
An Advanced Graph-Based Placement Representation for Analog Layout Design

by

© Lian He

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science
Faculty of Science

Memorial University of Newfoundland

May 2021

St. John’s, Newfoundland and Labrador

ii

ABSTRACT

Due to complexity and susceptibility of analog layouts towards circuit performance,

maturity state of analog integrated circuit (IC) physical design automation has largely

lagged behind that of the digital counterpart. Placement is an indispensable stage in the

analog IC layout design. It demands effective representations to handle nontrivial analog

placement topologies especially in the advanced nanometer technologies. In this thesis, we

mainly review the existing placement representations and deepen the research of

topological representations for the analog placement design.

By leveraging the equivalence between sequence pair (SP) and transitive closure

graph (TCG), we propose an SP-driven TCG representation and its associated operations

to facilitate the handling of analog placement constraints. To achieve the symmetry-aware

placement, we introduce a set of special symmetric-feasible conditions and define an

efficient construction mechanism for symmetric placement with the SP-driven TCG

representation. A set of SP-driven perturbation operations is also brought forth in this thesis

to reduce the algorithmic complexity while satisfying symmetry constraints. Furthermore,

a redundancy control scheme among the representation states is developed in order to

generate high-performance analog placement with high computation efficiency.

Based on the SP-driven TCG representation, we further introduce an Advanced

Transitive-Closure-Graph-based placement representation (ATCG). It can effectively and

efficiently tackle advanced geometric constraints, which are highly essential for addressing

iii

layout dependent effects, thermal effects, and diverse parasitic challenges in the advanced

nanometer technologies. ATCG not only inherits all the advantage from both SP and TCG,

but also resolve the ambiguous diagonal relationship between any two specified modules.

The versatility and flexibility of ATCG can ensure it to accurately control spacing and

merging constraints uniquely required by analog layout design. We have implemented our

proposed placement methods and tested them with several circuits. Our experimental

results demonstrate high efficacy of these proposed representations and the developed

operations.

iv

ACKNOWLEDGEMENTS

I would first like to convey my gratitude to my supervisor, Dr. Yuanzhu Chen, for

his continuous encouragement, support and patience throughout my years of research study.

He consistently guided me to focus on interesting topics in the research. Whenever I

encountered any difficulty, he was always there for help. Without his assistance, I was not

able to succeed in conducting this research work. Moreover, I would like to thank Memorial

University and Department of Computer Science for offering me this precious opportunity

to pursue my postgraduate studies.

I would deeply appreciate being advised by Dr. Lihong Zhang. He always offered his

valuable suggestions during my research project. His expertise in the field of VLSI and

EDA helped me expand my knowledge and open my mind. I could discover new things

from every discussion with him.

This thesis would not have been possible without graduate study support and research

facilities provided by the School of Graduate Studies, the Faculty of Science and the

Faculty of Engineering & Applied Science at Memorial University.

I am also grateful to the graduate student fellows for their kind help, discussions, and

suggestions.

Finally, I must express my special thanks to my family who give me all their

unconditional love and care all the time.

v

Table of Contents

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

List of Tables .. vii

List of Figures .. viii

List of Acronyms ... xi

List of Symbols .. xiii

1. Introduction .. 1

1.1 Motivation ... 3

1.2 Organization of the Thesis .. 7

2. Previous Work on Placement Methods .. 9

2.1. Previous Work on General Placement Methods and Representations 9

2.1.1. General Placement Methods .. 9

2.1.2. Placement Representations .. 13

2.2. Analog Placement Techniques .. 17

2.2.1 Analog Placement Problem .. 17

2.2.2 Analog Placement Techniques for Symmetry Constraints 19

2.2.3 Analog Placement Techniques for Other Constraints 21

2.3. Summary ... 24

3. Placement with SP-Driven TCG for Advanced Analog Constraints 25

3.1. Advantages of SP-Driven TCG for Advanced Analog Constraints 25

3.2. Symmetric-Feasible TCG and Placement ... 30

3.2.1 Symmetric-Feasible Conditions ... 30

vi

3.2.2 Symmetry-Aware Placement ... 30

3.3. SP-Driven Perturbation of Symmetric-Feasible TCG ... 31

3.3.1. Rotation .. 32

3.3.2. Exchange .. 35

3.3.3 Change ... 39

3.4 Perturbation Redundancy Control ... 58

3.5 Experimental Results ... 59

3.6 Summary ... 62

4. Advanced TCG-Based Placement Representation for Analog Layout Design 63

4.1. ATCG Placement Representation ... 63

4.1.1. From a Placement to the Corresponding ATCG .. 65

4.1.2. From an ATCG to the Corresponding Placement .. 68

4.1.3. Properties of ATCG ... 77

4.2. Placement Algorithm ... 78

4.3. Experimental Results ... 80

4.4. Summary ... 81

5 Conclusions and Future Work ... 83

5.1 Contributions of the Thesis ... 83

5.2 Scope of the Future Work ... 85

5.3 The Candidate’s Published Papers .. 86

Bibliography ... 88

vii

List of Tables

Table I. Time complexity comparison of different topological representations in the context

of symmetry and advanced constraints. ... 29

Table II. Comparison of various perturbation redundancy control implementations. 60

Table III. Comparison of alternative methods on three test circuits. 61

Table IV. Comparison of different topological representations in the context of symmetry

and advanced constraints. .. 64

Table V. Comparison of alternative methods on three test circuits. 81

viii

List of Figures

Figure 1. Complementary metal–oxide–semiconductor. ... 3

Figure 2. NMOS device. .. 4

Figure 3. PMOS device. ... 5

Figure 4. Mixed-signal integrated circuits. .. 6

Figure 5. Mixed-signal designs. ... 6

Figure 6. Relevant topological representations examples: (a) Corresponding placement, (b)

SP, (c) TCG, (d) TCG-S, (e) B*-tree. .. 28

Figure 7. One example before the rotation operation: (a) SP-TCG, (b) Corresponding

placement. .. 33

Figure 8. One example after the rotation operation: (a) SP-TCG, (b) Corresponding

placement. .. 34

Figure 9. One example before the exchange operation: (a) SP-TCG, (b) Corresponding

placement. .. 37

Figure 10. One example after the exchange operation: (a) SP-TCG, (b) Corresponding

placement. .. 38

Figure 11. Pseudocode of the SP-driven move operation. ... 40

Figure 12. One example before the SP-driven move operation: (a) SP-TCG, (b)

Corresponding placement .. 42

ix

Figure 13. One example after the SP-driven move operation: (a) SP-TCG, (b)

Corresponding placement. ... 43

Figure 14. Pseudocode of the SP-driven move reverse operation. 44

Figure 15. One example before the SP-driven move reverse operation: (a) SP-TCG, (b)

Corresponding placement. ... 46

Figure 16. One example after the SP-driven move reverse operation: (a) SP-TCG, (b)

Corresponding placement. ... 47

Figure 17. Pseudocode of the SP-driven symmetric move. ... 49

Figure 18. One example of three consecutive SP-driven symmetric move operations: (a)

SP-TCG and its corresponding placement before the operations, (b) SP during the

operations, (c) SP-TCG and its corresponding placement after the operations. 51

Figure 19. Pseudocode of the SP-driven symmetric move reverse. 53

Figure 20. One example of two consecutive SP-driven symmetric move reverse operations:

(a) SP-TCG and its corresponding placement before the operations, (b) SP during the

operations, (c) SP-TCG and its corresponding placement after the operations. 55

Figure 21. One example of a valid ATCG. .. 66

Figure 22. Corresponding placement of the valid ATCG. ... 66

Figure 23. Horizontal packing algorithm of ATCG. .. 69

Figure 24. Insert node to RBTh algorithm of ATCG. .. 72

Figure 25. Vertical packing algorithm of ATCG. .. 73

x

Figure 26. Insert node to RBTv algorithm of ATCG. .. 76

xi

List of Acronyms

ASF : Automatically Symmetric Feasible

ATCG : Advanced Transitive Closure Graph

BSG : Bounded Slicing Grid

CBL : Corner Block List

CB-tree : Corner Stitching Compliant B*-Tree

CMOS : Complementary Metal–Oxide–Semiconductor

CNTFET : Carbon Nanotube Field-Effect Transistor

EDA : Electronic Design Automation

FinFET : Fin Field Effect Transistors

GA : Genetic Algorithm

HB*-trees : Hierarchical B*-Trees

IC : Integrated Circuits

IoT : Internet of Things

LDE : Layout Dependent Effects

LP : Linear Programming

MOM : Metal-Oxide-Metal

MOSFET : Metal Oxide Semiconductor Field-Effect Transistor

xii

NPE : Normalized Polish Expression

Q.E.D. : Latin phrase "Quod Erat Demonstrandum" which means "that which was

to be demonstrated". A notation is often placed at the end of a

mathematical proof to indicate its completion.

SA : Simulated Annealing

SoC : System-on-Chip

SP : Sequence Pair

STL : Standard Template Library

TCG : Transitive Closure Graph

VLSI : Very Large Scale Integration

xiii

List of Symbols

α : α-sequence of Sequence Pairs

β : β-sequence of Sequence Pairs

E : Edge

G : Graph

hi : Height of Module i

Hatcg : Horizontal Advanced Transitive Closure Graph

Htcg : Horizontal Transitive Closure Graph

ms : Self-Symmetric Module

mp : Representative of Symmetric-Pair Modules

pi : Representative of the ith Symmetric-Pair Modules

si : ith Self-Symmetric Module

V : Vertex

Vatcg : Vertical Advanced Transitive Closure Graph

Vtcg : Vertical Transitive Closure Graph

wi : Width of Module i

wij : Edge Weight from Edge i to Edge j

1

1. Introduction

The invention of integrated circuit (IC) has brought about a revolution in our modern

world. ICs are essential components of virtually all electronic equipment, from the space

rocket to personal handheld devices. As very-large-scale-integration (VLSI) technology

continues to advance, mixed-signal integrated circuits, i.e., integration of analog and digital

circuits, are now ubiquitous in our daily life through emerging Internet of Things (IoT).

Electronic design automation (EDA) tools greatly facilitate IC designers in their

sophisticated design process.

An essential stage in physical design is placement/floorplanning, whose objective is

to optimally place assorted modules on a chip according to the design requirements. A

placement representation is used to describe the topological relationship among modules.

Due to complex analog layout constraints, commercial readiness of analog design

automation tools always lags behind that of the digital counterpart. In particular, the

emergence of layout dependent effects (LDE) [1][2] in the nanometer technologies

demands a proper placement representation, which is applicable to susceptible analog

placement topologies.

Researchers have been continuously developing various representations to meet the

placement requirements in IC layout design. Generally, the placement representations can

be classified into absolute representation and topological representation. The absolute

representation, also called Jepsen–Gelatt style flat representation [3], is based on absolute

coordinates on a gridless plane. A module can be manipulated by directly changing its

2

coordinates. This straightforward representation was widely used in all early layout

systems, not only in digital design (e.g., TimberWolf [4]), but also in analog design (e.g.,

KOAN/ANAGRAM II [5], LAYLA [6], and ALADIN [7][8]). It was normally considered

as a less effective representation due to extremely large configuration space associated.

Lately, Ou et al. proposed an LDE-aware analytical analog placement model by returning

to this representation [9]. However, since geometry overlaps are inevitable in the placement

solutions, a detailed placement process has to be resorted, which means both computational

efficiency and solution optimality are compromised.

Many topological representations have been developed for placement design in the

recent years. They can be categorized into slicing and non-slicing topological

representations. A slicing topological representation, e.g., slicing tree [10] or normalized

Polish expression [11], is derived from a slicing placement, which can be produced by

recursively bisecting the layout horizontally or vertically into smaller modules [12].

Although the slicing representation has such superiority as smaller solution space and faster

run time, it may lead to low performance for analog placement since most of analog layouts

are non-slicing. Therefore, the researchers have been diligently exploring different non-

slicing topological representations for analog placement design, e.g., sequence pair (SP)

[13], bounded-slicing grid (BSG) [14], O-tree [15], B*-tree [16], corner block list (CBL)

[17], transitive closure graph (TCG) [18], TCG-S [19], HB*-trees [20], QB-trees [21], and

WB-trees [22].

3

1.1 Motivation

Complementary metal–oxide–semiconductor (CMOS) is widely used in digital,

analog and mixed-signal ICs, such as microprocessors, image sensors, data converters, and

highly integrated wireless transceivers, due to its high noise immunity and low static power

consumption. CMOS is a combination of two types of metal–oxide–semiconductor field-

effect transistors (MOSFETs), i.e., NMOS and PMOS, which are illustrated in Figure 1.

NMOS PMOS

p+n+n+ p+

p-type substrate

n-well

B S DG D SG B

CMOS

n+

well-tied supply-tied

p+

Figure 1. Complementary metal–oxide–semiconductor.

Figure 1 shows that both NMOS and PMOS transistors have four terminals: source

(S), drain (D), gate (G) and bulk (B). The source and drain terminals in an NMOS transistor

occupy two individual deeply doped n+ areas, which are built in a p-type substrate. On the

contrary, the source and drain terminals with their individual deeply doped p+ regions are

formed in an n-well for a PMOS transistor, which is also built in the same p-type substrate.

4

Between the source and drain terminals, there exists the gate terminal, which is a conductive

material to cover a thin insulation layer usually made of silicon dioxide. Previously

polysilicon was applied as gate material in MOS devices, while metal gate is preferred at

present. Generally, we call well or substrate region as the bulk terminal.

The right part of Figures 2 and 3 illustrates the patterns of NMOS and PMOS devices

laid out in EDA tools [23]. In Figure 2, the source and drain regions are formed by Diffusion

layer (or called Active layer in some technology processes) enclosed by NPLUS layer,

while the bulk region is formed by Diffusion layer but enclosed by PPLUS layer. In Figure

3, the source and drain regions are formed by Diffusion layer enclosed by PPLUS layer,

while the bulk region is formed by Diffusion layer but enclosed by NPLUS layer. All of

the source, drain, gate, and bulk regions in the PMOS transistor are enclosed by NWELL

layer.

NMOS

n+n+

p-type substrate

B S DG

p+

Figure 2. NMOS device.

5

PMOS

p+ p+

p-type substrate

n-well

D SG B

n+

Figure 3. PMOS device.

In analog design, the well of a MOSFET (in particular, a critical transistor in terms

of circuit performance) is typically tied to its own source rather than the common well bias

potential through bulk contacts. The purpose of this practice is to reduce the threshold

voltage shift due to the body effect. This kind of devices are thus termed as well-tied

devices. They may seriously affect the density of layout since they must be spaced with a

considerable distance away from other wells [24]. In addition, Figures 4 and 5 show that

analog and digital devices are commonly required to be separated from each other in analog

and mixed-signal design [25][26]. Even in the modern design, these requirements still exist

as shown in the right part of Figure 5. Moreover, LDEs, optical proximity correction and

thermal effects in analog design also require spacing constraints.

6

Figure 4. Mixed-signal integrated circuits.

Figure 5. Mixed-signal designs.

In contrast, for saving silicon area it is normally preferred to merge substrate/well

contacts of the MOS devices in the layout if their bulk terminals are biased at the same

supply potential. If the sources of these devices are connected to appropriate supply, i.e.,

GND or VDD, we call them supply-tied devices [24]. For the supply-tied MOS devices that

are supposed to share the same potential for their bulk terminals, their substrate/well

regions can be merged as well.

7

In this thesis, we propose an advanced graph-based placement representation, called

advanced transitive closure graph (ATCG, for short). Our motivation of developing ATCG

is to achieve constrained placements, that is, keeping space between modules or merging

modules. More details of our proposed ATCG method, including SP-driven TCG approach,

are discussed in Chapter 3 and Chapter 4. It can be included in EDA software to facilitate

IC design tasks.

1.2 Organization of the Thesis

The thesis is organized as follows. Chapter 1 gives a brief introduction of analog

layout design automation and development of placement representations. Moreover, the

motivation of this thesis work is presented.

Chapter 2 reviews the previous work on the general placement methods and the

categorized placement representations. After elaborating on the analog placement problem,

we focus on a survey of different analog placement techniques that have been published

over the time in the literature. Subsequently, we discuss the advantages and weaknesses of

these techniques.

Chapter 3 defines the symmetric-feasible conditions and presents the transformation

between symmetric placement and symmetry-aware TCG. A detailed SP-driven

8

perturbation scheme and its redundancy control are introduced. Our proposed approach is

compared with the other methods and its effectiveness is also demonstrated.

In Chapter 4, we proposes an innovative ATCG placement representation to facilitate

the handling of analog layout design. We detail the transformation between a placement

and its corresponding ATCG. The properties and validity of ATCG are theoretically

proved. After that, our proposed ATCG placement handling mechanism is presented in

detail. Its superiority for analog layout design is verified through our experiments.

Finally, we draw conclusions and discuss the future scope of this work in Chapter 5.

9

2. Previous Work on Placement Methods

In this chapter, different general placement methods and representations are firstly

reviewed. After that, we explain why it is challenging to deal with the analog placement

problem. Then, we survey the techniques that have been utilized in the literature to handle

analog placement.

2.1. Previous Work on General Placement Methods and Representations

2.1.1. General Placement Methods

After over half a century of development, VLSI technology is now penetrating more

deeply and broadly into our everyday modern life. To address the complexity and improve

the productivity, EDA has become an essential aid to IC designers. As a significant step in

physical design EDA, IC placement, which is also called floorplanning, aims to place

assorted circuit components within a chip according to the design requirements. The

principal objective of the placement problem is to locate a set of non-overlapping modules

optimally on a chip. The total area of the chip should be minimized along with the

consideration of certain constraints, such as minimal wirelength, balanced channel density,

satisfactory manufacturability, etc. Not only does an inferior placement greatly affect the

performance of a chip, but also might make the design non-manufacturable.

10

In VLSI layout design, the placement problem of an arbitrary number of functional

rectangular or rectilinear modules/cells consists of two basic NP-hard problems [24],

namely, the chip size minimization problem and the total virtual wirelength minimization

problem. Owing to the complexity of the placement problem, several types of approaches

have been utilized. They can be typically categorized into constructive approaches, branch-

and-bound approaches, analytical approaches, min-cut approaches, iterative approaches,

etc.

Constructive placement methods were among the earlier developed placement

methods for VLSI layout [27]. The placement result is acquired by choosing only one

module at a time and then locating it in the relatively best available position. These

approaches not only strictly depend on the selection order of modules, but also neglect

global views. Therefore, they might lead to poor solutions, even though they are generally

fast.

Branch-and-bound placement methods search all possible layout space using a form

of controlled enumeration. The search range might be reduced by a lower bound calculation

of the objective function. Since the amount of the visited configurations grows

exponentially with the size of the problem, these schemes are applicable only to the small

scale problems. Thus, they have been generally applied to find the optimal solutions to the

placement problems, which only include a very limited number of modules [27].

Since analytical methods were introduced in the 1970’s, they have become one of the

most common techniques in handling the placement problem. Analytical placement

algorithms ordinarily utilize a quadratic or nonlinear wirelength objective function [28].

11

The main advantage of these methods is that the placement problem is transformed into

mathematical formulation, which can be resolved with efficient mathematical solvers.

Although analytical techniques are relatively efficient in dealing with large problems and

have a global view of the placement problem, they are not able to cope with the placement

with some special constraints.

Min-cut placers use graph partitioning algorithms to set the modules/cells [29]. The

basic partitioning is bisection, that is, the circuit is partitioned into two parts. The available

layout area is also divided into two sections by a horizontal/vertical straight cutting line.

Then each of the circuit partitions is assigned into one of the sections. Thus, the original

placement problem is split into two smaller sub-problems. This recursive process of

partitioning and solving is terminated until each section consists of a few or even only one

cell. Since partitioning-based approaches do not directly attempt to minimize wirelength,

the solution obtained by these methods is sub-optimal in term of wirelength.

Good quality placements are typically generated by iterative methods, although a

relatively large amount of time is required. Given an initial configuration, iterative

techniques randomly pick pairs of modules and exchange them. This interchange is

accepted if it leads to a reduced cost. The algorithm keeps on searching within the given

time until no better available results can be found. Simulated annealing (SA) [3] is one of

the most popular iterative algorithms. Another one is genetic algorithm (GA) [4], whose

iterative process is in a similar way, but with different initial configurations.

The concept of SA was originated from the operation of annealing metal, which is a

heating and cooling process to alter the metal structure and make the material more robust.

12

SA sets a variable as temperature in order to simulate this heating and cooling treatment.

The variable is initialized to a positive value and then gradually decreased to zero, which

helps implement the slow cooling process. During the execution, a random solution is

produced on each iteration and compared with the current solution. When the temperature

is relatively high, worse solution may be accepted to avoid only searching and being

entrapped to any local optimum solutions. The possibility of accepting worse solutions is

gradually reduced as the temperature decreases. In this way, SA can effectively find a

global optimum solution even when coping with the problems that contain numerous local

optimums.

The key idea of GA is from “survival of the fittest”, Charles Darwin’s theory of

evolution by natural selection. GA starts with a population consisting of a group of

individuals, which are some solutions to the problem you need to solve. A fitness function

is used to calculate the fitness value for each individual. The individuals with higher value

are selected as the parents and then produce their offspring, who inherit the characteristics

of the parents. Genetic operators, such as crossover, mutation, and inversion, are normally

utilized during the production. The new generation is expected to have better quality than

its parents. This selection process continues until a generation comprised of the best

individuals is found.

In general, both SA and GA have good searching capability, while SA is deemed as

the faster one regarding the execution time [30]. SA and GA are also classified as stochastic

approaches. This kind of algorithms may produce a different result after every run. In

contrast, the algorithms based on formulas or mathematical models are called deterministic,

13

since they can always output the same solution to a specific placement problem [31].

Deterministic approaches usually include constructive techniques, branch-and-bound

techniques, and analytical techniques.

2.1.2. Placement Representations

A placement algorithm generally works with a certain representation in order to

effectively handle the placement, which features various constraints. In the literature, the

placement representations are classified into absolute representations and topological

representations.

Absolute Representations

An absolute representation, also called Jepsen–Gelatt style flat representation [3], is

based on absolute coordinates on a gridless plane. A module/cell can be manipulated by

directly changing its coordinates. This straightforward representation was widely used in

all early layout systems, not only in digital design, such as TimberWolf [4], but also in

analog design, e.g., KOAN/ANAGRAM II [5], PUPPY-A [32], and LAYLA [33].

However, overlaps may be found in the final placement solution and thus additional

processes are still needed to handle the overlap situation, which means computation time

and solution optimality might be inevitably degraded.

14

Topological Representations

Increasingly topological representations have been applied in placement design in the

recent two decades. A topological representation was derived from a slicing placement,

which can be produced by recursively bisecting the layout horizontally or vertically into

smaller modules [12]. A binary-tree, or called slicing tree, is used for the representation of

the slicing placement [10]. A couple of years later, Wong and Liu proposed a normalized

Polish expression (NPE) to represent a slicing placement [11]. Although the slicing

representation has such superiority as smaller solution space and faster run time, it degrades

layout density, especially for analog layout. In addition, most of the analog layout

placements are non-slicing in the real world anyway. Therefore, in the recent years, the

researchers have been paying more attention to non-slicing topological representations,

e.g., SP, BSG, O-tree, B*-tree, MB*-tree, CBL, TCG, TCG-S, HB*-trees, QB-trees, and

WB-trees.

SP is regarded as a flexible representation for general placement. It was proposed by

Mutara et al. [13], who recommended using two sequences of module permutations to

encode the left-right and up-down relations between modules. Since the location

relationship including distance between modules is not transparent to the operations of SP,

constraint graphs are needed to be constructed from scratch for SP cost evaluation after

every perturbation. This is time-consuming and makes SP inconvenient to handle the

placement problems with certain constraints, e.g., boundary modules, preplaced modules,

range constraints, etc.

15

The BSG representation was introduced by Nakatake et al. [14], who suggested to

use a meta-grid structure without physical dimensions to define the orthogonal relationship

between modules. Many redundancies exist because there could be quite a few different

representations corresponding to one placement. Consequently, BSG needs a larger

solution space and longer search time to identify an optimal solution.

Tree-based representations are available to lessen the redundancies in the SP and

BSG representations. They utilize ordered tree to represent compacted placement. The O-

tree representation was proposed by Guo et al. [15] and a binary tree-based representation,

namely B*-tree, was introduced by Chang et al. [16]. Every node of a tree corresponds to

a module of a compacted placement. The root node denotes the bottom-left module. An

edge in an O-tree represents the horizontal relations of two adjacent modules. In a B*-tree,

the left child of a node indicates a right-left relationship between two abutting modules,

while the right child represents an above-below relationship. A representation called MB*-

tree was developed by Lee et al. [34], who proposed an agglomerative multilevel placement

framework. A two-stage technique, i.e., clustering followed by declustering, is employed

to handle complex placement. The advantages of the tree-based representations are the

reduced configuration space and fast packing time. However, they can only represent

compacted placements. Since certain optimal solution might result from uncompacted

placements, these tree-based representations might be only able to find suboptimal

solutions per se.

The CBL representation was proposed by Hong et al. [17]. They defined a corner

block list to represent mosaic placements. A CBL is a three tuple (S, L, T), where S is a

16

sequence of module names, L is a list of module orientations, and T is a list of T-junction

information. It takes linear time to switch a CBL to its corresponding placement. It is also

available to handle several placement constraints, such as boundary constraints, abutment

constraints, etc. However, there is no guarantee of obtaining a feasible solution after each

perturbation. Since CBL can only represent placements without empty rooms, the optimum

placement is hard to be generated if any separation constraint exists.

In a TCG representation, which was first introduced to the EDA area as a promising

placement solution by Lin and Chang [18], two transitive closure graphs are used to

represent the horizontal and vertical relationships between each two modules, respectively.

TCG is able to support incremental update and hold such information as boundary modules,

layout shape, spacing relations among modules. The most important strength of TCG lies

in the fact that the geometric relationship of modules is transparent throughout the graph

operation. This advantage is highly helpful for handling placement with complex

constraints. Since TCG bears a large number of edges, which are needed to be validated

during perturbation, a high computation complexity is inevitable. In addition, Lin and

Chang proposed another graph-based representation, called TCG-S [19], which integrates

TCG with part of SP. The packing time is shortened by using a packing sequence. TCG-S

retains the advantages of TCG and combines them with the desired features of SP.

Nevertheless, validity checking of edges increases the time complexity of the algorithm.

17

2.2. Analog Placement Techniques

2.2.1 Analog Placement Problem

Consumer telecommunication systems and wireless communication devices, such as

cell phones and wireless local area network systems, require high-performance analog IC.

Currently mixed-signal ICs, i.e., integration of analog and digital circuits together, are

pervasive in our real world. The typical examples include system-on-chip (SoC) devices,

cellular, Bluetooth, etc. Compared with well-developed digital design automation,

automated design for analog circuits actually far lags behind [35]. Although analog circuits

normally contain only a small number of devices, they are most sensitive to layout

parasitics, and the inherent analog layout requirements of symmetry and matching make a

unique challenge to analog designers. In the design of such analog IC, people have to take

into account the balance of layout-induced parasitic effects to avoid performance

degradation, since analog circuits are very sensitive to parasitic disturbance, crosstalk, and

power supply noise.

The ideal tool for analog IC designers should smartly explore various floorplans and

then instantly produce a best response for the subsequent verification. So far, all automation

attempts have still been struggling with generating high qualified analog layouts [36]. EDA

developers have tried to solve the analog layout generation problem by use of digital

placement techniques. However, it seems hard to satisfy analog designers especially in

terms of special analog constraints. Since most of the analog circuits are quite distinct from

18

one another based on their various applications, it is still too complicated to be managed by

the existing EDA tools. Therefore, automated analog layout design has been always

stubborn work in the past decades and analog designers tend to manually lay out their

circuits to seriously take into account various constraints. However, this is an error-prone

and time-consuming process that suffers from a lot of productivity problems.

Meanwhile, technology evolution towards nanometer era has imposed many

advanced constraints on analog layout design, such as various layout dependent effects

(LDE) [1][2]. Hence, its high complexity demands a proper representation to deal with

susceptible analog placement configurations and nontrivial constraints. The traditional

analog layout constraints include symmetry, common-centroid, and proximity constraints

[37], among others.

The layout design of differential structure always demands to consider symmetry

constraints, which help suppress the parasitic mismatch and thermal effect between two

identical signal flows in the differential modules. Normally a current-mirror or differential-

pair module needs to apply common-centroid constraints to reduce process-induced

mismatch among the devices. The proximity constraints are usually required in the structure

that needs specified distances among enclosed components. They help form a connected

placement of modules so that the modules can share a connected substrate or well region

to reduce the layout area, the interconnecting wire length, and the substrate coupling effect.

The placement outline of modules with such constraints can be irregularly rectilinear in

order to properly utilize silicon area.

19

2.2.2 Analog Placement Techniques for Symmetry Constraints

For optimal analog placement design, researchers have been consecutively

developing many techniques using various topological representations to meet the primary

placement requirements, e.g., symmetry constraints. Normally, they use an SA algorithm

to perturb placement configurations while satisfying symmetry constraints [39].

For the first time, Balasa and Lampaert [40] explored the SP representation in the

context of symmetry placement for analog layout design and derived the symmetric-

feasible conditions in SP. This is the first work on symmetry-aware topological placement

study, which triggered the intensive research in this area for the subsequent decade. After

several years, Koda et al. found a few intrinsic defects in this method, such as incorrect

necessary condition, overlapping modules, etc. [41]. To address these issues, they proposed

an approach based on linear programming (LP) by using “symmetric-real-feasible SP”,

where linear expressions are employed to shorten the running time. Nevertheless, high

packing complexity is inevitable due to the nature of LP.

A few tree-based representations, such as O-tree and B*-tree, have been also applied

to reduce high packing complexity for achieving analog symmetric placement. The O-tree

representation was proposed by Pang et al. [42], who introduced symmetric X-feasible and

Y-feasible conditions to tackle the symmetry constraints. However, the feasibility of the O-

tree solutions can only be detected after packing, which means they have to explore the

whole configuration space to find feasible solutions with the symmetry constraints. Thus,

this work suffers from longer run time. An augmented B*-tree representation was proposed

20

by Balasa et al. to handle the symmetry constraints [43] by means of symmetric-feasible

conditions on B*-tree. The symmetric-feasible B*-tree is efficiently assessed by using a

segment tree, which is a data structure normally deployed in computational geometry.

A hierarchical B*-trees (HB*-trees) was proposed by Lin et al. [20], who introduced

a concept of symmetry island to solve symmetry constraints. A symmetry island is formed

by modules of the same symmetry group in a single connected placement. Based on this

concept and the B*-tree representation, an automatically symmetric-feasible (ASF) B*-

trees is used to directly model the placement of a symmetry island. Then HB*-trees are

formed to simultaneously optimize the placement with both symmetry islands and non-

symmetric modules. This work tends to be deemed as one of the best performed analog

placers in the past two decades. Nevertheless, even though this is the first approach that can

handle the placement with symmetry constraints in linear time, it can only cope with the

situation where symmetric modules belonging to the same symmetry group are closely

adjacent to each other, i.e., no asymmetric module among the symmetric ones.

The TCG and TCG-S representations have been also utilized to deal with the analog

placement considering symmetry constraints. Zhang et al. proposed TCG-based

symmetric-feasible conditions for implementing analog symmetric placements [44].

However, this work is only limited to the analog circuits that feature one symmetry group.

Later He and Zhang presented a complete set of symmetric-feasible conditions to handle

the multiple symmetry constraints for analog layout placement [45]. Although perturbation

time complexity is improved to linear time, the symmetric packing operation tends to be

too complicated and heuristic. Lin et al. introduced TCG-S representation to realize the

21

symmetric placement [46], but the proposed symmetry-feasible conditions are not

applicable to every possible symmetric situation. Moreover, the symmetric modules fail to

include self-symmetric ones and the proposed perturbation scheme cannot guarantee the

promised symmetric feasibility.

2.2.3 Analog Placement Techniques for Other Constraints

Analog placement with symmetry constraints has been extensively studied in the

literature. Although people have extended their scope to other analog constraints, so far

there are only a few previous works that can simultaneously consider symmetry constraints

along with other placement constraints.

In [47] Tam et al. proposed to utilize SP as the representation in the SA engine to

handle the following placement constraints: device separation constraint, alignment

constraint, abutment constraint, boundary constraint, preplaced constraints and range

constraint besides symmetry constraint. Augmented constraint graphs are deployed to

satisfy all the placement and symmetry constraints at the same time by adjusting the edge

weights. Since Balasa’s method [40] is adopted, the inherent problems in their SP

symmetric-feasible conditions are inevitable.

Another approach was proposed by Xiao and Young [48], who defined their own

feasibility conditions also based on SP representation. These conditions are applied to

generate the placements satisfying the common centroid and 1-D symmetry constraints.

22

Their developed condition definitions are based on the concept of group clustered

placements, which is similar to HB*-trees.

Ma et al. [49] improved the work of Tam et al. [47]. They presented a placement

methodology that can simultaneously handle symmetry constraints, common centroid

constraints, and other general placement constraints. C-CBL representation is utilized to

represent the placement of a common centroid group, which is treated as a super-block in

SP. However, the intrinsic problems still exist as in [47].

Recently, Ou et al. proposed an LDE-aware analytical analog placement model [9]

by returning to the traditional absolute coordinate representation in order to deal with those

advanced proximity and spacing constraints. However, since geometry overlaps are

inevitable in the initial global placement solutions, a complex overlap removal scheme has

to be resorted to in the subsequent detailed placement process. That means both

computational efficiency and solution optimality are unfortunately compromised.

Although the B*-tree representation has shown to be highly effective and efficient

for floorplan/placement problems, it has an intrinsic limitation in deriving module

adjacency information directly from the representation itself. To address this issue, Tsao et

al. presented a corner stitching compliant B*-tree (CB-tree, for short) to remedy the

significant deficiency in its module adjacency handling [50]. A CB-tree is a B*-tree

integrated with modified corner stitching to offer much higher flexibility/efficiency,

especially for adjacent module identification/packing. Wu et al. proposed a representation

combining a quadtree data structure and the B*-tree representation, i.e., QB-trees [21].

They presented a comprehensive system with the hybrid representation to handle all the

23

general geometrical constraints, while achieving lower-bound time complexity of module

packing and constraint handling. But its core scheme of symmetry handling still follows

HB*-trees [20].

To assist in Fin Field Effect Transistors (FinFET)-based analog layout designs, Wu

et al. presented a scheme for parasitic-aware common-centroid placement and routing

dedicated to current-ratio matching [51]. Although this is among the earliest works on

FinFET layout automation in the literature, the proposed method itself is only limited to

analytical modeling and formulation. Instead of using any common EDA tools, a Matlab

toolbox was deployed for verification purpose in the experiments. Recently, Lu et al.

proposed WB-trees representation [22], which is a hybrid of window mesh data structure

and the CB-tree representation. They presented how to handle FinFET-induced constraints,

such as fin alignment, mask conflict, and mask density balance.

In the recent years, some research activities have been also reported in the literature

to study the placement and routing strategies for special analog and mixed-signal circuits

or structures. For instance, Lin et al. proposed a method for parasitic-aware common

centroid binary-weighted capacitor layout generation [52]. It includes the consideration of

placement, routing, and unit capacitor sizing. Such generated capacitors (e.g., metal-oxide-

metal (MOM) capacitors) can be used in switched capacitor circuits, digital to analog

converters, analog to digital converters, etc. [53].

24

2.3. Summary

In this chapter we reviewed different general placement methods and representations.

Then we introduced the analog placement problem and surveyed various techniques for

handling analog placement. We also discussed the advantages and limitations of these

techniques.

Although tree-based representations have the advantages of reduced configuration

space and fast packing time, we still should notice their limitations. For instance, the

relationship between any two modules is unclear before the packing process, which may

hinder the generation of an efficient placement solution, especially in the analog layout

design. In TCG representation the transparent geometric relationship of modules is highly

helpful for handling analog placement with complex constraints. Moreover, TCG

potentialities of handling device merging or separation would benefit analog layout design

with advanced constraints.

In the following chapter, we will introduce our proposed SP-Driven TCG method.

We will also show how this approach can effectively and efficiently deal with analog

placement.

25

3. Placement with SP-Driven TCG for Advanced Analog Constraints

In this chapter, we propose a sequence-pair (SP) driven transitive-closure-graph

(TCG) method to effectively and efficiently deal with analog placement, which is an

indispensable stage in the analog IC layout design. Besides discussing the promising benefit

of the proposed method in handling advanced analog constraints, this chapter is more

focused on the algorithmic complexity reduction when satisfying symmetry constraints.

We also present a redundancy control scheme among the representation states in order to

generate high-performance analog placement with high computation efficiency. Our

experimental results demonstrate the efficacy of our proposed method.

3.1. Advantages of SP-Driven TCG for Advanced Analog Constraints

We believe TCG by nature provides such a capability of tackling the advanced analog

constraints, since the relationship between each two vertices in TCG is well defined and

the weight of each edge between two vertices can be used to control proximity or merging

situations of two corresponding modules. Therefore, we investigate the TCG representation

to handle advanced analog constraints. To open a door to that niche, in this section we will

focus on a better symmetry-aware placement solution on top of the previous works in the

literature. In particular, we propose an SP-driven TCG method (SP-TCG for short) to

facilitate TCG operations by taking advantage of the SP’s unique closure feature.

26

Before going into the details of our proposed SP-TCG representation, let’s have a

quick look back at the relevant topological representations previously published in the

literature, including SP, TCG, TCG-S, and B*-tree.

Sequence Pair (SP)

SP is an ordered pair of module permutation sequences, which can be denoted as α-

sequence and β-sequence, respectively. We can use SP to encode a placement, and then

decode it to obtain the topological relationship between every two modules. The basic rules

introduced in [13] are as follows. Module m1 is to the left (right) of module m2 if m1 appears

before (after) m2 in both α- and β-sequences. Module m1 is above (below) module m2 if m1

appears before (after) m2 in α- sequence and m1 appears after (before) m2 in β-sequence. As

an example, Figure 6(a) depicts a placement with five modules. Figure 6(b) is the

corresponding SP of the placement in Figure 6(a). The α-sequence is (M2, M3, M1, M5, M4),

while the β-sequence is (M1, M2, M3, M4, M5). As M1 appears before M5 in both α-sequence

and β-sequence, M1 is to the left of M5. As M4 appears after M5 in α-sequence and before

M5 in β-sequence, M4 is below M5.

Transitive Closure Graph (TCG)

A TCG representation consists of two graphs, namely horizontal transitive closure

graph Htcg and vertical transitive closure graph Vtcg. Both graphs help describe the

geometric relations among modules. In Htcg (Vtcg), a vertex v represents a module m. The

27

value associated with a vertex indicates the width (height) of the corresponding module,

and a directed edge <vi, vj> represents that module mi is to the left of (below) module mj.

For instance, Figure 6(c) shows the corresponding TCG representation of the placement in

Figure 6(a). There is an edge between M1 and M5 in Htcg and there is an edge between M4

and M5 in Vtcg.

Transitive Closure Graph-Sequence (TCG-S)

TCG-S representation combines TCG and part of SP representation. TCG-S is

composed of a horizontal transitive closure graph Htcg, a vertical transitive closure graph

Vtcg, and the packing sequence, i.e., β-sequence of SP, which are to represent a placement.

The β-sequence is the topological order of both Htcg and Vtcg. Therefore, it doesn’t need to

execute extra operations on a TCG to extract the module packing sequence. Figure 6(d) is

an example of TCG-S representation of the placement in Figure 6(a).

B*-tree

A B*-tree is a representation based on ordered binary-trees. The root of a B*-tree

indicates the bottom-left comer module in a placement. Two modules represented by a node

and its left child must have a left-right relationship. A node and its right child indicate that

their corresponding modules below and above are related with each other. The left subtree

of a node corresponds a set of modules, which are on the right side of the module

represented by the node. Similarly, the right subtree of a node means the modules are

28

located on the upper side of the module, which corresponds to the node. An example of B*-

tree is shown in the Figure 6(e), which corresponds the placement in Figure 6(a). For

instance, N4 is on the left subtree of N1, while N2 is on the right subtree of N1.

(a)

(M2 M3 M1 M5 M4 , M1 M2 M3 M4 M5)

(b)

(c)

(d) (e)

V1

V3

V2

V4

V5

1 2

1

2 2.5

Htcg

V1

V3

V2

V4

V5

2 1

1

2.5 2

Vtcg

β : M1 M2 M3 M4 M5

V1

V3

V2

V4

V5

1 2

1

2 2.5

Htcg Vtcg

V1

V3

V2

V4

V5

2 1

1

2.5 2

N1

N4 N2

N5 N3

M1
M4

M2

M5

M3

Figure 6 Relevant topological representations examples: (a) Corresponding placement,
 (b) SP, (c) TCG, (d) TCG-S, (e) B*-tree.

29

In Table I, we summarize the features of different placement approaches with

topological representations, including SP, TCG, TCG-S, B*-tree, and this work. The last

column “Advanced Constr.” means whether the advanced analog constraints can be

standalone explored by each individual approach.

Table I. Time complexity comparison of different topological representations in the

context of symmetry and advanced constraints.

Approaches Packing Perturbation Advanced Constr.

SP
General O(n2) [13] O(1) No

Symmetry O(n2) [40] O(1) No

TCG

General O(n2) [18] O(n2) Yes

Symmetry O(n2) [44] O(n) Yes

TCG-S
General O(nlgn) [19] O(n) Yes

Symmetry O(n2) [46] O(n2) Yes

B*-Tree
General O(n) [16] O(n) No

Symmetry O(n) [20][21] O(lgn) No

SP-TCG
General. O(nlgn) O(n) Yes (This Work)

Symmetry O(nlgn) O(n) Yes (This Work)

30

3.2. Symmetric-Feasible TCG and Placement

3.2.1 Symmetric-Feasible Conditions

In this work, we adopt the idea of symmetry island (called cluster throughout the

chapter below) from [20], which is extended to the TCG representation. A symmetry cluster

includes any self-symmetric modules and symmetric pairs belonging to one single

symmetry group. Here, we use si and pi to denote the ith self-symmetric module and the

right one of the ith symmetric-pair modules, respectively. In the following, we define three

symmetric-feasible conditions for an SP-driven TCG satisfying symmetry constraints.

Condition-1: si and sj (i≠j) must be straight vertically related.

Condition-2: si and pj are horizontally or vertically related. Meantime, si can only be set on

the left of pj on the horizontal axis.

Condition-3: pi and pj (i≠j) are horizontally or vertically related.

3.2.2 Symmetry-Aware Placement

Without loss of generality, here we assume the symmetry axis is vertical. We can use

the right half of a self-symmetric module to represent itself. For a pair of symmetric

modules, the right one is utilized as the representative. In this way, we can build a TCG

from a placement consisting of the half part of a symmetric cluster. By following the

convention of previous analog placement algorithms in the literature, we also use SA in

31

this work to optimize and derive the best placement solution. During the SA-based

perturbation, the defined TCG symmetric-feasible conditions above should be always

obeyed. Afterwards we can derive the left part to form a complete placement by mirroring

the representative, i.e., the right part of the symmetric cluster.

With the geometric outline of the complete placement, a super module, which is

defined as the integral symmetric cluster, can be included into the original TCG

representation. Putting it simply, our basic idea is to first pack a symmetric cluster into a

super module for each symmetry group. Then asymmetric modules can be packed with all

new generated super modules to form the final placement. For each packing operation, we

can always use the same packing scheme in O(nlgn) time as introduced in [46], where n is

the number of the modules.

3.3. SP-Driven Perturbation of Symmetric-Feasible TCG

There is an intrinsic equivalent relationship between SP and TCG [19]. Therefore,

we can utilize SP to guide the perturbation operations of a symmetric-feasible TCG. Our

symmetric-feasible conditions and inherent properties of SP guarantee symmetric

feasibility and validity of TCG after the random perturbation process.

32

3.3.1. Rotation

Orientation of any module or super module in a symmetric-feasible TCG and any

symmetric-pair module in a super module is feasible to be tuned. We define such a

geometric orientation change operation as rotation. Since a rotation operation does not

change the topological structure of all the modules as a whole, it only needs constant time

to rotate a non-self-symmetric module or a super module. Figures 7(a) and 8(a) show that

we can rotate the module P1 by swapping the corresponding nodes weights, which are 2

and 4 colored sky blue, in both Htcg and Vtcg, while the sequence pairs keep the same as

before. The resulted placement is depicted in Figure 8(b).

33

S1

P1

S2

P3

P2

2 3

2

1 2

Htcg

P1

3 3

4

2 5

Vtcg

S2 P2

S1 P3

α : S2 P2 S1 P1 P3

β : S1 P1 S2 P2 P3

P1

P1

(a)

S1

P1

P2

P3

S2

(b)

Figure 7 One example before the rotation operation: (a) SP-TCG, (b) Corresponding
placement.

34

S1

P1

S2

P3

P2

2 3

4

1 2

Htcg

S1

P1

S2

P3

P2

3 3

2

2 5

Vtcg

α : S2 P2 S1 P1 P3

β : S1 P1 S2 P2 P3

P1

P1

(a)

S1 P1

P2

P3

S2

(b)

Figure 8 One example after the rotation operation: (a) SP-TCG, (b) Corresponding
placement.

35

Lemma 1. Given a symmetric-feasible TCG, the perturbed TCG is still symmetric-

feasible and valid under a rotation operation, and this operation only needs O(1) time.

Proof: Due to the unchanged TCG topology after a rotation operation, the newly

obtained TCG is still symmetric-feasible and valid. It only takes O(1) time to swap the

weights of two nodes, which represent the same rotated non-self-symmetric module in both

Htcg and Vtcg. Q.E.D.

3.3.2. Exchange

Any two modules including super modules in a symmetric-feasible TCG, two self-

symmetric modules or two symmetric-pair modules in a super module are free to swap their

geometric positions. Such an operation is defined as exchange. We can exchange any two

modules in a symmetric-feasible TCG except for the following situation, which is a self-

symmetric module and a symmetric-pair module are horizontally related to each other in a

super module. If they are allowed to be exchanged, the symmetric feasible Condition-2 will

be violated.

The example illustrated in Figures 9 and 10 presents how an exchange operation

works. When we swap the nodes P1 and P2 along with their weights in both Htcg and Vtcg

as shown in Figures 9(a) and 10(a), the positions of the corresponding modules are

exchanged. In Figure 9(b) module P1 is on the top of module P2, while after the nodes

36

swapping module P1 is changed to the bottom of module P2, whose result is depicted in

Figure 10(b). In the meantime, the positions of P1 and P2 in the sequence pairs are swapped

as well.

37

S1

P2

S2

P3

P1

2 4

3

1 2

Htcg

S1

P2

S2

P3

P1

3 2

3

2 5

Vtcg

α : S2 P1 S1 P2 P3

β : S1 P2 S2 P1 P3

P1

P2 P1

P2

(a)

S1

P1

P2

P3

S2

(b)

Figure 9. One example before the exchange operation: (a) SP-TCG, (b)
Corresponding placement.

38

S1

P1

S2

P3

P2

2 3

4

1 2

Htcg

S1

P1

S2

P3

P2

3 3

2

2 5

Vtcg

α : S2 P2 S1 P1 P3

β : S1 P1 S2 P2 P3

P1

P2P1

P2

(a)

S1 P1

P2

P3

S2

(b)

Figure 10. One example after the exchange operation: (a) SP-TCG, (b) Corresponding
placement.

39

Lemma 2. Given a symmetric-feasible TCG, the resulting TCG after an exchange

operation is still symmetric-feasible and valid, and it takes O(1) time.

Proof: Since the exchange operation only swaps two nodes in both constraint graphs

without changing the topology of the original TCG, the resulting graphs are still symmetric-

feasible and valid. Exchanging the corresponding two nodes only takes O(1) time. Q.E.D.

3.3.3 Change

Choosing any two modules in α-sequence, then moving the edges between the

corresponding nodes in a valid TCG (either horizontal or vertical) to its counterpart graph,

is defined as SP-driven move. Similarly, picking any two modules in β-sequence, then

moving the edges between the corresponding nodes in a valid TCG (either horizontal or

vertical) to its counterpart graph, and changing their direction is defined as SP-driven move

reverse. When we utilize the above-defined operations to a symmetric-feasible TCG and

eventually still satisfy the symmetric-feasible conditions, both operations are called SP-

driven symmetric move and SP-driven symmetric move reverse, respectively. We define a

series of SP-driven move, SP-driven move reverse, SP-driven symmetric move, and SP-

driven symmetric move reverse operations as SP-driven change operation.

We use SP-driven change operation to vary the relationship between two modules in

a symmetric-feasible TCG. The perfect sequence closure nature of SP facilitates and

40

guarantees the validity of the varied TCG through a series of SP-guided move and/or move

reverse operations, while it does likewise to a symmetric-feasible TCG with the aid of the

symmetric-feasible conditions. The following examples help describe the details of the SP-

driven change operation with its pseudocode presented at first in a general way.

SP-driven move operation

Algorithm: SPdrivenMove

Input: α-sequence, β-sequence and a valid TCG

Output: a valid updated TCG after α-sequence-driven move

Begin

1 randomly choose two different modules a and b

2 save the modules between a and b, exclusive of a, in the α-sequence
into set M

3 for (each module c in set M)

4 check the relationship between modules a and c

5 move the edge between a and c to the counterpart graph

6 endfor

7 update α-sequence

End

Figure 11. Pseudocode of the SP-driven move operation.

41

The pseudocode of the SP-driven move operation is listed in Figure 11. Here we use

an example illustrated in Figures 12 and 13 to show how this operation works efficiently.

Modules M3 and M1 in Figure 12 are randomly chosen in α-sequence, which leads to

changing the relationship between M3 and M4, then between M3 and M1, as shown by the

dashed edges. The dashed edge between M3 and M4 is moved from Htcg as shown in Figure

12(a) to Vtcg as depicted in Figure 13(a), while the dashed edge between M3 and M1 is

transferred from Vtcg in Figure 12(a) to Htcg in Figure 13(a). The obtained placement in

Figure 13(b) shows the effectiveness of the SP-driven move operation. Since there is only

one for-loop, the analysis of our algorithm SPdrivenMove in Figure 11 shows its time

complexity is O(n), where n is the number of modules.

42

M1 M2

M3 M4

M5

1M6

43 1

31 1

Htcg

M1 M2

M3 M4

M5

1M6

22 1

13 4

Vtcg

α : M3 M4 M1 M2 M6 M5

β : M1 M2 M3 M4 M5 M6

M3 M1M4

(a)

M1

M2

M3 M4

M6

M5

(b)

Figure 12. One example before the SP-driven move operation: (a) SP-TCG, (b)
Corresponding placement.

43

1

43 1

31 1

M1 M2

M3 M4

M5

M6

Htcg

M1 M2

M3 M4

M5

M6

22 1

13 4

Vtcg

α : M4 M1 M3 M2 M6 M5

β : M1 M2 M3 M4 M5 M6

M3M1M4

(a)

M1

M2

M3

M4

M6

M5

(b)

Figure 13. One example after the SP-driven move operation: (a) SP-TCG, (b)
Corresponding placement.

44

SP-driven move reverse operation

The SP-driven move reverse operation works in a similar way, while two modules

are randomly chosen in β-sequence other than α-sequence. If we describe the operations in

terms of the graphs, we will not only move the edge between these two selected modules

to the counterpart graph, but also flip over the edge. The pseudocode of the SP-driven move

reverse operation is listed in Figure 14.

Algorithm: SPdrivenMoveReverse

Input: α-sequence, β-sequence and a valid TCG

Output: a valid updated TCG after β-sequence-driven move reverse

Begin

1 randomly choose two different modules a and b

2 save the modules between a and b, exclusive of a, in the β-sequence into
set M

3 for (each module c in set M)

4 check the relationship between modules a and c

5 move and reverse the edge between a and c to the counterpart graph

6 endfor

7 update β-sequence

End

Figure 14. Pseudocode of the SP-driven move reverse operation.

45

The example illustrated in Figures 15 and 16 shows the high efficiency of the SP-

driven move reverse operation. We randomly choose modules M3 and M2 in β-sequence

as shown in Figure 15. The dashed edges are used to present the change of the relationship

between M3 and M1, and then between M3 and M2. While the dashed edge between M3

and M1 is moved and reversed from Vtcg as depicted in Figure 15(a) to Htcg in Figure 16(a),

the converse dashed edge between M3 and M2 is transferred from Htcg in Figure 15(a) to

Vtcg in Figure 16(a). The obtained placement in Figure 16(b) shows the effectiveness of the

SP-driven move reverse operation. Since there is only one for-loop, the analysis of our

algorithm SPdrivenMoveReverse in Figure 14 shows its time complexity is O(n), where n

is the number of modules.

46

M3 M2

M1 M4

M5

M6

43 1

31 1

Htcg

M3 M2

M1 M4

M5

M6

22 1

13 4

Vtcg

α : M4 M1 M3 M2 M6 M5

β : M3 M1 M2 M4 M5 M6M3 M2M1

(a)

M1

M2

M3

M4

M6

M5

(b)

Figure 15. One example before the SP-driven move reverse operation: (a) SP-TCG,
(b) Corresponding placement.

47

43 1

31 1

M3 M2

M1 M4

M5

M6

Htcg

M3 M2

M1 M4

M5

M6

22 1

13 4

Vtcg

α : M4 M1 M3 M2 M6 M5

β : M1 M2 M3 M4 M5 M6M3M2M1

(a)

M1

M2

M3

M4

M6

M5

(b)

Figure 16. One example after the SP-driven move reverse operation: (a) SP-TCG,
(b) Corresponding placement.

48

SP-driven symmetric move operation

We apply the SP-driven symmetric move operations to perturb symmetric-feasible

TCG, which represents the right half of a symmetry cluster. The pseudocode of the SP-

driven symmetric move operation is listed in Figure 17. It is similar to the general case, and

its time complexity keeps O(n), where n is the number of symmetric modules.

49

Algorithm: SPdrivenSymMove

Input: α-sequence, β-sequence and a symmetric-feasible TCG

Output: an updated symmetric-feasible TCG after α-sequence-driven
symmetric move operation

Begin

1 randomly choose a number between 0 and the total module number minus 1
as loop number Nl

2 for (each loop through Nl)

3 randomly choose two different modules a and b, b is next to a on the right

4 if (a is a symmetric-pair module)

5 check the relationship of a and b

6 move the edge between a and b to the counterpart graph

7 else

8 if (a is a self-symmetric module && b is a symmetric-pair module &&
a is on the left of b in β-sequence)

9 check the relationship of a and b

10 move edge between a and b to the counterpart graph

11 else

12 continue

13 endif

14 endif

15 update α-sequence

16 endfor

End

Figure 17. Pseudocode of the SP-driven symmetric move.

50

Let us use another example to illustrate SP-driven symmetric move method. Figure

18 illustrates how to change a symmetric-feasible TCG through three consecutive SP-

driven symmetric move operations.

S1

S2

P1

P2

P3

(a)

S1

P1

S2

P2

P3

2 2

2

3 1

Htcg

S1

P1

S2

P2

P3

1 4

3

1 1

Vtcg

α : S2 S1 P1 P2 P3

β : S1 P1 S2 P2 P3

S1 P1

S1 P1

51

α : S2 P1 S1 P2 P3

β : S1 P1 S2 P2 P3

P3P2

α : S2 P1 S1 P3 P2

β : S1 P1 S2 P2 P3

P3S1

S1 P3

(b)

S1

P1

S2

P2

P3

2 2

2

3 1

Htcg

S1

P1

S2

P2

P3

1 4

3

1 1

Vtcg

α : S2 P1 P3 S1 P2

β : S1 P1 S2 P2 P3

S1

S2

P1

P2

P3

(c)

Figure 18. One example of three consecutive SP-driven symmetric move operations:
(a) SP-TCG and its corresponding placement before the operations, (b) SP during the

operations, (c) SP-TCG and its corresponding placement after the operations.

52

Figure 18(a) depicts that S1 and P1, as symmetric representatives, are randomly

selected from α-sequence and then the dashed edge between S1 and P1 is moved from Htcg

to Vtcg. Here before the move, we have to check the symmetry type of S1 and P1. Since

self-symmetric S1 is on the left of symmetric-pair P1 in both α- and β-sequences (i.e., S1

is topologically located on the left of P1), the move operation mentioned above (i.e., P1 is

moved to the top of S1) is acceptable. Otherwise, such a move operation is not allowed.

As the next operation, P2 and P3 are picked at random in α-sequence as shown in

Figure 18(b). Since P2 is a symmetric-pair module, no other conditions are required to be

satisfied. So we can directly move the dashed edge between P2 and P3 from Htcg to Vtcg, as

illustrated in Figures 18(a) and (c). The third move operation is similar to the first one as

shown in Figure 18(c), where one can clearly see the perturbation effectiveness in terms of

compactness of the final placement.

SP-driven symmetric move reverse operation

The SP-driven symmetric move reverse operation functions like the SP-driven

symmetric move operation, but on the β-sequence. When we move the edge between two

modules to the counterpart graph, we also need to reverse the edge to its opposite direction.

The symmetric move reverse operations are also used to perturb symmetric-feasible TCG.

Figure 19 gives the pseudocode of the SP-driven symmetric move reverse operation.

Similarly to the general case, its time complexity remains O(n), where n is the number of

symmetric modules.

53

Algorithm: SPdrivenSymMoveReverse

Input: α-sequence, β-sequence and a symmetric-feasible TCG

Output: an updated symmetric-feasible TCG after β-sequence-driven
symmetric move reverse operation

Begin

1 randomly choose a number between 0 and the total module number minus 1
as loop number Nl

2 for (each loop through Nl)

3 randomly choose two different modules a and b, b is next to a on the right

4 if (a is a symmetric-pair module)

5 check the relationship of a and b

6 move and reverse the edge between a and b to the counterpart graph

7 else

8 if (a is a self-symmetric module && b is a symmetric-pair module &&
a is on the left of b in α-sequence)

9 check the relationship of a and b

10 move and reverse the edge between a and b to the counterpart graph

11 else

12 continue

13 endif

14 endif

15 update β-sequence

16 endfor

End

Figure 19. Pseudocode of the SP-driven symmetric move reverse.

54

The example depicted in Figure 20 illustrates the mechanism of the SP-driven

symmetric move reverse operation. It presents that we can use two (or more) consecutive

SP-driven symmetric move reverse operations to effectively change a symmetric-feasible

TCG.

S1

S2

P1

P2

P3

(a)

S1

P1

S2

P2

P3

2 2

2

3 1

Htcg

S1

P1

S2

P2

P3

1 4

3

1 1

Vtcg

α : S2 P1 P3 S1 P2

β : S1 S2 P1 P3 P2P3 P2

55

S2 P1α : S2 P1 P3 S1 P2

β : S1 S2 P1 P2 P3P1S2

α : S2 P1 P3 S1 P2

β : S1 P1 S2 P2 P3

(b)

S1

P1

S2

P2

P3

2 2

2

3 1

Htcg

S1

P1

S2

P2

P3

1 4

3

1 1

Vtcg

α : S2 P1 P3 S1 P2

β : S1 P1 S2 P2 P3

S1

S2

P1

P2

P3

(c)

Figure 20. One example of two consecutive SP-driven symmetric move reverse operations:
(a) SP-TCG and its corresponding placement before the operations, (b) SP during the

operations, (c) SP-TCG and its corresponding placement after the operations.

56

Figure 20(a) shows an initial SP-driven TCG with the corresponding placement. The

SP changes during the move reverse operations are indicated in Figure 20(b). We first

randomly select P3 and P2, as symmetric representatives, from β-sequence. Since P3 is a

symmetric-pair module, we can directly move and reverse the dashed edge between P3 and

P2 from Htcg to Vtcg, as illustrated in Figures 20(a) and (c).

Then S2 and P1 are picked at random from β-sequence, while their positions in α-

sequence are needed to be checked. Because self-symmetric S2 is on the left of symmetric-

pair P1 in both α- and β-sequences (i.e., S2 is topologically located on the left of P1), we

can move and reverse the dashed edge between S2 and P1 from Htcg to Vtcg (i.e., P1 is

moved to the bottom of S2), as depicted in Figures 20(a) and (c). Figure 20(c) exhibits the

compact final placement result after the effective perturbations as listed above.

Lemma 3. Given a symmetric-feasible TCG, an SP-driven change operation

guarantees symmetric feasibility and validity of the resulting TCG. Such an operation takes

O(n) time, where n is the number of modules.

Proof: Given two symmetric modules within a symmetric cluster, there are total four

types of combination: msms, mpmp, msmp, and mpms, where ms stands for any self-symmetric

module and mp represents any representative symmetric-pair module. Below we will

analyze each situation in detail.

(1) msms: The relationship of two distinct self-symmetric modules can only be

represented in SP as (mS2mS1) (mS1mS2) or (mS1mS2) (mS2mS1). If we change any one of these

57

sequences, for instance, (mS1mS2) (mS1mS2), the relation of mS1 and mS2 is turned from vertical

to horizontal, which contradicts symmetric-feasible Condition-1.

(2) mpmp: SP (mp1mp2) (mp1mp2) or (mp2mp1) (mp2mp1) represents that two distinct

representative symmetric-pair modules are horizontally related. We can tell that any change

on α or β-sequence, for example, (mp2mp1) (mp1mp2), makes the relationship of two modules

turn to vertical. Meanwhile, symmetric-feasible Condition-3 is still satisfied. This is also

true for the vertical relationship originally between m p1 and m p2.

(3) msmp or mpms: When mS is horizontally located on the left of mp, SP (msmp) (msmp)

indicates that change of any one sequence leads to a vertical relationship of these two

modules. However, the state represented by SP (mpms) (mpms) violates symmetric-feasible

Condition-2.

Based on the analysis above, all these situations correspond to two main conditions

as Line-4 and Line-8 in Figure 19. Moreover, every SP can generate a feasible placement

and correspond to an equivalent valid TCG. Therefore, an SP-driven change can assure

both symmetric feasibility and validity of the resulting TCG. In Figure 19, Line-1 implies

that there are at most n-1 modules in set M, n is the total number of modules. Thus, the

worst case is n-1 modules need to be checked. As for the identification of relationship

between two modules, the edge move operation between the graphs, and the update of

sequences, all the relevant operations only take O(1) time. Hence, the SP-driven move

operation takes O(n) time, where n is the number of modules. Similarly, the SP-driven

move reverse operation also needs O(n) time. In contrast, the symmetric verification only

requires O(1) time. The SP-driven symmetric move reverse operation is alike, taking O(n)

58

time as well. Therefore, the time complexity of an SP-driven change operation is O(n) time,

where n is the number of modules. Q.E.D.

Theorem 1. The solution space of symmetric-feasible SP-driven TCG can be fully

explored by using random rotation, exchange, and change operations. The transformation

of two TCG configurations takes at most O(n) time, where n is the number of modules.

Proof: We may clearly view the exploration of the TCG configuration space with the

aid of the corresponding SP. According to the features of the rotation, exchange and change

operations, a module can be randomly changed to any valid position in both α- and β-

sequences. In addition, according to Section 3.2.2, it is ensured that the perturbed TCG

satisfying the symmetric-feasibility conditions can map to a valid symmetric placement.

This means the full exploration of the solution space can be performed by these operations.

Obviously, the time complexity of the operations above is O(n), where n is the number of

modules. Q.E.D.

3.4 Perturbation Redundancy Control

During SP-driven TCG perturbation, some states may repeatedly occur due to

randomness. We anticipate that redundant packing process would waste considerable time.

Therefore, we develop a tactic, called perturbation redundancy control, to prevent such

unnecessary repetition. In this regard, we establish a data base to hold distinct SP-TCG

59

states. After each perturbation, we compare the resultant SP-TCG states with those in the

data base. If they are the same, we will reuse the recorded packing result and then go to the

next perturbation. Otherwise, the new state will be packed and recorded into the data base

along with the packing result. This approach can ensure that all recorded states are different.

If we check a TCG represented state, we have to deal with all the information

contained in the graphs, such as nodes, edges between every two nodes, edge directions

and weights. However, with the aid of SP that is equivalent to TCG per se, we only need to

compare two sequences besides module orientation information. Evidently, SP is more

effective to the perturbation redundancy control, which can significantly improve the

efficiency of our developed SP-driven symmetric-feasible TCG perturbation.

3.5 Experimental Results

We have developed an SA-based placement algorithm for analog layout designs by

using the proposed SP-driven TCG method. According to Theorem 1, we can take

advantage of the operations introduced in Section 3.3 to explore the solution space of valid

symmetric placements. Compared with the general symmetry-free TCG [18] and

symmetry-aware TCG [44] placement approaches, our symmetry-aware SP-driven TCG

method can achieve the fastest solution perturbation in O(n) time and the lowest packing

time complexity, i.e., O(nlgn), where n is the number of modules, as shown in Table I.

To test the performance of our proposed algorithm, it has been coded in C++ and

applied to several test circuits on an Intel X86 1.2GHz Linux workstation that has 64GB of

60

memory. We first evaluated the effectiveness of our proposed perturbation redundancy

control scheme. We implemented the representation of SP states by using C++ Standard

Template Library (STL) vector and C++ string (considering α-sequence, β-sequence, and

module orientation information). The comparison of these two with the plain control-free

implementation (denoted as “Plain”) is listed in Table II. It was found that the perturbation

state redundancy widely existed in our experiments. For our three test circuits with various

module numbers (within the range of common analog circuits), the redundancy rate varied

from 6.7% to 50.8%. Due to the large overhead of C++ STL vector, its run time was even

longer than the plain implementation. But the C++ string implementation could readily

improve the runtime efficiency by at least 20% compared to the plain implementation.

Table II. Comparison of various perturbation redundancy control implementations.

Test Circuits Circuit-1 Circuit-2 Circuit-3

#Modules 10 18 25

Plain

#States 3931 6170 10091

Time (sec.) 0.55 2.55 6.31

Vector
#States 3569 5720 5397

Time (sec.) 2.53 6.68 20.21

String

#States 3360 5753 4966

Time (sec.) 0.44 1.73 4.28

61

To demonstrate the efficiency of our proposed SP-driven TCG method, two other

approaches coded in C++ on the same platform have been included for comparison:

(i)AbsPlace, one absolute placement scheme using absolute coordinates [7]; and (ii) HB*-

trees, an implementation that imitates [20][21]. The comparison results are given in Table

III, where less packing cost (denoted “PackCost”) and less execution time (denoted “T

(sec.)”) are preferable. It can be seen that our proposed method SP-TCG outperforms the

other two approaches in the search quality. On average, compared with HB*-trees, SP-TCG

reduces the cost by 5.1% with slightly shorter CPU time. When compared with AbsPlace,

SP-TCG reduces the cost by 23.7% and the execution time by 36.3% on average.

Table III. Comparison of alternative methods on three test circuits.

Test Circuits AbsPlace HB*-Trees SP-TCG

Circuit-1

PackCost 6.63e+07 5.41e+07 5.33e+07

T (sec.) 0.67 0.45 0.44

Circuit-2

PackCost 9.09e+05 7.08e+05 6.67e+05

T (sec.) 2.72 1.89 1.73

Circuit-3

PackCost 1.43e+06 1.15e+06 1.05e+06

T (sec.) 7.07 4.44 4.28

62

3.6 Summary

In this chapter, we presented a sequence-pair-driven TCG representation and its

associated method to facilitate the handling of advanced analog placement constraints, with

a focus on the implementation of symmetry-aware placement. We defined our special

symmetric-feasible conditions and described the construction of symmetric placement with

the SP-driven TCG representation. We also proposed SP-driven perturbation operations

and redundancy control scheme. Our experimental results have shown that this proposed

approach can generate high-performance placement with satisfactory computation

efficiency.

In the next chapter, we will present our proposed ATCG placement representation for

analog layout design. The SP-driven TCG representation, symmetric-feasible conditions,

and associated operations developed in this chapter can be directly used in the ATCG-based

placement method. The transformation between placement and ATCG will be deliberated

and meanwhile the properties of ATCG will be proved. We will also demonstrate the

effectiveness of our proposed representation.

63

4. Advanced TCG-Based Placement Representation for Analog
Layout Design

In this chapter, we propose an advanced transitive-closure-graph-based placement

representation (ATCG) to facilitate analog layout design. The versatility and flexibility of

ATCG can ensure it to accurately control spacing and merging constraints uniquely

required by analog layout design. Our experimental results demonstrate that our proposed

representation can help generate high-performance analog placement with high

computation efficiency.

4.1. ATCG Placement Representation

As presented in Chapter 3, TCG owns some features highly beneficial to the analog

placement problem by nature. In this work, we have been exploiting the potentialities of

TCG, including clear relationship between each two vertices and specific weight of each

edge between two vertices, in order to perform better control on spacing and merging

situations of two corresponding modules. In this regard, we propose to use ATCG as a

powerful representation to handle advanced analog constraints.

In Table IV, we summarize the features of different placement approaches with

topological representations, including SP, TCG, TCG-S, CBL, HB*-trees, QB-trees, and

this work. The last two columns show whether the spacing and merging constraints can be

explored by each individual representation.

64

Table IV. Comparison of different topological representations in the context of

symmetry and advanced constraints.

Placement
Representation

Symmetry
Packing

Symmetry
Perturb

Merging
Constraint

Spacing
Constraint

SP [41] >O(n2) O(1) No No

TCG [44] O(n2) O(n) No No

TCG-S [46] O(n2) O(n2) No No

CBL [49] O(n) O(n) No No

HB*-Trees [20] O(n) O(lgn) No No

QB-Trees [21] O(n) O(lgn) No No

ATCG (This Work) O(nlgn) O(n) Yes Yes

In this section, we first present how to construct horizontal and vertical constraint

graphs for ATCG from a placement. Then we describe how to gain fast module packing

from ATCG. Lastly, we discuss the properties of ATCG.

65

4.1.1. From a Placement to the Corresponding ATCG

An ATCG placement representation uses two transitive closure graphs, namely a

horizontal constraint graph Hatcg and a vertical constraint graph Vatcg, to picture the

topological relationships among modules. Both graphs are directed acyclic weighted

graphs, which can be generally defined as G = (V, E), where E = {(vi, vj), wij | viV, vjV,

wij≥0, i≠j}. The edges, which are weighted, represent the minimum distance requirement

of two modules, based on their bottom-left module corners. In Hatcg, we assume there are

two vertices vi and vj, which represent two modules mi and mj respectively, and a directed

edge from vi to vj. The edge weight wij can be set as wi, which denotes width of mi, if both

modules abut closely for gaining compact placement. If mi and mj are required to be

merged, we need to deduct their overlapping size from wi (recorded as wij). If wij is greater

than wi, both modules are separated with a distance in between. The definition is similar

for Vatcg, where we use modules height instead of width.

Figure 21 illustrates a valid ATCG, which is derived from a placement including six

modules as shown in Figure 22. We denote a horizontal (vertical) relationship by (). If

two modules have both a primary horizontal (vertical) relation and a secondary vertical

(horizontal) relation, namely dual relation, we use notation () to indicate such a

secondary relation. These notations are used to describe the process of obtaining the

corresponding ATCG from a placement below.

66

Va Vb Vc

Vd Ve Vf

3

3

4

2

3

5

4

Hatcg

6

4

Va Vb Vc

Vd

Ve Vf

5 5

5 35

3

Vatcg

1

2

Figure 21. One example of a valid ATCG.

Ma Mb

Md

Mf

Mc

Me

Figure 22. Corresponding placement of the valid ATCG.

We set vertex vi in Hatcg and Vatcg respectively for each module mi in a placement. If

mimj, we connect vi to vj with a directed weighted edge (vi, vj) in Hatcg. Similarly, we use

a directed weighted edge (vi, vj) to link vi to vj in Vatcg if mimj. If mimj or mimj exists,

we may opt to set a directed weighted edge (vi, vj) to connect vi with vj in both Hatcg and

67

Vatcg. Thus, an ATCG is established after all the relations between every two modules are

checked and reflected in Hatcg and Vatcg.

Figure 21 shows that six vertices va-vf are placed in Hatcg and Vatcg respectively, while

these vertices represent six corresponding modules ma-mf of the placement illustrated in

Figure 22. The module widths wa, wb, wc, wd, we and wf are 3, 4, 3, 5, 2 and 3, respectively.

Correspondingly, the module heights ha, hb, hc, hd, he and hf are 5, 5 3, 2, 1 and 5 in turn.

For instance, for ma (mamb/mc/me/mf), four directed weighted edges (va, vb), (va, vc), (va,

ve), (va, vf) are added into Hatcg. The edge weights wab, wac, wae and waf are 4, 3, 3 and 3,

accordingly. In contrast, we connect va to vd with a directed weighted edge (va, vd), whose

edge weight wad is 5, in Vatcg due to mamd. Moreover, it is worth mentioning that, due to

mdme, we need to set a directed weighted edge (vd, ve) not only in Hatcg but also in Vatcg.

Because of the transitive closure feature of ATCG, a secondary edge (va, ve) should be

assigned in Vatcg. We repeat this process on the other modules until the relationships among

all of six modules in Figure 22 are defined.

As depicted in Figure 21, from ATCG placement representation we can surely know

that module mb is on the right of ma due to the existing directed edge (va, vb) in Hatcg.

Furthermore, since edge weight wab is greater than wa, which denotes width of ma, we

ensure that modules ma and mb are separated from each other. Similarly, we know that me

is set over mb according to the weighted directed edge (vb, ve) in Vatcg. In contrast, the

weighted directed edge (vc, vf) in Vatcg indicates that module mc is possible to be partially

merged with mf vertically.

68

4.1.2. From an ATCG to the Corresponding Placement

We can derive the corresponding general placement from an ATCG in O(nlgn) time

(O(n2) time if any advanced constraints exist) by using a modified packing scheme based

on the one initiated for TCG-S [46], where n is the number of modules. We use two red-

black trees, which are denoted as RBTh and RBTv, to facilitate locating each module in the

corresponding placement according to a packing sequence. During the packing process, the

position of the latest packing module is primarily determined by the previously packed

modules. Meanwhile, we need to consider any possible constraints and dual relations

between the already packed modules and the newly being packed one.

Horizontal Packing

Figure 23 shows the packing flow with the aid of RBTh. Each node of RBTh represents

a packing module. A newly being inserted node n denotes the current module m to be

packed. The start node s in Line-1 represents the left boundary of a placement. In Line-3

every newly being packed module m is saved into an array for later comparison. Line-4

executes InsertNodeRBTh algorithm, whose basic principle is to insert the new node n to

the right of a check node p in RBTh under two situations. The first situation is when node p

is the start node and its right node is NIL, while the other one is that nodes p and n have a

horizontal relation and the right node of p is NIL. If there is a vertical relation between p

and n and the left node of p is NIL, we set n to the left of p.

69

Figure 23. Horizontal packing algorithm of ATCG.

Algorithm: HorizontalPacking

Input: A feasible ATCG with packing-sequence

Output: X-coordinate of each module in the corresponding placement

Begin

1 insert the start node s into RBTh

2 for (each packing module m from the packing-sequence)

3 save m into array pakMod

4 InsertNodeRBTh: checking RBTh from the root node to find a proper
position to insert the new node n, which is used to represent module m
in RBTh

5 endfor

End

70

The detailed pseudo-code of InsertNodeRBTh is illustrated in Figure 24. Lines 1-17

show the situation when the check node p is the start node in RBTh. Line-7 indicates that

the position of the newly being packed module m is firstly set by the module, which is

represented as the last node before node n after an in-order traversal. Lines 8-9 direct that

the bottom-left X-coordinate of m is updated by comparing it with the previously packed

modules, which have horizontal constraints or relationship with the presently being

processed module. Lines 13-16 imply that the top-right X-coordinate of the currently being

packed module m is compared with the corresponding coordinates of all the modules, which

are represented by all the nodes after node n in RBTh. The one with smaller or the same

value is to be deleted from RBTh. When the check node p is not the start node, we need to

check the relationship between p and the newly being inserted node n as pointed in Line-

19. If there is a horizontal relation between p and n, it goes over the same process as before

except that Line-22 notes the weight between last and m is added in order to properly

position module m on the horizontal axis. If node p is vertical to the new node n, Lines 25-

31 instruct a similar way to handle this situation, but the left node of p is employed instead

of its right node.

71

Algorithm: InsertNodeRBTh

Input: check node p in RBTh and new node n

Output: X-coordinate of a newly inserted module m, which is represented by
node n in RBTh

Begin

1 if (p is the start node s)

2 if (right node of p is not a NIL node)

3 checking from the right node of p in RBTh to find a proper position to
insert n

4 else

5 set n as the right node of p

6 find the last previous node last before node n after an in-order traversal

7 set the top-right X-coordinate of last as the bottom-left X-coordinate of
m

8 compare the bottom-left X-coordinate of m with the constraints between
each previously packed module in pakMod and m, then the largest one
is set as the bottom-left X-coordinate of m

9 compare the bottom-left X-coordinate of m with the bottom-left X-
coordinate of the previously packed modules in pakMod, which has
primary/secondary horizontal relation with m, plus the
primary/secondary weight, then the largest one is set as the bottom-left
X-coordinate of m

10 set the top-right X-coordinate of m as the sum of the bottom-left X-
coordinate of m and width of m

11 balance RBTh

12 do an in-order traversal of RBTh and put all nodes after n into stack nodes

13 while (nodes is not empty)

14 compare the top-right X-coordinate of the top node saved in nodes
with the top-right X-coordinate of m, then delete the node from RBTh
if with less or equal value

15 pop out the top node in nodes

16 endwhile

72

17 endif

18 else

19 check the relationship between nodes p and n

20 if (there is a primary/secondary horizontal relation between p and n)

21 do the same as Lines 2-6

22 use the top-right X-coordinate of last plus the primary/secondary weight
of module m to update the bottom-left X-coordinate of module m

23 do the same as Lines 8-17

24 else

25 if (the left node of p is not a NIL node)

26 checking RBTh from the left node of p to find a proper position to
insert n

27 else

28 set n as the left node of p

29 find the last previous node last before n after an in-order traversal

30 do the same as Lines 22-23

31 endif

32 endif

33 endif

End

Figure 24. ATCG algorithm of node insertion to RBTh.

73

Vertical Packing

Similarly, we can also determine the top-right Y-coordinate of all the packing

modules by using RBTv as shown in Figure 25. We use the start node t in Line-1 to represent

the bottom boundary of a placement. Every currently being packed module m is saved into

an array for later comparison as indicated in Line-3. Line-4 executes InsertNodeRBTv

algorithm, which runs in a similar way to InsertNodeRBTh algorithm.

Figure 25. Vertical packing algorithm of ATCG.

Algorithm: VerticalPacking

Input: A feasible ATCG with packing-sequence

Output: Y-coordinate of each module in the corresponding placement

Begin

1 insert the start node t into RBTv

2 for (each packing module m from the packing-sequence)

3 save module m into array pakMod

4 InsertNodeRBTv: checking RBTv from the root node to find a proper
position to insert the new node n, which is used to represent module m
in RBTv

5 endfor

End

74

Figure 26 illustrates the detailed pseudo-code of InsertNodeRBTv. When a check node

p in RBTv is a start node, the right node of p is checked. By checking if the right node of p

is a NIL node, we will determine whether or not the new node n is inserted to the right of

p as presented in Lines 1-17. The relationship of nodes p and n needs to be checked if p is

not a start node. Lines 19-33 show how to handle two situations, i.e., a vertical or horizontal

relation between p and n. After an in-order traversal, the last node before n is used to set

the position of the newly being packed module m as indicated in Lines 7 and 22. The

bottom-left Y-coordinate of m is updated by comparing it with the previously packed

modules, which have horizontal constraints or relation with module m, as described in Lines

8-9. Lines 13-16 imply that the nodes representing the modules, which are covered by

module m on the Y axis, are deleted from RBTv. When p is horizontal to the new node n,

the left node of p is utilized to deal with this condition in a similar way as shown in Lines

25-31.

75

Algorithm: InsertNodeRBTv

Input: check node p in RBTv and new node n

Output: Y-coordinate of a newly inserted module m, which is represented by
node n in RBTv

Begin

1 if (p is the start node t)

2 if (the right node of p is not a NIL node)

3 checking RBTv from the right node of p to find a proper position to
insert node n

4 else

5 set n as the right node of p

6 find the last previous node last before n after an in-order traversal

7 set the top-right Y-coordinate of last as the bottom-left Y-coordinate
 of module m

8 compare the bottom-left Y-coordinate of m with the constraints between
each previously packed module in pakMod and m, then the largest one
is set as the bottom-left Y-coordinate of m

9 compare the bottom-left Y-coordinate of m with the bottom-left Y-
coordinate of the previously packed modules in pakMod, which has
primary/secondary vertical relation with m, plus the
primary/secondary weight, then the largest one is set as the bottom-
left Y-coordinate of m

10 set the top-right Y-coordinate of m as the sum of the bottom-left Y-
coordinate of m and width of m

11 balance RBTv

12 do an in-order traversal RBTv and put all nodes after n into stack nodes

13 while(nodes is not empty)

14 compare the top-right Y-coordinate of the top node saved in nodes
with the top-right Y-coordinate of m, then delete the node from
RBTv if with less or equal value

15 pop out the top node in nodes

16 endwhile

76

17 endif

18 else

19 check the relationship between nodes p and n

20 if (there is a primary/secondary vertical relation between p and n)

21 do the same as Lines 2-6

22 use the top-right Y-coordinate of last plus the primary/secondary
weight of module m to update the bottom-left Y-coordinate of m

23 do the same as Lines 8-17

24 else

25 if (the left node of p is not a NIL node)

26 checking RBTv from the left node of p to find a proper position to
insert n

27 else

28 set n as the left node of p

29 find the last previous node last before n after an in-order traversal

30 do the same as Lines 22-23

31 endif

32 endif

33 endif

End

Figure 26. ATCG algorithm of node insertion to RBTv .

77

4.1.3. Properties of ATCG

There are three properties for a feasible ATCG:

Property-1: Hatcg and Vatcg are acyclic.

Property-2: Each pair of vertices must be connected by one or two edges. If both

horizontal and vertical edges connect a pair of vertices, there should be a

dual relation between the two corresponding modules.

Property-3: The transitive closure of Hatcg/Vatcg is equal to itself.

Proof: ATCG is based on the original TCG, which must be acyclic. The secondary

edges are added only if they do not form a cycle in the constraint graphs. Thus, Property-1

holds.

We construct edges to reflect all geometric relations among modules in a placement.

Following the property of the original TCG, there must be exactly one horizontal or vertical

edge, i.e., the primary edge in ATCG, between each two vertices. Based on this, the

secondary edge in ATCG cannot be the same as the primary edge. Two different edges

together can represent two-directional relationship, i.e., dual relation. Thus, Property-2 is

proved.

ATCG follows the original TCG, which has the same property-3 as well. The added

secondary edges must not form a cycle in the constraint graphs but preserve the transitive

closure feature. Therefore Property-3 still holds. Q.E.D.

Based on the properties above, we have the following theorem:

78

Theorem. There exists a unique placement corresponding to an ATCG.

Proof: Below we first show that each ATCG is feasible (i.e., there must exist a

placement for each ATCG), and then show the uniqueness of the placement. Property-1

ensures that no module is both on the left and on the right to (or below and above) another

module in the packing. Property-2 guarantees the accuracy of the resultant packing. Thus,

Property-1 and Property-2 ensure that there exists a placement for each ATCG. Given an

ATCG, the X and Y coordinates of each module are determined by the respective longest

paths in the horizontal and vertical constraints graphs, where edge weights are well defined.

Therefore, the placement is unique. Q.E.D.

4.2. Placement Algorithm

Since the proposed ATCG representation is based on the plain TCG, the developed

symmetry-aware theory and practice for SP-TCG in Chapter 3 can be directly used for

ATCG-based placement algorithm construction. In this regard, we still use the conventional

simulated annealing (SA) algorithm to perturb placement configurations, although genetic

algorithm (GA) may offer better performance than SA, so as to compare with previous

methods in the literature most of which use SA as the search engine. Before building a valid

ATCG, we need to construct a feasible TCG. Instead of the conventional reduction-edge-

based methods [44], in this work we have leveraged SP to facilitate the internal TCG

operations as described in Chapter 3. In this way, the time complexity can be reduced from

79

O(n2) to O(n), where n is the number of modules. During the random TCG perturbation,

we employ the perturbation redundancy control as introduced in Section 3.4, to prevent

unnecessary repetition of the same states.

After any operation of the plain TCG as originally defined in [44], any secondary

edges (i.e., for dual relations) would be added to form a feasible ATCG. Then the packing

operation as described in Section 4.1.2 is conducted, and the resultant cost is compared

with that of the previous state to decide how to continue the search in the SA optimization

process. The following lemma can ensure how to form a valid ATCG.

Lemma. Any secondary edge can be constructively added to transform a TCG to a

valid ATCG.

Proof: Without loss of generality, we consider there is an edge from vi to vk in the

horizontal TCG. Below with proof by contradiction, we will first prove adding an edge

from vi to vk in the vertical TCG would not form a cyclic graph. Assume this proposition is

false, that is equivalent to say, there exists a vertex vj in the vertical TCG that include one

edge from vk to vj and another edge from vj to vi. Based on the TCG transitive property,

there should already have existed an edge from vk to vi in the vertical TCG. But this is a

contradiction to the given context that an edge from vi to vk exists in the horizontal TCG

while there is one and only one edge between two vertices in TCG. Therefore, we can

ensure that adding an edge from vi to vk in the vertical TCG keeps the graph acyclic. By

adding edges from the fan-in vertices of vi to vk and from vi to the fan-out vertices of vk in

the vertical TCG, we can construct valid ATCG that meets the three properties described

in Section 4.1.3. Q.E.D.

80

4.3. Experimental Results

We have developed an SA-based placement algorithm for analog layout designs by

using the proposed ATCG method. Different from TCG-S [46], we maintain SP (i.e., both

α- and β-sequences) in amortized constant time to aid TCG operations. According to the

lemma presented in Section 4.2, we can randomly derive a valid ATCG based on the

updated TCG during the SA iteration. With the packing-sequence (i.e., the β-sequence of

the corresponding SP), we can obtain the actual placement of the ATCG by following the

flow of Figures 23 and 25.

To test the performance of our proposed algorithm, it has been coded in C++ and

applied to several test circuits on an Intel X86 1.2GHz Linux workstation that has 64GB of

memory. To demonstrate the effectiveness of our proposed ATCG method, two other

approaches coded in C++ on the same platform have been included for comparison:

(i)AbsPlace, one absolute placement scheme using absolute coordinates [54]; and (ii) HB*-

trees, an implementation that imitates [20][21]. The comparison results are given in Table

V, where less packing cost (denoted “PackCost”) and less execution time (denoted “T

(sec.)”) are preferable. The data shows that our proposed ATCG method outperforms

AbsPlace in terms of search quality (i.e., PackCost), and achieves similar performance

compared to HB*-trees. However, it should be noted that the advanced spacing/merging

constraints cannot be considered in HB*-trees, different from ATCG and AbsPlace. On

81

average, compared with HB*-trees, ATCG spent slightly more CPU time by 4.68%. But in

comparison with AbsPlace, ATCG reduces cost by 23.17% and execution time by 36.66%

on average.

Table V. Comparison of alternative methods on three test circuits.

Test Circuits AbsPlace HB*-Trees ATCG

Circuit-1

PackCost 6.96e+07 5.46e+07 5.74e+07

T (sec.) 1.32 0.95 0.87

Circuit-2

PackCost 9.09e+05 6.93e+05 7.03e+05

T (sec.) 9.06 4.99 5.76

Circuit-3

PackCost 1.50e+06 1.02e+06 1.06e+06

T (sec.) 43.61 24.00 26.40

4.4. Summary

In this chapter, we proposed ATCG placement representation to facilitate the

handling of analog layout design. After reviewing different works from the literature, we

presented how to construct an ATCG and derive its corresponding placement. Then we

82

presented the details of our proposed packing method, which is based on red-black tree data

structure. We also proved the properties and validity of ATCG. Our experimental results

showed that this proposed representation can help efficiently generate high-performance

placement in compliance with complex analog constraints.

The next chapter will provide the conclusion and future scope of this work.

83

5 Conclusions and Future Work

In this chapter we will review the entire research work and then the principal

contributions of this thesis will be summarized. Moreover, we recommend several

interesting topics for the future research work. Finally, a list of our published papers will

be provided along with their links to the specific chapter within this thesis.

In this thesis, we have reviewed different general placement methods and

representations. After introducing the analog placement problem, we have surveyed various

techniques to glance over how they have tackled analog placement over the time from old

VLSI technologies to the advanced nanometer technologies. Then we have discussed the

advantages and limitations of these techniques as well. Base on those previous works, we

have presented our proposed SP-driven TCG approach and shown that it can effectively

and efficiently deal with analog placement in the context of symmetry constraints.

Furthermore, we have suggested ATCG topological representation to facilitate the handling

of analog layout design. In the meantime, the SP-driven TCG technique is embraced in the

ATCG placement method. Our obtained experimental results have also demonstrated the

superiority of the proposed ATCG placement representation.

5.1 Contributions of the Thesis

The major contributions of the thesis are listed below:

84

 The thesis presents a sequence-pair (SP) driven transitive-closure-graph (TCG)

method to deal with analog placement, which is an indispensable stage in the analog

IC layout design. The SP-driven TCG has promising benefit in handling advanced

analog constraints.

 Focusing on the symmetry-aware placement, the thesis defines three special

symmetric-feasible conditions and describes the construction of symmetric

placement with our proposed SP-driven TCG method.

 A series of SP-driven perturbation operations are proposed in the thesis. SP are

utilized to guide the perturbation operations of a symmetric-feasible TCG.

Moreover, we prove that the symmetric-feasible conditions and inherent properties

of SP can guarantee symmetric feasibility and validity of TCG after the random

perturbation process.

 A redundancy control scheme is suggested when forming the representation states

to generate high-performance analog placement with satisfactory computation

efficiency. The experimental results demonstrate the efficacy of the proposed

method.

 The thesis proposes an advanced transitive-closure-graph-based placement

representation (ATCG) to facilitate analog layout design. The versatility and

flexibility of ATCG can ensure it to accurately control spacing and merging

constraints uniquely required by analog layout design.

85

 The construction of a valid ATCG is detailed in the thesis, while the corresponding

placement can be derived by our modified packing scheme based on the red-black

tree data structure. Furthermore, the thesis proves the properties and validity of a

feasible ATCG. The experimental results showed that this proposed representation

can efficiently assist in generating high-performance analog placement with high

computation efficiency.

5.2 Scope of the Future Work

This research work provides a solid base for the future work in order to deal with

even more complicated constraints emerging from the analog layout design. The ATCG

representation developed in this thesis can be extended to handle other various geometric

constraints and advanced design requirements, which are necessary in the modern IC

designs to satisfy stringent performance specifications. While this thesis itself is focused

on the feasibility study of innovative topological representations and the theoretical

correctness of placement operations, their broad applications in the analog layouts still need

more thorough performance verification through the analog module generation,

interconnect routing, and post-layout simulation from the completed layouts.

More recently, some preliminary research has been conducted on the applications of

machine learning techniques to the analog physical design automation, including smart well

generation [55], quality prediction [56], symmetry detection [57], placement [58][59], and

routing [60]. For the placement study using machine learning techniques, the modern

86

research is still limited to the absolute coordinates based representation or indirect

mediums. We expect the topological representations should do a good job in this regard.

So it is worthwhile for us to continue this study to explore how the proposed ATCG

representation and the associated operation can be involved in the machine-learning-based

placement algorithms.

Moreover, analog placement design will face more challenges in the near future as

the emergence of the state-of-the-art FinFET technology and the next-generation carbon

nanotube field-effect transistor (CNTFET) technology [61]. The possibility and potentiality

of our current research work can be further exploited to be compatible with these new

technologies. Eventually, it is expected that the outcome of the advanced analog placement

research work would be widely and deeply applied in the commercial products for industry-

level analog circuit layout design.

5.3 The Candidate’s Published Papers

[1] L. He, Z. Zhao, Y. Chen, and L. Zhang, “Advanced Transitive-Closure-Graph-Based

Placement Representation for Analog Layout Design,” in Proc. 27rd IEEE International

Conference on Electronics Circuits and Systems (ICECS), virtually (originally planned to

take place in Glasgow, Scotland), Nov. 23-25, 2020.

This paper is out of the detailed research work documented in Chapter 4 of this thesis.

87

[2] L. He, Z. Zhao, Y. Chen, and L. Zhang, “Placement with Sequence-Pair-Driven TCG

for Advanced Analog Constraints,” in Proc. 33rd IEEE Canadian Conference of Electrical

and Computer Engineering (CCECE), virtually (originally planned to take place in London,

ON, Canada), Aug. 30-Sept. 02, 2020.

This paper is out of the detailed research work documented in Chapter 3 of this thesis.

[3] L. He and Y. Chen, “A Proximity-Aware Representation for Placement Problems in IC

Design,” in Proc. 23rd Annual Newfoundland Electrical and Computer Engineering

Conference (NECEC), Nov. 2014.

This paper is out of the detailed research work documented in Chapters 1-2 of this thesis.

88

Bibliography

[1] X. Dong and L. Zhang, “EA-Based LDE-Aware Fast Analog Layout Retargeting with

Device Abstraction,” IEEE Transactions on Very Large Scale Integration Systems,

vol. 27, no. 4, pp. 854-863, 2019.

[2] T. Liao and L. Zhang, “Analog Integrated Circuit Sizing and Layout Dependent

Effects: A Review,” Journal of Microelectronics and Solid State Electronics, vol. 3,

no. 1A, pp. 17-29, 2014.

[3] D. Jepsen and C. Gelatt, “Macro Placement by Monte Carlo Annealing,” in Proc.

IEEE International Conference on Computer Design, pp. 495-498, Nov. 1983.

[4] W. Sun and C. Sechen, “Efficient and Effective Placement for Very Large Circuits,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 14, pp. 349-359, Mar. 1995.

[5] J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, “KOAN/ANAGRAM II: New Tools

for Device-Level Analog Placement and Routing,” IEEE Journal of Solid-State

Circuits, vol. 26, no.3, pp. 330-342, Mar. 1991.

[6] K. Lampaert, G. Gielen, and W. Sansen, Analog Layout Generation for Performance

and Manufacturability. Boston, MA: Kluwer, 1999.

89

[7] L. Zhang, R. Raut, Y. Jiang, and U. Kleine, “Placement Algorithm in Analog Layout

Designs,” IEEE Transactions on Computer-aided Design of Integrated Circuits and

Systems, vol. 25, no. 10, pp. 1889-1903, 2006.

[8] L. Zhang, U. Kleine, R. Raut, and Y. Jiang, “An Automated Design Tool for Analog

Layouts,” IEEE Transactions on Very Large Scale Integration Systems, vol. 14, no.

8, pp. 881-894, 2006.

[9] H. Ou, K. Tseng, J. Liu, I. Wu and Y. Chang, “Layout-Dependent Effects-Aware

Analytical Analog Placement,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 35, pp. 1243-1254, Aug. 2016.

[10] R. H. J. M. Otten, “Automatic Floorplan Design,” in Proc. Design Automation

Conference, pp. 261-267, 1982.

[11] D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan Design,” in Proc. Design

Automation Conference, pp. 101-107, 1986.

[12] M. Lin, Y. Chang, and C. Hung, “Recent Research Development and New Challenges

in Analog Layout Synthesis,” in Proc. IEEE Asia and South-Pacific Design

Automation Conference, pp. 617-622, 2016.

90

[13] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI Module Placement

Based on Rectangle-Packing by the Sequence-Pair,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no.12, pp. 1518-

1524, Dec. 1996.

[14] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani, “Module Packing Based on

the BSG-Structure and IC Layout Applications,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 17, pp. 519-530, Jun. 1998.

[15] P. Guo, C. Cheng, and T. Yoshimura, “An O-tree Representation of Nonslicing

Floorplan and Its Applications,” in Proc. Design Automation Conference, pp. 268-

273, June 1999.

[16] Y. C. Chang, Y. W. Chang, G. M. Wu, and S. W. Wu, “B*-Trees: A New

Representation for Nonslicing Floorplans,” in Proc. Design Automation Conference,

pp. 458-463, June 2000.

[17] X. Hong, G. Huang, T. Cai, J. Gu, S. Dong, C.-K. Cheng, and J. Gu, “Corner Block

List: An Effective and Efficient Topological Representation of Nonslicing

Floorplan,” in Proc. IEEE/ACM International Conference on Computer-Aided

Design, pp. 8-12, Nov. 2000.

91

[18] J. Lin and Y. Chang, “TCG: A Transitive Closure Graph-Based Representation for

General Floorplans,” IEEE Transactions on VLSI Systems, vol. 13, no.2, pp. 288-292,

Feb. 2005.

[19] J. Lin and Y. Chang, “TCG-S: Orthogonal Coupling of P*-Admissible

Representations for General Floorplans,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 23, no.6, pp. 968-980, June 2004.

[20] P. Lin, Y. Chang, and S. Lin, “Analog Placement Based on Symmetry-Island

Formulation,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 28, no.6, pp.791-804, June 2009.

[21] I. Wu, H. Ou, and Y. Chang, “QB-Trees: Towards An Optimal Topological

Representation and Its Applications to Analog Layout Designs,” in Proc. ACM/IEEE

Design Automation Conference, no. 80, pp 1-6, June 2016.

[22] Y. Lu, Y. Chang, and Y. Chang, “WB-Trees: A Meshed Tree Representation for

FinFET Analog Layout Designs,” in Proc. ACM/IEEE Design Automation

Conference, no. 9, pp 1-6, June 2018.

[23] [Online]. Available: https://slidesplayer.org/slide/15483067/

92

[24] J. Cohn, D. Garrod, R. Rutenbar, and L. Carley, Analog Device-Level Layout

Automation. Boston: Kluwer Academic Publishers, 1994.

[25] ICsense-The IC Design Company. [Online]. Available: https://www.icsense.com/

[26] [Online]. Available: https://www.electronicsweekly.com/news/design/eda-and-

ip/mixed-signal-changing-chip-design-in-europe-says-cadence-2013-12/

[27] N. Sherwani, Algorithms for VLSI Physical Design Automation. Norwell: Kluwer

Academic Publisher, 1999.

[28] A. Kahng and Q. Wang, “Implementation and Extensibility of An Analytic Placer,”

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 24, no.5, pp. 734-747, May 2005.

[29] A. Caldwell, A. Kahng, and I. Markov, “Can Recursive Bisection Alone Produce

Routable Placements?” in Proc. 37th Design Automation Conference, pp. 477-482,

June 2000.

[30] L. Zhang and U. Kleine, “A Genetic Approach to Analog Module Placement with

Simulated Annealing,” in Proc. IEEE International Symposium on Circuits and

Systems, pp. 345-348, May 2002.

93

[31] M. Strasser, M. Eick, H. Graeb, U. Schlichtmann, and F. Johannes, “Deterministic

Analog Circuit Placement Using Hierarchically Bounded Enumeration and Enhanced

Shape Functions,” in Proc. IEEE/ACM International Conference on Computer-Aided

Design, pp. 306-313, 2008.

[32] E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-Vincentelli, “Automation of

IC Layout with Analog Constraints,” IEEE Transactions on Computer-Aided Design

Integrated Circuits System, vol. 15, no.8, pp. 923-942, Aug. 1996.

[33] K. Lampaert, G. Gielen, and W. Sansen, “A Performance-Driven Placement Tool for

Analog Integrated Circuits,” IEEE Journal of Solid-State Circuits, vol. 30, no.7, pp.

773-780, Jul. 1995.

[34] H. Lee, Y. Chang, and H. Yang, “MB*-Tree: A Multilevel Floorplanner for Large-

Scale Building-Module Design,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 26, no.8, pp. 1430-1444, Aug. 2007.

[35] Rob A Rutenbar, “Design Automation for Analog: the Next Generation of Tool

Challenges,” in Proc. IEEE/ACM International Conference on Computer-aided

Design, pp. 458–460, 2006.

94

[36] R. Rutenbar, J. Cohn, and M. Lin, Layout Tools for Analog Integrated Circuits and

Mixed-Signal Systems on Chip: A Survey. Chapter 16 in EDA for IC Implementation,

Circuit Design and Process Technology, 2nd edition, Luciano Lavagno, Grant Martin

and Louis Scheffer, eds., CRC Press, 2016.

[37] H. Graeb, Analog Layout Synthesis: A Survey of Topological Approaches. Berlin:

Springer, 2012.

[38] M. Lin, P. Chang, S. Lee, and H. Graeb, “DeMixGen: Deterministic Mixed-Signal

Layout Generation with Separated Analog and Digital Signal Paths,” IEEE

Transactions on Computer-Aided Design Integrated Circuits System, vol. 35, no.8,

pp. 1229-1242, 2016.

[39] L. Zhang, R. Raut, Y. Jiang, U. Kleine, and Y. Kim, “Macro-Cell Placement for

Analog Physical Designs using a Hybrid Genetic Algorithm with Simulated

Annealing,” International Journal of Integrated Computer-Aided Engineering, vol.

12, no. 4, pp. 379-396, 2005.

[40] F. Balasa and K. Lampaert, “Symmetry within the Sequence-Pair Representation in

the Context of Placement for Analog Design,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 19, no.7, pp. 721-731, July

2000.

95

[41] S. Koda, C. Kodama, and K. Fujiyoshi, “Linear Programming-Based Cell Placement

with Symmetry Constraints for Analog IC Layout,” IEEE Transactions on Computer-

Aided Design Integrated Circuits System, vol. 26, no. 4, pp. 659-668, April 2007.

[42] Y. Pang, F. Balasa, K. Lampaert, and C. Cheng, “Block Placement with Symmetry

Constraints based on the O-tree Non-Slicing Representation,” in Proc. 37th Design

Automation Conference, pp. 464-467, 2000.

[43] F. Balasa, S. Maruvada, and K. Krishnamoorthy, “On the Exploration of the Solution

Space in Analog Placement with Symmetry Constraints,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no. 2, pp.177-

191, Feb. 2004.

[44] L. Zhang, C.-J. R. Shi, and Y. Jiang, “Symmetry-Aware Placement with Transitive

Closure Graphs for Analog Layout Design,” in Proc. IEEE/ACM Asia and South

Pacific Design Automation Conference, pp. 180-185, Jan. 2008.

[45] R. He and L. Zhang, “Symmetry-Aware TCG-Based Placement Design under

Complex Multi-Group Constraints for Analog Circuit Layouts,” in Proc. IEEE/ACM

Asia and South Pacific Design Automation Conference, pp. 299-304, 2010.

96

[46] J. Lin, G. Wu, Y. Chang, and J. Chuang, “Placement with Symmetry Constraints for

Analog Layout Design Using TCG-S,” in Proc. IEEE/ACM Asia and South-Pacific

Design Automation Conference, pp. 1135-1138, 2005.

[47] Y. Tam, E. Young, and C. Chu, “Analog Placement with Symmetry and Other

Placement Constraints, Computer-Aided Design,” in Proc. IEEE/ACM International

Conference on Computer-Aided Design, pp. 349-354, 2006.

[48] L. Xiao and E. Young, “Analog Placement with Common Centroid and 1-D

Symmetry Constraints,” in Proc. Asia and South-Pacific Design Automation

Conference, pp. 353-360, 2009.

[49] Q. Ma, L. Xiao, Y. Tam, and E. Young, “Simultaneous Handling of Symmetry,

Common Centroid, and General Placement Constraints,” IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp.85-95,

Jan. 2011.

[50] H. Tsao, P. Chou, S. Huang, Y. Chang, M. Lin, D. Chen, and D. Liu, “A Corner

Stitching Compliant B∗-Tree Representation and Its Applications to Analog

Placement,” in Proc. IEEE/ACM International Conference on Computer-Aided

Design, pp. 507-511, 2011.

97

[51] P. Wu, M. Lin, X. Li, T. Ho, “Parasitic-Aware Common-Centroid FinFET Placement

and Routing for Current-Ratio Matching,” ACM Trans. Design Automation

Electronic Systems, vol. 21, no. 3, pp. 39:1-39:22, 2016.

[52] M. Lin, V. Hsiao, C. Lin, and N. Chen, “Parasitic-Aware Common-Centroid Binary-

Weighted Capacitor Layout Generation Integrating Placement, Routing, and Unit

Capacitor Sizing,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 36, no. 8, pp. 1274-1286, 2017.

[53] T. Wang, P. Wu, M. Lin, “Automatic Adaptive MOM Capacitor Cell Generation for

Analog and Mixed-Signal Layout Design,” in Proc. IEEE/ACM Design Automation

Conference, pp. 1-2 (late breaking results), 2020.

[54] L. Zhang, “VLSI Circuit Layout,” in Wiley Encyclopedia of Computer Science and

Engineering, vol. 5, pp. 3034-3044, 2009.

[55] B. Xu, Y. Lin, X. Tang, S. Li, L. Shen, N. Sun, D. Pan, “WellGAN: Generative-

Adversarial-Network-Guided Well Generation for Analog/Mixed-Signal Circuit

Layout,” in Proc. 56th ACM/IEEE Design Automation Conference (DAC), pp. 1-6,

Las Vegas, NV, USA, 2019.

[56] M. Liu, K. Zhu, J. Gu, L. Shen, X. Tang, N. Sun, and D. Pan, “Towards Decrypting

the Art of Analog Layout: Placement Quality Prediction via Transfer Learning,” in

98

Proc. Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.

496-501, Grenoble, France, 2020.

[57] M. Liu, W. Li, K. Zhu, B. Xu, Y. Lin, L. Shen, X. Tang, N, Sun, D. Pan, “S3DET:

Detecting System Symmetry Constraints for Analog Circuits with Graph Similarity,”

in Proc. 25th Asia and South Pacific Design Automation Conference (ASP-DAC), pp.

193-198, Beijing, China, 2020.

[58] J. Rosa, D. Guerra, N. Horta, R. Martins, N. Lourenço, Using Artificial Neural

Networks for Analog Integrated Circuit Design Automation. Springer International

Publishing, 2020.

[59] Y. Li, Y. Lin, M. Madhusudan, A. Sharma, W. Xu, S. Sapatnekar. R. Harjani, and J.

Hu, “Exploring a Machine Learning Approach to Performance Driven Analog IC

Placement,” in Proc. IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

pp. 24-29, Limassol, Cyprus, 2020.

[60] K. Zhu, M. Liu, Y. Lin, B. Xu, S. Li, X. Tang, N. Sun, D. Pan., “GeniusRoute: A

New Analog Routing Paradigm Using Generative Neural Network Guidance,” in

Proc. IEEE/ACM International Conference on Computer-Aided Design (ICCAD),

pp. 1-8, Westminster, CO, USA, 2019.

99

[61] G. Hills, C. Lau, A. Wright, et al., “Modern Microprocessor Built from

Complementary Carbon Nanotube Transistors,” Nature, 572, pp. 595–602, 2019.

