
  

COMPARING ACCELEROMETER PROCESSING METRICS FOR PHYSICAL 

ACTIVITY CLASSIFICATION ACCURACY USING MACHINE LEARNING 

METHODS 

 

By Musa, Sumayyah Bamidele 

 

 

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for 

the degree of 

 

 

Master of Science in Kinesiology 

Memorial University of Newfoundland 

   

 

 

September 2022 

St. John’s, Newfoundland & Labrador 

 

 

 



 

 ii 

Table of Contents 

ABSTRACT iv 

GENERAL SUMMARY v 

ACKNOWLEDGEMENTS vi 

LISTS OF FIGURES AND TABLES vii 

LISTS OF APPENDICES viii 

LISTS OF ABBREVIATIONS ix 

CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 1 

1.1 Background to the study 1 

1.2 Physical Activity Measurements 3 

1.3  Comparison between self-report and Accelerometer in Canada 7 

1.4  Current challenges with accelerometer measurement 8 

1.5  Raw Accelerometer Data Processing 9 

1.6  Physical Activity Classification 13 

CHAPTER 2: RESEARCH PROBLEM 16 

2.1  Statement of the Problem 16 

2.2  Objective of the Study 16 

2.3  Research Hypothesis 16 

2.4  Importance of the Study 17 

CHAPTER 3: METHODOLOGY 18 

3.1 Research Design 18 

3.2 Dataset 18 

3.3 Data Analysis 19 

CHAPTER 4: RESULTS 27 

4.1 Participant Characteristics 27 

4.2 Acceleration summary metrics 27 

4.3 Hyperparameter Testing Results 29 

4.4 Machine learning classification 34 

CHAPTER 5: DISCUSSION 37 

5.2 Limitations 40 

5.3 Conclusion 41 

REFERENCES 42 

APPENDICES 53 



 

 iv 

ABSTRACT 
 

The purpose of this study was to compare the performance of three accelerometer 

processing metrics, Euclidean Norm Minus One (ENMO), ActiGraph Counts, and Monitor 

Independent Movement Summary (MIMS) units, in classifying physical activity using Random 

Forest (RF) and k-Nearest Neighbors (KNN) machine learning models, as well as to investigate 

the effect of hyperparameter tuning and feature selection on each processing metric. The dataset 

was sourced from a laboratory-based protocol involving raw acceleration data from 50 participants 

who held a smartphone device in their right hand while completing six activities.  

Findings indicated that even though the acceleration metrics performed well above 80% 

accuracy with both RF and KNN, the best performance was achieved with ENMO and the raw data 

as features. Additional accuracy of between 1% to 5% was achieved when the model 

hyperparameters were tuned before classification, and there was no difference when other features 

were included in the classification.  

In conclusion, ENMO is the best acceleration metric for classifying PA from 

accelerometers. Tuning the models and using a few selected features affected the models' accuracy.  

 

Keywords: accelerometer-based physical activity, machine learning classification, ActiGraph 

counts, MIMS units, ENMO 
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GENERAL SUMMARY 

This study was carried out to compare three methods of processing data retrieved from 

accelerometers (acceleration metrics) in smartphone devices. Fifty participants held the 

smartphone in their right hand while performing six laboratory activities for 65 minutes. These 

activities were sitting, lying, walking on the treadmill at a selected pace, walking at 3 Mets, running 

at 5 Mets, and running at 7 Mets. The acceleration metrics, ActiGraph counts, ENMO and MIMS 

units were computed using R programming. The metrics were used along with 58 other extracted 

variables to classify the activities using random forest, support vector machine and K-nearest 

neighbour algorithms. Results showed that ENMO is the best acceleration metric to implement 

when classifying physical activity with machine learning-based methods; utilizing the raw data and 

acceleration metrics without the other extracted features produced the best classification results. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Background to the study 

Physical Activity (PA) is any bodily movement produced by skeletal muscles that result in 

energy expenditure (Siscovick et al., 1985). This term encompasses a range of human movements, 

including competitive sports, exercise, activities of daily living like occupational, household (e.g., 

caregiving, domestic cleaning), transport (e.g., walking or cycling to work) and leisure-time 

activities (e.g., dancing, swimming). Regular PA is a crucial protective factor for preventing and 

managing non-communicable diseases (NCDs) such as cardiovascular disease, type-2 diabetes, and 

several cancers (I.-M. Lee et al., 2012). PA also benefits mental health, including preventing 

cognitive decline and symptoms of depression and anxiety and can contribute to maintaining a 

healthy weight and general well-being (World Health Organization, 2020). 

PA is one of the essential components of successful health promotion and disease 

prevention for individuals and communities. Physical inactivity is the fourth leading cause of 

chronic disease mortality, such as cancers, heart disease and stroke, contributing to over three 

million preventable deaths worldwide (World Health Organization, 2020). Physical behaviours 

relating to PA during the 24 hours of the day are of significant public health interest due to their 

well-documented influence on mortality (Ekelund et al., 2019). A recent systematic review of 8 

studies representing 36,386 participants showed that physical activity, regardless of intensity, was 

associated with reduced mortality risk. Compared to the least active group, even people who did a 

small amount of exercise was 54% less likely to die prematurely. For the most active group, 

premature death was 73% less likely than in the least active group. 

Physical inactivity and sedentary behaviour have been identified as critical issues in Canada 

and internationally. For example, A Common Vision for Increasing Physical Activity and Reducing 

Sedentary Living in Canada: Let’s Get Moving is a policy that strives for a Canada where all 
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Canadians move more and sit less, more often. A study by Colley et al., (2018) assessed the trend 

of moderate-to-vigorous physical activity (MVPA) levels in 13,173 Canadian adults aged 18 - 79 

years from 2007 - 2017 using the Canadian Health Measures Survey (CHMS) accelerometer data. 

They found that about 3% of Canadian adults accumulated no MVPA, while nearly 36% did not 

accumulate any MVPA in bouts of at least 10 minutes. Their findings suggest that fewer than one 

in five Canadian adults met the Canadian Physical Activity Guidelines. MVPA levels were higher 

among men compared with women and younger adults compared with older adults. 

WHO data also show that one in four adults, and four out of five adolescents, do not get 

enough PA. Globally this is estimated to cost US$54 billion in direct health care and another US$14 

billion in lost productivity (World Health Organization, 2020). Global estimates also indicate that 

27.5% of adults (Guthold et al., 2018) and 81% of adolescents (Guthold et al., 2020) do not meet 

WHO recommendations for PA, with almost no improvements seen during the past decade (World 

Health Organization, 2010). A systematic review examining the associations between sedentary 

behaviour and all-cause mortality found that high levels of moderate-intensity PA seem to 

eliminate the increased risk of death associated with high sitting time (Ekelund et al., 2016). Lee 

et al. (2012) quantified the effect of physical inactivity on non-communicable diseases. They 

estimated that more than 1.3 million deaths could be averted globally if physical inactivity was 

reduced by 25%. 

There are several ways to measure physical activity, including using self-report 

questionnaires and accelerometers. While there is considerable debate in the literature about the 

similarities and differences between these methods, accelerometers are becoming more commonly 

used. They are being used in more extensive studies (Kelly et al., 2016). As the use of 

accelerometers to measure and monitor physical activity (PA) continues to be emphasized by many 

researchers (Wijndaele et al., 2015), a significant concern is the standardization of raw acceleration 
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data processing techniques. As a result, for this thesis, it is worth reviewing commonly used 

methods for physical activity measurement. 

1.2 Physical Activity Measurements 

1.2.1  Self-report Measurements 

Accurate and valid measurement of free-living PA is vital to estimate the prevalence of 

populations meeting the current PA guidelines, assess the success of interventions aiming to 

increase PA in specific people, and quantify PA’s dose-response impact on health (I. M. Lee & 

Shiroma, 2014). Self-reported physical activity measures have long been used to measure physical 

activity because they are relatively simple and inexpensive to administer. 

The two most common self-report PA measurement tools for adults are the International 

Physical Activity Questionnaire (IPAQ) and the Global Physical Activity Questionnaire (GPAQ) 

(Strath et al., 2013). The IPAQ validation study was published in 2003 by Craig et al., 2003. The 

purpose of the IPAQ is to provide standard instruments that can be used to obtain internationally 

comparable data on health-related PA. The IPAQ has two different versions, the short and the long. 

The short version includes nine items that capture four domains of activity intensities, including 

sedentary time and light, moderate, and vigorous activity over the past week. The extended version 

of the IPAQ includes 27 items that capture five activity domains (work, leisure, household, 

transport, and sedentary time) and their intensities over the past week. The IPAQ can be 

administered over the telephone or self-administered online. The general structure of all IPAQ 

questions is as follows. First, the participant is asked how many days they did an activity in the last 

seven days of the week. Second, participants are asked to provide how much time they spent on 

average doing the activity each day. These two answers allow researchers to calculate the number 

of minutes an activity was conducted over the past seven days or estimate Metabolic Equivalents 

(METs) using the Compendium for Physical Activity (Ainsworth et al., 2011). 
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The GPAQ validation study was published in 2009 by Bull et al., 2009. The World Health 

Organization developed the GPAQ in 2002 to enhance the IPAQ and develop a standardized tool 

that enables PA comparisons across culturally diverse populations (Armstrong & Bull, 2006). The 

original version of the GPAQ included 19 items that capture five activity domains (work, leisure, 

household, transport, and sedentary time) and their intensities over the past week, like the IPAQ. 

However, a shorter version was later developed, eliminating three redundant questions, totalling 

16 items and four domains (activity at work, travel to and from places, recreational activities, and 

sedentary behaviour) for the most updated version. The GPAQ was developed for face-to-face 

interviews by trained researchers. 

The IPAQ (Craig et al., 2003) has reasonable concurrent validity compared to 

accelerometer data. In an international sample collected in 12 countries (Australia, Brazil, Canada, 

Finland, Guatemala, Netherlands, Japan, Portugal, South Africa, Sweden, United States, and the 

United Kingdom) at 14 different sites, 2721 participants completed the short and long-form of the 

IPAQ and wore an accelerometer for seven days. The criterion validity of the IPAQ was a 

Spearman correlation coefficient of 0.3, which is comparable to other self-report physical activity 

measures compared to accelerometry. The IPAQ questionnaires produced repeatable data with 

Spearman’s correlation coefficient of around 0.8) and had similar data from short and long forms. 

The GPAQ (Keating et al., 2019) has poor to fair concurrent validity compared to accelerometer 

data. In a systematic review of 26 studies that validated the GPAQ in 23 countries (Bangladesh, 

China, India, Korea, Malaysia, Saudi Arabia, Singapore, Thailand, United Arab Emirates, 

Vietnam, Belgium, Chile, Spain, Brazil, Ethiopia, Portugal, South Africa, France, Switzerland, 

Japan, Indonesia, United States, United Kingdom) from 2002 to 2019. The criterion validity of the 

GPAQ measures was Spearman’s correlation coefficient of less than 0.5 across all the studies, 

which shows that the validity is relatively low when using an accelerometer as the criterion 
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standard. Test-retest reliability of the GPAQ ranged from moderate to very good, with Pearson’s 

correlation coefficient of between 0.58 to 0.89, which shows that the results of the GPAQ are 

relatively consistent and reproducible when compared to the IPAQ (Bull et al., 2009). Using 

accelerometers as the criterion measure for self-report questionnaires is somewhat debated in the 

literature (Kelly et al., 2016); however, there is considerable variability in physical activity 

measurement when using accelerometer data. 

1.2.2  Accelerometer Measurements 

The assessment of daily PA in population studies requires valid, cheap, and feasible 

measurement technology (Corder et al., 2008; Wong et al., 2003). Accelerometers, which quantify 

the acceleration and deceleration in orthogonal directions of three-dimensional space, have become 

the preferred and feasible device to assess PA in large‐scale studies (P. Freedson et al., 2012). 

However, their utilization requires several different data processing and aggregation methods, 

which can considerably impact physical activity estimation using accelerometers (Migueles et al., 

2017). 

Broadly, four main steps are required to convert raw accelerometer data to measures of 

physical activity. First, raw accelerometer data must be processed to extract human movement 

signals. Many different methods are used to process this data (see section 1.3), all of which use 

some form of signal processing on the raw accelerometer data. Second, the processed data is 

filtered to include only data where the participant is wearing the device. Third, the filtered data is 

used to generate estimates of physical activity intensity or type using rule-based cut-point or 

machine learning approaches. Fourth, physical activity intensity or type estimates are aggregated 

to represent meaningful activity metrics. Figure 1 presents a graphical representation of the 

accelerometer data processing steps. As an example of how research might process accelerometer 

data, the most used method for processing raw accelerometer data is referred to as “counts'' (or 
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ActiGraph counts), an aggregate measure of the intensity and magnitude of accelerations over a 

given time epoch (Colley et al., 2011; Hagströmer et al., 2010). These counts are produced via 

proprietary algorithms developed and patented by the manufacturers of ActiGraph accelerometers, 

making it difficult to compare results from studies that have employed ActiGraph and non-

ActiGraph devices (Marschollek, 2013). A researcher could convert raw data to counts, then in 

step 2, apply a wearing algorithm; here, the Choi algorithm (Choi et al., 2011) is very commonly 

used. In step 3, data from different axes are used individually or combined into a single metric, 

often using the formula presented in equation 1. 

𝑣𝑚𝑖 =  √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 

Equation 1 

Where vm is the vector magnitude (or Euclidean norm), x, y, and z are the raw accelerometer data 

for each axis, and i is the lowest data collection frequency. 

 

Then using a cut-point-based approach, a researcher could aggregate the data by summing 

the counts to the minute level, then use the Troiano cut-points for adults to define ranges of 

ActiGraph counts for sedentary behaviour (0-99 counts/min), light intensity PA (100 - 2019 

counts/min), moderate-intensity PA (2020-5998 counts/min), and vigorous-intensity PA (5999 - 

max counts/min) for every minute of accelerometer data in a database. In the fourth step, a 

researcher could calculate the number of moderate to vigorous physical activity minutes per day or 

week (Troiano et al., 2008). 
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Figure 1: Example of accelerometer data visualized through data processing.  

 

While the above example may seem straightforward, there is considerable debate about the 

optimal approach for each accelerometer data processing step. Over 100 different methods have 

been published for cut-point-based approaches using ActiGraph counts (Migueles et al., 2017).  

Technological advances in storage and computation mean raw data can now be stored at high 

frequencies, with no need to summarize into proprietary ActiGraph counts (John et al., 2013). 

Consequently, there is a need to understand better the similarities and differences between raw 

acceleration data analysis, particularly the data processing and machine learning aspects (Bakrania 

et al., 2016). 

1.3  Comparison between self-report and Accelerometer in Canada 

Several studies have shown significant variations between self-reported and accelerometer-

measured PA. Dyrstad et al. (2014) compared PA and sedentary time from the self-administered, 

short version of the IPAQ with data from the ActiGraph accelerometer in 1751 Norwegian adults 

over seven days. They found that most participants reported less sedentary time, less moderate-

intensity, and a higher vigorous-intensity PA level than the accelerometer data. These differences 

were affected by education level, sex, and age, but not body mass index (BMI). The disparity 

between self-reported and measured sedentary time and vigorous-intensity PA was most significant 

among men with less education and men 65 years and older. Their study also showed that men 
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reported 47% more moderate to vigorous physical activity (MVPA) than women, but there were 

no differences in accelerometer-determined MVPA. 

Additionally, they reported weak correlation coefficients of 0.20 and 0.46 between self-

reported variables and accelerometer PA measures. Colley et al., (2018) compared the estimates of 

self-reported PA among 2,372 Canadian adults using a newly developed Canadian questionnaire - 

Physical Activity Adult Questionnaire (PAAQ), with those obtained objectively using an Actical 

accelerometer. Their findings showed that, on average, the participants reported more PA than they 

accumulated when measured with the accelerometer. The correlation they discovered between self-

reported data from the new questionnaire module and accelerometer-measured physical activity 

was Pearson’s coefficient of 0.21, which was weak. Generally, when physical activity is measured 

with self-report, people tend to have higher estimated levels of moderate to vigorous PA and lower 

levels of sedentary behaviour. Despite the potential differences between self-report and 

accelerometer data, there can also be considerable variability in physical activity estimation 

between different accelerometer data processing methods. 

1.4  Current challenges with accelerometer measurement 

Several factors affect the analyses of raw acceleration signals. These include the 

management of the vast amount of data which are generated; the requirement to remove the 

gravitational and noise components incorporated within the signals (van Hees et al., 2013); and the 

requirement of feasible mathematical and statistical tools to accurately analyze and make valid 

estimates of physical activity from the data (Bakrania et al., 2016). The following section discusses 

two primary aspects of accelerometer data analysis that are the focus of this thesis, raw 

accelerometer data processing and machine learning. It does not focus on wearing algorithms or 

cut-point-based approaches to estimation.   
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1.5  Raw Accelerometer Data Processing 

Accelerometers measure the acceleration of the body segment to which the monitor is 

attached. They capture voluntary and involuntary human movements and movements influenced 

by the environment (e.g., vibrations from being in a car). These signals are then filtered and 

preprocessed to generate summary measures of human activity, which attempt to capture the 

intensity and magnitude of the acceleration due to body movements (Migueles et al., 2017). Data 

processing aims to eliminate the gravitational component and noise from the raw acceleration 

signal to create an acceleration signal aggregation metric (hence called acceleration metric) that 

can be used to represent the bodily movement (van Hees et al., 2013). These acceleration metrics 

are then used to classify the amount and intensity of daily PA in a specific time interval (epoch 

length) with a set of cut-points, i.e., thresholds for PA intensity classification. ActiGraph counts 

are generated via patented and proprietary algorithms, making it difficult to compare data and 

results between studies using different accelerometer brands. Bakrania et al. 2016, have developed 

various techniques to remove gravitational and noise components and correctly estimate PA from 

raw acceleration signals. Commonly used procedures for processing the raw acceleration data and 

separating the movement and gravitational components of the movement signals include ActiGraph 

counts, Euclidean Norm Minus One (ENMO) metrics, and the Monitor-Independent Movement 

Summary (MIMS) units. 

ActiGraph counts are a proprietary manufacturer-specific metric used for ActiGraph brand 

accelerometers (Brond & Arvidsson, 2016). ActiGraph counts are unitless measures, computed to 

1Hz, of either single or combined tri-axial acceleration. Brond & Arvidsson (2016) attempted to 

reverse engineer the ActiGraph counts algorithm using several methods, including orbital shakers 

and human participants. Brond’s work showed that the ActiGraph counts' algorithm involved many 
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data processing steps, including alias filtering, down sampling, and signal rectification. Figure 2 

summarizes the process steps to convert raw accelerometer signals to ActiGraph counts. 

 

 

Figure 2: Steps for processing raw accelerometer data and generating ActiGraph counts. Figure 

adapted from (Brond & Arvidsson, 2016) 

 

ActiGraph accelerometers and ActiGraph counts are the most used accelerometers in 

physical activity research. As a result, a considerable body of literature is developing cut-points of 

physical activity estimation among different populations (Hernando et al., 2018). ActiGraph counts 

were developed for specific accelerometers and are not comparable across devices or models from 

the same manufacturer (Grydeland et al., 2014). A cross-sectional study of 50 participants was 

carried out by Sasaki et al., (2011) to compare activity counts from the ActiGraph GT3X to those 

from the ActiGraph GT1M during treadmill walking/running. Their findings showed that the 

anterior-posterior activity counts and the vector magnitude of the vertical activity counts were 

significantly higher in the GT1M monitor than those of the GT3X monitor at different speeds. 

Based on the work done by Brond & Arvidsson (2016), Brondeel et al., (2021) have 

developed open-source codes in MATLAB, Python and R, three different programming languages, 

to convert raw accelerometer data to activity counts irrespective of the accelerometer brands, 

models, or devices implemented. The development of open-source code has allowed for the 

calculation of ActiGraph counts for studies using any accelerometer brand. 

Euclidean norm minus one (ENMO) is an open-source method to process raw acceleration 

data. ENMO does not require the raw data to be filtered to correct gravity since it systematically 



 

 11 

considers this element within its algorithm (Vähä-Ypyä et al., 2015). It adjusts for gravity by 

subtracting a fixed offset of one gravitational unit from the Euclidean Norm of the three raw 

acceleration signals. The Euclidean Norm is obtained by taking the Euclidean norm (sometimes 

known as vector magnitude in the physical activity literature), i.e., the square root of the sum of 

the squares of the three raw acceleration signals and subtracting the fixed offset value of 1. See 

equation 2: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑖𝑎𝑛 𝑁𝑜𝑟𝑚 𝑀𝑖𝑛𝑢𝑠 𝑂𝑛𝑒 (𝐸𝑁𝑀𝑂) = 𝑟𝑖 − 1000 

1000 = 1000 Milli gravitational units = 1 gravitational unit 

Where, 

𝑟𝑖 =  √𝑥𝑖
2 + 𝑦𝑖

2 + 𝑧𝑖
2 =  𝑖𝑡ℎ 𝑣𝑒𝑐𝑡𝑜𝑟 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡 

Equation 2 

 

A comparison of the performances of ENMO and the Mean Amplitude Deviation (MAD) 

metrics were carried out by Bakrania et al., (2016) in 33 participants that wore four accelerometers 

in different body segments and performed 16 activities (11 sedentary behaviours and five. light-

intensity physical activities) for 5 minutes each. Their study showed that both metrics performed 

similarly across activities and accelerometer brands. Bai et al., (2016) compared ActiGraph counts 

to ENMO using a sample of 194 women aged 60-91. They found that ENMO were more sensitive 

to moderate and vigorous physical activities than ActiGraph counts. Clevenger et al., (2020), in a 

sample of 54 adult participants, showed that epoch-level data were not identical between ENMO 

and ActiGraph counts. However, most outcomes were strongly related between models (e.g., 

ENMO, ActiGraph counts) and similar once aggregated to the number of minutes spent in different 

activity intensities. 
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MIMS-unit is abbreviated for Monitor Independent Movement Summary unit. This open-

source measurement was developed recently by John et al., (2019) to harmonize accelerometer data 

processing from different devices. The algorithm was developed using digital signal processing 

techniques to harmonize raw data from devices with different dynamic ranges and sampling rates 

and then aggregate the raw data to capture normal human motion. MIMS unit uses raw signal 

harmonization to eliminate inter-device variability (e.g., dynamic range, sampling rate), bandpass 

filtering (0.2 – 5.0 Hz) to eliminate non-human movement and signal aggregation to reduce data to 

simplify visualization. Figure 3 shows a representation of the MIMS-unit processing steps. 

 

 

Figure 3: MIMS unit process steps. Figure adapted from John et al., (2019) 

The MIMS algorithm was tested on 60 participants by John et al., (2019) to compare the 

inter-output behaviour patterns among MIMS units, ActiGraph counts, and ENMO during human 

movement. Their findings showed that ActiGraph counts' inability to detect signals representing 
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sedentary behaviour with minimal movement was overcome by MIMS units and ENMO 

processing methods. They did not show any differences between MIMS-unit and ENMO for most 

activities studied, except in 2 cases, playing frisbee and activities involving running faster than 

8.8km/h, where a significant intra-location difference was found between the hip and wrist.The 

wrist-worn accelerometers produced higher values than the hip-worn. 

1.6  Physical Activity Classification 

Physical activity measurement using accelerometer data relies on processing raw data, as 

described above, followed by methods to classify activity intensity, activity type, or a combination 

of activity intensity and activity type. There are two general approaches for PA classification 

(activity classification will be used to classify activity intensity, type, or a combination of intensity 

and type); cut-point-based and machine learning-based approaches. Cut-point-based approaches 

are prevalent in PA research and have been the subject of a systematic review (Bianchim et al., 

2019). Cut-point-based methods use a single summary measure of acceleration (e.g., ActiGraph 

counts or ENMO) and apply thresholds, known as cut-points, to define categories of activity 

classification. For example, the Freedson cut-points, arguably the most used cut-points in the PA 

literature, determine PA intensities as sedentary (<99 counts), light (100-759 counts), moderate 

(760-5724 counts), and vigorous (5725-max counts) intensity (P. S. Freedson et al., 1998). Cut-

points for activity classification are device, wear location, and population-specific. There are many 

different cut-points, and it is often challenging for researchers to select the appropriate cut-point 

for their specific study population, accelerometer device, and wear location (Kim et al., 2012). Due 

to these limitations, manufacturers were urged to provide access to raw, unfiltered accelerometer 

data to promote transparency (John & Freedson, 2012). However, raw accelerometer data are 

voluminous (usually between 30 and 100 samples per second), making the data challenging to 
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manage and interpret. While cut-point-based approaches continue to be developed, machine 

learning is increasingly used in PA classification (Narayanan et al., 2020). 

Researchers have employed machine learning (ML) approaches to process and analyze raw 

accelerometer data while capturing all PA components (frequency, intensity, time, and type). 

Classification of PA with ML algorithms relies on using multiple features (i.e., variables) derived 

from the raw accelerometer signal (S. Liu et al., 2012). These ML algorithms generate a predictive 

model by learning how patterns in the accelerometer data features are related to an activity type or 

intensity. Classification of PA using ML is done by training a model with features of the 

accelerometer signal (e.g., mean, SD, and correlations) extracted from the raw or processed 

accelerometer data. Trained models can then classify activity from features extracted from different 

accelerometer data. This method, called supervised learning, requires a direct observation measure 

on which the model can be trained (Narayanan et al., 2020).  

Three significant aspects related to the performance of machine learning models in the 

classification of PA are essential for this thesis. First are the acceleration metrics and the features 

extracted from the raw acceleration signals used as predictors in the machine learning models. The 

acceleration metrics included in this thesis were Euclidean Norm Minus One (ENMO), ActiGraph 

counts, and Monitor Independent Movement Summary (MIMS) units. On the other hand, the 

extracted features included both time and frequency domain features, for example, interquartile 

range, peak amplitude and zero crossings. While several studies have compared the performances 

of ENMO with ActiGraph counts (Migueles et al., 2019), no study has methodically evaluated the 

performance of the MIMS unit’s metric with machine learning relating to physical activity. 

Second, the ML algorithms utilized in classifying PA. This is the first study to examine the 

interaction of different ML algorithms with various acceleration metrics. Third, the hyperparameter 

settings for the machine learning algorithms. A hyperparameter is a parameter whose value can be 



 

 15 

used to control a machine learning algorithm's training process and behaviour. It is related to how 

the model learns the patterns based on data. It has been reported byLavesson & Davidsson, (2006) 

that the settings of a hyperparameter have a significant impact on the classification accuracy of the 

resulting trained model as it relates to training time and model accuracy. Additionally, (Probst et 

al., 2018) showed that tuning these hyperparameters, as opposed to using their default values, is 

often more important than the choice of the machine learning algorithm itself. To my knowledge, 

no study has reported the hyperparameter settings or tested the potential impact of model tuning in 

examining the performance of machine learning algorithms concerning acceleration metrics and 

PA. There is a need to understand better how acceleration metrics combined with different machine 

learning algorithms influence PA classification. 

 

 

 

 

 

 



 

 16 

CHAPTER 2: RESEARCH PROBLEM 

2.1  Statement of the Problem 

Several methods for processing raw accelerometer data have been developed and used in 

the literature. Studies have shown that these methods might not be optimal for representing the 

movement behaviour (John et al., 2019). There are also potential interactions between 

accelerometer processing methods and the machine learning algorithms used to classify activity. A 

systematic study has not been undertaken to test these possible interactions using an open-source 

dataset. Therefore, this study aims to (1) examine the acceleration metrics using dominant hand 

wear location during different activities; (2) compare and evaluate the performances between the 

ENMO, ActiGraph counts and MIMS-unit metrics using three machine learning algorithms for PA 

classification, RF, K-Nearest Neighbour (KNN) and SVM; and (3) examine the impact of 

hyperparameter tuning on these machine learning algorithms as related to PA. 

2.2  Objective of the Study 

 

The purpose of the study is first to compare three commonly used acceleration metrics, 

ActiGraph counts, ENMO, and MIMS-units, using three different machine learning approaches, 

and second to examine the effects of hyperparameter tuning on PA classification when machine 

learning methods are implemented. 

2.3  Research Hypothesis 

The research hypothesis for objective 1 is that the MIMS-units metric will perform better 

than ENMO and ActiGraph counts in PA classification using RF, KNN, and SVM classification 

models. The hypothesis for objective 2 is that model tuning of hyperparameters will influence 

model performance by between 5-10% for each type of model.   
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2.4  Importance of the Study 

The study results will provide evidence on (1) the consistency and performance of the 

MIMS-units metric as a standardized acceleration data cleaning and processing technique for PA 

classification using ML methods and (2) the influence of hyperparameter tuning when using ML 

for PA classification. To my knowledge, few studies have directly compared MIMS to other 

accelerometer processing methods. No studies around physical activity intensity or type 

classification have examined the impact of hyperparameter tuning on model performance. 
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CHAPTER 3: METHODOLOGY 

3.1 Research Design 

This is a cross-sectional study to examine the accuracy of PA classification algorithms 

when using each of these summarized acceleration metrics; MIMS-units, ENMO (Euclidean Norm 

Minus One) and ActiGraph counts. 

3.2 Dataset 

This dataset utilized for this study was raw, time-stamped accelerometer data collected from 

a laboratory-based protocol conducted by the Built Environment and Active Populations (BEAP) 

Lab. Fuller et al., (2021) give a detailed description of that study. Fifty participants (25 females) 

aged 18 to 56 wore a SenseDoc hip-worn accelerometer and had Samsung Galaxy S7 devices in 

three locations - pocket, right hand, and backpack. Each device measured acceleration in three 

axes. The SenseDoc was programmed to continuously measure at 100Hz, while the Samsung 

Galaxy S7 phones’ data collection frequency was an average of 17Hz, varying between 10-30Hz. 

In this study, only the hand-held acceleration data was used.  

The data collection protocol included these activities (Table 1): lying, sitting, self-paced 

walk, walking at 3 METs, running at 5 METs and running at 7 METs in sequential order for a 65-

minute lab-based protocol with 40 minutes on the treadmill and 25 minutes of sedentary time. 

Participant energy expenditure was measured using the Oxycon Pro metabolic cart (Oxycon Pro, 

Jaeger, Hochberg, Germany). The Oyxcon Pro is a good and reliable unit for measuring energy 

expenditure (Ismail et al., 2019), and it was used to determine the Metabolic Equivalents (METs) 

at which each activity was performed. The metabolic cart was calibrated according to manufacturer 

specifications every morning of data collection. This study was approved by the Memorial 

University Interdisciplinary Committee on Ethics in Human Research (ICEHR 20180188-EX). 
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Table 1: Description of the 65-minute lab-based protocol. 

Time (Minutes) Activity Detailed activity 

0 - 5 Lying Lying on a cot 

5 - 10 Sitting Sitting on a chair 

10 - 20 Self-Pace Walk Walking on the treadmill at a chosen self-

paced speed 

20 - 25 Lying Lying on a cot 

25 - 35 Walking at 3 METs 3 METs pace walking on the treadmill 

35 - 40 Lying Lying on a cot 

40 - 50 Running 5 METs 5 METs running on the treadmill 

50 - 55 Sitting Sitting on a chair 

55 - 65 Running 7 METs 7 METs running on the treadmill 

Abbreviation: METs = Metabolic Equivalents 

 

 

3.3 Data Analysis 

The procedure for this study involved a three-step approach to data analysis and machine 

learning. These steps include data preprocessing (data cleaning, feature selection, feature extraction 

and scaling), model building and performance evaluation. The model-building step involved data 

splitting, hyperparameter tuning and model training by implementing the most used algorithms 

based on the systematic review by Narayanan et al., 2020. In this study, all analysis steps were 

done using R software version 4.0.4 (The R Foundation) and RStudio version 1.4.1106 (RStudio 

Inc). 
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3.3.1 Data Preprocessing 

A. Data Cleaning: 

In this step, the raw triaxial acceleration signals from the hand wear location were first 

transformed to generate the acceleration metrics - ActiGraph counts, ENMO and MIMS units over 

a 1-second epoch. ENMO was calculated by hand using Equation 2, as illustrated above. 

ActiGraph counts and MIMS units were computed using the “activityCounts” and “MIMSunit” 

packages, respectively. The latest versions of these packages were installed from CRAN (The 

Comprehensive R Archive Network), a centralized software repository for all R packages and 

documentation. Observations that contained missing values were replaced with values generated 

using the linear interpolation method. Linear interpolation is a method of fitting a curve using linear 

polynomials and creating new data points within the range of the original values for which the 

linear interpolation is done. The na.approx() function from the zoo package and the mutate() 

function from the dplyr package were used to impute these interpolated values. Data points that 

fall above and below 1.5 of the interquartile range in each accelerometer metric were omitted in 

the analysis. Duplicates in the timestamps were also dropped before the next step. 

B. Feature Selection and Extraction: 

In this step, variables that provided no helpful information for the physical activity 

classification task were dropped. These variables were participant id, wear location, and height and 

weight attribute removed after BMI was calculated to avoid multicollinearity in our model. A range 

of time and frequency domain features were extracted over a 1-second sliding window with no 

overlap. A 1-second window was chosen since it allows for many periodic movements to be 

captured for all activities. In total, 58 feature sets were extracted from the accelerometer data 

proposed by Liu et al., (2012). These feature sets included sum, mean, standard deviation, signal 

power, coefficient of variation, skewness, interquartile range, peak amplitude, and kurtosis of each 
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axis of the three-axis accelerometer. In addition to these simple time-domain features, frequency 

domain characteristics such as dominant frequency, zero crossings, and cross-axis correlations 

were also extracted. Peak amplitude is the maximum value minus the minimum value of the signal 

at each window. The number of times the acceleration signal changed sign from positive to negative 

was represented by Zero crossings. A detailed description of extracted features from the raw 

acceleration signals over a 1-second window is provided in Table 2. 

 

Table 2: Detailed description of featured extracted from raw acceleration signals. 

Name of extracted features Description 

Signal Power The sum of the absolute squares of signal at each 

window 

Dominant Frequency The signal frequency that carries the maximum energy 

among all frequencies at each window 

Peak Amplitude The maximum value minus the minimum value of signal 

at each window 

Zero Crossings The number of times the signal crosses its median at 

each window 

Sum Log Energy The sum of the natural logarithms of the power of 

signals at each window (sum(log(x^2 +1)) 

Coefficient of variation The ratio of standard deviation to the mean of signals at 

each window 

Peak Intensity The number of signal peak appearances within a certain 

window 

Vector Magnitude The measure of the distance between one signal and 

another. 

Entropy The measure of randomness or uncertainty of the signal 

at each window 

Descriptive features Mean, Sum, Interquartile Range, Standard Deviation, 

Skewness, Kurtosis and Correlation 
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C. Feature Scaling: 

This step converts categorical variables into factors and numeric binary (0 and 1) variables 

using the step_dummy recipe specification from the Tidymodels package. Since all the feature 

values vary in measurement scales, feature normalization is required so that each extracted feature 

contributes equally to the classification model. For this study, all numeric features were normalized 

to a mean of zero and standard deviation of one by using a specification of a recipe step in the 

Tidymodels package, step_normalize. Variables with significant correlations with other variables 

were removed using a correlation-based step on all the predictor features, step_corr. A correlation 

threshold of 0.7 was used, and 32 features (Appendix C) were fed into the selected models. The 

features chosen for each acceleration metric are provided in Appendix C.  

3.3.2 Model Building  

A. Model Selection: 

In selecting the machine learning models for this study, three of the four most used models 

based on the systematic review examining machine learning and physical activity classification 

conducted by Narayanan et al., 2020, were implemented. Appendix A summarizes the papers and 

methods from Narayanan et al., 2020. According to the review and table, the four most used 

machine learning methods are Support Vector Machines (SVM), Random Forest (RF), K-Nearest 

Neighbour (KNN), and Artificial Neural Networks (ANN). These four models represent different 

mathematical and statistical approaches to physical activity classification. SVM uses a hyperplane 

approach based on linear algebra that classifies activity types on a multi-dimensional feature space 

(Support-Vector Machine, 2021). RF examines each feature and provides a decision about the cut-

off for that feature in predicting different physical activity categories. Each feature is used in the 

analysis to create a tree of predictions for each feature. RF is a random decision tree and is a 

subclass of very commonly used ensemble-based methods (Random Forest, 2021). RF requires a 
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user to input parameters, for example, the number of trees to create and the depth of trees in the 

feature space.  

KNN is a method based on the probability that each point in a feature space is close to other 

related points (K-Nearest Neighbors Algorithm, 2021). An essential feature of KNN is that the 

user-defined definition of “close” can have significant consequences for the analysis. ANNs are a 

collection of connected nodes called artificial neurons (Artificial Neural Network, 2021). Each 

node can transmit a signal to other nodes. An artificial node receives a signal, then processes it, 

and can signal other nodes connected. The signal at a connection is a feature, and each node's output 

is a weight representing a nonlinear function for feature inputs. Nodes can be grouped into one or 

more hidden layers where weights are estimated. As with other machine learning methods, the user 

must specify the model's number of nodes and layers. Figure 4 presents an example of each of the 

four machine learning models.  SVM, RF, and KNN were selected for this thesis because these 

models have 2-3 hyperparameters that can be examined for model tuning. ANNs have many model 

hyperparameters, and with little to derive from the literature about where to start model tuning, it 

was decided to investigate only three of the four most common models.  
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     Support Vector Machines  
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Random Forest 
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Artificial Neural Networks 
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Figure 4: A visual example of Support Vector Machines, Random Forest, K-Nearest Neighbour, 

and Artificial Neural Networks. 

  

B. Data Splitting: 

The whole dataset was first split into three using the acceleration metrics. Each subset was 

divided into training and testing sets comprising 75% and 25% of the observations. The validation 

https://commons.wikimedia.org/wiki/File:SVM_margin.png
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:Random_forest_diagram_complete.png
https://creativecommons.org/licenses/by-sa/4.0
https://commons.wikimedia.org/wiki/File:KnnClassification.svg
https://commons.wikimedia.org/wiki/File:KnnClassification.svg
http://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://commons.wikimedia.org/wiki/File:Colored_neural_network.svg
https://creativecommons.org/licenses/by-sa/3.0
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set was a set of 10 validation folds obtained from the training sets using a k-fold cross-validation 

method, with the function vfold_cv. The training, validation and testing sets were activity-based; 

the split was based on a stratified sampling using the six activity classes.  

C. Hyperparameter Tuning: 

One of the objectives of this study is to determine the effect of model hyperparameters on 

the performances of each model. Different iterations of hyperparameters were tested for each ML 

algorithm and accelerometer metric to examine this impact. The hyperparameters (Table 3) for 

each of the three machine learning models were tuned on the cross-validation set to get the optimal 

settings for the models. This tuning was done using the Random Grid Search method (tune_grid) 

in Tidymodels to generate ten combinations of random hyperparameter settings. The tuning process 

presents a model for each proposed hyperparameter setting, evaluates the results on the cross-

validation set and produces the settings that yield the best performance. The last step is to train a 

new model on the entire dataset (training and testing sets) under the best hyperparameter setting 

and evaluate the final model performance. 

 

Table 3: Description of model hyperparameters tuned for RF, KNN and SVM. 

ML 

Algorithm 

Hyperparameter Description 

 

Random  

Forest 

mtry The number of predictors that will be randomly sampled at 

each split when creating tree models. 

min_n The minimum number of data points in a node that is 

required for the node to be split further. 

trees The number of trees contained in a random forest 

K Nearest  

Neighbour 

weight_func The kernel function used to give a weight to the nearest k 

points  

neighbours The number of neighbours used for the models 
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ML 

Algorithm 

Hyperparameter Description 

Support Vector 

Machines 

cost A positive number for the cost of predicting a sample 

within or on the wrong side of the margin 

 

D. Model Training and Testing:  

Random Forest, Support Vector Machine and K-Nearest Neighbour algorithms were 

trained for each acceleration summary measure (ENMO, ActiGraph Counts and MIMS units). The 

number of subjectively selected features was varied to compare the differences between the 

acceleration metrics. After the preprocessing step, the models were first trained using all extracted 

features (Full feature set). They were additionally trained with two other subsets of selected feature 

subsets, one containing the acceleration metrics and the demographic characteristics only (Single 

feature set) and the other containing the raw acceleration signals and the acceleration metrics (Raw 

feature set). Eighteen models were trained and evaluated, plus 36 models were used for 

hyperparameter tuning and testing.  

3.3.3 Model Performance Evaluation 

After fitting the best-trained models on the testing sets, the performance was evaluated by 

computing the confusion matrix and the classification accuracy score. A confusion matrix is a 

summary of prediction results on any classification problem. It is a contingency table that gives 

insight into the errors made by the models during predictions on the testing data. Classification 

Accuracy is a metric that summarizes the performance of a classification model as the proportion 

of correct predictions among the total number of predictions made by the model (Accuracy and 

Precision, 2021). The higher the classification accuracy, the better the classification model. 

 

 



 

 27 

CHAPTER 4: RESULTS 

4.1 Participant Characteristics 

Observations for forty-seven participants (25 females, mean age, 29.9 ± 9.1 years, BMI, 

24.3 ± 3.4 kg/m2) comprising hand accelerometer data from the original dataset were analyzed for 

this thesis. Data for three participants were excluded from the study because they were not correctly 

classified. Table 4 shows the demographic characteristics of the final dataset that was analyzed.  

 

Table 4: Demographic characteristics of the participants. 

 Female (n = 25) Male (n = 22) Total (n = 47) 

Age (years) 31.7 (8.1) 27.9 (9.6) 29.9 (9.1) 

Height (cm) 162.2 (7.0) 178.6 (6.8) 169.7 (10.6) 

Body mass (kg) 62.1 (10.2) 80.6 (12.7) 70.5 (14.5) 

BMI (kg/m2) 23.5 (3.0) 25.3 (3.7) 24.3 (3.4) 

 

Values are mean (standard deviation). Abbreviation: BMI = Body Mass Index 

 

 

4.2 Acceleration summary metrics 

Descriptive summaries of Actigraph Counts, ENMO, and MIMS units by the physical 

activity type are provided in Table 5 and Figure 5. The values for ENMO were 8.7 m/s2 for lying, 

8.6 m/s2 for sitting, 9.3 m/s2 for self-paced walking, 9.6 m/s2, 11.2 m/s2 and 12.6 m/s2 for running 

3, 5 and 7 METs, respectively. ActiGraph counts were 218 counts/minute for lying, 438cpm for 

sitting, 703cpm for self-paced walking, 921cpm, 1237cpm and 1314cpm for running at 3, 5, and 7 

METs, respectively. The MIMS units were 4.8 units/minute for lying, 8.3upm for sitting, 24.1upm 

for self-paced walking, 30.6upm, 46.3upm, and 53.9upm for running at 3, 5 and 7 METs, 

respectively. Overall, the acceleration values of MIMS units and ActiGraph Counts produced a 

clear difference between each activity. For ActiGraph Counts and MIMS, there is a transparent 
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gradient in values as activity intensities increase. Visual inspection suggests that there were only 

minimal differences between ENMO values for lying and sitting and between self-paced walking 

and running 3 METs. Compared to ActiGraph Counts and MIMS units, which exhibited substantial 

variation, ENMO values produced for each activity type had lower variability.  

 

Table 5: Summary of acceleration metrics of the participants. 

 ActiGraph 

(counts/min) 

ENMO  

(gravity units) 

MIMS  

(units/min) 

Lying 218.0 (413.4) 8.7 (0.9) 4.8 (12.7) 

Sitting 437.7 (595.7) 8.6 (1.3) 8.3 (15.4) 

Self-pace walk 702.7 (433.6) 9.3 (1.3) 24.1 (17.2) 

Running 3 METs 920.8 (431.9) 9.6 (1.4) 30.6 (19.2) 

Running 5 METs 1236.5 (536.0) 11.2 (2.0) 46.3 (26.9) 

Running 7 METs 1313.9 (742.1) 12.6 (4.3) 53.9 (33.9) 

Values are mean (standard deviation). Abbreviation: METs = Metabolic Equivalents 
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Figure 5: Euclidean Norm Minus One (ENMO), ActiGraph Counts and Monitor Independent 

Movement Summary (MIMS) units calculated from raw acceleration data 

 

4.3 Hyperparameter Testing Results 

To examine the impact of model hyperparameters on classification accuracy, several 

different hyperparameter specifications were tested for each acceleration metric and ML algorithm. 

Table 6 shows each model's lowest and highest classification accuracy for ten iterations of 

hyperparameter specifications. The models with only a single feature formed the worst, as 

expected. The results show a relatively high variation in classification accuracy by the ML model, 

acceleration metric and number of features, ranging from 40.8% to 88.4%. Figure 6 shows the 

graphical representation of model accuracy for the RF and KNN models for the acceleration metrics 

based on different iterations of the model hyperparameters. For models with only one feature, 

hyperparameter testing had an effect of between 2 and 10 percentage point improvement in model 

performance. For Actigraph Counts, ENMO, and MIMS with Random Forest models, accuracy 
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ranged from 42.3% to 44.3%, 47.7% to 58.3%, and 40.8% to 42.6% for the worst and best-fitting 

models, respectively. For Actigraph Counts, ENMO, and MIMS with KNN models, accuracy 

ranged from 45.9% to 53.2%, 46.1% to 55.8%, and 38.8% to 46.3% for the worst and best-fitting 

models, respectively. 

For the models with all features, Actigraph Counts, ENMO, and MIMS with Random 

Forest, accuracy ranged from 84.8% to 88.1%, 86.0% to 88.4%, and 86.9% to 88.3%, for the worst 

and best-fitting models respectively. For Actigraph Counts, ENMO, and MIMS with all features 

using KNN models, accuracy ranged from 82.1% to 83.3%, 81.6% to 83.3%, and 81.7% to 82.9%, 

for the worst and best-fitting models respectively. The hyperparameter test for RF models with all 

features showed that models could improve by between 1 and 4 percentage points depending on 

the accelerometer summary metric. For KNN models, hyperparameter testing had a negligible 

impact, with a 1 to 2 percentage point increase with hyperparameter optimization.  

Figure 6 shows the graphical representation of the relationships between hyperparameters 

and model accuracy. Visual inspection of these figures shows that there does not appear to be a 

clear relationship between hyperparameters and model accuracy. We cannot assume that changing 

hyperparameter values will improve model accuracy.
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Table 6: Hyperparameters and accuracy for best fitting Random Forest and K-Nearest 

Neighbour models for ActiGraph Counts, Euclidean Norm Minus One, and MIMS unit. 

Single 

Features 

Model 

Name 

Minimum  

Hyperparameter 

values 

Accuracy Optimal  

Hyperparameter  

Values 

Accuracy 

ActiGraph 

Counts 

RF mtry: 3 

trees: 78 

min_n: 3 

42.3% mtry: 2 

trees: 706 

min_n: 36 

44.3% 

KNN neighbors: 2 

weight_func: cos 

45.9% neighbors: 13 

weight_func: 

epanechnikov 

53.2% 

Euclidean 

Norm Minus 

One 

RF mtry: 4 

trees: 456 

min_n: 3 

47.7% mtry: 2 

trees: 1462 

min_n: 24 

58.3% 

KNN neighbors: 2 

weight_func: rank 

46.1% neighbors: 15 

weight_func: biweight 

55.8% 

MIMS units RF mtry: 4 

trees: 1807 

min_n: 29 

40.8% mtry: 2 

trees: 622 

min_n: 39 

42.6% 

KNN neighbors: 2 

weight_func: 

optimal 

38.8% neighbors: 13 

weight_func: cos 

46.3% 

Raw Feature Sets 

ActiGraph 

Counts  

RF mtry: 1 

trees: 703 

min_n: 27 

85.1% mtry: 4 

trees: 484 

min_n: 8 

88.4% 

KNN neighbors: 2 

weight_func: 

rectangular 

88.4% neighbors: 11 

weight_func: 

triangular 

89.3% 

Euclidean 

Norm Minus 

One  

 

RF mtry: 1 

trees: 840 

min_n: 16 

83.2% mtry: 2 

trees: 718 

min_n: 12 

87.0% 

KNN neighbors: 2 

weight_func: rank 

86.4% neighbors: 15 

weight_func: biweight 

87.5% 
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Single 

Features 

Model 

Name 

Minimum  

Hyperparameter 

values 

Accuracy Optimal  

Hyperparameter  

Values 

Accuracy 

MIMS units RF mtry: 6 

trees: 251 

min_n: 35 

84.2% mtry: 2 

trees: 1416 

min_n: 7 

87.1% 

KNN neighbors: 2 

weight_func: 

optimal 

85.6% neighbors: 14 

weight_func: 

triweight 

86.9% 

Full Feature Sets 

ActiGraph 

Counts  

RF mtry: 2 

trees: 1353 

min_n: 39 

84.8% mtry: 15 

trees: 851 

min_n: 12 

88.1% 

KNN neighbors: 2 

weight_func: cos 

82.1% neighbors: 13 

weight_func: 

epanechnikov 

83.3% 

 SVM**     

Euclidean 

Norm Minus 

One  

RF mtry: 4 

trees: 2000 

min_n: 39 

86.0% mtry: 11 

trees: 484 

min_n: 8 

88.4% 

KNN neighbors: 2 

weight_func: rank 

81.6% neighbors: 15 

weight_func: biweight 

83.3% 

SVM cost: 0.0179 60.2% cost: 21.9 60.9% 

MIMS units RF mtry: 17 

trees: 20 

min_n: 17 

86.9% mtry: 11 

trees: 1881 

min_n: 12 

88.3% 

KNN neighbors: 2 

weight_func: 

optimal 

81.7% neighbors: 13 

weight_func: cos 

82.9% 

SVM cost: 1.74e-3 61.6% cost: 0.121 62.4% 

RF = Random Forest. KNN = k nearest neighbors, SVM = Support Vector Machines. * All 

models include the variables of age, gender, and Body Mass Index. ** SVM model convergence 

failed. 
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Figure 6: Hyperparameter tuning for RF with raw and full feature sets 

 

 

 

 
Figure 7: Hyperparameter tuning for KNN with raw and full features 
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4.4 Machine learning classification 

Classification accuracy for the best fitting models for each model type, accelerometer 

metric and selected feature sets are presented in Table 7. Across the acceleration metric and model 

type, models fed with the acceleration metric, age, sex, and BMI (single feature sets) had lower 

classification accuracy of between 42.3% and 58.4%. MIMS units had the most insufficient 

classification accuracy, less than 50%, compared to ENMO and ActiGraph Counts with single 

feature sets. The models with full feature set obtained higher classification accuracy with RF 

(88.5% - 88.9%) than KNN (83.4% - 85.4%). Of the three selected feature sets, the raw feature sets 

provided better performance with ActiGraph Counts, 88.6% with RF and 89.1% with KNN. ENMO 

performed better with RF using the full feature sets (88.9%) and KNN using the raw feature sets 

(89.1%). MIMS units performed well with raw and full feature sets, with accuracy scores between 

85.1% and 88.6%. Regardless of the accelerometer summary metric, the Random Forest models 

with all features have very similar accuracy, 88.9% with ENMO, 88.5% with Actigraph Counts, 

and 88.6% with MIMS units.  
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Table 7: Classification accuracy of models trained with feature subsets for each acceleration 

metric. 

Note. Single features include only the acceleration metrics. Raw features include the acceleration 

metrics and the raw X, Y, and Z acceleration. Full features include the acceleration metric and 58 

features. 

 

 

Figure 8 shows the confusion matrices for each model. Visual inspection of the confusion 

matrices suggests that the biggest classification challenge for the models was differenciating 

between self-paced walking and running/walking at 3 METs. This classification challenge is 

because, for the self-paced walk, participants chose a pace that was, on average, 2.7 METs; as a 

result, the self-paced walk and 3 METs walks were very similar in intensity. There also appears to 

be difficulty distinguishing between lying and sitting, which is expected. The confusion matrices 

also show that the raw feature sets in RF models (Figure 8) provided a better recognition of lying, 

sitting, self-paced walking and running at 3 METs, while the full feature sets only had better 

 Acceleration 

Metrics 

Single features  Raw features Full features 

RF 

ENMO 58.4% 87.2% 88.9% 

ActiGraph  

counts 

44.3% 88.6% 88.5% 

MIMS units 42.3% 87.5% 88.6% 

KNN 

ENMO 55.9% 87.9% 85.4% 

ActiGraph  

counts 

53.0% 89.1% 83.4% 

MIMS units 47.2% 87.3% 85.1% 
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recognition with running at 5 and 7 METs. In contrast, the confusion matrices (Figure 9) of KNN 

models had consistently better recognition with the raw feature sets. 

 

 
Figure 8: Confusion Matrices for RF models with raw (LEFT) and full (RIGHT) features 

 

 
Figure 9: Confusion Matrices for KNN models with raw (LEFT) and full (RIGHT) features
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CHAPTER 5: DISCUSSION 

After training, this study examined the classification accuracy achieved by RF and KNN 

with three acceleration summary metrics and three sets of subjectively selected features. The 

influence of tuning the models’ hyperparameters on classification accuracy was also investigated. 

Across the three feature sets, RF provided consistently higher classification accuracy with both the 

raw feature and the complete feature sets. KNN had a higher precision with the raw feature set. Of 

the three acceleration summary metrics examined, ActiGraph counts provided marginally better 

performance with the raw feature sets, and ENMO performed better with the complete feature sets. 

Hyperparameter tuning made a difference in accuracy by an average of 4% for RF models and 6% 

for KNN models.  

The primary finding obtained from this study showed that RF models had the highest 

accuracy scores compared to the performance of KNN models in all three feature sets. These 

findings are consistent with previous studies showing that RF performed consistently better than 

many other supervised machine learning methods in classifying physical activity types and 

intensities. A systematic review by Narayanan et al., (2020) on physical activity classification using 

machine learning reported that almost half of the studies reviewed achieved the highest accuracy 

with RF (~85%). Similarly, (Chowdhury et al., 2017) compared the physical activity classification 

accuracy between different machine learning algorithms, including RF and KNN, using three 

independent datasets from wrist-worn accelerometers. Their findings showed that the RF classifier 

provided consistently high classification performance, with F1 scores ranging from 79.6% to 85% 

across three data sets.  

The second finding in this study was that models fed with the raw feature set, i.e., the 

acceleration metric, the raw signals, and demographics, performed consistently better in the KNN 

models across all acceleration metrics. In contrast, the full features set performed better in the RF 
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models. These findings are consistent with a study by (Mesanza et al., 2020), which compared the 

effect of the number of features fed into RF and KNN models on classification accuracy. The 

results reported from Mesanza’s study indicated that a small set of features could be used to design 

the ML-based PA classifier, as the effect of increasing the number of features was insignificant in 

the total success rate of the classifier. Their study extracted 176 features but found that 

classification accuracy of over 90% was achieved using only the best nine features for all the 

models. 

Interestingly, our models show that model performance was very similar between 

Actigraph counts, ENMO, and MIMS units. The study published on the development of the MIMS 

unit (John et al., 2019) showed that Actigraph counts tended to be very similar for lying, sitting, 

and standing. In contrast, ENMO and MIMS values showed variability between these movement 

types. The original study did not apply machine learning models to the 17 activity types and 

intensities examined. Differences in results could also be due to the kind of device. This study used 

a smartphone, while the studies included in John et al., used an Actigraph GTX9 worn on the hip 

and wrist for data collection. It is possible that holding the phone in your hand could result in more 

movement than a wrist-worn device. It is also interesting that ENMO outperformed both Actigraph 

counts and MIMS units in the single feature models. A pre-print using data from a sample of 655 

adults wearing a wrist-worn Actigraph GTX9 device showed that the correlation between 

Actigraph counts and MIMS was 0.99 and between Actigraph counts and ENMO was 0.89, 

accounting for age, BMI, and gender (Karas et al., 2022). The result of my research and the pre-

print suggest that despite some differences, Actigraph counts, ENMO, and MIMS may not perform 

differently when machine learning models with many features are used. However, the results 

clearly show that hyperparameter tuning has an essential impact on model performance.  
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The models trained in this study utilized the best hyperparameter settings for each model 

to achieve the best classification results. Few studies use machine learning for PA intensity or type 

prediction that reports or tests model hyperparameters. My results show that hyperparameter tuning 

can have up to a 5-percentage point increase in model performance, which is a significant 

performance gain for an ML model. Previous studies have examined the performance of RF and 

KNN with different acceleration metrics using the default hyperparameter settings of each model. 

Khataeipour et al., (2022) investigated the performance of RF, with the default hyperparameter 

settings, on physical activity classification using ActiGraph counts from right-hand accelerometer 

data as the summary metric. Their findings showed that the performance of RF was 40.3% with 

single features and 48.5% with full features. These results indicate that accuracy scores did not 

perform as well as a similar set of models with hyperparameter tuning. 

Similarly, a study by Zhao et al., (2013) examined the performance of a model on the 

classification of six physical activity types using the best hyperparameter values after 44 iterations 

of hyperparameter settings. Their tuned models achieved more than 90% overall classification 

accuracy across four activity types. This showed that their model performance with 44 iterations 

was relatively better than this present study’s because we achieved an accuracy score of ~80% by 

tuning ten iterations of hyperparameter settings for each model.  

This current research has several contributions. It is the first study to compare the accuracy 

of activity classification models, RF and KNN using ENMO, ActiGraph Counts, and MIMS 

acceleration summary metrics. ENMO provided the best accuracy with all three models; MIMS 

units performed relatively well. In addition, the study demonstrated that proper feature selection is 

necessary when developing PA classification models. Adding more variables does not guarantee 

that the models will become more accurate. 
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Furthermore, this is the first study to publish its evaluated models’ hyperparameters; the 

results indicate that proper tuning of model hyperparameters greatly influences ML-based PA 

classification. It should be noted that although the models examined in this study were RF and 

KNN, Support Vector Machines (SVM) and Artificial Neural Networks (ANN) have been 

published to be one of the most implemented ML models in PA classification research. ANN is 

known to have six primary hyperparameters available for tuning: hidden units, penalty, dropout, 

activation, epochs, and seeds. To get the best SVM model performance, two hyperparameters must 

be tuned: cost and kernel function. This study examined some SVM models; however, there were 

model convergence challenges. The models trained with ActiGraph Counts failed to compute 

results. The hyperparameter tuning process was also computationally costly. It took about a week 

to get the tuning results for each acceleration metric. Due to this, future research will concentrate 

on analyzing the performance of SVM and ANN on PA classification with ENMO, ActiGraph 

Counts, and MIMS, as well as the impact of tuning the hyperparameters as opposed to utilizing the 

default hyperparameter settings. 

5.2 Limitations  

There are a few limitations identified in this study. First, the study participants were 

predominantly younger and middle-aged adults; specifically, no children or adults above 60 years 

were included. Second, the classification models were computed using accelerometry data from 

laboratory-based settings. Participants performed a limited number of activity types that do not 

reflect how they are carried out in real-life situations. When models are trained on free-living 

accelerometer data, participants might engage in entirely different activities or the same types of 

activity in completely different ways. ML models are known not to perform well when comparing 

models derived from lab-based versus free-living study designs (Kerr et al., 2016). Third, the 

classification models were trained on accelerometer data from one type of smartphone held in the 



 

 41 

right hand. The study did not investigate the performance of the acceleration metrics based on other 

accelerometer devices, smartphone types or wear locations, i.e., the results might not translate to 

accelerometer data retrieved from smartphones in the left hand, pocket, or backpack. Fourth, each 

classification model obtained the hyperparameter tuning results using ten iterations because the 

tuning process can be computationally intense. It can take days to tune the hyperparameters of any 

model on a regular computer. The performance of the classification models could be much better 

if more iterations of hyperparameter specifications were implemented. Finally, the findings from 

this study are conditional on the chosen acceleration metrics and machine learning models which 

were selected because there are either limited studies on them (e.g., MIMS units) or they are 

commonly used, prospective studies using other types of ML models or acceleration summary 

metrics should use caution when using the hyperparameter settings from this study. 

5.3 Conclusion 

The comparison of ENMO, Actigraph Counts and MIMS units in this study has shown their 

performance with RF and KNN to enhance comparison for present and future studies. The 

effectiveness of tuning model hyperparameters and the importance of feature selection in PA 

classification using ML methods have been emphasized in this study. Prospective researchers are 

encouraged to implement and report on hyperparameter tuning. For this study, we used the 

“Tidymodels” package in R and feature importance with the “vip” package when training 

classification models from other smartphone devices, accelerometer sensors and placements. 
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Appendix B: Description of studies. Adapted from (Narayanan et al., 2020) 

Reference Device name; 

Number of devices; 

Axis, sampling 

frequency; 

Placement position 

Features generated 

from raw 

accelerometer data 

Machine-learning 

classifier used; 

Validation method 

(Bonomi et al., n.d.) Tracmor (Philips Research, 

Eindhoven, The 

Netherlands); 1; 

3-Axis accelerometer, 20 Hz; 

Lower back 

27 time and frequency 

domain features 

Decision Tree; 

Leave-one-subject-out cross-

validation 

(Andreu-Perez et al., 

2017) 

Axivity AX3 (Axivity Ltd, 

York, United Kingdom); 1; 

3-axis accelerometer, 100 

Hz; 

Lower back 

Several time and 

frequency domain 

features 

DMF-DL, dichotomy 

mapped forest-metric 

Learning, Convolutional 

Deep Belief Networks, RF, 

SVM, and cHMM; 

Leave-one-subject-out cross-

validation 

(Arif & Kattan, 2015) Colibri (Trivisio Prototyping, 

Trier, Germany) wireless 

inertial measurement units 

(IMUs); 3; 

3-axis accelerometer, 100 

Hz; Wrist, chest, and ankle 

Several time domain 

features are segregated 

into 3 different feature 

sets respective to each 

sensor location 

KNN classifier, rotation 

forest, and NN; 

Validation method: 

70% training data set 

30% test data set 

(Bastian et al., 2015) MotionLogs (Movea, 

Grenoble, France); 1; 

3-axis accelerometer, 100 

Hz; Hip 

9 time and frequency 

domain features 

Bayesian classifier; 

Leave-one-subject-out cross-

validation 

(Billiet et al., 2016) SenseWear Pro 3 Armband 

(Bodymedia Inc, Pittsburgh, 

PA); 1; 

2-axis accelerometer, 32 Hz; 

Biceps of the dominant arm 

39 (18 signal 

patternbased 

features and 21 

time domain features) 

3-stage classifiers (stage 

1—RF with rejection, 

stage 2—linear 

discriminant model, 

and stage 3—binary 

classifiers); 

Leave-one-subject-out 

cross-validation 
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(Chowdhury et al., 2017) Data set 1: 

Colibri wireless IMU sensor; 

1; 

3-axis accelerometer, 100 

Hz; 

Wrist 

Data set 2: 

Empatica E4 sensor 

(Empatica, Milano, MI); 1; 

3-axis accelerometer, 32 Hz; 

Wrist 

45 features extracted 

from both time domain 

and frequency domain 

Boosted DT, bagging 

DT, RF, BDT, KNN, 

SVT, ANN, custom ensemble 

classifiers 

(weighted majority 

voting, NB combiner, 

and behaviour knowledge 

space) 

Leave-one-subject-out cross-

validation 

(Chowdhury et al., 2018) Data set 1: 

Colibri wireless IMU sensor; 

3; 3-axis accelerometer, 100 

Hz; Dominant-side wrist, 

ankle, and chest 

Data set 2: Shimmer 2R 

(Realtime 

Technologies, Dublin, 

Ireland); 3; 

3-axis accelerometer, 50 Hz; 

Chest, right wrist, and left 

ankle 

45 features from both 

time domain and 

frequency 

domain 

BDT, SVM, deep NN, RF, 

and AdaBoost 

Leave-one-subject-out cross-

validation 

(Cleland et al., 2013) Shimmer 2R (Realtime 

Technologies, Dublin, 

Ireland); 6; 3-axis 

accelerometer, 51.2 Hz; 

Chest, wrist, lower back, hip, 

thigh, and foot 

26 features from both 

time domain and 

frequency domain 

DT (J48), NB, NN 

(multilayer perceptron), 

and SVM; 

10-fold cross-validation 

(Dalton & Ólaighin, 

2013) 

Witilt (version 2.5; SparkFun 

Electronics); 5; 

3-axis accelerometer, 135 

Hz; Just below the 

suprasternal notch, left side 

of the chest over the lower 

ribs, directly above the right 

hip, wrist of the dominant 

hand, and ankle 

of the dominant leg 

160 features from both 

time domain and 

frequency domain 

C4.5 Graft, NB, 

BayesNET, IBI, IBK, 

KStar, JRip, SVM, 

Multi Perception, 

AdaBoost, Ada- 

BoostM1, Bagging, 

MultiBoost, Vote; 

Leave-one-subject-out 

cross-validation 

(Ellis et al., 2016) ActiGraph (Pensacola, FL); 

2; 3-axis accelerometer, 30 

Hz; Right hip and 

nondominant wrist 

40 total features from 

both time domain and 

frequency domain 

RF coupled with 

HMM; 

Leave-one-subject-out 

cross-validation 
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(Fida et al., 2015) Internally developed 

Inertial Measurement Unit; 

1; 

3-axis accelerometer, 100 

Hz; 

Waist 

22 features from time 

domain 

DT classifier, NB 

classifier, KNN classifier, 

SVM, and NNs; 

Leave-one-subject-out 

cross-validation, 

70% training data set 

30% test data set 

(Fullerton et al., 2017) RunScribe™ inertial sensors 

(Scribe Labs, CA) 

9; 

3-axis accelerometer, 10 Hz; 

Left and right lateral ankle, 

left 

and right hip, left and right 

wrist, left and right upper 

arm, 

and spine (T10) 

Several time and 

frequency domain 

features 

Complex DT, SVM, 

fine KNN classifier, 

and ensemble-bagged 

trees 

Validation method: 

80% of the data was 

used for training and 

20% was tested 

(Gao et al., 2014) Shimmer™ (wireless sensor 

platform); 

4; 

3-axis accelerometer, 200 

Hz; 

Chest, left under arm, waist, 

and thigh 

Several time and 

frequency 

domain, and 

heuristic features 

DT classifier, 

NB classifier, 

KNN classifier, 

SVM, 

ANN; 

10-fold crossvalidation 

(Garcia-Ceja & Brena, 

2018) 

Uses publicly available 

datasets: 

Data set 1: N/M; 1; 3-axis 

accelerometer, 52 Hz; Chest 

Data set 2: N/M; 1; 3-axis 

accelerometer, 32 Hz; Wrist 

16 total features 

extracted 

from time domain 

3-stage classifiers of each of 

the below single classifier 

model 

Recursive partitioning, DT, 

bagging with DTs, SVM, NB, 

LDA, and RF. 10-fold cross-

validation; Leave-one-

subject-out cross-validation 

(Gupta & Dallas, 2014) MEMS—Freescale 

MMA7260 accelerometer 

1 (Freescale Semiconductor, 

Austin, TX); 3-axis 

accelerometer, 126 Hz; 

Waist 

Several time domain 

features 

NB classifier and 

KNN classifier 

Leave-one-subject-out 

cross-validation 
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(Gyllensten & Bonomi, 

2011) 

Tracmor (Philips Research, 

Eindhoven, The Netherlands) 

1; 3-axis accelerometer, 20 

Hz; 

Waist; IDEEA monitor 

(MiniSun, Fresno, CA); 

5; N/M, 32 Hz; Soles of the 

feet, thighs, and upper 

sternum 

113 features from both 

time domain and 

frequency domain. 

SVM, Feed-forward 

NN, DT, Majority Voting 

(Combining all of the 

above 3 classifiers) 

Leave-one-subject-out 

cross-validation, 

Validation testing on 

data sets 2 and 3. 

(Hu et al., 2016) VG350 (MEMSIC, San Jose, 

CA); acceleration sensor; 1; 

3-axis accelerometer, 100 

Hz; 

Waist 

120 total input features 

per axes 

Backpropagation 

NN; 

10- fold cross-validation 

(Jalloul et al., 2018) Shimmer3 IMUs; 

6; 

3-axis accelerometer, 512 

Hz; 

Dominant ankle, 

nondominant 

thigh, dominant wrist, 

nondominant arm, hip, and 

neck 

108 features from the 

time domain 

RF; 

Validation method 1- 

Training data: data set1 

Testing data: Data set 2 

Validation method 2- 

Training data: Data set 2 

Testing data: Data set 1 

(John et al., 2013) GENEA (Unilever Discover, 

Colworth, United Kingdom); 

1; 

3-axis accelerometer, 80 Hz; 

Wrist; ActiGraph™ GT3X+ 

(ActiGraph™ Inc, Pensacola, 

FL); 1; 

3-axis accelerometer, 80 Hz; 

Wrist 

8 time domain and 6 

frequency domain 

features 

RF classifier; 

Leave-one-subject-out 

cross-validation, 

(Kerr et al., 2018) ActiGraph GT3X+ (Acti- 

Graph™ Inc, Pensacola, FL); 

1; 

3-axis accelerometer, 30 Hz; 

Hip 

activPAL (PAL 

Technologies, 

Glasgow, Scotland); 

1; 

1-axis-accelerometer; 

Thigh 

41 time and frequency 

domain features 

RF classifier; 

Leave-one-subject-out 

cross-validation 
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(Kerr et al., 2016) ActiGraph GT3X+ (Acti- 

Graph™ Inc, Pensacola, FL); 

1; 

3-axis accelerometer, 30 Hz; 

Hip 

43 time and frequency 

domain features 

KNN, SVM, NB, DTs, 

RF, HMM; 

Leave-one-subject-out 

cross-validation 

(Khan et al., 2010) Witilt (version 2.5; Sparkfun 

Electronics, Boulder, CO) 

1; 

3-axis accelerometer, 20 Hz; 

Chest 

Time domain and 

augmented features 

ANNs; 

6-fold cross-validation 

(Lee et al., 2011) SerAccel (version 5; 

Sparkfun 

Electronics, Boulder, CO); 

1; 

3-axis accelerometer, 20 Hz; 

Chest 

Time domain and 

augmented features 

ANNs; 

Subject-independent 

validation: training data 

from 10 subjects (group 

1), tested on the remaining 

10 subjects 

(group 2) 

Subject-dependent 

validation: 

training data 

from 20 subjects, tested 

on 10 subjects (group 1) 

(Liu & Chang, 2009) Data set 1: 

KXM52-L20 (Kionix, Ithaca, 

NY); 3; 3-axis 

accelerometer, 250 Hz; 

Chest, waist, and thigh 

Data set 2 

KXM52-L20 (Ithaca,NY); 

1; 3-axis accelerometer, 250 

Hz;Waist 

Features comprise 

parameters of the 

autoregression model 

of the raw signal 

SONFIN; 

Validation method: 

Training data: 50% of 

the data set for each 

activity from each subject 

Testing data: The 

remaining 50% of 

the data set for each 

activity from each subject 

(Mannini et al., 2013) Wockets; 

2; 

3-axis accelerometer, 90 Hz; 

Wrist and ankle 

Several time and 

frequency domain 

feature sets 

SVM; 

Leave-one-subject-out 

cross-validation 



 

 59 

(Mannini & Sabatini, 

2010) 

ADXL210E accelerometers 

(Analog Devices, Norwood, 

MA); 

5; 

2-axis accelerometer, 

76.25 Hz; 

Right hip, dominant wrist, 

nondominant arm, dominant 

ankle, and nondominant 

thigh 

Several time and 

frequency domain 

feature 

Naive Bayesian, 

Gaussian mixture 

model, logistic classifier, 

Parzen classifier, 

SVM, BDT (C4.5), 

Nearest mean, KNN, 

ANN (multilayer 

perceptron), and 

cHMM-based sequential 

classifier; 

Validation method: 

Training data: 

7 windows/activity 

class/subject 

Testing data: Remaining 

windows/activity 

class/subject 

(Montoye et al., 2014) MICA2 motes (Crossbow 

Inc, Milpitas, CA); 3; 

2-axis accelerometer, 10 Hz; 

Right wrist, right thigh, and 

right ankle; 

ActiGraph (ActiGraph LLC, 

Fort Walton Beach, FL); 1; 

3-axis accelerometer, 30 Hz; 

Waist 

14 total input features 

(12 time domain from 

raw accelerometer 

data, and height and 

weight of participants); 

8 total input features (6 

time domain from raw 

accelerometer data, and 

height and weight of 

participants) 

ANN; 

Leave-one-subject-out 

cross-validation 

(Montoye et al., 2017) ActiGraph GT9X Link 

(ActiGraph LLC, Pensacola, 

FL); 

4; 

3-axis accelerometer, 60 Hz; 

Right ankle, hip, right wrist, 

and left wrist 

18 features from the 

time domain 

ANN; 

Leave-one-subject-out 

cross-validation 
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(Montoye, Dong, et al., 

2016) 

MICA2 motes (Crossbow 

Inc, 

Milpitas, CA); 

3; 

2-axis accelerometer, 10 Hz; 

Right wrist, right thigh, and 

right ankle; 

ActiGraph (ActiGraph LLC, 

Fort Walton Beach, FL); 

1; 

3-axis accelerometer, 30 Hz; 

Hip 

14 input features 

(12 time domain from 

raw accelerometer 

data, and height and 

weight of participants); 

8 total input features 

(6 time domain from 

raw accelerometer 

data, and height and 

weight of participants) 

ANN; 

Leave-one-subject-out 

cross-validation 

(Montoye et al., 2015) GENEActiv; (Activinsights 

Ltd, Cambridgeshire, United 

Kingdom); 

2; 

3-axis accelerometer, 20 Hz; 

Right wrist and left wrist 

ActiGraph (ActiGraph LLC, 

Fort Walton Beach, FL; 

2; 

3-axis accelerometer, 40 Hz; 

Right thigh, Right hip 

39 input features 

(36 features from raw 

accelerometer data, 

and height, weight, 

and sex of 

participants) 

ANN; 

Leave-one-subject-out 

cross-validation 

(Montoye, Pivarnik, et 

al., 2016b) 

GENEActiv (Activinsights 

Ltd, Kimbolton, 

Cambridgeshire, 

United Kingdom); 

2; 

3-axis accelerometer, 20 Hz; 

Right wrist and left wrist 

ActiGraph (ActiGraph LLC, 

Fort Walton Beach, FL); 

2; 

3-axis accelerometer, 40 Hz; 

Right thigh and right hip 

15 input features ANN; 

Leave-one-subject-out 

cross-validation 
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(Montoye, Pivarnik, et 

al., 2016a) 

GENEActiv (Activinsights 

Ltd, 

Kimbolton, Cambridgeshire, 

United Kingdom); 

2; 

3-axis accelerometer, 20 Hz; 

Right wrist and left wrist 

ActiGraph (ActiGraph LLC, 

Fort Walton Beach, FL); 

2; 

3-axis accelerometer, 40 Hz; 

Right thigh and right hip 

Multiple features sets 

were extracted from 

each accelerometer: 

Set 1 = 36 features, set 

2 = 6 features, set 3 = 

12 features, and set 4 

= 15 features 

ANN; 

Leave-one-subject-out 

cross-validation 

(Montoye et al., 2017) activPAL3 accelerometer 

(PAL Technologies Ltd, 

Glasgow, United Kingdom); 

1; 

3-axis accelerometer, 20 Hz; 

Right thigh 

6 total features ANN; 

Leave-one-subject-out 

cross-validation 

(Montoye et al., 2018) GENEActiv (Activinsights 

Ltd, Kimbolton, 

Cambridgeshire, United 

Kingdom); 2; 

3-axis accelerometer, 20 Hz; 

Left wrist 

GENEActiv (Activinsights 

Ltd, Kimbolton, 

Cambridgeshire, 

United Kingdom); 

2; 3-axis accelerometer, 60 

Hz; Left wrist 

Feature set 1: 27 time 

domain features 

Feature set 1: 21 time 

domain features 

Feature set 3: 12 time 

domain features 

Feature set 4: 6 time 

domain features 

Feature set 5: 39 both 

time domain and 

frequency 

domain features 

Feature set 6: 33 both 

time domain and 

frequency 

domain 

features 

DTs with boosting, 

RF, ANNs, and SVCs; 

In-sample leave-one-subject- 

out cross-validation 

performed separately 

on data sets 1 

and 2 

Out-of-sample validation: 

training data— 

data set 1; testing data 

—data set 2 (vice 

versa) 

(Muscillo et al., 2010) ADXL202 (Analog Devices, 

Norwood, MA); 

1; 

2-axis accelerometer, 100 

Hz; 

Dominant leg at the shin 

level 

32 features (16 time 

domain and frequency 

domain features were 

extracted for each 

axis) 

Naïve 2D Bayes classifier; 

Model tested on the 

whole data set 
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(Pavey et al., 2017) GENEActiv (Activinsights 

Ltd, Cambridgeshire, United 

Kingdom); 

1; 

3-axis accelerometer, 30 Hz; 

Nondominant wrist; 

activPAL (version 3; Pal 

Technologies Ltd, Glasgow, 

United Kingdom); 

1; 

3-axis accelerometer, N/M; 

Right thigh 

Several time and 

frequency 

domain 

features 

RF classifier; 

Leave-one-subject-out 

cross-validation 

(Preece et al., 2009) Pegasus activity monitors 

(ETB Technologies, 

Dalbeattie, United 

Kingdom); 

3; 

3-axis accelerometer, 64 Hz; 

Waist, thigh, and ankle 

Several feature sets 

were generated 

comprising 

of features 

from the time and 

frequency 

domains and 

wavelet 

transformation 

KNN classifier; 

Leave-one-subject-out 

cross-validation 

(Rosenberg et al., 2017) ActiGraph GT3X+ (Acti- 

Graph, Pensacola, FL); 

1; 

3-axis accelerometer, N/M; 

Right hip 

41 features from both 

time domain and 

frequency domain 

RF combined with 

HMM; 

Leave-one-subject-out 

cross-validation 

(Rothney et al., 2007) IDEEA monitor (MiniSun, 

Fresno, CA); 

3; 

2-axis accelerometer, 32 Hz; 

Hip (at anterior and posterior 

and at medial/lateral 

locations) 

30 features from both 

time domain and 

frequency domain 

ANN; 

Leave-one-subject-out 

cross-validation 

(Sasaki et al., 2016) ActiGraph GT3X+ (Acti- 

Graph, Pensacola, FL); 

3; 

3-axis accelerometer, 80 Hz; 

Hip, wrist, and ankle 

Several time and 

frequency domain 

features 

RF classifier and SVM 

Leave-one-subject-out 

cross-validation 
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(Staudenmayer et al., 

2015) 

ActiGraph GT3X+ (Acti- 

Graph, Pensacola, FL); 

1; 

3-axis accelerometer, 80 Hz; 

Dominant wrist 

Several time and 

frequency domain 

features 

RF classifier; 

Leave-one-subject-out 

cross-validation 

(Stewart et al., 2018) Axivity AX3 (Axivity Ltd, 

York, United Kingdom); 

2; 

3-axis accelerometer, 100 

Hz; 

Lower back and dominant 

thigh 

142 total time and 

frequency domain 

features 

RF; 

Leave-one-subject-out 

cross-validation 

 

(Trost et al., 2014) ActiGraph GT3X+ (Acti- 

Graph, Pensacola, FL); 

2; 

3-axis accelerometer, 30 Hz; 

Right hip and nondominant 

wrist 

Several time domain 

features (number N/M) 

Regularized logistic 

regression classifier; 

Modified 10-fold 

cross-validation 

(Trost et al., 2018) ActiGraph GT3X+ (Acti- 

Graph, Pensacola, FL); 

2; 

3-axis accelerometer, 100 

Hz; 

Right hip and nondominant 

wrist 

36 time domain and 

frequency domain 

features (18/sensor) 

RF classifier and SVM 

Leave-one-subject-out 

cross-validation 

(Wang et al., 2016) IMU, N/M; 

2; 

3-axis accelerometer, 100 

Hz; 

Waist and left ankle 

Several features were 

extracted based on 

Ensemble Empirical 

Mode Decomposition 

method and Game- 

Theory-Based Feature 

Selection method 

SVM and KNN; 

Leave-one-subject-out 

cross-validation 

(Willetts et al., 2018) Axivity AX3 (Axivity Ltd, 

York, United Kingdom) 

1; 

3-axis accelerometer, 100 

Hz; 

Wrist 

126 features extracted 

from both time domain 

and frequency domain 

RF and HMM; 

Leave-one-subject-out 

cross-validation 
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(Wu et al., 2012) MMA7260 (Sparkfun 

Electronics, Boulder, CO); 

1; 

3-axis accelerometer, 50 Hz; 

Waist 

48 features were 

extracted 

based on discrete 

wavelet 

transform and principle 

component 

analysis 

SVM; 

Trial 1: 4-fold cross 

validation 

Trial 2: out-of-sample 

validation—classifier 

trained in trial 1 tested 

on data set collected in 

trial 2 

(Wullems et al., 2017) GENEActiv (Activinsights 

Ltd, Kimbolton, United 

Kingdom); 

2; 

3-axis accelerometer, 60 Hz; 

Right thigh and left thigh 

55 features extracted 

from both time domain 

and frequency domain 

RF classifier; 

Leave-one-subject-out 

cross-validation 

(Xiao & Lu, 2015) MPU-6000 sensor (Inven- 

Sense Inc, Sunnyvale, CA); 

1; 

3-axis accelerometer, 50 Hz; 

Thigh 

Several time domain 

and frequency domain 

features. Some features 

were also extracted 

using Kernel 

discriminant analysis 

ELM, NN, and SVM; 

Data randomly split 

into training and test 

data sets (split% N/M) 

(Yang et al., 2008) MMA7260Q (Freescale 

Semiconductor, Austin, TX); 

1; 

3-axis accelerometer, 100 

Hz; 

Dominant wrist 

24 features extracted 

from both time domain 

and frequency domain 

Neural classifier and k- 

NN; 

Leave-one-subject-out 

cross-validation 

(Zhang, Rowlands, et al., 

2012) 

GENEA (Colworth, United 

Kingdom); 

1; 

3-axis accelerometer, 80 Hz 

(multiple data sets were 

created from original data by 

modifying number of axes 

[1–3] and sampling 

frequencies 

[5, 10, 20, and 40 Hz]); 

Wrist; 

Several time domain 

and frequency domain 

features (number N/M) 

Logistic regression, 

DT, SVM, Bayesian 

belief network, and 

NN; 

10-Fold cross-validation, 

Split validation (training 

data—randomly 

selected two-third of 

the samples from each 

activity; test data—remaining 

one-third 

samples) 
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(Zhang, Murray, et al., 

2012) 

GENEA (Colworth, United 

Kingdom); 

3; 

3-axis accelerometer, 80 Hz; 

Wrists and waist; 

Several time domain 

and frequency domain 

features (number N/M) 

Logistic regression, 

DT, SVM, Bayesian 

belief network, and 

NN; 

10-Fold cross-validation, 

Split validation (training 

data—randomly 

selected two-third of 

the samples from each 

activity; test data—remaining 

one-third 

samples) 

 

Notes. Abbreviations: ANN, artificial neural networks; BDT, binary decision tree; cHMM, KNN, 

k-nearest neighbour; DMF-DL, dichotomy mapped forest-deep Learning; DMF-Metric, dichotomy 

mapped forest-metric Learning; DT, decision tree; ELM, extreme learning machine; HMM, 

Hidden Markov model; LDA, linear discriminant analysis; LPA, light-intensity physical activity; 

METs, metabolic equivalents; MVPA, moderate-vigorous physical activity; N/A, not applicable; 

N/M, not mentioned; NB, Naïve Bayes; NMF, nonnegative matrix factorization; NN, neural 

network; RF, random forest; SB, sedentary behaviour; SONFIN, self-constructing neural fuzzy 

inference network; SVM, support vector machine; WN, wireless network.  
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Appendix C: Features included in each model for ENMO, Actigraph counts, and MIMS units 

Extracted Features from a 1-second window ENMO 
ActiGraph 

counts 

MIMS 

units 

Sum of X axis data - sum_x ✓ ✓ ✓ 

Sum of Y axis data - sum_y ✓ ✓ ✓ 

Sum of Z axis data - sum_z ✓ ✓ ✓ 

Signal power of X axis data - snp_x   ✓ ✓ 

Signal power of Y axis data - snp_y ✓ ✓ ✓ 

Signal power of Z axis data - snp_z ✓ ✓ ✓ 

Mean of X axis data - mean_x ✓     

Mean of Y axis data - mean_y       

Mean of Z axis data - mean_z     ✓ 

Coefficient of variation of X axis data - cv_x   ✓ ✓ 

Coefficient of variation of Y axis data - cv_y   ✓ ✓ 

Coefficient of variation of Z axis data - cv_z ✓ ✓ ✓ 

Standard Deviation of X axis data - sd_x ✓ ✓ ✓ 

Standard Deviation of Y axis data - sd_y ✓ ✓ ✓ 

Standard Deviation of Z axis data - sd_z ✓ ✓ ✓ 

Skewness of X axis data - skw_x     ✓ 
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Skewness of Y axis data - skw_y       

Skewness of Z axis data - skw_z       

Kurtosis of X axis data - krt_x     ✓ 

Kurtosis of Y axis data - krt_y     ✓ 

Kurtosis of Z axis data - krt_z     ✓ 

Interquartile Range of X axis data - iqr_x ✓     

Interquartile Range of Y axis data - iqr_y       

Interquartile Range of Z axis data - iqr_z     ✓ 

Peak-to-peak amplitude of X axis - amp_x ✓     

Peak-to-peak amplitude of Y axis - amp_y ✓ ✓ ✓ 

Peak-to-peak amplitude of Z axis - amp_z   ✓ ✓ 

Autocorrelation of X axis data - acf_x   ✓   

Autocorrelation of Y axis data - acf_y ✓ ✓ ✓ 

Autocorrelation of Z axis data - acf_z     ✓ 

Correlation of X and Y axis data - cor_xy       

Correlation of X and Z axis data - cor_xz       

Correlation of Y and Z axis data - cor_yz       
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Vector magnitudes of all axes - vec_mag    

Zero-crossing in X axis data - zcr_x ✓ ✓   

Zero-crossing in Y axis data - zcr_y   ✓   

Zero-crossing in Z axis data - zcr_z ✓ ✓   

Peak Intensity of X axis data - pin_x    

Peak Intensity of Y axis data - pin_y    

Peak Intensity of Z axis data - pin_z    

Sum Log Energy of X axis data - sle_x ✓ ✓ ✓ 

Sum Log Energy of Y axis data - sle_y   ✓ ✓ 

Sum Log Energy of Z axis data - sle_z       

Dominant Frequency of X axis data - dfr_x ✓ ✓   

Dominant Frequency of Y axis data - dfr_y   ✓   

Dominant Frequency of Z axis data - dfr_z   ✓   

Amplitude of Dominant Frequency in X axis - 

adf_x 
    ✓ 

Amplitude of Dominant Frequency in Y axis - 

adf_y 
  ✓ ✓ 

Amplitude of Dominant Frequency in Z axis - 

adf_z 
  ✓ ✓ 

Entropy of X axis data - ent_x    
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Entropy of Y axis data - ent_y    

Entropy of Z axis data - ent_z    
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