
Covert Timing Channel Attack Detection and

Localization Using Machine Learning Frameworks

by © Shorouq Al-Eidi

A dissertation submitted to the School of Graduate Studies in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland

2021

St. John’s Newfoundland

Abstract

A covert timing channel is method that utilize to bypass security rules and transfer

illegal data across several networks. It conceals critical data from the networks it

targets by using traffic inter-arrival times. These channels are utilized by hostile

tactics in a variety of damaging situations, including the exposure of economic and

military secrets. Because they are not utilizing a new system, existing computer

systems may be targeted to spread malware or worms without being discovered. Data

leakage from cyber-attacks is on the rise, making the use of covert timing channels a

significant network security issue that is getting more complex and pervasive.

Therefore, identifying and mitigating the usage of covert timing channels is crucial

in today’s information technology architecture and network security. Many private

and public companies are trying to develop techniques for identifying and eliminating

covert timing channels. These approaches would benefit from an information security

decision support system that was developed on top of them to assist protect the IT

infrastructure.

ii

This dissertation makes significant advances fully automated covert timing chan-

nel identification and reduces the amount of data that might be transmitted over such

channels. It provides a range of dependable and quick detection methods for success-

fully thwarting hidden timing channels. Images and sequential time series are used in

these detection systems and different machine learning and deep learning methods.

This study varies from others in the recent literature in the following ways: it com-

bines different input data with various supervised and unsupervised machine learning

methods, achieving noteworthy results, and giving important insight into how other

solutions are used to develop realistic detection methods for detecting such channels

in a variety of applications.

The dissertation also introduces a novel method for precisely identifying traffic flow

segments carrying covert communications. This accurate identification substantially

minimizes overt traffic interruptions caused by non-malicious apps. Furthermore, it

enhances the Quality of Service (QoS) that is compromised when the whole traffic

flow is lost since it is highly disruptive to the QoS of the overt traffic of legitimate

applications, which may include the majority of the packets in the dropped flows.

The performance of the proposed methods in this research was tested and com-

pared using various configurations of covert timing channel attacks ranging from

simple to stealthy channels based on various sophisticated defensive strategies. These

assaults also made use of various sizes of hidden messages. Our comparative analysis

demonstrates a possible path for developing effective covert channel detection mod-

iii

els utilizing a variety of input data and techniques, eliminating the requirement for

robust and diverse concealed network traffic behavior.

iv

Acknowledgements

I’ve spent almost five years of my life sitting in my office working on my thesis, building

up to this moment, when I write the last lines of my thesis. This lengthy trip has been

pleasant and unforgettable for me thanks to the support of my supervisors, family,

and friends. As this chapter of my life draws to a close, I would want to thank many

people who have helped shape who I am today.

First and foremost, I want to express my gratitude to my supervisors, Dr. Yuanzhu

Chen and Dr. Omar Darwish, for their support during the program. Dr. Chen, his

support and confidence in me, led me through difficult moments and significantly

enhanced my graduate experience.

When I was nearly lost, Dr. Omar Darwish helped me find my path. He created

numerous possibilities for me, even some I believed were unattainable, allowing my

academic research to thrive. He is receptive to new research ideas and has given me

a lot of leeway to experiment with new concepts in my study area. Because of him,

I eventually fell in love with my study topic and have since really loved working on

v

my thesis.

I would also want to thank Dr. Cheng Li for his ongoing assistance in guiding me

through my studies at Memorial University.

I would want to thank my parents, sisters, and brothers for never giving up on

me, even though they were hundreds of miles away, and for always being there for me

when I was irritated or homesick. I would not have achieved as much in my life if it

hadn’t been for their unconditional love and unshakable faith in me.

Finally, I want to express my heartfelt gratitude to my husband and kids; they are

the real cause for every accomplishment in my research trip. They are always there

to cheer me up and stick by me through good and bad times; nothing is complete

without them. They have always been sympathetic and helpful when I have been

under stress, and they have always accommodated me while trying to meet deadlines.

I dedicate this work to them as a thank you for all they have done.

vi

I would like to dedicate this thesis to Zain’s AlEidi soul

vii

Contents

Abstract ii

Acknowledgements v

List of Tables xv

List of Figures xx

1 Introduction 1

1.1 Research motivation and problem definition 4

1.2 Research objectives and main contributions 8

1.3 Thesis outline . 12

viii

2 Related Work 14

2.1 Covert timing channel design . 14

2.1.1 On-Off channel . 15

2.1.2 One threshold (GAS) channel 15

2.1.3 Fixed time interval (BER) channel 16

2.1.4 Time Replay channel . 16

2.1.5 Jitterbug . 17

2.1.6 Model based channel . 18

2.1.7 Other covert timing channels 18

2.2 Covert timing channel detection methods 19

2.2.1 Methods for detecting CTC based on statistical tests 20

2.2.1.1 Regularity test . 21

2.2.1.2 Kolmogorov Smirnov test 22

2.2.1.3 Entropy tests . 22

2.2.1.4 Other detection tests 25

ix

2.2.2 Methods for detecting CTC based machine learning 26

2.3 Detecting attacks based on image processing and machine learning

techniques . 29

2.4 Deep learning techniques for detecting attacks 30

2.4.1 Attack detection based on convolutional neural networks . . . 31

2.4.2 Attack detection based on recurrent neural networks 34

2.4.3 Attack detection based on autoencoders 36

3 Experimental Design of Binary Covert Timing Channel 39

3.1 Covert timing channel design . 40

3.1.1 Channel exfiltration experiments 43

3.2 Channel implementation setup . 50

3.3 Covert timing channel analysis . 53

3.3.1 Accuracy of distinguishing covert traffic from Legitimate traffic 53

3.3.1.1 Effect of time delay selection 54

3.3.1.2 Effect of network conditions 55

x

3.3.2 Transmission bit rate . 59

3.3.3 Experimental environment and evaluation metrics 61

3.4 Chapter summary . 65

4 CTC Detection and Localization Based on Image Processing Using

Machine Learning Techniques 67

4.1 SnapCatch: Image-based CTC detection model 69

4.2 Raw data generation . 71

4.3 Creating colorful pictures from traffic inter-arrival times 72

4.4 Feature extraction and image classification 74

4.4.1 Feature extraction . 75

4.4.2 Machine learning model construction 76

4.5 Experimental results and analysis . 77

4.5.1 Experimental results of using three types of CTC attacks . . . 78

4.5.1.1 Greedy Covert Timing Channels (GCTC) 79

4.5.1.2 Cautious Covert Timing Channel (CCTC) 82

xi

4.5.1.3 Ultra-Cautious Covert Timing Channels (UCCTC) . 84

4.5.2 Detecting the presence of hidden communications in traffic flows

. 87

4.6 Discussion . 90

4.7 Chapter summary . 92

5 CTC Detection and Localization Using Convolution Neural Net-

work 94

5.1 Image classification and CTC detection using a CNN architecture . . 97

5.1.1 CNN based CTC detection . 99

5.1.2 CNN model initialization . 106

5.2 Experimental setup . 108

5.2.1 Experimental datasets and data augmentations 108

5.2.2 Model hyperparameters . 110

5.3 Experimental results and analysis . 112

5.3.1 Effects of using batch normalization technique on the CNN

model performance . 113

xii

5.3.2 Hyperparameters effect on CNN model performance 115

5.3.3 Image size effect on CNN model classification 117

5.3.4 Effects of image reshaping on CNN model classification 119

5.3.5 A comparison of the CNN model performance with other con-

ventional machine learning methods 120

5.3.6 A comparison of the shallow CNN model performance with ex-

isting deep CNN methods . 121

5.3.7 Localization of CTC in traffic flows 122

5.4 Chapter summary . 124

6 CTC Detection Based on Sequential Time Series Using Recurrent

Neural Network and 1D Convolution Neural Network 125

6.1 CTC detection using a sequential time series 127

6.1.1 CTC detection with RNN sequential data 127

6.1.2 CTC detection using 1D-CNN sequential data 130

6.1.3 CTC detection based combination network 135

6.1.4 Experimental dataset . 139

xiii

6.1.5 Recurrent network analysis . 140

6.1.6 Convolutional network analysis 142

6.1.7 Combination network analysis 143

6.2 Chapter summary . 148

7 CTC Detection and Localization Using Autoencoders 150

7.1 Autoencoder and reconstruction error for CTC detection 153

7.2 Autoencoder models . 157

7.2.1 Stack Autoencoder (SAE) . 157

7.2.2 Sparse Stacked Autoencoder (SSAE) 158

7.2.3 Denoising Autoencoder (DAE) 159

7.2.4 Convolutional Autoencoder (CAE) 160

7.2.5 Contractive Autoencoder (ContAE) 161

7.3 Experimental setup for autoencoder model design and comparison . . 163

7.3.1 Autoencoder network structure and parameters 163

7.3.2 Experimental datasets . 166

xiv

7.4 Experimental results and analysis . 168

7.4.1 Network convergence of autoencoder models 169

7.4.1.1 Reconstruction error ability 169

7.4.1.2 Model learning behavior 170

7.4.2 Model performance based on CTC detection 171

7.4.2.1 Model detection performance analysis 172

7.4.2.2 ROC model analysis 173

7.4.3 Model performance using imbalanced classification 174

7.5 Autoencoder for pinpointing CTC . 177

7.6 Chapter summary . 180

8 Conclusion and Future Work 181

8.1 Conclusions . 181

8.2 Future directions . 186

xv

List of Tables

3.1 Inter-arrival time range in LAN network 1. 49

3.2 Inter-arrival time range in LAN network 2. 50

3.3 Inter-arrival time range in WAN network. 50

3.4 Devices properties in the LAN networks. 51

3.5 Devices properties in the WAN network. 51

3.6 LAN networks characteristics. 52

4.1 Detection dataset parameters . 74

4.2 Localization dataset parameters . 74

4.3 Results of Precision, Recall, and F1 score of the image-based method

for GCTC in WAN network . 87

xvi

4.4 Results of Precision, Recall, and F1 score of image-based method for

CCTC in WAN network . 87

4.5 Results of Precision, Recall, and F1 score of image-based method for

UCCTC in WAN network . 88

4.6 Measures comparison of SnapCatch classifiers for UCCTC attack (covert

message size = 128 bits). 91

5.1 Detection datasets . 110

5.2 Localization datasets . 110

5.3 Setting of data augmentation. 110

5.4 CNN model hyperparameters. 111

5.5 Classification accuracy of proposed model. 114

5.6 Evaluation results for two classes. 115

5.7 Accuracy results based on various convolutional layers and activation

functions. 116

5.8 Performance results based on using a max-pooling and fully connected

layers with various functions . 117

5.9 Image sizes effect on model performance measures. 119

5.10 Model classification results using different image shapes. 120

xvii

5.11 Classification results of shallow CNN model with traditional machine

learning methods. 121

5.12 Classification results of shallow CNN model with other deep approaches.122

5.13 Localization results of shallow CNN model with other approaches. . . 124

6.1 LSTM model hyperparameters. 130

6.2 1D-CNN model hyperparameters. 134

6.3 The CNN-LSTM model structure. 137

6.4 The LSTM-CNN model structure. 139

6.5 Specifications of different RNN models. 141

6.6 RNN types using sequence length 128 bits. 141

6.7 1D-CNN model performance based on using different functions. . . . 143

6.8 Performance measures comparison. 146

7.1 Autoencoder structure parameters. 164

7.2 1D-CAE parameters for sequential data. 165

7.3 Detection dataset parameters . 168

7.4 Localization dataset parameters . 168

xviii

7.5 Average reconstruction error foe autoencoder models. 170

7.6 Model detection performance . 172

7.7 Model accuracy for CTC localization. 179

xix

List of Figures

3.1 Covert communication model. 41

3.2 An example the covert channel encodes the bit string 10001. 45

3.3 Covert binary delay in LAN networks. 48

3.4 Covert binary delay in WAN networks. 48

3.5 Accuracy of distinguishing covert traffic from overt traffic. 56

3.6 Bit accuracy results with no error correction (left) and with error correction

(right). 57

3.7 Transmitted bit rates of LAN network 1 (left) and LAN network 2 (right). 62

4.1 Workflow of CTC detection using image processing and machine learning. 70

4.2 Illustration of inter-arrival time images. 73

xx

4.3 The impact of the covert message size on the detection accuracy of GCTC

in LAN network. 81

4.4 The impact of the covert message size on the detection accuracy of GCTC

in WAN network. 81

4.5 The impact of the covert message size on the detection accuracy of CCTC

in LAN network. 83

4.6 The impact of the covert message size on the detection accuracy of CCTC

in WAN network. 84

4.7 The impact of the covert message size on the detection accuracy of UCCTC

in LAN networks. 85

4.8 The impact of the covert message size on the detection accuracy of UCCTC

in WAN network. 86

4.9 The accuracy of pinpointing the location of covert messages within a traffic

flow using different message sizes. 90

5.1 CNN framework. 100

5.2 Architecture structure for CNN model. 101

5.3 Model parameter with weight random initialization. 107

5.4 Classification results of three CNN model cases. 114

xxi

5.5 Performance test with increasing the learning rate. 118

5.6 Accuracy results of using different image sizes. 119

5.7 The comparison of accuracy results. 121

6.1 Overview of the proposed LSTM sequential data based CTC detection model.129

6.2 Overview of the proposed 1D-CNN sequential data based CTC detection

model. 134

6.3 Combination of CNN and LSTM. 137

6.4 Combination of LSTM and CNN. 138

6.5 LSTM model performance using various hidden state (left) and hidden layer

(right). 141

6.6 Performance of 1D-CNN with (left) different filter number and (right) dif-

ferent filter width. 142

6.7 Comparison of models performance. 144

6.8 Model loss (left) and accuracy (right) per epoch. 146

6.9 Model performance using various dropout rate values. 147

6.10 Performance sequence based models with different sequence lengths. . . . 148

7.1 General structure of autoencoder. 154

xxii

7.2 Reconstruction error based for CTC classification 157

7.3 Stacked autoencoder structure. 158

7.4 Sparse stacked autoencoder structure. 159

7.5 Denoising autoencoder structure. 160

7.6 Convolutional autoencoder structure. 161

7.7 Contractive autoencoder structure. 162

7.8 2D CAE for image input data. 165

7.9 Comparison experiment framework. 166

7.10 Model loss using sequence-based datasets. 171

7.11 Model loss using image-based datasets. 171

7.12 Model ROC curves using sequence-based dataset (left) and an image-based

dataset (right). 174

7.13 Model PR curves using sequence-based dataset (left) and image-based dataset

(right). 176

7.14 Model F1 using sequence-based dataset (left) and image-based dataset (right).178

xxiii

Chapter 1

Introduction

How important is our personal information’s protection, and why leaking such infor-

mation could put our daily financial processes at risk? In today’s highly developed

Internet technology, we may access various online services at any time and from any

location. These services necessitate the sharing of personal information. While this

kind of development improves various online services, it exposes our data to danger

and vulnerability. For instance, in the event of data leakage in a hospital system, the

attackers can use the data to hack associated bank accounts [1]. The main reason

behind the vulnerability of leaking such personal data; the common mistake behind

setting password keys inspired by birthdays or important events in peoples’ lives. [2].

Fortunately, recently network defense tactics are becoming more stringent, mak-

ing it harder for attackers to penetrate without detecting from network security sys-

tems [3]. However, stealing information from computers remains a popular target for

1

attackers. And new techniques are being developed daily to serve malevolent objec-

tives. There is a specific very high concealment technique known as covert channel

among those numerous ways of breaching. The attackers establish secret communi-

cation using this technique by manipulating the time of packets that are transferred

between the sender server on the target system.

Lampson proposed the covert channel in 1973 [4], with the primary goal of trans-

mitting secret information between communication parties unusually without being

observed by onlookers. The covert channel developed with the advent of the Internet

as a channel that sends covert communications in violation of the communication

security system in a network environment, such as intrusion detection systems and

firewalls. The covert routes not only guarantee to hide the communication content,

but they also safeguard the identities of both communicating parties.

Due to the covert channels’ ability to transmit data without being detected by

common network security countermeasures, it is utilized in various application ar-

eas. These channels may be used for sensitive information transfers such as military,

communication in hazardous situations, or streaming application transmission in a

suspect network. [5, 6].On the contrary, covert channels may be utilized by people

with malevolent intents to communicate and share information. Coordination of acts

of violence and terrorism and control protocols may be utilized inside covert chan-

nels to enable attackers to upload a newer version of a malware attack and choose

different encryption or covert-signing method. The malware used covert channels on

Gmail apps to hide such as command-and-control activities and evaded detection by

security measures.

2

The well-known Distributed Denial of Service attacks on major internet compa-

nies like CNN and E-trade are a prime illustration of the risks presented by covert

channels. These websites were automated with the thousands of agents that commu-

nicated using covert channels over networks. Another illustration of its risk is the 2002

allegations of suspected covert, hidden communication of plans or instructions to ter-

rorist group members operating inside the united states through the Internet. Many

of these messages are believed to have been transmitted in the covert channel and

concealed within seemingly innocuous files [7]. As a consequence, identifying hidden

channels that may compromise security measures if used maliciously is challenging.

There are two types of covert channels based on the kind of network resources

utilized for communication. [8, 9]:

• Covert Storage Channels (CSCs): The secret information is concealed in covert

storage channels by utilizing payload fields in the protocol [10] such as packets

header fields, IP Identification fields, and Initial Sequence Number (ISN) to

hide and send covert information.

• Covert Timing Channels(CTCs): Covert timing channels encrypt secret infor-

mation and enable covert communication by using the time interval between

packets [11–13].

An attacker that emphasizes stealth will benefit greatly from CTCs such as i) the

channel may be part of a normal traffic network. As a consequence, by establishing

a network connection, the attacker avoids arousing suspicions; ii) the packet content

itself does not need to alter in any manner, reducing the chance of detecting by packet

3

header analysis or deep inspection of a packet; iii) The stream’s network destination

does not have to be the covert receiver. To monitor the time information, the receiver

may be placed anywhere along the network route.

Due to these benefits, an observer may not be having any information to gain

knowledge that information communication exists. With the rising of computers

usage in everyday activities and the complexity of protocols, CTCs are becoming an

imminent threat to the confidentiality and integrity of information. Furthermore, with

the increasing sensitivity of data in various application domains, leaking confidential

data can have dangerous to the institution whose data was leaked.

1.1 Research motivation and problem definition

For various security reasons, covert channels represent a system security hazard. Of

course, the first reason is a secrecy issue, as hidden channels might be utilized for

the secret transmission of vital information. This concerns major organizations that

want to keep business secrets secretive. This confidential information can get into

or out of the organization through covert channel contact. The latest concept about

cloud computing is this case. As companies store enormous quantities of data on

the cloud, they need to ensure the cloud is safe. Organizations should use preventa-

tive techniques and detecting methods to protect their privacy against assaults and

breaches.

Another reason is an economic concern, given that covert channels may use an

4

existing system to transmit data without having to pay for the service. This is

usually the situation when a Trojan Horse infects a computer. Furthermore, hidden

channels usually utilize the system operations and resources, which causes degrades

the system’s performance. For these and other reasons, the US Department of Defense

and National Computer Security Center [14, 15] have incorporated covert channel

analysis in their evaluation criteria for classifying secure systems.

Defenses may be classed as either a preventive or a detection procedure against

covert channels. A broad spectrum of preventive strategies was offered to minimize

the usage by clearing off the plausibility of a hidden channel or decreasing the chan-

nel’s ability by reducing the hidden channel bandwidth at a reasonably low rate. The

channel is not used to transmit information properly. Prevention occurs at the net-

work’s edge and is used to interrupt traffic flows that may include hidden information

about all network activity [16]. While prevention may successfully eliminate covert

channels, it significantly impacts applications that need a high degree of Quality of

Service (QoS), such as streaming video.

Covert channel detection methods are frequent techniques in network systems

used to monitor harmful activities. It is desirable to detect hidden channels. [17] for

four reasons: 1) Detection serves as a disincentive to covert channels by providing a

method to discourage their use. [18]. 2) The majority of covert channel identification

methods depend on information from system analysts. As a result of human error,

many hidden channels may go undiscovered. Detection can help in recording channel

activities. 3) Covert channel protection may be costly and affect service quality for

high-performance systems [19]. 4) At the commencement of the elimination phase,

5

detection techniques may be employed. The elimination methods will only be acti-

vated if there is any abnormal behavior in networks. For these reasons, detection

methods that can identify and detect network traffic carrying concealed information

are appealing options.

Researchers have contributed significantly to detecting covert communications,

with their research primarily focusing on CSCs. In CSCs, the covert channel behavior

is bounded by the communication platform’s protocols, making identifying them less

difficult. CTCs, on the other hand, exhibit stochastic behavior (resulting from overt

traffic behavior that changes depending on network applications), making detection

more difficult. CTCs, therefore, constitute a grave danger to cyber-security and feed

the need for a reliable and sophisticated detection model to identify high-confidence

CTCs with dynamic network environments. CTCs, as they are major dangers to

cyber-security, are focused on in this dissertation.

CTC detection has been the subject of many research investigations. In general,

the majority of this research suggested detection methods based on statistical anal-

yses to differentiate covert from overt activity. [20–25]. The vast of these statistical

tests begin by monitoring network traffic behavior, then extracting statistical features

of covert and overt traffic and comparing those attributes to detect anomalies and

uncover concealed communication. While these methods have shown good results,

they do have limitations, which are discussed below.

Most methods are designed only to detect one or two CTCs and are not efficient

for detecting other channels. While broader CTC detection methods are designed to

distinguish more than one type of CTC, they are too sensitive when faced with the

6

high variation of network traffic. Furthermore, broader methods cannot be applied

to online network traffic with higher QoS requirements, especially when the detector

requires information about the covert message embedding procedure to identify which

statistical test to trust. Designing a broader detection method is not practically

possible because it tries to detect covert communication by testing the traffic against

all possible cases of covert channels, which needs more resources and processing time.

The majority of existing statistical techniques presume that CTC detection is

feasible with significant quantities of hidden traffic. The training data for such tech-

niques include at least 2,000 covert packets of network traffic. Such a huge amount of

covert network traffic could not be accessible, especially when CTCs are utilized to

leak confidential data such as user passwords, which are commonly less than 200 bits

long. Furthermore, when the quantity of covert messages injected into overt traffic is

little, the statistical detection technique fails to identify CTCs. If a small covert mes-

sage size is utilized, the distribution of hidden information in network traffic may not

be representative of the population. Another major limitation of current detection

methods is that when an attacker tries to mimic overt traffic in order to evade detec-

tion, they become less reliable and unpredictable. Due to the significant variance in

network data and its pattern changes over time, statistical detection methods would

be ineffective in detecting CTCs.

Due to the viability of recognizing the presence of CTCs, machine learning has

also been utilized in numerous detection methods [9,26,27]. These methods train and

construct classifier models based on network statistical traffic characteristics using a

labeled collection of overt and covert traffic flows. Following that, the models are

7

utilized to classify new traffic flows as either overt or covert. While machine learning

methods have shown good results, they still have disadvantages, such as the need for

long calculations and more knowledge of network traffic statistical features to treat

classifiers. Furthermore, when the message size is decreased to a smaller size, these

methods can no longer adequately classify covert traffic because the size of the traffic

becomes too small to represent the covert communication population accurately.

In addition, current detection methods lack a mechanism for identifying the hidden

part of traffic (i.e., a collection of packets) inside a traffic flow. One of the essential

objectives is identifying the parts of communication flows containing the concealed

messages. It can drop just the harmful part of traffic flows while allowing the rest to

pass through.

Most of the constraints of existing detection methods, as mentioned above, must

be addressed to identify CTCs effectively. In this research, we aim to offer novel

techniques for overcoming the limits of existing methodologies and detecting the ex-

istence of CTCs regardless of the time scale on which they are buried in the total

data stream. The section that follows covers the dissertation’s main objectives and

contributions.

1.2 Research objectives and main contributions

This dissertation provides investigative assistance for the confidentiality of data; This

entails examining CTC communication through the lens of digital forensics. Digital

8

forensics is a post-mortem examination [28]. The main objective of digital forensics

is to identify and establish the existence of a security policy breach. Then, covert

mitigation defense mechanisms or traffic blocking applications are used to stop the

flow of covert traffic. Since we analyze after the event, performance is irrelevant for

designing detection methods for covert communications channels.

The detection approaches presented in the dissertation use different machine learn-

ing algorithms and typologies of neural networks arranged to provide powerful net-

work classifiers suitable for most of the tasks characterizing CTC activities. In con-

clusion, the major contributions of this dissertation are described below:

• Generating a covert timing channel called Binary Covert Timing Channel (BCTC).

This channel uses packet timing to hide the covert data over the network effec-

tively.

• Examining the impact of varying time delays on covert channel detection and

determining the time delay threshold that correctly distinguishes covert traffic

from overt traffic and aids in assessing the degree of the security risk posed by

covert channels.

• Generating datasets with three unique time delay configurations to simulate

three distinct kinds of covert timing channel assaults with various degrees of

complexity, including different covert message sizes.

• Introducing a new technique for viewing traffic inter-arrival times that trans-

forms them into colorful two-dimensional images. This conversion transformed

the covert channel detection issue into an image classification problem. The

9

properties of time series data may be determined using this technique by an-

alyzing the colored image for various aspects such as color and texture at the

image’s corresponding places.

• Presenting a reliable SnapCatch detection model to classify and locate covert

timing channels using image processing and machine learning techniques. The

proposed approach employs accurate and robust image-based features rather

than statistical-based features in the classification process. This option offers a

generic model for detecting covert timing channels.

• Proposing a new method for locating traffic segments using image processing

and machine learning techniques seems to be covert channels. This method

enables warnings about the existence of covert timing channels to activate covert

mitigation defensive mechanisms or traffic blocking applications, significantly

increasing service quality as it declines by discontinuing the whole traffic flow.

• Using a convolutional neural network to improve the performance of the Snap-

Catch detection model without the need for pre-training (CNN). The invention

of the 2D-CNN technique allows for the automated extraction and selection

of high-level features that improve the identification of covert timing channels

while keeping execution time to a minimum.

• Developing a covert timing channel detector based on utilizing a recurrent neu-

ral network (RNN) with sequence traffic inter-arrival times to build temporal

feature representations directly from data. The proposed model learns features

directly from raw data and then finds pattern sequences within sequential data,

10

consistent with their high detection capabilities. In real-time applications, the

proposed method provides an efficient solution.

• Developing a covert timing channel detector based on sequence traffic inter-

arrival timings using a one-dimensional convolutional neural network (1D-CNN).

The proposed model is used to find spatial pattern inside the sequential data

and extract representation features that determine how the temporal modeling

of spatial characteristics affects the performance of the covert channel detection

model.

• Developing hybrid detection models based on combining network models of

RNN and 1D-CNN. The hybrid models integrate various information scales

and investigate whether further improvements are required to provide a more

accurate covert timing channel detection model. These hybrid models enable

researchers to examine how the arrangement of different network layers impacts

the performance of detection models.

• Developing and evaluating autoencoders as one-class and multi-class detection

models with two input data types: images and sequential time series. This

comparative assessment research sheds light on how various autoencoder meth-

ods can be utilized to construct an effective unsupervised covert timing channel

detection model.

• Providing application guide for deep learning-based covert timing channel de-

tection in detail. This guidance will help the network security sector because it

offers a feasible path for developing successful covert channel detection models

11

based on various methods, reducing the need for more varied covert network

traffic behavior.

1.3 Thesis outline

The remainder of this dissertation is organized as follows.

The second chapter looks at the analytical evaluations of covert timing channel

design methods, emphasizing each method’s fundamental components and perfor-

mance. Furthermore, this chapter provides a brief overview of detection techniques

for such channels, which are classified into two types: statistical and machine learn-

ing. Finally, it provides cybersecurity detection model approaches based on image

processing, machine learning, and deep learning techniques. In the next chapters, we

lay the groundwork for future research by comparing existing research results.

Chapter 3 introduces the design and implement a covert timing channel that uses

timing packets of legitimate traffic to hide covert data. This chapter also discusses

finding the threshold of time delay and exploring how this threshold affects the channel

efficacy based on channel accuracy and bit rate. After studying the performance of

the proposed covert channel and generating different attack configurations, Chapter

4 depicts a SnapCatch detection model. This model improves on existing statistical-

based detection approaches by identifying hidden time channels in a new manner

utilizing image processing and machine learning techniques.

Chapter 5 presents an entirely new approach to deep learning, which relies on

12

the usage of a 2D-CNN method to enhance the SnapCatch model’s performance

and utilize the resilience of CNN to extract image features automatically. In the

same chapter, we evaluate the CNN model by conducting experiments to measure its

detection accuracy and robustness to detect covert channels.

Chapter 6 introduces a deep learning framework for detecting covert timing chan-

nels using time sequence data with RNN and 1D-CNN to use these techniques’ ro-

bustness to learn a hierarchical features representation and automatically detect such

channels from raw data. The same chapter also presents the hybrid detection mod-

els can enhance the model’s ability to identify hidden timing channels by extracting

detailed spatial-temporal information from the raw data. When developing an un-

supervised covert timing channel detection model, a comparison of five autoencoder

models as a one-class and multi-class classifiers are conducted in Chapter 7. This

dissertation comes to a close in Chapter 8 with a summary of the findings and rec-

ommendations.

13

Chapter 2

Related Work

This chapter starts with a quick rundown of CTC design problems, then a short

overview of statistical and machine learning approaches to CTC detection. Finally,

the application of image processing, machine learning techniques, and deep learning

approaches is emphasized in traffic network classification and cybersecurity threat

identification.

2.1 Covert timing channel design

CTCs are divided into two categories: passive and active. Passive channels generate

no extra network traffic. Instead, they encode the message using genuine traffic’s

inter-packet delays. Active channels, on the other hand, generate their network stream

using specifically designed inter-packet delays. Passive channels seem more difficult

14

to detect because the attacker does not need to establish a new network connection

channel; nevertheless, their capacity is limited by the data network traffic.

The most popular CTC construction technique is based on inter-arrival time.

Most research on CTCs relates to it since it sends messages by changing the time

interval between network packets. The On-Off channel, BER channel, GAS chan-

nel, ZAN channel, Time Replay Channel, Jitterbug, Model-based, and other highly

representative covert timing channels are briefly discussed in this section.

2.1.1 On-Off channel

Cabuk et al. [20] presented a channel based on using a certain time interval to organize

sending the covert data between the sender and receiver. To transmit a covert bit

1, the covert transmitter sends a packet in the midst of the time interval, while

when sending bit 0, the covert transmitter stays quiet and does not send any packets.

Receiving a packet during the time interval was regarded as covert bit 1 on the receiver

side; while aren’t received any packets within this period, the receiver interprets it as

a covert bit 0.

2.1.2 One threshold (GAS) channel

Gasior et al. suggested the structure of the GAS channel [29]. The threshold value is

the key to the GAS channel. When the inter-arrival times between the two packets

were higher than the threshold, the sender and receiver signaled that the bit trans-

15

mitted was 1. While if it is smaller than the threshold, the bit transmitted was

0.

2.1.3 Fixed time interval (BER) channel

Berk et al. [30] described a simple binary fixed delay technique for covert timing

channels. In this channel, the sender sets two time intervals values: t0 and t1. After

then, the secret information must be encoded and sent in binary form. When 1 bit

was sent, the delay between packets was chosen from t1; when zero bit was sent, the

delays between packets were chosen from t0. The average time delay of overt packet

arrivals was used to determine the values of t0 and t1. This average was used as a

cut-off point to categorize the delays as zero (when they were less than the average) or

one (when they were more than the average). The recipient then follows the identical

steps to get the secret information.

2.1.4 Time Replay channel

Cabuk et al. [22] created the time replay channel to avoid covert channels from being

detected using statistical tests. Before establishing a threshold, the sender in this

channel collected a collection of packet inter-arrival times from overt communication.

Based on these criteria, the sender divides the time interval into two categories. Inter-

arrival times are larger than the threshold from a group (T1), while time intervals less

than the threshold constitute a second interval (T2). The time delay for an interval

16

between the two packets to being sent is determined from the T1 when the sender

sends 1. If the sender decided to send 0, the delay time for the interval between the

two packets was picked from T2.

2.1.5 Jitterbug

Shah et al. proposed a covert timing channel using a hardware device [31]. A Jit-

terbug is a device that serves as an interface between a machine and its keyboard.

Because of its position, it may selectively record and delay each keystroke made by

the user. Every keystroke in a device makes a packet sent in SSH’s interactive mode.

The advantage of using a Jitterbug was that the computer’s integrity was never com-

promised. Jitterbug determined a timing window w to choose the time delay for

encoding each binary symbol. Jitterbug also uses a random sequence, s, to avoid

inter-packet delays from congregating around of w. Every value in s falls between

[0, w− 1] and [0, w− 1]. A Jitterbug encoded the symbols in binary code by delaying

a keystroke such that the resulting inter-packet delays met the requirements.

(IPDi − si) mod w =


0± w

4
for 0 bit

w
2
± w

4
for 1 bit

17

2.1.6 Model based channel

Gianvecchio et al. developed a model-based covert timing channel [13]. The authors

developed a technique for creating a covert timing channel with the similar statistical

behavior of real-world network traffic. To develop the MBCTC, they began by study-

ing a certain kind of traffic and putting it into distribution. The covert message is

concealed in symbols translated to inter-arrival intervals using the inverse distribution

function. They decoded the data using a cumulative distribution function based on

a distribution that would alter over time to represent any changes in traffic times.

2.1.7 Other covert timing channels

Hovhannisyan et al. [32] developed a cover channel that has the potential to increase

covert capacity substantially. They created a method for transmitting concealed data

via channels that specifically communicate information. They detailed the design of

the covert channel for two protocols, UDP and TCP, and utilized a novel method to

decrease the bit error rate. Their channel is more capable and has a lower bit error

rate than other channels. This study also showed that the CTC is more hazardous

than previously believed, requiring more countermeasures.

Packet order was also given as an example of a CTC entity on the Internet of

Things. In packet-reordering-based CTCs, covert information is encoded using the

order of packets as a certain number of a packet stream between communicating par-

ties, which is achieved by embedding covert messages inside the ordering of overt

18

traffic. El-Atawy and Al-Shaer [33] proposed a covert route that increased the pos-

sibility for evasion by utilizing certain permutations of packets to enhance resilience

and mimic overt traffic distribution. They selected certain combinations of succes-

sive packets to improve channel stability and reliability. In order to stay undetected,

they are also altering the distribution of their channel usage to imitate real internet

traffic. An attacker will have to pay a significant price to expose the CTC because

of the high expense of buffering and processing out-of-order packets in the midst of

a huge amount of background traffic. The right coding scheme is selected improves

the properly received code-words under typical working circumstances, reducing error

rates to 10%.

2.2 Covert timing channel detection methods

Because the basic idea of CTC implementation is to encrypt the secret data using

the packet’s inter-arrival times, most CTC detection researches focus on analyzing

the traffic inter-arrival times. CTC defense techniques are classified into two types:

prevention and detection. Prevention aims to destroy a channel’s potential by reduc-

ing its capacity and making it impractical. Detection techniques, on the other hand,

attempt to identify currently operational hidden channels. This dissertation focuses

on the identification of CTCs. This section discusses methods for identifying CTCs

using statistical and machine learning technologies.

19

2.2.1 Methods for detecting CTC based on statistical tests

CTC detection methods are primarily concerned with the analysis of network traf-

fic. Most CTC statistics-based detection methods analyze network traffic behavior,

extract statistical features of covert and overt traffic, then compare those character-

istics to find anomalies and covert communication. In this section, we examined the

effectiveness of several statistical techniques for detecting CTCs in the literature.

Cabuk et al. [34] proposed Sigma similarity as a shape-based detection technique.

This method computed and compared input symbol data from normal network traffic.

A large percentage of deviations below the Sigma value suggests the presence of hidden

channels.

Berk et al. [30] proposed a method for determining covert channels, which use

traffic inter-arrival times. This method was based on the assumption that an attacker

sends covert data using the maximum bandwidth of the covert channel. After sending

the data, the inter-arrival time’s probability distribution was computed and compared

to the actual distribution of normal network traffic. Using this method, the traffic

data with a bimodal or multi-modal distribution would indicate the presence of a

hidden channel.

In [21], A binary CTC was identified using the histogram of normal and covert

traffic. Simple CTC algorithms may be determined using traffic distribution and his-

togram testing; however, these tests cannot identify robust and sophisticated CTC

algorithms. Consequently, more effective statistical tests for identifying such chan-

nels, such as Kolmogorov Smirnov, Regularity, Entropy, and Corrected Conditional

20

Entropy, were created and researched. The remainder of this section delves into the

details of each of these examinations.

2.2.1.1 Regularity test

In [22], Cabuk et al. used the fingerprints left in the traffic stream by the covert

channel embedding procedure. To assess the regularity of traffic, they devised a

metric based on the variance formula. The measure was based on the assumption

that CTCs would provide regular patterns in packet inter-arrival times, while overt

traffic might be random and lack any patterns. The inter-arrival timings of packets

were split into neighboring blocks for the regularity test, and the regularity score for

each block was calculated. To compute the score, a sample block was split into n

successive sub-blocks, and the standard deviation σi; i = 1 to n was measured for

each. The relative difference in deviation was then computed block by block, then

normalized individually for each sub-block. Finally, the regularity score was computed

using the standard deviation values of all normalized data.

R = Std

(
σx − σy
σx

)
∀ x, y (2.1)

If the regularity score is low, that indicates the traffic flow is very regular, sug-

gesting the possibility of CTC presence.

21

2.2.1.2 Kolmogorov Smirnov test

Gianvecchio et al. [35] used the Kolmogorov Smirnov (KS) test to determine if the

distribution of a set of covert inter-arrival times is similar to normal traffic set. A

change in the distributions would indicate the existence of a CTC in the set sample.

The KS test is a non-parametric method used to determine if two sets are drawn

from the same distribution. One of the most significant benefits of this test is that it

makes no assumptions about the sample distribution.

DKS = supx|F (x)−G(x)| (2.2)

2.2.1.3 Entropy tests

Gianvecchio et al. [35] used entropy of a network flow as a measure to detect CTCs.

Entropy was utilized to identify changes in a channel’s shape caused by timing chan-

nels, while conditional entropy was used to determine its regularity. The authors

predicted that combining these two methods would effectively identify known tim-

ing channels while being robust new channels in the future. The following section

describes the methods for calculating entropy and correcting condition entropy.

• Entropy

Given a sample of successive inter-arrival times of packets from a network flow,

each packet was mapped to one of a finite set of symbols, with the probability of each

22

symbol as pi. The sample’s entropy, H, is then computed as:

H = −
m∑
i=1

p(Xi) log2 p(Xi) (2.3)

This equation indicates that the entropy is high when all the symbols are equally

probability.

The use of entropy to identify CTCs necessitates a difference in the probability

of the covert and legitimate streams. The covert stream’s entropy is reduced as a

consequence of the difference. Because each packet value in a covert binary channel

translates using two symbols for the concealed message, with much less than would

be anticipated normal traffic. As a result, in the CTC traffic, the probability for all

other symbols is close to zero.

The only method to guarantee that this probability difference results and maxi-

mum the entropy for the covert data presence. Gianvecchio et al. did this by creating

a traffic histogram with bins matching the n potential symbols. The range of bins was

determined using a large set of training data packets. Each bin has an equal number

of training packets to achieve an equal chance for each symbol. CTCs are detected

by testing samples of inter-arrival times to see whether their entropy is lower than

that of overt traffic.

• Conditional entropy Because the entropy of the covert packet stream may

be identical to that of the actual packets, utilizing entropy to identify CTCs has

limitations, particularly when CTC can create traffic with a structure similar to actual

traffic. Consequently, Gianvecchio et al. suggested conditional entropy as a method

23

for detecting regularity in a stream by detecting unexpected traffic correlations. A

series of questions accompany the symbol (bin number) X. Such that xi is the ith

value in the sequence, the conditional entropy of symbol Xxi given is:

H(xn|x1, . . . , xn−1) = H(xn|x1, . . . , xn)−H(xn|x1, . . . , xn−1) (2.4)

• Corrected entropy

Due to issues with small sample sizes, Gianvecchio et al. advocated for the use of

adjusted entropy rather, which is computed as follow:

AEEn = E + pre(x1)× E (2.5)

Where pre (x1) is the proportion of training bins that include precisely one inter-

packet delay. For limited samples, however, the precise entropy rate cannot be ob-

tained. To solve the issue, Gianvecchio et al. calculated the corrected conditional

entropy, which is defined as :

CCE(xn|x1,...,xn−1) = CE(xn|x1, . . . , xn−1) + prec(xn)E(x1) (2.6)

where E(x1) is the first order entropy, and CE(xm|n1, . . . , xn−1) is the conditional

entropy of sequence of random variables.

24

2.2.1.4 Other detection tests

The KullbackeLeibler test was used as a CTC detection method [36]. The KL diver-

gence test was calculated from two probability density functions f1(.) and f2(.) as

shown in the equation below:

DKL(P ||G) = −
∑
x

f1(x) log

(
f1(x)

f2(x)

)
(2.7)

The KL test specifies the minimal extra information measured based on a logarith-

mic scale that is required for f2(.) to model f1(.) correctly. If the test score is more

than a specified threshold number, it suggests the possibility of a CTC. Similarly,

in [37] the authors computed the KL divergence statistic for the covert and overt

communication streams. If this KL value was more than the threshold, the traffic

was labeled as covert. The authors of [24] expanded on the work of Gianvechhio

et al. by adding two new statistical tests for identifying CTCs, the KL divergence,

and Welch’s t-test. They demonstrated that since it was a non-parametric test based

on the difference of means, Welch’s t-test was better suited to identify the Jitterbug

method.

Darwish et al. [38] developed a hierarchical entropy approach for identifying the

presence of CTCs in the flow of inter-arrival times to address the limitations of utiliz-

ing flat statistical-based analysis for detecting CTCs. Their findings revealed that the

approach delivers considerably higher accuracy than flat entropy solutions. Darwish

et al. [39] presented a method to enhance the speed of CTC identification by utiliz-

ing the hierarchical entropy. To parallelize the detection procedure, they used the

25

MapReduce method. When compared to the sequential hierarchical entropy method,

the hierarchical entropy algorithm using MapReduce showed a strong capacity to

identify CTCs.

To summarize, several detection methods use statistical tests published in the lit-

erature to identify CTCs. However, due to legal traffic’s great variety and complexity,

current statistical methods are not trustworthy and effective enough to identify such

channels, particularly when the covert data size is small and channel behavior resem-

bles normal traffic.

2.2.2 Methods for detecting CTC based machine learning

Machine learning algorithms have been utilized in many CTC detection approaches

due to their ability to identify the existence of CTCs effectively. In general, machine

learning techniques utilize statistical features obtained from overt and covert traffic

flows to train machine learning classifiers, which are then used to identify new traffic

flows to either overt or covert traffic.

Zander et al. [40] used the decision tree classifier as a CTC detection technique.

The decision tree was trained utilizing various statistical characteristics collected from

traffic flows in their method. The model’s efficacy was evaluated using a collection

of both overt and covert traffic to detect a pattern in packet inter-arrival times. The

model was shown to be successful in identifying CTCs based on the findings of the

assessment. Likewise, Iglesias et al. [27] also used a decision tree classifier to identify

CTCs by utilizing a collection of statistical characteristics of traffic as features. To

26

minimize significant computing expenses during the detection phase, the model was

trained offline. In addition, decision trees have been used in [41] to detect CTCs.

Félix et al. [26] used unsupervised machine learning to explore whether CTCs

may be identified as strong abnormalities based on their statistical characteristics,

such as outlier algorithms. Their findings revealed that CTC-containing flows seldom

had high values or unusual density variations. Because all covert flows are (mild)

distance-outliers, but not all are covert flows, unsupervised techniques are ineffective

in detecting them.

Félix et al. [42] used supervised and unsupervised machine learning techniques,

a CTC detection system was created. They discovered that CTCs had substantial

histogram distance-based outliers, but they couldn’t tell them apart from ordinary

traffic owing to the vast diversity of forms in regular traffic. After doing an extensive

study, the authors concluded that combining supervised and unsupervised techniques

is the best way to build accurate and reliable CTC detectors (also known as semi-

supervised methods).

The Support Vector Machine (SVM) learning classifier has also been widely used

in the CTCs detection research domain. This is because SVM has an exploration

and classification power beyond checking for statistical properties of traffic. Sohn et

al. [43] showed that simple covert channels encoded. An SVM classifier was used to

successfully identify a simple covert channel contained in the sequence number fields

of TCP/IP protocol headers.

Recently, Shrestha et al. [9] used the SVM classifier; a reliable CTC detection

27

method was developed. They used four kinds of statistical characteristics produced

by four covert timing channel methods to construct their model. Machine learning

methods fared well in identifying CTCs, according to the method’s assessment find-

ings. In [44], To identify different types of CTCs, a novel detection method based on

wavelet transform features and SVM classifiers were suggested. To optimize entropy,

these features were input into SVM after being acquired at various wavelet levels.

The authors devised a sliding window-based method for detecting complicated traffic

with a variety of CTCs.

Deep neural networks have also been used for CTC detection. Darwish et al.

[45] suggested a method for developing a CTC detection classifier using deep neural

networks. The hierarchical statistics-based approach was used to train this classifier

using a collection of statistical characteristics derived from the flow of inter-arrival

times. Their findings revealed that deep neural networks outperformed SVM models

in terms of accuracy.

The majority of machine learning-based methods in the literature are based on

statistical network traffic characteristics, such as CCE values of packet inter-arrival

time. Such techniques are very restricted in CTC detection, particularly when the

hidden message size is small. Another significant drawback of existing techniques is

that they become unstable and unpredictable when the attacker attempts to imper-

sonate genuine communications to avoid detection.

28

2.3 Detecting attacks based on image processing

and machine learning techniques

Several visualization methods for attack analysis have recently been suggested, al-

lowing human analysts to examine the characteristics of assaults such as malware

visually. Conti et al. [46] developed a technique for visualizing huge quantities of

binary data by transforming it to a grayscale image. Using a number of graphical

components, this technique allows you to examine binary byte information from mal-

ware samples. Their results may aid researchers in navigating unfamiliar locations.

It may also be used to highlight significant data points while ignoring less important

ones. Anderson et al. [47] proposed a visualization model to detect malware malicious

software samples based on the similarity between malware heatmap images.

Nataraj et al. [48] presented a paradigm for converting binary executable data

into grayscale images in bytes. They used the Gist texture feature extraction method

to calculate texture features from the images after they were created. Finally, the

k-Nearest Neighbor classifier was utilized to identify malware samples by comparing

the characteristics of the malware grayscale images. The classifier detected several

kinds of malware with an accuracy of 97.18%.

Similarly, Aziz Makandar et al. [49] converted the malware binary code into 2D

grayscale images and standardized it into x dimensions before using an SVM classifier

to categorize the photos and detect malware. The classifier detected 24 malware

families with an accuracy of 92.52%. Han et al. [50] proposed a malware detection

method by converting the binary code of malware into color images and then using

29

an image processing method to classify them. Daniel et al. [51] created a bio-inspired

parallel implementation using binary 2D images to identify the geometric objects of

the homology set.

Image processing technologies have proved effective in evaluating and categorizing

massive amounts of data in various assault detection methods. Compared to conven-

tional methods, this methodology has a low computing cost, is easy to implement,

and has a high classification accuracy. For these reasons, using image processing

methods is a feasible option for identifying CTCs correctly. We are unaware of any

use of image processing or machine learning to identify CTCs.

2.4 Deep learning techniques for detecting attacks

Taking into account the current deep learning techniques for attack detection and

adhering to the classification of prior work [52] deep learning techniques are classified

into three types: unsupervised methods like autoencoders (AEs), supervised meth-

ods like convolutional neural network (CNN), and recurrent neural network (RNN),

and various hybrid approaches. There are more classification categories, such as Al-

Garadi et al. [53] classified deep learning methods depending on their applicability in

cybersecurity. Recently, Berman et al. [54] the categorization of deep learning tech-

niques based on attack types and the application of these methods to detect different

attacks.

30

The development of various deep learning algorithms for attack detection tech-

niques may be helpful in various ways. Manually labeled samples provide a wealth

of information, allowing supervised learning techniques to be very precise. On the

other hand, manual data labeling takes a long time, particularly when dealing with

real-world network assaults. As a result, unsupervised learning techniques with no

previous knowledge of attacks may outperform supervised learning methods, which

is a major benefit. Techniques that include aspects of both conventional and hybrid

techniques reduce training needs while maintaining high-performance levels. However,

it is rare to use because of its often complicated structure, which requires a consid-

erable amount of processing time. This section briefly discusses using deep learning

methods (CNN, RNN, and AE) to detect malware, intrusion, and other threats.

2.4.1 Attack detection based on convolutional neural networks

The usage of Convolutional Neural Networks has aided image identification and cat-

egorization (CNN). The CNN weight-sharing network design reduces the complex-

ity and weights of the network model. If the network input is a multi-dimensional

image, this advantage is amplified. Traditional machine learning methods require

time-consuming feature extraction and data reconstruction, which may be avoided

by submitting the image to the network.

CNN is composed of many layers, and it recognizes two-dimensional structures

that may be distorted in any manner without losing their original shape. Reduce

network-training parameters using one of CNN’s three suggested techniques: local

31

receptivity, weight sharing, or pooling. It also uses spatial connections to decrease

the number of learning parameters to enhance the backpropagation technique’s per-

formance. CNN’s most notable feature is its capacity to learn feature hierarchy from

large of data.

As a result, CNN has a variety of applications, including network intrusion de-

tection and virus identification. In these applications, CNN is widely utilized. Wang

et al. [55] converted traffic data to grayscale images and then used CNN to build

meaningful feature extracting model automatically and efficiently from huge quan-

tities of raw network traffic data. The average accuracy of classifiers was found to

be 99.41% in experimental findings. Likewise, Vasan et al. [56] presented a malware

detection approach, dubbed ’IMCFN,’ that uses a CNN to transform traffic data into

color images. They used data augmentation methods to improve the IMCFN model

performance and deal with unbalanced label datasets. Their model produced the best

results, with an accuracy rate of 98.82

Cui, Zhihua, et al. [57] suggested a new technique for improving malware variant

identification using a CNN by treating traffic malware data as images. First, the

harmful code was converted into grayscale images using this technique. Following

that, the images were categorized by a CNN that automatically extracted the malware

images’ characteristics. Because of the CNN’s efficacy and efficiency in detecting

malware images, their model’s detection time was considerably quicker than other

methods. Their approach successfully addressed the issue of data imbalance across

various malware families, achieving 94.5% accuracy with a fast detection rate.

Kumar et al. [58] developed a malware detection technique based on a CNN. The

32

CNN method was utilized in their research to identify unknown or novel types of mal-

ware utilizing the picture similarity technique. CNN was studied and evaluated using

three different kinds of datasets. CNN achieved a high testing accuracy of 98Sim-

ilarly, Ni et al. [59] A malware detection approach based on malware visualization

and CNN has been presented. To convert comparable malware code to similar hash

values, the authors employed a locality-sensitive hashing method. The comparable

hash values were then converted into grayscale images that could be used to train the

CNN method.

Wang et al. [60] presented a single-dimensional end-to-end CNN traffic catego-

rization method. They can automatically comprehend how nonlinear input traffic

is linked due to their approach, which combines feature extraction with a classi-

fier. 1D-accuracy CNN’s and recall rate are astonishing due to the model’s usage

of informative traffic data representations and fine-tuning techniques to enhance its

capabilities further.

Yang and Wang developed a solution for the various attack in the wireless net-

work and improved the detection capabilities of hostile infiltration [61]. This network

automatically collects sample features from intrusion traffic data and utilizes a gra-

dient descent method to enhance network parameters and bring the model closer.

According to the study, this model produced fewer false positives than others.

33

2.4.2 Attack detection based on recurrent neural networks

The recursive neural network (RNN) is suggested as a neural network used to handle

sequence data. Data is moved from the input layer to the output layer through the

hidden layer in conventional neural network models, which examine just the impact

of the present state of input data without incorporating information from past and

future states. These models may perform substantial classification or identification

tasks while also taking temporal sequence features into account. RNN is suggested

as a kind of neural network structure with a memory function that considers past

content states by including time-dependent data. RNN is therefore adept at handling

time-series data.

However, there are some issues with RNN architecture design, such as gradient

vanishing or gradient explosion, which results in the inability to recall or represent

long data of time dependency. As a result, researchers created Long Short-Term

Memory (LSTM) and a Gated Recurrent Unit (GRU) with gates design and memory

cells that effectively maintain long-term dependence and connections from being lost

by transferring essential information flow components.

Early, Staudemeyer [62] presented a model for detecting intrusions based on time

series of known malicious activity and network traffic. The authors used LSTM for

intrusion detection because of its outstanding ability to represent long-term dependent

relationships. They came up with a four-memory block network. Each sub-memory

is made up of two cells. The network was capable of balancing detection performance

and computational cost. Because LSTM could evaluate and correlate connection in

34

a time-varying way, this study’s experimental findings showed that the LSTM model

outperformed results.

Jiang et al. [63] presented an efficient attack detection approach in social networks

using RNN that includes data pre-processing, feature extraction, and multi-channel

detection. LSTM was employed in multi-channel processing to create a classifier used

to distinguish attacks from regular traffic in order to save attack characteristics in

input traffic data. The LSTM outperforms state-of-the-art techniques in accuracy

terms by including a voting mechanism to decide if the incoming data is an attack or

not.

Later, Krishnan and Raajan [64] was used RNN to build the framework of an

intrusion detection system. During the tests, the suggested detection method could

filter out assaults but failed to identify false positives. When compared to the baseline

techniques, their suggested method has higher classification accuracy and lower time-

consuming measures. Kim et al. [65] Create an LSTM classifier to identify infiltration.

The performance of the LSTM model was achieved higher accuracy compared to other

detection techniques.

Agarap et al. [66] proposed a GRU binary classification of intrusion detection

model by changing the softmax classifier in the output layer with an SVM classi-

fier. The model results revealed that the GRU-SVM model outperformed the GRU-

Softmax model in terms of accuracy. Liu et al. [67] implemented an efficient and

practical RNN payload classification approach to analyze payloads network traffic

and detect attacks. Their model learns feature representations from original payloads

without feature engineering and can detect from start to finish. The accuracy of the

35

RNN technique was 99.98%, which is better than other machine learning approaches.

Le et al. [68] built an LSTM intrusion detection model and attempted to find the best

optimizer for LSTM optimization. They evaluated six commonly used optimization

techniques, Adagrad, Adamax, Adadelta, RMSprop, Nadam, and Adam, and then

found that the Nadam optimizer was the most successful.

2.4.3 Attack detection based on autoencoders

To compress data, the Autoencoder (AE) employs a neural network design. It is

conceivable that AE will compress the input using feature representation before re-

building it in the final output. An encoder and a decoder make up autoencoder

components. A feature-collecting encoder extract features from raw data, while a

feature-recovering decoder reconstructs the data based on what was extracted. The

divergence between the encoder’s input and the decoder’s output will decrease with

time. The encoder successfully captures the data’s core when the decoder reconstructs

the data from the gathered characteristics.

AE is often used for applications like outlier detection and size reduction. Cy-

bersecurity researchers use AE to explain aberrant behaviors in feature space rep-

resentation, giving unknown threats the benefit of dynamical representation. Yu et

al. [69] created a network intrusion detection model by stacking dilated convolutional

autoencoders to extract relevant feature descriptors from raw network traffic data

(DCAEs). DCAEs utilize unsupervised training to learn the hierarchical structure of

features from a limited number of labeled data. By fine-tuning a backpropagation

36

method learned from unlabeled data, they enhanced feature description capabilities.

Because it uses raw network traffic data as well as unsupervised pretraining, its model

is more adaptable to complex raw data.

Yousefi-Azar et al. [70] utilized AE structure to learn important features for various

cybersecurity applications, which comprises of two phases model pretraining and fine-

tuning since AE is capable of learning the possible representation of unknown assaults.

The pretraining step is intended to find suitable settings for the fine-tuning stage.

Stage coverage will be fine-tuned by providing feature descriptions for input data.

Experiment findings showed that their feature representation utilizing AE structure

with two stages might be utilized in various domains to significantly decrease feature

dimensions and produce amazing outcomes compared to prior studies. Similarly,

Farahnakian et al. [71] built a classification model to identify aberrant behaviors

using a deep-stacked autoencoder structure. Using imbalanced data samples, this

model obtained a high accuracy of 94.71%.

Sakurada et al. [72] proposed a nonlinear dimensionality reduction technique using

auto-encoders in anomaly detection and compared it to the linear principle component

technique. The comparative findings demonstrated that auto-encoders had better

accuracy while requiring less complicated calculations. Choi et al. [73] developed an

anomaly detection model using several AE topologies. They used a heuristic method

to establish a reconstruction error threshold and find that their unsupervised anomaly

detection technique beats existing clustering techniques.

To summarize, both supervised and unsupervised deep learning methods have

been effectively used in the area of cyber-security. As a result, the combination of su-

37

pervised and unsupervised deep learning methods is a promising option for identifying

CTCs with high accuracy.

38

Chapter 3

Experimental Design of Binary Covert
Timing Channel

This chapter discusses the developing of the binary matching covert timing channel

(BCTC) that utilizes normal traffic timing packets to exfiltrate covert data between

two parties communicating across a network. Insecure systems, BCTC uses traffic

inter-arrival times to transmit covert information. Despite our best efforts, we were

unable to locate a dataset that contained both overt and covert time channels. In

addition, there was no software available that could generate both types of channels

at the same time.

Our strategy was to create new timing channel software that could be utilized

covertly as well as publicly. The process units in this channel represent how the

traffic inter-arrival times were used to encode and transmit covert data between the

sender and receiver.

39

The channel helps to create a software framework that can generate overt and

covert traffic datasets for future study. Moreover, in detecting covert channels, this

channel helps determine the packet time delay threshold that consistently differen-

tiates between covert and overt transmission. Defining this threshold value is the

first major difficulty in the detection process. Consequently, it may help measure the

complexity of covert threats and evaluate the security risks associated with covert

communications. Knowing this threshold may save time for future researchers who

are researching the detection or mitigation of covert channels in different applications.

This chapter covers the secret channel’s design. Following is an examination of

various exfiltration trial time delays and how they impact covert channel detection.

Finally, the experiment analyzes and reports on the effect of different variables on

channel efficiency.

3.1 Covert timing channel design

Our covert channel design follows the literature, such as the Time-Replay [22] and

BER [30] channels, by concealing the covert channel traffic inside overt network traffic

utilizing packet inter-arrival times. The covert data can be sent Time-Replay and

BER channels by replay recorded events using a single threshold value (the median

arrival time) to create rules and two-time partitions for encoding binary data in the

channel. By delaying the packet matching to the partition, the sender in this channel

may transmit the binary symbols. To transmit symbol 0, for example, the sender

selects a delaying time from the first time partition that reflects values smaller than

40

the median of inter-arrival times. Similarly to sending 1, the sender selects a delaying

time from the second division, representing values fourth of the median.

In our covert timing channel, we use a different strategy by using various threshold

values depending on the mean and standard deviation of traffic inter-arrival times that

can use for encoding the binary covert data and to determine the threshold that will

aid in properly identifying the channel.

Within a security system, assuming two communication parties (the sender and

receiver) can communicate and send information only by exchanging the time infor-

mation of the packets send data from sender to receiver. The channels presented in

this chapter conceal hidden information in overt traffic by modifying the transmission

time of normal packets, as illustrated in Figure 3.1.

Covert
Sender

Covert channel

Confidential Data

Covert
Receiver+

Data hiding

legitimate
looking traffic

(overt + covert)

Figure 3.1: Covert communication model.

Adjusting the transmission interval by delaying the sent network packets is critical

in avoiding cyber defense detection [20, 30, 31]. Sending covert communications, for

example, without considering (or mimicking) overt packet time delays, such as em-

ploying time delays longer than overt traffic time delays, distinguishes covert traffic

from overt traffic. Several researches in the literature, including [20, 22, 30, 31, 40, 45]

41

have utilized time delays to alter the transmission interval of overt network packets

in order to transmit covert data. These researches found that encoding covert mes-

sages by delaying overt packets’ transmission time using time delays was an effective

method of evading discovery. As a result, this dissertation follows the literature by

developing a covert channel that utilizes time delays to modify the time of network

packets, allowing the sequence of timing intervals to be precisely engineered.

Our covert channel transmits secret data between two parties under assumptions

[22] as follows:

• The sender and receiver utilize one covert channel and does not use different

channels that aggregate and combine packet traffic to leak covert data.

• The sender can send the data to the receiver at any moment, and the channel

protocol enables that.

• The original payloads of network packets are normal without any changes, and

therefore do not break any security system rules.

• The data transmitted over the covert channel is binary, but how the binary

string is interpreted up to the sender and recipient agreement.

• The covert channel is a unidirectional communication paradigm. The receiver

cannot interact with the sender through the covert channel, and the sender has

no information about the correct reception of covert data bits. But the direct

connection in the channel remains bidirectional, and packets are acknowledged.

• Using error-correcting coding could add additional data bits to the data can help

42

reduce the error caused by transmission error such as delay or lost some packets

in the congested network. For implementation and computational simplicity

in this chapter, we use error-correcting codes Hamming codes and the Bose,

Chaudhuri, and Hocquenghem (BCH) algorithms.

3.1.1 Channel exfiltration experiments

The BCTC sends covert messages bit by bit from sender to receiver and composes the

covert symbol set as zeros and ones. The system’s event is using packet arrival time,

which is modified and controlled by the sender and noticed by the receiver. The sender

creates a series of packets separated by inter-arrival times to deliver consecutive bits

to the receiver.

BCTC works as follows: initially, the sender and receiver agree on a time delay and

a time range for data transmission. Then, the sender obtains the message symbols

sequence as input and converts the message to a binary code sequence. After that,

the sender uses a set of delaying rules to determine the time delay for the binary

symbols. Finally, send the binary symbol s by delaying the overt packets for the time

representing the timing value corresponding to the delay threshold.

Assume a covert sender user intends to leak a covert message to a covert receiver

through the BCTC. The covert sender first transforms the message to a binary code

sequence with two symbols, zero s0 and one s1 . The covert sender then selects a

delay time value τs0 based on the delaying rules of the input sequence and produces

a transmission event after idling an overt packet for τs0 time to transmit s0. This is

43

the same as transmitting s1; the sender selects a delay time value τs1 and idling the

overt packet for τs1 time. The following are the specifics of the sending and receiving

procedures in this BCTC topic.

The sender sending routine in the BCTC accepts inputs as the sequence covert

binary data and time delays selection criteria and creates a series of packets to trans-

mit covert data within traffic inter-arrival times sequences to the receiver side. To do

this, the covert sender employs the time delay τ , which is added to the transmission

time of each symbol in the binary coding sequence, to modify the transmission time

as follows:

T ′t = Tt + τ + ε (3.1)

Where Tt is the packet transmitting time and τ is the extra time delays.

In the leaking experiments, the time delays of binary code were chosen based

on a form of Morse code. A short time delay τs0 was added to the transmission

time Tt of overt packets to send a symbol 0, and a long time delay τs1 was added

to the transmission time Tt to encode a symbol 1. A delay value of 0 indicated

that no extra delay was added, and no covert data was sent out. In other words,

the resulting sequence of n-symbol binary code were represented in a sequence of n

packet transmission times {T ′si, T ′si+1, . . . , T
′
sn} in the differences, such that:

T ′si =


Tsi + τ0 + ε if si = 0

Tsi + τ1 + ε if si = 1

44

where ε is a delay caused by a range of network conditions such as network congestion,

which may add additional delays that influence the time of the network traffic.

On the receiving side and after sending the data from the sender, Wireshark [74]

is used to monitor network traffic. Upon observing packets, the receiver calculates

the packet inter-arrival time (IAT = Tri − Tri−1). It then identifies which partition

belongs by comparing the inter-arrival time value with the time range of zeros and

ones. Finally, based on the choice partition, the receiver records the symbols s1 or s2

to get the original covert message as shown in Figure 3.2.

Figure 3.2: An example the covert channel encodes the bit string 10001.

In this channel we assume the sender and receiver should be pre-negotiate and

agree on the time delays, time range for partitioning, and encoding method ahead

of time. One option to communicate is to hard-code the information into the covert

channel framework, so the parties no need to communicate. Another option is to

utilize another covert channel such as a covert storage channel to communicate the

required information on the fly. In any instance, the receiver receiving procedure just

45

has to know the ruleset of the time range for partition, not the original time message

sequence.

In this dissertation, a set of exfiltration experiments were carried out in various

network topologies to test the impact of varying time delays on covert channel de-

tection. The time delays of binary encoding that may offer categorizing of short and

long traffic inter-arrival times were selected in these tests based on the inter-arrival

time behavior of recorded regular traffic transmitted via an overt channel.

To use the behavior of overt traffic, statistical metrics such as tmean (µ), standard

deviation (σ), and 2 Sigma were used to analyze the traffic inter-arrival times of overt

traffic within different networks LAN and WAN (details of these networks are provided

in Section 3.2). The mean inter-arrival times of overt traffic in these networks were

determined in the first phase. For example, the mean inter-arrival equals ≈ 0.0050 s

in LAN network 1 and ≈ 0.0025 s in LAN network 2, respectively, and ≈ 0.0664 s in

the WAN network.

Then, 2 Sigma control limits were used the (µ) and (σ) to determine the delay

time range of the inter-arrival times of overt traffic, which consisted of the lower

control limit (Ll), measured as 2 Sigma below the µ and the upper control limit (Lu),

measured as 2 Sigma above the µ, as defined in Equations (3.2) and (3.3). Based on

these equations, the time range of inter-arrival times was defined as within the range

[Ll, Lu]. For example, time range of overt traffic was found to be within two ranges

[0.003109, 0.007274] s and [0.001254, 0.004311] s, in the two LAN networks 1 and 2

46

respectively, and within the [0.056451, 0.076270] s in the WAN network.

Ll = µ− 2× σ (3.2)

Lu = µ+ 2× σ (3.3)

As mentioned in our empirical experiments, the covert sender uses the inter-arrival

time of overt traffic to determine the time delay used for hiding the covert data.

Hence, selection of packet delaying threshold is consider as important factor in the

covert channel exfiltration process. Finding this threshold will save the time of future

researchers who are studying either the detection or mitigation of covert channels

in various applications. For this reason, five cases were examined to determine a

threshold time delay. Each case represents a certain value, denoted by λ, that can

be used to assign the time delays for covert binary code symbols based on the mean

inter-arrival times of overt traffic. In each case the short time delay is used of a symbol

0 (τ0 = λ), and a long time delay is used for a symbol 1 (τ1 = 2× λ), where λ value

defined in the equation below:

λ = c× µ where c = {0.025, 0.50, 1, 2, 3} (3.4)

Where µ is the mean overt traffic inter-arrival times. For example, in the case of

applying our exfiltration experiments in LAN network 1 by choosing λ = 0.025 × µ,

where the µ = 0.0050 seconds of inter-arrival times of overt traffic in the same network,

the time delays are assigned as 0.001250 seconds and 0.002500 seconds for binary

covert codes 0 and 1, respectively. Figures 3.3 and 3.4 show the time delays used in

47

our experiments to encode binary codes in both LAN networks and the WAN network

based on various values of λ and µ in these networks.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Constant value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Ti
m

e
de

la
y

(s
ec

on
ds

)

LAN network 1
Time delay for zeros
Time delay for ones

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Constant value

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Ti
m

e
de

la
y

(s
ec

on
ds

)

LAN network 2
Time delay for zeros
Time delay for ones

Figure 3.3: Covert binary delay in LAN networks.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Constant value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ti
m

e
de

la
y

(s
ec

on
ds

)

WAN network
Time delay for zeros
Time delay for ones

Figure 3.4: Covert binary delay in WAN networks.

After studying the inter-arrival time pattern of overt traffic and establishing the

time delays for binary coding, a series of covert data exfiltration tests were carried

out in various network settings with varying time delays defined by λ values. For each

exfiltration experiment the delay time ranges [Ll, Lu] of binary code (zeros and ones)

were defined using Equations (3.2) and (3.3). To investigate the impact of network

48

conditions on packet time, each instance of exfiltration experiments for selecting time

delay was repeated N times at various times throughout one day, and the average

of the upper and lower control limits of the time ranges for all experiments was

determined.

Tables 3.1, 3.2, and 3.3display the time range of covert binary packets in LAN and

WAN networks The delays for the binary covert packets are shown in the left-hand

columns. The other two columns indicate the time range of these packets’ inter-arrival

timings, as well as the likelihood that the packets were received within that range

based on a particular delay. As an example, consider the first row in Table. 3.1

represents binary packets sent using 0.002500 s and 0.001250 s delays, and 97% of

the zero-bit packets were received within a range of [0.003475, 0.009128]s, and 96% of

one-bit packets were received within a range of [0.007044, 0.009528]s. The results are

same to the rows in both Tables 3.2 and 3.3.

Table 3.1: Inter-arrival time range in LAN network 1.

λ Binary Code Time Delays (s) Time Range (s) Probabilities

λ1
0 0.00125 [0.003475, 0.007128] 0.97
1 0.0025 [0.007044, 0.009528] 0.98

λ2
0 0.0025 [0.007241, 0.009269] 0.98
1 0.005 [0.007437, 0.012877] 0.98

λ3
0 0.005 [0.007580, 0.012301] 0.97
1 0.01 [0.010052, 0.014773] 0.98

λ4
0 0.01 [0.010077, 0.014489] 0.98
1 0.02 [0.022679, 0.031679] 0.97

λ5
0 0.015 [0.017722, 0.023021] 0.99
1 0.03 [0.032630, 0.036662] 0.99

49

Table 3.2: Inter-arrival time range in LAN network 2.

λ Binary Code Time Delays (s) Time Range (s) Probabilities

λ1
0 0.000625 [0.001754, 0.006125] 0.97
1 0.00125 [0.001685, 0.007821] 0.97

λ2
0 0.00125 [0.001795, 0.007915] 0.96
1 0.0025 [0.004315, 0.008203] 0.98

λ3
0 0.0025 [0.004515, 0.008777] 0.97
1 0.005 [0.004995, 0.009020] 0.98

λ4
0 0.005 [0.005985, 0.008864] 0.98
1 0.01 [0.010029, 0.015721] 0.99

λ5
0 0.0075 [0.008437, 0.014877] 0.99
1 0.015 [0.015863, 0.025222] 0.99

Table 3.3: Inter-arrival time range in WAN network.

λ Binary code Time Delays (s) Time Range (s) Probabilities

λ1
0 0.016590 [0.050876, 0.082136] 0.97
1 0.03318 [0.063427, 0.085147] 0.97

λ2
0 0.03318 [0.060318, 0.082716] 0.98
1 0.066361 [0.078770, 0.099943] 0.98

λ3
0 0.066361 [0.081498, 0.100035] 0.97
1 0.132722 [0.184028, 0.205459] 0.98

λ4
0 0.132722 [0.162647, 0.224923] 0.98
1 0.265444 [0.303688, 0.331161] 0.98

λ5
0 0.199083 [0.233235, 0.269826] 0.99
1 0.398166 [0.421317, 0.496371] 0.99

3.2 Channel implementation setup

We developed BCTC as sender and receiver (client and server) applications, using

Java socket programming and Java software to encode and decode data sent over the

channel. The software was designed for and used to send data between two computers

(the sender and the receiver) communicating over reliable TCP/IP connections and

under normal network conditions in different network configurations: LAN networks

50

and a WAN network. The channel was implemented and tested in two distinct LAN

networks (private and public). The two devices were connected to the public LAN

network in a research lab in the Computer Science Department at Memorial Uni-

versity of Newfoundland in St. John’s, Canada. For the private LAN the identical

devices were located in a personal usage network Sin t. John’s, Canada. However, in

WAN network, the two devices were located in different countries the sender was lo-

cated Newfoundland in St. John’s, Canada, while the receiver was in Virginia, USA.

Tables 3.4, 3.5, and 3.6 show the devices’ properties that were used in the experiments

and the network environments properties that were considered in the experiments as

well.

Table 3.4: Devices properties in the LAN networks.

Sender Receiver
Processor Intel(R) Core(TM) i7-6500U Intel(R) Core(TM) i5-4210U

CPU speed 2.50GHz 2.60 GHz 1.70GHz 2.40 GHz
RAM 8.00 GB 6.00 GB

System type 64-bits 64-bits
Adapter type Ethernet 802.3 Ethernet 802.3

Table 3.5: Devices properties in the WAN network.

Sender Receiver
Processor Intel(R) Core(TM) i7-6500U Intel(R) Core(TM) i7-44790S

CPU speed 2.50GHz 2.60 GHz 3.20GHz 3.20 GHz
RAM 8.00 GB 8.00 GB

System type 64-bits 64-bits
Adapter type Ethernet 802.3 Ethernet 802.3

In our tests, our packet capturing module uses the Wireshark network analyzer

to monitor and record traffic flows between the sender and receiver computers [74].

51

Table 3.6: LAN networks characteristics.

Network 1 Network 2
Internet speed 52.1 mbps download 42.8 mbps download

15.9 mbps upload 47.1 mbps upload
Latency 55 ms 58 ms

Router type Home hub 3000 D-link
Number of hops 1 1

Geographical location Personal use network Research lab at Memorial University
St John’s, NL John’s, NL

Wireshark captures network traffic and transforms it to a human-readable format. It

creates.PCAP files that are used to capture and record network packet data. The

PCAP files may then be used to inspect and analyze TCP/IP network packets.

Furthermore, Wireshark can filter network traffic using capture and display filters.

Capture filters are used to filter collected traffic, while display filters are used to filter

traffic that the receiver agent may see. For example, the receiver agent may filter

network protocols or hosts. The receiver agent may begin checking for performance

issues after collecting the filtered traffic. Similarly, the receiver agent may filter by

source and destination ports to do in-depth analysis on certain network components.

Wireshark captured network traffic on the receiver side of our exfiltration tests

using most common five tuples: source IP address, destination IP address, destination

port number, source port number, and protocol. These five tuple addresses are used

to differentiate across data streams but do not identify covert traffic.

52

3.3 Covert timing channel analysis

This section examines BCTC’s effectiveness in terms of channel accuracy and bit rate,

as well as how time delay choices and network condition influence both terms.

3.3.1 Accuracy of distinguishing covert traffic from Legiti-
mate traffic

We assume that the covert channel is devoid of contention noise in order to assess

channel effectiveness and give an upper limit on bit accuracy. As a result, the receiver

can distinguish between network packets produced by the sender and those intended

for other network users. The most significant variables that influence channel accuracy

in this situation are clock skew and time delay selection. Clock skew (jitter) in a

network is mostly happened based on changing network conditions, which makes

increase in packet delay time or reduce latency between sender and receiver. Network

conditions have the ability to influence the packet timing transmitting from sender

to receiver and reduce channel accuracy [22]. Temporary network congestion, for

example, may cause a packet to be delayed longer and alter the covert symbols at the

receiver side.

Time delay selection is also essential in deciding how much the time delay threshold

impacts channel detection accuracy. Timing intervals linked with various symbols in a

sequence should ideally be as distinguish from each other as feasible. For example, the

receiver needs to distinguish timing data from the zero time range from those in the

53

one-time range. This is determined by the time delay chosen as well as how specific

timing range are determined for each time partitions. The next sections empirically

demonstrate the impact of time delay selection and network conditions on channel

accuracy.

3.3.1.1 Effect of time delay selection

We initially tested the correctness of our channel by varying the time delays. This

point is marked as a threshold, which may be thought of as a barrier separating covert

traffic from overt traffic. We investigated five instances of time delays mentioned

in Section 3.1.1 to investigate the effect of packet time delays on covert channel

detection. We can also identify threshold time delays that assist evaluate the degree

of risk of security threats or enhance the quality of channels in transmitting sensitive

information by studying these five instances.

The proportion of properly decoding the inter-arrival times for both covert and

overt packets based on their time ranges was used to assess the accuracy of differen-

tiating between covert and overt traffic in each instance. The accuracy findings, as

shown in Figure 3.5, indicate that accuracy is poor when λ is a quarter of the mean

inter-arrival times of overt traffic. Covert traffic is counted in the same way as overt

traffic, thus the time range of covert traffic overlaps with that of overt traffic. The

sender continues to transmit packets with such inter-arrival times, but they contain

no data. When the receiver can observes the changing in inter-arrival times but does

not store any binary bits. So the channel with limited rate is more difficult to detect.

54

However, as time delays increased, such as in the cases of 2 and 3 of λ (which equal

half and the same value of the mean inter-arrival times of overt traffic, respectively),

the percentage of distinguishing between covert and overt traffic increased as well,

allowing for significant differentiation between both between 70-90%. When time

delays were included, the accuracy approached 100%, almost twice the mean inter-

arrival times of overt traffic. Furthermore, any selected time delay larger than twice

the mean inter-arrival times of overt traffic resulted in an accuracy of 100%, showing

that covert communication was easily distinguished from overt traffic.

As a result, in terms of receiving covert data clearly to the covert receiver, covert

channels with time delays near to or higher than the mean inter-arrival times of

overt traffic will be hazardous in malevolent applications or useful in secret appli-

cations. Furthermore, we can simulate three kinds of covert attacks with different

complexity ranges, from simple to most sophisticated, such as greedy, cautious, and

ultra-cautious, depending on the time delay threshold.

3.3.1.2 Effect of network conditions

We also examined the impact of network conditions such as network congestion on

the effectiveness of the channel. To do this, we tested our covert channel under

normal network as well as a congested network conditions with varying round-trip

time (RTT) between communicating parties. Under normal conditions, we observed

100% average bit accuracy with the timing delay set to less double the mean inter-

arrival time of overt traffic. But during the network congestion the accuracy rate was

55

1 2 3 4 5
 values

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

LAN network 1
LAN network 2
WAN network

Figure 3.5: Accuracy of distinguishing covert traffic from overt traffic.

decreased. To maintain accuracy during times of congestion, the time delays should

be increased.

Therefor, clock skew, has a significant impact on covert timing channel efficiency.

For example, may lead the receiver to record packets coming beyond the intended

time interval. As a consequence, this it may cause single bit flips. This flipping

problem can be solved using error correction coding. Each network packet has a one

connection with a one bit of covert data in the covert timing channel, making timing

covert channel independent bit error of each other and not affected to the following

bit. Because of this advantage, the bit error correction methods is better suited for

the timing channel.

One method for dealing with with network condition errors is utilizing error cor-

rection codeing to fix single bit mistakes. Error correction coding technique provide

extra bits to the message that may be used to identify and rectify certain transmission

56

problems [75]. ECCs have the disadvantage of increasing the amount of bits to be

sent. We used Hamming codes and the Bose, Chaudhuri, and Hocquenghem (BCH)

encoding method in this research because they are computationally easy to encode

and decode and can correct one mistake per codeword.

To test the effect of network conditions, we ran our covert channel between sender

and receiver over the WAN network to transmit the binary encoding using one value

of λ specified in Section 3.1.1 and obtain the channel accuracy. In Figure 3.6, we show

the bit accuracy results in case of using and error correction and without it for all 100

covert inter-arrival time sequences. We found that 92 of 100 sequences yielded more

than 90% bit accuracy with no error correction, whereas eight sequences produced less

accuracy due to particular sequence characteristics overlapping with typical traffic.

With error correction, 98 sequences achieved bit accuracy rates of more than 90%.

Error correction resulted in a 6% improvement in bit accuracy on average.

100-90 90-80 80-70 70-60
Binary accuracy (%)

0

20

40

60

80

100

S
e
q
u
e
n
ce

 n
u
m

b
e
r

Figure 3.6: Bit accuracy results with no error correction (left) and with error correction
(right).

57

Another method for preventing transmission mistakes is to use no transmission

interval between parities. There is no packet transmission between sender and recip-

ient during the no transmission interval period. As a result, the channel can recover

the errors that happened before to this time. The length of this interval has already

been agreed upon by the parties. The no transmission interval may can be set as

a default time interval, or the covert channel can be used to transmit it before the

data transmission process begins. However, the sender has no way of knowing the

hidden bits were properly received by the recipient. As a result, the sender has the

responsibility to monitor the changing in network conditions and choose when to stop

transmission.

A rapid shift in the round-trip time between sender and receiver, for example,

may be a strong indication that the sender should adopt the no transmission mode.

On the receiving side, the receiver does nothing until the start of a bit packet comes.

The enter of the silent mode improves channel accuracy while decreasing transmission

rate.

Rather than slowing transmission by creating intervals with no transfer, the chan-

nel may progressively adjust to changes as network conditions change. In the interval

adjusting method, the receiver carefully monitors the arrival time of each packet and

compares it to the idealistic scenario such as the expected next packet arrival time

based on the current time interval. When the two times are compared, a certain value

is calculated, which is the difference between the ideal and real timings and may be

indicate as positive or negative value depending on if the packet came late. This value

is subsequently added to the interval time, and the clock time is adjusted for the next

58

incoming packet. This method is most helpful when there is an changing in network

conditions. It may, however, create problems if the change in network latency exceeds

50% of the interval time, which modifies the time interval incorrect way.

3.3.2 Transmission bit rate

The covert timing channel employed in this research is not symmetric, which means

that the transmission delays and bit rates for the binary covert packets vary. In other

words, transmitting 1024-bits of zeros takes less time than transmitting 1024-bits

of ones. This implies that the communicated bit rate of zeros is greater than the

transmitted bit rate of ones.

The height data rate is obtained by utilizing sequences with the shortest inter-

arrival times. This rate, however, is limited by 1) effect of clock skew on channel

accuracy. With short delay times, a little change in the packets interval times may

change the symbol generation such as located it in a different partition. For long

intervals, however, the same variation may be insignificant; 2) sequences with high

data rates may be abnormal in contrast to the network’s typical sequences.

The fact that zeros and ones are intermingled in the communication experiments

is significant, since the findings would have been different if the proportion of zeros

and ones in the hidden information had been different. To investigate the effect of

intermixed zeros and ones inside covert information on transmitted bit rate, several

instances were investigated, each with a different proportion of zeros and ones in the

hidden information. One of the cases utilized was 50% zeros and 50% ones, indicating

59

that a binary encoding stream with a length of 1024-bits was communicated between

the sender and the receiver, with 512 bits of zeros and 512 bits of ones.

This was the case for all other cases, and each situation was evaluated using three

metrics: Ll, mean, and Lu for inter-arrival time ranges of binary covert packets, as

shown in Figure 4.5. The findings indicated that when short delays were employed

in both network setups, the greatest number of bits sent via the covert timing chan-

nel was recorded, as shown in Figure 4.5 a. The transmission bit rates dropped as

the difference between delays grew, as illustrated in Figure 4.5 b,c in both network

topologies.

Furthermore, the number of bits sent based on the Lu value in the range of the

inter-arrival times was low in comparison to the number of bits sent based on the Ll

value for any transmission delays in both networks. Because of 1 s in configuration, 1

is deemed inadequate time to transmit a significant number of bits with high delays,

and the quantity of bits sent is determined by the network’s transmission speed. The

following method was used to calculate the bit transmission rate values displayed in

Figure 4.5:

Td(4−bits) = N0 × V0 +N1 × V1 (3.5)

where Td(4−bits) is the time duration needed to send a binary data stream with length

is 4 bits; N0 is the number of zeros in the 4-bits stream; V0 is one of the three values of

Ll, mean, or Lu for bit 0, N1 is the number of ones in the 4-bits stream; and V1 V0 is

one of the three values of Ll, mean, or Lu for bit 1. In Equation (3.5), a data stream

with a size is 4 bits was chosen for simplicity to calculate the transmission bit-rate

based on the percentage of zeros and ones in the covert information. For example,

60

in the scenario that introduces 75% zeros and 25% ones at delay τ0 = 0.00125 s and

delay τ1 = 0.0025 s in network configuration 1, where the minimum values (Ll) in the

range of inter-arrival times for zeros and ones are 0.003475 and 0.007044, respectively,

the 4-bits stream contained 3 bits of zeros and 1 bit of ones, and the time duration

to send these 4 bits was equal to (3× 0.003475) + (1× 0.007044) = 0.017469 s. Then,

the number of streams that needed to transmit the 4 intermixed binary encoded

symbols based on the time duration of the bits determined in Equation (3.5) was

defined in the following:

NTd =

⌊
Tu

Td(4−bits)

⌋
(3.6)

where Tu is the time unit utilized to transmit the hidden information between the

sender and recipient. The time unit in this research is 1 second. The number of

binary bits transferred per second in all 4-bit streams was then determined using the

formulae below:

TR0 = N0 ×N(Td) (3.7)

TR1 = N1 ×N(Td) (3.8)

3.3.3 Experimental environment and evaluation metrics

The following hardware and software were utilized in the experimental setting for

this dissertation to identify CTC using the suggested detection methods described in

the following chapters. The testing environment used a x86− 64-ThinkStation-P920

server running Linux version 55 − 18.04.1−Ubuntu; the primary processor unit had

61

100% 0 100% 1
50% 0 & 50% 1

33% 0 & 33% 1
25% 0 & 75% 1

75% 0 &25% 1

Input symbol

0

100

200

300

400

500

600

700

800

Tr
an

sm
iss

io
n

da
ta

 ra
te

Ls
Mean
Lu

100% 0 100% 1
50% 0 & 50% 1

33% 0 & 33% 1
25% 0 & 75% 1

75% 0 &25% 1

Input symbol

0

100

200

300

400

500

600

700

800

Tr
an

sm
iss

io
n

da
ta

 ra
te

Ls
Mean
Lu

(a) Transmission bit rate based on λ1

100% 0 100% 1
50% 0 & 50% 1

33% 0 & 33% 1
25% 0 & 75% 1

75% 0 &25% 1

Input symbol

0

20

40

60

80

100

120

140

160

Tr
an

sm
iss

io
n

da
ta

 ra
te

Ls
Mean
Lu

100% 0 100% 1
50% 0 & 50% 1

33% 0 & 33% 1
25% 0 & 75% 1

75% 0 &25% 1

Input symbol

0

20

40

60

80

100

120

140

160

180

Tr
an

sm
iss

io
n

da
ta

 ra
te

Ls
Mean
Lu

(b) Transmission bit rate based on λ3

100% 0 100% 1
50% 0 & 50% 1

33% 0 & 33% 1
25% 0 & 75% 1

75% 0 &25% 1

Input symbol

0

20

40

60

80

100

120

140

160

Tr
an

sm
iss

io
n

da
ta

 ra
te

Ls
Mean
Lu

100% 0 100% 1
50% 0 & 50% 1

33% 0 & 33% 1
25% 0 & 75% 1

75% 0 &25% 1

Input symbol

0

20

40

60

80

100

120

140

160

180

Tr
an

sm
iss

io
n

da
ta

 ra
te

Ls
Mean
Lu

(c) Transmission bit rate based on λ4

Figure 3.7: Transmitted bit rates of LAN network 1 (left) and LAN network 2 (right).

24 cores and 62.42GB RAM. In addition, several tests are carried out on Google

Colab and a personal computer of Intel Core i7-6500U@ 2.50 GHz, 28 GB RAM, and

62

Windows 10 operating system.

The software is written in Python, a programming language that is extensively

used in machine learning and deep learning methods. To make matrix operations

easier, we utilized the Numpy and pandas packages. In addition, the TensorFlow and

Keras libraries were utilized to perform deep learning on the GPU. The researcher

may simply construct the network model using the Keras library, which contains

functions such as data preparation, parameter tweaking, and deep learning layers in

block form.

The studies took into account various performance metrics, such as recall, which is

concerned with the completeness of detection (i.e., the fraction of the total CTCs that

were detected). Precision, on the other hand, assesses the quality (or exactness) of

identified CTCs. Our assessment seeks to offer a thorough study of different classifiers

and accuracy metrics, allowing users to choose the classifier with the most relevant

accuracy parameters (stakeholders). As a result, we use the most widely used accuracy

measures in network security areas. Following that, we list these metrics and explain

each one.

• Accuracy (A): calculates the number of correctly classified instances of both

classes (overt and covert) over the total number of instances using the following

equation:

A =
(TP + TN)

(TP + TN + FP + FN)
(3.9)

• Precision (P): calculates the number of correctly detected class members by the

63

classifier over the total number of correctly and incorrectly detected members

using the following equation:

P =
TP

TP + FP
(3.10)

• Recall (R): also called Detection Rate (DR) or True Positive Rate (TPR), which

calculates the number of class members that correctly detected over the total

number of class member samples using the following equation:

R =
TP

TP + FN
(3.11)

• F1 score: provides a score that balances both of precision and recall in one

measurement as follows:

F1 =
2× (P ×R)

(P +R)
(3.12)

• False Alarm Rate (FAR): also called as false positive rate, shows the percentage

of the number of records incorrectly classify using the following equation:

FAR =
FP

FP + TN
(3.13)

where True Positive (TP) is the number of segments (images) correctly classified as

CTCs. True Negative (TN) is the number of correctly classified segments as non-CTC

(overt). False Positive (FP) is the number of segments that are incorrectly classified

64

as CTC. False Negative (FN) is the number of segments incorrectly classified as

non-CTC channels while they are CTCs.

3.4 Chapter summary

This chapter demonstrated how to create a covert timing channel by altering overt

traffic time and injecting traffic containing covert information into the network traffic

flow. The inter-arrival times of overt and covert traffic were analyzed in two different

network configurations to investigate the behavior for both configurations and ob-

serve how network conditions affected the bite rate transmission of the covert timing

channels accuracy of distinguishing covert traffic from overt traffic.

According to our findings, covert traffic does not often show extreme values when

the threshold of packet delays employed to conceal the covert data is less than or

equal to a fourth of the mean of overt traffic inter-arrival times. As a result, more

covert traffic is counted near overt activity, causing the time range of covert traffic

to overlap with the time range of overt traffic and making the difference between

them difficult. However, when the threshold of packet delays employed is roughly

equal to or more than twice the mean inter-arrival times of overt traffic, there is

no overlap between the time ranges of covert traffic and the time ranges of overt

traffic, making the distinction between them simpler. Based on these findings, it is

beneficial to identify certain levels that may assist in distinguishing between covert

and overt traffic. This threshold may also be used to create an undetected covert

channel that can be utilized for a variety of reasons. This chapter avoids optimizing

65

for any specific channel or networked application in favor of finding characteristics

that provide acceptable performance while being extremely resilient under varying

conditions.

66

Chapter 4

CTC Detection and Localization Based
on Image Processing Using Machine
Learning Techniques

Recently, regarding to the increasing of using covert timing channels, these channels

has become a serious threat to network security. As a result, detecting these channels

is a important of contemporary information technology infrastructure. Numerous

businesses, nations, and government organizations are concentrating their efforts on

developing more effective methods for detecting hidden routes. This will act as a

critical building element for a decision support system that guards against such vul-

nerabilities in the IT infrastructure.

Numerous network traffic monitoring and detection techniques have been devel-

oped to detect covert timing channel attacks. However, many recent studies have

67

highlighted the need for quick and trustworthy technologies for successfully thwart-

ing such fraudulent traffic. With a fast and reliable tool, it may become possible to

immediately identify such channels and take necessary action to suppress and termi-

nate the assaults before they have a chance to send more data across the network.

Thus, this dissertation examines the potential of detecting covert timing channels

using an image processing method, which is different from current detection strategies

that rely on the static characteristics of traffic to identify such channels. By proposing

a novel visualization model, the traffic time is converted to colored images and the

covert channel detection issue will convert to an image classification challenge. This

approach offers an efficient and rapid methodology for detecting changes in covert

attack patterns and pointing that in the image.

The main motivations behind using a visualization model are as follows: I) vi-

sualizes packet inter-arrival time data as images, making various of covert assaults

clearly visible to the human eye; II) utilizes image processing methods such as color

or edge feature extraction algorithms to identify the characteristics of time series that

appear as distinct color line patterns (color blocks) on temporal-spatial planes; III)

clusters the lines obtained to aid in classifying and labeling the numerous anomalies

detected; IV) utilizes image compression techniques. V) shows the efficacy of visual

characteristics in detecting and classifying CTC using machine learning classifiers.

This chapter first describes the architecture of the novel proposed SnapCatch

CTC detection model, which uses image processing with machine learning algorithms.

Then it presents the processes involved in identifying and localizing such channels in

traffic flows. Finally, it discusses using various image-based datasets to evaluate the

68

proposed model’s efficacy and quantitative performance.

4.1 SnapCatch: Image-based CTC detection model

This section provides the suggested CTC detection methodology, as well as mea-

surements taken on real-world traffic traces from two large networks. The suggested

model may be divided into three major processes:

1. Generating traffic datasets using our proposed covert channel (BCTC).

2. Converting packet inter-arrival times into colored-image representa-

tions.

3. Constructing feature image extraction and machine learning models

for CTC detection.

The main components of our method are shown in Figure 4.1. First, we design

and build a software environment that includes two systems (sender and receiver)

that communicate over different network topologies (LAN and WAN). Section 3.2

describes the specifics of various system and network topologies. Furthermore, we

create a malicious agent that injects (encodes) covert messages into the sender’s

traffic flows. This agent injects hidden data using three distinct defensive evasion

methods, with settings ranging from greedy data exfiltration to cautious and stealthy

data exfiltration. These three configurations are found by applying the time delays

described in Section 3.3.1.1.

69

Our packet capturing module then uses Wireshark [74] to monitor and record

traffic flows between the source and recipient systems. The recorded traffic flows

include both overt (benign) and covert (malicious) traffic. Following that, our method

extracts the inter-arrival times of the packets from these flows and stores them in the

flow dataset.

The image processing module reads each traffic flow’s inter-arrival timings and

transforms them into colorful pictures. Then, from the colored pictures, our feature

extraction program extracts eight chosen characteristics. Finally, our classification

module takes the feature sets as input and builds machine learning classifiers to

identify pictures with covert traffic flows. Following that, we will go through the

specifics of each module.

Figure 4.1: Workflow of CTC detection using image processing and machine learn-
ing.

70

4.2 Raw data generation

In this phase, we create datasets using our suggested channel (BCTC) from Chapter

3. For data creation, the malicious agent has two primary parameters that influence

its ability to avoid detection: 1) determining the time delays of its packets; and 2)

determining the size of its hidden messages. The covert agent employs packet time

delays depending on the time delay threshold specified in Section 3.3.1.1, where this

threshold is roughly equal to or more than twice the mean inter-arrival time of overt

traffic in the first batch of time delays. As a result, in this section, we developed three

distinct time delay configurations to simulate three different kinds of CTC assaults of

increasing complexity: (1) greedy, (2) cautious, and (3) ultra-cautious CTC attacks.

The assessment section will go through the specifics of each assault.

The size of the covert message is the second parameter for mimicking overt traffic.

As previously stated, hostile agents have the ability to transmit stolen data in big

or tiny covert communications. Large covert communications create a rapid shift in

network activity and are therefore simpler to detect than tiny ones. To investigate

the impact of various covert message sizes on the accuracy of CTC detection, we

provide the malicious agent (the sender) the option to transmit covert messages in

three different sizes: 8, 64, and 128 bits.

Our packet capturing module uses Wireshark [74] to record the communication

flows between the covert sender and covert receiver systems in order to create and

aggregate the traffic datasets. The collected collection of internet flows is then cat-

egorized into overt and covert traffic. Finally, our method extracts the inter-arrival

71

times of these traffic flows and stores them in flow datasets.

4.3 Creating colorful pictures from traffic inter-

arrival times

The preceding phase generates datasets comprising the inter-arrival times of the traffic

flow recorded during communication between the sender and receiver systems. Our

method converts these inter-arrival periods into colorful pictures depending on their

values in this phase. This allows us to use common image processing methods to

extract more robust picture-based characteristics for subsequent processing. To do

this, each sub-flow of inter-arrival times was first put in a 2D 16x16 matrix. Each

matrix is filled in row by row and left to right with the inter-arrival timings. The

inter-arrival time in each matrix are then normalized to a value between 0 and 255

to create a color picture. Finally, each matrix is rendered as a colored picture by

converting each of its normalized (16x16) components to a color pixel. The matplotlib

package [76] was used for this purpose, which can generate a picture from a 2D matrix.

As illustrated in Figure 4.2, the picture will contain one square for each element of the

2D matrix, and the color of each square is determined by the value of the associated

matrix element.

We created two kinds of datasets for our experiments in this chapter. The first

kind is for channel detection, and it includes 4,608,000 inter-arrival times for overt

and covert traffic based on the three CTC assaults and three covert message sizes.

The second kind is for channel localization, which includes 1, 534, 464 inter-arrival

72

Figure 4.2: Illustration of inter-arrival time images.

time for covert traffic based on three sizes of covert messages injected in three places

in the traffic flow: beginning, middle, and finish. Tables illustrate the specifics of

each dataset. 4.1 and 4.2, respectively.

73

Table 4.1: Detection dataset parameters

Covert message size 8, 64, 128 bits
Delay time 2µ, 0.5µ, 0.25µ
The mean IATs of overt traffic (µ) 0.0664 seconds
Sub-flow size 256 inter-arrivals
Number of dataset versions 9
Number of images (all datasets) 18000
Number of covert images (all datasets) 9000
Number of overt images (all datasets) 9000
Number of images per dataset version 2000
Number of covert images per dataset version 1000
Number of overt images per dataset version 1000

Table 4.2: Localization dataset parameters

Covert message size 8, 64, 128 bits
Delay time 2µ
The mean IATs of overt traffic (µ) 0.0664 seconds
Sub-flow size 256 inter-arrivals
Number of dataset versions 3
Number of images (all datasets) 5994
Number of images per dataset version 1998
Location of covert message Beginning, middle,end

4.4 Feature extraction and image classification

Once the colored pictures are produced, our method extracts eight common char-

acteristics from them. These characteristics are then utilized to train and build a

machine learning classifier for detecting covert communications. In this part, we will

first explain these characteristics as well as the techniques utilized for extraction. The

machine learning methods used to build and verify the CTC detection classifier are

then described.

74

4.4.1 Feature extraction

As previously stated, each colorful picture produced by the preceding phase indicates

a traffic sub-flow. Using these pictures as input, our feature extraction program

retrieves eight common characteristics from each image. We list and describe each of

these characteristics below:

1. Mean gray value, which computes the average gray value inside the picture

by adding the gray color values of all pixels in the image and dividing the total

number of pixels by the number of pixels

2. Standard deviation,which computes the standard deviation of the gray values

that were used to produce the mean gray value

3. Mode,This indicates the image’s most commonly occurring gray value Corre-

sponds to the histogram’s greatest peak value.

4. Center of mass, which computes the brightness-weighted average of all pixels’

x and y coordinates in the image These are the first order spatial moments’

coordinates.

5. The integrated density, which computes the area of one pixel multiplied by

the sum of the image’s pixel values

6. Median,which computes the median value of the image’s pixels

7. Skewness,which computes the third-order moment about the mean where the

distribution’s area lies, to the left or right of the mean.

75

8. Kurtosis, a distribution metric used to determine if a distribution is peaked or

flat around the mean

We used the ImageJ tool [77] to extract these characteristics from the pictures The

collected characteristics were then saved in a CSV file for use in the classifier training

procedure. This procedure will be explained further below.

4.4.2 Machine learning model construction

to glean these features from the images

The attributes gathered were then stored in a CSV file for use in the classifier

training process.

This method will be discussed in more detail below.

• Support Vector Machine (SVM).

• Decision Tree (DT).

• Näıve Bayes (NB).

• Artificial Neural Networks (ANN).

Using the characteristics collected from each picture, we trained each classification

model. The models were then tested using the hold-out validation technique. We

76

divided our dataset into 70% for training and 30% for testing using the hold-out

validation technique.

We used four machine learning methods to explore which one performs better

in this domain: Support Vector Machine (SVM), Decision Trees (DT), Nave Bayes

(NB), and Artificial Neural Networks (ANN) (ANN). The SVM classifier operates

on the dataset by creating the optimum hyperplane that splits the best observations

(features) into two portions that represent the two classes (overt and covert). Using

the DT classifier, on the other hand, has the benefit of allowing a human to evaluate

the resultant decision tree in terms of which characteristics are the most correct (i.e.,

have the lowest Gini impurity value). Furthermore, the most important (determining)

characteristics are always utilized at the top of the tree, while the unnecessary features

are disregarded (pruned). Because of their capacity to identify underlying connections

in data, NB and ANN are highly popular machine learning algorithms that continue

to obtain high accuracy metrics in pattern identification.

We utilize the popular data mining program Waika Environment for Knowledge

Analysis (WEKA 3.8) [78] to build and verify these models. Following that, we discuss

and share our experiments and assessment findings.

4.5 Experimental results and analysis

Our evaluation seeks to quantify the performance of our approach in the following

ways: (a) the effectiveness of our approach in detecting CTCs under different defense

77

evasion configurations of cyber-attacks; (b) the ability of our approach to pinpoint

the covert part (set of packets) of the traffic sub-flow; and (c) compare and contrast

different machine learning classifiers in detecting CTCs based on their accuracy and

interpret-ability.

4.5.1 Experimental results of using three types of CTC at-
tacks

To validate the accuracy and efficiency of our proposed approach, we present our

experimental results and compare them with three popular baseline CTC detection

approaches. These detection approaches are: (1) the regularity test [22], (2) entropy

test, and (3) corrected conditional entropy [9, 23].

Furthermore, in order to evaluate and compare the efficacy of our method in iden-

tifying different kinds of covert channels, we examine several covert channel configu-

rations ranging from basic to stealthy CTCs that use sophisticated defensive evasion

tactics.

As a result, we built the tests using three kinds of CTC assaults based on real-

world scenarios: (1) Greedy Covert Timing Channels (GCTC): When transmitting

packets, this kind of channel ignores the usual time-delays of overt traffic. As a result,

it is considered as the simplest kind of assault to identify. (2) Cautious Covert Timing

Channels (CCTC) try to mimic the delay periods of overt communications, making

this kind of covert channel more difficult to detect. (3) Ultra-Cautious Covert Timing

Channels (UCCTC) are the most sophisticated and difficult to detect kind of covert

78

channel. This kind of channel prevents the malicious sender from deviating from overt

traffic at the cost of time and the quality of the stolen information. Following that,

we offer additional information about these assaults and provide the outcomes of our

approach’s assessment for each attack.

4.5.1.1 Greedy Covert Timing Channels (GCTC)

Our preliminary assessment findings demonstrate the effectiveness of our method in

identifying Greedy Covert Timing Channels (GCTC). GCTC is the most basic kind

of covert channel since it does not attempt to overlap with (or mimic) the time-

delays of overt traffic. As a result, when compared to overt traffic, it often creates

abnormalities in traffic. Because of this observable irregularity, this kind of channel

is simpler to identify.

the packet time-delay setting was adjusted to match the twofold mean inter-arrival

time of overt traffic to mimic the GCTC attack. In addition, to verify our approach’s

efficacy in identifying various sizes of covert messages for this attack, we conducted

tests with three distinct covert message sizes: 8, 64, and 128 bits. In each experiment,

these covert messages were inserted into a 256-bit traffic flow sent from the sender to

the recipient.

As previously stated, we captured the produced traffic using Wireshark and then

used our image creation method to transform the traffic flows into colorful pictures.

Then, we retrieved the eight characteristics from these pictures and used them to train

four different classifiers (SVM, DT, NB, ANN) using 70% of the data and evaluated

79

the classifiers with the remaining 30% of the data for both network configurations.

The detection results for the GCTC attack on the LAN network utilizing three

covert message sizes: 8, 64, and 128 bits are shown in 4.3. As demonstrated in the

Figure, our method (SnapCatch) obtained the greatest CTC detection accuracy of

the GCTC attack, with accuracies of 99.83% , 100% , and 100% for covert message

sizes of 8, 64, and 128 bits, respectively, utilizing the DT and NB models. The CCE

obtained the second-highest CTC detection using an ANN classifier, with 82.83%,

85.67%, and 90.83% for covert message widths of 8, 64, and 128 bits, respectively.

The entropy-based method finished third with accuracy rates of 72.67 %, 76.83 %,

and 82.55 %. The regularity-based method, on the other hand, came in fourth (and

last) with an accuracy of 71.0 %, 75.50 %, and 79.17 % for covert message sizes of 8,

64, and 128 bits, respectively.

Moreover, Figure 4.4 shows the detection results for GCTC attack inter-arrival

times recorded in the WAN network. As shown by the Figure, the highest CTC

detection accuracy of the GCTC attack was achieved by the SVM classifier trained

by our approach, which achieved 99.83%, 100%, and 100% for the covert message sizes

of 8, 64, and 128 bits, respectively. Moreover, Table 4.3 represents more accuracy

measures (e.g, F1 score). The CCE achieved the second-highest CTC detection, which

reached 82%, 85.5%, and 89.83% for the covert message sizes of 8, 64, and 128 bits,

respectively. The entropy-based approach achieved third place with the accuracy of

72%, 77.33%, and 81.33%. In contrast, the regularity-based approach achieved fourth

place with the accuracy of 70.2%, 74.83%, and 78.83% for the covert message sizes of

80

Figure 4.3: The impact of the covert message size on the detection accuracy of GCTC
in LAN network.

8, 64, and 128 bits, respectively.

Figure 4.4: The impact of the covert message size on the detection accuracy of GCTC
in WAN network.

81

4.5.1.2 Cautious Covert Timing Channel (CCTC)

Our second set of evaluation results shows our approach’s performance in detecting

Cautious Covert Timing Channels (CCTC). CCTC is a more advanced cyberattack

that seeks to imitate the overt traffic behavior (packet inter-arrival time) to a certain

degree. This type of covert channel exhibits near-overt traffic behavior using packet

inter-arrival times that are partially similar to overt traffic. Because of its similarity

to overt traffic, CCTC is a more challenging type of covert channel to detect.

To simulate the CCTC attack, the packet delay was set to be equal to half of the

mean inter-arrival time of overt traffic. When combined with the delay enforced by

the network, this delay exhibits less abnormality in the traffic, which makes it harder

to detect by the security detection measures. We ran the experiments for the CCTC

attack using the three covert message sizes: 8, 64, and 128 bits. Figure 4.5 shows

the detection results for the CCTC attack in the LAN network using the different

covert message sizes. The Figure shows that our approach outperforms the three

other methods: CCE, entropy, and regularity. SnapCatch achieved 74%, 92.33%, and

95.33% for the covert message sizes of 8, 64, and 128 bits, respectively. As expected,

the accuracy of the detection methods is mostly affected by the cover message size.

This is because smaller covert messages (e.g., 8 bits) cause less change to otherwise

normal traffic behavior. We found that the detection accuracy of SnapCatch gradually

increases when the size of covert messages increases.

The CCE achieved the second-highest CTC detection using the ANN classification,

which reached 63.83%, 77.83%, and 82.67% for the covert message sizes of 8, 64,

82

and 128 bits, respectively. The entropy-based approach achieved third place with

the accuracy of 60.83%, 71.50%, and 76.83%, where the regularity-based approach

achieved fourth (and last) place with the accuracy of the approach 58%, 65.50%, and

71.5%for the covert message sizes of 8, 64, and 128 bits respectively.

Figure 4.5: The impact of the covert message size on the detection accuracy of CCTC
in LAN network.

Similarly, Figure 4.6 depicts the detection of CCTC attacks in WAN network

architecture. The SnapCatch technique outperforms the other three approaches, as

shown in the Figure. SnapCatch obtained 74.33 %, 91.36%, and 95.83%, respectively,

for covert message sizes of 8, 64, and 128 bits. Table 4.4 represents additional accuracy

measures such as F1 score and precision.

CCE obtained the second greatest detection accuracy, with detection accuracies of

63%, 76.83%, and 81.66% for covert message sizes of 8, 64, and 128 bits, respectively.

83

The third set was obtained by the entropy-based method, which had accuracies of

60.33%, 71.1%, and 77.33%. The regularity-based method, on the other hand, came

in fourth place, with detection accuracies of 56.83%, 64.83%, and 72.33%for covert

message sizes of 8, 64, and 128 bits, respectively.

Figure 4.6: The impact of the covert message size on the detection accuracy of CCTC
in WAN network.

4.5.1.3 Ultra-Cautious Covert Timing Channels (UCCTC)

Our final set of assessment findings demonstrates the effectiveness of our method for

identifying Ultra-Cautious Covert Timing Channels (UCCTC). UCCTC is a cutting-

edge cyber-attack that prevents covert channels from displaying characteristics (packet

inter-arrival times) that differ from overt traffic. This limitation often compromises

the quality of the stolen information by forcing packets to occur within a shorter time

84

period. However, because of the great resemblance to overt traffic behavior produced

by non-malicious apps, this kind of cover channel is the most difficult to identify.

the packet delay was set to be equal to the quarter of the mean inter-arrival time

of overt traffic to mimic the UCCTC assault. We carried out the UCCTC attack

tests with three different covert message sizes: 8, 64, and 128 bits. As demonstrated

in Figure 4.7, our method obtained the greatest detection accuracy for the SCTC

attack, with detection accuracies of 61.67%, 74.83%t, and 76.83% for covert messages

of length 8, 64, and 128 bits. The CCE had the second-highest CTC detection rate,

with 57.7%, 63%, and 66%. The entropy method (third place) had accuracy values

of 52.83%, 60.33%, and 64.83%, respectively, while the regularity approach (fourth

place) had accuracy values of 52.17%, 57.5%, and 63%, respectively.

Figure 4.7: The impact of the covert message size on the detection accuracy of UCCTC
in LAN networks.

85

Similarly, the results of UCCTC attack detection in WAN network setup are shown

in Figure 4.8 and Table 4.5. The Figure demonstrates that SnapCatch obtained the

greatest detection accuracy for the UCCTC attack, with detection accuracies of 61.33

%, 74.5 %, and 76.83 % for covert messages of length 8, 64, and 128 bits. The CCE

had the second-highest CTC detection rate, with 58 %, 63 %, and 66.5 %. The

entropy method (third place) had accuracy values of 52.83 %, 60.33 %, and 64.83

%, respectively, while the regularity approach (fourth place) had accuracy values of

52.17 %, 57.5 %, and 63 %, respectively.

Figure 4.8: The impact of the covert message size on the detection accuracy of UCCTC
in WAN network.

86

Table 4.3: Results of Precision, Recall, and F1 score of the image-based method for
GCTC in WAN network

Covert traffic Overt traffic
Size Measure SVM DT NV ANN SVM DT NV ANN

8 bits
Precision 1.000 1.000 0.997 1.000 1.000 0.997 1.000 0.984

Recall 1.000 0.997 1.000 0.980 1.000 1.000 0.997 1.000
F1 score 1.000 0.998 0.998 0.995 0.9987 0.998 0.998 0.994

64 bits
Precision 0.999 1.000 0.998 1.000 1.000 0.999 1.000 1.000

Recall 1.000 0.999 1.000 1.000 0.998 0.999 1.000 0.998
F1 score 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

128 bits
Precision 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Recall 0.999 1.000 1.000 1.000 1.000 0.999 1.000 1.000
F1 score 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4.4: Results of Precision, Recall, and F1 score of image-based method for
CCTC in WAN network

Covert traffic Overt traffic
Size Measure SVM DT NB ANN SVM DT NB ANN

8 bits
Precision 0.703 0.699 0.820 0.963 0.784 0.782 0.776 0.668

Recall 0.820 0.820 0.333 0.513 0.653 0.647 0.670 0.980
F1 score 0.757 0.755 0.474 0.670 0.713 0.708 0.719 0.795

64 bits
Precision 0.902 0.894 0.896 0.905 0.922 0.921 0.922 0.922

Recall 0.923 0.923 0.925 0.926 0.901 0.891 0.894 0.904
F1 score 0.913 0.908 0.910 0.914 0.911 0.906 0.908 0.913

128 bits
Precision 0.946 0.937 0.937 0.972 0.934 0.937 0.94 0.924

Recall 00.938 0.936 0.940 0.920 0.947 0.938 0.937 0.973
F1 score 0.950 0.935 0.938 0.945 0.940 0.939 0.938 0.948

4.5.2 Detecting the presence of hidden communications in
traffic flows

As previously stated, identifying hidden communications is critical in preventing ma-

licious programs from stealing sensitive data from a network. When covert commu-

nications are successfully detected, the traffic flow is terminated in order to interrupt

87

Table 4.5: Results of Precision, Recall, and F1 score of image-based method for
UCCTC in WAN network

Covert traffic Overt traffic
Size Measure SVM DT NB ANN SVM DT NB ANN

8 bits
Precision 0.608 0.550 0.553 0.582 0.983 0.983 0.983 0.685

Recall 0.560 0.997 0.997 0.807 0.397 0.393 0.193 0.420
F1 score 0.585 0.711 0.711 0.676 0.328 0.323 0 .324 0.521

64 bits
Precision 0.653 0.650 0.652 0.738 0.997 0.995 0.996 0.753

Recall 0.997 0.998 0.996 0.760 0.465 0.458 0.462 0.730
F1 score 0.790 0.780 0.789 0.749 0.635 0.628 0.632 0.741

128 bits
Precision 0.797 0.730 0.905 0.987 0.745 0.819 0.922 0.680

Recall 0.720 0.370 0.923 0.530 0.817 0.840 0.904 0.954
F1 score 0.757 0.491 0.914 0.693 0.779 0.831 0.913 0.810

the malicious data exfiltration process. Although deleting traffic flows carrying covert

messages is an efficient cyber defense against covert channels, it is also highly dis-

ruptive to the QoS of legitimate applications whose overt traffic may comprise the

majority of the packets in the discarded flows. Discovering the segments of traffic flows

(i.e., sets of packets) carrying the hidden message(s) is a critical goal. It may drop

just the harmful portion of traffic flows while allowing the rest to continue through.

This accurate identification substantially minimizes overt traffic interruptions caused

by non-malicious apps.

This section analyzes and shows the performance of our method in locating hidden

messages inside traffic flows (i.e., the sequence of packets). To accomplish this, we

devised experiments in which covert messages are inserted into every network flow

at one of three points (segments): beginning, middle, and end. Then, we evaluated

the performance of our method in locating the right traffic flow segment (beginning,

middle, or end) containing the hidden message (s).

88

First, we trained the classifiers with three additional labels: (1) start, (2) middle,

and (3) end. Each of these designations corresponds to the position of the hidden

message in a particular traffic flow. These labels are created automatically by the

malicious agent’s settings. For instance, if the malicious agent is configured to inject

the covert message at the start of traffic, it will also assign the label tt starting to

that traffic flow. It also does the same with the other two labels, tt middle and

tt end. After that, the labeled set of covert traffic flow is utilized for training and

testing. We trained the classifiers using 70% of the labeled data and tested them with

the remaining 30%. The accuracy of identifying the malicious traffic flow segment

(beginning, middle, and end) that includes the covert message is shown in Figure 4.9.

Our approach’s SVM classifier effectively identified the segments inside traffic

flows that included the covert message with accuracies of 97.83%, 100%, and 100% for

covert message sizes of 8, 64, and 128 bits, as shown in Figure 4.9. We also performed

the CCE, entropy, and regularity to give a baseline for comparison. Interestingly,

regularity came in second place with detection accuracy of 40.83%, 49%, and 53.83%

for covert message sizes of 8, 64, and 128 bits, respectively. CCE came in third

place, with accuracies of 40.17%, 45.55%, and 48.17%. Entropy came in lowest, with

accuracies of 33.33% for all sizes of hidden communications.

89

A
cc
u
ra
cy

𝐶𝑠𝑖𝑧𝑒 = 8 𝑏𝑖𝑡𝑠 𝐶𝑠𝑖𝑧𝑒 = 64 𝑏𝑖𝑡𝑠 𝐶𝑠𝑖𝑧𝑒 = 128 𝑏𝑖𝑡𝑠

Figure 4.9: The accuracy of pinpointing the location of covert messages within a traffic
flow using different message sizes.

4.6 Discussion

According to our findings, SnapCatch takes a significant step toward accurate and

automatic covert channel identification. This is important not only for identifying

covert channels, but also for precisely finding covert messages inside traffic flows,

allowing us to disrupt these messages without causing substantial QoS degradation, as

shown by our measurement research. With the fast rise in cyber assaults that install

and use covert channels to exfiltrate sensitive information, the suggested method

identifies CTCs rapidly. The suggested method, on the other hand, is still general and

has to be fine-tuned to conform to the organization’s security purpose and limitations.

In this part, we will go through the tweaking that is needed to attain the best results

using SnapCatch.

90

Selecting the best machine learning classifier. SnapCatch’s assessment re-

veals that it achieves excellent accuracy and coverage. However, our method still

produces false positives (overt traffic that is incorrectly identified) and false negatives

(malicious traffic that is incorrectly missed/allowed). We tested with several machine

learning classifiers and measured their accuracy and recall, as shown in Table 4.6.

Depending on the stakeholder defense strategy, several variables may be considered

while choosing the most suitable classifier. Choosing the ANN classifier, for example,

yields the highest accuracy score (98.7%t) for identifying a UCCTC attack with a

covert message size of 128 bits. This classifier is biased toward correctly identify-

ing only covert channels, at the expense of missing about 47% of the covert channels

(false negatives). Choosing the NV classifier, on the other hand, results in the highest

recall value (92.3%) for the identical assault. This classifier emphasizes identifying

the most covert channels at the expense of erroneously detecting 9.5% of overt traffic

(false positives).

Table 4.6: Measures comparison of SnapCatch classifiers for UCCTC attack (covert
message size = 128 bits).

classifier Precision Recall
ANN 98.7% 53%
NB 90.5% 92.3%

SVM 79.7% 72%
DT 73% 37%

Balancing QoS and security. According to our findings, SnapCatch achieves

better accuracies not just in identifying CTCs, but also in segmenting traffic flows

and locating the right traffic segment containing hidden communications. SnapCatch

beats the second-best method, regularity, by about 57This implies that SnapCatch

91

identifies a traffic flow segment containing the hidden message, allowing for the exact

dumping of that traffic segment rather than the whole flow. This implies that the

loss of QoS caused by deleting whole traffic flows containing hidden messages may be

minimized by up to 66 % when adopting our method. As a result, we think SnapCatch

is the best candidate tool to combine usability and security, with an average accuracy

of 99.2% in identifying the right traffic flow segment out of three potential segments

carrying hidden message(s).

4.7 Chapter summary

The SnapCatch model is presented in this chapter as a new method for automat-

ing and accurately detecting CTCs. SnapCatch is a stealth traffic detection system

that specializes in image processing and machine learning methods. First, the system

transforms traffic inter-arrival times into colored pictures using a unique method that

collects actual network traffic characteristics and displays them in colored images.

SnapCatch trains different machine learning classifiers to identify covert channels

quickly by extracting robust and accurate features from colored pictures, based on

a configurable defensive strategy that prioritizes (or balances) correctness and com-

pleteness.

Furthermore, we offer a method for locating covert messages (i.e., a collection of

packets) inside a communication flow, allowing us to remove just the segment of the

traffic flow containing the covert message rather than the whole flow. SnapCatch

surpasses the corrected conditional entropy, entropy, and regularity methods in our

92

assessment. Furthermore, our approach has the lowest performance loss while iden-

tifying tiny (e.g., 8 bit) covert communications and ultra-cautious covert channels

(UCCTC), the most sophisticated kind of covert cyber assault. SnapCatch consider-

ably outperforms baseline methods in identifying segments inside traffic flows carry-

ing covert messages, resulting in a considerable reduction in service quality caused by

deleting covert traffic flows. Finally, we provide a variety of scenarios and use cases

for customizing SnapCatch to execute a defensive strategy that is appropriate for the

tool’s users’ resources and security goals.

93

Chapter 5

CTC Detection and Localization Us-
ing Convolution Neural Network

The increasing using of the internet has opened up a new channel for covert channel

hackers, advising businesses and organizations to stay ahead of the detecting threat

environment. As a consequence, the SnapCatch detection model is being consid-

ered as a possible defensive measure for network security. Based on SnapCatch’s

outstanding accuracy in practice, as shown in Chapter 4, we hypothesized that im-

age recognition and classification techniques may help enhance the performance and

accuracy of covert timing detection and localization.

The SnapCatch detection method, on the other hand, is restricted by the lengthy

time required to extract image features using a large-scale dataset. Furthermore, the

quality of retrieved features has a substantial impact on the overall performance of

classifiers that meet certain requirements or assumptions. As a result, the challenge is

94

devising a CTC detection model to use as a technique for quickly and automatically

extracting features. It may be able to quickly detect such channels and take appro-

priate action, such as covert mitigating defensive measures to interrupt the concealed

communication flow, by automatically extracting image characteristics.

Deep learning, as opposed to machine learning, removes the requirement for hu-

man feature extraction. For example, we might instantly input images to a deep

learning system, which would identify and forecast the item. The deep learning

model surpasses the traditional machine learning method in this respect. A convolu-

tional neural network (CNN) is one of the most popular deep learning applications in

computer vision. CNN can automatically extract image characteristics, avoiding the

drawbacks associated with manually derived unsuitable features.

In comparison to other fully connected neural network approaches, CNN depends

significantly on local relation and weight sharing techniques to reduce the number

of network parameters and computation needed during training the model. Further-

more, CNN utilizes the original image as input, with the convolution layer extracting

various image features. As a result, no new features are required. Each convolution

layer produces a set of features that correspond to a higher level feature extracted by a

certain filter. For these reasons, CNN is being utilized to combine traffic visualization

with new covert timing channel identification and localization techniques.

The CNN model is a strong competitor to improve the SnapCatch model’s per-

formance in terms of training and testing model speed and accuracy by automating

image comparison that visually identifies certain hidden patterns inside an image.

The covert timing channel detection research flow will be expanded to a deep learn-

95

ing technique as a consequence of the proposed CNN model. Deep learning abstracts

data at the highest level possible using a complex architecture or a mixture of non-

linear transformations.

The use of shallow convolutional neural network architecture for image classifica-

tion in various applications has lately drawn the attention of the scientific community.

To reduce model parameters for classification tasks, Lee et al. [79] proposed a shal-

low CNN with a logarithmic filter. Similarly, Li et al. [80] created a shallow CNN

model to recognize images with a limited dataset size. Their shallow CNN model

achieved results comparable to traditional machine learning. Lei et al. [81] recently

proposed a shallow CNN with batch normalize technique to improve image classifica-

tion accuracy. Lei et al. model’s is composed of four layers. The model results show

that shallow CNN may get excellent classification results when compared to another

deep CNN models with lower parameters. As a consequence, since we have a limited

dataset size, we motivated this study by developing a CTC detection and classifica-

tion model using the same shallow CNN model with batch normalization technique.

We will utilize various variables, including as input image sizes and different boosted

parameters, to explore the viability of shallow CNN techniques for CTC detection

and localization.

This chapter describes the design and implementation of a covert timing channel

detection model based on CNN with batch normalization. It learns the hierarchical

feature representation automatically, then determines the optimum model architec-

ture that provides high-performance outcomes in channel identification by evaluating

model hyper-parameter effects and determining optimal parameter values for the pro-

96

posed model. Furthermore, it detects and localizes hidden channels in traffic flows,

and lastly, it employs a variety of image-based datasets to evaluate the model’s effec-

tiveness and quantitative performance.

5.1 Image classification and CTC detection using

a CNN architecture

Deep CNN and shallow CNN structures were utilized to extract image characteris-

tics and categorize photos in the relevant research that employed the CNN method

to identify network threats. The CNN method employs weight sharing and pooling

techniques to substantially decrease computation and parameters, allowing the train-

ing depth model to be implemented. Many deep convolutional neural networks are

being created in response to the fast growth in computer capacity. Deep CNNs have

shown satisfying results in computer vision tasks, as demonstrated by AlexNet [82]

and VGGNet [83]. These deep algorithms, on the other hand, contain complicated

network topologies and many parameters such as kernel size and number of layers.

VGG16 [83], for example, has 16 layers and over million parameters, requiring a

significant amount of time and memory.

Many layers require training time. As a result, it does not always make sense to

utilize deep networks with millions of parameters, particularly in basic problems with

less complicated data patterns. According to the literature, tackling difficult pattern

recognition issues seems to be feasible only with the use of specialized hardware or

optimization techniques such as GPU computations. Such options do not satisfy the

97

network traffic dynamics, which is dynamic, quickly changing, and diverse, due to

the long training time of deep networks. However, the use of shallow CNN is under-

utilized, and research on such networks has lately gained interest. Shallow networks

may be more advantageous for some devices with restricted access. Furthermore, it

is critical to have a quick, light technique for working with large data and making

decisions in a timely manner.

For image classification and CTC detection, this dissertation presents a new shal-

low CNN with batch normalization. The shallow CNN network has fewer layers and

smaller convolution kernels. The fundamental concept behind our proposed approach

is that the quantity of CTC data is very restricted, and that small data sets make

deep networks difficult to converge, thus increasing the danger of over-fitting. As a

result, a shallow CNN may be effectively trained with few data. Shallow networks

would be more suited for analyzing our small and constrained datasets. Furthermore,

by developing the shallow detection model, we may explore if certain well-known

CTC image classification issues can be addressed using just shallow CNN, which can

be trained in a short amount of time and without the need of special hardware or

complex computations.

To speed the convergence of the proposed shallow CNN model and enhance the

ability of generalization for classification accuracy, the batch normalization technique

is introduced after each convolutional layer of the network. The presence of an inter-

nal covariate shift phenomena in training conventional deep neural networks [84] is

the primary reason for adopting batch normalization. The data distribution in each of

intermediate layer would be different through the updating the model training param-

98

eter than before the parameters were changed. Because of this behavior, the network

is continuously forced to adapt to changing data distributions, making training very

challenging. The batch normalization technique [85] is introduced to cope with pa-

rameters that vary during CNN training [86] and enhances network convergence and

generalization capabilities.

The parts that follow first show the CNN model design before delving into the

model’s characteristics and evaluating its performance.

5.1.1 CNN based CTC detection

This section describes our proposed detection method and the procedures required

to identify CTC using image processing and the CNN methodology. The proposed

approach is split into two main stages: 1) transforming packet inter-arrival

times into colored image representations; and 2) extracting features from

colored images and classifying them using CNN.

The two main components of our method are shown in 5.1. First, the packet inter-

arrival times were converted to colored image representations using the same image

processing module described in Section 4.3. The image processing module converts

the inter-arrival timings of each traffic flow into a 2D matrix that is then interpreted

into a colorful image. As stated in Section 5.2.1, we created a variety of image-based

datasets in this chapter.

The second stage in our proposed method is to categorize the colored images and

99

identify CTC using a shallow CNN. When the input is multidimensional, a CNN

offers even more benefits. The colorful images may be thought of as the network’s

input in our job. In contrast to conventional recognition algorithms, the CNN tech-

nique is not hindered by difficult feature extraction and reconstruction. CNN is a

multilayer perceptron that is intended for recognizing 2D forms and is resistant to

image distortion (e.g., scale, translation, and rotation).

Figure 5.1: CNN framework.

The CNN model is composed of many components, as explained in Algorithm

1 and shown in Figure 5.2. The first layer is the input layer, which is responsible

for bringing the training image data into the neural network. Following that are

the convolution and subsampling layers. The first layers enhance data properties

and decrease noise. The latter may decrease data processing while preserving and

100

storing valuable information. Then, a fully connected layer converts two-dimensional

features into one-dimensional features to meet the classifier requirements. Finally, the

classifier detects and categorizes the images with two labels covert and overt based

on their properties. The specifics of each layer, as well as the iterative formula for

each layer, are as follows.

Figure 5.2: Architecture structure for CNN model.

101

Algorithm 1: CNN Based CTC Detection Algorithm

Input: Training data and parameters

Output: Class label

Create classification model

Generate the first convolutional layer, followed by batch normalization

technique

Add max pooling layer

Generate the second convolutional layer, followed by batch normalization

technique

Add max pooling layer

; Add a dense layer

Model training

for Ith epoch iterate

for Jth mini-batch iterate

Extract feature representation using Eq. 5.1

Minimize the cost function

Update model parameters using Adam optimizer algorithm

end for

end for

Output the result according softmax classifier

Model testing

Test the model using the test dataset

The input layer is the first layer, and it is responsible for bringing the training

images into the neural network. The model then extracts data features using 32 fil-

102

ters with 3 × 3 size. Batch normalization is used in CNN to normalize each feature

map produced by convolution layers. To minimize the likelihood of gradient vanish-

ing, the activation function’s input value considers within the sensitive input. The

convolutional layer is followed by BN and ReLU to enhance the model’s accuracy

and nonlinear expression capabilities. Then, to decrease data size and computational

complexity, max pool with size 2x2 is employed.

To extract deep features, the next convolutions are used as (3 × 3) 64 filters.

Following the second convolutional layer, BN technique are employed to enhance the

accuracy and nonlinearity of the CNN model. The technique used by the second 2 ×

2 max-pooling layers lowers dimensional of data and computational complexity. The

feature is then converted into a 1-D feature that meets the classifier requirements

via the fully connected layer. ReLU is employed with the fully connected layer to

improve the CNN model’s nonlinear capabilities. Dropout is then used to minimize

overfitting and enhance the model’s generalization capabilities. Finally, the softmax

classifier classify images into two categories covert and overt based on their proba-

bility. Softmax needs minimal calculations and memory, which saves precious time

resources. The full iterative formula for each layer is provided below.

1. Convolution layers : is one of the most essential layers of CNN because it may

decrease the amount of image parameters while maintaining the key character-

istics, known as invariance, such as translation, scale, and rotation invariance.

This method successfully avoids overfitting and improves the model’s general-

ization capabilities. Various convolution kernels extract various data character-

istics. The proposed CNN model has convolutional layer with 32 and 64 filters

103

of size 3 × 3, as shown by the following equation:

xlj = f

∑
i∈Mj

xl−1j ∗ klij + blj

 (5.1)

where f is the activation function, Mj is the set of input mappings, kij is the

convolution kernel, and blj. The error cost function partial derivative to respect

bias and convolution kernel as given below:

∂E

∂bj
=
∑
x,y

(δlj)x,y (5.2)

∂E

∂klij
=
∑
x,y

(δlj)x,y(p
l−1
i)x,y (5.3)

where pi is the patch for each convolution layer and kij is value can be obtained

of position in the input feature map.

2. Pooling layer: In general, its convolution kernels are the patch’s maximum or

mean and are not affected by backward propagation. It improve training time

speed by decreasing the size of the feature map, preventing overfitting, and

minimizing data redundancy. The proposed CNN model employs two 2 x 2

max-pooling layers to decrease data dimension and computational complexity

while maintaining the extraction’s important characteristics unchanged.

3. Fully connected layers: Each neuron node of this layer is connected to each

neuron in the upper layer. The CNN model use a fully connected layer with

512 neurons.

104

4. Softmax classifier: to accomplish binary or multi categorization, the softmax

output layer is frequently employed with convolutional neural networks, which

is defined as follows:

softmax(y)i =
eyi∑n
i=1e

yi
(5.4)

where n is the number nodes in the output layer, which corresponds to the

number of classes in the particular classification problem, and yi denotes the

output.

5. Batch Normalization (BN): BN strategy is utilized in neural network improve

the classification results by increasing the stability of network and speed up

the training process. In neural network the gradient can be zero or infinite

value when the depth of the network is increase, which causes some problems

such as vanishing gradient and exploding gradient. To avoid these problems,

batch normalization is adopted with shallow CNN to normalize the feature

representations. The BN is defined as follows:

x̂k =
xk − E(xk)√
V arxk + ε

(5.5)

where E(xk) and V ar(xk) considered as the mean and the variance of features,

and ε is a constant positive value used to increases the model numerical stability.

The statistical characteristics of the current mini-batch are used by BN to nor-

malize the intermediate representations. Each activation is converted to a Gaus-

sian distribution with a mean of 0 and a variance of 1. In a network with normal

105

parameterization, the scale of each layer varies dramatically. As a result, the

optimum learning rates vary across layers.

As a consequence, training networks with conventional parameterization takes

a long time. BN, on the other hand, improves the resilience of the training

parameter scale by keeping the scale of each layer constant. In comparison

to standard parameterization, BN results in quicker convergence and improved

generalization capabilities. During the training phases, the batches of data

entered one at a time and then the mean and variance of each mini-batch

were utilized in the BN transformation; this method increase the speeds of the

training process. In the test step, the trained global mean and variance with a

one data sample were acquired through the transformation of BN to stabilize

the test findings.

6. Dropout: when there are less input data and too many training parameters in

deep learning models, it may lead to overfitting issues, which manifest as high

training accuracy and poor testing accuracy. To prevent overfitting and speed

network training, our CNN model employs the dropout method, which involves

randomly discarding a given probability on the fully connected layer.

5.1.2 CNN model initialization

The weight initialization technique of the neural network has a significant effect on the

model’s convergence speed and performance. We utilize random parameter initializa-

tion technique to investigate the impact of utilizing a limited number of layers. The

106

parameters have a gaussian distribution with a mean of 0 and a variance of 1, thus

the parameter values were properly initialized to small random integer value close

to 0. The output value approaches 0 rapidly as the number of convolutional layers

increase using the parameter initialization given in Figure 5.3. The gradient becomes

smaller as the number of layers increase, making it difficult to update the model pa-

rameters. However, the proposed approach with small number of convolutional layers

is unaffected by this.

Figure 5.3: Model parameter with weight random initialization.

107

5.2 Experimental setup

5.2.1 Experimental datasets and data augmentations

As stated in Section 4.2, this chapter focuses on detecting one of the most sophis-

ticated covert timing channel assaults known as Cautious Covert Timing Channels

(CCTC). CCTC is a more sophisticated cyberattack that attempts to mimic overt

traffic behavior (packet inter-arrival time) to some extent. This kind of covert chan-

nel behaves similarly, with packet inter-arrival intervals comparable to overt traffic.

The packet delay was adjusted to half of the typical inter-arrival time of overt traffic

to mimic the CCTC assault. When coupled with the network’s latency, this delay

causes less irregularity in the traffic, making it more difficult to detect by security

detection methods. We tested the CCTC attack utilizing several traffic flow lengths

and one size of the hidden message in the traffic flow.

In the preprocessing phase, the collected collection of communication flows be-

tween the two communicating systems includes both overt and covert traffic. The

inter-arrival periods for these traffic flows are then retrieved and saved in the flow

dataset. Inter-arrival times are classified into four flow lengths: 256, 784, 1024, and

4096 packets. The covert message was injected into the traffic flow 64 bits at a time in

each flow length. Finally, each sub-flow of inter-arrival times was put into a 2D matrix

for image generation. Then, each matrix is viewed as a colorful image by transform-

ing each of its normalized values to a color pixel. We created various traffic images

for our model based on the four lengths of traffic flow: 256=(16×16), 1024=(32×32),

108

4069=(64×64), and 16384=(128×128).

We created two kinds of datasets to test the performance of the proposed CNN

detection model. The first kind is for channel detection and includes 16000 overt

and covert images, which are 4000 images for each size. The second kind is channel

localization, which includes 6000 images created based on inserted covert data with

64 bits in three places in the traffic flow: the beginning, middle, and finish. The

specifics of each dataset are given in Tables 5.1 and 5.2.

Deep learning methods often need a significant amount of data to train the model

without overfitting problem. However, if the sample size is inadequate, the data aug-

mentation method is the best way to expand the number of data samples. A suitable

data augmentation technique may successfully prevent overfitting issues and enhance

the model’s resilience. In general, the transformation of the original image data such

changing the position of pixels while maintaining the features is utilized to create new

data. Techniques for data augmentation include flipping, zooming, rotating, flipping,

zooming, shifting, scaling, and color modification. Typically, several data augmen-

tations are required. Table 5.3 shows the image augmentation parameters that are

utilized to enhance the quality of data samples in this chapter.

109

Table 5.1: Detection datasets

Covert message size 64 bits
Delay time 0.5µ
The mean IATs of overt traffic (µ) 0.0664 seconds
Number of dataset versions (each version for one image size) 4
Number of images (all datasets) 16000
Number of all images per dataset version 4000
Number of overt images per dataset version 2000
Number of covert images per dataset version 2000

Table 5.2: Localization datasets

Covert message size 64 bits
Delay time .5µ
The mean IATs of overt traffic (µ) 0.0664 seconds
Image size 32× 32
Number of images (all datasets) 6000
Number of images per dataset version 2000
Location of covert message Beginning, Middle, End

Table 5.3: Setting of data augmentation.

Methods Setting Methods Setting

rotation-range 30 shear-range 0.1
vertical-flip and horizontal-flip true zoom-range [0.8, 1.2]
height-shift 0.1 width-shift 0.1

5.2.2 Model hyperparameters

The CNN model includes a number of hyper-parameters that affect the network topol-

ogy such as, the number of filters and type of optimizer. The model’s performance

may vary greatly depending on the choice of hyper-parameters used. For example,

the number of layers in the CNN model was determined via numerous trials. Because

110

the convolution layers were found to be optimum, and because it is critical to use tiny

kernels for convolutional layers, the kernel size of convolution layers was set at 3x3.

To find the optimum classification model, we evaluated various model hyper-

parameters. The CNN model’s hyper-parameters are given in Table 5.4. We modi-

fied and updated the model hyper-parameters in the search space before doing a grid

search to get the optimum value. For example, when the number of training epochs

approaches 15, the model test results do not improve continuously, and the training

time becomes more longer. Another critical hyper-parameter that controlled whether

the goal function converged to a local minimum was the learning rate. A suitable

learning rate may cause the objective function to converge to a local minimum in a

reasonable amount of time. In addition, we adjusted the learning rate decay at 0.001.

As the number of iterations grew, the learning rate progressively dropped, speeding

up model training in the early stages.

Table 5.4: CNN model hyperparameters.

Model hyperparameter Search space Choose value

Epoch 10-30 15
Dropout probability 0.1–0.9 0.5
Batch numbers 32-512 128
Learning rate 0.0001–0.1 0.001
Optimization algorithm SGD, Adam, RMSprop Adam
Loss function - Cross Entropy

111

5.3 Experimental results and analysis

We assess the proposed CNN performance and efficiency with batch normalization by

running a series of tests on image datasets, including binary-category detection (overt

and covert) and three-category localization (beginning, middle, end). More precisely,

the experiments in this chapter seek to:

a. Compare the outcomes of our proposed method for identifying CTCs based on

utilizing the batch normalization technique.

b. Test the efficacy of various model hyper-parameters.

c. Determine the impacts of various traffic image sizes.

d. Compare the results of shallow CNN to the results of existing machine learning

approaches for identifying CTCs.

e. Contrast the results of shallow CNN with those of existing deep CNN methods for

identifying CTCs.

We utilized 5-fold cross-validation to assess the CNN model. The dataset was

broken down into 10 sub-samples. In each running experiment, nine samples were

used as the training set, and one sample only was utilized as the validation set. The

training and testing process of model were repeated 10 times, and then the average

of the findings was used as the final assessment value.

112

5.3.1 Effects of using batch normalization technique on the
CNN model performance

We provide two variation instances of CNN with various assumptions for utilizing

batch normalization, as shown below, and compare them to the CNN model that

utilizes batch normalization after each convolution layer to demonstrate how batch

normalization may speed network training and enhance model performance:

case 1 : Remove just the batch normalization approach after the first convolutional

layer, leaving all other layers and model parameters without changing.

case 2 :Delete all batch normalization strategy after the first and second convolu-

tional layers, while all remaining layers and model parameters stay the same.

The accuracy results of CNN, CNN-case 1, and CNN-case 2 are given in Table

5.5. According to the table findings, the CNN model with BN after each convolu-

tional layer has the greatest accuracy of 96.75%, which is 0.3 % better than the CNN

model based on case 1 and 0.55 % higher than the CNN model based on case 2. As a

consequence, we can infer that our classification accuracy obtains the best classifica-

tion result when combining CNN with BN, proving the validity and efficiency of the

proposed model.

Furthermore, Figure 5.4 depicts the training accuracy of the proposed CNN model

and the other two architectures based on cases 1 and 2 across 200 epochs. The ex-

perimental findings obtained with BN show significantly quicker convergence than

the results obtained with the standard parameterization without BN. The accuracy

achieved with the standard parameterization is poor and unreliable. The BN method

113

Table 5.5: Classification accuracy of proposed model.

Model Accuracy (%)

CNN 96.75

CNN-case1 96.45

CNN-case2 96.20

is used to normalize the parameters of each layer such that they follow the conven-

tional Gaussian distribution. As a result, parameter updating is more stable than

conventional parameterization. This indicates that the CNN with BN can learn data

characteristics more effectively and quickly. The BN method may accelerate network

convergence while also improving model accuracy.

Figure 5.4: Classification results of three CNN model cases.

Table 5.6 provides additional accuracy measures: precision, recall, and F 1 for

each class in our dataset (covert/overt). The accuracy for the covert and overt classes

114

is determined to be 95.8 % and 96.1%, respectively, based on the findings. Further-

more, the recall rates for the two groups are 95.5 % and 96%, respectively. High F1

values are also present. Because of the high accuracy and recall values, the proposed

CNN detection model identifies the CTC at a very high rate and is very likely correct.

Table 5.6: Evaluation results for two classes.

Traffic type Precision (%) Recall (%) F1 (%)

Covert 95.80 95.50 95.65
Overt 96.10 96.00 96.05

Average 95.95 95.75 95.85

5.3.2 Hyperparameters effect on CNN model performance

This section includes various experimental comparisons depending on model hyper-

parameters such as kind of activation function, the number of layers, and learning rate

value, and represents how thees parameters affect the model performance. Table 5.7

compares the performance of the CNN model with various numbers of convolutional

layers and sigmoid and the ReLU functions. Because we discovered that the model

might enhance performance, we set the unit number of completely connected layers

to the same as its input units. Also the cross-entropy loss is the related cost function.

The experiment findings indicate that increasing the number of convolutional

layers with changing the functions have no effect on the performance of the CNN

model. However, the impact on the model’s run time. Furthermore, the findings

indicate that the ReLU activation function saves more time than the sigmoid function.

115

The run time is unaffected by the convolutional layers using the ReLU function. In

terms of overall performance, the ReLU is a more useful function than the sigmoid.

Table 5.7: Accuracy results based on various convolutional layers and activation
functions.

Conv layer Activation function Model accuracy Running time(s)

1
Sigmoid 95.10 5.50

ReLU 95.51 4.00

2
Sigmoid 96.60 7.22

ReLU 96.75 5.03

3
Sigmoid 96.20 9.50

ReLU 96.55 6.20

Table 5.8 also represents the evaluation results of using various activation functions

in the fully connected layer and a pooling layer. The experiment findings show that

setting the ReLU function with fully connected layers will decrease the run time of

the model. The results also indicate that adding the max pool layer with sigmoid

function increase running time of model compared to using the max pool layer with

ReLU function. Thus, it is useful adding max pool in the model when the sigmoid

function is applied in the model.

116

Table 5.8: Performance results based on using a max-pooling and fully connected
layers with various functions

Conv layer Activation function Accuracy (%) Time(s)

Max-pooling
Sigmoid 96.60 7.22

ReLU 96.75 5.03

Fully connected
Sigmoid 96.60 7.51

Tanh 96.65 6.50

ReLU 96.75 5.03

Moreover, we assess the effect of using the learning rate set between 0.0001 to

0.1 on model detection rate and false alarm rate. As mentioned, the detection rate

represents the proportion of covert traffic samples that detect correctly, while the

FAR represents the proposition of the overt traffic data that are classified incorrectly.

Figure 5.5 shows the increase of learning rate is affect on the DR and the FAR, and

we get the best DR when we set the learning rate at 0.001. Based on this value of

learning rate, the model can classify the overt and covert samples correctly.

5.3.3 Image size effect on CNN model classification

In CNN proposed model, image size plays an essential role that affects model classifi-

cation results. The small size of the image could not help extract enough information,

which causes losing the attack properties. At the same time, using a large image can

increase the computational time without any improvement in the accuracy of classi-

117

0.1 0.01 0.001 0.0001
Learning rate

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

(%
)

FAR
DR

Figure 5.5: Performance test with increasing the learning rate.

fication.

In this dissertation, we conducted a variety of experiments based on using different

image sizes: (16 × 16), (32 × 32), (64 × 64), and (128 ×128) as discussed in Section

5.2.1. We used fixed image size as required for CNN model input. Figure 5.6 show

the accuracy results of 2-classes classification using different image sizes. Table 5.9

also shows various performance metrics of these experiments. The results show the

model performance is increase when the image become bigger. However, a large size

of image needs more running time. We noted that when the image size was greater

than 32 × 32, the model performance did not positively correlate with the image size,

and the training time was increase rapidly. Therefore, the CNN model with input

image size is 32 × 32 pixels achieve the best classification results.

118

16×16 32×32 64×64 128×128
Image size

90

92

94

96

98

100

Ac
cu

ra
cy

(%
)

Figure 5.6: Accuracy results of using different image sizes.

Table 5.9: Image sizes effect on model performance measures.

Size of image Precision Recall F1 Time(s)

16 × 16 94.46 92.00 92.56 4.00
32 × 32 95.95 95.75 95.85 5.03
64 × 64 95.93 95.22 95.84 12.00

128× 128 95.44 95.00 95.22 27.00

5.3.4 Effects of image reshaping on CNN model classification

This work also studies the effect of image shape on model performance. We used the

inter-arrival times of traffic to generate a non-square image with different dimensions.

We choose the image size 16×16, and then we reshape it to three non-square image

shapes include 2×128, 4×64, and 8×32. Table 5.10 shows the performances of non-

square image shape were similar to a square image shape, which means width and

height of the image did not affect the pattern of covert traffic in the image and

performance of the classification model. Thus, a shallow convolution network with a

small size of the filter, one stride one linear layer at the end, would be worked well; it

119

is very easy for a filter to detect the horizontal split of pattern in the covert images.

Table 5.10: Model classification results using different image shapes.

Size of image Accuracy

64 × 4 94.451
32 × 8 94.455
128 × 2 94.438
16 × 16 94.46

5.3.5 A comparison of the CNN model performance with other
conventional machine learning methods

We compared our model to five existing CTC detection models that utilized stan-

dard image feature extraction techniques to verify the effectiveness and efficiency of

our suggested methodology. These techniques collected characteristics from traffic

pictures before using machine learning algorithms to detect and categorize CTCs.

We chose a 32 x 32 image size for this comparison. The results of our method are

shown in Figure 5.7 and Table 5.11 when compared to the results of the five other

CTC detection models: Random Forest (RF), Multilayer Perceptron (MLP), Support

Vector Machine (SVM), Decision Tree (DT), and Naive Bayes (NV). We can observe

that our model has improved in terms of accuracy and detection speed. The other

methods performed slightly worse since their performance is dependent on particular

characteristics.

120

RF

M
LP

SV
M DT NB CN
N

70

75

80

85

90

95

100

Ac
cu

ra
cy

 (
%

)

Figure 5.7: The comparison of accuracy results.

Table 5.11: Classification results of shallow CNN model with traditional machine
learning methods.

Classifier model Precision Recall Train time(s) Test time(s) Error rate

RF 92.11 90.00 63.30 51.39 7.75
MLP 93.01 93.00 36.02 25.01 5.89
SVM 92.00 89.00 73.96 59.20 6.05
DT 91.80 88.99 66.25 53.12 7.91
NB 90.00 90.88 25.10 20.02 9.78

CNN 95.95 95.75 5.03 3.50 3.25

5.3.6 A comparison of the shallow CNN model performance
with existing deep CNN methods

Table 5.12 compares the proposed model with VGG16, AlexNet, and ResNet, which

contain a high number of convolution and fully linked layers, to verify the benefit of

the proposed shallow CNN method over deep CNN alternatives. Convolutional layers

are denoted by Conv in the final column of the table, while fully linked layers are

denoted by Fc (including output layer). The table results indicate that the suggested

121

model achieves an accuracy of 96.75%, which is higher than deep CNN models with

multiple convolutional layers and filters. ResNet, for example, consists of 419 filters

with 5 x 5 convolutions in first layer. The shallow CNN method employs two 3 x

3 convolutions with 32 and 64 filters for the first and second convolutional layers,

respectively. With additional convolution layers, the suggested method outperforms

AlexNet by 6.74%, achieving a test accuracy of 90.01%. It is also 9.73% and 8.75%

more accurate than the VGG and ResNet models, with accuracy of 87.02% and 88%,

respectively.

In addition, Table 5.12 displays the comparative findings in terms of training time

on the datasets. In most instances, the suggested shallow CNN model outperforms

all of the previously stated deep CNN techniques in terms of computing cost, network

structure, and training time.

Table 5.12: Classification results of shallow CNN model with other deep approaches.

Classifier Accuracy (%) Precision (%) Recall (%) F1(%) Time(s) Con./Fc

AlexNet 90.01 89.02 86.00 87.40 25 5/3
VGG16 87.02 86 85.50 85.75 42 13/3
ResNet 88.00 85.5 87.00 86.24 35 > 7/1
Proposed CNN 96.75 95.95 95.75 95.85 5.03 2/2

5.3.7 Localization of CTC in traffic flows

One critical goal is to identify the segments of traffic flows (i.e., sets of packets) that

include the hidden message (s). It offers the ability to warn and enables just the

harmful portion of traffic flows to pass through while allowing the remainder of the

122

traffic flow to pass through. This accurate identification substantially minimizes overt

traffic interruptions caused by non-malicious apps.

This section describes our approach’s performance in locating hidden messages

inside traffic flows. We devised an experiment in which hidden messages are inserted

into all communication flows at one of three points: beginning, middle, and end.

Then we create traffic images based on the three section locations. Each of these

designations corresponds to the position of the hidden message in a particular traffic

flow. For example, if the malicious agent is configured to inject the hidden message

at the start of traffic, it will also give the label at the start of that traffic image.

It also does the same for the other two labels, middle and end. This labeled

collection of covert traffic images is then input into the CNN model, which is used

to evaluate the performance of our method in locating the right traffic flow segment

that included the hidden message(s) using an image-based model. The accuracy of

pointing the malicious network flow segment that includes the hidden message using

different methods is shown in table 5.13.

As demonstrated in Table 5.13, our method identified the segments inside traffic

flows that carried the hidden message with 94.01% accuracy. We also ran the SVM,

AlexNet, Decision Tree, and NaiveBayes to give a baseline for comparison. Surpris-

ingly, the AlexNet came in second with a detection accuracy of 92.01%. SVM came

in third place with an accuracy of 91.05%. NaiveBayes finished last with an accuracy

of 89.50%. Furthermore, when compared to previous models, the proposed model has

a lower positive rate and false-negative rate.

123

Table 5.13: Localization results of shallow CNN model with other approaches.

Classifier model Accuracy FP FN

SVM 91.05 5.53 12.98
DT 90.54 5.13 14.39
NV 89.51 5.22 17.22

AlexNet 92.01 4.29 12.29
CNN 94.01 3.17 6.72

5.4 Chapter summary

For image classification, this dissertation employs a batch normalization technique in

combination a shallow CNN model with a batch normalization method to accelerate

convergence time and improve image classification accuracy. The CNN model features

a four-layer basic structure with decreased time complexity.

The proposed shallow network is defined by its few parameters, resistance to over-

fitting, and improved generalization. Based on the generated and labeled training and

test sets, the suggested design outperforms SVM, ResNet, VGG, and other models

for certain covert traffic classification tasks, demonstrating the effectiveness and fea-

sibility of this shallow neural network architecture. As a consequence, the particular

problems associated with real-world CTC classification are addressed. Classification

related activities in many applications, such as the smart visual Internet of Things,

now have an alternate solution thanks to the new model. It also reduces deep neural

network complexity while maintaining their strength.

124

Chapter 6

CTC Detection Based on Sequential
Time Series Using Recurrent Neu-
ral Network and 1D Convolution Neu-
ral Network

Natural language translation and time series classification are just a few of the many

applications that have benefited from the usage of recurrent neural networks (RNN)

and one-dimensional convolutional neural network (1D-CNN). They are widely used

because to their capacity to extract high-level characteristics from sequential raw data

without requiring human intervention and to achieve a high success rate. RNN and

1D-CNN extract high-level semantic relations based on adjacent regions correlations.

A RNN model examines the relationship between current and previous states to

identify the order in which events happened. 1D-CNN shines when dealing with time

125

series data because it can be used to extract features from the data by translating

it to the time direction. 1D-CNN algorithms that use convolutional methods with a

focus on adjacent inputs have the potential to find novel pattern combinations.

In this dissertation, RNN, 1D-CNN, and their network combinations are utilized

to construct time series covert timing channel detection models. These models, which

use deep learning methods, are capable of detecting certain sequences that may aid

in distinguishing between covert and normal communications. Working directly with

raw data and learning feature representations from the time series data removes the

requirement for feature engineering.

By providing covert timing channel detectors that can evaluate packet timing

without the need for extra ore-processing methods, we are able to provide realistic

and rapid network monitoring tools that can immediately identify covert assaults.

Because of their quick reaction times, these detectors may be utilized in real-time

applications. This chapter starts with an overview of the RNN model, 1D-CNN,

and the networks it generates. Then evaluate the model’s efficiency and quantitative

value, an array of sequentially-based datasets.

126

6.1 CTC detection using a sequential time series

6.1.1 CTC detection with RNN sequential data

A low-rate covert channel attack is difficult to detect because it seems to be genuine

network data from the victim’s end. Meanwhile, a series of careful CTC assaults on

systems must be launched over time. It would not be harmful to the network resources

if this were not the case. This highlights the significance of historical information in

covert channel detection. Because of the lack historical pattern in the learning model,

the single-packet detection technique cannot enhance performance.

In general, the nodes within the same layer are not connected in the most type of

neural networks. This structure is not appropriate for processing sequential data in

order to identify a historical trend in the learning model. As a result, neural networks

with inner layer connections, such as the recurrent neural network (RNN) [87], are

introduced. RNN fully exploits the context of sequential data and provides a scalable

model for variety problems involving time series data [88]. By storing past states,

RNNs learn feature representations from input data. RNN may be used to identify

CTC attacks using sequential traffic inter-arrival times for these reasons.

We propose a detection method based on RNN approaches to detect CTC at-

tacks based on the benefits of RNN. Our detection method employs a series of traffic

inter-arrival timings to understand the nuanced distinction between attack traffic and

normal traffic. To detect CTC attack, historical data is put into the RNN model. It

aids in identifying recurring patterns that indicate CTC attacks and locating them

127

in a long-term traffic sequence.

Traditional RNN structure are not appropriate for categorizing lengthy sequence

data in reality due to integrate only limited prior [89] and are difficult to train correctly

[90]. To address the limitations of conventional RNNs, RNN variations such as Gated

Recurrent Unit (GRU) and Long Short-Term Memory (LSTM) networks have been

developed. Error reduction in GRUs is accomplished via distance weighting. LSTMs

enhance the learning impact by remember and forget particular information. We

examined different kinds of RNNs experimentally, and our ultimate decision was the

LSTM type, as demonstrated in Section 6.1.5.

The RNN detection model contains of an input layer, two LSTM layers with 128

hidden states, a full connection layer and an output layer as shown in Figure 6.1. The

number of hidden states represents the length of the and the number of LSTM layers

represent the depth of the neural network. In our study the traffic inter-arrival times

are the input data, where these input data then fed into the LSTM units.

Each LSTM unit calculates the current state of input using the previous states

and then send the results to the next LSTM unit. Finally, the softmax classifier

receives the state results from last LSTM unit and calculate the probability for pre-

dicted result. The model hyper-parameters such as dropout rate and batch sizes are

described in Table 6.1. The formulas of LSTM layers are discussed as follow:

In the recurrent neural network, the recursive function in the layer accepts one

vector of the input sequence at time t and the previous hidden state ht−1 and returns

128

Figure 6.1: Overview of the proposed LSTM sequential data based CTC detection model.

the new layer state:

ht = f(vt, ht−1) (6.1)

The first hidden state is commonly initialized as an zeros vector to avoid vanishing

gradient. The LSTM unit is made up of four sub-units: an input gate, a forget gate,

an output gate, and a candidate memory cell. They are calculated using the following

formulas [87]:

it = σ(wi[ht−1 + vt] + bi)

ot = σ(wo[ht−1 + vt] + bo)

ft = σ(wf [ht−1 + vt] + bf)

(6.2)

where i, f, o represent input, forget, and output layer gates, respectively; h denotes

hidden state; vt denotes input at current state; σ denotes sigmoid activation function;

129

wx weight for respective gate(x); bx biases for respective gate(x). The LSTM unit’s

activation is calculated as:

č = tanh(wc[ht−1, vt] + bc) (6.3)

ct = ft ∗ ct−1 + it ∗ č (6.4)

ht = ot ∗ tanh(ct) (6.5)

The recurrent network’s output sequence is (h1, h2, dots, hL). Typically, the final

output vector hL is always immediately translated to two binary classification outputs.

Table 6.1: LSTM model hyperparameters.

Hyperparameters Value

Number of layers 2
Activation function tanh
Number of neuron 128
Dropout probability 0.5
Number of neuron of connected layers 128,1
Activation function of connected layers Relu, sigmoid

6.1.2 CTC detection using 1D-CNN sequential data

A convolution neural network is divided into two sections: feature extraction and

classification. The feature extraction component is automatically in charge of obtain-

ing useful characteristics from raw data (time series). The portion of classification,

on the other hand, is utilized to correctly categorize data by using the extracted char-

130

acteristics. In summary, these two parts collaborate to accomplish the primary job

of this model.

Convolution layers and pool sampling layers are used in the feature extraction

process. Convolution layers may be thought of as a filter that enhances original data

characteristics while reducing noise. Convolution is conducted between the top layer’s

feature vectors and the current layer’s convolution kernel. Finally, the activation

function returns the outcomes of convolution computations. The feature map xj is

computed for each convolutional layer output as follows:

xj = f((σxj ∗Wij + bj) (6.6)

where xj is the vector corresponding to the jth convolution kernel, Bj is the bias

coefficient, and f is a nonlinear activation function.

To decrease the dimension of data while preserving valuable information, the pool

employs the concept of local correlation (down) sampling layer. At the same time,

pooling technology is used to preserve the characteristics of displacement, invariance,

and scaling. The pool sampling layer has the role of extracting more features (aver-

age or maximum); in the meanwhile, the spatial resolution between hidden layers is

diminishing, and its formula is as follows:

xj = f(βjdown(x) + bj) (6.7)

Where down() denotes the downsampling function and βj denotes the weighting co-

131

efficient

In addition to the convolution and sampling layers, there are still input and output

layers. Before training the network, the network model is established, followed by

splitting the time-series as input data and specifying the target’s output vector.

The CNN was first intended to handle two-dimensional data. We must, however,

deal with one-dimensional data. As a result, we needed to change the structure of the

CNN model and utilize the 1D-CNN structure. The improved CNN model for CTC

detection and classification is illustrated in Figure 6.2 and explained in Algorithm

2. It has three convolution layers, three max-pooling layers, a complete connection

layer, and an output layer. The softmax classifier obtains the output label at the

conclusion of 1D-CNN CTC detection. The softmax layer computes the loss between

predicted and true values during the training phase. Based on the loss numbers, the

network weights should be adjusted. During the testing phase, the softmax layer

computes the probability of the class label categories (over covert).

The input of each neuron in the 1D-CNN model is linked to the output of the

preceding layer, which is utilized to extract local characteristics. The input is a

traffic-inter arrival time segment with n sample points.

The weights are calculated by the neural network using the chain rule. So, in case

of increasing the depth of network, the gradient becomes close to being zero or infinite

value, which causes the vanishing and exploding gradient issues. To normalize the

132

intermediate representations in this issue, we use Batch normalized (BN).

Algorithm 2: 1D CNN-Based CTC Detection

Input: Training dataset and model parameters

Output: Predicted classes

for Ith epoch iterate

for Jth mini-batch iterate

Reshape input data as 1× n

Compute convolution results

Compute max-pool results

Compute the result through the batch norm

Compute the result through dropout

Punish the result through connected layer

Compute the training error

Update the model weight and bias

Output classification results using softmax

end for

end for

The 1D-CNN detection model includes a number of hyper-parameters such as the

number of filters and type of optimizer. The model’s performance may also vary

significantly depending on the hyper-parameters used. The grid-search technique was

used to identify hyper-parameters optimal for the model based on the datasets. The

grid search technique attempts every conceivable combination of hyper-parameters

to find the optimal hyper-parameter for a dataset. Table 6.2 describes the model

133

Figure 6.2: Overview of the proposed 1D-CNN sequential data based CTC detection
model.

hyper-parameters utilized in this research.

Table 6.2: 1D-CNN model hyperparameters.

Hyperparameter Search spaces Choose value

Number of filters 16, 32, 64, 128 32
Filter size 3-11 5
Batch sizes 32–128 32
Dropout probability 0.1–0.9 0.5
Learning rate 0.0001–0.01 0.001
Optimization algorithm RMSProp, Adam, Nesterov Adam
Loss function - Cross Entropy

134

6.1.3 CTC detection based combination network

As previously stated, 1D-CNN and pooling procedures may extract abstract and lo-

cal higher-level features. It is beneficial in terms of gaining a better knowledge of

how traffic feature sequences are linked to one another. Simultaneously, the LSTM

includes memory cells that may address the temporal issue by learning the tempo-

ral structure of sequential traffic input and subsequently attaining high-level data

abstraction. LSTM concentrated on temporal correlations of traffic evolution and

ignored spatial correlations from a network standpoint. Where spatial traffic charac-

teristics may assist in detecting CTC at a distinct place in network traffic.

This section describes a network detection model that combines 1D-CNN and

LSTM in one model to identify CTC more accurately based on the performance of

extracting spatial and temporal traffic characteristics. The concept of merging 1D-

CNN with LSTM for classification has been studied before, however prior studies

were in other study areas, not for CTC detection. When two distinct algorithms

are integrated, the stacking order of the algorithms plays a major role in generating

the optimum performance of CTC detection. As a result, this research examines

the impact of layer ordering in network combination on the performance of the CTC

detection model.

The combination network was chosen following a series of tests with the number

and kind of layers that were installed. First, LSTM layers are applied on top of the

convolutional layers (CNN-LSTM). The input of traffic inter-arrival times was fed

into the CNN model first, and the output of the CNN model was supplied into the

135

LSTM layer. The outputs of the LSTM layers are then concatenated and sent into

the output layer, which classifies the input data into one of two traffic classifications

(over/covert). This method is justified by the fact that there are dependencies be-

tween various portions of traffic inter-arrival times in an input sequence file. On top

of the CNN layers, recurrent layers will assist summarize the whole input file content

into features that will be sent to the output layer.

Figure 6.3 depicts an overview of the CNN-LSTM model and how the LSTM

is layered on top of CNN. It is made up of an input layer, a convolution layer, a

max-pooling layer, two LSTM layers, a connected layer, and an output layer. The

softmax classifier at the conclusion of the CTC detection model determines the

output label. The feature filtering will be conducted before the temporal modeling

in this combo model. The sequential input data is processed by CNN layers first for

feature reduction, and then the smaller feature dimensions are fed into LSTM layers

for data sequence learning.

The CNN-LSTM architecture may contain a variety of structures based on a

number of factors such as the number of convolution layers, kernels, LSTM layers,

and LSTM units. These parameters may influence learning performance of model due

to extracting additional features from data, and speedup the training process. For

example, our data that input the CNN-LSTM model is in the form of sequence data

containing spatial-temporal information through a sliding window method, a kernel

of size five was utilized to minimize information loss.

The CNN-LSTM model parameters are given in Table 6.3. The CNN-LSTM input

is a time vector of length n (depending on various data lengths), flow the convolution

136

Figure 6.3: Combination of CNN and LSTM.

and pooling layers, then the LSTM layer. In the proposed model, we utilized tanh as

the model’s activation function.

Table 6.3: The CNN-LSTM model structure.

Layer Filter number Size of kernel Stride number

Convolution layer 32 5 1
Activation function(tanh) - - -
Batch Normalize(32) - - -
Max pooling - 4 1
Convolution layer 32 5 1
Activation function(tanh) - - -
Batch Normalize(32) - - -
Max pooling - 4 1
LSTM layer(64) - - -
Activation function(tanh) - - -
Dropout probability (0.4) - - -
Fully connected layer (128) - - -
Activation function (tanh) - - -
Dropout probability (0.4) - - -
Softmax - - -

137

As illustrated in Figure 6.4, the second design of a combination network employs

CNN layers on top of LSTM layers (LSTM-CNN). The CNN layer outputs are then

concatenated and sent to the output layer, which classifies the input data into traffic

classifications (over/covert). The architecture of the LSTM-CNN detection model

is shown in table 6.4. To learn temporal characteristics from sequential input data,

LSTM is used as the first two layers. The architecture may be thought of as a

deep through time step with LSTM memory cells producing output features. LSTM

layers are used in conjunction with memory cells to recall all feature inputs. The

LSTM output is then transferred to the CNN layers, which reduces feature variance.

The architecture used is a one-dimensional convolution layer with 5x1 feature filters

distributed throughout space. The convoluted output is then subjected to a 4x1 size

max-pooling operation.

Figure 6.4: Combination of LSTM and CNN.

138

Table 6.4: The LSTM-CNN model structure.

Layer Filter number Size of kernel Stride number

LSTM layer with 64 units - - -

Dropout probability - - -
LSTM layer with 64 units - - -

Dropout probability - - -
Convolution layer 32 5 1

Batch Normalize(32) - - -
Max pooling - 4 1
Flatten layer - - -
Fully connected layer (128) - - -
Dropout probability(0.5) - - -
Softmax - - -

6.1.4 Experimental dataset

This chapter uses actual data gathered via the proposed channel BCTC, which was

developed and described in Chapter 3. This chapter focuses on identifying Cautious

Covert Timing Channels, which are among the most sophisticated covert channels

(CCTC). CCTC is a more sophisticated hack that attempts to mimic overt traffic

behavior to some extent. This kind of covert channel behaves similarly to overt traffic,

with packet inter-arrival intervals that are comparable to overt traffic. Because of its

resemblance to overt traffic, CCTC is a more difficult kind of covert channel to identify

and is difficult to detect by security detection methods.

In this chapter, we utilized the collected network flows for covert and overt traffic

to generate datasets. The covert message was injected into the overt flows at a size

equal to 50% of the flow size. Then, with a well balanced frequency distribution, these

flows are grouped into two separate designated overt and covert flows. The dataset

139

includes five different flow length sizes (32, 64, 128, 256, and 512). There are 4000

flows in each length scenario, 2000 with covert data and 2000 with overt data. The

end result is a time series of feature vectors for each flow.

6.1.5 Recurrent network analysis

This section begins by comparing several kinds of RNNs. The effect of sequence

length, hidden state number, and hidden layer number on model performance is then

discussed.

To choose the most efficient RNN type capable of detecting CTC, we compare

three kinds of RNN: standard RNN, GRU, and LSTM. The architecture of each

model is shown in table 6.5. The assessment measures for these three kinds are

presented in table 6.6. In terms of accuracy, LSTM networks and GRU networks

clearly outperform standard RNNs. Furthermore, LSTM networks had the greatest

performance among these models, with the maximum accuracy of 96.2%. Because

they can retain more information than conventional RNNs, LSTM networks address

the long-term dependence issue. As a result, the LSTM method was selected as the

final type for the CTC detection issue in this dissertation.

To investigate the impact of the number of hidden states and layers on the per-

formance of the LSTM model, Figure 6.5 demonstrates that the model performs best

when the number of hidden states is 128 with two hidden layers. In general, the

model’s performance improves as the network’s number of hidden layers and states

are increase. When these two parameters are excessively high, the LSTM model

140

Table 6.5: Specifications of different RNN models.

Model LSTM GRU Simple RNN

Number of layers 2 3 3
Activation function tanh tanh tanh
Number of neuron 64 64 64
Dropout probability 0.5 0.5 0.5
Number of neuron of connected layers 128 128 128
Connected and function Relu Relu Relu

Table 6.6: RNN types using sequence length 128 bits.

RNN type Accuracy(%) Precision (%) Recall (%) F1 (%)

Standard RNN 91.02 89.01 88.00 88.50

GRU 93.51 91.67 91.51 91.62

LSTM 96.2 94.77 95.41 95.09

may exhibit overfitting. As a consequence of the testing findings, we set the model

parameters to acceptable levels.

32 64 128 256
Hidden state number

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

(%
)

Accuracy
Precision
Recall
F1

1 2 3
Hidden layer number

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

Ac
cu

ra
cy

(%
)

Accuracy
Precision
Recall
F1

Figure 6.5: LSTM model performance using various hidden state (left) and hidden layer
(right).

141

6.1.6 Convolutional network analysis

To investigate the impact of 1D-CNN hyperparameters on model performance, this

part first examines the effect of convolution filter number and breadth, followed by the

effect of activation functions. Figure 6.6 (left) shows the effects of applying various

filter numbers of 16, 32, 64, and 128. The same Figure 6.6 (right) shows the results

of employing various filter widths of 3, 5, 7, 9, and 11. The figure findings show

that as the number of filters rises, so does the performance. With 32 filters, the

greatest performance is obtained. When the breadth of the filter is more than 5, the

performance gradually improves.

16 32 64 128
The number of filters

90

92

94

96

98

100

Ac
cu

ra
cy

(%
)

3 4 5 6 7 8 9 10
The filter width

90

92

94

96

98

100

Ac
cu

ra
cy

(%
)

Figure 6.6: Performance of 1D-CNN with (left) different filter number and (right) differ-
ent filter width.

We performed many tests to compare the results of our 1D-CNN model with the

results of three activation functions: Sigmoid, ReLU, and tanh to show the benefits of

utilizing 1D-CNN over these activation functions. Using the balanced data, we trained

and assessed our best model. Table 6.7 contains the evaluation results. The findings

indicate that 1D-CNN performs better in convolutional layers when using the ReLU

142

activation function. We may, for example, obtain the maximum accuracy of 95.78%,

precision of 92.67%, recall of 93.01 %, and F1-score of 91.82%. The lowest accuracy

was 90.8%, the precision was 91.01%, the recall was 88.00%, and the F1-score was

89.47 %.

Table 6.7: 1D-CNN model performance based on using different functions.

Function Accuracy Precision Recall F1

Relu 95.78 92.67 93.01 91.82
Sigmoid 91.02 91.50 90.41 90.94
tanh 90.80 91.01 88.00 89.47

6.1.7 Combination network analysis

To determine which sequence-based detection model performs best in the CTC de-

tection issue, we evaluate the performance of the 1D-CNN, LSTM, and combination

networks (CNN-LSTM) and (LSTM-CNN).

The best designs for these models that were utilized in comparison trials are repre-

sented by sections 6.1.2, 6.1.1, and 6.1.3. In addition, we compare these deep learning

detection models to various conventional machine learning detection models:Naive

Bayes (NB), Linear Support Vector Machine (SVM), multi-layer perceptron (MLP),

K-Nearest Neighbor (KNN), and Decision Tree (DT) are examples of conventional

techniques.

The following are the parameters of the usual methods: The constant parameter

was set to 0.01 for NB. The kernel was set to linear for SVM. The loss was squared

143

hinge, and the halting criterion tolerance was set to 1e − 4. We utilized one hidden

layer with 50 units for MLP. The neighbor parameter was set at 3 for KNN. The

minimum number of samples in a leaf in DT was set to three.

We use 5-fold cross-validation to evaluate the model’s performance. The procedure

of cross-validation is also repeated five times. Then the five results were averaged to

provide a single estimate.

The accuracy outcomes of models are shown in 6.7. The findings show that deep

learning approaches surpass all traditional methods. Furthermore, it was discovered

that the combined LSTM-CNN approach outperformed both neural networks and

traditional machine learning techniques.

Figure 6.7: Comparison of models performance.

Although LSTM and 1D-CNN were multi-layer architectures at their core, partic-

ular topologies emphasized them. When applied to temporal sequences, LSTM out-

144

performs 1D-CNN and other machine learning methods, accurately detecting 96.2%

of CTC detection, compared to 95.73% for 1D-CNN. The main difference between

CNN and LSTM is the convolutional and pooling layers. It combines input data with

the learnt function, in which the LSTM analyzes and links all of the information to

produce an output.

The CNN-LSTM model has the second highest CTC detection accuracy 97.01%.

In the first layer, the CNN algorithm picks the best characteristics before sending

them to the LSTM algorithm to learn the extracted features. It was, however, not

as successful as identifying CTCs using the LSTM-CNN model. The LSTM-CNN

classifier has the highest accuracy of 97.5% outperforming generic CNN, LSTM, and

traditional machine learning methods. This is because the LSTM takes the best

feature in the first layer before passing it to CNN to be learned.

Furthermore, Table 6.8 displays additional performance metrics for deep learning

and machine learning methods. We also verified that combining the CNN and LSTM

models to represent spatial and temporal data yielded superior results. The LSTM-

CNN performed the best, with a maximum accuracy value of 98% and recall is 96.8%.

145

Table 6.8: Performance measures comparison.

Model Precision (%) Recall (%) F1 (%)

CNN 95.00 90.00 92.43
LSTM 96.10 93.05 94.55
CNN-LSTM 97.00 96.20 96.64
LSTM-CNN 97.5 96.80 97.15
DT 89.00 85.00 86.95
KNN 89.00 79.99 84.25
MLP 90.07 89.00 90.8
SVM 88.01 86.00 87.00
NB 76.70 74.00 75.32

The loss and accuracy per experimental epoch of the LSTM-CNN, 1D-CNN, and

LSTM models are shown in Figure 6.8. The greatest accuracy and lowest loss are

achieved by LSTM-CNN detection model.

Figure 6.8: Model loss (left) and accuracy (right) per epoch.

The results supported the study’s goal of integrating neural network methods to

efficiently manage and detect spatial and temporal problems.The order in which the

layers were stacked, on the other hand, had a substantial impact on model recognition

performance.By stacking the LSTM layer before the CNN layer, more information was

146

gathered from all inputs before the input was sent to the CNN for extraction. If the

layer is started using CNN, the sequence information in the inputs can be lost, and

the LSTM function is not fully used.

In this part, we also look at how the dropout method affects the small-scale traffic

dataset in light of the over-fitting problem. The Figure 6.9 shows the results of

different dropout rates computed using LSTM, 1D-CNN, and combination networks.

The models using the dropout method, as illustrated in the figure, are capable of

inhibiting over-fitting and attaining better performance. A greater rate translates to

better performance. Because of its varying dropout rates, LSTM shows the greatest

variation of the three methods. In contrast, the CNN and LSTM-CNN methods

are unaffected by change in dropout rates. Furthermore, when the rate reaches 0.5,

performance gradually increases.

0.1 0.3 0.5 0.7 0.9
Dropout Rate

70

75

80

85

90

95

100

Pr
ec

isi
on

(%
)

CNN
LSTM
LSTM-CNN

Figure 6.9: Model performance using various dropout rate values.

Moreover, we evaluate the effect of sequence length on detector results. The se-

quence length parameter defines the largest sequence that LSTM model can evaluate.

147

Generally, the sequence’s length should be similar to the raw data length. Figure

6.10 demonstrates that when the sequence length is 64, the models function best.

Additionally, as the length reaches 64 inter-arrival times, performance progressively

declines.

32 64 128 256 512
Sequence length

90

92

94

96

98

100
Ac

cu
ra

cy
(%

)

LSTM
CNN
CNN-LSTM
LSTM-CNN

Figure 6.10: Performance sequence based models with different sequence lengths.

6.2 Chapter summary

The proposed sequential-based detection model using LSTM, 1D-CNN, and combi-

nation networks was presented in this chapter. Additionally, investigate the effect of

model hyperparameters on model detection performance. This chapter demonstrates

that the LSTM-CNN model outperforms the CNN, LSTM, and CNN-LSTM models

in detecting CTC. This shows that the hybrid neural network approach was more

accurate and suitable for recognizing sequential input. This is an intriguing study

direction since it will broaden the combination network and assess its effect on CTC

148

identification.

149

Chapter 7

CTC Detection and Localization Us-
ing Autoencoders

As networking technology has improved, the Internet has become more widely appli-

cable. Covert channel threats are becoming more proficient at using the advantages

of Internet openness to create covert channel techniques at an alarming pace, even as

its global reach expands.

Covert timing channels have grown in breadth and severity, making it more diffi-

cult for internet businesses and corporations to remain ahead of hackers. As a result,

one of the most promising defensive cybersecurity solutions is the hidden timing chan-

nel detection system. Network security has lately attracted a lot of attention from

researchers. Even though covert timing channel detection systems have evolved to a

high degree of sophistication, today’s high network traffic volume and complex net-

work architecture test their detection capabilities. Because of this, it is critical to

150

developing a new method for enhancing the covert timing channel detection based on

massive amounts of network data. Technological progress recently has increased the

ability to represent features with a large volume of data and has started a revolution

in the design of effective attack detection models to achieve high performance levels

and protect networks from cyberattacks in the changing threat environments.

The majority of research has been focused on supervised classification tasks, which

require varied and suitable labeled data for model training, although these methods

have produced amazing results in covert channel detection, as shown in earlier chap-

ters. The process of adding labels to a significant amount of network traffic is taking

long time and prone to mistake in the actual network environment. In light of the

aforementioned challenges, the covert timing channel detection model using unsuper-

vised deep learning methods is receiving increasing amounts of interest in the scientific

community. Without tagged data, these methods may identify covert attack activity

in network traffic without any prior knowledge of covert attack methodology.

Various autoencoder models used for attack detection have been thoroughly eval-

uated in the literature and shown to have various advantages and generalization abil-

ities. As a result, many unsupervised deep learning methods, including autoencoder

techniques, have been intensively investigated in the attack detection area. It enables

the adoption of data-driven methods for sophisticated feature representation and also

demonstrates the ability to reconstruct data.

Choi et al. [73], for example, examined the use of several autoencoder models in the

development of intrusion detection frameworks. They used normal and abnormal data

to train the autoencoder models and adjusted the reconstruction error threshold to

151

enhance attack accuracy detection. Similarly, Aygun and Yavuz [91] evaluated several

autoencoder models with a stochastic approach for reconstruction error threshold in

order to develop intrusion detection systems. Nasser et al. [92] created a number

of autoencoder models to capture the resilient characteristics of their dataset that

may be used to refine and enhance the Intrusion classifier system. Vaiyapuri and

Binbusayyis [93] have presented an experimental evaluation of various autoencoder

models in order to build an unsupervised intrusion detection system. The authors

compared autoencoder models as one-class classifiers in this research to offer actual

experiments on how these models may be utilized to build a comprehensive Intrusion

detection framework for all types of assaults.

motivated by the work of Vaiyapuri and Binbusayyis [93], and Choi et al. [73] this

dissertation fills a knowledge gap by providing the first comprehensive experimental

evaluation of CTC detection performance between different autoencoder models in

order to develop an unsupervised detection framework for detecting and localizing

CTCs. However, since no actual study has been done to assess and contrast autoen-

coder models as classifiers for unsupervised covert time detection, it is still unknown

how they may be utilized as classifiers for unsupervised covert time detection.

This research compares different autoencoder models to identify CTC by training

the models on inter-arrival time of normal traffic to determine the reconstruction

error threshold and enhance model detection accuracy. Stacked autoencoder (SAE),

Sparse Stacked AE (SSAE), Contractive AE (ContAE), Denoise AE (DAE), and

Convolutional AE (CAE) will be utilized in this comparison. Choose these techniques

because their competitive performance has been proven in the relevant literature,

152

and they are now the most often used domain for attack detection [94–97]. The AE

models, when coupled with two types of input data (sequential and image), provide

a potentially strong basis for building an effective covert channel detection model,

minimizing the need for diverse and adequate concealed network traffic behavior. This

research also demonstrates how the AEs models are used to capture robust feature

representation for CTC traffic, which may improve the ability of the AE models to

be used as multi-class classifiers to point to the location of hidden data in network

traffic.

7.1 Autoencoder and reconstruction error for CTC

detection

Autoencoder is a one of neural network methods that can compress the input data

into lower-dimensional representations and then uses them at its output layer to

recreate the original input data [98]. An autoencoder architecture made up by three

component: encoder, hidden layer (code), and decoder, as shown in Figure 7.1. The

encoder compresses the input data and maps them to hidden layers to create the

latent feature representation using an activation function as given below:

C = f(WI + b) (7.1)

After that, the decoder recreates the input data from the feature representations

153

Figure 7.1: General structure of autoencoder.

only using an activation function, as illustrated below:

O = f(W ′C + b′) (7.2)

During the training process, the autoencoder learns the parameters of both en-

coder and decoder networks to minimize the reconstruction error (RE) using the

following cost function:

J = min
1

2N
‖I −O‖2 +

λ

2
(‖W‖2 + ‖W ′‖2) (7.3)

The cost function of the autoencoder consists of two parts; the first part represents

RE between the input and reconstructing data using data samples. The second part

represents the regularization with weight parameter λ that use to help the network

154

avoid overfitting and restrain the weight parameter.

Recently, Vaiyapuri et al. [93], and Sakurada et al. [72] utilized the reconstruction

ability of autoencoder to devise approaches for anomaly and malicious detection.

The idea behind these approaches is that an autoencoder trained only using overt

traffic data will have no ability to reconstruct malicious data samples that it has

not seen trained before, and resulting in a high reconstruction error. Therefore, the

reconstruction error can be utilized as an indicator for malicious detection and can

be used in one-class classification approaches. Autoencoders are commonly used in

various domains, such as for anomaly and intrusion detection.

However, covert channel attacks can display different behavior in network traffic,

which is hard to collect them in real networking configurations. For this, the applica-

tion of using autoencoder as one class classifier in the covert timing channel detection

plays a major role for modeling the overt network traffic to detect covert channels.

In this dissertation, we aim to assess using different autoencoders as one class clas-

sifiers with reconstruction error for CTC detection. Toward this purpose, Algorithm 3

and Figure 7.2 illustrate how the autoencoder will be used to detect any kind of covert

channel attacks. The autoencoder detector used a threshold of reconstruction error

to identify CTC from overt traffic data and was calculated during the autoencoder

155

training phase by calculating the average of RE total training samples.

Algorithm 3: CTC Detection Autoencoder-Based

Input: Test, training sets

Output: Predicted classes

Initialize: The neural network parameters

Model training

for Ith epoch iterate

for Jth mini-batch iterate

Extract feature representation C using Eq. 7.1

Recreate input data O using Eq. 7.2

Minimize the cost function using Eq. 7.3

Update model parameters

end for

end for

Compute reconstruction error average α threshold using training dataset

Model testing

for ith instance in the test dataset

Calculate reconstruction error (RE) loss

If RE more than α then data sample is CTC

else is overt traffic

end for

156

Figure 7.2: Reconstruction error based for CTC classification

7.2 Autoencoder models

This section introducing a brief overview of basic autoencoder network architectures

that will be used in this study.

7.2.1 Stack Autoencoder (SAE)

Stacked autoencoder is a common autoencoder architecture constructed by stacking

multiple autoencoders such that where the output of the first autoencoder is fed into

the next autoencoder as shown in Figure 7.3. Because training all autoencoders at

the same time is time-consuming, SAE instead uses greedy layer-wise training the

autoencoders in forwarding order.

As a result, training layers in SAE to gradually gain more critical information.

157

Following the completion of the models training, the encoding layers are concatenated,

then followed by the decoding layer for all autoencoder models. As a consequence,

SAE is composed of several layers that gather deep representative information from

inputs and utilize it to enhance their reconstruction capabilities.

Figure 7.3: Stacked autoencoder structure.

7.2.2 Sparse Stacked Autoencoder (SSAE)

The sparse autoencoder is one of an autoencoder architecture that regularize the

autoencoder by introduces a sparse constrain to the basic autoencoder principle to

learn and extract sparse feature representations from input data, as shown in Figure

7.4. In particular, the sparse penalty term would be added to the loss function of

autoencoder as represented in Eq. 7.4, makes only a proposition of nodes become

active with nonzero values in hidden layers and represents each input data as a group

of nodes to discover essential sparse features [99].

158

JSSAE = J(θ) + α

s∑
j=1

KL(ρ‖ρ̂) (7.4)

Figure 7.4: Sparse stacked autoencoder structure.

7.2.3 Denoising Autoencoder (DAE)

To learn more general data features from noisy input data and avoiding overfitting

problems, DAE was developed [100]. Unlike other autoencder models, the encoding

method in DAE is highly effective and efficient in extracting more intelligent features

that may negate the impact of corruption for improved data construction, as shown

in Figure 7.5. DAE can improve feature extraction, when it capture and prevent

statistical relationships between input data and performs consistently, even when the

input data is contaminated by noise.

159

Figure 7.5: Denoising autoencoder structure.

7.2.4 Convolutional Autoencoder (CAE)

CAE [101] is autoencoder architecture that accomplishes excellent feature represen-

tation by utilizing the advantages of CNN. CAE uses stochastic gradient descent to

learn non-trivial features and discovers effective initializations for CNNs that avoid

the many unique local minima of highly objective functions that arise in various deep

learning situations. CAE may find localized characteristics that repeat themselves

throughout the input and discover strong feature representation by considering the

connections between the more suitable features to remove unnecessary features.

In the CAE the weight is sharing among the inputs and guarantees that the feature

spatial localization o data is preserved. As a consequence, there are fewer parameters

to memorize. Rather than being fully connected layers, CAE is coevolutionary layers

as illustrated in Figure 7.6. Taking inspiration by Chen et al. [102] and [92], this

research creates 1D and 2D CAE with the premise that utilizing 1D and 2D CAE

160

would allow for greater efficiency with sequential and image network traffic data.

Figure 7.6: Convolutional autoencoder structure.

7.2.5 Contractive Autoencoder (ContAE)

Contractive autoencoders is as a suitable neural network follows DAE that have a

strong ability of learning robustness features against the effect of perturbation noise

input data [103] . This resilience to minor changes is accomplished by applying

a penalty term for encoder activation with regard to all the hidden representation

partial derivatives of input data based on the Frobenius norm of the Jacobian matrix,

which is expressed as follows,

‖Jf (i)‖2F =
∑

xy

(
∂hy(i)

∂ix

)2

(7.5)

The term penalizing refers to the fact that the learned characteristics are not

impacted by minor modifications in inputs since they are locally invariant in nature.

161

With a penalizing term, the cost function of ContAE looks like this:

JContAE(θ) = JAE(θ) + ‖jf (i)‖2F (7.6)

The penalty terms help in learning and obtain lower dimensional feature space

that are better representation of local directions of data variation. Although DAE

and ContAE have the same goal of improving the robustness of basic autoencoder,

the approach they take is different. DAE, for example, accomplishes stochastic by

contaminating the input data with random noise values. As shown in Figure7.7, the

ContAE may be calculated analytically by balancing the reconstruction error against

the contractual penalty.

Figure 7.7: Contractive autoencoder structure.

162

7.3 Experimental setup for autoencoder model de-

sign and comparison

This section explains the experimental and framework used for comparative assess-

ment and evaluate all autoencoder models utilizing sequence-based and image-based

input data for CTC detection.

7.3.1 Autoencoder network structure and parameters

A network architecture that produced acceptable results with all of the selected au-

toencoder models is determined via a series of exploratory tests to perform a fair and

meaningful comparison. In the determination procedure, the reconstruction error was

utilized as an indicator for having optimum performing network design, as shown in

Table 7.1.

The model network design is made up of two hidden layers with dimensions of 64

and 48, respectively, and a bottleneck layer with a size of 32. Furthermore, tanh is

utilized as an function over all layers for sequence based data set. SSAE is created

from the network design by adding sparse penalty on layers to get the unique sta-

tistical feature are retrieved from the input data. In the preprocessing phase, 11%

Gaussian noise is added to input data to corrupted data in DAE. The DAE’s perfor-

mance degrades when noise level rises. This is because when the noise levels increase,

critical information is lost, making reconstruction difficult and classification perfor-

mance poor. The ContAE is created by adding the penalty value to the autoencoder

163

cost function.

Table 7.1: Autoencoder structure parameters.

Parameter Value

Input dimension for sequence (64,1)
Input dimension for image (23x32)
Hidden layer 2
Nodes of first and second layer 64 and 48
Gaussian noise corruption factor in 11%
Function Sigmoid and Tanh
Sparsity penalty .0001
Bottleneck sparsity penalty .001
Node in bottleneck layer 32
Contractive penalty .0001

In autoencoder models, the hidden and bottleneck layers in the autoencoder ar-

chitecture are changed with convolutional layers to create the CAE model, as shown

in Table 7.2. By removing duplicate and unnecessary characteristics, the pyramid

design lowers the number of trainable parameters and allows learning the important

aspects from input network traffic. A max-pooling layer with size of two is used to

reduce the dimensional of data.

Figure 7.8 depicts and discusses the architecture of the implemented 2D-CAE.

As shown in the figure, the input data is a 32x32 colored image. CAE arrangement

of input as a 2D matrix and discover the localized relationships between these data

features. CAE is distinct from other algorithms in maintaining the spatial locality by

sharing the model weights across all input locations. CAE is more sensitive to feature

transitive relationships and aid in learning high-level relationships of global features

that can be ignore by other classifiers.

164

Table 7.2: 1D-CAE parameters for sequential data.

Layer Input Output

Input data (64,1) (64,1)
1D-Conv (64,1) (64,8)
Batch Normalization (64,8) (64,8)
1D-Max pooling (64,8) (64,8)
1D-Conv (32,8) (32,8)
Batch Normalization (64,8) (64,8)
Up-sampling1D (64,8) (64,8)
Conv1D (64,8) (64,8)
Batch Normalization (64,8) (64,8)

Figure 7.8: 2D CAE for image input data.

Finally, to assess and compare the model’s performance, Figure 7.9 depicts the

experimental frameworks developed for this comparative research for two types of

input data: sequence-based and image-based. The frameworks are comprised of three

stage: 1) preprocessing the data; 2) train all autoencoder models using overt network

traffic data. As an assessment procedure, to avoid overfitting, all models use a 5-fold

cross-validation method; 3) after the training the models, testing the models using

test dataset, and then the model performance is compared using a set of metrics.

All of the autoencoder models are trained and optimize their cost function using

165

Figure 7.9: Comparison experiment framework.

Adam optimizer due to its flexibility and computing efficiency [104]. Furthermore,

to provide a fair comparison of all suggested AE models, it is trained for 14 epochs,

0.001 learning rate, and 128 batch-size.

7.3.2 Experimental datasets

We utilized a dataset recently generated via our covert channel, which is a mix of

overt and covert network traffic flow. This dataset contains one kind of covert attack:

Cautious Covert Timing Channels (CCTC). CCTC is a more sophisticated hack that

attempts to mimic overt traffic behavior to some extent. This kind of covert channel

behaves similarly to overt traffic, with packet inter-arrival times that are comparable

to overt traffic.

166

We created two kinds of datasets in our work: sequence-based and image-based.

The Cautious Covert Timing Channels (CCTC) attack is included in this dataset.

We utilized network flows derived from our covert channel suggested in Chapter 3 for

sequence data-based.

This research took into account a flow of 64 inter-arrival time. In each flow, the

inter-arrival times of packets were extracted and labeled as covert and overt. Finally,

we constructed our dataset using these inter-arrival time sequences. The collection

contains 8000 flows, 3000 of which include covert data and 5000 of which contain

overt data. In addition, we generated a second version of the sequence-based dataset

for localization purposes, based on 64 bits of covert messages inserted at three points

in the traffic flow: the beginning, middle, and finish. This version comprises 6000

flows, each with a series of 64 inter-arrival time values.

In the second form of our dataset, we utilized inter-arrival time records shaped as

32x32 colorful images for the image-based dataset. We generated two versions of the

image-based dataset. The first version is for channel detection, and it includes 6000

for both overt and covert communication. The second kind is for channel localization,

which includes 6000 for covert traffic, which was gathered based on 64 bits of covert

messages inserted in three places in the traffic flow: beginning, middle, and finish.

The specifics of each dataset are given in Tables 7.3 and 7.4.

167

Table 7.3: Detection dataset parameters

Covert message size 64 bits
Delay time 0.5µ
The mean IATs of overt traffic (µ) 0.0664 seconds
Sub-flow size 1024 inter-arrivals
Number of images (all datasets) 8000
Number of covert images (all datasets) 3000
Number of overt images (all datasets) 5000
Image size 32x32

Table 7.4: Localization dataset parameters

Covert message size 64 bits
Delay time .5µ
The mean IATs of overt traffic (µ) 0.0664 seconds
Sub-flow size 1024 inter-arrivals
Image size 32× 32
Number of images (all datasets) 6000
Number of images per dataset version 2000
Location of covert message Beginning, middle,end

7.4 Experimental results and analysis

This section analyzes and contrasts the efficacy and efficiency of each autoencoder

model, taking three viewpoints into account. To begin, examine the models conver-

gence ability to represent the design choice of the contrasted autoencoders and show

its generalization capacity to identify CTC assaults. In the second stage, look at

the ability of the models in CTC detection to offer any insights into the practical

applicability of various models. Finally, investigate the performance of the proposed

AE models for unbalanced classification to show the AE models’ stability in the face

of imbalanced datasets.

168

7.4.1 Network convergence of autoencoder models

For comparing all autoencoder models, the training and testing data from each

dataset (image-based and sequential-based) are input into all of models and 5-fold

cross-validation is used to evaluate the generalization and converge on two datasets,

sequence-based and image-based, separately. This performance analysis is carried out

from two perspectives: reconstruction error ability and model learning behavior, as

shown below.

7.4.1.1 Reconstruction error ability

To validate each autoencoder model quantitative of reconstruction error ability, the

average of reconstruction error provided by each model throughout the training phase

is calculated for both the sequence-based and image-based datasets, and the results

are presented in Table 7.5. On both datasets, the results show that all of the models

have slightly superior ability of reconstruction than the DAE model.

CAE had the best results on both datasets comparing of all other models. The

explanation may be related to the network configuration used by CAE finds the

most essential feature representations that enhance its reconstruction data ability;

this model showed steady and high ability of model converges and generalization

throughout the training phase.

During training phase, SAE and SSAE setups showed consistent convergence and

generalization capabilities. Furthermore, the training procedure of the ContAE model

169

learns more robust features for data reconstruction and outperforms the SAE and

SSAE models in both datasets. The contractive penalty in cost function of ContAE

model increase the guarantees that the more generic feature for data reconstructions

are captured.

Table 7.5: Average reconstruction error foe autoencoder models.

Reconstruction error Sequence-based Image-based

CAE 0.0011 0.0005
SAE 0.0022 0.0014
SSAE 0.0024 0.0016

ContAE 0.0021 0.0013
DAE 0.003 0.0011

7.4.1.2 Model learning behavior

Figures 7.10 and 7.11 show the loss of training and validation data for all models using

both sequence-based and image-based datasets for analyzing the learning behavior of

models. It is clear from observing the figures the training loss of all models show a

fast decrease during the first epochs and quickly convergence. All models show high

learning behavior rate, avoiding overfitting problem, and improve generalization as

shown by the validation loss curves. According to these results, the optimal network

configurations utilized all models are correct, and they can reliably detect CTCs in

the validation (testing) set.

170

Figure 7.10: Model loss using sequence-based datasets.

Figure 7.11: Model loss using image-based datasets.

7.4.2 Model performance based on CTC detection

The performance of models in detecting CTCs is compared in this section based on

two perspectives: quantitative analysis and ROC curve analysis. In this comparison

171

the average of reconstruction error is utilized by models to classify network traffic

data as either covert or overt using both datasets.

7.4.2.1 Model detection performance analysis

To compare the model performance based on detecting CTC, the performance mea-

sures are calculated for all models utilizing both datasets and the result reported in

Table 7.6. According to the findings, the CAE model outperforms all of the evaluated

measures. On two datasets, the CAE model achieves the greatest accuracy as well

as the highest average performance in recall and FAR. There is further evidence of

DAE’s uneven performance across datasets. On the image-based dataset, for exam-

ple, the DAE models perform relatively better. However, it performs the worst on

the sequence-based dataset. On the contrary, we can see that SAE and SSAE models

perform consistently well on average across both datasets.

Table 7.6: Model detection performance

Sequence dataset Image dataset
AE models Accuracy Recall FAR Accuracy Recall FAR

SAE 89.61 87.26 17.04 91.23 88.13 14.62
SSAE 89.86 88.34 18.81 91.36 86.02 15.50
CAE 91.72 90.00 13.04 93.14 91.23 12.20

ContAE 90.45 80.37 13.00 91.07 90.42 14.00
DAE 88.50 85.98 15.13 90.92 88.34 13.25

172

7.4.2.2 ROC model analysis

Receiver Operating Characteristic (ROC) curve is considered as an essential measure

for displaying an attack detection model’s detection performance. It also allows for

the comparison of various detection models in terms of relative significance for both

recall and precision measures, which are considered as important criteria for practical

idle models. As a consequence, the ROC curve for each autoencoder model was

built using the average reconstruction shown by each model throughout the training

process. Figure 7.12 shows the models’ ROC curves based on the two datasets:

sequence-based and image-based. It is clear from both datasets that all of the models

have ROC curves close the upper-left corner and indicate to the high classification

ability of models.

The curves of ROC for both datasets (image and sequence based) show an intrigu-

ing that all ROC curves on image-based datasets are closer to the upper-left corner

than on sequence-based datasets. This result may show that the way models describe

traffic time samples in datasets affects their performance. As a result, our original

debate that visualization traffic time as images is adequate and may enhance detec-

tion model performance is confirmed. It also highlights the possibility of improving

the detection performance of models in network settings by using more overt traffic

samples.

The area under of ROC, reveals models’ generalization capacity to detect new

attacks, as shown in Figure 7.12 for both datasets. With an AUC value of 92.0% and

90.1%, the CAE model consistently outperforms on images dataset and sequence-

173

based dataset, respectively. It is also worth noting that the denoising training method

allowed model to get more robust feature representations for classification and out-

perform both of SAE and SSAE on the image-based dataset, with AUC values of

90.9%. However, when utilizing sequence-based input data, DAE performs worse,

with AUC values of 82.0%.

Figure 7.12: Model ROC curves using sequence-based dataset (left) and an image-based
dataset (right).

7.4.3 Model performance using imbalanced classification

Regarding covert channel behavior that utilizes normal traffic to leak covert data, in

real application the traffic data may be unbalanced with a limit number of covert

attack and a high number of normal traffic. The existence of such conditions neces-

sitates a comparison of the model performance for unbalanced binary classification.

The measures were used to evaluate detection performance previously such as

ROC may don’t have ability to represent the model performance under using unbal-

174

anced training data. For example, ROC curve measure is presentable measures for

evaluating the performance of CTC attack detection. However, using this measure

with imbalance data may mislead by providing an optimistic result for overt traffic

samples while failing to account for model accuracy.

As a result, the experimental comparison on imbalanced data analysis uses the

most commonly used metrics such as precision-recall (PR) curve and F1-score to offer

a comparison of autoencoder models with unbalanced traffic datasets as bellow.

• Precision and recall curve analysis

A precision-recall (PR) curve depicts the relative trade-off between precision and

recall. A PR curve is recommended in recent research for two reasons: it allows for

the calculation of the percentage of correctness when a dataset is being evaluated

for binary classification. It also evaluates various classifiers to find the one that

optimizes CTC detection precision while maintaining adequate recall. To demonstrate

its benefits, Figure 7.13 compares PR curves for models on sequence-based and image-

based datasets.

The PR curves for a perfect discrimination CTC detection model pass through a

location in the upper-right corner. When examining these images from this perspec-

tive, it is possible to see that the PR curves of all the models on both sequence-based

and image-based datasets pass near the upper-right corner. Looking closely at the

curves on the sequence-based dataset, it can be seen that all of the models, except

for DAE, are near the upper-right corner.

When compared to other models on the image-based dataset, DAE exhibits excep-

175

tions with penalized performance. Furthermore, it is worth noting that the generated

PR curve findings accord with the ROC curve results. Based on this observation, we

can conclude that all of the autoencoder models that can be trained only with overt

traffic data are reliable detection performance against using imbalanced datasets, im-

plying the proposed autoencoder models can be used as a better detection solution as

a one class classifier for building CTC detection models to improve detection ability.

The resulting area under the PR curve in Figure 7.13 shows that all of the models

are similarly efficient in precision and recall terms on both datasets. In contrast to

other models, CAE obtains the best results on both datasets of (0.926, 0.934). On

the other hand, it can be observed that DAE outperforms on an image-based dataset

but under-performs on a sequence-based dataset, giving an AUPR value of 0.919.

Overall, the AUPR findings show that all of the investigated AE variants are ex-

tremely effective at improving CTC detection performance against highly unbalanced

datasets.

Figure 7.13: Model PR curves using sequence-based dataset (left) and image-based
dataset (right).

176

• F1 score analysis

The F1 score is an important performance measure for highlighting the detection

model’s effectiveness in terms of recall and accuracy using a factor that regulates their

respective importance [105]. According to the most current research, the F1 score may

assist other metrics by preferring the accurate categorization of traffic attack samples

while avoiding the misclassification of overt traffic flow data.

To get a better understanding of the discriminating ability of the models, the F1

is examined, and the findings are shown in Figure 7.14. The resulting F1 comple-

ments the previously calculated metrics and supports the importance of all models in

attaining improved CTC detection performance.

It is worth noting that, despite DAE having a lower F1 of 87% when compared to

other autoencoder models on the sequence-based dataset, it still has a higher score

of 90.69 % on an image-based dataset. The three investigated models, SAE, SSAE,

and ContAE, similarly show greater F1 two dataset gains. On image input data, all

of models provide the best F1.

7.5 Autoencoder for pinpointing CTC

As previously mentioned, identifying hidden communications is crucial if you want

to prevent malicious software from stealing your sensitive network data. When a

covert message is discovered, the transmission is halted to prevent the malicious

data from being exfiltrated. When defending against covert channels, deleting traffic

177

SAE SSAE CAE ContAE DAE
70

75

80

85

90

95

100
F1

 (
%

)

SAE SSAE CAE ContAE DAE
70

75

80

85

90

95

100

F1
 (

%
)

Figure 7.14: Model F1 using sequence-based dataset (left) and image-based dataset
(right).

flows containing covert communications is an effective cyber defense; nevertheless, it

disrupts QoS for overt traffic from valid applications, which may include the majority

of packets in the discarded flows.

It’s critical to locate the secret message’s hiding place. If only harmful traffic is

being dropped, the remainder may go through. Non-malicious apps no longer cause

as many interruptions thanks to our fine-grained identification.

To test how well autoencoder models work in locating hidden messages inside

traffic flows, we ran various tests separately. This was accomplished by designing an

experiment in which secret messages were inserted into all communication flows in

one of three points: the beginning, middle, and end. After that, we looked at the

performance of the models to determine the right traffic flow segment containing the

hidden messages, using two datasets: one based on sequence and the other on images.

In these experiments, the models use as multi-class classifiers. The location of covert

data can be classified by extracting feature information from the hidden layers of

178

models and fed them to the classifier for CTC localization.

Table 7.7 presents the results of our tests, which show the average accuracy in

directing the covert traffic for each of the three classes. We can see from the findings

that models do a good job of locating hidden traffic on sequence datasets. Sequential

data is a challenge for autoencoders to detect patterns in. Image-based values are

more accurate, although models increase in performance, like CAE.

As a result, utilizing images to locate covert traffic would be more accurate and

efficient than employing autoencoder models with time sequences. Since the network

architecture used by all models was not optimal for detecting covert traffic locations,

a more complicated network model was required to capture and extract essential

dataset features, such as the time sequence dataset, which contains features with

complex relationships.

Table 7.7: Model accuracy for CTC localization.

Accuracy
Model Sequence-based Image-based

SAE 84.14 88.54
SSAE 85.32 87.23
CAE 88.45 91.14
ContAE 84.2 88.02
DAE 83.00 86.06

179

7.6 Chapter summary

To propose unsupervised CTC detection systems utilizing two kinds of data sequen-

tially and image-based, this chapter offers an overview of the autoencoder models

used, including SAE, DAE, SSAE, ContAE, and CAE. Each model’s ability to ac-

curately classify binary data is assessed using a variety of metrics, including the

precision-recall curve and the F1 value.

The overview of the findings of the study of these measures is given to shedding

light on the detection potential of various autoencoders. For instance, the CAE

model’s behavior was consistent across datasets with varying characteristics, and

it provided the greatest detection performance. The DAE model performed well

on the image-based dataset, but it was unable to provide consistent results on the

sequential-based one. Since even a little amount of noise may damage the practical

information needed for the reconstruction of the data, this discrepancy in DAE variant

performance across datasets is possible. Because of this, DAE is not the superior

option for a dataset of this kind In comparison to the SAE and SSAE models could not

offer similar results; nevertheless, across different datasets, these models demonstrated

an average dependable performance across all performance metrics. Image-based

data with autoencoder CTC detection and localization models are more accurate

than sequential time series with the same models utilizing image-based data would

be. Consequently, this chapter may be used to kick-start further work on improving

unsupervised AE detection models with high and reliable capacities to detect CTC

assaults.

180

Chapter 8

Conclusion and Future Work

The last chapter reviews the dissertation’s contributions and suggests various possible

expansions to our work.

8.1 Conclusions

Finding and using common resources that are unlikely can be used as a communication

channel is a crucial step in developing a covert timing channel. This dissertation

showed the covert attacks use inter-arrival times for leaking data is considered a real

threat to network security. For example, a covert channel limited rate is represented

as complex channels indistinguishable from normal channels.

To support this assertion, we asserted that after a shared resource has been de-

181

tected, covert traffic can often be distinguished from normal traffic based on altering

event timing to encode the covert information. This work described the design and

building of a new covert channel (BCTC) that conceals channel activity by using a

carefully planned sequence of timing intervals. BCTC employs different delay times

to represent several types of covert channel attacks, such as greedy and cautious.

They utilized particular threshold values to map packet time of binary symbols to

different inter-arrival times.

According to our results, a motivated user may alter the time of the message

encoder in covert timing channels to construct a channel that may go unnoticed by

distribution analysis. Furthermore, it is possible to intelligently alter packet timings

to remove links between timing values and symbols and choose the best time to hide

covert packets. Using this method, the concealed timing channels would go unnoticed.

In the second part of the dissertation, we investigated detection approaches based

on image processing, machine learning, and deep learning methodologies using two

types of datasets (sequential-based and image-based) to detect covert timing channels

and warn of their existence so that covert mitigation defense mechanisms might be

started.

In addition, we investigated effective search techniques for identifying traffic re-

gions that seemed to be covert traffic. Consequently, the disruption of normal traffic

caused by non-malicious applications is significantly minimized as a consequence of

this precise localization.

Finally, the following are the dissertation summary’s contributions:

182

• We developed covert timing channels, which are particularly intended to conceal

covert traffic by changing packet transmitting timing to generate inter-arrival

time sequences that can be decoded to restore the original covert data.

• We examined the effectiveness of the covert timing channel based on the bit

accuracy and transmission bit rate. And found that network conditions and

time delays are played an important role that affects channel performance.

• We discovered the threshold of packet timing delays that allows the covert chan-

nel to send information efficiently. This threshold is useful in various situations,

such as evaluating how hazardous this channel is and how it should be mitigated

or how dependable this channel is for data transmission.

• To deal with CTCs, we discussed how the existing covert channel detection

methods need to be changed to identify and alert the existing CTC correctly.

• We developed a method for converting a sequence of traffic inter-arrival times

into two-dimensional colored images to detect CTC into an image classification

issue. As a result, time-series data characteristics may be recognized in two-

dimensional images using various features such as color, points, and lines at the

appropriate places in the image.

• Based on image processing and machine learning methods, we developed a CTC

detection model. The experimental findings of utilizing this method show that

variant covert timing channel detection outperforms current approaches signif-

icantly.

• We developed a method for locating traffic areas that seem to be covert traffic.

183

This enables our method to detect the presence of covert channels and initiates

covert mitigation defense mechanisms or traffic blocking applications, substan-

tially improving the quality of service compromised when the whole network

flow is terminated.

• Using a limited dataset, we assessed the ability to use the CNN algorithm to

build a new model for traffic classification and CTC detection. Furthermore, we

developed a network architecture that is more dependable for processing and

categorizing traffic images and evaluating the appropriateness of CNN for CTC

detection. The integration of high-level features acquired by a CNN hierarchical

framework is very efficient for CTC detection and classification.

• We evaluated the most pre-trained CNN models, AlexNet, VGG16, and ResNet,

as well as other traditional machine learning techniques, with the proposed shal-

low CNN detection model, taking into account different circumstances related

to the availability of training data.

• We developed a CTC detector that fed a raw data sequence of traffic inter-arrival

times into an LSTM recurrent neural network, which learned temporal feature

representations from the original data without the need of manual feature en-

gineering. The proposed model can recognize a certain sequence by computing

the relationship between the current and previous states and directly learning

features from raw data that match their high detection capability.

• We developed an efficient and flexible CTC detection model using a one-dimensional

convolutional neural network (1D-CNN). Meanwhile, 1D-CNN is used as a su-

pervised learning technique for time series data. Using the 1D-CNN model, we

184

extracted special features from time-series data and helped in establishing how

temporal modeling with spatial properties affects detection model performance.

Based on the model findings, we demonstrated that the self-learning 1D-CNN

model might be utilized as a reliable solution for the CTC detection problem.

• We proposed a new method for CTC detection based on a combination of LSTM

and 1D-CNN deep learning models. Multiple information scales were integrated

into this approach to see whether additional improvements could be achieved to

create a viable CTC detection problem. We created two hybrid network models,

CNN-LSTM and LSTM-CNN, in particular. We tested them using a sequence

traffic inter-arrival time dataset to see how the order of network layers impacts

the effectiveness of the hybrid detection model.

• We filled a knowledge gap by performing the first study to evaluate the potential

of different autoencoder models for CTC detection. This dissertation addressed

that gap by comparing five different autoencoders for building an unsupervised

CTC detection model. The comparative evaluation provides an overview of

how different autoencoders trained using the normal traffic data build effective

unsupervised CTC detection methods. And use a multi-label class with autoen-

coder for CTC localization. The comparative findings in this comparative will

be interesting to the network security research because it offers a potential route

for creating an efficient covert channel detection model based on deep learning

methods, thus reducing the requirement for sufficient and varied cover channel

traffic behavior.

185

8.2 Future directions

Future possibilities for expanding on this work into two paths: developing more effec-

tive covert timing channels and improving detection methods against these channels,

which can be stated as follows:

• One option for designing more simple and covert channels is to use methods

that may improve channel accuracy. For example, self-synchronizing codes and

phase-locked loops are sophisticated methods for overcoming synchronization

problems induced by network conditions. The former approach uses encoding

methods that are particularly intended to identify the loss of transmission failure

and recover from it by re-connection. The latter approach uses a closed feedback

loop circuit to monitor the output frequency of the output signal with an input

signal. Both techniques are successful in communications and may improve

accuracy and efficiency in a new covert channel.

Furthermore, faster packet generators may be implemented with the covert

channel, allowing the sender to utilize sequences of inter-arrival time with lower

timing intervals. Moreover, this work may be extended by using the same

channel design concepts to create additional time event covert channels that

utilize other events to convey information. For example, the sender may use

CPU requests’ inter-arrival timings to construct a basic covert channel and test

its effectiveness using methods similar to those described in this research.

There are many methods to broaden our research to improve the detection model

186

against covert timing channels, which are briefly discussed below:

• In this research, just one convolution neural network was used for training

data. Another framework that might be constructed is one that utilizes parallel

convolution neural networks for each time series data and merges them in the

final layer for prediction. It would be interesting to see whether the parallel

network improves model accuracy and performance.

• Present a new framework for encoding traffic inter-arrival times as various kinds

of images such as Gramian Angular Fields (GAF) and Markov Transition Fields

(MTF), then use deep Tiled Convolutional Neural Networks to extract high-level

features from these images and classify them.

• The present architecture was used in binary classification to identify covert

channels. Multi-class classification may be used to evaluate the proposed frame-

work’s ability to categorize various kinds of covert timing channel attacks.

• Present a new framework for converting traffic inter-arrival times to 2D Re-

currence Plots (RP) images. The time-series image representation introduces

additional feature types that are not available in one dimension, and therefore

time series classification may be seen as a texture image identification issue.

The CNN model may also use these input images to learn different feature

representations automatically for classifying them.

187

Bibliography

[1] C. Castelluccia, A. Chaabane, M. Dürmuth, and D. Perito, “When Privacy

meets Security: Leveraging personal information for password cracking,” arXiv

preprint arXiv:1304.6584, 2013.

[2] D. Wang, P. Wang, D. He, and Y. Tian, “Birthday, name and bifacial-security:

understanding passwords of chinese web users,” in 28th Security Symposium

({USENIX} Security 19), 2019, pp. 1537–1555.

[3] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning approach for

network intrusion detection system,” in Proceedings of the 9th EAI Interna-

tional Conference on Bio-inspired Information and Communications Technolo-

gies, 2016, pp. 21–26.

[4] B. W. Lampson, “A note on the confinement problem,” Communications of the

ACM, vol. 16, no. 10, pp. 613–615, 1973.

[5] A. Mileva, A. Velinov, and D. Stojanov, “New covert channels in internet of

things,” 2018.

188

[6] Y.-a. Tan, X. Zhang, K. Sharif, C. Liang, Q. Zhang, and Y. Li, “Covert timing

channels for iot over mobile networks,” IEEE Wireless Communications, vol. 25,

no. 6, pp. 38–44, 2018.

[7] K. Maney, “Bin laden’s messages could be hiding in plain sight,” USA Today,

vol. 19, 2001.

[8] J. Tian, G. Xiong, Z. Li, and G. Gou, “A survey of key technologies for con-

structing network covert channel,” Security and Communication Networks, vol.

2020, 2020.

[9] P. L. Shrestha, M. Hempel, F. Rezaei, and H. Sharif, “A support vector

machine-based framework for detection of covert timing channels,” IEEE Trans-

actions on Dependable and Secure Computing, vol. 13, no. 2, pp. 274–283, 2015.

[10] P. Derbeko, Y. Manusov, N. Eskira, and S. Faibish, “Covert storage channel

communication between computer security agent and security system,” Aug. 7

2018, uS Patent 10,044,744.

[11] J. C. Wray, “An analysis of covert timing channels,” Journal of Computer

Security, vol. 1, no. 3-4, pp. 219–232, 1992.

[12] N. Kiyavash, F. Koushanfar, T. P. Coleman, and M. Rodrigues, “A timing

channel spyware for the csma/ca protocol,” IEEE Transactions on Information

Forensics and Security, vol. 8, no. 3, pp. 477–487, 2013.

[13] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia, “Model-based covert

timing channels: Automated modeling and evasion,” in International Workshop

on Recent Advances in Intrusion Detection. Springer, 2008, pp. 211–230.

189

[14] D. C. Latham, “Department of defense trusted computer system evaluation

criteria,” Department of Defense, 1986.

[15] V. D. Gligor, A guide to understanding covert channel analysis of trusted sys-

tems. National Computer Security Center, 1994, vol. 30.

[16] A. K. Biswas, D. Ghosal, and S. Nagaraja, “A survey of timing channels and

countermeasures,” ACM Computing Surveys (CSUR), vol. 50, no. 1, pp. 1–39,

2017.

[17] D. Mellado, E. Fernández-Medina, and M. Piattini, “A common criteria based

security requirements engineering process for the development of secure infor-

mation systems,” Computer standards & interfaces, vol. 29, no. 2, pp. 244–253,

2007.

[18] P. R. Gallagher Jr, “A guide to understanding covert channel analysis of trusted

systems provides a set of good,” 1993.

[19] I. S. Moskowitz and M. H. Kang, “Covert channels-here to stay?” in Proceedings

of COMPASS’94-1994 IEEE 9th Annual Conference on Computer Assurance.

IEEE, 1994, pp. 235–243.

[20] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert timing channels: design

and detection,” in Proceedings of the 11th ACM conference on Computer and

communications security. ACM, 2004, pp. 178–187.

[21] K. Borders and A. Prakash, “Web tap: detecting covert web traffic,” in Proceed-

ings of the 11th ACM conference on Computer and communications security,

2004, pp. 110–120.

190

[22] S. Cabuk, “Network covert channels: Design, analysis, detection, and elimina-

tion,” Ph.D. dissertation, Purdue University, 2006.

[23] S. Gianvecchio and H. Wang, “An entropy-based approach to detecting covert

timing channels,” IEEE Transactions on Dependable and Secure Computing,

vol. 8, no. 6, pp. 785–797, 2010.

[24] R. Archibald and D. Ghosal, “A comparative analysis of detection metrics for

covert timing channels,” Computers & security, vol. 45, pp. 284–292, 2014.

[25] P. L. Shrestha, M. Hempel, F. Rezaei, and H. Sharif, “Leveraging statistical

feature points for generalized detection of covert timing channels,” in 2014

IEEE Military Communications Conference. IEEE, 2014, pp. 7–11.

[26] F. Iglesias and T. Zseby, “Are network covert timing channels statistical anoma-

lies?” in Proceedings of the 12th International Conference on Availability, Re-

liability and Security, 2017, pp. 1–9.

[27] F. Iglesias, V. Bernhardt, R. Annessi, and T. Zseby, “Decision tree rule in-

duction for detecting covert timing channels in tcp/ip traffic,” in International

Cross-Domain Conference for Machine Learning and Knowledge Extraction.

Springer, 2017, pp. 105–122.

[28] S. Srinivasan, C. R. Bhat, and J. Holguin-Veras, “Empirical analysis of the

impact of security perception on intercity mode choice: A panel rank-ordered

mixed logit model,” Transportation Research Record, vol. 1942, no. 1, pp. 9–15,

2006.

191

[29] W. Gasior and L. Yang, “Network covert channels on the android platform,” in

Proceedings of the Seventh Annual Workshop on Cyber Security and Information

Intelligence Research, 2011, pp. 1–1.

[30] V. Berk, A. Giani, G. Cybenko, and N. Hanover, “Detection of covert channel

encoding in network packet delays,” Rapport technique TR536, de lUniversité

de Dartmouth, vol. 19, 2005.

[31] G. Shah, A. Molina, M. Blaze et al., “Keyboards and covert channels.” in

USENIX Security Symposium, vol. 15, 2006.

[32] H. Hovhannisyan, K. Lu, and J. Wang, “A novel high-speed ip-timing covert

channel: Design and evaluation,” in 2015 IEEE International Conference on

Communications (ICC). IEEE, 2015, pp. 7198–7203.

[33] A. El-Atawy, Q. Duan, and E. Al-Shaer, “A novel class of robust covert chan-

nels using out-of-order packets,” IEEE Transactions on Dependable and Secure

Computing, vol. 14, no. 2, pp. 116–129, 2015.

[34] S. Cabuk, C. E. Brodley, and C. Shields, “Ip covert channel detection,” ACM

Transactions on Information and System Security (TISSEC), vol. 12, no. 4, pp.

1–29, 2009.

[35] S. Gianvecchio and H. Wang, “An entropy-based approach to detecting covert

timing channels,” IEEE Transactions on Dependable and Secure Computing,

vol. 8, no. 6, pp. 785–797, 2010.

192

[36] R. Archibald and D. Ghosal, “A covert timing channel based on fountain codes,”

in 2012 IEEE 11th International Conference on Trust, Security and Privacy in

Computing and Communications. IEEE, 2012, pp. 970–977.

[37] J. Zhai, G. Liu, and Y. Dai, “A covert channel detection algorithm based on tcp

markov model,” in 2010 International Conference on Multimedia Information

Networking and Security. IEEE, 2010, pp. 893–897.

[38] O. Darwish, A. Al-Fuqaha, M. Anan, and N. Nasser, “The role of hierarchi-

cal entropy analysis in the detection and time-scale determination of covert

timing channels,” in 2015 International Wireless Communications and Mobile

Computing Conference (IWCMC). IEEE, 2015, pp. 153–159.

[39] O. Darwish, A. Al-Fuqaha, G. B. Brahim, and M. A. Javed, “Using mapreduce

and hierarchical entropy analysis to speed-up the detection of covert timing

channels,” in 2017 13th International Wireless Communications and Mobile

Computing Conference (IWCMC). IEEE, 2017, pp. 1102–1107.

[40] S. Zander, G. Armitage, and P. Branch, “Stealthier inter-packet timing covert

channels,” in International Conference on Research in Networking. Springer,

2011, pp. 458–470.

[41] F. Iglesias, R. Annessi, and T. Zseby, “DAT detectors: uncovering tcp/ip

covert channels by descriptive analytics,” Security and Communication Net-

works, vol. 9, no. 15, pp. 3011–3029, 2016.

193

[42] F. I. Vázquez, R. Annessi, and T. Zseby, “Analytic study of features for the

detection of covert timing channels in network traffic,” Journal of Cyber Security

and Mobility, vol. 6, no. 3, pp. 225–270, 2017.

[43] T. Sohn, J. Moon, S. Lee, D. H. Lee, and J. Lim, “Covert channel detection in

the icmp payload using support vector machine,” in International Symposium

on Computer and Information Sciences. Springer, 2003, pp. 828–835.

[44] S. Mou, Z. Zhao, S. Jiang, Z. Wu, and J. Zhu, “Feature extraction and classi-

fication algorithm for detecting complex covert timing channel,” Computers &

Security, vol. 31, no. 1, pp. 70–82, 2012.

[45] O. Darwish, A. Al-Fuqaha, G. B. Brahim, I. Jenhani, and A. Vasilakos, “Using

hierarchical statistical analysis and deep neural networks to detect covert timing

channels,” Applied Soft Computing, vol. 82, p. 105546, 2019.

[46] G. Conti, S. Bratus, A. Shubina, B. Sangster, R. Ragsdale, M. Supan, A. Licht-

enberg, and R. Perez-Alemany, “Automated mapping of large binary objects

using primitive fragment type classification,” digital investigation, vol. 7, pp.

S3–S12, 2010.

[47] B. Anderson, C. Storlie, and T. Lane, “Improving malware classification: bridg-

ing the static/dynamic gap,” in Proceedings of the 5th ACM workshop on Se-

curity and artificial intelligence, 2012, pp. 3–14.

[48] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, “Malware images: vi-

sualization and automatic classification,” in Proceedings of the 8th international

symposium on visualization for cyber security, 2011, pp. 1–7.

194

[49] A. Makandar and A. Patrot, “Wavelet statistical feature based malware class

recognition and classification using supervised learning classifier,” Oriental jour-

nal of computer science and technology, vol. 10, no. 2, pp. 400–406, 2017.

[50] K. Han, J. H. Lim, and E. G. Im, “Malware analysis method using visualization

of binary files,” in Proceedings of the 2013 Research in Adaptive and Convergent

Systems, 2013, pp. 317–321.

[51] D. Dı́az-Pernil, A. Berciano, F. Peña-Cantillana, and M. A. Gutiérrez-Naranjo,

“Bio-inspired parallel computing of representative geometrical objects of holes

of binary 2d-images,” International Journal of Bio-Inspired Computation, vol. 9,

no. 2, pp. 77–92, 2017.

[52] E. Aminanto and K. Kim, “Deep learning in intrusion detection system: An

overview,” in 2016 International Research Conference on Engineering and Tech-

nology (2016 IRCET). Higher Education Forum, 2016.

[53] M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani,

“A survey of machine and deep learning methods for internet of things (iot)

security,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1646–

1685, 2020.

[54] D. S. Berman, A. L. Buczak, J. S. Chavis, and C. L. Corbett, “A survey of deep

learning methods for cyber security,” Information, vol. 10, no. 4, p. 122, 2019.

[55] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic classifica-

tion using convolutional neural network for representation learning,” in 2017

195

International Conference on Information Networking (ICOIN). IEEE, 2017,

pp. 712–717.

[56] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng, “Im-

cfn: Image-based malware classification using fine-tuned convolutional neural

network architecture,” Computer Networks, vol. 171, p. 107138, 2020.

[57] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-g. Wang, and J. Chen, “Detection of mali-

cious code variants based on deep learning,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 7, pp. 3187–3196, 2018.

[58] R. Kumar, Z. Xiaosong, R. U. Khan, I. Ahad, and J. Kumar, “Malicious code

detection based on image processing using deep learning,” in Proceedings of the

2018 International Conference on Computing and Artificial Intelligence, 2018,

pp. 81–85.

[59] S. Ni, Q. Qian, and R. Zhang, “Malware identification using visualization images

and deep learning,” Computers & Security, vol. 77, pp. 871–885, 2018.

[60] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end encrypted

traffic classification with one-dimensional convolution neural networks,” in 2017

IEEE International Conference on Intelligence and Security Informatics (ISI).

IEEE, 2017, pp. 43–48.

[61] H. Yang and F. Wang, “Wireless network intrusion detection based on improved

convolutional neural network,” Ieee Access, vol. 7, pp. 64 366–64 374, 2019.

196

[62] R. C. Staudemeyer, “Applying long short-term memory recurrent neural net-

works to intrusion detection,” South African Computer Journal, vol. 56, no. 1,

pp. 136–154, 2015.

[63] F. Jiang, Y. Fu, B. B. Gupta, Y. Liang, S. Rho, F. Lou, F. Meng, and Z. Tian,

“Deep learning based multi-channel intelligent attack detection for data secu-

rity,” IEEE transactions on Sustainable Computing, vol. 5, no. 2, pp. 204–212,

2018.

[64] R. B. Krishnan and N. Raajan, “An intellectual intrusion detection system

model for attacks classification using rnn,” Int. J. Pharm. Technol, vol. 8, no. 4,

pp. 23 157–23 164, 2016.

[65] J. Kim, J. Kim, H. L. T. Thu, and H. Kim, “Long short term memory re-

current neural network classifier for intrusion detection,” in 2016 International

Conference on Platform Technology and Service (PlatCon). IEEE, 2016, pp.

1–5.

[66] A. F. M. Agarap, “A neural network architecture combining gated recurrent

unit (gru) and support vector machine (svm) for intrusion detection in net-

work traffic data,” in Proceedings of the 2018 10th international conference on

machine learning and computing, 2018, pp. 26–30.

[67] H. Liu, B. Lang, M. Liu, and H. Yan, “Cnn and rnn based payload classification

methods for attack detection,” Knowledge-Based Systems, vol. 163, pp. 332–341,

2019.

197

[68] J. Kim, H. Kim et al., “An effective intrusion detection classifier using long

short-term memory with gradient descent optimization,” in 2017 International

Conference on Platform Technology and Service (PlatCon). IEEE, 2017, pp.

1–6.

[69] Y. Yu, J. Long, and Z. Cai, “Network intrusion detection through stacking

dilated convolutional autoencoders,” Security and Communication Networks,

vol. 2017, 2017.

[70] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula, “Autoencoder-

based feature learning for cyber security applications,” in 2017 International

joint conference on neural networks (IJCNN). IEEE, 2017, pp. 3854–3861.

[71] F. Farahnakian and J. Heikkonen, “A deep auto-encoder based approach for

intrusion detection system,” in 2018 20th International Conference on Advanced

Communication Technology (ICACT). IEEE, 2018, pp. 178–183.

[72] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlin-

ear dimensionality reduction,” in Proceedings of the MLSDA 2014 2nd workshop

on machine learning for sensory data analysis, 2014, pp. 4–11.

[73] H. Choi, M. Kim, G. Lee, and W. Kim, “Unsupervised learning approach for

network intrusion detection system using autoencoders,” The Journal of Super-

computing, vol. 75, no. 9, pp. 5597–5621, 2019.

[74] L. Chappell, “Wireshark 101: Essential skills for network analysis-wireshark

solution series,” Laura Chappell University, USA, 2017.

198

[75] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit error-

correcting coding and decoding: Turbo-codes. 1,” in Proceedings of ICC’93-

IEEE International Conference on Communications, vol. 2. IEEE, 1993, pp.

1064–1070.

[76] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in science

& engineering, vol. 9, no. 3, pp. 90–95, 2007.

[77] W. Rasband, “1997–2018 imagej,” Bethesda, MD: US National Institutes of

Health.

[78] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,

“The WEKA data mining software: an update,” SIGKDD Explorations, vol. 11,

no. 1, pp. 10–18, 2009.

[79] T. K. Lee, W. J. Baddar, S. T. Kim, and Y. M. Ro, “Convolution with loga-

rithmic filter groups for efficient shallow cnn,” in International Conference on

Multimedia Modeling. Springer, 2018, pp. 117–129.

[80] J. Li, S. Xie, Z. Chen, H. Liu, J. Kang, Z. Fan, and W. Li, “A shallow con-

volutional neural network for apple classification,” IEEE Access, vol. 8, pp.

111 683–111 692, 2020.

[81] F. Lei, X. Liu, Q. Dai, and B. W.-K. Ling, “Shallow convolutional neural net-

work for image classification,” SN Applied Sciences, vol. 2, no. 1, pp. 1–8, 2020.

[82] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” Advances in neural information processing

systems, vol. 25, pp. 1097–1105, 2012.

199

[83] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[84] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[85] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift,” in International conference on machine

learning. PMLR, 2015, pp. 448–456.

[86] L. Lu, Y. Yang, Y. Jiang, H. Ai, and W. Tu, “Shallow convolutional neural

networks for acoustic scene classification,” Wuhan University Journal of Natural

Sciences, vol. 23, no. 2, pp. 178–184, 2018.

[87] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach for intrusion

detection using recurrent neural networks,” Ieee Access, vol. 5, pp. 21 954–

21 961, 2017.

[88] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber,

“Lstm: A search space odyssey,” IEEE transactions on neural networks and

learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[89] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with recurrent

neural networks,” in International conference on machine learning. PMLR,

2014, pp. 1764–1772.

200

[90] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks,” in International conference on machine learning. PMLR,

2013, pp. 1310–1318.

[91] R. C. Aygun and A. G. Yavuz, “Network anomaly detection with stochastically

improved autoencoder based models,” in 2017 IEEE 4th International Confer-

ence on Cyber Security and Cloud Computing (CSCloud). IEEE, 2017, pp.

193–198.

[92] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal, and K. Han,

“Enhanced network anomaly detection based on deep neural networks,” IEEE

access, vol. 6, pp. 48 231–48 246, 2018.

[93] T. Vaiyapuri and A. Binbusayyis, “Application of deep autoencoder as an one-

class classifier for unsupervised network intrusion detection: a comparative eval-

uation,” PeerJ Computer Science, vol. 6, p. e327, 2020.

[94] B. Bayram, T. B. Duman, and G. Ince, “Real time detection of acoustic anoma-

lies in industrial processes using sequential autoencoders,” Expert Systems,

vol. 38, no. 1, p. e12564, 2021.

[95] S. Abirami and P. Chitra, “Energy-efficient edge based real-time healthcare

support system,” in Advances in Computers. Elsevier, 2020, vol. 117, no. 1,

pp. 339–368.

[96] G. D’Angelo and F. Palmieri, “Network traffic classification using deep con-

volutional recurrent autoencoder neural networks for spatial–temporal features

201

extraction,” Journal of Network and Computer Applications, vol. 173, p. 102890,

2021.

[97] B. Yan and G. Han, “Effective feature extraction via stacked sparse autoencoder

to improve intrusion detection system,” IEEE Access, vol. 6, pp. 41 238–41 248,

2018.

[98] D. Rumethart, “Learning representations by back-propagating errors,” Nature,

vol. 323, pp. 533–536, 1986.

[99] M. Ranzato, C. Poultney, S. Chopra, Y. LeCun et al., “Efficient learning of

sparse representations with an energy-based model,” Advances in neural infor-

mation processing systems, vol. 19, p. 1137, 2007.

[100] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. Bottou,

“Stacked denoising autoencoders: Learning useful representations in a deep

network with a local denoising criterion.” Journal of machine learning research,

vol. 11, no. 12, 2010.

[101] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked convolutional

auto-encoders for hierarchical feature extraction,” in International conference

on artificial neural networks. Springer, 2011, pp. 52–59.

[102] S. Chen, J. Yu, and S. Wang, “One-dimensional convolutional auto-encoder-

based feature learning for fault diagnosis of multivariate processes,” Journal of

Process Control, vol. 87, pp. 54–67, 2020.

[103] S. Rifai, G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and X. Glo-

rot, “Higher order contractive auto-encoder,” in Joint European conference on

202

machine learning and knowledge discovery in databases. Springer, 2011, pp.

645–660.

[104] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[105] R. Soleymani, E. Granger, and G. Fumera, “F-measure curves: A tool to visu-

alize classifier performance under imbalance,” Pattern Recognition, vol. 100, p.

107146, 2020.

203

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Research motivation and problem definition
	Research objectives and main contributions
	Thesis outline

	Related Work
	Covert timing channel design
	On-Off channel
	One threshold (GAS) channel
	Fixed time interval (BER) channel
	Time Replay channel
	Jitterbug
	Model based channel
	Other covert timing channels

	Covert timing channel detection methods
	Methods for detecting CTC based on statistical tests
	Regularity test
	Kolmogorov Smirnov test
	Entropy tests
	Other detection tests

	Methods for detecting CTC based machine learning

	Detecting attacks based on image processing and machine learning techniques
	Deep learning techniques for detecting attacks
	Attack detection based on convolutional neural networks
	Attack detection based on recurrent neural networks
	Attack detection based on autoencoders

	Experimental Design of Binary Covert Timing Channel
	Covert timing channel design
	Channel exfiltration experiments

	Channel implementation setup
	Covert timing channel analysis
	Accuracy of distinguishing covert traffic from Legitimate traffic
	Effect of time delay selection
	Effect of network conditions

	Transmission bit rate
	Experimental environment and evaluation metrics

	Chapter summary

	CTC Detection and Localization Based on Image Processing Using Machine Learning Techniques
	SnapCatch: Image-based CTC detection model
	Raw data generation
	Creating colorful pictures from traffic inter-arrival times
	Feature extraction and image classification
	Feature extraction
	Machine learning model construction

	Experimental results and analysis
	Experimental results of using three types of CTC attacks
	Greedy Covert Timing Channels (GCTC)
	Cautious Covert Timing Channel (CCTC)
	Ultra-Cautious Covert Timing Channels (UCCTC)

	Detecting the presence of hidden communications in traffic flows

	Discussion
	Chapter summary

	CTC Detection and Localization Using Convolution Neural Network
	Image classification and CTC detection using a CNN architecture
	CNN based CTC detection
	CNN model initialization

	Experimental setup
	Experimental datasets and data augmentations
	Model hyperparameters

	Experimental results and analysis
	Effects of using batch normalization technique on the CNN model performance
	Hyperparameters effect on CNN model performance
	Image size effect on CNN model classification
	Effects of image reshaping on CNN model classification
	A comparison of the CNN model performance with other conventional machine learning methods
	A comparison of the shallow CNN model performance with existing deep CNN methods
	Localization of CTC in traffic flows

	Chapter summary

	CTC Detection Based on Sequential Time Series Using Recurrent Neural Network and 1D Convolution Neural Network
	CTC detection using a sequential time series
	CTC detection with RNN sequential data
	CTC detection using 1D-CNN sequential data
	CTC detection based combination network
	Experimental dataset
	Recurrent network analysis
	Convolutional network analysis
	Combination network analysis

	Chapter summary

	CTC Detection and Localization Using Autoencoders
	Autoencoder and reconstruction error for CTC detection
	Autoencoder models
	Stack Autoencoder (SAE)
	Sparse Stacked Autoencoder (SSAE)
	Denoising Autoencoder (DAE)
	Convolutional Autoencoder (CAE)
	Contractive Autoencoder (ContAE)

	Experimental setup for autoencoder model design and comparison
	Autoencoder network structure and parameters
	Experimental datasets

	Experimental results and analysis
	Network convergence of autoencoder models
	Reconstruction error ability
	Model learning behavior

	Model performance based on CTC detection
	Model detection performance analysis
	ROC model analysis

	Model performance using imbalanced classification

	Autoencoder for pinpointing CTC
	Chapter summary

	Conclusion and Future Work
	Conclusions
	Future directions

