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Abstract

This thesis proposes the design of a multiple model state estimation and control

scheme for micro aerial vehicles (MAVs) to cope with different flight conditions such

as aggressive flights, hovering flights, and flights under high external disturbances.

The work is divided into two main parts.

The first part of this thesis presents the design of an interacting multiple model

(IMM) filter for visual-inertial navigation (VIN) of MAVs. VIN of MAVs in practice

typically uses a single system model for its state estimator design. However, MAVs

can operate in different scenarios requiring changes to the estimator model. This

thesis proposes the use of a conventional VIN and a drag force VIN in an error-state

IMM filtering framework to address the need for multiple models in the estimator. We

use an epipolar geometry constraint for the design of the measurement model for both

filters to realize computationally efficient state updates. Observability of the proposed

modifications to VIN filters (drag force model, and epipolar measurement model) are

analyzed, and observability-based consistency rules are derived for the two filters of the

IMM. Monte Carlo numerical simulations validate the performance of the observability

constrained IMM, which improved the accuracy and consistency of the VINS for

changing flight conditions and external wind disturbance scenarios. Experimental

validation is performed using the EuRoC dataset to evaluate the performance of the

proposed IMM filter design.
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The second part of this thesis presents the design of a multiple model controller for

MAVs operating under different flight conditions. It presents the design of a stability-

guaranteed nonlinear model predictive controller (NMPC) to operate robustly along

fast trajectories. The NMPC considers system models with and without drag forces

for the multiple model bank. The basic controller structure is designed without termi-

nal conditions and therefore it is computationally less demanding and provides larger

stability regions and better closed-loop performance than traditional nonlinear predic-

tive control schemes. We perform a detailed stability analysis without terminal costs

or constraints to prove the asymptotic stability and the necessary conditions for re-

cursive feasibility of the controller. We derive the growth bound sequence that enables

obtaining the shortest possible prediction horizon for stability. The proposed analysis

provides the necessary conditions to implement the controller while using the shortest

stabilizing prediction horizon when compared to the state-of-the-art model predictive

control schemes reported in the literature. This particular feature enables the pro-

posed controller to perform fast optimization and hence the capability to implement

fast trajectories using feedback regularization. Several MATLAB simulations and lab

experiments are conducted to demonstrate the validity of this new proposed control

scheme. Combining these two key developments, the thesis presents the design of a

multiple-NMPC controller, depending on the IMM filter, to detect the flight condi-

tion and then trigger the appropriate controller to improve the tracking performance.

Monte Carlo numerical simulations validate the performance of the multiple-NMPC,

which improved the tracking accuracy of the MAV for external wind disturbance

scenarios.
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Chapter 1

Introduction

In this chapter, the research motivation and addressed challenges are discussed. Af-

terwards, the objectives and contributions of the thesis are formulated. Finally, the

outline of the thesis is presented.

1.1 Research Motivation

Multi-rotor micro aerial vehicles (MAVs) are multi-rotor aircrafts that are designed to

increase maneuverability in constrained environments while carrying small payloads.

They can be used in a wide range of indoor or outdoor applications including, inspec-

tion and surveillance missions [1], package delivery [2], and aerial photography [3].

An MAV can be controlled remotely by a human operator or autonomously by its on-

board controller [4]. Each rotor’s speed can be controlled to generate the desired total

thrust and torque. The use of multi-rotor MAVs, such as quadrotors, enables simple

configurations, agile dynamics, limited maintenance requirements, and low safety con-

cerns compared to fixed-wing aircrafts [5]. On the other hand, the autonomy tasks,

including estimation and control, of quadrotor MAVs are quite challenging because

the system is open-loop unstable, has 3D geometric system nonlinearities invoked by

1



the rigid body dynamics, and is under-actuated, i.e., it has only four control actions

(inputs) from the four rotors and six degrees of freedom states parameterizing the

quadrotor pose in space. In addition, the payload constraints place considerable re-

strictions on available computational resources and sensing. As a result, quadrotor

MAVs are attracting scholars to develop advanced estimation and control techniques

to enhance the MAV performance and overcome the operational challenges.

One of the main challenges related to control and estimation of the MAVs is

the changing dynamics1 of the system under different behavior modes, e.g., external

wind disturbance, ground effect2, proximity to walls or objects in the environment,

taking off, and landing [7]. Therefore, addressing different flight conditions using more

representative system models would improve the estimation and control performance

of MAVs. As a result, the main focus of this thesis is twofold: design (1) a multiple

model state estimator and (2) a multiple model controller for different flight modes

of the MAVs.

The design of a multiple model state estimator includes the design of a compu-

tationally efficient visual-inertial navigation system with improved consistency, and

the design of an interacting multiple model system that is cable of switching among

different filters in its bank to improve the estimation accuracy. Similarly, the design

of a multiple model controller includes the design of a computationally efficient and

highly stable nonlinear model predictive controller, and the design of a multiple model

framework that supports operation under different flight conditions.
1The dynamic system model significantly changes due to external disturbances.
2Ground effect is the increase in the thrust of a rotor operating near surfaces compared to flight

at a large distance from the ground [6].
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1.2 Thesis Problem Statement

The problem statements related to the multiple model estimation and multiple model

control problems are separately developed in the following two subsections.

1.2.1 Part1: Multiple Model State Estimation

Over the past few decades, inertial navigation systems (INS) [8] have been widely

used for pose estimation of autonomous mobile vehicles, e.g., MAVs, in particular,

in GPS-denied environments such as urban and indoor areas. Most INS rely on an

inertial measurement unit (IMU) that measures the 3-axis linear acceleration and 3-

axis angular velocity of the platform to which it is rigidly connected. With the recent

advancements in micro-electronics and micro-machining technologies, low-cost light-

weight micro-electro-mechanical (MEMS) IMUs have become compact and affordable

[9], which enables high-accuracy localization for mobile vehicles [10]. However, such

MEMS IMUs are subject to different level of systematic and stochastic errors, i.e.,

bias and noise. As a result, simple integration of these high-rate IMU measurements

often leads to unreliable pose estimates for long-term navigation because the errors

accumulate in the integration process and grow without bound in long runs [11].

Intriguingly, small, light-weight, and energy-efficient cameras provide rich information

about the environment and can serve as an aiding source for INS, yielding a navigation

system with drift-free velocity and attitude estimates [11].

Visual-Inertial navigation systems (VINS) are localization modules that can com-

bine visual information from a camera and inertial information from an IMU for

navigation purposes. Reported VINS designs primarily rely on either optimization-

based approaches [12–14] or filtering-based approaches [11, 15, 16]. Filtering-based

approaches are computationally more efficient than optimization approaches for the
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implementation of VINS where a marginal (<1% of traveled distance) decrease in

accuracy is expected as compared in [17]. The number of camera poses stored in

filtering-based VINS dictates the type of measurement model used for filter update.

For two camera poses in the state vector, an epipolar constraint measurement model

is preferred [11], for three poses a trifocal tensor geometry measurement model is

preferred [16], while for any higher number of camera poses the Multi-State Con-

straint Kalman Filter (MSCKF) is utilized [15]. Incorporating more camera poses

improves the estimation accuracy but with an increase in the computational resource

requirement of the filter.

For improved performance of VINS on MAVs, the process model of the filter should

be modified to address the aerodynamic rotor drag forces of the vehicle [18]. Recent

studies showed performance improvement of VINS when the drag force model is used

in the navigation filter [11, 19]. Performance improvements as a result of the drag

force model are also reported in feedback controller design for aggressive flight of

MAVs [20, 21]. However, under external disturbance and modeling errors such as

wind and ground effects, it is necessary to fall back from the drag force models to the

conventional models (kinematic models without the aerodynamic rotor drag forces)

because the drag force models are invalid under external disturbance. This means that

there should be a multiple model filtering technique in place to address these changing

conditions i.e., transition between a conventional kinematic model VINS and a drag

force model VINS to improve the estimation accuracy. Literature shows successful

applications of such adaptive and hybrid estimation algorithms [22] in other domains,

specifically the application of interacting multiple model (IMM) algorithm [23–27]

that can adapt itself by updating the probability of each model to achieve improved

estimation performance. However, implementing an IMM for VINS is not straight

forward and has several challenges. This research work addresses the following three
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challenges related to IMM-VINS design.

First challenge: is related to the non-linearity while implementing the IMM for

VINS. IMMs are generally applied to linear systems or system models with low or-

der non-linearities. For instance, target tracking IMMs [28–30] and image tracking

IMMs [31] deal with linear models in the multi-model filtering bank. Similarly, the

ground vehicle models and steering geometry models used for IMM filters in [23,32,33]

exhibit stable dynamics with non-linearities which are significantly different from spa-

tial geometric and projective non-linearities present in VINS filters [15]. Furthermore,

IMM is generally applied to filters that share similar state vectors and measurement

models, whereas the conventional VINS [4] and drag force VINS [11] filters have a

set of conceptually different state and measurement models. In order to address

these drawbacks, this study performs, to the best of the author’s knowledge, the first

application of IMM for VINS filters on MAVs. This study develops an error-state

implementation of the IMM algorithm incorporating geometrically consistent error

definitions, which allows addressing non-linearities of VINS filters in the IMM al-

gorithm. Moreover, methods available to address dissimilar states and maintaining

consistent model probabilities are adopted in the algorithm to enable IMM on VINS

filters [34, 35].

Second challenge: is addressing computational complexity related to maintain-

ing multiple models. IMM requires multiple filter instances running in parallel, i.e.,

computational complexity is O(n) in the number of filters of the IMM filter bank.

Hence the underlying filters should be computationally less demanding to begin with

to keep the IMM tractable. VINS filters with a large number of past camera poses

have update steps that are computationally quite demanding for embedded proces-

sors [15,36]. Therefore, using traditional optimization-based VINS or generic MSCKF

based filters in the IMM algorithm is deemed inefficient for solving the multi-model
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filtering problem related to VINS. In order to maintain a comparable estimation accu-

racy while significantly improving the computational efficiency, this study utilizes an

epipolar constraint measurement model [11,37] in the VINS filters, which significantly

lowers computational demand due to having only two camera poses in the state vec-

tor. Compared to MSCKF which maintains up to 30 camera poses and performs 3D

point reconstruction and null space decorrelation steps, geometric constraint-based

methods such as epipolar measurement models [11, 37] are highly efficient. Recent

work [16] has found significant improvement in execution time while having a small

decrease in accuracy when using such geometric constraints for VINS, which makes

it preferable for IMM implementations over generic VINS filters.

Third challenge: is addressing the observability consistency of VINS filters in

the IMM bank. IMM is generally applied to fully observable systems; hence ob-

servability consistency is not an issue. However, VINS models have an unobservable

space spanning four degrees of freedom [38]. As a result, observability consistency

and algorithm stability should be established and verified when using VINS filters in

IMMs. The literature reports limited observability results related to the drag force

VINS models. Furthermore, observability results related to the epipolar measurement

model are non-existent. This study develops on the result of [38] and establishes ob-

servability conditions and consistency rules for both drag force and conventional VINS

that use epipolar measurement models. To the best of the author’s knowledge, IMM

application for VINS on MAVs, and observability analysis of drag force and epipolar

VINS filters are not reported elsewhere in the literature.

1.2.2 Part 2: Multiple Model Control

Many research work has been conducted on the control problem of MAVs to improve

their stabilization and tracking performance, i.e., the stability characteristics of the
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vehicle under various operating speeds, tracking error, and computational time [4].

Initial developments in MAV state-space and nonlinear control has resulted in several

advanced quadrotor MAV control algorithms such as, nonlinear PID control [39], high

gain feedback control [40], robust control [41, 42], adaptive control [43, 44], and feed-

back linearization and backstepping control [45, 46]. Despite their promising results

and performance, often these controllers require laborious tuning in order to accom-

plish stable performance, which is quite challenging. Moreover, majority of those

controllers cannot guarantee input or state constraints and demands careful selection

of feasible trajectories for stable maneuvering.

On the other hand, the control problem of the quadrotor MAV could be formu-

lated as an optimization problem with a predefined objective function, where the

minimization of this function over a finite time horizon leads to the optimal input

values. Moreover, inputs and state constraints can be included directly in the opti-

mization problem, which is crucial for real systems with physical constraints. One

such optimization-based control algorithm is called Model Predictive Control (MPC)

or Receding Horizon Control since the prediction horizon keeps shifting over the pro-

cess time [47, 48]. Nonlinear Model Predictive Control (NMPC) is an MPC variant

that uses the nonlinear system model in its prediction [49]. NMPC showed promising

stabilization and tracking performance in ground and aerial vehicles in the litera-

ture [50–52] and robust collision and obstacle avoidance performance [53].

The NMPC requires to iteratively solve on-line a non-convex, nonlinear, dynamic

optimal control problem on a finite prediction horizon and only the first element of

the computed control sequence is applied to the system [49]. This process is then

repeated at the subsequent time instant. Hence NMPC demands more computational

time, implementing such a controller in a multiple model controller framework in

real-time needs to address several challenges as explained below.
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First challenge: is related to the closed-loop stability of the control system.

Generally, closed-loop stability of receding horizon problems is not ensured except for

special cases under certain conditions. For instance, closed-loop stability of NMPC

scheme with infinite horizon (prediction horizon tends to infinity) can be ensured

under certain controllability assumptions (e.g., there exists a suitable upper bound

on the optimal value function) [54]. However, the infinite horizon control problem

is not usually practical for online implementations mainly due to the computational

complexity which is heavily governed by the length of the prediction horizon and the

number of the manipulated variables. As a result, relevant concern has been given

to the formulation of finite receding horizon problems whose solutions provide sta-

bilizing control. Researchers were able to ensure the closed-loop stability by adding

terminal cost, terminal constraint, terminal set, or a combination of them to the op-

timization problem [55] (for a thorough review see [47]). However, imposing terminal

cost requires the solution of the algebraic Riccati equation to calculate the terminal

weight [56]. Imposing terminal constraints makes the implementation of the control

problem difficult since it is hard to obtain a satisfying solution of nonlinear equality

constraints in a limited computational time frame. Under those conditions, an incom-

plete optimization during the limited sampling time may affect the system stability

due to the errors caused by the force termination of the optimization [57]. On the

other hand, designing the finite receding horizon control problem without stabilizing

terminal costs or constraints [58–60] is computationally less demanding and provides

larger stability regions and better closed-loop performance [49]. In this study, we de-

sign a novel NMPC controller with a tailored running cost to asymptotically stabilize

the quadrotor MAV while adopting the techniques proposed in [58–60] to perform the

stability analysis.

Second challenge: is addressing the computational complexity of the finite re-
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ceding horizon problem. The MPC with stabilizing terminal cost can be used in

the control of MAVs since it is easier in the design than a controller with termi-

nal constraints, however, the prediction horizon must be large enough to achieve the

closed-loop stability [52]. It was proven in [61] that extending the prediction horizon

of the finite receding horizon problem leads to a good approximation to the optimal

solution of the infinite receding horizon problem. However, extending the predic-

tion horizon increases the complexity of the optimization problem and demands a

higher computational time to obtain the optimal solution [62]. On the other hand,

most small-sized aerial vehicles carry low-cost computer resources and demand fast

control actions to maintain stable and smooth flights. Intriguingly, MPC without

stabilizing terminal costs or constraints ensures asymptotic stability for much shorter

prediction horizons [60] while yielding an approximately optimal infinite-horizon per-

formance [48]. Therefore, this study derives a growth bound on the proposed NMPC

value function (without terminal costs or constraints) that can be used to determine

the minimal stabilizing prediction horizon for the finite optimization problem of the

MAV that guarantees asymptotic stability.

Third challenge: is related to the recursive feasibility of the solution of the

optimal control problem for any given constraints. The feasibility of the infinite

horizon problem may turn into a critical concern while implementing the receding

horizon schemes because of using a finite horizon. Finite receding horizon may result

in loss of feasibility [63] or lead to an unsolvable infinite horizon optimal control

problem [56]. The recursive feasibility is automatically ensured by imposing terminal

costs or constraints into the optimization problem or by using a long enough prediction

horizon [49, 56]. However, using terminal conditions reduces the region of attraction,

i.e., reduces the feasible operating region of the MPC scheme. On the other hand,

MPC schemes without terminal conditions can yield large (even unbounded) feasibility
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and stability regions for finite prediction horizon [49]. Grune et al., [49, 64] have

showed that the recursive feasibility of an NMPC scheme without terminal conditions

can be inherited from the closed-loop stability where the finite horizon cost acts as

a Lyapunov function. Therefore, the calculation of the stabilizing prediction horizon

from the derived growth bound can ensure both asymptotic stability and recursive

feasibility.

Fourth challenge: is addressing the changing dynamics of the MAV in different

environments or operating conditions. Incorporating the rotor drag force of the MAV

in the system model aims at improving the controller performance at aggressive and

agile maneuvers with high speeds and accelerations [20]. However, during periods

of environmental changes, e.g., wind disturbance or ground effect, this controller is

prone to failure because it is designed and tuned to work properly with aerodynamic

disturbances and fast speed trajectories while ignoring the other environmental distur-

bances. Additionally, the effect of the wind disturbance may become quite significant

and jeopardize the vehicle when operating in close proximity to obstacles or other

aerial vehicles [65]. Therefore, switching to a conventional controller without drag

force would be more reliable to guarantee a safe flight since the conventional con-

troller is designed and tuned to work in slow flights and environments with expected

disturbances. In order to address this issue, this work develops a multiple nonlinear

model predictive controllers scheme to address the changing dynamics of the MAV

at different flight modes and environments. The multiple model controller will make

use of the interacting multiple model algorithm of the state estimation to help in

detecting the flight mode and then triggering the appropriate controller.
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1.3 Research Objective and Contributions

The main objective of this research is to develop an adaptive autonomous trajectory

control system for an MAV to operate under various and changing operating con-

ditions. This includes the development of an accurate state estimation system and

a robust and fast trajectory control system. Under these conditions, the research

objectives are categorized below with the expected contributions highlighted. The

proposed research here has both theoretical and experimental objectives.

Objective 1: Design of a computationally efficient error-state visual inertial nav-

igation system (VINS) with improved accuracy and consistency for MAVs.

• Designing two error-state VINS filters with epipolar constraints; (1) conventional

VINS and (2) drag force VINS.

• Performing the observability analysis of the drag force VINS filters and the

epipolar constraint measurement models.

• Development of observability-constrained VINS to maintain the consistency of

the filter.

Objective 2: Design of a novel interacting multiple model for VINS (IMM-VINS)

that supports operation during periods with aggressive flights and/or external distur-

bances (e.g., wind).

• Development of the error-state formulation of IMM incorporating geometric er-

ror definitions and optimal quaternion averaging to support VINS applications,

• First application and design of IMM for VINS (IMM-VINS) by using a drag

force VINS and conventional VINS model to support operation during periods

with external disturbances.
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• Numerical and experimental validations of the proposed IMM-VINS using Mat-

lab simulator and the EuRoC dataset.

Objective 3: Design of a novel computationally efficient and highly stable nonlinear

model predictive controller (NMPC) without terminal conditions for the control of

MAVs with/without drag force incorporated in the system model.

• Proposing the design of a novel computationally-efficient NMPC scheme (by

tailoring an objective function) with improved stability characteristics for the

control of quadrotor MAVs without the use of terminal costs or constraints while

ensuring recursive feasibility. The design provides a unique analytical method-

ology that requires minimal tuning parameters compared to other controllers in

the literature.

• Performing the stability analysis required to prove the asymptotic stability of

the proposed controller by deriving a growth bound on the proposed MPC value

function.

• Calculating the minimal stabilizing prediction horizon, which effectively mini-

mizes the computational cost, and providing a formula for the estimation of the

performance of the closed-loop scheme.

• Providing detailed numerical and experimental validations of the proposed con-

troller at different initial conditions, system configurations, and various trajec-

tories; and comparing its robustness against the traditional NMPC schemes in

the literature.

Objective 4: Design of a novel computational-efficient multiple-NMPC scheme that

supports various operation and flight conditions.
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• Designing a multiple model control scheme, depending on the IMM filter, that

can effectively recognize the flight mode and then trigger the appropriate NMPC

from the controller’s bank that includes a drag-force model based NMPC and

a conventional-model based NMPC to support operation during periods with

aggressive flights and/or external disturbances (e.g., wind).

• Conducting numerical validation of the proposed system.

1.4 Organization of the Thesis

This thesis is organized as follows.

• Chapter 1 - Introduction: Introduces the research topics and thesis mo-

tivation, and states the main problems and challenges that will be addressed

in the thesis. Additionally, it summarizes the thesis objectives and expected

contributions.

• Chapter 2 Literature Review: Reviews and discusses the related studies of

the considered control/estimation problems and their drawbacks.

• Chapter 3 - Visual-inertial Navigation System: This chapter relates to

objective 1 of the thesis. It presents the design of an error-state visual-inertial

navigation system, the nonlinear observability analysis of the VINS filter, and

the formulation of the observability-constrained VINS with and without drag

force.

• Chapter 4 - Multiple Model State Estimation: This chapter relates to

objective 2 of the thesis. It presents the methodology proposed for the design

of the multiple model state estimation. The overall system is validated using

several numerical and experimental studies.
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• Chapter 5 - Nonlinear Model Predictive Control: This chapter relates

to objective 3 of the thesis. It presents the design of a nonlinear model predic-

tive controller without terminal costs or constraints incorporated in the value

function. Also, presents the stability analysis of the proposed controller and

provides multiple numerical studies and lab experiments to validate the control

algorithm.

• Chapter 6 - Multiple Model Control: This chapter relates to objective 4

of the thesis. It presents the design of a multiple model controller, where two

nonlinear model predictive controllers are used in the controller/model bank and

the interacting multiple model proposed in Chapter 4 is used in the switching

module to trigger the appropriate controller at different operating conditions.

• Chapter 7 - Summary and Future Work: This chapter concludes the thesis

and discusses the practicality of the proposed methods. Also, it presents the

resulting publications of this work and the possible future research directions.
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Chapter 2

Literature Review

In this chapter, we briefly discuss the related studies to the estimation and control of

quadrotor MAVs and their drawbacks. Then, in the following chapters, we discuss how

our proposed research can overcome these drawbacks and provide better performance.

2.1 Visual-Inertial Navigation Systems

VINS has been developed as an indoor equivalent for GPS inertial navigation to

estimate the vehicle pose based on the fusion of onboard sensors and visual infor-

mation [15,38]. Optimization-based VINS approaches solve a nonlinear optimization

problem over a set of measurements considering a moving window [66]. Optimization-

based VINS has improved estimation accuracy and solution robustness but demands

considerable computational power [66]. On the other hand, filtering-based VINS

approaches are more computationally efficient because they follow a simplified gain

correction step while marginalizing all past measurements using a handful of states

corresponding to past camera poses of the platform [15]. Recent work in [17] compara-

tively evaluates the performance of popular VINS algorithms with a detailed analysis

of the computational resource requirement of each algorithm. The work identifies
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filtering-based approaches as a good compromise considering computational demand

and accuracy of the algorithm for resource-constrained vehicles like MAVs [17]. Other

work has also been conducted to implement the visual measurement model to incor-

porate geometric constraints without having 3D feature point reconstruction in the

methodology as in [11,16,37].

Many VINS filter formulations [15,16,36] have ignored aerodynamics effects while

modeling VINS for MAVs. This practice is common in MAV controller design as

well because stability at hovering is the main design objective [67]. While the MAV

is in hover, the velocity is too small compared to other dynamics terms that can

be neglected, and these simplistic assumptions may be valid. However, at fast or

aggressive maneuvers, the ignored aerodynamics could significantly affect the MAV

controller performance [18]. Rotor drag is the main aerodynamics effect that highly

influences tracking errors of controllers [20]. Rotor drag forces introduce dynamic

constraints to the estimator models, which can be exploited to improve state estima-

tion capability of the filter [68]. Work in [69] used the rotor drag model of MAVs to

produce accurate velocity estimates from accelerometer measurements, [70] used rotor

drag model for improved UWB localization of MAVs, and [11] extended the method

to VINS. However, the reported dynamic models only provide better estimates under

certain conditions, i.e., under low external disturbance and aggressive flights of MAVs

[11,20]. Therefore, IMM filtering can be proposed as a framework to overcome those

drawbacks by incorporating additional supporting filters in the framework [71,72].

2.2 Interacting Multiple Model

IMM is an efficient estimation technique that has been developed to estimate the

states of dynamic systems with different behavior modes, and it ensures better per-

16



formance than individual filters [33,73]. The IMM algorithm can switch from one filter

to another based on a posterior defined Markov transition probability for switching be-

tween models [71,72]. IMM has been used to address the maneuvering target tracking

problem in different applications including ground, marine, and aerial vehicles [23–27],

where IMM estimator had significant improvement in model estimation and tracking

accuracy than stand-alone estimators. IMM was demonstrated to be one of the sim-

plest and cost-effective solutions to handle mode changes in dynamic systems [74].

In [73], a Kalman filter failed to reduce the noises during non-maneuvering intervals

because all the filter parameters were previously tuned for maneuvering intervals;

however, the IMM performance was stable, and the error was almost constant during

both intervals by setting-up two filters with adequate parameters for each interval.

In [75] authors showed that multiple model algorithm ensures satisfactory perfor-

mance than single-modeled filters in tracking applications when the target undergoes

turns or maneuvers. IMM based estimation using nonlinear models was recently em-

ployed in automobile navigation systems, and the results showed superior ability of

IMM to produce consistent location estimates, even under conditions where GPS is

producing spurious measurements. Past work in [33,76] showed applications of IMM

for GPS navigation, and [77] has shown the use of Chi-squared tests to dynamically

select the best sensors for the filter update. Work in [78] reports an application of

the methods to MAVs where individual motor failure is found using a bank of models.

Further improvements to IMM were proposed in [79], where selective re-initialization

and state augmentation strategies were used to minimize the number of models used

in fault detection.

IMM design and implementation for MAV VINS is a challenging open research

field. It involves identification of models having complementary features such as

accuracy, stability, robustness, and self-calibration. Hence the design requires a firm
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knowledge base of the underlying state estimators and strategies for computationally

efficient implementation.

2.3 Observability-Constrained VINS

Nonlinear observability analysis establishes the locally weakly observable subspace of a

nonlinear system model description. Lie derivative based observability rank condition

criteria proposed in [80] is primarily employed for this analysis task. The method has

been used in [81] for the analysis of simultaneous localization and mapping (SLAM),

in [82] it was used for inter-robot localization, and [83] analyses relative localization

with platform velocity constraints. Work in [84] showed that the observability prop-

erties of linearized systems used for the design of error-state filters do not match the

observability of the true nonlinear system. The authors proved that the unobservable

subspace of the linearized system is lower than the actual system, resulting in increased

filter inconsistency due to the reduction of covariance estimates in the unobservable

direction of the true system. The study has resulted in observability-constrained fil-

ter design rules for robotic navigation [81, 84]. Hesch et al [38, 85] have developed an

observability-constrained estimator for VINS to enforce the unobservable directions

of the system by modifying the system and measurement Jacobians to improve the

system consistency. Results showed that standard VINS pseudo information was in-

serted into the filter through the unobservable directions that violate the observability

properties of the system, while the observability-constrained VINS remains consistent

with better position and orientation accuracy. The observability analysis of [38] used

a basis function based approach over the more popular observability rank condition

analysis [80]. The latter requires an exhaustive analysis of the VINS model. A recent

development in [86] follows an invariant filter design approach to implicitly enforce
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observability consistency rules for VINS. Observability-constrained design is consid-

ered an important characteristic of a filter; however, the literature does not present

consistent filter designs for drag force based VINS nor epipolar measurement models.

Hence an IMM that incorporates rotor drag modeling and epipolar constraints should

first establish the observability consistency rules for the VINS filter design.

2.4 Stability Analysis of Nonlinear Model Predic-

tive Control

Pioneering work reported in [87, 88] introduced a novel method to design a finite

optimal control problem for MPC without using the stabilizing terminal costs or

constraints. This method adopts a Lyapunov function to represent the finite horizon

value function without terminal conditions, which allows the stability to be implied

by the monotonicity of the value function [88]. Grimm et al. [88] showed that the

asymptotic stability of the closed-loop system can be guaranteed for a sufficiently long

prediction horizon. However, this initial study did not provide explicit bounds for the

length of the prediction horizon. A series of recent studies [58–60] has ensured the

closed-loop asymptotic stability relying on the concept of cost controllability, i.e., local

controllability condition (see [89,90] for thorough details). This was achieved through

computing a growth function that bounds the MPC value function. This growth

function can then be used to calculate a performance measure of the finite horizon

scheme, i.e., the proximity to the infinite horizon problem. This in turn provided

a way to estimate a stabilizing prediction horizon that guarantees a monotonically

decreasing value function and closed-loop asymptotic stability. This particular feature

allows the NMPC to be implemented at a faster rate for nonlinear robotic systems

while ensuring closed-loop stability [49, Sec. 7.4].
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Continued with this pioneering work, research work in [50, 91] effectively demon-

strated a real-time implementation of this method to stabilize a ground robotic system

to operate fast on a given trajectory. This ground robot uses the holonomic/non-

holonomic kinematic model, which is generally open-loop stable. This ground robotic

application constructed specific open-loop trajectories to derive the growth bounds

on the proposed value function and then to verify the cost controllability condition.

The proposed scheme was implemented successfully on a ground robot for a point

stabilization problem. However, the method was not tested on trajectory tracking

problems.

An early study in [92] has proposed the first application of NMPC for the position

and heading tracking control of an aerial-type vehicle, e.g., rotorcraft-based unmanned

aerial vehicle. This traditional NMPC demonstrated in this work was then adopted

by many researchers and those research were able to demonstrate successful trajectory

control of quadrotor MAV [52,93,94]. However, this traditional NMPC has incorpo-

rated terminal costs in the MPC objective function which caused those controllers to

adopt a longer prediction horizon to achieve the expected stability of the system. In

absence of a proper stability analysis, these methods require to adopt trial and error

approach in order to obtain a prediction horizon value for satisfactory performance.

This particular drawback generally prohibits the traditional NMPC based MAVs to

operate at a higher frequency owing to its higher computational cost, as we have

demonstrated in our experimental results in this work. A recent work in [95] has pro-

posed a robust NMPC scheme for the visual servoing of quadrotors MAVs subject to

external disturbances. The developed NMPC scheme incorporates terminal costs and

constraints, which reduce the feasibility region of the closed-loop system, as shown

in the recursive feasibility and stability analysis in [95]. The system was proven to

be recursive feasible and stable only under some derived conditions, e.g., the system
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is locally Lipschitz continuous with a Lipschitz constant bounded by the maximum

eigenvalues of the terminal weight matrix. The proposed controller was numerically

able to stabilize the system within a small region around the desired position. How-

ever, in the experimental validation, it was only able to steer the quadrotor to the

neighborhood of the desired position. This shortcoming might have happened due

to excluding the terminal constraint from the optimization problem in the real-time

implementation of the experiment. Another recent work in [96] explains an NMPC

scheme without terminal constraints. However, the controller contained a feedback

linearized system that requires the vehicle to be at an initial position closer to an equi-

librium point in order for the system to be stable. This will result in a narrow stability

region for the vehicle and make the flying envelope smaller. The control bounds are

chosen based on this linearized model, and as a result, more tuning parameters are

required to be adjusted for better performance. Additionally, the prediction length

is quite high for stability, which makes the implementation of this controller quite

difficult.

2.5 Multiple Model Control

Multiple model predictive control has been primarily proposed in the literature for

process and medical applications with nonlinear systems or systems with changing

dynamics. Some pioneering studies [97, 98] used a set of linear model/MPC pairs to

handle all possible operating regions or conditions, where a recursive Bayes theorem

was used to weight the outputs of the controllers in the controller bank based on

their residual and probability of representing the plant at each iteration sample, as

shown in Fig. 2.1. Similarly, the work in [99] proposed a switching function to

switch among the MPCs in the controller bank using the Hotelling’s T 2 statistic of
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Fig. 2.1: Schematic of the multiple-MPC strategy with weighting function.

the measured output variables of each local MPC, as shown in Fig. 2.2. The results

of these reported studies showed better performance compared to a single controller.

However, this technique is not efficient for robotics applications because it requires

all the controllers to be active and run simultaneously at the same time, which is

computationally inefficient due to the limited computation resources of mobile robots

and the necessitate of fast actions.

Alternatively, other reported studies [100–102] proposed the use of a single con-

strained linear MPC, for the sake of computational complexity reduction, and a

weighted model bank as a prediction model, as shown in Fig. 2.3. The model bank

includes multiple linearized models at different equilibrium points while the Bayesian

weighting approach has been employed to weight the models’ predictions. The more

models incorporated in the model bank, the more accuracy of nonlinear system ap-

proximation. However, determining the optimal number of models that encompass

the plant behavior is far from trivial. Also, tuning the single-MPC parameters to

perform robustly in the possible range of prediction models stemming from the model

bank is very difficult.
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Fig. 2.3: Schematic of the multiple-MPC strategy with one constrained MPC.
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The work in [103] has proposed a switching multiple linear model predictive at-

titude controller for the control of MAVs, where the switching is carried out using

basic rules according to the current regime of the state vector. The drawbacks of the

previous method still exist, where the selection of the optimal number of models and

appropriate linearization operating points are still challenging.

Therefore, using a computationally efficient NMPC would be more efficient since it

is rich enough to represent the nonlinear behavior of the MAV. Additionally, making

use of the IMM algorithm in the switching function of the multiple model control

algorithm (multiple-NMPC) would be computationally efficient since it requires only

one active controller at a time.
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Chapter 3

Visual-inertial Navigation System

In this chapter, we are designing a visual-inertial navigation system for the MAV. The

design includes two different models, the first model uses the conventional kinematic

model of the platform (INS mechanization equations) as proposed in [15], and the

second model uses dynamic constraints that incorporate the drag force as proposed

in [11]. Finally, we perform the observability analysis for both models and develop

the observability-constrained VINS to maintain the consistency of the filter.

3.1 Design of VINS Filter

3.1.1 System description

The position and orientation of an MAV can be defined relative to the body frame

{B} attached to its center of gravity, and the global inertial frame {G}. The MAV is

equipped with an IMU located at coordinate frame {I} and a forward-facing monoc-

ular camera located at coordinate frame {C}, as shown in Fig 3.1. For simplicity

of derivation, we assume that the IMU and body frames are aligned, which will be

relaxed later in the next chapter when validating the filter for experimental data (Eu-
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Fig. 3.1: Coordination systems related to VINS on MAV. {G} is the global frame,
{B} is the body frame located at the center of gravity which is the same as the IMU
frame {I}, and {C} is the camera frame.

roC [104]). The intrinsic and extrinsic parameters are assumed to be known following

an IMU-camera calibration procedure [105].

The nonlinear state space model of the system is given as,

ẋ = f(x,u,nw)

y = h(x,nν)
(3.1)

where x is the system states vector, u is the input vector, nw is the process noise

vector which is assumed zero-mean Gaussian, y is the measurement vector, and nν is

the measurements noise vector also assumed zero-mean Gaussian. The state vector

of the system has a dimension of 23 and is defined as follows,

x =
[
GpB

T BqG
T BvT baT bgT GṕB

T Bq́G
T
]T
.

The state vector includes the position of the MAV with respect to the global

frame GpB, unit quaternion BqG corresponding to the MAV rotation from {G} to

{B}, MAV velocity vector Bv of {B} relative to {G} expressed in {B}, accelerometer
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bias ba, and gyroscope bias bg expressed in {B}. This work uses a keyframe-based

approach to handle visual measurements similar to [11, 13]. As a result, the position

and orientation of the MAV corresponding to the previous keyframe are also stored in

the state vector, which are denoted using GṕB and Bq́G, respectively. The error-state

vector corresponds to the geometric difference between the true state vector x and the

estimated state vector x̂. In this thesis, we are usingˆand ∼ above variables to denote

estimated and error variables, respectively. The error-state is defined as, x̃ = x 	 x̂,

where the inverse mapping 	 is used to capture geometrically consistent error terms

similar to work in [86]. This inverse mapping is the same as standard subtraction

in case of position, velocity, and bias states, but is different for quaternions. The

quaternion error-state is computed as, q̃ = q ∗ q̂−1 Linearize−−−−−−→ δq =
(

1 1
2δθ

T

)T
,

where δθ is a small angle approximation of rotation and ∗ denotes the quaternion

multiplication.

First order linearization of the continuous error-state dynamics ˙̃x results in,

˙̃x Linearize−−−−−−→ δẋ = Fδx + Gwδnw (3.2)

where F and Gw are the process model and noise Jacobians and δnw is the process

noise vector. Mathematical descriptions corresponding to the two models considered

for the IMM in this study are introduced in the following subsections.

3.1.2 Mathematical model of the conventional VINS

The conventional VINS (C-VINS) process model [15] corresponds to the INS mecha-

nization equations given by,
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GṗB = R(BqG)T Bv

Bq̇G = −1
2
Bω ∗ BqG

Bv̇ = R(BqG)Ggē3 + Ba − Bω × Bv

G ˙́pB = 03×1 , B ˙́qG = 03×1

(3.3)

where the platform angular velocity input Bω and acceleration input Ba are driven

using measurements from an inertial measurement unit given by,

ωm = (Bω + bg + ng)

am = (Ba + ba + na)

ḃa = nba , ḃg = nbg.

(3.4)

In (3.3,3.4), R(BqG) is the rotation matrix from frame {G} to {B}, Gg is the grav-

itational acceleration expressed in {G}, the standard basis ē3 =
[
0 0 1

]T
, ωm is the

gyroscope measurements vector, and am is the accelerometer measurements vector.

na, ng, nba, nbg are stochastic Gaussian noise variables of the accelerometer mea-

surement, gyroscope measurement, accelerometer bias random walk, and gyroscope

bias random walk, respectively. The process noise vector given in (3.2) is defined

as nw =
[
nTg nTa nTba nTbg

]T
. The pose stored for the previous keyframe has zero

dynamics since it does not change with time. The F and Gw matrices corresponding

to this model can be found as,

F =



03 −R(q̂)T
[
Bv̂
]
×

R(q̂)T 03 03 03×6

03 − [ω]× 03 03 −I3 03×6

03
[
R(q̂) Ggē3

]
×
− [ω]× −I3 −

[
Bv̂
]
×

03×6

012×3 012×3 012×3 012×3 012×3 012×6
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Gw =



03 03 03×6

−I3 03 03×6

−
[
Bv̂
]
×
−I3 03×6

06×3 06×3 I6

06×3 06×3 06


where, [·]× is the skew symmetric matrix operator. For the sake of brevity, R(q̂) is

the same as R(Bq̂G), Ii is an i × i identity matrix, 0i is an i × i zero matrix, 0i×j is

an i× j zero matrix, and ω = ωm − b̂g.

We consider visual measurements from one forward-facing monocular camera. Cor-

responding features between each pair of consecutive images are extracted using fea-

tures detection and features matching techniques. These matched features are used

to construct the visual measurement residual using the epipolar geometry constraints

as follows,

ỹv = h̃(x,pi, ṕi) = (pi)TK−TEK−1ṕi

E = R(CqB)R(BqG)
[
GṕC − GpC

]
×
R(Bq́G)TR(CqB)T

(3.5)

where ỹv is the visual measurement residual for one pair of corresponding features,

pi is the image coordinates corresponding to feature point i of the current image, ṕi

is the image coordinates corresponding to feature point i of the previous image, E is

the essential matrix, R(CqB) is the rotation matrix from frame {B} to {C}, K is the

camera intrinsic matrix, and GpC and GṕC are the positions of {C} with respect to

{G} of the current and previous poses, respectively.

The linearized error-state visual measurement model is formulated as, δyv =

Hvδx + Gvδnv, where Hv and Gv are the Jacobian measurement and noise matrices

of the visual measurement model given in (3.5). δnv =
(
δpi δṕi

)T
is the camera

measurement noise vector in pixels, where δpi and δṕi are the camera noise vectors
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in pixels of feature points in the current and previous keyframes, respectively. The

matrices Hv and Gv are defined as,

Hv =



pTi AR(Bq̂G)[R(B ˆ́qG)TB ṕi]×

Hv2

09×1

−pTi AR(Bq̂G)[R(B ˆ́qG)TB ṕi]×

Hv7



T

(3.6)

Gv =

ṕTi BTR(B ˆ́qG)[C]T× R(Bq̂G)TAT

pTi AR(Bq̂G)[C]× R(B ˆ́qG)TB


T

where Hv2, Hv7, A, B, and C are defined as follows.

Hv2 = −pTi AR(Bq̂G)[R(B ˆ́qG)TB ṕi]×R(Bq̂G)T [BpC ]×−

ṕTi BTR(B ˆ́qG)[C]T×R(Bq̂G)T [AT pi]×

Hv7 = pTi AR(Bq̂G)[R(B ˆ́qG)T B ṕi]×R(B ˆ́qG)T [BpC ]×−

pTi AR(Bq̂G)[C]×R(B ˆ́qG)T [B ṕi]×

A = K−TR(CqB) , B = R(CqB)TK−1

C = G ˆ́pB − Gp̂B +
(
R(B ˆ́qG)T −R(Bq̂G)T

)
BpC .

3.1.3 Mathematical model of the Drag-force VINS

The dynamic model of the Drag-force VINS (DF-VINS) includes the forces applied

on the MAV, including the total thrust, the weight, and the aerodynamic rotor drag

force. The continuous dynamics of DF-VINS process model is given by,
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GṗB = R(GqB)T Bv

Bq̇G = −1
2 (ωm − bg + ng) ∗ BqG

Bv̇ = R(GqB)Ggē3 − D̄L
Bv + fip + nm

ḃa = nba , ḃg = nbg , G ˙́pB = 03×1 ,
G ˙́qB = 03×1

(3.7)

where fip and D̄L are defined as follows,

fip = T̄Lē3 − (ωm − bg + ng)× Bv

T̄L = amz − baz, D̄L = diag(k1x , k1y , k1z).

The random Gaussian noise in the MAV drag force model is denoted by nm, amz

is the accelerometer measurement in z-direction, and baz is the accelerometer bias in

z-direction. The mass normalized thrust is denoted by T̄L. The mass normalized drag

parameters matrix D̄L is a diagonal matrix with elements k1x , k1y , k1z and is crucial

for estimation accuracy of the DF-VINS. The drag parameters in x-axis and y-axis can

be estimated following a least squared optimization procedure while it is reasonable

to assume that the drag parameter in z-axis to be zero similar to work in [20]. The

system model noise vector given in (3.2) is defined as nw =
[
nTg nTm nTba nTbg

]T
.

The filtering matrices F and Gw corresponding to the DF-VINS are defined as,

F =



03 −R(q̂)T
[
Bv̂
]
×

R(q̂)T 03 03 03×6

03 − [ω]× 03 03 −I3 03×6

03
[
R(q̂) Ggē3

]
×
−D̄L − [ω]× −ē3ēT3 −

[
Bv̂
]
×

03×6

012×3 012×3 012×3 012×3 012×3 012×6
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Gw =



03 03 03×6

−I3 03 03×6

−
[
Bv̂
]
×

I3 03×6

06×3 06×3 I6

06×3 06×3 06


As demonstrated later in sections 3.2.1.2, the accelerometer bias (ba) of the DF-

VINS state vector will be updated to include a bias term that captures the thrust of

the MAV. This modification simplifies filter design when body frame and the IMU

frame are not aligned, and also simplifies the observability analysis shown in Section

3.2.1.2. As a result of these modifications, the state vectors of C-VINS and DF-VINS

have dissimilar definitions.

Two measurement models are considered for the DF-VINS model; the first one is

the inertial measurement model that contains the accelerometer measurements along

x and y directions.

ha = Υ(−D̄L
Bv + ba + na) (3.8)

where Υ =
[
ēT1 ; ēT2

]
is a 2 × 3 matrix used to extract the first two rows, and ē1 =[

1 0 0
]T

and ē2 =
[
0 1 0

]T
are the first and second standard basis vectors. The

linearized residual measurement model is given by, δyi = Hiδx + Giδni, where Hi

and Gi are the measurement and noise Jacobian matrices of the inertial measurement

model given in (3.8), and ni is the accelerometer measurement noise vector along

x-axis and y-axis and defined as, ni =
(
nax nay

)T
. The filtering matrices Hi and

Gi are defined as,

Hi =

01×6 −k1x ēT1 ēT1 01×9

01×6 −k1y ēT2 ēT2 01×9

 , Gi = I2 (3.9)
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The second measurement model for the DFVIS is identical to the visual measurement

model of C-VINS given in (3.5).

3.1.4 Error-state Kalman filtering

The filter propagation and update follow an error-state filtering formulation as pre-

sented in Algorithm 1- The general continuous-discrete EKF of [86]. The implemen-

tation of the discrete filter prediction and update is introduced here.

3.1.4.1 Filter prediction

For digital implementation, the process model in (3.2) has been discretized after

setting the system and measurement noises to their expected value of zero. After a

new IMU reading is received, the estimated state vector x̂ of both filters is propagated

using a 4th order Runge-Kutta numerical integration of (3.3) and (3.7). The discrete-

time state transition matrix and covariance prediction are implemented as,

Φk = e

(∫ ∆T
0 F(τ)dτ

)
≈ eF∆T

Pk+1|k = ΦkPk|k Φk
T + Qk

Qk = GkQwGk
T ,Gk =

∫ ∆T

0
eF(∆T−τ)Gw dτ

(3.10)

where ∆T is the sampling time, Qk is the discrete-time system noise covariance ma-

trix, Qw = E
(
nwnTw

)
is the the continuous-time system noise covariance matrix, and

k is the time index.
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3.1.4.2 Filter update mechanism

The DF-VINS filter has two types of measurement updates, (1) inertial measurement

update that happens at IMU measurement rate, e.g., 200 Hz for the EuRoC dataset,

and (2) visual measurement update that triggers at image acquisition rate, e.g., 20 Hz

for the EuRoC dataset. The C-VINS filter only uses the visual measurement update.

The execution diagram of both filters is illustrated in Fig. 3.2. The visual update is

only executed at each new keyframe registered when there is sufficient feature disparity

between two images (assuming static world). The use of keyframes avoids drifting of

the filter when the MAV is stationary because when the camera is stationary the pixel

locations of corresponding points do not carry information to estimate an essential

matrix, i.e., the information related to the camera poses up to scale is not present.

As a result, the epipolar constraints do not contain any useful information about the

estimated state vector x̂ [11]. Therefore, turning the visual update off minimizes the

risk of inconsistent updates leading to divergence. The feature disparity fd between

two corresponding sets of features is calculated as proposed in [11] as follows,

fd = 1
nf

nf∑
i=1
‖pi − ṕi‖ (3.11)

where nf is the number of matched features between the two images. When fd

exceeds the set threshold, a new keyframe is registered then a Kalman correction step

is performed as, x̂k+1 = x̂k+1|k ⊕Kkỹ, where x̂k+1 is the posterior estimate, x̂k+1|k is

the prior estimate, Kk is the Kalman gain, and ỹ is the measurement residual. The

operation⊕ defines retraction used for geometrically consistent mapping of corrections

Kkỹ to state estimates x̂ as in [86]. The operator ⊕ is the standard vector addition

in case of position, velocity, and bias states but is different for quaternions which is
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Fig. 3.2: Kalman filter architecture for the proposed two filters, DF-VINS in orange
and C-VINS in blue, that will be used in the IMM filtering bank. The block diagram
illustrates the prediction and update steps for each filter.

defined such that,

BqG =

 cos |δθ|2

δθ
|δθ|sin

|δθ|
2

 ∗ Bq̂G , δθ = Kqỹ (3.12)

where Kq is the Kalman gain matrix associated with the orientation state. The

measurement noise covariance matrices of the filter Ri and Rv are given as,

Rik = GiRiGi
T , Rvk = GvRvGv

T (3.13)

where Ri = E
(
ninTi

)
is the inertial measurement noise covariance matrix and Rv =

E
(
nvnTv

)
is the visual measurement noise covariance matrix, both are assumed to be

known from sensor specifications or a calibration procedure.
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3.1.4.3 State and covariance augmentation

After the measurement correction step is implemented, the state vector and covari-

ance matrices are augmented to update the previous pose information. The state

augmentation is simply implemented by storing the current position and orientation

of the MAV in the previous pose, i.e., G
˙̀̂
PB = G ˙̂PB and B ˙̀̂qG = B ˙̂qG. The covariance

augmentation is implemented as,

P+ =

I15×21

J

P−

I15×21

J


T

, J =

I3 03 03×15

03 I3 03×15


where P− and P+ are the covariance matrices before and after the augmentation,

respectively, and I15×21 is a 15× 21 identity matrix.

3.2 Design of Observability-constrained VINS

Due to errors in the estimated state of a filter, the evaluated process and measurements

Jacobians during filter operation can cause the filter to update along unobservable

directions [38,84]. As a result, the filter operates in violation of the observability

properties corresponding to the true nonlinear system, consequently, causing incon-

sistent estimates and large estimation errors. To improve the consistency of the filter,

the observability-constrained VINS can be used to preserve the observability proper-

ties of the filter to match with the nullspace of the true nonlinear system.

In this section, we analyze the observability of the C-VINS and DF-VINS models

and deduce the observability based consistency rules for the filters. For this purpose,

we first perform a nonlinear observability analysis for the C-VINS and DF-VINS

system models considering the epipolar constraint measurement model. The analysis

allows identifying the unobservable subspace corresponding to the nonlinear systems,

36



which are needed to design observability-constrained consistent filters for VINS.

3.2.1 Nonlinear observability analysis

Nonlinear observability analysis is typically performed by evaluating Lie derivatives for

the system and constructing the observability matrix O. In this work we use the basis

function approach [38] which does not need exhaustive evaluation of Lie derivatives to

establish the observability properties of the system. In the basis function approach,

first a nonlinear equivalent of the observable canonical form is realized for the state-

space system. This is performed by defining a new set of basis βi(x) which are

functions of state x, following the procedure given in (Theorem 4.1 ) of [38]. As proved

in the theorem, if we can show that the resulting dynamical system on β is observable

(i.e., its observability matrix Ξ is of full column rank), the observability properties

of the system under study (with observability matrix O) can be conveniently found

using the gradient matrix of the basis set B , ∂β(x)
∂x , where O = Ξ · B and β(x) =

[β1(x)T · · ·βm(x)T ]T is the vector of basis set with m basis elements. Therefore, the

unobservable directions of the system can be found using the null space of B, i.e.,

null(O) = null(B).

Observability of VINS is studied in detail in [38] using a VINS system model

which includes a 3D feature point in its state vector, and a measurement model which

includes a 3D feature point visual observation, i.e., a visual SLAM model. In this

work, we will instead consider a VINS which includes a previous camera pose in the

state vector and consider a measurement model that uses the epipolar constraint.

We separately study both conventional and drag force VINS introduced in Sections

3.1.2 and 3.1.3. We will use the basis functions approach introduced in [38] to study

system observability, find the nullspace, and determine the unobservable subspace of

both filters.
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Therefore the following simplifications are performed to find an equivalent visual

measurement model for the epipolar constraints to make the observability analysis

easier. First, we assume that the camera frame and body frame are coincident. Sec-

ond, we assume that we can find the essential matrix E using the measurements. It

is possible to compute the essential matrix given at least 8 point correspondences

between two images [106]. As a result, the essential matrix given in (3.5) can be

simplified as follows,

E = R(BqG)
[
GṕB − GpB

]
×
R(Bq́G)T

=⇒ E =
[
R(BqG)(GṕB − GpB)

]
×
R(BqG)R(Bq́G)T =

[
BpBB́

]
×
R(BqB́)

(3.14)

where BpBB́ is the translation between the current and previous body (or camera)

frames expressed in the current body frame and R(BqB́) is the rotation from the

previous frame to the current frame. Using factorization of (3.14) to an orthogonal

and skew-symmetric matrix, the translation BpBB́ up to a scale, and the rotation BqB́

can be extracted resulting in four possible solutions [106]. As the third simplifications,

we assume that the ambiguity related to this factorization is resolved by considering

the solution where the reconstructed point is in front of both cameras. Following

these simplifications, an equivalent visual measurement model for (3.5) can be found

as,

hv =

hv1

hv2

 =


px/pz

py/pz

R(BqG)R(Bq́G)T ēi

 =



px/pz

py/pz

R(BqG)R(Bq́G)T ē1

R(BqG)R(Bq́G)T ē2


(3.15)
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where, 
px

py

pz

 = BpBB́ = R(BqG)
(
GṕB − GpB

)
(3.16)

Vector BpBB́ is the translation between the current and previous body frames. In

order to capture the orientation informationR(BqB́) between the two poses, equivalent

measurements related to two reference vector observations are used in hv2 of (3.15)

where ēi is the standard basis vector with i = 1, 2.

We express the MAV orientation using the Cayley-Gibbs-Rodriguez (CGR) pa-

rameterization [107] as suggested in [38] to assist with the observability analysis. The

orientation of {G} with respect to {B} is represented by BsG, where s is the 3 × 1

CGR parameter.

3.2.1.1 C-VINS observability analysis

The C-VINS model in (3.3) is expressed in terms of CGR parameters and input-affine

form as,
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GṗB
B ṡG
Bv̇

ḃa

ḃg
G ˙́pB
B ˙́sG



=



R(BqG)T vB

−Dbg

R(BqG)Ggē3 − ba + [bg]× Bv

03×1

03×1

03×1

03×1


︸ ︷︷ ︸

f0

+



03

D

[Bv]×

03

03

03

03


︸ ︷︷ ︸

f1

ωm +



03

03

I3

03

03

03

03


︸ ︷︷ ︸

f2

am

h = hv =

hv1

hv2

 =


px/pz

py/pz

R(BqG)R(Bq́G)T ēi

 ,

(3.17)

where D = ∂s
∂θ

= 1
2

(
I3 + [s]× + ssT

)
. The basis functions set for the C-VINS model

that satisfies conditions stated in (Theorem 4.1 ) in [38] is as follows.

β1 = hv1 =

px/pz
py/pz

 , β2 = 1/pz

β3 = Bv , β4 = bg

β5 = R(BqG)Ggē3 , β6 = ba

β7 = hv2|i=1 = R(BqG)R(Bq́G)Te1

β8 = hv2|i=2 = R(BqG)R(Bq́G)Te2
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The resulting realization of the system model expressed using the basis functions is,



β̇1

β̇2

β̇3

β̇4

β̇5

β̇6

β̇7

β̇8



=



¯̄β1

(
−
[
β̄1
]
×
β4 − β2β3

)
β2ēT3

([
β̄1
]
×
β4 − β2β3

)
− [β3]× β4 + β5 − β6

03×1

− [β5]× β4

03×1

− [β7]× β4

− [β8]× β4


︸ ︷︷ ︸

g0

+



¯̄β1 [β1]×
β2ēT3 [β1]×

[β3]×
03

[β5]×
03

[β7]×
[β8]×


︸ ︷︷ ︸

g1

ωm +



02×3

01×3

I3

03

03

03

03

03


︸ ︷︷ ︸

g2

am

h =
[
β1 β7 β8

]T

(3.18)

where β̄1 =
[
β1 1

]T
, ¯̄β1 =

[
I2 −β1

]
, and I2 is a 2 × 2 identity matrix. The

measurement model hv2 does not introduce any additional observable directions for

the C-VINS filter model, since the spans of the bases β7 and β8 corresponding to hv2

are functions of the remaining basis set (β7 ... β8) and hence do not introduce any

new observable directions to the system.

In order to compute the null space of the system (3.17), we have to construct the

Ξ matrix using a suitable subset of Lie derivatives [38] of the system (3.18) and then

prove that this matrix is of full column rank. Matrix Ξ is selected as follows,

Ξ′ =
[
∂L0h
∂β

∂L3
g0g13g21h
∂β

∂L1
g0h
∂β

∂L3
g0g13g13h
∂β

∂L3
g0g0g21h
∂β

∂L2
g0g0h
∂β

∂L3
g0g0g13h
∂β

∂L3
g0g0g0h
∂β

]T

where gij is the column j of matrix gi of system (3.17). The matrix Ξ′ was found

to be of full column rank, therefore, the observability properties of the system were
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found using matrix B that contains the gradients of the basis set. The system has four

unobservable directions as indicated by the columns of the nullspace matrix in (3.19),

where D́ = ∂ś
∂θ́
. The first three unobservable directions are exposed by the first block

column of (3.19) that corresponds to the three degrees of freedom global translation of

the current and previous positions pair together, while the fourth condition is exposed

by the second column which indicates that the filter does not gain information for the

global rotation about the gravity axis.

N =



I3 −
[
GpB

]
×

Ggē3

03 DR(BqG) Ggē3

03 03×1

03 03×1

03 03×1

I3 −
[
GṕB

]
×

Ggē3

03 R(Bq́G)D́ Ggē3



(3.19)

3.2.1.2 DF-VINS Observabiliy

For this analysis, the DF-VINS model in (3.7) has been modified by combining the

bias of the accelerometer ba state and the mass normalized thrust T̄Le3. For MAVs in

flight, T̄Le3 is much larger than baz. As a result the z-axis bias state can be redefined

as follows, baz → baz + T̄Le3 ≈ T̄Le3. This modified state currently includes bax, bay,

and (time-varying) thrust, which makes the analysis tractable and does not affect the

observability performance of the filter as will be shown in this section. We denote

this modified bias state as b̄a. As a result, the inertial measurement model ha now

includes all three measurements of the accelerometer. The resulting DF-VINS model
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expressed in terms of the CGR parameter in the input-affine form is as follows,



GṗB
B ṡG
Bv̇
˙̄ba

ḃg
G ˙́pB
B ˙́sG



=



R(BqG)T vB

−Dbg

R(BqG)Ggē3 − D̄L
Bv + b̄azē3 + [bg]× Bv

03×1

03×1

03×1

03×1


︸ ︷︷ ︸

f0

+



03

D

[Bv]×

03

03

03

03


︸ ︷︷ ︸

f1

ωm

h =

hv

ha

 =


hv1

hv2

ha

 =



px/pz

py/pz

R(BqG)R(Bq́G)T ēi

−D̄L
Bv + b̄a


.

(3.20)

The basis functions set for the DF-VINS model is,

β1 = hv1 =

px/pz
py/pz

 , β2 = 1/pz

β3 = Bv , β4 = bg

β5 = R(BqG)Ggē3 , β6 = b̄azē3

β7 = hv2|i=1 = R(BqG)R(Bq́G)Te1

β8 = hv2|i=2 = R(BqG)R(Bq́G)Te2

β9 = ha = −D̄L
Bv + b̄a
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The resulting realization of the system model in terms of the basis functions is,



β̇1

β̇2

β̇3

β̇4

β̇5

β̇6

β̇7

β̇8

β̇9



=



¯̄β1

(
−
[
β̄1
]
×
β4 − β2β3

)
β2ē

T
3

([
β̄1
]
×
β4 − β2β3

)
− [β3]× β4 + β5 − β6

03×1

− [β5]× β4

03×1

− [β7]× β4

− [β8]× β4

−D̄L

(
[β4]× β3 + D̄Lβ3 + β5 + β6

)


︸ ︷︷ ︸

g0

+



¯̄β1 [β1]×
β2ēT3 [β1]×

[β3]×
03

[β5]×
03

[β7]×
[β8]×

−D̄L [β3]×


︸ ︷︷ ︸

g1

ωm

h =
[
β1 β7 β8 β9

]T
.

(3.21)

In order to prove the observability of the DF-VINS system in (3.20), the observ-

ability matrix Ξ′ is constructed as follows,

Ξ′ =
[
∂L0h
∂β

∂L3
g0g13g12h
∂β

∂L1
g0h
∂β

∂L3
g0g13g13h
∂β

∂L3
g0g0g12h
∂β

∂L2
g0g0h
∂β

∂L3
g0g0g13h
∂β

∂L3
g0g0g0h
∂β

]T

The matrix Ξ′ is found to be of full column rank and the DF-VINS system has

the same unobservable directions and nullspace as the C-VINS that is given in (3.19).

The inertial measurement model ha does not introduce any additional observable

directions for the DF-VINS filter model.

3.2.2 Observability-constrained VINS

The observability-constrained VINS can be used to improve the consistency of the fil-

ter by preserving the observability properties of the filter to match with the nullspace
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of the true nonlinear system. This is achieved by satisfying the following two condi-

tions at each time step,

Nk+1|k = Φk+1|kNk|k−1 (3.22)

HkNk = 0 (3.23)

where Φk+1|k is the state transition matrix, Hk is the measurement Jacobian ma-

trix, and Nk is the nullspace. Conditions (3.22) and (3.23) can only be fulfilled by

appropriately modifying Φk+1|k and Hk. The observability-constrained VINS design

proposed in [38] will be followed for the two VINS filters in this work.

3.2.2.1 Modification of the state transition matrix

The constraints are enforced after each new IMU reading during the propagation

step to maintain the unobservable directions by preserving the nullspace of the filters

given in (3.19). The nullspace N must satisfy (3.22) by modifying the state transition

matrix. The state transition matrix Φ is constructed as follows,

Φ =



I3 Φ12 ∆T I3 Φ14 Φ15 03 03

03 Φ22 03 03 Φ25 03 03

03 Φ32 I3 Φ34 Φ35 03 03

03 03 03 I3 03 03 03

03 03 03 03 I3 03 03

03 03 03 03 03 I3 03

03 03 03 03 03 03 I3



(3.24)

Since the two filters have the same construction of the state transition matrix

Φ and the nullspace N, both will be having the same constraints for observability
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consistency. From (3.22) and (3.24), the propagated state transition matrix blocks

Φ12, Φ22, and Φ32 are constrained as follows,

Φ12Rk|k−1(BqG)Ggē3 = [GpBk|k−1]× Ggē3 − [GpBk+1|k]× Ggē3 (3.25)

Φ22 = R(Bk+1|kqBk|k−1) (3.26)

Φ32R(BqG) Ggē3 = 03×1 (3.27)

where (3.25) and (3.27) can be solved by Karush-Kuhn-Tucker conditions ((63) and

(64) in [38]).

3.2.2.2 Modification of the measurement Jacobian

The measurement Jacobian must be modified during each update step to satisfy (3.23).

The inertial measurement Jacobian (Hi) given in (3.9) satisfies the condition (3.23),

since HiN = 0 for all update steps, thus it does not get modified. However, the visual

measurement Jacobian (Hv) given in (3.6) does not satisfy the condition, thus some

element of Hv will be modified as follows,

[
Hv1 Hv2 01×9 Hv6 Hv7

]



I3 −
[
GpB

]
×

Ggē3

03 R(BqG) Ggē3

09×3 09×1

I3 −
[
GṕB

]
×

Ggē3

03 R(Bq́G) Ggē3


= 0 (3.28)

where 0i×j is a i × j zero matrix. The first block column of (3.28) requires that
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Hv6 = −Hv1. The second block is written as,

[
Hv1 Hv2 Hv7

]


([
GṕB

]
×
−
[
GpB

]
×

)
Ggē3

R(BqG) Ggē3

R(Bq́G) Ggē3

 = 0 (3.29)

where (3.29) can be solved by Karush-Kuhn-Tucker conditions.

3.3 Summary

This chapter presented the design of two error-state Kalman filters, with/without drag

force incorporated in the system model, for the visual-inertial navigation system of

quadrotor MAVs, where the epipolar geometry constraint has been used as the visual

measurement model. The design included the observability analysis of the proposed

VINS system to determine the null space of the filter that helped in deducing the

observability-based consistency rules to maintain the consistency of the filter during

the prediction and update steps. The two filters will be used in Chapter 4 for the

design of a multiple model state estimation for the MAV.
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Chapter 4

Multiple Model State Estimation

In this chapter, we design an interacting multiple model VINS (IMM-VINS) estima-

tor, where the two VINS models proposed in Chapter 3 will be incorporated in the

IMM bank to handle different flight conditions. Additionally, several numerical and

experimental studies will be conducted to validate the proposed algorithm.

4.1 Design of Interacting Multiple Model VINS

In this work, an IMM algorithm is used to combine estimated state x̂1 from C-VINS

(filter 1) and state x̂2 from DF-VINS (filter 2) to find a combined estimate x̂ corre-

sponding to the two models. The structure of the IMM algorithm is shown in Fig.

4.1, where x̂01 and x̂02 are the mixed states, P̂01 and P̂02 are the mixed covariances

which are calculated following a state interaction step. The mixed estimates x̂01 and

x̂02 are used in filtering algorithms C-VINS and DF-VINS, respectively. The state

interaction step makes use of the model probabilities µ̂ and probability for switch-

ing from one model to another µ̃i|j which is calculated using likelihoods of the two

filter models Λ1 and Λ2 at each iteration. The state estimates of the two filters are

combined (weighted) using the updated model probabilities µ̂ to find the combined
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estimated state vector x̂ and covariance P̂ , where ∑2
i=1 µ̂

i = 1. If the probability

model of one filter is µ̂i = 1, it means the IMM will fully switch to that filter.

Algorithm 4.1. Error state IMM algorithm

1: Initialize estimated state vector x̂i, covariance matrix Pi, and initial prob-

abilities µ̂i for each filter.

2: Compute the mixed estimated states x̂0j and covariance P0j as,

x̂0j =
N∑
i=1

x̂iµ̃i|j

P0j =
N∑
i=1
µ̃i|j

[
Pi + (x̂i 	 x̂0j)(x̂i 	 x̂0j)T

]

µ̃i|j = 1
ψ̄j

ρijµ̂i , ψ̄j =
N∑
i=1

ρijµ̂i

3: Propagate and update estimated states and covariance for each filter model.

4: Compute the likelihood Λj and estimated probability for each filter using

the innovations ỹj and the innovations covariance matrix Sj,

Λj = 1√
|2πSj|

e[−0.5(ỹj)T (Sj)−1(ỹj)]

ỹj = y	 ŷj , Sj = HjPoj(Hj)T + R

µ̂i = 1
c

Λiψ̄i , c =
N∑
i=1

Λiψ̄
i

5: Combine both estimated states and covariances based on estimated proba-

bilities,
x̂ = arg min

x̂∈M

N∑
i=1

ϑ(x̂i, µ̂i)

P =
N∑
i=1
µ̂i
[
Pi + (x̂i 	 x̂)(x̂i 	 x̂)T

]

The IMM algorithm is summarized in Algorithm 4.1, where N is the number of

filter models, ψ̄i is a normalization vector used to normalize the model probability,
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Fig. 4.1: Structure of interacting multiple model algorithm for the proposed two filters,
Df-VINS and C-VINS.

and ρij is the ij element of the Markov transition probability matrix and represents

the switching from model i to model j. The matrix elements are selected parameters

that administer the probability of switching from one filter in the IMM filtering bank

to another or remaining in the current filter; they are assigned such that ∑N
j ρ

ij = 1.

The elements of the transition probability matrix and the initial probabilities are

selected based on the knowledge of the filters in the IMM filtering bank and their

relative priorities with some additional tuning to improve the filter performance as

will be demonstrated in section 4.2, i.e., if the two filters in the IMM filtering bank

have similar probabilities of occurrence, we set ρ11 = ρ22 and ρ11, ρ22 >> ρ12, ρ21, and

start with equal initial probability values, µ̂1 = µ̂2 = 0.5.

Compared with the generic IMM algorithm [72,74], the one proposed in this work

has several key modifications. Error-state and measurement residual definitions are

used in the state interaction, model probability update, and state combination steps.

This makes the algorithm applicable for the error-state Kalman filter VINS formula-
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tions presented in this work. Furthermore, a generalized state averaging is performed

in the state estimation combination step, where ϑ is the averaging function. ϑ cor-

responds to the usual vector averaging in case of position, velocity, and biases states

(since they are vector spaces, i.e., they ∈ R3), while optimal quaternion averaging

proposed in [108] is used for averaging the quaternion states (since it ∈ group S3), as

given in (4.1). The averaging function effectively minimizes the weighted sum of the

squared lengths of the error quaternions q̃.

q̂ = ±

[
(µ̂1 − µ̂2 + z) q̂1 + 2µ̂2

(
q̂T1 q̂2

)
q̂2
]

‖(µ̂1 − µ̂2 + z) q̂1 + 2µ̂2 (q̂T1 q̂2) q̂2‖
(4.1)

where, z ,
√

(µ̂1 − µ̂2)2 + 4µ̂1µ̂2 (q̂T1 q̂2)2

4.2 Results

This section presents the numerical and experimental validations of the proposed

IMM-VINS. The navigation performance of the conventional and drag force VINS

filters are compared along with the performance improvement achieved by imple-

menting an IMM filter using the two filtering models. In the discussion that follows,

C-VINS is the conventional VINS with observability-constraints enforced in the fil-

ter, DF-VINS is the drag force VINS with observability-constraints enforced in the

filter, and IMM is the IMM-VINS filter with observability-constraints enforced in the

VINS filters used in the IMM filtering bank. A filter with asterisk superscript (e.g.,

C-VINS*, DF-VINS*, and IMM*) denotes the filters implemented without the ob-

servability consistent design. Those filters without observability-constraints are used

to demonstrate the effect of not using the observability-constraints derived in section

3.2 to enforce the unobservable subspace. The experimental validation is presented
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using the EuRoC dataset (V1_01 easy and V1_02 medium) [104].

4.2.1 Numerical validation

A MATLAB simulator is implemented in order to evaluate the performance of the

proposed multi-model estimator (IMM-VINS) and compare its performance with the

stand-alone estimators (C-VINS and DF-VINS). The simulated arena includes 495

feature points uniformly distributed on a cylinder with a radius of 6m and a height of

2m, as shown in Fig. 4.2a. The MAV was simulated using the kinematic model given

in (3.3) with acceleration Ba and the angular speed Bω of the platform selected as

inputs. The inputs were designed such that the MAV follows a circular trajectory of

a radius of 4 meters completing two laps with additional excitation along the z-axis

to result in a wavelike trajectory, as shown in Fig. 4.2a. The input acceleration and

angular speeds adhered to differential flatness constraints related to the drag force

model, which were realized using the procedure given in [20]. This implicitly enforces

the dynamic constraints related to model (3.7) during the simulation as long as there is

no external wind disturbance acting on the system. The averages of the magnitudes

of the linear and angular velocities used for the simulation are 2.12 m/s and 4.01

rad/s, respectively. In order to verify the switching capability of the proposed IMM

estimator in the presence of external disturbance, a 1.76m/s wind has been added in

the second lap for a short time, as shown in Fig. 4.2a. The wind was incorporated

in the MAV model similar to work in [65]. The IMU and camera measurements of

the MAV were simulated at rates of 100 Hz and 10 Hz, respectively. A sample of

the camera view is given in Fig. 4.2b. The noise covariance Q for C-VINS is set as

Diag(1.1e− 32 I3; 1.3e− 22 I3; 1.8e− 22 I3; 1.7e− 42 I3) and for DF-VINS is set as

Diag(1.1e− 32 I3; 1.8e− 42 I3; 1.8e− 22 I3; 1.7e− 42 I3) (the International System

of Units). The standard deviation of camera measurement is set as 1 pixel.
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Fig. 4.2: (a) 3D view of the simulator arena used for the experiment and the trajectory
followed by the MAV. The simulation arena includes 495 feature points uniformly
distributed on a cylinder with a radius of 6m and a height of 2m. (b) Camera view
at one iteration including the features.

Since the DF-VINS and C-VINS filters in the IMM filtering bank have the same

priorities during the flight, each one is better than the other at certain regions and

under certain condition, the IMM algorithm was implemented with a transition prob-

ability matrix and initial model probability vector selected as follows,

ρ =

0.96 0.04

0.04 0.96

 , µ̂i =

0.5

0.5

 (4.2)

Fig. 4.2a illustrates the actual and IMM-VINS trajectories of the MAV. Fig.

4.3 and Table 4.1 (Trajectory 3) illustrate the position and orientation estimation

accuracy of the stand-alone filters and the IMM-VINS. As seen in Fig. 4.3 and Table

4.1, DF-VINS filter exhibits improved performance than the C-VINS when there is no

external wind disturbance acting on the system; on the other hand, the C-VINS filter

is not significantly affected in the presence of the wind disturbance as it relies on a

53



Fig. 4.3: RMSE of the position and orientation of the IMM and the two stand-alone
estimators in the presence of wind. The IMM-VINS filter outperforms the stand-alone
DF-VINS and C-VINS filters by switching between (or combining) the two filters in
its bank.

more robust kinematic system model. The IMM estimator dynamically approximates

the model probability as shown in Fig. 4.4 and generates a combined estimate of the

state which is more accurate than the stand-alone filters. Moreover, it can also handle

the high drift of the DF-VINS during the external disturbance period by switching

to (relying on) the correct model based on model probability calculations. Fig. 4.5

shows that the position and orientation errors of the IMM and C-VINS filters agree

with the 3σ bound created from the corresponding diagonal elements of the state

covariance matrix. However, the covariance corresponding to the position of the DF-

VINS exhibits inconsistent estimation in the presence of wind disturbance, i.e., the

actual errors are well beyond the 3σ bounds estimated by the filter.

The performance of the C-VINS, DF-VINS, and IMM-VINS filters for three dif-

ferent trajectories are given in Table 4.1. Trajectory 1 does not include any wind dis-
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Fig. 4.4: Model probabilities of the IMM filters. The figure shows how the IMM filter
switched between the two filters in its bank during the simulation. As the probability
of one filter in the IMM bank increases, it implies that the IMM filter relies more on
that filter with high probability than the other.

turbance, denoted by vector Vw, while trajectory 2 and 3 include wind disturbances

of Vw =
[
0.83 −0.83 0

]T
m/s and Vw =

[
1.76 −1.76 0

]T
m/s, respectively.

The performance of the three filters without using observability-constrained ver-

sions of the filters is also evaluated and presented in Table 4.2. The observability-

constrained VINS filters have better performance because they enforce the unobserv-

able directions of the system to prevent inconsistent information gain. As shown in

Table 4.3, the IMM filter with observability consistency has more than 30.3% per-

formance improvement over other filters (C-VINS and DF-VINS, and IMM*) for the

given numerical simulations.

The averaged normalized estimation error squared (NEES) of the three filters (DF-

VINS, C-VINS, and IMM) with and without observability-constraints is studied in

Fig. 4.6a and Fig. 4.6b. The averaged NEES (η̄k) is computed over Nm independent

Monte Carlo runs as follows,

η̄k = 1
Nm

Nm∑
j=1

x̃TjkP−1
x̃jk

x̃jk (4.3)

where x̃jk is the estimation error at time index k of jth run and Px̃jk is the correspond-

ing covariance matrix [22]. The NEES performance is another measure of estimation
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(b) DF-VINS
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Fig. 4.5: The 3σ bounds (in red color) for the errors for the position and orientation
states of the three filters, where θx, θy, and θz are the angles of the 3D rotation vector
(rotation axis times the angle). The plotted values are 3-times the square roots of the
corresponding diagonal elements of the state covariance matrix of each filter.
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Fig. 4.6: Average NEES result of 50 Monte Carlo simulations of the IMM and stand-
alone filters with and without observability-constraints enforced in the filters. (a) The
three filters exhibit consistent estimation except for the orientation of the Df-VINS
that deteriorates during wind disturbance as expected. (b) The position NEES of the
three filters, without observability constraints enforced, gradually diverges from the
ideal NEES value. The horizontal solid green lines are the two-sided 95% confidence
region for a 3-DOF stochastic process.

consistency of a filter. The ideal NEES value is equal to the dimension of the error

x̃jk. NEES performance closer to ideal values is a reasonable indication that the pre-

dicted covariance by the estimator is in agreement with the actual state errors of the

filter. Fig. 4.6a illustrates the position and orientation NEES plots where the case

of observability-constraints are enforced in the filters. The NEES values are closer to

the ideal values, as seen in Fig. 3 in [38] and perform better than MSCKF, as seen in

Fig. 2 in [86]. Only the orientation NEES of the DF-VINS exhibits inconsistent esti-

mation during the application of wind then shows recovery after the wind is absent.

Fig. 4.6b illustrates the position and orientation NEES plots for the filters without

observability-constraints enforced. The figure shows that the three positions NEES

are gradually diverging from the ideal value of 3.
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Table 4.1: Estimation accuracy (RMSE) in the simulation results with observability-
constraints enforced in the filters. Pos. is the RMSE in the 3D position vector in
(m) and Orien. is the RMSE in the orientation vector in (deg). Trajectory 1 does
not include any wind disturbance, while trajectory 2 and 3 include wind disturbances
with different wind disturbance intensity.

C-VINS DF-VINS IMM
Pos. Orien. Pos. Orien. Pos. Orien.

Trajectory 1 0.114 0.66 0.095 0.64 0.058 0.20
Trajectory 2 0.114 0.65 0.409 0.73 0.069 0.35
Trajectory 3 0.112 0.62 1.215 1.07 0.066 0.31

Table 4.2: Estimation accuracy (RMSE) in the simulation results without
observability-constraints enforced in the filters. Pos. is the RMSE in the 3D po-
sition vector in (m) and Orien. is the RMSE in the orientation vector in (deg).
Trajectory 1 does not include any wind disturbance, while trajectory 2 and 3 include
wind disturbances with different wind disturbance intensity.

C-VINS* DF-VINS* IMM*
Pos. Orien. Pos. Orien. Pos. Orien.

Trajectory 1 0.151 1.74 0.129 1.60 0.111 1.48
Trajectory 2 0.154 1.79 0.394 1.46 0.099 1.32
Trajectory 3 0.157 1.84 1.262 1.26 0.105 1.42

4.2.2 Experimental validation

Experimental validation of the proposed IMM-VINS is performed using the EuRoC

dataset. In this dataset, a micro hex-rotor helicopter was used to collect naviga-

tion data related to different environments and different speeds. The helicopter was

equipped with a Visual-Inertial sensor unit that includes a MEMS IMU with an up-

date rate of 200 Hz and two monocular cameras with an update rate of 20 Hz. Only

cam0 measurement is used in this work with feature tracker front-end data imported

to MATLAB from the VINS mono ROS package [109]. Two datasets of the Vicon

room (shown in Fig. 4.7) will be used for this initial experimental validation of the

IMM filter. V1_01 easy has a trajectory length of 58.6 m and duration of 144 s.
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Table 4.3: Performance comparison of the improvement in RMSE (%) in the simu-
lation results. The IMM outperforms the two stand-alone filters and the IMM filter
without observability-constraints enforced in its VINS filters. It provides more than
30.3% performance improvement than the other 3 filters.

DF-VINS/C-VINS IMM/C-VINS IMM/DF-VINS IMM/IMM*
Pos. Orien. Pos. Orien. Pos. Orien. Pos. Orien.

Trajectory 1 16.7 3.0 49.1 69.7 38.9 68.8 47.8 86.5
Trajectory 2 -258.8 -12.3 39.5 46.2 83.1 52.1 30.3 73.5
Trajectory 3 -984.8 -72.6 41.0 50 94.6 71.0 93.7 78.2

Fig. 4.7: Vicon room of the EuRoC dataset, the size of the room is 8m× 8.4m× 4m.

The average linear and angular velocity are 0.41 m/s and 0.28 rad/s, respectively.

V1_02 medium has a trajectory length of 75.9 m and duration of 83.5 s. The average

linear and angular velocity are 0.91 m/s and 0.56 rad/s, respectively. A nonlinear

least-squared optimization was used to estimate the drag parameters D̄L using the

ground truth data and the IMU measurements of the V1_02 dataset. The optimal

values were found as, k1x = 0.2, k1y = 0.2, and k1z = 0.0.

Since the IMU frame {I} of the EuRoC datasets is not coinciding with the center

of gravity (COG) located at the body frame {B} of the MAV, all applied forces

including thrust force and drag force will be transformed to the IMU frame {I} in

order for the drag-force model to work properly. The Vicon frame is almost aligned

with the COG of the helicopter except for the small shift in the z-axis; therefore, the

Vicon frame will be considered as the helicopter body frame {B}. The accelerometer

bias of the DF-VINS will be updated to include the thrust force. The new bias

state will be expressed in {B}; therefore, the velocity state vector and the inertial
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measurement model will be updated as given in Appendix A. The accelerometer bias

of the C-VINS filter will be expressed in {B} as well in order for the IMM to have

the corresponding states between both filters expressed in the same frames. Since the

extrinsic parameters between the IMU frame {I} and Vicon frame are known, the

bias will be simply transformed by the rotation matrix R(IqB) that rotates a vector

from {B} to {I}.

As a consequence of these changes, the design of the IMM for the EuRoC dataset

is challenging because the accelerometer biases of the two filters are different; however,

both are expressed in the same frame. The bias state vector of the DF-VINS includes

the thrust force; thus, the covariance elements corresponding to this state will be

different as well, and this is not the case in the C-VINS filter. Therefore, the state

and covariance interaction step in Algorithm 4.1 must be updated to accommodate the

state mismatch, which could be solved by handling both filters as unequal dimension

states-filters. Both filters have the same states of position, orientation, velocity, and

gyroscope bias, but each filter has an extra state, which is the z-axis accelerometer

bias. Several methods have been proposed in [34, 110] to address the unequal state

dimension problem in IMM. We tested all approaches proposed in both references and

selected the unbiased approach shown in [110] as it resulted in the best performance.

The unbiased approach has been applied to our IMM estimator with details of the

implementation given in Appendix B.

Another challenge arises in the experimental validation using the EuRoC dataset

because the helicopter was stationary at the beginning of the trajectory. During

stationary conditions, the DF-VINS will diverge, and the state covariance matrix will

increase due to the high uncertainties. While the helicopter is stationary, the visual

update is off until the helicopter starts to move and detects enough disparity for the

visual update as given in (3.11). Therefore, the transition probability matrix and
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the initial model probability vector cannot be selected as given in (4.2) because the

DF-VINS diverges and has poor performance compared to the C-VINS. Therefore,

the initial model probability corresponding to the C-VINS should be very high in

the beginning in order for the IMM estimator to have better performance, after that,

the transition probability matrix and the model probability vector should be updated

in a proper manner once the MAV starts to move so that the IMM switches to the

filter with better performance. In order to achieve that, the transition probability

matrix should be adaptively updated using the posterior probability to improve the

performance of the IMM. The IMM algorithm has been updated as proposed in [35]

to update the transition probability matrix elements at each new visual update, n, as

follows,

ρij(n) =
µ̂j(n)
µ̂j(n−1)ρ

ij(n− 1)∑r
j=1

µ̂j(n)
µ̂j(n−1)ρ

ij(n− 1)
(4.4)

where r is the number of filters used in the IMM. The initial transition probability

matrix and models probabilities for the V1_02 have been selected as follows,

ρ =

0.9999997 0.0000003

0.0001 0.9999

 , µ̂i =

0.99999997001

0.00000002999

 (4.5)

The performance of the DF-VINS, C-VINS, and IMM-VINS filters is illustrated in

Fig. 4.8 and Table 4.4. The IMM has improved performance with minimum position

RMSE. Fig. 4.9 illustrates the model probability of both filters and shows how the

IMM switched to C-VINS filter when the helicopter is stationary at the beginning of

both datasets. At slow speeds, the C-VINS model is used by the IMM as seen in the

V1_01 dataset, while it switched to the DF-VINS in most of the trajectory due to

the validity of the drag force model during fast and aggressive maneuvering [20]. The

video of this experiment can be found on https://youtu.be/lsfU2wrHGVg.
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It should be noted that the EuRoC dataset was used to show the capability of

the IMM algorithm to adaptively switch to the DF-VINS during fast and aggressive

maneuvering. However, in order to further validate the performance of IMM for wind

disturbance scenarios more representative experimental data should be used as the

EuroC dataset has minimal wind disturbance.
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Fig. 4.8: RMSE of the position of the IMM and the two stand-alone estimators for
the experimental validation. (a) is the EuRoC V1_01 easy dataset and (b) is the
EuRoC V1_02 medium dataset. The EuRoC V1_01 is a slow trajectory with a flight
duration of 144 s and the EuRoC V1_02 is a relatively fast trajectory with a flight
duration of 83.5 s.

From Fig. 4.8 it can be seen that the IMM filter may have a slightly different

performance than the stand-alone filters at some regions due to the state interaction

(mixing) given in Algorithm 6.1, where the two filters in the IMM bank are mixed

prior to the state update at the beginning of each iteration and then are combined

to provide the IMM estimated states after the state update based on the model

probability of each filter. Therefore, the two filters in the IMM bank will be having a
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Table 4.4: Estimation accuracy (RMSE) of the experimental validation. Pos. is the
RMSE in the 3D position vector in (m) and Orien. is the RMSE in the orientation
vector in (deg). The results show that the IMM outperforms the two stand-alone filters
and the IMM filter without observability-constraints enforced in its VINS filters.

C-VINS DF-VINS IMM* IMM
Pos. Orien. Pos. Orien. Pos. Orien. Pos. Orien.

V1-01 0.44 2.35 0.59 2.73 0.62 2.42 0.40 2.36
V1-02 0.27 0.35 0.26 0.35 0.25 0.35 0.24 0.35
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Fig. 4.9: Model probabilities of the IMM for the experimental validation. (a) is the
EuRoC V1_01 easy dataset and (b) is the EuRoC V1_02 medium dataset. The
figure shows how the IMM filter relied more on the DF-VINS in V1_02 that includes
a faster trajectory and higher maneuver index except for the stationary region at the
beginning of the trajectory.

63



0 10 20 30 40 50 60 70 80 90

Time (s)

0

0.2

0.4

0.6

(m
)

DF-VINS

C-VINS

IMM

(a)

0 10 20 30 40 50 60 70 80 90

Time (s)

0

0.5

1

M
o
d
e
l 
p
ro

b
a
b
ili

ty

DF-VINS

C-VINS

(b)

Fig. 4.10: Experimental validation of EuRoC V1_02 while starting the experiment
after the stationary region of the trajectory. (a) is the RMSE of the position, the
RMSE of the DF-VINS is 25 m, C-VINS is 26 m and IMM is 23 m. (b) is the model
probabilities of the IMM and it shows mixing between the two filters more comparable
to the simulation than the bang-bang behavior of the adaptive IMM.

slightly different performance, but with similar behavior, than the stand-alone filters,

DF-VINS and C-VINS, which consequently changes the performance of the IMM.

The IMM algorithm can be used without the adaptation update if the experiment

is started after the stationary region of the trajectory. In this case, the transition

probability matrix and the initial model probability vector can be selected as given

in (4.2). The performance of the three filters starting after the stationary part of this

case is given in Fig. 4.10. It is clearly shown that the IMM switched to (relied more

on) the filter with lower RMSE to maintain high performance.
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4.3 Summary

This chapter presented the design and validation of an IMM estimator for visual-

inertial navigation of MAVs. The design strategically selects a conventional VINS

model based on a kinematic model, and a drag force VINS model based on rotor

drag dynamic constraints for the models of the IMM. An epipolar constraint-based

visual measurement model, proposed in Chapter 3, is used for both filters, which

addresses the computational complexity concerns of the parallel filters running on

IMM. Numerical and experimental results validate the improved performance of the

IMM-VINS over the stand-alone versions and highlight the ability of the filter to

adaptively transit between the different models to achieve improved performance and

navigation consistency.

65



Chapter 5

Nonlinear Model Predictive

Control

In this chapter, we present the dynamic model of the quadrotor MAV (with/without

drag force incorporated in the MAV model) and its corresponding discrete-time model

which is required for the design of the MPC. Then, an NMPC scheme without stabi-

lizing costs or constraints is presented in order to asymptotically stabilize the system.

5.1 Essential Notation

Throughout the chapter, Q, R, and N denote the sets of rational, real, and natural

numbers, respectively, and Q≥0, R≥0, and N0 := N ∪ {0} are the sets of non-negative

rational, real, and integer numbers, respectively. A function ξ : R≥0 → R≥0 belongs to

class K if it is continuous and strictly increasing with ξ(0) = 0. In addition, if ξ ∈ K

is unbounded it is of class K∞. A function ζ : R≥0 × R≥0 → R≥0 belongs to class

KL if it is continuous and ζ(·, k) ∈ K∞ ∀k ∈ R≥0 and ζ(h, ·) is strictly monotonically

decaying to zero for each h > 0. The classes K∞ and KL will be used during the
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chapter for the stability analysis. The class KL-function is illustrated in Fig. 5.1

Fig. 5.1: An illustration of the class KL-function (ζ(h, k)).

5.2 System Description

5.2.1 System coordinates

The location of the MAV can be defined by its position and orientation, as shown in

Fig. 5.2, where the position can be defined relative to the body frame {B} attached

to its center of gravity, and the global inertial frame {G}. The orientation of the MAV

is defined by the three Euler angles, namely, roll, pitch, and yaw angles, symbolized

as φ, θ, and ψ, respectively.

5.2.2 Control problem definition

Consider the following discrete-time nonlinear system,

x+ = fδ(x,u), (5.1)

where fδ : Rn × Rm → Rn is a discrete-time analytic mapping, δ is the sampling

time, x ∈ X ⊆ Rn is the state vector, x+ is the next evolution of x, u ∈ U ⊆ Rm is

the control input vector, n is the number of states, and m is the number of control
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Fig. 5.2: Coordinate frames of the quadrotor MAV system. {G} is the global frame
and {B} is the body frame located at the center of gravity of the MAV.

inputs. The objective is to drive the system from an initial state x0 to a reference

state xr using the least amount of control effort and minimum tracking error. For

this purpose, the NMPC scheme will be used to stabilize the MAV with the following

proposed running cost `(x,u) : Rn × Rm → R≥0 that uses the nonlinear model (5.1)

to compute a feedback control input.

`(x,u) = ‖x− xr‖2
Q + ‖u− ũ‖2

Ru
(5.2)

The first term penalizes the tracking error while the second term is the penalty

imposed on the control inputs. Where, Q and Ru are the weight matrices of the

tracking error and control actions, respectively, and ũ is the desired input value and

will be defined later in the coming sections. The admissibility of an input function is

defined as follows.

Definition 5.1. For a given feasible set of states X and an admissible set of control

values U, and for initial states x0 ∈ X and N ∈ N, a sequence of control values

u = (u(0), u(1), · · · , u(N − 1)) ∈ UN is said to be admissible if the state trajectory
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xu(·; x0) = (xu(0; x0), xu(1; x0), · · · , xu(N ; x0)),

which is iteratively generated by the system model and proceeded from xu(0; x0) = x0,

satisfies xu(k; x0) ∈ X ∀k ∈ {0, 1, · · · , N}. We denote this admissible control sequence

for x0 up to time N by u ∈ UN(x0).

In this work, we adopt the inner-outer loop control structure [111], shown in Fig.

5.3, where the inner-loop controller (low-level attitude controller) is approximated by a

first-order system, as proposed in [52]. The attitude controller tracks the commanded

roll and pitch angles; φcmd and θcmd, and the reference yaw angle ψr, and generates the

desired torques accordingly. The proposed first-order model sufficiently represents the

behavior of the inner-loop controller, which is necessary for the design of the outer-

loop controller (NMPC). The parameters of the proposed model can be identified

through classic system identification techniques [52].

gf
Reference
Trajectory Trajectory Tracking

Controller (NMPC)

Attitude
Controller

Outer-loop
Inner-loop

Fig. 5.3: Inner-outer loop control scheme for quadrotor MAV system. ζ is the Euler
angles vector, ω is the angular velocity vector, v is the MAV velocity vector, Mφ,Mθ,
andMψ are the applied torques for the three Euler angles, and the subscript r denotes
the reference value.
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5.3 Quadrotor MAV Dynamics

5.3.1 Conventional model without drag force

The nonlinear model of the quadrotor is defined as follows:

ṗ(t) = v(t)

v̇(t) = Rē3T − gē3

φ̇(t) = Kφ

τφ
φcmd(t)−

1
τφ
φ(t)

θ̇(t) = Kθ

τθ
θcmd(t)−

1
τθ
θ(t)

(5.3)

where, p is the position of the MAV {B} relative to {G} expressed in {G}; R :=

Rz(ψ) ·Ry(θ) ·Rx(φ) is the rotation matrix from frame {B} to {G}; v is the MAV

velocity vector of {B} relative to {G}; g is the gravitational acceleration; T is the

mass normalized thrust; τφ and τθ are the time constants of the inner-loop linear

first-order model for the roll and pitch angles, respectively; Kφ and Kθ are the gains

of the same model; and ē3 is the standard basis vector ē3 =
[
0 0 1

]T
.

For simplicity, let K̄φ = Kφ
τφ
, τ̄φ = 1

τφ
, K̄θ = Kθ

τθ
, and τ̄θ = 1

τθ
. Therefore, system

(5.3) can be written in state-space representation, ẋ(t) = f(x(t),u(t)), as;

ẋ(t) =



ẋ13

ẋ46

ẋ7

ẋ8


=



x46

−gē3

−τ̄φx7

−τ̄θx8


+



03×1

Rē3u1

K̄φu2

K̄θu3


(5.4)

where f : Rn × Rm → Rn is the continuous-time analytic mapping, x13 := p, x46 :=

v, x7 := φ, x8 := θ, u1 := T , u2 := φcmd, and u3 := θcmd. Assuming piecewise

constant control inputs on each sampling interval, model (5.4) can be discretized by

the sampling time δ (in seconds) using forward Euler method as follows;
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x+ = fδ(x,u) =



x13

x46

x7

x8


+ δ ·



x46

−gē3

−τ̄φx7

−τ̄θx8


+ δ ·



03×1

Rē3u1

K̄φu2

K̄θu3


(5.5)

Finally, the discrete-time system model (5.5) will be used in the prediction mech-

anism of the NMPC.

5.3.2 Dynamic model with drag force

The nonlinear model of the quadrotor MAV is defined as follows;

ṗ(t) = RBv(t)

Bv̇(t) = T ē3 −RT ē3g −DBv(t)

φ̇(t) = Kφ

τφ
φcmd(t)−

1
τφ
φ(t)

θ̇(t) = Kθ

τθ
θcmd(t)−

1
τθ
θ(t)

(5.6)

where Bv is the MAV velocity vector of {B} relative to {G} expressed in {B}.

D = diag(dx, dy, dz) is the drag coefficient matrix with normalized drag coefficients,

dx, dy, and dz, in the three axes. The aerodynamic rotor drag force (DBv) [20] of

the MAV is one of the main aerodynamics effects that highly influences the tracking

errors of the feedback controllers. As a result, incorporating this force in the system

model improves the controller performance at aggressive and agile maneuvers with

high speeds and accelerations [20].

Similarly, system (5.6) can be written in state-space representation as;
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ẋ(t) =



ẋ13

ẋ46

ẋ7

ẋ8


=



Rx46

−RT ē3g −Dx46

−τ̄φx7

−τ̄θx8


+



03×1

u1ē3

K̄φu2

K̄θu3


(5.7)

consequently, can be dicretized by the sampling time δ as follows;

x+ = fδ(x,u) = x + δ ·



Rx46

−RTgē3 −Dx46

−τ̄φx7

−τ̄θx8


+ δ ·



03×1

u1ē3

K̄φu2

K̄θu3


(5.8)

Similarly, the discrete-time system model (5.8) will be used as well in the prediction

mechanism of the NMPC in case of designing the NMPC while incorporating the drag

force in the MAV model.

5.3.2.1 States and inputs constraints

For both models, the state vector could be constrained to the working arena as X :=

{x ∈ Rn | ximin ≤ xi(k) ≤ ximax} for all i = 1, · · · , 8 and k ∈ N0. The control input

constraints are defined as

U :=


u ∈ Rm |


u1min

−u2max

−u3max

 ≤ u(k) ≤


u1max

u2max

u3max




(5.9)

∀k ∈ N0, where 0 < u1min < u1max, and u = [u1, u2, u3]T .
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5.4 Nonlinear Model Predictive Control

The NMPC algorithm solves iteratively an optimal control problem (OCP) at each

time instant with sampling time δ > 0 and prediction horizon N ∈ N≥2. The solution

of the OCP includes the minimization of a cost function JN : X ×UN → R≥0 that

sums up the running costs `(x,u) along the predicted trajectories. The cost function

is defined as

JN(xk, u) :=
k+N−1∑
r=k

`(xu(r,xk),u(r)) (5.10)

with an optimal value function VN : X→ R≥0 defined as

VN(xk) := inf
u∈UN (xk)

JN(xk, u) (5.11)

for N ∈ N ∪ {∞}. Solving the OCP while attaining the infimum induces an optimal

control function u∗ = u∗(·,xk) with VN(xk) = JN(xk, u∗). Algorithm 5.1 summarizes

the proposed NMPC scheme without stabilizing costs or constraints. The NMPC

algorithm aims at computing a feedback law µN : X → U (defined as µN(k,x) =

u∗(0,xk)) such that for each xk ∈ X, the resulting closed-loop trajectory xu(.; xk)

generated by (5.1), where xu(0; x0) = x0, satisfies the constraints xu(k; x0) ∈ X

and µN(xu(k; x0)) ∈ U for all k ∈ N0 and is asymptotically stable. Neither the

asymptotic stability of system (5.1) nor the recursive feasibility can be guaranteed

under the proposed NMPC algorithm since no stabilizing costs or constraints are

incorporated in the proposed OCP and u ≡ 0Rm /∈ UN(xk), i.e., u1min > 0 as in

(5.9), therefore, UN(xk) 6= ∅ is not guaranteed. In the following section, we will show

that the asymptotic stability and recursive stability can be ensured by computing a

stabilizing prediction horizon N through deriving a growth sequence that satisfies the

cost controllability condition [89]. A closed-loop system is asymptotic stable (e.g.,
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at the origin) if there exists a function β ∈ KL such that the closed-loop trajectory

xµN (k,x0) has the following condition, i.e.,

‖xµN (k,x0)‖ ≤ β(‖x0‖ , k) ∀k ∈ N0 (5.12)

for all x0 ∈ X.

Algorithm 5.1: NMPC Scheme
Input: Prediction horizon N , sampling time δ

Output: NMPC feedback law µN

Initialization: Set the time index k = 0 and xk := x0

1 Loop

2 Compute a minimizing control sequence

u∗ = (u∗(0),u∗(1), · · · ,u∗(N − 1)) ∈ UN(xk) by

solving the OCP that satisfies JN(xk, u∗) = VN(xk).

3 Implement the control input

u(k) := µN(k,x) := u∗(0,xk) at the MAV plant.

4 Measure the current state xµN (k; x0) := xu∗(k; xk)

and set xk = xµN (k; x0) and k = k + 1.

5.4.1 Stability and recursive feasibility of MPC without sta-

bilizing costs or constraints

This section summarizes the findings from [49, 60, 64], then theses findings will be

utilized in section 5.5 to prove the asymptotic stability and recursive feasibility of the

discrete-time model of the quadrotor MAV defined in (5.1). We first formulate the

following assumptions, which are crucial for proving the asymptotic stability of the

proposed NMPC algorithm without stabilizing terminal costs or constraints.
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Assumption 5.1. Assume that there exist

A5.1.1. A monotonically increasing and bounded sequence (γi)i∈N such that

Vi(x0) ≤ γi ‖x0 − xr‖2
Q ∀i ∈ N (5.13)

holds for each x0 ∈ X, where ‖x‖2
Q represents the quadratic form xTQx and Q ∈ Rn×n

is a diagonal matrix composed of the penalty parameters of the state error such that

Q � 0.

A5.1.2. Two functions ᾱ, α ∈ K∞ satisfying

ᾱ(‖x− xr‖) ≤ `∗(x) ≤ α(‖x− xr‖) ∀x ∈ X (5.14)

where `∗(x) := infu∈U1(x) `(x, u).

5.4.1.1 Stability

The performance bound of NMPC closed-loop can be defined as follows.

Definition 5.2. Let the closed-loop control sequence µN(k,x) be admissible and given,

and J cl∞(x, µN) := ∑∞
k=0 `(xµN (k,x), µN(k,x)) be the closed-loop costs on the infinite

horizon. Then, the performance bound of the proposed NMPC scheme can be defined

as follows

J cl∞(x, µN) ≤ α−1
N V∞(x) (5.15)

where αN is the performance index, i.e., degree of suboptimality.

The asymptotic stability can be ensured using Assumption 5.1 as shown in the

following theorem.
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Theorem 5.1. Consider an NMPC problem satisfying Assumption 5.1 and let the

performance index αN be governed by

αN := 1− (γN − 1)∏N
k=2(γk − 1)∏N

k=2 γk −
∏N
k=2(γk − 1)

. (5.16)

Then, if αN > 0, the relaxed Lyapunov inequality

VN(fδ(x, µN(x))) ≤ VN(x)− αN`(x, µN(x)) (5.17)

holds for all x ∈ X and the NMPC closed loop with prediction horizon N is asymp-

totically stable. Additionally, Inequality (5.15) holds.

For the proof of Theorem 5.1, see [58] and [49, Chapter 6]. The upper and lower

bounds in A5.1.2 can be simply guaranteed as given in [49], however, ensuring A5.1.1

is not straightforward since the derivation of the growth bound γi, i ∈ N is generally

sophisticated as shown in 5.5.

5.4.1.2 Recursive Feasibility

In order to guarantee that the proposed NMPC scheme is well defined, it is crucial

that at each time step k there exists an admissible control sequence for the closed-loop

state xk := xµN (k,x0) for all k ∈ N, i.e., UN(xk) 6= ∅. However, it is difficult to ensure

that when there are no terminal constraints or costs. Therefore, we first show the

necessary conditions for recursive feasibility in the following definition then show how

to ensure it in the following theorem.

Definition 5.3. Consider an NMPC scheme with optimization horizon N and the

feasible set XN defined as

XN := {xk ∈ X | UN(xk) 6= ∅} (5.18)
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and a set B ⊆ XN . The scheme is called recursively feasible on B, if for each xk ∈ B

and each optimal control sequence u∗ ∈ UN(xk) of (5.11) the condition xu∗(1,xk) ∈ B

holds.

The concept of recursive feasibility requires that for each optimal admissible tra-

jectory starting in B remains in B for at least one step. The recursive feasibility can

be ensured by means of stability as shown in the following theorem.

Theorem 5.2. Let there be an NMPC scheme with a state constraint set X and let

Assumption 5.1 hold on XN as given by (5.18). Then for each c > 0 there exists Nc > 0

such that the NMPC algorithm is recursively feasible on the set {xk ∈ XN | VNc ≤ c}.

For the proof of the theorem, we refer to [64, section 5.2]. Therefore, if we can

derive a bounding sequence γi that ensures A5.1.1 and find the stabilizing prediction

horizon N from (5.16) that satisfies αN ∈ (0, 1], we can guarantee the asymptotic

stability and recursive feasibility of Algorithm 5.1 on the set {xk ∈ XN | VNc ≤ c}, as

will be shown in the following section.

5.5 Stability Analysis of the Quadrotor MAV and

the Growth Function

In this section, we will derive the growth bound γi in Assumption 5.1 for the MAV dy-

namic model with drag force (the derivation of the growth bound for the conventional

model is similarly given in Appendix C) and find the shortest possible (minimal)

prediction horizon N that stabilizes the NMPC scheme proposed in Algorithm 5.1.
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5.5.1 Derivation of the growth bound

Without loss of generality, the desired state is chosen as the hovering point xr =[
xr,1 xr,2 xr,3 01×5

]T
, where 01×5 is a 1 × 5 zero matrix. For this purpose, the

running cost (5.2) is tailored as follows,

`(x,u) =
8∑
i=1

qi (xi − xr,i)2 + r1(u1 − ũ1)2 + r2(u2 − ũ2)2 + r3(u3 − ũ3)2. (5.19)

which is the key contribution in this chapter to derive the growth bound in (5.13) and

satisfy the asymptotic stability conditions presented in Theorem 5.1 in 5.4.1, where

ũ1 = g cos(x7) cos(x8) + dzx6, ũ2 = τ̄φ

K̄φ

x7, ũ3 = τ̄θ

K̄θ

x8.

Using (5.6) and (5.19), it can be shown that (u1 − ũ1) penalizes the acceleration

along ZB, (u2− ũ2) penalizes the roll rate, (u3− ũ3) penalizes the pitch rate, qi ∈ R≥0,

i = 1, 2, · · · , 8 are the ith diagonal elements of the matrix Q, r1, r2, and r3 ∈ R≥0 are

the ith diagonal elements of the matrix Ru.

The derivation of the growth bound γi given in Assumption 5.1 is, in general

difficult, and one of the ways to obtain it is by constructing a summable sequence

cj ⊆ R≥0, j ∈ N0, where
∑∞
j=0 cj <∞, such that γi = ∑i−1

j=0 cj, i ∈ N≥2. Additionally,

for an admissible control actions ux0 = ux0(j), j ∈ N0, the sequence cj satisfies the

following inequality

`(xux0
(j; x0),ux0(j)) ≤ cj ‖x0 − xr‖2

Q (5.20)

for all j ∈ N0 and x0 ∈ X, see [50, section 3] for more details. The computation of the

sequence cj and thus the growth bound γi is governed by the following proposition.

Proposition 5.1. Suppose that the penalty parameters of the control inputs in (5.19)
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are satisfying

r1 ≤ σq6, r2 ≤ σK̄2
φq7, r3 ≤ σK̄2

θ q8 (5.21)

with weighting ratio σ ∈ N. Therefore, condition (5.13) holds with γi = ∑i−1
j=0 cj, i ∈

N≥2, where the sequence cj is governed by

cj :=

(λρ − jρ
λρ

)2

+ σ

δ2λ2

ρ−1∑
i=0

ρCi

2
 (5.22)

for j ∈ {0, 1, · · · , λ − 1}, where λ ∈ N≥2 is the number of steps required to perform

any given maneuver, the exponent ρ ∈ Q≥0 is adjusted for different trajectory shapes,.

Proof. The quadrotor MAV may move in straight lines, curves, or lattice shape [112]

based on the initial and final states, prediction horizon, and sampling time. Therefore,

the trajectory for each initial state x0 ∈ X to the reference state xr is defined as

follows;

x[j] =
(
λρ − jρ

λρ

)
x0 +

(
jρ

λρ

)
xr

= x0 +
(
jρ

λρ

)
(xr − x0) ∀j ∈ {0, 1, .., λ− 1}

(5.23)

where λ ∈ N≥2 is the number of steps required to perform the maneuver and is chosen

large enough such that the constraints (5.9) are satisfied for all x0 ∈ X, and the

exponent ρ ∈ Q≥0 depends on the shape of the trajectory. Substitute (5.8) into (5.23)

to find the open-loop control inputs (ux0) required to perform the maneuver. The

first control input u1 was given in (5.8) as

x6[j + 1] = x6[j]− δR33 g + δu1[j]− δdzx6[j]

where R33 = cos(x7) cos(x8) is the element in the third row and third column in the

rotation matrix R. Thus, control input u1x0
for all x0 ∈ X (or u1 for the sake of
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simplicity) can be calculated as follows:

(
λρ − (j + 1)ρ

λρ

)
x0,6 − (1− δdz)

(
λρ − jρ

λρ

)
x0,6

= −δR33g + δu1.

(5.24)

Replacing (j + 1)ρ with the binomial expansion, (5.24) reduces to

−∑ρ−1
i=0

ρCi j
i + δdz(λρ − jρ)
δλρ

x0,6 = u1 −R33g

where ρCi = ρ!
i!(ρ−i)! , that yields,

u1 = −
∑ρ−1
i=0

ρCi j
i + δdz(λρ − jρ)
δλρ

x0,6 +R33g (5.25)

for all j ∈ {0, · · · , λ− 1}. The second control input u2 was given in (5.8) as

x7[j + 1] = (1− δτ̄φ)x7[j] + δK̄φu2[j].

Thus, u2 is calculated as follows:

(
λρ − (j + 1)ρ

λρ

)
x0,7 − (1− δτ̄φ)

(
λρ − jρ

λρ

)
x0,7 = δK̄φu2

reduces to

−∑ρ−1
i=0

ρCi j
i + δτ̄φ(λρ − jρ)
λρ

x0,7 = δK̄φu2.

Above simplifies as,

u2 = −
∑ρ−1
i=0

ρCi j
i + δτ̄φ(λρ − jρ)

δK̄φλρ
x0,7 (5.26)

for all j ∈ {0, · · · , λ − 1}. The calculation of the third input u3 is similar to u2 and
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given by

u3 = −
∑ρ−1
i=0

ρCi j
i + δτ̄θ(λρ − jρ)

δK̄θλρ
x0,8 (5.27)

for all j ∈ {0, · · · , λ− 1}. Applying (5.23), (5.25), (5.26), and (5.27) into (5.19) yields

the running costs (5.28) along the resulting open-loop trajectories.

`(xux0
(j; x0),ux0(j)) =

(
λρ − jρ

λρ

)2 ( 8∑
i=1

qi (x0,i − xr,i)2
)

+ r1

(∑ρ−1
i=0

ρCi j
i

δλρ

)2

x2
0,6

+r2

(∑ρ−1
i=0

ρCi j
i

δK̄φλρ

)2

x2
0,7 + r3

(∑ρ−1
i=0

ρCi j
i

δK̄θλρ

)2

x2
0,8

(5.28)

To this end, the bounding sequence cj can be found by bounding the running

costs (5.28) such that condition (5.20) is satisfied. The second term in (5.28) can be

bounded using condition (5.21) and by recalling that j ≤ λ, as follows:

r1

(∑ρ−1
i=0

ρCi j
i

δλρ

)2

x2
0,6 ≤ r1

(
λρ−1∑ρ−1

i=0
ρCi

δλρ

)2

x2
0,6 ≤ σq6

(∑ρ−1
i=0

ρCi
)2

δ2λ2 x2
0,6

(5.29)

Moreover, the third term in (5.28) can be bounded in the same manner as follows:

r2

(∑ρ−1
i=0

ρCi j
i

δK̄φλρ

)2

x2
0,7 ≤ r2

1
K̄2
φ

(∑ρ−1
i=0

ρCi
)2

δ2λ2 x2
0,7 ≤ σq7

(∑ρ−1
i=0

ρCi
)2

δ2λ2 x2
0,7 (5.30)

Similarly, the fourth term in (5.28) is bounded as follows:

r3

(∑ρ−1
i=0

ρCi j
i

δK̄θλρ

)2

x2
0,8 ≤ r3

1
K̄2
θ

(∑ρ−1
i=0

ρCi
)2

δ2λ2 x2
0,8 ≤ σq8

(∑ρ−1
i=0

ρCi
)2

δ2λ2 x2
0,8

(5.31)

As a result, the running costs (5.28) can be estimated by
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`(xux0
(j; x0),ux0(j)) ≤

(
λρ − jρ

λρ

)2

‖x0 − xf‖2
Q + σ

δ2λ2

ρ−1∑
i=0

ρCi

2 8∑
i=6

qix0,i

≤

(λρ − jρ
λρ

)2

+ σ

δ2λ2

ρ−1∑
i=0

ρCi

2
 ‖x0 − xf‖2

Q

(5.32)

for all j ∈ {0, · · · , λ − 1}. Therefore, the bounding sequence cj in (5.20) can be

attained as in (5.22).

Finally, the growth bound γk, k ∈ N0 can be obtained as given in Proposition 5.1

by

γk :=
k−1∑
j=0

cj =
k−1∑
j=0

(λρ − jρ
λρ

)2

+ σ

δ2λ2

ρ−1∑
i=0

ρCi

2


which can be written as

γk = 1
λ2ρ

k−1∑
j=0

(λρ − jρ)2 + σ

δ2λ
2ρ−2

ρ−1∑
i=0

ρCi

2
 . (5.33)

It can be noticed from (5.33) that the growth bound γk depends only on the

sampling time δ, the exponent value ρ, the number of steps λ, and the weight ratio

σ.

5.5.2 Calculation of the minimal stabilizing horizon

In this section, we will calculate the shortest stabilizing prediction horizon using the

growth bound γk such that αN ∈ (0, 1] holds. We first expand (5.33) as follows:

γk = 1
λ2ρ

k−1∑
j=0

λ2ρ − 2λρjρ + j2ρ + σ

δ2λ
2ρ−2

ρ−1∑
i=0

ρCi

2
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and for the sake of simplicity and for tractable analysis, without loss of generality,

assume ρ = 1, that yields

γk = 1
λ2

k−1∑
j=0

[
λ2 − 2λj + j2 + σ

δ2

]
= 1
λ2

k−1∑
j=0

j2 − 2λ2
k−1∑
j=0

j + (λ2 + σ

δ2 )k
 . (5.34)

Using the sum formulas

k−1∑
j=0

j2 = k(k − 1)(2k − 1)
6 and

k−1∑
j=0

j = k(k − 1)
2 (5.35)

γk can be formulated as

γk = 1
λ2

[
kλ2 − (k2 − k)λ+ (k

3

3 −
k2

2 + k

6 + σ

δ2k)
]

(5.36)

Thus, the following theorem defines the shortest prediction horizon required to

stabilize the proposed NMPC scheme.

Theorem 5.3. Let the prediction horizon N = 4, the sampling time δ > 0, and the

weight ratio σ > 0 be given. If there exist maneuver steps of length λ∗ such that for

all λ > λ∗ the performance index αN governed by (5.16) satisfies α4 > 0, thus, the

closed-loop asymptotic stability of the quadrotor MAV under NMPC scheme without

terminal costs or constraints is ensured for the shortest possible prediction horizon.

Additionally, the inequality

V µ4
∞ ≤ α−1

4 V∞(x) (5.37)

holds.

Proof. The motion primitives of the quadrotor MAV can be generated in the quadro-

tor’s jerk [113]. Thus, in order to recover the thrust and attitude rates inputs from
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such a thrice differentiable trajectory, a prediction horizon of 4 is required, i.e., N ≥ 4.

Therefore, the performance estimate αN given in (5.16) for N = 4 is formulated as

α4 = 1− (γ2 − 1)(γ3 − 1)(γ4 − 1)2

γ2γ3γ4 − (γ2 − 1)(γ3 − 1)(γ4 − 1) . (5.38)

Thus, the conditions for asymptotic stability to be ensured can be determined as

0 < (γ2 − 1)(γ3 − 1)(γ4 − 1)2

γ2γ3γ4 − (γ2 − 1)(γ3 − 1)(γ4 − 1) < 1. (5.39)

The left inequality in (5.39) can be ensured with γk > 1. Thus, selecting λ as

λ > λ∗ :=
(k3

3 −
k2

2 + k
6 + σ

δ2k)
k2 − k

> 0 ∀k ≥ 2 (5.40)

yields γK > k > 1, that ensures the left inequality of (5.39). In addition, substituting

the value of λ defined in (5.40) into (5.39) ensures the right inequality. Therefore,

N ≥ 4 ensures the asymptotic stability of the system. If λ is selected as λ = 2λ∗, the

performance index becomes

α4 =
360( σ

δ2 )3 + 766( σ
δ2 )2 + 451( σ

δ2 ) + 70
72( σ

δ2 )4 + 444( σ
δ2 )3 + 796( σ

δ2 )2 + 454( σ
δ2 ) + 70 (5.41)

Equation (5.41) shows that the performance index depends only on the weight

parameter σ and sampling time δ. The index α4 is always positive and converges to

1 as σ/δ2 is chosen small, as shown in Fig. 5.4.

Theorem 5.3 shows that the performance of NMPC with infinite prediction horizon

can be approached by reducing σ/δ2 regardless of the shortest prediction horizon, i.e.,

N = 4, used in the NMPC scheme proposed in Algorithm 5.1.
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Fig. 5.4: Plot of α4 vs. σ/δ2 . The performance index α4, at N = 4, converges to 1
at small values of the ratio σ/δ2

5.6 Results

This section presents several numerical simulations and real-time lab experiments to

validate the proposed NMPC scheme for the MAV dynamic model with drag force.

In the numerical simulations, the dynamic model (5.6) is used as the system of the

quadrotor MAV, while the AscTec Hummingbird Quadrotor [114] is used for all lab-

oratory experiments. In order to obtain the solution of the OCP for both numer-

ical and lab experiments, the dynamic model in (5.8) is implemented for the state

prediction process and the running cost in (5.19) is used to construct the objective

function (5.10), as shown in Fig. 5.5. Only parameters that need tuning are the qi

(i = 1, 2, · · · , 8) of the Q weighting matrix given that ri (i = 1, 2, 3) parameters are

constrained by (5.21), and σ/δ2 is selected very small for higher performance index, as

observed by Fig. 5.4. For all test validations, the parameters in system (5.6) are given

in Table 5.1, in which the time constant and gain of the roll and pitch angles were

extracted using the open-source code of the system identification of the attitude dy-

namics of the Hummingbird helicopter, provided by [52]1. The drag coefficient matrix
1available at https://github.com/ethz-asl/mav_system_identification, and last accessed

on December 2020.
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Table 5.1: Quadrotor MAV parameters

Parameter mass (kg) τφ (s) Kφ τθ (s) Kθ

Value 0.645 0.0914 0.7551 0.0984 0.7226

is given as D = diag(0.01, 0.01, 0). The control inputs given in (5.9) are constrained

as

Constraints
(5.42)

Cost Function
(5.10) with Running

Cost (5.19)

Reference
Trajectory

Optimization Problem
(Algorithm 5.1)

MAV Model
(5.8)  Estimator

Predicted States

Control
Inputs

Output
Future
Inputs

Future
Errors

Estimated
States

NMPC

Fig. 5.5: Block diagram of the proposed NMPC and the closed-loop system.


5 m/s2

−10◦

−10◦

 ≤

u1(k)

u2(k)

u3(k)

 ≤


15 m/s2

10◦

10◦

 . (5.42)

The symbolic toolbox CasADi [115] is used to set up the optimal control problem

(OCP) proposed in Algorithm 5.1. CasADi was selected due to its high efficiency in

implementing nonlinear optimizations and flexibility to be used from C++, Python

or MATLAB/Octave. The direct multiple-shooting discretization method [116] is

employed to turn the OCP into a nonlinear programming problem (NLP), see [115,

section 5.4] for more details. Then, the Interior Point OPTimizer (IPOPT), which is

already interfaced with CasADi, is used to solve this NLP. Two main control problems

are evaluated, (a) point stabilization (hovering) and (b) trajectory tracking problems.

In the point stabilization problem, the algorithm terminates when the following stop-
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ping criterion is met

‖x(k)− xr‖ ≤ ε, ∀k ∈ N (5.43)

where ε > 0 is the error value, otherwise, the process will terminate after reaching the

maximum time tmax.

5.6.1 Numerical validation

5.6.1.1 Proposed NMPC scheme

The following simulations were conducted on MATLAB. The simulation was run

for twelve various initial positions while stabilizing the MAV to the reference point

xr =
[
0 0 1 01×5

]T
. The prediction horizon was set toN = 4 by means of Theorem

5.3 and the sampling time to δ = 0.1 s. Additionally, the weight ratio σ was selected

such that σ/δ2 = 0.1, thus the corresponding performance index is α4 = 0.994. The

parameters of the weighting matrix Q are selected similar to [52] with some fine tuning

as Q = diag(100, 100, 120, 80, 80, 100, 10, 10). The stopping error value in (5.43) was

selected as ε = 1 mm and the maximum time tmax = 120 s. The trajectories of the

twelve runs are shown in Fig. 5.6a. The results show that the MAV may go from

the initial position to the final position in straight lines, curves, or lattice shape as

proposed in the proof of Proposition 5.1. Moreover, the proposed NMPC algorithm

with N = 4 is able to stabilize the MAV from any random initial state while satisfying

the OCP’s input constraints, given in (5.42), for all time steps, as shown in Fig. 5.6b,

that verifies the fulfillment of the conditions of Theorem 5.2.
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Fig. 5.6: (a) 3D trajectories of twelve simulation runs starting from various initial
positions (Si) for i=1,2,..,12 and stabilizing at the final position (E). (b) Feedback
control inputs and the input limits given in (5.42) for one simulation run at initial
states x0 = (1, 1, 0.07,01×6)T . (c) Evolution of the value function V4 for the twelve
various initial positions.

The asymptotic stability of the system can be verified by studying the evolution of

the value function V4 at N = 4. Fig. 5.6c shows that V4 is monotonically decreasing

with time for all initial positions, which is leading to the conclusion that the condi-

tions of Theorem 5.1 are successfully met and the system is asymptotically stable for

any given initial position. The convergence rate of the MAV to the reference point
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depends on the prediction horizon N . Increasing the prediction horizon tends to a

faster convergence rate and less convergence time, as shown in Fig. 5.7a, i.e., the

convergence time is reduced by more than 50% when N increases from N = 4 to

N = 5. Additionally, Fig. 5.7b shows the effect of changing the sampling time δ

on the evolution of V4 and the convergence rate. It is clearly seen that increasing δ

decreases the convergence time.
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Fig. 5.7: (a) Evolution of the value function for various prediction horizon lengths N
for one simulation run at initial states x0 = (1, 1, 0.07,01×6)T . (b) Evolution of the
value function V4 for various sampling times at the same initial states.

The performance of the proposed controller is also tested for trajectory tracking

problems and the results show outstanding tracking performance with the shortest

prediction horizon N = 4. Fig. 5.8 and Fig. 5.9 show the tracking results of circular

and 8-shape trajectories, respectively. The root mean square error is less than 0.017

m for both trajectories.
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Fig. 5.8: Simulation performance of the circular trajectory tracking of the proposed
NMPC scheme at N = 4 and δ = 0.1 s. Left: 3D trajectories of the reference and
actual trajectories. Right: the reference and actual position in x, y, and z axes.

5.6.1.2 Comparison with traditional NMPC

In this section, the performance of the proposed NMPC scheme without stabilizing

costs or constraints is compared against the traditional NMPC scheme which requires

addition of the terminal costs in its cost function (see [52]2 for more details). The

cost function of the traditional NMPC is given by

JN(xk, u) :=
N∑
k=1

(
‖x− xr‖2

Q + ‖u− ur‖2
Ru

)
+ ‖xN − xr‖2

QN
(5.44)

in which QN ∈ Rn×n is the terminal weight matrix that needs to be computed by

solving the following Algebraic Riccati Equation

QNA + ATQN −QNBR−1
u BTQN + Q = 0 (5.45)

where A and B are the state and input matrices of the linearized system.

For the point stabilization problem, the weighting matrices Q and R of the tra-

ditional NMPC are selected as in [52] while the Q matrix of the proposed NMPC is
2The work in [52] was considered in our comparative study because it uses an NMPC with

terminal costs for the control of the full dynamics of the quadrotor, same as our dynamic model.
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Fig. 5.9: Simulation performance of the 8-shape trajectory tracking of the proposed
NMPC scheme at N = 4 and δ = 0.1 s. Left: 3D trajectories of the reference and
actual trajectories. Right: the reference and actual position in x, y, and z axes.

selected similar to [52] as given in Section 5.6.1. The comparison results are given in

Table 5.2. The table shows that the proposed NMPC has asymptotically stabilized

the MAV at the reference point while achieving condition (5.43) in finite number of

time steps at various prediction horizon N and sampling time δ except for N = 4

and δ = 0.01, where the simulation terminated at tmax while the MAV was very close

to the reference point. However, the traditional NMPC required higher number of

iterations to stabilize the MAV (more than the double of the number of iteration

at some cases). In addition, at low sampling time, the traditional NMPC could not

achieve the stopping criteria in three cases, as shown in Table 5.2, and failed to sta-

bilize the MAV at δ = 0.01 s and N = 4. Two samples of the comparison results

have been illustrated in Fig. 5.10a and 5.10b. The figures show that the proposed

NMPC has faster convergence rate, and smoother and shorter trajectory than the

traditional scheme. Moreover, the traditional NMPC controller was tested with the

same weighting parameters of the proposed NMPC to accelerate the convergence rate,

but the traditional NMPC has failed to asymptotically stabilize the system as well,

as shown in Fig. 5.10c, where V4 is no longer monotonically decreasing.
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(a)

(b)

(c)

Fig. 5.10: Simulation point stabilization comparison of the proposed and traditional
NMPC schemes at (a) N = 4 and δ = 0.01 s. (b) N = 4 and δ = 0.05 s. (c) The
same as (a) but after tuning the weighting parameters of the traditional NMPC to be
similar to the proposed NMPC to accelerate the convergence rate. The left column is
the 3D view and the right column is the value function.

Additionally, in order to evaluate the superiority of the proposed NMPC without
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terminal costs or constraints, the traditional NMPC was tested after disabling the

terminal costs in (5.44), i.e., QN ≡ 0. The traditional NMPC without terminal costs

is tested twice, one with the same weighting parameters as the proposed NMPC and

the other as the traditional NMPC with terminal costs. The results are given in Fig.

5.11. In both cases, the systems failed to ensure the asymptotic stability since the

decreasing rate of V4 in Fig. 5.11a is very small and failed to stabilize the system, and

the V4 in Fig. 5.11b is not monotonically decreasing, however, the MAV is converging

to the reference point.

(a)

(b)

Fig. 5.11: Point stabilization performance of the proposed NMPC and traditional
NMPC without terminal costs (terminal costs are disabled) at N = 4 and δ = 0.01 s
with weighting parameters as (a) the traditional NMPC with terminal costs. (b) the
proposed NMPC.
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Both controllers were evaluated for the trajectory tracking problems, where the

weighting parameters are selected similar to [52]. Table 5.3 and Fig. 5.12 show the

trajectory tracking performance of the circular and 8-shape trajectories. It can be

observed that the proposed NMPC scheme is robust against changing the controller

parameters (N and δ) and outperforms the traditional scheme in terms of the tracking

accuracy and computation time of the MPC problem. Furthermore, at sampling times

δ = 0.1 s and δ = 0.05 s, the proposed NMPC can achieve outstanding tracking

performance with only N = 4 similar to the traditional NMPC with N = 10 or

N = 20 while saving more than 40% of the computation time that saves more time

and power for the MAV’s CPU to accomplish other autonomy tasks. Similarly, at low

sampling time, the proposed NMPC provides better tracking performance than the

traditional NMPC without the need of tuning the controller parameters, however, the

traditional NMPC (with N = 4) failed to stabilize the MAV with very high tracking

errors.

(a) (b)

Fig. 5.12: Simulation trajectory tracking comparison of the proposed and traditional
NMPC schemes at N = 4 and δ = 0.01 s for (a) circular trajectory (b) 8-shape
trajectory. The proposed NMPC has superior tracking performance even at small
prediction horizons and sampling times, however, he traditional NMPC has failed to
track the reference trajectory.
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Table 5.2: Simulation comparison results of the proposed NMPC and traditional
NMPC for point stabilization problem. RMSE is the root mean square error in meters.
# iter. is the number of iterations (time steps) required to stabilize the MAV at the
reference point.

N δ (s)
Point Stabilization

Proposed Traditional
RMSE # iter. RMSE # iter.

4 0.1 0.0008 < σ 97 0.0009 < σ 281
10 0.1 0.0002 < σ 31 0.0007 < σ 96
20 0.1 0.0003 < σ 29 0.0007 < σ 75
4 0.05 0.0009 < σ 424 0.004 1199
20 0.05 0.0003 < σ 59 0.0007 < σ 192
4 0.01 0.023 5999 0.137 m (Failed)
10 0.01 0.0009 < σ 1568 0.033 5999
20 0.01 0.0006 < σ 670 0.001 5999

Table 5.3: Simulation comparison results of the proposed NMPC and traditional
NMPC for two trajectory tracking problems, 1- circular trajectory, and 2- 8-shape
trajectory. RMSE is the root mean square error in meters. TMPC is the average
computation time of the optimization process at each iteration in ms.

N δ (s)
Circular Trajectory 8-shape Trajectory

Proposed Traditional Proposed Traditional
RMSE TMPC RMSE TMPC RMSE TMPC RMSE TMPC

4 0.1 0.005 8.3 0.042 8.7 0.017 8.0 0.057 8.9
10 0.1 0.008 9.9 0.008 10.6 0.013 9.8 0.015 10.9
20 0.1 0.012 12.4 0.013 13.9 0.019 12.3 0.02 13.6
4 0.05 0.008 8.0 0.185 9.2 0.015 7.9 0.197 8.5
20 0.05 0.007 12.0 0.008 13.2 0.011 12.3 0.013 12.8
4 0.01 0.09 9.0 3.045 m (Failed) 0.084 9.3 2.411 m (Failed)
10 0.01 0.009 12.8 0.428 11.5 0.013 12.3 0.435 13.3
20 0.01 0.001 14.0 0.099 14.5 0.007 13.5 0.108 13.9
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5.6.2 Experimental validation

The proposed NMPC scheme has been experimentally evaluated in the lab using

the AscTec Hummingbird Quadrotor Helicopter [114], shown in Fig. 5.13a. The

experimental platform including the proposed NMPC algorithm has been conducted

on the Robot Operating System (ROS). The NMPC node was written in Python since

it is compatible with CasADi toolbox. The feedback control actions are sent to the

quadrotor via XBee Bluetooth communication as shown in Fig. 5.14. The OptiTrack

motion capture system (with six cameras) has been used to provide the quadrotor

pose as a feedback to the control system to guarantee accurate measurements since

the OptiTrack system can accurately estimate the 6 DOF pose of the quadrotor at

high rate up to 120 Hz. For this purpose, five markers have been mounted on the

quadrotor to be detected by the OptiTrack system as shown in Fig. 5.13b. A Kalman

filter has been used to estimate the velocity of the quadrotor from the measured

position since the OptiTrack system does not provide tracked object velocity.

(a) (b)

Fig. 5.13: (a) Instance of the Asctec Hummingbird quadrotor at hovering position
with the proposed NMPC in the lab. Five markers are attached to the quadrotor for
visual localization purpose. (b) A screenshot of the OptiTrack Motive with the six
cameras around the arena and the quadrotor.

The lab experiments of the point stabilization problem were conducted at sampling
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Fig. 5.14: The configuration of the OptiTrack motion capture system and the exper-
imental setup.

time δ = 0.1 s and various prediction horizons. The weight ratio σ was selected

as given in the numerical simulation 5.6.1. The stopping error value in (5.43) was

selected as ε = 50 mm and the maximum time tmax = 60 s. The results of four

point stabilization experiments of the proposed and traditional schemes are given

in Fig. 5.15 and Table 5.4. Both controllers reached the maximum time before

achieving the stopping criteria at N = 4, as can be seen in Fig. 5.15a, however, the

traditional controller provided large RMSE error than the proposed controller and

failed to stabilize the MAV close to the reference point. The corresponding value

function V4 of both controllers is monotonically decreasing until some point then

keeps almost constant that reflects the reason of the errors. Starting from N = 5, the

proposed controller was able to stabilize the MAV and achieve the stopping criteria at

faster convergence rate than the traditional controller, as shown in Fig. 5.15b, 5.15c,

and 5.15d. An instance of the quadrotor under the proposed controller at hovering is

shown in Fig. 5.13a.
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(a)

(b)

(c)

(d)

Fig. 5.15: Experimental point stabilization performance of the proposed and tradi-
tional NMPC schemes at δ = 0.1 s and (a) N = 4. (b) N = 5. (c) N = 7. (a)
N = 20.
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Table 5.4: Experimental comparison results of the point stabilization. RMSE is the
root mean square error in meters. # iter. is the number of iterations (time steps)
required to stabilize the MAV at the reference point. The sampling time δ = 0.1 s.

N
Proposed Traditional

RMSE #iter. RMSE #iter.
4 0.1 3492 0.317 (Failed)
5 0.0498 < ε 2057 0.155 3485
7 0.0499 < ε 236 0.0499 < ε 1998
20 0.0498 < ε 67 0.0497 < ε 802

In order to evaluate the controllers performance for trajectory tracking problem,

another ROS node has been created to generate the reference trajectory as shown

in Fig. 5.14. The ROS node generates a circular trajectory of radius of 1 m and

elevation of 1.5 m. Both controller were tested at two different controller parameters

at angular speed of 0.7 rad/s, as shown in Fig. 5.16. The figure shows that the

proposed NMPC provides better tracking performance than the traditional controller

in both cases. Both controllers are also tested at higher angular velocity of 1.0 rad/s

and lower sampling time (we could not go below δ = 0.03 s due to the limitations of

the used PC), as shown in Fig. 5.17. The figure shows that the traditional controller

failed to track the reference trajectory and the MAV diverged out of the arena, as

shown in Fig. 5.17a. The RMSE of the four cases is given in Fig. 5.18, where the

outliers come from the fact that the start point of the MAV is the origin, however,

the reference trajectory starts from a different point, as seen in Fig. 5.16 and 5.17,

therefore, all the experiments have the same maximum outlier. From Fig. 5.16, 5.17

and 5.18, it can be observed that the proposed NMPC outperforms the traditional

NMPC regardless of the prediction horizon and sampling time.
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(a)

(b)

Fig. 5.16: Experimental trajectory tracking performance at angular velocity 0.7 rad/s
of the proposed and traditional NMPC schemes at (a) N = 4 and δ = 0.1 s. (b)
N = 20 and δ = 0.1 s.

5.7 Summary

This work has successfully developed and demonstrated a computationally efficient

NMPC scheme for quadrotor MAVs to navigate on fast trajectories. In order to achieve

fast trajectories, the NMPC scheme was designed with minimum computational cost

with a shortest possible prediction horizon. In all experiments, this controller has

shown robust performance against the traditional NMPC controller since the proposed

controller can stabilize the system under numerous initial conditions with varied sys-

tem configurations. The stability for this controller was performed without having

to follow any constraint or conditions and as a result, the controller has a larger re-
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(a)

(b)

Fig. 5.17: Experimental trajectory tracking performance at angular velocity 1.0 rad/s
of the proposed and traditional NMPC schemes at (a) N = 4 and δ = 0.05 s. (b)
N = 4 and δ = 0.03 s.

gion of attraction as opposed to many other stability-based controllers reported in

the literature. Due to this reason the controller was able to perform well even under

small sampling time intervals. The results showed that the proposed NMPC scheme

outperforms the traditional schemes that incorporate terminal conditions in its cost

function in terms of tracking accuracy and convergence rate. The proposed scheme

(with prediction horizon, N = 4 or N = 5) can achieve the same task done by the

traditional scheme (with N = 10 or N = 20) while attaining better tracking and sta-

bilization accuracy, and saving more than 40% of the computation time. In addition,

it still can provide high tracking performance at low sampling time without the need
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Fig. 5.18: RMSE of the lab experiments at various controller configurations.

of tuning the controller parameters.
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Chapter 6

Multiple Model Control

In this chapter, we design a Multiple Nonlinear Model Predictive Controller (Multiple-

NMPC), where the two NMPC controllers proposed in Chapter 5 will be incorporated

in the NMPC bank to handle different flight conditions. Additionally, numerical case

studies will be conducted to validate the proposed algorithm. The Multiple-NMPC

validation will be limited to numerical simulations in this thesis.

6.1 Design of Multiple-NMPC

In this work, the Multiple-NMPC algorithm is used to switch between the two NMPC

designed in 5.4. The first controller (DF-NMPC) contains the rotor drag force in its

model given in (5.6), while the second controller (C-NMPC) uses the conventional

model given in (5.3). The DF-NMPC is expected to perform better during fast and

aggressive trajectories, while the C-NMPC is expected to be sturdy during external

wind disturbances. Therefore, the C-NMPC will be included in the NMPC bank to

overcome the deficiency of the DF-NMPC and improve the overall performance of

the system. In order for the multiple-NMPC to be computationally efficient while

using optimization-based control, one controller should be active at a time. For this
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Fig. 6.1: Multiple-NMPC control scheme for quadrotor system.

purpose, the IMM estimator proposed in Algorithm 4.1, Section 4.1, will be used

to switch between the controllers/models in the NMPC bank, as shown in Fig. 6.1.

The advantage of this scheme, in addition to its lower computationally cost, is that

each controller can have an independent model and its controller parameters, such as

prediction horizon or weighting parameters.

The IMM algorithm iteratively updates the estimated weighting probability of

each filter based on its residual and likelihood; therefore, the IMM can recognize the

flight periods with external wind disturbances or aggressive flights. As a result, the

estimated weighting probabilities are used to switch between the two controllers, as

shown in Algorithm 6.1. The IMM algorithm runs at a higher rate, 100 Hz, while the

controller runs at 50 Hz to guarantee the availability of the feedback ahead of each

optimization cycle. Since the multiple-NMPC is a switching-based algorithm, the

smooth transition is a critical consideration. As a result, Algorithm 6.1 employs the

same sampling time for both controllers and uses the state of the previous controller

as the initial state of the next controller to avoid discontinuities in the computed

control input, as demonstrated in [99].

Algorithm 6.1 requires low number of tuning parameters, i.e., the elements of

error weighting matrix Q in the running cost (5.2). The elements of inputs weighting
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matrix Ru in (5.2) are constrained by Proposition 5.1 and the prediction horizon

could be selected as N ≥ 4, as given by Theorem 5.3 and demonstrated in Section

5.6. Additionally, the elements of the Markov transition probability matrix ρ and

values of initial probabilities µ̂i used in the IMM algorithm are selected based on the

probabilities of occurrence of each filter in the IMM bank, as explained in Section 4.1.

In our given problem, both filters have similar probabilities of occurrence, therefore,

equal initial probabilities are selected.

Algorithm 6.1, at each iteration, computes the estimated state vector x̂k from

the proposed DF-VINS and C-VINS filters using the estimated model probabilities

µ̂i. Afterwards, the algorithm uses the estimated model probability of each filter to

detect the flight condition then trigger the appropriate controller, as given in step 9

in Algorithm 6.1. The NMPC solvers, which include the system model and optimizer,

are created ahead of the loop during the initialization of the algorithm. Then the

solver is used to solve the OCP and compute the minimizing control sequence u∗ that

will be implemented at the MAV plant. The performance of the controller is evaluated

by computing the tracking error of the actual trajectory xk after applying the optimal

control input.
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Algorithm 6.1: Multiple-NMPC Scheme
Input: Prediction horizon N , control-loop rate fc = 50 Hz, and

estimation-loop rate fe = 100 Hz

Output: MAV closed-loop pose and velocity.

Initialization: Set k = 0, actual state xk := x0, estimated state x̂k := x0,

initial estimated probabilities µ̂i = 0.5 for i = 1, 2, and the

NMPC optimizer solveri for i = 1, 2 corresponding to each

model (as demonstrated in Section 5.4).

1 Loop at fe rate

2 Compute the mixed estimated state vectors (Algorithm 4.1, step 2).

3 Collect the IMU measurements at a rate of 100 Hz and Camera

measurements at a rate of 20 Hz.

4 Propagate and update the estimated state of each filter (Section 3.1.4).

5 Compute the estimated probabilities µ̂i (Algorithm 4.1, step 4).

6 Combine both states to compute x̂k using µ̂i (Algorithm 4.1, step 5).

7 Loop at fc rate

8 Generate xref (k : k +N) and set x0 = x̂k and u0 = u∗.

9 if µ̂1 > µ̂2 then

10 NMPC_solver= solver1

11 else

12 NMPC_solver= solver2

13 Compute a minimizing control sequence u∗ using NMPC_solver.

14 Implement the control input u(k) := u∗(0,xk) at the MAV plant.

15 Measure the current close-loop state xk := xu∗(k; xk) and compute the

tracking error ‖xref (k)− xk‖2.

16 Set k = k + 1.
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6.2 Comparison with the State-of-the-art

As has been previously reported in the literature, several methods are proposed to

address the multiple model predictive control problem. However, the existing methods

suffer from certain drawbacks that have been resolved in our proposed work. In this

section, we will present the key elements of improvement in our proposed Multiple-

NMPC algorithm and compare it with the state-of-the-art multiple model predictive

controller, found in the literature, in terms of robustness, computational efficiency,

and applicability.

1. Robustness: The work in [97–99, 103] proposed the use of a set of linear

model/MPC pairs at different operating points. Similarly, the work in [100–102]

proposed the use of a single linear MPC and a set of linearized models. The accu-

racy and robustness of these reported methods depend on the number of models

incorporated in the model back, and determining the optimal number of models

is considerably difficult. Therefore, for a system with changing dynamics, e.g.,

MAVs1, a large number of models are required to yield acceptable control system

performance, and a lower number of models may cause system failure or unpre-

dictable behavior [99,101]. Additionally, it would be difficult to effectively tune

the weights and parameters of the single MPC proposed in [100–102] to perform

robustly in the possible range of prediction models in the model bank. The mis-

tuning consequently affects the robustness of the proposed method along with

the used linearized models and different fight conditions. On the other hand, our

proposed method includes a set of nonlinear models/controllers pairs that take

advantage of the given nonlinear system dynamics to provide high-performance

designs. As shown in Algorithm 6.1, several NMPC solvers can be designed
1The dynamic system model significantly changes due to external disturbances.
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for the MAV control problem that covers all operating points of the nonlinear

system and addresses additional flight conditions.

2. Computational efficiency:

The weighting and switching functions proposed in [97–99] rely on the resid-

ual or probability distribution of the outputs of the controllers to decide on

the appropriate model/MPC pairs. This method requires all the controllers to

be active at each iteration, which is computationally expensive especially when

optimization is used for each controller. On the other hand, our proposed algo-

rithm triggers only one controller at a time by means of an order of a magnitude

faster filtering-based IMM algorithm, as shown in Algorithm 6.1 (step 9). The

Multiple-NMPC makes the decision based on the estimated model probabil-

ity computed by the IMM algorithm at each iteration that depends mainly on

the individual VINS filters in the IMM filtering bank, not the NMPCs in the

controller bank.

3. Applicability: Most of the reported methods in the literature [97–102] are

proposed for process and medical applications. Although they showed improved

performance than individual controllers, they cannot be applied to MAVs since

the MAV system requires fast control actions. As a result, only computationally

efficient algorithms could be implemented onboard due to the limited compu-

tation resources and power. Our proposed algorithm includes computationally

efficient VINS filters in the IMM filtering bank that are designed using error-

state filtering formulation, and use the epipolar constraint as a measurement

model. Additionally, our algorithm includes computationally efficient NMPCs

that are designed without terminal costs or constraints in the cost function.

Also, the performed stability analysis showed that the NMPC is asymptotically
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stable with a relatively small prediction horizon, which consequently reduces

the computational cost of the optimization problem. Therefore, the proposed

Multiple-NMPC algorithm can be applied to MAVs to operate robustly under

various and changing operating conditions with improved trajectory tracking

performance, as will be demonstrated in the next section.

6.3 Results

This section presents the numerical validations of the overall system, including the

multiple-NMPC and IMM algorithms. The performance of the stand-alone DF-NMPC

is compared along with the performance improvement achieved by implementing a

multiple-NMPC scheme using the two controllers (DF-NMPC and C-NMPC) in its

bank.

A MATLAB simulator is implemented in order to evaluate the performance of

the proposed system. The same simulated arena proposed in Section 4.2.1, given

in Fig. 4.2a, was used. The reference trajectory was generated using the kinematic

model given in (3.3), where the acceleration and the angular speed of the platform

were designed such that the MAV follows a circular trajectory of a radius of 4 meters

completing two laps with additional excitation along the z-axis to result in a wavelike

trajectory, as shown in Fig. 6.2. The input acceleration and angular speeds adhered

to differential flatness constraints related to the drag force model, which were realized

using the procedure given in [20]. This implicitly enforces the dynamic constraints

related to model (3.7) during the simulation as long as there is no external wind

disturbance acting on the system. In order to verify the superiority of the multiple-

NMPC over the stand-alone DF-NMPC in the presence of external disturbance, a

normally distributed random wind, with a maximum wind velocity ‖Vm‖ = 6.8m/s,
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has been added in both laps for a short time.

Since the DF-VINS and C-VINS filters in the IMM filtering bank have the same

priorities during the flight, each one is better than the other at certain regions and

under certain conditions, the IMM algorithm was implemented with equal initial

model probabilities. For a fair comparison, both controllers, multiple-NMPC and

DF-NMPC, have the IMM as feedback. The system has been simulated with the

same parameters given in Section 4.2.1 and Section 5.6.1. The prediction horizon is

selected as N = 6 for both controllers.

6.3.1 Numerical validation Without disturbance

The performance of both controllers, multiple-NMPC and DF-NMPC, has been tested

first in an aggressive flight without wind disturbance. The trajectory tracking perfor-

mance for both controllers is given in Fig. 6.2. The figure shows the 3D trajectory

tracking of the DF-NMPC (Fig. 6.2a) and Multiple-NMPC (Fig. 6.2b). Both con-

trollers were successfully able to track the reference trajectory and showed comparable

performance (Fig. 6.3).

The root mean square error (RMSE) of the position tracking has been computed

for each controller and given in Table 6.1. The Multiple-NMPC has only about 3.6%

performance improvement over the DF-NMPC since the Multiple-NMPC sticks to

the DF-NMPC most of the flight, as given by the values of the model probabilities

shown in Fig. 6.4. The DF-Model has a higher estimated model probability during

most of the flight. Therefore, based on the switching condition in Algorithm 6.1,

the Multiple-NMPC will select the first solver associated to the DF-NMPC, which is

supposed to provide better performance than the solver associated to the C-NMPC.
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Table 6.1: Tracking accuracy (RMSE) in the simulation results with/without wind
disturbance and the corresponding performance improvement.

RMSE (m) Percent of improvement
DF-NMPC Multiple-NMPC Multiple-NMPC/DF-NMPC

No wind trajectory 0.140 0.135 3.6 %
Wind trajectory 0.284 0.125 56 %

(a)

(b)

Fig. 6.2: Simulation performance of (a) DF-NMPC and (b) Multiple-NMPC. Left: 3D
trajectories of the reference and actual trajectories. Right: the reference and actual
position in x, y, and z axes.
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Fig. 6.3: RMSE of the position of the Multiple-NMPC and DF-NMPC.
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Fig. 6.4: Model probabilities of the IMM filters.

6.3.2 Numerical validation with wind disturbance

On the other hand, the superiority of the proposed Multiple-NMPC can be demon-

strated in the presence of wind disturbance, where the DF-NMPC is expected to

get affected by the external force exerted by the wind, as shown in Fig. 6.5. The

Multiple-NMPC outperforms the DF-NMPC and provides more than 50% perfor-

mance improvement, as shown in Fig. 6.6 and Table 6.1. This improvement has been

achieved due to the ability of the Multiple-NMPC to switch between the two NMPCs

in the controller bank based on their probability to represent the actual flight mode,

as shown in Fig. 6.7.
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Monte Carlo numerical simulation of 20 runs is conducted to validate the perfor-

mance of the proposed controller at different sensor random noises and random wind

disturbances. The results in Fig. 6.8 show that the Multiple-NMPC still outperforms

the DF-NMPC in the existence of wind disturbances, where the overall RMSE of the

DF-NMPC is 0.30 m while the RMSE of the Multiple-NMPC is 0.22 m.

(a)

(b)

Fig. 6.5: Simulation performance during the presence of wind disturbance of (a) DF-
NMPC and (b) Multiple-NMPC. Left: 3D trajectories of the reference and actual
trajectories. Right: the reference and actual position in x, y, and z axes.
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Fig. 6.6: RMSE of the position of the Multiple-NMPC and DF-NMPC during the
presense of wind disturbance.
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Fig. 6.7: Model probabilities of the IMM filters during the presence of wind distur-
bance.

Fig. 6.8: Tracking accuracy (RMSE) in the simulation results for 20 Monte Carlo runs
in the existence of wind disturbance.
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6.4 Summary

This work has numerically validated the design of a multiple-NMPC scheme where

two controllers are included in the controller bank to handle different flight trajectories

or conditions. The proposed scheme showed superior performance compared to the

stand-alone NMPC that incorporates the rotor drag force in its model. The simulation

studies showed tracking performance improvement by more than 50% during external

wind disturbances. For future work, the proposed algorithm will be experimentally

validated, as part of an industrial project in Winter 2022, with additional NMPCs

incorporated in the controller bank to address more flight conditions and modes.
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Chapter 7

Summary and Outlook

In this chapter, we summarize the accomplished work towards the research objectives

presented in 1.3 and the contributions of the thesis, while a list of scientific articles

and future research directions are presented.

The primary focus of this research study was to adopt the multiple model approach

for the state estimation and control of quadrotor MAVs. The work included the design

of computation-efficient state estimators and feedback controllers to be suitable for

the multiple model framework. The conducted research formed four main objectives:

1. Design of a computational-efficient error-state visual inertial navigation system

(VINS) with improved accuracy and consistency for MAVs.

2. Design of a novel interacting multiple model for VINS (IMM-VINS) that sup-

ports operation during periods with aggressive flights and/or external distur-

bances (e.g., wind).

3. Design of a novel computationally efficient and stable nonlinear model predic-

tive controller (NMPC) without terminal conditions for the control of MAVs

with/without drag force incorporated in the system model.
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4. Design of a novel computational-efficient multiple-NMPC scheme that supports

various operation and flight conditions.

The research summary related to each objective is presented in the following sec-

tions.

7.1 Research Summary Based on Objective I

For the first objective, two error-state visual-inertial navigation systems, with/without

drag force, have been designed for the state estimation for MAVs. After an extensive

literature review, it was concluded that the computational complexity and perfor-

mance of VINS filters are affected by the number of poses in the measurement model

and the consistency of the filter. Therefore, in this study, we designed the VINS

filter using the epipolar constraint as the measurement model since it is computa-

tionally efficient. Additionally, nonlinear observability analysis has been conducted

to study the observability properties of the designed filter to identify the unobserv-

able subspace corresponding to the nonlinear systems, which are needed to design

observability-constrained consistent filters for VINS. The observability analysis has

shown that the system has four unobservable directions, as indicated by the derived

nullspace matrix. Those unobservable directions correspond to the three degrees of

freedom global translation of the current and previous positions pair together, and the

global rotation about the gravity axis. Therefore, the observability-based consistency

rules for the filters are deduced to preserve the observability properties of the filter

to match with the nullspace of the true nonlinear system to prevent the filter from

updating along any unobservable direction. The designed filters will be then used for

the fulfillment of Objective II.

The proposed VINS filters share several assumptions as the state-of-the-art work,
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e.g., Gaussian white noise and proper initialization. To address these limitations,

strategies such as Gaussian mixture noises [117], robust initialization [118] and failure

recovery modules [119] should be implemented. Additionally, the proposed filters

assume the availability of sufficient feature points to ensure the existence of matched

features. For flights with high altitudes, spare sensors, e.g., multiple cameras or

LiDAR, could be added to the filter to resolve the limitation of lack of matched

features.

7.2 Research Summary Based on Objective II

Secondly, we considered the design of an interacting multiple model for VINS (IMM-

VINS) where two VINS filters, conventional VINS and drag force VINS, are incor-

porated in the IMM filter bank to support operation during periods with aggressive

flights and/or external disturbances (e.g., wind). The numerical and experimental

studies validated the capability of the IMM to produce improved VINS performance

over stand-alone versions of filters in its bank. IMM achieves this because the stand-

alone filters are meant to serve different navigation capabilities (accuracy, stability, ro-

bustness, self-calibration) and different flight conditions (aggressive, hover, nominal),

while IMM allows a synergistic combination of the capabilities of the filters during

the flight to generate improved performance over the stand-alone versions as shown

in this work. However, the IMM implementation of this work does not have improved

pose estimation accuracy over the generic MSCKF [15] or MSCKF-MONO [120] of

the EuRoC datasets in our experiments [121]. This is due to the use of the epipolar

measurement model in the design to reduce the computational complexity. A recent

study [121] identifies that the filter execution time is more than 90% faster as a result

of the epipolar measurement model when compared with MSCKF filters. This means
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that the IMM design has significant headroom for improvement. While this addi-

tional computational headroom can be used for accuracy improvement, what is more

interesting in this strategy is the ability to instill backup filters for fault tolerance and

opportunistic self-calibration of the VINS.

Parameter selection of the IMM algorithm needs to be carefully considered as some

of the individual filters in the filtering bank can perform sub-optimally at initialization.

For example, the stationary part at the beginning of the EuRoC dataset flight, where

the drag force filter is expected to diverge and the state covariance matrix is expected

to increase due to the high uncertainties. In order to resolve this issue, an adaptive

IMM algorithm [35] should be in use to update the elements of the transition prob-

ability matrix over time to optimize the performance of the IMM, as demonstrated

in Section 4.2.2. Additionally, incorporation of robust initialization schemes available

for VINS can ensure proper initialization and failure recovery [118,119,122,123].

7.3 Research Summary Based on Objective III

Thirdly, we consider the design of a novel NMPC algorithm for the control and sta-

bilization of a quadrotor MAV. A tailored cost function has been proposed without

incorporating terminal costs or constraints that facilitates the stability analysis of

the quadrotor and the derivation of a growth bound on the proposed value func-

tion to achieve the controllability conditions. This growth bound has been used to

calculate the minimal stabilizing prediction horizon of the proposed scheme, which

was proved to be four. The design provides a unique analytical methodology that

requires minimal tuning parameters compared to other controllers in the literature.

The numerical and experimental studies showed that the proposed NMPC scheme

outperforms the traditional schemes that incorporate terminal conditions in its cost
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function in terms of tracking accuracy and convergence rate. The proposed scheme

with a small prediction horizon, e.g., N = 4 or N = 5 can achieve the same task done

by the traditional scheme with relatively high prediction horizon, e.g., N = 10 or

N = 20 while attaining better tracking and stabilization accuracy, and saving more

than 40% of the computation time. In addition, it still can provide high tracking

performance at low sampling time without the need of tuning the controller parame-

ters. This superior performance makes the proposed NMPC adequate for the multiple

model control scheme as presented in Objective IV.

7.4 Research Summary Based on Objective IV

Finally, we considered the multiple model control, where a Multiple Nonlinear Model

Predictive Controller has been designed for the control of quadrotor Micro Aerial Ve-

hicles (MAVs). In this respect, two NMPC controllers, with/without drag force in

the system model, were incorporated in the NMPC bank to handle different flight

conditions. One of the main objectives of this work is the design of a computationally

efficient algorithm to effectively switch between the controllers. Therefore, the IMM

estimator, designed in Objective II, was used to recognize the flight mode/condition

then trigger the appropriate controller. The conducted numerical simulations have

validated the proposed algorithm and showed more than 50% performance improve-

ment of the Multiple-NMPC over the stand-alone drag force NMPC.

The NMPCs in the controller bank are ensured to be asymptotically stable and

the multiple-NMPC algorithm uses the state of the previous controller as the initial

state of the next controller to avoid discontinuities in the computed control input. As

future research directions, the stability analysis of the switching control system needs

to be performed to ensure the overall asymptotic stability of the switching system.
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7.5 Discussion

The proposed multiple-NMPC algorithm showed improved performance compared

to the stand-alone DF-NMPC. The simulation results have numerically validated the

proposed algorithm and manifested its superiority and capability of switching between

the NMPCs in the controller bank to handle different flight conditions. Although only

two models are used in this study, the same framework can be used to incorporate

more models, such as taking off and landing models. The following steps can be

followed to add more models to the multiple model scheme.

1. Select an additional MAV dynamic model that addresses a different flight mode

or conditions.

2. Design an error-state filter for this model and compute its process and measure-

ment filtering Jacobian matrices (as demonstrated in Section 3.1). (Note: The

filter could be designed as a VINS or any other type of filter, based on the type

of sensors used in the filter and the kind of measurement model.)

3. Perform the observability analysis of this additional model and find the null

space (as demonstrated in Section 3.2.1).

4. Design an observability-constrained VINS using the identified unobservable sub-

space to improve the consistency of the filter (as demonstrated in Section 3.2.2).

5. Incorporate the designed observability-constrained VINS filter in the IMM filter-

ing bank by selecting a suitable initial probability and suitable matrix elements

for the transition probability matrix (as demonstrated in Section 4.1).

6. Design an NMPC for the additional model by selecting a suitable objective

function without terminal costs or constraints (as demonstrated in Section 5.4).
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7. Perform the stability analysis for the designed NMPC by deriving the growth

bound that ensues the asymptotic stability of the closed-loop system and cal-

culate the minimal stabilizing prediction horizon (as demonstrated in Section

5.5).

8. Incorporate the designed NMPC in the multiple-NMPC controller bank by at-

taching it to its corresponding filter to be triggered when the associated model

probability is higher than other models’ probabilities (as demonstrated in Sec-

tion 6.1).

7.6 Summary of Contributions

In summary, following are the key contributions of the thesis objectives in using

multiple model approach for state estimation and control for quadrotor MAVs.

1. Contributions related to Objective I:

• A novel design of two error-state VINS filters with epipolar constraints as

the measurement model. (Section 3.1)

• Observability analysis of the drag force VINS filter and the epipolar con-

straint measurement models. (Section 3.2.1)

• Development of observability-constrained VINS to maintain the consis-

tency of the filter. (Section 3.2.2)

2. Contributions related to Objective II:

• A novel design of an error-state IMM estimator for VINS applications.

(Section 4.1)
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• Numerical and experimental validations of the proposed IMM-VINS using

Matlab simulator and the EuRoC dataset. (Section 4.2)

3. Contributions related to Objective III:

• A design of a computationally-efficient NMPC scheme with improved sta-

bility characteristics for the control of quadrotor MAVs without the use of

terminal costs or constraints. (Section 5.4)

• Stability analysis of the proposed controller to prove its asymptotic stability

by deriving a growth bound on the proposed MPC value function. (Section

5.5)

• Calculation of a minimal stabilizing prediction horizon, which effectively

minimizes the computational cost. (Section 5.5.2)

• Numerical and experimental validations of the proposed controller at vari-

ous initial conditions, system configurations, and various trajectories, and

demonstrating its robustness against the traditional NMPC schemes in the

literature. (Section 5.6)

4. Contributions related to Objective IV:

• A novel design of a multiple model control scheme, depending on the IMM

filter, that can effectively recognize the flight mode and then trigger the

appropriate NMPC from the controller’s bank. (Section 6.1)

• Numerical validation of the proposed Multiple-NMPC system for quadrotor

MAVs. (Section 6.3)
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7.6.1 List of Publications

This research led to the following scientific articles and publications:

Journal Articles:

• M.A.K. Gomaa, O. De Silva, G.K.I. Mann, R. Gosine “Computationally Effi-

cient Stability-based Nonlinear Model Predictive Control Design for Quadrotor

MAVs”, IEEE Transactions on Control Systems Technology, 2021 (Submitted

and Preparing 1st revised version).

• M.A.K. Gomaa, O. De Silva, G.K.I. Mann, R. Gosine, "Nonlinear MPCWithout

Terminal Costs or Constraints for Multi-Rotor Aerial Vehicles," in IEEE Control

Systems Letters, vol. 6, pp. 440-445, 2022. (Presented at the 60th IEEE

conference on Decision and Control "CDC 2021", Texas, USA)

• M.A.K. Gomaa, O. De Silva, G.K.I. Mann, R. Gosine, "Observability-Constrained

VINS for MAVs Using Interacting Multiple Model Algorithm," in IEEE Trans-

actions on Aerospace and Electronic Systems, vol. 57, no. 3, pp. 1423-1442,

June 2021

Conference Publications:

• M.A.K. Gomaa, O. De Silva, G.K.I. Mann, R. Gosine, R. Hengeveld “Compu-

tationally Efficient Multiple-NMPC for Quadrotor Micro Aerial Vehicles”, The

30th Annual Newfoundland Electrical and Computer Engineering Conference

(NECEC), Nov. 2021, NL, Canada.

• M.A.K. Gomaa, O. De Silva, G.K.I. Mann, R. Gosine “Interacting Multiple

Model Navigation System for Quadrotor Micro Aerial Vehicles Subject to Ro-

tor Drag”, 2020 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), October 2020, Las Vegas, USA.
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• M.A.K. Gomaa, O. De Silva, G.K.I. Mann, R. Gosine, R. Hengeveld “ROS Based

Real-Time Motion Control for Robotic Visual Arts Exhibit Using Decawave

Local Positioning System”, 2020 American Control Conference (ACC), July

2020, Colorado, USA.

7.7 Future Research Directions

The research work presented in this thesis has a number of possible potential exten-

sions. These future developments aim at improving the performance of the overall

multiple model state estimation and control system in terms of the computational

efficiency and accuracy.

Onboard implementation of the proposed scheme: Implement the proposed

multiple model state estimation and control system onboard and test it on outdoor

aggressive trajectories. A new experimental setup, using VOXL m500 drone1, is being

prepared to conduct the lab experiments of the multiple-NMPC. The VOXL m500

drone is equipped with high-resolution sensors and an autonomy computer and flight

controller (VOXL Flight Deck), which makes it suitable for fast onboard computations

and advanced autonomy development. The overall multiple model scheme will be

implemented on ROS while using CasADi toolbox [115] as the NMPC optimization

solver, as demonstrated in Chapter 5.

Incorporation of additional filters and model/NMPC pairs in the mul-

tiple model bank: In light of the computational efficiency of the proposed multiple

model scheme, incorporating additional filters and model/NMPC pairs in the multiple

model bank would improve the tracking performance of the MAV and increase its ro-

bustness in most indoor and outdoor applications. Multiple model methods for VINS
1Available on https://www.modalai.com/products/voxl-m500
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can be further investigated by including additional filters that consider different noise

conditions and filters that can guarantee robustness such as sliding mode methods

in the filtering bank. Additionally, filters with models of learned dynamics can be

incorporated to handle the unknown dynamics of the MAV. Similarly, the multiple

model control can be further investigated by including additional NMPCs that ad-

dress other flight conditions, such as, ground effect, proximity to walls or objects in

the environment, taking off, and landing.

Development of optimization-based VINS: Optimization-based VINS has

improved estimation accuracy and solution robustness but demands considerable com-

putational power, where a fixed history of vehicle states and environment features

are optimized using nonlinear optimization [66]. A recent study in [17] showed that

optimization-based VINS is consistently accurate and robust across the different hard-

ware platforms used in the study. However, this superior performance came at the

cost of a high level of resource usage. Therefore, optimization-based techniques can

be further investigated to improve its computational efficiency and make it adequate

for the implementation in the multiple model schemes. Epipolar measurement mod-

els in the optimization framework and novel cost functions to improve optimization

performance/consistency can be considered.

Using machine learning techniques as a weighting/switching module:

Recently, machine learning techniques have shown promising results in robotics ap-

plications such as terrain classification [124] and image classification for path-following

[125] using sensors data, e.g., images or acceleration from an IMU. As a result, they

were used in MAV applications to recognize some flight conditions such as ground

effect [126] or proximity to wall [7]. Therefore, machine learning techniques, such as

Neural Network [127], can be used in the multiple model estimation/control algorithm

to recognize the flight modes or conditions and then trigger the appropriate filter and
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model/NMPC pair to improve the overall performance of the MAV. The MAV sen-

sors, including the camera and IMU, and possibly additional sensors, can be utilized

for the feature selection of each flight mode.
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Appendix A

Transformation to the Body Frame

at the C.G. of the Helicopter

All the forces including thrust force, drag force, and gravitational acceleration force

and the accelerometer measurements given in Fig. A.1 will be resolved at {G} to

compute the velocity of {I} w.r.t {G} expressed in {G}, GvGI , then transform it back

to {I} to get IvGI or Iv for simplicity. The drag force at {B} is BD̄L
BvGB, where

BD̄L is the drag parameters matrix expressed in {B} and BvGB is the velocity of {B}

w.r.t {G} expressed in {B}. Due to this coordinate transformation there will be an

extra term in the velocity state dynamics as follows,

I ˙̂v = R(I q̂G)Ggē3 +R(I q̂B)B ˆ̄baē3− (ωm− b̂g)× I v̂− ID̄L
I v̂− ID̄L(ωm− b̂g)× IpIB

where IpIB and R(IqB) are the translation and orientation from {B} to {I} that

are given in the dataset, ID̄L is the drag parameters matrix expressed in {I} and

is calculated as ID̄L = R(IqB)BD̄LR(IqB)T , and B ˆ̄ba is the new accelerometer bias

state that includes the thrust force and expressed in {B}. The inertial measurement
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Fig. A.1: Applied forces at the body frame at the C.G. of the helicopter.

model will be updated as well as follows,

ha = −ID̄L
Iv +R(I q̂B)Bb̄a − ID̄L(ωm − bg)× IpIB + na

For the C-VINS filter, the only change happens in the velocity state equation due

to the transformation of the accelerometer bias from {I} to {B}, as follows,

I ˙̂v = R(I q̂G)Ggē3 + (am −R(IqB)Bba)− (ωm − bg)× I v̂

The process noise covariance matrix corresponding to the accelerometer bias in

both filters has to be transformed to {B} as well, as follows,

BQw = R(IqB)TQwR(IqB)
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Appendix B

Unbiased Approach for Unequal

Dimension States IMM

The DF-VINS process model and state covariance matrix can be rewritten as,

x̂(1)
k|k =

 ˆ̄x(1)
k|k

B ˆ̄b(1)
a k|k

 , P(1)
k|k =

P(x̄x̄,1)
k|k P(x̄b̄a,1)

k|k

P(b̄ax̄,1)
k|k P(b̄ab̄a,1)

k|k



where Bb̄a is the accelerometer bias including the thrust force expressed in {B} and

x̄ is state vector that includes the other states proposed in (3.7). The same for the

C-VINS filter, the process model and state covariance matrix can be rewritten as,

x̂(2)
k|k =

 ˆ̄x(2)
k|k

Bb̂(2)
a k|k

 , P(2)
k|k =

P(x̄x̄,2)
k|k P(x̄ba,2)

k|k

P(bax,2)
k|k P(baba,2)

k|k


where Bba is the accelerometer bias expressed in {B} and x̄ is state vector that

includes the other states proposed in (3.3). Using the unbiased approach for unequal
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dimension states, the state interaction can be implemented as follow,

x̂(01) = µ̃1|1x̂(1)
k|k + µ̃2|1x̂(2|1)

k|k

x̂(02) = µ̃1|2x̂(1|2)
k|k + µ̃2|2x̂(2)

k|k

where

x̂(2|1)
k|k =

 ˆ̄x(2)
k|k

B ˆ̄b(1)
a k|k

 , x̂(1|2)
k|k =

 ˆ̄x(1)
k|k

Bb̂(2)
a k|k


While the covariance interaction is implemented as follow,

P(01) = µ̃1|1
[
P(1) +

(
x̂(1) − x̂(01)

) (
x̂(1) − x̂(01)

)T ]
+µ̃2|1

[
P(2|1) +

(
x̂(2|1) − x̂(01)

) (
x̂(2|1) − x̂(01)

)T ]

P(02) = µ̃1|2
[
P(1|2) +

(
x̂(1|2) − x̂(02)

) (
x̂(1|2) − x̂(02)

)T ]
+µ̃2|2

[
P(2) +

(
x̂(2) − x̂(02)

) (
x̂(2) − x̂(02)

)T ]
where

P(1|2) =

P(x̄x̄,1) 0

0 P(baba,2)

 , P(2|1) =

P(x̄x̄,2) 0

0 P(b̄ab̄a,1)
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Appendix C

Stability Analysis for Conventional

NMPC

The running cost in (5.2) is tailored as follows,

`(x,u) =
8∑
i=1

qi (xi − xr,i)2 + r1(u1 − ũ1)2 + r2(u2 − ũ2)2 + r3(u3 − ũ3)2, (C.1)

which is designed to satisfy the asymptotic stability conditions presented in Theorem

5.1 in Section 5.4.1, where

ũ1 = g
cx7cx8

, ũ2 = τ̄φ

K̄φ

x7, ũ3 = τ̄θ

K̄θ

x8,

cx7 := cos(x7), and cx8 := cos(x8).

The growth bound γi given in Assumption 5.1 can be obtained by constructing

a summable sequence cj ⊆ R≥0, j ∈ N0 that satisfies Inequality (5.20), such that

γi = ∑i−1
j=0 cj, i ∈ N≥2. The computation of the sequence cj and thus the growth

bound γi is governed by the following proposition.

Proposition C.1. Consider the system model (5.5) and running costs (C.1). Let the

143



penalty parameters in (C.1) are given as

r1 ≤
σ

16q6, r2 ≤ σK̄2
φq7, r3 ≤ σK̄2

θ q8 (C.2)

with weighting ratio σ ∈ Q, and let θ and φ ∈ [−60◦, 60◦]. Then, condition (5.13)

holds with γi = ∑i−1
j=0 cj, i ∈ N≥2, where sequence cj is governed by (5.22). Also, there

exists a prediction horizon N ∈ N such that condition (5.16) holds and the NMPC

closed-loop with N is asymptotically stable.

Proof. The quadrotor trajectories can be chosen as straight lines, curves, or lattice

shapes, as given by function (5.23). Substitute (5.5) into (5.23) in order to find the

required open-loop control inputs (ux0) for the maneuver. The first control input u1

was given in (5.5) as

x6[j + 1] = x6[j]− δg + δR33u1[j]

where, R33 = cx7cx8 is the element in the third row and third column in the rotation

matrix R. Thus, the control input u1x0
for all x0 ∈ X (or u1 for the sake of simplicity)

can be calculated as follows:

(
λρ − (j + 1)ρ

λρ

)
x0,6 −

(
λρ − jρ

λρ

)
x0,6 = −δg + δR33u1. (C.3)

Using the binomial expansion, (C.3) reduces to

(
−∑ρ−1

i=0
ρCi j

i

δλρ

)
x0,6 + g = R33u1.

Let Cρ = ∑ρ−1
i=0

ρCi j
i that yields,

u1 =
g − Cρ

δλn
x0,6

cx7cx8
. (C.4)
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The calculations of the second and third control inputs are similar to (5.26) and (5.27),

respectively, as follows

u2 = −Cρ + δτ̄φ(λρ − jρ)
δK̄φλρ

x0,7. (C.5)

u3 = −Cρ + δτ̄θ(λρ − jρ)
δK̄θλρ

x0,8. (C.6)

Applying (5.23), (C.4), (C.5), and (C.6) into (C.1) yields the running costs (C.7)

along the resulting open-loop trajectories.

`(xux0
(j; x0),ux0(j)) =

(
λρ − jρ

λρ

)2 8∑
i=1

qi (x0,i − xr,i)2 + r1
( Cρ
δλρ

)2

c2x7c2x8
x2

0,6

+r2

(
−Cρ
δK̄φλρ

)2

x2
0,7 + r3

(
−Cρ
δK̄θλρ

)2

x2
0,8

(C.7)

To this end, the bounding sequence cj can be found by bounding the running costs

(C.7) such that condition (5.20) is satisfied. We use the limit on the attitude angles

as θ and φ ∈ [−60◦, 60◦] as this bound captures the nominal non-aggressive flight

trajectories of the quadrotors. As a result, the second term in (C.7) can be bounded

as

r1
( Cρ
δλρ

)2

cos2(x7) cos2(x8)x
2
0,6 ≤ r1

16
δ2

(∑ρ−1
i=0

ρCi j
i

λρ

)2

x2
0,6

where, 1/cos2(x7) cos2(x8) has an upper bound of 16. Using condition (C.2) and

recalling that j ≤ λ yield

r1
( Cρ
δλρ

)2

cos2(x7) cos2(x8)x
2
0,6 ≤ r1

16
δ2

(
λρ−1∑ρ−1

i=0
ρCi

λρ

)2

x2
0,6 ≤ σq6

(∑ρ−1
i=0

ρCi
)2

δ2λ2 x2
0,6

Moreover, the third and fourth terms in (C.7) can be bounded in the same manner
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as follows:

r2

(
−Cρ
δK̄φλρ

)2

x2
0,7 ≤ r2

1
δ2K̄2

φ

(∑ρ−1
i=0

ρCi
)2

λ2 x2
0,7 ≤ σq7

(∑ρ−1
i=0

ρCi
)2

δ2λ2 x2
0,7

r3

(
−Cρ
δK̄θλρ

)2

x2
0,8 ≤ σq8

(∑ρ−1
i=0

ρCi
)2

δ2λ2 x2
0,8

As a result, the running costs (C.7) can be estimated by

`(xux0
(j; x0),ux0(j)) ≤

(
λρ − jρ

λρ

)2

‖x0 − xf‖2
Q + σ

δ2λ2

ρ−1∑
i=0

ρCi

2 8∑
i=6

qix0,i

≤

(λρ − jρ
λρ

)2

+ σ

δ2λ2

ρ−1∑
i=0

ρCi

2
 ‖x0 − xf‖2

Q

(C.8)

Therefore, the bounding sequence cj in (5.20) can be attained as in (5.22). Finally,

the growth bound γk := ∑k−1
j=0 cj, k ∈ N0 can be obtained as given in Theorem C.1 by

γk =
k−1∑
j=0

(λρ − jρ
λρ

)2

+ σ

δ2λ2

ρ−1∑
i=0

ρCi

2
 , (C.9)

which is the same bounding sequence as in (5.33).
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