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Abstract 

Traditional stock assessment models rely on statistical fitting to abundance indices, fishery catch 

and age-length-maturation data. Aging information is essential as it determines the growth 

function, maturity schedule and mortality. For many hard-to-age stocks, it is challenging in 

fisheries stock assessment to estimate cohort dynamics and fishing mortality at length from 

length-based data with existing approaches, e.g. age-based catch-at-length model (ACL). An age 

and length structured statistical catch-at-length model (ALSCL) has been developed for 

groundfish species that are hard to age. At the same time, abundance indices from scientific 

surveys as the core input for stock assessment can be standardized by various different ways. 

Therefore, it is essential to compare the efficiency of those approaches to find the best method to 

standardize the indices. In this study, I focus on improving the stock assessment of an important 

commercial stock of witch flounder in NAFO 3N+3O division. I first use a traditional design-

based way and a spatiotemporal model to standardize length composition data from government 

surveys. Specifically, I compare the uncertainty between design-based and model-based indices 

for each length bins. I then apply ALSCL and ACL models to the length composition data 

standardized using the design-based and model-based estimators in the previous step to estimate 

the age-based population dynamics for NAFO Div. 3NO witch flounder.  
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Chapter 1 Introduction 

1.1 Introduction 

In this chapter, I provide an overview of the commercial witch flounder (Glypocephalus 

cynoglossus) fishery on the southern Grand Banks of Newfoundland in NAFO (Northwest 

Atlantic Fisheries Organization) Div. 3NO (Figure 1.1) including: witch flounder life history, 

witch flounder fishery history and management. I also describe the Canadian research vessel 

survey indices of NAFO Div. 3NO witch flounder stock. 

 

1.2 Witch flounder life history 

Witch flounder (Glypocephalus cynoglossus) is a small-mouthed, right-sided flatfish of the 

family Pleuronectidae found in deep and cold waters of the North Atlantic (Fairbairn, 1981; 

Burnett et al., 1992). In the western North Atlantic, the population is distributed from North 

Carolina (USA) to Labrador (Hamilton Bank)(Bowering, 1976). It is found in higher 

concentrations on the northeast Newfoundland shelf and is relatively high concentration 

along the southwest slope of the Grand Banks as well as the southern slope of the St. Pierre 

Bank (Bowering, 1976; Bowering & Brodie, 1991). In the Newfoundland region, witch 

flounder gathers on mud, clay, silt, or muddy sand substrates (Bowering, 1976; Faber & 

McAllister, 1979; Powles & Kohler, 1970). It is predominant at depths of 184 to 366 m 

(Bowering, 1976; Rabe, 1999). Witch flounders have been caught at temperatures ranging 

from 2 ℃ to 6 ℃ (Bowering, 1976), and the largest catches occurred on the eastern 

Newfoundland Shelf at the bottom temperature of 3.1-3.5℃ (Bowering, 1976). 
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As a long-lived flatfish, witch flounder can live to 25 years and grow to a size of 65-70 cm 

(Bowering, 1976; Rabe, 1999), and it is thought to grow slowly compared to other flatfish 

species (Burnett et al., 1992). The slowest and fastest-growing populations are found in the 

Gulf of St. Lawrence and on the northeast Newfoundland shelf respectively (Rabe, 1999). 

The witch flounder has a pelagic egg stage followed by a pelagic larval stage, a pelagic 

juvenile stage, a deep-demersal juvenile stage, and an adult phase (Powles & Kohler, 1970). 

The pelagic eggs of witch flounder range in diameter from 1.25 to 1.35 mm (Fahay, 1983). 

Hatching occurs 7-8 days after spawning at 7.8 to 9.4 ℃ (Cargnelli, 1999). The hatched 

larvae measure 3.5 to 5.6 mm in length and transformation (the left eye moves over to the 

right side of its head) to the pelagic juvenile stage generally occurs at 22-35 mm body length 

(Fahay, 1983). At the pelagic juvenile stage, they may persist in the water column for up to 

one year (Powles & Kohler, 1970). The deep-demersal phase occurs in very deep water when 

metamorphosis is complete at 4-12 months of age and juveniles settle on the bottom (Powles 

& Kohler, 1970). They are in the adult phase when the body length is over 30 cm (Powles & 

Kohler, 1970).  

 

Males and females reach sexual maturity at the age range of 4-6 years and 6-8 years 

respectively (Bowering, 1976). Age and length at 50% maturity ranged from 4.2 to 6.2 years 

and 25 to 30 cm for males, 8.42 to 10.21 years and 40 to 50 cm for females in an early study 

(Bowering, 1976). However, the data from surveys in the 2000s suggest that maturation is 

now at a smaller size than in the 1970s, length at 50% maturity decreases 6 cm for males and 

9 cm for females in the Gulf of St. Lawrence (Swain et al., 2012). The fecundity of females 
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varies with size, ranging from 48800 eggs for a 31cm fish to 508300 eggs for a 60 cm fish 

(Burnett et al., 1992). 

 

The spawning of witch flounder occurs mostly during April-September but varies from one 

area to another (Bowering, 1990). Spawning occurs mainly during March-June on the Grand 

Bank, January-February in southwest Newfoundland and the northern Gulf of St. Lawrence 

(Bowering, 1990). The combined influence of both depth and temperature may be significant 

in determining spawning time (Bowering, 1990).  

 

The main food items consumed by adult witch flounders are polychaete worms while small 

crustaceans, sea cucumbers, molluscs and echinoderms are occasionally consumed (Bowman 

& Michaels, 1984; Cargnelli, 1999). Witch flounders are preyed upon by several species such 

as thorny skates and smooth skates, spiny dogfish, monkfish (Goosefish), white hake, 

Atlantic halibut, and harp seal (Collette & Klein-MacPhee, 2002). 

 

1.3 Div. 3NO witch flounder fishery catch history 

Witch flounder fishery began in the late 1940s with the establishment of otter-trawling fleets 

in Newfoundland (Bowering, 1976). From the 1970s to the 1990s, it became a significant 

component of commercial species in the northwest Atlantic (Fairbairn, 1981; Bowering, 

1990). Landings are mostly taken by bottom otter trawls complemented by Danish seines 

(Rabe, 1999). In NAFO Divisions 3NO, witch flounder fishery began in the 1960s (Brodie et 

al., 2011). The catch history of the Div. 3NO witch flounder fishery from 1960 to 2018 is 

shown in Figure 1.2. Catches in the 1960s reached the peak at 11000-12000 tons in 1967-68 
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and during the next several years, catches remained relatively high (Maddock Parsons et al., 

2020). In 1971, the catch was 15000 tons, reaching the peak in the time series (Lee et al., 

2014). Then, catch subsequently declined over the next decade, reaching a low level of about 

2400 tons in 1980 and 1981 (BOWERING, 1995). With a substantial increase in fishing 

effort in the NAFO Regulation Area, catches rose rapidly to levels of 8800 and 9100 tons in 

1985 and 1986 respectively and remained relatively high in 1987 and 1988 at 7600 and 7300 

tons respectively (BOWERING, 1995; Rogers & Morgan, 2019). During 1990-93 estimated 

catches were in the range of 4200-5000 tons (Rogers & Morgan, 2019). The estimated catch 

for 1994 was about 1100 tons despite there being no direct fishing on this stock (Rogers & 

Morgan, 2019). The Div. 3NO witch flounder stocks have been under a complete moratorium 

by the Fisheries Commission for directed fishing from 1995 to 2014 (Maddock Parsons et al., 

2020). 

 

The witch flounder fishery was essentially a by-product of the haddock fishery in the early 

1960s until its collapse at which time the witch flounder became a by-catch of Atlantic cod 

and American plaice on the Grand Bank (Bowering, 1976; Templeman, 1966). In 1995, 

witch flounder became a bycatch of Greenland halibut fishery and the catch dropped to 300 

tones after the moratorium was introduced in NAFO Div. 3NO (Rogers & Morgan, 2019). 

Bycatch increased steadily and reached 763 tons in 1999 (Rogers & Morgan, 2019). It 

continually declined again in the next several years and reached an estimated 450 tons in 

2002 (Rogers & Morgan, 2019). Catches were estimated to be 1544 tons in 2003 which 

declined to 222 tons in 2007, increased steadily to 421 tons in 2010, then declined slightly to 

335 tons in 2014 (Rogers & Morgan, 2019). After the moratorium period, catches were 
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consistent with the bycatch range (300-400 tons) in 2015, jumped to 1062 tons in 2016 and 

declined again to 641 tons and 862 tons in 2018 and 2019 respectively (Maddock Parsons et 

al., 2020).  

 

1.4 Div. 3NO witch flounder fishery management  

All witch flounder stocks that are subject to management measures in the Northwest Atlantic 

are identified by geographic divisions or combinations of divisions of NAFO (Bowering & 

Brodie, 1991). Witch flounder is managed as four independent units or stock areas in the 

Newfoundland region under the regulation of NAFO since 1974 (Bowering, 1976; Fairbairn, 

1981). They are 1) northeast Newfoundland and northern Grand Bank (NAFO Division 2J, 

3K, and 3L), 2) southwest Grand Bank (NAFO Div. 3N and 3O), 3) St. Pierre Bank (NAFO 

Div. 3Ps), and 4) northern Gulf of St. Lawrence (NAFO Div. 4RS) (Bowering, 1976, 1990). 

However, after investigating the genetic variability, six stocks have been identified in the 

Newfoundland region (Fairbairn, 1981). In my thesis, we focus on southwest Grand Bank 

stock (Div. 3NO). 

 

The Div. 3NO stock has been under TAC (total allowable catch) regulation by NAFO since 

1974 (Rogers & Morgan, 2019). In general, from 1974 to 1993, TACs were set based on 

average historical catches; from 1994 to 2014, TACs were set based on the poor state of this 

stock; since 2015, TACs were set based on advice developed from the surplus production 

model in a Bayesian framework (Maddock Parsons et al., 2020). Specifically, TAC for Div. 

3NO witch flounder was set as 10000 tons in 1974 and remained in effect until 1978 based 

on average historical catches (Rogers & Morgan, 2019). Due to the decline in commercial 



6 
 

catches, TAC was reduced to 7000 tons in 1979 and remained at that level until 1980 (Rogers 

& Morgan, 2019). It further dropped to 5000 tons in 1981 and remained in effect until 1993 

(Rogers & Morgan, 2019). To ensure the resource sustainability of this stock, NAFO 

Fisheries Commission implemented a TAC of 3000 tons in 1994 and introduced a complete 

moratorium for directed fishing in 1995, which was continued through 2014 (Rogers & 

Morgan, 2019). After the moratorium period, the harvest control rules that biomass shouldn't 

be below Blim (biomass limit reference point) and fishing mortality should not exceed Flim 

(fishing mortality limit reference point) have been used to determine TAC. A TAC of 1000 

tons was adopted in 2015, and a TAC increased to 2172 tons and 2225 tons in 2016 and 2017 

respectively, but a TAC dropped to 1116 tons in 2018 (Maddock Parsons et al., 2020).  In the 

2019 assessment of this stock,  NAFO Scientific Council recommended no directed fishing 

on witch flounder in 2019-2021 based on the probability of the stock being below Blim 

(biomass limit reference point) is 14% (Maddock Parsons et al., 2020). However, NAFO 

Fisheries Commission adopted a TAC of 1175 for 2019 to 2021 (Maddock Parsons et al., 

2020). 

 

Div.3NO witch flounder is assessed yearly in the June NAFO Scientific Council Meeting 

(Maddock Parsons et al., 2020). The last official meeting report available online was 2020 

(Maddock Parsons et al., 2020). There is no available analytical model applied on witch 

flounder stock before 2006, the status of this stock was assessed based on catch and survey 

results (Maddock Parsons et al., 2020). From 2006 to 2013, a non-equilibrium surplus 

production model incorporating covariates (ASPIC) was adopted to assess this stock by 

applying catch and survey biomass data (Maddock Parsons et al., 2020). There were concerns 
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that the poor model suitability including unreasonably high B (biomass)/Bmsy (biomass at 

maximum sustainable yield) ratio, poor observed to estimated CPUE relationship, and strong 

residual patterns, this production model was rejected, and the application of a surplus 

production model in a Bayesian framework was first explored in 2014 (Maddock Parsons et 

al., 2020; Morgan et al., 2015). In 2015-2020, a surplus production model in a Bayesian 

framework was used to evaluate Div. 3NO witch flounder and as the basis for the advice for 

this stock (Joanne Morgan & Lee, 2018; Maddock Parsons et al., 2020). As for 2020, the 

stock was 44% of Bmsy (59880 tons) with a 14% risk of the stock being below Blim (30% 

Bmsy) and a 4% risk of F (fishing mortality) greater than Fmsy (maximum rate of fishing 

mortality at maximum sustainable yield) (Maddock Parsons et al., 2020). 

 

1.5 Research vessel surveys 

Bottom trawl surveys are designed to sample fish by towing a large trawl of specified width 

across the bottom for a standard unit of time or distance (Cadigan, 2011; Kimura & 

Somerton, 2006). The catch rate of several trawls over a specified time is taken as reflecting 

the fish density in the area swept  (R. Francis, 1984; Kimura & Somerton, 2006). These 

bottom trawl surveys provide critical fisheries independent information (e.g. stock 

distribution, abundance and species composition) for assessment and management of many 

stocks in the Northwest Atlantic (Fogarty et al., 1986; Smith, 1997). Stratified-random 

sampling with the proportional allocation of sampling units (i.e. strata) is the most widely 

used survey design for demersal fisheries to estimate abundance indices for stock assessment 

models (Cadigan, 2011; Smith, 1997).  
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1.5.1 Stratified random sampling 

Stratified random sampling is a flexible and efficient sampling design commonly used in 

fishery-independent surveys (Cochran, 1977). Stratified random sampling, usually divides a 

target survey area into different homogeneous subgroups known as strata and conducts 

simple random sampling within each stratum (Xu et al., 2015). The samples are drawn 

independently in different strata that are spatially contiguous, and the strata boundaries are 

set primarily based on depth (Cadigan, 2011; Cochran, 1977). The populations in strata are 

non-overlapping, and they comprise the entire population in the target survey area (Cochran, 

1977). When the strata have been determined, at least two survey sets are sampled from 

every stratum for the purpose of computing variance estimates, and these survey sets are 

standardized catches at the randomly selected sampling sites within stratum  (Cochran, 

1977).  

 

Stratified random sampling has several advantages over survey designs such as complete 

survey or pure random sampling in the fisheries field. First, the fish population size for a 

management unit is too large to sample all of them. Random sampling can provide an 

unbiased estimate of the whole population size, which is the benefit to improve efficiency 

(Cochran, 1977; Thompson, 2012b). Second, in pure random sampling, samples may 

themselves be aggregated, which can result in over or under-estimate of the entire population 

even though each possible sample is equally likely to occur (Kimura & Somerton, 2006; 

Lenarz & Adams, 1980). Compared with that, stratified random sampling ensures a high 
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degree of representativeness of all the strata, which can improve the precision of the entire 

population estimate by combining the stratum-level estimates (Cochran, 1977; Grosslein, 

1969). For these reasons, stratified random sampling is applied in research vessel surveys for 

NAFO Div. 3NO witch flounder. The strata map for NAFO Div. 3NO witch flounder stock 

area is shown in Figure 1.3. 

 

1.5.2 Spring and Fall surveys 

Stratified-random research vessel surveys have been conducted on the Grand Banks in 

NAFO Div. 3NO during spring since 1971; Fall surveys have been conducted since 1990 

(Rogers & Morgan, 2019). Due to operational difficulties, there were an incomplete spring 

survey in 2006 and no fall survey in 2014 (Maddock Parsons et al., 2020). Beginning with 

the fall survey in 1995, NAFO changed its survey gear from an Engel 145 groundfish trawl 

with bobbin gear to a Campelen 1800 shrimp trawl using rockhopper gear (Rogers & 

Morgan, 2019), and the Campelen has been found that catches a greater size range of most 

commercial species than the Engel 145 trawl because of the smaller mesh size (McCallum & 

Walsh, 1996; Walsh & McCallum, 1997). Catch in weight in different strata for each NAFO 

division of the stock area (Div. 3NO) from Canadian RV spring and fall surveys is shown in 

Figure 1.4-1.5. In NAFO Div. 3NO, spring and fall surveys were completed for most strata in 

all years from 1991 to 2018 with coverage of depth ranging from 93 to 731m (Maddock 

Parsons et al., 2020).  
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For spring surveys in NAFO Div. 3NO, the stock indices trends are mainly dominated by 

NAFO Div.3O estimated biomass and abundance indices (Rogers & Morgan, 2019). The 

biomass and abundance indices increased gradually from 1996 to 1997, and increased with 

fluctuations from 1997 to 2003, followed by a decrease from 2003 to 2005 (Figure 1.6). The 

values fluctuated from 2007 to 2010, increased substantially from 2007 to 2013, and reached 

their highest peak in the time series in 2013, with biomass at 24395 (tons), abundance at 

68.347 (millions)) (Figure 1.6). These indices declined sharply from 2013 to 2015, followed 

by a sightly increase from 2015 to 2018 (Figure 1.6). 

 

For fall surveys in NAFO Div. 3NO, biomass and abundance declined from 1995 to 1997, 

followed by a sightly increase from 1997 to 1999 (Figure 1.7). The values fluctuated from 

1999 to 2004 but showed a generally increasing trend (Figure 1.7). The indices declined from 

2004 to 2007 but followed by a sharp increase from 2007 to 2009 and reached their peak in 

the time series in 2009 (biomass at 37707 t, abundance at 84.859 millions). The peak is 

followed by a significantly overall downward trend from 2009 to 2016 (Figure 1.7).  Fall 

survey indices remained stable from 2017 to 2018 (Figure 1.7). 

 

The geographic distribution of witch flounder catch in weight in Canadian spring and fall RV 

surveys (1984-2018) in NAFO Div. 3NO is shown in Figure 1.8-1.9. The NAFO Div. 3NO 

witch flounder stock is mainly distributed along the southwestern slope of the Grand Bank 

but with a higher concentration in NAFO Div. 3O.  
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Canadian spring and fall RV survey length-frequency data from 1995 to 2018 in NAFO Div. 

3NO are presented in Figures 1.10-1.11 as abundance at length. In spring and fall RV 

surveys, witch flounder with a body length of 30 cm to 50 cm have the most frequency, and 

the length of more than 55 cm or less than 5 cm are rarely seen. After 2004, compared with 

the fall survey, the distribution of length-frequency between 30cm and 50cm in the spring 

survey was flatter and increased less (Maddock Parsons et al., 2020). From 2015 to 2019, 

fish in length 30 cm to 50 cm were not as prominent as they were from 2012 to 2014 in the 

spring survey or from 2008 to 2013 in the fall survey. In the fall survey, juveniles with a 

length less than 21cm showed a few obvious peaks in the time series that may appear in 

consecutive years (e.g. peak at 9 cm in 1997, peak at 11 cm in 1998, peak at 18 cm in 1999). 

This cohort tracking may indicate the recruitment of year classes (Maddock Parsons et al., 

2020). 

 

Due to witch flounder are more widely and evenly distributed on the Grand bank in fall than 

in spring (Maddock Parsons et al., 2020; Rogers & Morgan, 2019), I only use the fall survey 

to compute the indices for the assessment model. 
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Figures 

 

Figure 1.1 Map of eastern Canada showing NAFO Divisions (left) and map of NAFO Div. 3NO 

in the Northwest Atlantic (right). The dark green color shows the Grand Banks.  
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Figure 1.2 Commercial catch and total allowable catch (TACs) of witch flounder in NAFO Div. 

3NO from 1960-2018. From 1960 to 1973, there was no TAC. From 1995 to 2014, witch 

flounder fishery under a complete moratorium. 
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Figure 1.3 Strata map of NAFO Div. 3N and 3O. Strata numbers are marked in red in the figure. 
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Figure 1.4 The catch of witch flounder in weight from the annual spring Canadian RV survey in 

NAFO Div. 3NO.  Each grid color represents the range value of catch weight in the 

corresponding stratum and year based on the color bar. 
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Figure 1.5 The catch of witch flounder in weight from the annual fall Canadian RV survey in 

NAFO Div. 3NO.  Each grid color represents the range value of catch weight in the 

corresponding stratum and year based on the color bar. 
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Figure 1.6 Biomass (t) and abundance (‘000s), with associated 95% confidence intervals, for 

witch flounder from Canadian spring RV survey in NAFO Div. 3NO during 1996-2018. There 

was no data in 2006 due to incomplete coverage of the survey.  
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Figure 1.7 Biomass (t) and abundance (‘000s), with associated 95% confidence intervals, for 

witch flounder from Canadian fall RV survey in NAFO Div. 3NO during 1995-2018. There was 

no data in 2014 due to operational difficulties.  
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Figure 1.8 Distribution of NAFO Div. 3N and 3O witch flounder catch in weight (kg) from 

Canadian spring RV surveys during 1984 to 2018. 
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Figure 1.9 Distribution of NAFO Div. 3N and 3O witch flounder catch in weight (kg) from 

Canadian fall RV surveys during 1984 to 2018.  
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Figure 1.10 Length bubble and ridge plots of witch flounder from Canadian spring RV surveys 

(1996-2018) in NAFO Div. 3NO.  
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Figure 1.11 Length bubble and ridge plots of witch flounder from Canadian fall RV surveys 

(1995-2018) in NAFO Div. 3NO. 
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Chapter 2 Standardizing fall survey indices 

2.1 Introduction 

Standardized fishery-independent survey data are the most important information for 

fisheries stock assessment and management (Smith, 1990; Thorson et al., 2015). The main 

types of fishery-independent survey data include abundance index (the number of sampled 

fish caught for each year) and compositional data (the sampled population grouped by age, 

length, sex, etc. for each year) (Fisch et al., 2021; Maunder et al., 2020). There are also two 

forms of compositional data, counts (e.g. age- or length-specific abundance index) and 

proportions (e.g. the proportion of the number of fish at length or age).  The total abundance 

and compositional data (proportions), or only compositional data (counts), historically have 

been used as input data within age- or size-structured assessment models in North America 

(Fisch et al., (Thorson & Haltuch, 2019). By fitting these data, the estimated stock cohort 

dynamics (track the number of fish in age or size classes over time), mortality, and growth of 

fish are provided, which are critical information to the fisheries management (Fisch et al., 

2021; Punt, 2017). Thus, it is essential to ensure that the compositional data is as accurate 

and precise as possible (Maunder et al., 2020). 

 

However, the compositional data derived from survey sampling only represent sample data 

from localized sample sites, which implies that these indices must be standardized precisely 

to represent the total stock (Thorson, 2014). There are two main approaches to standardizing 

these data, which are the design-based approach and the model-based approach respectively. 
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The design-based approach infers the finite fish population according to the randomness 

induced by the stratified random sampling design (Rogers & Morgan, 2019; Smith, 1990), 

which calculates the average catch in number of each category within each stratum, then 

generates the abundance indices of each category in each stratum weighted by area (Smith, 

1990). Fisheries and Oceans Canada (DFO) and Northeast Fisheries Science Centers of the 

U.S. National Marine Fisheries Service (NMFS) primarily utilize a design-based approach to 

estimate indices of abundance for each category (Cadigan, 2011; Thorson et al., 2015). In 

this approach, the catches (response variable) in the survey are treated as observed without 

error at sample sites, and the inferences of this approach are based only on randomly selected 

sample sites in the survey (Cadigan, 2011; J. Chen et al., 2004; Smith, 1990).  

 

In design-based theory, the value of the sample mean with any given sample may be larger or 

smaller than the true population mean. But, when accounting for all possible samples, the 

expected value of the sample mean equals the population mean (Thompson, 2012a). Thus, an 

obvious advantage of the design-based approach is that it can provide an unbiased estimator 

for the population mean, and the unbiased estimator does not depend on any assumptions 

about the population itself (e.g. escape rate from the net, distribution, and natural mortality) 

(Thompson, 2012a). This advantage is particularly evident in situations where we know very 

little about natural populations (Thompson, 2012a). And, the design-based approach also has 

been used in the recent stock assessment reports to indicate the stock status of NAFO Div. 3 

NO witch flounder (Maddock Parsons et al., 2020; Rogers & Morgan, 2019). 
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The inferences of the design-based approach assume that the sampling sites in each stratum 

represent all locations in each stratum. However, poor sampling of the catch or occasional 

big tows may occur at randomly selected sample sites (Maunder et al., 2020). Although the 

design-based approach can obtain a relatively representative or balanced sample with a high 

probability by avoiding personal biases in selection (Thompson, 2012a), a serious 

disadvantage of this approach is that the estimated indices are less accurate for large spatial 

strata (Maunder et al., 2020), which results in imprecise information for abundance estimator 

(Thorson, 2014). Moreover, this approach uses area weighting to calculate the total statistical 

weight for each stratum, which may increase the uncertainty of estimated total abundance 

(Maunder et al., 2020). For example, large spatial strata with small sample sizes may have a 

higher weight compared to small spatial strata with large sample sizes and may have a 

similar weight as large spatial strata with large sample sizes, which results in the large 

variance may be introduced in abundance estimates from large strata with small sample sizes 

(Maunder et al., 2020). In addition, this approach also cannot account for the uncertain 

measurement of the stock in each sample site (e.g. different areas swept by a trawl and 

different fish catch rates) (Cadigan, 2011; Smith, 1990).  

 

The model-based approach analyzes the survey compositional data conditional on a statistical 

model to predict composition index over a gird across the region of interest (Peel et al., 2013; 

Thorson et al., 2015) and makes inference according to an assumed probability function for 

the response variable (Cao et al., 2017; J. Chen et al., 2004). The main difference between 

the design-based approach and the model-based approach is the values of the variables of 

interest in the population (the CPUE from each sample unit) are assumed as random variables 
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rather than fixed variables, and these random variables follow a parametric probability 

distribution  (J. Chen et al., 2004; Thompson, 2012a). In this approach, stock composition 

indices are defined and estimated by estimating model parameters (J. Chen et al., 2004). 

Same as the design-based approach, the data that is input to the model for estimating are the 

size compositional data derived from fishery-independent survey observations. 

 

The advantages of using the model-based approach are as follows. a) The model-based 

approach may have more precise and accurate estimated composition data than the design-

based because such methods can handle missing survey data and other non-sampling errors 

(Thompson, 2012a). b) The model-based approach can derive estimators that make the most 

efficient use of the sample data, also it can assess estimators under different assumptions 

about the stock population (Thompson, 2012a). c) The model-based approach can account for 

covariates (e.g. different survey time and locations, multiple fishing gears and sampling 

vessels (Thorson et al., 2015)) and make good use of auxiliary information (e.g. bottom 

temperature, depth and bottom substrate type), which can avoid confounding systematic 

trends with variability and lead more precise estimates of composition index  (Cao et al., 

2017; Thompson, 2012a; Thorson et al., 2015). However, the model-based estimates can 

potentially be biased compared to the design-based approach, due to model-based estimates 

of the survey population mean are not based on the sample mean  (Smith, 1990). Therefore, a 

thorough comparison needs to be conducted before inputting the survey indices into the stock 

assessment model.  
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As mentioned above, the design-based approach may have large variance in abundance 

estimates (Thompson, 2012a). The spatial distribution of fish stock can vary greatly over 

time due to fishing and natural mortality, migration, and recruitment (J. Chen et al., 2004). If 

the fish density within each stratum is roughly assumed to be constant, then any systematic 

trend within a stratum would be interpreted as random variability, which may result in 

inflating the coefficient of variation (Peel et al., 2013). Based on the above considerations, a 

model-based approach has been used to standardize RV survey compositional data of witch 

flounder. 

 

In this chapter, I first describe two methods (i.e. design-based approach and model-based 

approach) of standardizing fall RV survey size compositional data for NAFO Div. 3NO 

witch flounder. I then estimate the abundance-at-length indices and the proportion-at-length 

indices through two methods and compare the performance of the two approaches.  

 

2.2 Methods 

2.2.1 Data input 

I used annual fall size-compositional data (using length subsampling of each sample from 

stratified random bottom trawl surveys) conducted by DFO from 1995 to 2018 for NAFO 

Div. 3NO witch flounder. Considering different fishing gear was used in pre-1995 and no 

conversion factors available to adjust the catch, only post 1995 survey data are analyzed in 

this thesis. Since catches of fish less than 10 cm in length and greater than 52 cm are low 

enough in most years (mostly zero catches) (Figure 1.9), I have eliminated these length 

categories for ease of calculation. So the size-compositional data is structured into 21 length 



30 
 

categories with a bin size of 2 cm, where the starting length is 10 cm, and the ending length 

is 52 cm.  

 

2.2.2 Estimating design-based indices 

Survey design-based abundance index is an estimate of the catch at all sample sites in the 

survey region (Thompson, 2012a). The total catch for length category c in stratum h in year t 

is  

 
𝜏𝑐ℎ(𝑡) = ∑ 𝑦𝑐ℎ𝑎

𝑁ℎ(𝑡)

𝑎=1
(𝑡) 

(2.1) 

 

where 𝑁ℎ(𝑡) is the number of sampling units in stratum h in year t,  𝑦𝑐ℎ𝑎(𝑡) is the observed 

value in 𝑎th unit for length category c in stratum h in year t. An unbiased estimator of 𝜏𝑐ℎ is 

 𝜏̂𝑐ℎ(𝑡) = 𝑁ℎ(𝑡)𝑦̅𝑐ℎ(𝑡) (2.2) 

where 𝑦̅𝑐ℎ(𝑡)  is the sample mean for length category c in stratum h in year t, as calculated 

from 

 
𝑦̅𝑐ℎ(𝑡) =

1

𝑛ℎ(𝑡)
 ∑ 𝑦𝑐ℎ𝑎

𝑛ℎ(𝑡)

𝑖=1
(𝑡) 

(2.3) 

where 𝑛ℎ is the number of units sampled in stratum h in year t. We treat the abundance of the 

uncovered stratum or strata as missing. An unbiased estimator for the total population and the 

population mean (mean catch number per trawl unit) for length category c in year t are 

equations (2.4) and (2.5) respectively, in which 𝐻(𝑡) presents the number of strata in year t 

and 𝑁(𝑡) represents the number of all sampling units in year t. 

 
𝜏̂𝑐(𝑡) = ∑ 𝜏̂𝑐ℎ

𝐻(𝑡)

ℎ=1
(𝑡) 

(2.4) 
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𝑦̂𝑐(𝑡) =

1

𝑁(𝑡)
∑ 𝜏̂𝑐ℎ

𝐻(𝑡)

ℎ=1
(𝑡) 

(2.5) 

I then use 𝜏̂𝑐 (𝑡) to calculate total abundance across all length categories in year t 

 
𝜏̂(𝑡) = ∑ 𝜏̂𝑐

𝑛𝑐

𝑐=1
(𝑡) 

(2.6) 

where 𝑛𝑐 is number of total length categories. The proportion of abundance for each length 

category c in year t is 

 
𝑃̂𝑐(𝑡) =

𝜏̂𝑐(𝑡)

𝜏̂(𝑡)
 

(2.7) 

The finite-population variance for length category c in stratum h in year t is given by 

equation (2.8). 

 
𝜎𝑐ℎ

2 (𝑡) =  
1

𝑁ℎ(𝑡) − 1
 ∑ (𝑦𝑐ℎ𝑖(𝑡) − 𝜇𝑐ℎ(𝑡))2

𝑁ℎ(𝑡)

𝑖=1
 

(2.8) 

Where 𝜇𝑐ℎ(𝑡) = 
𝜏𝑐ℎ(𝑡)

𝑁ℎ(𝑡)
 is the population mean for length category c in stratum h in year t. The 

variance of the total population for length category c in year t is  

 
𝑣𝑎𝑟(𝜏̂𝑐(𝑡)) =  ∑ 𝑁ℎ(𝑡)

𝐻(𝑡)

ℎ=1
(𝑁ℎ(𝑡) − 𝑛ℎ(𝑡)) 

𝜎𝑐ℎ
2 (𝑡)

𝑛ℎ(𝑡)
 

(2.9) 

An unbiased estimator of the variance of the total population 𝑣𝑎𝑟(𝜏̂𝑐(𝑡)) for length category 

c is given in equation (2.10). 

 
𝑣𝑎𝑟̂(𝜏̂𝑐(𝑡)) =  ∑ 𝑁ℎ

𝐻(𝑡)

ℎ=1
(𝑡)(𝑁ℎ(𝑡) − 𝑛ℎ(𝑡)) 

𝑠𝑐ℎ
2 (𝑡)

𝑛ℎ(𝑡)
 

(2.10) 

where 𝑠𝑐ℎ
2  is the sample variance for length category c in stratum h in year t. 

 
𝑠𝑐ℎ

2 (𝑡) =  
1

𝑛ℎ(𝑡) − 1
 ∑ (𝑦𝑐ℎ𝑎(𝑡) − 𝑦̅𝑐ℎ(𝑡))2

𝑛ℎ(𝑡)

𝑖=1
 

(2.11) 

The variance of the population mean for length category c in year t is given by 
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𝑣𝑎𝑟(𝑦̂𝑐(𝑡)) =  ∑ (

𝑁ℎ(𝑡)

𝑁(𝑡)
)

2𝐻(𝑡)

ℎ=1
(1 − 𝑓ℎ(𝑡)) 

𝜎𝑐ℎ
2 (𝑡)

𝑛ℎ(𝑡)
 

(2.12) 

where 𝑓ℎ(𝑡) =
𝑛ℎ(𝑡)

𝑁ℎ(𝑡)
 is the sampling fraction in year t. An unbiased estimator for the variance 

of the population mean 𝑣𝑎𝑟(𝑦̂𝑐(𝑡))  for length category c is  

 
𝑣𝑎𝑟̂(𝑦̂𝑐(𝑡)) =  ∑ (

𝑁ℎ(𝑡)

𝑁(𝑡)
)

2𝐻(𝑡)

ℎ=1
(1 − 𝑓ℎ(𝑡)) 

𝑠𝑐ℎ
2 (𝑡)

𝑛ℎ(𝑡)
 

(2.13) 

The estimation variance for proportion 𝑃̂𝑐(𝑡) is 

𝑆𝐸[𝑃̂𝑐(𝑡)]2 ≈
𝜏̂𝑐(𝑡)2

𝜏(𝑡)̂ 2
{
𝑣𝑎𝑟̂(𝑦̂𝑐(𝑡))

𝜏̂𝑐(𝑡)2
− 2

𝑣𝑎𝑟̂(𝑦̂𝑐(𝑡))

𝜏̂𝑐(𝑡)𝜏̂(𝑡)
+

∑ 𝑣𝑎𝑟̂(𝑦̂𝑐(𝑡))
𝑛𝑐
𝑐=1

𝜏(𝑡)̂ 2
} 

(2.14) 

 

 

2.2.3 Estimating model-based indices 

The vector autoregressive spatiotemporal (VAST) model is an R package developed by 

(Thorson & Barnett, 2017) to estimate abundance indices and/or compositional data for a 

target species in the time series by simultaneously estimating spatiotemporal variation in 

density using spatially referenced data (Thorson, 2019). VAST builds upon spatiotemporal 

delta-generalized linear mixed model analysis (Thorson et al., 2015). I implement VAST 

package (ver. 3.6.1 available online) in the R statistical environment to estimate abundance-

at-length and the proportion-at-length for NAFO Div. 3NO witch flounder. 

 

The delta model is commonly used by scientists to analyze sampling data from fishery 

surveys. Delta model that included in VAST consists of two separately generalized linear 

mixed effect models (GLMMs) that models encounter probability (the probability of at least 

one individual capture for tows at a given location and time) and the positive catch rates (the 
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probability distribution for sample abundance when encountered) (Thorson, 2018, 2019). The 

resulting predictions from these two GLMMs provide estimates of local density and total 

abundance of given species (Thorson, 2018; Thorson et al., 2015). Spatio-temporal variations 

are estimated using Gaussian Markov random fields (Lindgren et al., 2011; Thorson et al., 

2015). I use gamma distribution for positive catch rates. Specifically, the probability 

distribution function for survey sampling data is 

 

 

P r(n𝑐(𝑖) = 𝐵) = {
1 − 𝑝𝑐(𝑖)                                       if 𝐵 = 0

𝑝𝑐(𝑖) × Gamma{B|𝑟𝑐(𝑖), 𝜎𝑚
2(𝑐)}           if 𝐵 > 0                

 

 

(3.1) 

where n𝑐(𝑖) is abundance-at-length for sample 𝑖, 𝑝𝑐(𝑖) is the predicted encounter probability 

 𝑟𝑐(𝑖) is the predicted abundance density for positive catch rates, and  𝜎𝑚
2(𝑐) is the 

dispersion parameter for probability density function (Gamma{𝐵|𝑟𝑐(𝑖), 𝜎𝑚
2(𝑐)}) for positive 

catch rates.  

 

In the conventional delta model, the encounter probability is modelled via the logit-link 

function (Thorson, 2018).  

 𝑝𝑐(𝑖) = 𝑙𝑜𝑔𝑖𝑡−1(𝑎1(𝑖))                     

𝑟𝑐(𝑖) = 𝛼𝑖 × 𝑙𝑜𝑔−1(𝑎2(𝑖))                     

(3.2) 

 

where 𝛼𝑖 is the area-swept for sample 𝑖 and we treat 𝛼𝑖 as an offset for expected number of 

individuals encountered, 𝑎1(𝑖) is the linear predictor for encounter probability, 𝑎2(𝑖) is the 
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linear predictor for positive catch rates. The equations of two linear predictors 𝑎1(𝑖) 

and 𝑎2(𝑖) that are involved in two separate GLMMs of the conventional delta model are  

 

 

𝑎1(𝑖) = 𝛽1(𝑐, 𝑡𝑖) + 𝜎𝜔1(𝑐)𝜔1(𝑐, 𝑠𝑖) + 𝜎𝜀1(𝑐)𝜀1(𝑐, 𝑠𝑖, 𝑡𝑖) 

𝑎2(𝑖) = 𝛽2(𝑐, 𝑡𝑖) + 𝜎𝜔2(𝑐)𝜔2(𝑐, 𝑠𝑖) + 𝜎𝜀2(𝑐)𝜀2(𝑐, 𝑠𝑖, 𝑡𝑖) 

(3.3) 

 

where 𝛽1(𝑐, 𝑡𝑖) and 𝛽2(𝑐, 𝑡𝑖) are intercepts for encounter probability and positive catch rates 

respectively for each length category c and time t. 𝜔1(𝑐, 𝑠𝑖) and 𝜔2(𝑐, 𝑠𝑖) are random effects 

representing spatial variation at location 𝑠𝑖 of each sample 𝑖, 𝜎𝜔1(𝑐) and 𝜎𝜔2(𝑐) represent 

standard deviation for spatial variation in the two linear predictors respectively, 𝜀1(𝑐, 𝑠𝑖, 𝑡𝑖) 

and 𝜀2(𝑐, 𝑠𝑖, 𝑡𝑖) are random effects representing spatiotemporal variation among location 𝑠𝑖 

and time 𝑡𝑖 of each sample 𝑖, 𝜎𝜀1(𝑐) and 𝜎𝜀2(𝑐) represent standard deviation for 

spatiotemporal variation in two linear predictors respectively (Thorson, 2019; Thorson & 

Haltuch, 2019). I assume an independent intercept for each size and year, which is designed 

to minimize the estimation covariance for size composition between sizes and years.  

 

I specify 200 locations (‘knots’) distributed over the entire spatial grid to approximate all 

spatial and spatiotemporal variation terms. A k-means algorithm that included in VAST was 

used to define the location of 200 knots to minimize the total distance between the sampling 

data location to their nearest knot (Thorson, 2019). I varied the number of knots to make sure 

that the results are qualitatively similar to results from more knots while still having 

manageable computational time. The distribution of knots is shown in (Figure 2.1). The 
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spatial variables at the sampled location are assumed equal to their value at the nearest knot. I 

specify spatial and spatiotemporal random effects that follow a multivariate normal 

distribution: 

 

 𝜔1(𝑐) ~ 𝑀𝑉𝑁(𝟎, 𝐑𝟏) 

𝜔2(𝑐) ~ 𝑀𝑉𝑁(𝟎, 𝐑𝟐) 

𝜀1(𝑐, 𝑡) ~ 𝑀𝑉𝑁(𝟎, 𝐑𝟏) 

𝜀2(𝑐, 𝑡)~𝑀𝑉𝑁(𝟎, 𝐑𝟐) 

 

(3.4) 

where 𝐑𝟏 and 𝐑𝟐 are correlation matrices for 𝑝𝑐(𝑖) and 𝑟𝑐(𝑖) respectively, and approximated 

as following a Matern function (Lindgren et al., 2011): 

 

𝐑𝟏(𝑠, 𝑠 + ℎ) =
1

2𝜈−1 Γ(𝜈)
 × (𝜅1|ℎ𝐇|)𝜈 × 𝐾𝜈(𝜅1|ℎ𝐇|) 

𝐑𝟐(𝑠, 𝑠 + ℎ) =
1

2𝜈−1 Γ(𝜈)
 × (𝜅2|ℎ𝐇|)𝜈 × 𝐾𝜈(𝜅2|ℎ𝐇|) 

(3.5) 

 

where H is a two-dimensional linear transformation representing geometric anisotropy, 𝜈 is 

the Matern smoothness (fixed at 1.0), 𝜅1 and 𝜅2 govern the decorrelation distance for the first 

linear predictor and the second linear predictor respectively (Thorson et al., 2015; Thorson & 

Haltuch, 2019). 

 

The estimation of VAST model parameters is performed in R using Template model builder 

(TMB) package. TMB is an open source R package developed by (Kristensen et al., 2015) at 
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the Danish Technical University, which is inspired by the Automatic Differentiation Model 

Builder package (ADMB) and formulated in C++ (D. A. Fournier et al., 2012; Kristensen et 

al., 2015). TMB is designed for large, and complex hierarchical models (e.g. delta-

generalized linear mixed model) and used to fit non-linear statistical latent variable (random 

effects) models to data (Kristensen et al., 2015). The users can define the joint likelihood for 

the data and the random effects as a C++ template function, and conduct pre- and post-

processing of data in R (Kristensen et al., 2015). The TMB package allows users to estimate 

and maximize the Laplace approximation of the marginal likelihood where the random 

effects have been automatically integrated out, as well as obtain the first and second 

derivatives of the marginal likelihood by using automatic differentiation (AD) (Kristensen et 

al., 2015) 

 

I use TMB package to estimate model parameters by implementing Laplace approximation to 

the marginal likelihood of fixed effects (𝛽1(𝑐, 𝑡𝑖), 𝜎𝜔1, 𝜎𝜀1(𝑐), 𝛽2(𝑐, 𝑡𝑖), 𝜎𝜔2(𝑐), 𝜎𝜀2(𝑐), and 

𝜎𝑚
2(𝑐)), and using a gradient-based nonlinear optimizer to identify the maximum likelihood 

estimate of fixed effects. I use the stochastic partial differential equation (SPDE) to 

approximate the probability of the spatial and spatiotemporal random effects 

(𝜔1(𝑐, 𝑠𝑖), 𝜀1(𝑐, 𝑠𝑖, 𝑡𝑖), 𝜔2(𝑐, 𝑠𝑖), 𝜀2(𝑐, 𝑠𝑖, 𝑡𝑖)) (Lindgren et al., 2011; Thorson, 2019). I also 

apply the epsilon bias-correction estimator in TMB, which accounts for bias caused by the 

nonlinear transformation of random effects (Thorson, 2019). I use two Newton-step to 

tighten convergence and confirm the model converges (maximum gradient of the marginal 

likelihood of fixed effects is < 10-6). The model estimated parameters are used to predict 
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abundance density in length category c at each location s among year t. The equation of the 

predict abundance density is  

 𝑑𝑐(𝑠, 𝑡) = 𝑝𝑐(𝑠, 𝑡) × 𝑟𝑐(𝑠, 𝑡) 

 

(3.6) 

The predicted abundance in length category c for the entire spatial domain is  

 
𝐼𝑐(𝑡) = ∑ 𝑎(𝑠) × 𝑑𝑐(𝑠, 𝑡)

𝑛𝑠

𝑠=1
 

 

(3.7) 

where 𝑎(𝑠) is the trawable unit area associated with the knot s, 𝑑𝑐(𝑠, 𝑡) is predict abundance 

density for length category c at every location s among year t. The predicted total abundance 

across all length categories for the entire spatial domain is 

 
𝐼(𝑡) = ∑ 𝐼𝑐(𝑡)

𝑛𝑐

𝑐=1
 

(3.8) 

 

the proportion for each length category is  

 
𝑃𝑐(𝑡) =

𝐼𝑐(𝑡)

𝐼(𝑡)
 

(3.9) 

 

And the estimate of proportion variance is 

𝑆𝐸[𝑃𝑐(𝑡)]2 ≈
𝐼𝑐(𝑡)2

𝐼(𝑡)2
{
𝑆𝐸[𝐼𝑐(𝑡)]2

𝐼𝑐(𝑡)2
− 2

𝑆𝐸[𝐼𝑐(𝑡)]2

𝐼𝑐(𝑡)𝐼(𝑡)
+

∑ 𝑆𝐸[𝐼𝑐(𝑡)]2𝑛𝑐
𝑐=1

𝐼(𝑡)2
} 

(3.10) 

where 𝑆𝐸[𝐼𝑐(𝑡)] is standard error of predicted population abundance for length category c. 
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2.3 Results 

I apply both design-based estimator and model-based estimator to length compositional data 

for NAFO Div. 3NO witch flounder. The plots of predicted abundance in density for 21 

length categories in the model-based estimator from 1995 to 2018 (except 2014) are shown in 

(Figures 2.2-2.22). This indicates that witch flounder is mainly concentrated along the 

western edges of the Grand Bank in the deep water (Figures 2.2-2.22). The high-density area 

of the juvenile witch flounder with a body length of 10 to 14 cm shifted from the northwest 

to the southwest of NAFO Div. 3NO from 1996 to 1998 (Figures 2.2-2.3). The juvenile witch 

flounder with a body length of 22 to 36 cm was relatively evenly distributed in NAFO Div. 

3NO, with no obvious change, from 1995 to 2018 (Figures 2.8-2.14). The adults greater than 

40 cm in length was distributed in shallower waters compared to younger fish (Figures 2.17-

2.22). 

 

The comparison of the predicted abundance-at-length from the two approaches is shown in 

(Figure 2.23). The indices estimated from the model-based approach are smoother and show 

smaller CI than that from design-based approach (Figures 2.23 - 2.24). The estimated indices 

for 32 to 40 length categories from design-based estimator are obviously larger than that 

from model-based estimator. The comparison of the predicted proportion at length is shown 

in (Figure 2.24). Both design-based estimator and model-based estimator generate relatively 

similar estimates of the proportion of abundance-at-length, and similar trends in cohort 

dynamics are also shown in these estimates. For example, strong cohorts at the length of 36-

40 cm first appear in 2004, which can be continually identified until 2018.  
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2.4 Discussion  

Standardizing survey indices typically takes into account the following: a) spatial and 

temporal differences in sampling intensity; b) non-independent samples in survey data; c) the 

effect of covariates (e.g. vessel effects, habitat covariates and catchability covariates) 

(Thorson, 2014). My study focuses on standardizing size-compositional abundance data 

using design-based approach and model-based approach and comparing the results. The 

results demonstrate the model-based estimator substantially improves precision compared to 

the design-based estimator, by providing smaller confidence intervals and smaller coefficient 

of variation (Figure 2.23-2.25). Allowing information to be shared among areas that help 

resolve problems associated with highly weighted but poorly sampled large spatial strata 

(Maunder et al., 2020). For example, when sampling intensity varies among areas, the model-

based estimator can get smaller variance estimates than the design-based estimator. The 

model-based estimator can potentially further increase estimation precision by including 

habitat covariates in future research. In the model-based estimator, the spatial variation can 

be estimated and spatially-correlated habitat variability can be controlled (Shelton et al., 

2014). But in the design-based estimator, the spatially-correlated variables cannot be 

explicitly included, which results in residual variance among samples within each stratum 

(Cao et al., 2017; Thorson et al., 2021). When using the design-based estimator, this residual 

variance results in an increase in the variance of the estimated compositional data, which also 

results in increased standard errors (Thorson et al., 2021).  

 

In both approaches, compositional data may include statistical non-independent samples 

(Thorson, 2014). For example, fish caught in one tow might have similar size, and, 
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consequently, repeated samples from individual tows may not reflect independent samples 

from the whole stock (Thorson, 2014). So the effective sample sizes may be smaller than the 

actual sample sizes (the total number of fish counted)(R. C. Francis, 2011; Thorson, 2014). 

The data types that are integrated into the stock assessment model in the US West Coast are 

usually abundance index and compositional data (proportions) (Thorson & Haltuch, 2019). 

Inputting the compositional data (proportions) that includes statistical non-independent 

samples in the stock assessment model may result in imprecision for estimated indices 

(Thorson & Haltuch, 2019). Thus, it is particularly important to estimate the effective sample 

size, which can contribute to determining the data weighting to ensure compositional data 

(proportions) aren't more influential on estimated abundance trends than abundance index (R. 

C. Francis, 2011; Thorson, 2014). The estimated effective sample size can be calculated in 

both approaches based on the variance for estimated compositional data (proportions) using 

the following formula respectively (Thorson, 2014). 

 
𝑆𝑑𝑒𝑠𝑖𝑔𝑛−𝑏𝑎𝑠𝑒𝑑(𝑡) = 𝑀𝑒𝑑𝑖𝑎𝑛𝑐 {

𝑃̂𝑐(𝑡)(1 − 𝑃̂𝑐(𝑡))

𝑆𝐸[𝑃̂𝑐(𝑡)]2
} 

(3.11) 

 

 
𝑆𝑚𝑜𝑑𝑒𝑙−𝑏𝑎𝑠𝑒𝑑(𝑡) = 𝑀𝑒𝑑𝑖𝑎𝑛𝑐 {

𝑃𝑐(𝑡)(1 − 𝑃𝑐(𝑡))

𝑆𝐸[𝑃𝑐(𝑡)]2
} 

 

(3.12) 

The comparison of estimated effective sample size between two approaches are shown in 

(Figure 2.26), which indicates the estimated effective sample sizes in the model-based 

approach is greater than the design-based approach. This result implies that the model-based 

estimator utilizes more sample sizes from survey than design-based estimator, thus making 

the estimation more accurate. 
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I find general agreement in trends between design-based and model-based indices. However, 

from 2004 to 2013 (except 2007), design-based indices are considerably higher in 32 to 40 

cm (Figure 2.23). This could be due to potential biases introduced by model-based approach. 

Thorson and Haltuch (2019) demonstrated that VAST and design-based indices agree very 

well in a simulated dataset from bottom trawl surveys in the Eastern Bering Sea. Although 

VAST minimizes the estimated imprecision for size composition between sizes and years. I 

use "epsilon bias-correction estimator” to correct for retransformation bias (Thorson, 2019) 

and in VAST, bias in the spatial and spatiotemporal variations can still be present for this 

particular DFO survey configuration. Further research using simulation studies is needed to 

quantify this potential bias.  
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Tables 

Table 2.1: List of symbols for a stratified random sampling design (design-based estimator) 

Symbol   Name 

𝜏𝑐ℎ    Total catch for length category c in stratum h 

𝜏̂𝑐ℎ    Unbiased estimator of 𝜏𝑐ℎ 

𝜏̂𝑐                Total catch for length category c in all strata 

𝜏̂                 Total abundance across all length categories 

𝑛𝑐     Number of total length categories 

𝑛ℎ     Number of units sampled in stratum h 

𝑁ℎ     Number of sampling units in stratum h (𝑁ℎ =
𝑆𝑡𝑟𝑎𝑡𝑢𝑚 𝑎𝑟𝑒𝑎

𝑆𝑤𝑒𝑝𝑡 𝑎𝑟𝑒𝑎
) 

𝑁     Number of all sampling units 

𝑦𝑐ℎ𝑎    Observed value in 𝑎th unit for length category c in stratum h 

𝑦̅𝑐ℎ     Sample mean for length category c in stratum h 

𝑦̂𝑐                Population mean for length category c in all strata 

𝐻     Number of strata 

𝑃̂𝑐                Proportion of abundance in each length category c 

𝜇𝑐ℎ    Population mean for length category c in stratum h 

𝑠𝑐ℎ
2     Sample variance for length category c in stratum h 

𝑓ℎ     Sampling fraction 
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Table 2.2 List of names and symbols describing the VAST models 

Symbol   Name       Type 

n𝑐(𝑖)     observed abundance-at-length for sample 𝑖      Data 

𝛼𝑖     area-swept for sample 𝑖         Data 

I    Sample index      Index 

t     Time index       Index 

s     Site index         Index 

c     Length category       Index 

𝑎1(𝑖)    The first linear predictor of encounter probability 

𝑎2(𝑖)    The second linear predictor of positive catch rates 

𝛽1(𝑐, 𝑡𝑖) 𝑎𝑛𝑑 𝛽2(𝑐, 𝑡𝑖)   Temporal Intercept          Fixed effect 

𝜎𝜔1(𝑐) and 𝜎𝜔2(𝑐)   Standard deviation for spatial variation        Fixed effect  

𝜎𝜀1(𝑐) and 𝜎𝜀2(𝑐)   Standard deviation for spatiotemporal variation       Fixed effect 

𝜎𝑚
2(𝑐)    Dispersion parameter for probability density function  Fixed effect 

𝜔1(𝑐, 𝑠𝑖) and 𝜔2(𝑐, 𝑠𝑖)  Spatial variation at location 𝑠𝑖 of each sample 𝑖    Random effect 

𝜀1(𝑐, 𝑠𝑖 , 𝑡𝑖) and 𝜀2(𝑐, 𝑠𝑖 , 𝑡𝑖)  Spatiotemporal variation among location 𝑠𝑖 and  Random effect 

time 𝑡𝑖 of each sample 𝑖        
𝑝𝑐(𝑖)    Predicted encounter probability for sample i                              Derived quantity 

𝑟𝑐(𝑖)    Predicted abundance density for positive catch   Derived quantity 

rates for sample i      

𝑑𝑐(𝑠, 𝑡)     Predict abundance density       Derived quantity 

𝑎(𝑠)    Area associated with the knot s         Derived quantity 

𝐼𝑐(𝑡)    Predicted abundance in length category c for   Derived quantity 

the entire spatial domain  

       𝐼(𝑡)    Predicted total abundance across all length    Derived quantity 

categories for the entire spatial domain      
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Figures 

 

Figure 2.1 Map of distribution of in NAFO Div. 3NO. E_km and N_km are distances converted 

from latitude and longitude. 
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Figure 2.2 Distribution plot of predicted abundance in density for lengths 10-12 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.3 Distribution plot of predicted abundance in density for lengths 12-14 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.4 Distribution plot of predicted abundance in density for lengths 14-16 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.5 Distribution plot of predicted abundance in density for lengths 16-18 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.6 Distribution plot of predicted abundance in density for lengths 18-20 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.7 Distribution plot of predicted abundance in density for lengths 20-22 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.8 Distribution plot of predicted abundance in density for lengths 22-24 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.9 Distribution plot of predicted abundance in density for lengths 24-26 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.10 Distribution plot of predicted abundance in density for lengths 26-28 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.11 Distribution plot of predicted abundance in density for lengths 28-30 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.12 Distribution plot of predicted abundance in density for lengths 30-32 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.13 Distribution plot of predicted abundance in density for lengths 32-34 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.14 Distribution plot of predicted abundance in density for lengths 34-36 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 

 

 

 

  



58 
 

 

Figure 2.15 Distribution plot of predicted abundance in density for lengths 36-38 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 

 

  



59 
 

 

Figure 2.16 Distribution plot of predicted abundance in density for lengths 38-40 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.17 Distribution plot of predicted abundance in density for lengths 40-42 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.18 Distribution plot of predicted abundance in density for lengths 42-44 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.19 Distribution plot of predicted abundance in density for lengths 44-46 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.20 Distribution plot of predicted abundance in density for lengths 46-48 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.21 Distribution plot of predicted abundance in density for lengths 48-50 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.22 Distribution plot of predicted abundance in density for lengths 50-52 cm of witch 

flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014). 
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Figure 2.23 Comparison of estimated abundance-at-length (millions) for 21 length categories of 

witch flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014) by using the design-based 

estimator (blue) and model-based estimator (red). 
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Figure 2.24 Comparison of predicted proportion of abundance-at-length for 21 length categories 

of witch flounder in NAFO Div. 3NO from 1995 to 2018 (except 2014) by using the design-

based estimator (blue) and model-based estimator (red). The shaded area is the 95% confidence 

intervals. 
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Figure 2.25 Comparison of coefficient of variation for 21 length categories of witch flounder in 

NAFO Div. 3NO from 1995 to 2018 (except 2014) by using the design-based estimator (blue) 

and model-based estimator (red).  
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Figure 2.26 The estimated effective sample sizes for the design-based approach (red) and the 

model-based approach (blue) from 1995 to 2018 (except 2014). 
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Chapter 3 Stock assessment models for NAFO Div. 3NO witch 

flounder 

3.1 Introduction 

Single-species stock assessment models are demographic analyses designed to estimate 

historical and current abundance and biomass, determine the population dynamic, evaluate 

the stock status relative to the reference point and the consequences of current harvest 

policies, and form the basis for forecasts to evaluate the implication under different harvest 

rules (Methot Jr & Wetzel, 2013; Punt et al., 2013). Depending on the model structure and 

data utilized, single-species stock assessment models can largely be assorted into the 

following three categories: a) surplus production models, b) age-structured models, and c) 

size- (or length-/stage-) structured models (Punt et al., 2013). 

 

Surplus production models are age- and size-aggregated models that approximate changes in 

biomass based on the biomass of the previous year, the surplus production in biomass, and 

the catches by the fishery (Winker et al., 2020). A surplus production model in a Bayesian 

framework developed by NAFO Scientific Council was accepted and has been applied to 

assess NAFO Div. 3NO witch flounder stock since 2015 (Morgan et al., 2015; Rogers & 

Morgan, 2019). The input data were fishery-dependent catch data and fishery-independent 

Canadian spring and autumn survey series data (Rogers & Morgan, 2019). This surplus 

production model provides estimates of biomass and fishing mortality and evaluates the 

status of the stock relative to precautionary reference points (Morgan & Lee, 2018). 

However, model results indicated that the change in population size from 2014 to 2015 was 
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very large and abrupt, which cannot be explained in the process being modelled and this 

change was subsequently for by increasing the process error (Morgan & Lee, 2018). In 

addition, the size and structure dynamics of the witch flounder stock are almost totally 

unknown in this model. 

 

Age-structured models are the more preferred method and widely used in many fisheries 

stock assessments (D. A. Fournier et al., 1998). The models range from simple deterministic 

methods such as virtual population (or cohort) analysis to more complex statistical models 

that incorporate variability in data and various population dynamics (D. A. Fournier et al., 

1998; Quinn, 2003). These age-structured models use multiple sources of data such as catch, 

age/size composition data, length-or weight-at-age information, and maturity information to 

clarify the population dynamics by estimating model parameters and deriving outputs (Ono et 

al., 2015). The advantage of these models is that by taking into account information such as 

fish life-history traits, fishery characteristics. Changes in population structure, natural 

mortality, and recruitment over time can be determined, which can reduce the uncertainty in 

stock assessment (Y. Chen et al., 2003; Magnusson & Hilborn, 2007). Therefore, age-

structured models are considered more reliable to reconstruct the “true” population dynamics 

than surplus production models (Hilborn & Walters, 2013). However, age-based data (e.g. 

catch-at-age) are usually expensive and time-consuming to measure and therefore not 

obtained for many stocks. Moreover, the aging of many fisheries stocks may be hard or 

inaccurate (Campana & Thorrold, 2001; D. Fournier & Archibald, 1982). Aging accuracy 

often decreases with age for long-lived species (e.g. witch flounder), meaning older fish are 
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given poor age estimates (Marriott & Mapstone, 2006). To address these problems, size-

structured models have been developed. 

 

While the majority of assessments conducted for fish stocks are based on surplus production 

models or age-structured models, size-structured models are increasingly being performed 

for hard-to-age species stocks (Akselrud et al., 2017; Punt et al., 2013). Size- (or length-

/stage-) structured models are usually applied to estimate population dynamics when catch-

at-length data is easier and cheaper to acquire and more accurate than catch-at-age data 

(Andersen, 2020; Cronin-Fine & Punt, 2020). However, size-structured models cannot 

provide age-based biological reference points for fishery management, due to the inability to 

estimate cohort dynamics creating a challenge in stock management. 

 

An approach to address this challenge is the age-based statistical catch-at-length (ACL) 

model (D. A. Fournier et al., 1998). Age-length transition matrix used in ACL to convert 

number-at-age to number-at-length. When age data are unavailable or not reliable for 

fisheries, ACL can estimate age-based cohort dynamics by fitting length-based data. 

However, the major issue of ACL is that it only accounts for age-dependent population 

processes and ignores the length-dependent mortality within age, which may lead to bias in 

population dynamics estimation (Punt et al., 2013). 

 

An age and length structured statistical catch-at-length model (ALSCL) developed by (Zhang 

& Cadigan, n.d.) is another approach to address this problem and has been applied to 

yellowtail flounder in NAFO Div. 3LNO. Specifically, ALSCL uses a full stochastic growth 
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transition matrix to estimate age-based population dynamics from length-based data, and 

tracks the dynamics of age- and size-structure over time simultaneously by integrating 

length-based and age-based fishing mortality, which keeps the advantages of both age-

structured models and size-structured models (Zhang & Cadigan, n.d.).  

 

In Chapter 2, I standardized survey catch-at-length indices using design-based approach and 

model-based approach, but the consequences on stock assessment are not clear. 

It’s possible that the more precise model-based estimates result in more precise estimates of 

cohort dynamics when utilized in a size-structured assessment model. In addition, the impact 

of input data choice (design- or model-based data) has not been assessed and the performance 

of ALSCL model and ACL model for NAFO Div. 3NO witch flounder assessment has never 

been compared. Thus, I generate four combinations for NAFO Div. 3NO witch flounder 

assessment: (1) design-based indices and ALSCL model. (2) model-based indices and 

ALSCL model. (3) design-based indices and ACL model. (4) model-based indices and ACL 

model. In this chapter, I first describe the data input and structures of ALSCL and ACL, then 

apply four combinations to estimate the population dynamics for NAFO Div. 3NO witch 

flounder, and finally compare the assessment results for four combinations to see whether the 

results are sensitive to indices and model choices. 

 

3.2 Methods 

3.2.1 Data input 

I use the standardized NAFO Div. 3NO witch flounder fishery RV survey design-based 

indices and model-based indices from 1995 to 2018 in Chapter 2 as the input abundance-at-
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length indices in both ALSCL and ACL models. I define 21 length bins with 2cm bin widths: 

{10-12, 12-14, 14-16, … 48-50, 50-52}. The input weight-at-length data for four 

combinations is formulated by 

 𝑊𝑙,𝑡 = 𝑎𝑡𝑙𝑏𝑡 , 𝑙 = 1, … , 𝐿 𝑎𝑛𝑑 𝑡 = 1, … , 𝑇 

 

(3.1) 

where 𝑎 and b are constants (𝑎 =  0.001464, b =  3.40980) across all years that are derived 

from (Durán & Paz, 2000). Due to the lack of maturity information for NAFO Div. 3NO 

witch flounder, I used maturity data from Gulf of Maine and Gulf of St. Lawrence as 

empirical data to generate the maturity-at-length data for witch flounder. The length at 50% 

and 95% maturity is 29 cm and 51 cm respectively. 

 

3.2.2 ALSCL model  

The core of ALSCL is the three-dimensional population dynamics, which are modelled by 

length-based survival and growth transition matrix within each cohort, across length bins 

(l=1,…,L), ages (a=1,…,A) and years (t=1,…,T). In this model, I specify 21 length bins with 

a width of 2 cm. I set the maximum age (A) at 25, which is equal to the maximum reported 

age for witch flounder (Bowering, 1978). I use years from 1995 to 2018 (except for 2014). 

The equation of three-dimensional population dynamics is given in  

 

 𝒏𝑙|𝑎,𝑡 = 𝑮 ∗ (𝒏𝑙|𝑎−1,𝑡−1 ° 𝑒−𝒛𝑙|𝑡−1) (3.2) 
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where 𝒏𝑙|𝑎,𝑡 is length-specific number for individuals at age a in year t, 𝒛𝑙|𝑡−1 is length-

specific total mortality rates for individuals in year t-1, 𝑮 is the growth transition matrix. 

Refer to (Zhang & Cadigan, n.d.) for details of this model. 

 
𝑮 = [

𝑝11 ⋯ 𝑝1𝐿

⋮ ⋱ ⋮
𝑝𝐿1 ⋯ 𝑝𝐿𝐿

] 
(3.3) 

 

where the elements in each column of 𝑮 sums to one, and 𝑝𝑖𝑗 represents the probability of 

moving from length bin j to length bin i after one year. The equation of 𝑝𝑖𝑗 is 

𝑝𝑖𝑗 = ∫ 𝑓∆(𝑦 − 𝑙𝑗̅ | 𝑙𝑗̅ , 𝜽)
𝑙𝑖

𝑙𝑖−1

𝑑𝑦 
(3.4) 

 

where 𝑙𝑗̅ is the starting mean value of initial length, 𝜽 are parameters to be estimated (detail 

in below), 𝑓∆() is the probability density function (pdf) of the growth increment 𝑦 − 𝑙𝑗̅, which 

is assumed to follow a normal distribution, 𝑓∆(𝑥) ~ 𝑁(𝜇𝑥, 𝜎𝑥). The mean growth increment is 

formulated as  

 
𝜇𝑥 = 𝐸 (𝑦 − 𝑙𝑗̅  | 𝑙𝑗̅ , 𝜽) =

∆𝑚𝑎𝑥

1+𝑒
−𝑙𝑜𝑔(19)∗

𝑥−𝑙50
𝑙95−𝑙50

 
(3.5) 

 

where parameters 𝜽 =(∆𝑚𝑎𝑥, 𝑙50, 𝑙95), ∆𝑚𝑎𝑥= (1 − 𝑒−𝑘) ∗ 𝐿∞ that is derived from Von 

Bertalanffy (VonB) equation and k and 𝐿∞ are VonB model parameters that to be estimated,    

𝑙50 𝑎𝑛𝑑 𝑙95 are lengths where growth increments are 50% and 95% of ∆𝑚𝑎𝑥, respectively, 

and the value of 𝜇𝑥 decreases with increasing values of 𝑥.  
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The total mortality rate for each length bin l in year t is the sum of the length-specific fishing 

mortality rate and the natural mortality rate. 

 

 

 

𝑍𝑙,𝑡 = 𝐹𝑙,𝑡 + 𝑀𝑙,𝑡 (3.6) 

 

𝑍𝑙,𝑡 is assumed to be correlated across length and years, log (𝑍𝑙,𝑡) is assumed to follow a 

multivariate normal (MVN) distribution, log (𝑍𝑙,𝑡) ~ 𝑀𝑉𝑁(𝜇𝑧, Σ𝑧), where 𝜇𝑧 is assumed to 

be the same mean for all l and t, Σ𝑧 is a separable covariance matrix.  

 

Σ𝑧 = 𝐶𝑜𝑣[Σ𝑧,𝑙,𝑡,Σ𝑧,𝑙−1,𝑡−1] =
𝜎𝑧

2𝜙𝐿
|𝑖|𝜙𝑇

|𝑗|

(1 − 𝜙𝐿
2)(1 − 𝜙𝑇

2)
 , 𝑙 = 1, … , 𝐿 and 𝑡 = 1, … , 𝑇   

(3.7) 

where 𝜎𝑧
2 is the variance, 𝜙𝐿 and 𝜙𝑇 are the length and year autocorrelation coefficients 

respectively. ALSCL predicts 𝑍𝑙,𝑡 by estimating 𝜇𝑧 , 𝜎𝑧
2, 𝜙𝐿 and 𝜙𝑇. I also assume 𝑀𝑙,𝑡 for 

witch flounder to be constant for all length bin l in year t (𝑀𝑙,𝑡  =0.2), so that 𝐹𝑙,𝑡 can be 

derived from the estimated 𝑍𝑙,𝑡. 

The recruitment is predicted to follow AR1 variation over time,  

 

𝑟𝑡 = 𝑟̅𝑒𝜀𝑡 , 𝑡 = 1, … , 𝑇   (3.8) 

 

𝑟𝑙|𝑡 =  𝑟𝑡 ∗ 𝒑𝑙|𝑟,𝑡 (3.9) 
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where 𝑟̅ is the mean recruitment and 𝜀𝑡 is the recruitment deviation that is assumed to follow 

MVN distribution with mean 0 and AR(1) covariance with correlation and stationary 

variance, 𝜀𝑡 ~ 𝑀𝑉𝑁(0,
𝜎𝑟

2𝜙𝑟

(1−𝜙𝑟
2)

) and the length distribution of recruitment is assumed to be 

normal, 𝒑𝑙|𝑟,𝑡 is the probabilities that recruitment is in each length bin, 𝑟𝑙|𝑡 is recruitment-at-

length in year t. 

The length-specific abundance at age a in the first model year is calculated by 

 

 𝑛𝑙|𝑎,1 =  𝑛𝑎,1 ∗ 𝒑𝑙|𝑎,1 (3.10) 

   

 𝑛𝑎,1 = 𝑟1𝑒−𝑍𝑖𝑛𝑖𝑡(𝑎−1)𝑒𝜀𝑎 , 𝑎 = 1, … , 𝐴 (3.11) 

 

where 𝑛𝑎,1 is stock number-at-age in the first model year, 𝒑𝑙|𝑎,1 is the probabilities that 

abundance-at-age is in each length bin in the first model year, 𝑟1 is the recruitment in the first 

model year, 𝑍𝑖𝑛𝑖𝑡 is the initial total natural mortality for age group in the first model year, 𝜀𝑎 

are independent random variables that follow normal distribution. 

The equations of biomass 𝑏𝑙,𝑎,𝑡 and spawning stock biomass 𝑠𝑠𝑏𝑙,𝑎,𝑡 are 

 

 𝑏𝑙,𝑎,𝑡 = 𝑛𝑙,𝑎,𝑡𝑤𝑡𝑙,𝑡 (3.12) 

 𝑠𝑠𝑏𝑙,𝑎,𝑡 = 𝑏𝑙,𝑎,𝑡𝑚𝑎𝑡𝑙,𝑡 (3.13) 
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where 𝑤𝑡𝑙,𝑡 and 𝑚𝑎𝑡𝑙,𝑡 are the weight-at-length and maturity-at-length in year t respectively. 

And the total biomass 𝑏𝑡 and spawning stock biomass 𝑠𝑠𝑏𝑡 are  

 

 𝑏𝑡 = 𝛴𝑙𝑏𝑙,𝑡 (3.14) 

 𝑏𝑙,𝑡 = 𝛴𝑎𝑏𝑙,𝑎,𝑡 (3.15) 

 𝑠𝑠𝑏𝑡 = 𝛴𝑙𝑠𝑠𝑏𝑙,𝑡 (3.16) 

 𝑠𝑠𝑏𝑙,𝑡 = 𝛴𝑎𝑠𝑠𝑏𝑙,𝑎,𝑡 (3.17) 

 

The time-series length-based survey indices 𝐼𝑙,𝑡 is formulated by 

 

 𝑙𝑜𝑔(𝐼𝑙,𝑡) =  𝑙𝑜𝑔(𝑞𝑙) + 𝑙𝑜𝑔(𝑛𝑙,𝑡) + 𝜀𝑙,𝑡 (3.18) 

 

where 𝑞𝑙 is the catchability at length l that is assumed to be constant across year t, 𝜀𝑙,𝑡 are 

assumed to be independent and identically distributed lognormal survey measurement errors 

of survey number at length, 𝜀𝑙,𝑡 
𝑖𝑖𝑑
~

 N (0, 𝜎𝐼), where 𝜎𝐼 is the survey index standard deviation. 

Due to the lack of catchability at length information for NAFO Div. 3NO witch flounder, I 

set the maximum of the 𝑞𝑙 is equal to one and designate the length pattern using a logistic  

function parameterized according to lengths at 50% and 95% survey catchability (L50, L95) 

which are 27 cm and 32 cm respectively (Figure 3.9). The Population scale will be sensitive 

to this q assumption and, consequently, population estimations such as abundance and 

biomass are considered to be relative. 
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The total mortality at age a in year t is calculated by  

 

 𝑍𝑎,𝑡 = 𝑙𝑜𝑔(𝑛𝑎,𝑡) − 𝑙𝑜𝑔(𝑛𝑎−1,𝑡−1) (3.19) 

 

where 𝑛𝑎,𝑡 is stock number-at-age in year t, , 𝑍𝑎,𝑡 are derived from age-based population 

dynamics, and 𝐹𝑎,𝑡 = 𝑍𝑎,𝑡 − 𝑀𝑎,𝑡 𝑤ℎ𝑒𝑟𝑒 𝑀𝑎,𝑡 𝑖𝑠 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 0.2  

 

3.2.3 ACL model   

The ACL model consists of two main parts: a) the stochastic Von Bertalanffy growth model 

and age-length transition. b) the age-based catch-at-length model. 

a. Description of the Von Bertalanffy growth model and the age-length transition  

To convert the number-at-age to the number-at-length, ACL starts from the Von Bertalanffy 

growth model:  

 𝐿𝑎 = 𝐿∞(1 − 𝑒−𝑘(𝑎−𝑎0)) 

 

(3.20) 

The length information was measured for the bin size of 2 cm. It is assumed that there is a mid-

point of the length bins, L ∈  (l - 1 cm, l + 1 cm). It is also assumed that length at age is normally 

distributed with a mean 𝐿𝑎 and a standard deviation 𝜏𝐿𝑎, L at age a~ N (𝐿𝑎  , 𝜏𝐿𝑎). ACL applies 

the formula of cumulative distribution function (CDF) for the normal distribution, the 

probability was calculated as follows: 
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𝑷 = 𝑃𝑟{ 𝐿(𝑎) ∈ 𝑙} = 𝜙 {

𝑙 − 𝐿𝑎  + 1

τ𝐿𝑎 
} − 𝜙 {

𝑙 − 𝐿𝑎  − 1

τ𝐿𝑎  
}     

 

(3.21) 

Where 𝑃𝑙,𝑎 is the probability that a fish is in length‐bin l with a given age a, 

𝜙~𝑁{𝑚𝑒𝑎𝑛 = 0, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 1}. 

 

b. Description of the age-based catch-at-length model 

 

 𝑛𝑎+1,𝑡+1 = 𝑛𝑎,𝑡𝑒−𝑍𝑎,𝑡 

 

(3.22) 

 𝑍𝑎,𝑡 = 𝐹𝑎,𝑡 + 𝑀𝑎,𝑡 

 

(3.23) 

Where 𝑛𝑎,𝑡 is the number of fish at age a in year t, 𝑛𝑎+1,𝑡+1 is the predicted population in the 

next year. 𝑍𝑎,𝑡  is the total mortality, which equal the sum of fishing mortality rate F and 

natural mortality rate M. 𝑀𝑎,𝑡 is assumed to be constant and is equal to 0.2. 𝑍𝑎,𝑡 is assumed to 

be correlated across length and years, log (𝑍𝑎,𝑡) is assumed to follow a multivariate normal 

(MVN) distribution, log (𝑍𝑎,𝑡) ~ 𝑀𝑉𝑁(𝜇𝑧, Σ𝑧), where 𝜇𝑧 is assumed to be the same mean for 

all a and t, Σ𝑧 is a separable covariance matrix.  

 
𝐶𝑜𝑣(𝛴𝑍,𝑎,𝑡, 𝛴𝑍,𝑎−𝑖,𝑡−𝑗)) =

𝜎𝑍
2𝜙𝐴

|𝑖|
𝜙𝑇

|𝑗|

(1 − 𝜙𝐴
2)(1 − 𝜙𝐴

2)
, 𝑎 = 1, … , 𝐴 𝑎𝑛𝑑 𝑡 = 1, … , 𝑇. 

 

(3.24) 

where 𝜎𝑧
2 is the variance, 𝜙𝐴 and 𝜙𝑇 are the age and year autocorrelation coefficients 

separately. ACL predicts 𝑍𝑎,𝑡 by estimating 𝜇𝑧, 𝜎𝑧
2, 𝜙𝐿 and 𝜙𝑇. 

Recruitment is predicted to follow AR1 variation over time,  
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𝑟𝑡 = 𝑟̅𝑒𝜀𝑡 , 𝑡 = 1, … , 𝑇   (3.25) 

 

where 𝑟̅ is the mean recruitment and 𝜀𝑡 is the recruitment deviation that is assumed to follow 

MVN distribution in stationary process, 𝜀𝑡 ~ 𝑀𝑉𝑁(0,
𝜎𝑟

2𝜙𝑟

(1−𝜙𝑟
2)

) and the length distribution of 

recruitment is assumed to be normal. 

The first model year number-at-age is calculated by 

 

 𝑛𝑎,1 = 𝑟1𝑒−𝑍𝑖𝑛𝑖𝑡(𝑎−1)𝑒𝜀𝑎 , 𝑎 = 1, … , 𝐴 (3.26) 

 

 

where 𝑟1 is the recruitment in the first model year, 𝑍𝑖𝑛𝑖𝑡 is the initial total natural mortality 

for age group in the first model year, and 𝜀𝑎 are independent random variables that follow 

normal distribution, 𝜀𝑎 ~ N(0, 𝜎𝑖𝑛𝑖𝑡), where 𝜎𝑖𝑛𝑖𝑡 is assumed to be constant across ages.  

Using the age-length transition matrix 𝑷 to convert number-at-age to number-at-length. 

 𝒏𝑙|𝑡 = 𝑷 ∗ 𝒏𝑎|𝑡 

 

(3.27) 

 

 

The biomass and spawning stock biomass at length bin l in year t is calculated by 
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𝑏𝑙,𝑡 = 𝑛𝑙,𝑡𝑤𝑡𝑙,𝑡 (3.28) 

𝑠𝑠𝑏𝑙,𝑡 = 𝑏𝑙,𝑡𝑚𝑎𝑡𝑙,𝑡 (3.29) 

 

Where 𝑤𝑡𝑙,𝑡 and 𝑚𝑎𝑡𝑙,𝑡 are the weight-at-length and maturity-at-length in year t respectively. 

And the total biomass and spawning stock biomass are  

 

𝑏𝑡 = 𝛴𝑙𝑏𝑙,𝑡 (3.30) 

𝑠𝑠𝑏𝑡 = 𝛴𝑙𝑠𝑠𝑏𝑙,𝑡 (3.31) 

 

The time-series survey catch-at-length indices 𝐼𝑙,𝑡 is formulated by  

 

 𝑙𝑜𝑔(𝐼𝑙,𝑡) =  𝑙𝑜𝑔(𝑞𝑙) + 𝑙𝑜𝑔(𝑛𝑙,𝑡) + 𝜀𝑙,𝑡 (3.32) 

 

where 𝑞𝑙 is the catchability at length l that is assumed to be constant across year t, 𝜀𝑙,𝑡 are 

assumed to be independent and identically distributed lognormal survey measurement errors 

of survey number at length, 𝜀𝑙,𝑡 
𝑖𝑖𝑑
~

 N (0, 𝜎𝐼), where 𝜎𝐼 is the survey index standard deviation. 

Due to the lack of catchability at length information for NAFO Div. 3NO witch flounder, I 

set the maximum of the 𝑞𝑙 is equal to one and designate the length pattern using a logical 

function parameterized according to lengths at 50% and 95% fishing selection (L50, L95) 

which are assumed to be 27 cm and 32 cm respectively (Figure 3.9). 
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3.3 Results 

I fit standardized fall survey abundance-at-length, weight-at-length, and maturity-at-length 

data of NAFO Div. 3NO witch flounder in four combinations to estimate their relative 

abundance, recruitment, biomass and stock spawning biomass.  

 

3.3.1 Models diagnostics 

Four combinations all successfully converged, and the fits for ALSCL and ACL with model-

based indices are fairly good, but the fits for ALSCL and ACL with design-based indices are 

bad, via inspection for patterns in the residuals (Figures 3.1-3.8). ALSCL and ACL with 

model-based indices underestimated the survey abundance indices for length groups of 10 to 

14 cm in the early model years and length groups of 26 cm to 30 cm in the recent model 

years, and slightly overestimated the indices for length groups of 32 to 34 cm among model 

years (Figures 3.3 & 3.7). ALSCL and ACL with design-based indices underestimated the 

survey abundance indices for length groups of 12 to 14 cm among model years and length 

groups of 34 cm to 52 cm in the recent model years (Figures 3.1 & 3.5). The residual plots 

for four combinations are shown in (Figures 3.2 & 3.4 & 3.6 &3.8). The residuals in ALSCL 

and ACL with model-based indices are much smaller and show fewer trends than that in 

ALSCL and ACL with design-based indices. 

 

3.3.2 Population estimation 
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For ALSCL model with design-based indices, the results show an overall fluctuating trend in 

the estimated relative total abundance and recruitment from 1995 to 2018 (Figure 3.10). The 

total abundance decreased from 1995 to 1996, increased from 1996 to 1999, and reached the 

peak in 1999, and fluctuated from 2000 to 2011, then followed a decreasing trend from 2011 

to 2018 (Figure 3.10). Recruitment has the same trend as abundance (Figure 3.10). The 

relative total stock biomass and spawning stock biomass both show a trend of first falling, 

then rising and falling again from 1995 to 2018 (Figure 3.10). The VonB growth curve 

indicates the VonB model parameters k and 𝐿∞ estimated at 0.22 and 53.98 cm respectively, 

it also showed witch flounder approaches 𝐿∞ at age 15 (Figure 3.11). 

 

For ALSCL model with model-based indices, the results indicate a long-term decreased trend 

in the relative total abundance and recruitment (Figure 3.10). The relative total abundance 

dropped sharply from 1995 to 1997, increased rapidly from 1997 to 1998, and reached the 

peak in 1998, and decreased sharply again between 1998 and 2001, then fluctuated from 

2001 to 2018 (Figure 3.10). Recruitment has the same trend as abundance (Figure 3.10). The 

relative total stock biomass shows a first increased and then decreased trend between 1995 to 

2018, with a peak in 2010 (Figure 3.10). Similarly, the relative spawning stock biomass 

(SSB) follows this trend over time (Figure 3.10). The VonB growth curve indicates the VonB 

model parameters k and 𝐿∞ estimated at 0.28 and 46.46 cm respectively, it also showed witch 

flounder approaches 𝐿∞ at age 12 (Figure 3.11). 

 



87 
 

The results of ALSCL model with design-based indices have larger confidence intervals of 

estimated relative population indices than ALSCL model with model-based indices (Figure 

3.10). The results indicate the estimated relative abundance and recruitment in ALSCL model 

with model-based indices from 1995 to 2018 are larger than those in ALSCL model with 

design-based indices, especially in 1998, and the estimated relative biomass and SSB from 

1995 to 2018 are not significantly different in these two ALSCL combinations (Figure 3.10). 

The results also indicate no clear stock-recruitment relationship in these two ALSCL 

combinations (Figure 3.10). The trend of relative total abundance and relative total biomass 

is different in the time series in these two ALSCL combinations, which indicates that may 

have a strong variation in age structure over time. Based on the estimates of relative 

abundance-at-age, there are substantial differences in the patterns of temporal variation 

between age groups. For example, for ALSCL model with design-based indices, while 

abundance in age 4-6 groups decreased over time, abundance in age 9-10 groups increased; 

for ALSCL model with model-based indices, while abundance in age 1 group decreased over 

time, abundance in age 2-4 groups increased (Figure 3.12). Similarly, the estimates of 

relative abundance-at-length also indicate obviously different temporal variation patterns 

among younger and older length groups, that is, in both combinations, while abundance in 

younger length groups (10-12 cm) decreased over time, abundance increased in older length 

groups (40-46 cm) over time (Figure 3.13). 

 

For ACL model with design-based indices, the results show an overall fluctuating trend in 

the estimated relative total abundance and recruitment from 1995 to 2018 (Figure 3.14). The 

estimated relative abundance and recruitment decreased from 1995 to 1996, increased rapidly 
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from 1996 to 1998, and fluctuated and overall decreased from 1998 to 2016, and show a 

trend of rising first and then falling from 2017 to 2018 (Figure 3.14). Both relative 

abundance and recruitment reached a peak in 1999 (Figure 3.14). The total relative stock 

biomass and spawning stock biomass both show a trend of first falling, then rising and falling 

again from 1995 to 2018 (Figure 3.14). The VonB growth curve indicates the VonB model 

parameters k and 𝐿∞ are 0.27 and 44.59 cm respectively, it also showed witch flounder 

approaches 𝐿∞ at age 13 (Figure 3.15). 

 

For ACL model with model-based indices, the results indicate a long-term decreased trend in 

the total abundance and recruitment (Figure 3.14). The estimated relative abundance 

fluctuated from 1995 to 1999, and sharply decreased from 1999 to 2000, then show an 

overall upward trend from 2000 to 2017, then followed a sharp downward trend from 2017 to 

2018 (Figure 3.14). The estimated relative recruitment increased from 1995 to 1996, and 

sharply decreased from 1996 to 1999, then fluctuated from 2000 to 2011, then followed an 

overall upward trend from 2011 to 2018 (Figure 3.14). The estimated relative abundance and 

recruitment reached a peak in 1995 and 1996 respectively (Figure 3.14). The estimated 

relative total stock biomass and spawning stock biomass show a first increased and then 

decreased trend between 1995 to 2018 (Figure 3.14). The VonB growth curve indicates the 

VonB model parameters k and 𝐿∞ are 0.12 and 46.24 cm respectively, it also showed witch 

flounder approaches 𝐿∞ at age 25 (Figure 3.15). 
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The results of ACL model with design-based indices have larger confidence intervals of 

estimated relative population indices than ACL model with model-based indices (Figure 

3.14). The results indicate the estimated relative abundance and recruitment in ACL model 

with model-based indices from 1995 to 1999 and 2015 to 2017 are almost twice those in 

ACL model with design-based indices, and the estimated relative biomass and SSB from 

1995 to 2018 are not significantly different in these two combinations (Figure 3.14). The 

results also indicate that recruitment was relatively constant over a wide range of SSB levels, 

with no clear stock-recruitment relationship in these two ACL combinations (Figure 3.14). 

Based on the estimates of relative abundance-at-age and abundance-at-length, there are 

substantial differences in the patterns of temporal variation between age or length groups in 

these two ACL combinations (Figure 3.16-3.17). 

 

3.3.3 length-based survey indices estimation 

The ALSCL and ACL models with design-based indices predicted length-based survey 

indices show completely different trends from the observed indices among years, especially 

from 2000 to 2018 (Figures 3.18 & 3.20). 

 

The ALSCL and ACL models with model-based indices predicted length-based survey 

indices reflect the same trends as observed indices (Figures 3.19 & 3.21). The lengths 

corresponding to the peaks in the estimations are slightly greater than that in observations 

across most years (Figures 3.19 & 3.21). Noticeably, in some years (e.g. 1998 and 2011), 

small peaks in the observed survey indices for catch with length less than 20cm are not 

shown in the prediction indices (Figures 3.19 & 3.21). 
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3.3.4 Fishing mortality estimation 

For ALSCL model with design-based indices, fishing mortality at age or length is very stable 

from 1995 to 2018 with very little change, and fishing mortality less than 0.1 for all age or 

length groups (Figure 3.22). For ALSCL model with model-based indices, fishing mortality 

at age shows a trend of first rising, then falling, and then fluctuating between 0 and 0.5 

among all age groups, except for age 1 and age 2 groups (Figure 3.22). For age greater than 3 

groups, fishing mortality shows a substantially same trend over time, with a peak value in 

1998 (Figure 3.22). The estimates of fishing mortality at length indicate that fishing mortality 

is equal to 0 for length groups of 10 to 24 cm, with an overall decreasing trend for length 

groups of 24 to 52 cm (Figure 3.23). 

 

For ACL model with design-based indices and model-based indices, fishing mortality is 

equal to 0 for all age groups due to the estimated total mortality is smaller than assumed 

natural mortality (0.2). And fishing mortality at length cannot be produced in these two 

combinations (Figure 3.24). 

 

3.3.5 Sensitivity analyses 

I found that the assessment results are sensitive to the indices choices. In both ALSCL and 

ACL models, the abundance estimated by model-based indices is much larger than the 

abundance estimated by design-based indices, from 1995 to 2018, especially in the early and 
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recently model years (Figures 3.10 & 3.14); the abundance-at-age estimated by model-based 

indices is larger than that estimated by design-based indices for age 1-3 and 13-25 groups, 

and the abundance-at-age estimated by model-based indices is smaller than that estimated by 

design-based indices for age 5-10 groups (Figures 3.12 & 3.16); the abundance-at-length 

estimated by model-based indices is much larger than that estimated by design-based indices 

for length at 10-18 cm groups, and the abundance-at-length estimated by model-based 

indices is smaller than that estimated by design-based indices for length at 18-40 cm groups 

(Figures 3.13 & 3.17); the survey indices residuals estimated by model-based indices is much 

smaller than that estimated by design-based indices, especially in young age groups or small 

length groups (Figures 3.25-3.28). 

 

I found the assessment results to be less sensitive to model choices compared to indices 

choices. For ALSCL and ACL models with design-based indices, the results show that the 

estimated abundance, recruitment, biomass and spawning stock biomass in the time series 

have similar values and trends (Figure 3.29). The estimated abundance among age or length 

groups in these two combinations also has a similar trend but estimates in ACL are basically 

larger than in ALSCL (Figures 3.30-3.31). The estimated fishing mortality in both ALSCL 

and ACL is below 0.1 and doesn’t have obvious changes among age groups (Figure 3.32). 

For ALSCL and ACL models with model-based indices, the estimated abundance in ACL is 

higher than in ALSCL, especially in 1996, estimated abundance in ACL was about double 

that in ALSCL (Figure 3.34); the estimated recruitment in ACL and ALSCL fluctuates within 

the relatively same range, but not in the same trend, and the estimated biomass and spawning 

biomass in these two combinations are very close and have relatively the same trends (Figure 
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3.34); the estimated abundance-at-age in ACL is much higher than in ALSCL since age 7 

group (Figure 3.35); the estimated abundance-at-length in ACL have similar values and 

trends as in ALSCL (Figure 3.36). Compare to ALSCL, ACL only can provide the estimation 

of fishing mortality at age and cannot produce the estimated fishing mortality at length 

(Figure 3.37). Regardless design-based or model-based indices are fitted in ACL, the 

estimated total mortality in ACL is smaller than assumed natural mortality (0.2), so the 

estimated fishing mortality is equal to 0, which is unrealistic (Figure 3.36). The estimated 

growth of witch flounder’s body length in ALSCL is faster than in ACL (Figures 3.33 & 

3.38).  

I found that ALSCL and ACL models are sensitive to the survey catchability 𝑞𝑙. I conducted 

the sensitivity analyses for both models based on the two different length-dependent survey 

catchabilities calculated by using a logistic function and assumed lengths at 50% and 95% 

selection. Due to the lack of accurate survey catchability values for 3NO witch flounder, I 

use the estimated survey catchability of groundfish that is close to the witch flounder's 

biology (i.e. American plaice) in the NAFO Div. 3NO region as a reference for estimation. 

The estimated L50 and L95 for American plaice are 17.8 cm and 26 cm respectively (Kumar et 

al., 2020). So I run ALSCL with nine different assumed survey catchabilities, L50 = {18, 21, 

23, 25, 27, 31, 27, 27, 27, L95 = {23, 26, 28, 30, 32, 36, 31, 33, 29}, I also run ACL with L50 

= {18, 21, 23, 25, 27, 31, 27, 27, 27, L95 = {23, 26, 28, 30, 32, 36, 31, 30, 29}. The 

corresponding AICs for ALSCL and ACL models with nine different survey catchabilities 

are listed in Table 3.3. I found ACL model is more sensitive to the survey catchability than 

ALSCL model, due to ACL model failing to converge in the first four runs. When L50 is 27 

cm and L95 is 32 cm, the AIC of ALSCL model is the smallest and the fit performs the best; 
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when L50 is 27 cm and L95 is 30 cm, the AIC of ACL model is the smallest and the best fit is 

achieved. 

 

I also compared the stock assessment results in ALSCL and ACL models based on two 

different catchabilities (q1: L50 is 27 cm, L95 is 29 cm; q2: L50 is 27 cm, L95 is 32 cm) by 

fitting model-based indices. The estimation results under different catchabilities are 

significantly different in both ALSCL and ACL models, and the models under lower q values 

produce extremely high estimated abundance and biomass. In ALSCL model, the estimated 

abundance under q1 is almost 10 times the estimated abundance under q2 (Figure 3.39), and 

the estimated biomass under q1 is more than 1.5 times the estimated biomass under q2 

(Figure 3.40); the estimated abundance at age or length under q1 is much higher than the 

estimated abundance at age or length under q2 in the young age (age 1-2) and small length 

(10-26 cm) (Figures 3.41-3.42); the estimated fishing mortality at age or length under q1 is 

basically larger than the estimated fishing mortality at age or length under q2 (Figures 3.43-

3.44); the estimated growth rate under q2 is greater than that under q1 before age 9 (Figure 

3.45). In ACL model, the estimated abundance under q1 is almost 30 times the estimated 

abundance under q2 in the first and second model years (Figure 3.46); the estimated biomass 

under q1 is more than 2 times the estimated biomass under q2 (Figure 3.47); the estimated 

abundance at age or length under q1 is much higher than the estimated abundance at age or 

length under q2 in the young age (age 1-6) and small length (10-26 cm) (Figures 3.48-3.49); 

the estimated fishing mortality at age is equal to 0 under q1 and q2 (Figure 3.50); the 

estimated growth curve under q1 is similar to that under q2 (Figure 3.51). 
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3.3.6 Retrospective analyses for ALSCL and ACL models with model-based indices 

I performed eight-year retrospective analyses on total abundance, recruitment, total biomass, 

and spawning stock biomass for ALSCL model. The results for ALSCL model are shown in 

Figure 3.52, which indicate that there are almost no retrospective patterns (that are systematic 

changes in historic estimates of population size with the inclusion or exclusion data for an 

additional year (Hurtado-Ferro et al., 2015)). Thus, I consider the retrospective patterns for 

ALSCL model to be good. 

 

I only performed three-year retrospective analyses on total abundance, recruitment, total 

biomass, and spawning stock biomass for ACL model due to ACL model failing to converge 

in retrospective analyses from 2013 to 2009. The results for ACL model are shown in Figure 

3.53, which indicates that there are a few retrospective patterns. For the 2016 assessment 

year, the estimates of abundance, recruitment, biomass and spawning stock biomass were 

low but revised at a high level for the 2017 and 2018 assessment years (Figure 3.53).  

 

I also calculated Mohn’s rho to quantify the severity of retrospective pattern for both ALSCL 

and ACL models (Mohn, 1999). The absolute value of Mohn's rho in ACL was greater than 

the absolute value of Mohn's rho in ALSCL in retrospective analyses of abundance, 

recruitment, biomass and spawning stock biomass, which indicates ALSCL model is more 

robust than ACL model in retrospective analyses (Figure 3.52-3.53). 
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3.4 Discussion 

By comparing the results of the four combinations, it is found that the assessment results of 

NAFO Div. 3NO witch flounder are very sensitive to the choice of indices, and also sensitive 

to the choice of model based on the results in sensitivity and retrospective analyses. In 

ALSCL and ACL models, results estimated with design-based indices have large residuals 

compared to observations and have larger confidence intervals than those estimated with 

model-based indices, which indicates that standardization of survey indices using VAST may 

effectively improve the accuracy of assessment. If only focus on the results from fitting 

model-based indices for both models, ALSCL can take account into length-dependent fishing 

mortality but ACL cannot, ALSCL has more wide applicability for different catchabilities 

than ACL, and ALSCL has fewer retrospective patterns than ACL. The trend of ALSCL 

estimated recruitment by fitting model-based indices (Figure 3.10) is consistent with the 

trend of recruitment index derived from NAFO Div. 3NO fall Canadian RV survey, and the 

trend of biomass dynamic predicted by the two models with model-based indices (Figure 

3.10) is basically the same, showing a trend of first rising and then falling (Rogers & 

Morgan, 2019). ALSCL and ACL models suggest there is a strong variation of age structure 

over time, which cannot be identified by the current surplus production assessment model. In 

addition, ALSCL and ACL models also can provide the growth curve of witch flounder by 

estimating the VonB parameters. The male and female combined estimation of  𝐿∞ in 

ALSCL and ACL models by fitting model-based indices are 46.46 cm and 46.24 cm 

respectively (Figure 3.38), which are smaller than the values estimated by (Bowering, 1976) 

(𝐿∞ are almost 56 cm and 62 cm for 3NO male and female witch flounder respectively). This 
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may be a result of the miniaturization of mature fish due to overfishing in the 1970s and 

1980s (Rogers & Morgan, 2019).  

 

The three-dimensional structure of ALSCL provides the estimate of population dynamics 

incorporating both age- and length-dependent fishing mortality. Compared with the current 

surplus production model in a Bayesian framework that was used for the assessment of this 

stock in NAFO Div. 3NO (Rogers & Morgan, 2019), ALSCL is able to produce the 

estimations of age-based population dynamics, including abundance, recruitment, biomass, 

spawning stock biomass and age-dependent and length-dependent fishing mortality, but due 

to lack of landings information, all estimates are relative,  the current assessment model used 

by DFO is only able to estimate biomass dynamics and overall fishing mortality(Rogers & 

Morgan, 2019). The ACL estimates the age-based cohort dynamics only via the estimated 

age-dependent fishing mortality. It is criticized for its lack of accounting for length-

dependent mortality within the same age group (Punt et al., 2013). In general, fishing gears 

have different selectivity for different lengths, and fish of the same age may have different 

body lengths, and the body length will not increase after a certain age, and the length-

dependent fishing mortality is associated with the length-dependent fishing selectivity. 

Therefore, the assumptions that constant fishing mortality within the same age and ignoring 

length-dependent mortality within age are used in ACL may result in inaccurate estimation of 

cohort dynamics. 
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Since no sex ratio of NAFO Div. 3NO witch flounder was provided in the Fall survey data, I 

simply assumed a sex ratio of 1:1 in ALSCL and ACL models. However, the maturity of 

males and females at the same body length is different, and the maximum body length that 

can be achieved is also different. For example, the lengths at 50 % maturity of males and 

females witch flounder are 26.6 cm and 29.2 cm respectively (Swain et al., 2012). Assuming 

males and females have the same maturity can lead to bias in the estimated spawning stock 

biomass. 

 

A major challenge for ALSCL and ACL models is obtaining accurate survey catchability. 

Assessment results for NAFO Div. 3NO witch flounder are very sensitive to survey 

catchability. It is difficult to address this problem if survey fishing is unavailable. 

 

Another challenge for ALSCL and ACL models is estimating natural mortality. In both 

models, I estimated the total mortality, and fishing mortality that is derived from the total 

mortality and fixed natural mortality. I cannot estimate the fishing mortality and natural 

mortality separately with only survey length-based data. A natural mortality value of 0.2 has 

traditionally been used for all ages and for both males and females in the most stock 

assessment (Maunder & Wong, 2011). But this value may smaller or larger for witch 

flounder, which can result in inaccurate estimation of cohort dynamics. Lorenzen M can be 

used in the future to make the natural mortality more realistic (Lorenzen, 2011), but the 

stochastic M could potentially be confounded with deviations in catchabilities.  
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The current stock assessment for NAFO Div. 3NO witch flounder only uses the survey 

indices data and the total commercial catch data (Maddock Parsons et al., 2020; Rogers & 

Morgan, 2019). In ALSCL and ACL models, I only use the survey catch-at-length data, so 

the absolute estimates of stock size cannot be provided.  If the commercial catch-at-length 

data is available, ALSCL and ACL is very flexible to integrate that data and enables to 

provide the absolute estimates of stock size, which can improve the accuracy of stock 

assessment and give more precise reference points.  
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Tables 

Table 3.1 The list of fixed effects and random effects of ALSCL 

 

 

 

Parameter Description 

Fixed effect 

log(𝑟̅)  Log of mean recruitment 

log(𝜎𝑟) Log of standard deviation of log recruitment 

log(𝜙𝑟)  Log of autocorrelation of recruitment  

log (𝑍𝑖𝑛𝑖𝑡) Log of initial total mortality in the first model year 

log(𝜎𝑖𝑛𝑖𝑡) Log of standard deviation of log number-at-age in the first model year 

log(𝑐𝑣𝑖𝑛𝑖𝑡) Log of coefficient of variance of initial size of each cohort in the first model year 

log(𝑐𝑣𝑖𝑛𝑐 ) Log of coefficient of variation of growth increment 

log(𝐿∞) Log of 𝐿∞ in the Von Bertalanffy growth model   

log( 𝑘 ) Log of  𝑘  in the Von Bertalanffy growth model   

log(𝐿0) Log of initial length of witch flounder (i.e., mean length at the age of 0), fixed to 

be 0.04. 

log(𝜇𝑧) Log of mean of total mortality for all lengths and years.  

log(𝜎𝑧) Log of standard deviation of log total mortality 

log(𝜙𝑇)  Log of autocorrelation of total mortality among years 

log(𝜙𝐿)  Log of autocorrelation of total mortality among length classes 

log(𝜎𝐼) Log of survey index standard deviation 

Random effects 

𝜀𝑡 Recruitment deviation 

𝜀𝑧 Deviation of total mortality across lengths and years 

𝜀𝑎 Deviation of number-at-age in the first model year 
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Table 3.2 The list of fixed effects and random effects of ACL 

 

 

  

Parameter Description 

Fixed effect 

log(𝑟̅)  Log of mean recruitment 

log(𝜎𝑟) Log of standard deviation of log recruitment 

log(𝜙𝑟)  Log of autocorrelation of recruitment  

log (𝑍𝑖𝑛𝑖𝑡) Log of initial total mortality in the first model year 

log(𝜎𝑖𝑛𝑖𝑡) Log of standard deviation of log number-at-age in the first model year 

log(𝑐𝑣𝑖𝑛𝑖𝑡) Log of coefficient of variance of initial size of each cohort in the first model year 

log(𝐿∞) Log of 𝐿∞ in the Von Bertalanffy growth model   

log( 𝑘 ) Log of  𝑘  in the Von Bertalanffy growth model   

log(𝑎0) Log of the theoretical age of witch flounder when size is zero 

log(𝜇𝑧) Log of mean of total mortality for all lengths and years.  

log(𝜎𝑧) Log of standard deviation of log total mortality 

log(𝜙𝑇)  Log of autocorrelation of total mortality among years 

log(𝜙𝐴)  Log of autocorrelation of total mortality among age classes 

log(𝜎𝐼) Log of survey index standard deviation 

Random effects 

𝜀𝑡 Recruitment deviation 

𝜀𝑧 Deviation of total mortality across lengths and years 

𝜀𝑎 Deviation of number-at-age in the first model year 
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Table 3.3 The 𝐿50, 𝐿95 and corresponding AICs for ALSCLs and ACLs resulting from inputting 

nine different survey catchabilities in sensitivity analyses. 

 

 

 

 

 

  

ALSCL 𝑳𝟓𝟎 𝑳𝟗𝟓 AIC 

q1 18 23 675.4820 

q2 21 26 378.5578 

q3 23 28 292.2846 

q4 25 30 247.4288 

q5 27 32 240.5592 

q6 31 36 250.8287 

q7 27 31 272.6340 

q8 27 33 272.8006 

q9 27 29 429.0152 

 

ACL 𝑳𝟓𝟎 𝑳𝟗𝟓 AIC 

q1 18 23 false converge 

q2 21 26 false converge 

q3 23 28 false converge 

q4 25 30 false converge 

q5 27 32 230.9924 

q6 31 36 243.5120 

q7 27 31 212.9385 

q8 27 30 209.4273 

q9 27 29 240.0318 
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Figures 

 

Figure 3.1 Observed and predicted survey catch-at-length (millions) by ALSCL with design-

based indices for NAFO Div. 3NO witch flounder from 1995 to 2018 (except 2014). 
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Figure 3.2 The residual plot of the predicted survey log-catch at length by ALSCL with design-

based indices for NAFO Div. 3NO witch flounder from 1995 to 2018 (except 2014). Red 

bubbles are positive residuals while bule bubbles are negative residuals.  
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Figure 3.3 Observed and predicted survey catch-at-length (millions) by ALSCL with model-

based indices for NAFO Div. 3NO witch flounder from 1995 to 2018 (except 2014). 
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Figure 3.4 The residual plot of the predicted survey log-catch at length by ALSCL with model-

based indices for NAFO Div. 3NO witch flounder from 1995 to 2018 (except 2014). Red 

bubbles are positive residuals while bule bubbles are negative residuals.  
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Figure 3.5 Observed and predicted survey catch-at-length (millions) by ACL with design-based 

indices for NAFO Div. 3NO witch flounder from 1995 to 2018 (except 2014). 
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Figure 3.6 The residual plot of the predicted survey log-catch at length by ACL with design-

based indices for NAFO Div. 3NO witch flounder from 1995 to 2018 (except 2014). Red 

bubbles are positive residuals while bule bubbles are negative residuals.  
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Figure 3.7 Observed and predicted survey catch-at-length (millions) by ACL with model-based 

indices for NAFO Div. 3NO witch flounder from 1995 to 2018 (except 2014). 
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Figure 3.8 The residual plot of the predicted survey log-catch at length by ACL with model-

based indices for NAFO Div. 3NO witch flounder from 1995 to 2018 (except 2014). Red 

bubbles are positive residuals while bule bubbles are negative residuals.  
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Figure 3.9 The assumed survey catchability at length for NAFO Div. 3NO witch flounder. 
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Figure 3.10 From top to bottom are the estimated total abundance and recruitment (millions), the 

estimated total biomass and spawning stock biomass (Kt), and the estimated stock-recruitment 

relationship for NAFO Div. 3NO witch flounder in ALSCL with design-based and model-based 

indices. Red line is the estimates with design-based indices and blue line is the estimates with 

model-based indices. The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.11 The estimated VonB growth curve of NAFO Div. 3NO witch flounder in ALSCL 

model with design-based indices and model-based indices. Red line is the estimates with design-

based indices and blue line is the estimates with model-based indices. The covered areas by red 

and blue are 95% confidence intervals. 
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Figure 3.12 The estimated abundance-at-age (millions) for NAFO Div. 3NO witch flounder in 

ALSCL model with design-based indices and model-based indices from 1995 to 2018 (except 

2014). Red line is the estimates with design-based indices and blue line is the estimates with 

model-based indices. The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.13 The estimated abundance-at-length (millions) for NAFO Div. 3NO witch flounder 

in ALSCL model with design-based indices and model-based indices from 1995 to 2018 (except 

2014). Red line is the estimates with design-based indices and blue line is the estimates with 

model-based indices. The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.14 From top to bottom are the estimated total abundance and recruitment (millions), the 

estimated total biomass and spawning stock biomass (Kt), and the estimated stock-recruitment 

relationship for NAFO Div. 3NO witch flounder in ACL with design-based and model-based 

indices. Red line is the estimates with design-based indices and blue line is the estimates with 

model-based indices. The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.15 The estimated VonB growth curve of NAFO Div. 3NO witch flounder in ACL 

model with design-based indices and model-based indices. Red line is the estimates with design-

based indices and blue line is the estimates with model-based indices. The covered areas by red 

and blue are 95% confidence intervals. 
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Figure 3.16 The estimated abundance-at-age (millions) for NAFO Div. 3NO witch flounder in 

ACL model with design-based indices and model-based indices from 1995 to 2018 (except 

2014). Red line is the estimates with design-based indices and blue line is the estimates with 

model-based indices. The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.17 The estimated abundance-at-length (millions) for NAFO Div. 3NO witch flounder 

in ACL model with design-based indices and model-based indices from 1995 to 2018 (except 

2014). Red line is the estimates with design-based indices and blue line is the estimates with 

model-based indices. The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.18 The observed survey catch-at-length and the model estimated catch-at-length indices 

for NAFO Div. 3NO witch flounder in ALSCL with design-based indices from 1995 to 2018 

(except 2014).  
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Figure 3.19 The observed survey catch-at-length and the model estimated catch-at-length indices 

for NAFO Div. 3NO witch flounder in ALSCL with model-based indices from 1995 to 2018 

(except 2014).  
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Figure 3.20 The observed survey catch-at-length and the model estimated catch-at-length indices 

for NAFO Div. 3NO witch flounder in ACL with design-based indices from 1995 to 2018 

(except 2014).  
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Figure 3.21 The observed survey catch-at-length and the model estimated catch-at-length indices 

for NAFO Div. 3NO witch flounder in ACL with model-based indices from 1995 to 2018 

(except 2014).  
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Figure 3.22 The estimated fishing mortality at age for NAFO Div. 3NO witch flounder in 

ALSCL with design-based and model-based indices from 1995 to 2018 (except 2014). Red line 

is the estimates with design-based indices and blue line is the estimates with model-based 

indices. The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.23 The estimated fishing mortality at length for NAFO Div. 3NO witch flounder in 

ALSCL with design-based and model-based indices from 1995 to 2018 (except 2014). Red line 

is the estimates with design-based indices and blue line is the estimates with model-based 

indices. The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.24 The estimated fishing mortality at age for NAFO Div. 3NO witch flounder in ACL 

with design-based and model-based indices from 1995 to 2018 (except 2014). Red line is the 

estimates with design-based indices and blue line is the estimates with model-based indices. The 

covered areas by red and blue are 95% confidence intervals. 
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Figure 3.25 The estimated residual of log indices (by length) for NAFO Div. 3NO witch 

flounder in ALSCL with design-based and model-based indices from 1995 to 2018 (except 

2014). Red line is the estimates with design-based indices and blue line is the estimates with 

model-based indices.  
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Figure 3.26 The estimated residual of log indices (by year) for NAFO Div. 3NO witch flounder 

in ALSCL with design-based and model-based indices from 1995 to 2018 (except 2014). Red 

line is the estimates with design-based indices and blue line is the estimates with model-based 

indices.  
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Figure 3.27 The estimated residual of log indices (by length) for NAFO Div. 3NO witch 

flounder in ACL with design-based and model-based indices from 1995 to 2018 (except 2014). 

Red line is the estimates with design-based indices and blue line is the estimates with model-

based indices.  
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Figure 3.28 The estimated residual of log indices (by year) for NAFO Div. 3NO witch flounder 

in ACL with design-based and model-based indices from 1995 to 2018 (except 2014). Red line is 

the estimates with design-based indices and blue line is the estimates with model-based indices.  
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Figure 3.29 From top to bottom are the estimated total abundance and recruitment (millions), the 

estimated total biomass and spawning stock biomass (Kt), and the estimated stock-recruitment 

relationship for NAFO Div. 3NO witch flounder in ACL and ALSCL models with design-based 

indices. Red line is the estimates in ACL model and blue line is the estimates in ALSCL model. 

The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.30 The estimated abundance-at-age (millions) for NAFO Div. 3NO witch flounder in 

ACL and ALSCL models with design-based indices. Red line is the estimates in ACL model and 

blue line is the estimates in ALSCL model. The covered areas by red and blue are 95% 

confidence intervals. 
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Figure 3.31 The estimated abundance-at-length (millions) for NAFO Div. 3NO witch flounder 

in ACL and ALSCL models with design-based indices. Red line is the estimates in ACL model 

and blue line is the estimates in ALSCL model. The covered areas by red and blue are 95% 

confidence intervals. 
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Figure 3.32 The estimated fishing mortality at age for NAFO Div. 3NO witch flounder in ACL 

and ALSCL models with design-based indices. Red line is the estimates in ACL model and blue 

line is the estimates in ALSCL model. The covered areas by red and blue are 95% confidence 

intervals. 
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Figure 3.33 The estimated VonB growth curve of NAFO Div. 3NO witch flounder in ALSCL 

and ACL models with design-based indices. Red line is the estimates in ACL model and blue 

line is the estimates in ALSCL model. The covered areas by red and blue are 95% confidence 

intervals. 
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Figure 3.34 From top to bottom are the estimated total abundance and recruitment (millions), the 

estimated total biomass and spawning stock biomass (Kt), and the estimated stock-recruitment 

relationship for NAFO Div. 3NO witch flounder in ACL and ALSCL models with model-based 

indices. Red line is the estimates in ACL model and blue line is the estimates in ALSCL model. 

The covered areas by red and blue are 95% confidence intervals. 
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Figure 3.35 The estimated abundance-at-age (millions) for NAFO Div. 3NO witch flounder in 

ACL and ALSCL models with model-based indices. Red line is the estimates in ACL model and 

blue line is the estimates in ALSCL model. The covered areas by red and blue are 95% 

confidence intervals. 
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Figure 3.36 The estimated abundance-at-length (millions) for NAFO Div. 3NO witch flounder 

in ACL and ALSCL models with model-based indices. Red line is the estimates in ACL model 

and blue line is the estimates in ALSCL model. The covered areas by red and blue are 95% 

confidence intervals. 
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Figure 3.37 The estimated fishing mortality at age for NAFO Div. 3NO witch flounder in ACL 

and ALSCL models with model-based indices. Red line is the estimates in ACL model and blue 

line is the estimates in ALSCL model. The covered areas by red and blue are 95% confidence 

intervals. 
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Figure 3.38 The estimated VonB growth curve of NAFO Div. 3NO witch flounder in ALSCL 

and ACL models with model-based indices. Red line is the estimates in ACL model and blue line 

is the estimates in ALSCL model. The covered areas by red and blue are 95% confidence 

intervals. 
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Figure 3.39 The estimated total abundance (millions) of NAFO Div. 3NO witch flounder in 

ALSCL with model-based indices from 1995 to 2018 (except 2014) for different survey 

catchabilities q1 and q2. Covered areas are 95% confidence intervals.  
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Figure 3.40 The estimated total biomass (Kt) of NAFO Div. 3NO witch flounder in ALSCL 

with model-based indices from 1995 to 2018 (except 2014) for different survey catchabilities q1 

and q2. Covered areas are 95% confidence intervals.  
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Figure 3.41 The estimated abundance at age (millions) of NAFO Div. 3NO witch flounder in 

ALSCL with model-based indices from 1995 to 2018 (except 2014) for different survey 

catchabilities q1 and q2. Covered areas are 95% confidence intervals.  
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Figure 3.42 The estimated abundance at length (millions) of NAFO Div. 3NO witch flounder in 

ALSCL with model-based indices from 1995 to 2018 (except 2014) for different survey 

catchabilities q1 and q2. Covered areas are 95% confidence intervals.  



144 
 

 

 

Figure 3.43 The estimated fishing mortality at age of NAFO Div. 3NO witch flounder in 

ALSCL with model-based indices from 1995 to 2018 (except 2014) for different survey 

catchabilities q1 and q2. Covered areas are 95% confidence intervals.  
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Figure 3.44 The estimated fishing mortality at length of NAFO Div. 3NO witch flounder in 

ALSCL with model-based indices from 1995 to 2018 (except 2014) for different survey 

catchabilities q1 and q2. Covered areas are 95% confidence intervals.  
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Figure 3.45 The estimated VonB growth curve of NAFO Div. 3NO witch flounder in ALSCL 

with model-based indices for different survey catchabilities q1 and q2.  
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Figure 3.46 The estimated total abundance (millions) of NAFO Div. 3NO witch flounder in 

ACL with model-based indices from 1995 to 2018 (except 2014) for different survey 

catchabilities q1 and q2. Covered areas are 95% confidence intervals.  
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Figure 3.47 The estimated total biomass (Kt) of NAFO Div. 3NO witch flounder in ACL with 

model-based indices from 1995 to 2018 (except 2014) for different survey catchabilities q1 and 

q2. Covered areas are 95% confidence intervals.  

 



149 
 

 

 

Figure 3.48 The estimated abundance at age (millions) of NAFO Div. 3NO witch flounder in 

ACL with model-based indices from 1995 to 2018 (except 2014) for different survey 

catchabilities q1 and q2. Covered areas are 95% confidence intervals.  
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Figure 3.49 The estimated abundance at length (millions) of NAFO Div. 3NO witch flounder in 

ACL with model-based indices from 1995 to 2018 (except 2014) for different survey 

catchabilities q1 and q2. Covered areas are 95% confidence intervals.  
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Figure 3.50 The estimated fishing mortality at age of NAFO Div. 3NO witch flounder in ACL 

with model-based indices from 1995 to 2018 (except 2014) for different survey catchabilities q1 

and q2. Covered areas are 95% confidence intervals.  
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Figure 3.51 The estimated VonB growth curve of NAFO Div. 3NO witch flounder in ACL with 

model-based indices for different survey catchabilities q1 and q2.  
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Figure 3.52 The retrospective analyses for NAFO Div. 3NO witch flounder in ALSCL with 

model-based indices from 1995 to 2018 (except 2014).  
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Figure 3.53 The retrospective analyses for NAFO Div. 3NO witch flounder in ACL with model-

based indices from 1995 to 2018 (except 2014).  
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Chapter 4 Summary and Future Research 

The primary goal of my thesis was to standardize survey indices for NAFO Div. 3NO witch 

flounder and apply the age and length structured statistical catch-at-length (ALSCL) and the 

age-based catch-at-length model (ACL) models for this stock to estimate the age-based 

population dynamics. This thesis provides a case study for standardizing survey indices 

through a spatiotemporal model and assessing hard-to-age stock by the ALSCL and ACL 

models. 

 

In Chapter 1, I provided an overview of the witch flounder fishery in NAFO Div. 3NO. I 

highlighted witch flounder life-history traits, catch history and stock management. I also 

described the Fisheries and Oceans Canada (DFO) research vessel survey indices and detail 

of this survey design. By doing so, I realized the survey indices derived from survey 

sampling only represent sample data from localized sample sites, which implies that these 

indices must be standardized precisely to represent the total stock. I attempt to this problem 

in Chapter 2. 

 

In Chapter 2, I applied the design-based approach and the model-based approach (vector-

autoregressive spatiotemporal, VAST) of standardizing fall RV survey size compositional 

data for NAFO Div. 3NO witch flounder. I found that the estimated abundance-at-length 

indices and the proportion-at-length indices from the model-based approach are smoother 

and show smaller CI than that from the design-based approach, and the estimated effective 

sample size in the model-based estimator is larger than that in the design-based estimator, 
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which implies the model-based estimator provides more accurate estimations. I found general 

agreement in trends between design-based and model-based indices. However, from 2004 to 

2013 (except 2007), design-based indices are considerably higher in 32 to 40 cm. This could 

be due to potential biases introduced by the model-based approach. Thorson and Haltuch 

(2019) demonstrated that VAST and design-based indices agree very well in a simulated 

dataset from bottom trawl surveys in the Eastern Bering Sea, which implies that future 

studies should quantify this potential bias by conducting a simulation experiment (Thorson & 

Haltuch, 2019). 

 

The model-based approach I have presented only deals with poor sampling or occasional big 

sampling problems and didn’t account for habitat covariates, catchability covariates and 

vessel effects. Ignoring these covariates will result in a biased estimate of the spatio-temporal 

variation of population density (Thorson, 2019). Future research should include habitat 

covariates (e.g. temperature), catchability covariates and vessel effects in the linear predictors 

of the model-based approach to improve the accuracy of model predictions. 

 

In Chapter 3, I used ALSCL and ACL models with design-based and model-based indices to 

estimate the age-based population dynamics for NAFO Div. 3NO witch flounder. The 

ALSCL and ACL models were fit the fall survey standardized number-at-length indices, 

weight-at-length and maturity-at-length data to estimate the abundance, recruitment, biomass, 

spawning stock biomass and fishing mortality, and also to provide the growth curve for this 

stock. By doing model diagnostic and sensitivity analyses, I confirmed that the assessment 
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results of NAFO Div. 3NO witch flounder are very sensitive to the choice of indices, and 

also sensitive to the choice of model based on the results in sensitivity and retrospective 

analyses. I also found that the ALSCL and ACL model fits are very sensitive to the choice of 

catchabilities, and the lower catchability values produce higher estimated abundance and 

biomass. The specification of survey catchability is a big challenge for ALSCL and ACL 

models. So future research should investigate potential changes in survey catchability i.e. 

integrating catch-at-length information in ALSCL. 

 

Since no sex ratio information from the fall survey, the sex ratio was assumed to equal 1:1 in 

the ALSCL and ACL models. And I also assumed that the maturity-at-length is the same for 

males and females. However, the maturity of males and females witch flounder at the same 

body length is different, and the maximum body length that can be achieved is also different 

(Bowering, 1976). Assuming males and females have the same maturity may lead to bias in 

the estimated spawning stock biomass. Therefore, future research should apply different 

maturity for both sexes when sex ratio information and reliable estimates of maturity-at-

length for males and females from ongoing research are available. 

 

I assumed the natural mortality is constant and equal to 0.2 in ALSCL and ACL. But this 

value may smaller or larger for witch flounder and juvenile witch flounder experience higher 

natural mortality than mature adults (Brodziak et al., 2011), which can result in an inaccurate 

estimation of cohort dynamics. Future research should investigate factors that cause natural 
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mortality for witch flounder to vary in time and space first and then try to apply the age- and 

size-varying natural mortality in the assessment model to evaluate the consequences. 
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