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Abstract 

The advancement in big data and computing has prompted many industries including process 

industries to re-examine their traditional roles in design, control, and maintenance. The data-based 

models have the potential to contribute significantly to making the process industry more 

efficient, much safer, and environmentally friendlier. However, poor quality data, process 

uncertainty, random and spurious errors are major challenges to be handled by the data-driven 

methodologies. The objective of this research is to develop data-driven models for the safety 

management of complex process systems.  This work also extends process safety principles to 

pandemic risk management to safeguard human health. Even though the Coronavirus Disease of 

2019 pandemic has not resulted from process operations, energy industries were one the hardest 

hit sectors due to the pandemic. The COVID-19 pandemic has disrupted processing operations 

resulting in the historic collapse in demand and price crash leading to unprecedented scenarios. 

Nonetheless, the present pandemic provides numerous possibilities to strengthen engineering risk 

management approaches for benefiting all enterprises, especially, the oil and gas processing 

sectors. The reasons for studying pandemic risk management using the process safety framework 

are three-folds; to evince the multi-disciplinary nature of process safety principles, to demonstrate 

similarities between system safety and epidemiological risk management, and to manage pandemic 

risk using process safety principles.  

This work presents robust data-based efficient methodologies for fault detection, fault 

characterization, and mitigation for ensuring safety. The robustness has been inculcated by 

explicitly addressing the data quality issues, reconciling data-driven models with mechanistic 

models, integrating meta-learning, and incorporating prior knowledge and expert opinions. This 

thesis addresses the data quality issue by developing a robust model based on harnessing data 
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quality features and assigning a lower weight to the low-quality data. The proposed method 

demonstrated improved results in detecting abnormalities in two case studies; a continuous stirred 

tank heater problem and the Tennessee Eastman (TE) benchmark chemical process. The 

percentage improvements in accuracy in detecting the step fault (IDV-1 fault) of the TE process 

were 1.0 %, and 4.5 % on 1%, and 10% mislabeled data respectively.  A process dynamics-guided 

neural network model has been proposed to improve generalization. This has been implemented 

by adding an additional layer to the deep neural network architecture to incorporate process 

dynamics such as material and energy balance equations, universal laws, standard correlations, 

and field knowledge. The proposal has been evaluated on regression and classification tasks 

representing transient and steady-state operations of chemical processing systems. It resulted in 

significant gains in predicting dependencies in steady-state operations and forecasting transient 

conditions due to its improved generalization ability. The fault detection of a neural network model 

has been improved by incorporating meta-learning as well. The thesis presents a data-driven fault 

detection model using an artificial neural network and variable mosquito flying optimization 

technique for parameter tuning by maximizing fault detection rate while minimizing the false 

alarm rate. The proposed fault detection method has been applied for detecting faults in the TE 

benchmark process.  

The thesis also presents a hybrid formalism in pandemic risk management where the performance 

of the mechanistic models has been improved with advanced data-driven approaches. Thus, an 

artificial neural network-based susceptible, exposed, infected, quarantined, recovered, deceased 

(SEIQRD) model has been devised to effectively capture the temporal variability of a disease 

spread. It also addresses inconsistencies in reporting of infected cases by assigning a higher weight 

to the mortality data which is a more credible indicator of the disease progression than the reported 
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infected cases. This yielded satisfactory results in forecasting infection cases of the COVID-19 in 

Ontario, British Columbia, Italy, and Germany. Uncertainty is another critical factor of processing 

systems and epidemiological modeling. This thesis quantifies the risk with randomness in the 

model parameters such as incubation, infection, and recovery periods under distinct measures of 

lockdown, schools and business closures including no measure.  The uncertainty caused due to 

government interventions, changes in individual behavior, and the advent of multiple waves of an 

outbreak has been accounted by the parameter sharing feature of a hierarchical Bayesian network. 

Markov chain Monte Carlo simulation has been used to study the variability in the hierarchical 

Bayesian network. Finally, the thesis presents pandemic risk management frameworks using 

engineering safety principles such as precautionary, as low as reasonably practicable, and the layer 

of protection analysis approaches. An event tree model of pandemic risk management for distinct 

risk-reducing strategies realized due to natural evolution, government interventions, societal 

responses, and individual practices has been proposed. The proposed framework also investigates 

the impacts of distinct interventions on the survivability of an infected individual under existing 

healthcare facilities.   

This thesis can help in ensuring safety of complex systems by detecting abnormalities using robust 

data-driven and semi-mechanistic models. The thesis explores the synergy between process safety 

and epidemiology to better understand, analyze, and manage the risk. This is a first step towards 

the interdisciplinary study of this sort and paves the way for more interdisciplinary studies, 

enriching both disciplines. 
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Chapter 1 

Introduction 

1.1 Background and Motivation 

Chemical process systems are high volume, hazardous operations that can result in significant loss 

of lives and assets if an accident occurs. Ensuring efficient process monitoring and early detection 

and diagnosis of abnormalities is essential to prevent such losses. This can be achieved by 

rendering preventive actions such as process monitoring, system reconfiguration, installing safety 

instrumented systems, and facilitating timely maintenance (Niu, Yang, & Pecht, 2010). The 

enhanced design and technological advancements of the modern era have led to a decline in the 

number of catastrophic accidents. Nonetheless, accidents in process industries continue to occur 

(Khan & Abbasi, 1999; Mannan, Reyes-Valdes, Jain, Tamim, & Ahammad, 2016).  Thus, the 

current safety technologies need to be continuously reviewed and updated to prevent adverse 

incidents. 

Efficient detection and diagnosis of the abnormalities at an early stage are of utmost importance 

in ensuring operational safety in process systems. Early detection of abnormal conditions gives a 

lead time to respond effectively to prevent or mitigate the damage from the abnormal condition. 

Thus, robust techniques of fault detection, identification, and diagnosis have become vital tools 

for the safety management of process systems. Many fault detection and diagnostic (FDD) 

methods have been developed over the last four decades. They can broadly be divided in two 

categories: model-based and data-based (Alauddin, Khan, Imtiaz, & Ahmed, 2018; 

Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). Experts predict that the 21st century 

will be known for the development of data-based systems that are revolutionizing the process 

design and monitoring of industrial systems. Many oil and gas companies are looking forward to 
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adopting artificial intelligence-based models for their operations. According to a whitepaper by 

the World Economic Forum, “digitalization in the oil and gas sector has the potential to unlock 

around $1.6 TN of value over the next decade (World Economic Forum & Accenture, 2017)”.  

There is a growing consensus towards intelligent and data-driven operations for design and 

predictive maintenance in processing systems. However, some of the underlying factors must be 

considered while devising methodologies for the safety management of complex process systems. 

i. The complex nature of the system: Chemical process systems are becoming extremely 

complex due to increased automation and process intensification in the pursuit of improved 

efficiency. A large number of associated variables and system parameters cause difficulty in 

efficient monitoring and safety management of complex industrial systems. For instance, an 

average of 14,250 alarms, with a peak of 26,650 alarms per day, was recorded in a European 

refinery (Ren, Zhu, Cai, & Li, 2017). Redundant alarms are usually being ignored by operators. 

Consequently, alarm flooding is becoming a threat to complex industrial systems. The highly 

correlated nature of the multivariate data is another challenge to be dealt with for effective 

monitoring and ensuring safety of process systems. Thus, efficient techniques of process 

monitoring, fault detection, identification, and diagnosis are needed. 

ii. The dynamic nature of process operations:  The dynamic nature of process operations is 

another challenging task to be taken into account for the effective management of incipient 

abnormalities. Disturbances, transportation lag, and process dynamics constitute the dynamic 

behavior of process systems. Process controls are used to respond to the myriad disturbances in 

processing facilities. A process safety management system should be capable of identifying these 

abnormal situations and taking mitigation actions for handling these disturbances. 
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iii. Uncertainty in process systems: Uncertainty in data is a common characteristic of most 

process industries. The common sources of uncertainty include measurement methods, 

manufacturers' imprecise specification, calibration, data acquisition and processing, and 

malfunctioning of secondary devices.  Poor repeatability i.e., “the difference between two 

successive results obtained by the same operator with the same apparatus under constant operating 

conditions” and reproducibility, “the difference between two results obtained by different 

operators in different laboratories on identical test materials” are other contributing factors to 

uncertainty in process systems. Inappropriate sampling techniques, improper sample conditioning, 

collecting samples from non-representative locations and non-representative operating conditions 

are also common sources of uncertainty in process systems. Process system uncertainty is further 

induced by randomness, spurious errors, and malfunctioning of equipment.   

Uncertainty can be minimized by following appropriate sampling, measurement, estimate, and 

quality assurance methods, but it cannot be eliminated. Thus, robust data-driven techniques for 

handling uncertainties in the safety management of processing systems are required. 

iv. Inconsistent and sparse data: Process systems are going through digital transformations 

and data-based management systems. The success of data-based models is utterly susceptible to 

the nature and availability of training data. Sparse data are also a growing concern for the efficient 

training of data-driven models. Usually, a large volume of data is available to represent the normal 

operating conditions, while faulty condition data is relatively scarce in industrial systems. The 

imbalanced data can lead to a biased outcome if not addressed in the modeling. Accordingly, robust 

models are required for dealing with inconsistent and sparse data of industrial systems. 

v. Natural hazards and unseen events: Earthquakes, floods, cyclones, pandemic outbreaks, 

and other natural catastrophes continue to pose a threat to the safety of process systems. Natural-
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hazard-triggered technological events can exacerbate the impact of a natural disaster. It can be 

detrimental to health, livelihood, social system, and the environment. The COVID-19 pandemic, 

for example, disrupted processing operations resulting in the historic collapse in demand and price 

leading to unprecedented scenarios (Camp, Mead, Reed, Sitter, & Wasilewski, 2020; OECD, 

2020). Personal safety and operability of process systems were jeopardized as a result. Efficient 

methods for combating these outbreaks need to be devised. 

The epidemiological modeling confronts similar challenges as outlined in the preceding section. 

The trajectory of an epidemic disease depends on the imposed regulations, societal response, 

individual practices, and the advent of multiple waves of disease. Uncertainty and inconsistency 

are inevitable in epidemiological studies. A pandemic modeling comprises both aleatory 

uncertainty (caused by variability in population/data) and epistemic uncertainty (arising from a 

lack of knowledge of the phenomena). The distinct strains of the virus, modes of propagation 

(airborne or contact transmission), and uncertainty in infectivity, rate of incubation, infection, and 

recovery all constitute uncertainty in epidemic modeling. Moreover, the reporting of the infected 

cases is often flawed by numerous factors such as lack of systematic testing, inherent delay 

between the date that an illness starts and the date the case is reported to public health authorities. 

These factors can significantly affect the outcomes of the risk management efforts if not considered 

in the models.  

Data-driven, also known as empirical models, are generic and can adapt to meet the requirements 

of the modern era's complex systems. Data-based models have the potential to significantly 

improve efficiency, safety, and sustainability of process systems. The data-based models, 

especially the artificial neural network, can approximate complex functions. Machine learning 

models can be very good at fitting observations yet predictions may be contradictory with the laws 
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of physics or even physically nonsensical (e.g. negative density estimations) (Svendsen et al., 

2021). Data-based models assume that the data is of sufficient granularity and quantity. They also 

suffer from the lack of generalization ability and struggle when data is scarce or in extrapolation 

regimes (Fisher et al., 2020; Pawar, San, Aksoylu, Rasheed, & Kvamsdal, 2021). Moreover, the 

"black box" nature of the data-driven models, especially deep neural networks, is a barrier to large-

scale adoption in industrial systems. The data-based models can be improved by conforming 

mechanistic science, expert knowledge, and meta-learning insights. 

First principle models, on the other hand, are robust and have a higher degree of generalization. 

Their system understanding feature compensates for the lack of high-quality data (Fisher et al., 

2020).  Developing efficient mechanistic models is often challenging and expensive, especially for 

new application areas with limited domain knowledge. Simplified first principle-based models are 

inapt to adequately capture the behavior of complex processing systems. 

The objective of this work is to develop robust data-driven models for the safety of complex 

systems and human health management. The objective is achieved through three sub-objectives, 

to develop robust data-driven models for the safety of process systems, to devise semi-mechanistic 

models for assessing pandemic risk, and to establish synergy between process safety and pandemic 

risk management. 

a) The development of robust data-driven models for the safety of process systems: Robust 

data-based models based on efficient algorithms, recombination, and hybridization of state-

of-the-art methodologies have been devised for the abnormal situation management of 

processing facilities. The thesis presents robust data-driven models by exploiting data 

quality, reconciling data-driven models with mechanistic modeling, integrating meta-

learning, and incorporating prior knowledge and expert opinions. 
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b) Devising semi-mechanistic models for assessing pandemic risk: The thesis presents 

integrating data-driven models in mechanistic frameworks for assessing pandemic risk 

under evolving conditions. This work shows how the pandemic risk forecast of a 

mechanistic model can be made more precise and conclusive using artificial neural 

networks and Bayesian formalisms.  

c) To establish synergy between process safety and pandemic risk management: This thesis 

explores the synergy between process safety principles and epidemiology to better 

understand, analyze, and manage the risk. The pandemic risk has been analyzed using 

process safety principles such as precautionary principles, as low as reasonably practicable 

approach, event tree model, and the layer of protection analysis. 

The thesis presents robust models for the safety management of complex processing systems and 

pandemic risk management (Fig. 1.1). This has been carried out by devising efficient 

methodologies for fault detection, fault characterization, and mitigation. The robustness has been 

instilled by exploiting data quality, reconciling data-driven models with mechanistic modeling, 

integrating meta-learning, and incorporating prior knowledge and expert opinions. Poor quality, 

sparsity, and inconsistency of data have also been effectively addressed by multiple formulations 

(Fig. 1.2). The hybrid formulations of data-based models and science-based models have been 

used in pandemic risk management as well.  The thesis addresses the aforementioned challenges 

of process systems and pandemic risk management as follows: 

i. Handling low-quality data: This thesis addresses the data quality issue by developing a robust 

model by exploiting data quality in the training of supervised networks (Chapter 3). Low-

quality is also a common feature for pandemic data. The early growth dynamics of an epidemic 

is a better characterizing of the impact of an outbreak. Identifying significant features of the 
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initial growth kinetics of an outbreak is useful in reliable forecast and effective management of 

a pandemic. However, the newly infected-cases data are often flawed by numerous factors such 

as lack of systematic testing, the inherent delay between the onset of the disease, and the date 

that the case is reported to public health authorities. Mortality data are lagged but a more reliable 

indicator of the disease progression across populations than the number of confirmed cases. The 

data of the initial phase of the pandemic have been recalibrated based on first mortality data 

and a higher weight is assigned to more reliable data in fitting the model (Chapter 6).   

ii. Handling uncertainties in the system: Uncertainty is another critical factor of processing 

systems and epidemiological modeling. This thesis addresses this issue by contributing as 

follows- 

a. Monte Carlo simulation-based risk assessment framework:  Monte Carlo simulation has 

been employed to capture randomness in the model parameters (Chapter 6 and Chapter 8). 

The distributions of the model parameter such as incubation, infection, and recovery periods 

have been used to capture the long tail of the infection risk (Section 6.3.2). It has also been 

used to study the effect of enforcing and relaxing interventions for managing a pandemic 

outbreak (Section 6.3.3 and Section 6.3.4). Monte Carlo simulation has been used in 

assessing pandemic risk using Paté-Cornell's six levels of uncertainty (Section 8.3.1). 

Uncertainty has also been quantized in managing risk using precautionary and ALARP 

approaches (Section 8.3.1 and Section 8.3.3) and survival analysis of an infected individual 

under existing healthcare facilities (Section 8.3.4). 

b. Parameter sharing feature of the hierarchical Bayesian structure: The uncertainty in the 

reported pandemic data has been handled using the parameter sharing feature of the 
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hierarchical Bayesian structure. Markov chain Monte Carlo simulation (MCMC) has been 

used to study the variability in a hierarchical Bayesian framework (Section 7.3.2). 

c. Impact analysis for random parameters using a Bayesian framework: A Bayesian inference 

network has been used to analyze the impact of distinct parameters in pandemic risk management. 

The thesis presents relevance-based reasoning, which is based on the conditional probability 

distribution, for impact analysis of availing the existing health facilities (Section 7.4.2).   

iii. Integrating system knowledge in the data-driven model: Many methods have been presented in 

improving the performance of data-driven methods by optimizing hyper-parameters such as the 

number of hidden layers, number of neurons in each layer, the learning rate, and optimization 

techniques. Numerous approaches such as early stopping, regularization, dropout, and 

retraining have been devised for handling the overfitting and under-fitting of data-based 

models. However, there is a lack of literature on integrating the process knowledge such as 

material and energy balances, physical laws, chemical kinetics, and expert knowledge in the 

training of data-based models. Similarly, infectious disease dynamics have been extensively 

studied using data-driven and mechanistic models. The time series analysis of pandemic data 

has been carried out using numerous data-driven approaches i.e., autoregressive integrated 

moving average (ARIMA) technique, multivariate ARIMA, autoregressive moving average 

with exogenous inputs (ARMAX), and exponential smoothing (ETS). Advanced machine 

learning techniques such as artificial neural networks, deep neural networks, and recurrent 

networks such as long short-term memory (LSTM) have been used for time series analyses of 

infectious diseases  (Zhang et al., 2013) (Volkova, Ayton, Porterfield, & Corley, 2017; Zhu et 

al., 2019). Several mechanistic models comprise compartmental, spatial, meta-population, 
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network-based, and agent-based methods have been developed. However, integrating the data-

driven and mechanistic models is barely discussed. 

This thesis presents a process dynamics-guided neural network (PDNN) model for improving 

performance of the system (Chapter 4). Similarly, a meta-learning-based hybrid model has been 

developed for refining the model parameters for an intended function (Chapter 5). Integrating 

data-based and science-based models have been enacted in pandemic risk management as well. 

The thesis presents a susceptible, exposed, infected, quarantined, recovered, deceased 

(SEIQRD) model that can account for the asymptomatic transmission and hospitalization cases. 

The forecast has been made more compelling by capturing temporal changes in parameters of 

the SEIQRD model using an artificial neural network (Chapter 6) and a hierarchical Bayesian 

formalism (Chapter 7). 

.  

 

Fig. 1.1: Operational safety management using data-driven models of fault detection, 

characterization, and mitigation 
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1.2 Contributions 

This section summarizes the novelty and contributions of this research. The salient methodological 

and applicative contributions are listed below. 

i. Devising a robust deep neural network model for handling low quality and mislabeled data 

Application – The proposed model was examined for fault detection and isolation on two 

case studies; a continuous stirred tank heater problem and the Tennessee Eastman chemical 

process. 

ii. Formulation and design of process-informed neural network model for abnormal situation 

management by integrating process knowledge with data. 

Application – The proposed model has been examined on regression and classification 

tasks of the processing system representing steady-state and transient operations. It also 

resulted in improved generalization ability on the unseen and reduced sample-sized training 

data.   

iii. Development of hybrid fault detection and isolation model using an artificial neural 

network (ANN) and variable mosquito flying optimization (V-MFO) technique.  

Application – The proposed model has been examined on the Tennessee Eastman 

benchmark process for detecting abnormalities. The parameter tuning using the variable 

mosquito flying optimization demonstrated significant improvement in missed detection 

rate compared to the simple ANN. 

iv. Development of a novel advanced semi-mechanistic SEIQRD pandemic model based on 

artificial neural network 

Application – The proposed model has been used to assess the infection risk at distinct 

locations due to the COVID-19. This also investigates the risk in enforcing and releasing 

distinct risk-reducing measures including no measure.  
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v. Proposed hierarchical variational Bayesian network-based semi-mechanistic model (HBN-

SEIQRD) for capturing variability in parameter learning under evolving conditions. 

Application – The proposed model has been used to assess the infection risk at distinct 

locations due to the multiple waves of the COVID-19 outbreak. This also investigates the 

impact of the COVID-19 outbreak on peak hospitalization cases under three scenarios: no 

measures or few interventions, moderate interventions, and stricter interventions.   

vi. Devising pandemic risk management frameworks using engineering safety principles such 

as precautionary, ALARP, and layer of protection analysis approaches 

Application – Engineering safety principles-based pandemic risk managing formulations 

have been studied on the COVID-19 pandemic. The qualitative and quantitative analyses 

have been presented using the precautionary principle, ALARP approach, event tree 

analysis, and layer of protection analysis. 

A significant contribution of this thesis is to explore the similarities between process safety and 

epidemiology to better understand, analyze, and manage the risk. Approaches to prevent, control, 

and mitigate infection are analogous to the hazard control and safety frameworks used in the 

process industries. We observed how early detection of abnormalities, quick response, effective 

monitoring, and enforcement to restrict the COVID-19 spread were effective in minimizing the 

pandemic risk. By drawing a parallel between two domains, it can be believed that the lessons 

learned from the COVID-19 pandemic would immensely benefit engineering safety personnel and 

healthcare experts in efficient policymaking. 

1.3 Thesis Outline 

The thesis is divided into nine chapters. The first few chapters are focusing on introducing the 

process safety concepts, data-based methodologies, data quality issues, and optimization methods 
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to calibrate process models. The semi-mechanistic models of pandemic risk management have 

been discussed in the following chapters. The last chapter presents the applications of process 

safety principles to pandemic risk management.   

The first chapter outlines the problem, objectives, and scopes of this study. Chapter 2 presents the 

literature review related to advanced data-driven models for process safety management. The 

review focuses mainly on multivariate models including principal component analysis, partial least 

squares, independent component analysis, artificial neural networks, mixture models, and 

Bayesian approaches. This chapter also includes a review on modeling infectious disease 

transmissions with a special emphasis on dynamics and control of an outbreak. This section also 

discusses distinct approaches to estimate model parameters. The technical sections of the thesis 

have been depicted in Fig. 1.3.  

Chapter 3 presents a novel approach, the quality-based training (QbT) for handling mislabeled 

and/or low-quality data in a deep neural network. In this Chapter, a new metric, the classification 

index, was formulated for effective evaluation of fault detection system. It demonstrates how the 

proposed robust ANN model overcomes the limitation of simple ANN in presence of low-quality 

data.  

Chapter 4 presents a process dynamics-guided neural network model to improve the model 

generalization by rendering process dynamics and field expertise. It also presents an evaluation of 

the proposed models on regression and classification tasks of processing systems. A similar 

approach to integrate meta-learning in the deep neural network has been presented in Chapter 5. 

A hybrid model based on an artificial neural network and variable mosquito flying optimization  

technique has been used to detect faults based on maximizing fault detection rate and minimizing 

false alarm rate. 
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Chapter 6 presents an advanced semi-mechanistic model elicited from a compartmental model and 

an artificial neural network. The model has been developed to forecast the dynamic risk under 

evolving conditions.  Monte Carlo simulation has been used to capture randomness of the model 

parameters. The risk in enforcement and releasing of distinct non-pharmaceutical interventions at 

different stages of a pandemic has also been evaluated in this Chapter. Chapter 6 also formulates 

a layer of protection analysis (LOPA) for preventive, controlling, and mitigating strategies for 

pandemic risk. Also, several areas of similarities have been identified where process safety and 

epidemiology can be benefited from each other. 

Chapter 7 presents a Bayesian-based semi-mechanistic formalism for a credible assessment of 

pandemic risk. The variability caused by evolving conditions due to imposed regulations, varied 

individual responses, and the advent of the multiple waves of a pandemic outbreak has been 

captured using a hierarchical Bayesian network. This has been used to estimate parameters of the 

susceptible, exposed, infected, quarantined, recovered, deceased (SEIQRD) model to forecast 

newly infected cases and fatality caused by the COVID-19. This formalism is a righteous 

demonstration of handling uncertainties using integrated knowledge where the semi-mechanistic 

model is enriched with mechanistic knowledge in the form of a set of differential equations of the 

disease dynamics, prior knowledge of parameter distribution, and pooling information from 

distinct periods of the pandemic outbreaks. 

The relevancy of engineering safety principles to pandemic risk management has been introduced 

in Chapter 8. It assesses risk management strategies such as precautionary and as low as reasonably 

applicable (ALARP) approaches. The pandemic impact has been quantified using the susceptible, 

exposed, infected, quarantined, recovered, deceased (SEIQRD) mechanistic model while the 

uncertainties have been accounted for using Monte Carlo simulation and Paté-Cornell's approach. 
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This Chapter also categorizes distinct risk-reducing strategies into hierarchical safety frameworks.  

Finally, an event tree model of pandemic risk management for distinct risk-reducing strategies 

realized due to natural evolution, government interventions, societal responses, and individual 

practices has been proposed. It also investigates the roles of distinct interventions on survivability 

of an infected individual under existing healthcare facilities. Chapter 9 summarizes the findings 

and practical implications of the study and identifies areas for further research. The overall 

structure of the thesis along with the tools for the intended tasks is presented in Table 1.1. 
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Fig. 1.3: The structure of the thesis  
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Table 1.1: Contribution of Chapters to the research objectives and associated tasks 

 

Chapters and Titles Research Objective Associated tasks/ handling issues Tools 

Chapter 3: Quality-based training (QbT) of 

supervised neural networks for the robust 

fault detection in the presence of 

mislabeled data 

To develop robust data-

driven models for the 

safety of process 

systems 

 addresses the data-quality issue by developing 

a robust model by exploiting data quality  

 

Python 3.6 

pandas 

pyplot 

 

 

Chapter 4: A primer on integrating process 

dynamics in data-driven models of 

chemical processing systems 

To develop robust data-

driven models for the 

safety of process 

systems 

 Integrating process dynamics in the data-

driven model 

 Handle generalization of data-driven models 

Python 3.6 

Julia 1.62 

SciML 

odenet 

 

Chapter 5: A variable mosquito flying 

optimization based hybrid ANN model for 

fault detection of process systems 

To develop robust data-

driven models for the 

safety of process 

systems 

 Integrating meta-learning-based in the data-

driven model 

MATLAB 9.5 

(R 2018b) 

Classification 

Learner 

ann toolbox 

 

Chapter 6: How Can Process Safety and a 

Risk Management Approach Guide 

Pandemic Risk Management? 

 

 

To devise semi-

mechanistic models for 

assessing pandemic risk 

 Integrating data-based and science-based 

models by capturing temporal changes in the 

parameter of the SEIQRD model using ANN  

 Handling low-quality data by assigning a higher 

weight to the more reliable fatality data 

MATLAB 9.5 

(R 2018b) 

ode45 

patternsearch 

ann toolbox 
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To establish similirities 

between process safety 

principles and 

epidemiology 

 Capturing uncertainty in the parameters using 

Monte Carlo simulation 

 

 Layer of protection analysis of the pandemic 

risk management 

Chapter 7: Pandemic Risk Assessment and 

Management in Bayesian Framework 

 

To devise semi-

mechanistic models for 

assessing pandemic risk 

 

 Integrating data-based and science-based 

models  

 Treating uncertainty using the parameter 

sharing feature of the hierarchical Bayesian 

structure 

 Impact analysis for random parameters using 

relevance-based reasoning of  Bayesian 

framework 

PyMC3 3.10 

pm.Model 

pm.sample 

arviz 

pyplot 

pandas 

GeNIe 2.2 

 

 

Chapter 8: Pandemic Risk Management 

using Engineering Safety Principles 

 

To establish similarities 

between process safety 

principles and 

epidemiology 

 precautionary and ALARP-based risk 

management  

 risk-reducing strategies into hierarchical safety 

frameworks 

 developing event tree model of pandemic risk 

management for distinct risk-reducing 

strategies 

MATLAB 9.5 

(R 2018b) 

ode45 

patternsearch 
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List of symbols and abbreviations 

Symbols Meanings 

ALARP as low as reasonably practicable  

ANN artificial neural network 

ARIMA autoregressive integrated moving average 

COVID-19 Coronavirus disease of 2019 

ETS exponential smoothing  

LOPA layer of protection analysis  

LSTM long short-term memory  

PDNN process dynamics-guided neural network 

QbT quality-based training  

SEIQRD susceptible, exposed, infected, quarantined, recovered, deceased  

HBN-SEIQRD hierarchical Bayesian network-based susceptible, exposed, infected, 

quarantined, recovered, deceased 

TN Trillion 

V-MFO variable mosquito flying optimization  
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Chapter 2 

Literature Survey 

This chapter presents a survey of literature on data-driven and semi-mechanistic models for 

process safety and pandemic risk management. The literature on process fault detection and 

diagnosis with a focus on handling data quality and integrating mechanistic knowledge in data-

driven models is reviewed. Similarly, the literature related to pandemic risk management is also 

divided in two sections: model development and parameter estimation.  

2.1 Data-driven fault detection and diagnostic techniques 

Many techniques of process fault detection and diagnosis (FDD) have been developed over the 

last four decades. They can broadly be divided in two categories: model-based and data-based. 

Model-based or mechanistic or first principle methods are based on rigorous mathematical 

formulations for representing conservation laws, domain knowledge, physical principles, and 

phenomenological behaviors (Liu, McDermid, & Chen, 2010; Venkatasubramanian, 

Rengaswamy, Kavuri, & Yin, 2003).  These methods have been extensively used in process 

systems owing to their robustness and reliability. However, they are not easily implementable for 

early fault detection of complex processes. On the other hand, data-driven methods are based on 

process measurements, which do not require a priori quantitative or qualitative process knowledge 

(Isermann, 2005; Staroswiecki, 2000). Alauddin, Khan, Imtiaz, and Ahmed (2018) classified 

evolution and development of research on FDD in four categories namely, formulation of basic 

data-driven algorithms, advancement of the algorithms, applications of data-based algorithms in 

process systems, and development and application of advanced hybrid techniques in process 

systems. Some of the recent studies on survey of data-driven FDD includes: (Alauddin et al., 2018; 

Arunthavanathan, Khan, Ahmed, & Imtiaz, 2021; Dai & Gao, 2013; Gao, Cecati, & Ding, 2015; 
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Ge, 2017; Qin, 2012; Tidriri, Chatti, Verron, & Tiplica, 2016; Yin, Ding, Haghani, Hao, & Zhang, 

2012; Yin, Ding, Xie, & Luo, 2014). The following section describes commonly used data-based 

models of fault detection and diagnosis of process systems. 

Principal component analysis and partial least squares-based FDD methods: Principal component 

analysis (PCA) and partial least squares (PLS) are two leading multivariate fault detection and 

diagnostic approaches in the process systems (Alauddin et al., 2018). These methods are based on 

data projection to a lower-dimensional space for achieving fault detection and diagnosis (Kourti 

& MacGregor, 1995). The PCA and PLS-based methods can handle large numbers of highly 

correlated data, measurement errors, and missing data. The dimension reduction feature of these 

algorithms makes them ideal candidates in combining with other algorithms for handling big data. 

The major drawback of PCA and PLS based nethods is that they are not optimal for non-Gaussian 

and nonlinear data (Lawrence, 2005). Besides, Pearson’s dependence on the covariance matrix 

makes PCA sensitive to outliers (Yu, Khan, & Garaniya, 2016).  PLS does not perform well when 

input space has significant variation orthogonal to the output space. Thus numerous advanced data-

based FDD algorithms have been developed over the last four decades such as, kernel principal 

component analysis (KPCA), Multiway PCA, multi-block PCA, hierarchical PCA, recursive PCA, 

sparse PCA, and moving window KPCA. Similarly, some of the variants of PLS are as follows: 

orthogonal projections to latent structures (O-PLS), which removes variation from descriptor 

variables that are not correlated to property variables, total projection to latent structure (TPLS) 

which makes further decomposition on particular subspaces, multi-way partial least squares 

(MPLS), dynamic PLS and recursive PLS.  Kaspar and Harmon Ray (1993) proposed dynamic 

PLS for capturing the time-varying nature of process data. Qin (1998) formulated recursive partial 
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least squares (RPLS) algorithms for online process modeling to adapt process changes and offline 

modeling to deal with huge data samples.  

Independent component analysis-based FDD methods: Independent component analysis (ICA) 

was developed to handle non-Gaussian data that are frequently encountered in process systems. It 

is based on higher-order statistics (HOS), such as kurtosis and negative entropy.  Unlike PCA, ICA 

vectors are not orthogonal, and each component is equally important. Some of the key ICA 

algorithms include FastICA, simultaneous third-order tensor diagonalization (STOTD), joint 

approximate diagonalization of Eigen matrices (JADE), higher-order eigenvalue decomposition 

(HOEVD), maximal diagonality (MD), and maximum likelihood (ML) (De Lathauwer, De Moor, 

& Vandewalle, 2000). The limitation of the conventional approach of ICA is that the independent 

components cannot be ranked to the amount of variance explained by them (Chawla, 2011). Also, 

ICA is limited to linear systems and uses kernel-based mapping to deal with nonlinear systems 

that become computationally expensive with large samples. Moreover, fault identification and 

diagnosis are difficult due to the irreversible nature of kernel mapping (Deng, Tian, & Chen, 2013). 

Many researchers came up with modifications in the existing algorithms to deal with these 

limitations. For instance,  Zhang and Zhang (2010) introduced modified ICA based on particle 

swarm optimization (PSO).  Stefatos and Hamza (2010) used dynamic independent component 

analysis (DICA) methods to capture dynamic patterns. Zhang and Qin (2007) proposed a multiway 

kernel ICA (MKICA) method for dealing with nonlinearities in industrial systems. Rashid and Yu 

(2012) introduced the concept of hidden Markov’s model in ICA for handling multimodal 

problems of industrial processes. Cai and Tian (2014) and Cai, Tian and Chen (2014) proposed 

robust ICA for handling outliers and noisy data. Tong, Palazoglu and Yan (2014) suggested 

improved ICA based on ensemble learning and Bayesian inference. Du et al (2017) introduced 
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fault-related kernel independent component analysis (FKICA), which decomposes data into four 

subspaces and makes the algorithm more sensitive to specific faults. 

Copula-based fault detection and diagnosis methods: Vine copula-based methods are other 

potential tools for handling non-Gaussian data. Unlike PCA and PLS which are based on 

dimensionality reduction, the vine copula-based FDD tools exploit features correlation to estimate 

copula density and joint probability distribution for reckoning the fault probability. One of the C-

vine-based method's intrinsic limitations is its inability to maximize the correlation structure. Cui 

and Li (2020) used a combination of C-vine and D-vine copula to capture both the stronger and 

weaker correlations by harnessing the maximum information coefficient (MIC) (Reshef, Reshef, 

Sabeti & Mitzenmacher, 2014). Ren et al. (2017) proposed a copula subspace division-based fault 

diagnosis technique. 

Gaussian mixture model of fault detection and diagnosis: Mixture models are the other approach 

explored to deal with non-Gaussian data. The Gaussian mixture models (GMMs) are statistical 

methods based on the weighted sum of probability density functions of multiple Gaussian 

distributions. The number of Gaussian components is approximated by the expectation-

maximization (EM) algorithm (Yu, 2013; Yu & Qin, 2009). The E-step determines the posterior 

probability, given all the parameters and the prior probabilities, while M-step finds all the 

parameters. The maximum likelihood solution is obtained by repeating the E- and M-steps 

iteratively. Thissen et al (2005) came up with GMM based on Bayesian information criteria (BIC). 

Li, Qin, and Yuan (2016)  devised a framework of root cause analysis for locating faults for 

stationary and dynamic processes. The authors proposed a dynamic time warping-based causality 

analysis for digging the causality relations of the candidates. Yu (2012a) devised a nonlinear kernel 

Gaussian mixture model (NKGMM) for handling nonlinearities.  Yu and Qin (2008) proposed a 
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finite Gaussian mixture model (FGMM) based on the Figueiredo–Jain (F–J) algorithm for 

optimizing Gaussian components and estimating statistical distributions. This formalism resulted 

in higher detection rates, lower false alarm rates, and shorter delays in fault detection.  Yu, Khan 

and Garaniya (2015a) proposed a probabilistic multivariate method for fault diagnosis of industrial 

processes. The study employed a Gaussian copula based on rank correlation to model 

dependencies and nonlinearity of process variables. The technique is useful in handling 

nonlinearities; however, it requires a longer computational time for convergence. Similarly, Yu, 

Khan and Garaniya (2015b)  devised a three-layered nonlinear Gaussian belief network (NLGBN) 

for fault diagnosis in industrial systems by introducing G-index, a novel parameter for process 

monitoring based on expectation maximization. 

Bayesian network and hidden Markov models of FDD: Bayesian network (BN) and hidden Markov 

models (HMM) are tools for handling uncertainty by using probabilistic reasoning. The HMM is 

an efficient tool to estimate probability distributions of state transitions and unobservable states of 

a process. Smyth (1994) employed the HMM for continuous monitoring of complex dynamic 

systems.  Yu (2012b) proposed the multiway discrete hidden Markov model (MDHMM) for fault 

detection and classification for handling uncertainty. Bayesian networks (BNs) are a commonly 

used technique for fault diagnosis.  A BN can also be used to model hierarchical levels of multiple 

causes and effects. Verron et al. (2006) proposed a BN-based classifier for chemical process fault 

diagnosis. A dynamic Bayesian network (DBN) for process monitoring was implemented by (Yu 

& Rashid, 2013). Zhang and Dong (2014) proposed a multiple time-slice DBN-based FDD for 

handling dynamic nature and missing data. Amin et al. (2019b) proposed a dynamic Bayesian 

anomaly index (DBAI)-based thresholding technique for fault detection and diagnosis.  



 
 

26 
 

Machine learning-based models for fault detection and diagnosis: Many machine learning 

techniques have been successfully tested for fault detection and diagnostic methods of process 

systems. The artificial neural network (ANN) (Agatonovic-Kustrin & Beresford, 2000; 

Schmidhuber, 2015), support vector machines (SVM) (Burges, 1998; Cortes & Vapnik, 1995; 

Widodo & Yang, 2007), case-based reasoning (CBR) (Zhao et al., 2017), classification and 

regression tree (CART) (Lawrence & Wright, 2001) are some of the prominent methods in this 

category. The applications of ML algorithms in chemical health and safety studies can date back 

to the mid-1990s. However, the rapid advancement of computational resources and sophisticated 

algorithms over the last decade accelerated the neural network domain's research. Artificial neural 

network (ANN) has been inspired by biological neural systems. A standard ANN consists of many 

processors, also called neurons, which generate a sequence of real-valued activations (Agatonovic-

Kustrin & Beresford, 2000; Schmidhuber, 2015). Recurrent neural networks (RNNs) and their 

variants have been developed to deal with complex sequential problems of time series data. Long 

short-term memory (LSTM) has been employed for fault detection and diagnosis for several 

processing applications (Li et al., 2017; Zhao, Sun, & Jin, 2018). Bidirectional recurrent neural 

networks (Zhang, Bi, & Qiu, 2020) and convolutional neural networks (Fuan, Hongkai, Haidong, 

Wenjing, & Shuaipeng, 2017; Wu & Zhao, 2018) have also been successfully exploited for the 

fault diagnosis of chemical processes. A comprehensive review of the application of machine 

learning and deep learning methods have in chemical safety is presented in (Arunthavanathan et 

al., 2021; Jiao, Hu, Xu, & Wang, 2020).  

Hybrid data-driven models for fault detection and diagnosis: Many hybrid methods have been 

formulated for efficient process monitoring and FDD by exploiting the diagnosis capability of 

Bayesian.  Alauddin, Khan, Imtiaz, and Ahmed (2018) illustrated how Bayesian has evolved as 
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the choice of recombinant and hybrid algorithm for detection and diagnosis of process faults. 

Mallick and Imtiaz (2013) combined PCA with BN for improving diagnostic performance. 

Gharahbagheri et al. (Gharahbagheri, Imtiaz, & Khan, 2017) proposed a data-driven BN learning 

algorithm using Granger causality and transfer entropy. Amin, Imtiaz, and Khan (2018) presented 

a hybrid approach to integrate the PCA and T2 statistics with a Bayesian network (BN) model. A 

combination of the hidden Markov model (HMM) and a BN was put forward by  (Galagedarage 

Don & Khan, 2019) for detection and diagnosis of process abnormalities.   

 Numerous hybrid algorithms have been asserted to exhilarate the training of artificial neural 

networks. Barakat, Druaux, Lefebvre, Khalil, and Mustapha (2011) developed a self-adaptive FDD 

based on artificial neural networks combined with an advanced signal processing method. Nawi, 

Khan, and Rehman (2013) combined Cuckoo Search (CS) and Levenberg Marquardt algorithm to 

train neural networks. Dehuri and Cho (2009) proposed a multi-objective pareto-based particle 

swarm method for optimizing architectural complexity and classification accuracy of a neural 

network. Subudhi and Jena (2011a) employed opposition-based differential evolution (ODE) for 

training a feed-forward neural network.  Juang (2004) trained a recurrent neural network with a 

hybrid GA-PSO algorithm using a PSO with a master-slave configuration. Subudhi and Jena 

(2011b) proposed a memetic algorithm-based differential evolution back-propagation (DEBP) for 

training a multilayer perceptron by exploiting local and global search spaces.  

2.1.1 Data-driven models for handling low-quality data 

Many robust techniques have been devised to deal with low-quality data. The missing data problem 

is handled by mean substitution, single regression imputation, last observation carried forward 

(LOCF), and modern methods based on maximum likelihood and Bayesian multiple imputations 

(Imtiaz & Shah, 2008; Jin, Wang, Huang, & Forbes, 2012; Khatibisepehr & Huang, 2008; Schafer 
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& Graham, 2002). Bayesian network (BN) and hidden Markov models (HMM) are efficient tools 

based on probabilistic reasoning for handling uncertainty. The HMM estimates the probability 

distributions of state transitions and unobservable states of the process. Independent component 

analysis (ICA) was developed to handle the non-Gaussian data that are frequently encountered in 

process systems. Rashid and Yu ( 2012) introduced the concept of hidden Markov’s model in ICA 

for handling multimodal problems of industrial processes. Cai and Tian (2014) and Cai, Tian, and 

Chen (2014) proposed robust ICA for handling outliers and noisy data. Vine copula-based methods 

are other potential tools for handling non-Gaussian data.  

Robust statistics such as the S-estimators (Davies, 2007), M-estimators (Maronna, 2007), and 

minimum covariance determinant (MCD) estimators (Baz-Lomba, Harman, Reid, & Thomas, 

2017; Seheult, Green, Rousseeuw, & Leroy, 1989) have been developed for detecting outliers. 

Zhu, Shi, Song, Tao, and Tan (2020) proposed an information concentrated variational auto-

encoder (IFCVAE) by dividing latent variables into quality-related and unrelated spaces. The other 

weight-based studies include Spherical PCA (sPCA) (Stanimirova, Daszykowski, & Walczak, 

2007 ), a weighted PPCA (WPPCA) (Yuan et al., 2017), divergence-based robust ICA (Chen, 

Hung, Komori, Huang, & Eguchi, 2013; Mihoko & Eguchi, 2002), a meta gradient descent-based 

reweighting (Ren, Zeng, & Yang, 2018) and robust Bayesian method (Chen & Ge, 2020). 

2.1.2 Survey on integrating mechanistic and data-driven models  

The generalization characteristics of data-driven methods have been improved by integrating 

mechanistic models. Table 2.1 presents hybrid formalism for integrating process knowledge in a 

neural network framework. Psichogios and Ungar (1992) employed a hybrid model in which the 

neural network component process parameters of the first principles model. Similarly, Thompson 

and Kramer (1994) employed a hybrid model based on a parametric model (that compensates for 
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sparse data) and a neural network that accounts for uncertainty and bias. Xiong and Jutan 

(2002) investigated a hybrid model-based control strategy using a parallel structure where a neural 

network was used to compensate for the mismatch of a detailed and approximate mechanistic 

model. Georgieva et al. (2003) employed a hybrid model in an industrial fed-batch evaporative 

crystallization process for predicting size distribution in a refining process. Mass and energy 

balances were captured in the mechanistic sub-model, the data-driven sub-model described growth 

rate, nucleation, and agglomeration parameters. Oliveira (2004) proposed a hybrid formalism with 

parallel and fused multiplication functions.  Stewart and Ermon (2017) formulated a new approach 

to supervising neural networks by specifying mechanistic constraints in the output space. Azarpour 

et al. (2017) developed a generic framework based on the first principle model and an artificial 

neural network to study catalyst deactivation of fixed-bed catalytic reactors (FBCRs). Muralidhar 

et al. (2018) illustrated how incorporating domain constraints into the loss function can be used to 

ameliorate the modeling of a sparse and noisy dataset. Hendriks et al. (2020) presented a neural 

network-based model that explicitly satisfies known linear operator constraints. 

Wu et al. (2020) proposed three distinct hybrid formalisms based on a recurrent neural network to 

integrate physical knowledge in data-driven models.  

Many studies conferred that meta-learning can substantially enhance the performance of deep 

neural networks. Van Lith et al. (2003) augmented a simple physical framework with fuzzy logic. 

Lee and Kang (2007) formulated a modified back-propagation neural network (BPN) based meta-

model that ensures constraint feasibility of the approximate optimal solution. Alauddin et al. 

(2020) presented an ANN-based fault detection model that was tuned using a variable mosquito 

flying optimization (V-MFO) technique for maximizing fault detection rate (FDR) and minimizing 

false alarm rate (FAR).  

https://www.sciencedirect.com/topics/engineering/model-based-control
https://www.sciencedirect.com/science/article/pii/S0098135421001435#bib0064
https://www.sciencedirect.com/topics/engineering/kinetic-parameter
https://www.sciencedirect.com/science/article/pii/S0098135421001435#bib0119
https://www.sciencedirect.com/science/article/pii/S0098135421001435#bib0193
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Table 2.1: Hybrid formalisms for integrating process knowledge in neural network models  

 Study Hybrid Formalism Case study 

First 

principle 

models 

 

(Psichogios & 

Ungar, 1992) 

Process parameters of the first principle 

model were determined  by neural 

network  

 

Fed-batch bioreactor 

(Thompson & 

Kramer, 1994) 

Parametric model that compensates for 

sparse data and neural network 

accounting for uncertainty and bias 

Penicillin 

fermentation 

(Xiong & Jutan, 

2002) 

ANN was used to compensate for model 

mismatch of detailed and approximate 

mechanistic models. 

Batch reactor; 

  continuous stirred 

tank reactor 

(Bollas et al., 

2003) 

Neural model was used to refine the 

plant model prediction 

Fluid catalytic 

cracking 

(Georgieva, 

Meireles, & 

Feyo de 

Azevedo, 2003) 

Mass and energy balances were captured 

in the mechanistic sub-model the data-

driven sub-model described the growth 

rate, nucleation and 

agglomeration parameters. 

Fed-batch evaporative 

crystallization process 

(Oliveira, 2004) Parallel and fused mechanistic part and a 

data-driven part. 

Recombinant protein 

and baker’s yeast 

production 

(Safari, Shabani, 

& Simon, 2014) 

Neural network fused the outputs of 

multiple Kalman filters 

Industrial sensor fusion 

(Yang, Dai, 

Tang, Xuan, & 

Cao, 2020) 

Integrating deep neural network with a 

physical lumped kinetic model 

Automated FCC 

process. 

(Chen & 

Ierapetritou, 

2020) 

Serial, parallel, and combined structures 

of hybrid models. 

Simulated reactor 

mode 

(Wu, Rincon, & 

Christofides, 

2020) 

Physics-based recurrent neural network 

(RNN)  

Model predictive 

control 

(Ghosh, Moreira, 

& Mhaskar, 

2021) 

Data-driven model learns the residuals 

from the mechanistic model;  

mechanistic nonlinear model 

approximated by surrogate linear model 

and learning of residual using a data-

driven model  

Batch crystallization 

    

Meta-

modeling 

(Tan & Li, 2002) Mechanistic sub-model based on 

momentum balance and the data-driven 

model using Padé approximation  

Hydraulic nonlinear 

system 

(Van Lith et al., 

2003) 

Simple physical framework augmented 

with fuzzy logic. Information about the 

Experimental batch 

distillation column, 

https://www.sciencedirect.com/topics/engineering/batch-reactor
https://www.sciencedirect.com/topics/engineering/kinetic-parameter
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dynamic behavior is incorporated in the 

form of prior knowledge  

(Lee & Kang, 

2007) 

Modified back-propagation neural 

network (BPN) based meta-model that 

ensures constraint feasibility of the 

approximate optimal solution. 

Standard structural 

problems  

(Alauddin, Khan, 

et al., 2020) 

ANN-based fault detection model was 

tuned using a variable mosquito flying 

optimization technique for maximizing 

fault detection rate and minimizing false 

alarm rate.  

Tennessee Eastman  

process 

 

 

2.2 Literature survey of epidemiological models 

Numerous mathematical methods and computational techniques based on differential equations, 

stochastic processes, statistical analysis, graph theory, artificial society, computer simulation, and 

geographic information systems have been developed to study epidemic disease transmissions. 

These can broadly be classified in two categories: statistical and mechanistic. Statistical 

approaches exploit data correlations to learn a functional dependence for predictions, while 

mechanistic models are based on physical laws such as population and/or transmission dynamics. 

Mechanistic models comprise compartmental, spatial, meta-population, network-based, and agent-

based methods. In this section, we present an overview of compartmental models for the dynamics 

and control of infectious diseases. 

2.2.1 Compartmental epidemiological models 

Compartmental models are based on systems of ordinary differential equations that focus on the 

dynamic progression of a population through different epidemiological states (Chowell, 2017). 

The population is divided into distinct compartments, each having the same state of the epidemic. 

The SIR (susceptible, infected, recovered) and SEIR (susceptible, exposed, infected, recovered) 

are fundamental compartmental models. The SIR model presumes that the infected hosts become 
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contagious immediately after exposure to an infected carrier, whereas the SEIR model considers 

the latency between exposures and infectious periods (Anderson & May, 1979; Hethcote, 1976; 

Hiorns & MacDonald, 1982; Kermack & McKendrick, 1927). Many extended compartmental 

models have been developed to take into account isolation, quarantine, and hospitalization 

(Alauddin et al., 2020; Arik et al., 2020; Giordano et al., 2020; Hu et al., 2020; Ivorra, Ferrández, 

Vela-Pérez, & Ramos, 2020; Legrand, Grais, Boelle, Valleron, & Flahault, 2007; Lin et al., 2020; 

Paiva, Afonso, de Oliveira, & Garcia, 2020; Subramanian, He, & Pascual, 2021). 

Many models have been developed for taking into account non-pharmaceutical interventions 

(NPIs) of isolation and quarantine of the exposed cases. Carvalho, da Silva and Charret (2019)  

presented a comparative analysis of mechanical and chemical control methods in restraining a 

pandemic. The modeling of comprehensive interventions, treatment, and other control actions can 

be found in several studies (Alam, Kabir, & Tanimoto, 2020; Browne, Gulbudak, & Webb, 2015; 

Chowell & Kiskowski, 2016; Colizza, Barrat, Barthelemy, Valleron, & Vespignani, 2007; De 

Visscher, 2020; Fast, Mekaru, Brownstein, Postlethwaite, & Markuzon, 2015; Jung, Lee, & 

Chowell, 2016; Lee, Lye, & Wilder-Smith, 2009; Rachah & Torres, 2016; Rizzo & Atti, 2008; 

Shen, Xiao, & Rong, 2015). 

2.2.2 Parameter estimation in epidemiological models 

The parameters of mechanistic models can be estimated by least-squares fitting (Gan, Tan, Mo, 

Li, & Huang, 2020; Kim, Ko, Kim, & Jung, 2020; Romero-Severson, Ribeiro, & Castro, 2018), 

maximum likelihood estimation (Bretó, 2018; Chowell, Nishiura, & Bettencourt, 2007; Kao & 

Eisenberg, 2018; White & Pagano, 2008; Wu & Riley, 2016), and approximate Bayesian 

computation (Almutiry & Deardon, 2020; Brown, Porter, Oleson, & Hinman, 2018; Chandra, 

2020; Kypraios, Neal, & Prangle, 2017; McKinley et al., 2018; Minter & Retkute, 2019; Neal, 
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2019; Neal & Terry Huang, 2015; Price, Bean, Ross, & Tuke, 2016). Epidemiological modeling 

has been extensively studied using deterministic approaches (Carcione et al., 2020; Clancy & 

Piunovskiy, 2005; House & Keeling, 2008; Kumar et al., 2020; Lange, 2016; Lipsitch et al., 2003; 

Okyere et al., 2020; Otoo et al., 2020; Pollicott et al., 2012; Rivers et al., 2014; Sharkey, 2011; 

Zhou et al., 2014) and stochastic approaches (Alharthi, Kypraios, & O’Neill, 2019; Allen, 2017; 

Birrell, de Angelis, & Presanis, 2018; Bjørnstad, Finkenstädt, & Grenfell, 2002; Chao, Halloran, 

Obenchain, & Longini, 2010; Engbert, Rabe, Kliegl, & Reich, 2021; Fintzi, Cui, Wakefield, & 

Minin, 2017; Khan, Hussain, Zahri, Zaman, & Wannasingha Humphries, 2020; Kypraios et al., 

2017; Lekone & Finkenstädt, 2006; O’Neill, 2002; Ponciano & Capistrán, 2011; Shangguan, Liu, 

Wang, & Tan, 2021; Taylor, Dushoff, & Weitz, 2016; Wang, Ji, Bi, & Liu, 2020). Pollicott et al. 

(2012) reconstructed a time-dependent transmission rate for the SIR model. Camacho et al. (2015) 

modeled the time-varying transmission parameter of SEIR by the Wiener process (also known as 

standard Brownian motion). Cauchemez et al. (2008) used a stochastic framework and Markov 

chain Monte Carlo (MCMC) to recover time-dependent transmission rate and other model 

parameters. Alauddin et al. (2020) proposed a semi-mechanistic artificial neural network-based 

SEIQRD model for capturing time varying parameters. Google Cloud researchers integrated the 

time series machine learning approach with a compartmental model to develop Google Cloud AI 

(Arik et al., 2020). Population genetic inference using coalescent models has been exploited in the 

parameter estimation of compartmental models (Dearlove & Wilson, 2013; Popinga, Vaughan, 

Stadler, & Drummond, 2014). Many studies have investigated branching processes to estimate 

basic reproduction number (R0) and the final size of the epidemic (Allen, 2015; Ball & Donnelly, 

1993; Tritch & Allen, 2018). 
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Evolutionary computing approaches have also been explored for optimal parameter estimation for 

deterministic and stochastic epidemiological models.  For instance, a genetic algorithm was 

employed for the parameter estimation of several epidemic diseases such as cholera (Akman & 

Schaefer, 2015),  malaria (Davis et al., 2019), SARS (Isa Irawan & Amiroch, 2015; Yan & Zou, 

2008), HIV-AIDS (Pedroso-Rodriguez, Marrero, & De Arazoza, 2003), and COVID-19 (Anđelić, 

Šegota, Lorencin, Mrzljak, & Car, 2021; Ding et al., 2021; Hosseini, Ghafoor, Sadiq, Guizani, & 

Emrouznejad, 2020; Monteiro, Gandini, & Schimit, 2020). Eastman et al. (2021) used differential 

evolution to fit their model to the epidemiological data of COVID-19. Similarly, swarm 

intelligence has been exploited to fitting epidemic models (Akman, Akman, & Schaefer, 2018; He, 

Peng, & Sun, 2020; Hosseini et al., 2020). 

The predictive ability of a model can be improved by reducing variability in the forecasts.  Xu et 

al. (2016) proposed a Bayesian non-parametric method for stochastic epidemic models using a 

Gaussian process. Oliveira et al. (2020) employed a Bayesian approach to the SIR model with 

correction for under-reporting of COVID-19 cases (Manevski, Ružić Gorenjec, Kejžar, & Blagus, 

2020). Polo et al. (2020) used a Bayesian model for studying the spatio-temporal effect on health 

and fatality due to COVID-19.  Bayesian inference was also used to construe the time dependence 

of the effective growth rate of newly infected cases (Das & Tiwari, 2021; Dehning et al., 2020). 

Farah et al. (2014) developed a Bayesian framework to estimate parameters of a computationally 

expensive dynamic epidemic model using time series epidemic data. Dehning et al. (2020) applied 

Bayesian inference based on Monte Carlo sampling to characterize the change points realized due 

to distinct mitigative measures. Smirnova et al. (2019) introduced the reconstruction of 

nonparametric time-dependent transmission rates by projecting onto a finite subspace spanned by 

Legendre polynomials for precise approximation of model parameters. 
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Numerous methods in the Bayesian framework were devised for handling data inconsistency and 

under-reported cases (Deardon et al., 2010; Gibson, Reich, & Sheldon, 2020; Russell et al., 2020; 

Sharmin, Glass, Viennet, & Harley, 2018; Taghizadeh, Karimi, & Heitzinger, 2020). Li et al. 

(2018) compared distinct models of varying complexity on three MCMC platforms: JAGS 

(Plummer, 2003), NIMBLE (Lawson, 2020), and Stan (Carpenter et al., 2017). Lytras et al.( 2019) 

introduced FluHMM based on a Hidden Markov Model fitted in a Bayesian framework. Azmon 

et al. (2014) investigated the impact of delays and under-reporting by using a Bayesian 

semiparametric approach with penalized splines. Markov switching model has been employed to 

determine the epidemic and non-epidemic periods of surveillance data (Amorós, Conesa, López-

Quílez, & Martinez-Beneito, 2020; Martínez-Beneito, Conesa, López-Quílez, & López-Maside, 

2008). Dureau et al.( 2013) employed an adjusted adaptive particle Markov chain Monte Carlo 

algorithm for handling parameter uncertainty. Bayesian inference using a Markov chain Monte 

Carlo (MCMC) approach to parameter estimation in epidemic models has been reported in several 

studies (Almutiry & Deardon, 2020; Brown et al., 2018; Cotta, Naveira-Cotta, & Magal, 2020; 

Deardon et al., 2010; Li et al., 2018; Marwa, Mwalili, & Mbalawata, 2019; Osei, Duker, & Stein, 

2012; Taghizadeh et al., 2020; Touloupou, Finkenstädt, & Spencer, 2020). Lee  and Mallick (2020)  

employed a hierarchical Bayesian approach for estimating COVID-19 spread curves by borrowing 

information from global data. However, the epidemic disease trajectory depends on demographics, 

economic status, degree of compliance of the population and societal impact, comorbidities, 

overall risk environment, and country vulnerability to biological threats. 

2.3 Identified knowledge gaps and contributions of this work 

A plethora of literature is available on fault detection and diagnosis of process systems using data-

driven methodologies. Many of those promising tools have been successfully tested for the 
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industrial scale. This thesis presents several formalisms for improving data-driven and mechanistic 

models of process safety and pandemic risk management as discussed in Section 1.1-1.3.   

This section summarizes thesis contribution to establish synergy between process safety and 

pandemic risk management. The methodologies to prevent, control, and mitigate infection are 

analogous to the hazard control and safety frameworks used in the process industries. Only a few 

studies outlined the process safety concepts for pandemic risk management. Brown, Amyotte and 

Vanberkel (2021) classified measures of restraining an epidemic disease into hierarchical process 

safety principles. Lindhout and Reniers (2020) proposed an integrated pandemics barrier model 

based on the sequential steps of an outbreak. However, synergy between the pandemic risk 

assessment and process safety has yet to be investigated. This thesis presents similarities between 

the SIR epidemiological model and the reaction kinetics model of a CSTR by highlighting 

resemblance in the conservation principles and factors governing contagion and reaction rates 

(Chapter 6).  Also, several areas of similarities have been identified where process safety and 

epidemiology can benefit from each other. These include (i) early fault detection vs early case 

detection, (ii) identification of effective control mechanism, (iii) the fast response of public health 

vs operator response, (iv) effective resource allocation and mobilization, (v) identification of the 

most vulnerable elements, and (vi) application of expertise from similar outbreaks in the past vs 

use of historical process data (Chapter 6). 

The other contributions of the thesis in this regard are as follows- 

a. Pandemic risk management using precautionary principle: Precautionary approach is a 

principle for making practical decisions under scientific uncertainty. Section 8.3.1 

presents pandemic risk assessment using the precautionary approach based on the 

SEIQRD epidemiological model. 
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b. ALARP approach to pandemic risk management: The ALARP (as low as reasonably 

practicable) approach is based on risk-informed and cautionary thinking. The 

enforcement of risk-reducing measures, including no measure, has been studied using the 

ALARP approach to risk assessment. The quantitative risk estimated using the SEIQRD 

model and uncertainty in the parameters has been captured by using the Monte Carlo 

simulation (Section 8.3.3). 

c. Development of event tree model of pandemic risk management:  Event tree is a causal 

analytical technique used to identify potential accident scenarios and sequences in a 

process system. It can help to prevent negative outcomes using distinct safeguards taking 

into account whether installed safety barriers are functioning or not. The risk of the 

accident in process systems is minimized by activating safeguards. The safe working of 

these safeguards determines the intended risk in case of an accident. Similarly, the impact 

of a pandemic outbreak is largely governed by distinct measures taken to restrict, control 

and mitigate the outbreak. The thesis presents an event tree model of pandemic risk 

management using distinct risk-reducing strategies realized due to natural evolution, 

government interventions, societal responses, and individual practices (Section 8.3). 

d. The layer of protection analysis of pandemic risk management:  The layer of protection 

analysis (LOPA) is a semi-quantitative approach to risk assessment. The safety of 

chemical processing operations is ensured by using multiple layers of safety barriers such 

as basic process control, alarms, operator interventions, safety instrumented system, relief 

devices, and physical containments (Dowell, 1999). Finally, the plant and emergency 

response services are brought into operation to diminish the risk by de-escalating the 

abnormal situation. These are analogous to the preventive, controlling, and mitigative 



 
 

38 
 

strategies of handling a pandemic. Hygienic practices (e.g. frequent hand washing, use of 

mask) and government regulations such as the closure of schools and non-essential 

business, limiting gathering sizes, enforcing lockdown, and vaccination are extremely 

effective as control and preventive strategies for limiting risk in the pandemic model. The 

fatality risk is minimized by ensuring sophisticated treatment by extending healthcare 

facilities. This is similar to the plant and emergency response services of a process safety 

system. The thesis presents a layer of protection analysis for pandemic risk management 

using preventive, controlling, and mitigative strategies (Section 6.4).
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List of symbols and abbreviations 

Symbols Meanings 

ANN artificial neural network  

ARIMA autoregressive integrated moving average  

ARMA autoregressive moving average  

DGMM dynamic Gaussian mixture model  

DICA dynamic independent component analysis 

EKF extended Kalman filter  

EM expectation maximization  

ES expert System 

EWMA exponentially weighted moving average  

FDD fault detection and diagnosis  

FGMM finite Gaussian mixture model  

FKICA fault-related kernel independent component analysis  

GBM gray-box model  

GMM Gaussian mixture model  

ICA independent component analysis  

JADE joint approximate diagonalization of Eigen matrices 

KPCA kernel principal component analysis  

LFMs latent force models  

LPP locality preserving projections  

MIPLS multiway interval partial least squares  

MKICA multiway kernel ICA  

MKPCA multiway kernel principal component analysis  

ML maximum Likelihood  

MPLS multi-way partial least square  

NKGMM nonlinear kernel Gaussian mixture model  

NLGBN nonlinear Gaussian belief network  

O-PLS orthogonal projections to latent structures  

PCA principle component analysis  

PLS partial least square  

QTA qualitative trend analysis  

RNN recurrent neural networks  

RPLS recursive partial least squares  

SDG signed directed graph 

SEIQRD susceptible, exposed, infected, quarantined, recovered, deceased  

SEIR susceptible, exposed,  infected, and recovered 

SIR susceptible, infected, recovered 

SPC statistical process control  
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sPCA sparse principal component analysis 

STOTD simultaneous third-order tensor diagonalization  

SVM support vector machine  

TPLS total projection to latent structure  

UKF unscented Kalman filter  
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Chapter 3 

Quality based training (QbT) of neural networks for robust fault detection in 

the presence of mislabeled data 

 
 

Preface: The success of the data-based models is dependent on the availability of reliable data for 

developing the models. Process systems frequently encounter low quality, inconsistent, sparse, 

noisy, and imbalanced data.  Thus, robust models need to be devised for handling these 

inconsistencies. This presents a robust data-driven model for the safety of process systems by 

harnessing data-quality features in the training of the diagnostic networks. This work can be 

mapped to the sub-objective “development of robust data-driven models for the safety of process 

systems” of this thesis. 
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Abstract: This work presents a novel approach, the quality-based training (QbT) of the supervised 

neural networks, for handling mislabeled and/or low-quality data. The approach is based on 

explicitly addressing the quality issues of a given dataset and assigning a lower weight to the low-

quality data. The method has been examined on two case studies; a continuous stirred tank heater 

problem and the Tennessee Eastman chemical process. The performance of the proposed robust 

ANN is evaluated in terms of the fault detection rate of the legitimate and incorrectly labeled data. 

A more robust classification index has also been developed to evaluate the fault detection systems. 

The proposed robust ANN yields improved results on legitimate data. The proposed model also 

exhibits robustness by maintaining higher performance at 1%, 5%, and 10% mislabeled training 

and testing data where the performance of the conventional ANN is severely affected. The 

proposed methodology is advantageous in handling low-quality data in detecting faults of process 

systems.   

 

Keywords: fault detection, fault diagnosis, process monitoring, fault detection rate, false alarm 

rate. 

 

3.1 Introduction: 

Data are being referred to as today's digital oil (Yi, Liu, Liu, & Jin, 2014), the new raw material of 

the 21st century  (Berners-Lee & Shadbolt, 2011), and the world’s most valuable resource (Jossen, 

2017). Process data contain valuable information that can be mined to characterize uncertain and 

emerging situations that are not considered in the process design phase. The advancement in big 

data has prompted many industries, including process industries, to re-examine their traditional 

roles for design, control, and maintenance using data-based systems. It has led to a growing 

consensus towards intelligent and data-driven operations for predictive maintenance in processing 

systems using process monitoring, fault detection, fault diagnosis, fault characterization, accident 

modeling, and risk management. Numerous data-based methodologies such as principal 

component analysis (PCA) and partial least squares (PLS) (Kaspar & Harmon Ray, 1993; Kourti 
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& MacGregor, 1995;  Qin, 1998), independent component analysis (ICA)  (Stefatos & Hamza, 

2010; Zhang & Qin, 2007; Zhang & Zhang, 2010), vine copula-based methods (Cui & Li, 2020; 

Ren et al., 2017; Yu, Khan & Garaniya, 2015a), Gaussian mixture model (GMM) (Yu, 2013;  Yu 

& Qin, 2009; Li, Qin & Yuan, 2016; Thissen et al., 2005;  Yu & Qin, 2008) have been studied for 

fault detection and diagnosis. Many machine learning techniques such as artificial neural network 

(ANN) (Agatonovic-Kustrin & Beresford, 2000; Li et al., 2017; Park & Sandberg, 1991;  

Schmidhuber, 2015;  Yu, Qu, Gao, & Tian, 2019; Zhang, Bi, & Qiu, 2020; Zhao, Sun, & Jin, 

2018), support vector machines (SVM) (Burges, 1998; Cortes & Vapnik, 1995; Widodo & Yang, 

2007), case-based reasoning (CBR) (Zhao et al., 2017), and classification and regression tree 

(CART) (Lawrence & Wright, 2001) have been successfully used for development of fault 

detection and diagnosis (FDD) methods.  Alauddin, Khan, Imtiaz, and Ahmed (2018) classified 

the evolution and development of research on data-driven FDD in four categories, namely, 

formulation of basic data-driven algorithms, advancement of the algorithms, applications of the 

data-based algorithms in process systems, and development and application of advanced hybrid 

techniques in the process systems. 

Several comprehensive reviews on data-driven FDD have been published (Alauddin et al., 2018; 

Arunthavanathan, Khan, Ahmed, & Imtiaz, 2021; Dai & Gao, 2013; Gao, Cecati, & Ding, 2015; 

Ge, 2017; Qin, 2012; Tidriri, Chatti, Verron, & Tiplica, 2016; Yin, Ding, Haghani, Hao, & Zhang, 

2012; Yin, Ding, Xie, & Luo, 2014). 

Tremendous process measurement data are available in industrial systems because of today’s smart 

sensors. However, selecting legitimate data for supervisory training in process systems is still a 

daunting task. Frequent data-quality problems are incomplete data, outliers, imbalanced data, 

incorrectly mapped properties, noise, and inconsistency. The common causes of low-quality data 
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in a process system include sensor breakdown, process shutdown, malfunctioning of equipment, 

random fluctuations, incorrect calibration, inconsistent sampling frequencies, and data entry errors 

due to human factors (Imtiaz & Shah, 2008). The imbalance and sparse data are also a growing 

concern for efficient training of data-driven models of process systems having a high volume of 

data for the normal conditions while limited data representing the anomalies. The low-quality data 

affect model parameters, resulting in inferior process monitoring performance leading to a failure 

of the intended function. Accordingly, robust models are required for dealing with low-quality 

data of process systems. 

Many robust techniques have been devised to deal with low-quality data. The missing data problem 

is handled by mean substitution, single regression imputation, last observation carried forward 

(LOCF), as well as methods based on maximum likelihood and Bayesian multiple imputations 

(Imtiaz & Shah, 2008; Jin, Wang, Huang, & Forbes, 2012; Khatibisepehr & Huang, 2008; Schafer 

& Graham, 2002). Bayesian network (BN) and hidden Markov model (HMM) are efficient tools 

based on probabilistic reasoning for handling uncertainty. The HMM estimates the probability 

distributions of state transitions and unobservable states of the process. Independent component 

analysis (ICA) was developed to handle the non-Gaussian data that are frequently encountered in 

process systems. Rashid and Yu ( 2012) introduced the concept of hidden Markov’s model in ICA 

for handling multimodal problems of industrial processes. Cai and Tian (2014) and Cai, Tian, and 

Chen (2014) proposed robust ICA for handling outliers and noisy data. Vine copula-based methods 

are other potential tools for handling non-Gaussian data. Unlike PCA and PLS which are based on 

dimensionality reduction, the vine copula-based FDD tools exploit features correlation for 

calculating the copula density and joint probability distribution for estimating the fault probability.  
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Robust statistics such as the S-estimators (Davies, 2007), M-estimators (Maronna, 2007), and 

minimum covariance determinant (MCD) estimators (Baz-Lomba, Harman, Reid, & Thomas, 

2017; Seheult, Green, Rousseeuw, & Leroy, 1989) have been developed to detect outliers. Zhu, 

Shi, Song, Tao, and Tan (2020) proposed an information concentrated variational auto-encoder 

(IFCVAE) by dividing latent variables into quality-related and unrelated spaces. The other weight-

based studies include Spherical PCA (sPCA) (Stanimirova, Daszykowski, & Walczak, 2007 ), 

weighted PPCA (WPPCA) (Yuan et al., 2017), divergence-based robust ICA (Chen, Hung, 

Komori, Huang, & Eguchi, 2013; Mihoko & Eguchi, 2002), a meta gradient descent-based 

reweighting (Ren, Zeng, & Yang, 2018), and robust Bayesian method (Chen & Ge, 2020). 

In conventional neural network training, each data sample is treated equally during parameter 

learning, regardless of whether it is trustworthy or not. The low-quality data can distort model 

parameters leading to inferior process monitoring performance. Several methods treat low-quality 

data by discarding them that can potentially result in the loss of information.  We have developed 

a robust semi-supervised artificial neural network for detecting and isolating faults in process 

systems. The approach is based on harnessing the data quality feature of a given dataset. The model 

calculates each sample's quality and reliability based on the Mahalanobis distances and the trusted 

center of each class of data (Chen & Ge, 2020). The training accounts for reliability and 

supervisory label to determine parameters of the neural structure. The proposed method improves 

the accuracy and robustness of a neural network by reducing the influence of unreliable data 

without sacrificing information by rejecting samples. The subsequent part of the paper is structured 

in sections representing methods, results and discussion followed by the conclusion. 
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3.2. Robust neural network 

Artificial neural network (ANN) is a nonlinear model inspired by biological neural systems. A 

standard ANN consists of many processors, also called neurons, which generate a sequence of 

real-valued activations (Agatonovic-Kustrin & Beresford, 2000; Schmidhuber, 2015).  ANNs are 

universal approximators and can assimilate highly complex relationships between input and output 

variables precisely (Park & Sandberg, 1991).  The learning of detecting process faults is based on 

pattern recognition properties of neural networks. Fig 3.1 presents the proposed robust neural 

network model for detecting faults in process systems. It is a multi-layer network comprising an 

input layer, a hidden layer, and an output layer.  The model is different from the simple ANN 

in terms of considering the quality of samples determined by the model.  The network quantifies 

the quality of a sample by a parallel operation to the forward phase of the training. The quality 

along with the true and estimated labels computes the loss of the sample. A higher weight is 

assigned to high-quality data in the training. This is in contrast to the standard neural network 

where each data is treated equally. 
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Fig. 3.1: Fault detection using quality-based training of a supervised neural network 
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The model parameters are iteratively determined using the forward prediction and backward 

propagation through the network layers. The parameter learning of the network can broadly be 

summarized under three steps:  

Step I: Forward propagation 

The forward propagation of the network facilitates predictions based on the input and the network 

parameters. Eq 3.1-3.4 represent the forward-pass model, where X is the input variables, 𝑊1 and 

𝑊2 denote weights and 𝑎1 and 𝑎2 are the activations of the network. We have employed a 

hyperbolic tangent activation (Eq. 3.2) in the hidden layer to avoid saturation that is observed with 

the sigmoid function (Glorot & Bengio, 2010). Eq. 3.4 presents the Softmax outputs for yielding 

an effective classification of faulty and normal scenarios.   

𝑧1 = 𝑋.𝑊1                      (3.1) 

𝑎1 = tanh 𝑧1                  (3.2) 

𝑧2 = 𝑎1.𝑊2                    (3.3) 

𝑎2𝑗 =
exp (𝑧2𝑗)

∑ exp (𝑧2𝑘)𝑘
      (3.4) 

Step II: Calculate the cost function  

The loss function evaluates the "goodness" of the model predictions. It is a measure of the cost 

caused by incorrect predictions. We have employed the entropy loss function for training the 

model. Entropy is positive and tends to zero if the output of all samples matches with their targets. 

The cross-entropy cost function does not slow down parameter learning which is frequently 

encountered in quadratic cost (Nelson, 2020). Eq. 3.5 presents the overall loss weighted by the 

quality of the samples characterizing the stronger influence of higher quality samples. 

𝐿 = −𝑞𝑛∑𝑡𝑖 log 𝑎2𝑖
𝑖

           (3.5) 
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Step 3: Backpropagation and weight update 

The network parameter 𝛩  is determined by backpropagation which is based on the input features, 

true label, and data quality. The goal of the backpropagation is to optimize the parameter of the 

network for arbitrarily mapping inputs to outputs. The derivative of the loss function with respect 

to the network parameter is determined by chain rule (Eq. 3.6-3.13) (Aggarwal & Murty, 2021; 

Hinton, 1986)- 

      
𝜕𝐿

𝜕𝑊2𝑗𝑖
=
𝜕𝐿

𝜕𝑎2𝑖

𝜕𝑎2𝑖
𝜕𝑧2𝑖

𝜕𝑧2𝑖
𝜕𝑊2ℎ𝑖

                                 

                  =
𝜕𝐿

𝜕𝑧2𝑖

𝜕𝑧2𝑖
𝜕𝑊2ℎ𝑖

                                          

                              = −𝑞
𝑛
∑𝑡ℎ
ℎ

𝜕 log 𝑎2𝑖
𝜕𝑧2𝑖

𝜕𝑧2𝑖
𝜕𝑊2ℎ𝑖

                              

                           = −𝑞
𝑛
∑

𝑡𝑖 

𝑎2𝑖ℎ

𝜕𝑎2𝑖
𝜕𝑧2𝑖

𝜕𝑧2𝑖
𝜕𝑊2ℎ𝑖

                                   

                   = −𝑞
𝑛
∑

𝑡𝑖 

𝑎2𝑖ℎ

𝜕𝑎2𝑖
𝜕𝑧2𝑖

𝑎1ℎ                                  

                                                      = −𝑞
𝑛
(∑

𝑡𝑖 

𝑎2𝑖ℎ=𝑖

𝜕𝑎2𝑖
𝜕𝑧2𝑖

+∑
𝑡𝑖 

𝑎2𝑖ℎ≠𝑖

𝜕𝑎2𝑖
𝜕𝑧2𝑖

)𝑎1ℎ                          (3.6) 

 

The differential of the Softmax function can be presented by Eq. 3.7 (Arat, 2019).    

 

𝜕𝑎2𝑖

𝜕𝑧2𝑖
= 𝑎2𝑖(1 − 𝑎2𝑖)        ∀ 𝑖 = ℎ   

                                                   
𝜕𝑎2𝑖

𝜕𝑧2𝑖
= −𝑎2ℎ𝑎2𝑖                ∀ 𝑖 ≠ 𝑗                                              (3.7) 

Substituiting 
𝜕𝑎2𝑖

𝜕𝑧2𝑖
, Eq. 3.6 can be represented as follows-   

                          
𝜕𝐿

𝜕𝑊2ℎ𝑖
= −𝑞

𝑛
{
𝑡𝑖 

𝑎2𝑖
𝑎2𝑖(1 − 𝑎2𝑖) −∑

𝑡𝑗 

𝑎2ℎℎ≠𝑖

(−𝑎2ℎ𝑎2𝑖)} 𝑎1ℎ                     
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      = −𝑞
𝑛
(−𝑡𝑖 + 𝑡𝑖𝑎2𝑖 +∑𝑡𝑗𝑎2𝑖

ℎ≠𝑖

)𝑎1ℎ       

= −𝑞
𝑛
(−𝑡𝑖 + 𝑎2𝑖∑𝑡ℎ

ℎ

)𝑎1ℎ              

                                           = 𝑞
𝑛
(𝑡𝑖 − 𝑎2𝑖)𝑎1ℎ                                                                    (3.8) 

 

Where, ∑ 𝑡ℎℎ = 1, as only one label, will be true. Similarly, 
𝜕𝐿

𝜕𝑊1𝑘ℎ
 can be represented as follows-   

 

                         
𝜕𝐿

𝜕𝑊1𝑘ℎ
=

𝜕𝐿

𝜕𝑎1ℎ

𝜕𝑎1ℎ

𝜕𝑧1ℎ

𝜕𝑧1ℎ

𝜕𝑊1𝑘ℎ
                                                                          (3.9)      

                         
𝜕𝐿

𝜕𝑎1ℎ
=

𝜕𝐿

𝜕𝑎2𝑖

𝜕𝑎2𝑖

𝜕𝑧2𝑖

𝜕𝑧2𝑖

𝜕𝑎1ℎ
= 𝑞

𝑛
(𝑡𝑖 − 𝑎2𝑖)𝑊2ℎ𝑖                           (3.10)    

                          
𝜕𝑎1ℎ

𝜕𝑧1ℎ
=   1 − 𝑎1ℎ

2                                                                      (3.11)    

                            
𝜕𝑧1ℎ
𝜕𝑊1𝑘ℎ

= 𝑥𝑘                                                                            (3.12) 

                  
𝜕𝐿

𝜕𝑊1𝑘ℎ
= 𝑞

𝑛
(𝑡𝑖 − 𝑎2𝑖)𝑊2ℎ𝑖(1 − 𝑎1ℎ

2 )𝑥𝑘                                     (3.13)  

 

The gradients adjust the parameters using the parameter update equations Eq.3.14-3.15,  where 𝜂 

is the ‘learning rate’ that controls the influence of the current gradient on the weight update. We 

have employed a step decay adaptive learning rate with a relatively high learning rate at the beginning 

that lowers stepwise during the training. We can see that the sample quality impacts weight revision 

and convergence in estimating the model parameters. The next section presents the procedure for 

estimating the quality of the sample. 

𝑊1𝑘ℎ = 𝑊1𝑘ℎ − η 
𝑑𝐿

𝑑𝑊1𝑘ℎ
                    (3.14) 

𝑊2ℎ𝑖 = 𝑊2ℎ𝑖 − η 
𝑑𝐿

𝑑𝑊2ℎ𝑖
                       (3.15) 
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3.2.1: Estimation of quality of samples 

Data quality is a broad term characterizing the fitness for the requirements of its intended function. 

The dimension of data quality includes accuracy, completeness, consistency, integrity, and 

timeliness (Batini, Cappiello, Francalanci, & Maurino, 2009). A low-quality data can be 

materialized due to sensor breakdown, process shutdown, malfunctioning of equipment, random 

fluctuations, incorrect calibration, inconsistent sampling frequencies, and data entry errors due to 

human factors. Industrial systems encounter various low data-quality problems such as incomplete 

data, outliers, imbalanced data, poorly labeled data, incorrectly mapped properties, noise, and 

inconsistency. 

We have studied the effect of mislabeled data in the fault detection system by introducing 1%, 5%, 

and 10% mislabeling in the training and testing samples. The x% mislabeling indicates x% of the 

training data were assigned incorrect labels. For instance, 1% of the faulty samples were 

mislabeled as normal in the training of the model. Suppose that X  (𝑋 ∈ 𝑅𝑁𝑋𝐷) is a training dataset 

where N = Number of samples and D = Number of variables. The first ‘i’ number of data (1 to i) 

have label L1, and the remaining (N-i) data have label L2 as shown in Table 3.1. The labels of ‘r’ 

samples are misreported (Table 3.2).  

The procedure for calculation of the quality and the corresponding weight for the training is as 

follows: 

1. The process data is obtained from the historical database D denoted as  𝑋 ∈ 𝑅𝑁𝑋𝐷  where 

N (row) and D (column) represent the number of samples and number of process variables, 

respectively. 

2. Calculation of trusted center denoted as 𝑋𝑡𝑟𝑢𝑠𝑡 on a reliable dataset based on the dependent 

and independent variables.   
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Table 3.1.  True data samples 

Feature Label 

X11 X12 X13 …. X1d L1 

X21 X22 X23 …. X2d L1 

X31 X32 X33 …. X3d L1 

      

Xi1 Xi2 Xi3 …. Xid L1 

Xi+11 Xi+12 Xi+13 …. Xi+1d L2 

.      

Xi+r1 Xi+r2 Xi+r3 …. Xi+rd L2 

Xi+r+11 Xi+r+12 Xi+r+13 …. Xi+r+1d L2 

      

X1 Xn2 Xn3 …. Xnd L2 

 

 

Table 3.2:  Mislabeled samples/data 

Feature Label 

X11 X12 X13 …. X1d L1 

X21 X22 X23 …. X2d L1 

X31 X32 X33 …. X3d L1 

      

Xi1 Xi2 Xi3 …. Xid L1 

Xi+11 Xi+12 Xi+13 …. Xi+1d L1 

.      

Xi+r1 Xi+r2 Xi+r3 …. Xi+rd L1 

Xi+r+11 Xi+r+12 Xi+r+13 …. Xi+r+1d L2 

      

Xn1 Xn2 Xn3 …. Xnd L2 

 

3. Calculation of Mahalanobis distance: The Mahalanobis distance for an unreliable sample 

𝑋𝑛  can be calculated by Eq. 3.17, where S is the covariance matrix of process variables 

evaluated from 𝑋𝑅 (Chen & Ge, 2020). 

𝑑𝑛 = √(𝑋𝑛 − 𝑋𝑡𝑟𝑢𝑠𝑡)𝑇𝑆−1(𝑋𝑛 − 𝑋𝑡𝑟𝑢𝑠𝑡)                         (3.17) 

Mislabeled data 
True label= L2  

Mislabeled as L1 
label= L1  
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4. Calculation of the quality of each sample using Eq.(3.18) (Chen & Ge, 2020).  

𝑞𝑛 = exp (−𝜂𝑑
𝑑𝑛

𝜑𝑑
)                 (3.18) 

where 𝜑𝑑  represents the standard deviation of  𝑑 = {𝑑1, 𝑑2, …… . . 𝑑𝑛} and 𝜂𝑑  is a tuning 

factor to adjust the calculation sensitivity. The overall quality feature results for unreliable 

process data can be represented as follows. 

𝐪 = {𝑞1, 𝑞2, …… . . 𝑞𝑛}                (3.19) 

3.2.2: Fault detection using the robust ANN 

Fig. 3.2 presents the flow diagram of detecting faults using quality-based training of a semi-

supervised neural network. A multi-layer feedforward neural network with a hyperbolic tangent 

activation at hidden layers and Softmax activation at the output layer have been used to classify 

the normal and faulty data. The neural network structure is based on selecting an effective 

optimization algorithm and an optimal number of neurons in the hidden layer of the network. The 

data is normalized before feeding to the model to avoid the scaling effect. The normalized data is 

divided into training, validation, and testing. The training set creates a model that attempts to fit 

each data in the training set accurately irrespective of the model complexity. The validation is used 

to avoid overfitting and compromised generalization of the model. The network structure for fault 

detection and isolation is determined iteratively by varying optimization algorithms, the number 

of neurons in the hidden layer, weights, and bises leading to optimal performance. The sample 

quality plays a significant role in estimating parameters of the fault detection system.  
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structure for fault 
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(Eq 3.1-3.4)
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 (Eq. 3.17-3.19)
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Eq. 3.5

Revise parameters

No
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Fig. 3.2: Flowchart of fault detection using quality-based training of a supervised neural network 

 

 

3.3 Results and Discussion 

 

This section presents the evaluation of the proposed model on detecting faults in two case studies: 

leak detection in a CSTH (Section 4.3.1) and fault detection of the Tennessee Eastman Process 

(Section 4.3.2). The following section presents an overview of the metrics employed in the 

evaluation.     
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 The performance of a classification model is usually assessed on three key parameters; accuracy, 

fault detection rate (FDR), and false alarm rate (FAR). Accuracy represents the overall 

effectiveness of a classifier and can be determined by the fraction of correct prediction (Eq. 3.20). 

The FDR announces the proportion of the faults rightly detected by a classifier (Eq. 3.21) whereas 

FAR indicates the fraction of the alarms turned out false (Eq. 3.22). A good classification system 

should have higher accuracy and FDR as well as a lower value of the FAR ( Zhao et al., 2017; 

Alauddin, Khan, Imtiaz, & Ahmed, 2020).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                    (3.20) 

𝐹𝐷𝑅 = 
Fault detected

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠
= 

𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (3.21) 

𝐹𝐴𝑅= 
𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑎𝑟𝑚𝑠
= 

𝐹𝑁

𝑇𝑃+𝐹𝑁
                   (3.22) 

 

                               Where,     TP= true positive; fault signal correctly diagnosed as a fault. 

TN= true negative; normal signal correctly diagnosed as normal 

FP= false positive; fault signal incorrectly identified as normal. 

FN= false negative; normal signal incorrectly identified as a fault 

 

Fault detection rate, false alarm rate, and accuracy are commonly used metrics for evaluating 

classification models. However, they do not alone can provide a holistic view of the classifier's 

efficacy and can lead to deceptive outcomes especially for the imbalanced data. For instance, a 

fault detection system with a 100% detection rate (FDR=1) is good with respect to detecting faults 

as it is not missing detecting abnormal signals. Nonetheless, the system might be biased towards 

detecting faults and can predict a normal signal as faulty. This can result in excessive false alarms.  

Similarly, a detecting system with negligible FAR might be prone to missing detecting faulty 

scenarios. Accuracy could give a balanced estimate of classifying faults as faults and normal as 
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normal. However, its results could be misleading in the case of imbalanced samples. For example, 

a classifier with a 9:1 ratio of normal to faulty samples in a binary classification could register 

90% accuracy by categorizing all signals as normal. In this case, the classification system is not 

detecting any fault despite a higher accuracy value.  

We have devised a new metric, the classification index CI (  0 ≤ 𝐶𝐼 ≤ 2), for evaluating binary 

classifiers considering accuracy, fault detection, and missed detection of abnormal situations. Eq. 

3.23 presents the classification index where, 𝑤𝐹𝐷𝑅 and 𝑤𝐹𝐴𝑅 denotes respective importance 

parameters for FDR and FAR. Thus an FDD system with CI=2 guarantees effective detection of 

faults as the fault and normal as normal signals.   

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 (𝐶𝐼) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑤𝐹𝐷𝑅 ∗ 𝐹𝐷𝑅 − 𝑤𝐹𝐴𝑅 ∗ 𝐹𝐴𝑅        (3.23) 

For an unconstrained classifier system, 𝑤𝐹𝐷𝑅 = 𝑤𝐹𝐴𝑅 = 1, leading to the classification index, 

(𝐶𝐼) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝐹𝐷𝑅 − 𝐹𝐴𝑅. Higher the CI better will be the classifier. The CI is a bounded 

function with values that lies in [-1, 2]. The value of the classification index is equal to -1 when 

Accuracy=0, FDR=0, and FAR=1 and equal to 2 for Accuracy=1, FDR=1, and FAR=0. A higher 

CI value is desirable for efficient classification. 

3.3.1 Leak detection in a continuous stirred tank heater (CSTH) 

The continuous stirred tank heater is a widely used unit operation of chemical process systems. 

Fig. 3.3 presents a CSTH model developed at the University of Alberta (Thornhill, Patwardhan, & 

Shah, 2008). The temperature of water in the CSTH is assumed to be uniform throughout the 

vessel. The state of the output variables (water level, flow rate, and temperature) are recorded for 

the distinct openings of the inlet valves.  
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The proposed robust neural network model has been examined on the CSTH model for detecting 

leakage in the vessel. The data were divided in to training and test samples with a 70: 30 ratio. The 

robustness of the model was tested by introducing 1%, 5%, and 10% mislabeling in the training 

and testing samples. The 1% mislabeling indicates 1% of the training data were assigned incorrect 

labels. The performances of the proposed robust ANNs were compared against standard ANN in 

terms of fault detection rate (FDR) and a classification index (CI) that account for accuracy, fault 

detection rate, and false alarm rate on test samples. Fig. 3.4 presents the FDR of the proposed 

quality-based trained ANN and the standard ANN for 0%, 1%, 5%, and 10% mislabeled data. The 

0% mislabeled data represents a legitimate data sample i.e., no normal data has been labeled ad 

faulty and vice-versa.  The FDR of the robust ANN is higher than that of the standard ANN for 

the same initialization of the network parameters. It can also be noticed that the robust network 

performs better on legitimate data as well.   

 

Fig. 3.3: Schematic of a continuous stirred tank heater model (Thornhill, Patwardhan, & Shah, 

2008) 
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Fig. 3.4: Fault detection rate of leak detection of a CSTH using the proposed Robust ANNs and standard 

ANN 

 

The fault detection rate alone does not guarantee the goodness of a fault detection model. The 

threshold of the detecting system might be biased towards detecting abnormalities resulting in a 

higher false alarm rate (FAR). We have examined the performance of the FDD system using a 

receiver operating characteristic (ROC) curve.  The ROC aids in visualizing the trade-off between 

FDR and FAR with optimal classification.  Fig. 3.5 presents the receiver operating characteristic 

curves of the fault detecting models based on standard ANN and the proposed robust ANN model. 

Fig. 5A-C presents the corresponding ROC curves for the 0%, 1%, 5%, and 10% mislabeled data. 

The random model represented by the dotted diagonal in the ROC curve is a random classifier that 

can not differentiate the two classes at any threshold. A detection system can distinguish the normal 

and faulty classes effectively if its ROC curve is farther away from the diagonal. The area under 

the ROC curve (AUC) represents a degree of separability. The higher the AUC, the better the model 

at predicting distinct classes. The AUC is classification-threshold-invariant, i.e. it assesses the 

performance of the model irrespective of the classification threshold.  
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Fig. 3.5: The comparative ROC curves of the Robust ANNs and simple ANN on for leak detection of 

CSTH: (A) legitimate data, (B) 1% mislabeled data, (C), 5% mislabeled data, and (D) 10% mislabeled 

data 

 

The models have also been examined based on the classification indices(𝐶𝐼 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 +

𝐹𝐷𝑅 − 𝐹𝐴𝑅). Here again, the proposed robust ANN model scores well compared to the standard 

ANN. Thus, the percentage improvements in CIs of the proposed robust model compared to the 

standard ANN were recorded as 9.5%, 2.8%, 1.9%, and 6.3% on 0%, 1%, 5%, and 10% mislabeled 

data respectively.  

The quality-based robust ANN model performs well for leak detection in a CSTH system. The 

next section examines its effectiveness for detecting faults of the Tennessee Eastman process.  

3.3.2 Fault detection in the Tennessee Eastman process 

The Tennessee Eastman process is a complex nonlinear simulated process that has been used in 

many chemometrics studies for plant-wide control, process monitoring, and fault detection and 
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diagnosis. It comprises five major operating units: an exothermic two-phase reactor, a product 

condenser, a vapor-liquid flash separator, a recycle compressor, and a reboiled product stripper as 

shown in Fig. 3.6 (Downs & Vogel, 1993). The TE process constitutes 41 (XMEAS-1 to XMEAS-

41) measured and 12 (XMV-1 to XMV-12) manipulated variables. The measured variables include 

22 continuous process variables and 19 variables for composition measurements. Twenty distinct 

known and unknown faults (IDV-1 to IDV20) have been studied by many researchers (Ajagekar 

& You, 2020; Alauddin et al., 2020; Amin, Khan, Imtiaz, & Ahmed, 2019; Ge & Song, 2007; 

Tang et al., 2018; Wu & Zhao, 2020; Xie, Yang, Li, & Ji, 2019; Jianbo Yu & Yan, 2019; Zhang, 

Guo, & Li, 2020)  

 

Fig 3. 6: Process flow diagram of the Tennessee Eastman process (Downs & Vogel, 1993) 

The proposed robust ANN model has been examined on the Tennessee Eastman process for 

detecting step fault (IDV-1) and sticking fault (IDV-14).  
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3.3.2.1 Fault detection of IDV-1 (step fault) of  the TE process 

Fig. 3.7 presents the fault detection rate (FDR) of the proposed robust ANN and simple ANN at 

0%, 1%, 5%, and 10% mislabeled data. The data were divided in to training and test samples with 

a 70: 30 ratio. The models were evaluated on test samples. The FDR of the Robust ANNs is higher 

than the standard ANN. For instance, FDRs of the robust ANN and standard ANN (in bracket) 

were found as:  0.94 (0.92), 0.93 (0.93), 0.93 (0.88) and 0.86 (0.78) on respective 0%, 1%, 5%, 

and 10% mislabeled data. It can also be deduced that the FDR of the standard ANN decreases 

drastically with increasing mislabeling. Here, a marginal improvement of the FDR of the simple 

ANN at 1% mislabeling might be due to the random pick up of the smaller number of mislabeled 

data in the test samples of the ANN compared to that for the robust ANN. Had the test samples be 

exactly the same, the robust ANN would score better. This can be justified by the accuracy of the 

models presented in Fig. 3.8. The accuracy, which is denoted by the AUC of the ROC curve, of 

the proposed robust ANNs is higher than the corresponding simple ANNs for all categories of 

samples (Fig. 3.8).  

The classification indices of the robust ANN and standard ANN (in bracket) were found as:  1.91 

(1.79), 1.87 (1.85), 1.88 (1.82) and 1.79 (1.66) on respective 0%, 1%, 5%, and 10% mislabeled 

data. Thus, the CIs of the robust ANN were improved significantly on all test conditions.   
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Fig. 3.7: Fault detection rate of the TE process for detecting step fault (IDV-1) using the proposed robust 

ANNs and standard ANNs 

 

 

 
 

 

Fig. 3.8: Comparative ROC curves of the robust ANNs and standard ANNs for detecting the step 

fault (IDV-1) of TE process: (A) legitimate data, (B) 1% mislabeled data, (C), 5% mislabeled 

data, and (D) 10% mislabeled data 

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

No mislabelling 1% Mislabelled Data 5% Mislabelled Data 10% Mislabelled Data

FDR of standard and robust ANN models

ANN Robust_ANN

(A) 
(B) 

(C) (D) 

False alarm rate 

F
au

lt
 d

et
ec

ti
o
n
 r

at
e
 



 
 

83 
 

3.3.2.2 Fault detection of IDV-14 (sticking fault) of  the TE process 

The sticking fault of the reactor cooling water valve (IDV-14) increases reactor temperature 

(XMEAS-9), separator temperature (XMEAS-11), and condenser cooling water outlet temperature 

(XMEAS-22). The elevated temperature initiates the thermal runaway of the reactor leading to 

failure. 

The comparative performance of the test algorithms for the detection of IDV-14 fault of the TE 

process has been presented in Table 3.3. We did not see any significant improvement in FDR; 

however, there is marked gain in the classification index of the robust ANN over the standard 

ANN. This difference widens with the amount of mislabeled data. The overall effectiveness is 

reported by the proposed classification index. The higher CI values (𝐶𝐼 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝐹𝐷𝑅 −

𝐹𝐴𝑅 ) of the proposed algorithms speak for the superior efficacy of the proposed robust neural 

network-based fault detection systems. 

Table 3.3: Comparative performance of the robust ANN and standard ANN on IDV-14 of the TE 

process 

  1%  mislabeled 

data 

5%  mislabeled 

data 

10%  mislabeled 

data 

Fault 

detection rate 

Simple ANN 0.93 0.93 0.86 

Robust ANN 0.93 0.94 0.93 

Classification 

index 

Simple ANN 1.71 1.61 1.39 

Robust ANN 1.73 1.69 1.61 
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3.4 Conclusions 

This work presents a novel approach, the quality-based training (QbT) of the supervised neural 

networks, for handling the mislabeled and/or low-quality data. The quality of each data sample 

was calculated by the Mahalanobis distance of a sample from a trusted center. The model was 

evaluated for two case studies; a constant stirred tank heater and the Tennessee Eastman chemical 

process. The effectiveness of detecting faults of the proposed quality-based trained robust neural 

networks was compared with the conventional artificial neural network-based model for the same 

random numbers and related hyper-parameters. The proposed robust ANN registered a higher fault 

detection rate and classification indices on distinct mislabeled data. The percentage improvements 

in accuracy in detecting IDV-1 fault of the TE process were recorded as 1%, and 4.5 % on 

respective 1%, and 10% mislabeled data. In terms of the proposed classification indices (CI), the 

improvements amount to 1.1%, and 7.5% on corresponding test samples. The proposed method 

also yielded improved results in detecting faults on legitimate samples i.e., samples with no 

mislabeling. Thus, respective gains in accuracy and the CI in detecting faults on legitimate samples 

were 4.30% and 6.33%. Similar leverages were noticed in detecting the sticking fault (IDV-14) of 

the TE process and leak in the CSTH system using the proposed robust ANN. 

We studied the effect of the random mislabeled data. The proposed model can be studied for 

incorporating causality and structural relations. The proposed quality-based training is effective in 

detecting faults in presence of the low-quality data. 
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List of symbols and abbreviations 

Symbols Meanings 

ANN artificial neural network  

a1 activation for the hidden layer 

a1h hth element of the hidden activation layer 

a2 activation for the output layer 

a2j jth element of the output activation layer 

AUC area under the receiver operating characteristic curve  

CART classification and regression tree  

CBR case-based reasoning  

CI classification index  

dn Mahalanobis distance of nth sample wrt the trust centre 

FAR false alarm rate  

FDD fault detection and diagnosis  

FDR fault detection rate  

FN false negative 

FP false positive 

GMM Gaussian mixture model  

ICA independent component analysis  

IDV-1 to 20  faults of the simulated TE Process 

IFCVAE information concentrated variational auto-encoder  

L loss  

L1 label 1 

L2 label 2 

PCA principle component analysis  

PLS partial least square  

QbT quality-based training  

qn quality of the nth sample 

RNN recurrent neural networks  

ROC receiver operating characteristic  

S covariance matrix of process variables  

sPCA spherical principal component analysis  

SVM support vector machine  

ti ith label of the target 

TN true negative 

TP true positive 

W1 weight matrix for the hidden layer 

W2 weight matrix for the output layer 

W2ji weight of the jth neuron to ith output 



 
 

86 
 

wFAR importance parameters for the false alarm rate  

wFDR importance parameters for the fault detection rate 

X  training dataset  

xk kth column of the input matrix 

XMEAS input variable in the TE Process 

Xnd elements corresponding to nth row and dth column of training sample 

Xtrust trusted centre of the reliable dataset 

z1 hidden layer vector 

z1k kth element of the hidden layer 

z2 output layer vector 

z2k kth element of the output layer 

 

  

standard deviation of d samples  

  𝜂 learning rate 

 

  

tuning factor to adjust the calculation sensitivity 

 

  

quality vector of the data 
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Chapter 4 

A primer on integrating process dynamics in data-driven models of chemical 

processing systems 

 
 

 

Preface: Chemical engineering discipline has well-established expertise in science-based 

frameworks in distinctive domains including materials and energy balances, chemical kinetics, 

transport phenomena (heat, mass, momentum), fluid mechanics, process control, and 

thermodynamics. The objective of this chapter is to harness this mechanistic knowledge in 

developing data-driven models for the safety of process systems. This chapter presents a 

framework for integrating process dynamics and expert knowledge to enhance robustness of data-

driven models. This work can be mapped to the thesis’s sub-objective “development of robust data-

driven models for the safety of process systems”. 
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Abstract: Data-driven models require high fidelity data of sufficient quantity and granularity. This 

is challenging in complex chemical processing systems due to frequent sensor breakdown, process 

shutdown, malfunctioning of equipment, random fluctuations, miscalibration, inconsistent 

sampling frequencies, and data entry errors. Thus many models scoring well on the training data 

fails on the real-time data of industrial systems. This work presents a process dynamics-guided 

deep neural network model to improve the generalization of the model. We have added an 

additional layer in the neural network architecture to incorporate process dynamics such as 

material and energy balance equations, universal laws, standard correlations, and field knowledge. 

We evaluated the proposed models on regression and classification tasks related to processing 

systems representing steady-state and transient behavior. The results were compared against a 

standard neural network. The proposed model yielded improved generalization ability on the 

unseen data. It also produced improved results on models determined by reduced sample-sized 

data. The proposed process dynamics-guided neural network can be employed as a robust model 

for handling generalization issues of data-driven methods in processing systems.   

 

Keywords: fault detection, fault diagnosis, process monitoring, fault detection rate, false alarm 

rate. 

 

4.1 Introduction 

4.1.1 Motivation: 

The advancement in big data and computations has prompted many industries including process 

industries to re-examine their traditional roles for design, control, and maintenance. Many data-

based tools based on sensitivity analysis and uncertainty quantification have been devised for 

effective decision making enabling resilient processes and smarter businesses. The state-of-the-art 

data-driven self-optimizing operations, online monitoring, and control-based simulations of 

Industy4.0 can reduce potential process upsets and unplanned shutdowns minimizing operational 
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cost, time, and resources. The data-based models can contribute significantly to making the 

process industry more efficient, much safer, and environmentally friendlier. 

Data-driven methods also known as empirical models are generic and can therefore be adapted to 

almost any physical or psychological environment (Jack et al., 2018). The data-based models, 

especially the artificial neural network, can approximate complex functions. However, they lack 

interpretability and struggle when data is scarce or in extrapolation regimes. Empirical models 

assume that the data is of sufficient granularity and quantity to define the system. Today’s smart 

sensors and sophisticated technologies have paved the way for the availability of tremendous data 

for cyber-physical industrial systems. However, selecting legitimate data for training in process 

systems is still a daunting task. The exploratory data techniques are of great help in finding 

potential data for intended functions. Nonetheless, sensor breakdown, process shutdown, 

malfunctioning of equipment, random fluctuations, incorrect calibration, inconsistent sampling 

frequencies, and data entry errors due to human factors cause various quality-related issues such 

as outliers, missing information, imbalanced data, poorly labeled data, incorrectly mapped 

properties, noise, and inconsistencies. The model will fail at making a reliable assessment if the 

training data is only representative of a subsection of the processing system (Alvarez et al., 2009). 

Knowing the system boundaries of a process usually requires prior knowledge elicited from 

process industry practitioners.  

Industrial processes are often described as data-rich but information-poor. The imbalanced and 

sparse data are also a growing concern for the training of data-driven models of oil and gas systems. 

These systems usually have a high volume of data of normal conditions while fewer representative 

samples of the anomalies. The industrial systems have a large quantity of process data from 
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conventional measurements (pressure, temperature, flow rate) but a lack of data on stream 

compositions, and other sophisticated measurements.  

First principle models on the other hand rely on system understanding to compensate for the lack 

of data (Fisher et al., 2020). Mechanistic models are formalized using conservation laws, domain 

knowledge, physical principles, and phenomenological behaviors. Because of this, they have a 

greater potential for extrapolation compared to empirical models. Such models, however, need the 

correct specification of all interactions between variables and system parameters which is not 

feasible in the modern era’s complex industrial systems.  

Many efforts are made for bridging the gaps in the data-based and mechanistic models. However, 

there is still a lack of literature on integrating the process knowledge such as material and energy 

balances, physical laws, chemical kinetics, and expert knowledge in the training of data-based 

models. There is an ongoing debate on how much domain knowledge is necessary for efficient 

learning. At one extreme is “blank slate” learning with no domain knowledge to the entirely ridden 

by the physical laws at the other extreme. 

The motivation of this work is to reconcile data-driven models with mechanistic modeling to 

develop hybrid models that can incorporate prior knowledge, and provide credible predictions. 

This work contributes to the following.  

i. Devising process dynamics-guided deep neural network formalism: We have 

developed a process dynamics-guided deep neural network model for improving the 

performance of the system. This has been achieved by adding an additional layer for 

establishing the process dynamics such as material and energy balance equations and 

process heuristics. 
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ii. Evaluation of the proposed dynamics-guided deep neural network (PDNN): We have 

examined the proposed model on three virtual processes, simple linear, nonlinear, and 

moderately complex processes. The model has been examined for detecting low-

quality distilled fractions of a binary separator. The proposed hybrid model yielded 

improved results on reduced samples sizes that endorse better generalization ability of 

the process dynamics-guided neural network model. It has also been examined on 

forecasting scenarios in a transient phenomenon. We have studied reaction kinetics 

following systems of ordinary differential equations to study the conversion of 

reactants and products in a batch reactor.  

The subsequent sections of this paper are organized as follows. Section 4.1.2 provides a brief 

survey of data-driven and mechanistic models with a focus on the deep neural network developed 

for process systems. Section 4.2 presents mathematical models for integrating the process 

dynamics in deep neural network models. The model outcomes are presented in Section 4.3 

followed by a conclusion (Section 4.4).  

4.1.2 Related Literature 

Numerous data-based methodologies such as principal component analysis (PCA) and partial least 

squares (PLS) (Kaspar & Harmon Ray, 1993; Kourti & MacGregor, 1995; Qin, 1998), independent 

component analysis (ICA) (Stefatos & Hamza, 2010; Zhang & Qin, 2007; Zhang & Zhang, 2010), 

vine copula-based methods (Cui & Li, 2020; Ren et al., 2017; Yu, Khan & Garaniya, 2015a), 

Gaussian mixture model (GMM), (Li, Qin & Yuan, 2016; Thissen et al., 2005; Yu, 2013; Yu & 

Qin, 2008, 2009) have been studied for fault detection and diagnostic methods. Many machine 

learning techniques such as artificial neural network (ANN) (Agatonovic-Kustrin & Beresford, 

2000; Li et al., 2017; Park & Sandberg, 1991; Schmidhuber, 2015; Zhang et al., 2020; Zhao et al., 
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2018), support vector machines (SVM) (Burges, 1998; Cortes & Vapnik, 1995; Widodo & Yang, 

2007), case-based reasoning (CBR) (Zhao et al., 2017), and classification and regression tree 

(CART) (Lawrence & Wright, 2001) have been successfully tested for fault detection and 

diagnostic methods for process systems.  Alauddin, Khan, Imtiaz, and Ahmed (2018) classified 

the evolution and development of research on data-driven FDD in four categories, namely, 

formulation of basic data-driven algorithms, advancement of the algorithms, applications of the 

algorithms in process systems, and development and application of advanced hybrid techniques in 

process systems. Some of the comprehensive reviews on data-driven FDD includes: (Alauddin et 

al., 2018; Arunthavanathan et al., 2021; Dai & Gao, 2013; Gao et al., 2015; Ge, 2017; Qin, 2012; 

Tidriri et al., 2016; Yin et al., 2012, 2014). 

Mechanistic modeling has been a major part of Chemical Engineering and a central activity of 

Process Systems Engineering (PSE) for several decades. These models have a stronger ability for 

generalization and extrapolation. The synergy between the two approaches has been gaining 

attention, by either redesigning the model’s architecture, augmenting training datasets with 

simulated data, or including physical principles as constraints in the cost function. The hybrid 

models are also referred to as a gray-box model (GBM) (Acuña et al., 2013), integrated neural 

network (Mavkov et al., 2020), semi-mechanistic (Lima & Saraiva, 2007), semi-parametric 

(McBride et al., 2020; von Stosch et al., 2014a), informed machine learning (von Rueden et al., 

2021), domain adaptive (Liu et al., 2020; Schuld et al., 2014), theory-guided data science 

(Downton et al., 2020; Karpatne et al., 2017), and physics-guided neural networks (Hu et al., 2021; 

Murphy & Kerekes, 2021; Wang et al., 2020). Hybrid models combine the flexibility and 

scalability of machine learning while respecting the physics of the underlying systems. The hybrid 

models can result in improved prediction accuracy, better calibration properties, enhanced 
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extrapolation properties, and better interpretability (Chaffart & Ricardez-Sandoval, 2018; 

Psichogios & Ungar, 1992; Reichstein et al., 2019; Svendsen et al., 2021; Thompson & Kramer, 

1994; Van Lith et al., 2003; von Stosch et al., 2014b). 

The distinct hybrid formalism could be achieved via Proxy (one model acts as a surrogate to the 

other), complement (the solution is a combination of the two models), supplement (a model 

provides a correction for the other model), embedment (a model is embedded within the other 

model), integrate (output of a model serves as an input for the other model), and inspiration (the 

structure of a model is developed from the knowledge provided by the other model) (Fisher et al., 

2020; von Stosch et al., 2014b). Thompson and Kramer (1994) divided techniques to combine 

prior knowledge with neural networks in design approaches (modular, serial, and parallel) and 

training approaches (objective function and constraints). The design approach uses prior 

knowledge as a basis for selecting a network. 

Integrated mechanistic knowledge in the form of physics-based priors has been rendered in many 

data-based models including kernel machines (Acuña et al., 2013), Bayesian non-parametric 

approaches such as Gaussian Process (GP) regression (Camps-Valls et al., 2018; Raissi et al., 

2017; Svendsen et al., 2018) and latent force models (LFMs) (Alvarez et al., 2009).  Camps-Valls 

et al. (2018) presented an automatic Gaussian process emulator (AGAPE) that approximates the 

forward physical model using Bayesian optimization and look-up-table. Latent force 

models (LFMs) were devised to incorporate physical knowledge encoded in differential equations 

into a multi-output GP model.  LFMs can transfer information across time series, handle missing 

observations, infer explicit latent functions forcing systems, and learn parameterizations. 

Numerous filter based estimators such as Kalman filter (Santos et al., 2021; Sohlberg, 2003), 

extended Kalman filter (EKF) (Destro et al., 2020), and unscented Kalman filter (UKF) (Kreuzinger 

https://www.sciencedirect.com/topics/computer-science/kernel-machine
https://www.sciencedirect.com/topics/engineering/lookup-table
https://www.sciencedirect.com/topics/engineering/kalman-filters
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et al., 2008; Simutis & Lübbert, 2017) have been employed in model predictive control and state 

estimation of process systems. Several comprehensive reviews on hybrid methods applied to 

process systems have been presented (Bikmukhametov & Jäschke, 2020; Sansana et al., 2021; von 

Stosch et al., 2014a; Xiong & Jutan, 2002).  

Table 4.1 presents a hybrid formalism for integrating process knowledge in a neural network 

framework. Psichogios and Ungar (1992) employed a hybrid model where neural network 

component processes parameters of the first principle model. Thompson and Kramer (1994) 

studied a hybrid model based on a parametric model (that compensates for sparse data) and a neural 

network that accounts for uncertainties and biases. Xiong and Jutan (2002) investigated a 

hybrid model-based control strategy using a parallel structure where a neural network was used to 

compensate model mismatch of detailed and approximate mechanistic models. 

Georgieva et al. (2003) employed a hybrid model in an industrial fed-batch evaporative 

crystallization process for predicting size distribution in a refining process. Mass and energy 

balances were captured in the mechanistic sub-model whereas the data-driven sub-model described 

growth rate, nucleation, and agglomeration parameters. Oliveira (2004) proposed a hybrid 

formalism with parallel and fused multiplication functions.  Stewart and Ermon (2017) formulated 

a new approach to supervising neural networks by specifying mechanistic constraints in the output 

space. Azarpour et al. (2017) developed a generic framework based on the first principle model 

and an artificial neural network to study catalyst deactivation of fixed-bed catalytic reactors 

(FBCRs). Muralidhar et al. (2018) illustrated how incorporating domain constraints directly into 

the loss function can improve the learning of parameters. Hendriks et al. (2020) presented a neural 

network-based model that can explicitly satisfy known linear operator constraints. 

https://www.sciencedirect.com/topics/engineering/model-based-control
https://www.sciencedirect.com/science/article/pii/S0098135421001435#bib0064
https://www.sciencedirect.com/topics/engineering/kinetic-parameter
https://www.sciencedirect.com/science/article/pii/S0098135421001435#bib0119
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Wu et al. (2020) proposed three distinct hybrid formalisms based on a recurrent neural network to 

integrate physical knowledge in data-driven models.  

Many studies conferred that meta-learning can significantly improve the performance of deep 

neural networks. Van Lith et al. (2003) augmented a simple physical framework with fuzzy logic. 

Lee and Kang (2007) formulated a modified back-propagation neural network (BPN) based meta-

model that ensures constraint feasibility of the approximate optimal solution. Alauddin et al. 

(2020) presented an ANN-based fault detection model that was tuned using a variable mosquito 

flying optimization technique for maximizing fault detection rate and minimizing false alarm rate.  

Table 4.1: Hybrid formalisms for integrating process knowledge in neural network models of 

process systems  

 Study Hybrid Formalism Case study 

First 

principle 

models 

 

(Psichogios & 

Ungar, 1992) 

Process parameters of the first principle 

model were determined  by neural 

network  

 

Fed-batch bioreactor 

(Thompson & 

Kramer, 1994) 

Parametric model that compensates for 

sparse data and neural network 

accounting for uncertainty and bias 

Penicillin 

fermentation 

(Xiong & Jutan, 

2002) 

ANN was used to compensate for model 

mismatch of detailed and approximate 

mechanistic models. 

Batch reactor; 

  continuous stirred 

tank reactor 

(Bollas et al., 

2003) 

Neural model was used to refine the 

plant model prediction 

Fluid catalytic 

cracking 

(Georgieva et al., 

2003) 

Mass and energy balances were captured 

in the mechanistic sub-model the data-

driven sub-model described the growth 

rate, nucleation, and 

agglomeration parameters. 

fed-batch evaporative 

crystallization process 

(Oliveira, 2004) Parallel and fused mechanistic part and a 

data-driven part. 

Recombinant protein 

and baker’s yeast 

production 

(Safari et al., 

2014) 

Neural network fused the outputs of 

multiple Kalman filters 

Industrial sensor fusion 

(Yang et al., 

2020) 

Integrating deep neural network with a 

physical lumped kinetic model 

Automated FCC 

process. 

(Chen & 

Ierapetritou, 

2020) 

Serial, parallel, and combined structures 

of hybrid models. 

simulated reactor 

mode 

https://www.sciencedirect.com/science/article/pii/S0098135421001435#bib0193
https://www.sciencedirect.com/topics/engineering/batch-reactor
https://www.sciencedirect.com/topics/engineering/kinetic-parameter
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(Wu et al., 2020) Physics-based recurrent neural network 

(RNN)  

model predictive 

control 

(Ghosh et al., 

2021) 

Data-driven model learns the residuals 

from the mechanistic model;  

mechanistic nonlinear model 

approximated by surrogate linear model 

and learning of residual using a data-

driven model  

Batch crystallization 

    

Meta-

modeling 

(Tan & Li, 2002) Mechanistic sub-model based on 

momentum balance and the data-driven 

model using Padé approximation  

Hydraulic nonlinear 

system 

(Van Lith et al., 

2003) 

Simple physical framework augmented 

with fuzzy logic. Information about the 

dynamic behavior is incorporated in the 

form of prior knowledge  

Experimental batch 

distillation column, 

(Lee & Kang, 

2007) 

Modified back-propagation neural 

network (BPN) based meta-model that 

ensures constraint feasibility of the 

approximate optimal solution. 

Standard structural 

problems  

(Alauddin et al., 

2020) 

ANN-based fault detection model was 

tuned using a variable mosquito flying 

optimization (V-MFO) technique for 

maximizing fault detection rate (FDR) 

and minimizing false alarm rate (FAR).  

Tennessee Eastman  

process 

 

 

4.2 The proposed model 

We have developed a process dynamics-guided deep neural network model for improving the 

generalization of the system. Fig. 4.1 illustrates the core idea behind mechanistic, data-driven, and 

integrated models. Suppose that we have to predict the activity of a person at a given time window 

using the mechanistic and data-based models. The mechanistic models will be based on a 

predefined architecture for distinct activities such as sleep patterns, eating habits, and other 

physiological behavior. There will be a designated structure of the work hours, recreation, and 

social engagements. The added responsibility of the family adds other constraints for predicting 

the activity. An effective mechanistic model will also delineate the effect of seasonality and aging 
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on the activity of the person. The data captured by the tracking system will be allocated to any one 

of those predefined modules. The mechanistic model requires only a few data to completely 

specify the parameters of the model.   

This task can also be accomplished by a robot that is unaware of any notion of human physiology, 

work environment, and social culture. The robot can predict the activity of the person in the stated 

time window with a complex virtual model based on history. The robot’s black box model will 

require myriads of relevant data for training to accomplish this task.  

The integrated model (Fig. 4.1c) can harness the benefits of both mechanistic and data-driven 

models. It can lead to an improved model with better generalization (i.e., better results on unseen 

data) without specifying all the interactions of the complex systems. The integrated model can also 

aid innovation and new dimensions of explorations. With this brief background, the next section 

presents the proposed process dynamics guided deep neural network. 

4. 2.1. Process dynamics-guided neural network (PDNN) 

The artificial neural network has been inspired by biological neural systems. A standard ANN 

consists of many processors, also called neurons that generate a sequence of real-valued activations 

(Agatonovic-Kustrin & Beresford, 2000; Schmidhuber, 2015). ANN can assimilate highly 

complex relationships between several variables by learning the nature of the dependency between 

input and output variables. The learning process is based on pattern recognition characteristics of 

a neural network.  

A processing system can be characterized by three types of knowledge about the processes: 

mechanistic, heuristic, and knowledge within process data. They could be represented by distinct 

mathematical models ranging from simple algebraic equations to complex equations such as 

https://www.sciencedirect.com/topics/engineering/algebraic-equation
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systems of ordinary differential equations (ODEs),  differential-algebraic equations (DAEs), 

and partial differential equations (PDEs ). We have categorized this information into four levels 

as illustrated in Fig. 4.2.  The first level is related to conservation laws such as material balance, 

energy balances, and universal laws. This is strictly followed by any system and subsystem of 

industrial processes. Level 2 captures regulations and bound constraints. For example, regulations 

on emission, the upper limits on the tolerable region in the ALARP-based design, bounds on 

physical parameters such as non-negative density. Level 3 captures the details of process 

dynamics and chemical processing operations such as reaction, separation, heat exchange, and 

waste treatment. The various chemical processing operations from the upstream (i.e., exploration, 

drilling, production) and downstream (such as mixing, separation, heat exchange, refining, waste 

minimization) are also taken into account in this layer. This layer can assimilate acquired 

knowledge from fluid mechanics, heat transfer, mass transfer, reaction engineering, process 

control, process safety, plant design, and economics. The layer aims to incorporate complex 

equations such as partial differential equations, fundamental correlations, and nonlinear 

equations.  

Level 4 is related to applying heuristics and ergonomics. This addresses the mismatch between 

people, tools, and the working environments. This layer can aid some quick and relatively 

inexpensive designs heuristics in devising data-based models of processing facilities.  

We are defining process relations and stoichiometry by adding an additional layer in the artificial 

neural network structure (Fig. 4.3). The proposed model is a multi-layer network comprising a 

process info layer, an input layer, hidden layer(s), and an output layer.  The model is different from 

the standard ANN in terms of defining correlations and dependability relation in the first layer of 

the neural network model of a process system. We can incorporate some or all mechanistic 

https://www.sciencedirect.com/topics/engineering/partial-differential-equation


 
 

105 
 

equations of process systems in the process dynamics layer. The model parameters are iteratively 

determined using the forward prediction and backward propagation through the network layers. 

The parameter learning of the network could broadly be summarized under three steps:  

Step I: Forward propagation: The forward propagation of the network facilitates predictions based 

on the input and the network parameters. Eqs 4.1-4.5 represent the forward-pass model, where X 

is the input variables, 𝑊𝑖 , 𝑊1 and 𝑊2 denote the weights and 𝑎1 is the activation. The activation 

function 𝑎1  can be a linear function, hyperbolic tangent, logistic function, or a rectified linear unit 

(ReLU). The model output ‘y’ (Eq. 4.6) could be a linear, sigmoid, or a softmax function 

depending on the nature of the problem i.e., regression or classification.  

𝑧𝑖 = 𝑓(𝑋.𝑊𝑖)                       (4.1) 

𝑧1 = 𝑓(𝑧𝑖.𝑊1)                     (4.2) 

𝑎1 = 𝑓(𝑧1)                            (4.3) 

𝑧2 = 𝑎1.𝑊2                           (4.4) 

𝑦 = 𝑓( 𝑧2)                             (4.5) 

Step II: Calculation of cost function: The loss function evaluates "goodness" of the model 

predictions. It is a measure of the cost caused by incorrect predictions. Eq. 4.6 presents the loss 

function, it can be different for regression and the classification tasks.  

𝐿 = 𝑓(𝑡𝑖 , 𝑦)                            (4.6) 

Step 3: Backpropagation and weight update: The network parameter 𝛩  is determined by using the 

backpropagation based on the input features x, label t, and data quality. The backpropagation 

optimizes the network parameters for arbitrarily mapping inputs to outputs. The backpropagation 

is based on the chain rule to compute the derivatives of the loss function with respect to the network 

parameters (Aggarwal and Murty, 2021; Hinton, 1986). 

https://www.sciencedirect.com/topics/engineering/hyperbolic-tangent
https://www.sciencedirect.com/topics/engineering/logistic-function
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𝜕𝐿

𝜕𝑊𝑖
=

𝜕𝐿

𝜕𝑎2

𝜕𝑎2

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1

𝜕𝑧1

𝜕𝑊1

𝜕𝑧𝑖

𝜕𝑊𝑖
        (4.7)      

𝜕𝐿

𝜕𝑊1
=

𝜕𝐿

𝜕𝑎2

𝜕𝑎2

𝜕𝑧2

𝜕𝑧2

𝜕𝑎1

𝜕𝑎1

𝜕𝑧1

𝜕𝑧1

𝜕𝑊1
              (4.8)      

𝜕𝐿

𝜕𝑊2
=
𝜕𝐿

𝜕𝑎2

𝜕𝑎2
𝜕𝑧2

𝜕𝑧2
𝜕𝑊2

                     (4.9) 

Eq. 4.10-4.12 presents the weight update equation where η is the ‘learning rate’ that controls the 

influence of gradient on the weight update. To adequately explore the search space, we have 

employed a step decay adaptive learning rate. Eventually, the weight of the process dynamics layer 

can be re-adjusted based on the process knowledge. The re-adjusted weight is fed to the forward 

and the backward loop. This cycle continues until the convergence of the desired accuracy is 

achieved. 

𝑊1 = 𝑊1 − η
𝑑𝐿

𝑑𝑊1
           (4.10) 

𝑊2 = 𝑊2 − η
𝑑𝐿

𝑑𝑊2
           (4.11) 

𝑊𝑖 = 𝑊𝑖 − η
𝑑𝐿

𝑑𝑊𝑖
             (4.12) 

 
The process dynamics and other inputs are incorporated as follows:  

A. Incorporating material balance equations without reactions: The material balance equations 

of process design is usually algebraic equations. The simple linear equations can be ∑𝑚𝑖 = 0. 

Suppose we have an equation  𝑥1 = 𝑥2 + 𝑥3. This is induced as follows- 

 

o Initialize parameters 

o Calculate network output using the forward propagation 

o Calculate the loss function 

o Revise weights using backpropagation 

o Tune weights of the process dynamics layer to follow the constraint(s) 

o Repeat these steps until the desired convergence is achieved 
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B. Handling differential equations:   Process dynamics is usually described using differential 

equations. For example, a material balance equation with a chemical reaction results in an 

ordinary differential equation. The artificial neural network can handle the dynamic modeling 

based on a sequence of transformations to hidden states (Eq. 4.13). The discrete layers of a 

neural network can be represented using continuous dynamics leading to a differential equation 

(Eq. 4.14). Thus, a differential equation can be employed as a layer of a neural network (Chen 

et al., 2018; Rackauckas et al., 2020). 

ℎ𝑡+1 = ℎ𝑡 + 𝑓(ℎ𝑡, 𝜃𝑡)                                                    (4.13) 
 

𝑑ℎ𝑡
𝑑𝑡
= 𝑓(ℎ𝑡, 𝑡, 𝜃𝑡)                                                            (4.14) 

 
  The loss function at any point t1 can be represented by Eq. 4.15. 

 

𝐿(𝑧(𝑡1)) = ∫ 𝑓(𝑧(𝑡), 𝑡, 𝜃)𝑑𝑡                                          (4.15)      
𝑡1

𝑡0

 

The parameters are iteratively determined by solving the ODE during the forward propagation and 

adjoint ODE during the backpropagation. Eq. 4.16-18 present the differential with respect to 

parameters, where,  𝑎(𝑡) = −
𝜕𝐿

𝜕𝑧(𝑡)
   (Surtsukov, 2021).  

𝑑𝐿

𝑑𝑧(𝑡0)
= ∫ 𝑎(𝑡)

𝜕𝑓(𝑧(𝑡), 𝑡, 𝜃)

𝜕𝜃

𝑡0

𝑡1

𝑑𝑡                           (4.16) 

 
𝑑𝐿

𝑑𝜃
= ∫ 𝑎(𝑡)𝑇

𝜕𝑓(𝑧(𝑡), 𝑡, 𝜃)

𝜕𝜃

𝑡0

𝑡1

𝑑𝑡                              (4.17) 

 
𝑑𝐿

𝑑𝑡0
= ∫ 𝑎(𝑡)𝑇

𝜕𝑓(𝑧(𝑡), 𝑡, 𝜃)

𝜕𝜃

𝑡0

𝑡1

𝑑𝑡                            (4.18) 
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C. Handling miscellaneous constraints: The knowledge from operators, regulatory authorities, 

and other added constraints can be addressed by adding them as penalty functions in the 

loss function (Eq. 4.19). The objective of training a network is to find the parameters that 

minimize the loss function. The penalty function penalizes constraints violations i.e., the 

effective loss would be higher if the constraints are violated. The iterative process of forward 

and backward propagations will ultimately result in the optimal set of parameters while 

satisfying the constraints within the desired tolerance.  

𝐿𝐸𝑓𝑓 = 𝐿(𝑧(𝑡)) + 𝑃 ∗ 𝑔(𝑧𝑡)                                   (4.19) 
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Fig. 4.1: Mechanistic-based data-driven model  
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Fig. 4.2: Process dynamics-guided neural network model of a process system 
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Fig. 4.3: Defining process dynamics and expert knowledge in the first layer of a neural 

network model of a process system 

4.3 Results and Discussion 

The proposed model has been evaluated in regression and classification tasks which are widely 

used in design, control, optimization, scheduling, and risk analysis of process systems.  Regression 

is used to deduce the relationship between interacting variables and process parameters. The 

chemical engineering applications of regression include estimating reaction kinetics, equilibrium 

constant, adsorption isotherms, catalyst design, loading rate, drying time, heat transfer coefficients, 

product design, and predicting fluid properties and streams composition. The classification is 

exploited for anomaly detection, fault diagnosis, and decision making in distinct scenarios of risk 

associated with a process system. The process dynamics-guided neural network (PDNN) model 

has been studied on steady states and transient operations. Sections 4.3.1 and 4.3.2 present the 

evaluation of the model on regression and classification operations assuming a steady-state 

whereas Section 4.3.3 analyzes the transient behavior of a batch reactor.    
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4.3.1 Evaluation of process dynamics-guided neural network (PDNN) on regression tasks 

Fig. 4.4 presents a simplified block diagram of a simple chemical processing system. It comprises 

two splitters and a complex processing system with multiple operations.  The process output ‘y’ is 

a function of measured variables 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑎𝑛𝑑 𝑥5 (𝐸𝑞.  4.20). We have simulated three 

virtual processes, a simple linear process, a nonlinear process, and a moderately complex process 

(Eq. 4.20-23). The function 𝑓1 is a simple linear process, 𝑓2 is a nonlinear process of second-order 

while 𝑓3  is a complex nonlinear process capturing the orientation along with the variable 

interactions. C1 and C2 present constraints inferred from the material balance of the system. 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5)                                        (4.20) 

𝑓1 = 𝑥1−𝑥2 − 𝑥4                                                    (4.21) 

𝑓2 = (𝑥1+𝑥2) ∗ (1 + 𝑥3) + 𝑥3 ∗ 𝑥4                  (4.22) 

𝑓3 = 10𝑥1 sin(𝑥2) + 𝑥3{1 − exp(𝑥4)}           (4.23) 

                       𝐶1:       𝑥1 = 𝑥2 + 𝑥3                                             (4.24)   

             𝐶2:       𝑥1 = 𝑥2 + 𝑥3                                             (4.25)   

 

Splitter A

Splitter B

X1

X3
X5

X4

X2

Process

Y

 
Fig. 4.4: Block diagram of a simple chemical processing system 
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The test models have been evaluated on noisy data generated from the virtual functions f1, f2, and 

f3 in terms of the root mean squared error (RMSE) which is a measure of the difference between 

the calculated and the observed values (𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 − 𝑦𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒,𝑖)2
𝑁
𝑖=1  ).  We 

divided data in to training and test samples in a ratio of 70: 30. Fig. 4.5 presents the accuracy of 

the test models on training samples (Fig. 4.5A) and on the test data (Fig. 4.5B). The ANN 

represents the standard ANN model based on data without considering the balance equations. The 

PDNN-1 represents the proposed process dynamics-guided neural network model incorporating 

constraint C1, while PDNN-2 denotes the proposed process dynamics-guided neural network 

model for incorporating both constraints C1 and C2.   

 The RMSE values of the standard ANN model and the proposed process dynamics-guided neural 

network models (PDNN-1, and PDNN-2) for the nonlinear process f2 were found 0.1247, 0.1234, 

and 0.1233 respectively on the unseen data. We did not find any significant difference in the 

accuracy of the models on the training samples. However, process dynamics-guided neural 

network models yielded improved results on the test data. This speaks for the better generalization 

ability of the proposed process dynamics-guided neural network models. Table 4.2 presents the 

accuracy of test models of three processes of distinct complexities on training samples and unseen 

data. Here again, the process dynamics guided deep neural network is producing improved 

outcomes, especially on the test samples. Hence, the proposed PDNN is effective in handling 

regression tasks of process systems. The next section presents the model performance on a 

classification task of finding distillates of the desired composition in a binary distillation.  

Fig. 4.6 displays the history of parameter learning of test models. We can see that the loss function 

in terms of the root mean squared error (on the y-axis) is improving with increasing epochs. The 
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process dynamics guide in effective learning of the parameters. We can also notice that every 

additional feeding from the knowledge of the process dynamics improves the model. Thus, PDNN-

2 that incorporates both constraints C1 and C2 perform better than the PDNN-1 that accounts for 

constraint C1 only. However, the difference is negligible at increasing learning rates as shown in 

Fig. 4.6B-C. It can also be noticed that the additional constraints slow down the convergence 

especially at lower learning rates. This can be compensated by increasing the number of epochs. 
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Fig. 4.5: The accuracy of the test models on training and test data (A) training data, (B) test data

ANN; RMSE= 0.1036 ANN; RMSE= 0.1247 

PDNN-1; RMSE= 0.1034 

PDNN-2; RMSE= 0.1036 

PDNN-1; RMSE= 0.1234 

PDNN-2; RMSE= 0.1233 
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Table 4.2: Accuracy of test models on training and test data of virtual processes  

Test functions RMSE on training data RMSE on test data 

 ANN PDNN-1 PDNN-2 ANN PDNN-1 PDNN-2 

𝑓1 = 𝑥1−𝑥2 − 𝑥4 0.0016 0.0017 0.0017 0.0016 0.0014 0.0014 

𝑓2 = (𝑥1+𝑥2) ∗ (1 + 𝑥3) + 𝑥3 ∗ 𝑥4 0.1036 0.1044 0.1036 0.1247 0.1234 0.1233 

𝑓3 = 10𝑥1 sin(𝑥2) + 𝑥3{1 − exp(𝑥4)} 2.2771 2.2771 2.2772 2.0969 2.0635 2.0417 
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Fig. 4.6: Convergence of the calculated value with the target value with epochs at 

different learning rates 

 

4.3.2 Evaluation of the process dynamics-guided neural network (PDNN) on a classification task 

Distillation is a widely used unit operation of petroleum refining, chemical processes, and allied 

industries. Fig. 4.7 presents a binary distillation column comprising a vertical shell, a condenser, 

and a reboiler. The feed tray divides the column into the top (enriching) and bottom (stripping) 

sections. The feed flows down the column where it is collected at the bottom. The vapor rises to 

the top of the column, cooled by a condenser and removed as a distillate. A fraction of this liquid, 

also known as reflux, is recycled back to the column through enriching section. The quality of 

Learning rate, lr=0.1 Learning rate, lr=0.01 

Learning rate, lr=0.001 Learning rate, lr=0.0001 

  

  



 
 

118 
 

distillates is a function of relative volatilities of components, their activity coefficients, the ratio of 

liquid-phase to the vapor-phase flow rates, and the ratio of surface area to the volume of liquid in 

the distillation column. 

The liquid and vapor leaving the tray are in equilibrium with the vapor and liquid entering the tray. 

The moles of vapor condensed equates the moles of liquid vaporized assuming constant molar 

flow rates of the vapor and liquid in each section of the column and negligible heat losses to and 

from the column. Eq. 4.26 and Eq. 4.27 respectively represent the mass balance and the component 

balance in the column. Eq. 4.28-4.29 represent material balances at sections above the feed; Eq. 

4.30-4.31 represent the balances below the feed, and Eq. 4.32-4.33 present the mass balance at 

feed location.  The notations are as follows: V= vapor flow rate; L= liquid flow rate; D= distillate 

flow rate; B=bottoms flow rate; F= feed flow rate; 𝑋𝐹, 𝑋𝐷 , 𝑋𝐵 = fraction in feed, distillate, and 

bottoms, q= quality of feed, and R= reflux ratio. 

𝐹 = 𝐷 + 𝐵                                          (4.26) 

𝐹𝑋𝐹 = 𝐷𝑋𝐷 + 𝐵𝑋𝐵                          (4.27) 

𝑉𝑇 = 𝐿𝑇 + 𝐷                                       (4.28) 

𝑦𝑛+1𝑉𝑛+1 = 𝑥𝑛𝐿𝑇 + 𝑋𝐷𝐷               (4.29) 

𝐿𝐵 = 𝑉𝐵 + 𝐵                                      (4.30) 

𝑥𝑚𝐿𝐵 = 𝑦𝑚+1𝑉𝐵 + 𝐵                      (4.31) 

𝑉𝑇 = 𝑉𝐵 + (1 − 𝑞)𝐹                        (4.32) 

𝐿𝐵 = 𝐿𝑇 + 𝑞𝐹                                   (4.33) 

D =
𝑉

𝑅 + 1
                                         (4.34) 

 

https://www.epicmodularprocess.com/contprod/distillation/
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Fig. 4.7: A simplified representation of a binary distillation column 

The proposed process dynamics-guided neural network model has been examined for detecting 

low-quality distillate in a binary separator. We have evaluated the performance of the model using 

a receiver operating characteristic (ROC) curve.  The ROC curve helps in visualizing the trade-off 

between the false positive and the true negative rates of a classifier.  Fig. 4.8 presents the receiver 

operating characteristic curves of detecting low-quality samples based on standard ANN and the 

proposed process dynamics-guided neural network (PDNN) models. Fig. 4.8A presents the ROC 

curves for detecting undesired samples on test data based on 1000 data (700 training data; 300 test 

data). The dotted diagonal in the ROC curve represents a random classification model that does not 

have any ability to distinguish between the two classes at any threshold. An effective detection 

system can distinguish desired and undesired samples well if its ROC curve will be farther away 

from the diagonal. The area under the ROC curve (AUC) represents the degree of separability. The 

higher the AUC, the better the model is at predicting the distinct classes. The AUC is classification-

threshold-invariant, it measures the quality of the model’s predictions regardless of the 
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classification threshold. We can see that both of the test models record higher accuracy of 99 % in 

detecting the desired and the undesired samples.  

We also assessed the performance of test models on a reduced number of training samples. The performance 

of both models was deteriorated by reducing the test training data. However, the proposed process 

dynamics-guided neural network model maintained higher accuracy at reduced samples. The 

accuracies of the PDNN and the standard ANN models (in parentheses) were recorded as 0.97 

(0.95),   0.94 (0.92), and 0.92 (0.88) on corresponding reduced sample sizes to 200, 100, and 50. 

The comparative improved results of the PDNN further endorse the better generalization ability of 

the proposed model. 
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Fig. 4.8: The comparative ROC curves of the PDNN and standard ANN on for detecting undesired samples in distillates: (A) for 1000 samples 

(700 training, 300 testing) (B) for 200 samples (140 training, 60 testing) (C)  for 100 samples (70 training, 30 testing) (D) for 50 samples (35 

training, 15 testing) 
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4.3.3  Kinetic studies of a batch reactor using process dynamics guided neural network  

Fig. 4.9 presents a schematic of a batch reactor with simultaneous reactions. The state variables 

involved in this process include concentration of reactant ‘A’, and the desired product ‘B’. The 

reaction 𝑨
𝒌𝟏
→ 𝟐𝑩 denotes the conversion of the reactant ‘A’ to ‘B’ which is converted to ‘C’ via 𝑩

𝒌𝟐
→ 𝑪 mechanism. The conversion follows first-order kinetics with respect to species A and B. The 

kinetic is presented in Eq 4.36-36. 

𝒅𝑨

𝒅𝒕
= −𝒌𝟏𝑨                             (4.35) 

𝒅𝑩

𝒅𝒕
= 𝟐𝒌𝟏𝑨 − 𝒌𝟐𝑩                  (4.36) 

 
 

Fig. 4.9: A simplified representation of a batch reactor 

The initial values of the state variables are as follows: 𝐴𝑖 = 10 
𝑚𝑜𝑙𝑒

𝑚3
 and  𝐵𝑖 = 0 

𝑚𝑜𝑙𝑒

𝑚3
  . The 

kinetics of the reacting systems 𝑘1 and 𝑘2 are 1
𝑚𝑜𝑙𝑒

𝑚3 𝑑𝑎𝑦
 and  0.1

𝑚𝑜𝑙𝑒

𝑚3 𝑑𝑎𝑦
 respectively. Fig. 4.10 

presents concentration profiles of A (Fig. 4.10A) and B (Fig. 4.10B) in the batch reactor using 

process dynamics-guided neural network (solid line) and standard data-driven neural network 

(dott-dashed line). The ordinates represent concentrations (
𝑚𝑜𝑙𝑒

𝑚3
) whereas the abscissa denotes time 

(in days). Both networks have been trained with data up to 10 days for predicting the profiles for 

the period of 15 to 25 days. The models are fitting well on training data; however, the proposed 

process dynamics-guided neural network model is more accurately forecasting scenarios of the 

𝑨
𝒌𝟏
→ 𝟐𝑩  

𝑩
𝒌𝟐
→ 𝑪   
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extrapolated data. We have also studied the predicting capability of test models on distinct labels 

of extrapolated samples. Thus, we analyzed three training windows (upto 5 days, 10 days, and 15 

days) for predicting concentration profiles of ‘A’, and ‘B’ in the desired period of 15 to 25 days. 

The root-mean-squared errors in forecasting concentrations of the species using PDNN and the 

standard ANN models have been presented in Table 4.3. The accuracy of the models is 

deteriorating on predicting extrapolated samples; however, the PDNN yields better outcomes 

compared to the standard ANN. This states the effectiveness of the proposed process dynamics-

guided neural network model in forecasting species concentrations of simultaneous reacting 

systems in a batch reactor. 

 
 

 

Fig. 4.10: Prediction of concentration of A and B in a batch reactor using process 

dynamics-guided neural network and standard data-driven neural network models 
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Table 4.3: Accuracy of test models for predicting species concentration in a batch reactor 

on extrapolated samples (i.e t=15 to t=25 days) 

 RMSE 

Training upto t= 5 

days 

Training upto t= 10 

days 

Training upto t= 15 

days 

PDNN 3.19 1.46 0.59 

ANN 9.70 4.97 2.53 

 

The study employed 10 neurons in the hidden layers of the test neural network models and Adam 

optimizer with an initial learning rate of 0.05. The Adam optimizer is based on adaptive estimates 

of lower-order moments that enables leveraging the power of adaptive learning to find individual 

learning rates for each parameter. The method is also appropriate for non-stationary objectives and 

noisy and/or sparse gradients. The findings can further be refined using hybrid optimization such 

as Adam followed by Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms.  

This study demonstrated the comparative effectiveness of the proposed process dynamics-guided 

neural network model in forecasting species concentrations in a batch reactor following systems 

of ordinary differential equations of the first order, the study can be extended to incorporate higher-

order systems. Numerous process dynamics for example non-steady state diffusion in columns, 

axial dispersion in a tubular reactor, and non-homogeneous systems are represented by systems of 

partial differential equations. The process dynamics-guided neural network model can be 

expanded to study these systems. This work can further be extended to include alarms and 

operator’s feedback to incorporate real-time data.  
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4.3 Conclusions 

This work presented a process dynamics-guided deep neural network (PDNN) model to enhance 

model generalization by rendering process dynamics and field expertise. This has been realized by 

adding an extra layer for establishing the process dynamics such as material and energy balance 

equations. This formalism can results in improved generalization ability while facilitating scope 

for innovation for handling disturbances and process upsets. The proposed model has been 

evaluated on regression and classification tasks exhibiting steady-state behavior.  The proposed 

PDNN model has also been employed to study the transient behavior of a batch reactor following 

systems of ordinary differential equations. The proposed hybrid model exhibited improved 

generalization ability on the unseen data and on the reduced samples for training. The process 

dynamics guided neural network model resulted in up to 10% improvement in predicting 

dependencies of virtual processes in mixing operations and up to 5% improvement in detecting 

low-quality distillates in a binary separator. The proposed model scores significant gains in 

forecasting the transient behavior of simultaneous reacting systems in a batch reactor as well.  

Data-driven modeling, represented by machine learning (ML) and artificial intelligence (AI), is 

at the top of the Gartner hype cycle. Many experts believe that digital transformation is no 

longer simply a future option for processing systems, it’s an urgent necessity. Mechanistic 

modeling has been a major part of Chemical Engineering and a key design tool of process systems 

engineering (PSE) since the publication of the celebrated Bird, Stewart, and Lightfoot’s 

book, Transport Phenomena (Bird et al., 1960). We have several decades of expertise in designing 

processing facilities based on detailed knowledge about the system, including chemical kinetics, 

and transport (heat, mass, momentum) phenomena, materials, composition, boundary conditions, 

and thermodynamics properties. Several packages such as ASPEN Plus 

https://www.sciencedirect.com/science/article/pii/S0098135421001435#bib0022
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(https://www.aspentech.com/en/products/engineering/aspen-plus), PRO/II 

(https://www.aveva.com/en/products/pro-ii-simulation/), ProSim (https://www.prosim.net/en/) , 

CADsim ( https://www.aurelsystems.com/cadsim-plus/) , Chemcad (https://chemcad.co.uk/) , 

ChemPro (https://epcon.com/chempro.html), ChromWorks (https://www.ypsofacto.com/services-

chemical-software-chromworks) , and DWSim (https://dwsim.fossee.in/) have been used in 

process design,  monitoring and control.  The incorporation of physics and domain knowledge can 

help to improve the robustness of data-driven models of complex industrial systems.   
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List of symbols and abbreviations 

Symbols Meanings 
 

A species A, concentration of A 

a(t) adjoint at time t 

a1 activation for the hidden layer 

a1h hth element of the hidden activation layer 

a2 activation for the output layer 

a2j jth element of the output activation layer 

Ai initial concentration of A 

ANN artificial neural network  

AUC area under the receiver operating characteristic curve  

B bottoms flow rate 

B species B, concentration of B 

BFGS  Broyden–Fletcher–Goldfarb–Shanno 

Bi initial concentration of B 

BPN back-propagation neural network  

C1, C2 Constraints 

CART classification and regression tree  

CBR case-based reasoning  

CI classification index  

https://www.aspentech.com/en/products/engineering/aspen-plus
https://www.aveva.com/en/products/pro-ii-simulation/
https://www.prosim.net/en/
https://www.aurelsystems.com/cadsim-plus/
https://chemcad.co.uk/
https://www.ypsofacto.com/services-chemical-software-chromworks
https://www.ypsofacto.com/services-chemical-software-chromworks
https://dwsim.fossee.in/
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D distillate flow rate 

DAEs differential-algebraic equations  

EKF extended Kalman filter  

F feed flow rate 

f1, f2, f3 virtual functions 

FAR false alarm rate  

FBCR fixed-bed catalytic reactors  

FDD fault detection and diagnosis  

FDR fault detection rate  

FL fuzzy Logic 

FN true negative 

FP true positive 

g(z(t)) constraint relations 

GBM gray-box model  

GMM Gaussian mixture model  

GP Gaussian process   

HH Hth neuron in hidden layer 

hi(t) hidden unit at time t 

ICA independent component analysis  

IFCVAE information concentrated variational auto-encoder  

k1 rate constant for conversion of A to B 

k2 rate constant for conversion of B to C 

L loss  

L liquid flow rate 

L1 label 1 

L2 label 2 

LFMs latent force models  

Lr learning rate 

Number of samples number of samples  

ODEs ordinary differential equations  

P penalty function 

PCA principle component analysis  

PDEs partial differential equations  

PDNN process dynamics guided neural network  

PDNN-1  process dynamics-based neural network model incorporating constraint C1 

PDNN-2  process dynamics-based neural network model incorporating constraint C2 

PLS partial least square  

PSE process systems engineering  

Q quality of feed 

R reflux ratio 

ROC receiver Operating Characteristic  
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S the covariance matrix of process variables  

sPCA spherical principal component analysis  

SVM support vector machine  

ti target value of the ith sample  

TN true negative 

TP true positive 

UKF unscented Kalman filter  

V vapor flow rate 

W1 weight matrix fro the hidden layer 

W2 weight matrix fro the output layer 

W2ji weight of the jth neuron to ith output 

wFAR importance parameters for the false alarm rate  

wFDR importance parameters for the fault detection rate 

Wi weight matrix for the input layer 

X  training dataset  

XF, XD, XB fractions of desired component in feed, distillate, and bottoms 

Xtrust trusted centre of reliable dataset 

y estimated,i estimated value for the ith sample 

ytrue,i true label of the ith sample 

z1 hidden layer vector 

z2 output layer vector 

 

  

kth column of the input matrix 

 

 

  

standard deviation of d samples  

 

 

  

tuning factor to adjust the calculation sensitivity 

 

 

  

mass of ith species 

 

 

  

network parameters at time t 

 

  𝜂 learning rate 

 

  
 

network parameter  
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Chapter 5 

A variable mosquito flying optimization based hybrid ANN model for fault 

detection in process systems 

 

 

 

Preface: In this chapter, the performance of a data-driven method has been improved using meta-

learning. This is representing the integration of meta-learning of data-driven models. This work 

can be mapped to the thesis’s sub-objective “development of robust data-driven models for the 

safety of process systems”. The content of this chapter has been published as a manuscript in 

Process Safety Progress, 39 (1), 1-8.  
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Abstract: Chemical process systems are becoming extremely complex due to increased 

automation, heat and mass intensification, and expectation of higher efficiency. Many fault 

detection and diagnostic methods have been proposed for ensuring safety of processing facilities. 

However, managing fault detection rate and false alarm rates in the detection and isolation of faults 

is crucial in complex processing systems. This work presents a new data-driven fault detection 

model using an artificial neural network and variable mosquito flying optimization technique. The 

model is based on the optimization of the number of neurons in the hidden layer of the neural 

network. Subsequently, the model parameters have been tuned using the variable mosquito flying 

optimization algorithm for maximizing the fault detection rate while minimizing the false alarm 

rate. The proposed fault detection method has been implemented on the Tennessee Eastman 

benchmark process. The performance of the proposed model has been evaluated in terms of 

accuracy, fault detection rate, and false alarm rate against well-known data-driven methods such 

as principal component analysis, kernel principal component analysis, modified independent 

component analysis, k nearest neighbors, and support vector machine. The model is observed to 

be competitive for detecting faults among the test algorithms. This method provides an efficient 

fault detection tool for complex process systems. 

Keywords: fault detection, process monitoring, neural network, fault detection rate, false alarm 

rate 

5.1 Introduction: 

Alarm management in chemical process industries is becoming increasingly challenging due to 

the highly correlated multivariate nature of processing systems. A large number of variables and 

system parameters cause difficulty in the efficient process monitoring of complex industrial 

systems. Because of the high risk incurred in case of an accident, they are designed for lower 

missed alarm rates. This results in a myriad of alarms during processing. For instance, an average 

of 14,250 alarms, with a peak of 26,650 alarms per day were recorded in a European refinery (Ren, 

Zhu, Cai, & Li, 2017). The exorbitant alarms are usually being ignored by operators. 

Consequently, alarm flooding is becoming a threat to complex industrial systems. The highly 
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correlated nature of the multivariate data is another challenge to taking precise mitigative 

counteractions in real-time. Thus, efficient techniques of process monitoring, fault detection, 

identification, and diagnosis are needed.  

Many fault detection and diagnostic (FDD) methods have been developed over the last four 

decades. They can broadly be divided into two categories: model-based and data-based. The 

model-based methods are based on the first principles involving the rigorous development of a 

process model (Liu, McDermid, & Chen, 2010; Venkatasubramanian, Rengaswamy, Yin, & 

Kavuri, 2003). These methods have been extensively used in the process systems owing to their 

robustness and reliability. However, they are not effective in detecting faults of complex processes 

because of difficulty in capturing the system complexities and nonlinearities in the dynamics. On 

the other hand, data-driven methods are based on process measurements that do not require a priori 

quantitative or qualitative knowledge about the process (Isermann, 2005; Staroswiecki, 2000). 

They can further be divided into qualitative and quantitative classes. Qualitative methods e.g., 

expert systems (ES) and qualitative trend analysis (QTA) are simple; however, they become 

complicated for complex process systems. Quantitative methods can be classified into two 

categories: statistical or non-statistical. Statistical methods such as principal component analysis 

(PCA) and partial least squares (PLS) use projection of data to a lower-dimensional space for 

achieving fault detection and diagnosis (Kourti & MacGregor, 1995; Zhou, Li, & Qin, 2010). They 

can handle large numbers of highly correlated data, measurement errors, and missing data. The 

dimension reduction feature of these algorithms makes them ideal candidates for combining with 

other algorithms for handling big data. The major drawback of standard PCA and PLS is that they 

cannot work with non-Gaussian and nonlinear data (Lawrence, 2005; Liang & Lee, 2013). In 

addition, Pearson’s dependence on the covariance matrix makes PCA sensitive to outliers (Yu, 
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Khan, & Garaniya, 2016). The kernel principal component analysis (KPCA) transforms nonlinear 

variables in a higher-dimensional space to render PCA for fault detection (Gharahbagheri, Imtiaz, 

& Khan, 2017). However, the irreversible nature of kernel function makes them inadequate for 

fault diagnosis.  

Many progressive data-driven methods including artificial neural network (ANN) (Agatonovic-

Kustrin & Beresford, 2000), support vector machines (SVM) (Burges, 1998; Cortes & Vapnik, 

1995; Widodo & Yang, 2007), classification and regression tree (CART) (Lawrence & Wright, 

2001), and Bayes nets (D’Angelo et al., 2014; Verron, Li, & Tiplica, 2010; Zhu, Ge, Song, Zhou, 

& Chen, 2018) have been studied for detecting abnormalities in process systems.  

Artificial neural networks (ANN) have been inspired by biological neural systems. A standard 

ANN consists of many processors, also called neurons, which generate a sequence of real-valued 

activations (Schmidhuber, 2015).  ANN can assimilate highly complex relationships between 

several variables by learning dependencies between input and output variables. ANNs are referred 

to as universal approximators, i.e., they can approximate complex real-valued continuous functions 

precisely (Park & Sandberg, 1991). Artificial neural networks (ANN) perform well in detecting 

faults due to its self-learning ability. However, its performance can deteriorate due to intricacy of 

the error surface. The numerical-based optimization algorithms can lead to suboptimal parameters 

of the network if it gets trapped at the local optima.   

Several hybrid algorithms have been developed to redress this limitation. Nawi, Khan, and 

Rehman (2013) combined Cuckoo Search (CS) and Levenberg Marquardt algorithm to train a 

neural network. Genetic algorithm (GA) was also investigated for improving accuracy and speed 

(Che, Chiang, & Che, 2011; Whitley, Starkweather, & Bogart, 1990). However, most GA-based 

methods were found to be inadequate for evolving ANN due to two major problems: permutation 
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and noisy fitness evaluation (Yao & Liu, 1997).  Dehuri and Cho (2009) proposed a multi-objective 

pareto based particle swarm method for simultaneous optimization of architectural complexity and 

classification accuracy of a neural network. Subudhi and Jena (2011) employed opposition-based 

differential evolution (ODE) with Levenberg-Marquardt algorithm for training a feed-forward 

neural network yielding higher accuracy and accelerated convergence rate.  Juang (2004) trained 

a recurrent neural network with a hybrid GA-PSO algorithm using PSO with a master-slave 

configuration. Subudhi and Jena (2011b) proposed a memetic algorithm-based differential 

evolution back-propagation (DEBP) for training a multilayer perceptron by exploiting the 

advantages of both local and global search. Sivagaminathan and Ramakrishnan (2007) exercised 

a hybrid approach for feature selection using neural networks and ant colony optimization (ACO). 

They employed ANN for classifying and ACO for evaluating algorithms.  

In this work, a population-based metaheuristics, the variable mosquito flying optimization (V-

MFO) (Alauddin, 2017) has been used as a hybrid method for improving fault detection 

performance of the ANN-based model. The model has been developed for maximizing fault 

detection rate while minimizing the false alarm rate. Section 5.2 provides the methodology of the 

proposed ANN-VMFO model of detecting faults along with a preliminary introduction to the 

artificial neural network and variable mosquito flying optimization algorithm. Section 5.3 presents 

the evaluation of the model for detecting faults of the Tennesee Eastman process followed by a 

conclusion in Section 5.4. 

5.2 The ANN-VMFO model of fault detection 

The proposed ANN-VMFO method is a hybrid model based on artificial neural network and a 

population-based metaheuristics, the variable mosquito flying optimization (V-MFO) algorithm to 

detect a fault decisively. The model parameters are computed by using multi-objective 
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optimization based on maximizing fault detection rate while minimizing the false alarm rate.  The 

following sections present an overview of the methodology. 

5.2.1: The artificial neural network (ANN) 

The artificial neural network detects a fault using its classification and pattern recognition 

properties. A multilayer neural network comprising an input layer, hidden layer(s) and an output 

layer can be used for detecting faults of processing systems. The model parameters are iteratively 

determined using the forward prediction and backward propagation through the network layers. 

The procedure of fault detection and isolation using the ANN model is based on the selection of 

an effective optimization algorithm and an optimal number of neurons in the hidden layer of the 

neural structure. The parameters of the neural network are estimated by iteratively minimizing a 

multivariate error function.  

5.2.2 The variable mosquito flying optimization (V-MFO) algorithm 

The V-MFO is a nature-inspired, population-based metaheuristic that mimics the behavior of 

mosquitoes to find holes or irregularities in a mosquito net (Alauddin, 2017). Mosquitoes explore 

mosquito nets for finding holes or irregularities through which they get to their prey (Fig. 5.1).  

The search comprises to and fro flying and sliding motion, i.e., they fly to a point on the net and 

walk in any direction for a few steps as depicted in Fig 5.1a. The movements of the mosquitoes 

over a net are described in Fig. 5.1b-d.  Fig. 5.1b depicts that a mosquito flying from point ‘A’, 

reaches point ‘B’ by a flying motion (solid line) followed by a sliding motion (dotted line) to reach 

point ‘C’ or ‘C’’. The region explored by a flight or slide is governed by numerous factors such as 

the type and size of mosquitoes, attributes of the net, nature of prey, time of the attack, presence 

of external force, and surrounding characteristics. Moreover, the distance covered in each flight 

and slide may or may not be equal (Fig. 5.1c-d). Fig. 5.1d shows that the distance covered in the 
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sliding cycle which starts at point B may be ended by point C, C’, or C’’. After getting access to 

their prey they explore a suitable suction point on the body of the victim. 

 

Fig. 5.1: Movements of mosquitoes over a net for searching of prey (Alauddin, 2017) 

 The procedure for the variable mosquito flying optimization (V-MFO) algorithm is as follows-  

STEP 1    Initiate the population of particles for each variable. 

STEP 2    Evaluate fitness of the objective function. 

STEP 3    Apply flying motion to the particles:       Par= Phi1/Phi1*par  

  (It can apply in both directions: for forward flight multiply by phi1 (golden ratio, 1.618)  

  for the backward flight divide by phi1 (the golden ratio, 1.618)   

STEP 4    Evaluate new particles 

STEP 5    Modify fitness function if new fitness is better    

STEP 6    Apply sliding motion:         Par= par*(1 ±c1)  
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        c1 =0.1 is a sliding constant 

        Par= par*(1 +c1): for the forward sliding 

        Par= par*(1 -c1): for the backward sliding 

STEP 7    Evaluate the new fitness 

STEP 8    Modify the fitness function if new fitness is better 

STEP 9    Apply precision movement     Par= par*(1 ± c2) 

     c2 =0.01 is a precision constant 

        Par= par*(1 +c2): for the forward movement 

        Par= par*(1 -c2): for the backward movement 

STEP 10   Evaluate the new fitness 

STEP 11   Modify the fitness function if new fitness is better 

STEP 12   Decrement iteration counter and evaluate the deviation.  If the iteration counter is not  

                 zero OR the deviation is less than DEVMIN,  then go to STEP 3 

STEP 13 STOP 

 

5.2.3 Fault detection using the ANN-VMFO hybrid model   

The flowchart of the ANN-VMFO hybrid network for fault detection is shown in Fig. 5.2. The 

offline refers to the data used for the model development while the online stands for the real-time 

process monitoring data. The offline data is normalized and divided into three sets: training 

validation and testing. As the number of iterations increases, the training performance improves 

because it tries to fit each data accurately. This can result in overfitting leading to increased 

complexity and compromised generalization, i.e., the model will not perform well with new or 

unseen data. This can be handled using validation that penalizes some of the weights leading to a 

more generalized structure. The optimum number of hidden nodes and layers depends on 

input/output sizes, training and test data sizes, and the characteristics of the problem (Kiranyaz, 
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Ince, Yildirim, & Gabbouj, 2009). The higher the number of neurons in the neural structure more 

complex will be the error function. The performance of the optimization algorithms is subjected 

to the type and complexity of the problem.  Having been iterative, the algorithms tend to get 

trapped at the local optima yielding suboptimal results. The present work addresses this by using 

a hybrid method of deterministic and population-based metaheuristics to find global optima. This 

is achieved by tuning the parameters using the variable mosquito flying optimization algorithm for 

maximizing fault detection rate while minimizing the false alarm rate. 

offline data

Data preprocessing
Division of data into Training and validation

Selection of optimization algorithm and 
number of neurons in The hidden layer

Is this the most 
effective ?

Online data

Data preprocessing

Tuning by VMFO for 
maximizing FDR and 

minimizing FAR

Calculation of 
 performance 
parameters 

No

Yes Is faulty?

Faulty data Normal condition

 

Fig. 5.2: The flowchart of the ANN-VMFO model for process fault detection 
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5.3 Results and Discussion 

The proposed fault detection model has been evaluated on the Tennessee Eastman chemical 

process. These evaluations were based on the classifier properties such as accuracy, fault detection 

rate (FDR), and false alarm rate (FAR). Accuracy is the fraction of correct prediction by the model. 

It represents the overall effectiveness of a classifier. The FDR announces the fraction of the faults 

rightly detected by a classifier whereas FAR indicates the fraction of the alarms turned out false. 

The accuracy, fault detection rate, false alarm rate, and missed detection rate can be calculated 

using Eq. 5.1, Eq. 5.2, Eq. 5.3, and Eq. 5.4, respectively (Chen, Tiňo, & Yao, 2014; Jaffel, Taouali, 

Elaissi, & Messaoud, 2014; Zhao et al., 2017).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                    (5.1) 

𝐹𝐷𝑅 = 
Fault detected

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠
= 

𝑇𝑃

𝑇𝑃+𝐹𝑃
                  (5.2) 

𝐹𝐴𝑅= 
𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑎𝑟𝑚𝑠
= 

𝐹𝑁

𝑇𝑃+𝐹𝑁
                   (5.3)  

𝑀𝐷𝑅= 
𝑀𝑖𝑠𝑠𝑒𝑑 𝑎𝑙𝑎𝑟𝑚

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑙𝑎𝑟𝑚𝑠
 

           =  
𝐹𝑎𝑢𝑙𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑛𝑜𝑟𝑚𝑎𝑙

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠
                   (5.4)  

Where,   TP= true positive (fault signal correctly diagnosed as fault),  

   TN= true negative (normal signal correctly diagnosed as normal),  

    FP= false positive (fault signal incorrectly identified as normal), 

    and FN= false negative (normal signal incorrectly identified as fault). 

Accuracy and fault detection rate should be higher whereas missed detection rate and the false 

alarm rate should be lower for an effective detection system. 
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5.3.1 Fault detection of the Tennessee Eastman chemical process 

The Tennessee Eastman chemical process comprises five major operating units: an exothermic 

two-phase reactor, a product condenser, a vapor-liquid flash separator, a recycle compressor, and 

a reboiled product stripper. The reactor is charged with three gaseous reactants which form a liquid 

product as a result of a catalyzed chemical reaction. The product stream is fed to a condenser 

followed by a vapor-liquid separator. The non-condensed product is recycled back to the reactor a 

centrifugal compressor whereas the condensed output is fed to a stripper. The final product stream 

from the stripper's bottom is pumped downstream for further processing (Downs & Vogel, 1993). 

The Tennessee Eastman process comprises 41 measured and 12 manipulated variables. Among the 

measured variables, 22 variables are continuous process variables and 19 variables are related to 

composition measurements. The simulation was run on the data of the Harvard database 

(https://doi.org/10.7910/DVN/6C3JR1). The subsequent sections describe the performance of the 

proposed algorithm for fault detection and fault isolation on the TE process.  

The model was trained and tested on 20 different types of faults of the TE process (Table 5.1). 

Data were divided in two classes; normal and faulty. The optimal neural structure was determined 

by minimizing the cross-entropy function by varying the number of neurons for the distinct 

algorithms. The cross-entropy for each pair of output/target elements is calculated as follows; CE 

= -t .* log(y), where, t and y are the targets and the output respectively. The aggregate cross-

entropy performance is the mean of the individual values. It was observed that the Bayesian 

regularization algorithm performing better among the selected algorithms. Thus, an optimal neural 

network structure was specified with the Bayesian regularization algorithms for the 

backpropagation and the number of neurons n=20 in the hidden layer. 
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Table 5.1: The distinct faults of the TE Processes 

Faults Description Type of Faults 

IDV-1 A/C feed ratio, B composition constant (Stream 4) Step 

IDV-2 B composition, A/C ratio constant (Stream 4) Step 

IDV-3 D feed temperature (Stream 2) Step 

IDV-4 Reactor cooling water inlet temperature Step 

IDV-5 Condenser cooling water inlet temperature Step 

IDV-6 A feed loss (Stream 1) Step 

IDV-7 C header pressure loss-reduced availablity (Stream 4) Step 

IDV-8 A, B, C feed composition (Stream 4) Random Variation 

IDV-9 D feed temperature (Stream 2) Random Variation 

IDV-10 C feed temperature (Stream 4) Random Variation 

IDV-11 Reactor cooling water inlet temperature Random Variation 

IDV-12 Condenser cooling water inlet temperature Random Variation 

IDV(13) Reaction kinetics Slow Drift 

IDV(14) Reactor cooling water valve Sticking 

IDV(15) Condenser cooling water valve Sticking 

IDV(16) Unknown   

IDV(17) Unknown   

IDV(18) Unknown   

IDV(19) Unknown   

IDV(20) Unknown   

 

 

The proposed technique has been compared with well-known data-based methods such as nearest 

neighbors (KNN), discriminant analysis (DA), support vector machines (SVM), and ensemble 

learning (bagged tree and boosted tree). The hybrid ANN-VMFO method registered the highest 

accuracy (97.89%) followed by the standard ANN (97.85%), and the bagged tree (94.16%). The 

fine KNN (89.37%), fine tree (86.71%) and SVM (84.43%) and boosted tree (81.74%) are other 

effective algorithms for detecting faults of the Tennessee Eastman chemical process (Fig. 5.3A). 
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Fig. 5.3: Comparative performance of detection system in terms of A: accuracy, B: Fault 

detection rate (FDR), and false alarm rate (FAR)  

 Fig. 5.3B demonstrates fault detection rate (FDR) and the false alarm rate (FAR) of selected 

methods on the case study. Most of these algorithms perform well with more than 95% fault 

detection rate. The fine KNN subspace KNN, quadratic discriminant and boosted tree records 

100% FDR. Nonetheless, they result in a higher false alarm rate (21.26%, 44.39%, and 13.1% 

respectively) which is undesirable. However, the proposed ANN-VMFO model yield higher FDR 

(0.9967) and a lower FAR (0.0184). 
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The performance of the fault detection system was improved by employing the variable mosquito 

flying optimization (VMFO) algorithm for tuning the neural network parameters. The detailed 

procedure of the parameter tuning using the ANN-VMFO algorithm has been presented in Fig 5.4. 

The parameters are determined by minimizing the error subjected to maximizing fault detection 

rate (FDR) while minimizing the false alarm rate (FAR).  

The confusion matrix for the fault detection for the standard ANN and the proposed ANN-VMFO 

hybrid algorithm have been presented in Fig. 5.5A and Fig. 5.5B respectively. It can be observed 

that the standard ANN accurately detects 9963 faults out of 10000 faults whereas the ANN-VMFO 

model can detect 9966 faults at a similar condition. The comparative analysis of the standard ANN 

and the ANN-VMFO model has been presented in Table 5.2. The proposed ANN-VMFO model 

does not yield a significant improvement in terms of accuracy and the fault detection rate. 

Nonetheless, it resulted in a 0.6 % improvement in the false alarm rate (FAR) and an 8% 

improvement in missed detection rate (MDR) compared to the simple ANN. 

Table 5.2: The improved network performance by using hybrid ANN-VMFO model 

Performance Factors ANN ANN-VMFO % Improvement 

Accuracy 0.9785 0.9789 0.04 

Fault detection rate  0.9963 0.9966 0.03 

False alarm rate  0.0185 0.0184 0.55 

Missed detection rate 0.0037 0.0034 8.82 
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Fig. 5.4: Tuning of model parameters using the hybrid ANN-VMFO model 

(A) 

 

(B) 

 

 

Fig. 5.5: Confusion matrix for the fault detection system of TE process: (A) using simple ANN 

(B) using ANN-VMFO hybrid algorithms 
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5.4 Conclusions 

This paper presented a hybrid model for detecting faults of process systems based on artificial 

neural network (ANN) and variable mosquito flying optimization (V-MFO) technique. The model 

was evaluated on the benchmark Tennessee Eastman chemical process. The model was trained 

and tested with 10500 data with 500 sample data for each normal and 20 different types of faults. 

The proposed technique was compared with prominent data-based methods. The proposed ANN-

VMFO hybrid method registered an optimum accuracy (97.89%) followed by the simple ANN 

(97.85%) and bagged tree (94.16%). The fine KNN (89.37%), fine tree (86.71%), SVM (84.43%) 

and boosted tree (81.74%) were other effective algorithms for detecting faults of the Tennessee 

Eastman chemical process. The parameter tuning using the variable mosquito flying optimization 

(V-MFO) resulted in slightly improved accuracy, fault detection rate, and false alarm rate whereas, 

it demonstrated significant improvement in missed detection rate compared to the simple ANN. 

The proposed ANN-VMFO model could be an efficient fault detection tool for complex process 

systems. 

 

List of symbols and abbreviations 

Symbols Meanings 

A, B, C, C', C" position in space 

ACO ant colony optimization  

ANN artificial neural network  

b11 bias of the hidden layer 

b12 bias of the output layer 

c1 sliding constant 

c2 precision constant 

CART classification and regression tree  

CBR case-based reasoning  

CE cross-entropy  

CS cuckoo search 
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DA discriminant analysis  

DEBP differential evolution back-propagation 

ES expert systems  

F1, F1' fault detection rate 

F2, F2' false alarm rate 

FAR false alarm rate  

FDD fault detection and diagnosis  

FDR fault detection rate  

FN true negative 

FP true positive 

GA genetic algorithm  

GMM Gaussian mixture model  

ICA independent component analysis  

IDV-1 to 20  faults of the simulated TE Process 

KNN k nearest neighbors  

MDR missed detection rate 

PCA principle component analysis  

Phi1 golden ratio 

PLS partial least square  

QTA qualitative trend analysis  

SVM Support vector machine  

TN true negative 

TP true positive 

V-MFO variable mosquito flying optimization  

W11 weight of the hidden layer 

W12 weight of the output layer 

XMEAS input variable in the TE Process 
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Chapter 6 

How Can Process Safety and a Risk Management Approach Guide Pandemic 

Risk Management? 

Preface: Although the Coronavirus disease of 2019 did not result from process operations, energy 

industries were one the hardest hit sectors due to the present pandemic. The COVID-19 caused 

severe disruption of processing operations leading to a historic collapse in demand and price. It 

also affected employment safety and operability of process industries and allied sectors. This 

chapter presents an advanced semi-mechanistic model that can capture temporal variability in 

assessing pandemic risk. It also accounts for uncertainty in the parameters in various controlling 

and mitigative actions. The last section discusses how process safety practices are applicable to 

pandemic risk management.  This work can be mapped to two sub-objectives of the thesis, devising 

semi-mechanistic models for assessing pandemic risk and to establish synergy between process 

safety and pandemic risk management. This chapter has been published in Journal of Loss 

Prevention in Process Industries, 68, 104310. 
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Abstract: The coronavirus disease of 2019 brought the world to a halt in March 2020. Various 

risk assessment and management approaches are being explored worldwide for more informed 

decision-making. This work adopts a semi-mechanistic model and a process safety framework for 

managing the risk of the current pandemic. A parameter tweaking and an artificial neural network-

based parameter learning of the susceptible, exposed, infected, quarantined, recovered, deceased 

(SEIQRD) models have been devised to forecast the dynamic risk of infectious diseases. The 

randomness of the model parameters has been captured using Monte Carlo simulation. The 

proposed models have been studied on assessing the infection risk of the COVID-19 at four 

locations: Italy, Germany, Ontario, and British Columbia. The learning-based approach resulted 

in better outcomes among the models tested in the present study. A layer of protection analysis for 

distinct measures of pandemic risk management has been proposed as well. We also quantified 

risk under enforcement and release of distinct risk-reducing measures. The risk profiles suggest 

that a stage-wise releasing scenario is the optimal approach to getting back to normal. The case 

study provides valuable insights to practitioners in the health sector and the process industries to 

implement advanced strategies for risk assessment and management. This work explores a synergy 

between process safety and epidemiology to better understand, analyze, and manage the risk using 

advanced mathematical models, management tools, and, more importantly, the lessons learned 

from crises. 

 

Keywords: Risk, process monitoring, neural network, pandemic, non-pharmaceutical 

interventions; layers of protection analysis. 

 

6.1. Introduction   

The coronavirus disease (COVID-19) has been declared a global pandemic by the World Health 

Organization (WHO). The high infection rate of the coronavirus and the unavailability of a vaccine 

have led to an unprecedented scenario. Countless numbers of people were deprived of proper 

medical care due to the saturation of health care facilities at many places. More than 28 million 

infected cases and over nine hundred thousand mortalities due to the outbreak have been reported 

to date (Worldometer, Sep 09, 2020). 
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 In epidemiological studies, mechanistic models have been widely used for pandemic risk 

management. Kermack and McKendrick (1927) developed the SIR (susceptible, infected, 

recovered) model which was subsequently revised by  (Anderson & May, 1979; Hethcote, 1976; 

Hiorns & MacDonald, 1982).  The SIR model assumes that the infected hosts instantaneously 

become infectious after being exposed to an infected carrier. However, infectious diseases usually 

have latency i.e. incubation period of the virus before an infected agent truly becomes infectious.  

This was addressed by the SEIR (susceptible, exposed, infected, recovered) model by including 

an exposed (E) compartment to the SIR model.  Many models with varying population sizes and 

distinct vaccination strategies towards susceptible individuals have been developed to date 

(Busenberg &  Driessche, 1990; Li, Graef, Wang, & Karsai, 1999; Martcheva & Castillo-Chavez, 

2003; Sun & Hsieh, 2010). The basic SIR and SEIR models do not reflect hospitalization and 

quarantine effects that effectively lower the cumulative infection cases. The impacts of quarantine, 

isolation, and other nonpharmaceutical interventions (NPIs) to restrain infectious diseases have 

been presented by many studies including (Hethcote, Zhien & Shengbing, 2002;  Hollingsworth, 

2009; Lipsitch et al., 2003; Safi & Gumel, 2010). The basic and the modified SEIR models have 

been used to investigate the spread of several diseases such as SARS (2003), Influenza (2009), 

Ebola (2014), MERS (2015), and Zika (2016) (Zhang et al., 2017). 

Despite different disciplines, process safety and epidemiology share many similarities in modeling 

the dynamic behavior of underlying processes. Compartmental models have been used in modeling 

pandemic diseases and numerous chemical processing systems; e.g., continuous stirred tank 

reactor, fluidized bed reactor, and bubble column for studying kinetics, velocity distribution, 

energy dissipation rate, crystal size distribution, and turbulence (Alvarado, Vedantam, Goethals, 

& Nopens, 2012; Bermingham, Kramer, &  Rosmalen, 1998; Cui, Van Der Lans, Noorman, & 
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Luyben, 1996; Iliuta, Larachi, Anfray, Dromard, & Schweich, 2007; Vrábel, Van Der Lans, Cui, 

& Luyben, 1999; Zhao, Buffo, Alopaeus, Han, & Louhi-Kultanen, 2017). There is a strong 

resemblance between the disease dynamics of epidemiological model(s) and the kinetic model(s) 

of chemical reactors, especially the continuous stirred tank reactor (CSTR).  Table 6.1 presents 

similarities between the SIR epidemiological model and the reaction kinetics model of a CSTR. 

Social structural complexity, distinct individual practices, and economic disparity, however, 

complicate epidemic modeling. Randomness in the parameters (e.g., incubation, infection, and 

recovery periods) also makes epidemic modeling difficult compared to the reactor models. 

Demographics and chronic health conditions significantly affect susceptibility in epidemic 

modeling. 

Table 6.1: Similarities between epidemiological and reactor kinetics model. 

 SIR epidemiological model Reactor kinetic model  

System 

 
 

Geographical Location 

 
Chemical Reactor 

Propagation/ 

Reaction 

model 

𝑆
 
→ 𝐼

 
→ 𝑅 Series reaction : 𝐴

𝑘1
→𝐵

𝑘2
→ 𝐶 

Auto-catalytic reaction: 𝐴 +𝐵
𝑘

→
2 𝐵 

Model 

equations 

𝑑𝑆

𝑑𝑡
= −

𝑎𝑆(𝑡)𝐼(𝑡)

𝑁
 

𝑑𝐼

𝑑𝑡
=
𝑎𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝑏𝐼(𝑡) 

𝑑𝑅

𝑑𝑡
= 𝑏𝐼 (𝑡) 

 

Series Reaction 
𝑑𝐶𝐴
𝑑𝑡

= −𝑘1𝐶𝐴(𝑡) 

𝑑𝐶𝐵
𝑑𝑡

= 𝑘1𝐶𝐴(𝑡) − 𝑘2𝐶𝐵(𝑡) 

𝑑𝐶𝐶
𝑑𝑡

= 𝑘2𝐶𝐵(𝑡) 

Autocatalytic Reaction (in its simplest form) 

𝑑𝐶𝐵
𝑑𝑡

= 𝑘𝐶𝐴(𝑡)𝐶𝐵(𝑡) 
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Response 

Curves 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Principles of 

conservation 

Follows conservation principles; i.e., within a 

geographical area, the total number of people in 

all of the compartments remains constant. 

𝑁 = 𝑆 + 𝐼 + 𝑅 

Follows the conservation of mass principles; 

i.e., the total mass of all of the species remains 

constant. 

𝑀 = 𝑀𝐴 +𝑀𝐵 +𝑀𝐶 

Rate of 

spread/ 

transformatio

ns 

The contagion rate is the determining factor for 

the states of the epidemic. 

It depends on the basic reproduction numbers of 

the epidemic, government regulations (e.g., 

limiting gathering size, closure of nonessential 

business and schools, emergency lockdown), and 

personal hygiene measures such as wearing 

masks in public places, frequent washing of 

hands, and social distancing. 

The reaction rate governs transformations in 

chemical reactions. 

Rates of chemical transformation are often 

affected by the rates of other processes such 

as heat or mass transfer, the presence of a 

catalyst, and species concentration, 

dispersion, segregation, and mixing. 

 

 

Different non-pharmaceutical interventions (NPIs) are advocated by healthcare authorities to 

control the spread of a pandemic. Social distancing, frequent hand washing, wearing a mask, and 

practicing good hygiene are effective NPIs for slowing down the spread (Ferguson et al., 2020; 

Davies et al., 2020).  
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Similar to epidemiology, risk minimization is a central aspect of process safety systems ( Khan & 

Abbasi, 1998). The methodology to prevent, control, and mitigate infection is analogous to the 

hazard control of process safety frameworks of industrial systems. Over the years, different 

qualitative and quantitative safety management systems have been devised for reducing risk in 

process industries. The layer of protection analysis (LOPA) and inherently safer design (ISD) are 

two of the most promising risk assessment and management tools (Khan et al., 2015). LOPA with 

inherent safety considerations provides better insights for decision-making. Some earlier 

approaches to implementing LOPA for improving safety management are discussed in (Dowell, 

1998; Srinivasan & Natarajan, 2012). Gowland (2006) explained the principle of LOPA and its 

applicability for accidental risk assessment. An application of LOPA to estimate the risk due to 

reactive chemicals is presented in (Wei, Rogers, & Mannan, 2008) and an improved version of 

LOPA called ExSys-LOPA is proposed in (Markowski & Mannan, 2010).  At the core of the LOPA 

framework, preventive measures are used to avoid a probable abnormal event. In the next layer, 

the control system is in place to counteract and slow down the escalation of the abnormalities. 

Following that is the emergency safety layer to restrain and nullify the impact of hazard when the 

control system fails. A comprehensive review of the existing literature on process safety and risk 

assessment is reported in (Khan, Rathnayaka, & Ahmed, 2015).   

The motivating factors for this work are to devise semi-mechanistic models for assessing pandemic 

risk and to establish synergy between process safety and pandemic risk management. We have 

proposed a layer of protection analysis (LOPA) for epidemic management. The performance of 

the safety management framework has been quantified in terms of the reduction of pandemic risk 

when safety layers are in effect. 
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We have proposed a parameter tweaking and an artificial neural network-based parameter learning 

method for computing adaptive parameters of the susceptible, exposed, infected, quarantined, 

recovered, deceased (SEIQRD) model. The proposed semi-mechanistic SEIQRD model has been 

employed to predict the probability of fatalities and severity of consequences, thus enabling risk 

evaluation. The model has also been used to assess risk in enforcing and releasing distinct 

intervention strategies. On the other hand, LOPA and inherent safety methods were used for risk 

management. By integrating the two approaches, a framework was developed for risk assessment 

and management of a pandemic, including mitigating, suppressing, and releasing factors.  

The paper is organized as follows: Section 2 describes the mathematical models used to assess 

risk. Section 3 discusses the outcome of the risk calculations from the proposed models for 

different geographical locations. Section 3 also discusses the impact of the LOPA mitigation 

factors on risk. Finally, risk profiles for the releasing scenarios are presented. Section 4 gives the 

conclusion and future research directions. 

6.2 The Mathematical Model 

This section describes the mathematical models to predict the spread of epidemic diseases. It 

begins by introducing the mechanistic model of the epidemic spread followed by the approaches 

to solving the model using parameter tweaking and the ANN-based parameter learning model.  

6.2.1 The SEIQRD epidemic model 

Many studies reveal that people may be more contagious around the time of symptom onset than 

the diseased one (World Health Organization, 2020). Numerous reports highlighted that the pre-

symptomatic (infectious before the symptom onset) and asymptomatic (does not develop 

symptom) are the major sources of the infections spread (Koo et al., 2020). According to an 

editorial published in the New England Journal of Medicine (NEJM ), the asymptomatic spread of 
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the virus is the "Achilles' heel of enforced strategies to control COVID-19" (Gandhi, Yokoe, & 

Havlir, 2020). The basic SIR and SEIR models overpredict because they do not take into account 

the hospitalization and quarantine condition which severely reduces the overall spread of the 

infection. Thus, we have used the SEIQRD model to consider the hospitalization effect and capture 

disease transmission by the asymptomatic and pre-symptomatic cases.   

Fig. 6.1 presents the SEIQRD epidemic model where S, E, I, Q, R, and D represent the susceptible 

(S), exposed (E: infected but not yet infectious), infectious (I), quarantined or hospitalized (Q), 

recovered (R), and deceased (D). An additional compartment I2 (with retention period, T2= 1 day) 

has been added to represent the newly infected cases on a particular day. The host total population 

is N(t) = S(t)+E(t)+I1(t)+ I2(t)+Q(t)+R(t)+D(t) at time t.  T0 represents the incubation period, the 

duration between the viral exposures, and becoming infectious. The average incubation period 

reported from distinct sources is 5-6 days with a probable range of 2-14 days (WHO, 2020; Liang, 

2020).  T1 denotes the infection period where a person is infectious but not symptomatic, whereas, 

T3 indicates the recovery period. 

The model is based on two assumptions: (i) Natural births as well as deaths due to other reasons during 

the study period are not considered in counting the total population, (ii) the recovered people are immune 

to further viral attacks during the short span of analysis. The second assumption is clinically proven 

by many studies for various contagious viral attacks e.g., (Zhou, Miranda-Saksena, & Saksena, 

2013; Short, Kedzierska, & Van de Sandt, 2018). Eqs. 6.1-6.7 present the mathematical 

formulations of the SEIQRD epidemic model. The symbol 𝜑1 represents the fraction of  

symptomatic infections whereas 𝜑2 denotes the mortality fraction of the quarantined/hospitalized 

cases. The contagion rate (a), infection rate (c), and recovery rate (e) have been presented in Eq. 

6.8-6.10. 
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Fig. 6.1: Schematic representation of the SEIQRD model 

 

 

𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑎𝑆(𝑡)𝐼(𝑡)

𝑁
                                               (6.1) 

𝑑𝐸(𝑡)

𝑑𝑡
=
𝑎𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝑏𝐸(𝑡)                                    (6.2) 

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝑏𝐸(𝑡) − 𝑐𝐼1(𝑡)                                          (6.3) 

𝑑𝐼2(𝑡)

𝑑𝑡
= 𝜑1𝑐𝐼1(𝑡) − 𝑑𝐼2 (𝑡)                                  (6.4) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝑑𝐼2(𝑡) − 𝑒𝑄 (𝑡)                                       (6.5) 

𝑑𝑅(𝑡)

𝑑𝑡
= (1 − 𝜑1)𝑐𝐼1(𝑡) + (1 − 𝜑2)𝑒𝑄 (𝑡)      (6.6) 

𝑑𝐷(𝑡)

𝑑𝑡
= 𝜑2𝑒𝑄(𝑡)                                                     (6.7) 

 Rate of contagion, 𝑎 (
𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

𝑑𝑎𝑦
) =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 𝑏𝑦 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑠𝑜𝑛  𝑝𝑒𝑟 𝑑𝑎𝑦 ∗

                                                                  𝑒𝑎𝑐ℎ 𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑢𝑟𝑛𝑖𝑛𝑔 𝑖𝑛𝑡𝑜 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛            (6.8) 

𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒, 𝑐 =
1

 𝐼𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛  𝑝𝑒𝑟𝑖𝑜𝑑
=   

1

𝑇1
                                            (6.9) 

𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑟𝑎𝑡𝑒, 𝑒 =
1

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑝𝑒𝑟𝑖𝑜𝑑
 =  

1

𝑇3
                                              (6.10) 
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In terms of the basic reproduction number, the rate of contagion 𝑎 could be presented by Eq. 6.11. 

The effective rate of contagion (𝛼𝑒𝑓𝑓)  with the non-pharmaceutical interventions (NPI) could be 

given as Eq. 6.12, 

𝑎 =
𝑅0

𝑇1
                                        (6.11) 

𝑎𝑒𝑓𝑓 = 𝜌
𝑅0

𝑇1
                                (6.12) 

where ′𝜌′ is the exposure factor. Its value changes with government regulations and individual 

practices.  

The present model does not explicitly consider self-isolation of asymptomatic cases, contact 

tracing, and super-spreading events. These factors have been included implicitly using a lumped 

parameter approach. Also, the present work does not consider the distinct recovery time for mild 

cases and critical cases requiring ventilators and intensive care. 

6.2.2 Evaluation of the parameters of the SEIQRD model  

Fig. 6.2 presents approaches to solving the SEIQRD epidemic model by parameter tweaking and 

parameter learning using the artificial neural network (ANN).  TT0 is the time of the first death 

reported due to SARS-CoV-2. The data from TT0 to TT1 is used to determine the intermediate 

parameters by tweaking. We have taken 15 days between TT0 to TT1 assuming that the dynamics 

would be established in those 15 days and the parameters such as the incubation rate (b), the 

infection rate (c), and the recovery rate (e) would almost settle during this period. The alterations 

in the contagion rate (a) due to the miscellaneous public safety regulations and the individual 

practices would be supervised between TT1 to TT2. The minor changes in other parameters would 

also be recorded. The manual parameter tweaking provides a better fit when done for one set of 

data applying a trial and error approach. This is time-consuming and is not feasible for regular 

model updating as new data becomes available. The ANN recursively calibrates based on the data. 
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The ANN-based model calibration is a faster way of updating the model and can be used to 

calibrate the model on-demand as the new data becomes available. 

The schematic diagram of the parameter fitting has been illustrated in Fig. 6.3. The parameters 

were initialized by the generic values given by the WHO-China joint mission report on COVID-

19 (Aylward, Bruce, 2020; Liang, 2020). The cost function of the minimization for determining 

the model parameters has been presented in Eq. 6.13. The mortality data is a more reliable measure 

for predicting the severity of an epidemic. However, the models based on the initial mortality data 

cannot estimate surplus death caused due to the unavailability of sophisticated treatment if the 

infection peak exceeds the healthcare capacity. The infection cases are subjected to under-

reporting due to numerous reasons e.g., inferior surveillance and tracking system, poor testing 

policy, asymptomatic cases, and distinct immune systems. We have employed a weighted cost 

function based on the mortality data and newly infected cases to obtaining robust parameters. A 

higher weight (w2= 0.6-0.8) was assigned to the fatality data than the infection data (w1= 0.2-0.4) 

assuming that the mortality data is more accurate. 

𝑓 = √    𝑤1 ∗ (𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 − 𝐼𝑀𝑜𝑑𝑒𝑙)
2
+ 𝑤2 ∗ (𝐷𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 − 𝐷𝑀𝑜𝑑𝑒𝑙)

2
                          (6.13) 
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Fig. 6.2: Parameter learning of the SEIQRD model using parameter tweaking and ANN-based 

calibration 

 

Fig. 6.3: Schematic representation of parameter fitting of the SEIQRD model 
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6.3 Results and discussion 

6.3.1 The case study: 

The proposed models have been used to study the present pandemic caused by severe acute 

respiratory syndrome coronavirus (SARS-CoV-2) that was first identified in December 2019 in 

Wuhan, Hubei province of China. The outbreak rapidly spread worldwide and was declared a 

global pandemic on March 11, 2020 (Kopecki et al., 2020; WHO, 2020).  

The proposed models have been evaluated on forecasting the COVID-19 pandemic spread at four 

locations: Ontario, British Columbia, Italy, and Germany. British Columbia was among the first 

provinces in Canada to be affected by COVID-19. The province demonstrated good governance 

in public health management resulting in a low number of per capita death. Ontario is the most 

populous province in Canada with 14.7 million people representing 38.8% of the 

country's population (Ministry of Finance, Government of Ontario, 2019). Also, it is home to the 

country's most populous city, Toronto, and the capital city, Ottawa. Italy was the first western 

country impacted by the Coronavirus and experienced the longest lockdown of Europe. The 

robust response of Germany resulted in a vastly lower death rate despite the higher number of 

infections. 

The models have been calibrated using the pandemic data reported by John Hopkins University 

(Johns Hopkins University Center for Systems Science and Engineering, 2020). Table 6.2 lists the 

generic parameters of the model. The average incubation, infection, and recovery periods were 

5.5, 5.1, and 11.5 days, respectively. The basic reproduction number for the COVID-19 reported 

by multiple sources has been presented in Appendix A. The basic reproduction number of 2.9, the 

median values of all the sources, has been used as the initial guess for the tweaking model.   

 

https://www.canada.ca/en/health-canada/services/health-concerns/diseases-conditions/sars-severe-acute-respiratory-syndrome.html
https://www.canada.ca/en/health-canada/services/health-concerns/diseases-conditions/sars-severe-acute-respiratory-syndrome.html
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Table 6.2:  Generic values of the model parameters 

Parameter Value (in days) Parameter Value 

Incubation period  5.1 Recovery period (in days) 11.5 

Infection period 5.5 Basic reproduction number 2.9 

 

6.3.2: Model application in the forecasting of infections 

Fig. 4 presents cumulative infections caused by COVID-19 at selected regions.  The models were 

trained up to T=40 days and used for forecasting for extended periods. The accuracy of distinct 

models is measured in terms of the root mean squared error (RMSE). The RMSE is a measure of 

the difference between the calculated and the observed values and is computed as 𝑅𝑀𝑆𝐸 =

√
1

𝑁
∑ (𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑,𝑖 − 𝐼𝑀𝑜𝑑𝑒𝑙,𝑖)2
𝑁
𝑖=1   . Fig. 6.4a depicts the forecast for Ontario by the generic model, 

the parameter tweak model, and the learning-based model. The RMSE values for the generic 

model, parameter tweak model, and the continuous learning ANN-based model were found to be 

9.18 x 103, 8.87 x 103, and 3.15 x 103 respectively. It is observed that the generic model 

overpredicts the infected cases. A plausible reason for lower real infections could be due to social 

distancing and other intervention strategies already in effect during the period of study. The 

government enforced preventive measures such as limiting gathering sizes, closure of non-

essential businesses and schools, and emergency lockdown. The population is following public 

advisory such as maintaining social distancing, frequent hand washing and practicing hygiene. As 

a result of all these, the true cases went down. The other factors can be a lack of adequate testing 

and under-reporting of the infected cases.  This is captured by the tweaking and learning-based 

models. The parameter tweaked model registers better performance compared to the generic 
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model. The continuously learning ANN-based model yields the lowest RMSE among the test 

methods. This is due to the dynamic learning of the parameters in varying conditions.  

Fig. 6.4b and Fig. 6.4c present the comparative performance of the tweaking and the learning-

based models. The tweaking model functions well in the training range, however, it shows poor 

performance in forecasting for an extended period. The learning-based methods precisely capture 

the dynamic variations in the parameters resulting in realistic projections. Similarly, the ANN 

based-learning model is effectively forecasting the cumulative infections of British Columbia (Fig. 

6.4d), Italy (Fig. 6.4e), and Germany (Fig. 6.4f).  It is plausible to realize a deviation of the model 

outcomes from the observed data if some other regulations were not there during the training 

period. The performance will also be affected by the variation of individual or societal practices 

that were not well established during the training phase. It can be noticed that the model is slightly 

overpredicting for the cases of Germany. This might be due to their COVID-19 monitoring 

initiatives, Pan-European Privacy-Preserving Proximity Tracing (PEPP-PT) and the Corona Data 

Donation app (Corona-Datenspende).   

The models were also employed to assess newly infected cases of COVID-19 considering 

randomness in the model parameters. We employed Monte Carlo simulations based on the 

lognormal distributions of the incubation, infection, and recovery periods to capture the long tail 

of the infection risk (Fig. 6.5). The distributions of the incubation period, the infection period, and 

the recovery period are presented in Fig. 6.5a, Fig. 6.5b, and Fig. 6.5c, respectively. The infection 

per day (the new infections) grows moderately at the beginning, attain maximum, and then start 

descending. The peak of the newly infected cases is crucial in developing treatment strategies for 

infected populations. It should not surpass the existing healthcare facility of the corresponding 

territory. A precise estimate of the peak infection in advance is conducive to better preparation and 

https://en.wikipedia.org/wiki/Pan-European_Privacy-Preserving_Proximity_Tracing
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effective mitigation. Distinct measures should be adopted to lower the peak, also known as 

flattening the epidemic curve, for restraining the pandemic. Fig. 6.5d presents the forecast for the 

peak of infection for Ontario. It can be inferred that the average value of the peak infection is 

around 1000 cases per day. The peaks of the infections were varying between 225 and 2500 within 

25% and 75% quantiles. Similarly, the most probable value of the cumulative infection is 4.0 x104. 

The maximum cumulative infection could go up to 8.0E+04 considering uncertainty in the 

parameters.
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a. Cumulative infection forecast of distinct 

methods 

 

b. forecast using tweaking and ANN-based 

learning methods 

 

c. forecast using ANN-based learning model 
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d. Cumulative infection forecast of the ANN-

based learning model 

 

 

e. Cumulative infection forecast of the 

ANN-based learning model  

 

 

f.  Cumulative infection forecast of the 

ANN-based learning model 

 

 

Fig. 6.4: Forecast of the infected population of COVID-19 at selected regions using the SEIQRD model  (The dash line at T=40 represent the 

training period of the models for the forecast of the extended period) 

British Columbia Italy Germany 
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Fig. 6.5: Predicting infection risk considering randomness in the incubation, infection, and recovery periods 

(a) Incubation period, (b) infection period, (c) recovery period, (d) peak infection per day, (e) cumulative infection 

 

 

(a) (c) (b) 

(d) 

(e) 
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6.3.3 Model application in managing risk of an epidemic 

The transmissibility of the epidemic is quantified by basic reproduction number (R0) which is 

defined as “the average number of secondary cases generated by a primary case in an entirely 

susceptible population” (Ferguson et al., 2005). The epidemic spreads for R0 >1 and dies out if R0 

<1.  The effective reproduction number can be reduced in three ways: i) reducing contact rates,  ii)  

diminishing the infectiousness through isolation and treatment, and iii)  reducing the susceptible 

population by vaccination (Ferguson et al., 2005). 

Personal hygiene such as wearing a mask at public places, frequently washing hands and social 

distancing are crucial in restraining the spread of the infection risk. Government regulations and 

individual practices play a crucial role in mitigating epidemic spread.  Limiting gathering sizes, 

closure of nonessential businesses and schools, and emergency lockdown have a decisive role in 

controlling the epidemic spread (Davies et al., 2020; Ferguson et al., 2006). Restricting limits on 

gathering sizes reduces the possibility of super-spreading events (Anderson, Heesterbeek, 

Klinkenberg & Hollingsworth, 2020). Following social distancing measures prevent transmission 

by pre-symptomatic and asymptomatic cases. Vaccination is compelling in protecting from 

infectious diseases; however,  several months are required to develop, produce, and distribute an 

effective vaccine following the outbreak of a novel pandemic strain (Germann et al., 2019). Thus, 

NPIs are vital in reducing overall mortality by restricting peak within the healthcare capacity.  

The predicted effects of interventions on the spread of the epidemic have been presented in Fig 

6.6.  Fig. 6.6a shows the impact of the pandemic if no measure is taken to restrict the outbreak. 

Fig. 6b and Fig. 6c respectively demonstrate the effect of the school and non-essential business 

closure and emergency lockdown after one week of the first mortality reported. Similarly, the 

effects of these interventions if implemented after one month of the first mortality, have been 
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presented in Fig. 6.6d and Fig. 6.6e. The Monte Carlo simulation has been used for considering 

uncertainties of the model parameters. We can observe that the median value of the peak infection 

could reach up to 3000 cases per day in case of no intervention. It could go up to 10000 cases per 

day in the worst-case scenario. The closure of schools and businesses and observing public 

emergency reduces the new cases to 6 per day as the most probable value.  The lockdown results 

in rapid shrinkage of the epidemic compared to simply school and nonessential business closure.  

We can also deduce that delaying interventions by a month can lead to a several-fold increase in 

the peak of the infection. 

The effect of the pandemic in terms of peak risk has been shown in Table 6.3. It presents the risk 

estimated for different locations in terms of risk peak and the cumulative risk of infections. The 

risk can be defined as the product of the impact of the pandemic and the probability of the 

occurrence of the impact. In this SARS-CoV-2 pandemic, the impact is infections which could 

lead to mortality. We are studying the most probable value of infections as the potential impact of 

the COVID-19. Monte Carlo simulation has been used for handling uncertainties in the number of 

infection cases due to the pandemic. The probability of occurrence of infection has been computed 

from the distribution of infections considering the randomness of the model parameters (i.e., the 

incubation, infection, and recovery periods). The probability of the most probable value denotes 

the possibility of realization of the most probable number of infections for a given time. It has been 

calculated based on the distribution of impacts. For instance, the value of the most probable impact 

at T=50 was found to be 2867 cases per day. The frequency of the most probable impact for T=50 

is 433 out of 1000 possible values resulting in the occurrence probability of the most probable 

impact of 0.433 (
433

1000
= 0.433).  Thus the risk of infection at T=50 will be 2867*0.433=1241 cases 

per day. The values of parameters of Fig. 6.7a-b at other time steps have been computed similarly.   
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In the case of no measures to restrain the COVID-19, the respective peak risk (infections per day) 

and the cumulative risk (total infections) in Ontario are 1.39 x 103 and 4.26 x 104. The risk will be 

reduced remarkably by enforcing non-pharmaceutical interventions. Lockdown is effective in 

quickly containing a pandemic. Also, a delay in implementing intervention strategies increases the 

risk markedly. Table 6.3 shows the comparative outcomes of intervention strategies implemented 

after a week and a month from the first death reported. The peak risk increases from 3 to 43 

(infections per day) while the cumulative risk escalates from 122 to 2.07 x 103 (total infections) in 

the case of a delay by a month in administering school/university and non-essential business 

closures. Similarly, an increase from 3 to 39 (infections per day) in peak risk and 22 to 5.64 x 102 

(total infections) in cumulative risk is observed by a month-long delay in enforcing the lockdown. 

The marked escalation in the peak and the cumulative risk of the other locations could also be seen 

due to the delay in implementing the intervention strategies.
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Fig. 6.6: Effect of interventions on controlling the epidemic risk; a: Without any intervention, b: School and non-essential business 

closure after one week of the first mortality), c: Enforcing public emergency/ lockdown after one week of the first mortality d: School 

and non-essential business closure after one month of the first mortality), e: Enforcing public emergency/ lockdown after one month of 

the first mortality 

(e) (c) 

(d) (b) 

(a) 
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Table 6.3: The risk of epidemic infections in selected regions 

(Risk of infection= Impact in terms of infections x probability of occurrence of the impact) 

Countries/ 

cities 
Parameters 

No 

Measure 

Interventions implemented after one 

week 

Intervention implemented after 

one month 

School/ Universities/ 

non-essential business 

closure 

With Public 

Emergency/ 

Lockdown 

School/ 

Universities/ non-

essential business 

closure 

With Public 

Emergency/ 

Lockdown 

Ontario 

Peak Risk 

(Infections per 

day) 

1.39 x 103 3.00 x 100 3.00 x 100 4.30 x 101 3.90 x 101 

Cumulative Risk 

(Total Infections ) 
4.26 x 104 1.22 x 102 2.00 x 101 2.07 x 103 5.64 x 102 

British 

Columbia 

Peak Risk 

(Infections per 

day) 

4.47 x 103 48.00 x 100 48.00 x 100 9.99 x 102 6.53 x 102 

Cumulative Risk 

(Total Infections ) 
1.29 x 105 1.70 x 103 3.28 x 102 1.53 x 104 6.45 x 103 

Italy 

Peak Risk 

(Infections per 

day) 

8.62 x 105 9.53 x 104 4.00 x100 4.55 x105 1.20 x 101 
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Cumulative Risk 

(Total Infections ) 
1.18 x 107 3.66 x 106 7.60 x 101 8.08 x 106 2.70 x 102 

Germany 

Peak Risk 

(Infections per 

day) 

4.26 x 104 3.00 x 100 3.00 x 100 4.26 x 104 4.26 x 104 

Cumulative Risk 

(Total Infections ) 
2.31 x 105 1.40 x 102 2.20 x 101 2.31 x 105 2.31 x 105 
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Fig. 6.7a: Variation of peak values of the number of infections in terms of the most probable 

impact and the calculated risk 

 

Fig. 6.7b: Variation of cumulative values of the number of infections in terms of most 

probable impact and the calculated risk 

 

6.3.4 Model application in evaluating risk in releasing scenarios 

The lockdown and other government regulations have severe economic impacts. It is not viable to 

continue with these regulations for a prolonged duration. Thus, the enforcement and release of 

such regulations must be exercised judiciously to prevent harmful impacts of a pandemic. Fig. 6.8 

presents projection of releasing the enforced interventions. The relaxing scenarios of opening 

school/university/non-essential business, and relaxing on social gatherings for returning to the 

normal state have been modeled for forecasting its impact on the overall system. The relaxing 

regulations on social gatherings comprise the opening of the parks, malls, bars, religious 
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gatherings, recreation facilities, and all the sites of the interactions other than working sites. Fig. 

6.8 depicts the comparative escalation in terms of the median values of the peak infections. It also 

presents the 25 and 75 quantile of the peak infections to capture the alteration due to the 

randomness in the model parameters. It is inferred that the release of the enforced regulations has 

the potential for a resurgence. The phase-wise relaxation of these regulations is most appropriate 

for preventing the resurgence of the pandemic risk. Relaxing regulations on social gathering at 

T=70 could lead to a resurgence with the peak infection capacity of twice that in the regulated 

scenario. However, the opening of schools/nonessential business and relaxing in social gatherings 

at T=70 and T=100, respectively, do not exhibit significant resurgence.  
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Fig. 6.8: Effect of relaxing regulations on the impact of the pandemic, a: Existing scenario, b:  Relaxing regulations on opening of 

school/university/non-essential business at T=70, c: Relaxing regulations on social gatherings at T=70,  d: Phasewise relaxing regulations: 

school openings at T=70 and social gatherings at T=100 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.8: Effect of relaxing regulations on the impact of the pandemic
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6.3.5 Similarity between pandemic risk management and process safety management 

The current pandemic situation and its prevention strategy can interchangeably be used for hazard 

identification and safety management of processing facilities. Forecasting of the infection strategy 

stated above is applicable to identify a possible abnormal scenario. The risk-based safety 

management framework shown above illustrates the importance of safety management layers 

when an abnormal situation is triggered. The distinct measures of handling a pandemic can be 

represented as the layer of protection analysis of a process system (Fig 6.9). The processes are 

designed safer as a preventive strategy for reducing the risk.  Different safety barriers such as basic 

process control, alarms and operator interventions, safety instrumented system, relief devices, and 

physical containments are used as a control layer for abnormal situation management (Dowell, 

1999; Willey, 2014). Finally, the plant and emergency response services are brought into operation 

to diminish risk by de-escalating the situation. These are analogous to the preventive, controlling, 

and mitigative strategies used for handling a pandemic. The hygienic practices (e.g. frequent hand 

washing, wearing a mask at public places) and government regulations such as the closure of 

schools and non-essential business, limiting gathering sizes, enforcing lockdown, and vaccination 

is extremely effective as control and preventive strategies for limiting pandemic risk. Plant and 

community emergency responses are mitigative layers for industrial systems. These control 

measures are analogous to the treatment and medical care provided for reducing the impact of the 

pandemic.  

Results in Fig 6.6b-e show that effective control measures can reduce the risk of the disease spread. 

The results also demonstrate how early intervention of the preventive measures can reduce risk. 

Thus, protection layers should be put into place as soon as a hazard is identified.  
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We have also illustrated the impact of relaxing scenarios in Fig. 6.8b-d. Releasing different barriers 

causes the risk to rise. The time of the release of the barrier plays a crucial role. The risk reduces 

significantly when a barrier is released after the peak of the occurrence.  Similarly, risk-based 

analysis of safety barriers could be feasible in process systems to determine how long a critical 

control layer should be enforced, and when it needs to be released.     
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Fig. 6.9: Layer of protection analysis (LOPA) for epidemic and abnormal situation management in a process system; a. for epidemic 

management; b. for the safety of a process system  
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The COVID-19 pandemic is a disastrous event that is affecting billions of lives and causing 

adverse economic impacts. World Bank economic reports indicate that a severe pandemic could 

reduce world gross domestic product (GDP) drastically (World Bank, 2020). Nonetheless, it 

provided many learning opportunities to policymakers and process safety practitioners. Some of 

those lessons are as follows- 

Early fault detection vs early case detection 

The early warning system for hazard identification is central to abnormal situation management. 

A delay in detection would lead to a delay in control actions that will escalate risk resulting from 

abnormal situations. For instance, a delay of just a few days in releasing genetic sequences can be 

critical in an outbreak. Experts believe that the risk would have been reduced dramatically if the 

outbreak was detected antecedently.  This is equally applicable to a process system where early 

detection of a fault reduces the risk of potential loss. 

Identification of effective control mechanism 

The identification of distinct control strategies is conducive to restrain abnormal situations. The 

restrictive measures e.g., social distancing, case detection, isolation, contact tracing, quarantine of 

exposed cases, and lockdown turns out to be effective strategies for restricting the spread of the 

COVID-19. Good hygiene practices such as frequent hand washing, wearing a mask at public 

places, and physical distancing are also effective in flattening the curve and reducing the economic 

burden. Thus identification of an effective control mechanism plays a pivotal role in minimizing 

the impact of an abnormal situation. 
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The fast response of public health vs operator response 

We can also deduce that the delay in the intervention strategies significantly increases the risk. We 

have analyzed the catastrophic effect of the delay in the implementation of selected intervention 

strategies in our model. We found severalfold escalation in peak and the cumulative risk of 

infection due to a delay of a month in implementing intervention strategies. The real-world data 

from the COVID-19 also substantiate our findings. For instance, the immediate response by the 

government of Taiwan, for handling people arriving from Wuhan was instrumental to reduced risk 

in Taiwan. The findings uphold the importance of the operator’s response to an abnormal situation. 

As a delay to respond to a fault can cause detrimental consequences, prompt action from the 

operator is vital to ensure the safety of processing facilities.  

Effective resource allocation and mobilization 

Resource allocation decisions were critical segments of handling the COVID-19. The mobilization 

of resources in administering social distancing by school closures, limiting gathering sizes, 

providing efficient quarantine centers was of utmost importance in fighting the present pandemic. 

We had to properly allocate ventilators or intensive care beds in case of limited availability.  We 

also experienced that many doctors, nurses, and health workers fell victim to the pandemic. Thus, 

we can pledge for the exclusive treatment for healthcare workers, technicians, and security 

personnel who risk their lives as front liners (Khoo & Lantos, 2020).  Equivalently, we can identify 

and provide maintenance to the pivotal elements of process safety systems. 

Adoption of advanced technologies 

The use of advanced technology was helpful at all levels of containment. South Korea credited its 

use of advanced technology to uncover clusters of cases that would otherwise have gone 

undetected. Drones equipped with cameras hovering over parts of the Indian neighborhoods 
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warning residents they are under surveillance turned out to be advantageous in enforcing effective 

lockdown. Artificial intelligence is being tested for identifying the disease by recognizing patterns 

in ultrasonic images. The AI can also be useful in understanding the virus and accelerating medical 

research on vaccine development and treatments. The advanced data mining tools can uncover the 

virus’s history, transmission, diagnostics, management measures, and extracting features for 

combating future epidemics. Virtual assistants and chatbots have been deployed to support 

healthcare systems in many countries such as Canada, France, Finland, Italy, Germany, and the 

United States. Thus, advanced technologies can be harnessed for reducing risk and abnormal 

situation management in process systems. 

Identification of vulnerable elements 

The COVID-19 also revealed that some people are most likely to be the hardest hit by the current 

pandemic. The most vulnerable and high-risk group include: an older adult suffering from 

underlying medical conditions (e.g. heart disease, hypertension, diabetes, chronic respiratory 

diseases, cancer) and individuals having a compromised immune system from a medical condition 

or treatment (e.g. chemotherapy).  We provided extra care for the vulnerable population for 

reducing the risk. We can identify and develop effective strategies and action plans for vulnerable 

elements for reducing risk in process systems.   

New opportunities, scale-up, and resiliency of the existing systems 

The COVID-19 highlighted scaling-up requirements of health systems to expand services to 

accommodate rapid increases in demand. We also experienced numerous innovative initiatives 

during the COVID-19 pandemic. Many companies that don’t regularly operate the business of 

medical products, started producing hand sanitizer, ventilators, or personnel protection equipment 

(PPEs). Many businesses, schools, universities, and other organizations demonstrated resiliency 
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by continuing their operations by quickly adopting the new normal. They widen the virtual private 

network (VPN) to allow all employees to work remotely; brought changes in the existing system 

by the necessary modification such as adding physical barriers at the help desk and cash counters; 

moving to online portals for meetings and instructions. 

Good governance and trust-building 

The COVID-19 made us realize the importance of trust-building and effective governance in 

fighting a catastrophe. The distinct government regulations are prone to create clashes between 

states and citizens, eroding state capacity, driving population displacement, and heightening social 

tension and discrimination. The clashes can potentially escalate an abnormal situation leading to a 

catastrophe. The safe operation of process systems depends on the smooth functioning of 

equipment, operators, and managerial systems. An effective management system can improve 

health and safety at work by optimizing human interactions in the technical and social environment 

through proper policies, procedures, training, and supervision. 

Application of expertise from similar outbreaks in past vs use of historical process data 

Operators use their experience to detect, diagnose, and take mitigating action for controlling 

abnormal situations in process systems. In addition to this, the data-based fault detection and 

diagnosis methods are trained based on historical faulty data and expert opinions.  Despite the 

different outcomes of epidemic disease, the expertise from past outbreaks could be conducive to a 

credible estimation of the trajectory and slowing down the spread by implementing effective 

measures (Goudarzi, 2020, March 23).  The social distancing measures, communication, and 

international cooperation, the most effective methods to slow COVID-19, were adopted by 

experience from the 1918 influenza pandemic and 2002–2003 SARS outbreak.  The expertise from 

the past outbreaks e.g., the 2003 severe acute respiratory syndrome (SARS) outbreak in Singapore, 
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and experience with the 2015 Middle East respiratory syndrome (MERS) outbreak of South Korea 

led to an immediate fruitful response to the COVID-19.  Their approach in combating COVID-

19 was praised as “the gold standard” response (Firth, 2020, March 05).  

Pandemics do not remain geographically confined in contrast to other natural disasters (Jamison 

et al., 2017). A holistic approach with strong ethical and sensible measures is required for 

combating the epidemic spread (Institute of Medicine, 2007). We have to be prompt in all facets 

of the transmission; adequate testing facilities, active surveillance, enforcing intervention 

strategies, and community screening around the cluster areas. The extensive support and public 

endorsement can be asserted by effectively communicating the preparedness and response 

strategies. Research findings should be disseminated in the form of actionable points such as 

checklists (Khalid, 2020, March 03). The migration and other cross-border entries pose the risk of 

further spreading an outbreak; it must be handled effectively. All the aforementioned ideas could 

potentially be employed for upgrading the safety of process systems.  

 

6.4 Conclusions 

In the current work, a data-driven semi-mechanistic SEIQRD model was used to develop a risk 

management framework to forecast the spread of the COVID-19 pandemic. A parameter tweaking 

and ANN-based learning were employed to evaluate the adaptive parameters of the model. The 

proposed models were able to forecast the spectrum of disease transmission at an early stage. 

Pandemic data from four different geographical locations were used to demonstrate the efficacy 

of the presented frameworks. The proposed model predicted cumulative infections with different 

safety barrier implementation and release scenarios. The risk incurred was evaluated on 

implementing and relaxing different safety barriers. The results demonstrated that implementing 

https://www.forbes.com/sites/margiewarrell/2020/03/30/singapore-sets-gold-standard-against-covid-19-be-ready-be-decisive-be-bold/#16414ba67a22
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non-pharmaceutical interventions can dramatically reduce the risk. The time of the enforcement 

and relaxing of NPIs also play a crucial role in restraining the epidemic risk. The NPIs can turn 

ineffective if the implementation is delayed or relaxed abruptly.  

The proposed risk-based method has many similarities with process facilities for hazard 

identification and safety management. In the current work, the implementation of the LOPA 

framework for managing public health safety and risk was studied. A risk-based analysis was 

performed for three different scenarios: (i) no protection layer added (ii) early enforcement of 

protection layer (iii) delayed enforcement of protection layer. Early enforcement of a protection 

layer is crucial to keep the risk significantly lower. The proposed study suggests that the 

enforcement and relaxing of the protection layer should precisely be executed based on reliable 

forecasting of the model.  

The proposed model can perform well when calibrated for specific regions using local data and 

information such as population, demographics, interaction patterns, enforced regulations, and 

other dynamics. The present model does not explicitly consider contact tracing and super-

spreading events. These factors have been included implicitly using a lumped parameter approach. 

Also, the present work does not consider the distinct recovery time for mild cases and critical cases 

requiring ventilators and intensive care. The model could also be improved by dividing populations 

based on demographics, special dispersion, and interaction patterns. Effects of distinct degrees of 

social distancing, wearing a mask at public places, and following hygiene practices can also be 

analyzed. Finally, the model could be used in trade-off studies for balancing economic aspects and 

acceptable risk when enforcing and relaxing regulations.  
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List of symbols and abbreviations  

Symbols Meanings 

A contagion rate  

ANN artificial neural network  

C infection rate  

CA, CB concentrations of species A and B respectively 

COVID-19  Coronavirus disease of 2019 

CSTR continuous stirred tank reactor  

D, D(t) Decesead 

DModel estimated fatality bt the model  

DReported reported death 

E recovery rate  

E, E(t) Exposed 

I, I(t) Infected 

IModel infected cases estimated by model 

IReported reported infected cases 

k1, k2 rate constants 

LOPA layer of protection analysis  

M total Mass 

MERS Middle East respiratory syndrome  

N, N(t) total population 

NPIs non-pharmaceutical interventions 

PEPP-PT Pan-European Privacy-Preserving Proximity Tracing  

Q, Q(t) Quarantined 

R, R(t) Recovered 

R0 basic reproduction number  

RMSE root mean squared error  

S, S(t) Susceptible 

SARS severe acute respiratory syndrome  

SARS-CoV-2 severe acute respiratory syndrome coronavirus-2 

https://en.wikipedia.org/wiki/Pan-European_Privacy-Preserving_Proximity_Tracing
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SEIQRD susceptible, exposed, infected, quarantined, recovered, deceased  

SEIR susceptible, exposed, infected,  and recovered 

SIR susceptible, infected, recovered 

T1 infection period 

T2 
 

infection period 

T3 recovery period 

TT0, TT1, TT2 timeline on the disease progression 

w1, w2 relative weightage of the respective infected cases and fatality factor in 

determining the cost in the optimization 
WHO World Health Organization 

𝑎𝑒𝑓𝑓 effective rate of contagion   

 

  

 fraction of symptomatic infections 

 

  

fraction of quarantined/hospitalized population resulting in mortality 

 

  

exposure factor 

 

  

initial parameters of the SEIQRD model 

 

  

intermediate parameters of the SEIQRD model 

 

  

final parameters of the SEIQRD model using tweaking 

 

  

final parameters of the SEIQRD model using ANN 
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Chapter 7 

Pandemic Risk Assessment and Management in a Bayesian Framework 

Preface: This chapter extrapolates the goal of the preceding chapter of reliable assessment of the impact 

of a pandemic outbreak using advanced techniques. It presents a hierarchical Bayesian formulation for 

capturing variabilities in evolving conditions such as the advent of subsequent waves of a pandemic. The 

uncertainty in the reported pandemic data has been handled using the parameter sharing feature of the 

hierarchical Bayesian structure. It is also fitting our hypothesis of improving data-driven methods using 

science-based formulations of disease dynamics. This work can be mapped to the sub-objective of the 
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Abstract: Credible assessment of a pandemic is critical in decision-making by healthcare providers, local 

and national government agencies, and international organizations. It facilitates a valuable lead time to 

policy-makers for efficient planning, resource allocation, and enforcing interventions. This work presents 

a Bayesian-based semi-mechanistic model for a short-term forecast of pandemic risk. We employed a 

hierarchical Bayesian network to learn the parameters of the susceptible, exposed, infected, quarantined, 

recovered, deceased (SEIQRD) model to forecast the risk under evolving conditions due to imposed 

regulations, varied individual responses, and the advent of the multiple waves of a pandemic outbreak. 

The model has been validated for the risk forecast of the Coronavirus Disease of 2019 (COVID-19) using 

the benchmark models reported by the Center for Disease Prevention and Control and real-world data. 

We have also presented the impact analysis of COVID-19 pandemic risk using Bayesian inference. The 

proposed hierarchical Bayesian-based semi-mechanistic model (HBN-SEIQRD) resulted in accurate 

prediction with the lowest leave-one-out (LOO) cross-validation scores among the proposed Bayesian 

frameworks. The model is helpful in predicting the disease trajectory under evolving conditions due to 

government regulations, societal responses, and individual practices.   

 

Keywords: Pandemic risk assessment, Hierarchical Bayesian network, COVID-19, SEIQRD model, 

Impact analysis, MCMC sampling. 

 

7.1 Introduction 

Infectious diseases have been a persistent threat to human health for a long time. The Justinian Plague 

(541–542 AD), the Black Death (first outbreak in Europe in 1347), yellow fever in South America in the 

16th century, the global influenza pandemic in 1918, severe acute respiratory syndrome (SARS), and 

HxNy influenza are some of the deadliest pandemics caused by zoonoses (Daszak, 2012). The case fatality 

rate (CFR) of infectious diseases has been significantly reduced due to recent developments in medical 

sciences; however, globalization, intense mobility, and complex networking, on the other hand, have 

increased the infectivity potential of diseases.  Emergent diseases can turn into a pandemic impacting 

millions of people with loss of life, mental health, and severe economic impairment. The prevailing global 

Coronavirus disease (COVID-19) pandemic is an example of such zoonotic devastation.  
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Mathematical modeling helps understand disease dynamics and guides public health planning for effective 

control of an outbreak (Chowell, 2017). It helps in understanding the effectiveness of distinct 

administrative interventions such as lockdown, school and business closures, and a ban on social 

gatherings in reducing the spread of the disease. Modeling also provides scopes for the sensitivity analysis 

of the time frame of implementing and relaxing interventions in restraining the epidemic risk. The effects 

of early detection of infected cases, contact tracing, and quarantine of exposed cases have also been 

effectively captured in numerous models. Mathematical models have been recognized as valuable tools 

for clinical trials to examine the optimal cluster size and to validate of the trial’s statistical analysis. 

Different types of mathematical methods and computational techniques such as differential equations, 

stochastic processes, statistical analysis, graph theory, artificial life, artificial society, computer 

simulation, and geographic information systems, have been developed to study epidemic diffusion in 

human societies. However, handling uncertainty is still a daunting task in pandemic risk management 

(Rozell, 2019). 

Pandemic modeling comprises both aleatory uncertainty (caused by variability in population/data) and 

epistemic uncertainty (arising from a lack of knowledge of the phenomena). The distinct strains of the 

virus, modes of propagation (airborne or contact transmission), the existence or non-existence of 

asymptomatic spreading, and uncertainty in infectivity, rate of incubation, infection, and recovery all 

constitute uncertainty in epidemic modeling. Reported data of an outbreak are often erroneous due to 

various factors such as lack of systematic testing, the inherent delay between the date that an illness starts 

and the date the case is reported to public health authorities, and the accuracy of the test methods. Evolving 

conditions due to government regulations, societal responses, individual practices, and the outbreak of 

subsequent waves are other sources of uncertainty in predicting disease trajectory. 
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Cautionary/precautionary techniques help minimize fatality risk in a pandemic (Alauddin, Khan, Imtiaz, 

Ahmed, & Amyotte, 2021). For example, the lockdown of a geographical region until acquiring evidence 

of diminishing the disease's spread is a precautionary measure for reducing the fatality risk due to a 

pandemic outbreak. This, however, has severe socio-economic repercussions. Stringent lockdown and 

prolonged confinement can cause loss of employment, existential threats to organizations, and numerous 

mental health issues. Policy-makers should have a comprehensive picture of the scenarios realized due to 

distinct enforcement. This necessitates robust models for the credible forecast and assessment of inherent 

risk under varying conditions of a pandemic outbreak.   

The Bayesian inference approach can help deal with uncertainty in pandemic risk management by 

incorporating conditional dependencies and updating prior beliefs with real-time information. We have 

proposed a hierarchical Bayesian model for parameter learning of the SEIQRD model to address temporal 

variability of the pandemic outbreak. The objective is to capture the variability of the parameters of each 

noticeable period while managing the uncertainty by enabling parameter sharing from respective periods 

of the outbreak. Our approach is based on tuning the model from local conditions and handling the 

temporal variability of the parameters caused by miscellaneous factors. We have also extended the 

concept of parameter sharing for estimating the risk due to multiple waves of a pandemic. The 

contributions of this paper include: 

i.  Forecast of infected cases and mortality using a hierarchical Bayesian Network: 

Pandemic risk forecasting is challenging due to evolving conditions caused by imposed 

regulations, varied individual responses, and the advent of multiple waves of an outbreak. 

To capture the temporal variability of the parameters of the SEIQRD mechanistic model, 

we have used Bayesian inference with a hierarchical structure. The variational Bayesian 

inference has been employed to generate a simplified proposal distribution of the complex 
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representation of the hierarchical model. Finally, the approximate posterior distributions 

of the parameters have been determined using the no U-turn sampler (NUTS) (Hoffman & 

Gelman, 2014). We have also examined other Bayesian network formulations such as 

pooling, and no pooling in handling temporal variabilities of a pandemic model.  

ii. Impact Analysis using Bayesian network: The Bayesian inference network has been used to 

analyze the impact of distinct parameters in pandemic risk management. We have adopted 

relevance-based reasoning, which is based on the conditional probability distribution of 

the Bayesian network. We have studied the impact of the COVID-19 on peak 

hospitalization cases under three scenarios: no measures or few interventions, moderate 

interventions, and stricter interventions. 

The remainder of the paper is organized as follows. Section 7.2 provides a brief survey of 

epidemiological models with a particular emphasis on compartmental models. It also presents a review 

of various approaches to parameter estimation of mechanistic models. Section 7.3 presents the 

mathematical models and the approaches to parameter learning in Bayesian frameworks. Risk 

assessment of COVID-19 for distinct scenarios is presented in Section 7.4 followed by the conclusion 

in Section 7.5.  

7.2 Literature  review 

Infectious disease modeling can broadly be classified in two categories: statistical and mechanistic. 

Statistical approaches exploit data correlations to learn a functional dependence for predictions, while 

mechanistic models are based on physical laws such as population and/or transmission dynamics. In this 

section, we present an overview of mechanistic models for the dynamics and control of infectious diseases. 
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7.2.1 Mechanistic epidemiological models 

Mechanistic models comprise compartmental, spatial, meta-population, network-based, and agent-based 

methods. The following sections present brief surveys of the studies on distinct mechanistic models. 

7.2.1.1 Compartmental epidemiological models 

Compartmental models are based on systems of ordinary differential equations that focus on the dynamic 

progression of a population through different epidemiological states (Chowell, 2017). The population is 

divided into several compartments, each having the same state of the epidemic. The SIR (susceptible, 

infected, recovered) and SEIR (susceptible, exposed, infected, recovered) are fundamental compartmental 

models. The SIR model presumes that the infected hosts become contagious immediately after exposure 

to an infected carrier, whereas the SEIR model considers the latency between exposures and infectious 

periods (Anderson & May, 1979; Hethcote, 1976; Hiorns & MacDonald, 1982; Kermack & McKendrick, 

1927). Many extended compartmental models have been developed to take into account isolation, 

quarantine, and hospitalization (Alauddin et al., 2020; Arik et al., 2020; Giordano et al., 2020; Hu et al., 

2020; Ivorra, Ferrández, Vela-Pérez, & Ramos, 2020; Legrand, Grais, Boelle, Valleron, & Flahault, 2007; 

Lin et al., 2020; Paiva, Afonso, de Oliveira, & Garcia, 2020; Subramanian, He, & Pascual, 2021). 

The compartmental model is widely used for the timely assessment of epidemics.  Many models have 

been developed to take into account the non-pharmaceutical interventions (NPIs) of isolation and 

quarantine of the exposed cases. Carvalho, da Silva, and Charret (2019)  presented a comparative analysis 

of mechanical and chemical control methods in restraining a pandemic. The modeling of comprehensive 

interventions, treatment, and other control actions can be found in multiple studies (Alam, Kabir, & 

Tanimoto, 2020; Browne, Gulbudak, & Webb, 2015; Chowell & Kiskowski, 2016; Colizza, Barrat, 

Barthelemy, Valleron, & Vespignani, 2007; De Visscher, 2020; Fast, Mekaru, Brownstein, Postlethwaite, 
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& Markuzon, 2015; Jung, Lee, & Chowell, 2016; Lee, Lye, & Wilder-Smith, 2009; Rachah & Torres, 

2016; Rizzo & Atti, 2008; Shen, Xiao, & Rong, 2015). 

7.2.1.2 Spatial epidemiological  models 

Compartmental models presume well-mixed compartments that are hard to be observed in real life. These 

models do not consider social and spatial heterogeneity across geographic boundaries. Moreover, they 

cannot effectively harness the diverse data sources and surveillance aspects of an outbreak 

(Venkatramanan et al., 2018). According to Tobler’s first law of geography, “everything is related to 

everything else, but near things are more related than distant things (Tobler, 1970)”. Spatial structure and 

the position of the host population play a crucial role in the epidemic spread. Spatial models exploit the 

space property for random interactions in epidemic modeling. The most prominent advantage of spatial 

models is their visualizing power: spatial modeling maps are comprehensible tools for the general public. 

The heterogeneity among a larger population can be included in models using a population-based 

framework by dividing the large population into smaller groups of specific heterogeneity such as age, 

neighborhoods, and behavioral risk groups. Meta-population models assume uniform distribution of 

attributes across space within a subpopulation.  

7.2.1.3 Network-based epidemiological models 

Modeling of disease transmission in network-based models is achieved by describing more realistic 

contact patterns among individuals of the population (Lanzas & Chen, 2015). Network-based 

epidemiological models originated from mathematical graph theory, characterized by two components, 

namely the ‘vertex’ and the ‘edge’. A vertex represents an individual, a group of people, a village, a city, 

or even an entire country whereas an edge represents the association between a pair of vertices. The 

interaction represented by such a graph could be directed or undirected (Martínez-López, Perez, & 

Sánchez-Vizcaíno, 2009). The determination of all possible interactions is cumbersome in a large 
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population. Nonetheless, mobile phones (Eagle, Pentland, & Lazer, 2008) and other global positioning 

system (GPS) data-loggers (Vazquez-Prokopec et al., 2013) have been crucial in establishing contact 

networks. The meta-population model is a widely adopted methodology to investigate the spatial-temporal 

transmission of infectious diseases. It presumes that the population is divided into diverse functional 

spatial subgroups called ‘patches’, such as cities, districts, villages, and schools. Differential equations 

are used within each subpopulation to describe disease dynamics. Meta-population models also 

incorporate spatial networks to characterize subpopulation movements and interactions (Apolloni, Poletto, 

Ramasco, Jensen, & Colizza, 2014; Colizza & Vespignani, 2008; Pell et al., 2016; Santermans et al., 

2016). 

7.2.1.4 Agent-based epidemiological models 

The individual-based approach, also known as an agent-based model, mimics individual interactions. An 

individual is explicitly simulated with a set of characteristics, including spatial location, interaction 

preference, age, vaccination status, mobility, and stochastic behavior. Multi-agent simulations mimic the 

complexity of the system. A realistic synthetic population, social contact networks, and an effective 

disease model are the three basic components of agent-based epidemiological models (Eubank et al., 

2004). Agent-based simulators include: MASON (Dunham, 2006), GeoGraph (Dibble & Feldmam, 2004), 

EpiModel (Jenness, Goodreau, & Morris, 2018),  EpiSims (Mniszewski, Del Valle, Stroud, Riese, & 

Sydoriak, 2008), BioWar (Carley et al., 2006), and FluTE (Chao, Halloran, Obenchain, & Longini, 2010). 

Agent-based models require significant computational power and diverse data accessibility. They also 

yield sluggish responses in simulating diseases with low prevalence in a large population. Complex 

modeling frameworks such as meta-population, network-based, and individual-based models have been 

of increasing interest due to the availability of big data and increasingly sophisticated computational 
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techniques. However, the big data approaches often fail to reflect disease and social dynamics accurately. 

The performance of data-driven epidemiological models is further marred by poor data quality. 

7.2.2 Parameter estimation of epidemiological models 

Mechanistic model parameters can be estimated by least-squares fitting (Gan, Tan, Mo, Li, & Huang, 

2020; Kim, Ko, Kim, & Jung, 2020; Romero-Severson, Ribeiro, & Castro, 2018), maximum likelihood 

estimation (Bretó, 2018; Chowell, Nishiura, & Bettencourt, 2007; Kao & Eisenberg, 2018; White & 

Pagano, 2008; Wu & Riley, 2016), and approximate Bayesian computation (Almutiry & Deardon, 2020; 

Brown, Porter, Oleson, & Hinman, 2018; Chandra, 2020; Kypraios, Neal, & Prangle, 2017; McKinley et 

al., 2018; Minter & Retkute, 2019; Neal, 2019; Neal & Huang, 2015; Price, Bean, Ross, & Tuke, 2016). 

Epidemiological modeling has been extensively studied using deterministic approaches (Carcione et al., 

2020; Clancy & Piunovskiy, 2005; House & Keeling, 2008; Kumar et al., 2020; Lange, 2016; Lipsitch et 

al., 2003; Okyere et al., 2020; Otoo et al., 2020; Pollicott et al., 2012; Rivers et al., 2014; Sharkey, 2011; 

Zhou et al., 2014) and stochastic approaches (Alharthi, Kypraios, & O’Neill, 2019; Allen, 2017; Birrell, 

de Angelis, & Presanis, 2018; Bjørnstad, Finkenstädt, & Grenfell, 2002; Chao et al., 2010; Engbert, Rabe, 

Kliegl, & Reich, 2021; Fintzi, Cui, Wakefield, & Minin, 2017; Khan, Hussain, Zahri, Zaman, & 

Humphries, 2020; Kypraios et al., 2017; Lekone & Finkenstädt, 2006; O’Neill, 2002; Ponciano & 

Capistrán, 2011; Shangguan, Liu, Wang, & Tan, 2021; Taylor, Dushoff, & Weitz, 2016; Wang, Ji, Bi, & 

Liu, 2020). Pollicott et al. (2012) reconstructed a time-dependent transmission rate for the SIR model. 

Camacho et al. (2015) modeled a time-varying transmission parameter of SEIR by the Wiener process 

(also known as standard Brownian motion). Cauchemez et al. (2008) employed a stochastic framework 

and Markov chain Monte Carlo (MCMC) to recover time-dependent transmission rate and other model 

parameters. Alauddin et al. (2020) proposed a semi-mechanistic artificial neural network-based SEIQRD 

model for capturing time varying parameters. Google Cloud researchers integrated the time series machine 
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learning approach with a compartmental model to develop Google Cloud AI (Arik et al., 2020). Population 

genetic inference using coalescent models has been exploited in the parameter estimation of 

compartmental models (Dearlove & Wilson, 2013; Popinga, Vaughan, Stadler, & Drummond, 2014). 

Many studies have investigated branching processes to estimate the basic reproduction number (R0) and 

the final size of the epidemic (Allen, 2015; Ball & Donnelly, 1993; Tritch & Allen, 2018). 

Evolutionary computing approaches have also been explored for estimating parameters of deterministic 

and stochastic epidemiological models.  For example, a genetic algorithm was employed for the parameter 

estimation of several epidemic diseases such as Cholera (Akman & Schaefer, 2015),  Malaria (Davis et 

al., 2019), SARS (Isa Irawan & Amiroch, 2015; Yan & Zou, 2008), HIV-AIDS (Pedroso-Rodriguez, 

Marrero, & De Arazoza, 2003), and COVID-19 (Anđelić, Šegota, Lorencin, Mrzljak, & Car, 2021; Ding 

et al., 2021; Hosseini, Ghafoor, Sadiq, Guizani, & Emrouznejad, 2020; Monteiro, Gandini, & Schimit, 

2020). Eastman et al. (2021) used differential evolution to fit their model to the epidemiological data of 

COVID-19. Similarly, swarm intelligence has been used for fitting epidemic models (Akman, Akman, & 

Schaefer, 2018; He, Peng, & Sun, 2020; Hosseini et al., 2020). 

Uncertainty is a key aspect of pandemic modeling. Ambiguity in the mechanism of disease transmission, 

randomness in the rate of incubation, infection, and recovery periods, and biological transmutations of the 

disease-causing elements, constitute uncertainty in epidemic modeling. This is further complicated by 

distinct mitigative measures and public responses while the outbreak unfolds (Dehning et al., 2020). 

Uncertainty is a major challenge for policymakers, as it impacts reliability of model outcomes. Sensitivity 

analysis helps to identify key factors for the spread of disease by quantifying the effects of uncertainties; 

Monte Carlo methods, Fourier amplitude sensitivity tests, Latin hypercube, Bayesian estimation (Arriola 

& Hyman, 2009) are common tools for sensitivity analysis. 
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The predictive ability of a model can be improved by reducing the variability in the forecasts.  Xu et al. 

(2016) proposed a Bayesian non-parametric method for stochastic epidemic models using a Gaussian 

process. Oliveira et al. (2020) employed a Bayesian approach to the SIR model with correction for under-

reporting in the analysis of COVID-19 cases (Manevski, Ružić Gorenjec, Kejžar, & Blagus, 2020). Polo 

et al. (2020) used a Bayesian model to study the spatio-temporal effect on health and fatality caused by 

the COVID-19.  Bayesian inference was used for studying the time dependence of effective growth rate 

of new infections (Das & Tiwari, 2021; Dehning et al., 2020). Farah et al. (2014) developed a Bayesian 

framework for parameter estimation of a computationally expensive dynamic epidemic model using time 

series epidemic data. Dehning et al. (2020) applied Bayesian inference based on Monte Carlo sampling to 

characterize the change points realized due to distinct mitigative measures. Smirnova et al.( 2019) 

introduced the reconstruction of nonparametric time-dependent transmission rates by projecting onto a 

finite subspace spanned by Legendre polynomials to obtain an accurate approximation of model 

parameters. 

Numerous methods in the Bayesian framework have been devised to treat data inconsistency and under-

reported cases (Deardon et al., 2010; Gibson, Reich, & Sheldon, 2020; Russell et al., 2020; Sharmin, 

Glass, Viennet, & Harley, 2018; Taghizadeh, Karimi, & Heitzinger, 2020). Li et al. (2018) compared 

distinct models of varying complexity on three MCMC platforms: JAGS (Plummer, 2003), NIMBLE 

(Lawson, 2020), and Stan (Carpenter et al., 2017). Lytras et al.( 2019) introduced FluHMM based on a 

hidden Markov model fitted in a Bayesian framework. Azmon et al. (2014) investigated the impact of 

delays and under-reporting by using a Bayesian semiparametric approach with penalized splines. Markov 

switching model has been employed to determine the epidemic and non-epidemic periods from 

surveillance data (Amorós, Conesa, López-Quílez, & Martinez-Beneito, 2020; Martínez-Beneito, Conesa, 

López-Quílez, & López-Maside, 2008). Dureau et al.( 2013) employed an adjusted adaptive particle 
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Markov chain Monte Carlo algorithm for handling parameter uncertainty. Bayesian inference using a 

Markov chain Monte Carlo (MCMC) approach for parameter estimation in epidemic models has been 

reported in several inquests (Almutiry & Deardon, 2020; Brown et al., 2018; Cotta, Naveira‐cotta, & 

Magal, 2020; Deardon et al., 2010; M. Li et al., 2018; Marwa, Mwalili, & Mbalawata, 2019; Osei, Duker, 

& Stein, 2012; Taghizadeh et al., 2020; Touloupou, Finkenstädt, & Spencer, 2020). 

Lee and Mallick (2020)  employed a hierarchical Bayesian approach for estimating COVID-19 spread by 

borrowing information from global data. However, the epidemic disease trajectory depends on 

demographics, economic status, degree of compliance of the population and societal impact, 

comorbidities, overall risk environment, and country vulnerability to biological threats. We propose a 

hierarchical Bayesian mechanistic model based on the SEIQRD model for pandemic risk assessment. Our 

approach is based on tuning the model from local conditions to capture variabilities due to evolving 

conditions caused by imposed regulations, varied individual responses, and the advent of multiple waves 

of an outbreak. The outbreak trajectory of a geographical area is divided in several periods, each having 

distinct parameters. Despite the parameters being different for each period, they share similarities due to 

the hierarchical representation of the entire period. The next section outlines the development of the 

proposed model.  

7.3 The model development  

This section presents a hierarchical Bayesian model of disease transmission following an outbreak. 

Section 7.3.2 outlines the overall procedure for the pandemic risk assessment and management using the 

proposed Bayesian framework. The basic understanding of distinct modules has been presented in the 

preliminary section.  
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7.3.1 Preliminaries 

In this section, we will briefly describe the SEIQRD epidemiological model followed by the parameter 

estimation under varying conditions using a hierarchical Bayesian network. This section also presents 

variational inference and the MCMC sampling which have been used for the parameter estimation of the 

proposed model. 

7.3.1.1 The SEIQRD model 

The susceptible, exposed, infected, quarantined, recovered, deceased model captures the effects of 

asymptomatic transmission, hospitalization, and quarantine on disease spread (Fig. 7.1). The 

mathematical formulations of the SEIQRD model are presented in Eqs.7.1-7.7, where ‘a’, ‘b’, ‘c’, and ‘e’ 

respectively denote the rates of contagion, incubation, infection, and recovery. ‘N’ represents the 

population of the geographical area, ‘d’ the rate of hospitalization/quarantine after being symptomatic, 

‘𝜑1’ the fraction of symptomatic infections, and ‘𝜑2’ the fraction of quarantined/hospitalized population 

resulting in mortality. The details of the model can be found in Alauddin et al. (2020). 

 

Fig. 7.1: Schematic representation of the SEIQRD model for infectious disease transmission  

(T0: incubation period, T1: infection period, T2: duration between case detection and 

quarantine/hospitalization, T3: recovery period) 

 
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑎𝑆(𝑡)𝐼(𝑡)

𝑁
                                                 (7.1) 

𝑑𝐸(𝑡)

𝑑𝑡
=
𝑎𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝑏𝐸(𝑡)                                     (7.2) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑏𝐸(𝑡) − 𝑐𝐼(𝑡)                                               (7.3) 

T1 
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𝑑𝐼2(𝑡)

𝑑𝑡
= 𝜑1𝑐𝐼(𝑡) − 𝑑𝐼2 (𝑡)                                      (7.4) 

𝑑𝑄(𝑡)

𝑑𝑡
= 𝑑𝐼2(𝑡) − 𝑒𝑄 (𝑡)                                          (7.5) 

𝑑𝑅(𝑡)

𝑑𝑡
= (1 − 𝜑1)𝑐𝐼(𝑡) + (1 − 𝜑2)𝑒𝑄 (𝑡)           (7.6) 

𝑑𝐷(𝑡)

𝑑𝑡
= 𝜑2𝑒𝑄(𝑡)                                                       (7.7) 

 

The model can be written in the next-generation form (Yang, 2014) as 
𝑑𝐹

𝑑𝑥
= 𝐹(𝑋) − 𝑉(𝑋), where 

𝐹(𝑋)  denotes the rate of appearance of new infections in a compartment, and 𝑉(𝑋) gives the transfer of 

individuals between distinct compartments. The basic reproduction number R0 is given by the spectral 

radius of the matrix FV-1 (Appendix B). From the next-generation method, if the disease-free reproduction 

number Rdf < 1, then the disease-free equilibrium point is locally asymptotically stable, and if Rdf > 1, 

then it is unstable. The model is based on the following assumptions:  

(i) Natural births, as well as deaths due to other reasons during the study period, are not considered 

in counting the total population. 

(ii) Recovered people are immune to further viral attacks during the short span of analysis. This 

assumption is clinically proven by many studies for various contagious viral attacks (Zhou et 

al., 2013; Short, Kedzierska & Van de Sandt, 2018). 

(iii) There is no infectivity (transmission) in hospitalized or self-isolated compartments. This is 

possible if the advisory is strictly followed during treatment and isolation. 

7.3.1.2 Hierarchical Bayesian network 

Bayesian network (BN) is an effective tool for safety and risk analysis. It can incorporate multi-state 

variables, conditional dependencies, and real-time information to update prior beliefs. A Bayesian 

network is a directed acyclic graph (DAG) comprising nodes and arcs. The node represents the probability 

distribution of a random variable, while an arc determines the probabilistic relationship between two 
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connected variables. BN employs the Bayes theorem to generate posteriors based on updating the prior 

occurrence probabilities of events using extant information, called evidence. A BN works by propagating 

belief in the entire network and is termed as a Bayesian Belief Network (BBN) (Mallick & Imtiaz, 2013). 

Bayesian inference allows for more readily dealing with and interpreting uncertainty and easier 

incorporation of prior beliefs. There are three approaches to modeling in a Bayesian framework: (i) 

pooling of measurements, (ii) unpooled measurements, and (iii) partial pooling or hierarchical models. In 

pooling, the parameters are estimated for the entire period using one comprehensive model, 𝑦 = 𝑓(𝜃). 

This will not effectively capture variations in the number of cases due to distinct regulations and public 

response over different phases of the outbreak. Moreover, it is not capable of modeling the multiple peaks 

of a pandemic. Separate models for each period 𝑦𝑖 = 𝑓(𝜃𝑖) can be employed in the unpooled 

measurements to account for this. However, these predictions suffer from considerable uncertainty due to 

the lack of large datasets for each phase.  Both of these limitations are addressed by hierarchical models 

where the parameters of the individual periods 𝜃𝑖  are different for each period as in the unpooled case, but 

they share coefficients with the common prior distributions 𝜃 as illustrated by Fig. 7.2. This can also 

facilitate estimating the controlling parameters in the subsequent waves of a pandemic outbreak. Limited 

and sparse data can be efficiently used through the hierarchical structure of distinct levels (Lim et al., 

2018). 

Eq. 7.8 provides the posteriors of the parameters under given evidence using the Bayes rule.  

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)
∫𝑝(𝑦,𝜃)𝑑𝜃

                                        (7.8)  

The expression ∫𝑝 (𝑦, 𝜃)𝑑𝜃  has no closed-form solution over a high-dimensional space. This integral in 

Bayes rule is approximated by Markov chain Monte Carlo (MCMC) sampling. MCMC sampling is slow 
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and flounder when the model complexity increases. Thus, we have employed variational inference based 

on approximate distribution instead of finding the real posterior distribution.   

θ 
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SEIQRD 1 SEIQRD 2 SEIQRD k

 

 

Week1 Week2.. Weekn1 Week1 Week2 .. Weekn2 … Week1 Week2 .. Weekn3 

                                                                                 𝑇𝑖𝑚𝑒 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑛𝑑𝑒𝑚𝑖𝑐 𝑜𝑢𝑡𝑏𝑟𝑒𝑎𝑘 𝑎𝑡 𝑎 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛                                                                                  
→                                                                                                          

Fig. 7.2:  Modeling of multiple waves of a pandemic using a hierarchical Bayesian network 

7.3.1.3 Variational Inference 

The main idea of variational inference is to approximate the real posteriors with a tractable family of 

distributions. In this space, we search for an optimal distribution q∗ that minimizes a certain measure of 

dissimilarity (Eq. 7.9).  

𝑞∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞𝜖𝑄 𝑓(𝑞(. ), 𝑝(. |𝑦))                                              (7.9) 

 Where 𝑓( ) is a measure of dissimilarity. We have employed the KL-divergence for the dissimilarity. The 

KL-divergence can be represented by Eqs 7.10-17.11. 

𝐾𝐿(𝑝‖𝑞) = ∫𝑝(𝑥)𝑙𝑛 (
𝑝(𝑥)

𝑞(𝑥)
)𝑑𝑥                                                       (7.10) 

First Wave Second Wave Kth Wave 

… … … … 
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𝐾𝐿(𝑞‖(𝑝(𝜃|𝑦)) = ∫𝑞(𝜃)𝑙𝑛 (
𝑞(𝜃)

(𝑝(𝜃|𝑦)
) 𝑑𝜃                                     (7.11𝑎) 

                                = ∫𝑞(𝜃)𝑙𝑛 (
𝑞(𝜃)𝑝(𝑦)

𝑝(𝜃, 𝑦)
)𝑑𝜃                                (7.11𝑏) 

                                 = log 𝑝(𝑦) − ∫𝑞(𝜃) log  
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑞(𝜃)
𝑑𝜃        (7.11𝑐) 

               

Since 𝑝(𝑦) is fixed, we only need to consider the second term, which is also known as the evidence lower 

bound (ELBO). Thus, to minimize KL-divergence, we need to maximize the ELBO.  

Variational inference turns approximate posterior inference into a computationally efficient optimization 

problem. Though it is a promising method, developing a variational inference algorithm still requires 

tedious model-specific derivations and implementation. We have employed automatic differentiation 

variational inference (ADVI) that automates the process of deriving scalable variational inference 

algorithms as illustrated in Fig. 7.3 (Kucukelbir, Blei, Gelman, Ranganath, & Tran, 2017).  

 

Fig. 7.3: Steps for automatic differentiation variational inference (ADVI) 

 

7.3.1.4 Markov chain Monte Carlo sampling 

Markov chain Monte Carlo sampling (MCMC) is a method of sampling a high-dimensional probability 

distribution. It is based on the Markov chain mechanism that exhibits a memory-lessness property where 

Posterior distribution

Stochastic approximation

Choose a variational approximation in the 
common space

Transform the latent variables of the model
into a common space
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the next sample is dependent only on the current state (Eq. 7.12). Eq. 7.13 presents a detailed balance 

equation which is a sufficient, but not necessary, condition to ensure that a particular p(x) is the desired 

invariant distribution (Andrieu, De Freitas, Doucet, & Jordan, 2003). P(x) and T(x) denote the distribution 

and transition matrix. The samplers are designed for effective convergence while maintaining the balance 

condition. 

𝑃(𝑥(𝑖)|𝑥(𝑖−1), 𝑥(𝑖−2), …… . . , 𝑥(1) ) = 𝑇(𝑥(𝑖)|𝑥(𝑖−1))                                   (7.12) 

𝑃(𝑥(𝑖))𝑇(𝑥(𝑖)|𝑥(𝑖−1)) = 𝑃(𝑥(𝑖−1))𝑇(𝑥(𝑖−1)|𝑥(𝑖))                                        (7.13) 

Metropolis-Hastings and Gibbs Sampling are two well-known MCMC sampling techniques. The 

fundamental problem with Metropolis-Hastings and Gibbs sampling is that they are too random and often 

tend to get trapped in narrow regions of moderately complex targets. The Hamiltonian Monte Carlo 

(HMC) method can handle random walk behavior and sensitivity to correlated parameters with a fewer 

samples to obtain an efficient target distribution.  However, HMC requires specifications of steps for its 

simulated paths. The step number determines how long the path continues before a new flick is made in 

a new random direction. This results in similar samples when converged in too few steps, and highly 

dissimilar samples with many-step convergence.  

No U-Turn Sampler (NUTS) is an approach for adaptively finding the optimal number of steps. NUTS is 

based on a recursive algorithm to build a set of likely candidate points that spans a large proportion of the 

target distribution. The NUTS algorithm tries to determine when the path starts to turn around and results 

in more effective samples per iterations than Gibbs or Metropolis-Hasting for complex posteriors 

(Hoffman & Gelman, 2014; Nishio & Arakawa, 2019). HMC and NUTS take advantage of gradient 

information from the likelihood to achieve much faster convergence than traditional sampling methods, 

especially for larger models. NUTS also has several self-tuning strategies for adaptively setting the tunable 

parameters of Hamiltonian Monte Carlo. We have employed NUTS for sampling in our model to estimate 
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the parameters of the distinct SEIQRD models of hierarchical Bayesian frameworks presented in Fig. 7.4 

and Fig. 7.5.   

7.3.2 The pandemic risk management using hierarchical Bayesian network 

Fig. 4 presents the flowchart for pandemic risk assessment and impact analysis in a Bayesian framework. 

We have employed a hierarchical structural based Bayesian framework to estimate the epidemiological 

parameters of the SEIQRD model using MCMC sampling. The uncertainty in the reported data has been 

handled using the parameter sharing feature of the hierarchical Bayesian structure. We used variational 

inference to approximate the real posterior distribution of parameters such as the rate of incubation, 

infection, and recovery, and other parameters of the SEIQRD model (Fig. 4B). These approximations 

serve as initializing point for the MCMC sampling. Finally, No U-Turn Sampler (NUTS) has been used 

for Markov Chain Monte Carlo sampling from the approximated probability distributions. The posterior 

parameters of the SEIQRD mechanistic models help in estimating pandemic risk in terms of infections 

and fatalities. This also helps in determining the number of hospitalization cases, which are critical in 

pandemic risk management.  

Data generated from the SEIQRD model has been used to perform impact analysis of the model 

parameters. This has been carried out using relevance-based reasoning based on the conditional 

probability distribution of the Bayesian network (Arora et al., 2019). We have discretized the infection 

risk into three categories: low, medium, and high depending upon the respective peak hospitalization 

cases. The parameters under study are also discretized in a distinct range. For instance, the impact of 

distinct interventions could be studied by dividing it into three categories: little or no intervention, 

moderate interventions, and stricter interventions such as curfew. The incubation, infection, and recovery 

periods have also been analyzed for three levels. The presence and absence of the virus (SARS-CoV-2) 
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has also been modeled as a Boolean function in determining the impact on pandemic risk.  Eq 7.14 and 

Eq. 7.15 present the joint probability and conditional probability distributions of the system. 

𝑃(𝐼, 𝑇0, 𝑇1, 𝑇3, 𝑅0, 𝑉) = 𝑃(𝐼|𝑇0, 𝑇1, 𝑇3, 𝑉)𝑃(𝑇0| 𝑇1, 𝑇3, 𝑉)𝑃(𝑇1| 𝑇3, 𝑉)𝑃(𝑇3| 𝑉)𝑃(𝑉)         (7.14) 

𝑃(𝐼|𝑇0, 𝑇1, 𝑇3, 𝑉) =
𝑃(𝑇0, 𝑇1, 𝑇3, 𝑉|𝐼 )

𝑃(𝑇0, 𝑇1, 𝑇3, 𝑉)
𝑃(𝐼)                                                                                          (7.15) 

Where, 𝐼, 𝑇0, 𝑇1, 𝑇3, 𝑅0, 𝑎𝑛𝑑 𝑉 respectively denote the risk of infection, incubation period, infection 

period, recovery period, reproduction number, and the presence of the Coronavirus.  

We present a hierarchical Bayesian-based approach to the susceptible, exposed, infected, quarantined, 

recovered, deceased (SEIQRD) model of infectious disease spread. Various models in the Bayesian 

framework based on pooling and no pooling of data have also been examined for risk forecasting under 

temporal variations due to imposed regulations, varied individual responses, and the advent of multiple 

waves of a pandemic outbreak. The following section presents the procedure of the study and the model 

outcomes on risk forecasts of COVID-19. The model has been validated using benchmark models and on 

real-world data. 
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Fig. 7.4: Pandemic risk assessment and impact analysis in a hierarchical Bayesian framework  (A) Outline of the process, (B) Parameter estimation 

using variational Bayesian inference 
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7.4 Risk forecast of COVID-19 

We have examined the proposed models for forecasting pandemic impacts due to the first and second 

waves of COVID-19 in Ontario, Canada and Arizona, USA. The procedure could be summarized in three 

groups: estimating model parameters, forecasting short-term scenarios, and analyzing impacts. The task 

has been carried out as follows- 

Step 1: Accessing and preprocessing of pandemic data 

We received data from March 17, 2020 to Jan 2021 for Ontario and Arizona. The data have been accessed 

using Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE) and CDC 

COVID-19 Data Tracker (https://covid.cdc.gov/covid-data-tracker/#datatracker). The pandemic data 

were processed for smoothening and removing spikes and noise. We divided the data in two groups 

corresponding to wave 1 and wave 2. Each group was further divided into subgroups consisting of 15 days 

periods. For example the processes data for Ontario 𝐷(𝑖,𝑗) is presented in Eq. 7.16, where the first index ‘ 

i’ represents the wave, and the second index ‘j’ represents the intended period in the ith wave. 

𝐷(𝑖,𝑗) =

{
 
 
 
 
 

 
 
 
 
 
𝐷(1,1) 𝑓𝑟𝑜𝑚 𝑀𝑎𝑟 17 𝑡𝑜 𝑀𝑎𝑟 31, 2020

𝐷(1,2) 𝑓𝑟𝑜𝑚 𝐴𝑝𝑟 01 𝑡𝑜 𝐴𝑝𝑟 15, 2020

𝐷(1,3) 𝑓𝑟𝑜𝑚 𝐴𝑝𝑟 16 𝑡𝑜 𝐴𝑝𝑟 30, 2020
…
…

𝐷(1,10) 𝑓𝑟𝑜𝑚 𝐽𝑢𝑙 30 𝑡𝑜 𝐴𝑢𝑔 13, 2020

𝐷(2,1) 𝑓𝑟𝑜𝑚 𝐴𝑢𝑔 14 𝑡𝑜 𝐴𝑢𝑔 28, 2020
…
…

𝐷(2,9) 𝑓𝑟𝑜𝑚 𝐷𝑒𝑐 12 𝑡𝑜 𝐷𝑒𝑐 26, 2020

𝐷(2,10) 𝑓𝑟𝑜𝑚 𝐷𝑒𝑐 27 𝑡𝑜 𝐽𝑎𝑛 10, 2021

                 (7.16) 

Step 2: Initialization of priors of the model parameters 

The informative prior make Bayesian analysis effective in dealing with uncertainty and inconsistency of 

the pandemic data. We selected informative priors on initial model parameters based on the values 

commonly reported in the literature. However, we also provided a sufficient exploration range by 

providing adequate spread parameters (Table 7.1).  We have used a bounded half-normal prior for the 

file:///C:/Users/malauddin/Documents/Research%20MUN/paper%20revisions/COVID-III/Submission_1/CDC%20COVID-19%20Data%20Tracker
file:///C:/Users/malauddin/Documents/Research%20MUN/paper%20revisions/COVID-III/Submission_1/CDC%20COVID-19%20Data%20Tracker
https://covid.cdc.gov/covid-data-tracker/#datatracker
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basic reproduction number with a lower bound of 1.0 and an average value of 2.9. We used a high value 

of spread parameters to accommodate distinct values reported in various studies. The basic reproduction 

number 2.0–2.5 has been initially reported by the WHO-China Joint Mission on Coronavirus Disease 

2019. The Australian health authorities reported R0 in the range 2.6–2.7, which was subsequently revised 

to 2.5–3.5 (Chang et al., 2020).  For example, a median R0 = 3.4 (CI [2.4, 4.7]) was used in a model of the 

COVID-19 spread in Germany (Dehning et al., 2020).  Flax et al. (2020) estimated the initial R to be 3.8 

(2.4–5.6) from a study on 11 European countries. A review by Liu et al, (2020) presented the R-value 

ranging from 1.4 to 6.49, with a mean of 3.28 and a median of 2.79. The higher exploration range can also 

aid the variability caused due to mutations, non-pharmaceutical interventions and public responses. 

The average incubation period, infection period, and recovery period were assigned lognormal priors with 

values of 5.5, 5.1, and 11.5 days, respectively ( Liu et al., 2020; Bi et al, 2020).  Asymptomatic and 

fatality fractions were assigned as bounded normal priors with respective average values of 0.15 and 0.01. 

Several studies adopted the log-normal distribution to capture the tail in the parameters of pandemic 

models (Ejima et al, 2020).  We selected log-normal distributions of incubation infection, and recovery 

periods. Thus, the log-normal priors for the incubation period T0∼LogNormal[log(5.5),1], infectious 

period T1∼LogNormal[log(5.1),1], and recovery periods T3∼LogNormal[log(11.5),1] have been 

employed in this study.  

Step 3: Initialization of the Markov chains through variational inference 

We have employed variational inference for generating effective starting points for MCMC sampling. 

This can lead to accelerated convergence of the MCMC. We have used PYMC3 for generating the 

inference, the source code has been provided in Appendix D.   
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Table 7.1: Priors of the hierarchical Bayesian-based SEIQRD model (HBN-SEIQRD) 

PARAMETERS PARAMETERS 

NAME 

VARIABLES PRIOR DISTRIBUTIONS 

 Reproduction 

Number 

R0 BoundedNormal(lower=1)[2.9, 2] 

 

Hyper Parameters Incubation Period  T0 LogNormal[5.5, 1] 

 Infection Period  T1 LogNormal[5.1, 1] 

 Recovery Period  T3 LogNormal[11.5, 1] 

 Symptomatic 

fraction  

𝜑1 Bounded Normal(lower=0.1, upper=1)[ 0.8, 0.2] 

 Mortality fraction  𝜑2 Bounded Normal(lower=0, upper=0.1)[ 0.8, 0.2] 

 Reproduction 

Number 

R0[i, j] BoundedNormal(lower=1)[mu=R0, 

shape=number of 15 days periods in ith wave] 

Parameters for ith 

wave Incubation Period  T0[i, j] LogNormal[mu=T0, shape=number of 15 days 

periods in ith wave] 

 Infection Period  T1[i, j] LogNormal[mu=T1, shape=number of 15 days 

periods in ith wave] 

 Recovery Period  T3[i, j] LogNormal[mu=T3, shape=number of 15 days 

periods in ith wave]  

 Symptomatic 

fraction  

𝜑1[i, j] Bounded Normal(lower=0.1, upper=1)[ mu= 

𝜑1, shape=number of 15 days periods in ith wave] 

 Mortality fraction  𝜑2[i, j] Bounded Normal(lower=0, upper=0.1)[ mu= 

𝜑1, shape=number of 15 days periods in ith wave] 
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Step 4: The MCMC sampling  

The MCMC sampling has been used to generate the posterior distributions of the model parameters. It 

can be performed using different samplers based on the nature of the model. We have employed the No_U 

turn sampler. After sampling a fraction of the initial samples also known as the Burn-in phase are 

discarded to retain effective samples for posterior analysis.    

Step 5: Forecast using MCMC samples 

The posterior parameters can be used for forecasting in the intended time period. The Bayesian-based 

forecast provides a credible interval based on the distribution of posterior parameters.  

Step 6: Impact analysis:  

The Hospitalization data corresponding to the SEIQRD model was generated using the hyper parameters. 

We developed peak hospitalization based on distinct sampled parameters. The parameters and the 

hospitalization cases were discretized to find the studied range. For example, we discretized the 

reproduction number in three categories, greater than_equal to 2 (R_2_up), between 1 and 2 (R_1_2) 

and_less_than unity (R_bellow_1). The pandemic risk can be categorized as low risk (if hospitalization 

peaks< 10000), moderate (10000< if hospitalization peaks < 50000), and high risk (if hospitalization 

peaks> 50000) based on the availability of the healthcare facility (Table 7.2). Finally, the impact analysis 

is carried out performed using the conditional probability distributions of the system (Eq. 7.14-7.15).      

Table 7.2: Discretization of dependent variable and parameters 

Reproduction number Discretized 

Reproduction number 

Risk Discretized Risk 

5.1 R_2_up 1000 Low_Risk 

1.5 R_1_2 100000 High_Risk 

0.8 R_bellow_1 80000 High_Risk 

1.2 R_1_2 30000 Moderate_Risk 

1.6 R_1_2 500 Low_Risk 

.. .. .. .. 

2.5 R_2_up 20000 Moderate_Risk 

2.1 R_2_up 150000 High_Risk 
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Fig. 7.5 presents the digraph of the hierarchical Bayesian network for risk assessment of the COVID-19 

pandemic.  Here, “cases” represent the newly infected cases and cumulative fatality due to the COVID-

19 pandemic. We have modeled two waves of the outbreak, each having different parameters of the 

SEIQRD model. Waves 1 and 2 are divided into 10 and 8 biweekly periods, respectively. Each period has 

different parameters governed by priors at the top layer that enable sharing of information between the 

two waves and among distinct periods of a particular wave. PyMC3 (https://docs.pymc.io/) has been used 

for variational inference, MCMC sampling, and forecasting of scenarios while GeNIe 2.2 

(https://www.bayesfusion.com/) has been employed for the inference studies in the impact analysis 

(Section 4.3). The next section presents the parameter estimation of the proposed HBN-SEIQRD model. 
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Fig. 7.5: Digraph of the hierarchical Bayesian network for risk assessment of COVID-19 pandemic. 
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7.4.1 Parameter estimation of the hierarchical Bayesian-based SEIQRD model 

The parameters of the hierarchical Bayesian-based SEIQRD model have been estimated using Markov 

chain Monte Carlo sampling. We have employed automatic differentiation variational inference (ADVI) 

to generate effective starting points for the accelerated convergence of MCMC sampling. Variational 

inference is most suited for analyzing big data, however, it can also be used for initializing points for the 

MCMC sampling. The adaptive gradient optimization method has been used to minimize the negative 

evidence lower bound (NELBO) that minimizes the KL-divergence (Fig. 7.6). The NELBO converged to 

4260.5 with 500 iterations. We adopted the NUTS sampling strategy to extract higher effective samples 

per iterations for generating the posterior distributions of the model parameters and hyper-parameters. We 

have withdrawn 10,000 samples from the posterior distribution for the traces (Appendix C).  The stability 

of the algorithm is ensured by burning the initial samples.  

 
Fig. 7.6: The ELBO profile with iterations (Average loss = 4260.5) 
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Bayesian analysis provides posterior distribution that best represents parameters according to the data and 

the model. This distribution is a balance of the prior and the likelihood. Fig 7.7 presents the posterior of 

the hyper parameters of the proposed HBN-SEIQRD model. Table 7.3 presents the effective reproduction 

number of COVID-19 in selected studied periods during the first wave of the COVID-19 outbreak at 

Ontario in terms of the mean and the highest probability density (HPD). The HPD summarizes marginal 

posterior distributions by tabulating 100(1 – significance level) % posterior credible intervals for the 

parameters of interest (Turkkan & Pham-Gia, 1997).  

 

 

 

Fig. 7.7: The posterior distribution of the hyper parameters of the hierarchical Bayesian-based SEIQRD 

model for the first wave of the COVID-19 outbreak at Ontario. 
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Table 7.3: The mean value and the credible interval of the effective reproduction number of COVID-19 

in selected studied periods during the first wave of the COVID-19 outbreak at Ontario. 

Reproduction number for distinct study 

periods during the first wave 

Mean Value 94% HDI 

R-value for the Ist  period-R1_1 2.5 1.3 to 3.9 

R-value for the 2nd period-R1_2 1.9 1.2 to 2.7 

R-value for the 3rd period-R1_3 1.8 1.2 to 2.8 

R-value for the 4th  period-R1_4 1.9 1.2 to 2.8 

R-value for the 5th  period-R1_5 2.1 1.3 to 3.2 

R-value for the 6th period-R1_6 1.8 1.1 to 2.6 

R-value for the 7th  period-R1_7 1.8 1.1 to 2.8 

R-value for the 8th  period-R1_8 1.8 1.2 to 2.6 

R-value for the 9th  period-R1_9 1.7 1.1 to 2.6 

R-value for the 10th  period-R1_10 1.8 1.2 to 2.7 

 

An important step when using MCMC for Bayesian inference is to perform diagnostic checks to reassure 

the user that the parameter space has been well-explored by the Markov chain and that the chain has 

converged to the equilibrium distribution. However, a converged model is not guaranteed to be a good 

model. Traceplots represent the value of the chain for each step in the sampling process. Ideally, all chains 

should trace the same distribution represented by the overlap in the plot. There should not be any 

detectable pattern, and none of the traces should flatten out. From the traceplots (Appendix C), we can 

observe that the sampling process converged indicating the actual parameter distributions of the model.  

The second component of model checking, the goodness of fit, is used to check the internal validity of the 

model by comparing predictions from the model to the data used to fit the model. The next section presents 

the forecast by the proposed hierarchical Bayesian-based SEIQRD model. We validated our findings for 

the pandemic risk forecast for the second wave with actual reported cases and numerous models presented 

by the Centre for Disease Prevention (https://covid.cdc.gov/covid-data-

tracker/#forecasting_weeklydeaths) as presented in Appendix E.  

https://covid.cdc.gov/covid-data-tracker/#forecasting_weeklydeaths
https://covid.cdc.gov/covid-data-tracker/#forecasting_weeklydeaths
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7.4.2 Forecast of COVID-19 pandemic impacts the hierarchical Bayesian-based SEIQRD model 

Fig. 7.8 presents a one-month ahead forecast of cumulative death due to COVID-19 in Ontario using the 

hierarchical Bayesian-based SEIQRD model. Fig. 7.9 presents a one-month-ahead forecast of cumulative 

death due to COVID-19’s second wave in Arizona. We can see that the proposed hierarchical Bayesian 

model (HBN-SEIQRD) forecast agrees with those models listed by the Centre for Disease Prevention 

(Appendix E).  

 
 

Fig. 7.8: Forecast of cumulative death due to COVID-19 in Ontario using hierarchical Bayesian network 

 

We have also explored other possible Bayesian network formulations for risk forecasting using pooling 

(Fig. 7.10a), and no pooling (Fig. 7.10b) of the data from both waves of the outbreak. With pooling (Fig. 

7.10a), we have assumed that there is one comprehensive model for the entire duration of each of the 

waves; i.e., pooling is with respect to the waves of the outbreak. Fig. 7.10b presents the model where data 

sharing among different biweekly periods is not carried out from the same or different waves. Each 
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biweekly time horizon independently estimates the parameters of the model based on the corresponding 

data. We have examined 10 and 8 biweekly periods for the first and the second waves, as shown in Fig 

7.10 a-b.  

Table 7.4 presents the comparative performance of the models. The rank presents the relative ranking of 

the models starting from 0 (best model) to the number of models. The leave-one-out cross-validation 

(LOO) is an estimate of the out-of-sample predictive fit. It estimates the accuracy of the predictive 

distribution 𝑝(𝑦𝑖̃|𝑦) by splitting samples in training and validation sets (Vehtari, Gelman, & Gabry, 

2017). The LOO is asymptotically equivalent to the Akaike Information Criterion (AIC) of the 

frequentist’s approach (Watanabe, 2010). However, the LOO effectively handles the uncertainty in the 

parameters which are ignored by the multivariate normal distributional assumption of the AIC. Lower 

LOO scores represent a better match between model and data. The term d_loo is the relative difference 

between the values of LOO of the top-ranked model with other models. Among these Bayesian formalism, 

the hierarchical Bayesian model (HBN-SEIQRD) scores well with reference to the leave-one-out cross-

validation. Its performance relative to the pooled model could be improved by taking more samples in 

each individual period.  
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Fig. 7.9: A one-month ahead forecast of cumulative death due to COVID-19 in Arizona  
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Fig. 7.10: Bayesian network formulations for the COVID-19 risk forecast using the SEIQRD models: (a) Pooling, (b) No pooling 

(a) 

(b) 

First wave 

First wave Second wave 
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Table 7.4: Comparative sampler statistics of test models of Bayesian frameworks for the posterior 

parameters of the SEIQRD model for the COVID-19 outbreak in Ontario  

Models Rank Relative difference between 

the values of LOO (d_loo) 

HBN-SEIQRD 0 0.00 

Pooled-SEIQRD 1 12.8 

Unpooled-

SEIQRD 

2 37.32 

 

The proposed hierarchical model would perform well if there are no abrupt changes. For instance, super 

spreading events in a specific period could distort the model outcomes. Similarly, in studying the distinct 

waves using the hierarchical representation, the model would perform well if the nature (i.e., peak, growth 

rate) of all the subsequent waves of a location are alike. However, we noticed that subsequent waves, 

especially second waves, were distinctly different at many places. Nonetheless, that could also be captured 

by incorporating the correlation of subsequent waves from other places. The scenario is also different if 

vaccination is introduced in a specific studied period or wave. The next section presents the impact 

analysis of the model parameters using the relevance-based reasoning of Bayesian inference. 

4.3 Impact Analysis using Bayesian network 

Fig. 7.11 presents the overall inference network for COVID-19 pandemic risk with and without 

interventions. The main idea behind interventions is to reduce the exposure factor and slow down disease 

transmission. During a pandemic outbreak, a locality can be protected from the disease-causing element 

(e.g., SARS_CoV_2 in COVID-19) by border closure and/or effective screening at entry points. Many 

studies reported that border closures could have helped limit viral transmission in the pandemic’s early 

days; their impact diminishes with community transmission of the disease. The benefits of border closures 

were also momentary when they were not accompanied by other measures such as testing, contact tracing, 
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and quarantining to prevent local transmission (Chinazzi et al., 2020; Hossain et al., 2020; Mallapaty, 

2021). 

The immunity gained through natural (herd) immunity or vaccination is the ultimate protection from 

pandemic risk.  However, this takes several months following an outbreak. Many studies proposed 

temporal and spatial segregation measures to restrain a pandemic. Government interventions such as 

lockdown, school and business closures, and restricting large gatherings help in slowing down the spread 

of a pandemic by reducing exposure. Corporations and employers can assist in controlling the risk by 

transforming operational formats, such as enabling home delivery services, working from home, and 

switching to a virtual mode for meetings (Alauddin et al., 2021). They can also help in reducing exposure 

by installing shields at cash and other counters, separate entrances and exits, and signage for safe 

distancing. However, these interventions cannot be imposed for a longer duration due to high incurred 

costs and other associated risks. Stringent lockdown and prolonged confinement can cause 

neuropsychiatric problems, psychological disorders, and weakened immune systems. Interventions should 

be time-limited, reconsidered, and revisited regularly for effective handling of health and socio-economic 

impacts.  

The effective infectious period could be reduced significantly by adopting contact tracing, increasing 

testing capacity, and devising methods for minimizing testing time. Contact tracing is characterized by 

identifying and monitoring each person who has been in contact with an infected person. The main 

advantages are that it can identify potentially infected individuals before severe symptoms emerge, and if 

conducted sufficiently quickly, can prevent onward transmission from the secondary cases. It is 

particularly effective when the latent period is long.  Contact tracing is simplest and most effective when 

cases are symptomatic. However, evidence of other modes of transmission was also reported in COVID-

19 transmission, including symptomatic (Li et al., 2020), pre-symptomatic (Nissen et al., 2021; Tong et 
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al., 2020; Wei et al., 2020), asymptomatic (Bai et al., 2020), and environmental (Ferretti et al., 

2020).  Thus other measures need to be enforced.  Individual practices and societal responses are central 

to the effectiveness of these measures.  Self-imposed measures such as wearing a mask in public places, 

voluntary social distancing, and handwashing are vital in preventing subsequent waves of an outbreak.  

Providing sophisticated treatment to infected people is vital for their safe recovery. Existing healthcare 

facilities might need to be extended to meet the demands of treating a large number of infected cases. A 

comprehensive review of interventions has been presented in several references (Alauddin et. al., 2021; 

Davies et. al., 2020; Ferguson et. al., 2005; Giordano et. al., 2020; Li et al., 2020; Rayner Brown et al., 

2021). 
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Fig. 7.11: Inference network for COVID-19 pandemic risk with interventions 
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Fig. 7.12 presents a simplified version of the inference network for the COVID-19 pandemic for 

studying the number of hospitalization cases. We have discretized the infection risk into three 

categories, low, medium, and high depending upon the respective peak hospitalization cases of < 

10,000, 10,000-50,000, and > 50,000. We have assumed that Ontario's initial health care system 

has 10000 acute care beds as reported in  (Barrett et al., 2020). We categorize the peak 

hospitalization cases of 10,000-50,000 a day as moderate risk assuming that a large fraction of the 

mild cases would be treated at home.  We have studied the impact of distinct interventions by 

dividing the effective reproduction number into three categories: R> 2 (little or no intervention), 1 

<R< 2 (moderate interventions), and R <1 (stricter interventions such as curfew). The incubation, 

infection, and recovery periods have also been analyzed for three levels.  

After imparting evidence of the presence of the Coronavirus, average incubation period of 3-6 

days, average infection period of 3-6 days, and average recovery period of 10-14 days,  we can 

observe that the risk is very high if no action is enforced (Fig. 7.12A). We want to have a low risk 

even though the virus is present in the locality. This could be possible if there are moderate and 

stricter interventions (Fig. 7.12B-C).  

 

(A) 
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Fig. 7.12: Simplified Inference network for COVID-19 pandemic risk: (A) No measures or little 

intervention (B) Moderate interventions, and (c) Stricter inventions for bringing the effective 

reproduction number < 1. 
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5. Conclusions 

We have proposed a semi-mechanistic hierarchical Bayesian-based SEIQRD model (HBN-

SEIQRD model) for pandemic risk management. The resulting model predictions account for 

uncertainty in the mechanism of disease transmission, uncertainty in the severity of the disease, 

and randomness in incubation, infection, and recovery periods. The model can account for 

changing scenarios such as government regulations, societal responses, individual practices, and 

the advent of multiple waves of a pandemic. We obtained the posterior distributions for the model 

parameters instead of confidence intervals, which are commonly reported with frequentist 

methods. The Bayesian approach facilitated using the preliminary knowledge of the parameters as 

priors in estimating posterior parameters under local conditions. The hierarchical Bayesian 

approach deals with temporal changes due to government interventions (such as lockdown, school 

and business closures, and restricting large gatherings), changes in local conditions and operational 

formats (such as enabling home delivery services and working from home), and changes in 

individual behavior (such as social distancing, wearing a mask, and hygiene practices). It also 

effectively estimates the controlling parameters in the subsequent waves of a pandemic. We 

investigated other Bayesian network formulations based on pooling, partial pooling, and no 

pooling in handling the temporal variability of the pandemic. The hierarchical Bayesian model 

was the most effective in handling the variabilities. 

The proposed model was effective in assessing risk for the COVID-19 pandemic at different 

geographical locations.  We also analyzed the impact of distinct scenarios on the accessibility of 

acute care medical facilities for Ontario. We validated our findings with reported cases as well as 

32 models presented by Centre for Disease Prevention and Control (CDC) for predicting the 

number of fatalities due to the COVID-19 in Arizona. The incorporation of the hierarchical nature 
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facilitate credible parameter estimation of selected periods despite the limited sample size. This 

work however has the following limitations. 

 The present model does not explicitly consider contact tracing, vaccinated populations, 

super-spreading events, and voluntary preventive measures such as self-isolation, 

following social distancing, and wearing a mask in public places. These factors have been 

implicitly accounted for by using a lumped parameter approach. These factors can be 

included explicitly in the model. 

 The model could also be improved by dividing populations based on demographics, 

granular subdivisions, and interaction patterns. 

 In our model, we do not explicitly incorporate the inflow of additional infected people by 

travel. This can influence especially if the travel guidelines are not followed. 

 We divided the study periods on a sequential basis without considering additional 

information such as holidays and super spreading events. This can be improved by dividing 

the periods based on the model-determined change points. The performance of the 

proposed hierarchical model will be compromised in case of severe changes in scenarios 

of the studied periods and or waves. For instance, super spreading events in a specific 

period could distort the model outcomes. Similarly, in studying the distinct waves using 

the hierarchical representation, the model would perform well if the nature (i.e, peak, 

growth rate) of all the subsequent waves of a location are alike. 

The variability in predicting disease trajectory under evolving conditions due to distinct 

government regulations, societal responses, and individual practices is a major concern in 

pandemic risk management. The proposed hierarchical Bayesian can lead to credible estimates by 

effectively handling variabilities.  
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List of symbols and abbreviations 

Symbols Meanings 

a contagion rate  

ADVI automatic differentiation variational inference 

AIC Akaike information criterion  

BBN Bayesian belief network  

BN Bayesian network  

c infection rate  

CFR case fatality rate 

COVID-19  Coronavirus disease of 2019 

D, D(t) Decesead 

d_loo relative difference between the values of LOO  

DAG directed acyclic graph  

e recovery rate  

E, E(t) Exposed 

e11 fraction of the symptomatic infections during the first wave 

e12 fraction of the symptomatic infections during the second wave 

e21 fatality fraction of the symptomatic infections during the first wave 

e22 fatality fraction of the symptomatic infections during the second wave 

ELBO evidence lower bound 

f dissimilarity function 

F(X) appearance of new infections in a compartment 

HBN-SEIQRD  hierarchical Bayesian network-based susceptible, exposed, infected, quarantined, 

recovered, deceased model 

HMC Hamiltonian Monte Carlo  

I, I(t) Infected 

LOO leave-one-out  

MCMC Markov chain Monte Carlo 

N, N(t) total population 

NELBO negative evidence lower bound 

NPIs non-pharmaceutical interventions 

NUTs no U-turn sampler  
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p real posterior distribution  

p_loo effective parameter  

q approximate the posterior  

Q, Q(t) Quarantined 

R, R(t) Recovered 

R0 basic reproduction number  

R0_1_2 value of the basic reproduction number between 1 and 2 

R0_1_2 
 

value of the basic reproduction number between 1 and 2 

R0_1_2 value of the basic reproduction number between 1 and 2 

R0_1_2_up value of the basic reproduction number > 2 

R01 reproduction number during the first wave of the outbreak 

R02 reproduction number during the second wave pf the outbreak 

Rdf disease-free reproduction number 

S, S(t) Susceptiple 

SARS severe acute respiratory syndrome  

SARS-CoV-2 severe acute respiratory syndrome coronavirus-2 

SEIQRD susceptible, exposed, infected, quarantined, recovered, deceased  

SEIR susceptible, exposed, infected, and recovered 

SIR susceptible, infected, recovered 

T0_3_6 value of the incubation period between 3 and 6 days 

T0_7_up value of the incubation period > 7 days 

T01 incubation period in the first wave 

T02 incubation period in the second wave 

T1 infection period 

T1_3_6 value of the infection period between 3 and 6 days 

T1_6_up value of the infection period > 6 days 

T11 infection period in the first wave 

T12 infection period in the second wave 

T2 infection period 

T3 recovery period 

T3_10_14 value of the recovery period between 10 and 14 days 

T3_14_up value of the recovery period > 14 days 

T31 recovery period in the first wave 

T32 recovery period in the second wave 

V presence of the Coronavirus 

V(X) transfer of individuals between distinct compartments. 

yij reported data of the disease in the ith week of jth wave of the outbreak 

 

  

fraction of the quarantined/hospitalized population resulting in mortality 

 

  

fraction of symptomatic infections 
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parameter of a function 

 

  

probability of θ given the data 

 

parameters of the SEIQRD model in the ith week of jth wave of the outbreak 
 

parameters of the SEIQRD model  

 

  

optimal approximated posterior distribution  

 

  

KL-divergence for approximating p with q 
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Chapter 8 

Pandemic Risk Management using Engineering Safety Principles 
 

Preface: This chapter is furthering our hypothesis of improving data-driven methods using 

extensive knowledge and science-based formulations. Integration based on Engineering 

approaches such as precautionary and ALARP principles along with the mechanistic model of the 

disease dynamics has been used to assess risk under distinct scenarios. Uncertainties in the 

parameters have been captured using Monte Carlo Simulation. This work can be mapped to the 

sub-objective of the thesis “to establish synergy between process safety and pandemic risk 

management”.  The chapter has been published in Process Safety and Environmental Protection, 

150, 416-432. 
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Abstract: The containment of infectious diseases is challenging due to complex transmutation in 

the biological system, intricate global interactions, intense mobility, and multiple transmission 

modes. An emergent disease has the potential to turn into a pandemic impacting millions of people 

with loss of life, mental health, and severe economic impairment. Multifarious approaches to risk 

management have been explored for combating an epidemic spread. This work presents 

engineering safety principles to pandemic risk management. We have assessed the pandemic risk 

using Paté-Cornell's six levels of uncertainty. The susceptible, exposed, infected, quarantined, 

recovered, deceased (SEIQRD) along with the Monte Carlo simulation has been used to estimate 

the associated risk of a pandemic. The risk minimization strategies have been categorized into 

hierarchical safety measures.  We have developed an event tree model of pandemic risk 

management for distinct risk-reducing strategies realized due to natural evolution, government 

interventions, societal responses, and individual practices.  The roles of distinct interventions have 

also been investigated for the survival of infected individuals under the existing healthcare 

facilities. We have studied the Coronavirus disease of 2019 (COVID-19) for pandemic risk 

management using the proposed framework. The results highlight effectiveness of the proposed 

strategies in containing a pandemic.   

 

Keywords: Risk analysis, pandemic, non-pharmaceutical interventions, precautionary principle, 

ALARP, COVID-19. 

 

8.1 Introduction 

The global pandemic of coronavirus disease (COVID-19) is affecting billions of people worldwide 

with public health, livelihood, food security, fear, and suffering. Mortality, compromised mental 

health, and employment loss are its immediate impacts; the pandemic's long-term repercussions 

will be a crisis in public finance, including debt and fiscal rebalancing. The COVID-19 pandemic 

has caused more than 120 million infected cases and over 2.5 million mortalities to date 

(Worldometer, March 14, 2021). The World Bank's economic forecast indicates that the pandemic 

could dramatically reduce the gross domestic product (GDP) worldwide (World Bank, 2020). The 
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COVID-19's social and economic disruption is devastating; almost half of the global workforce is 

at risk of loss of livelihoods, tens of millions of people are in danger of falling into extreme poverty, 

and millions of enterprises are facing an existential threat (Joint statement by ILO, FAP, and WHO, 

October 13, 2020). 

Vaccination is a proven method for adequate protection: however, the development, production, 

and distribution of a vaccine requires several months. For instance, the dosage administered to date 

(March, 2021) for the COVID-19 pandemic can meet only 3.1% of the global population 

(Bloomberg, 2021). Many non-pharmaceutical interventions (NPIs) have been effective in 

controlling the spread of a pandemic to an acceptable level. Isolation, social distancing,  putting 

on personal protective equipment (PPE), and following good hygiene practices, e.g., frequent hand 

washing and refraining from face touching, are key non-pharmaceutical strategies for containing 

the epidemic spread (Ferguson et al., 2020; Davies et al., 2020).  Government interventions such 

as lockdown, school and business closures, and a ban on social gatherings are other effective 

measures for containing the disease spread. The early detection of the infected cases, contact 

tracing, and quarantine of exposed cases are effective strategies for restricting the spread of a 

pandemic. The time frame of implementing and relaxing interventions also plays a vital role in 

controlling the epidemic (Alauddin et al., 2020). However, these preventive measures have 

unwanted socio-economic consequences including loss of income, poor mental health, and 

domestic violence. Therefore, there is a crucial need for balancing risk and benefits.  

 Risk assessment is crucial in many disciplines, e.g., engineering and infrastructure, exposure 

assessment, process safety, occupational health and safety, risk policy and legislation, and 

security and defense (Aven, 2016). Risk assessment guides decision-making in selecting 

alternatives, approving practices, and implementing risk-reducing measures. Several risk 
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analyses techniques, e.g. failure mode and effects analysis (FMEA), hazard and operability 

study (HAZOP), fault tree analysis (FTA), event tree analysis (ETA), bow-tie analysis (BTA), 

Markov chain analysis (MCA), and Bayesian networks (BNs) have been used for assessing 

risk of processing systems (Cameron et al., 2017; Cui, Zhao, & Zhang, 2010; Khakzad, Khan, 

& Amyotte, 2013; Khan, Rathnayaka, & Ahmed, 2015; Zhang, Wu, Hu, & Ni, 2018).  FTA 

and ETA are two well-established risk assessment methods for providing qualitative analysis 

of hazards identification and quantitative assessment of likelihood. "Bow-tie" combines the 

FTA and ETA by a common top-event named as a critical event (Khakzad et al., 2013; Xin, 

Zhang, Jin, & Zhang, 2019). The layer of protection analysis (LOPA) and inherently safer 

design (ISD) are the other promising risk assessment and management tools. Public awareness 

profoundly affects public policy development for risk management (Pike, Khan, & Amyotte, 

2020). Renn (1998) proposed a public participation model based on integrating analytic 

knowledge and risk perception. Decision analysis tools such as cost-benefit analysis, cost-

effectiveness analysis, and multi-attribute analysis help evaluate relative risk in the risk 

assessment (Aven, 2016; Kabyl, Yang, Abbassi, & Li, 2020). 

Uncertainty is critical in risk conceptualization and risk assessments. Uncertainties can be 

categorized as aleatory (come from the variability in population/ data) and epistemic (arises from 

lack of knowledge of the phenomena) (He et al., 2018). Paté-Cornell (1996) proposed six treatment 

levels of both aleatory and epistemic types of uncertainty for risk analyses. Spiegelhalter and 

Riesch (2011) categorized uncertainty into five levels: event, parameter, model, acknowledged, 

and unknown inadequacies. The adaptive risk management approach to estimate high uncertainties 

was conferred by Cox (2012).  The elements of the high and low levels of uncertainty have been 

displayed in  Table 8.1 (Goerlandt & Reniers, 2016). 
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Table 8.1: The constituents of a high and low level of uncertainty 

Low Uncertainty 

 

High Uncertainty 

 

1. Highly reasonable assumptions 

2. Reliable data 

3. Consensus among experts 

4. Well understood phenomena 

1. Strong and overly simplified assumptions 

2. Unreliable data 

3. Lack of consensus among experts 

4. Obscure phenomena 

 

To deal with uncertainties, the cautionary/precautionary techniques, also referred to as strategies 

of robustness, have been universally applied for minimizing risk in many disciplines (Aven, 2016). 

These principles are based on the development of substitutes, redundancy in designing safety 

devices, and safety factors. The ALARP (as low as reasonably practicable) principle is a risk-

reduction principle based on both risk-informed and cautionary/precautionary thinking. The 

ALARP principle is a fundamental approach to assessing tolerable risk. The approach sets an upper 

limit above which the risk must be reduced or the activity must stop and a lower limit below which 

resources expended bring negligible risk reduction (Pike, Khan, & Amyotte, 2020). 

The dynamic behavior of a process system and an epidemic has many similarities. Compartmental 

models have been employed to model the dynamics of many chemical processing systems, e.g., 

the Fischer-Tropsch synthesis (FTS) (Iliuta et al, 2007), bioprocess design  (Cui et al 1996,  

Laakkonen et al, 2006, and Vrábel et al, 1999), crystallization  (Bermingham, Kramer, &  

Rosmalen, 1998; Irizarry-Revera, 2012), precipitation (Zhao et al., 2017) as well as waste 

treatment (Alvarado, Vedantam, Goethals, & Nopens, 2012).   Alauddin et al. (2020) presented 

similarities between the SIR epidemiological model and the reaction kinetics model of a CSTR by 

highlighting resemblance in the conservation principles and factors governing the contagion and 

reaction rates.  

https://www.sciencedirect.com/science/article/pii/S0009250919306888#b0250
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The methodologies to prevent, control, and mitigate infection are analogous to the hazard control 

and safety frameworks used in the process industries. Different safety barriers such as basic 

process control, alarms and operator interventions, safety instrumented systems, relief devices, and 

physical containments are used as control layers for the abnormal situation management of 

chemical processes (Dowell, 1999; Willey, 2014). Brown, Amyotte and Vanberkel (2021) 

classified distinct measures of restraining epidemic diseases into hierarchical process safety 

principles. Lindhout and Reniers (2020) proposed an integrated pandemics barrier model based on 

sequential steps of an outbreak. They described what could have been done better in preventing 

and repressing the Covid-19 pandemic from a safety management perspective. Alauddin et al 

(2020) developed a layer of protection analysis (LOPA) for preventive, controlling, and mitigating 

strategies for pandemic risk. Also, several areas of similarities were identified where process safety 

and epidemiology could benefit from each other. These include (i) early fault detection vs early 

case detection, (ii) identification of effective control mechanism, (iii) the fast response of public 

health vs operator response, (iv) effective resource allocation and mobilization, (v) identification 

of the most vulnerable elements, and (vi) application of expertise from similar outbreaks in the 

past vs use of historical process data. 

Engineering safety protocols are applicable to pandemic risk management to a great extent. The 

present pandemic also offers many learning opportunities to improve engineering risk management 

practices. By drawing a parallel between the two domains, we believe that the lessons learned from 

the COVID-19 pandemic would immensely benefit engineering safety personnel and healthcare 

experts in efficient policymaking. 

The objective of this work is to apply some of the techniques used in process safety analysis and 

risk mitigation in pandemic risk management. Specifically, we have focused on applying the 
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precautionary and ALARP approaches for evaluating the risk of infectious diseases. The 

contribution of this paper includes: 

i. Pandemic risk analysis using the precautionary principle: We have analyzed the risk 

of COVID-19 using Paté-Cornell’s six levels of qualitative and quantitative analysis. 

The SEIQRD pandemic model and the Monte Carlo simulation have been used for risk 

estimation. 

ii.  Development of event tree diagram for pandemic risk management:  Many Risk-

reducing strategies realized due to natural evolution, government interventions,  and 

individual practices have been presented as barriers to minimize the pandemic risk.   

iii. Risk analysis using ALARP: The enforcement of risk-reducing measures, including no 

measure, has been studied using the ALARP approach to risk assessment. We have 

assessed the quantitative risk estimated using the SEIQRD model. The uncertainty in 

the parameters has been accounted for by the Monte Carlo simulation.  

iv. Survival analysis in COVID-19 under the existing healthcare systems: The existing 

healthcare system's sufficiency depends upon the effectiveness of the strategies for 

restraining a pandemic. The survival analysis of an infected individual due to the 

availability of treatment under the current healthcare system has been analyzed under 

different strategies.   

Section 8.2 provides the mathematical model for the epidemic spread, including the risk 

management approaches. We have presented the SEIQRD model, followed by a brief discussion 

on the precautionary and the ALARP approaches. The risk assessment of COVID-19 for distinct 

scenarios is presented in Section 8.3. Finally, Section 8.4 concludes with findings, limitations, and 

scopes for future work. 
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8.2 Methods and models  

8.2.1: The SEIQRD model 

Compartmental models have been widely used for the prediction and control of pandemics. They 

are based on systems of ordinary differential equations that focus on the dynamic progression of a 

population through different epidemiological states (Chowell, 2017). The population is divided 

into distinct compartments, each having the same state of the epidemic. The SIR (susceptible, 

infected, recovered) model suggests that the infected hosts become contagious immediately after 

exposure to an infected carrier  (Anderson & May, 1979; Hethcote, 1976; Hiorns & MacDonald, 

1982; Kermack & McKendrick, 1927).  The latency period, the period between exposures and 

infectious, is taken into account by SEIR (susceptible, exposed, infected, recovered) model. Many 

extended compartment models have been developed to take into account isolation, quarantine, and 

hospitalization (Alauddin et al., 2020; Giordano et al., 2020; Hu et al., 2020; Li et al., 2020; Lin et 

al., 2020; Paiva, Afonso, de Oliveira, & Garcia, 2020). The SEIQRD model captures the effect of 

hospitalization and quarantine on the disease spread (Fig. 8.1). The mathematical formulations of 

the SEIQRD model are presented in Eqs. 8.1-8.7, where ‘a’, ‘b’, ‘c’, and ‘e’ denote the rates of 

contagion, incubation, infection, and recovery. ‘N’ represents the population of the geographical 

area,‘d’: rate of hospitalization/ quarantine after being symptomatic, 𝜑1: the fraction of the 

symptomatic infections, and  𝜑2: the fraction of the quarantined/hospitalized population resulting 

in mortality. The details of the models could be found in  (Alauddin et al., 2020; Hu et al., 2020; 

Li et al., 2020; Paiva, Afonso, de Oliveira, & Garcia, 2020). 

𝑑𝑆

𝑑𝑡
= −

𝑎𝑆(𝑡)𝐼(𝑡)

𝑁
                                             (8.1) 

𝑑𝐸

𝑑𝑡
=
𝑎𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝑏𝐸(𝑡)                                 (8.2) 

𝑑𝐼1
𝑑𝑡
= 𝑏𝐸(𝑡) − 𝑐𝐼1(𝑡)                                        (8.3) 
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𝑑𝐼2
𝑑𝑡
= 𝜑1𝑐𝐼1(𝑡) − 𝑑𝐼2 (𝑡)                                 (8.4) 

𝑑𝑄

𝑑𝑡
= 𝑑𝐼2(𝑡) − 𝑒𝑄 (𝑡)                                       (8.5) 

𝑑𝑅

𝑑𝑡
= (1 − 𝜑1)𝑐𝐼1(𝑡) + (1 − 𝜑2)𝑒𝑄 (𝑡)      (8.6) 

𝑑𝐷

𝑑𝑡
= 𝜑2𝑒𝑄(𝑡)                                                    (8.7) 

 

 

Fig. 8.1: Schematic representation of the SEIQRD model for infectious disease transmission  

(T0: incubation period T1: infection period, T2: duration between case detection and 

quarantined/hospitalization, T3: recovery period) 

 

8.2.2: Engineering safety tools: The precautionary principle 

The precautionary principle or the precautionary approach defines a key procedure in risk 

management, especially where uncertainties are difficult to quantify. It is a principle for making 

practical decisions under scientific uncertainty (Gollier & Treich, 2003). A precautionary decision-

making approach emphasizes implementing prompt and effective preventative action even in the 

absence of full scientific evidence of cause and effect. UNESCO's World Commission on the 

Ethics of Scientific Knowledge and Technology defines precautionary principles as "When human 

activities may lead to morally unacceptable harm that is scientifically plausible but uncertain, 

actions shall be taken to avoid or diminish that harm ( COMEST, 2005)”. 
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Sandin (1999) reviewed various definitions of the precautionary principle along four key 

dimensions: threat, uncertainty, action, and command, as presented in Fig. 8.2. Threat refers to the 

nature of the imminent harm: its seriousness and irreversibility. The precautionary principle is 

about “Go slow and ask smart questions.”  A wide range of alternative actions, including inaction, 

should be examined for the severity of the potential harm along with the consideration of the moral 

implications. 

1. Threat/ Harm: 

 Can be evaluated by creating and evaluating credible scenarios. 

 The credible scenario can be analyzed using risk assessment techniques 

 

  What to consider for the threat: 

A. Magnitude: 

 Is it serious? 

What's the cumulative impact? 

Would risk assessment help with the analysis of the scenario? 

B. What Kind: 

Is it irreversible? 

Is it easily avoidable? 

2. Uncertainty: 

3. Action 

 

𝐴𝑐𝑡𝑖𝑜𝑛 𝑡𝑎𝑘𝑒𝑛 ∝ 𝑆𝑒𝑟𝑖𝑜𝑢𝑠𝑛𝑒𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ℎ𝑎𝑟𝑚 
 

Questions to ask for action/inaction: 

Just wait, or can we use science to mitigate it? 

Can we use science to anticipate? 

What risk reduction strategies should be employed?  

Can we use science to make our system resilient towards the threat? 

Can we do something to reverse it? 

At what point take action? 

4. Command 

 

Fig. 8.2: Dimensions of precautionary principles (Sandin, 1999) 
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8.2.3:  Engineering safety tools: The ALARP principle  

The ALARP (as low as reasonably practicable) approach is based on risk-informed and cautionary 

thinking. The ALARP principle states that risk-reducing measures should be implemented, 

provided that the costs are not grossly disproportionate to the benefits earned (Pike, Khan, & 

Amyotte, 2020). This usually applies to the tolerability region, which is the region between 

intolerable and accepted risk levels. The risk should be reduced, or the activity must be 

discontinued if it exceeds the maximum tolerable level (Pike, Khan, & Amyotte, 2020). All critical 

words in ALARP: ‘low’, ‘reasonably’, and ‘practicable’ are relative terms with no standardized 

values. Risk acceptance is a complex process influenced by several factors such as the order of 

risk, the extent of societal participation, and corresponding regulations and guidelines. 

Fig. 8.3 outlines the pandemic risk assessment using Engineering Safety tools such as the PP and 

the ALARP. The precautionary approach has been examined to estimate the pandemic’s risk with 

and without implementing risk-reducing measures. The enforcement of distinct risk-reducing 

measures, including no measure, has been evaluated using the ALARP approach. We have 

employed the SEIQRD model for the quantitative analysis, i.e., calculating the number of newly 

infected cases, hospitalization, recovered, and mortality due to the pandemic. The randomness in 

the model parameters, e.g., incubation, infection, and recovery periods, has been captured using 

the Monte Carlo simulation. Finally, we have estimated the reliability of the existing healthcare 

facility under distinct strategies.  
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 Fig. 8.3: Engineering safety based mechanistic models for pandemic risk management   

 

 

8.3 COVID-19 modeling using Engineering Safety Principles 

Engineering safety models have been used to study the risk management of COVID-19, a global 

pandemic, and severe disruption of the 21st century. The disease can lead to a range of outcomes, 

including no symptoms, mild illness, mental disorder, shortness of breath, sore throat, headache, 

myalgia, fatigue, loss of taste, fever, muscles or body aches, congestion, nausea, diarrhea,  and 

death (CDC, 2020). The case fatality rate (CFR) of COVID-19 varies by location, the intensity of 

transmission, the demography, accessibility of sophisticated healthcare, and the patient's history 

of chronic disease. Personal hygiene (e.g., wearing a mask at public places, frequently washing 
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hands), social distancing, and government interventions are critical in restraining the epidemic 

spread of COVID-19. 

The transmissibility of an epidemic is characterized by the basic reproduction number (R0), which 

is defined as the average number of secondary cases generated by a primary case in an entirely 

susceptible population ( Ferguson et al., 2005). The epidemic spreads for R0 >1 and dies out if R0 

<1. The basic reproduction number for the COVID-19 reported by the multiple sources varies from 

1.5 to 5.0. We have used R0= 2.9, the median value reported in (Liu et. al, 2020, and Alauddin et al, 

2020).  The average values of the incubation, infection, and recovery periods have been assigned 

to 5.5, 5.1, and 11.5 days, respectively. 

We have studied the risk management of COVID-19 for Ontario, the most populous province of 

Canada, with 14.7 million people representing 38.8% of the country's population (Ministry of 

Finance, Government of Ontario, 2019).  

8.3.1: Risk assessment of COVID-19 using PP and the SEIQRD model 

The precautionary principle is fundamental in suppressing a pandemic. Fig. 8.4 presents the outline 

of the precautionary principles for managing the present pandemic. A pandemic outbreak contains 

many sources of uncertainties: strains of the virus, modes of propagation (airborne or contact 

transmission), the intensity of propagation (uncertainty in the R-value), rate of incubation, 

infection, and recovery, number of total infections, and the existence or non-existence of 

asymptomatic spreading. According to the precautionary principle, firm decisions need to be made 

to protect health in such uncertainties. The geographical region lockdown until the evidence of 

diminishing the disease's spread is the ultimate precautionary measure for reducing the pandemic 

risk. However,   it incurs severe socio-economic consequences. We have estimated the pandemic 

risk using the SEIQRD model under the precautionary approach.
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Fig. 8.4: Schematic representation of the precautionary principles for managing pandemic risk 

 

8.3.1.1 Quantitative risk assessment of the COVID-19 pandemic 

Risk assessment can be expressed in terms of answering three questions; what can go wrong, how 

likely is it, and what are the consequences? Paté-Cornell (1996) proposed six modes of treatment 

of both aleatory and epistemic types of uncertainty for risk analyses.  Mode 0 is about hazard 

identification or multiple ways of failure of the system. Mode 1, the worst-case approach, is based 

on the accumulation of worst-case assumptions and provides estimated maximum loss. No notion 
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of probability is taken into account in this mode.  Mode 2, the quasi-worst case scenario, deals 

with evaluating the worst possible conditions that can be reasonably expected. Mode 3 is based on 

a central value, e.g., the mean, the median, or the mode of the outcome. Mode 4 is based on the 

probabilistic risk analysis (PRA) approaches. Mode 5 displays uncertainties about fundamental 

hypotheses by a family of curves. Bayesian and Monte Carlo estimations are included in the tools 

for probabilistic risk calculation at modes 4 and 5. We have employed the SEIQRD model for the 

quantitative risk estimation of the COVID-19 pandemic. The Monte Carlo simulation has been 

used to treat randomness of the model parameters, e.g., incubation, infection, and recovery periods. 

The number of daily infected cases of COVID-19 corresponding to Mode 1, 2, and 3 have been 

presented in Fig. 8.5.  The expected and the 95 percentile values of the newly infected cases are 

3.1 x 104 and 4.8x 104, respectively. This number of daily cases could reach   7.5x 104 in the worst-

case scenario. Fig. 8.6 presents the risk considering the probability, and pandemic impact 

corresponds to Mode 5 of the Paté-Cornell (1996). Here, the dotted line presents the impact of the 

pandemic in terms of the expected values of the newly infected cases, while the solid line denotes 

the risk defined by the product of the impact of the pandemic and the probability of the occurrence 

of the impact. The probability of the occurrence of the infection has been computed using the 

Monte Carlo simulation of the distribution of the infections considering the randomness of the 

model parameters (i.e., the incubation period, infection period, and recovery period). We can also 

observe that the nature of the ensuing distribution depends on the relative maturity of the outbreak. 

Fig. 8.7 illustrates the uncertainty in the analysis. The shaded region denotes the area between 95 

and 5 percentile values of the newly infected cases of COVID-19. 

The aforementioned analyses are based on the SEIQRD pandemic model of the risk calculations. 

The analyses assume no measures were taken to restrain the spread. However, the risk is 
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reasonably minimized by implementing distinct risk reduction strategies, as discussed in the next 

section.  

 
Fig. 8.5: Infection cases (Mode 1, 2, and 3) due to COVID-19 pandemic if no measures have 

been taken 

 

 
Fig. 8.6: Risk of infection (Mode 4) due to COVID-19 pandemic if no measures are taken 
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Fig. 8.7: Uncertainty in the fatality risk (Mode 5) due to COVID-19 pandemic if no measures are 

taken 

 

 

8.3.1.2: Risk-reducing strategies of COVID-19 

Following the engineering risk reduction classifications (Crowl & Louvar, 2011), the risk 

reduction activities for COVID-19  could be classified into four categories: inherent, active, 

passive, and procedural, as shown in Table 8.2. It also categorizes distinct risk-reducing measures 

in pre-pandemic and during a pandemic.  Inherent strategies identify and implement ways to 

eliminate or significantly reduce the hazard. They are described by four actions: minimization; 

substitution; moderation; and simplification.  Although inherent strategies perform well when 

considered early in the life cycle of industrial activity, they can be applied at any stage to reduce 

the risk of existing activities (Amyotte, Irvine, & Khan, 2018).  

Birds and animals act as a source, reservoir, and carrier for most infectious diseases.  A study 

reveals that 62% of all human pathogens are classified as zoonoses (Vorou, Papavassiliou, & 
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Tsiodras, 2007).  Bats are notorious primary sources of pandemic-causing viruses such as MERS 

(Middle East Respiratory Syndrome), SARS (Severe Acute Respiratory Syndrome), and Nipah. A 

pandemic can be averted by avoiding interaction and handling of birds and animals. However, it 

is impractical as many people interact with them for food, fibre, livelihoods, transport, sport, 

companionship, and education. They can also be infectious via other transmission media, e.g., air, 

water, and soil, even if we avert direct contact. Another inherent strategy for preventing a pandemic 

is by avoiding human-to-human interactions. This is possible by changing the operational formats 

such as activating home delivery services, working from home, and switching to teleconferencing 

and virtual modes of operation. Nonetheless, the absolute interaction-free environment is highly 

unlikely to date due to two obvious reasons: (i) the virtual modes is not feasible for all activities 

and workplaces due to their reciprocative nature e.g., healthcare workers (ii) the requirement of a 

fraction of the workforce for the maintenance of the virtual environment. Many experts believe 

that an infectious disease outbreak could be wiped out if the world stands still for around the virus's 

survival time. 

Lockdown, school and business closures, restricting large gatherings, following social distancing, 

putting on PPE, and hygiene practices such as frequent hand-washing are other common inherently 

safer approaches to pandemic risk management (Brown, Amyotte & Vanberkel, 2021). Lockdown, 

school and business closures, and other government regulations have other associated risks such 

as mental health disorders and severe economic impairments (Singh et al., 2020). These advisories 

entail making informed decisions on when to activate and relax various enforcements. 

Contact tracing, increasing testing capacity, and quarantine of the exposed cases can be classified 

as administrative strategies of pandemic risk management. They are compelling in limiting the 

disease outbreak (Institute of Medicine, 2007). However, they must be triggered at right time to 
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achieve the desired outcome (Alauddin et al., 2020). A delay in detecting infected cases leads to a 

delay in the mitigative actions that escalate the risk. Hygiene practices such as frequent washing 

of hands and refrain from face-touching are other proven active measures for suppressing the 

disease if exposed to the Coronavirus. 

Unlike active strategies that require event detection and device actuation for their functioning, 

passive engineering safety strategies comprise barriers that do not need activation to accomplish 

their intended functions. Bolstering immunity either by changing lifestyle or achieved through 

herd protection is an effective passive strategy for reducing the pandemic risk.  The shield at cash 

and other counters is another example of a passive control mechanism of restraining the disease 

spread. The passive strategies require long-term planning. The present outbreak can help upgrade 

our passive control systems for reducing the risk of future infectious diseases. 

Providing sophisticated treatment to infected people is a procedural method for mitigating a 

pandemic risk. The existing healthcare facilities might need to be extended to meet the demands 

of treating a large number of infected cases. Thoughtful decisions have to be made to mobilize 

resources and aid preferential treatment to vulnerable groups in case of limited availability. The 

other effective procedural strategies include awareness about the situation, special attention and 

guidelines for the vulnerable groups, e.g. elderly and chronic patients, peer pressure, and police 

intervention for following the procedure.    

Categorizing strategies into inherent, active, passive, and procedural is subjected to the focus of 

the study. Social distancing, hygiene practices, and other enforced regulations such as lockdown, 

school and business closures, and restricting large gatherings are inherent risk reduction measures 

for a susceptible person. However, these factors can be documented as procedural measures for 

alleviating the pandemic risk to a community if the virus is already present in the community.  



 
 

283 
 

Table 8.2: Categorization of risk-reducing strategies for COVID-19 pandemic   
Type of 

measures/ 

barriers 

Stage and risk reduction 

strategies 

Type of risk 

reduction 

strategies 

Nature and 

implementation 

of the risk 

reduction 

strategy 

Remarks 

Preventive 

 

Pre-pandemic 

 Avoid direct contact/ 

interaction/ handling 

animals 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inherent 

- 

Extremely difficult to 

implement. Many 

known mammals play 

a vital role in human 

life but act as potential 

virus sources and/or 

carriers. For instance,  

MARBURG  1967  

(bat)  

EBOLA 1976  (bat) 

SARS 2002  (bat) 

SARS 2012- (bat) 

SARS-CoV-2 2019 

(presuming bat) 

MERS 2010 -  

(Camels) 

H5N1 ( Bird flue) 

2003- (Chicken) 

H7N9 ( Bird flue) 

2013- (Chicken) 

During-pandemic: 

 Avoid physical 

interaction with 

others  

 Activate work from 

home strategy and 

home delivery 

services 
Inherent  

Administrative 

recommendation 

that requires to 

be practiced by 

individuals and 

organizations  

 

Effective mechanisms 

to prevent a pandemic. 

However, all 

individuals and 

operations cannot go 

online. Besides, there 

is a possibility of 

defaulters depending 

upon the level of 

administrative action 

(recommendation, 

requirement, and its 

enforcement) 
 

During Pandemic: 

 Enforcing lockdown 

 School and business 

closures 

 Restricting large 

gatherings 

 Frequent hand 

washing/sanitizing/ 

refrain from face 

touching 

 

 

Active 

 

 

 

 

 

 

 

Administrative 

recommendation 

that requires to 

be practiced at 

individual and 

community level 

 

 

 

Effective mechanism 

in minimizing the 

pandemic impacts. 

However, it is 

challenging to enforce 

and monitor 

enforcement. They  

incur significant 

economic loss 
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 Social distancing 

            Avoiding crowded 

         places/ public transport 

 

Inherent  

 

During Pandemic: 

 

 Vaccination 

 
Inherent 

Administrative 

recommendation 

that requires to 

be followed by 

individuals  

 

The most effective 

strategy. It provides 

the fastest way to 

minimize the 

pandemic impact 

provided Vaccine is 

available and 

accessible to all. 

During Pandemic: 

 Redesign/installation 

of safety layers at the 

interactive systems, 

e.g., shield at cash 

and other counters 

 

Passive Engineering 

An effective strategy 

to minimize the 

disease spread. 

However, it requires 

proper planning and 

execution. 

During Pandemic: 

 

 Self-isolation 

 Wearing a mask/ 

PPE 

 Good Hygiene 

practices 

 Surface Cleaning 

Procedural 

Administrative 

recommendation 

that requires to 

be practiced at 

individual and 

community level 

 

 

The efficiency of the 

strategy is dependent 

on individuals to 

follow the best 

practices. 

 

During Pandemic: 

 Contact Tracing 

 Rapid Testing 

 Awareness about the 

situation and safe 

handling procedures 

 Peer pressure and 

police intervention 

for following 

procedures 

 Special attention and 

guidelines for the 

vulnerable groups 

Procedural 
Administrative 

 

 

It requires significant 

resources to enforce 

the measures. 

 

 

During Pandemic: 

 

 Immunity 
Passive 

Achieved 

through herd 

protection, 

genetics or use 

of diets to 

strengthen the 

immune system. 

This is an effective 

passive strategy; 

however, it is highly 

variant depending 

upon the individual’s 

immune system. 

Mitigative During Pandemic: 
Procedural  

Administrative 
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 Quarantine of 

exposed cases 

 Treatment 

 Extending healthcare 

systems/ hospitals/ 

workers/antidotes 

It requires decisions to 

activate the strategies 

effectively and 

mobilize the resources. 

 

Requires long-term 

planning 

The prevalent outbreak 

can be used to upgrade 

the healthcare systems 

to respond well in 

future outbreaks. 

 

 

 

 

8.3.1.3: Risk management of COVID-19 using risk-reducing measures 

Distinct government regulations and individual responses can minimize the risk of a pandemic. 

Limiting gathering sizes, closure of nonessential businesses and schools, and emergency lockdown 

have a decisive role in controlling the epidemic spread. Lockdown is the most effective measure 

for reducing risk. However, prolonged strict lockdown can cause compromised mental health and 

severe economic impairment. We have modeled the lockdown as a precautionary approach.  Fig. 

8.8 demonstrates the effect of lockdown after one week of the first mortality reported. The 

lockdown will reduce the peak to less than 10 newly infected cases as opposed to 3.1 x 104 if no 

measures are taken. The variation of the value due to randomness is presented using the shaded 

area in Fig. 8.8.  The timing of the enforcement and relaxing of the lockdown is crucial in 

restraining the epidemic risk  (Alauddin et al., 2020). 
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Fig. 8.8: Newly infected cases (per day) of COVID-19 pandemic under the lockdown 

 

The results present the effectiveness of the lockdown (and other interventions in the forthcoming 

sections) in reducing infections and fatality in relative terms. The estimates were not corrected for 

other potential confounders' effects, for example, wearing a mask, hygiene practices, and following 

voluntary social distancing that could have contributed to reducing the disease spread in addition 

to the observed interventions. Our study also does not explicitly consider the other key factors such 

as the scale of testing, contact tracing, and imperfections in case isolation, demographics, 

heterogeneities in contact patterns, and spatial effects. Besides, the results were not adjusted for 

fatalities arising from the interruption in health services for chronic disease. Many surveys 

highlighted the partial or complete disruption of healthcare for hypertension, diabetes-related 

complications, cancer treatment, and cardiovascular emergencies due to the newly imposed 

regulations during the COVID-19 pandemic. 
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The effectiveness of these measures depends on the context of implementation, such as the 

presence of other NPIs, country demographics, the economic status, degree of compliance of the 

population and societal impact, comorbidities, overall risky environment, and country 

vulnerability to biological threats. The same NPI can result in different outcomes in different 

countries, even different parts of a country. Application of expertise from similar outbreaks in the 

past could be conducive to the credible estimate of the trajectory and slowing down the spread 

(Goudarzi, 2020, March 23). The expertise from the past outbreaks e.g., the 2003 severe acute 

respiratory syndrome (SARS) outbreak in Singapore, and experience with the 2015 Middle East 

respiratory syndrome (MERS) outbreak of South Korea led to an immediate fruitful response to 

the COVID-19. The economic support by emergency funding to the poor and needy populations 

for alleviating the financial burden is also helpful in effective closures and lockdown. 

8.3.2 Event tree analysis of the COVID-19 pandemic 

A pandemic can cause socio-economic damage, compromised mental health, and mass 

mortality. Many preventive and repressive or mitigating measures have been explored to minimize 

the negative consequences of infectious diseases. The term ‘prevention’ refers to measures taken 

to prevent the occurrence of an unwanted event while ‘repression’ translates to the measures taken 

to mitigate the consequences of the undesired event. Repressive barriers are put in place to avert, 

mitigate and minimize the adverse effects of the central event (Lindhout & Reniers, 2020). 

Fig. 8.9 depicts the impact of the epidemic on an infected individual as well as on the community. 

The end states have been divided in two subgroups: risk to an infected person (including safe and 

death as the scenario), and risk to the community with many scenarios such as safe, low risk, 

moderate risk, high risk, very high risk, and exceedingly high risk. Lockdown, school and business 

closures, self-isolation, and social distancing, significantly reduce the risk. Fig. 8.9 also illustrates 
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that the asymptomatic spread can be catastrophic if not mitigated properly. A detailed analysis of 

the event tree and bow-tie analyses of COVID-19 for subsystems can be found in (Brown, 

Amyotte, &Vanberkel, 2021).   

 Super-spreading incidents and multiple infections from a single infected individual were the key 

drivers of the COVID-19 transmission (Frieden & Lee, 2020). Some of those events include the 

Biogen meeting (Weintraub, 2020), the Caul's Funeral Home at St John's (Courage, 2020), the 

White House Event (BBC, 2020), the Cluster of Bars in Hong Kong (Danmeng &  Jia, 2020), and 

the Church Choir Practice in Washington (Williams, 2020). Asymptomatic and pre-symptomatic 

infections are the greatest means of spreading diseases. According to a reprint  (Goyal, Reeves, 

Cardozo-Ojeda, Schiffer, & Mayer, 2020), about 62% of super-spreading COVID-19 occurred 

through pre-symptomatic transmission. Interventions such as lockdown, school and business 

closures, and limiting gatherings are central in preventing super-spreading events. 

Lindhout and Reniers (2020) presents a risk management framework considering the root cause of 

the long-term effects of a pandemic outbreak. Many studies proposed temporal and spatial 

segregation measures to restrain a pandemic. Government interventions such as school and 

workplace closures, stay-at-home orders, and a ban on large gatherings will cause a community-

wide contact rate reduction. However, these interventions cannot be imposed for a longer duration 

due to high incurred costs and other associated risks. Individual practices and societal responses 

are central to the effectiveness of these measures.  Self-imposed measures such as wearing a mask 

at public places, voluntary social distancing, and handwashing are vital in preventing subsequent 

waves of an outbreak.  

An event tree presents the known consequences of an abnormal event. Fig. 8.10 shows the Event 

Tree model of distinct risk reduction strategies of a pandemic. The risk will be negligible if 

https://www.cdc.gov/mmwr/volumes/69/wr/mm6919e6.htm?s_cid=mm6919e6_w
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immunity is achieved either through natural, i.e., herd immunity or vaccination. However, it takes 

several months following the outbreak. Government interventions such as lockdown, school and 

business closures, restricting large gatherings, and extending healthcare systems help in restraining 

a pandemic. Corporates and employers can assist in controlling the risk by transforming 

operational formats, such as enabling home delivery services, working from home, and switching 

to a virtual mode for meetings. The individual responses: following social distancing, wearing a 

mask, and hygiene practices efficiently repress a pandemic's spread. 

The efficacy of all barriers is not alike; some are more prone to failure due to their distinct nature, 

porosity, constraints, and degradation characteristics. For example, the individualistic-based 

measures, e.g. social distancing, washing hands, could be weakened due to people's complacent 

nature, especially if the outbreak persists for a longer duration. Likewise, the lockdown cannot be 

imposed for a prolonged time due to its severe economic consequences. The measures are 

interactive; the effectiveness of each measure depends on the others. For instance, the success of 

government regulations for restraining a pandemic is vastly influenced by social responses and 

individual practices. Multiple strategies improve the reliability of disease transmission barriers. 
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Fig. 8.9: Impact of a pandemic on an infected person and the community 
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Fig. 8.10: Event Tree model of distinct risk reduction strategies of a pandemic 
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Non-pharmaceutical interventions also play crucial roles in allocating acute and critical care beds.  

Fig. 8.11 shows the estimation of the availability of acute and critical care beds during a pandemic. 

The vulnerability of infected individuals rely on their health history and the availability of 

sophisticated treatment, which depends upon the following factors- 

1. The capacity of the healthcare system 

2. The stage at which a person is getting infected. This is because the existing beds might be 

occupied by other patients if the person is being infected at a relatively mature stage of the 

outbreak. 

3. The intervention(s) enforced 

The temporal variation of the hospitalization status and the new cases due to the COVID-19 

pandemic under distinct regulations (i.e. no measures, school and business closures, and 

lockdown) has been presented in Fig. 8.12. We have assumed that 25% of the infected persons are 

home quarantined. We can observe that the healthcare systems would be exhausted quickly if no 

measures were taken (Fig. 8.12A). However, the existing healthcare system would suffice under 

the schools and business closures (Fig. 8.12B) and lockdown (Fig. 8.12C). Table 3 and Table 8.4, 

respectively, present the consequences if someone is infected at T=200th and T=550th day since 

the outbreak. We have assumed that Ontario's initial health care system has 10000 acute care beds 

for COVID patients, with 1000 beds available for critical and intensive care (Barrett et al., 2020). 

However, Ontario's government has been significantly expanding the healthcare capacity in 

preparation for the COVID-19 outbreak.  

 A simplified Event Tree diagram for the potential risk when infected on the 200th day is presented 

in Fig. 8.13. Here, natural healing, acute care, and intensive care are the barriers against fatality 

due to COVID-19.  The success of a barrier represents the availability of the barrier and successful 
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recovery resulting from the treatment. The facilities' allocation depends on the healthcare capacity, 

the enforced intervention, and the stage at which one has got infected, as discussed earlier. The 

probability of the bed allocation on the 200th day of the outbreak is scant that results in a high 

likelihood of fatality if no measures are taken. However, the bed allocation probability is virtually 

1 (i.e., guaranteed bed allocation) with a 97% probability of safe recovery if restrictive school and 

business closure measures or the lockdown are enforced. The risk of fatality has been calculated 

assuming a 90% recovery rate of the acute care and 70% recovery of critical care systems. The 

admission and recovery rate of intensive care is a complex function of many factors, including 

age, gender, geography, treatment, and comorbidities, i.e., the overlap of multiple medical 

conditions. That might be a reason for the lack of consensus in reporting the proportion of ICU 

admissions.  Abate, Ali, Mantfardo, and Basu (2020) reported the rate of ICU admissions of 32% 

(95% CI: 26 to 38, 37 studies and 32, 741 participants). The other commonly reported values of 

ICU admission include 5% (Guan et al., 2020), 16% (Grasselli, Pesenti, & Cecconi, 2020), and 

20% (Baker et al., 2020) of all hospitalized patients. 

An early report from China stated a mortality rate of 80% in ICU; however, this mortality rate 

dropped to one-third and improving over time (Abate et al., 2020; Launey et al., 2020). We have 

assumed a 10% admission rate to ICU and a 30% mortality rate of intensive care units in this 

computation. We have not quantified the recovery from natural healing due to data unavailability 

in this regard.  
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Table 8.3: Risk to the infected person if infection at the 200th day of the outbreak with an 

acute care bed capacity of 10000 and ICU bed capacity of 1000.  

Assuming a 90% recovery rate of acute care and 70% recovery rate of critical care 
systems 

 
a. If no measures enforced:  

New cases seeking acute care  = 19170 
Occupied bed/ (old cases)=  116917 ( exceeding bed capacity) 
Probability of allocation of bed= 0 
Probability of safe recovery= 0.00𝑥. 90 + 0.00𝑥 0.10𝑥0.00𝑥0.70 = 0.00 
Probability of Death due to unavailability of the acute care=1 
Probability of safe recovery = 1 − 0.00 = 1 
 

b.  School and business closures:  
New cases seeking acute care  =  47 
Occupied bed/ (old cases)=  255 
Available beds for allocation=10000- 255= 9745 
Probability of allocation of bed = 1 
Probability of safe recovery= 1𝑥. 90 + 1.00𝑥 0.10𝑥1.00𝑥0.70 = 0.97 
Probability of Death= 1 − Probability of safe recovery = 1 − 0.97 = 0.03  
  

c. Lockdown:  
New cases (based on the most probable value) =   0 
Occupied bed/ (old cases)=  0 
Available beds for allocation=10000- 0= 10000 
Probability of allocation of bed = 1 

  

 

 

 

Table 8.4: Risk to the infected person when infection at T=550 with an acute care bed 

capacity of 10000 and ICU bed capacity of 1000  

 
 No 

measures 

School and business closures Lockdown 

 

New cases seeking acute care  

 

0 2155 1652 0 

Occupied bed/ (old cases) 

 

0 8870  9235 0 

Probability of allocation of bed 

 

1 10000−8870

2155
= 0.46 1 

 Probability of safe recovery 1 0.52𝑥. 90 +
0.52𝑥0.1𝑥 0.70 = 0.45  

1 

Probability of Death  due to the 

pandemic 

0 0.55 0 
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Available Critical beds= BCi-BC
Probability of Allocation of critical bed/ 

Treatment=(Bi-B)/NCC
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Fig. 8.11: Flowchart for estimating availability of acute and critical care beds during a pandemic 
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Fig. 8.12: Estimated infected cases due to the COVID-19 pandemic under distinct measures 

A. No measures, B. School and business closures, C. Lockdown 
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Fig. 8.13: Event tree analysis for risk to an infected person at T=200th day of the outbreak with schools and business 

closures in effect  
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8.3.3 Risk analysis using ALARP  

The ALARP principle states that risk-reducing measures should be implemented, provided that the 

costs are not grossly disproportionate to the benefits earned (Pike, Khan, & Amyotte, 2020). We 

have assumed that the stricter the regulation, the higher will be the economic infliction.  

Fig. 8.14 shows the ALARP representation of the tolerable risk of the COVID-19 pandemic for 

Ontario. The approach sets an upper limit above which the risk must be reduced and a lower limit 

below which the spent resources yield a marginal reduction in the fatality risk. The region could 

be divided into acceptable, tolerable, or unacceptable where the cases surpass healthcare capacity. 

With no intervention, the healthcare would not suffice the 12.8 x 104 cases requiring medical care 

on the 187th day of the pandemic. The fatality risk could be minimized either by extending the 

healthcare capacity or by enforcing interventions. The model predicts 9600 hospitalization cases 

for several weeks with school and business closures. This number drastically reduces to 15 

hospitalization cases for a few days with the lockdown. Imposing interventions and expanding the 

healthcare capacity would be a practical approach to addressing a pandemic. 
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Fig. 8.14: The outcome of the ALARP based implementation for the risk management in 

COVID-19  

 

8.3.4: Reliability/ Survival analysis with the existing healthcare systems 

The worst possible outcome of the disease for an infected individual would be death. The infected 

people could be recovered if they avail of the sophisticated treatment.  Healthcare accessibility 

depends upon the capacity of the healthcare system, the stage of the outbreak at which one is 

infected, and imposed intervention(s) (Section 8.3.2).   

Figures 8.15-8.17 present the survival analysis for the COVID-19 pandemic with the existing 

healthcare facilities (critical care beds: 1000) under distinct scenarios with no measures, schools 

and business closures, and lockdown. The survival estimates are based on the Monte Carlo 

simulation to capture uncertainties in the number of infection cases due to randomness in the 
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incubation, infection, and recovery periods. This is represented by the area under the probability 

distribution of the cases requiring critical care on a given day. Similarly, it is also represented by 

the value of the cumulative probability distribution of the cases requiring critical care. These 

survival computations are based on the accessibility of critical care; the true values would be lower 

because of the fractional recovery rate (less than 100%) of the treatment. 

The most probable estimates indicate that the treatment is not accessible to infected individuals for 

most of the peak durations if no measures are enforced (Fig. 8.15). The survival ability under the 

existing healthcare system would be negligible in this case. The corresponding survival ability 

values for the schools and business closures and lockdown with the existing facilities are 80% 

(Fig. 8.16) and 100% (Fig. 8.17).  
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Fig. 8.15:  Reliability analysis with the existing healthcare facilities with no measures enforced 

to restrict the COVID-19 pandemic. 
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Fig. 8.16:  Reliability analysis with the existing healthcare facilities with School/business 

closures enforced to  
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Fig. 8.17: Reliability analysis with the existing healthcare facilities with lockdown to restrict 

COVID-19. 
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8.4 Conclusions 

This work explores the risk management of a pandemic using engineering safety approaches. The 

pandemic risk management approaches have been categorized into distinct hierarchical risk 

reduction strategies: inherent, active, passive, and procedural. We have highlighted how passive 

control strategies can help mitigate the present and future infectious diseases risk. The impact of 

the epidemic on an infected individual and the community under distinct scenarios was outlined. 

We have also developed an event tree diagram for pandemic risk management under assorted 

barriers such as natural evolution, government interventions, societal responses, and individual 

practices. Finally, the survival of an infected individual with existing healthcare systems has been 

investigated for different intervention strategies. 

The risk analysis in terms of the number of infections and mortality was performed using 

precautionary and as low as reasonably practicable principles. We have included the notion of 

probability to account for the imapact of the disease using Pate-Cornel's six levels of analysis. The 

risk calculations were carried out using a the SEIQRD model along with the Monte Carlo 

simulations. The results show that the implementation of non-pharmaceutical interventions has a 

profound effect on reducing the risk. The case study demonstrated that the PP and ALARP are 

applicable in the pandemic-containment decision-making process.   

This work does not take into account other fatalities arising from the interruption in health services 

for chronic disease. Many surveys highlighted the partial or complete disruption of healthcare for 

hypertension, diabetes-related complications, cancer treatment, and cardiovascular emergencies 

due to imposed regulations in the COVID-19 pandemic. Moreover, the present work does not 

capture the vulnerability factor in the analyses, which could be addressed in future works.  The 

model could also be improved by dividing populations based on demographics, spatial dispersion, 
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and interaction patterns. Rapid testing, contact tracing, and isolation which are critical to 

controlling disease transmission can also be incorporated for potential improvement.  

The test models illustrate the effectiveness of distinct strategies in containing a pandemic with 

minimal fatality. Lockdown was the most effective measure for reducing risk, but we have no 

credible estimate of how much reduction came from voluntary isolation and social distancing. This 

supports many analyst's claims of saving lives using lockdowns.  However, we are not advocating 

for the strict lockdown as its devastating impacts on the economy and mental health cannot be 

undermined. The stringent lockdown and prolonged confinement can cause neuropsychiatric 

problems, psychological disorders, and weakened immune systems. A holistic approach with 

strong ethical and sensible measures is required for combating the epidemic spread (Institute of 

Medicine, 2007). We have to be prompt in all facets of the transmission; adequate testing facilities, 

active surveillance, enforcing intervention strategies, and community screening around the cluster 

areas. Many researchers advocated for "smarter lockdowns" based on granular epidemiological 

data, temporal segregation, and the social bubble model that allows interaction within a defined 

group of people while adhering to physical distancing rules with those outside that group (Dhillon 

& Karan, 2020; Greg, 2020). The extensive support and public endorsement can be asserted by 

effectively communicating the preparedness and response strategies. The migration and other 

cross-border entries pose the risk of further spreading an outbreak; it must be handled effectively 

(Mowat & Raafi, 2020; WHO, 2018). 

The real risk of a pandemic is difficult to assess due to uncertainty in several aspects such as the 

mechanism of COVID-19 transmission, uncertainty in the R-value, randomness in incubation, 

infection, and recovery periods. Nonetheless, the risk can be alleviated by adopting evidence-based 

holistic approaches with clear ethical and rational measures such as adequate testing facilities, 
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active surveillance, enforcing intervention strategies, community screening around the cluster 

areas. 
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List of symbols and abbreviations 

Symbols Meanings 

a contagion rate  

ALARP as low as reasonably practicable 

BN Bayesian network  

BTA bow-tie analysis  

c infection rate  

CCU critical care unit 

COVID-19  Coronavirus disease of 2019 

D, D(t) deceased 

e recovery rate  

E, E(t) exposed 

ETA event tree analysis  

FMEA failure mode and effects analysis  

FTA fault tree analysis  

HAZOP hazard and operability study 

I, I(t) infected 

ICU intensive care unit 

ISD inherently safer design  

LOPA layer of protection analysis  

MERS Middle East respiratory syndrome  

N, N(t) total population 

NPIs non-pharmaceutical interventions 

PPE personal protective equipment  

PRA probabilistic risk analysis  

Q, Q(t) quarantined 

R, R(t) recovered 

R0 basic reproduction number  
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S, S(t) susceptible 

SARS severe acute respiratory syndrome  

SARS-CoV-2 severe acute respiratory syndrome coronavirus-2 

SEIQRD susceptible, exposed, infected, quarantined, recovered, deceased  

SEIR susceptible, exposed, infected, and recovered 

SIR susceptible, infected, recovered 

T1 infection period 

T2 infection period 

T3 recovery period 

WHO world health organization 

 

  

fraction of the quarantined/hospitalized population resulting in 

mortality 

 

  

fraction of symptomatic infections 
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Chapter 9 

Conclusions & Recommendations 

 

The objective of the work presented in this thesis is to develop data-driven models for the safety 

analysis of complex processing systems and human health management. The objective is achieved 

through three sub-objectives, to develop robust data-driven models for the safety of process 

systems, to devise semi-mechanistic models for assessing pandemic risk, and to corroborate 

synergy between process safety and pandemic risk management. The thesis enacted robust models 

for handling issues related to poor quality data, model generalization, process uncertainty, and 

random and spurious errors. The robustness has been instilled by exploiting data quality, 

reconciling data-driven models with mechanistic modeling, integrating meta-learning, and 

incorporating prior knowledge and expert opinions. From a model development perspective, 

several innovative formulations such as robust neural network, process dynamics-guided neural 

network, a hybrid formulation based on metaheuristic approach, and advanced semi-mechanistic 

models based on artificial neural network and hierarchical Bayesian framework have been devised 

to address the modeling inadequacies of complex systems.  The following sections describe how 

the thesis accomplished the objective and sub-objectives of the study.  

9.1 Contribution to the domain advancement by developing cutting-edge tools   

This thesis presents several formulations of data-driven models for operational safety management 

of complex processing systems.  

A robust ANN based on a novel approach, the quality-based training (QbT), has been developed 

for handling mislabeled and/or low-quality data in a deep neural network. The model imparted 

improved performance on detecting faults on mislabeled samples. The proposed model yielded 
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comparatively enhanced outcomes in detecting faults on legitimate data as well. It resulted in up 

to 5 % improvement in accuracy in detecting faults of test cases comprising legitimate data. The 

reason for this is the semi-supervised framework of the proposed model that reinforces the 

supervisory labels using the data quality attributes. This can assist in classifying the boundary 

cases in normal and faulty classes which could otherwise be intractable by the standard ANN-

based exclusively on the supervisory labels. Thus, the proposed robust model is effective in 

detecting faults in complex processing systems. 

The thesis presents a process dynamics guided neural network (PDNN) model to advance model 

generalization by rendering process dynamics and field expertise. The PDNN model aims to 

reconcile data-driven models with mechanistic wings to develop hybrid models for reliable 

predictions. The proposed model conferred improved performance on regression and classification 

tasks of processing systems representing steady-state and transient behavior. The performance was 

intact on three diverse operations, virtual mixing, separation in a binary distillation and reactant 

conversion in a batch reactor. The predictive capacity of the proposed PDNN was superior on 

extrapolated samples and the model trained with relatively fewer data. This is helpful in 

establishing dependency in a novel process. It can also guide studying processes where the data 

generation is expensive. Thus, the proposed hybrid model can lead to reliable estimates with 

enhanced generalization.  

The performance of a data-driven method is improved using meta-learning as well. The thesis 

presents a hybrid model based on artificial neural network (ANN) and variable mosquito flying 

optimization (V-MFO) technique for detecting faults of complex process systems. The formulation 

attempts to fine-tune the neural structure by maximizing fault detection rate and minimizing the 
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false alarm rate. The proposed hybrid model yielded improved results in detecting faults in the 

Tennessee Eastman benchmark process.  

This thesis presents advanced semi-mechanistic models for pandemic risk assessment with a 

special focus on handling uncertainty, data quality, and the dynamic nature of a system.  Here the 

mechanistic part refers to the science-based structure of the disease dynamics whereas the ‘semi’ 

denotes the enhancement instilled using advanced data-driven models. The semi-mechanistic 

models present efficient frameworks enriched with mechanistic knowledge in the form of a set of 

differential equations of the disease dynamics, prior knowledge of parameter distribution, and 

pooling information from distinct periods of the pandemic outbreaks.  

This thesis presents an artificial neural network and Bayesian inference-based formalisms to make 

the assessment more compelling by capturing temporal changes in the parameters of a mechanistic 

model. Artificial neural networks are data-driven nonlinear modeling techniques with a strong 

capability to model nonlinear relationships among process variables. A data-driven semi-

mechanistic SEIQRD model has been used to develop a risk management framework for effective 

forecasting of dynamic risk. The effect of enforcement and releasing of the non-pharmaceutical 

interventions at different stages of the disease outbreak has also been evaluated. Monte Carlo 

simulation was used to capture the randomness of the model parameters. It facilitated a probable 

range of predictions.   

Bayesian inference is an effective tool for dealing with uncertainty and easier incorporation of 

prior beliefs. Although a standard Bayesian framework can consider the conditional dependencies 

among various factors of a complex system, it is not capable of modeling such dependencies under 

varying conditions. Also, a standard Bayesian network cannot handle data from other similar case 

studies, the hierarchical Bayesian methods are efficient tools for handling these multisource data. 
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The thesis explored updating posteriors distribution using multiple sources to enhance the 

credibility of predictions which could not be possible with a fewer number of representative 

samples of a particular source. The variability of the SEIQRD parameters in distinct phases of the 

COVID-19 outbreak has been captured by enabling the parameter sharing feature of the 

hierarchical Bayesian formalism.   

A common practice in Bayesian-based formalisms is to select probability distributions of priors 

and likelihood functions from conjugate families, e.g., Poisson-Gamma or Beta-Binomial 

distributions. The conjugate pairs result in a closed-form solution of standard posteriors. However, 

many real-world data do not follow conjugate behavior and need to be addressed using 

sophisticated numerical techniques. The thesis presented a hierarchical Bayesian structure with 

non-conjugate distributions to solve a real-world problem of pandemic risk management. The 

uncertainty caused due to government interventions (such as lockdown, school and business 

closures, and restricting large gatherings), changes in local conditions and operational formats 

(such as enabling home delivery services and working from home), and changes in individual 

behavior (such as social distancing, wearing a mask, and hygiene practices) have been dealt with 

a hierarchical Bayesian formalism. The thesis also investigated other Bayesian network 

formulations based on pooling, partial pooling, and no pooling in handling the temporal variability 

of a pandemic. 

Markov chain Monte Carlo sampling (MCMC) has been employed to sample posterior 

probabilities from a high-dimensional distribution. Sampling using the MCMC from the actual 

distribution of the model parameters such as reproduction number, rate of incubation, infection, 

and recovery is sluggish. Thus, the thesis applied variational inference to approximate the real 

posterior distribution of parameters. No U-turn sampler (NUTS), an adaptive tuning algorithm 
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based on a recursive approach, has been used for the MCMC sampling to get effective samples of 

the approximated probability distributions.  

 9.2 Establishing interdisciplinary parallelism of process safety principles  

This thesis explores the similarity between process safety principles and epidemiology to better 

understand, analyze, and manage the risk.  

The epidemiology and process systems behave identically in mathematical modeling for the risk 

forecast. Process controllers constantly render control actions to prevent process deviations due to 

various disturbances, incipient abnormalities, transportation lag, and process dynamics. 

Equivalently, pandemic risk management addresses the temporal variations caused by imposed 

regulations, varied individual responses, and the advent of multiple waves of an outbreak. 

Uncertainty and inconsistency in data are critical factors affecting processing systems and 

epidemiological modeling. Erroneous and low-quality data frequently materialize in complex 

processing systems for many reasons, e.g. reporting the data from faulty sensors, malfunctioning 

of equipment, random fluctuations, incorrect calibration, inconsistent sampling frequencies, and 

human error. Uncertainty and inconsistency are inevitable in epidemiological studies as well. A 

pandemic modeling comprises numerous sources of uncertainty such as modes of propagation, 

uncertainty in infectivity, rates of incubation, infection, and recovery periods. Moreover, the 

reporting of the infected cases is often flawed by numerous factors such as lack of systematic 

testing, the inherent delay between the date that an illness starts and the date the case is reported 

to public health authorities.  

This thesis discusses similarities between the epidemiological model and chemical processing 

systems by highlighting the resemblance of the SIR disease dynamics with the reaction kinetics 

model of a CSTR. The factors governing contagion and reaction rates were underlined. Also, 
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several areas of similarities have been identified where process safety and epidemiology could 

benefit from each other. The pandemic risk has been analyzed using process safety principles such 

as precautionary principles, as low as reasonably practicable (ALARP) approach, event tree model, 

and the layer of protection analysis. The formulations address the dynamic risk caused by the 

natural evolution, government interventions, societal responses, and individual practices. This 

thesis also categorizes distinct risk-reducing strategies into hierarchical safety frameworks.   

9.3 Practical relevance and implications of the thesis 

Data-driven modeling, represented by machine learning (ML) and artificial intelligence (AI), is 

at the top of the Gartner hype cycle. Many experts believe that digital transformation is no 

longer simply a future option for processing systems, it’s an urgent reality. But, the data-based 

models rely on the assumption that the data is of high quality, sufficient granularity, and quantity. 

They also suffer from the lack of generalization ability and struggle when data is scarce or in 

extrapolation regimes. The data-based model can also be misleading in presence of low-quality 

data. A data-driven model based on poor-quality data can result in poor decisions leading to loss 

of revenue and reputation. Industrial systems encounter various low data-quality problems such as 

incomplete data, outliers, missing information, imbalanced data, poorly labeled data, incorrectly 

mapped properties, noise, and inconsistency due to sensor breakdown, process shutdown, 

malfunctioning of equipment, random fluctuations, incorrect calibration, inconsistent sampling 

frequencies, and data entry errors due to human factors. Handling low-quality data is crucial in the 

data-driven models of industry 4.0. Models based on the internet of things (IoT) where data come 

from multiple sources are susceptible to low quality and inconsistent data. The automated 

processes are based on sensor data and dealing with many real-time data is challenging. Although 

most data-based models are preceded by a pretreatment step for relieving missing values and 
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scaling problems, the mislabeled data and inconsistency are unable to be handled using such 

processing. The proposed robust approach, the quality-based training of data-driven models, can 

aid to critical operations such as fault detection and diagnosis of process systems which can cause 

huge losses due to mislabeled or low-quality data.  

The lack of interpretability and the black-box nature of the data-driven models are other striking 

challenges in widespread adoption in industrial systems. First principle models on the other hand 

rely on system understanding to compensate for lack of data. They suffer from knowledge gaps in 

describing many frequently occurring processes such as turbulence, random variations, and human 

factor induced deviations. The thesis presents process dynamics-guided neural network (PDNN) 

model to improve the model generalization by rendering process dynamics and field expertise. 

Integrating process dynamics is also an attempt to unveil the black-box nature of the deep neural 

network which is resistant to widespread adoption of these models at an industrial scale. 

Integrating process dynamics and field knowledge can provide confidence in the data-based 

models. This thesis also reckoned how the PDNN can lead to robust models with a capacity to 

explore novelty and the unexplained dynamics of complex processes. 

This dissertation also investigated the Coronavirus disease of 2019 that has wreaked havoc 

worldwide. The thesis attempted to address the startling challenges by devising credible 

assessment methodologies under the realm of engineering knowledge. The methods can aid 

decision-making to restrain the current and the future outbreak. This reflects the Wiemen’s quote 

“Education is about learning to make better decisions- Carl Wiemen”. Cases for reducing the risk 

caused due to the COVID-19 pandemic that has inflicted millions of fatalities, afflicted billions of 

people with food and livelihood, and put existential threats to millions of enterprises are also 

presented. The pandemic severely hit energy industries leading to a historic collapse in demand 
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and price of crude and allied products. Not surprisingly, the COVID-19 pandemic also impacted 

our studies and research work severely. This thesis devised multiple semi-mechanistic models in 

engineering framework for credible assessment to help ‘better decision-making’.  

This thesis presented a hierarchical Bayesian framework for administering variabilities caused due 

to distinct phases of a pandemic outbreak. Although, proposed hierarchical Bayesian method was 

employed to study the pandemic risk assessment, it can be applied to treat uncertainties of the data 

associated with multiple sources of complex industrial systems. This can be effective tool for 

managing the data-quality concerns of the models based on the internet of things (IoT). 

9.4 Limitations of the work and recommendations for future research 

The present work attempts to introduce new formulations to overcome the limitations of 

existing data-driven and mechanistic techniques. This thesis presented robust data-driven methods 

for ensuring safety of public health and processing systems.  This study, however, can be extended 

further to address the limitations of the work. Some of those promising areas are mentioned in the 

following sections.  

a. The thesis presents a robust neural network model by exploiting the data- quality. The study 

was based on the random mislabeled data in the quality-based robust neural network model. 

The performance can further be improved if the causality and structural relation is 

accounted for in the model. Combining physics and domain knowledge with quality-based 

training can also be studied to analyze robustness of detection systems.  

b. Process dynamics guided deep neural network model was developed to improve 

generalization by rendering process dynamics and field expertise. This work could further 

be improved by including partial differential equations and complex correlations in the 

proposed process dynamics layer of the deep neural network. Alarm and other data can 
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also be used to aid learning of the model parameters. Validation of the developed models 

with real industrial data is critical. Several packages such as ASPEN Plus, PRO/II, ProSim, 

CADsim, Chemcad, ChemPro, ChromWorks, and DWSim have been used in process 

design, monitoring, and control of chemical processing facilities. Integrating the proposed 

robust data-driven methods in existing simulation packages can accelerate the pace of 

adoption in industrial systems.  

c. This thesis presented a hybrid model for the alarm tuning of the process fault detection 

systems based on artificial neural network (ANN) and variable mosquito flying 

optimization (V-MFO) technique. The model yielded improved performance on detecting 

and isolating faults. However, it does not study its impact on generalization which could 

have been affected by the exploration of the evolutionary computation. This can also be 

expanded to accommodate alarm design features for a more holistic improvement.  

d. While efforts to use digital solutions in process operations are gaining wider acceptance, 

there are serious safety concerns that need to be addressed. Cyber-attacks are the key 

deterrents in the digitization and digitalization of industrial systems. Many industrialists 

believe that the benefits gain from digitalization is substantial even with increased 

cybersecurity risk. This can be studied on the prosed semi-mechanistic models of 

processing systems.  

e. This work presents robust models based on integrating mechanistic models and expert 

knowledge. This, however, did not discuss cases about the conflict between human and 

data-based models. Incorporating that aspect would be an interesting piece of work for 

handling real-world scenarios. Noise plays an important role in industrial systems. The 
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robustness of the models should also be closely investigated for evaluating the impact of the 

signal-noise interaction on data acquisition systems.   

f. This thesis presents the SEIQRD model that can be made comprehensive by including 

testing, contact tracing, isolation, and vaccination which are critical to controlling 

disease transmission.  This study assumes a blunt lockdown that is strictly being followed 

throughout a geographical region. Many researchers advocated for "smarter lockdowns" 

based on granular epidemiological data, temporal segregation, and the social bubble model 

that allows interaction within a defined group of people while adhering to physical 

distancing rules with those outside that group. The assessment can be improved based on 

granular data. This work does not consider other fatalities arising from the interruption in 

health services for chronic disease. Many surveys highlighted the partial or complete 

disruption of healthcare for hypertension, diabetes-related complications, cancer treatment, 

and cardiovascular emergencies due to imposed regulations in the COVID-19 pandemic. 

Moreover, the present work does not capture the vulnerability factor in the analyses which 

can be a suitable topic to be addressed in future works.   

g. This thesis employed several process safety principles for pandemic risk management. 

Although pointed out symbolically, however, it did not provide any explicit 

formulation for enhancing process safety using pandemic risk management 

approaches. Several responses to combating disease progression could be harnessed to 

improve the safety of process systems. For example, the working of the human immune 

system that acts as the first layer of defense against disease progression could be 

imitated for enhancing the resilience of chemical processing systems.  
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Appendices 

Appendix A: Basic reproduction numbers from distinct studies ( adapted from (Liu, Gayle, Wilder-Smith, & Rocklöv, 2020)) 

Study Location 

Study 

Study date 

Methods 

Methods Approaches Approaches R0 

estimates 

(average) 

95% CI 

Joseph et 

al.1  

Wuhan 31 

December 

2019–28 

January 

2020 

Stochastic Markov Chain Monte 

Carlo methods (MCMC) 

MCMC methods with Gibbs sampling 

and non-informative flat prior, using 

posterior distribution 

2.68 

 

 

2.47–2.86 

Shen et 

al.2  

 

Hubei 

province 

12–22 

January 

2020 

Mathematical model, dynamic 

compartmental model with 

population divided into five 

compartments: susceptible 

individuals, asymptomatic 

individuals during the incubation 

period, infectious individuals 

with symptoms, isolated 

individuals with treatment and 

recovered individuals 

R0 = β/α β = mean person-to-person 

transmission rate/day in the absence 

of control interventions, using 

nonlinear least squares method to get 

its point estimate α = isolation rate = 

6 

6.49 6.31–6.66  
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Liu et al  China and 

overseas 

23 January 

2020 

Statistical 

Statistical exponential Growth, 

using SARS generation time=8.4 

days, SD=3.8 days 

Applies Poisson regression to fit the 

exponential growth rate R0 =1/M(−r) 

M=moment generating function of 

the generation time distribution 

r=fitted exponential growth rate 

 

2.90 2.32-3.63 

Liu et al  China and 

overseas 

23 January 

2020 

Statistical 

Statistical maximum likelihood 

estimation, using SARS 

generation time=8.4 days, SD=3.8 

days 

Maximize log-likelihood to estimate 

R0 by using surveillance data during a 

disease epidemic, and assuming the 

secondary case is Poisson distribution 

with expected value R0 

2.92 2.28-3.67 

Read et al China 1–22 

January 

2020 

Mathematical transmission 

model assuming latent period=4 

days and near to the incubation 

period 

Assumes daily time increments with 

Poisson-distribution and apply a 

deterministic SEIR metapopulation 

transmission model, transmission 

rate=1.94, infectious period =1.61 

days 

3.11 2.39–4.13 

Majumder 

et al 

Wuhan 8 Dec, 2019 

and 26 

January 

2020 

Mathematical Incidence Decay 

and Exponential Adjustment 

(IDEA) model 

 

Adopted mean serial interval lengths 

from SARS and MERS ranging from 6 

to 10 days to fit the IDEA model, 

 2.55 2.0–3.1 
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WHO China 18 January 

2020 

  1.95 1.4–2.5 

 

Cao et al China 23 January 

2020 

Mathematical model including 

compartments 

Susceptible-Exposed-Infectious- 

Recovered-Death-Cumulative 

(SEIRDC) 

R = K 2(L × D) + K(L + D)+1 L=average 

latent period=7, D=average latent 

infectious period=9, K=logarithmic 

growth rate of the case count 

4.08  

Zao et al China 10–24 

January 

2020 

Statistical exponential growth 

model method adopting serial 

interval from SARS (mean=8.4 

days, SD=3.8 days) and MERS 

(mean=7.6 days, SD=3.4 days) 

Corresponding to 8-fold increase in 

the reporting rate R0 =1/M(−r) r 

=intrinsic growth rate M=moment 

generating function 

2.24 1.96–2.55  

Zhao et al China 10–24 

January 

2020 

Statistical exponential growth 

model method adopting serial 

interval from SARS (mean=8.4 

days, SD=3.8 days) and MERS 

(mean=7.6 days, SD=3.4 days) 

Corresponding to 2-fold increase in 

the reporting rate R0 =1/M(−r) r 

=intrinsic growth rate M=moment 

generating function 

3.58 2.89-4.39 

Imai 

(2020) 

Wuhan January 18, 

2020 

Mathematical model, 

computational modelling of 

potential epidemic trajectories 

Assume SARS-like levels of case-to-

case variability in the numbers of 

secondary cases and a SARS-like 

generation time with 8.4 days, and 

2.5 1.5–3.5 
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set number of cases caused by 

zoonotic exposure and assumed total 

number of cases to estimate R0 

values for best-case, median and 

worst-case 

Julien and 

Althaus 

China and 

overseas 

18 January 

2020 

Stochastic simulations of early 

outbreak trajectories 

Tang 

Stochastic simulations of early 

outbreak trajectories were performed 

that are consistent with the 

epidemiological findings to date 

2.2  

Tang et al China  22 January 

2020 

Mathematical SEIR-type 

epidemiological model 

incorporates appropriate 

compartments corresponding to 

interventions 

Method-based method and 

Likelihood-based method 

6.47 5.71–7.23 

Qun Li et 

al.11 

China  22 January 

2020 

Statistical exponential growth 

model 

Mean incubation period=5.2 days, 

mean serial interval=7.5 days 

2.2 1.4–3.9 

Steven et 

al 

China 

(CDC) 

  Realistic distributions for the latent 

and infectious period to calculate R0 

5.7 3.8-8.9 

Avarage R0= 3.4                              Median R0= 2.9 
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Appendix B: Derivation of the basic reproduction number for the SEIQRD model using the next generation method 

Let X represent the seven states of the SEIQRD model using x1, x2, x3, x4, x5, x6, and x7.  

𝐹1(𝑋) =

[
 
 
 
 
𝑎

𝑁
𝑥1𝑥3

0
0
0 ]

 
 
 
 

 , 𝑉1(𝑋) = [

𝑏𝑥2
−𝑏𝑥2 + 𝑐𝑥3
−𝜑1𝑐𝑥3 + 𝑑𝑥4
−𝑑𝑥4 + 𝑒𝑥5

] 

𝐹 =
𝑑𝐹1(𝑋)

𝑑𝑥1
= [

0
0
0
0

𝑎
0
0
0

0
0
0
0

0
0
0
0

] ,       V=
𝑑𝑉1(𝑋)
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= [
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−𝑏
0
0

0
𝑐

−𝜑1𝑐
0

0
0
𝑑
−𝑑

0
0
0
𝑒

] ,   

The inverse of 
𝑑𝑉1(𝑋)

𝑑𝑥1
 would be obtained using the row operations as- 

[

𝑏
−𝑏
0
0

𝑎
𝑐

−𝜑1𝑐
0

0
0
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0
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1
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𝑅3→𝜑1𝑅2+𝑅3 
→          [

𝑏
0
0
0

0
𝑐
0
0

0
0
𝑑
−𝑑

0
0
0
𝑒

       

1
1
𝜑1
0

0
1
𝜑1
0

0
0
1
0

0
0
0
1

]  
𝑅4→𝑅3+𝑅4 
→        [

𝑏
0
0
0

0
𝑐
0
0

0
0
𝑑
0

0
0
0
𝑒

       

1
1
𝜑1
𝜑1

0
1
𝜑1
𝜑1

0
0
1
1

0
0
0
1
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𝑅1 →
𝑅1
𝑏

𝑅2 →
𝑅2
𝑐

𝑅3 →
𝑅3
𝑑

𝑅4 →
𝑅4
𝑒

 
→ 

[
 
 
 
 
 
 
 

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

       

1

𝑏
1

𝑐
𝜑1
𝑑
𝜑1
𝑒
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1

𝑐
𝜑1
𝑑
𝜑1
𝑒

0
0
1

𝑑
1

𝑒

0
0
0
1

𝑒
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𝐹𝑉−1 = [

0
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0
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𝑎
0
0
0

0
0
0
0

0
0
0
0

]
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1

𝑏
1

𝑐
𝜑1
𝑑
𝜑1
𝑒
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1

𝑐
𝜑1
𝑑
𝜑1
𝑒

0
0
1

𝑑
1

𝑒

0
0
0
1

𝑒

]
 
 
 
 
 
 
 

=  

[
 
 
 
 0
0
0
0

𝑎

𝑐
0
0
0

𝑎

𝑐
0
0
0

0
0
0
0]
 
 
 
 

 

The spectral radius of FV-1  could be-  |[

0
0
0
0

𝑎

𝑐

0
0
0

𝑎

𝑐

0
0
0

0
0
0
0

] − 𝜆𝐼| = 0 

𝜆2 (
𝑎

𝑐
− 𝜆) = 0 →     𝜆 = 0, 𝜆 =

𝑎

𝑐
 

𝜆 = 0 𝑖𝑠 𝑛𝑜𝑡 𝑟𝑒𝑙𝑒𝑣𝑒𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑝𝑖𝑑𝑒𝑚𝑖𝑐 𝑠𝑝𝑟𝑒𝑎𝑑, 

Thus, the reproduction number ,   𝑅0 =
𝑎

𝑐
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Appendix C: The traceplot of the parameters of the HBN-SEIQRD model 

 

A simple posterior plot can be created using the traceplot. The left column consists of a smoothed 

histogram (using kernel density estimation) of the marginal posteriors of each stochastic random 

variable while the right column contains samples of the Markov chain plotted in sequential order.   
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Appendix D: The PYMC3 Codes for reproducing results  

#importing libraries 
import arviz as az 
import matplotlib.pyplot as plt 
import numpy as np 
import pandas as pd 
import pymc3 as pm 
import theano as tt 
import theano 
from pymc3.ode import DifferentialEquation 
from scipy.integrate import odeint 
np.random.seed(42) 
pm.set_tt_rng(42) 
plt.style.use("seaborn-darkgrid") 
 
# Load the data 
Data=pd.read_csv("Suppl_S2_ Ontario_2.csv") 
yobs=data.values 
 
Data1=pd.read_csv("Suppl_S1_ Ontario_Mar_2020_to_Jan_2021.csv") 
yobss=data1.values 
# Data preprocessing 
from scipy.signal import savgol_filter 
tp=np.arange(1, 300, 1) 
#I2_savgol0  = savgol_filter(yobss[:,5], 15, 0) # window size 51, polynomial 
order 1 
#I2_savgol1  = savgol_filter(I2_savgol0[:], 15, 1) # window size 51, 
polynomial order 1 
yobs=yobss.copy(); 
#yobs=copy.deepcopy(yobss); 
#copy.deepcopy 
yobs[:,3]=I2_savgol1[:] 
 
import seaborn as sns 
fig, ax=plt.subplots() 
ax.plot(tp1,yobss[tp1,4],color='g', label='raw data',linewidth=2.0) 
ax.plot(tp1, yobs[tp1,4],color='r',label='smooth data',linewidth=2.0) 
sns.despine() 
ax.legend() 
 
## Defining the function for the SEIQRD model 
def SEIQRD(y, t, p): 
    N=14600000              # Population of the Location 
    ds = -p[0] * y[0] * y[2]/N 
    de = p[0] * y[0] * y[2]/N - p[1] * y[1] 
    di1 = p[1] * y[1]-p[2]*y[2] 
    di2 = p[2]*p[4]*y[2]-y[3] 
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    dq =  y[3]-p[3]*y[4] 
   # dr = p[2]*(1-p[4])*y[2]+(1-p[5])*p[3]*y[4] 
    dd = p[5]*p[3]*y[4]                                               
    return [ds, de, di1, di2, dq, dd] 
 
model_SEIQRD = DifferentialEquation( 
    func=SEIQRD, 
    times=np.arange(1, 16, 1), 
    n_states=6, 
    n_theta=6, 
    t0=0, 
) 
 
##Function for generating the SEIQRD based data for Hierarchical and unPooled 
Bayesian models  
def mymodel_B66(R0_1,R0_2, T0_1,T0_2, T1_1,T1_2, T3_1,T3_2, e1_1,e1_2, 
e2_1,e2_2, idx): 
    N=14600000 
    s1=[]       
    allArrays=[] 
    j=0 
    for i in range (int(idx)): 
            if i<=9:      # for the first wave 
             RR=R0_1[i]/T1_1[i] 
             bb=1/T0_1[i] 
             cc=1/T1_1[i] 
             dd=1/T3_1[i] 
             ee1=e1_1[i] 
             ee2=e2_1[i] 
                  ss = model_SEIQRD(y0=yobs[15*i], theta=[RR, bb, cc, dd, 
ee1, ee2]) 
             s1.append(ss) 
        
         else:            # for the second wave 
             RR=R0_2[j]/T1_2[j] 
             bb=1/T0_2[j] 
             cc=1/T1_2[j] 
             dd=1/T3_2[j] 
             ee1=e1_2[j] 
             ee2=e2_2[j]             
             ss = model_SEIQRD(y0=yobs[15*i], theta=[RR, bb, cc, dd, 
ee1, ee2]) 
             s1.append(ss) 
            j=j+1 

sss13 = theano.tensor.concatenate([s[0], s[1], s[2], s[3], s[4], 
s[5],s[6], s[7], s[8], s[9], s[10], s[11],s[12], s[13], s[14], s[15], 
s[16], s[17]], axis=0) 

    return sss13  
 
 ##Function for generating the SEIQRD based data the Pooled Bayesian model  
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 def mymodel_B66p(R0_1,R0_2, T0_1,T0_2, T1_1,T1_2, T3_1,T3_2, e1_1,e1_2, 
e2_1,e2_2, idx): 
    N=14600000 
    s1=[] 
    allArrays=[] 
    for i in range (int(idx)): 
            if i<=9: 
            RR=R0_1/T1_1 
            bb=1/T0_1 
            cc=1/T1_1 
            dd=1/T3_1 
            ee1=e1_1 
            ee2=e2_1 
             
            ss = model_SEIQRD(y0=yobs[15*i], theta=[RR, bb, cc, dd, ee1, 
ee2]) 
            s1.append(ss) 
      
         else:             
            RR=R0_2/T1_2 
            bb=1/T0_2 
            cc=1/T1_2 
            dd=1/T3_2 
            ee1=e1_2 
            ee2=e2_2             
            ss = model_SEIQRD(y0=yobs[15*i], theta=[RR, bb, cc, dd, ee1, 
ee2]) 
            s1.append(ss) 
sss13 = theano.tensor.concatenate([s[0], s[1], s[2], s[3], s[4], s[5],s[6], 
s[7], s[8], s[9], s[10], s[11],s[12], s[13], s[14], s[15], s[16], s[17]], 
axis=0     
return sss13  
 
######   Preparing data for training 
N=14600000     # Population of Ontario 
times=np.arange(1, 16, 1)     # Initiating time window of 15 days  
Num_Train_Periods=18   # Number of training periods 
x_train = Num_Train_Periods   # Number of training periods 
y_train = yobs[0:270,:]       # Newly infected cases and mortality data  
 
##The Hierarchical Bayesian model based on SEIQRD (HBN_SEIQRD) 
with pm.Model() as model5hh: 
    N=14600000                # Population of Ontario 
    n_bi_week1=10             # biweekly periods in the 1st wave of the 
outbreak  
    n_bi_week2=8   # biweekly periods in the 2nd wave of the 
outbreak  
    # Parameter’s priors 
     R0 = pm.Bound(pm.Normal, lower=1)("R0", 2.9, 2 ) 
     T0 = pm.Bound(pm.Lognormal,lower=1,upper=14)("T0", pm.math.log(5.5), 1) 
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     T1 = pm.Bound(pm.Lognormal,lower=1,upper=14)("T1", pm.math.log(5.1), 1) 
     T3 = pm.Bound(pm.Lognormal,lower=1,upper=30)("T3", pm.math.log(11.5), 
1) 
     e1 = pm.Bound(pm.Normal,lower=.5,upper=1)("e1", 0.8, .2) 
     e2 = pm.Bound(pm.Normal,lower=0,upper=0.1)("e2", 0.01, .2) 
     
     R0_1 = pm.Bound(pm.Normal, lower=1) ("R0_1", mu= R0, shape=n_bi_week1) 
     R0_2 = pm.Bound(pm.Normal, lower=1) ("R0_2", mu= R0, shape=n_bi_week2) 
     

T0_1 = pm.Bound(pm.Lognormal,lower=1,upper=14) ("T0_1", 
mu=pm.math.log(T0), shape=n_bi_week1) 
T0_2 = pm.Bound(pm.Lognormal,lower=1,upper=14) ("T0_2", 
mu=pm.math.log(T0), shape=n_bi_week2) 
T1_1 = pm.Bound(pm.Lognormal,lower=1,upper=14) ("T1_1", 
mu=pm.math.log(T1), shape=n_bi_week1) 
T1_2 = pm.Bound(pm.Lognormal,lower=1,upper=14) ("T1_2", 
mu=pm.math.log(T1), shape=n_bi_week2) 
T3_1 = pm.Bound(pm.Lognormal,lower=1,upper=30) ("T3_1", 
mu=pm.math.log(T3), shape=n_bi_week1) 
T3_2 = pm.Bound(pm.Lognormal,lower=1,upper=30) ("T3_2", 
mu=pm.math.log(T3), shape=n_bi_week2) 

     
     e1_1 = pm.Bound(pm.Normal, lower=0.5, upper=1)("e1_1", mu=e1, 
shape=n_bi_week1) 
     e1_2 = pm.Bound(pm.Normal, lower=0.5, upper=1)("e1_2", mu=e1, 
shape=n_bi_week2) 
     e2_1 = pm.Bound(pm.Normal, lower=0, upper=0.1)("e2_1",  mu=e2, 
shape=n_bi_week1) 
     e2_2 = pm.Bound(pm.Normal, lower=0, upper=0.1)("e2_2",  mu=e2, 
shape=n_bi_week2) 
 

# Forecast using the SEIQRD model based on these parameters    
obs=mymodel_B66(R0_1,R0_2, T0_1,T0_2, T1_1,T1_2, T3_1,T3_2, e1_1,e1_2, 
e2_1,e2_2, x_train) 
Cases = pm.Lognormal("Cases", mu=pm.math.log(obs[:,[3,5]]), 
observed=y_train[:,[3,5]])   

 
##The Pooled Bayesian model based on SEIQRD (Pooled_Bayesian_SEIQRD) 
with pm.Model() as model5p: 
    N=14600000  
    n_bi_week1=10 
    n_bi_week2=8 
     
    # first Peak 
    R01 = pm.Bound(pm.Normal, lower=1, upper=6)("R0", 2.9, 2, ) 
    T01 =  pm.Lognormal("T01", pm.math.log(5.5), 1) 
    T11 =  pm.Lognormal("T11", pm.math.log(5.1), 1) 
    T31 =  pm.Lognormal("T31", pm.math.log(11.5), 1) 
    e11  = pm.Uniform("e11", 0.1, 1) 
    e21  = pm.Uniform("e21", 0, 1) 
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    # Second Peak 
    R02 = pm.Bound(pm.Normal, lower=1, upper=6)("R02", 2.9, 2, ) 
    T02 =  pm.Lognormal("T02", pm.math.log(5.5), 1) 
    T12 =  pm.Lognormal("T12", pm.math.log(5.1), 1) 
    T32 =  pm.Lognormal("T32", pm.math.log(11.5), 1) 
    e12  = pm.Uniform("e12", 0.1, 1) 
    e22  = pm.Uniform("e22", 0, 1) 
            
    obs=mymodel_B66p(R01,R02, T01,T02, T11,T12, T31,T32, e11,e12, e21,e22, 
x_train) 
   Cases = pm.Lognormal("Cases", mu=pm.math.log(obs[:,[3,5]]), 
observed=y_train[:,[3,5]])        
 
##The UnPooled Bayesian model based on SEIQRD (UnPooled_Bayesian_SEIQRD) 
with pm.Model() as model5indv: 
    N=14600000  
    n_bi_week1=10 
    n_bi_week2=8 
    R0_1 = pm.Bound(pm.Normal, lower=.5, upper=6) ("R0_1", 2.9, 2, 
shape=n_bi_week1) 
    R0_2 = pm.Bound(pm.Normal, lower=.5, upper=6) ("R0_2", 2.9, 
2,shape=n_bi_week2) 
     
    T0_1 = pm.Lognormal ("T0_1", mu=pm.math.log(5.5),shape=n_bi_week1 ) 
    T0_2 = pm.Lognormal ("T0_2", mu=pm.math.log(5.5), shape=n_bi_week2) 
     
    T1_1 = pm.Lognormal ("T1_1", mu=pm.math.log(5.1), shape=n_bi_week1) 
    T1_2 = pm.Lognormal ("T1_2", mu=pm.math.log(5.1), shape=n_bi_week2) 
    T3_1 = pm.Lognormal ("T3_1", mu=pm.math.log(11.5), shape=n_bi_week1) 
    T3_2 = pm.Lognormal ("T3_2", mu=pm.math.log(11.5), shape=n_bi_week2) 
     
    e1_1 = pm.Bound(pm.Normal, lower=0.1, upper=1)("e1_1", .80, 
shape=n_bi_week1) 
    e1_2 = pm.Bound(pm.Normal, lower=0.1, upper=1)("e1_2", 0.01, 
shape=n_bi_week2) 
    e2_1 = pm.Bound(pm.Normal, lower=0, upper=1)("e2_1",  .80, 
shape=n_bi_week1) 
    e2_2 = pm.Bound(pm.Normal, lower=0, upper=1)("e2_2",  .01, 
shape=n_bi_week2) 
     

obs=mymodel_B66(R0_1,R0_2, T0_1,T0_2, T1_1,T1_2, T3_1,T3_2, e1_1,e1_2, 
e2_1,e2_2, x_train) 
Cases = pm.Lognormal("Cases", mu=pm.math.log(obs[:,[3,5]]), 
observed=y_train[:,[3,5]])    

 
##Codes for generating the visualization using graphviz  
 model5hh_graph=pm.model_to_graphviz(model5hh) 

model5hh_graph.view().save('image1.png') 
#model5indv_graph=pm.model_to_graphviz(model5indv) 
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#model5indv_graph.view().save('image1.png') 
#model5p_graph=pm.model_to_graphviz(model5p) 
#model5p_graph.view().save('image1.png') 

 
 
##Codes for generating Variational inference  
# for Hierarchical method 
with model5hh: 
    inference = pm.ADVI()     
    approxhh = 
pm.fit(n=1000,method='advi',obj_optimizer=pm.adagrad(learning_rate=0.1)) 
# for unpooled model 
with model5indv: 
    inference = pm.ADVI()     
    approxindv = pm.fit(n=1000, 
method='advi',obj_optimizer=pm.adagrad(learning_rate=0.1)) 
# for the Pooled model 
with model5p: 
    inference = pm.ADVI()     
    approxp = pm.fit(n=1000, 
method='advi',obj_optimizer=pm.adagrad(learning_rate=0.1)) 
 

#Ploting the inference (Fig 7.6: ELBO profile) 
plt.plot(approxhh.hist) 
plt.ylabel("Negative ELBO") 
plt.xlabel("iteration"); 
 

## MCMC Sampling using NUTS (by default in PYMC3) 
with model5hh: 
    approx_sample1=approxhh.sample(10000) 
    approx_sample = approx_sample1[9500:]     # collecting most recent  500   
samples  
                                                assuming burning period is 
over 
 
 
## Model comparison for Table 7.4 
df_comp_loo2 = az.compare({"model5hh": approx_samplehh,"model5indv": 
approx_sampleindv, "model5p": approx_samplep}) 
df_comp_loo2 
 
 
## Trace plots  

az.plot_trace(approx_sample) 
 
## Extracting parameters of the HBN_SEIQRD model from the samples and 
forecast 

#R0s=approx_sample[R0] 
R0_is1=approx_sample[R0_1] 
R0_is2=approx_sample[R0_2] 
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T0s1=approx_sample[T0_1] 
T0s2=approx_sample[T0_2] 
T1s1=approx_sample[T1_1] 
T1s2=approx_sample[T1_2] 
T3s1=approx_sample[T3_1] 
T3s2=approx_sample[T3_2] 
e1s1=approx_sample[e1_1]   
e1s2=approx_sample[e1_2]   
e2s1=approx_sample[e2_1]   
e2s2=approx_sample[e2_2]   
 
ykc=[]   # Initialization of array for newly infected cases 
ykm=[]   # Initialization of array for mortality 

      pp=6      # The most recent biweekly periods parameters, we have 7 
biweekly periods 

 in the second wave [0, 1,2,3,4,5,6], so using pp=6  
 
for i in range(500): 

yk= odeint(SEIQRD, t=ttt, y0=yobs[15*pp], 
args=((R0_is1[i,ppp]/T1s1[i,ppp], 1/T0s1[i,ppp], 1/T1s1[i,ppp], 
1/T3s1[i,ppp], e1s1[i,ppp], e2s1[i,ppp]),),rtol=1e-6) 

    ykc.append(yk[:,3]) 
    ykm.append(yk[:,5]) 
     
ykcs=np.array(ykc) 
ykms=np.array(ykm) 
 
#Forecast of fatality 
ycal0_m_m=np.concatenate([yobs[0:270,5], np.quantile(ykms, .50, 

axis=0)]) 
ycal0_q75_m=np.concatenate([yobs[0:270,5], np.quantile(ykms, .75, 

axis=0)]) 
ycal0_q25_m=np.concatenate([yobs[0:270,5], np.quantile(ykms, .25, 

axis=0)]) 
 
#Forecast plots 
fig, ax=plt.subplots() 
t5=np.arange(0, 315, 1)  # Total period from 0 to the forecasted range 
 
ax.plot(t5,ycal0_m_m,color='k', label='most probable 

value',linewidth=2.0) 
ax.plot(t5,ycal0_stdm_m,'k--', linewidth=2.0) 
ax.plot(t5,ycal0_stdp_m,'k--', linewidth=2.0) 
ax.scatter(t5, D1[0:315,1],s=8, color='r', label= 'true value') 
ax.fill_between(t5, ycal0_stdm,ycal0_stdp, where=t5>=270, alpha=0.25, 
label='standard deviation') 
sns.despine() 
ax.legend() 
ax.set(xlabel="Number of Days", ylabel="Cumulative Mortality"); 
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#Placing the model Forecast in the models reported by CDC 
Death_Forecast1=pd.read_excel('Forecast_Arizona_Dec_Death_2.xlsx', 
                    header= None, index_col=False) 

#Forecast_Arizona_Dec_Death_2 has the forecast value 
reported by distinct models in the studied period  

Death_Forecast=Death_Forecast1.values 
 
fig, ax=plt.subplots() 
#ax.plot(CYC_m,fp_25_m, color='b', label='5 Percentile',linewidth=0.5) 
ax.plot([t5[285],t5[314]],[ycal0[285],ycal0[314]],color='k', 
label='HBN_SEIQRD',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[ycal0_stdm[285],ycal0_stdm[314]],'k--', 

linewidth=2.0) 
ax.plot([t5[285],t5[314]],[ycal0_stdp[285],ycal0_stdp[314]],'k--', 

linewidth=2.0) 
ax.fill_between([t5[285],t5[314]], 
[ycal0_stdm[285],ycal0_stdm[314]],[ycal0_stdp[285],ycal0_stdp[314]], 
alpha=0.30, label='std_HYC_BN_SEIQRD') 
 
ax.plot([t5[285],t5[314]],[Death_Forecast[0,0],Death_Forecast[0,1]],col
or='b', label='BPagano',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[1,0],Death_Forecast[1,1]],col
or='g', label='UGA-CEID',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[2,0],Death_Forecast[2,1]],col
or='c', label='Columbia-UNC',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[3,0],Death_Forecast[3,1]],col
or='m', label='Covid19Sim',linewidth=2.0) 
 
ax.plot([t5[285],t5[314]],[Death_Forecast[4,0],Death_Forecast[4,1]],'y'
, label='MIT-ORC',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[5,0],Death_Forecast[5,1]],'b-
-', label='Ensemble',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[6,0],Death_Forecast[6,1]],'g-
-', label='Columbia',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[7,0],Death_Forecast[7,1]],'c-
-', label='DDS',linewidth=2.0) 
 
ax.plot([t5[285],t5[314]],[Death_Forecast[8,0],Death_Forecast[8,1]],'y'
, label='LSHTM',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[9,0],Death_Forecast[9,1]],'b-
-', label='Google-HSPH',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[10,0],Death_Forecast[10,1]],'
g--', label='GT-DeepCOVID',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[11,0],Death_Forecast[11,1]],'
c--', label='ISU',linewidth=2.0) 
 
ax.plot([t5[285],t5[314]],[Death_Forecast[12,0],Death_Forecast[12,1]],'
y', label='JHU-IDD',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[13,0],Death_Forecast[13,1]],'
b--', label='JHU-APL',linewidth=2.0) 
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ax.plot([t5[285],t5[314]],[Death_Forecast[14,0],Death_Forecast[14,1]],'
g--', label='Karlen',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[15,0],Death_Forecast[15,1]],'
c--', label='LANL',linewidth=2.0) 
 
ax.plot([t5[285],t5[314]],[Death_Forecast[16,0],Death_Forecast[16,1]],'
y', label='Microsoft',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[17,0],Death_Forecast[17,1]],'
b--', label='MIT-LCP',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[18,0],Death_Forecast[18,1]],'
g--', label='MIT-CovAlliance',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[19,0],Death_Forecast[19,1]],'
c--', label='MOBS',linewidth=2.0) 
 
ax.plot([t5[285],t5[314]],[Death_Forecast[20,0],Death_Forecast[20,1]],'
y', label='Oliver Wyman',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[21,0],Death_Forecast[21,1]],'
b--', label='PSI',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[22,0],Death_Forecast[22,1]],'
g--', label='RPI-UW',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[23,0],Death_Forecast[23,1]],'
c--', label='CovidComplete',linewidth=2.0) 
 
ax.plot([t5[285],t5[314]],[Death_Forecast[24,0],Death_Forecast[24,1]],'
y', label='UA',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[25,0],Death_Forecast[25,1]],'
b--', label='UCLA',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[26,0],Death_Forecast[26,1]],'
g--', label='UCSB',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[27,0],Death_Forecast[27,1]],'
c--', label='UCSD-NEU',linewidth=2.0) 
 
ax.plot([t5[285],t5[314]],[Death_Forecast[28,0],Death_Forecast[28,1]],'
y', label='UMass-MB',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[29,0],Death_Forecast[29,1]],'
b--', label='UM',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[30,0],Death_Forecast[30,1]],'
g--', label='USC',linewidth=2.0) 
ax.plot([t5[285],t5[314]],[Death_Forecast[31,0],Death_Forecast[31,1]],'
c--', label='Wadhwani',linewidth=2.0) 
 
sns.despine() 
ax.legend(loc='center left',bbox_to_anchor=(1,0.5), ncol=4) 
ax.set(xlabel="Number of Days", ylabel="Cumulative Mortality"); 
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Appendix E: Pandemic forecast models displayed by CDC 
https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/forecasts-cases.html 
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-
19_Forecast_Model_Descriptions.md 
 

Models    

BPagano Bob Pagano 

 

SIR model Projections assume that the effects of 
interventions are reflected in the 
observed data and will continue going 
forward. 

UGA-CEID University of 
Georgia, Center for 
the Ecology of 
Infectious Disease 
 

Statistical 
random walk 
model 

Projections assume that social distancing 
policies in place at the date of calibration 
are extended for the future weeks. 

Columbia-UNC Columbia 
University and 
University of North 
Carolina 
 

Statistical 
survival-
convolutional 
model 

This model assumes that transmission 
intensity will peak in early July and then 
gradually decline. 

Covid19Sim Covid-19 Simulator 
Consortium 
 

SEIR model Intervention assumptions: This model is 
based on assumptions about how levels of 
social distancing will change in the future. 
 
Hospitalization assumptions: The number 
of new hospitalizations per day are 
estimated from the number of infections, 
using state-specific hospitalization rates. 

MIT-ORC  SEIR model The projections assume that interventions 
will be reinstated if transmission reaches 
certain thresholds 

Ensemble University of 
Massachusetts, 
Amherst 
 

The ensemble is 
a combination 
of 4 to 20 
models, 
depending on 
the availability 
of forecasts for 
each location. 

The ensemble forecasts include all 
submitted forecasts, derived from models 
that assume certain social distancing 
measures will continue and models that 
assume those measures will not continue. 

Columbia Columbia 
University 
 

Metapopulation 
SEIR model 

Intervention assumptions: This model 
assumes that contact rates will increase 
5% during the first week of the forecast 
period. Following week 1, the 
reproductive number is then set to 1.0. 
 
Hospitalization assumptions: The model 
uses state-specific hospitalization data, 

https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/forecasts-cases.html
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md
https://github.com/cdcepi/COVID-19-Forecasts/blob/master/COVID-19_Forecast_Model_Descriptions.md
https://bobpagano.com/
https://github.com/e3bo/random-walks
https://github.com/e3bo/random-walks
https://github.com/e3bo/random-walks
https://github.com/e3bo/random-walks
https://github.com/COVID19BIOSTAT/covid19_prediction
https://github.com/COVID19BIOSTAT/covid19_prediction
https://github.com/COVID19BIOSTAT/covid19_prediction
https://github.com/COVID19BIOSTAT/covid19_prediction
https://www.covid19sim.org/
https://www.covid19sim.org/
https://reichlab.io/
https://reichlab.io/
https://reichlab.io/
https://columbia.maps.arcgis.com/apps/webappviewer/index.html?id=ade6ba85450c4325a12a5b9c09ba796c
https://columbia.maps.arcgis.com/apps/webappviewer/index.html?id=ade6ba85450c4325a12a5b9c09ba796c
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when available. In states without 
hospitalization data, the model uses the 
national average value for hospitalization 
data. 

DDS Discrete Dynamical 
Systems 
 

Bayesian 
hierarchical 
model 

This model assumes that the effects of 
interventions are reflected in the 
observed data and will continue going 
forward. 

LSHTM London School of 
Hygiene and 
Tropical Medicine 
 

This forecast is 
an ensemble of 
three different 
models: A time-
varying 
reproductive 
number-base 
model, a time 
series model 
based on 
numbers of 
deaths, and a 
time series 
model based on 
numbers of 
cases and 
deaths. 

Intervention assumptions: These 
projections assume that current 
interventions will not change during the 
forecasted period. 

Google-HSPH Google and Harvard 
School of Public 
Health 
 

SEIR model fit 
with machine 
learning 
 

These forecasts implement changes to 
future population mobility in order to 
predict COVID-19 transmission intensity. 
 

GT-DeepCOVID Georgia Institute of 
Technology, College 
of Computing 
 

Deep learning 
 

This model assumes that the effects of 
interventions are reflected in the 
observed data and will continue going 
forward. 

ISU Iowa State 
University 
 

Nonparametric 
spatiotemporal 
model 
 

These projections do not make any 
specific assumptions about which 
interventions have been implemented or 
will remain in place. 
 

JHU-IDD Johns Hopkins 
University, 
Infectious Disease 
Dynamic Lab 
 

 Metapopulation 
SEIR model 
 

These projections assume that current 
interventions will not change during the 
forecasted period. 
 
Daily hospitalizations are estimated from 
predictions of daily cases. A standard 
proportion is applied to all states 
 

https://dds-covid19.github.io/index.html
https://dds-covid19.github.io/index.html
https://github.com/epiforecasts/covid-us-forecasts
https://github.com/epiforecasts/covid-us-forecasts
https://github.com/epiforecasts/covid-us-forecasts
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-is-releasing-the-covid-19-public-forecasts/
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-is-releasing-the-covid-19-public-forecasts/
https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-is-releasing-the-covid-19-public-forecasts/
https://deepcovid.github.io/
https://deepcovid.github.io/
https://deepcovid.github.io/
https://covid19.stat.iastate.edu/
https://covid19.stat.iastate.edu/
https://github.com/HopkinsIDD/COVIDScenarioPipeline/
https://github.com/HopkinsIDD/COVIDScenarioPipeline/
https://github.com/HopkinsIDD/COVIDScenarioPipeline/
https://github.com/HopkinsIDD/COVIDScenarioPipeline/
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JHU-APL Johns Hopkins 
University, Applied 
Physics Lab 
 

Metapopulation 
SEIR model 
 

This model assumes that the effects of 
interventions are reflected in the 
observed data and will continue going 
forward. 
 

Karlen Karlen Working 
Group 
 

Discrete time 
difference 
equations 

Intervention assumptions: This model 
assumes that the effects of interventions 
are reflected in the observed data and will 
continue going forward. 
 
Hospitalization assumptions: The model 
uses state-specific hospitalization data. 
New hospitalizations are estimated from 
these data, or from the estimated number 
of new infections that will occur in each 
location. 

LANL Los Alamos 
National 
Laboratory 
 

Statistical 
dynamical 
growth model 
accounting for 
population 
susceptibility 

Intervention assumptions: This model 
assumes interventions in place on the first 
day of the forecast will remain in place for 
the next four weeks. 
 
Hospitalization Assumptions: State 
demographics and age-group 
symptomatic case hospitalization rates 
are used to estimate the daily number of 
hospitalizations, based on estimates of 
the total number of infections. 

Microsoft Microsoft AI 
 

SEIR model on a 
spatiotemporal 
network 

Intervention Assumptions: These 
projections assume that current 
interventions will not change during the 
forecasted period. 

MIT-CovAlliance Massachusetts 
Institute of 
Technology, COVID-
19 Policy Alliance 
 

SIR model Intervention Assumptions: The projections 
assume that current interventions will 
remain in place indefinitely. 

MOBS Northeastern 
University, 
Laboratory for the 
Modeling of 
Biological and 
Socio-technical 
Systems 
 

Metapopulation, 
age-structured 
SLIR model 

Intervention assumptions: The projections 
assume that social distancing policies in 
place at the date of calibration are 
extended for the future weeks. 

Oliver Wyman Oliver Wyman 
 

Time-dependent 
SIR model for 
detected and 

Intervention assumptions: These 
projections assume that current 

https://buckymodel.com/
https://buckymodel.com/
https://buckymodel.com/
https://pypm.github.io/home/
https://pypm.github.io/home/
https://covid-19.bsvgateway.org/
https://covid-19.bsvgateway.org/
https://covid-19.bsvgateway.org/
https://www.microsoft.com/en-us/ai/ai-for-health/
https://www.covidalliance.com/
https://www.covidalliance.com/
https://www.covidalliance.com/
https://www.covidalliance.com/
https://covid19.gleamproject.org/
https://covid19.gleamproject.org/
https://covid19.gleamproject.org/
https://covid19.gleamproject.org/
https://covid19.gleamproject.org/
https://covid19.gleamproject.org/
https://covid19.gleamproject.org/
https://pandemicnavigator.oliverwyman.com/
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undetected 
cases 

interventions will not change during the 
forecasted period. 

PSI Predictive Science 
Inc. 
 

Stochastic SEIRX 
model 
 

Intervention assumptions: These 
projections assume that current 
interventions will not change during the 
forecasted period. 
 

RPI-UW Rensselaer 
Polytechnic 
Institute and 
University of 
Washington 
 

SIR model fit to 
mobility data 
 

Intervention assumptions: These 
projections calibrate the rate of 
transmission to the average rate of 
population mobility since the start of the 
epidemic and assume that this 
relationship will not change in the next 
four weeks. 
 

CovidComplete Steve McConnell 
 

Statistical 
prediction 
model 
 

This model assumes that the effects of 
interventions are reflected in the 
observed data and will continue going 
forward. 

UA University of 
Arizona 
 

SIR model with 
data 
assimilation 
 

This model assumes that current 
interventions will remain in effect for at 
least four weeks after the forecasts are 
made. 
 

UCLA University of 
California, Los 
Angeles 
 

Modified SEIR 
model 
 

Intervention assumptions: This model 
assumes that contact rates will increase as 
states reopen. The increase in contact 
rates is calculated for each state. 
Hospitalization Assumptions: The number 
of new hospitalizations per day are 
estimated from the number of infections, 
using state-specific hospitalization rates. 
 

UCSB University of 
California, Santa 
Barbara 
 

An attention 
mechanism 
(deep learning) 
time series 
model 
 

These projections assume that current 
interventions will not change during the 
forecasted period. 
 
The number of new hospitalizations per 
day are estimated from the number of 
infections, using state-specific 
hospitalization rates. 

UCSD-NEU University of 
California, San 
Diego and 
Northeastern 
University 
 

Age-structured 
metapopulation 
model with 
deep learning 
 

These projections assume that current 
interventions will not change during the 
forecasted period. 

https://github.com/predsci/DRAFT
https://github.com/predsci/DRAFT
http://medrxiv.org/content/10.1101/2020.07.25.20162016v1
http://medrxiv.org/content/10.1101/2020.07.25.20162016v1
http://medrxiv.org/content/10.1101/2020.07.25.20162016v1
http://medrxiv.org/content/10.1101/2020.07.25.20162016v1
http://medrxiv.org/content/10.1101/2020.07.25.20162016v1
https://stevemcconnell.com/covidcomplete/
https://jocelinelega.github.io/EpiGro/
https://jocelinelega.github.io/EpiGro/
https://covid19.uclaml.org/
https://covid19.uclaml.org/
https://covid19.uclaml.org/
https://github.com/Gandor26/covid-open/
https://github.com/Gandor26/covid-open/
https://github.com/Gandor26/covid-open/
https://sites.google.com/view/yianma/epidemiology/
https://sites.google.com/view/yianma/epidemiology/
https://sites.google.com/view/yianma/epidemiology/
https://sites.google.com/view/yianma/epidemiology/
https://sites.google.com/view/yianma/epidemiology/
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UM University of 
Michigan 
 

Ridge regression 
 

These projections assume that current 
interventions will not change during the 
forecasted period. 
 

USC University of 
Southern California 
 

SIR model 
 

These projections assume that current 
interventions will not change during the 
forecasted period. 
Hospitalization assumptions: The number 
of new hospitalizations per day are 
estimated from the number of infections. 
 

Wadhwani Wadhwani AI 
 

Bayesian SEIR 
model 
 

These projections assume that current 
interventions will not change during the 
forecasted period. 
 

IHME 
 

Institute of Health 
Metrics and 
Evaluation 
 

Combination of 
a mechanistic 
disease 
transmission 
model and a 
curve-fitting 
approach 
 

Projections are adjusted to reflect 
differences in aggregate population 
mobility and community mitigation 
policies. 
Daily hospitalizations are estimated from 
predictions of daily deaths, using state 
hospitalization rates, where available. 

Imperial 
 

Imperial College, 
London 
 

Ensembles of 
mechanistic 
transmission 
models, fit to 
different 
parameter 
assumptions 
 

These projections do not make any 
specific assumptions about which 
interventions have been implemented or 
will remain in place. 
 

CMU Carnegie Mellon 
University 
 

Autoregressive 
time-series 
model 

These projections do not make specific 
assumptions about which interventions 
have been implemented or will remain in 
place. 

 
 
 

 

 
 
 
 
 

 

https://gitlab.com/sabcorse/covid-19-collaboration
https://gitlab.com/sabcorse/covid-19-collaboration
https://scc-usc.github.io/ReCOVER-COVID-19/#/
https://scc-usc.github.io/ReCOVER-COVID-19/#/
https://www.wadhwaniai.org/
https://covid19.healthdata.org/united-states-of-america
https://covid19.healthdata.org/united-states-of-america
https://covid19.healthdata.org/united-states-of-america
https://mrc-ide.github.io/covid19-short-term-forecasts/index.html
https://mrc-ide.github.io/covid19-short-term-forecasts/index.html
https://delphi.cmu.edu/
https://delphi.cmu.edu/

