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Abstract 

Capillary pressure curves are one of the most important inputs for reservoir characterization and 

modelling in oil and gas industry. Using centrifuge experiments for capillary pressure 

measurements is an efficient method for obtaining such curves. With the rapid development of 

modelling methods for centrifuge experiments, a challenge is now faced by researchers that the 

assumption of a one-dimensional and homogeneous core is required. The major objective of this 

research is to investigate the impacts of core-scale heterogeneity on phase saturation predictions 

by using a centrifuge simulation method that allows a two-dimensional fluid flow in the core. The 

streamline tracing method that considers capillary pressure numerically is applied to visualize and 

quantify effects of heterogeneity. Significant differences in phase saturation predictions have been 

observed between homogeneous and heterogeneous cores. For example, when a low permeability 

area is present in a core plug during a drainage centrifuge simulation, less wetting phase is displaced 

at some capillary pressure condition as compared to a homogeneous/randomly distributed core. 

Therefore, higher average saturations can be obtained and the maximum mean squared error of it 

is about 0.0013. A capillary pressure curve with a positive bias can be calculated and taken as an 

input for reservoir simulation to describe the distribution of reservoir fluids and the fluids contacts. 

When a high permeability area is present, the maximum mean squared error of the deviated 

saturation is 0.0004. This study revealed that it is necessary to consider core-scale heterogeneity in 

the modelling of centrifuge experiments since an inaccurate capillary pressure curve can produce 

results with considerable errors in reservoir simulations. 
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1 Introduction 

Capillary pressure curves are essential to understanding fluid distribution in a reservoir. They can 

be determined through a variety of laboratory methods and there are many methods to model 

capillary pressure measurement experiments; however, one-dimensional (1D) flow is not always 

assumed in these modelling methods, which is not representative. The work described in this thesis 

seeks to investigate the impacts of core-scale heterogeneity on phase saturation predictions by 

using a centrifuge simulation method that allows a two-dimensional (2D) flow in the rotated core. 

This chapter provides background information about rock, pore distribution, capillary pressure, 

capillary pressure measuring and modelling methods. This chapter also presents the challenges of 

centrifuge simulation methods when considering heterogeneity, and defines the objectives, 

motivation and outline of this thesis.  

1.1 Pore Size Distribution  

A rock is a solid mass made up of unconsolidated and consolidated grains of different minerals 

with pores in between (Panchuk, 2019). Figure 1 shows a typical porous rock. Rocks are usually 

grouped into three types based on how they form: sedimentary rocks, igneous rocks and 

metamorphic rocks. Sedimentary rocks form when rock fragments are buried, compressed and 

cemented together, or when minerals precipitate from solution. Igneous rocks form when melted 

rock cools down and becomes solid. Metamorphic rocks form when a previously existing rock is 

subject to very high temperature and pressure. Oil and gas may exist in any types of porous rock, 

but it is generally found in sedimentary rocks, such as sandstone or limestone. Figure 2 shows a 

sandstone that contains grains of quartz (white), calcite and feldspar (shades as brown). This rock 
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sample was injected with blue epoxy that is seen here filling interconnected pores and the arrow 

indicates a possible pathway for fluid movement. Figure 3 shows a limestone taken from a core 

sample and the circular grains composed of calcite and dolomite are totally cemented by medium 

crystalline calcite.  

 

Figure 1 A rock with pores (from Swanson, 1979) 

 

Figure 2 A magnified image of a sandstone (from Kansas Geological Survey and Baars, 1989) 
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Figure 3 A thin-section photomicrograph of a Pennsylvanian limestone taken from a core sample of a 

producing zone in Victory field, Haskell County, Kansas (from Kansas Geological Survey and Baars, 

1989) 

In a rock sample with different sizes of pores, pore size distribution is the relative abundance of 

each pore size in a representative volume of rock (Nimmo, 2004). Figure 4 shows the pore size 

distributions for different rocks and voxel is a unit of graphic information that defines a point in 

three-dimensional space. Mt Gambier, Estaillades and Ketton are formations that contain carbonate 

rocks. Doddington and Bentheimer are formations that contain sandstones.  

 

Figure 4 Pore size distributions for different types of rocks (from Andrew et al., 2014) 

1.2 Capillary Pressure 

The difference in pressure between two immiscible fluids is called capillary pressure, which 
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contributes to the equilibrium of the system (Tiab and Donaldson, 2015). The interface between 

the two phases is curved because each phase has a preference for wetting of the capillary wall. 

When a polar liquid is placed into a capillary, impacted by intermolecular forces it tends to rise 

against gravity, which is called capillary action. Namely, water will be drawn up into the capillary 

that is put in a dish of water. The entering angle of the tube will not influence the height of the 

water, which mainly depends on the diameter of the tube and the water temperature. Accordingly, 

a smaller diameter will make the liquid rise higher. Figure 5 shows the capillary tubes with different 

radius that occur between the wetting and non-wetting fluid reservoirs. This capillary tube model 

is analogous to illustrate the influence of pore size distribution on the characteristics of reservoir 

fluid saturation (Ng and Pang, 2000). Capillary action is the result of two opposing sets of forces: 

the intermolecular forces holding a liquid together (cohesive forces) and the attractive forces 

between a liquid and the capillary substances (adhesive forces). Meniscus is the upper surface of a 

liquid in a tube, the shape of which depends on the ratio of cohesive and adhesive forces (Batchelor, 

1982). The rise of the liquid column can be described physically by a vertical capillary pressure 

model. The movement of fluid is caused by the potential between the liquid surface inside and 

outside the tube and will stop when the potential drops to zero (Evans and Guerrero, 1979).  
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Figure 5 Buddle of capillary tubes (after Dahle et al., 2005) 

The pressure within the wetting phase is always less than the pressure in the non-wetting phase 

leading to the curvature of the interface. The capillary pressure is therefore defined as the pressure 

difference between the non-wetting and wetting phases: 

where 𝑃𝑐  is the capillary pressure, 𝑃𝑛𝑤  is the pressure in the non-wetting phase and 𝑃𝑤  is the 

pressure in the wetting phase. 

Mineralogy and pore size distribution, plus wetting and non-wetting fluids, define the capillary 

pressure. The application of capillary pressure to porous media is described by Equation (1.2), 

considering the capillary pressure as a function of interfacial tension and radius curvature (Leverett, 

1941): 

where σ is interfacial tension between two phases, and 𝑅1, 𝑅2 are radii of curvature of the interface 

between two fluids. Due to the mathematical relationship between the radius of capillary tube and 

that of spherical interface, the contact angle is defined as: 

 𝑃𝑐 = 𝑃𝑛𝑤 − 𝑃𝑤     (1.1) 

 𝑃𝑐 = 𝜎(
1

𝑅1
±

1

𝑅2
) (1.2) 



6 

 

 cos 𝜃 =
𝑟𝑐

𝑅𝑖
 (1.3) 

where 𝑟𝑐  is radius of the capillary tube and 𝑅𝑖  is radius of the spherical interface. Substituting 

Equation (1.3) into Equation (1.2), a new expression for capillary pressure that relates contact angle, 

radius of the capillary tube and interfacial tension is yielded: 

 𝑃𝑐 =
2𝜎 cos 𝜃

𝑟𝑐
 (1.4) 

The pores of different sizes and wettability in the reservoir means that capillary pressure is a 

function of fluid saturation and wettability. The mathematical description between capillary 

pressure and wetting phase saturation is called the capillary pressure curve, the measurement of 

which is essential in petroleum industry.  

1.3 Relevance to Petroleum Industry 

Capillary pressure is one of the most important properties of a porous medium and many scientists 

have proved that it is necessary to include capillary pressure in research of phase behavior, multi-

phase fluid displacement and reservoir simulation. Multi-phase flow problems in porous media are 

often encountered in important petroleum applications, such as enhanced oil recovery, oil 

production and gas storage techniques. It is difficult to obtain a theoretical solution of multi-phase 

fluid flow because the generic multiphase flow model has a complicated mathematical character 

and a changeable balance of different physical forces (Lie, 2019). The characteristics and individual 

strengths of this model also vary in different flow regimes. Thus, the multi-phase flow problem can 

be solved by using macroscopic equations based on capillary pressure and relative permeability 

(Dullien, 1992; Marle, 1981). In multi-phase system, the ability of flow for each phase in the 
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presence of other phases need be determined by calculating relative permeability. The currently 

used calculation methods of relative permeability curves from capillary pressure data are based on 

a model proposed by Purcell (1949). Combing the Poiseuille’s equation and Darcy’s Law for a 

hypothetical model composed of a large number of capillary tubes, he presented the following 

equation: 

 𝐾 = 2𝐹(𝜎 cos 𝜃)2∅ ∫
𝑑𝑆𝑛𝑤

𝑃𝑐
2

1

0

 (1.5) 

where 𝐾 is permeability, 𝐹 is a lithology factor accounting for differences between the fluid flow 

properties of a hypothetical porous medium and naturally occurring rocks, 𝜎 is interfacial tension, 

𝜃 is contact angle, ∅ is porosity, 𝑃𝑐 is capillary pressure and 𝑆𝑛𝑤 is nonwetting phase saturation as 

a fraction of bulk volume.  

Capillary pressure in a reservoir can determine the saturation distribution and thus the total in-situ 

volumes of fluids (McPhee et al., 2015). Thus, it is essential to have an accurate knowledge of the 

capillary pressure in the estimation of hydrocarbon reserves. Ediriweera and Halvorsen (2015) 

studied the impacts of the relative permeability on oil recovery and found that total oil production 

and water breakthrough time are significantly influenced by relative permeability. Capillary 

pressure curves and relative permeability curves are often used as inputs for reservoir simulations 

to predict ultimate oil productions.  

In reservoir engineering and oil production practice, the permeability of the rock is one of the most 

important properties. To measure this property, a rock sample of regular shape and appreciable 

dimensions is required; the costly operating process is also needed for the measurement. In order 
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to simplify permeability estimation, Purcell (1949) introduced an approach that relates capillary 

pressure curves to permeabilities of porous media. The calculation of permeability using this 

method is easily achievable. Gates and Lietz (1950) furthered this relationship so that it can be used 

to perform relative permeability calculations for multiphase fluid flow in porous media. However, 

it is almost impossible to get exact values of tortuosity factors in the equation because of the 

enormous number of variables. Therefore, a method to approximate tortuosity factors in terms of 

fluid saturations and petrophysical properties was introduced by Burdine (1953). In Brooks and 

Corey’s’ (1966) research, a modified method was proposed to represent capillary pressure by using 

a power law function of the wetting phase saturation. Instead of inputting reservoir permeability 

data directly, Li and Horne (2003) proposed a numerical simulation approach to compute 

corresponding relative permeabilities from capillary pressure data by some correlations, which 

increases the computational efficiency. Many scientists have devoted themselves to correlating 

capillary pressure to permeability. Honarpour et al. (2018) reviewed literature on correlations 

between permeability and capillary pressure in drainage.  

Capillary pressure curves play a significant role in the description of a core’s wettability. The 

contacts between oil, gas and water deviate from the normal situation because interfacial tensions 

between two phases are different from one another in capillary spaces where gas, oil and water 

coexist. Furthermore, to obtain the distribution of fluids in initial-state reservoirs, capillary pressure 

versus saturation data must be converted into height-saturation data so that the overall situation in 

the transition zone can be thoroughly understood (McPhee et al., 2015). The conversion process 

requires knowledge of capillary pressure as well as wetting characteristics, which is significant in 
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tertiary recovery and necessary in the facilitation of the oil removal. In addition, the wettability of 

the reservoir should be determined before normalizing the data from mercury injection experiments 

(Tiab and Donaldson, 2015). Therefore, scientific interest in research of using capillary to measure 

wettability was triggered (Anderson, 1986). Tiab and Donaldson (2015) proposed a method to 

determine the rock wettability by comparing the work required to displace water by oil with that 

required to displace oil by water according to the area enclosed by the drainage curve and the 

abscissa and that enclosed by the imbibition curve and the abscissa respectively. This finding has 

validated that capillary pressure curves can be applied to determine the rock wettability.  

Capillary pressure curves have broad potential in the field of reservoir simulation; for example, 

capillary pressures between different immiscible phases at a specific saturation computed in the 

simulator can be used to calculate the phase pressure in one phase once the pressures in the other 

phases are known (Evans and Guerrero, 1979). It is also commonly believed that a clear 

understanding of both drainage and imbibition capillary pressure curves can result in better 

estimation and evaluation of the reservoir performance. In the model building process of reservoir 

simulation, saturation in each grid cell should be pre-defined within a plausible range because it 

determines the initial fluid distributions. The saturation limits can be calculated by setting different 

transition zones according to drainage capillary pressures (Lie, 2019). To determine the effect of 

capillary pressure on the numerical simulation of a reservoir producing under different recovery 

processes, Shams et al. (2013) studied both fractured and non-fractured reservoirs by constructing 

several numerical reservoir simulation models. They found that capillary pressure may affect the 

accuracy of fractured reservoir simulation studies, as imbibition capillary pressure is a dominant 



10 

 

driving force in these types of reservoirs. Several indicators have been proposed to evaluate the 

effects of capillary pressure on average reservoir pressure, water cut and gas-oil ratio; and the 

Dykstra-Parsons coefficient of permeability variation is used to indicate the degree of heterogeneity 

in models. Shams et al. (2015) concluded that the importance of capillary pressure effects differs 

from different recovery processes in all types of reservoirs, and they presented the conclusion maps 

that can be utilized as the reference to decide whether the capillary pressure should be considered 

in the numerical reservoir simulation. Wang et al. (2006) noted that to get satisfactory results, 

reservoir simulation models should incorporate different types of data including capillary pressure, 

relative permeabilities and pressure-volume-temperature (PVT). Thus, a procedure to incorporate 

the capillary pressure-saturation data was developed and a capillary pressure-saturation correlation 

was proposed. To investigate the importance of capillary pressure in waterflooding experiments, 

Alzayer et al. (2017) conducted a Numerical Coreflood Experiment (NCFE) to generate numerical 

experimental data (cumulative production, pressure). The flow functions (relative permeability, 

capillary pressure) can then be estimated and compared to the input flow functions. He discovered 

that the effects of capillary pressure in multiphase displacements appear to show on breakthrough 

time, flat length of the oil production and oil recovery.  

The mathematical investigation of capillary pressure on the phase envelope was initiated by 

Brusllovsky (1992). Nojabaei et al. (2013) concluded that capillary pressure in nanometer pores 

can greatly affect the phase behavior and the physical properties of fluids, such as saturation 

pressures, fluid densities and viscosities. The interfacial tension in the capillary pressure equation 

is the key parameter contributing to the variation of bubble point and dew point pressure. The 
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pressure drop across coarse grid blocks is often larger than the capillary pressure in a reservoir-

scale simulation, which makes the capillary pressure negligible (Alzayer et al., 2017). However, it 

has been shown that oil recovery in reservoir simulation can be enhanced when capillary pressure 

is input in the simulator (Purcell, 1950). To calculate bubble-point pressure suppression based on 

capillary pressure and solution gas-oil ratio, a correlation was developed by Firincioglu et al. (2012). 

They concluded that capillary pressure has a significant influence on bubble point pressure 

suppression. Wang et al. (2006) indicate that capillary pressure versus water saturation data should 

be considered in reservoir simulation when converting a fine scale reservoir model to a flow 

simulation model to ensure that it keeps the right geological and physical parameters.  

Capillary pressure curve can be applied to evaluate the pore size distribution of reservoirs. It is 

known that the sorting of grains and the pore sizes have an influence on the shapes of the capillary 

pressure curves (Leal et al., 2001). The largest pore size can be calculated by substituting the 

threshold pressure acquired from the capillary pressure curve into the Equation (1.4) and the 

calculated 𝑟𝑐  is the size of the largest pore. Pore size distribution is also a crucial indicator in 

selecting the diverting agent for heterogeneous reservoirs, which is a chemical agent used in 

simulation treatments to ensure uniform injection over the area to be treated (Harrison, 1972). 

Evans and Guerrero (1979) found that capillary pressure curves can show relative sorting of the 

grains that suggests the depositional environment. The capillary pressure and saturation data from 

mercury injection method are commonly used to determine the pore size distribution. This can be 

achieved by using the capillary pressure to calculate the pore size and then a histogram can be 

drawn to deduce pore geometry characteristics (Pickell et al., 1966; Swanson, 1979). 
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1.4 Capillary Pressure Measurement Methodologies 

The pressure difference between the two different phases during the equilibrium displacement of 

the wetting phase by the non-wetting phase is the drainage capillary pressure, which is observed as 

a function of wetting phase saturation. If the non-wetting phase is displaced by wetting phase, the 

pressure difference is called imbibition capillary pressure (Tiab and Donaldson, 2015). Both 

drainage and imbibition capillary pressure curves are measured in the laboratory and in this thesis, 

only primary capillary drainage is considered. There are several special core analysis laboratory 

(SCAL) techniques to determine capillary pressure curves: the semi-permeable diaphragm/porous 

plate, mercury injection, and high-speed centrifuge methods. These methods usually give different 

capillary pressure curves and consequently residual oil/water concentration due to the underlying 

differences in the theoretical principles (Amyx et al., 1960).  

1.4.1 Porous Plate Method 

Diaphragm was the first tool that people used to measure capillary pressure curves, which can also 

be referred to as the porous plate method, semi-permeable membrane method, and restored-state 

technique (McPhee et al., 2015). Figure 6 shows the apparatus for capillary pressure measurement 

using a porous plate.  
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Figure 6 Porous plate method for measurement of capillary pressure (from Li and Williams, 2007)   

This method involves placing a brine-saturated core sample on a porous membrane and then 

increasing the pressure of an immiscible displacing fluid incrementally. The displacement is 

complete when the water saturation has reached its irreducible value. The capillary pressure versus 

water saturation curve is then plotted using the experimental data. Core samples can be processed 

on a batch basis or in individual core holders in the diaphragm method. The displacement is 

reversible by placing the core on another oil saturated porous disk and the core is then covered with 

water. The porous plate method is often considered the most accurate of the three common methods 

for capillary pressure curve measurements, because it prevents a saturation gradient (Shikhov and 

Arns, 2015). The porous plate can also be used to condition the core sample for relative 

permeability tests and to provide saturation data at equilibrium for resistivity index measurements. 

Nonetheless, this method is very slow, and can take more than 20 weeks to obtain an oil-water 

drainage curve (Wilson et al., 2001). To shorten the time required for the experiment when it comes 
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to the low permeability membrane, a laminated diaphragm was developed to reduce the time for 

drainage capillary pressure of relatively homogeneous samples to 35-35 days (Wilson and 

Skjæveland, 2002). To accelerate the data collection process of this experiment, several 

mathematical models have been proposed such that the fluids do not need to reach equilibrium at 

the time of measurement (Fleury et al., 1997; Shafer and Lasswell, 2007; Dernaika et al., 2010). 

1.4.2 Mercury Injection Method 

Another capillary pressure measurement method involves injecting incremental volumes of 

mercury into an evacuated core sample while recording the injection pressure of each increment, 

which is called mercury injection method (McPhee et al., 2015). Figure 7 shows the equipment for 

mercury injection method for capillary pressure curve measurements. When mercury intrusion 

stops, the pressure can be decreased incrementally to achieve the imbibition capillary pressure 

curve. The capillary pressure data generated by the mercury injection method can provide 

information about the pore structures of rock samples (Yuan and Swanson, 1989). O’Meara et al. 

(1992) found that capillary pressure curves calculated from the mercury injection method are good 

representations of capillary pressure curves of water-wet reservoirs from other measuring method. 

Mercury injection is rapid (< 1 day) compared to the porous plate method (4-8 weeks) and can be 

implemented in pores with small diameters (Purcell, 1949). This mercury injection is analogous to 

a real drainage process for the strong non-wetting behavior of mercury; thus, it can be used to 

determine the connectivity of the pore structure but may not accurately represent partially wetting 

fluids. There are several other disadvantages in using this method to measure capillary pressure 

curves (McPhee et al., 2015). For sample, high pressures and interfacial tension can destroy 
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sensitive clays lining or filling pores; lack of standards to calibrate the experimental apparatus at 

high pressure resulting in errors in capillary pressure or water saturation measurements; no 

irreducible wetting phase saturation as air can be compressed at high pressure and the pore space 

will be totally filled with mercury; cores subject to mercury injection tests are contaminated 

preventing their further use for other tests and causing environmental issues.  

 

Figure 7 Equipment for mercury injection capillary pressure measurement (Tiab and Donaldson, 2015) 

1.4.3 Centrifuge Method 

Efficiency of the capillary pressure measurement methods is important since a great number of 

core plugs need to be tested for the evaluation of oil reservoirs. Slobod et al. (1951) introduced the 

centrifuge experiment and it is now a widely used method to measure capillary pressure in routine 

core analysis. Figure 8 shows the typical centrifuge machine for centrifuge experiments in McPhee 

et al. (2015). A cup involving a calibrated holder is used as a part of the experimental device and 

the centrifugal force can result in the fluids displacement from the core inside tube so that denser 

fluids will be forced away from the rotational center while lighter fluids have an opposite moving 

direction. Figure 9 shows a core holder with a graduated glass tube collecting the displaced fluids 

in Tiab and Donaldson (2015). During the experiment, the core sample is placed either towards the 
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rotation center to allow a denser fluid to be produced or away from it so that a lighter fluid will be 

forced out of the core plug. Thus, it is very important to take fluid density into consideration when 

determining the position of the core plug and gas should not be included in experiments due to its 

compressibility and diffusion problems. The rotational speed is increased incrementally and the 

volume of produced fluid is measured when the fluids in the core are at equilibrium. Accordingly, 

the displaced volumes of fluid and angular velocities at each incremental speed can be converted 

to average wetting-phase saturation versus capillary pressure data, which can then be used to 

generate the capillary pressure curve. Thus, the choice of the data conversion method can have a 

strong influence on the final capillary pressure curves. Figure 10 shows a typical plot of drainage 

capillary pressure curve.  

 

Figure 8 Ultra-centrifuge machine in Hibernia Enhanced Oil Recovery (EOR) Laboratory 
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Figure 9 Equipment for centrifuge experiment (from Tiab and Donaldson, 2015)  

 
Figure 10 Linear plot of capillary pressure versus water saturation (from McPhee et al., 2015) 

Procedures for centrifuge experiments were first introduced by Donaldson et al (1980). They are: 

1. Measure pore and bulk volume of the core and saturate the core with brine. 

2. Immerse the brine-saturated core sample in the capillary coreholder filled with non-wetting 

fluid, i.e. oil. 

3. Rotate the core at the first angular velocity and collect the displaced fluid in the graduated 

tube.  
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4. Repeat Step 3 for each incremental pre-determined rotational speed and use a stroboscopic 

light to capture the illusion of the system, allowing the displaced volumes to be recorded.  

5. Bond number should be calculated and plotted as a function of saturation to validate critical 

boundary conditions. For strongly water-wet systems, a bond number limit of 10−5  is 

usually used but it can also be directly determined using the correlation (Hagoort, 1980).  

6. Once the drainage centrifuge test is completed, decelerate the spin gradually to avoid 

sample failure.  

1.4.4 Comparison of Measurement Methods 

Each method for capillary pressure measurement has advantages and drawbacks. A summary of 

the advantages, drawbacks and issues of the various capillary pressure methods is presented in 

Table 1. The porous plate method is considered the best method to duplicate the original displacing 

state in the reservoir (Tiab and Donaldson, 2015), but some scientists insist that the centrifuge 

method can produce better results (Slobod et al., 1951; Ayappa et al., 1989). Although this 

technique is thought to have the best simulation of the wetting condition of the rock sample, refined 

mineral oil and prepared salt water are generally used in the experiments rather than reservoir fluid 

samples (Evans and Guerrero, 1979). Also, this diaphragm method is time consuming, varying 

from 10 to 40 days for a single sample. The mercury injection method is simple, cheaper, and less 

time consuming than the diaphragm and centrifuge methods. It can appreciably increase the range 

of pressure being investigated and can be carried out on cuttings or sidewall samples. However, 

the mercury injection method has two disadvantages: the permanent loss of the core samples 

because the mercury cannot be safely removed after the injection, and the rigorous safety 
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precautions required (Shams et al., 2015). As a fast and relatively simple method, the centrifuge 

experiment has the potential for widespread application in oil industries as it is suitable for almost 

all types of reservoir rocks and is a non-destructive test (McPhee et al., 2015). Hence, high-speed 

centrifuge for capillary pressure measurements is carefully considered and modeled in this research.  

Table 1 Pros and cons of capillary pressure methods (from McPhee et al., 2015) 

Method Advantages Drawbacks 

Centrifuge • Relatively simple and quick 

• Use reservoir appropriate (synthetic) fluids 

• Desaturation is more rapid than for the 

porous fluid 

• Tests at reservoir overburden pressure and 

elevated temperature are possible 

• Non-destructive test, re-usable samples 

• It is the most expensive method 

• Raw production data is corrected by the test lab to 

account for the capillary pressure gradient across 

sample. This the main source of inaccuracy of the 

method. 

• High speed centrifuge needed to reproduce 

pressures at crests of thick column reservoirs 

• At high sin speeds desaturation effects due to 

excessive viscous forces can cause changes in the 

capillary pressure 

• The method creates an unusual stress regime 

• Primary drainage curves require the samples to be 

water wet 

• The time allowed to achieve capillary equilibrium 

can completely govern the shape of the resultant 

curve 

• Stopping and restarting the centrifuge is not 

accepted as can lead to sample fracturing and 

produce saturation hysteresis effects 

• Benign cleaning is required to preserve delicate clay 

structure 

Porous Plate • It is the best method to achieve a uniform 

saturation profile during the drainage phase 

• Uses reservoir appropriate fluids 

• If the sample is relatively clay rich, the 

method is preferable to others 

• Nor destructive test, reusable samples 

• Test can be run in conjunction with 

resistivity index 

• In general, cheaper than centrifuge 

• The main disadvantage lies in its length of time for 

the description of a complete curve. There are 

limitations on the maximum attainable capillary 

pressure values, depending on the system 

• Curves require the samples to be water wet 

• Time to achieve capillary equilibrium can 

completely govern the shape of the resultant curve 

• Benign cleaning is required to preserve delicate clay 

structure 

Mercury 

injection 
• It is a relatively low-cost technique 

• Capillary equilibrium is attained after a 

short period hence tests are very rapid 

• Provides data on pore throat size 

distribution 

• Provide useful input data to properly design 

pressure steps for centrifuge and porous 

plate tests 

• The mercury injection technique is well 

suited for low permeability samples and 

samples from high relief gas reservoirs 

• Dual porosity systems can be identified 

given the high resolution of the test 

• Air-mercury tests are not strictly capillary pressure 

tests since there is no strong wetting phase involved 

and irreducible saturation is never attained 

• Not suited for samples with sensitive and/or 

reactive clays 

• The method is not representative of reservoir fluids 

• Tests are sensitive to sample size 

• The test is destructive so that the sample cannot be 

used for any other tests 

• The method is not recommended for unconsolidated 

samples 

• A closure correction is often required. 
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1.5 Modelling of Centrifuge Experiment 

1.5.1 Effect of Rock Heterogeneity 

Rock heterogeneity has long been regarded as an important factor in determining the physics of 

fluid flow in porous media and reservoir performance. However, core heterogeneity is often 

neglected in the modeling of centrifuge experiments for capillary pressure measurements. The 

assumption that the core is homogeneous leads to an assumption that flow is one-dimensional, 

which may result in significant deviations in the subsequent data interpretation process 

(Lenormand, 2017). Therefore, it is necessary to describe heterogeneity for better understanding 

(Lake et al., 1991). Many scientists have studied the effects of heterogeneity on viscous fingering. 

Kelkar and Gupta (1991) developed a numerical simulator with fine grids to study the viscous 

instabilities and the numerical results from the simulator was validated with the analytical solution 

for the displacement with unit mobility ratio. They concluded that heterogeneity contributes to the 

instabilities of displacement and that instabilities increase with increases in the degree of 

heterogeneity and permeability variance. Tchelepi et al. (1993) investigated how viscous fingering, 

dispersion and heterogeneous permeability interact with each other in the miscible displacement 

and they found that displacements with mobility less than unity diminish the effect of heterogeneity. 

Fayers et al. (1990) discovered that the three empirical methods for the modelling of viscous 

fingering produce results with similar degrees of accuracy in one-dimensional simulation, whereas 

their applications in two-dimensional cases differ from each other. They also found that 

heterogeneity has a strong influence on the accuracy of the models for viscous fingering 

simulations, which can be improved by adding an additional diffusive term. Recently, several 
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studies focused on the influences of heterogeneity on immiscible displacements. Watson et al. 

(1985) studied the effects of heterogeneity on the pressure drop profile in high-rate displacements. 

The presence and corresponding location of the heterogeneous section can be approximately 

determined in a two-phase miscible displacement. Araktingi and Orr (1988) have studied the effects 

of large-scale heterogeneities on mobility, pressure, and flow velocity. To study the effects of pore-

scale heterogeneity, Chang and Yortsos (1992) completed a numerical Buckley-Leverett 

displacement process by varying permeability in the displacement direction. They conclude that 

the effects of heterogeneity on the saturation profile are significant even for displacements under 

large flow rates. Zeybek et al. (1995) proposed a study about the effects of heterogeneous 

permeability on spontaneous imbibition process by considering both the deterministic and 

stochastic heterogeneity profiles. They found that if a heterogeneous section is present in a two-

dimensional flow system, recovery curves and saturation profiles will be seriously affected. 

Through these studies about rock heterogeneity, it is tacitly accepted that the importance of the 

heterogeneity of core plugs cannot be easily underestimated (Hamon and Vidal, 1986). Thus, it is 

necessary to include the rock heterogeneities in the modelling of centrifuge experiments because 

heterogeneity and anisotropy often exist in a core plug due to small-scale laminae or cross bedding 

(Mannseth et al., 1998). 

1.5.2 Previous Studies on Centrifuge Modelling 

Most of the centrifuge modelling methods over the length of the core are one-dimensional without 

the consideration of core heterogeneity. O’ Meara and Crump (1985) presented a numerical 

simulator for the history-matching of the fluid production data in centrifuge experiments and 
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attempted to measure relative permeability and capillary pressure in a single experiment. They 

assumed the walls of the core as a no-flow boundary so the fluid flow inside is in one dimension. 

Andersen et al. (2017) developed an analytical model to analyze centrifuge experiments for 

drainage process and this model can be applied to estimate average water saturations at equilibrium. 

However, the derivations of the general partial differential equations describing the model setup 

were done based on the premise that the core is sealed in the directions normal to the displacement 

direction, meaning the system is one-dimensional. The major commercial software for centrifuge 

experiments, such as CYDAR, PORLAB, SCORES and SENDRA, can only assume a one-

dimensional fluid flow system, which means they all neglect the fluid flow in the radial direction 

when heterogeneity exists (Lenormand, 2017). Shikhov and Arns (2015) made an evaluation of 

three laboratory techniques for capillary pressure measurements via a digital core generated from 

mathematical morphology and a digital sample representation by assuming that a core is 

homogeneous. This assumption indicates that they assume a one-dimensional fluid flow in the 

digital rock (Adachi, 1986). Although these centrifuge simulation methods are effective, they 

cannot describe the fluid flow accurately and account for the deviation in phase saturation 

predictions. These modelling methods predicted the average wetting phase saturation in the core 

by integrating the mass balance equation with the boundary conditions in a one-dimensional system, 

which apparently neglected core heterogeneity. Hence, a two-dimensional centrifuge simulation 

method is presented in this thesis to study the impacts of core-scale heterogeneity on phase 

saturation prediction.  
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1.6 Research Objectives and Motivation 

The motivation for this research originates from the assumption in centrifuge data reducing 

methods that the rotated core is homogeneous (Christiansen and Cerise, 1992). Many scientists 

have developed centrifuge models based on the premise that the core is sealed in the directions 

normal to the displacement direction, which means the system is only one-dimensional (O'Meara 

and Crump, 1985; Andersen et al., 2017). Most commercial simulation methods available for the 

modelling centrifuge experiments assume a one-dimensional fluid flow in the core (Lenormand, 

2017). Shikhov and Arns (2015) evaluated capillary pressure methods using the numerical 

simulation of the drainage process on a homogeneous core sample. When the core is homogeneous, 

the fluid flow in the core is only in one dimension (Adachi, 1986). The challenge for modelling the 

centrifuge experiment for phase saturation predictions is that the assumption of one-dimensional 

flow in a homogeneous core has been made. Our hypothesis is that fluid flow and saturation 

predictions in the core will be affected if heterogeneous regions exist.  

Therefore, a two-dimensional centrifuge simulation model is needed to explain the heterogeneity 

effects on fluid flow and capillary pressure curves. This simulation technology has a potential to 

be improved to predict more accurate phase saturation with the consideration of heterogeneity as 

demonstrated in this thesis. This research builds a new two-dimensional, two-phase centrifuge 

simulation model to meet the following three objectives: 

1. Model centrifuge experiments for capillary pressure measurements in two dimensions using 

streamline tracing method that considers capillary pressure numerically. The simulation 

results are compared with the observed results from lab-scale centrifuge experiments to 
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demonstrate the effectiveness of the two-dimensional centrifuge simulation method.  

2. Visualize the effects of heterogeneities on fluid flow during the centrifuge experiment. 

3. Validate and demonstrate the effects of heterogeneities on capillary pressure curves by 

comparing the simulations results from homogeneous porous media and that from 

heterogeneous porous media. 

The above objectives are important since two-dimensional centrifuge simulation for phase 

saturation prediction is a relatively new method to researchers and engineers.  

Core scale heterogeneity and two-dimensional system have never been introduced in the modelling 

of centrifuge experiments for capillary pressure curve measurements. My contribution to the 

centrifuge simulation technology is to develop a two-dimensional centrifuge simulation method for 

phase saturation prediction that takes core scale heterogeneity into consideration. In this thesis, the 

importance of accurate modelling of heterogeneities for the determination of capillary pressure 

curves is addressed. The centrifuge simulation method for phase saturation predictions proposed 

in this thesis has advantages over other methods presented by O’Meara and Crump (1985) and 

Andersen et al. (2017) since it considers core heterogeneity and allows fluids in the core model to 

flow in two dimensions. The procedures of a new centrifuge simulation method that allows 

saturation predictions from centrifuge experiments are introduced and rigorously examined in this 

thesis. Sufficiently accurate numerical results can be effectively obtained by the new centrifuge 

simulation method applying a semi-analytical streamline tracing method. The application of 

streamline or stream tube modelling is popular in petroleum reservoir simulation. The capillary 

pressure in during streamline simulation is assumed to be constant in each time step when the 
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centrifuge system is at equilibrium. Then the saturation distribution can be determined, and the 

flow regimes can be visualized at a given angular velocity.  

Novelty of this work is: 

1. We are introducing two-dimensional modelling to predict the average saturation during 

capillary centrifuge experiments to examine the uncertainty that potential heterogeneity 

could introduce to average saturation measurements.  

2. Streamline simulation that considers capillary pressure numerically is being used for the 

first time to model capillary pressure centrifuge measurements. 

3. The potential uncertainty of having heterogeneity in the core is considered and visualized 

by streamline distributions and its influence on average saturation is described by solving 

the transport equation along streamlines.  

4. The accuracy of phase saturation prediction for the centrifuge simulation has been improved 

by taking core-scale heterogeneity into account.  

The applicability of the new two-dimensional centrifuge simulation method for phase saturation 

predictions to model physical problems is validated by comparing the numerical results and the 

experimental results for centrifuge experiments. Several two-dimensional permeability 

distributions with realistic permeability contrasts are used to investigate the effects of core 

heterogeneities on the estimated capillary pressure curves. The new centrifuge simulation method 

has the potential to account for the effect of heterogeneities compared to the conventional 

centrifuge simulation methods.  
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1.7 Thesis outline 

This thesis is organized in five chapters. Chapter 1 includes the general background knowledge 

for capillary pressure measurements and modelling. It also outlines the objectives and motivation 

for this research thesis. Chapter 2 provides some related literatures on data interpretation methods 

for centrifuge experiments, streamline simulation and Riemann problem. Chapter 3 discusses the 

basic information used to construct a centrifuge simulation model and provides the methodologies 

for modelling the centrifuge experiments using the semi-analytical streamline simulation method 

that includes capillary pressure in two-dimensional systems. The transport problems have been 

solved by the Riemann approach so the average saturation value for each incremental rotational 

speed can be obtained. As for the centrifuge data reducing method used in this research thesis, 

fitting technique has been performed on the raw data and the Forbes-Splines method has been used 

to generate the capillary pressure curve. The effects of heterogeneities are reflected on the 

difference between numerical and experimental capillary pressure curves. Chapter 4 demonstrates 

some applications of the centrifuge simulation model. Centrifuge simulations have been performed 

under several permeability distributions. Porosity is assumed to be isotropic and homogeneous 

throughout the thesis for simplicity, which means the porosity is set to be a constant in the 

simulations. These cases are described and discussed in this chapter based on their results. The 

significance and limitations of the research have been presented as well. Chapter 5 gives a brief 

summary of the conclusions form this research thesis and provides the recommendations for future 

work.   
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2 Literature Review 

2.1 Determine Capillary Pressure Curves from Centrifuge Experiments  

The capillary pressure from centrifuge experiments is a function of the distance from the inlet face 

for a given angular velocity. Therefore, the capillary pressure is changing from the inlet face to the 

outlet face of the core at equilibrium. In practice, the capillary pressures at the inlet end of the core 

are usually calculated for capillary pressure curve calculation. However, the saturation measured 

from the volume of displaced fluid is equal to the average saturation. To use the capillary pressure 

at the inlet face, the corresponding saturation at the inlet face must be converted from the average 

saturation (Tiab and Donaldson, 2015). The capillary pressure curves can be obtained from 

centrifuge experiments in two different ways. This first way is to obtain capillary pressure curves 

by calculation (Section 2.1.1)and the other way is to obtain capillary pressure curves by phase 

saturation prediction (Section 2.1.2). 

2.1.1 Calculating Phase Saturations from Centrifuge 

This section introduces some experimental data point correlation methods that can be used to obtain 

capillary pressure curve expressions by calculating phase saturations from centrifuge experiments. 

These methods are divided into two types: the first type is to calculate phase saturation by 

correlating inlet phase saturation (𝑖𝑛𝑙𝑒𝑡𝑆𝑤)  with average phase saturation (𝑎𝑣𝑒𝑆𝑤)  so that the 

𝑖𝑛𝑙𝑒𝑡𝑆𝑤 can be calculated based on 𝑎𝑣𝑒𝑆𝑤; the second type is to calculate phase saturation by 

using some fitting/interpolation techniques or using a given analytical form to describe the 

relationship between capillary pressures and saturations. 

Instead of measuring the capillary pressure curves directly from centrifuge experiments, the 
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calculation and conversion techniques need to be implemented on the raw data (displaced volume 

at incremental speed, rotational speed). These techniques will be introduced in the following. 

Therefore, researchers (Hassler and Brunner,1945; van Domselaar, 1984; Rajan, 1986; and Ruth 

and Wong, 1991) have presented data conversion methods to transform average saturation to inlet 

face saturations. All these methods are approximations and Seth (2006) provides a good summary 

of 13 data interpretation techniques. The development of the tomography technique has improved 

the interpretation of centrifuge data (Wunderlich, 1985). This technique can be used to capture the 

saturation profiles, but for high permeable cores, the actual saturation profiles are hard to create 

since the redistribution of fluids are rapid.  

Figure 11 shows the scheme of the centrifuge experiment. In this figure, 𝑟1 is the distance from the 

center of rotation to the inner face of the core plug, 𝑟2 is the distance from center of rotation to the 

outer face of the core plug, and 𝜔 is the angular velocity. 𝑃𝑐1
 and 𝑃𝑐2

 are capillary pressure at the 

inlet and outlet face, respectively. 

 
Figure 11 Scheme of the centrifuge experiment (after Forbes, 1991) 

Before processing the experimental data from centrifuge experiments, several assumptions need to 
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be made for subsequent calculations. Assumptions include:  

1. Hassler and Brunner (1945) assumed the boundary condition for most centrifuge data 

reported in the literature that the end face of the core remains 100% saturated with the wetting 

phase at all centrifugal speeds of the test. Thus, the capillary pressure at the end face is equal 

to zero during the entire centrifugal process. In the study of O’ Meara et al. (1992), such 

condition is correct if there is a continuous film on the rubber pad surface to hold the core at 

the bottom, which is the most prevailing assumption. Meanwhile, the Bond number should be 

calculated to ascertain this critical boundary conditions for single-speed displacement 

experiments; however, no substantial deviations will occur in the calculations of capillary 

pressure curves even though this assumption breaks down.  

2.  Cavitation is not present in the core sample (Hirasaki et al., 1988). Cavitation is 

concerned with air-liquid capillary pressure measurements when the air pressure is one 

atmosphere and the capillary pressure exceeds one atmosphere. In this case, the liquid is in 

tension (under negative absolute pressure) and the bulk liquid is not stable when it is in tension, 

which may lead to larger entry capillary pressure or the discontinuity of liquid.  

3.  The fluid system in the core has reached equilibrium when the produced wetting 

phase fluid is measured (Christiansen and Cerise, 1992). Considerable amounts of fluid 

production are still found even after spinning the core constantly for 14 days; therefore, it is 

reasonable that many laboratory operators will record non-equilibrium data. Many scientists 

(Ward and Morrow, 1987; Omoregle, 1988; Slobod et al., 1951) have talked about effects of 

these errors. A method to avoid these errors by measuring relative permeability and capillary 
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pressure curves at the same time during centrifuge was introduced by O’Meara and Crump 

(1985). To simply this calibrating process, an easy way to estimate equilibrium saturations was 

proposed (O'Meara et al., 1992).   

4. There is no centrifugal force in the radial direction (Christiansen and Cerise, 1992). 

Nevertheless, the centrifugal field in the core was proved to be radial and a dimensionless 

geometric factor accounting for the radial impact in centrifuge experiments was introduced. It 

was suggested that the geometric shape of the spinning plug should be considered in the data 

reduction process.  

5. The core plug is homogeneous. Most reservoir core samples are heterogeneous, which 

may contribute to a level of inaccuracy in the calculated capillary pressure curve (Mannseth et 

al., 1998).  

The average saturation can be derived from the liquid production using the sample pore volume 

and the negative sign becomes a positive for imbibition process: 

 𝑎𝑣𝑒𝑆𝑤 = 𝑎𝑣𝑒𝑆𝑤𝑖 −
𝑉𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑

𝑉𝑝
 (2.1) 

where is 𝑎𝑣𝑒𝑆𝑤 average saturation, 𝑎𝑣𝑒𝑆𝑤𝑖 is initial average saturation (at start of test), 𝑉𝑝 is pore 

volume (cc) and 𝑉𝑑𝑖𝑠𝑝𝑎𝑙𝑐𝑒𝑑 is volume of displaced fluid (cc).  

For drainage experiments, capillary pressure at a position of 𝑟 is (McPhee et al., 2015): 

 𝑃𝑐 =
1

2
∆𝜌𝜔2(𝑟2

2 − 𝑟2) (2.2) 

where, ∆𝜌 is the density difference between the fluid phases (g/𝑐𝑚3). 

Converting the units, the capillary pressure at the inlet face can be calculated as: 



31 

 

 𝑃𝑐1
= 1.578 × 10−1(∆𝜌)(𝑟1

2 − 𝑟2
2) ∙ 𝑅𝑃𝑀2 (2.3) 

where, RPM is revolutions per minute.  

The saturation calculated in Equation (2.1) is average saturation for the core plug, but the capillary 

pressure calculated in Equation (2.3) is the value at the inlet face of the core. Therefore, the average 

phase saturation should be converted to inlet face saturation that is corresponding to inlet face 

capillary pressure. The previous derivations of capillary pressure and water saturation are not 

accurate solutions due to the geometrical shape of the core plug, the lengths of the centrifugal arm 

and core holder, and boundary conditions. The average saturations cannot be used directly to plot 

the capillary pressure curve since the corresponding average capillary pressure cannot be measured 

in the centrifuge experiment. According to Equation (2.2), the capillary pressure is varying along 

the core at a given angular velocity. Thus, the capillary pressure at the inlet face and the 

corresponding inlet face saturation are calculated to plot the resulting capillary pressure curve. All 

equations calculating the inlet face saturation are approximations since they cannot be solved 

explicitly and analytically. The interpretation process of experimental data points from centrifuge 

experiments is the main source for deviations and an appropriate solution of the centrifuge equation 

should be used to ensure an acceptable accuracy.  

The methods for saturation calculation of first type are introduced as the followings.  

This history of using the centrifuge experiment to measure capillary pressure can be traced back to 

1940s (Slobod et al, 1951). Before data conversion techniques were widely applied, people used to 

measure water saturations by sectioning the core subject to one centrifugal force so that saturations 

of the entire core could be acquired (King, 1899). Once the level corresponding to the zero capillary 



32 

 

pressure is known, the capillary pressure curve can then be calculated. However, it is almost 

impossible to section such a small sample as rock cores from reservoirs and the longer column is 

required if capillary pressures at low water saturation areas need to be more accurately calculated. 

Therefore, Hassler and Brunner (1945) proposed a calculation process that uses average water 

saturation at each angular velocity and rotational speed to calculate capillary pressure curves. Since 

then, significant contributions were made by various scientists with increasing interest in the 

centrifuge experiment and its data processing method.  

In the method proposed by Hassler and Brunner (1945), average saturation 𝑆 is related to S (inlet 

face saturation) by: 

 𝑆 =
1

(𝑟2 − 𝑟1)
∫ 𝑆(𝑟)

𝑟2

𝑟1

𝑑𝑟 (2.4) 

Substituting 𝑃𝑐  for r  and replacing it by x𝑃𝑐1
 , where x  is used as an integration variable 

(dimensionless), the equation above can be converted to: 

 𝑆(𝑃𝑐1
) =

1 + √1 − 𝐵

2
∫

𝑆(𝑥𝑃𝑐1
)

√1 − 𝐵𝑥
𝑑𝑥

1

0

 (2.5) 

where B = 1 − (
𝑟1

𝑟2
)2. For imbibition experiments, the same equations are obtained by exchanging 

𝑟1 for 𝑟2 and 𝑃𝑐1
for 𝑃𝑐2

. 

This equation is called the fundamental equation (centrifuge equation) because for both drainage 

and imbibition experiments, this equation needs to be inverted to obtain inlet face saturation value 

from average saturation value.  

This first approximate method to convert the fundamental equation was proposed by Hassler and 
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Brunner (1945) and it successfully obtained the saturation at inlet face by assuming the core plug 

to be extremely short (𝐵 ≈ 0). The resulting equation derived from it is: 

 S = 𝑆𝐻𝐵 = 𝑆 + 𝑃𝑐

𝑑𝑆

𝑑𝑃𝑐1

 (2.6) 

Based on this correlation the capillary pressure curve can be drawn from slopes of a curve of 𝑃𝑐𝑆̅ 

versus 𝑃𝑐1
  by accelerating the core sample incrementally from which the specific 𝑃𝑐1

  for each 

rotational speed can be attained and the average saturation 𝑆̅ can be measured. Nevertheless, the 

derivation above does not take the geometric shape of the core into account and the acceleration 

across the core is assumed to be the same, which is not true. If the length of the core is considered, 

the following relations can be determined: 

 ∫ 𝑆(𝑃𝑐)𝑑𝑃𝑐 = 𝑃𝑐1
𝑆̅ + ∫ [1 −

(cos
1
2 𝜃)2

√1 −
𝑃𝑐

2 𝑠𝑖𝑛2𝜃

]𝑆(𝑃𝑐)𝑑𝑃𝑐  
𝑧

0

𝑃𝑐1

0

 (2.7) 

where cos 𝜃 =
𝑟1

𝑟2
.  

This equation can be solved numerically by successive approximation and the successive terms can 

be consecutively calculated using the following equation until results converge to accepted decimal 

places: 

 𝑆𝑘+1(𝑃𝑐1
) =

𝑑

𝑑𝑃𝑐1

∫ [1 −
(cos

1
2

𝜃)2

√1 −
𝑃𝑐

𝑧 𝑠𝑖𝑛2𝜃

]𝑆𝑘(𝑃𝑐)
𝑃𝑐1

0

𝑑𝑃𝑐 (2.8) 

Nonetheless, it has been shown that the solution of Hassler and Brunner always underestimates the 

true capillary pressure curve, but the solution by van Domselsaar often overestimates it (Forbes, 

1994). 
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Hoffman (1963) introduced an analytical equation to account for the relationship between average 

water saturation and local water saturation and it also takes the length of the core into consideration. 

The equation is given as: 

 𝑆(𝑃𝑐1
) =

2𝑟1

𝑟1 + 𝑟2
(𝑆̅ + 𝑃𝑐1

𝑑𝑆̅

𝑑𝑃𝑐1

) (2.9) 

He noted that this calculation method only applies to the situation when fluids inside the core reach 

hydrostatic equilibrium; thus, this condition will require a longer experimental period, which may 

make the benefits of using centrifuge experiments less attractive. To boost the efficiency of 

centrifuge experiments, the technique that allows the core to speed up consistently with a particular 

acceleration was introduced. For the centrifuge speed is a function of time, Equation (2.9) can be 

converted to: 

 𝑆(𝑡)𝑟1
=

2𝑟1

𝑟1 + 𝑟2
[𝑆̅(𝑡) +

𝜔(𝑡)𝑆̅′

2𝜔′(𝑡)
] (2.10) 

And the capillary pressure at the inlet face is also correlated to time elapsed: 

 𝑃𝑐1
(𝑡) =

1

2
∆𝜌𝜔2(𝑡)(𝑟2

2 − 𝑟1
2) (2.11) 

By determining capillary pressures and water saturations at different times, a capillary pressure 

curve can be derived without maintaining the core at balance states, which substantially reduces 

the experimental time.  However, the derivation of this equation was later proved to be erroneous 

by Luffel (1964).  

Ayappa et al. (1986) improved the approximate solution derived by Rajan (1986) by replacing the 

partial differential part with the differential operator and a more appropriate equation to estimate 
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the inlet face saturation was derived: 

 

𝑆(𝑃𝑐1
) = 𝑆̅(𝑃𝑐1

) +
2𝑟1𝑃𝑐1

𝑟1 + 𝑟2

𝑑𝑆̅(𝑃𝑐1
)

𝑑𝑃𝑐1

+
𝑟1

𝑟2𝐵
∫ [

1 − (1 − 𝐵𝑃𝑐/𝑃𝑐1
)1/2

(1 − 𝐵𝑃𝑐/𝑃𝑐1
)1/2

]2
𝑑𝑆̅(𝑃𝑐1

)

𝑑𝑃𝑐
𝑑𝑃𝑐

𝑃𝑐1

0

 

(2.12) 

To broaden the valid range of approximate solutions proposed by Hassler-Brunner and van 

Domselaar (1984), a precise solution especially suitable for long core plugs was also introduced: 

 𝑆(𝑃𝑐) =
1

𝜋

𝑑

𝑑𝑃𝑐
∫

2𝑆̅(𝑃𝑐1
)√𝑃𝑐1

√𝑃𝑐 − 𝑃𝑐1

𝑃𝑐

0

𝑑𝑃𝑐1
 (2.13) 

This equation can be evaluated by use of a product integration method (Linz, 1985). 

The parameter estimation technique proposed by Bentsen and Anli (1977) relies heavily on a 

capillary pressure displacement model that may not be able to describe the behavior of capillary 

pressure curve when water saturation reaches to unity, an interpretation method without parametric 

assumption of capillary pressure curves was presented (Skuse et al., 1988). This method also 

includes the integral part that was neglected in the centrifuge equation derived by Hoffman so that 

it greatly improves accuracy of the approximation. The estimated equation is:  

 

𝑆(𝑃𝑐1
) ≈

2𝑅

1 + 𝑅

𝑑

𝑑𝑃𝑐1

[𝑃𝑐1
𝑆̅(𝑃𝑐1

)] +
(1 − 𝑅2)

2𝑅2
𝑆̅(𝑃𝑐1

) −
1

2
(1

− 𝑅2) ∫
𝑃𝑐

𝑃𝑐1

2

𝑃𝑐1

0

𝑆̅(𝑃𝑐) {[1 − (1 − 𝑅2)
𝑥

𝑃𝑐1

]

3/2

+
3

2
(1 − 𝑅2)

𝑃𝑐

𝑃𝑐1

[1 − (1 − 𝑅2)
𝑃𝑐

𝑃𝑐1

]−5/2} 𝑑𝑃𝑐 

(2.14) 

where 𝑅 =
𝑟1

𝑟2
 . 
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Forbes (1994) thought that many approximations are precise within a limited range of 𝐵 and they 

often require complex integration, which can only be evaluated by iterative procedures or forcing 

the data into a given mathematical correlation that may not be able to describe the full behavior of 

capillary pressure curves. These processes are tedious and can lead to some unpredictable errors 

because of the analytical form used to fit the data. Thus, he came up with a user-friendly data 

conversion method without any smoothing or fitting of the data, which can even be used to process 

noisy experimental data.  

A summary of the reviewed saturation calculation approaches by interpreting 𝑖𝑛𝑙𝑒𝑡𝑆𝑤 from 𝑎𝑣𝑒𝑆𝑤 

is presented in Table 2. 

Table 2 Literature summary of phase saturation calculation method by interpreting 𝑖𝑛𝑙𝑒𝑡𝑆𝑤 from 𝑎𝑣𝑒𝑆𝑤 

Year Author(s) Main Contributions 

1945 Hassler and Brunner 
Introduced the first centrifuge data interpretation method 

by ignoring the core length 

1963 Hoffman 
An analytical relationship between average and local 

water saturation that considers core length 

1964 Luffel 
Proved the constantly accelerated technique proposed by 

Hoffman was erroneous 

1986 Ayappa et al. 

Improved the accuracy of the partial differential part in 

fundamental equation by replacing it with the different 

operator. A more proper correlation between average 

saturation and inlet face saturation was derived 

1988 Skruse et al. 

Presented a centrifuge reducing method without 

parametric estimation of capillary pressure curves, which 

greatly improves the accuracy of inlet face saturation 

approximation in terms of average saturation 

1994 Forbes 

A rapid and simple phase saturation prediction method 

that allows conversion of sparse data (average saturation) 

into inlet face saturation without smoothing, averaging, 

fitting 

The methods for saturation calculation of second type are introduced as the followings. 

Bentsen and Anli (1977) assumed capillary pressures and wetting-phase saturation conform to the 
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capillary pressure model and then used the least-square method to find unknown parameters in the 

model. The capillary pressure model they used is: 

 𝑃𝑐 = −𝜎 ln 𝑆𝑛 + 𝑃𝑐𝑑 (2.15) 

where 𝑆𝑛 =
𝑆𝑤−𝑆𝑤𝑖

1−𝑆𝑤𝑖
 , 𝑃𝑐𝑑 is the threshold capillary pressure when the wetting phase begins to be 

displaced, and 𝜎 is a normalizing factor.  

From Equation (2.2), the capillary pressure at distance ℎ from outlet face of the core is: 

 𝑃𝑐 = ∆𝜌𝜔2 (𝑟1 −
𝑟

2
) 𝑟 (2.16) 

Combining the two equations above and the average saturation across the core is then estimated as: 

 𝑆𝑤̅ ≅ 𝑆𝑤𝑖 +
𝜎(1 − 𝑆𝑤𝑖)(2𝑟1 − 𝐿)

(2𝑟1 − 𝐿 − 𝑟∗)𝑃𝑐1
[
2𝑟1 − 𝐿 − 𝑟∗𝑃𝑐𝑑

2𝑟1 − 𝑟∗𝜎
+ 1 − 𝑒−

𝑃𝑐1−𝑃𝑐𝑑
𝜎 ] (2.17) 

with 𝑟∗ = 𝑟1 − √𝑟1
2 −

2𝑃𝑐𝑑

∆𝜌𝜔2 , 𝜔 ≥ 𝜔𝑐. 

where, 𝐿  is the length of the core, 𝜔𝑐  is the critical value of angular velocity, below which no 

displacement begins, 𝑆𝑤𝑖  is the irreducible wetting phase saturation. Parameters 𝑃𝑐𝑑, 𝑆𝑤𝑖, 𝜎  can 

then be estimated by implementing the above equation and experimental average water saturation 

data in least-squares method by finding the minimum square difference between experimental 

measurements and estimated values (Marquardt, 1963). With estimated parameters, the capillary 

pressure curve can be plotted based on the capillary pressure model.  

A linear interpolation method for capillary pressure curves was introduced by Ruth and Wong 

(1991) and they assumed that any unknown data point can be derived once the two neighboring 

data points are known: 
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 𝑆(𝑍) = 𝑆𝑘−1 +
𝑆𝑘 − 𝑆𝑘−1

𝑍𝑘 − 𝑍𝑘−1
(𝑍 − 𝑍𝑘−1) (2.18) 

where 𝑍 = 𝑃𝑐1  , and the subscript 𝑘  means the experimentally derived value of 𝑍  and the 

corresponding calculated of 𝑆. 

This method attempts to evaluate the integral proposed by Melrose by sequentially calculating the 

inlet face saturation and 𝑆𝑘  provided the initial guess of the threshold capillary pressure and 

corresponding saturation, which can be easily estimated from the experimental data (Melrose, 

1986).  

Nordtvedt and Kolltvelt (1991) assumed the capillary pressure curve to be a piecewise spline 

function and solved an optimization problem to estimate coefficients in the spline function. The 

capillary pressure curve is assumed piecewise to be: 

 𝑆𝑤(𝑃𝑐) = 𝑎𝑖,0 + 𝑎𝑖,1𝑃𝑐 + 𝑎𝑖,2𝑃𝑐
2, 𝑖 = 1,2 … 𝑛𝐼 (2.19) 

where 𝑖  is the number of interval and 𝑛𝐼  is the total number of intervals. By varying the water 

saturation at each knot of spline function and threshold capillary pressure that can be regarded as 

an independent variable vector, the resulting average saturation can be calculated and compared to 

experimental average saturation. By minimizing the experimental and estimated data, an optimal 

set of water saturation at spline knots and displacement capillary pressure can be determined. Then 

by solving the equations constructed by known water saturations, threshold capillary pressure and 

continuity of the spline curve and its derivative, coefficients of spline function, thus capillary 

pressure curve can be determined. The determination of the spline function between capillary 

pressure and saturation relies on a regression method. A calculation method to determine 
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confidence intervals of capillary pressure curves from estimated mathematical functions was 

introduced for the purpose of quality check (Nordtvedt et al., 1993).  

The methods that can be used to calculate phase saturation by fitting capillary centrifuge data are 

listed in Table 3. 

Table 3 Literature summary of phase saturation calculation method by fitting centrifuge capillary data 

Year Author(s) Main Contributions 

1977 Bentsen and Anli 

Interpreted the centrifuge data by forcing them into a 

given capillary pressure model. Capillary pressure can be 

calculated by implementing the model in least-squares 

method by finding the minimum square difference 

between experimental measurements and estimated 

values 

1991 Ruth and Wong 

Proposed a linear interpolation method for centrifuge data 

processing by assuming any unknown datapoint (capillary 

pressure versus inlet face saturation) can be derived based 

on two neighboring data points 

1991 Nordtvedt and Kolltvelt 

Assumed the capillary pressure curve to be a piecewise 

spline function and solved an optimization problem for 

coefficients approximations in the spline function 

2.1.2 Phase Saturation Predictions from Centrifuge 

This section introduces some capillary pressure curve prediction method that can be used to predict 

phase saturation at the inlet face by correlating it with average saturation or solving fluid flow 

equations in the centrifuge system. Compared to the methods introduced in Section 2.1.1, the 

methods introduced here can be used to obtain capillary pressure curves instead of fitting the 

centrifuge data. The fitting of the data can sometimes be questionable and leads to errors in 

resulting capillary pressure curves (Forbes, 1994). In this section, different methods to predict 

phase saturations are introduced and these methods can be generally divided into two types. The 

first type are correlations to fit the capillary pressure and equilibrium average saturation by 

appropriate simplifications of fluid flow equations in centrifuge system. This analytical model is 
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often be included in a commercial core flow simulator to predict equilibrium phase saturations for 

a given capillary pressure. The second type is to construct a mathematical relationship between 

capillary pressure and inlet face saturation (from average saturation) based on different 

mathematical functions, such as logarithmic function, exponential function or LET function 

(Skjaeveland et al., 2000; Lomeland and Ebeltoft, 2008). The phase saturation for a given capillary 

pressure can be obtained by inverting the correlations directly.  

The phase saturation prediction methods of first type are introduced as the following. 

Fleury et al. (2000) introduced a mathematical model that uses two exponential functions to 

predict equilibrium average saturation. This model is applicable to the multi-speed centrifuge 

experiments when the average saturation of the core is measured as a function of time with a 

constant rotational speed. The average saturation at equilibrium is predicted: 

 

𝑆𝑤̅(𝑡) = 𝑆𝑤𝑖 + ∆𝑆𝑒𝑞[1 − (𝑤 × exp (−
𝑡

𝑇1
) + (1

− 𝑤) × exp (−
𝑡

𝑇1
)) 

(2.20) 

where ∆𝑆𝑒𝑞 is the saturation variation during the considered speed step, 𝑇1, 𝑇2 are characteristic 

times of the exponential functions and 𝑤 denotes the affected weight to the first exponential. 

In the above equation, four parameters should be estimated to fit the experimental data to determine 

the saturation at infinite time.  

Andersen et al. (2017) derived a mathematical model between rotation speed (capillary pressure) 

and equilibrium average saturation by simplifying the equations for Darcy’s Law and conservation 

law of the centrifuge system. The inlet water saturation at equilibrium can be predicted by inverting 
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the mathematical correlation: 

 𝑆𝑤
𝑒𝑞(𝑥) = 𝑆𝑤𝑖 +

1 − 𝑆𝑤𝑖

𝑘
(

𝑎

𝑃𝑐
𝑒𝑞(𝑥) − 𝑏

− 1),   𝑃𝑐
𝑒𝑞(𝑥) > 𝑃𝑐𝑑 (2.21a) 

 𝑆𝑤
𝑒𝑞(𝑥) = 1,   𝑒𝑙𝑠𝑒 (2.21b) 

where 𝑆𝑤
𝑒𝑞 , 𝑃𝑐

𝑒𝑞
 are water saturation and capillary pressure at equilibrium, parameter 𝑎, 𝑏 are set 

according to the end points of the capillary pressure curve and parameter 𝑘 controls the steepness 

of the curve near 𝑆𝑤𝑖. 

A summary of the reviewed phase saturation prediction approaches by solving general flow 

equations in the centrifuge system is presented in Table 4. 

Table 4 Literature summary of phase saturation prediction method by solving flow equations 

Year Author(s) Main Contributions 

2000 Fleury et al. 

Proposed a mathematical model that uses a bi-exponential 

function to correlate average saturation with time when 

the system is at equilibrium. The average saturation can 

be predicted by estimating 4 parameters in the function 

2017 Andersen et al. 

A mathematical model that allows phase average 

saturation prediction for each rotation speed by 

simplifying general fluid flow equations of the centrifuge 

system 

The phase saturation prediction methods of second type are introduced as the following. 

Skjaeveland et al. (2000) presented a capillary pressure correlation and an associated hysteresis 

loop scheme for mixed-wet reservoir since no comprehensive and widely accepted correlation is 

available for reservoirs at wettability conditions other than completely water-wet. The correlation 

that consists of oil and water branches is: 

 
𝑃𝑐 =

𝑐𝑤

(
𝑆𝑤 − 𝑆𝑤𝑖

1 − 𝑆𝑤𝑖
)𝑎𝑤

+
𝑐𝑜

(
𝑆𝑜 − 𝑆𝑜𝑟

1 − 𝑆𝑜𝑟
)𝑎𝑜

 
(2.22) 
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where 𝑆𝑜𝑟 is residual oil saturation, 𝑎′𝑠, 𝑐′𝑠 are constants and there are different sets for imbibition 

and drainage processes, respectively.  

The inlet face saturation can be predicted by converting above equation for a given capillary 

pressure. The capillary pressure curve that is drawn from this correlation contains a positive water 

branch with an asymptote at water residual saturation and a negative oil branch with an asymptote 

at residual oil saturation. This correlation is validated by fitting data from porous plate and 

centrifuge experiments on cores and can be used to generate representative capillary pressure 

curves for reservoir simulations.  

LET - Lomeland and Ebeltoft (2008) developed an analytical capillary pressure correlation that 

uses the mathematical LET function as a basic element to model a branch or a feature of a capillary 

pressure curve naturally. The structure of the LET function is: 

 𝐹(𝑆𝑤𝑛) =
𝑆𝑤𝑛

𝐿

𝑆𝑤𝑛
𝐿 + 𝐸(1 − 𝑆𝑤𝑛)𝑇

 (2.23) 

where 𝑆𝑤𝑛  is normalized water saturation, parameter 𝐿  describes the lower part of the curve, 

parameter 𝑇 describes the top part of the curve and parameter E describes the position of the slope 

of the curve.  

The inlet face saturations can be predicted by using the capillary pressure versus inlet saturation 

correlation based on LET function to solve the flow equations in centrifuge system. The input 

parameters are capillary pressure (rotational speed), core length, diameter, permeability and 

porosity, etc. The outputs of the simulator are inlet face saturation for a given capillary pressure 

and then an interpreted capillary pressure curve.  
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There are three options available in CYDAR to calculate capillary pressure curves from centrifuge 

experiments. This first option is called Hassler-Brunner method, which is a historic method 

described by Hassler and Brunner (1945). The equations that are used in the Hassler-Brunner 

method are Equation (2.4) to Equation (2.8) in Section 2.1.1. The second option is called Forbes 

method using Equation (3.5) to (3.22) in Section 3.2.2. The final option is called Forbes-Splines 

method using Equation (3.5) to (3.33) in Section 3.2.2 , which is widely used to process capillary 

centrifuge data in the core analysis. A summary of the reviewed phase saturation prediction 

approaches by correlating 𝑖𝑛𝑙𝑒𝑡𝑆𝑤 with 𝑎𝑣𝑒𝑆𝑤 in the centrifuge system is presented in Table 5. 

Table 5 Literature summary of phase saturation prediction by using correlation 

Year Author(s) Main Contributions 

2000 Skjaeveland et al. 

Presented a capillary pressure correlation and an 

associated hysteresis loop scheme for mixed-wet 

reservoir. The inlet face saturation can be predicted by 

using the correlation that consists of oil and water 

branches 

2008 
LET - Lomeland and 

Ebeltoft 

An analytical capillary pressure correlation that uses the 

mathematical LET function as a building block. The 

phase saturation can be predicted by using the correlation 

to solve fluid flow equations in the centrifuge system 

2021   CYDAR group 

Presented three methods for capillary pressure curve 

calculations from experimental data: Hassler-Brunner 

method, Forbes method, Forbes-Splines method.  

As mentioned before, the methods for predicting inlet phase saturations are divided into two types. 

In this thesis, the Forbes-Splines method of second type is used to process capillary centrifuge data. 

Unlike the traditional Forbes method, the calculations of Forbes-Splines method are performed on 

the analytical fit of the capillary pressure versus average saturation data and thus, the results are 

more accurate. Additionally, spline fit or interpolation is used to minimize the differences between 

𝑃𝑐(𝑎𝑣𝑒𝑆𝑤)𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 curve (from the fitted data points) and the 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤)𝑟𝑒𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 curve from the 
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experimental 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curve. Constraints on the spline function can be implemented to have a 

monotonic capillary pressure curve. Therefore, Forbes-Splines method, an advanced centrifuge 

data interpretation technique combining the Forbes method and the spline interpolation technique 

in CYDAR (a software for special core analysis laboratory), has been used to calculate capillary 

pressure curves from centrifuge experiments or simulations. This technique for centrifuge data 

interpretation used in this thesis can also be applied to other capillary pressure correlations.  

2.2 Numerical Simulation using Streamline Methods 

Streamline simulation has been proved to be an effective approach for predicting the fluid flow and 

solving the flow problems in fine-scale geology models. Therefore, the two-dimensional centrifuge 

simulation method introduced in this thesis is based on streamline tracing methods. The phase 

saturations throughout the core at equilibrium are predicted by solving the flow problems 

considering capillary pressure along streamlines, which can be achieved by using the MATLAB 

toolbox named as MRST (MATLAB Reservoir Simulation Toolbox). The streamline tracing 

method in MRST is based on Pollock’s method introduced in Section 3.3.6 so that the two-

dimensional flow problem during centrifuge can be solved semi-analytically using streamlines. By 

assuming capillary pressure to be constant at each angular velocity/time step, the streamlines 

tracing method can be used to visualize the flow regimes and to predict the phase saturations. The 

streamline tracing method used in this thesis considers capillary pressure numerically when solving 

for the pressure distribution at a given time step. A capillary pressure module in MRST (Equation 

(3.1) in Section 3.1) can be used to include the capillary pressure when tracing streamlines in the 

centrifuge system. The fluid densities used in the numerical simulations are the same as the values 
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used in the lab-scale centrifuge experiments because the effects of the heterogeneity distributions 

on fluid flow are of interest.   

All centrifuge interpretation methods require the assumption of a homogeneous rock sample, which 

may lead to deviations in phase saturations that are measured from experiments (Christiansen and 

Cerise, 1992). Therefore, the modelling of centrifuge experiments is necessary for it can describe 

and quantify the effects core heterogeneity on fluid flow. To simulate the fluid displacement process 

in a core sample during the centrifuge experiment for measuring capillary pressure curves, a 

streamline simulator can be applied effectively. In a centrifuge experiment, streamline modelling 

can be used to understand the flow process of wetting and non-wetting phases in the rotated core 

plug. It can be used to improve the accuracy of capillary pressure curve measurements by 

calibrating average wetting phase saturations.  

A thorough understanding of dynamic physical movement of fluids in a reservoir is crucial to the 

production in oil fields. Over the years, the streamline simulation method has become a satisfactory 

replacement for the conventional finite-difference simulation method due to its high computational 

speed (Datta-Gupta and King, 2007). Streamline simulation is also a useful tool for modelling 

visualization experiments, history matching and reservoir management. It is robust in solving fluid 

flow problems in homogeneous and heterogeneous systems. Streamline simulation is not 

applicable in displacing processes that include cross-streamline problems, since no fluid can flow 

across different streamlines (Datta-Gupta and King, 1995). Streamlines are instantaneous curves 

that are everywhere tangential to the velocity field (Bear, 2013). A stream tube is a spatial region 

bundled by streamlines as shown in Figure 12. No flux can cross the stream tube boundaries, which 
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means that the calculation along a stream tube is decoupled from other stream tubes. In this research 

thesis, streamlines are traced in steady state flow in which the fluids in the core have reached 

equilibrium at each rotational speed. The fluid movement with time can be described by use of 

streamlines, the density of which shows the magnitude of the flow velocity. The denser distribution 

of streamlines indicates a high flow region in the flow field; in contrast, spare streamlines represent 

a slow fluid flow. Time-of-flight (TOF) is the time that a neutral particle takes to travel along a 

streamline (Pollock, 1988). Given the instantaneous velocity field, streamlines can be computed in 

the core. Since only one velocity vector exists in any location of the field, streamlines can never 

cross.  

 

Figure 12 Schematic of a stream tube 

The general steps for streamline simulation can be summarized as: i) the pressure equations are 

solved based on known parameters of rock and fluid so the pressure fluid can be calculated; ii) 

velocity field is calculated by virtue of Darcy’s Law and streamlines; and iii) Riemann approach is 

used as a proper way to solve the transport problem (Zhang et al., 2012). In this project, streamline 

simulations have been conducted to model the fluid flow in a core thus assessing the impact of core 

heterogeneity. Table 6 lists the summary of the major developments in streamline tracing methods.  

Table 6 Literature summary of streamline tracing methods 
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Year Author(s) Main Contributions 

1781 Lagrange Introduced the concept of streamline   

1934 Muskat and Wyckoff 
First application of streamline simulation in reservoir 

engineering problems 

1937 Muskat and Wyckoff 
Presented the governing analytical solution of stream 

function 

1951 Fay and Pratts 
Proposed the two-dimensional semi-analytical streamline 

tracing method  

1971 LeBlanc and Caudle  
Introduced a stream tube model with changing mobility 

ratios 

1988 Pollock  
Presented a three-dimensional semi-analytical streamline 

simulation method  

1992 
Cordes and 

Kinzelbach 

Introduced a post-processing method that reconstructs the 

flow rate at cell interfaces 

1995 Datta-Gupta and King 
Approximated streamlines as a hyperbolic function in 

each grid block 

2001 Prevost et al. Streamline tracing in unstructured girds 

2006 Matringe et al.   
Applied the mixed finite element scheme in two-

dimensional streamline tracing method 

2010 Johansen 
Proposed a semi-analytical streamline tracing approach 

by approximating pressure functions 

2012 Zhang et al. 
Proposed a comprehensive study of streamline tracing 

methods based on velocity approximations 

Lagrange (1781) was the first to derive stream functions for two-dimensional streamline generation. 

Muskat and Wyckoff (1934) first introduced the idea of using streamlines to solve the artificial 

flooding problems in man-made typical flooding networks from which the pressure distribution 

can be obtained. They also compared efficiency and conductivity of each individual flooding 

pattern and concluded that the spatial arrangement of wells is perhaps of limited significance in 

flood efficiency. Their paper was the first application of streamline simulation in petroleum 

engineering under reasonable assumptions. In 1938, they derived the governing solutions of the 

stream function analytically and presented the potential function for the two-dimensional 

displacement problem by assuming fluids are incompressible (Muskat, 1938). 

Prats (1951) extended the application of stream tube simulation to petroleum engineering in a two-
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dimensional homogeneous system containing two wells. Streamlines were calculated numerically 

in different stages by use of a semi-analytical method so that the shifting streamlines can be traced. 

Their approach can also be used to estimate the breakthrough time with some degrees of 

uncertainties. 

To describe the two-phase displacement problem in a two-dimensional reservoir with heterogeneity, 

LeBlanc and Caudle (1971) presented a stream tube simulation approach such that the flux along 

each streamline was integrated for velocity calculation. This method significantly increased the 

simulation efficiency and was commonly used in two-phase fluid flow.   

As one of the most frequently used streamline tracing methods in commercial simulators is 

Pollock’s method (1988) that adopts a finite-difference method to calculate the pressure field from 

which the velocity field can then be determined. Its calculation is grid-block based along with two 

assumptions, which means the location of streamline and the time that a particle takes to travel 

along the streamline (time-of-flight) are obtained analytically in each cell. The computing speed of 

this method boosts remarkably as compared to the Runge-Kutta approach used by Shafer (1987). 

Nonetheless, Pollock’s method can only be applied to Cartesian coordinate system. To satisfy the 

need to model more complex geological reservoirs, Prevost et al. (2002) extended the streamline 

simulation to unstructured grids, such as curvilinear corner-point geometry grids and unstructured 

triangular grids. The critical essence of tracing streamlines in unstructured grid blocks is to perform 

the tracing algorithm of structured grid in a unit cube transformed from the irregular grid block.  

To overcome the disadvantages in traditional particle tracing method in field tracer tests, such as 

numerical deviations or low computational efficiency for the solution of the velocity equation, low 
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resolution of the tracer front, Datta-Gupta and King (1995) proposed a semi-analytical approach as 

an alternative in which volumetric flow rate are approximated piecewise with continuity. Therefore, 

streamlines can be approximated as a hyperbolic function in each block to trace streamlines 

analytically.  

The limitation of Pollock’s method is that it assumes each streamline will only go through the cell 

face once without coming back, which means only one velocity is presented in each grid block face. 

This hypothesis seems untenable when it comes to the modelling of geologically complicated 

reservoirs where a streamline can come back and go through a cell more than once (Thiele, 2001). 

For these situations, finite element and finite volume methods are needed to improve the accuracy 

of streamlines.  

The use of triangular and polygonal grids in the finite element method makes it a better 

representation of the structurally complex stratum. It also assumes the pressure field to be a 

piecewise polynomial, the partial derivative of which can then be used to calculate the velocity 

distribution (Zhang, 2017; Zhang et al., 2021). As the calculated velocity field contains certain 

degrees of discontinuities along cell boundaries in traditional finite element method, Cordes and 

Kinzelbach (1992) introduced a method that can recalculate the flow rate at interfaces of sub-

quadrilaterals by mass conservation law, which contributes to a continuous velocity field. The 

mixed finite element method can also give results of flow rate at grid faces. Matringe et al. (2006) 

presented a new streamline tracing approach that makes it possible to trace streamlines in irregular 

girds consisted of triangles or quadrilaterals with consideration of heterogeneities. This method 

was based on the idea of mixed finite element methods and gave rise to a velocity approximation 
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function that is reasonable for streamline computations. They concluded that high-order tracing 

can produce smaller deviations in the computation of time-of-flight whereas it is restricted to two-

dimensional problems. As for the finite volume method, the main advantage of it is that it can be 

used to both structured and unstructured grids. Zhang et al. (2012) did a systematic study of the 

velocity interpolation methods in polygonal grid blocks, which are generally implemented as 

postprocessing after calculating the fluxes at the grid block interfaces for numerical scheme without 

calculating the velocity field directly. They highly recommended a lower-order locally conservative 

method rather than higher-order interpolation for streamline tracing because it gives analytic 

solution and increase the efficiency of implementation.  

Johansen (2010) proposed a new semi-analytical streamline tracing technique in that streamline 

and the time for a particle to travel through a streamline are calculated by a closed formula in each 

grid block. This method can be used in both Cartesian and Polar coordinate systems by using a 

different way to treat the anisotropy in near well regions. The researcher assumed a bilinear 

pressure function for two-dimensional problems and a trilinear pressure function for three-

dimensional problems so that the pressure is continuously distributed in the field. The mathematical 

expressions for the calculations of streamlines and time-of-flight can then be obtained by Darcy’s 

Law.  

The streamline simulations can be applied in the modelling of centrifuge experiments because it is 

capable of describing the flow state of fluids in the core and showing the stagnant areas caused by 

heterogeneities. The streamline distribution in a heterogeneous core is of course different from that 

in a homogeneous core; therefore, the effects of heterogeneities can be investigated by use of 
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streamlines.  

In this thesis, Pollock’s method is applied for semi-analytical tracing of streamlines in the 

modelling of centrifuge experiments because it is proved to a sophisticated streamline tracing 

method with high efficiency. Additionally, a digital model with a highly heterogeneous 

permeability field, generated by a Gaussian random field approach, is built and used for centrifuge 

simulations. We address the wetting phase saturations by mapping the transport problems onto one-

dimensional streamlines; therefore, an analytical saturation distribution and numerical average 

saturations can be obtained. In this thesis, a two-dimensional fluid system has been considered in 

the modelling of centrifuge experiments and the streamline simulation has been incorporated in the 

centrifuge simulation to visualize the heterogeneities in the core during the displacement.  

2.3 Two Phase Flow in Porous Media 

The transport problem along each streamline or stream tube in streamline tracing methods needs to 

be solved by mapping one-dimensional solutions of mass conservation equations. Solving the mass 

conservation equations for the two-phase immiscible displacement process under certain boundary 

conditions is called a Riemann problem. Buckley and Leverett (1942) proposed an analytical 

solution for the two-phase immiscible displacement front in one spatial dimension under constant 

flow rate condition. This theory assumes the constant flow rates of wells and uniform initial 

reservoir conditions. The mapping of the one-dimensional Riemann equations to the streamline or 

stream tube is the Riemann approach (Thiele, 1995).  

Higgins and Leighton (1962a, 1962b, 1964) were the first to use the Riemann solution from one-

dimensional displacement under constant flow rate (Buckley-Leverett theory) to simulate nonlinear 
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displacement for regular well patterns in a homogeneous areal field. Streamlines were bundled to 

form stream tubes to deal with the structurally complex reservoir and the fluid saturation was 

calculated in each streamtube. The flow resistance in each streamtube was recalculated at each time 

step even though the tube bundles were fixed during the displacement process. The volume of 

injected fluid in each streamtube was then distributed proportionally to the ratio of the flow 

resistance of each streamtube to the total resistance of the whole system. The results of Higgins 

and Leighton showed good agreement with the experimental data obtained from Dyes et al (1954). 

for viscosity ratios ranging from 0.1 to 1000.  

Martin et al. (1973) found that the results of streamline method for favorable mobility ratios are 

not as good as for unfavorable mobility ratios, which can probably be attributed to the fundamental 

assumption of fixed streamlines when the mobility ratio is less than unity. Additionally, he also 

argued that calculated streamlines in the water drainage region are almost independent of the 

upswept area but most of the pressure drop occurs in this region. Updating the stream tubes at the 

end of each time step as the fluid progresses may be a better solution for this problem.  

To explain the chemical reactions and physical diffusion in the main direction of flow, Bommer 

and Schechter (1979) found the solutions of the mass conservation equations for multi-phase flow 

in each streamline by virtue of a finite difference method. Martin and Wegner (1979) concluded 

that the conventional streamtube simulation method is suitable for most of the two-phase flow 

problems at lower computational cost compared to variable tube approaches. A new numerical 

streamline simulation method was proposed in the paper as well.  

Glimm et al. (1981) developed a solution of Riemann problem in that a local flow direction is 
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determined based on a pressure equation. The hyperbolic equations to tracing the shock front 

without numerical and physical dispersion for both homogeneous and heterogeneous reservoirs 

were introduced, which are applicable to immiscible flooding with changing mobility ratios.  

Bratvedt et al. (1992) proposed a new front tracking method with the consideration of gravity. The 

hyperbolic conservation equations were solved at each time step by a gravity driven computation 

method and a new way to calculate the saturation was also presented. The pressure equation was 

solved implicitly whereas the saturation equation was solved explicitly by a block based numerical 

streamline approach as the font progresses. Their method concentrated on the front tracking of 

discontinuous surface that was regarded as a separated object and can be used for any stream tube 

with various geometry.   

Thiele et al. (1996) solved the complicated nonlinear multiphase flow problems rapidly by the 

streamline simulation. They changed the stream tube geometries with time and solved the transport 

problem by Riemann approach instead of calculating tube resistances. This approach can precisely 

estimate the water breakthrough time for highly nonlinear displacements and relatively large time 

steps can be taken to capture the nonlinearities of the displacement since the trajectories of the 

stream tubes were almost unchanged. The main assumption for mapping analytical solutions to 

recalculated paths is that the paths of stream tubes do not vary a lot in each incremental time step.  

Glimm et al. (1999) presented an advanced algorithm for the interaction of an untracked shack 

wave with a tracked contact discontinuity and described the micro topology of the interface based 

on interface crossings with cell block edges.  

Nilsen and Lie (2009) used the Riemann approach in three-dimensional models for streamline 
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simulation, the results of which showed that streamline tracing and front tracking methods can be 

used to model compressible flow efficiently.  

Buckley and Leverett theory is only suitable for cases under constant flow rate boundary conditions 

but not constant pressure boundary conditions. The analytical Riemann solutions under constant 

pressure boundary conditions were proposed by Johansen et al. (2017) and they presented an 

algorithm for the explicit calculation of the total velocity. An analytical solution for the 

displacement front location, the breakthrough time at the outlet and saturation profiles after frontal 

breakthrough were given in this paper. Johansen and Liu (2017) solved the three-dimensional 

Riemann problem analytically in stream tubes with given cross sectional area, which has 

substantially extended the applications of Riemann approach along stream tubes.  

In this research thesis, Riemann approach along streamlines in oil displacement process under 

constant pressure boundaries is used to determine the flow rate as a function of simulation time, 

average water saturation and saturation profiles along streamlines in terms of time-of-flight. The 

major advantage of the semi-analytical method over the traditional numerical approach is that it 

produces less numerical error and substantially reduces the computational time. 
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3 Methodology for the Modelling of Centrifuge Experiments 

3.1 Overall Workflow for Modelling of Centrifuge Experiments 

In this section, the major procedures for the modelling of centrifuge experiments are summarized. 

When the centrifuge system is at equilibrium, the capillary pressure is equal to the pressure 

difference across the core (provided by the angular velocity). As the angular velocity is increased 

incrementally during centrifuge, different capillary pressures and pressure differences can be 

obtained. The capillary pressure is interpreted in each angular velocity (time step) using streamline 

tracing method.  

This thesis aims to study the influences of heterogeneity by using a two-dimensional centrifuge 

simulation method for phase saturation predictions proposed as shown in Figure 13. It is noted that 

Step 6 to 14 need to be done iteratively for each angular velocity from centrifuge experiments in 

the laboratory. When the rotational system becomes stable at the given angular velocity, the 

capillary pressure is a constant and equal to the pressure difference across the core. Thus, the 

numerical boundary condition for each iteration depends on the experimental value of capillary 

pressure. The two-dimensional centrifuge simulations in this thesis are conducted by using the 

streamline tracing method considering capillary pressure numerically in MRST. This section 

introduces the syntax and equations that are used in each step of the two-dimensional centrifuge 

simulation for phase saturation prediction.  

To visualize the flow regimes and predict phase saturation in the two-dimensional centrifuge 

simulation, the capillary pressure needs to be included in the streamline simulation at each angular 

velocity/time step. The built-in capillary pressure module in MRST can be used to include the 
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capillary pressure in the streamline simulations. The following syntax can be used to activate this 

capillary pressure module. In Step 4, the capillary numerical model (fluid model considering 

capillary pressure) is constructed by using: 

 𝑓𝑙𝑢𝑖𝑑 = 𝑖𝑛𝑖𝑡𝑆𝑖𝑚𝑝𝑙𝑒𝐹𝑙𝑢𝑖𝑑𝑃𝑐(′𝑝𝑛1′, 𝑝𝑣1, . . . )  (3.1) 

where 'pn'/pv - List of 'key'/value pairs defining specific fluid characteristics. 

The detailed equations used in this step are introduced in Section Error! Reference source not 

found.. 

In Step 5, the permeability distribution is plotted by using: 

 𝑝𝑙𝑜𝑡𝐶𝑒𝑙𝑙𝐷𝑎𝑡𝑎(𝐺, 𝐾)  (3.2) 

where 𝐾 is the permeability for each grid block of the digital model.  

In Step 6, the boundary conditions are imposed using: 

 𝑏𝑐 = 𝑝𝑠𝑖𝑑𝑒(𝑏𝑐, 𝐺, 𝑠𝑖𝑑𝑒, 𝑝);  (3.3) 

where 𝑠𝑖𝑑𝑒 is the end face of the digital model, 𝑝 is the pressure difference.  

The densities of fluids are not updated in each iteration and the equations used in other steps are 

also introduced in Figure 13.  
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 Figure 13 Flow chart for the two-dimensional centrifuge simulation 

3.2 Conversion of Experimental Centrifuge Data into Primary Drainage Capillary 

Pressure Curves 

The section introduces the details of converting experimental centrifuge data into drainage capillary 
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pressure curve as shown in Step (i) of Figure 13. The modified hyperbolic function is first used to 

fit the capillary pressure versus average saturation points since the shape of this function can 

represent the most of the typical capillary pressure curves. The Forbes-Spline method is then 

applied to convert capillary pressure versus average saturation curve to capillary pressure versus 

inlet face saturation curve (capillary pressure curve). 

3.2.1 The Fitting of Modified Hyperbolic Function on Experimental Data 

In this thesis, the modified hyperbolic function is first used to fit the average wetting phase 

saturation versus capillary pressure data points and then the average wetting phase saturation curve 

can be obtained. The traditional Forbes method for estimating the local wetting phase saturation is 

a simple finite difference method and the value of 𝑖𝑛𝑙𝑒𝑡𝑆𝑤  is estimated based on the value of 

𝑖𝑛𝑙𝑒𝑡𝑆𝑤 and 𝑎𝑣𝑒𝑆𝑤 in the previous step. Here, the initial value of 𝑖𝑛𝑙𝑒𝑡𝑆𝑤  can be taken as a unity 

if the core plug is fully saturated with brine. Nevertheless, the number of iterations is constrained 

to the number of the experimental data points in this method. For example, if only six data points 

are available in the average wetting phase saturation versus capillary pressure curve, the calculation 

in this differencing scheme will only be done with six points, the resulting capillary pressure curve 

of which may not be smooth or precise. To improve the accuracy of this scheme when data points 

are sparse or noisy, an approximated function, for example, a modified hyperbolic function, can be 

first used to fit capillary pressure versus average wetting phase saturation data points. The fitting 

average wetting phase saturation curve is a solid foundation for performing the centrifuge data 

reducing method when the number of experimental data points is small, since enough number of 

capillary pressure versus average saturation data points can be found on the fitting curve as required. 
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If the modified hyperbolic function does not give a good fit, the splines can be used. The modified 

hyperbolic function can be expressed as, 

where 𝑐, 𝑎, 𝑏, 𝛼 are coefficients in the function.  

The capillary pressure versus average saturation curve from modified hyperbolic fit can then be 

used as an input for the Forbes-Splines method.  

3.2.2 Forbes-Splines Method for the Calculation of Capillary Pressure Curves 

In the Forbes-Splines method, the data interpretation method developed by Forbes (1994) is applied 

to convert the average wetting phase saturations to the inlet face wetting phase saturations. The 

equations that are used in the Forbes-Splines scheme are Equation (3.5) to (3.22) in Section 3.2.2. 

The spline fit or interpolation technique is used to perform the calculation since the constraints on 

the spline function can be implemented to have a monotonic capillary pressure curve. Using spline 

fit to conduct the Forbes-Splines method can also obtain the best fit between the recalculated and 

the original capillary pressure versus average saturation curves. After the treatment of raw data 

from centrifuge experiments, an experimental capillary pressure curve can be obtained.  

Converting average saturation to inlet face saturation is necessary before the plotting of capillary 

pressure curve. In the literature review section, several reducing methods were discussed and they 

all have their limitations. For example, methods that are easy to be implemented without smoothing, 

fitting or averaging tend to significantly reduce the accuracy of the capillary pressure curve (Forbes, 

1994). Conversely, methods that require complicated differentiation and integration may be tedious 

and will force the data in an estimated mathematical form, which might produce unknown errors 

 𝑐 = |𝑃𝑐 − 𝑎|𝛼(𝑎𝑣𝑒𝑆𝑤 − 𝑏), 𝛼 > 0 (3.4) 
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(Hassler and Brunner. 1945; Bentsen and Anli, 1977; Nordtvedt et al., 1993). Thus, a conversion 

incorporating the Forbes method and spline interpolation technique, known as Forbes-Splines 

method, is used to convert the centrifuge data into drainage capillary pressure curves. The details 

about the derivation of Forbes method are given as the followings. The range of the exact value of 

inlet face saturation is limited into, 

 𝑆̅ + 𝑃𝑐

𝑑𝑆̅

𝑑𝑃𝑐1

≤ 𝑆 ≤ 𝑆̅ +
2√1 − 𝐵

1 + √1 − 𝐵
𝑃𝑐

𝑑𝑆̅

𝑑𝑃𝑐1

 (3.5) 

In integration form, it is expressed as, 

 ∫ 𝑆(𝑥𝑃𝑐1
)

1

0

𝑑𝑥 ≥ 𝑆̅ ≥ (1 +
1 − √1 − 𝐵

2√1 − 𝐵
) ∫ 𝑥

1−√1−𝐵

2√1−𝐵 𝑆(𝑥𝑃𝑐1
)𝑑𝑥

1

0

 (3.6) 

where 𝑥 is regarded as a dimensionless integration variable, 𝑆̅ is the average saturation across the 

core, 𝑃𝑐1
 is the capillary pressure at inlet face.  

For drainage experiments, 𝐵 is calculated as, 

 𝐵 = 1 − (
𝑟1

𝑟2
)

2

, 0 ≤ 𝐵 ≤ 1 (3.7) 

where 𝑟1 is the distance from center of rotation to outer face of the core plug and 𝑟2 is the distance 

from center of rotation to inner face of the core plug. 

The Equation (2.5) (fundamental equation) can then be estimated within this interval as, 

 𝑆̅(𝑃𝑐1
) ≈ (1 + 𝑎) ∫ 𝑥𝑎

1

0

𝑆(𝑥𝑃𝑐1
)𝑑𝑥 (3.8) 

where 0 ≤ 𝑎 ≤
1−√1−𝐵

2√1−𝐵
. 

To have good agreement between Equation (3.8) and the Equation (2.5) (fundamental equation), 



61 

 

the value of 𝑎 can be taken as 
1−√1−𝐵

1+2√1−𝐵
.  

The solution 𝑆𝑎 can then be taken as a good approximation of 𝑆, 

 𝑆̅(𝑃𝑐1
) = (1 + 𝑎) ∫ 𝑥𝑎

1

0

𝑆𝑎(𝑥𝑃𝑐1
)𝑑𝑥 (3.9) 

Rearranging Equation (3.9) by differentiation, 

 S(𝑃𝑐) ≈ 𝑆𝑎(𝑃𝑐) = 𝑆̅(𝑃𝑐) +
𝑃𝑐

1 + 𝑎

𝑑𝑆

𝑑𝑃𝑐1

(𝑃𝑐) (3.10) 

However, 𝑆𝑎  approximation is only accurate when 𝐵  is no more than 0.7. To make a better 

estimation of the inlet face saturation when 𝐵 is larger than 0.7, 𝑆𝑏 solution is proposed and can be 

obtained by solving the following equation,  

 𝑆̅(𝑃𝑐1
) = ∫ (𝑆𝑏(𝑥𝑃𝑐1

) +
𝑥𝑃𝑐1

1 + 𝑏

𝑑𝑆𝑏

𝑑𝑃𝑐
(𝑥𝑃𝑐1

)
1

0

)𝑑𝑥 (3.11) 

To make Equation (3.11) a reasonable approximation of the Equation (2.5) (fundamental equation), 

the value of 𝑏 can be taken as 
1+2√1−𝐵

1−√1−𝐵
. 

Then the solution of 𝑆𝛽 can be expressed as, 

 S(𝑃𝑐) ≈ 𝑆𝑏(𝑃𝑐) = (1 + 𝑏) ∫ 𝑥𝑏𝑆𝐻𝐵(𝑥𝑃𝑐)𝑑𝑥
1

0

 (3.12) 

Hence, a solution combining the solution of 𝑆𝑎 and 𝑆𝑏 can be written as, 

 S(𝑃𝑐) ≈ 𝑆𝑎𝑏 =
𝐵

2
𝑆𝑏 + (1 −

𝐵

2
)𝑆𝑎 (3.13) 

To solve this equation containing both integration and differentiation, the 𝑆𝛼(𝑃𝑐) can be rewritten 

as: 
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 𝑆𝑎(𝑃𝑐) =
𝑑𝑆̅𝑃𝑐1

1+𝑎

𝑑𝑃𝑐1
1+𝑎  (3.14) 

𝑆𝛽(𝑃𝑐) can be related to 𝑆𝐻𝐵: 

Defining {𝑆𝑖̅, 𝑃𝑖} and {𝑆𝑖̅−1, 𝑃𝑖−1} as the end points in each small area in the curve and 𝑃𝑖−1 < 𝑃𝑖. 

Subscripts i − μ denote the function value within the pressure region (𝑃𝑖−1, 𝑃𝑖) at pressure 𝑃𝑖 − 𝜇. 

The Equation (3.14) and Equation (3.15) are converted to:  

Equations above can be reorganized, and the solution is obtained as: 

The discrete capillary pressure versus inlet face saturation points can be obtained once the 

 𝑆𝐻𝐵 =
𝑑𝑃𝑐1𝑆̅

𝑑𝑃𝑐1
=

𝑑𝑃𝑐1
1+𝑏𝑆𝑏

𝑑𝑃𝑐1
1+𝑏  (3.15) 

 𝑆𝑎𝑖−1/2 =
𝑃𝑖

1+𝑎𝑆𝑖̅ − 𝑃𝑖−1
1+𝑎𝑆𝑖̅−1

𝑃𝑖
1+𝑎 − 𝑃𝑖−1

1+𝑎  (3.16) 

 
𝑃𝑖𝑆𝑖̅ − 𝑃𝑖−1𝑆𝑖̅−1

𝑃𝑖 − 𝑃𝑖−1
=

𝑃𝑖
1+𝑏𝑆𝑏̅𝑖 − 𝑃𝑖−1

1+𝑏𝑆𝑏̅𝑖−1

𝑃𝑖
1+𝑏 − 𝑃𝑖−1

1+𝑏  (3.17) 

 𝑆𝑎𝑖−1/2 =
𝑆𝑖̅ − (

𝑃𝑖−1

𝑃𝑖
)1+𝛼𝑆𝑖̅−1

1 − (
𝑃𝑖−1

𝑃𝑖
)1+𝛼

 (3.18) 

 𝑆𝑏𝑖 = (
𝑃𝑖−1

𝑃𝑖
)1+𝑏𝑆𝑏𝑖−1 +

1 − (
𝑃𝑖−1

𝑃𝑖
)1+𝑏

1 − (
𝑃𝑖−1

𝑃𝑖
)

[𝑆𝑖̅ − (
𝑃𝑖−1

𝑃𝑖
)𝑆𝑖̅−1 ] (3.19) 

 𝑆
𝑖−

1
2

+𝐵/4
≈ 𝑆

𝑎𝑏𝑖−
1
2

+
𝐵
4

= (1 −
𝐵

2
) 𝑆

𝑎𝑖−
1
2

+
𝐵

2
𝑆𝑏𝑖 (3.20) 

 0 ≤ B ≤ 1, B = 1 − (
𝑟1

𝑟2
)2  (3.21) 

 α =
1 − √1 − 𝐵

1 + 2√1 − 𝐵
=

𝑟2 − 𝑟1

𝑟2 + 2𝑟1
, 𝑏 =

2

𝑎
; 𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 (3.22) 
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conversion process has been done. Then the spline interpolation technique can be used to fit these 

discrete points to a smooth capillary pressure curve. Instead of fitting a single polynomial to all the 

data points at once, spline fitting technique divides the values into continuous interpolation 

intervals where low degree polynomials are used to fit the values (Schoenberg, 1988). The spline 

interpolation technique is preferable than other fitting techniques for it significantly reduces the 

interpolation errors. For spline interpolation, one low degree polynomial 𝑦 = 𝑓𝑖(𝑥) for the values 

within in (𝑥𝑖−1, 𝑦𝑖−1) and (𝑥𝑖, 𝑦𝑖), where 𝑖 = 1,2, … , 𝑛. Therefore, there will be 𝑛 polynomials for 

𝑛 + 1 knots. The first and the second derivatives of the successive polynomial functions should 

have same values at the connecting knots. 

In the interpretation process of centrifuge experiments, we can consider a polynomial function 

𝑃𝑐(𝑆𝑤) that can interpolate the values from (𝑆𝑤1, 𝑃𝑐1) to (𝑆𝑤2, 𝑃𝑐2) and we have, 

where 𝛼(𝑆𝑤) =
𝑆𝑤−𝑆𝑤1

𝑆𝑤2−𝑆𝑤1
 , 𝐴 = 𝑘1(𝑆𝑤2 − 𝑆𝑤1) − (𝑃𝑐2 − 𝑃𝑐1),  𝐵 = −𝑘2(𝑆𝑤2 − 𝑆𝑤1) + (𝑃𝑐2 − 𝑃𝑐1) , 

𝑘1, 𝑘2 are slopes for point (𝑆𝑤1, 𝑃𝑐1) and (𝑆𝑤2, 𝑃𝑐2)  respectively.  

Differentiating Equation (3.23) twice for the first and second derivatives, 

Substituting the value of 𝛼 when 𝑆𝑤 = 𝑆𝑤1, 𝑆𝑤2, the Equation (3.25) reduces to, 

 

𝑃𝑐(𝑆𝑤)  = (1 − 𝛼(𝑆𝑤))𝑃𝑐1 + 𝛼(𝑆𝑤)𝑃𝑐2 + 𝛼(𝑆𝑤)(1 − 𝛼(𝑆𝑤))[(1 − 𝛼(𝑆𝑤))𝐴

+ 𝛼(𝑆𝑤)𝐵] 

(3.23) 

 𝑃𝑐
′ =

𝑃𝑐2 − 𝑃𝑐1

𝑆𝑤2 − 𝑆𝑤1
+ (1 − 2𝛼)

𝐴(1 − 𝛼) + 𝐵𝛼

𝑆𝑤2 − 𝑆𝑤1
+ 𝛼(1 − 𝛼)

𝐵 − 𝐴

𝑆𝑤2 − 𝑆𝑤1
 (3.24) 

 𝑃𝑐
′′ = 2

𝐵 − 2𝐴 + (𝐴 − 𝐵)3𝛼

(𝑆𝑤2 − 𝑆𝑤1)2
 (3.25) 
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So now consider (𝑆𝑤𝑖, 𝑃𝑐𝑖) when 𝑖 = 1,2, … , 𝑛, 

where 𝛼 =
𝑆𝑤−𝑆𝑤(𝑖−1)

𝑆𝑤𝑖−𝑆𝑤(𝑖−1)
. 

The parameters for Equation (3.28) can be expressed as, 

where 𝑘0 = 𝑃𝑐1
′ (𝑆𝑤0), 𝑘𝑖 = 𝑃𝑐𝑖

′ (𝑆𝑤𝑖) = 𝑃𝑐(𝑖+1)
′ (𝑆𝑤𝑖)  

Therefore, the relationship between the slopes and the coordinates can be expressed as, 

Equation (3.31) to (3.33) can form 𝑛 + 1 linear equations that defines 𝑘0, 𝑘1, … , 𝑘𝑛. 

After the spline interpolation process, a capillary pressure curve from the discrete data points 

(𝑆𝑤𝑖, 𝑃𝑐𝑖), 𝑖 = 1,2, . . . , 𝑛 is obtained. The data process technique introduced in this section can be 

used to interpret the numerical generated and experimental 𝑃𝑐 versus 𝑎𝑣𝑒𝑆𝑤 data points, by which 

 𝑃𝑐
′′(𝑥1) = 2

𝐵 − 2𝐴

(𝑆𝑤2 − 𝑆𝑤1)2
 (3.26) 

 𝑃𝑐
′′(𝑥2) = 2

𝐵 − 2𝐴

(𝑆𝑤2 − 𝑆𝑤1)2
 (3.27) 

 𝑃𝑐𝑖 = (1 − 𝛼)𝑃𝑐(𝑖−1) + 𝛼𝑃𝑐𝑖 + 𝛼(1 − 𝛼)[(1 − 𝛼)𝐴𝑖 + 𝛼𝐵𝑖] (3.28) 

 𝐴𝑖 = 𝑘𝑖−1(𝑆𝑤𝑖 − 𝑆𝑤(𝑖−1)) − (𝑃𝑐𝑖 − 𝑃𝑐(𝑖−1)) (3.29) 

 𝐵𝑖 = −𝑘𝑖(𝑆𝑤𝑖 − 𝑆𝑤(𝑖−1)) + (𝑃𝑐𝑖 − 𝑃𝑐(𝑖−1)) (3.30) 

 

𝑘𝑖−1

𝑆𝑤𝑖 − 𝑆𝑤(𝑖−1)
+ (

1

𝑆𝑤𝑖 − 𝑆𝑤(𝑖−1)
+

1

𝑆𝑤(𝑖+1) − 𝑆𝑤𝑖
) 2𝑘𝑖 +

𝑘𝑖+1

𝑆𝑤(𝑖+1) − 𝑆𝑤𝑖

= 3(
𝑃𝑐𝑖 − 𝑃𝑐(𝑖−1)

(𝑆𝑤𝑖 − 𝑆𝑤(𝑖−1))
2 +

𝑃𝑐(𝑖+1) − 𝑃𝑐𝑖

(𝑆𝑤(𝑖+1) − 𝑆𝑤𝑖)
2) 

(3.31) 

 
2

𝑆𝑤1 − 𝑆𝑤0
𝑘0 +

1

𝑆𝑤1 − 𝑆𝑤𝑜
𝑘1 = 3

𝑃𝑐1 − 𝑃𝑐0

(𝑆𝑤1 − 𝑆𝑤𝑜)2
 (3.32) 

 
1

𝑆𝑤𝑛 − 𝑆𝑤(𝑛−1)
𝑘𝑛−1 +

2

𝑆𝑤𝑛 − 𝑆𝑤(𝑛−1)
𝑘𝑛 = 3

𝑃𝑐𝑛 − 𝑃𝑐(𝑛−1)

(𝑆𝑤𝑛 − 𝑆𝑤(𝑛−1))2
 (3.33) 
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the deviations between numerical and experimental data can be measured.  

3.3 Prediction of Capillary Pressure Curves Using Streamline Simulation 

3.3.1 Capillary Pressure Numerical Model Geometry and Boundary Conditions 

The digital model for streamline simulations is illustrated in Figure 14. A brine-saturated core plug 

is placed in a rotational system on an axis termed 𝑥 . This is a two-dimensional flow system 

allowing fluid flow in the direction normal to the 𝑥  axis. The inner boundary where 𝑥 = 𝑟1  is 

exposed to non-wetting phase, which submerges the core plug in the core holder. The core is 

exposed to the wetting phase at 𝑥 = 𝑟2. The pressure of the nonwetting phase is continuous in the 

space outside the core, whereas the non-wetting phase only has pressure continuity inside the core 

at 𝑥 = 𝑟1. In here, we only consider the drainage process. When the system begins to rotate, non-

wetting phase enters at 𝑟1 and wetting phase is displaced out of the core at 𝑟2. Accelerating the 

rotational speed further reduces the wetting phase saturation of the core.  

 

Figure 14 The geometry of a centrifuge core holder 

It is assumed that the capillary pressure at 𝑥 = 𝑟2 is zero (Forbes, 2000). Therefore, both wetting 

phase and non-wetting phase pressures are zero: 

 𝑃𝑛𝑤(𝑟2
+, 𝑡) = 0, 𝑃𝑤(𝑟2

+, 𝑡) = 0, 𝑃𝑐(𝑟2
+, 𝑡) = 0, (3.34) 

where the superscripts +, − denote the right and left side of the boundary respectively, subscripts 
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𝑛𝑤, 𝑤 denote non-wetting and wetting phase respectively, 𝑡 means rotational time.  

It is known that the pressure of the wetting phase is continuous and mobile at 𝑟2. 

 𝑃𝑤(𝑟2
+, 𝑡) = 𝑃𝑤(𝑟2

−, 𝑡) = 0, 𝑓𝑤(𝑥 = 𝑟2, 𝑡) = 1 (3.35) 

where 𝑓𝑤 is the water fractional flow function.   

The non-wetting phase pressure at 𝑟1 can be obtained by integrating the pressure from 𝑟2 to 𝑟1 and 

the pressure inside the core decreases hydrostatically across the core: 

 𝑃𝑛𝑤(𝑟1
+, 𝑡) = ∫ 𝑃𝑛𝑤𝑑𝑥

𝑟1

𝑟2

= ∫ 𝜌𝑛𝑤𝜔2𝑥𝑑𝑥
𝑟1

𝑟2

=
1

2
𝜌𝑛𝑤𝜔2(𝑟1

2 − 𝑟2
2) (3.36) 

The non-wetting phase has pressure continuity at 𝑟1: 

 𝑃𝑛𝑤(𝑟1
+, 𝑡) = 𝑃𝑛𝑤(𝑟1

−, 𝑡) = −
1

2
𝜌𝑛𝑤𝜔2(𝑟2

2 − 𝑟1
2), 𝑓𝑤(𝑥 = 𝑟1, 𝑡) = 0 (3.37) 

The wetting phase pressure is determined based the capillary relationship between two phases: 

 𝑃𝑤(𝑟1
+, 𝑡) = 𝑃𝑛𝑤(𝑟1

+, 𝑡) − 𝑃𝑐(𝑆𝑤(𝑟1
+, 𝑡)) = −

1

2
𝜌𝑛𝑤𝜔2(𝑟2

2 − 𝑟1
2) − 𝑃𝑐(𝑆𝑤(𝑟1

+, 𝑡)) (3.38) 

When no more wetting phase is displaced from the core, a balance between capillary pressure and 

centrifugal force has been established at 𝑟1 : 

 [
𝜕𝑃𝑐

𝜕𝑥
+ ∆𝜌𝜔2𝑥]𝑥=𝑟1

= 0 (3.39) 

where ∆𝜌 is the density difference between two phases. 

Therefore, the pressure difference across the core is equal to the capillary pressure between two 

phases at equilibrium: 

 ∆𝑃 = 𝑃𝑐(𝑡) =
1

2
∆𝜌𝜔2(𝑟2

2 − 𝑟1
2) (3.40) 
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3.3.2 Capillary Pressure Numerical Model Assumptions 

As previously discussed in Section 2.1.1, some assumptions need to be made in the streamline 

simulation. In this research thesis, the streamline simulation is performed by assuming constant 

pressure boundary conditions. Accordingly, the fluids in the system are in steady state flow when 

it reaches equilibrium. Waterfront tracking calculations are under the same boundary conditions. 

Additionally, there are assumptions relating to the data processing of centrifuge experiments. 

Considering the assumptions of streamline simulations and centrifuge experiments, following 

assumptions for the two-dimensional centrifuge simulation can be made: 

⚫ Incompressible rock and fluids 

⚫ Diffusive effects are neglected 

⚫ Gravity is negligible 

⚫ Capillary pressure is zero at the end face of the core 

⚫ Cavitation is not present in the core 

⚫ The fluids in the core have reached equilibrium when the displaced wetting phase is 

measured at each incremental rotational speed. Therefore, this fluid flow in the rotational 

system has become stable.  

In centrifuge experiments, oil and water can be assumed to be incompressible and diffusion free. 

Since the core is rotated at an ultra-high angular speed, the core is mainly subject to centrifugal 

acceleration so that gravity plays a minor role in the displacement process. Homogeneity of the 

core is not assumed allowing the effects of heterogeneity to be studied. Additionally, the fluid flow 

in the core is not restricted to one dimension.  
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3.3.3 Averaging Method for Permeability  

The permeabilities generated using a Gaussian field are distributed randomly in the digital model. 

It is essential to calculate the upscaled/average permeability of the whole model so that a digital 

model with a randomly distributed permeability field can have the same average permeability as 

the homogeneous model. Therefore, the predicted phase saturations calculated in a heterogeneous 

case can be compared to the values calculated in a homogeneous case by keeping the average 

permeability unchanged.  

The harmonic average permeability is calculated as: 

 𝐾∗ = (
1

𝐿
∫

1

𝐾(𝑥)

𝐿

0

𝑑𝑥)−1 (3.41) 

where 𝐿 is the length of the core. 

The arithmetic average permeability can be calculated as: 

 𝐾∗ =
1

𝐿𝐻
∫ ∫ 𝐾(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝐿

0

𝐻

0

 (3.42) 

The above two equations can be combined to calculate the average permeability: 

 𝑲∗ = [
𝐴−1(𝐾) 0

0 𝐴1(𝐾)
]  (3.43) 

This average permeability is sometimes called harmonic-arithmetic average permeability. 

3.3.4 Introduction of Streamline Tracing Method 

It is widely accepted that streamline simulation receives increased attention in field/core scale 

simulation for petroleum engineering because it can efficiently visualize and describe the fluid flow. 

The three-dimensional transport problem is converted to one-dimensional transport problem along 

each streamline during the simulation. This conversion process decouples a three-dimensional 
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problem to a one-dimensional problem and makes solving transport equations along streamlines 

tractable. The elliptic pressure equation is solved under constant boundary conditions, so that the 

velocity field can be generated according to Darcy’s Law. The constant pressure boundary 

condition is maintained when no more fluid is displaced out of the rotated core during centrifuge. 

Then the streamlines are calculated accordingly. Therefore, the accuracy of a streamline simulator 

relies heavily on pressure solutions and streamline trajectories. Datta-Gupta and King (2007) 

summarized the main procedures for most of the streamline simulation: 

1. Calculate the pressure field by solving the elliptic pressure equation under given boundary 

conditions by following Step 7 of Figure 13. 

2. Generate the velocity field according to Darcy’s Law by following Step 7 of Figure 13. 

3. Compute time-of-flight along streamlines by following Step 9 of Figure 13. 

4. Plot streamlines according to mobility ratios and well conditions by following Step 10 of 

Figure 13. 

5. Solve the transport equation in the streamlines for a proper time interval by following Step 

12 of Figure 13. 

6. Obtain saturation profile using streamline by following Step 13 of Figure 13. 

In the Pollock-based streamline simulation, the velocity functions are approximated and the 

pressure in each grid block is assumed to be constant.  

In centrifuge experiments, fluids in the core are assumed to be at equilibrium at each incremental 

rotational speed; therefore, streamlines in the centrifuge simulation were traced in steady state flow 

in which the flow characteristics are independent of time. The streamline is shown in 
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Figure 15 and defined as: 

where × is the cross product; 𝒗 is the flow velocity vector, 𝒗 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧); 𝑑𝝃 is the infinitesimal 

arc-length of the streamline, 𝑑𝝃 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧).  

 

Figure 15 Streamline and the velocity vector 

This results in the definition of a streamline as, 

In the 𝑥 − 𝑦 plane, the above equation reduces to, 

The instantaneous geometrical characteristic of the streamline can be described as, 

where 𝜓(𝑥, 𝑦) is the stream function, the value of which is constant along a streamline (Lagrange, 

1781). 

Differentiating the stream function along a certain streamline and we have, 

 𝒗 × 𝑑𝝃 = 0 (3.44) 

 
𝑑𝑥

𝑣𝑥
=

𝑑𝑦

𝑣𝑦
=

𝑑𝑧

𝑣𝑧
 (3.45) 

 
𝑑𝑥

𝑣𝑥
=

𝑑𝑦

𝑣𝑦
   or   𝑣𝑦𝑑𝑥 − 𝑣𝑥𝑑𝑦 = 0 (3.46) 

 𝜓(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (3.47) 
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Combining Equation (3.46) and Equation (3.48) results in: 

The mathematical relationships between the stream function and the directional components of the 

flow velocity vector can be derived as, 

Thus, the algebraic expression for the stream function can be derived by replacing the partial 

differentials of the stream function with the directional components of the velocity vector, 

In the centrifuge simulation of this thesis, a particle is released at the launching point at the inlet 

face of the core and travels through the porous media and lands at the exit point at the outlet face. 

The (forward) time-of-flight 𝜏 is defined as the time that a particle takes to travel form its starting 

point (𝑥0, 𝑦0, 𝑧0) to a particular point (𝑥, 𝑦, 𝑧) on the streamline. The time-of-flight can then be 

defined in terms of 𝑥, 𝑦, 𝑧, 

A parameter (𝑥, 𝑦 𝑜𝑟 𝑧) that is monotonically changing along the streamline will be selected as a 

directional parameter when the time-of-flight is calculated. The directional velocity will become 

zero as the denominator if the chosen directional parameter is not monotonic, which will introduce 

 𝑑𝜓 =
𝜕𝜓

𝜕𝑥
𝑑𝑥 +

𝜕𝜓

𝜕𝑦
𝑑𝑦 = 0 (3.48) 

 
𝜕𝜓

𝜕𝑥
𝑑𝑥 +

𝜕𝜓

𝜕𝑦
𝑑𝑦 = 𝑣𝑦𝑑𝑥 − 𝑣𝑥𝑑𝑦 (3.49) 

 𝑣𝑦 =
𝜕𝜓

𝜕𝑥
; 𝑣𝑥 = −

𝜕𝜓

𝜕𝑦
 (3.50) 

 𝜓 = ∫ 𝑣𝑦𝑑𝑥 − ∫ 𝑣𝑥𝑑𝑦 (3.51) 

 𝜏 = ∫
𝑑𝑥

𝑣𝑥

𝑥

𝑥0

= ∫
𝑑𝑦

𝑣𝑦

𝑦

𝑦0

= ∫
𝑑𝑧

𝑣𝑧

𝑧

𝑧0

 (3.52) 
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large deviations in time-of-flight calculations. The particle will stop at a point where all directional 

velocities become zero. To represent the spatial coordinate of a point on a streamline with the time-

of-flight and the Cartesian coordinates, time-of-flight should be used as a spatial coordinate during 

streamline simulation.  

3.3.5 Solution of the Pressure Distribution 

In the streamline tracing method used in this research thesis, the pressure values at grid blocks need 

to be obtained so that the pressure and velocity field can be approximated accordingly. A finite 

difference method for solving the pressure equations in centrifuge experiments was used. The 

assumption of the governing equations for the fluid flow in the porous media is the fluid and the 

porous media are incompressible, gravity is negligible, and the fluid flow is under steady-state 

condition. By assuming the capillary pressure to be constant at each time step, the capillary pressure 

is included in the calculation of pressure distribution when the centrifuge system is at equilibrium. 

These assumptions are valid when no more wetting phase fluid is produced at the graduated tube 

(Andersen et al., 2017). 

The mass conservation equation is. 

where, 𝐴 is area, 𝒖 is Darcy velocity, 𝑞 is the volumetric outflow/inflow rate. 

The modelling of the centrifuge experiment using MRST is dynamic and unstable; however, the 

rotated system in the lab-scale experiment is stable at the time of measurement. Thus, the flow rate 

for a given angular velocity in the lab-scale experiment can be measured and then it can be used to 

find the corresponding stable moment in the dynamic modelling of the centrifuge experiment.  

 ∇ ∙ (𝐴𝒖) = 𝑞 (3.53) 



73 

 

The fluids in the porous media comply to Darcy’s Law, 

where 𝒖 is Darcy velocity, 𝜆 is the mobility and 𝑃 is pressure.  

Combining the Equation (3.53) and Equation (3.54) together produces the Laplace equation, 

The Laplace equation is also called the pressure equation that should be solved. The pressure at the 

centered node of the gird block can then be calculated.  

As shown in Figure 16, the pressure gradient 
𝜕𝑃

𝜕𝑥
  from the grid block (𝑖)  to (𝑖 + 1)  in the finite 

difference method is replaced with, 

 

 
Figure 16 Finite difference method in pressure calculation 

The 𝜆 on the interface (𝑖 + 1/2) can be determined by the harmonic mean, 

Therefore, the out normal flux from the grid block (𝑖) to (𝑖 + 1) is, 

 𝒖 = −𝜆∇𝑃 (3.54) 

 ∇ ∙ (𝐴𝜆∇𝑃) = 𝑞 (3.55) 

 
𝜕𝑃

𝜕𝑥
=

2(𝑃𝑖+1 − 𝑃𝑖)

∆𝑥𝑖 + ∆𝑥𝑖+1
 (3.56) 

 𝜆𝑖+1/2 = (∆𝑥𝑖 + ∆𝑥𝑖+1)(
∆𝑥𝑖

𝜆𝑖
+

∆𝑥𝑖+1

𝜆𝑖+1
)−1 (3.57) 
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An approximation to the 𝐴𝒖 in the mass conservation equation can be obtained by summing all 

interfaces to the specific grid block. To simplify the expressions, the transmissibility in the interface 

(𝑖 + 1/2) is estimated, 

Substituting the expression of transmissibility into Equation (3.58), the relationship of the grid 

block wise constant pressure 𝑃𝑖.𝑗.𝑘 can be derived, 

where the 𝑘 index is the 𝑧 coordinate direction, the 𝑗 index is the 𝑦 coordinate direction, and the 𝑖 

index is the 𝑥 coordinate direction.  

It is noted the derivation of the pressure distribution is based on a three-dimensional system but it 

is also applicable to two-dimensional system by ignoring the 𝑧 coordinate. After implementing this 

method, the pressure at each grid block can be calculated, which is the fundamental for tracing 

streamlines in a grid.  

3.3.6 Semi-Analytical Generation of Streamlines 

In the streamline tracing process, the particle is traced by calculating the incremental changes of 

the particle’s coordinate, which can be obtained by multiplying velocity components by a finite 

 
𝑣𝑖+1/2 =

𝑢𝑖+1/2

∅
=

2(𝑃𝑖+1 − 𝑃𝑖)

∅(
∆𝑥𝑖

𝜆𝑖
+

∆𝑥𝑖+1

𝜆𝑖+1
)
 

(3.58) 

 𝑇𝑖+1/2 = 2∆𝑦𝑖∆𝑥𝑖(
∆𝑥𝑖

𝜆𝑖
+

∆𝑥𝑖+1

𝜆𝑖+1
)−1 (3.59) 

 

𝑇
𝑖+

1
2

,𝑗,𝑘
(𝑃𝑖,𝑗,𝑘 − 𝑃𝑖+1,𝑗,𝑘) + 𝑇

𝑖−
1
2

,𝑗,𝑘
(𝑃𝑖,𝑗,𝑘 − 𝑃𝑖−1,𝑗,𝑘) + 𝑇𝑖,𝑗+1,𝑘(𝑃𝑖,𝑗,𝑘 − 𝑃𝑖,𝑗+1,𝑘)

+ 𝑇𝑖,𝑗−1,𝑘(𝑃𝑖,𝑗,𝑘 − 𝑃𝑖,𝑗−1,𝑘) + 𝑇
𝑖,𝑗,𝑘+

1
2

(𝑃𝑖,𝑗,𝑘 − 𝑃𝑖,𝑗,𝑘+1)

+ 𝑇
𝑖,𝑗,𝑘−

1
2

(𝑃𝑖,𝑗,𝑘 − 𝑃𝑖,𝑗,𝑘−1) = 𝑞𝑖,𝑗,𝑘; 

(3.60) 
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time step. The above process should be repeated iteratively until the particle reaches outer boundary 

or the locations are at intermediate times required. From here, it is noted that the approximation of 

velocity field in the fluid flow is essential for tracing a streamline explicitly. The velocity vector 

and pressure at every point in the computation filed should be known for analytical tracing of 

streamlines, which is difficult to be realized. Therefore, the streamline tracing method used in this 

thesis is a semi-analytical particle tracking method with velocities calculated from a block centered 

finite-difference pressure solution (Pollock, 1988). There are three major ways to interpolate the 

velocity vector from the interface flux from a finite-difference model and some other interpolation 

schemes may also be reasonable: step function interpolation, linear interpolation and multilinear 

interpolation. The centrifuge simulation applies the linear interpolation by assuming that the 

principal velocity components vary linearly with respect to their own coordinate direction instead 

of all three principal directions in a grid block. The main advantage of implementing this 

interpolation scheme is that all the velocity component functions can be integrated directly in each 

individual grid block for an explicit solution of a streamline segments. Thus, the additional 

numerical deviations and constraints of time step are excluded because explicit computation are 

not necessary. In the beginning of the drainage centrifuge simulation, the core with the wetting 

phase fluid inside is submerged by the nonwetting phase fluid. When core begins to rotate, the 

nonwetting fluid will start to enter the core and this can be considered as the injection for all grids. 

In the meantime, the wetting phase will be displaced out of the core, which can be considered as 

the production for all grids. Therefore, the following equations can be derived.  

The mass conservation equation in a steady-state flow system is, 
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where 𝑣𝑥 , 𝑣𝑦, 𝑣𝑧 are the principal components of the average linear velocity vector, ∅ is porosity 

and 𝑊  is the volume rate of water produced or injected by internal sources and sinks per unit 

volume of aquifer. 

Figure 17 indicates a finite-sized cell of the flow field and the velocity components of inflow and 

outflow across six faces.  

 

Figure 17 Finite-difference cell and definition of cell face flows 

The six faces in this cube are 𝑥1, 𝑥2, 𝑦1, 𝑦2, 𝑧1, 𝑧2 . Face 𝑥1  is the face perpendicular to the 𝑥 

direction at 𝑥 = 𝑥1 and the other five faces are defined in the same principles. The intercell average 

velocity component can be calculated as, 

 
𝛿(∅𝑣𝑥)

𝛿𝑥
+

𝛿(∅𝑣𝑦)

𝛿𝑦
+

𝛿(∅𝑣𝑧)

𝛿𝑧
= 𝑊 (3.61) 

 𝑣𝑥1 = 𝑄𝑥1/(𝑛∆𝑦∆𝑧) (3.62a) 

 𝑣𝑥2 = 𝑄𝑥2/(𝑛∆𝑦∆𝑧) (3.62b) 

 𝑣𝑦1 = 𝑄𝑦1/(𝑛∆𝑥∆𝑧) (3.62c) 

 𝑣𝑦2 = 𝑄𝑦2/(𝑛∆𝑥∆𝑧) (3.62d) 

 𝑣𝑧1 = 𝑄𝑧1/(𝑛∆𝑥∆𝑧) (3.62e) 
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where 𝑄 is a volume flow rate across a cell face, ∆𝑥, ∆𝑦, ∆𝑧 are the infinitesimal cell dimensions 

in the respective coordinate directions. Given the internal sources or sinks within the cell, the mass 

conservation equation can be written as, 

where 𝑄𝑠 are the sources or sinks in the grid block. 

The pressure at the central node of the grid block can be calculated by substituting Darcy’s Law 

for each of the flow terms in the mass conservation equation (McDonald and Harbaugh, 1988). The 

solution of the resulting algebraic expressions can produce the pressure at the center of the 

calculated grid block. The other pressure values at six neighboring cells can be obtained with 

feasible approximation of the transmissibility between cells. Once all the pressure values have been 

computed, the intercell flow rates in Equation (3.62) can be calculated by use of Darcy’s Law.  

The next step is to calculate the velocity vector at every point of the flow filed based on the flow 

rates between cells, which can be easily achieved using the linear interpolation scheme. A 

continuous or piece-wise continuous function is used to interpolate the velocity components in a 

grid block, 

where 𝐴𝑥 , 𝐴𝑦, 𝐴𝑧  are the velocity component gradients within the cell and can be expressed as, 

 𝑣𝑧2 = 𝑄𝑧2/(𝑛∆𝑥∆𝑧) (3.62f) 

 
(∅𝑣𝑥2 − ∅𝑣𝑥1)

∆𝑥
+

(∅𝑣𝑦2 − ∅𝑣𝑦1)

∆𝑦
+

(∅𝑣𝑧2 − ∅𝑣𝑧1)

∆𝑧
=

𝑄𝑠

∆𝑥∆𝑦∆𝑧
 (3.63) 

 𝑣𝑥 = 𝐴𝑥(𝑥 − 𝑥1) + 𝑣𝑥1 (3.64a) 

 𝑣𝑦 = 𝐴𝑦(𝑦 − 𝑦1) + 𝑣𝑦1 (3.64b) 

 𝑣𝑧 = 𝐴𝑧(𝑧 − 𝑧1) + 𝑣𝑧1 (3.64c) 
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The velocity vector field computed from Equation (3.64) to (3.65) are continuous and satisfies the 

mass conservation equation at every point in the grid block, which is significant because it ensures 

that distributions of streamlines will be dependent on the movement of water through the core.  

Given the velocity distribution, a particle in the system can now be traced and the corresponding 

path line can be generated. The x-component of the particle’s velocity changes with the rate as, 

where the subscript 𝑝 means the travelling particle. 

The x-component of particle’s velocity can be expressed as, 

Differentiating Equation (3.64a) with respect to x we have, 

Substituting Equation (3.67) and (3.68) in Equation 3.66, 

Equations in the other coordinate direction can be obtained following the same derivation method, 

 𝐴𝑥 = (𝑣𝑥2 − 𝑣𝑥1)/∆𝑥 (3.65a) 

 𝐴𝑦 = (𝑣𝑦2 − 𝑣𝑦1)/∆𝑦 (3.65b) 

 𝐴𝑧 = (𝑣𝑧2 − 𝑣𝑧1)/∆𝑧 (3.65c) 

 (
𝑑𝑣𝑥

𝑑𝑡
)𝑝 = (

𝑑𝑣𝑥

𝑑𝑥
)(

𝑑𝑥

𝑑𝑡
)𝑝 (3.66) 

 𝑣𝑥𝑝 = (𝑑𝑥/𝑑𝑡)𝑝 (3.67) 

 
𝑑𝑣𝑥

𝑑𝑥
= 𝐴𝑥 (3.68) 

 (
𝑑𝑣𝑥

𝑑𝑡
)𝑝 = 𝐴𝑥𝑣𝑥𝑝 (3.69) 

 (
𝑑𝑣𝑦

𝑑𝑡
)𝑝 = 𝐴𝑦𝑣𝑦𝑝 (3.70) 

 (
𝑑𝑣𝑧

𝑑𝑡
)𝑝 = 𝐴𝑧𝑣𝑧𝑝 (3.71) 
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Equation (3.69) to (3.71) can be rearranged and integrated between 𝑡1 and 𝑡2 (𝑡2 > 𝑡1), 

The 𝑥, 𝑦, 𝑧-coordinate functions with respect to time 𝑡2 can be obtained by substituting Equation 

(3.64) in the above equations, 

𝑣𝑥𝑝(𝑡1), 𝑣𝑦𝑝(𝑡1), 𝑣𝑧𝑝(𝑡1)   are known functions of the coordinates so that the coordinates of the 

particle at time 𝑡2 can be calculated from Equation (3.72) to (3.74). 

Figure 18 shows a two-dimensional streamline in an orthogonal grid block.  

 ln [
𝑣𝑥𝑝(𝑡2)

𝑣𝑥𝑝(𝑡1)
] = 𝐴𝑥∆𝑡 (3.72) 

 ln [
𝑣𝑦𝑝(𝑡2)

𝑣𝑦𝑝(𝑡1)
] = 𝐴𝑦∆𝑡 (3.73) 

 ln [
𝑣𝑧𝑝(𝑡2)

𝑣𝑧𝑝(𝑡1)
] = 𝐴𝑧∆𝑡 (3.74) 

 𝑥𝑝(𝑡2) = 𝑥1 + (
1

𝐴𝑥
) [𝑣𝑥𝑝(𝑡1) exp(𝐴𝑥∆𝑡) − 𝑣𝑥1] (3.75) 

 𝑦𝑝(𝑡2) = 𝑦1 + (
1

𝐴𝑦
) [𝑣𝑦𝑝(𝑡1) exp(𝐴𝑦∆𝑡) − 𝑣𝑦1] (3.76) 

 𝑧𝑝(𝑡2) = 𝑧1 + (
1

𝐴𝑧
) [𝑣𝑧𝑝(𝑡1) exp(𝐴𝑧∆𝑡) − 𝑣𝑧1] (3.77) 
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Figure 18 Schematic of a streamline through an orthogonal grid block in 2D 

For the present example, the particle enters in P and velocity components at the four faces require 

that the particle exits in either face 𝑦2 or face 𝑥2. The key to find out the actual exiting face is 

comparing the travel time that the particle takes to arrive at face 𝑦2 and face 𝑥2, which can be 

calculated from Equation (3.72) and (3.73), 

The smaller value of ∆𝑡𝑥  and ∆𝑡𝑦  is the actual incremental travel time, known as ∆𝑡𝑒  and the 

corresponding exiting coordinates can be computed. However, if ∆𝑡𝑥  is the same as ∆𝑡𝑦 , the 

particle will leave the cell at the corner point. The exiting coordinates of the particle can then be 

calculated as, 

 ∆𝑡𝑥 = (1/𝐴𝑥)ln (𝑣𝑥2/𝑣𝑥𝑝) (3.78) 

 ∆𝑡𝑦 = (1/𝐴𝑦)ln (𝑣𝑦2/𝑣𝑦𝑝) (3.79) 

 𝑥𝑒 = 𝑥1 + (
1

𝐴𝑥
) [𝑣𝑥𝑝(𝑡𝑝) exp(𝐴𝑥∆𝑡𝑒) − 𝑣𝑥1] (3.80) 
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The time that a particle takes to leave the cell is: 𝑡𝑒 = 𝑡𝑝 + ∆𝑡𝑒, which is called as time-of-flight. 

This step is repeated until the particle reaches the boundary so that the entire streamline tracking 

the particle through the whole system can be generated.  

3.4 Two-phase Displacement Considering Capillary Pressures 

In centrifuge simulation based on streamline methods, two-dimensional transport problems need 

to be decoupled to one-dimensional problems along streamlines that can be solved by the Riemann 

approach. Buckley and Leverett (1942) presented analytical Riemann solutions in one-dimensional 

two-phase problems under constant flow rate boundary conditions, whereas the solutions under 

constant pressure boundary conditions were proposed by Johansen and James (2016). To obtain the 

average water saturation in centrifuge experiments, a Riemann solution under constant pressure 

boundary conditions is needed. In this section, the basic flow equations for immiscible two-phase 

displacement during centrifuge are introduced. Then the analytical Riemann solutions for the 

constant flow rate boundary condition and constant pressure boundary condition are given.  

3.4.1 Flow Equations in Two-phase Flow Problems 

In the centrifuge experiments, there are two phases (wetting and non-wetting phases) existing in 

the core plug under rotation. A certain volume of the wetting phase fluid is produced in the 

graduated tube at each incremental rotational speed, and it is assumed that fluids in the core are 

immiscible and incompressible. Therefore, this is an immiscible, incompressible two-phase flow 

problem.  

For two-phase flow in the core, the mass conservation equation for phase 𝛼 can be written as, 

 𝑦𝑒 = 𝑦1 + (
1

𝐴𝑦
) [𝑣𝑦𝑝(𝑡𝑝) exp(𝐴𝑦∆𝑡𝑒) − 𝑣𝑦1] (3.81) 
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where ∅ is the rock porosity, 𝜌 is the density of the fluid, 𝑆 is the saturation,  𝑣⃗ is the macroscopic 

Darcy velocity, 𝑞  denotes fluid sources and sinks, subscript 𝑤, 𝑛  denotes wetting phase and 

nonwetting phase respectively. 

Considering nonwetting phase pressure 𝑝𝑛 and wetting phase saturation 𝑆𝑤 as primary variables, 

Equation (3.82) and (3.83) become, 

where 𝑲 is the main permeability,𝑘𝑟𝑤, 𝑘𝑟𝑛 are relative permeability of wetting and non-wetting 

phase respectively, z is the vertical coordinate, 𝑔 is the gravitational acceleration.  

It is assumed that porosity and fluid densities are constant in the incompressible flow, so the mass 

conversation equations reduce to, 

The total Darcy velocity in terms of the pressure for the nonwetting phase is, 

 
𝜕

𝜕𝑡
(∅𝜌𝑤𝑆𝑤) + ∇ ∙ (𝜌𝑤𝑣⃗𝑤) = 𝜌𝑤𝑞𝑤 (3.82) 

 
𝜕

𝜕𝑡
(∅𝜌𝑛𝑆𝑛) + ∇ ∙ (𝜌𝑛𝑣⃗𝑛) = 𝜌𝑛𝑞𝑛 (3.83) 

 
𝜕

𝜕𝑡
(∅𝜌𝑤𝑆𝑤) + ∇ ∙ (

𝜌𝑤𝑲𝑘𝑟𝑤

𝜇𝑤

(∇𝑝𝑛 − ∇𝑃𝑐(𝑆𝑤) − 𝜌𝑤𝑔∇z)) = 𝜌𝑤𝑞𝑤 (3.84) 

 
𝜕

𝜕𝑡
(∅𝜌𝑛(1 − 𝑆𝑤)) + ∇ ∙ ( 

𝜌𝑛𝑲𝑘𝑟𝑛

𝜇𝑛
(∇𝑝𝑛 − 𝜌𝑛𝑔∇z)) = 𝜌𝑛𝑞𝑛 (3.85) 

 ∅
𝜕𝑆𝑤

𝜕𝑡
+ ∇ ∙ (𝑣⃗𝑤) = 𝑞𝑤 (3.86) 

 ∅
𝜕𝑆𝑛

𝜕𝑡
+ ∇ ∙ (𝑣⃗𝑛) = 𝑞𝑛 (3.87) 

 

𝑣⃗ = 𝑣⃗𝑛 + 𝑣⃗𝑤 = −𝝀𝒏∇𝑝𝑛 − 𝝀𝒘∇𝑝𝑤 + (𝝀𝒏𝜌𝑛 + 𝝀𝒘𝜌𝑤)

= −(𝝀𝑛 + 𝝀𝒘)∇𝑝𝑛 + 𝝀𝒘∇𝑝𝑐 + (𝝀𝒏𝜌𝑛 + 𝝀𝒘𝜌𝑤)𝑔∇𝑧 

(3.88) 
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where 𝝀𝑛, 𝝀𝑤 are mobilities of nonwetting phase and wetting phase respectively. 

Rearranging the above equation and we have, 

where total mobility 𝛌 = 𝝀𝒏 + 𝝀𝒘 = 𝜆𝐊 and total source 𝑞 = 𝑞𝑛 + 𝑞𝑤. 

This is the pressure equation governing incompressible two-phase flow, which has an elliptic 

character.  

The expression of 𝑣⃗𝑤 can be solved by multiplying phase velocity by the other phase’s mobility 

and subtracting the results, 

Inserting Equation (3.90) into Equation (3.89), the saturation equation (transport equation) can be 

written as, 

where ∆𝜌 = 𝜌𝑤 − 𝜌𝑛, fractional flow function 𝑓𝑤 =
𝜆𝑤

𝜆𝑤+𝜆𝑛
. 

The capillary pressure term on the right-hand side denotes the saturation equation has a parabolic 

character.  

3.4.2 The Buckley-Leverett Displacement Theory 

In the streamline simulation, two-dimensional transport problems in grid blocks can be decoupled 

to a series of one-dimensional problems along streamlines, in which analytical solutions can be 

applied. Thus, the Riemann problem for a one-dimensional system can be solved. Buckley and 

 −∇ ∙ (λ𝐊∇𝑝𝑛) = q − ∇[𝝀𝒘∇𝑝𝑐 + (𝝀𝒏𝜌𝑛 + 𝝀𝒘𝜌𝑤)𝑔∇𝑧] (3.89) 

 

𝜆𝑛𝑣⃗𝑤 − 𝜆𝑤𝑣⃗𝑛 = 𝜆𝑣⃗𝑤 − 𝜆𝑤𝑣⃗

= −𝜆𝑛𝜆𝑤𝐊(∇𝑝𝑤 − 𝜌𝑤g∇𝑧) + 𝜆𝑛𝜆𝑤𝐊(∇𝑝𝑛 − 𝜌𝑛g∇𝑧)

= 𝜆𝑛𝜆𝑤𝐊[∇𝑝𝑐 + (𝑝𝑤 − 𝜌𝑤)g∇𝑧] 

(3.90) 

 ∅
𝜕𝑆𝑤

𝜕𝑡
+ ∇ ∙ [𝑓𝑤𝑣⃗ + 𝑓𝑤𝜆𝑛𝑲Δ𝜌𝑔∇𝑧] = 𝑞𝑤 − ∇ ∙ (𝑓𝑤𝜆𝑛𝑲𝑃𝑐

′∇𝑆𝑤) (3.91) 
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Leverett developed an analytical Riemann solution for a two-phase immiscible displacement in a 

one-dimensional porous media system, as shown in Figure 19. The system is assumed to have an 

inclination of 𝛼 with the horizontal plane and the fluids and rock are incompressible.  

 
Figure 19 Flow system in Buckley-Leverett theory 

The Darcy’s Law for oil and water can be written as, 

where 𝐴 is the cross-sectional area of the flow system, 𝜆𝑤, 𝜆𝑜 are the mobility ratio of the water 

and oil, respectively. 

The total flow rate 𝑞 is, 

The capillary pressure between two phases is given by, 

Combining above equations, the fractional flow function of water can be expressed as, 

where 𝜆 is the total mobility ratio, ∆𝜌 is the density different between water and oil.  

Consider a horizontal medium in the absence of capillary forces, the expression for functional flow 

function reduces to, 

 𝑞𝑤 = −𝐴𝜆𝑤(
𝜕𝑝𝑤

𝜕𝑥
) (3.92) 

 𝑞𝑜 = −𝐴𝜆𝑜(
𝜕𝑝𝑜

𝜕𝑥
) (3.93) 

 𝑞𝑡 = 𝑞𝑜 + 𝑞𝑤 (3.94) 

 𝑝𝑜 − 𝑝𝑤 = 𝑃𝑐 (3.95) 

 𝑓 =
𝜆𝑤

𝜆
+

𝜆𝑤𝐴

𝑞𝜆

𝑑𝑃𝑐(𝑆𝑤)

𝑑𝑆𝑤

𝜕𝑆𝑤

𝜕𝑥
 (3.96) 
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The mass conservation equation of water in a control volume of length ∆𝑥 in the flow system for 

a time step of ∆𝑡 can be expressed as, 

When ∆𝑥 and ∆𝑡 are getting close to zero, differentiating the above equation partially, 

The density of water is a constant because fluids are incompressible, the above equation has 

become, 

Combining the fractional flow function and above equation yields, 

Rewriting the above equation, 

Equation (3.102) is called as Buckley-Leverett equation that gives an analytical Riemann solution. 

The water saturation profile is a function of both of 𝑥 and 𝑡, and the derivative of water saturation 

can be written as, 

The propagation of saturation profile can be tracked by setting the total derivative of the water 

saturation to be zero, 

 𝑓 =
𝜆𝑤

𝜆
 (3.97) 

 [(𝑞𝑤𝜌𝑤)𝑥 − (𝑞𝑤𝜌𝑤)𝑥+Δ𝑥]Δ𝑡 = [(𝑆𝑤𝜌𝑤)𝑡+∆𝑡 − (𝑆𝑤𝜌𝑤)𝑡]𝐴∆𝑥∅ (3.98) 

 𝐴∅
𝜕(𝑆𝑤𝜌𝑤)

𝜕𝑥
+

𝜕(𝑞𝑤𝜌𝑤)

𝜕𝑥
= 0 (3.99) 

 𝐴∅
𝜕(𝑆𝑤)

𝜕𝑥
+

𝜕(𝑞𝑤)

𝜕𝑥
= 0 (3.100) 

 
𝜕𝑆𝑤

𝜕𝑡
+

𝑞

𝐴∅

𝜕𝑓

𝜕𝑥
= 0 (3.101) 

 
𝜕(𝑆𝑤)

𝜕𝑡
+

𝑞

𝐴∅

𝜕𝑓

𝜕𝑆𝑤

𝑑𝑆𝑤

𝑑𝑥
= 0 (3.102) 

 𝑑𝑆𝑤 =
𝜕𝑆𝑤

𝜕𝑥
𝑑𝑥 +

𝜕𝑆𝑤

𝜕𝑡
𝑑𝑡 (3.103) 
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Substituting the above equation into the Buckley-Leverett equation, 

Integrating the above equation and the expression of the fluid front location can be derived, 

where 𝑥 is the front location of the fluid.  

Equation (3.107) can be used to plot the saturation profile and the typical results in Lie (2019) are 

shown in Figure 20, which is unphysical because there are two saturation values corresponding to 

one location. This multivalued solution can be avoided by adding a discontinuity in the front. The 

two shaded areas before and after should have the same size following the mass conservation law. 

In centrifuge experiments, the average water saturation in the core can be obtained based on the 

saturation profile when the system reaches equilibrium.  

 
Figure 20 The saturation profile with a discontinuity (from Lie, 2019) 

3.4.3 A semi-analytical Riemann Solution in Centrifuge Experiments 

The flow problems with two or three dimensions are usually solved by the following steps: first, 

 𝑑𝑆𝑤 = 0 =
𝜕𝑆𝑤

𝜕𝑥
𝑑𝑥 +

𝜕𝑆𝑤

𝜕𝑡
𝑑𝑡 (3.104) 

 
𝑑𝑥

𝑑𝑡
=

𝑞

∅𝐴

𝑑𝑓

𝑑𝑆𝑤
 (3.105) 

 ∫ 𝑑𝑥 = ∫
𝑞

∅𝐴

𝑑𝑓

𝑑𝑆𝑤
 (3.106) 

 𝑥 =
𝑞𝑡

𝐴∅

𝑑𝑓

𝑑𝑆𝑤
 (3.107) 
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decouple the multi-dimensional flow problems into one-dimensional transport problem along 

streamlines; second, solve the one-dimensional transport problem along each streamline; third, 

integrate the solutions from all streamlines.  

Darcy’s Law along streamlines can be written as, 

where 𝜉 is the arc length of streamline, 𝐴 is the cross sectional area of stream tube,  

The Riemann problem under constant pressure difference along a one-dimensional streamline is 

described as Equation (3.109) and (3.110), 

with constant condition, 

In the above equations, the cross section independent of time can be estimated as, 

where 𝑣(𝜉) is the total velocity along streamlines, 𝑞𝑟 is the reference flow rate along streamlines. 

The capillary pressure is included in the calculation using Equation (3.1) in Section 3.1. Therefore, 

the ∆𝑃 in Equation (3.113) is equal to zero when the centrifuge system is at equilibrium since the 

 𝑞 = −𝜆𝐴(𝜉)
𝜕𝑃

𝜕𝜉
 (3.108) 

 
𝜕𝑠

𝜕𝑡
+

𝑞

∅𝐴

𝜕𝑓

𝜕𝜉
= 0 (3.109) 

 𝑞(𝑡) = −𝜆(𝜉, 𝑠)𝐴(𝜉)
𝜕𝑃

𝜕𝜉
 (3.110) 

 𝑠(𝜉, 0) = 𝑠𝑅 , 𝑓𝑜𝑟 𝜉 ∈ [0, 𝐿] (3.111) 

 𝑠(0, 𝑇) = 𝑠𝑙 , 𝑓𝑜𝑟 𝑡 ≥ 0 (3.112) 

 ∆𝑃(𝑡) = 𝑃𝑖(𝑡) − 𝑃𝑜(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑓𝑜𝑟 𝑡 ≥ 0 (3.113) 

 𝐴(𝜉) =
𝑞𝑟

∅𝑣(𝜉)
 (3.114) 
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capillary pressure is the same as the differential pressure provided by angular velocity.  

The total flow rate along a particular streamline can be written as, 

The time-of-flight can be expressed as, 

Differentiating the above equation yields, 

Substituting Equation (3.116) and (3.117) into Equation (3.115), 

Integrating the above equation along streamline yields, 

Combing the above two equations gives, 

where ∆𝑃 is the total pressure difference along the streamline and 𝜏𝑅 is the time-of-flight at the 

outlet of the streamline. 

The denominator in the above equation is the total flow resistance of the streamline, 

 𝑞(𝑡) = −𝜆(𝜉, 𝑠)𝐴(𝜉)
𝜕𝑃

𝜕𝜏

𝜕𝜏

𝜕𝜉
 (3.115) 

 𝜏 = ∫
1

𝑣
𝑑𝜉 (3.116) 

 
𝜕𝜏

𝜕𝜉
=

𝑑𝜏

𝑑𝜉
=

1

𝑣(𝜉)
 (3.117) 

 𝑞(𝑡) = −
𝜆(𝜉, 𝑠)𝑞𝑟

∅(𝜉)𝑣(𝜉)2

𝑑𝑃

𝑑𝜏
 (3.118) 

 𝑞(𝑡) ∫
∅(𝜉)𝑣(𝜉)2

𝜆(𝜉, 𝑠)
𝑑𝜏

𝜏𝑅

0

= −𝑞𝑟 ∫ 𝑑𝑃
𝑃𝑜

𝑃𝑖

 (3.119) 

 
𝑞(𝑡) =

𝑞𝑟∆𝑃

∫
∅(𝜉)𝑣(𝜉)2

𝜆(𝜉, 𝑠)
𝑑𝜏

𝜏𝑅

0

=
𝑞𝑟∆𝑃

𝑅(𝑡)
 

(3.120) 

 𝑅(𝑡) = ∫
∅(𝜉)𝑣(𝜉)2

𝜆(𝜉, 𝑠)
𝑑𝜏

𝜏𝑅

0

 (3.121) 
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The total flow resistant is defined as the differential pressure required for keeping the flow rate at 

the reference value.  

The propagation velocity of the fluids with a certain saturation is, 

Integrating the mass conservation equation by applying the boundary conditions, we have: 

where 𝑆𝑤
𝑒𝑞

 represents water saturation at equilibrium, 𝑢𝑇 is the total Darcy velocity/drainage rate.  

It is assumed that the uniform mobility value 𝜆𝑤
∗ , 𝜆𝑛𝑤

∗  can be used to represent two-phase flow 

region resulting in total mobility 𝜆𝑇
∗ = 𝜆𝑤

∗ , +𝜆𝑛𝑤
∗  and fractional flow function 𝑓𝑤

∗ = 𝜆𝑤
∗ /𝜆𝑇

∗ . The 

drainage rate can be expressed as: 

where 𝑟𝑡ℎ is the location of threshold capillary pressure.  

3.5 Comparison between Numerical and Experimental Results 

Numerical average water saturations calculated from two-dimensional centrifuge simulations are 

compared with experimental average water saturations measured from centrifuge experiments. 

Sum of squared error (SSE) and mean squared error (MSE) were used to describe the deviations 

between the simulated and the experimental data. SSE is the sum of the squared differences 

 
𝑑𝜉

𝑑𝑡
|

𝑠
=

𝑞(𝑡)

∅(𝜉)𝐴(𝜉)
𝑓′(𝑠) (3.122) 

 
𝜕𝑆𝑤

𝑒𝑞

𝜕𝑡
= −

1

∅(𝑟2 − 𝑟1)
𝑢𝑇 (3.123) 

 

𝑢𝑇 =
𝐾𝑓𝑤

∗

(𝑟𝑡ℎ − 𝑟1)
𝜆𝑇

∗ +
(𝑟2 − 𝑟𝑡ℎ)

𝜇𝑤
−1

(
1

2
Δ𝜌𝜔2(𝑟2

2 − 𝑟1
2) − 𝑃𝑐1

+
(1 − 𝑓𝑤

∗)

𝑓𝑤
∗

1

2
Δ𝜌𝜔2([𝑟2

2 −
𝑃𝑐𝑑

1
2 Δ𝜌𝜔2

] − 𝑟𝑡ℎ
2 )) 

(3.124) 
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between each observation and its group's mean, which can be used as a measure of variation within 

a cluster (Mood, 1950). If all cases within a cluster are identical the SSE would then be equal to 0. 

The formula for SSE is: 

where 𝑛 is the number of observations, 𝑋𝑖 is the value of 𝑖𝑡ℎ observation and 𝑋̅ is the mean of all 

observations.   

MSE is the average difference between the estimated and the actual values (Pishro-Nik, 2016). The 

formula for MSE is: 

If the MSE are no more than 0.002, the numerical data generated from centrifuge simulations are 

within the acceptable range of deviation from experimental data (Ruth, 1997); therefore, the 

centrifuge simulator used in this thesis will be considered to be reliable. 

The way to compare the results of centrifuge experiments with the results of two-dimensional 

centrifuge simulation is shown in Figure 21. The experimental average wetting phase 

saturation (𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑎𝑣𝑒𝑆𝑤) in Step (A) is calculated from the centrifuge experiment in the 

laboratory, whereas the corresponding numerical average wetting phase (𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑎𝑣𝑒𝑆𝑤) in 

Step (a) is predicted from the two-dimensional centrifuge simulation. Capillary pressure (𝑃𝑐) was 

calculated based on the incremental rotational speeds during centrifuge. The inlet face saturation 

 𝑆𝑆𝐸 = ∑(𝑋𝑖 − 𝑋̅)2

𝑛

𝑖=1

     (3.125) 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑋𝑖 − 𝑋̅)2

𝑛

𝑖=1

     (3.126) 
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(𝑖𝑛𝑙𝑒𝑡𝑆𝑤)  is converted from  𝑎𝑣𝑒𝑆𝑤  by using Forbes-Splines method and then the capillary 

pressure curve is plotted. 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) denotes the capillary pressure versus average wetting phase 

saturation curve and 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤)  means the capillary pressure versus inlet face wetting phase 

saturation curve (capillary pressure curve). The reason for fitting data points in Step (A) to a curve 

in Step (B) is introduced in Section 3.2.1. In this thesis, experimental results from Step (A), (B) 

and (C) are compared to numerical results from Step (a), (b) and (c), respectively.  

 

Figure 21 Logic of comparing experimental results from centrifuge experiment with numerical results 

from centrifuge simulation, Step (A) to (C) are results from Step (i) of Figure 13, Step (a) to (c) are results 

from Step (ii) of Figure 13 

The typical capillary pressure versus average water saturation data points in Step (A), (𝑃𝑐, 𝑎𝑣𝑒𝑆𝑤), 

are shown in Table 7. The typical capillary pressure versus average water saturation curve known 

as average water saturation curve, 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤), and local capillary pressure curve, 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤), are 

shown in Figure 22 from the manual book of CYDAR. The red data points in the figure are plotted 

according to the data in Table 7. 

Table 7 Typical capillary pressure versus experimental average water saturation data points from 

centrifuge 

Pc (bar) 
experimental 

aveSw      
(frac.) 
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4.116 0.304 

3.251 0.350 

2.489 0.400 

1.830 0.451 

1.270 0.705 

0.811 0.811 

0.427 0.908 

0.204 0.965 

0.051 1.000 

 
Figure 22 Typical average water saturation curve and local capillary pressure curve from centrifuge 

experiments (from CYDAR User Manual, 2021) 

3.6 Simulating Centrifuge Experiment Process 

The detailed procedures for each step of the centrifuge simulation are listed as the follows: 

1. Conduct the centrifuge experiment and calculate capillary pressure and experimental 

average saturation using Equation (2.3) and (2.1) from the Section 2.1.1. 

Conduct the high-speed centrifuge experiment in the laboratory and record the volume of displaced 

fluid in each angular velocity. Calculate the capillary pressure based on the angular velocity and 

calculate the experimental average saturation based on the volume of displaced fluid. 
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2. Fit the modified hyperbolic function on capillary pressure versus average saturation points 

using Equation (3.4) from the Section 3.2.1. 

Use the modified hyperbolic function to fit the experimental data. When the modified hyperbolic 

function cannot give acceptable results, spline function can be used. 

3. Apply Forbes-Splines method to convert average saturation to inlet saturation. Generate 

the experimental capillary pressure curve using Equation (3.5) to (3.33) from the Section 3.2.2. 

Use the Forbes-Splines method in MRST to convert average wetting phase saturations to inlet 

wetting phase. The resulting capillary pressure curve can then be plotted.  

4. Construct a numerical model according to its geometric and petrophysical parameters (𝐿, 

𝐷, 𝑘, ∅) using Equation (3.1) from the Section 3.1. 

Grid is a network of lines that cross each other to form a tessellation of planar or volumetric object. 

Structured grid only allows the use of a basic shape and then it will be repeated under some regular 

pattern so that the spatial topology of the grid remain unchanged during the process. Quadrilaterals 

and hexahedrons are typically used in two- and three-dimensional grids respectively, but other 

general shapes can also be applied to construct grids. In our cases, finite Cartesian grids that consist 

of a finite number of cells within the range of boundary domain are considered because the 

streamline simulations in MRST only accept regular Cartesian grids. It is almost impossible to 

solve storage and transport problems in real-size rock bodies as such enormous models are beyond 

digital calculations; therefore, a continuum hypothesis and volume averaging are both incorporated 

to introduce macroscopic petrophysical properties, which can be considered as input to flow 

simulators. The simulation can be more accurate if the grid size becomes smaller. Nonetheless, the 
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time that takes to reach equilibrium also increases. To keep a balance between efficiency and 

accuracy, the number of radial grid blocks is no more than 100 and the number of axial grid blocks 

should not exceed 200. The grid size can be determined by dividing the core length by the number 

of grid blocks. The petrophysical properties of the simulated rock are designated as constant values 

in each individual cell or as values attached to cell faces. The ratio of the void space to the bulk 

volume is defined as porosity, which means 0 < ∅ < 1. Thus, fraction occupied by rock matrix is 

defined as 1 − ∅. Only interconnected pore space, effective porosity, is of interest for streamline 

simulations. The ability to transmit a fluid when the void space of a core is fully filled with this 

fluid is called permeability. In the MRST, only one column is needed for an isotropic permeability, 

and two or three columns for a diagonal permeability. In our cases, anisotropy is not considered.  

The capillary relation between two phases from the experimental capillary pressure curve is taken 

as an input to the centrifuge digital model. In MRST, Fluid objects that can evaluate the 

petrophysical properties of rock and fluid, such as viscosity, fluid density and fluid compressibility, 

are applied, which consist of several preset properties and function handles. Therefore, the fluid 

properties of two immiscible fluids should be input, which can be determined by experimental 

measurements 

5. Visualize the heterogeneity by plotting the histogram of the permeability distribution using 

Equation (3.2) from the Section 3.1. 

It is often assumed that the porous media is homogeneous in the modelling of centrifuge 

experiments. Nonetheless, permeability and porosity may vary spatially within a core plug. 

Therefore, it is essential to understand rock heterogeneities by showing permeability distributions.  
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6. Impose boundary condition (∆𝒑)  corresponding to the maintained angular velocity 

(𝒆𝒙𝒑𝒆𝒓𝒊𝒎𝒆𝒏𝒕𝒂𝒍 𝑷𝒄) using Equation (3.3) from the Section 3.1.  

Boundary conditions cannot be given on the internal faces of cells, which may contribute to 

unreasonable results, and because the fluid flow through the core sample is set to be incompressible, 

the net boundary fluxes must equal to zero. In our cases, the system is assumed under constant 

pressure boundary conditions at equilibrium. The pressure difference is fixed and equal to the 

capillary pressure between two immiscible phases at each incremental rotational speed.  

7. Calculate the pressure field by solving the elliptic pressure equation and generate velocity 

field using Equation (3.53) to (3.60) from the Section 3.3.5, Equation (3.82) to (3.88) from the 

Section 3.4.1. 

Discretization methods, such as finite-difference, finite-volume and finite-element method, are 

needed for the solving Laplace/Poisson equation. For our cases, the two-point flux-approximation 

scheme will be implemented to solve the Laplace/Poisson equation as its pressure approximations 

are monotonous. This discretization scheme is also easy to be converted even though it would 

introduce numerical mistakes and not provide reasonable solutions for some types of grids. The 

pressure distribution can be obtained by solving the pressure equation using two-point flux-

approximation scheme. The velocity field can be calculated according to Darcy’s Law.  

8. Plot the flux versus simulation time figure and determine simulation time (𝑇) for each 

pressure difference(𝑃_𝑐) using Equation (3.108) to (3.121) from the Section 3.4.3.  

The estimated capillary pressure mathematical model can be taken as an input to the centrifuge 

simulation describing the capillary relationship between two phases during the displacement. 
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However, the displacement process is dynamic so the flux in the core is a function of simulation 

time. Therefore, the simulation time for each capillary pressure needs to be determined according 

to the recorded experimental flux when the fluid system reaches to equilibrium. The flux can be 

considered as a bridge connecting a static state of the unsteady state flow to the steady state fluid 

flow. The system is at equilibrium when the no more wetting phase is displaced from the core and 

the corresponding flow rate can be calculated by dividing the cumulative volume of produced fluid 

by the rotational time interval. For one pressure difference (rotational speed), there is one 

corresponding flow rate. The simulation time can then be determined according to the flux versus 

simulation time figure.  

9. Solve the time-of-flight equation with the upwind, finite discretization using Equation (3.64) 

to (3.79) from the Section 3.3.6. 

After solving for the pressure and saturation equations, Darcy’s velocities in each grid block can 

be computed and time-of-flight for streamlines can be obtained by integration method.  

10. Plot the streamlines semi-analytically using Equation (3.80) to (3.81) from the Section 

3.3.6.  

In the semi-analytical streamline tracing method, the velocity functions are approximated with the 

pressure in each grid block is constant. There are generally three steps in a streamline tracking 

method (Zhang et al., 2012): Firstly, using a numerical method for solving the pressure at the centre 

of each discrete grid block; secondly, estimating the velocity field in each grid block and finally, 

calculating the time-of-flight and integrating streamlines based on the calculated velocity field at 

each grid block.  
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11. Visualize high-flow and stagnant regions in terms of total residence time. 

Backward time-of-flight is the time a neutral particle takes to travel from a given point in the core 

to the outlet boundary. The equation for calculating backward time-of-flight is the same as that for 

calculating forward time-flight (Equation (3.74) in Section 3.3.4) but with different launching and 

exit points. The sum of the forward and backward time-of-flights give the total travel time in the 

core, which can be used to visualize the high-flow and stagnant regions. The sum of the forward 

and backward time-of-flights is denoted as ∑ 𝑇𝑂𝐹.  To account for core heterogeneities during 

centrifuge, high-flow and stagnant regions can be visualized, which can be achieved by computing 

the total residence time for each streamline. The streamlines are hindered if the low heterogeneous 

area appears in the displacement.  

12. Solve the transport equation implicitly by the single point, upstream mobility-weighting 

scheme using Equation (3.86) to (3.91) from the Section 3.4.1.  

It is common to write the system as a pressure equation and one or more transport equations; a 

specialized discretization scheme is stilled necessary for transport equations. In streamline tracing 

methods, two or three-dimensional transport problems are decoupled to one-dimensional problems 

along streamlines. This one-dimensional transport problem can be solved by the Riemann approach.  

13. Compute and plot the multi-phase flow solutions using Equation (3.92) to (3.107) from 

the Section 3.4.2. 

In this step, saturation distribution can be obtained by solving the multi-phase fluid flow problems 

during centrifuge. The transport problem is solved by mapping the one-dimensional solution for 

mass conservation equations along each streamline, which is called the Riemann approach (Thiele, 
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1995). The saturation profile is used to understand the effects of heterogeneities on saturation 

distribution and the corresponding average saturation value.  

14. Calculate the numerical average wetting phase saturation using Equation (3.122) to (3.124) 

from the Section 3.4.3. 

The numerical average wetting phase saturation is the average value of the wetting phase 

saturations in all grid blocks. The average wetting phase saturation is related to the simulation time, 

capillary pressure between two phases and permeability distribution at equilibrium; therefore, the 

influences of heterogeneity can be reflected on this data.  

15. Generate numerical capillary pressure curve using Forbes-Splines method using 

Equation (3.4) to (3.33) from the Section 3.2.1 and 3.2.2. 

The detailed steps are introduced in Section 3.5.  

16. Comparison between simulation results from Step (i) and experimental results from Step 

(ii). 

Compare experimental results from the centrifuge experiment and numerical results from the two-

dimensional centrifuge simulation in this step.  
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4 Applications and Case Studies of Centrifuge Simulations 

In this section, five centrifuge modelling cases have been completed. The Table 8 shows the 

comparisons between different cases. 𝐾𝑎𝑣𝑔  denotes the average permeability of the model and 

𝐾ℎ𝑒𝑡𝑒𝑟 denotes permeability of the heterogeneous area. In Case 1, three centrifuge simulations have 

been done on three different homogeneous cores with varying porosity, permeability, and fluid 

properties. The results of all three centrifuge simulations were compared against experimental 

results to determine applicability of the new centrifuge simulation method for other imaginary 

cases. In Case 2, the objective is to determine if a core with a randomly distributed permeability 

but with the same average permeability as the homogenous core in Case 1.1. In Case 3, three 

simulations have been conducted on heterogeneous cores with three different lengths of 

heterogeneous areas. The results of these three simulations were compared to the results of Case 2 

to determine the effects of the lengths of heterogeneous areas on the fluid flow and resulting 

capillary pressure curves during centrifuge. In Case 4, two simulations have been done on 

heterogeneous cores with a low permeability area (5 mm) . The simulated results were then 

compared to the results of the randomly distributed Case 2 to study the effects of low permeability 

in the heterogeneous area. In Case 5, two simulations have been conducted on heterogeneous cores 

with a high permeability area (5 mm). The simulated results of Case 5 were then compared to the 

results of the randomly distributed Case 2 to investigate the effects of high permeability in the 

heterogeneous area.  
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Table 8 Comparisons of different cases 

No. of cases Objective 

Core 

length 

(cm) 

Heterogeneity 

length 

 (mm) 

𝐊𝐚𝐯𝐠 

(mD) 

𝐊𝐡𝐞𝐭𝐞𝐫 

(mD) 

Homogeneous 

Case 1 

Case 1.1 
Compare predicted and 

experimental results 

5.2  360  

Case 1.2 4.94  440  

Case 1.3 5.96  76  

Randomly Distributed Case 2 
Determine effect of 

permeability distribution 
5.2  360 [322 400] 

Heterogeneous Case 

3 with different 

lengths of 

heterogeneous areas 

Case 3.1 

Examine the impact of 

the size of the low 

permeability areas on 

average saturation. 

5.2 1 360 10 

Case 3.2 5.2 5 360 10 

Case 3.3 5.2 10 360 10 

Heterogeneous Case 

4 with a low 

permeability area 

Case 4.1 Examine the impact of 

the permeability of the 

low permeability area. 

5.2 5 360 200 

Case 4.2 5.2 5 360 100 

Heterogeneous Case 

5 with a high 

permeability area 

Case 5.1 Examine the impact of 

the permeability of the 

high permeability area. 

5.2 5 360 500 

Case 5.2 5.2 5 360 700 

4.1 Case Studies for the Modelling of Centrifuge Experiments 

4.1.1 Homogeneous Case 1: 2D homogeneous case 

The objective of Homogeneous Case 1 is to show that the new two-dimensional centrifuge 

simulation method is able to predict average phase saturation values and thus capillary pressure 

curves when the system reaches equilibrium.  

In a homogeneous core, the permeability throughout the core is constant. To validate the numerical 

data generated from the centrifuge simulation with experimental data, three Homogeneous Cases 

are presented here matching the petrophysical properties of three different cores used in centrifuge 

experiments. The core plugs used in this case are shown in Figure 23. The cores used in 

Homogeneous Case 1.1 and Case 1.2 are both from Bay du Nord, offshore Newfoundland, Canada 
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and the core in Homogeneous Case 1.3 is a Berea core from the U.S. All three core plugs are 

homogeneous. The length and permeability of the digital models were determined as the same as 

that of the cores in centrifuge experiments. The wetting phase in the centrifuge simulation was set 

as water and the nonwetting phase was set as oil. The densities and viscosities of the fluids used in 

the simulation were measured in the laboratory. The pressure differences between inlet and outlet 

faces of the core are set to the same as the experimental capillary pressures from the centrifuge 

experiment.  

 

Figure 23 Cores that are used for centrifuge experiments in Homogeneous Case 1 

To demonstrate the application of the two-dimensional centrifuge simulation method for phase 

saturation prediction, three different digital core models with varying lengths, porosities and 

permeabilities were used in the simulations. Meanwhile, the properties of oil and brine were 

changed to show that this two-dimensional centrifuge simulation method is suitable for the 

displacements with fluids of different properties. The details of the parameters used in three Cases 

are shown in Table 9. In Homogeneous Case 1.1, to model a core plug with a diameter of 3.79 cm 

and a length of 5.2 cm . The two-dimensional digital model used in the simulation is the cross 

section of a cube and it is parallel to the fluid flow; however, the core plug is a cylinder in three 
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dimensions. Therefore, to keep the cross sectional of the simulated cube the same as that of a 

cylinder in direction that is perpendicular to the fluid flow, the length of the digital model in axial 

direction was set to be 5.2 cm and the length in radial direction was set to be 3.36 cm making them 

have the same cross-sectional areas. The permeability is isotropic and homogeneous and equal to 

360 mD. In Homogeneous Case 1.2, the length of the digital model in axial direction was 4.94 cm 

and the length in radial direction was 3.20 cm . The permeability is equal to 440 mD . In 

Homogeneous Case 1.3, the length of the digital model in axial direction was 5.96 cm and the 

length in radial direction was 3.36 cm. The permeability is also isotropic and homogeneous that 

equals to 76 mD.  

Table 9 Parameters for Homogeneous Case 1 

Parameters Units Values 

Case 1.1 

(360mD) 

Case 1.2 

(440mD) 

Case 1.3 

(76mD) 

Length cm 5.200 4.940 5.960 

Diameter cm 3.790 3.620 3.790 

Porosity % 28.280 28.100 18.240 

K mD 360 440 76 

Bulk Density g/ml 2.001 1.892 2.051 

Skeletal density g/ml 2.605 2.631 2.585 

Swir frac. 0.058 0.028 0.400 

Oil Viscosity cP 5.900 5.900 6.000 

Oil density kg/m3 858 858 878 

brine viscosity cP 1.010 1.010 1.100 

brine density kg/m3 1040 1040 1010 

Re cm 22.100+length 

Ri cm 22.100 

Radial Blocks  100 100 100 

Axial Blocks  155 154 178 

Block size cm 0.034 0.032 0.034 

Figure 24 shows the pressure distribution for a homogeneous core in the Homogeneous Case 1.1 
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when the pressure difference of the core is 4.116 bar. The pressure distribution was calculated by 

solving Equation 3.53 to 3.60 in Section 3.3.5 (Step 7) and the pressure decreases gradually from 

the inlet face (left side) to the outlet face (right side) of the core in the figure. The result makes 

sense because the constant pressure boundary condition was imposed on the digital model and the 

pressure at the inlet face is larger than the outlet face. Equation (3.64) to (3.79) in Section 3.3.6 

(Step 9) were used to calculate corresponding time-of-flights for Homogeneous Case 1.1 as shown 

in Figure 25. The time-of-flights for fluid particles in grid blocks increase from the inlet face to the 

outlet face, which is reasonable because the time that a particle takes to travel along a streamline 

increases as the distance from the launching point becomes larger. Equation (3.80) and (3.81) in 

Section 3.3.6 (Step 10) were sued to plot the streamlines for Homogeneous Case 1.1 during 

centrifuge as shown in Figure 26. The streamlines are going straightly from the inlet face to the 

outlet face since no barrier (heterogeneous area) is present in the model. It is assumed that the core 

is homogeneous, so the streamlines only have one-dimensional flow, which is an ideal situation. 

Figure 27 shows the centrifuge displacement front and the saturation profile for a particular 

capillary pressure (4.116 𝑏𝑎𝑟) for Homogeneous Case 1.1 by using Equation (3.92) to (3.107) in 

Section 3.4.2 (Step 13). In Figure (a), saturation value in each grid block was calculated and the 

average saturation for the digital model was obtained by dividing the summation of the saturation 

values for all grid blocks by the number of grid block. The black arrow in the figure represents the 

displacement direction during centrifuge. The nonwetting phase (red part) is displacing the wetting 

phase (blue part) out of the core, which is reasonable for this is a drainage process in the centrifuge 

experiment. In Figure (b), the water (wetting phase) saturations in the oil (nonwetting phase) zone 
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is much smaller than that in the water zone since water is displaced by oil and no displaceable 

water is left before the displacement front.  

 

Figure 24 Pressure field for Homogeneous Case 1.1, a core with homogeneous permeability of 360mD 

from Bay du Nord 

 

Figure 25 Time-of-flight for Homogeneous Case 1.1, a core with homogeneous permeability of 360mD 

from Bay du Nord 
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Figure 26 Streamlines for Homogeneous Case 1.1, a core with homogeneous permeability of 360mD from 

Bay du Nord 

 

(a)                        (b) 

Figure 27 Homogeneous Case 1.1when capillary pressure is 4.116 bar (a) two-phase displacement front, 

(b) water saturation distribution  

To demonstrate the application of the two-dimensional centrifuge simulation method for phase 

saturation prediction, the numerical and experimental 𝑎𝑣𝑒𝑆𝑤 for Homogeneous Cases 1.1, 1.2 and 

1.3 (three homogeneous digital models with varying properties) are shown in Table 10, 11 and 12, 

respectively. Pc was calculated based on the incremental rotational speed during centrifuge by 

using Equation (2.3) in Section 2.1.1. Experimental 𝑎𝑣𝑒𝑆𝑤  can be calculated based on the 
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displaced wetting phase volume measured from experiment by using Equation (2.1) in Section 

2.1.1. Numerical 𝑎𝑣𝑒𝑆𝑤  can be predicted in the two-dimensional centrifuge simulation by using 

Equation (3.122) to (3.124) in Section 3.4.3 (Step 14). To validate the capability of the centrifuge 

simulation method to predict average phase saturations, the numerical 𝑎𝑣𝑒𝑆𝑤 were compared to 

the experimental values measured in the laboratory. The deviation of the simulated results is 

denoted as 𝜎. The MSEs of all three simulations are no more than 6 × 10−4, which is within an 

acceptable error range (Ruth, 1997). Among the three different core plugs, the Berea core from 

Case 1.3 has the best results with SSE equal to 0.0022 and MSE equal to 0.0003.  

Table 10 Results of centrifuge simulation for Homogeneous Case 1.1, a core with homogeneous 

permeability of 360mD from Bay du Nord 

Capillary 

pressure 

(bar) 

Flow rate 

(m3/s) 

Experimental 

aveSw 

(frac.) 

Numerical 

aveSw  

(frac.) 

𝝈 𝝈𝟐 

4.116 2.128E-07 0.304 0.274 0.030 0.0009 

3.251 1.783E-07 0.350 0.326 0.024 0.0006 

2.489 1.449E-07 0.400 0.383 0.018 0.0003 

1.830 1.122E-07 0.451 0.438 0.013 0.0002 

1.270 1.162E-07 0.705 0.671 0.034 0.0012 

0.811 9.360E-08 0.811 0.791 0.020 0.0004 

0.427 6.289E-08 0.908 0.876 0.032 0.0010 

0.204 3.687E-08 0.965 0.935 0.030 0.0009 

0.051 1.281E-08 1.000 1.000 0.000 0.0000 

SSE: 0.0055 

MSE: 0.0006 

 

Table 11 Results of centrifuge simulation for Homogeneous Case 1.2, a core with homogeneous 

permeability of 440mD from Bay du Nord 

Capillary 

pressure 

(bar) 

Flow rate 

(m3/s) 

Experimental 

aveSw 

 (frac.) 

Numerical 

aveSw  

(frac.) 

𝝈 𝝈𝟐 

0.229 6.428E-07 0.123 0.103 0.020 0.0004 

0.181 5.883E-07 0.131 0.117 0.014 0.0002 
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0.138 5.561E-07 0.191 0.168 0.023 0.0005 

0.102 4.122E-07 0.449 0.428 0.021 0.0004 

0.071 2.547E-07 0.654 0.622 0.032 0.0010 

0.045 9.41E-08 0.809 0.782 0.028 0.0008 

0.024 7.287E-08 0.914 0.887 0.027 0.0008 

0.011 3.511E-08 0.961 0.942 0.019 0.0004 

0.003 1.461E-08 1.000 1.000 0.000 0.0000 

SSE: 0.0045 

MSE: 0.0005 

 

Table 12 Results of centrifuge simulation for Homogeneous Case 1.3, a Berea core with homogeneous 

permeability of 76mD 

Capillary 

pressure 

(bar) 

Flow rate 

(m3/s) 

Experimental 

aveSw 

 (frac.) 

Numerical 

aveSw  

(frac.) 

𝝈 𝝈𝟐 

1.848 4.528E-08 0.394 0.375 0.019 0.0003 

1.357 3.288E-08 0.493 0.479 0.014 0.0002 

0.944 1.329E-08 0.545 0.527 0.018 0.0003 

0.603 9.46E-09 0.621 0.603 0.018 0.0003 

0.340 5.217E-09 0.686 0.662 0.024 0.0006 

0.152 2.876E-09 0.846 0.824 0.022 0.0005 

0.038 1.582E-09 0.998 0.995 0.003 0.0000 

SSE: 0.0022 

MSE: 0.0003 

Figure 28, 29 and 30 show the capillary pressure versus average saturation curves, 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤)  

curves, and 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤)  curves for Homogeneous Cases 1.1, 1.2 and 1.3, respectively. Details for 

calculations are shown in Section 3.5. Experimental and numerical 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) curves were both 

obtained by fitting a modified hyperbolic function (Equation (3.4) in Section 3.2.1) on the 𝑃𝑐 vs 

𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑎𝑙/𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑎𝑣𝑒𝑆𝑤  data points. Experimental and numerical 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤)  curves, 

known as capillary pressure curve, were obtained using Forbes-Splines method (Equation (3.5) to 

(3.33) in Section 3.2.2). The numerical 𝑎𝑣𝑒𝑆𝑤 points are at the same Pc as the experimental 𝑎𝑣𝑒𝑆𝑤 

points since the experimental Pc points are considered as the inputs for the two-dimensional 
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centrifuge simulation. The experimental and numerical 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤)  curves converge at both 

saturation ends because they have the same irreducible water saturation value. It can be observed 

that there is deviation between numerical and experimental curves ( 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤)  curves and 

𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤)  curves) in the middle saturations. This is reasonable because there may be some 

experimental deviations in the centrifuge experiments. For example, the measurements of spin rate 

and produced volumes of fluids, core porosity and dimensions and fluid densities may not be 

accurate. An operator may also have a false estimation of the time that the system takes to reach 

equilibrium. The numerical curves are close to the experimental curves and they successfully model 

the trends and characteristics of the experimental curves. Thus, it is reasonable to use the two-

dimensional centrifuge simulation method introduced in this thesis to model centrifuge 

experiments for capillary pressure measurements. The numerical 𝑎𝑣𝑒𝑆𝑤  computed during the 

simulation are in a good agreement with the experimental 𝑎𝑣𝑒𝑆𝑤 . The numerical 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤) 

curves plotted from the Forbes-Splines method also indicate a good reliability of forecast for 

capillary pressures. 
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Figure 28 Numerical and experimental curves for Homogeneous Case 1.1, a core with homogeneous 

permeability of 360mD from Bay du Nord 

 

Figure 29 Numerical and experimental curves for Homogeneous Case 1.2, a core with homogeneous 

permeability of 440mD from Bay du Nord 
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Figure 30 Numerical and experimental curves for Homogeneous Case 1.3, a Berea core with 

homogeneous permeability of 76mD 

4.1.2 Randomly Distribute Case 2: 2D case with a randomly distributed permeability field 

The objective of this case is to study the effects of heterogeneity generated by a Gaussian random 

field on fluid flow, phase saturations and capillary pressure curves.  

In this case, the permeability distribution is as depicted in Figure 31 and 32. The mean permeability 

for a permeability field generated by a Gaussian random field can be determined by using Equation 

(3.41) to (3.43) in Section 3.3.3. The permeability is normally distributed ranging from 322 mD to 

400 mD, while mean permeability is kept as the same as the homogeneous Case 1.1 (360 mD). 

All the other parameters have been kept as the same as the homogeneous Case 1.1. The pressure 

differences depend on the measured rotational speed (capillary pressure) from the centrifuge 

experiment.  
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Figure 31 Permeability distribution for Randomly Distributed Case 2 

 

Figure 32 The histogram of the permeability distribution for Randomly Distributed Case 2 

Figure 33 shows the time-of-flights calculated by Equation (3.64) and (3.79) in Section 3.3.6 (Step 

9). The time-of-flights decrease from the inlet face to the outlet face even with some heterogeneity 

in the digital model. This is reasonable since the time that a particle takes to travel along a 

streamline has a positive correlation with the distance from the launching point. The calculated 

time-of-flights have the similar distributing pattern as the Homogeneous Case 1.1 since the 

standard deviation of the Gaussian flied is small and distribution of permeability can be regarded 

as homogeneous. Figure 34 shows the streamlines in the core calculated by Equation (3.80) and 

𝐊𝐚𝐯𝐠 = 𝟑𝟔𝟎 𝐦𝐃 
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(3.81) in Section 3.3.6 (Step 10) for Randomly Distributed Case 2. Even though the streamlines 

fluctuate in some regions, the overall movement of the fluids can be considered as a one-dimension 

flow under constant differential pressure boundary condition. This is because the influences of 

randomly distributed permeabilities on streamlines are not significant. Figure 35 shows the high 

flow and stagnant regions for Randomly Distributed Case 2 calculated in Step 11. It can be seen 

that the movement of the fluid particle may be deterred in the vertical direction other than the 

horizontal direction. It indicates that the fluid flow under the randomly distributed permeability 

field can also be considered as the steady state flow as compared to the fully homogeneous 

permeability field. Based on the above results, the heterogeneity in the radial direction can be 

ignored because it does not influence the fluid in axial direction. Part (a) of Figure 36 shows the 

centrifuge displacement front and part (b) shows the saturation profile calculated by Equation (3.92) 

to (3.107) in Section 3.4.2 (Step 13) when the capillary pressure is 4.116 𝑏𝑎𝑟  for Randomly 

Distributed Case 2. The results of Figure 36 are almost identical to the results of Figure 27. Thus, 

the effects of randomly distributed permeability field on the fluid flow are negligible since the 

permeability distribution can be considered as homogeneous.  
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Figure 33 Time-of-flight for Randomly Distributed Case 2 

 

Figure 34 Streamlines for Randomly Distributed Case 2 
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Figure 35 High flow and stagnant regions for Randomly Distributed Case 2 

 

(a)                             (b) 

Figure 36 Randomly Distributed Case 2 when capillary pressure is 4.116 bar (a) two-phase displacement 

front, (b) water saturation distribution 

Table 13 gives a comparison of simulation results between Randomly Distributed Case 2 and 

Homogeneous Case 1.1 calculated in Step 14. Equations that were used to calculate the phase 

saturations and capillary pressures are introduced in Section 4.1.1. The SSE and MSE are rather 

small, which means the differences between the numerical average water saturations under the 

Gaussian random permeability field and the average water saturations under the homogeneous 

permeability field are marginal. This is due to the fact that the influences of the heterogeneity 

generated from the Gaussian random field on average phase saturations can be ignored. It is known 

that extracted cores from reservoirs are mostly heterogeneous in permeability distributions; 

therefore, it is more practical and realistic to use geostatistical methods to make realizations of 

permeability in simulations (Lie, 2019). In this case, a Gaussian random field is superior to a 

homogeneous field in the representation of the permeability field in the modelling of centrifuge 

experiments (Shikhov and Arns, 2015). The average permeability of the randomly distributed field 
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has been set to be the same as the homogeneous field. In the following cases, the randomly 

distributed permeability fields have been applied in the matrices of the cores except for the 

heterogeneous areas.  

Table 13 Comparisons of simulation results for Homogeneous Case 1.1 and Randomly Distributed Case 2 

Capillary 

pressure (bar) 

aveSw for 

Homogeneous 

Case 1.1 (frac.) 

aveSw for 

Randomly 

Distributed 

Case 2 (frac.) 

𝝈 𝝈𝟐 

4.116 0.274 0.272 2.40E-03 5.76E-06 

3.251 0.326 0.324 2.00E-03 4.00E-06 

2.489 0.383 0.381 1.30E-03 1.69E-06 

1.83 0.438 0.436 2.30E-03 5.29E-06 

1.27 0.671 0.671 -3.00E-04 9.00E-08 

0.811 0.791 0.790 8.00E-04 6.40E-07 

0.427 0.876 0.875 6.00E-04 3.60E-07 

0.204 0.935 0.934 3.00E-04 9.00E-08 

0.051 1.000 1.000 0 0 

SSE: 1.79E-05 

MSE: 1.99E-06 

Figure 37 shows 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤)  curves and 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤)  curves for Homogeneous Case 1.1 and 

Randomly Distributed Case 2. The equations that were used to calculate numerical 𝑎𝑣𝑒𝑆𝑤 curves 

and Pc curves are introduced in Section 4.1.1. It is noted that the curves, 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) curves and 

𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curves, for Randomly Distributed Case 2 overlap the curves for Homogeneous Case 

1.1 owing to the fact that the effects of the heterogeneity produced from the Gaussian random field 

on average phase saturations are marginal. Thus, it is proved that the Randomly Distributed Case 

2 can produce equivalent 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) and 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curves as the Homogeneous Case 1.1.  
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Figure 37 Pc (𝑎𝑣𝑒𝑆𝑤) curves and Pc (𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curves for Homogeneous Case 1.1 and Randomly 

Distributed Case 2, the average permeability of the core is 360mD 

4.1.3 Heterogeneous Case 3: 2D heterogeneous case with different lengths of heterogeneous 

areas 

The objective of this case is to investigate the effects of the lengths of heterogeneous areas on fluid 

flow, phase saturations and capillary pressure curves from centrifuge. 

Three Cases are shown here with different values of the lengths of heterogeneous areas. The 

heterogeneous area is considered as a square with four sides of equal length. The lengths of the 

heterogeneous areas in three Cases have been set to be 1, 5, 10 mm  respectively. The detailed 

parameters of the heterogeneous areas are shown in Table 14 and the other parameters in the 

simulation, such as the length and the diameter of the core, viscosities and densities of the fluids, 

are the same as that of the Randomly Distributed Case 2. As shown previously in Table 9, 155 grid 
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blocks are used in axial direction and 100 grid blocks are used in radial direction for simulation. 

These grid blocks are then numbered accordingly, and the heterogeneous area is placed in the center 

of the digital model both in axial and radial direction. The permeability distributions for three Cases 

are shown in Figure 38, 39 and 40, respectively. The permeability of the heterogeneity in the core 

plug is 10 mD and the mean permeability of the core plug still ranges from 322 mD to 400 mD. 

The equations that were used to calculate mean permeability of a heterogeneous model are 

introduced in Section 4.1.2.  

Table 14 Parameters for the heterogeneous areas used in Heterogeneous Case 3 

No. of 

case 

Length of 

heterogeneous 

area  

(mm) 

Number of 

grid blocks 

Radial Blocks 

with Low 

Permeability 

Axial Blocks 

with Low 

Permeability 

Permeability 

of 

heterogeneous 

area  

（mD) 

3.1 1 30 49-52 76-79 10 

3.2 5 149 43-58 70-85 10 

3.3 10 298 35-65 63-93 10 
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Figure 38 Permeability distribution for Case 3.1 with a heterogeneous area (1mm) 

 

Figure 39 Permeability distribution for Case 3.2 with a heterogeneous area (5mm) 

𝐊𝐚𝐯𝐠 = 𝟑𝟔𝟎 𝐦𝐃 

𝐊𝐚𝐯𝐠 = 𝟑𝟔𝟎 𝐦𝐃 
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Figure 40 Permeability distribution for Case 3.3 with a heterogeneous area (10mm) 

Figure 41 displays calculated time-of-flights for three Cases with different lengths of the 

heterogeneous areas by using Equation (3.64) and (3.79) in Section 3.3.6 (Step 9). The time-of-

flights increase dramatically in the heterogeneous area because the movements of fluid particles 

are deterred in the area with low permeability value. As the heterogeneous area grows bigger, the 

area with larger time-of-flights becomes bigger since a grid block with low permeability makes the 

travel time of a fluid particle become longer. Figure 42 shows the corresponding streamlines by 

using Equation (3.80) and (3.81) in Section 3.3.6 (Step 10). From part (a) to part (c) of the figure, 

streamlines that are hindered in the center increase since the no flow area decreases. Streamlines 

around the larger stagnant region tend to have more displacement in radial direction, which is a 

two-dimensional fluid flow. Figure 43 shows the high flow and stagnant regions for three Cases by 

calculating ∑ 𝑇𝑂𝐹 in Step 11. The corresponding stagnant regions will grow larger when it comes 

𝐊𝐚𝐯𝐠 = 𝟑𝟔𝟎 𝐦𝐃 
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to bigger heterogeneous areas. Apparently, larger heterogeneous area will have much more impact 

on the fluid flow. 

 

(a) 

 

(b) 
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(c) 

Figure 41  Time-of-flights for a) Case 3.1 with a heterogeneous area (1mm), (b) Case 3.2 with a 

heterogeneous area (5mm), (c) Case 3.3 with a heterogeneous area (10mm) 

 

(a) 
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(b) 

 

(c) 

Figure 42 Streamlines for a) Case 3.1 with a heterogeneous area (1mm), (b) Case 3.2 with a heterogeneous 

area (5mm), (c) Case 3.3 with a heterogeneous area (10mm) 
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(a) 

 

(b) 

 

(c) 
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Figure 43 High flow and stagnant regions for (a) Case 3.1 with a heterogeneous area (1mm), (b) Case 3.2 

with a heterogeneous area (5mm), (c) Case 3.3 with a heterogeneous area (10mm) 

Table 15 compares the simulation results of Heterogeneous Case 3 with Randomly Distributed 

Case 2 calculated in Step 14, which can show the deviation from the case with no heterogeneous 

areas. The equations that are used to calculate 𝑎𝑣𝑒𝑆𝑤 and Pc are introduced in Section 4.1.1. The 

SSEs of these three simulations range from 3.4 × 10−5 to 1.44 × 10−2 and the MSEs range from 

3.8 × 10−6 to 1.3 × 10−3. The 𝑎𝑣𝑒𝑆𝑤 for the Case with a bigger heterogeneous area (no flow area) 

is larger than that for the Case with a smaller heterogeneous area at same capillary pressure. This 

is reasonable since more water are retained in the digital model instead of being displaced by oil if 

the area of no flow region becomes grows larger.  

Table 15 Comparisons of simulation results for Heterogeneous Case 3 and Randomly Distributed Case 2 

Capillary 

pressure 

(bar) 

aveSw for 

Randomly 

Distributed 

Case 2 

(frac.) 

aveSw for Heterogeneous Case 𝝈𝟐 

Case 

3.1 

(1 mm) 

Case 

3.2 

(5 mm) 

Case 

3.3 

(10 mm) 

Case 

3.1 

(1 mm) 

Case 

3.2 

(5 mm) 

Case 

3.3 

(10 mm) 

4.116 0.272 0.275 0.292 0.334 8.410E-06 0.0004 0.0035 

3.251 0.324 0.326 0.337 0.376 4.000E-06 0.0002 0.0025 

2.489 0.381 0.383 0.395 0.431 1.690E-06 0.0002 0.0023 

1.830 0.436 0.436 0.450 0.475 1.000E-08 0.0002 0.0016 

1.270 0.671 0.676 0.685 0.698 1.764E-05 0.0002 0.0005 

0.811 0.790 0.790 0.804 0.812 4.000E-08 0.0002 0.0005 

0.427 0.875 0.876 0.889 0.894 6.400E-07 0.0002 0.0003 

0.204 0.934 0.936 0.946 0.951 1.960E-06 0.0001 0.0002 

0.051 1.000 1.000 1.000 1.000 0.0000 0.0000 0.0000 

SSE: 3.439E-05 0.0017 0.0114 

MSE: 3.821E-06 0.0002 0.0013 

Figure 44 shows the corresponding 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) curves and 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) curves. The equations that 

used for calculation are introduced in Section 4.1.1. When the heterogenous area (no flow area) 

grows bigger, higher water saturation can be obtained at same capillary pressure value. This is due 
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to the fact that a bigger heterogeneous area can retain more wetting phase (water) in the core; 

therefore, less wetting phase is produced. Lower numerical average phase saturations can be 

calculated from centrifuge simulations that only consider one-dimensional flow, which contributes 

to a negative bias of the interpreted capillary pressure curve as compared to the accurate capillary 

pressure. According to the comparison, it is known that if the low permeability area is small, its 

impact on the produced fluids and capillary pressure curves can be neglected ( MSE =

3.821 × 10−6). As the heterogeneous area grows larger, its influence on capillary pressure curves 

becomes significant. Therefore, to investigate influences of the permeability in the heterogeneous 

area on fluid flow and capillary pressure curves, the length of the heterogeneous area can be taken 

as 5 mm . The centrifuge simulations in the following cases have been conducted assuming a 

heterogeneous area with a length of 5mm.  
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Figure 44 Pc (𝑎𝑣𝑒𝑆𝑤) curves and Pc (𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curves for Heterogeneous Case 3.1(1mm), 3.2(5mm) and 

3.3(10mm), the average permeability of the core is 360mD 

 

4.1.4 Heterogeneous Case 4: 2D heterogeneous case with a low permeability area 

The objective of this case is to study how low permeability value in the heterogeneous area will 

affect the fluid flow, phase saturation and capillary pressure curves from centrifuge.  

Heterogeneities often exist in cores extracted from oil fields. It is very difficult to have a full 

understanding of the permeability distribution of an extracted core without using the tomography 

technique. Even though the heterogeneity distribution is known, the method to model it in a 

numerical model will be very complex. Therefore, an area of low permeability with a length of 
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5 mm is assumed to be placed in the center of the core in Heterogeneous Case 4. In Heterogeneous 

Case 4.1 the ratio of permeabilities between the heterogeneity and the matrix is approximately 5/9, 

and in Heterogeneous Case 4.2 the ratio is approximately 5/18. To make the Heterogeneous Cases 

comparable with the Randomly Distributed Case 2, mean permeabilities of all the cases were set 

to be the same. The petrophysical properties of the numerical models used in the two Cases 

remained unchanged other than the permeability distributions. Detailed parameters used are shown 

in Table 16 and the permeability field is shown in Figure 45. The blue region represents the low 

permeability area and the permeability in other areas is distributed randomly with a mean 

permeability as 360 mD.  

Table 16 Parameters used for Heterogeneous Case 4 with a low permeability area 

Parameters Units 
Values 

Case 4.1 Case 4.2 

Radial Blocks  100 100 

Axial Blocks  155 155 

Block size cm 0.034 

Radial Blocks with Low Permeability  43-58 43-58 

Axial Blocks with Low Permeability  70-85 70-85 

Permeability of heterogeneity mD 200 100 

Mean permeability mD 360 360 



128 

 

 

Figure 45 Permeability distribution for Heterogeneous Case 4 with a low permeability area 

Figure 46 shows the centrifuge displacement front and the saturation profile when the capillary 

pressure is 4.116 𝑏𝑎𝑟 for Heterogeneous Case 4.1 with a low permeability area calculated in Step 

13. The equations that were used for calculation are introduced in Section 4.1.1. In part (a), The 

displacement front is curved in the center as opposite to the displacing direction since less wetting 

phase (water) is displaced in the heterogeneous area (no flow area). In part (b), the water saturations 

are distributed more dispersedly in the front as compared to part (b) of Figure 36 for the existence 

of the low permeability area.  

 

(a)                                   (b) 

𝐊𝐚𝐯𝐠 = 𝟑𝟔𝟎 𝐦𝐃 
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Figure 46 Heterogeneous Case 4.1(200mD) when capillary pressure is 4.116 bar (a) Two-phase 

displacement, (b) Water saturation distribution 

Table 17 shows the results of centrifuge simulations for Heterogeneous Case 4.1 (200 mD) and 4.2 

(100 mD) calculated in Step 14. The equations for calculations are introduced in Section 4.1.1. The 

𝑎𝑣𝑒𝑆𝑤 of the Heterogeneous Cases are larger than that of the Randomly Distributed Case 2. The 

MSEs of the two simulations are 0.0002 and 0.0005 respectively. For the Heterogeneous Case 4.2 

(100 mD), the SSE and MSE are larger than that of the Heterogeneous Case 4.1 (200 mD) and thus, 

higher average saturation value can be obtained at same capillary presure in Heterogeneous Case 

4.2 (100 mD). This is because the lower permeability value in the heterogeneous area can make the 

displacement of the wetting phase (water) harder. Thus, less water is displaced to the graduated 

tube.  

Table 17 Comparisons of simulation results for Heterogeneous Case 4 with a low permeability area and 

Randomly Distributed Case 2 

Capillary 

pressure 

(bar) 

aveSw for 

Randomly 

Distributed 

Case 2 

(frac.) 

aveSw for heterogeneous core 

(frac.) 
σ2 

Case 4.1 

(200 mD) 

Case 4.2 

(100 mD) 

Case 4.1 

(200 mD) 

Case 4.2 

(100 mD) 

4.116 0.272 0.291 0.301 0.0003 0.0009 

3.251 0.324 0.336 0.347 0.0001 0.0005 

2.489 0.381 0.397 0.401 0.0002 0.0004 

1.83 0.436 0.445 0.456 0.0001 0.0004 

1.27 0.671 0.684 0.699 0.0002 0.0008 

0.811 0.790 0.802 0.815 0.0001 0.0007 

0.427 0.875 0.889 0.894 0.0002 0.0004 

0.204 0.934 0.946 0.954 0.0001 0.0004 

0.051 1.000 1.000 1.000 0 0 

SSE: 0.0015 0.0043 

MSE: 0.0002 0.0005 
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Figure 47 displays 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) curves and 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curves for all the Cases. The equations that 

are used in calculation are introduced in Section 4.1.1. For same capillary pressure, the case with 

lower permeability value in the heterogeneous area has larger 𝑎𝑣𝑒𝑆𝑤 compared to the case with 

higher permeability value in the heterogenous area. The 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) curve and 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curve 

with lower permeability in the heterogeneous region will be shifted to the right compared to the 

curves with higher permeability. The capillary pressure curves of the heterogeneous cases are both 

at the right side of the capillary pressure curves of the Randomly Distributed Case 2. Therefore, 

for the same capillary pressure, higher saturation values can be obtained. The results make sense 

because the area with lower permeability can retain more wetting phase fluid and then less wetting 

phase fluid is produced in the graduated tube.  
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Figure 47 Pc (𝑎𝑣𝑒𝑆𝑤) curves and Pc (𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curves for Heterogeneous Case 4 with a low permeability 

area, the length of the low permeability area is 5mm, the average permeability of the core is 360mD  

4.1.5 Heterogeneous Case 5: 2D heterogeneous case with a high permeability area 

The objective of this case is to study how high permeability value in the heterogeneous area will 

affect the fluid flow, phase saturation and capillary pressure curves from centrifuge. 

In Heterogeneous Case 5, an area with high permeability was placed in the center of the core. In 

Heterogeneous Case 5.1(500mD), the ratio of permeability between the heterogeneity and the 

matrix is about 1.4 and in Case 5.2(700mD) the ratio is about 2. All other parameters used in this 

case are the same as the Randomly Distributed Case 2. Figure 48 shows the permeability 

distribution and detailed parameters used are shown in Table 18.  

Table 18 Parameters used for Heterogeneous Case 5 with a high permeability area 

Parameters Units Values 
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Case 5.1 

(500mD) 

Case 5.2 

(700mD) 

Radial Blocks  100 100 

Axial Blocks  155 155 

Block size cm 0.036 

Radial Blocks with High 

Permeability 

 
43-58 43-58 

Axial Blocks with High 

Permeability 

 
70-85 70-85 

Permeability of 

heterogeneity 
mD 500 700 

Mean Permeability  mD 360 360 

 

 

Figure 48 Permeability distribution for Heterogeneous Case 5 with a high permeability area 

Figure 49 shows the corresponding streamlines for this case by using Equation (3.80) and (3.81) in 

Section 3.3.6 (Step 10). It can be observed that more streamlines can be found in the high 

permeability area since this area allows more fluids to pass through it compared to other areas in 

the core. Figure 50 shows the centrifuge displacement front and the saturation profile when the 

capillary pressure is 4.116 𝑏𝑎𝑟  for Heterogeneous Case 5.1(500mD) calculated in Step 13. 

Equations for calculation are introduced in Section 4.1.1.In part (a), the displacement front is 

curved towards the outlet face as compared to part (a) of Figure 36 since the high permeability area 

𝐊𝐚𝐯𝐠 = 𝟑𝟔𝟎 𝐦𝐃 
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enhances the displacement efficiency and the water retained in the model decreases.  

 

Figure 49 Streamlines for Heterogeneous Case 5 with a high permeability area 

 
(a)                           (b) 

Figure 50 Heterogeneous Case 5.1(500 mD) when capillary pressure is 4.116 bar (a) the two-phase 

displacement front, (b) the water saturation distribution 

Table 19 shows the results of centrifuge simulation for Heterogeneous Case 5.1(500 mD) and 

5.2(700 mD) calculated in Step 14. The equations that used for calculation are introduced in 

Section 4.1.1. From this table, we see that the 𝑎𝑣𝑒𝑆𝑤 of the Heterogeneous Cases 5 with a high 

permeability area is less than that of the Randomly Distributed Case 2 at the same capillary pressure. 

The deviation of the 𝑎𝑣𝑒𝑆𝑤 between the heterogeneous case and the randomly distributed case 



134 

 

increases if the permeability of heterogeneous region is increased. The results make sense because 

the heterogeneous area with higher permeability value can allow more wetting phase (water) to be 

displaced out of the core. Therefore, more water is produced and 𝑎𝑣𝑒𝑆𝑤 in the model decreases.  

Table 19 Comparisons of simulation results for Heterogeneous Case 5 with a high permeability area and 

Randomly Distributed Case 2 

Capillary 

pressure 

(bar) 

 aveSw for 

randomly 

distributed 

Case 2 

(frac.) 

 aveSw for heterogeneous 

core (frac.) 
𝝈𝟐 

Case 5.1 

(500mD) 

Case 5.2 

(700mD) 

Case 5.1 

(500mD) 

Case 5.2 

(700mD) 

4.116 0.272 0.258 0.248 0.0002 0.0006 

3.251 0.324 0.314 0.306 0.0001 0.0003 

2.489 0.381 0.375 0.370 0.0000 0.0001 

1.83 0.436 0.422 0.416 0.0002 0.0004 

1.27 0.671 0.669 0.658 0.0000 0.0002 

0.811 0.790 0.779 0.767 0.0001 0.0005 

0.427 0.875 0.864 0.850 0.0001 0.0007 

0.204 0.934 0.926 0.902 0.0001 0.0011 

0.051 1.000 1.000 1.000 0.0000 0.0000 

SSE: 0.0008 0.0039 

MSE: 0.0001 0.0004 

 

Figure 51 displays the 𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) curves and 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curves for Heterogeneous Case 5 with 

a high permeability area. The equations for calculations are introduced in Section 4.1.1. The 

𝑃𝑐(𝑎𝑣𝑒𝑆𝑤) curve and 𝑃𝑐(𝑖𝑛𝑙𝑒𝑡𝑆𝑤) curve with higher permeability in the heterogeneous region are 

shifted to the left compared to the curves with lower permeability. The capillary pressure curves of 

the heterogeneous cases with a high permeability area are both at the left side of the capillary 

pressure curves of the Randomly Distributed Case 2. Therefore, for the same capillary pressure, 

lower saturation values can be obtained. This is reasonable since more wetting phase (water) is 

displaced by nonwetting phase (oil) through the high permeability area. 
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Figure 51 Pc (𝑎𝑣𝑒𝑆𝑤) Curves and Pc (𝑖𝑛𝑙𝑒𝑡𝑆𝑤) Curves for Heterogeneous Case 5 with a high permeability 

area, the length of the low permeability area is 5mm, the average permeability of the core is 360mD  

4.1.6 Comparisons and Discussions  

The results of Homogeneous Case 1 clearly indicate the justification and reasonability of the 

centrifuge simulation method used in this research since the calculated numerical 𝑎𝑣𝑒𝑆𝑤 curves 

and capillary pressure curves are in a good agreement with the experimental curves. This provides 

confidence in the application of the simulation method to the consideration of heterogeneity in the 

following cases. The deviations between the 𝑎𝑣𝑒𝑆𝑤 of Randomly Distributed Case 2 and that of 

Homogeneous Case 1.1 are negligible; therefore, it is more realistic and rational to apply randomly 

distributed permeability fields to the matrix areas without high/low permeability areas in the digital 

models (Shikhov and Arns, 2015). It is important to be noted that the average permeabilities of the 

randomly distributed field and the homogeneous field should be kept as the same for comparison. 
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As we observe in the Heterogeneous Case 3 with different lengths of heterogeneous areas, the 

influence of a fracture can be neglected when the length of the heterogeneous area has been reduced 

to 1 𝑚𝑚 . In contrast, a large heterogeneous area can give rise to substantial deviations in the 

calculated capillary pressure curves compared to the Randomly Distributed Case 2. This makes 

sense because less wetting phase (water) is allowed to be displaced in a larger low permeability 

area. Thus, to better investigate impacts of permeability in heterogeneous areas, the lengths of the 

heterogenous areas were kept as 5 𝑚𝑚 in the subsequent simulations.  

The obtained 𝑎𝑣𝑒𝑆𝑤 for Heterogeneous Case 4 with a low permeability area are found to be larger 

than the Randomly Distributed Case 2, which means the heterogeneous regions with low 

permeability hamper the fluid flow in the core during centrifuge and the hindered fluids in the core 

contribute to larger values of water saturations. This can also be validated intuitively by comparing 

the displacement front and water saturation distribution of Heterogeneous Case 4 with a low 

permeability area with that of Randomly Distributed Case 2. In part (a) of Figure 46, the displacing 

front is curved towards the inlet face in the middle of the core and the area with higher water 

saturation (blue area) is larger than that of Randomly Distributed Case 2. Additionally, the capillary 

pressure curves calculated from the larger saturation values in Heterogeneous Case 4 with a low 

permeability area are shifted to the right side as compared to the Randomly Distributed Case 2. 

The increase in the values of 𝑎𝑣𝑒𝑆𝑤  is subject to the permeability of the heterogeneous area. 

Reducing permeability in heterogeneous areas can increase the deviations of 𝑎𝑣𝑒𝑆𝑤 between the 

heterogenous case with a low permeability area and the randomly distributed case. The existence 
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of a low permeability area in the core contributes to a capillary pressure curve with a positive bias. 

The results are reasonable because the area with lower permeability can retain more wetting phase 

and less wetting phase is produced in the graduated tube.  

The calculated 𝑎𝑣𝑒𝑆𝑤 of Heterogeneous Case 5 with a high permeability area are less than the 

Randomly Distributed Case 2. In part(a) of Figure 50, the displacement front is curved in the middle 

towards the outlet face of the core and the area with higher water saturation (blue area) is smaller 

than that of Randomly Distributed Case 2. The capillary pressure curves calculated based on the 

lower water saturation values in Heterogeneous Case 5 with a high permeability area are shifted to 

the left compared to Randomly Distributed Case 2. It is also found that a higher permeability value 

in the heterogeneous area can increase the deviations of 𝑎𝑣𝑒𝑆𝑤 between the heterogenous case and 

the randomly distributed case. However, no distinct rules could be found between the rotational 

speeds and the saturation deviations in Heterogeneous Case 4 and 5. The presence of a high 

permeability area in the core led to a capillary pressure with a negative bias. The results make sense 

since more wetting phase (water) is displaced by nonwetting phase (oil) in the high permeability 

area. 

4.2 Research Significance 

The typical centrifuge simulation methods that are widely used in the petroleum industry assume 

a one-dimensional fluid flow in the core without the consideration of heterogeneity. To investigate 

the impacts of core-scale heterogeneity on phase saturation predictions for centrifuge experiments, 

a centrifuge simulation method is presented in this thesis allowing a two-dimensional fluid flow, 

which is significant and vital in the core analysis field.  
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The proposed method to model the centrifuge experiments can describe the fluid flow in two 

dimensions by using streamline simulation method that considers capillary pressure numerically. 

The core heterogeneities have been accounted for in the centrifuge simulations by observing the 

streamline distributions with constant capillary pressure boundary conditions, which can also be 

validated by the displacing fronts and the saturation distributions at equilibrium. The two-

dimensional centrifuge simulation method has been validated to be able to predict accurate average 

wetting phase saturation when the system has reached equilibrium at a given rotational 

speed/capillary pressure. The impacts of core-scale heterogeneity on phase saturation predictions 

and capillary pressure curves are studied using the proposed two-dimensional centrifuge simulation 

method. According to the results, the heterogeneity that is generated randomly by a Gaussian field 

does not have much impact on fluid flow, phase saturations and capillary pressure curves as 

compared to other heterogeneous model. It has also been proved that if a low permeability area is 

present in the model during centrifuge simulation, less wetting phase will be displaced, and the 

average wetting phase (water) saturations will increase. Thus, the resulting capillary pressure curve 

will have a positive bias as compared to the homogeneous/ randomly distributed model. The 

deviations in the average phase saturations can be enlarged by increasing the length of the 

heterogeneous area or by decreasing the permeability value in the heterogeneous area. It has been 

proved that a high permeability area can contribute to lower average wetting phase (water) 

saturation, and the resulting capillary pressure curve will have a negative bias as compared to the 

homogeneous/ randomly distributed model. Considering the choice of capillary pressure curve can 

significantly affect the results of reservoir simulation, the significance of this thesis lies in that it 
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can provide accurate capillary pressure curves for reservoir engineers to predict the oil recovery 

process and describe the fluid distribution.  

For a reservoir engineer, capillary pressure is often used in the model initialization of the reservoir 

simulation where fluids are distributed all over the model initially (Shams et al., 2013). The effects 

of capillary pressure on the numerical simulation of reservoirs are significant in both fractured and 

non-fractured reservoirs. An accurate capillary pressure curve is crucial to accurately estimate the 

initial state of equilibrium by determining reservoir fluid distributions and fluid contacts. One-

dimensional flow assumption may arise to errors in average saturation measurements if the core 

has heterogenieites in it. For example, if a low heterogeneity area is present in the core, one may 

underpredict the average wetting phases without the consideration of heterogeneity like 

Heterogeneous Case 4. Consequently, an underestimated capillary pressure curve that is calculated 

from average wetting phase saturations can lead to inaccurate determination of transition zones and 

thus, volumes of original fluids in place, which has significant influences on the economic target 

of a project (Shams et al., 2015). In contrast, an overpredicted capillary pressure curve may lead to 

problems that the reservoir geology model becomes unstable, high CPU time and convergence 

problems (Haddad, 2011). Capillary pressure curves measured from core samples are often used to 

estimated rock permeability when the direct measurement of permeability is not available. For 

example, Swanson’s parameter has been widely used to estimate permeability from capillary 

pressure curves (Swanson, 1981). Guo et al. (2004) has also developed a parameter called Capillary 

Parachor for permeability estimation from capillary pressure curve and they found that the 
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permeability is proportional to the Capillary Parachor squared. If a high permeability area exists in 

the core like Heterogeneous Case 5, the capillary pressure may be overpredicted at the same water 

saturation by assuming a one-dimensional flow without the consideration of heterogeneity. 

Consequently. the permeability can be underestimated if Capillary Parachor is used for prediction. 

Since the capillary pressure and permeability are both crucial inputs for many reservoir simulators, 

a shift in capillary pressure curve without the heterogeneity consideration can produce results with 

considerable errors in simulations.  

4.3 Limitations 

The centrifuge simulation approach discussed in this research has its limitations. The simulation 

was conducted in a two-dimensional digital model; however, three-dimensional fluid flow can exist 

in the centrifuge experiments, so a three-dimensional model is needed. It is assumed that more 

deviations of phase saturations can be found in a three-dimensional model as compared to two-

dimensional model since fluid flow in three dimensions is considered. The centrifuge simulation 

in this research applied the orthogonal Cartesian grid blocks without considering the geometry of 

the core plug.  Radial grid blocks or curvilinear grid blocks would be better to model the core plug 

and fluid flows. The fluid flow in all the cases is assumed to be under steady state flow and the 

other kind of fluid flow conditions are not considered. Additionally, the permeabilities in the digital 

model are all assumed to be isotropic but most cores in reservoirs are heterogeneous with anisotropy. 

Only a few patterns of heterogeneity distributions in the cores were considered in the case studies, 

which may be too idealistic. To know the heterogeneity distribution in the core plug precisely, the 

tomography technique can be invoked. 
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5 Conclusions and Future Work 

5.1 Conclusions 

The modeling of centrifuge experiments for capillary pressure curve measurements are shown in 

very little literature. For the known centrifuge simulation methods, the porous media is assumed 

homogeneous, and the fluid flow is assumed to be in one dimension. However, absolute 

permeability may often vary spatially within a core plug, which will have impact on the flow pattern 

within the core and on the measured quantities. To fill the gap in this area, the centrifuge simulation 

method presented in this research thesis shows the advantage in allowing the fluids in the core to 

flow in two dimensions; therefore, core-scale heterogeneity can be accounted for when the fluids 

can flow more than one dimension. The centrifuge simulation method applied in this thesis is 

superior in describing the fluid flow compared to the standard numerical simulation methods 

(CYDAR, PORLAB etc.) for the determination of capillary pressure from SCAL experiments. This 

thesis applied streamline tracing method that considers capillary pressure to the modelling of 

centrifuge experiments; thus, core-scale heterogeneity can be characterized by streamline 

distributions. For the incompressible system without the consideration of gravity and diffusive 

effects, an elliptic pressure equation is derived and the pressure at the nodes are calculated. The 

pressure and velocity field are approximated and then the position of a particle at a specific point 

in time can be calculated and streamlines can then be traced. This thesis applied a semi-analytical 

Riemann solver along streamlines that can describe two-phase flow in the homogeneous and 

heterogeneous porous media under the constant differential pressure condition. Each streamline is 

treated as a one-dimensional system along which solution of mass conservation equations are 
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solved.  

In this research, the lab-scale centrifuge experiments are performed for three core plugs from bay 

Du Nord on offshore Newfoundland and the U.S. The ability of the new centrifuge simulation 

method to model centrifuge experiments for phase saturation predictions is validated and 

demonstrated through comparing the numerical results with the experimental results. The 

influences of core-scale heterogeneity on fluid flow, phase saturation predictions and capillary 

pressure curves from centrifuge simulations can be summarized as: 

1. A core with a permeability field generated randomly by the Gaussian field has produced 

equivalent simulated results (phase saturations, capillary pressure curves) as the core with 

a homogeneous permeability filed. The influences of the randomly generated 

heterogeneities by a Gaussian field on fluid flow, phase saturation and capillary pressure 

curves are negligible.  

2. The size of heterogeneous area can have impacts on the numerical results of centrifuge 

simulations. As the low permeability area is growing larger, the hindrance of the fluid flow 

is becoming bigger. Consequently, less wetting phase is produced and a higher average 

wetting phase saturation at same capillary pressure can be obtained. A capillary pressure 

curve that is shifted to the right side compared to the homogeneous/randomly distributed 

case can be calculated and the shift can be increased by enlarging the area of the low 

permeability region.  

3. When a low permeability area is present in a core plug during a drainage centrifuge 
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simulation, more wetting phase will be retained in the low permeability area of the core at 

some capillary pressure condition as compared to a homogeneous/randomly distributed 

core. Therefore, less wetting phase is produced from the core and higher average wetting 

phase saturation can be obtained. A capillary pressure curve with a positive bias as 

compared to homogeneous/randomly distributed case can be calculated. The difference 

between a heterogeneous and a homogeneous capillary pressure curve can be increased by 

decreasing the permeability values in the low permeability area. 

4. When a high permeability area is present in a core plug during a drainage centrifuge 

simulation, more wetting phase will go through the high permeability area of the core at 

same capillary pressure condition as compared to a homogeneous/randomly distributed 

core. Thus, more wetting phase is displaced out of the core and lower average wetting phase 

saturation can be obtained. A capillary pressure curve with a negative bias as compared to 

homogeneous/randomly distributed case can be calculated. The difference between a 

heterogeneous and a homogeneous capillary pressure curve can be increased by increasing 

the permeability values in the high permeability area. There is no distinct rule can be found 

in the influence of rotational speeds on the saturation deviations. 

The rock permeability is usually estimated from capillary pressures using an empirical correlation 

when direct measurement is not available. An overpredict/underpredict capillary pressure curves 

from centrifuge simulation may give rise to inaccurate relative permeability curves. Since the 

capillary pressure and permeability are both crucial inputs for many reservoir simulators, a shift in 



144 

 

capillary pressure curve without the heterogeneity consideration can produce results with 

considerable errors in simulations.   

In conclusion, the effects of core-scale heterogeneity on phase saturation predictions and the 

resulting capillary pressure curves cannot be neglected and should be accounted for in the 

modelling of centrifuge experiments for capillary pressure curve measurements.  

5.2 Future Work 

The new centrifuge simulation method is developed to deliver more accurate simulations for 

centrifuge experiments. However, this method has only been performed in two dimensions 

throughout this research thesis. In other words, we can only handle the core with two-dimensional 

flow. This simulation method can be extended three-dimensional grid blocks, which can be 

achieved by tracing streamlines in three dimensions using cubic pressure approximation functions. 

This research thesis is based on Cartesian coordinate so errors may occur in the representation of 

the geometry of a core plug. Radial or cylindrical coordinate may better satisfy the complex 

geometry of a core plug. The permeabilities in the digital model are all assumed to be isotropic so 

the anisotropy can be considered by setting the permeability to be a full tensor. A full tensor 

permeability can better model local flow in directions at an angle to the coordinate axes. Only a 

limited patterns of heterogeneity distributions in the cores have been considered; thus, more 

permeability distribution patterns can be studied and investigated. The unsteady state flow 

condition and compressible fluid flow in the oil/gas case can also be studied as the future work.  
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Appendices 

Appendix A: Two-dimensional Homogeneous Case Centrifuge Simulation 

clear all 

mrstModule add incomp diagnostics 

%% Set up grid and petrophysical data 

nx=155;ny=100; 

lx=0.0520;ly=0.0336; domain = [lx ly]; 

G = cartGrid([nx,ny],[lx,ly]); 

G = computeGeometry(G); 

K=ones(nx,ny).*360.*milli*darcy; 

rock = makeRock(G, K(:), 0.2828); 

plotGrid(G); 

%% computation of upscaled permeability 

q   = ones(G.cells.num,1); 

vol = G.cells.volumes; 

coarse = [1 1]; 

cG = computeGeometry(cartGrid(coarse,G.cartDims)); 

for i=1:size(rock.perm,2) 

dims = G.cartDims; dims(i)=coarse(i); 

qq = partitionUI(G, dims); 

K = accumarray(qq,vol)./accumarray(qq,vol./rock.perm(:,i)); 

crock.perm(:,i) = accumarray(q,K(qq).*vol)./accumarray(q,vol) 

end 

%% The histogram of the permeability distribution in 1D problem 

K = convertTo(rock.perm,milli*darcy); 

plotCellData(G,K,'EdgeColor','none');axis tight; 

[h,az] = colorbarHist(K,[0 400],'South'); 

pv     = poreVolume(G, rock); 

%% Compute half transmissibilities 

hT = computeTrans(G, rock); 

%% Fluid model 

gravity reset off 

fluid = initSimpleFluidJfunc('mu' , [   1.01,  

5.9]*centi*poise     , ... 

    'rho', [1040, 858]*kilogram/meter^3, ... 

    'n'  , [   2,   2], ... 

    'surf_tension',1, ... 

    'rock', rock);             

%% Impose boundary condition 
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[src,bc] = deal([]); 

bc = pside(bc, G, 'EAST',0*barsa,'sat', [1 0]); 

bc = pside(bc, G, 'WEST',4.116*barsa,'sat', [0 1]); 

 

clf, plotGrid(G,'FaceColor', 'none'); view(2); 

plotFaces(G, bc.face(strcmp(bc.type,'pressure')), 'b'); 

plotFaces(G, bc.face(strcmp(bc.type,'pressure')), 'r'); 

%% Construct reservoir state object 

state = initResSol(G, 0.0, [1 0]); 

%% Solve pressure and show the result 

state = incompTPFA(state, G, hT, fluid, 'src', src,'bc',bc); 

 

clf, 

plotCellData(G, convertTo(state.pressure, barsa()), 'EdgeColor', 

'k'); 

axis equal tight; colorbar; 

%% Compute time-of-flight 

mrstModule add diagnostics 

tof = computeTimeOfFlight(state, G, rock,'bc',bc);  

 

clf, 

plotCellData(G, tof); 

axis equal tight; 

colormap(jet(11));colorbar; 

caxis('auto'); 

%% Visualize high-flow and stagnant regions 

tofb = computeTimeOfFlight(state, G, rock, 'bc', bc, 'reverse', 

true); 

 

clf, 

plotCellData(G, tof+tofb); 

axis equal tight; 

colormap(jet(128)); 

%% Trace streamlines 

mrstModule add streamlines; 

j=1; 

for i=0:ny-1 

    seed(j) = 1+i.*nx; 

    j=j+1; 

end 

seed=seed.'; 
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clf, 

Sf = pollock(G, state, seed, 'substeps', 1); 

hf=streamline(Sf); 

axis equal tight; 

set([hf],'Color','k'); 

%% Compute solution and plot saturation evolution 

% Figure, colormap and contour values 

nval = 25; 

cval = linspace(0,1,nval+1); 

cval=.5*cval(1:end-1)+.5*cval(2:end); 

T=0; 

dT=ones(1,20).*(11.55/20); 

% dT=ones(1,20).*(10^(-2)/20); 

% dT=ones(1,20).*(2*10^8/20); 

Swt=zeros(1,numel(dT)); 

flux=zeros(1,numel(dT)); 

a  = 1/(2*(sqrt(2)-1)); %water front propagation speed 

% Compute time-of-flight for the single-phase flow field and 

record the corresponding breakthrough time in the producer. 

ii=1; 

for i=1:ny 

    tbf(ii) = tof(i.*ny) 

    ii=ii+1; 

end 

tbf=min(tbf); 

  

for k=1:numel(dT) 

    T=T+dT(k); 

% Initialize number of time intervals and array to hold the oil 

in place 

[N,M]    = deal(6,10);% main step is N, substep is M. number of 

time intervals is M*N 

oip      = zeros(N*M+1,1); oip(1) = 

sum(state.s(:,2).*pv); %assume the initial pore volume is filled 

with oil 

for n=1:N 

    fprintf(1,'Main step %d: ',n); 

    for m=1:M 

       state  = incompTPFA(state, G, hT, fluid,'bc',bc); 
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       state  = explicitTransport(state, G, dT(k)/(N*M), rock, 

fluid,'bc',bc); 

       fprintf(1,'%d, ',m); 

    end 

    fprintf(1,'\n'); 

  

    % Plot multiphase solution 

    subplot(1,2,1); 

    contourf(reshape(G.cells.centroids(:,1), G.cartDims),... 

        reshape(G.cells.centroids(:,2), G.cartDims), ... 

        reshape(state.s(:,2),G.cartDims),[0 cval 

1],'EdgeColor','none'); 

    ch=colorbar; set(get(ch,'title'),'string','So'); 

%     title(sprintf('T: %.0f s', T/10^4)); 

    hold on; 

    caxis([0 1]); 

    axis equal; axis([0 domain(1) 0 domain(2)]); 

    set(gca,'XTick',[],'YTick',[]); 

    % Plot multiphase solution as function of single-phase time-

of-flight 

    subplot(1,2,2); 

%   set(gca,'position',get(gca,'position')+[0 1 1 1]); 

    plot(tof(:,1)/tbf,state.s(:,1),'.k','MarkerSize',4); 

    set(gca,'YLim',[0 1]); 

    set(gca,'XTick',[]); 

    xlabel('x'); ylabel('Sw'); 

    drawnow; 

end     

%Calculation of Sw 

for i=1:(numel(state.s)./2) 

    Swt(k)=Swt(k)+state.s(i,1) 

end 

aveSwt(k)=Swt(k)./(numel(state.s)./2); 

  

%flux vs displacing time 

e = bc.face(strcmp('pressure', bc.type)); 

for j=1:ny 

    flux(k)=flux(k)+state.flux(e(j)) 

end 

flux(k)=flux(k)./ny; 

% if k>1 
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% dtime(k)=(dtime(k-1)+T)./10^4; 

% else 

%     dtime(k)=T./10^4; 

% end 

dtime(k)=T; 

y(k)=flux(k); 

end 

xlabel('Final time for integration (s)'); 

ylabel('flow rate (m^3/s)'); 

plot(dtime,y); 

Appendix B: Two-dimensional Randomly Distributed Case Centrifuge Simulation 

clear all 

mrstModule add incomp diagnostics 

%% Set up grid and petrophysical data 

nx=155;ny=100; 

lx=0.0520;ly=0.0336; domain = [lx ly]; 

G = cartGrid([nx,ny],[lx,ly]); 

G = computeGeometry(G); 

%% Gaussina porosity and permeability field 

K = gaussianField(G.cartDims, [322 400].*milli*darcy); 

rock = makeRock(G, K(:), .2828); 

%% computation of upscaled permeability 

q   = ones(G.cells.num,1); 

vol = G.cells.volumes; 

% Arithmetic 

for i=1:size(rock.perm,2) 

crock.perm(:,i) = 

accumarray(q,vol.*rock.perm(:,i)) ./accumarray(q,vol); 

end 

%% The histogram of the permeability distribution in 1D problem 

KK = convertTo(rock.perm,milli*darcy); 

plotCellData(G,KK,'EdgeColor','none');axis tight; 

xlabel('x');ylabel('y'); 

% [h,az] = colorbarHist(KK,[300 400],'South'); 

% hist(KK,20);xlabel('Permeability, mD'); ylabel('Frequency') 

ca=colorbar; caxis([290 390]); 

% set(get(ca,'title'),'string','(mD)'); 

pv     = poreVolume(G, rock); 

%% Compute half transmissibilities 

hT = computeTrans(G, rock); 

%% Fluid model 
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gravity reset off 

fluid = initSimpleFluidJfunc('mu' , [   1.01,  

5.9]*centi*poise     , ... 

    'rho', [1040, 858]*kilogram/meter^3, ... 

    'n'  , [   2,   2], ... 

    'surf_tension',1, ... 

    'rock', rock);                     

%% Impose boundary condition 

[src,bc] = deal([]); 

bc = pside(bc, G, 'EAST',0*barsa,'sat', [1 0]); 

bc = pside(bc, G, 'WEST',4.116*barsa,'sat', [0 1]); 

  

clf, plotGrid(G,'FaceColor', 'none'); view(2); 

plotFaces(G, bc.face(strcmp(bc.type,'pressure')), 'b'); 

plotFaces(G, bc.face(strcmp(bc.type,'pressure')), 'r'); 

%% Construct reservoir state object 

state = initResSol(G, 0.0, [1 0]); 

%% Solve pressure and show the result 

state = incompTPFA(state, G, hT, fluid, 'src', src,'bc',bc); 

clf, 

plotCellData(G, convertTo(state.pressure, barsa()), 'EdgeColor', 

'k'); 

axis equal tight; colorbar; 

%% Compute time-of-flight 

mrstModule add diagnostics 

tof = computeTimeOfFlight(state, G, rock,'bc',bc); 

  

clf, 

plotCellData(G, tof); 

axis equal tight; 

colormap(jet(11)); 

caxis('auto'); colorbar; 

%% Visualize high-flow and stagnant regions 

tofb = computeTimeOfFlight(state, G, rock, 'bc', bc, 'reverse', 

true); 

  

clf, 

plotCellData(G, tof+tofb); 

axis equal tight; 

colormap(jet(128)); 

%% Trace streamlines 
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mrstModule add streamlines; 

j=1; 

for i=0:ny-1 

    seed(j) = 1+i.*nx; 

    j=j+1; 

end 

seed=seed.'; 

  

clf, 

Sf = pollock(G, state, seed, 'substeps', 1); 

hf=streamline(Sf); 

axis equal tight; 

set([hf],'Color','k'); 

%% Compute solution and plot saturation evolution 

% Figure, colormap and contour values 

nval = 25; 

cval = linspace(0,1,nval+1); 

cval=.5*cval(1:end-1)+.5*cval(2:end); 

T=0; 

% dT=ones(1,20).*(10^8/20);  

dT=ones(1,20).*(11.55/20); 

Swt=zeros(1,numel(dT)); 

flux=zeros(1,numel(dT)); 

a = 1/(2*(sqrt(2)-1)); %water front propagation speed 

% Compute time-of-flight for the single-phase flow field and 

record the corresponding breakthrough time in the producer. 

ii=1; 

for i=1:ny 

    tbf(ii) = tof(i.*ny) 

    ii=ii+1; 

end 

tbf=min(tbf); 

  

for k=1:numel(dT) 

    T=T+dT(k); 

% Initialize number of time intervals and array to hold the oil 

in place 

[N,M]    = deal(6,10);% main step is N, substep is M. number of 

time intervals is M*N 



162 

 

oip      = zeros(N*M+1,1); oip(1) = 

sum(state.s(:,2).*pv); %assume the initial pore volume is filled 

with oil 

for n=1:N 

    fprintf(1,'Main step %d: ',n); 

    for m=1:M 

       state  = incompTPFA(state, G, hT, fluid,'bc',bc); 

       state  = explicitTransport(state, G, dT(k)/(N*M), rock, 

fluid,'bc',bc); 

       fprintf(1,'%d, ',m); 

    end 

    fprintf(1,'\n'); 

     

    % Plot multiphase solution 

    subplot(1,2,1); 

    contourf(reshape(G.cells.centroids(:,1), G.cartDims),... 

        reshape(G.cells.centroids(:,2), G.cartDims), ... 

        reshape(state.s(:,2),G.cartDims),[0 cval 

1],'EdgeColor','none'); 

    ch=colorbar; set(get(ch,'title'),'string','So'); 

%     title(sprintf('T: %.0f s', T./10^4)); 

    hold on; 

    % Plot corresponding time lines from single-phase solution 

    contour(reshape(G.cells.centroids(:,1), G.cartDims),... 

        reshape(G.cells.centroids(:,2), G.cartDims), ... 

        reshape(tof,G.cartDims),a/N, '-k','LineWidth',1); 

    caxis([0 1]); 

    axis equal; axis([0 domain(1) 0 domain(2)]); 

    set(gca,'XTick',[],'YTick',[]); 

    % Plot multiphase solution as function of single-phase time-

of-flight 

    subplot(1,2,2) 

%     set(gca,'position',get(gca,'position')+[0 .12 0 0]); 

    plot(tof(:,1)/tbf,state.s(:,1),'.k','MarkerSize',4); 

%     set(gca,'XLim',[0 5.5]);  set(gca,'YLim',[0 1]); 

    set(gca,'XTick',[]); xlabel('x'); ylabel('Sw'); 

    drawnow; 

end 

%Calculation of Sw 

for i=1:(numel(state.s)./2) 

    Swt(k)=Swt(k)+state.s(i,1) 
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end 

aveSwt(k)=Swt(k)./(numel(state.s)./2); 

%flux vs displacing time 

e = bc.face(strcmp('pressure', bc.type)); 

for j=1:ny 

    flux(k)=flux(k)+state.flux(e(j)) 

end 

flux(k)=flux(k)./ny; 

dtime(k)=T./10^4; 

y(k)=flux(k); 

end 

plot(dtime,y); 

Appendix C: Two-dimensional Heterogeneous Case with a Heterogeneous Area Centrifuge 

Simulation 

clear all 

mrstModule add incomp diagnostics 

%% Set up grid and petrophysical data 

nx=155;ny=100; 

lx=0.0520;ly=0.0336; domain = [lx ly]; 

G = cartGrid([nx,ny],[lx,ly]); 

G = computeGeometry(G); 

%% fracture low/high perm case 

f=1; 

if f==1 

    %Case 3.1 

    K = gaussianField(G.cartDims, [322 400].*milli*darcy); 

    K(76:79,49:52)=20.*milli*darcy; 

    rock = makeRock(G, K(:), .2828); 

elseif f==5 

    %Case 3.2 

    K = gaussianField(G.cartDims, [323 400].*milli*darcy); 

    K(70:85,43:58)=20.*milli*darcy; 

    rock = makeRock(G, K(:), .2828); 

elseif f==10 

    %Case 3.3 

    K = gaussianField(G.cartDims, [324 400].*milli*darcy); 

    K(63:93,35:65)=20.*milli*darcy; 

    rock = makeRock(G, K(:), .2828); 

end 

%% computation of upscaled permeability 

q   = ones(G.cells.num,1); 
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vol = G.cells.volumes; 

% Arithmetic 

for i=1:size(rock.perm,2) 

crock.perm(:,i) = 

accumarray(q,vol.*rock.perm(:,i)) ./accumarray(q,vol); 

end 

%% The histogram of the permeability distribution in 1D problem 

KK = convertTo(rock.perm,milli*darcy); 

plotCellData(G,KK,'EdgeColor','none');axis tight; 

xlabel('x');ylabel('y'); 

% [h,az] = colorbarHist(KK,[300 400],'South'); 

% hist(KK,20);xlabel('Permeability, mD'); ylabel('Frequency') 

% set(az,'Position',get(az,'Position')-[0 0 0 .02]); 

ca=colorbar; caxis([290 390]); 

% set(get(ca,'title'),'string','(mD)'); 

pv     = poreVolume(G, rock); 

%% Compute half transmissibilities 

hT = computeTrans(G, rock); 

%% Fluid model 

gravity reset off 

fluid = initSimpleFluidJfunc('mu' , [   1.01,  

5.9]*centi*poise     , ... 

    'rho', [1040, 858]*kilogram/meter^3, ... 

    'n'  , [   2,   2], ... 

    'surf_tension',1, ... 

    'rock', rock);                     

%% Impose boundary condition 

[src,bc] = deal([]); 

bc = pside(bc, G, 'EAST',0*barsa,'sat', [1 0]); 

bc = pside(bc, G, 'WEST',4.116*barsa,'sat', [0 1]); 

  

clf, plotGrid(G,'FaceColor', 'none'); view(2); 

plotFaces(G, bc.face(strcmp(bc.type,'pressure')), 'b'); 

plotFaces(G, bc.face(strcmp(bc.type,'pressure')), 'r'); 

%% Construct reservoir state object 

state = initResSol(G, 0.0, [1 0]); 

%% Solve pressure and show the result 

state = incompTPFA(state, G, hT, fluid, 'src', src,'bc',bc); 

clf, 

plotCellData(G, convertTo(state.pressure, barsa()), 'EdgeColor', 

'k'); 
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axis equal tight; colorbar; 

%% Compute time-of-flight 

mrstModule add diagnostics 

tof = computeTimeOfFlight(state, G, rock,'bc',bc); 

  

clf, 

plotCellData(G, tof); 

axis equal tight; 

colormap(jet(11)); 

caxis('auto'); colorbar; 

%% Visualize high-flow and stagnant regions 

tofb = computeTimeOfFlight(state, G, rock, 'bc', bc, 'reverse', 

true); 

  

clf, 

plotCellData(G, tof+tofb); 

axis equal tight; 

colormap(jet(128)); 

%% Trace streamlines 

mrstModule add streamlines; 

j=1; 

for i=0:ny-1 

    seed(j) = 1+i.*nx; 

    j=j+1; 

end 

seed=seed.'; 

  

clf, 

Sf = pollock(G, state, seed, 'substeps', 1); 

hf=streamline(Sf); 

axis equal tight; 

set([hf],'Color','k'); 

%% Compute solution and plot saturation evolution 

% Figure, colormap and contour values 

nval = 25; 

cval = linspace(0,1,nval+1); 

cval=.5*cval(1:end-1)+.5*cval(2:end); 

T=0; 

% dT=ones(1,20).*(10^8/20);  

dT=ones(1,20).*(11.55/20); 

Swt=zeros(1,numel(dT)); 
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flux=zeros(1,numel(dT)); 

a  = 1/(2*(sqrt(2)-1)); %water front propagation speed 

% Compute time-of-flight for the single-phase flow field and 

record the corresponding breakthrough time in the producer. 

ii=1; 

for i=1:ny 

    tbf(ii) = tof(i.*ny) 

    ii=ii+1; 

end 

tbf=min(tbf); 

  

for k=1:numel(dT) 

    T=T+dT(k); 

% Initialize number of time intervals and array to hold the oil 

in place 

[N,M]    = deal(6,10);% main step is N, substep is M. number of 

time intervals is M*N 

oip      = zeros(N*M+1,1); oip(1) = 

sum(state.s(:,2).*pv); %assume the initial pore volume is filled 

with oil 

for n=1:N 

    fprintf(1,'Main step %d: ',n); 

    for m=1:M 

       state  = incompTPFA(state, G, hT, fluid,'bc',bc); 

       state  = explicitTransport(state, G, dT(k)/(N*M), rock, 

fluid,'bc',bc); 

       fprintf(1,'%d, ',m); 

    end 

    fprintf(1,'\n'); 

     

    % Plot multiphase solution 

    subplot(1,2,1); 

    contourf(reshape(G.cells.centroids(:,1), G.cartDims),... 

        reshape(G.cells.centroids(:,2), G.cartDims), ... 

        reshape(state.s(:,2),G.cartDims),[0 cval 

1],'EdgeColor','none'); 

    ch=colorbar; set(get(ch,'title'),'string','So'); 

%     title(sprintf('T: %.0f s', T./10^4)); 

    hold on; 

    % Plot corresponding time lines from single-phase solution 

    contour(reshape(G.cells.centroids(:,1), G.cartDims),... 
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        reshape(G.cells.centroids(:,2), G.cartDims), ... 

        reshape(tof,G.cartDims),a/N, '-k','LineWidth',1); 

    caxis([0 1]); 

    axis equal; axis([0 domain(1) 0 domain(2)]); 

    set(gca,'XTick',[],'YTick',[]); 

    % Plot multiphase solution as function of single-phase time-

of-flight 

    subplot(1,2,2) 

%     set(gca,'position',get(gca,'position')+[0 .12 0 0]); 

    plot(tof(:,1)/tbf,state.s(:,1),'.k','MarkerSize',4); 

%     set(gca,'XLim',[0 5.5]);  set(gca,'YLim',[0 1]); 

    set(gca,'XTick',[]); xlabel('x'); ylabel('Sw'); 

    drawnow; 

end 

%Calculation of Sw 

for i=1:(numel(state.s)./2) 

    Swt(k)=Swt(k)+state.s(i,1) 

end 

aveSwt(k)=Swt(k)./(numel(state.s)./2); 

%flux vs displacing time 

e = bc.face(strcmp('pressure', bc.type)); 

for j=1:ny 

    flux(k)=flux(k)+state.flux(e(j)) 

end 

flux(k)=flux(k)./ny; 

dtime(k)=T./10^4; 

y(k)=flux(k); 

end 

plot(dtime,y); 

Appendix D: Streamline Tracing in Cartesian Grid 

function varargout = pollock(G, state, varargin) 

%Trace streamlines in logically Cartesian grid using Pollock 

approximation. 

% 

% SYNOPSIS: 

%   [S,T,C] = pollock(G, state) 

%   [S,T,C] = pollock(G, state, startpos) 

%   [S,T,C] = pollock(G, state, 'pn', pv, ...) 

%   [S,T,C] = pollock(G, state, startpos, 'pn', pv, ...) 

% 

% PARAMETERS: 
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% 

%   G         - Cartesian or logically Cartesian grid. 

% 

%   state     - State structure with field 'flux'. 

% 

% OPTIONAL PARAMETER 

% 

%   positions - Matrix of size (N, 1) or (N, d+1), where d is the 

dimension 

%               of the grid, used to indicate where the 

streamlines should 

%               start. 

% 

%               If the size is (N, 1), positions contains the 

cell indices 

%               in which streamlines should start. Each 

streamline is 

%               started in the the local coordinate (0.5, 

0.5, ...). To be 

%               precise, this is the mean of the corner points, 

not the 

%               centroid of the cell. 

% 

%               If the size is (N, d+1), the first column 

contains cell 

%               indices, and the d next columns contain the local 

%               coordinates at which to start streamlines. 

% 

% OPTIONAL PARAMETERS: 

% 

%   substeps  - Number of substeps in each cell, to improve 

visual quality. 

%               Default 5. 

% 

%   maxsteps  - Maximal number of points in a streamline. 

%               Default 1000. 

% 

%   reverse   - Reverse velocity field before tracing. 

%               Default false. 

% 



169 

 

%   pvol      - Pore-volume vector.  One positive scalar for each 

active 

%               cell in the grid `G`.  Makes the physical 

interpretation of 

%               time-of-flight appropriate for non-uniform 

porosity fields. 

% 

%   isoutflow - Cell-wise boolean indicator which indicates if a 

streamline 

%               should terminate upon reaching that cell. 

Defaults to 

%               false(G.cells.num, 1) and is useful in the 

presence of many 

%               weak source terms (which do not lead to inflow or 

outflow 

%               over all faces for a given source term). 

% 

%   blocksize - Internal parameter indicating how many 

streamlines are 

%               processed simultaneously. Larger values give 

faster 

%               processing, at a higher memory cost. Default: 

1000. 

% 

% RETURNS: 

% 

%  S      - Cell array of individual streamlines suitable for 

calls like 

%           streamline(pollock(...)) and 

streamtube(pollock(...)). 

% 

%  T      - Time-of-flight of coordinate. 

% 

%  C      - Cell number of streamline segment, i.e, line segment 

between 

%           two streamline coordinates. 

% 

% EXAMPLE: 

% 

%   S = pollock(G, x); 

%   % pad with nan's 



170 

 

%   S = reshape([S, repmat({[nan, nan]}, [numel(S),1])]',[], 1); 

%   S = vertcat(S{:}); 

%   plot(S(:,1), S(:,2), 'r-'); 

% 

%   streamline(pollock(G, x, 'pvol', poreVolume(G, rock))); 

% 

% SEE ALSO: 

%   `streamline`. 

  

%{ 

Copyright 2009-2020 SINTEF Digital, Mathematics & Cybernetics. 

  

This file is part of The MATLAB Reservoir Simulation Toolbox 

(MRST). 

  

MRST is free software: you can redistribute it and/or modify 

it under the terms of the GNU General Public License as published 

by 

the Free Software Foundation, either version 3 of the License, or 

(at your option) any later version. 

  

MRST is distributed in the hope that it will be useful, 

but WITHOUT ANY WARRANTY; without even the implied warranty of 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

GNU General Public License for more details. 

  

You should have received a copy of the GNU General Public License 

along with MRST.  If not, see <http://www.gnu.org/licenses/>. 

%} 

  

% Written by Jostein R. Natvig, SINTEF ICT, 2010. 

  

   d = size(G.nodes.coords, 2); 

   if mod(nargin, 2) == 0 

      positions = [(1:G.cells.num)', repmat(0.5, [G.cells.num, 

d])]; 

   else 

      positions = varargin{1}; 

      if size(positions, 2) == 1 

         positions = [positions, repmat(0.5, [size(positions, 1), 

d])]; 
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      elseif size(positions, 2) ~= 1 + d 

         error('Expected array of local positions of width 1 or 

1+d.'); 

      end 

      varargin = varargin(2:end); 

   end 

  

   opt = struct('substeps'  , 5,     ... 

                'maxsteps'  , 1000,  ... 

                'reverse'   , false, ... 

                'isoutflow' , false(G.cells.num, 1), ... 

                'blocksize' , 1000,  ... 

                'pvol'      , ones([G.cells.num, 1]), ... 

                'flux'      , [], ... % See 

getInteriorFluxesStreamlines 

                'neighbors' , []);    % See 

findStreamlineNeighborshipCart 

   opt = merge_options(opt, varargin{:}); 

  

   if ~all(opt.pvol > 0) 

      error('PoreVol:NonPositive', ... 

            'Rock pore-volume must be strictly positive in all 

cells'); 

   end 

  

   [varargout{1:nargout}] = trace(G, state, positions, opt); 

end 

  

% 

=================================================================

======== 

  

function varargout = trace(G, state, pos, opt) 

   d              = size(G.nodes.coords, 2); 

   numStreamlines = size(pos, 1); 

   assert(size(pos, 2) == d + 1); 

  

   if ~isfield(G, 'cellNodes') 

      cn = cellNodes(G); 

      G.cellNodes = accumarray(cn(:,1:2), cn(:,3)); 

   end 
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   % Make array face fluxes for each cell in grid (Not outer). 

   flux = opt.flux; 

   if isempty(flux) 

      flux = getInteriorFluxesStreamlines(G, state, opt.pvol, 

opt.reverse); 

   end 

  

   neighbors = opt.neighbors; 

   if isempty(neighbors) 

      neighbors  = findStreamlineNeighborshipCart(G); 

   end 

  

   magic  = opt.blocksize; 

   XYZ    = nan(numStreamlines, d, magic); 

   T      = nan(numStreamlines, magic); 

   C      = nan(numStreamlines, magic); 

   active = true(numStreamlines, 1); 

  

  

   % Store crossing coordinates of active streamlines 

   [XYZ(active,:,1)] = globalCoordinate(G, pos(active,1), 

pos(active, 2:end)); 

   T(active, 1) = zeros(sum(active), 1); 

   C(active, 1) = pos(active,1); 

  

   i = 2; 

   while any(active) 

      % Realloc 

      if i+opt.substeps+1 > size(XYZ, 3) 

         magic = max(magic, opt.substeps+1); 

         XYZ   = cat(3, XYZ, nan(numStreamlines, d, magic)); 

         T     = cat(2, T,   nan(numStreamlines, magic)); 

         C     = cat(2, C,   nan(numStreamlines, magic)); 

      end 

      current_cell = pos(active,1); 

  

      % Take another pollock step 

      [pos(active, :), t, xyz] = step(pos(active,:), flux, 

neighbors, opt.substeps); 
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      % Store crossing coordinates and, optionally, coordinates 

along curve 

      % trajectory in cell of active streamlines 

      for k=1:opt.substeps 

         [XYZ(active, :, i+k-1)] = globalCoordinate(G, 

current_cell, xyz(:,:,k)); 

      end 

      T(active, i-1+(1:opt.substeps)) = repmat(t/opt.substeps, 

[1, opt.substeps]); 

      C(active, i-1+(1:opt.substeps)) = repmat(pos(active, 1), 

[1, opt.substeps]); 

  

      % Update active flag 

      active(active)    =  pos(active,1) ~= current_cell & 

~opt.isoutflow(current_cell); 

  

      i = i+opt.substeps; 

      if i > opt.maxsteps 

          break; 

      end 

   end 

  

   % Pack coordinates in list with streamlines separated by NaN. 

   p = reshape(permute(XYZ, [3,1,2]), [], d); 

  

   i = ~isnan(p(:,1)); 

   j = i|[true;i(1:end-1)]; 

   p = p(j,:); 

  

   % Pack streamline coordinates in a cell array suitable for use 

with 

   % Matlab streamline, i.e., as in 'streamline(pollock(G, 

resSol));' 

   flag = isnan(p(:,1)); 

   ix = find(flag); 

   dd  = diff([0;ix])-1; 

   varargout{1} = mat2cell(p(~flag,:), dd, d); 

   if nargout > 1 

      T = reshape(T', [], 1); 

      T = T(j); 

      varargout{2} = mat2cell(T(~flag), dd, 1); 
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   end 

   if nargout > 2 

      C = reshape(C', [], 1); 

      C = C(j); 

      varargout{3} = mat2cell(C(~flag), dd, 1); 

   end 

end 

  

% 

=================================================================

======== 

  

function xyz = globalCoordinate(G, c, p) 

% Compute global coordinate corresponding to local coordinate p 

in cells c 

% p  - local positions == [xi,eta,zeta] in 3D 

% c  - 

  

   if numel(c)==1, p = reshape(p, 1, []); end 

  

   % Compute node weight for quadrilateral or hexahedron 

   d = size(G.nodes.coords, 2); 

   w = ones(size(p,1), 2^d); 

   for i=1:d 

      mask        = logical(bitget((0:2^d-1)', i)); 

      w(:, mask)  = w(:, mask).* repmat(  p(:,i), [1, 

sum( mask)]); 

      w(:,~mask)  = w(:,~mask).* repmat(1-p(:,i), [1, 

sum(~mask)]); 

   end 

  

   % Compute weighted average of corner points 

   xyz = zeros(size(p,1), d); 

   for i=1:d 

      xi       = G.nodes.coords(:,i); 

      xyz(:,i) = sum(w .* reshape(xi(G.cellNodes(c, :))', 2^d, 

[])', 2); 

   end 

end 
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% 

=================================================================

======== 

  

function [pos, tof, xyz] = step(pos, flux, neighbors, nsubsteps) 

% Update pos array by computing new local coordinate and new 

cell. 

% In addition, compute curve within cell. 

  

   f = flux(pos(:,1),:); 

   n = neighbors(pos(:,1),:); 

  

   dims = size(pos, 2)-1; 

   T    = nan(size(pos,1),dims); 

   for i=1:dims 

      T(:,i) = computeTime(pos(:,1+i), f(:,2*i-1:2*i)); 

   end 

   [tof, dir] = min(T, [], 2); 

  

   xyz = zeros(size(pos,1), dims, nsubsteps); 

   d   = zeros(size(pos, 1), 1); 

   for s=1:nsubsteps 

      for i=1:dims 

         t = tof*s/nsubsteps; 

         [xyz(:,i,s), d(:,i)] = computePosition(pos(:,1+i), 

f(:,2*i-1:2*i), t); 

      end 

   end 

  

   pos (:,2:end) = xyz(:,:,s); 

  

   % Find direction to look up neighbor cell 

   k  = 2*(dir-1)+d(sub2ind([numel(dir), 3], (1:numel(dir))', 

dir)); 

   t  = sub2ind(size(n), (1:numel(k))', k); 

  

   % Update cell number if NOT at boundary. 

   % IF at boundary, mark dir with NaN to avoid changing local 

coordinate 

   % below. 

   ind         = n(t)==0; 
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   % Also, if there is no finite time to escape the current cell, 

set NaN 

   % value to indicate that the streamline has terminated. 

   ind         = ind | all(~isfinite(T), 2); 

   pos(~ind,1) = n(t(~ind)); 

   dir (ind)   = nan; 

  

   % Change local coordinate when moving to new cell 

   k = sub2ind(size(d), (1:size(dir,1))', dir); 

   k = k(~isnan(k)); 

   pos(numel(dir) + k ) = 2-d(k); 

end 

  

% 

=================================================================

======== 

  

function t = computeTime(xi, v) 

% Compute time needed to reach xi=0 or xi=1 given velocities 

v=[v1,v2] at 

% xi=0 and xi=1.  The formula is 

% 

%   t = xi/ui  or t = (1-xi)/ui,    if v1 = v2 = ui, and 

% 

%   t = 1/(v2-v1)*log(ue/ui),       otherwise 

% 

% where ui=v2*xi+v1*(1-xi) is the velocity at xi, and ue=v2 if 

ui>0 or 

% ue=v1 if ui<0. 

  

   tolerance = 100*eps; 

  

   ui         = v(:,1) + xi.*diff(v, 1, 2);%(:,2)-v(:,1)); 

   ue         = v(:,    2); 

   ue (ui<0)  = v(ui<0, 1); 

   arg        = ue./ui; 

   t          = inf(size(xi)); 

  

   % Linear velocity 

   ind        = abs(diff(v, 1, 2)) > tolerance*abs(v(:,1)); 

   t(ind,:)   = 1./diff(v(ind,:), 1, 2).*log(arg(ind,:)); 
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   % Constant velocity 

   ds         = -xi; 

   ds(ui > 0) = 1-xi(ui>0); 

   t(~ind)    = ds(~ind)./ui(~ind); 

  

   % nan happens for ui=ui=0 

   t(arg<=0 | isnan(arg))   = inf; 

end 

  

% 

=================================================================

======== 

  

function [x, i] = computePosition(xi, v, t) 

% Compute position at time t given start point xi and velocities 

v=[v1,v2]. 

% 

%   x = xi + v*t,    if v is constant or 

% 

%   x = xi + (ui*exp((v2-v1)*t) - ui)/(v2-v1), otherwise 

% 

   tolerance = 100*eps; 

  

   du        = diff(v, 1, 2); 

   ui        = v(:,1) + xi.*du; 

   i         = 1 + ~(ui<0); 

   x         = inf(size(xi)); 

  

   ind       = abs(du) > tolerance*abs(v(:,1)); 

  

   % linear velocity 

   x(ind)    = xi(ind) + ( ui(ind).*exp(du(ind).*t(ind)) - 

ui(ind))./du(ind); 

  

   % Constant velocity 

   x(~ind,:) = xi(~ind,:) + v(~ind, 1).*t(~ind, :); 

   x(~ind & t==inf) = xi(~ind & t==inf); 

end 
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Appendix E: Explicit Two-phase Flow Transport Solver  

function state = explicitTransport(state, G, tf, rock, fluid, 

varargin) 

%Explicit single-point upstream mobility-weighted transport 

solver for two-phase flow. 

% 

% SYNOPSIS: 

%   state = explicitTransport(state, G, tf, rock, fluid) 

%   state = explicitTransport(state, G, tf, rock, fluid, 'pn1', 

pv1, ...) 

% 

% DESCRIPTION: 

%   Implicit discretization of the transport equation 

% 

%      s_t + div[f(s)(v + mo K((rho_w-rho_o)g + grad(P_c)))] = 

f(s)q 

% 

%   where v is the sum of the phase Darcy fluxes, f is the 

fractional 

%   flow function, 

% 

%                  mw(s) 

%        f(s) = ------------- 

%               mw(s) + mo(s) 

% 

%   mi = kr_i/mu_i is the phase mobility of phase i, mu_i and 

rho_i are the 

%   phase viscosity and density, respectively, g the (vector) 

acceleration 

%   of gravity, K the permeability, and P_c(s) the capillary 

pressure.  The 

%   source term f(s)q is a volumetric rate of water. 

% 

%   We use a first-order upstream mobility-weighted 

discretization in space 

%   and a backward Euler discretization in time. The transport 

equation is 

%   solved on the time interval [0,tf] by calling 

twophaseJacobian to build 

%   a function computing the residual of the discrete system in 

addition to 
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%   a function taking care of the update of the solution during 

the 

%   time loop. 

% 

% REQUIRED PARAMETERS: 

%   state - Reservoir and well solution structure either properly 

%           initialized from function 'initState', or the results 

from a 

%           previous call to function 'solveIncompFlow' and, 

possibly, a 

%           transport solver such as function 

'explicitTransport'. 

% 

%   G     - Grid data structure discretizing the reservoir model. 

% 

%   tf    - End point of time integration interval (i.e., final 

time). 

%           Measured in units of seconds. 

% 

%   rock  - Rock data structure.  Must contain the field 

'rock.poro' and, 

%           in the presence of gravity or capillary forces, valid 

%           permeabilities measured in units of m^2 in field 

'rock.perm'. 

% 

%   fluid - Fluid data structure as defined in 'fluid_structure'. 

% 

% OPTIONAL PARAMETERS: 

%   W         - Well structure as defined by function 'addWell'.  

This 

%               structure accounts for all injection and 

production well 

%               contribution to the reservoir flow. 

%               Default value: W = [], meaning a model without 

any wells. 

% 

%   bc        - Boundary condition structure as defined by 

function 

%               'addBC'.  This structure accounts for all 

external boundary 

%               contributions to the reservoir flow. 
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%               Default value: bc = [] meaning all external no-

flow 

%               (homogeneous Neumann) conditions. 

% 

%   src       - Explicit source contributions as defined by 

function 

%               'addSource'. Default value: src = [] meaning no 

explicit 

%               sources exist in the model. 

% 

%   onlygrav  - Ignore content of state.flux.         Default 

false. 

% 

%   computedt - Estimate time step.                   Default 

true. 

% 

%   max_dt    - If 'computedt', limit time step.      Default 

inf. 

% 

%   dt_factor - Safety factor in time step estimate.  Default 

0.5. 

% 

%   dt        - Set time step manually.  Overrides all other 

options. 

% 

%   gravity   - The current gravity in vector form. Defaults to 

gravity(). 

% 

%   satwarn   - Issue a warning if saturation is more than 

'satwarn' 

%               outside the default interval of [0,1]. 

% 

% RETURNS: 

%   state     - Reservoir solution with updated saturation, 

state.s. 

% 

% EXAMPLE: 

%   See simple2phWellExample.m 

% 

% SEE ALSO: 

%   `twophaseJacobian`, `implicitTransport`. 
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%{ 

Copyright 2009-2020 SINTEF Digital, Mathematics & Cybernetics. 

  

This file is part of The MATLAB Reservoir Simulation Toolbox 

(MRST). 

  

MRST is free software: you can redistribute it and/or modify 

it under the terms of the GNU General Public License as published 

by 

the Free Software Foundation, either version 3 of the License, or 

(at your option) any later version. 

  

MRST is distributed in the hope that it will be useful, 

but WITHOUT ANY WARRANTY; without even the implied warranty of 

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

GNU General Public License for more details. 

  

You should have received a copy of the GNU General Public License 

along with MRST.  If not, see <http://www.gnu.org/licenses/>. 

%} 

  

  

   opt = struct(... 

      'verbose'  , false      , ... 

      'onlygrav' , false      , ... 

      'computedt', true       , ... 

      'max_dt'   , inf        , ... 

      'dt_factor', 0.5        , ... 

      'wells'    , []         , ... 

      'W'        , []         , ... 

      'src'      , []         , ... 

      'bc'       , []         , ... 

      'dt'       , tf         , ... 

      'Trans'    , []         , ... 

      'gravity'  , gravity()  , ... 

      'satwarn'  , sqrt(eps)); 

  

   opt = merge_options(opt, varargin{:}); 

   opt = treatLegacyForceOptions(opt); 
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   if opt.onlygrav 

      flux = state.flux; 

      state.flux = zeros(G.faces.num, 1); 

   end 

  

   [F,~,gf,q] = twophaseJacobian(G, state, rock, fluid, ... 

                        'wells', opt.wells,    ... 

                        'src'  , opt.src  ,    ... 

                        'bc'   , opt.bc,       ... 

                        'Trans', opt.Trans); 

  

  

   if opt.computedt 

  

      % ---------- Time step estimate from state --------------- 

      compi = { 'use_compi', true }; 

      vsrc = computeTransportSourceTerm(state, G, opt.wells, ... 

                                        opt.src, opt.bc, 

compi{:}); 

      vsrc = assembleTransportSource(state, fluid, vsrc, 

G.cells.num, compi{:}); 

  

      gflux = getFlux(G, rock,opt); 

      getdt = @(state) min([... 

                   opt.max_dt, ... 

                   opt.dt_factor * estimate_dt(G, state, rock, 

fluid, ... 

                                                state.flux, 

gflux, vsrc)]); 

   else 

  

      % ----------- Constant time step ------------------------- 

      getdt =@(state) opt.dt; 

  

   end 

  

  

   s  = state.s(:,1); 

   t  = 0; 
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   dispif(opt.verbose, 'explicitTransport: Computing transport 

step in %d substeps\n', ... 

         ceil(tf/getdt(state))); 

   while t < tf 

      dt      = min(tf-t, getdt(state)); 

  

      s(:)    = s - F(state, state, dt); 

      t       = t + dt; 

  

      s       = correct_saturations(s, opt.satwarn); 

  

      state.s = [s, 1-s]; 

  

      if isfield(state, 'extSat') 

         % Save minimum saturation for use in modeling of 

relative 

         % permeability hysteresis. 

         state.extSat(:,1) = min(state.s(:,1), 

state.extSat(:,1)); 

         state.extSat(:,2) = max(state.s(:,1), 

state.extSat(:,2)); 

      end 

   end 

  

   if opt.onlygrav 

      state.flux = flux; 

   end 

  

   if any(any(isnan(state.s))) 

      error('explicitTransport: Transport step failed') 

   end 

end 

  

%----------------------------------------------------------------

---------- 

% Private helpers follow. 

%----------------------------------------------------------------

---------- 

  

function gflux = getFlux(G, rock, opt) 

%harmonic average of one-sided n \cdot K \cdot g on each face 
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   gvec   = -opt.gravity; 

   gflux  = zeros([G.faces.num, 1]); 

  

   dim    = size(G.nodes.coords, 2); 

   if(isempty(opt.Trans)) 

      [K, r, c] = permTensor(rock, dim); 

  

      assert (size(K,1) == G.cells.num, ... 

             ['Permeability must be defined in active cells 

only.\n', ... 

              'Got %d tensors, expected %d (== number of 

cells).'],   ... 

              size(K,1), G.cells.num); 

   end 

   nc     = G.cells.num; 

   cellNo = rldecode(1 : nc, diff(G.cells.facePos), 2) .'; 

  

   if norm(gvec) > 0 

  

      % nKg == n' * K * g for all cellfaces. 

      nKg    = sum(G.faces.normals(G.cells.faces(:,1), r) .* ... 

                   bsxfun(@times, K(cellNo,:), gvec(c)), 2); 

  

      % Compute harmonic average of one-sided nKg on all faces. 

      gflux = 2 ./ accumarray(G.cells.faces(:,1), 1 ./ nKg, 

[G.faces.num, 1]); 

   end 

  

  

end 

  

  

%----------------------------------------------------------------

---------- 

  

function dt = estimate_dt(G, state, rock, fluid, flux, gflux, 

sources) 

   [rho, kr, mu, dkr] = getIncompProps(state, fluid); 

  

   % Compute cell mobility and its derivative 
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   sat       = state.s; 

   mob       = bsxfun(@rdivide, kr, mu); 

  

   % dkr is Jacobian of kr.  We need derivatives with respect to 

s(:,1), 

   % hence sign of 'dkr(:,end)'. 

   dmob = bsxfun(@rdivide, [dkr(:,1), -dkr(:,end)], mu); 

  

   % Compute face density as average of cell densities. 

   i = all(G.faces.neighbors > 0, 2); 

   N = G.faces.neighbors(i, :); 

  

   % Find simple approximation to the maximal wave speed from 

advective 

   % term in reservoir based on derivative of flux on face. 

   df = @(mob, dmob) ... 

       (mob(:,2).*dmob(:,1) - mob(:,1).*dmob(:,2))./(sum(mob, 

2).^2); 

   d  = df(mob, dmob); 

   m  = max(abs(d(N)), [], 2); 

  

   wavespeed  = max(abs(m.*flux(i))); 

  

   % Find max wave speed from segregation term 

   g      = @(mob) mob(:,1).*mob(:,2)./sum(mob, 2); 

   s      = linspace(0,1, 101)'; 

   ss     = struct('s',[s,1-s]); 

   [rho_loc, kr_loc, mu_loc] = getIncompProps(ss, 

fluid); %#ok<ASGLU> 

   m      = bsxfun(@rdivide, kr_loc, min(mu_loc, [], 2)); 

   dg     = max(abs(diff(g(m)))./diff(s)); 

  

   wavespeed  = max([wavespeed; 

abs(dg.*gflux(i).*max(diff(rho_loc, 1, 2), [], 1))]  ); 

  

   % Find max wave speed from advective term for positive sources 

in 

   % interval [s, 1], 

   i      = sources > 0; 

   if any(i) 

      s     = (min(sat(i)) : 0.05 : 1.0)'; 
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      ss    = struct('s',[s,1-s]); 

      if numel(s) > 1 

         [tmp, kr, mu_w] = getIncompProps(ss, fluid); %#ok<ASGLU> 

         mob   = bsxfun(@rdivide,  kr, mu_w); 

         f     = bsxfun(@rdivide, mob(:,1), sum(mob, 2)); 

         maxdf = max(diff(f)./diff(s)); 

         wavespeed  = max(wavespeed, max(abs(sources(i) .* 

maxdf))); 

      end 

   end 

  

   % Find max wave speed from advective term for negative sources 

in 

   % interval [0, s], 

   i      = sources < 0; 

   if any(i) 

      s     = (max(sat(i)) : -0.05 : 0.0)'; 

      ss=struct('s',[s,1-s]); 

      if numel(s) > 1 

         [kr, mu] = getIncompProps(ss, fluid); 

         mob   = bsxfun(@rdivide,  kr, mu); 

         f     = bsxfun(@rdivide, mob(:,1), sum(mob, 2)); 

         maxdf = max(diff(f)./diff(s)); 

         wavespeed  = max(wavespeed, max(abs(sources(i) .* 

maxdf))); 

      end 

   end 

  

   dt = min(abs(poreVolume(G, rock)/wavespeed)); 

end 

  

function s = correct_saturations(s, satwarn) 

   % Display error if s > 1+satwarn 

   % or s < 0 - satwarn 

   i = find(s(:,1) > 1 + satwarn); 

   if ~isempty(i) 

      disp('Saturation exceeds 1 in cells:') 

      fprintf('%5d %g\n', [i, s(i,1)] .'); 

      error('explicitTransport: Error larger than satwarn') 

   end 
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   i = find(s(:,1) < -satwarn); 

   if ~isempty(i) 

      disp('Saturation less than 0 in cells:') 

      fprintf('%5d %g\n', [i, s(i,1)] .'); 

      error('explicitTransport: Error larger than satwarn') 

   end 

   % Correct numerical errors 

   s(s(:,1) > 1, 1) = 1 - eps; 

   s(s(:,1) < 0, 1) = 0; 

end 


