 44.01 81.4 91.93 97.47 45.71 83.52 93.37 97.97 Cbs 59.36 90.93 95.76 98.45 71.73 94.93 97.37 98.83 

Cbd 27.24 65.09 83.08 94.15 42.15 85.47 95.65 99.34 Cbd 80.98 98.53 99.3 99.76 86.03 98.81 99.6 99.94 
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IDS, gm, gds and gmbs are most sensitive to VGS while Cbs and Cbd are most sensitive to L. In our 

experiments, those parameter models are split into two according to their most sensitive input 

variable. The detailed division points and the testing results of the well-trained segmented models 

are given in Table 4.2. By comparing with the testing results of the unsegmented models, we can 

easily observe that the accuracy of the segmented models is significantly improved. Specifically, 

except for the Cbs and Cbd models, all the other segmented parameter models have improved to 90% 

accuracy for 100% of their testing data, and most of them even achieved over 99% accuracy for 

more than 90% of their testing data. The accuracy of Cbs and Cbd models is not as high as the others, 

but it is worth mentioning that their errors tend to have tiny impact on the circuit performance 

evaluation since their values are usually much smaller than Cgd, Cgs, and Cgb. It is expected that if 

more segments are utilized, the accuracy of the segmented Cbs and Cbd models would be further 

enhanced but at the cost of more time consumption for training the models. 

These experimental results can exhibit the high accuracy of the NN-based transistor modeling 

method, which offers a strong foundation for the subsequent circuit performance evaluation. In 

order to further demonstrate the advantages of the proposed NN-based transistor modeling method, 

we compare it with the traditional square-law modeling method and the curve-fitting-based 

modeling method by following the procedure proposed in [81]. Here we only report the 

comparison of two important MOSFET parameters (i.e., IDS and gm). In our experiments, data were 

sampled by performing SPICE simulations on the CMOS 90nm technology, with the width range 

from 10μm to 50μm and length range from 400nm to 600nm (working in the saturation region). 

The sampled data were then split into the training and testing datasets with the proportions of 80% 

and 20%, respectively. For the square-law models, only testing data was used to calculate their 

average (Avg.) error as given in Table 4.3. The derived curve-fitting models of two split ranges 
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(i.e., L of 400nm-500nm and 500nm-600nm) are listed in Table 4.3. As one can see, the NN models 

of IDS and gm, which reach more than 99% average accuracy for the testing data, perform much 

better than the other two transistor modeling methods. 

4.5.2. Comparison of DC Operating Point Computation 

Methods 

For the evaluation of the DC operating point computation methods, we report the experimental 

results through two properly sized circuits, folded-Cascode OpAmp (Fig. 4.3) and high-gain 

OpAmp (Fig. 4.5(a)), which have four (i.e., V1-4) and nine (i.e., V1-9) distinct variables, respectively. 

The computation results of the proposed four methods are compared in Table 4.4, where 

methods BF, DC, QDP, and HB refer to the brute-force, divide-and-conquer, quasi-dynamic 

programming, and hybrid-based method, respectively. As one can observe, all four methods can 

efficiently compute the variables for the folded-Cascode OpAmp, whereas only QDP and HB are 

applicable to solving larger circuits like the high-gain OpAmp. Since the computation complexity 

of BF and DC is exponential to the number of the involved variables, their runtime is more than 1 

Table 4.3. Comparison of Various Transistor Modeling Methods (with Specified Size 

Ranges) 
CMOS 90nm Technology 

Parameter 
Square-Law Model Curve-Fitting Model NN Model 

L (400nm - 600nm) L (400nm - 500nm) L (500nm - 600nm) L (400nm - 600nm) 

NMOS 

IDS 0.5μnCox(W/L)(VGS - VTH)2 0.0027WL-0.769VGS
2.47VDS

1.16 0.0008WL-0.854VGS
2.5VDS

1.18 ‒ 

Avg. Error (testing) 23.92% 42.24% 41.17% 0.074% 

gm μnCox(W/L)(VGS - VTH) 0.0125WL-0.7239VGS
1.07VDS

0.537 0.0018WL-0.8562VGS
1.115VDS

0.561 ‒ 

Avg. Error (testing) 38.51% 25.89% 24.67% 0.042% 

PMOS 

IDS 0.5μpCox(W/L)(VSG - |VTH|)2 3.27W0.242L0.088VSG
0.88VSD

5.176 0.053W0.276L-0.229VSG
0.87VSD

5.1 ‒ 

Avg. Error (testing) 84.07% 56.1% 50.09% 0.36% 

gm μpCox(W/L)(VSG - |VTH|) 1.23×10-5WL-0.88VSG
-0.84VSD

-0.19 1.12×10-5WL-0.77VSG
-0.836VSD

-0.2 ‒ 

Avg. Error (testing) 157.03% 95.17% 100.28% 0.99% 
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hour, which is well out of our interest in the experiments. Compared with the SPICE simulation 

results, the variable computation results achieve high accuracy for both circuits. Among these four 

methods, the most efficient one is the hybrid-based method that could solve all the variables within 

0.023 and 0.034 seconds for the folded-Cascode OpAmp and high-gain OpAmp, respectively. 

Thanks to its high efficiency, this method has been selected as our proposed DC operating point 

computation engine for the circuit performance evaluation process, whose runtime is also reported 

in Table 4.4. In our experiments, 0.01V and 3μA are set as the search interval value and threshold 

value, respectively. In practice, if this search interval value cannot ensure enough accuracy for 

solving out the DC operating point of some special circuits, smaller search interval values are 

suggested to utilize but at the cost of extended computation time. 

Table 4.4. Results of DC Operating Point Computation and Symbolic Analysis of Two 

Properly Sized Circuits 
Folded-Cascode OpAmp (CMOS 65nm Technology) High-Gain OpAmp (CMOS 90nm Technology) 

DC Operating Point Computation (Properly Sized) DC Operating Point Computation (Properly Sized) 

SPICE Simulation Result SPICE Simulation Result 

V1 (V) V2 (V) V3 (V) V4 (V) V1 (V) V2 (V) V3 (V) V4 (V) V5 (V) V6 (V) V7 (V) V8 (V) V9 (V) 

0.9328 1.091 0.8548 0.1959 0.0141 0.2995 0.3193 0.6223 0.2665 0.2153 0.2293 0.8732 1.017 

Computation Result Computation Result 

Search Interval 0.01V Threshold Value 3μA Search Interval 0.01V Threshold Value 3μA 

Method Run Time V1 (V) V2 (V) V3 (V) V4 (V) Method Run Time V1(V) V2(V) V3(V) V4(V) V5(V) V6(V) V7(V) V8(V) V9(V) 

BF 1.49s 0.93 1.09 0.86 0.19 BF >1 hour ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

DC 0.39s 0.93 1.09 0.85 0.19 DC >1 hour ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ ‒ 

QDP 0.038s 0.93 1.09 0.85 0.19 QDP 0.13s 0.014 0.31 0.33 0.63 0.27 0.22 0.23 087 1.02 

HB 0.023s 0.93 1.09 0.85 0.19 HB 0.034s 0.014 0.3 0.32 0.62 0.26 0.22 0.23 0.88 1.01 

DC Operating Point Computation Analysis (Random Size 

Perturbation) 
DC Operating Point Computation Analysis (Random Size Perturbation) 

RMSE with Unsegmented IDS Model (μA) RMSE with Unsegmented IDS Model (μA) 

IDS,1 IDS,3 IDS,4 IDS,6 IDS,8 IDS,10 IDS,2 IDS,4 IDS,6 IDS,8 IDS,13 IDS,14 IDS,15 IDS,16 IDS,18 IDS,20 IDS,21 IDS,22 

0.31 0.29 0.14 0.21 0.39 0.11 2.65 1.88 2.2 0.93 2.33 2.36 1.74 2.38 2.05 1.58 1.7 1.38 

RMSE with Segmented IDS Model (μA) RMSE with Segmented IDS Model (μA) 

IDS,1 IDS,3 IDS,4 IDS,6 IDS,8 IDS,10 IDS,2 IDS,4 IDS,6 IDS,8 IDS,13 IDS,14 IDS,15 IDS,16 IDS,18 IDS,20 IDS,21 IDS,22 

0.29 0.23 0.076 0.13 0.11 0.11 1.71 1.46 1.01 0.96 2.6 1.9 2.32 1.75 2.06 1.35 1.44 1.08 

Performance Evaluation (Properly Sized) Performance Evaluation (Properly Sized) 

 AV (dB) PM () GM (dB) UGB (MHz)  AV (dB) PM () GM (dB) UGB (MHz) 

SPICE Simulation  58.8 78.19 51.46 24.31 SPICE Simulation 91.29 118.4 64.29 143.3 

Symbolic Analysis 59.66 81.75 51.56 22.91 Symbolic Analysis 90.79 115.5 61.8 154.7 

Relative Error 1.46% 4.55% 0.19% 5.76% Relative Error 0.55% 2.45% 3.87% 7.96% 

Time Consumption Analysis Time Consumption Analysis 

SPICE Simulation 1.4s SPICE Simulation 1.5s 

Performance Model Building 0.0049s + 0.22s Performance Model Building 0.0057s + 0.597s 

Performance Model Evaluation 0.039s Performance Model Evaluation 0.046s 
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We have also analyzed the impact of IDS model on the accuracy of the computed DC operating 

points through the comparison of using the unsegmented IDS model and the segmented IDS model 

to compute the DC operating points. In the experiments, we randomly varied the circuit sizes and 

calculated the root mean square errors (RMSE) of each transistor’s IDS with reference to the SPICE 

simulation results, which are provided in Table 4.4. As shown, by utilizing the more accurate 

segmented IDS model, better accuracy on the computation results of each transistor’s IDS was 

generally achieved, which demonstrates beneficial contribution from our proposed model 

segmentation scheme. 

4.5.3. Analysis of Performance Modeling 

The performances of the two properly sized circuits are evaluated through both SPICE 

simulation and symbolic analysis (GPDD). The results are listed in Table 4.4. As one can see, 

compared with the SPICE simulation, the accuracy of the symbolic analysis is high, achieving less 

than 5% relative error for DC gain (Av), phase margin (PM), and gain margin (GM), and less than 

8% relative error for unity gain bandwidth (UGB). In Table 4.4, we express the performance 

building time (i.e., the runtime of Algorithm 4.1) by two parts. The first part is the circuit 

preprocessing time while the second part is the GPDD structure construction time. As shown in 

the table, the circuit preprocessing times for both circuits are around 0.005 seconds, and the GPDD 

structure construction times for the folded-Cascode OpAmp and high-gain OpAmp are 0.22 and 

0.597 seconds, respectively. The performance model evaluation times (i.e., the runtime of 

Algorithm 4.2) of the two circuits are 0.039 and 0.046 seconds, respectively. For the SPICE-based 

simulations, there is only evaluation time taken by circuit simulator Spectre. As reported in Table 

4.4, compared with the SPICE simulation, the evaluation efficiency is improved by more than 30 

times for our proposed method. As a matter of fact, due to the handling of unsolvable cases 
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proposed in Section 4.3.3, the evaluation runtime would be further shortened when the DC 

operating point of the circuit is improper. This is because if the circuit input is an inappropriate 

combination of circuit biases and transistor sizes, the evaluation process would be automatically 

terminated. 

Table 4.5. Optimization Results of Two OpAmp Circuits 

Circuit Parameter Spec. 
Model SPICE 

OPT. Result Verification OPT. Result 

FCO 

Av (dB) max 64.95 64.18 64.98 

PM () > 60 73.55 69.4 73.21 

GM (dB) > 10 47.99 45.35 52.12 

UGB (MHz) > 10 36.4 35.95 34.49 

Runtime ≈17s ≈603s 

HGO 

Av (dB) max 98.83 97.43 96.1 

PM () > 60 103.9 106.1 90.2 

GM (dB) > 10 37.97 35.94 25.13 

UGB (MHz) > 10 131.5 121.1 148.5 

Runtime ≈40s ≈1285s 

In order to further demonstrate our proposed performance model can be robustly applied to 

the circuit sizing work, we employed the well-known multi-objective genetic algorithm NSGA-II 

to optimize two example circuits in our experiments [86]. The population size was set to 20, while 

the number of generations was set to 20 for the folded-Cascode OpAmp (FCO) and 40 for the 

high-gain OpAmp (HGO), respectively. The sizing optimization results are given in Table 4.5. For 

each circuit, both our proposed performance model and SPICE were used to size the circuit for 

comparison. The gain (i.e., Av) is used as the design objective, while the others (i.e., phase margin 

(PM), gain margin (GM), and unity gain bandwidth (UGB)) are treated as design constraints. The 

final sizing results obtained from our proposed performance model were later validated by using 

SPICE simulation as shown in the fifth column of Table 4.5. As shown in the table, the 
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performances of the final sizing results from our proposed model are equivalent to those obtained 

by using SPICE simulation, but the efficiency was boosted by over 30 times. 

Table 4.6. Building Blocks Used to Construct Circuits in Synthesis 

VDD
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GND
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To demonstrate the unique feature of almost ignorable model building overhead for our 

proposed performance modeling method, we have utilized it to aid in synthesizing circuit 

topologies by following the procedure presented in [J1], which involves a large number of 

topology variations. With a simplified building block library illustrated in Table 4.6 plus the 

specification and constraint listed in Table 4.7, 64 unique circuit topologies were generated. 

Among them, 32 topologies passed the fast evaluation filtering test, which is an automated stage 

consisting of linear constraint test, DC gain test, and fast sizing test [J1]. But they still need detailed 

sizing for further feasibility checking. In this regard, NSGA-II was utilized to optimize (i.e., size 

and verify) these 32 candidate topologies. Both the population size and the number of generations 

were set to be 20, which means 400 evaluations in total for each topology. As shown in Table 4.7, 

by using our proposed model to evaluate circuit performance, we could obtain exactly the same 
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synthesis result as that by using SPICE simulations (i.e., the same 8 topologies satisfying the target 

specifications and constraints stood out through the optimization), while our proposed method 

could speed up the optimization process by more than 30 times. 

4.5.4. Comparison with the State-of-the-Art Methods 

So far we have shown high efficiency, acceptable accuracy, strong robustness, and efficient 

model development of our proposed performance modeling method. In this sub-section, we will 

exhibit some comparisons with other state-of-the-art performance modeling methods. Among 

those methods, CAFFEINE [79] aims to build symbolic performance models via canonical-form 

functions and genetic programming while the works of [75], [74], [77], and [87] focus on building 

support vector machine (SVM), circuit matrix (CM), sparse regression (SR), and coupling sparse 

regression (CSR) models to fit circuit performances, respectively. As mentioned in Section 4.1, 

since those performance models directly take a large number of circuit simulation samples as 

training data, the time-consuming simulation-based sampling process has to be re-performed when 

modeling any different circuits. 

Table 4.7. Results of Circuit Topology Synthesis 

CMOS 65nm Technology 

Performance Specification 

AV (dB) PM () GM (dB) UGB (MHz) 

60 60 10 10 

Constraint #Max Leaves = 5 

#Topologies 

Generated 

#Topologies 

Left after Fast 

Evaluation 

#Topologies Left after 

Optimization 

Total  

Optimization Time 

SPICE Our Model SPICE Our Model 

64 32 8 8 ≈320mins ≈10mins 
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However, different from those performance modeling works, our proposed method computes 

circuit performances based on the regression of transistor models, which is just a one-time job for 

a specific technology. Therefore, as listed in Table 4.8, the number of SPICE simulations needed 

to obtain training data to train the performance model for our proposed method is zero whereas 

those are at least hundreds for the other five methods. The Circuit Modeling Time reported in 

Table 4.8 is the time consumed to build or train the model for the entire circuit, which excludes 

the time consumption for the collection of training data. As one can see, the model building time 

is only 0.054 seconds for our proposed method versus several digits in the unit of minutes for the 

other modeling methods. Although transistor modeling is needed for our proposed method, it is 

just a one-time job for a specific technology, which can always take place in advance of circuit 

synthesis and optimization. For the evaluation of modeling accuracy, CAFFEINE, SR, and CM 

report average errors while SVM and CSR give RMSE. For the comparison purpose, we randomly 

varied biases and transistor sizes in the two-stage OpAmp (as depicted in Fig. 4.5(b)) for 500 

perturbations and accordingly derived the average error values compared with SPICE simulation 

results. As listed in Table 4.8 for DC gain (Av), our proposed method offers better accuracy than 

Table 4.8. Comparison of Different Performance Modeling Methods for the Two-Stage 

OpAmp 

Methods 

AV GM PM UGB 
# 

SPICE 

Circuit 

Modeling 

Time 

Eval. 

Time Average Error (%) 

CAFFEINE 2.95 ‒ ‒ ‒ 129 20mins ‒ 

SR 2.5 ~ 3 ‒ 3.5 ~ 4 ‒ 400 ‒ ‒ 

CM 0.03 0.09 0.05 ‒ 2000 3.7mins 0.033s 

Our Method 2.73 4.02 7.47 9.63 0 0.054s 0.007s 

 RMSE  

SVM 0.047 ‒ 0.003  ‒ 1300 ‒ 0.61ms 

CSR 0.0369 ‒ 0.015 0.015 100000 ‒ 5s 

Our Method 1.26 0.62 8.3 5.41 0 0.054s 0.007s 
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CAFFEINE, similar accuracy to SR, but worse accuracy than CM, SVM, and CSR. For phase 

margin (PM), our proposed method was 4% worse than SR and 7%-8% worse than CM and SVM. 

Nevertheless, it can preferably achieve an evaluation runtime of 0.007 seconds and less than 10% 

average performance evaluation error, which indicates its superior fit for the analog circuit 

synthesis and optimization tasks. 

 

4.6. Summary 

In this chapter, we presented a novel performance modeling method that can not only achieve 

high efficiency, acceptable accuracy, and strong robustness, but also feature a unique metric of 

almost ignorable model building overhead. It is comprised of advanced neural-network-based 

transistor modeling, circuit preprocessing through undirected bipartite graph, deterministic circuit 

DC operating point computation, and symbolic analysis. Compared with other performance 

modeling methods, it moderately sacrifices the accuracy but gains significant generality. This is 

commonly preferable since the main goal of using performance models is to save simulation time 

with a trade-off of reasonable accuracy loss, especially within the context of circuit structural 

synthesis and optimization. 

As mentioned in Section 2.2.3, there are two main steams to reduce the computation effort of 

the work of automated analog circuit topology synthesis. In the next chapter, we will propose a 

novel method from another stream, which utilizes the merits of machine learning, to significantly 

shrink the computation effort of the whole synthesis process. 
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Chapter 5    Deep-Reinforcement-Learning-Based 

Topology Synthesis for Analog Integrated Circuits 

 

5.1. Introduction 

Since the genetic operations are typically performed randomly without clear direction, the 

evolution-algorithm (EA) based methods often suffer from substantial computation effort wasted 

on generating and evaluating meaningless circuit topologies. Furthermore, there is no means to 

flexibly extend its search space once the rules of genetic operators have been designed, leading to 

only a narrow range of circuits that can be synthesized. Compared with the EA-based generation 

methods, the design search space of the graph-based generation methods can be flexibly extended 

(even to infinitely large) depending on the allowed graph size (a user-defined parameter) and 

complexity of the predefined BB library. On one hand, this feature is beneficial for generating a 

wider range of circuits, including some novel circuits. On the other hand, it would cause a severe 

problem, that is, topology explosion (i.e., a huge number of topologies generated in the synthesis 

process), because the graph-based approaches would explore all the possibilities in a brute-force 

manner within their allowed search space. Checking the feasibility of such a huge number of circuit 

topologies would be an extremely time-consuming computation task in practice. 

To address the shortcomings of the existing topology synthesis approaches, in this chapter we 

propose a novel deep-reinforcement-learning-based circuit topology synthesis methodology. It not 

only integrates the merits together of both topology generation methods and topology refinement 

methods, but also is capable of synthesizing large-size and innovative circuit topologies. Deep 

reinforcement learning (DRL) is a machine learning technique known to be able to solve complex 
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tasks. It has been successfully applied in some EDA areas to facilitate circuit design, such as analog 

circuit sizing [88] [89] and analog layout placement [90]. Similar to the topology refinement 

methods, our proposed method starts with an initial sub-circuit and gradually expands topologies 

with BBs via a decision-making process. But this process is realized by DRL with the produced 

topologies and expanded BBs, which are encoded into states and actions, respectively. Besides 

using BBs as the basic components, the composition and decomposition rules employed in the 

graph-based topology generation methods are effectively defined in our proposed DRL-based 

method as rule-based actions, which function in a similar way to reasonably construct circuit 

topologies in the synthesis process. 

The performance of a circuit not only depends on its topology (i.e., circuit structure), but also 

relies on its device sizes. In our proposed method, we justify the feasibility of a produced circuit 

topology by checking whether it is able to meet a certain performance specification through a 

simulation-in-loop sizing operation rather than seeking for an optimum performance. As long as 

the performance of a produced topology meets the specification requirement, the DRL agent will 

receive a positive reward; otherwise, it will get a negative reward. Through successive trials, the 

DRL agent is continuously learning from the rewards and improving its means to reach a solution 

(i.e., a feasible topology) by figuring out which BBs to expand is the best choice at each 

construction step. Moreover, hash table and symbolic analysis [85] are employed in our work to 

reduce the number of produced circuit topologies to be sized during the synthesis process, which 

would significantly boost the whole synthesis efficiency. In addition, the parallel computing 

technique is adopted to speed up the time-consuming circuit sizing process. 
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To the best of our knowledge, this is the first work that employs the reinforcement learning 

technique to automate the topology synthesis of analog integrated circuits. It has the following 

remarkable features: 

1) The synthesis process is a decision-making process; 

2) Design search space is flexible and controllable; 

3) Design knowledge is automatically learned; 

4) Considerably less computation effort compared with the conventional topology generation 

methods; 

5) Output of trustworthy solutions with detailed device sizes. 

The research work conducted on this topic has been submitted to IEEE Transactions on 

Computer-Aided Design of Integrated Circuits and Systems (TCAD) [J3] (with major revision 

now) and accepted by 2022 ACM/IEEE Design, Automation & Test in Europe Conference (DATE) 

[C7]. 

 

5.2. The Proposed Framework 

5.2.1. Deep Reinforcement Learning 

Reinforcement learning (RL) is built upon an agent that iterates to function in an environment 

using a trial-and-error process that mimics learning in humans, where agent is defined as an 

imagined learner (i.e., the algorithm itself) and environment is deem as the world where the agent 

operates. There are three basic elements of RL, which are state, action, and reward. All of them 

are associated with the RL environment, which is based on the problem to be solved. Specifically, 
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state is the observation of the status for the environment, action is the operation that the agent 

performs in the environment, and reward is the feedback that the agent receives from the 

environment after making an action. 

DRL combines RL and deep learning (DL), as reflected by the fact that the RL agent is 

connected with a neural network (NN). At each time step, the RL agent observes the current state 

of the environment, consults the NN by inputting the current state, infers the action to be taken 

based on the output of NN, and takes the selected action. The environment then returns a new state 

that is used to calculate the reward as a result of taking that particular action. In the meantime, the 

current state, selected action, and resultant reward are collected as training data to train the neural 

network through DL, which will help the RL agent make better decisions subsequently. This 

continuous RL loop would eventually help the agent to learn to act in a way (i.e., finding a 

sequence of actions) that will maximize its expected cumulative reward, which is the objective of 

RL. The expected cumulative reward at time step t can be written as: 

𝐺𝑡 =∑𝛾𝑘𝑟𝑡+𝑘+1

∞

𝑘=0

,                                                                  (5.1) 

where r is the reward received at each time step; and γ ∈ (0, 1] is called the discount factor, which 

means future rewards are worth less than immediate rewards due to the common sense that rewards 

coming sooner are more likely to take place. 

There are several schemes that have been proposed to carry out the DRL process, such as Q-

learning, policy gradient, and advantage actor-critic [91]. The circuit topology synthesis process, 

which we have to deal with in this work, features the following special situation and in turn the 

uncommon DRL environment: any circuit topology can only be evaluated after a valid structure, 

which satisfies the circuit input-output specification, has been constructed. Compared with either 
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Q-learning or advantage actor-critic method, the policy gradient method shows its best fit to our 

work because this method can wait to calculate the reward until the end of an episode, which is 

defined as a sequence of states, actions, and rewards from an initial state to a termination state. 
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Fig. 5.1. Policy gradient neural network. 

The policy-gradient-based method attempts to directly find a policy that can form a circuit 

topology meeting the target specifications. Here policy is defined as the strategy that an agent 

employs to determine the next action based on the current state. In the policy-gradient-based DRL, 

the policy (π) is modeled as a policy gradient neural network (PGNN) with parameterized weights 

θ. As depicted in Fig. 5.1, the PGNN is actually a supervised classification model, which takes a 

state (s) as input and outputs the probability distribution over all actions (a): 

𝜋𝜃(𝑎|𝑠) = 𝑃(𝑎|𝑠).                                                                     (5.2)  

The architecture of PGNN is a fully connected artificial neural network (ANN), which is 

comprised of a passthrough input layer, several hidden layers, and an output layer. The activation 

functions applied in the hidden and output layers are the widely used sigmoid function and softmax 

function, respectively. 
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5.2.2. DRL Framework for Circuit Topology Synthesis 
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Fig. 5.2. The proposed DRL framework for circuit topology synthesis. 

As depicted in Fig. 5.2, in our work the automated circuit topology synthesis is realized 

through the proposed DRL framework. Building blocks are utilized as the basic components, 

which are selected from a predefined building block library (PBBL) by taking actions, to construct 

circuit topologies. The design specifications are composed of input-output specification and 

performance specification. Among them, the input-output specification works with the PBBL to 

form the specialized RL environment for circuit topology synthesis, while the performance 

specification is utilized to calculate the reward for the RL agent. It is worth noticing that only the 

states that satisfy certain conditions, which will be explained in more detail in Section 5.4.2, need 

to be decoded into circuit topologies for evaluation. For the states that do not meet the conditions, 

a reward will be directly assigned according to our reward function as defined in Section 5.3.4. 
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Unlike the consulting of PGNN that occurs at all the time steps, the training of PGNN is 

carried out only at the end of an episode. Thereby, the training data contains the collected states, 

actions, and rewards of one or multiple episodes. The gradient ascent method is employed to 

iteratively find the best weights that improve the policy in the direction of maximizing the expected 

future reward with the following update rule: 

∇𝜃 = 𝛼 (∑ 𝑙𝑜𝑔𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝑇−1

𝑡=0

)( ∑ 𝛾𝑡
′−𝑡−1𝑟𝑡′

𝑇

𝑡′=𝑡+1

),                                      (5.3) 

where α is the learning rate, and T is the total time steps of an episode. Through continuous training 

along the RL loop, the agent gradually learns the essential synthesis knowledge, which is stored in 

the PGNN. This episodic training process terminates when the gradient (i.e., Eq. (5.3)) equals zero, 

which means the weights of PGNN are not able to be further optimized. 

As illustrated in Fig. 5.2, the consulting and training of PGNN are carried out simultaneously 

during the whole learning process. Specifically, the consulting of PGNN will get feedback from 

the environment via rewards, which would be used to train the PGNN in return to let it learn from 

the trial results and be able to make better decisions subsequently based on the learned knowledge. 

After the PGNN has been well trained, the RL agent can always derive a solution in its first episode 

trial. 
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5.3. Specialized RL Environment 

5.3.1. Building Block (BB) 

As mentioned in Sections 5.1 and 5.2, our proposed work utilizes BBs as the basic components 

to construct circuit topologies. The input and output terminals of a building block can be 

categorized into three types: V, FI, and FO. Among them, V means the corresponding input or 

output terminal is a voltage terminal, while FI or FO represents a current terminal with bias current 

flowing into or out of a BB, respectively. Based on the counts and types of input and output 

terminals, we have defined six types of BBs. The names of these types are self-explained. Fig. 5.3 

illustrates an example of each type of BB, where the input and output terminals always lie on the 

left side and right side of a block, respectively. Generally, each input or output terminal can be 

either V, FI, or FO. But for all the converter-type BBs, the input terminals must be current while 

the output terminal(s) must be voltage. In addition, the two-signal-paths BBs must have the same 

type of input terminals as well as the same type of output terminals. 

V
V

FI
FI

FIFI FI
FI V

 
                                    (a)                                (b)                                  (c) 

FI
FI

V
V

V FI
FO

FI
FO

V
V

 

                                    (d)                                (e)                                  (f) 

Fig. 5.3. Examples of the six types of BBs: (a) One-signal-path BB. (b) Two-signal-paths BB. 

(c) Identical-current converter with one output. (d) Distinct-current converter with one output. 

(e) Identical-current converter with two outputs. (f) Distinct-current converter with two outputs. 
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5.3.2. State 

In our proposed DRL-based framework, states are represented by the data structure of array. 

The value at each slot in the array refers to the index of a BB in the PBBL if it is not equal to zero. 

Otherwise, it means no BB (i.e., empty) available in this slot. In this way, each state encodes a 

sequence of BBs, making up a circuit topology. An example state (state A) is given in Fig. 5.4(a). 

Max Number of BB Allowed
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 (a) state A 

                                         
path1T T F F F F S O

 

VINPVINN VOUT

VDD

GND

30

18 11 11

6
3

11

17

 
(b1) The circuit topology represented by state A and path1  
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(b2) The circuit topology represented by state A and path2. 

Fig. 5.4. An example state and its possible circuit topologies represented. 
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The size of a state is determined by the maximum number of BB allowed (a user-defined parameter) 

for constructing a circuit topology. This constraint is necessary to practically limit the design 

search space. According to our experiments, this useful constraint works well with the extendable 

PBBL, contributing to flexible and controllable design search space in our proposed circuit 

topology synthesis methodology. 

However, if the detailed connections among the represented BBs are unclear, one state may 

be able to be decoded into several circuit topologies. To address this issue, we define an attribute 

called path, which is also an array, to track the signal path which each BB in the slot belongs to. 

There are four types of path in total: F, S, T, and O, which means that the added BB belongs to the 

first signal path, the second signal path, both signal paths, and only one signal path, respectively. 

During the synthesis process, the path information is recorded in order to assist the decoding of a 

state because the combination of a pair of state and path would lead to a determined circuit 

topology correspondence. Fig. 5.4(b1) and Fig. 5.4(b2) illustrate two possible paths and their 

represented circuit topologies when being combined with state A. 

5.3.3. Action 

In our proposed framework, taking an action means selecting a BB from the PBBL to connect 

with the output terminal(s) of the current-state-represented circuit structure. Although the DRL 

has the ability to automatically learn the optimal selection strategy through its continuous trial-

and-error process, making the DRL process follow some basic design rules would largely avoid 

constructing meaningless circuit structures, contributing to significant speed-up of the learning 

process. These basic design rules force the connected terminals to be matched. Specifically, V must 

be matched with V, FI with FO, and vice versa. Based on these rules, the actions can be divided 
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into three types: un-matched action, matched action, and terminational action. In this regard, if any 

input terminal of the BB selected by an action cannot match with the output terminal that it is 

going to connect, this action is called an unmatched action. Otherwise, it is named as a matched 

action. The terminational action is a special type of action, which is only allowed to happen when 

the output terminal(s) of the current structure has (have) the same counts and types as the output 

specification required. Executing a terminational action would not select any BB to connect with 

the current structure, but cause the termination of an episode. 

Based on the types of BBs selected by actions, the matched actions can be categorized into 

single match, symmetric match, and normal match. Besides the path information, knowing the 

type of a match would greatly facilitate the process of figuring out the detailed connections 

between the current structure and the added BB. An example of each type of matched action is 

illustrated in Fig. 5.5. Their formal descriptions are listed below: 

 Single match: connect a one-signal-path BB to a one-output structure. 

V
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Structure
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                            (a) single match                      (b) symmetric match/normal match case1 
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BB
Current

Structure

FI

FI

FO

FO BB
Current

Structure

FO

FI

FI

FO

V
V

V
 

                        (e) normal match case4                          (f) normal match case5  

Fig. 5.5. Examples of the matched actions. 
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 Symmetric match: connect a two-signal-paths BB to a two-identical-outputs structure that is 

symmetric. 

 Normal match case1: connect a two-signal-paths BB to a two-identical-outputs structure that 

is asymmetric. 

 Normal match case2: connect a one-signal-path BB to the first output terminal of a two-outputs 

structure. 

 Normal match case3: connect a one-signal-path BB to the second output terminal of a two-

outputs structure. 

 Normal match case4: connect an identical-current converter to a two-identical-outputs 

structure. 

 Normal match case5: connect a distinct-current converter to a two-distinct-outputs structure. 

In order to further reduce the chance of generating senseless circuit topologies, it is essential 

to respect necessary structural symmetry constraints in circuit design, such as the first stage of 

OpAmps (due to the preference of differential pairs) [62]. In the proposed work, we keep tracking 

the symmetry property of the structure being constructed. At the beginning of an episode, 

symmetric-match actions are allowed. However, once a normal-match action is taken, which 

would break the symmetry property of the structure being constructed, the symmetry-match 

actions are no longer allowed to perform within this episode. Thereby, although the normal match 

case1 shared the same connection way as the symmetric match, they are different since the normal 

match case1 is still allowed to take when the symmetry property has already been broken. 
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5.3.4. Episode and Reward 

As mentioned in Section 5.2, the policy-gradient-based RL is carried out episodically. Within 

one learning task, all the episodes start with the same initial state. This initial state could be an 

encoded BB or a sub-circuit as long as its input terminal (or terminals) meets (or meet) the input 

specification. At each time step, the RL agent selects an action to take. After executing the action, 

the state transforms into a new state, which has one more slot becoming non-zero. This process 

continues until entering a termination state, which indicates the ending of an episode. In our work, 

we have defined a uniform format for the termination state, in which all the slots have the same 

value of 99. An episode would go to the termination state when any of the following three cases 

has occurred: 1) an unmatched action is taken; 2) state boundary is exceeded; 3) a terminational 

action is taken. 

Fig. 5.6(a) and Fig. 5.6(b) depict two example episodes and their encoded circuit topology 

construction processes, respectively. The two episodes both start with the 30th BB in PBBL. After 

taking actions a1 and a2, the 24th and 16th BBs in the PBBL are added in sequence, as shown by 

one more slot becoming non-zero in state at each time step. Now, the output of the structure being 

constructed becomes one voltage. Assuming it meets the output specification, then the 

terminational-type actions are allowed to take at this point. If an unmatched action or a 

terminational action (e.g., action a3 in red on the lower branch in Fig. 5.6(a)) is taken, the state 

turns into the termination state and this episode is completed. Otherwise, a matched action (e.g., 

action a3 in green on the upper branch) is made and the episode continues. After taking this 

matched action, the 11th BB is added into the state, which reaches the state boundary (i.e., all the 

slots in the state are filled with non-zeros). Then, taking any type of further action (e.g., action a4 
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in purple) would let the episode end with the termination state due to the exceeding of the state 

boundary. 

Assume t is the time step within an episode, and this episode terminates at the T1, T2, or T3 

step due to occurrence of case 1), 2), or 3), respectively. The reward function r(t) is accordingly 

defined as follows: 

𝑟(𝑡) =

{
 
 

 
 
       0,                          𝑖𝑓 𝑡 < min (𝑇1, 𝑇2, 𝑇3)
   −5,                                                𝑒𝑙𝑖𝑓 𝑡 = 𝑇1
   −3,                                                𝑒𝑙𝑖𝑓 𝑡 = 𝑇2
      1, 𝑖𝑓 𝑚𝑒𝑒𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑐.
 −1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

}           𝑒𝑙𝑖𝑓 𝑡 = 𝑇3

 .                               (5.4) 

As the reward function indicates, all the non-termination steps would receive a reward of 0, 

while for the termination step, a positive or negative reward is assigned to encourage or discourage 

the generation of the corresponding circuit topology, respectively. For the termination that occurs 
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Fig. 5.6. (a) Two example episodes. (b) Their corresponding circuit topology construction 

processes. 
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at T3, the constructed circuit topology has to be evaluated. If its performance meets the target 

specification, +1 is assigned. Otherwise, -1 is assigned. 

However, like the example shown in Fig. 5.6, even though taking actions a1 and a2 is in the 

correct direction to form a circuit topology that meets the target specifications, if action a3 is an 

unmatched action, -1 will be received to make the agent feel that all the selected actions in this 

episode are generally in the wrong direction. Learning exactly which action is good or bad is quite 

slow, which may require a huge number of iterations to figure out. In order to speed up such a 

learning process, we need to tell the agent that actions a1 and a2 are actually good. Therefore, when 

a termination occurs at T3 and the evaluated performance meets the target specification, we go 

back to modify the reward received from taking the second last action (e.g., a2 in Fig. 5.6 for the 

case with a3 in red leading to the termination state) to be +5 after completing this episode. 
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Fig. 5.7. The proposed framework with detailed circuit topology evaluation process. 
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During the RL process, when the produced states need to be evaluated, the simulation-in-loop 

sizing is applied in our work to verify their decoded circuit topologies. This is a time-consuming 

operation per se. In order to boost the evaluation efficiency, the hash table, symbolic analysis, and 

parallel computing techniques are employed in our work. The evaluation process is illustrated in 

Fig. 5.7, which is the detailed implementation of the shaded block in Fig. 5.2. Specifically, the 

state to be evaluated and its associated connections are fed to the hash table first to check its 

existence. If they already exist, their performance attributes are fetched and returned to the reward 

calculator. Otherwise, they need to be first decoded into a circuit topology and then evaluated by 

the proposed fast evaluation filter. Only the survived ones will go to the subsequent sizing phase 

to check the performance feasibility. Finally, the evaluated results of both fast evaluation and 

sizing are stored in the hash table. 

5.4.1. Hash Table 

The hash table guarantees that one circuit topology only needs to be evaluated once. In this 

way, the total evaluation time for the whole learning process is significantly reduced. However, 

one circuit topology may be represented by many combinations of state and connections if both 

normal-match- case2 and normal-match-case3 have taken place during the construction process. 

For instance, the circuit topology depicted in Fig. 5.8(b) can be represented by either the 

combination of state A and path1 or the combination of state B and path2 illustrated in Fig. 5.8(a). 

The difference between them is the occurrence order of the normal-match-case2 and normal-

match-case3, which indicates that the BBs are added to the first signal path (F-path) and the second 

signal path (S-path) at distinct time steps. The following lemma is to answer whether their 

occurrence order will affect the produced circuit structure or not. 
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Lemma: If both normal-match-case2 and normal-match-case3 take place within a circuit 

construction process, the occurrence order between these two types of matches will not affect the 

constructed circuit structure as long as the orders among each type of match are maintained. 

Proof: 1) It is a fact that at each time step, the order of adding an F-path-type or S-path-type 

BB to the current state will not affect the produced circuit structure if both of them have to take 

place. Thus, it can be inferred that adding an F-path-type (or S-path-type) BB can be postponed 

after adding one or multiple S-path-type (or F-path-type) BBs without affecting the produced 

circuit structure, as long as it is allowed at that time step. For example, in Fig. 5.8, the two S-path-

type BBs are located at different slots in state A and state B but still represent the same circuit 
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Fig. 5.8. Examples of unique state representations. 
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structure. 2) If the occurrence order of the same path-type BBs is not preserved, the input and 

output terminals of the connected BBs may no longer be matched, leading to an invalid circuit 

structure. For instance, exchanging the two values in the fourth and sixth slots of state A (i.e., both 

3) in Fig. 5.8 will not alter it but cause unmatched terminals among connected BBs, resulting in 

an invalid circuit structure. Based on the two analyses above, the lemma can be proved.            ∎ 

In order to save the size of the hash table, we need to convert the states due to those 

combinations, which are actually mapped to the same circuit topology, to a unique representation. 

That is to say, we need to set up a one-to-one correspondence between state representation and 

circuit topology. Here we will first define an operation called state equivalent moving operation: 

in a state, moving all the S-path-type BBs to the position after the last non-zero BB while still 

preserving their original relative occurrence order. 

Theorem: The state equivalent moving operation is able to convert any states, which represent 

the same circuit structure, to a unique state representation. 

Proof: The multiple-to-one correspondence between state representation and circuit topology 

is actually caused by the confusion due to multiple signal paths existing in the circuit topology 

construction. All the combinations that satisfy the Lemma described above can be viewed as 

equivalency in terms of the represented circuit structure. Thus, after such a moving operation, all 

the equivalent state representations should be converted into the same one, which is unique from 

others because the confusion source has been eliminated. Thus, the theorem must hold.              ∎ 

For example, as depicted in Fig. 5.8, after the BB equivalent moving operation, state A and 

state B are converted into the same representation (marked as ustate), which is unique. After 

converting a state to-be-evaluated to its unique representation ustate, its hash can be calculated via 

the following formula: 
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ℎ(𝑢𝑠𝑡𝑎𝑡𝑒) =∏𝑝𝑟𝑖𝑚𝑒[𝑗]

𝑛

𝑖=0

  𝑚𝑜𝑑 (232 − 5) ,                                        (5.5) 

where i is the index of a slot in ustate, n is the number of non-zero slots in ustate, j is the slot value 

(i.e., the index of the corresponding BB) in ustate, prime is an array that stores all the prime 

numbers starting from 1 in the increasing order with the size being equal to the number of BBs in 

PBBL, and 232 - 5 is known to be the largest 32-bit unsigned prime number. Each circuit topology 

is put into a bucket according to its hash. For the circuit topologies that have only been fast 

evaluated, their DC gain results are stored in the hash table. For the ones that have been sized, their 

performance results and sizes are stored in the hash table. 

5.4.2. State Decoding 

As mentioned in Section 5.3.2, only when a terminational action is taken, the second last state 

(e.g., s3 on the lower branch in Fig. 5.6(a)) rather than the termination state needs to be decoded 

and evaluated. The states that satisfy this condition only occupy a very small portion of the total 

states generated in the synthesis process, which is one of the main reasons that our proposed DRL-

based topology synthesis method features good efficiency. 

The state to be decoded is firstly mapped to its represented BBs. Then transistor-level circuit 

topologies will be formed by connecting those BBs according to the recorded connection 

information. In practice, simply swapping input pins of an analog circuit may affect its 

performance. Due to this fact, we treat the circuits, which have exactly the same structure but 

swapped input pins, as different circuit topologies. Therefore, the decoded circuit topology should 

create a copy of itself with swapped input pins. 
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5.4.3. Unsized-Circuit Fast Evaluation 

As shown in Fig. 5.7, the decoded circuit topologies will first be fast evaluated, which can 

roughly assess quality of the topologies through symbolic analysis. In our proposed work, the 

GPDD algorithm [64] is employed to numerically calculate the DC gain of an unsized circuit, 

which requires the values of all the parameters in the small-signal model of the circuit as input. 

However, since the circuit to be evaluated in our context is un-sized, it is impossible to get those 

values via SPICE simulation. What we know so far is that there exist value ranges for those small-

signal model parameters in a certain technology. Therefore, after extracting such ranges for a 

specific technology, the center values of these ranges are employed to efficiently estimate the DC 

gain through the GPDD algorithm. Furthermore, in order to further speed up the operation, we 

employ a simplified small-signal model that only contains four parameters (gm, gds, Cgs, and Cgd) 

for each MOSFET transistor in a circuit. Due to approximate calculation, we deliberately lower 

the requirement of this quality filter compared to the given performance specification, which 

ensures that only the circuit topologies with very bad performance will not proceed to the 

subsequent sizing phase. Our experiment results in Section 5.5 will show high effectiveness of this 

proposed fast evaluation filter. 

5.4.4. Simulation-in-Loop Sizing 

Once the circuit topologies pass the fast evaluation filter, they have to be sized to check their 

performance feasibility. In this work, we employ the well-known multi-objective genetic algorithm 

NSGA-II to size circuits, which utilizes the SPICE simulation to evaluate circuit performance. 

Since our purpose of sizing is to check the performance feasibility instead of optimizing the circuit, 

we have slightly modified the NSGA-II algorithm. Specifically, the sizes of population and 
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generation are set to 20 and 50, respectively. During the algorithm running, if the evaluated 

performance of any individual meets the target performance specification, the algorithm terminates 

right away and returns the performances and device sizes to the hash table. Otherwise, after 

executing all 50 generations, the best performances achieved so far and the corresponding device 

sizes are stored in the hash table. At each time, there are two circuit structures with swapped input 

pins to be sized. To boost the sizing efficiency, we employ the parallel computation technique to 

size the circuits. 

Algorithm 5.1: DRL-Based Circuit Topology Synthesis 

Input: Input-output specification SIO; performance specification SP; 

           trustworthy building block library PBBL; initial state s0. 

Output: Circuit topology with device sizes. 

  1.    Build the specialized RL environment based on SIO and PBBL; 

2.    Build the PGNN, gradient function ∇θ, and hash table T; 

3.    While (true) 

4.          Make a batch { 

5.                Start an episode with s0: 

6.                      choose action a; perform action a;  

7.                      receive reward r and new state s;  

8.                      store s, a, and r into sets S, A, and R, respectively; 

9.                      If (episode terminates) 

 10.                          calculate the discounted reward Rd; 

11.                          store Rd into set Gt; 

12.                          break; 

13.        } 

14.        Train the PGNN with S, A and Gt; Calculate ∇θ; 

15.        If (∇θ == 0)  break; 

16.  End While 

17.  Starting an episode with s0, get last state sf before termination; 

18.  Decode sf into circuit netlist C;  

19.  Extract the performance P and size S of sf from T; 

20.  Return C, P, and S; 
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The whole DRL-based circuit topology synthesis process is illustrated in Algorithm 5.1. 

Specifically, Lines 1-2 set up the specialized RL environment for circuit topology synthesis and 

the PGNN for learning synthesis knowledge, Lines 4-13 collect the training data by interacting 

with the environment, and Line 14 utilizes the training data to train the PGNN. The collecting and 

training processes are repeated until the gradient function equals zero. After that, Lines 17-19 

extract the solution, which includes circuit netlist, performance results, and corresponding sizes, 

from the trained DRL-based framework. 

 

5.5. Experimental Results 

In Section 5.5.1, our experimental parameter settings are explained. Sections 5.5.2 and 5.5.3 

analyze the learning process and synthesis efficiency of deep reinforcement learning in the work 

of circuit topology synthesis, respectively. Section 5.5.4 reports the circuit topologies synthesized 

by the proposed method. Finally, Section 5.5.5 compares the proposed work with the state-of-the-

art circuit topology synthesis tools.  

The proposed circuit topology synthesis framework was mostly implemented in Python, with 

the fast evaluation (GPDD algorithm) realized in C++, the NSGA-II sizing carried out in C, and 

the SPICE simulations conducted by the Cadence tool. Our experiments were run on an Intel X86 

1.2-GHz Linux workstation that has 64 GB of memory. All the experiments were conducted in a 

CMOS 65nm technology process, which can be readily replaced by any other CMOS technologies. 
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5.5.1. Experimental Parameter Settings 

As shown in Table 5.1, our defined PBBL contains 36 BBs, each of which has a unique index. 

All our experiments were carried out based on this PBBL, which includes 12 one-signal-path BBs, 

14 two-signal-path BBs, and 10 converter-type BBs. The one-signal-path BBs are composed of 

well-known current mirrors, Cascode current mirrors, current sources, Cascode stages, and 

common sources. Besides the differential pairs, the two-signal-paths BBs are basically made up of 

two copies of one-signal-path BBs. Among the converter-type BBs, there are two special BBs that 

only contain nets, while the others are the variants of the (Cascode) current mirrors. 

Each type of BB could be composed of NMOS/PMOS transistors, leading to distinct terminal 

types. For different types of BBs, their input and output terminals are expressed in distinct formats 

as follow: 1) One-signal-path type BBs: input – output; 2) Two-signal-paths type BBs: 

input1|input2 – output1|output2; 3) Converter type BBs: input1|input2 – output or input1|input2 – 

output1|output2. It is worth mentioning that the two special nets-contained-only BBs (i.e., the 17th 

and 22nd BB) both have two possible combinations of input-output terminals, which are completely 

Table 5.1. Predefined Building Block Library (PBBL) 
One-Signal-Path Building Blocks Converter Building Blocks 

(Cascode) Current Mirror  Current Source One-Output Converter 

GND

1

 GND

2

 

VDD

3  

VDD

4  

5

GND  

VDD6

 GND

13

 GND

14

 

VDD

15  

VDD

16  

17

 
FI|FO – V 

FI - FI FO - FO FI - V FO - V FI|FI - V FO|FO - V FO|FI - V 

Cascode Stage (Down) Cascode Stage (Up) Common Source Two-Outputs Converter 

7

 

8

 

9

 

10

 GND

11

 

VDD

12  GND

18

 GND

19

 

VDD

20  

VDD

21  

22

 
FI|FO - V|V 

FI - FO FO - FI V - FI V - FO FI|FI - V|V FO|FO - V|V FO|FI - V|V 

Two-Signal-Paths Building Blocks 

Two (Cascode) Current Mirror Two Source-driven Current Splitter 

GND

23

 GND

24

 

VDD

25  

VDD

26  GND

27

 

VDD28

 
FI|FI - FI|FI FO|FO - FO|FO FI|FI - FI|FI FO|FO - FO|FO 

Differential Pair Two Cascode Stage (Down) Two Cascode Stage (Up) Two Common Source 

GND

29

 

VDD30

 

31

 

32

 

33

 

34

 GND

35

 

VDD36

 
V|V - FI|FI V|V - FO|FO FI|FI - FO|FO FO|FO - FI|FI V|V - FI|FI V|V - FO|FO 
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dependent on the order of the input terminals. In addition, in order to facilitate the job of evaluating 

the produced circuit topologies, we require that except for the differential pairs (i.e., the 29th and 

30th BBs in the PBBL), all the transistors within a BB have the same length and the same width. 

In our experiments, the size of a state was set to be 10, which is the maximum number of BBs 

allowed to construct circuit topologies. The size of action was set to be 20, which equals the 

maximum number of possible choices for expanding a BB. For the PGNN, we defined two hidden 

layers, with the first and second layers containing 300 and 200 neurons, respectively. The learning 

rate, discount factor, and batch size were set to be 0.002, 0.95, and 200, respectively. 

5.5.2. Analysis of the Learning Process 

To synthesize OpAmp circuits, we set the starting sub-circuit as a differential pair made of 

PMOS (i.e., the 30th BB), the input-output specification as two voltage inputs and one voltage 

output, and the performance specification as 60dB DC gain (Av), 60° phase margin (PM), 10dB 

gain margin (GM), and 10 MHz unity-gain bandwidth (UGB). In order to fairly illustrate the 

learning process of the RL agent in the proposed framework of circuit topology synthesis, we ran 

the algorithm six times and received six corresponding learning processes, which are depicted in 

Fig. 5.9. 

As shown in the diagram, these six processes terminate at different iterations. Specifically, 

process2, process4, and process6 finished within 800 iterations, while process1, process3, and 

process5 required around 2000, 1300, and 1600 iterations, respectively. However, all these six 

learning processes share almost the same learning trend. Specifically, in the beginning, all the 

processes got the mean reward around -5, which means that their episodes within a batch were 

mainly terminated due to unmatched actions taken. Then, the mean of the received rewards in a 
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batch became -3. It indicates that the RL agents figured out taking unmatched actions was bad and 

tried to avoid taking them, but they were still struggling to find a solution before exceeding the 

state boundary. After that, the received mean rewards became vibrating around -2, which means 

many episodes within a batch terminated because of taking terminational actions rather than only 

exceeding the state boundary. After a longer course of learning, all the RL agents gradually found 

a way to produce solutions, thus getting the rewards of +6 eventually. 

5.5.3. Analysis of Synthesis Efficiency 

Since the time-consuming sizing has to be performed on each generated circuit structure to 

check its feasibility, the most challenging part of circuit topology synthesis is the evaluation of the 

produced circuit structures no matter what synthesis strategies are applied. This is especially true 

for our proposed DRL-based method because training the PGNN needs a huge number of training 

 
Fig. 5.9. The mean reward of a batch during the learning process. 
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data. Table 5.2 depicts the evaluation details of the above-mentioned six processes. As one can 

see, almost at least ten thousand evaluations are performed for each process. If the simulation-in-

loop sizing is directly applied as the means for evaluation, the synthesis time would be by far 

unaffordable. 

As demonstrated by the number of circuit topologies going to the fast evaluation stage in Table 

5.2, after employing the hash table, the number of evaluations has dramatically decreased to just 

hundreds from at least near ten thousand, which means most of the evaluations were actually 

performed on the same structures. The reason for this is that a substantial number of episodes 

produced in the process were repeated, due to batch-size training and the stochastic policy strategy 

that always makes a decision based on the probability distribution over actions. Therefore, with 

the help of the hash table, evaluating the generated circuit topologies becomes realizable. However, 

we are still not clear about whether the circuits that fail the fast evaluation filter are all unable to 

meet the performance specification through sizing. To test it, we ran the algorithm ten times with 

Table 5.2. Evaluation Details of the Exemplary Six Processes 

 
# 

Evaluations 

# 

Fast Evaluation 

# 

Sizing 
Runtime 

process1 28,469 174 86 9h:23min 

process2 14,952 133 65 8h:22min 

process3 10,553 86 38 4h:27min 

process4 9,645 89 20 2h:38min 

process5 26,053 73 35 3h:48min 

Process6 12,685 73 36 3h:15min 

Table 5.3. Testing Results of the Effectiveness of Fast Evaluation Filter 

Filtering 

Requirement 

# Fast Evaluation  

Failure 

# Sizing  

Failure 
Correct Rate 

> 50 dB 146 101 69% 

> 40 dB 138 117 85% 

> 30 dB 128 127 99% 
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distinct filtering requirements. All the fast evaluation failed circuits were recorded for detailed 

sizing to check the effectiveness of our fast evaluation filter. The average results are depicted in 

Table 5.3. As one can see, when we set the filtering requirement as DC gain larger than 30 dB, 99% 

of the fast evaluation failed circuits would fail the detailed sizing check as well. Therefore, in our 

work, this value is set as the filtering threshold. 

As reflected by the number of circuit topologies entering the sizing stage, the fast evaluation 

filter eliminated at least half of the topologies to be sized, which significantly improved the 

evaluation efficiency. The runtime of each learning process is provided in the last column of Table 

5.2, which varies from 2 to 9 hours. It is worth noting that greater number of generated topologies 

to be sized does not necessarily mean more runtime. For instance, process6 took less runtime than 

process5 but with more topologies to be sized. This is because some sizing jobs of process5 need 

more time (i.e., generations) to complete. 

5.5.4. Analysis of Circuit Topology Synthesis 

Table 5.4. PBBL Extension 

Extension of Converter Building Blocks 

GND

37

 GND

38

 

VDD

39  

VDD

40  
FI|FI - V|V FO|FO - V|V 

Current Merger Building Blocks 

GND

41

 GND

42

 

VDD

43  

VDD

44  

FI|FI – FO FO|FO – FO 
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In this part, besides showing some good circuit topologies that can be synthesized by the 

proposed work, we will also demonstrate strong reliability and wide applicability of our 

methodology by using distinct output specifications and performance specifications to synthesize 

circuits. Fig. 5.4, Fig. 5.6, and Fig. 5.8 have already depicted the circuit topologies produced by 

applying the input-output specification as two voltage inputs and one voltage output. To synthesize 

circuit structures with distinct output specifications, the PBBL defined in Table 5.1 has to be 

extended. Table 5.4 lists some exemplary extension BBs. Among them, the extended converter-

type BBs or current merger BBs are used to address output specification as two voltages or one 

current, respectively. Fig. 5.10(a) depicts a synthesized differential OpAmp, which is similar to 

the circuit shown in Fig. 5.6 except for the last BB selected by a2. In the differential OpAmp, the 

39th BB from the extension BB library is chosen by action a2. Fig. 5.10(b) shows an operational 

transconductance amplifier (OTA) synthesized by our proposed method. It is synthesized by 

starting with the 30th BB (a PMOS-type differential pair) and taking four actions if excluding the 

terminational action a5 shown in a different color. Action a2 and a4 select the 39th and 43rd BB 

from the extension BB library, respectively. 

GND

VDD

VDD

VIN+ VIN-
VOUT-

30

24
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VOUT+

CLCL

a3
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(a) A differential OpAmp   
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(b) An operation transconductance amplifier (OTA) 
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(c) A high gain OpAmp (Av > 100 dB) 
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(d) A high unity-gain bandwidth OpAmp (UGB > 1 GHz) 

Fig. 5.10. Example of synthesized circuits. 
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High gain OpAmps and high bandwidth OpAmps always attract more academic and industrial 

interests. These two categories of circuits with distinct performance specification settings can be 

readily synthesized by our proposed work. In our experiments, the high gain OpAmps are 

synthesized with the specification of 100dB Av, 60° PM, 10dB GM, and 10MHz UGB, while the 

high bandwidth OpAmps are generated with the specification of 60dB Av, 60° PM, 10dB GM, and 

1GHz UGB. Fig. 5.10(c) depicts a synthesized high gain circuit, which is actually a three-stage 

OpAmp. The synthesis starts with a sub-circuit composed of a PMOS-type differential pair and an 

NMOS-type current mirror, and takes nine actions to construct the circuits. As mentioned in 

Section 5.4.1, if both normal-match-case2 and normal-match-case3 take place during the 

construction process, the difference of their occurring time steps will not affect the produced 

structure if the relative orders of the BBs belonging to the same type of match are preserved. 

Thereby, in Fig. 5.10(c), as long as action a4 is taken after action a3 but before action a8, its 

occurring time step will not affect the synthesized circuit structure. Fig. 5.10(d) illustrates a 

synthesized high bandwidth circuit, which contains seven BBs and needs seven actions to build. It 

can easily achieve more than 1 GHz UGB with power consumption around 0.6 mW, which 

demonstrates high efficacy of our proposed methodology. 

As already demonstrated, even though the state size is only set to 10, the proposed work is 

still able to synthesize large analog circuits such as three-stage OpAmps. It can be inferred that 

with a larger size of state and PBBL, more complicated circuits can be synthesized by the proposed 

method due to strong scalability of the neural networks. In addition, our proposed work can 

synthesize innovative circuits. It has three means to potentially generate novel circuits: 1) by 

enriching PBBL with creative BB; 2) by making creative connections among known BBs; 3) by 

combining the two means above. Fig. 5.11 depicts a novel circuit synthesized by our work via the 
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second means. It is composed of six known BBs, while the creative connections of two differential 

pairs make this circuit innovative. It can not only reach more than Av of 100dB, but also satisfy 

the other basic performance requirements specified in Section 5.5.2. 

5.5.5. Comparison with the State-of-the-Art Methods 

So far, we have demonstrated good efficiency, strong reliability, and wide applicability of our 

proposed DRL-based circuit topology synthesis method. In this part, we will illustrate some 

comparisons with other state-of-the-art circuit topology synthesis methods. Among these methods, 

the work of [54] utilizes design knowledge mining and reasoning (KMR) to synthesize circuit 

topologies while MOJITO [26], FEATS [44], and GCTG [J1] use genetic programming, graph 

composition, and graph decomposition methods to generate circuit topologies, respectively. Table 

5.5 summarizes the characteristics of the above-mentioned four methods as well as our proposed 

DRL-based method. 
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Fig. 5.11. A novel circuit synthesized. 
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Table 5.5. Comparison with Other Circuit Topology Synthesis Methods 

 MOJITO KMR FEATS GCTG DRL 

Result  

Trustworthy? 
yes yes yes yes yes 

Design Search Space 

Flexible and Controllable? 
no no yes yes yes 

Large-Size Circuits 

Generalizable? 
no no  yes  yes  yes 

Creative Circuits 

Capable? 
yes ‒ yes yes yes 

Design Knowledge 

Automatically Learned? 
no no no no yes 

Computation Effort 

Affordable? 
no no no no yes 

Since all these five methods utilize simulation-in-loop sizing to verify the produced circuit 

topologies, their synthesized solutions are trustworthy. There is no means for MOJITO to control 

its design search space, and its defined crossover and mutation operations are only workable for a 

narrow range of circuits, typically one-stage or two-stage OpAmps shown in its experimental 

results. Since KMR has to mine the design knowledge beforehand and then apply it to synthesize 

circuits in a reasoning way, it is difficult to flexibly extend its design search space and freely 

generalize its synthesis to another class of circuits that have not been learned. FEATS and GCTC 

are able to flexibly extend the design search space to address large-size circuit designs by 

extending the defined BB library or increasing the maximum number of BBs allowed for synthesis. 

Similar to them, our proposed DRL-based method can flexibly extend the design search space and 

easily generalize to large-size circuit design by extending PBBL or increasing state size.  

Except for KMR, all the other methods claim that they are able to synthesize less-known 

circuits. The design knowledge is encoded in the predefined crossover/mutation operations, 

composition rules, and decomposition rules in the works of MOJITO, FEATS, and GCTC, 

respectively. Thus, there is no knowledge learning involved in these works. Since the design 
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knowledge learning process of KMR involves a great amount of human intervention, it is not 

deemed as automatic learning. However, our proposed work utilizes DRL to automatically learn 

design knowledge, which is stored in the neural network. 

Due to the stochastic-driven synthesis, MOJITO needs to evaluate around 101,904 topologies 

in the process to finally produce 512 unique topologies, which took 7 days. Thereby, MOJITO 

suffers from almost unaffordable computation effort to synthesize circuits. KMR has to go through 

a quite timing-consuming data mining process because the similarity of circuits is extracted by 

comparing them in pairs. Due to the brute-force explorative nature of both FEATS and GCTC, 

their computation effort is also unaffordable especially if the size of the BB library is large. Table 

5.6 illustrates the comparison among FEATS, GCTC, and our proposed DRL by using the same 

BB library as listed in Table 5.1 (i.e., the PBBL) and the same input-output specification (i.e., two 

voltage inputs and one voltage output). As one of the table headers in Table 5.6, topology size 

refers to the maximum block number, maximum leave number, and maximum state size allowed 

in FEATS, GCTC, and DRL, respectively. Since the DRL process features stochastic nature, its 

results in Table 5.6 are the average outputs from ten runs of our proposed algorithm.  

Table 5.6. Comparison among FEATS, GCTG, and DRL by using PBBL 

Topology  

Size 

Number of the Unique Topologies Generated 

FEATS GCTG DRL 

5 1,056 832 20 

6 6,780 6,152 43 

7 43,175 45,776 61 

As one can see, when the topology size is 5, FEATS and GCTC generate around 1,000 unique 

circuit topologies after applying their isomorphism checks, whereas our proposed DRL only 

produces 20 unique circuit topologies during the synthesis process. It is worth mentioning that 

such a significant number contrast should not be deemed as capability inferiority of circuit 
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topology construction for the DRL method. Instead by comparing the nature of the three methods 

above, we can see that FEATS and GCTC are only dedicated to the construction of circuit 

topologies in the brute-force way without concerning the quality of the generated topologies. Thus, 

a large majority of their generated circuit topologies turn to be fruitless. However, our proposed 

DRL method can smartly learn from the construction experience and only selectively generate 

increasingly more promising circuit topologies. More important, the number of the unique 

topologies produced by FEATS and GCTC grows exponentially in terms of the allowed topology 

size. For instance, as listed in Table 5.6, when the topology size increases to only 7, FEATS and 

GCTG would generate more than 40,000 unique circuit structures for evaluation, which definitely 

leads to a barrier to their industrial applications in practice. However, this topology explosion issue 

can be readily addressed by our proposed DRL methodology thanks to strong scalability of the 

neural networks. As shown in Table 5.6, the number of the unique circuit topologies generated by 

DRL only increases a bit when the topology size grows. 

 

5.6. Summary 

In this chapter, we presented a novel DRL-based method to synthesize analog circuits in a 

smart trial-and-error process that mimics the self-learning manner of humans, where the learned 

intelligence is stored in a neural network. It is able to manage large-size and innovative circuit 

synthesis. It also has wide applicability to deal with distinct input-output and performance 

specifications. Thanks to simulation-in-loop involvement and other speed-up schemes, it has the 

ability to accurately and efficiently verify the output solutions. Compared with the other state-of-

the-art circuit topology synthesis methods, it can not only address their commonly known 
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shortcomings, but also achieve the least computation effort. Furthermore, the trained model can 

always be reused, which is able to provide a solution with the same input within one second. 

However, this method is still suffers from an issue, that is, the learning process has to be 

performed from scratch once the technology or design specification changes. In the next chapter, 

we will introduce the transfer learning technique to transfer the learned knowledge from one 

learning process to another to largely save the learning effort of related tasks. 
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Chapter 6    Transfer Learning for Automated Analog 

Integrated Circuit Synthesis 

 

6.1. Introduction 

As already demonstrated in Chapter 5, compared with the traditional automated topology 

generation methods, our proposed DRL-based circuit topology synthesis framework (DRL-CTSF) 

can robustly produce a trustworthy solution with detailed device sizes within several hours. This 

is a significant improvement thanks to much less computation effort and more sensible application 

in general. However, in practice, the designers may have various I/O and performance 

specifications as well as distinct requirements of technology nodes for circuit design. To address 

these demands, a smart DRL-based circuit synthesis system (DRL-CSS) is proposed to be able to 

simultaneously and immediately provide solutions to the users as long as their inputs (i.e., design 

specification and technology requirement) are reasonable.  

Such a proposed DRL-CSS is depicted in Fig. 6.1, which contains an interface for 

communication with the users and multiple clusters of DRL-CTSFs, each of which deals with a 

specific technolog node (e.g., CMOS 90nm). Within a cluster of DRL-CTSFs, eah DRL-CTSF 

would address a unique design specification, including I/O specification and performance 

specification. Once this system is well trained, the users can always get a solution immediately 

after inputting their design specifications and technolog requirements. If an input given by the 

users has nerver been learned, the system will automatically initiate a learning process and then 

return a solution to the users. The learned knowledge is stored in the neural network for easy 
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reusing. Therefore, it is a smart system that has the ability to continuously learn and evolve so that 

the more users there are, the smarter this system becomes. 

Due to the inherent nature of reinforcement learning, the topology synthesis process of the 

proposed DRL framework always begins with a starting sub-circuit and then goes through a 

decision-making process to eventually produce a solution. This means that different starting sub-

circuits provided by the users may cause distinct solutions. Therefore, training just one DRL 

framework to a sufficient extent is a quite time-consuming task since there are so many possible 

starting sub-circuits with various sizes in terms of the number of devices included. For instance, if 

the number of possible starting sub-circuits is just 100 and the training/learning time for each 

starting sub-circuit is 5 hours, then the total model training time would be more than 20 full days 

with day-and-night training. This fact indicates that training such a complex system, which 

includes multiple DRL frameworks to a fine-grained extent is practically an unaffordable task in 
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Fig. 6.1. The interaction between users and the DRL-CSS. 
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terms of computation effort. More important, if the target technology process node moves from 

one to another, the whole training process has to be re-performed from scratch, which would be 

an extremely painful task.  

Transfer learning is a new technology in the field of artificial intelligence (AI) [92]. It is 

proposed to solve the bottleneck of the traditional machine learning technology, that is, limited 

data resources and computing resources, because it can automatically draw inferences from one 

another to transfer the learned knowledge from one domain to another [92]. It has already been 

successfully applied to some EDA areas to facilitate circuit design, such as mixed-signal circuit 

modeling [93], analog circuit sizing [94], and analog layout placement [95]. To address the issue 

of unaffordable computation effort that was painfully experienced in training the proposed DRL-

CSS, in this chapter we will employ the transfer learning technique to transfer the learned 

knowledge from one trained DRL-CTSF to another. This will help contribute to significant 

reduction of the total training time so that our proposed work can be used in practice. To the best 

of our knowledge, this is the first work that applies transfer learning technique to synthesize analog 

integrated circuits in the EDA area. As the transfer learning itself, as one of the most popular 

machine learning techniques at the moment, is still evolving, in this chapter we only document the 

major concepts that we have used thus far to develop our methodology for acute analog topology 

synthesis. More enrichment and refinement work are expected as the future work for this research. 

The research conducted in this chapter is under preparation for submission to IEEE 

Transactions on Very Large Scale Integration Systems [JR1].  
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6.2. Training of DRL-CTSF 

As mentioned in the previous introduction section (Section 6.1), in our proposed DRL-CSS, 

each DRL-CTSF would deal with a fixed design specification and thus various starting sub-circuits 

may be provided by the users. The experimental results in Section 5.5 have already demonstrated 

that the proposed DRL-CTSF has the ability to robustly produce a trustworthy solution for a target 

design specification as long as the users provide a valid starting sub-circuit. The validity of a 

starting sub-circuit will be explained later in this Section. Therefore, in order to ensure that a 

trained DRL framework can always return a solution immediately instead of experiencing a time-

consuming training/learning process whenever the users input a valid starting sub-circuit, this DRL 

framework should be well trained with almost all possible valid starting sub-circuits. 

Fig. 6.2 depicts a block diagram for an intuitive understanding of the training and using of a 

DRL-CTSF, which can be carried out simultaneously, but usually, the training part is done to some 

extent before the using part. The starting sub-circuits generator would automatically generate 

various starting sub-circuits for training a DRL-CTSF, which is bound with a specific design 

specification. However, after training within the limited number of iterations (i.e., a user-defined 

parameter), not all the generated starting sub-circuits could successfully derive solutions within 

the allowed design search space. Only those starting sub-circuits that can make it are called valid 
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Fig. 6.2. Training and using of a DRL framework. 
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starting sub-circuits. Although some starting sub-circuits are not valid under the current 

environment setting, it does not mean that training with such starting sub-circuits would always 

fail (i.e., cannot produce a solution). If the design search space is enlarged (e.g., by increasing the 

state size), those starting sub-circuits may become valid. It is worth noticing that only the valid 

starting sub-circuits are allowed to train a DRL-CTSF. For the starting sub-circuits that are 

confirmed as invalid, we need to restore the weights of the PGNN in the DRL-CTSF to be the ones 

before training them.  

6.2.1. Hierarchical Building Block Library 

As a matter of fact, the proposed DRL-CTSF is driven by the BB library since it treats BBs 

as the basic components to construct circuit structures, which means distinct BB libraries would 

contribute to different solutions being produced. Therefore, if some BBs naturally share similar 

structural characteristics and have close performance capability, their similarity can be utilized for 

subsequent relational-knowledge transfer in order to save the training time. For instance, according 

to our experimental studies, when replacing a BB of a circuit already satisfying a certain 

performance requirement with its Cascode-version BB, most likely this modified circuit would 

still satisfy the original performance requirement.  

Based on the relationship among BBs, we can stratify the BB library into multiple layers, by 

which some more complex BBs are put into higher layers. In this way, instead of training the DRL-

CSTF with the whole library from scratch, we can train it with the BBs layer by layer, as depicted 

in Fig. 6.3. Specifically, we can first train the DRL-CSTF with only the BBs in the first layer. After 

training to a good extent, the knowledge about similarity among BBs and the learned knowledge 

from previous training will be used to continue to train it with BBs in both the first and second 
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layers. This process continues until all the layers in the library are included. Compared with the 

direct training with the whole library, training in the way of layer-by-layer would largely reduce 

the training time. There are two main reasons behind this. First of all, compared with the whole 

library, there are fewer BBs in the first layer, contributing to much smaller design space to search 

and much less computation effort to spend in order to train the DRL-CSTF to a sufficiently good 

extent with the BBs only in the first layer. Secondly, the knowledge obtained from the training in 

the previous phases and the similarity among the BBs in different layers would greatly facilitate 

the training in the later phase. 

Table 6.1 illustrates an example hierarchical BB library. As one can see, this library contains 

38 BBs in total, with 22, 8, and 8 BBs in the first, second, and third layer, respectively. Specifically, 

the first layer is made up of some basic one-signal-path and two-signal-path types of BBs. The 

second layer extends the first layer with four two-signal-path type BBs and four two-output type 

converters. The third layer is typically composed of Cascode BBs, each of which has a 

corresponding non-Cascode version in the first or second layer. For instance, the 31st and 32nd BBs 

are the Cascode version of the 1st and 2nd BBs (i.e., NMOS-type and PMOS-type current source), 
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Fig. 6.3. Training DRL-CTSF with hierarchical building block library. 
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respectively. Furthermore, in this library each BB has a unique index and each type of BB (e.g., 

current source) could be composed of either N-type or P-type MOSFET transistors, leading to 

distince I/O terminal types. There are two special BBs (i.e., the 29th and 30th BB), which are 

composed of only nets. Both of them have two possible combinations of I/O terminals, which 

depends on the order of the input terminals.  

6.2.2. Starting Sub-circuits Generation 

In order to automatically train a DRL-CTSF to a satisfactory level, a suitable starting sub-

circuit generation scheme is in demand. In this regard, we have proposed three methods to 

automatically generate the starting sub-circuits.  

1) Brute Force 

Table 6.1. An example of hierarchical building block library 
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The most straightforward method is to follow a brute-force search flow, which explores all 

the possible starting sub-circuits within the design search space bound by the state size and the 

building block library. However, due to the brute-force nature, the number of the generated starting 

sub-circuits is very large while training each of them is a time-consuming process (e.g., several 

hours), leading to low efficiency of this method. More important, since it is uncertain what kind 

of starting sub-circuits are valid, a large percentage of those generated starting sub-circuits might 

be infeasible, causing a huge amount of computation effort is wasted on evaluating the invalid 

starting sub-circuits.  

2) Simulated Annealing 

In the process of an algorithm run, two hash tables, Tinvalid and Tvalid, are built to record all the 

generated valid and invalid starting sub-circuits, respectively. The hash is calculated via (5.5). 

During an algorithm run, if a generated starting sub-circuit can successfully derive a solution after 

training, it is inserted into Tvalid. Otherwise, this starting  sub-circuit is inserted into Tinvalid. For 

those valid starting sub-circuits recorded in Tvalid, the number of their occurrences during an 

algorithm run is recorded as their associated values. Thereby, each time an starting sub-circuit is 

put into Tvalid, its associated value is increased by 1 if it is already existed in Tvalid. Otherwise, its 

associated value is set to be 1. In summary, Tvalid is utilized to drive the SA algorithm while Tinvalid 

is used to avoid re-training those confirmed invalid starting sub-circuits to improve the efficiency 

of the algorithm. 

The SA algorithm starts with a valid starting sub-circuit, which is treated as the current 

solution and put into the hash table Tvalid. After successful training, a valid circuit that satisfies the 

design specification would be generated. At each iteration, the derived valid circuit from the 

current solution would be perturbed to produce a new starting sub-circuit, which will replace the 
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current solution if it is confirmed as valid and has a smaller value (i.e., the number of its 

occurrences) than that of the current solution. Even though its value is larger than that of the current 

solution, substituting the current solution is still possible due to the property of SA algorithm. Once 

the solution is updated, the temperature goes down a bit. This iterative process continues until 

reaching the lowest limit of temperature or reaching the predetermined number of iterations. 

Since all the starting sub-circuits in Tvalid have already been learned, updating a starting  sub-

circuit from Tvalid will always derive a determined valid circuit. From our observation of 

experiments, if we continuously perturb the same valid circuit, it becomes increasingly hard to 

obtain a valid starting sub-circuit that has nerver been seen, leading to low training efficiency. Due 

to this observation, the number of occurrences of starting sub-circuits in Tvalid is utilized to drive 

a1

a2

14 33 0 014 0 0 0

99 99 99 99 14 33 36 0
a3

s1 s2

s3s4

perturbate
14 33 20 0s1

 
(a) 

GND

VDD

VDD

VINP VINN

14

33

36

a1
a2

V

a3 T

         
GND

VDD

VINP VINN

14

33

20

I I

 
                                            (b).                                                                    (c) 

Fig. 6.4. An example of the perturbation operation. 
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the proposed SA algorithm, and the starting sub-circuit with a small number of occurrences is 

preferred as the updated one. 

An example of the above-mentioned perturbation operation is illustrated in Fig. 6.4. After 

training with a valid starting sub-circuit (state representation of [14, 0, 0, 0] in Fig. 6.4(a)), a circuit 

topology depicted in Fig. 6.4(b) (state representation of [14, 33, 36, 0] in Fig. 6.4(a)) is derived. 

The perturbation operation will randomly choose a non-zero slot in its state representation to 

change to any BB, excluding itself, from the building block library as long as they share the same 

input port(s). The slots after the chosen slot become zeros to indicate these seats are empty. In this 

example, the perturbation operation selects the third slot to change (i.e., the 36th BB becomes the 

20th BB). After the perturbation operation, a new starting sub-circuit shown in Fig. 6.4(c) with the 

state representation of [14, 33, 20, 0] is produced. 

Although the tricky part (i.e., what kind of starting sub-circuits are valid) is still uncertain, 

generally perturbating a valid circuit is more likely to derive another valid one, according to our 

experiments. Thus, the SA-based method is more efficient than the brute-force method that 

normally constructs circuits from scratch. The rationale behind this is that the preserved part (i.e., 

the new starting sub-circuit after perturbation) has been proved to be reasonably constructed and 

so it is more likely to succeed. Thereby, the proposed SA-based method is more desirable than the 

burte-force method. 

3) Minimum-Occurrence-Driven Method 

The two hash tables and perturbation operation employed in the SA-based method are also 

used in this method. The difference is that this method will always replace the current starting sub-

circuit with the one that has the minimum number of occurrences in Tvalid when it fails the training 

(i.e., confirmed as invalid) while the SA-based method cannot guarantee that. Such an updating 
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feature will help this method do more exploitation compared with the SA-based method, 

contributing to better training efficiency, which will be demonstrated in the experimental results. 

The details of this method are listed in Algorithm 6.1. As one can see, Lines 5 and 10 indicate 

that if the derived starting sub-circuit after a perturbation operation (Line 3) has already existed in 

the hash tables or confirmed as training failure, it will be replaced by a certain one with the minimal 

number of occurrences in Tvalid. If it is confirmed as training success, no replacement operation is 

needed. At each iteration, the final determined starting sub-circuit will be utilized to derive a valid 

Algorithm 6.1: Min-Occurrence-Driven Training Scheme 

Input: A untrained DRL-CTSF; Predetermined iteration 

count N;             A valid starting sub-circuit s0; Hash tables Tvalid and 

Tinvalid. Output: A well trained DRL-CTSF. 

  1.    Train DRL-CTSF with s0 to derive a valid circuit C; 

2.    While (the size of Tvalid < N): 

3.         Perturb C to derive a new starting sub-circuit s; 

4.         If (s exists in Tvalid or Tinvalid): 

5.             Get the starting sub-circuit with the minimum 

number                 of occurrences from Tvalid to replace s; 

6.         Else:  

7.             Save the weights of the PGNN in DRL-CTSF as W; 

8.             Train DRL-CTSF with s; 

9.             If (training is not successful): 

10.               Get the starting sub-circuit with the minimum 

number                     of occurrences from Tvalid to replace s; 

11.               Load W back to the PGNN; Insert s into Tinvalid; 

12.           Else: 

13.               Insert s into Tvalid and add its associated value by 

1; 14.           End If; 

15.       End If; 

16.       Use DRL-CTSF with s to derive a valid circuit to 

replace C; 17.  End While; 

18.  Return DRL-CTSF; 
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circuit via DRL-CTSF immediately since this starting sub-circuit has already been learned, as 

shown in Line 16. This process continues until the predetermined iteration count, which is also the 

size of Tvalid, is reached.  

 

6.3. Training of DRL-CSS 
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Fig. 6.5. Preliminary DRL-CTSF. 

For the first stage of training the proposed DRL-CSS, instead of directly training a 

comprehensive DRL-CTSF, we opt to utilize the concept of transfer learning by first training its 

preliminary version, which is a DRL-CTSF excluding the simulation-in-loop sizing phase in its 

circuit topology formation & evaluation process as depicted in Fig. 6.5. Compared with training a 
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comprehensive DRL-CTSF, training a preliminary DRL-CTSF would be significantly faster since 

the most time-consuming operation within a learning process in DRL-CTSF is circuit sizing. This 

means that we promote to trade accuracy for efficiency at this level of training. Here, inaccuracy 

refers to the derived circuits from the trained model may not actually meet the target specification. 

After training the preliminary DRL-CTSF to a certain satisfactory level, the synthesis knowledge 

is stored in its PGNN model. Even though this knowledge may not be that accurate, it still can 

greatly reduce the overhead of training any comprehensive DRL-CTSF with the same 

environmental settings. Later by coping the trained PGNN from the preliminary DRL-CTSF to the 

comprehensive DRL-CTSF, any further training can get much smoother. 

6.3.2. Knowledge Transfer Among Design Specifications and 

Technology Process Nodes 

After completing the training of a DRL-CTSF, its learned knowledge can be transferred to 

train another DRL-CTSF with distinct design specifications but in the same technology node. 

Some design specifications are strongly related. For instance, one specification requires 60dB dc 

gain while another needs 80dB dc gain. For the two DRL-CTSFs that deal with these two 

specifications, the knowledge obtained from a trained one can be used to train the other one by 

applying the transfer learning technique since they share the same domain but address different 

tasks. Even though some design specifications might not be strongly related, such as high gain and 

high bandwidth, they may still share the same requirements for the other performance attributes 

(e.g., gain margin and phase margin). For this situation, transfer learning is still helpful to reduce 

the training overhead. A typical strategy used via transfer learning is to freeze some lower layers 

of the neural network model, which means the weights of the frozen layers are not allowed to 

update when training it for a new task. Since the neural network model contained in our DRL-
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CTSF has several hidden layers, the number of the layers that need to be frozen to get the best 

training service has to be explored through experiments. 

Although circuits may behave quite differently in distinct technologies, it is mainly caused by 

circuit biases and sizes. Through our experimental studies, we found that the same circuit structure 

had similar performance capability in different technologies. This observation has inspire us to 

consider transfer learning as a suitable medium for conveying the knowledge about circuit 

structure synthesis among the DRL-CSTFs in the different technologies. Thereby, after finishing 

the training of a cluster of DRL-CSTFs that process distinct specifications for the same technology, 

transfer learning is also helpful to facilite the training of another cluster of DRL-CSTFs that deal 

with a different technology. 

 

6.4. Summary 

In this chapter, we have propsed a preliminary smart DRL-CSS. It can immediately return a 

solution to the users if their inputs have already been learned. Otherwise, it will go through a 

learning process and then return a solution. It can address various requests of design specifications 

and technology nodes from the user side. It has the ability to continuously learn and evolve so that 

the more users there are, the smarter this system becomes. A transfer learning scheme is also 

proposed to significantly reduce the overhead of training DRL-CTSFs from scratch, thus greatly 

cutting down the computation effort of training DRL-CSS.  

In the next chapter, we will conclude the works studied in this dissertation and discuss the 

future work.  
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Chapter 7    Conclusion and Future Work 

In this dissertation, all our research works are aimed at developing a circuit synthesis EDA 

tool for analog integrated circuits, which still has no widely accepted commercial solutions even 

at the research level. In order to make the developed EDA tool commecializable, there are many 

challenges that have to be solved, including wide applicability, sound generalization capability, 

and affordable computation effort. Currently, all the existing research works are not able to 

perfectly address the abovementioned challenges. 

Chapter 3 proposed an automated graph-grammar-based topology synthesis framework for 

analog ICs. The circuit topology synthesis is efficiently realized by encoding circuit topology 

generation process as tree structure construction. Each graph node in the tree structure represents 

a black block that is associated with only input and output terminals. The tree construction process 

is realized by iteratively splitting leaves starting from the root node, which symbolizes the input-

output specification of the represented circuits. The splitting operation is guided by our defined 

decomposition rules, which would largely reduce generating meaningless circuit topologies by 

matching the input-output terminals of the connected block nodes. Besides the decomposition rules, 

we have also defined structural symmetry rule, branch termination rule, deconstruction rule, and 

last-level constraint rule to help improve the efficiency and quality of the tree structure 

construction process. Then the leaves of the produced tree structures are mapped to their 

corresponding basic BBs in the predefined BB library. Finally, transistor-level circuit topologies 

will be formed by connecting those BBs according to the recorded connection information during 

the tree structure construction process. To ensure only unique circuit topologies to be generated, 

two levels of isomorphism checks are performed at both tree structure level and circuit topology 



142 

 

level. The experimental results demonstrate that more than half of the produced circuit topologies 

would be eliminated due to duplication.  

As mentioned in Section 2.1.3, one of the main challenges of automated circuit topology 

synthesis is its efficiency. Evaluating such a huge number of circuit topologies produced in the 

synthesis process is practically a task with unaffordable computation challenge, if each circuit 

topology has to go through a quite time-consuming sizing process for performance feasibility 

checking. To address this issue, in Chapter 3 we proposed a novel fast evaluation method to 

roughly evaluate un-sized circuits, which trade accuracy for efficiency. In this way, only a small 

portion of produced circuit topologies can pass the fast evaluation stage and go to the detailed 

sizing stage. The fast evaluation consists of three tests, each of which acts as a filter to eliminate 

the circuit topologies that do not satisfy the requirements. The first one is the linear constraint test, 

which models the biasing constraints, symmetry constraints, and common constraints from a 

circuit topology as the linear equality or inequality constraints in the form of a linear programming 

problem. Once the modeled problem has a feasible solution, the circuit topology passes this test. 

The second one is the DC gain test, which utilizes the estimated center values of small-signal 

model parameters to numerically calculate the DC gain through the GPDD symbolic analysis 

algorithm. This test can largely avoid the ill-constructed circuit topologies. The third test is the fast 

sizing & simulation test, which integrates symbolic analysis, gm/ID methodology, and nonlinear 

programming technique together to fast and coarsely size the circuit topologies and then check the 

performance feasibility via SPICE simulation. 

Compared with the state-of-the-art topology synthesis methods, this proposed method 

possesses wider applicability because it can address the situation of current division and voltage 

division, which have not been solved by any other methodologies before. It also achieves higher 
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synthesis efficiency due to the proposed fast evaluation method that can largely reduce the circuit 

topologies to be sized. However, since this method will explore all the possibilities in a brute-force 

manner within its allowed design search space, the number of circuit topologies that pass the fast 

evaluation stage is still large, especially when the circuit size is large. To further boost the synthesis 

efficiency, in Chapter 4, a novel performance modeling method is proposed to substitute the 

computation-intensive and time-consuming simulator in the sizing process.  

To improve the sizing efficiency, a variety of performance models, which can estimate circuit 

performance significantly faster compared with simulators, have been proposed in the past two 

decades. A generic flow for the generation of performance models is provided as follows. The 

SPICE netlist of a circuit extracted from the schematic or physical design is the input to the 

modeling flow. At the first step, the circuit parameters (e.g., transistor length and width) and target 

characteristics or figures-of-merit are identified. The netlist is then parameterized for these 

parameters to obtain a parameterized netlist, and each of the characteristics will have a model. A 

sampling technique is employed to obtain discrete samples of the design parameters. Then, the 

parameterized netlist is simulated through the SPICE simulator for the target characteristics with 

the sampled values of the design parameters. Finally, these collected sample points and their 

corresponding characteristics are utilized for the regression or fitting operation of performance 

models. In order to achieve sufficient accuracy, a suitable sampling scheme should be selected, 

and a large number of simulations have to be conducted. More important, the complexity of this 

sampling process grows exponentially versus the dimension of the design parameters. 

Therefore, building performance models is generally difficult and time-consuming. Moreover, 

this time-consuming process has to restart from scratch for every new circuit. This severe 

drawback makes all the existing performance modeling approaches cannot be applied to the 
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topology synthesis works, which would produce a large number of various circuit structures during 

the synthesis process. To overcome this problem, in Chapter 4, we proposed a novel performance 

modeling method that does not need to re-extract sampling data for new circuits, making it be able 

to rapidly adapt to any variation of circuit topology in the same technology. Different from the 

existing modeling methods that attempt to directly model circuit behaviors, our proposed method 

focuses on modeling transistor behaviors and then efficiently computes circuit performances based 

on the established transistor models. 

In Chapter 4, we take advantage of the advanced neural network (NN) regression technique, 

which is naturally suitable to process the complex and nonlinear relationship between input 

variables and output performances, to generate transistor models that can accurately fit these 

functions. Through an undirected bipartite graph (UBG), which is constructed when reading a 

circuit netlist, circuit topology information can be automatically and efficiently extracted. By 

integrating the established transistor models and extracted circuit topology information, the 

transistor DC operating points can be efficiently computed. Once they are confirmed, the small-

signal model parameter values of all the transistors in the circuit can be directly derived through 

the established transistor models. Finally, the symbolic analysis technique is employed to 

efficiently calculate the circuit performances in terms of small-signal model parameters. The 

experimental results indicate that the proposed performance modeling method can boost the sizing 

efficiency by more than 30 times with ignorable model building overhead, making it especially 

suitable for circuit synthesis works that involve generating various circuit structures. 

Although promoting sizing efficiency is an effective way to improve the whole circuit 

topology synthesis efficiency, the efficiency of the proposed graph-grammar-based topology 

synthesis method is still low after employing the proposed performance modeling method in the 
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sizing process, in that the number of circuit topologies produced in the synthesis process is too big. 

For instance, if at each explorative step there are only 6 possible choices to map and the maximum 

allowed exploring step is 8, the number of topologies generated would be 68, which means more 

than one million topologies would be generated. To further improve the synthesis efficiency to be 

computation affordable, in Chapter 5, we have proposed a novel deep-reinforcement-learning-

based topology synthesis method with distinct synthesis mechanisms, which treat the synthesis 

process as a decision-making learning process. With the help of artificial intelligence, the synthesis 

algorithm would become increasingly smarter, that is, gradually learn the design knowledge to 

make the optimum decision at each synthesis step. Due to this synthesis mechanism, in general, 

the deep-reinforcement-learning-based topology synthesis method would produce much fewer 

unique circuit structures to find a solution compared with the graph-grammar-based topology 

synthesis method, which means considerably less computation effort comsumed. 

To speed up the learning process, we have defined some basic design rules to let the DRL 

process follow, which would largely avoid constructing meaningless circuit structures even though 

the DRL has the ability to automatically learn the optimal selection strategy through its continuous 

trial-and-error process. In addition, hash table and symbolic analysis are employed in this work to 

reduce the number of produced circuit topologies to be sized during the synthesis process. The 

parallel computing technique is adopted to speed up the time-consuming circuit sizing process. As 

the experiments depicted in Section 5.5.5, the computation effort of the DRL-based topology 

synthesis method is much less than the graph-grammar-based topology synthesis method thanks 

to much fewer unique circuit topologies to be sized in the synthesis process.  

Although the circuit topology synthesis system proposed in chapter 5 is promising, which is 

able to provide solutions to the users immediately as long as their input design specifications are 
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reasonable, training this system to a satisfactory level is quite challenging. Its training time 

consumed and computation resources needed are unaffordable. To solve this challenge, transfer 

learning, one of the most popular machine learning techniques, is applied for training this system 

in chapter 6. Transfer learning can automatically draw inferences from one another to transfer the 

learned knowledge from one trained DRL framework to greatly reduce the overhead of training 

another DRL framework from scratch. With the help of transfer learning, the total training time is 

significantly reduced, contributing to the proposed system can be used in practice.  

There is still a lot of room for improving the DRL-based circuit topology synthesis method, 

which can be treated as future works. For instance, this method still applies the SPICE simulator 

to evaluate circuit performance, which can be replaced by the proposed performance modeling 

method to further enhance the synthesis efficiency. This method does not address the current 

division and voltage division situations, leading to only a narrow range of circuits to be synthesized. 

Thus, widening its applicability is also a direction to go in future research. In addition, since the 

learning process has to be performed from scratch once the technology or design specification 

changes, addressing this issue should also be a good topic to study in the future.  

As the success of circuit topology synthesizer relies on the degree of solving the three 

challenges mentioned in Section 2.1, there are generally three main directions to go for future 

works. For instance, making the synthesizer have the ability to produce RF circuits and mixed-

signal circuits would widen its applicability. Furthermore, some OpAmps circuits contain 

compensation sub-circuits, but no existing works are able to automatically synthesize this kind of 

circuits, which provides an opportunity for the next-generation topology synthesizer to go. 
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